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Preface 

This book is about the thermodynamics of enzyme-catalyzed reactions that make 
up the metabolism of living organisms. It is not an introductory text, but the 
fundamental principles of thermodynamics are reviewed. The reader does need 
some background in thermodynamics, such as that provided by a first course in 
physical chemistry. The book uses a generalized approach to thermodynamics 
that makes it possible to calculate the effects of changing pH, free concenrations 
of metal ions that are bound by reactants, and steady-state concentrations of 
coenzymes. This approach can be extended to other types of work that may be 
involved in a living organism. 

The concepts involved in this approach are simple, but the equations become 
rather complicated. Biochemical reactions are written in terms of reactants like 
ATP that are made up of sums of species, and they are referred to as biochemical 
reactions to differentiate them from the underlying chemical reactions that are 
written in terms of species. The thermodynamics of biochemical reactions is 
independent of the properties of the enzymes that catalyze them. However, the 
fact that enzymes may couple reactions that might otherwise occur separately 
increases the number of constraints that have to be considered in ther- 
modynamics. 

Biochemical thermodynamics is complicated for several reasons: (1) Bio- 
chemical reactants consist of sums of species whenever a reactant has a pK within 
about two units of the pH of interest or binds metal ions reversibly. (2) Species 
of a biochemical reactant are often ions, and the activity coefficients of ions are 
functions of ionic strength. (3) Enzyme catalysis may introduce constraints in 
biochemical reactions in addition to balances of atoms of elements. (4) Metab- 
olism is sufficiently complicated that it is important to find ways to obtain a more 
global view. (5) In biochemistry other kinds of work, such as electric work, 
elongation work, and surface work may be involved. It is remarkable that the 
same basic reactions are found in all living systems. The most important thing 
about these reactions is that they provide the means to carry out the oxidation 
of organic matter in a sequence of steps that store energy that is needed for the 
synthesis of organic molecules, mechanical work, and other functions required for 
life. 

The theme of this book is that Legendre transforms make the application of 
thermodynamics more convenient for the users. The logic used here is a continu- 
ation of the process described by Gibbs that introduced the enthalpy H ,  
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Helmholtz energy A, and the Gibbs energy G by use of Legendre transforms of 
the internal energy U .  In Chapter 4 a Legendre transform is used to introduce pH 
and pMg as independent intensive variables. In Chapter 6 the steady-state 
concentrations of various coenzymes are introduced as independent intensive 
variables in discussing systems of enzyme-catalyzed reactions. In Chapter 8 a 
Legendre transform is used to introduce the electric potential of a phase as an 
independent intensive variable. These uses of Legendre transforms illustrate the 
comment by Callen (1985) that "The choice of variables in terms of which a given 
problem is formulated, while a seemingly innocuous step, is often the most crucial 
step in the solution." Choices of dependent and independent variables are not 
unique, and so choices can be made to suit the convenience of the experimenter. 
Gibbs has provided a mathematical structure for thermodynamics that is expand- 
able in many directions and is rich in interrelationships between measurable 
properties because thermodynamic properties obey all the rules of calculus. 

This book on thermodynamics differs from others in its emphasis on the 
fundamental equations of thermodynamics and the application of these equations 
to systems of biochemical reactions. The emphasis on fundamental equations 
leads to new thermodynamic potentials that provide criteria for spontaneous 
change and equilibrium under the conditions in a living cell. The equilibrium 
composition of a reaction system involving one or more enzyme-catalyzed 
reactions usually depends on the pH, and so the Gibbs energy G does not provide 
the criterion for spontaneous change and equilibrium. It is necessary to use a 
Legendre transform to define a transformed Gibbs energy G'  that provides the 
criterion for spontaneous change and equilibrium at the specified pH. This 
process brings in a transformed entropy S' and a transformed enthalpy H ' ,  but 
this new world of thermodynamics is similar to the familiar world of G, S ,  and H ,  
in spite of the fact that there are significant differences. 

Since coenzymes, and perhaps other reactants, are in steady states in living 
cells, i t  is of interest to use a Legendre transform to define a further transformed 
Gibbs energy G" that provides the criterion for spontaneous change and equilib- 
rium at a specified pH and specified concentrations of coenzymes. This process 
brings in a further transformed entropy S" and a further transformed enthalpy 
H",  but the relations between these properties have the familiar form. 

Quantitative calculations on systems of biochemical reactions are sufficiently 
complicated that it is necessary to use a personal computer with a mathematical 
application. Mathematica'~'" (Wolfram Research, Inc. 100 World Trade Center, 
Champaign, IL, 61820-7237) is well suited for these purposes and is used in  this 
book to make calculations, construct tables and figures, and solve problems. The 
last third of the book provides a computer-readable database, programs, and 
worked-out solutions to computer problems. The database BasicBiochemData2 
is available on the Web at http:,'/www.mathsource.com/cgi-bin/msitem?O211-662. 

Systems of biochemical reactions can be represented by stoichiometric num- 
ber matrices and conservation matrices, which contain the same information and 
can be interconverted by use of linear algebra. Both are needed. The advantage 
of writing computer programs in terms of matrices is that they can then be used 
with larger systems without change. 

This field owes a tremendous debt to the experimentalists who have measured 
apparent equilibrium constants and heats of enzyme-catalyzed reactions and to 
those who have made previous thermodynamic tables that contain information 
needed in biochemical thermodynamics. 

Although I have been involved with the thermodynamics of biochemical 
reactions since 1950, I did not understand the usefulness of Legendre transforms 
until 1 had spent the decade of the 1980s working on the thermodynamics of 
petroleum processing. During this period I learned from Irwin Oppenheim (MIT) 
and Fred Krambeck (Mobil Research and Development) about Legendre trans- 
forms, calculations using matrices, and semigrand partition functions. In the 1990s 
1 returned to biochemical thermodynamics and profited from many helpful 
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discussions with Robert N. Goldberg (NIST). The new nomenclature that is used 
here was recommended by an IUPAC-IUBMB report by Alberty, Cornish- 
Bowden, Gibson, Goldberg, Hammes, Jencks, Tipton, and Veech in 1994. The use 
of Legendre transforms in chemical thermodynamics is the subject of an IUPAC 
Technical Report by Alberty, Barthel, Cohen, Ewing, Goldberg, and Wilhelm 
(2001). I am indebted to NIH for award 5-R01-GM48458 for support of my 
research on biochemical thermodynamics. My Associate Managing Editor, 
Kristin Cooke Fasano of John Wiley and Sons, was very helpful. 

Robert A. Alberty 
Cambridge, Massachusetts 
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Brief History of the Thermodynamics of 
Biochemical Reactions 

Acid Dissociation Constants and Dissociation 
Constants of Complex Ions 

Binding of Hydrogen Ions and Magnesium Ions 
by Adenosine Triphosphate 

Apparent Equilibrium Constants of Biochemical 
Reactions 

Production of Hydrogen Ions and Magnesium 
Ions in the Hydrolysis of Adenosine 
Triphosphate 

pKs of Weak Acids 

Two types of equilibrium constant expressions are needed in biochemistry. The 
thermodynamics of biochemical reactions can be discussed in terms of species like 
ATP4-, HATP3-, and MgATP2- or in terms of reactants (sums of species) like 
ATP. The use of species corresponds with writing chemical reactions that balance 
atoms of elements and electric charges; the corresponding equilibrium constants 
are represented by K .  This approach is required when chemical details are being 
discussed, as in considering the mechanism of enzymatic catalysis. But discussion 
in terms of metabolism must involve, in great deal detail, acid dissociation 
constants and dissociation constants of complexes with metal ions. Therefore 
metabolism is discussed by writing biochemical reactions in terms of reactants - 
that is, sums of species, like ATP-at a specified pH and perhaps specified 
concentrations of free metal ions that are bound reversibly by reactants. Bio- 
chemical reactions do  not balance hydrogen ions because the pH is held constant, 
and they do not balance metal ions for which free concentrations are held 
constant. When the pH is held constant, there is the implication that acid or alkali 
will be added to the system to hold the pH constant if the reaction produces or 
consumes hydrogen ions. In actual practice a buffer is used to hold the pH nearly 
constant, and the pH is measured at equilibrium. The corresponding equilibrium 
constants are represented by K' ,  which are referred to as apparent equilibrium 
constants because they are functions of pH and perhaps the free concentrations 
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2 Introduction to Apparent Equilibrium Constants 

of one or more free metal ions. Biochemical thermodynamics is more complicated 
than the chemical thermodynamics of reactions in aqueous solutions because 
there are more independent variables that have to  be specified. This introductory 
chapter is primarily concerned with the hydrolysis of ATP at specified 7; P,  pH, 
pMg, and ionic strength. The thermodynamics of the hydrolysis of ATP and 
closely related reactions have received a good deal of attention because of the 
importance of these reactions in energy metabolism. 

1.1 BRIEF HISTORY OF THE THERMODYNAMICS 
OF BIOCHEMICAL REACTIONS 

The first major publication on the thermodynamics of biochemical reactions was 
by Burton in Krebs and Kornberg, Energy Transformations in Living Matter, 1957. 
Before that time, apparent equilibrium constants had been measured for a number 
of enzyme-catalyzed reactions, but Burton recognized that these apparent equi- 
librium constants together with standard Gibbs energies of formation A,Go of 
species determined by chemical methods can yield Af Go for biochemical species 
to make a table that can be used to calculate equilibrium constants of biochemical 
reactions that have not been studied (Burton and Krebs, 1953). In retrospect i t  is 
easy to see that in 1953 to 1957 there were some problems that were apparently 
not clearly recognized or solved. Since Burton was the first, it is worth saying a 
little more about his 1957 thermodynamic tables. The first table gives Af Go values 
for about 100 species in biochemical reactions. A large number of these values 
were taken from chemical thermodynamic tables available in the 1950s, but a 
number were new values calculated from measured apparent equilibrium con- 
stants for enzyme-catalyzed reactions. Af Go values of species can be readily 
calculated when the reactants in the enzyme-catalyzed reaction are all single 
species and AfGo values are known for all of the reactants except one. It is 
noteworthy that Burton omitted the species of orthophosphate from his table and 
that he was not able to include species of ATP, ADP, NAD,,, and NAD,,,. His 
second table gives standard Gibbs energy changes at pH 7 for oxidation-reduction 
reactions that were calculated using the convention that [H'] = 1 mol L- '  at 
pH 7; the symbol AC' was used for this quantity. This table also gives the 
corresponding standard cell potentials for these reactions. The third table gives 
AG' values at pH 7 for a number of reactions in glycolysis and alcoholic 
fermentation. The fourth table is on the citric acid cycle, and the fifth table is on 
Gibbs energies of hydrolysis. When a biochemical reaction is studied at a pH 
where there is a predominant chemical reaction, it is possible to discuss ther- 
modynamics in terms of species. But when some reactants are represented by an 
equilibrium distribution of several species with different numbers of hydrogen 
atoms, this approach is not satisfactory. The quantitative treatment of reactions 
involving reactants with pKs in the neighborhood of pH 7 was not possible until 
acid dissociation constants of these reactants had been determined. Some 
measurements of acid dissociation constants of ATP and related substances 
(Alberty, Smith, and Bock, 1951) and dissociation constants of ionic complexes of 
these substances with divalent cations (Smith and Alberty, 1956) were made in 
this period. 

In the 1960s there was a good deal of interest in the thermodynamics of the 
hydrolysis of ATP and of other organic phosphates (Alberty, 1968, 1969; Phillips, 
George, and Rutman, 1969), but standard Gibbs energies of species were not 
calculated. The measurement of apparent equilibrium constants for biochemical 
reactions was extended in the 1970s (Guynn and Veech, 1973; Veech et al., 1979) 
and 1980s (Tewari and Goldberg, 1988). 

In 1969 Wilhoit picked up where Burton had left off and compiled the 
standard thermodynamic properties A,Go and A,Ho of species involved in 
biochemical reactions. He recognized the problems involved in including species 
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of ATP in such a table and made a suggestion as to how to handle it. In 1977 
Thauer, Jungermann, and Decker published a table of standard Gibbs energies of 
formation of many species of biochemical interest, and showed how to adjust 
standard Gibbs energies of reaction to pH 7 by adding mAfGo(H+), where m is 
the net number of protons in the reaction. 

During the 1960s and 1970s, new nomenclature for treating the ther- 
modynamics of biochemical reactions was developed, including the use of K '  for 
the apparent equilibrium constant written in terms of sums of species, but 
omitting [H']. These changes led to the publication of Recommendations ,for 
Measurement and Presentation of Biochemical Equilibrium Data by an IUPAC- 
IUB Committee (Wadso, Gutfreund, Privalov, Edsall, Jencks, Armstrong, and 
Biltonen, 1976). 

Goldberg and Tewari published an evaluation of thermodynamic and trans- 
port properties of carbohydrates and their monophosphates in 1989 and of the 
ATP series in 1991. Miller and Smith-Magowan published on the ther- 
modynamics of the Krebs cycle and related compounds in 1990. 

Alberty (1992a, b) pointed out that when the pH or the free concentration of 
a metal ion is specified, the Gibbs energy C does not provide the criterion for 
spontaneous change and equilibrium. When intensive variables in addition to the 
temperature and pressure are held constant, it is necessary to define a transformed 
Gibbs energy G'  by use of a Legendre transform, as discussed in Chapters 2 and 
4. This leads to a complete set of transformed thermodynamic properties at 
specified pH, that is, a transformed entropy S', transformed enthalpy H ' ,  and a 
transformed heat capacity at constant pressure Cim. These changes led to the 
publication of Recommendations for Nonienclature and Tables in Biochemical 
Thermodynamics by an IUPAC-IUBMB Committee (Alberty, Cornish-Bowden, 
Gibson, Goldberg, Hammes, Jencks, Tipton, Veech, Westerhoff, and Webb, 1994). 

This introductory chapter describes the thermodynamics of biochemical 
reactions in terms of equilibrium constants and apparent equilibrium constants 
and avoids references to other thermodynamic properties, which are introduced 
later. 

W 1.2 ACID DISSOCIATION CONSTANTS AND 
DISSOCIATION CONSTANTS OF COMPLEX IONS 

Strictly speaking, equilibrium constant expressions for chemical reactions involv- 
ing ions in aqueous solutions should be written in terms of activities a, of species, 
rather than concentrations. The activity of species i is given by ai = yici ,  where y i  
is the activity coefficient, which is a function of ionic strength. Activity coefficients 
of neutral molecules are close to unity in dilute aqueous solutions, but the activity 
coefficients of ions may deviate significantly from unity, depending on their 
electric charges and the ionic strength. The ionic strength of a solution is defined 
by I = ($zzci, where zi is the charge on ion i and c, is its concentration on the 
molar scale. When dilute aqueous solutions are studied, the ionic strength is under 
the control of the investigator and is essentially constant when the composition 
changes during a reaction. Thus it is convenient to take equilibrium constants and 
other thermodynamic properties to be functions of the ionic strength so that 
equilibrium constant expressions can be written in terms of concentrations. The 
exception to this statement is H,O. In dilute aqueous solutions the convention in 
thermodynamics is to omit [HzO] in the expression for the equilibrium constant 
because its activity remains essentially at unity. 

In 1923 Debye and Hckel showed that the activity coefficient yi of an ion 
decreases with increasing ionic strength, according to 

(1.2-1) 2 1/2 logyi = -Az,  I 

where A = 0.510651 L-'" mol'i2 at 298.15 K in water at a pressure of 1 bar. This 
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is referred to as a limiting law because it becomes more accurate as the ionic 
strength approaches zero. At ionic strengths in the physiological range, 0.05 to 
0.25 M, there are significant deviations from equation 1.2-1. Of the several ways 
to extend this equation empirically to provide approximate activity coefficients in 
the physiological range, the most widely used equation is 

(1.2-2) 

This is referred to as the extended Debye-Hiickel equation. It is an approximation 
that gives a good fit of data at low ionic strengths (Goldberg and Tewari, 1991) 
when B = 1.6 L”’ mol-’’’. Better fits can be obtained with more complicated 
equations with more parameters, but these parameters are not known for 
solutions involved in studying biochemical reactions. The way that ther- 
modynamic properties vary with the ionic strength is discussed in more detail in 
Section 3.6. 

Since hydrogen ions and metal ions, like Mg”, are often reactants, it IS 

convenient to define the pH, as -log[H+], where c refers to concentrations. 
and pMg as -log[Mg2+]. However, a glass electrode measures pH, = 

- log{y(H+)[H+]} where a refers to activity. Thus 

PH, = -log{-?(H+)j + PH, (1.2-3) 

Substituting the extended Debye-Hckel equation in this equation yields (Alberty, 
2001d) 

A I ” ~  
1 + 1.61’12 PH, - PH, = (1.2-4) 

The differences between the measured pH, and the pH, used in biochemical 
thermodynamics are given as a function of ionic strength and temperature in 
Table 1.1. 

These are the adjustments to be subtracted from pH, obtained with a pH 
meter to obtain pH,, which is used in the equations in this book. pH, is lower 
than pH, because the ion atmosphere of H +  reduces its activity. In the rest of the 
book, the subscript “c” on pH will be omitted so that pH = -log[H+]. 

In considering reactions in biochemical systems it is convenient to move the 
activity coefficients into the equilibrium constants. For example, the equilibrium 
constant expression for the dissociation of a weak acid can be written as follows: 

HA = H +  + A -  (1.2-5) 

(1.2-6) 

The acid dissociation constant K ,  is independent of ionic strength, but the acid 
dissociation constant K ,  depends on the ionic strength, as indicated by equation 
1.2-7. The equilibrium constant expression in equation 1.2-7 will be used in the 
rest of the book, but the subscript “c” will be omitted. This will make it possible 
for us to deal with concentrations of species, rather than activities. 

The same considerations apply to the dissociations of complex ions. For 
example, the equilibrium expression for the dissociation of a complex ion with a 
magnesium ion can be written as follows: 

MgA’ = Mg2+ + A- (1.2-8) 

(1.2-9) 
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Table 1.1 
Strength and Temperature 

pH,-pH, as a Function of Ionic 

IIM 10°C 25°C 40°C 

0 0 0 0 
0.05 0.082 0.084 0.086 
0.1 0.105 0.107 0.110 
0.15 0.119 0.122 0.125 
0.2 0.130 0.133 0.137 
0.25 0.138 0.142 0.146 

Source: R. A. Alberty, J .  Phys. Chenz. B 105, 7865 (2001). 
Copyright 2001 American Chemical Society. 

where pMg = -log[Mg2+] and K,,, is a function of the ionic strength, as well 
as temperature. 

Strictly speaking, equations 1.2-7 and 1.2-9 should have co in the denomina- 
tor, where cn = 1 M is the standard concentration, to make the equilibrium 
constant dimensionless (Mills et al., 1993). However, the co is omitted in this book 
in order to simplify expressions for equilibrium constants. Nevertheless, equilib- 
rium constants are still considered to be dimensionless, so their logarithm can be 
taken. 

In using acid dissociation constants and the dissociation constants of complex 
ions, it is convenient to take the base 10 logarithms of equations 1.2-7 and 1.2-9 
to obtain 

(1.2-10) 

(1.2-1 1) 

where pK,, = -log KH, and pKMgA = -log KMgA are functions of ionic strength 
at constant temperature. Table 1.3 in the last section of this chapter gives the pKs 
of some weak acids of interest in biochemistry as a function of ionic strength. 
Note that the effect of ionic strength is larger for acids with larger charges. For 
polyprotic acids pK, applies to the weakest acid group, pK, to the second 
weakest, and so on, in the pH range considered (usually 5 to 9). The calculation of 
Table 1.3 is based on the extended Debye-Huckel equation. 

W 1.3 BINDING OF HYDROGEN IONS AND MAGNESIUM 
IONS BY ADENOSINE TRIPHOSPHATE 

Acid dissociation constants and dissociation constants of complex ions determine 
the concentrations of species that are present in a solution at equilibrium under 
specified conditions. Ionic dissociation reactions occur rapidly and tend to remain 
at equilibrium during an enzyme-catalyzed reaction. Since ATP (see Fig. 1.1) is 
the primary carrier of energy in biochemical systems and since a good deal is 
known about its binding properties, these properties are considered here in some 
detail. 

An ATP ion with four negative charges can bind five hydrogen ions in 
strongly acidic solutions, but biochemistry is primarily concerned with the neutral 
region. We will consider only the hydrogen ion bindings that affect equilibrium in 
this region, namely the terminal phosphate group with a pK about 7 and the 
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OH OH 

Adenosine 

Adenosine inonophosphate (AMP) 

Adenosine diphosphate (ADP) 

Adenine 

D -Ribose 

Adenosine triphosphate ( A n )  

Figure 1.1 Structure of adenosine triphosphate 

adenine group with pK about 4. The other three pKs are in the neighborhood of 
2 or below and can be ignored in treating biochemical reactions. The anions of 
ATP bind metal ions as well as hydrogen ions. The dissociation constants for the 
complex ions that are formed can be determined by use of acid titrations because 
the binding of a metal ion reduces the apparent pK for the phosphate group 
(Alberty, Smith, and Bock, 1951; Smith and Alberty, 1956; Silbey and Alberty, 
2001). The apparent pK of the phosphate group is the midpoint of the titration of 
H,POi- in the presence of magnesium ions at the desired concentration of free 
metal ions. Because of the importance of ATP in energy metabolism, a great deal 
of data on the acid dissociation constants and the dissociation constants of 
complex ions of ATP, ADP, AMP, and Pi are available. Goldberg and Tewari 
(1991) and Larson, Tewari, and Goldberg (1993) critically evaluated these data 
including that on glucose 6-phosphate (G6P). The values for acid dissociation 
constants and magnesium complex ion dissociation constants involved in the 
ATP series are given in Table 1.2. 

Since ATP is made up of three species in the physiological pH range in the 
absence of metal ions that are bound, its concentration is given by 

[ATP] = [ATP4-] + [HATP3-] + [H,ATP2-] (1.3-1) 

Substituting the expressions for the two acid dissociation constants yields 

(1.3-2) 
KIATPK2ATP 

[ATP] = [ATP4-] 

The mole fraction r of the ATP in the ATP4- form at a specified concentration of 
hydrogen ions is given by 

1 

W + I 2  
r(ATPP4) = 

CH'1 + 1+-  
K I A T P  K l A T P K 2 A T P  

The mole fractions of ATP in the other two forms are readily derived: 

CH'I 
K I A T P  

CH'1 CH'I' 
r(HATP3 -) = 

1 I-I 

(1.3-3) 

(1.3-4) 
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Table 1.2 Equilibrium Constants in the ATP Series at 298.15 K 

Reaction pK(I=0)  K(I=0)  K(I=0.25 M) 
~- ~ ~ ~~ ~~ 

HAMP-= H +  + AMP2- 6.73 1.862 x 6.877 x 
H2AMP = H +  + HAMP- 3.99 1.023 x 1.966 x 

HADP2- = H +  + ADP-3 KI,,, 7.18 6.607 x lo-' 4.689 x 
H2ADP ~- = H + + HADP' K2ADP 4'36 4.365 x 10- j  1.612 x 
MgADP- = Mg2+ + ADP3- K3,DP 4.65 2.239 x 10-5 1.128 x 
MgHADP = Mg2' + HADP2- K,,,, 2.50 3.162 x 4.313 x 
HATP3- = H +  + ATP4- KiATP 7.60 2.512 x lo-* 3.426 x 
H,ATP~-  = H +  + HATP" K,,,, 4.68 2.089 x 10-5 1.483 x 
MgATP2- = Mg2+ + ATP4- KMTP 6.18 6.607 x 1.229 x lo-, 
MgHATP- = Mg2+ + HATP3 K,,,, 3.63 2.344 x 1.181 x 
Mg2ATP = Mg2+ + MgATP2- K,,,, 2.69 2.042 x 2.785 x 1 -' 
H,PO, = H +  + HP0:- 7.22 6.026 x lo-' 2.225 x lo-' 
MgHPO, = Mg2+ + HPO;- 2.71 1.950 x 2.66 x 
HG6P- = H +  + G6P2- 6.42 3.802 x 1.404 x 
MgG6P = Mgzi + G6P2- 2.60 2.512 x 3.462 x lo-' 
Hadenosine' = H +  + adenosine 3.50 3.162 x 3.162 x 
ATP4- + H,O = ADP3- + HP0:- + H +  
ADP3-- + H,O = AMP2- + HP0;- + H +  
AMP2- + H,O = adenosine + HP0;- 
G6P2- + H,O = glucose + HP0;- 
ATP4- + glucose = ADP3- + G6P2- + H +  
2ADP3 = ATP4 + AMP2 2.248 x lo- '  

Source: R. A. Alberty and R. N. Goldberg, Biochem., 31, 10612 (1992). Copyright 1992 American 
Chemical Society. 

MgAMP = Mg2+ + AMP2 2.79 1.622 x 2.212 x lo-, 

2.946 x lo-'  
6.622 x lo-' 
1.894 x 10' 
8.023 x 10' 
3.671 x 

KIATI'KZATP r(H2ATP2-) = 

K Z A T P  

(1.3-5) 

These mole fractions are plotted versus pH at 298.15 K and I = 0.25 M in Fig. 1.2. 
Since it is possible to calculate the mole fractions of the various species of 

ATP at a specified pH, the average binding of hydrogen ions RH can be calculated 
by use of 

(1.3-6) 
O[ATP4-] + 1[HATP3-] + 2[H,ATP2-] 

[ATPI 
NH = 

rr 
- - _- I t  _-- 

Figure 1.2 Mole fractions of three species of ATP plotted versus pH at 298.15K and 
I = 0.25 M (see Problem 1.1). 
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The numbers of hydrogen ions bound that are calculated using this equation are 
based on the arbitrary convention of not counting the additional 12 hydrogen 
atoms in ATP. Thus, the average number RE, of hydrogen ions bound by ATP is 
given by 

CH'1 , 2CH'I2 

(1.3-7) 

At very high pH, the binding of H +  approaches zero, and below pH 4 it  
approaches 2. 

In dealing with binding, it is convenient to use the concept of a binding 
polynomial (Wyman 1948, 1964, 1965, 1975; Edsall and Wyman, 1958; Hermans 
and Scheraga, 1961; Schellman, 1975, 1976; Wyman and Gill, 1990). The poly- 
nomial in the denominator of equation 1.3-7 is referred to as the binding 
polynomial P. It is actually a kind of partition function because it gives the 
partition of a reactant between the various species that make it up. The binding 
polynomial for the binding of hydrogen ions by ATP is given by 

(1.3-8) 

The average binding of hydrogen ions is given by 

-1 d l n P  d l n P  
P dLH'] - dln[H+] ln(10) dpH 

(1.3-9) ____ - - - - [H'] d P  N w -  

Equation 1.3-7 is readily obtained from equation 1.3-8 by use of equation 1.3-9. 
Substituting the values of the two acid dissociation constants of ATP at 

298.15 K, 1 bar, and I = 0.25M from Table 1.2 into equation 1.3-7 or 1.3-9 yields 
the plot of Nt, versus pH that is shown in Fig. 1.3. 

Figure 1.3 shows that the acid titration curve for a weak acid can be 
calculated from its pKs, and this raises the question as to how the pKs can be 
calculated from the titration curve. This can be done by first integrating equation 
1.3-9 to obtain the natural logarithm of the binding potential P: 

N H  d[H'] = i d ln  P = In P + const. JCH'I (1.3- 10) 

or 

-ln(10) N,pH = d l n P  = 1nP + const. (1.3-1 1) 

I . . . . . . . . . . . . . . . . . . .? .-:- 
. . . pb, 

-.. 

4 5 6 7 8 9 

Figure 1.3 Binding of hydrogen ions by ATP at 298.15K and I = 0.25 M (see 
Problem 1.2). 
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The acid dissociation constants can be calculated from In P by fitting the plot of 
P versus [H'] with a power series in [H']. 

ATP also binds magnesium ions as shown by the three complex ion 
dissociation constants in Table 1.2. Incorporating these species into equations 
1.3-1 and 1.3-2 yields the following binding polynomial for ATP: 

CMg2+l + CMg2+ICH+I + CME2+I2 +- CH+I + CH+I2 P = l + -  
K I A T P K 2 A T P  K 3 A T P  K l A T P K 4 A T P  K 3 A T P K 5 A T P  

(1.3- 12) 

Now the binding of hydrogen ions is given by the following partial derivatives of 
the binding polynomial: 

- [H'] ( dP ) - -- -1 (i31nP)pMg __ =[H'] ( a i n P )  ~ N , = -  
P d[H+] pMg ln(10) apH pMg 

(1.3-13) 

The average binding of magnesium ions NH is given by the following partial 
derivatives of the binding polynomial: 

( 1.3- 14) 

These differentiations yield 

CMg2+ICH+I + 
- K l A T P K 2 A T P  K l A T P K 4 A T P  N ,  = 

1 +- 
( 1.3- 15) 

(1.3- 16) 

Figure 1.4 shows a plot of NH versus pH at several values of pMg. I t  is evident 
that the apparent pK of ATP in the neighborhood of 7 is reduced to about 5 in 

Figure 1.4 Binding of hydrogen ions by ATP at 298.15 K, I = 0.25 M, and pMg 2, 3, 4, 
5, and 6 (see Problem 1.3). 
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3 4 5 6 7 

Figure 1.5 
6, 7, 8, and 9 (see Problem 1.4). 

Binding of magnesium ions by ATP at 298.15 K. I = 0.25 M, and pH 3, 4, 5, 

a MgCl, solution with [Mg2+] = l o p 2  M at ionic strength 0.25 M. Experimental 
plots of this type make it possible to calculate K,,,, and K,,,, (Smith and 
Alberty, 1956). 

Figure 1.5 shows a plot of mMg versus pMg at several values of pH. As the 
hydrogen ion concentration is increased, the binding of magnesium ions is 
decreased because of the competition for the same sites. 

Equations 1.3-15 and 1.3-16 can be used to make three-dimensional plots of 
NMg and as functions of pH and pMg. These plots are given in Figs. 1.6 and 1.7. 
The back plane of Fig. 1.6 gives the hydrogen ion binding of ATP in the essential 
absence of Mg (more accurately, pMg > 6). At pMg 2 the apparent second pK 
of ATP is less than 5. Figure 1.7 shows that below pMg 5 there is essentially no 
binding of magnesium ion and that binding increases to a number a little greater 
than 1 at pMg 2 and pH > 6 but is eliminated by further reduction of the pH. 
Figures 1.4 to 1.7 can also be obtained by plotting derivatives of the binding 
potential (see equations 1.3-13 and 1.3-14), rather than by use of equations 1.3-15 
and 1.3-16 (see Problems 1.5 and 1.6). 

A remarkable fact about Figs. 1.6 and 1.7 is that at any given pH and pMg. 
in Fig. 1.6, the slope in the pMg direction is the same as the slope in pH direction 
in Fig. 1.7 at that pH and pMg. This is because the mixed partial derivatives of 

Figure 1.6 
Problem 1.5). 

Plot of NH versus pH and pMg for ATP at 298.15 K and I = 0.25 M (see 
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Figure 1.7 Plot of NMg versus pH and pMg at 298.15 K and I = 0.25 M (see Problem 1.6). 

a function like P are equal. 

( 1.3- 17) 

In thermodynamics, this is referred to as a Maxwell equation. This equation is 
derived later in Section 4.8. Thus the effect of pMg on the binding of hydrogen 
ions is the same as the effect of pH on the binding of magnesium ions; in short, 
these are reciprocal effects. The bindings of these two ions are referred to as linked 
functions. Equation 1.3-17 can be confirmed by plotting these two derivatives, and 
the same plot is obtained in both cases. This would be a lot of work to do by 
hand, but since Mathematica' can take partial derivatives, this can be done 
readily with a computer. The two plots are identical and are given in Fig. 1.8. 

1.4 APPARENT EQUILIBRIUM CONSTANTS OF 
BIOCHEMICAL REACTIONS 

In this section we consider the hydrolysis of adenosine triphosphate to adenosine 
diphosphate and inorganic phosphate, first at a specified pH in the absence of 
metal ions that are bound and then in the presence of magnesium ions. At 

Figure 1.8 Plot of (aN,,/apH) or (am,/apMg) versus pH and pMg at 298.15K and 
I = 0.25 M (see Problem 1.6). 
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specified pH (and pMg) the biochemical reaction is written in terms of sums of 
species: 

ATP + H 2 0  = ADP + PI (1.4-1) 

Biochemical textbooks often add a H +  on the right-hand side, but this is 
stoichiometrically incorrect when the pH is held constant, as we will see in the 
next section. It is also wrong, in principle, as we will see in Chapter 4, since 
hydrogen atoms are not balanced by biochemical reactions because the pH is held 
constant. The statement that the pH is constant means that in principle acid or 
alkali is added to the reaction system as the reaction occurs to hold the pH 
constant. In practice, a buffer is used to hold the pH nearly constant. and the pH 
is measured at equilibrium. 

The expression for the apparent equilibrium constant K'  for reaction 1.4-1 is 

(1.4-2) 

because the activity of water is taken as unity in dilute aqueous solutions at each 
temperature. The apparent equilibrium constant K '  is a function of 7; P, pH. 
pMg, and ionic strength. In the neutral region in the absence of magnesium ions, 
ATP, ADP, and Pi each consist of two species, and so 

([ADP3-] + [HADP2-])([HPO~-] + [H2P0,]) 
[ATP4-] + [HATP3-] 

K '  = 

--  - [ADP3-l[HPoi-I ( l  + [H+l /KIADP)( l  f [ H + I / K I P i )  

[ATP4-] (1 + ~H+I/K,ATP) 

(1.4-3) 

where Kref is the chemical equilibrium constant for the chemical reference reaction 

ATP4- + H,O = ADP3- + HPOi-  + H +  (1.4-4) 

[ADP3 -][HPOi-] [H '1 
[ATP4-] K r e f  = (1.4-5) 

Since the acid dissociation constants are known, the value of Kref can be 
calculated from the value of K '  at a pH in the neutral region in the absence of 
metal ions by using equation 1.4-3. Values of Kref at zero ionic strength are given 
in Table 1.2 for six reference reactions. 

When magnesium ions or other metal ions are bound reversibly and a wider 
range of pH is considered, equation 1.4-3 becomes more complicated. Therefore 
it is convenient to use the nomenclature of binding polynomials introduced in 
equation 1.3-8. The binding polynomial of ATP is given in equation 1.3-12, and 
the binding potentials for ADP and PI are as follows: 

CH'1 + W+I2 
P A D ,  = 1 + ~ 

KIADP KlADPK2ADP 

(1.4-7) 

Thus the apparent equilibrium constant for the hydrolysis of ATP as a function of 
[H'] and [Mg2+] is given by 

K '  = KrefPADPPPj 

W + l P A T P  
(1.4-8) 

Since the chemical equilibrium constants in this equation are known at zero ionic 
strength at 298.15 K and are given in Table 1.2, K' can be calculated at any pH 
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Figure 1.9 Plot of the base 10 logarithm of the apparent equilibrium constant for the 
hydrolysis of ATP to ADP and Pi at  298.15 K and 0.25 M ionic strength (see Problem 1.7). 

in the range 3 to 9 and any pMg in the range 2 to 7 at a specified ionic strength. 
The dependence of K '  on pH and pMg is shown in Fig. 1.9; log K'  is plotted 
versus pH and pMg since K' varies over many powers of ten in these ranges of 
pH and pMg. 

In Chapter 4 we will be interested in -RTln K ' ,  where the gas constant R 
is 8.31451 J K - l  mol-', and so this quantity in kJ mol-I is plotted versus pH 
and pMg in Fig. 1.10. The pH dependencies of the apparent equilibrium constants 
of biochemical reactions were discussed by Alberty and Cornish-Bowden in 1993. 

1.5 PRODUCTION OF HYDROGEN IONS AND 
MAGNESIUM IONS IN THE HYDROLYSIS OF 
ADENOSINE TRIPHOSPHATE 

The calculation of the binding of hydrogen ions N, for ATP discussed in Section 
1.3 can be applied to ADP and Pi so that the change in binding of H +  in the 
hydrolysis of ATP can be calculated using 

ArNH = &J,(ADP) + NH(Pi) - N,(ATP) - 1 (1.5-1) 

where the - 1 is for the two protons in water minus the proton in HPO,, which 
is treated as the base species of inorganic phosphate in the reference reaction. The 

Figure 1.10 Plot of - R T l n K '  in kJ mol-' versus pH at  298.15K and 0.25M ionic 
strength (see Problem 1.7). 
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change in the binding of magnesium ions in the hydrolysis of ATP at specified pH 
is given by 

( 1.5-2) 

Since N H  and NMg can be calculated for these reactants, Ar N, and ArNMg can be 
calculated as a function of pH and pMg. However, when a computer is available 
there is an easier way to do  this by using equation 1.3-13 for the binding of 
hydrogen ions and 1.3-14 for the binding of magnesium ions. For example, 
equation 1.5-1 can be written 

(1.5-3) 

where of course T and P are also held constant. Note that this same result is 
obtained by simply differentiating the expression for In K '  (equation 1.4-8) with 
respect to pH. Thus 

The change in binding of Mg2+ ions can be calculated using 

(1.5-4) 

(1.5-5) 

Since K '  is a pretty complicated function of pH and pMg, it would be very 
difficult to carry these calculations out by hand. However, with Mathernatica the 
calculations can be done quickly. Figure 1.11 shows the change in the binding of 
hydrogen ions in the hydrolysis of ATP as a function of pH and pMg. At high 
pH the change in binding is -1 mole of H +  per mole of ATP hydrolyzed, as 
expected from the reference reaction, which predominates at high pH. The 
products bind fewer hydrogen ions, and so there is a net production of hydrogen 
ions in the biochemical reaction. In the presence of magnesium ions there are 
conditions where the change in binding is positive, which indicates that hydrogen 
ions are consumed in the hydrolysis of ATP under these conditions. 

Figure 1.12 shows the change in binding of magnesium ions as a function of 
pH and pMg. Magnesium ions are always produced in the hydrolysis because 

Figure 1.11 
function of pH and pMg at 298.1SK and 0.25 M ionic strength (see Problem 1.8). 

Change in the binding of hydrogen ions in the hydrolysis of ATP as a 
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Figure 1.12 Change in the binding of magnesium ions in the hydrolysis of ATP at 
298.1 5 K and 0.25 M ionic strength (see Problem 1.9). 

they are more strongly bound by ATP than by ADP and Pi. The change in 
binding approaches zero as the concentration of free magnesium ions approaches 
zero, and it also approaches zero at high concentrations of magnesium ion and 
high pH, where the principal reaction is Mg,ATP + H,O = MgADP- + 
MgHPO, + H’. 

Figures 1.11 and 1.12 are related in the same way as the binding curves for a 
single reactant (see equation 1.3-15); that is, the slope of the plot of ArNH in the 
pMg direction is the same as the slope of the plot of ArNMg in the pH direction. 
This is a consequence of the reciprocity relation: 

(1.5-6) 

This equation is derived later in Section 4.8. 
The change in the value of the apparent equilibrium constant with pH and 

pMg and the production or consumption of hydrogen ions and magnesium ions 
by the biochemical reaction are really two sides of the same coin. The effects of 
pH and pMg on K’ are due to the fact that the biochemical reaction produces or 
consumes these ions. This is an example of Le Chatelier’s principle, which states 
that when an independent variable of a system at equilibrium is changed, the 
equilibrium shifts in the direction that tends to reduce the effect of the change. If 
the reaction produces hydrogen ions, lowering the pH will cause K‘  to decrease 
because the system is doing what it can to reduce the effect of the pH change. 

H 1.6 pKs OF WEAK ACIDS 

In this chapter we have seen that acid dissociation constants are needed to 
calculate the dependence of apparent equilibrium constants on pH. In Chapter 3 
we will discuss the calculation of the effects of ionic strength and temperature on 
acid dissociation constants. The database described later can be used to calculate 
pKs of reactants at 298.15 K at desired ionic strengths. Because of the importance 
of pKs of weak acids, Table 1.3 is provided here. More experimental measure- 
ments of acid dissociation constants and dissociation constants of complex ions 
with metal ions are needed because they are essential for the interpretation of 
experimental equilibrium constants and heats of reactions. A major database of 
acid dissociation constants and dissociation constants of metal ion complexes is 
provided by Martell, Smith, and Motekaitis (2001). 
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Table 1.3 
Function of Ionic Strength (See Problem 1.10) 

pKs of Weak Acids a t  298.15 K in Dilute Aqueous Solutions as a 

Z = O M  I = 0.10 M Z = 0.25 M 

acetate 
acetylphosphate K , 
acetylphosphate K ,  
adenine 
ammonia 
ATP K ,  
ATP K ,  
ADP K ,  
ADP K ,  
AMP K ,  
AMP K ,  
adenosine 
bisphosphoglycerate 
citrate K ,  
citrate K ,  
isocitrate K ,  
socitrate K ,  
coenzyme A 
HCO, K ,  

cysteine 
dihydroxyacetone phosphate 
fructose 6-phosphate K , 
fructose-l,6-biphosphate K ,  
fructose-] ,6-biphosphate K ,  
fumarate K 
fumarate K ,  
galactose l-phosphate K , 
glucose 6-phosphate K , 
glutathione,,, 
glucose 1 -phosphate K , 
glyceraldehyde phosphate 
glycerol 3-phosphate 
malate K ,  
oxalate K ,  
phosphoenolpyruvate 
2-phosphoglycerate 
3-phosphoglycera te 
phosphate K ,  
pyrophosphate K ,  
pyrophosphate K ,  
pyrophosphate K ,  
ribose 1 -phosphate K , 
ribose 5-phosphate K ,  
succinate K , 
succinate K ,  
succinylcoA 
thioredoxin,,, K , 
thioredoxin,,, K ,  

HZCO, K ,  

4.75 
8.69 
5.1 1 
4.20 
9.25 
7.60 
4.68 
7.18 
4.36 
6.73 
3.99 
3.47 
7.96 
6.39 
4.76 
6.40 
4.76 
8.38 

10.30 
6.37 
8.38 
5.70 
6.27 
6.65 
6.05 
4.60 
3.09 
6.15 
6.42 
8.34 
6.50 
5.70 
6.67 
5.26 
4.28 
7.00 
7.64 
7.53 
7.22 
9.46 
6.72 
2.26 
6.69 
6.69 
5.64 
4.21 
4.21 
8.64 
8.05 

4.54 
8.26 
4.90 
4.20 
9.25 
6.74 
4.04 
6.53 
3.93 
6.30 
3.77 
3.47 
7.10 
5.75 
4.33 
5.76 
4.33 
8.16 
9.90 
6.15 
8.16 
5.27 
5.84 
5.79 
5.41 
4.17 
2.88 
5.72 
5.99 
7.91 
6.07 
5.27 
6.24 
4.83 
3.85 
6.36 
7.00 
6.89 
6.79 
8.60 
6.08 
1.83 
6.26 
6.26 
5.21 
3.99 
4.00 
8.21 
7.83 

4.47 
8.12 
4.83 
4.20 
9.25 
6.47 
3.83 
6.33 
3.79 
6.16 
3.71 
3.47 
6.83 
5.54 
4.19 
5.55 
4.19 
8.10 
9.76 
6.08 
8.09 
5.13 
5.70 
5.52 
5.20 
4.03 
2.81 
5.58 
5.85 
7.77 
5.93 
5.13 
6.10 
4.69 
3.71 
6.15 
6.79 
6.68 
6.65 
8.33 
5.87 
1.69 
6.12 
6.12 
5.07 
3.92 
3.93 
8.09 
7.76 
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The equations and calculations described in this chapter are very useful, but 
so far we have not discussed thermodynamic properties other than equilibrium 
constants. The other properties introduced in the next three chapters provide a 
better understanding of the energetics and equilibria of reactions. We will consider 
the basic structure of thermodynamics in Chapter 2 and then to apply these ideas 
to chemical reactions in Chapter 3 and biochemical reactions in Chapter 4. 



rn 2.1 
rn 2.2 
rn 2.3 
rn 2.4 
rn 2.5 

rn 2.6 

rn 2.7 
rn 2.8 

State of a System 

Fundamental Equation for the Internal Energy 

Maxwell Equations 

Gibbs-Duhem Equation and the Phase Rule 

Legendre Transforms for the Definition of 
Additional Thermodynamic Potentials 

Thermodynamic Potentials for a Single-Phase 
System with One Species 

Other Kinds of Work 

Calculation of Thermodynamic Properties of a 
Monatomic Ideal Gas from Derivatives of a 
Thermodynamic Potential 

According to the first law of thermodinamics, there is a thermodynamic property 
U of a system, called the internal energy. The change in internal energy in a 
change in the state of a system is given by AU = q + w, where q is the heat flow 
into the system and w is the work done on the system. The work can be 
pressure-volume work, work of transport of electric charge, chemical work (more 
on this later), work of stretching an elastomer, and so on. 

The second law of thermodynamics has two parts. According to the first part 
there is a thermodynamic property S of a system, called the entropy. The change 
in entropy in a reversible change from one state of a system to another is given 
by AS = 417; where T is the absolute temperature. According to the second part 
of the second law, when a change takes place spontaneously in an isolated system, 
AS is greater than zero. This is a remarkable result because it provides a way to 
calculate whether a specified change in state can take place in a system on the 
basis of other types of measurements on the system. These conclusions apply to 
systems consisting of phases that are uniform in composition and do not have 
gradients of temperature or concentration in them. 

These two laws can be combined for a system involving only pressure-volume 
work to obtain dU = TdS - P d V  This so-called fundamental equation shows two 
things: (1) thermodynamic properties of a system obey the rules of calculus and 
(2) the choice of independent variables (in this case S and V )  plays a very 
important role in thermodynamics. The second law can be used to  show that 
when S and I/ are held constant, the internal energy U of a system must decrease 
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in a spontaneous process. For example, the internal energy of an isolated system 
decreases when a spontaneous process occurs in it because S and V are constant. 
If thermodynamics could not provide more than this, i t  would be difficult to use. 
Fortunately mathematics provides a way to introduce intensive variables as 
independent variables by using Legendre transforms. 

The concept of a Legendre transform is very important because it leads 
from the internal energy U to the enthalpy H and the Gibbs energy G; 
these thermodynamic properties are defined by H = U + PI/  and G = 

U + PV - TS = H - T S .  In this book additional Legendre transforms are used 
to define the transformed Gibbs energy G'  and the transformed enthalpy H '  at 
specified pH and pMg in Chapter 4 on biochemical reactions. In Chapter 6 
further transformed Gibbs energies G" and further transformed enthalpies H "  are 
introduced to discuss systems of biochemical reactions at specified concentrations 
of coenzymes. The construction of Legendre transforms is discussed in Section 2.5. 

It is also important to understand that all these properties obey all the rules 
of calculus. As a consequence these properties are related through fundamental 
equations, Maxwell equations, Gibbs-Helmholtz equations, and Gibbs-Duhem 
equations. 

The internal energy U ,  entropy, and the properties defined by Legendre 
transforms are referred to as thermodynamic potentials because, like the potential 
energy in mechanics, these extensive properties of a thermodynamic system give 
information about the direction of spontaneous change and the equilibrium state 
of the system. When work other than pressure-volume work is involved in a 
system, still more thermodynamic potentials can be defined by use of Legendre 
transforms, and these thermodynamic potentials provide criteria of equilibrium 
when sets of properties convenient for the experimenter are held constant. These 
various thermodynamic potentials are needed for the convenience of the experi- 
menter. The thermodynamic potential used to provide a criterion of spontaneous 
change and equilibrium depends on the intensive variables that are held constant. 
Biochemical systems provide exceptional challenges to thermodynamics because 
the concentrations of hydrogen ions, certain metal ions, and coenzymes may be 
held constant, and electrical work, mechanical work, and surface work may be 
involved in addition to chemical work and PV work. When the equations in this 
chapter are applied to dilute electrolyte solutions, it is convenient to take the 
thermodynamic properties to be functions of the ionic strength. This is not treated 
in detail in this chapter, but is in the next chapter. 

This chapter deals with the thermodynamics of one-phase systems, and it is 
understood that the phase is homogeneous and at uniform temperature. The basic 
structure of thermodynamics provides the tools for the treatment of more 
complicated systems in later chapters. This book starts with the fundamentals of 
thermodynamics, but the reader really needs some prior experience with ther- 
modynamics at the level of undergraduate thermodynamics (Silbey and Alberty, 
2001). Legendre transforms play an important role in this chapter, and the best 
single reference on Legendre transforms is Callen (1960, 1985). Other useful 
references for basic thermodynamics are Tisza (1966), Beattie and Oppenheim 
(1979), Bailyn (1994), and Greiner, Neise, and Stocker (1995). 

2.1 STATE OF A SYSTEM 

A system that is made up of a homogeneous mass of a substance at equilibrium 
can be described as being in a certain thermodynamic state that is characterized 
by certain properties. If forces of various types act on the system or more of the 
substance is added, the system is changed to a different state. It is remarkable that 
only a small number of properties have to be specified to completely characterize 
the equilibrium state of a macroscopic system. For a system containing a single 
substance, three properties suffice, if they are properly chosen. For example, the 
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state of a mass of an ideal gas is specified by its temperature 7; pressure P, and 
amount n because the volume V is given by V = nRT/P, where R is the gas 
constant. Alternatively, I! 7; P or I! P, n, or I! 7; n could be specified. An ideal 
gas is a special case, but three properties are sufficient to define the state of a 
simple system (that is one substance in one phase) provided one property is 
extensive. If work in addition to P V  work is involved, more variables have to be 
specified. These properties and others that characterize the state of a system are 
referred to as state properties because they determine the state of the system. The 
internal energy U is also a state property. It is appropriate to call them state 
functions because they are independent of the path of change and can be 
manipulated by the operations of algebra and calculus. 

A thermodynamic property is said to be extensive if the magnitude of the 
property is doubled when the size of the system is doubled. Examples of extensive 
properties are volume V and amount of substance n. A thermodynamic property 
is said to be intensive if the magnitude of the property does not change when the 
size of the system is changed. Examples of intensive properties are temperature, 
pressure, and the mole fractions of species. The ratio of two extensive properties 
is an intensive property. For example, the ratio of the volume of a one-component 
system to its amount is the molar volume: V, = V/n. 

Experience shows that for a system that is a homogeneous mixture of N ,  
substances, N ,  + 2 properties have to be specified and at least one property must 
be extensive. For example, we can specify 7; P,  and amounts of each of the N ,  
substances or we can specify 7; P,  and mole fractions x, of all but one substance, 
plus the total amount in the system. Sometimes we are only interested in the 
intensive state of a system, and that can be described by specifying N ,  + 1 
intensive properties for a one-phase system. For example, the intensive state of a 
solution involving two substances can be described by specifying 7; P, and the 
mole fraction of one of substances. 

When other kinds of work are involved, it is necessary to specify more 
variables, but the point is that when a small number of properties are specified, 
all the other properties of the system are fixed. This is in contrast with the very 
large number of properties that have to be specified to describe the microscopic 
state of a macroscopic system. In classical physics the complete description of a 
mole of an ideal gas would require the specification of 3 N ,  components in the 
three directions of spatial coordinates and 3N,  components of velocities of 
molecules, where N ,  is the Avogadro constant. 

2.2 FUNDAMENTAL EQUATION FOR THE INTERNAL 
ENERGY 

The first and second laws of thermodynamics for a homogeneous closed system 
involving only P V  work lead to the fundamental equation for the internal energy 
U :  

dU = TdS - P d V  (2.2-1) 

where T is the temperature, S is the entropy of the system, P is the pressure, and 
V is the volume. The first law states that dU = dq - P d V  when only pressure- 
volume work is involved and the second law states that dS > dq/z where q is heat 
and d indicates an inexact differential. The integral of an inexact differential 
depends on the path, but the integral of an exact differential does not. The test 
for exactness is given in Section 2.3. The greater than or equal sign indicates that 
the difl'erential entropy is equal to dq/T for a reversible process and is greater than 
dq/T in a spontaneous process. It is important to note that all five thermodynamic 
properties in equation 2.2-1 have exact differentials and that the fundamental 
equation for U is written in the notation of calculus. This means that these 
properties behave like mathematical functions so that further relations can be 
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obtained by use of the operations of calculus. The third law states that the entropy 
of each pure element or substance in a perfect crystalline form is zero at absolute 
zero. 

The entropy provides a criterion of spontaneous change and equilibrium at 
constant U and V because (dS),., 3 0. Thus the entropy of an isolated system 
can only increase and has its maximum value at equilibrium. The internal energy 
also provides a criterion for spontaneous change and equilibrium. That criterion 
is (dU),,, 6 0, which indicates that when spontaneous changes occur in a system 
described by equation 2.2-1 at constant S and V; U can only decrease and has its 
minimum value at equilibrium. 

The inequalities of the previous paragraph are extremely important, but they 
are of little direct use to experimenters because there is no convenient way to hold 
U and S constant except in isolated systems and adiabatic processes. In both of 
these inequalities, the independent variables (the properties that are held con- 
stant) are all extensive variables. There is just one way to define thermodynamic 
properties that provide criteria of spontaneous change and equilibrium when 
intensive variables are held constant, and that is by the use of Legendre 
transforms. That can be illustrated here with equation 2.2-1, but a more complete 
discussion of Legendre transforms is given in Section 2.5. Since laboratory 
experiments are usually carried out at constant pressure, rather than constant 
volume, a new thermodynamic potential, the enthalpy H, can be defined by 

H = U + P V  (2.2-2) 

The differential of the enthalpy is given by 

dH = dU + PdV+ VdP (2.2-3) 

Substituting equation 2.2-1 yields 

d H  = TdS + VdP (2.2-4) 

The use of a Legendre transform has introduced an intensive property P as an 
independent variable. It can be shown that the criterion for spontaneous change 
and equilibrium is given by (dH),,, 3 0. 

The temperature can be introduced as an independent variable by defining 
the Gibbs energy G with the Legendre transform 

G = H - T S  (2.2-5) 

The differential of the Gibbs energy is given by 

dG = dH - TdS - S d T  (2.2-6) 

Substituting equation 2.2-4 yields 

dG = -SdT+ VdP (2.2-7) 

The use of this Legendre transform has introduced the intensive property T as an 
independent variable. It can be shown that the criterion for spontaneous change 
and equilibrium is given by (dG),,, 3 0. The Gibbs energy is so useful because T 
and P are convenient intensive variables to hold constant and because, as we will 
see shortly, if G can be determined as a function of T and P, then S, V,  H, and U 
can all be calculated. 

Gibbs (1873) showed how to include the contributions of added matter to the 
fundamental equation by introducing the concept of the chemical potential p ,  of 
species i and writing the fundamental equation for the internal energy of a system 
involving P V  work and changes in the amounts n, of species as 

v<  
dU = TdS - P d V +  2 pidni 

i =  1 

(2.2-8) 
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where N, is the number of different species. This equation really defines the 
chemical potential pj  of a species. The terms in pidn, are referred to as chemical 
work terms. If U for a system can be determined as a function of S ,  K and {n ,} ,  
where {ai> represents the set of amounts of species, then 7; P, and { p i }  can be 
determined by taking partial derivatives of U .  Thus the intensive properties of the 
system are obtained by taking derivatives of the extensive property U with respect 
to extensive properties. It may be useful to consider the internal energy to be a 
function of T, P, and { n j }  rather than S,  and {n , ) ,  but when that is done, it is 
not possible to calculate all the other thermodynamic properties of the system by 
taking partial derivatives. 

and {a , } ,  calculus requires that the 
total differential of U is given by 

When U is expressed as a function of S,  

Comparison of equations 2.2-8 and 2.2-9 indicates that 

(2.2- 1 0) 

(2.2-11) 

(2.2- 12) 

The intensive variables T, P ,  and { p i )  can be considered to be functions of S,  K 
and {q) because U is a function of S ,  r! and {q}.  If U for a system can be 
determined experimentally as a function of S ,  r/; and {a , } ,  then 7; P,  and ( p i }  can 
be calculated by taking the first partial derivatives of U .  Equations 2.2-10 to 
2.2-12 are referred to as equations of state because they give relations between 
state properties at equilibrium. In Section 2.4 we will see that these N, + 2 
equations of state are not independent of each other, but any N, + 1 of them 
provide a complete thermodynamic description of the system. In other words, if 
N ,  + 1 equations of state are determined for a system, the remaining equation of 
state can be calculated from the N ,  + 1 known equations of state. In the preceding 
section we concluded that the intensive state of a one-phase system can be 
described by specifying N ,  + 1 intensive variables. Now we see that the determi- 
nation of N, + 1 equations of state can be used to calculate these N, + 1 intensive 
properties. 

The beauty of the fundamental equation for U (equation 2.2-8) is that it 
combines all of this information in one equation. Note that the N, + 2 extensive 
variables S, V and {ai) are independent, and the N ,  + 2 intensive variables 7; P, 
and [pi} obtained by taking partial derivatives of U are dependent. This is 
wonderful, but equations of state 2.2-10 to 2.2-12 are not very useful because S 
is not a convenient independent variable. Fortunately, more useful equations 
of state will be obtained from other thermodynamic potentials introduced in 
Section 2.5. 

The fundamental equation for U is in agreement with the statement of the 
preceding section that for a homogeneous mixture of N, substances, the state of 
the system can be specified by N, + 2 properties, at least one of which is extensive. 
The total number of variables involved in equation 2.2-8 is 2N, + 5. N, + 3 of 
these variables are extensive ( U ,  S, r/; and {ni}), and N, + 2 of the variables are 
intensive (7; P, {,ui}). Note that except for the internal energy, these variables 
appear in pairs, in which one property is extensive and the other is intensive; these 
are referred to as conjugate pairs. These pairs are given later in Table 2.1 in 
Section 2.7. When other kinds of work are involved, there are more than 2N, + 5 
variables in the fundamental equation for U (see Section 2.7). 
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Equation 2.2-8 indicates that the internal energy U of the system can be taken 
to be a function of entropy S ,  volume V ,  and amounts {n , }  because these 
independent properties appear as differentials in equation 2.2-8; note that these 
are all extensive variables. This is summarized by writing U(S ,  V ,  ( n l ) ) .  The 
independent variables in parentheses are called the natural variables of U. Natural 
variables are very important because when a thermodynamic potential can be 
determined as a function of its natural variables, all of the other thermodynamic 
properties of the system can be calculated by taking partial derivatives. The 
natural variables are also used in expressing the criteria of spontaneous change 
and equilibrium: For a one-phase system involving P V  work, (dU) < 0 at 
constant S, U; and ini}.  

Fundamental equation 2.2-8 has been presented as the equation resulting 
from the first and second laws, but thermodynamic treatments can also be based 
on the entropy as a thermodynamic potential. Equation 2.2-8 can alternatively be 
written as 

1 P N ,  p. 
dS = -dU + -dV- c Adn,  

T i = l  T T 
(2.2-1 3) 

This fundamental equation for the entropy shows that S has the natural variables 
U, U; and {n,) .  The corresponding criterion of equilibrium is (dS) 2 0 at constant 
U ,  U; and {n , ) .  Thus the entropy increases when a spontaneous change occurs at 
constant U, V,  and (ni>. At equilibrium the entropy is at a maximum. When LJ,  
and { n , )  are constant, we can refer to the system as isolated. Equation 2.2-13 
shows that partial derivatives of S yield 117; P J T  and ,uI/T which is the same 
information that is provided by partial derivatives of U, and so nothing is gained 
by using equation 2.2-13 rather than 2.2-8. Since equation 2.2-13 does not provide 
any new information, we will not discuss it further. 

Equation 2.2-8 can be integrated at constant values of the intensive properties 
7: P, and i n , }  to obtain 

(2.2-14) 

This is referred to as the integrated form of the fundamental equation for U .  

A function f ( x  1,  x2,. . . , xN) is said to be homogeneous of degree n if 
Alternatively, equation 2.2-14 can be regarded as a result of Euler's theorem. 

f ( k x , ,  kx,, . . . , kx,) = k"f(x,, x2,. . . ,x,) (2.2-15) 

For such a function, Euler's theorem states that 

(2.2- 1 6) 

The internal energy is homogeneous of degree 1 in terms of extensive ther- 
modynamic properties, and so equation 2.2-8 leads to equation 2.2-14. All 
extensive variables are homogeneous functions of the first degree of other 
extensive properties. All intensive properties are homogeneous functions of the 
zeroth degree of the extensive properties. 

Since integration introduces a constant, the value of U obtained from 
equation 2.2-14 is uncertain by an additive constant, but that is not a problem 
because thermodynamic calculations always involve changes in U ,  that is, AU.  

2.3 MAXWELL EQUATIONS 

If the differential of a function f ( x ,  y )  given by 

df  = Mdx + Ndy (2.3-1) 
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and the mixed partial derivatives are equal 

(:)x = (E)) (2.3-2) 

the function f is said to be exact, and the integral o f f  is independent of path. If 
the mixed partial derivatives are not equal, the function ,f is said to be inexact, 
and the integral of the function is dependent on the path. In Section 2.2 it was 
noted that heat q and work w are inexact differentials because they depend on the 
path of integration. However, all state functions are exact differentials since they 
are independent of path of integration. Since the internal energy has an exact 
differential, equation 2.3-2 applies to its fundamental equation. In ther- 
modynamics relations like equation 2.3-2 are referred to as Maxwell equations. 

For equation 2.2-2, the Maxwell equations are 

(2.3-3) 

(2.3-4) 

(2.3-5) 

(2.3 - 6) 

Equations 2.2-10 to 2.2-12 and equations 2.3-3 to 2.3-6 show that the 
thermodynamic properties of a system are interrelated in complicated, and 
sometimes unexpected, ways. The next section shows that the intensive variables 
for a thermodynamic system are not independent of each other. 

W 2.4 GIBBS-DUHEM EQUATION AND THE PHASE RULE 

The differential of the integrated form (equation 2.2-14) of the fundamental 
equation for the internal energy is 

N ,  N ,  

dU = TdS + P d T -  PdV- VdP + pldn, + n,dpl (2.4-1) 
I =  1 i =  1 

Subtracting the fundamental equation for U (equation 2.2-8) yields 

N ,  

SdT-  V d P +  n i d p i = O  
i = l  

(2.4-2) 

which is referred to as the Gibbs-Duhem equation. This equation is important 
because it shows that the N ,  + 2 intensive properties for a homogeneous system 
without chemical reactions are not independent. But N ,  + 1 of them are indepen- 
dent. Note that this is in agreement with the experimental observation of Section 
2.1 that the intensive state of a one-phase system can be specified by stating 
N ,  + 1 intensive variables. 

The Gibbs-Duhem equation is the basis for the phase rule of Gibbs. 
According to the phase rule, the number of degrees of freedom F (independent 
intensive variables) for a system involving only P V  work, but no chemical 
reactions, is given by 

F = N ,  - p + 2 (2.4-3) 

where p is the number of phases. This equation is derived in a more general form 
later in Chapter 8 on phase equilibria. Thus for a one-phase system without 
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chemical reaction, F = N ,  - 1 + 2 = N ,  + 1, as shown by equation 2.4-2. The 
independent intensive variables can be chosen to be 7: P, p , ,  . . . , /ihrS- I or 7; ( p i  I 
or P, [pi]. 

Since F is the symbol for the number of independent intensive variables for 
a system, it is also useful to have a symbol for the number of natural variables 
for a system. To describe the extensive state of a system, we have to specify F 
intensive variables and in addition an extensive variable for each phase. This 
description of the extensive state therefore requires D variables, where D = F + p .  
Note that D is the number of natural variables in the fundamental equation for a 
system. For a one-phase system involving only PI/  work, D = N ,  + 2, as dis- 
cussed after equation 2.2-12. The number F of independent intensive variables and 
the number D of natural variables for a system are unique, but there are usually 
multiple choices of these variables. The choice of independent intensive variables 
F and natural variables D is arbitrary, but the natural variables must include as 
many extensive variables as there are phases. For example, for the one-phase 
system described by equation 2.2-8, the F = N ,  + 1 intensive variables can be 
chosen to be 7: P, .xl, x2,.  . . , xN-, and the D = N ,  + 2 natural variables can be 
chosen to be 7: P, n,, n2, .  . . , nN, or 7: P. xi, xz,. . . , . Y , ~ , . ,  and n (total amount in 
the system). 

2.5 LEGENDRE TRANSFORMS FOR THE DEFINITION 
OF ADDITIONAL THERMODYNAMIC 
POTENTIALS 

The internal energy U has some remarkable properties and leads to many 
equations between the thermodynamic properties of a system, but S, V; and i n , )  
are not convenient natural variables, except for an isolated system. As shown in 
Section 2.2, Legendre transforms can be used to introduce other sets of N ,  + 2 
natural variables. A Legendre transform is a change in natural variables that is 
accomplished by defining a new thermodynamic potential by subtracting from the 
internal energy (or other thermodynamic potential) one or more products of 
conjugate variables. As mentioned after equation 2.2-2, examples of conjugate 
pairs are T and S, P and r/; and p, and n, .  More conjugate pairs are introduced 
in Section 2.7. Callen (1985) emphasizes that no thermodynamic information is 
lost in making a Legendre transform. For reviews on Legendre transforms, see 
Alberty (1994d) and Alberty et al. (2001). 

Legendre transforms are also used in mechanics to obtain more convenient 
independent variables (Coldstein, 1980). The Lagrangian L is a function of 
coordinates and velocities, but it is often more convenient to define the Hamil- 
tonian H with a Legendre transform because the Hamiltonian is a function of 
coordinates and momenta. Quantum mechanics is based on the Hamiltonian 
rather than the Lagrangian. 

In this section we will consider the Legendre transforms that define the 
enthalpy H ,  Helmholtz energy A,  and Gibbs energy G. 

H = U + P V  (2.5-1) 

A = U - T S  (2.5-2) 

G =  U + P V -  TS (2.5-3) 

If  a system can be described by dU = TdS - PdLc: there are only four 

We will consider only the equations for the Gibbs energy and the enthalpy. 
thermodynamic potentials that can be defined in this way. 

According to equation 2.5-3, the differential of G is given by 

dG = dU + P d V +  VdP -- TdS - S d T  (2.5-4) 
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Substituting equation 2.2-8 yields the fundamental equation for the Gibbs energy 
for a one-phase system without chemical reactions: 

N ,  

dG = -SdT+ VdP + 2 ,uidni (2.5-5) 
i =  1 

This shows that the natural variables of G for a one-phase nonreaction system are 
7; P, and (n ,} .  The number of natural variables is not changed by a Legendre 
transform because conjugate variables are interchanged as natural variables. In 
contrast with the natural variables for U ,  the natural variables for G are two 
intensive properties and N ,  extensive properties. These are generally much more 
convenient natural variables than S. V ,  and {n,) .  Thus thermodynamic potentials 
can be defined to have the desired set of natural variables. 

It is important to understand that the change in variables provided by using 
a Legendre transform is quite different from the usual (much more frequent) type 
of change in variables. For example, in Chapter 1 functions of [H'] were 
converted to functions of pH by simply substituting [H'] = When a 
Legendre transform of a thermodynamic potential is defined, the new variable 
that is introduced is a partial derivative of that thermodynamic potential. For 
example, when U is known as a function of S,  V ,  and {n , } ,  the enthalpy is defined 
by use of H = U + PV= U + V(dU/dV), ,  and the natural variables of H are 
indicated by H(S ,  -(dU/dV),)  or H ( S ,  P). When the Gibbs energy is defined by 
use of G = U + P V -  TS = U + V(dU/?V),  - S (dU/dS)., and the natural vari- 
ables of G are indicated by G((dU/dS) v, -(?U/dV),) or G(7; P). 

Since the natural variables of the Gibbs energy are 7; P, and {n , } ,  calculus 
yields 

Comparison with equation 2.5-5 indicates that 

(2.5-7) 

(2.5-8) 

(2.5-9) 

Thus, if G can be determined as a function of 7; P,  and { n i } ,  all of the 
thermodynamic properties of the system can be calculated. These N, + 2 equa- 
tions (that is equations 2.5-7 to 2.5-9) are often referred to as equations of state. 
Only N ,  + 1 equations of state are independent, and so if N, + 1 of them can be 
determined experimentally, the remaining equation of state can be calculated. 

The criterion of equilibrium for this one-phase system without chemical 
reactions is dG d 0 at constant 7; P, and (n ,} .  In other words, the Gibbs energy 
decreases in a spontaneous change in a system with constant T,  P, and in,}. For 
this system the F = N, + 1 independent intensive variables can be chosen to be 
7; P, xl, x2, .  . . , xN- and the D = N, + 2 natural variables can be chosen to be 
7; P,  x l ,  x2,. . . , x N - l  and n (total amount in the system), or 7; P,  n,, n2, .  . . , n,,. 

The derivation in equations like 2.5-4 to 2.5-9 can be repeated for H and A .  
This shows that the natural variables for H are S ,  P ,  and (n , } ,  and for A are 7; V,  
and { n L } .  These thermodynamic potentials provide the following criteria for 
spontaneous change and equilibrium: dH < 0 at constant S, P ,  and ( n , ) ;  dA < 0 
at constant 7; and {n , } .  
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Substituting the integrated fundamental equation for U (equation 2.2-14) in 
the Legendre transforms defining H ,  A, and G shows that 

H = TS + Cp,n,  (2.5 - 10) 

A = - P V +  x p r n r  (2.5-1 1) 

G = C&n,  (2.5-12) 

The interesting thing about these equations is that only the Gibbs energy G can 
be calculated by adding contributions from individual species. These ther- 
modynamic potentials can be determined as functions of other variables, but only 
when they are determined as functions of natural variables can all of the ther- 
modynamic properties be obtained by taking partial derivatives. Equations 2.5- 10 
to 2.5-1 2 can also be obtained by integrating the corresponding fundamental 
equations at constant values of the intensive variables. 

The fundamental equation for the Gibbs energy (2.5-5) yields the following 
Maxwell equations: 

(2.5-1 3) 

(2.5- 14) 

(2.5-15) 

(2.5- 16) 

where S,(i) is the molar entropy of species i and V,(i) is its molar volume. 
The Helmholtz energy is not very useful as a crterion for spontaneious change 

and equilibrium in biochemistry because experiments are not done at constant 
volume. However, the enthalpy is important in biochemistry because it is 
connected with heat evolution and the change of the equilibrium constant with 
temperature. The fundamental equation for the enthalpy is 

N \ 

d H  = T d S + P d V +  p,dn, (2.5- 17) 
r = l  

Since the enthalpy is defined by H = U + PI!  its total differential is d H  = 

d U  + P d V +  VdP. Substituting the equation d U  = d q  - P d K  given earlier in 
Section 2.2, yields d H  = d q  + VdP. At constant pressure the change in enthalpy 
AH is equal to the heat q absorbed by the system in the process, which may be 
irreversible. Thus thc change in enthalpy AH can be determined calorimetrically. 
The change in enthalpy can also be determined using the Gibbs-Helmholtz 
equation, which is introduced in the next paragraph, without using a calorimeter. 

Equations 2.5-1 and 2.5-3 show that G = H - TS. Substituting the expression 
for S from equation 2.5-7 yields 

(2.5-1 8) 

This is referred to as a Gibbs-Helmholtz equation, and it provides a convenient 
way to calculate H if G can be determined as a function of 7: P, and [ n r j .  There 
is a corresponding relation between the internal energy U and the Helmholtz 
energy, which is defined by equation 2.5-2: 

P In ; 
(2.5-1 9) 

This is also referred to as a Gibbs-Helmholtz equation. 
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Since G is additive in terms of p i  (equation 2.5-12), S and H are also additive 
in terms of partial molar entropies and partial molar enthalpies, respectively: 

(2.5-20) 

The partial molar entropy Smi was defined in equation 2.5-14. The additivity of 
the enthalpy can be seen by substituting equation 2.5-12 in equation 2.5-18: 

(2.5-2 1) 

where Hmi is the molar enthalpy of species i. Thus the chemical potential of a 
species is given by 

pi = H,i - TS,, (2.5-22) 

When a system at constant pressure is heated, it absorbs heat, and the heat 
capacity at constant pressure C ,  is defined by 

c, = (g)p 
Substituting equation 2.5-7 in H = G - TS yields 

H = G - T (g) 
P 

(2.5-23) 

(2.5-24) 

Substituting this into the definition of C ,  yields 

Thus we have seen that all the thermodynamic properties of a one-phase 
nonreaction system can be calculated from G( 7; P,(ni}).  

Although Legendre transforms introducing chemical potentials of species as 
natural variables are not discussed until Chapter 3, there is one Legendre 
transform involving chemical potentials of species that needs to be given here, and 
that is the complete Legendre transform U '  of the internal energy defined by 

N S  

U '  = u - TS + PV-  c ,kini = 0 
i = l  

(2.5-26) 

This transformed internal energy is equal to zero, as indicated by equation 2.2-8. 
The total differential of U'  is 

A', N ,  

0 = dU - TdS + S d T +  P d V +  VdP - pldnl - 1 n,dpl (2.5-27) 

Substituting the fundamental equation for U yields the Gibbs-Duhem equation 

Now we are in a position to generalize on the number of different ther- 
modynamic potentials there are for a system. The number of ways to subtract 
products of conjugate variables, zero-at-a-time, one-at-a-time, and two-at-a-time, 
is 2k, where k is the number of conjugate pairs involved. In probability theory the 
number 2k of ways is referred to  as the number of sets of k elements. For a 
one-phase system involving PV work but no chemical reactions, the number of 
natural variables is D and the number of different thermodynamic potentials is 
2O. If D = 2 (as in d U  = TdS - PdV), the number of different thermodynamic 
potentials is 22 = 4, as we have seen with U ,  H ,  A,  and G. If D = 3 (as in 
dU = TdS - P dV + p dn), the number of different thermodynamic potentials is 

1 =  1 1 = 1  

2.4-2. 

23 = 8. 
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Thus the Gibbs-Duhem equation represents one of the 2D thermodynamic 
potentials that can be defined for a system, but this thermodynamic potential is 
equal to zero. It should be emphasized that there is a single Gibbs-Duhem 
equation for a one-phase system and that it can be derived from U ,  H ,  A ,  or G. 

When work other than PV work is involved in a system (see Section 2.7), 
Legendre transforms can be used to introduce intensive variables in addition to 
T and P as natural variables in the fundamental equation for the system. Each 
Legendre transform defines a new thermodynamic potential that needs a symbol 
and a name. Since every system has 2 O  possible thermodynamic potentials, and 
each needs a symbol and a name, nomenclature becomes a problem. Callen (1985) 
showed how each possible thermodynamic potential can bc given an unambigu- 
ous symbol. Callen nomenclature uses the symbol U [ . . . ] ,  where ... is a list of the 
intensive variables introduced as intensive variables in dcfining the particular 
thermodynamic potential based on the internal energy. Thus the enthalpy H can 
be represented by U [ P ] ,  the Helmholtz energy A can be represented by U [ T ] ,  
and the Gibbs energy G can be represented by U[T,P] .  Since all possible 
thermodynamic potentials can be represented in this way, this is a good method 
to use when there is a possibility of confusion. However, in practice, it is 
convenient to use symbols like U ' ,  H ' ,  A', and G '  to represent transformed 
properties that are similar to U ,  H ,  A,  and G. When this is done, it is important 
to specify which intensive properties have been introduced in defining these 
primed properties. 

The number of Maxwell equations for each of the possible thermodynamic 
potentials is given by D(D - 1)/2, and the number of Maxwell equations for the 
thermodynamic potentials for a system related by Legendre transforms is 
[D(D - 1)/2]2D. Examples are given in the following section. 

2.6 THERMODYNAMIC POTENTIALS FOR A 
SINGLE-PHASE SYSTEMS WITH ONE SPECIES 

The fundamental equation for U for a single-phase system with one species is 

dU = TdS - P d V +  pdn (2.6-1) 

Integration of this fundamental equation at constant values of the intensive 
variables yields 

U = TS + P V +  pn (2.6-2) 

Since there are D = 3 natural variables, there are 23 - 1 = 7 possible Legendre 
transforms. The Legendre transforms defining H ,  A ,  and G are given in equations 
2.5-1 to 2.5-3, and the four remaining Legendre transforms are 

U [ p ]  = U - p n  (2.6-3) 

(2.6-4) 

(2.6-5) 

(2.6-6) 

U [ P , p ]  = U + P V -  pn 

U [ T p ]  = U - TS - pn  

U [ 7 ; P , p ]  = u + P V -  TS - p/1= 0 

These four Legendre transforms introduce the chemical potential as a natural 
variable. The last thermodynamic potential U[T,  P , p ]  defined in equation 2.6-6 is 
equal to zero because it is the complete Legendre transform for the system, and 
this Legendre transform leads to the Gibbs-Duhem equation for the system. 

Three of the eight thermodynamic potentials for a system with one species are 
frequently used in statistical mechanics (McQuarrie, 2000), and there are generally 
accepted symbols for the corresponding partition functions: U [ q  = A = 

-RTln Q ,  where Q is the canonical ensemble partition function: 
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U[7;  P ]  = G = - RTln  A, where A is the isothermal-isobaric partition function; 
and U [ 7 ; p ]  = -RTlnE,  where E is the grand canonical ensemble partition 
function. When a system involves several species, but only one can pass through 
a membrane to a reservoir, U(T ,p l ]  = -RTlnY,  where Y is the semigrand 
ensemble partition function. The last chapter of the book is on semigrand partition 
functions. 

Taking the differentials of the seven thermodynamic potentials defined above 
and substituting equation 2.6-1 yields the fundamental equations for these seven 
additional thermodynamic potentials: 

d H  = TdS + VdP + pdn 

dA = -SdT-  PdV+ pdn 

dG = -SdT+ VdP + pdn 

(2.6-7) 

(2.6-8) 

(2.6-9) 

(2.6- 1 0) 

(2.6-1 1) 

(2.6-1 2) 

(2.6- 1 3) 

dU[p] = TdS - P d V -  n d p  

dU[P,p] = TdS + VdP - n d p  

dU[7;p] = -SdT-  P d V -  ndp  

dU[T,P,p] = - S d T +  VdP- ndp  = 0 

This last equation is the Gibbs-Duhem equation for the system, and it shows that 
only two of the three intensive properties (7; P,  and p) are independent for a 
system containing one substance. Because of the Gibbs-Duhem equation, we can 
say that the chemical potential of a pure substance substance is a function of 
temperature and pressure. The number F of independent intensive variables is 
F = 1 - 1 + 2 = 2, and so D = F + p = 2 + 1 = 3. Each of these fundamental 
equations yields D(D - 1)/2 = 3 Maxwell equations, and there are 24 Maxwell 
equations for the system. 

The integrated forms of the eight fundamental equations for this system are 

U(S,  v n )  = T S  - P V +  pn 

H(S, P, n)  = TS + p n  

(2.6-14) 

(2.6-15) 

(2.6-16) 

(2.6- 17) 

(2.6-18) 

A(7; v n )  = -PV+ pn  

G(7: P, n) = p n  

U[p](S, K p )  = TS ~ P V  

UCP, PI(S, p ,  = TS (2.6-19) 

WTpI(7; v p )  = -PV (2.6-20) 

(2.6-2 1) u CT,P,PI(7; P,p )  = 0 

where the natural variables are shown in parentheses. 
The basic question in all of thermodynamics is: A certain system is under such 

and such constraints, what is the equilibrium state that it can go to spontaneous- 
ly? The amazing thing is that this question can be answered by making 
macroscopic measurements. Thermodynamics does not deal with the question 
as to how long it will take to reach equilibrium. We now have seven criteria 
for equilibrium in a one-phase system with one species and only P V  work. 
The criteria of equilibrium provided by these thermodynamic potentials are 
(dU)s,",n d 0, (dH)S,P,n 0, (dA)T,",, d 0, (dG)*,P,n d 0, (d~CPl)s,v,fi  d 0, 
(dWP,  PI)S,P,@ d 0, and (d~CT,P1)T,v,fi d 0. 

The reason for going into this much detail on all of the thermodynamic 
potentials that can be defined for a one-phase, one-species system and the 
corresponding criteria for spontaneous change is to illustrate the process by which 
these thermodynamic potentials are defined and how they provide criteria for 
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Table 2.1. Conjugate Properties Involved in Various Kinds of Work 

Extensive Intensive Differential Work 

PV 
Chemical 

non rx system 
rx system 

Electrical 
Mechanical 
Surface 
Electric polarization 
Magnetic polarization 

V - P  -PdV 

ni Pi Pidni 
nci Pi Pi dnci 
Qi = Fzini  4i 4; dQi 
L .f .f dL 

P E E dP 
AS 7 dAs 

m B B dm 

spontaneity and equilibrium under various conditions. None of these equations is 
immediately applicable to biochemical reactions because they are for systems 
containing one species. Chemical reactions are introduced in the next chapter. 

2.7 OTHER KINDS OF WORK 

In this chapter we have discussed systems involving P V  work and the transfer of 
species into or out of the system (p i  dn,), but other kinds of work may be involved 
in a biochemical system. The extensive and intensive properties that are involved 
in various types of work are given in Table 2.1. 

Table 2.1, nCi is the amount of a component (see Section 3.3), qhi is the electric 
potential of the phase containing species i, Qi is the contribution of species i to 
the electric charge of a phase, z i  is the charge number, F is the Faraday constant, 
,f is force of elongation, L is length in the direction of the force, 7 is surface 
tension, A, is surface area, E is electric field strength, p is the electric dipole 
moment of the system, B is magnetic field strength (magnetic flux density), and rn 
is the magnetic moment of the system. Vectors are indicated by boldface type. 

If a single additional work term is involved, the fundamental equation for U is 

N S  

dU = TdS - VdP + pidn, + X d Y  (2.7-1) 
i =  1 

where Y is an extensive variable. This shows that D = N, + 3. The additional 
work terms should be independent of ( n i }  because natural variables must be 
independent. The same form of work terms appear in the fundamental equations 
for H ,  A, and G. In order to introduce the intensive properties in other kinds of 
work as natural variables, it is necessary to use Legendre transforms. 

2.8 CALCULATION OF THERMODYNAMIC 
PROPERTIES OF A MONATOMIC IDEAL GAS 
BY TAKING DERIVATIVES OF A 
THERMODYNAMIC POTENTIAL 

The treatments in the preceding sections have been pretty abstract, and it may be 
hard to understand statements like: Thus, if G can be determined as a function of 
T P,  and { n i l ,  all of the thermodynamic properties of the system can be 
calculated” (which appeared after equation 2.5-9). However, there is one case 
where this can be demonstrated in detail, and that is for a monatomic ideal gas 
(Greiner, Neise, and Stocker, 1995). Statistical mechanics shows that the Gibbs 
energy of a monatomic ideal gas without electronic excitation (Silbey and Alberty, 
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2001) is given as a function of 7: P, and n by 

2nmkT 3/2 kT 
G = -nRTln (2.8-1) 

where nz is the mass of the atom, k is the Boltzmann constant, and h is Planck's 
constant. Equations 2.5-7 to 2.5-9 show that S, and p can be calculated by 
taking partial derivatives of G with respect to 7: P, and n. Taking these partial 
derivatives yields 

S = nR (In [(T) 2nmkT 3 / 2  kT + ;) 
nRT 

I/= __ 
P 

2nmkT 3 / 2  k T  
P =  - R T h  [(T) 

(2.8-2) 

(2.8-3) 

(2.8-4) 

Equation 2.8-2 is referred to as the Sackur-Tetrode equation. Since we have 
expressions for these three properties, we can calculate the properties U ,  H ,  A,  
and Cp: 

H = (;) nRT 

U = (i) nRT 

A = -nRTln [(') nmkT 3 / 2  kT - nRT 

C, = (g) nR 

(2.8-5) 

(2.8-6) 

(2.8-7) 

(2.8-8) 

Note that U corresponds with the translational kinetic energy in three directions. 
Thus all the thermodynamic properties of an ideal monatomic gas can be 
calculated from G( 7; P,  n). 

Equations 2.8-2 and 2.8-4 can be used to derive the expressions for the 
standard molar entropies and standard molar Gibbs energies of a monatomic gas: 

where Po is 1 bar and 

S , = S z - R l n  - (Fp) 

2 n m k T  3 /2  k T  s: = R (In [ 
+ ;) 

G: = p' = -RTln 

(2.8-9) 

(2.8- 10) 

(2.8-1 1) 

(2.8 - 12) 

These are the properties of the monatomic gas at a pressure of 1 bar. It should 
be pointed out that this standard molar Gibbs energy is not the A,G" of 
thermodynamic tables because there the convention in thermodynamics is that 
the standard formation properties of elements in their reference states are set 
equal to zero at each temperature. However, the standard molar entropies of 
monatomic gases without electronic excitation calculated using equation 2.8-1 1 
are given in thermodynamic tables. 



34 Chapter 2 Structure of Thermodynamics 

Thus we have demonstrated the remarkable fact that equation 2.8-1 makes it 
possible to calculate all the thermodynamic properties for a rnonotomic ideal gas 
without electronic excitation. Here we have considered an ideal monatomic gas. 
but this illustrates the general conclusion that if any thermodynamic potential of 
a one-component system can be determined as a function of its natural variables, 
all of the thermodynamic properties of the system can be calculated. 
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When a chemical reaction occurs in a closed system at constant T and P,  the 
criterion for spontaneous change and equilibrium is no longer dG d 0 at constant 
7; P,  and (ni} because the amounts of species change in the reaction. Therefore, 
the following question arises: If the amounts of species are not constant during 
the approach to equilibrium in a reaction system, what is? The answer is: The 
amounts n,, of components are constant in a reaction system. When a chemical 
reaction occurs in a closed system, the amounts of atoms of elements and electric 
charge are conserved. Atoms of elements and electric charge can be taken as 
components, but some of these conservation equations may be redundant and are 
therefore not needed. Groups of atoms in molecules can also be chosen as 
components. This is important in biochemistry when large molecules are involved 
because counting atoms becomes laborious. Various choices of components can 
be made for a reaction system, but the number of components is independent of 
the set of components chosen. A particular set of components may be especially 
useful, depending on the objective of the calculation. In an independent set of 
conservation equations, no equation in the set can be obtained by adding and 
subtracting other equations in the set. Thus we will see in this chapter that the 
criterion for spontaneous change and chemical equilibrium in a closed system is 
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dG < 0 at constant 7; P,  and { n c l ) ,  where there are C components with amounts 
{ n c l ) .  Components are discussed in Section 3.3, and the various choices of 
components that can be used will become clearer in Chapter 5 on matrices. 

In this chapter we will find that when isomers are in chemical equilibrium, it 
is convenient to treat isomer groups like species in order to reduce the number of 
terms in the fundamental equation. We will also discuss the effect of ionic strength 
and temperature on equilibrium constants and thermodynamic properties of 
species. More introductory material on the thermodynamics of chemical reactions 
is provided in Silbey and Alberty (2001). 

3.1 DERIVATION OF THE EXPRESSION FOR THE 
EQUILIBRIUM CONSTANT 

When a chemical reaction occurs in a system, the changes in the amounts n, of 
species are not independent because of the stoichiometry of the reaction that 
occurs. A single chemical reaction can be represented by the reaction equation 

N ,  1 viBi = 0 
i =  1 

(3.1-1) 

where Bi represents species i and N ,  is the number of different species. Chemical 
reactions balance the atoms of all elements and electric charge. The stoichiometric 
numbers vi are positive for products and negative for reactants. The amount ni of 
species i at any stage in a reaction is given by 

ni = nio + vij '  (3.1 -2) 

where nio is the initial amount of species i and j' is the extent of reaction. It is 
evident from this definition of 4 that it is an extensive property. Stoichiometric 
numbers are dimensionless, and so the extent of reaction is expressed in moles. 
The differential of the amount of species i is given by 

dni = vid( (3.1-3) 

When a single chemical reaction occurs in a closed system, the differential of 
the Gibbs energy (see equation 2.5-5) is given by 

dG = - S d T +  VdP + C pivi d( 
t i = ,  ,) (3.1-4) 

This form of the fundamental equation applies at each stage of the reaction. The 
rate of change of G with extent of reaction for a closed system with a single 
reaction at constant T and P is given by 

(3.1-5) 

where A,G is referred to as the reaction Gibbs energy. The Gibbs energy of the 
system is at a minimum at equilibrium, where (i?G/d()T,p = 0. At the minimum 
Gibbs energy, the equilibrium condition is 

i =  1 

(3.1-6) 

Notice that this relation has the same form as the chemical equation (equation 
3.1- 1). 
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To discuss equilibrium in a chemical reaction system, it is convenient to 
introduce the activity a, of a species to replace the chemical potential of a species 
because a, is more closely related to partial pressures and concentrations of 
species. The activity of a species is defined by 

p i  = py  + RTlna,  (3.1-7) 

where $, which is referred to as the standard chemical potential, is the chemical 
potential when ai = 1. A superscript zero is used to designate a standard property, 
and so py is the standard chemical potential of species i. For ideal mixtures of ideal 
gases, ui can be replaced by P,/PO, where Po is the standard state pressure, and 
for ideal solutions a, can be replaced by ci/cO, where co is the standard 
concentration. Note that the activity a, of species i is dimensionless. We will use 
molar concentrations, but measurements in physical chemistry are frequently 
based on molal concentrations (mol kg- I). Molal concentrations mi have the 
advantage that they do not change with temperature. 

From one point of view nothing is gained by using equation 3.1-7 to define 
the activity ai of a species and using it to replace the chemical potential pi of the 
species. The difference between pi and ai is that p i  of an ideal gas goes from - 00 

to m, whereas a, goes from 0 to co. Thus the activity of a species in solution is 
more closely related to its concentration than pi is. However, the activity of a 
species in solution is directly proportional to its concentration only for ideal 
solutions. In general, the activity of a species in solution is given by a, = yici, 
where y i  is the activity coefficient of species i. The activity coefficient of a solute is 
a function of the concentration, especially for ions. Strictly speaking (Mills et a]., 
1993), this relation should be written a, = yici/cO, where c0 is the standard 
concentration (1 M). However, c0 is omitted in this book to simplify the 
equations. Thus equation 3.1-7 is written 

(3.1-8) 0 pi = pi + RTlnyici  

When using the molar concentration scale, the convention is that the activity 
coefficient of a species approaches unity as the concentration of the species 
approaches zero. In discussing biochemical reactions in dilute aqueous solutions, 
effects on activity coefficients arise primarily because of electrostatic interactions 
between charged species and depend on the ionic strength (see Section 1.2 and 
Section 3.6). Since the ionic strength is under the control of the investigator and 
is nearly constant during the approach to equilibrium when a biochemical 
reaction is carried out in dilute aqueous solution with a buffer, we can postpone 
discussing the effects of ionic strength to Section 3.6 by making the following 
observation: Equation 3.1-8 can be written 

pi = ,UP + RTIny, + RTlnci  (3.1-9) 

In discussing biochemical thermodynamics, however, it is convenient to write this 
equation as 

p ,  = + RTlnc, (3.1 - 10) 

where p j  and are functions of the ionic strength. In equations 3.1-9 and 3.1-10, 
p ,  and p:  have been used in two different ways, but in the rest of the book 
equation 3.1-10 will always be used. In other words, chemical potentials and other 
thermodynamic properties of species in dilute aqueous solutions will be taken to 
be functions of the ionic strength. This will allow us to avoid including y ,  in many 
places (even though the effect of ionic strength is taken into account) and to treat 
solutions at a specified ionic strength as “ideal solutions,” that is as solutions 
following equation 3.1-10. We have already seen an example of this in the 
treatment of pH in Section 1.2. 
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Substituting equation 3.1-10 in 3.1-6 yields 

N, N* N I 

vipf = - R T  viln(ci)eq = -RTln n (c i ) ik  (3.1-11) 
i =  1 i = l  i =  1 

Using the nomenclature of equation 3.1-5, equation 3.1-11 can be written as 

N S  

A,Go = viAfGY = -RTln K (3.1 - 12) 
i = O  

where A,G; is the standard reaction Gibbs energy and K is the equilibrium 
constant for a chemical reaction written in terms of species: 

(3.1- 13) 
,= 1 

An equilibrium constant must always be accompanied by a chemical equation. 
This equation is often used without the subscript "eq" that reminds us that the 
concentrations are equilibrium values. Strictly speaking, this equation should be 
written as K = lI(c, /cO)~;,  but the standard concentration c0 = 1 M will be 
omitted, as mentioned before equation 3.1-8. Thus the equilibrium constant will 
be treated as a dimensionless quantity, as, of course, it must be if we are going to 
take its logarithm. 

When H,O is a reactant in a chemical reaction in dilute aqueous solutions, 
its molar concentration is not included in equation 3.1-13. The reason is that in 
reactions in dilute aqueous solutions the activity of water does not change 
significantly. The convention is that H,O is represented in the expression for the 
equilibrium constant by its activity, which is essentially unity independent of the 
extent of reaction. However, Af GO(H,O) is included in the calculation of A,Go 
using equation 3.1-12 and AfHO(H,O) is included in the calculation of A,Ho using 
equation 3.2-13, which is given later. 

To clarify the nature of the equilibrium state of a reaction system, consider 
the solution reaction A = B. When one liter of ideal solution initially containing 
A at 1 M is considered, the Gibbs energy of the reactants at any time is given by 

G = nA(pu, + RTlnCA]) + n&; + RTln[B]) (3.1 - 14) 0 

Since nA = 1 - 4 and nB = 4, 

G = (1 - [ ) p i  + ( p i  + RT[(1 - t ) l n ( l  - (1 - 5)) + 4In41 (3.1-15) 

At the equilibrium state of the system, the Gibbs energy is at a minimum, and the 
equilibrium extent of reaction is teq. At (dG/d(), = 0, 

p i  - p i  = -RT1n(teq/(l - teq)) = -RTlnK (3.1- 1 6) 

Figure 3.1 shows a plot of the Gibbs energy G of a reaction system A = B as a 
function of the extent of reaction < when p i  = 20 kJ mol - and p i  = 18 kJ mol 

3.2 CHANGES IN THERMODYNAMIC PROPERTIES IN 
CHEMICAL REACTIONS 

In treating the fundamental equations of thermodynamics, chemical poten- 
tials of species are always used, but in making calculations when T and P are 
independent variables, chemical potentials are replaced by Gibbs energies of 
formation AfGi. Therefore, we will use equation 3.1-1 0 in the form 

AfGi  = A,Gp + RTlnc,  (3.2-1) 

where Af G, is the Gibbs energy of formation of species i at concentration c, from 
its elements, each in its reference state. The standard Gibbs energy of formation 
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Fig. 3.1 
reaction at 298.15 K (see Problem 3.2). 

Plot of the Gibbs energy of the reaction system A = B as a function of extent of 

A,Gp of species i is the Gibbs energy change when a mole of the species in its 
standard state (in the ideal gas state at 1 bar or in the ideal aqueous solution at 
1 M) is formed from its elements in their reference states. The standard Gibbs 
energy of formation of an ion depends on the ionic strength, and the equation for 
AfGi has the form (equation 3.2-1) for an ideal solution at a specified ionic 
strength. The advantage of this procedure is that we can write equilibrium 
expressions in terms of concentrations and avoid the complication of dealing with 
activity coefficients in each calculation. The activity coefficients are taken into 
account in the construction of thermodynamic tables for the convenience of the 
user. 

Substituting equation 3.2-1 in equation 3.1-5 yields 

Ns N ,  N ,  

A,G = 1 viA,GY + R T  vilnci = A,Go + RTln n cy' = A,Go + RTlnQ 
i = l  i =  1 i = l  

(3.2-2) 

where Q is the reaction quotient: 

(3.2-3) 

The concentrations in Q have arbitrary values. Note that the standard reaction 
Gibbs energy is given by 

(3.2-4) 

where A,Gy is the standard Gibbs energy of formation of species i. Thus each 
species in a reaction makes its own contribution to the standard Gibbs energy of 
reaction and to the equilibrium constant; this makes it possible to construct tables 
of standard thermodynamic properties of species. 

The other thermodynamic properties for a reaction are related to the Gibbs 
energy of reaction through Maxwell equations (see Section 2.3). Because of 
equation 3.1-5, equation 3.1-4 can be written 

dG = -SdT  + VdP + A,,Gd< (3.2-5) 

which applies at each stage of the reaction. This form of the fundamental equation 
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for G has three Maxwell equations. 

dArG 
= ( - I j P .  = -Ars 

A r S  is the reaction entropy and A , V  is the reaction 
transforms H = U + P V  and G = U + PI/  - TS lead to 

ArG = A r H  - T A r S  

(3.2-6) 

(3.2-7) 

(3.2-8) 

volume. The Legendre 
G = H - TS, and so 

(3.2-9) 

The relation for the entropy of reaction A r S  can be derived from equation 
3.2-1 and equation 3.2-2. Equation 3.2-6 shows that 

8Ar G N, 

= v iAfS i  = A.,So - RInQ (3.2- 10) 
P , <  i = l  

where ArSi  is the entropy of formation of species i and ArSo is the standard entropy 
of reaction at a specified ionic strength. Thus 

(3.2-1 1) 

where AfSY is the standard entropy of formation of species i. According to the third 
law of thermodynamics, absolute values of molar entropies of species can be 
determined, but we will be primarily concerned with the entropies of formation 
that can be calculated from the temperature derivative of the Gibbs energy of 
formation or from a combination of data on equilibrium constants and enthalpies 
of reaction. 

The enthalpy of reaction can be calculated using the Gibbs-Helmholtz 
equation 2.5-18. Since A , H  = A,G + T A , S  (equation 3.2-9), the enthalpy of 
reaction is given by 

(3.2-12) ?Ar G ' ArGIT) A r H  = A,G - T __ ( (7T ),= - T 2  ('( 6T 

Substituting A,G = C v iAfGi  yields 
N ,  

A r H  = C v i A f H i  
i =  1 

(3.2- 13) 

where A f H i  is the enthalpy of formation of species i. Since H = G + 7S, it is 
evident that 

and 
A f H i  = AfGi  + T A , S ,  

A ~ H ;  = A,G; + TAJ; 

(3.2-14) 

(3.2-15) 

where AfHO is the standard enthalpy of formation of species i. 

yields the heat capacity of reaction at a constant pressure A r c p :  
Taking the derivative of the enthalpy of reaction with respect to temperature 

N, N .  

(3.2- 1 6) 
i =  1 i =  1 

A, C,"(i) is the standard heat capacity of formation of species i at constant pressure 
and C;,(i) is the standard molar heat capacity of species i at constant pressure. 

Equation 3.2-12 can be written in the form 

BlnK A,Ho 
(;l)p = RT2 (3.2- 17) 
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Fig. 3.2 Acid dissociation constant for acetic acid as a function of temperature (see 
Problem 3.4). 

If A,Ho is independent of temperature, integration of this equation from TI to T2 
yields 

(3.2-1 8) 

If Ci,(i) does not change significantly in the experimental temperature range, 
the enthalpy of reaction will change linearly with T and the entropy of reaction 
will change logarithmically: 

A,Ho(T) = A,H0(298.15 K) + A,C:(T- 298.15K) (3.2- 19) 
m 

1 
ArSo(T) = A,S0(298.15 K) + A,C:ln 

298.15 K 
(3.2-20) 

Substituting these relations in A,Go = - RTlnK = A,Ho(T) - TA,So(T) yields 

298.15 K 
A,H0(298.15) A,S0(298. 15) A, Cg 298.15 K 

- In 
l n K =  - RT + R --(I- R T 

(3.2-21) 

The plot in Fig. 3.2 of the acid dissociation constant for acetic acid was calculated 
using equation 3.2-21 and the values of standard thermodynamic properties 
tabulated by Edsall and Wyman (1958). When equation 3.2-21 is not satisfactory, 
empirical functions representing Arc: as a function of temperature can be used. 
Clark and Glew (1966) used Taylor series expansions of the enthalpy and the heat 
capacity to show the form that extensions of equation 3.2-21 should take up to 
terms in d3A,C:/dT3. 

3.3 IMPORTANCE OF COMPONENTS 

The role of components in reaction systems is discussed in Beattie and Oppen- 
heim (1979) and Smith and Missen (1982). An elementary introduction to 
components has been provided by Alberty (1995~). In chemical reactions the 
atoms of each element and electric charges are conserved, but these conservation 
equations may not all be independent. It is only a set of independent conservation 
equations that provides a constraint on the equilibrium composition. The 
conservation equations for a chemical reaction system can also be written in terms 
of groups of atoms that occur in molecules. This is discussed in detail in the 
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Chapter 5 on matrices. In any case, the things that are conserved are referred to 
as components. 

The preceding section was based on the fundamental equation for G in terms 
of the extent of reaction, but in order to identify the D natural variables for a 
one-reaction system at equilibrium, we need to apply the condition for equilib- 
rium Cvipi = 0 (equation 3.1-6) that is due to the reaction. That is done by using 
each independent equilibrium condition to eliminate one chemical potential from 
equation 2.5-5. This is more easily seen for a simple reaction: 

A + B = A B  (3.3-1) 

At chemical equilibrium, equation 3.1-6 indicates that p A  + pB = pAB. Using this 
relation to eliminate pAB from the fundamental equation yields 

dG = --SdT + VdP + p,(dnA + dn,,) + pB(dnB + dn,,) 

= - -SdT + VdP + pAdncA + p g  dnCB (3.3-2) 

where nCi is the amount of component i ;  ncA = nA + nAB and ncB = ng + nAB. This 
form of the fundamental equation for G applies at chemical equilibrium. It is easy 
to see that nA + nAB is conserved because every time a molecule of A disappears, 
a molecule of AB appears. These two conservation equations are constraints on 
the equilibrium composition. The other constraint is K = [nAB/V]/[nA/V][nB/V] 
where the amounts are equilibrium values; thus there are three equations and 
three unknowns, nA, n,, and nAB. The natural variables for this reaction system 
at chemical equilibrium are 7: P, ncA, and ncB, as shown by equation 3.3-2. Note 
that the number of natural variables has been decreased by one by the constraint 
due to reaction 3.3-1. When chemical reactions are involved in a system, pi and 
nCi are conjugate variables (see Table 2.1) as indicated by equation 3.3-2. 

Usually statements of problems on chemical equilibrium include the initial 
amounts of several species, but this doesn’t really indicate the number of 
components. The initial amounts of all species can be used to calculate the initial 
amounts of components. The choice of components is arbitrary because pA or p ,  
could have been eliminated from the fundamental equation at chemical equilib- 
rium, rather than pAB. However, the number C of components is unique. Note 
that in equation 3.3-2 the components have the chemical potentials of species. 
This is an example of the theorems of Beattie and Oppenheim (1979) that “(1) the 
chemical potential of a component of a phase is independent of the choice of 
components, and (2) the chemical potential of a constituent of a phase when 
considered to be a species is equal to its chemical potential when considered to 
be a component.” The amount of a component in a species can be negative. 

The number C of components in a one-phase system is given by 

C = N , - R  (3.3-3) 

where N ,  is the number of different species and R is the number of independent 
reactions. The source of this equation and answers to questions about the number 
of components and the choice of components are clarified by the use of matrices, 
as described in Chapter 5. The amounts of components can be calculated from 
the amounts of species by use of a matrix multiplication (equation 5.1-27). When 
there are no reactions in a system, it is not necessary to distinguish between 
species and components. 

Now we are in position to discuss a closed reaction system where several 
reactions are occuring. Equation 3.3-2 can be generalized to 

C 

dG = - S d T  + VdP + 1 pidnci (3.3-4) 
i = l  

This form of the fundamental equation for G applies to a system at chemical 
equilibrium. Note that the number D of natural variables of G is now C + 2, 
rather than N ,  + 2 as it was for a nonreaction system (see Section 2.5). There are 
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fewer independent variables because of the constraints due to the chemical 
reactions. 

The criterion of spontaneous change and equilibrium for a nonreaction 
system is dG d 0 at constant 7; P, and {n , } ,  but the criterion for a system 
involving chemical reactions is dG < 0 at constant 7; P ,  and {n,,}. Therefore, to 
calculate the composition of a reaction system at equilibrium, it is necessary to 
specify the amounts of components. This can be done by specifying the initial 
composition because the initial reactants obviously contain all the components, 
but this is more information than necessary, as we will see in the chapter on 
matrices. 

3.4 GIBBS-DUHEM EQUATION AND THE PHASE RULE 
AT CHEMICAL EQUILIBRIUM 

The Gibbs-Duhem equation and the phase rule were discussed briefly in Section 
2.4, but now we want to extend those considerations to systems at chemical 
equilibrium. The degrees of freedom in a gaseous reaction system at chemical 
equilibrium was discussed by Alberty (1993b). The Gibbs-Duhem equation for a 
one-phase reaction system at chemical equilibrium is obtained by using the 
complete Legendre transform U' = U + PI/ - TS - Cn, ,p ,  to interchange the 
roles of amounts of components and the chemical potentials of components. Thus 
the Gibbs-Duhem equation corresponding with equation 3.3-4 is 

C 

0 = - S d T  + VdP - 1 n,,dp, (3.4-1) 
i =  1 

This shows that there are C + 2 intensive variables for a chemical reaction system 
at equilibrium, but only C + 1 of them are independent because of this relation 
between them; in other words, for a one-phase system at chemical equilibrium the 
number F of degrees of freedom is given by F = C + 1. Since this is a one-phase 
system, it is evident that the phase rule for the reaction system is 

F = C - p + 2  (3.4-2) 

The number of natural variables is given by 

D = F + p = C - p + 2 + p = C + 2  (3.4-3) 

Since equations 3.4-2 and 3.4-3 have been introduced in a rather indirect way, 
more general derivations are given as follows: The composition of a phase in a 
system involving chemical reactions can be specified by stating C - 1 mole 
fractions, and the composition of p phases can be specified by stating p(C - 1) 
mole fractions. If T and P are independent intensive variables, the number of 
independent intensive variables is equal to p(C - 1) + 2. The number of relation- 
ships between the chemical potentials of a single component between phases is 
p - 1. Since there are C components, there are C(p - 1) equilibrium relationships. 
The difference F between the number of independent intensive variables and the 
number of relationships is given by F = p(C - 1) + 2 - C(p - 1) = C - p + 2. In 
order to describe the extensive state of the system, it is necessary to specify in 
addition the amounts of the p phases, and so D = F + p = C + 2. When special 
constraints are involved, the number s of these special constraints must be 
included in the phase rule to give F = C - p + 2 - s. An example of a special 
constraint would be taking the amounts of two reactants in the ratio of their 
stoichiometric numbers in a reaction. Further independent work terms in the 
fundamental equation increase D and F .  The numbers F and D are unique, but 
the choices of independent intensive variables and independent extensive variables 
are not. 
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Equation 3.3-4 shows that for a chemical reaction system, the number F of 
intensive degrees of freedom and the number D of extensive degrees of freedom 
are given by 

F = N ,  - R - p  + 2 

D = N ,  - R + 2 

(3.4-4) 

(3.4-5) 

W 3.5 ISOMER GROUP THERMODYNAMICS 

In discussing the thermodynamics of complex reaction systems, it is helpful to 
have ways of reducing the complexity so that it is easier to think about the system 
and to make calculations. One of these ways is to aggregate isomers and make 
thermodynamic calculations with isomer groups, rather than species (Smith and 
Missen, 1982; Alberty, 1983a, 1993b). Examples of isomer groups are the butenes 
( 3  isomers) and pentenes ( 5  isomers), where the numbers of isomers exclude 
cis-trans and stereoisomers. At higher temperatures these isomers are in equilib- 
rium with each other, and so thermodynamic calculations can be made with 
butenes and pentenes. The reason this can be done is that the distribution of 
isomers within an isomer group is independent of the composition of a reaction 
system and of the other reactions that occur. The distribution of isomers within 
an isomer group depends only on temperature for ideal gases and ideal solutions. 

The fundamental equation for G can be used to show that when isomers are 
in equilibrium, they have the same chemical potential. Therefore terms for isomers 
in the fundamental equation for G can be aggregated so that the amounts dealt 
with are amounts of isomer groups, rather than amounts of species. Since the 
number of isomers of a reactant can be significant, this can make a significant 
reduction in the number of chemical terms in the fundamental equation at 
chemical equilibrium. 

There are two ways to express the Gibbs energy GI,, of a group of isomers at 
chemical equilibrium. The first method simply uses a sum of the terms for the 
individual isomers, and the second method utilizes the chemical potential p15, for 
the isomer group at equilibrium and the amount nlco of the isomer group as in 

(3.5-1) 

The number of isomers in an isomer group is represented by N,,,. A t  chemical 
equilibrium, all of the isomers have the same chemical potential, and this chemical 
potential is represented by pica. The amount of an isomer group is represented by 
n,,, = Cn,. For a group of gaseous isomers at cquilibriurn, the chemical potential 
of the isomer group in a mixture of ideal gases is given by 

nisop 
piso = p;\o + R T In ~ 

n, P" 
(3.5-2) 

where n, is the total amount of gas in the system, P is the sum of the partial 
pressure of the isomers, and Po is the standard state pressure. At equilibrium the 
chemical potential of isomer i is given by 

ni P 
pi = ,u: + RTln  ~ 

n, Po 

These two equations can be written as 

(3.5-3) 

(3.5-4) 

(3.5-5) 
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Substituting these expressions in niso = Eni yields 

N,," 

[ p:so = -RTln 1 exp - ~ 

i =  1 
(3.5-6) 

since piso = pi. The corresponding expressions for the standard enthalpy, entropy, 
and heat capacity can be obtained by using the derivatives of equation 2.5-6 
indicated by the fundamental equation for G (Alberty, 1983). 

The corresponding derivation for ideal solutions is a little simpler. The 
chemical potential for the isomer group and for an individual isomer at chemical 
equilibrium are given by 

Piso = &o + RTlnCBisoI (3.5-7) 

where [BiS0] is the concentration of the isomer group. At equilibrium the chemical 
potential of isomer i is given by 

pi = p: + RTln[Bi] (3.5- 8) 

These two equations can be written as 

(3.5-9) 

(3.5 - 10) 

Substituting these expressions in [Bis0] = Z[Bi] yields equation 3.5-6. 
In making actual calculations, standard formation properties are used rather 

than chemical potentials, and so the standard Gibbs energy of formation of an 
isomer group is given by 

Af GP 
A,G"(iso) = - RTln c exp - ~ (3.5-11) [z [ RT]]  

Note that A,G"(iso) is more negative than AfGP of the most stable isomer, as it 
must be because the isomer group has a higher mole fraction in the reaction 
system at equilibrium than the most stable isomer. The mole fraction y i  of the ith 
isomer in the isomer group at equilibrium is given by 

ri = exp rf G'(is;k- Af Gq 
(3.5- 12) 

The summation in equation 3.5-11 has the form of a partition function, and the 
distribution in equation 3.5-12 has the form of a Boltzmann distribution. 

The equation for the standard enthalpy of formation of an isomer group can 
be obtained by using the Gibbs-Helmholtz equation 2.5-23 in the form 

A,H"(iso) = - T2 
dT P 

This differentiation yields 

N, , ,  

A,Ho(iso) = 1 ri$HP 
i = l  

(3.5- 13) 

(3.5- 14) 

Thus the standard enthalpy of formation or an isomer group is the mole fraction 
weighted average. Equations 3.5-1 1 to 3.5-14 will be especially useful in the next 
chapter. 

The equation for the standard entropy of formation of an isomer group can be 
obtained by using 

aAf G"(iso) 
A,S'(iso) = - (3.5- 15) 
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This differentiation yields 

N , S O  N,," 

A,S"(iso) = riA,SP - R r i lnr i  
i =  1 i =  1 

(3.5- 16) 

The same form of equation can be used to calculate the standard molar entropy 
S:(iso) of the isomer group. The entropy of formation of the isomer group is equal 
to the mole-fraction-weighted entropy of formation plus the entropy of mixing the 
isomers. 

The equation for the standard molar heat capacity of formation of an isomer 
group can be obtained by using 

i3Af H"(iso) 
A,C;(iso) = - (3.5- 17) 

This differentiation yields 

N,\O 

C;,(iso) = 1 riC;,(i) + ~ R T ~  (T i = l  rL(AfIQ2 - (AfHo(iso))') (3.5-18) 
i =  1 

Equation (3.5-18) has been written in terms of molar heat capacities C&i), rather 
than heat capacities of formation, because the heat capacities of the elements are 
on both sides and cancel. The second term of this equation is always posi- 
tive because the weighted average of the squares is always greater than the 
square of the average. Equation 3.5-18 is in accord with LeChatelier's principle: 
As the temperature is raised, the equilibrium shifts in the direction that 
causes the absorption of heat. Equation 3.5-18 can also be derived using 
C, = - T(d2G/dT2), (equation 2.5-25). 

Equations 3.5-14 and 3.5-16 can be substituted in A,G"(iso) = 

A,H"(iso) - TA,S"(iso) to obtain another form for the standard Gibbs energy of 
formation of an isomer group. 

N i S O  N , , ,  

A,G"(iso) = c riAfGP + RT ri lnri  (3.5-1 9) 
i =  1 i =  1 

In other words, the standard Gibbs energy of formation of an isomer group at 
equilibrium is equal to the mole fraction-weighted average of standard Gibbs 
energies of formation of the isomers plus the Gibbs energy of mixing. 

The fundamental equation for G of a system made up of isomer groups is 

Niso 

dG = -SdT  + VdP + c pi(iso)dni(iso) (3.5-20) 
i =  1 

where Niso is the number of isomer groups. In this equation an isomer group may 
consist of a single species. This equation can be used to derive the equilibrium 
expressions for reactions written in terms of isomer groups. Since isomer groups 
can be treated like species in chemical thermodynamics, they can be referred to a 
pseudospecies. Equation 3.5-20 is based on the assumption that the species in an 
isomer group are in equilibrium with each other. The number of natural variables 
for a one-phase system consisting of Niso isomer groups is D = Niso + 2 prior to 
application of the constraints due to reactions between the isomer groups. If the 
reactions between the isomer groups are at equilibrium, the number of compo- 
nents replaces the number of isomer groups and D = C + 2. 

3.6 EFFECT OF IONIC STRENGTH O N  EQUILIBRIA 
IN SOLUTION REACTIONS 

The activity coefficient yi of an ion depends on the ionic strength (I = ($z:ci, 
where zi  is the charge number) according to the Debye-Huckel theory in the limit 
of low ionic strengths. As discussed in Section 1.2, this equation can be extended 
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to provide activity coefficients in the physiological range by introducing an 
empirical term to form the extended Debye-Huckel equation. 

cx.; I l l 2  

1 + B P I ~  
lny, = - (3.6-1) 

where B is 1.6 L1'2 mol-'". This equation works quite well in the 0.05 to 0.25 M 
range of ionic strengths for a number of electrolytes for which activity coefficients 
have been determined accurately. It is evident from this equation that the effect 
of ionic strength on the thermodynamic properties of ionic species of biochemical 
interest are significant in the 0.05 to 0.25 M range. The effects are especially 
significant when ions have charges of 2, 3, or 4. The treatments of the ther- 
modynamics of electrolyte solutions at higher concentrations require more 
complicated equations with more empirical parameters (Pitzer, 1991, 1995). 
However, there is insufficient data on the specific effects of various ions in 
biochemical buffers to go beyond equation 3.6-1 at present. 

Thus the standard enthalpy of formation AfHY(I) and standard Gibbs energy 
of formation AfG:(I) of an ionic species at 298.15 K in kJ mol- ' can be calculated 
using (Clark and Glew, 1980; Goldberg and Tewari, 1991) 

1.4775~?1"~ 
A,HP(I) = A,HP(I = 0) + 

1 + BP 

2.91482221 ' I 2  
A, GP(I) = A, Gp(Z = 0) - 

1 + BP 

(3.6-2) 

(3.6-3) 

These equations will be very useful in the next chapter. 
The standard thermodynamic properties of ions are given in tables of 

standard thermodynamic properties at I = 0. The effect of ionic strength on A r c "  
for a chemical reaction is obtained by substituting equation 3.6-3 in equation 
3.1- 12: 

2.91482I1I2 E viz; 
A,G"(I) = A,G"(I = 0) - 

1 + B I ' I ~  
(3.6-4) 

where E:viz? is the change in z; in the reaction. The effect of ionic strength on 
ArH'(I) for a chemical reaction is obtained by using the Gibbs-Helmholtz 
equation (2.5-18 and 3.2-12): 

1.47751'/2Evi~f 
A,HP(I) = A,Hp(I = 0) + 

1 + B I " ~  
(3.6-5) 

The effect of ionic strength on the equilibrium constant for a chemical reaction at 
25"C is obtained by substituting equation 3.6-4 in equation 3.1-2: 

1.1 75821112Cviz2 
1 + BI'I2 

In K ( I )  = In K(I = 0) + (3.6-6) 

3.7 EFFECT OF TEMPERATURE ON 
THERMODYNAMIC PROPERTIES 

In order to discuss thermodynamic properties in dilute aqueous solutions at 
temperatures other than 298.15 K, it is necessary to have the standard enthalpies 
of the species involved. Over narrow ranges of temperature, calculations can be 
based on the assumption that A,HP values are independent of temperature, but 
more accurate calculations can be made when C&i) values are known. It is also 
necessary to take into account the temperature dependencies of the numerical 
coefficients in equations 3.6-4 to 3.6-6. Clarke and Glew (1980) calculated the 
Debye-Huckel slopes for water between 0 and 150'C. They were primarily 
concerned with electrostatic deviations from ideality of the solvent osmotic 
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Table 3.1 
Functions of Temperature 

Debye-Huckel Constant and Limiting Slopes of A f G c ,  AfH,, and C~,(I) as 

0 1.12938 2.56494 1.075 
10 1.1471 7 2.70073 1.213 
20 1.16598 2.841 96 1.3845 
25 I .  17582 2.91482 1.4775 
30 1.18599 2.98934 1.5775 
40 1.20732 3.14349 1.800 

13.255 
15.41 
17.90 
19.27 
20.725 
23.885 

Source: With permission from R. A. Alberty, J .  Phys. Chem. B ,  105, 7865 (2001). Copyright 2001 
American Chemical Society. 

coefficient 4, and so they used the Debye-Huckel limiting law in the form 
lny = -3Am’’’, where m is the molality. The relation between these coefficients 
and those needed here were first discussed by Goldberg and Tewari (1991). 
Further discussion is to be found in Alberty (2001). The primary coefficients of 
interest here are those for effects of ionic strength on In K ,  AfG , AfH . and CPn,. 
These coefficients are a, RTa, RT2(da/?T),, and RT2(?a/2T), + T(i2x/?T2),], 
respectively. The third coefficient is a consequence of the Gibbs-Helmholtz 
equation. The fourth coefficient is a consequence of equation 2.5-25. The values 
of these coefficients calculated from the tables of Clark and Glew (1980) are given 
in Table 3.1. 

In discussing the effect of temperature, it is more convenient to use the 
molality because molality does not change with the temperature when there are 
no reactions in the system. However, these values can be used In calculations 
based on molarities. 

The calculations of standard thermodynamic properties discussed in the rest 
of this section are based on the assumption that the standard enthalpies of 
formation of species are independent of temperature: in other words, the heat 
capacities of species are assumed to be zero. In the future when more is known 
about the molar heat capacities of species, more accurate calculations can be 
based on the assumption that the molar heat capacities are independent of 
temperature. When the heat capacities of species are equal to zero, the standard 
entropies of formation are also independent of temperature. Under these condi- 
tions the values of AfG: at other temperatures in the neighborhood of 298.15 K 
can be calculated using 

AfGP(T) = AfHY(298.15 K) - TAfS;(298.15 K) (3.7-1) 

This equation can be written in terms of A,G:(298.15 K) and A,H,(298.15 K )  by 
substituting the expression for the entropy of formation of the species: 

A,G,(T) = (&) A,G:(298.15 K )  + ( 1 - __ 29i:15) A,H,(298.15 K)  (3.7-2) 

In order to calculate values of AfGL: at other temperatures not too far from 
298.15K, it is necessary to fit a to a power series in 7: The use of Fit in 
Mathematica yields (see Problem 3.5) 

a = 1.10708 - 1.54508 x lO-’T + 5.95584 x 10-6T2 (3.7-3) 

Clarke and Glew (1980) give an equation with more parameters to yield values 
of a from 0 to 150°C. When the quadratic fit is used, the coefficient RTx in the 
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equation for the standard transformed Gibbs energy of formation of a species is 
given by 

RTa = 9.20483 x 10-3T - 1.28467 x 10-’T2 + 4.95199 x 10-*T3 (3.7-4) 

This equation reproduces the second column of Table 3.1 to 0.1% accuracy. The 
coefficient RT2(da/dT), in the equation for the standard transformed enthalpy of 
formation of a species is given by 

RT’ (g) = -1.28466 x 10p5T2 + 9.90399 x 10-’T3 (3.7-5) 
P 

This equation reproduces the third column of Table 3.1 to 1% accuracy. The 
calculations of these three functions are shown in Problem 3.5, and they are used 
in the calculation of standard Gibbs energies of formation and standard enthal- 
pies of formation of species at other temperatures in Problems 3.6 and 3.7. 

Thermodynamic properties in dilute aqueous solutions are taken to be 
functions of ionic strength so that concentrations of reactants, rather than their 
activities can be used. This also means that pH, = -log[H+] has to be used in 
calculations, rather than pH, = -log{a(H+)}. When the ionic strength is different 
from zero, this means that pH values obtained in the laboratory using a glass 
electrode need to be adjusted for the ionic strength and temperature to obtain the 
pH that is used to discuss the thermodynamics of dilute aqueous solutions. Since 
pH, = -logy(H+) + pH,, the use of the extended Debye-Huckel theory yields 

a 11’2 

ln(10) 1 + 1.61”’ 
pH, - pH, = ~ (3.7-6) 

These adjustments, which are tabulated in Section 1.2, are to be subtracted from 
the pHa obtained with a pH meter to obtain pH,. pH, is lower than pH, because 
the ion atmosphere of H +  reduces its activity (see Problem 3.7). In the rest of the 
book, pH is taken to be pH,. 

H 3.8 CHEMICAL THERMODYNAMIC TABLES 
INCLUDING BIOCHEMICAL SPECIES 

A useful way to store data on equilibrium constants and enthalpies of chemical 
reactions is to use equations 3.2-4 and 3.2-13 to calculate standard Gibbs energies 
of formation and standard enthalpies of formation of species and to tabulate these 
values. Since there are more species than independent chemical reactions between 
them (remember N ,  = R + C ) ,  this can only be done by adopting some conven- 
tions. The major convention for the construction of chemical thermodynamic 
tables is that A,GP and A,HP for each element in a specified reference state is taken 
as zero at each temperature. The reference state for the elements that are gases at 
room temperature is the ideal gas state at 1 bar. For each solid element, a 
particular state has been chosen for the reference state; this is generally the most 
stable state at room temperature. In order to treat the thermodynamics of 
electrolyte solutions, it is necessary to adopt an additional convention, and that 
is that AfGP = AfHP = C&(i) = 0 at zero ionic strength for H+(aq) at each 
temperature. Since the thermodynamic properties of ions depend on the ionic 
strength, the convention of tabulating values at zero ionic strength has been 
adopted. These arbitrary conventions make it possible to have tables of standard 
Gibbs energies of formation Af GP, standard enthalpies of formation AfHF, and 
molar heat capacity C&,,(i) of species at 298.15K and zero ionic strength. The 
NBS Tables (1982) summarize a very large body of standard thermodynamic 
properties of species obtained by chemical methods. However, this table does not 
contain very much information on biochemical metabolites because it includes 
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only C,  and C, organic molecules and ions. Cox et al. (1989) list a number of 
species on which there is international agreement. 

As discussed in Chapter 1, Burton (1957) used equilibrium constants for 
enzyme-catalyzed reactions to calculate standard Gibbs energies of formation for 
species of biochemical interest. Wilhoit (1969) and Thauer (1977) considerably 
extended Burton's table. Goldberg (1984) and Goldberg and Tewari (1989) have 
calculated AsGj and ASHY for more species of biochemical interest from measure- 
ments of apparent equilibrium constants and enthalpies of enzyme-catalyzed 
reactions. When the standard Gibbs energies of formation for all the species in a 
system are known, the equilibrium composition can be calculated by use of a 
computer program that minimizes the Gibbs energy. This was illustrated for the 
hydrolysis of ATP, which involves 17 species (Alberty, 1991). 

In making thermodynamic tables of properties of species in biochemical 
reactions, there are cases where it is not possible to calculate A, Gi.' and As HL with 
respect to the elements because equilibrium constants and heats of reaction have 
not been measured for reactions connecting the species with the elements. In these 
cases it is possible to assign A,GP = AfHi = Cim(i) = 0 for one species and to 
calculate AfG;, A,H:, and Cbm(i) for other species on the basis of this convention. 
Alberty and Goldberg (1992) applied this convention to adenosine because at that 
time it was not possible to connect ATP4- with the elements in their reference 
states. They showed that values of AfGP and AfHY calculated in this way can be 
used to calculate equilibrium constants and enthalpies of reaction. But, of course, 
A,GP and A,HY calculated in this way cannot be used to calculate equilibrium 
constants and enthalpies for reactions that form adenosine from the elements. 
More recently Boerio-Goates et al. (2001) have determined the enthalpy of 
combustion of adenosine (cr), its third law entropy, and its solubility in water at 
298.15K. This makes it possible to calculate A,H"(adenosine, aq) and A,G' 
(adenosine, aq) at 298.15K. They have recalculated A,H' and A,G" for all of the 
species in the ATP series. This does not change the values of equilibrium 
constants and enthalpies of reaction calculated from the previous table (Alberty 
and Goldberg, 1992). An essential part of any table is a list of the conventions. 
Using values of standard formation properties from tables based on different 
conventions will lead to incorrect results. 

The most basic data on thermodynamic properties of species at a certain 
temperature include A,GP(Z = 0) and A,HP(I = 0), the charge number i, and the 
number NH(i) of hydrogen atoms in the species. The number of hydrogen atoms 
in a species is not used in this chapter but in the next chapter. A database in 
computer readable form is presented in the Mathenzatica package BasicBiochem- 
Data2, which is the first item in the second part of this book. The basic data on 
the species of 131 reactants are given in section 2 of this package. The data for 
each reactant is in the form of a matrix with a row for each species of the reactant: 

namesp = (((A,GL, A,H;, zl, NH(l)], ( A f G i ,  ASH;, z2, NH(2)$, . . .j (3.8-1) 

The first entry is for the species with the fewest hydrogen atoms. Only species of 
interest in the range pH 5 to 9 are included. No complex ions are included in this 
table. The advantage of this table is that, with Mathematicu in a personal 
computer, it is not necessary to copy these numbers to make a calculation. 
Programs for making these calculations are also included in the package. 

The sources of the data are described in Alberty (1998b, d, and other articles). 
The complications of dissolved carbon dioxide are discussed in Section 8.7. 
Reactions involving NAD,,, NAD,,,, NADP,,, and NADP,,, are discussed in 
Chapter 9. 

This data file and programs (Alberty, 2001) for using it are available on the 
web at http:llww~.n.latlz.sourc.e. cornlcgi-binlnisitemP0211-622. I t  can be read using 
MathReader, which is free from Wolfram Research, Inc. (100 Trade Center Drive, 
Champaign, IL 61820-7237): tzttpllwivw.~vo~fLum.coin. BasicBiochemData2 is 
available in two forms at MathSource: a package that can be downloaded using 
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the command <<BasicBiochemData2* and a notebook (BasicBiochemData2.nb) 
that contains explanations and examples in addition to the data. 

Goldberg and Akers (2001) have also published a Mathematica package for 
calculations on biochemical reactions. 

BasicBiochemData2 contains a table of data on 131 reactants that is 
reproduced in Table 3.2 in the appendix of this chapter. It is hard to overemphas- 
ize the usefulness of this table or the importance of extending it. It can be used to 
calculate equilibrium constants for chemical reactions between species in the table 
at desired ionic strengths in the range 0 to 0.35 M. This table can also be used to 
calculate acid dissociation constants at desired ionic strengths, as shown in Table 
1.3. When A,H" is known for all of the species in a chemical reaction, Table 3.2 
can be used to calculate A,H". This makes it possible to calculate equilibrium 
constants at temperatures other than 298.15 K. Only a few C;,,, values are known 
for these species, and so equilibrium constants cannot be calculated very far from 
room temperature. Since A,S" = (A,H' - A,G")/?; reaction entropies can also be 
calculated, and this is of special interest when reactant species and product species 
differ significantly in the disorder they introduce. For example, reactions that 
produce gases are generally go further to the right than reactions that do not 
because A,S" is large and positive. 

Some comments are needed about the names of species used in making 
calculations. Since Table 3.2 and later tables are produced using Mathematica, it 
is necessary to use short one-dimensional names that begin with lowercase letters 
and do not directly indicate ionic charges. The stereochemical labels are put at 
the end of the name, if necessary, so that they do not interfere with alphabetizing 
the list. Gaseous species are labeled with "g" at the end of the name, and the 
corresponding dissolved species are labeled "aq." The species of C0,tot are 
CO:-, HC03- ,  CO,(aq), and H,CO, (see Section 8.7). When values are given 
for gaseous and dissolved forms, the corresponding Henry law constants can be 
calculated. The distribution of CO, between gaseous and dissolved forms is of 
special interest because we will see later (Chapter 8) that the Henry law constant 
is also a function of pH. In Table 3.2 the chemical names of the reactants are given 
first, and then the name used in Mathematica. 

Proteins that are reactants in biochemical reactions are also be included in 
BasicBiochemData2; examples included are cytochrome c, ferrodoxin, and 
thioredoxin. Later in Chapter 7 it is shown that the effect of pH on a biochemical 
reaction involving a protein can be calculated if the pKs of groups in the reactive 
site of the protein can be determined. 

It is important to understand that the number of digits used in a ther- 
modynamic table of this type does not indicate the accuracy of the measured 
values because the information in the table is in the differences between values. 
An error of 0.01 kJ mol-I in the standard transformed Gibbs energy of formation 
of a species leads to about a 1% error in the equilibrium constant of a chemical 
reaction at 298.15K. This table can be extended a good deal in the future, as 
indicated by the data on apparent equilibrium constants and transformed 
enthalpies of reaction in the critical compilations of Goldberg and Tewari 
(Goldberg et al., 1993; Goldberg and Tewari, 1994a, b, 1995a, b; Goldberg, 
1999). 

The procedure for calculating standard formation properties of species at zero 
ionic strength from measurements of apparent equilibrium constants is discussed 
in the next chapter. The future of the thermodynamics of species in aqueous 
solutions depends largely on the use of enzyme-catalyzed reactions. The reason 
that more complicated ions in aqueous solutions were not included in the NBS 
Tables (1992) is that it is difficult to determine equilibrium constants in systems 
where a number of reactions occur simultaneously. Since many enzymes catalyze 
clean-cut reactions, they make it possible to determine apparent equilibrium 
constants and heats of reaction between very complicated organic reactants that 
could not have been studied classically. 
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Table 3.2 
Ionic Strength 

Basic Data on Species at 298.15 K in Dilute Aqueous Solutions at Zero 

Reactant Mathematica 
Name A, G' AfH' z ,  NH(I') 

acetaldehyde 
acetate 

acetaldehyde 
acetatc 

- 139.00 
- 369.31 
- 396.45 

- 188.52 
- 159.70 

- 1219.39 
- 1268.08 
- 1298.26 

310.67 
286.70 

- 194.50 
-214.28 
- 1906.13 

-917.13 

- 1947.10 
-- 1971.98 
-371.00 
- 26.50 
- 79.3 1 

- 1040.45 
- 1078.86 
- 1101.63 
- 742.23 
- 525.93 
-695.88 

-2768.10 
- 28 1 1.48 
-2838.18 
- 2356.14 
- 240 1.58 
- 171.84 
- 352.63 
- 1162.69 
- 1199.18 
- 1226.33 
- 1 156.04 
- 1192.57 
- 1219.47 

0 
-47.83 
- 35.85 

- 394.36 
- 527.8 1 
~ 586.77 
- 623.1 1 
- 119.90 
- 137.17 
- 259.20 
-23.14 

-291.00 
- 338.82 
- 666.51 

0 
-24.51 

- 1296.26 

- 21 2.23 
- 486.0 1 
-485.76 
-221.71 
~- 

~~ 

~ 

~~ . 

~ 

~~~ 

-621.30 
637.70 

- 2626.54 
- 2620.94 
- 2638.54 
- 554.80 
- 80.29 
- 132.51 
- 1635.37 
- 1629.97 
- 1648.07 
- 1043.79 
- 766.09 
- 943.41 

-3619.21 
-3612.91 
- 3627.91 

~~~ 

~ 

~ 

-1515.11 
- 1518.46 
- 1520.88 

~ 

~ 

~ 

-~ 

~~ ~ 

- 393.50 
-677.14 
-691.99 
- 699.63 
- 120.96 
- 110.53 

~ 

~ 

~ 

~ 

~ 

~ 

0 
- 1  

0 
0 
0 

-2 
- 1  

0 
-3 

0 
1 
0 
1 

-3 
-2 
- 1  

0 
0 
1 

-2 
- I  

0 
0 
0 

- 1  
-4 
-3  
-2 
-4 
-3  

0 
- 1  
-3 
-2  
- 1  
-3  
- 2  
-1  
- 1  

0 
- 1  

0 
-2 
- 1  

0 
0 
0 
0 
0 

-1 
0 
0 
3 
2 

- 2  

4 
3 
4 
6 
3 
3 
4 
5 
3 
5 
6 

13 
14 
12 
13 
14 
7 
3 
4 

12 
13 
14 
10 
8 
6 

12 
13 
14 
4 
5 

10 
7 
5 
6 
7 
5 
6 
7 
0 
1 

15 

0 
0 
1 
2 
0 
0 
9 
7 
6 
7 

12 
0 
0 
5 

acetone 
acetylcoA 
acet ylphos 

acetone 
acet ylcoA 
acet ylphosphate 

cis-aconitate 
adenine 

aconitatecis 
adenine 

adenosine adenosine 

adenosine 5' 
diphosphate 

alanine 
ammonia 

alanine 
ammonia 

adenosine 5'- 
monophosphate 

amp 

D-arabinose 
L-asparagine 
L-aspartate 
adenosine 5'- 

triphosphate 

arabinose 
asparagineL 
aspartate 
atp 

1,3-bis 

n-butanol 
but yrdte 
citrate 

phosphoglycerate 
butanoln 
butyrate 
citrate 

isocitrate citrateiso 

coenzyme A coA 

glutathione- 
coenzyme A 

COAd 
CO,tot 

co Aglutathione 

CO(aq) 
C W )  
creatine 
creatinine 
L-cysteine 

coaq 
cog 
creatine 
creatinine 
cysteineL 

cystineL 
cytochromecox 
cytochromecred 
dihydroxy- 

L-cystine 
cytochrome c (ox) 
cytochrome c (red) 
dihydroxyacetone 
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Table 3.2 Continued 

Reactant Mathernatica 

Name A,G' AfHL' z ,  NH(1' )  

phosphate 
ethanol 
ethyl acetate 
flavin-adenine 

flavin-adenine 

flavin-adenine 

dinucleotide (ox) 

dinucleotide (red) 

dinucleo tide-enz 
(0x1 

flavin-adenine 
dinucleotide-enz 
(red) 

ferredoxin (ox) 
Serredoxin (red) 
flavm mononucleotide 

flavin mononucleotide 

formate 
u-fructose 
u-fructose 

(0x1 

(red) 

6-phosphate 

n-fructose 
1,6-biphosphate 

fumarate 

u-galactose 
D-galactose 

1-phosphate 
D-glucose 
D-glucose 

u-glucose 

L-glu tamate 
L-glutamine 
glutathione (ox) 
glutathione (red) 

1-phosphate 

6-phosphate 

gl yceraldehyde 
3-phosphate 

glycerol 
sn-gl ycerol 

glycine 
glycolate 
glycylgl ycine 
glyoxylate 

3-phosphate 

H,(aq) 
H*(g) 
HZO 
H,Oz(aq) 

acetonephos 
ethanol 
ethylacetate 
Sadox 

fadred 

fadenzox 

fadenzred 

Serredoxinox 
ferredoxinred 
fmnox 

fmnred 

Sormate 
fructose 
fructose6phos 

fructose1 6phos 

fumarate 

galactose 
galactoselphos 

glucose 
glucose1 phos 

glucose6phos 

glu tamate 
glutamine 
glutathioneox 
glutathionered 

gl yceraldeh yde 
phos 

glycerol 
glycerol3phos 

glycine 
glycolate 
gl yc ylgl ycine 
gl yox ylate 
h2 
h2g 
h20 
h202aq 

- 1328.80 
- 181.64 
- 337.65 

0 

- 38.88 

0 

- 88.60 

0 
38.07 
0 

- 38.88 

-351.00 
-915.51 
- 1760.80 

- 1796.60 
- 2601.40 

- 2639.36 
- 2673.89 
-601.87 
- 628.14 
- 645.80 
- 908.93 
- 1756.69 
- 1791.77 

-915.90 
- 1756.87 
- 1793.98 
- 1763.94 
- 1800.59 
- 697.47 
- 528.02 

0 

- 13.44 
- 1288.60 
- 1321.14 
- 497.48 
- 1358.96 
- 1397.04 
- 379.9 1 
- 530.95 
- 520.20 
- 468.60 

0 
-237.19 
- 134.03 

34.17 

17.60 

~ 

- 288.30 
-482.00 
- 

~ 

~ 

- 

~ 

~ 

~ 

-425.55 
- 1259.38 

~ 

~ 

~ 

~ 

~ 

- 777.39 
- 774.46 
-774.88 
- 1255.20 

~ 

~ 

- 1262.19 
- 

~ 

- 2276.44 
- 2274.64 
- 979.89 
- 805.00 

~ 

~ 

~ 

- 

~ 

- 676.55 
~ 

~ 

- 523.00 
~ 

- 734.25 
~ 

- 4.20 
0 

- 285.83 
-191.17 

-1 
0 
0 

-2  

-2 

-2  

-2 

1 
0 

-2 

-2 

-1 
0 

-2 

-1 
-4 

-3 
-2 
-2 
-1 

0 
0 

-2 
-1 

0 
-2 
-1 
-2 
-1 
-1 

0 
-2 
-2 
-1 
-2 
-1 

0 
-2 
-1 

0 
-1 

0 
-1 

0 
0 
0 
0 

6 
6 
8 

31 

33 

31 

33 

0 
0 

19 

21 

1 
12 
11 

12 
10 

11 
12 
2 
3 
4 

12 
11 
12 
12 
11 
12 
11 
12 
8 

10 
30 
15 
16 

5 
6 
8 
7 
8 
5 
3 
8 
1 
2 
2 
2 
2 
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Table 3.2 Continued 

Reactant Mathemutica 

Name A, G" A, H" zi N d i )  

H +  
hydroxypropionate 

hypoxanthine 
indole 
ketoglutarate 
lactate 
lactose 
L-isoleucine 
L-leucine 
D - 1 y x 0 s e 
L-malate 

hydroion 
hydroxy- 

propionate 
hypoxan thine 
indole 
ketoglutarate 
lactate 
lactose 
leucineisoL 
leucineL 
lyxose 
malate 

maltose 
D-mannitol 
D-mannose 
methane(g) 
methane(aq) 
methanol 
L-methionine 
methy lamineion 
N , ( 4  
N J g )  
nico tinamide- 

adenine 
dinucleotide (ox) 

nicotinamide- 
adenine 
dinucleotide (red) 

nico tinamide- 
adenine 
dinucleotide 
phosphate (ox) 

nicotinamide - 
adenine dinucleotide 
phosphate (red) 

OAaq) 
O h )  
oxalate 
oxaloacetate 

oxalosuccinate 
palmitate 
phosphoenolpyruvate 

L-phen ylalanine 
inorganic phosphate 

2-propanol 
n-propanol 
pyrophosphate 

maltose 
mannitolD 
mannose 
methaneg 
methaneaq 
methanol 
methionineL 
methylamineion 
n2aq 

nadox 
n2g 

nadred 

nadpox 

nadpred 

o2aq 

oxalate 
oxaloacetate 

o2g 

oxalosuccinate 
palmitate 
Pep 

phenylalanineL 
Pi 

propano12 
propanoln 
PPi 

0 
-518.40 

89.50 
223.80 

- 793.41 
-516.72 
- 1567.33 
- 343.90 
- 352.25 
-749.14 
- 842.66 
- 872.68 
- 1574.69 
- 942.6 1 
-910.00 
- 50.72 
- 34.33 
- 175.31 
- 502.92 
- 39.86 

18.7 
0 
0 

22.65 

-835.18 

- 809.19 

16.40 
0 

- 673.90 
- 793.29 
- 698.33 
- 1135.88 
- 259.40 
- 1263.65 
- 1303.61 
- 1496.38 
- 1539.99 
- 1502.54 
- 1545.52 
- 207.10 
- 1096.10 
- 1137.30 
- 185.23 
- 175.81 
- 191 9.86 
- 1973.86 
-2012.21 

0 
~ 

~ 

97 50 
~ 

- 686 64 
- 2233 08 

- 

- 643 37 
~ 

~ 

- 2238 06 
~ 

- 1258 66 
-7481 
-89 04 
- 245 93 
- 

- 124 93 
- 10 54 

0 
0 

-71  94 

0 

-29 18 

-11 70 
0 

-825 10 
~ 

~ 

~ 

~ 

~ 

~ 

- 

~ 

~ 

- 1299 00 
-13026 
- 330 83 

- 2293 47 
- 2294 87 
- 2295 37 

- 

1 
-1 

0 
0 

-2 
-1 

0 
0 
0 
0 

-2 
-1 

0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

- 1  

-2  

-3 

-4 

0 
0 

-2 
-2 
- 1  
-2 
- I  
-3  
-2  
-3 
- 2  
-3 
-2  

0 
-2 
- I  

0 
0 

-4 
-3  
- 2  

1 
5 

4 
7 
4 
5 

22 
13 
13 
10 
4 
5 

22 
14 
12 
4 
4 
4 

I 1  
6 
0 
0 

26 

27 

25 

26 

0 
0 
0 
2 
I 
4 

31 
2 
3 
4 
5 
4 
5 

11  
1 
2 
8 
8 
0 
I 
2 
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Table 3.2 Continued 

Reactant Mathernatica 
Name A, Go Af H" zi NHG) 

pyruvate 
retinal 
retinol 
D-ribose 
D-ribose 1-phosphate 

D-ribose 5-phosphate 

D-ribulose 
L-serine 
L-sorbose 
succinate 

succinyl-coenzyme A 

sucrose 
thioredoxin (ox) 
thioredoxin (red) 

L-tryptophane 
L-t yrosine 
ubiquinone (ox) 
ubiquinone (red) 
urate 
urea 
uric acid 
L-valine 
D-xyloSe 
D-xylulose 

pyruvate 
retinal 
retinol 
ribose 
riboselphos 

ribosefiphos 

ribulose 
serineL 
sorbose 
succinate 

succinylcoA 

sucrose 
thioredoxinox 
thioredoxinred 

tryptophaneL 
tyrosineL 
ubiquinoneox 
ubiquinonered 
urate 
urea 
uricacid 
valineL 
xylose 
xylulose 

- 2025.1 1 

- 472.27 
0 

- 27.91 
- 738.79 
- 1574.49 
- 1612.67 
- 1582.57 
- 1620.75 
- 735.94 
- 510.87 
-911.95 
- 690.44 
- 722.62 
- 746.64 
- 509.59 
- 533.76 
- 1564.70 

0 

- 2029.85 

69.88 
20.56 

- 25.37 
- 114.70 
- 370.70 

0 
- 89.92 
- 325.90 
- 202.80 
- 356.90 
- 358.65 
- 750.49 
-746.15 

~ 2290.37 
- 2281.17 
- 596.22 

~ 

- 

- 1034.00 
- 

~ 

- 2041.48 
~ 2030.18 
- 1023.02 

~ 

- 1263.30 
- 908.68 
- 908.84 
-912.20 
- 

~ 

-2199.87 
~ 

~ 

- 

~ 

- 405.20 
~ 

~ 

- 

~ 

- 317.65 
~ 

- 61 1.99 

- 1029.65 
- 1045.94 

-1 
0 

-1 
0 
0 
0 

-2 
-1 
-2 
-1 

0 
0 
0 

-2 
-1 

0 
-1 

0 
0 
0 

-2 
-1 

0 
0 
0 
0 
0 

-1 
0 
0 
0 
0 
0 

3 
4 
3 

28 
30 
10 
9 

10 
9 

10 
10 
7 

12 
4 
5 
6 
4 
5 

22 
0 
0 
1 
2 

12 
11 
90 
92 
3 
4 
4 

11 
10 
10 

Note: The standard Gibbs energies of formation and standard enthalpies of formation are in kJ mol-'. 
Conventions: A,G" = A,H" = 0 for elements in defined reference states, H+(u = I), coA-, FAD:x-, 
FADenz;,, cy tochrom~c~ ' ,  ferredoxin:x-, FMN:,, glutathione:,, NAD,, NADP:x-, retinal', 
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As shown in Chapter 1, it is convenient to discuss the thermodynamics of 
biochemical reactions at specified pH in terms of reactants like ATP, which are 
sums of species at  equilibrium at the specified pH. The apparent equilibrium 
constants K' for biochemical reactions in dilute aqueous solutions are functions 
of 7; pH, and ionic strength. This chapter introduces the thermodynamics needed 
to discuss biochemical reactions in terms of thermodynamic properties of reac- 
tants (sums of species with different numbers of hydrogen atoms), the relations 
between these properties, and the relations between the properties of species and 
the properties of reactants. It also provides information on criteria for sponta- 
neous change and equilibrium. An important issue in these calculations is the 
number of intensive degrees of freedom and the total number of degrees of 
freedom. The goal of this chapter is the production of functions of pH and ionic 
strength that make it possible to calculate the apparent equilibrium constants and 
transformed enthalpies of reaction of biochemical reactions at 298.15 K and 
desired pHs in the range 5 to 9 and ionic stregths in the range zero to 0.35 M. 

When the pH is specified, we enter into a whole new world of ther- 
modynamics because there is a complete set of new thermodynamic properties, 
called transformed properties, new fundamental equations, new Maxwell equa- 
tions, new Gibbs-Helmholtz equations, and a new Gibbs-Duhem equation. These 
new equations are similar to those in chemical thermodynamics, which were 
discussed in the preceding chapter, but they deal with properties of reactants 
(sums of species) rather than species. The fundamental equations for transformed 
thermodynamic potentials include additional terms for hydrogen ions, and 
perhaps metal ions. The transformed thermodynamic properties of reactants in 
biochemical reactions are connected with the thermodynamic properties of species 
in chemical reactions by equations given here. 

The relationships between the thermodynamic properties of chemical reac- 
tions and the transformed thermodynamic properties of biochemical reactions 
have been treated in several reviews (Alberty, 1993a, 1994c, 1997b, 2001e). 
Recommendations .for Nomenclature and Tables in Biochemical Thermodylzanzics 
from an IUPAC-IUBMB Committee were published in 1994 and republished in 
1996. This report is available on the Web: http:llivww chem.qmw. ac. uhlimbmbl 
thermodl. 

The treatment of pH as an independent variable can be extended to pMg or 
the free concentrations of other cations that are bound reversibly by species of a 
reactant. 

4.1 FUNDAMENTAL EQUATION FOR A 
BIOCHEMICAL REACTION SYSTEM AT 
SPECIFIED pH 

In a biochemical reaction one or more reactants may be weak acids or H +  may be 
produced or consumed by the reaction. Therefore the specification of the pH 
means that the concentration of a reacting species is held constant, and as a 
consequence the equilibrium composition will be different at different pHs. 
Actually the pH may drift during a biochemical reaction if the reaction produces 
or consumes H', but the pH is measured at equilibrium and the experimental 
value of K' corresponds with this pH. To find the criterion for equilibrium at 
specified 7: P, and pH, it is necessary to use a Legendre transform (see Section 2.5) 
to define a transformed Gibbs energy G' that has the chemical potential of H +  as a 
natural variable (see Section 2.2). This transformed Gibbs energy provides the 
criterion for equilibrium and spontaneous change at the specified pH. The 
Legendre transform of the Gibbs energy for this purpose is (Alberty, 1992a. 1992c) 

G' = G - n,(H)p(H+) (4.1 - 1) 

where n,(H) is the total amount of the hydrogen component (see Section 3.3) and 
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p(H’) is the specified chemical potential of the hydrogen ion that corresponds 
with the experimental pH and ionic strength. It is necessary to use the amount 
n,(H) of the hydrogen component in this equation because it is the conjugate 
variable to p(H+) (see Section 2.7). The transformed Gibbs energy G’ plays the 
same role that the Gibbs energy G does when the pH is not specified. The 
introduction of G’ leads to a transformed enthalpy H’ and a transformed entropy 
S’ for a reaction system at specified pH. Note that all of these transformed 
thermodynamic properties are functions of the ionic strength as well as 7; P,  and 
pH. Transformed thermodynamic properties had previously been used in connec- 
tion with petroleum thermodynamics where partial pressures of molecular hydro- 
gen, ethylene, and acetylene can be specified as independent variables (Alberty 
and Oppenheim, 1988, 1989, 1992, 1993a, b; Alberty, 1991~).  

The amount n,(H) of the hydrogen component in a system is given by the 
sum of the amounts of hydrogen atoms in various species in the reaction system. 

(4.1-2) 
j =  1 

In this equation N H ( j )  is the number of hydrogen atoms in species j ,  and N ,  is 
the number of different species in the system. The index number for species is 
represented b y j  so that the index number introduced later for reactants (sums of 
species) can be i. Substituting equation 4.1-2 and G = X n j p j  (equation 2.5-12) 
into the Legendre transform (equation 4.1-1) yields 

N s  NS NS Ns- I 

G ‘ =  2 ?Ijp,j- C NH(J’)p(H+)nj= 2 nj{pj-NH(J’)p(H+)) = c njp; 
j =  1 j =  1 j =  1 j =  1 

(4.1-3) 

where the transformed chemical potential pi of species j is given by 

p ‘ . = p . - N  J H ( ’  J)p(H+) (4.1-4) 

Note that the transformed chemical potential of the hydrogen ion is equal to zero 
so that there is one less term in the last summation. Equation 4.1-3 shows that 
the transformed Gibbs energy G‘ of a system is additive in the transformed 
chemical potentials pi of N ,  - 1 species, just like the Gibbs energy G is additive 
in the chemical potentials p j  of N ,  species (see equation 2.5-12). In making the 
Legendre transform, the chemical potential of one species (H+)  has been changed 
from a dependent variable to an independent variable. The roles of n,(H) and 
p(H+) in the fundamental equation are interchanged as shown in the next 
paragraph. 

The derivation of the fundamental equation for the transformed Gibbs energy 
G’ starts with the fundamental equation 2.5-5 for the Gibbs energy written in 
terms of species: 

NS 

dG = -SdT+ VdP + c ,ujdnj (4.1-5) 
j =  1 

In order to obtain the fundamental equation for dG‘, it is first necessary to get 
the contribution for the hydrogen component into a separate term. This can be 
done by using equation 4.1-4 to eliminate pj from equation 4.1-5: 

N , -  1 NS 
d G =  - S d T +  VdP + C pidnj + 2 NH(j)p(H+)dnj (4.1-6) 

j =  1 j =  1 

There is one less term in the first summation because p’(H+) = 0, as is evident 
from equation 4.1-4. Equation 4.1-2 shows that dn,(H) = XN,(,j)dni, and so 
equation 4.1-6 can be written 

N,- 1 

dG = - S d 7 +  VdP + C p;dnj + p(H+)dn,(H) (4.1-7) 
j =  1 
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The number D = N ,  + 2 of natural variables of G has not been changed by 
separating the term for the hydrogen component. 

The differential of the transformed Gibbs energy (equation 4.1-1) is 

dG' = dG - n,(H)dp(H') - p(H+)dn,(H) (4.1-8) 

and substituting equation 4.1-7 into this relation yields a form of the fundamental 
equation for G': 

N , -  1 

dG' = - S d T +  VdP + 1 ,Li;drzi - n,(H)dp(H+) (4.1-9) 
j -  1 

Note that the Legendre transform has interchanged the roles of the conjugate 
intensive p(H+) and extensive n,(H) variables in the last term of equation 4.1-9. 
The number D' of natural variables of G' is N ,  + 2, just as it was for G, but the 
chemical potential of the hydrogen ion is now a natural variable instead of the 
amount of the hydrogen component (equation 4.1-7). 

Since the chemical potential ,u(H+) depends on both the temperature and the 
concentration of hydrogen ions, it is not a very convenient variable when the 
temperature is changed. The hydrogen ion concentration can be made an 
independent intensive variable in the fundamental equation for G '  by use of the 
expression for the differential of the chemical potential of H + :  

The first partial derivative in this equation is equal to -S,(H+), where S,(H+) 
is the molar entropy of the hydrogen ion. To evaluate the second partial derivative 
in equation 4.1-10, we need to recall that the chemical potential of species Bj is 
given by 

/ij = , L L ~  + R T  In [Bj] (4.1-11) 

where ,uy is the standard chemical potential of species j .  Thus the chemical 
potential of Bj in a 1 M solution at the specified ionic strength is given by kip. 
Since the thermodynamic properties are taken to be functions of the ionic 
strength, we do not have to deal with activity coefficients explicitly. Equation 
4.1-1 1 indicates that dp(H')jd[H+] = RT/[H+], and since dpH/d[H+] = 

- l/(ln(lO)[H+]), equation 4.1-10 can be written 

dp(H+) = -S,(H+)dT- RTln(l0)dpH (4. I - 12) 

Substituting this in equation 4.1-9 yields 

N , -  1 

dG' = -S'dT+ VdP + 1 pidrz, + RTln(lO)n,(H)dpH (4.1-13) 
j =  1 

where the transformed entropy S' of the system at a specified pH is given by 

S' = S - n,(H)S,(H+) (4.1 - 14) 

Since the enthalpy H of the system is defined by H = G + TS, substituting 
equations 4.1-1 and 4.1-14 in this expression for H yields 

H = G' + n,(H)p(H+) + T(S' + n,(H)S,(H+)) = H '  + n,(H)H,(H+) (4.1-15) 

where the transformed enthalpy H'  of the system is given by 

H '  = G' + TS' (4.1 - 16) 

and the molar transformed enthalpy of hydrogen ions is given by 

Hk(H+) = p'(H+) + TSk(H+) (4.1 -1 7) 
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Thus the definition of the transformed Gibbs energy for the system by G'  = 

G - n,(H)p(H+) automatically brings in the transformed enthalpy H '  = 

H - n,(H)H,(H+) and the transformed entropy S' = S - n,(H)S,(H+) so that 
there is a complete set of transformed thermodynamic properties. 

The summation in equation 4.1-13 can be written with fewer than N ,  - 1 
terms because when the pH is specified, groups of terms now have the same value 
of pi. These are the terms for the different protonated species of a reactant. When 
a group of species differ only in the number of hydrogen atoms that they contain, 
these species have the same transformed chemical potential pi at a specified pH, 
and this makes them pseudoisomers. Isomers have the same chemical potential at 
chemical equilibrium, and pseudoisomers have the same transformed chemical 
potential ,ul at equilibrium at a specified pH. For example, the various protonated 
species (ATP4-, HATP3-, H,ATP2'-) of ATP have the same transformed 
chemical potential ,us at a specified pH. This can be proved by minimizing G'  at 
specified 7; P,  and pH for a system containing the three species of ATP. Since 
pseudoisomers have the same transformed chemical potential pi, we can collect 
terms for pseudoisomers and use n: = X n j  for the amount of a pseudoisomer group. 
Thus equation 4.1-13 can be rewritten as 

" 

dG' = -S'dT+ VdP + c pidni + RTln(lO)n,(H)dpH (4.1-18) 
i = l  

where N' is the number of pseudoisomer groups in the system. A pseudoisomer 
group may contain a single species. This is the form of the fundamental equation 
for G' that is used to treat biochemical reaction systems in a single phase. Note 
that this fundamental equation has a new type of term, the last one, that is 
proportional to dpH. The number D' of natural variables of G' is N' + 3, which 
may be considerably less than the D = N ,  + 2 for the system described in terms 
of species. In writing equation 4.1-18, it is assumed that the binding of H +  by 
species is at equilibrium. Acid dissociations are equilibrated much more rapidly 
than enzyme-catalyzed reactions. 

A very important step has been taken in aggregating species in equation 
4.1-18 so that the number of terms proportional to differentials in amounts is 
reduced from N ,  - 1 (in equation 4.1-6) to N' (in equation 4.1-18). Aggregating 
groups of species makes it possible to deal with ATP as a reactant at a specified 
pH. This more global view makes it easier to think about systems of metabolic 
reactions. Within a pseudoisomer group, the transformed chemical potentials of 
species at equilibrium are equal, the amounts add, and the standard ther- 
modynamic properties of the group are given by the isomer group equations 
discussed earlier (3.5-11 to 3.5-18). This matter will be discussed in greater detail 
in Section 4.3. 

Equation 4.1-18 can be integrated at constant values of the intensive proper- 
ties to obtain 

(4.1- 19) 

Thus the transformed Gibbs energy is additive in the transformed chemical 
potentials of pseudoisomer groups just like the Gibbs energy G is additive in the 
chemical potentials of species (equation 2.5-12). 

Equation 4.1-18 shows that G' is a function of 7; P, {nil, and pH, and so 
calculus requires that 
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where the subscripts have been omitted since they are complicated. Comparison 
of equations 4.1-18 and 4.1-20 shows that 

(4.1-2 1) 

(4.1-22) 

(4.1-23) 

(4.1-24) 

where {nl}  is the set of amounts of reactants. Equation 4.1-21 shows how the 
transformed entropy S’ of the system can be obtained from measurements of the 
transformed Gibbs energy G‘. Substituting equation 4.1-19 in equation 4.1-21 
yields 

Nt 

S‘ = c 
i =  1 

where the molar transformed entropy of a reactant is given by 

(4.1-25) 

(4.1-26) 

The transformed enthalpy of the system at specified pH is given by H‘ = G’ + TS’ 
(equation 4.1-16), and substituting equation 4.1-21 yields 

This is the Gibbs-Helmholtz equation for the system at specified pH. Substituting 
equation 4.1-19 in equation 4.1-27 yields 

N ,  

H‘ = n:Hki 
i =  1 

(4.1-28) 

where the molar transformed enthalpy of a reactant is given by the Gibbs- 
Helmholtz equation in the form 

(4.1-29) 

If there is one reactant, equation 4.1-18 leads to D(D - 1)/2 = 4 x 3/2 = 6 
Maxwell equations. One of these is discussed in Section 4.7 on the calculation of 
the average binding of hydrogen ions by a reactant. 

At specified pH, equation 4.1-18 can be written 

” 

(dc’),,, = -S’dT+ VdP + 1 pidnl (4.1-30) 

This equation has the same form as equation 4.1-5, which applies to a cheniical 
reaction described in terms of species. It shows why the world of biochemical 
thermodynamics at specified pH looks so much like the world of chemical 
thermodynamics that is described by equation 4.1-5. An important difference 
between these equations is that the terms in the summation on the right side of 
equation 4.1-30 deal with pseudoisomer groups, like ATP, rather than species. 

i =  1 



4.2 Derivation of the Expression for the Apparent Equilibrium Constant 63 

I 

W 4.2 DERIVATION OF THE EXPRESSION FOR THE 
APPARENT EQUILIBRIUM CONSTANT 

At specified pH, the biochemical reaction that corresponds with equation 4.1-18 
is represented by 

N' 

C vIBi = 0 
i = l  

(4.2-1) 

where the primes on the stoichiometric numbers v: in a biochemical equation are 
used to distinguish them from the stoichiometric numbers on the underlying 
chemical reactions. The B, are symbols representing pseudoisomer groups, as in 
ATP + H,O = ADP + Pi.  Biochemical reactions can produce or consume H', 
but these hydrogen ions are not shown in equation 4.2-1 because the pH is held 
constant. In other words, hydrogen atoms are not conserved in the reaction vessel. 
Figure 4.1 shows a thought experiment that corresponds with the interpretation 
of the determination of the apparent equilibrium constant at a specified 7; P, and 
pH. When hydrogen ions are produced in the reaction, they diffuse into the pH 
reservoir through the membrane permeable to H i  to keep the pH constant, and 
when hydrogen ions are consumed in the reaction, hydrogen ions diffuse into the 
reaction chamber to hold the pH constant. This figure shows that the pH 
reservoir plays the same kind of role as the heat reservoir at temperature T and 
the piston exerting a constant pressure P. Therefore these three independent 
variables have to be treated in the same way in thermodynamics; that is, they are 
introduced by means of Legendre transforms. 

It is important to have symbols, that is, names, for reactants that are different 
from the symbols B, for species, like ATP4-, HATP3-, and H,ATP2-, which are 
used in chemical equations. (The problems in naming are discussed later in 
Section 4.11.) The N '  reactants in a biochemical reaction are all pseudoisomer 
groups; note that a pseudoisomer group is made up of one species over a wide 
range of pH if the reactant has no pKs in the pH range considered. 

Equation 4.1-18 can be used to derive the expression for the apparent 
equilibrium constant K'  for a biochemical reaction at a specified pH. If a single 
biochemical reaction is catalyzed, the amounts n: of the pseudoisomer groups at 
each stage of the reaction are given by 

n: = ( I Z : ) ~  + (5' (4.2-2) 

where ( i 11 )~  is the initial amount of reactant i (pseudoisomer group i), v: is the 
stoichiometric number of reactant i in the biochemical reaction (see equation 

Figure 4.1 Thought experiment in which a reaction is carried out in a reaction 
connected to a pH reservoir through a semipermeable membrane that permits H +  
in or out. The reaction vessel is also held at a constant temperature and pressure. 

vessel 
to go 
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4.2-l), and [' is the apparent extent of the biochemical reaction. It is necessary to 
put the primes on these quantities to differentiate them from the stoichiometric 
numbers v j  and extents of reaction ( of the underlying chemical reactions written 
in terms of species. If there is a single biochemical reaction, substituting 
dni = vidj" in equation 4.1-18 yields 

dG' = -S 'dT+ VdP + (,z1 y i p ; )  d(' + RTln(lO)n,(H)dpH (4.2-3) 

so that 
" 

A,G' = (g) = c v;p; 
T,p,pH i =  1 

(4.2-4) 

where A,G' is referred to as the transformed reaction Gibbs energy. At chemical 
equilibrium, ArG' is equal to zero so that 

(4.2-5) 
i = l  

This is the equilibrium condition. In Chapter 3 we saw that the corresponding 
condition for a chemical reaction is equation 3.1-6. Note that equation 4.2-5 has 
the same form as biochemical equation 4.2-1. 

The expression for the transformed chemical potential of a reactant is given 
by 

pi = pio + RTln[Bi] (4.2-6) 

where pio is the standard value (that is the value for an ideal 1 M solution) and 
Bi represents the ith reactant (pseudoisomer group). This looks reasonable in 
relation to pi = py + RTln[Bj] for the chemical potential of species j ,  but we will 
consider equation 4.2-6 in greater detail in Section 4.4. Substituting equation 4.2-6 
in equation 4.2-4 yields 

Arc' = c vip:' + R T ~ v ; l n [ B , ]  (4.2-7) 

At equilibrium, A,G' = 0, and so 

Cvi$ = -RT,?l,v:ln[B,] 

= -RTCln([BilVi) 

= -RTlnTIIB,IYL = -RTlnK'  (4.2- 8) 

where lI is the product sign. The concentrations in equation 4.2-8 are equilibrium 
concentrations, but it is conventional to omit the subscripts "eq" in writing 
expressions for equilibrium constants. The apparent equilibrium constant is given 
by 

K' = n[Bi]"' (4.2-9) 

This confirms that K' is written in terms of concentrations of pseudoisomer 
groups and that there are no terms for hydrogen ions. When dilute aqueous 
solutions are considered, the convention is that [H,O] is omitted, but the 
contribution for p"(H,O) in equation 4.2-8 is included. 

When equation 4.2-4 is substituted in equation 4.2-3, the following fundamen- 
tal equation is obtained for the transformed Gibbs energy: 

dG' = -S 'dT+ VdP + A,G'd(' + RTln(lO)n,(H)dpH (4.2-10) 

This form of the fundamental equation has two Maxwell equations of special 
interest. The first Maxwell equation is 

(4.2-1 1) 
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where ArS' is the transformed reaction entropy. The second Maxwell equation is 

The change in binding of hydrogen ions in the biochemical reaction is given by 

(4.2-1 3) 

This second Maxwell equation will be discussed in Section 4.7. 
The transformed reaction entropy is of interest in its own right, but it also 

leads to a noncalorimetric method for determining the transformed reaction 
enthalpy. 

Note that since H '  = G'  + TS'. 

ArH' = ArG' + TA,S' (4.2-14) 

Substituting equation 4.2-1 1 in this equation yields the Gibbs-Helmholtz equation 
at a specified pH: 

d(A G'/ T )  
ArH'= - T 2  ( dT ) 

P,pH,I" 

(4.2- 15) 

4.3 TRANSFORMED THERMODYNAMIC PROPERTIES 
OF SPECIES AND REACTANTS 

In order to learn more about the transformed chemical potential of a reactant, 
we consider the fundamental equation for G' (equation 4.1-18) for a system 
containing a single reactant 

dG' = -S'dT+ VdP + p'dn' + RTln(lO)n,(H)dpH (4.3-1) 

This indicates that p' is given by 

(4.3-2) 

Integration of equation 4.3-1 at constant 7; P, and pH yields 

G' = p'n' (4.3-3) 

so that the transformed chemical potential of a reactant is equal to its molar 
transformed Gibbs energy. An expression for p' for reactant B that contains two 
species, which differ by one hydrogen atom, can be obtained by starting with 

p' = p" + RTln[B] (4.3-4) 

The concentration of the reactant is [B] = [Bl] + [BJ, where [B,] and [BJ are 
the concentrations of the species at the given pH. The standard transformed 
Gibbs energy of the reactant when the acid dissociation is at equilibrium can be 
calculated using 

R T  
(4.3-5) 

or, alternatively, 

p" = r l p io  + r,pLo + RT(r, lnr,  + rz lnrz)  (4.3-6) 
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where the equilibrium mole fractions of the species within the pseudoisomer 
group are given by 

rl =exp[  $0 Rli';ol - 

r2 = exp/" 'O R T  - P2 'O] 

(4.3-7) 

(4.3-8) 

The standard transformed chemical potentials of the species at zero ionic 
strength are given by 

p',' = ,uy - N,,RTln(lO)pH (4.3-9) 

,u; = p i  - N,,RTln(lO)pH (4.3-10) 

where NHl is the number of hydrogen atoms in species 1. This derivation has been 
made at zero ionic strength as a simplification, but the effects of ionic strength are 
taken into account fully in the next section. Substituting these two equations in 
equation 4.3-6 yields 

p" = rlpy + r2p: + RT(r, lnr,  + r21nr2) - N,RTln(lO)pH' (4.3-11) 

where the average number of hydrogen ions bound by the reactant is given by 

N H  = ' INHI + r Z " H 2  (4.3-1 2) 

Substituting equation 4.3-1 1 in equation 4.3-4 yields 

p' = r,py + r,p; + RT(r, lnr ,  + r21nr2) - N,RTln(lO)pH + RTln[B] 

(4.3-13) 

so that the transformed chemical potential of a reactant is equal to the mole 
fraction average of the chemical potentials of the species, plus the Gibbs energy 
of mixing, minus an adjustment for the pH that is proportional to the average 
binding of hydrogen ions, plus RTln[B]. 

4.4 TRANSFORMED THERMODYNAMIC PROPERTIES 
OF BIOCHEMICAL REACTIONS 

In the preceding three sections, pl has been used for a species and has been used 
for a pseudoisomer group, but in treating experimental data Gibbs energies of 
formation A, G, and transformed Gibbs energies of formation, we use AfGl instead 
because it is not possible to determine absolute values of chemical potentials. The 
Gibbs energies of formation of species are relative to reference states of the 
elements or to conventions, like A,Go(Ht) = 0 at zero ionic strength at each 
temperature. These reference states cancel when differences are taken in discussing 
reactions or phase distributions. 

Thus, in making calculations, we rewrite equation 4.2-4 for a biochemical 
reaction as 

N' 

A,G' = C V;A,GI 
i =  1 

and the standard transformed Gibbs energy of reaction is given by 

(4.4-1) 

N' 

A , G 0  = 1 vIAfGIo = -RTlnK'  (4.4-2) 
i =  1 
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Application of the Gibbs-Helmholtz equation to equation 4.4-1 yields the stan- 
dard transformed enthalpy of reaction 

" 

A,H'O = C VLA,H:O 
i = l  

(4.4-3) 

The standard transformed Gibbs energies of formation of reactants in a biochemi- 
cal reaction at specified pH are very important because they can be used to 
calculate the value of K' of the biochemical reaction at the specified pH. This 
section and the next show how the standard transformed Gibbs energies of 
formation of biochemical reactants at specified pH and ionic strength can be 
calculated from the standard Gibbs energies of formation of the species they 
contain. This section is concerned with the standard transformed Gibbs energies 
of formation and standard transformed enthalpies of formation of species, and the 
next section is concerned with the calculation of these properties for a reactant 
that involves two or more species. These standard transformed properties can also 
be calculated from experimental data using equations 4.4-2 and 4.4-3 in the 
absence of information about the standard properties of the species involved. 

The discussion of the standard transformed properties of a species starts with 
the definition of the transformed chemical potential p i  of the species given by 

Gibbs energies of formation and transformed Gibbs energies of formation as 
follou~s: 

p ' . = p . -  ~ N ( '  j)p(H+) (equation 4.1-4). This equation can be written in terms of 

A,G> = AfGj - N,(j)A,G(H+) (4.4-4) 

There is a corresponding equation for the transformed enthalpy of formation of 
a species: 

AfH> = AfHj - N,(j)A,H(H+) (4.4-5) 

Instead of p j  = py  + RTln [Bj] (equation 4.1-11) we now use 

AfGj  = A,Gy + RTln[Bj] (4.4-6) 

The corresponding relation for the enthalpy of formation of a species is 

AfHj = A,HjO (4.4-7) 

Using equation 4.4-6 in equation 4.4-4 yields 

A f G i  = AfGy + RTln[Bj] - NH(j){AfGo[H'] + RTln(lO-pH)} 

= AfGF + RTln[Bj] (4.4-8) 

where the standard transformed Gibbs energy of formation of species j is given by 

(4.4-9) 

As we have seen in the preceding chapter, the standard thermodynamic 
properties of species in aqueous solutions are functions of ionic strength when 
they have electric charges. Substituting equation 3.6-3 for species j and for H +  in 
equation 4.4-9 yields the standard transformed Gibbs energy of formation of 
species j as a function of pH and ionic strength at 298.15 K: 

AfG>' = AfGY - NH(j){A,Go[H'] + RTln(lO-pH)} 

2.91482(2; - NH(j))1'I2 
1 + 1.61"' 

AfGSo = AfGy(Z = 0) + N,(j)RTln(lO)pH - (4.4-10) 

It should be noted that Af Gio is a function of ionic strength for uncharged species 
that contain hydrogen atoms, as well as charged species. There is an exception to 
this statement when zj" - N H ( j )  = 0 for a species. The standard transformed 
Gibbs energy of formation of a species is independent of ionic strength when 
z j  = 0 and NH(j)  = 0. Equation 4.4-10 shows how the standard transformed 
Gibbs energy of formation of a biochemical reactant consisting of a single species 
can be calculated from the standard Gibbs energy of formation of the species at 
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zero ionic strength. Note that the coefficient of the ionic strength term is a 
function of temperature, as discussed in Section 3.7. The calculation of the 
standard transformed properties of species is discussed by Alberty ( 1999). 

Equation 4.4-5 leads to the corresponding equation for the standard trans- 
formed enthalpy of formation of a species: 

At Hi' = A,HY - N H ( j ) A f  H'(H') (4.4-1 1) 

Substituting equation 3.6-3 yields the standard transformed enthalpy of formation 
of species j as a function of pH and ionic strength at 298.15 K: 

1.4775(z: - N H ( j ) ) I ' l Z  
AfHio = A,H,O(Z = 0) + 

1 + 1.611'2 
(4.4- 1 2) 

Thus the availability of A,Hg(Z = 0) for a species makes i t  possible to calculate 
ArH;', and vice versa. Note that the standard transformed enthalpy of a species 
is independent of pH, even when it contains hydrogen atoms. A t  temperatures 
other than 298.15 K the numerical coefficient of the ionic strength term has 
different values, as discussed in Section 3.7. 

4.5 THERMODYNAMICS OF PSEUDOISOMER 
GROUPS AT SPECIFIED pH 

When there are two or more species in a pseudoisomer group, the standard 
transformed Gibbs energy of formation Af G:' and standard transformed enthalpy 
of formation AfHio of the pseudoisomer group have to be calculated using isomer 
group thermodynamics (Section 3.5). The isomer group equations were introduc- 
ed in equations 3.5-1 1 to 3.5-14. At a specified pH, the various forms of a reactant 
have the same A[G; at chemical equilibrium, and so the standard transformed 
Gibbs energy of formation of the pseuodisomer group can be calculated using 

(4.5-1) 

where Niso is the number of species in the pseudoisomer group. The equilibrium 
mole fraction v j  of the j th  pseudoisomer in the pseudoisomer group is given by 

v i  = exp {Af G;oR-TA, Gi0 
(4.5-2) 

The standard transformed enthalpy of formation of the pseudoisomer group is a 
mole fraction weighted average and is given by 

(4.5-3) 

Note that although AfHiO values for species are independent of pH, this is not 
true for AfHio  values of reactants consisting of two or more species because the 
ri are functions of pH. The pseudoisomer group has a corresponding standard 
transformed entropy of formation given by 

to A,H;' - A,G;' 
T 

AfSi = (4.5-4) 

The standard transformed heat capacity at constant pressure of a reactant is 
discussed later in Chapter 10 on calorimetry. The calculation of A,H" using 
equation 4.5-3 looks simple, but note that the standard transformed Gibbs 
energies of formation of all of the species are involved in the calculation. These 
equations were applied to the ATP series by Alberty and Goldberg (1992). 

Equation 4.5-1 for A,G;' can also be written (Alberty, 1999) in terms of the 
binding polynomial (partition function) P (see Section 1.3). Equation 4.5-1 can be 
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written in the form 

A~G;'  = -RTln  
R T  R T  

(4.5-5) 

This is equivalent to 

AfGio = AfG;' - R T l n P  (4.5-6) 

where the binding polynomial is given by 

(4.5-7) 

and ArGi0 is the standard transformed Gibbs energy of formation of the species 
with the smallest number of dissociable hydrogen atoms. The K, ,  K,, . . . are the 
successive acid dissociation constants at the specified pH and ionic strength, 
starting with the highest pK. This equation is also useful for calculating AfG? 
from the experimental value of AfG:'. The value of A,Gi' at a desired pH and 
ionic strength can be calculated using equation 4.4-10. 

When transformed Gibbs energies of formation are used rather than chemical 
potentials, equation 4.3-4 can be written 

A,Gi = AfGlo + RTln[Bi] (4.5-8) 

From now on we will assume that Af GI' and A, Hio of biochemical reactants made 
up of single species have been calculated using equations 4.4-10 and 4.4-12 and 
that AfG;' and AfHIo of biochemical reactants with more than one species have 
been calculated using equations 4.5-1 and 4.5-3. 

The discussion above has emphasized A,G" and A , H o  for biochemical 
reactions, but it is also useful to consider ArG' and A,H'. These quantities 
correspond with changes from reactants at arbitrary concentrations to products 
at arbitrary concentrations, rather than standard states (i.e., 1 M). Substituting 
equation 4.5-8 in equation 4.4-1 yields 

" " 

ArG' = 1 v ~ A , G ~ '  + RTln n [Bi]": (4.5-9) 
i =  1 i =  1 

which can be written 

A,G' = A,G" + RTln  Q' (4.5- 10) 

The apparent reaction quotient Q' is given by 

" 

Q' = JJ [Bi]"' 
i =  1 

where the concentrations of reactants can be chosen arbitrarily. 
Applying equation 4.2-12 to 4.5-10 yields 

(4.5-1 1) 

A r S  = A,S '  - RlnQ'  (4.5- 12) 

where 

" 

A,S" = 1 vlAfSi0 
i = l  

(4.5-13) 

Application of the Gibbs-Helmholtz equation derived from equation 4.2-16 to 
equation 4.5-10 yields 

A r H t  = A , H o  (4.5-14) 

Note A,H" does not depend on Q'. 
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4.6 GIBBS-DUHEM EQUATION, DEGREES OF 
FREEDOM, AND THE CRITERION FOR 
EQUILIBRIUM AT SPECIFIED pH 

In discussing one-phase systems in terms of species, the number D of natural 
variables was found to be N ,  + 2 (where the intensive variables are T and P )  and 
the number F of independent intensive variables was found to be N, + 1 (Section 
3.4). When the pH is specified and the acid dissociations are at equilibrium, a 
system is described in terms of N’ reactants (sums of species), and the number D‘ 
of natural variables is N’ + 3 (where the intensive variables are 7; P, and pH), as 
indicated by equation 4.1-18. The number N’ of reactants may be significantly less 
than the number N, of species, so that fewer variables are required to describe the 
state of the system. When the pH is used as an independent variable, the 
Gibbs-Duhem equation for the system is 

NI 

0 = -S’dT+ VdP - nidp: + ln(lO)n,(H)RTdpH (4.6-1) 
i = l  

which indicates that there are N’ + 3 intensive variables. However, only N‘ + 2 of 
them are independent for a one-phase system. This is in agreement with the phase 
rule in which the apparent number of independent intensive variables is given by 
F’ = N’ - p + 3, where the 3 refers to ?: P, and pH. 

The preceding paragraph applies to a system in which there are no biochemi- 
cal reactions. Now we consider systems with reactions that are at equilibrium 
(Alberty, 1992d). For a chemical reaction system, we saw (Section 3.4) that 
D = C + 2 and F = C + 1 for a one-phase system. For a biochemical reaction 
system at equilibrium, we need the fundamental equation written in terms of 
apparent components to show how many natural variables there are. When the 
reaction conditions C vip; = 0 for the biochemical reactions in the system are used 
to eliminate one pi for each independent reaction from equation 4.1-18, the 
following fundamental equation for G‘ in terms of apparent components is 
obtained: 

C’ 

dG’ = -S‘dT+ VdP + pidnLi + RTln(lO)n,(H)dpH (4.6-2) 

where nhi is the amount of apparent component i and C‘ is the number of apparent 
components at specified pH. This equation shows that when biochemical reac- 
tions are at equilibrium the apparent number D‘ of natural variables is D‘ = C‘ 
+ 3 .  Since hydrogen is not included in the C’ apparent components, C’ = C - 1, 

where C is the number of components before the pH was specified. Thus the 
number of natural variables is the same for a system whether it is considered to 
be made up of species or reactants. In other words, making the Legendre transform 
has not changed the number of natural variables; it has simply changed an extensive 
variable into an intensive variable. The number of apparent components is given 
by C’ = N‘ - R’, where N‘ is the number of pseudoisomer groups and R’ is the 
number of independent biochemical equations. This can be compared with a 
chemical system that contains N ,  species and whose number of components is 
given by C = N ,  - R, where N ,  is the number of species and R is the number of 
independent chemical reactions. 

i = l  

The Gibbs-Duhem equation that corresponds with equation 4.6-2 is 

C’ 

0 = -S’dT+ VdP - .bid& + RTln(lO)n,(H)dpH (4.6-3) 
i =  1 

which indicates that when enzyme-catalyzed reactions are at equilibrium, the 
number of apparent independent intensive variables is F‘ = C‘ + 2. This is in 
agreement with the phase rule written as F‘ = C‘ - p + 3. For a one-phase 
system, F‘ = C‘ + 2. 
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For a system of chemical reactions, the criterion for spontaneous change and 
equilibrium is dG < 0 at T P,  { n J .  When the pH is specified, the criterion for 
spontaneous change and equilibrium becomes dC' < 0 at 7: P,  {nl,,), pH, where 
{&} represents the set of amounts of components other than hydrogen. 

4.7 CALCULATION OF THE BINDING OF HYDROGEN 
IONS BY REACTANTS AND THE CHANGES IN 
BINDING OF HYDROGEN IONS IN BIOCHEMICAL 
REACTIONS 

When a system contains a single pseudoisomer group, equation 4.1-18 shows that 

dG' = -S'dT+ VdP + ,uIdnI + RTln(lO)n,(H)dpH (4.7-1) 

The Maxwell equation involving the last two terms is 

(4.7-2) 

Since the derivative on the right is the change in the amount of hydrogen atoms 
in the system when the amount of reactant i is changed, this equation can be 
written in terms of the average number N, of hydrogen atoms bound by the 
reactant (Alberty, 1994~). 

(4.7-3) 

This equation is closely related to equation 4.2-13. Wyman (1964) was probably 
the first to use this type of equation. Note that the derivative of A r c r  is the same 
as the derivative of Ar G'O. 

In Chapter 1 it was shown that the change in binding of hydrogen ions in a 
reaction can be calculated by taking the difference between the binding by 
products and the binding by reactants (Section 1.5). Equation 4.2-13 shows that 
the rate of change of ArG'  with pH is proportional to the change in binding of 
hydrogen atoms in the reaction. Since components are conserved in chemical 
reactions, it may be a surprise to find that the amount of the hydrogen atoms in 
the system is not conserved in biochemical reactions, but of course hydrogen 
Btoms are not conserved in the system when the pH is held constant. Acid or base 
may have to be added to hold the pH constant. If ( d ~ ~ , ( H ) / d t ' ) ~ , ~ , ~ ~  is positive, it 
means that acid has to be added to keep the pH constant. In this case the 
products bind more hydrogen ions than the reactants. Since the concentration of 
hydrogen ions is constant, the change in the amount of the hydrogen atoms in 
the reaction system is equal to the change in the binding of hydrogen ions in the 
reaction. Since the derivative of A r c '  is the same as the derivative of A,G", 
equation 4.2-12 can be written as 

A r N  - - RTlln(l0) (%)T,p,i# 

Substituting A r c "  = - RTln K' yields 

(4.7-4) 

(4.7-5) 

If K' increases with pH, A r N H  is negative, which indicates that less hydrogen is 
bound by products than reactants. In this case H' is produced by the reaction. 
The change in binding of hydrogen ions in a biochemical reaction can also be 
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calculated from the acid dissociation constants of the reactants using 

N ' 

ArN, = 1 v;N,(i) 
i =  1 

(4.7-6) 

where mH(i) is the average number of hydrogen atoms bound by reactant i (see 
equations 1.3-9 and 4.7-3). 

H 4.8 CALCULATION OF THE CHANGE IN BINDING OF 
MAGNESIUM IONS IN A BIOCHEMICAL 
REACTION 

The treatment (Alberty, 1998a) of the binding of Mg2+,  or other metal ion that 
is bound reversibly by a reactant, follows the same pattern as the treatment of 
H'. A term n,(Mg)p(Mg) can be included in the Legendre transform with the 
term for hydrogen as follows: 

G '  = G - n,(H)p(H+) - n,(Mg)p(Mg2+) (4.8-1) 

where the amount of the magnesium component is given by 

(4.8-2) 

N M g ( j )  is the number of magnesium ions in speciesj. The inclusion of pMg as an 
independent variable adds a term RT In( lO)n,(Mg)dpMg to the fundamental 
equation for G' (see equation 4.3-l), where pMg = -log[Mg2+]. For a system 
containing a single reactant, the fundamental equation for G '  is 

dG' = -S'dT+ VdP + p:dn: + RTln(lO)n,(H)dpH + RTln(lO)n,(Mg)dpMg 

(4.8-3) 

Thus, when pMg is specified. equations 4.4-9 and 4.4-1 1 become 

AfGio = A,Gy - NH(j){AfGo(Hf) + RTln(lO-pH)j 

- AJMg(j){Af Go(Mg2 +) + RTln( 1OPpMS))  (4.8-4) 

A,Hio = A,HP - NH(j)A,Ho(H+) - NMg(j)AfHo(Mg2+) (4.8-5) 

The equations for the average number of magnesium ions bound by a 
reactant NMg and the change in binding of magnesium ions in a reaction ArNMg 
follow the development of the preceding section: 

(4.8-6) 

(4.8-7) 

The change in binding of magnesium ions in a biochemical reaction can also be 
calculated from the acid dissociation and magnesium complex ion dissociation 
constants using 

" 

A,NMg = 1 v ; N ~ ~ ( ~ )  
i = l  

(4.8-8) 

(See equation 1.5-5.) 
The derivative of NMg (equation 4.8-6) with respect to pH at 7; P,  and pMg, 

and (' is equal to the derivative of N, (equation 4.7-3) with respect to pMg at 7: 
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P, pH, and (', and so 

(4.8-9) 

(4.8 - 1 0) 

Thus the effect of pH on the binding of magnesium ions by a reactant is equal to 
the effect of pMg on the binding of hydrogen ions. The effect of pH on the change 
in binding of magnesium ions in a biochemical reaction is equal to the effect of 
pH on the binding of magnesium ions. Thus the binding of H +  and Mg2+ are 
linked. 

H 4.9 EFFECT OF TEMPERATURE ON TRANSFORMED 
THERMODYNAMIC PROPERTIES 

The effect of temperature on standard transformed thermodynamic properties of 
species has been discussed in the preceding chapter on the assumption that 
A,HO(Z = 0) for species are independent of temperature, or in other words, 
C,, = 0. In order to make calculations at finite ionic strengths, it is necessary to 
adjust the Debye-Huckel coefficient CI and the coefficients of the ionic strength 
terms in the equations for adjusting A,Go and A,Ho for the effect of pH and ionic 
strength. As discussed in Section 3.7, Clarke and Glew (1980) gave values of the 
various coefficients at a series of temperatures. But in order to make calculations 
at arbitrary temperatures, it is necessary to fit SI to an empirical equation, such as 
3.7-3. The effects of temperature on A,G" and A,H" for biochemical reactants at 
specified pH and ionic strength can be calculated by calculating these effects for 
the species involved by use of equation 3.7-2. Alberty (2001d) calculated standard 
A,GO and A,HO values for 22 species of biochemical interest at 283.15 and 
313.15K and went on to calculate A,G" and A,H" at pH 7 and ionic strength 
0.25 M for the corresponding reactants. This made it possible to calculate 
apparent equilibrium constants for six biochemical reactions at 283.15 and 
313.15 K. Mathenzatica programs (calcdGTsp and calcdHTsp) were written to 
calculate A,G" and A,H" of species at arbitrary temperatures, pHs, and ionic 
strengths. In the second program, the standard transformed enthalpies of species 
are calculated using the Gibbs-Helmholtz equation. A biochemical reactant that 
consists of two or more species, A,G" and A,H" can be calculated for the 
pseudoisomer group in the usual way, but one must be careful to change the R T  
factor in the program for A,G"(iso). When standard enthalpies of all of the 
species involved in a reaction are available, K' can be calculated at desired 
temperatures not too far from 298.15 K. The effect of temperature on the standard 
transformed Gibbs energy of hydrolysis of ATP is shown in Table 4.1 (see 
Problem 4.6). 

This discussion has not included the more accurate calculations that can be 
made when C: values of species are known (see equation 3.5-18). These values are 
not known for many species of biochemical interest. The effects of heat capacity 
terms are discussed in Chapter 10 because the existing information on Arc;' 
comes primarily from calorimetric data. In principle, Ar Cp can be calculated from 
measurements of apparent equilibrium constants over a range of temperatures. 
Over short ranges of temperature, K' can be represented by 

0 

Ar H'O 
RlnK'=A,S''-- 

T 
(4.9- 1) 

But over wider ranges of temperature, A r S 0  and A , H o  are functions of tempera- 
ture. Clarke and Glew (1966) have used Taylor series expansions of the enthalpy 
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Table 4.1 
ATP as a Function of Temperature, pH, and Ionic Strength 

Standard Transformed Gibbs Energies in kJ mo1-I of Hydrolysis of 

283.15 0 
0.10 
0.25 

0.10 
0.25 

0.10 
0.25 

298.15 0 

313.15 0 

- 34.73 
- 32.95 
- 32.28 
- 35.34 
- 33.33 
- 32.60 
- 35.95 
- 33.71 
- 32.91 

- 35.38 
- 33.49 
- 32.87 
- 35.95 
- 33.91 
- 33.25 
- 36.53 
- 34.32 
- 33.63 

- 36.98 
- 35.87 
- 35.41 
- 37.64 
- 36.53 
- 36.07 
- 38.31 
-37.16 
- 36.72 

-41.5 
- 40.50 
-40.12 
-42.53 
-41.51 
-41.10 
- 43.56 
-42.51 
- 42.08 

- 46.93 
- 45.62 
- 45.45 
-48.32 
-47.13 
-46.73 
- 49.7 1 
-48.43 
- 48.01 

Source: With permission from R. A. Alberty, J .  Phys. Che~fi. B 105, 7865-7870 (2001). 
Copyright 2001 American Chemical Society. 

and entropy to show the form that extensions of equation 4.9-1 should take up 
to d3A,CF/dT3. However, it takes very accurate measurements to determine the 
curvature. 

4.10 CALCULATION OF STANDARD TRANSFORMED 
GIBBS ENERGIES OF SPECIES FROM 
EXPERIMENTAL MEASUREMENTS OF 
APPARENT EQUILIBRIUM CONSTANTS 

Apparent equilibrium constants have been measured for about 500 biochemical 
reactions involving about 1000 reactants. In principle, this makes it possible to 
put the species of all these reactants in the table BasicBiochemData2 described in 
Section 3.8. As indicated in Sections 4.4 and 4.5, the calculation of thermodynamic 
properties of species from experimental measurements of K‘ is rather complicated, 
and so it is important to look at this process from a broader viewpoint. The 
preceding discussions were based on the assumption that species properties are 
known and properties of reactants are to be calculated. But, in calculating species 
data from K‘ and A,H’, we are interested in the inverse process (Alberty, 2002~).  
Callen (1985) discussed the Legendre transform to go from a function of ( X ,  Y )  
to a function of (P ,  4) and pointed out that “the relationship between ( X ,  Y) and 
(P,  4) is symmetrical with its inverse except for a change in sign in the equation 
for the Legendre transform.” The inverse Legendre transform used here is the 
definition of the Gibbs energy G in terms of the transformed Gibbs energy G’: 

G = G’ + n,(H)p(H+) (4.10-1) 

The following derivation provides guidance in writing computer programs to 
calculate standard Gibbs energies of formation and standard enthalpies of 
formation of organic species in dilute aqueous solutions from K‘ and A, H‘ values 
for enzyme-catalyzed reactions. The first step is to see how S’ and nI in the 
fundamental equation for G‘ (equation 4.1-18) can be divided up into contribu- 
tions of species. The partial derivative of the transformed Gibbs energy with 
respect to temperature is equal to -S’, and so equation 4.1-14 shows that 
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Thus the fundamental equation for the transformed Gibbs energy can be written 
as 

" 

dC' = -SdT+ VdP + c pidni 
i =  1 

- n,(H) ((-il) +) dT- RTln(l0)dpH 
P,(n:},pH 

N r  

= -SdT+ VdP + 1 pidni - n,(H)dp(H+) 
i= 1 

where the term in parentheses is the total differential of the chemical potential of 
hydrogen ions (see equation 4.1-10). 

The summation in equation 4.10-3 can be written in terms of species exclusive 
of the hydrogen ion because when species in a pseudoisomer group are in 
equilibrium at a specified pH, these species have the same transformed chemical 
potential. 

N s - 1  

dG' = - S d T +  VdP + C &dnj - n,(H)dp(H+) (4.10-4) 
j =  1 

where N ,  is the number of different species. 

differential of the Gibbs energy is given by 
Now the inverse Legendre transform given in equation 4.10-1 is needed. The 

dG = dG' + n,(H)dp(H+) + p(H+)dn,(H) (4.10-5) 

Substituting equation 4.10-4 into this equation yields 

N , -  1 

dG = -SdT+ VdP + c pldnj + p(H+)dn,(H) (4.10-6) 
j =  1 

The amount of the hydrogen component n,(H) in the system is given by equation 
4.1-2, and so equation 4.10-6 can be written as 

N ,  

dG = -SdT+ VdP + c ( p i  + NH(j)p(H+)}dnj 
j =  1 

(4.10-7) 

The term in braces is the chemical potential of ion j :  

pj = + NH(j)p(H+) (4.10-8) 

and so equation 4.1-5 is obtained as expected. 
If the apparent equilibrium constant K' for an enzyme-catalyzed reaction has 

been determined at 298.15K and AfG'O values can be calculated at the experimen- 
tal pH and ionic strength using known functions of pH and ionic strength for all 
the reactants but one, the A,G" of that reactant under the experimental condi- 
tions can be calculated using equation 4.4-2. So far functions of pH and ionic 
strength that yield A,G" are have been published for 131 reactants at 298.15 K 
(Alberty, 200 1 f). 

When the reactant of interest consists of a single species, Af Go(I = 0) for this 
species at 298.1 5 K can be calculated using equation 4.10-8 in the following form 
(see equation 4.4-10): 

A,GY(I = 0) = AfG'O(pH,I) - N,(j)RTln(lO)pH 

2.91482(z; - NH(j))I1I2 
1 + 1.6Z1'2 

+ (4.10-9) 

A program calcGeflsp has been written to produce output in the form of equation 
3.8-1 for a reactant made up of one species. It is given in the package Basic- 
BiochemData2. 
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When the reactant of interest consists of two species with different numbers 
of hydrogen atoms, the pK of the weak acid is needed to calculate A,G'"(I = 0) 
of the two species, and the calculation is more complicated. The standard 
transformed Gibbs energy of formation of a pseudoisomer group containing two 
species is given by 

A,G'" = AfCi0 - RTln(1 + 10yK1-pH 1 (4.10- 10) 

where pK, is the value at the experimental ionic strength at 298.15 K calculated 
using 

0.510651(C~,z~)1"~ 
1 + 1.6I1I2 

pK1(l) = pK,(I = 0) + (4.10-1 1) 

Now equation 4.10-9 is used to adjust AfGlo(I) to ArGy(Z = 0). After A,GY(I = 0) 
has been calculated, AfG:(I = 0) can be calculated using 

A,G:(I = 0) = A,G:(Z = 0) - RTln(lO)pK,(I = 0) (4.10- 12) 

A Mathematica program calcGef2sp has been written to produce output in 
the form of equation 3.8-1 for a reactant made up of two species. It is given in the 
package BasicBiochemData2. This output can be added to the database in 
BasicBiochemData2 and can be used to calculate A,G" of the reactant at 298.15 
K, pH 5 to 9. and ionic strengths 0 to 0.35 M. 

When the reactant consists of three species with different numbers of 
hydrogen atoms, equation 4.10-10 becomes 

A,G'" = ArGP - RTln(1 + 1 O p K 1 P H  + 10pK1ipK2~2pH)  (4.10-13) 

Ar G;"(I = 0) can be calculated by using equation 4.10-9, and equation 4.10- 10 can 
be used to calculate AfC?(I = 0). Then A,G',O(I = 0) can be calculated using 

AfG:(Z = 0) = A,Gi(Z = 0) - RTln(lO)pK,(I = 0) (4.10-14) 

A Mathematica program calcGef3sp has been written to produce output in the 
form of equation 3.8-1, and it is given in BasicBiochemData2. 

The species matrix for a reactant can be verified by use of the programs 
calcdGmat and calckprime, which are also given in BasicBiochemData2. The 
program calcdGmat yields the function of pH and ionic strength for A,G" of the 
reactant. The program calckprime can then be used to calculate K' for the 
reaction used at the experimental pH and ionic strength. 

A good deal of work will have to be done to extract species information from 
the apparent equilibrium constants that have been reported for about 500 
reactions. Beyond that, use can be made of analogies with known reactions; for 
example, the various ribonucleotide phosphates (AMP, GMP, CMP, UMP, and 
dTMP) are believed to have the same hydrolysis constants and pKs. Beyond that, 
the group additivity method (Alberty, 1998c) can be used to estimate ther- 
modynamic properties. 

4.11 TABLES OF STANDARD TRANSFORMED 
THERMODYNAMIC PROPERTIES AT 298.15 K FOR 
BIOCHEMICAL REACTANTS AT SPECIFIED pH 
AND IONIC STRENGTH 

Table 4.2 provides A,G" and A r H o  for species of 131 biochemical reactants at 
298.15 K in dilute aqueous solutions at zero ionic strength. These values are 
available in the package BasicBiochemData2 (Alberty, 2002d), which is the first 
item in the second part of this book. These values can be used to calculate ArG:" 
and A, HI" for biochemical reactants at desired pHs in the range 5 to 9 and desired 
ionic strengths in the range 0 to about 0.35 M, as described in this chapter. 
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Table 4.2 
Strength 0.25 M 

Values of A,Gio in kJ molK1 at 298.15 K and pHs 5, 6, 7, 8, and 9 at Ionic 

Reactant PH 5 PH 6 PH 7 PH 8 PH 9 

acetaldehyde 
acetate 
acetone 
acet ylcoA 
acetylphos 
aconitatecis 
adenine 
adenosine 
adP 
alanine 
ammonia 
amp 
arabinose 
asparagineL 
aspartate 
a tp  
bpg 
butanoln 
butyrate 
citrate 
citrateiso 
coA 
co Aglutathione 
c02g 
co2tot 
coaq 
cog 
creatine 
creatinine 
cysteineL 
c ystineL 
cytochromecox 
cytochromecred 
dihydroxy- 

acetonephos 
ethanol 
ethylacetate 
fadox 
fadred 
fadenzox 
fadenzred 
ferredoxinox 
ferredoxinred 
fmnox 
fmnred 
formate 
fructose 
fructose6phos 
fructose 16phos 
fumarate 
galactose 
galactosephos 
glucose 
glucose lphos 
glucose6phos 
glutamate 
glutamine 

-21.60 
- 282.71 

16.40 
- 100.47 
- 1153.77 
-836.37 

457.06 
187.48 

- 1569.05 
- 165.55 

37.28 
- 698.40 

-291.13 
- 520.59 

-448.73 

- 2437.46 
- 2262.15 

121.66 
- 147.99 
- 1027.23 
- 1020.58 

403.59 
- 18.48 

- 394.36 
- 564.61 
- 119.90 
- 137.17 

4.95 
182.31 

- 133.37 
-314.31 
- 7.29 

-27.75 

- 1154.88 
-5.54 

- 102.85 
906.61 
926.43 
906.61 
876.71 

38.07 
554.41 
574.23 

- 322.46 
- 563.31 

-0.81 

- 1445.66 
- 2326.42 
- 546.67 
- 556.73 
- 1440.96 
- 563.70 
- 1442.86 
- 1449.53 
-463.48 
- 234.52 

1.23 

50.65 
- 265.02 

- 83.35 
- 1129.84 
- 819.24 

485.92 
261.25 

- 1495.55 
- 125.60 

60.1 1 
- 625.22 
-391.65 
- 245.47 
-486.34 
- 2363.76 
- 2233.92 

178.74 
- 108.03 
- 995.44 
-988.80 
- 12.79 
489.21 

- 394.36 
- 554.49 
- 119.90 
- 137.17 

56.32 
222.27 
- 93.43 
- 245.82 
- 7.29 
- 27.75 

- 1124.53 
28.71 

1083.56 
11 14.79 
1083.56 
1065.07 

-0.81 
38.07 

662.86 
694.10 

-57.19 

-316.75 
-494.82 
- 1379.42 
- 2264.57 
- 535.02 
- 488.24 
- 1375.09 
-495.21 
- 1376.01 
- 1382.88 
-417.82 
- 177.44 

24.06 

84.90 
- 247.83 

- 66.22 
- 1107.02 
-802.12 

514.50 
335.46 

- 1424.70 
- 85.64 

82.93 
- 554.83 
-334.57 
- 199.80 
- 452.09 
- 2292.50 
- 2207.30 

235.82 
- 68.08 

-966.23 
-959.58 
- 7.26 
574.83 

- 394.36 
- 547.10 
- 119.90 
- 137.17 

107.69 
262.22 
- 53.65 
- 177.32 
- 7.29 
- 27.75 

- 1095.70 
62.96 

1260.51 
1303.16 
1260.51 
1253.44 
- 0.8 1 
38.07 

771.32 
813.97 

- 11.52 

- 31 1.04 
- 426.32 
- 1315.74 
- 2206.78 
- 523.58 
-419.74 
- 1311.60 
- 426.7 1 
- 1311.89 
- 1318.92 
-372.15 
- 120.36 

46.90 
- 230.70 

119.14 
-49.10 

- 1085.39 
- 785.00 

543.04 
409.66 

- 1355.78 

105.64 

- 277.49 

-45.68 

-486.04 

- 154.14 
-417.85 
- 2223.44 
-2183.36 

292.90 
-28.12 
- 937.62 
- 930.97 
- 2.82 
660.45 

-541.18 

- 137.17 
159.07 
302.18 

- 394.36 

- 119.90 

- 14.97 
- 108.82 
- 7.29 
- 27.75 

- 1067.13 
97.20 
34.14 

1437.46 
149 1.52 
1437.46 
I44 1.80 

-0.81 
38.07 

879.77 
933.84 

- 305.34 
- 357.82 
- 1252.84 
- 2149.62 
-512.16 
-351.24 
- 1248.72 
- 358.21 
- 1248.92 
- 1255.98 
- 326.49 
- 63.28 

69.73 

153.39 
-213.57 

-31.97 
- 1066.49 
- 767.87 

571.58 
483.87 

- 1287.24 
- 5.73 
127.51 

-417.51 
- 220.41 
- 108.47 
- 383.60 

-2154.88 
-2160.38 

349.98 
11.83 

- 909.07 
- 902.42 
- 1.10 
746.07 

- 394.36 
- 535.80 
- 119.90 
- 137.17 

210.44 
342.13 
20.99 

-40.33 
- 7.29 
- 27.75 

- 1038.59 
131.45 
79.8 1 

1614.40 
1679.89 
1614.40 
1630.17 
- 0.8 1 
38.07 

988.22 
1053.70 
- 299.63 
-289.33 
- 1190.04 
- 2092.54 
- 500.75 
- 282.75 
- 1185.93 
- 289.72 
- 1186.1 1 
- 1193.18 
- 280.82 
- 6.20 
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Table 4.2 Continued 

Reactant PH 5 PH 6 PH 7 PH 8 PH 9 

glutathioneox 
glutathionered 
glyceraldehyde 

phos 
glycerol 
glycerol3phos 
glycine 
glycolate 
gl yc ylgl ycine 
glyox ylate 
h2aq 
h2g 
h20 
h2o2aq 
hydroxy 

h ypoxan thine 
indole 
ketoglutarate 
lactate 
lactose 
1eucineisoL 
leucineL 
lyxose 
malate 
maltose 
mannitolD 
mannose 
methaneaq 
methaneg 
methanol 
methionineL 
methylamineion 
n2aq 
n2g 
nadox 
nadred 
nadpox 
nadpred 
o2aq 

oxalate 
oxaloacetate 
oxalosuccinate 
palmitate 
Pep 
Pg2 
Pg3 
phenylalanineL 
Pi 
PPi 

propionateb 

o2g 

propano12 
propanoln 
pyruvate 
retinal 
retinol 
ribose 

877.26 
455.34 

- 1147.22 
-262.68 
- 1163.24 
-233.16 
-443.71 
- 285.40 
- 440.06 

76.30 
58.70 

- 178.49 
- 75.33 

-372.46 
206.90 
429.25 

- 679.25 
- 370.78 
-921.63 

37.65 
29.30 

- 455.64 
- 729.49 
- 928.99 
-531.71 
- 557.80 

83.07 
66.68 

-57.91 
- 180.07 

135.43 
18.70 
0 

762.29 
811.86 

- 108.72 
- 59.05 

0 
- 677.26 
-737.83 
- 1024.72 

16.40 

649.64 

- 1396.52 

115.75 

- 1218.97 

- 1402.06 

- 1079.46 
- 1957.07 

49.57 
58.99 

- 385.03 
821.80 
852.59 

-445.29 

1048.50 
546.64 

- 11 16.87 
-217.02 
- 11 18.83 
- 204.62 
- 426.59 
- 239.74 
- 434.35 

87.72 
70.12 

- 167.07 
-63.91 

- 343.92 
229.73 
469.21 

- 656.42 
- 342.24 
- 796.06 

111.85 
103.50 

- 398.56 
- 705.79 
- 803.42 
- 45 1.80 
- 489.3 1 

105.90 
89.51 

- 35.08 
- 117.28 

169.68 
18.70 
0 

910.696 
965.98 

33.98 
89.36 
16.40 
0 

- 677.15 
- 726.41 
- 1001.89 

826.59 
- 1203.00 
- 1368.31 
- 1373.94 

178.54 
- 1068.49 
- 1947.46 

95.23 
104.65 

981.62 
1023.83 

-367.91 

-388.21 

1219.74 
637.62 

- 1088.04 
- 171.35 
- 1077.13 
- 176.08 
- 409.46 
- 194.07 
- 428.64 

99.13 
81.53 

- 155.66 
- 52.50 

- 31 5.38 
252.56 
509.16 

- 633.59 
-313.70 
- 670.48 

186.06 
177.71 

-341.48 
-682.85 
- 677.84 
- 371.89 
- 420.8 1 

128.73 
112.34 
- 12.25 
- 54.49 
203.93 

18.70 
0 

1059.1 1 
1 120.09 
176.68 
237.77 

16.40 
0 

- 677.14 
- 7 15.00 
- 979.06 
1003.54 

- 1189.73 
- 1341.79 
- 1347.73 

241.33 
- 1059.49 
- 1940.66 

140.90 
150.32 

1141.45 
1195.07 

- 350.78 

-331.13 

1390.98 
726.89 

- 1059.47 
- 125.68 
- 1036.91 
- 147.54 
- 392.34 
- 148.41 
- 422.94 

110.55 
92.95 

- 144.24 
-41.08 

-286.84 
275.40 
549.12 

-610.75 
-285.16 
- 544.90 

260.26 
251.91 

- 284.40 
- 660.00 
- 552.26 
-291.97 
- 352.3 1 

151.57 
135.18 

10.59 
8.29 

238.17 
18.70 
0 

1207.51 
1274.21 
319.38 
386.18 

16.40 
0 

-677.14 
- 703.58 
-956.22 
11 80.48 

- 1178.02 
- 1317.92 
- 1324.05 

304.1 1 
- 1052.97 
- 1935.64 

186.56 
195.98 

1301.27 
1366.31 

- 333.66 

- 274.05 

1562.22 
813.52 

- 1030.93 
- 80.02 
- 996.93 
- 119.00 
- 375.21 
- 102.74 
-417.23 

121.96 
104.36 

- 132.83 
- 29.67 

- 258.30 
298.23 
589.07 

- 587.92 
- 256.62 
-419.33 

334.47 
326.12 

- 227.32 
-637.17 
-426.69 
- 2 12.06 

174.40 
158.01 
33.42 
71.08 

272.42 
18.70 
0 

1355.92 
1428.33 
462.08 
534.59 

16.40 
0 

-677.14 
-692.17 
-933.39 
1357.43 

- 1 166.58 
- 1294.9 5 
- 1301.11 

366.90 

-283.82 

- 1047.1 7 
- 1933.29 

232.23 
241.65 

1461.10 
1537.55 

-316.53 

-216.97 
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Table 4.2 Continued 

Reactant PH 5 PH 6 PH 7 PH 8 PH 9 

ribose 1 phos 
ribose5phos 
ribulose 
serineL 
sorbose 
succinate 
succinylcoA 
sucrose 
thioredoxinox 
thioredoxinred 
tryptophaneL 
t yrosineL 
ubiquinoneos 
ubiquinonered 
urate 
urea 
uricacid 
valineL 
xylose 
xylulose 

- 1320.16 
- 1328.24 
- 442.44 
- 305.42 
- 559.75 
- 578.32 
- 393.33 
-919.00 

0 
33.33 

237.50 
-47.85 
2641.49 
2610.27 

-238.66 
- 85.40 
- 239.50 
- 35.80 
- 456.99 
-452.65 

- 1264.30 
- 1272.38 
- 385.36 
- 265.47 
-491.26 
- 553.73 
- 370.32 
- 793.43 

0 
44.70 

306.00 
14.94 

3155.21 
3135.41 

-221.54 
-62.51 
- 216.67 

26.99 
- 399.91 
- 395.57 

- 121 1.14 
- 1219.22 
- 328.28 
- 225.5 1 
- 422.76 
- 530.64 
- 347.47 
-667.85 

0 
55.74 

374.49 
77.73 

3668.94 
3660.55 
- 204.41 
- 39.74 
- 193.84 

89.78 
-342.83 
- 338.49 

- 11 59.50 
- 1167.58 
-271.20 
- 185.55 
- 354.26 
- 507.79 
- 324.63 
- 542.27 

0 
64.03 

442.99 
140.51 

4182.66 
4185.69 
- 187.29 
- 16.90 
- 171.00 

152.56 
-285.75 
-281.41 

- 1108.09 
- 11 16.17 

-214.12 
- 145.60 
- 285.77 
- 484.95 
- 301.80 
- 416.70 

0 
66.35 

511.49 
203.30 

4696.38 
47 10.8 3 
- 170.16 

5.93 
- 148.17 

215.35 
- 228.67 
- 224.33 

Various types of tables can be constructed, and the package produces table 1 
(A,G" of reactants at pH 7 and ionic strengths of 0, 0.10, and 0.25 M), table 2 
(AfG" of reactants at pHs 5,  6, 7 ,  8, and 9 and ionic strengths 0.25 M), table 3 
(AfH'O of reactants at pH 7 and ionic strengths of 0, 0.10, and 0.25 M), and table 
4 (AfH'' of reactants at pHs 5,  6, 7 ,  8, and 9 and ionic strengths 0.25 M). A table 
of standard transformed Gibbs energies of formation at 298.15 K, pH 7, and ionic 
strengths of 0, 0.10, and 0.25 M for about 100 reactants was provided earleir 
(Alberty, 2000a). Table 4.2 gives the standard transformed Gibbs energies of 
formation of all of the reactants in BasicBiochemData2 at 298.15 K , pHs 5, 6, 7,  
8, and 9, and ionic strength 0.25 M. The values in Table 4.2 can be used to 
calculate the apparent equilibrium constant for any reaction between reactants in 
this table that balances atoms of elements other than hydrogen. Part of the 
dependence of AfGIo on pH may cancel between reactants and products in a 
biochemical reaction. Note that the functions used to calculate Table 4.2 can also 
be used to calculate NH for a reactant as a function of pH and ionic strength. As 
we will see later in Chapter 9, Table 4.2 can be used to calculate standard 
transformed reduction potentials for redox half-reactions and electromotive forces 
for galvanic cells at specified pH and ionic strength. 

In discussing chemical reactions, note that the names of species show ionic 
charges so that charge balance can be checked. Names of reactants in biochemical 
reactions should not show electric charges because, in general, they are not 
integers, and biochemical reactions do not balance electric charges. The names of 
biochemical reactants used in writing reactions should, to the extent possible, 
indicate that they represent sums of species. Names of biochemical reactants 
should not contain H because that suggests that hydrogen atoms should balance. 
These naming problems are readily solved with ATP but are more difficult with 
NAD + and NADH, as they are generally represented. Therefore NAD,, and 
NAD,,, are used in writing reactions, and nadox and nadred are used in 
Mathernatica because names of functions should start with lowercase letters. 

Table 4.3 gives AfHi0 for the biochemical reactants at 298.15 K and pHs 5, 
6, 7, 8, 9 at ionic strength 0.25 M. 
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Table 4.3 
strength 0.25 M 

Values of AfH:" in kJ mol-I at 298.15 K,  pH 5 ,  6, 7, 8, and 9 at ionic 

acetaldehyde 
acetate 
acetone 
adenosine 

alanine 
ammonia 
amp 
arabinose 
asparagineL 
aspartate 
atP 
citrate 
co2g 
co2tot 
coaq 
cog 
ethanol 
e th ylacetate 
formate 
fructose 
fumarate 
galactose 
glucose 
glucose6phos 
glutamate 
glutamine 
glycerol 
glycine 
gl ycylgl ycine 
h2aq 
h2g 
h20 
h202aq 
indole 
lactate 
1 act ose 
leucineL 
maltose 
mannose 
methaneg 
methaneaq 
methanol 
methylamineion 
n2aq 
n2g 
nadox 
nadpox 
nadpred 
nadred 
o2aq 

adp 

o2g 
Pi 
PPi 
propano12 
pyruvate 
ribose 

-213.87 
- 486.96 
-224.17 
- 590.92 
- 2625.82 
- 557.67 
- 133.74 
- 1635.98 
- 1047.89 
- 769.37 
- 945.46 

-3615.67 
- 1518.50 
- 393.50 
- 699.80 
- 120.96 
- 110.53 
- 290.76 
- 485.28 
-425.55 
- 1264.31 
- 776.45 
- 1260.13 
- 1267.12 
-2279.17 
- 982.76 
- 809.10 
- 679.83 
- 525.05 
- 737.53 
- 5.02 
- 0.82 

- 286.65 
- 191.99 

94.63 
- 688.28 
- 2242.1 1 

-648.71 
- 2247.09 
- 1263.59 
- 76.45 
- 90.68 
- 247.57 
- 126.98 
- 10.54 

0.00 
- 10.26 
- 6.57 
- 33.28 
-41.38 
-11.70 

0.00 
- 1302.89 
- 2294.18 
- 334.1 1 
- 597.04 
- 1038.10 

-213.87 
- 486.85 
- 224.17 
- 622.97 
- 2625.74 
- 557.67 
- 133.71 
- 1636.50 
- 1047.89 
- 769.37 
- 945.46 
- 361 5.43 
-1514.96 
- 393.50 
- 696.59 
- 120.96 
- 110.53 
- 290.76 
- 485.28 
-425.55 
- 1264.31 
- 776.56 
- 1260.13 
- 1267.12 
- 2279.25 
- 982.76 
-809.10 
- 679.83 
- 525.05 
- 737.53 
- 5.02 
- 0.82 

- 286.65 
- 191.99 

94.63 
- 688.28 
- 2242.1 1 
- 648.71 
- 2247.09 
- 1263.59 
- 76.45 
- 90.68 
- 247.57 
- 126.98 
- 10.54 

0.00 
- 10.26 

-6.57 
- 33.28 
-41.38 
- 11.70 

0.00 
- 1302.03 
- 2292.80 

-334.11 
- 597.04 
- 1038.10 

-213.87 
-486.83 
- 224.17 
- 626.27 
- 2627.24 
- 557.67 
- 133.45 
- 1638.19 
- 1047.89 
- 769.37 
- 945.46 

-3616.92 
- 1513.66 
- 393.50 
- 692.86 
- 120.96 
- 110.53 
- 290.76 
-485.28 
-425.55 
- 1264.3 1 
- 776.57 
- 1260.13 
- 1267.12 
- 2279.30 

-982.76 
-809.10 
- 679.83 
- 525.05 
- 737.53 
- 5.02 
- 0.82 

- 286.65 
- 191.99 

94.63 
- 688.28 
- 2242.1 1 
- 648.71 
- 2247.09 
- 1263.59 
- 76.45 
- 90.68 

-247.57 
- 126.98 
- 10.54 

0.00 
- 10.26 
- 6.57 
- 33.28 
-41.38 
- 11.70 

0.00 
- 1299.36 
-2291.57 
-334.1 1 
- 597.04 
- 1038.10 

-213.87 
-486.83 
-224.17 
- 626.60 
- 2627.71 
- 557.67 
- 130.97 
- 1638.60 
- 1047.89 
- 769.37 
- 945.46 
- 36 17.49 
- 1513.49 
- 393.50 
-691.80 
- 120.96 
- 110.53 
- 290.76 
- 485.28 
-425.55 
- 1264.3 1 
- 776.57 
- 1260.13 
- 1267.12 
- 2279.3 1 
- 982.76 
- 809.10 
- 679.83 
- 525.05 
-737.53 
- 5.02 
- 0.82 

- 286.65 
- 191.99 

94.63 
- 688.28 
- 2242.1 1 

-648.71 
- 2247.09 
- 1263.59 
- 76.45 
- 90.68 
- 247.57 
- 126.98 
- 10.54 

0.00 
- 10.26 
- 6.57 
- 33.28 
-41.38 
- 11.70 

0.00 
- 1297.99 
- 2290.05 
- 334.1 I 
- 597.04 
- 1038.10 

-213.87 
-486.83 
- 224.17 
- 626.63 
- 2627.76 
- 557.67 
- 1 15.00 
- 1638.65 
- 1047.89 

- 945.46 
- 769.37 

-3617.56 
- 1513.47 
- 393.50 
-689.51 
- 120.96 
- 110.53 
- 290.76 
- 485.28 
-425.55 
- 1264.31 
- 776.57 
- 1260.13 
- 1267.12 
- 2279.3 1 
- 982.76 
- 809.10 
-679.83 
- 525.05 
-737.53 
- 5.02 
-0.82 

- 286.65 
- 191.99 

94.63 
- 688.28 
- 2242.1 1 

-648.71 
- 2247.09 
- 1263.59 
- 76.45 
-90.68 
- 247.57 
- 126.98 
- 10.54 

0.00 
- 10.26 
- 6.57 
- 33.28 
-41.38 
- 11.70 

0.00 
- 1297.79 
- 2287.69 

-334.11 
- 597.04 
- 1038.10 
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Table 4.3 Continued 

ribose5phos 
ribulose 
sorbose 
succinate 
sucrose 
tryptophaneL 
urea 
valineL 
xylose 
x ylulose 

- 2034.57 
- 1027.12 
- 1268.23 
- 909.85 
- 2208.90 
-410.13 
- 319.29 
- 616.50 
- 1050.04 
- 1033.75 

- 2038.10 
- 1027.12 
- 1268.23 
- 908.87 
- 2208.90 
-410.13 
- 3 19.29 
-616.50 
- 1050.04 
- 1033.75 

- 2042.43 
- 1027.12 
- 1268.23 
-908.70 
- 2208.90 
- 410.13 
-319.29 
- 616.50 
- 1050.04 
- 1033.75 

- 2043.41 
- 1027.12 
- 1268.23 
- 908.68 
- 2208.90 
- 410.13 
- 319.29 
-616.50 
- 1050.04 
- 1033.75 

-2043.52 
- 1027.12 
- 1268.23 
-908.68 
- 2208.90 
- 410.13 
- 319.29 
-616.50 
- 1050.04 
- 1033.75 

The values of A,H” calculated using this table can be used to calculate 
apparent equilibrium constants at other temperatures not too far from 298.15 K. 
Note that standard transformed enthalpies of reactants that consist of a single 
species are not a function of pH (see equation 4.4-12). The standard transformed 
enthalpies of reactants are functions of pH when there are more than two species 
because r ,  depends on pH. As indicated by the pH dependencies in Table 4.3, these 
differences are often small. 

These tables apply to single sets of values of pH and ionic strength. A more 
general approach is to use the functions of ionic strength and pH for each reactant 
that give the values of standard transformed thermodynamic properties at 298.15 
K. For reactants for which A,H’ is known for all species, functions of tempera- 
ture, pH, and ionic strength can be used to calculate standard transformed 
thermodynamic properties at temperatures in the approximate range 273.15 to 
313.15 K, as discussed in Section 4.9. 

The database BasicBiochemData2 (Alberty, 2002d) contains functions of pH 
and ionic strength that give A,G“ and A,H“ at 298.15 K for reactants for which 
species information has been tabulated; for example, the function for Af G”(ATP) 
is obtained by typing “atp” and the function for A,H”(ATP) is obtained by 
typing “atph.” This makes it very convenient to calculate A,G” and A,H” for 
any reaction between reactants in the table at specified pH and ionic strength. 
The program calctrGerx[eq-,pHlist-,islist-] can be used to calculate these proper- 
ties for the reaction typed in as an argument, as illustrated by cal- 
ctrGerx[atp + H,O +de = = adp + pi,{5,6,7,8,9},.25] (see Problem 4.6). The 
corresponding values of A,H“ are obtained by appending “ h  to each of the 
reactant names, but the number of reactions for which this can be done is 
significantly less than for Arc” and K‘. The values of K’ at 298.15 K can be 
calculated using the program calckprime. Values of ArN, can be calculated by 
using calcNHrx. This is illustrated by the following tables for the reactions of 
glycolysis, gluconeogenesis, and the citric acid cycle. Table 4.4 gives the standard 
transformed reaction Gibbs energies of the 10 reactions of glycolysis and the net 
reaction for glycolysis. Added information on the effects of ionic strength is given 
in Problem 4.8. 

There is a difference between the way these biochemical reactions for 
glycolysis are written here and in most biochemistry textbooks, which include H +  
in reactions 1, 3, 6, and 10 and 2H’ in the net reaction. These H +  are wrong, in 
principle, because at constant pH, hydrogen atoms in a reaction system are not 
conserved, and they are stoichiometrically incorrect because integer amounts of 
hydrogen ions are not consumed or produced, except under special conditions 
(see Table 4.6). 

Table 4.5 gives the corresponding apparent equilibrium constants for the 
reactions in glycolysis. 
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Table 4.4 
Reactions of Glycolysis at 298.15 K and 0.25 M Ionic Strength 

Standard Transformed Reaction Gibbs Energies (in kJ mol ') for the 

p H 5  p H 6  p H 7  p H 8  p H 9  

1. Glucose + ATP 
=glucose 6-phosphate + ADP 

2. Glucose 6-phosphate 
=fructose 6-phosphate 

3. Fructose 6-phosphate + ATP 
=fructose 1,6-biphosphate + ADP 

4. Fructose 1,6-biphosphate 
= dihydroxyacetone phosphate 
+ glyceraldehyde phosphate 

5. Dihydroxyacetone phosphate 
= gl yceraldehyde phosphatc 

6. Glyceraldehyde phosphate 
+ P, + NADox 
= 1,3-bisphosphoglycerate + NADre, 

= 3-phosphoglycerate + ATP 

= 2-phosphoglycerate 

= phosphoenolpyruvate + H,O 

= pyruvate + ATP 

Glucose + 2P, + 2ADP + 2NAD,, 
= 2pyruvate + 2ATP + 2NADre, 
+ 2H,O 

7. 1,3-Bisphosphoglycerate + ADP 

8. 3-phosphoglycerate 

9. 2-phosphoglycerate 

10. Phosphoenolpyruvate + ADP 

Net reaction: 

- 17.41 - 19.47 - 24.42 - 30.1 1 - 35.82 

3.87 3.36 3.19 3.15 3.14 

- 12.46 -16.95 -23.25 -29.12 -34.86 

24.33 23.18 23.03 23.02 23.02 

7.66 7.66 7.66 7.66 7.66 

14.10 6.71 1.12 -4.22 -9.88 

-8.31 -8.22 -8.22 -8.34 -8.37 

5.54 5.63 5.94 6.13 6.16 

-0.94 -1.76 -3.60 -4.35 -4.45 

- 34.47 - 33.01 - 28.85 - 23.29 - 17.60 

-41.90 -63.4 -80.6 -93.4 -104.9 

Note: See Problem 4.8 

Table 4.6 gives the changes in binding of hydrogen ions in these reactions that 
are calculated using equation 4.7-4. These changes in the binding of hydrogen ions 
can be viewed as the causes of the p H  dependencies. If ArNH is positive, products 
bind more hydrogen ions than reactants; therefore, raising the p H  reduces the 
apparent equilibrium constant. If ArNH is negative, reactants bind more hydrogen 
ions than products; therefore, raising the p H  increases the apparent equilibrium 
constant. 

Gluconeogenesis uses seven of the reactions in glycolysis, but three are 
replaced by the sum of the pyruvate carboxylase and phosphoenolpyruvate 
carboxykinase reactions, the fructose 1,6-biphosphatase reaction, and the glucose 
6-phosphatase reaction. Tables 4.7, 4.8, and  4.9 give the thermodynamic proper- 
ties of these reactions and  the net reaction for gluconeogenesis. 

There is a difference between the ways the first two reactions are written in 
Tables 4.7, 4.8, and  4.9 and in biochemistry textbooks. Textbooks give the 
reactions in terms of gaseous carbon dioxide, but here C0, to t  is used because in 
thinking about living cells it is of more interest to know the equilibrium 
concentration of total carbon dioxide in the solution (see Section 8.7). When 
CO,(g) is replaced by C0 , to t  in a biochemical reaction, it is necessary to insert 
a H,O on the other side of the equation to  balance oxygen atoms. At p H  7 and 
ionic strength 0.25 M, A,Gio(CO,tot) - A,Gio(H,O) - AfG:'(CO,(g)) = 2.93 kJ 
mol- l ,  and so the standard transformed reaction Gibbs energies for reactions 1 
and  2 a t  pH 7 and  0.25 M ionic strength would be -5.99 kJ mol- l  and ~ 1.40 
kJ mol-'  if they were balanced with CO,(g). Thus, if CO,(g) is on  the left side 
of the reaction, replacing it with C0, to t  (and adding H,O to the other side) 
makes A,GIo more negative by 2.92 kJ mol-' .  If CO,(g) is on the right side, the 
change makes Arc : '  more positive by 2.92 kJ mol- '. The effect of changing from 
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Table 4.5 Apparent equilibrium constants for glycolysis at 298.15 K and 0.25 M ionic strength (see Problem 4.8) 

1. 
2. 
3. 

4. 

5.  

6. 

7. 

8. 
9. 

10. 

Glucose + ATP = glucose 6-phosphate + ADP 
Glucose 6-phosphate = fructose 6-phosphate 
Fructose 6-phosphate + ATP 
=fructose 1,6-biphosphate + ADP 

Fructose 1,6-biphosphate 
= dihydroxyacetone phosphate + glyceraldehyde 
phosphate 
Dihydroxyacetone phosphate 
= glyceraldehyde phosphate 

Glyceraldehyde phosphate + P, + NADc,x 
= 1,3-bisphosphoglycerate +NADr,, 

1,3-Bisphosphoglycerate + ADP 
= 3-phosphoglycerate + ATP 

3-phosphoglycerate = 2-phosphoglycerate 
2-phosphoglycerate = phosphoenolpyruvate + H,O 

1.12 x 103 
0.210 

146 

5.46 x 10-5 

0.0455 

0.034 

28.65 
0.107 
1.46 

2.57 x 103 
0.248 

933 

8.68 x lo-' 

0.0455 

0.067 

27.57 
0.103 
2.04 

1.900 x lo4 
0.276 

1.18 x 104 

9.23 x 10-5 

0.0455 

0.610 

27.59 
0.09 1 
4.27 

1.89 x 10' 
0.28 1 

1.27 x lo4 

9.28 x lo-' 

0.0455 

5.49 

29.0 
0.084 
5.77 

1.89 x 10' 
0.282 

1.28 x lo6 

9.28 x 10 -' 

0.0455 

53.9 

29.2 
0.083 
6.02 

Phosphoenolpyruvate + ADP = pyruvate + ATP 1.05 x lo6 6.06 x 10' 1.09 x lo5 1.16 x lo4 1.16 x lo3 

= 2pyruvate + 2ATP + 2NADre, + 2H,O 2.4 x 10' 1.4 x 10" 1.4 x 2.5 x 10" 2.6 x 10l8 
Net reaction: Glucose + 2Pi + 2ADP + 2NADox 

Note: See Problem 4.8. 

Table 4.6 Change in the Binding of Hydrogen Ions for Glycolysis at 298.15 K and 0.25 M Ionic Strength 

1. 
2. 
3. 

4. 

5. 
6. 

7. 

8. 
9. 

10. 

Glucose + ATP = glucose 6-phosphate + ADP 
Glucose 6-phosphate =fructose 6-phosphate 
Fructose 6-phosphate + ATP 
=fructose 1,6-biphosphate + ADP 
Fructose 1,6-biphosphate 
= dihydroxyacetonephosphate + glyceraldehyde phosphate 
Dihydroxyacetone phosphate = glyceraldehyde phosphate 
Glyceraldehyde phosphate + P, + NADux 
= 1,3-bisphosphoglycerate + NADr,, 
1,3-Bisphosphoglycerate + ADP 
= 3-phosphoglycerate + ATP 
3-phosphoglycerate = 2-phosphoglycerate 
2-phosphoglycerate = phosphoenolpyruvate + H,O 
Phosphoenolpyruvate + ADP = pyruvate + ATP 

Net reaction: Glucose + 2P, + 2ADP + 2NADox 
= 2pyruvate + 2ATP + 2NADre, + 2 H 2 0  

-0.14 
- 0.04 

-0.41 

- 0.29 
0.00 

- 1.57 

-0.01 
0.00 

- 0.05 
0.08 

-0.65 
- 0.08 

- 1.09 

- 0.07 
0.00 

- 1.07 

- 0.02 
0.03 

-0.21 
0.48 

- 0.98 
- 0.02 

- 1.07 

- 0.01 
0.00 

- 0.92 

- 0.27 
0.06 

-0.26 
0.93 

- - 3.92 - 3.50 - 2.52 

- 1.00 
0.00 

- 1.01 

0.00 
0.00 

-0.98 

-0.01 
0.01 

- 0.04 
0.99 

- 1.00 
0.00 

- 1.00 

0.00 
0.00 

- 1.00 

0.00 
0.00 
0.00 
1.00 

2.07 - 2.00 

Note: See Problem 4.8 

Table 4.7 
0.25 M Ionic Strength 

Standard Transformed Reaction Gibbs Energies for the New Reactions in Gluconeogenesis at 298.15 K and 

Pyruvate + C02tot + ATP = oxaloacetale + ADP + P, 0.75 -4.31 -8.81 -14.06 - 19.36 
Oxaloacetate + ATP + H,O = phosphoenolphosphate + ADP + C0,tot 1.15 4.20 1.62 -3.72 -9.74 
Pyruvate + 2ATP + H,O = phosphoenolphosphate + 2ADP + P, 1.91 -0.11 -7.19 -17.78 -29.10 
Fructose 1,6-biphosphate + H,O =fructose 6-phosphate + P, -20.21 -16.26 -12.79 -11.95 -11.84 
Glucose 6-phosphate + H,O =glucose + P, - 15.15 - 13.75 - 11.62 - 10.96 - 10.88 
Net reaction: 2Pyruvate + 6ATP + 2NADred + 6 H 2 0  =glucose + 6ADP 

+ 6P, + 2NADox -88.8 -69.3 -63.3 -70.7 -81.7 

See Problem 4.9 
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Table 4.8 Apparent Equilibrium Constants for the New Reactions in Gluconeogenesis at 298.1 5 K and 0.25 M Ionic Strength 

pH 5 pH 6 PH 7 PH 8 PH 9 

Pyruvate + C0,tot + ATP = oxaloacetate + ADP + Pi 0.74 5.69 34.9 291 2 . 4 7 ~  10’ 

Pyruvate + 2ATP + H,O = phosphoenolphosphate + 2ADP t- Pi 0.46 1.05 18.2 1.30 x lo3 1.25 x 10’ 
Fructose 1,6-biphosphate + H,O = fructose 6-phosphate 1 P, 3.47 x 103 7.07 x 10, 1.74 x 10’ 1.24 x lo2 1.19 x 102  
Glucose 6-phosphate + H,O =glucose 1 Pi 4.51 x 10, 2.56 x 10, 1.08 x 102 0.83 x 10’ 0.81 x 10’ 
Net reaction: 2Pyruvate + 6ATP + 2NADTe, + 6H,O 

= glucose + 6ADP 1 6Pi + 2NAD,,x 2.8 x 10Is 1.4 x 1.2 x 10” 2.5 x 10” 2.0 x I O I 4  

Oxaloacetate + ATP ! H,O = phosphornolphosphate + ADP + C0,tot 0.63 0.18 0.52 4.49 50.9 

Note: See Problem 4.9 

Table 4.9 
Strength 

Changes in the Binding of Hydrogen Ions for the New Reactions in Gluconeogenesis at 298.15 K and 0.25 M Ionic 

Pyruvate + C0,tot + ATP = oxaloacetate + ADP + Pi -0.96 -0.80 -0.85 -0.96 -0.85 
Oxaloacetate I ATP + H,O = phosphoenolphosphate + ADP + C0,tot 0.84 .07 -0.82 - 1.00 - 1.15 
Pyruvate + 2ATP + H,O = phosphoenolphosphate + 2ADP + Pi -0.12 -0.73 - 1.67 - 1.96 -2.00 
Fructose 1,6-biphosphate + H,O =fructose 6-phosphate + Pi 0.37 0.84 0.32 0.05 0.01 
Glucose 6-phosphate + H,O =glucose + Pi 0.10 0.40 0.24 0.04 0.00 
Net reaction: 2Pyruvate + 6ATP + 2NADrcd + 6H,O 

= glucose + 6ADP + 6Pi + 2NADox 3.77 2.51 -0.45 -1.79 - 1.98 

See Problem 4.9 

CO,(g) to C0,tot is smaller at higher pH and larger at lower pH. Also note that 
GTP and G D P  have been replaced with ATP and ADP in the phosphoenol- 
pyruvate carboxykinase reaction because because the correct result can be 
obtained in this way. 

Tables 4.10, 4.1 I ,  and 4.12 are the corresponding tables for pyruvate dehyd- 
rogenase, the citric acid cycle, the net reaction for the citric acid cycle, the net 

Table 4.10 
Reactions at 298.15 K and 0.25 M Ionic Strength 

Standard Transformed Reaction Gibbs Energies for Pyruvate Dehydrogenase, the Citric Acid Cycle, and Net 

PDH: Pyruvatc + CoA + NADox +.H20 = totCO, + NADrcd + acetylCoA 
1. AcetylCoA + oxaloacetate + H,O = CoA + citrate 
2. Citrate = cis-aconitate + H,O 
3. cis-Aconitate + H,O = iso-citrate 
4. iso-Citrate + NADox +H,O = ketoglutarate + C0,tot +NADred 
5. Ketoglutarate + NADOx + CoA! H,O 

6. SuccinylCoA ! P, + ADP = succinate + ATP + CoA 
7. Succinate + FADenz,)x = fumarate + FADenzrc, 
8. Fumaratc + H,O = L-malate 
9. 1.-Malate 1 NADox = oxaloacetate I NADIC, 
CAC: AcetylCoA + 3NADox 

=succinylCoA +CO,tot +NADre, 

+ FADellzox + ADP + P, +4H,O = 2C0,tot + 3NADrc, 
+ FADezre, + ATP + CoA 

=3C0,tot+4NADre,+ FADenzre,+ATP 

+ 4 P i + 8 H , 0 = 6 C 0 2 t o t  + 10NADre, +2FADenzrc,+4ATP 

PDH ‘CAC: Pyruvate + 4NADt,k + FADenzux + ADP + Pi + 5H,O 

GLY + PDH’CAC: Glucose+ 10NAD~,x+2FADenzox+4ADP 

N o w  See Problem 4.10 

- 25.34 
- 37.08 

12.36 
- 5.72 

4.79 

-2.15 
7.58 
1.75 

-4.34 
41.23 

11.56 

- 36.90 

- 11 5.90 

- 26.62 - 30.48 
-39.56 -44.71 

9.12 8.46 
-2.48 - 1.81 

0.25 -4.46 

- 33.24 - 37.08 
4.09 1.26 
0.22 0.00 

-3.69 -3.61 
34.65 28.84 

-30.64 -53.18 

57.26 -83.65 

-178.14 -248.12 

-44.70 
-51.61 

8.38 
- 1.73 
- 10.03 

-41.31 
- 0.65 
- 0.03 

23.12 
- 3.60 

-11.52 

I 12.22 

318.01 

- 36.75 
-61.36 

8.37 
- 1.72 
- 16.07 

-43.35 
- 4.12 
- 0.03 
~ 3.60 
17.41 

105.07 

141.82 

388.78 
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Table 4.11 
298.15 K and 0.25 M Ionic Strength 

Apparent Equilibrium Constants for Pyruvate Dehydrogenase, the Citric Acid Cycle, and Net Reactions at 

PDH: Pyruvate + CoA + NAD,, + H,O = totCO, 

1. AcetylCoA + oxaloacetate + H,O = CoA +citrate 
2. Citrate = cis-aconitate + H,O 
3. cis-Aconitate + H,O = iso-citrate 
4. iso-Citrate + NAD,, + H,O = ketoglutarate + C0,tot 

5. Ketoglutarate + NAD,, + CoA + H,O = succinylCoA 
+ C0,tot + NAD,,, 

6. SuccinylCoA + Pi + ADP = succinate + ATP + CoA 
7. Succinate + FADenzox = fumarate + FADenq,, 
8. Fumarate + H,O =L-malate 
9. L-Malate + NAD,, = oxaloacetate + NAD,,, 
CAC: AcetylCoA + 3NAD,, + FADenz,, + ADP + Pi + 4H,O 

= 2C0,tot + 3NAD,,, + FADez,,, + ATP + CoA 
PDH'CAC: Pyruvate + 4NAD,, + FADenz,, + ADP 

+Pi + 5H,O 
= 3C0,tot + 4NAD,,,d + FADenz,,, + ATP 

GLY + PDH'CAC: Glucose + 10NAD,, 
+ 2FADenz,, + 4ADP + 4Pi + 8H,O 

+ NAD,,, + acetylCoA 

+NAD,,, 

2.75 x 104 
3.13 x 10' 
0.68 x lo-' 

10.1 

4.62 x 104 
8.51 x lo6 
2.52 x 10-2 

2.72 

2.19 x 105 
6.97 x 107 
3.30 x 10-2 

2.07 

1.20 x 106 

3.41 x lo-'  
2.01 

1.13 109 
2.74 x lo6 
5.63 x 10'' 
3.42 x 10-' 

2.00 

0.144 0.9 1 6.04 57.1 653 

4.28 105 
0.046 
0.493 
5.74 

5.98 x 

6.67 x lo5 
0.192 
0.91 5 
4.43 

8.50 x 10-7 

3.14 x lo6 
0.601 
1 .00 
4.29 

8.87 x 

1.72 x 107 
1.30 
1.01 
4.21 

8.91 x 10-5 

3.92 x 10' 
6.72 
1.01 
4.27 

8.91 x 10-4 

2.33 x 105 2.01 x 109 3.8 x 1013 2.6 x 1Ol8 1.06 

2.92 x lo6 1.07 x 10" 4.53 x 1014 4.57 x 10'9 7.01 x 1024 

= 6C0,tot + 10NAD,,, + 2FADenz,,, +4ATP 2.01 x 10" 1.62 x lo3' 2.94 x 5.15 x los5 1.29 x loh8 

Note: See Problem 4.10 

reaction for pyruvate dehydrogenase and the citric acid cycle, and the net reaction 
from glucose to C0,tot. The sixth reaction in the citric acid cycle involves GTP 
and GDP, but ATP and ADP have been substituted for these calculations 
because the apparent equilibrium constant fot the reaction 
ATP + GTP = ADP + GTP is expected to be very close to unity. There is a 
problem with FAD,, and FAD,,, in the seventh reaction. The values for fadoxsp 

Table 4.12 
at 298.15 K and 0.25 M Ionic Strength 

Changes in the Binding of Hydrogen Ions for Pyruvate Dehydrogenase, the Citric Acid Cycle, and Net Reactions 

pH 5 p H 6  pIX7 p H 8  p H 9  

PDH: Pyruvate + CoA + NADox + H,O = totCO, + NAD,,, + acetylCoA 
1. AcetylCoA + oxaloacetate + H,O = CoA + citrate 
2. Citrate = cis-aconitate + H,O 
3. cis-Aconitate + H,O = iso-citrate 
4. iso-Citrate + NADox + H,O = ketoglutarate + C0,tot + NADre, 
5. Ketoglutarate + NADox + CoA + H,O = succinylCoA + C0,tot + NADre, 
6. SuccinylCoA + Pi + ADP = succinate + ATP + CoA 
7. Succinate + FADenzox = fumarate + FADenzrC, 
8. Fumarate + H,O =L-malate 
9. L-Malate + NADox = oxaloacetate + NADre, 
CAC: AcetylCoA + 3NADox + FADenzox + ADP + P, + 4H,O = 2C0,tot 

+ 3NADre, + FADezre, + ATP + CoA 
PDH'CAC: Pyruvate + 4NADox + FADenzox + ADP + Pi + 5H,O 

= 3C0,tot + 4NADrc, + FADenzre, + ATP 
GLY + PDHCCAC: Glucose + 10NADox + 2FADenzox + 4ADP + 4Pi + 8H,O 

= 6C0,tot + 10NADre,+ 2FADenzre, + 4ATP 

~ 0.08 
- 0.09 
-0.91 

0.90 
- 0.98 
- 0.08 
- 0.44 
- 0.50 

0.23 
- 1.33 

- 0.44 
- 0.74 
- 0.27 

0.27 
- 0.72 
- 0.44 
- 0.66 
-0.10 

0.04 
- 1.05 

-0.82 
- 1.04 
- 0.03 

0.03 
- 0.93 
-0.82 
-0.32 
-0.01 

0.00 
- 1.01 

-0.56 
- 1.44 

0.00 
0.00 

- 1.01 
-0.56 
- 0.48 

0.00 
0.00 

~ 1.00 

-0.26 
- 1.89 

0.00 
0.00 

- 1.15 
- 0.26 
-0.89 

0.00 
0.00 

- 1.00 

-3.11 - 3.66 -4.11 - 4.49 -5.19 

- 3.19 -4.11 - 4.93 - 5.05 - 5.44 

- 10.30 - 11.72 - 12.40 - 12.17 - 12.89 

Note: See Problem 4.10 
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-34 
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6 7 8 9 

Figure 4.2 Standard transformed Gibbs energy of reaction in kJ mol-' for 
ATP + H,O = ADP + P, at  298.15 K and I = 0.25 M (see Problem 4.3). 

and fadredsp in BasicBiochemData2 are based on the standard apparent reduc- 
tion potential at pH 7. However, the seventh reaction involves FAD,, and FAD,,, 
bound to the enzyme. Since K' for the seventh reaction is believed to be essentially 
zero, A,Go of the species of FAD bound by the enzyme have been adjusted to give 
this value. The value of A,Go(FADenz,,) has been taken to be the same as for 
FAD,,, but Af Go(FADenz,,,) has been taken to be different from Af Go(FADr,,). 
Replacing C0,tot  with CO,(g) would increase A,G" for the pyruvate dehydro- 
genase reaction. reaction 4, and reaction 5 by 2.92 kJ m o l ~  and for the last three 
net reactions by 2, 3, and 6 times this much. 

4.12 PLOTS OF THERMODYNAMIC PROPERTIES OF 
BIOCHEMICAL REACTIONS VERSUS pH 

The functions of pH and ionic strength that yield A,Gio, A,HIo, and ArNH can 
also be used to plot these properties in terms of pH at a chosen ionic strength and 
in terms of ionic strength at a chosen pH. Figure 4.2 shows the dependence of the 
standard transformed Gibbs energy of the hydrolysis of ATP to ADP on pH. 

Figure 4.3 shows the dependence of the standard transformed enthalpy of this 
reaction on pH. Figure 4.4 shows the dependence of A$'' on pH. The enthalpy 
does not vary much with pH, but the entropy increases significantly above pH 6. 
This causes the equilibrium to shift further in the direction of hydrolysis at higher 
pHs. 

Figure 4.5 shows the dependence of log K' on pH. The change in binding of 
hydrogen ions in the hydrolysis of ATP to ADP and Pi is shown in Fig. 4.6 at 

Figure 4.3 Standard transformed enthalpy of reaction in kJ mol for 
ATP + H,O = ADP + P, at 298.15 K and I = 0.25 M (see Problem 4.3). 
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Figure 4.4 Standard transformed entropy of reaction in J K- '  mo1-l for 
ATP + H,O = ADP + P, at 298.15 K and I = 0.25 M (see Problem 4.3). 

LogK' 

. ' PH 6 7 8 9 

Figure 4.5 Logarithm base 10 of the apparent equilibrium constant K' for 
ATP + H,O = ADP + Pi at 298.15 K and I = 0.25 M. 

Figure 4.6 Plot of the change in binding of hydrogen ions in the reaction 
ATP + H,O = ADP + Pi at I = 0, 0.10 and 0.25 M at 298.15 K. The more curved plot is 
at zero ionic strength. (See Problem 4.5.) 
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298.15 K as a function of pH at ionic strengths of 0, 0.10, and 0.25 M (see 
Problem 4.5). 

As a test of the values of the thermodynamic properties that can be calculated 
using BasicBiochemData2, it has been used to calculate the apparent equilibrium 
constants at 298.15 K at the experimental pH and ionic strength of a number of 
reactions in the critical compilations of Goldberg and Tewari (Goldberg et al., 
1992; Goldberg and Tewari, 1994a,b, 1995a,b; Goldberg, 1999). The table in 
Problem 4.7 is a first step toward identifying errors in BasicBiochemData2. Since 
the values of A,Go for species can be obtained from the existing data in different 
ways, this redundancy can be used to find errors in experimental measurements 
of K' and in the calculations to produce a thermodynamic database. 

Administrator
v
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S 5.2 Biochemical Equations as Matrix Equations 

@ 5.3 Coupling of Biochemical Reactions 

kg 5.4 Matrix Forms of the Fundamental Equations 

li 5.5 Matrix Forms of the Fundamental Equations 

for Chemical Reaction Systems 

for Biochemical Reaction Systems 

? 5.6 Operations of Linear Algebra 

When a system involves more than one chemical reaction, it is convenient to 
represent the conservation equations and reaction equations by matrices. Chemi- 
cal reactions balance atoms of elements and electric charges, and that means that 
there is a set of conservation equations. The coefficients in these conservation 
equations are related to the stoichiometric numbers in the reaction equations 
(Alberty, 1991b). For larger systems of reactions, it is very convenient to use 
conservation matrices and stoichiometric number matrices because linear algebra 
provides mathematical operations for changing and interconverting matrices. 
Conservation matrices and stoichiometric number matrices are related mathemat- 
ically and actually contain the same information. But for some purposes it is 
better to use conservation matrices, and for other purposes it is better to use 
stoichiometric number matrices. Conservation matrices are very helpful in ident- 
ifying components and showing how noncomponents are made up of components. 

Biochemical reactions balance the atoms of all elements except for hydrogen, 
or of metals when they are bound reversibly and their ionic concentrations are 
held constant. Thus a system of biochemical reactions can be represented by an 
apparent conservation matrix or an apparent stoichiometric number matrix. The 
adjective “apparent” is used because hydrogen ions are omitted in the apparent 
conservation matrix since they are not conserved. Hydrogen ions are also omitted 
in the apparent stoichiometric number matrix since they do not appear in 
biochemical reactions. The conservation and stoichiometric number matrices for 
a system of biochemical reactions can be derived from the conservation matrix 

Thernwdyanamics of Biochemical Reactions. Robert A. Alberty 
Copyright 0 2003 John Wiley & Sons, Inc. 

ISBN 0-471-22851-6 
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for the underlying chemical reactions. As in the case of chemical reactions, the 
apparent conservation matrix is related mathematically to the apparent 
stoichiometric number matrix. Matrix notation is also useful in writing fundamen- 
tal equations and Gibbs-Duhem equations and in calculating equilibrium compo- 
sitions. There will be more applications of matrix operations in subsequent 
chapters. More information on matrices is to be found in Smith and Missen 
(1982) and in a textbook on linear algebra, such as Strang (1988). 

5.1 CHEMICAL EQUATIONS AS MATRIX EQUATIONS 

The conservation relationships in chemical reactions can be represented by 
reaction equations or by conservation equations. When using reaction equations 
in thermodynamics, i t  is important to remember that a reaction equation can be 
multiplied by any positive or negative integer without changing the equilibrium 
composition that will be calculated. Of course, the expression for the equilibrium 
constant K of the reaction must be changed appropriately. When an equilibrium 
calculation is made on a multireaction system, only an independent set of 
reactions is used. An independent set of reaction equations is one in which no 
equation in the set can be obtained by adding or subtracting other reactions in 
the set. We will find that linear algebra provides a much more practical test of 
independence. The number R of independent reactions in a set is unique, but the 
particular reactions in the set are not. Any two reactions in a set of independent 
reactions can be added, and this reaction can be used to replace one of the two 
reactions without changing the equilibrium concentration that will be calculated. 
These remarks apply in thermodynamics, but not in discussing rates of reactions. 

The corresponding conservation equations are less familiar, but they contain 
the same information as a set of independent chemical reactions. The conservation 
equations for a system containing N ,  species are given by 

N 5 

N i j n j  = nCi 
j =  I 

(5.1-1) 

where n,, is the amount of component i, I V , ~  is the number of units of component 
i in species j ,  and nj  is the amount of species j .  For chemical reactions the 
conservation equations are usually written in terms of amounts of elements and 
electric charge, but they can also be written in terms of specified groups of atoms. 
The things that are conserved are referred to as components. The amounts of 
components in a closed system are not changed by chemical reactions. The 
conservation equations for the components in a reaction system must be indepen- 
dent; that is, no conservation equation in the set can be calculated by adding and 
subtracting the other equations in the set. The number C of components for a 
chemical reaction system is unique, but the components that are chosen are not. 

Equation 5.1-1 for a reaction system can be written in matrix form as 

An = n, (5.1-2) 

where A is the conservation matrix made up of the N,, values, with a row for each 
component and a column for each species. In equation 5.1-2, n is the column 
matrix of amounts of species and n, is the column matrix of amounts of 
components. The matrix product of the C x N ,  conservation matrix A and the 
N ,  x 1 amount of species matrix II is equal to the C x 1 matrix tz ,  of amounts of 
components. Equation 5.1-2 can be used to calculate amounts of components i n  

more complicated systems (see equation 5.1-27). The number N ,  of different 
species in a system of chemical reactions is given by 

N , = C + R  (5.1-3) 
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where R is the number of independent reactions. This equation can be interpreted 
by pointing out that the number N ,  of unknown concentrations of species in an 
equilibrium calculation is equal to the number of C components plus the number 
R of independent reactions. Note that there is a conservation equation for each 
component and an equilibrium constant expression for each reaction The species 
in a chemical reaction system can be divided into C components and R 
noncomponents. Various choices of components and non-components can be 
made, but the numbers C and R are unique for a system of chemical reactions. 

Consider a gaseous reaction system in which the only reaction is 

CO + 3H2 = CH, + H,O (5.1-4) 

When stoichiometric numbers are taken to be signed quantities, this chemical 
equation can be written as 

CO - 3H2 + CH, + HZO = 0 (5.1-5) 

This may not look like a matrix equation, but it actually is. When we replace the 
chemical formulas with column vectors that give the numbers of C, H, and 0 
atoms in each species, equation 5.1-5 can be written as 

- 0  - 3  2 + 4 + 2 = 0 0 i:r 13 [:I (5.1-6) 

This equation can be written as a matrix multiplication: 

(5.1-7) 

where the conservation matrix A is given by 

CO H, CH, H,O 

C 1 0  1 0 

H 0 2  4 2 

0 1 0 0  1 

A =  (5.1-8) 

In the A matrix there is a column for each species and a row for each component. 
Note that the components are taken to be atoms of C, H, and 0. (In equation 
5.1-15 we will see that other choices of components can be made.) The 
stoichiometric number matrix corresponding with equation 5.1 -5 is 

rx5.1-4 

CO -1 

v = H, -3 

CH, 1 

H,O 1 

(5.1-9) 

In the v matrix there is a column for each reaction and a row for each species, 
with the species in the same order as in the columns of the A matrix. The matrix 
multiplication in equation 5.1-7 is represented in general by 

AV = 0 (5.1 - 10) 

Note that the matrix product of the C x N ,  conservation matrix and the N x R 
stoichiometric number matrix is a C x R zero matrix. 
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Equation 5.1-10 applies to a multireaction system. For example, if in addition 

(5.1-11) 

We can add a column to the conservation matrix for CO, and a column to the 
stoichiometric number matrix for this reaction to obtain 

to reaction 5.1-4, the following reaction occurs: 

CO + H,O = CO, + H, 

1 - 1  - l \  

The new conservation matrix A is given by 

CO H, CH, H,O CO, 

c 1  0 1 0 1 

H O  2 4 2 0 

0 1  0 0 1 2 

A =  

The new stoichiometric number matrix v is given by 

rx5.1-4 rx5.1-11 

co - 1  -1 

H, - 3  
V =  

CH, 1 

H,O 1 - 

co, 0 

(5.1-2) 

( 5.1 - 13) 

( 5.1 - 14) 

Now we want to show that the conservation matrix can be written in terms 
of other components. The easiest way to obtain an equivalent A matrix is to make 
a row reduction (Gaussian elimination) to obtain the canonical form of the matrix 
with an identity matrix in the left side. An identity matrix is a square matrix that 
has ones on the diagonal with the other positions occupied by zeros. Subtracting 
the first row of matrix 5.1-13 from the last row and using the difference with a 
change in sign to replace the last row, subtracting the last row from the first, and 
subtracting two times the third row from the second yields the canonical form of 
the conservation matrix: 

CO H, CH, H,O CO,  

C O 1 0 0  1 2 
A =  

H , O l O  3 2 

CH, 0 0 1 - 1  - 1  

(5.1 - 15) 

The canonical form of a matrix is readily obtained using RowReduce in Muth-  
mat i ca .  In equation 5.1-1 5 the conservation equations are for the conservation of 
CO, H,, and CH, rather than for the atoms of C. H, and 0: in other words. the 
components have been chosen to be CO, H,, and CH,. The last two columns 
show how the noncomponents H,O and CO, are made up of the components. 
They show that H,O is made up of CO + 3H, ~ CH,, and CO, is made up of 
2CO + 2H, ~ CH,. If one of the conservation equations were redundant, it 
would yield a row of zeros that would be dropped. Since there are three rows in 
this A matrix that are not all zeros after row reduction, the A matrix has a rank 
of 3, and so the number of components is given by 

C = rank A (5.1 - 1 6) 
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In matrix 5.1-15 the three components are CO, H,, and CH,. However, if the 
order of the columns were changed, other components would be chosen. Thus the 
conservation matrix is not unique. A set of components must contain all the 
elements that are not redundant. The rank of the stoichiometric number matrix 
is equal to the number of independent reactions. 

R = rankA (5.1 - 1 7) 

Thus equation 5.1-3 ( N ,  = C + R )  can be written 

N ,  = rank A + rank v (5.1 - 1 8) 

Next we want to consider the fact that a stoichiometric number matrix can 
be calculated from the conservation matrix, and vice versa. Since A v  = 0, the A 
matrix can be used to calculate a basis for the stoichiometric number matrix v. 
The stoichiometric number matrix v is referred to as the null space of the A 
matrix. When the conservation matrix has been row reduced it is in the form 
A = [Z,,Zl, where Z, is an identity matrix with rank C. A basis for the null space 
is given by 

\.’ = ( YRZ) ( 5.1 - 19) 

where Z is C x R and Z, is an identity matrix with rank R. It is necessary to say 
that the null space calculated using equation 5.1-19, or using a computer, is a basis 
for the null space because the stoichiometric number matrix for a system of 
reactions can be written in many different ways, as mentioned before (equation 
5.1-1). All of these forms of the v matrix satisfy equation 5.1-10. 

Equation 5.1-19 shows that the stoichiometric number matrix corresponding 
with conservation matrix 5.1-15 is 

rx 5.1-14 rx 5.1-21 

C O  -1 -2 

H, -3 -2 

CH, 1 1 

H,O 1 0 

co, 0 1 

V =  (5.1-20) 

Note that reaction 5.1-11 has been replaced by 

2CO + 2H, = CH, + CO, (5.1-21) 

which is stoichiometrically correct and independent. The correct equilibrium 
composition can be calculated with either set of reactions. Stoichiometric number 
matrices 5.1-14 and 5.2-20 have the same row-reduced form, and so they are 
equivalent. This is an example of the fact thai the stoichiometric number matrix 
for a system is not unique. It is important to realize that the equilibrium 
composition that is calculated for a system of reactions is valid for all possible 
reactions that can be obtained by adding and subtracting the reactions used in 
the calculation of the equilibrium composition. 

Equation 5.1-10 provides the means for calculating a basis for the 
stoichiometric number matrix that corresponds with the conservation matrix. 
Similarly the transposed stoichiometric number matrix provides the means for 
calculating a basis for the transposed conservation matrix. This is done by using 
the following equation, which is equivalent to equation 5.1-10: 

vTAT = 0 (5.1 -22) 

where “T” indicates the transpose. The transpose of a matrix is obtained by 
exchanging rows and columns. Thus a set of independent reactions for a reaction 
system can be used to calculate a set of conservation equations for the system. 
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This can be illustrated by starting with the transposed stoichiometric number 
matrix 5.1-14, which is 

CO H, CH, H,O CO, 

vT = rx 5.1-4 -1 - 3  1 1 0  (5.1-23) 

rx 5.1-11 -1 1 0 -1 1 

Row reduction of matrix 5.1-23 yields 

CO H2 CH, H,O C 0 2  

(5.1-24) v '=1  0 -z 1 1 3 - -~ 

1 1 
2 4 

1 _-  0 1 -- - 
4 

The transpose of the conservation matrix can be obtained by using 

= ( JCZj 
(5.1-25) 

This yields 

CO H2 CH, H,O CO, 

(5.1-26) 

0 1 ~ 3 _- co2 4 : 0 

This looks different from equation 5.1-8, but it yields 5.1-15 on row reduction, 
which shows that the two matrices are equivalent. 

Muthrrnutica is very useful for carrying out these matrix operations. The 
operation for row reduction is RowReduce, and the operation for calculating a 
basis for the null space is Nullspace. Row reduction is also used to determine 
whether the equations in a set of conservation equations or reaction equations are 
independent. Rows that are dependent come out as all zeros when this is done. 
and they must be deleted because they do not provide any useful information. 

We return to equation 5.1-1 for the system we have been discussing: 

CO H, CH, H 2 0  CO, 

C 1  0 1 0 1 n ( C 0 )  nc (C)  

4H2O) 

n(CO2) 

The product of a C x N ,  matrix and a N ,  x 1 matrix is a C x 1 matrix; note that 
N ,  disappears as one of the dimensions of the resultant matrix. The amounts of 
components in a reaction system are independent variables and consequently do 
not change during a chemical reaction. The amounts of species are dependent 
variables because their amounts do change during chemical reactions. Equation 
5.1-27 shows that A is the transformation matrix that transforms amounts of 
species to amounts of components. The order of the columns in the A matrix is 
arbitrary, except that it is convenient to include all of the elements in the species 
on the left so that the canonical form can be obtained by row reduction. When 
the row-reduced form of A is used, the amounts of the components CO, H2, and 
CH, can be calculated (see Problem 5.1). 

As an example of a set of chemical reactions in aqueous solution that are of 
biochemical interest, consider the hydrolysis of adenosine triphosphate to aden- 
osine diphosphate and inorganic phosphate in the neighborhood of pH 7. The 
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chemical reactions involved are 

ATP4- + H,O = ADP3- + HPOi-  + H +  (5.1-28) 

(5.1-29) 

(5.1 - 30) 

(5.1-3 1) 

HATP3- = H +  + ATP4- 

HADP2- = H +  + ADP3- 

H,PO, = H +  + HP0;-  

This set of chemical reactions is not unique; for example, the reference reaction 
can be written with H,PO,. Additional reactions are involved if Mg2+ or other 
cations are bound reversibly by these species. The conservation matrix for this 
system is 

ATP4- H +  H,O HPO2- ADP3- HATP3- HADP2- H,PO, 

c 1 0 0 0  0 10 10 10 0 

A = H  12 1 2 1 12 13 13 2 

0 1 3 0 1  4 10 13 10 4 

P 3 0 0  1 2 3 2 1 

(5.1-32) 

The rows for nitrogen and electric charges are redundant, and therefore are 

ATP4- H +  H,O HP0;- ADP3- HATP3- HADP2- H,PO, 

omitted. The row-reduced conservation matrix is 

ATP4 t o o  0 1 1 1 0 

A =  H +  0 1 0  0 -1 1 0 1 

H2O 0 0 1  0 1 0 1 0 

H P O i -  0 0 0 1 -1 0 -1 1 

(5.1-33) 

The last four species can be considered to be made up of the four components 
labeling the rows. 

A basis for the stoichiometric number matrix can be calculated using 
M athematica. 

ATP4- H +  H,O HPOi- ADP3- HATP3- HADP2- H,PO, 

0 - 1  0 -1 0 0 0 1 

0 -1 1 0 0 1 0 

-1 -1 0 0 0 1 0 0 

-1 1 -1 1 1 0 0 0 

T v = -1 

(5.1-34) 

This does not correspond with reactions 5.1-28 to 5.1-32, but it is equivalent 
because the row-reduced form of equation 5.1-34 is identical with the row-reduced 
form of the stoichiometric number matrix for reactions 5.1-28 to 5.1-32 (see 
Problem 5.2). The application of matrix algebra to electrochemical reactions is 
described by Alberty (1993d). 

5.2 BIOCHEMICAL EQUATIONS AS MATRIX 
EQUATIONS 

As discussed in Chapter 4, biochemists are generally more interested in reactions 
at specified pH. At specified pH, hydrogen is not conserved, and so this row and 
column of matrix 5.1-32 are omitted to obtain the following conservation matrix 
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(Alberty, 1992b): 

ATP4- ADP3- HP0;- H,O HATP3- HADP2- H,PO; 

c 10 10 0 0 10 10 0 

0 13 10 4 1 13 10 4 

P 3 2 1 0 3 2 1 

A' = 

(5.2-1) 

where the prime on A' indicates that the pH has been specified so that hydrogen 
atoms are not conserved. This matrix has three pairs of redundant columns. Since 
the columns for ATP4- and HATP3- are the same, we can delete one and label 
the remaining column as ATP, where this abbreviation refers to the sum of 
ATP4- and HATP3-. The abbreviations ADP and Pi are introduced in the same 
way to obtain 

ATP H,O ADP Pi 

(5.2-2) 

P 3 0  2 1  

This is referred to as an apparent conservation matrix to distinguish it from the 
conservation matrix in equation 5.1-32. Thus specifying the pH has the effect of 
simplifying the conservation matrix of the system by reducing the number of rows 
by one and the number of columns by four. The matrix in equation 5.2-2 is not 
unique. An equivalent apparent conservation matrix can be obtained more simply 
by conserving adenosine groups; this leads to 

ATP H,O ADP Pi 

aden 1 0 0 1  

0 9  1 6 4  

P 3 0 2 1  

A' = (5.2-3) 

The row-reduced forms of matrices 5.2-2 and 5.2-3 are the same, and so they are 
equivalent. 

ATP H,O ADP Pi 

(5.2-4) 

ADP 0 0 1 -1 

Apparent conservation matrices A' and apparent stoichiometric number 
matrices v' at specified pH have the properties indicated by equations 5.1-10 and 
5.1-22 so that 

A'v' = 0 (5.2-5) 

( v ' ) ~ ( A ' ) ~  = 0 (5.2-6) 

The rank of the A' matrix is the number C' of apparent components, and the rank 
of the apparent stoichiometric number matrix is the number R' of independent 
biochemical reactions. 

C' = rank A' (5.2-7) 

R' = rank v' (5.2-8) 

N' = C' -+ R' (5.2-9) 
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A basis for the null space v’ of conservation matrix 5.2-5 at specified pH 
obtained with equation 5.1-19 or with a computer is 

ATP -1 

H 2 0  -1 
vf = 

ADP 1 
( 5.2- 1 0) 

p, 1 

which is referred to as an apparent stoichiometric matrix because it is made up of 
the stoichiometric numbers for a reactants at specified pH, rather than species. 
Matrix 5.2-10 corresponds with 

ATP + H,O = ADP + P, (5.2-11) 

which is referred to as a biochemical reaction to distinguish it from the underlying 
chemical reactions. This equation does not balance hydrogen atoms because the 
chemical potential of hydrogen ion is specified (see Problem 5.3). This conversion 
of a set of chemical equations to a single biochemical equation is discussed by 
Alberty (1992b). 

The product of the apparent conservation matrix A’ and the column vector 
n’ of amounts of reactants (pseudoisomer groups) gives the column vector n: of 
the amounts of the apparent components: 

A’n‘ = n: (5.2- 1 2) 

This is like the product of the conservation matrix A and the amounts n of species, 
which gives the amounts of components n, (equation 5.1-12). The apparent 
components in equation 5.2-4 are ATP, H,O, and ADP. 

In summary, the linear algebra of the hydrolysis of ATP at specified pH is 
very much like the linear algebra of chemical reactions, even though hydrogen 
atoms are not conserved in the biochemical reaction and the reactants are sums 
of species. 

5.3 COUPLING OF BIOCHEMICAL REACTIONS 

Some enzyme-catalyzed reactions are sums of biochemical reactions that could in 
principle occur separately. This is important in considering conservation equa- 
tions because the mechanisms of such reactions may introduce additional conser- 
vation equations, in other words, additional components. When two biochemical 
reactions without a common reactant are coupled together by an enzymatic 
mechanism, the number of biochemical reactions in the system is decreased by 
one, but the number of reactants is unchanged: A C  = AN’ - ARf 
= 0 - (-  1) = 1. There is then one more apparent component. In discussing 

enzyme-catalyzed reactions, it is convenient to use EC numbers (Webb, 1992). 
Glutamate-ammonia ligase (EC 6.3.1.2) couples the following two reactions: 

Glutamate + ammonia = glutamine + H,O (5.3-1) 

ATP + H 2 0  = ADP + Pi (5.3-2) 

so that the reaction catalyzed is 

Glutamate + ATP + ammonia = glutamine + ADP + Pi (5.3-3) 

The transposed stoichiometric number matrix for this reaction is 

Glutamate ATP Amm ADP Pi Glutamine 

-1 -1 -1 1 1 1 
(,J‘)T = (5.3-4) 
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The use of Nullspace yields the following row reduced conservation matrix: 

Glutamate ATP Amm ADP Pi Glutamine 

1 0 0 0 0  1 

1 0 0 0  1 0 

0 0 1 0 0  1 
(5.3-5) A' =z 

0 0 0 1 0  -1 

0 0 0 0 1  - 1  

This shows that five apparent components are in agreement with C' = N' - R' 
= 6 - 1 = 5, but only four elements (C, 0, N, and P) are to be conserved. The 

fifth conservation equation is needed to tie reactions 5.3-1 and 5.3-2 one to one. 
This conservation equation can be written in a number of ways, but one way is 

n(ATP) + n(g1utamine) = const. (5.3-6) 

Thus the apparent conservation matrix is given by 

Glutamate ATP Amm ADP P, Glutamine 

C 5 10 0 10 0 5 

0 4 13 0 10 4 3 

N 1 5 1 5 0  2 
A' = (5.3-7) 

P 0 3 0 2 1  0 

con 1 0 1 0 0 0  1 

Where con1 is the component represented by equation 5.3-6. Row reduction 
yields equation 5.3-5, which shows that the stoichiometric number matrix and 
conservation matrix are equivalent. The last column of equation 5.3-5 shows that 
there is a single reaction and that i t  agrees with equation 5.3-3. When coupling 
introduces additional conservation equations, components can be chosen in such 
a way that the conservation relations are all expressed in terms of conservations 
of reactants that are chosen as components. Thus equation 5.3-5 utilizes the five 
components glutamate, ATP, ammonia, ADP, and P,. 

Coupling does not necessarily involve constraints in addition to element 
balances. For example, glucokinase (EC 2.7.1.2) couples the hydrolysis of ATP to 
ADP with the phosphorylation of glucose to G6P. The reaction catalyzed is 

ATP + Glc = ADP + G6P (5.3-8) 

The apparent conservation matrix is 

ATP Glc ADP G6P 

aden 1 0 1 0 
A' = 

glc 0 1 0 1 

P 3 0 2  2 

(5.3-9) 

Note that here the reactions that are coupled share a reactant that is not a 
reactant in reaction 5.3-8. It is usually more convenient to count groups rather 
than atoms. Row reduction and use of the analogue of equation 5.1-19 show that 
reaction 5.3-8 is obtained. 

An extreme example of additional constraints introduced by the enzymatic 
mechanism of a biochemical reaction is the NAD synthase (glutamine-hydrolyz- 
ing) reaction (EC 6.3.5.1) (Alberty, 1994b): 

ATP + deamido-NAD,, + L-glutamine + H,O 

= A M P  + PPi + NAD,, + L-glutamate (5.3-10) 
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This reaction involves eight reactants, and so C‘ = N‘ - R‘ = 8 - 1 = 7, but only 
four elements are involved. So there are three additional constraints. Reaction 
5.3-10 can be considered to be made up of the following two reactions: 

ATP + H,O = AMP + PP,  (5.3- 11) 

deamido-NAD,, + L-glutamine = NAD,, + L-glutamate (5.3-12) 

The constraints in the urea cycle are discussed in Alberty (1997~). 
When water is a reactant in a system of reactions, there is a sense in which 

oxygen atoms are not conserved because they can be brought into reactants or 
expelled from reactants without altering the activity of water in the solution. 
When water is not involved as a reactant in a system of reactions, this problem 
does not arise, and oxygen atoms are conserved in the reactants. When water is 
a reactant, there are problems with equilibrium calculations, as are discussed later 
in connection with the calculation of the equilibrium composition in the next 
chapter in Section 6.3. The problem encountered in using A’ and v‘ matrices can 
be avoided by using a Legendre transform to define a further transformed Gibbs 
energy G” that takes advantage of the fact that oxygen atoms are available to a 
reaction system from an essentially infinite reservoir when dilute aqueous sol- 
utions are considered at specified pH (Alberty, 2001a, 2002b). 

5.4 MATRIX FORMS OF THE FUNDAMENTAL 
EQUATIONS FOR CHEMICAL REACTION SYSTEMS 

In treating systems of biochemical reactions it is convenient to use the fundamen- 
tal equation for G’ in matrix form (Alberty, 2000b). The extent of reaction t for 
a chemical reaction was discussed earlier in Section 2.1. For a system of chemical 
reactions, the extent of reaction vector 5 is defined by 

n = no + vk (5.4- 1) 

where n is the N ,  x 1 column matrix of amounts of species, no is the N ,  x 1 column 
matrix of initial amounts of species, v is the N ,  x R matrix of stoichiometric 
numbers, and 5 is the R x 1 column vector of extents of the R independent 
reactions. The differential of the matrix for amounts of species is 

dn = vdk (5.4-2) 

Thus the fundamental equation for the Gibbs energy of a chemical reaction 
system can be written as 

dG = -SdT+ VdP + pdn (5.4-3) 

where p is the 1 x N ,  chemical potential matrix. We will see later that this 
equation can also be applied to phase equilibria (Chapter 8). Substituting 
equation 5.4-2 yields 

(5.4-4) dG = - SdT + VdP + pvd5 

This equation is useful for setting up the fundamental equation for consideration 
of a chemical reaction system described by a particular stoichiometric number 
matrix. 

As an example of the usefulness of equation 5.4-4, consider the fumarase 
reaction (fumarate + H,O = L-malate) in the range pH 5 to 9 where the chemical 
reactions are 

fum2- + H,O = ma12- (5.4-5) 

Hfum- = H +  + fum2- (5.4-6) 

Hmal- = H +  + maI2- (5.4-7) 
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The fundamental equation is 

dG = - SdT+ VdP + p(fum2-)dn(fum2-) + p(ma12-)dn(ma12-) 

+ ,u(Hfum- )dn(Hfum-) + p(Hmal-)dn(Hmal-) + ,u(H+)dn(H+) 

+ P(H,O)dn(H,O) (5.4-8) 

It is hard to divide the six chemical work terms into three terms for three chemical 
reactions, but this can be done using equation 5.4-4 with the following 
stoichiometric number matrix: 

rx 5.4-5 rx 5.4-6 rx 5.4-7 

fum2 -1 1 0 

ma]' 1 0 1 

Hfum - 0 -1 0 

Hmal 0 0 -1 

H +  0 1 1 

H2O 1 0 0 

V =  (5.4-9) 

The row matrix of chemical potentials of species is p = {(p(fum2-), ,u(ma12-), 
p(Hfum-), p(Hmal-), ,u(H+), p(H20)]}, and the column matrix of extents of 
reaction is 5 = {{(,I, {(,), ( r , ) } .  Therefore the last term in equation 5.4-4 is given 
by 

pvdc = (-,u(fum2-) - p(H,O) + ,u(ma12-))d(, + (p(fum2-) + p ( H + )  

- ,u(Hfum-))d(<, + (p(ma12-) + ,u(H+) - ,u(Hmal-))dt3 (5.4-10) 

This shows how the fundamental equation for a system of chemical reactions can 
be written in terms of the three extents of reaction (see Problem 5.5.) 

It is important to be able to write the fundamental equation for a system of 
chemical reactions in terms of components because components are involved in 
the criterion for spontaneous change and equilibrium. We have seen earlier 
(Section 2.3) that this is done by eliminating one chemical potential from the 
fundamental equation with each independent equilibrium condition of the form 
C vipi = 0 to obtain 

C 

dG = - SdT+ VdP + ,uCidnCi (5.4-11) 
i =  1 

where pCi is the chemical potential of the species that corresponds with component 
i. This equation can be written in terms of pc, which is the 1 x C matrix of 
chemical potentials of components, and nc, which is the C x 1 column matrix of 
amounts of components. 

dG = - SdT+ VdP + p,dn, (5.4-1 2) 

This one-phase system has C + 2 natural variables in agreement with D = F + 1, 
where F = C - p + 2 is the number of intensive degrees of freedom. Thus 
D = C - 1 + 2 + 1 = C + 2. Since the amounts of components are given by 
n, = A n  (equation 5.1-2), the fundamental equation can also be written in the 
form 

dG = - SdT+ VdP + p,Adn (5.4-13) 

where A is the transformation matrix that converts the matrix n into the matrix 
n, .  This form of the fundamental equation is useful for setting up the fundamental 
equation for consideration of a reaction system described by a particular set of 
components. 
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Equation 5.4-12 indicates that the corresponding Gibbs-Duhem equation for 
a system of chemical reactions is 

-SdT+ VdP - (dp,)n,  = 0 ( 5.4- 1 4) 

Because of this relation between the C + 2 intensive variables, the number of 
intensive degrees of freedom is F = C + 1. 

5.5 MATRIX FORMS OF THE FUNDAMENTAL 
EQUATIONS FOR BIOCHEMICAL REACTION 
SYSTEMS 

For a biochemical reaction system at specified pH, equations 5.4-1 and 5.4-2 
become 

n' = nb + v'k' (5.5-1) 

dn' = v 'dc  (5.5-2) 

Therefore equation 4.2-3 can be written in matrix form: 
N '  

dG' = - S'dT+ VdP + p;dn: + RTln(l0) n,(H)dpH (5.5-3) 
i =  1 

= - S'dT+ VdP + p'dn' + RT ln(10) n,(H)dpH 

= - S'dT+ VdP + p'v'dk' + RTln(l0) n,(H)dpH 

The primes on the amounts are needed to indicate that they are amounts of 
reactants, which are sums of species that are pseudoisomers at specified pH. The 
primes on the stoichiometric number matrices and extents of reaction column 
matrices are needed to indicate that these matrices are for biochemical reactions 
written in terms reactants (sums of species). The primes are needed on the 
transformed chemical potentials to distinguish them from chemical potentials of 
species. 

The biochemical analogues of equations 5.4-11, 5.4-12, and 5.4-13 are 
C' 

dG' = - S'dT+ VdP + 1 pLidnl,, + RTln(10) n,(H)dpH 

= - S'dT+ VdP + pl,dnL + RTln(l0) n,(H)dpH 

= - S'dT-t VdP + piA'dn' + RTln(l0) n,(H)dpH 

The prime on the amount of a component indicates that these are the components 
other than the hydrogen component. The corresponding Gibbs-Duhem equation 
is 

(5.5-4) 
i =  1 

-S'dT+ VdP - (dpL)nL + RTln(10) n,(H)dpH = 0 (5.5-5) 

Since the thermodynamics of a biochemical reaction system is considered at 
specific pH, we need to consider equation 5.5-4 in the form 

(dG'),, = -S'dT+ VdP + pl,dnL (5.5-6) 

and equation 5.5-5 in the form 

-S 'dT+ VdP - (dpi)nL = 0 (5.5 -7) 

These equations look like equations 5.4-13 and 5.4-14, where C' components play 
the role of C components in equations 5.4-13 and 5.4-14. 

The number D' of natural variables for a system and the number F' 
of intensive degrees of freedom for a one-phase system at equilibrium were 
discussed in Section 4.6, but now we can discuss these numbers in a more general 
way. Table 5.1 gives these numbers for three descriptions of a one-phase reaction 
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Table 5.1 
Freedom for One-Phase Reaction Systems at Equilibrium 

Numbers of Natural Variables and Numbers of Intensive Degrees of 

Numbers of Natural Numbers of Intensive Degrees 
Variables of Freedom 

Chemical reaction system D = C + 2  
Biochemical reaction system D’ = C’ + 3 

=c+2 
Biochemical reaction system D’ = C’ + 2 
after specification of pH = c + 1  

F = C + 1  
F‘ = C‘ + 2 

= c + 1  
F‘ = C‘ + 1 

= c  

system at equilibrium. The first line of the table describes a chemical reaction 
system at equilibrium (see equations 5.4-13 and 5.4-14). The second line of the 
table describes a biochemical reactin system at equilibrium before the pH is held 
constant (see equations 5.5-4 and 5.4-5). Since C‘ = C - 1,  the number of natural 
variables and intensive degrees of freedom are not changed in making the 
Legendre transform and separating out a term in dpH. However, after the 
specification that the pH is constant, the third line of the table shows that the 
number D’ of natural variables and the number F’ of intensive degrees of freedom 
have each been reduced by one. Since C’ = C - 1, the number of extensive degrees 
of freedom is reduced to C by holding the pH constant. In the next chapter we 
will see that it may be useful to make further Legendre transforms, but the 
maximum number of these further Legendre transforms is C - 1, because at  least 
one component must remain. 

When the chemical potentials of several species are held constant, it may be 
useful to write the Legendre transform in terms of matrices. For example, when 
the chemical potentials of several species are specified, the Legendre transform can 
be written as 

G’ = G - p,N,n (5.5-8) 

where p, is a 1 x C row matrix of the components for which the chemical 
potentials are specified. The number of components for which chemical potentials 
are specified has to be a t  least one less than the number of components in the 
reaction system. N ,  is a C x N ,  matrix of the numbers of specified components in 
the N ,  species. This N ,  matrix is like the conservation matrix A ,  except that the 
rows correspond to the specified Components, and not all of the components. The 
N ,  x 1 column matrix n gives the amounts of all species in the system. The 
differential of G‘ is given by 

(5.5-9) dG’ = dG - pcN,dn - (dp,)N,n 

Equation 4.1-6 can be written 

dG = - S d T +  V d P  + picdn,, + p,dn, (5.5- 10) 

where p;,dn,, is the term for noncomponents after the chemical potentials pc have 
been specified for certain components. Substituting equation 5.5-1 1 in 5.5-10 
yields 

dG’ = - SdT+ VdP + pAcdnnc - (dp,)Ncn (5.5-1 1) 

since dn, = Ncdn (see equation 5.1-2). The transformed chemical potentials pLc of 
noncomponents are given by 

P A C  = Ph, - PcNc (5.5-12) 

Note that pc is 1 x C and N ,  is C x N,,. 
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H 5.6 OPERATIONS OF LINEAR ALGEBRA 

Although matrix multiplications, row reductions, and calculation of null spaces 
can be done by hand for small matrices, a computer with programs for linear 
algebra are needed for large matrices. Mathematica is very convenient for this 
purpose. More information about the operations of linear algebra can be obtained 
from textbooks (Strang, 1988), but this section provides a brief introduction to 
making calculations with Mathematica (Wolfram, 1999). 

Matrix multiplication. The first dimension of a matrix is the number of rows, 
and the second dimension of a matrix is the number of columns. In order to 
multiply matrix b by matrix a, it is necessary that the second dimension of matrix 
a be the same as the first dimension of matrix b. The product ah has the first 
dimension of a and the second dimension of 6. In Mathematica this product is 
calculated by putting a period between a and h or by using Dot[a, b] .  

Gaussian reduction. The rows of a matrix can be multiplied by integers and 
be added and subtracted to produce zero elements. This can be done to obtain 
the matrix in row-reduced canonical form in which there is a identity matrix on 
the left. An identity matrix is a square matrix of zeros with ones along the 
diagonal. In Mathematicu the row-reduced canonical form of a is obtained by 
using RowReduce[a]. If, after row reduction, one of the rows is made up of zeros, 
one of the rows is not independent, and should be deleted. If two matrices have 
the same row-reduced form, they are equivalent. We say that a matrix is not 
unique because it can be written in different forms that are equivalent. 

Null space. If the product of two matrices is a zero matrix (all zeros), ax = 0 
is said to be a homogeneous equation. The matrix x is said to be the null space 
of a. In Muthematica a basis for the null space of a can be calculated by use of 
NullSpace[a]. There is a degree of arbitrariness in the null space in that it 
provides a basis, and alternative forms can be calculated from it, that are 
equivalent. See Equation 5.1-19 for a method to calculate a basis for the null space 
by hand. When a basis for the null space of a matrix needs to be compared with 
another matrix of the same dimensions, they are both row reduced. If the two 
matrices have the same row-reduced form, they are equivalent. 

Solution of linear equations. A set of linear equations is represented by ax = b. 
The solution x can be obtained in Muthematicu by use of LinearSolve[a,b]. 
Matrix a can be square or rectangular. 

Transposition. In Mathematica the Transpose[a] transposes the first two levels 
of a. Equations 5.1-14 and 5.1-23 give a matrix and its transpose. 

Pansformation matrix. When the conservation matrix a for a system is written 
in terms of elemental compositions, the elements are used as components. But we 
can change the choice of components (change the basis) by making a matrix 
multiplication that does not change the row-reduced form of the a matrix or its 
null space. Since components are really coordinates, we can shift to a new 
coordinate system by multiplying by the inverse of the transformation matrix 
between the two coordinate systems. A new choice of components can be made 
by use of a component transformation matrix m, which gives the composition of 
the new components (columns) in terms of the old components (rows). The 
following matrix multiplication yields a new a matrix in terms of the new 
components. 

a(new) = m- 'a(o1d) (5.5-1) 

The inverse of the transformation matrix m is represented by m-'. In Mathemat- 
ica, the inverse of m is calculated with Inverse[m]. 
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Systems of biochemical reactions like glycolysis, the citric acid cycle, and larger 
and smaller sequential and cyclic sets of enzyme-catalyzed reactions present 
challenges to make calculations and to obtain an overview. The calculations of 
equilibrium compositions for these systems of reactions are different from equilib- 
rium calculations on chemical reactions because additional constraints, which 
arise from the enzyme mechanisms, must be taken into account. These additional 
constraints are taken into account when the stoichiometric number matrix is used 
in the equilibrium calculation via the program equcalcrx, but they must be 
explicitly written out when the conservation matrix is used with the program 
equcalcc. The stoichiometric number matrix for a system of reactions can also be 
used to calculate net reactions and pathways. 

Since concentrations of ATP, ADP, NAD,,, and NAD,,, may be in steady 
states, it is of interest to calculate equilibrium compositions that correspond with 
these steady state concentrations. These calculations are referred to as level 3 
equilibrium calculations because they are based on the introduction of [ATP], 
[ADP], and the like, as natural variables by use of a Legendre transform. 
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6.1 CALCULATION OF NET REACTIONS USING 
MATRIX MULTIPLICATION 

In dealing with large systems of biochemical reactions it is important to find ways 
to obtain a more global view, and one way is to use net reactions because they 
show what is accomplished by a set of reactions. In calculating a net reaction, the 
intermediates are eliminated because they are produced and consumed in equal 
amounts. In order to prevent accumulation of intermediates, some of the reactions 
in the set have to run at 2, 3,. . .  times the rates of other reactions. These integers 
are referred to as the stoichiometric numbers of steps, which are represented by s: 
for step i. The pathway matrix (column vector) for a set of biochemical reactions 
is represented by s'. The pathway matrix is R ' x  1. The advantage of using 
matrices is that linear algebra and computers can be used. 

The relation between a stoichiometric number matrix v' for a set of R' 
reactions involving N' reactants and the stoichiometric number matrix vket for a 
net reaction is a system of linear equations that is represented by the following 
matrix multiplication (Alberty, 1996): 

. . . . . . . . . . . . . . .  = ... (6.1 - 1 )  

. . . . . . . . . . . .  ... sk 
...... 

v;2 "NR 'ne1N 
' 

Equation 6.1-1 can be written in the form 

(6.1-2) 

& 1 44 2 "NR "netN 

This shows that the solution s' to the system of linear equations represented by 
equation 6.1-1 is made up of the stoichiometric numbers sI that give the number 
of times the various biochemical reactions have to occur to accomplish the net 
reaction. Equation 6.1-1 is conveniently written in matrix notation as 

VI * = VI net (6.1-3) 

The stoichiometric number matrix v' for the system is N' x R', the pathway matrix 
s' is R' x 1, and the stoichiometric number matrix vie, for the net reaction is N '  x 1. 
When the pH (and perhaps the free concentrations of cations that are bound 
reversibly) is specified, a prime is used on the symbols in equation 6.1-3 to 
distinguish the stoichiometric numbers of the biochemical reactions from those of 
the underlying chemical reactions. Since it is easy to make errors in typing a 
stoichiometric number matrix into a computer, it is useful to check the matrix by 
using it to print out the reactions. This can be done using the programs mkeqn 
(Alberty, 1996a) and nameMatrix (Alberty, 2000c), which are given in Problem 
6.1. The use of these programs is illustrated in Problem 6.1. 

The net reaction for the 10 steps of glycolysis is 

glucose + 2Pi + 2ADP + 2NAD,, = 2pyruvate + 2ATP + 2NAD,,, + 2H,O 

(6.1-4) 

This net reaction is obtained by multiplying the first five reactions of glycolysis 
by 1, the second five reactions by 2, and adding. This causes the intermediates to 
cancel. Alternatively, this net reaction can be calculated by multiplying the 
stoichiometric number matrix v' for the 10 reactions of glycolysis by the pathway 
matrix s', where ( s ' ) ~  = { 1, 1 , 1 ,  1,1,2,2,2,2,2),  according to equation 6.1-3. 
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A matrix multiplication can be used to calculate the A,G” values for a series 
of reactions from a vector of AfG” values for the reactants involved. 

[Af G;’, Af G:, . . . , Af G:] . V’ = [Af G;’, Arc:,. . . , Ar G:] (6.1 - 5) 

for a (Note that (1 x N ’ ) ( N ’ x  R’) = 1 x R’ and see Problem 6.2.) The 
particular path s’ is obtained by multiplying both sides of this equation by s’: 

[Af G‘,’, Af G:, . . . , A, GG] . V’ . S’ = Ar G:t (6.1 -6) 

Note the first matrix is 1 x N‘,  the second is N‘  x R ‘ ,  and the third is R‘ x 1, and 
so the result is 1 x 1. 

H 6.2 CALCULATION OF PATHWAYS BY SOLVING 
LINEAR EQUATIONS 

Since equation 6.1-2 represents a set of linear equations, the path can be 
calculated from the stoichiometric number matrix and a particular net reaction 
by solving the set of linear equations (Alberty,l996a). In Mathematica this can be 
done with Linearsolve: 

s’ = LinearSolveCv‘, vhe1] (6.2-1) 

This calculation can be made for chemical reactions, biochemical reactions at 
specified pH, or at steady state concentrations of reactants like ATP and ADP, 
as is discussed in Section 6.6. The advantage of the matrix formulation of this 
calculation is that very large matrices can be handled. 

Problem 6.2 illustrates the use of equation 6.2-1 by applying it to four net 
reactions that represent the oxidation of glucose to carbon dioxide and water: (1) 
the net reaction for glycolysis, (2) the net reaction catalyzed by the pyruvate 
dehydrogenase complex, (3) the net reaction for the citric acid cycle, and (4) the 
net reaction for oxidative phosphorylation. The v’ in equation 6.2-1 is the 
apparent stoichiometric number matrix for these four reactions. The net reaction 
is 

glucose + 6 0 ,  + 40ATP + 40Pi = 46H,O + 6C0,  + 40ATP (6.2-2) 

The nunet in equation 6.1-1 is the list of stoichiometric coefficients for this 
reaction for the order of the reactants in v‘. The use of equation 6.2-1 yields the 
following path: {1,2,2,12}. This means that reaction 1 has to occur once, reaction 
2 has to occur twice, reaction 3 has to occur twice, and reaction 4 has to occur 
12 times in order to oxidize a mole of glucose to carbon dioxide and water. 

6.3 USE OF A LEGENDRE TRANSFORM FOR 
REACTIONS INVOLVING WATER AS A REACTANT 

When water is a reactant, the calculation of K‘ using A,G“ = - RTln K‘ is based 
on the convention that ArG”(H,O) is involved in calculating A r c ” ,  but that the 
activity of H,O in the expression for K‘ is taken to be unity. This is a practical 
convention in treating a single reaction, but in treating systems of reactions, it is 
almost a necessity to use matrices, linear algebra, and a computer. Linear algebra 
can be used to convert sets of stoichiometric equations to sets of conservation 
equations, and vice versa, but these operations are incompatible when H,O is a 
reactant and the convention that a(H,O) is equal to unity is used (Alberty, 2001a, 
2002b). In considering systems of reactions, it is advantageous to use apparent 
conservation matrices and apparent stoichiometric matrices that are interconvert- 
ible using the operations of linear algebra. In dilute aqueous solutions, the solvent 
provides an essentially infinite reservoir for H,O, and so a Legendre transform 
can be used to define a further transformed Gibbs energy G ”  that provides the 
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criterion for spontaneous change and equilibrium at specified pH and 
a(H,O) = 1. When this is done, the apparent conservation matrix A" that does 
not include the conservation of H,O becomes consistent with the apparent 
stoichiometric number matrix v" that does not include the stoichiometric number 
for H,O. 

The Legendre transform that defines the further transformed Gibbs energy 
G",  which provides the criterion for spontaneous change and equilibrium in dilute 
aqueous solutions, is 

G" = G' - ~,(O),U'~(H,O) (6.3-1) 

The amount of the oxygen component in the system is given by n,(O) = 
CN,(i)ni ,  where N,(i) is the number of oxygen atoms in reactant i. p"(H,O) is 
the standard transformed chemical potential for H,O at the specified pH and 
ionic strength. The standard further transformed Gibbs energy of formation of 
reactant i is given by 

A,GYo = AfGio - No(i)AfG'o(H20) (6.3-2) 

where A,G"(H,O) is given by equation 4.4-10. Note that AfG"'(H,O) = 0. When 
this adjustment of the standard transformed Gibbs energy of formation of 
reactant i is made, this reactant becomes a pseudoisomer of other reactants that 
differ from it only with respect to the number of oxygen atoms they contain, and 
so the standard further transformed Gibbs energy of formation of the 
pseudoisomer group has to be calculated using the analogue of equation 4.5-1. 
The apparent equilibrium constant K "  for a biochemical reaction at specified pH 
and a(H,O) = 1 is given by 

ArGJr0  = -RTlnK"  = Cy:(ArCYo (6.3-3) 

There is no term for H,O in the summation. When the pH is specified and 
u(H,O) = 1, the criterion for spontaneous change and equilibrium is dG" d 0 at 
specified 7; P, pH, a(H,O) = 1, and amounts of apparent components. Note that 
oxygen is no longer a component. 

Thus the inconsistency between A' and v" is eliminated by using A" and v". 
The number C" of apparent components can be determined by row reduction of 
A" since C" = rank A". The number R" of independent reactions can be deter- 
mined by row reduction of v" because R" = rankv". Note that N "  = C" + R". 
These two types of matrices can be interconverted by use of 

A"v" = 0 and (v")~(A")~ = 0 (6.3-4) 

The apparent stoichiometric number matrix v" can be obtained from the row- 
reduced form of A" by use of the analogue of equation 5.1-19 or by calculating a 
basis for the null space using a computer program. 

Further transformed Gibbs energies of formation are especially useful in 
calculating equilibrium compositions by computer programs that accept conser- 
vation matrices and vectors of initial amounts, as discussed in the next section. 

rn 6.4 CALCULATIONS OF EQUILIBRIUM 
COMPOSITIONS FOR SYSTEMS OF 
BIOCHEMICAL REACTIONS 

One of the important things that thermodynamics can tell us about a system of 
reactions is the composition at equilibrium for given initial amounts of reactants. 
For a single reaction there is an analytic solution for this problem, but for a 
system consisting of two or more reactions, an iteration using the Newton- 
Raphson method is required to find the composition of the system that yields the 
lowest possible transformed Gibbs energy, given the conservation equations and 
equilibrium expressions. Computer programs for doing that were written by 
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Krambeck (1978, 1991) in APL and in Muthemutica and by Smith and Missen 
(1982) in Fortran. Krambeck wrote the program equcalc for use on gaseous 
mixtures involved in petroleum processing and also adapted it to solution 
reactions as equcalcc and equcalcrx. These latter programs, which are given in 
BasicBiochemData2, have the advantage that they operate with conservation 
matrices and stoichiometric number matrices, respectively, so that they can be 
used with systems of any size. 

Equcalcc was written to calculate compositions of reaction systems in terms 
of species, given the conservation matrix A ,  the vector of standard Gibbs energies 
of formation, and initial amounts of species, but since the fundamental equation 
for G at specified pH has the same form as the fundamental equation for G, 
equcalcc can be used with the apparent conservation matrix A‘, the vector of 
standard transformed Gibbs energies of formation of pseudoisomer groups, and 
initial amounts of pseudoisomer groups. However, there is a problem when H,O 
is a reactant. as was discussed in the preceding section. When equcalcc is used for 
reactions involving water as a reactant, further transformed Gibbs energies of 
formation (based on equation 6.3-2) and conservation matrices omitting oxygen 
have to be used. 

Equcalcrx was written to calculate the equilibrium composition in terms of 
species, given the stoichiometric number matrix, but it can be used with the 
apparent stoichiometric number matrix at a specified pH. Apparent equilibrium 
constants have to be known for a set of independent biochemical reactions for the 
system. This program has the advantage over equcalcc that further transformed 
Gibbs energies of formation (based on equation 6.3-2) do not have to be 
calculated when water is involved as a reactant. Actually equcalcrx obtains A’ by 
calculating the null space of ( v ’ ) ~  and then using equcalcc. Although equcalcc and 
equcalcrx appear to require the vector of initial amounts, it is really only the 
vector of initial amounts of components that is used. 

The inputs for these programs are designated by the following terminology: 

1. When equcalcc[as,lnk,no] is applied to a system of R independent chemi- 
cal reactions, it requires a C x N conservation matrix as, a list Ink of standard 
Gibbs energies of formation of species multiplied by (- l/RT), and a list no of 
the initial concentrations of species. It can be used at specified pH by using a 
C‘ x N‘ conservation matrix as, a list of standard transformed Gibbs energies of 
pseudoisomer groups multiplied by (- l/RT), and a list no of initial concentra- 
tions of pseudoisomer groups. 

2. When equcalcrx[nt,lnkr,no] is applied to a system of R independent 
chemical reactions, it requires a R x N transposed stoichiometric number matrix 
nt, a vector of natural logarithms of the equilibrium constants of independent 
reactions, and a vector no of the initial concentrations. It can be used at a 
specified pH by using a R’ x N’ transposed stoichiometric number matrix nt, a 
vector lnkr of natural logarithms of the apparent equilibrium constants of 
independent biochemical reactions, and a vector no of the initial concentrations. 

The use of these programs is illustrated in Problems 6.4 to 6.8. 
The calculation of the equilibrium composition of a system of chemical 

reactions with equcalcc is based on minimizing the Gibbs energy subject to the 
conservation condition An = n,. This is accomplished by using a Lagrangian L 
defined by 

L = G - h(An - n,) = (p - hA)n + An, (6.4-1) 

where 3, is the 1 x C vector of Lagrange multipliers. At equilibrium the rates of 
change of L with respect to the amounts of each of the species must be equal to 
zero. Thus at equilibrium, 

p = LA (6.4-2) 
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This is equivalent to the equilibrium condition pv = 0, and so the objective is to 
calculate the Lagrange multipliers. The number of Lagrange multipliers is equal 
to the number of components. Once the Lagrange multipliers have been obtained, 
the chemical potentials can be calculated using equation 5.3-2 and the equilibrium 
mole fractions can be calculated using 

LA - p* 
x = e x p [  RT ] (6.4-3) 

where the elements of p* 

pf = p; + RTln[Bj] (6.4-4) 

are the chemical potentials of the species. 

6.5 THREE LEVELS OF CALCULATIONS OF 
COMPOSITIONS FOR SYSTEMS OF 
BIOCHEMICAL REACTIONS 

In Chapter 4 we saw how specifying the pH and using the transformed Gibbs 
energy G‘ provides a more global view of a biochemical reaction. This process of 
making Legendre transforms can be continued by specifying the concentrations 
of coenzymes like ATP, ADP, NAD,,, and NAD,,, (Alberty,l993c, 2000b, c. 
2002a). These reactants are produced and consumed by many reactions, and so, 
in a living cell, their concentrations are in steady states. Thus the thermodynamics 
of a system of enzyme-catalyzed reactions can be discussed at three levels. 
Description of a reaction system in terms of species is referred to as level 1, 
discussion in terms of reactants (sums of species) at specified pH (e.g., or specified 
pH and pMg) is referred to as level 2, and discussion in terms of reactants at 
specified steady state concentrations of coenzymes is referred to as level 3. For the 
purpose of derivations we can imagine that the system at level 3 is connected with 
reservoirs of coenzymes at their steady state concentrations by means of semiper- 
meable membranes. The maximum number of components that can be specified 
in this way is one less than the number of components in the system. Table 6.1 
shows the criteria for spontaneous change and equilibrium for various specifica- 
tion of independent variables. 

When the concentrations of ATP and ADP are in a steady state, these 
concentrations can be made natural variables by use of a Legendre transform that 
defines a further transformed Gibbs energy G ”  as follows. 

G” = G‘ - nL(ATP)p’(ATP) - nL(ADP)p’(ADP) (6.5- 1 ) 

In this equation nLATP) is the amount of the ATP component in the system, that 
is, the total amount of ATP free and bound. Thus nL(ATP) and p’(ATP) are 
conjugate variables, and nL(ADP) and p’(ADP) are conjugate variables. I t  may 
seem remarkable that ATP and ADP at a specified pH can be taken as 
components, but any group or combination of atoms can be taken as a 

Table 6.1 Levels of Thermodynamic Treatment 

Criterion for spontaneous change and 
equilibrium at constant independent 

Level Independent Variables variables 
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component. As mentioned in the discussion of matrices in Section 5.1, the 
reactants listed first in the conservation matrix will be taken as components if they 
are sufficiently different. Since G’ = C pin;, G” = X pyny, nb(ATP) = C NATp(i)ni, 
and nb(ADP) = C NADp(i)ni, equation 6.5-1 shows that the further transformed 
chemical potential of reactant i (sum of species) is given by 

p!’ = p! - N ATp(i)d(ATP) - NADp(j)p’(ADP) (6.5-2) 

where NATp(i) and NADp(i) are the numbers of ATP and ADP molecules required 
to make up the ith reactant; note that these numbers may be positive or negative. 
The values of NATp(i) and NADp(i) can be obtained from the apparent conserva- 
tion matrix (see equation 6.5-21). 

The differential of the Legendre transform in equation 6.5-1 is 

dG” = dG‘ - ni(ATP)dp‘(ATP)) - p’(ATP)dnb(ATP) - nL(ADP)dp’(ADP) 

p’(ADP)dn’,(ADP) (6.5-3) 

The general equation for dG’ at a given pH is equation 4.1-18. This equation can 
be written in terms of the amounts of components nh(ATP) and nk(ADP) by use 
of equation 6.5-2. This yields 

dG‘ = -S’dT+ VdP + c pi’ dni + p’(ATP)dnh(ATP) + p’(ADP)dnb(ADP) 
N ’  - 2 

i =  1 

+ n,(H)RTIn(lO)dpH (6.5-4) 

where dn’,(ATP) = C NATp(i)diii and dnL(ADP) = C NADp(i)dni. Substituting 
equation 6.5-4 into equation 6.5-3 yields the following fundamental equation 
for G”: 

dG’ = -S’dT+ VdP + 1 py dni - nL(ATP)dp’(ATP) + nk(ADP)dp‘(ADP) 
N ‘  ~ 2 

i =  1 

+ n,(H)RTln(lO)dpH (6.5-5) 

However, p‘(ATP) and p’(ADP) are not convenient independent variables 
because they depend on temperature as well as concentration. To eliminate 
dp’(ATP) and dp’(ADP) from equation 6.5-5, the following equations are used: 

dp‘(ATP) = [““~‘p’]~,p.,[~T~~dT+ [:LATpl ]T,P,pH d[ATP] (6.5-6) 

d[ADP] (6.5-7) 
ap’( ADP) 

dp’(ADP) = ~ ~ ’ ( ; . : p ) ] P , p ” , [ A ~ P ~ d T +  I T , P , p H  

The derivatives in the first terms of these equations are -SL(ATP) and 
-SL(ADP), and the derivatives in the second terms are calculated using ,LL‘ 

(ATP) = p”(ATP) + RT In[ATP]. Thus 

dp’(ATP) = -SL(ATP)dT+ RTdln[ATP] (6.5-8) 

dp’(ADP) = -Sk(ADP)dT+ RTdln[ADP] (6.5-9) 

Substituting these equations in equation 6.5-5 yields 
N ”  

dG” = -S”dT+ VdP + c p:dnj‘ + RTln(lO)n,(H)dpH 
1 = 1  

- nb(ATP)RTdln[ATP] - n’,(ADP)RTdln[ADP] (6.5- 10) 

It can be shown that when the reactions of ATP and ADP with reactants in the 
system are at equilibrium, the further transformed chemical potentials of some of 
the reactants are equal; these reactants form a pseudoisomer group with amount 
n:. Thus holding [ATP] and [ADP] constant makes it possible to reconceptualize 
the system into a smaller set of pseudoisomer groups; specifically, the number of 



112 Chapter 6 Systems of Biochemical Reactions 

pseudo isomer groups is reduced from N' + 2 to N". A double prime is used on 
the amounts in the summation to indicate that these are amounts of pseudoisomer 
groups at specified [ATP] and [ADP] as well as pH. The further transformed 
entropy of the system is given by 

S" = S' - nL(ATP)SL(ATP) - ni(ADP)Sd(ADP) (6.5-1 1 )  

where SL(ATP) is the molar transformed entropy of ATP at the specified pH and 
ionic strength. There is also a further transformed enthalpy given by 

The fundamental equation for G" given in equation 6.5-10 leads to several 
new types of relations between properties. First consider the equation for dG" for 
a system containing a single pseudoisomer group; that is, the summation is 
replaced with A, Gys,dnj',,. The Maxwell equation between this term and the term 
in dpH is 

H" = G" + TS" ,  

?A,G::, 
( ~ ) ~ . ~ , n ~ , " , [ * ~ P ~ , ~ A D P ~  = RTln(lO)RH (6.5-12) 

where n,(H) is replaced by NH, which is a more useful symbol for the average 
binding of hydrogen atoms by the pseudoisomer group containing different 
reactants. This equation is like equation 4.7-3. It gives the average binding of 
hydrogen atoms by the pseudoisomer group as a function of the pH at specified 
concentrations of ATP and ADP. 

The Maxwell equations between A , G ~ ~ ,  dnib, and the terms in dln[ATP] and 
dln[ADP] are 

(6.5-1 3) 

(6.5-14) 

In these equations NArP is equal to the rate of change of n,(ATP) with respect to 
the amount of the pseudoisomer group, and RAUp is equal to the rate of change 
of n,(ADP) with respect to the amount of the pseudoisomer group. Thus these 
equations give ArATp and NADp as functions of the independent variables. The 
binding of a component can be negative, as pointed out in Section 3.3. 

Taking the derivative of equation 6.5-13 with respect to ln[ADP] yields the 
same result as taking the derivative of equation 6.5-14 with respect to InCATP]: 
therefore, 

We have seen this type of reciprocal relation twice earlier: see equation 1.3-17 
and equation 4.8-9. There are also reciprocal relations between the binding of 
ATP and hydrogen ions and between ADP and hydrogen ions. 

The complete Legendre transform for the system we are discussing yiclds the 
Gibbs-Duhem equation for the system: 

0 = -S"dT+ VdP + 
C "  

n:idpj' + RTln(lO)n,(H)dpH - n;(ATP)RTdln[ATP] 
i =  1 

- n: (ADP) R T dln[AD P] (6.5- 16) 

This relation between the C" + 5 intensive properties of the system shows that 
the number of independent intensive degrees of freedom is F "  = C" + 4. Since this 
is a one-phase system, the total number of degrees of freedom is D" = C" + 5. 

The expressions for apparent equilibrium constants K "  are written in terms 
of concentrations of the N "  pseudoisomer groups; thus [ATP] and [ADP] do not 
appear explicitly in equilibrium constant expressions for the system. The criterion 
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for spontaneous change and equilibrium is dG” d 0 at specified 7: P, pH, [ATP], 
[ADPI, and amounts of remaining components. 

To see the effects of specifying [ATP] and [ADP], consider the first three 
reactions of glycolysis: 

Glucose + ATP = glucose 6-phosphate + ADP (6.5- 17) 

(6.5-1 8) Glucose 6-phosphate = fructose 6-phosphate 

Fructose 6-phosphate + ATP = fructose 1,6-biphosphate + ADP (6.5-19) 

These three biochemical reactions are catalyzed by hexokinase (EC 2.7.1.1), 
glucose-6-phosphate isomerase (EC 5.3.1.9), and 6-phosphofructokinase (EC 
2.7.1.11), respectively. The EC numbers are from Enzyme Nomenclature (Webb, 
1992). The first step is to write the conservation matrix for this reaction system 
at specified pH because that will show how to calculate the further transformed 
Gibbs energies of formation at specified [ATP] and [ADP]. 

At specified pH the apparent conservation matrix for this system is 

ATP ADP Glu G6P F6P F16BP 

Aden 1 1 0 0 0  0 

P 3 2 0 1  1 2 
A‘ = (6.5-20) 

Glu 0 0 1 1 1 1 

where the C‘ components are the adenine group, phosphorus atoms, and the 
glucose framework. Other components can be chosen, but the number of 
components is 3 because C’ = N ‘  - R‘ = 6 - 3 = 3. Row reduction yields 

ATP ADP Glu G6P F6P F16BP 

ATP 1 0 0  1 1 2 

ADP 0 1 0 -1 - 1  -2 
A’ = (6.5-21) 

Glu 0 0 1 1 1 1 

Note that the C‘ components are now ATP, ADP, and glucose. Matrix 6.5-21 
shows the amounts of ATP and ADP in the four pseudoisomers Glu, G6P, F6P, 
and F16BP (see last row). G6P and F6P can each be considered to contain lATP 
and - 1ADP. F16BP can be considered to contain 2ATP and - 2ADP. When the 
rows and columns for ATP and ADP are deleted, this conservation matrix shows 
that the remaining four reactants are pseudoisomers. The reactions between these 
four pseudoisomer groups can be represented by 

Glucose = glucose 6-phosphate (6.5-22) 

Glucose 6-phosphate = fructose 6-phosphate (6.5-23) 

(6.5-24) Fructose 6-phosphate = fructose 1,6-biphosphate 

The standard further transformed Gibbs energies of formation of the 
pseudoisomers can be calculated using equation 6.5-2 and can be written in the 
form 

A,G”’(i) = AfG’’(i) - N,,,(i)A,G’(ATP) - NADP(i)AfG’(ADP) (6.5-25) 

where AfG’(i)  = A,G”(i) + RTln[i]. The numbers of ATP molecules and ADP 
molecules involved in these four reactions are shown in the row-reduced conser- 
vation matrix (equation 6.5-21). When the equilibrium concentration of ATP is 
0.0001 M and the equilibrium concentration of ADP is 0.01 M, the standard 
further transformed Gibbs energies of formation in kJ mol-’ of the remaining 
four reactants at 298.15 K and I = 0 are as follows: glucose, -426.71 (note that 
this value is not changed); glucose 6-phosphate, - 439.73; fructose 6-phosphate, 
- 436.55; fructose 1,6-biphosphate, - 449.98. Since these reactants are pseudo- 
isomers, the standard further transformed Gibbs energy of formation of the 
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pseudoisomer group can be calculated by using 

N,W 

A,G"'(iso) = - RTln C exp " G"o(i) = - 450.03 kJ mol- (6.5-26) 
i =  1 

where N,,, is the number of pseudoisomers in the group, which is 4. The 
equilibrium mole fractions of glucose, glucose 6-phosphate, fructose 6-phosphate. 
and fructose 1,6-biphosphate can be calculated by using 

1 ri = exp rfG'''(iso;; A, G"'(i) 
(6.5-27) 

Thus the equilibrium concentrations of glucose, glucose 6-phosphate, fructose 
6-phosphate, and fructose 1,6-biphosphate are 8.21 x 1.56 x 
4.34 x lop5 ,  and 9.8 x l op2  M. Note how much the specification of the equilib- 
rium concentrations of ATP and ADP has simplified this equilibrium calculation. 
The level 2 discussion of reactions 6.5-17 to 6.5-19 at specified pH involves 6 
reactants and 3 apparent equilibrium constants. The level 3 discussion at specified 
pH and specified concentrations of ATP and ADP involves 4 reactants, but since 
these reactants are pseudoisomers under these conditions, the system consists of 
a single pseudoisomer group, and so equations 6.5-26 and 6.5-27 can be used. 

Apparent equilibrium constants K "  at specified concentrations of coenzymes 
for a systemlarger than 6.5-17 to 6.5-19 can be calculated using 

A.,G"' = -RTln K "  (6.5-28) 

6.6 CONSIDERATION OF GLYCOLYSIS AT SPECIFIED 
[ATP],[ADP] 3 [ N A k  I, "A%d 1 9  AND CR I 

Glycolysis involves 10 biochemical reactions and 16 reactants. Water is not 
counted as a reactant in writing the stoichiometric number matrix or the 
conservation matrix for reasons described in Section 6.3. Thus there are six 
components because C' = N '  - R' = 16 - 10 = 6. From a chemical standpoint 
this is a surprise because the reactants involve only C, H, 0, N, and P. Since H 
and 0 are not conserved at specified pH in dilute aqueous solution, there are only 
three conservation equations based on elements. Thus three additional conserva- 
tion relations arise from the mechanisms of the enzyme-catalyzed reactions in 
glycolysis. Some of these conservation relations are discussed in Alberty ( 1992a). 
At specified pH in dilute aqueous solutions the reactions in glycolysis are 
represented by 

GIC + ATP = G6P + ADP (6.6- 1 ) 

G6P = F6P (6.6-2) 

(6.6-3) 

(6.6-4) 

DHAP = GAP (6.6-5) 

F6P + ATP = FBP + ADP 

FBP = DHAP + GAP 

GAP + Pi + NAD,, = BPG + NAD,,, 

BPG + ADP = PG3 + ATP 

PG3 = PG2 

PG2 = PEP (+ H,O) 

PEP + ADP = Pyr + ATP 

(6.6-6) 

(6.6-7) 

(6.6-8) 

(6.6-9) 

(6.6- 10) 

where the following abbreviations are used: glucose (Glc), adenosine triphosphate 
(ATP). adenosine diphosphate (ADP), glucose 6-phosphate (G6P), fructose 6- 
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1 2  3 4 5 6 7 8 9 10 

Glc -1 0 0 0 0 0 0 0 0 0 

ATP - 1 0 - 1 0 0 0 1 0 0 1  

ADP 1 0  1 0  0 0 -1 0 0 -1 

NAD,, 0 0 0 0 0 -I 0 0 0 0 

N A D , , O  0 0 0 0 1 0  0 0 0 

p, 0 0 0 0 0 -1 0 0 0 0 

G6P 1 - 1  0 0 0 0 0 0 0 0 

F6P 0 1 - 1  0 0 0 0 0 0 0 

FBP 0 0 1 - 1  0 0 0 0 0 0 

DHAP 0 0 0 1 - 1 0  0 0 0 0 

13BPG 0 0 0 0 0 1 - I  0 0 0 

3PG 0 0 0 0 0 0 1 - 1  0 0 

2PG 0 0 0 0 0 0 0 1 - 1  0 

PEP 0 0 0 0 0 0 0 0 1 - 1  

GAP 0 0 0 1 1 - 1 0 0 0 0  

PYr 0 0 0 0 0 0 0 0 0 1  

Figure 6.1 Apparent stoichiometric number matrix v’ for the 10 reactions of glycolysis at 
specified pH in dilute aqueous solutions. (see Problem 6.3) [With permission from R. A. 
Alberty, J .  Phys. Ckrm. B 104, 4807-4814 (2000). Copyright 2000 American Chemical 
Society.] 

phosphate (F6P), fructose 1,6-biphosphate (FBP), D-glyceraldehyde 3-phosphate 
(GAP), dihydroxyacetone phosphate (DHAP), 1,3-bisphosphoglycerate (3- 
phospho-D-glycerol phosphate)(BPG), nicotinamide adenine dinucleotide-oxi- 
dized (NAD,,), nicotinamide adenine dinucleotide-reduced (NAD,,,), 3- 
phospho-D-glycerate (PG3), 2-phospho-~-glycerate (PG2), phosphoenolpyruvate 
(PEP), and pyruvate (Pyr). If reactions 6.6-6 to 6.6-10 are each multiplied by 2 
and the reactions are added. the net reaction is 

Glc + 2P, + 2ADP + 2NAD,, = 2Pyr + 2ATP + 2NAD,,,( + 2H,O) (6.6-11) 

When using a computer, a net reaction is obtained more conveniently by use of 
a matrix multiplication (see Section 6.1). H,O is put in parentheses because its 
stoichiometric number is not used in the stoichiometric number matrix, but it is 
involved in the calculation of K’ for this net reaction using A,G” = - RTlnK’.  

In writing the stoichiometric number matrix for glycolysis, there is a choice 
as to the order of the reactants. To make Glc, ATP, ADP, NAD,,, NAD,,,, and 
P, components, they are put first in the rows for reactants in the apparent 
stoichiometric number matrix, followed by the rest of the reactants ending with 
Pyr. The stoichiometric number matrix for glycolysis is shown in Fig. 6.1. To 
check that these 10 reactions are indeed independent, a row reduction of the 
transposed stoichiometric number matrix can be used. Another way to test the 
correctness of this matrix is to calculate the net reaction using equation 6.1-3. 

Conservation matrix A’ that corresponds to this stoichiometric matrix is 
obtained by calculating the null space of ( v ’ ) ~ ,  as indicated by equation 6.3-4. In 
order to obtain a conservation matrix with identifiable rows, RowReduce is used 
again and the result is shown in Fig. 6.2. The figure shows that Glu, ATP, ADP, 
NAD,,, NAD,,,, and PI can be taken as the six components for glycolysis. This 
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Figure 6.2 Transposed apparent conservation matrix (A’)’ for glycolysis at specified pH 
in dilute aqueous solution, calculated from the apparent stoichiometric number matrix in 
the previous figure. This conservation matrix shows the composition of the noncompo- 
nents (the last 10 rows) in terms of components (see Problem 6.3). [With permission from 
R. A. Alberty, J .  Phys. Chern. B 104,4807-4814 (2000). Copyright 2000 American Chemical 
Society.] 

is not the only possible choice for components, but it is the one to use to obtain 
a global view of the thermodynamics of the reaction system at specified concen- 
trations of coenzymes. The transposed conservation matrix in Fig. 6.2 is another 
illustration of the statement that conservation equations can be expressed in terms 
of reactants, rather than elements and constraints arising from enzyme mechan- 
isms. 

When the concentration of a component is held constant in an equilibrium 
calculation, its row and column in the conservation matrix A’ are deleted. When 
the rows and columns for ATP, ADP, NAD,,, NAD,,,, and Pi are deleted, the 
remaining apparent conservation matrix is dramatically reduced, in fact it is 
reduced to a vector, namely {{l, 1,1, l , i , ~ , z , z , ~ , ~ , ~ , } ,  which applies to the 
conservation of the glucose component (Alberty, 2000~). Under these conditions 
the reactants in glycolysis consist of two pseudoisomer groups. The first contains 
Glc, G6P, F6P, and FBP, and this group will be referred to as C,, where the C 
refers to the element carbon. The second contains DHAP, 13BPG, 3PG, 2PG. 
PEP, GAP, and Pyr and will be referred to as C,. Deleting the redundant 
columns in the conservation matrix for glycolysis yields the apparent conservation 
matrix A” = {{l, ;)) ,  where the 1 is for C, and the is for C,. This is the 
conservation matrix that applies when [ATP], [ADP], [NAD,,], [NAD,,,], and 
[Pi] are held constant. Calculating the null space for this conservation matrix 
yields ( v ” ) ~  = { { - ;, 1 j 1, which indicates that there is a single reaction (i) C, = C ,  
or 

1 1  1 1  1 1  1 )  

C, = 2c, (6.6- 12) 

at level 3. Thus specifying the concentrations of 5 coenzymes has reduced the 
system of 10 reactions and 16 reactants to 1 reaction and 2 reactants. The 
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expression for the apparent equilibrium constant KY;Ly under these conditions can 
be written 

(6.6- 13) 

where KkLY is a function of 7; P ,  pH, [ATP], [ADP], [NAD,,], [NAD,,,], [P,], 
and ionic strength. Equilibrium constants are dimensionless, but the reference 
concentration cn = 1 M is omitted in the denominator of equation 6.6-13 as a 
simplification. This equilibrium expression provides the most global view of the 
thermodynamics of glycolysis. The value of the apparent equilibrium constant 
KkLy can be calculated when AfGIO values are known for the 16 reactants at the 
desired 7; P, pH, and ionic strength. These values can be used in equations like 
6.5-25 to calculate the A,GY0 values of the reactants at the desired concentrations 
of the coenzymes. 

Figure 6.2 shows the content of each of these reactants in terms of compo- 
nents; in other words, the rows give the values of N,(i) for each of the components 
held constant. Equation 6.5-26 can then be used to calculate the A, G”’(iso) values 
of the C, and C, pseudoisomer groups. In order to calculate the numerical value 
for KLLY using equation 6.5-28, the reaction between pseudoisomer groups should 
be written C ,  = 2C,( +2H,O) because A,G”O(H,O) is involved in calculating 
KkLy. Note that A, G”O(H,O) = A, G”(H,O) because H,O does not contain 
coenzymes. The equilibrium concentrations of C, and C, can be calculated using 
equation 6.6-13, and then the concentrations of C, and C, can be divided into 
the equilibrium concentrations of each of the reactants (noncomponents) by use 
of equation 6.5-27. Thus KkLc provides the means to calculate the equilibrium 
concentrations of the 11 reactants for which concentrations have not been 
specified. 

This more global view of the thermodynamics of a system of biochemical 
reactions provides different information than the net reaction (equation 6.6- 1 1) for 
the system because it deals with the pseudoisomer groups C, and C,. The 
expression for the apparent equilibrium constant for the net reaction for glycolysis 
can be used to calculate the equilibrium value of [Pyr]2/[Clu] by setting the 
concentrations of the coenzymes equal to their steady state values. The apparent 
equilibrium constant for the net reaction at 298.15 K, pH 7, and 0.25 M ionic 
strength calculated from A,G” values is 1.41 x When the steady state 
concentrations of ATP and NAD,,, are 0.01 M and of ADP and NAD,, are l o p 5  
M, and that of P, is 0.001 M, the equilibrium concentration of glucose will exceed 
that of pyruvate. The advantage of the equilibrium expression in equation 6.5-13 
is that it yields the equilibrium concentrations of pseudoisomer groups C ,  and 
C,: that is, it accounts for all of the reactants in glycolysis.”The equilibrium 
calculations given here show how calculations become simpler as the values of 
more intensive variables are held constant. 

6.7 CALCULATION OF THE EQUILIBRIUM 
COMPOSITION FOR GLYCOLYSIS 

The standard transformed Gibbs energies of formation of the reactants in the first 
five reactions of glycolysis are known at pH 7 and 0.25 M ionic strength (see the 
first column of Table 6.2), and so the equilibrium composition can be calculated 
for specified steady state concentrations of ATP and ADP (Alberty, 2001g). The 
standard further transformed Gibbs energies of formation at two different sets of 
concentrations of ATP and ADP are given in the last two columns. 

There is n 3  adjustment for glucose, and the adjustment for G6P is given by 

A, G”O(G6P) = A,G’O(G6P) - (A,G”(ATP) + RTlnCATP]) 

+ (A,G“(ADP) + RTln[ADP]] (6.7-1) 
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Table 6.2 
0.25 M Ionic Strength, Standard Further Transformed Gibbs Energies of Formation at 
[ATP] = 

Energies of Formation at [ATP] = lo-* M and [ADP] = lo-* M 

Standard Transformed Gibbs Energies of Formation at 298.15 K, pH 7, and 

M and [ADP] = lo -*  M. and Standard Further Transformed Gibbs 

A,G’”/kJ mo1-l A,G”’/kJ rno1-I A,G’JO/kJ mo1-l 

Glc 
G6P 
F6P 
FBP 
GAP 
GlycP 
ATP 
ADP 

- 426.7 1 
- 1318.92 
- 1315.74 
- 2206.78 
- 1088.04 
- 1095.70 
- 2097.89 
- 1230.12 

- 426.7 1 
-439.74 
- 436.56 
- 448.42 
- 208.86 
-216.52 

- 41 6.7 1 
-451.16 
- 447.97 
-471.25 
- 220.28 
- 227.94 

Source: Reprinted from R.  A. Alberty, Biophjs. Clzem. 93, 1-10 (2001), with permission from Elsevicr 
Science. 

The same adjustment is applied to the other reactants, except for FBP where the 
adjustment terms are both multiplied by 2 because it contains two phosphate 
groups. 

When [ATP] and [ADP] are specified, the four reactants with six carbon 
atoms become pseudoisomers and the two reactants with three carbon atoms 
become pseudoisomers. The standard transformed Gibbs energies of formation of 
these two pseudoisomer groups at the two sets of concentrations are given in 
Table 6.3 of the article “Systems of biochemical reactions from the point of view 
of a semigrand partition function” (Alberty, 2001g) along with the apparent 
equilibrium constants K” = 0.00213 and K“ = 0.0021 for the two sets of condi- 
tions. The equilibrium extent of reaction ( I ‘  can be calculated for any desired 
initial concentration of glucose by use of the quadratic formula. The equilibrium 
values of (3’ are given for an initial concentration of glucose of 0.01 M. This makes 
it possible to calculate [CJeq and [C,],,; then the equilibrium concentrations of 
the various reactants can be calculated using equation 5.6-27. 

It is perhaps surprising that raising the concentration of ATP by a factor of 
100 makes so little difference, but of course it does make a big difference for the 
first three reactants. The concentration of fructose 1,6-biphosphate cannot in- 
crease very much because it already dominates, and that limits the effects on GAP 
and GlycP. These calculations can be applied to larger systems and can include 
the specification of the concentrations of other coenzymes like NAD,, and 

As mentioned in the Preface, Callen (1985) pointed out that “The choice of 
variables in terms of which a given problem is formulated, while a seemingly 
innocuous step is often the most critical step in the solution.” This calculation is 

NADre,. 

Table 6.3 
at  pH 7 Ionic Strength 0.25 M for Different Specified Concentrations of ATP 

Standard Further Transformed Gibbs Energies of Formation of C ,  and C, 

[ATP] = M [ADP] = M 
[ATP] = M [ADP] = M 

Af G ““(C,)/kJ mol- -448.51 - 471.25 
AtG’“(C,)/kJ mol- ’ -216.63 - 228.05 
Ar G”’(rx 6.6- 12)/kJ inol- 15.25 15.15 
K “ 0.00213 0.0022 1 
i 0.00205 0.00209 ;,, 

Source: With permission from R. A. Alberty, Biophys. Chem. 93. 1- 10 (2001). 
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Table 6.4 
Five Reactions of Glycolysis at 298.15 K, pH 7, Ionic Strength 
0.25 M, and Specified Concentrations of ATP and ADP 

Equilibrium Compositions (M)  for the First 

[ATP] = lo-' M [ADP] = M 
[ATP] = lo-* M [ADP] = lo-' M 

[Glc]/M 1.20 x 10-6 1.24 x lo-'" 
IG6PI/M 2.31 x 2.39 x lo-' 

lFBPl/M 7.64 x 7.90 x 10- 

[GlycPlM 3.94 x 10-3 4.00 x 

[F6PI/M 6.39 x 10- 6.61 x 10-7 

[GAPlM 1.79 x lo-" 1.82 x 10-4 

Source: With permission from R. A. Alberty, Biophys. Chem. 93, 1 - 10 
(200 1). 

an example of that and emphasizes the fact that there is no loss of information in 
making a Legendre transform to introduce new intensive variables. Note that 
there are further transformed enthalpies H "  and entropies S" that are not 
discussed here. For larger reaction systems, further coenzyle concentrations can 
be specified, but note that there is a maximum number of intensive variables that 
can be specified for a given reaction system because one component must remain 
unspecified. 



Binding of Oxygen by Hemoglobin Tetramers 

Further Transformed Gibbs Energy at Specified 
Oxygen Concentration 

Partial Dissociation of Tetramers into Dimers 

Experimental Determination of Seven Apparent 
Equilibrium Constants 

Dissociation of a Diprotic Acid 

Effect of pH on Protein-Ligand Equilibria 

Calculation of Standard Transformed Gibbs 
Energies of Formation of the Catalytic Site of 
Fumarase 

The binding of oxygen by hemoglobin is an important example of the binding of 
a ligand by a protein, and so it is of interest to consider this series of reactions 
from the point of view of the transformed Gibbs energy at a specified pH. The 
experimental determination of the oxygen binding by the tetramer is complicated 
by the partial dissociation of the tetramer into dimers. In view of the fact that it 
is not possible to connect either the tetramer or dimer to its elements in the 
standard state, the standard transformed Gibbs energy of the tetramer can be set 
equal to zero. This convention has already been used for other reactants that 
cannot be connected to the elements by reactions with known equilibrium 
constants. This chapter shows how all seven apparent equilibrium constants for 
the binding of oxygen by hemoglobin at specified pH can be determined by 
measuring the fractional saturation of heme as a function of the concentration of 
molecular oxygen and the concentration of heme at a specified pH. 

A number of biochemical reactions involve proteins as reactants, and so it is 
important to be able to determine the standard transformed Gibbs energies of 
formation of their reactive sites at specified pH. The standard transformed Gibbs 
energies of formation of the active sites of ferredoxin, cytochrome c, and 
thioredoxin are given in tables discussed earlier in Chapter 4. 

The effect of pH on protein-ligand equilibria is discussed and the equations 
are applied to the binding of succinate, D-tartrate, L-tartrate, and meso-tartrate 
by the catalytic site of fumarase. 
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The binding of oxygen by hemoglobin is discussed by Wyman and Gill (1 990) 
and ligand-receptor energetics are discussed by Klotz (1997). 

7.1 THE BINDING OF OXYGEN BY HEMOGLOBIN 
TETRAMERS 

Since a protein is a weak acid, its transformed thermodynamic properties are 
functions of pH, and that is discussed specifically in Section 7.6. However, it is 
not necessary to examine the pH dependence of the binding of a ligand first. This 
is illustrated by the consideration of the binding of oxygen by hemoglobin at 
specified pH. Since the pH is an independent variable, the criterion for equilib- 
rium is provided by the transformed Gibbs energy G‘. Hemoglobin is more 
complicated than a weak acid in that its binding properties are affected by 
chloride ion and perhaps other ligands in the buffer used. If necessary, the 
Legendre transform to define G’ at  a specified pH can include specification of the 
concentrations of chloride ions and other ligands that affect the binding of 
molecular oxygen. Since the tetramers of hemoglobin ( x 2 p 2 ,  represented here as 
T) can combine with 1 to 4 molecules of oxygen, the fundamental equation for 
the transformed Gibbs energy G’ for the binding by tetramer at  a specified pH is 

dG’ = -S’dT+ VdP + 1 p’(T(02)i)d/z’(T(02)i) 
4 

i = O  

+ p’(02)dd(02)  + RTln(lO)n,(H)dpH (7.1- 1) 

where p’(T(02)J is the transformed chemical potential of the sum of various 
protonated species binding i molecules of molecular oxygen and / I ’ (T(O~)~)  is the 
amount of species binding i molecules of molecular oxygen. When equation 7.1-1 
is integrated at  constant values of the intensive variables, 

(7.1-2) 

is obtained. 

different ways, but the usual way is 
The biochemical equations for the binding reactions can be written in 

(7.1-3) 

[ T ( O ~ ) ~ l  = 1.221 104 (7.1-4) 
[IT(O,)lII021 

T(0,)  + 0, = T(02) ,  Kk2 = 

T(O,), + 0, = T(02)“  Ki4 = cT(02)41 = 6.644 x los (7.1-6) 
CT(O,),ICO21 

where the values for the apparent equilibrium constants are those determined by 
Mills, Johnson, and Ackers (1976) for human hemoglobin at 21.5 C, 1 bar, pH 
7.4, [Cl-] = 0.2 M, and 0.2 M ionic strength. Molar concentrations are used. but 
the apparent equilibrium constants are considered to be dimensionless. 

can be derived using equation 7.1-1: 
The following equilibrium conditions for the four reactions (see 7.1-3 to 7. 

(7. 

(7. 

(7. 

(7.1 

P‘(T) + p’(O2) = p’(TO2) 

P’(T(O2)) + 1 4 0 2 )  = p’(T(Od2) 

p’(T(02)2) + p’(O2) = p’(T(02)3) 

p’(T(02)3) + L L ’ ( 0 2 >  = !L’(T(02)4) 
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Substituting these equilibrium conditions in equation 7.1-1 yields 

dG‘ = -S’dT+ VdP + p’(TotT)dn;(TotT) + p’(O,)dnb(O,) 

+ RT In( 10)nc(H)dpH (7.1-1 1) 

where p’ (TotT) is the transformed chemical potential of the T component and 
nl(TotT) is the amount of the T component, namely 

n’,(TotT) = d(T) + n’(T(0,)) + d(T(O,),) + n’(T(O,),) + n’(T(O,),) (7.1-12) 

The amount nh(0,) of the molecular oxygen component is given by 

n X 0 2 )  = n’(O,> + n’(T(0,)) + 2n‘(T(O2),) 

+ 3n’(T(OJJ + 4WIO2) , )  (7.1 -1 3) 

Equation 7.1-12 shows that the natural variables for G‘ are 7; P. nL(T), n:(O,), 
and pH, and so the criterion for spontaneous change and equilibrium is dC’ < 0 
at constant 7; P, n;(TotT), nh(O,), and pH. The number of natural variables is 
five, D’ = 5. The number of independent intensive properties is F’ = 4, and they 
can be taken to be 7; P,  pH, and [O,]. 

It is convenient to use the fundamental equation in matrix forin (see 
Chapter 5), The stoichiometric number matrix v‘ for reactions 7.1-3 to 7.1-6 is 

rx 7.1-3 rx 7.1-4 rx 7.1-5 rx 7.1-6 

T - 1  0 0 0 

1 -1 0 0 
(7.1 - 1 4) 

T(O2) 
T(O,), 0 1 -1 0 

vf = 

T(OJ3 0 0 1 -1 

T(O,), 0 0 0 1 

0, -1 -1 - 1  - 1  

Substituting this matrix in equation 5.5-3 yields 

4 

dG‘ = -S’dT+ VdP + 1 ArC:d(: + RTln(lO)n,(H)dpH (7.1-15) 
I =  1 

where 

A,G: = ~ ’ ( T ( 0 2 ) ~ )  - ~ ’ ( T ( 0 2 ) ~ -  1) - p’(Oz), i = 1, 2, 3, 4 (7.1-16) 

Since at equilibrium ArG: = 0, these four equations can be used to derive the 
expressions for the apparent equilibrium constants K‘ for the four reactions that 
are given in equations 7.1-3 to 7.1-6. 

In the absence of experimental methods for distinguishing experimentally 
between the five forms of the tetramer, the fractional saturation of hemoglobin is 
measured. The fractional saturation of tetramer YT is defined by 

Substituting the equilibrium expressions defined in equations 7.1-13 to 7.1-16 
yields 

Y, = 

4(1 + Kk11021 + Kk1Kk,[0212 + G ~ & , ~ k 3 [ 0 , 1 3  + ~ k , ~ k , ~ & , ~ k , ~ 0 , 1 ~ )  
K&iC021 + 2Kk1Kk2C0212 + 3Kk1K&2Kk3[0213 + 4KklKk2K&3Kk4[0214 

(7.1 - 18) 

This is often referred to as the Adair equation. A plot of the fractional saturation 
for tetramer, which shows the cooperative effect, is given in Fig. 7.1. 
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Figure 7.1 
the binding constants in equations 7.1-3 to 7.1-6 (see Problem 7.3). 

Fractional saturation Y, of tetramer with molecular oxygen calculated with 

The four apparent equilibrium constants can be calculated from measure- 
ments of YT as as function of [O,] in a particular buffer by use of the method of 
least squares. The determination of accurate values for the four equilibrium 
constants is difficult because of the cooperative effect that causes molecular 
oxygen to be bound more strongly after some is bound. A further complication 
is that the tetramer is partially dissociated into dimers (see Section 7.3). Values of 
these four apparent equilibrium constants for reactions 7.1-3 to 7.1-6 are available 
in the literature for different hemoglobins and various buffers. By assigning 
A,G" = 0 to the tetramer T without bound oxygen molecules, we can calculate 
standard transformed Gibbs energies of formation for the other four forms using 

A,G" = V ~ A ~ G ; "  = - RTln K '  (7.1 - 19) 

In order to calculate the standard transformed Gibbs energies of formation of the 
four oxygenated forms of hemoglobin, we need the value of A,G" for molecular 
oxygen in aqueous solution at 21.5'C. The NBS Table (1992) indicates that 
ArG"(O,(ao)) = 16.1 kJ mol-' at 21.5"C. The value of.A,G'"(T(O,)) is calculated 
using 

A,G" = -(8.31451 x kJ K - l  mol-')(294.65 K )  In 4.397 x 10" 

= A,G'"(T(O,)) - AfG"(T) ~ AfG'O(O,) 

= A,G"(T(O,)) ~ 0 - 16.1 (7.1-20) 

which shows that AfG'"(T(O,)) = - 10.0922 kJ mol ~ '. Experimental errors are 
usually large enough that values like this can be rounded to 0.01 kJ mol- ' ,  but 
sometimes in making calculations. it is a good idea to keep more digits. The 
standard transformed Gibbs energies of formation of T(O,),, T(02)3. and T(O,), 
are - 17.045, -32.577, and -49.321 kJ mol-', respectively. 

The values of the standard transformed Gibbs energies of formation of the 
five forms of hemoglobin at specified 7: P. and buffer can be used to calculate the 
equilibrium constants for other reactions that can be written between these forms. 
such as T + 4 0 ,  = T(O,),. But it is also of interest to consider the tetramer of 
hemoglobin as an entity at a specified pressure of molecular oxygen, just as ATP 
is considered as an entity at a specified pH. This is discussed in the next section. 
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7.2 FURTHER TRANSFORMED GIBBS ENERGY AT 
SPECIFIED OXYGEN CONCENTRATION 

In order to introduce the chemical potential of molecular oxygen as a natural 
variable, the following Legendre transform is used to define a further transformed 
Gibbs energy G” (Alberty, 1996b): 

G” = G‘ - n:(O2)p’(O2) (7.2-1) 

where nh(0,) is the amount of molecular oxygen in the system, free and bound. 
Substituting G” = C and G‘ = C p:dn: (equation 7.1-2) yields the following 
expression for the further transformed chemical potential p; of reactant i 
(i = 0 - 4). 

P:’ = p; - N&(OZ)P‘(02) (7.2-2) 

where N , ( 0 2 )  is the number of 0, molecules bound by i. Note that p”(0 , )  = 0. 
Using equation 7.2-2 to eliminate p’(T), p‘(T(02)), p‘(T(O,),), p‘(T(0J3), and 
F’ (T(O~)~)  from equation 7.1-1 yields 

dG‘ = -S‘dT+ VdP + p”(T)dn’(T) + p”(T(02))dn’(T(02)) 

+ C1”(T(02>2)dn’(T(oZ>,) + p”(T(02)3)dn‘((T(02)3) 

+ p”(T(02),)dn’(T(Oz)4) + p‘(O2)dn;(O2) + RTln(lO)n,(H)dpH 
(7.2-3) 

Taking the differential of G” in equation 7.2-1 yields 

dG” = dG‘ - n:(02)dp’(0,) - p’(Oz)dnL(02) (7.2-4) 

Substituting equation 7.2-3 yields 

dG“ = -S’dT+ VdP + kt”(T)dlI’(T) + p”(T(O,))dn’(T(O2)) 

f ~”(T(02>2>dn’(T(02)2) + p”(T(02),>dn’((T(02)3) 

+ p”(T(O,),)dn’(T(O,),) - nh(o,>dP‘(oz> 

+ RTln(lO)n,(H)dpH (7.2-5) 

At specified 7: P, p’ (02) ,  and pH, 

(dG‘’)TP i c  (0 , )pH = p”(T)dn’(T) + p”(T(02))dn’(T(02)) + p”(T(02>2)dn’(T(02>2) 

f ~”(T(02>3)dn’((T(02>,) + p”(T(02>,>dn’(T(o,>,) (7.2-6) 

The four reactions at specified ~ ’ ( 0 ~ )  can be written as 

T = T(0,) (7.2-7) 

(7.2-8) 

(7.2-9) 

(7.2- 1 0) 

These reactions do not balance oxygen because its chemical potential is specified. 
At specified [O,], these five forms of hemoglobin are pseudoisomers, and they 
have the same further transformed chemical potential: p”(T) = p”(T(0,)) = 
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Table 7.1 
Energies of Formation A,G"" of Hcinoglobin Tetramer at 21.5T,  1 bar, pH 7.4, [Cl-] = 0.2 M, and 0.2 M 
Ionic Strength 

Standard Transformed Gibbs Energy of Formation AfG'" and Standard Further Transformed Gibbs 

A,G""/kJ mol 

A,G'',kJ mol-'  [Oz]=5 x 10-' M [O,]=lO-s M [O, ]=~X 1 0 - 5 M  
~ ~~ ~~ 

T 0 0 0 0 
0 314 85 PO,)  - 10 092 2 3711 09 2 012 97 

T(0,)2 - 17 045 5 10561 10 7 164 84 3 768 59 
T(02)j - 32 5768 8833 13 3 738 77 - 1 355 60 
~ ( 0 ~ 4  -49 3213 5891 89 -0 900 59 - 7 693 07 
A,G"J(TotT)/kJ mol ' -0736 51 - 0 73651 -2814 90 - 8 069 06 

Sourti..  Ikprintcd from K. A. Alberty, Biop/i).s. C/iei?i. 62, 141 ~ 159 (1996), with permission from Elsevier Science 
Norr: See Problem 7.1. 

p"(T(O,),) = p"(T(O,),) = p"(T(0JJ. Therefore equation 7.2-5 can be written 

dC" = - S d T +  V d P  + p"(T)dnh(TotT) - n;(O,)dp'(O,) + RTln(lO)n,(H)dpH 

(7.2-1 1) 

This shows that the natural variables for the further transformed Gibbs energy G" 
are 7: P,  n:(T), p'(O,), and pH, and so the criterion for spontaneous change and 
equilibrium is dC" < 0 at  constant 7: P, nk(T), p " ( 0 2 ) ,  pH. There are D" = 5 
natural variables and F" = 4 independent intensive variables, the same as for G'. 

The integrated form of equation 7.2-11 at  constant values of the intensive 
variables is 

G" = p"(T)nk(TotT) (7.2- 12) 

so this system behaves like a one-component system. Under these conditions the 
entity TotT, which is made up of the various forms of the tetramer, has a set of 
further transformed thermodynamic properties. As we have seen before, the 
standard further transformed Gibbs energy of formation A,G""(TotT) of the 
tetramer pseudoisomer group at a specified concentration of molecular oxygen 
can be calculated by using equation 4.5-1 for an isomer group. 

Derivations are carried out with chemical potentials, but calculations are 
carried out with Gibbs energies of formation, and so equation 7.2-2 is used in  the 
form 

Arc:" = AfCio + AJi(02)(AfCo(02) + RTln[O,]) (7.2- 13) 

where A,G" values are given after equation 7.1-20. The values of A,C;" calculated 
using equation 7.2-13 for the five forms at  three [O,] are given in Table 7.1. The 
ArGi") values for T are independent of [O,] because T does not contain 0,. The 
other AfG;" values decrease as [O,] is raised because the oxygenated forms 
become inore stable relative to T. The value of A,G""(TotT) is calculated using 
the partition function in equation 4.5-1. A,G""(TotT) is more negative than A,G;" 
for any of the pseudoisomers and becomes more negative as the concentration of 
oxygen is increased. The entries in Table 7.1 were calculated with the Matlumut-  
icu program calctgfT (Alberty, 1996b). 

The equilibrium mole fractions of the various forms of the tetramer can be 
calculated using the following analog of equation 4.5-2: 

A,G""(TotT) - A f G a ]  
ri = exp 

These equilibrium mole fractions are given in Table 7.2. 

(7.2- 1 4) 
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Table 7.2 
7.4, [Cl-] = 0.2 M, and 0.2 M Ionic Strength at  [heme] = 

Equilibrium Mole Fractions of Forms of the Tetramer at 21.4”C, 1 bar, pH 
M 

[O,] = xlO-‘M [OJ = 10 - 5 ~  [O,] = 2 x M 

0.317 
0.139 
0.0 17 
0.069 
0.458 

0.037 
0.033 
0.008 
0.065 
0.858 

Nore: See Problem 7.1. 

For these five forms of the tetramer, A,G”’(TotT) is the same as the binding 
potential II defined by Wyman (1948,1964) as II = RTlnP,  except for the 
difference in sign. The binding polynomial P is defined as (see Section 1.3) 

[MI + [ML] + [ML,] + .. 
[MI 

P =  (7.2-15) 

The binding polynomial for the binding of oxygen by the tetramer is given by 

P ,  = 1 + Kkl[02] + KklK&2[02]2 + Kk1Kk2Kk3[O2l3 

+ KkiKk2Kk3Kk,[OJ4 

= 1 + Kk,CO,l(l + K&,CO,I(1 + Kk,CO,I(1 + Kk,Co,l)>) (7.2-16) 

Binding potentials n become more positive with increasing stability, in contrast 
to Gibbs energies of formation which become more negative. The values of Af G”’ 
and Fl agree for the tetramer because of the convention that AfG”(T) = 0. But 
for the dimer D, these two physical quantities are not equal as shown in the next 
section. 

In this section we have seen that in addition to the Af G‘’ for the various forms 
of the tetramer at a specified pH, the sum of various forms of the tetramer have 
AfG”’ values that are function of [O,]. 

7.3 PARTIAL DISSOCIATION OF TETRAMERS 
INTO DIMERS 

The tetramer (a2P2) of hemoglobin is partially dissociated into dimers (2P). Mills, 
Johnson, and Ackers (1976) give the following value for the apparent equilibrium 
constant OK; (their symbol) for the association reaction in the absence of oxygen: 

(7.3.1) 

Therefore, since the standard transformed Gibbs energy of formation of T is taken 
as zero, the standard transformed Gibbs energy of formation of D is 30.083 kJ 
mol-’. The equilibrium constants for the dimer are given by 

D + 0, = D(OJ K;, = cD(02)1 = 3.253 x lo6 (7.3-2) 
CDICO2l 

D(0,) + 0, = D(02)2 K;, = CD(02)21 = 8.155 x los (7.3-3) 
CD(02)lCO21 

Since A,G’’(D) = 30.08 kJ mol-’, A,G”O(D) is given by (Alberty, 1996b) 

A,G”’(D) = 30.08 - R7ln  P,  (7.3-4) 
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Table 7.3 
of Formation A,G"O of Hemoglobin Dimer at 21.5'C, 1 bar, pH 7.4, [Cl-] = 0.2M, and 0.2M Ionic Strength 

Standard Transformed Gibbs Energy of Formation A,G" and Standard Further Transformed Gibbs Energies 

A,G"'(TotD),'kJ mol 

A,G"(TotD)/kJ mol- [O,] = 5 x lo-' M [0,]=10-' M [02]=2x  1 0 P M  

D 30.083 25 30.083 25 30.083 25 30.083 25 
D(O2) 9.447 23 23.250 50 21.552 40 19.854 30 

13.014 80 D(O,), -7.799 32 19.807 30 16.411 00 
A,G""(TotD)/kJ mol- 19.240 4 16.119 4 12.866 8 

K"(eq. 7.3-7) 9.508 x lo'* 8.956 x lo6 1.637 x lo6 0.982 x 10' 
ArG"O(eq 7.3-4)/kJ mol - 33.772 6% -39.217 3 -35.053 7 -33.802 7 

Source: Reprinted from R. A. Alberty, Biophys. Cliern. 62, 141-159 (1996), with permission from Elsevier Science. 
Note: See Problem 7.2. 

The corresponding binding polynomial for dimer is given by 

P,  = 1 + K;,[O,] + K;,[O,]' (7.3-5) 

Thermodynamic properties of dimmers are summarized in Table 7.3. 

equation 7.1-18) 
The fractional saturation of dimer Y, is given by the Adair equation (see 

(7.3-6) 

The binding curve for dimer, which does not have a cooperative effect. is shown 
in Fig. 7.2. 

The fundamental equations for the dimer are similar to those for the tetramer. 
Table 7.3 gives AfG"' and A,G"'(TotD) at the same three oxygen concentrations 
as Table 7.1. The standard transformed Gibbs energies of formation of the three 
forms of the dimer are based on the convention that AfG"(T) = 0. 

1x10" 2x10" 3x10" 4x 10 -I3 5x10" 

Figure 7.2 
binding constants in equations 7.3-2 and 7.3-3 (see Problem 7.4). 

Fractional saturation Y, of dimer with molecular oxygen calculated with the 
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The values of A,G"'(TotT) in Table 7.1 and AfG"'(TotD) in Table 7.2 make 
it possible to calculate the apparent equilibrium constant for the reaction 

2TotD = TotT (7.3-7) 

at three concentrations of molecular oxygen. The apparent equilibrium constant 
K " ,  which is a function of [O,], is defined by 

[TotT] 
[Tot D] 

K"  = (7.3-8) 

This apparent equilibrium constant can be written in terms of the binding 
polynomials of tetramer and dimer and "K';: 

(7.3-9) 

As [O,] approaches infinity, this apparent equilibrium constant approaches a 
limiting value because the reaction becomes 

2D(02)2 = T(02)4 (7.3- 10) 

in the limit of infinite [O,]. The value of this apparent equilibrium constant at 
very high oxygen concentrations is given by 

(7.3-1 1) 

Note that this equilibrium constant is 5 x lo4 times smaller than for 2D = T (see 
Problem 7.3). This is not unexpected because of the cooperative effect in the 
tetramer. 

rn 7.4 EXPERIMENTAL DETERMINATION OF SEVEN 
APPARENT EQUILIBRIUM CONSTANTS 

The fractional saturation of tetramer Y, and the fractional saturation of dimer YD 
are functions only of [O,] at specified 7; P,  pH, etc., as shown by equations 7.1-18 
and 7.3-6. However, since the tetramer form is partially dissociated into dimers, 
the fractional saturation of heme Y is a function of both [O,] and [heme]. Ackers 
and Halvorson (1974) derived an expression for the function Y([O,], [heme]). 
When Legendre transforms are used, a simpler form of this function is obtained, 
and it can be used to derive limiting forms at high and low [heme]. These limiting 
forms are of interest because they show that if data can be obtained in regions 
where Y is linear in some function of [heme], extrapolations can be made to 
obtain Y, and Y,. These fractional saturations can be analyzed separately to 
obtain the Adair constants for the tetramer and the dimmer (Alberty, 1997a). 

When the tetramer and dimer are in equilibrium, the fractional saturation of 
heme is given by 

Y = f D %  +fTYT (7.4-1) 

where fD = 2[TotD]/[heme] is the fraction of the heme in the dimer and 
fT = 4[TotT]/[heme] is the fraction of the heme in the tetramer. Since 
fT = 1 - f,, equation 7.4-1 can be written 

Y = YT + fD( YD - YT) (7.4-2) 

The concentration of heme in the solution is given by 

[heme] = 2[TotD] + 4[TotT] = 2[TotD] + 4K"[TotDI2 (7.4-3) 

where equation 7.3-8 has been used in writing the last form. Applying the 



130 Chapter 7 Thermodynamics o f  the Binding of Ligands by Proteins 

quadratic formula shows that the equilibrium concentration of TotD is given by 

- 2  + (4 + 16K”[heme])”2 
8K“ 

[TotD] = ~ 

The fraction of heme in the dimer is given by 

1 2[To t D] - ’’ = 2[TotD] + 4[TotT] - 1 + 2K”[TotD] 

Substituting equation 7.4-4 into equation 7.4-5 yields 

2 
.fD = 1 + (1 + 4K”[heme])i71 

Substituting this equation into equation 7.4-2 yields 

2(YD - Y,)  Y =  Y ,  + 
1 + ( I  + 4K”[heme])’ 

(7.4-4) 

(7.4-5) 

(7.4-6) 

(7.4-7) 

At specified [O,], Y is a function only of [heme] in a way that is described by 
three parameters, Y,, Y,, and K“. This equation is the same as that derived by 
Ackers and Halvorson (1974), although it has a rather different form. 

I f  it were possible to titrate hemoglobin with oxygen at sufficiently high 
[heme], Y,  could be obtained directly. However, for the values of the seven 
equilibrium constants obtained by Mills. Johnson, and Ackers (1976), the tet- 
ramer is partially dissociated at  the highest practical heme concentrations of 
about 5 mM. Equation 7.4-7 indicates that if Y can be determined at several high 
[heme], a linear extrapolation is possible (see equation 7.4-12). As is evident from 
equation 7.4-7, the question as to whether [heme] is high or low depends on 
whether [heme] > bK” or [heme] < $K“. Of course, this criterion depends on 
[O,]. In considering plots of Y versus some function of [heme], [heme] = + K “  
can be used to divide the dependence of Y on [heme] into high-heme and 
low-heme regions. If 4K”[heme] >> 1, equation 7.4-7 reduces to 

- ‘T) Y =  Y, + 
(K”)1’2[heme]1 

(7.4-8) 

Thus a plot of Y versus [heme]-”2 at a specified [O,] must approach linearity 
as [heme] is increased. The intercept of the limiting slope of a plot of Y versus 

at [hemel- ‘ I 2  = 0 is Y,, and the limiting slope is (Y,  - Y,) / (K”)1i2.  
This slope is determined by two factors, (Y,  - YT) and K ‘ I .  The slope will be low 
at high [O,] because Y, - YT is small. The slope will be low at low [O,] because 
K “  is large. Once Y, has been determined at  a series of [O,] by use of 
extrapolations of this type, Kk,, K&,, Kk3, and Kk4 can be calculated by the 
method of nonlinear least squares. 

The values of Y, at various [O,] can be determined by extrapolations at low 
[heme]. If 4K“[heme] << 1, the square root term in equation 7.4-7 can be 
rewritten using 

x 
(1 + x) l r2  % 1 + 7 (x << 1) (7.4-9) 

to obtain 

(‘D - ‘T) Y =  Y ,  + 
1 + K”[heme] 

Since 4K”[heme] << 1 is satisfied, we can use 

(7.4- 10) 

(7.4-1 1 )  
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I . 1 1 1 1 1 1 . I I . I I I I  [heme] 
500 1000 1500 2000 

Figure 7.3 Calculated plots of Y versus [hemel-' at five [O,], expressed as molar 
concentrations. Starting at the top the oxygen conentrations are 2 x lo-', lo-', 
5 x and 10-'M. The intercepts give values of Y,. [Reprinted from R. A. Alberty, 
Biophys. Chem. 63, 119 132 (1997), with permission from Elsevier Science.] 

to obtain 

Y = Y, - (Y,  - Y,)K"[heme] (7.4- 1 2) 

Thus as [heme] + 0, Y becomes a linear function of [heme], and Y approaches 
Y, in the limit of [heme] = 0. The condition that 4K"[heme] << 1 is hard to 
satisfy experimentally because low concentrations of heme have to be used. There 
is a steep slope at low [O,] because (Y, - Y,) and K "  are both large. Note that 
when the slope of a plot is large, the determination of the intercept is more 
uncertain. At high [O,] the slope will be smaller because (YD - Y,) and K "  are 
smaller. The determination of YD at a series of [O,] yields K ; ,  and K;,. 

Once YT and Y, have been determined by extrapolation, the slope of each plot 
at specified [O,] yields K " .  It is also possible to Calculate K "  from any measured 
Y value by use of equation 7.4-7 written in the form 

= K"  [2(YD - Y,)/Y- YT]2 - 1 
4[heme] 

(7.4- 1 3) 

The determination of K "  at a series of [O,] and knowledge of YT and YD as a 
function of [O,] makes it possible to calculate O K ;  (see equation 7.3-9), the 
apparent association constant for the reaction 2D = T at the specified 7; P, pH, 
[Cl-1, ionic strength, etc. 

To show how thc limiting forms of Y as a function of [heme] can be used to 
determine all the equilibrium constants for the binding of oxygen by hemoglobin 
that is partially dissociated into dimers, values of Y were calculated with the 
parameters at 21.4'C, pH 7.4, [Cl-] = 0.2 M, and 0.2 M ionic strength. These 
calculated values of Y were then plotted versus [heme]-''2. In Fig. 7.3, the 
intercepts at the Y axis corrrespond to bindings at very high heme concentrations 
where the dissociation into dimers is negligible. Thus the intercepts can be used 
to calculate the four equilibrium constants for the tetramer. These plots show that 
the extrapolation becomes linear as [heme] '/, is reduced. Since the limiting 
slope is (Y, - Y,)/(K ")1'2, the value of K "  at a particular [O,] can be calculated 
from the limiting slope after YT has been determined. 

To determine the binding constants for the dimer, Y is plotted versus [heme] 
at the lowest possible heme concentrations, as shown in Fig. 7.4. The intercepts 
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-- a [heme] 
2x10-R 4x10 ' 6x 10" 8x10-R 1x10 

Figure 7.4 Calculated values of Y versus [heme] at heme concentrations starting at the 
top of 2 x 5 x and 10-7M. The intercepts give the values of 
Y,. (see Problem 7.5). [Reprinted from R. A. Alberty, Biopkys.  Chem. 63, 119-132 (1997), 
with permission from Elsevier Science.] 

at the Y- axis correspond to the bindings by the dimer. Thus the intercepts can 
be used to calculate the two equilibrium constants for the binding of oxygen by 
the dimer. The plots show that the extrapolation becomes linear as [heme] is 
reduced to low values, but these have to be very low values, especially at [O,] 
that half saturate the dimer. The direct determination of KL1 and K ; ,  from 
oxygen binding experiments will require very low [heme], which has not yet been 
achieved in oxygen binding experiments. This may be achievable using long 
absorption cells, multipath cells, or a Fourier transform spectrometer. Since the 
limiting slope is (Y,, - YT)/8.2426(K " ) I i 2 ,  the value of K "  at a particular [O,] can 
be determined in this way. A check on the values of the seven apparent 
equilibrium constants is that they can be used to calculate the shapes of both of 
these plots, including the nonlinear regions. 

7.5 DISSOCIATION OF A DIPROTIC ACID 

Before discussing the effect of pH on protein-ligand equilibria, it is necessary to 
discuss an aspect of acid dissociations that was too advanced for Chapter 1. 
Consider a protein A that has two acid groups. The acid dissociation constants 
are defined by 

HA- = H +  + A'- K ,  (7.5-1) 

H,A = H f  + HA- K2 (7.5-2) 

The binding polynomial for this system is 

The average binding of hydrogen ions is given by 

[H+]dP - [H+]dln P 
. . -  " - Pd[H+] - d[Hf] 

(7.5-3) 

(7.5-4) 
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The plot of NH versus pH is the titration curve for H,A. Note that In P can be 
calculated by integrating (mH/[Hf])d[Hf]. Applying equation 7.5-4 to equation 
7.5-3 yields 

(7.5-5) 

At very high pH, the binding of H i  approaches zero, and at very low pH it 
approaches 2. 

There is another way to look at this binding, and that is to assume that the 
two groups are independent. In this case the dissociation reactions are written 

HA- = H +  + A2-  K l  (7.5-6) 

HAH = H f  + HA- K 2  (7.5-7) 

In other words, K~ is the dissociation constant for the left hydrogen atom and K ,  

is the dissociation constant for the right hydrogen atom. In this case the binding 
is simply the sum of the bindings at the two sites: 

(7.5-8) 

This equation can be rearranged to 

Thus 

(7.5- 10) 

K, = rcl + K ,  (7.5-1 1) 

If I C ~  << K,, K, is essentially equal to K~ and K, is essentially equal to K,. When 
the groups are independent, the binding polynomial is given by 

K, and K ,  can be evaluated by curve fitting the plot of P (equation 7.5-3) 
versus [H'], or better log P versus log[H+]. If these two dissociation constants 
have nearly the same magnitude, a quadratic has to be solved to evaluate K ,  and 
Kz: 

K ,  5 JK: - 4K,K2 
2 

(7.5- 13) K 2  = 

Note that K ,  cannot be equal to K , .  If the two groups are identical with 
dissociation constants K (in equations 7.5-6 and 7.5-7), K, = 4 2  and K2 = 2 ~ .  

If K 1  = K 2 ,  

Equation 7.5-4 yields 

P = ( l + F ) 2  (7.5- 14) 

(7.5- 15) 

(7.5- 1 6) 
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H 7.6 EFFECT O F  pH O N  PROTEIN-LIGAND EQUILIBRIA 

When the binding of a ligand by a protein is accompanied by the production or 
consumption of hydrogen ions, the apparent dissociation constant K ' for thc 
protein-ligand complex will be a function of the pH. The apparent dissociation 
constant is defined by 

(7.6-1) 

The abbreviations for reactants represent sums of species at a specified pH, and 
the expression for the equilibrium constant is written in t e r m  of concentrations 
because K' is taken to be a function of ionic strength as well as pH. The pH 
dependence of K '  can be written in terms of the binding polynomials of the three 
reactants (see equation 1.4-8): 

(7.6-2) 

where Krcf = [P][L]/[PL] is written in terms of species for a reaction that is 
independent of pH. The binding polynomials in equation 7.6-2 include all weak 
acid groups in the three reactants. 

If the ligand does not have pKs in the pH range studied. P(L,,,) = 1. In this 
case hydrogen ions are produced or consumed when there are acid groups in the 
binding site that have pKs in the pH range studied and the pKs of these groups 
are changed by the binding of the ligand. If the various acid dissociations of the 
protein are independent, the binding polynomials are written as products of terms 
of the form (1  + 10-PHH+pK1 ) 'I1 (1 + ~ o - P H + P K ~  ) -, when there are 1 1 ,  groups with 

pK, and n2 groups with pK,. However, i t  is not necessary to go this far in making 
assumptions. If the acid groups in the binding site are independent of the acid 
groups in the rest of the protein molecule, the binding polynomial for the protein 
is given by (Alberty, 2000d) 

P(P,ot) = '(Pnonsitc)'(Psite) (7.6-3) 

where P(P,,,,,it,) is the binding polynomial for the acid groups outside of the 
binding site and P(P,,,,) is the binding polynomial for the acid groups in the 
unoccupied binding site. In this equation the acid groups in the binding site are 
defined as the acid groups in the protein that undergo a shift in pK when the 
ligand is bound. This major step in the treatment of the effect of the binding of a 
ligand by a protein is possible if the binding of the ligand changes the pKs of only 
some of the acid dissociations of the protein. 

The corresponding binding polynomial for the protein with the binding site 
occupied (PL,,,) is given by 

P(PLtot) = P(Pnonsitc)P(PLsite) (7.6-4) 

where P(P,,,,nsite) is the same polynomial that is in equation 7.6-3 and P(PL,,,,) 
has the same number of terms as P(PSi,J. The nonsite groups can interact with 
each other, the site groups i n  the protein can interact with each other, and the 
site groups in the protein-ligand complex can interact with each other. 

Substituting equations 7.6-3 and 7.6-4 in 7.6-2 when the ligand does not have 
pKs in the pH range considered yields a simpler equation for the dependence of 
K' on pH: 

(7.6-5) 

This equation is important because it shows that the pH dependence of K '  is 
determined entirely by the pKs of the acid groups in the binding site when it is 
unoccupied and in the binding site when it is occupied by ligand. If the number 
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of acid groups in the site is small, their pKs in the unoccupied and occupied site 
can be calculated from the dependence of K '  on pH. Thus the determination of 
the pH dependence of K '  can yield important information about the acid groups 
in the binding site. If the effect of temperature on K '  is studied, the standard 
transformed enthalpies and entropies of the site can also be determined. 

As an application of equation 7.6-5, consider the effect of pH on the inhibition 
constants of fumarase, which have been determined for succinate, D-tartrate, 
L-tartrate, and meso-tartrate inhibitors (Wigler and Alberty, 1960). The kinetics 
of the conversion of fumarate to L-malate and the inhibition by these competitive 
inhibitors indicate that there are two acid groups in the catalytic site that affect 
the binding: 

(7.6-6) 

The binding by a competitive inhibitor can be represented by equation 7.6-5. 
The binding polynomial for the unoccupied site in the protein is given by 

p(p\,,c) = 1 + l O - P H + P h w  + ~ ~ - ~ P H + P K P S I + P ~ P S >  (7.6-7) 

The binding polynomial for the site when it is occupied by a competitive inhibitor 
is given by 

p(PL,,,,) = 1 + 10-pH+Phvi\l + ~ ~ - ~ P H ~ P ~ P L ~ I ~ P ~ P L F ~  (7.6-8) 

Substituting equations 7.5-7 and 7.5-8 in equation 7.5-5 yields 

1 + l Q - P H + P h m >  + 10-2pH+~hw + P h p \ i  

(7.6-9) K '  = Kref  1 + 10-pH+phrl\l + ~ ~ - ~ P H + P ~ P L S I + P K P L I ~  

The pKs of the acid groups in the catalytic site of fumarase at 298 K and an 
ionic strength of 0.01 M are given in Table 7.4 along with the equilibrium 
constants for the reference reactions. More information on the experimental 
determination of these parameters is available in Wigler and Alberty (1960). The 
pKs for the two acid groups in the unoccupied catalytic site of fumarase are 
pKPsl = 6.9 and pK,,, = 6.3. These two acid groups can be considered to be 
identical and independent because their difference is 0.6 = log 4. The pKs for 
site-L-tartrate are pK,,,, = 7.5 and pK,,,, = 7.4, indicating there is a cooperative 
effect because they are closer than 0.6 pH units (see Section 1.2). The acid 
dissociations of the ligands are ignored in these calculations because we are 
primarily concerned with what happens in the neighborhood of pH 7. With these 
values of the pKs, the pH dependence of the apparent equilibrium constant for 

Table 7.4 
Fumarase at 298.15 K and an Ionic Strength of 0.01 M 

pKs of Acid Groups in the Catalytic Site in 

Ligand PK, PK, Kref  

Unoccupied 6.9 6.3 
succinate 7.5 6.5 1.2 x 10-3 
D-tartrate 7.8 6.9 2.5 x 10- 
L-tartrate 7.5 7.4 4.1 10-3 
ineso-tartrate 7.1 5.7 4.6 

Source: With permission from P. W. Wigler and R. A. Alberty, J .  Am. 
Chem. SOC. 82, 5482 5488( 1960). Copyright 1960 American Chemical 
Society. 
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Figure 7.5 Plot of log K '  for the reaction site-L-tartrate = site + L-tartrate over a range 
of pH at 25°C and an ionic strength of 0.01 M. [With permission from R. A. Alberty, J .  
Phys. Chem. B 104, 9929-9934 (2000). Copyright 2000 American Chemical Society.] 
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the dissociation of L-tartrate from the complex is given by 
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1 + 1 0 - - p H + 6 . 9  + 1 0 - 2 p H + 1 3 . 2  

K'  = 'ref 1 + 1 0 - p H + 7 . 5  + 1 0 - 2 p H + 1 4 . 9  (7.6- 10) 
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The base 10 logarithm of K '  calculated using equation 7.6-10 is given as a 
function of pH in Fig. 7.5. The constant Kref = 4.1 x lop3 has been omitted in 
making Fig. 7.5 because it is not involved in the pH dependence. 

The change in binding of hydrogen ions in the dissociation of the site-L- 
tartrate complex can be calculated by taking the derivative of log K '  with respect 
to pH (equation 4.7-5). The pH dependence of ArNH is shown in Fig. 7.6. 

Since the products (unoccupied site plus L-tartrate) bind hydrogen ions less 
strongly than the complex, A,NH is negative at all pH values. Another way to 
express this is that hydrogen ions are produced in the dissociation, except in the 
limit of very high and very low pH values where A r N H  = 0. 

The preceding discussion has been concerned with the apparent dissociation 
constant of a protein-ligand complex and the change in binding of H +  in the 
dissociation of the ligand. Now we return to the discussion of the hydrogen ion 
binding (Chapter 1) of the unoccupied site of fumarase and especially the site 
occupied by L-tartrate. The average number of hydrogen ions bound by the 
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Figure 7.6 Plot of ArNH for the reaction site-L-tartrate = site + L-tartrate over a range of 
pH at 25°C and an ionic strength of 0.01 M. [With permission from R. A. Alberty, J .  Phys.  
Chem. B 104, 9929 9934 (2000). Copyright 2000 American Chemical Society.] 
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Figure 7.7 Plot of the average number of hydrogen ions bound by the unoccupied 
catatytic site of fumarase at 25°C and an ionic strength of 0.10 M. [With permission from 
R. A. Alberty, J .  Phys. Chenz. B 104,9929-9934 (2000). Copyright 2000 American Chemical 
Society.] 

catalytic site is given by R, = - (l/ln 10)d In P(P,,,,)/pH. This quantity for the 
unoccupied site is plotted in Fig. 7.7. 

This plot has the same shape as the titration curve of a single site because 
K ,  = 4K,, but with the ordinate multiplied by 2. 

The binding capacity for hydrogen ions is defined by 

1 d21nP dRH 
dpH ln(10) dpH2 

- (7.6-1 1) 

Di Cera, Gill, and Wyman (1988) adopted this name because this quantity is 
analogous to the heat capacity, which is given by the second derivative of the 
Gibbs energy G with respect to temperature (equation 2.5-25). They pointed out 
that the binding capacity is a measure of cooperativity. 

The binding capacity for the unoccupied site, which is calculated using 
equation 7.6-11, is plotted versus pH in Fig. 7.8. The number of hydrogen ions 
bound by the catalytic site in the fumarase-r. -tartrate complex is plotted in Fig. 
7.9. This is steeper than the titration curve of a diprotic acid with identical and 
independent groups. The binding capacity for the site occupied by meso-tartrate 
is shown in Fig. 7.10. The slope of the binding curve is steeper than for the 
unoccupied site shown in Fig. 7.6, as expected since the binding is cooperative. 

The preceding example of the determination of the pKs of acid groups in the 
binding site of a protein and the binding capacity is based on the study of the 
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Figure 7.8 Plot of the binding capacity (see equation 7.6-11) for an unoccupied catalytic 
site of fumarase at 25°C and an ionic strength of 0.01 M. [With permission from R. A. 
Alberty, J .  Phys. Chem. B 104, 9929-9934 (2000). Copyright 2000 American Chemical 
Society.] 
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Figure 7.9 Plot of the average number of hydrogen ions bound nk, by the catalytic site 
of fumarase occupicd by L-tartrate at 25'C and an ionic strength of 0.01 M. [With 
permission from R. A. Alberty, J .  Phys. C'hcm. B 104, 9929-9934 (2000). Copyright 2000 
American Chemical Society.] 

competitive inhibition of an enzyme, but the method of curve fitting the pH 
dependence of K '  (see equation 7.6-9) can be used when the apparent equilibrium 
constant can be measured spectrophotometrically or by equilibrium dialysis 
(Klotz, 1997). 

rn 7.7 CALCULATION OF STANDARD TRANSFORMED 
GIBBS ENERGIES OF FORMATION OF THE 
CATALYTIC SITE OF FUMARASE 

The apparent equilibrium constant for a biochemical reaction at a specified pH 
can be calculated from the standard transformed Gibbs energies of formation of 
the reactants, and the standard transformed Gibbs energy of formation of the 
reactants are calculated using isomer group thermodynamics (see Section 4.5- 1 ). 
Alberty (1999a) has shown that AfG:' for a biochemical reactant is given by 

A,G;O = A,G',' - RTln P (7.7-1) 

where AfG;' is the standard transformed Gibbs energy of formation for the species 
with the fewest hydrogen atoms and P is the binding polynomial for the reactant. 
This equation can be applied to the enzymatic site for fumarase and to the 
complexes formed with competitive. inhibitors (Alberty, 2000d). 

dNii (PLtotYdpH 
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f . . . _  I _ . . _  I . . _ _  I . . . . ,  ,,H 
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Figure 7.10 Plot of the binding capacity (see equation 7.5-11) for the catalytic site of 
fumarase occupied by L-tartrate at 25°C and an ionic strength of 0.01 M. [With permission 
from R. A. Alberty, J .  P h j ~  Chern. B 104, 9929-9934 (2000). Copyright 2000 American 
Chemical Society.] 
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Table 7.5 
of Fumarase in kJ mo1-l at 25 C and Ionic Strength 0.01 M 

Standard Transformed Gibbs Energies of Formation for the Catalytic Site 

PH 5 PH 6 PH 7 PH 8 PH 9 

site 
succinate 
site-succinate 
D-tartrate 
site-D - tartrate 
L-tartrate 
site-L-tartrate 
meso- tart rate 
site-meso-tartrate 

- 18.39 
- 576.28 
- 615.86 

114.16 
72.45 

114.16 
72.56 

114.16 
101.51 

- 7.96 
- 553.45 
- 582.23 

136.99 
106.43 
136.99 
106.71 
136.99 
133.36 

- 1.66 
- 530.62 
- 551.35 

159.83 
138.75 
159.83 
140.02 
159.83 
161.52 

-0.19 
- 507.78 
-525.15 

182.66 
166.52 
182.66 
168.21 
182.66 
186.15 

- 0.02 
- 484.95 
- 501.70 

205.49 
190.48 
205.49 
191.78 
205.49 
209.24 

Source: [With permission from R .  A. Albcrty. J .  PhJs. Chem. B 104,9929-9934 (2000). Copyright 2000 
American Chemical Society.] 
*This table is based on the convention that A[@ = 0 at 25‘C and zero ionic strength for the doubly 
charged ions of D-tartrate. L-tartarate, and meso-lartratc. In addition, the convention is that A,G’” = 0 
for the binding site at high pH. 

The apparent dissociation constant of the fumarase site-succinate complex to 
yield unoccupied site and succinate is represented by the following function of pH: 

(7.7-2) 

According to equation 7.1-19, this K’ is given by 

- RTln K’ = A,G”(site) + A,G‘O(SUCC) ~ A,G”(site-succ) (7.7-3) 

The value of A,Go(succ2-) at 25°C and zero ionic strength is -690.44 kJ mol-’, 
and the pH dependence of A,G’o(succ) is given by -690.44 - 4RTln (see 
equation 4.4-lo), neglecting the effect of the binding hydrogen ions at lower pH 
values. This value is independent of the ionic strength because 2; = NH(i). 
A,G’”(site) is taken as zero in the limit of high pH by convention so that 

A,G”(site) = -RTln(l  + 106.y-pH + 1013.3-2pH 1 (7.7-4) 

Equation 7.7-3 can be written as 

) K ‘  + 1013.3-2pH RTln(1 + i 0 6 . 9 - p H  

= -RTln - 960.44 - 4RTln(lOPPH) - A,G”(site-succ) (7.7-5) 

Substituting equation 7.6-2 yields 

A,G”(site-succ) = - 707.11 - 4RTlr1(10-~~) 

~ ~ l ~ ( l  + 1 0 7 . 5 - p ~  + 1014.0-~PH ) (7.7-6) 

The values of A,G” for the catalytic site, succinate, and site-succinate calculated 
in this way are shown in Table 7.5. Similar calculations have been made for 
D-tartrate, L-tartrate, and meso-tartrate using data from Table 7.4. Since the AfGo 
values for these three reactants are not known, the convention has been adopted 
that they are equal to zero. Table 7.5 shows that standard transformed Gibbs 
energies of formation at specified pH values can be calculated for an unoccupied 
binding site and the binding site occupied by a ligand. 
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Two-Phase Systems without Chemical 
Reactions 

Two-Phase System with a Chemical Reaction 
and a Semipermeable Membrane 

Two-Phase System with a Chemical Reaction 
and Membrane Permeable by a Single Ion 

Two-Phase System with a Chemical Reaction 
and Membrane Permeable by a Single Ion 

Transformed Gibbs Energy of a Two-Phase 
System with a Chemical Reaction and a 
Membrane Permeable by a Single Ion 

Effects of Electric Potentials on Molar 
Properties of Ions 

Equilibrium Distribution of Carbon Dioxide 
between the Gas Phase and Aqueous Solution 

Phase Separation in Aqueous Systems 
Containing High Polymers 

When a system involves two or more phases, there is a single fundamental 
equation for the Gibbs energy that is the sum of the fundamental equations for 
the separate phases: dG = dG, + dG, + .... The fundamental equation for the 
system provides the criterion for spontaneous change and equilibrium. However, 
there is a separate Gibbs-Duhem equation for each phase because any intensive 
property of a phase is related to the other intensive properties of that phase. In 
the treatments here the amount of material in the interface is ignored on the 
assumption that the amounts there are negligible compared with the amounts in 
the bulk phases. The effects of small pressure differences between the phases are 
also ignored. New phases may form spontaneously under certain circumstances, 
but phases can also be separated by membranes with specified permeabilities. 

Phase equilibrium across semipermeable membranes is of special interest in 
biological applications. First, we will consider two-phase aqueous systems with- 
out chemical reactions, then introduce reactions, and finally electric potential 
differences between phases. The numbers of intensive degrees of freedom F and 
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extensive degrees of freedom D have been discussed in Chapter 3, and F'  and D' 
at specified pH have been discussed in Chapter 4. That discussion is continued 
here. The distribution of carbon dioxide between the gas phase and aqueous 
solution is discussed as a function of pH and ionic strength. 

8.1 TWO-PHASE SYSTEMS WITHOUT CHEMICAL 
REACTIONS 

One Species, Two Phases 

This system is not useful for representing a biochemical system but is needed as 
a foundation. The fundamental equation for G for a system containing alpha and 
beta phases 

dG = - SdT+ VdP + pAzd/TA1 + pAgdMA,j (8.1-1) 

This shows that the natural variables for G for this system before phase 
equilibrium is established are 7; P,  nAa, and t7!,. When A is transferred from one 
phase to the other. di?,, = - dnA8. Substituting this conservation relation into 
equation 8.1 -1 yields 

(8.1 -2) 

which shows that / i A S  = pAO = p ,  at phase equilibrium. Substituting this equilib- 
rium condition in equation 8.1-1 yields 

dG = - SdT+ VdP + ( ~ 1 . 4 ~  - /L,%p)dlZA1 

dG = - SdT+ VdP + p,(dn,, + drtA0) = - SdT+ VdP + /[,d/l,q (8.1-3) 

where IZ,, is the amount of component A in the two-phase system. This 
fundamental equation shows that the system at phase equilibrium has D = 3 
natural variables, which seems to suggest 7; P, and ncA.  However, we will see in 
the next paragraph that this is not a suitable choice of natural variables. The 
Gibbs-Duhem equations for the two phases at phase equilibrium are 

0 = ~ S,dT+ l j d P  - nA,d/lA 

0 = - S,dT+ VOdP - ltAadL1, 

(8.1-4) 

(8.1-5) 

Eliminating dp, between these two equations yields the Clapeyron equation 

d P  AH,, 
d T TA V,, 

- (8.1 -6) 

where AH = HmAa - H,,, = T(S,,, - S,,& is the change in molar enthalpy and 
AVm is the change in molar volume in the phase change. Thus the pressure can 
be taken to be a function of the temperature, or the temperature can be taken to 
a function of the pressure. This indicates that a two-phase system with a single 
species has a single independent intensive variable, in agreement with the phase 
rule F = C - p  + 2 = 1 - 2 + 2 =  1. 

Using the Clapeyron equation to eliminate d P  from equation 8.1-1 and 
substituting /iAa = 1 - 1 , ~ ~  yields 

(8.1-7) 

This form of the fundamental equation, which applies at equilibrium, indicates 
that the natural variables for this system are 7: nAar and nA8. Alternatively, P,  nAZ, 
and n A p  could be chosen. Specification of the natural variables gives a complete 
description of the extensive state of the system at equilibrium, and so the criterion 
of spontaneous change and equilibrium is dG < 0 at constant 7; i t4z,  and H,, ,~ or 
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dG < 0 at constant P, itAa, and itAB. The natural variables for a multiphase system 
must include extensive variables that are related to the sizes of all the phases, since 
the amounts of the various phases are independent variables. The number D of 
natural variables is in agreement with D = F + p because this yields 
D = 1 + 2 = 3. In summary, a suitable choice of natural variables includes F 
intensive variables and p extensive variables, which may be taken as the amounts 
in the p phases. 

Two Species, Two Phases 

The fundamental equation for G is 

dG = - SdT+ VdP + pAadnAz + pBrdYlg, + pAlidnAli + pBsdnBO (8.1-8) 

This can be used to derive two equilibrium expressions that convert this 
fundamental equation to its form at phase equilibrium, which is 

dG = - SdT+ VdP + ,uAdn,,\ + pUdnCB (8.1-9) 

where p i L 4  is the amount of the A in the system and ncB is the amount of B in the 
system. This shows that the system at phase equilibrium has D = 4 natural 
variables, which can be taken to be 7; P ,  nLA and ncR. The Gibbs-Duhem 
equations for the two phases at equilibrium are 

0 = - S,dT+ I/,dP - nA,dpA - nBzdpB (8.1 - 10) 

(8.1-11) 

dpB can be eliminated between these two equations to obtain pA as a function of 
T and P. Thus F = 2. The relation D = F + p is satisfied, and the natural 
variables can be taken to be 7; P, ltcA. and ncB, although it might be more 
convenient to use 7; P, nv, and no, where n, = nAa + nu,. 

N, Species, Two Phases 

When there are N ,  species the fundamental equation for G can be written 

N .  N jj 

dG = - SdT+ VdP + C piadnix + 1 pigdnig (8.1-12) 
i = l  i =  1 

where there is a term for each species in each phase. This equation can be used 
to derive the N ,  equilibrium conditions pj ,  = pis.  Substituting these equilibrium 
conditions in the fundamental equation yields 

C 

dG = - SdT+ VdP + ,Liidncj (8.1 - 1 3) 
i =  1 

The number C of components is equal to the number of terms in the summations 
in equation 8.1-12 minus the number N, of independent equilibria between phases, 
that is, C = 2N, - N ,  = N,.  Equation 8.1-13 shows that there are 
D = C + 2 = N ,  + 2 natural variables. The Gibbs-Duhem equations for the two 
phases are 

N ,  

0 = - S,dT+ V,dP - ni,dpi (8.1 - 14) 
i = l  

NS 

0 = - SsdT+ I/;,dP - 2 ttisdpi 
i =  1 

(8.1 - 1 5 )  

Since there are N ,  + 2 intensive variables and two relations between them, 
F = N,. This is in agreement with D = F + p .  The criterion for spontaneous 
change and equilibrium for this system is dG < 0 at constant ?; P, and (nCij .  
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8.2 TWO-PHASE SYSTEM WITH A CHEMICAL 
REACTION AND A SEMIPERMEABLE MEMBRANE 

Consider an aqueous two-phase system containing A, B, C, and solvent H,O in 
which the reaction A + B = C occurs. The two phases are separated by a 
membrane, and the membrane is permeable to all four species. The fundamental 
equation for the Gibbs energy of the a phase is 

dG, = - S,dT+ KdP + p,&nAa + + + PH2ordnH2Oa (8.2-1) 

The corresponding equation for the f l  phase is 

dG, = - 'fldT+ 'OdP + p.4/JdnAB $- pBBdnBB + k / l d n C B  + !-lH20/ld?1H20fl 

(8.2-2) 

These equations can be used to show that at chemical equilibrium pAa + pBz = pcX 
and pAa + pss  = pea. Substituting these equilibrium conditions into equation 
8.2-1 yields 

dGa - S ~ d T +  KdP + pAidncAa + pBadncBa + pH20rdnHzOz (8.2-3) 

where the amount of the A component is ncAn = nAa + n,, and the amount of the 
B component is ncBa = nsz + nCz. The corresponding fundamental equation for 
the f l  phase is 

dG, = - bdP + pA/jdnc,4/, f pB/jdncB8 + pH20/jdnH20/j (8.2-4) 

The fundamental equation for the Gibbs energy of the system at chemical 
equilibrium in each phase is the sum of equations 8.2-3 and 8.2-4: 

d c  = - SdT+ VdP + ~ . d n c A a +  pBzdnci5, + pH2OdnHzOa 

+ ~Agdn,AiI + iunpdr~cnp + 1-1H~oodnH,Op (8.2-5) 

This equation can be used to show that pAa  = pA0 = pA, pB, = pBB = p,, and 
pHZOa = ,uHZoB = pHzo. When these phase equilibrium conditions are inserted in 
equation 8.2-5, it becomes 

d C  = - SdT+ VdP + ,uAdncA + ,uBdnCB + pHzOdncHz0 (8.2-6) 

where nci represents the amount of component i in the system. The amount of 
component A in the system is represented by ncA = ncAz + ncAp, and the amount 
of the solvent is represented by ncHzOn = nHzOB + itHzo,. Equation 8.2-6 indicates 
that there are D = 5 natural variables, and that they might be taken to be 7; P, 
ncA, itcB, and in the criterion of spontaneous change and equilibrium: dG < 0 
at constant 7: P, ncA, ncB, and ncllz0. 

The Gibbs-Duhem equations for the two phases at equilibrium can be derived 
from equations 8.2-3 and 8.2-4: 

= - 'ndTf 'zdP - ncAzdblA - ncBadpB - IZHzOzdpH,O 

0 = - S,dT+ VodP - nCApdpA - ncBBdpB - nHzOBdpHzO 

(8.2-7) 

(8.2-8) 

where the phase subscripts on the chemical potentials have been dropped because 
of phase equilibrium. dp(H20 can be eliminated between these two equations, and 
the resulting equation can be solved for dpB, which is a function of 7: P, and pA. 
Thus there are three independent intensive properties, in agreement with 
F = C ~ p + 2 = 3 - 2 + 2 = 3. This is in agreement with D = F + p = 

3 + 2 = 5. The natural variables for the expression of the criterion for sponta- 
neous change and equilibrium based on G might bc taken to be 7: P ,  ncAlinCH, 17, .  

and nB, where it, = nA, + tiBa + i g c z  + nSz .  Then the equilibrium condition would 
be d C  d 0 at constant '17 P, ncA/ncR, n,, and nil,. 

If the phases are both dilute aqueous solutions and the membrane separating 
the phases is permeable to all species, the species will have the same concentra- 
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tions in the two phases, and an equilibrium relation of the form 

(8.2-9) 

will be satisfied in each phase and in the system as a whole. 

8.3 TWO-PHASE SYSTEM WITH A MEMBRANE 
PERMEABLE BY A SINGLE ION 

When two different phases are separated by a membrane permeable by a single 
ion and that ion has different activities on the two sides of the membrane, an 
electric potential difference will be set up at equilibrium (Alberty, 1995a, d, 1997). 
We first consider a two-phase system with an aqueous solution of a single salt on 
both sides of a membrane that is permeable only to cation C. When electrolytes 
are involved, it is necessary that counterions be present because bulk phases are 
electrically neutral. When cation C diffuses through the membrane into the f i  
phase, the f i  phase becomes positively charged with respect to the a phase. 
Diffusion stops when a sufficient difference in electric potential has been estab- 
lished. When a conductor is charged, the charge migrates to the surface, and for 
an aqueous solution of a salt this occurs in the charge relaxation time of about 
one nanosecond. Thus a positively charged layer is formed at the surface of the 
membrane toward the f i  phase and a negatively charged layer is formed at the 
surface of the membrane toward the 2 phase. The thickness of the layer in each 
aqueous phase is the Debye length of about 1 nm at an ionic strength of 0.1 M. 
The amount of charge required to set up a significant potential difference between 
the phases is very small. Many biological membranes have capacitances of about 
one microfarad per square centimeter (Weiss, 1996). The charge transfer per 
square centimeter required to set up a potential difference of 0.1 V is therefore 

mol of singly charged ions. As the electric potential of the f i  phase increases 
due to the diffusion of cation C,  the process of diffusion slows and an equilibrium 
potential difference is reached. 

The fundamental equations for G for the phases on either side of the center 
of the membrane are 

dG, = - S,dT+ V,dP + ,ucadnC, + +,dQ, 

dG, = - S,dT+ 5 d P  + p,,dn,, + +,dQB 

(8.3-1) 

(8.3 -2) 

where n,, is the amount of cation C in the a phase and Q is the amount of charge 
transferred across the center of the membrane. No term is included for the 
monovalent anion A because its concentration in the bulk phase is equal to that 
of the monovalent cation C. Since dnAa = dnCa, the inclusion of a term for A in 
equation 8.3-1 would yield (pC, + ,uAn)dnCa. However, since the chemical potential 
can be defined for an arbitrary reference potential (cf, AfGP), ,uAor can be set equal 
to zero. 

Since -dQ, = dQ, = dQ, the fundamental equation for G for this two-phase 
system prior to the establishment of phase equilibrium is the sum of equation 
8.3-1 and 8.3-2: 

dG = - SdT+ VdP + ,uCndnCa + ,u,,dn,, + ($, - 4,)dQ (8.3-3) 

There is difference in electric potential across the membrane. So there is an electric 
field in the membrane, but there are no electric fields in the two bulk phases. The 
electrical work required to move charge dQ across the center of the membrane is 
(& ~ 4,)dQ. The polarization of the membrane does not change in this process 
of charge transport because the potential difference is constant. Since 
dnC, = - dn,,, equation 8.3-3 can be used to show that at phase equilibrium, 
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/iCz = ,uCg = p,. Substitution of this relation in equation 8.3-3 yields 

dG = - SdT+ VdP + p,dnCC + (d>/j - d),)dQ (8.3-4) 

where n,, is the amount of the component C. This indicates that there are four 
natural variables for this system, D = 4. Integration of equation 8.3-4 at constant 
values of the intensive variables yields 

G = Ycncc + ( d / ~  - d’aJQ (8.3-5) 

The Gibbs-Duhem equations for the two phases at phase equilibrium are 

0 = - S,dT+ I/,dP - nCadpc - Q,dqh, (8.3-6) 

(8.3-7) 

This looks like there are five intensive variables, but there are not because only 
the difference in electric potentials between the phases is important. We can take 
qha = 0 and delete the electric work term in equation 8.3-6. Since there are four 
intensive variables and two equations, F = 2, in agreement with F = 

C - p + 2 = 2 - 2 + 2 = 2. Note that Q p  is taken as a component. This leads to 
D = F + p = 2 + 2 = 4 in agreement with equation 8.3-4. 

In considering the thermodynamics of systems in which there are electric 
potential differences, the activity ui of an ion can be defined in terms of its 
chemical potential p; and the electric potential 4i of the phase it is in by 

illi = p: + RTln ai + F z i 4 ,  (8.3-8) 

where py is the standard chemical potential in a phase where the electric potential 
is zero, F is the Faraday constant, and zi is the charge number. This is the 
arbitrary introduction of a property of a species, the activity. that is more 
convenient in making calculations than the chemical potential of the species. 
According to equation 8.3-8 the chemical potential of an ion is a function of d)i 
as well as ui. The activity here has the same functional dependence on intensive 
variables in the presence of electric potential differences as in the absence of 
electric potential differences. When equation 8.3-8 is substituted in p, ,  = ,ucca, we 
obtain 

or 

(8.3-9) 

(8.3-10) 

based on the convention that = 0. This is referred to as the membrane equation, 
and it has been very useful in research on ion transport and nerve conduction. It 
is really a form of the Nernst equation (equation 9.1-4). 

W 8.4 TWO-PHASE SYSTEM WITH A CHEMICAL 
REACTION AND A MEMBRANE PERMEABLE BY A 
SINGLE ION 

In this system the reaction A + B = C occurs in both phases, but only C can 
diffuse through the membrane (Alberty, 1997d). The fundamental equation for G 
is 
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The reactions in the system are represented as 

A, + B, = C, (8.4-2) 

(8.4-3) 

(8.4-4) 

Note that the phase transfer is treated like a chemical reaction. When the 
equilibrium conditions for these three reactions are introduced into equation 
8.4-1, we obtain 

dG = - SdT+ VdP + P A & ~ A ,  + ~ASdn,,qj + ~ c d l ~ , c  + (4, - 4 J d Q  (8.4-5) 

The partial derivative of the Gibbs energy with respect to the amount of a 
component yields the chemical potential of a species (Beattie and Oppenheim, 
1979). 

(8.4-6) 

The criterion for equilibrium based on G is dG < 0 at constant 7; P, nLAa, I Z , ~ , ,  

nee, and Q. Integration of equation 8.4-1 at constant values of the intensive 
variables yields 

G = P A A A ~  + pAfinc4p + Pc’,c + ( 4 ~  - 4JQ (8.4-7) 

The Gibbs-Duhem equations for the two phases are 

0 = - S,d T + I/,dP - ncA,dpAa - ncsadpc 

0 = - S,dT+ I/;,dP - ncABdpA, - nCcBdpc - Qdq5,J 

(8.4-8) 

(8.4-9) 

where 4, has been taken equal as zero. Since there are six variables and two 
equations, F = 4, which can be taken to be 7; P ,  p A a ,  and &. The number of 
independent intensive variables can also be calculated using the phase rule: 
F = C - p + 3 = 3 - 2 + 3 = 4, where the 3 is for 7; P ,  and (PR. The number D 
of natural variables is given by D = F + p = 4 + 2 = 6. 

The equilibrium expressions for reactions 8.4-2 to 8.4-4, which are derived 
from the equilibrium conditions using equation 8.3-8, are 

%a (8.4- 10) K ,  = ~ = exp[ - p: - p l -  ,ui)/R T ]  
‘Aa‘Ba 

(8.4-1 1) uc, 
K -- = exPC-(P: - P i  - P W T I  ’ - uApaBp 

(8.4-12) 

The effect of the electric potential cancels in a chemical reaction in a phase. Note 
that uc, and uCa are not independent variables in the chemical reaction system. 
Substituting the equilibrium concentrations of C from equations 8.4-10 and 8.4-1 1 
in equation 8.4-12 yields 

or 

(8.4- 13) 

( 8.4- 14) 

This shows how a chemical reaction can establish an electric potential difference 
between phases. This potential difference can then be used to transport other ions 
between the phases against their concentration gradients. 
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H 8.5 TRANSFORMED GIBBS ENERGY OF A TWO-PHASE 
SYSTEM WITH A CHEMICAL REACTION AND A 
MEMBRANE PERMEABLE BY A SINGLE ION 

The equilibrium relations of the preceding section were derived on the assumption 
that the charge transferred Q can be held constant, but that is not really practical 
from an experimental point of view. It is better to consider the potential difference 
between the phases to be a natural variable. That is accomplished by use of the 
Legendre transform (Alberty, 1995c; Alberty, Barthel, Cohen, Ewing, Goldberg, 
and Wilhelm, 2001) 

G’ = G - $aQ (8.5-1) 

that defines the transformed Gibbs energy G‘. Since 

dG‘ = dG - 4adQ - Qd&a (8.5-2) 

substituting equation 8.4-5 with $ a  = 0 yields 

dC’ = - SdT+ VdP + pAzdncAa + pAOdncAa + pcdncc ~ Qdd, (8.5-3) 

To learn more about the derivatives of the transformed Gibbs energy, the 
chemical potentials of species are replaced by use of equation 8.3-8 to obtain 

dG’ = - SdT+ VdP + (pi + RTln uAa)dnCAl + ( p i  + RTlnii,, + FzA‘bg)ducAg 

+ (,u~RTIna,,)dn,, - Qd4, (8.5-4) 

Thus 

= p i  + RTlna,, = p i z  (8.5-5) kE) 1.P .Jl, .IIL( ,& 

where pa, is the transformed chemical potential of A in the r phase. This 
corresponds with writing equation 8.3-8 as 

pi = p ;  + FZi4i (8.5-6) 

Thus pi  is equal to the chemical potential of i in a phase where 
Equation 8.5-3 indicates that the number of natural variables for the system 

is 6, D = 6. Thus the number D of natural variables is the same for G and G‘, as 
expected, since the Legendre transform interchanges conjugate variables. The 
criterion for equilibrium is dC‘ < 0 at constant rP,ncA,, ticAa. ticc, and The 
Gibbs-Duhem equations are the same as equations 8.4-8 and 8.4-9, and so the 
number of independent intensive variables is not changed. Equation 8.5-3 yields 
the same membrane equations (8.4-13 and 8.4-14) derived in the preceding 
section. 

The integration of equation 8.5-3 at constant values of the intensive variables 
yields 

(8.5-7) 

= 0. 

” = !‘Azr7cAz + ~A/J”CA[ I  + k J 7 K  

which agrees with equations 8.4-7 and 8.5-1. 

H 8.6 EFFECTS OF ELECTRIC POTENTIALS ON MOLAR 
PROPERTIES OF IONS 

The fundamental equation for G for a two-phase system with a potential 
difference can be written 

dG = - SdT+ VdP + 1 ,u,,dnin + 1 p,Bdn,/, + d)/,dQ (8.6- 1 ) 
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where 4% = 0. Integration at constant values of intensive variables yields 

G = 1 P i z n i a  + 1 Pionia + 4PQ (8.6-2) 

The entropy of the system can be obtained by use of the following derivative: 

(8.6-3) 

Taking this derivative of G yields 

S = 1 MiaSmia + 1 M i p S r n i o  (8.6-4) 

where Smi is the molar entropy of i. Substituting p i  = 

yields 
+ F z , ~ ~  in equation 8.6-2 

G = 1 &,ni, + 1 &finio + ‘$a C Zinio  + 4oQ (8.6-5) 

Taking the derivative in equation 8.6-3 yields 

S = 1 + 1 njsS;ill (8.6-6) 

where Ski is the transformed molar entropy of i. Comparing this equation with 
equation 8.6-4 shows that the molar entropy if a species is not affected by the 
electric potential of a phase, thus Smi = Ski and S = S’. 

The corresponding molar enthalpy is obtained by use of the Gibbs-Helmholtz 
equation: H = - T2[(d(G/T)/dT],. Applying the Gibbs-Helmholtz equation to 
equations 8.6-2 and 8.6-5 yields 

H = n i a f f m i a  + C nioffmio + 4oQ (8.6- 7) 

where Hmi is the molar enthalpy of i, and 

H = C niaHbiz + 1 nioHdiP + F 4 b  C zini + 4oQ (8.6-8) 

where Hki is the transformed molar enthalpy. Comparing equation 8.6-7 and 8.6-8 
shows that 

Hmi = Hki + F Z i &  (8.6-9) 

Thus the molar enthalpy of an ion is affected by the electric potential of the phase 
in the same way as the chemical potential. 

In 1974 IUPAC (Parsons, 1974) recommended that the electrochemical 
potential jii be defined by 

j& = pj + F Z i 4  (8.6-10) 

where p i  was referred to as the chemical potential. There are several problems 
with this recommendation. The electrochemical potential is actually the chemical 
potential defined by equation 8.4-6. The quantity represented by p i  on the 
right-hand side of equation 8.6-1 0 is the transformed chemical potential pI defined 
by equation 8.5-5. According to the equations presented here, the chemical 
potential for an ion should be defined by equation 8.3-8, rather than by equation 
8.6- 10. Guggenheim (1 967) wrote 

pi = RTIn 1; + RTln ai + F Z , ~ ~  (8.6-11) 

and pointed out that 1: is independent of the electric potential of a phase. Thus 
his equation is the same as equation 8.3-8 with a different symbol for the constant 
term. Physicists consider that the chemical potential p i  of an electron in a metal 
includes a contribution due to the electrostatic energy of the electron and is 
constant throughout the system, so their use of the chemical potential pi is the 
same as that recommended here. 
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8.7 EQUILIBRIUM DISTRIBUTION OF CARBON 
DIOXIDE BETWEEN THE GAS PHASE AND 
AQUEOUS SOLUTION 

The distribution of carbon dioxide between the gas phase and aqueous solution 
is much more complex than the distributions of H,, O,, and N, because in the 
aqueous phase, carbon dioxide is distributed between CO,( as), H,CO,. HCO,, 
and COi- .  This equilibrium can be treated with data in the NBS Tables (1982), 
even though it only provides data on CO,(g), H,CO,(ao), HCO,(ao), and 
CO: -(ao). The "ao" designates undissociated molecules in water.The standard 
formation properties from the NBS Tables are given in Table 8.1. The entry for 
H,CO,(ao) is simply the sum of the entries for CO,(ao) and H,O(ao). The 
introductory material of the NBS Tables explains that some species in aqueous 
solution are listed with two or more formulas that differ only in the number of 
molecules of water contained in them. These forms are referred to as being 
equivalent in the sense that the thermodynamic properties of each pair are 
connected by the formal chemical equation 

A(aq) + nH,O(l) = A .  IzH,O(aq) (8.7-1) 

for which A , H o  = A,Go = A,S" = 0 by convention. Thus the arbitrary convention 
is that K = 1 at each temperature for this reaction. This convention is necessary 
when there is no way to distinguish between A(aq) and A.nH,O(aq) in dilute 
aqueous solutions. The number M of water molecules bound cannot be determined 
by equilibrium measurements because the concentration of H,O cannot be 
changed (Alberty, 2002b). This convention is also used in the NBS Tables (1982) 
for SO, and H,SO,, NH, and NH,OH, Fe0;- and Fe(OH):-, and so on. Thus 
the entry for H,CO,(ao) in the NBS Table is simply the sum of the entries for 
COJao) and H,O(ao). 

Dissolved carbon dioxide is different from species like SO, and NH,  in 
aqueous solutions in that the hydration reaction is slow enough ( t ,  , = 15 seconds 
at pH 7 and 298 K) so that the rate constants involved can be determined and 
can be used to calculate the hydrolysis equilibrium constant (Edsall, 1969) at 
298.15 K in terms of species for 

CO,(sp) + H20(1) = H,CO,(sp) K,, = 2.584 x lo-,  (8.7-2) 

The slowness of this reaction leads to a fading end point when a solution 
containing bicarbonate is titrated with sodium hydroxide using methyl orange as 
an indicator. The rate of liberation of CO, from carbonate buffers in the neutral 
range is so slow that this reaction has to be catalyzed in our lungs by carbonic 
anhydrase. 

Table 8.1 
from the NBS Tables (1 982) 

Standard Formation Properties at 298.15 K 

A, N'lkJ in01 A[ GO, kJ i n o l ~  ' 

CO,(g) - 373.51 - 394.36 
CO,(ao) -413.80 ~ 385.98 
CO:-(ao) -617.14 - 527.8 1 
HCOi (ao) - 69 1.99 - 586.77 
H,CO,(ao) - 699.63 - 623.08 
H,O(ao) - 285.83 -237.1 3 
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Table 8.2 
at 298.15 K 

Standard Formation Properties of Species 

AfHo/kJ mol-' AfGo/kJ mol-' 

CO,(SP) -413.81 - 385.97 
co; -(sP) - 677.14 - 527.81 
HCO,(SP) -691.99 - 586.77 
H,CO,(~P) - 694.91 - 606.33 

Reprinted with permission from R. A. Alberty, J .  Phys. 
Chem., 99, 11028 (1995). Copyright 1995 American Chemi- 
cal Society. 

The acid dissociation constant for the species H,CO, is given by 

H,CO,(sp) = H + ( ~ o )  + HCO,(sp) K(H,CO,) = K, (lK:') ~ = 1.668 x l op4  

(8.7-3) 

where K = 4.300 x lo-'. Knowing this equilibrium constant makes it possible to 
make a table of thermodynamic properties of species (Alberty, 1995b), as shown 
in Table 8.2. 

Thus there are four terms in the calculation of A,Go(iso) and A,H'"(iso) for 
TotCO,, which is the sum of the four species. Table 8.2 make it possible to 
calculate the standard transformed Gibbs energies of formation and standard 
transformed enthalpies of formation of the equilibrium mixture of species of 
carbon dioxide in dilute aqueous solution as a function of pH and ionic strength 
by the methods discussed earlier in Section 3.4. The standard transformed Gibbs 
energies of formation are given as a function of pH and ionic strength in Table 8.3. 

Later this table was also calculated using equilibrium constants (Alberty, 
1997). A third way to calculate this table is to use the properties of H2C0,(ao), 
HCO,(ao), and COi-(ao) directly from the NBS Tables (Alberty, 199%). The 
reason is that when only dilute aqueous solutions are considered, the ther- 
modynamic properties of TotCO, are independent of the value of K,. 

The values of A,Go(TotCO,) make it possible to calculate the apparent 
Henry's law constant for carbon dioxide as a function of pH and ionic strength. 
This constant is the equilibrium constant for the reaction 

P(CO,, g) 
TotCO,(aq) = CO,(g) + H,O K' - " - [TotCO,] 

(8.7-4) 

where P(CO,, g) is in bars. The H,O on the right-hand side is required to balance 
oxygen atoms. As the pH is decreased, the apparent Henry's law constant 
approaches the equilibrium constant for the reaction 

Table 8.3 
Aqueous Solution at 298.15 K 

A,G"(TotCO,) in kJ mol-' in Dilute 

(8.8.5) 

5 - 566.19 - 565.28 - 564.67 
6 - 555.56 - 554.93 - 554.55 
7 - 547.39 - 541.24 -547.16 
8 - 541.23 -541.23 -541.24 
9 - 535.58 - 535.70 - 535.85 
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Table 8.4 
Carbon Dioxide at 298.15 K 

Apparent Henry’s Law Constants for 

PH I = O M  I = 0.10 M I = 0.25 M 

5 28.18 27.64 21. I5  
6 20.55 17.99 16.09 
7 5.544 4.005 3.169 
8 0.6650 0.4524 0.3456 
9 0.0652 0.0421 0.0303 

I 1 nH 
4 6 8 10 12 r ’ ’  

Fig. 8.1 The apparent Henry’s law constant for carbon dioxide in water at 283.15 K,  
298.15 K ,  and 313.15 K and ionic strength 0.25 M as a function of pH. The value of the 
Henry’s law constant increases with the temperature (see Problem 8.1). 

This reaction balances oxygen atoms, so it is not necessary to write a H,O on the 
right-hand side of the equation. Apparent Henry’s law constants for carbon 
dioxide are given as a function of p H  and ionic strength in Table 8.4. 

The effect of temperature on the apparent Henry’s law constant at  ionic 
strength 0.25 M is shown by Fig. 8.1. The effect of ionic strength on  the Henry’s 
law constant at  298.15 K and 0.25 M ionic strength is shown by Fig 8.2. The 
equilibrium constant expression for a biochemical reaction involving carbon 
dioxide a t  a specified pH can be written as 

A = B + CO,(g) 

or 

cBlCTotco,l 
CAI 

A + H,O = B + TotCO, K‘ = 

(8.7-6) 

(8.7-7) 

where A and B represent sums of species. The H,O in reaction 8.7-7 is required 
to balance oxygen atoms. These two equilibrium constants have different values. 
The second has the advantage it yields the concentrations of species of carbon 
dioxide in the cell. 

8.8 PHASE SEPARATION IN AQUEOUS SYSTEMS 
CONTAINING HIGH POLYMERS 

Aqueous systems containing high polymers such as polyethylene glycols and  
dextrans may separate spontaneously into two phases (Guan et al., 1993). These 
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KH 

I 
4 5 6 7 8 9 

PH 

Fig. 8.2 The apparent Henry's law constant for carbon dioxide in water at 298.15 K and 
ionic strengths 0, 0.10, and 0.25 M as a function of pH. The value of the Henry's law 
constant decreases with increasing ionic strength (see Problem 8.2). 

systems may separate at as low as 5% by weight of the water-soluble polymers. 
This suggests that phase separation may occur spontaneously in a living cell 
where water-soluble polymers are formed. If the contents of a living cell separate 
into two phases, the interface will adsorb molecules and tend to orient them with 
respect to the two phases. Is it possible that such an interface might become a cell 
wall? 
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9.3 Methane Monooxygenase Reaction 

*+ 9.4 Half-reactions with Reactants Involving 
Multiple Species at Specified pH 

8r 9.5 Nitrogenase Reaction 

2 9.6 Changes in the Binding of Hydrogen Ions in 
Half-reactions at Specified pH 

When electrons are transferred in a chemical reaction or a biochemical reaction, 
the reactions can, in principle, be carried out separately in two half-cells of a 
galvanic cell. Each half-cell reaction makes its independent contribution to the 
equilibrium electromotive force of the galvanic cell. When chemical half-reactions 
in terms of species are considered, their reduction potentials and standard 
reduction potentials are represented by E and Eo, respectively. When biochemical 
half-reactions in terms of reactants (sums of species) are considered at a specified 
pH, their apparent reduction potentials and standard apparent reduction poten- 
tials are represented by E' and E'O, respectively. Reduction potentials for chemical 
half-reactions are measured in relation to the standard hydrogen electrode, which 
by convention has a standard reduction potential of zero volts at each tempera- 
ture at zero ionic strength. The standard hydrogen electrode consists of molecular 
hydrogen at 1 bar bubbling over a platinum electrode immersed in a solution with 
hydrogen ions at unit activity. For a chemical half-reaction the standard reduc- 
tion potential Eo is obtained when the concentrations of the species are 1 M; this 
potential and the corresponding thermodynamic properties are taken to be 
functions of the ionic strength. Remember that in equation 3.1-10 the convention 
was adopted that the Gibbs energy of formation of a species is expressed by 
AfG,i = A,Gy + RTln[Bj], where A,Gj and A,,Gy are taken to be functions of ionic 
strength. Chemical half-reactions balance all atoms and charges. At specified pH, 
biochemical half reactions do not balance hydrogen atoms or charges. Standard 
apparent reduction potentials are obtained when the reactants (sums of species) 
are all at 1 M. The measurement of electromotive force at specified pH yields the 
same type of information as the measurement of apparent equilibrium constants, 
namely Af G:' values for reactants. Conversely, Af GIo values calculated from 

Thernwdyanamics of Biochemical Reactions. Robert A. Alberty 
Copyright 0 2003 John Wiley & Sons, Inc. 
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measurements of K’ can be used to calculate E’O values. The relation between E 
and ArG for a chemical half reaction is E = - A , G / ~ Y ~ ~ F ‘ ,  where Ivej is the number 
of electrons involved and F is the Faraday constant (the product of the Avogadro 
constant and the proton charge, 96 485.309 C mol-I). The relation between E’ 
and A,G‘ for a biochemical half-reaction at specified pH is E‘ = -A,G‘/Iv,IF. The 
classical book in this field is W. M. Clarke, Oxidation-Reduction Potentids of 
Organic Systems (1 961). The use of transformed thermodynamic properties in this 
field was introduced by Alberty (1993c, 1998d, 2001b). 

When a biochemical half-reaction involves the production or consumption of 
hydrogen ions, the electrode potential depends on the pH. When reactants are 
weak acids or bases, the pH dependence may be complicated, but this dependence 
can be calculated if the pKs of both the oxidized and reduced reactants are 
known. Standard apparent reduction potentials E’O have been determined for a 
number of oxidation-reduction reactions of biochemical interest at various pH 
values, but the E’O values for many more biochemical reactions can be calculated 
from A,-G’O values of reactants from the measured apparent equilibrium constants 
K‘. Some biochemical redox reactions can be studied potentiometrically, but often 
reversibility cannot be obtained. Therefore a great deal of the information on 
reduction potentials in this chapter has come from measurements of apparent 
equilibrium constants. 

Since tables of standard apparent reduction potentials and standard trans- 
formed Gibbs energies of formation contain the same basic information, there is 
a question as to whether this chapter is really needed. However, the consideration 
of standard apparent reduction potentials provides a more global view of the 
driving forces in redox reactions. There are two contributions to the apparent 
equilibrium constant for a biochemical redox reaction, namely the standard 
apparent reduction potentials of the two half-reactions. Therefore it is of interest 
to compare the standard apparent reduction potentials of various half reactions. 

9.1 BASIC EQUATIONS 

An enzyme-catalyzed redox reaction can be divided into two half-reactions, one 
producing electrons and the other consuming electrons. The standard apparent 
reduction potentials ELo and EF for the two half-reactions in an enzyme-catalyzed 
redox reaction at a specified pH and ionic strength determine E’O for the overall 
reaction, which is positive for a reaction that can occur spontaneously. A 
biochemical redox reaction at a specified pH can be represented schematically by 

(9.1-1) Ox + Red‘ = Red + Ox’ E’O = E: ~ E? 

Where Ox, Ox’, Red, and Red’ are reactants (sums of species). The subscripts are 
abbreviations for right and left, but the two half-reactions could be distinguished 
in other ways. The half-reactions and their standard apparent reduction potentials 
at a specified pH are represented by 

Ox + (v,(e- = Red ELo (9.1-2) 

Ox’ + lvele- = Red’ E F  (9.1-3) 

Of course. these reactions may be very much more complicated. Since the pH is 
specified, H +  is not included as a reactant, and a reactant may be a sum of species 
if the reactant has pKs in the pH region of interest. These biochemical reactions 
do balance atoms of elements other than hydrogen, but they do not balance 
electric charges. When the half-reactions occur in half-cells connected by a KCI 
salt bridge, the difference E’ in electric potential between the metallic electrodes 
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at equilibrium at a specified pH is given by (Silbey and Alberty, 2001) 

(9.1-4) 

This is usually referred to as the Nernst equation (see equations 8.3-10 and 
8.4-14). It is assumed that the salt bridge contributes a negligible junction 
potential. This equation can be written as 

Where the two terms correspond with half-reactions 9.1-2 and 9.1-3. 

a biochemical redox reaction like equation 9.1-1 is given by 
When the pH is specified, the change in the transformed Gibbs energy G’ in 

Ar G‘ = A, Gk - Ar GI, (9.1-6) 

where Arc; and 
and 9.1-3. Equation 9.1-6 can be written as 

are the transformed Gibbs energies for half-reactions 9.1-2 

A,Gko + RTln ~ lRedl) - (A, GLo + R T In ~ (9.1-7) 
[Ox1 

When the reactants are at their standard concentrations (1 M) or standard 
pressures (1 bar), the logarithmic terms disappear and this equation becomes 

A, G‘O = Ar G: - Ar GF (9.1-8) 

Comparison of equations 9.1-5 and 9.1-7 shows that the standard apparent 
reduction potentials for the half-reactions at specified pH are givcn by 

(9.1-9) 

(9.1-10) 

where vl is the stoichiometric number of reactant i. The prime is needed to 
distinguish these stoichiometric numbers from the stoichiometric numbers of the 
underlying chemical reactions. The Af GIo are the standard transformed Gibbs 
energies of formation of reactants (sums of species). In calculating the standard 
transformed Gibbs energies for half-reactions, we take the standard transformed 
Gibbs energies of the formal electrons in equation 9.1-2 and 9.1-3 to be zero. 
Substituting equation 9.1-9 and 9.1-10 in equation 9.1-8 yields 

Arc’’ = - Iv,IFEKO + Iv,/FE;P = Iv,/FE’O (9.1-1 1) 

Note that when two half-reactions are added, their A,G“ values add but their E’O 
values do not. 

The apparent equilibrium constant for a biochemical reaction (like equation 
9.1-1) at specified pH can be calculated using 

- A, G’O V ; ~ f ~ ; o  
K ’ =  exp _____ = exp [ R T  ] [-‘TI (9.1 - 1 2) 

Equations 9.1-8 to 9.1-10 show that the apparent equilibrium constant can also 
be calculated using 

(9.1 - 1 3) 
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Table 9.1 
and Zero Ionic Strength 

Standard Reduction Potentials E” at 298.15 K, 1 bar, 

Half-reaction E0 /v 

F,(g) + 2e- = 2F- 
O,(g) + 4Hf  + 4e- = 2H,O 
Fe3+ + e-  = Fe2+ 
O,(g) + 2FI’ + 2e- = H,O, 
N,(g) + 8H’ + 6e- = 2NHf 
C,H,O(acetaldehyde) + 2H’ + 2e- = C,H,O(ethanol) 
C U , +  + e -  = Cuf 
2H ‘ + 2e- = H,(g) 
Fe2+ + 2e ~ = Fe(s) 
Li’ + e -  = Li(s) 

2.87 
1.2288 
0.77 1 
0.70 
0.274 
0.22 1 
0.153 
0 

- 0.440 
- 3.045 

This equation is the basis for the statement that knowledge of E: and E;: at a 
specified pH for the two half-reactions determines the direction of spontaneous 
reaction for the overall redox reaction. 

I. H. Segel(1976) discussed oxidation-reduction reactions very clearly and has 
written: “When any two of the half-reactions are coupled, the one with the greater 
tendency to gain electrons (the one with the more positive reduction potential) 
goes as written (as a reduction). Consequently, the other half-reaction (the one 
with the lesser tendency to gain electrons as shown by the less positive reduction 
potential) is driven backwards (as an oxidation). The reduced forms of those 
substances with highly negative reduction potentials are good reducing agents 
(and are easily oxidized). The oxidized forms of those substances with highly 
positive reduction potentials are good oxidizing agents (and are easily reduced).” 

A few standard reduction potentials of chemical half reactions at 298.1 5 K. 1 
bar, and zero ionic strength are given in Table 9.1. Note that the half-reactions 
balance atoms and charges and that the half-reactions are arbitrarily written in 
such a way that there are no fractional stoichiometric numbers. I t  is interesting 
to consider the extremes in this table. The fluorine molecule-fluoride ion electrode 
has a very high affinity for electrons, and this is indicated by its very positive 
standard reduction potential. Thus gaseous fluorine is a powerful oxidizing agent. 
At the other extreme, the lithium ion-metallic lithium electrode has a very low 
affinity for electrons, and this is indicated by its very negative standard reduction 
potential. Thus lithium metal is a powerful reducing agent. Oxidizing agents with 
reduction potentials above 1.2 V tend to oxidize H,O to O,(g), and metals with 
negative reduction potentials tend to reduce H,O to H,(g). Note that half- 
reactions with more positive reduction potentials than 1.229 V tend to produce 
oxygen gas in aqueous solutions and half-reactions with negative reduction 
potentials tend to produce molecular hydrogen. 

9.2 OXIDATION-REDUCTION REACTIONS 
INVOLVING SINGLE SPECIES AT SPECIFIED pH 

When reactants in half-reactions involve only single species in a range of pH. the 
dependence of E” on pH is linear in this range. The standard apparent reduction 
potentials of a number of half-reactions have been calculated at 298.15 K at a 
series of pHs and ionic strengths and are given in Table 9.2. This table gives both 
the chemical form of the half reaction and the biochemical form of the half- 
reaction. The chemical form is useful for understanding the pH and ionic strength 
dependencies of the standard apparent reduction potentials, but the standard 
apparent reduction potentials apply at a specified pH and ionic strength and 
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Table 9.2 
bar as a Function of pH and Ionic Strength 

Standard Apparent Reduction Potentials E'" in Volts at 298.15 K and 1 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

T = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

1. O,(aq) + 4 H t  + 4e- = 2H,O 
OJaq) + 4 e-  = 2H,O 

0.9759 0.9167 0.8575 0.7984 
0.9695 0.9 103 0.8512 0.7920 
0.9675 0.9083 0.849 1 0.7900 

2. O,(g) + 4H' + 4e- = 2H,O 
O,(g) + 4 e-  = 2H,O 

0.9334 0.8742 0.8 150 0.7559 
0.9270 0.8679 0.8087 0.7495 
0.9250 0.8658 0.8066 0.7475 

3. O,(aq) + 2H+ + 2e- = H,O, 
O,(aq) + 2 e-  = H,O, 

0.4838 0.4246 0.3654 0.3063 
0.4774 0.4183 0.3591 0.2999 
0.4754 0.4162 0.3570 0.2979 

4. O,(g) + 2H+ + 2e = H,O, 
O,(g) + 2 e = H,O, 

0.3988 0.3396 0.2805 0.2213 
0.3924 0.3333 0.2741 0.2 149 
0.3904 0.3312 0.2721 0.2129 

5. cytochrome c(Fe3') + e -  = cytochrome c(Fe2') 
cytochrome c,, + c ~ = cytochrome cred 

0.2540 0.2540 0.2540 0.2540 
0.2223 0.2223 0.2223 0.2223 
0.2121 0.2121 0.2121 0.2121 

6. pyruvate- + 2H' + 2e- = lactate 
pyruvate + 2 e -  = lactate 

-0.0655 - 0.1246 - 0.1838 - 0.2429 
-0.0718 -0.1310 - 0.1901 -0.2493 
-0.0739 -0.1330 -0.1922 - 0.251 3 

7. acetaldehyde + 2H' + 2e- = ethanol 
acetaldehyde + 2e- = ethanol 

- 0.0748 - 0.1340 -0.1932 -0.2523 
-0.081 2 -0.1403 -0.1995 -0.2587 
-0.0832 - 0.1424 -0.2015 -0.2607 

8. FMN2-  + 2H' + 2e- = FMNH:- 
FMN,, + 2e- = FMN,,, 

- 0.0943 -0.1535 -0.2126 -0.2718 
-0.1007 -0.1 59 8 -0.2190 -0.2781 
-0.1027 - 0.1619 -0.2210 -0.2801 

9. retinal + 2H' + 2e- = retinol 
retinal + 2 e- = retinol 

-0.1512 -0.2103 - 0.2695 -0.3287 
-0.1575 -0.2167 -0.2758 -0.3350 
-0.1596 -0.2187 - 0.2779 -0.3370 

0.7392 
0.7329 
0.7308 

0.6967 
0.6904 
0.6883 

0.2471 
0.2408 
0.2387 

0.1621 
0.1558 
0.1537 

0.2540 
0.2223 
0.2121 

- 0.3021 
- 0.3084 
-0.3105 

-0.3115 
- 0.3 179 
-0.3199 

-0.3310 
-0.3373 
-0.3394 

-0.3878 
- 0.3942 
- 0.3962 
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Table 9.2 Continued 

PH 9 

T = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

1 = O M  
I = 0.10 M 
I = 0.25 M 

1 = 0 M  
I = 0.10 M 
I = 0.25 M 

I = O M  
1 = 0.10 M 
1 = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

10. acetone + 2H' + 2e- = 2-propanol 
acetone + 2 e -  = 2-propanol 

- 0.1635 - 0.2221 -0.28 I8 -0.3410 
- 0.1698 - 0.2290 -0.2882 - 0.3473 
-0.1719 -0.2311 - 0.2902 -0.3493 

11. NAD- + H' + 2e- = NADH2-- 
NADox + 2 e-  = NADr,, 

- 0.2653 - 0.2949 -0.3244 -0.3540 
- 0.2589 -0.2885 -0.3181 -0.3417 
-0.2569 -0.2865 - 0.3 160 - 0.3456 

12. NADP3- + H +  + 2e- = NADPH4 
NADPox + 2e- = NADPre, 

- 0.2826 - 0.3122 -0.3411 -0.371 3 
- 0.2636 - 0.293 1 - 0.3221 -0.3523 
- 0.2514 -0.2870 - 0.3166 -0.3462 

13. Fd' + e -  = Fdo 
ferredoxinox + e = ferredoxinred 

- 0.3946 - 0.3946 -0.3946 -0.3946 
- 0.4009 - 0.4009 - 0.4009 - 0.4009 
- 0.4030 - 0.4030 - 0.4030 - 0.4030 

14. Acetyl-CoA4- + 2H' + 2e- = CoA4- + acetaldehyde 
Acetyl-CoA + 2e- = CoA + acetaldehyde 

~ 0.2950 -0.3541 - 0.4133 -0.4125 
--0.3 13 -0.3605 -0.4196 -0.4788 
- 0.3034 -0.3625 -0.421 7 -0.4808 

15. 2H' + 2e- = H,(g) 
2e- = H2(g) 

- 0.2958 -0.3550 - 0.414 1 -0.4733 
-0.3021 -0.3613 -0.4205 - 0.4196 
- 0.3042 - 0.3634 -0.4225 -0.4817 

16. 2H' + 2e- = H,(aq) 
2e- = H,(aq) 

- 0.3810 - 0.4462 -0.5053 - 0.5645 
~ 0.3934 -0.4525 -0.5117 -0.5708 
~ 0.3954 - 0.4546 - 0.5137 -0.5129 

- 0.400 1 
-0.4065 
- 0.4085 

-0.3836 
-0.3173 
-0.3152 

- 0.4009 
-0.3819 
-0.3757 

-0.3946 
- 0.4009 
- 0.4030 

- 0.53 16 
-0.5380 
-0.5400 

-0.5324 
-0.5388 
- 0.5408 

- 0.6237 
- 0.6399 
- 0.6320 

Source: With permission from R. A. Alberty. Arch. Biochern. Biopliys. 389, 94- 109 (2001). Copyright 
Academic Press. 

correspond with the biochemical form of the half-reaction. Note that standard 
apparent reduction potentials always decrease with increasing pH or are indepen- 
dent of pH. The numerical calculations in this chapter have been made using a 
file of Mathematica (BasicBiochemData2) functions that give the dependencies of 
the standard transformed Gibbs energies of formation of reactants (sums of 
species) on pH and ionic strength at 298.15 K. This file of functions is available 
on Mathsource (www.mathsource.com), and it can be used to calculate apparent 
equilibrium constants for enzyme-catalyzed reactions between the 13 I reactants 
(sums of species) in the file of functions.(Alberty, 2001f). For the calculations 
described here, a program (calcappredpot) was written (see the Problems) to 
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E"'l v 
l r  

Figure 9.1 Dependence of E'' on pH for biochemical half rections that involve single 
species a 298.15K and 0.25M ionic strength. The values of E'' at  p H 7  can be used to 
identify the number of the reaction in Table 9.2 if it is noted that te lines for reactions 6 
and 7 and for reactions 14 and 15 overlap. [With permission from R. A. Alberty, Arch. 
Bioclzem. Biophys. 389, 94- 109 (2001). Copyright Academic Press.] 

calculate the standard apparent reduction potential for a biochemical half- 
reaction, given the typed half-reaction and the number of electrons transferred. 
All but two of the E'O values in Table 9.2 depend on both pH and ionic strength. 
The E'O values for cytochrome c and ferredoxin do not depend on the pH because 
there is no evidence of acid groups in the active sites of these proteins with pKs 
in the range 5 to 9. The pH dependencies of some of the half-reactions are the 
same because -ArNH/Iv,I is the same, but their ionic strength dependencies differ. 
The reduction potentials are rounded to 0.0001 volt because this corresponds 
with an error of kO.01 kJ mol-' in the transformed Gibbs energy. The 
half-reactions are in the order of decreasing E'O at pH 7 and ionic strength 0.25 M. 

Half-reactions higher in the table drive half-reactions lower in the table. 
Half-reactions with apparent reduction potentials at pH 7 and ionic strength 
0.25M that are more positive than 0.807 V at pH 7 and 0.25 M ionic strength 
tend to produce O,(g), and half reactions with apparent reduction potentials at 
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pH 7 that are less than -0.422 V tend to produce H,(g). The pH dependencies 
of some of these half reactions are shown in Fig. 9.1. 

Goldberg and Tewari (Goldberg et al., 1992; Goldberg and Tewari, 1994a, b. 
1995a, b; Goldberg, 1999) have published critically evaluated data on experimen- 
tal determinations of K'  of 94 enzyme-catalyzed redox reactions. These measure- 
ments can all be used to calculate E'' for half-reactions and A,Gf values for the 
species involved. Thus Table 9.2 can be extended considerably on the basis of 
experimental measurements. A,Gf values of species can also be determined from 
enzyme-catalyzed reactions that are not redox reactions. When the AfGy value is 
unknown for either the oxidant or reductant, the oxidized form can arbitrarily be 
assigned A,G; = 0 at zero ionic strength. 

w 9.3 METHANE MONOOXYGENASE REACTION 

The methane monooxygenase reaction (EC 1.14.13.25) is an especially interesting 
enzyme-catalyzed reaction for which all the reactants are single species. The 
chemical and biochemical forms of this reaction are given in the first two lines of 
Table 9.3. The methane monooxidase reaction is remarkable because it can be 
divided into three half-reactions. The chemical and biochemical equations for 
these three half-reactions are given in Table 9.3. These three half reactions are in 
a sense independent because they do not share reactants except for H,O and H + .  
which are everywhere. In other words, these half reactions could be catalyzed 
independently if there were appropriate sites on the enzyme for them to deposit 
and withdraw electrons at  appropriate reduction potentials. The enzyme was able 
to couple the three half-reactions to give reaction 1 in Table 9.3. The fact that the 
methane monooxygenase reaction can be divided into three half-reactions is quite 
remarkable considering the statement at the beginning of this chapter that a redox 
reaction can be divided into two half reactions. The reason is that the methane 
monooxygenase reaction is the sum of the following two biochemical reactions, 

Table 9.3 
Apparent Reduction Potentials (in volts) at 289.15 K, 1 bar, pH 7, and Ionic Strength 0.25 M for 
Reactions Involved in the Methane Monooxygenase Reaction 

Standard Transformed Gibbs Energies (in kJ mol- ') of Reactions and Standard 

Chemical and Biochemical Reactions Ar G"" lvcl E'",'V 

1, CH, + NADPH"- + 0, + H' = CH,OH + NADP3- + H,O 
2. rncthai1e-t NADP,,, + 0, =methanol + NADP,, +H,O -374.13 4 0.969 
3. CH3OH+2H+t2e-  =CH,+H,O 
4. methanol + 2c.~ =methane + H,O -14.68 2 0.076 
5. NADP3 + H + 2e- = NADPH4- 

7 0 2 + 4 H + + 4 e -  =2H,O 

9. CH30H+NADP3 ~ +3H+-4e- =CH,(aq)+NADPH"- +H,O 

6.  NADP,,,+2e-=NADPr,, 61.09 2 -0.317 

8. 0 2 + 4 e -  =2H,O -327.72 4 0.849 

I I .  CH, + (f)o, = CH,OH 
12. methane + (f)O, =methanol - 149.18 2 0.773 

10. methanol +NADP0,+4e- =methane+NADP,,,+H,O 46.41 4 -0.120 

13. ( f ) 0 2 + N A D P H 4 -  +Hf=NADP3-  +H,O 
13. (f)0,+NADP,,,=NADP,,+H20 -224.95 2 1.166 

Sourct.: With permission from R. A. Alberty, Arch.  Bioclit.m. Biopkys. 389,94- 109 (2001). Copyright Academic Prcss. 
:Vole: All of these specics arc in aqueous solution, but the formal electron e- i s  not. Thc convention is tha t  
A, G"(e ) = 0. The first two  reactions and the last four reactions are whole reactions in contrast with thc 
half-reactions. For the whole rcactions the values givcn here can be used to calculate thc apparcnt cquilihrium 
constants under these conditions. 
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which could, in principle, be catalyzed separately: 

Methane + (i)O, = methanol El0 = 0.773 V (9.3-1) 

(+)O, + NADP,,, = NADP,, + H,O E'" = 1.166 V 

If these reactions were carried out in two galvanic cells in series, the electromotive 
force would be 0.773 + 1.166 = 1.939 V for a two electron change, and the 
standard transformed Gibbs energy of the overall monooxygenase reaction would 
be -2F(1.939) = - 374.13 kJ mol-'. as expected. 

The methane monooxygenase reaction can, in principle, be carried out in two 
other ways by the enzyme complex that catalyzes it: It can be carried out in three 
half-reactions at three catalytic sites as follows: 

0, + 4e- = 2H,O (9.3-2) 

Methanol + 2e- = methane + H,O 

NADP,, + 2e- =NADP,,, 

Or  it can be carried out in two half-reactions at two catalytic sites as follows: 

0, + 4e- = 2H,O (9.3-3) 

Methanol + NADP,, + 4e- = methane + NADP,,, + H,O 

Table 9. 3 shows the reduction potentials for these half-reactions that would have 
to be somehow matched to the reduction potentials of sites in the enzyme. A good 
deal is known about the mechanism of this enzyme-catalyzed reaction (Gassner 
and Lippard, 1999). 

9.4 HALF-REACTIONS WITH REACTANTS INVOLVING 
MULTIPLE SPECIES AT SPECIFIED pH 

The reason for a separate section on half reactions with reactants involving 
multiple species is that they cannot be represented by a single chemical equation. 
Acid dissociation reactions are also involved, and as a consequence the pH and 
ionic strength dependencies of standard apparent reduction potentials are more 
complicated than for the reactions in Tables 9.2 and 9.3. These biochemical half 
reactions and biochemical reactions considered involve reactants with pKs in the 
range pH 5 to 9. They include carbon dioxide (pK 6.2), malate (pK = 5.25), 
citrate(pK, = 6.39, pK, = 4.75), cysteine (pK = 8.37), ammonia (pK = 9.25), and 
reduced glutathione (pK = 8.37), where the pKs are for 298.15 K and zero ionic 
strength. When carbon dioxide is a reactant in a biochemical reaction, the 
expression for the apparent equilibrium constant can be written in terms of 
P(C0 , )  or [CO,tot], where [CO,tot] is the sum of the concentrations in aqueous 
solution of CO,, H,CO,, HCO,, and COi-. The standard transformed Gibbs 
energies and enthalpies of C0,tot have been calculated three different ways 
(Alberty, 1995b, 1997e, 1998b), which give the same results (see Section 8.7). When 
the apparent equilibrium constant of a biochemical reaction involving carbon 
dioxide is written in terms of P(CO,), the pK = 6.2 does not show up in the pH 
dependencies of E'O and K' ,  but when the apparent equilibrium constant is written 
in terms of [CO,tot] it does. The advantage of using [CO,tot] is that it is more 
immediately relevant to the reactions inside of the living cell. Note that when 
CO,(g) in a biochemical reaction is replaced by CO,tot, H,O has to be added to 
the other side of the biochemical reaction. The pH dependencies of some of the 
half reactions in Table 9.4 are shown in Fig. 9.2. 
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Table 9.4 
Half-reactions Involving Reactants with Multiple Species 

Standard Apparent Reduction Potentials E'" (in volts) at 298.15 K of 

HC0.i + 2H' + 2e- = formate- + H,O 
C0,tot + 2e- = formate + H,O 

I = O M  -0.3294 -0.3630 - 0.4095 - 0.4663 -0.5257 
1 = 0.10 M -0.3297 -0.3653 -0.4148 - 0.4726 -0.5330 
I = 0.25 M ~~ 0.3299 -0.3662 -0.4166 - 0.4747 -0.5355 

CO,(g) + H' + 2e- = formate 
CO,(g) + 2e- = formate 

/ = O M  -0.3726 - 0.4022 -0.4318 -0.4613 - 0.4909 
I = 0.10 M -0.3726 - 0.4022 - 0.43 18 - 0.461 3 -0.4909 
I = 0.25 M -0.3726 - 0.4022 - 0.43 18 -0.461 3 - 0.4909 

acetyl-CoA4- + HC03-  + 2H' + 2e- = pyruvate- + CoA"- + H,O 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

/ = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.10 M 
I = 0.25 M 

I = O M  
I = 0.25 M 
I = 0.25 M 

acctyl-CoA + C0,tot + 2e- = pyruvatc + CoA + H,O 

- 0.4205 -0.4541 - 0.5005 -0.5573 
- 0.4208 -0.4563 - 0.5059 - 0.5637 
- 0.4209 -0.4572 - 0.5077 - 0.5657 

ketog1utarate'- + NH,' + 2H' + 2e- = glutamate'- + H,O 
ketoglutarate + ammonia + 2e- = glutamate + H,O 

0.0252 - 0.0340 - 0.0932 - 0.1530 
0.0062 - 0.0530 -0.1122 - 0.1720 

0 - 0.0592 - 0.1 184 -0.1782 

pyruvate- + NH: + 2H' + 2e- = alanine + H,O 
pyruvate + ammonia + 2e- = alanine + H,O 

-0.00241 - 0.06 16 -0.1208 -0.1806 
-0.0151 - 0.0743 -0.1335 -0.1933 
-0,0192 -0.0784 -0.1376 -0.1974 

HCO, + pyruvate- + 2H+ + 2e- = malate-, + H,O 
C0,tot + pyruvate + 2c- = malate + H,O 

-~-0.2156 - 0.2604 -0.3087 -0.3658 
-0.2163 - 0.2576 - 0.3079 -0.3658 
-0.2159 -0.2567 -0.3071 - 0.3658 

CO,(g) + pyruvate- + H' + 2e- = malate-, 
CO,(g) + pyruvate + 2e- = malate 

-0.2588 - 0.2996 -0.3311 -0.3608 
-0.2591 -0.2945 - 0.3249 -0.3545 
-0.2586 -0.2927 -0.3228 -0.3525 

cystine + 2H' + 2e- = 2cysteine 
cystine + 2c- = 2cysteine 

-0.2381 -0.2972 -0.3554 - 0.4066 
- 0.2445 -0.3035 -0.361 1 - 0.4085 
- 0.2465 -0.3055 -0.3628 - 0.4088 

citrate" + CoA + 2e- = malate,- + acetyl-CoA + H,O 
citrate + CoA + 2e- = malate + acctyl-CoA + H,O 

- 0.1875 - 0.2566 -0.3336 - 0.4200 
- 0.1986 -0.2127 -0.3570 - 0.4452 
- 0.2021 - 0.279 1 - 0.3649 - 0.4533 

-0.6168 
-0.6240 
- 0.6266 

-0.2112 
- 0.2362 
- 0.2423 

- 0.2448 
-0.2515 
- 0.2616 

-0.4252 
- 0.426 1 
- 0.4267 

- 0.3904 
- 0.384 1 
-0.3820 

- 0.4325 
- 0.428 1 
-0.4266 

- 0.5085 
-0.5338 
- 0.5420 
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Table 9.4 Continued 

GSSG2- + 2H' + 2e- = 2GS- 
glutathioneox + 2e- = 2glutathione,,, 

I = O M  - 0.1565 -0.2156 -0.2737 - 0.3243 - 0.3491 
I = 0.25 M - 0.1692 -0.2280 - 0.2845 -0.3261 -0.3395 
I = 0.25 M - 0.1732 -0.2320 - 0.2876 - 0.3254 -0.3359 

TRox + 2e- = TRre,H02- 
Thioredoxinox + 2e- = thioredoxinre, 

/ = O M  - 0.1643 -0.2234 -0.281 5 -0.3323 -0.3570 
I = 0.25 M -0.1707 - 0.2296 -0.2871 -0.3325 - 0.3474 
I = 0.25 M -0.1727 -0.2317 -0.2888 -0.3318 - 0.3438 

Source: With permission from R. A. Alberty, Arch. Biochern. Biophys. 389, 94-109 (2001). 
Copyright Academic Press. 

9.5 NITROGENASE REACTION 

The nitrogenase reaction (EC 1.18.6.1) involves three biochemical reactions: (1) 
the fixation of molecular nitrogen, (2) the hydrogenase reaction when molecular 
nitrogen is absent (EC 1.18.99.1), and (3) the hydrolysis of ATP to ADP. About 
15 moles of ATP are hydrolyzed per mole of nitrogen fixed (Burris, 1991), but this 
amount varies with the pH and temperature. This is why it is not based on 
conservation of atoms. It has been suggested (Alberty, 1994) that the role of the 
hydrolysis of ATP is to supply the hydrogen ions required in the fixation reaction 
so that the catalytic site does not become alkaline. The apparent reduction 
potentials in the nitrogenase reaction are of special interest because of the 
importance of nitrogen fixation and because of the extraordinarily large effect of 
pH on the apparent equilibrium constant for the fixation of nitrogen. The 
chemical reaction for the fixation reaction is 

N,(g or aq) + 10H' + 8Fd,,, = 2 N H l  + H,(g or as )  + 8Fd0: (9.5-1) 

where Fd,,, and Fd,; represent the reactive site of the protein ferredoxin. Note 
that a mole of H, is produced for each mole of N, converted to ammonia. N, 
and H, can be in gaseous or aqueous states. Strombaugh et al. (1976) found that 
the standard apparent reduction potentials of eight ferredoxins at 298.15 K and 
pH 7 ranged from -0.377 V to -0.434 V, and so apparent equilibrium constants 
for biochemical reactions involving ferredoxin will depend on the ferredoxin used. 
The calculations here have been made with E'O = - 0.403 V, which was obtained 
for Claustridium pasteurianum. Since other ferredoxins have different values of E'O, 
different apparent equilibrium constants will be obtained. Since E'O for this 
ferredoxin is independent of pH in the range 6.1 to 7.4 (Tagawa and Arnon, 1968), 
i t  is assumed that there are no acid groups in the reactive site with pKs in the 
range considered here. Reaction 9.5-1 is referred to as a reference reaction, and it 
can be balanced with NH, rather than NH;. When the pH is in the neighbor- 
hood of 9 and higher, it is necessary to include the acid dissociation of NH; 
(pK = 9.25) in calculating the equilibrium composition. 

When the pH is specified, the fixation of molecular nitrogen is represented by 
the following biochemical reaction: 

N,(g or as)  + 8 ferredoxin,,, = 2 ammonia + H,(g or as)  + 8 ferredoxin,, 

(9.5-2) 
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Figure 9.2 The pH dependeiice of the standard apparent reduction potentials at 298.15 
K and 0.25 M ionic strength of the following biochemical half reactions, starting at the top 
of the ordinate [With permission from R. A. Alberty, Biophys. Clzrrn. 389, 94-109 (2001). 
Copyright Academic Press.]: 

ketoglutarate + ammonia + 2e- = glutamate + H,O 
pyruvate + ammonia + 2e- = alanine + H,O 
CoA + citrate + 2e- = acetyl-CoA + malate + H,O 
cystine + 2e~- = 2 cysteine 
acetyl-CoA + C0,tot = CoA + pyruvate + H,O 

Table 9.5 
Half-reactions in the Nitrogcnase Reaction 

Standard Apparent Reduction Potentials E'" (in volts) at 298.15 K of 

N2(g) + IOH ' + 8e- = 2NHd + H,(g) 
N,(g) + 8e- = 2 ammonia + H,(g) 

I = O M  -- 0.1643 - 0.2382 - 0.3 121 --0.3858 -0.4512 
I = 0.10 M -0,1706 - 0.2445 - 0.3 185 -0.3921 - 0.4635 
I = 0.25 M --0,1726 - 0.2466 -0.3205 - 0.394 1 - 0.4656 

N,(aq) + 10H' + 8e- = 2NH"+ + H,(aq) 
N,(aq) + 8e- = 2 ammonia + H,(aq) 

I = O M  -0.1628 - 0.2368 - 0.3 I 07 -0.3843 -0.4558 
I = 0.10 M ~- 0.1692 - 0.243 1 -0.3 170 - 0.3907 - 0.462 1 
I = 0.25 M -- 0.17 12 -0.2452 -0.3191 -0.3921 -- 0.4642 

Soirrce: From R. A. Alherty, Arch. Bioc~hrr~.  Biophj,\. 389, 94 109 (2001). Copyright Academic Press. 
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Table 9.6 Apparent Equilibrium Constants K '  for Nitrogenase Reactions at 298.15 K 

PH 5 PH 6 PH 7 PH 8 PH 9 

N,(g) + 10H' + 8Fdre, = 2NHz + H2(g) + 8FdcL 
N,(g) + 8 ferredoxinrcd = 2 ammonia + H,(g) f 8 ferredoxinox 

1.40 x lo3' 1.40 x 10" 1.41 x 10" 15.6 3.40 10-9 

N2(aq) + IOH' f 8 Fdre, = 2NHl  + H2(aq) + 8Fd<L 
N,(aq) + 8 ferredoxinrcd = 2 ammonia + H,(aq) + 8 ferredoxino, 

2.18 x lo3' 2.18 x lo2' 2.20 x 10" 24.3 5.30 10-9 

2H+ + 2Fdre, = H,(g) + 2Fd0: 
2 ferredoxinre, = H2(g) + 2 ferredoxinox 

2.180 21.8 0.2 18 2.18 x 2.18 x 

2H' + 2Fdl,, = H2(aq) + 2Fd0: 
2 ferredoxinre, = H,(aq) + 2 ferredoxinox 

1.80 1.80 x 10-2 1.80 x 10-4 1 . 8 0 ~  10-' 1.80 x 

Source: From R. A. Alberty, Arch. Biorhein. Biophys. 389, 9 4 ~  109 (2001). Copyright Academic Press. 
Note: The apparent equilibrium constants for these reactions do not depend on ionic strength 
because the equilibrium constants for the chemical reference reactions and acid dissociation do not 
depend on ionic strength. 

where ammonia represents the sum of NH; and NH,. Different abbreviations are 
used for the two forms of ferredoxin in chemical reactions and biochemical 
reactions to make it clear that the pH is held constant in the biochemical reaction. 
This distinction is especially important when there are acid groups in the reactive 
site of a protein, since the site at a specified pH consists of a sum of species 
(Alberty, 2000d). 

In the absence of molecular nitrogen, nitrogenase produces molecular hydro- 
gen. This hydrogenase reaction (EC 1.18.99.1) is represented by the following 
chemical reaction: 

2H+ + 2Fd,,, = H,(g or aq) + 2Fd0: 

2 ferredoxin,,, = H,(g or as)  + 2 ferredoxin,, 

(9.5-3) 

(9.5-4) 

The corresponding biochemical reaction at specified pH is 

It may seem strange not to show H +  as a reactant, but [H'] is not involved in 
the expression for the apparent equilibrium constant for reaction 9.5-4 because it 
is held constant. 

The effects of pH on the standard apparent reduction potentials of the half 
reactions involved in the nitrogenase reaction are shown in Table 9.5. The effects 
of pH on the apparent equilibrium constants of the reactions involved in the 
nitrogenase reaction as shown in Table 9.6. 

The effect of pH on K' for the nitrogen fixation reaction (9.5-2) is so striking 
(a change of 10" per pH unit) that it is shown in Fig. 9.3. Note that nitrogen 
cannot be fixed by this reaction above pH 8 when ferredoxin from Cluustridium 
pastcuriununz is used. 

9.6 CHANGES IN THE BINDING OF HYDROGEN IONS 
IN HALF-REACTIONS AT SPECIFIED pH 

The change in binding of hydrogen ions in a biochemical reaction can be 
calculated from the derivative of the standard transformed Gibbs energy of 
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log K'  

Figure 9.3 Plot of the base 10 logarithm of the apparent equilibrium constant K '  for the 
nitrogen fixation reaction (see reaction 9.5-2) versus pH at 298.15 K (see Problem 9.2). 
[With permissioti from R. A. Alberty, Arch. Biochem. Biophys. 389, 94- 109 (2001). 
Copyright Academic Press.] 
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Figure 9.4 
strength 0.25 M for the following five biochemical half-reactions (starting at the top): 

Dependence of the binding of hydrogen ions on the pH at 298.15 K and ionic 

N,(g) + 8e- =: 2 ammonia + H2(g) 
cystine + 2e- = 2 cysteine 

citrate + CoA + 2e- = malate + acetyl-CoA + H,O 
C0,tot + pyruvate + 2e- = malate + H,O 
NAD,, + 2e- = NAD,,, 

(See Problem 9.4.) [With pcrmission from R.  A. Alberty, Arch. Biochem. Biophj,s. 389. 
94 109 (2001). Copyright Academic Press.] 
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Figure 9.5 
and ionic strength 0.25 M. Starting at the top the reactions are as follows: 

Change in the binding of H +  in five biochemical reactions at 298.15 K, 1 bar, 

NAD,, + formate + H,O = NAD,,, + C0,tot  
NAD,, + malate + H,O = NAD,,, + C0,tot  + pyruvate 
NAD,, + ethanol = NAD,,, + acetaldehyde 
NAD,, + alanine + H,O = NAD,,, + pyruvate + ammonia 
NAD,, + malate + acetylcoA + H,O = NAD,,, + citrate + coA 

(See Problem 9.5.) [With permission from R. A. Alberty, Arch. Biochern. Biophps. 389, 
94- 109 (2001). Copyright Academic Press.] 

reaction with respect to the pH, as shown in equation 4.7-4. Since the standard 
transformed Gibbs energy of a redox reaction can be written as the difference 
between the standard transformed Gibbs energies of two half-reactions and the 
standard apparent reduction potentials of the half-reactions are proportional to 
the standard transformed Gibbs energies of the half reactions, equation 4.7-4 can 
also be written 

(g) (9.6-1) 
RTln(l0) 8pH T , P  

= ArNH(R) - ArNH(L)  

Thus the change in binding of hydrogen ions in a half-reaction is given by 

ArNH = - (9.6-2) 

The changes in binding of hydrogen ions in five biochemical half reactions are 
shown in Fig. 9.4. Since i?E''/i;pH is always negative for a half-reaction, ArNH is 
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always positive. It is the magnitude of ArN,x that determines the slope of the plot 
of E'' versus pH for a half rcaction. 

Figure 9.5 shows the change in binding of hydrogen ions in five biochemical 
reactions as a function of pH. The change in binding in one half-reaction may 
compensate for the change in binding in the other half reaction. The change in 
binding of H t  may occur in only one of the two half reactions. 

These last t h o  plots have shown the importance of determinations of acid 
dissociation constants of biochemical reactants. In the next chapter we will see 
that it is also important to know the pKs of acid groups when heats of reaction 
are determined calorimetrically. 



4 10.1 Calorimetric Determination of the Standard 

R 10.2 Calculation of Standard Transformed 

Transformed Enthalpy of Reaction 

Enthalpies of Reaction from the Standard 
Enthalpies of Formation of Species 

10.3 Calculation of Standard Transformed Entropies 
of Biochemical Reactions 

%" 10.4 Effect of Temperature 

The enthalpy H of a chemical reaction system is of special interest because when 
a reaction occurs at constant pressure, the change in enthalpy is equal to the heat 
absorbed; AH = qp. The standard enthalpy A,Ho of a chemical reaction can be 
obtained by determining the heat of reaction calorimetrically or by measuring the 
dependence of the equilibrium constant K on temperature. The standard trans- 
formed enthalpy A,H" of a biochemical reaction can be obtained by determining 
the heat of reaction at specified pH or by measuring the dependence of the 
apparent equilibrium constant K' on temperature. The determination of the 
transformed enthalpy of reaction of a biochemical reaction is complicated by the 
fact that the biochemical reaction may produce or consume hydrogen ions that 
react with the buffer to produce an additional heat effect in a calorimetric 
measurement. When the reactants bind metal ions, a similar effect will occur if the 
metal ion is bound by a reactant. If these effects are properly handled in the 
analysis of calorimetric data, the transformed enthalpies of reaction determined 
from equilibrium constants and from calorimetric measurements should agree. 
Enthalpies of reaction may be rather constant over narrow temperature ranges, 
but over wider temperature ranges, it is necessary to take into account the 
dependence of the heat of reaction on temperature. For a biochemical reaction 
the effect of temperature on the heat of reaction depends on the pH. 

If the change in heat capacity in a chemical reaction is equal to zero, the 
enthalpy of the reaction is independent of temperature, and the equilibrium 
constant of the chemical reaction can be readily calculated over a range of 
temperature without making an integration, as described in Section 3.7. In 
general, the enthalpy of a chemical reaction is a function of temperature and ionic 
strength. When A,Go and A,Ho are known, the standard reaction entropy A,So 
can be calculated 
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The transformed enthalpy of a biochemical reaction is a function of tempera- 
ture, pH, and ionic strength. Knowledge of AfGo, AfHo, and Cjm for all the species 
in a biochemical reaction makes it possible to calculate A,G", A,H", Arc:, and 
K' for the biochemical reaction at the desired 7: pH, and ionic strength. Note that 
when ions are involved there is an electrostatic contribution that varies with 
temperature (see Section 3.7). 

10.1 CALORIMETRIC DETERMINATION OF THE 
STANDARD TRANSFORMED ENTHALPY OF 
REACTION 

When a biochemical reaction that is affected by pH and pMg is carried out in a 
calorimeter in a buffer, the hydrogen ions and magnesium ions that are produced 
or consumed react with the buffer to produce a heat effect that is characteristic of 
the buffer, rather than the reaction being studied. Therefore this contribution 
should be calculated and should be used to correct the calorimetric heat effect to 
obtain the standard transformed enthalpy of the biochemical reaction A,H". 
The analysis by Alberty and Goldberg (1993) shows that the enthalpy change in 
the calorimetric experiment A,H(cal) is given by 

A,H(cal) = ArWo + ATNHArHo(Buf) + A,N,,A,H'(MgBuff) (10.1-1) 

where the enthalpy of dissociation of hydrogen ions from the acidic form of the 
buffer is given by 

A,Ho(Buff) = AfHo(H+) + A,Ho(Buff-) - A,H"(HBuf) (10.1-2) 

and the enthalpy of dissociation of magnesium ions from a complex ion is given 
by 

A,HO(MgBuff) = AfH0(Mg2+) + A,H"(Buff-) - A,HO(MgBuffl) (10.1-3) 

Thus, if hydrogen ions or metal ions are produced or consumed, it is 
neccssary to know all of the pK's and dissociation constants of magnesium 
complexes of the all of the species of all of the reactant in order to calculate ArNH 
and A,N,,. However, there is an experimental method for determining ArN,{ and 
A,N,, that can be used with complicated reactants where it is not possible to 
determine all of the pK's and dissociation constants of magnesium complexes. 
This is based on determining the apparent equilibrium constant K' for the 
biochemical reaction as a function of pH and pMg. The changes in binding are 
calculated using 

(10.1-4) 

(10.1-5) 

as shown in Section 4.5. The change in the binding of hydrogen ions ArNH can 
also be determined by use of a pHstat. 

H 10.2 CALCULATION OF STANDARD TRANSFORMED 
ENTHALPIES OF REACTIONS FROM THE 
STANDARD ENTHALPIES OF FORMATION OF 
SPECIES 

If the enthalpies of formation of all the species involved are known, the standard 
transformed enthalpy of a biochemical reaction A,H'" at a specific 7; P, pH, etc., 
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can be calculated. The basic relation is (see equation 4.4-3) 
" 

A,H'O = 1 I(A,H;O 

i =  1 

(10.2-1) 

where the 1); are the apparent stoichiometric numbers of the N' reactants (sums 
of species) in the biochemical reaction and the AfHio are the standard transformed 
enthalpies of formation of the reactants under the desired conditions. In the 
following treatment it is assumed that Mg2+ is bound as well as H'. In order to 
calculate AfHio for a reactant, it is necessary to calculate the AfHio for each 
species of the reactant at the desired conditions. For example, if species j contains 
NH(j) hydrogen atoms and N M , ( j )  magnesium atoms, this adjustment is made 
with 

A,HSo = A,HY - NH(j)AfHo(H+) - N,,(j)AfH0(Mg2+) (10.2-2) 

where A,HY is the standard enthalpy or formation of species j ,  AfHo(Hf) is the 
standard enthalpy of the hydrogen ion, and AfHo(Mg2+) is the standard enthalpy 
of the magnesium ion, all three of these quantities having been calculated at the 
desired ionic strength. When a reactant consists of two or more species, the 
standard transformed enthalpy of formation for the reactant is the mole fraction- 
weighted average of the standard transformed enthalpies of the Niso species in the 
pseudoisomer group (see equation 4.5-3): 

N i S O  

A,H;O = C r j ~ f ~ ; o  
j =  1 

(10.2-3) 

where r j  is the equilibrium mole fraction of speciesj, calculated using the standard 
transformed Gibbs energies of formation of the species under the desired condi- 
tions (see equation 4.3-7). Substituting equation 10.2-2 shows that the standard 
transformed enthalpy of formation of a reactant is made up of three contributions: 

AfH:O = (A,Hy) - mH(i)AfHO(Hf) - mMg(i)A,H0(Mg2+) (10.2-4) 

where (AfHY) is the mole fraction-weighted enthalpy of formation of the species 
in the pseudoisomer group. The average numbers of hydrogen atoms and 
magnesium atoms bound are given by 

Ni,,, 

and 

( 10.2-5) 

(10.2-6) 

The convention is that NH(j) is the total number of hydrogen atoms in species j 
and NMg(j) is the number of magnesium atoms in the species. 

Substituting equation 10.2-4 for each reactant in equation 10.2-1 yields 
" 

A , H "  = vi(A,H:) - ArNHA,Ho(H+) - ArNMgAfH0(MgZf) (10.2-7) 
i =  1 

where the changes in the binding of H +  and Mg2+ in the reaction are given by 
" 

ArNl, = 1 v;N13(i)  
i = l  

N' 

ArNMg = 1 v;NMg(i) 
i =  1 

(10.2-8) 

(10.2-9) 

Equation 10.2-7 shows that there are three contributions to the transformed 
enthalpy of reaction in this case: the effects of the standard enthalpies of formation 
of the species, the effect due to the change in binding of hydrogen ions: and the 
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effect due to the change in binding of magnesium ions. In the hydrolysis of ATP 
to ADP and orthophosphate at 298.15 K, pH 7, pMg 4, and 0.25M ionic strength, 
A r N ,  = - 0.62, A r N M g  = - 0.49, and so 

ArH'() = 177.74 - (-0.62)(0.41) - (-0.49)(465.36) = - 30.76 kJ mol- 

(10.2-10) 

Note that the effect of magnesium binding is larger than the first term and has 
the opposite sign in this case (Alberty and Goldberg, 1993). 

10.4 CALCULATION OF STANDARD TRANSFORMED 
ENTROPIES OF BIOCHEMICAL REACTIONS 

The determination of standard transformed enthalpies of biochemical reactions at 
specified pH, either from temperature coefficients of apparent equilibrium con- 
stants or by calorimetric measurements, makes it possible to calculate the 
corresponding standard transformed entropy of reaction using 

ArS" = ArH" - A,G" 
T 

Substituting A,H" = C v:A,H:' and ArG" = C \>:AfG:' yieldc 

(10.3-1) 

(10.3-2) 

where the standard transformed entropy of formation of pseudoisomer group i for 
a particular set of conditions is given by 

A~H;'  - A,G;' 
T 

A,$' = (10.3-3) 

Thus tables given earlier can be used to calculate standard transformed entropies 
of formation. Standard transformed entropies of reactants have not been empha- 
sized in previous chapters because the properties with the greatest practical 
interest are AfGjo, which can be used to calculate K ' ,  and A,H)", which can be 
used to calculate the temperature coefficient of K' and the heat effect of a 
biochemical reaction. However, molar entropies S i ( j )  of species are sometimes 
considered more interpretable than A,G? and A,H?.  For example. 
A,S"(298.15 K )  = - 92.0 J K - '  mol-' for the dissociation of acetic acid. whereas 
the A,S" values for gas dissociation reactions are always positive, corresponding 
with the increased degrees of freedom of the product gas molecules. The entropy 
of dissociation of acetic acid indicates that hydrogen ion and the acetate ion have 
fewer degrees of freedom than hydrated acetic acid molecules. The explanation of 
this contradiction is that the ions are more hydrated than the neutral acetic acid 
molecules because of the orienting effects of the electric fields in the neighborhood 
of an ion. Thus the freedom of H,O molecules in an acetic acid solution is reduced 
by the dissociation, and consequently the entropy of the products is lower than 
the entropy of the acetic acid molecules. Therefore it is of interest to inquire more 
deeply into the relation between the molar entropies of species and the standard 
transformed entropy of formation of a pseudoisomer group at a specified pH. 

The standard transformed enthalpy of formation of a pseudoisomer group is 
given by equation 10.2-3. The standard transformed Gibbs energy of formation is 
given by 

N,, ,  NIX 

A,G:" = c rjA,G)' + RT 2 r;ln 1'; 

j =  1 .; = 1 

(10.3-4) 

where Niso is the number of species in the pseudoisomer group. Substituting 
equations 10.2-3 and 10.3-4 into equation 10.3-3 yields 

(10.3-5) 
j =  1 . j =  1 
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since 

(1 0.3-6) 

for a species. 
Substituting (see Section 4.3) 

A,Hio = AfHy - NH(j)AfHo(H+) - N,,(j)AfHo(Mg2+) (10.3-7) 

and 

A,GS" = A,Gy - NH(j)[AfGo(H+) - RTln(lO)pH] 

-NMg(j)[A, G"(MgZ+) - RTln(lO)pMg] (10.3-8) 

in equation 10.3-6 yields 

Earlier the fundamental equation for G' (equation 4.1-22) was used to show 
that S' = S - n,(H)S,(H+) when hydrogen ions are bound, and that can be 
extended to 

S' = S - n,(H)S,(H') - n,(Mg)Sm(Mg2+) (10.3-10) 

This can be written 

1 njSk(j) = 1 .,iSm(j) - n,(H)S,(H+) - n,(Mg)Sm(Mg2+) (10.3-11) 

Substituting n,(H) = XN,(j)nj and n,(Mg) = CN,,(j)nj yields the expression for 
the standard transformed molar entropy of a species: 

S:(.j) = S:(j) - N,(j)[Si(H+) + Rln(lO)pH] 

- NM,(j)[Si(Mg2') + Rln(1O)pMgl (10.3-12) 

which can be compared with equation 10.3-9. 
Equations 10.3-9 and 10.3-12 raise an issue about conventions for the 

hydrogen ion in thermodynamic tables. Since it is not possible to connect the 
standard thermodynamic properties of H +  to those of molecular hydrogen, the 
convention is that AfGo(H+) = 0 and AfHo(H+) = 0 at each temperature. This 
indicates that the standard entropy of formation of a hydrogen ion AfSo(H+) 
should be taken as zero at each temperature, but, for historical reasons, the 
convention adopted in current thermodynamic tables is S i (H+)  = 0 at each 
temperature. In principle, the value of SZ(H+) should be calculated from 
ArS'(H+) for the formation reaction for H + .  One way to write this reaction is 

$H,(g) = H+(aq) + e-  (10.3-13) 

where c -  is the formal electron, not a hydrated electron in water. Both 
AfSo{H+(ao)) = 0 and S i ( H + )  = 0 can be satisfied if the formal electron is 
treated as a reactant and assigned a standard molar entropy of 
Si(e-) = (i)S;(H2, g) at each temperature. A different, but perhaps more logical 
convention would be to assign AfGo(e-) = 0, AfHo(e-) = 0, and AfSo(e-) = 0 so 
that equation 10.3-13 would lead to 

A,SO[H+(~O)] = s ~ ~ ( H + ) + s ; ( ~ - )  - (+)S"~(HJ = s:(H+) + o - (+)S;(H,,~) = o 
( 10.3- 14) 

In this case, S:(H+) = (+)Si(H2, g), rather than zero. 
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W 10.4 EFFECT OF TEMPERATURE 

In Chapter 3 equations and Muthernuticu programs were given for calculating 
AfGo and A,H" of species at temperatures other than 298.15 K on the basis of 
the assumption that A,Ho at zero ionic strength is independent of temperature. 
More accurate calculations are possible when C R  values are known for species 
and can be assumed to be independent of temperature. In this case, 

AfHo(T) = A,H0(298.15 K) + A,C,O(T- 298.15 K )  (10.4-1) 

where AfC: is the difference between the standard molar heat capacity of the 
species and the sum of the molar heat capacities of the elements making it up. 
Therefore the standard enthalpy of a chemical reaction at temperature T is given 
by 

ArHo(T)  = A,H0(298.15 K )  + A,CF(T- 298.15 K )  (10.4-2) 

where 

( 10.4-3) 
j =  1 / =  1 

CFmi is the standard heat capacity of species j at constant pressure, and N, is the 
number of species in the chemical reaction. Note that the standard molar heat 
capacities of the elements cancel in the summation. Equation 10.4-2 was given 
earlier as equation 3.2-19, and it was used to show that the pK of acetic acid goes 
through a maximum not far from room temperature. Equation 10.4-3 was given 
earlier as equation 3.2-16. 

When the pH is specified, the standard transformed molar heat capacity of a 
species is given by (Alberty, 2001d) 

where z j  is the charge number for the ion and NH(j )  is the number of hydrogen 
atoms it contains. Values of the coefficient of the ionic strength term are given as 
a function of temperature in Chapter 3. This equation is obtained by applying the 
Gibbs-Helmholtz equation to the expression for ArH"( T) .  

'Table 10.1 
Species in Dilute Aqueous Solutions at 298.15 K 

Standard Molar Heat Capacities of 

Species C,",/J K-  ' mol- ' 

xylose 
ribose 
arabinose 
fructose 
galactose 
glucose 
mannose 
xylose 
lyxose 
ribose 5-phosphate2 
glucose 6-phosphate2 
mannose 6-phosphate' 
fructose 6-phosphate2 - 

279 rt_ 20 
276 20 
276 & 20 
369 _+ 14 
319 & 20 
336 f 7 
342 f 17 
319 28 
285 & 20 

10 * 45 
48 f 17 
57 _+ 19 
89 f 17 

Sozircc.: With permission from R .  N. Goldberg and Y. Tewari, 
d. Phjs .  Chrrn Ref Datcr 18, 809 (1989). Copyright American 
Institute of Physics. 
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Table 10.2 
Solutions at 298.15 K 

Standard Heat Capacities of Chemical Reactions in Dilute Aqueous 

Chemical Reaction 

glucose 6-phosphate'- + H,O = glucose + HP0;- 
mannose 6-phosphate'- + H,O = mannose + HP0;- 
fructose 6-phosphate'- + H,O = fructose + HP0;- 
ribose 5-phosphate'- + H,O = ribose + HP0;- 
ribulose 5-phosphate'- + H,O = ribulose + HPOi-  
glucose 6-phosphate' = fructose 6-phosphate' 
mannose 6-phosphate' = fructose 6-phosphate' 
glucose = fructose 
xylose = xylulose 
ATP4- + H,O = ADP3- + HP0;- + H +  

A,C:/J K- '  mol-' 

-48 20 
-46 f 10 
-28 40 
-63 k 40 
-84 f 30 

44 * 10 
38 30 
76 k 30 
40 k 20 

-237 f 30 

Source: With permission from R. N. Goldberg and Y, Tewari, J .  Phys. Clzem Re$ 
Data 18, 809 (1989). Copyright American Institute of Physics. 

In Chapter 4 the effects of temperature on A,G" and A,H" and on A,G" and 
A,H'O are discussed on the basis of the assumption that A,Ho at zero ionic 
strength is independent of temperature. Therefore the effects of heat capacities of 
species were not treated. When a biochemical reactant contains two or more 
species, the standard transformed molar heat capacity of the pseudoisomer group 
is given by (Alberty, 1983a) 

h,,, 

C:p(iso) = 1 rJC:m(j) + r,(A,Hi0)2 - (AiH'o(iso))2 
J =  1 

The second term is always positive because as the system is heated, the acid 
dissociations shift in such a way as to absorb heat, as predicted by the Le 
Chatelier principle. 

Calorimetric measurements yield enthalpy changes directly, and they also 
yield information on heat capacities, as indicated by equation 10.4-1. Heat 
capacity calorimeters can be used to determine CFm directly. It is almost 
impossible to determine A, CF from measurements of apparent equilibrium 
constants of biochemical reactions because the second derivative of In K' is 
required. Data on heat capacities of species in dilute aqueous solutions is quite 
limited, although the NBS Tables give this information for most of their entries. 
Goldberg and Tewari (1989) have summarized some of the literature on molar 
heat capacities of species of biochemical interest in their survey on carbohydrates 
and their monophosphates. Table 10.1 give some standard molar heat capacities 
at 298.15 K and their uncertainties. The changes in heat capacities in some 
chemical reactions are given in Table 10.2. 
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W 11.3 Semigrand Partition Function for a System 

2; 11.4 Semigrand Partition Function for a Biochemical 

+ 11.5 Discussion 

The introduction of transformed thermodynamic properties to biochemical ther- 
modynamics owes a lot to statistical mechanics because these calculations follow 
the pattern of calculations on reaction equilibria in systems of gaseous hydrocar- 
bons at specified partial pressures of molecular hydrogen, ethylene, or acetylene. 
Alberty and Oppenheim (1989) used a semigrand partition function to describe 
the equilibrium distribution of alkyl benzenes at elevated temperatures as a 
function of the partial pressure of ethylene. The transformed Gibbs energy G‘ of 
a system at a specified pH can be calculated using a semigrand partition function 
(Alberty, 2001~). The further transformed Gibbs energy G ”  of a system of 
biochemical reactions can be calculated using a semigrand partition function with 
the steady state concentrations of coenzymes as intensive variables (Alberty, 
2001g, 2002a). 

Statistical mechanics provides a bridge between the properties of atoms and 
molecules (microscopic view) and the thermodynmamic properties of bulk matter 
(macroscopic view). For example, the thermodynamic properties of ideal gases 
can be calculated from the atomic masses and vibrational frequencies, bond 
distances, and the like, of molecules. This is, in general, not possible for 
biochemical species in aqueous solution because these systems are very compli- 
cated from a molecular point of view. Nevertheless, statistical mechanmics does 
consider thermodynamic systems from a very broad point of view, that is, from 
the point of view of partition functions. A partition function contains all the 
thermodynamic information on a system. There is a different partition function 
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for each choice of natural variables. Gibbs (1903) introduced the grand canonical 
partition function for a system containing a single species that is in contact with 
a large reservoir of that species through a permeable membrane. Semigrand 
partition functions were introduced later by statistical mechanicians to treat 
systems with several species, one or more of which are available from a large 
reservoir through a semipermeable membrane. The idea of holding the chemical 
potential of a species constant was often used in statistical mechanics long before 
it was used in thermodynamics. 

In this chapter the usual convention in statistical mechanics of using numbers 
N, of molecules (rather than amounts q), the Boltzmann constant k (rather than 
the gas constant R),  and [j = l/kT have been used, but the same symbols have 
been used for thermodynamic properties as in thermodynamics. Thus the proper 
interpretation of these latter symbols depends on context. Detailed information 
on various partition functions is provided by textbnooks on statistical mechanics 
(McQuarrie, 2000; Chandler, 1987; Greiner, Neise, and Stocker. 1995; di Cera, 
1995; Widom, 2002). 

11.1 INTRODUCTION TO SEMIGRAND PARTITION 
FUNCTIONS 

Gibbs considered the statistical mechanics of a system containing one type of 
molecule in contact with a large reservoir of the same type of molecules through 
a permeable membrane. If the system has a specified volume and temperature and 
is in equilibrium with the resevoir, the chemical potential of the species in the 
system is determined by the chemical potential of the species in the reservoir. The 
natural variables of this system are 7: V,  and p. We saw in equation 2.6-12 that 
the thermodynamic potential with these natural variables is U [ 7 ;  ,HI using Callen's 
nomenclature. The integration of the fundamental equation for U [ 7 ;  p] yields 
- PV (see equation 2.6-20), and so - PV can be considered a state function of the 
system under these conditions. 

Statistical mechanics is based on the use of ensembles (collections of systems 
under specified conditions) that lead to partition functions. Partition functions are 
sums of exponential functions. Gibbs referred to the ensemble for a system at T 
and V in contact with a large reservoir of that species through a permeable 
membrane as the grand canonical ensemble. The corresponding grand canonical 
partition function is represented by Z(7; V ,  p). Since thermodynamic potentials are 
given by - kT times the natural logarithm of a partition function, the value of PV 
can be calculated using 

(1  1.1-1) 

where k is the Boltzmann constant (R/NA) and N ,  is the Avogadro constant. 
If a system contains two types of species, but the membrane is permeable only 

to species number 1, the natural variables for the system are 7; V,  p i ,  and N, ,  
where N, is the number of molecules of type 2 in the system. The thermodynamic 
potential for this system containing two species is represented by U [ 7 :  pi]. The 
corresponding ensemble is referred to as a semigrand ensemble, and the semigrand 
partition function can be represented by "(7; V,  p,, N J .  The thermodynamic 
potential of the system is related to the partition function by 

(11.1-2) 

The Gibbs energy for a system at constant T and P containing a single species 

PV = kTlnE(7: V ,  p )  

U[T.  p l ]  = -kTln "(7: r! p i ,  N , )  

is given by 

G(7: P, N )  = -kTlnA(T P,  N )  ( I  1.1-3) 

where A is the isothermal-isobaric partition function. 



11.2 Transformed Gibbs Energy for a System Containing a Weak Acid 181 

When a system at specified T and P contains two species and one of them is 
in equilibrium with that species in a reservoir through a semipermeable mem- 
brane, the transformed Gibbs energy of the system is calculated from the 
semigrand partition function r’(T, P,  p l ,  N,) by use of 

G’(T P, p,, N,) = -kTInI-’(T, P, p,, N 2 )  (1 1.1-4) 

Statistical mechanics is often thought of as a way to predict the ther- 
modynamic properties of molecules from their microscopic properties, but statis- 
tical mechnics is more than that because it provides a complementary way of 
looking at thermodynamics. The transformed Gibbs energy G‘ for a biochemical 
reaction system at specified pH is given by 

G‘ = - k T l n  I-’ ( 1 1.1 -5) 

The semigrand partition function r’ corresponds with a system of enzyme- 
catalyzed reactions in contact with a reservoir of hydrogen ions at a specified pH. 
The semigrand partition function can be written for an aqueous solution of a 
biochemical reactant at specified pH or a system involving many biochemical 
reations. The other thermodynamic properties of the system can be calculated 
from r‘. 

The further transformed Gibbs energy G ”  for a biochemical rection system at 
specified pH and specified concentrations of certain coenzymes is given by 

G “  = - kTln I-’’ ( 1 1.1 -6) 

where r” is the corresponding semigrand partition function. All the remaining 
thermodynamic properties of the system can be calculated by taking partial 
derivatives of G “  or r”. 

in detail, 
but i t  is important to point out that B and Y differ by the factor exp(fiN,p,) and 
A and r differ by the same factor. Thus holding the chemical potential of species 
1 constant has the effect of introducing an exponential factor that depends on the 
number of molecules of species 1 and the chemical potential of species 1. 

This is not the place to discuss the partition functions E, Y, A, and 

H 11.2 TRANSFORMED GIBBS ENERGY FOR A SYSTEM 
CONTAINING A WEAK ACID AND ITS BASIC 
FORM AT A SPECIFIED pH 

The forms of semigrand partition functions for biochemical rection systems can 
be illustrated, starting with an aqueous solution of a weak acid and its basic form 
at a specified pH (Alberty, 2001~). The semigrand partition function r’ for this 
system is given by 

I-’(T P,  PH, KO) 
= (exp( -[lp,)exp( - N,, In(l0)pH) + exp( -Pp2)exp(- N,, In(10)pH}N~50 

= {exp( - bpi) + exp( - [jpi)}Niso (1 1.2- 1) 

where , L L ~  and p 2  are the chemical potentials of species 1 and 2 (i.e., A -  and HA) 
and 11: = p ,  - N,,p(H+). N,, and N,, are the numbers of hydrogen atoms in 
these two species N:so is the number of molecules in the pseudoisomer group, 
N ,  + N,. Equation 11.2-1 has been given in the form of the partition function 
that applies at zero ionic strength in order to keep it simpler, but this complica- 
tion can be taken into account by using 

2.91482(zj - NH(j))I”2 
p\ = pj(Z = 0) + N,(j)RTIn(lO)pH - (1 1.2-2) 

1 + 1.61”2 

Note that the exp( - B p i )  terms for species are weighted according to the number 



182 Chapter 11 Use of Semigrand Partition Functions 

of hydrogen atoms in the species. This sum of exponential terms for a 
pseudoisomer group may contain many terms and is really a Laplace transform 
(Greiner, Neise, and Stocker, 1995). 

Substituting equation 11.2-1 in 11.1-5 yields 

G ' =  -N:,,KTln{exp( -[jpl)exp( - N,, In( 10)pH) 

+exp(-BLL2)exp(- NH2 In(l0)pH)) 

= - N:,,kT ln{exp( - B p i )  + exp( - [ j p ; ) )  = N~so~i:so ( I 1.2-3) 

The transformed chemical potential for the pseudoisomer group (i.e., A- plus HA) 
is given by 

piso = - kTln{exp( - B p i )  + exp( - [~ ,LL '~ ) ]  (1 1.2-4) 

which can also be written as 

Pi,, = P;y0 + kTlnIIA1 (1  I .2-5) 

where [A] = [A ] + [HA]. Equation 11.2-4 leads to 

(1 1.2-6) 

This can be demonstrated by substituting p', = pi' + kTln[HA] and 
,H; = 1: + kTln[A-] in equation 11.2-4 and using 

p,,, I 0  = -kTln(exp( -fill;') + exp(-Bp;')) 

r0 
Ti = exp [ Piso k T  - Pi ''1 ( 1 1.2-7) 

where rL is the mole fraction of species i. 
The fundamental equation of thermodynamics for G '  for a dilute aqueous 

solution containing a weak acid HA, and its basic form A -  when these species 
are at equilibrium at a specified pH is (see 4.3-1) 

dG' = - S ' d T  + V d P  + &,dN~s,, + N,(H)kTln(lO)dpH (11.2-8) 

where N,(H) is the number of atoms of hydrogen in the system. p:so is the 
transformed chemical potential of the pseudoisomer group, and the number of 
molecules of the pseudoisomer group is given by NI,, = N + N,. Equation 1 1.2-8 
can be integrated at  constant values of the intensive variables 7: P,  nd pH to 
obtain 

G' = Hisopiso (1 1.2-9) 

This is in agreement with statistical mechanical equation 11.2-3. 

system can be obtained from 
Equation 11.2-8 indicates that the other thermodynamic properties of the 

(11.2-11) 

(1 1.2-13) 
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McQuarrie (2000) gives a nice table like this for several types of partition 
functions. The further transformed enthalpy H '  of the system at specified pH can 
be calculated by use of the Gibbs-Helmholtz equation: 

Note that G' = H' - TS'. This shows that the semigrand partition function r' 
contains all the thermodynamic information about the system. 

11.3 SEMIGRAND PARTITION FUNCTION FOR A 
SYSTEM CONTAINING TWO PSEUDOISOMER 
GROUPS AT A SPECIFIED pH 

For a syslem containing two pseudoisomer groups A and B at a specified pH, the 
semigrand partition function is given by 

(11.3-1) r ' (T  P,  pH, NIsoA, N;,,,) = {exp( -/j~LIs,A)}N;'"h(exp( -ppis,u)}NiSoB 

Substituting this in G' = - kTln r' yields 

G' = - kTln[{exp( - flpisoA)}Ni50A{exp( - /jp~s,u)}1v~5uB] 

= N !  isoA p! isoA + NisoBp;soB (1 1.3-2) 

If pseudoisomer groups A and B are involved in a reaction 

A = 2B (11.3-3) 

and there are initially (NisoJO molecules of A, the transformed Gibbs energy of 
the system at any time in the reaction is given by 

G'  = (Ni soA)OdsoA + (2pisoB - k 3 o A ) t '  (1 1.3-4) 

where 4' is the extent of reaction. The transformed Gibbs energy is minimized at 
equilibrium, and so 

(11.3-5) 
AG' 
dj" ~ = 2 d s o B  - PisoA = 

which is the equilibrium condition. 

H 11.4 SEMIGRAND PARTITION FUNCTION FOR A 
BIOCHEMICAL REACTION SYSTEM AT 
SPECIFIED CONCENTRATIONS OF COENZYMES 

At level 3 the semigrand partition function I?' for a sum of reactants that are 
pseudoisomers at specified concentrations of coenzymes is given by a sum of 
exponential terms raised to a power equal to the number of molecules in the 
pseudoisomer group (Alberty, 2001g): 

r" = {exp( -[jpy) + exp(-[jpi) + . . . } N 1 5 < i  (1 1.4-1) 

Substituting this in G" = - kTln r" yields 

G" = -N:'sokTIn{exp(-flp;) + exp(-[jp';) + ...} = N:50p:'50 (11.4-2) 

The semigrand partition function can be written for a system of biochemical 
reactions at specified concentrations of coenzymes, and G" = - kTln r". The 
fundamental equation for G" can be used to calculate the other thermodynamic 
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properties of a system. The fundamental equation for G "  is 

dG" = -S"dT + VdP + EprdNy + kTln(lO)N,(H)dpH 

- X N,(coe,)kTdln[coe,] ( 1 1.4-3) 

NJH) = 

1 (7G" ? In r" 
/zT i In[coe,] ? In[coe,] 

"(toe,) = - ( ) = -( ) 

( 1 1.4-4) 

( 1  1.4-5) 

(1  1.4-6) 

(1 1.4-7) 

(1 1.4-8) 

The subscripts on the partial derivatives have been omitted because they are 
complicated, as indicated by the fundamental equation. The change in "binding" 
of coenzymes in a reaction can be studied at constant concentrations of coen- 
zymes, just as the change in binding of hydrogen ions in a reaction can be studied 
at constant pH. The further transformed enthalpy H" of the system can be 
calculated by use of the Gibbs-Helmholtz equation or from G" = H" - TS". 

For glycolysis at specified 7; P,  pH, [ATP], [ADP], [Pi], [NAD,,,], and 
[NAD,,,]. the semigrand partition function is given by (see Section 6.6) 

r" = (exp( - / j p i~ ) )~ i ( exp(  -/)pi)). ' ; ( 1 1.4-9) 

which leads to 

( 1  1.4-10) GI1 = N" ,& + ";hi; 
Note that these two further transformed chemical potentials each involve summa- 
tions of exponential terms over the C, reactants and C, reactants. The standard 
further transformed Gibbs energies of formation of C, and C, can be calculated 
at the desired pH, ionic strength, and concentrations of coenzymes using equation 
11.4-2. The apparent equilibrium contants K" for C ,  = 2C, can be calculated. 
Solving a quadratic equation yields [C,] and [C,] as shown in Section 6.6. The 
distribution of reactants within these two pseudoisomer groups can then be 
calculated. The concentrations of species within the reactants can also be 
calculated. Thus no thermodynamic information is lost in going to the level 3 
calculations. This method can be applied to larger systems by specifying the 
Concentrations of more coenzymes, but the number of coenzymes that can be 
specified is C" - 1 or less because at least one component must remain. 

11.5 DISCUSSION 

The thermodynamics of biochemical rections at specified pH and specified 
concentrations of coenzymes can be represented by semigrand partition functions. 
Partition functions are always sums of exponential terms. For a single reactant at 
specified pH, r' has a term for each species that is weighted by a factor that is 
exponential in N,,(i)pH. For a mixture of reactants, the partition function P' for 
the system is a product of partition functions of reactants each raised to the power 
of the number of molecules of the reactant. Thus the partition function for a 
mixture of reactants is also a summation of exponential terms. For a sum of 
reactants at specified concentrations of coenzymes, for example, C,. the partition 
function I-'' is a sum of exponential terms, with a term for each reactant (e.g.. 
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glucose, G6P, F6P, and FBP) in the C ,  pseudoisomer group. Each term is 
weighted by a factor that gives the dependence on the concentrations of coen- 
zymes for the pseudoisomer group being discussed. For a mixture of reactants, 
like C ,  and C,, r” is a product of two sums of exponentials, each raised to the 
power of the number of molecules in each pseudoisomer group. 

This chapter is important because it shows that the thermodynamic proper- 
ties of a biochemical reactant at a specified pH can be discussed in terms of a 
semigrand partition function in which terms for species are multiplied by 
exp( ~ NH( j)pH), where NH( j) is the number of hydrogen atoms in thejth species. 
This partition function contains all the thermodynamic information about the 
reactant, and so it is of interest to note that the effect of the Legendre transform 
to make the pH an independent variable is to put the pH and the number of 
hydrogen atoms in a species into the exponent. Similarly the thermodynamic 
properties of a sum of reactants at specified concentrations of coenzymes can be 
discussed in terms of a semigrand partition function in which terms for reactants 
are multiplied by exp( ~ NATP(i)A G’(ATP) + NADp(i)AA ,G’(ADP)), where N,,, 
molecules “contained in” reactant i. This partition function contains all the 
thermodynamic information about the sum of reactants, and so it is of interest to 
note that the effect of making a Legendre transform to make [ATP] and [ADP] 
independent variables is to put [ATP] and [ADP] into the exponent. 



Glossary 

Notc: When primes are used on thermodynamic potentials, it is important to indicate in the context the intensive variables that have 
to be specified. This also applies when primes are used on equilibrium constants, amounts, or numbers like the number of 
components, degrees of freedom. and stoichiometric numbers. SI units are indicated in parenthcses. When a physical quantity does 
not have units, no units are givcn. Dimensions of matrices are also indicated in parentheses. 

activity of species i 
Helmholtz cncrgy ( J )  
transformed Helmholtz energy (J) 
constant in the Debye-Huckcl cquation (0.510651 
L-12  moll * at 298.15 K )  
surface area (m2) 
conservation matrix (C x N )  
apparent conscrviition matrix when the 
concentrations of one or more species arc hcld 
constant (C' x N ' )  
apparent conservation matrix when the 
concentrations of one or more species and one or 
more reactants are held constant (C" x N " )  
magnetic flux density (magnetic field strength) (T) 
magnitude of the magnetic flux density (magnetic 
field strength) (T) 
empirical constant in the extended Dcbye-Hckel 
equation ( I  .6 kg' " mol- ' ') 
concentration of spccics i (moI E ~ 

standard concentration ( I  mol L-  ' )  
number of components in a reaction system 
apparent number of components in a reaction 
system when the concentrations of one or more 
species are held constant 
apparent number of components when the 
concentrations of one or more species and one or 
more reactants are held constant 
standard molar hcat capacity of spccies ,j (.I K ~ 

mol- I )  

standard transformed molar heat capacity of 
reactant i (J K - '  mol-') 
standard heat capacity of formation of species ,j (J 
K - '  rnol-.') 
standard heat capacity of reaction (J K mol- I )  

standard transformed hcat capacity of reaction (J 
K ' mol- ' )  
number of variablcs needed to describc the 
extensive state of a system 

D' 

D" 

E 
E 

E 

EO 

E' 

E'" 

f 
F 
F 

F '  

F " 

G 

G '  

apparent number of variables needed to describe 
the extensive state of a system when the 
concentrations of one or morc species havc been 
specified 
apparent number of variables needed to describe 
the extensive state of ;+ system when the 
concentrations of one or more species and the 
concentrations of one or more reactants hake been 
specified 
electric field strength ( V  m I )  

magnitude of the electric field strength 
(V m - ' )  
elcctromotive force (electric potential differcncc) or 
reduction potential ( V )  
standard electromoiive force of a cell or standard 
reduction potential (V) 
apparent electromotive force or apparent reduction 
potential a t  a specified pH (V)  
standard apparent electromotive forcc of a ccll or 
standard apparent reduction potential (V)  
force (N)  
Faraday constant (96,485 C mol- I )  

number of variables nccdcd to dcscribc the 
intensive state of a system 
apparent number of variables needed to describc 
the intensive state of a system after the 
concentrations of one or morc species have bccn 
specified 
apparent number of variables needcd to describe 
the intensive state of a system when the 
concentrations of onc or more species and the 
concentrations of one or more reactants have been 
specified 
Gibbs energy of a system at specified 7; P ,  and ionic 
strength (J) 
transformed Gibbs cncrgy of a system at specilied 7: 
P, ionic strength, and concentrations of onc or 
more species (J) 
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G " 

4 G 
A,G' 

A, G ~ : ( )  

A~G,''' 

A r G '  

A,G'" 

A,G" 

A, Gi"" 

h 
H 

H '  

ArH' 

A,. H,:' 

I 

further transformed Gibbs energy of a system at 
specified 7; P,  ionic strength, and concentrations of 
one or more species and one or more reactants (J) 
standard Gibbs energy of formation of species j at  
specified 7; P, and ionic strength (J mol-') 
Gibbs energy of formation of speciesj at specified 7; 
P, and ionic strength (J mol-I) 
Gibbs energy of chemical reaction (J mol- ') 
standard Gibbs energy of chemical reaction ( J  
moI - ') 
standard transformed Gibbs energy of formation of 
reactant i at specified 7; P, ionic strength, and 
specified concentrations of one or more species (J 
mol- I )  

standard further transformed Gibbs energy of 
formation of a pseudoisomer group of reactants at 
specified 7; P, ionic strength, and specified 
concentrations of one or more species and one or 
more reactants (J mol-') 
transformed Gibbs energy of a biochemical reaction 
(J mol- l )  
standard transformed Gibbs energy of reaction at  a 
specified concentration of a species (J mol-I) 
further transformed Gibbs energy of reaction at 
specified concentrations of one or more reactants (J 
mol- ') 
standard further transformed Gibbs energy of 
reaction at  specified concentrations of one or more 
reactants (J mol-') 
standard further transformed Gibbs energy of 
formation of reactant i at specified concentrations 
of one or more reactants (J mol- j 
Planck's constant 
enthalpy of a system at specified 7; P, and ionic 
strength (J) 
transformed enthalpy of a system at specified 7; P,  
ionic strength, and concentrations of one or 
more species (J)  
further transformed enthalpy of a system at 
specified 7; P,  ionic strength, and concentrations of 
one or more species and one or more reactants (J) 
molar enthalpy of species j (J mol-') 
enthalpy change in a calorimetric experiment (J 
mol- I )  

standard enthalpy of reaction (J mol- ') 
standard enthalpy of formation of species ,j (J 
mol - I )  

molar transformed enthalpy of specics ,i (J mol- I )  

molar transformed enthalpy of reactant i ( J  mol-I) 
standard transformed enthalpy of reaction at  a 
specified concentration of a species (J mol- I )  

transformed enthalpy of reaction at a specified 
concentration of a species (J  mol- I )  

standard transformed enthalpy of formation of 
reactant i at a specified concentration of a species (J 
moI ') 
transformed enthalpy of formation of i at a specified 
concentration of a species (J mol- I )  

mole fraction-weighted standard transformed 
enthalpy of formation of reactant i at  a specified 
concentration of a species (J mol- ' )  
ionic strength (mol L I )  

k 
K 

K '  

K " 

Khlp 

L 
111 

in 
m 
117 

PIci 

'ci 

" c i  

I t  

n' 

n" 

N 

N ,  
"4 
N '  

N I' 

Boltzmann constant (J K I )  

equilibrium constant written in terms of 
concentrations of species at specified 7: P.  and ionic 
strength 
apparent equilibrium constant written in terms of 
concentrations of reactants (sums of species) at 
specified 7; P, ionic strength and concentrations of 
one or more species 
apparent equilibrium constant written in terms of 
concentrations of pseudoisomer groups (sums 
of reactants) at specified 7; P, ionic strength, and 
concentrations of one or more species and one 
or more reactants 
Henry's law constant 
apparent Henry's law constant at a specified pH 
acid dissociation constant 
dissociation constant of a magnesium complex ion 
elongation (m) 
mass (kg) 
transformation matrix 
magnetic moment of a system (J T- ')  
magnitude of the magnetic moment of a system (J 

molar mass of species i (kg mo1-l) 
total amount in a system (mol) 
amount of B bound in the system (mol) 
amount of species i (mol) 
set of amounts of species in a system (mol) 
amount of reactant i (sum of species) (mol) 
amount of pseudoisomer group i (sum of reactants) 
(moll 
amount of component i (mol) 
amount of apparent component i at  specified 
concentrations of one or more species (mol) 
amount of apparent component i at specified 
concentrations of one or more species and one or 
more reactants (mol) 
column vector of amounts of species ( N  x 1) (molj 
column vector of amounts of reactants (sum of 
species) ( N '  x I )  (mol) 
column vector of amounts of pseudoisomer groups 
of reactants ( N " x  1)  (mol) 
column vector of amounts of components (C x I )  
( m a  
column vector of amounts of noncomponents 
( ( N  ~ C) x 1) (mol) 
column vector of amounts of apparent components 
at specified concentrations of one or more species 
(C' x 1) (mol) 
column vector of amounts of apparent components 
at specified concentrations of one or more specics 
and one or more reactants (C" x 1) (mol) 
number of molecules in a system 
number of different kinds of species in a system 
Avogadro constant (mol- j 
number of different reactants (sums of species) in a 
system 
number of different pseudoisomer groups of 
reactants in a system 
number of isomers in an isomer group or 
pseudoisomers in a pseudoisomer group 
number of hydrogen atoms in species j 

r') 

j )  
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number of ATP in reactant i (can be positive or 
negative) 
number of magnesium atoms in a molecule of ,j 
number of oxygen molecules bound in i 
matrix of numbers of specified components in the 
N ,  species ( C  x N , )  
average number of hydrogen atoms bound by a 
molecule of i 
average number of magnesium atoms bound by a 
molecule of i 
rate of change of n,(ATP) with respect to the 
amount of pseudoisomer group i 
change in binding of hydrogen ions in a 
biochemical reaction at specified 7: P ,  ionic strength 
and concentrations of one or more species 
change in the binding of magnesium ions in a 
biochemical reaction at specified 7; P ,  pH, and ionic 
strength 
number of different kinds of phases in a system 
pressure (bar) 
partial pressure of i (bar) 
standard state pressure ( I  bar) 
binding polynomial (partition function) 
intensive variable in Callen's nomenclature 
(varies) 
dipole moment of the system (C m) 
magnitude of the dipole moment of the system (C 
ni 1 
-log[tr(H')) 
-log[H+] at  specified 7: P. and ionic strength 
-1og[MgZt] at specified 7; P ,  and ionic strength 
-log K for the dissociation of an acid at specified 
7: P, and ionic strength 
heat flow into a system(J) 
amount of charge transferred across the center of a 
membrane (C) 
canonical ensemble partition function 
electric charge contributed to a phase by species i 
( C )  
reaction quotient at T and P 
reaction quotient at specified 7; P, pH, pMg, and 
ionic strength 
distance from the axis of rotation (m) 
mole fraction of isomer i within an isomer group or 
pseudoisomer i within a pseudoisomer group 
gas constant (8.31451 J K - '  mol-') 
number of independent reactions in a system 
described in terms of species 
number of independent reactions in a system 
described in terms of reactants (sums of 
species) 
number of independent reactions in a system 
described in terms of pseudoisomer groups of 
reactants 
number of special constraints in the phase rule 
entropy of a system at specified 7; P, and ionic 
strength (J K -  I )  

transformed entropy of a system at specified 7; P, 
ionic strength, and concentrations of one or 
more species (J K I) 

further transformed entropy of a system at specified 
7: P ,  ionic strength, and concentrations of onc 

or more species and one or more reactants 
(J K- ' )  
change in entropy in a change of state of a system 
(J K - '  mol-l) 
molar entropy of species,j (J K - '  mol- I) 
molar transformed entropy of reactant i (J  K 
mol- ') 
standard molar entropy of species j (J  K ~ 

mol ') 
standard molar transformed entropy of reactant i (J 
K - '  mo1-l) 
reaction entropy (J K ' mol- I )  

standard reaction entropy (J K - '  mol - ' )  
standard entropy of formation of species j (J K ~ 

mol- ') 
transformed reaction entropy (J  K -  ' mol- I )  

standard transformed reaction entropy (J K 
mol-') 
standard transformed entropy of formation of 
species j (J K - l  m o l ~ -  ' ) 
stoichiometric number of step i 
pathway matrix ( R  x 1) 
temperature (K) 
Celsius temperature (, C) 
internal energy (J) 
transformed internal energy (J) 
Callen's nomenclature for the transformcd internal 
energy that has intensive variable Pi as a natural 
variable (J) 
volume (m3) 
molar volume (m3 mol-') 
reaction volume (m3 mo1-l) 
work done on a system ( J )  
mole fraction of i 
extensive variable in Callen's nomenclature (varies) 
fractional saturation 
charge number of ion ,j 
Debye-Hckel constant (1.17582 kg' ' mol- ' ' at 
298.15 K )  
l / k T  in statistical mechanics (J) 
activity coefficient of species i 
surface tension (N  ni I )  

isothermal-isobaric partition function 
semigrand partition function 
semigrand partition function at a specified pH 
semigrand partition function at a specified pH and 
specified concentrations of coenzymes 
chemical potential of speciesj at specified 7: P, and 
ionic strength (J mol-') 
set of chemical potentials (J niol-I) 
transformed chemical potential of reactant i at 
specified 7: P ,  ionic strength, and concentrations of 
one or more species (J rno1-I) 
further transformed chemical potential of 
pseudoisomer group i at specified 7; P. ionic 
strength, and concentrations of one or more specics 
and one or more reactants (J mol-I) 
standard chemical potential of species i at specified 
7; P, and ionic strength (J mol-') 
standard chemical potential of species i (J mol- ')  
standard transformed chemical potential of 
reactant i (J mol- ' )  
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P 

P' 

P" 

P c i  

P c i  

P c i  

Pc 

Pc 

standard further transformed chemical potential of 
pseudoisomer group i at specified 7; P,  ionic 
strength, and concentrations of one or more species 
and one or more reactants (J mol-') 
vector of chemical potentials of species at specified 
7; P, and ionic strength (1 x N )  (J mol- I )  

vector of transformed chemical potentials of 
reactants a t  specified 7; P, ionic strength, and 
concentrations of one or more species (1 x N ' )  
(J mol-') 
vector of further transformed chemical potentials of 
pseudoisomer groups of reactants at specified 7; 
P,  ionic strength, and concentrations of one or 
more species and one or more reactants ( 1  x N") tJ 
mol - I )  

chemical potential of component i at specified 7; P, 
and ionic strength (J mol- ') 
transformed chemical potential of component i at 
specified 7; P ,  ionic strength, and concentrations of 
one or more species (J mol-') 
further transformed chemical potcntial of 
component i at specified 7; P ,  ionic strength, and 
concentrations of one or more species and one 
or more reactants (J mol-I) 
vector of chemical potentials of components at 
specified 7; P ,  and ionic strength (1 x C) (J mol-")  
vector of transformed chemical potentials of 
components at specified 7; P,  ionic strength, and 
concentrations of one or more species (1 x C') 
(J mol-I) 
vector of chemical potentials of noncomponents at 
specified 7; P,  and ionic strength (1 x ( N  - C ' )  
(J mol- ') 
vector of further transformed chemical potentials of 
components at specified 7; P, ionic strength, 
and concentrations of one or more species and one 
or more reactants (1 x C") (J mol- ') 
stoichiometric number of species i in a chemical 
reaction 
stoichiometric number of species i in reaction ,j 
stoichiometric number of reactant i in a 
biochemical reaction 

V 

V' 

V" 

\'i 

1'; 

I ", I 
V 

V' 

V' 

s 
i 

E, 

5' 

5" 

stoichiometric number of reactant i in reaction , j  
stoichiometric number of pscudoisomer group i in 
reaction j 
stoichiometric number matrix in terms of species 
( N  x R )  
stoichiometric number matrix in terms of reactants 
(N' x R')  
stoichiometric number matrix in terms of 
pseudoisomer groups of reactants ( N "  x K")  
stoichiometric number of species i 
apparent stoichiometric number of reactant i (sum 
of species) 
apparent stoichiometric number of reactant i (sum 
of species) when the concentration of a reactant 
has been specified 
number of electrons in a half-reaction 
stoichiometric number matrix ( N  x R )  
apparent stoichiometric number matrix (N' x K ' )  
apparent stoichiometric number matrix for a net 
reaction ( N '  x 1) 
extent of chemical reaction (mol) 
extent of biochemical reaction (mol) 
extent of reaction column vcctor at specilied 7; P. 
and ionic strength ( R  x 1 )  (mol) 
extent of reaction column vector at specified 7: P. 
ionic strength, and concentrations of one or 
more species (R' x 1) (mol) 
extent of reaction column vector at specified 7; P ,  
ionic strength, and concentrations of one or 
more species and one or more reactants (R"  x 1)  

binding potential (J mol-I) 
grand canonical partition function 
shear stress (N m-2)  
electric potential of the phase containing species i 
(V,  J C - ' )  
semigrand partition function 
angular velocity (s- ' ) 
acid dissociation constant of an independent group 

(mol) 
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Second Part: MathematicaR Solutions to Problems 

Calculations on the thermodynamics of biochemical reactions are often very complicated because of the large num- 
bers of independent variables that are involved: for example, T, pH, ionic strength, concentrations of free metal ions, and 
concentrations of coenzymes. Therefore, it is necessary to use a computer with a mathematical application installed. Mathe- 
matica is very convenient for these calculations, data storage, and making plots (Wolfram Research, 100 World Trade 
Center, Champaign, IL 61820-7237). This part of the book provides Mathematica solutions to problems and shows how to 
calculate figures and tables used in the book. Programs and all of the details involved in making these calculations are 
shown. These programs can be used to make calculations at other temperatures, pHs, ionic strengths, etc. 

http://www.mathsource.com/cgi-bin/msitem?02 1 1-622 
BasicBiochemData2.nb is a Mathemutica notebook that contains data, programs, explanations, and examples. It can be read 
using MathReader, which is free from Wolfram Research at 
http://www .wolfram.com 
This notebook is the first item in this part of the book. It can be downloaded into a personal computer with Matheniatica 
installed and can be run by using Kernel/Evaluation/Evaluate Notebook. This brings in all the data and programs. Math- 
Source also contains BasicBiochemData2.m, which is a package that contains data and programs. It can be loaded into a 
Mathematica notebook by simply typing <<BasicBiochemData2' after BasicBiochemData2.m has been downloaded into 
AddOnsIExtraPackages in your computer. 

Many of the problems in this second part of the book require that the package has been loaded, but the command 
<<BasicBiochemData2' is not included in each problem. Although the package loads programs, the programs used in 
problems are usually repeated in the solutions shown here so that it is easier for the reader to see how the calculation is made. 
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problems. Names, temperatures, pHs, and ionic strengths are readily changed in the solutions to problems. 

The basic data and most of the programs are available on the web in MatlzSource at 

A number of books have been written to help people get started with Mathematicu. Examples are 

It is not necessaary to be a programmer in order to use the programs and procedures illustrated in this collection of 
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Data and Programs for Biochemical Thermodynamics 

Robert A. Alberty 
Department of Chemistry 6-2 15 
Massachusetts Institute of Technology 
Cambridge, MA 02139 
alberty @ mit. edu 

Abstract: The objective of this package is to give the basic thermodynamic data on a large number of species involved in 
biochemical reactions at 298.15 K, 1 bar, and zero ionic strength and show how to use these data to calculate apparent 
equilibrium constants K of biochemical reactions at desired pHs and ionic strengths. Biochemical reactions are written in 
terms of sums of species, which are referred to as reactants. The thermodynamic properties of reactants are referred to as 
transformed properties because the pH is specified. Programs are given for calculating the standard thermodynamic proper- 
ties of reactants from the basic data on species. Four tables are included to show how the standard transformed Gibbs 
energies of formation and standard transformed enthalpies of formation of 131 reactants depend on pH and ionic strength. 
Programs are given for the calculation of apparent equilibrium constants and other thermodynamic properties of reactions by 
simply typing in the reaction in the computer. Examples are given of various uses of these tables, including how to plot the 
various properties versus pH. 
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I 1.0 Introduction 

The objective of this package is to give the basic thermodynamic data on a large number of species involved in 
biochemical reactions at 298.15 K, 1 bar, and zero ionic strength and show how to use these data to calculate apparent 
equilibrium constants K of biochemical reactions at desired pHs and ionic strengths. Programs are given for making all of 
these calculations and more. The apparent equilibrium constant is related to the standard transformed Gibbs energy of 
reaction A, G'"and to the standard transformed Gibbs energies of the reactants A, G;'" by (ref. 1-3) 

A, G = v, ' A f  G, = - RT In IC (1) 
The v, ' are the stoichiometric numbers of reactants in the biochemical equation (positive for reactants on the right side of the 
equation and negative for reactants on the left side). The prime is needed on the stoichiometric numbers to distinguish them 
from the stoichiomeric numbers in  the underlying chemical reactions. The standard transformed enthalpy of reaction 
A, H ''I (heat of reaction) is related to the standard transformed enthalpies offormation Af Hi ''I of the reactants by 

Ar H ' "  = v , ' A ~  H ,  "' (2) 
These thermodynamic properties are functions of the pH and ionic strength, and they can be calculated from the standard 
Gibbs energies of formation Af Go and standard enthalpies of formation Af H" of the species involved. The Af G; "' values of 
131 reactants as functions of pH and ionic strength and the Af H ,  lo values of 69 reactants are calculated using the Mntherrzat- 
icu programs calcdGmat and calcdHmat (ref. 4). These functions make it possible to calculate values of these properties at 
298.15 K and at pHs in the range 5 to 9 and ionic strengths in the range 0 to 0.35 M. 

table1 gives standard transformed Gibbs energies of formation of 131 reactants at pH 7 and ionic strengths of 0,  0.10, and 
0.25 M. 
table2 gives standard transformed Gibbs energies of formation of 131 reactants at ionic strength 0.25 M and pH values 015, 
6, 7, 8, and 9. 
table3 gives standard transformed enthalpies of formation of 69 reactants at pH 7 and ionic strengths of 0, 0.10, and 0.25 M. 
table4 gives standard transformed enthalpies of formation of 69 reactants at ionic strength 0.25 M and pH values of 5 ,  6, 7, 8, 
and 9. 
These tables can be used to calculate A, G'" and A, H'" at pH 7 and ionic strengths of 0, 0.10, and 0.25 M or at ionic strength 
0.25 M and pHs of 5 ,  6, 7, 8, and 9 for any reaction for which all the reactants are in these tables. They can also be used to 
calculate standard apparent reduction potentials. The species data can be used to calculate average bindings of hydrogen ions 
by reactants. Mathernaticu programs for carrying out these calculations are provided. 

The basic thermodynamic data comes from classical thermodynamic tables and from experimental measurements of 
K and Ar H'" at a particular pH and ionic strength together with measurements of acid dissociation constants. Some biochemi- 
cal reactants consist of a single species, but others are sums of species; for example, ATP is made up of the species ATP4- ,  

HATP3- , and H2 ATP2- in the pH range 4 to 10 in the absence of metal ions that are bound reversibly. Therefore, the basic 
thermodynamic data on biochemical reactions includes the standard Gibbs energies of formation A, Go and the standard 
enthalpies of formation Af H "  of species at zero ionic strength. 

The basic data stored for each species is a list of ( A, Go , A, H" , zi , NHi ), where zi is the charge number, and 
NH1 is the number of hydrogen atoms in the species. When a reactant is made up of more than one species, the basic data is 
represented by a matrix with a row for each species. The values of the standard transformed Gibbs energies of formation 
Af G'" and standard transformed enthalpies of formation Af H'" of these species are functions of pH and ionic strength, where 
the effects of ionic strength are calculated using the extended Debye-Huckel equation and the effects of pH are calculated 
using the number of hydrogen atoms in the species. These functions for reactants are calculated using the Mntiiemntica 

programs calcdGmat and calcdHmat. 

capital letters are used for Mnthenzatica operations) yields the function of pH and ionic strength for Af G'" and typing the 
name atph yields the function of pH and ionic strength for Af H'" . These functions can be evaluated at a specific pH and 

The following tables are given and can be printed out: 

This data base is set up in such a way that typing the name of a reactant, say atp (lower case letters are used because 

196 



BasicBiochemData2 197 

ionic strength by use of the replacement operator (/.), as illustrated by typing atp/.pH->7/.is->. 1 or atp/.pH->{ 6,7,8}/.is- 
>(0..1,.25). In addition the average number of hydrogen atoms in a reactant at specified pH and ionic strength can be 
calculated by taking the derivative of AfC'" with respect to pH. For example, the number of hydrogen atoms bound by ATP 
at pH 7 and 0.10 M ionic strength is given by 
(l/RTLog[ lO])*D[atp,pH]/.pH->7/.is->.l. 

cal reactions are written in terms of species. In chemical reaction equations, atoms of all elements and electric charges must 
balance. Biochemical reaction equations are written in terms of reactants, that is in terms of sums of species, H+ is not 
included as a reactant and electric charges are not shown or balanced. In biochemical reaction equations, atoms of all 
elements other than hydrogen must balance. The names of the reactants that must be used in making calculations with this 
data base are given later. 

The program calctrGerx can be used to calculate the standard transformed Gibbs energy of reaction Ar G'" for a 
biochemical reaction in the form atp+h2o+de=adp+pi, where de is required for the Mathematica operation Solve. The 
desired pHs and ionic strengths can be specified. The program calckprime can be used to calculate the apparent equilibrium 
constant K for a reaction at desired pHs and ionic strengths. The program calctrGerx can also be used to calculate Af  H'" by 
typing in  a biochemical reaction in the form atph+h2oh+de=adph+pih. 

When oxidation and reduction are involved in an enzyme-catalyzed reaction, the standard apparent reduction poten- 
tial for a half reaction can be calculated by typing the half reaction in calcappredpot and specifying the pHs and ionic 
strengths. 

The mathematical functions for the standard transformed Gibbs energies of formation of biochemical reactants 
contain information about the average number of hydrogen atoms bound, as mentioned above. The change in binding of 
hydrogen atoms in a biochemical reaction can be calculated by taking the difference between products and reactants, but in 
using Mathernatica there is an easier way and that is to take the derivative of Ar G'" with respect to pH: 

In writing chemical equations and biochemical equations it is important to be careful with names of reactants. Chemi- 

A, N H  = (1/R7ln( lO))(dA, C'" /dpH) (3) 
The equilibrium composition for an enzyme-catalyzed reaction or a series of enzyme-catalyzed reactions can be 

calculated by using equcalcc or equcalccrx. The first of these programs requires a conservation matrix. The second requires 
a stoichiometric matrix. The second program is recommended, especially when water is involved as a reactant, because the 
convention that when dilute aqueous solutions are considered, the activity of water is taken to be unity, means that a second 
Legendre transform is necessary. 

This version of the package provides eleven additional programs. One of the prgrams calcdGHT makes it possible to 
take the effect of temperature into account if enthalpy data are available (ref. 6). The uses of these programs are illustrated in 
the notebook. 

the ATP series. These changes do not change the values of apparent equilibrium constants that are calculated between 
reactants in this series, but will be useful in investigating the production of adenosine.. 

The current table can be considerably extended by use of the compilations of Goldberg and Tewari of evaluated 
equilibrium data on biochemical reactions (ref. 8). Akers and Goldberg have published "BioEqCalc; A Package for Perform- 
ing Equilibrium Calculations in Biohemical Reactions" (ref. 9). 

Goldberg and Ian Brooks for many helpful discussions. 

1. Alberty, R. A. Biophys. Chem. 1992 42, 117; 1992 43,239. 
2. Alberty, R. A.; Goldberg, R. N. Biochemistry 1992 31, 10610. 
3. Alberty, R. A. J. Phys. Chem. 1992 96, 9614. 
4. Alberty, R. A. Arch. Biochem. Biophys. 1998 353, 116; 1998 358, 25. 
5. Alberty, R. A. J. Phys. Chem. B 2001 105, 7865. 
6. Boerio-Goates, J.; Francis, M. R.; Goldberg, R. N.; Ribeiro da Silva, M. A. V.; Ribeiro da Silva, M. D. M. C.; Tewari, Y. 
J. Chem. Thermo. 2001 33,929. 
7. Goldberg, R. N. J. Phys. Chem. Ref. Data 1999 28, 931 and earlier articles in this series. 
8. Akers, D. L.; Goldberg, R. N. Mathematicu J. 2001 8 ,  1. (URL: http://www.mathematica-journal.com/issue/v8il/) 

Since the standard thermodynamic properties of adenosine have been determined (ref. 7), new values are given for 

I am indebted to NIH 5-RO1-GM48358 for support of the research that produced these tables and to Robert A. 
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ca1cdGmat::usage = 
"calcdQnat [speciesmat-] produces the function of pH and ionic strength (is) that 
gives the standard transformed Gibbs energy of formation of a reactant (sum 
of species) at 298.15 K. The input speciesmat is a matrix that gives the 
standard Gibbs energy of formation, the standard enthalpy of formation, the 
electric charge, and the number of hydrogen atoms in each species. There 
is a row in the matrix for each species of the reactant. gpfnsp is a list 
of the functions for the species. Energies are expressed in kJ mo1*-1."; 

calcdG3I::usage = "calcdG3I[reactantname-] produces the standard transformed Gibbs 
energies of formation at 298 K, pH 7, and ionic strengths of 0, 0.10, and 0.25 
M. The reactant name calls a function of pH and ionic strength or a constant."; 

Gibbs energies of formation at 298 K, ionic strength 0.25 M and p H s  5, 6, 
7, 8, and 9. The reactant name calls a function of pH and ionic strength."; 

ca1cdHmat::usage = "calcdHmat[speciesmat-] produces the function of pH and ionic 
strength that gives the standard transformed enthalpy of formation of a reactant ( 
sum of species) at 298.15 K. The input is a matrix that gives the standard 
Gibbs energy of formation,the standard enthalpy of formation, the electric 
charge,and the number of hydrogen atoms in the species in the reactant. There 
is a row in the matrix for each species of the reactant. dhfnsp is a list 
of the functions for the species. Energies are expressed in kJ m01"-1."; 

enthalpies of formation at 298 K,pH 7,and ionic strengths of O,O.lO,and 0.25 M. 
The reactanth name calls a function of p H  and ionic strength or a constant."; 

calcdH5pH::usage = lmcalcdHpH[reactanth-] produces the standard transformed enthalpies 
of formation at 298 K, ionic strength 0.25 M and pHs 5, 6, 7, 8, and 9. The 
reactanth name with hf calls a function of pH and ionic strength or a constant."; 

ca1ctrGerx::usage = E1calctrGerx[eg_,pHlist-,islist-] produces the standard 
transformed Gibbs energy of reaction in kJ mol"-l at specified p H s  
and ionic strengths for a biochemical equation typed in the form atp+ 
h2o+de==adp+pi. The names of the reactants call the corresponding 
functions of pH and ionic strength. pHlist and islist can be lists."; 

ca1ckprime::usage = "calckprime[e~,pHlist-,islist-] produces the apparent equilibrium 
constant K' at specified pHs and ionic strengths for a biochemical equation typed 
in the form atp+h2o+de==adp+pi. The names of the reactants call the corresponding 
functions of pH and ionic strength. pHlist and islist can be lists."; 

calcdG5pH::usage 11calcG5pH[reactantname-] produces the standard transformed 

calcdH3I::usage = m1calcdH31[reactanth-] produces the standard transformed 

ca1cpK::usage = "CalCpK[SpeCieSmat_,no-,is-] calculates pKs of weak acids."; 
calcdGHT::usage= "calcdGHT[speciesmat-] calculates the 

effect of temperature on transformed thermodynamic properties."; 
calcGef1sp::usage "ca~cGeflsp[equat-,pH_rionstr-,z1-,nHl-] 

calculates the standard Gibbs energy of formation of 
the species of a reactant made up of a single species."; 

calcGef2sp::usage = 1 ' c a l c G e f 2 s p [ e q u a t ~ , p H _ , i o n s t r _ , z l ~ , n H l ~ , p K O ~ ]  
calculates the standard Gibbs energies of formation of 
the two species of a reactant made up of a two species."; 

calcGef3sp::usage = "ca~cGef3sp[eguat~,pH~,ionstr~,z1~,nHl~,pKlO~, 
pK201 calculates the standard Gibbs energies of formation of 
the three species of a reactant made up of a three species."; 

ca1cNHrx::usage = llcalcNHrx[eq-,pHlist-,islist-] calculates the change 
in binding of hydrogen ions in a biochemical reaction."; 

rxthermotab::usage = iirxthermotab[eq-,pHlist-,islist-] calculates a table of 
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standard transformed reaction Gibbs energies, apparent equilibrium constants, 
and changes in binding of hydrogen ions in a biochemical reaction."; 

round::usage= 1ground[vec-,params-:{4,2}] rounds to the desired number of digits."; 
mkeqm: :usage = llmkecpn[c-List,s-List] types out a 

biochemical reaction from its stoichiometric number vector."; 
nameMatrix::usage = "nameMatrix[m-List,s-List] types out the biochemical reactions 

in a system of biochemical reactions from the stoichiometric number matrix."; 
calcappredpot::usage= "CalCagpr~dgOt[~g_,nU~,pnlist~,islist~] 

calculates the standard apparent reduction potential of 
a half reaction at the desired pH and ionic strength."; 

for a biochemical reaction or a series of biochemical reactions, 
given the conservation matrix, a list of transformed Gibbs energies 
of formation, and a list of initial concentrations of reactants."; 

equca1crx::usage = llegucalcrx[nt-,lnkr-,no-] calculates the equilibrium composition 
for a biochemical reaction or a series of biochemical reactions, given the 
transposed stoichiometric number matrix, the apparent equilibrium constants 
of the reactons, and a list of initial concentrations of reactants."; 

listfnpHis::usage= "1istfnpHis is a list of functions, like atp, that gives 
the standard transformed Gibbs energies of formation of reactants."; 

1istspeciesdata::usage = "listspeciesdata is a list of names, like 
atpsp, of data files on the species of a reactant."; 

listdG3I::usage= "listdG31 is a list of vectors, like atpis, 
that give the values of the standard transformed Gibbs 
energies of formation at pH 7 and 3 ionic strengths."; 

equca1cc::usage = "equcalcc[as-,lnk-,no-] calculates the equilibrium composition 

list::usage= "list is a list of names of reactants, each in quotation marks."; 
1istreactantspH::usage = 

"listreactantspH is a list of vectors, like atppH,that give the values of the 
standard transformed Gibbs energy of formation of a reactant at 5 pH values."; 

listreactantsh::usage= "listreactantsh is a list of the names in 
quotation marks for the reactants for which the standard 
transformed enthalpy of formation is calculated."; 

1isthisreactants::usage = "listhisreactants is a vector of the values of standard 
transformed enthalpies of formation of reactants at three ionic strengths."; 

listfnpHish::usage= "1istfnpHish is a function of pH and ionic strength that 
gives the standard transformed enthalpy of formation of a reactant."; 

1istspeciesdatah::usage = "listspeciesdatah is a list of names, like atpsp, of 
data files on the species of a reactant for which the enthalpy is known."; 

1isthpHreactants ::usage = "1isthpHreactants is a list of names 
of reactants, like atphpH, that give the values of the 
standard transformed enthalpy of formation at 5 pH values."; 

pH: :usage = "pH is an independent variable."; 
is::usage= "is is ionic strength, which is an independent variable."; 
atp::usage= "atp is the name of a reactant that yields a function of pH and 

ionic strength for the standard transformed Gibbs energy of formation."; 
atpsp::usage= "atpsp yields the basic data on the species of the reactant."; 
atpis::usage = "atpis yields the standard transformed 

atppH::USage = "atppH yields the standard transformed Gibbs energy 

atph::usage= "atph yields the function of pH and ionic strength that 

atphis::usage = "atphis yields the standard transformed 

atphpH::usage = "atphis yields the standard transformed 

tablel::usage= "table1 produces a table of standard transformed Gibbs energies of 

Gibbs energy of a reactant at 3 values of the ionic strength."; 

of a reactant at 5 values of the ionic strength."; 

gives the standard transformed enthalpy of formation of atp."; 

enthaply of atp at 3 ionic strengths."; 

enthaply of at9 at 5 pH values."; 

fonnation of reactants at pH 7 and ionic strengths of 0, 0.10, and 0.25 M."; 
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table2::usage= "table2 produces a table of standard transformed Gibbs energies of 

table3::usage = "table3 produces a table of standard transformed enthalpies of 

table4::usage "table4 produces a table of standard transformed enthalgies of 

formation of reactants at ionic strength 0.25 M and pHs of 5, 6, 7, 8, and 9."; 

formation of reactants at pH 7 and ionic strengths of 0 ,  0.10, and 0.25 M."; 

formation of reactants atonic strengths 0.25 M and gHs of 5, 6, 7 ,  8, and 9."; 

Begin[ "BasicBiochemData2' Private' "1 
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I 2.0 Basic data on the species that make up a reactant. 
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sorbosesp=({-911.95,-1263.3,0,12}}; 
succinatesg=i{-690.44,-908.68,-2,4},{-722.62,-908.84,-1,5},~-746.64,-912.2,0, 

succinylcoAsp={{-509.72, -, -1, 41, {-533.76, -, 0, 

sucrosesp={{-l564.7,-2199.87,0,22}}; 
thioredoxinoxsp=ii0,_,010)); 
thioredoxinredsp={(69.88,-,-2,0~,~20.56,-,-1,1~,~-25.37,-,0,2}); 
trygtophaneLsp={(-114.7,-405.2,0,12}}; 
tyrosineLsp=({-370.7,_,O,ll)); 
ubiguinoneoxsp={{O,-,O,90}}; 
ubiguinoneredsp=({-89.92,_,0,92)); 
uratesp={{-325.9,_,-1,3)}; 
ureasp={(-202.8,-317.65,0,41}; 
uricacidsp={{-356.9,-,0,4}}; 
valineLsp={{-358.65,-611.99,0,11}}; 

611; 

511; 

~~1~~~~~~{{-750.49,-1045.94,0,10}}; 
X y l U l O S e S ~ = ~ { - 7 4 6 . 1 5 . - 1 0 2 9 . 6 5 , ~ , ~ ~ } } ;  

These thermodynamic values are based on the usual conventions of chemical thermodynamic tables that Af Go = At H" = 0 
for elements in defined reference states and for H+(a=l ) .  Additional conventions are that A f C o  = AfH" = 0 for 
coA- , FAD,, 2 - ,  FADenz2-, cytochr~mec~' ,  ferred~xin,,-~, FMN2-, 
glutathiomeox2-, NAD,, -' , NADP,, 3 - ,  retinal', thioredoxin,, O ,  and ubiquinoneOx 0 . 

I 3.0 Calculation of the functions of pH and ionic strength for the standard 
transformed Gibbs energy of formation of reactants. 

calcdQnat [speciesmat-1 : = 
Module[(dGzero, zi, nH, pHterm, isterm,gpfnsp),(*This program produces the function of 
pH and ionic strength (is) that gives the standard transformed Gibbs energy of 
formation of a reactant (sum of species) at 298.15 K. The input speciesmat is a 
matrix that gives the standard Gibbs energy of formation, the standard enthalpy of 
formation, the electric charge, and the number of hydrogen atoms in each species. 
There is a row in the matrix for each species of the reactant. gpfnsp is a list of the 
functions for the species. Energies are expressed in kJ rnol"-l.*) 
dGzero = speciesmat[[Al1,111; 
zi = speciesmat 1 [All, 31 1 ; 
nH = speciesmat~[A11,411; 
pHterm = nH*8.31451*.29815*Log[1OA-pHI; 
isterm = 2.91482*((ziA2) - nH)*(isA.5)/(1 + 1.6*isA.5); 
gpfnsp=dGzero - pHterm - isterm; 
-8.31451*.298l5*Log[ApplyIPlus,Exg[-l*g~fnsp/(8.31451*.29815)11II 

The following is a list of names of the reactants. After the calculation using calcdGmat, typing one of these names yields the 
function of pH and ionic strength that gives the standard transformed Gibbs energy of formation of the reactant at 298.15 K 
in dilute aqueous solution. 
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1iStfnpHi.S = (acetaldehyde, acetate, acetone, acetylcoA, acetylphos, aconitatecis, adenine, 
adenosine, adp, alanine, ammonia, amp, arabinose, asparaginel, aspartate, atp, bpg. 
butanoln, butyrate, citrate, citrateiso, COA, collglutathione, c02g, coatot, coag, 
cog, creatine, creatinine, cysteinel, cystinel, cytochromecox, cytochramecred, 
dihydroxyacetonephos, ethanol, ethylacetate, fadox, fadred, fadenzox, fadenzred. 
ferredoxinox, ferredoxinred, fmnox, fmnred, formate, fructose, fructose6phos. 
fructosel6phos, fumarate, galactose, galactoselphos, glucose, glucoselphos, 
glucose6phos, glutamate, glutamine, glutathioneox, glutathionered, glyceraldehydephos, 
glycerol, glycerol3phos, glycine, glycolate, glycylglycine, glyoxylate, h2ag, 
h2g, h20, h202aq, hydroxypropionateb, hypoxanthine, indole, ketoglutarate, lactate, 
lactose, leucineisol, leucinel, lyxose, malate, maltose, mannitolD, mannose, 
methaneaq, methaneg, methanol, methioninel, methylamineion, n2ag, nZg, nadox, 
nadred, nadpox, nadpred, 02agr 02g, oxalate, oxaloacetate, oxalosuccinate, palmitate, 
pep, pg2, pg3, phenylalaninel, pi, pgi, propanola, propanoh, pyruvate, retinal, 
retinol, ribose, riboselphos, ribose5pho6, ribulose, serinel, sorbose, succinate, 
succinylcoll, sucrose, thioredoxinox, thioredoxinred, tryptophanel, tyrosinel, 
ubiquinoneox, ubiquinonered, urate, urea, uricacid, valinel, xylose, xylulose}; 

The following is a list of names of the entries in the basic thermodynamic data on species making up a reactant. 

listspeciesdata = {acetaldehydesp, acetatesp, acetonesp, acetylcollsp, acetylphossp, 
aconitatecissp, adeninesp, adenosinesp, adpsp, alaninesp, ammoniasp, ampsp, 
arabinosesp, asparaginelsp, aspartatesp, atpsg, bpgsp, butanolnsp, butyratesp, 
citratesp, citrateisosp, coAsp, collglutathionesp, coagsp, co2totsg, coaqsp, 
cogsp, creatinesp, creatininesp, cysteinelsp, cystinelsg, cytochromecoxsp, 
cytochramecredsp, dihydroxyacetonephossp, ethanolsp, ethylacetatesp, fadoxsp, 
fadredsp, fadenzoxsp, fadenzredsp, ferredoxinoxsp, ferredoxinredsp, fmnoxsp, 
fmnredsp, formatesp, fructosesp, fructose6phossp, fructosel6phossp, fumaratesp, 
galactosesp, galactoselphossp, glucosesp, glucoselphossp, glucose6phossp, 
glutamatesp, glutaminesp, glutathioneoxsg, glutathioneredsp, glyceraldehydephossp, 
glycerolsp, glycerol3phossp, glycinesp, glycolatesp, glycylglycinesp, glyoxylatesp, 
haaqsp, hagsp, h2osp, h202aqsp, hydroxypropionatebsp, hypoxanthinesp, indolesp, 
ketoglutaratesp, lactatesp, lactosesp, leucineisolsp, leucinelsp, lyxosesp, 
malatesp,maltosesp, mannitolDsp, ma~osesp,methaneagsp, methanegsp, methanolsp, 
methioninelsp, methylamineionsp, naagsp, n2gsp, nadoxsp, nadredsp, nadpoxsp, 
nadpredsp, olagsp, 02gsp, oxalatesp, oxaloacetatesp, oxalosuccinatesp, palmitatesp, 
pepsp, pgasp, gg3sp, phenylalaninelsp, pisp, ppisp, propanol2sp, propanolnsp, 
pyruvatesp, retinalsp, retinolsp, ribosesp. riboselphossp, ribose5phossp. 
ribulosesp, serinelsp, sorbosesp, succinatesp, succinylcollsp, sucrosesp, 
thioredoxinoxsp, thioredoxinredsp, tryptophanelsp, tyrosinelsp, ubiquinoneoxsp, 
ubiguinoneredsp, uratesp, ureasp, uricacidsp, valinelsp, xylosesp, xylulosesp}; 

Now Map is used to apply calcdGmat to each of the matrices of species data. 
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Clear[acetaldehyde, acetate, acetone, acetylcoA, acetylphos, aconitatecis, adenine, 
adenosine, adp, alanine, ammonia, amp, arabinose, asparaginel, aspartate, atp, bpg, 
butanoln, butyrate, citrate, citrateiso, COA, coAglutathione, c02g, coatot, coag, 
cog, creatine, creatinine, cysteineb. cystinel, cytochromecox, cytochromecred, 
dihydroxyacetonephos, ethanol, ethylacetate, fadox, fadred, fadenzox, fadenzred, 
ferredoxinox, ferredoxinred, fmnox, fmnred, formate, fructose, fructose6phos. 
fructosel6phos, fumarate, galactose, galactoselphos, glucose, glucoselphos, 
glucose6phosr glutamate, glutamine, glutathioneox, glutathionered, glyceraldehydeghos, 
glycerol, glycero13phosr glycine, glycolate, glycylglycine, glyoxylate, haag, h2g, 
h20, h202ap, hydroxypropionateb, hypoxanthine, indole, ketoglutarate, lactate, 
lactose, leucineisol, leucinel, lyxose, malate, maltose, mannitolD, mannose, 
methaneaq, methaneg, methanol, methioninel, methylamineion, nlag, n2g, nadox, 
nadred, nadpox, nadpred, o2ag, 02g, oxalate, oxaloacetate, oxalosuccinate, palmitate, 
pep, pg2, pg3, phenylalaninel, pi, ppi, gropanol2, propanoln, pyruvate, retinal, 
retinol, ribose, riboselphos, ribose5phos, ribulose, serinel, sorbose, succinate, 
succinylcoA, sucrose, thioredoxinox, thioredoxinred, tryptophanel, tyrosinel, 
ubiguinoneox, ubiguinonered, urate, urea, uricacid, valinel, xylose, xylulose]; 

Evaluate[listfnpHis] = Map[calcdGmat, listspeciesdata] ; 

The following shows an example of a function of pH and ionic strength for a reactant that gives the standard transformed 
Gibbs energy of formation. 

0.5 0.5 -PH 
-0.403393 (-2838.18 + (29.1482 is )/(1 + 1.6 i s  ) - 34.7056 Log[lO I 

-2.47897 Log [E 
0 . 5  0 . 5  -PH 

I )  + 

])I 

-0.403393 (-2811.48 + (11.6593 is )/(1 + 1.6 is ) - 32.2266 Log[lO 
E 

0 . 5  0 . 5  -PH 
-0.403393 (-2768.1 - (11.6593 is )/(1 + 1.6 is ) - 29.7477 Log[lO 

E 

The value of the standard transformed Gibbs energy of formation of ATP at pH 7 and ionic strength 0.25 M can be calcu- 
lated in kJ/mol as follows: 

atp/.pH->7/.is->.25 

-2292.5 

The values at pHs 6,7,  and 8 and at ionic strengths 0 and 0.25 M can also be calculated. 

atp/.pH->{6,7,8l/.is->{0,.251 

{[-2366.43, -2363.76}, [-2292.61, -2292.51, {-2220.96, -2223.44)) 
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a 4.0 Calculation of a table of standard transformed Gibbs energies of 
formation of reactants at pH 7 and ionic strengths of 0, 0.10, and 0.25 M. 

calcdG3I[reactantname~]:=Module[{outl,out2,out3~,(*This program calculates the 
standard transformed Gibbs energies of formation at 298 K, pH 7, and ionic strengths 
of 0, 0.10, and 0.25 M. The reactant name calls a function of pH and ionic strength 
or a constant.*) 
outl=reactantname/.~pH-~7,is->O}; 
out2=reactantname/.{pH->7,is->.l}; 
out3=reactantname/.{gH->7,is->.Z5}; 
{outl,out2,out3~1; 

This is a list of the three values to be calculated for each of the reactants. 

listdG3I = {acetaldehydeis, acetateis, acetoneis, acetylcoAis, acetylghosis, 
aconitatecisis, adenineis, adenosineis, adgis, alanineis, ammoniais, ampis, 
arabinoseis, asparaginelis, asgartateis, atgis, bggis, butanolnis, butyrateis, 
citrateis, citrateisois, coAis, collglutathioneis, coagis, coltotis, coaqis, 
cogis, creatineis, creatinineis, cysteinelis, cystinelis, cytochromecoxis, 
cytochromecredis, dihydroxyacetonephosis, ethanolis, ethylacetateis, fadoxis, 
fadredis, fadenzoxis, fadenzredis, ferredoxinoxis, ferredoxinredis, fmnoxis, 
fmnredis, formateis, fructoseis, fructose6phosis, fumaratel6ghosis, fumarateis, 
galactoseis, galactoselghosis, glucoseis, glucoselghosis, glucose6phosis, 
glutamateis, glutamineis. glutathioneoxis, glutathioneredis, glyceraldehydephosis, 
glycerol i s , glycerol 3phosi s , glycinei s , glycolat ei s , glycylglycinei 6 ,  glyoxylat ei s , 
hlaqis, hlgis, h2ois, hlolaqis, hydroxypropionatebis, hypoxanthineis, indoleis, 
ketoglutarateis, lactateis, lactoseis, leucineisolis, leucinelis, lyxoseia, 
malateis, maltoseis, mannitolDis, mannoseis, methaneagis, methanegis, methanolis, 
methioninelis, methylamineionis, naaqis, nagis, nadoxis, nadredis, nadpoxis, 
nadpredis, olaqis, olgis, oxalateis, oxaloacetateis, oxalosuccinateis, palmitateis, 
pepis, pglis, pg3is, phenylalaninelis, piis, gpiis, proganollis, propanolnis, 
pyruvateis, retinalis, retinolis, riboseis, riboselphosis, ribose5phosis, 
ribuloseis, serinelis, sorboseis, succinateis, succinylcoAis, sucroseis. 
thioredoxinoxis, thioredoxinredis, tryptophanelis, tyrosinelis, ubiquinoneoxis, 
ubiquinoneredis, urateis, ureais, uricacidis, valinelis, xyloseis, xyluloseis); 

Map is used to apply calcdG3I to each of the functions for reactants. 
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Clear[acetaldehydeis, acetateis, acetoneis, acetylcoAis, acetylphosis, 
aconitatecisis, adenineis, adenosineis, adpis, alanineis, ammoniais, ampis, 
arabinoseis, asparaginelis, aspartateis, atpis, bpgis, butanolnis, butyrateis, 
citrateis, citrateisois, coAis, colglutathioneis, coagis, coatotis, coaqis, 
cogis, creatineis, creatinineis, cysteinelis, cystinelis, cytochrmecoxis, 
cytochromecredis, dihydroxyacetonephosis, ethanolis, ethylacetateis, fadoxis, 
fadredis, fadenzoxis, fadenzredis, ferredoxinoxis, ferredoxinredis, fxnnoxis, 
fmnredis, formateis, fructoseis, fructose6phosis, fumaratel6phosis. fumarateis, 
galactoseis, galactoselphosis, glucoseis, glucoselphosis, glucose6phosis, 
glutamateis, glutamineis, glutathioneoxis, glutathioneredis, glyceraldehydeis, 
glycerolis, glycerol3phosis, glycineis, glycolateis, glycylglycineis, glyoxylateis, 
haaqis, hagis, hlois, h202agis. hydroxypropionatebis, hygoxanthineis, indoleis, 
ketoglutarateis, lactateis, lactoseis, leucineisolis, leucinelis, lyxoseis, 
malateis, maltoseis, mannitolDis, mannoseis, methaneaqis, methanegis, methanolis, 
methioninelis, methylamineionis, n2aqis. n2gis, nadoxis, nadredis, nadpoxis, 
nadpredis, oaaqis, oagis, oxalateis, oxaloacetateis, oxalosuccinateis, palmitateis, 
pepis, pgais, pg3is, phenylalanineLis, piis, ppiis, propanolais, propanolnis, 
pyruvateis, retinalis, retinolis, riboseis, riboselphosis, ribose5phosis, 
ribuloseis, serinelis, sorboseis, succinateis, succinylcoAis, sucroseis, 
thioredoxinoxis, thioredoxinredis, tryptophanelis, tyrosinelis, ubiguinoneoxis, 
ubiquinoneredis, urateis, ureais, uricacidis, valineLis, xyloseis, xyluloseis]; 

Evaluate[listdG31] = Map[calcdG31, listfnpHis] ; 

ace tonei s 

I 8 0 . 0 3 7 8 ,  8 3 . 7 1 0 2 ,  8 4 . 8 9 5 8 )  

This is a list of the names of reactants. 

1 i s t = { acetaldehyde ,I , ace t a t e , I' acetone *I , *I ace t y 1 coA , ace t yl pho s , aconi tat ec i s 'I , 
"adenine", "adenosine", nadpaa, "alanine", "ammonia", l l ~ p * ,  "arabinose". 
"asparagineL", "aspartateal, tlatpll, ltbpgml, "butanoln", "butyrate", "citrate", 
"citrateiso", I1coAn, "coAglutathione", llc02g~~, "co2totl1, I1coaqnl, licogii, "creatine", 
"creatinine", "cysteineL", f'cystineL1l, mmcytochromecoxll, "cytochromecred", 
"dihydroxyacetonephos", "ethanol", 'ethylacetate", "fadox", "fadr~d~~, "fadenzox", 
" f adeazredlf, I'f erredoxinox" , llferredoxinredll, I1 fmnoxll, llfmnredml, f ormate ' I ,  

"fructoseB1, 11fructose6phos ' I ,  "f ru~tosel6phos~~, "fumaratetV, "galactose1', 
"galactoselphos", I1glucosenl, "glUCOSelphOS", 11g1~~ose6ph~s11, "glutamatell, 
llglutaminell, "glutathioneox", "glutathionered", "glyceraldehydephosll, llglycerolll, 
"glycerol3~hos", ''glycine", llglycolate*l, "glycylglycine", "glyoxylatetl, 
11h2ag11, "h2gIt, "h20", 11h202ag11, "hydroxypropionatebll, "hypoxanthineSf, "indole", 
" ke t og lu t ara t e *I , 
"malatell, "maltose", %annitolD", 11mannose18, "methaneaq', "methaneg", iimethanol", 
"methionineL', "methylamineion", lmn2aq11, s1n2glm, "nadox", "nadred" , "nadpox", 
"nadpred", 1102a~11, 1102g11, "oxalatelq, "oxaloacetate", lroxalosuccinatelm, llpalmitatel*, 
"pep"r "pg2", "pg3", llphenylalanineL1l, lmpill, llppill, "propanol2", llpropanolnll. 
"pyruvate'*, "retinall~, "retinal", "ribose". "riboselphosn, 1nribose5phos1i, 
"ribulose", "serineL", lwsorboselv, "succinate'l, "succinylcoAwl, ilsucrosell, 
"thioredoxinox" , "thioredoxinredl', 'ltryptophaneLml, "tyrosineL1*, ~gubiquinoneox", 
"ubiquinonered1*. "urate" , lgurea", "uricacid" , "valineL", "xylose", iixyluloseii } ; 

1 act ate It , 11 1 act o s e I' , 1' 1 euc i ne i soL " , 1 euc i neL *I , 1' 1 yxo s e , 

Table 1 Standard Transformed Gibbs Energies of Formation in kJ mol-' at 298.15 K, pH 7, and Ionic Strengths of 0, 0.10, 
and 0.25 M 

tablel=PaddedForm[TableForm[listdG3I,TableHead~ngs-~{list, {"I = 0 M1m,llI = 0.10 M","I = 
0.25 M**)},TableSpacing->{.3,3)1,18,2)1 
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acetaldehyde 
acetate 
acetone 
acetylcoA 
acetylphos 
aconitatecis 
adenine 
adenosine 
adP 
alanine 
ammonia 

arabinose 
asparagineL 
aspartate 
atp 
bpg 
butanoln 
butyrate 
citrate 
citrateiso 
COA 
coAglutathione 
c02g 
co2tot 
coaq 
cog 
creatine 
creatinine 
cysteineL 
cyst ineL 
cytochromecox 
cytochromecred 
dihydroxyacetonephos 
ethanol 
ethylacetate 
f adox 
fadred 
f adenzox 
f adenz r ed 
ferredoxinox 
ferredoxinred 
fmnox 
fmnred 
f orma te 
fructose 
fructose6phos 
fructoselbphos 
f umara t e 
galactose 
galactoselphos 
glucose 
glucoselphos 
glucosebphos 
glut ama t e 
glutamine 
glutathioneox 
glutathionered 
glyceraldehydephos 
glycerol 
glycerol3phos 
glycine 
glycolate 
glycylglycine 
glyoxylat e 
h2 aq 
h2g 
h2 0 
h202aq 
hydroxypropionateb 
hypoxanthine 

[ = O M  
20.83 

80.04 
-249.46 

-60.49 
-1109.34 
-797.26 
510.45 
324.93 

-1428.93 
-91.31 
80.50 

-562.04 
-342.67 
-206.28 
-456.14 
-2292.61 
-2202.06 
227.72 
-72.94 
-963.46 
-956.82 
-7.98 
563.49 
-394.36 
-547.33 
-119.90 
-137.17 
100.41 
256.55 
-59.23 
-187.03 

0.00 
-24.51 

-1096.60 
58.10 

1238.65 
1279.68 
1238.65 
1229.96 

0.00 
38.07 
759.17 
800.20 

-18.00 

-311.04 
-436.03 
-1321.71 
-2202.84 
-521.97 
-429.45 
-1317.50 
-43 6.42 

-1318.03 
-1325.00 
-377.82 
-128.46 
1198.69 
625.75 

-1088.94 
-177.83 
-1080.22 
-180.13 
-411.08 
-200.55 
-428.64 

97.51 
79.91 

-157.28 
-54.12 
-318.62 
249.33 

I = 0.10 M 
23.27 

83.71 
-58.65 

-1107.57 
-800.93 
513.51 
332.89 

-1425.55 
-87.02 
82.34 

-248.23 

-556.53 
-336.55 
-201.38 
-453.08 
-2292.16 
-2205.69 
233.84 
-69.26 
-965.49 
-958.84 
-7.43 
572.06 
-394.36 
-547.15 
-119.90 
-137.17 
105.92 
260.84 
-55.01 
-179.69 
-5.51 
-26.96 

-1095.91 
61.77 
-13.10 
1255.17 
1297.43 
1255.17 
1247.71 

38.07 
768.35 
810.61 

-0.61 

-311.04 
-428.69 

-1317.16 
-2205.66 
-523.19 
-422.11 
-1313.01 
-429.08 
-1313.34 
-1320.37 
-373.54 
-122.34 
1214.60 
634.76 

-1088.25 
-172.93 
-1077.83 
-177.07 
-409.86 
-195.65 
-428.64 
98.74 
81.14 

-156.05 
-52.89 
-316.17 
251.77 

I = 0.25 M 
24.06 

84.90 
-247.83 

-58.06 
-1107.02 
-802.12 
514.50 
335.46 

-1424.70 
-85.64 
82.93 

-554.83 
-334.57 
-199.80 
-452.09 
-2292.50 
-2207.30 
235.82 
-68.08 
-966.23 
-959.58 
-7.26 
574.83 
-394.36 
-547.10 
-119.90 
-137.17 
107.69 
262.22 
-53.65 
-177.32 

-7.29 
-27.75 

-1095.70 
62.96 
-11.52 

1260.51 
1303.16 
1260.51 
1253.44 

38.07 
771.31 
813.97 

-0.81 

-311.04 
-426.32 
-1315.74 
-2206.78 
-523.58 
-419.74 

-1311.60 
-426.71 
-1311.89 
-1318.92 
-372.15 
-120.36 
1219.74 
637.62 

-1088.04 
-171.35 
-1077.13 
-176.08 
-409.46 
-194.07 
-428.64 
99.13 
81.53 

-155.66 
-52.50 
-315.38 
252.56 
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indole 
ketoglutarate 
lactate 
lactose 
1eucineisoL 
leucineL 
lyxose 
malate 
maltose 
manni tolD 
mannose 
me thaneaq 
methaneg 
methanol 
methionineL 
methylamineion 
n2 aq 
n2g 
nadox 
nadred 
nadpox 
nadp r ed 
o2aq 
02g 
oxal a t e 
oxaloacetate 
oxalosuccinate 
palmi t a t e 
Pep 
Pg2 
Pg3 
phenylalanineL 
Pi 
PP i 
propano 12 
propanoln 
pyruvate 
retinal 
retinol 
ribose 
riboselphos 
ribose5phos 
ribulose 
serineL 
sorbose 
succinate 
succinylcoA 
sucrose 
thioredoxinox 
thioredoxinred 
tryptophaneL 
tyrosineL 
ubiquinoneox 
ubiquinonered 
urate 
urea 
uricacid 
valineL 
xylose 
xylulose 

503.49 
-633.58 
-316.94 
-688.29 
175.53 
167.18 
-349.58 
-682.88 
-695.65 
-383.22 
-430.52 
125.50 
109.11 
-15.48 
-63.40 
199.88 
18.70 
0.00 

1038.86 
1101.47 
163.73 
229.67 
16.40 
0.00 

-673.90 
-713.38 
-979.05 
979.25 

-1185.46 
-1340.72 
-1346.38 
232.42 

-1058.56 
-1934.95 
134.42 
143.84 

1118.78 
1170.78 
-339.23 
-1215.87 
-1223.95 
-336.38 
-231.18 
-432.47 
-530.72 
-349.90 
-685.66 

0.00 
54.32 
364.78 
68.82 

3596.07 
3586.06 
-206.03 
-42.97 
-197.07 
80.87 

-352.40 

-350.93 
-346.59 

507.78 
-633.58 
-314.49 
-674.83 
183.49 
175.14 
-343.46 
-682.85 
-682.19 
-374.65 
-423.18 
127.94 
111.55 
-13.04 
-56.67 
202.94 
18.70 
0.00 

1054.17 
1115.55 
173.52 
235.79 
16.40 
0.00 

-676.35 
-714.60 
-979.05 
997.61 

-1188.53 
-1341.32 
-1347.19 
239.15 

-1059.17 
-1939.13 
139.32 
148.74 

1135.91 
1189.14 
-333.11 
-1212.24 
-1220.32 
-330.26 
-226.89 
-425.13 
-530.65 
-348.06 
-672.20 

0.00 
55.41 
372.12 
75.55 

3651.15 
3642.37 
-204.81 
-40.53 
-194.63 
87.60 

-344.81 
-340.47 

-351.18 

509.16 
-633.58 
-313.70 
-670.48 
186.06 
177.71 
-341.48 
-682.85 
-677.84 
-371.89 
-420.81 
128.73 
112.34 
-12.25 
-54.49 
203.93 
18.70 
0.00 

1059.11 
1120.09 
176.68 
237.77 
16.40 
0.00 

-677.14 
-715.00 
-979'.05 

-1189.73 
-1341.79 
-1347.73 
241.33 

-1059.49 
-1940.66 

1003.54 

140.90 
150.32 
-350.78 
1141.45 
1195.07 
-331.13 
-1211.14 
-1219.22 
-328.28 
-225.51 
-422.76 
-530.64 
-347.47 
-667.85 

0.00 
55.74 
374.49 
77.73 

3668.94 
3660.55 
-204.41 
-39.74 
-193.84 

-342.83 
-338.49 

89.78 

5.0 Calculation of a table of standard transformed Gibbs energies of 
reactants at pH 5, 6, 7, 8, and 9 and ionic strength 0.25 M 
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calcdG5~H[reactantn~e~]:=Module[{outl,out2,out3,out4,out5},(*This program calculates 
the standard transformed Gibbs energies of formation at 298 K, ionic strength 0.25 M 
and pHs 5, 6, 7, 8, and 9. The reactant name calls a function of pH and ionic 
strength.*) 
outl=reactantname/.CpH->S,is->.25}; 
out2=reactantname/.{pH->6,is->.25]; 
out3=reactantname/.{pH->7,is->.25}; 
out4=reactantname/.{pH->8,is->.25}; 
out5=reactantname/.{pH->9,is->.25]; 
{outl,out2,out3,out4,0ut5~1; 

This is a list of the values to be calculated for each of the reactants. 

listreactantspH= {acetaldehydepH, acetatepH, acetonepH, aCetylCOApH, acetylphospH, 
aconitatecispH, adeninepH, adenosinepH, adppH, alaninepH, ammoniapH, amppH, 
arabinosepH, asparagineLpH, aspartatepa, atppH, bpgpH, butanohpH, butyratepH, 

cogpH, creatinepH, CreatininepH, CySteineLpH, cystineLpH, cytochromecoxpH, 
cytochrmecredpH, dihydroxyacetonephospH, ethanolpH, ethylacetatepH, fadoxpH, 
fadredpH, fadenzoxpH, fadenzredps, ferredoxinoxpH, ferredoxinredpa, fmnoxpH, 
fmnredpH, formatepH, fructosepH, fructose6phospH. fructosel6phospH. fUnLaratepH, 
galactosepH, galactoselphospH, glucosepH, glucoselphospH, glucose6phospH, 
glutamatepa, glUtamin0pH. glutathioneoxpH, glutathioneredpa, glyceraldehydephospH, 
glycerolpH, glYCerOl3ghOSpHr glycinepH, glycolatepH, glyCylglyCinepH, glyOxyhtepH, 
h2aqpH, h2gpH. h2opH, h202aqpH, hydroxypropionatebpH. hypoxanthinepH, indolepH, 
ketoglutaratepa. lactatepH, hCtOSepH, leucineisoLpH, IeucineLpH, 1yxosepH. 
malatepH, maltosepH, maMitOlDpH, mannosepH, methaneaqpa, methanegpH, methanolpH, 
methionineLpH, methylamineionpH, n2agpH, nZgpH, nadoxpH, nadredpH, nadpoxpH, 
nadpredpH, o2aqpH, o2gpH, OXaht0pH, OxaloacetatepH, OXalOSUCCinatepH, palmitatepH, 
peppH. pglpH, pg3pH. phenylalanineLpH, pipH, ppipH, propanol2pH, prOpanOhpH, 
pyruvatepH, retinalga, retinolpH, ribosepH, riboselphospH, ribose5phospH, 
ribulosepH, SerineLpH, sorbosepH, SUCCinatepH. succinylcoApH, sucrosepH, 
thioredoxinoxpH, thioredoxinredpa, tryptophaneLpH, tyrosineLpH, ubiguinoneoxpH, 
ubiquinoneredpH, uratepH, ureapH, uricacidpH, valineLpH, xylosepH, xylulosepH}; 

citratepH, citrateisops, COA~H, coAglutathionepH, CO2gpH, CoatOtpH, COagpH, 

Map is used to apply calcdG5pH to each of the functions for the reactants. 

Clear[acetaldehydepH, acetatepH, acetonepH, acetylcoApH, acetylphospH, 
aconitatecispH, adeninepH, adenosineps, adppH, alaninepH, ammoniapH, amppH, 
arabinosepa, asparaginelpH, aspartatem, atppa, bpgpH, butanolnpH, butyratepH, 
citratepH, citrateisopH. COA~H, coAglutathionepH, co2gpH, co2totpHr coaqpH, 
cogpH, creatinepH, creatininepa, CysteineLpH, CystineLpH, cytochramecoxpH, 
cytochromecredpH, dihydroxyacetonephospH, ethanolpH, ethylacetatepa, fadoxpH, 
fadredpH, fadenzoxpH, fadenzredps, ferredoxinoxpH, ferredoxinredpa, fmnoxpH, 
fmnredpH, formatepH, fructosepH, fructose6phospH, fructosel6phospH. fumaratepH, 
galactosepH, galactoselphospH, glucosepH, glucoselphospH, gluCoSe6phoSpHr 
glutamatepH, glutaminepH, glutathioneoxpH, glutathioneredpa, glyceraldehydephcspH, 
glycerolpH, glycerol3phospH, glYCinepH, glycolatepH, glycylglycinepH, glyOxylatepH, 
h2aqpHr hagpH, h2opH, h202aqpH, hydroxypropionatebpH, hypoxanthinepn, indolepH, 
ketoglutaratepa, lactatepH, hCtOSepH, 1eucineisoLpH. leucineLpH, 1yxosepH. 
malatepH, maltosepH, rnaMitolDpH, mannoSepH, methaneapga, methanegpa, methanolpH, 
methionineLpH, methylamineionpH, nZagpH, nagpH, nadoxpH, nadredpH, nadpoxgH, 
nadpredpH, 02aqpH, o2gpH, oxalatepH, oxaloacetatepH, oxalosuccinatepH, palmitatepH, 
pepgH, pglpH, pg3pH, RhenylalanineLpH, pipH, ppipH, prOpan012pH. propanolnpH, 
RYruVatepH, retinalpH, retinolpH, ribosepH, riboselphospH, ribose5phospHr 
ribulosepH, SerineLpH, sorbosepa, SuccinatepH, succinylcoApH, sucrosepH, 
thioredoxinoxpH, thioredoxinredpH, tryptoghaneLpH, tyrosinelpH, ubiguinoneoxpH, 
ubiquinoneredps, UratepH. ureapH, UricacidpH, ValineLQH, xylosepH, xylulosepH]; 
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Evaluate [listreactantspH] = Map[calcdGSpH, listfnpHis] ; 

Table 2 Standard Transformed Gibbs Energies of Formation of Reactants at 298.15 K, Ionic Strength 0.25 M, and pHs of 5 ,  
6,7,  8, and 9 

table2nPaddedForm [TableForxn [ lis treactantsps, TableHeadings - > { list, { "pH 5 #I, "pH 6 " ,  "pH 
7'1, "pH 8 " ,  "pH 9") 1, Tablespacing-> { .3,2 1 1 , { 6 ,2 )  1 

acetaldehyde 
acetate 
acetone 
ace tylcoA 
acetylphos 
aconitatecis 
adenine 
adenosine 

alanine 
ammonia 
amp 
arabinose 
asparagineL 
aspartate 
atP 
bpg 
butanoln 
bu tyra t e 
citrate 
citrateiso 
coA 
coAglutathione 
c02g 
co2tot 
coaq 
cog 
creatine 
creatinine 
cyst eineL 
cyst ineL 
cytochromecox 
cytochromecred 
dihydroxyacetonephos 
ethanol 
ethylacetate 
f adox 
fadred 
fadenzox 
fadenzred 
ferredoxinox 
ferredoxinred 
fmnox 
fmnred 
formate 
fructose 
fructose6phos 
fructosel6phos 
f umara t e 
galactose 
galactoselphos 
glucose 
glucoselphos 
glucose6phos 
g 1 u t ama te 
glutamine 
glutathioneox 
glutathionered 
glyceraldehydephos 
g 1 ycer o 1 
glycerol3phos 

adp 

PH 5 
-21.60 
-282.71 
16.40 
-92.31 

-1153.77 
-836.37 
457.06 
186.98 

-1569.05 
-165.55 
37.28 

-698.40 
-448.73 
-291.13 
-520.59 
-2437.46 
-2262.15 
121.66 
-147.99 
-1027.23 
-1020.58 
-18.48 
403.59 
-394.36 
-564.61 
-119.90 
-137.17 

4.95 
182.31 
-133.37 
-314.31 
-7.29 
-27.75 

-1154.88 
-5.54 

-102.85 
906.61 
926.43 
906.61 
876.71 

38.07 
554.41 
574.23 
-322.46 
-563.31 
-1445.66 
-2326.42 
-546.67 
-556.73 
-1440.96 
-563.70 
-1442.86 
-1449.53 
-463.48 
-234.52 
877.26 
455.34 

-1147.22 
-262.68 

-0.81 

PH 6 
1.23 

-265.02 
50.65 
-75.19 

-1129.84 
-819.24 
485.92 
261.25 

-1495.55 
-125.59 
60.11 

-625.22 
-391.65 
-245.47 
-486.34 
-2363.76 
-2233.92 
178.74 
-108.03 
-995.44 
-988.80 
-12.79 
489.21 
-394.36 
-554.49 
-119.90 
-137.17 
56.32 

222.27 
-93.43 
-245.81 
-7.29 
-27.75 

-1124.53 
28.71 
-57.19 
1083.56 
1114.79 
1083.56 
1065.07 

38.07 
662.86 
694.10 

-0.81 

-316.75 
-494.81 
-1379.42 
-2264.57 
-535.02 
-488.23 
-1375.09 
-495.20 
-1376.01 
-1382.88 
-417.82 
-177.44 
1048.50 
546.64 

-1116.87 
-217.02 

PH 7 PH 8 
24.06 . 46.90 

-247.83 
84.90 
-58.06 

-1107.02 
-802 ~ 12 
514.50 
335.46 

-1424.70 
-85.64 
82.93 

-554.83 
-334.57 
-199.80 
-452.09 
-2292.50 
-2207.30 
235.82 
-68.08 
-966.23 
-959.58 
-7.26 
574.83 
-394.36 
-547.10 
-119.90 
-137.17 
107.69 
262.22 
-53.65 
-177.32 
-7.29 
-27.75 

-1095.70 
62.96 
-11.52 
1260.51 
1303.16 
1260.51 
1253.44 
-0.81 
38.07 
771.31 
813.97 
-311.04 
-426.32 
-1315.74 
-2206.78 
-523.58 
-419.74 
-1311.60 
-426.71 
-1311.89 
-1318.92 
-372.15 
-120.36 
1219.74 
637.62 

-1088.04 
-171.35 

-230.70 
119.14 
-40.94 

-1085.39 
-785.00 
543.04 
409.66 

-1355.78 
-45.68 
105.64 
-486.04 
-277.49 
-154.14 
-417.85 
-2223.44 
-2183.36 
292.90 
-28.12 
-937.62 
-930.97 
-2.82 
660.45 
-394.36 
-541.18 
-119.90 
-137.17 
159.07 
302.18 
-14.97 
-108.82 
-7.29 
-27 .I5 

-1067.13 
97.20 
34.14 

1437.46 
1491.52 
1437.46 
1441.80 

38.07 
879.77 
933.84 
-305.34 
-357.82 
-1252.84 
-2149.62 
-512.16 
-351.24 
-1248.72 
-358.21 
-1248.92 
-1255.98 
-326.49 
-63.28 

-0.81 

1390.98 
726.89 

-1059.47 
-125.69 

PH 9 
69.73 

153.39 
-213.57 

-23.81 
-1066.49 
-767.87 
571.58 
483.87 

-1287.24 
-5.73 

127.51 
-417.51 
-220.41 
-108.47 
-383.60 
-2154.88 
-2160.38 
349.98 
11.83 

-909.07 
-902.42 
-1.10 
746.07 
-394.36 
-535.80 
-119.90 
-137.17 
210.44 
342.13 
20.99 
-40.33 
-7.29 
-27.75 

-1038.59 
131.45 
79.81 

1614.40 
1679.89 
1614.40 
1630.17 

38.07 
988.22 
1053.70 

-0.81 

-299.63 
-289.33 
-1190.04 
-2092.54 
-500.74 
-282.75 
-1185.93 
-289.72 
-1186.11 
-1193.18 
-280.82 
-6.20 

1562.22 
813.52 

-1030.93 
-80.02 

-1163.24 -1118.83 -1077.13 -1036.91 -996.93 
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glycine 
glycolate 
glycylglycine 
glyoxyl at e 
h2aq 
h2 g 
h2 0 
h2 02 aq 
hydroxypropionat 
hypoxanthine 
indole 
ketoglutarate 
lactate 
lactose 
1eucineisoL 
leucineL 
lyxose 
malate 
ma 1 t 0s e 
manni to 1D 
manno s e 
me thaneaq 
methaneg 
methanol 
methionineL 
methylamineion 
n2 aq 

nadox 
nadred 
nadpox 
nadpred 
o2aq 
029 
oxalate 
oxaloacetate 
oxalosuccinate 
palmi tate 
Pep 
P9 2 
Pg 3 
phenylalanineL 
Pi 
PP i 
propano12 
propanoln 
pyruva t e 
retinal 
retinol 
ribose 
riboselphos 
ribose5phos 
r i bul o s e 
serineL 
sorbose 
succinate 
succinylcoA 
sucrose 
thioredoxinox 
thioredoxinred 
tryptophaneL 
tyrosineL 
ubiquinoneox 
ubiquinonered 
urate 
urea 
uricacid 
valineL 
xylose 

n29 

-233.16 
-443.71 
-285.40 
-440.06 
76.30 
58.70 

-178.49 
-75.33 

.eb -372.46 
206.90 
429.25 
-679.25 
-370.78 
-921.63 
37.65 
29.30 

-455.64 
-729.49 
-928.99 
-531.71 
-557.80 

83.07 
66.68 

-57.91 
-180.07 
135.43 
18.70 
0.00 

762.29 
811.86 
-108.72 
-59.05 
16.40 
0.00 

-677.26 
-737.83 
-1024.72 
649.64 

-1218.97 
-1396.52 
-1402.06 
115.75 

-1079.46 
-1957.07 

49.57 
58.99 

-385.03 
821.80 
852.59 

-445.29 
-1320.16 
-1328.24 
-442.44 
-305.42 
-559.75 
-578.32 
-393.33 
-919.00 

0.00 
33.33 

237.50 
-47.85 

2641.49 
2610.27 
-238.66 
-85.40 

-239.50 
-35.80 

-456.99 

--204.62 
--426.59 
-239.74 
-434.35 
87.72 
70.12 

-167.07 
-63.91 
-343.92 
229.73 
469.21 
-656.42 
-342.24 
-796.06 
111.85 
103.50 
-398.56 
-705.79 
-803.42 
-451.80 
-489.30 
105.90 
89.51 

-35.08 
-117.28 
169.68 
18.70 
0.00 

910.70 
965.98 
33.98 
89.36 
16.40 
0.00 

-677.15 
-726.41 
-1001.89 
826.59 

-1203.00 
-1368.31 
-1373.94 
178.54 

-1068.49 
-1947.46 

95.23 
104.65 

981.62 
1023.83 

-367.91 

-388.21 
-1264.30 
-1272.38 
-385.36 
-265.46 
-491.25 
-553.72 
-370.32 
-793.43 

0.00 
44.70 

306.00 
14.94 

3155.21 
3135.41 
-221.54 
-62.57 
-216.67 
26.99 

-399.91 
xylulose -452.65 -395.57 

-176.08 
-409.46 
-194.07 
-428.64 
99.13 
81.53 

-155.66 
-52.50 
-315.38 
252.56 
509.16 
-633.58 
-313.70 
-670.48 
186.06 
171.71 
-341.48 
-682.85 
-677.84 
-371.89 
-420.81 
128.73 
112.34 
-12.25 
-54.49 
203.93 
18.70 
0.00 

1059.11 
1120.09 
176.68 
237.77 
16.40 
0.00 

-677.14 
-715.00 
-979.05 
1003.54 
-1189.73 
-1341.79 
-1347.73 
241.33 

-1059.49 
-1940.66 
140.90 
150.32 

1141.45 
1195.07 

-350.78 

-331.13 
-1211.14 
-1219.22 
-328.28 
-225.51 
-422.76 
-530.64 
-347.47 
-667.85 

0.00 
55.74 

374.49 
77.73 

3668.94 
3660.55 
-204.41 
-39.74 
-193.84 
89.78 

-342.83 
-338.49 

-147.54 
-392.34 
-148.41 
-422.94 
110.55 
92.95 

-144.24 
-41.08 
-286.84 
275.40 
549.12 
-610.75 
-285.16 
-544.90 
260.26 
251.91 
-284.40 
-660.00 
-552.26 
-291.97 
-352.31 
151.57 
135.18 
10.59 
8.29 

23.8. 17 
18.70 
0.00 

1207.51 
1274.21 
319.38 
386.18 
16.40 
0.00 

-677.14 
-703.58 
-956.22 
1180.48 
-1178.02 
-1317.92 
-1324.05 
304.11 

-1052.97 
-1935.64 
186.56 
195.98 

1301.27 
1366.31 

-333.66 

-274.05 
-1159.50 
-1167.58 
-271.20 
-185.55 
-354.26 
-507.79 
-324.63 
-542.27 

0.00 
64.03 

442.99 
140.51 
4182.66 
4185.69 
-187.29 
-16.90 
-171.00 
152.56 
-285.75 
-281.41 

-119.00 
-375.21 
-102.74 
-417.23 
121.96 
104.36 
-132.83 
-29.67 
-258.30 
298.23 
589.07 
-587.92 
-256.62 
-419.32 
334.47 
326.12 
-227.32 
-637.17 
-426.68 
-212.06 
-283.82 
174.40 
158.01 
33.42 
71.08 

272.42 
18.70 
0.00 

1355.92 
1428.33 
462.08 
534.59 
16.40 
0.00 

-677.14 
-692.16 
-933.39 
1357.43 
-1166.58 
--1294.95 
-1301.11 
366.90 

-1047.17 
-1933.29 
232.23 
241.65 

1461.10 
1537.55 

-316.53 

-216.97 
-1108.09 
-1116.17 
-214.12 
-145.60 
-285.77 
-484.95 
-301.80 
-416.69 

0.00 
66.35 

511.48 
203.30 
4696.38 
4710.83 
-170.16 

5.93 
-148.17 
215.35 
-228.67 
-224.33 
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6.0 Calculation of the functions of pH and ionic strength for the standard 
transformed enthalpies of formation of reactants 

calcdmat [speciesmat-] : = 
Module[(dHzero, zi, nH, dhfnsp, dGzero, pHterm, isenth, dgfnsp, doreactant, ri), 
(*This program produces the function of ionic strength (is) that gives the standard 
transformed enthalpy of formation of a reactant (sum of species) at 298.15 
K. The input is a matrix that gives the standard Gibbs energy of formation, 
the standard enthalpy of formation, the electric charge, 
and the number of hydrogen atoms in the species in the reactant. There is 
a row in the matrix for each species of the reactant. dhfnsp is a list 
of the functions for the species. Energies are expressed in kJ mol"-l.*) 
dHzero = speciesmat [ [All, 21 ] ; 
zi = speciesmat [ [All, 31 ] ; 
n H =  speciesmat[[All, 411; 
isenth=1.4775* ((zi"2) -nH) * (isA.5) / (1+1.6*isA.5); 
dhfnsp = dlizero+isenth; 

the standard Gibbs energies of formation of the species.*) 
(*Now calculate the functions for 

dGzero = speciesmat [ [All, 11 ] ; 
pHterm = nH * 8.31451 * .29815 * Log [ 10 A - pH] ; 
gpfnsp = dGzero - pHterm - isenth * 2.91482 / 1.44775; 
(*Now calculate the standard 
transformed Gibbs energy of formation for the reactant.*) 

dGreactant = -8.31451* .29815*Log[Apply[Plus, Exp[-l*gpfnsp/ (8.31451* .29815)]]]; 
(*Now calculate the equilibrium mole fractions of the species 

in the reactant and the mole fraction-weighted average of the 
functions for the standard transformed enthalpies of the species.*) 

ri = Exp[ (dGreactant - gpfnsp) / (8.31451 * .29815) 1 ;  
ri.dhfnsp] 

The following is a list of functions for the reactants with which the standard transformed enthalpies of formation can be 
calculated. It is shorter than the list of reactants for the transformed Gibbs energies because these is less information about 
standard enthalpies of formation of species. 

listreactantsh={"acetaldehyde", "acetate", "adenosine", lladpml, "alanine", rgammonia 
'I, I I a m p " ,  l*arabinose", "asparagineL", llaspartatell, lvatpil, "citrate", "c02g1', "c02tot", IIcoaq", "C 
ogl', "ethanol11, "ethylacetate", "formateml, "fructose", r l f ~ r a t e " ,  "galactose", "glucose", "glu 
cose6phos", "glutamatell, "glutaminemt, lrglycerollr, l'glycinell, Eiglycylglycineii, Irh2aq", "h2g", "h 
20", 'th202aq1t, "indole", "lactate", lvlactosela, "leucineL", "maltose", 19nannose", "methaneg", "me 
thaneaq" , "methanol", ilmethylamineionrl, iin2aql*, **n2gra, tlnadox*l, "nadpox" , "nadpred" , %adred", '' 
02aq", 1102g~~, "pi", "ppi", 11propano12", iipyruvatei', "ribose", "ribose5phos", "ribulose", "sorbos 
ell, "succinate", "sucroset1, "tryptophaneL1'. "urea", lsvalineL'l, "xylose", "xylulosetm) ; 
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listfnpHish={acetaldehydeh,acetateh,acetoneh,adenosineh,adgh,alanineh,ammoniah,amgh,ara 
binoseh,asparagineLh,aspartateh, 
atph,citrateh,coagh, coatoth, coaqh, cogh, 

ethanolh, ethylacetateh, 
formateh, fructoseh, fumarateh, galactoseh, glucoseh, 

glucose6phosh,glutamateh, glutamineh, 
glycerolh, glycineh. glycylglycineh, h2aqh, h2gh, haoh, 
h202aqh,indolehr lactateh, lactoseh,leucineLh, 

methaneaqh, methanolh,methylamineionh, n2aqh, 
n2gh, nadoxh, nadpoxh, nadpredh, nadredh, o2aqh. 
o2gh, pih,ppih, propanol2h, 
pyruvateh, riboseh, ribose5phosh,ribuloseh, 

xyluloseh); 

maltoseh, mannoseh, methanegh, 

sorboseh, succinateh, sucroseh, trygtophaneLh, ureah, valinelh, xyloseh, 

listsgeciesdatah={acetaldehydesp,acetatesp,acetonesp,adenosinesg,adpsg,alaninesp,ammoni 
asp,ampsp,arabinosesp,asparagineLsp,aspartatesp, 
atpsp,citratesp,co2gspr co2totsp, coaqsp, cogsp, 

ethanolsp, ethylacetatesp, 
formatesp, fructosesp, fumaratesp, galactosesp, glucosesp, 

glucose6phossg,glutatesp, glutaminesp, 
glycerolsp, glycinesp, glycylglycinesp, haaqsp, h2gsp, h2osp, 
h202aqsp,indolesg, lactatesp, lactosesp,leucineLsp, 

methaneagsp, methanolsp,methylamineionsp, naaqsp, 
n2gsp, nadoxsp, nadpoxsp, nadpredsp, nadredsp, o2aqsp, 
02gsp,pisp,ppisp, propanol2sp, 
pyruvatesp, ribosesp, ribose5phossp,ribulosespr 

xylulosesp); 

maltosesp, mannosesp, methanegsp, 

sorbosesp, succinatesp, sucrosesp, tryptophanelsp, ureasp, valinelsp, xylosesp, 

Map is used to apply calcdHmat to each of the matrices of species data called up by listspeciesdatah. 

Clear[acetaldehydeh,acetateh,acetoneh,adenosineh,adph,alanineh,anrmoniah,amph,arabinoseh 
,asparagineLh,aspartateh, 
atph,citrateh,co2gh, coatoth, coaqh, cogh, 

ethanolh, ethylacetateh, 
formateh, fructoseh, fumarateh, galactoseh, glucoseh, 

glucose6phosh,glutamateh, glutamineh, 
glycerolh, glycineh, glycylglycineh, haaqh, h2gh. haoh, 
h202aqh,indoleh. lactateh, lactoseh,leucineLh, 

methaneaqh, methanolh,methylamineionh, n2aqh, 
n2gh, nadoxh, nadpoxh, nadpredh, nadredh, o2aqh, 
o2gh, pih,ppih, propanolah, 
pyruvateh, riboseh, ribose5phosh,ribuloseh, 

xyluloseh]; 

maltoseh, mannoseh, methanegh, 

sorboseh, succinateh, sucroseh, tryptophaneLh, ureah, valinelh, xyloseh. 

Evaluate[listfnpHish] = Map[calcdHmat, listspeciesdatah]; 
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a 7.0 Calculation of a table of standard transformed enthalpies of 
formation of reactants at pH 7 and ionic strengths of 0, 0.10, and 0.25 M 

listhisreactants={acetaldehydehis,acetatehis,acetonehis.adenosinehis,adghis,a~aninehis, 
~niahiS,~phiS,arabinOS~hiS,aSgaraginelhiS,aSQartatehiSr 
atphis,citratehis,co2ghis, co2tothi6, coaghis, coghis, 

ethanolhis, ethylacetatehis, 
formatehis, fructosehis, fumaratehis, galactosehis, glucosehis, 

glucose6phoshis,glutamatehis, glutminehis, 
glycerolhis, glycinehis. glycylglycinehis, haaqhis, haghis, haohis, 
h202aghis,indolehis, lactatehis, lactosehis,leucinelhis. 

methaneaghis. methanolhis,methylamineionhis, naaghis, 
nZghis, nadoxhis, nadpoxhis, nadpredhis, nadredhis, oaaghis, 
02ghis. pihis,ppihis, propanol2his, 
pyruvatehis, ribosehis, ribose5~hoshis,ribulose~is, 

maltosehis, mannosehis, methaneghis, 

sorbosehis, succinatehis. sucrosehis, tryptophanelhis, ureahis, valinelhis, 
xylosehis, 

xylulosehis}; 

calcdH3I[reactanth~]~=Module[{outl,out2,out3},(*This program calculates the standard 
transformed enthalpies of formation at 298 K, pH 7, and ionic strengths of 0, 0.10, 
and 0 . 2 5  M. The reactanth name calls a function of pH and ionic strength or a 
constant.*) 
outl=reactanth/.{pH->7,is->O); 
out2=reactanth/.{pH->7,is->.l}; 
out3=reactanth/.{pH->7,is->.25}; 
{outl,out2,out3}l; 

Clear[acetaldehydehis,acetatehis,acetonehis,adenosinehis,adphis,alaninehis,ammoniahis,a 
mghis,arabinosehis,asparagineLhis,aspartatehis, 
atphis,citratehis,co2ghisr coZtothis, coaghis, coghis, 

ethanolhis, ethylacetatehis, 
formatehis, fructosehis, fumaratehis, galactosehis, glucosehis, 

glucose6phoshis,glutamatehis, glutaminehis, 
glycerolhis, glycinehis, glycylglycinehis, h2aqhis, haghis, haohis, 
h202aqhis,indolehis, lactatehis, lactosehis,leucinelhis, 

methaneaghis, methanolhis,methylamineionhis, naaqhis, 
naghis, nadoxhis, nadpoxhis, nadpredhis, nadredhis, oaaqhis, 
olghis, pihis,ppihis, propanol2his, 
pyruvatehis, ribosehis, ribose5phoshis,ribulose~is, 

maltosehis, mannosehis, methaneghis, 

sorbosehis, succinatehis, sucrosehis, tryptophanelhis. ureahis, valinelhis, 
xylosehis, 

xylulosehisl; 

Map is used to apply calcdH3I to each of the functions for reactants. 

Evaluate [listhisreactants] = Map[calcdH31, listfnpHish] ; 

Table 3 Standard Transformed Enthalpies of Formation (in kJ mol-' ) of Biochemical Reactants at pH 7 and Ionic Strengths 
of 0, 0.10, and 0.25 M. 
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table3=PaddedF0rmCTableFo~~listhisreactants,TableHeadings->~listreactantsh,{~~I = 0 
M","I = 0.10 M","I= 0.25 M")I,TableSpacing->{.3,2)1,{0,2}1 

acetaldehyde 
acetate 
acetone 
adenosine 
adP 
alanine 
ammonia 

arabinose 
asparagineL 
aspartate 
a tP 
citrate 
c02g 
co2tot 
coaq 
cog 
e thano 1 
ethylacetate 
formate 
fructose 
f umara t e 
galactose 
glucose 
glucose6phos 
glut mate 
glutamine 
g 1 yc er o 1 
glycine 
glycylglycine 
h2 aq 
h2 g 
h2 0 
h2 02 aq 
indole 
lactate 
lactose 
leucineL 
ma1 t ose 
manno s e 
methaneg 
me thaneaq 
methanol 
methylamineion 
n2aq 
n2g 
nadox 
nadpox 
nadpred 
nadred 
02 aq 

Pl 
PP i 
propano12 
pyruva t e 
ribose 
ribose5phos 
r i bul ose 
sorbose 
succinate 
sucrose 
t ryp t ophaneL 
urea 
valineL 
xylose 
xylulose 

02s 

I = O M  
-212.23 
-486.01 
-221.71 
-620.93 
-2623.20 
-554.80 
-132.22 
-1633.49 
-1043.79 
-766.09 
-943.41 
-3614.23 
-1515.78 
-393.50 
-693.43 
-120.96 
-110.53 
-288.30 
-482.00 
-425.55 
-1259.38 
-777.38 
-1255.20 
-1262.19 
-2276.06 
-979.89 
-805.00 
-676.55 
-523.00 
-734.25 

-4.20 
0.00 

-285.83 
-191.17 

97.50 
-686.64 
-2233.08 
-643.37 
-2238.06 
-1258.66 
-74.81 
-89.04 

-245.93 
-124.93 
-10.54 

0.00 
0.00 
0.00 

-29.18 
-31.94 
-11.70 
0.00 

-1301.24 
-2295.04 
-330.83 
-596.22 

-1034.00 
-2037.77 
-1023.02 
-1263.30 
-908.69 
-2199.87 
-405.20 
-317.65 
-611.99 
-1045.94 
-1029.65 

1 = 0.10 M 
-213.47 
-486.63 
-223.57 
-624.97 
-2626.54 
-556.97 
-133.15 
-1637.17 
-1046.89 
-768.57 
-944.96 
-3616.65 
-1514.14 
-393.50 
-692.99 
-120.96 
-110.53 
-290.16 
-484.48 
-425.55 
-1263.10 
-776.77 
-1258.92 
-1265.91 
-2278.56 
-982.06 
-808.10 
-679.03 
-524.55 
-736.73 
-4.82 
-0.62 

-286.45 
-191.79 
95.33 

-687.88 
-2239.91 
-647.40 
-2244.89 
-1262.38 
-76.05 
-90.28 

-247.17 
-126.48 
-10.54 
0.00 
-7.76 
-4.96 
-32.28 
-39.08 
-11.70 

0.00 
-1299.89 
-2292.54 
-333.31 
-596.84 
-1037.10 
-2041.51 
-1026.12 
-1267.02 
-908.70 
-2206.70 
-408.92 
-318.89 
-615.40 
-1049.04 
-1032,75 

I= 0.25 M 
-213.87 
-486.83 
-224.17 
-626.27 
-2627.24 
-557.67 
-133.45 
-1638.19 
-1047.89 
-769.37 
-945.46 
-3616.92 
-1513.66 
-393.50 
-692.86 
-120.96 
-110.53 
-290.76 
-485.28 
-425.55 
-1264.31 
-776.57 
-1260.13 
-1267.12 
-2279.30 
-982.76 
-809.10 
-679.83 
-525.05 
-737.53 
-5.02 
-0.82 

-286.65 
-191.99 
94.63 

-688.28 
-2242.11 
-648 .I1 
-2247.09 
-1263.59 
-76.45 
-90.68 
-247.57 
-126.98 
-10.54 

0.00 
-10.26 
-6.57 

-33.28 
-41.38 
-11.70 
0.00 

-1299.36 
-2291.57 
-334.11 
-597.04 
-1038.10 
-2042.43 
-1027.12 
-1268.23 
-908.70 
-2208.90 
-410.13 
-319.29 
-616.50 

-1050.04 
-1033.75 
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I 8.0 Calculation of the standard transformed enthalpies of formation of 

reactants at pH 5, 6, 7,  8, and 9 and ionic strength 0.25 M 

listhgHreactants={acetaldehydehpH,acetatehpH,acetonehpH,adenosinehpH,adphpH,alaninehpH, 
ammon~ah~H,amphpH,arab~nosehpH,asparag~neLhpH,aspartatehpH, 
atphpH,citratehpH,co2ghpH, coatothpH, coaqhpH, coghpa, 

ethanolhpa, ethylacetatehpH, 
formatehpli, fructosehpH, fumaratehpa, ga1actosehpI-I. glucosehpli, 

glucose6phoshpH,glutamatehpH, glutaminehpli, 
g1ycerolhpI-I. glycinehpli, glycylglycinehpH, h2aghpH. h2ghpH, haohpH, 
h202aqhpH,indolehgH, lactatehpa, lactosehpH,leucineLhpH, 

methaneaghpa, methanolhpH,methylamineionhpIi, n2aghpH. 
nlghpli, nadoxhpH, nadpoxhpH, nadpredhpH, nadredhpa, oaaghpli, 
02ghpH, pihpH,ppihpH, propanol2hpH, 
pyruvatehpa, ribosehpH, ribose5phoshpH,ribulosehpH, 

maltosehpli, mannosehpH, methaneghpa, 

sorbosehpH, SuccinatehpH, sucrosehpH, tryptophaneLhpH, ureahpH, valineLhpH, 
xylosehpH, 

xylulosehpH); 

Clear[acetaldehydehpH,acetatehpH,acetonehpH,adenosinehgH,adghpH,alaninehpH,ammoniahpH,a 
mphpH.arabinosehpH,asparagineLhpH,aspartatehpH, 
atphpH,citratehpH,co2ghpH, co2tothpH. coaghpli, coghpH, 

ethanolhpH, ethylacetatehpa, 
formatehpH, fructosehpH, fumaratehpa, galactosehpH, glucosehpH, 

glucose6phoshpH,glutamatehpHr glutaminehpa, 
glycerolhpH, glycinehpH, glycylglycinehpH, h2aghpH, h2ghpH, haohpH, 
h202aqhpH,indolehpH, lactatehpa, lactosehpH,leucineLhpH, 

methaneaghpH, methanolhpH,methylamineionhpH, naaghpIi, 
n2ghpH, nadoxhpa, nadpoxhpH, nadpredhpH, nadredhpH, 02aghpH, 
02ghpHr pihpIi,ppihpH, propanol2hpH, 
pyruvatehpH, ribosehpH, ribose5phoshpH,ribulosehpH, 

maltosehpH, mannosehpH, methaneghpa, 

sorbosehpli, succinatehpH, sucrosehpli, tryptophaneLhpH, ureahpH, valineLhpH, 
xylosehpli, 

xylulosehpHl ; 

calcdH5pH[reactanth~]:=Module[{outl,out2,out3,out4,out5},(*This program calculates the 
standard transformed enthalpies of formation at 298 K, ionic strength 0.25 M and p H s  
5, 6, 7, 8, and 9. The reactanth name calls a function of pH and ionic strength or a 
constant.*) 
outl=reactanth/.{pH->S,is->.25); 
out2=reactanth/.{pH->6,is->.25); 
out3=reactanth/.{pH->7,is->.25>; 
out4=reactanth/.{pH->8,is->.25); 
out5=reactanth/.{pH->9,is->.251; 
{outl,out2,out3,out~,out5)]; 

Map is used to apply calcdH5pH to each of the functions for the reactants. 

Evaluate[listhpHreactants] = Map[calcdH5pH, listfnpaish]; 

’Table 4 Standard Transformed Enthalpies of Formation (in kJ mol-” ) of Biochemical Reactants at I = 0.25 M and pHs of 5,  
6, 7, 8, and 9. 
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table4=PaddedFo~[TableForm[listhpHreactants,TableHeadings-~{listreactantsh,{"~H 
51i,11pH 6 mi,iigH 7", l ipH 8 i * , 1 i p H  S1'll,TableSpacing->~.3,2l1, I6,231 

acetaldehyde 
acetate 
acetone 
adenosine 
adP 
alanine 
ammonia 
amp 
arabinose 
asparagineL 
aspartate 
atP 
citrate 
c02g 
co2tot 
coaq 
cog 
ethanol 
ethylacetate 
f orma te 
fructose 
f uma r a t e 
galactose 
glucose 
glucose6phos 
glutamate 
glut mine 
glycerol 
glycine 
glycylglycine 
h2 aq 

h2 0 
h2 02 aq 
indole 
lactate 
lactose 
leucineL 
ma1 t ose 
mannose 
me thaneg 
me thaneaq 
methanol 
methylamineion 
n2 aq 
n29 
nadox 
nadpox 
nadpred 
nadred 
o2aq 

P l  
PP i 
propano12 
pyruva t e 
ribose 
ribose5phos 
r ibulose 
sorbose 
succinate 
sucrose 
t ryp tophaneL 
urea 
valineL 
xylose 
xylulose 

h2 g 

029 

PH 5 
-213.87 
-486.96 
-224,17 
-590.92 
-2625.82 
-557.67 
-133.74 
-1635.98 
-1047.89 
-769.37 
-945.46 
-3615.67 
-1518.50 
-393.50 
-699.80 
-120.96 
-110.53 
-290.76 
-485.28 
-425.55 
-1264.31 
-776.45 
-1260.13 
-1267.12 
-2279.17 
-982.76 
-809.10 
-679.83 
-525.05 
-737.53 

-5.02 
-0.82 

-286.65 
-191.99 

94.63 
-688.28 
-2242.11 
-648.71 
-2247.09 
-1263.59 

-76.45 
-90.68 

-247.57 
-12 6.9 8 
-10.54 
0.00 

-10.26 
-6.57 
-33.28 
-41.38 
-11.70 
0.00 

-1302.89 
-2294.18 
-334.11 
-597.04 
-1038.10 
-2034.57 
-1027.12 
-1268.23 
-909.85 
-2208.90 
-410.13 
-319.29 
-616.50 
-1050.04 
-1033.75 

PH 6 
-213.87 
-486.85 
-224.17 
-622.97 
-2625.74 
-557.67 
-133.71 
-1636.50 
-1047.89 
-769.37 
-945.46 
-3615.43 
-1514.96 
-393.50 
-696.59 
-120.96 
-110.53 
-290.76 
-485.28 
-425.55 
-1264.31 
-776.56 
-1260.13 
-1267.12 
-2279.25 
-982.76 
-809.10 
-679.83 
-525.05 
-737.53 

-5.02 
-0.82 

-286.65 
-191.99 

94.63 
-688.28 

-2242.11 
-648.71 
-2247.09 
-1263.59 

-76.45 
-90.68 

-247.57 
-126.98 
-10.54 
0.00 

-10.26 
-6.57 
-33.28 
-41.38 
-11.70 

0.00 
-1302.03 
-2292.80 
-334.11 
-597.04 
-1038.10 
-2038.10 
-1027.12 
-1268.23 
-908.87 
-2208.90 
-410.13 
-319.29 
-616.50 
-1050.04 
-1033.75 

PH 7 
-213.87 
-486.83 
-224.17 
-626.27 
-2627.24 
-557.67 
-133.45 
-1638.19 
-1047.89 
-769.37 
-945.46 
-3616.92 
-1513.66 
-393.50 
-692.86 
-120.96 
-110.53 
-290.76 
-485.28 
-425.55 
-1264.31 
-776.57 
-1260.13 
-1267.12 
-2279.30 
-982.76 
-809.10 
-679.83 
-525.05 
-737.53 
-5.02 
-0.82 

-286.65 
-191.99 
94.63 

-688.28 
-2242.11 
-648.71 
-2247.09 
-1263.59 
-76.45 
-90.68 

-247.57 
-126.98 
-10.54 
0.00 

-10.26 
-6.57 
-33.28 
-41.38 
-11.70 
0.00 

-1299.36 
-2291.57 
-334.11 
-597.04 
-1038.10 
-2042.43 
-1027.12 
-1268.23 
-908.70 
-2208.90 
-410.13 
-319.29 
-616.50 
-1050.04 
-1033.75 

P H  8 
-213.87 
-486.83 
-224.17 
-626.60 

-2627.71 
-557.67 
-130.97 
-1638.60 
-1047.89 
-769.37 
-945.46 
-3617.49 
-1513.49 
-393.50 
-691.80 
-120.96 
-110.53 
-290.76 
-485.28 
-425.55 
-1264.31 
-776.57 
-1260.13 
-1267.12 
-2279.31 
-982.76 
-809.10 
-679.83 
-525.05 
-737.53 
-5.02 
-0.82 

-286.65 
-191.99 
94.63 

-688.28 
-2242.11 
-648.71 
-2247.09 
-1263.59 
-76.45 
-90.68 
-247.57 
-126.98 
-10.54 
0.00 

-10.26 
-6.57 
-33.28 
-41.38 
-11.70 
0.00 

-1297.99 
-2290.05 
-334.11 
-597.04 
-1038.10 
-2043.41 
-1027.12 
-1268.23 
-908.68 
-2208.90 
-410.13 
-319.29 
-616.50 
-1050.04 
-1033.75 

PH 9 
-213.87 
-486.83 
-224.17 
-626.63 
-2627.76 
-557.67 
-115.00 

-1638.65 
-1047.89 
-769.37 
-945.46 
-3617.56 
-1513.47 
-393.50 
-689.51 
-120.96 
-110.53 
-290.76 
-485.28 
-4.25.55 
-1264.31 
-776.57 

-1260.13 
-1267.12 
-2279.31 
-982.76 
-809.3 0 
-679.83 
-525.05 
-737.53 
-5.02 
-0.82 

-286.65 
-191.99 
94.63 

-688.28 
-2242.11 
-648.71 
-2247.09 
-1263.59 
-76.45 
-90.68 

-247.57 
-126.98 
-10.54 
0.00 

-10.26 
-6.57 
-33.28 
-41.38 
-11.70 
0.00 

-1297.79 
-2287.69 
-334.11 
-597.04 

-1038.10 
-2043.52 
-1027.12 
-1268.23 
-908.68 
-2208.90 
-410.13 
-319.29 
-616.50 

-1050.04 
-1033.75 
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These tables have been given to 0.01 kJ mol-' . In general this overemphasizes the accuracy with which these 
formation properties are known. However for some reactants for which species are in classical tables, this accuracy is 
warranted. An error of 0.01 kJ mol-' in the standard transformed Gibbs energy of a reaction at 298 K corresponds with an 
error of about 1 8  in the value of the apparent equilibrium constant. It is important to understand that the large number of 
digits in these tables is required because the thermodynamic information is in differences between entries. 

transformed enthalpies of reaction for any biochemical reaction for which all the reactants are in the tables. Standard trans- 
fomed entropies of formation and of reaction can also be calculated. The advantage of having this notebook is that these 
propertiec can be calculated at any desired'pH in the range 5 to 9 and any ionic strength in the range 0 to 0.35 M. 

These tables can be used to calculate changes in standard transformed Gibbs energies of reaction and standard 

I 9.0 Examples of calculations using the database on species 

w 9.1 Calculation of pKs of weak acids 

When weak acids have pKs in the range between 4 to 10, the standard Gibbs energies of formation at 298.15 K and zero ionic 
strength of the various species are given in the database on species. In using the program calcpK, it is necessary to give the 
number associated with the pK. pKs are numbered 1, 2, 3, ... from the highest to the lowest in the pH range approximately 4 
to 10. 

calcpK[ speciesmat-, no-, is-] : = 

specified ionic strengths (is) when the number no of the pK is specified. ~ K s  are 
numbered 1.2, 3,... from the highest pK to the lowest pK, but the highest pK for a 
weak acid may be omitted if it is outside of the range 5 tO 9. For h3P04, 

Module[(lnkzero, sigmanuzsq, lnK),(*Calculates ~ K s  for a weak acid at 298.15 K at 

pK1=CalC[piSp,l,{0)] = 7.22.*) 
lnkzero = (speciesrnat[[no + 1,111 - speciesmat~[no,lll)/ 

(8.31451*0.29815); sigmanuzsq = speciesrnat[[no,311*2 - 
speciesmat[[no + 1,311*2 + 1; 

1nK = lnkzero + (1.17582*isA0.5*sigmanuzsg)/ 
(1 + 1.6*isA0.5); N[-(lnK/Log[lOl ) I 1  

6 . 4 6 5 0 2  

calcpK[atpsp,2,.251 

3 . 8 2 6 5 2  

9.2 Calculation of changes in thermodynamic properties of reactions 

calctrGerx[ac, pHlist-, islist-] :I 
Module[{energy}, (*Calculates the standard transformed 

Gibbs energy of reaction in kJ mol*-l at specified pHs and ionic 
strengths for a biochemical reaction typed in the form atp+h2o+de:= 

pH and ionic strength. pHlist and is list can be lists.*) 
adp+pi. The names of reactants call the appropriate functions of 

energy = Solve [eq, de] ; energyul, 1, 21 /. pH -i pHlist /. is + islist] 
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This program can be used to calculate standard transformed Gibbs energies of reaction or standard transformed enthalpies of 
reaction in kJ m o l - l .  To calculate the changes in standard transformed enthalpy, an h is appended to the name of the 
reactant. 

dGrxatp = calctrGerx[atp+h20 +de ==  adp+pi, { S ,  6, 7, 8, 9}, 0.251 

{-32.5633, -33.2166, -36.0353, -41.0742, -46.7021) 

dHrxatp=calctrGerx[atph+h2oh+de==adph+pih, {S, 6, 7, 8 ,  9}, 0.251 

{-26.386, -25.6892, -23.0327, -21.558, -21.3455} 

The corresponding standard transformed entropies of reaction are given by 

dHrxatp-dGrxatp 

0.29815 

{20.7188, 25.2473, 43.611, 65.4575, 85.0466) 

where these values are in J K-' m o l - I  . The standard transformed entropy of reaction increases rapidly above pB 7 because 
of the production of hydrogen ions. There is an increase in the standard transformed entropy because of the increase in the 
number of species in the reaction. 

This program can also be used to produce plots of standard transformed properties of reaction versus pH or ionic strength. 

AG' i /  (kJ/mol) 

- 3 6 -  

- 3 8 .  

- 4 0 .  

-42. 

-44- 

- 3 6  -34h 

9.3 Calculation of apparent equilibrium constants 

calckprime[eg, pHlist-, islist-] := Module[{energy, dG),(*Calculates the apparent 
equilibrium constant at specified p H s  and ionic strengths for a biochemical reaction 
typed in the form atp+hao+de==adp+pi. The names of reactants call the appropriate 
functions of pH and ionic strength. pHlist and is list can be lists.*) 

energy = Solve [eq, de] ; 
dG = energy[[l,l,2]] /. pH - >  pHlist /. is - >  islist; 
EA(-(dG/(8.31451*0.29815)))l 

calckprime[atp+h2o+de== adp+gi, 15, 6, 7, 8, 9}, 0.251 

6 7 8 
{506774., 659585., 2.05626 10 , 1.5698 10 , 1.51989 10 ] 
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This program can be also used to pepare plots versus pH or ionic strength. 

Plot [Evaluate[calckprime~atp+h2o+de==adp+p~,pH,O.2511, CpH, 6,8},AxesLabel->{"pH", "K"' l1  i 

K' 

I 

6 . 5  7 7 . 5  8 PH 

rn 9.4 Calculations of changes in binding of hydrogen ions in biochemical reactions 

Biochemical reactions are different from chemical reactions in that they may produce or consume non-integer amounts of 
hydrogen ions. This is discussed in terms of the change in binding of hydrogen ions af NH in a biochemical reaction, which 
is given by 

A, NH = -(dlogK/dpH) = - (l/ln(lO))(dlnK'/dpH) 

The change in the binding of hydrogen ions in the hydrolysis of ATP can also be plotted as follows: 

Plot [Evaluate [ - 
~1/Log[lO])*D[Log[caIckgrime[atg+h20+de==adp+~~,pH,O.25]],pH]l,~~H,~,9~,~esOrigin- 
> C 5, -1 1, AxesLabel-> C "pH", I \ (N\-H\ ) 1 1 ; 

-0. 

-0. 

- 0 .  

-0. 

Since there is a decrease in binding of hydrogen ions in this reaction, hydrogen ions are produced at constant pH. 

9.5 Calculation of standard transformed reaction Gibbs energies at other temperatures 

The program calcdGHT can be used to produce the function of T, pH, and ionic strength that will give the standard trans- 
formed Gibbs energies of formation at other temperatures, provided the standard enthalpies of formation of all the species are 
known. 
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calcdGHT[speciesma-1 := Module[{dGzero, dGzeroT, dHzero, 

the function of T (in Kelvin), pH, and ionic strength (is) that gives the stndard 
transformed Gibbs energy of formation of a reactant (sum of species) and the standard 
transformed enthalpy. The input speciesmat is a matrix that gives the standard Gibbs 
energy of formation at 198.15 K, the standard enthalpy of formation at 298.15 K, the 
electric charge, and the number of hydrogen atoms in each species. There is a row in 
the matrix for each species of the reactant. gpfnsp is a list of the functions for 
the transformed Gibbs energies of the species. The output is in the form {dGfn,dHfn), 
and the energies are expressed in kJ molA-l. The values of the standard transformed 
Gibbs energy of formation and the standard transformed enthalpy of formation can be 
calculated at any temperature in the range 273.15 K to 313.15 K, any pH in the range 5 
to 9, and any ionic strength in the range 0 to 0.35 M by use of the assignment 
operator ( / . ) . * )  

zi, nH, gibbscoeff, pHterm, isterm, gpfnsp, dGfn, dHfn),(*This program produces 

{dGzero, dHzero, zi, nH) = Transpose[speciesmat1; 
gibbscoeff = (9.20483*t)/10A3 - (1.284668*tA2)/10^5 + 

(4.95199*tA3)/1OA8; dGzeroT = (dGzero*t)/298.15 + 
dHzero*(l - t/298.15); pHterm = 
(nH*8.31451*t*Log[10A(-pH)I)/1000; 

istermG = (gibbscoeff*(ziA2 - nH)*isA0.5)/ 
dGfn = -((8.31451*t*Log[Plus @@ 

dHfn = -(tA2*D[dGfn/t, tl); {dGfn, dHfn)] 

(1 + 1.6*isA0.5); gpfnsp = dGzeroT - pHterm - istermG; 
(EA(-(gpfnsp/((8.31451*t)/1000))))l)/1000~; 

Calculate the functions that yield the standard transformed Gibbs energies of the reactants in the reaction atp + h20 = adp + pi 
at 313.15 K. 

atp313 = calcdGHT [atpsp] El] / . t + 313.15; 

h20313 = calcdGHT [h2osp] El] /. t + 313.15; 

adp313 = calcdGHT[adpsp] 111 /. t + 313.15; 

pi313 = calcdGHT [pisp] El] /. t -+ 313.15; 

Calculate the standard transformed reaction Gibbs energies for the hydrolysis of ATP at 313.15 K, pHs 5, 6, 7, 8, and 9 and 
ionic strengths of 0, 0.10, and 0.25 M. 

dGerx313 =calctrGerx[atp313+h20313+de== adp313+pi313, {5, 6, 7, 8, 9), {0, 0.1, 0.25}]; 

TableForm[Transpose[dGerx313], TableHeadings -+ 

{{"I = 0 MIi, "I = 0.10 Mi*, "1 = 0.25 Mi'}, {"pH 5", l1pH 6 " ,  "RH 7 " ,  "pH 8", "RH 9")}1 

PH 5 PH 6 PH 1 PH 8 PH 9 
I = O M  -35.9046 -36.4816 -38.212 -43.5265 -49.6803 

I = 0.10 M -33.6656 -34.2845 -37.1598 -42.482 -48.4002 

I = 0.25 M -32.8611 -33.5895 -36.6852 -42.0518 -41.9136 

9.6 Calculation of the standard transformed Gibbs energies of formation of the species of a 
reactant from the apparent equilibrium constant of a reaction 

To do this all the reactants have to be in the database, except for one or two, The following three programs, which make this 
calculation in one step, are based on the concept of the inverse Legendre transform. The program to be used depends on the 
number of species in the reactant. The programs produce entries for the database on species. 



BasicBiochemData2 223 

calcGeflsplequat-, ~Hc-, ionstr-, 21-, nH1-1 := 

standard Gibba energy of formation of the species of a reactant that does not have a 
pK in the range 4 to 10. The equation is of the form pyruvate+atp-x- 
adp==-8.31451*.29815*Log[K11, where K' is the apparent equilibrium constant at 298.15 
K, pHc, and ionic strength is. The reactant has charge number zl and hydrogen atom 
number nH1. The output is the species vector without the standard enthalpy of 
formation. * )  

Module[{energy, trGereactant),(*This program uses CviAfGiIO=-RTlnK' to calculate the 

energy = Solve[equat, x] /. p H  -> pHc /. is -> ionstr; 
trGereactant = energy[[l,l,Z]l; 
gefl = trGereactant - nH1*8.31451*0.29815*Log[lO]*pHc + 

(2.91482*(zlA2 - nH1)*ionstrA0.5)/ 
(1 + 1.6*ionstrA0.5); {{gefl, -, zl, nH1})1 

calcGefZsgCequat-, pHc-, ionstr-, 21-, nHl-, pKO-1 := 
Module[(energy, trGereactant, pKe, trgefpHiS,gefl, gefZ},(*This program uses Evils. 

fGi'O=-RTlnK' to calculate the standard Gibbs energies of formation of the two species 
of a reactant for which the pK at zero ionic strength is pKO. The equation is of the 
form pyruvate+atp-x-adp==-8.31451*.29815*LogIK11, where K' is the apparent equilibrium 
constant at 298.15 K, pHc, and ionic strength is. The more basic form of the reactant 
has charge number zl and hydrogen atom number nH1. The output is the species matrix 
without the standard enthalpies of formation.*) 
energy = SolveCequat, XI /. pH -> pHc / .  is -> ionstr; 

trGereactant = energyl[l,l,Z]l; 
pKe = pKO + (0.510651*ionstrA0.5*2*zl)/ 

(1 + 1.6*ionstrA0.5); trgefpHis = 
trGereactant + 8.31451*0.29815*Log[l + 10A(pKe - pHc)]; 

gefl = trgefpHis - nH1*8.31451*0.29815*Log[lOl*pHc + 
(2.91482*(zlA2 - nH1)*ionstrA0.5)/ 
(1 + 1.6*ionstrA0.5); 

gef2 = gefl + 8.31451*0.29815*L0gIlO~~-pK0)1; 
({gefl, _, zl, nHl1, Cgef2, _, zl + 1, nH1 + 1111 

calcGef3sp[equat-, pHc-, ionstr-, zl-, nHl-, pKlO-, 
pK20-1 := Module[{energy, trGereactant, pKe, trgefpHis, 
gefl, gef2, gef3, pKle, pKZe},(*This program uses xviAfGitO=-RTlnK1 to calculate 

the standard Gibbs energies of formation of the three Species of a reactant for which 
the pKs at zero ionic strength is pKlO and pK20. The equation is of the form 
gyruvate+atp-x-adp==-8.31451*.29815*Log[K'], where K' is the apparent equilibrium 
constant at 298.15 K, ~ H c ,  and ionic strength is. The more basic form of the reactant 
has charge number zl and hydrogen atom number nH1. The output is the species matrix 
without the standard enthalpies of formation of the three species.*) 

energy = Solvelequat, x] /. pH -> pHc /. is -> ionstr; 
trGereactant = energy"l,l,2]1; 
pKle = pKlO + (0.510651*ionstrA0.5*2*zl~/ 

pK2e = pK20 + (0.510651*ionstrA0.5*(2*zl + 2))/ 
(I + 1.6*ionstrA0.5); 

(1 + 1.6*ionstrA0.5); trgefpHis = 
trGereactant + 8.31451*0.29815* 
LOg[l + 10"(pKle - pHC) + 10"(pKle + pK2e - 2*pHc)l; 

gefl = trgefpHis - nH1*8.31451*0.29815*Log[lOl*pHc + 
(2.91482*(zlA2 - nH1)*ionstrA0.5)/ 
(1 + 1.6*ionstrA0.5); 

gef2 = gefl + 8.31451*0.29815*L0g[10"(-pK10)1: 
gef3 = gef2 + 8.31151*0.29815*L0gClO~~-pK20~1; 
{{gefl, _, zl, nH1). {gef2, -, zl + 1, nH1 + 11, 
(gef3, -, zl + 2, nH1 + 2111 

The following example is concerned with biochemical reaction EC 1.1.1.37. If the standard Gibbs energies of formation of 
both coA and acetyl coA are unknown, the convention can be adopted that the standard Gibbs energy of formation of RS-  is 
zero. The standard Gibbs energy of formatin of RSH can be calculated using the pK at zero ionic strength. 
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coA2 = calcdGmat[coA2sp]; 

Now the data entry for acetylcoA can be calculated from the apparent equilibrium constant (10.8) of this reaction at pH 7.12 
and ionic strength 0.05 M. 

acetylcoAsp2 = CalCGeflSp[ 
c i trate+coA2+nadred-malate-x-nadox-h20== -8.314510.29815Log[10.8], 7.12, 0.05, 0, 

{{-188.523, -, 0, 3)) 

acetylcoA2 = calcdGmat[acetylcoAsp2]; 

This calculation can be verified by using the data on coA and acetylcoA to calculate the apparent equilibrium constant for 
this reaction at the experimental conditions. 

calckprime[malate+acetylcoA2 +nadox+h2o+de == citrate+coA2 +nadred, 7.12, 0.051 

10.8 

m 9.7 Calculation of the thermodynamic properties of a biochemical reaction 

It is convenient to be able to calculate the standard transformed reaction Gibbs energy, apparent equilibrium constant, and 
change in binding of hydrogen ions in a biochemical reaction at a series of pHs and ionic strengths. The pH dependencies of 
the standard transformed reaction Gibbs energies and IS can bt regarded as a consequence of the change in binding of 
hydrogen ions. 

calcNHrx[ee, pHlist-, islist-] := Module 
change in the binding of hydrogen ions in 
ionic strengths.*) 

energy = Solve[eq, del ; 

{energy),(*This program calculates the 
a biochemical reaaction at specified ~ H S  and 

D [energy [ [ 1,1,2 1 I , pH]/ (8.31451*0.29815*Log I101 ) / . 
p~ -> pHlist /. is -> islist] 

rxthermotab[ee, pHlist-, islist-] := Module[{energy, tg, tk, tn), 
(*This program uses three other programs to make a thermodynamic table of 

and changes in the number of hydrogen ions bound in a biochemical reaction.*) 
standard transformed reaction Gibbs energies, apparent equilibrium constants, 

tg = calctrGerx[eq, pHlist, islist]; tk= calckprirne[eq, pHlist, islist]; 
tn = calcNHrx[eq, pHlist, islist]; TableForm[Join[{tg, tk, tn)]]] 

rxthermotab[pep + adp + de == pyruvate + atp, {5, 6, 7, 8, 9), {0, 0.1, 0.25}] 

-33.4613 -32.7661 -30.6224 -25.1722 -19.2526 
-34.1841 -33.1449 -29.2617 -23.6955 -17.993 
-34.4724 -33.1063 -28.8451 -23.2908 -17.5968 

728017. 549974. 231625. 25700.8 2359.9 
914465. 640772. 133784. 14166.3 1419.79 

1.09465 10 630867. 113085. 12032.5 1210.04 

0.150557 0.151752 0.700597 1.06297 1.01353 
0.0719355 0.38045 0.915575 0.99698 0.999809 
0.0826948 0.480624 0.927296 0.993667 0.999384 

6 

The first row gives the standard transformed reaction Gibbs energies in kJ m o l - l  at zero ionic strength, the second row at 
0.10 M ionic strength, and the third at 0.25 M ionic strength. The second part of the tsable is made up of apparent equilib- 
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rium constants, and the third is made up of changes in the binding of hydrogen ions. TableHeadings could be added, but this 
program allows you to use various numbers of pHs and various numbers of ionic strengths. 

A vector can be rounded by use of round. 

round[vec-, params-: (4 ,  211 := 
Flatten[Map[NumberForm[#l, params] & , {vet), {2111 

round[calctrGerx[glucose + atp + de == glucose6phos + adp, 
{5 ,  6, 7 ,  8, 91, 0.251, (4 ,  211 

1-17.41, -19.47, -24.42, -30.11, -35.82) 

w 9.8 Printing out biochemical reactions that correspond with a stoichiometric matrix 

A biochemical reaction can be represented by a vector of its stoichiometric numbers. A system of biochemical reactions is 
represented by a stoichiometric number matrix. This stoichiometric number matrix can be used to print out the reactions. 
The programs that can be used to print out the biochemical reactions are mkeqm and nameMatrix. 

mketF[c-List,s_List]:=(*c-List is the list of stoichiometric numbers for a reaction. 
s-List is a list of the names of species or reactants. These names have to be put in 
quotation marks. * ) Map [Max [#, 0 I &, -cl . S->Map [Max [#, 01 &, cl . s 
n a m e M a t r i x [ m - L i s t , s - L i s t l : r ( * m _ L i s t  is the transposed stoichiometric number matrix for 
the system of reactions. s-List is a list of the names of species or reactants. These 
names have to be put in quotation marks.*)Map[mketF[#,s]&,ml 

The first three reactions of glycolysis are 
ATP + glucose = ADP + G6P 
G6P = F6P 
ATP + F6P = ADP + F 16P 
This system of reactions is represented by the following stoichiometric number matrix. 

TableForm [nu] 

-1 0 0 
-1 0 -1 
1 -1 u 
1 0 1  
0 1 -1 

0 0 1  
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TableForm[nu, TableHeadings + {names3, {"rx 13", "rx 14", "TX 15"}}] 

rx 13 rx 14 rx 15 
Glc -1 0 0 

ATP -1 0 -1 

G6P 1 -1 0 

ADP 1 0 1 

F6P 0 1 -1 

F16BP 0 0 1 

mkeqm[{-l, -1, 1, 1, 0, 0}, names31 

ATP + GlC -> ADP + G6P 

nameMatrix[Transpose [nu], names31 

{ATP + GlC -> ADP + G6P, G6P -> F6P, ATP + F6P -> ADP + F16BP) 

a 9.9 Calculation of standard apparent reduction potentials for half reactions 

The standard apparent reduction potential in volts at 298.15 K for a half reaction can be calculated using calcappredpots. As 
an example of a half reaction consider NAD,, + 2 e-  = NADred : 

calcappredpot [eq-, nu-, pHlist-, islist-] : = 

reaction at specified p H s  and ionic strengths for a biochemical half reaction typed in 
the form nadox+de==nadred. The names of the reactants call the corresponding 
functions of pH and ionic strength. nu is the number of electrons involved. pHlist 
and islist can be lists.*) 
energy = Solveleq, del ; 

Module[{energyl,(*Calculates the standard apparent reduction potential of a half 

-(energy~[l,l,2ll/(nu*96.485)) /. pH -> pHlist /. 
is -> islist] 

TableForm[Transpose[calcappredpot[nadox+de == nadred, 2, {5, 6, 7, 8, 9 ) ,  {0, 0.1, 0.25)]], 
TableHeadings + { { "I=O MI', " I = O .  10 MI', " I = O .  25 M" } , 

[ " p H  5", I'pH 6", " p H  7 " ,  "pH E l 1 ,  "pH 9"}}, TableSpacing-, {I, l}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.265275 -0.294855 -0.324435 -0.354015 -0.383595 

I=0.10 M -0.258932 -0.288512 -0.318092 -0.347672 -0.377252 

1~0.25 M -0.256884 -0.286464 -0.316044 -0.345624 -0.375204 
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Plot [calcappredpot [nadox+de==nadred,2,pH, .251, {pH,5,9),AxesLabe1->{"pH1',"E' /V"l] ; 

E' / V  

-0.2 

-0.2 

- 0 . 3  

- 0 . 3  

- 0 . 3  

PH 

9.10 Calculation of equilibrium compositions of a single biochemical reaction or a system of 
biochemical reactions at specified pH 

Equilibrium compositions of systems of biochemical reactions can be calculated using the following two programs. The first 
was written by Fred Krambeck (Mobil Research and Development) and the second was written by Krambeck and Alberty. 
The Newton-Raphson method is used to iterate to the composition with the lowest possible Gibbs energy or transformed 
Gibbs energy. 

equcalcc[as_,lnk_,no_I:=Module[Cl,x,b,ac,m,n,e,k}, 
( *  as=conservation matrix 
Ink=-(l/RT)(Gibbs energy of formation vector at T) 
no=initial composition vector *)  

( *Setup*) 
{m,n)=Dimensions[asl; 
b=as .no; 
ac=as; 
(*Initialize*) 
l=LinearSolve[ as.Transpose[asl,-as.(lnk+Log[nl) 1;  
(*Solve*) 
Do[ e=b-ac.(x=E"(lnk+l.as) ); 

If[(lO*-lO)>Max[ AbsIel 1, Break11 I;  
l=l+LinearSolve[ac.Transpose[as*Table~x,~mlll,el, 

If [ k=lOO,Return[i*Algorithm Failed"1 1 ; 
Return [XI 
1 

{k, 100) 1 ; 

equcalcrx[nt-,lnkr-,no-]:=Module[{as,lnk}, 
(*nt=transposed stoichiometric number matrix 
lnkr=ln of equilibrium constants of rxs (vector) 
no=initial composition vector*) 
( *Setup*) 
lnk=~inearSolve~nt,lnkrl; 
as="ullSpace [nt 1 ; 
equcalcc[as,lnk,nol 
1 

The reaction considered here is the hydrolysis of glucose 6-phosphate to glucose and inorganic hosphate at 298.15 K, pH 7, 
and 0.25 M ionic strength. The objective is to calculate the equilibrium concentrations when the enzyme is added to a 0.10 
M solution of glucose 6-phosphate. 

This is a single reaction, and so the equilibrium comosition can be readily calculated without a computer program. However, 
G6P + H2 0 = Glu + Pi  
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it involves an important issue that often arises in enzyme-catalyzed reactions, and that is the problem of water as a reactant in 
dilute aqueous solutions. The problem is that the activity of water is taken as unity by convention, and so its concentration 
does not appear in the expression for the apparent equilibrium constant. The conservation matrix at constant pH is 

A =  C 6 0 6 0 
0 9  1 6 4 
P 1 0 0 1 

G6P H2 0 Glu Pi 

Since the activity of water is taken as unity in dilute aqueous solutions independent of the extent of reaction, the Hz 0 column 
and the oxygen row must be deleted from the conservation matrix: 

A ' =  C 6 6 0 
P 1 0 1 

G6P GIU Pi 

Therefore the conservation matrix is given by 

a s =  ({6t 6, O}, (1, 0, I}}; 

The standard transformed Gibbs energies of the reactants at 298.15 K, pH 7, and 0.25 M ionic strength are 

glucose6ghos /. gH + 7 /. is + 0.25 

-1318.92 

glucose /. gH -+ 7 /. is + 0.25 

-426.708 

pi /. pH -+ 7 /. is + 0.25 

-1059.49 

h20 /. gH+ 7 /. is + 0.25 

-155.658 

The standard further transformed Gibbs energies of formation in kJ rno1-l are 

glucose6phoSft= -1318.92 - 9  (-155.66) 

82.02 

glucoseft = -426.71 - 6 (-155.66) 
507.25 

pift = -1059.49 - 4 (-155.66) 

-436.85 

The equilibrium composition is calculated using 

{82.02, 507.25, -436.85) 

8.314510.29815 
equcalcc [as, - I (0.1, 0, 011 

{0.0000919341, 0.0999081, 0.0999081) 
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It is more convenient to use equcalcrx because it takes a stoichiometric number matrix and a vector of the apparent equilib- 
rium constants for a set of independent reactions in the system. Note that this program calculates a consevation matrix that is 
consistent with the stoichiometric number matrix, and uses it in equcalc. The transposed stoichiometric number matrix n t  for 
the reactin without H2 0 is given by 

nt = {{-1, 1, 1)); 

The apparent equilibrium constant is given by 

calckgrime[glucose6phos+h2o+de == glucose+pi, 7, 0.251 

108.375 

The equilibrium composition is calculated using 

equcalcrx[nt, {Log[108.4]), {O.l, 0, 0)] 

{0.0000920811, 0.0999079, 0.0999079) 

The equilibrium compostion can be verified by calculating the apparent equilibrium constant with the calculated composition 

EA(nt . Log[(9.208/10A5, 9.991/10A2, 9.991/10A2)1) 
{108.406} 

A single enzyme-catalyzed reaction has been used in this example, but a system of reactions can be handled in the same way. 
The advantage of using matrices and vectors in a computer program is that the same program can be used for large systems 
of reactions. 

Endpackage [ ] ; 





Chapter 1 Apparent Equilibrium Constants 

1.1 Plot the fractions ri of ATP in the forms ATP4-, HATP3-, and ATP2-versus pH at 298.15 K and 0.25 M ionic strength. 

1.2 Plot the average binding NHof hydrogen ions by ATP at 298.15 K and 0.25 M ionic strength as a function of pH. Show 
that plotting equation 1.3-13 yields the same result as plotting 1.3-7. 

1.3 Plot the average binding NHof hydrogen ions by ATP at 298.15 K and 0.25 M ionic strength as a function of pH at pMg 
= 2, 3 4, 5 ,  and 6. 

1.4 Plot the average binding &,of magnesium ions by ATP at 298.15 K and 0.25 M ionic strength as a function of pMg at 
pH = 3 4, 5,  6,7, 8, and 9. 

1.5 Plot the average binding NHof hydrogen ions by ATP at 298.15 K and 0.25 M ionic strength versus pH and pMg. Also 
plot the rate of change of NHwith pMg for comparison with Problem 1.6 to verify the reciprocity relation. 

1.6 Plot the average binding &,of magnesium ions by ATP at 298.15 K and 0.25 M ionic strength versus pH and pMg 
Also plot the rate of change of NMgWith pH for comparison with Problem 1.5 to verify the reciprocity relation.. 

1.7 Plot (a) the base 10 logarithm of the apparent equilibrium constant K and (b) -RTlnK' in kJ mol-'for ATP + H20 = ADP 
+ Piversus pH and pMg at 298.15 K and 0.25 M ionic strength. 

1.8 Plot the change in the binding of hydrogen ions A,. N(H+) in ATP + H2 0 = ADP + Pi versus pH and pMg at 298.15 K 
and 0.25 M ionic strength. 

1.9 Plot the change in the binding of magnesium ions A, N(Mg2+)in ATP + Hz 0 = ADP + Pi versus pH and pMg at 298.15 
K and 0.25 M ionic strength. 

1.10 Calculate the acid pKs at 298.15 K and ionic strengths of 0, 0.05, 0.10, 0.15, 0.20, and 0.25 M for all of the acids for 
which data are given in the table BasicBiochemData. 

1.1 1 Plot the pKs of acetate, ammonia, atp, and pyrophosphate versus ionic strength from I = 0 to I = 0.3 M at 298.15 K. 
Biochemists are usually only concerned with the pHs in the pH 5 to 9 range. 

1.12 (a) Calculate the acid titration curve for ATP at 298.15 K and 0.25 M ionic strength from the binding polynomial P. 
(b) Integrate the calculated binding curve to obtain In P plus a constant of integration. The needed equations are 
NH= (-l/ln(lO))(dlnP/dpH) 
-1n ( 1 0 )  JNHdpH = 1nP + Const 

1.13 (a) Test the differentiation of In P to obtain the equation for the binding NH of hydrogen ions by ATP at 298.15 K and 
ionic strength 0.25 M in the region pH 2 to 10. (b) Test the integration of the equation for NH to obtain the equation for In P. 
(c) Plot In p versus pH and NH versus pH. The equations involved are 

j*d[H' = 1 n P  + const 
NH = [H+]% 

d [ H  1 
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1.1 Plot the equilibrium mole fractions r, of ATP in the forms ATP4-, HATP3-, and ATP2-versus pH at 298.15 K and 0.25 
M ionic strength. 

klATP = 3 - 4 3  * 10 " -7 ;  

k2ATP = . 0 0 0 1 4 8 ;  

Type in the binding polynomial. 

B =  1 +  ( 1 0 " - g H )  / k l A T P +  ( 1 0 "  ( - 2 * g H ) )  / (klATP*k2ATP) 

10 6 
1.9699 10 2.91545 10 

1 +  + 
lo2 pH 1 OPH 

P l O t [ { l / g ,  ( l O A - g H )  / ( k l A T P * p ) ,  ( 1 0 "  ( - 2 * g H ) )  / ( (k lATP*k2ATP)  * p ) } ,  
{pH, 3 ,  9}, AxesLabel + {"pH", "ri"}] ; 

4 5 6 7 8 r- 

1.2 Plot the average binding NHof hydrogen ions by ATP at 298.15 K and 0.25 M ionic strength as a function of pH. Show 
that plotting equation 1.3-13 yields the same result as plotting 1.3-7. 

klATP = 3 . 4 3  * 10 " - 7 ;  
k 2 A T P = 0 . 0 0 0 1 4 8 ;  

n H =  ( ( l O A - g H )  / k l A T P + 2 *  ( 1 0 A ( - 2 * g H ) )  / (k lATP*k2ATP))  / 
( 1 +  ( 1 0 " - p H )  / k l A T P +  ( 1 0 "  ( - 2 * g H ) )  / (k lATP*kSATP))  

6 
3.9398 10 lo 2.91545 10 

lo2 pH 1 OPH 
10 6 

1.9699 10 2.91545 10 
1 r  A I ,  

1 OPH 
2 P H  10 

P l o t  [nH,  { g H ,  3 ,  93,  AxesLabel + { a m p H " ,  l lNHtn}  ] ; 
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Type in the binding polynomial. 

P = l +  ( 1 0 ” - p H )  / k l A T P + 2 * ( 1 0 A ( - 2 * p H ) )  / (k lATP*k2ATP)  

10 6 
3.9398 1 0  2.91545 10 

1 +  + 
loPH 2 PH 

10 

Use equation 1.3-7. 

nHP=-D[LOg[P]r  PHI /LOg[ lOI  

10 1 - 2 p H  6 
-9.07172 10 2 6.71308 10 - 

PH 
\ 

1 0  
52 PH 

- I  
\ 

6 
3.9398 10 lo 2.91545 10 

(1 + ) Log[lOI 
PH l o 2  pH 1 0  
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1.3 Plot the average binding WHof hydrogen ions by ATP at 298.15 K and 0.25 M ionic strength as a function of pH at pMg 
= 2, 3 4, 5 ,  and 6. 

klATP = 3 . 4 3  * 10 " - 7 ;  
k2ATP= 0 . 0 0 0 1 4 0 ;  
k 3 A T P = 0 . 0 0 0 1 2 2 ;  

k 4 A T P = 0 . 0 1 1 0 ;  
k5ATP=O.O279;  

The binding polynomial is given by 

g =  1 +  (10A-gH)  / k l A T P +  ( 1 0 "  ( - 2 * p H ) )  / (klATP*k2ATP) + (10"-gMg)  / k 3 A T P +  
( ( IOA-gH)  * ( l O " - p M g ) )  / (klATP*k4ATP) + (10" ( - 2 * P M g ) )  / (k3ATP*kSATP) 

8 -pH - pMg 293789. 8196.72 + + - + -  
10 6 

1.9699 10 2.91545 10 
1 +  + 2.47072 10 10 

lo2 pH loPH 102 PMg 1 OPMg 

The average binding of hydrogen ions is given by 

n H  = - D [ L o g [ g ] ,  p H ]  / L o g [ l O ]  

8 -pH - pMg 
10 1 - 2 pH 6 

6.71308 10 
- - 5.68905 10 10 -4.53586 10 2 

1 OPH 52 PH 

1 u  b 
8 -pH - pMg 293789. 8196.72 

+ - + -  ) Log[lOl 
1.9699 10 + 2.91545 10 

(1 + + 2.47072 10 10 
1 OPMg 102 PMg lo2 pH 1 OPH 

P l o t [ E v a l u a t e [ n H / .  [ p M g +  [ 2 ,  3 ,  4 ,  5 ,  6 } } ] ,  [pH, 3 ,  9}, A x e s L a b e l +  [ " p H " ,  l l N H " } ] ;  
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1.4 Plot the average binding m~~ of magnesium ions by ATP at 298.15 K and 0.25 M ionic strength as a function of pMg at 
pH = 3,4,5, 6,7, 8, and 9. 

k l  ATP = 3 . 4 3  * 10 " - 7 i 
kZATP= O.OOOl48; 
k 3 A T P = 0 . 0 0 0 1 2 2 ;  
k4ATP= 0 . 0 1 1 8 ;  
kSATP= 0 . 0 2 7 9 ;  

The binding polynomial is given by 

B =  1 +  ( 1 0 * - p H )  / k l A T P +  ( 1 0 "  ( - 2 * p H ) )  / (klATP*k2ATP) + ( l O A - p M g )  / k 3 A T P +  
( ( l O " - p H )  * (lO"-Mg)) / (klATP*k4ATP) + ( 1 0 "  (-2+pMg)) / (k3ATPekSATP) 

2 9 3 7 8 9 .  8 1 9 6 . 7 2  + -  
1 OPMg 

102 PMg 

The binding of magnesium ions is given by 

nMg = -D[Log[p]  r PMg] /LOg[ lO]  
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1 8 8 7 3 . 6  
) /  

1 OPM9 

10 6 
1 . 9 6 9 9  1 0  2 . 9 1 5 4 5  1 0  

((1 + t f 

lo2 pH 1 OPH 

8 -pH - pMg 2 9 3 7 8 9 .  8 1 9 6 . 7 2  
2 . 4 7 0 7 2  1 0  1 0  +-t- ) L o g [ l O I  

102 PMg 10PMg 

P l O t [ E v a l u a t e [ n M g  /. {pH+ { 3 ,  4,  5 ,  6, 7 ,  8,  9 ) } ] ,  
b M g ,  2 I 7 } , A x e s L a b e l  + { " p M g " ,  *INm I' } , P l o t R a n g e  + { 0, 1 . 5 )  ] ; 

NMg 

1.41 

3 4 5 6 7 

1.5 Plot the average binding NH of hydrogen ions by ATP at 298.15 K and 0.25 M ionic strength versus pH and pMg. Also 
plot the rate of change of WH With pMg for comparison with Problem 1.6 to verify the reciprocity relation. 

klATP = 3 . 4 3  * 1 0  
k 2 A T P = 0 . 0 0 0 1 4 8 ;  
k 3 A T P = 0 . 0 0 0 1 2 2 ;  
k 4 A T P = 0 . 0 1 1 8 ;  
k5ATP= 0 . 0 2 7 9 ;  

-7; 

The binding polynomial is given by 

p = 1 + ( 1 0  A -pH) / klATP + (10 ( - 2  *pH) ) / (klATP*k2ATP) + ( 1 0  A -pMg) / k3ATP + 
( ( l O " - p H )  * ( l O " - p M g ) )  / (klATP*k4ATP) + ( 1 0 "  ( - 2 * p M g ) )  / (k3ATP*kSATP) 

293789.  8 1 9 6 . 7 2  

1 0  

+ -  
2 PMg PMg 
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The binding of hydrogen ions is given by 

n H  -D[LOg[R] I BH] / L O g [ l o ]  

1 0  1 - 2 pH 6 
-4.53586 10 2 6.71308 1 0  

- (  ( - - 

52 PH 1 OPH 

8 -PH - PMg) , 

lo2 pH 1 OPH 

5.68905 1 0  1 0  

10 6 
1.9699 1 0  + 2.91545 1 0  

((1 + + 

8 -pH - pMg 293789. 8196.72 
2.47072 1 0  1 0  + - + -  ) Log[lOl 

102 PMg 10PMg 

nHMg= -D[nH, PMg] / L O g [ l O ] ;  

P l o t 3 D [ n H M g ,  {RH, 3 ,  9) ,  {pMg, 1, 6 } ,  AxesLabbel  + { l l p H i l ,  "pMg", IIN,, ~ 1 1 1  i 
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1.6 Plot the average binding mM,of magnesium ions by ATP at 298.15 K and 0.25 M ionic strength versus pH and pMg 
Also plot the rate of change of NMg with pH for comparison with Problem 1.5 to verify the reciprocity relation. 

k l A T P  = 3 . 4 3 * 1 0 " - 7 ;  
k 2 A T P = 0 . 0 0 0 1 4 8 ;  
k 3 A T P = 0 . 0 0 0 1 2 2 ;  
k 4 A T P =  0 .0118;  
k S A T P = 0 . 0 2 1 9 ;  

The binding polynomial is given by 

g = l +  ( l O A - g H )  / k l A T P +  (10" ( - 2 * g H ) )  / ( k l A T P * k 2 A T P )  + ( 1 0 " - g M g )  / k 3 A T P +  
( ( lOA-gH)  * ( l O A - p M g ) )  / ( k l A T P * k 4 A T P )  + ( 1 0 "  ( - 2 * g M g ) )  / (k3ATP*kSATP)  

293789 .  8 1 9 6 . 7 2  + -  

The binding of magnesium ions is given by 
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18873.6 
) /  

loPMg 
10 6 

1.9699 10 + 2.91545 10 
((1 + + 

lo2 pH 1 OPH 
8 -pH - pMg 293789. 8196.72 

2.47072 10 10 + -  + -  ) LW[lOl) 
102 PMg 10PMg 
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1.7 Plot (a) the base 10 logarithm of the apparent equilibrium constant K' and (b) -RTlnK' in kJ mol-' for ATP + H20 = ADP 
+ Piversus pH and pMg at 298.15 K and 0.25 M ionic strength. 

klATP = 3.43 * 10 "-7; 
k2ATP= .000140; 
k3ATP= ,000123; 
k4ATP= .0118; 
kSATP= .0279; 
klADP = 4.70 * 10 " - 7 ;  
k2ADP= .000161; 
k3ADP = .00113; 
k4ADP= .0431; 
k l P = 2 . 2 4 * 1 0 " - 7 ;  
k 2 P =  - 0 2 6 6 ;  
k r e f =  .222; 

pATP = 1 + (10 A -pH)  / klATP + (10 A (-2 * p H )  ) / (k1ATP * k2ATP) + (10 A -pMg) / k3ATP + 

pADP= 1+  (10"-pH) /k1ADP+ (10" ( -2*pH) )  / (klADP*k2ADP) + 
( ( lOA-pH) * (lO"-pMg)) / (klATP*k4ATP) + (10" (-2*pMg)) / (k3ATPek5ATP); 

( l O A - p M g )  /k3ADP+ (( lOA-pH) * (10"-pMg)) / (klADP*k4ADP); 
p P =  1+  (10"-pH) / k l P +  ( l O " - p M g )  /k2P; 
kapp = k r e f  * pADP * pP / ( (10 A -pH)  * pATP) ; 

Plot3D[Log[lO, kappl, { p H ,  3, 9}, (pMg, 1, 6}, AxesLabel+ ( " p H " ,  " g M g " ,  ''logK'"}]; 
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1.8 Plot the change in the binding of hydrogen ions A, N(H+) in ATP + Hz 0 = ADP + Pi versus pH and pMg at 298.15 K 
and 0.25 M ionic strength. 
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klATP = 3 . 4 3 * 1 0 " - 7 ;  
k2ATP .000140; 

k3ATP= .000123; 
k4ATP=.0118;  
kSATP= .0279; 

k l A D P = 4 . 7 0 * 1 0 " - 7 ;  
k2ADP= .000161; 

k3ADP = -00113;  

k4ADP= .0431; 
k l P =  2 . 2 4 * 1 0 " - 7 ;  

k 2 P =  .0266; 
k r e € =  .222; 

pATP= 1+  ( l O A - p H )  / k l A T P +  ( 1 0 "  ( - 2 * p H ) )  / (klATP*k2ATP) + ( lOA-pMg) /k3ATP+ 

pADP= 1 +  (lO"-pH) / k l A D P +  ( 1 0 "  ( - 2 * p H ) )  / (klADP*k2ADP) + 

p P  = 1 + ( 1 0  A - p H )  / k l P  + ( 1 0  A -pMg) / k2P; 
kapp = kref * pADP * p P  / ( ( 1 0  - p H )  * pATP) ; 

( ( 1 0 " - p H )  * ( lO"-pMg))  / (klATP*kIATP) + ( 1 0 "  ( -2*pMg))  / (k3ATP*kSATP); 

( lOA-pMg) /k3ADP+ ( ( l O A - p H )  * (10"-pMg))  / (klADP*kIADP); 

nHrx= -D[Log[kapp] ,  p H ]  / L o g [ l O ] ;  

P lo t3D[nHrx ,  { p H ,  3, 9 } ,  {pMg, 1, 6},  A x e s L a b e l  + { " p H " ,  " p M g " ,  "Ar N (If')"}]; 

1.9 Plot the change in the binding of magnesium ions Ar N(Mg2+) in ATP + H2 0 = ADP + P, versus pH and pMg at 298.15 
K and 0.25 M ionic strength. 
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klATP = 3 - 4 3  * 1 0  " - 7 ;  
k2ATP= .000148; 
k3ATP= .000123; 
k4ATP= -0118; 
k5ATP = .0279; 
k l A D P = 4 . 7 0 * 1 0 A - 1 ;  
k2ADP= .000161; 
k3ADP= .00113; 
k4ADP= .0431; 
k l P =  2 .24*10" -7 ;  
k 2 P =  .0266; 
k r e € =  -222; 

pATP= 1 +  ( lOA-pH)  /k lATP+ (10"  ( - 2 * p H ) )  / (klATP*kSATP) + ( l O A - p M g )  /k3ATP+ 

pADP= 1+ (lOA-gH)  /k lADP+ (10"  ( -2*pH) )  / (klADP*kZADP) + 
( ( l O A - g H )  * ( lOA-gMg))  / (klATP*k4ATP) + (10"  (-2*gMg)) / (k3ATP*kSATP); 

(1O"-gMg) /k3ADP+ ( (10"-pH)  * ( l O A - p M g ) )  / (klADP*k4ADP); 
pP = 1 + (10  " - p H )  / k l P  + (10 " - g M g )  / k2P; 
kapp = kref * PADP * pP / ( (10 " -BH) * pATP) ; 

nMgrx= -D[Log[kapp],  pMg] / L o g [ l o ] ;  

Plot3D[nMgrx, { g H ,  3, g} ,  {pMg, 1, 61, AxesLabel -) { l l g H 1 m ,  " p M g " ,  "Az N ( M g * ' )  " } I ;  

1.10 Calculate the acid pKs at 298.15 K and ionic strengths of 0, 0.05, 0.10, 0.15, 0.20, and 0.25 M for all the acids for 
which data are given in the package BasicBiochemData2. 

(BasicBiochemData2 needs to be loaded.) 
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CalCpK[SpeCieSmat-, no-, is-] := Module [ {lnkzero, sigmanuzsg, InK) , 
(*Calculates pKa for a weak acid at 298.15 K at specified ionic strengths 
(is)when the number no of the pK is specified. pKs are numbered 1, 

2, 3,. ..from the highest pK to the lowest pK, 
but the highest pK for a weak acid may be omitted if it is outside of the 
physiological range p H  5 to 9. For H3P04, gK1=CalCgK[giSp,l,(O}] = 7.22*) 

lnkzero = (speciesmat [ [no + 1, 13 ] - speciesmat [ [no, 11 ] ) / (8.31451 * .29815) ; 
sigmanuzsg = speciesmat [ [no, 31 ] A 2 - speciesmat [ [no + 1, 31 ] A 2 + 1; 
lnK=lnkzero+ (1.17582*isA .5) *sigmanuzsg/ (1+1.6*isA.5); 
N [ - 1nK / Log [ 101 ] 

1 

As a check on this program, pKl(I=O) for ATP is 7.60. sigmanusq is 16+1-9=8. pK1(1=0.25) can be calculated outside the 
program using 

-(Log[1OA-7.6O1+(1.17582*isA.5)*8/(l+l.6*isA.5~~/Log~lOl/.is-~.25 

6 .46522  

names = { "acetatepKl", 'lacetylphospK1", n1acetylphospK211, "adeninepKl", "adenosinepK1" , 
"adppKl", "adppK2". "ammoniapK1ml, lmamppK1l*, 11amppK21*, "atppK1". 1EatppK21r, "bpgpK1". 
"CitrateRKl", "citratepKZ", "citrateisopKl", 11citrateisopK2", "carbondioxidepKl", 
11carbondioxidepK2", "coApK1 n ,  "cysteineLpK1 n ,  "dihydroxyacetonephospK1" , 
" f ructose6pho~pKl"~ " fructosel6phospK1", "fructosel6phospK2 I - ,  "fumaratepK1 ' I ,  

'1fumaratepK211, "galactoselphospKl", "glucose6phospK1", l'glucoselphospK1i~, 
"glutathioneredpK1 ' I ,  'gglyceraldehydephospKl~l, ~1glycero13phospK1~~, 
"malatepKl', lloxalatepK1lm, "phosphoeno1pyruvateKl1', 1~phosphoglycerate2pKl'1, 
"~hos~hoglycerate3~K1", "phosphatepKlml, "gyrophosghategK1". mmpyrophosphatepK2't, 
"~yrophosphatepK3"~ "riboselphospKl", "ribose5ghospKln, llsuccinatepK1ls, 
"succinatepK2", "succinylcoApK1ll, "thioredoxinredpKl", v1thioredoxinredpK2q1) ; 

acetatepK1 = NUmberForm[calcpK[acetatesp, 1, (0, .05, .l, .15, -2, .25}], 31 ; 

adenosinepKl=~erForm[calcpK[adenosinesp,  1, {O, -05, .1, .15, .2, .25)], 31; 

adppKl = NunberForm[calcpK[adpsp, 1, {O, -05, .I, .15, .2, .25}], 31 2 

adppK2 =NumberForm[calcpK[adgsp, 2, {O, .05, .1, .15, .2, .25}], 31; 

aImOniapK1 = NumberForm[calcpK[ammoniasp, 1, (0, .05, .1, .15, .2, .25}], 31; 

amppKl =NbmberForm[calcpK[ampsp, 1, {O, .05, -1, .15, .2, .25}], 31; 

dlIlppK2 = NumberForm[calcpK[ampsp, 2, {o, .05,  .I, .15, .2, .25}], 31; 

atPpK1 = NumberForm[calcpK[atpsp, 1, {o, .05, .1, .IS, .2, .25)], 31 ; 

atppK21 NumberForm[calcpK[atpsp, 2, {0, .05, .l, .15, .2, .25}], 31 ; 
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citratepKl = NunberForm[calcpK[citratesp, 1, {O, .05, .l, .15, .2, .25}], 31; 

citratepK2 cINunberForm[calcpK[citratesp, 2, (0, .05, .l, -15, .2, .25}], 31 ; 

citrateisopKI= NumberFonn[calcpK[citrateisosp, 1, { O ,  .05, .1, .15, -2, .25}], 31 ; 

citrateisopK2 = NumberForm[calcpK[citratesp, 2, {0, .05, -1, -15, -2, .25}], 31 ; 

carbondioxidepKl= ~erForm[calcpK[co2totsp,  1, { O ,  .05, .l, .15, .2, .25}], 31; 

carbondioxidepK2 = NunberForm[calcpK[co2totsp, 2, (0, .05, -1, .15, .2, .25}], 31 ; 

coA~K1=NumberForm~calc~K~coAsp,l,{0,.05,.1..15,.2,.25~1,31; 

cysteineLpKl=NumberForm[calcpK[cysteineLsp, 1, (0, .05, .l, .15, .2, .25)], 31; 

d~hydroxyacetonephos~Kl=~erForm~calcpK~dihydroxyacetone~hoss~,1,{O,.O5,.1,.15,.2,.25 
31,31; 

fructose6phosgK1=NumberForm[calcpK[fructose6phossp, 1, {0, .05, .l, .15, -2, .25}], 31; 

fructosel6phospK1=herForm[ca1c~KCfructose16~hossg,1,~0,.05,.1,.15,.2,.25~1,31; 

fructosel6phospK2=NumberForm[calcgKCfructosel6~hossp,2,{Or.O5,.1,.15,.2,.25}],3~; 

fwarate~K~=NumberForm~calcpK[fumaratesp,l,{0,.05,.1,.15,.2,.25}1,31; 

fumaratepK2=~erForm~calc~K~fumaratesg,2,{0,.05,.l,.15,.2,.25~1,31; 

galactoselphospK1 NumberForm[calcgK[galactose1phosspr 1, (0, . 0 5 ,  .1, .15, .2, .25}], 31 ; 

glucose6phospKl = NunberForm[calcpK[glucose6phossp, 1, (0, .05, .l, .15, .2, .25 1, 31; 

glucoselphospK1 = NumberForm[calcpK[glucoselphossg, 1, (0, . 0 5 ,  .l, .15. .2, .25 1 ,  31; 

glutathioneredpKl=NumberForm[calcpK[glutathioneredsp, 1, {O, .05, .l, .15, .2, .25}], 31; 

glyceraldehydephospK1=NumberForm[calcpK[glyceraldehydeghossg,1,{O,.O5,.1,.15,.2,.25~1,3 
I ;  

glycerol3phospK1=NumberForm[:calc~K[glycerol3phossp,1,{O,.O5,.1,.15,.2,.25}1,31; 

malatepK1 NumberForm[calcpK[malatesp, 1, {O, .05, .1, .15, .2, .25}], 31; 

oxalatepKl= NurnberForm[calcpK[oxalatesp, 1, {0, .05, .l, .15, .2, .25}], 31 ; 

~hosphoenolpyruvatepK1=~erForm[calcpK[peps~,l,{O,.05,.l,.15,.2,.25)1,31; 

~hosphoglycerate2pK1=~erForm~calcpK[pg2sp,1,{O,.O5,.1,.15,.2,.25~1,31; 

phosphoglycerate3pK1=NumberForm[calcpK[pg3s~,1,CO,.O5,.1,.15,.2,.25~1,31; 

phosphatepK1 = NumberForm[calcpK[pisp, 1, {O, .05, .l, .15, .2, .25)], 31 ; 

pyrophosphatepKlm NmberForm[calcpK[ppisp, 1, {O, .05, .l, .15, .2, .25)], 31; 

pyrophosphatepK2 = ~ e r F o ~ [ c a l c p K [ p p i s p ,  2, {O, .05, -1, .15, .2. .25)] I 31; 

pyrophosphatepK3m NmberForm[calcpK[ppisp, 3, {O, .05, .l, .15, .2, .25}], 31 ; 
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riboselphospK1 = NumberForm[calcpK[riboselphossp, 1, {0, .05, .l, -15, -2, .25}], 31; 

ribose5phospKl = ~erForm[calcpK[ribose5phossp, 1, {0, .05, .1, .15, .2, .25}], 31; 

thioredoxinredgKl=NumberForm[calcgK[thioredoxinredsp, 1, {O, .05, -1, .15, .2, .25}], 31;  

thioredoxinredgK2 =NumberForm[calcpK[thioredoxinredsp, 2, {0, .05, .l, .15, -2, .25}], 31; 

TableForm[{acetatepKl, acetylphospK1, acetylphospK2, adeninepK1, adenosinepK1, adppK1, 
adppK2, ammoniapK1, mppKl, amppK2, atppK1, atppK2, bpgpKl, citratepK1, citratepK2, 
citrateisopK1, citrateisopK2, carbondioxidepK1, carbondioxidepK2, coApK1, cysteineLpK1, 
dihydroxyacetonephospK1, fructose6phospK1, fructosel6phospK1, fructosel6phospK2, 
fumaratepK1. fumarategK2, galactoselphospK1, glucose6ghospK1, glucoselphospK1, 
glutathioneredpK1, glyceraldehydephospK1, glycerol3phospK1, I'nahitepKl, oxalatepK1, 
phosphoenolpyruvatepK1, phosphoglycerate2pK1, phosphoglycerate3pK1, phosphatepK1, 
pyrophosphatepK1, pyrophosphatepK2, pyrophosphatepK3, riboselphospK1, ribose5phospK1, 
succinatepK1, succinatepK2, succiny~coApKl, thioredoxinredpK1, thioredoxinredpK2}, 

TableHeadings + {names. {'lI=Omi. 1sI=0.051i, ilI=O.lO1i, "I=0.15i1, "I=O .20", 1iI=0.25r1)}] 

acetatepKl 

acetylphospK1 

1=0 I=O.O5 I=O.10 I=O.15 I=0.20 I=O.25 
I4.75, 4.59, 4.54, 4.51, 4.49, 4.47) 

18.69, 8.35, 8.26, 8.2, 8.16, 8.12) 

acetylphospK2 I5.11, 4.94, 4.9, 4.87, 4.85, 4.83) 

adeninepK1 

adenosinepK1 

adppKl 

adppK2 

ammoniapKl 

{4.2, 4.2, 4.2, 4.2, 4.2, 4.2) 

I3.47, 3.47, 3.47, 3.47, 3.47, 3.47) 

17.18, 6.67, 6.53, 6.44, 6.38, 6.33) 

14.36, 4.02, 3.93, 3.87, 3.83, 3.79) 

19.25, 9.25, 9.25, 9.25, 9.25, 9.25) 

amppK1 I6.73, 6.39, 6.3, 6.24, 6.2, 6.16) 

amPPK2 

atppK1 

atppK2 

bPgPK1 

citratepK1 

citratepK2 

I3.99, 3.82, 3.77, 3.74, 3.72, 3.71) 

I7.6, 6.93, 6.74, 6.62, 6.53, 6.47) 

(4.68, 4.17, 4.03, 3.94, 3.88, 3.83) 

I7.96, 7.29, 7.1, 6.98, 6.9, 6.831 

I6.39, 5.89, 5.75, 5.66, 5.59, 5.54) 

I4.76, 4.42, 4.33, 4.27, 4.22, 4.19} 

CitrateisopKl 16.4, 5.9, 5.76, 5.67, 5.6, 5.55) 

citrateisopK2 14.76, 4.42, 4.33, 4.27, 4.22, 4.19) 

carbondioxidepK1 {10.3, 9.99, 9.9, 9.84, 9.8, 9.76} 

carbondioxidepK2 16.37, 6.2, 6.15, 6.12, 6.1, 6.08) 

coApKl 18.38, 8.21, 8.16, 8.14, 8.11, 8.1) 



Apparent Equilibrium Constants 247 

CysteineLpKl 

dihydroxyacetonephospK1 

fructose6phospKl 

fructosel6phospKl 

fructosel6phospK2 

fumaratepK1 

fumaratepK2 

galactoselphospK1 

glucose6phospKl 

glucoselphospK1 

glutathioneredpK1 

glyceraldehydephospK1 

glycerol3phospKl 

ma la t epKl 

oxalatepK1 

phosphoenolpyruvateK1 

phosphoglycerate2pKl 

phosphoglycerate3pKl 

phosphatepK1 

pyrophosphatepK1 

pyrophosphatepK2 

pyrophosphatepK3 

riboselphospK1 

ribose5phospKl 

succinatepK1 

succinatepK2 

succinylcoApK1 

thioredoxinredpK1 

thioredoxinredpK2 

I8.38, 8.21, 8.16, 8.13, 8.11, 8.09) 

15.7, 5.36, 5.27, 5.21, 5.17, 5.13) 

I6.27, 5.94, 5.84, 5.78, 5.74, 5.7) 

I6.65, 5.98, 5.79, 5.67, 5.59, 5.521 

(6.05, 5.54, 5.41, 5.32, 5.25, 5.2) 

I4.6, 4.27, 4.17, 4.11, 4.07, 4.03) 

{3.09, 2.93, 2.88, 2.85, 2.83, 2.81) 

I6.15, 5.81, 5.72, 5.66, 5.61, 5.58) 

(6.42, 6.08, 5.99, 5.93, 5.89, 5.85) 

I6.5, 6.16, 6.07, 6.01, 5.97, 5.93) 

I8.34, 8., 7.91, 7.85, 7.81, 7.77) 

{5.7, 5.36, 5.27, 5.21, 5.17, 5.13) 

I6.67, 6.33, 6.24, 6.18, 6.14, 6.1) 

{5.26, 4.92, 4.83, 4.77, 4.73, 4.69) 

C4.28, 3.94, 3.85, 3.79, 3.75, 3.71) 

{7., 6.5, 6.36, 6.27, 6.2, 6.151 

I7.64, 7.14, 7., 6.91, 6.84, 6.79) 

I7.53, 7.03, 6.89, 6.8, 6.73, 6.68) 

I7.22, 6.88, 6.79, 6.73, 6.69, 6.65) 

(9.46, 8.79, 8.6, 8.48, 8.4, 8.33) 

(6.72, 6.21, 6.08, 5.99, 5.92, 5.871 

I2.26, 1.92, 1.83, 1.77, 1.73, 1.69) 

I6.69, 6.35, 6.26, 6.2, 6.16, 6.12) 

I6.69, 6.35, 6.26, 6.2, 6.16, 6.12) 

I5.64, 5.3, 5.21, 5.15, 5.11, 5.071 

I4.21, 4.04, 3.99, 3.96, 3.94, 3.92) 

{4.21, 4.04, 4., 3.97, 3.95, 3.93) 

I8.64, 8.3, 8.21, 8.15, 8.11, 8.071 

I8.05, 7.88, 7.83, 7.8, 7.78, 7.76) 

1.1 1 Plot the pKs of acetate, ammonia, atp, and pyrophosphate versus ionic strength from I = 0 to I = 0.3 M at 298.15 K. 
Biochemists are usually only concerned with the pHs in the pH 5 to 9 range . 

(BasicBiochemData2 needs to be loaded) 
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CalCpK[SpeCieSmat-, no-, is-] := Module[{lnkzero, sigmanuzsg, InK), 
(*Calculates pKa for a weak acid at 298.15 K at specified ionic strengths 

(is)when the number no of the pK is specified. ~ K s  are numbered 1, 
2, 3,...frcrm the highest pK to the lowest pK, 
but the highest pK for a weak acid may be omitted if it is outside of the 
physiological range pH 5 to 9. For H3P04, gK1=CalCpK[giSp,l,{O}] = 7 . 2 2 * )  

lnkzero= (speciesmat[ [no+l, 113 -speciesmat[[no, 133) / (8.31451e.29815); 
sigrnanuzsq = speciesmat [ [no, 31 ] A 2 - speciesmat [ [no + 1, 31 ] A 2 + 1; 
1nK = lnkzero + (1.17582 *is A .5) * sigmanuzsg/ (1 + 1.6 *is A .5) ; 
N [ - 1nK / Log [ 101 ] 

1 

plotacetate-Plot [acetatepKl, Cis, 0 ,  . 3  1 ,Axesorigin-> (0,4.45} ,AxesLabel-> { "I/M", "pK"} 1 ; 

0.05 0.1 0.15 0.2 0.25 0 . 3  
I /M 
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P K  

17.51 

12.5 15i 

c 

1 , .  , . I . ,  , , I . .  . , , . , . . I , ,  , . I , ,  , , , I,M 
0.05 0.1 0 . 1 5  0.2 0.25 0.3 

atppKl = calcpK[atpsp, 1, is] ; 

glotatpl=Plot [atppKl, {is, 0, . 3 }  ,Axesorigin-> { 0,6.4 1, AxesLabel-> { " I / M "  , " \  ! \ ( p K \ - l \  ) "1  1 ; 

atppK2 = CalCpK[atpSp, 2, is] ; 

glotatp2=Plot latppK2, {is, 0, . 3  1 ,Axesorigin-> { 0,3.8) ,AxesLabel-> { "I/M", " \  ! \ ( g K \ - 2  \ I' 1 1 ; 



250 Mathematica Solutions to Problems 

pyrophosphatepK1 = calcpK[pgisp, 1, is] ; 

glotgyrol=Plotlpyrophos~hatepKl,{is,O,.3},~esOrigin-~{O,8.2~,~e~Label- 
> { l l I / M n ,  'I \ ! \ (pK\-1\ ) '' 1 I ; 

' I/M 
0.05 0.1 0.15 0.2 0.25 0.3 

pyrophosphatepK2 = calcpK[ppisp, 2, is] ; 

~lotpyro2=P~ot[pyrophosphatepK2,{is,O,.3},~esOrigin-~CO,5.8~,~e~Label- 
> { B I I / M 1 s ,  " \ !  \ (pK\-2\) "1 I ; 
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F 

1.12 (a) Calculate the acid titration curve for ATP at 298.15 K and 0.25 M ionic strength from the binding polynomial P. 
(b) lntegrate the calculated binding curve to obtain In P plus a constant of integration. The needed equations are 
NH= (-l/ln(lO))(dlnP/dpH) 
-In ( 1 0 )  INHdpH = InP + const 

(a) The titration curve can be calculated by differentiating the logarithm of the binding potential P. 

~ ~ 1 + ( 1 0 " - ~ H ) / ( 1 0 * - 6 . 4 7 ) + ( ( 1 O A ~ ~ H ) " 2 ) / ( ( 1 O A ~ 6 ~ 4 7 ) * ~ ~ O A ~ 3 ~ 8 3 ~ ~  

1 0  6 
1 . 9 9 5 2 6  1 0  + 2 . 9 5 1 2 1  1 0  

1 r  
I 8  

2 PH 
10 1 OPH 
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plot [p, {pH, 2,lO 1, AxesLabel-> C"pH", "p") I ; 

P 

10 1 - 2 pH 6 
-4.59426 10 2 6.79541 10 - 

2.95121 lou 
) Log[lol 

1.99526 lo1" 
(1 + 

1 OPH 
2 PH 10 

plot [nH , { pH, 2,lO } , Axes Label - > { "pH , \ ! \ ( N\-H\ ) 'I 1 I ; 
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(b) Integration of the binding curve gives 1nP plus a constant. 

lngcalc=-Log [lo] *Integrate [nH,pHl 

- 4 . 6 0 5 1 7  pH + 1. L o g [ 6 7 7 6 . 3 9  + loPH]  + 1. L0gC2.94443 l o 6  + l o p H ]  

(lnpcalc-Log[pl)/.pH->E5,6,7) 

-15  -15  
{ O . ,  3 . 5 5 2 7 1  1 0  , 7 . 1 0 5 4 3  1 0  1 

Thus the integration constant is zero within machine accuracy. 

Plot [lnpcalc, (pH,2,10),AxesLabel->C"pH","ln p")]; 

In P 

1.13 (a) Test the differentiation of In P to obtain the equation for the binding NH of hydrogen ions by ATP at 298.15 K and 
ionic strength 0.25 M in the region pH 2 to 10. (b) Test the integration of the equation for NH to obtain the equation for In P. 
(c) Plot In p versus pH and NH versus pH. The equations involved are 
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(a) First we express the binding potential P as a function of the hydrogen ion concentration, represented by h. 

~=l+h/10"-6.47+h"2/((lOA-6.47)*(1OA~3.83)) 

6 10 2 
1 + 2.95121 10 h i 1.99526 10 h 

Plot[g, {h,10A-2,10A-10},AxesLabel->i11h~',"p11~l; 

P 

Plot [Log [p] , {h, 10A-2 ,  1OA-1O), Axe~Label->{~'h", "In g"3 1 ; 

In P 

' h  
0.002 0 . 0 0 4  0 . 0 0 6  0.008 0.01 

The equation for the titration curve is obtained by use of the following differentiation: 

nH=h*D [Log [ P I ,  hl 
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10 h (2.95121 lo6 + 3.99052 10 h) 
6 10 h2 

1 + 2.95121 10 h + 1.99526 10 

(b) This equation can be integrated to obtain lnp: 

Integratel(nH/h),hl 

-7 
1. Log[3.39624 10 + hl + 1. Log[0.000147571 + hl 

This should be lnp, which is 

6 10 2 
Log[l + 2.95121 10 h + 1.99526 10 h ] 

except for an integration constant. 
We can compare the two expressions for In p by calculating numerical values at pH 2,2.5, 3, 3.5, ... 10: 

ph=Table[n,{n,2,10,.5}] 

I2, 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10.1 

1 -6 
I-, 0.00316228, 0.001, 0.000316228, 0.0001, 0.0000316228, 0.00001, 3.16228 10 , 1. 1( 

3.16228 1. 3.16228 1. 3.16228 lo-’, 1. lo-’, 3.16228 10 , 1. 

100 
-10 

LOg[p]/.h->hh 

I14.521, 12.2494, 10.0391, 7.98259, 6.20586, 4.73863, 3.48147, 2.35442, 1.37906, 0.6602: 
0.0892422, 0.0290869, 0.00928946, 0.00294688, 0.000932821, 0.000295078} 

These are the values of In p calculated from pK1 and pK2. 

Integrate[(nH/h),hl/.h->hh 

{-9.19566, -11.4672, -13.6775, -15.734, -17.5108, -18.978, -20.2352, -21.3622, -22.3376, 
-23.4579, -23.6274, -23.6875, -23.7073, -23.7137, -23.7157, -23.7163) 

These are the values of In p calculated by integration of the binding curve (that is, nH versus h) 

(Integrate[ (nH/h) ,hI/.h->hh)-(Log[pl /.h->hh) 

{-23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.711 
-23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166, -23.7166) 

This is the integration constant. Now calculate values of p at 0.5 pHs. 

6 
{2.02472 10 , 208854., 22904.2, 2929.44, 495.634, 114.275, 32.5065, 10.5318, 3.97106, 1. 
1.29529, 1.09332, 1.02949, 1.00931, 1.00292, 1.00091, 1.00027) 
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This can be compared with the values calculated directly from In p: 

p/.h->hh 

6 
I2.02478 10 , 208860., 22904.8, 2929.52, 495.647, 114.278, 32.5074, 10.5321, 3.97116, 1 
1.29532, 1.09335, 1.02951, 1.00933, 1.00295, 1.00093, 1.0003} 

The agreement is quite good as expected. 
We can also plot the value of P calculated by the successive differentiation and integration to see whether it is the same as the 
plot in part b. 

Plot [Evaluate[Exp[Integrate[(nH/h) ,h]+23.716611,  ~h,10A-2,10A-10},AxesLabel->I"h"r"g")l; 

P 

2X1O6 - 

1. 5 x 1 0 6  - 

1 x 1 0 6  - 

500000  - 

' h  
0 . 0 0 2  0 . 0 0 4  0 . 0 0 6  0 . 0 0 8  0 . 0 1  

(c) If we introduce the relation between h and pH, the expressions for p and nH will be converted to functions of pH. 

10 -pH 

B 

10 6 
1.99526 10 2.95121 10 

1 +  + 
PH 10 2 PH 

10 
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Since the computer will substitute h=lOA-pH, we obtain the equation for the binding cuve by simply typing nH. 

nH 

10 
6 3.99052 10 

2.95121 10 + 
1 OPH 

10 6 
1.99526 10 2.95121 10 

loPH (1 + + ) 

lo2 pH 1 OPH 

Plot [ nH, {gH, 2,lO } , AxesLabel - > { "gH", 'I \ ! \ (N\-H\ ) 'I 1 I ; 
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Chapter 3 Chemical Equilibrium in One Phase Systems 

3.1 Use the table of basic data to calculate the acid dissociation constants of ATP, ADP, and Pi and the equilibrium constant 
for the reference reaction ATP4- + H20 = ADP3- + HPO4'-+ H+ at 298.15 K and ionic strengths of 0, 05, 0.10, 0.15, 0.20, 
and 0.25 M. 

3.2 For the solution reaction A = B, assume that the standard Gibbs energy of formation of A is 20 kJ mol-' and of B is 18 
kJ mol-' at 298.15 K. (a) For a reaction starting with a mole of A at a concentration of 1 M, plot the Gibbs energy of the 

mixture versus extent of reaction from zero to unity and identify the approximate extent of reaction at equilibrium. (b) 
Identify the equilibrium extent of reaction more precisely by plotting the derivative of the Gibbs energy of the mixture with 
respect to extent of reaction. (c) Calculate the equilibrium constant and verify the equilibrium extent of reaction. 

3.3 Calculate the standard Gibbs energy changes and equilibrium constants in terms of species for the following reactions at 
298.15 K and ionic strengths of 0, 0.10, and 0.25 M. Summarize the calculations in two tables. 

(a) 
(b) 
(c) 
(d) 
(e) 
(0 
The last reaction involves L-alanine and pyruvate. 

NAD- + H2(g) = NADH2- + Hf 
NADP3- + Hz(g) = NADPH4- + H+ 
NAD- + NADPH4-= NADH2- + NADP3- 
CH3 CHIOH + NAD- = CH3 CHO + NADH2- + H+ 
CH3 CHO + NAD- + H20 = CH3 C02- + NADH'- + 2 H+ 
C3 H7 NO2 + NAD- + H20 = C3 H3 0-+ NADH2- + N&+ + H+ 

3.4 Plot the acid dissociation constant of acetic acid from 0 OC to 50 "C given that at 298.15 K, Af Co = 27.14 kJ mol-', 
A, H" = -0.39 kJ mol-', and A, C,"= -155 J K-' mol-". Assume zero ionic strength. 

3.5 (a) Calculate the function of T that gives the values of the Debye-Huckel constant a at the temperatures in Table 3.1 in 
Section 3.7. Plot the data and the function. (b) Calculate the function of T for RTa. (c) Calculate the function of T for 
RT2(da/aT)p. (d) Use these functions to calculate these coefficients at 0, 10,20,25, 30, and 40 O C .  

3.6 Calculate the standard Gibbs energies of formation of the three species of ATP at temperatures of 283.15 K, 298.15 K, 
298.15 K and ionic strengths of 0,O. 10, and 0.25 M. 

3.7 Calculate the adjustments to be subtracted from pH, obtained with a pH meter to obtain pH,= -log[H+ at 0 "C to 40 "C 
and ionic strengths of 0, 0.10, and 0.25 M. 

3.8 Calculate the standard enthalpies of formation of the three species of ATP at 283.15 K, 298.15 K, and 313.15 K at ionic 
strengths of 0, 0.10, and 0.25 M 

3.9 There are two ways to obtain values for the enthalpy coefficient in equation 3.6-5 as a function of temperature: (a) 
Calculate the derivative with respect to T of the Gibbs energy coefficient divided by T. (b) Fit the enthalpy coefficients of 
Clarke and Glew to AT2+ BT3. Use both of these methods and make plots to compare these functions with the values in 
Table 3.1 

3.10 Plot the activity coefficients of ions with charges I ,  2, 3, and 4 versus the ionic strength at 0 "C. Repeat these calcula- 
tions at 25 "C and 40 "C 
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3.1 Use the table of basic data to calculate the acid dissociation constants of ATP, ADP, and Pi and the equilibrium constant 
for the reference reaction ATP4- + H 2 0  = ADP3- + HP04’-+ H+ at 298.15 K and ionic strengths of 0,  05, 0.10, 0.15, 0.20, 
and 0.25 M. 

(BasicBiochemData2 has to be loaded) 

The following program calculate the function of ionic strength that gives the standard Gibbs energy of formation of a species. 

calcdGis [species-] : = Module[ {dGzero, zi, isterm}, 
(*This program calculates the function of ionic strength (is) that gives the 
standard Gibbs energy of formation of a species at298.15 K. The input is 
a list for the species that gives the standard Gibbs energy of formation, 

hydrogen atoms in the species. Energies are expressed in kJ molA-l.*) 
the standard enthalpy of fonnation,the electric charge, and the number of 

dGzero= species[[l]]; 
zi= species[[3]]; 
isterrn=2.91482*(ziA2)*(isA.5) / (1+1.6*isA.5); 
dGzero - isterm] 

The basic data on the hydrogen ion species is 

hydroionsp=EO,O,l,lI 

hydroion=calcdGis[hydroionspl 

0 . 5  
-2.91482 is 

0 . 5  
1 + 1.6 is 

Now we need to produce a list for each species from the entries in BasicBiochemData2. 

atpH0=calcdGis~atpsp~~1111 

0 . 5  

0 . 5  

46.6371 is 

1 + 1.6 is 
-2768.1 - 

atgHl=calCdGiS[atgSg[[2]]]; 

atpHZ=calcdGis [atpsp [ 131 1 1  ; 

adpH0=calcdGis~adpsp[[llll; 

adpHl=calcdGis~adpsp~[2]11; 

adgH2=calcdGis[adpsp[[31]1; 

ghosphateH1=calcdGis[pisp[[lllI; 

phosphateH2=calcdGis[pisp[[21]1; 

h2o=calcdGis lh20sp C 111 1 1 ; 
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calckrx[eq_,islist~l:=Module[{ener~,dG},(*Calculates the equilibrium constant K for a 
chemical equation typed in the form atpHl+de==hydroion+atpHO.*) 
energy=Solve [eq,del ; 
dG=energy[[l,l,2l]/.is->islist; 
Exp[-dG/(8.31451*.29815)11 

atpkl=calckrx[at~Hl+de==hydro~on+atpHO,{0,.1,.25}1 

-7 -7 
I 2 . 5 1 3 0 2  1 . 8 1 1 4 4  1 0  , 3 . 4 2 7 5  1 0  } 

TableForm[{at~kl,atpk2,adpkl,adpk2,~ikl,kref},TableHeadings- 
> { {llatpkl", "atpk2". aadpklcl, "adpk2", "piklt', "kref 'I },iO, . 1, .25 1 11 

0 0 . 1  0 . 2 5  
-8 -7 -7 

a t p k l  2 . 5 1 3 0 2  1 0  1 . 8 1 1 4 4  1 0  3 . 4 2 7 5  1 0  

a t p k 2  0 .0000210082 0 .0000924186 0 . 0 0 0 1 4 9 0 9 9  

a d p k l  6 . 6 4 3 6 6  1 0  2 . 9 2 2 6 6  1 0  4 . 7 1 5 1 2  1 0  

a d p k 2  0 . 0 0 0 0 4 3 7 7 6 1  0 . 0 0 0 1 1 7 5 3 1  0 . 0 0 0 1 6 1 6 6 9  

p i k l  6 . 0 5 4 9 9  1 0  1 . 6 2 5 6 5  1 0  2 . 2 3 6 1 7  1 0  

kref  0 . 2 9 1 0 1 4  0 . 1 7 7 6 0 6  0 .151432 

-8 -7 -7 

-8 -7 -7 

3.2 For the solution reaction A = B, assume that the standard Gibbs energy of formation of A is 20 kJ mol-' and of B is 18 
kJ mol-' at 298.15 K. (a) For a reaction starting with a mole of A at a concentration of 1 M, plot the Gibbs energy of the 

mixture versus extent of reaction from zero to unity and identify the approximate extent of reaction at equilibrium. (b) 
Identify the equilibrium extent of reaction more precisely by plotting the derivative of the Gibbs energy of the mixture with 
respect to extent of reaction. (c) Calculate the equilibrium constant and verify the equilibrium extent of reaction. 

(a) The Gibbs energy of the reaction mixture is given by 

Clear [XI 

g =  (1-X) * 2 0 + 1 8 * ~ +  (8.31451*10"-3) *298.15* ((I-X) *LOg[l-X] +X*LOSf[XI) 

2 0  (1 - X )  + 18 x + 2 . 4 7 8 9 7  ( (1  - X )  L O g [ l  - X I  + x L o ~ [ x I )  

Plot[g, {X, 0 ,  I}, Axesorigin-> { O ,  15}, 
AxesLabel- {llg/molul, "G/kJ mol-l"}, PlotRange -f {15, 21}]; 
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' 

0.2 0.4 0.6 0.8 1 S/mol  

The approximate extent of reaction at equilibrium 298 K and 1 bar is 0.7. 

(b) The derivative of G with respect to x is given by 

dvt = D[g, X] 

-2  + 2 . 4 7 8 9 7  ( - L O g [ l  - X I  + Log [ X I  ) 

Plot [dvt, {x, 0, l), PlotRange -f { - l o ,  101, AxesLabel+ { l l g / m o l r l ,  " d G / d C " } ]  i 

(c) The 

10: 

7 . 5 :  

5 :  

2.5: 

' E l m o 1  
1 

-2.5: 

-5: 

-7.5: 

-10 - 

equilibrium constant is given by k = d(1-x), and so the equilibrium extent of reaction 

k = Exp[ (18 - 20)  / ( ( 8 . 3 1 4 5  * l o " - 3 )  * 2 9 8 . 1 5 )  ] 

0 . 4 4 6 2 9  

equilibrium constant is given by k = d(1-x), and so the equilibrium extent of reaction 

k = Exp[ (18 - 20)  / ( ( 8 . 3 1 4 5  * 1 0 " - 3 )  * 2 9 8 . 1 5 )  ] 

0 . 4 4 6 2 9  

is given x=k/(l+k). 
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0 . 3 0 8 5 7 6  

This agrees with the preceding plot. 

3.3 Calculate the standard Gibbs energy changes and equilibrium constants in terms of species for the following reactions at 
298.15 K and ionic strengths of 0, 0.10, and 0.25 M. Summarize the calculations in two tables. 

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 
The last reaction involves L-alanine and pyruvate. 

NAD- + H~ (g) = NADH~-  + H' 

NADP3- + H2 (g) = NADPH4- + H+ 

NAD- + NADPH4-= NADH2- + NADP3- 

CH3 CH2 OH + NAD- = CH3 CHO + NADH2- + H+ 
CH3 CHO + NAD- + H 2 O  = CH, C 0 2  

C3 H7 NO2 + NAD- + H 2 0  = C3 H3 0-+ NADH2- + NH4 + + H+ 

+ NADH2- + 2 H+ 

(BasicBiochemData2 has to be loaded) 

Since these reactants are all single species, calcdGis in the preceding problem can be used to calculate the function 
that gives the standard Gibbs energy of formation. The values at these three ionic strengths can be calculated using the 
assignment operation (/.). We can add the values for the products and subtract the values for the reactants to obtain the 
values of the standard Gibbs energy for the reaction. Finally, we can calculate the corresponding equilibrium constants and 
put them in a table. 

calcdGis [species-] : = Module [ {dGzero, zi, isterm), 
(*This program calculates the function of ionic strength (is) that gives the 
standard Gibbs energy of formation of a species at298.15 K. The input is 
a list for the species that gives the standard Gibbs energy of formation, 

hydrogen atoms in the species. Energies are expressed in kJ mol*-l.*) 
the standard enthalpy of formation,the electric charge, and the number of 

dGzero = species[[l]]; 
zi = species [ [ 31 ] ; 
isterm=2.91482* (ziA2)*(isA.5) / (1+1.6*isA.5); 
dGzero - isterm] 

hydroionis=calcdGis[hydro~onspl/.is->{O,.l,.25l 

(0, - 0 . 6 1 2 0 6 4 ,  - 0 . 8 0 9 6 7 2 1  

{ 0 ,  - 0 . 6 1 2 0 6 4 ,  - 0 . 8 0 9 6 7 2 )  

The Flatten is needed to remove the outer curly brackets in the BasicBiochemData2. 

nadpredis=calcdGisCFlatten[nadpredspll /.is->{O,.l,.25}; 
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-181.64 

ethanolis={-181.64,-181.64,-181.641 

{-181.64, -181.64, -181.64) 

This had to be put in by hand because ethanol is not an ion. 

calcdGis[Flatten[acetaldehydesgll/.~s->{0,.1,.25~ 

-139. 

acetaldehydeis={-139.,-139.,-139.l; 

calcdGis[Flatten[h2ospll/.is->~O,.1,.25l 

- 2 3 7 . 1 9  

h20is={-237.19,-237.19,-237.19}; 

calcdGis[Flatten[alaninesgll/.is->{o,.1,.25~ 

-371. 

dGrxb=nadpredis+hydroionis-nadpoxis-h2gis; 

krxb=Exp[-dGrxb/(8.31451*.29815)]; 

dGrxc=nadredis+nadpoxis-nadoxis-nadpredis; 

krxc=Exp[-dGrxc/(8.31451*.29815)1; 

dGrxd=acetaldehydeis+nadredis+hydroionis-ethanolis-nadoxis; 

krxd=Exp[-dGrxd/(8.31451*.29815)]; 

dGrxe=acetateis+nadredis+2*hydroionis-acetaldehyde~s-nadox~s-h20~~; 

krxe=Exp[-dGrxe/(8.31451*.29815)1; 

dGrxf=pyruvateis+nadredis+nh4is+hydroionis-alanineis-nadoxis-h2ois; 

krxf=Exp[-dGrxf/(8.31451*.29815)]; 

Table 1 Standard Reaction Gibbs Energies in kJ m o l - I  at 298.15 K 
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TableForml{dGrxa,dGrxb,dGrxc,dGrxd,dGrxe,dGrxf}rTableHeadings- 
>C{"dGrxan, ildGrxblm, lldGrxcll, ndGrxd", i~dGrxei~,ildGrxfil}, {0,0.10,0.25}}] 

0 0.1 0.25 
dGrxa 22.65 20.2017 19.4113 

dGrxb 25.99 21.0935 19.5126 

dGrxc -3.34 -0.891743 -0.101311 

dGrxd 65.29 62.8417 62.0513 

dGrxe 29.53 25.8576 24.672 

dGrxf 79.26 75.5876 74.402 

Table 2 Equilibrium constants at 298.15 K 

TableForml{krxa,krxb,krxc,krxd,krxe,krxf},TableHeadings- 
> { { **krxa", lmkrxbllr ilkrxc", "krxdn, "krxe", "krxf "1 ( 0 , O .  10,O. 25) > 1 

0 0.1 0.25 
krxa 0.000107625 0.000288953 0.00039747 

krxb 0.0000279753 0.000201652 0.000381554 

krxc 3.84715 1.43293 1.04171 

-12 -12 -11 
krxd 3.64546 10 9.78736 10 1.3463 10 

-6 
krxe 6.70807 10 0.0000295099 0.0000476083 

-14 -14 -14 
krxf 1.30115 10 5.72398 10 9.23451 10 

These values agree with R. A. Alberty, Arch. Biochem. Biophys. 307, 8-14 (1993). 

3.4 Plot the acid dissociation constant of acetic acid from 0 OC to 50 OC given that at 298.15 K, A f G o  = 27.14 kJ mol-', 
Af H o  = -0.39 kJ mol-', and Af Cp"= -155 J K-lmol-'. Assume zero ionic strength. 

A f F  = (Af H" - A f G o  )/T 

deltaS=(-390-27140)/298.15 

-92.3361 

46.906 298.15 
t t 

-11.1059 + ~ + 18.6421 (1 - ___ - Log [ O  .00335402 tl 1 

plot [ink, { t, 273.15,323.15} .hesOrigin->{270, -11.02) ,hesLabel->{ "T/K",  "AG"11 i 
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0.0000176- 

0.0000174- 

0.0000172- 

0.000017 

0.0000168- 

0.0000166. 

AG 

- 

' , "  T / K  
280 290 300 310 320 

I " '  

Plot [Exp[lnk] , {t, 273.15,323.15} ,AxesOrigin->{270,. 0000164) ,AxesLabel->{"T/K", "K") I ; 

T / K  I ' ' 2 8 0 '  " '  290 " " " . " '  300 310 320 "\ 

3.5 (a) Calculate the function of T that gives the values of the Debye-Huckel constant (Y at the temperatures in Table 3.1 in 
Section 3.7. Plot the data and the function. (b) Calculate the function of T for RTa. (c) Calculate the function of T for 
RT2 (&/dT), . (d) Use these functions to calculate these coefficients at 0, 10, 20, 25, 30, and 40 O C. 

(a) The Debye-Huckel constant (Y as a function of temperature: 

data=~~273.15,1.12938),C283.15,1.14717~,~293.15,1.16598},{298.15,1.17582~,{303.15,1.185 
99},{313.15,1.20732}) 

CC273.15, 1.129381, I283.15, 1.147171, I293.15, 1.165981, C298.15, 1.17582), C303.15, 1 

C313.15, 1.20732}} 

TableForm [data] 
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273.15 1.12938 

283.15 1.14717 

293.15 1.16598 

298.15 1.17582 
303.15 1.18599 

313.15 1.20732 

alpha=Fit[data,Cl,t,tA2>,tl 

-6 2 
1.10708 - 0.00154508 t + 5.95584 10 t 

a 

T / K  
280  290 3 0 0  310 

(b) RTa as a function of temperature: 

rtalpha=Expand[8.31451*10A-3*t*alphal 

2 -8 3 
0.00920485 t - 0.0'000128466 t + 4.95199 10 t 

The factor 10"-3 converts the value of R from J to kJ. 

(c) R T ~  ( 8 a / 8 T )  as a function of temperature: 

rt2Dalpha=Expand[8.31451*10A-3*tA2*D[alpha,tlJ 

2 -8 3 
-0.0000128466 t + 9.90399 10 t 

Take the derivative of RTalpha 

(d) Make a table 

col2=alpha/.t->{0,10,20,25,30,40~+273.15 

{1.12942, 1.1471, 1.16597, 1.17585, 1.18603, 1.20729) 
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col3=rtalpha/.t->{0,10,20,25,30,40)+273.15 

{2.56503, 2.70056, 2.84193, 2.91491, 2.98945, 3.14341) 

col4=rt2Dalpha/.t->{0,10,20,25,30,40~+273.15 

I1.05994, 1.21837, 1.39106, 1.48294, 1.5786, 1.78158) 

{{273.15, 283.15, 293.15, 298.15, 303.15, 313.15), 
{1.12942, 1.1471, 1.16597, 1.17585, 1.18603, 1.20729), 

{2.56503, 2.70056, 2.84193, 2.91491, 2.98945, 3.143411, 
{1.05994, 1.21837, 1.39106, 1.48294, 1.5786, 1.78158)) 

TableForm[Transpose[tab] ,TableHeadings->{None, {"T/K", l laa,  "RTa", "RT"2 (da/dT) ''I 11 

T/K a RTa RT"2 (aa/aT) 
273.15 1.12942 2.56503 1.05994 

283.15 1.1471 2.70056 1.21837 

293.15 1.16597 2.84193 1.39106 

298.15 1.17585 2.91491 1.48294 

303.15 1.18603 2.98945 1.5786 

313.15 1.20729 3.14341 1.78158 

These values can be compared with the values in Table 3.1 in the text. 

3.6 Calculate the standard Gibbs energies of formation of the three species of ATP at temperatures of 283.15 K, 298.15 K, 
313.15 K and ionic strengths of 0, 0.10, and 0.25 M. 

(BasicBiochemData2 has to be loaded) 

ca1cdGTspCspeciesmat-,temp-,ionstr-l := 
Module[{dGzero, dGzeroT,dHzero,zi, nH, gibbscoeff, istermG,gfnsp},(*This program 
calculates the functions of T and ionic strength for the standard Gibbs energy of 
formation for all of the species in a reactant. The temperature, temp in K,can be 
specified in approximately the range 273.15 K to 313.15 K, and the ionic strength, 
ionstr in M, can be specified in the range 0 to 0.35 M. Lists of temperatures and 
ionic strengths can also be used. The standard Gibbs energies of formation in the 
output are in kJ molA-l. 

at 298.15 K, the standard enthalpy of formation at 298.15 K, the electric charge, and 
the numbers of hydrogen atoms in each species. There is a row in the matrix for each 
species of the reactant. gfnsp is alist of the functions for the species.*) 
{dGzero,dHzero,zi,nH} = Transpose[speciesmat]; 
gibbscoeff=9.20483*1OA-3*t-l.284668*lOA-5*tA2+4.95l99*lOA-8*tA3; 
dGzeroT=dGzero*t/298.15+dHzero*(l-t/298.15); 
istennG = gibbscoeff*(ziA2)*(isA.5)/(1 + 1.6*isA.5); 
gfnsp=dGzeroT - istermG; 
gfnsp/.t->temp/.is->ionstr] 

The input speciesmat is a matrix that gives the standard Gibbs energy of formation 

gat~=calcdGTsp[atpsp,298.15,0] 

{-2768.1, -2811.48, -2838.18) 
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{I-2768.1, -3619.21, -4, 12}, {-2811.48, -3612.91, -3, 13}, I-2838.18, -3627.91, -2, 141 

This program is run three times at I = 0, 0.10, and 0.25 M. 

T a b 1 e F o ~ ~ c a 1 c d G T s p t a t ~ s p , ~ 2 8 3 . 1 5 , 2 9 8 . 1 5 , 1 e H e a d i n g s -  
> { { "ATP-4 'I, "HATP-3" I "H2ATP-2" 1, { "28 3.15 K" , "298.15 K" , "3 13.15 K" 1 } ] 

283.15 K 298.15 K 313.15 K 
ATP-4 -2810.92 -2768.1 -2725.28 

HATP-3 -2851.8 -2811.48 -2771.16 

H2ATP-2 -2877.91 -2838.18 -2798.45 

T a b 1 e F o r m t c a 1 c d G T s ~ t a t p s p , ( 2 8 3 . 1 5 , 2 9 8 . 1 5 1 e H e a d ~ n g s -  
> {  { "ATP-4 " I "HATP- 3", "H2ATP-2" 1, E "2 83.15 K" , "298.15 K" , "313.15 K" 1 1 I 

283.15 K 298.15 K 313.15 K 
ATP-4 -2819.99 -2777.89 -2735.84 

HATP-3 -2856.9 -2816.99 -2777.1 

H2ATP-2 -2880.18 -2840.63 -2801.09 

TableFormlcalcdGTsp[atps~,{283.15,298.15,313.15},.25],~TableHeadings- 
> { { "ATP-4 'I ,  "HATP- 3 " , "H2ATP-2 " 1 , { "2 83 -15 K" , "298.15 K" , "313.15 K" 1 } I 

283.15 K 298.15 K 313.15 K 
ATP- 4 -2822.92 -2781.06 -2739.25 

HATP-3 -2858.55 -2818.77 -2779.02 

H2ATP-2 -2880.91 -2841.42 -2801.94 

3.7 Calculate the adjustments to be subtracted from pH, obtained with a pH meter to obtain pH,= -log[H' at 0 "C to 40 "C 
and ionic strengths of 0,O. 10, and 0.25 M. 

The values of o in the Debye-Huckel equation are given by 

d a t a = { { 2 7 3 . 1 5 , 1 . 1 2 9 3 8 ) , { 2 8 3 . 1 5 , 1 . 1 4 7 1 7 } , { 2 9 3 . 1 5 , 1 . 1 6 5 9 8 } , { 2 9 8 . 1 5 , 1 . 1 7 5 8 2 ~ , ~ 3 0 3 . 1 5 , 1 . 1 8 5  
99),{313.15,1.20732)} 

{{273.15, 1.12938}, {283.15, 1.14717}, (293.15, 1.16598}, {298.15, 1.175821, 
{303.15, 1.18599}, {313.15, 1.20732)) 

TableForm[datal 

273.15 1.12938 

283.15 1.14717 

293.15 1.16598 
298.15 1.17582 

303.15 1.18599 

313.15 1.20732 

alpha=Fit [data, (1, t, t "2 } , t] 

-6 2 
1.10708 - 0.00154508 t + 5.95584 10 t 

alpha 

-6 2 
1.10708 - 0.00154508 t + 5.95584 10 t 
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Equation 3.7-6 yields the following table: These are the adjustments to be subtracted from pH,to give pH,= - log H + ]  

TableFonn[Trans~ose[alpha*isA.5/(Log[lO]*(l+l.6*isA.5))/.t-~{283.l5,298.l5,3l3.l5}/.~s- 
>{O, .05, -1, .15, .2, .25)] ,TableHeadings->{ {110",".05", ".10t1,".15", 'I .2O", ".25"}, {"lo 
C","25 C","40 C"))I 

10 c 25 C 40 C 
0 0 0 0 

.05 0.0820433 0.0841 0.0863484 

.10 0.104609 0.107232 0.110098 

. I 5  0.119125 0.122111 0.125376 

.20 0.129867 0.133122 0.136681 

.25 0.138383 0.141852 0.145644 

3.8 Calculate the standard enthalpies of formation of the three species of ATP at 283.15 K, 298.15 K, and 313.15 K at ionic 
strengths of 0, 0.10, and 0.25 M. 

(BasicBiochemData2 has to be loaded) 

Since we have a program to calculate standard Gibbs energies of formation, we can calculate the standard enthalpies of 
formation by use of the Gibbs Helmholtz equation. 

calcdHTsp [speciesmat,-, temp-, ionstr-1 
Module[{dGzero, dGzeroT,dHzero,zi, nH, gibbscoeff, istermG,gfnsp,hfnsp),(*This program 
first calculates the functions of T and ionic strength for the standard Gibbs energy 
of formation for all of the species in a reactant, and then uses the Gibbs Duhem 
equation to calculate the functions of T and ionic strength for the standard enthalpy 
of formation. The temperature, temp in &can be specified in approximately the range 
273.15 K to 313.15 K, and the ionic strength, ionstr in M, can be specified in the 
range 0 to 0.35 M. Lists of temperatures and ionic strengths can also be used. The 
standard enthalpies of formation in the output are in kJ molA-l. 

at 298.15 K, the standard enthalpy of formation at 298.15 K, the electric charge, and 
the number of hydrogen atoms in each species. There is a row in the matrix for each 
species of the reactant. gfnsp is alist of the functions for the species. hfnsp is a 
list of the functions for the enthalpies of the species.*) 
{dGzero,dHzero,zi,nH) = Transpose[speciesmat]; 
gibbscoeff=9.20483*1OA-3*t-l.284668*lOA-5*tA2~4.95l99*lOA-8*t~3; 
dGzeroT=dGzero*t/298.15+dH~ero*(l-t/298.15); 
istermG = gibbscoeff*(ziA2)*(isA.5)/(1 + 1.6*isA.5); 
gfnsp=dGzeroT - istennG; 
hfnsp=-tA2*D[gfnsp/t,t] ; 
hfnsp/.t->temp/.is->ionstr] 

: = 

The input speciesmat is a matrix that gives the standard Gibbs energy of formation 

calcdHTsplatpsp,298.15,01 

{-3619.21, -3612.91, -3627.91) 

These are the expected values for these three species at zero ionic strength. 

{{-2768.1, -3619.21, -4, 12}, {-2811.48, -3612.91, -3, 13}, 
{-2838.18, -3627.91, -2, 14}} 
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TableForm~calcdHTsp~atpsp,C283.15,298.15,313.15},01,T~1eHeadings- 
> C C "ATP-4 " , "HATP-3 ' I ,  "H2ATP-2" 1 , { "2 83.15 K" , "2 98.15 K" , "3 13.15 K" 1 1 I 

283.15 K 298.15 K 313.15 K 
ATP-4 -3619.21 -3619.21 -3619.21 

HATP-3 -3612.91 -3612.91 -3612.91 

H2ATP-2 -3627.91 -3627.91 -3627.91 

This calculation is based on the assumption that the standard enthalpies of formation of the three species are independent of 
temperature, and so this is the expected result. 

TableForm[calcdHTsp[at~s~,{283.15,298.15,313.15},.l],TableHeadings- 
> C C "ATP-4 ' I ,  "HATP-3 " , "H2ATP-2 " 1, { "2 83 -15 K" , "298.15 K" , "313.15 K" 1 1 I 

283.15 K 298.15 K 313.15 K 
ATP-4 -3615.12 -3614.23 -3613.22 

HATP-3 -3610.61 -3610.11 -3609.54 

H2ATP-2 -3626.89 -3626.66 -3626.41 

Even though the standard enthalpies of formation are independent of temperature at zero ionic strength, they are not indepen- 
dent of temperature at a finite ionic strength. The largest effect is for the -4 ion. 

TableForm[calcdHTsp[atpspr(283.15,298.15,313.15},.25l,TableHeadings- 
> C I "ATP-4 ' I ,  " IiATP-3 'I, "H2ATP-2 " 1, C "2 83 .15 K" , "2 98.15 K" , "313 .15 K" 1 1 1 

283.15 K 298.15 K 313.15 K 
ATP-4 -3613.8 -3612.62 -3611.29 

HATP-3 -3609.86 -3609.2 -3608.46 

H2ATP-2 -3626.56 -3626.26 -3625.93 

3.9 There are two ways to obtain values for the enthalpy coefficient in equation 3.6-5 as a function of temperature: (a) 
Calculate the derivative of the Gibbs energy coefficient divided by T. (b) Fit the enthalpy coefficients of Clarke and Glew to 
AT2 + BT3. Use both of these methods and make plots to compare these functions with the values in Table 3.1 

(a) According to Problem 3.5, RTa is given by 

rtal~ha=9.20485*10A-3*t-l.28466*lOA-5*tA2+4.95l99*lOA-8*tA3 

0.00920485 t - 0.0000128466 t2 + 4.95199 10 
-8 3 

t 

Using the Gibbs-Helmholtz equation 

rt2Dalpha=Expand[tA2*D[rtalpha/t,t l l  

-8 3 
0. t - 0.0000128466 t2 + 9.90398 10 t 

The following are the enthalpy coefficients given by Clarke and Glew. 
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{{273.15, 1.0751, {283.15, 1.2131, I293.15, 1.38451, (298.15, 

{303.15, 1.57751, {313.15, 1.811 

TableForm Idatah] 

273.15 1.075 
283.15 1.213 

293.15 1.3845 
298.15 1.4775 
303.15 1.5775 
313.15 1.8 

coefh 

(b) Fit the Clarke and Glew enthalpy coefficients 

coefh=Fit Idatah, {tA2,tA3},tl 

2 -7 3 
-0.0000132345 t + 1.0045 10 t 

Note -1.28466* 1OA-5+9.9O398* 10A-8tA3 in (a), 

coefh/.t->{273.15,283.15,293.15,298.15,303.~5,313.15} 

{1.05973, 1.21928, 1.39324, 1.48582, 1.58223, 1.78684) 

These values can be compared with the table in (a). 
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coefh 

3.10 Plot the activity coefficients of ions with charges 1 ,  2 ,  3, and 4 versus the ionic strength at 0 "C. Repeat these calcula- 
tions at 25 "C and 40 "C. 

At 0 ° C  

gamma0[z~,is~l:=Module~O,(*Calculates the activity coefficient of an ion of charge z 
at 0 C as a function of ionic strength at 0 C . * )  
Exp[-1.12942*(zA2)*(isA.5)/(l+l.6*isA.5)II 
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Y 
l r  

0.05 0.1 0.15 0.2 0.25 
I/M 

At 25 "C 

ganrma25[z-,is-]:=Module[{),(*Calculates the activity coefficient of an ion of charge z 
at 0 C as a function of ionic strength at 0 C.*) 
Exp[-1.17585*(zA2)*(isA.5)/(l+l.6*isA.5)II 

plot251=Plot [garmna25 [ 1, is], {is,O, .25} ,PlotRange->{O, 1) ,AxesOrigin->{O, 03 ,I+xesLab*l- 
> {  l l l / M 1 l ,  l1yt1} ,DisglayFunction->Identity] ; 

plot 2 5 2 =Plot [ gamma2 5 [ 2, i s ] , { i s , 0 , .2 5 1 , Plot Range- > { 0,11, Axe sorig in- > { 0 1 0  3 , Axes Labe 1 - 
> ( l l I / M i l ,  'iyii 1 ,DisglayFunction->Identity] ; 
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Y 
1 

0 . 8  

0.6 

0.4 

0.2 

- 

At 40 "C 

0.05 0.1 0.15 0 . 2  0 . 2 5  
I /M 

gamma40[z-,is-]:=Module[{},(*Calculates the activity coefficient of an ion of charge z 
at 0 C as a function of ionic strength at 0 C . * )  
Exp[-1.20729*(zA2)*(isA.5)/(l+l.6*isA.5)II 

glot401=Plot[gamma40[1,is],{is,0,.25},PlotRange-~{O,1},AxesOrigin-~{O,O},AxesLabel- 
> { "1 /MI1, "y" 1, Di splayhnct ion- >Identity] ; 

glot402=Plot[gamma40[2,is],{is,0,.25},PlotRange-~{O,1~,AxesOrigin-~~O.O~.~e~Lab~~- 
> { 1' I /MI', 1s y" } , Di splayFunc t ion- >Ident i ty1; 

plot403=Plot[gamma40[3,~sl,{~s,0..25~,PlotRange->{O,l~,AxesOrigin->~O,O},AxesLabel- 
> { I /MI1 , y 1 , Di SplayFunc t ion- >Identity 1; 

glot404=Plot[ganrma4O[4,is],{is,0,.25},PlotRange-~~O,l},AxesOrigin-~~OrO~,AxesLabel- 
> {  lmI/M1l, miyim} ,DisplayFunction->Identity1 ; 
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Y 

l r  

0.8 

0.6 

0.4 

0.2 

0.05 0.1 0.15 0.2 0.25 
I / M  

At 0 C and 40 C.  

Y 

0.05 0.1 0.15 0.2 0.25 
I / M  



Chapter 4 Thermodynamics of Biochemical Reactions at Specified pH 

4.1 (a) Calculate Of G o  for the species of ATP at 298.15 K, pH 7, and I = 0.25. (b) Calculate a,G'" for ATP at 298.15 K, 
pH 7, and I = 0.25 M. (c) Plot & G o  for ATP at 298.15 K, and I = 0.25 M versus pH. (d) Plot N,for ATP at I = 0.25 M 
versus pH. 

4.2 (a) Calculate & H 0  for ATP at 298.15 K, pH 7, and I = 0.25 M. (b) Plot A f H o  for ATP at 298.15 K, and I = 0.25 M 
versus pH. (c) Calculate the standard transformed enthalpy of formation at pH 7 and 0.25 M ionic strength at several 
temperatures in the range 273 K to 3 13 K. 

4.3 (a) Calculate AI G'" in kJ mol-I at 298.15 K, pH 7, and I = 0.25 M for ATP + H 2 0  = ADP + Pi. (b) Calculate the 
corresponding Ar H'" . (c) Calculate the corresponding A , S "  in J K-'mo1-l. (d) Calculate logK. (e) Plot the values of 
each of these properties versus pH at I = 0.25 M on the assumption that the standard enthalpies of formation of ions are 
independent of temperature. 

4.4 (a) For ATP + H2 0 = ADP + Pi plot K' versus pH at ionic strengths of 0, 0.10, and 0.25 M. (b) Plot IogK' versus pH 
at ionic strengths of 0, 0.10, and 0.25 M. (c) Plot K versus ionic strength at pHs 5, 7, and 9. 

4.5 For ATP + H2 0 = ADP + Pi plot A,N, versus pH at ionic strengths of 0, 0.10, and 0.25 M. 

4.6 Calculate the standard transformed Gibbs energies of reaction for ATP + H2 0 = ADP + Pi at temperatures of 283.15 K, 
298.15 K, and 313.15 K, at pHs 5 ,  6,7, 8, 9, and ionic strengths of O,O.lO, and 0.25 M. 

4.7 Calculate the standard transformed Gibbs energies of reaction at 298.15 K and the experimental pH and ionic strength 
for the reactions in the Goldberg and Tewari series of six critical reviews for which all the reactants are in BasicBiochem- 
Data2. Compare the calculated standard transformed Gibbs energies of reaction with the experimental values. At present 
there is not enough information to calculate the effects of temperature and metal ions, and so these effects are ignored. The 
three steps in this process are: (a) Make a table of the calculated standard transformed Gibbs energies of reaction. (b) Make 
a table of the relevant data in the Goldberg and Tewari Tables. (c) Make a table of the differences between the values of the 
standard transformed Gibbs energies of reaction calculated in part (a) and the experimental values in the Goldberg and 
Tewari tables. 

4.8 Calculate the standard transformed reaction Gibbs energies, apparent equilibrium constants, and changes in the binding 
of hydrogen ions for the ten reactions of glycolysis at 298.15 K, pHs 5, 6, 7, 8, and 9, and ionic strengths 0, 0.10, and 0.25 
M. Also calculate these properties for the net reaction. 

4.9 Calculate the standard transformed reaction Gibbs energies, apparent equilibrium constants, and changes in the binding 
of hydrogen ions for the four reactions of gluconeogenesis that are different from those in glycolysis at 298.15 K, pHs 5 ,  6, 
7, 8, and 9 and ionic strengths 0, 0.10, and 0.25 M. Also calculate the properties of the net of pyruvate carboxylase and 
phosphoenolpyruvate carboxykinase reactions and the net reaction of gluconeogenesis. 

4.10 Calculate the standard transformed reaction Gibbs energies, apparent equilibrium constants, and changes in the binding 
of hydrogen ions for the pyruvate dehydrogenase reaction and the nine reactions of the citric acid cycle at 298.15 K, pHs 5, 
6, 7, 8, and 9 and ionic strengths 0, 0.10, and 0.25 M. Also calculate these properties for the net reaction of the citric acid 
cycle, the net reaction for pyruvate dehydrogenase plus the citric acid cycle, and the net reaction for glycolysis, pyruvate 
dehydrogenase, and the citric acid cycle. 
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4.1 (a) Calculate af G'" for the species of ATP at 298.15 K, pH 7, and I = 0.25. (b) Calculate A,G'" for ATP at 298.15 K, 
pH 7, and I = 0.25 M. (c) Plot A f G o  for ATP at 298.15 K, and I = 0.25 M versus pH. (d) Plot N,for ATP at I = 0.25 M 
versus pH. 

(BasicBiochemData2 has to be loaded) 

(a) Use equation 4.4-10 

0.5 2 

0.5 
2.91482 is (-nH + zi ) -PH - 2.47897 nH Log[lO 1 dgsp - 

1 + 1.6 is 

The data on the three species of ATP are in \the package. 

The basic data for species of ATP are given by 

atRsR 

{{-2768.1, -3619.21, -4, 12}, {-2811.48, -3612.91, -3, 13}, 
{-2838.18, -3627.91, -2, 14}} 

TableFOrm[atpSp] 

-2768.1 -3619.21 -4 12 
-2811.48 -3612.91 -3 13 
-2838.18 -3627.91 -2 14 

The first row gives the standard Gibbs energy of formation, the standard enthalpy of formation, the charge number, and the 
number of hydrogen atoms of the species with the fewest hydrogen atoms. The standard transformed Gibbs energy of this 
species can be calculated by using the function in the first line of this problem. 

atpsgll2,lll 

-2811.48 

g1=atgsp~~~,~ll-~~*8.3l45l*.298l5*Log[lOA-7l-Z.9l482*((-4)A2-l2)*(.25A.5)/(l+l.6*.25A.5 
1 

-2291.86 

~~~~~pSg[[~,111-13*8.31451*.29815*L0g[10~-71-2.91482*((-3)~2-13)*(.25~.5)/(1+1.6*~.25~. 
5)) 

-2288.81 

g3=atgsg[[3,1]]-14*8.3l45l*.Z98l5*Log[lOA-7]-2.9l482*((-2)A2-l4)*(.25A.5)/(l+l.6*(.25A. 
5)) 

-2270. I 

(b) Use equation 4.5-1 to calculate A, G'" for the pseudoisomer group 
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- 2 2 9 2 . 5  

calcdQRat[atpspl/.pH->7/.is->.25 

- 2 2 9 2 . 5  

This illustrates the convenience of the program calcdGmar.. 

(c) When the package BasicBiochemData2 is loaded, typing atp yields a function of pH and ionic strength as we have 
seen in (b). 

Plot [ atp/ . is- > .25, {pH, 5,9}, AxesLabel-> { " p H t l ,  I*\ ! \ (TraditionalForm\. \ (A\-r\ ) G ' \ "o\ ) I' 1 1 ; 

A, G" 

(d) Equation 4.7-3 shows that the average number of hydrogen atoms in a reactant is given by (lRTln(l0)) times the 
derivative of the standard transformed Gibbs energy of the reactant. First we calculate the function of pH at ionic strength 
0.25 M 

-PH 
- 0 . 4 0 3 3 9 3  ( - 2 8 3 0 . 0 8  - 3 4 . 7 0 5 6  L o g [ l O  I )  + - 2 . 4 7 8 9 7  Log [E 

-PH 
I )  + - 0 . 4 0 3 3 9 3  ( - 2 8 0 8 . 2 4  - 3 2 . 2 2 6 6  LOg[lO 

E 

-PH 

] ' I  
- 0 . 4 0 3 3 9 3  ( - 2 7 7 1 . 3 4  - 2 9 . 7 4 7 7  LOg[lO 

E 
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-32.2362 
(-2.47897 ( 

-PH 0.403393 (-2830.08 - 34.7056 LOg[lO I) 
E 

29.9336 

0.403393 (-2808.24 - 32.2266 L ~ g [ l O - ~ ~ l )  
E 

27.631 
) )  / 

0.403393 (-2771.34 - 29.7477 Log[lO-PHl) 
E 

-PH 
I )  + -0.403393 (-2830.08 - 34.7056 LOg[lO 

(E 

-0.403393 (-2808.24 - 32.2266 L ~ g [ l O - ~ ~ l )  

-0.403393 (-2771.34 - 29.7477 L ~ g [ l O - ~ ~ l )  
E ) 

E 

Plot[Evaluate[(l/(8.3l45l*.298l5*Log[lO]))*D[fpH,pH]l,{pH,5,9},~esLabel- 
> {lmpH1l, ' I \  ! \ (N\-H\) ''1 I ; 

NH 

4.2 (a) Calculate A f H o  for ATP at 298.15 K, pH 7, and I = 0.25 M. (b) Plot & H a  for ATP at 298.15 K, and I = 0.25 M 
versus pH. (c) Calculate the standard transformed enthalpy of formation at pH 7 and 0.25 M ionic strength at several 
temperatures in the range 273 K to 313 K on the assumption that the standard enthalpies of formation of ions are independent 
of pH.. 

(BasicBiochemData2 has to be loaded) 

(a) There are two different kinds of programs to make this calculation. The program calcdHmat calculates the equilibrium 
mole fractions of the species and the standard transformed enthalpies of formation of the species and calculates the mole 
fraction weighted average. The program calcdHTgp calculates the standard transformed Gibbs energy of formation of the 
reactant as a function of pH, ionic strength, and temperature and uses the Gibbs-Helmholtz equation to calculate the standard 
transfromed enthalpy of formation of the reactant. 
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calcdI-hnat [ speciesmat-] : = 
Module[{dHzero, zi, nH, dhfnsp, dGzero, pHterm, isenth, dgfnsp, dGreactant, ri}, 
(*This program produces the function of ionic strength (is) that gives 
the standard transformed enthalpies of fonnation of the specie at 
298.15 K. It then calculates the standard transformed Gibbs energy for 
the reactant and the equilibrium mole fractions of the species. The 
function of pH and ionic strength for the standard transformed enthalpy 
of formation of the reactant is calculated by a dot product. The 
input is a matrix that gives the standard Gibbs energy of formation, 

hydrogen atoms in the species in the reactant. There is a row in the matrix 
for each species of the reactant. Energies are expressed in kJ molA-l.*) 
{dGzero, dHzero, zi, n H )  = Transpose[speciesmat] ; 
isenth=1.4775* ((zi"2) -nH)*(isA.5) / (1+1.6*isA.5); 
dhfnsp dHzero+isenth; 

the standard Gibbs energies of formation of the species.*) 

the standard enthalpy of formation, the electric charge'and the number of 

(*Now calculate the functions for 

pHterm = nH* 8.31451 * .29815 *Log [lo A -pH] ; 
gpfnsp = dGzero-pHterm-isenthe (2.91482/1.4775); 
(*Now calculate the standard 
transformed Gibbs energy of formation for the reactant.*) 

dGreactant = -8.31451* .29815*Log[Apply[Plus, Exp[-l*gpfnsp/ (8.31451* .29815)]]]; 
(*Now calculate the equilibrium mole fractions of the species 

in the reactant and the mole fraction-weighted average of the 
functions for the standard transformed enthalpies of the species.*) 

ri = Exp [ (dGreactant - gpfnsp) / (8.31451 * -29815) ] ; 
ri.dhfnsp] 

fnh=calcdHmat[atpspl/.is->.25/.pH->7 

- 3 6 1 6 . 8 9  

calcdHTgp [speciesmat-I : = 
Module[{dGzero, dGzeroT,dHzero,zi, nH, gibbscoeff,pHterm, isterm,gpfnsp,dGfnl,(*This 
program first produces the function of T (in Kelvin), pH and ionic strength (is) that 
gives the standard transformed Gibbs energy of formation of a reactant (sum of 
species). It then uses the Gibbs-Helmholtz equation to calculate the function for the 
standard transformed enthalpy of formation of the pseudoisomer group. The input 
speciesmat is a matrix that gives the standard Gibbs energy of formation at 298.15 K, 
the standard enthalpy of formation at 298.15 K, the electric charge, and the number of 
hydrogen atoms in each species. There is a row in the matrix for each species of the 
reactant. gpfnsp is a list of the functions for the transformed Gibbs energies of the 
species. Energies are expressed in kJ molA-l. The value of the standard transformed 
enthalpy of formation can be calculated at any temperature in the approximate range 
273.15 K to 313.15 K, any pH in the range 5 to 9, and any ionic strength in the range 
0 to 0.35 m by use of the assignment operator(/.).*) 
{dGzero,dHzero,zi,nH}=Transpose[speciesmatl; 
gibbscoeff=9.20483*1OA-3*t-l.284668*lOA-5*tA2+4.95l99*lOA-8*tA3; 
dGzeroT=dGzero*t/298.15+dXizero*(l-t/298.15); 
pHterm = nH*8.31451*(t/1000)*Log[1OA-pHI; 
istermG = gibbscoeff*((ziA2) - nH)*(isA.5)/(1 + 1.6*isA.5); 
gpfnsp=dGzeroT - pHterm - istermG; 
dGfn=-8.31451*(t/100O)*Log[App~y[Plus,Exp[-l*gpfnsp/(8.3l45l*(t/lOOO~~lll; 
-tA2*DtdGfn/t,tll 

-3616.89 
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This second program has the advantage that the standard transformed enthalpy of formation can be calculated at other 
temperatures. 

(b) This second program can be used to construct a plot of the standard transformed enthalpy of formation as a function of 

PH. 

(c) This second program can be used to calculate the standard transformed enthalpy of formation at several temperature 

{-3617.28, -3616.89, -3616.681 

This calculation is based on the assumption that the standard enthalpies of formation of the ions at zero ionic strength are 
independent of temperature. However, at finite ionic strength there is a small electrostatic effect on the enthalpy. 

4.3 (a) Calculate A, G'" in kJ mol-1  at 298.15 K, pH 7, and I = 0.25 M for ATP + H20 = ADP + P,. (b) Calculate the 
corresponding A,H'" . (c) Calculate the corresponding A,S'" in J K- lmol - l .  (d) Calculate IogK'. (e) Plot the values of 
each of these properties versus pH at I = 0.25 M. 

(BasicBiochemData2 must be loaded) 

calctrGerx[e~,pHlist_,islislist~]:=Module[{energy},(*Calculates the standard transformed 
Gibbs energy of reaction in kJ molA-l at specified p H s  and ionic strengths for a 
biochemical equation typed in the form atp+hao+de==adp+pi. The names of the reactants 
call the appropriate functions of pH and ionic strength. pHlist and islist can be 
lists. This program can be used to calculate the standard transformed enthalpy of 
reaction by appending an h to the name of each reactant.*) 
energy=Solve[eq,del; 
energy[[1,1,2ll/.pH->pHlist/.is-~~sl~st] 

(a) Calculate the standard transformed reaction Gibbs energy 

-36.0353 

(b) Append h to the name of each reactaant to obtain its standard transformed reaction enthalpy 



Thermodynamics of Biocheniical Reactions at Specified pH 283 

- 2 3 . 0 3 2 7  

(c) The standard transformed entropy of reaction at pH 7 and I = 0.25 M is given by 

(-23.03+36.07)*1000/298.15 

43.7364 

(d) The base 10 logarithm of the apparent equilibrium constant is given by 

Log[~0.Exp~-dg298pH7is25/(8.31451*.29815)11 

6 . 3 1 3 0 8  

(e) Plots 

Plot[calctrGerx[atp+h2o+de==adp+pi,~H,.25],{pH,5,9~,AxesLabel- 
> { tlpH1l, I 1 \  ! \ (TraditionalForm\ . \ (A\-r\ 1 G' \ ̂ o\ ) 'I 1 1 ; 

A, G l o  

Plot[calctrGerx[atph+h2oh+de==ad~h+p~h,pH,.25l,{pH,5,91,~esLabel- 
> { llpHtl, a * \  ! \ (TraditionalForm\' \ (A\-r\) HI \^o\) ,Axesorigin->{ 5, -27 1 I ; 
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A, H l o  

' P H  
6 7 8 9 

~lot[(calctrGerx[atph+h20h+de==adph+pih,pH,.251- 
calctrGerx[atp+h2o+de==ad~+p~,pH,.251~~.29815,~pH,5,9~,~~sLab~l- 
> {  i t p H m i ,  I * \  ! \ (TraditionalForm\' \ (A\-r\) S ' \ " O \ )  "1 1 ; 

a, s l o  

As the pH increases, the change in the transformed enthalpy becomes less favorable for hydrolysis, but the effect is small. 
On the other hand the transformed entropy increases rapidly with pH and causes the equilibrium to move further to the right. 

calck~rime[eg_,~Hlist~,~slist~l:=Module[{energy,dG},(*Calculates the apparent 
equilibrium constant K' at specified p H s  and ionic strengths for a biochemical 
equation typed in the form atp+hao+de==adp+pi. The names of the reactants call the 
appropriate functions of p H  and ionic strength. pHlist and islist can be entered as 
lists.*) 
energy=Solve[eq,del; 
dG=energy[[l,l,211/.pH->pHlist/.is->islist; 
E~p[-dG/(8.31451*.29815)]1 

Plot[Log[lO,calckprime[atp+h2o+de==adp+p~,pH,.25ll,(~H,5,9~,~esOrigin- 
> (5,5.5 1, AxesLabel-> ( l m p H 1 s ,  "LogK' "1 I ; 



Thermodynamics of Biochemical Reactions at Specified pH 285 

LogK'  

' PH 6 7 8 9 

4.4 (a) For ATP + HzO = ADP + Pi plot K versus pH at ionic strengths of 0, 0.10, and 0.25 M. (b) Plot IogK' versus pH 
at ionic strengths of 0, 0.10, and 0.25 M. (c) Plot K versus ionic strength at pHs 5 ,  7, and 9. 

(BasicBiochemData2 has to be loaded) 

ca~ckprime[e~,pH~ist_,islislist~]:=Module[{energy,dG},(*Calculates the apparent 
equilibrium constant K' at specified p H s  and ionic strengths for a biochemical 
equation typed in the form atp+hao+de-=adp+pi. The names of the reactants call the 
appropriate functions of pH and ionic strength. pHlist and islist can be entered as 
lists.*) 
energyesolve [eq,de] ; 
dG=energy~[l,l,211/.pH->pHlist/.is->islist; 
E~p[-dG/(8.31451*.29815)11 
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K' 

1 x 1 0 ~  

8 x 1 0 6  

6 x 1 0 6  

4 x 1 0 6  

2 X 1 O 6  

I . , , , ,  
' P H  

6 7 a 9 

The upper curve is for zero ionic strength. 

Show[plotlogKp00,plotlogKgl0,glotlotlogK~25,PiotRange-~{5,8.5},~esOrigin- 
> { 5 , 5  1, AxesLabel - > { l lpH",  "1ogK I Is}, Di splayFunc t ion- > $Di SplayFuncti on] ; 

logK' 

7 . 5 -  

7 -  

5 - 5 1  I . , / , I , , , , , , . ,  
' PH 

6 7 8 9 

The upper curve is for zero ionic strength. 

(c) In order to compare the ionic strength effects, the calculated apparent equilibrium constants are divided by the value at 
zero ionic strength at that pH. 
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K' (I) / K '  (I=O) 

l r  

t . , , . , . . . . , . . , . , , , ,  I , . . . , . , .  1 I/M 
0 . 0 5  0 . 1  0 . 1 5  0 . 2  0 . 2 5  0 . 3  

The lowest curve is for pH 5. 

4.5 For ATP + H 2 0  = ADP + Pi plot ArNH versus pH at ionic strengths of 0, 0.10, and 0.25 M. 

(BasicBiochemData has to be loaded) 

calckprimele~,pHlist_,islist_l:=Module[{energy,dG),(*Calculates the apparent 
equilibrium constant K' at specified p H s  and ionic strengths for a biochemical 
equation typed in the form atp+h2o+de==adg+pi. The names of the reactants call the 
appropriate functions of pH and ionic strength. pHlist and islist can be entered as 
lists. * )  
energy=Solve[eq,de]; 
dG=energy[[l,l,2]]/.pH->pHlist/.is->islist; 
E~p[-dG/(8.31451*.29815)]1 

kprime00=calckprime[atp+h2o+de==adp+pi,p€I,O]; 
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nH10= (-1/Log 1101 ) *D [Log IkprimelOI ,pH]; 

plotnH10=Plot[nH10,{~H,5,9},Disp~ayFunction-~Identityl; 

kprime25=calckprime[atp+h20+de==adp+pi,pH,.251; 

nH25=(-1/Log[101 )*D[Loglkprime251 ,PHI; 

plotnH25=Plot[nH25,{~H,5,9},D~splayFunct~on->Ident~tyl; 

Show [plotnHOO,plotnH1O,plotnH25 ,AxesLabel-> Cm'pKtl,  ArNH I' 1, AxesOrigin- 
>(5,-1},DisplayFunction->$Disp~ayFunction]; 

a, NH 

o t  

4.6 Calculate the standard transformed Gibbs energies of reaction for ATP + HzO = ADP + P, at temperatures of (a) 298.15 
K, (b) 283.15 K, and (c) 313.15 K, at pHs 5 ,  6, 7, 8, 9, and ionic strengths of 0, 0.10, and 0.25 M. 

(BasicBiochemData2 has to be loaded) 

(a) Calculations at 298.15 K 

calctrGerx[e~,pHlist_ri8lislist~]:=Module[{energy},(*Calculates the standard transformed 
Gibbs energy of reaction in kJ molA-l at specified ~ H S  and ionic strengths for a 
biochemical equation typed in the form atp+hao+de==adp+pi. The names of the reactants 
call the appropriate functions of pH and ionic strength. pHlist and islist can be 
lists. This program can be used to calculate the standard transformed enthalgy of 
reaction by appending an h to the name of each reactant.*) 
energy=Solve[eq,del; 
energy[[1,1,2]l/.pH->~H1ist/.is-~islist] 

dGerx298=calctrGerx[atp+h2o+de==adp+pi,{5,6,7,8,9},~0,.1,.25}1; 

TableForm[Transpose[dGerx298],TableHeadings-> 
M"}, ( " p H  5","pH 6","pH 7","pH 8","pH 9 " } } 1  

PH 5 P H  6 PH 7 
I = O M  - 3 5 . 2 9 9  -35.9137 - 3 7 . 6 0 4 8  

I = 0 . 1 0  M - 3 3 . 2 9 5 1  - 3 3 . 8 7 1 7  - 3 6 . 5  

I z 0 . 2 5  M - 3 2 . 5 6 3 3  - 3 3 . 2 1 6 6  - 3 6 . 0 3 5 3  

{"I =. 0 M " , " I  = 0.10 M " , " I  = 0.25 

PH 8 PH 9 
- 4 2 . 5 0 0 1  - 4 8 . 2 9 3 3  

- 4 1 . 4 7 8 4  - 4 7 . 0 9 8 3  

- 4 1 . 0 7 4 2  - 4 6 . 7 0 2 1  
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To make the calculation at the other temperatures, we can use calcdGHT to produce the function of T, pH and ionic strength 
that will give A G O  and A H o  at other temperatures. 

calcdGHT [speciesmat-1 : = 
ModuleIEdGzero, dGzeroT,dHzero,zi, nH, gibbscoeff,pHterm, 
isterm,gpfnsp,dGfn,dHfn),(*This program produces the function of T (in Kelvin), pH and 
ionic strength (is) that gives the standard transformed Gibbs energy of formation of a 
reactant (sum of species) and the standard transformed enthalpy. The input speciesmat 
is a matrix that gives the standard Gibbs energy of formation at 298.15 K, the 
standard enthalpy of formation at 298.15 K, the electric charge, and the number of 
hydrogen atoms in each species. There is a row in the matrix for each species of the 
reactant. gpfnsp is a list of the functions for the transformed Gibbs energies of the 
species. The output is in the form {dGfn,dHfn), and energies are expressed in kJ 
molA-l. The values of the standard transformed Gibbs energy of formation and the 
standard transformed enthalpy of formation can be calculated at any temperature in the 
range 273.15 K to 313.15 K, any pH in the range 5 to 9, and any ionic strength in the 
range 0 to 0.35 m by use of the assignment operator(/.).*) 
{dGzero,dHzero,zi,nH}=Transpose[speciesmat]; 
gibbscoeff=9.20483*1OA-3*t-l.284668*lOA-5*tA2+4.95l99*lOA-8*tA3; 
dGzeroT=dGzero*t/298.15+dHzero*(l-t/298.15); 

istennG = gibbscoeff*((ziA2) - nH)*(isA.5)/(1 + 1.6*isA.5); 
gpfnsp=dGzeroT - pHterm - istennG; 
dGfn=-8.31451*(t/100O)*Log[A~ply[Plus,Exp[-l*gpfnsp/(8.3l45l*(t/lOOO)~lll; 
dIifn=-tA2*D[dGfn/t,t]; 
{dGfn,dHfn)l 

pHterm nH*8.31451*(t/1000)*LOg[10A-pH]; 

(b) Calculate the standard transformed Gibbs energies of of the reactants and the reaction at 283.15 K. 

atp283=calcdGHT[atpspl [[111/.t->283.15; 

adp283=calcdGHT[adpspl ttlIl/.t->283.15; 

dGerx283=calctrGerx[at~283+h20283+de==adp283+pi283,~5,6,7,8,9~,~0,.1,.25~1 

{ { - 3 4 . 6 9 1 3 ,  - 3 2 . 9 1 4 7 ,  - 3 2 . 2 4 6 8 } ,  { - 3 5 . 3 3 8 1 ,  - 3 3 . 4 5 2 2 ,  - 3 2 . 8 3 5 1 } ,  { - 3 6 . 9 4 1 5 ,  - 3 5 . 8 3 8 6 ,  -: 
( - 4 1 . 4 7 0 8 ,  - 4 0 . 4 6 9 8 ,  - 4 0 . 0 8 9 4 } ,  I - 4 6 . 9 0 5 5 ,  - 4 5 . 7 9 0 5 ,  - 4 5 . 4 2 2 8 } }  

TableForm[Transpose[dGerx283] ,TableHeadings->{{'I = 0 M1a,"I = 0.10 M " , " I  = 0.25 
M"),{"pH 5","pH 6","pH 7","pH 8","gH 9")>1 

P H  5 PH 6 PH 7 P H  8 PH 9 
I = O M  - 3 4 . 6 9 1 3  - 3 5 . 3 3 8 1  - 3 6 . 9 4 1 5  - 4 1 . 4 7 0 8  - 4 6 . 9 0 5 5  

I = 0 . 1 0  M - 3 2 . 9 1 4 7  -33 .4522 - 3 5 . 8 3 8 6  - 4 0 . 4 6 9 8  - 4 5 . 7 9 0 5  

I = 0 . 2 5  M - 3 2 . 2 4 6 8  - 3 2 . 8 3 5 1  - 3 5 . 3 8 1 4  - 4 0 . 0 8 9 4  - 4 5 . 4 2 2 8  

(c) Calculate the standard transformed Gibbs energies of the reactants and the reaction at 313.15 K. 

atp313=calcdGHT[atpspl ~[111/.t->313.15; 

adp313=calcdGHT[adpspl [[lIl/.t->313.15; 
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dGerx313=ca1ctrGerx[atg313+h20313+h2o313+de==adp313+p~313,~5,6,7,8,9~,~0,.1,.25~1 

{{-35.9046, -33.6656, -32.8677}, {-36.4876, -34.2845, -33.58951, 1-38.272, -37.1598, -3f 
{-43.5265, -42.482, -42.0518}, {-49.6803, -48.4002, -47.973611 

TableFonn[Transpose[dGerx313] ,TableHeadings->{{~'I = 0 M " , " I  = 0.10 M " , " I  = 0.25 
M"),{"pH 5","pH 6","pH 7","pH 8","pH 9 " ) ) l  

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -35.9046 -36.4876 -38.272 -43.5265 -49.6803 

I = 0.10 M -33.6656 -34.2845 -37.1598 -42.482 -48.4002 

I = 0.25 M -32.8677 -33.5895 -36.6852 -42.0518 -47.9736 

Since the hydrolysis of ATP evolves heat, Le Chatelier's principle says raising the temperature will cause the reaction to go 
less far to the right. But at 3 13 K the transformed Gibbs energy of reaction is more negative. To apply Le Chatelier we have 
to look at the apparent equilibrium constants. At pH 7 and ionic strength 0, we obtain 

6 
6.63414 10 

6 
3.9283 10 

k313=Exg[38.31/(8.31451*.31315)1 

6 
2.45525 10 

These apparent equilibrium constants are in accord with what we expect. 

4.7 Calculate the standard transformed Gibbs energies of reaction at 298.15 K and the experimental pH and ionic strength 
for the reactions in the Goldberg and Tewari series of six critical reviews for which all the reactants are in BasicBiochem- 
Data2. Compare the calculated standard transformed Gibbs energies of reaction with the experimental values. At present 
there is not enough information to calculate the effects of temperature and metal ions, and so these effects are ignored. The 
three steps in this process are: (a) Make a table of the calculated standard transformed Gibbs energies of reaction. (b) Make 
a table of the relevant data in the Goldberg and Tewari Tables. (c) Make a table of the differences between the values of the 
standard transformed Gibbs energies of reaction calculated in part (a) and the experimental values inthe Goldberg and 
Tewari Tables. 

(BasicBiochemData has to be loaded) 

(a) Make a table of the calculated standard transformed Gibbs energies of reaction. 

calcrow[eg, pHlist-, islist-, rx-] := 
Module[{energy, do, gvector}, (*Calculates the standard transformed Gibbs energy 

of reaction for a specified reaction at specified p H s  and a single 
ionic strength. It then prepends the reaction without the +de=. 

This second form of the reaction must be in quotation marks.*) 
energy = Solve [eq, de] ; 
dG=energy[[l, 1, 211 /. pH-tpHliSt /. is+islist; 
gvector = Flatten[Map[NumberForm[#, {a,  2}] &, {dG}, {2}]]; 
Prepend [gvector, 1x1 3 
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glxlxlxl= calcrow[ethanol+nadox+de :: acetaldehyde+nadred, 
7, .25, l~ethanol+nadox:-acetaldehyde+nadredl'] ; 

glxlxlx26 = calcrav[glycolate + nadox + de == glyoxylate + nadred. 
7.8, -03, llglycolate+nadox=gloxylate+nadred"]; 

glxlxlx27b = calcrow [lactate + nadox + de == pyruvate + nadred, 
6.8, -05, **lactate+nadox=pyruvate+nadred"]; 

glxlxlx40- 
calcrow[malate+nadgox+h2o+de==pyruvate+nadgred+co2tot,7,.25, 

*1malate+nadpox+h20=pyruvate+nadgred+co2tot1ml; 

glxlxlx67= 
calcrow[mannitolD+nadox+de:=fructose+nadred,8.O5,.O5, 

"mannitolD+nadox=fructose+nadred"l; 

glxlxlx79= 
calcrow[glycolate+nadpox+de=:glyo~late+nadpred,7.92,.1, 

**glycolate+nadpox=glyoxylate+nadpred"l; 

glxlx99x7= 
calcrow~lactate+oxaloacetate+de..malate+py~vate,7~8,.1, 

~llactate+oxaloacetate=malate+~yruvatell I ; 

glx4xlxl = calcrow[alanine+nadox+h2o+de =:pyruvate+nadred+ammonia, 
7.97, -1, "alanine+nadox+h2o=pyruvate+nadred+ammonia"]; 

glx4xlx2 = calcrow[glutamate+nadox+h2o+de == ketoglutarate+nadred+ammonia, 
6.9, .24, "glutamate+nadox+h2o=ketoglutarate+nadred+ammonia"]; 

glx4xlx3 = calcrow [glutamate + nadpox + h20 + de == ketoglutarate + nadgred + ammonia, 
7, -47. ~1glutamate+nadpox+h2o=ketoglutarate+nadgred+anrmonia"]; 

glx4xlxlO = calcrow[glycine+nadox+h2o+de =:glyoxylate+nadred+ammonia, 
6.4, .08, *~glycine+nadox+h20=glyoxylate+nadred+ammonia~~]; 
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glx6xlxl= 
calcrow[nadox+nadpred+de=:nadred+nadpox,7.5,.1, 

mlnadox+nadpred=nadred+nadpoxll 1 ; 

glx6x4x2= 
calcrow[nadpox+2*glutathionered+de=:nad~red+glutathioneox,6.9,.25, 

"nadpox+2*glutathionered=nadpred+glutathioneo~~~]; 

glx6x4x5= 
calcrow[nadpox+thioredoxinred+de==nadpred+thioredoxinox,7,.1, 

11nadpox+2*thioredoxinred=nad~red+thioredoxinox~~l; 

g2x3xlx54= 
ca~crow[acetylcoA+formate+de==coA+pyruvate,7.2,.O5, 

"acetylcoA+ f ormate=c~A+pyruvate~~ 1 ; 

g2x6xlx35= 
calcrow[glycine+oxaloacetate+de==glyoxylate+aspartate,7.1,.1, 

llglycine+oxaloacetate=glyoxylate+asgartatemtl; 

g2x7xlx2 3 = 
calcrow[atp+nadox+de==adp+nadpox,6.1,.1, 

llatp+nadox=adp+nadpox" I ; 

g2x7x4x3 = 
ca1crow[2*adp+de==amp+atp,7.41..04, 

"2*adp=amp+atpm11 ; 

g3xlx3xl= 
calcrow[amp+h2o+de~:adenosine+pi,8.86,.3, 

"amp+h2o=adenosine+pi "1 ; 

g3xlx3xlb= 
calcrow[fructose6phos+h2o+de:=fructose+pi,8.4,.29, 

~~fructose6phos+h2o=f ructose+piall ; 

g3xlx3xlc= 
calcrow[glucose6phos+h2o+de=:glucose+p~,6.99,.25, 

11glucose6phos+h20=glucose+pi"l ; 
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g3x2xlx3= 
calcrow[maltose+h20+de=:2*glucoser5, .01, 

1*maltose+h20=2 *glucose" ] ; 

g3x2xlx23= 
calcrow[lactose+h2o+de:~glucose+galactoser5.65,.1, 

111actose+h20=glucose+galactose1~l; 

g3x2x2x4= 
calcrow[amp+h2o+de==adenine+ribose5phos,8,.1, 

1*amp+h20=adenine+ribose5phos 1 ; 

g3x2x2x7 = 
calcrow[adenosine+h20+de==adenine+ribose,7,.1, 

nadenosine+h20=adenine+ribosenl; 

g3x5xlx2= 
calcrow[glutamine+h2o+de==glutamate+ammoniar5.5,.1, 

11glutamine+h20=glutamate+ammonia" I ; 

g4xlx3xl= calcrow[citrateiso+de == succinate+glyoxylate, 
7.7, .l, llcitrateiso=succinate+glyoxylatelm]; 

g4xlx3x6 = 
calcrow [citrate + de =: acetate + oxaloacetate, 7, .2, ~mcitrate=acetate+oxaloacetate"] ; 

g4xlx3x7 = calcrow[oxaloacetate+acetylcoA+h2o+de == citrate+coA, 
7.05, .25, l~oxaloacetate+acetylcoA=citrate+coA"]; 

g4Xlx99x1 = calcrow [tryptophaneL + h20 + de == indole + pyruvate + ammonia, 
7.97, .l, "tryptophaneL+h20=indole+pyruvate+ammonia~~]; 

g4x2xlx2 calcrow [ fumarate + h20 + de := malate, 7.3, .l, "fumarate+h20=malate"] ; 

g4x2xlx3 
calcrow[citrate + de =: aconitatecis + h20, 7.4, .l, 1gcitrate=aconitatecis+h20"] ; 

g4x3xlxl= 
calcrow[aspartate +de := fumarate + ammonia, 7.37, .l, llaspartate=fumarate+ammonia"] ; 

g5x3xlx5 calcrow [glucose + de :: fructose, 7.5, -1, ~ l g l ~ ~ o s e = f r u ~ t ~ s e " ]  ; 

g5x3xlx5b = calcrow [xylose + de == xylulose, 8.7, .l, ~lxylose=xylulose~l] ; 

g5x3xlx7 = calcrow[mannose + de == fructose, 7, .05, lmmannose=fructose''] ; 

g5x3xlx9 = 
calcrow[glucose6phos +de =: fructose6phos, 8.7, .3, mmglucose6phos=fructose6ghos"]; 

~ ~ 5 ~ 3 x 1 ~ 1 5  = calcrow[lyxose + de == xylulose, 7, .06, ~*lyxose=xylulose~t] ; 

g5x3xlx20 = calcrow[ribose + de == ribulose, 7.4, .04, llribose=ribulose"] ; 
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g5x3xlxa = calcrow[mannose +de :E fructose, 7.6, -02, ~~mannose=fructose~'] ; 

gsx4x2x2 = 
calcrow[glucoselphos +de == glucose6phos, 8.48, .l, ~1glucoselphos=glucose6phos~~]; 

g5x4x2x7 =calcrow[riboselphos+de =:ribose5phos, 7, .25, ~~riboselphos=ribose5ghos"l; 

g6x2xlxl= calcrow[atp+acetate+coA+de == amp+ppi+acetylcoA, 
7, .25, "atp+acetate+coA=amg+ppicacetylcoA~l] ; 

g6x3xlx2 = calcrow[atp + glutamate + ammonia + de := adp +pi + glutmine, 
7, -3, llatp+glutamate+ammonia=adp+pi+glutaminel'] ; 

g6x4xlx1 = calcrow [atp + pyruvate + co2tot + de EE adp +pi + oxaloacetate, 
7.4, .02, ~~atp+pyruvate+co2tot=adp+pi+oxaloacetate~']; 

TableFonn [ {glxlxlxl, glxlxlx26, glxlxlx27b, glxlxlx37, glxlxlx39, glxlxlx40, glxlxlx42, 
glxlxlx67, glxlxlx79, glxlX99x7, glx2xlx2, glx2xlx101 glx2xlx43, glx4Xlx1, 

g2x4xlx8, g2x4x2x1, g2x6xlx1, g2x6xlx2, g2x6x1x35, g2x7xlx1, g2x7xlx23, g2x7x4x3, 
g3xlx3x1, g3xlx3xlb, g3xlx3xlc, g3x1x3x1df g3xlx3xle, g3x2xlx3, g3x2xlx23, 

g4x2xlx3, g4x3xlx1, g5x3xlx5, g5x3x1x5bl g5x3xlx7, g5x3xlx9, g5x3xlx15, 
g5x3xlx20, g5x3xlxa, g5x4x2x2, g5x4x2x7, g6x2xlx1, g6x3xlx2, g6x4xlxl}, 

g 1 ~ 4 ~ 1 ~ 2 ,  g 1 ~ 4 ~ 1 ~ 3 ,  g l ~ 4 ~ l ~ l O  glx6xlxlr g 1 ~ 6 ~ 4 ~ 2 ,  g 1 ~ 6 ~ 4 ~ 5 ,  g2~3X1X54, g 2 ~ 4 ~ 1 ~ 7 ,  

g 3 ~ 2 ~ 2 ~ 4 ,  g 3 ~ 2 ~ 2 ~ 7 ,  g 3 ~ 5 ~ 1 ~ 2 ,  g 4 ~ 1 ~ 3 ~ 1 ,  g 4 ~ 1 X 3 ~ 6 ,  g4X1X3X7, g4XlX99X1, gdX2XlX2, 

TableHeadings + {{mll.l.l.lll, m11.1.1.26m1, 111.1.1.27b", "1.1.1.37", "1.1.1.39", 
"1.1.1.40", "1.1.1.42", "1.1.1.67", "1.1.1.79", "1.1.99.7", "1.2.1.2", 
1.2.1. loi*, 1.2.1.43", 1.4.1. lit, 1.4.1.2 n, n 1.4.1.3", 1.4.1. l o r i ,  "1.6.1. l", 

I* 1.6.4 .2 ' I ,  1 .6.4.5 1 1 ,  2 .3 .1.54", 1- 2 . 4  . 1 .7 'I, 18 2 .4.1.8 11, 2 -4.2- 1 11 2 .6.1. l", 
"2.6.1.2", 1i2.6.1.35in, 112.7.1.111, "2.7.1.23". ii2.7.4.3ii, "3.1.3 .l", "3 .l. 3 .lb", 
"3.1.3.1~" , "3.1.3. ld", "3.1.3. le", "3.2.1.3", "3 .2.1.23", "3.2.2.4", 
n 3.2.2.7 'I, 1~3.5.1.2*', 1'4.1.3. l", 4.1.3.61'~ 4.1.3.7 It 4.1.99. l", I* 4.2.1.2", 
11 4.2.1.3 11, 1~4.3.1.1" , 5.3 . 1 -5 'I, "5 .3.1.5bi*, 5 .3 -1.7 I@, In 5.3 . 1 -9 "5 .3 . 1 .15", 
"5.3.1.2 0 , l1 5.3.1. aim, 5.4.2.2 'I, In 5.4.2.7". 6.2.1.1 " , "6.3 . 1 .2", 'I 6.4.1.1" } , 
{llReactionpl, "Calc G 1 l l } } ,  Tablespacing - >  {I, l}] 

1.1.1.1 

1.1.1.26 

1.1.1.27b 

1.1.1.37 

1.1.1.39 

1.1.1.40 

1.1.1.42 

1.1.1.67 

1.1.1.73 

1.1.99.7 

1.2.1.2 

1.2.1.10 

1.2.1.43 

1.4.1.1 

Reaction 
ethanol+nadox==acetaldehyde+nadred 

glycolate+nadox=gloxylate+nadred 

lactate+nadox=pyruvate+nadred 

malate+nadox=oxaloacetate+nadred 

malate+nadox+h2o=pyruvate+nadred+co2tot 

malate+nadpox+h2o=pyruvate+nadpred+co2tot 

citrateiso+nadpox+h2o=ketoglutarate+nadpred+co2tot 

mannitolD+nadox=fructose+nadred 

glycolate+nadpox=glyoxylate+nadpred 

lactate+oxaloacetate=malate+pyruvate 

formate+nadox+h2o=co2tot+nadred 

acetaldehyde+coA+nadox=acetylcoA+nadred 

formate+nadpox+h2o=co2tot+nadpred 

alanine+nadox+h2o=pyruvate+nadred+monia 

Calc G' 
22.095 

38.896 

26.3652 

28 -2639 

4.45812 

1.71088 

-3.83041 

1.88013 

38.2358 

-4.92266 

-15.1398 

-13.861 

-20.4151 

29.9682 
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1.4.1.2 

1.4.1.3 

1.4.1.10 

1.6.1.1 

1.6.4.2 

1.6.4.5 

2.3 .l. 54 

2.4.1.7 

2.4.1.8 

2.4.2.1 

2.6.1.1 

2.6.1.2 

2.6.1.35 

2.7.1.1 

2.7.1.23 

2.7.4.3 

3.1.3.1 

3 .l. 3. lb 

3 .l. 3. lc 

3.1.3. Id 

3.1.3. le 

3.2.1.3 

3.2.1.23 

3.2.2.4 

3.2.2.7 

3.5.1.2 

4.1.3.1 

4.1.3.6 

4.1.3.7 

4.1.99.1 

4.2.1.2 

4.2.1.3 

4.3.1.1 

5.3.1.5 

5.3.1.5b 

5.3.1.7 

glutamate+nadox+h2o=ketoglutarate+nadred+ammonia 38.7895 

glutamate+nadpox+h2o=ketoglutarate+nadpred+amonia 36.5242 

glycine+nadox+h2o=glyoxylate+nadred+ammonia 

nadox+nadpred=nadred+nadpox 

nadpox+2*glutathionered=nadpred+glutathioneox 

nadpox+2*thioredoxinred=nadpred+thioredoxinox 

acetylcoA+fonnate=coA+pyruvate 

sucrose+pi=glucoselphos+fructose 

maltose+pi=glucose+glucoselphos 

adenosine+pi=adenine+riboselphos 

aspartate+ketoglutarate=oxaloacetate+glutamate 

alanine+ketoglutarate=pyruvate+glutarnate 

glycine+oxaloacetate=glyoxylate+aspartate 

atp+glucose=adp+glucose6phos 

atp+nadox=adp+nadpox 

2*adp=arnp+atp 

amp+h2o=adenosine+pi 

fructose6phos+h2o=fructose+pi 

glucose6phos+h2o=glucose+pi 

glycerol3phos+h2o=glycerol+pi 

ppi+h20=2*pi 

maltose+h20=2*glucose 

lactose+h2o=glucose+galactose 

amp+h2o=adenine+ribose5phos 

adenosine+h2o=adenine+ribose 

glutamine+h2o=glutamate+ammonia 

citrateiso=succinate+glyoxylate 

citrate=acetate+oxaloacetate 

oxaloacetate+acetylcoA=citrate+coA 

tryptophaneL+h2o=indole+pyruvate+ammonia 

fumarate+h2o=malate 

citrate=aconitatecis+h20 

aspartate=fumarate+ammonia 

glucose=fructose 

xylose=xylulose 

rnannose=fructose 

51.8996 

-0.891743 

6.01048 

6.86709 

11.0295 

-11.5121 

-1.06837 

27.5509 

-1.47 

-3.39595 

9.94413 

-20.0611 

-8.32968 

2.7092 

-12.9696 

-13.6567 

-11.6294 

1.78075 

-23.15 

-19.92 

-20.31 

5.74391 

3.5668 

-12.7946 

-0.531653 

3.2174 

-45.0692 

22.7596 

-3.60654 

8.42485 

12.2178 

0.39 

4.34 

-5.51 
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5.3.1.9 glucose6phos=fructose6phos 3.14096 

5.3.1.15 lyxose=xylulose 2.99 

5.3.1.20 ribose=ribulose 2.85 

5.3.1.a mannose=fructose -5.51 

5.4.2.2 glucoselphos=glucose6phos -7.06836 

5.4.2.7 riboselphos=ribose5phos -8.08 

6.2.1.1 atp+acetate+coA=amp+ppi+acetylcoA -5.97683 

6.3.1.2 atp+glutamate+ammonia=adp+pi+glutamine -22.6469 

6.4.1.1 atp+pyruvate+co2tot=adp+pi+oxaloacetate -10.7687 

(b) Make a table of the relevant data in the Goldberg and Tewari Tables. First make a vector of the experimental apparent 
equilibrium constants. 

gHvector={7.0,7.8,6.8,7.1,6.5,7.0,6.9,8.05,7.92,7.8,6.2,7.3,7.5,7.97,6.9,7.~,6.4,7.5,6. 
9,7.0,7.2,8.25,7.0,7.0,7.4,7.4,7.1,6.07,6.1,7.41,8.86,8.4,6.99,7.0,7.0,5.0,5.65,8.0,7.0 
,5.5,7.7,7.0,7.05,7.97,7.3,7.4,7~37,7~5,8.7,7.0,8.7,7.0,7.4,7.6,8.48,7.0,7.0,7.0,7.4~; 

isvector={.25,.03,.05,.25,.05,.25,.25,.05,.1,.1,.07~.03~.1~.1~.24~~~~~~~~~~~~~~~~~~~~~~ 

,.1,.05,.3,.06,.04,.02,.1,.25,.25,.3,.02} 

{0.25, 0.03, 0.05, 0.25, 0.05, 0.25, 0.25, 0.05, 0.1, 0.1, 0.07, 0.03, 0.1, 0.1, 0.24, ( 
0.1, 0.1, 0.1, 0.5, 0.1, 0.1, 0.1, 0.04, 0.3, 0.24, 0.25, 0.1, C.l, 0.01, 0.1, 0.1, 0. 
0.1, 0.1, 0.1, 0.05, 0.3, 0.06, 0.04, 0.02, 0.1, 0.25, 0.25, 0.3, 0.02) 

, . 1 , . 1 , . 1 , . 1 , . 5 , . 1 , . 1 , ~ 1 ~ . 0 4 ~ ~ 3 ~ ~ 2 4 ~ ~ 2 5 ~ ~ 1 ~ ~ 1 ~ ~ 0 1 t ~ 1 ~ ~ 1 ~ ~ 1 ~ ~ 1 ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

calcgvector=~glxlxlxl,glxlxlx26,glxlxlx27b,glxlxlx37 .glxlxlx39, glxlxlx40, glxlxlx42, glxl 
x1x67,g1x1x1x79,glxlx99x7,g1x2x1x2,g1x2x1X10,g1x2x1x43,g1x4x1x1,g1~4x1x2,g1~4~1~3,g1~4~ 
lxlO,glx6xlxl,glx6x4x2, glx6x4x5, g2x3x1x54,g2x4x1x7 ,g2~4~1x8,g2~4~2~1, g2x6xlx1, g2x6xlx2, 
g2~6~1~35,g2~7~1x1,g2x7xlx23,g2~7~4~3,g3xlx3xl,g3xlx3xlb,g3xl~3xlc,g3xlx3xld,g3xlx3xle, 
g3x2xlx3, g3x2xlx23, g3x2x2x4, g3x2x2x7, g3x5xlx2, g4xlx3x1, g4xlx3x6, g4xlx3x7, g 4 ~ 1 ~ 9 9 ~ 1 ,  g4x2 
~1x2, g4x2xlx3, glx3xlx1, g5x3xlx5, gSx3xlx5b, g5x3xlx7, g5x3xlx9, g5x3xlx15, g 5 ~ 3 ~ 1 ~ 2 0 ,  g 5 ~ 3 ~ 1 x  
a,g5x4x2x2,g5x4x2x7,g6~2~lxl,g6~3~1~2~~6~4~1~~l tlA11,211 

{22.095, 38.896, 26.3652, 28.2639, 4.45812, 1.71088, -3.83041, 1.88013, 38.2358, -4.9221 
38.7895, 36.5242, 51.8996, -0.891743, 6.01048, 6.86709, 11.0295, -11.5121, -1.06837, 2 

-20.0611, -8.32968, 2.7092, -12.9696, -13.6567, -11.6294, 1.78075, -23.15, -19.92, -2C 
-0.531653, 3.2174, -45.0692, 22.7596, -3.60654, 8.42485, 12.2178, 0.39, 4.34, -5.51, ? 

-8.08, -5.97683, -22.6469, -10.7687) 
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roundCvec-,params-:E4,21l:=(*When a list of numbers ver has more digits to the r i g h t  
of the decimal point than you want, say 5, you can request 2 by using 
roundIvec,C5,2)1.*) 
Flat ten [Map CNumberForm I#, params 1 &, {vec 1, { 2 1 I I 

calcgvec=round[calcgector,{S,2}] 

{22.1, 38.9, 26.37, 28.26, 4.46, 1.71, -3.83, 1.88, 38.24, -4.92, -15.14, -13.86, -20.4; 
6.87, 11.03, -11.51, -1.07, 27.55, -1.47, -3.4, 9.94, -20.06, -8.33, 2.71, -12.97, -1: 
-20.31, 5.74, 3.57, -12.79, -0.53, 3.22, -45.07, 22.76, -3.61, 8.42, 12.22, 0.39, 4.34 
-8.08, -5.98, -22.65, -10.77) 

ecnos=Ciil.l.l.lll, 111.1.1.26'1,1m1.1.1.27bii,  "1.1.1.37ii,111.1.1.39ii,  m11.1.1.40ii, 111 .1 .1 .42" ,  \ 
"1.1.1.67",  "1.1.1.79","1.1.99.7","1.2",.1.2.1.10", " 1 . 2 . 1 . 4 3 " .  "1.4.1 .1", "1. \ 
4.1.2", "1.4.1- 3 " ,  "1.4.1. lo", " 1 . 6 . 1 .  I", " 1 . 6 . 4 . 2 " .  " 1 . 6 . 4 . 5  ", " 2 . 3 . 1 . 5 4 " ,  " 2 . 4 . 1 .  \ 
7 1 1 ,  "2.4.1. a",  " 2 . 4 . 2 . 1 " .  " 2 . 6 .  1. I", " 2 . 6 .  1. 2".  " 2 . 6 .  I. 35 81, " 2 . 7  . 1. I", '12.7.1.23 1 1 ,  " 2 .  \ 
7 . 4 . 3 " ,  " 3 . 1 . 3 .  I", " 3 . 1 . 3 .  1b" , " 3 . 1 . 3 . 1 ~ " .  " 3 . 1 . 3 .  Id", " 3 . 1 . 3 .  le", " 3 . 2 . 1 . 3 " ,  " 3 . 2 . 1 .  \ 

2 . 1 . 2 " .  114.2.1.3 i ~ 5 . 3 . 1 . 9 1 ~ ,  " 5 . 3 . 1 .  \ 
15", " 5 . 3 . 1 . 2 0 "  , " 5 . 3 . 1  .ana, " 5 . 4 . 2 .  2Ii, "5.4.2. I", " 6 . 2 . 1 .  I", i i6 .3 .1.2",  i16.4.1.111 } ; 

2 3'1, " 3 . 2 . 2 . 4 " ,  " 3 . 2 . 2 -  I", " 3 . 5 . 1 . 2 " ,  "4 .1 .3 .1" .  " 4 . 1 . 3 . 6 " ,  " 4 . 1 . 3 . 7 " ,  "4.1.99.1", " 4 .  \ 
" 4 . 3 . 1 .  lli, " 5 . 3 . 1 .  S " ,  im5.3.1.5bi*, im5.3.1. 7 

TableForm~TransposeI~ecnos,rxvector,vector,~Hvector,~svector,gradevector1l,TableHeading 
s->{None, InEC  NOS.^^, llReaction",llK1ln l 'pH1r, "I", "Gr" 11, Tablespacing-> {1 ,1 )  1 

EC Nos. 
1.1.1.1 

1 .l. 1.26 

1 .l. 1.27b 

1.1.1.37 

1.1.1.39 

1.1.1.40 

1.1 .l. 42 

1 .l. 1.67 

1 .l. 1.79 

1 .l. 99.7 

1.2.1.2 

1.2.1.10 

1.2.1.43 

React ion 
ethanol+nadox==acetaldehyde+nadred 

glycolate+nadox=gloxylate+nadred 

lactate+nadox=pyruvate+nadred 

malate+nadox=oxaloacetate+nadred 

malate+nadox+h2o=pyruvate+nadred+co2tot 

malate+nadpox+h2o=pyruvate+nadpred+co2tot 

citrateiso+nadpox+h2o=ketoglutarate+nadpred+co2tot 

mannitolD+nadox=fructose+nadred 

glycolate+nadpox=glyoxylate+nadpred 

lactate+oxaloacetate=malate+pyruvate 

formate+nadox+h2o=co2tot+nadred 

acetaldehyde+coA+nadox=acetylcoA+nadred 

formate+nadpox+h2o=co2tot+nadpred 

K' p H  I Gr 
0.0000925 7. 0.25 A 

-7 
1.03 10 7.8 0.03 B 

0.000017 6.8 0.05 A 

0.000012 7.1 0.25 A 

0.00112 6.5 0.05 C 

7. 0.25 A 0.034 

0.72 6.9 0.25 A 

0.056 8.05 0.05 B 

-11 
9. 10 7.92 0.1 B 

4.3 7.8 0.1 B 

42 0 6.2 0.07 D 

7.3 0.03 B 2000 

7.5 0.1 c 650. 

3 

1.4.1.1 

1.4.1.2 

1.4.1.3 

1.4.1.10 

1.6.1.1 

1.6.4.2 

alanine+nadox+h2o=pyruvate+nadred+amonia 500000 7.97 0.1 B 

-6 
glutamate+nadox+h2o=ketoglutarate+nadred+ammonia 1.5 10 6.9 0.24 A 

-6 
glutamate+nadpox+h2o=ketoglutarate+nadpred+a.mmonia 1.2 10 7 .  0.47 A 

glycine+nadox+h2o=glyoxylate+nadred+ammonia 0.000057 6.4 0.08 C 

7 . 5  0.1 B nadox+nadpred=nadred+nadpox 1.41 

nadpox+2*glutathionered=nadpred+glutathioneox 0.0156 6.9 0.25 A 
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1.6.4.5 

2.3.1.54 

2.4.1.7 

2.4.1.8 

2.4.2.1 

2.6.1.1 

2.6.1.2 

2.6.1.35 

2.7.1.1 

2.7.1.23 

2.7.4.3 

3.1.3.1 

3.1.3.lb 

3.1.3. lc 

3.1.3. Id 

3.1.3. le 

3.2.1.3 

3.2.1.23 

3.2.2.4 

3.2.2.7 

3.5.1.2 

4.1.3.1 

4.1.3.6 

4.1.3.7 

4.1.99.1 

4.2.1.2 

4.2.1.3 

4.3.1.1 

5.3.1.5 

5.3.1.5b 

5.3.1.7 

5.3.1.9 

5.3.1.15 

5.3.1.20 

5.3.1.a 

nadpox+2*thioredoxinred=nadpred+thioredoxinox 

acetylcoA+formate=coA+pyruvate 

sucrose+pi=glucoselphos+fructose 

maltose+pi=glucose+glucoselphos 

adenosine+pi=adenine+riboselphos 

aspartate+ketoglutarate=oxaloacetate+glutamate 

alanine+ketoglutarate=pyruvate+glutamate 

glycine+oxaloacetate=glyoxylate+aspartate 

atp+glucose=adp+glucose6phos 

atp+nadox=adp+nadpox 

2*adp=amp+atp 

amp+h2o=adenosine+pi 

fructose6phos+h2o=fructose+pi 

glucose6phos+h2o=glucose+pi 

glycerol3phos+h2o=glycerol+pi 

ppi+h20=2*pi 

maltose+h20=2*glucose 

lactose+h2o=glucose+galactose 

amp+h2o=adenine+ribose5phos 

adenosine+h2o=adenine+ribose 

glutamine+h2o=glutamate+ammonia 

citrateiso=succinate+glyoxylate 

citrate=acetate+oxaloacetate 

oxaloacetate+acetylcoA=citrate+coA 

t r y p t o p h a n e L + h 2 o = i n d o l e + p y r u v a t e + a o n i a  

fumarate+h2o=malate 

citrate=aconitatecis+h20 

aspartate=fumarate+ammonia 

glucose=fructose 

xylose=xylulose 

mannose=fructose 

glucose6phos=fructose6phos 

lyxose=xylulose 

ribose=ribulose 

mannose=fructose 

0.036 

23 

31.5 

0.23 

0.00541 

0.148 

0.658 

0.016 

294 

29.3 

0.365 

189 

262 

110 

68 

20000 

200 

35.2 

170 

53 

896 

0.0023 

0.877 

6 
1.14 10 

0.00022 

4.87 

0.032 

0.00471 

0.87 

0.172 

3. 

0.299 

0.23 

0.391 

1.5 

7. 0.1 c 

7.2 0.05 C 

8.25 0.1 A 

7. 0.1 c 

7. 0.1 B 

7.4 0.1 A 

7.4 0.5 A 

7.1 0.1 B 

6.07 0.1 A 

6.1 0.1 B 

7.41 0.04 A 

8.86 0.3 A 

8.4 0.24 A 

6.99 0.25 A 

7. 0.1 B 

7. 0.1 B 

5. 0.01 c 

5.65 0.1 A 

8. 0.1 B 

7. 0.1 B 

5.5 0.1 B 

7.7 0.1 B 

7. 0.02 A 

7.05 0.25 A 

7.97 0.1 A 

7.3 0.1 A 

7.4 0.1 A 

7.37 0.1 A 

7.5 0.1 A 

8.7 0.1 A 

7. 0.05 B 

8.7 0.3 A 

7. 0.06 B 

7.4 0.04 A 

7.6 0.02 B 
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5.4.2.2 glucoselphos=glucose6phos 17.1 8.48 U . 1  A 

7. 0.25 A 5.4.2.7 riboselphos=ribose5phos 26 

6.2.1.1 atp+acetate+coA=amp+ppi+acetylcoA 

6.3.1.2 atp+glutamate+ammonia=adp+pi+glutamine 

7. 0.25 A 

7. 0.3 A 

11.1 

27 0 

7.4 0.02 A 6.4.1.1 atp+pyruvate+co2tot=adp+pi+oxaloacetate 6.55 

The references are given in Goldberg and Tewari. 

(c) Make a table of the differences between the values of the standard transformed Gibbs energies of reaction calculated in 
part (a) at pH 7 and the experimental values in Goldberg and Tewari. 
Calculate the experimental standard transformed Gibbs energies of reaction. 

gprime=-8.31451*.29815*Log[vectorl 

{23.0254, 39.883, 27.2248, 28.0882, 16.8432, 8.38238, 0.814352, 7.1454, 57.3416, -3.615E 

33.2431, 33.7963, 24.2256, -0.851749, 10.3137, 8.24069, -7.7728, -8.55242, 3.64328, 1; 
-8.37294, 2.49845, -12.9941, -13.8038, -11.6524, -10.46, -24.5505, -13.1344, -8.82773, 
0.325361, -34.5731, 20.8776, -3.92444, 8.53267, 13.2825, 0.345227, 4.36364, -2.72343, 
-7.03799, -8.07673, -5.96675, -13.8783, -4.65914) 

gprimer=round [gprime, { 5,2 1 1 

(23.03, 39.88, 27.22, 28.09, 16.84, 8.38, 0.81, 7.15, 57.34, -3.62, -14.97, -18.84, -16. 
10.31, 8.24, -7.77, -8.55, 3.64, 12.94, 4.74, 1.04, 10.25, -14.09, -8.37, 2.5, -12.99, 
-8.83, -12.73, -9.84, -16.85, 15.06, 0.33, -34.57, 20.88, -3.92, 8.53, 13.28, 0.35, 4. 
-7.04, -8.08, -5.97, -13.88, -4.66) 

Calculate differences before rounding. 

diff=calcgvector-gprime 

{-0.930416, -0.986987, -0.859612, 0.175639, -12.3851, -6.6715, -4.64476, -5.26526, -19.1 
-4.35884, 0.161716, 5.54638, 2.72787, 27.6739, -0.039994, -4.30324, -1.3736, 18.8023, 
-4.43352, -0.30683, -5.97168, 0.0432646, 0.210751, 0.0244942, 0.147033, 0.0229674, 12. 
18.4754, 13.409, 4.05733, -15.591, 2.89204, -10.4961, 1.882, 0.317903, -0.107815, -1.c 
0.148067, -0.653284, 0.522128, -4.50486, -0.0303697, -0.00327266, -0.0100851, -8.7685: 

dif =round [dif f, { 6,2 11 

{-0.93, -0.99, -0.86, 0.18, -12.39, -6.67, -4.64, -5.27, -19.11, -1.31, -0.17, 4.98, -4. 
-1.37, 18.8, -2.96, -4.71, 14.61, -6.21, -4.43, -0.31, -5.97, 0.04, 0.21, 0.02, 0.15, 
13.41, 4.06, -15.59, 2.89, -10.5, 1.88, 0.32, -0.11, -1.06, 0.04, -0.02, -2.79, 0.15, 

-8.77, -6.11} 

Calculate the differences.and make a table. 

TableForm[Transpose[{ecnos,rxvector,calcgvec,gprimer,dif}],TableHead~ngs-~iNone,i"EC 
Nos.", 18Reaction", "Calc", Wxptl1I, 'Calc-Exptl") 1 ,TableSpacing->{l, 111 

EC Nos. Reaction 
1.1.1.1 ethanol+nadox==acetaldehyde+nadred 

Calc Exptl Calc-Exptl 
22.1 23.03 -0.93 

1.1.1.26 glycolate+nadox=gloxylate+nadred 38.9 39.88 -0.99 

1.1.1.27b lactate+nadox=pyruvate+nadred 26.37 27.22 -0.86 
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1.1.1.37 

1.1.1.39 

1 .l. 1.40 

1 .l. 1.42 

1.1.1.67 

1.1.1.79 

1 .l. 99.7 

1.2.1.2 

1.2.1.10 

1.2.1.43 

1.4.1.1 

1.4.1.2 

1.4.1.3 

1.4.1.10 

1.6.1.1 

1.6.4.2 

1.6.4.5 

2.3.1.54 

2.4.1.7 

2.4.1.8 

2.4.2.1 

2.6.1.1 

2.6.1.2 

2.6.1.35 

2.7.1.1 

2.7.1.23 

2.7.4.3 

3.1.3.1 

3.1.3. lb 

3.1.3. lc 

3.1.3.ld 

3.1.3. le 

3.2.1.3 

3.2.1.23 

3.2.2.4 

3.2.2.7 

malate+nadox=oxaloacetate+nadred 

malate+nadox+h2o=pyruvate+nadred+co2tot 

rnalate+nadpox+h2o=pyruvate+nadpred+co2tot 

citrateiso+nadpox+h2o=ketoglutarate+nadpred+co2tot 

mannitolD+nadox=fructose+nadred 

glycolate+nadpox=glyoxylate+nadpred 

lactate+oxaloacetate=malate+pyruvate 

formate+nadox+h2o=co2tot+nadred 

acetaldehyde+coA+nadox=acetylcoA+nadred 

formate+nadpox+h2o=co2tot+nadpred 

alanine+nadox+h2o=pyruvate+nadred+amonia 

glutamate+nadox+h2o=ketoglutarate+nadred+amonia 

glutamate+nadpox+h2o=ketoglutarate+nadpred+ammonia 

glycine+nadox+h2o=glyoxylate+nadred+ammonia 

nadox+nadpred=nadred+nadpox 

nadpox+2*glutathionered=nadpred+glutathioneox 

nadpox+2*thioredoxinred=nadpred+thioredoxinox 

acetylcoA+formate=coA+pyruvate 

sucrose+pi=glucoselphos+fructose 

maltose+pi=glucose+glucoselphos 

adenosine+pi=adenine+riboselphos 

aspartate+ketoglutarate=oxaloacetate+glutamate 

alanine+ketoglutarate=pyruvate+glutamate 

glycine+oxaloacetate=glyoxylate+aspartate 

atp+glucose=adp+glucose6phos 

atp+nadox=adp+nadpox 

2*adp=amp+atp 

amp+h2o=adenosine+pi 

fructose6phos+h2o=fructose+pi 

glucose6phos+h2o=glucose+pi 

glycerol3phos+h2o=glycerol+pi 

ppi+h20=2*pi 

maltose+h20=2*glucose 

lactose+h2o=glucose+galactose 

amp+h2o=adenine+ribose5phos 

adenosine+h2o=adenine+ribose 

28.26 28.09 

4.46 16.84 

1.71 8.38 

-3.83 0.81 

1.88 7.15 

38.24 57.34 

--4.92 -3.62 

-15.14 -14.97 

-13.86 -18.84 

-20.42 -16.06 

29.97 29.81 

38.79 33.24 

36.52 33.8 

0.18 

-12.39 

-6.67 

-4.64 

-5.27 

-19.11 

-1.31 

-0.17 

4.98 

-4.36 

0.16 

5.55 

2.73 

51.9 24.23 27.67 

-0.89 -0.85 -0.04 

6.01 10.31 -4.3 

6.87 8.24 -1.37 

11.03 -7.77 18.8 

-11.51 -8.55 -2.96 

-1.07 3.64 -4.71 

27.55 12.94 14.61 

-1.47 4.74 -6.21 

--3.4 1.04 -4.43 

9.94 10.25 -0.31 

-20.06 -14.09 -5.97 

-8.33 -8.37 0.04 

2.71 2.5 0.21 

--12.97 -12.99 0.02 

-13.66 -13.8 0.15 

-11.63 -11.65 0.02 

1.78 -10.46 12.24 

-23.15 -24.55 1.4 

-19.92 -13.13 -6.79 

-20.31 -8.83 -11.48 

5.74 -12.73 18.48 

3.57 -9.84 13.41 



3.5.1.2 

4.1.3.1 

4.1.3.6 

4.1.3.7 

4 .l. 99.1 

4.2.1.2 

4.2.1.3 

4.3.1.1 

5.3.1.5 

5.3.1.5b 

5.3.1.1 

5.3.1.9 

5.3.1.15 

5.3.1.20 

5.3.1.a 

5.4.2.2 

5.4.2.1 

6.2.1.1 

6.3.1.2 

6.4.1.1 
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glutamine+h2o=glutamate+ammonia -12.79 -16.85 4.06 

citrateiso=succinate+glyoxylate -0.53 15.06 -15.59 

citrate=acetate+oxaloacetate 3.22 0.33 2.85 

oxaloacetate+acetylcoA=citrate+coA -45.07 -34.57 -10.5 

t ryp tophaneL+h2o=indole+pyruvate+aonia  

fumarate+h2o=malate 

citrate=aconitatecis+h20 

aspartate=fumarate+ammonia 

glucose=fructose 

xylose=xylulose 

mannose=fructose 

glucosebphos=fructosebphos 

lyxose=xylulose 

ribose=ribulose 

mannose=fructose 

glucoselphos=glucose6phos 

riboselphos=ribose5phos 

atp+acetate+coA=amp+ppi+acetylcoA 

22.76 20.88 

-3.61 -3.92 

8.42 8.53 

12.22 13.28 

0.39 0.35 

4.34 4.36 

-5.51 -2.72 

3.14 2.59 

2.99 3.64 

2.85 2.33 

-5.51 -1.01 

-7.07 -7.04 

-8.08 -8.08 

-5.98 -5.91 

1.88 

0.32 

-0.11 

-1.06 

0.04 

-0.02 

-2.79 

0.15 

-0.65 

0.52 

-4.5 

-0.03 

-0.00 

-0.01 

atp+glutamate+ammonia=adp+pi+glutamine -22.65 -13.88 -8.77 

atp+pyruvate+co2tot=adp+pi+oxaloacetate -10.77 -4.66 -6.11 

There are problems with adenine, glyolate, glyoxylate,,and glycerol3phos, which indicates that their values should be 
recalculated or should be calculated from other reactions. Since most of the species properties in BasicBiochemData2 can be 
obtained by several different paths, it is possible to find and correct errors. 

4,s Calculate the standard transformed reaction Gibbs energies, appparent equilibrium constants, and changes in the binding 
of hydrogen ions for the ten reactions of glycolysis at 298,15 K, pHs 5 ,6 ,  7, 8, and 9 and ionic strengths of .O, 0.10, and 0.25 
M. Also calculate these properties for the net reaction.. 

(BasicBiochemData2 has to be loaded) 

calcNHrx[eC, pHlist-, islist-] := Module[{energy},(*This program calculates the 
change in the binding of hydrogen ions in a biochemical reaaction at specified gHs and 
ionic strengths.*) 

energy = Solve[eq, deli 
D[energy[[l,l,2]1, pH1/(8.31451*0.29815*Log[lOl) /. 
pH -> pHlist /. is -> islist] 

rxthermotab[eC, pHlist-, islist-] := Module[{energy, tg, tk, tn}, 
(*This program uses three other programs to make a thermodynamic table of 
standard transformed reaction Gibbs energies, apparent equilibrium constants, 
and changes in the number of hydrogen ions bound in a biochemical reaction.*) 
tg= calctrGerx[eq, pHlist, islist]; 
tk= calckprime[eq, pHlist, islist]; 
tn = calcNHrx[eq, pHlist, islist]; TableForm[Join[ {tg, tk, tn)] ] ] 



302 Mathematica Solutions to Problems 

Reaction 1 

-19.9564 -21.1455 -24.8972 -31.3157 -37.3892 
-18.0757 -19.82 -24.6736 -30.4846 -36.2155 
-17.4137 -19.4683 -24.4199 -30.1133 -35.8228 

6 

6 

6 

3134.61 5064.24 23002.6 306367. 3.55032 10 

1467.94 2966.78 21018.9 219099. 2.21129 10 

1123.89 2574.39 18973.7 188625. 1.88735 10 

-0.177235 -0.336077 -0.992429 -1.12833 -1.02082 
-0.122329 -0.579942 -1.01164 -1.00952 -1.0011 
-0.139449 -0.649491 -0.984363 -1.0005 -1.00008 

This program produces three tables. The top table gives the standard transformed reaction Gibbs energies at three ionic 
strengths and five pH values. The second table gives the corresponding equilibrium constants, and the third table gives the 
changes in the binding of hydrogen ions. 

Reaction 2 

3.9532 3.72567 3.2948 3.15854 3.14189 
3.89797 3.5248 3.20516 3.147 3.14071 
3.86839 3.45934 3.18839 3.1451 3.14051 

0.202971 0.222482 0.264715 0.279673 0.281558 
0.207543 0.24126 0.274463 0.280978 0.281693 
0.210035 0.247715 0.276326 0.281193 0.281714 

-0.0141959 -0.0733161 -0.0509985 -0.00731544 -0.000761426 
-0.0330731 -0.0847485 -0.0242531 -0.00280164 -0.000284407 
-0.0419873 -0.080239 -0.0183996 -0.00204602 -0.000206853 

Reaction 3 

-12.5514 -13,7161 -17.4527 -23.8749 -29.9491 
-12.258 -15.6976 -21.884 -27.9151 -33.6694 
-12.3548 -16.9525 -23.2451 -29.1287 -34.858 

158.085 252.901 1141.72 15229.1 176534. 
140.444 562.446 6821.56 77710.5 791752. 

146.033 933.1 11812.6 126794. 1.27886 10 
6 

-0.175363 -0.330035 -0.993053 -1.12864 -1.02085 
-0.260983 -0.95943 -1.10486 -1.01996 -1.00216 
-0.410005 -1.08946 -1.06644 -1.00934 -1.00097 

Reaction 4 

rxthermntab[fructosel6~hos+de==dihydroxyacetonephos+glyceraldehydeghos,~5,6,7,8,9},{O,. 
1, -2511 
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23.2659 
23.9815 
24.3294 

0.0000839493 
0.0000629003 
0.000054664 

-0.246757 
-0.340222 
-0.289279 

20.3466 
22.0132 
23.1829 

0.000272551 
0.000139146 
0.0000868079 

-0.714037 
-0.211319 
-0.0732304 

17.2974 
21.4975 
23.0316 

0.0009325 
0.000171327 
0.0000922697 

-0.269856 
-0.024558 
-0.00589343 

16.6248 
21.4426 
23.0188 

0.00122317 
0.000175161 
0.0000927491 

-0.0337308 
-0.00246096 
-0.000561605 

16.5486 
21.4371 
23.0175 

0.00126134 
0.00017555 
0.0000927959 

-0.00345608 
-0.000246092 
-0.0000558653 

Reaction 5 

7.66 
7.66 
7.66 

7.66 
7.66 
7.66 

7.66 
7.66 
7.66 

7.66 
7.66 
7.66 

7.66 
7.66 
7.66 

0.0455023 0.0455023 0.0455023 0.0455023 0.0455023 
0.0455023 0.0455023 0.0455023 0.0455023 0.0455023 
0.0455023 0.0455023 0.0455023 0.0455023 0.0455023 

-14 -14 -15 -15 -16 
2.36514 10 2.48962 10 1.86721 10 1.24481 10 6.22405 10 

5.35268 10 6.22405 10 3.11202 10 1.24481 10 1.24481 10 
-14 -15 -15 -15 -15 

-14 -14 -15 -1 6 -16 
5.66389 10 1.24481 10 1.24481 10 -6.22405 10 -6.22405 10 

Reaction 6 

22.8921 13.849 8.05124 4.32833 -0.337223 
16.1673 8.4353 3.1141 -1.94228 -7.5227 
14.0984 6.71564 1.21649 -4.21929 -9.88359 

0.0000976101 0.00374781 0.038859 0.174467 1.14572 
0.00147106 0.0332818 0.284732 2.18912 20.7928 
0.00338903 0.0666004 0.612183 5.48509 53.8916 

-1.82897 -1.28797 -0.769332 -0.669347 -0.933047 
-1.64339 -1.09084 -0.840272 -0.947342 -0.993787 
-1.569 -1.06683 -0.921309 -0.981391 -0.997935 

Reaction 7 

-8.77058 -8.3272 -8.00276 -7.96743 -8.29556 
-8.35908 -8.21794 -8.11648 -8.30786 -8.36297 
-8.31749 -8.22167 -8.22407 -8.34411 -8.36722 

34.3977 28.7643 25.2357 24.8786 28.3995 
29.1366 27.5241 26.4203 28.5408 29.1824 
28.6519 27.5655 27.5922 28.9611 29.2325 

0.13882 0.0431119 0.0716595 -0.0704186 -0.0275038 
0.0248626 0.0334161 -0.0229746 -0.0217609 -0.00279498 
0.0107016 0.0225207 -0.0271383 -0.00964887 -0.00111155 

Reaction 8 
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5.53164 5.54601 
5.53714 5.5948 
5.54145 5.62832 

0.107375 0.106755 
0.107137 0.104674 
0.106951 0.103268 

0.00065925 0.0062929 
0.00284928 0.0234401 
0.00453314 0.0334474 

5.66019 
5.86614 
5.9385 

0.101949 
0.0938216 
0.0911224 

0.0416282 
0.0631637 
0.0578654 

5.98488 
6.10926 
6.12755 

0.0894334 
0.0850572 
0.0844318 

0.0509505 
0.0188138 
0.0124135 

6.13662 
6.15453 
6.1566 

0.0841235 
0.0835179 
0.0834482 

0.00908086 
0.00218857 
0.00136563 

Reaction 9 

rxthermotab[pg2+de==pep+h2o,~5,6,7,8,9~,~0,.1,.25~1 

-0.828959 -0.989798 -2.0152 -3.7985 -4.37876 
-0.891715 -1.47469 -3.25948 -4.28122 -4.44115 
-0.939757 -1,76463 -3.59868 -4.34674 -4.44829 

1.3971 1.49075 2.25448 4.62877 5.84954 
1.43292 1.81281 3.7242 5.62385 5.99863 
1.46096 2.03774 4.27029 5.77446 6.01593 

-0.00760123 -0.0683949 -0.313273 -0.212886 -0.0319192 
-0.0321025 -0.213665 -0.312677 -0.0680294 -0.00755601 
-0.0501811 -0.274923 -0.257218 -0.0440393 -0.0047052 

Reaction 10 

rxthermotab[pep+adg+de==pyruvate+atp,{5,6,7,8,9},~0,.1,.25}1 

-33.4613 -32.7661 -30.6224 -25.1722 -19.2526 
-34.1841 -33.1449 -29.2617 -23.6955 -17.993 
-34.4724 -33.1063 -28.8451 -23.2908 -17.5968 

728017. 549974. 231625. 25700.8 2359.9 
974465, 540772. 133784. 14166.3 1419.79 

1.09465 10 630867. 113085. 12032.5 1210.04 

0.150557 0.151752 0.700597 1.06297 1.01353 
0.0719355 0.38045 0.915575 0.99698 0.999809 
0.0826948 0.480624 0.927296 0.993667 0.999384 

6 

Net Reaction 

rxthermotab[glucose+2*pi+2*adp+2*nadox+de==2*pyruvate+2*atp+2*nadred+2*h20,~5,6,7,8,9~, 
{ O r  -1, -2511 

-26.9029 -48.5056 -67.9556 -80.9971 -92.2429 
-38.2553 -59.9344 -77.5099 -90.3854 -101.978 
-42.0903 -63.6158 -80.8106 -93.5651 -105.141 

8 11 14 16 
51659.7 3.1461 10 8.0398 10 1.54878 10 1.44602 10 

5.03504 10 3.16219 10 3.79375 10 6.83502 10 7.3388 10 

2.36512 10 1.39618 10 1.43657 10 2.46488 10 2.62942 10 

6 10 13 15 17 

7 11 14 16 18 

-1.97548 -1.98561 -3.70662 -3.76388 -2.84378 
-3.90829 -3.56983 -2.55969 -2.07742 -2.00807 
-3.92322 -3.50274 -2.5161 -2.07045 -2.00732 

4.9 Calculate the standard transformed reaction Gibbs energies, apparent equilibrium constants, and changes in the binding 
of hydrogen ions for the four reactions of gluconeogenesis that are different from those in glycolysis at 298.15 K, pHs 5 ,  6, 
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7, 8, and 9 and ionic strengths 0, 0.10, and 0.25 M. Also calculate the properties of the net of pyruvate carboxylase and 
phosphoenolpyruvate carboxykinase reactions and the net reaction of gluconeogenesis. 

(BasicBiochemData2 must be loaded) 

pyruvate carboxylase reaction 

TableForm[Transpose[calctrGerx[pyruvate+co2tot+atp+de==oxaloacetate+adp+p~,{5,6,7,8,9~, 
{0,.1,.25}]],TableHeading~->{{~~I = 0 Mml,mlI = 0.10 M","I = 0.25 M"}.{rlgH 5","pH 6","pH 
7","pH 8mm,11pH 9"}}1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  1.16519 -4.37511 -8.52558 -13.8718 -19.6143 

I = 0.10 M 0.785196 -4.34584 -8.83247 -14.077 -19.4656 

I = 0.25 M 0.754643 -4.31006 -8.8077 -14.0617 -19.3633 

TableForm[Transpose[calckpr~e[pyruvate+co2tot+at~+de==oxaloacetate+ad~+~~,{5,6,7,8,9~, 
{0,.1,.25}]].TableHeadings-,<("I = 0 M","I = 0 . 1 0  M","I = 0.25 M1'},{"pH 5","pH 6","pH 
7 " , * ' p H  8 " , " p H  9m1}}1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.624984 5.84092 31.1607 269.294 2730.57 

I = 0.10 M 0.728518 5.77236 35.2674 292.532 2571.58 

I = 0.25 M 0.737553 5.68966 34.9167 290.728 2467.66 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[(oxaloacetate+adp+pi-p~ruvate-co2tot- 
atg) ,gH]/.is->{O, .1, .25)/.pH->{5,6,7,8,9},Tab1eHeadings-,(C"I = 0 M","I = 0.10 M","I = 
0.25 Mr1},{ItpH 5","pH 6m1,i1pH 7'i,r'pH 8 i i , * 1 p H  91t } }1  

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -1.10545 -0.8173 -0.766313 -1.03032 -0.964759 

I = 0.10 M -0.980022 -0.801618 -0.843191 -0.96286 -0.885636 

I = 0.25 M -0.962049 -0.796006 -0.848177 -0.959722 -0.850021 

phosphoenolpyruvate carboxykinase reaction 

TableFo~[Transpose~calctrGerx[oxaloacetate+atp+h2o+de==pep+adp+co2tot,~5,6,7,8,9~,~0,. 
1,.25}11,TableHeading~->{{~~I = 0 M","I = 0 . 1 0  M",llI = 0.25 M"},{"pH 5","pH 6","pH 
7 " , " p H  8 " , 1 1 p H  91t}}J 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -3.00283 1.22754 1.54323 -3.45614 -9.42638 

I = 0.10 M 0.103784 3.61904 1.59418 -3.70581 -9.63967 

I = 0.25 M 1.15447 4.19971 1.61744 -3.72164 -9,74206 

TableForm[Transpose[calck~ri~e[oxaloacetate+atp+h2o+de==pep+adp+co2tot,~5,6,7,8,9~,~~,. 
1,.25}]],TableHeading~->{{~~I = 0 M","I = 0.10 M1m,"I = 0.25 Mml},{"pH 5","pH 6","pH 
7 " , 1 m p H  811 ,"pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  3.35791 0.609461 0.536586 4.03168 44.8148 

I = 0.10 M 0.958999 0.23226 0.525671 4.45889 48.8413 

I = 0.25 M 0.627693 0.183758 0.520761 4.48745 50.901 
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TableForm[(1/(8.31451*.29815*Log[lO] ))*D[~pep+ad~+co2tot-oxaloacetate-at~-h2o~,gHl/.~s- 
>(O, .l, .25) / .pH->{5,6,7,8,9) ,TableHeadings->EE"I = 0 M","I = 0.10 M " , " I  = 0.25 
M1l),{"gH 5 " , 1 1 p H  6","pH 7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.808208 0.547488 -0.512396 -1.04491 -1.05597 

I = 0 . 1 0  M 0.862233 0.206083 -0.792542 -0.99541 -1.11014 

I = 0.25 M 0.840963 0.0667518 -0.82107 -0.998722 -1.1457 

Net of the preceding two reactions 

TableForm[Transpose[calctrGerx[pyruvate+2*atp+h2o+de==gep+2*adg+p~,~~,6,7,8,9~,~~,.1,.~ 
S)]] ,TableHeadings->(("I = 0 M","X = 0.10 M","I = 0 . 2 5  M"),{"gH 5","gH 6","gH 7","pH 
8 m 1 , 1 * p H  9n1})1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -1.83764 -3.14757 -6.98235 -17.328 -29.0407 

I = 0.10 M 0.88898 -0.726795 -7.23829 -17.7828 -29.1052 

I = 0.25 M 1.90911 -0.110354 -7.19026 -17.7833 -29.1054 

TableForm[Transpose[calck~rime[gyruvate+2*atp+h2o+de==gep+2*adg+p~,~5,6,7,8,9~,iO,.l,.~ 
5}]],TableHeading~->{i~~I = 0 MI1,"I = 0.10 M","I = 0 . 2 5  M1l),{"gH 5","gH 6","pH 7","gH 
811,11pH 9m1))1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  2.09864 3.55982 16.7204 1085.7.1 122370. 

I = 0.10 M 0.698648 1.34069 18.539 1304.37 125599. 

I = 0.25 M 0.462956 1.04552 18.1833 1304.63 125606. 

TableForm[(1/(8.31451*.29815*Log[10]))*D[(pep+2*adp+~i-gyruvate-2*at~-h~o~,gHl/.is- 
>~0,.1,.25)/.gH->{5,6,7,8,9),TableHeadings->{i1'I = 0 M","I = 0.10 M","I = 0 . 2 5  
MI' 1, ("pH 5", "pH 6", "pH 7 'I, "pH 8", "pH 9") 11 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -0.297246 -0.269812 -1.27871 -2.07523 -2.02073 

I = 0.10 M -0.11779 -0.595535 -1.63573 -1.95827 --1.99578 

I = 0.25 M -0.121086 -0.729254 -1.66925 -1.95844 -1.99572 

Fructose I ,6-biphosphatase 

TableFo~[Trans~ose[calctrGerx[f~ctosel6ghos+h2o+de==fructose6phos+p~,i5,6,7,8,9~,iO,. 
1,.25)]],TableHeadings->{{"I = 0 Mmm,llI = 0.10 M","I = 0.25 M"),I"gH 5","gH 6","gH 
7 " , 9 S i  81n,11pH 91))] 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -22.7476 -22.1975 -20.1521 -18.6253 -18.3442 

I = 0 . 1 0  M -21.0371 -18.1741 -14.6161 -13.5633 -13.4289 

I = 0.25 M -20.2085 -16.2642 -12.7902 -11.9455 -11.8441 

TableForm[Trans~ose[calck~rime[f~ctosel6ghos+h2o+de==f~ctose6phos+g~,i5,6,7,8,9~,~O,. 
1,.25)1],TableHeading~->{{*~I = 0 M S 1 , l 1 I  = 0.10 M","I = 0 . 2 5  M " ) , { ' l p H  5","gH 6","pH 
7","pH 8","pH 9"))] 
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PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  9664.7 7741.4 3392.13 1832.26 1635.84 

I = 0.10 M 4847.55 1527.39 363.586 237.781 225.229 

I = 0.25 M 3470.27 706.875 174.073 123.807 118.847 

TableForm~(1/(8.3145l*.298l5*Log[lO]))*D[(f~ctose6phos+pi-f~ctosel6phos-h2o~,~Hl/.is- 
>{0,.1,.25)/.pH->{5,6,7,8,9},TableHeadingS->{{~'I = 0 M","I = 0.10 M","I = 0.25 
Mml),{llpH 51*,"pH 6","pH 7 1 1 , * t p H  8ms,11pH 9t1)>1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.028674 0.211976 0.414941 0.11638 0.0136539 

I = 0.10 M 0.215128 0.744345 0.384706 0.0586725 0.00618982 

I = 0.25 M 0.371614 0.840829 0.324487 0.0445667 0.00463044 

Glucose 6-phosphatasephosphatase 

TableForm[Transpose[calctrGerx[glucose6phos+h2o+de==glucose+~~,~5,6,7,8,9?,~O,.l,.25~l~ 
,TableHeadings->{{"I = 0 M1mr"I = 0.10 M","I = 0.25 M"},{8mpH 5","pH 6","pH 7","pH 
8","pH 9"))I 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -15.3426 -14.7682 -12.7076 -11.1844 -10.9041 

I = 0.10 M -15.2194 -14.0517 -11.8264 -10.9938 -10.8828 

I = 0.25 M -15.1497 -13.7484 -11.6155 -10.9608 -10.8793 

TableForm~Transpose[calckprime[glucose6phos+h2o+de==glucose+~~,~5,6,7,8,9~,~O,.l,.25~ll 
,TableHeadings->{{"I = 0 M1t,mlI = 0.10 Mn,"I = 0.25 M"},{"gH 5","pH 6","pH 7","pH 
8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  487.412 386.594 168.366 91.0791 81.3396 

I = 0.10 M 463.784 289.565 118. 84.3364 80.6433 

I = 0.25 M 450.911 256.21 108.375 83.2229 80.5302 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[~glucose+pi-glucose6phos-h2o~,pHl/.~s- 
>{0,.1,.25)/.gH->{5,6,7,8,9},TableHeadings->{{11I = 0 M1l,ltI = 0.10 M","I = 0.25 
M"},{"pH 5 1 m , " p H  6","pH 7","pH 8","pH 9"1}1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.0305457 0.218017 0.414317 0.116071 0.013619 

I = 0.10 M 0.0764751 0.364857 0.291488 0.0482304 0.00513333 

I = 0.25 M 0.101058 0.400861 0.242412 0.035721 0.00373907 

Net reaction for gluconeogenesis 

TableForm[Tr~spose[calctrGerx[2*~y~vate+6*atp+2*nadred+6*h2o+de==glucose+6*ad~+6*p~+2 
*nadox, {5,6,7,8,9), ( 0 ,  .l, .25}11 .TableHeading~->{{~~I = 0 M","I = 0.10 M","I = 0.25 
M" ) , { "pH 5 , pH 6","pH 7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -114.293 -95.1491 -82.4634 -89.0035 -100.93 

I = 0.10 M -94.9253 -75.5524 -68.4902 -75.5282 -86.4153 

I = 0.25 M -88.163 -69.2508 -63.3307 -70.7316 -81.6672 
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TableForm[Trans~ose[calckprime[2*pyruvate+6*atp+2*nadred+6*h2o+de==glucose+6*adp+6*p~+2 
*nadox, {5,6,7,8,9), (0, -1,. 25) 11  ,TableHeadings->{ {"I = 0 M", "I = 0.10 M", "I = 0.25 
M " } , { " p H  511,1tpH 6","pH 7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
17 20 16 14 15 

I = O M  1.05479 1 0  4.66988 10 2.79825 10 3.91429 10 4.80954 10 

16 13 11 13 15 
1.70563 10 1.37793 10 I = 0.10 M 4.26674 10 1.72242 10 9.97467 10 

15 12 11 12 14 
1.24448 10 2.46364 10 2.02949 10 I = 0.25 M 2.78871 10 1.35564 10 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[(glucose+6*adp+6*~i+2*nadox-2*py~vate-6*atp-2 
*nadred-6*h2o),gH]/.is->{O,.l,.25}/.pH->{5,6,7,8,9},TableHeadings-~{{"I = 0 M","I = 
0.10 ~ 1 1 , 1 9 1  = 0.25 M"},{"pH 511,11pH 611,"pH 7","pH 8","pH 9")>1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  3.11986 3.29164 0.531329 -2.07356 -2.04318 

I = 0.10 M 3.72487 2.70949 -0.320941 -1.76774 -1.9758 

I = 0.25 M 3.16965 2.50822 -0.451703 -1.78866 -1.97804 

4.10 Calculate the standard transformed reaction Gibbs energies, apparent equilibrium constants, and changes in the binding 
of hydrogen ions for the pyruvate dehydrogenase reaction and the nine reactions of the citric acid cycle at 298.15 K, pHs 5 ,  
6, 7, 8, and 9 and ionic strengths 0, 0.10, and 0.25 M. Also calculate these properties for the net reaction of the citric acid 
cycle, the net reaction for pyruvate dehydrogenase plus the citric acid cycle, and the net reaction for glycolysis, pyruvate 
dehydrogenase, and the citric acid cycle. 

(BasicBiochemData2 must be loaded) 

Pyruvate dehydrogenase 

TableForm[Transpose[calctrGerxCpyruvate+coA+nadox+h2o+de==co2tot+acetylcoA+nadred, {5,6, 
7,8,9),{0, .l, .25)]] ,Tab1eHeadings->{C1*I = 0 Mml,"I = 0.10 ManrmmI = 0.25 M"), {"pH 5","pH 
6i1,iipH 71i,ripH 811,11pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -23.6334 -24.4065 -27.5641 -32.0578 -34.6066 

I = 0 . 1 0  M -24.9212 -26.0596 -29.7622 -34.0761 -36.2027 

I = 0.25 M -25.3442 -26.6231 -30.4807 -34.7047 -36.7463 

TableForm[Transpose[calckprime[~yruvate+coA+nadox+h2o+de==co2tot+acetylcoA+nadred,~5,6, 
7,8,9),{0,.1,.25)11,TableHeadings->{{111 = 0 M " , " I  = 0.10 M",lnI = 0.25 M1'),{"pH 5","pH 
6ii,m1pH 7","pH 81t,11pH 911))1 

PH 5 PH 6 PH 7 PH 8 PH 9 
6 

I = O M  13815.3 18871.6 67452. 413294. 1.15554 10 

6 
I = 0.10 M 23226.8 36763.7 163714. 932920. 2.1999 10 

6 6 
I = 0.25 M 27548. 46145.7 218750. 1.20217 10 2.73926 10 

TableForm[(1/(8.3145l*.298l5*Log[lOl))*D[(co2tot+acetylcoA+nadred-pyruvate-coA-nadox- 
h2o),pH]/.is->{0,.1,.25)/.pH->(5,6,7,8,9},T~leHeadings->{{"I = 0 M","I = 0.10 M","I = 
0.25 M"),{"pH 5 1 1 , " p H  6","pH 7","pH 8","pH 9")11 
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PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -0.0408172 -0.296603 -0.771728 -0.687435 -0.235697 

I = 0.10 M -0.0651484 -0.406673 -0.812946 -0.592257 -0.237883 

I = 0.25 M -0.0755408 -0.444665 -0.81951 -0.559928 -0.257158 

Citrate synthase 

TableForm[Transpose[calctrGerx[acetylcoA+oxaloacetate+h2o+de==c~trate+coA,~5,6,7,8,9~,~ 
0,.1,.25}11,TableHeadings->{{"I = 0 M","I = 0.10 M","I = 0.25 M"},{"pH 5","pH 6","pH 
711,11pH 811,11pH 9v1}}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -37.3535 -37.1217 -40.2877 -46.2697 -55.1332 

I = 0.10 M -36.9892 -38.7412 -43.6084 -50.3226 -59.8309 

I = 0.25 M -37.0791 -39.5563 -44.7706 -51.6711 -61.3642 

TableForm[Transpose[calck~rime[acetylcoA+oxaloacetate+h2o+de==c~trate+coA,{5,6,7,8,9~,~ 
0,.1,.25)]],TableHeading~->{{'~I = 0 M","I = 0.10 M","I = 0.25 M"),{"pH 5","pH 6","pH 
7","pH 811,"pH 9'*)}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
6 6 7 8 9 

I = O M  3.49956 10 3.18713 10 1.14305 10 1.27658 10 4.55901 10 

6 6 7 8 10 
I = 0.10 M 3.02131 10 6.12526 10 4.36333 10 6.54759 10 3.03295 10 

6 6 7 9 10 
I = 0.25 M 3.13288 10 8.51005 10 6.97298 10 1.12808 10 5.62969 10 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[(citrate+coA-acetylcoA-oxaloacetate- 
h2o),pH]/.is->{O, .l, .25}/.pH->{5,6,7,8,9},TableHeadings->{{1nI = 0 M","I = 0.10 M","I = 
0.25 Msw),{lmpH 511,iipH 6","pH 7","pH 8 " , 1 1 p H  9ie)11 

P H  5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.32869 -0.242031 -0.839947 -1.27037 -1.80428 

I = 0.10 M 0.0241225 -0.634751 -1.01063 -1.40059 -1.87189 

I = 0.25 M -0.0928804 -0.742845 -1.04053 -1.44166 -1.88881 

Aconitase 

TableForm[Transpose[calctrGerx[c~trate+de==acon~~atec~s+h2o,(5,6,7,8,9~,~O,.~,.25~ll,Ta 
bleHeadings->{{"I = 0 M","I = 0.10 M","I = 0.25 M"},{"pH 5","pH 6","pH 7"."pH 8","pH 
9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  17.5023 11.5531 8.92005 8.43053 8.37612 

I = 0.10 M 13.4649 9.49365 8.50571 8.38388 8.37139 

I = 0.25 M 12.3689 9.12025 8.45494 8.37861 8.37086 

TableForm[Transpose[calckpr~e[citrate+de==acon~tatec~s+h2or{5,6,7,8,9~,~0,.1..2511l,Ta 
bleHeadings->{{@'I = 0 M","I = 0.10 M","I = 0.25 M i i } , { i i p H  51',"pH 6"."pH 7"."pH 8"."pH 
9"))l 
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PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.000858528 0.00946228 0.0273705 0.033346 0.034086 

I = 0.10 M 0.00437581 0.0217167 0.0323499 0.0339794 0.034151 

I = 0.25 M 0.0068089 0.025247 0.0330192 0.0340517 0.0341583 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[(aconitatec~s+h2o-c~trate),gHl/.~s- 
>{0,.1,.25}/.pH->{5,6,7,%,9},TableHeadings->{{'1I = 0 M1l,"I = 0.10 M","I = 0.25 
M"},{iipH 5'*,''pH 6 t v , 1 1 g H  7 ' m , 1 1 g H  8",11pH 9 m 1 } } 1  

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -1.32911 -0.762126 -0.200124 -0.0241339 -0.00246441 

I = 0.10 M -1.02481 -0.372043 -0.0533865 -0.0055862 -0.000561228 

I = 0.25 M -0.907921 -0.265114 -0.0337371 -0.00346956 -0.000347946 

Aconitase 

TableForm[Transgose[calctrGerx[aconitatecis+h2o+de==c~trateiso,{5,6,7,8,9~,{O,.l,.25~ll 
,TableHeadings->{{liI = 0 M","I = 0.10 M","I = 0.25 M"},{mlgH 5","gH 6","pH 7 m 1 , " p H  
8","gH 911}}1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -10.8055 -4.92275 -2.27779 -1.7815 -1.72622 

I = 0.10 M -6.81316 -2.85648 -1.85783 -1.73411 -1.72141 

I = 0.25 M -5.72527 -2.4798 -1.80629 -1.72875 -1.72088 

TableForm[:Trans~ose[calckprime[acon~tatec~s+h2o+de==c~trate~so,~5,6,7,8,9~,~O,.1,.25}11 
,TableHeadings->{{"I = 0 M","I = 0.10 M","I = 0.25 M"},{"gH 5","pH 6","gH 7","gH 
8","gH 9 " ) ) J  

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  78.1691 7.28489 2.5064 2.05165 2.0064 

I = 0.10 M 15.6173 3.16542 2.11581 2.0128 2.00252 

I = 0.25 M 10.0697 2.71919 2.07227 2.00846 2.00209 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[~citrateiso-aconitatecis-h2o~,~H~ /.is- 
>C0,.1,.25}/.pH->{5,6,7,8,9),TableHeadings->{{11I = 0 Mnl,"I = 0.10 M","I = 0.25 
M" 1, C "pH 5", "pH 6", "pH 7 " ,  " p H  8", l'pH 9")  1 I 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  1.30605 0.760857 0.202526 0.0245142 0.00250437 

I = 0.10 M 1.0124 0.374671 0.0541865 0.00567633 0.00057035 

I = 0.25 M 0.899474 0.267618 0.0342572 0.00352569 0.000353603 

Isocitrate dehydrogenase 

TableFo~[Transpose[calctrGerx[:citrateiso+nadox+h2o+de==ketoglutarate+co2tot+nadred,~5, 
6,7,8,9},{0,.1,.25}]],Tab1eHeadings->{{'11 = 0 M","I = 0.10 M","I = 0.25 M"},{"gH 
5","pH 6 * * , " g H  7 * * , " p H  8 " , 1 1 p H  9 v 1 ) > 1  

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  8.34114 1.67592 -4.21769 -9.97115 -15.7852 

I = 0.10 M 5.50847 0.398237 -4.45015 -10.0157 -15.9678 

I = 0.25 M 4.78775 0.245626 -4.45696 -10.0274 -16.0697 



Thermodynamics of Biochemical Reactions at Specified pH 311 

TableForm[Transpose[calckgrime[citrateiso+nadox+h2o+de==ketoglutarate+co2tot+nadred,~5, 
6,7,8,9),{0,.1,.25)]],Tab1eHeadings->{{111 = 0 M*m,lmI = 0.10 M","I = 0.25 M"},{"pH 
5 '1 ,1 'pH 6",11pH 7","pH 8"."pH 91m))] 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.0345704 0.50862 5.48156 55.8289 582.674 

I = 0.10 M 0.108383 0.851594 6.02043 56.8417 627.221 

I = 0.25 M 0.144953 0.905667 6.03701 57.1107 653.532 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[(ketoglutarate+co2tot+nadred-c~trate~so-nadox- 
h20) ,pH] / .is-> (0, . 1, .25 ) / .pH-> { 5,6,7,8,9) ,TableHeadings->{ {"I = 0 M", "I = 0.10 M" , "I = 
0.25 Msl),{iipH 5","pH 6","pH 7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -1.34729 -1.06162 -1.01433 -1.00645 -1.04494 

I = 0 . 1 0  M -1.07823 -0.788138 -0.931153 -1.00411 -1.1109 

I = 0.25 M -0.975816 -0.720242 -0.928031 -1.00858 -1.14667 

ketoglutarate dehydrogenase 

Tab~eForm~Transpose~calctrGerx[ketoglutarate+nadox+coA+h2o+de==succinylcoA+co2tot+nadre 
d,~5,6,7,8,9},~0,.1,.25)11,TableHeadings-~{{~m1 = 0 M1l,*lI = 0.10 M","I = 0 . 2 5  M"},{"pH 
5","pH 6","pH 7","pH 8","pH 9"))] 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -32.2272 -32.6665 -35.7881 -40.2782 -42.8267 

I = 0 . 1 0  M -32.1519 -33.08 -36.7606 -41.0722 -43.1986 

I = 0.25 M -32.1464 -33.2446 -37.0834 -41.3056 -43.347 

TableForm[Transpose[calckprime[ketoglutarate+nadox+coA+h2o+de==succinylcoA+co2tot+nadre 
d,{5,6,7,8,9),{0,.1,.25)11,TableHeadings->{{1~1 = 0 Mrm,"I = 0.10 M","I = 0.25 M"I,{"pH 
5","pH 6","pH 7","pH 8","pH 9"))] 

PH 5 PH 6 PH 7 PH 8 PH 9 
6 7 7 

I = O M  442519. 528319. 1.86112 10 1.13869 10 3.18322 10 

6 7 7 
I = 0 . 1 0  M 429279. 624208. 2.75508 10 1.56857 10 3.69848 10 

6 7 7 
I = 0.25 M 428331. 667072. 3.1383 10 1.72338 10 3.92659 10 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[(succinylcoA+co2tot+nadred-ketoglutarate- 
nadox-coA-h2o),pHI/.is->{O,.l,.25}/.pH->{~,6,7,8,9},TableHeadings->{{"I = 0 M","I = 
0.10 M 1 l , l i I  = 0.25 M1l),{llpH 5m1,11pH 611,"pH 7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.0991751 -0.280585 -0.770103 -0.687272 -0.235683 

I = 0.10 M 0.0252188 -0.396837 -0.811953 -0.592158 -0.237873 

I = 0.25 M 0.00254914 -0.436266 -0.818663 -0.559843 -0.25715 

Succinyl coA synthase 
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PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  11.3123 9.42916 6.0856 4.60067 1.48513 

I = 0.10 M 8.64828 5.44782 2.53412 0.710067 -3.18751 

I = 0.25 M 7.58697 4.09308 1.26214 -0.651704 -4.72216 

TableForm[Transpose[calckgrime[succinylcoA+gi+adg+de==succinate+atg+coA,{5,6,7,8,9~,{0, 
.1,.25)]],TableHeadings->{{~'I = 0 M","I = 0.10 M","I = 0.25 M"),{"pH 5","gH 6","gH 
7","gH 8","gH 9")}] 

PH 5 PH 6 PH 7 P H  8 PH 9 
I = O M  0.0104276 0.0222891 0.0858727 0.156315 0.549312 

I = 0.10 M 0.0305419 0.111068 0.359786 0.750935 3.61763 

I = 0.25 M 0.0468627 0.191835 0.601012 1.30069 6.71864 

TableForm[(1/(8.3145l*.298l5*Log[lOl))*D[(succinate+atg+coA-succ~nylcoA-p~- 
adg),gH]/.is->{O, .l, .25}/.pH->{5,6,7,8,9},TableHeadings->{{*'I = 0 M " , " I  = 0.10 M","I = 
0.25 M1m},{tlpH 511,11pH 611,11gH 711,1tpH 8","gH 911))1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -0.0431903 -0.591126 -0.421843 -0.27808 -0.799126 

I = 0.10 M -0.347965 -0.659794 -0.328911 -0.443368 -0.876329 

I 0.25 M -0.436744 -0.660859 -0.321521 -0.47926 -0.892712 

Succinate dehydrogenase 

TableForm[Trans~ose[calctrGerx[succinate+fadenzox+de==fumarate+fadenzred,~5,6,7,8,9~,~O 
,.1,.25}]],TableHeadings->{{"I = 0 M",811 = 0.10 M","I = 0.25 M 1 r ) , { " g H  5","pH 6","pH 
7","pH 8","gH 9"}}1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  3.58609 0.778578 0.0656228 -0.0202505 -0.0290231 

I = 0.10 M 2.15463 0.30828 0.00611379 -0.0263635 -0.0296361 

I = 0.25 M 1.7504 0.220992 -0.00368738 -0.0273557 -0.0297354 

TableForm[Transgose[calckprime[succinate+fadenzox+de==fumarate+fadenzred,{5,6,7,8,9~,~O 
,.1,.25)]],TableHeadings->{(8tI = 0 M1m,lmI = 0.10 M","I = 0.25 M"},{"pH 5","gH 6","pH 
71*,11gH 811,11pH 9")}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.235369 0.730466 0.973876 1.0082 1.01178 

I = 0.10 M 0.419303 0.883064 0.997537 1.01069 1.01203 

I = 0.25 M 0.493565 0.914711 1.00149 1.0111 1.01207 

TableForm[(1/(8.31451*.29815*Log[1O]))*D[(fumarate+fadenzred-succ~nate- 
fadenzox),pH]/.is->{O,.l,.25}/.gH->{5,6,7,8,9},TableHeadings->{{~~I = 0 M","I = 0.10 
M","I = 0.25 M"},{"gH 5","pH 6","pH 7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 P H  9 
I = O M  -0.658653 -0.272415 -0.0377549 -0.00392427 -0.000393977 

I = 0.10 M -0.565671 -0.127042 -0.0144565 -0.0014658 -0.000146785 

I = 0.25 M -0.504786 -0.0961348 -0.0105565 -0.00106609 -0.000106714 

Fumarase 
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TableForm[Transpose[calctrGerx[fumarate+h2o+de==~~ate,{5,6,7,8,9~,{O,.l,.25~ll,TableHe 
adings->{{'I = 0 M","I = 0.10 M","I = 0.25 Mii),{mmpH 5","pH 611,"pH 7","pH 8","pH 9"I)l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -5.32376 -3.91639 -3.63473 -3.60351 -3.60035 

I = 0.10 M -4.53418 -3.72559 -3.61302 -3.60131 -3.60013 

I = 0.25 M -4.33506 -3.69229 -3.60948 -3.60095 -3.6001 

TableForm[Transpose[calckpr~e~fumarate+h2o+de==ma~ate,{5,6,7,8,9~,~0,.~,.25~l1,TableHe 
adings->{{"I = 0 M","I = 0.10 M","I = 0.25 M1m),{tlpH 5","pH 6","pH 7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  8.56401 4.85419 4.33284 4.27862 4.27317 

I = 0.10 M 6.22801 4.4946 4.29507 4.27482 4.27279 

I = 0.25 M 5.14132 4.43464 4.28894 4.27421 4.27273 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[(~late-f~arate-h2o),pHl/.~s->~O,.l,.25~/.pH- 
>{5,6,7,8,9),TableHeadi11gs->{{~~I = 0 M"."I = 0.10 M","I = 0.25 M"), {"pH 5","pH 6","pH 
71m,11pH 811,11pH 9n1))] 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  0.353078 0.115155 0.0138543 0.0014132 0.000141603 

I = 0.10 M 0.271995 0.0486631 0.00523192 0.000527102 0.0000527496 

I = 0.25 M 0.230733 0.0361476 0.00381207 0.00038328 0.0000383488 

[alate dehydrogenase 

TableForm[Transpose[calctrGerx[malate+nadox+de==oxaloacetate+nadred,{5,6,7,8,9~,~O,.l,. 
2511 I ,TableHeadings->{{alI = 0 Mn,"I = 0.10 M',"I = 0.25 M"),{"pH 5"."pH 6","pH 7","pH 
8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  46.0468 38.1855 32.1083 26.3602 20.6481 

I = 0.10 M 42.3126 35.4858 29.6322 23.9091 18.1995 

I = 0.25 M 41.2328 34.6521 28.8372 23.1182 17.4091 

TableForm[Transpose[calck~rime[~alate+nadox+de==oxaloacetate+nadred,{5,6,7,8,9~,~O,.l,. 
25}]] ,TableHeadings->{{"I = 0 M","I = 0.10 M","I = 0 . 2 5  M"), {"pH 5","pH 6","pH 7","pH 
8rm,*3#I 9"))l 

I = O M  8.57032 10 2.04279 10 2.3708 10 0.0000240949 0.000241343 

-8 -7 -6 
I = 0.10 M 3.86543 10 6.07008 10 6.43723 10 0.000064764 0.000648034 

-8 -7 -6 
I = 0.25 M 5.97546 10 8.49672 10 8.87102 10 0.0000891027 0.000891421 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[(oxaloacetate+nadred-~late-nadox),pHl/.~s- 
>{0,.1,.25}/.pH->{5,6,7,8,9},TableHeadings->{{iiI = 0 M","I = 0.10 M","I = 0.25 
M1l),{llpH 5m1,"pH 6",'pH 7","pH 8","pH 9"))J 
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PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -1.64496 -1.15373 -1.01784 -1.00181 -1.00018 

I = 0.10 M -1.40356 -1.06337 -1.00672 -1.00068 -1.00007 

I = 0.25 M -1.3297 -1.04688 -1.00489 -1.00049 -1.00005 

Net reaction for the citric acid cycle 

TableForm[Transpose[calctrGerx[acetylcoA+3*nadox+fadenzox+adp+pi+4*h2o+de==2*co2tot+3*n 
adred+fadenzred+atp+coA, {5,6,7,8,9), {O, .l, .25)1 I .TableHeadings->{{"I = 0 M"."I = 0.10 
M","I = 0.25 M1'I,{"pH 5'1,"pH 6",1mpH 7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  1.07855 -17.0051 -39.0265 -62.5329 -88.5914 

I = 0.10 M -8.39957 -27.2695 -49.6119 -73.7693 -100.965 

I = 0.25 M -11.5591 -30.641 -53.1761 -77.5161 -105.074 

TableForm[Transpose[calck~rime[acetylcoA+3*nadox+fadenzox+ad~+p~+4*h2o+de==2*co2tot+3*n 
adred+fadenzred+atp+coA,{5,6,7,8,9},{O,.l,.25~~l,Table~eadings-~{~"I = 0 M","I = 0.10 
M","I = 0.25 M"),{"pH 5","pH 6","pH 7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
6 10 15 

I = O M  0.647214 953.103 6.87231 10 9.02059 10 3.31471 10 

8 12 11 
I = 0.10 M 29.6165 59893.3 4.91554 10 8.38962 10 4.87771 10 

9 13 18 
I = 0.25 M 105.938 233370. 2.07014 10 3.80323 10 2.55874 10 

TableForm[(1/(8.3145l*.298l5*Log[lOl))*D[(2*co2tot+3*nadred+fadenzred+at~+coA- 
acetylcoA-3*nadox-fadenzox-ad~-pi-4*h2o),pHl/.is-~{O,.l,.~~}/.~H- 
>{5,6,7,8,9},TableHeadings->{{"I = 0 M1l,nlI = 0.10 M"."I = 0.25 M*tl,{llpH 5","pH 6","pH 
711,vigH 8 1 1 , " g H  911))] 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -2.9362 -3.48762 -4.08556 -4.24612 -4.88442 

I = 0.10 M -3.08649 -3.61864 -4.0978 -4.44174 -5.09714 

I = 0.25 M -3.1151 -3.66458 -4.11986 -4.49046 -5.18546 

Net reaction for the pyruvate dehydrogenase reaction plus the citric acid cycle (10 reactions) 

TableForm[Transgose[calctrGerx[pyruvate+4*nadox+fadenzox+adp+pi+5*h2o+de==3*co2tot+4*na 
dred+fadenzred+atp, {5,6,7,8,9), { O ,  .l, .25)]] ,TableHeadings->{{"I = 0 M","I = 0.10 M","I 
= 0.25 M"),{"pH 5","pH 6","pH 7","pH 8","pH 9 " > ? 1  

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -22.5548 -41.4116 -66.5906 -94.5908 -123.198 

I = 0.10 M -33.3208 -53.3291 -79.3741 -107.845 -137.168 

I = 0.25 M -36.9033 -57.2641 -83.6568 -112.221 -141.82 

TableForm[Trans~ose[calck~rime[pyruvate+4*nadox+fadenzox+ad~+p~+5*h2o+de==3*co2tot+4*na 
dred+fadenzred+atp, {5,6,7,8,9), {O, .l, -2511 ] ,TableHeadings->{ {"I 5 0 M", "1 = 0.10 M", "I 
= 0.25 M"),{"pH 5","pH B","pH 7","pH 8","pH 9"))l 
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PH 5 PH 6 PH 7 PH 8 PH 9 
7 11 16 21 

I = O M  8941.45 1.79866 10 4.63551 10 3.72816 10 3.83029 10 

9 13 18 24 
I = 0 . 1 0  M 687894. 2.2019 10 8.04744 10 7.82684 10 1.07305 10 

6 10 14 19 24 
I = 0.25 M 2.91838 10 1.0769 10 4.52844 10 4.57215 10 7.00906 10 

TableForm[~1/(8.3145l*.298l5*Log[lO]))*D[(3*co2tot+4*nadred+fadenzred+atg- 
pyruvate-4*nadox-fadenzox-ad~-pi-5*h2o),pH]/.is-~{O,.l,.2S}/.~H- 
>{5,6,7,8,9),TableHeadings->{{1rI = 0 M",glI = 0 . 1 0  M"."I = 0.25 M1l),{l'gH S","gH 6","gH 
7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -2.97701 -3.78422 -4.85728 -4.93355 -5.12012 

I = 0.10 M -3.15164 -4.02532 -4.91074 -5.034 -5.33503 

I = 0.25 M -3.19064 -4.10924 -4.93937 -5.05039 -5.44262 

Net reaction for glycolysis, pyruvate dehydrogenase, and the citric acid cycle 

TableForm[Transpose[calctrGerx[glucose+lO*nadox+2*fadenzox+4*a~p+4*p~+8*h2o+de==6*co2to 
t+l0*nadred+2*fadenzred+4*at~,{5,6,7,8,9},{O,.l,.25}ll,TableHead~ngs-~{{1~I = 0 M","I = 
0 . 1 0  M"."I = 0.25 Mrm},{llpH 511,*1pH 6 1 1 , " p H  7","pH 8","pH 9"))l 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -72.0125 -131.329 -201.137 -270.179 -338.639 

I = 0.10 M -104.897 -166.593 -236.258 -306.076 -376.313 

I = 0.25 M -115.897 -178.144 -248.124 -318.007 -388.781 

TableForm[Transpose[calck~rime[glucose+lO*nadox+2*fadenzox+4*adg+4*p~+8*h2o+de==6*co2to 
t+l0*nadred+2*fadenzred+4*at~,~5,6,7,8,9~,~O,.l,.2S~ll,TableHeadin~s-~~~"~ = 0 M","I = 
0.10 M","I = 0.25 M"),{"pH 511,m1pH 61s,"pH 7","pH 8","pH 9">)1 

59 PH 9 47 PH 8 35 12 

18 29 41 53 65 

PH 6 PH 7 
I = O M  4.13017 10 1.01782 10 23 1.72759 10 2.15268 10 2.12147 10 

I = 0.10 M 2.38257 10 1.53315 10 2.45688 10 4.18709 10 

I = 0.25 M 2.01437 10 2o 1.61917 10 2.94593 10 5.15271 10 1.29175 10 

PH 5 

8.4501 10 
31 43 55 68 

TableForm[(1/(8.3145l*.298l5*Log[lO]))*D[(6*co2tot+lO*nadred+2*fadenzred+4*atg- 
glucose-l0*nadox-2*fadenzox-4*ad~-4*~i-8*h2o),pH]/.is->{O,.l,.25~/.~H- 
>(5,6,7,8,9},TableHeading~->{{~I = 0 M","I = 0 . 1 0  M","I = 0.25 M"), {"gH 5","pH 6"."gH 
7","pH 8 " , I 1 p H  9")}1 

PH 5 PH 6 PH 7 PH 8 PH 9 
I = O M  -9.66065 -11.3323 -12.5583 -11.8426 -12.2258 

I = 0.10 M -10.2116 -11.6205 -12.3812 -12.1454 -12.6781 

I = 0.25 M -10.3045 -11.7212 -12.3948 -12.1712 -12.8926 





Chapter 5 Matrices in Chemical and Biochemical Thermodynamics 

5.1 (a) Carry out the operations involved in equations 5.1-12 to 5.1-27 using MathematicaR. (b) Carry out the operations 
involved in equations 5.1-22 to 5.1-26. (c) Calculate the amounts of the components C, H, and 0 for a system containing 
one mole of each of the five species. (d) Calculate the amounts of the components CO, H I ,  and CH4 for the system contain- 
ing one mole of each of the five species. 

5.2 (a) Construct the conservation matrix for the hydrolysis of ATP to ADP in terms of species. (b) Calculate a basis for 
the stoichiometric matrix from the conservation matrix and show that it is consistent with equations 5.1-28 to 5.1-31. 

5.3 (a) Construct the conservation matrix A' for the hydrolysis of ATP to ADP in terms of reactants. (b) CafcuIate a basis 
for the stoichiometric matrix from the Conservation matrix and show that it is consistent with ATP + H2 0 = ADP + P, . 

5.4 The glutamate-ammonia ligase reaction is 
glutamate + ATP + ammonia = glutamine + ADP + pi 
It can be considered to be the sum of two reactions. (a) Write the stoichiometric number matrix for this enzyme-catalyzed 

reaction and use NullSpace to obtain a basis for the conservation matrix.. (b) Write a conservation matrix that includes a 
constraint to couple the two subreactions, and row reduce it to show that it is equivalent to the stoichiometric number matrix 
obtained in (a). 

5.5 Carry out the matrix multiplications in equation 5.4-4 for the three chemical reactions involved in the hydration of 
fumarate to malate in the pH range 5 to 9. 
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5.1 (a) Carry out the operations involved in equations 5.1-12 to 5.1-27 using MathematicaR. (b) Carry out the operations 
involved in equations 5.1-22 to 5.1-26. (c) Calculate the amounts of the components C, H, and 0 for a system containing 
one mole of each of the five species. (d) Calculate the amounts of the components CO, H 2 ,  and CH4 for the system contain- 
ing one mole of each of the five species. 

(a) Equations 5.1-12 to 5.1-20 
The conservation matrix is given by 

TableForm [a] 

1 0 1 0 1  
0 2 4 2 0  
1 0 0 1 2  

The stoichiometric number matrix is given by 

TableForm[nul 

-1 -1 
- 3  1 

1 0  
1 -1 

0 1  

The matrix product is given by 

TableForm[a.nul 

0 0  

0 0  
0 0  

The canonical form of the conservation matrix is 

TableForm[ared=RowReduce[all 

1 0 0 1  2 
0 1 0 3  2 
0 0 1 -1 -1 

The matrix product using the row reduced form of the conservation matrix isactivated by using a period. 

TableForm [ared. nu1 

0 0  

0 0  
0 0  

Thus the row reduced form represents the conservation relations equally well. 
Calculate a basis for the nullspace of the conservation matrices a. 
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TableForm[Transpose [NullSpace [a] 1 1 

-2  -1 
-2  -3 

1 1  
0 1  

These are the same two reactions as in equation 5.1-20. 

(b) Equations 5.1-22 to 5.1-26. 
Now we start with the transpose of the stoichiometric number matrix. 

nutr=Transpose[nul 

{{-I, - 3 ,  1, 1, O } ,  I - 1 ,  1, 0, -1, 1 1 1  

0 0 0  
0 0 0  

Now calculate a basis for the transpose of the conservation matrix from the transposed stoichiometric number matrix. 

TableForm[NullSgace [nutrl I 

3 - 1 0 0 4  
- 1 1  0 2 0  

1 1  4 0 0  

This looks different from equation 5.1-8, but yields 5.1-15 when RowReduction is used. 

TableFonn[RowReduce~NullSpace[nutrll1 

1 0 0 1  2 

0 1 0 3  2 
0 0 1 -1 -1 

The rank of the conservation matrix is the number of components, which is 3. 

Dimensions [a] 

( 3 ,  5 )  

The rank of the stoichiometric number matrix is equal to the number of independent reactions, which is 2. 

Dimensions [nu] 

(5 ,  2 )  

(c) Calculate the amounts of the components C, H, and 0 for a system containing one mole of each of the five species. 
Equation 5.1-27 yields 

a. {l,l,l, 1,l) 
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{ 3 ,  8, 41 

Note that Mathernatica makes no distinction between "row" and "column" vectors. 

(d) Calculate the amounts of the components CO, H, , and CH4 for the system containing one mole of each of the five species. 

ared.{l,l,l,l,l} 

Note that the amount of a component can be negative. 

5.2 (a) Construct the conservation matrix for the hydrolysis of ATP to ADP in terms of species. (b) Calculate a basis for 
the stoichiometric matrix from the conservation matrix and show that it is consistent with equations 5.1-28 to 5.1-31. 

(a) Construct the conservation matrix for the hydrolysis of ATP to ADP in terms of species. 

a={{10,0,0,0,10,10,10,0}, {12,1,2,1,12,13,13,2}, {13,0,1,4,10,13,10,4}, {3,0,0,1,2,3,2,111 
; 

TableForm[a,TableHeadings-> { { "C" , "H" , "0" , "P" } , { "ATPI-", "H+" , "H20", "HP042-", "mP3- 
iiHATP3- I#, WADP2- I*, "H2P04- 1 1, Tablespacing-> E 1,1.5 1 I 

ATP4- H+ H20 HP042- ADP3- HATP3- HADP2- H2P04- 
c 10 0 0  0 10 10 10 0 

H 12 1 2  1 12 13 13 2 

0 13 0 1  4 10 13 10 4 

P 3  0 0  1 2 3 2 1 

TableForm[RowFleduce [a] ,TableHeadings->{ { "ATP4-", "H+", 1'H20", 1'HP042-"}, ("ATP4- 
' I ,  'H+", "H20", 11HP042-11, "ADP3- 1 1 ,  "HATP3- 'I, "KADPS- ' I ,  "H2PO4- } 1, Tablespacing-> { 1,l. 5 11 

ATP4- H+ H20 HP042- ADP3- HATP3- HADP2- H2P04- 
ATP4- 1 0 0  0 1 1 1 0 

H+ 0 1 0  0 -1 1 0 1 

H2 0 0 0 1  0 1 0 1 0 

HP042- 0 0 0  1 -1 0 -1 1 

(b) Calculate a basis for the stoichiometric matrix from the conservation matrix and show that it is consistent with equations 
5.1-28 to 5.1-31. 

TableForm[nu=~llSpace [a] 1 

0 - 1 0  - 1 0 0 0 1  
- 1 0  - 1 1  0 0 1 0  

- 1 - 1 0  0 0 1 0 0  
- 1 1  - 1 1  1 0 0 0  

The transposed stoichiometric matrix for reactions 5.1-28 to 5.1-31 is 

nutrexpected={E-l,l,-l,l,l,O,O,O},{l,l,O,O,O,-l,O,O},{O,l,O,O,l,O,-l,O},~O,l,O,l,O,O,O, 
-111; 
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TableFonu [nutrexpected, TableHeadings-> { { *lrxlln, "rx2 ' I ,  11rx311, *1rx4" 1, { "ATP4- 
'I, "H+", "H20", "HP042-", "ADP3-", "HATP3- " , "HADP2- " , "H2P04-" 1 } 1 

ATP4- H+ H20 HP042- ADP3- HATP3- HADP2- H2P04-  
rx l  -1 1 -1 1 1 0 0 0 

r x 2  1 1 0  0 0 -1 0 0 

r x 3  0 1 0  0 1 0 -1 0 

r x 4  0 1 0  1 0 0 0 -1 

We can check whether NullSpace[a] and nuexpected are equivalent by row reducing each of them. 

TableForm [RowReduce [NUllSgace [a] 1 1 

1 0 0 0 - 1 - 1 1  0 
0 1 0 0 1  0 - 1 0  
0 0 1 0 0  1 - 1 - 1  
0 0 0 1 - 1 0  1 - 1  

TableForm[RowReduce[nutrexpectedll 

1 0 0 0 - 1 - 1 1  0 
0 1 0 0 1  0 - 1 0  
0 0 1 0 0  1 - 1 - 1  
0 0 0 1 - 1 0  1 - 1  

Since these last two matrices are identical, NullSpace[a] and nuexpected are equivalent. 

5.3 (a) Construct the conservation matrix A' for the hydrolysis of ATP to ADP in terms of reactants. (b) Calculate a basis 
for the stoichiometric matrix from the conservation matrix and show that it is consistent with ATP + HI 0 = ADP + Pi. 

(a) Construct the conservation matrix for the hydrolysis of ATP to ADP in terms of reactants. 

TablePorm[aa,TableHeadings->{ {asCmr, " O " ,  "P"), {"ATP", "H20", "ADP", ''Pi''} 11 

ATP H20 ADP P i  
c 10 0 10 0 

0 13  1 10 4 

P 3  0 2 1 

TableForm[RowReduce[aal ,TableHeadings->{ {llATP1l, 11H20m1, a'ADP1l), {''ATP", "H20", "ADP" , ''Pi" 1 1 1  

ATP H 2 0  ADP P i  
ATP 1 0 0 1 

H 2 0  0 1 0 1 

ADP 0 0 1 -1 

(b) Calculate a basis for the stoichiometric number matrix from the conservation matrix. 

TableForm[nu=NullSgace[aa] ,TableHeadings->{ {"rx"}, {"ATP", "H20". IIADPml, "Pi1'} 11 

ATP H20 ADP Pi 
rx -1 -1 1 1 
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This is the expected stoichiometric number matrix. 

5.4 The glutamate-ammonia ligase reaction is 
glutamate + ATP + ammonia = glutamine + ADP + Pi 
It can be considered to be the sum of two reactions. (a) Write the stoichiometric number matrix for this enzyme-catalyzed 
reaction and use Nullspace to obtain a basis for the conservation matrix.. (b) Write a conservation matrix that includes a 
constraint to couple the two subreactions, and row reduce it to show that it is equivalent to the stoichiometric number matrix 
obtained in (a). 

(a) Calculate a basis for the conservation matrix from the stoichiometric number matrix and row reduce it. 

TableForm[NullSgace[~~-l,-l,-l,l,1,l~~ll 

1 0 0 0 0 1  
1 0 0 0 1 0  
1 0 0 1 0 0  
- 1 0 1 0 0 0  
- 1 1 0 0 0 0  

1 0 0 0 0 1  
0 1 0 0 0 1  
0 0 1 0 0 1  
0 0 0 1 0 - 1  

0 0 0 0 1 - 1  

This shows that there are five components, in spite of the fact that there are just four elements (C, 0, N, P). 

(b) Write the apparent conservation matrix for the glutamate-ammonia ligase reaction and row reduce it. One way to couple 
the two subreactions is to require that every time an ATP molecule disappears, a glutamine molecule appears; this leads to 
the conservation equation 
n(ATP) + n(g1utamine) = const 

0 4 13 0 10 4 3 

N 1 5 1 5 0 2  

P 0 3 0 2 1 0  

con1 0 1 0 0 0 1  

TableForm[RowReduce [a] , TableHeadings- 
> { { "Glamatel*, "ATP" , llAwn", "ADP", m l P i m l } ,  { "Glutmatell, llATP1lr l lAmmll, "ADP" , "Pi", llGlutmine"} } ] 
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Glutmate ATP Amm ADP Pi Glutmine 
Glamate 1 0 0 0 0 1  

ATP 0 1 0 0 0 1  

Amm 0 0 1 0 0 1  

ADP 0 0 0 1 0 -1 

Pi 0 0 0 0 1 -1 

Since this yeids the same row reduced conservation matrix as (a), the stoichiometric number matrix and the conservation 
matrix are equivalent. 

5.5 Carry out the matrix multiplications in equation 5.4-4 for the three chemical reactions involved in the hydration of 
fumarate to malate in the pH range 5 to 9. 

First we construct the stoichiometric number matrix (eqation 5.4-9) and the vector of chemical potentials. 
Matrix 5.4-9 is given by 

rx5 rx6 rx7 
F2- -1 1 0 

M 2 -  1 0 1 

HF- 0 -1 0 

HM- 0 0 -1 

H+ 0 1 1 

H 2 0  -1 0 0 

mu= { {muF,muM,muHF,muHM,muH,muIi20} 1 ; 

Next we calclate the dot product of the chemical potential vector and the stoichiometric number matrix. 

mu. nu 

{{-muF - m u H 2 0  + muM, muF + muH - m u H F ,  muH - muHM + muM}) 

The column matrix of extents of reaction is given by 

TableForm [XI 

xl 
x2 

x3 

The last term in equation 5.4-4 is given by 

mu. nu. x 

{{(-muF - muH2O + muM) xl + (muF + muH - m u H F )  x2 + (muH - muHM + muM) x 3 } }  

This corresponds with equation 5.4-10. 





Chapter 6 Systems of Biochemical Reactions 

6.1 Make the stoichiometric number matrix for reactions 6.5-17 to 6.5-19 and use it to print out these reactions. 

6.2 Calculate the pathway from glucose to carbon dioxide and water in terms of (1) the net reaction for glycolysis, (2) the net 
reaction catalyzed by the pyruvate dehydrogenase complex, (3) the net reaction for the citric acid cycle, and (4) the net 
reaction for oxidative phosphorylation. 

6.3 (a) Type in the stoichiometric number matrix for glycolysis at a specified pH that is given in Fig. 6.1. (b) Use nameMa- 
trix to type out the 10 reactions. (c) Use equation 6.1-3 to calculate the net reaction for glycolysis. (d) Calculate a basis for 
the conservation matrix for glycolysis and row reduce it to determine the number of components. 

6.4 The following reaction is carried out enzymatically at 298.15 K, pH 7, and 0.25 M ionic strength. 
ATP + glucose = glucose6phos + ADP 
The initial concentrations of ATP and glucose are 0.001 M. What is the equilibrium composition? Solve this problem using 
Mathernatica in two ways. 

6.5 Calculate the apparent equilibrium constant for the net reaction for the first five reactions of glycolyis that is, reactions 
6.6-1 to 6.6-5) using equation 6.1-6. Check this by simply using the net reaction. 

6.6 A liter of aqueous solution contains 0.01 mol Hz PO4 -, 0.01 mol H P 0 4  '-, and 0.01 mol Mg2+. Assuming that the ionic 
strength is zero, what is the equilibrium composition of the solution in terms of species at 298.15 K? 

6.7 When 0.01 M glucose 6-phosphate is hydrolyzed to glucose and phosphate at 298.15 K in the pH range 9-10, only four 
species have to be considered. 
G l c P 2 -  + Hz 0 = Glc + H P 0 4  2 -  

What is the equilibrium composition assuming the ionic strength is zero? 

6.8 A liter of aqueous solution contains 0.02 mol phosphate and acid and NaCl are added to bring it to pH 7, and 0.25 M 
ionic strength. What is the equilibrium composition in terms of phosphate species? 
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6.1 Make the stoichiometric number matrix for reactions 6.5-17 to 6.5-19 and use it to print out these reactions. 

TableForm t nu 1 

-1 0 0 

-1 0 -1 
1 -1 0 
1 0 1  
0 1 -1 
0 0 1  

TableForm[nu,TableHeadings->{names3, {"rx 1311,1mrx 14". "rx 15")}] 

rx 13 rx 14 rx 15 
G l c  -1 0 0 

ATP -1 0 -1 

G6P 1 -1 0 

ADP 1 0 1 

F6P 0 1 -1 

F16BP 0 0 1 

mkeqm[c-List,s-List]:=(*c-List is the list of stoichiometric numbers for a reaction. 
s-List is a list of the names of species or reactants. These names have to be put in 
quotation marks. * 1 Map [Max I#, 0 I &, -cl . s- >Map [Max [ #, 0 I &, cl . s 
nameMatrix[m-List,s-List]:=(*m-List is the transposed stoichiometric number matrix for 
the system of reactions. s-List is a list of the names of species or reactants. These 
names have to be put in quotation marks.*)Map[mkeqm[#,sl&,ml 

mkecp [ { -1, -1,l, 1,0,0 1, names31 

ATP + G l C  -> ADP + G6P 

nameMatrix [Transpose [nu1 ,names3 1 

{ATP + GlC -> ADP + G6P, G6P -> F6P,  ATP + F6P - >  ADP + F16BP) 

6.2 Calculate the pathway from glucose to carbon dioxide and water in terms of (1) the net reaction for glycolysis, (2) the net 
reaction catalyzed by the pyruvate dehydrogenase complex, (3) the net reaction for the citric acid cycle, and (4) the net 
reaction for oxidative phosphorylation. 

The stoichiometric number matrix for these four reactions is 

TableForm[nu4,TableHeadings->{names,Automatic}l 
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Glc 

Pi 

ADP 

NADox 

PYr 

ATP 

NADred 

H2 0 

CoA 

acetylCoA 

c02 

0 2  

1 

-1 

-2 

-2 

-2 

2 

2 

2 

2 

0 

0 

0 

0 

2 

0 

0 

0 

-1 

-1 

0 

1 

0 

-1 

1 

1 

0 

3 

0 

-1 

-1 

-4 

0 

1 

4 

-2 

1 

-1 

2 

0 

4 

0 

-3 

-3 

1 

0 

3 

-1 

4 

0 

0 

0 

1 

2 
- ( - )  

mkeqm[c-List,s-List]:=(*c-List is the list of stoichiometric numbers for a reaction. 
s-List is a list of the names of species or reactants. These names have to be gut in 
quotation marks. * )Mag [Max [#, 01 &, -cl . s->Mag [Max [#, 0 I &, cl . s 
nameMatrix[m~List,s~Listl:=(*m~List is the transposed stoichiometric number matrix for 
the system of reactions. s-List is a list of the names of species or reactants. These 
names have to be gut in quotation marks.*)Map[mkeqm[#,sl&,ml 

nameMatrix[Transgose~nu~~ ,names1 

{2 ADP + Glc + 2 NADox + 2 Pi -> 2 ATP + 2 H20 + 2 NADred + 2 Pyr, 
CoA + NADox + Pyr -> acetylCoA + C02 + NADred, 
acetylCoA + ADP + 2 H20 + 4 NADox + Pi -> ATP + 2 C02 + CoA + 4 NADred, 

3 ADP + NADred + - + 3 Pi -> 3 ATP + 4 H20 + NADox} 
2 

As indicated in equation 6.2-2 the stoichiometric numbers for the net reaction are given by 

nunet={-1,-40,-40,0,0,46,0,0,6,0,0r6,-61 

{-I, -40 ,  -40, 0 ,  0 ,  40 ,  0 ,  4 6 ,  0, 0, 6 ,  - 6 1  

The pathway can be calculated by use of 

Thus to oxidize a mole of glucose to carbon dioxide and water, reaction 1 has to occure once, reaction 2 has to occur twice, 
reaction 3 has to occur twice, and reaction 4 has to occur 12 times. 

6.3 (a) Type in the stoichiometric number matrix for glycolysis at a specified pH that is given in Fig. 6.1. (b) Use nameMa- 
trix to type out the 10 reactions. (c) Use equation 6.1-3 to calculate the net reaction for glycolysis. (d) Calculate a basis for 
the conservation matrix for glycolysis and row reduce it to determine the number of components. 
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(a) The stoichlometric number matrix for glycolysis 

TableForm[nu2,TableHeadings->{n~es2,{1,2,3,4,5,6,7,8,9,lO}}l 

1 2  3 4 5 6 7 8 9 1 0  
G 1  c - 1 0  0 0 0 0 0 0 0 0 

ATP - 1 0  - 1 0  0 0 1 0  0 1 

ADP 1 0  1 0  0 0 -1 0 0 -1 

NADOX 0 0 0 0 0 - 1 0  0 0 O 

N A D r e d O  0 0 0 0 1 0  0 0 0 

Pi 0 0 0 0 0 - 1 0  0 0 0 

G6P 1 - 1 0  0 0 0 0 0 0 0 

F 6 P  0 1 - 1 0  0 0 0 0 0 0 

FBP 0 0 1 - 1 0  0 0 0 0 0 

DHAP 0 0 0 1 - 1 0  0 0 0 0 

13BPG 0 0 0 0 0 1 -1 0 O 0 

3PG 0 0 0 0 0 0 1 - 1 0  0 

2 PG 0 0 0 0 0 0 0 1 - 1 0  

PEP 0 0 0 0 0 0 0 0 1 - 1  

GAP 0 0 0 1 1  - 1 0  0 0 0 

PY r 0 0 0 0 0 0 0 0 0 1  

This is Fig. 6.1. 
(b) Use mathematica to type out the reactins of glycolysis 

mkeqm [c-List , s-List ] : =Map [Max [ #, 01 &, -cl . s->Mag [Max I#, 01 &, Cl . S 
nameMatrix [m-Li S t , s-Lis t 1 : =Map [mkeqm [ # , s 1 & ,ml 

{ATP + G l C  -> ADP + G 6 P ,  G 6 P  -> F 6 P ,  ATP + F 6 P  -> ADP + F B P ,  FBP -> DHAP + GAP, 

DHAP -> GAP, GAP + NADox + P i  -> 13BPG + N A D r e d ,  13BPG + ADP -> 3PG + ATP,  

3PG -> 2PG,  2PG -> P E P ,  ADP + P E P  -> ATP + P y r }  

(c) Equation 6.1-3 (v.s = nunet) is given by 

nu2.{1,1,1,1,1,2,2,2,2,2} 
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{-1, 2, -2, -2, 2, -2, 0 ,  0, 0, 0, 0, 0, 0, 0,  0 ,  2 1  

mke~[nu2.{1,1,1,1,lr2,2,2,2,2,2},n~es21 

2 ADP + G l c  + 2 NADox + 2 P i  -> 2 ATP + 2 N A D r e d  + 2 Pyr 

(d) Use Mathematica to make Fig. 6.2. 

TableForm[Transpose[RowReduce[~llSpacetTrans~ose[nu2l11l,TableHeadings- 
>{names2, { i i G l c n , i l A T P i i ,  iiADPii,iiNADoxll,iINADredLII, l l P i i l l  11 

G l c  ATP ADP NADox N A D r e d  Pi 
Glc 1 0 0 0 0 0 

ATP 0 1 0 0 0 0 

ADP 0 0 1 0 0 0 

NADox 0 0 0 1 0 0 

NADred 0 0 0 0 1 0 

P i  0 0 0 0 0 1 

G 6 P  1 1 -1 0 0 0 

F6P 1 1 -1 0 0 0 

F B P  1 2 -2 0 0 0 

1 
- 

DHAP 2 1 -1 0 0 0 

1 
- 

1 3 B P G  2 1 -1 1 -1 1 

1 
- 

3 PG 2 0 0 1 -1 1 

- 
2 PG 2 0 0 1 -1 1 

1 
- 

P E P  2 0 0 1 -1 1 

1 
- 

GAP 2 1 -1 0 0 0 

1 
- 

P Y r  2 -1 1 1 -1 1 

This is Fig. 6.2. When the reactants are listed in this order, the components are Glc, ATP, ADP, NADox, NADred, and Pi. 
This means that when the concentrations of the last five are specified, the equilibrium compositions of the remaining reac- 
tants can be calculated without using equcalcrx. 
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6.4 The following reaction is carried out enzymatically at 298.15 K, pH 7, and 0.25 M ionic strength. 
ATP + glucose = glucose6phos + ADP 
The initial concentrations of ATP and glucose are 0.001 M. What is the equilibrium composition? Solve this problem using 
Mathematica in two ways. 

(BasicBiochemData2 has to be loaded) 

Use equcalcrx: First calculate the apparent equilibrium constant. 

18973.7 

equcalcrx [nt-, lnkr-,no-l :=Module [ {as, Ink}, 
(*nt=transposed stoichiometric number matrix 
lnkr=ln of equilibrium constants of rxs (vector) 
no=initial canposition vector*) 
( *Setup* 
lnk=LinearSolve Int , lnkrl ; 
as-Nullspace [nt I ; 
equcalcc [as,lnk,nol 
I 

-6 -6 
{7.20251 10 , 7.20251 10 , 0.000992797, 0.000992797) 

These are the equilibrium concentrations of ATP, glucose, glucose6phos, and ATP. 
This problem can also be solved using NSolve. Since there are four unknown concentrations, there have to be four indepen- 
dent relations between these four unknowns. There is one equilibrium constant expression and three conservations equations, 
which we take here to be the conservation of adenosine, glucose entity, and phosphorus. 

NSolve[{cglucose6phos*cad~/(catp*cglucose)==l.9O*lOA4,catp+cad~==O.OOl,cg~ucose+cg~ucos 
e6phos==.001,cat~+cglucose6~hos==.OOl},{catp,cglucose,cglucose6phos,cadp~l 

{{cglucose -> -7.30778 10 , catp -> -7.30778 10 , cadp -> 0.00100731, 
-6 -6 

-6 -6 
cglucose6phos -> 0.00100731}, {cglucose -> 7.20251 10 , catp --> 7.20251 1 0  

cadp -> 0.000992797, cglucose6phos -> 0.000992797)} 

The first solution is impossible because concentratins have to be positive. The second solution agrees with that obtained 
using equcalcrx. 

6.5 Calculate the apparent equilibrium constant for the net reaction for the first five reactions of glycolyis that is, reactions 
6.6-1 to 6.6-5) using equation 6.1-6. Check this by simply using the net reaction. 

(BasicBiochemData has to be loaded) 

The stoichiometric number matrix is 

TalsleForm[nu,TableHeadings- 
>{  {llglcll, lmatp", "g6p1*, i*adpil, "f 6p1*, "f 16bip", 'Idihydroxyacetonephos", llglyceraldehydephos'' 1, 
Automatic} I 
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glc 
atP 
96P 
adP 
f 6P 
f 16bip 
dihydroxyacetonephos 
glyceraldehydephos 

1 

-1 
-1 
1 
1 

0 
0 
0 
0 

2 3 4 5  
0 0 0 0  
0 - 1 0  0 
- 1 0  0 0 
0 1 0 0  

1 - 1 0  0 
0 1 - 1 0  
0 0 1 1  
0 0 1 - 1  

The vector of standard transformed Gibbs energies of formation at pH 7 and is=0.25 M is 

v e c t o r O = { g l u c o s e , a t g , g l u c o s e 6 ~ h o s , a d g r f r r o x y a c e t o n e p h o s  
,glyceraldehyBephos)/.gH->7/.is->.25 

{-426.708, -2292.5, -1318.92, -1424.7, -1315.74, -2206.78, -1095.7, -1088.04) 

The pathway vector is 

vectors={l,l,l,l,l); 

vectorG.nu.vectors 

-29.105 

apparentK=Exp[29.105/(8.31451*.29815)1 

125581. 

The net reaction is 
glc + 2ATP = 2dihydroxyacetonephos + 2ADP 

calckprime[glucose+2*atg+de==2*dihydroxyacetonephos+2*adg,7,.251 

125587. 

6.6 A liter of aqueous solution contains 0.01 mol H2 PO4 - , 0.01 mol H P 0 ,  ’-, and 0.01 mol Mg2+. Assuming that the ionic 
strength is zero, what is the equilibrium composition of the solution in terms of species at 298.15 K? 

(BasicBiochemData has to be loaded) 

This problem canbe solved in two different ways. Using equcalcc, the conservation matrix with H, Mg, and P as components 
and H+ , M g 2 + ,  Hz PO4 - , HPO, ‘-, and MgHPO, as species is given by 

H Mg H2P04- HP042- MgHP04 
H 1 0  2 1 1 

M g O 1  0 0 1 

P 0 0  1 1 1 
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The standard Gibbs energies of formation in kJ mol-'are used to construct Ink. 

{ O ,  183.665, 458.779, 442.159, 632.065) 

The initial composition matrix is given by 

noa=C0,.01,.01,.01,0}; 

( 0 ,  0.01, 0.01, 0.01, 0) 

The amounts of the species at equilibrium (in the order used above) are given by 

equcalcc [as-,lnk-,no-l :=Module [ {l,x,b,ac,m,n,e,k}, 
( *  aseconservation matrix 
Ink=-(l/RT)(Gibbs energy of formation vector at T) 
nozinitial composition vector * )  

(m,n}=Dimensions [as1 ; 
b=as . no; 
ac=as; 
(*Initialize*) 
l=LinearSolve[ as.Transpose[asl,-as.(lnk+Log[nl) I ;  
( *Solve* 
Do[ e=b-ac. (x=EA (lnk+l.as) ) ;  
If [ (lOA-lO)>Max[ Abs [el I ,  Break[] I ; 
l=l+LinearSolve[ac.Transpose[as*Table~x,~m~~~,e~, 
Ck,10011; 
If [ k=lOO,Return[llAlgorithm Failed"] 1 ; 
Return [XI 
I 

(*setup*) 

equcalcc Caa, lnka,noal 

-7 

0.00645362) 
11.70726 10 , 0.00354638, 0.00999983, 0.00354655, 

TableFonn[ {egucalcc [aa, lnka,noa] },TableHeadings->{ {"c/M"), ("H",11Mg",11H2P04-","HP042- 
I*, "MgHP04 ID 1 1 I 

H Mg H2 PO4 - HP042- MgHP04 
-7 

c/M 1.70726 10 0.00354638 0.00999983 0.00354655 0.00645362 

This problem can also be solved using the stoichiometric number matrix for the two reactions and equcalcrx 

MgHP04- = Mg2+ + HP04'- 

The transformed stoichiometric number matrix is given by 

H~ po0 - = H+ + H P O ~  2 -  K1= 6.05499* IO"-8 
Kz= 1.9489*10"-3 

TableFornlE tnual 

1 0 - 1 1 0  
0 1 0  1 - 1  
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lnkra=Log[{6.05499*10A-8,1.9489*10A-311 

{ - 1 6 . 6 1 9 8 ,  - 6 . 2 4 0 4 9 )  

The initial amount vector is unchanged, and so the equilibrium composition is given by 

equcalcm t tnua, lnkra, noal 

- ' I  
{ 1 . 7 0 7 2 6  1 0  , 0 . 0 0 3 5 4 6 3 8 ,  0 . 0 0 9 9 9 9 8 3 ,  0 . 0 0 3 5 4 6 5 6 ,  0 . 0 0 6 4 5 3 6 2 )  

TableForm[{equcalcm[tnua,lnkra,noal 1 ,TableHeadings->{ { " c / M " ) ,  {"H", " M g " ,  "H2P04- 
'I, "HP042- n, "MgHPO4 " 1 1 1 

H Mg H2P04- HP04 2 - MgHPO4 
-7 

c/M 1 . 7 0 7 2 6  10 0.00354638 0 . 0 0 9 9 9 9 8 3  0 . 0 0 3 5 4 6 5 6  0 . 0 0 6 4 5 3 6 2  

6.7 When 0.01 M glucose 6-phosphate is hydrolyzed to glucose and phosphate at 298.15 K in the pH range 9-10, only four 
species have to be considered. 
GlcP2- + Hz 0 = Glc + HP04 '- 
What is the equilibrium composition assuming the ionic strength is zero? 

This calculation using equcalcc involves the problem that a, Go H2 0) is used in the calculation of the equilibrium constant 
K, but the expression for the equilibrium constant does not involve the concentration of Hz 0. Thus in effect oxygen atoms 
are not conserved, because in dilute aqueous solutions they are drawn for th essentially infinite reservoir of the solvent. 
Therefore, the further transformed Gibbs energy G has to be used. The conservation matrix with C and P as components and 
GlcP2-, Glc, and HPOd2-as species is given by 

TableForm[abl 

6 6 0  

1 0 1  

The H row and charge row are redundant, and so they are omitted. The transformed Gibbs energy has to be used because the 
"concentration" of water is held constant. These transformed Gibbs energies of formation are given by 

tgeGlcP=-1763.94-9*(-237.19) 

3 7 0 . 7 7  

tgeGlc=-915.9-6*(-237.19) 

5 0 7 . 2 4  

tgeHPO4=-1096.1-4*(-237.19) 

- 1 4 7 . 3 4  

where the standard Gibbs energy of formaton of H 2 0  is -237.19 kJ m o l - l .  
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{ - 1 4 9 . 5 6 6 ,  - 2 0 4 . 6 2 7 ,  5 9 . 4 3 5 9 )  

nob={ 0.1,0,01 

{O.l, 0, 0) 

equcalcc [ab,lnkb,nobl 

{ 0 . 0 0 0 1 2 4 3 3 4 ,  0 . 0 9 9 8 7 5 7 ,  0 . 0 9 9 8 7 5 7 )  

This problem can also be solved using the stoichiometric number matrix. Water is omitted from the stoichiometric number 
matrix, and so the transposed stoichiometric number matrix is given by 

tnub={{-l,l,l11; 

TableForm [ tnubl 

-1 1 1 

The transformed Gibbs energy of reaction is given by 

tgeGlc+tgeHPO4-tgeG1cP 

- 1 0 . 8 7  

lnkrb={(-1/(8.31451*.29815))*(-10.87)1 

{ 4 . 3 8 4 8 8 )  

equcalcrx [tnub, lnkrb, nobl 

{ 0 . 0 0 0 1 2 4 3 3 4 ,  0 . 0 9 9 8 7 5 7 ,  0 . 0 9 9 8 7 5 7 1  

Thus the concentration of G6P2- is 1 . 2 4  x ~ O - ~ .  

6.8 A liter of aqueous solution contains 0.02 mol phosphate and acid andNaCl are added to bring it to pH 7, and 0.2.5 M 
ionic strength. What is the equilibrium composition in terms of phosphate species? 

(BasicBiochemData2 has to be loaded) 

Since H and Mg are not conserved, the conservation matrix is 

as= C { 1,1,1) 1 

{{I, 1, 1)) 

where the species are H2 PO4 -, HP04 2 - ,  and MgHP04. The transformed Gibbs energies of these three species at 2.5 O C, pH 
7, pMg 3, and I = 0.25 M have been calculated by Alberty and Goldberg (1992), and they can be used to calculate 

1nk~-(1/(8.31451*.29815))*{-1056.58,-1058.57,-1050.441 

{ 4 2 6 . 2 1 7 ,  4 2 7 . 0 2 ,  4 2 3 . 7 4 )  

The equilibrium concentrations of the three phosphate species are given by 
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equcalcc[as,lnk,~0.01,0.01,0}] 

{0.00603194,  0 . 0 1 3 4 6 1 3 ,  0 .000506736)  

Alternatively, we can use the transposed stoichiometric number matrix 

where the reactions are 
H2 PO4- = HP04’- K1= exp[(1058.57 - 1056.58)/RT] 
MgHPO,I= HP042- Kz = exp[(1058.57-1050.44)/RT] 
Thus lnkr is given by 

lnkr={(1058.57 - 1056.58~/~8.31451*.29815),(1058.57-1050.44)~(8.31451*.29815)~ 
{0.802752,  3 .27959} 

The equilibrium concentrations of the three species are the same as obtained using the conservation matrix. 

equcalcrxltrnu, lnkr, { O .  01,O. Ol,O} 3 

{0.00603194,  0 . 0 1 3 4 6 1 3 ,  0 .000506736)  





Chapter 7 Thermodynamics of Binding of Ligands by Proteins 

7.1 Use the equilibrium constants in equations 7.1-3 to 7.1-6 to calculate the further transformed Gibbs energies of formation 
of the forms of the tetramer of hemoglobin and of the pseudoisomer group at O,] = 5 x ~ O - ~ ,  lo-', and 2 x ~ O - ~ M .  (a) 
Make a table with the last three columns like Table 7.1. (b) Calculate the equilibrium mole fractions of forms of the tetramer 
at 21.4 OC, 1 bar, pH 7.4, (21-1 = 0.2 M, and 0.2 M ionic strength and make a table like Table 7.2. 

7.2 Use the equilibrium constants in equations 7.3-2 and 7.3-3 to calculate the further transformed Gibbs energies of forma- 
tion of the forms of the dimer of hemoglobin and of the pseudoisomer group at 
Make a table with the last three columns and first four rows of Table 7.3. 

O,] = 5 x ~ O - ~ ,  and 2 x ~ O - ~ M .  

7.3 Calculate the fractional saturation Y, of the tetramer of human hemoglobin with molecular oxygen using the equilibrium 
constants determined by Mills, Johnson, and Akers (1976) at 21.5 "C, 1 bar, pH 7.4, [C l - ]  = 0.2 M and 0.2 M ionic strength. 
Make the calculation with the Adair equation and also by using the binding polymomial Y, . 

7.4 Calculate the fractional saturation Y, of the dimer of human hemoglobin with molecular oxygen using the equilibrium 
constants determined by Mills, Johnson, and Akers (1976) at 21.5 "C, 1 bar, pH 7.4, [C l - ]  = 0.2 M and 0.2 M ionic strength. 
Make the calculation with the Adair equation and also by using the binding polymomial P, . 

7.5 (a) Calculate the oxygen binding curve Y for human hemoglobin when the dimer and tetramer are in equilibrium using 
the equilibrium constants determined by Mills, Johnson, and Akers (1976) at 21.5 "C, 1 bar, pH 7.4, [ C l - ]  = 0.2 M and 0.2 
M ionic strength. This plot depends on the heme concentration. The currently accessible range of heme concentrations is 
about 0.04 pM to 5 mM. Plot logK" versus [O,]. (b) Use the equation for Y to extrapolate to values of Y ,  at high heme 
concentrations. (c) Use the equation for Y to extrapolate to values of Y, at low heme concentrations. 

337 
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7.1 Use the equilibrium constants in equations 7.1-3 to 7.1-6 to calculate the further transformed Gibbs energies of formation 
of the forms of the tetramer of hemoglobin and of the pseudoisomer group at O z ]  = 5 x ~ O - ~ ,  

Make a table with the last three columns like Table 7.1. (b) Calculate the equilibrium mole fractions of forms of the tetramer 
at 21.4 OC, 1 bar, pH 7.4, Cl-] = 0.2 M, and 0.2 M ionic strength and make a table like Table 7.2. 

and 2 xlO-'M. (a) 

(a) Calculate further transformed Gibbs energies of forms of the tretramer and the pseudoisomer group Ttot. 

calctgfT[ke~,conco2~]:=Module[{b,m,tgf,ge~nO2,gtrans,g~so,out~ut~,~*This program 
returns the standard further transformed Gibbs energies of formation of the forms of 
the tetramer of hemoglobin and the standard further transformed Gibbs energy of the 
pseudoisomer group at a specified molar concentration of molecular oxygen and 
specified equilibrium constants. keg_ is a vector of equilibrium constants. conco2 
is the molar concentration of molecular oxygen.*) 
b=-1*(8.31451*10A-3)*294.65*Log[ke~li16.1; 
m=~~1.0,0,03,~-1.1,0,0~,~0,-1,1,0~,~0,0,-1,1~~; 
ge=LinearSolve[m,bl; 
tgf={Flatten[{O,ge}I}; 
n02=C{Oll,2,3,4~1; 
gtrans=Transpose[tgf]-Transpose[nO2l*(16.l+(8.3l45l*lOA-3)*294.65*Log~conco2l~; 
giso=-l*(8.31451*10A-3)*294.65*Log[Aggly[Plus,Exp[-gtrans/((8.31451*10A-3)*294.65~lll; 
output={gtrans,giso}; 
Return[output] I 

keq={43970.,12210.,404900.,664400.}; 

coll=Flatten[calctgfT[keq,5*10A-611; 

co12=Flatten[calctgfT[keq,10A-511; 

co13=Flatten[calctgfT[keq,2*10A-511; 

TableForm[Transpose[{coll,col2,col3~l,TableHead~ngs- 
> { { T n, "T ( 02 ) I', " T ( 02 ) 2 " , "T ( 02 ) 3 ' I ,  'IT ( 02 ) 4 ' I ,  'IAf G ' I o ( TO tT ) " } , { " 5x1 0 A - 6 
M","2x10A-5 M " ) } l  

M" , " 10 A - 5 

T 
5~10"-6 M 10A-5 M 2~10"-5 M 
0 0 0 

"(02) 3.71109 2.01297 0.314846 

T(02)2 10.5611 7.16484 3.76859 

T(02)3 8.83313 3.73877 -1.3556 

T(02)4 5.89189 -0.900589 -7.69307 

AfG' 'O(T0tT) -0.736508 -2.8149 -8.06907 

(b) Calculate the equilibrium mole fractions of the various foms of the tetramer. 

TableForm[Transpose[{colll,coll2,coll3~~,TableHead~ngs- 
> { { "T" , "T (02 ) 'I, "T (02 ) 2 ' I ,  "T (02 ) 3 'I, 'IT (02 ) 4" } , { "5x1 0 A - 6 M" , " 10 A - 5 M" , "2x1 0 A - 5 M" 1 1 1 
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5~10"-6 M 10A-5 M 2x10A-5 M 
T 0.740351 0.316953 0.0371174 

T(02) 0.162766 0.139364 0.032641 

T(02)2 0.00993687 0.0170164 0.00797093 

T(02)3 0.0201172 0.0688993 0.0645486 

T(02)4 0.0668293 0.457767 0.857722 

7.2 Use the equilibrium constants in equations 7.3-2 and 7.3-3 to calculate the further transformed Gibbs energies of forma- 
tion of the forms of the dimer of hemoglobin and of the pseudoisomer group at O,] = 5 x ~ O - ~ ,  
Make a table with the last three columns and first four rows of Table 7.3. 

and 2 xlO-'M. 

calctgfD[ke~,conco2~]:=Module[{b,bl,b2,m,tgf,ge,nO2,gtrans,giso,out~ut},(*This 
program returns the standard frurther transformed Gibbs energies of formation of the 
forms of the dimer of hemoglobin and the standard further transformed Gibbs energy of 
the pseudoisomer group at a specified molar concentration of molecular oxygen and 
specified equilibrium constants. keg_ is a vector of equilibrium constants. conco2 
is the molar concentration of molecular oxygen.*) 
b1=-1*(8.31451*10A-3)*294.65*Log[keq[[ll~l+l6.l+3O.O832; 
b2~-1*(8.31451*10"-3)*294.65*L0~~k~~[[2]11+16.1; 
b={bl,b2); 
m={{1,0) ,  {-1,1}3; 
ge=LinearSolve [m, bl ; 
tgf={Flatten[{30.0832,ge)l); 
n02={{0,1,2}); 
gtrans=Transpose[tgf]-Transpose[nO2]*(16.l+(8.3l45l*lOA-3)*294.65*Log[conco2]); 
giso=-1*(8.31451*1OA-3~*294.65*Log[A~~ly[P~us,E~[-gtrans/( (8.31451*10A-3)*294.65)lll; 
output={gtrans,giso); 
R€~tUrn[OUtpUtl] 

keq={3.253*1OA6,8.155*lOA5); 

co121=Flatten[calctgfD[keq,5*10A-611; 

co122=Flatten[calctgfD[keq,10A-511; 

co123=Flatten[calctgfD[keq,2*10A-511; 

Table 7.3 Standard further transformed Gibbs energies of formation of dimer at 21.5 C, pH 7.4, C1-] = 0.2 M and 0.2 M 
ionic strength 

Tab~eForm[Transpose[{col2l,co~~~,co~~~~],TableHeadings- 
> { { "D" , "D (02 ) " , "D (02 ) 2 " , "A f G ' ' 0 (Tot D) " } , { " 5x10 A - 6 M" , " 10 A - 5 M" , "2x10 A - 5 M" 1 1 1 

D 
5x10A-6 M 10"-5 M 2x10A-5 M 
30.0832 30.0832 30.0832 

D(02) 23.2505 21.5524 19.8542 

D(02)2 19.8072 16.411 13.0147 

A f G '  'o(TotD) 19.2404 16.1194 12.8668 

7.3 Calculate the fractional saturation YT of the tetramer of human hemoglobin with molecular oxygen using the equilibrium 
constants determined by Mills, Johnson, and Akers (1976) at 21.5 OC, 1 bar, pH 7.4, [ C l - ]  = 0.2 M and 0.2 M ionic strength. 
Make the calculation with the Adair equation and also by using the binding polymomial Y, . 

kT1=4.397*10*4; 
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kT2=1.221*10"4; 

kT3=4.049*10"5; 

kT4=6.644*10"5; 

yT=(kT1*o2+2*kT1*kT2*o2"2+3*kTl*kT2*kT3*o2A3+4*kTl*kT2*kT3*kT4*o2A4)/(4*(l+kTl*o2+kTl*k 
T2*02*2+kTl*kT2*kT3*02"3+kT1*kTl*kT2*kT3*kT4*02~4) ); 

1 

0 . 8 -  

0 . 6 -  

0 . 4 -  

0 . 2 -  

5 ~ 1 0 - ~  0 . 0 0 0 0 1  ' '0 . ' O o O O l 5 '  ' 0. O O O 0 6 ° 2  

Plot[Evaluate[o2*D[Log[pT]/4,o2ll,{o2,lOA-8,2*lOA-5~,PlotRange-~~O,l~,~eS~ab~~- 
>( [ \  ! \ (0\-2\) 1 ", 'I\ ! \ (Y\-T\) "11 i 

7.4 Calculate the fractional saturation Y, of the dimer of human hemoglobin with molecular oxygen using the equilibrium 
constants determined by Mills, Johnson, and Akers (1976) at 21.5 OC, 1 bar, pH 7.4, [C l - ]  = 0.2 M and 0.2 M ionic strength. 
Make the calculation with the Adair equation and also by using the binding polymomial P, . 
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kD1=3.253*10A6; 

kD2=8.155*10A5; 

Plot [ yD, { 02,0,5 * 10 A - 6 } ,  PlotRange- > { 0 , 1 } , AxesLabel- > { 'I \ ! \ ( O\-2 \ ) 1 'I, 'I \ ! \ (Y \-D\ ) 'I 1 1 ; 

.------- 
0 . 8 -  

[ 0 2  1 
1x10-6  2x10-6 5 ~ 1 0 - ~  

6 12 2 
1 + 3 . 2 5 3  10 0 2  + 2 . 6 5 2 8 2  10 0 2  

7.5 (a) Calculate the oxygen binding curve Y for human hemoglobin when the dimer and tetramer are in equilibrium using 
the equilibrium constants determined by Mills, Johnson, and Akers (1976) at 21.5 O C ,  1 bar, pH 7.4, [Cl - I  = 0.2 M and 0.2 
M ionic strength. This plot depends on the heme concentration. The currently accessible range of heme concentrations is 
about 0.04 pM to 5 mM. Plot logK" versus [O,] .  (b) Use the equation for Y to extrapolate to values of Y, at high heme 
concentrations. (c) Use the equation for Y to extrapolate to values of YD at low heme concentrations. 
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(a) The values of Y, and Y, are calclted as follows: 

kT1=4.397*10"4; 

kT2=1.221*10"4; 

kT3=4.049*10"5; 

kT4=6.644*10"5; 

kD1=3.253*10"6; 

kD2=8.155*10"5; 

The apparent association constant K"(2D=T) for human hemoglobin is given by 

k=(4.633*10"10)*(l+kTl*o2+kTl*kT2*o2A2+kTl*kT2*kT3*o2A3+kTl*kT2*kT3*kT4*o2A4)/( (l+kDl*o 
2+kDl*kD2*02"2)"2); 

plot [Log [ 10, k] , {02,0,2 * 10 A - 5 1 , AxesLabel - > { 1 \ ! \ ( O\-2 \ ) 1 ' I ,  logK I I' 11; 

The dependence of Y on [heme] is given by 

The fractional saturation Y at the highest possible hemoglobin concentration is given by: 

yhigh=y/.hme->5*lOA-3; 

plotlaplot [yhigh, {02, 0,2*1OA-5),PlotRange->{O, 1) ,AxesLabel->{" [ \ !  \ (0\-2\) I ", "Y"1 1 ; 
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Y 

The fractional saturation at the lowest currently possible hemoglobin concentration is given by: 

ylow=y/.heme->4*10A-8; 

plot2=Plot[ylow,{o2,O,2*lOA-5},PlotRange-~{O,l},~esLabel-~~ii~\!\~O\~Z\~l","Y"~l; 

Y 

The fractional saturation at a heme concentration l/lOth of the lowest currently possible hemoglobin concentration is given 
by : 
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Y 
1 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

- 
5 ~ 1 0 - ~  0'. 0 0 0 0 1  ' 0 .'00'0015 ' ' 0'. 0000~021 

Y 

(b) Plot Y versus [heme]-.5 at high [heme] to obtain yT. Y is plotted versus x, where x = [heme]-.5 or [heme] = 1/x2. 

Clear [XI 

~ ~ ~ ~ [ { y f ~ / . 0 2 - > ~ O " - 4 , ~ f n x / . o 2 - > 2 * 1 0 " - 5 , / . 0 2 - ~ 5 * 1 0 ~ - 6 , ~ f n ~ ~ . ~ ~ -  
>10*-6} ,  {x, 0 , 2 0 0 0 }  ,PlotRange->{O, 1) ,AxesLabel->{"\! \ ( [hemel \ A -  . 5 \ )  " I  "Y''}] ; 
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Y 

-r 

1 . . . . I . . . . 4 . . , , I , . , . I [heme]-.5 
5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  

This is Fig. 1 in R. A. Alberty, Biophys. Chem. 63, 189-132 (1997). 
(c) Plot Y versus [heme] a very low concentrations of heme to obtain Y, by extrapolation. 

~ ~ ~ ~ [ ~ ~ / . 0 2 - > 1 0 ~ - 4 , ~ / . 0 2 - > 2 * 1 0 ~ - 5 , ~ / . 0 2 - > 1 0 ~ - ~ , ~ / ~ O 2 - > 5 * ~ 0 ~ ~ 6 , ~ / . O 2 ~ ~ 1 0 ~ ~ 6 ~ Y / ~ O ~ ~  
>lo"- 7 1, {heme, 0,lO A -7 1 , PlotRange- > { 0 , 1 1 , AxesLabel - > C 'I [heme 1 I' , "Y" 1 1 i 

[heme ] 
2 ~ 1 0 - ~  4 ~ 1 0 - ~  6 ~ 1 0 - ~  8 ~ 1 0 - ~  1 x 1 0 - 7  

This is Fig. 3 in R. A. Alberty, Biophys. Chem. 63, 189-132 (1997).. 





Chapter 8 Phase Equilibrium in Aqueous Solutions 

8.1 (a) Calculate the the standard transformed Gibbs eneries for the reaction C02tot = C02(g) + H20 at 283.15 K, 298.15 
K, and 313.15 K at pHs 5 ,  6, 7, 8, and 9 at ionic strength 0.25 M. (b) Plot the Henry's law constants versus pH from pH 2 to 
pH 12. 

8.2 (a) Calculate the standard transformed Gibbs energies for the reaction C02tot = C02(g) + H20 at 298.15 K and pHs 5 ,  
6, 7, 8, and 9 for ionic strengths of 0, 0.10, and 0.25 M. (b) Plot the Henry's law constants versus pH from pH 3 to pH 9. (c) 
Plot logK, as a function of pH at three ionic strengths. 
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8.1 (a) Calculate the the standard transformed Gibbs eneries for the Reaction C02tot = C02(g) + H 2 0  at 283.15 K, 298.15 
K, and 313.15 K at pHs 5, 6, 7, 8, and 9 at ionic strength 0.25 M. (b) Plot the Henry's law constants versus pH from pH 2 to 
pH 12. 

(a) Calculation of the standard transformed Gibbs energy of reaction:. 

The following program can be used to calculate the function of temperature, pH, and ionic strength that represents the 
standard transformed Gobbs energy of formation of a reactant. 

ca~cdGHT[speciesmat-] := 
Module[{dGzero, dGzeroT,dHzero,zi, nH, gibbscoeff,pHterm, 
istem,gpfnsp,dGfn,dHfn},(*This program produces the function of T (in Kelvin), pH and 
ionic strength (is) that gives the standard transformed Gibbs energy of formation of a 
reactant (sum of species) and the standard transformed enthalpy. The input speciesmat 
is a matrix that gives the standard Gibbs energy of formation at 298.15 K, the 
standard enthalpy of formation at 298.15 K, the electric charge, and the number of 
hydrogen atoms in each species. There is a row in the matrix for each species of the 
reactant. gpfnsp is a list of the functions for the transformed Gibbs energies of the 
species. The output is in the form {dGfn,dHfn}, and energies are expressed in kJ 
mol"-l. The values of the standard transformed Gibbs energy of formation and the 
standard transformed enthalpy of formation can be calculated at any temperature in the 
range 273.15 K to 313.15 K, any pH in the range 5 to 9, and any ionic strength in the 
range 0 to 0.35 m by use of the assignment operator(/.).*) 
{dGzero,dHzero,zi,nH}=Transpose[speciesmatl; 
gibbscoeff=9.20483*1OA-3*t-l.284668*lOA-S*tA2+4.95l99*lOA-8*tA3~ 
dGzeroT=dGzero*t/298.15+dHzero*(l-t/298.15); 

istermG = gibbscoeff*((ziA2) - nH)*(is".5)/(1 + 1.6*isA.5); 
gpfnsp=dGzeroT - pHterm - istermG; 
dGfn=-8.31~51*(t/100~)*Log[App~y[P~us,Exp[-l*gpfnsp/(8.3~~5~*(t/~~~~~~~]~; 
dHfn=-tA2*D[dGfn/t, tl ; 
{dGfn,dHfn}l 

pHterm = nH*8.31451*(t/10O0)*Log[lOA-pH1; 

The program calctrGerx is readily modified to take a list of temperatures. 

calctrGerxT[eg_,pHlist_rislislist_l:},(*Calculates the standard 
transformed Gibbs energy of reaction in kJ molA-l at specified pHs, ionic strengths, 
and temperatures for a biochemical equation typed in the form atpt+h2ot+de==adpt+pit, 
where the functions include temperature (in K). The names of the reactants call the 
appropriate functions of pH, ionic strength, and temperature. pHlist, islist, and 
tlist can be lists. This program can also be used to calculate the standard 
transformed enthalpy of reaction.*) 
energy=Solve [eq,del ; 
energy[[l,l,2ll/.pH->pHliSt/.is->islist/.t->tlist] 

co2gt=calcdGHT[co2gspl~~lll 

(-120.272 (-393.5 (1 - 0.00335402 t) - 1.32269 t))/t 
-0.00831451 t Log[E I 

co2tott=calcdGHT[co2totspl~[lll 

-0.00831451 t Log[Power[E, (-120.272 (-677.14 (1 - 0.00335402 t) - 1.77028 t - 

0.5 2 -8 3 0.5 
(4 is (0.00920483 t - 0.0000128467 t + 4.95199 10 t ))/(1 + 1.6 is ) ) )  

Power[E, (-120.272 (-699.63 (1 - 0.00335402 t) - 2.08992 t + 
0.5 2 -8 3 0.5 

(2 i s  (0.00920483 t - 0.0000128467 t + 4.95199 10 t ))/(1 + 1.6 is ) 

(-120.272 (-691.99 (1 - 0.00335402 t) - 1.96804 t - 0,00831451 t Log[lO-pHI))/t 
E 1 
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- 0 . 0 0 8 3 1 4 5 1  t Log[Power[E, ( - 1 2 0 . 2 7 2  ( - 2 8 5 . 8 3  (1 - 0.00335402 t) - 0 . 7 9 5 5 3 9  t + 
0 . 5  2 -8  3 0 . 5  

( 2  is ( 0 . 0 0 9 2 0 4 8 3  t - 0 . 0 0 0 0 1 2 8 4 6 7  t + 4 . 9 5 1 9 9  1 0  t ) ) / ( 1  + 1 . 6  i s  ) - 

{ { - 6 . 8 3 6 8 ,  - 8 . 2 4 3 1 4 ,  - 9 . 6 4 3 7 1 } ,  { - 5 . 7 5 7 4 ,  - 6 . 9 4 6 4 6 ,  - 8 . 1 1 3 8 } ,  I - 2 . 1 2 3 0 4 ,  - 2 . 9 1 7 3 7 ,  -3 .65 

1 3 . 0 3 9 0 5 ,  2 . 5 7 5 5 5 ,  2 . 1 2 5 6 1 } ,  1 8 . 6 7 2 0 2 ,  8 . 6 0 9 9 3 ,  8 . 5 9 3 0 1 } }  

TableForm [Transpose [ tab11 , TableHeadings-> { { "283.15 K" , "298.15 K" , "313.15 K" 1, { "pH 
511,18pH 6",I1pH 7","pH 8","pH 911))1 

PH 5 PH 6 PH 7 P H  8 PH 9 
2 8 3 . 1 5  K - 6 . 8 3 6 8  - 5 . 7 5 7 4  - 2 . 1 2 3 0 4  3 . 0 3 9 0 5  8 . 6 7 2 0 2  

2 9 8 . 1 5  K - 8 . 2 4 3 1 4  - 6 . 9 4 6 4 6  - 2 . 9 1 7 3 7  2 . 5 7 5 5 5  8 . 6 0 9 9 3  

3 1 3 . 1 5  K - 9 . 6 4 3 7 1  - 8 . 1 1 3 8  - 3 . 6 9 7 1  2 . 1 2 5 6 1  8 . 5 9 3 0 1  

The standard transformed Gibbs energy of reaction becomes more negative at lower pH and higher temperatures. 

(b) Plot the Henry's law constants at the three temperatures versus pH. 

plot283=Plot [Expt- 
ca1ctrOerxT[co2tott+de==co2gt+h2ot,pH,.25,283.15]/(8.31451*.28315)],{pH,2,12~,Dis~1ay~ 
nction->Identity]; 

plot298=Plot [Exp I - 
ca1ctrGerxT[co2tott+de==co2gt+h2ot,pH,.25,298.151/(8.31451*.29815)1,~pH,2,12~,Disp1ay~ 
nction->Identity]; 

plot313=Plot CEXpt- 
ca1ctrGerxT[co2tott+de==co2gt+h2ot,pH,.25,313.151/(8.31451*.31315)1,{~H,2,12~,Disp1ayFu 
nction->Identity]; 

Show [plot 2 8 3, plot 2 9 8, plot 3 13, Axe sLabel - > { lqpH1l, \ ! \ ( K\-H\ ) 1 , Di splayFunc t i on - 
>$DisplayFunctionl; 
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This is the equilibrium pressure in bars for an ideal 1 M solution of carbondioxide as a function of temperature. The equilib- 
rium pressure increases with the temperature. This is Fig. 8.1. 

8.2 (a) Calculate the standard transformed Gibbs energies for the reaction C02tot = C02(g) + H 2 0  at 298.15 K and pHs 5 ,  
6,7, 8, and 9 €or ionic strengths of 0, 0.10, and 0.25 M. (b) Plot the Henry's law constants versus pH from pH 3 to pH 9. (c) 
Plot logK,as a function of pH at three ionic strengths. 

(BasicBiochemData2 has to be loaded) 

(a) Calculation of the standard transformed Gibbs energy of reaction:. 

calctrGerx[e~,pHlist_,islist_l:=Module[{energy},(*Calculates the standard transformed 
Gibbs energy of reaction in kJ molA-1 at specified p H s  and ionic strengths for a 
biochemical equation typed in the f o m  atp+hao+de==adp+pi. The names of the reactants 
call the appropriate functions of pH and ionic strength. pHlist and islist can be 
lists. This program can be used to calculate the standard transformed enthalpy of 
reaction by appending an h to the name of each reactant.*) 
energy=Solve [eq,deI; 
energy~[l,l,2]]/.pH->pH~~St/.iS->is~~St] 

TableForm [Transpose [ tab11 , TableHeadings-> { { m l I = O 1 l ,  "I=O. 1" , " I = O .  25 'I 1, E "pH 5", " p H  6", I'pH 
7","pH 8","pH 9 " ) ) 1  

PH 5 PH 6 PH 7 P H  8 PH 9 
I=O -8.33561 -7.55317 -4.30451 0.952641 6.71138 

I=O.1 -8.27119 -7.11762 -3.26789 2.17395 8.11334 

I=O.25 -8.24314 -6.94648 -2.9174 2.57552 8.60988 

The standard transformed Gibbs energy of reaction becomes more negative at lower pH and lower ionic strengths. 

(b) Plot the Henry's law constants at the three ionic strengths versus pH. 

Plot [hraluate CExp C- 
ca1ctrGerx[co2tot+de==co2g+h2o,pH,{0,.1,.25~1~~8.31451*.29815~1,~pH,3,9~,~esLab~~- 
> { '*pH", ! \ (K\-H\ ) 'I 1 I 1 ; 

KH 
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The upper curve is for zero ionic strength. This is Fig. 8.2. 

(c) Plot logK,as a function of pH at three ionic strengths. 

Plot [Evaluatef- 
ca1ctrGerx[co2tot+de==co2g+h2o,~H,{0,.1,.25~1/~8.31451*.29815*Log~101~1,~PH,3,11~~~~S0 
rigin-> {3, - 5 )  ,AxesLabel-r pH", 'I\ ! \ (K\LH\) " 1  I ; 

t 
PH 

4 6 8 10 

Note that the greatest effects of raising the ionic strength are at the highest pHs. 





Chapter 9 Redox Reactions 

9.1 Calculate the standard apparent reduction potentials for 298.15 K at pHs 5, 6, 7, 8, and 9 and ionic strengths 0,0.10, and 
0.25 M for the following biochemical half reactions and plot their pH dependencies at 0.25 M ionic strength. 
(1) O2 (aq) + 4 e - =  2H20  
(2) O2 (8) + 4 e - =  2H2 0 
(3) O2 (aq) + 2e-=  2H2 O2 

(4) O2 (8) + 2e-=  2H202 
(5 )  cytochrome cox+ e-= cytochrome cred 

(6) pyruvate + 2e-=  lactate 
(7) acetaldehyde + 2 e - =  ethanol 

(9) retinal + 2e-= retinol 
(10) acetone + 2 e - =  2-propanol 

(8) FMN,, + 2 e - z  Fm,,d 

(1 1) NAD,, + 2 e - =  NADred 

(12) NADP,, + 2e-=  NADP,,, 

(13) f erredoxin,, + e-= f erredoxin,,d 
(14) acetylcoA + 2e-= coA + acetaldehyde 
(15) 2e-= H2 (g) 
(16) 2e-= H2 (aq) 

9.2 Calculate the apparent equilibrium constants K at 298.15 K and pHs 5,6, 7, 8, and 9 for the following four reactions and 
plot the base 10 logarithm of K versus pH: 
(1) N2 (8) + 8 ferredoxinred= 2 ammonia + H2 (g) + 8 ferredoxin,, 
(2) N2 (aq) + 8 ferredoxinred = 2 ammonia + H2 (aq) + 8 ferredoxin,, 
(3) 2 ferredoxinred= H2 (8) + 2 ferredoxin,, 
(4) 2 ferredoxinred= H2 (aq) + 2 ferredoxin,, 
Note the ionic strength is not mentioned because the reference reactions and the dissociation of NH4 + do not depend on the 
ionic strength. Note that the apparent equilibrium constaants of the first two reactions change by a factor of 10 when the pH 
is changed 0.10 in the neutral region. 

9.3 Calculate the standard apparent reduction potentials of the following half reactions involving carbon dioxide at 298.15 K, 
pHs 5, 6, 7, 8, and 9 and ionic strengths of 0, 0.10, and 0.25 M and plot them versus pH at ionic strength 0.25 M. 
(1) C 0 2  tot + 2e-  = formate + H2 0 
(2) C 0 2  (g) + 2e- = formate 
(3) COz tot +pyruvate + 2e-  = malate + H2 0 
(4) COz (g) +pyruvate + 2e- = malate 
(5) C 0 2  tot + acetylCoA + 2e-  = pyruvate + CoA + H2 0 

9.4 Calculate the change in binding of hydrogen ions in the following 10 biochemical half 
reactions at 298.15 K, pHs 5, 6, 7, 8, and 9 and ionic strengths of 0, 0.10, and 0.25 M. Plot the change in binding at ionic 
strength 0.25 M versus pH. 
(1) C 0 2  tot + 2e-= formate + H2 0 
(2) C02 tot + acetyl-CoA + 2e-= pyruvate + CoA + H2 0 
(3) ketoglutarate + ammonia +2e- = glutamate + H2 0 
(4) pyruvate + ammonia +2e- = alanine + H2 0 
(5) pyruvate + C 0 2  tot + 2e-= malate + H2 0 
(6) cystine + 2e-=  2 cysteine + H2 
(7) citrate + CoA + 2 e - =  malate +acteyl-CoA + H2 0 
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(8) o 2 ( g ) + 4 e - = 2 H z O  
(9) NAD,,+ 2e-= NADred 
(10) N2(g) + 8e-= 2 ammonia + H,(g) 

9.5 Plot the change in binding of hydrogen ions versus pH at ionic strength 0.25 M for the following five biochemical 
reactions: 
(1) NAD,, + formate + H2 0 = NADred + COz tot 
(2) NAD,, + malate + H2 0 = NADred + C02 tot + pyruvate 
(3) NAD,, + ethanol = NADred + acetaldehyde 
(4) NAD,, + alanine + H2 0 = NADred + pyruvate + ammonia 
(5 )  NAD,, + malate + acetylcoA + H2 0 = NADred + citrate + coA 
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9.1 Calculate the standard apparent reduction potentials for 298.15 K at pHs 5 , 6 ,  7, 8, and 9 and ionic strengths 0, 0.10, and 
0.25 M for the following biochemical half reactions and plot their pH dependencies at 0.25 M ionic strength. 

0, (aq) + 4e-= 2H2 0 
0, (8) + 4e-=  2H2 0 
O2 (sq) + 2e-= 2H2 O2 

o2 (g) + 2e-= 2H2 O2 

cytochrome cox+ e - =  cytochrome cred 
pyruvate + 2e-= lactate 
acetaldehyde + 2e-= ethanol 

retinal + 2e-= retinol 
Fm,, + 2 e - z  FMNred 

(1 0) acetone + 2e- = 2-propanol 

(12) NADP,, + 2e-=NADPred 
(13) f e r redoxin , ,  + e-= f e r r e d o x i n r e d  
(14) acetylcoA + 2e-= coA + acetaldehyde 
(15) 2e-= H2 (8) 
(16) 2e-= H2 (aq) 

(1 1) NAD,, + 2e-= NADred 

(BasicBiochemData has to be loaded) 

calcappredgot [eL, nu-, pHlist-, islist-] : = 
Module[{energy), (*Calculates the standard apparent reduction potential of 

a half reaction at specified ~ H S  and ionic 
strengths for a biochemical equation typed in the form 
nadox+de==nadred. The names of the reactants call the corresponding 
functions of p H  and ionic strength. nu is the number of 
electrons involved. pHlist and islist can be lists.*) 

energy = Solve [eq, de] ; 
(-l*energy[[l, 1, 211 / (nu*96.485)) /. pH-ipHlist /. is-iislist 

1 

TableFonn[Transpose[calcapgredpot[nadox+de == nadred, 2, ( 5 ,  6, 7, 8,  9 } ,  {0, .l, .25}]], 
TableHeadings + { { "I=O M I 1 ,  "I=O. 10 M I ' ,  l l I ~ O .  25 Mml}, 

{"pH 5 " ,  "pH 6" "pH 7 " ,  "pH 8",  "pH 9")}, TableSpacing+ {I, I}] 

P H  5 PH 6 PH 7 PH 8 PH 9 
1 = 0  M - 0 . 2 6 5 2 7 5  - 0 . 2 9 4 8 5 5  - 0 . 3 2 4 4 3 5  - 0 . 3 5 4 0 1 5  - 0 . 3 8 3 5 9 5  

1 ~ 0 . 1 0  M - 0 . 2 5 8 9 3 2  -0 .288512 - 0 . 3 1 8 0 9 2  - 0 . 3 4 7 6 7 2  - 0 . 3 7 7 2 5 2  

1 ~ 0 . 2 5  M - 0 . 2 5 6 8 8 4  - 0 . 2 8 6 4 6 4  -0 .316044 - 0 . 3 4 5 6 2 4  -0 .375204 

plot11 = Plot [calcappredpot [nadox+de == nadred, 2, pH, .25], 
{pH,  5, 9 } ,  AxesLabel + ( I1pHIm,  l l E i o / V n } ] ;  
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- 0 . 3 2 -  

- 0 . 3 4 .  

- 0 . 3 6 -  

- 0 . 2 6 h  

- 0 . 2 8 1  \ 
6 \  7 8 9 PH 

TableForm[Transpose[calcappredpot[nadpox+de == nadpred, 2, {5, 6, 7, 8, 9 ) ,  {0, .l, .25}]], 
TableHeadings + {{m*I~O M", **I=O.lO MI', "1=0.25 M I ' } ,  

{"pH 5" ,  "pH 6 " ,  "pH 7 " .  "pH 8 " ,  "pH 9")), Tablespacing-, {1, l}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.282584 -0.312164 -0,341744 -0.371324 -0.400904 

I=0.10 M -0.263553 -0.293133 -0.322713 -0.352293 -0.381873 

I=O.25 M -0.257409 -0.286989 -0.316569 -0.346149 -0.375729 

plot12 = Plot [calcappredpot [nadpox + de :: nadpred, 2, pH, .25], 
{pH, 5, 9}, AxesLabel + {llpH", " E ' '  /V")]; 

E ' " / V  

-0. 

-0. 

-0. 

-0. 

-0. 

TableForm[Transpose [calcappredpot [02g + de :: 2 * h20, 4, { 5, 6, 7, 8, 9}, { 0, .l, .25) ] 1 ,  
TableHeadings + { { "I=O M I 1  , "I=O.lO M", "I=0.25 M"), 

{"pH 5" ,  "pH 6", "pH 7 " ,  "pH 8",  ' lpH 9"}}, TableSpacing+ (1, l}] 

PH 5 P H  6 PH 7 PH 8 PH 9 
1=0 M 0.933355 0.874195 0.815036 0.755876 0.696716 

I=O.lO M 0.927012 0.867852 0.808692 0.749532 0.690372 

I=O.25 M 0.924964 0.865804 0.806644 0.747484 0.688324 

plot2 = 
Plot[calcappredpot[o2g+de =: 2*h20, 4, pH, .25], {pH, 5, 9), AxesLabel-, {"pH", "Et0/V")]; 
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E '"IV 

TableForm[Transpose[calcappredpot[o2aq+de=: 2*h20, 4 ,  (5, 6, 7, 8, 9 } ,  {O, .l, .25}]], 
TableHeadings -t { (111=0 M", lnI=O.10 MI1, "I=0.25 M " ) ,  

("pH 5" ,  "pH 6", "pH 7 " ,  "pH el1, "pH 9 " } } ,  Tab1eSpacing-t {I, I}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M 0.975849 0.916689 0.857529 0.798369 0.739209 

I=O.lO M 0.969505 0.910345 0.851186 0.792026 0.732866 

I=O.25 M 0.967457 0.908297 0.849138 0.789978 0.730818 

plot1 = 
Plot[calcappredpot[o2aq+de =: 2*h20, 4, pH, .25], {pH, 5, 91,  AxesLabel -f {mlpH1l, l l E t o / V " } ] i  

E '"IV 

TableForm[Transpose[calcappredpot[o2g+de::h202aq, 2, ( 5 ,  6, 7, 8, 9 ) ,  {0, .l, .25}]], 
TableHeadings -t {{I1I=0 M I q ,  "I=O.lO M I i ,  "I=0.25 M I ' } ,  

{"pH 5 " ,  "pH 6", "pH 7", I'pH 8",  "pH 9 * * ) } ,  Tab1eSpacing-t (1, l)] 

PH 5 PH 6 PH 7 PH 8 PH 9 
I=O M 0.398764 0.339605 0.280445 0.221285 0.162125 

I=O.lO M 0.392421 0.333261 0.274101 0.214941 0.155781 

I=O.25 M 0.390373 0.331213 0.272053 0.212893 0.153733 

plot4 = 
Plot[calcappredpot[o2g+de :: h202aq, 2, pH, .25], {pH, 5, 9 ) ,  AxesLabel -f {"pH", "Eta / V " )  I ; 
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E ' " / V  

TableForm[Transpose[calcappredpot[o2aq+de == h202ag, 2, {5, 6, 7, 8 ,  g } ,  { o r  .I, .25)]] 
TableHeadings -f { { " I = O  M", " I = O .  10 MI', " I = O .  25 M" } , 

{"gH 5", "pH 6", "gH 7 " ,  "gH 8", l1pH 9"}}, TableSgacing-t {l, I}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M 0.483752 0.424592 0.365432 0.306272 0.247112 

I=O.lO M 0.477408 0.418248 0.359088 0.299928 0.240769 

I=O.25 M 0.47536 0.4162 0.35704 0.29788 0.238721 

plot3 = 
Plot [calcaggredgot [olaq + de =: h202ag, 2, gH, .25], {gH, 5, 9}, AxesLabel -t { tlpH1l, " E  I /V" 1 I 

Calcappredpot fails when the oxidized and reduced forms contain the same number of hydrogen atoms. In this case, there is 
no pH dependence, and the standard apparent reduction potential can be calculated by using 

~-1/96.485~*(cytochromecred-cytochromecox/.is-~{0,.1,.25}) 

{0.254029, 0.222311, 0.212071) 
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TableForm [ 
Transpose[calcappredpot[acetaldehyde+de == ethanol, 2, (5, 6, 7, 8, 9}, {0, .l, .25}]], 
TableHeadings -+ {{"I=O M", "I=O.lO MI', "I=0.25 MI'}, 

{"pH 5 " ,  "pH 6 " ,  "pH 7", I1pH 8", "gH 9 " } } ,  TableSpacing-) (1, l}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.0748325 -0.133992 -0.193152 -0.252312 -0.311472 

1~0.10 M -0.0811761 -0.140336 -0.199496 -0.258656 -0.317816 

I=O.25 M -0.0832242 -0.142384 -0.201544 -0.260704 -0.319864 

plot7 = Plot [calcappredpot [acetaldehyde + de =: ethanol, 2, pH, -251 , 
{pH, 5, 91, AxesLabel -+ { llpHml, I I E  l o  /V'l)] i 

TableForm[Transpose[calcappredpot[frnnox+de == fmnred, 2, (5 .  6, 7, 8, 9 } ,  ( 0 ,  .I, . 2 5 ) ] ] ,  
TableHeadings + { {111=0 M", llI=O.10 MI1, "I=0.25 M"}, 

{"pH 5 " .  "pH 6 " ,  "pH 7", llpH 8", "pH 9 * I ) ) ,  Tablespacing-+ {I, I}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.0943174 -0.153477 -0.212637 -0.271797 -0.330957 

1~0.10 M -0.100661 -0.159821 -0.218981 -0.278141 -0.337301 

1~0.25 M -0.102709 -0.161869 -0.221029 -0.280189 -0.339349 

plot8 = Plot [calcappredpot [fmnox + de == fmnred, 2, pH, -251, 
{pH, 5, 9 ) ,  AxesLabel -+ {"pH", llE1o/Vgl}]; 
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TableFom [ 
Transpose[calcappredpot[pyruvate+de== lactate, 2, (5, 6, 7, 8, g } ,  {o, .1, .25}]], 
TableHeadings + { {*'I=O M " ,  "1=0.10 M", "1=0.25 M"}, 

{"pH 5", "pH 6'1, I1pH 7 " ,  ''pH 8 " ,  ''pH S i r } } ,  Tablespacing-, (1, l}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.0654528 -0.124613 -0.183773 -0.242932 -0.302092 

1~0.10 M -0.0717964 -0.130956 -0.190116 -0.249276 -0.308436 

I=O.25 M -0.0738445 -0.133004 -0.192164 -0.251324 -0.310484 

plot6 = Plot [calcappredpot [pyruvate + de := lactate, 2, RH, .25], 
{pH, 5, 9}, AxesLabel -B { mlpH1l, "E / V l }  ] ; 

-0 .251  \ 
1 6 7 8 '9 P H  

TabbFom[Transpose[calcappredpot[de:=h2g, 2, {5, 6, 7, 8, 9 } ,  (0, .l, .25}]], 
TableHeadings + { { I I I = O  M I 1 ,  llI=O.10 M", "1=0.25 M"}, 

{"pH 5 " ,  "pH 6 " ,  "pH 711, "pH Err,  "pH 9 " } } ,  Tablespacing -t 11, l}] 

PH 5 PH 6 PH 7 PH 8 PH. 9 
1=0 M -0.295799 -0.354959 -0.414119 -0.473279 -0.532439 

I=0.10 M -0.302143 -0.361303 -0.420463 -0.479623 -0.538783 

I=O.25 M -0.304191 -0.363351 -0.422511 -0.481671 -0.540831 

plot15 = Plot [calcappredpot [de == h2g, 2, pH, .25], {pH, 5, 93, AxesLabel + { i s p H " ,  " E  lo  / V " } l ;  
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TableForm[Transpose[calcappredpot[de == h2aq, 2, (5, 6, 7, 8, 9 ) ,  {0, -1, .25)]], 
TableHeadings + { {"I=O MI1,  "I=O.lO ME', "I=0.25 M"}, 

{"pH 5", "pH 6", "pH 7 " ,  "pH 8",  "pH 9 " } } ,  Tablespacing-, {I, l}] 

P H  5 PH 6 P H  7 PH 8 PH 9 
1=0 M -0.387005 -0.446165 -0.505325 -0.564485 -0.623645 

I=O.10 M -0.393349 -0.452509 -0.511669 -0.570829 -0.629989 

I=O.25 M -0.395397 -0.454557 -0.513717 -0.572877 -0.632037 

E ' " / V  

-0.. 5. 

- 0 . 5 5 -  

6 7 8 \9 pH 

Since neither ferredoxinox or ferredoxinred contains hydrogen atoms, the pH-dependent apparent reduction potential is 
calculated using 

~-1/96.485~*~ferredoxinred-ferredoxinox/.is-~{O,.l,~25}) 

I-0.394569, -0.400913, -0.402961} 
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-0.25- 
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t - 0 . 7 5  

-1 

TableForm[Transpose[calcaggredpot[retinal+de::retinol, 2, {5, 6, 7, 8, 9), { O ,  .1, .25}]], 
TableHeadings -+ {{"I=O M", "I=O.lO M", "I=0.25 MI'}, 

( " p H  5". "pH 6", "pH 7 " ,  "pH El1, "pH 9"}}, Tablespacing- 11, l}] 

P H  5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.151166 -0.210325 -0.269485 -0.328645 -0.387805 

1~0.10 M -0.157509 -0.216669 -0.275829 -0.334989 -0.394149 

1~0.25 M -0.159557 -0.218717 -0.277877 -0.337037 -0.396197 

plot9 = Plot [calcappredpot [retinal + de :: retinol, 2, pH, -251, 
{ p H ,  5, 9}, AxesLabel -+ {mlpHmm, " E i 0  /V"} I ; 

E ' " / V  

TableFom [ 
Transpose[calcappredpot[acetone+de:-propanol2, 2, (5, 6, 7, 8, 93, { O ,  .l, .25}]], 
TableHeadings -+ { {''I=O MI', llI=O.10 M". "I=0.25 M"), 

("pH 5", " p H  611, "pH 7 " ,  "pH 8", "pH 9"}}, TableSpacing- {l, l}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.163499 -0.222659 -0.281819 -0.340979 -0.400139 

1~0.10 M -0.169843 -0.229003 -0.288162 -0.347322 -0.406482 

1~0.25 M -0.171891 -0.231051 -0.290211 -0.34937 -0.40853 

plot10 = Plot [calcappredpot [acetone + de == propanola, 2, pH, .25], 
{ p H ,  5, 9}, AxesLabel + { " p H r r ,  " E 1 o  /V"} I i 
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TableForm [Transpose [ 
calcappredpot[acetylcoA+de ==coA+acetaldehyde, 2, {5, 6, 7, 8, 9}, {0, .l, .25}] I ,  

TableHeadings + { { " I = O  M", "I=O.lO Mi', "I=0.25 M I i } ,  

{"pH 5", '*pH 6 " ,  "pH 7 " ,  **pH 8", "pH S t # } } ,  TableSpacingj {I, l}] 

PH 5 ??H 6 PH 7 PH 8 P H  9 
1=0 M -0.262266 -0.321377 -0.380065 -0.435269 -0.477795 

1~0.10 M -0.268606 -0.327687 -0.386084 -0.439399 -0.4788 

I=O.25 M -0.270652 -0.32972 -0.387991 -0.440576 -0.479044 

plot14 = Plot [calcappredpot [acetylcoA + de == coA + acetaldehyde, 2, pH, .25], 
{BH, 5, 9}, AxesLabel -t { ' 'pHin,  iwEto/Vii}]; 

Show[ {plotl, plOt2, plot3, plot4, plots, plOt6, plot7, 
plot8, plOt9, plotlo, plOt11, plOt12, plotl3, pl0tl4, plOtl5, plOtl6) I 
Axesorigin-> { 5 ,  - . 8 } ,  AspectRatioj1.5, PlotRangej { - . 8 ,  I}]; 
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9.2 Calculate the apparent equilibrium constants K' at 298.15 K and pHs 5,  6, 7, 8, and 9 for the following four reactions and 
plot the base 10 logarithm of K' versus pH: 
(1) N2 (8) + 8 ferredoxinred= 2 ammonia + H2 (g) + 8 ferredoxin,, 
(2) N2 (aq) + 8 ferredoxinred= 2 ammonia + H2 (aq) + 8 ferredoxin,, 
( 3 )  2 ferredoxinred= H2 (8) + 2 ferredoxin,, 
(4) 2 ferredoxinred= H2 (aq) + 2 ferredoxin,, 
Note the ionic strength is not mentioned because the reference reactions and the dissociation of NH4 + do not depend on the 
ionic strength. Note that the apparent equilibrium constants of the first two reactions change by a factor of 10 when the pH is 
changed 0.10 in the neutral region. 

(BasicBiochemData2 has to be loaded) 

These calculations and plots can be made by using the program calckprime. 
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31 21 11 -9 
{1.39705 10 , 1.39846 10 , 1.41258 10 , 15.5771, 3.39921 10 } 

Note that the apparent equilibrium constants decrease by a factor of 10" per pH unit and becomes non-spontaneous just 
above pH 8 

Plot [Log [ 10, kprimel ] , {pH, 5,9 } , AxesLabel - > { "pH", log K ' 'I 1 1 ; 

log K '  

kprime2/.pH->{5,6,7,8,91 

31 21 11 -9 
{2.17732 10 , 2.17951 10 , 2.20152 10 , 24.2771, 5.29772 10 } 

log K' 

kprime3=calckprime[2*ferredoxinred+de==h2g+2*ferredoxinox,pH,.251; 

kprime3/.pH->{5,6,7,8,9} 

{2183.11, 21.8311, 0.218311, 0.00218311, 0.0000218311) 

Plot [Log 110, kprime3 1, {pH, 5,9}, AxesLabel-> { "pH", "log K' 'I 1 I ; 
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log K' 

- 6  - 8  
I1.8018, 0.018018, 0.00018018, 1.8018 10 , 1.8018 10 } 

Plot [Log [I0 ,kprime4] , {pH, 5,9} ,AxesLabel-> { "pH", "log K' " >  1 ; 

log K' 

9.3 Calculate the standard apparent reduction potentials of the following half reactions involving carbon dioxide at 298.15 K, 
pHs 5, 6, 7, 8, and 9 and ionic strengths of 0, 0.10, and 0.25 M and plot them versus pH at ionic strength 0.25 M. 
(1) COz tot + 2e-  = formate + H2 0 
(2) C02 (g) + 2 e -  = formate 
(3) C 0 2  tot +pyruvate + 2e- = malate + H2 0 
(4) C 0 2  (g) +pyruvate + 2e-  = malate 
( 5 )  C 0 2  tot + acetylCoA + 2e-  = pyruvate + CoA + H2 0 

(BasicBiochemData2 has to be loaded) 

calcappredpot [ e e l  nu-, pHlist-, islist-] : = Module [ {energy}, 
(*Calculates the standard apparent reduction potential of a half reaction at 

specified pHs and ionic strengths for a biochemical equation typed in the form 
nadox+de==nadred. The names of the reactants call the corresponding 
functions of p H  and ionic strength. nu is the number of 
electrons involved. pHlist and islist can be lists.*) 

energy Solve [eq, de] ; 
(-l*energy[[l, 1, 211 / (nu*96.485)) /. pH-pHlist /. isjislist 

1 
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TableForm [ 
Transpose[calcappredpot[co2tot+de:: formate+h20, 2, { 5 ,  6, 7, 8, 9}, {0, -1, .25}]]. 
Tab1eHeadings-t {{"I=O M I 1 ,  llI=O.10 M", ''I=O.25 MI'] ,  

{ " p H  5" ,  "pH 6", "pH 7", "pH 8", " p H  9 " } } ,  Tab1eSpacing-t (1, l}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.329401 -0.363036 -0.409451 -0.466274 -0.525697 

I=O.lO M -0.329735 -0.365293 -0.414823 -0.472603 -0.532962 

I=O.25 M -0.329881 -0.36618 -0.416639 -0.474684 -0.535535 

plot1 = Plot [calcappredpot [coltot + de =: formate + h20, 2, g H ,  .25], 
{ p H ,  5, 9 } ,  AxesLabel -t { " p H t l ,  "Era / V " ) l ;  

The chemical reaction corresponding with reaction 2 is not affected by ionic strength because z i  = NH, and so the table of 
apparent reduction potentials can be made more simply; 

calcappredpot [co2g+de==formate, 2 { 5,6,7,8,9), .251 

{-0.372598, -0.402178, -0.431758, -0.461338, -0.490918) 

plot2 Plot [calcappredpot [co2g + de =- formate, 2, pH, .25] 8 
{ p H ,  5, 9 } ,  AxesLabel + { l n p H B @ ,  l l E 1 o / V 1 l } ] ;  

- 0  

- 0  

-0 

- 0  

-0  

TableForm [Transpose [ 
calcappredpot [pyruvate + co2tot + de == malate + h20, 2, { 5, 6, 7, 8, 9 } ,  { 0, .l, .25}] 1 ,  
TableHeadingsj {{"I=O M", lmI=O.10 MI'. "I=0.25 M a n ) ,  

{ " p H  5". "pH 6", "pH 7", " p H  8 " ,  "pH 9 " ) } ,  Tab1eSpacing-t {I, l}] 
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PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.215617 -0.26041 -0.308738 -0.365769 -0.425213 

1~0.10 M -0.216271 -0.257627 -0.307911 -0.365769 -0.426136 

1~0.25 M -0.215868 -0.25669 -0.307703 -0.365804 -0.426661 

plot3 = Plot [calcappredpot [pyruvate + co2tot + de == malate + h20, 2, pH, . 2 5 ] ,  

{pH, 5, 9 } ,  AxesLabel + {"pH", "El" /V,' I 1 i 

TableForm [ 
Transpose[calcappredpot[pyruvate+co2g+de::malate8 2, {5, 6, 7, 8, 9}, {0, .l, .25)]], 
TableHeadings -f {{.I=O MI1, "I=O.lO MI', "I=0.25 MI'}, 

{"pH 5", "pH 6 " ,  "pH 7", "pH El',  llpH 9 " ] ] ,  Tab1eSpacing-t {I, l}] 

PH 5 PH 6 PH 7 PH 8 PH 9 
1=0 M -0.258813 -0.299552 -0.331045 -0.360832 -0.390433 

1~0.10 M -0.259134 -0.294511 -0.324846 -0.354503 -0.384091 

I=O.25 M -0.258585 -0.292687 -0.322821 -0.352458 -0.382043 

plot4 = Plot [calcappredpot [pyruvate + co2g + de := malate, 2, pH, -251, 
{pH, 5, 91, AxesLabel + {llpH1m, m m E i o  /V") I : 

TableForm [Transpose [calcappredpot [ 
acetylcoA + co2tot + de := COA + pyruvate + h20, 2, {5, 6, 7, 8, 91, { 0, .l, .25} ] 1, 

{"pH 5", "gH 6 * * ,  "pH 7", "pH 8 " ,  "pH 9 " } ] ,  Tablespacing+ {I, l}] 
TableHeadings + { { "I=O MI', " I = O .  10 M", "I=O .25 M",], 
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P H  5 P H  6 PH 7 PH 8 PH 9 
1 = 0  M -0 .387747 - 0 . 4 2 1 3 3 4  - 0 . 4 6 7 2 7 7  - 0 . 5 2 0 1 4 4  - 0 . 5 6 2 9 3 2  

1 ~ 0 . 1 0  M - 0 . 3 8 8 0 7 8  -0 .423557 - 0 . 4 7 2 3 2 4  -0 .524259 - 0 . 5 6 4 8 6  

1 ~ 0 . 2 5  M - 0 . 3 8 8 2 2 1  - 0 . 4 2 4 4 2 8  - 0 . 4 7 3 9 9 9  - 0 . 5 2 5 4 6 9  - 0 . 5 6 5 6 2 8  

plot5 Plot [calcappredpot [acetylcoA + co2tot + de =: coA +pyruvate + h20, 2, pH, . 2 5 ] ,  
{ p ~ ,  5, 9}, a e s L a b e l +  { ~ ~ p ~ i ~ ~ ,  1 1 ~ 1 ~  /V") I ; 

- 0 . 4 7 5 -  

-0.525. 

-0.55- 

P H  

Show[{plotl, plot2, plotf, plot4, plots), Axesorigin-, {5, -.7}, PlotRange+ {-.7, O}]; 

E ' O / V  

- 0 . 5 .  

-0.6: 
t 

6 7 8 9 pH 

9.4 Calculate the change in binding of hydrogen ions in the following 10 biochemical half reactions at 298.15 K, pHs 5 ,  6, 7, 
8, and 9 and ionic strengths of 0, 0.10, and 0.25 M. Plot the change in binding at ionic strength 0.25 M versus pH. 

C02  tot + 2e-= formate + H2 0 
C 0 2  tot + acetyl-CoA + 2e-= pyruvate + CoA + H2 0 
ketoglutarate + ammonia +2e- = glutamate + H2 0 
pyruvate + ammonia +2e- = alanine + H2 0 
pyruvate + C02 tot + 2e-= malate + H2 0 
cystine + 2e-= 2 cysteine + H2 
citrate + CoA + 2e-= malate +acteyl-CoA + H2 0 
O2 (8) + 4e- = 2 H2 0 
NAD,,+ 2e-= NADred 

(10) N2(g) + Se-= 2 ammonia + H2(g) 

(BasicBiochemData2 has to be loaded) 
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calcappredpot [ e ~ ,  nu-, pHlist-, islist-] : = 
Module[{energy}, (*Calculates the standard apparent 

reduction potential of a half reaction at specified pHs and ionic 
strengths for a biochemical half reaction typed in the form 
nadox+de==nadred. 
The names of the reactants call the 

corresponding functions of pH and ionic strength. nu is the 
number of electrons involved. pHlist and islist can be lists.*) 

energy = Solve [eq, de] ; 
(-l*energy[[l, 1, 211 / (nu*96.485)) /. pH-tpHlist /. is+islist 

plot5 = Plot [Evaluate[- (2 * 96.485 / (8.31451 * .29815 *Log [lo] ) ) * 
D [calcappredpot [pyruvate + co2tot + de == malate + h20, 2, pH, -251, p H ]  1, 

{BH, 5, g}, P1otRange-t {o, 3}, Axesorigin-, (5, O), AxesLabel -> {8'pH11, "ANHtl}]; 

I 

t 
6 7 8 9 pH 

This result is reasonable because the chemical reference reaction shows that 2 hydrogen ions are bound. This is affected in 
the neighborhood of pH 6.2 by the binding of a hydrogen ion by bicarbonate and malate. As pH 9 is approached, the dissocia- 
tion of the hydrogen ion from bicarbonate begins to have an effect. 

plot8 = Plot[Evaluate[- (4*96.485/ (8.31451* .29815*Log[lO])) * 
D[calcappredpot [02g + de == 2 * h20, 4, pH, .25], pH] 1, {pH, 5, 9), 

PlotRange -> (0, 5). Axesorigin -> {5, 0), AxesLabel -> {"pH", lrANxrm}]; 

AN, 

A 

plot9 = Plot [Evaluate[- (2 * 96.485 / (8 -31451 * .29815 * Log[lO] ) ) * 
D[calcappredpot[nadox+de=:nadred, 2, pH, .25], pH]], { p H ,  5, 9}, 

PlotRange -> {0, 5}, Axesorigin -> {5, 0). AxesLabel -> {"pH", 'rANH1'}] ; 
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/- 

Plotlo = Plot[Evaluate[- (8*96.485/ (8.31451* .ZSSlS*Log[lO])) * 

PlotRange -> ( 0 ,  11), Axesorigin -> {5, 0), AxesLabel -> {llpH1l, 
D [calcappredpot [n2g + de :: 2 *ammonia + h2g, 8, pH, .25] , pH] 1, {pH, 5, 9}, 

I 
I 

6 7 8 9 pH 

plot1 = Plot[Evaluate[-(2*96.485/ (8.31451* .29815*Log[lO])) * 

PlotRange -> {0, ll}, UesOrigin -> {5, 0), AxesLabel -> {"pH", "ANH"}]; 
D[calcappredpot [co2tot + de == formate + h20, 2, pH, -251, pH] 1, {pH,  5, 9) I 

plot2 = Plot [Evaluate [ -  (2 * 96.485 / (8 -31451 * -29815 R Log [lo] ) ) * 
D[calcappredpot [acetylcoA + co2tot + de :I pyruvate + COA + h20, 2, pH, .25], pH] 1, 

{pH, 5, 9). PlotRange -> {0, ll}, Axesorigin-> {5, 0}, AxesLabel -> {"pH", "ANH"}]; 
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10 
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6 
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2 

6 7 8 9 pH 

plot3 Plot [Evaluate [ - (2 * 96.485 / (8.31451 * .29815 * Log [ 101 ) ) * 
D[calcappredpot [oxoglutarats2 + ammonia + de == glutamate + h20, 2, p H ,  -251, pH] 1 ,  

{ p H ,  5, 9), PlotRange -> {0, 11). Axesorigin -> {5, 0}, AxesLabel -> { l l p H r r ,  llAN,lt}]; 

ANH 

6 "_ 
I 9- PH 6 7 8 

plot4 = Plot[Evaluate[-(2*96.485/ (8.31451* .29815*Log[lO])) * 

PlotRange -> {O, ll}, Axesorigin -> (5, 0}, AxesLabel -> { " p H " ,  "AN,"}]; 
D[calcappredpot[pyruvate+ammonia+de =alanine+h20, 2, p H ,  .25], pH]], ( p H ,  5, 9}, 

6 7 8 9- PH 

plot6 = Plot [Evaluate [ - (2 * 96.485 / (8.31451 * .29815 * Log [ 101 ) ) * 
D [calcagpredpot [cystineL + de :Z 2 * cysteineL + h20, 2, p H ,  .25], p H ]  1 ,  {BH, 5, 9) I 

PlotRange -> ( 0 ,  11}, Axesorigin -> {5, o), AxesLabel -> { " p H " ,  "AN,"}]; 
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plot7 = Plot [Evaluate[- (2 * 96.485 / (8.31451 * .29815 *Log [lo] ) ) x 

D [Calcappredpot [citrate + COA + de :: malate + acetylcoA + h20, 2, g H ,  .25]  , pH] ] , 
{pH, 5, 91, PlotRange-> {0, 11}, Axesorigin-> (5, 0), AxesLabel -> { r a g H g a ,  8 1 A N H s ] ] ;  

I 

6 7 8 9 pH 

Show[{plotS, plot6, glot7, plot9, plotlo}, PlotRange+ { O ,  ll), AspectRatio-, 1-51; 



374 Mathematica Solutions to Problems 

6 -  

i 
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starting at top 
10 
6 
7 
5 
9 

9.5 Plot the change in binding of hydrogen ions versus pH at ionic strength 0.25 M for the following five biochemical 
reactions: 
(1) NAD,, + formate + H2 0 = "Ired + C 0 2  tot 
( 2 )  NAD,, + malate + H2 0 = NADred + C 0 2  tot + pyruvate 
(3) NAD,, + ethanol = NADred + acetaldehyde 
(4) NAD,, + alanine + H2 0 = NADred + pyruvate + ammonia 
(5) NAD,, + malate + acetylcoA + H2 0 = NADred + citrate + coA 

(BasicBiochemData2 has to be loaded) 
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-1.5- 

- 2 -  

I n [ l Z l : =  calctrGerx[ec, pHlist-, islist-] : = 
Module[{energy}. (*Calculates the standard transformed Gibbs 

energy of reaction in kJ mol*-1 at specified pHs and ionic 
strengths for a biochemical reaction typed in the form atp+h2o+de=- 

pH and ionic strength. pHlist and is list can be lists.*) 
adp+pi. The names of reactants call the appropriate functions of 

energy = Solve [eq, de] ; 
energyul, 1, 21 /. pH + pHlist /. is + islist] 

I n [ l 3 / : =  glotl=Plot [Evaluate[ (1/ (8.31451*.29815*Log[lO] ) ) *D[calctrGerx[nadox+ethanol+de==nadred 
+acetaldehyde,gH,.25],gH]],{pH,5,9~,AxesOrigin->{5,O},\!\(AxesLabel -> {"\<pH\>", 
\* ' I \  " \< \  ! \ (AN\-H\ ) \ > \  U "  1 \ ) I ; 

6 7 8 9 pH 

I n [ 1 4 ] : =  ~lot2=Plot[Evaluate[(l/(8.3l45l*.298l5*Log[lO]))*D[calctrGerx[nadox+~alate+acetylcoA+ 
h2o+de::nadred+citrate+coA,pH,.25],pH]],{pH,5,9},~esOrigin-~{5,O},\!\~~esLabel - >  
{ \ <pH\ >I1, \ * \ \ < \ ! \ ( AN\-H\ ) \ >\ 1 \ ) , Plot Range- > { 0, - 2.5 1 1 ; 

AN, 

6 7 8 9 pH 

-0.51 

- 2 . 5 '  

I n [ 1 5 ] : =  plot3=Plot [Evaluate[ (1/ (8.31451*.29815*Log[lO] ) ) *D[calctrGerx[nadox+alanine+h2o+de==na 
dred+pyruvate+ammonia,gH,.25],gH]].{gH,5,9~,AxesOrigin->(5,O~,\!\(AxesLabel -> 
{ \ <pH\ > la, \ * \ \ < \ ! \ (AN\-H\ ) \ > \ '*I* 1 \ ) , PlotRange- > { 0, -2.5 1 1 ; 
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- 2 -  

AN, 

6 7 8 9 pH 

- 1 . 5 -  

- 2 :  

- 1 . 5 1  

I n [ l 6 / : =  plot4=Plot [Evaluate[ (1/ (8.31451*.29815*Log[lO] ) )  *D[calctrGerx[nadox+fomate+h2o+de==na 
dred+co2tot,gH,.251,gH~~,(gH,5,9?,AxesOrigin-~~5,O},\!\~AxesLabel -> I"\<gH\>", 
\ * If \ 11 \ < \ ! \ ( AN\-H\ ) \ >\ ''1' } \ ) , PlotRange- > { 0, -2.5 1 ; 

-2.5 - 2 1  
1n[17] := plot5-Plot [Evaluate[ (1/ (8.31451*.29815*Log[lO] ) ) *D[calctrGerx[nadox+malate+h2o+de~=nad 

red+gyruvate+co2tot,pHI.25],gH]],{~H,5,9~,AxesOrigin-~C5,-2.5~,\!\~AxesLabel -> 
{ '' \ <pH\ >I' , \ * I' \ It \ < \ ! \ (AN\-H\ ) \ >\ " " } \ ) , PlotRange- > { 0, -2.5 1 ; 

-0-5- -1 

I 
6 7 8 9 pH 
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C 

- 0 . 5  

-1 

-1.5 

- 2  

- 

\\ 
6 7 8 9 pH 





Chapter 11 Use of Semigrand Partition Functions 

11.1 (a) Write out the semigrand partition function r ' for a system containing a weak acid and its basic form at a specified 
pH. (b) Write out the equation for A, G'" of acetate at zero ionic strength. (c) Evaluate this function for af G o  at pH 5 and 
zero ionic strength. Use calcdGmat to confirm this value. (d) Calculate the semigrand partition function 
calculate A, G o  of acetate at pH 5.  

' and use it to 

11.2 (a) Calculate the further transformed Gibbs energies of formation of G6P, F6P, and F16BP at pH 7, I = 0, [ATP] 
= ~ W ~ M ,  and [ADPI = 1G-'M at 298.15 K. (b) Calculate the further transformed Gibbs energy of formation of the 

pseudoisomer group. (c) Calculate the equi1ib;ium mole fractions for G6P, F6P, and F16BP. (d) Repeat this calculation at 
[ATPI = 10-2M,  and [ADP] = 10-'M at 298.15 K. 

11.3 (a) Print out the equation for the standard transformed Gibbs energy of formation of the pseudoisomer group consisting 
of G6P, F6P, and F16BP symbolically. Assume that the system contains one mole of the pseudoisomer group. (b) Print out 
the equation for the corresponding semigrand partition function r = exp[-GIRT]. (c) Calculate the amount of ATP bound by 
the pseudoisomer group at [ATPJ = 0.0001 M and [ADP] = 0.01 M and then at [ATP] = 0.01 M and [ADP] = 0.01 M. (d) 
Make the same calculation for the binding of ADP. 

379 
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11.1 (a) Write out the semigrand partition function I- ' for a system containing a weak acid and its basic form at a specified 
pH. (b) Write out the equation for a, G o  of acetate at zero ionic strength. (c) Evaluate this function for a, G o  at pH 5 and 
zero ionic strength. Use calcdGmat to confirm this value. (d) Calculate the semigrand partition function r ' and use it to 
calculate A f G o  of acetate at pH 5 .  

(a) The standard transformed Gibbs energy for one mole of the pseudoisomer group at zero ionic strength is given by 

-(In10 NH1 p H )  - pl/(r t) -(In10 NH2 p H )  - p2/(r t) 
-(r t Log[E + E  I) 

The lnlO has been put in in this way so that the partition function would print in a simple way. 

r '  =Expr-(i/ (r*t)) * g - ]  

E + E  
-(ln10 NH1 p H )  - pl/(r t) -(ln10 NH2 p H )  - p2/(r t) 

This is the semigrand partition function for the system. It was calculated from &GIo, but it could have been written down 
directly. 

(b) Write the equation for a, G'" of acetate at a specified pH. 

For the anion 

-369.31+3*r*t*Log[101 *pH 

-369.31 + 3 p H  r t Log[lOl 

For the acid 

-396.45+4*r*t*Log[lOI *gH 

-396.45 + 4 p H  r t Log[lOl 

The standard transformed Gibbs energy of the pseudoisomer group is given by 

-((-369.31 + 3 p H  r t ~og[lOl)/(r t)) , 
-(r t Log[E 

-((-396.45 + 4 p H  r t Log[lO])/(r t)) 
E I )  

gacetate/.r->S.31451/.t->.29815/.pH->5 

-284.805 

This value can be confirmed by use of calcdGmat. 

calcdQnat[acetatespl/.pH->5/.is->O 

-284.805 
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(d) Use r ' to calculate A, G o  at pH 5. The partition function that is evident in the calculation of gacetate can be printed in 
traditional form. 

3 pH r t  log(10)-369.31 4 pH r f log(10)-396.45 - Q r f  + e- r l  

The numerical value of the partition function for acetate at pH 5 is given by 

49 
7 . 8 5 9 8 8  1 0  

Since G ' =-RTlnr I ,  

-8.31451*.29815*Log[E~[-(-369.31+3*r*t*Log[101pH~/~r*t~1+Exp~- 
(-396.45+4*r*t*Log[lO]~H)/(r*t)ll/.r->8.31451/.t->.29815/.pH->5 

- 2 8 4 . 8 0 5  

Thus the semigrand partition function contains all the information on the thermodynamics of the system containing acetate at 
a specified pH. 

11.2 (a) Calculate the further transformed Gibbs energies of formation of G6P, F6P, and F16BP at pH 7, I = 0, [ATP] 
= 10-4M, and [ADP] = 1 0 - 2 M  at 298.15 K. (b) Calculate the further transformed Gibbs energy of formation of the 

pseudoisomer group. (c) Calculate the equilibrium mole fractions for G6P, F6P, and F16BP. (d) Repeat this calculation at 
[ATP] = 10-2M, and [ADP] = 10-2M at 298.15 K. 

(BasicBiochemData2 has to be loaded) 

(a) Calculate the standard transformed Gibbs energies of formation of the reactants at pH 7 and zero ionic strength 

gpatp=atp/.pH->7/.is->O 

- 2 2 9 2 . 6 1  

gpadp=adp/.pH->7/.is->O 

-1428.93  

gpglucose6phos=glucose6phos/.pH-~7/.is->O 

- 1 3 2 5 .  

- 1 3 2 1 . 7 1  

gpfructosel6phos=fructosel6phos/.pH-~7/.is-~O 

- 2 2 0 2 . 8 4  
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Now calculate the further transformed Gibbs energies of formation of these reactants at the specified concentrations of ATP 
and ADP 

gppglucose6phos=gpglucose6phos- 
(~pat~+8.31451*.29815*Log[.0001~)+(~adp+8.31451*.29815*Log~.011~ 

-449.906 

gppfructose6phos=ggfructose6~hos- 
(~atg+8.31451*.29815*Log[.0001])+(~adg+8.31451*.29815*Log~.~11~ 

-446.611 

gpgfructose16phos=ggfructosel6ghose16phos-2*(g~at~+8.31451*.29815*Log[.00011)+2*~gpadp+8.31451 
*.29815*Log[.O11) 

-452.647 

(b) Calculate the further transformed Gibbs energy of formation of the speudoisomer group 

calciso CtransG-l : = 
Module[{},(*This program produces the function of pH and ionic strength that gives 

the standard transformed Gibbs energy of formation of a 
pseudoisomer group at 298.15 K. The input is a list of the names of the functions for 
the pseudoisomers in the groups. Energies are expressed in kJ molA-l.*) 

Log[Apply[Plus, ExpC-1*transG/(8.31451*.29815)11]1 
-8.31451*.29815* 

g p p i s o = c a l c ~ s o [ ~ g g p g l u c o s e 6 p h o s , g p g f r u c t c t o s e l 6 p h o S ~ ~  

-453.514 

(c) Calculate the equilibrium mole fractions 

r~=Exp[(g~~iso-{ggpg1ucose6phos,gppf~ctose6pho6,gppf~cto6e16phos})/(8.31451*.29815~1 

{ O  .233262, 0.061748, 0.704991 

(d) Now increase the ATP steady state concentration by a factor of 100 

gppglucose6phos=gpglucose6phos- 
(gpat~+8.31451*.29815*Log[.01l)+(ggadg+8.31451*.29815*Log~.011~ 

-461.322 

gppfructose6phos=gpfructose6phos- 
(ggatp+8.31451*.29815*Log[.Oll)+(gpadg+8.31451*.29815*Log[.Ol~ 

-458.027 

gppfructose16phos=gpf~ctose16phos-2*(ggatp+8.31451*.29815*Log1.011~+2*~~~ad~+8.31~~1*. 
29815*Log I. 011 1 

-475.48 

-475.49 
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ri=Exp[(g~piso-{gppg1ucose6~hos,~pfructose6phos,gppfru~tose16phos})/~8.31451*.29815~1 

I 0 . 0 0 3 2 9 4 9 3 ,  0 . 0 0 0 8 7 2 2 2 ,  0 . 9 9 5 8 3 3 )  

A higher concentration of ATP causes more F16BP to exist at equilibrium. 

11.3 (a) Print out the equation for the standard further transformed Gibbs energy of formation of the pseudoisomer group 
consisting of G6P, F6P, and F16BP symbolically. Assume that the system contains one mole of the pseudoisomer group. (b) 
Print out the equation for the corresponding semigrand partition function r ' ' = exp[-G ' ' /RT]. (c) Calculate the amount of 
ATP bound by the pseudoisomer group at [ATPI = 0.0001 M and [ADP] = 0.01 M and then at [ATP] = 0.01 M and [ADP] = 
0.01 M. (d) Make the same calculation for the binding of ADP. 

This should be run when Problem 11.2 is still in the workspace. 

(a) Print out the equation for the standard further transformed Gibbs energy of formation of the C6 pseudoisomer group 

-8.31451*.29815*Log[Exp[-(gpglucose6phos- 
(gpatp+8.31451*.29815*Log[ATP])+(g~adp+8.31451*.29815*Log~~Pl~~/(8.31451*.29815~1+Exp~ 
- (gpfructose6phos- 
(gpatp+8.31451*.29815*Log[ATP])+(gpadp+8.31451*.29815*Log[ADPl))/(8.31451*.29815~1+Exp~ 

(gpfructose16phos-2*(~atp+8.31451*.29815*Log~ATP1)+2*(gpadp+8.31451*.29815*Log~~P1~~/ 
(8.31451*.29815)11 

- 

- 0 . 4 0 3 3 9 3  ( - 4 6 1 . 3 2 2  + 2 . 4 7 8 9 7  Log[ADPI - 2 . 4 7 8 9 7  LOg[ATPI) 
- 2 . 4 7 8 9 7  Log[E + 

- 0 . 4 0 3 3 9 3  ( - 4 5 8 . 0 2 7  + 2 . 4 7 8 9 7  Log[ADP] - 2 . 4 7 8 9 7  LOg[ATPI) 
E + 
P o w e r [ E ,  - 0 . 4 0 3 3 9 3  ( - 2 2 0 2 . 8 4  + 2 ( - 1 4 2 8 . 9 3  + 2 . 4 7 8 9 7  Log[ADPI)  - 

2 ( - 2 2 9 2 . 6 1  + 2 . 4 7 8 9 7  L o g [ A T P I ) ) I I  

- 2.47897 10g(e-0.403393 (2.47897 log(ADP)-2.47897 log(ATP)-461.322) + 

-0.403393 (2.47897 log(ADP)-2.47897 10g(ATP)-458.027) + 

-0.403393 (2 (2.47897 log(ADP)-1428.93)-2 (2.47897 log(ATP)-2292.61)-2202.84) 
e 

e 1 

Note that the species concentrations of ATP and ADP are in the exponents 

(b) Print out the semigrand partition function 

gamma=Exp [Log [Exp C -  (gpglucose6phos- 
(gpatp+8.31451*.29815*Log[ATPl)+(g~adp+8.31451*.29815*Log[~P]))/(8.31451*.29815)]+Ex~~ 
-(gpfructose6phos- 
(gpatp+8.31451*.29815*Log[ATPl~+(g~adp+8.31451*.29815*Log[ADP]))/(8.31451*.29815)1+Expt 

(gpfructose16phos-2*(~atp+~.31451*.29815*Log[ATP])+2*(gpadp+8.31451*.29815*Log[ADP]~~/ 
(8.31451*.29815)111 

- 
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- 0 . 4 0 3 3 9 3  ( - 4 6 1 . 3 2 2  + 2 . 4 7 8 9 7  LoglADP] - 2 . 4 7 8 9 7  Log[ATP])  
E + 

-0 .403393 ( - 4 5 8 . 0 2 7  + 2 . 4 7 8 9 7  Log[ADP] - 2 . 4 7 8 9 7  LOg[ATPI) 
E t 

P o w e r [ E ,  -0 .403393 ( - 2 2 0 2 . 8 4  + 2 ( - 1 4 2 8 . 9 3  + 2 . 4 7 8 9 7  Log[ADPI)  - 
2 ( - 2 2 9 2 . 6 1  + 2 . 4 7 8 9 7  L o g [ A T P I ) ) I  

TraditionalForm[gal 

-0.403393 (2.47897 log(ADP)-2.47897 log(ATP)-46 1.322) + e 
-0.403393 (2.47897 log(ADP)-2.47897 log(ATP)-4.58.027) + 

-0.403393 (2 (2.47897 log(ADP)- 1428.93)-2 (2.47897 log(ATP)-2292.61)-2202.84) 
b? 

a? 

Note that the first Exp and Log in gamma cancel so that the same result is obtained with 

(gpfructosel6phos-2* (ggatp+8.31451* .29815*Log[ATP] )+2* (gpadp+8.31451* .29815*Log[ADPl) / 
(8.31451*.29815)1 

- 0 . 4 0 3 3 9 3  ( - 4 6 1 . 3 2 2  + 2 . 4 7 8 9 7  LoglADP] - 2 . 4 7 8 9 7  LOg[ATPI) 
E 

-0 .403393 ( - 4 5 8 . 0 2 7  + 2 . 4 7 8 9 7  Log[ADP] - 2 . 4 7 8 9 7  LOg[ATPI) 
E 

Power[E,  - 0 . 4 0 3 3 9 3  ( - 2 2 0 2 . 8 4  + 2 ( - 1 4 2 8 . 9 3  + 2 . 4 7 8 9 7  LogLADPI) - 

2 ( - 2 2 9 2 . 6 1  + 2 . 4 7 8 9 7  Log [ATPI ) ) 1 

TraditionalForm [gamma2 1 

-0.403393 (2.47897 log(ADP)-2.47897 log(ATP)-461.322) + e 
-0.403393 (2.47897 10g(ADP)-2.47897 log(ATP)-458.027) + 

-0.403393 (2 (2.47897 log(ADP)- 1428.93)-2 (2.47897 Iog(ATP)-2292.61)-2202.84) 
b? 

&? 

(c) The fundamental equation for G" shows that the amount of ATP bound by the pseudoisomer group is given by 
nc(ATP) = 2lnF/2ln[ATP] 
at constant [ADP]. There is a corresponding equation for ADP. 

boundATP=D [Log [gamma2], Log [ATPI I 

1. 
( 0 . 4 0 3 3 9 3  ( - 4 6 1 . 3 2 2  + 2 . 4 7 8 9 7  Log[ADP] - 2 . 4 7 8 9 7  LOg[ATP]) + 
E 

1. 

0 . 4 0 3 3 9 3  ( - 4 5 8 . 0 2 7  + 2 . 4 7 8 9 7  Log[ADPl - 2 . 4 7 8 9 7  LoglATP])  ' 
E 

2 .  / PowerrE,  0 . 4 0 3 3 9 3  ( - 2 2 0 2 . 8 4  + 2 ( - 1 4 2 8 . 9 3  + 2 . 4 7 8 9 7  Log[ADPI)  - 

2 ( - 2 2 9 2 . 6 1  + 2 . 4 7 8 9 7  L o g [ A T P I ) ) I )  / 

- 0 . 4 0 3 3 9 3  ( - 4 6 1 . 3 2 2  + 2 . 4 7 8 9 7  LOglADPI - 2 . 4 7 8 9 7  LOg[ATPI) 
(E ' 

-0 .403393 ( - 4 5 8 . 0 2 7  + 2 . 4 7 8 9 7  Log[ADP] - 2 . 4 7 8 9 7  LOg[ATPI) 
E + 
PowerLE, - 0 . 4 0 3 3 9 3  ( - 2 2 0 2 . 8 4  + 2 ( - 1 4 2 8 . 9 3  + 2 . 4 7 8 9 7  Log[ADP])  - 

2 ( - 2 2 9 2 . 6 1  + 2 . 4 7 8 9 7  L o g [ A T P ] ) ) I )  
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Tradi tionalForm tboundATP1 

-0.403393 (2.47897 log(ADP)-2.47897 log(ATP)-461.322) + (1. a? 
0.403393 (2.47897 log(ADP)-2.47897 log(ATP)-458.027) + 1 .  a?- 

) /  
2. a?-0.403393 (2 (2.47897 log(ADP)-I428.93)-2 (2.47897 log(ATP)-2292.61)-2202.84) 

(a?-0.403393 (2.47897 log(ADP)-2.47897 10g(ATP)-461.322) + 

-0.403393 (2.47897 log(ADP)-2.47897 Iog(ATP)-458.027) + 
a? 

.-0.403393 (2 (2.47897 log(ADP)-I428.93)-2 (2.47897 log(ATP)-2292.61)-2202.84) 1 

boundATP/.ATP->.QOQl/.ADP->.Ol 

1 . 7 0 4 9 9  

boundATP/.ATP->.Ql/.ADP->.QI 

1 . 9 9 5 8 3  

As the concentration of ATP is increased, F16BP will predominate more and more and this average number bound will 
approach 2 .  

boundADP=D [Log [ganrma2 1 ,Log [ADPI 1 

-1. 

( 0 . 4 0 3 3 9 3  ( - 4 6 1 . 3 2 2  + 2 . 4 7 8 9 7  Log[ADP] - 2 . 4 7 8 9 7  Log[ATP])  
E 

- 
0 . 4 0 3 3 9 3  ( - 4 5 8 . 0 2 7  + 2 . 4 7 8 9 7  LOg[ADP] - 2 . 4 7 8 9 7  Log[ATP])  

E 

2 .  / P o w e r [ E ,  0 . 4 0 3 3 9 3  ( - 2 2 0 2 . 8 4  + 2 ( - 1 4 2 8 . 9 3  + 2 . 4 7 8 9 7  Log[ADPI)  - 

2 ( - 2 2 9 2 . 6 1  + 2 . 4 7 8 9 7  L O g [ A T P ] ) ) I )  / 

- 0 . 4 0 3 3 9 3  ( - 4 6 1 . 3 2 2  + 2 . 4 7 8 9 7  LOg[ADP] - 2 . 4 7 8 9 7  LOg[ATP]) 
(E + 

- 0 . 4 0 3 3 9 3  ( - 4 5 8 . 0 2 7  + 2 . 4 7 8 9 7  Log[ADP] - 2 . 4 7 8 9 7  LOg[ATP]) 
E + 
Power[E,  - 0 . 4 0 3 3 9 3  ( - 2 2 0 2 . 8 4  + 2 ( - 1 4 2 8 . 9 3  + 2 . 4 7 8 9 7  Log[ADPI)  - 

2 ( - 2 2 9 2 . 6 1  + 2 . 4 7 8 9 7  L O g [ A T P I ) ) I )  

TraditionalFormtboundADPl 

a?-0.403393 (2.47897 10g(ADP)-2.47897 log(ATP)-461.322) - (- 1. 
1. a?-0.403393 (2.47897 log(ADP)-2.47897 log(ATP)-458.027) - 

2. a?-0.403393 (2 (2.47897 log(ADP)-1428.93)-2 (2.47897 log(ATP)-2292.61)-2202.84) > /  
0.403393 (2.47897 log(ADP)-2.47897 Iog(ATP)-461.322) + 

(6- 
-0.403393 (2.47897 log(ADP)-2.47897 log(ATP)-458.027) + 

-0.403393 (2 (2.47897 log(ADP)- 1428.93)-2 (2.47897 Iog(ATP)-2292.61)-2202.84) 
Q? 

a? 

boundADP/.ATP->.QQQl/.ADP->.Ql 

-1 .70499 
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boundADP/.ATP->.01/.ADP->.01 

-1 .99583  

As the concentration of ATP is increased, F16BP will predominate more and more and this average number bound will 
approach -2. Note the binding of ADP is the same as the binding of ATP except for sign. 
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(Problem numbers are given, and Pkg indicates that the program is in the package 
BasicBiochemData2.) 

calcappredpot[eg_, nu-, pHlist-, islist-], Pkg, 9.1, 9.3, 9.4 

calcdG3I [reactantname-], Pkg 

calcdG5pH [reactantname-] , Pkg 

calcdGHT[speciesmat-1, Pkg, 4.6, 8.1 

calcdGis[sp-l, 3.1, 3.3 

calcdGmat [speciesmat-1 , Pkg, 4.1 

calCdGTsp [speciesmat-, temp-, ionstr-I, 3.6 

calcdH3I[reactaanth-], Pkg 

calcdH5pHtreactanth-I, Pkg 

calcdHinat [speciesmat-1 , Pkg, 4.2 

calcdHTgg tspeciesmat-I , 4.2 

calcdHTsp [speciesmat-, temp-, ionstr-1 , 3.8 

calcGeflsg[eguat-,pH_,ionstr-,zl-,nHl-], Pkg 

c a ~ c G e f 2 s p [ e g u a t ~ , p H _ , i o n s t r _ , z l ~ , n H l ~ , p K O ~ l ,  Pkg 

c a ~ c G e f ~ s p [ e q u a t ~ , p H _ , i o n s t r ~ , z l ~ , n H l ~ , p K l O ~ , p K 2 0 1 ,  Pkg 

calcgfDKtke~,conco2~], 7.2 

calcgfTf[keg_,conco2~], 7.1 

calciso ItransG-I, 11.2 

calckprimetec, pHlist-,islist-l, Pkg, 4.3, 4.4, 4.5, 4.9, 4.10, 6.4, 6.5, 9.2 

calckrx[ec, islist-], 3.1, 6.4 

calcNHrx~e~,pHlist~,islist~l, Pkg, 4.8 

calcpK[speciesmat-, no-,is-l, Pkg, 1.10, 1.11 

calcrow[ee, pHlist-, islist-, rx-I , 4.7 

calcrxthermotabteg_,pHlist-,islist-], Pkg 

calctgfDlkeC, conco2-I, 7.2 

calctgfT[keg_, conco2-I, 7.1 

calctrGerxCee, pHlist-, islist-], Pkg, 4.3, 4.6, 4.9, 4.10, 8.2, 9.5 

calctrGerxTlee, pHlist-, islist-, tlist-I, 8.1, 8.2 

equcalcc [as-. Ink-, no-] ,Pkg, 6.6, 6 -7, 6.8 
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epucalcrx[nu-, lnkr-, no-] ,Pkg, 6.4, 6.6, 6.7, 6.8 

mkeqm[c-List, s-List], Pkg, 6.1, 6.2, 6.3 

nameMatrix[m-List, s-List] , Pkg, 6.1, 6.2, 6.3 

round[vec-, params-: (4, 211, 4.7 

rxthermotab[e~,gHlist-,islist-l, 4.8 
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Acid dissociation constants 
biochemical reactions at specified pH, species and reactants, 

transformed thermodynamic properties, 65-66 
carbon dioxide equilibrium distribution, gas phase and 

complex ions, 3-5 
diprotic acid, 132-133 
half-reactions with multiple species at specified pH, 163-165 
research background, 1-2 

aqueous systems, chemical equilibrium 

aqueous solution. 15 1 - 152 

Activity coefficient 

equilibrium constant derivation, 37-38 
ionic strength, 46-47 

complex ions, 3-5 
Adair equation, hemoglobin tetramers, oxygen binding by, 

Adenosine diphosphate (ADP) 
123 --124 

ATP hydrolysis, hydrogen and magnesium ion production, 

biochemical reactions 
13--15 

apparent equilibrium constants, 11-13 
composition calculations, 110-1 14 
glycolysis considerations, 114- 1 17 

nitrogenase reaction, 165-167 

binding of hydrogen and magnesium ions, 5- 11 
biochemical reactions 

Adenosine triphosphate (ATP) 

apparent equilibrium constants, 11- 13 
composition calculations, 110- 114 
glycolysis considerations, 114-1 17 

hydrolysis of, hydrogen and magnesium ion production, 

nitrogenase reaction, 165-167 
13--15 

Alcohol fermentation, Gibbs energy changes, 2 
Apparent conservation matrix 

biochemical equations, 96-97 

glycolysis reactions, 115-117 
Apparent equilibrium constant 

biochemical reactions at  specified pH, 63-65 

biochemical coupling reactions, 98-99 

ionic strength 
gluconeogenesis, 82, 84 

transformed Gibbs energies, 74676 
nitrogenase reaction, 167 
protein binding of ligands, 129- 132 

Apparent stoichiometric matrix, biochemical equations, 97 
Aqueous systems 

chemical equilibrium 
equilibrium constant derivation, 36--38 
Gibbs-Duhem equation, phase rule and, 43-44 
ionic strength, solution reaction equilibria, 46-47 
isomer group thermodynamics, 44-46 
research background, 35--36 
temperature effects on thermodynamics, 47--49 
thermodynamic properties in chemical reactions, 38-43 
thermodynamic tables, biochemical species, 49- 55 

ionic strength, 3-5 
phase equilibrium 

carbon dioxide equilibrium, gas phase/aqueous solution 

high polymers, 152-153 
molar properties of ions, electric potentials, 148- 149 
research background, 141- 142 
two-phase systems 

distribution, 150- 152 

chemical reaction, membrane permeability, single ion, 
146-147 
transformed Gibbs energy, 148 

chemical reaction and semipermeable membrane. 

membrane permeability, single ion, 145- 146 
no chemical reaction, 142-143 

144-145 

weak acid pKs, 15-17 
Average binding, ATP to hydrogen ions, 7 -1 1 

B 

Binding capacity 
calorimetric measurements, transformed enthalpy of 

reaction from species formation, 173- 174 
hydrogen ions, protein-ligand equilibria, pH lecels and, 

137-138 
Binding polynomials 

ATP binding of hydrogen and magnesium ions, 8- 11 
transformed Gibbs energy, specified oxygen concentration, 

127 
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Binding potential, transformed Gibbs energy, specified oxygen 

Biochemical reactions 
concentration, 127 

apparent equilibrium constants. 11- 13 
aqueous systems, chemical equilibrium, thermodynamic 

calorimetry 
tables, 49%55 

research background, 17 1 172 
temperature effects. 176 177 
transformed enthalpy determination 

reaction, 172 
species formation, 172- 174 

transformed entropy determination, 174 175 
compositions calculations, thermodynamic Icvcls, 1 10 1 I4 
equilibrium compositions 

calculations, 108- 110 
glycolysis, calculations for, 1 17 ~ 1 19 

glycolysis at specified reactants, 114- 11 7 
matrix equations. 95-97 

coupling reactions, 97 99 
fundamental equations, 101 102 

net reactions calculation, matrix multiplication, 106- 107 
oxidation-reduction reactions, basic equations, 156- 158 
pathways calculation. linear equations, 107 
semigrand ensemble partition function. coenzyme 

concentrations, 183- 184 
systems of. basic properties. 105 
thermodynamics at specified pH 

apparent equilibrium constant, 63-65 
fundamental equation, 58-62 
Gibbs-Duhem equation, degrccs o f  freedom, and 

Gibbs energy tansformations, apparent equilibrium 

hydrogen ion binding, 71 -~72 
ionic strength, transforincd properties tables, 76 4 6  
magnesium ion binding. 72 73 
pseudoisomer groups, 68- 69 
reaction plots. 86-8s 
speciesireactants, transformed properties, 65-66 
temperature effects. 73~-74 
transformed properties. 66 68 

equilibrium criterion, 70 71 

constants. 74 76 

water reactants, Legendre transform for, 107- 108 
Boltzniann constant, thermodynamic potentials, monatomic 

ideal gas, 33 -34 

C 

Callen nomenclature, Legendre transforms for thermodynnmic 

Calorimetry, biochcmical rcactions 
research background. 17 1 I72 
tcinpcrature effects, 176 177 
transformed enthalpy determination 

potentials. 30 

reaction. 172 
species formation, 172- I74 

transformed entropy determination, 174 175 
Canonical ensemble partition function, single species single- 

phase systems, thermodynamic potentials, 30-32 
Canonical forms, chemical cquations as matrix equations, 

92-95 

Capacitance measurements, two-phase aqueous systems, 

Carbon dioxide. equilibrium distribution, gas phase and 

Charge relaxation, two-phase aqueous systems. single-ion 

Chemical equilibrium, aqueous systems 

single-ion membrane permeability, 145- 146 

aqueous solution, 150 152 

membrane permeability, 145 146 

equilibrium constant derivation, 36-38 
Gibbs-Duhem equation, phase rule and. 43 --44 
ionic strength, solution reaction equilibria, 46-45 
isomer group thermodynamics, 44- 46 
research background, 35536 
temperature effects on thermodynamics, 47-49 
thermodynamic propertics in chemical reactions, 38 43 
thermodynamic tables, biochemical species. 49 55  

Chemical potential 
aqueous systems 

chemical equilibrium, isomer group thermodynamics. 
44 46 

phase equilibrium, two-phase systems, single-ion 
membrane permeability, 146 

biochemical reactions at specified pH, transformed 
potentials, 59-62 

internal energy equation, 22 ~ 24 
transformed Gibbs energy, specified oxygcn concentration. 

two-phase aqueous systems. transformed Gibbs energy, I48 

aqueous systems. two-phase systems 

I25 ~ I27 

Chemical reactions 

semipermeable membrane, 144- 145 
single-ion membrane permeability. 146& 147 

chemical equations as matrix equations, 90 95 
fundamental equations, matrix form. 99 ~ 101 

Citric acid cycle 
biochemical reactions at specified pH 

apparent equilibrium constants, 82, 85 
transformed Gibbs energies, 82. 84 

Gibbs energy changes, 2 
Clapeyron equation, aqueous systems, phase equilibrium. 

single species two-phasc systcms, 142 143 
Coenzyme concentrations, semigrand cnsemblc partition 

function, 183- 184 
Complex ions. acid dissociation and dissociation constants. 

3-5 
Components 

aqueous systems, chemical equilibrium, 42--43 
biochemical equations as matrix equations, 97 
chemical equations as matrix equations. 90 95 

fundamental equations, matrix form, 100-~ 101 
Conjugate pairs 

extensivehtensive properties, 32 
internal energies, 23-24 

biochemical equations as matrix equations, 95-97 
chemical/biochemical thermodynamics, 89-90 
chemical equations as matrix equations. 90 95 
chemical reactions, 90-95 
glycolysis reactions, specific rcactants. 1 I5 11 7 
water reactants, Legendre transform calculations. 

Cooperative effect, protein-ligand equilibria. pH levels, 

Conservation matrices 

107-108 

135-138 
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Counterions, two-phase aqueous systems, single-ion 
membrane permeability, 145- 146 

Coupling reactions, matrix equations, biochemical reactions, 
97-99 

D 

deb ye-Huckel equation 
aqueous systems, chemical equilibrium 

ionic strength, 46-47 
temperature effects, 47-49 

biochemical reactions at  specified pH, temperature effects, 

ionic strength, 4 
73-74 

Debye length, two-phase aqueous systems, single-ion 
membrane permeability, 145 - 146 

Degrees of freedom 
aqueous systems, chemical equilibrium, Gibbs-Duhem 

equation, phase rule, 43- 44 
biochemical reactions at specified pH, 70-71 
phase rule, Gibbs-Duhem equation, 25 --26 

Dependent variables, biochemical reactions at specified pH, 

Deriatives, thermodynamic potentials, monatomic ideal gas, 

Dimers, tetramer partial dissociation into, 127-129 
Diprotic acid, dissociation constants, 132.- 133 
Dissociation constants. See also Acid dissociation constants 

59-62 

32-34 

complex ions, 3-5 
diprotic acid, 132-133 
protein-ligand equilibria, pH levels and, 134- 138 

Double species two-phase systems, aqueous systems, chemical 
equilibrium, 143 

E 

Equcalcrx, equilibrium calculations, biochemical reaction 

Electric potential, aqueous systems. phase equilibrium 
systems, 109-110 

molar properties of ions, 148-149 
single-ion membrane permeability, chemical reaction, 147 

aqueous systems 
Enthalpy 

chemical equilibrium, 41 -43 
ionic strength, 47 
temperature effects, 48--49 

molar properties, 149 
phase equilibrium, electrical potentials, effects on ion 

biochemical reactions at  specified pH, 60-62 
apparent equilibrium constant derivation, 64-65 
pseudoisomer thermodynamics, 68-69 
thermodynamic properties’ plots, 86-88 
transformed enthalpy of reaaction, 67 -68 

calorimetric measurements 
research background, 171 - 172 
transformed enthalpy 

biochemical reaction, 172 
species formation, 172-174 

Legendre transforms for thermodynamic potentials, 26-30 

Enthalpy of dissociation, calorimetric measurements, 172 
Entropy 

aqueous systems 
chemical equilibrium, 41 -43 

isomer group thermodynamics, 45-46 
temperature effects, 48-49 

molar properties, 149 
phase equilibrium, electrical potentials, effects on ion 

biochemical reactions at  specified pH, 60 -62 
calorimetry, transformed entropy of biochemical reactions, 

fundamental equation for, 21-24 
molar entropy, Legendre transforms for thermodynamic 

second law of thermodynamics, 19 

biochemical thermodynamics, 2 

174- 175 

potentials, 28-30 

Enzyme catalysis 

composition calculations, 110-1 14 
Legendre transform, 113-1 14 

matrix equations, biochemical reactions, coupling reactions, 

oxidation-reduction reactions 
97-99 

methane monooxygenase reaction, 162-163 
single species at specified pH, 162 

transformed Gibbs energy. fumarase catalysis, 138- 139 
Equations of state, internal energies, 23 
Equcalcc program, equilibrium calculations, biochemical 

Equilibrium condition 
reaction systems, 109- 110 

aqueous systems, chemical equilibrium constant derivation. 

biochemical reactions at specified pH 
36--38 

apparent equilibrium constant derivation, 64-65 
calculations for, 108-1 10 
Gibbs-Duhem equation, 70-71 
glycolysis, 1 17 -- 1 19 

chemical equations, matrices, 90-95 

acid dissociation constants, 3-5 
aqueous systems, chemical equilibrium, 36-38 
biochemical reactions, 1 1 ~ 13 
biochemical thermodynamics, 2-3 
carbon dioxide equilibrium distribution, gas phase and 

aqueous solution, 151-152 
complex ion dissociation constants, 3 -5  
hemoglobin tetramers, oxygen binding by, 123- 124 
hydrogenlmagnesium ions 

Equilibrium constants 

adenosine triphosphate (ATP) binding, 5- 11 
adenosine triphosphate (ATP) hydrolysis, 13-15 

protein binding of ligands 
experimental determination, 129-132 
p H  levels and, 134-138 

research background, 1 --2 
tetramers, partial dissociation into dimers, 127-129 
weak acid pKs, 15-17 

Euler’s theorem, internal energy equation, 24 
Exact function, Maxwell equation, 25 
Extensive thermodynamic properties 

chemical potential, 23 
defined, 21 

Extent of reaction, aqueous systems, chemical equilibrium 
constant derivation, 36-38 
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F 

First law of thermodynamics, internal energy, 19-24 
Fractional saturation 

apparent equilibrium constant determination, 129- 132 
dimers, partial dissociation of tetramers into, 128- 129 
hemoglobin tetramers, oxygen binding by, 123- 124 

catalytic sites, transformed Gibbs energy, 138- 139 
protein-ligand equilibria, pH levels, 135 - 138 

aqueous systems, phase equilibrium, 141b 142 

Fumarase 

Fundamental equations of thermodynamics 

double species two-phase systems, 143 
electrical potentials, effects 011 ion molar properties. 

N, species, two phases, 143 
single species two-phase systems, 142- 143 
two-phase chemical reaction. semipermeable membrane, 

two-phase systems, single-ion membrane permeability, 

1 4 8 ~  149 

144~- 145 

145-146 
biochemical reactions 

matrix equations, 101-102 
specified pH, 58-62 

chemical reactions, matrix equations, 99- 101 
hemoglobin tetramers, oxygen binding by, 122& 124 
internal energy, 21-24 
matrices for, 90 

biochemical reaction systems, 101- 102 
chemical equations, 99-101 

principles of, 19- 20 

G 

Gaseous reactions 
carbon dioxide equilibrium distribution, gas phase and 

chemical equations as matrix equations, 91 -95 
aqueous solution, 150-- 152 

Gaussian reduction, linear algebra, 103 
Gibbs-Duhem equations 

aqueous systems 
chemical equilibrium 

phase rule, 43-44 
single-ion membrane permeability, chemical reaction, 

147 
phase equilibrium, 141 142 

double species two-phase systems, 143 
N, species, two phases, 143 
single spccies two-phase systems, 142-143 
two-phase chemical reaction, semipermeable 

two-phase systems, single-ion membrane permeability, 
membrane. 144-145 

146 
biochemical reactions at specified pH, 70 71 
composition calculations, Legendre transform, 112-114 
matrices, 90 

fundamental biochemical equations, 101 --lo2 
fundamental chemical equations. 101 

phase rule and, 25 26 

aqueous systems 
Gibbs energies. See i d s o  Transformed Gibbs energy 

chemical equilibrium 
energy of formation, 39-43 
ionic strength, 47 
isomer group thermodynamics, 44-46, 45%46 
reaction Gibbs energy, 36-38 
thermodynamic tables, biochemical species, 49-55 

single-ion membrane permeability, 146 ~ 148 
two-phase chemical reaction, semipermeable 

phase equilibrium 

membrane, 144-- 145 
biochemical reactions at specified pH 

apparent equilibrium constant derivation, 64 65, 74 76 
pseudoisomer thermodynamics, 68-69 
species and reactants, transformed thermodynamic 

properties, 65-66 
transformed Gibbs, 58-62 

biochemical thermodynamics, 2 3 
chemical reactions, fundamental equations, matrix form. 

99 101 
equilibrium compositions, biochemical reaction systcms, 

108-110 
internal energy equation, 22-24 
Legendre transforms, 20 

for thermodynamic potentials, 26--30 
oxidation-reduction reactions, 155- 156 
semigrand ensemble partition function, 180 18 1 
thermodynamic potentials 

Legendre transforms, 26 - ~ 3 0  
monatomic ideal gas, 33- 34 

water reactants, Legendre transform calculations, 107 108 

aqueous systems, chemical equilibrium, 41 -43 

biochemical reactions at specified pH, 62 

Gibbs-Helmholtz equation 

ionic strength, 47 

apparent equilibrium constant derivation, 65 
pseudoisomer thermodynamics, 69 

calorimetry of biochemical reactions, temperature effects, 

Legendre transforms for thermodynamic potentials, 28- 30 

transformed reaction Gibbs energies, 82-83 

176& 177 

Gluconeogenesis, biochemical reactions at specified pH, 

Glycolysis 
biochcmical reactions at specified pH 

composition calculations, Legendre transform, 11 3 ~ I14 
equilibrium conditions, 11 7- 1 19 
specified reactant calculations, 114-1 17 
transformed reaction Gibbs energies, 81 -82 

Gibbs energy changes, 2 
net reaction calculation, matrix multiplication, 106 - I07 
semigrand ensemble partition function, coenzyme 

concentrations, 184 
Grand canonical ensemble partition function 

semigrand ensemble partition function and, 180- 18 I 
single species single-phase systems, thermodynamic 

potentials, 31 -32 

H 

Half-reactions 
basic equations, 157-158 
hydrogen ion binding at specified pH, 167- 170 
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multiple species reactants a t  specified pH, 163-165 
nitrogenase reaction, 165- 167 
research background, 155- 156 
single species a t  specified pH, 158-162 

Hamiltonian equation, Legendre transforms for 

Heat capacity of reaction 
thermodynamic potentials, 26-30 

aqueous systems, chemical equilibrium, 41 -43 

calorimetry. 171 - 172 
isomer group thermodynamics, 46 

temperature effects, 176 - 177 
Helmholtz energy, Legendre transforms for thermodynamic 

Hemoglobin tetramers 
potentials, 26-30 

fractional saturation, apparent equilibrium constant 

oxygen binding, 122-124 
determination, 129-132 

Henry’s law constants, carbon dioxide equilibrium 
distribution, gas phase and aqueous solution, 151- 
152 

152- 153 
High polymers, phase separation in aqueous systems with, 

Hydrogen ions 
adenosine triphosphate (ATP) binding, 5- 11 
adenosine triphosphate (ATP) hydrolysis, 13- 15 
binding of, half-reactions at specified pH, 1 6 7 ~  170 
biochemical reactions at  specified pH 

binding calculations, 71 -72 
gluconeogenesis, ionic strength, 82, 84 
glycolysis, ionic strength, 82-83 
pyruvate dehydrogenase, citric acid cycle, and net 

transformed thermodynamic properties, 65-66 
caloritnetric measurements, transformed enthalpy of 

reaction from species formation, 173- 174 
protein-ligand equilibria, pH lcvels and, 136- 138 

adenosine triphosphate (ATP), hydrogen and magnesium 

biochemical coupling reactions, matrix equations, 98-99 
chemical equations as matrix equations, 94 95 
Gibbs energy changes, 2 
nitrogenase reaction, 165- 167 

reaction, ionic strength, 82, 85 

Hydrolysis 

ion production, 13- 15 

I 

Identity matrices, chemical equations as matrix equations, 

Independent variable, biochemical reactions at specified pH, 

Tnexact function, Maxwell equation, 25 
Integrated fundamental equation, Legendre transforms for 

Intensive thermodynamic properties 

92-95 

59-62 

thermodynamic potentials, 28-30 

chemical potential, 23 
defined, 21 

Internal energy 
first law of thermodynamics, 19-20 
fundamental equation for, 21-24 

aqueous systems, 3-5 
Ionic strength 

chemical equilibrium, 46-47 
constant derivation, 37- 38 

molar properties, electric potential effects, 148- 149 
thermodynamic tables, biochemical species, 49-55 

binding calculations, 71 ~ - 7 2  
gluconeogenesis, 82, 84 
glycolysis, 82-83 
half-reactions and hydrogen ion binding, 168- 170 
pyruvate dehydrogenase, citric acid cycle, and net 

thermodynamic properties’ plots, 86-88 
transformed thermodynamic properties, 65-66 
transformed thermodynamic properties a t  298.15 K, 

biochemical reactions at  specified pH 

rcaction, 82, 85 

tables of standards, 76-86 
oxidation-reduction reactions 

basic equations, 157--158 
methane monooxygenase reaction, 162- 163 
single species at specified pH, 158-162 

Isomer group thermodynamics, aqueous systems, chemical 
equilibrium, 44- 46 

Isothermal-isobaric partition function 
semigrand ensemble partition function and, I80 - 181 
single species single-phase systems, thcrmodynamic 

potentials, 31-32 

L 

La Chatelier’s principle 
aqueous systems, chemical equilibrium, isomer group 

ATP hydrolysis, hydrogen and magnesium ion production, 
thermodynamics, 46 

15 
Lagrangian functions 

equilibrium calculations, biochemical reaction systems, 

Legendre transforms for thermodynamic potentials. 26-30 
109-110 

Laplace transforms, semigrand ensemble partition function, 

Legendre transforms 
weak acid systems as specific pH, 182- 183 

biochemical reactions 
composition calculations, 1 1 1 - 1 14 
specified pH, 58-62 

apparent equilibrium constant derivation, 63-65 
general principles, 105 
Gibbs-Duhem equation, 70-71 
magnesium ion binding calculations, 72-73 
transformed Gibbs energy, apparent equilibrium 

constant derivation, 74-76 
water reactants, 107T108 

biochemical thermodynamics, Gibbs free energies, 3 
conjugate pairs, extensive/intensive properties. 32 
internal energy equation, 22-~ 24 
matrix equations 

biochemical coupling reactions, 99 
biochemical fundamental equations, 102 

principles of, 20 
thermodynamic potentials, 26-30 

transformed Gibbs energy, specified oxygen concentration. 
single species single-phase systems, 30-32 

125-127 
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Legendre transforms (Contiriiird) 

Ligands, protein binding of, thermodynamics 
two-phase aqueous systems, transformcd Gibbs energy, 148 

diprotic acid dissociation, 1 3 2 ~ ~  133 
cquilibrium constants, determination, 129- 132 
oxygen binding, hemoglobin tetraniers, 122 ~~ 124 
pH levels, 134 138 
research backgro tind, 1 2 1 - 1 22 
tetramer-to-dimer partial dissociation, 127 -~ 129 
transformed Gibbs encrgy 

fumarase catalysis, 138- 139 
oxygcn concentrations, 125- 127 

Limiting laws, ionic strength, 3-4 
Linear algebra 

biochemical reactions, pathways calculation, 107 
matrix equations, biochemical reaction systems, 103 

Linked functions, ATP binding of hydrogen and magnesium 
ions. I 1  

M 

Magnesium ions 
adenosine triphosphate (ATP) binding, 5- 1 1 
adenosine triphosphate (ATP) hydrolysis, 13- 15 
biochemical reactions at specified pH, binding calculations, 

calorimetric measurements, transformed enthalpy of 
72-73 

reaction from species formation. 173 -174 
Matrix equations, thermodynamics 

biochemical matrix equations, 95-97 
biochemical reaction coupling, 97F99 
chemical matrix equations, 90-95 
chemical reaction systems, fundamental equations. 99 - 101 
fundamental equations, biological reaction systems, 101 

102 
h e a r  algebra operations. 103 

Matrix multiplication 
h e a r  algebra, 103 
net biochemical reactions. 106 107 

aquous systems, chemical equilibrium, Gibbs ene,rgy of 

ATP binding of hydrogen and magnesium ions, 11 

apparent equilibrium constant derivation, 64- 65 
hydrogen ions, binding calculations, 7 1 72 

Maxwell equations 

formation, 40 43 

biochemical reactions at specified pH 

composition calculations, 112- I14 
Legendre transforms for thermodynamic potentials, 30 
single species single-phase systems, thermodynamic 

potentials, 31 ~ 32 
thermodynamics, 24 25 

two-phase aqueous systems, single ion permeation 
Membrane permeability. See also Semipermeable membrane 

chemical reaction, 146- 147 
phase equilibrium, 145-- 146 
transformed Gibbs energy, 148 

Metal ion complcxes, dissociation constants, research 

Methane monooxygenase reaction, oxidation-reduction 

Molar enthalpy 

background, 1-2 

reactions, 162 163 

aqueous systems, phase equilibrium, electrical potentials, 

biochemical reactions at specified pH, 60- 62 

aqueous systems, phasc equilibrium, electrical potentials, 

biochemical reactions at specified pH, 60 62 
calorimetry, transformed entropy of biochemical reactions. 

Legendre transforms for thermodynamic potentials. 28-30 

systems, chemical equilibrium, 41-43 
isomer group thermodynamics, 46 

temperature effects, calorimetry of biochemical reactions. 

effects on ion molar properties. 149 

Molar entropy 

effects on ion molar properties, 149 

174-175 

Molar heat capacity 

176-177 
Molar volume 

Legendre transforms for thermodynamic potentials, 2X-30 
thermodynamic properties. 21 

ATP binding of hydrogen and magnesium ions, 6 - 1  I 
calorimetric measurements, transforincd cnthalpy of 

transformcd Gibbs energy, specified oxygeii concentration, 

Mole fractions 

reaction from species formation, 173 ~ I74 

126-127 

32- 34 

163-165 

Monatomic ideal gas, thermodynamic potential derivatives. 

Multiple species reactants, half-reactions at specified pH. 

N 

Natural variables 
biochemical reactions at  specified pH 

Gibbs-Duhein equation. 70-71 
transformed Gibbs energy, 58-62 

internal energy equation, 24 
Legendre transforms for thermodynamic potentials, 27-- 30 

Nernst cquation, oxidation-reduction reactions, 157 
Net biochemical reactions, matrix multiplication, 106- 107 
Newton-Raphson algorithm. equilibrium calculations. 

biochemical rcaction systems, 10% 110 
Nicotinamide adenine dinucleotide-oxidized (NADox). 

biochemical reactions, glycolysis considerations. 
114-117 

Nicotinamide adenine dinucleotide-reduccd (NADred), 
biochemical reactions, glycolysis considerationa. 
114-117 

Nitrogcnase reaction, oxidation-reduction reactions, 165 167 
N, species, two phases, aqueous systems, phasc equilibrium. 

Null space, matrix equations, chemical equations as matrix 

Number of independent reactiona, aqueous systems. chemical 

143 

equations, 93-95 

equilibrium, 42-43 

0 

Oxidation-reduction reactions 
basic equations, 156- 158 
Gibbs energy changes, 2 



Index 395 

half-reactions 
hydrogen ion binding at specified pH, 167- 170 
multiple spccics reactants at specified pH, 163- 165 

methane monooxygenase reaction, 162- 163 
nitrogenase reaction, 165- 167 
research background, 155-156 
single-species at specified pH, 158- 162 

hemoglobin tetramers, binding by, 122- 124 
transformed Gibbs energy, specified concentration, 125 127 

Oxygen 

P 

Partial dissociation, tetramers into dimers, 127- 129 
Pathway matrix, biochemical reactions 

linear equations, 107 
matrix multiplication, net reactions, 106- 107 

carbon dioxide equilibrium, gas phase/aqueous solution 

high polymers, 152- 153 
molar properties of ions, electric potentials, 148- 149 
research background, 141-142 
two-phase systems 

Phase equilibrium, aqueous systems 

distribution, 150G152 

chemical reaction, membrane permeability, single ion, 
146- 147 

transformed Gibbs energy, 148 
chemical reaction and semipermeable membrane, 144 

membrane permeability, single ion, 145 146 
no chemical reaction, 142 -~ 143 

145 

Phase rule 
aqueous systems, chemical equilibrium, Gibbs-Duhem 

equation, 43-44 
Gibbs-Duhem equation, 25-26 

ATP binding of hydrogen and magnesium ions, 9- 11 
biochemical reactions 

pH levels 

apparent equilibrium constants, 1 1 - 13 
matrix equations, 95-97 

biochemical thermodynamics, 2-3 
apparent equilibrium constant, 63-65 
fundamental equation, 58-62 
Gibbs-Duhem equation, degrees of freedom, and 

Gibbs energy tansformations, apparent equilibrium 

hydrogen ion binding, 7 1-72 
ionic strength, transformed properties tables, 76-86 
magnesium ion binding, 72- 73 
pseudoisomcr groups, 68- 69 
reaction plots, 86-88 
species/reactants, transformed properties, 65-66 
temperature effects, 73-74 
transformed properties, 66 --68 

equilibrium criterion, 70-71 

constants, 74-76 

equilibrium constants, research background, 1-2 
half-reactions at specified pH 

hydrogen ion binding, 167-170 
multiple species reactants, 163-165 

ionic strength and, 4-5 
oxidation-reduction reactions 

basic equations, 157- 158 
single species at specified pH, 158 ~ 162 

oxygen binding, hemoglobin tetrarmers, 122- 124 
protein-ligand equilibria, 134-138 
semigrand ensemble partition function 

two pseudoisomer groups, 183 
weak acid systems, 181-183 

Phosphate compounds, glycolysis reactions, 115-1 17 
Planck’s constants, thermodynamic potcntials, monatomic 

pMg levels, adenosine triphosphate (ATP), hydrogen and 

Proteins, hgand binding thermodynamics 

ideal gas, 33-34 

magnesium ion production, 14-15 

diprotic acid dissociation, 132- 133 
equilibrium constants, determination, 129- 132 
oxygen binding, hemoglobin tetramers, 122-- 124 
pH levels, 134-138 
research background, 121 -122 
tetramer-to-dimer partial dissociation, 127 129 
transformed Gibbs energy 

fumarasc catalysis, 138-139 
oxygen concentrations, 125-127 

Pseudoisomers 
biochemical reactions at specified pH, 61-62 

apparent equilibrium constant derivation, 63--65 
species and reactants, transformed thermodynamic 

thermodynamic reactions. 68- 69 
properties, 65-66 

calorimetry, transformed entropy of biochemical reactions, 

composition calculations, I1  1-1 14 
equilibrium calculations, biochemical reaction systems, 

semigrand ensemble partition function 
coenzyme concentrations, 183- 184 
two-system groups at  specified pH, 183 
weak acid systems as specific pH, 181 183 

174-175 

109.- 110 

transformed Gibbs energy, specified oxygen concentration. 
125- 127 

Pyruvate dehydrogenase, biochemical reactions at specified 

PH 
apparent equilibrium constants, 82, 85 
transformed Gibbs energies, 82, 84 

R 

Reactants 
biochemical equations as matrix equations, 97 
biochemical reactions at specified pH 

half-reactions with multiple species at specified pH. 

hydrogen ions, binding calculations, 71 72 
Legendre transform calculations for water reactants, 

transformed thermodynamic properties, 65-66 

calorimetric measurements, transformed enthalpy of 

Reaction entropy, aqueous systems, chemical equilibrium, 

163-165 

107-108 

table of ionic strengths, 79-81 

reaction from species formation, 173- 174 

41-43 
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Reaction equations 
biochemical reactions, matrix equations, 95--97 
chemical reactions, matrix equations, 90 95 

Reaction Gibbs energy, aqueous systems, chemical equilibrium 

Reaction volume, aqueous systems, chemical equilibrium, 

Reciprocal effects, ATP binding of hydrogen and magnesium 

Reduction potentials 

constant derivation, 36-38 

41-43 

ions, 1 1  

nitrogenase reaction, 165 167 
oxidation-reduction reactions, 156- 158 

half-reactions with multiple species at specified pH, 

single species a t  specified pH, 158- 162 
163-165 

S 

Sackur-Tetrode equation, thermodynamic potentials. 

Second law of thermodynamics 
monatomic ideal gas, 33-34 

entropy and, 19 -20 
internal energy equations, 21-24 

Semigrand ensemble partition function 
biochemical reactions, coenzyme concentrations, 183 I84 
future research issues, 184-185 
pseudoisomer groups at specified pH, 183 
research background, 179- 180 
single species single-phase systems, thermodynamic 

potentials, 31 32 
statistical mechanics, 179- 181 
transformed Gibbs energy, weak acid systems at specified 

Semipermeable membrane. See also Membranc permeability 
pH, 181-183 

aqueous systems, two-phase systems, chemical 
reaction, 144- 145 

systems 
Single ion, membrane permeability with, two-phase aqueous 

chemical reaction, 146- 147 
phase equilibrium. 145- 146 
transformed Gibbs energy, 148 

potentials, 27-30 

30 ~ 3 2  

equilibrium, 142 - 143 

enthalpy of reaction from, 172- 174 

equilibrium constant derivation, 37- 38 

Single-phase systems. Legendre transforms for thermodynamic 

Single species single-phase systcms. thermodynamic potentials, 

Single species two-phase systems, aqueous systems, phase 

Species formation, calorimetric measurements, transformed 

Standard chemical potential, aqueous systems, chemical 

Statistical mechanics, scmigrand ensemble partition function, 

Stoichionietric numbers 
179- 18 1 

biochemical reactions a t  specified pH, apparent equilibrium 

equilibrium calculations, biochemical reaction systems, 

ma trices 

constant derivation, 63 65 

109- 110 

biochemical coupling reactions, 9 7 ~  99 
biochemical equations a s  matrix equations, 96- 97 

chemical,/biochemica1 thermodynamics, 89-90 
chemical equations as matrix equations, 91 - 95 
glycolysis reactions, 115-1 17 
water reactants, Legendre transform calculations. 

107- 108 
net biochemical reactions, matrix multiplication, 106- 107 

biochemical thermodynamics, 3 
equilibrium constants, research background, 1 ~ 2 

Sums of species 

T 
Tempcraturc effects 

aqueous systems, chemical equilibrium, thermodynamic 

biochemical reactions a t  specified pH, transformed 

calorimetry of biochemical reactions, 176- 177 

hemoglobin, oxygen binding by, 122- 124 
partial dissociation into dimers, 127- 129 

Legelidre transforms for, 26-30 
monatomic ideal gas, derivatives, 32-34 
properties of, 20 
single-phase systems, one species, 3 0 ~  32 

aqueous systems, chemical equilibrium, 38-43 

properties, 47-49 

thermodynamic properties, 73-74 

Tet ramen 

Thermodynamic potentials 

Thermodynamics 

biochemical species, thermodynamic tables, 49 55  
isomer groups, 44-46 
temperature effects, 47-49 

research background, 2-3 
specified pH 

biochemical reactions 

apparent equilibrium constant. 63--65 
fundamental equation, 58- 62 
Gibbs-Duhem equation, degrees of freedom. and 

Gibbs energy tansformations, apparent equilibrium 

hydrogen ion binding, 71-72 
ionic strength, transformed properties tables, 76-86 
magnesium ion binding, 72-73 
pseudoisomer groups, 68- 69 
rcaction plots, 86-88 
species/reactants, transformed properties. 65~-  66 
temperature effects, 73-74 
transformed properties, 66-68 

equilibrium criterion, 70 71 

constants, 74 - 76 

conjugate properties, 32 
equilibrium constants, research background, 1 ~ 2 
Gibbs-Duhem equation and phase rule. 25-26 
intcrnal encrgy equation, 21 24 
laws and principles, 19 ~ 20 
Legendre transforms, additional potentials, 26 30 
matrices, chemical and biochehical reactions 

biochemical matrix equations, 95-97 
biochemical reaction coupling, 97 99 
chemical matrix cquations, 90-95 
chemical reaction systems, fundamental equations. 

fundamental equations, biological rcaction systems. 

linear algebra operations, 103 

99-101 
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Maxwell equations, 24 -25 
monatomic ideal gas properties, potential derivatives, 32-34 
protein binding of ligands 

diprotic acid dissociation, 132-133 
equilibrium constants, determination, 129-~ 132 
oxygen binding, hemoglobin tetramers, 122 ~ 124 
pH levels, 134-138 
research background, 121-122 
tetramer-to-dimer partial dissociation, 127-129 
transformed Gibbs energy 

fuinarase catalysis, 138 139 
oxygcn concentrations, 125- 127 

single-phase system potentid, single species. 30-32 
thermodynamic state, defined, 20-21 

Thermodynamic state, properties of, 20-21 
Transformation matrices 

chemical equations as matrix equations, 100- 101 
lincar algebra, 103 

biochemical reactions at specified pH, 58-62 
Transformed Gibbs energy 

apparent equilibrium constant derivation, 64-65, 74-76 
apparent equilibrium constants, tables, 76-86 
composition calculations, 110-1 14 
equilibrium conditions at glycolysis, 1 17- 119 
thermodynamic properties, 66-68 
water reactants, Legendre transform calculations, 

107-108 
caloriinetry, transformed entropy of biochemical reactions, 

composition calculations, 113-114 
fumarase catalysis, 13% 139 
hemoglobin tetramers, oxygen binding by. 122-124 
oxidation-reduction reactions 

174-175 

basic equations, 157 158 
half-reactions and hydrogen ion binding, 169-170 
methane monooxygenase reaction, 162- 163 
single species a t  specified pH, 160-162 

semigrand ensemble partition function and, weak acid 

tetramers, partial dissociation into dimers, 127-129 
two-phase aqueous systems, chemical reaction and single- 

systems at  specified pH, 181- 183 

ion membrane permeability, 148 

reactions at specified pH 
Gibbs energy of reaction, 66-68 
ionic strength at 298.15 K, 76-86 
species and reactants, 65-66 
temperature effects, 73 -74 

chemical reaction, membrane permeability, single ion. 

Transformed thermodynamic properties, biochemical 

Two-phase aqueous systems, phase equilibrium 

146 147 
transformed Gibbs energy, 148 

chemical reaction and semipermeable membrane, 144- 145 
membrane permeability, single ion, 145 ~ 146 
no chemical reaction, 142- 143 

W 

Water reactants, biochemical reactions, Lcgendre transform 

Weak acids 
calculations, 107-108 

pK values, 15-17 
semigrand ensemble partition function at specified pH, 
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