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Preface 

The purpose of this text is to present thermodynamics from a chemical-engineering viewpoint. 
Although the laws of thermodynamics are universal, the subject is most effectively taught in 
the context of the discipline of student commitment. This is the justification for a separate text 
for chemical engineers, just as it has been for the previous five editions, which have been in 
print for more than 50 years. 

In writing this text, we have sought to maintain the rigor characteristic of sound ther- 
modynamic analysis, while at the same time providing a treatment that may be understood 
by the average undergraduate. Much is included of an introductory nature, but development 
is carried far enough to allow application to significant problems in chemical-engineering 
practice. 

For a student new to this subject a demanding task of discovery lies ahead. New ideas, 
terms, and symbols appear at a bewildering rate. The challenge, ever present, is to think topics 
through to the point of understanding, to acquire the capacity to reason, and to apply this 
fundamental body of knowledge to the solution of practical problems. 

The first two chapters of the book present basic definitions and a development of the 
first law. Chapters 3 and 4 treat the pressure/volume/temperature behavior of fluids and cer- 
tain heat effects, allowing early application of the first law to realistic problems. The second 
law and some of its applications are considered in Chap. 5. A treatment of the thermody- 
namic properties of pure fluids in Chap. 6 allows general application of the first and sec- 
ond laws, and provides for an expanded treatment of flow processes in Chap. 7. Chapters 8 
and 9 deal with power production and refrigeration processes. The remainder of the book, 
concerned with fluid mixtures, treats topics in the unique domain of chemical-engineering 
thermodynamics. Chapters 11 and 12 provide a comprehensive exposition of the theory and 
application of solution thermodynamics. Chemical-reaction equilibrium is covered at length 
in Chap. 13. Chapter 14 deals with topics in phase equilibria, including an extended treat- 
ment of vaporAiquid equilibrium, and adsorption and osmotic equilibria. Chapter 15 treats 
the thermodynamic analysis of real processes, affording a review of much of the practical 
subject matter of thermodynamics. Finally, Chap. 16 presents an introduction to molecular 
thermodynamics. 

The material of these 16 chapters is more than adequate for an academic-year under- 
graduate course, and discretion, conditioned by the content of other courses, is required in the 
choice of what is covered. The first 13 chapters include material thought necessary as part of any 
chemical engineer's education. Where only a single-semester course in chemical-engineering 
thermodynamics is provided, these 13 chapters represent sufficient content. 

The book is comprehensive enough to make it a useful reference both in graduate 
courses and for professional practice. However, length considerations make necessary a prudent 
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selectivity. Thus, we have not been able to include certain topics worthy of attention, but of a 
specialized nature. These include applications to polymers, electrolytes, and biomaterials. 

We cannot begin to mention the many persons to whom we are indebted for contributions 
of various kinds, direct and indirect, over the years during which this text has evolved, edition 
to edition, into its present form. To all we extend our thanks. 

J.  M. Smith 
H. C. Van Ness 

M. M. Abbott 



Chapter 1 

Introduction 

1 .I THE SCOPE OF THERMODYNAMICS 

The science of thermodynamics was born in the nineteenth century of the need to describe the 
operation of steam engines and to set forth the limits of what they can accomplish. Thus the name 
itself denotes power developed from heat, with obvious application to heat engines, of which the 
steam engine was the initial example. However, the principles observed to be valid for engines 
are readily generalized, and are known as the first and second laws of thermodynamics. These 
laws have no proof in the mathematical sense; their validity lies in the absence of contrary 
experience. Thus thermodynamics shares with mechanics and electromagnetism a basis in 
primitive laws. 

These laws lead through mathematical deduction to a network of equations which find 
application in all branches of science and engineering. The chemical engineer copes with a 
particularly wide variety of problems. Among them are calculation of heat and work require- 
ments for physical and chemical processes, and the determination of equilibrium conditions 
for chemical reactions and for the transfer of chemical species between phases. 

Thermodynamic considerations do not establish the rates of chemical or physical pro- 
cesses. Rates depend on driving force and resistance. Although driving forces are thermo- 
dynamic variables, resistances are not. Neither can thermodynamics, a macroscopic-property 
formulation, reveal the microscopic (molecular) mechanisms of physical or chemical pro- 
cesses. On the other hand, knowledge of the microscopic behavior of matter can be useful in 
the calculation of thermodynamic properties.1 Property values are essential to the practical 
application of thermodynamics. The chemical engineer deals with many chemical species, and 
experimental data are often lacking. This has led to development of "generalized correlations" 
that provide property estimates in the absence of data. 

The application of thermodynamics to any real problem starts with the identification of 
a particular body of matter as the focus of attention. This body of matter is called the system, 
and its thermodynamic state is defined by a few measurable macroscopic properties. These 
depend on the fundamental dimensions of science, of which length, time, mass, temperature, 
and amount of substance are of interest here. 

'An elementary treatment is presented in Chap. 16 
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1.2 DIMENSIONS AND UNITS 

The fundamental dimensions are primitives, recognized through our sensory perceptions and 
not definable in terms of anything simpler. Their use, however, requires the definition of arbitrary 
scales of measure, divided into specific units of size. Primary units have been set by international 
agreement, and are codified as the International System of Units (abbreviated SI, for Systkme 
International). 

The second, symbol s, the SI unit of time, is the duration of 9 192 631 770 cycles of 
radiation associated with a specified transition of the cesium atom. The meter, symbol m, 
is the fundamental unit of length, defined as the distance light travels in a vacuum during 
11299 792 458 of a second. The kilogram, symbol kg, is the mass of a platinudiridium cylin- 
der kept at the International Bureau of Weights and Measures at Skvres, France. The unit of 
temperature is the kelvin, symbol K, equal to 11273.16 of the thermodynamic temperature of 
the triple point of water. A detailed discussion of temperature, the characteristic dimension 
of thermodynamics, is given in Sec. 1.5. The mole, symbol mol, is defined as the amount of 
substance represented by as many elementary entities (e.g., molecules) as there are atoms in 
0.012 kg of carbon-12. This is equivalent to the "gram mole" commonly used by chemists. 

Multiples and decimal fractions of SI units are designated by prefixes. Those in common 
use are listed in Table 1.1. Thus, the centimeter is given as 1 cm = m and lo3 g = 1 kg. 

Table 1 .I Prefixes for SI Units 

Multiple Prefix Symbol I Multiple Prefix Symbol 

lo-" 

10-l8 
10-l5 
10-l2 

10-3 

lo-' 

yocto 
zepto 
atto 
femto 
pic0 
nano 
micro 
milli 
centi 
deci 

10' deca 
10' hecto 
lo3 kilo 
lo6 mega 
lo9 giga 
10" tera 
1015 peta 
10" exa 
1O2l zetta 
loz4 yotta 

Other systems of units, such as the English engineering system, use units that are related 
to SI units by fixed conversion factors. Thus, the foot (ft) is defined as 0.3048 m, the pound 
mass (lb,) as 0.453 592 37 kg, and the pound mole (lb mol) as 453.592 37 mol. 

1.3 MEASURES OF AMOUNT OR SIZE 

Three measures of amount or size are in common use: 

Mass, m Number of moles, n Total volume, V t  

These measures for a specific system are in direct proportion to one another. Mass, aprimitive 
without definition, may be divided by the molar mass M, commonly called the molecular 
weight, to yield number of moles: 
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Total volume, representing the size of a system, is a defined quantity given as the product 
of three lengths. It may be divided by the mass or number of moles of the system to yield 
specijic or molar volume: 

v ' 
Svecific volume: V - -  or V t = m V  

Molar volume: 
V 

V G -  or V t = n V  
n 

Specific or molar density is defined as the reciprocal of specific or molar volume: p = V-' .  
These quantities (V and p) are independent of the size of a system, and are examples 

of intensive thermodynamic variables. They are functions of the temperature, pressure, and 
composition of a system, additional quantities that are independent of system size. 

1.4 FORCE 

The SI unit of force is the newton, symbol N, derived from Newton's second law, which 
expresses force F as the product of mass m and acceleration a: 

The newton is defined as the force which when applied to a mass of 1 kg produces an acceleration 
of 1 m sP2; thus the newton is a derived unit representing 1 kg m sP2. 

In the metric engineering system of units, force is treated as an additional independent 
dimension along with length, time, and mass. The kilogram force (kg0 is defined as that force 
which accelerates 1 kilogram mass 9.806 65 meters per second per second. Newton's law must 
here include a dimensional proportionality constant if it is to be reconciled with this definition. 
Thus, we write 

whence 

1 
1 kgf = - x 1 kg x 9.80665m sP2 

gc 

and 

The kilogram force is equivalent to 9.806 65 N. 
Since force and mass are different concepts, a kilogram force and a kilogram mass are 

different quantities, and their units do not cancel one another. When an equation contains both 
units, kgf and kg, the dimensional constant g, must also appear in the equation to make it 
dimensionally correct. 

Weight properly refers to the force of gravity on a body, and is therefore correctly 
expressed in newtons or in kilograms force. Unfortunately, standards of mass are often called 
"weights", and the use of a balance to compare masses is called "weighing". Thus, one must 
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discern from the context whether force or mass is meant when the word "weight" is used in a 
casual or informal way. 

1.5 TEMPERATURE 

Temperature is commonly measured with liquid-in-glass thermometers, wherein the liquid 
expands when heated. Thus a uniform tube, partially filled with mercury, alcohol, or some 
other fluid, can indicate degree of "hotness" simply by the length of the fluid column. However, 
numerical values are assigned to the various degrees of hotness by arbitrary definition. 

For the Celsius scale, the ice point (freezing point of water saturated with air at standard 
atmospheric pressure) is zero, and the steam point (boiling point of pure water at standard 
atmospheric pressure) is 100. A thermometer may be given a numerical scale by immersing it 
in an ice bath and making a mark for zero at the fluid level, and then immersing it in boiling 
water and making a mark for 100 at this greater fluid level. The distance between the two marks 
is divided into 100 equal spaces called degrees. Other spaces of equal size may be marked off 
below zero and above 100 to extend the range of the thermometer. 

All thermometers, regardless of fluid, provide the same reading at zero and at 100 if 
they are calibrated by the method described, but at other points the readings do not usually 
correspond, because fluids vary in their expansion characteristics. Thus an arbitrary choice of 
fluid is required, and the temperature scale of the SI system, with its kelvin unit, symbol K, is 
based on the ideal gas as thermometric fluid. Since the definition of the Kelvin scale depends 
on the properties of gases, its detailed discussion is delayed until Chap. 3. We note, however, 
that as an absolute scale, it depends on the concept of a lower limit of temperature. 
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Kelvin temperatures are given the symbol T; Celsius temperatures, given the symbol t, 
are defined in relation to Kelvin temperatures: 

The unit of Celsius temperature is the degree Celsius, "C, equal in size to the kelvin. However, 
temperatures on the Celsius scale are 273.15 degrees lower than on the Kelvin scale. Thus the 
lower limit of temperature, called absolute zero on the Kelvin scale, occurs at -273.15"C. 

In practice the international Temperature Scale of 1990 (ITS-90) is used for calibration 
of scientific and industrial instr~ments.~ The ITS-90 scale is defined so that its values differ 
from ideal-gas temperatures by no more than the present accuracy of measurement. It is based 
on assigned values of temperature for a number of reproducible phase-equilibrium states of 
pure substances (fixed points) and on standard instruments calibrated at these temperatures. 
Interpolation between the fixed-point temperatures is provided by formulas that establish the 
relation between readings of the standard instruments and values on ITS-90. The platinum- 
resistance thermometer is an example of a standard instrument; it is used for temperatures from 
13.8 K (-259.35"C) (the triple point of hydrogen) to 1234.93 K (961.78"C) (the freezing point 
of silver). 

In addition to the Kelvin and Celsius scales two others are still used by engineers in the 
United States: the Rankine scale and the Fahrenheit scale. The Rankine scale is an absolute 
scale directly related to the Kelvin scale by: 

The Fahrenheit scale is related to the Rankine scale by an equation analogous to the relation 
between the Celsius and Kelvin scales: 

Figure 1.1 Relations among temperature scales 

2 ~ h e  English-language text of the definition of ITS-90is given by H. Preston-Thomas, Metrologiu, vol. 27, pp. 3-10, 
1990. 
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Thus the lower limit of temperature on the Fahrenheit scale is -459.67CF). The relation 
between the Fahrenheit and Celsius scales is: 

The ice point is therefore 32("F) and the normal boiling point of water is 212("F). 
The Celsius degree and the kelvin represent the same temperature interval, as do the 

Fahrenheit degree and the rankine. The relationships among the four temperature scales are 
shown in Fig. 1.1. In thermodynamics, absolute temperature is implied by an unqualified 
reference to temperature. 

1.6 PRESSURE 

The pressure P exerted by a fluid on a surface is defined as the normal force exerted by the fluid 
per unit area of the surface. If force is measured in N and area in m2, the unit is the newton per 
square meter or N mP2, called the pascal, symbol Pa, the basic SI unit of pressure. In the metric 
engineering system a common unit is the kilogram force per square centimeter (kgf cmP2). 

The primary standard for pressure measurement is the dead-weight gauge in which a 
known force is balanced by a fluid pressure acting on a known area; whence P = F I A .  A 
simple design is shown in Fig. 1.2. The piston is carefully fitted to the cylinder making the 
clearance small. Weights are placed on the pan until the pressure of the oil, which tends to make 
the piston rise, is just balanced by the force of gravity on the piston and all that it supports. 
With this force given by Newton's law, the pressure of the oil is: 

Figure 1.2 Dead-weight gauge 
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where m is the mass of the piston, pan, and weights; g is the local acceleration of gravity; and 
A is the cross-sectional area of the piston. Gauges in common use, such as Bourdon gauges, 
are calibrated by comparison with dead-weight gauges. 

Since a vertical column of a given fluid under the influence of gravity exerts a pressure at 
its base in direct proportion to its height, pressure is also expressed as the equivalent height of a 
fluid column. This is the basis for the use of manometers for pressure measurement. Conversion 
of height to force per unit area follows from Newton's law applied to the force of gravity acting 
on the mass of fluid in the column. The mass is given by: 

m = Ahp 

where A is the cross-sectional area of the column, h is its height, and p is the fluid density. 
Therefore, 

The pressure to which a fluid height corresponds is determined by the density of the fluid 
(which depends on its identity and temperature) and the local acceleration of gravity. Thus the 
(torr) is the pressure equivalent of 1 millimeter of mercury at 273.15 K (0°C) in a standard 
gravitational field, and is equal to 133.322 Pa. 

Another unit of pressure is the standard atmosphere (atm), the approximate average 
pressure exerted by the earth's atmosphere at sea level, defined as 101 325 Pa, 101.325 kPa, or 
0.101 325 MPa. The bar, an SI unit defined as lo5 Pa, is equal to 0.986 923 atm. 

Most pressure gauges give readings which are the difference between the pressure of 
interest and the pressure of the surrounding atmosphere. These readings are known as gauge 
pressures, and can be converted to absolute pressures by addition of the barometric pressure. 
Absolute pressures must be used in thermodynamic calculations. 
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1.7 WORK 

Work W is performed whenever a force acts through a distance. By definition, the quantity of 
work is given by the equation: 

dW = F d l  (1.1) 

where F is the component of force acting along the line of the displacement dl. When integrated, 
this equation yields the work of a finite process. By convention, work is regarded as positive 
when the displacement is in the same direction as the applied force and negative when they are 
in opposite directions. 

The work which accompanies a change in volume of a fluid is often encountered in 
thermodynamics. A common example is the compression or expansion of a fluid in a cylinder 
resulting from the movement of a piston. The force exerted by the piston on the fluid is equal 
to the product of the piston area and the pressure of the fluid. The displacement of the piston is 
equal to the total volume change of the fluid divided by the area of the piston. Equation (1.1) 
therefore becomes: 

or, since A is constant, 
dW = - P d V f  

Integrating, 

The minus signs in these equations are made necessary by the sign convention adopted for 
work. When the piston moves into the cylinder so as to compress the fluid, the applied force 
and its displacement are in the same direction; the work is therefore positive. The minus sign 
is required because the volume change is negative. For an expansion process, the applied force 
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and its displacement are in opposite directions. The volume change in this case is positive, and 
the minus sign is required to make the work negative. 

Equation (1.3) expresses the work done by a finite compression or expansion process.3 
Figure 1.3 shows apath for compression of a gas from point 1 with initial volume VE at pressure 
PI to point 2 with volume Vi at pressure P2. This path relates the pressure at any point of the 
process to the volume. The work required is given by Eq. (1.3) and is proportional to the area 
under the curve of Fig. 1.3. The SI unit of work is the newton-meter or joule, symbol J. In the 
metric engineering system the unit often used is the meter-kilogram force (m kgf). 

Figure 1.3 Diagram showing a P vs. Vf path 

1.8 ENERGY 

The general principle of conservation of energy was established about 1850. The germ of this 
principle as it applies to mechanics was implicit in the work of Galileo (1564-1642) and Isaac 
Newton (1642-1726). Indeed, it follows directly from Newton's second law of motion once 
work is defined as the product of force and displacement. 

Kinetic Energy 

When a body of mass m, acted upon by a force F, is displaced a distance dl during a differential 
interval of time d t ,  the work done is given by Eq. (1.1). In combination with Newton's second 
law this equation becomes: 

By definition the acceleration is a - duld t ,  where u is the velocity of the body. Thus, 

du dl 
dW = m-dl = m- du 

d t dt  

3~owever,  as explained in Sec. 2.8, it may be applied only in special circumstances. 
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Since the definition of velocity is u = dl/dt, the expression for work becomes: 

This equation may now be integrated for a finite change in velocity from ul to u2: 

Each of the quantities $mu2 in Eq. (1.4) is a kinetic energy, a term introduced by Lord 
~ e l v i n ~  in 1856. Thus, by definition, 

1 2  EK -- -mu 
2 (1.5) 

Equation (1.4) shows that the work done on a body in accelerating it from an initial velocity 
ul to a final velocity u2 is equal to the change in kinetic energy of the body. Conversely, if a 
moving body is decelerated by the action of a resisting force, the work done by the body is 
equal to its change in kinetic energy. In the SI system of units with mass in kg and velocity in 
m s-l, lunetic energy EK has the units of kg m2 s - ~ .  Since the newton is the composite unit 
kg m sP2, EK is measured in newton-meters or joules. In accord with Eq. (1.4), this is the unit 
of work. 

In the metric engineering system, kinetic energy is expressed as ; m ~ ~ / ~ , ,  where g,  has 
the value 9.806 65 and the units kg m kg f 1  sP2. Thus the unit of kinetic energy in this system 
is 

mu2 kgm2sp2 
E K = - =  = m kgf 

2gC kg m k g f l  s-2 

Dimensional consistency here requires the inclusion of g,. 

Potential Energy 

If a body of mass m is raised from an initial elevation zl to a final elevation z2, an upward force 
at least equal to the weight of the body must be exerted on it, and this force must move through 
the distance 22 - zl. Since the weight of the body is the force of gravity on it, the minimum 
force required is given by Newton's law: 

where g is the local acceleration of gravity. The minimum work required to raise the body is 
the product of this force and the change in elevation: 

4 ~ o r d  Kelvin, or William Thornson (1824-1907), was an English physicist who, along with the German physicist 
Rudolf Clausius (1822-1888), laid the foundations for the modem science of thermodynamics. 
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We see from Eq. (1.6) that the work done on the body in raising it is equal to the change 
in the quantity mzg. Conversely, if the body is lowered against a resisting force equal to its 
weight, the work done by the body is equal to the change in the quantity mzg. Equation (1.6) 
is similar in form to Eq. (1.4), and both show that the work done is equal to the change in a 
quantity which describes the condition of the body in relation to its surroundings. In each case 
the work performed can be recovered by carrying out the reverse process and returning the 
body to its initial condition. This observation leads naturally to the thought that, if the work 
done on a body in accelerating it or in elevating it can be subsequently recovered, then the 
body by virtue of its velocity or elevation contains the ability or capacity to do the work. This 
concept proved so useful in rigid-body mechanics that the capacity of a body for doing work 
was given the name energy, a word derived from the Greek and meaning "in work." Hence the 
work of accelerating a body is said to produce a change in its kinetic energy: 

and the work done on a body in elevating it is said to produce a change in its potential energy: 

Thus potential energy5 is defined by: 

In the SI system of units with mass in kg, elevation in m, and the acceleration of gravity in 
m sP2, potential energy has the units of kg m2 s - ~ .  This is the newton-meter or joule, the unit 
of work, in agreement with Eq. (1.6). 

In the metric engineering system, potential energy is expressed as mzglg,. Thus the unit 
of potential energy in this system is 

mzg kg m m sP2 
E p = - =  = m kgf 

gc kg m k g f  

Again, g, must be included for dimensional consistency. 

Energy Conservation 

In any examination of physical processes, an attempt is made to find or to define quantities which 
remain constant regardless of the changes which occur. One such quantity, early recognized 
in the development of mechanics, is mass. The great utility of the law of conservation of 
mass suggests that further conservation principles could be of comparable value. Thus the 
development of the concept of energy logically led to the principle of its conservation in 
mechanical processes. If a body is given energy when it is elevated, then the body conserves or 
retains this energy until it performs the work of which it is capable. An elevated body, allowed 

 his term was first proposed in 1853 by the Scottish engineer William Rankine (1820-1872). 
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to fall freely, gains in kinetic energy what it loses in potential energy so that its capacity for 
doing work remains unchanged. For a freely falling body this means that: 

The validity of this equation has been confirmed by countless experiments. Success in appli- 
cation to freely falling bodies led to the generalization of the principle of energy conservation 
to apply to all purely mechanical processes. Ample experimental evidence to justify this gen- 
eralization was readily obtained. 

Other forms of mechanical energy besides lunetic and gravitational potential energy are 
possible. The most obvious is potential energy of configuration. When a spring is compressed, 
workis done by an external force. Since the spring can later perform this work against a resisting 
force, the spring possesses capacity for doing work. This is potential energy of configuration. 
Energy of the same form exists in a stretched rubber band or in a bar of metal deformed in the 
elastic region. 

The generality of the principle of conservation of energy in mechanics is increased if we 
look upon work itself as a form of energy. This is clearly permissible, because both kinetic- and 
potential-energy changes are equal to the work done in producing them [Eqs. (1.4) and (1.6)]. 
However, work is energy in transit and is never regarded as residing in a body. When work is 
done and does not appear simultaneously as work elsewhere, it is converted into another form 
of energy. 

The body or assemblage on which attention is focused is called the system. All else is 
called the surroundings. When work is done, it is done by the surroundings on the system, or 
vice versa, and energy is transferred from the surroundings to the system, or the reverse. It is 
only during this transfer that the form of energy known as work exists. In contrast, kinetic and 
potential energy reside with the system. Their values, however, are measured with reference 
to the surroundings; i.e., kinetic energy depends on velocity with respect to the surroundings, 
and potential energy depends on elevation with respect to a datum level. Changes in kinetic 
and potential energy do not depend on these reference conditions, provided they are fixed. 
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During the period of development of the law of conservation of mechanical energy, 
heat was not generally recognized as a form of energy, but was considered an indestructible 
fluid called caloric. This concept was firmly entrenched, and for many years no connection 
was made between heat resulting from friction and the established forms of energy. The law of 
conservation of energy was therefore limited in application to frictionless mechanical processes. 
No such limitation is necessary; heat like work is now regarded as energy in transit, a concept 
that gained acceptance during the years following 1850, largely on account of the classic 
experiments of J. P. Joule. These experiments are considered in detail in Chap. 2, but first we 
examine some of the characteristics of heat. 

1.9 HEAT 

We know from experience that a hot object brought in contact with a cold object becomes cooler, 
whereas the cold object becomes warmer. A reasonable view is that something is transferred 
from the hot object to the cold one, and we call that something heat Q . ~  Thus we say that heat 
always flows from a higher temperature to a lower one. This leads to the concept of temperature 
as the driving force for the transfer of energy as heat. More precisely, the rate of heat transfer 
from one body to another is proportional to the temperature difference between the two bodies; 
when there is no temperature difference, there is no net transfer of heat. In the thermodynamic 
sense, heat is never regarded as being stored within a body. Like work, it exists only as energy 
in transit from one body to another, or between a system and its surroundings. When energy in 
the form of heat is added to a body, it is stored not as heat but as kinetic and potential energy 
of the atoms and molecules making up the body. 

6 ~ n  equally reasonable view would have been to regard "cool" as something transferred from the cold object to 
the hot one. 
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In spite of the transient nature of heat, it is often viewed in relation to its effect on the body 
from which it is transferred. As a matter of fact, until about 1930, the definitions of units of heat 
were based on the temperature changes of a unit mass of water. Thus the British thermal unit 
(commonly known as thennochemical Btu) was long defined as 1/180" quantity of heat which 
when transferred to one pound mass of water raised its temperature from ice-point or 32 ("F) 
to steam-point or 212 (OF) at standard atmospheric pressure.. Likewise the calorie (commonly 
known as thennochemical calorie) written as (cal) in the book, was defined as 1/100'~ quantity 
of heat which when transferred to one kilogram mass of water raised its temperature from 0 
to 100°C (273.15 to 373.15 K) at standard atmospheric pressure. Although these definitions 
provide a "feel" for the size of heat units, they depend on experiments made with water and are 
thus subject to change as measurements become more accurate. In order to recognize a common 
basis for all energy units, international steam table calorie is defined in relation to joule, the SI 
unit of energy, equal to 1 N m. Joule is the mechanical work done when a force of one newton acts 
through a distance of one meter. By definition, international steam table calorie is equivalent to 
4.1868 J (exact) and thermochemical calorie is equivalent to 4.184 J (exact). By arithmetic, using 
the defined relations of US Customary and SI units, one international steam table Btu, written as 
(Btu) in the book, is equivalent to 1055.056 J as against one thermochemical Btu is equivalent to 
1054.35 J. All other energy units are defined as multiples of the joule. The foot-pound force, for 
example, is equivalent to 1.355 8 179 J while the meter-kilogram force is equivalent to 9.806 65 J. 
The SI unit of power is the watt, symbol W, defined as energy rate of one joule per second. 

Table A. 1 of App. A provides an extensive list of conversion factors for energy as well 
as for other units. 

PROBLEMS 

1.1. What is the value of g, and what are its units in a system in which the second, the foot, 
and the pound mass are defined as in Sec. 1.2, and the unit of force is the poundal, 
defined as the force required to give l(lb,) an acceleration of l ( f t ) (~) -~?  

1.2. Electric current is the fundamental electrical dimension in ST; its unit is the ampere (A). 
Determine units for the following quantities, as combinations ofjkndamental SI units. 

(a) Electric power; (b) Electric charge; (c) Electric potential difference; 
(d) Electric resistance; (e) Electric capacitance. 

1.3. Liquidlvapor saturation pressure P Sat is often represented as a function of temperature 
by an equation of the form: 

Here, parameters a ,  b, and c are substance-specific constants. Suppose it is required to 
represent P Sat by the equivalent equation: 

Show how the parameters in the two equations are related. 

1.4. At what absolute temperature do the Celsius and Fahrenheit temperature scales give the 
same numerical value? What is the value? 



16 CHAPTER 1. Introduction 

1.5. Pressures up to 3000 bar are measured with a dead-weight gauge. The piston diameter 
is 4 rnm. What is the approximate mass in kg of the weights required? 

1.6. Pressures up to 3000 atm are measured with a dead-weight gauge. The piston diameter 
is 0.17 (in). What is the approximate mass in (lb,) of the weights required? 

1.7. The reading on a mercury manometer at 298.15 K (25°C) (open to the atmosphere at 
one end) is 56.38 cm. The local acceleration of gravity is 9.832 m se2. Atmospheric 
pressure is 10 1.78 kPa. What is the absolute pressure in kPa being measured? The density 
of mercury at 298.15 K (25°C) is 13.534 g ~ m - ~ .  

1.8. Liquids that boil at relatively low temperatures are often stored as liquids under their 
vapor pressures, which at ambient temperature can be quite large. Thus, n-butane stored 
as a liquid/vapor system is at a pressure of 2.581 bar for a temperature of 300 K. Large- 
scale storage (>50 m3) of this kind is sometimes done in spherical tanks. Suggest two 
reasons why. 

1.9. The first accurate measurements of the properties of high-pressure gases were made by 
E. H. Amagat in France between 1869 and 1893. Before developing the dead-weight 
gauge, he worked in a mine shaft, and used a mercury manometer for measurements of 
pressure to more than 400 bar. Estimate the height of manometer required. 

1.10. An instrument to measure the acceleration of gravity on Mars is constructed of a spring 
from which is suspended a mass of 0.40 kg. At a place on earth where the local acceler- 
ation of gravity is 9.81 m sP2, the spring extends 1.08 cm. When the instrument package 
is landed on Mars, it radios the information that the spring is extended 0.40 cm. What 
is the Martian acceleration of gravity? 

1.11. The variation of fluid pressure with height is described by the differential equation: 

Here, p is specific density and g is the local acceleration of gravity. For an ideal gas, 
p = M P I R T ,  where M is molar mass and R is the universal gas constant. Modeling 
the atmosphere as an isothermal column of ideal gas at 283.15 K (lO°C), estimate 
the ambient pressure in Denver, where z = l(mi1e) relative to sea level. For air, take 
M = 29 g molP1; values of R are given in App. A. 

1.12. A 70 W outdoor security light burns, on average, 10 hours a day. A new bulb costs 
$5.00, and the lifetime is about 1000 hours. If electricity costs $0.10 per kWh, what is 
the yearly price of "security," per light? 

1.13. A gas is confined in a 0.47-m-diameter cylinder by a piston, on which rests a weight. 
The mass of the piston and weight together is 150 kg. The local acceleration of gravity 
is 9.813 m sP2, and atmospheric pressure is 101.57 kPa. 
(a) What is the force in newtons exerted on the gas by the atmosphere, the piston, and 

the weight, assuming no friction between the piston and cylinder? 
(b) What is the pressure of the gas in kPa? 
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(c) If the gas in the cylinder is heated, it expands, pushing the piston and weight upward. 
If the piston and weight are raised 0.83 m, what is the work done by the gas in kJ? 
What is the change in potential energy of the piston and weight? 

1.14. Verify that the SI unit of kinetic and potential energy is the joule. 

1.15. An automobile having a mass of 1250 kg is traveling at 40 m s-'. What is its kinetic 
energy in kJ? How much work must be done to bring it to a stop? 

1.16. The turbines in a hydroelectric plant are fed by water falling from a 50-m height. As- 
suming 91% efficiency for conversion of potential to electrical energy, and 8% loss of 
the resulting power in transmission, what is the mass flowrate of water required to power 
a 200 W light bulb? 

1.17. Below is a list of approximate conversion factors, useful for "back-of-the-envelope" 
estimates. None of them is exact, but most are accurate to within about 110%. Use 
Table A. 1 (App. A) to establish the exact conversions. 

l a t m x l b a r  

l(Btu) x 1 kJ 

l(hp) % 0.75 kW 

l(inch) % 2.5 cm 

l(lb,) x 0.5 kg 

1 (mile) x 1.6 km 

l(quart) % 1 liter 

l(yard) % 1 m 

Add your own items to the list. The idea is to keep the conversion factors simple and 
easy to remember. 

1.18. Consider the following proposal for a decimal calendar. The fundamental unit is the 
decimal year (Yr), equal to the number of conventional (SI) seconds required for the 
earth to complete a circuit of the sun. Other units are defined in the table below. Develop, 
where possible, factors for converting decimal calendar units to conventional calendar 
units. Discuss pros and cons of the proposal. 

Decimal Calendar Unit 

Second 
Minute 
Hour 
Day 

Week 
Month 
Year 

Symbol 

Sc 
Mn 
Hr 
Dy 
Wk 
Mo 
Yr 

Definition 

lop6 Yr 
Yr 

lop4 Yr 
Yr 

lop2 Yr 
lo-' Yr 



Chapter 2 

The First Law and Other 
Basic Concepts 

2.1 JOULE'S EXPERIMENTS 

The present-day understanding of heat and its relation to work developed during the last half 
of the nineteenth century. Crucial to this understanding were the many experiments of James 
P. ~oule'  (1 8 18-1 889), carried out in the cellar of his home near Manchester, England, during 
the decade following 1840. 

In their essential elements Joule's experiments were simple enough, but he took elaborate 
precautions to insure accuracy. In the most famous series of measurements, he placed known 
amounts of water, oil, and mercury in an insulated container and agitated the fluid with a 
rotating stirrer. The amounts of work done on the fluid by the stirrer were accurately measured, 
and the temperature changes of the fluid were carefully noted. He found for each fluid that a 
fixed amount of work was required per unit mass for every degree of temperature rise caused 
by the stirring, and that the original temperature of the fluid could be restored by the transfer 
of heat through simple contact with a cooler object. Thus Joule was able to show conclusively 
that a quantitative relationship exists between work and heat and, therefore, that heat is a form 
of energy. 

2.2 INTERNAL ENERGY 

In experiments such as those conducted by Joule, energy is added to a fluid as work, but is 
transferred from the fluid as heat. What happens to this energy between its addition to and 
transfer from the fluid? A rational concept is that it is contained in the fluid in another form, 
called internal energy. 

The internal energy of a substance does not include energy that it may possess as a result 
of its macroscopic position or movement. Rather it refers to energy of the molecules internal 
to the substance. Because of their ceaseless motion, all molecules possess kinetic energy of 
translation; except for monatomic molecules, they also possess kinetic energy of rotation and 

'These experiments and their influence on the development of thermodynamics are described by H. J. Steffens, 
James Prescott Joule and the Concept of Energy, Neale Watson Academic Publications, Inc., New York, 1979. 
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of internal vibration. The addition of heat to a substance increases this molecular activity, and 
thus causes an increase in its internal energy. Work done on the substance can have the same 
effect, as was shown by Joule. 

The internal energy of a substance also includes the potential energy resulting from inter- 
molecular forces (Sec. 16.1). On a submolecular scale energy is associated with the electrons 
and nuclei of atoms, and with bond energy resulting from the forces holding atoms together as 
molecules. This form of energy is named internal to distinguish it from the kinetic and potential 
energy associated with a substance because of its macroscopic position or motion, which can 
be thought of as external forms of energy. 

Internal energy, has no concise thermodynamic definition. It is a thermodynamic primi- 
tive. It cannot be directly measured; there are no internal-energy meters. As a result, absolute 
values are unknown. However, this is not a disadvantage in thermodynamic analysis, because 
only changes in internal energy are required. 

2.3 THE FIRST LAW OF THERMODYNAMICS 

The recognition of heat and internal energy as forms of energy makes possible a generalization 
of the law of conservation of mechanical energy (Sec. 1.8) to include heat and internal energy 
in addition to work and external potential and kinetic energy. Indeed, the generalization can be 
extended to still other forms, such as surface energy, electrical energy, and magnetic energy. This 
generalization was at first a postulate. However, the overwhelming evidence accumulated over 
time has elevated it to the stature of a law of nature, known as the first law of thermodynamics. 
One formal statement is: 

Although energy assumes many forms, the total quantity of energy is 
constant, and when energy disappears in one form it appears simul- 
taneously in other forms. 

In application of the first law to a given process, the sphere of influence of the process is 
divided into two parts, the system and its surroundings. The region in which the process occurs 
is set apart as the system; everything with which the system interacts is the surroundings. The 
system may be of any size depending on the application, and its boundaries may be real or 
imaginary, rigid or flexible. Frequently a system consists of a single substance; in other cases 
it may be complex. In any event, the equations of thermodynamics are written with reference 
to some well-defined system. This focuses attention on the particular process of interest and 
on the equipment and material directly involved in the process. However, the first law applies 
to the system and surroundings, and not to the system alone. In its most basic form, the first 
law requires: 

A(Energy of the system) + A(Energy of surroundings) = 0 (2.1) 

where the difference operator "A" signifies finite changes in the quantities enclosed in paren- 
theses. The system may change in its internal energy, in its potential or kinetic energy, and in 
the potential or kinetic energy of its finite parts. Since attention is focused on the system, the 
nature of energy changes in the surroundings is not of interest. 

In the thermodynamic sense, heat and work refer to energy in transit across the boundary 
which divides the system from its surroundings. These forms of energy are not stored, and are 
never contained in a body or system. Energy is stored in its potential, kinetic, and internal 



20 CHAPTER 2. The First Law and Other Basic Concepts 

forms; these reside with material objects and exist because of the position, configuration, and 
motion of matter. 

2.4 ENERGY BALANCE FOR CLOSED SYSTEMS 

If the boundary of a system does not permit the transfer of matter between the system and 
its surroundings, the system is said to be closed, and its mass is necessarily constant. The 
development of basic concepts in thermodynamics is facilitated by a careful examination of 
closed systems, and for this reason they are treated in detail in the following sections. Far more 
important for industrial practice are processes in which matter crosses the system boundary as 
streams that enter and leave process equipment. Such systems are said to be open, and they are 
treated later in this chapter, once the necessary foundation material has been presented. 

Since no streams enter or leave a closed system, no internal energy is transported across 
the boundary of the system. All energy exchange between a closed system and its surroundings 
then appears as heat and work, and the total energy change of the surroundings equals the net 
energy transferred to or from it as heat and work. The second term of Eq. (2.1) may therefore 
be replaced by 

A(Energy of surroundings) = f Q f W 

The choice of signs used with Q and W depends on which direction of transport is regarded 
as positive. 

Heat Q and work W always refer to the system, and the modern sign convention makes the 
numerical values of both quantities positive for transfer into the system from the surroundings. 
The corresponding quantities taken with reference to the surroundings, Q,,, and W,,,, have 
the opposite sign, i.e., Q,,, = - Q and W,,, = - W .  With this understanding: 

A(Energy of surroundings) = Q,,, + w,, = -Q - w 
Equation (2.1) now  become^:^ 

A(Energy of the system) = Q + W (2.2) 

This equation means that the total energy change of a closed system equals the net energy 
transferred into it as heat and work. 

Closed systems often undergo processes that cause no change in the system other than 
in its internal energy. For such processes, Eq. (2.2) reduces to: 

where U t  is the total internal energy of the system. Equation (2.3) applies to processes involving 
finite changes in the internal energy of the system. For dzTeuentia1 changes: 

2The sign convention used here is recommended by the International Union of Pure and Applied Chemistry. 
However, the original choice of sign for work and the one used in the first four editions of this text was the opposite, 
and the right side of Eq. (2.2) was then written Q - W. 
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Both of these equations apply to closed systems which undergo changes in internal energy 
only. The system may be of any size, and the values of Q ,  W, and Ut  are for the entire system, 
which must of course be clearly defined. 

All terms in Eqs. (2.3) and (2.4) require expression in the same units. In the SI system 
the energy unit is the joule. Other energy units in use are the m kgf, the calorie, the (ft lbf), and 
the (Btu). 

Properties, such as volume V t  and internal energy U' depend on the quantity of material 
in a system; such properties are said to be extensive. In contrast, temperature and pressure, the 
principal thermodynamic coordinates for homogeneous fluids, are independent of the quantity 
of material, and are known as intensive properties. An alternative means of expression for the 
extensive properties of a homogeneous system, such as V t  and U t ,  is: 

V t = m V  or V t = n V  and 

where the plain symbols V and U represent the volume and internal energy of a unit amount of 
material, either a unit mass or a mole. These are called specijic or molar properties, and they 
are intensive, independent of the quantity of material actually present. 

Although Vt and Ut for a homogeneous system of arbitrary size are 
extensive properties, specific and molar volume V (or density) and 
specific and molar internal energy U are intensive. 

Note that the intensive coordinates T and P have no extensive counterparts. 
For a closed system of n moles Eqs. (2.3) and (2.4) may now be written: 

In this form, these equations show explicitly the amount of substance comprising the system. 
The equations of thermodynamics are often written for a representative unit amount of 

material, either a unit mass or a mole. Thus for n = 1 Eqs. (2.5) and (2.6) become: 

A U = Q + W  and d U = d Q + d W  

The basis for Q and W is always implied by the quantity appearing on the left side of the 
energy equation. 

Equation (2.6) is the ultimate source of all property relations that connect the internal 
energy to measurable quantities. It does not represent a dejnition of internal energy; there is 
none. Nor does it lead to absolute values for the internal energy. What it does provide is the 
means for calculating changes in this property. Without it, the first law of thermodynamics 
could not be formulated. Indeed, the first law requires prior affirmation of the existence of the 
internal energy, the essential nature of which is summarized in the following axiom: 

There exists a form of energy, known as internal energy U, which is an 
intrinsic property of a system, functionally related to the measurable 
coordinates which characterize the system. For a closed system, not 
in motion, changes in this property are given by Eqs. (2.5) and (2.6). 
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2.5 THERMODYNAMIC STATE AND STATE FUNCTIONS 

The notation of Eqs. (2.3) through (2.6) suggests that the terms on the left are different in kind 
from those on the right. The internal-energy terms on the left reflect changes in the internal state 
or the thermodynamic state of the system. It is this state that is reflected by its thermodynamic 
properties, among which are temperature, pressure, and density. We know from experience 
that for a homogeneous pure substance fixing two of these properties automatically fixes all the 
others, and thus determines its thermodynamic state. For example, nitrogen gas at a temperature 
of 300 K and a pressure of 10' kPa (1 bar) has a fixed specific volume or density and a fixed 
molar internal energy. Indeed, it has an established set of intensive thermodynamic properties. If 
this gas is heated or cooled, compressed or expanded, and then returned to its initial temperature 
and pressure, its intensive properties are restored to their initial values. Such properties do not 
depend on the past history of the substance nor on the means by which it reaches a given state. 
They depend only on present conditions, however reached. Such quantities are known as state 
functions. When two of them are held at fixed values for a homogeneous pure ~ubstance,~ the 
thermodynamic state of the substance is fully determined. This means that a state function, such 
as specific internal energy, is a property that always has a value; it may therefore be expressed 
mathematically as a function of other thermodynamic properties, such as temperature and 
pressure, or temperature and density, and its values may be identified with points on a graph. 

On the other hand, the terms on the right sides of Eqs. (2.3) through (2.6), representing 
heat and work quantities, are not properties; they account for the energy changes that occur in 
the surroundings and appear only when changes occur in a system. They depend on the nature 
of the process causing the change, and are associated with areas rather than points on a graph, 
as suggested by Fig. 1.3. Although time is not a thermodynamic coordinate, the passage of 
time is inevitable whenever heat is transferred or work is accomplished. 

The differential of a state function represents an infinitesimal change in its value. Inte- 
gration of such a differential results in a finite difference between two of its values, e.g.: 

and 

The differentials of heat and work are not changes, but are infinitesimal amounts. When inte- 
grated, these differentials give not finite changes, but finite amounts. Thus, 

/ ~ Q = Q  and 1 d W = W  

3 ~ o r  systems more complex than a simple homogeneous pure substance, the number of properties or state functions 
that must be arbitrarily specified in order to define the state of the system may be different from two. The method of 
determining this number is the subject of Sec. 2.7. 
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For a closed system undergoing the same change in state by several processes, experiment 
shows that the amounts of heat and work required differ for different processes, but that the 
sum Q + W is the same for all processes. This is the basis for identification of internal energy 
as a state function. The same value of AU' is given by Eq. (2.3) regardless of the process, 
provided only that the change in the system is between the same initial and final states. 
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2.6 EQUILIBRIUM 

Equilibrium is a word denoting a static condition, the absence of change. In thermodynamics 
it means not only the absence of change but the absence of any tendency toward change on a 
macroscopic scale. Thus a system at equilibrium exists under conditions such that no change in 
state can occur. Since any tendency toward change is caused by a driving force of one kind or 
another, the absence of such a tendency indicates also the absence of any driving force. Hence 
for a system at equilibrium all forces are in exact balance. Whether a change actually occurs in 
a system not at equilibrium depends on resistance as well as on driving force. Many systems 
undergo no measurable change even under the influence of large driving forces, because the 
resistance to change is very large. 

Different kinds of driving forces tend to bring about different kinds of change. For 
example, imbalance of mechanical forces such as pressure on a piston tend to cause energy 
transfer as work; temperature differences tend to cause the flow of heat; gradients in chemical 
potential tend to cause substances to be transferred from one phase to another. At equilibrium 
all such forces are in balance. 

In many applications of thermodynamics, chemical reactions are of no concern. For 
example, a mixture of hydrogen and oxygen at ordinary conditions is not in chemical equi- 
librium, because of the large driving force for the formation of water. However, if chemical 
reaction is not initiated, this system can exist in long-term thermal and mechanical equilibrium, 
and purely physical processes may be analyzed without regard to possible chemical reaction. 
This is an example of the fact that systems existing at partial equilibrium are often amenable 
to thermodynamic analysis. 

2.7 THE PHASE RULE 

As indicated earlier, the state of a pure homogeneous fluid is fixed whenever two intensive 
thermodynamic properties are set at definite values. In contrast, when two phases are in equi- 
librium, the state of the system is fixed when only a single property is specified. For example, 
a mixture of steam and liquid water in equilibrium at 101.325 kPa can exist only at 373.15 K 
(100°C). It is impossible to change the temperature without also changing the pressure if vapor 
and liquid are to continue to exist in equilibrium. 

For any system at equilibrium, the number of independent variables that must be arbi- 
trarily fixed to establish its intensive state is given by the celebrated phase rule of J. Willard 
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~ i b b s ;  who deduced it by theoretical reasoning in 1875. It is presented here without proof in 
the form applicable to nonreacting systems:5 

1 ~ = 2 - n + N I  (2.7) 

where n is the number of phases, N is the number of chemical species, and F is called the 
degrees of freedom of the system. 

The intensive state of a system at equilibrium is established when its temperature, pres- 
sure, and the compositions of all phases are fixed. These are therefore phase-rule variables, but 
they are not all independent. The phase rule gives the number of variables from this set which 
must be arbitrarily specified to fix all remaining phase-rule variables. 

A phase is a homogeneous region of matter. A gas or a mixture of gases, a liquid or a 
liquid solution, and a crystalline solid are examples of phases. A phase need not be continuous; 
examples of discontinuous phases are a gas dispersed as bubbles in a liquid, a liquid dispersed 
as droplets in another liquid with which it is immiscible, and solid crystals dispersed in either 
a gas or liquid. In each case a dispersed phase is distributed throughout a continuous phase. An 
abrupt change in properties always occurs at the boundary between phases. Various phases can 
coexist, but they must be in equilibrium for the phase rule to apply. An example of a three-phase 
system at equilibrium is a saturated aqueous salt solution at its boiling point with excess salt 
crystals present. The three phases (n = 3) are crystalline salt, the saturated aqueous solution, 
and vapor generated at the boiling point. The two chemical species ( N  = 2) are water and salt. 
For this system, F = 1. 

The phase-rule variables are intensive properties, which are independent of the extent 
of the system and of the individual phases. Thus the phase rule gives the same information 
for a large system as for a small one and for different relative amounts of the phases present. 
Moreover, only the compositions of the individual phases are phase-rule variables. Overall or 
total compositions are not phase-rule variables when more than one phase is present. 

The minimum number of degrees of freedom for any system is zero. When F = 0 ,  the 
system is invariant; Eq. (2.7) becomes n = 2 + N .  This value of n is the maximum number 
of phases which can coexist at equilibrium for a system containing N chemical species. When 
N = 1, this number is 3, characteristic of a triple point (Sec. 3.1). For example, the triple point 
of water, where liquid, vapor, and the common form of ice exist together in equilibrium, occurs 
at 273.16 K (O.Ol°C) and 0.0061 bar. Any change from these conditions causes at least one 
phase to disappear. 

4~osiah Willard Gibbs (1839-1903), American mathematical physicist. 
 he justification of the phase rule for nonreacting systems is given in Sec. 10.2, and the phase rule for reacting 

systems is considered in Sec. 13.8. 
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2.8 THE REVERSIBLE PROCESS 

The development of thermodynamics is facilitated by introduction of a special kind of closed- 
system process characterized as reversible: 

A process is reversible when its direction can be reversed at any point 
by an infinitesimal change in external conditions. 

Reversible Expansion of a Gas 

The nature of reversible processes is illustrated by the example of a simple expansion of gas 
in a pistonlcylinder arrangement. The apparatus shown in Fig. 2.2 is imagined to exist in an 
evacuated space. The gas trapped inside the cylinder is chosen as the system; all else is the 
surroundings. Expansion processes result when mass is removed from the piston. For simplicity, 
assume that the piston slides within the cylinder without friction and that the piston and cylinder 
neither absorb nor transmit heat. Moreover, because the density of the gas in the cylinder is 
low and because the mass of gas is small, we ignore the effects of gravity on the contents of the 
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cylinder. This means that gravity-induced pressure gradients in the gas are very small relative 
to its pressure and that changes in potential energy of the gas are negligible in comparison with 
the potential-energy changes of the piston assembly. 

The piston in Fig. 2.2 confines the gas at a pressure just sufficient to balance the weight 
of the piston and all that it supports. This is a condition of equilibrium, for the system has no 
tendency to change. Mass must be removed from the piston if it is to rise. Imagine first that 
a mass m is suddenly slid from the piston to a shelf (at the same level). The piston assembly 
accelerates upward, reaching its maximum velocity at the point where the upward force on the 
piston just balances its weight. Its momentum then carries it to a higher level, where it reverses 
direction. If the piston were held in this position of maximum elevation, its potential-energy 
increase would very nearly equal the work done by the gas during the initial stroke. However, 
when unconstrained, the piston assembly oscillates, with decreasing amplitude, ultimately 
coming to rest at a new equilibrium position at a level above its initial position. 

Figure 2.2 Expansion of a gas 

The oscillations of the piston assembly are damped out because the viscous nature of the 
gas gradually converts gross directed motion of the molecules into chaotic molecular motion. 
This dissipative process transforms some of the work initially done by the gas in accelerating 
the piston back into internal energy of the gas. Once the process is initiated, no injinitesimal 
change in external conditions can reverse its direction; the process is irreversible. 

All processes carried out in finite time with real substances are accompanied in some 
degree by dissipative effects of one kind or another, and all are therefore irreversible. However, 
one can imagine processes that are free of dissipative effects. For the expansion process of 
Fig. 2.2, such effects have their origin in the sudden removal of a finite mass from the piston. 
The resulting imbalance of forces acting on the piston causes its acceleration, and leads to 
its subsequent oscillation. The sudden removal of smaller mass increments reduces but does 
not eliminate this dissipative effect. Even the removal of an infinitesimal mass leads to piston 
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oscillations of infinitesimal amplitude and a consequent dissipative effect. However, one may 
imagine a process wherein small mass increments are removed one after another at a rate such 
that the piston's rise is continuous, with minute oscillation only at the end of the process. 

The limiting case of removal of a succession of infinitesimal masses from the piston is 
approximated when the masses m in Fig. 2.2 are replaced by a pile of powder, blown in a very 
fine stream from the piston. During this process, the piston rises at a uniform but very slow 
rate, and the powder collects in storage at ever higher levels. The system is never more than 
differentially displaced from internal equilibrium or from equilibrium with its surroundings. 
If the removal of powder from the piston is stopped and the direction of transfer of powder is 
reversed, the process reverses direction and proceeds backwards along its original path. Both 
the system and its surroundings are ultimately restored to their initial conditions. The original 
process is reversible. 

Without the assumption of a frictionless piston, we cannot imagine a reversible process. 
If the piston sticks because of friction, a finite mass must be removed before the piston breaks 
free. Thus the equilibrium condition necessary to reversibility is not maintained. Moreover, 
friction between two sliding parts is a mechanism for the dissipation of mechanical energy into 
internal energy. 

This discussion has centered on a single closed-system process, the expansion of a gas in 
a cylinder. The opposite process, compression of a gas in a cylinder, is described in exactly the 
same way. There are, however, many processes which are driven by the imbalance of forces 
other than mechanical forces. For example, heat flow occurs when a temperature difference 
exists, electricity flows under the influence of an electromotive force, and chemical reactions 
occur because a chemical potential exists. In general, a process is reversible when the net force 
driving it is only differential in size. Thus heat is transferred reversibly when it flows from a 
finite object at temperature T to another such object at temperature T - d T .  

Reversible Chemical Reaction 
The concept of a reversible chemical reaction is illustrated by the decomposition of calcium 
carbonate, which when heated forms calcium oxide and carbon dioxide gas. At equilibrium, 
this system exerts a definite decomposition pressure of C02 for a given temperature. When 
the pressure falls below this value, CaC03 decomposes. Assume that a cylinder is fitted with 
a frictionless piston and contains CaC03, CaO, and C02 in equilibrium. It is immersed in a 
constant-temperature bath, as shown in Fig. 2.3, with the temperature adjusted to a value such 
that the decomposition pressure is just sufficient to balance the weight on the piston. The system 
is in mechanical equilibrium, the temperature of the system is equal to that of the bath, and 
the chemical reaction is held in balance by the pressure of the C02. Any change of conditions, 
however slight, upsets the equilibrium and causes the reaction to proceed in one direction or 
the other. 

If the weight is differentially increased, the C02 pressure rises differentially, and COz 
combines with CaO to form CaC03, allowing the weight to fall slowly. The heat given off by 
this reaction raises the temperature in the cylinder, and heat flows to the bath. Decreasing the 
weight differentially sets off the opposite chain of events. The same results are obtained if the 
temperature of the bath is raised or lowered. If the temperature of the bath is raised differentially, 
heat flows into the cylinder and calcium carbonate decomposes. The C02 generated causes the 
pressure to rise differentially, which in turn raises the piston and weight. This continues until the 
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Figure 2.3 Reversibility of a chemical reaction 

CaC03 is completely decomposed. The process is reversible, for the system is never more than 
differentially displaced from equilibrium, and only a differential lowering of the temperature 
of the bath causes the system to return to its initial state. 

Chemical reactions can sometimes be carried out in an electrolytic cell, and in this case 
they may be held in balance by an applied potential difference. If such a cell consists of 
two electrodes, one of zinc and the other of platinum, immersed in an aqueous solution of 
hydrochloric acid, the reaction that occurs is: 

Zn + 2HC1+ Hz + ZnC12 

The cell is held under fixed conditions of temperature and pressure, and the electrodes are con- 
nected externally to a potentiometer. If the electromotive force produced by the cell is exactly 
balanced by the potential difference of the potentiometer, the reaction is held in equilibrium. 
The reaction may be made to proceed in the forward direction by a slight decrease in the op- 
posing potential difference, and it may be reversed by a corresponding increase in the potential 
difference above the emf of the cell. 

Summary Remarks on Reversible Processes 

A reversible process: 

Is frictionless 

Is never more than differentially removed from equilibrium 

Traverses a succession of equilibrium states 

Is driven by forces whose imbalance is differential in magnitude 
Can be reversed at any point by a differential change in external conditions 

When reversed, retraces its forward path, and restores the initial state of system and 
surroundings 

The work of compression or expansion of a gas caused by the differential displacement 
of a piston in a cylinder is derived in Sec. 1.7: 

d w  = - p d v t  (1.2) 
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The work done on the system is given by this equation only when certain characteristics of 
the reversible process are realized. The first requirement is that the system be no more than 
infinitesimally displaced from a state of internal equilibrium characterized by uniformity of 
temperature and pressure. The system then always has an identifiable set of properties, including 
pressure P.  The second requirement is that the system be no more than infinitesimally displaced 
from mechanical equilibrium with its surroundings. In this event, the internal pressure P is never 
more than minutely out of balance with the external force, and we may make the substitution 
F = P A  that transforms Eq. (1.1) into Eq. (1.2). Processes for which these requirements are 
met are said to be mechanically reversible, and Eq. (1.2) may be integrated: 

The reversible process is ideal in that it can never be fully realized; it represents a limit 
to the performance of actual processes. In thermodynamics, the calculation of work is usually 
made for reversible processes, because of their tractability to mathematical analysis. The choice 
is between these calculations and no calculations at all. Results for reversible processes in 
combination with appropriate eficiencies yield reasonable approximations of the work for 
actual processes. 
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2.9 CONSTANT-V AND CONSTANT-P PROCESSES 

The energy balance for a homogeneous closed system of n moles is: 

d(nU) = d Q  + d W  (2.6) 

where Q and W always represent total heat and work, whatever the value of n. 
The work of a mechanically reversible, closed-system process is given by Eq. (1.2), here 

written: 
dW = -Pd(nV) 

These two equations combine: 
d(nU) = d Q  - P d(nV) 

This is the general first-law equation for a mechanically reversible, closed-system process. 

Constant-Volume Process 

If the process occurs at constant total volume, the work is zero. Moreover, for closed systems 
the last term of Eq. (2.8) is also zero, because n and V are both constant. Thus, 

d Q = d(nU) (const V) (2.9) 

Integratioli yields: 
Q = n AU (const V) (2.10) 
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Thus for a mechanically reversible, constant-volume, closed-system process, the heat trans- 
ferred is equal to the internal-energy change of the system. 

Constant-Pressure Process 

Solved for d Q, Eq. (2.8) becomes: 

d Q  = d(nU) + P d(nV) 

For a constant-pressure change of state: 

d Q  = d(nU) +d(nPV) = d[n(U + PV)] 

The appearance of the group U+ P V, both here and in other applications, suggests the dejinition 
for convenience of a new thermodynamic property. Thus, the mathematical (and only) dejinition 
of enthalpy (en-thal'-py)6 is: 

where H ,  U ,  and V are molar or unit-mass values. The preceding equation may now be written: 

d Q = d(nH) (const P)  (2.12) 

Integration yields: 

Q = n A H  (const P )  (2.13) 

Thus for a mechanically reversible, constant-pressure, closed-system process, the heat trans- 
ferred equals the enthalpy change of the system. Comparison of the last two equations with 
Eqs. (2.9) and (2.10) shows that the enthalpy plays a role in constant-pressure processes anal- 
ogous to the internal energy in constant-volume processes. 

2.1 0 ENTHALPY 

The usefulness of the enthalpy is suggested by Eqs. (2.12) and (2.13). It also appears in energy 
balances for flow processes as applied to heat exchangers, evaporators, distillation columns, 
pumps, compressors, turbines, engines, etc., for calculation of heat and work. 

The tabulation of values of Q and W for the infinite array of possible processes is 
impossible. The intensive state functions, however, such as specific volume, specific internal 
energy, and specific enthalpy, are intrinsic properties of matter. Once determined, their values 
can be tabulated as functions of temperature and pressure for each phase of a particular substance 
for future use in the calculation of Q and W for any process involving that substance. The 
determination of numerical values for these state functions and their correlation and use are 
treated in later chapters. 

All terms of Eq. (2.11) must be expressed in the same units. The product P V has units of 
energy per mole or per unit mass, as does U; therefore H also has units of energy per mole or 

6~ word proposed by H. Kamerlingh Onnes, Dutch physicist who first liquefied helium in 1908, discovered 
superconductivity in 1911, and won the Nobel prize for physics in 1913. (See: Communications from the Physical 
Laboratory of the University of Leiden, no. 109, p. 3, footnote 2, 1909.) 
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per unit mass. In the SI system the basic unit of pressure is the pascal or N mP2 and, for molar 
volume, m3 mol-'. The PV product then has the units N m mol-' or J mol-l. In the metric 
engineering system a common unit for the P V product is the m kgf kg-', which arises when 
pressure is in kg m-2 with volume in m3 kg-'. This result is usually converted to kcal kg-' 
through division by 426.935 for use in Eq. (2.1 I), because the common metric engineering unit 
for U and H is the kcal kg-'. 

Since U ,  P ,  and V are all state functions, H as defined by Eq. (2.11) is also a state 
function. Like U and V, H is an intensive property of the system. The differential form of 
Eq. (2.11) is: 

This equation applies whenever a differential change occurs in the system. Upon integration, 
it becomes an equation for a finite change in the system: 

Equations (2.1 I), (2.14), and (2.15) apply to a unit mass of substance or to a mole. 
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2.11 HEATCAPACITY 

We remarked earlier that heat is often viewed in relation to its effect on the object to which or 
from which it is transferred. This is the origin of the idea that a body has a capacity for heat. 
The smaller the temperature change in a body caused by the transfer of a given quantity of 
heat, the greater its capacity. Indeed, a heat capacity might be defined: 

The difficulty with this is that it makes C, like Q, a process-dependent quantity rather than a 
state function. However, it does suggest the possibility that more than one useful heat capacity 
might be defined. In fact two heat capacities are in common use for homogeneous fluids; 
although their names belie the fact, both are state functions, defined unambiguously in relation 
to other state functions. 

Heat Capacity at Constant Volume 

The constant-volume heat capacity is dejined as: 

This definition accommodates both the molar heat capacity and the specific heat capacity 
(usually called specific heat), depending on whether U is the molar or specific internal energy. 
Although this definition makes no reference to any process, it relates in an especially simple 
way to a constant-volume process in a closed system, for which Eq. (2.16) may be written: 

dU = Cv d T  (const V) (2.17) 

Integration yields: 

The combination of this result with Eq. (2.10) for a mechanically reversible, constant-volume 
process7 gives: 

If the volume varies during the process but returns at the end of the process to its initial 
value, the process cannot rightly be called one of constant volume, even though V2 = Vl and 
A V = 0. However, changes in state functions or properties are independent of path, and are the 
same for all processes which result in the same change of state. Property changes are therefore 

7 ~ h e s e  restrictions serve to rule out work of stimng, which is inherently irreversible 
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calculated from the equations for a truly constant-volume process leading from the same initial 
to the same final conditions. For such processes Eq. (2.18) gives AU = 1 Cv d T ,  because U ,  
C v ,  and T are all state functions or properties. On the other hand, Q does depend on path, and 
Eq. (2.19) is a valid expression for Q only for a constant-volume process. For the same reason, 
W is in general zero only for a truly constant-volume process. This discussion illustrates the 
reason for the careful distinction between state functions and heat and work. The principle that 
state functions are independent of the process is an important and useful concept. 

For the calculation of property changes, an actual process may be 
replaced by any other process which accomplishes the same change 
in state. 

Such an alternative process may be selected, for example, because of its simplicity. 

Heat Capacity at Constant Pressure 

The constant-pressure heat capacity is dejined as: 

Again, the definition accommodates both molar and specific heat capacities, depending on 
whether H is the molar or specific enthalpy. This heat capacity relates in an especially simple 
way to a constant-pressure, closed-system process, for which Eq. (2.20) is equally well written: 

d H = C p  d T (const P )  (2.21) 

whence 

For a mechanically reversible, constant-pressure process, this result may be combined with 
Eq. (2.13) to give 

Q = n A H  = n C p d T  (const P )  L: 
Since H ,  C p ,  and T are all state functions, Eq. (2.22) applies to any process for which P2 = PI 
whether or not it is actually carried out at constant pressure. However, only for the mechani- 
cally reversible, constant-pressure process can heat and work be calculated by the equations 
~ = n ~ H , ~ = n l C p d ~ , a n d W  = - P n A V .  
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2.12 MASS AND ENERGY BALANCES FOR OPEN SYSTEMS 

Although the focus of the preceding sections has been on closed systems, the concepts presented 
find far more extensive application. The laws of mass and energy conservation apply to all 
processes, to open as well as to closed systems. Indeed, the open system includes the closed 
system as a special case. The remainder of this chapter is therefore devoted to the treatment of 
open systems and thus to the development of equations of wide applicability. 

Measures of Flow 

Open systems are characterized by flowing streams, for which there are four common measures 
of flow: 

Mass flowrate, m Molar flowrate, n Volumetric flowrate, q Velocity, u 

The measures of flow are interrelated: 

m = M n  and q = u A  

where M is molar mass. Importantly, mass and molar flowrates relate to velocity: 

The area for flow A is the cross-sectional area of a conduit, and p is specific or molar 
density. Although velocity is a vector quantity, its scalar magnitude u is used here as the average 
speed of a stream in the direction normal to A. Flowrates m, n,  and q represent measures of 
quantity per unit of time. Velocity u is quite different in nature, as it does not suggest the 
magnitude of flow. Nevertheless, it is an important design parameter. 

Mass Balance for Open Systems 

The region of space identified for analysis of open systems is called a control volume; it is 
separated from its surroundings by a control suface. The fluid within the control volume is the 
thermodynamic system for which mass and energy balances are written. The control volume 
shown schematically in Fig. 2.5 is separated from its surroundings by an extensible control 
surface. Two streams with flow rates ml  and m2 are shown directed into the control volume, 
and one stream with flow rate m3 is directed out. Since mass is conserved, the rate of change of 
mass within the control volume, dm,,/dt, equals the net rate of flow of mass into the control 
volume. The convention is that flow is positive when directed into the control volume and 
negative when directed out. The mass balance is expressed mathematically by: 

where the second term for the control volume shown in Fig. 2.5 is: 
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Figure 2.5 Schematic representation of a control volume 

The difference operator "A" here signifies the difference between exit and entrance flows and 
the subscript "fs" indicates that the term applies to all flowing streams. 

When the mass flowrate m is given by Eq. (2.24a), Eq. (2.25) becomes: 

In this form the mass-balance equation is often called the continuity equation. 
The flow process characterized as steady state is an important special case for which 

conditions within the control volume do not change with time. The control volume then contains 
a constant mass of fluid, and the first or accumulation term of Eq. (2.25) is zero, reducing 
Eq. (2.26) to: 

The term "steady state" does not necessarily imply that flowrates are constant, merely that the 
inflow of mass is exactly matched by the outflow of mass. 

When there is but a single entrance and a single exit stream, the mass flowrate riz is the 
same for both streams; then, 

or m = const = p2u2A2 = plu lA l  

Since specific volume is the reciprocal of density, 

This form of the continuity equation finds frequent use. 

The General Energy Balance 

Since energy, like mass, is conserved, the rate of change of energy within the control volume 
equals the net rate of energy transfer into the control volume. Streams flowing into and out 
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of the control volume have associated with them energy in its internal, potential, and kinetic 
forms, and all contribute to the energy change of the system. Each unit mass of a stream qarries 
with it a total energy U  + i u2  + zg, where u is the average velocity of the stream, z is its 
elevation above a datum level, and g is the local acceleration of gravity. Thus, each stream 
transports energy at the rate (U + i u2  + zg)m. The net energy transported into the system 
by the flowing streams is therefore -A [(u + i u 2  + zg) mIfs, where the effect of the minus 
sign with "A" is to make the term read in - out. The rate of energy accumulation within 
the control volume includes this quantity in addition to the heat transfer rate Q and work 
rate: 

. A  [ (u + ;u2 + zg) h]f, + Q + work rate 

The work rate may include work of several forms. First, work is associated with moving 
the flowing streams through entrances and exits. The fluid at any entrance or exit has a set of 
average properties, P ,  V, U ,  H, etc. Imagine that a unit mass of fluid with these properties 
exists at an entrance or exit, as shown in Fig. 2.6 (at the entrance). This unit mass of fluid is 
acted upon by additional fluid, here replaced by a piston which exerts the constant pressure 
P .  The work done by this piston in moving the unit mass through the entrance is P V, and the 
work rate is (PV)m. Since "A" denotes the difference between exit and entrance quantities, 
the net work done on the system when all entrance and exit sections are taken into account is 
- A [ ( P  v)mlfs. 

Another form of work is the shaft work indicated in Fig. 2.6 by rate W,. In addition 
work may be associated with expansion or contraction of the control volume and there may 
be stirring work. These forms of work are all included in a rate term represented by W .  The 
preceding equation may now be written: 

Figure 2.6 Control volume with one entrance and one exit 
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Combination of terms in accord with the definition of enthalpy, H  = U + P V, leads to: 

d(mu)cv = - A [ ( H  + iu2  + ~ g ) h ] ~ +  Q +  W 
d t  

which is usually written: 

The velocity u in the kinetic-energy terms of energy balances is the bulk-mean velocity 
as defined by the equation, u = m/pA. Fluids flowing in pipes exhibit a velocity profile, as 
shown in Fig. 2.6, which rises from zero at the wall (the no-slip condition) to a maximum at 
the center of the pipe. The kinetic energy of a fluid in a pipe depends on its velocity profile. For 
the case of laminar flow, the profile is parabolic, and integration across the pipe shows that the 
kinetic-energy term should properly be u2. In fully developed turbulent flow, the more common 
case in practice, the velocity across the major portion of the pipe is not far from uniform, and 
the expression u2/2, as used in the energy equations, is more nearly correct. 

Although Eq. (2.28) is an energy balance of reasonable generality, it has limitations. 
In particular, it reflects the tacit assumption that the center of mass of the control volume is 
stationary. Thus no terms for kinetic- and potential-energy changes of the fluid in the control 
volume are included. For virtually all applications of interest to chemical engineers, Eq. (2.28) 
is adequate. For many (but not all) applications, kinetic- and potential-energy changes in the 
flowing streams are also negligible, and Eq. (2.28) then simplifies to: 

Equation (2.29) may be applied to a variety of processes of atransient nature, as illustrated 
in the following examples. 
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Energy Balances for Steady-State Flow Processes 

Flow processes for which the accumulation term of Eq. (2.28), d(rnU),,/dt, is zero are said to 
occur at steady state. As discussed with respect to the mass balance, this means that the mass 
of the system within the control volume is constant; it also means that no changes occur with 
time in the properties of the fluid within the control volume nor at its entrances and exits. No 
expansion of the control volume is possible under these circumstances. The only work of the 
process is shaft work, and the general energy balance, Eq. (2.28), becomes: 

Although "steady state" does not necessarily imply "steady flow," the usual application of 
this equation is to steady-state, steady-flow processes, because such processes represent the 
industrial norm.8 

* ~ n  example of a steady-state process that is not steady flow is a water heater in which variations in flow rate are 
exactly compensated by changes in the rate of heat transfer so that temperatures throughout remain constant. 
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A further specialization results when the control volume has but one entrance and one 
exit. The same mass flowrate m then applies to both streams, and Eq. (2.30) then reduces to: 

where subscript "fs" has been omitted in this simple case and "A" denotes the change from 
entrance to exit. Division by m gives: 

This equation is the mathematical expression of the first law for a steady-state, steady-flow 
process between one entrance and one exit. All terms represent energy per unit mass of fluid. 

In all of the energy-balance equations so far written, the energy unit is presumed to be 
the joule, in accord with the SI system of units. For the metric engineering system of units, the 
kinetic- and potential-energy terms, wherever they appear, require division by the dimensional 
constant g, (Secs. 1.4 and 1.8). In this event Eq. (2.32a), for example, is written: 

Here, the usual unit for A H  and Q is the kcal; kinetic energy, potential energy, and work are 
usually expressed as (ft lbf). Therefore the factor 426.935 m kgf kcal-' must be used with the 
appropriate terms to put them all in consistent units of either m kgf or kcal. 

In many applications, kinetic- and potential-energy terms are omitted, because they are 
negligible compared with other termsg For such cases, Eqs. (2.32a) and (2.32b) reduce to: 

This expression of the first law for a steady-state, steady-flow process is analogous to Eq. (2.3) 
for a nonflow process. However, enthalpy rather than internal energy is the thermodynamic 
property of importance. 

A Flow Calorimeter for Enthalpy Measurements 

The application of Eqs. (2.32) and (2.33) to the solution of practical problems requires enthalpy 
values. Since H is a state function and a property of matter, its values depend only on point 
conditions; once determined, they may be tabulated for subsequent use whenever the same sets 
of conditions are encountered. To this end, Eq. (2.33) may be applied to laboratory processes 
designed specifically to measure enthalpy data. 

A simple flow calorimeter is illustrated schematically in Fig. 2.7. Its essential feature 
is an electric resistance heater immersed in a flowing fluid. The design provides for minimal 

' ~ x c e ~ t i o n s  are applications to nozzles, metering devices, wind tunnels, and hydroelectric power stations. 
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Figure 2.7 Flow calorimeter 

velocity and elevation changes from section 1 to section 2, making kinetic- and potential-energy 
changes of the fluid negligible. Furthermore, no shaft work is accomplished between sections 1 
and 2. Hence Eq. (2.33) reduces to: 

The rate of heat transfer to the fluid is determined from the resistance of the heater and the 
current passing through it. In practice a number of details need attention, but in principle the 
operation of the flow calorimeter is simple. Measurements of the heat rate and the rate of flow 
of the fluid allow calculation of values of A H  between sections 1 and 2. 

As an example, consider the measurement of enthalpies of HzO, both as liquid and as 
vapor. Liquid water is supplied to the apparatus. The constant-temperature bath is filled with a 
mixture of crushed ice and water to maintain a temperature of 273.15 K (0°C). The coil which 
carries water through the constant-temperature bath is long enough so that the fluid emerges 
essentially at the bath temperature of 273.15 K (0°C). Thus the fluid at section 1 is always liquid 
water at 273.15 K (0°C). The temperature and pressure at section 2 are measured by suitable 
instruments. Values of the enthalpy of H20 for various conditions at section 2 are given by: 

where Q is the heat added per unit mass of water flowing. 
Clearly, Hz depends not only on Q but also on H I .  The conditions at section 1 are always 

the same, i.e., liquid water at 273.15 K (O°C), except that the pressure varies from run to run. 
However, pressure in the range encountered here has a negligible effect on the properties of 
liquids, and for practical purposes HI  is a constant. Absolute values of enthalpy, like absolute 
values of internal energy, are unknown. An arbitrary value may therefore be assigned to H1 as 
the basis for all other enthalpy values. Setting HI = 0 for liquid water at 273.15 K (PC)  makes: 

Enthalpy values may be tabulated for the temperatures and pressures existing at section 2 
for a large number of runs. In addition, specific-volume measurements made for these same 
conditions may be added to the table, along with corresponding values of the internal energy 
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calculated by Eq. (2.11), U = H - P V .  In this way tables of thermodynamic properties are 
compiled over the entire useful range of conditions. The most widely used such tabulation is 
for H 2 0  and is known as the steam tables.1° 

The enthalpy may be taken as zero for some other state than liquid at 273.15 K (0°C). The 
choice is arbitrary. The equations of thermodynamics, such as Eqs. (2.32) and (2.33), apply to 
changes of state, for which the enthalpy differences are independent of the location of the zero 
point. However, once an arbitrary zero point is selected for the enthalpy, an arbitrary choice 
cannot be made for the internal energy, for values of internal energy are then calculable from 
the enthalpy by Eq. (2.11). 

lostearn tables are given in App. F. Tables for various other substances are found in the literature. A discussion of 
compilations of thermodynamic properties appears in Chap. 6. 
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PROBLEMS 

2.1. A nonconducting container filled with 25 kg of water at 293.15 K (20°C) is fitted with 
a stirrer, which is made to turn by gravity acting on a weight of mass 35 kg. The weight 
falls slowly through a distance of 5 m in driving the stirrer. Assuming that all work done 
on the weight is transferred to the water and that the local acceleration of gravity is 
9.8 m sp2, determine: 

(a)  The amount of work done on the water. 
(6)  The internal-energy change of the water. 
(c )  The final temperature of the water, for which C p  = 4.18 kJ kg-' 'C-'. 
( d )  The amount of heat that must be removed from the water to return it to its initial 

temperature. 
(e)  The total energy change of the universe because of (1) the process of lowering the 

weight, (2)  the process of cooling the water back to its initial temperature, and (3) 
both processes together. 

2.2. Rework Prob. 2.1 for an insulated container that changes in temperature along with the 
water and has a heat capacity equivalent to 5 kg of water. Work the problem with: 

(a)  The water and container as the system; (b)  The water alone as the system. 

2.3. An egg, initially at rest, is dropped onto a concrete surface and breaks. With the egg 
treated as the system, 

(a )  What is the sign of W? 
(b) What is the sign of A Ep? 
(c)  What is AEK? 
( d )  What is AU'? 
(e )  What is the sign of Q? 
In modeling this process, assume the passage of sufficient time for the broken egg to 
return to its initial temperature. What is the origin of the heat transfer of part (e)? 

2.4. An electric motor under steady load draws 9.7 amperes at 110 volts, delivering 0.93 kW 
of mechanical energy. What is the rate of heat transfer from the motor, in kW? 
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2.5. One mole of gas in a closed system undergoes a four-step thermodynamic cycle. Use 
the data given in the following table to determine numerical values for the missing 
quantities, i.e., "fill in the blanks." 

2.6. Comment on the feasibility of cooling your kitchen in the summer by opening the door 
to the electrically powered refrigerator. 

Step 

12 
23 
34 
41 

12341 

2.7. A renowned laboratory reports quadruple-point coordinates of 10.2 Mbar and 297.25 K 
(24.1°C) for four-phase equilibrium of allotropic solid forms of the exotic chemical 
8-miasmone. Evaluate the claim. 

2.8. A closed, nonreactive system contains species 1 and 2 in vaporlliquid equilibrium. 
Species 2 is a very light gas, essentially insoluble in the liquid phase. The vapor phase 
contains both species 1 and 2. Some additional moles of species 2 are added to the 
system, which is then restored to its initial T and P. As a result of the process, does the 
total number of moles of liquid increase, decrease, or remain unchanged? 

AUtlJ 

-200 
? 
? 

4700 

? 

2.9. A system comprised of chloroform, 1,4-dioxane, and ethanol exists as a two-phase 
vaporlliquid system at 323.15 K (50°C) and 55 kPa. It is found, after the addition of 
some pure ethanol, that the system can be returned to two-phase equilibrium at the initial 
T and P .  In what respect has the system changed, and in what respect has it not changed? 

2.10. For the system described in Pb. 2.9: 

(a) How many phase-rule variables in addition to T and P must be chosen so as to fix 
the compositions of both phases? 

(b) If the temperature and pressure are to remain the same, can the overall composition 
of the system be changed (by adding or removing material) without affecting the 
compositions of the liquid and vapor phases? 

QIJ 

? 
-3800 
-800 

? 

? 

2.11. A tank containing 20 kg of water at 293.15 K (20°C) is fitted with a stirrer that delivers 
work to the water at the rate of 0.25 kW. How long does it take for the temperature of 
the water to rise to 303.15 K (30°C) if no heat is lost from the water? For water, C p  = 
4.18 k~ kg-' "c-' . 

WIJ 

-6000 
? 

300 
? 

-1400 

2.12. Heat in the amount of 7.5 kJ is added to a closed system while its internal energy 
decreases by 12 kJ. How much energy is transferred as work? For a process causing the 
same change of state but for which the work is zero, how much heat is transferred? 

2.13. A steel casting weighing 2 kg has an initial temperature of 773.15 K (500°C); 40 kg 
of water initially at 298.15 K (25°C) is contained in a perfectly insulated steel tank 
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weighing 5 kg. The casting is immersed in the water and the system is allowed to come to 
equilibrium. What is its final temperature? Ignore any effect of expansion or contraction, 
and assume constant specific heats of 4.18 kJ kg-' K-' for water and 0.50 kJ kgp1 K-I 
for steel. 

2.14. An incompressible fluid (p = constant) is contained in an insulated cylinder fitted with 
a frictionless piston. Can energy as work be transferred to the fluid? What is the change 
in internal energy of the fluid when the pressure is increased from PI to P2? 

2.15. One kg of liquid water at 298.15 K (25°C): 

(a) Experiences a temperature increase of 1 K. What is A U t ,  in kJ? 
(6) Experiences a change in elevation Az. The change in potential energy A E p  is the 

same as AU' for part (a). What is Az ,  in meters? 
(c) IS accelerated from rest to final velocity u. The change in kinetic energy A E K  is the 

same as AUt for part (a). What is u, in m s-'? 

Compare and discuss the results of the three preceding parts. 

2.16. An electric motor runs "hot7' under load, owing to internal irreversibilities. It has been 
suggested that the associated energy loss be minimized by thermally insulating the motor 
casing. Comment critically on this suggestion. 

2.17. A hydroturbine operates with a head of 50 m of water. Inlet and outlet conduits are 
2 m in diameter. Estimate the mechanical power developed by the turbine for an outlet 
velocity of 5 m s-' . 

2.18. Liquid water at 453.15 K (180°C) and 1002.7 kPa has an internal energy (on an arbitrary 
scale) of 762.0 kJ kg-' and a specific volume of 1.128 cm3 g-' . 
(a) What is its enthalpy? 
(b) The water is brought to the vapor state at 573.15 K (300°C) and 1500 kPa, where its 

internal energy is 2784.4 kJ kgp' and its specific volume is 169.7 cm3 g-'. Calculate 
AU and A H  for the process. 

2.19. A solid body at initial temperature To is immersed in a bath of water at initial temperature 
T,,. Heat is transferred from the solid to the water at a rate Q = K . (T, - T), where 
K is a constant and T, and T are instantaneous values of the temperatures of the water 
and solid. Develop an expression for T as a function of time t. Check your result for 
the limiting cases, t = 0 and t = oo. Ignore effects of expansion or contraction, and 
assume constant specific heats for both water and solid. 

2.20. A list of common unit operations follows: 
(a) Single-pipe heat exchanger; (b) Double-pipe heat exchanger; (c) Pump; 
(d) Gas compressor: ( e )  Gas turbine; ( f )  Throttle valve: (g) Nozzle. 

Develop a simplified form of the general steady-state energy balance appropriate for 
each operation. State carefully, and justify, any assumptions you make. 

2.21. The Reynolds number Re is a dimensionless group which characterizes the intensity 
of a flow. For large Re, a flow is turbulent; for small Re, it is laminar. For pipe flow, 
Re - upD/p, where D is pipe diameter and p is dynamic viscosity. 
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(a )  If D and p are fixed, what is the effect of increasing mass flowrate riz on Re? 
(b) If m and p are fixed, what is the effect of increasing D on Re? 

2.22. An incompressible ( p  = constant) liquid flows steadily through a conduit of circular 
cross-section and increasing diameter. At location 1, the diameter is 2.5 cm and the 
velocity is 2 m s-' ; at location 2, the diameter is 5 cm. 

(a )  What is the velocity at location 2? 
(b) What is the kinetic-energy change (J kg

p

') of the fluid between locations 1 and 2? 

2.23. A stream of warm water is produced in a steady-flow mixing process by combining 
1.0 kg s-' of cool water at 298.15 K (25°C) with 0.8 kg s-' of hot water at 348.15 K 
(75°C). During mixing, heat is lost to the surroundings at the rate of 30 kW. What is the 
temperature of the warm-water stream? Assume the specific heat of water constant at 
4.18 kJ kg

p

' K-'. 

2.24. Gas is bled from a tank. Neglecting heat transfer between the gas and the tank, show 
that mass and energy balances produce the differential equation: 

dU 
- 

dm - - - 
H I - U  m 

Here, U and m refer to the gas remaining in the tank; H' is the specific enthalpy of the 
gas leaving the tank. Under what conditions can one assume H' = H ?  

2.25. Water at 301.15 K (28°C) flows in a straight horizontal pipe in which there is no exchange 
of either heat or work with the surroundings. Its velocity is 14 m s-' in a pipe with an 
internal diameter of 2.5 cm until it flows into a section where the pipe diameter abruptly 
increases. What is the temperature change of the water if the downstream diameter is 
3.8 cm? If it is 7.5 cm]? What is the maximum temperature change for an enlargement 
in the pipe? 

2.26. Fifty (50) kmol per hour of air is compressed from PI = 1.2 bar to P2 = 6.0 bar in 
a steady-flow compressor. Delivered mechanical power is 98.8 kW. Temperatures and 
velocities are: 

Estimate the rate of heat transfer from the compressor. Assume for air that C p  = R 
and that enthalpy is independent of pressure. 

2.27. Nitrogen flows at steady state through a horizontal, insulated pipe with inside diameter 
of 38.1 mm. A pressure drop results from flow through a partially opened valve. Just 
upstream from the valve the pressure is 690kPa, the temperature is 322.15 K(49"C), 
and the average velocity is 6.09 m s

p

'. If the pressure just downstream from the valve 
is 138 kPa, what is the temperature? Assume for nitrogen that P V /  T is constant, Cv = 
(512) R, and C p  = (712) R. (Values for R are given in App. A.) 

2.28. Water flows through a horizontal coil heated from the outside by high-temperature flue 
gases. As it passes through the coil the water changes state from liquid at 200 kPa and 
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353.15 K (80°C) to vapor at 100 kPa and 398.15 K (125°C). Its entering velocity is 
3 m s-' and its exit velocity is 200 m s-'. Determine the heat transferred through the 
coil per unit mass of water. Enthalpies of the inlet and outlet streams are: 

Inlet: 334.9 kJ kg-'; Outlet: 2726.5 kJ kg-' 

2.29. Steam flows at steady state through a converging, insulated nozzle, 25 cm long and with 
an inlet diameter of 5 cm. At the nozzle entrance (state I), the temperature and pressure 
are 598.15 K (325°C) and 700 kPa, and the velocity is 30 m s-'. At the nozzle exit 
(state 2), the steam temperature and pressure are 5 13.15 K (240°C) and 350 kPa. Property 
values are: 

Hz = 2945.7 kJ kg-' V2 = 667.75 cm3 g-l 

What is the velocity of the steam at the nozzle exit, and what is the exit diameter? 

2.30. In the following take Cv = 20.8 and C p  = 29.1 J mol-' "C-' for nitrogen gas: 

(a) Three moles of nitrogen at 303.15 K (30°C), contained in a rigid vessel, is heated 
to 523.15 K (250°C). How much heat is required if the vessel has a negligible heat 
capacity? If the vessel weighs 100 kg and has a heat capacity of 0.5 kJ kg-' "c-', 
how much heat is required? 

(b) Four moles of nitrogen at 473.15 K (200°C) is contained in a pistodcylinder ar- 
rangement. How much heat must be extracted from this system, which is kept at 
constant pressure, to cool it to 313.15 K (40°C) if the heat capacity of the piston 
and cylinder is neglected? 

2.31. In the following take Cv = 21 and C p  = 29.3 kJ kmol-' K-I for nitrogen gas: 

(a) 1.5 kmol of nitrogen at 294.15 K(21°C) contained in a rigid vessel, is heated to 
450.15 K(177"C). How much heat is required if the vessel has a negligible heat 
capacity? If it weighs 90.7 kg and has a heat capacity of 0.5 kJ kg-' K-', how much 
heat is required? 

(b) 2 kmol of nitrogen at 447.15 K(174"C) is contained in apistodcylinder arrangement. 
How much heat must be extracted from this system, which is kept at constant 
pressure, to cool it to 338.15 K(65"C) if the heat capacity of the piston and cylinder 
is neglected? 

2.32. Find the equation for the work of a reversible, isothermal compression of 1 mol of gas 
in a pistonlcylinder assembly if the molar volume of the gas is given by 

where b and R are positive constants. 

2.33. Steam at 14 bar and 588.15 K(3 15°C) [state 11 enters a turbine through a 75 mm-diameter 
pipe with a velocity of 3 m s-' . The exhaust from the turbine is carried through a 250 mm- 
diameter pipe and is at 0.35 bar and 366.15 K(93"C) [state 21. What is the power output 
of the turbine? 

H1 = 3074.5 kJ kg-' Vl = 0.1909 m3 kg-' 
H2 = 2 8 7 1 . 6 ~  kg-' V2 = 4.878 m3 kg-' 
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2.34. Carbon dioxide gas enters a water-cooled compressor at the initial conditions P1 = 
1.04bar and TI = 284.15 K(lO°C) and is discharged at the final conditions P2 = 
35.8 bar and T2 = 366.15 K(93'C). The entering C02 flows through a 100 mm-diameter 
pipe with a velocity of 6 s m-', and is discharged through a 25 mm-diameter pipe. The 
shaft work supplied to the compressor is 12 500 kJ kmol-'. What is the heat-transfer 
rate from the compressor in kW? 

H1 = 714 kJ kg-' Vl = 0.5774 m3 kg-' 
H2 = 768 kJ kgp1 V2 = 0.0175 m3 kgp'. 

2.35. Show that W and Q for an arbitrary mechanically reversible nonflow process are given 
by: 

2.36. One kilogram of air is heated reversibly at constant pressure from an initial state of 
300 K and 1 bar until its volume triples. Calculate W, Q, AU, and AH for the process. 
Assume for air that P V/ T = 83.14 bar cm3 mol-' K-' and Cp = 29 J mol-' K-' . 

2.37. The conditions of a gas change in a steady-flow process from 293.15 K (20°C) and 
1000 kPa to 333.15 K (60°C) and 100 kPa. Devise a reversible nonflow process (any 
number of steps) for accomplishing this change of state, and calculate AU and AH for 
the process on the basis of 1 mol of gas. Assume for the gas that PV/T  is constant, 
Cv = (5/2)R, and Cp = (7/2)R. 



Chapter 3 

Volumetric Properties of 
Pure Fluids 

Thermodynamic properties, such as internal energy and enthalpy, from which one calculates 
the heat and work requirements of industrial processes, are often evaluated from volumetric 
data. Moreover, pressure/volume/temperature (P V T )  relations are themselves important for 
such purposes as the metering of fluids and the sizing of vessels and pipelines. We therefore 
first describe the general nature of the P V T  behavior of pure fluids. There follows a detailed 
treatment of the ideal gas, the simplest realistic model of fluid behavior. Equations of state 
are then considered, as they provide the foundation for quantitative description of real fluids. 
Finally, generalized correlations are presented that allow prediction of the P V  T  behavior of 
fluids for which experimental data are lacking. 

3.1 PVT BEHAVIOR OF PURE SUBSTANCES 

Measurements of the vapor pressure of a pure substance, both as a solid and as a liquid, lead 
to pressure-vs.-temperature curves such as shown by lines 1-2 and 2-C in Fig. 3.1. The third 
line (2-3) gives the solidlliquid equilibrium relationship. The three lines display conditions of 
P and T  at which two phases may coexist, and are boundaries for the single-phase regions. 
Line 1-2, the sublimation cuwe, separates the solid and gas regions; line 2-3, thefusion cuwe, 
separates the solid and liquid regions; line 2-C, the vaporization cuwe, separates the liquid 
and gas regions. All three lines meet at the triple point, where the three phases coexist in 
equilibrium. According to the phase rule, Eq. (2.7), the triple point is invariant ( F  = 0). If the 
system exists along any of the two-phase lines of Fig. 3.1, it is univariant ( F  = I), whereas in 
the single-phase regions it is divariant ( F  = 2). 

The vaporization curve 2-C terminates at point C ,  the critical point. The coordinates of 
this point are the critical pressure PC and the critical temperature Tc, the highest pressure and 
highest temperature at which a pure chemical species can exist in vaporlliquid equilibrium. 

Homogeneous fluids are usually classified as liquids or gases. However, the distinction 
cannot always be sharply drawn, because the two phases become indistinguishable at the critical 
point. Paths such as the one shown in Fig. 3.1 from A to B lead from the liquid region to the 
gas region without crossing a phase boundary. The transition from liquid to gas is gradual. On 
the other hand, paths which cross phase boundary 2-C include a vaporization step, where an 
abrupt change from liquid to gas occurs. 
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The area existing at temperatures and pressures greater than T, and P, is marked off by 
dashed lines in Fig. 3.1, which do not represent phase boundaries, but rather are limits fixed 
by the meanings accorded the words liquid and gas. A phase is generally considered a liquid 
if vaporization results from pressure reduction at constant temperature. A phase is considered 
a gas if condensation results from temperature reduction at constant pressure. Since neither 
process occurs in the area beyond the dashed lines, it is called thejuid region. 

The gas region is sometimes divided into two parts, as indicated by the dotted vertical 
line of Fig. 3.1. A gas to the left of this line, which can be condensed either by compression at 
constant temperature or by cooling at constant pressure, is called a vapor. The region everywhere 
to the right of this line, where T > T,, including the fluid region, is termed supercritical. 

Figure 3.1 PT diagram for a pure substance 

PV Diagram 

Figure 3.1 does not provide any information about volume; it merely displays the phase bound- 
aries on a PT diagram. On a P V  diagram [Fig. 3.2(a)] these boundaries become areas, i.e., 
regions where two phases, solid/liquid, solidlvapor, and liquidvapor, coexist in equilibrium. 
For a given T and P ,  the relative amounts of the phases determine the molar (or specific) 
volume. The triple point of Fig. 3.1 here becomes a horizontal line, where the three phases 
coexist at a single temperature and pressure. 

Figure 3.2(b) shows the liquid, liquidvapor, and vapor regions of the P V diagram, with 
four isotherms superimposed. Isotherms on Fig. 3.1 are vertical lines, and at temperatures 
greater than T, do not cross a phase boundary. On Fig. 3.2(b) the isotherm labeled T > T, is 
therefore smooth. 

The lines labeled Tl and T2 are for subcritical temperatures, and consist of three segments. 
The horizontal segment of each isotherm represents all possible mixtures of liquid and vapor in 
equilibrium, ranging from 100% liquid at the left end to 100% vapor at the right end. The locus 
of these end points is the dome-shaped curve labeled BC D, the left half of which (from B to C) 



60 CHAPTER 3. Volumetric Properties of Pure Fluids 

Figure 3.2 P V  diagrams for a pure substance. (a) Showing solid, liquid, and gas 
regions. (b) Showing liquid, liquidlvapor, and vapor regions with isotherms 

represents single-phase (saturated) liquids at their vaporization (boiling) temperatures, and the 
right half (from C to D), single-phase (saturated) vapors at their condensation temperatures. 
The horizontal portion of an isotherm lies at a particular saturation or vapor pressure, given by 
the point on Fig. 3.1 where the isotherm crosses the vaporization curve. 

The two-phase liquidlvapor region lies under dome BC D, whereas the subcooled-liquid 
and superheated-vapor regions lie to the left and right, respectively. Subcooled liquid exists 
at temperatures below, and superheated vapor, at temperatures above the boiling point for the 
given pressure. Isotherms in the subcooled-liquid region are very steep, because liquid volumes 
change little with large changes in pressure. 

The horizontal segments of the isotherms in the two-phase region become progressively 
shorter at higher temperatures, being ultimately reduced to a point at C. Thus, the critical 
isotherm, labeled T,, exhibits a horizontal inflection at the critical point C at the top of the 
dome. Here the liquid and vapor phases cannot be distinguished from each other, because their 
properties are the same. 

Critical Behavior 
Insight into the nature of the critical point is gained from a description of the changes that 
occur when a pure substance is heated in a sealed upright tube of constant volume. The dotted 
vertical lines of Fig. 3.2(b) indicate such processes. They may also be traced on the P T diagram 
of Fig. 3.3, where the solid line is the vaporization curve (Fig. 3.1), and the dashed lines are 
constant-volume paths in the single-phase regions. If the tube is filled with either liquid or gas, 
the heating process produces changes which lie along the dashed lines, e.g., by the change 
from E to F (subcooled-liquid) and by the change from G to H (superheated-vapor). The 
corresponding vertical lines on Fig. 3.2(b) lie to the left and to the right of BCD. 
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Figure 3.3 PT diagram for a pure fluid showing the vapor-pressure curve and 
constant-volume lines in the single-phase regions 

If the tube is only partially filled with liquid (the remainder being vapor in equilib- 
rium with the liquid), heating at first causes changes described by the vapor-pressure curve 
(solid line) of Fig. 3.3. For the process indicated by line J Q  on Fig. 3.2(b), the meniscus is 
initially near the top of the tube (point J),  and the liquid expands upon heating until it com- 
pletely fills the tube (point Q). On Fig. 3.3 the process traces a path from (J,  K) to Q, and 
with further heating departs from the vapor-pressure curve along the line of constant molar 
volume v,. 

The process indicated by line K N  on Fig. 3.2(b) starts with a lower meniscus level in 
the tube (point K); heating causes liquid to vaporize, and the meniscus recedes to the bottom 
of the tube (point N). On Fig. 3.3 the process traces a path from (J ,  K) to N. With further 
heating the path continues along the line of constant molar volume V .  

For a unique filling of the tube, with a particular intermediate meniscus level, the heating 
process follows a vertical line on Fig. 3.2(b) that passes through the critical point C. Physically, 
heating does not produce much change in the level of the meniscus. As the critical point is 
approached, the meniscus becomes indistinct, then hazy, and finally disappears. On Fig. 3.3 
the path first follows the vapor-pressure curve, proceeding from point ( J ,  K)  to the critical 
point C, where it enters the single-phase fluid region, and follows V,, the line of constant molar 
volume equal to the critical volume of the fluid. 

Single-Phase Region 

For the regions of the diagram where a single phase exists, Fig. 3.2(b) implies a relation 
connecting P, V, and T which may be expressed by the functional equation: 
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This means that an equation of state exists relating pressure, molar or specific volume, and 
temperature for any pure homogeneous fluid in equilibrium states. The simplest equation of 
state is for an ideal gas, P V = RT, a relation which has approximate validity for the low- 
pressure gas region of Fig. 3.2(b), and which is discussed in detail in Sec. 3.3. 

An equation of state may be solved for any one of the three quantities P ,  V, or T as 
a function of the other two. For example, if V is considered a function of T and P ,  then 
V = V(T, P),  and 

The partial derivatives in this equation have definite physical meanings, and are related to two 
properties, commonly tabulated for liquids, and defined as follows: 

Volume expansivity: 

1 av . Isothermal compressibility: K - - - (-) v a P  , (3.3) 

Combination of Eqs. (3.1) through (3.3) provides the equation: 

The isotherms for the liquid phase on the left side of Fig. 3.2(b) are very steep and closely 
spaced. Thus both (aV/aT)p and (aV/aP), and hence both @ and K are small. This char- 
acteristic behavior of liquids (outside the critical region) suggests an idealization, commonly 
employed in fluid mechanics and known as the incompressiblejluid, for which both ,8 and K 

are zero. No real fluid is truly incompressible, but the idealization is useful, because it often 
provides a sufficiently realistic model of liquid behavior for practical purposes. There is no 
P V T  equation of state for an incompressible fluid, because V is independent of T and P .  

For liquids is almost always positive (liquid water between 273.15 K (0°C) and 
277.15 K (4°C) is an exception), and K is necessarily positive. At conditions not close to the crit- 
ical point, @ and K are weak functions of temperature and pressure. Thus for small changes in T 
and P little error is introduced if they are assumed constant. Integration of Eq. (3.4) then yields: 

This is a less restrictive approximation than the assumption of an incompressible fluid. 
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3.2 VlRlAL EQUATIONS OF STATE 

Figure 3.2 indicates the complexity of the P V T  behavior of a pure substance and suggests the 
difficulty of its description by an equation. However, for the gas region alone relatively simple 
equations often suffice. Along a vapor-phase isotherm such as Tl in Fig. 3.2(b), V  decreases 
as P increases. The PV product for a gas or vapor should therefore be much more nearly 
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constant than either of its members, and hence more easily represented. For example, PV 
along an isotherm may be expressed as a function of P by a power series: 

If b = aB', c = aC', etc., then, 

PV = a ( l  + B'P + C ' P ~  + D ' P ~  + . - .) (3.6) 

where a ,  B', C', etc., are constants for a given temperature and a given chemical species. 
In principle, the right side of Eq. (3.6) is an infinite series. However, in practice a finite 

number of terms is used. In fact, P VT data show that at low pressures truncation after two 
terms usually provides satisfactory results. 

Ideal-Gas Temperatures; Universal Gas Constant 

Parameters B', C', etc., in Eq. (3.6) are species dependent and functions of temperature, but 
parameter a is the same function of temperature for all species. This is shown experimentally by 
measurements of volumetric data as a function of P for various gases at constant temperature. 
Figure 3.4, for example, is a plot of P V vs. P for four gases at the triple-point temperature 
of water. The limiting value of PV as P + 0 is the same for all of the gases. In this limit 
(denoted by the asterisk), Eq. (3.6) becomes: 

It is this property of gases that makes them valuable in thermometry, because the limiting 
values are used to establish a temperature scale which is independent of the gas used as thermo- 
metric fluid. The functional relationship f (T) and a quantitative scale must be established; both 
steps are completely arbitrary. The simplest procedure, and the one adopted internationally, is: 

Figure 3.4 PV*, the limiting value of PV as P -+ 0, is independent of the gas 

Make ( P  V)* directly proportional to T, with R as the proportionality constant: 

(PV)* = a  = RT (3.7) 
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Assign the value 273.16 K to the temperature of the triple point of water (denoted by 
subscript t ) :  

Division of Eq. (3.7) by Eq. (3.8) gives: 

(PV)* - TIK - 
( P  V): 273.16 K 

Equation (3.9) establishes the Kelvin temperature scale throughout the temperature range for 
which values of ( P  V)* are experimentally accessible. 

The state of a gas at the limiting condition where P -+ 0 deserves some discussion. The 
molecules making up a gas become more and more widely separated as pressure is decreased, 
and the volume of the molecules themselves becomes a smaller and smaller fraction of the 
total volume occupied by the gas. Furthermore, the forces of attraction between molecules 
become ever smaller because of the increasing distances between them (Sec. 16.1). In the 
limit, as the pressure approaches zero, the molecules are separated by infinite distances. Their 
volumes become negligible compared with the total volume of the gas, and the intermolecular 
forces approach zero. At these conditions all gases are said to be ideal, and the temperature 
scale established by Eq. (3.9) is known as the ideal-gas temperature scale. The proportionality 
constant R in Eq. (3.7) is called the universal gas constant. Its numerical value is determined 
by means of Eq. (3.8) from experimental P VT data: 

Since PVT data cannot in fact be taken at zero pressure, data taken at finite pressures are 
extrapolated to the zero-pressure state. Determined as indicated by Fig. 3.4, the accepted value 
of (PV): is 22.7118 m3 bar kmol-', leading to the following value of R:' 

22.7 1 18 m3 bar kmol-' 
R = = 0.083 1447 m3 bar kmol-' K-' 

273.16 K 

Through the use of conversion factors, R may be expressed in various units. Commonly used 
values are given by Table A.2 of App. A. 

Two Forms of the Virial Equation 
A useful auxiliary thermodynamic property is deJined by the equation: 
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This dimensionless ratio is called the compressibility factor. With this definition and with 
a = RT [Eq. (3.7)], Eq. (3.6) becomes: 

An alternative expression for Z is also in common use:2 

B C D  
z = l + - + - + - - i . + . . .  v v2 v 

Both of these equations are known as virial expansions, and the parameters B', C', D', etc., and 
B,  C ,  D, etc., are called virial coeficients. Parameters B' and B are second virial coefficients; 
C' and C are third virial coefficients; etc. For a given gas the virial coefficients are functions 
of temperature only. 

The two sets of coefficients in Eqs. (3.1 1 )  and (3.12) are related as follows: 

D' = 
D - ~ B C + ~ B ~  

(RTI3 
etc. 

The derivation of these relations requires first the elimination of P on the right of Eq. (3.11). An 
expression for P comes from Eq. (3.12) with Z replaced by P V I R T .  The resulting equation is 
a power series in 1/ V which is compared term by term with Eq. (3.12) to provide the equations 
relating the two sets of virial coefficients. They hold exactly only for the two virial expansions 
as infinite series, but are acceptable approximations for the truncated forms treated in Sec. 3.4. 

Many other equations of state have been proposed for gases, but the virial equations 
are the only ones having a firm basis in theory. The methods of statistical mechanics allow 
derivation of the virial equations and provide physical significance to the virial coefficients. 
Thus, for the expansion in 1/ V ,  the term B/  V arises on account of interactions between pairs 
of molecules (Sec. 16.2); the C /  v2 term, on account of three-body interactions; etc. Since two- 
body interactions are many times more common than three-body interactions, and three-body 
interactions are many times more numerous than four-body interactions, etc., the contributions 
to Z of the successively higher-ordered terms decrease rapidly. 

3.3 THE IDEAL GAS 

Since the terms B I V ,  c / v 2 ,  etc., of the virial expansion [Eq. (3.12)] arise on account of 
molecular interactions, the virial coefficients B, C ,  etc., would be zero if no such interactions 
existed. The virial expansion would then reduce to: 

For a real gas, molecular interactions do exist, and exert an influence on the observed 
behavior of the gas. As the pressure of a real gas is reduced at constant temperature, V increases 
and the contributions of the terms B /  V ,  C /  v 2 ,  etc., decrease. For a pressure approaching zero, 
Z approaches unity, not because of any change in the virial coefficients, but because V becomes 

' ~ r o ~ o s e d  by H. Kamerlingh Onnes, "Expression of the Equation of State of Gases and Liquids by Means of 
Series," Communications from the Physical Laboratory of the University of Leiden, no. 71, 1901. 
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infinite. Thus in the limit as the pressure approaches zero, the equation of state assumes the 
same simple form as for the hypothetical case of B = C = . . . = 0; i.e., 

We know from the phase rule that the internal energy of a real gas is a function of 
pressure as well as of temperature. This pressure dependency is the result of forces between 
the molecules. If such forces did not exist, no energy would be required to alter the average 
intermolecular distance, and therefore no energy would be required to bring about volume and 
pressure changes in a gas at constant temperature. We conclude that in the absence of molecular 
interactions, the internal energy of a gas depends on temperature only. These considerations 
of the behavior of a hypothetical gas in which no intermolecular forces exist and of a real gas 
in the limit as pressure approaches zero lead to the definition of an ideal gas as one whose 
macroscopic behavior is characterized by: 

The equation of state: 
-1 (ideal gas) 

An internal energy that is a function of temperature only: 

/ U = U(T) 1 (ideal gas) 

Implied Property Relations for an Ideal Gas 

The definition of heat capacity at constant volume, Eq. (2.16), leads for an ideal gas to the 
conclusion that Cv is a function of temperature only: 

The defining equation for enthalpy, Eq. (2.1 I), applied to an ideal gas, leads to the conclusion 
that H also is a function of temperature only: 

The heat capacity at constant pressure Cp, defined by Eq. (2.20), like Cv, is a function of 
temperature only: 

A useful relation between Cp and Cv for an ideal gas comes from differentiation of Eq. (3.16): 

This equation does not imply that C p  and CV are themselves constant 
for an ideal gas, but only that they vary with temperature in such a way 
that their difference is equal to R.  

For any change of state of an ideal gas Eq. (3.15) may be written: 
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Whence, 
AU = C v d T  S 

By Eq. (3.17), d H  = C p d T  (3.20a) 

Whence, A H = [ C . ~ T  (3.20b) 

Figure 3.5 Internal energy changes for an ideal gas 

Since both the internal energy and Cv of an ideal gas are functions of temperature only, 
AU for an ideal gas is always given by Eq. (3.19b), regardless of the kind of process causing the 
change. This is demonstrated in Fig. 3.5, which shows a graph of internal energy as a function 
of molar volume with temperature as parameter. Since U is independent of V, a plot of U 
vs. V at constant temperature is a horizontal line. For different temperatures, U has different 
values, with a separate line for each temperature. Two such lines are shown in Fig. 3.5, one 
for temperature Tl and one for a higher temperature T2. The dashed line connecting points a 
and b represents a constant-volume process for which the temperature increases from TI to T2 
and the internal energy changes by AU = U2 - U1. This change in internal energy is given 
by Eq. (3.19b) as AU = J Cv d T .  The dashed lines connecting points a and c and points a 
and d represent other processes not occurring at constant volume but which also lead from 
an initial temperature Tl to a final temperature Tz. The graph shows that the change in U for 
these processes is the same as for the constant-volume process, and it is therefore given by the 
same equation, namely, AU = / Cv d T .  However, AU is not equal to Q for these processes, 
because Q depends not only on TI and T2 but also on the path of the process. An entirely 
analogous discusiion applies to the enthalpy H of an ideal gas. (See Sec. 2.16.) 

The ideal gas is a model fluid described by simple property relations, which are frequently 
good approximations when applied to actual gases. In process calculations, gases at pressures 
up to a few bars may often be considered ideal, and simple equations then apply. 

Equations for Process Calculations: Ideal Gases 

For an ideal gas in any mechanically reversible closed-system process, Eq. (2.6), written for a 
unit mass or a mole, may be combined with Eq. (3.19a): 

d Q + d W  = C v d T  
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The work for a mechanically reversible closed-system process is given by Eq. (1.2), also written 
for one mole or a unit mass: 

dW = - P d V  

Whence, d Q = C v d T + P d V  

The two preceding equations for an ideal gas undergoing a reversible process in a closed 
system take several forms through elimination of one of the variables P ,  V ,  or T  by Eq. (3.13). 
Thus, with P  = R T I V  they become: 

Alternatively, let V  = RTI  P :  

With Eq. (3.18) this reduces to: 

d P  
RT-  

P  

Also, d P  
dW = - R d T + R T -  

P  

Finally, let T  = P  V I R :  

Again with Eq. (3.18) this becomes: 

The work is simply: dW = - P d V  

These equations may be applied to various processes, as described in what follows. The 
general restrictions implicit in their derivation are: 

The equations are valid for ideal gases. 
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The process is mechanically reversible. 

The system is closed. 

Isothermal Process 

By Eqs. (3.19b) and (3.20b), A U = A H = O  

By Eqs. (3.21) and (3.23), v2 p2 
Q = RTln-  = -RTln- 

Vl p1 

By Eqs. (3.22) and (3.24), v2 p2 
W = -RTln- = RTln-  

Vl Pl 

Note that Q = - W, a result that also follows from Eq. (2.3). Therefore, 

v2 p2 Q = - W  = RTln-  =-RTln- (constT) 
Vl Pl 

Isobaric Process 

By Eqs. (3.19b) and (3.20b), 

A U =  C v d T  and A H = S C p d ~  

and by Eqs. (3.23) and (3.24), 

S 
Q = CPdT S and W=-R(T2-TI)  

Note that Q = AH, a result also given by Eq. (2.13). Therefore, 

Q = A H =  CPdT (constP) S 
lsochoric (Constant- V) Process 

Equations (3.19b) and (3.20b) again apply: 

A U  = S C V ~ T  and AH = J c p d ~  

By Eqs. (3.21) and (1.3), 

Q = l C v d T  and W = O  

Note that Q = AU, a result also given by Eq. (2.10). Therefore, 

Q = A U =  C v d T  (constV) S 
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Adiabatic Process: Constant Heat Capacities 

An adiabatic process is one for which there is no heat transfer between the system and its 
surroundings; that is, d Q  = 0. Each of Eqs. (3.21), (3.23), and (3.25) may therefore be set 
equal to zero. Integration with Cv and C p  constant then yields simple relations among the 
variables T ,  P ,  and V .  For example, Eq. (3.21) becomes: 

Integration with Cv constant then gives: 

Similarly, Eqs. (3.23) and (3.25) lead to: 

These equations may also be expressed as: 

Where by dej ini t i~n,~ 

T vY-' = constant 

T P ( ' - Y ) / ~  = constant 

P  VY = constant 

Equations (3.29) apply to an ideal gas with constant heat capacities 
undergoing a mechanically reversible adiabatic process. 

The work of an adiabatic process may be obtained from the relation: 

d W = d U = C v d T  

If Cv is constant, integration gives: 

Alternative forms of Eq. (3.3 1) are obtained when Cv is eliminated in favor of the heat-capacity 
ratio y : 

Cp C v + R  R  
- I +-  Y=-=-- 

c v  c v  c v  

3 ~ f  C v  and C p  are constant, y is necessarily constant. For an ideal gas, the assumption of constant y is equivalent 
to the assumption that the heat capacities themselves are constant. This is the only way that the ratio C p / C v  -- y and 
the difference C p  - CV = R can both be constant. Except for the monotonic gases, both C p  and C v  actually increase 
with temperature, but the ratio y is less sensitive to temperature than the heat capacities themselves. 
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R 
Whence, CV = - 

Y - 1  

R AT 
Therefore W = C v A T = -  

Y - 1  

Since RTl = PI Vl and RT2 = P2V2, this expression may be written: 

Equations (3.31) and (3.32) are general for an adiabatic process, whether reversible or 
not. However, V2 is usually not known, and is eliminated from Eq. (3.32) by Eq. (3.29c), valid 
only for mechanically reversible processes. This leads to the expression: 

The same result is obtained when the relation between P and V given by Eq. (3.29~) is used 
for integration of the expression W = - P d V .  

Equations (3.29), (3.31), (3.32), and (3.33) are for ideal gases with constant heat 
capacities. Equations (3.29) and (3.33) also require the process to be mechanically reversible; 
processes which are adiabatic but not mechanically reversible are not described by these 
equations. 

When applied to real gases, Eqs. (3.29) through (3.33) often yield satisfactory approx- 
imations, provided the deviations from ideality are relatively small. For monatomic gases, 
y = 1.67; approximate values of y are 1.4 for diatomic gases and 1.3 for simple polyatomic 
gases such as C02 ,  SO2, NH3, and CH4. 

Polytropic Process 

Since polytropic means "turning many ways:' polytropic process suggests a model of some 
versatility. With 6 a constant, it is defined as a process for which 

P V' = constant (3.34a) 

For an ideal gas equations analogous to Eqs. (3.29a) and (3.29b) are readily derived: 

T vS-' = constant (3.34b) 

and T p('-')IS = constant 

When the relation between P and V is given by Eq. (3.34a), evaluation of P dV yields 
Eq. (3.33) with y  replaced by 6:  
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Moreover, for constant heat capacities, the first law solved for Q yields: 

The several processes already described correspond to the four paths shown on Fig. 3.6 for 
specific values of 6: 

Isobaric process: By Eq. (3.34a), 6 = 0. 
Isothermal process: By Eq. (3.34b), 6 = 1. 

Adiabatic process: 6 = y .  

Isochoric process: By Eq. (3.34a), dV/dP = V/P6; for constant V, 6 = f oo. 

Figure 3.6 Paths of polytropic processes characterized by specific values of 6 

lrreversi ble Process 

The equations developed in this section have been derived for mechanically reversible, closed- 
system processes for ideal gases. However, those equations which relate changes in state func- 
tions only are valid for ideal gases regardless of the process. They apply equally to reversible 
and irreversible processes in both closed and open systems, because changes in state functions 
depend only on the initial and final states of the system. On the other hand, an equation for Q 
or W is specific to the process considered in its derivation. 

The work of an irreversible process is calculated by a two-step procedure. First, W is 
determined for a mechanically reversible process that accomplishes the same change of state 
as the actual irreversible process. Second, this result is multiplied or divided by an efficiency to 
give the actual work. If the process produces work, the absolute value for the reversible process 
is too large and must be multiplied by an efficiency. If the process requires work, the value for 
the reversible process is too small and must be divided by an efficiency. 

Applications of the concepts and equations developed in this section are illustrated in the 
examples that follow. In particular, the work of irreversible processes is treated in the last part 
of Ex. 3.3. 
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3.4 APPLICATION OF THE VlRlAL EQUATIONS 

The two forms of the virial expansion given by Eqs. (3.1 1) and (3.12) are infinite series. For 
engineering purposes their use is practical only where convergence is very rapid, that is, where 
two or three terms suffice for reasonably close approximations to the values of the series. This 
is realized for gases and vapors at low to moderate pressures. 

Figure 3.10 shows a compressibility-factor graph for methane. Values of the compressibil- 
ity factor Z (as calculated from P V T  data for methane by the defining equation Z = P V /  R T )  
are plotted vs. pressure for various constant temperatures. The resulting isotherms show graphi- 
cally what the virial expansion in P is intended to represent analytically. All isotherms originate 
at the value Z = 1 for P = 0. In addition the isotherms are nearly straight lines at low pres- 
sures. Thus the tangent to an isotherm at P = 0 is a good approximation of the isotherm from 
P -+ 0 to some finite pressure. Differentiation of Eq. (3.1 1) for a given temperature gives: 
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from which, 

0 50 100 150 200 250 

Plbar 

Figure 3.10 Compressibility-factor graph for methane 

Thus the equation of the tangent line is: 

a result also given by truncating Eq. (3.11) to two terms. A more common form of this equation 
results from the substitution (Sec. 3.2), B' = BIRT: 

Equation (3.12) may also be truncated to two terms for application at low pressures: 

However, Eq. (3.37) is more convenient in application and is at least as accurate as Eq. (3.38). 
Thus when the virial equation is truncated to two terms, Eq. (3.37) is preferred. This equation 
satisfactorily represents the P V T behavior of many vapors at subcritical temperatures up to a 
pressure of about 5 bar. At higher temperatures it is appropriate for gases over an increasing 
pressure range as the temperature increases. The second virial coefficient B is substance depen- 
dent and a function of temperature. Experimental values are available for a number of gases.4 
Moreover, estimation of second virial coefficients is possible where no data are available, as 
discussed in Sec. 3.6. 

4 ~ .  H. Dymond and E. B. Smith, The Mrial Coeficients of Pure Gases and Mixtures, pp. 1-10, Clarendon Press, 
Oxford, 1980. 
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For pressures above the range of applicability of Eq. (3.37) but below the critical pres- 
sure, the virial equation truncated to three terms often provides excellent results. In this case 
Eq. (3.12), the expansion in 1/ V ,  is far superior to Eq. (3.1 1). Thus when the virial equation 
is truncated to three terms, the appropriate form is: 

This equation can be solved directly for pressure, but is cubic in volume. Solution for V is 
easily done by an iterative scheme with a calculator. 

Figure 3.1 1 Density-series virial coefficients B and C for nitrogen 

Values of C ,  like those of B,  depend on the gas and on temperature. However, much less 
is known about third virial coefficients than about second virial coefficients, though data for a 
number of gases are found in the literature. Since virial coefficients beyond the third are rarely 
known and since the virial expansion with more than three terms becomes unwieldy, its use is 
uncommon. 

Figure 3.1 1 illustrates the effect of temperature on the virial coefficients B and C for 
nitrogen; although numerical values are different for other gases, the trends are similar. The 
curve of Fig. 3.1 1 suggests that B increases monotonically with T ;  however, at temperatures 
much higher than shown B reaches a maximum and then slowly decreases. The temperature 
dependence of C is more difficult to establish experimentally, but its main features are clear: C 
is negative at low temperatures, passes through a maximum at a temperature near the critical, 
and thereafter decreases slowly with increasing T .  

A class of equations inspired by Eq. (3.12), known as extended virial equations, is illus- 
trated by the BenedictIWebbRubin equation? 

5 ~ .  Benedict, G. B. Webb, L. C. Rubin, J. Chern. Phys., vol. 8, pp. 334-345, 1940; vol. 10, pp. 747-758,1942. 
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RT BORT - AO - C O / T ~  bRT - a aa  c Y -Y 
P =- - +  

V V + V 3  + - + - ( ~ + ~ ) e x p ~  V 6  V 3T 2  

where Ao, Bo, Co, a ,  b, c,  a ,  and y are all constant for a given fluid. This equation and its 
modifications, despite their complexity, are used in the petroleum and natural-gas industries 
for light hydrocarbons and a few other commonly encountered gases. 



86 CHAPTER 3. Volumetric Properties of Pure Fluids 

3.5 CUBIC EQUATIONS OF STATE 

If an equation of state is to represent the PVT behavior of both liquids and vapors, it must 
encompass a wide range of temperatures and pressures. Yet it must not be so complex as to 
present excessive numerical or analytical difficulties in application. Polynomial equations that 
are cubic in molar volume offer a compromise between generality and simplicity that is suitable 
to many purposes. Cubic equations are in fact the simplest equations capable of representing 
both liquid and vapor behavior. 

The van der Waals Equation of State 

The first practical cubic equation of state was proposed by J. D. van der waals6 in 1873: 

Here, a and b are positive constants; when they are zero, the ideal-gas equation is recovered. 
Given values of a and b for a particular fluid, one can calculate P as a function of V for 

various values of T. Figure 3.12 is a schematic P V diagram showing three such isotherms. 
Superimposed is the "dome" representing states of saturated liquid and saturated vapor. For 
the isotherm TI > T,, pressure is a monotonically decreasing function with increasing molar 
volume. The critical isotherm (labeled T,) contains the horizontal inflection at C characteristic 
of the critical point. For the isotherm T2 < T,, the pressure decreases rapidly in the subcooled- 
liquid region with increasing V; after crossing the saturated-liquid line, it goes through a 
minimum, rises to a maximum, and then decreases, crossing the saturated-vapor line and 
continuing downward into the superheated-vapor region. 

Experimental isotherms do not exhibit this smooth transition from saturated liquid to 
saturated vapor; rather, they contain a horizontal segment within the two-phase region where 
saturated liquid and saturated vapor coexist in varying proportions at the saturation or vapor 

6~ohannes Diderik van der Waals (1837-1923), Dutch physicist who won the 1910 Nobel Prize for physics. 
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pressure. This behavior, shown by the dashed line in Fig. 3.12, is nonanalytic, and we accept 
as inevitable the unrealistic behavior of equations of state in the two-phase region. 

Figure 3.12 Isotherms as given by a cubic equation of state 

Actually, the P V behavior predicted in this region by proper cubic equations of state is 
not wholly fictitious. When the pressure is decreased on a saturated liquid devoid of vapor- 
nucleation sites in a carefully controlled experiment, vaporization does not occur, and the liquid 
phase persists alone to pressures well below its vapor pressure. Similarly, raising the pressure on 
a saturated vapor in a suitable experiment does not cause condensation, and the vapor persists 
alone to pressures well above the vapor pressure. These nonequilibrium or metastable states of 
superheated liquid and subcooled vapor are approximated by those portions of the P V isotherm 
which lie in the two-phase region adjacent to the saturated-liquid and saturated-vapor states. 

Cubic equations of state have three volume roots, of which two may be complex. Phys- 
ically meaningful values of V are always real, positive, and greater than constant b. For an 
isotherm at T > T,, reference to Fig. 3.12 shows that solution for V at any positive value of 
P yields only one such root. For the critical isotherm (T = T,), this is also true, except at 
the critical pressure, where there are three roots, all equal to V,. For isotherms at T < T,, the 
equation may exhibit one or three real roots, depending on the pressure. Although these roots 
are real and positive, they are not physically stable states for the portion of an isotherm lying 
between saturated liquid and saturated vapor (under the "dome"). Only the roots for P = P Sat, 
namely Vsat(liq) and Vsat(vap), are stable states, connected by the horizontal portion of the true 
isotherm. For other pressures (as indicated by the horizontal lines shown on Fig. 3.12 above 
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and below P Sat), the smallest root is a liquid or "liquid-like" volume, and the largest is a vapor 
or "vapor-like" volume. The third root, lying between the other values, is of no significance. 

A Generic Cubic Equation of State 
Since the introduction of the van der Waals equation, scores of cubic equations of state have 
been proposed. All are special cases of the equation: 

Here, b, 8, K ,  A, and r]  are parameters which in general depend on temperature and (for mix- 
tures) composition. Although this equation appears to possess great flexibility, it has inherent 
limitations because of its cubic form.7 It reduces to the van der Waals equation when q = b, 
O = a , a n d ~ = h = O .  

An important class of cubic equations results from the preceding equation with the 
assignments: 

It is thus transformed into an expression general enough to serve as a generic cubic equation of 
state, which reduces to all others of interest here upon assignment of appropriate parameters: 

p = - -  
V - b (V + cb)(V + ab)  

For a given equation, E and a are pure numbers, the same for all substances, whereas parameters 
a(T) and b are substance dependent. The temperature dependence of a(T) is specific to each 
equation of state. For the van der Waals equation, a(T) = a is a substance-dependent constant, 
and€ = 0 = 0. 

Determination of Equation-of-State Parameters 
The constants in an equation of state for a particular substance may be evaluated by a fit to 
available P VT data. For cubic equations of state, however, suitable estimates are usually found 
from values for the critical constants T, and PC. Since the critical isotherm exhibits a horizontal 
inflection at the critical point, we may impose the mathematical conditions: 

where the subscript "cr" denotes the critical point. Differentiation of Eq. (3.41) yields expres- 
sions for both derivatives, which may be equated to zero for P = PC, T = T,, and V = V,. 
The equation of state may itself be written for the critical conditions. These three equations 
contain five constants: PC, V,, T,, a(T,), and b. Of the several ways to treat these equations, the 

7 ~ .  M. Abbott, AIChE J., vol. 19, pp. 596601, 1973; Adv. in Chern. Series 182, K .  C. Chao and R. L. Robinson, 
Jr., eds., pp. 47-70, Am. Chem. Soc., Washington, D.C., 1979. 
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most suitable is elimination of Vc to yield expressions relating a(Tc) and b to PC and T,. The 
reason is that PC and Tc are usually more accurately known than V,. 

An equivalent, but more straightforward, procedure is illustrated for the van der Waals 
equation. Since V = Vc for each of the three roots at the critical point, 

Equation (3.40) expanded in polynomial form becomes: 

Recall that for a particular substance parameter a in the van der Waals equation is a constant, 
independent of temperature. 

Term-by-term comparison of Eqs. (A) and (B) provides three equations: 

Solving Eq. (D) for a ,  combining the result with Eq. (E), and solving for b gives: 

Substitution for b in Eq. (C) allows solution for V,, which can then be eliminated from the 
equations for a and b: 

Although these equations may not yield the best possible results, they provide reasonable 
values which can almost always be determined, because critical temperatures and pressures (in 
contrast to extensive P V T  data) are often known, or can be reliably estimated. 

Substitution for V, in the equation for the critical compressibility factor reduces it 
immediately to: 

pcvc 3 z =-- - - 
" -  RT, 8 

A single value for Z,, applicable alike to all substances, results whenever the parameters of a 
two-parameter equation of state are found by imposition of the critical constraints. Different 
values are found for different equations of state, as indicated in Table 3.1, p. 93. Unfortunately, 
the values so obtained do not in general agree with those calculated from experimental values 
of Tc, PC, and Vc; each chemical species in fact has its own value of Z,. Moreover, the values 
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given in Table B.l of App. B for various substances are almost all smaller than any of the 
equation values given in Table 3.1. 

An analogous procedure may be applied to the generic cubic, Eq. (3.41), yielding 
expressions for parameters a(Tc) and b. For the former, 

This result may be extended to temperatures other than the critical by introduction of a dimen- 
sionless function a(T,) that becomes unity at the critical temperature. Thus 

Function a(Tr) is an empirical expression, specific to a particular equation of state. Parameter 
b is given by: 

In these equations C2 and Q are pure numbers, independent of substance and determined for a 
particular equation of state from the values assigned to t and a. 

The modern development of cubic equations of state was initiated in 1949 by publication 
of the RedlicWKwong (RK) equation:' 

where, in Eq. (3.42), a(T,) = T,-''~. 

Theorem of Corresponding States; Acentric Factor 

Experimental observation shows that compressibility factors Z for different fluids exhibit sim- 
ilar behavior when correlated as a function of reduced temperature T, and reducedpressure P,; 
by dejinition, 

T T = -  
I' - and 

Tc 

This is the basis for the two-parameter theorem of corresponding states: 

All fluids, when compared at the same reduced temperature and re- 
duced pressure, have approximately the same compressibility factor, 
and all deviate from ideal-gas behavior to about the same degree. 

Although this theorem is very nearly exact for the simple fluids (argon, krypton, and 
xenon) systematic deviations are observed for more complex fluids. Appreciable improvement 

80tto Redlich and J. N. S. Kwong, Chem. Rev., vol. 44, pp. 233-244, 1949. 
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results from introduction of a third corresponding-states parameter, characteristic of molecular 
structure; the most popular such parameter is the acentric factor w ,  introduced by K. S. Pitzer 
and  coworker^.^ 

I I 

Figure 3.13 Approximate temperature dependence of the reduced vapor pressure 

The acentric factor for a pure chemical species is defined with reference to its vapor 
pressure. Since the logarithm of the vapor pressure of a pure fluid is approximately linear in 
the reciprocal of absolute temperature, 

d log P,Sat 
= S 

d( l lTr )  

where P T t  is the reduced vapor pressure, T, is the reduced temperature, and S is the slope of 
a plot of log P,Sat vs. 1/T,. Note that "log" denotes a logarithm to the base 10. 

If the two-parameter theorem of corresponding states were generally valid, the slope 
S would be the same for all pure fluids. This is observed not to be true; each fluid has its 
own characteristic value of S, which could in principle serve as a third corresponding-states 
parameter. However, Pitzer noted that all vapor-pressure data for the simple fluids (Ar, Kr, 
Xe) lie on the same line when plotted as log P,Sat vs. 1/T, and that the line passes through 
log PTt  = -1.0 at T, = 0.7. This is illustrated in Fig. 3.13. Data for other fluids define 
other lines whose locations can be fixed in relation to the line for the simple fluids (SF) by the 
difference: 

log p,Sa t ( s~)  - log p,sat 

The acentric factor is defined as this difference evaluated at T, = 0.7: 

9 ~ u l l y  described in K. S. Pitzer, Thermodynamics, 3d ed., App. 3, McGraw-Hill, New York, 1995 
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Therefore w can be determined for any fluid from Tc, PC, and a single vapor-pressure measure- 
ment made at T, = 0.7. Values of w and the critical constants T,, PC, and V, for a number of 
fluids are listed in App. B. 

The definition of w makes its value zero for argon, krypton, and xenon, and experimental 
data yield compressibility factors for all three fluids that are correlated by the same curves 
when Z is represented as a function of T, and P,. This is the basic premise of the following 
three-parameter theorem of corresponding states: 

All fluids having the same value of w,  when compared at the same T, 
and Pry have about the same value of 2, and all deviate from ideal-gas 
behavior to about the same degree. 

Vapor & Vapor-Like Roots of the Generic Cubic Equation of State 

Although one may solve explicitly for its three roots, the generic cubic equation of state, 
Eq. (3.41), is in practice far more commonly solved by iterative procedures.10 Convergence 
problems are most likely avoided when the equation is rearranged to a form suited to the 
solution for a particular root. For the largest root, i.e., a vapor or vapor-like volume, Eq. (3.41) 
is multiplied through by (V - b ) / R T .  It can then be written: 

RT a ( T )  V - b  
V = - - + b - -  

P P (V  + eb)(V + a b )  

Solution for V may be by trial, iteration, or with the solve routine of a software package. An 
initial estimate for V is the ideal-gas value R T /  P. For iteration, this value is substituted on the 
right side of Eq. (3.46). The resulting value of V on the left is then returned to the right side, 
and the process continues until the change in V is suitably small. 

An equation for Z equivalent to Eq. (3.46) is obtained through the substitution V = 
Z R T I P .  In addition, the definition of two dimensionless quantities leads to simplification. 
Thus, 

These substitutions into Eq. (3.46) yield: 

Z = l + B - q p  
z-B (3.49) 

( Z  + €B)(Z  + ap> 

Equations (3.47) and (3.48) in combination with Eqs. (3.42) and (3.43) yield: 

'O~uch procedures are built into computer software packages for technical calculations. With these packages one 
can solve routinely for V in equations such as (3.41) with little thought as to how it is done. 
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Iterative solution of Eq. (3.49) starts with the value Z = 1 substituted on the right side. 
The calculated value of Z is returned to the right side and the process continues to convergence. 
The final value of Z yields the volume root through V = Z R T I  P. 

Liquid & Liquid-Like Roots of the Generic Cubic Equation of State 

Equation (3.46) may be solved for the V in the numerator of the final fraction to give: 

V = b + ( V + r b ) ( V + a b )  [ R T  +a:;)- V P ]  

This equation with a starting value of V = b on the right side converges upon iteration to a 
liquid or liquid-like root. 

An equation for Z equivalent to Eq. (3.52) is obtained when Eq. (3.49) is solved for the 
Z in the numerator of the final fraction: 

For iteration a starting value of Z = ,6 is substituted on the right side. Once Z is known, the 
volume root is V = Z R T I  P .  

Equations of state which express Z as a function of T, and P, are said to be generalized, 
because of their general applicability to all gases and liquids. Any equation of state can be put 
into this form to provide a generalized correlation for the properties of fluids. This allows the 
estimation of property values from very limited information. Equations of state, such as the van 
der Waals and RedlichIKwong equations, which express Z as functions of T, and P, only, yield 
two-parameter corresponding states correlations. The SoaveRedlicWKwong (SRK) equation1' 
and the PengRobinson (PR) equation,12 in which the acentric factor enters through function 
a(T,; w)  as an additional parameter, yield three-parameter corresponding-states correlations. 
The numerical assignments for parameters r ,  a ,  Q, and \Ir, both for these equations and for 
the van der Waals and RedlicWKwong equations, are given in Table 3.1. Expressions are also 
given for a(T,; w)  for the SRK and PR equations. 

Example 3.8 
Given that the vapor pressure of n-butane at 350 K (76.85%) is 9.4573 bar, find 
the molar volumes of (a) saturated-vapor and (b) saturated-liquid n-butane at these 
conditions as given by the RedlicWKwong equation. 

"G.  Soave, Chem. Eng. Sci., vol. 27, pp. 1197-1203, 1972. 
"D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., vol. 15, pp. 59-64, 1976. 
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For comparison, values of V u  and V' calculated for the conditions of Ex. 3.8 by all four 
of the cubic equations of state considered here are summarized as follows: 

The Soave/Redlich/Kwong and the PengIRobinson equations were developed specifically for 
vaporlliquid equilibrium calculations (Sec. 14.2). 

Roots of equations of state are most easily found with a software package such as 
Mathcad@ or ~ a ~ l e @ ,  in which iteration is an integral part of the equation-solving routine. 
Starting values or bounds may be required, and must be appropriate to the particular root of 
interest. A Mathcad@ program for solving Ex. 3.8 is given in App. D.2. 

3.6 GENERALIZED CORRELATIONS FOR GASES 

~ " / c r n ~ m o l - ~  

Generalized correlations find widespread use. Most popular are correlations of the kind de- 
veloped by Pitzer and coworkers for the compressibility factor Z and for the second virial 
coefficient B. l 3  

~ ~ / c m ~ r n o l - '  

Exp. 

Pitzer Correlations for the Compressibility Factor 

Exp. vdW RK SRK PR 

The correlation for Z takes the form: 

vdW RK SRK PR 

where Z O  and Z' are functions of both Tr and P,. When w = 0, as is the case for the simple fluids, 
the second term disappears, and Z O  becomes identical with Z .  Thus a generalized correlation 
for Z as a function of T, and P, based on data for just argon, krypton, and xenon provides 
the relationship Z O  = F'(T,, P,). By itself, this represents a two-parameter corresponding- 
states correlation for Z .  Since the second term of Eq. (3.54) is a relatively small correction to 
this correlation, its omission does not introduce large errors, and a correlation for Z0 may be 

13see Pitzer, op. cit. 
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used alone for quick but less accurate estimates of Z than are obtained from a three-parameter 
correlation. 

Equation (3.54) is a simple linear relation between Z and o for given values of Tr and P,. 
Experimental data for Z for nonsimple fluids plotted vs. w at constant Tr and Pr do indeed yield 
approximately straight lines, and their slopes provide values for Z' from which the generalized 
function Z' = F'(T,, P,) can be constructed. 

Of the Pitzer-type correlations available, the one developed by Lee and ~ e s l e r ' ~  has 
found greatest favor. Although its development is based on a modified form of the Bene- 
dict/WebblRubin equation of state, it takes the form of tables which present values of Z0 and 
Z' as functions of Tr and Pr . These are given in App. E as Tables E. 1 through E.4. Use of these 
tables often requires interpolation, which is treated at the beginning of App. F. The nature of 
the correlation is indicated by Fig. 3.14, a plot of ZO vs. Pr for six isotherms. 

Figure 3.14 The LeeIKesler correlation for Z0 = FO(T,, Pr) 

The LeeIKesler correlation provides reliable results for gases which are nonpolar or only 
slightly polar; for these, errors of no more than 2 or 3 percent are indicated. When applied to 
highly polar gases or to gases that associate, larger errors can be expected. 

The quantum gases (e.g., hydrogen, helium, and neon) do not conform to the same 
corresponding-states behavior as do normal fluids. Their treatment by the usual correlations is 

1 4 ~ .  I. Lee and M. G. Kesler,AIChEJ., vol. 21, pp. 510-527,1975 
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sometimes accommodated by use of temperature-dependent effective critical parameters.15 For 
hydrogen, the quantum gas most commonly found in chemical processing, the recommended 
equations are: 

43.6 
Tc/K = 

21.8 (for HZ) (3.55) 

51.5 
vC/cm3 mol-' = 

9.91 (for Hz) (3.57) 
1 - --- 

2.016 T 

where T is absolute temperature in kelvins. Use of these effective critical parameters for 
hydrogen requires the further specification that w = 0. 

Pitzer Correlations for the Second Virial Coefficient 

The tabular nature of the generalized compressibility-factor correlation is a disadvantage, but 
the complexity of the functions ZO and 2' precludes their accurate representation by simple 
equations. However, we can give approximate analytical expression to these functions for a 
limited range of pressures. The basis for this is Eq. (3.37), the simplest form of the virial 
equation: 

Thus, Pitzer and coworkers proposed a second correlation, which yields values for B Pc/RTc: 

Together, these two equations become: 

Comparison of this equation with Eq. (3.54) provides the following identifications: 

and Pr z1 = B'- 
Tr 

"J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 
3d ed., pp. 172-173, Prentice Hall PTR, Upper Saddle River, NJ, 1999. 
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Second virial coefficients are functions of temperature only, and similarly B0 and B' are 
functions of reduced temperature only. They are well represented by the following equations: l6 

Figure 3.15 Comparison of correlations for Z0. The virial-coefficient correlation is 
represented by the straight lines; the LeeIKesler correlation, by the points. In the region 
above the dashed line the two correlations differ by less than 2% 

The simplest form of the virial equation has validity only at low to moderate pressures 
where Z is linear in pressure. The generalized virial-coefficient correlation is therefore useful 
only where Z0 and 2' are at least approximately linear functions of reduced pressure. Fig- 
ure 3.15 compares the linear relation of Z0 to P, as given by Eqs. (3.60) and (3.61) with values 
of Z0 from the LeeIKesler compressibility-factor correlation, Tables E. 1 and E.3. The two cor- 
relations differ by less than 2% in the region above the dashed line of the figure. For reduced 
temperatures greater than T, x 3, there appears to be no limitation on the pressure. For lower 
values of T, the allowable pressure range decreases with decreasing temperature. A point is 
reached, however, at T, x 0.7 where the pressure range is limited by the saturation pressure.17 

16~hese  correlations first appeared in 1975 in the third edition of this book, attributed as a personal communication 
to M. M. Abbott, who developed them. 

17~lthough the LeeIKesler tables, App. E, list values for superheated vapor and subcooled liquid, they do not provide 
values at saturation conditions. 
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This is indicated by the left-most segment of the dashed line. The minor contributions of 2' to 
the correlations are here neglected. In view of the uncertainty associated with any generalized 
correlation, deviations of no more than 2% in 2' are not significant. 

The relative simplicity of the generalized virial-coefficient correlation does much to 
recommend it. Moreover, temperatures and pressures of many chemical-processing operations 
lie within the region where it does not deviate by a significant amount from the compressibility- 
factor correlation. Like the parent correlation, it is most accurate for nonpolar species and least 
accurate for highly polar and associating molecules. 

The question often arises as to when the ideal-gas equation may be used as a reasonable 
approximation to reality. Figure 3.16 can serve as a guide. 

equation 

Example 3.9 
Determine the molar volume of n-butane at 510K and 25bar by each of the 
following: 

(a) The ideal-gas equation. 
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3.7 GENERALIZED CORRELATIONS FOR LIQUIDS 

Although the molar volumes of liquids can be calculated by means of generalized cubic equa- 
tions of state, the results are often not of high accuracy. However, the LeeIKesler correlation 
includes data for subcooled liquids, and Fig. 3.14 illustrates curves for both liquids and gases. 
Values for both phases are provided in Tables E.l through E.4. Recall, however, that this 
correlation is most suitable for nonpolar and slightly polar fluids. 

In addition, generalized equations are available for the estimation of molar volumes of 
saturated liquids. The simplest equation, proposed by ~ackett," is an example: 

The only data required are the critical constants, given in App. B. Results are usually accurate 
to 1 or 2%. 

Lydersen, Greenkorn, and ~ o u g e n ' ~  developed a two-parameter corresponding-states 
correlation for estimation of liquid volumes. It provides a correlation of reduced density p, as 
a function of reduced temperature and pressure. By definition, 

1 8 ~ .  G. Rackett, J. Chem. Eng. Data, vol. 15, pp. 514-517, 1970; see also C. F. Spencer and S. B. Adler, ibid., 
vol. 23, pp. 82-89, 1978, for a review of available equations. 

1 9 ~ .  L. Lydersen, R. A. Greenkorn, and 0. A. Hougen, "Generalized Thermodynamic Properties of Pure Fluids," 
Univ. Wisconsin, Eng. Expt. Sta. Rept. 4,  1955. 
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where p, is the density at the critical point. The generalized correlation is shown by Fig. 3.17. 
This figure may be used directly with Eq. (3.64) for determination of liquid volumes if the 
value of the critical volume is known. A better procedure is to make use of a single known 
liquid volume (state 1) by the identity, 

Figure 3.17 Generalized density correlation for liquids 

where V2 = required volume 
VI = known volume 

p,, , p, = reduced densities read from Fig. 3.17 

This method gives good results and requires only experimental data that are usually available. 
Figure 3.17 makes clear the increasing effects of both temperature and pressure on liquid 
density as the critical point is approached. 

Correlations for the molar densities as functions of temperature are given for many pure 
liquids by Daubert and coworkers.20 

Example 3.1 2 
For ammonia at 310 K(36.85%), estimate the density of: 

'OT. E. Daubert, R. P. Danner, H. M. Sibul, and C .  C. Stebbins, Physical and Thermodynamic Properties of Pure 
Chemicals: Data Compilation, Taylor & Francis, Bristol, PA, extant 1995. 
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PROBLEMS 

3.1. Express the volume expansivity and the isothermal compressibility as functions of den- 
sity p and its partial derivatives. For water at 323.15 K (50°C) and 1 bar, K = 44.18 x 
bar-'. To what pressure must water be compressed at 323.15 K (50°C) to change its 
density by 1 %? Assume that K is independent of P. 
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3.2. Generally, volume expansivity B and isothermal compressibility K depend on T and P. 
Prove that: 

3.3. The Tait equation for liquids is written for an isotherm as: 

where V is molar or specific volume, Vo is the hypothetical molar or specific volume at 
zero pressure, and A and B are positive constants. Find an expression for the isothermal 
compressibility consistent with this equation. 

3.4. For liquid water the isothermal compressibility is given by: 

where c and b are functions of temperature only. If 1 kg of water is compressed isother- 
mally and reversibly from 1 to 500 bar at 333.15 K (60°C), how much work is required? 
At 333.15 K (60"C), b = 2700 bar and c = 0.125 cm3 g-'. 

3.5. Calculate the reversible work done in compressing 0.0283 m3 of mercury at a constant 
temperature of 273.15 K(O°C) from 1 atm to 3000 atm. The isothermal compressibility 
of mercury at 273.15 K(O"C) is 

where P is in atm and K is in atm-'. 

3.6. Five kilograms of liquid carbon tetrachloride undergo a mechanically reversible, iso- 
baric change of state at 1 bar during which the temperature changes from 273.15 K 
(0°C) to 293.15 K (20°C). Determine AV', W, Q, AH t,  and A U t .  The properties for 
liquid carbon tetrachloride at 1 bar and 273.15 K (0°C) may be assumed independent 
of temperature: p = 1.2 x lop3 K-' , Cp = 0.84 kJ kg-' K-l, and p = 1590 kg mP3. 

3.7. A substance for which K is a constant undergoes an isothermal, mechanically reversible 
process from initial state (PI, Vl) to final state (P2, V2), where V is molar volume. 

(a) Starting with the definition of K, show that the path of the process is described by: 

(b) Determine an exact expression which gives the isothermal work done on 1 mol of 
this constant-K substance. 

3.8. One mole of an ideal gas with Cp = (7/2)R and Cv = (512) R expands from PI = 8 bar 
and Tl = 600 K to P2 = 1 bar by each of the following paths: 
(a) Constant volume; (b) Constant temperature; (c) Adiabatically. 
Assuming mechanical reversibility, calculate W, Q, AU, and AH for each process. 
Sketch each path on a single P V diagram. 
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3.9. An ideal gas initially at 600 K and 10 bar undergoes a four-step mechanically reversible 
cycle in a closed system. In step 12, pressure decreases isothermally to 3 bar; in step 23, 
pressure decreases at constant volume to 2 bar; in step 34, volume decreases at constant 
pressure; and in step 41, the gas returns adiabatically to its initial state. 

(a) Sketch the cycle on a PV diagram. 
(b) Determine (where unknown) both T  and P for states 1, 2, 3, and 4. 
(c) Calculate Q, W, AU, and A H  for each step of the cycle. 

Data: C p  = (7/2)R and Cv = (5/2)R. 

3.10. An ideal gas, Cp = (5/2)R and Cv = (3/2)R, is changed from P = 1 bar and 
V{ = 12 m3 to P2 = 12 bar and V$ = 1 m3 by the following mechanically reversible 
processes: 

(a) Isothermal compression. 
(b) Adiabatic compression followed by cooling at constant pressure. 
(c) Adiabatic compression followed by cooling at constant volume. 
(d) Heating at constant volume followed by cooling at constant pressure. 
(e) Cooling at constant pressure followed by heating at constant volume. 

Calculate Q, W, AU*, and AHt for each of these processes, and sketch the paths of all 
processes on a single P V diagram. 

3.11. The environmental lapse rate d T / d z  characterizes the local variation of temperature 
with elevation in the earth's atmosphere. Atmospheric pressure varies with elevation 
according to the hydrostatic formula, 

where M is molar mass, p is molar density, and g is the local acceleration of gravity. 
Asssume that the atmosphere is an ideal gas, with T  related to P by the polytropic 
formula, Eq. (3.34~). Develop an expression for the environmental lapse rate in relation 
to M, g,  R, and 6. 

3.12. An evacuated tank is filled with gas from a constant-pressure line. Develop an expression 
relating the temperature of the gas in the tank to the temperature T' of the gas in the line. 
Assume the gas is ideal with constant heat capacities, and ignore heat transfer between 
the gas and the tank. Mass and energy balances for this problem are treated in Ex. 2.12. 

3.13. Show how Eqs. (3.35) and (3.36) reduce to the appropriate expressions for the four 
particular values of 6 listed following Eq. (3.36). 

3.14. A tank of 0.1-m3 volume contains air at 298.15 K (25°C) and 101.33 kPa. The tank 
is connected to a compressed-air line which supplies air at the constant conditions of 
3 18.15 K (45°C) and 1500 kPa. A valve in the line is cracked so that air flows slowly into 
the tank until the pressure equals the line pressure. If the process occurs slowly enough 
that the temperature in the tank remains at 298.15 K (25"C), how much heat is lost from 
the tank? Assume air to be an ideal gas for which C p  = (7/2)R and Cv = (5/2)R. 
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3.15. Gas at constant T and P is contained in a supply line connected through a valve to a 
closed tank containing the same gas at a lower pressure. The valve is opened to allow 
flow of gas into the tank, and then is shut again. 

(a )  Develop a general equation relating n 1 and n2, the moles (or mass) of gas in the tank 
at the beginning and end of the process, to the properties U1 and U2, the internal 
energy of the gas in the tank at the beginning and end of the process, and H', the 
enthalpy of the gas in the supply line, and to Q, the heat transferred to the material 
in the tank during the process. 

(b )  Reduce the general equation to its simplest form for the special case of an ideal gas 
with constant heat capacities. 

(c) Further reduce the equation of (b)  for the case of nl = 0.  
( d )  Further reduce the equation of ( c )  for the case in which, in addition, Q = 0. 
( e )  Treating nitrogen as an ideal gas for which C p  = (7/2)R,  apply the appropriate 

equation to the case in which a steady supply of nitrogen at 298.15 K (25°C) and 3 
bar flows into an evacuated tank of 4-m3 volume, and calculate the moles of nitrogen 
that flow into the tank to equalize the pressures for two cases: 
1. Assume that no heat flows from the gas to the tank or through the tank walls. 

2. The tank weighs 400 kg, is perfectly insulated, has an initial temperature of 
298.15K (25"C), has a specific heat of 0.46 kJ kgp1 K-', and is heated by the 
gas so as always to be at the temperature of the gas in the tank. 

3.16. Develop equations which may be solved to give the final temperature of the gas remaining 
in a tank after the tank has been bled from an initial pressure PI to a final pressure P2. 
Known quantities are initial temperature, tank volume, heat capacity of the gas, total 
heat capacity of the containing tank, P I ,  and P2. Assume the tank to be always at the 
temperature of the gas remaining in the tank, and the tank to be perfectly insulated. 

3.17. A rigid, nonconducting tank with a volume of 4 m3 is divided into two unequal parts 
by a thin membrane. One side of the membrane, representing 113 of the tank, contains 
nitrogen gas at 6 bar and 373.15 K (lOO°C), and the other side, representing 213 of the 
tank, is evacuated. The membrane ruptures and the gas fills the tank. 

(a )  What is the final temperature of the gas? How much work is done? Is the process 
reversible? 

(b )  Describe a reversible process by which the gas can be returned to its initial state. 
How much work is done? 

Assume nitrogen is an ideal gas for which C p  = (7 /2 )R  and Cv = (5/2)R.  

3.18. An ideal gas, initially at 303.15 K (30°C) and 100 kPa, undergoes the following cyclic 
processes in a closed system: 
(a )  In mechanically reversible processes, it is first compressed adiabatically to 500 kPa, 

then cooled at a constant pressure of 500 kPa to 303.15 K (30°C), and finally 
expanded isothermally to its original state. 

(b )  The cycle traverses exactly the same changes of state, but each step is irreversible 
with an efficiency of 80% compared with the corresponding mechanically reversible 
process. 

Calculate Q, W, A U ,  and A H  for each step of the process and for the cycle. Take 
C p  = (7 /2 )R  and Cv = (5/2)R.  
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3.19. One cubic meter of an ideal gas at 600 K and 1000 kPa expands to five times its initial 
volume as follows: 

(a )  By a mechanically reversible, isothermal process. 
(b)  By a mechanically reversible, adiabatic process. 
(c) By an adiabatic, irreversible process in which expansion is against a restraining 

pressure of 100 kPa. 
For each case calculate the final temperature, pressure, and the work done by the gas. 
C p  = 21 3 mold' K-'. 

3.20. One mole of air, initially at 423.15 K (150°C) and 8 bar, undergoes the following 
mechanically reversible changes. It expands isothermally to a pressure such that when 
it is cooled at constant volume to 323.15 K (50°C) its final pressure is 3 bar. Assuming 
air is an ideal gas for which C p  = (712) R and Cv = (512) R ,  calculate W ,  Q , A  U ,  and 
A H .  

3.21. An ideal gas flows through a horizontal tube at steady state. No heat is added and no 
shaft work is done. The cross-sectional area of the tube changes with length, and this 
causes the velocity to change. Derive an equation relating the temperature to the velocity 
of the gas. If nitrogen at 423.15 K (150°C) flows past one section of the tube at a velocity 
of 2.5 m s-', what is its temperature at another section where its velocity is 50 m s-'? 
Let C p  = (7/2)R.  

3.22. One mole of an ideal gas, initially at 303.15 K (30°C) and 1 bar, is changed to 403.15 
K (130°C) and 10 bar by three different mechanically reversible processes: 

The gas is first heated at constant volume until its temperature is 403.15 K ( 1  30°C); 
then it is compressed isothermally until its pressure is 10 bar. 

The gas is first heated at constant pressure until its temperature is 403.15 K (130°C); 
then it is compressed isothermally to 10 bar. 

The gas is first compressed isothermally to 10 bar; then it is heated at constant 
pressure to 403.15 K (130°C). 

Calculate Q, W,  A U ,  and A H  in each case. Take C p  = (7 /2 )R  and Cv = (5 /2 )R .  
Alternatively, take C p  = (5 /2 )R  and Cv = (312)R. 

3.23. One kmol of an ideal gas, initially at 303.15 K (30°C) and 1 bar, undergoes the following 
mechanically reversible changes. It is compressed isothermally to a point such that when 
it is heated at constant volume to 393.15 K (120°C) its final pressure is 12 bar. Calculate 
Q ,  W ,  A U ,  and A H  for the process. Take C p  = (712)R and Cv = (512)R. 

3.24. A process consists of two steps: ( I )  One kmol of air at T = 800 K and P = 4 bar is 
cooled at constant volume to T = 350 K. (2 )  The air is then heated at constant pressure 
until its temperature reaches 800 K. If this two-step process is replaced by a single 
isothermal expansion of the air from 800 K and 4 bar to some final pressure P, what is 
the value of P that makes the work of the two processes the same? Assume mechanical 
reversibility and treat air as an ideal gas with C p  = (7 /2 )R  and Cv = (5/2)R.  

3.25. A scheme for finding the internal volume V j  of a gas cylinder consists of the following 
steps. The cylinder is filled with a gas to a low pressure P I ,  and connected through a 
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small line and valve to an evacuated reference tank of known volume V i .  The valve is 
opened, and gas flows through the line into the reference tank. After the system returns 
to its initial temperature, a sensitive pressure transducer provides a value for the pressure 
change A P in the cylinder. Determine the cylinder volume Vi from the following data: 

3.26. A closed, nonconducting, horizontal cylinder is fitted with a nonconducting, frictionless, 
floating piston which divides the cylinder into Sections A and B. The two sections 
contain equal masses of air, initially at the same conditions, TI = 300 K and PI = 1 
atm. An electrical heating element in Section A is activated, and the air temperatures 
slowly increase: TA in Section A because of heat transfer, and TB in Section B because 
of adiabatic compression by the slowly moving piston. Treat air as an ideal gas with 
C p  = 5 R ,  and let n~ be the number of moles of air in Section A. For the process as 
described, evaluate one of the following sets of quantities: 

(a) TA, TB, and Q/nA, if P(fina1) = 1.25 atm. 
(b) TB, Q/nA, and P(final), if TA = 425 K. 
(c) TA, Q/nA, and P(final), if TB = 325 K. 
(d) TA, TB, and P(final), if Q/nA = 3 kT mol-' . 

3.27. One mole of an ideal gas with constant heat capacities undergoes an arbitrary mechan- 
ically reversible process. Show that: 

3.28. Derive an equation for the work of mechanically reversible, isothermal compression of 
1 mol of a gas from an initial pressure PI to a final pressure P2 when the equation of 
state is the virial expansion [Eq. (3.1 I)] truncated to: 

How does the result compare with the corresponding equation for an ideal gas? 

3.29. A certain gas is described by the equation of state: 

Here, b is a constant and 6 is a function of T only. For this gas, determine expressions 
for the isothermal compressibility K and the thermal pressure coefficient (3 P I 3  T)". 
These expressions should contain only T, P ,  6 ,  d6/dT, and constants. 

3.30. For methyl chloride at 373.15 K (100°C) the second and third virial coefficients are: 

Calculate the work of mechanically reversible, isothermal compression of 1 mol of 
methyl chloride from 1 bar to 55 bar at 373.15 K (100°C). Base calculations on the 
following forms of the virial equation: 
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(b) Z = 1 + B'P + C ' P ~  

where 

Why don't both equations give exactly the same result? 

3.31. Any equation of state valid for gases in the zero-pessure limit implies a full set of virial 
coefficients. Show that the second and third virial coefficients implied by the generic 
cubic equation of state, Eq. (3.41), are: 

Specialize the result for B to the RedlichIKwong equation of state, express it in reduced 
form, and compare it numerically with the generalized correlation for B for simple 
fluids, Eq. (3.61). Discuss what you find. 

3.32. Calculate Z and V for ethylene at 298.15 K (25°C) and 12 bar by the following equations: 
(a) The truncated virial equation [Eq. (3.39)] with the following experimental values 

of virial coefficients: 

(b) The truncated virial equation [Eq. (3.37)], with a value of B from the generalized 
Pitzer correlation [Eq. (3.59)]. 

(c)  The RedlicWKwong equation. 
(d) The Soave/Redlich/Kwong equation. 
(e) The PengJRobinson equation. 

3.33. Calculate Z and V for ethane at 323.15 K (50°C) and 15 bar by the following equations: 
(a) The truncated virial equation [Eq. (3.39)] with the following experimental values 

of virial coefficients: 

(b) The truncated virial equation [Eq. (3.37)], with a value of B from the generalized 
Pitzer correlation [Eq. (3.59)]. 

(c) The RedlichJKwong equation. 
(d) The Soave/RedlicWKwong equation. 
(e) The PengIRobinson equation. 

3.34. Calculate Z and V for sulfur hexafluoride at 348.15 K (75°C) and 15 bar by the following 
equations: 
(a) The truncated virial equation [Eq. (3.39)] with the following experimental values 

of virial coefficients: 
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(b) The truncated virial equation [Eq. (3.37)], with a value of B from the generalized 
Pitzer correlation [Eq. (3.59)]. 

(c)  The RedlicWKwong equation. 
(d) The SoaveRedlicWKwong equation. 
(e) The PengRobinson equation. 
For sulfur hexafluoride, Tc = 318.7 K, PC = 37.6 bar, V, = 198 cm3 mol-l, and 
w = 0.286. 

3.35. Determine Z and V for steam at 523.15 K (250°C) and 1800 kPa by the following: 
(a) The truncated virial equation [Eq. (3.39)] with the following experimental values 

of virial coefficients: 

(b) The truncated virial equation [Eq. (3.37)], with a value of B from the generalized 
Pitzer correlation [Eq. (3.59)]. 

(c) The steam tables (App. F). 

3.36. With respect to the virial expansions, Eqs. (3.1 1) and (3.12), show that: 

where p = 1/ V. 

3.37. Equation (3.12) when truncated to four terms accurately represents the volumetric data 
for methane gas at 273.15 K (PC)  with: 

(a) Use these data to prepare a plot of Z vs. P for methane at 273.15K (0°C) from 0 to 
200 bar. 

(b) To what pressures do Eqs. (3.37) and (3.38) provide good approximations? 

3.38. Calculate the molar volume of saturated liquid and the molar volume of saturated vapor 
by the RedlichIKwong equation for one of the following and compare results with values 
found by suitable generalized correlations. 

(a) Propane at 313.15 K(40°C) where PSat = 13.71 bar. 
(b) Propane at 323.15 K(50°C) where PSat = 17.16 bar. 

(c) Propane at 333.15 K(60°C) where Psat = 21.22 bar. 
(4 Propane at 343.15 K(70°C) where PSat = 25.94 bar. 
(e) n-Butane at 373.15 K(10OoC) where PSat = 15.41 bar. 
(f) n-Butane at 383.15 K(1lOcC) where PSat = 18.66 bar. 
(g) n-Butane at 393.15 K(120°C) where PSat = 22.38 bar. 
(h) n-Butane at 403.15 K(130°C) where PSat = 26.59bar. 
(i) Isobutane at 363.15 K(90°C) where PSat = 16.54bar. 
0) Isobutane at 373.15 K(10OoC) where PSat = 20.03 bar. 
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(k) Isobutane at 383.15 K(11O"C) where PSat = 24.01 bar. 
(I) Isobutane at 393.15 K(120°C) where PSat = 28.53 bar. 

(m) Chlorine at 333.15 K(60°C) where PSat = 18.21 bar. 
(n) Chlorine at 343.15 K(70°C) where PSat = 22.49 bar. 
(0) Chlorine at 353.15 K(80°C) where PSat = 27.43 bar. 
(p) Chlorine at 363.15 K(90°C) where PSat = 33.08 bar. 

(q) Sulfur dioxide at 353.15 K(80°C) where PSat = 18.66 bar. 

(r) Sulfur dioxide at 363.15 K(90"C) where PSat = 23.31 bar. 
(s) Sulfur dioxide at 373.15 K(lOO°C) where PSat = 28.74bar. 

( t )  Sulfur dioxide at 383.15 K(llO°C) where PSat = 35.01 bar. 

3.39. Use the Soave/Redlich/Kwong equation to calculate the molar volumes of saturated 
liquid and saturated vapor for the substance and conditions given by one of the parts of 
Pb. 3.38 and compare results with values found by suitable generalized correlations. 

3.40. Use the PengRobinson equation to calculate the molar volumes of saturated liquid and 
saturated vapor for the substance and conditions given by one of the parts of Pb. 3.38 
and compare results with values found by suitable generalized correlations. 

3.41. Estimate the following: 
(a) The volume occupied by 18 kg of ethylene at 328.15 K (55°C) and 35 bar. 
(b) The mass of ethylene contained in a 0.25-m3 cylinder at 323.15 K (50°C) and 115 

bar. 

3.42. The vapor-phase molar volume of a particular compound is reported as 23 000 cm3 mol-' 
at 300 K and 1 bar. No other data are available. Without assuming ideal-gas behavior, 
determine a reasonable estimate of the molar volume of the vapor at 300 K and 5 bar. 

3.43. To a good approximation, what is the molar volume of ethanol vapor at 753.15 K (480°C) 
and 6000 kPa? How does this result compare with the ideal-gas value? 

3.44. A 0.35-m3 vessel is used to store liquid propane at its vapor pressure. Safety consider- 
ations dictate that at a temperature of 320 K the liquid must occupy no more than 80% 
of the total volume of the vessel. For these conditions, determine the mass of vapor and 
the mass of liquid in the vessel. At 320 K the vapor pressure of propane is 16.0 bar. 

3.45. A 30-m3 tank contains 14 m3 of liquid n-butane in equilibrium with its vapor at 298.15 K 
(25°C). Estimate the mass of n-butane vapor in the tank. The vapor pressure of n-butane 
at the given temperature is 2.43 bar. 

3.46. Estimate: 
(a) The mass of ethane contained in a 0.15-m3 vessel at 333.15 K (60°C) and 14 bar. 
(b) The temperature at which 40 kg of ethane stored in a 0. 15-m3 vessel exerts a pressure 

20 bar. 

3.47. To what pressure does one fill a 0.15-m3 vessel at 298.15 K (25°C) in order to store 
40 kg of ethylene in it? 
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3.48. If 15 kg of H 2 0  in a 0.4-m3 container is heated to 673.15 K (400°C), what pressure is 
developed? 

3.49. A 0.35-m3 vessel holds ethane vapor at 298.15 K (25°C) and 2200 kPa. If it is heated 
to 493.15 K (220°C), what pressure is developed? 

3.50. What is the pressure in a 0.5-m3 vessel when it is charged with 10 kg of carbon dioxide 
at 303.15 K (30°C)? 

3.51. A rigid vessel, filled to one-half its volume with liquid nitrogen at its normal boiling 
point, is allowed to warm to 298.15 K (25°C). What pressure is developed? The molar 
volume of liquid nitrogen at its normal boiling point is 34.7 cm3 mol-'. 

3.52. The specific volume of isobutane liquid at 300 K and 4 bar is 1.824 cm3 g l .  Estimate 
the specific volume at 415 K and 75 bar. 

3.53. The density of liquid n-pentane is 0.630 g cmP3 at 29 1.15 K (1 8°C) and 1 bar. Estimate 
its density at 413.15 K (140°C) and 120 bar. 

3.54. Estimate the density of liquid ethanol at 453.15 K (180°C) and 200 bar. 

3.55. Estimate the volume change of vaporization for ammonia at 293.15 K (20°C). At this 
temperature the vapor pressure of ammonia is 857 kPa. 

3.56. PVT data may be taken by the following procedure. A mass rn of a substance of molar 
mass M is introduced into a thermostated vessel of known total volume V t .  The system 
is allowed to equilibrate, and the temperature T and pressure P are measured. 

(a )  Approximately what percentage errors are allowable in the measured variables (m, 
M ,  V f ,  T and P )  if the maximum allowable error in the calculated compressibility 
factor Z is f l%? 

(b) Approximately what percentage errors are allowable in the measured variables if 
the maximum allowable error in calculated values of the second virial coefficient B 
is f l%? Assume that Z E 0.9 and that values of B are calculated by Eq. (3.32). 

3.57. For a gas described by the RedlichIKwong equation and for a temperature greater than 
T,, develop expressions for the two limiting slopes, 

Note that in the limit as P -+ 0, V + oo, and that in the limit as P -+ oo, V -+ b. 

3.58. If 3.965m3 of methane gas at 288.75 K(15.6"C) and 1 atm is equivalent to 3.785 x 
lop3 m3 of gasoline as fuel for an automobile engine, what would be volume of the tank 
required to hold methane at 207 bar and 288.75 K(15.6"C) in an amount equivalent to 
37.85 x m3 of gasoline? 

3.59. Determine a good estimate for the compressibility factor Z of saturated hydrogen vapor 
at 25 K and 3.213 bar. For comparison, an experimental value is Z = 0.7757. 
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3.60. The Boyle temperature is the temperature for which: 

(a) Show that the second virial coefficient B is zero at the Boyle temperature. 
(b) Use the generalized correlation for B, Eq. (3.59), to estimate the reduced Boyle 

temperature for simple fluids. 

3.61. Natural gas (assume pure methane) is delivered to a city via pipeline at a volumetric rate 
of 4 normal ~ r n ~  per day. Average delivery conditions are 283.15 K (10°C) and 20.7 
bar. Determine: 
(a) The volumetric delivery rate in actual m3 per day. 
(b) The molar delivery rate in krnol per hour. 
(c) The gas velocity at delivery conditions in m s-'. 
The pipe is 600 mm heavy duty steel with an inside diameter of 575 mm. Normal 
conditions are 273.15 K (PC) and 1 atm. 

3.62. Some corresponding-states correlations use the critical compressibility factor Z,, rather 
than the acentric factor w, as a third parameter. The two types of correlation (one based 
on T,, PC, and Z,, the other on T,, PC, and w )  would be equivalent were there a one- 
to-one correspondence between Z, and w. The data of App. B allow a test of this 
correspondence. Prepare a plot of Z, vs. w to see how well Z, correlates with w. Develop 
a linear correlation (Z, = a + bw) for nonpolar substances. 



Chapter 4 

Heat Effects 

Heat transfer is one of the most common operations in the chemical industry. Consider, for 
example, the manufacture of ethylene glycol (an antifreeze agent) by the oxidation of ethylene 
to ethylene oxide and its subsequent hydration to glycol. The catalytic oxidation reaction is 
most effective when carried out at temperatures near 523.15 K (250°C). The reactants, ethylene 
and air, are therefore heated to this temperature before they enter the reactor. To design the 
preheater one must know how much heat is transferred. The combustion reactions of ethylene 
with oxygen in the catalyst bed tend to raise the temperature. However, heat is removed from the 
reactor, and the temperature does not rise much above 523.15 K (250°C). Higher temperatures 
promote the production of C02, an unwanted product. Design of the reactor requires knowledge 
of the rate of heat transfer, and this depends on the heat effects associated with the chemical 
reactions. The ethylene oxide product is hydrated to glycol by absorption in water. Heat is 
evolved not only because of the phase change and dissolution process but also because of 
the hydration reaction between the dissolved ethylene oxide and water. Finally, the glycol is 
recovered from water by distillation, a process of vaporization and condensation, which results 
in the separation of a solution into its components. 

All of the important heat effects are illustrated by this relatively simple chemical-manu- 
facturing process. In contrast to sensible heat effects, which are characterized by temperature 
changes, the heat effects of chemical reaction, phase transition, and the formation and separation 
of solutions are determined from experimental measurements made at constant temperature. 
In this chapter we apply thermodynamics to the evaluation of most of the heat effects that 
accompany physical and chemical operations. However, the heat effects of mixing processes, 
which depend on the thermodynamic properties of mixtures, are treated in Chap. 12. 

4.1 SENSIBLE HEAT EFFECTS 

Heat transfer to a system in which there are no phase transitions, no chemical reactions, and 
no changes in composition causes the temperature of the system to change. Our purpose here 
is to develop relations between the quantity of heat transferred and the resulting temperature 
change. 

When the system is a homogeneous substance of constant composition, the phase rule 
indicates that fixing the values of two intensive properties establishes its state. The molar 
or specific internal energy of a substance may therefore be expressed as a function of two 
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other state variables. These may be arbitrarily selected as temperature and molar or specific 
volume: 

U  = U ( T ,  V )  

Whence, 

As a result of Eq. (2.16) this becomes: 

The final term may be set equal to zero in two circumstances: 

For any constant-volume process, regardless of substance. 

Whenever the internal energy is independent of volume, regardless of the process. This 
is exactly true for ideal gases and incompressible fluids and approximately true for low- 
pressure gases. 

In either case, d U = C v d T  

and 
A U = [ C V d T  

For a mechanically reversible constant-volume process, Q = AU, and Eq. (2.19) may be 
rewritten: 

Similarly, the molar or specific enthalpy may be expressed as a function of temperature 
and pressure: 

H  = H ( T ,  P )  

Whence, 

As a result of Eq. (2.20) this becomes: 

Again, two circumstances allow the final term to be set equal to zero: 

For any constant-pressure process, regardless of the substance. 
Whenever the enthalpy of the substance is independent of pressure, regardless of the 
process. This is exactly true for ideal gases and approximately true for low-pressure 
gases. 
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In either case, 

and 

Moreover, Q = AH for mechanically reversible, constant-pressure, closed-system processes 
[Eq. (2.23)] and for the transfer of heat in steady-flow exchangers where A E p  and A EK are 
negligible and W, = 0. In either case, 

The common engineering application of this equation is to steady-flow heat transfer. 

Temperature Dependence of the Heat Capacity 

Evaluation of the integral in Eq. (4.3) requires knowledge of the temperature dependence of 
the heat capacity. This is usually given by an empirical equation; the two simplest expressions 
of practical value are: 

CP 
- = a + / 3 T + y T 2  and 

CP 
R - R = ~ + ~ T + c T - ~  

where a ,  B, and y and a,  b, and c are constants characteristic of the particular substance. With 
the exception of the last term, these equations are of the same form. We therefore combine 
them to provide a single expression: 

where either C or D is zero, depending on the substance considered. Since the ratio CpIR is 
dimensionless, the units of C p  are governed by the choice of R. 

As shown in Chap. 6, for gases it is the ideal-gas heat capacity, rather than the actual 
heat capacity, that is used in the evaluation of such thermodynamic properties as the enthalpy. 
The reason is that thermodynamic-property evaluation is most conveniently accomplished in 
two steps: first, calculation of values for a hypothetical ideal-gas state wherein ideal-gas heat 
capacities are used; second, correction of the ideal-gas-state values to the real-gas values. A 
real gas becomes ideal in the limit as P + 0; if it were to remain ideal when compressed 
to finite pressures, its state would remain that of an ideal gas. Gases in their ideal-gas states 
have properties that reflect their individuality just as do real gases. Ideal-gas heat capacities 
(designated by C: and c?) are therefore different for different gases; although functions of 
temperature, they are independent of pressure. 

Ideal-gas heat capacities increase smoothly with increasing temperature toward an upper 
limit, which is reached when all translational, rotational, and vibrational modes of molecular 
motion are fully excited [see Eq. (1 6.18)]. The influence of temperature on C? for argon, nitro- 
gen, water, and carbon dioxide is illustrated in Fig. 4.1. Temperature dependence is expressed 
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Figure 4.1 Ideal-gas heat capacities of argon, nitrogen, water, and carbon dioxide 

analytically by equations such as Eq. (4.4), here written: 

Values of the parameters are given in Table C. 1 of App. C for a number of common organic 
and inorganic gases. More accurate but more complex equations are found in the literature.' 

As a result of Eq. (3.18), the two ideal-gas heat capacities are related: 

The temperature dependence of C$IR follows from the temperature dependence of C ~ I R .  
The effects of temperature on Cig or C: are determined by experiment, most often 

calculated by the methods of statistical mechanics from spectroscopic data and knowledge 
of molecular structure. Where experimental data are not available, methods of estimation are 
employed, as described by Reid, Prausnitz, and Poling.' 

'see F. A. Aly and L. L. Lee, Fluid Phase Equilibria, vol. 6, pp. 169-179, 1981, and its bibliography; see also 
T. E. Daubert, R. P. Danner, H. M. Sibul, and C. C. Stebbins, Physical and Thermodynamic Properties of Pure 
Chemicals: Data Compilation, Taylor & Francis, Bristol, PA, extant 1995. 

'R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases andLiquids, 4th ed., chap. 6, McGraw-Hill, 
New York, 1987. 
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Although ideal-gas heat capacities are exactly correct for real gases only at zero pressure, 
the departure of real gases from ideality is seldom significant at pressures below several bars, 
and here C? and ~7 are usually good approximations to their heat capacities. 

Gas mixtures of constant composition may be treated in exactly the same way as pure 
gases. An ideal gas, by definition, is a gas whose molecules have no influence on one another. 
This means that each gas in a mixture exists independent of the others; its properties are unaf- 
fected by the presence of different molecules. Thus one calculates the ideal-gas heat capacity 
of a gas mixture as the mole-fraction-weighted sum of the heat capacities of the individual 
species. Consider 1 mol of gas mixture consisting of species A, B, and C ,  and let y ~ ,  y ~ ,  and 
yc represent the mole fractions of these species. The molar heat capacity of the mixture in the 
ideal-gas state is: 

where c:, c:, and C Z  are the molar heat capacities of pure A, B, and C in the ideal-gas 
state. 
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As with gases, the heat capacities of solids and liquids are found by experiment. Param- 
eters for the temperature dependence of C p  as expressed by Eq. (4.4) are given for a few solids 
and liquids in Tables C.2 and C.3 of App. C. Correlations for the heat capacities of many solids 
and liquids are given by Perry and Green and by Daubert et 

Evaluation of the Sensible-Heat Integral 

Evaluation of the integral / C p  dT  is accomplished by substitution for C p ,  followed by formal 
integration. For temperature limits of To and T the result is conveniently expressed as follows: 

T 
where r r -  

To 

Given To and T ,  the calculation of Q or AH is straightforward. Less direct is the calcu- 
lation of T ,  given To and Q or AH.  Here, an iteration scheme may be useful. Factoring ( t  - 1) 
from each term on the right-hand side of Eq. (4.7) gives: 

Since 

this may be written: 

We identify the quantity in square brackets as ( C P ) ~ / R ,  where ( C p ) ,  is defined as a mean 
heat capacity: 

Equation (4.2) may therefore be written: 

The angular brackets enclosing C p  identify it as a mean value; subscript "H" denotes a mean 
value specific to enthalpy calculations, and distinguishes this mean heat capacity from a similar 
quantity introduced in the next chapter. 

Solution of Eq. (4.9) for T gives: 

3 ~ .  H. Perry and D. Green, Perry's Chemical Engineers' Handbook, 7th ed., Sec. 2, McGraw-Hill, New York, 
1997; T. E. Daubert et al., op. cit. 
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A starting value for T (and hence for t = TITO)  allows evaluation of ( C P ) ~  by Eq. (4.8). 
Substitution of this value into Eq. (4.10) provides a new value of T from which to reevaluate 
( C P ) ~ .  Iteration continues to convergence on a final value of T .  

Use of Defined Functions 

Thermodynamic calculations often require evaluation of the integral J (Cp /R)  d T .  This sug- 
gests that one has at hand a computer routine for computational purposes. The right-hand side 
of Eq. (4.7) is therefore defined as the function, ICPH(TO,T;A,B,C,D). Equation (4.7) then 
becomes: 

The function name is ICPH, and the quantities in parentheses are the variables To and T, 
followed by parameters A, B, C ,  and D. When these quantities are assigned numerical values, 
the notation represents a value for the integral. Thus, for the evaluation of Q in Ex. 4.2: 

Representative computer programs for evaluation of the integral are given in App. D. 
For added flexibility the programs also evaluate the dimensionless quantity ( C P ) ~  / R as given 



4.2. Latent Heats of Pure Substances 123 

by Eq. (4.8). The right-hand side of this equation is another function, MCPH(TO,T;A,B,C,D). 
With this definition, Eq. (4.8) becomes: 

'CP 'H  = MCPH(TO,T;A,B,C.D) 
R  

A specific numerical value of this function is: 

MCPH(533.15,873.15;1.702,9.081 E-3,-2.164E-6,O.O) = 6.9965 

representing ( C p ) H / R  for methane in the calculation of Ex. 4.2. By Eq. (4.9), 

A H  = (8.314)(6.9965)(873.15 - 533.15) = 19 778 J 

4.2 LATENT HEATS OF PURE SUBSTANCES 

When a pure substance is liquefied from the solid state or vaporized from the liquid at constant 
pressure, no change in temperature occurs; however, the process requires the transfer of a finite 
amount of heat to the substance. These heat effects are called the latent heat of fusion and the 
latent heat of vaporization. Similarly, there are heats of transition accompanying the change 
of a substance from one solid state to another; for example, the heat absorbed when rhombic 
crystalline sulfur changes to the monoclinic structure at 368.15 K (95°C) and 1 bar is 360 J for 
each g atom. 



124 CHAPTER 4. Heat Effects 

The characteristic feature of all these processes is the coexistence of two phases. 
According to the phase rule, a two-phase system consisting of a single species is univari- 
ant, and its intensive state is determined by the specification of just one intensive property. 
Thus the latent heat accompanying a phase change is a function of temperature only, and is 
related to other system properties by an exact thermodynamic equation: 

where for a pure species at temperature T ,  

AH = latent heat 
A V = volume change accompanying the phase change 
P Sat = vapor pressure 

The derivation of this equation, known as the Clapeyron equation, is given in Chap. 6. 
When Eq. (4.1 1) is applied to the vaporization of a pure liquid, d P Sat/dT is the slope of 

the vapor pressure-vs.-temperature curve at the temperature of interest, A V is the difference 
between molar volumes of saturated vapor and saturated liquid, and A H  is the latent heat of 
vaporization. Thus values of AH may be calculated from vapor-pressure and volumetric data. 

Latent heats may also be measured calorimetrically. Experimental values are available 
at selected temperatures for many  substance^.^ Correlations for the latent heats of many com- 
pounds as a function of temperature are given by Daubert et a ~ . ~  Nevertheless, data are not 
always available at the temperature of interest, and in many cases the data necessary for 
application of Eq. (4.11) are also not known. In this event approximate methods are used 
for estimates of the heat effect accompanying a phase change. Since heats of vaporization are 
by far the most important from a practical point of view, they have received most attention. 
One procedure is use of a group-contribution method, known as UNIVAP.~ Alternative methods 
serve one of two purposes: 

Prediction of the heat of vaporization at the normal boiling point, i.e., at a pressure of 
1 standard atmosphere, defined as 101.325 kPa. 

Estimation of the heat of vaporization at any temperature from the known value at a single 
temperature. 

Rough estimates of latent heats of vaporization for pure liquids at their normal boiling 
points are given by Trouton's rule: 

where T, is the absolute temperature of the normal boiling point. The units of AH,, R,  and T, 
must be chosen so that AH,/RT, is dimensionless. Dating from 1884, this rule still provides 
a simple check on whether values calculated by other methods are reasonable. Representative 

4 ~ .  Majer and V. Svoboda, IUPAC Chemical Data Series No. 32, Blackwell, Oxford, 1985; R. H. Perry and D. Green, 
op. cit., Sec. 2. 

'T. E. Daubert et al., op. cit. 
6 ~ .  Kliippel, S. Schulz, and P. Ulbig, Fluid Phase Equilibria, vol. 102, pp. 1-15, 1994. 
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experimental values for this ratio are Ar, 8.0; N2, 8.7; 02 ,  9.1; HC1, 10.4; C6H6, 10.5; H2S, 
10.6; and H20, 13.1. 

Of the same nature, but not quite so simple, is the equation proposed by ~ i e d e l : ~  

A H ,  - 1.092(ln PC - 1.013) - - 
R Tn 0.930 - Trn 

where PC is the critical pressure in bars and Trn is the reduced temperature at T,. Equation (4.12) 
is surprisingly accurate for an empirical expression; errors rarely exceed 5 percent. Applied to 
water it gives: 

AH,  1.092(ln 220.55 - 1.013) -- - = 13.56 
R Tn 0.930 - 0.577 

Whence, AH,  = (13.56)(8.314)(373.15) = 42 065 J mol-' 

This corresponds to 2334 J g l ;  the steam-table value of 2257 J g-l is lower by 3.4 percent. 
Estimates of the latent heat of vaporization of a pure liquid at any temperature from the 

known value at a single temperature may be based on a known experimental value or on a value 
estimated by Eq. (4.12). The method proposed by watson8 has found wide acceptance: 

This equation is simple and fairly accurate; its use is illustrated in the following example. 

7~ Riedel, Chem. Ing. Tech., vol. 26, pp. 679-683, 1954. 
*K. M. Watson, Ind. Eng. Chem., vol. 35, pp. 398406, 1943. 
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4.3 STANDARD HEAT OF REACTION 

Heat effects discussed so far have been for physical processes. Chemical reactions also are 
accompanied either by the transfer of heat or by temperature changes during the course of 
reaction-in some cases by both. These effects are manifestations of the differences in molec- 
ular structure, and therefore in energy, of the products and reactants. For example, the reactants 
in a combustion reaction possess greater energy on account of their structure than do the prod- 
ucts, and this energy must either be transferred to the surroundings as heat or produce products 
at an elevated temperature. 

Each of the vast number of possible chemical reactions may be carried out in many 
different ways, and each reaction carried out in a particular way is accompanied by a particular 
heat effect. Tabulation of all possible heat effects for all possible reactions is impossible. We 
therefore calculate the heat effects for reactions carried out in diverse ways from data for 
reactions carried out in a standard way. This reduces the required data to a minimum. 

The heat associated with a specific chemical reaction depends on the temperatures of 
both the reactants and products. A consistent (standard) basis for treatment of reaction heat 
effects results when the products of reaction and the reactants are all at the same temperature. 

Consider the flow-calorimeter method for measurement of heats of combustion of fuel 
gases. The fuel is mixed with air at ambient temperature and the mixture flows into a combustion 
chamber where reaction occurs. The combustion products enter a water-jacketed section in 
which they are cooled to the temperature of the reactants. Since no shaft work is produced 
by the process, and the calorimeter is built so that changes in potential and kinetic energy are 
negligible, the overall energy balance, Eq. (2.32), reduces to 

Thus the heat Q absorbed by the water is identical to the enthalpy change caused by the 
combustion reaction, and universal practice is to designate the enthalpy change of reaction 
A H  as the heat of reaction. 

For purposes of data tabulation with respect to the reaction, 

the standard heat of reaction is defined as the enthalpy change when a moles of A and b moles 
of B in their standard states at temperature T react to form 1 moles of L and m moles of M in 
their standard states at the same temperature T .  

A standard state is a particular state of a species at temperature T 
and at specified conditions of pressure, composition, and physical 
condition as, e.g., gas, liquid, or solid. 
A standard-state pressure of 1 standard atmosphere (101.325 kPa) was in use for many 

years, and older data tabulations are for this pressure. The standard is now 1 bar (lo5 Pa), 
but for purposes of this chapter, the difference is of negligible consequence. With respect to 
composition, the standard states used in this chapter are states of thepure species. For gases, the 
physical state is the ideal-gas state and for liquids and solids, the real state at the standard-state 
pressure and at the system temperature. In summary, the standard states used in this chapter are: 

Gases: The pure substance in the ideal-gas state at 1 bar. 
Liquids and solids: The real pure liquid or solid at 1 bar. 
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Property values in the standard state are denoted by the degree symbol. For example, 
C; is the standard-state heat capacity. Since the standard state for gases is the ideal-gas state, 
C; for gases is identical with CAg, and the data of Table C.l apply to the standard state for 
gases. All conditions for a standard state are fixed except temperature, which is always the 
temperature of the system. Standard-state properties are therefore functions of temperature 
only. The standard state chosen for gases is a hypothetical one, for at 1 bar actual gases are not 
ideal. However, they seldom deviate much from ideality, and in most instances enthalpies for 
the real-gas state at 1 bar and the ideal-gas state are little different. 

When a heat of reaction is given for a particular reaction, it applies for the stoichiometric 
coefficients as written. If each stoichiometric coefficient is doubled, the heat of reaction is 
doubled. For example, the ammonia synthesis reaction may be written: 

The symbol A Hiog8 indicates that the heat of reaction is the standard value for a temperature 
of 298.15 K (25°C). 

4.4 STANDARD HEAT OF FORMATION 

Tabulation of data for just the standard heats of reaction for all of the vast number of possible 
reactions is impractical. Fortunately, the standard heat of any reaction can be calculated if the 
standard heats offormation of the compounds taking part in the reaction are known. A formation 
reaction is defined as a reaction which forms a single compound from its constituent elements. 
For example, the reaction C + ;o2 + 2Hz + CH30H is the formation reaction for methanol. 
The reaction H20  + SO3 --+ H2S04 is not a formation reaction, because it forms sulfuric acid 
not from the elements but from other compounds. Formation reactions are understood to result 
in the formation of 1 mol of the compound; the heat of formation is therefore based on 1 mol 
of the compound formed. 

Heats of reaction at any temperature can be calculated from heat-capacity data if the 
value for one temperature is known; the tabulation of data can therefore be reduced to the 
compilation of standard heats of formation at a single temperature. The usual choice for 
this temperature is 298.15 K or 25°C. The standard heat of formation of a compound at this 
temperature is represented by the symbol AH&,. The degree symbol indicates that it is the 
standard value, subscript f shows that it is a heat of formation, and the 298 is the approximate 
absolute temperature in kelvins. Tables of these values for common substances may be found in 
standard handbooks, but the most extensive compilations available are in specialized reference 
works.9 An abridged list of values is given in Table C.4 of App. C. 

 or example, see TRC Thermodynamic Tables-Hydrocarbons and TRC Thermodynamic Tables-Non- 
hydrocarbons, serial publications of the Thermodynamics Research Center, Texas A & M Univ. System, College 
Station, Texas; "The NBS Tables of Chemical Thermodynamic Properties," J. Physical and Chemical Reference Data, 
vol. 11,  supp. 2, 1982. See also, T. E. Daubert et al., op. cit. Where data are unavailable, estimates based only on 
molecular structure may be found by the methods of L. Constantinou and R. Gani, Fluid Phase Equilibria, vol. 103, 
pp. 11-22, 1995. 
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When chemical equations are combined by addition, the standard heats of reaction may 
also be added to give the standard heat of the resulting reaction. This is possible because enthalpy 
is a property, and changes in it are independent of path. In particular, formation equations and 
standard heats of formation may always be combined to produce any desired equation (not 
itself a formation equation) and its accompanying standard heat of reaction. Equations written 
for this purpose often include an indication of the physical state of each reactant and product, 
i.e., the letter g, 1, or s is placed in parentheses after the chemical formula to show whether it 
is a gas, a liquid, or a solid. This might seem unnecessary since a pure chemical species at a 
particular temperature and 1 bar can usually exist only in one physical state. However, fictitious 
states are often assumed for convenience. 

Consider the reaction C02(g) + H2(g) -+ CO(g) + H20(g) at 298.15 K (25°C). This water- 
gas-shift reaction is commonly encountered in the chemical industry, though it takes place only 
at temperatures well above 298.15 K (25°C). However, the data used are for 298.15 K (25"C), 
and the initial step in any calculation of heat effects concerned with this reaction is to evaluate 
the standard heat of reaction at 298.15 K (25°C). The pertinent formation reactions and their 
heats of formation from Table C.4 are: 

H2(g): Since hydrogen is an element A H;298 = 0 

Since the reaction is actually carried out entirely in the gas phase at high temperature, 
convenience dictates that the standard states of all products and reactants at 298.15 K (25°C) 
be taken as the ideal-gas state at I bar, even though water cannot actually exist as a gas at these 
conditions. 

Writing the formation reactions so that their sum yields the desired reaction, requires that 
the formation reaction for C02 be written in reverse; the heat of reaction is then of opposite 
sign to the standard heat of formation: 

c o 2 ( ~ )  -+ c(s) + 02(g) AH,",, = 393 509 J 

c(s> + 9 2 ( g )  -+ co(g)  AH& = -110 525 J 

H2(g) + $2(g) -+ H2O(g) AH,",, = -241 818 J 

C02(g) + H2(g) -+ CO(g) + H20(g) AH&, = 41 166 J 

The meaning of this result is that the enthalpy of 1 mol of CO plus 1 mol of H20 is greater than 
the enthalpy of 1 mol of C02 plus 1 mol of Hz by 41 166 J when each product and reactant is 
taken as the pure gas at 298.15 K (25°C) in the ideal-gas state at 1 bar. 

In this example the standard heat of formation of H20 is available for its hypothetical 
standard state as a gas at 298.15 K (25°C). One might expect the value of the heat of formation 
of water to be listed for its actual state as a liquid at 1 bar and 298.15 K (25°C). As a matter 
of fact, values for both states are given in Table C.4 because they are both frequently used. 
This is true for many compounds that normally exist as liquids at 298.15 K (25°C) and the 
standard-state pressure. Cases do arise, however, in which a value is given only for the standard 
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state as a liquid or as an ideal gas when what is needed is the other value. Suppose that this 
were the case for the preceding example and that only the standard heat of formation of liquid 
H20 is known. We must now include an equation for the physical change that transforms water 
from its standard state as a liquid into its standard state as a gas. The enthalpy change for this 
physical process is the difference between the heats of formation of water in its two standard 
states: 

-241.818 - (-285.830) = 44.012 kJ 

This is approximately the latent heat of vaporization of water at 298.15 K (25°C). The sequence 
of steps is now: 

co2(g> -+ c(s) + 02(g) AH,",, = 393.509 kJ 

H2(g) + $2(g) + H20(1) AH,",, = -285.830 kJ 

This result is of course in agreement with the original answer. 

4.5 STANDARD HEAT OF COMBUSTION 

Only a few formation reactions can actually be carried out, and therefore data for these reactions 
must usually be determined indirectly. One kind of reaction that readily lends itself to exper- 
iment is the combustion reaction, and many standard heats of formation come from standard. 
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heats of combustion, measured calorimetrically. A combustion reaction is defined as a reac- 
tion between an element or compound and oxygen to form specified combustion products. For 
organic compounds made up of carbon, hydrogen, and oxygen only, the products are carbon 
dioxide and water, but the state of the water may be either vapor or liquid. Data are always 
based on 1 mol of the substance burned. 

A reaction such as the formation of n-butane: 

cannot be carried out in practice. However, this equation results from combination of the 
following combustion reactions: 

- - - - 

4C(s) + 5H2(g) C4Hl0(g) AH,",, = - 125.790 kJ 

This is the value of the standard heat of formation of n-butane listed in Table C.4. 

4.6 TEMPERATURE DEPENDENCE OFAH0 

In the foregoing sections, standard heats of reaction are discussed for a reference temperature 
of 298.15 K (25°C). In this section we treat the calculation of standard heats of reaction at 
other temperatures from knowledge of the value at the reference temperature. 

The general chemical reaction may be written: 

where )vi  I is a stoichiometric coefficient and Ai stands for a chemical formula. The species on 
the left are reactants; those on the right, products. The sign convention for vi is as follows: 

positive (+) for  products and negative (-) fo r  reactants 

The vi with their accompanying signs are called stoichiometric numbers. For example, 
when the ammonia synthesis reaction is written: 

then V N 2 = - 1  % * = - 3  V N H ~ = ~  

This sign convention allows the definition of a standard heat of reaction to be expressed 
mathematically by the equation: 

AH" - viH; 
i 

where H," is the enthalpy of species i in its standard state and the summation is over all 
products and reactants. The standard-state enthalpy of a chemical compound is equal to its heat 
of formation plus the standard-state enthalpies of its constituent elements. If the standard-state 
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enthalpies of all elements are arbitrarily set equal to zero as the basis of calculation, then the 
standard-state enthalpy of each compound is its heat of formation. In this event, H: = A  Hyi 
and Eq. (4.14) becomes: 

where the summation is over all products and reactants. This formalizes the procedure described 
in the preceding section for calculation of standard heats of other reactions from standard heats 
of formation. Applied to the reaction, 

Eq. (4.15) is written: 

With data from Table C.4 for 298.15 K, this becomes: 

in agreement with the result of Ex. 4.5. 
For standard reactions, products and reactants are always at the standard-state pressure of 

1 bar. Standard-state enthalpies are therefore functions of temperature only, and by Eq. (2.21), 

where subscript i identifies a particular product or reactant. Multiplying by vi and summing 
over all products and reactants gives: 

Since vi is a constant, it may be placed inside the differential: 

The term zi vi H: is the standard heat of reaction, defined by Eq. (4.14) as A  H O.  The standard 
heat-capacity change of reaction is defined similarly: 

As a result of these definitions, the preceding equation becomes: 

This is the fundamental equation relating heats of reaction to temperature. Integration gives: 

where A  H O  and A  H i  are heats of reaction at temperature T and at reference temperature To 
respectively. If the temperature dependence of the heat capacity of each product and reactant 
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is given by Eq. (4.4), then the integral is given by the analog of Eq. (4.7) ( t  r T /  To): 

where by definition, A A  - C viAi 

with analogous definitions for A B, AC, and AD. 
An alternative formulation results when a mean heat capacity change of reaction is defined 

in analogy to Eq. (4.8): 

Equation (4.18) then becomes: 

The right side of Eq. (4.19) provides a function for evaluation of the integral of interest 
here that is of exactly the same form as given by Eq. (4.7). The one comes from the other by 
simple replacement of C p  by AC; and of A, etc. by AA,  etc. The same computer program 
therefore serves for evaluation of either integral. The only difference is in the function name: 

where "D" denotes "A". 
Just as function MCPH is defined torepresent (CP),/R, SO function MDCPH by analogy 

is defined to represent (AC,"),/ R; thus, 
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In the foregoing examples of reactions that occur at approximately 1 bar, we have tacitly 
assumed that the heat effects of reaction are the same whether gases are mixed or pure, an 
acceptable procedure for low pressures. For reactions at elevated pressures, this may not be the 
case, and it may be necessary to account for the effects of pressure and of mixing on the heat 
of reaction. However, these effects are usually small. 

PROBLEMS 

4.1. For steady flow in a heat exchanger at approximately atmospheric pressure, what is the 
final temperature: 

(a) When 10 mol of SO2 is heated from 473.15 to 1373.15 K (200 to 1 100°C)? 
(b) When 12 mol of propane is heated from 523.15 to 1473.15 K (250 to 1200°C)? 

4.2. For steady flow through a heat exchanger at approximately atmospheric pressure, what 
is the final temperature, 

(a) When heat in the amount of 800 W is added to 10 mol of ethylene initially at 473.15 K 
(200" C)? 

(b) When heat in the amount of 2500 kJ is added to 15 mol of 1-butene initially at 
533.15 K (260°C)? 

(c) When heat in the amount of 1055 GJ is added to 18.14 kmol of ethylene initially at 
533.15 K (260°C)? 

4.3. If 7.08 m3 s-I of air at 322.15 K (50°C) and approximately atmospheric pressure is 
preheated for a combustion process to 773.15 K (500°C), what rate of heat transfer is 
required? 

4.4. How much heat is required when 10 000 kg of CaC03 is heated at atmospheric pressure 
from 323.15 to 1153.15 K (50°C to 880°C)? 
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4.5. If the heat capacity of a substance is correctly represented by an equation of the form, 

show that the error resulting when (Cp), is assumed equal to Cp evaluated at the 
arithmetic mean of the initial and final temperatures is C(T2 - ~ ~ ) ~ / 1 2 .  

4.6. If the heat capacity of a substance is correctly represented by an equation of the form, 

show that the error resulting when ( C P ) ~  is assumed equal to Cp evaluated at the 
arithmetic mean of the initial and final temperatures is: 

2 

4.7. Calculate the heat capacity of a gas sample from the following information: The sample 
comes to equilibrium in a flask at 298.15 K (25°C) and 121.3 kPa. A stopcock is opened 
briefly, allowing the pressure to drop to 101.3 kPa. With the stopcock closed, the flask 
warms, returning to 298.15 K (25"C), and the pressure is measured as 104.0 kPa. De- 
termine Cp in J mol-'  as as sum in^ the gas to be ideal and the expansion of the gas 
remaining in the flask to be reversible and adiabatic. 

4.8. A process stream is heated as a gas from 298.15 to 523.15 K (25°C to 250°C) at constant 
pressure. A quick estimate of the energy requirement is obtained from Eq. (4.3), with 
Cp taken as constant and equal to its value at 298.15 K (25°C). Is the estimate of Q 
likely to be low or high? Why? 

4.9. Handbook values for the latent heats of vaporization in J g-' are given in the table for a 
number of pure liquids at 298.15 K (25°C) and at T,, the normal boiling point (App. B). 

n-Pentane 
n-Hexane 
Benzene 
Toluene 
Cyclohexane 

For one of these substances, calculate: 
(a) The value of the latent heat at T, by Eq. (4.13), given the value at 298.15 K (25°C). 
(b) The value of the latent heat at T, by Eq. (4.12). 
By what percentages do these values differ from the one listed in the table? 

4.10. Table 9.1 lists the thermodynamic properties of saturated liquid and vapor tetrafluo- 
roethane. Making use of the vapor pressures as a function of temperature and of the 
saturated-liquid and saturated-vapor volumes, calculate the latent heat of vaporization 
by Eq. (4.11) at one of the following temperatures and compare the result with the value 
calculated from the enthalpy values given in the table. 
(a) 258.15K(-15"C), (b)272.15K(-1°C), (~)286.15K(l3"C), (d)300.15K(27"C), 
(e) 313.15 K(40GC). 
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4.11. Handbook values for the latent heats of vaporization in J g-' are given in the table for 
several pure liquids at 273.15 K (0°C) and at T,, the normal boiling point (App. B). 

Chloroform 
Methanol 
Tetrachloromethane 

For one of these substances, calculate: 

(a) The value of the latent heat at T, by Eq. (4.13), given the value at 273.15 K (PC). 
(b) The value of the latent heat at T, by Eq. (4.12). 

By what percentages do these values differ from the one listed in the table? 

4.12. For one of the following liquids, determine the heat of vaporization at its normal boiling 
point by application of the Clapeyron equation to the given vapor-pressure equation. 
Use generalized correlations from Chap. 3 to estimate AV. 

(a) Benzene: 

(b) Ethylbenzene: In P Sat/kPa = 14.0045 - 

2911.32 
(c) n-Heptane: In P Sat/kPa = 13.8587 - 

T/K - 56.51 

(d) n-Pentane: 

(e)  Toluene: 

4.13. A method for determination of the second virial coefficient of a pure gas is based on the 
Clapeyron equation and measurements of the latent heat of vaporization A  HI^, the molar 
volume of saturated liquid v l ,  and the vapor pressure P Sat. Determine B in cm3 mol-' 
for methyl ethyl ketone at 348.15 K (75°C) from the following data at this temperature: 

4.14. One hundred kmol per hour of subcooled liquid at 300 K and 3 bar is superheated to 
500 K in a steady-flow heat exchanger. Estimate the exchanger duty (in kW) for one of 
the following: 
(a) Methanol, for which T Sat = 368.0 K at 3 bar. 
(b) Benzene, for which T Sat = 392.3 K at 3 bar. 
(c) Toluene, for which T Sat = 426.9 K at 3 bar. 
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4.15. Saturated-liquid benzene at pressure P, = 10 bar (TIsat = 451.7 K) is throttled in 
a steady-flow process to a pressure P2 = 1.2 bar (TzSat = 358.7 K), where it is a 
liquidhapor mixture. Estimate the molar fraction of the exit stream that is vapor. For 
liquid benzene, Cp= 162 J mold' K-l. Ignore the effect of pressure on the enthalpy of 
liquid benzene. 

4.16. Estimate for one of the following compounds as a liquid at 298.15 K (25°C). 

(a) Acetylene, (b) 1,3-Butadiene, (c) Ethylbenzene, (d) n-Hexane, (e) Styrene. 

4.17. A reversible compression of 1 mol of an ideal gas in a piston/cylinder device results in 
a pressure increase from 1 bar to P2 and a temperature increase from 400 K to 950 K. 
The path followed by the gas during compression is given by 

and the molar heat capacity of the gas is given by 

Determine the heat transferred during the process and the final pressure. 

4.18. Hydrocarbon fuels can be produced from methanol by reactions such as the following, 
which yields 1-hexene: 

Compare the standard heat of combustion at 298.15 K (25°C) of 6CH30H(g) with 
the standard heat of combustion at 298.15 K (25°C) of C6H12(g) for reaction products 
C02(g) and H20(g). 

4.19. Calculate the theoretical flame temperature when ethylene at 298.15 K (25°C) is burned 
with: 
(a) The theoretical amount of air at 298.15 K (25°C). 
(b) 25% excess air at 298.15 K (25°C). 
(c) 50% excess air at 298.15 K (25°C). 
(d) 100% excess air at 298.15 K (25°C). 
( e )  50% excess air preheated to 773.15 K (500°C). 

4.20. What is the standard heat of combustion of n-pentane gas at 298.15 K (25°C) if the 
combustion products are H20(1) and COz(g)? 

4.21. Determine the standard heat of each of the following reactions at 298.15 K (25°C): 

(a> N2(g) + 3H2(g) + 2NH3(g) 
(b) 4NH3(g) + 502(g) -+ 4NO(g) + 6H2O(g) 
(c) 3NOz(g) + H2O(l) + 2HN03(1) + NO(g) 
(4 CaCds) + H20(1) + C2H2(g) + CaO(s) 
(e) 2Na(s) + 2H2O(g) -+ 2NaOH(s) + H2(g) 

( f )  6N02(g) + 8NHdg) -+ 7N2(g) + 12H20(g) 
(8) CzH4(g) + ;02(g) + ((CHz)z)o(g) 
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(h) C2H2(g> + HzO(g) -+ ((CH2)2)0(g) 

(i) CH4(g> + 2H20(g> -+ C02(g) + 4Hz(g) 
0) CO2(g> + 3Hz(g> + CH30H(g> + Hz%) 
(k) CH30H(g> + ;02(g) -+ HCHO(g) + HzO(g) 

(2) 2H2S(g> + 30z(g> + 2H2O(g> + 2SO2(g) 
(m) H2S(g) + 2H20(g) + 3H2(g> + S02(g) 
(n) N2(g> + Oz(g) -+ 2NO(g) 
(0) CaCOds) + CaO(s) + COz(g) 

(P )  S03(g) + H2O(l) + H2S04(1) 

(4) C2H4(g) + H2O(l) C2H50H(I) 
(r) CH3CHO(g) + H2(g) -+ C2H50H(g) 
(s) C2HjOH(l) + O2(g) -+ CH3COOH(l) + H20(1) 
(t) C2HjCH:CH2(g) 4 CH2:CHCH:CH2(g) + H2(g) 

(u) C4Hlo(g) + CH2:CHCH:CHz(g) + 2H2(g) 
(v) C2H5CH:CH2(g) + ;02(~) -+ CH2:CHCH:CH2(g) + H20(g) 

(w) 4NH3(g) + 6NO(g) -+ 6H20(g) + 5Nz(g) 

(XI N2(g) + C2H2(g) 4 2HCN(g) 
0.') C6H5.C2H5(g) " C6H5CH:CH2(g) + H2k) 
(z) C(S) + H20(1) + Hz(&?) + CO(g) 

4.22. Determine the standard heat for one of the reactions of Pb. 4.21: Part (a) at 873.15 K 
(600°C), Part (b) at 773.15 K (500°C), Part (f) at 923.15 K (65PC), Part (i) at 973.15 K 
(700°C), Part (j) at 583.15 K (310°C), Part (I) at 683.15 K (410°C), Part (m) at 850 K, 
Part (n) at 1300 K, Part (0) at 1073.15 K (80PC), Part (r) at 723.15 K (450°C), Part ( t )  
at 733.15 K (460°C), Part (u) at 750 K, Part (v) at 900 K, Part (w) at 673.15 K (40PC), 
Part (x) at 648.15 K (375"C), Part (y) at 1083.15 K (810°C). 

4.23. Develop a general equation for the standard heat of reaction as a function of temperature 
for one of the reactions given in parts (a),  (b), (e) ,  (f), (g), (h), fj), (k), (I), (m), (n), (o), 
(r), (t), (u), (v), (w), (XI, b), and (z) of Pb. 4.21. 

4.24. Natural gas (assume pure methane) is delivered to a city via pipeline at a volumetric rate 
of 4.0 mega normal m3 per day. If the selling price of the gas is $5.00 per GJ of higher 
heating value, what is the expected revenue in dollars per day? Normal conditions are 
273.15 K (PC) and 1 atm. 

4.25. Natural gases are rarely pure methane; they usually also contain other light hydrocarbons 
and nitrogen. Determine an expression for the standard heat of combustion as a function 
of composition for a natural gas containing methane, ethane, propane, and nitrogen. 
Assume liquid water as a product of combustion. Which of the following natural gases 
has the highest heat of combustion? 

(a) Y C H ~  = 0.95, y c z ,  = 0.02, ~ c ~ H ~  = 0.02, = 0.01. 
(b) Y C H ~  = 0.90, yc2iy6 = 0.05, yc3,y8 = 0.03, Y N ~  = 0.02. 
(c)  y c ,  = 0.85, y c , ~ ,  = 0.07, y c , ~ ,  = 0.03, y ~ ,  = 0.05. 
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4.26. If the heat of combustion of urea, (NH2)2CO(s), at 298.15 K (25°C) is 63 1 660 J mol-' 
when the products are C02(g), H20(1), and N2(g), what is AH&* for urea at 298.15 K 
(25"C)? 

4.27. The higher heating value (HHV) of a fuel is its standard heat of combustion at 298.15 K 
(25°C) with liquid water as a product; the lower heating value (LHV) is for water vapor 
as product. 

(a) Explain the origins of these terms. 
(b) Determine the HHV and the LHV for natural gas, modeled as pure methane. 
(c )  Determine the HHV and the LHV for a home-heating oil, modeled as pure liquid 

n-decane. For n-decane as a liquid A H;298 = -249 700 J mol-'. 

4.28. A light fuel oil with an average chemical composition of CloHls is burned with oxygen 
in a bomb calorimeter. The heat evolved is measured as 43 960 J g-' for the reaction at 
298.15 K (25°C). Calculate the standard heat of combustion of the fuel oil at 298.15 K 
(25°C) with H20(g) and C02(g) as products. Note that the reaction in the bomb occurs 
at constant volume, produces liquid water as a product, and goes to completion. 

4.29. Methane gas is burned completely with 30% excess air at approximately atmospheric 
pressure. Both the methane and the air enter the furnace at 303.15 K (30°C) saturated 
with water vapor, and the flue gases leave the furnace at 1773.15 K (1500°C). The flue 
gases then pass through a heat exchanger from which they emerge at 323.15 K (50°C). 
Per mole of methane, how much heat is lost from the furnace, and how much heat is 
transferred in the heat exchanger? 

4.30. Ammonia gas enters the reactor of a nitric acid plant mixed with 30% more dry air 
than is required for the complete conversion of the ammonia to nitric oxide and water 
vapor. If the gases enter the reactor at 348.15 K (75"C), if conversion is 80%, if no side 
reactions occur, and if the reactor operates adiabatically, what is the temperature of the 
gases leaving the reactor? Assume ideal gases. 

4.31. Ethylene gas and steam at 593.15 K (320°C) and atmospheric pressure are fed to a 
reaction process as an equimolar mixture. The process produces ethanol by the reaction: 

The liquid ethanol exits the process at 298.15 K (25°C). What is the heat transfer 
associated with this overall process per mole of ethanol produced? 

4.32. A gas mixture of methane and steam at atmospheric pressure and 773.15 K (500°C) is 
fed to a reactor, where the following reactions occur: 

CH4 + H20 -+ CO + 3H2 and CO + H20 + C02 + H2 

The product stream leaves the reactor at 1123.15 K (850°C). Its composition (mole 
fractions) is: 

Determine the quantity of heat added to the reactor per mole of product gas. 



146 CHAPTER 4. Heat Effects 

4.33. A fuel consisting of 75 mol-% methane and 25 mol-% ethane enters a furnace with 
80% excess air at 303.15 K (30°C). If 800 GJ per kmol of fuel is transferred as heat to 
boiler tubes, at what temperature does the flue gas leave the furnace? Assume complete 
combustion of the fuel. 

4.34. The gas stream from a sulfur burner consists of 15 mol-% S02, 20 mol-% 02, and 
65 mol-% N2. The gas stream at atmospheric pressure and 673.15 K (400°C) enters a 
catalytic converter where 86% of the SO2 is further oxidized to SO3. On the basis of 
1 mol of gas entering, how much heat must be removed from the converter so that the 
product gases leave at 773.15 K (500°C)? 

4.35. Hydrogen is produced by the reaction: 

The feed stream to the reactor is an equimolar mixture of carbon monoxide and steam, 
and it enters the reactor at 398.15 K (125°C) and atmospheric pressure. If 60% of the 
H20 is converted to Hz and if the product stream leaves the reactor at 698.15 K (425"C), 
how much heat must be transferred from the reactor? 

4.36. A direct-fired dryer bums a fuel oil with a net heating value of 44 200 kJ kg-'. [The net 
heating value is obtained when the products of combustion are C02(g) and H20(g).] 
The composition of the oil is 85% carbon, 12% hydrogen, 2% nitrogen, and 1% water 
by weight. The flue gases leave the dryer at 477.15 K(204"C), and a partial analysis 
shows that they contain 3 mole-% C02 and 11.8 mole-% CO on a dry basis. The fuel, 
air, and material being dried enter the dryer at 298.15 K(25"C). If the entering air is 
saturated with water and if 30% of the net heating value of the oil is allowed for heat 
losses (including the sensible heat carried out with the dried product), how much water 
is evaporated in the dryer per kg of oil burned? 

4.37. An equimolar mixture of nitrogen and acetylene enters a steady-flow reactor at 298.15 K 
(25°C) and atmospheric pressure. The only reaction occurring is: 

The product gases leave the reactor at 873.15 K (600°C) and contain 24.2 mole-% HCN. 
How much heat is supplied to the reactor per mole of product gas? 

4.38. Chlorine is produced by the reaction: 

The feed stream to the reactor consists of 60 mol-% HC1, 36 mol-% 02, and 4 mol-% 
N2, and it enters the reactor at 823.15 K (550°C). If the conversion of HC1 is 75% and if 
the process is isothermal, how much heat must be transferred from the reactor per mole 
of the entering gas mixture? 

4.39. A gas consisting only of CO and N2 is made by passing a mixture of flue gas and air 
through a bed of incandescent coke (assume pure carbon). The two reactions that occur 
both go to completion: 

C02 + C + 2C0 and 2C + O2 -+ 2C0 
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They yield a flue gas of composition: 12.8 mol-% CO, 3.7 mol-% C02, 5.4 mol-% 02 ,  
and 78.1 mol-% N2. The flue gaslair mixture is so proportioned that the heats of the 
two reactions cancel, and the temperature of the coke bed is therefore constant. If this 
temperature is 1148.15 K (875"C), if the feed stream is preheated to 1148.15 K (875"C), 
and if the process is adiabatic, what ratio of moles of flue gas to moles of air is required, 
and what is the composition of the gas produced? 

4.40. A fuel gas consisting of 94 mole-% methane and 6 mole-% nitrogen is burned with 35% 
excess air in a continuous water heater. Both fuel gas and air enter dry at 298.15 K(2SoC). 
Water is heated at a rate of 34.0kg spl from 298.15 K(2S°C) to 368.15 K(9S°C). The 
flue gases leave the heater at 483.15 K(210°C). Of the entering methane, 70% burns to 
carbon dioxide and 30% burns to carbon monoxide. What volumetric flow rate of fuel 
gas is required if there are no heat losses to the surroundings? 

4.41. A process for the production of 1,3-butadiene results from the catalytic dehydrogenation 
at atmospheric pressure of 1-butene according to the reaction: 

To suppress side reactions, the 1-butene feed stream is diluted with steam in the ratio 
of 10 moles of steam per mole of 1-butene. The reaction is carried out isothermally 
at 798.15 K (525"C), and at this temperature 33% of the 1-butene is converted to 1,3- 
butadiene. How much heat is transferred to the reactor per mole of entering 1-butene? 



Chapter 5 

The Second Law of 
Thermodynamics 

Thermodynamics is concerned with transformations of energy, and the laws of thermodynamics 
describe the bounds within which these transformations are observed to occur. The first law 
reflects the observation that energy is conserved, but it imposes no restriction on the process 
direction. Yet, all experience indicates the existence of such a restriction, the concise statement 
of which constitutes the second law. 

The differences between the two forms of energy, heat and work, provide some insight 
into the second law. In an energy balance, both work and heat are included as simple additive 
terms, implying that one unit of heat, a joule, is equivalent to the same unit of work. Although 
this is true with respect to an energy balance, experience teaches that there is a difference of 
kind between heat and work. This experience is summarized by the following facts. 

Work is readily transformed into other forms of energy: for example, into potential energy 
by elevation of a weight, into kinetic energy by acceleration of a mass, into electrical energy by 
operation of a generator. These processes can be made to approach a conversion efficiency of 
100% by elimination of friction, a dissipative process that transforms work into heat. Indeed, 
work is readily transformed completely into heat, as demonstrated by Joule's experiments. 

On the other hand, all efforts to devise a process for the continuous conversion of heat 
completely into work or into mechanical or electrical energy have failed. Regardless of improve- 
ments to the devices employed, conversion efficiencies do not exceed about 40%. Evidently, 
heat is a form of energy intrinsically less useful and hence less valuable than an equal quantity 
of work or mechanical or electrical energy. 

Drawing further on our experience, we know that the flow of heat between two bodies 
always takes place from the hotter to the cooler body, and never in the reverse direction. This 
fact is of such significance that its restatement serves as an acceptable expression of the second 
law. 

5.1 STATEMENTS OF THE SECOND LAW 

The observations just described suggest a general restriction on processes beyond that imposed 
by the first law. The second law is equally well expressed in two statements that describe this 
restriction: 
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Statement 1: No apparatus can operate in such a way that its only effect (in system and 
surroundings) is to convert heat absorbed by a system completely into work done by the 
system. 

Statement 2: No process is possible which consists solely in the transfer of heat from 
one temperature level to a higher one. 

Statement 1 does not say that heat cannot be converted into work; only that the process 
cannot leave both the system and its surroundings unchanged. Consider a system consisting 
of an ideal gas in a pistodcylinder assembly expanding reversibly at constant temperature. 
According to Eq. (2.3), AUt = Q + W. For an ideal gas, AU" 0, and therefore, Q = -W. 
The heat absorbed by the gas from the surroundings is equal to the work transferred to the 
surroundings by the reversible expansion of the gas. At first this might seem a contradiction of 
statement 1, since in the surroundings the result is the complete conversion of heat into work. 
However, this statement requires in addition that no change occur in the system, a requirement 
that is not met. 

This process is limited in another way, because the pressure of the gas soon reaches that 
of the surroundings, and expansion ceases. Therefore, the continuous production of work from 
heat by this method is impossible. If the original state of the system is restored in order to 
comply with the requirements of statement 1, energy from the surroundings in the form of 
work is needed to compress the gas back to its original pressure. At the same time energy as 
heat is transferred to the surroundings to maintain constant temperature. This reverse process 
requires at least the amount of work gained from the expansion; hence no net work is produced. 
Evidently, statement 1 may be expressed in an alternative way, viz.: 

Statement la: It is impossible by a cyclic process to convert the heat absorbed by a 
system completely into work done by the system. 

The word cyclic requires that the system be restored periodically to its original state. In the case 
of a gas in a pistodcylinder assembly, its initial expansion and recompression to the original 
state constitute a complete cycle. If the process is repeated, it becomes a cyclic process. The 
restriction to a cyclic process in statement l a  amounts to the same limitation as that introduced 
by the words only effect in statement 1. 

The second law does not prohibit the production of work from heat, but it does place a 
limit on how much of the heat directed into a cyclic process can be converted into work done 
by the process. With the exception of water and wind power, the partial conversion of heat 
into work is the basis for nearly all commercial production of power. The development of a 
quantitative expression for the efficiency of this conversion is the next step in the treatment of 
the second law. 

5.2 HEAT ENGINES 

The classical approach to the second law is based on a macroscopic viewpoint of properties, 
independent of any knowledge of the structure of matter or behavior of molecules. It arose 
from the study of heat engines, devices or machines that produce work from heat in a cyclic 
process. An example is a steam power plant in which the working fluid (steam) periodically 
returns to its original state. In such a power plant the cycle (in its simplest form) consists of 
the following steps: 
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Liquid water at ambient temperature is pumped into a boiler at high pressure. 

Heat from a fuel (heat of combustion of a fossil fuel or heat from a nuclear reaction) is 
transferred in the boiler to the water, converting it to high-temperature steam at the boiler 
pressure. 
Energy is transferred as shaft work from the steam to the surroundings by a device such 
as a turbine, in which the steam expands to reduced pressure and temperature. 

Exhaust steam from the turbine is condensed by transfer of heat to the surroundings, 
producing liquid water for return to the boiler, thus completing the cycle. 

Essential to all heat-engine cycles are absorption of heat into the system at a high tem- 
perature, rejection of heat to the surroundings at a lower temperature, and production of work. 
In the theoretical treatment of heat engines, the two temperature levels which characterize their 
operation are maintained by heat reservoirs, bodies imagined capable of absorbing or rejecting 
an infinite quantity of heat without temperature change. In operation, the working fluid of a heat 
engine absorbs heat 1 QH I from a hot reservoir, produces a net amount of work I WI, discards 
heat I Qc I to a cold reservoir, and returns to its initial state. The first law therefore reduces to: 

The thermal eficiency of the engine is defined as: 

net work output 
q E? 

heat absorbed 

With Eq. (5.1) this becomes: 

IWl - I Q H I  - lQcl 
q - -  - 

I Q H I  I Q H I  

Absolute-value signs are used to make the equations independent of the sign conventions for 
Q and W. For q to be unity (100% thermal efficiency), I Qc 1 must be zero. No engine has ever 
been built for which this is true; some heat is always rejected to the cold reservoir. This result 
of engineering experience is the basis for statements 1 and l a  of the second law. 

If a thermal efficiency of 100% is not possible for heat engines, what then determines 
the upper limit? One would certainly expect the thermal efficiency of a heat engine to depend 
on the degree of reversibility of its operation. Indeed, a heat engine operating in a completely 
reversible manner is very special, and is called a Carnot engine. The characteristics of such an 
ideal engine were first described by N. L. S. Carnotl in 1824. The four steps that make up a 
Carnot cycle are performed in the following order: 

Step 1: A system at the temperature of a cold reservoir Tc undergoes a reversible adiabatic 
process that causes its temperature to rise to that of a hot reservoir at TH. 

Step 2: The system maintains contact with the hot reservoir at TH, and undergoes a 
reversible isothermal process during which heat ( Q H  I is absorbed from the hot reservoir. 

' ~ i c o l a s  Leonard Sadi Carnot (1796-1832), a French engineer. 
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Step 3: The system undergoes a reversible adiabatic process in the opposite direction of 
step 1 that brings its temperature back to that of the cold reservoir at Tc. 

Step 4: The system maintains contact with the reservoir at Tc, and undergoes a reversible 
isothermal process in the opposite direction of step 2 that returns it to its initial state with 
rejection of heat 1 Qc 1 to the cold reservoir. 

A Carnot engine operates between two heat reservoirs in such a way that all heat absorbed 
is absorbed at the constant temperature of the hot reservoir and all heat rejected is rejected at 
the constant temperature of the cold reservoir. Any reversible engine operating between two 
heat reservoirs is a Carnot engine; an engine operating on a different cycle must necessarily 
transfer heat across finite temperature differences and therefore cannot be reversible. 

Carnot's Theorem 

Statement 2 of the second law is the basis for Carnot's theorem: 

For two given heat reservoirs no engine can have a thermal efficiency 
higher than that of a Carnot engine. 
To prove Camot's theorem assume the existence of an engine E with a thermal efficiency 

greater than that of a Carnot engine which absorbs heat / QH I from the hot reservoir, produces 
work I W 1, and discards heat 1 QH I - ( W I to the cold reservoir. Engine E absorbs heat 1 Q L  I 
from the same hot reservoir, produces the same work I W 1, and discards heat I Q& 1 - I W I to the 
same cold reservoir. If engine E has the greater efficiency, 

IWI IWl 
- > -- and IQHI > lQ',I 
I IQHI 

Since a Carnot engine is reversible, it may be operated in reverse; the Carnot cycle is then 
traversed in the opposite direction, and it becomes a reversible refrigeration cycle for which 
the quantities 1 QH 1, 1 Qc 1, and I W I are the same as for the engine cycle but are reversed in 
direction. Let engine E drive the Carnot engine backward as a Carnot refrigerator, as shown 
schematically in Fig. 5.1. For the enginelrefrigerator combination, the net heat extracted from 
the cold reservoir is: 

IQHI - lWl - (IQLI - IWl>=  IQHI - lQLl 
The net heat delivered to the hot reservoir is also 1 QH 1 - 1 QLl.  Thus, the sole result of 
the enginelrefrigerator combination is the transfer of heat from temperature Tc to the higher 
temperature TH. Since this is in violation of statement 2 of the second law, the original premise 
that engine E has a greater thermal efficiency than the Carnot engine is false, and Carnot's 
theorem is proved. In similar fashion, one can prove that all Carnot engines operating between 
heat reservoirs at the same two temperatures have the same thermal efficiency. Thus a corollavy 
to Carnot's theorem states: 

The thermal efficiency of a Carnot engine depends only on the 
temperature levels and not upon the working substance of the engine. 

5.3 THERMODYNAMIC TEMPERATURE SCALES 

In the preceding discussion we identified temperature levels by the kelvin scale, established with 
ideal-gas thermometry. This does not preclude taking advantage of the opportunity provided 
by the Carnot engine to establish a thermodynamic temperature scale that is truly independent 
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Figure 5.1 Engine E operating a Carnot refrigerator C 

of any material properties. Let O  represent temperature on some empirical scale that unequiv- 
ocally identifies temperature levels. Consider two Carnot engines, one operating between a 
hot reservoir at temperature OH and a cold reservoir at temperature Oc,  and a second operating 
between the reservoir at Oc and a still colder reservoir at O F ,  as shown in Fig. 5.2. The heat 
rejected by the first engine 1 Qc 1 is absorbed by the second; therefore the two engines working 
together constitute a third Carnot engine absorbing heat I Q H  I from the reservoir at OH and 
rejecting heat 1 QF I to the reservoir at O F .  The corollary to Carnot's theorem indicates that the 
thermal efficiency of the first engine is a function of OH and Oc: 

Figure 5.2 Carnot engines 1 and 2 constitute a third Carnot engine 
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Rearrangement gives: 

where f is an unknown function. 
For the second and third engines, equations of the same functional form apply: 

IQcl 
- = f(Oc, OF) and 

I Q H I  
- = f(OH, OF) 

I Q F I  I Q F I  
Division of the second of these equations by the first gives: 

Comparison of this equation with Eq. (5.3) shows that the arbitrary temperature OF must cancel 
from the ratio on the right: 

where @ is another unknown function. 
The right side of Eq. (5.4) is the ratio of @s evaluated at two thermodynamic temperatures; 

the @s are to each other as the absolute values of the heats absorbed and rejected by a Carnot 
engine operating between reservoirs at these temperatures, quite independent of the properties 
of any substance. Moreover, Eq. (5.4) allows arbitrary choice of the empirical temperature 
represented by 0; once this choice is made, the function $ must be determined. If 0 is chosen 
as the kelvin temperature T, then Eq. (5.4) becomes: 

Ideal-Gas Temperature Scale; Carnot's Equations 

The cycle traversed by an ideal gas serving as the working fluid in a Carnot engine is shown 
by a PV diagram in Fig. 5.3. It consists of four reversible steps: 

a -+ b Adiabatic compression until the temperature rises from Tc to TH. 

b -+ c Isothermal expansion to arbitrary point c with absorption of heat I QH 1 .  
c + d Adiabatic expansion until the temperature decreases to Tc . 
d -+ a Isothermal compression to the initial state with rejection of heat I Qc I. 

For the isothermal steps b + c and d + a ,  Eq. (3.26) yields: 

vc 
l Q ~ l  = RTHln - and Vd 

IQcl = RTcln- 
Vb v a  

Therefore, 
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c 
Figure 5.3 P V  diagram showing Carnot cycle for an ideal gas 

For an adiabatic process Eq. (3.21) is written, 

For step a + b and c + d, integration gives: 

Since the left sides of these two equations are the same, 

Equation (5.6) now becomes: 

lQcl 

Comparison of this result with Eq. (5.5) yields the simplest possible functional relation for @, 
namely, $ ( T )  = T .  We conclude that the kelvin temperature scale, based on the properties of 
ideal gases, is in fact a thermodynamic scale, independent of the characteristics of any particular 
substance. Substitution of Eq. (5.7) into Eq. (5.2) gives: 
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Equations (5.7) and (5.8) are known as Carnot's equations. In Eq. (5.7) the smallest possible 
value of I Qc I is zero; the corresponding value of Tc is the absolute zero of temperature on the 
kelvin scale. As mentioned in Sec. 1.5, this occurs at (-273.1j°C). Equation (5.8) shows that the 
thermal efficiency of a Carnot engine can approach unity only when TH approaches infinity or 
Tc approaches zero. Neither of these conditions is attainable; all heat engines therefore operate 
with thermal efficiencies less than unity. The cold reservoirs naturally available on earth are 
the atmosphere, lakes and rivers, and the oceans, for which Tc E 300 K. Hot reservoirs are 
objects such as furnaces where the temperature is maintained by combustion of fossil fuels and 
nuclear reactors where the temperature is maintained by fission of radioactive elements. For 
these practical heat sources, TH E 600 K. With these values, 

This is a rough practical limit for the thermal efficiency of a Carnot engine; actual heat engines 
are irreversible, and their thermal efficiencies rarely exceed 0.35. 

5.4 ENTROPY 

Equation (5.7) for a Carnot engine may be written: 
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If the heat quantities refer to the engine (rather than to the heat reservoirs), the numerical 
value of QH is positive and that of Qc is negative. The equivalent equation written without 
absolute-value signs is therefore 

Thus for a complete cycle of a Carnot engine, the two quantities Q / T  associated with the 
absorption and rejection of heat by the working fluid of the engine sum to zero. The working 
fluid of a cyclic engine periodically returns to its initial state, and its properties, e.g., temperature, 
pressure, and internal energy, return to their initial values. Indeed, a primary characteristic of a 
property is that the sum of its changes is zero for any complete cycle. Thus for a Carnot cycle 
Eq. (5.9) suggests the existence of a property whose changes are given by the quantities Q/  T .  

Our purpose now is to show that Eq. (5.9), applicable to the reversible Carnot cycle, also 
applies to other reversible cycles. The closed curve on the P V diagram of Fig. 5.4 represents 
an arbitrary reversible cycle traversed by an arbitrary fluid. Divide the enclosed area by a series 
of reversible adiabatic curves; since such curves cannot intersect (Pb. 5.1), they may be drawn 
arbitrarily close to one another. Several such curves are shown on the figure as long dashed 
lines. Connect adjacent adiabatic curves by two short reversible isotherms which approximate 
the curve of the arbitrary cycle as closely as possible. The approximation clearly improves as 
the adiabatic curves are more closely spaced. When the separation becomes arbitrarily small, 
the original cycle is faithfully represented. Each pair of adjacent adiabatic curves and their 
isothermal connecting curves represent a Carnot cycle for which Eq. (5.9) applies. 

Each Carnot cycle has its own pair of isotherms TH and Tc and associated heat quantities 
QH and Qc. These are indicated on Fig. 5.4 for a representative cycle. When the adiabatic 
curves are so closely spaced that the isothermal steps are infinitesimal, the heat quantities 
become d Q H  and dQc,  and Eq. (5.9) for each Carnot cycle is written: 

In this equation TH and Tc, absolute temperatures of the working fluid of the Carnot engines, 
are also the temperatures traversed by the working fluid of the arbitrary cycle. Summation of 
all quantities d Q /  T for the Carnot engines leads to the integral: 

where the circle in the integral sign signifies integration over the arbitrary cycle, and the 
subscript "rev" indicates that the cycle is reversible. 

Thus the quantities d Q,,/ T sum to zero for the arbitrary cycle, exhibiting the charac- 
teristic of a property. We therefore infer the existence of a property whose differential changes 
for the arbitrary cycle are given by these quantities. The property is called entropy (en'-tro-py), 
and its differential changes are: 

d Qrev dSt = - 
T 
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Figure 5.4 An arbitrary reversible cyclic process drawn on a PV diagram 

where St is the total (rather than molar) entropy of the system. Alternatively, 

Points A and B on the P V diagram of Fig. 5.5 represent two equilibrium states of a particular 
fluid, and paths ACB and ADB show two arbitrary reversible processes connecting these 
points. Integration of Eq. (5.1 1) for each path gives: 

and = lDB T 
where in view of Eq. (5.10) the two integrals must be equal. We therefore conclude that A S t  

is independent of path and is a property change given by SL - S i .  
If the fluid is changed from state A to state B by an irreversible process, the entropy 

change must still be AS t  = S; - S i ,  but experiment shows that this result is not given by 
d  Q/ T evaluated for the irreversible process itself, because the calculation of entropy changes 

by this integral must in general be along reversible paths. 
The entropy change of a heat reservoir, however, is always given by Q/ T, where Q is 

the quantity of heat transferred to or from the reservoir at temperature T, whether the transfer 
is reversible or irreversible. The reason is that the effect of heat transfer on a heat reservoir is 
the same regardless of the temperature of the source or sink of the heat. 

If a process is reversible and adiabatic, d  Q,, = 0; then by Eq. (5.1 I), dS t  = 0. Thus the 
entropy of a system is constant during a reversible adiabatic process, and the process is said to 
be isentropic. 
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Figure 5.5 Two reversible paths joining equilibrium states A and B 

This discussion of entropy can be summarized as follows: 

Entropy owes its existence to the second law, from which it arises in much the same way 
as internal energy does from the first law. Equation (5.1 1) is the ultimate source of all 
equations that relate the entropy to measurable quantities. It does not represent a definition 
of entropy; there is none in the context of classical thermodynamics. What it provides is 
the means for calculating changes in this property. Its essential nature is summarized by 
the following axiom: 

There exists a property called entropy S, which is an intrinsic 
property of a system, functionally related to the measurable coor- 
dinates which characterize the system. For a reversible process, 
changes in this property are given by Eq. (5.1 1). 

The change in entropy of any system undergoing a finite reversible process is: 

When a system undergoes an irreversible process between two equilibrium states, the 
entropy change of the system ASf is evaluated by application of Eq. (5.13) to an arbitrarily 
chosen reversibleprocess that accomplishes the same change of state as the actual process. 
Integration is not carried out for the irreversible path. Since entropy is a state function, 
the entropy changes of the irreversible and reversible processes are identical. 

In the special case of a mechanically reversible process (Sec. 2.8), the entropy change 
of the system is correctly evaluated from l d Q/  T applied to the actual process, even though 
the heat transfer between system and surroundings is irreversible. The reason is that it is 
immaterial, as far as the system is concerned, whether the temperature difference causing the 
heat transfer is differential (making the process reversible) or finite. The entropy change of a 
system caused by the transfer of heat can always be calculated by d Q/ T, whether the heat 
transfer is accomplished reversibly or irreversibly. However, when a process is irreversible on 
account of finite differences in other driving forces, such as pressure, the entropy change is not 
caused solely by the heat transfer, and for its calculation one must devise a reversible means 
of accomplishing the same change of state. 
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This introduction to entropy through a consideration of heat engines is the classical 
approach, closely following its actual historical development. A complementary approach, 
based on molecular concepts and statistical mechanics, is considered briefly in Sec. 5.1 1. 

5.5 ENTROPY CHANGES OF AN IDEAL GAS 

For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed 
system, the first law, Eq. (2.8), becomes: 

Differentiation of the defining equation for enthalpy, H = U + P V ,  yields: 

Eliminating dU gives: 

or dQre, = dH - V d P  

For an ideal gas, d H  = C $ ~ T  and V = RT/  P .  With these substitutions and then division 
by T ,  

d Qrev - 
dT d P  

- - C i g - - R -  
T T P 

As a result of Eq. (5.1 I), this becomes: 

where S is the molar entropy of an ideal gas. Integration from an initial state at conditions To 
and Po to a final state at conditions T and P gives: 

Although derived for a mechanically reversible process, this equation relates properties only, 
and is independent of the process causing the change of state. It is therefore a general equation 
for the calculation of entropy changes of an ideal gas. 
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Equation (4.4) for the temperature dependence of the molar heat capacity C? allows 
integration of the first term on the right of Eq. (5.14). The result is conveniently expressed as 

where 

Since this integral must often be evaluated, we include in App. D representative computer 
programs for its evaluation. For computational purposes the right side of Eq. (5.15) is defined 
as the function, ICPS(TO,T;A,B,C,D). Equation (5.15) then becomes: 

The computer programs also calculate a mean heat capacity defined as: 

1; C?IT/ T (c?), = 
ln(T/ To) 

Here, the subscript "S" denotes a mean value specific to entropy calculations. Division of 
Eq. (5.15) by ln(T/ To) or In z therefore yields: 
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The right side of this equation is defined as another function, MCPS(TO,T;A,B,C,D). Equation 
(5.17) then becomes: 

Solving for the integral in Eq. (5.16) gives: 

and Eq. (5.14) becomes: 

This form of the equation for entropy changes of an ideal gas may be useful when iterative 
calculations are required. 
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5.6 MATHEMATICAL STATEMENT OF THE SECOND LAW 

Consider two heat reservoirs, one at temperature TH and a second at the lower temperature Tc. 
Let a quantity of heat 1 Ql be transferred from the hotter to the cooler reservoir. The entropy 
changes of the reservoirs at TH and at Tc are: 

- l Q l  AS; = - and l Q l  As; = - 
TH TC 

These two entropy changes are added to give: 

Since TH > Tc, the total entropy change as a result of this irreversible process is positive. Also, 
ASmtal becomes smaller as the difference TH - TC gets smaller. When TH is only infinitesimally 
higher than Tc, the heat transfer is reversible, and AStora approaches zero. Thus for the process 
of irreversible heat transfer, AStoul is always positive, approaching zero as the process becomes 
reversible. 

Consider now an irreversible process in a closed system wherein no heat transfer occurs. 
Such a process is represented on the P V  diagram of Fig. 5.6, which shows an irreversible, 
adiabatic expansion of 1 mol of fluid from an initial equilibrium state at point A to a final 
equilibrium state at point B. Now suppose the fluid is restored to its initial state by a reversible 
process consisting of two steps: first, the reversible, adiabatic (constant-entropy) compression 
of the fluid to the initial pressure, and second, a reversible, constant-pressure step that restores 
the initial volume. If the initial process results in an entropy change of the fluid, then there 
must be heat transfer during the reversible, constant-P second step such that: 

Figure 5.6 Cycle containing an irreversible adiabatic process A to B 
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The original irreversible process and the reversible restoration process constitute a cycle for 
which AU = 0 and for which the work is therefore: 

A 

-w = Q E V  = dQ,v 

However, according to statement l a  of the second law, Q,,, cannot be directed into the system, 
for the cycle would then be a process for the complete conversion into workof the heat absorbed. 
Thus, d Q,, is negative, and it follows that S i  - SL is also negative; whence S i  > S i .  Since 
the original irreversible process is adiabatic (AS,,, = O), the total entropy change of the system 
and surroundings as a result of the process is AStota1 = S i  - Sa > 0. 

In arriving at this result, our presumption is that the original irreversible process results in 
an entropy change of the fluid. If the original process is in fact isentropic, then the system can be 
restored to its initial state by a simple reversible adiabatic process. This cycle is accomplished 
with no heat transfer and therefore with no net work. Thus the system is restored without 
leaving any change elsewhere, and this implies that the original process is reversible rather 
than irreversible. 

Thus the same result is found for adiabatic processes as for direct heat transfer: AStom1 is 
always positive, approaching zero as a limit when the process becomes reversible. This same 
conclusion can be demonstrated for any process whatever, leading to the general equation: 

This mathematical statement of the second law affirms that every 
process proceeds in such a direction that the total entropy change 
associated with it is positive, the limiting value of zero being attained 
only by a reversible process. No process is possible for which the 
total entropy decreases. 
We return now to a cyclic heat engine that takes in heat I Q H  I from a heat reservoir at T H ,  

and discards heat 1 Qc 1 to another heat reservoir at Tc. Since the engine operates in cycles, it 
undergoes no net changes in its properties. The total entropy change of the process is therefore 
the sum of the entropy changes of the heat reservoirs: 

The work produced by the engine is 

Elimination of 1 Qc 1 between these two equations and solution for I W I gives: 

This is the general equation for work of a heat engine for temperature levels Tc and TH. The 
minimum work output is zero, resulting when the engine is completely inefficient and the 
process degenerates into simple irreversible heat transfer between the two heat reservoirs. In 
this case solution for AStotal yields the equation obtained at the beginning of this section. The 
maximum work is obtained when the engine is reversible, in which case AStota1 = 0, and the 
equation reduces to the second term on the right, the work of a Carnot engine. 
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5.7 ENTROPY BALANCE FOR OPEN SYSTEMS 

Just as an energy balance can be written for processes in which fluid enters, exits, or flows 
through a control volume (Sec. 2.12), so too can an entropy balance be written. There is, 
however, an important difference: Entropy is not conserved. The second law states that the 
total entropy change associated with any process must be positive, with a limiting value of 
zero for a reversible process. This requirement is taken into account by writing the entropy 
balance for both the system and its surroundings, considered together, and by including an 
entropy-generation term to account for the irreversibilities of the process. This term is the 
sum of three others: one for entropy changes in the streams flowing in and out of the control 
volume, one for entropy changes within the control volume, and one for entropy changes in 
the surroundings. If the process is reversible, these three terms sum to zero so that AStotd = 0. 
If the process is irreversible, they sum to a positive quantity, the entropy-generation term. 
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The statement of balance, expressed as rates, is therefore: 

Time rate of 
Net rate of Time rate of 

change of Total rate [ entropy change in of 1 + 1 i;i5 1 + [ entropy in 1 = 1 of entropy 1 
generation 

flowing streams surroundings 

The equivalent equation of entropy balance is 

where sG is the rate of entropy generation. This equation is the general rate form of the entropy 
balance, applicable at any instant. Each term can vary with time. The first term is simply the 
net rate of gain in entropy of the flowing streams, i.e., the difference between the total entropy 
transported out by exit streams and the total entropy transported in by entrance streams. The 
second term is the time rate of change of the total entropy of the fluid contained within the 
control volume. The third term accounts for entropy changes in the surroundings, the result of 
heat transfer between system and surroundings. 

Let rate of heat transfer Q, with respect to a particular part of the control surface be 
associated with T,,j where subscript a, j denotes a temperature in the surroundings. The 
rate of entropy change in the surroundings as a result of this transfer is then - Q j / ~ u ,  j. The 
minus sign converts Q j, defined with respect to the system, to a heat rate with respect to the 
surroundings. The third term in Eq. (5.20) is therefore the sum of all such quantities: 

Equation (5.20) is now written: 

The final term, representing the rate of entropy generation sG, reflects the second-law require- 
ment that it be positive for irreversible processes. There are two sources of irreversibility: (a)  
those within the control volume, i.e., internal irreversibilities, and (b)  those resulting from heat 
transfer across finite temperature differences between system and surroundings, i.e., external 
thermal irreversibilities. In the limiting case where sG = 0 ,  the process must be completely 
reversible, implying: 

The process is internally reversible within the control volume. 

Heat transfer between the control volume and its surroundings is reversible. 

The second item means either that heat reservoirs are included in the surroundings with 
temperatures equal to those of the control surface or that Carnot engines are inter- 
posed in the surroundings between the control-surface temperatures and the heat-reservoir 
temperatures. 



166 CHAPTER 5. The Second Law of Thermodynamics 

For a steady-state flow process the mass and entropy of the fluid in the control volume 
are constant, and d(mS),,/dt is zero. Equation (5.21) then becomes: 

If in addition there is but one entrance and one exit, with m the same for both streams, dividing 
through by m yields: 

Each term in Eq. (5.23) is based on a unit amount of fluid flowing through the control volume. 
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5.8 CALCULATION OF IDEAL WORK 

In any steady-state flow process requiring work, there is an absolute minimum amount which 
must be expended to accomplish the desired change of state of the fluid flowing through the 
control volume. In a process producing work, there is an absolute maximum amount which may 
be accomplished as the result of a given change of state of the fluid flowing through the control 
volume. In either case, the limiting value obtains when the change of state associated with the 
process is accomplished completely reversibly. For such a process, the entropy generation is 
zero, and Eq. (5.22), written for the uniform surroundings temperature T,, becomes: 

or Q = Tg A(sm)fs 

Substitute this expression for Q in the energy balance, Eq. (2.30): 

A [ ( H  + $ u2 + zg) m]f, = T, A(Sm)f, i- wS (rev) 

The shaft work,  rev), is here the work of a completely reversible process. If given the name 
ideal work, wideal, the preceding equation may be rewritten: 
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In most applications to chemical processes, the kinetic- and potential-energy terms are negli- 
gible compared with the others; in this event Eq. (5.24) reduces to: 

1 Wideal = ~ ( ~ m b  - T, ~ ( ~ m ) f s  1 (5.25) 

For the special case of a single stream flowing through the control volume, Eq. (5.25) becomes: 

Wideal =m(AH - T, AS) (5.26) 

Division by m puts this equation on a unit-mass basis: 

Widea = AH - To A s  

A completely reversible process is hypothetical, devised solely for determination of the ideal 
work associated with a given change of state. 

The only connection between the hypothetical reversible process and 
an actual process is that it brings about the same change of state as 
the actual process. 

Our objective is to compare the actual work of a process with the work of the hypothetical 
reversible process. No description is ever required of hypothetical processes devised for the 
calculation of ideal work. One need only realize that such processes may always be imagined. 
Nevertheless, an illustration of a hypothetical reversible process is given in Ex. 5.7. 

Equations (5.24) through (5.27) give the work of a completely reversible process asso- 
ciated with given property changes in the flowing streams. When the same property changes 
occur in an actual process, the actual work W, (or W,) as given by an energy balance, can 
be compared with the ideal work. When Wideal (or Wideal) is positive, it is the minimum work 
required to bring about a given change in the properties of the flowing streams, and is smaller 
than wS. In this case a thermodynamic efficiency q, is defined as the ratio of the ideal work to 
the actual work: 

Wideal 
qt (work required) = - 

w s  

When wideal (or Wideal) is negative, ( wideal 1 is the maximum work obtainable from a given change 
in the properties of the flowing streams, and is larger than I W, 1 .  In this case, the thermodynamic 
efficiency is defined as the ratio of the actual work to the ideal work: 

Ws 
qt(work produced) = - 

Wideal 
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5.9 LOST WORK 

Work that is wasted as the result of irreversibilities in a process is called lost work, WIOst, and 
is defined as the difference between the actual work of a process and the ideal work for the 
process. Thus by definition, 

Wlost -- Ws - Wideal (5.30) 

In terms of rates, 

wlost -- w~ - w i d e a ~  (5.31) 

The actual work rate comes from Eq. (2.30): 

wS = A[(H + ;u* + z g )  vizIfs - Q 

The ideal work rate is given by Eq. (5.24): 

 ideal = A [(H + +u2 + zg )  m]fs - T, A(S1n)fs 

Substituting these expressions for wS and wide,, in Eq. (5.31) yields: 

For the case of a single surroundings temperature T,, Eq. (5.22) becomes: 

Multiplication by T, gives: 

T,SG = T, A(Sm)fs - Q 

The right sides of this equation and Eq. (5.32) are identical; therefore, 

Since the second law of thermodynamics requires that sG > 0, it follows that Wlost 2 0. 
When a process is completely reversible, the equality holds, and the lost work is zero. For 
irreversible processes the inequality holds, and the lost work, i.e., the energy that becomes 
unavailable for work, is positive. 
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The engineering significance of this result is clear: The greater the 
irreversibility of a process, the greater the rate of entropy production 
and the greater the amount of energy that becomes unavailable for 
work. Thus every irreversibility carries with it a price. 

For the special case of a single stream flowing through the control volume, 

wjOst = mT, AS - Q (5.35) 

Division by m makes the basis a unit amount of fluid flowing through the control volume: 

West = Tm AS - Q (5.36) 

Similarly, for a single stream, Eq. (5.33) becomes: 

Division by m changes the basis to a unit amount of fluid flowing through the control volume: 

Equations (5.36) and (5.38) combine for a unit amount of fluid to give: 

Wiost = To SG 

Again, since SG L 0, it follows that WIost , 0. 
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5.10 THE THIRD LAW OF THERMODYNAMICS 

Measurements of heat capacities at very low temperatures provide data for the calculation from 
Eq. (5.13) of entropy changes down to 0 K. When these calculations are made for different 
crystalline forms of the same chemical species, the entropy at 0 K appears to be the same for all 
forms. When the form is noncrystalline, e.g., amorphous or glassy, calculations show that the 
entropy of the more random form is greater than that of the crystalline form. Such calculations, 
which are summarized el~ewhere,~ lead to the postulate that the absolute entropy is zero for 
all perfect crystalline substances at absolute zero temperature. While the essential ideas were 
advanced by Nernst and Planck at the beginning of the twentieth century, more recent studies 
at very low temperatures have increased confidence in this postulate, which is now accepted 
as the third law. 

If the entropy is zero at T = 0 K, then Eq. (5.13) lends itself to the calculation of 
absolute entropies. With T = 0 as the lower limit of integration, the absolute entropy of a gas 
at temperature T based on calorimetric data is: 

This equation3 is based on the supposition that no solid-state transitions take place and thus no 
heats of transition need appear. The only constant-temperature heat effects are those of fusion 
at Tf and vaporization at Tu. When a solid-phase transition occurs, a term A Ht/ T, is added. 

2 ~ .  S. Pitzer, Thermodynamics, 3d ed., chap. 6, McGraw-Hill, New York, 1995. 
3~valuation of the first term on the right is not a problem for crystalline substances, because C p / T  remains finite 

as T + 0. 
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5.1 1 ENTROPY FROM THE MICROSCOPIC VIEWPOINT 

Because the molecules of an ideal gas do not interact, its internal energy resides with individual 
molecules. This is not true of the entropy. The microscopic interpretation of entropy is based 
on an entirely different concept, as suggested by the following example. 

Suppose an insulated container, partitioned into two equal volumes, contains Avogadro's 
number N A  of ideal-gas molecules in one section and no molecules in the other. When the 
partition is withdrawn, the molecules quickly distribute themselves uniformly throughout the 
total volume. The process is an adiabatic expansion that accomplishes no work. Therefore, 

and the temperature does not change. However, the pressure of the gas decreases by half, and 
the entropy change as given by Eq. (5.14) is: 

Since this is the total entropy change, the process is clearly irreversible. 
At the instant when the partition is removed the molecules occupy only half the space 

available to them. In this momentary initial state the molecules are not randomly distributed 
over the total volume to which they have access, but are crowded into just half the total volume. 
In this sense they are more ordered than they are in the final state of uniform distribution 
throughout the entire volume. Thus, the final state can be regarded as a more random, or 
more disordered, state than the initial state. Generalizing from this example, one is led to the 
notion that increasing disorder (or decreasing structure) on the molecular level corresponds to 
increasing entropy. 

The means for expressing disorder in a quantitative way was developed by L. Boltzmann 
and J. W. Gibbs through a quantity Q, defined as the number of different ways that microscopic 
particles can be distributed among the "states" accessible to them. It is given by the general 
formula: 

where n is the total number of particles, and n l ,  nz, n3, etc., represent the numbers of particles 
in "states" 1,2,3, etc. The term "state" denotes the condition of the microscopic particles, and 
the quotation marks distinguish this idea of state from the usual thermodynamic meaning as 
applied to a macroscopic system. 

With respect to our example there are but two "states," representing location in one half 
or the other of the container. The total number of particles is NA molecules, and initially they 
are all in a single "state." Thus 

This result confirms that initially the molecules can be distributed between the two accessible 
"states" in just one way. They are all in a given "state," all in just one half of the container. For 
an assumed final condition of uniform distribution of the molecules between the two halves of 
the container, nl = n2 = NA/2 ,  and 
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This expression gives a very large number for Q2, indicating that the molecules can be 
distributed uniformly between the two "states" in many different ways. Many other values of 
Q2 are possible, each one of which is associated with a particular nonuniform distribution of 
the molecules between the two halves of the container. The ratio of a particular Q2 to the sum 
of all possible values is the probability of that particular distribution. 

The connection established by Boltzmann between entropy S and Q is given by the 
equation: 

S = klnQ (5.42) 

where k is Boltzmann's constant, equal to R / N A .  Integration between states 1 and 2 yields: 

Substituting values for Q1 and Q2 from our example into this expression gives: 

Since NA is very large, we take advantage of Stirling's formula for the logarithms of factorials 
of large numbers: 

lnX! = XlnX - X 

and as a result, 

This value for the entropy change of the expansion process is the same as that given by Eq. (5.14), 
the classical thermodynamic formula for ideal gases. 

Equations (5.41) and (5.42) are the basis for relating thermodynamic properties to sta- 
tistical mechanics (Sec. 16.4). 

PROBLEMS 

5.1. Prove that it is impossible for two lines representing reversible, adiabatic processes on 
a P V diagram to intersect. (Hint: Assume that they do intersect, and complete the cycle 
with a line representing a reversible, isothermal process. Show that performance of this 
cycle violates the second law.) 

5.2. A Carnot engine receives 250 kW of heat from a heat-source reservoir at 798.15 K 
(525°C) and rejects heat to a heat-sink reservoir at 323.15 K (50°C). What are the power 
developed and the heat rejected? 

5.3. The following heat engines produce power of 95 000 kW. Determine in each case the 
rates at which heat is absorbed from the hot reservoir and discarded to the cold reservoir. 

(a) A Carnot engine operates between heat reservoirs at 750 K and 300 K. 
(b) A practical engine operates between the same heat reservoirs but with a thermal 

efficiency r/ = 0.35. 
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5.4. A particular power plant operates with a heat-source reservoir at 623.15 K (350°C) and 
a heat-sink reservoir at 303.15 K (30°C). It has a thermal efficiency equal to 55% of the 
Carnot-engine thermal efficiency for the same temperatures. 

(a )  What is the thermal efficiency of the plant? 
(b )  To what temperature must the heat-source reservoir be raised to increase the thermal 

efficiency of the plant to 35%? Again 7 is 55% of the Carnot-engine value. 

5.5. An egg, initially at rest, is dropped onto a concrete surface; it breaks. Prove that the 
process is irreversible. In modeling this process treat the egg as the system, and assume 
the passage of sufficient time for the egg to return to its initial temperature. 

5.6. Which is the more effective way to increase the thermal efficiency of a Carnot engine: 
to increase TH with Tc constant, or to decrease Tc with TH constant? For a real engine, 
which would be the more practical way? 

5.7. Large quantities of liquefied natural gas (LNG) are shipped by ocean tanker. At the 
unloading port provision is made for vaporization of the LNG so that it may be delivered 
to pipelines as gas. The LNG arrives in the tanker at atmospheric pressure and 113.7 K, 
and represents a possible heat sink for use as the cold reservoir of a heat engine. For 
unloading of LNG as a vapor at the rate of 9000 m3 s-I, as measured at 298.15 K (25°C) 
and 1.0133 bar, and assuming the availability of an adequate heat source at 303.15 K 
(30°C), what is the maximum possible power obtainable and what is the rate of heat 
transfer from the heat source? Assume that LNG at 298.15 K (25°C) and 1.0133 bar 
is an ideal gas with the molar mass of 17. Also assume that the LNG vaporizes only, 
absorbing only its latent heat of 512 kJ kg-' at 113.7 K. 

5.8. With respect to 1 kg of liquid water: 

(a )  Initially at 273.15 K (O0C), it is heated to 373.15 K (100°C) by contact with a heat 
reservoir at 373.15 K (100°C). What is the entropy change of the water? Of the heat 
reservoir? What is AStota1? 

(b )  Initially at 273.15 K (O°C), it is first heated to 323.15 K (50°C) by contact with a 
heat reservoir at 323.15 K (50°C) and then to 373.15 K (100°C) by contact with a 
reservoir at 373.15 K (100°C). What is AStotal? 

( c )  Explain how the water might be heated from 273.15 K (0°C) to 373.15 K (100°C) 
SO that AStotal = 0.  

5.9. A rigid vessel of 0.06 m3 volume contains an ideal gas, Cy = (5 /2 )R ,  at 500 K and 
1 bar. 

(a )  If heat in the amount of 15 kJ is transferred to the gas, determine its entropy change. 
(b) If the vessel is fitted with a stirrer that is rotated by a shaft so that work in the amount 

of 15 kJ is done on the gas, what is the entropy change of the gas if the process is 
adiabatic? What is Astotal? What is the irreversible feature of the process? 

5.10. An ideal gas, C p  = (7 /2 )R ,  is heated in a steady-flow heat exchanger from 343.15 K 
to 463.15 K (70°C to 190°C) by another stream of the same ideal gas which enters at 
593.15 K (320°C). The flow rates of the two streams are the same, and heat losses from 
the exchanger are negligible. 
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(a) Calculate the molar entropy changes of the two gas streams for both parallel and 
countercurrent flow in the exchanger. 

(b) What is ASbtal in each case? 
(c) Repeat parts (a) and (b) for countercurrent flow if the heating stream enters at 

473.15 K (200°C). 

5.11. For an ideal gas with constant heat capacities, show that: 

(a) For a temperature change from TI to T2, AS of the gas is greater when the change 
occurs at constant pressure than when it occurs at constant volume. 

(b) For a pressure change from PI to P2, the sign of AS for an isothermal change is 
opposite that for a constant-volume change. 

5.12. For an ideal gas prove that: 

5.13. A Carnot engine operates between two finite heat reservoirs of total heat capacity C& 
and CL. 

(a) Develop an expression relating Tc to TH at any time. 
(b) Determine an expression for the work obtained as a function of CL, C i ,  TH, and 

the initial temperatures TH, and Tco. 
(c) What is the maximum work obtainable? This corresponds to infinite time, when the 

reservoirs attain the same temperature. 

In approaching this problem, use the differential form of Carnot's equation, 

and a differential energy balance for the engine, 

d W - d Q c - d Q ~ = 0  

Here, Qc and QH refer to the reservoirs. 

5.14. A Carnot engine operates between an infinite hot reservoir and ajnite cold reservoir of 
total heat capacity Ch. 

(a) Determine an expression for the work obtained as a function of C i ,  TH (= constant), 
Tc, and the initial cold-reservoir temperature Tco . 

(b) What is the maximum work obtainable? This corresponds to infinite time, when Tc 
becomes equal to TH. 

The approach to this problem is the same as for Pb. 5.13. 

5.15. A heat engine operating in outer space may be assumed equivalent to a Carnot engine 
operating between reservoirs at temperatures TH and Tc. The only way heat can be 
discarded from the engine is by radiation, the rate of which is given (approximately) by: 

4 
IQcl = kATc 

where k is a constant and A is the area of the radiator. Prove that, for fixed power 
output I W I  and for fixed temperature TH, the radiator area A is a minimum when the 
temperature ratio TcITH is 0.75. 
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5.16. Imagine that a stream of fluid in steady-state flow serves as a heat source for an infinite 
set of Carnot engines, each of which absorbs a differential amount of heat from the fluid, 
causing its temperature to decrease by a differential amount, and each of which rejects 
a differential amount of heat to a heat reservoir at temperature T,. As a result of the 
operation of the Carnot engines, the temperature of the fluid decreases from TI to T2. 
Equation (5.8) applies here in differential form, wherein r is defined as: 

where Q is heat transfer with respect to the flowing fluid. Show that the total work of 
the Carnot engines is given by: 

where AS and Q both refer to the fluid. In a particular case the fluid is an ideal gas, 
C p  = (7/2)R,  for which TI = 600 K and T2 = 400 K. If T, = 300 K ,  what is the value 
of W in J mol-'? How much heat is discarded to the heat reservoir at T,? What is the 
entropy change of the heat reservoir? What is AStota1? 

5.17. A Carnot engine operates between temperature levels of 600 K and 300 K. It drives 
a Carnot refrigerator, which provides cooling at 250 K and discards heat at 300 K. 
Determine a numerical value for the ratio of heat extracted by the refrigerator ("cooling 
load") to the heat delivered to the engine ("heating load"). 

5.18. An ideal gas with constant heat capacities undergoes a change of state from conditions 
T I ,  PI to conditions T2, P2. Determine AH ( J  mol-') and AS ( J  mol-' K-') for one of 
the following cases. 

(a )  Tl = 300 K,  PI = 1.2 bar, T2 = 450 K,  P2 = 6 bar, C p / R  = 712. 
(b)  Tl = 300 K ,  PI = 1.2 bar, T2 = 500 K ,  P2 = 6 bar, C p / R  = 712. 
(c)  Tl = 450 K ,  Pl = 10 bar, T2 = 300 K,  P2 = 2 bar, C p / R  = 512. 
( d )  TI = 400 K ,  PI = 6 bar, T2 = 300 K, P2 = 1.2 bar, C p / R  = 912. 
(e) Tl = 500 K ,  PI = 6 bar, T2 = 300 K, P2 = 1.2 bar, C p  / R  = 4. 

5.19. An ideal gas, C p  = (7/2)R and Cv = (5/2)R,  undergoes a cycle consisting of the 
following mechanically reversible steps: 

An adiabatic compression from P I,  V I ,  TI to PI, V2, T2. 

An isobaric expansion from P2, V2, T2 to P3 = P2, V3, T3. 
An adiabatic expansion from P3, V3, T3 to P4, V4, T4 
A constant-volume process from P4, V4, T4 to P I ,  VI  = V4, T I .  

Sketch this cycle on a P V diagram and determine its thermal efficiency if TI = 473.15 K 
(200°C), T2 = 773.15 K (500°C), T3 = 1973.15 K (1700°C), and T4 = 973.15 K 
(700°C). 

5.20. The infinite heat reservoir is an abstraction, often approximated in engineering applica- 
tions by large bodies of air or water. Apply the closed-system form of the energy balance 
[Eq. (2.3)] to such a reservoir, treating it as a constant-volume system. How is it that 
heat transfer to or from the reservoir can be nonzero, yet the temperature of the reservoir 
remains constant? 
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5.21. One mole of an ideal gas, Cp = (7/2)R and Cv = (5/2)R, is compressed adiabatically 
in a pistonlcylinder device from 2 bar and 298.15 K (25°C) to 7 bar. The process is 
irreversible and requires 35% more work than a reversible, adiabatic compression from 
the same initial state to the same final pressure. What is the entropy change of the gas? 

5.22. A mass m of liquid water at temperature TI is mixed adiabatically and isobarically with 
an equal mass of liquid water at temperature T2. Assuming constant Cp, show that 

and prove that this is positive. What would be the result if the masses of the water were 
dzrerent, say, m 1 and m2? 

5.23. Reversible adiabatic processes are isentropic. Are isentropic processes necessarily 
reversible and adiabatic? If so, explain why; if not, give an example illustrating the point. 

5.24. Prove that the mean heat capacities ( C P ) ~  and (CP)S are inherently positive, whether 
T > To or T < To. Explain why they are well defined for T = To. 

5.25. A reversible cycle executed by 1 mol of an ideal gas for which Cp = (5/2)R and 
Cv = (3/2)R consists of the following: 

Starting at Tl = 700 K and PI = 1.5 bar, the gas is cooled at constant pressure 
to T2 = 350 K. 
From 350 K and 1.5 bar, the gas is compressed isothermally to pressure P2. 

The gas returns to its initial state along a path for which P T  = constant. 

What is the thermal efficiency of the cycle? 

5.26. One mole of an ideal gas is compressed isothermally but irreversibly at 403.15 K 
(130°C) from 2.5 bar to 6.5 bar in a pistonlcylinder device. The work required is 30% 
greater than the work of reversible, isothermal compression. The heat transferred from 
the gas during compression flows to a heat reservoir at 298.15 K (25°C). Calculate the 
entropy changes of the gas, the heat reservoir, and AStotal. 

5.27. For a steady-flow process at approximately atmospheric pressure, what is the entropy 
change of the gas: 

(a) When 10 mol of SO2 is heated from 473.15 to 1373.15 K (200 to llOO°C)? 
(b) When 12 rnol of propane is heated from 523.15 to 1473.15 K (250 to 1200°C)? 

5.28. What is the entropy change of the gas, heated in a steady-flow process at approximately 
atmospheric pressure, 

(a)  When 800 kJ is added to 10 mol of ethylene initially at 473.15 K (200°C)? 
(b) When 2500 kJ is added to 15 mol of 1-butene initially at 533.15 K (260°C)? 
(c) When 1.055 GJ is added to 18.14 kmol of ethylene initially at 533.15 K (260°C)? 

5.29. A device with no moving parts provides a steady stream of chilled air at 
248.15 K (-25°C) and 1 bar. The feed to the device is compressed air at 298.15 K 
(25°C) and 5 bar. In addition to the stream of chilled air, a second stream of warm air 
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flows from the device at 348.15 K (75°C) and 1 bar. Assuming adiabatic operation, 
what is the ratio of chilled air to warm air that the device produces? Assume that air is 
an ideal gas for which C p  = (7/2)R. 

5.30. An inventor has devised a complicated nonflow process in which 1 mol of air is the 
working fluid. The net effects of the process are claimed to be: 

A change in state of the air from 523.15 K (250°C) and 3 bar to 353.15 K (80°C) 
and 1 bar. 

The production of 1800 J of work. 

The transfer of an undisclosed amount of heat to a heat reservoir at 303.15 K (30°C). 

Determine whether the claimed performance of the process is consistent with the 
second law. Assume that air is an ideal gas for which C p  = (7/2)R. 

5.31. Consider the heating of a house by a furnace, which serves as a heat-source reservoir at a 
high temperature TF.  The house acts as a heat-sink reservoir at temperature T ,  and heat 
I Q I must be added to the house during a particular time interval to maintain this tempera- 
ture. Heat I Q I can of course be transferred directly from the furnace to the house, as is the 
usual practice. However, a third heat reservoir is readily available, namely, the surround- 
ings at temperature T,, which can serve as another heat source, thus reducing the amount 
of heat required from the furnace. Given that TF = 810 K,  T = 295 K, T, = 265 K, and 

1 Q 1 = 1000 kJ, determine the minimum amount of heat I Q F  I which must be extracted 
from the heat-source reservoir (furnace) at TF . No other sources of energy are available. 

5.32. Consider the air conditioning of a house through use of solar energy. At a particular 
location experiment has shown that solar radiation allows a large tank of pressurized 
water to be maintained at 448.15 K (175°C). During a particular time interval, heat in 
the amount of 1500 W must be extracted from the house to maintain its temperature at 
297.15 K (24°C) when the surroundings temperature is 306.15 K (33°C). Treating the 
tank of water, the house, and the surroundings as heat reservoirs, determine the minimum 
amount of heat that must be extracted from the tank of water by any device built to 
accomplish the required cooling of the house. No other sources of energy are available. 

5.33. A refrigeration system cools a brine from 298.15 K to 258.15 K (25°C to -15°C) at 
the rate 20 kg s-'. Heat is discarded to the atmosphere at a temperature of 303.15 K 
(30°C). What is the power requirement if the thermodynamic efficiency of the system 
is 0.27? The specific heat of the brine is 3.5 kJ kgp1 K-'. 

5.34. An electric motor under steady load draws 9.7 amperes at 110 volts; it delivers 0.93 kW 
of mechanical energy. The temperature of the surroundings is 300 K. What is the total 
rate of entropy generation in W K-'? 

5.35. A 25-ohm resistor at steady state draws a current of 10 amperes. Its temperature is 
3 10 K; the temperature of the surroundings is 300 K. What is the total rate of entropy 
generation SG? What is its origin? 

5.36. Show how the general rate form of the entropy balance, Eq. (5.21), reduces to Eq. (5.19) 
for the case of a closed system. 
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5.37. A list of common unit operations follows: 

(a) Single-pipe heat exchanger; (6) Double-pipe heat exchanger; (c) Pump; 
(d) Gas compressor: (e) Gas turbine (expander) ; ( f )  Throttle valve: (g) Nozzle. 

Develop a simplified form of the general steady-state entropy balance appropriate to 
each operation. State carefully, and justify, any assumptions you make. 

5.38. Ten kmol per hour of air is throttled from upstream conditions of 298.15 K (25°C) 
and 10 bar to a downstream pressure of 1.2 bar. Assume air to be an ideal gas with 
Cp = (7/2)R. 

(a) What is the downstream temperature? 
(b) What is the entropy change of the air in J mol-' K-l? 
(c) What is the rate of entropy generation in W K-l? 
(d) If the surroundings are at 293.15 K (20°C), what is the lost work? 

5.39. A steady-flow adiabatic turbine (expander) accepts gas at conditions TI, PI, and 
discharges at conditions T2, P2. Assuming ideal gases, determine (per mole of gas) W, 
Wideal, WlOst, and SG for one of the following cases. Take T, = 300 K. 

(a)  Tl = 500 K, P1 = 6 bar, T2 = 371 K, P2 = 1.2 bar, Cp/R = 712. 
(b) TI = 450 K, PI = 5 bar, T2 = 376 K, P2 = 2 bar, Cp/R = 4. 
(c) TI = 525 K, P1 = 10 bar, T2 = 458 K, P2 = 3 bar, Cp/ R = 1 112. 
(d) TI = 475 K, PI = 7 bar, T2 = 372 K, P2 = 1.5 bar, Cp/R = 912. 
(e) TI = 550 K, P1 = 4 bar, T2 = 403 K, P2 = 1.2 bar, Cp/R = 512. 

5.40. Consider the direct heat transfer from a heat reservoir at TI to another heat reservoir at 
temperature T2, where TI > T2 > T,. It is not obvious why the lost work of this process 
should depend on T,, the temperature of the surroundings, because the surroundings 
are not involved in the actual heat-transfer process. Through appropriate use of the 
Carnot-engine formula, show for the transfer of an amount of heat equal to 1 Q 1 that 

5.41. An ideal gas at 2500 kPa is throttled adiabatically to 150 kPa at the rate of 20 mol s-'. 
Determine SG and wlOst if T, = 300 K. 

5.42. An inventor claims to have devised a cyclic engine which exchanges heat with reservoirs 
at 298.15 K to 523.15 K (25°C and 250°C), and which produces 0.45 kJ of work for 
each kJ of heat extracted from the hot reservoir. Is the claim believable? 

5.43. Heat in the amount of 150 kJ is transferred directly from a hot reservoir at TH= 550 K 
to two cooler reservoirs at TI = 350 K and T2 = 250 K. The surroundings temperatrue 
is T, = 300 K .  If the heat transferred to the reservoir at Tl is half that transferred to the 
reservior at T2, calculate: 

(a) The entropy generation in kJ K-' . 
(b) The lost work. 

How could the process be made reversible? 

5.44. A nuclear power plant generates 750 MW; the reactor temperature is 588.15 K (315°C) 
and a river with water temperature of 293.15 K (20°C) is available. 
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(a )  What is the maximum possible thermal efficiency of the plant, and what is the 
minimum rate at which heat must be discarded to the river? 

(b) If the actual thermal efficiency of the plant is 60% of the maximum, at what rate 
must heat be discarded to the river, and what is the temperature rise of the river if 
it has a flowrate of 165 m3 s-'? 

5.45. A single gas stream enters a process at conditions T I ,  P I ,  and leaves at pressure P2. The 
process is adiabatic. Prove that the outlet temperature T2 for the actual (irreversible) 
adiabatic process is greater than that for a reversible adiabatic process. Assume the gas 
is ideal with constant heat capacities. 



Chapter 6 

Thermodynamic Properties 
of Fluids 

The phase rule (Sec. 2.7) tells us that specification of a certain number of intensive properties of 
a system also fixes the values of all other intensive properties. However, the phase rule provides 
no information about how values for these other properties may be calculated. 

Numerical values for thermodynamic properties are essential to the calculation of heat 
and work quantities for industrial processes. Consider, for example, the work requirement of a 
compressor designed to operate adiabatically and to raise the pressure of a gas from PI to P2. 
This work is given by Eq. (2.33), wherein the small kinetic- and potential-energy changes of 
the gas are neglected: 

Thus, the shaft work is simply A H ,  the difference between initial and final values of the 
enthalpy. 

Our initial purpose in this chapter is to develop from the first and second laws the 
fundamental property relations which underlie the mathematical structure of thermodynamics. 
From these, we derive equations which allow calculation of enthalpy and entropy values from 
P V T  and heat-capacity data. We then discuss the diagrams and tables by which property values 
are presented for convenient use. Finally, we develop generalized correlations which provide 
estimates of property values in the absence of complete experimental information. 

6.1 PROPERTY RELATIONS FOR HOMOGENEOUS PHASES 

The first law for a closed system of n moles is: 

For the special case of a reversible process, 
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Equations (1.2) and (5.12) are here written: 

dW,, = - P  d ( n V )  d em = T 

Together these three equations give: 

where U ,  S ,  and V are molar values of the internal energy, entropy, and volume. 
This equation, combining the first and second laws, is derived for the special case of a 

reversible process. However, it contains only properties of the system. Properties depend on 
state alone, and not on the kind of process that leads to the state. Therefore, Eq. (6.1) is not 
restricted in application to reversible processes. However, the restrictions placed on the nature 
of the system cannot be relaxed. Thus Eq. (6.1) applies to any process in a system of constant 
mass that results in a differential change from one equilibrium state to another. The system 
may consist of a single phase (a homogeneous system), or it may be made up of several phases 
(a heterogeneous system); it may be chemically inert, or it may undergo chemical reaction. 

The only requirements are that the system be closed and that the 
change occur between equilibrium states. 
All of the primary thermodynamic properties-P, V ,  T, U ,  and S-are included in 

Eq. (6.1). Additional thermodynamic properties arise only by dejinition in relation to these 
primary properties. In Chap. 2 the enthalpy was defined as a matter of convenience by the 
equation: 

I H = U + P V ~  (2.1 1 )  

Two additional properties, also defined for convenience, are the Helmholtz energy, 

and the Gibbs energy, 

Each of these defined properties leads directly to an equation like Eq. (6.1). Upon multiplication 
by n ,  Eq. (2.11) becomes: 

Differentiation gives: 

When d(nU)  is replaced by Eq. (6. I), this reduces to: 

I d ( n H )  = T d(nS)  + ( n V ) d P  1 
Similarly, from Eq. (6.2), 

d ( n A )  = d(nU)  - T d(nS)  - (nS)dT 
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Eliminating d(nU) by Eq. (6.1) gives: 

In analogous fashion, Eqs. (6.3) and (6.4) combine to yield: 

Equations (6.4) through (6.6) are subject to the same restrictions as Eq. (6.1). All are written 
for the entire mass of any closed system. 

Our immediate application of these equations is to one mole (or to a unit mass) of a 
homogeneous fluid of constant composition. For this case, they simplify to: 

dU = T d S -  P d V  

d H  = T d S + V d P  

d A  = -PdV - S d T  

dG = V d P - S d T  

These fundamental property relations are general equations for a 
homogeneous fluid of constant composition. 
Another set of equations follows from Eqs. (6.7) through (6.10) by application of the 

criterion of exactness for a differential expression. If F = F(x, y), then the total differential 
of F is defined as: 

where 

By further differentiation, 

Since the order of differentiation in mixed second derivatives is immaterial, these equations 
combine to give: 

When F is a function of x and y, the right side of Eq. (6.11) is an exact dzfferential expression; 
since Eq. (6.12) must then be satisfied, it serves as a criterion of exactness. 
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The thermodynamic properties U ,  H, A, and G are known to be functions of the variables 
on the right sides of Eqs. (6.7) through (6.10); we may therefore write the relationship expressed 
by Eq. (6.12) for each of these equations: 

These are Maxwell's equations.' 
Equations (6.7) through (6.10) are the basis not only for derivation of the Maxwell 

equations but also of a large number of other equations relating thermodynamic properties. We 
develop here only a few expressions useful for evaluation of thermodynamic properties from 
experimental data. Their derivation requires application of Eqs. (6.7), (6.8), (6.15), and (6.16). 

Enthalpy and Entropy as Functions of T and P 

The most useful property relations for the enthalpy and entropy of a homogeneous phase result 
when these properties are expressed as functions of T and P. What we need to know is how 
H and S vary with temperature and pressure. This information is contained in the derivatives 
(aHlaT)p, (aS/aT)p, ( ~ H I ~ P ) T ,  and   as lap)^. 

Consider first the temperature derivatives. Equation (2.20) defines the heat capacity at 
constant pressure: 

Another expression for this quantity is obtained by division of Eq. (6.8) by d T  and restriction 
of the result to constant P :  

Combination of this equation with Eq. (2.20) gives: 

' ~ f t e r  James Clerk Maxwell (1831-1879), Scottish physicist 
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The pressure derivative of the entropy results directly from Eq. (6.16): 

The corresponding derivative for the enthalpy is found by division of Eq. (6.8) by d P  and 
restriction to constant T: 

As a result of Eq. (6.18) this becomes: 

The functional relations chosen here for H and S are: 

H = H ( T ,  P)  and S = S ( T ,  P) 

Whence, 

d P  and d S =  

The partial derivatives in these two equations are given by Eqs. (2.20) and (6.17) through (6.19): 

These are general equations relating the properties of homogeneous fluids of constant compo- 
sition to temperature and pressure. 

Internal Energy as a Function of P 

The pressure dependence of the internal energy is obtained by differentiation of the equation, 
U = H - P V :  

Then by Eq. (6.19), 
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The Ideal-Gas State 

The coefficients of dT and d P  in Eqs. (6.20) and (6.21) are evaluated from heat-capacity and 
P V T  data. The ideal-gas state provides an example of P V T behavior: 

Substituting these equations into Eqs. (6.20) and (6.21) reduces them to: 

where superscript "ig" denotes an ideal-gas value. These are merely restatements of equations 
for ideal gases presented in Secs. 3.3 and 5.5. 

Alternative Forms for Liquids 

Equations (6.18) through (6.20) are expressed in an alternative form by elimination of 
( a V / a T ) p  in favor of the volume expansivity /3 by Eq. (3.2) and of (aV/a  P)T in favor of 
the isothermal compressibility K by Eq. (3.3): 

These equations, incorporating B and K ,  although general, are usually applied only to liquids. 
However, for liquids not near the critical point, the volume itself is small, as are j3 and K.  Thus 
at most conditions pressure has little effect on the properties of liquids. The important special 
case of an incompressibleJluid (Sec. 3.1) is considered in Ex. 6.2. 

When ( a  V / a  T ) p  is replaced in Eqs. (6.20) and (6.21) in favor of the volume expansivity, 
they become: 

d H  = C p d T + ( l  - P T ) V d P  (6.28) 

Since B and V are weak functions of pressure for liquids, they are usually assumed constant 
at appropriate average values for integration of the final terms of Eqs. (6.28) and (6.29). 

Example 6.1 
Determine the enthalpy and entropy changes of liquid water for a change of state 
from 1 bar and 298.15 K (2.533) to 1000 bar and 323.15 K (50'C). The following data 
for water are available: 
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Internal Energy and Entropy as Functions of T and V 

Temperature and volume often serve as more convenient independent variables than do temper- 
ature and pressure. The most useful property relations are then for internal energy and entropy. 
Required here are the derivatives ( a U / a T ) V ,  ( ~ U / ~ V ) T ,  (aS /aT)" ,  and (asla V ) r .  The first 
two of these follow directly from Eq. (6.7): 

With Eq. (2.16) the first of these becomes: 

With Eq. (6.15) the second becomes: 

The chosen functional relations here are: 

Whence, 

dV and d S =  
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The partial derivatives in these two equations are given by Eqs. (2.16), (6.30), (6.31), 
and (6.15): 

These are general equations relating the internal energy and entropy of homogeneous fluids of 
constant composition to temperature and volume. 

Equation (3.4) applied to a change of state at constant volume becomes: 

Alternative forms of Eqs. (6.32) and (6.33) are therefore: 
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The Gibbs Energy as a Generating Function 

The fundamental property relations for homogeneous fluids of constant composition given by 
Eqs. (6.7) through (6.10) show that each of the thermodynamic properties U ,  H, A, and G  is 
functionally related to a special pair of variables. In particular, 

d G =  V d P - S d T  (6.10) 

expresses the functional relation: 

Thus the special, or c~nonica l ,~  variables for the Gibbs energy are temperature and pressure. 
Since these variables can be directly measured and controlled, the Gibbs energy is a thermo- 
dynamic property of great potential utility. 

An alternative form of Eq. (6.10), a fundamental property relation, follows from the 
mathematical identity: 

'canonical here means that the variables conform to a general mle that is both simple and clear 



196 CHAPTER 6. Thermodynamic Properties of Fluids 

Substitution for dG by Eq. (6.10) and for G by Eq. (6.3) gives, after algebraic reduction: 

The advantage of this equation is that all terms are dimensionless; moreover, in contrast to 
Eq. (6. lo), the enthalpy rather than the entropy appears on the right side. 

Equations such as Eqs. (6.10) and (6.37) are too general for direct practical application, 
but they are readily applied in restricted form. Thus, from Eq. (6.37), 

When GIRT is known as a function of T and P ,  VIRT and HIRT follow by simple differ- 
entiation. The remaining properties are given by defining equations. In particular, 

S H G  - - - 
U H PV 

and A 

R RT RT RT RT RT 

Thus, when we know how GIRT (or G) is related to its canonical variables, T and P ,  i.e., 
when we are given GIRT = g(T ,  P), we can evaluate all other thermodynamic properties by 
simple mathematical operations. 

The Gibbs energy when given as a function of T and P therefore 
serves as a generating function for the other thermodynamic prop- 
erties, and implicitly represents complete property information. 

Just as Eq. (6.10) leads to expressions for all thermodynamic properties, so Eq. (6.9) 
leads directly to the equations which connect thermodynamic properties to statistical mechanics 
(Sec. 16.4). 

6.2 RESIDUAL PROPERTIES 

Unfortunately, no experimental method for the direct measurement of numerical values of G 
or GIRT is known, and the equations which follow directly from the Gibbs energy are of 
little practical use. However, the concept of the Gibbs energy as a generating function for other 
thermodynamic properties carries over to a closely related property for which numerical values 
are readily obtained. Thus, by dejinition the residual Gibbs energy is: 

where G and Gig are the actual and the ideal-gas values of the Gibbs energy at the same 
temperature and pressure. Other residual properties are defined in an analogous way. The 
residual volume, for example, is: 
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Since V = Z R T I P ,  the residual volume and the compressibility factor are related: 

The definition for the generic residual property is: 

where M is the molar value of any extensive thermodynamic property, e.g., V, U ,  H ,  S ,  or 
G.  Note that M and Mig,  the actual and ideal-gas properties, are at the same temperature and 
pressure. 

Equation (6.37), written for the special case of an ideal gas, becomes: 

Subtracting this equation from Eq. (6.37) itself gives: 

This fundamental property relation for residual properties applies to fluids of constant com- 
position. Useful restricted forms are: 

and 

In addition, the defining equation for the Gibbs energy, G = H - T S ,  may also be written for 
the special case of an ideal gas, Gig = Hig - T S ~ ~ ;  by difference, 

G R  = f f R  - ~ , ' j ' ~  

The residual entropy is therefore: 

Thus the residual Gibbs energy serves as a generating function for the other residual properties, 
and here a direct link with experiment does exist. It is provided by Eq. (6.43), written: 

(const T) 

Integration from zero pressure to arbitrary pressure P yields: 
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where at the lower limit G ~ / R T  is equal to zero because the zero-pressure state is an ideal-gas 
state. In view of Eq. (6.40): 

Differentiation of Eq. (6.46) with respect to temperature in accord with Eq. (6.44) gives: 

az d~ I % = - T ~  (E),P (const T )  

The residual entropy is found by combination of Eqs. (6.45) through (6.47): 

The compressibility factor is defined as Z = P V / R T ;  values of Z and of (a Z/a T ) p  therefore 
come from experimental P V T  data, and the two integrals in Eqs. (6.46) through (6.48) are 
evaluated by numerical or graphical methods. Alternatively, the two integrals are evaluated 
analytically when Z is expressed as a function of T and P by a volume-explicit equation of 
state. Thus, given P V T  data or an appropriate equation of state, we can evaluate H R  and sR 
and hence all other residual properties. It is this direct connection with experiment that makes 
residual properties essential to the practical application of thermodynamics. 

Applied to the enthalpy and entropy, Eq. (6.41) is written: 

H = fyig + f f R  and s = s i p  + sR 

Thus, H and S follow from the corresponding ideal-gas and residual properties by simple 
addition. General expressions for Hig and s i g  are found by integration of Eqs. (6.23) and 
(6.24) from an ideal-gas state at reference conditions To and Po to the ideal-gas state at T and 
P : ~  

T d T  P 
Hip  = H$ + lo C$ d~ and sip = S? + lo c"- - R ln - 

T Po 

Substitution into the preceding equations gives: 

3~hermodynamic properties for organic compounds in the ideal-gas state are given by M. Frenkel, G. J. Kabo, 
K. N. Marsh, G. N. Roganov, and R. C. Wilhoit, Thermodynamics of Organic Compounds in the Gas State, Thermo- 
dynamics Research Center, Texas A & M Univ. System, College Station, Texas, 1994. 
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Recall (Secs. 4.1 and 5.5) that for purposes of computation the integrals in Eqs. (6.49) and 
(6.50) are represented by: 

and 

Equations (6.49) and (6.50) may be expressed alternatively to include the mean heat capacities 
introduced in Secs. 4.1 and 5.5: 

where H~ and S R  are given by Eqs. (6.47) and (6.48). Again, for computational purposes, the 
mean heat capacities are represented by: 

Since the equations of thermodynamics which derive from the first and second laws do not 
permit calculation of absolute values for enthalpy and entropy, and since in practice only 
relative values are needed, the reference-state conditions To and Po are selected for conve- 
nience, and values are assigned to H? and S: arbitrarily. The only data needed for application 
of Eqs. (6.51) and (6.52) are ideal-gas heat capacities and P V T  data. Once V ,  H, and S 
are known at given conditions of T and P ,  the other thermodynamic properties follow from 
defining equations. 

The true worth of the equations for ideal gases is now evident. They 
are important because they provide a convenient base for the calcu- 
lation of real-gas properties. 

Residual properties have validity for both gases and liquids. However, the advantage of 
Eqs. (6.49) and (6.50) in application to gases is that H~ and SR, the terms which contain all 
the complex calculations, are residuals that generally are quite small. They have the nature of 
corrections to the major terms, Hig and S'g. For liquids, this advantage is largely lost, because 
H~ and sR must include the large enthalpy and entropy changes of vaporization. Property 
changes of liquids are usually calculated by integrated forms of Eqs. (6.28) and (6.29), as 
illustrated in Ex. 6.1. 
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Table 6.1 Compressibility Factors Z for lsobutane 
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By Eq. (6.44), 

Substitution of Eqs. (6.53) and (6.54) into Eq. (6.45) gives: 

Evaluation of residual enthalpies and residual entropies by Eqs. (6.54) and (6.55) is straight- 
forward for given values of T ,  P ,  and composition, provided one has sufficient data to evaluate 
B and d B / d T .  The range of applicability of these equations is the same as for Eq. (3.37), as 
discussed in Sec. 3.4. 

Equations (6.46) through (6.48) are incompatible with pressure-explicit equations of 
state, and must be transformed to make V (or density p) the variable of integration. In application 
p is a more convenient variable than V ,  and the equation, PV = Z R T ,  is written in the 
alternative form, 

P = ZpRT (6.56) 

Differentiation at constant T gives: 

d P = R T ( Z  dp + p d Z )  (const T )  

In combination with Eq. (6.56), this equation is recast: 

d P  dp d Z  
- = - + - (const T )  
P P Z  

Upon substitution for d P I P ,  Eq. (6.46) becomes: 

where the integral is evaluated at constant T. Note also that p -+ 0 when P + 0 .  
The corresponding equation for H~ follows from Eq. (6.42), which in view of Eq. (6.40) 

may be written: 

Division by d T  and restriction to constant p yields: 
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Differentiation of Eq. (6.56) provides the first derivative on the right, and differentiation of 
Eq. (6.57) provides the second. Substitution leads to: 

The residual entropy is found from Eq. (6.45). 
The three-term virial equation, Eq. (3.39) is the simplest pressure-explicit equation of 

state: 

z - 1 = B~ +cp2 
Substitution into Eqs. (6.57) and (6.58) leads to: 

Application of these equations, useful for gases up to moderate pressures, requires data for 
both the second and third virial coefficients. 

Residual Properties by Cubic Equations of State 

Equations of some generality result from application of the generic cubic equation of state 
given by Eq. (3.41): 

Derivations with this equation are much more convenient when it is recast to yield Z with 
density p as the independent variable. We therefore divide Eq. (3.41) through by pRT and 
substitute V = l l p .  The result after some alegbraic reduction is: 

where by definition, 
a ( T )  q r -  
bRT 

The two quantities needed for evaluation of the integrals, Z - 1 in Eq. (6.57) and ( a Z / a T ) ,  
in Eq. (6.58), are readily found from this equation: 
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The integrals of Eqs. (6.57) and (6.58) are now evaluated as follows: 

These two equations simplify to: 

dp l p ( Z  - 1) = - ln(1 - pb) - qZ and 
d T  

where by definition, 

P d(pb) 
(1 + rpb)(l + apb) 

(const T) 

The generic equation of state presents two cases for the evaluation of this integral: 

Case I: E # a 
1 1 + opb 

I = - ln (---) 
a - r  l + r p b  

Application of this and subsequent equations is simpler when p is eliminated in favor of Z. By 
Eq. (3.47) and the definition of Z: 

Case 11: E = g 

whence 

1 Z + a B  
I = - ln (-) 

o - r  Z + r B  

The van der Waals equation is the only one considered here to which Case I1 applies, and this 
equation then reduces to I = ,612. 

With evaluation of the integrals, Eqs. (6.57) and (6.58) reduce to: 

and 

By Eq. (6.45), 
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The quantity Tr(dq/dTr)  is readily found from Eq. (3.51): 

Substitution for this quantity in the preceding two equations yields: 

Preliminary to application of these equations one must find Z by solution of Eq. (3.49) for a 
vapor phase or Eq. (3.53) for a liquid phase. 



6.4. Two-Phase Svstems 207 

6.4 TWO-PHASE SYSTEMS 

The curves shown on the P T diagram of Fig. 3.1 represent phase boundaries for a pure sub- 
stance. A phase transition at constant temperature and pressure occurs whenever one of these 
curves is crossed, and as a result the molar or specific values of the extensive thermodynamic 
properties change abruptly. Thus the molar or specific volume of a saturated liquid is very 
different from the molar or specific volume of saturated vapor at the same T and P. This is 
true as well for internal energy, enthalpy, and entropy. The exception is the molar or specific 
Gibbs energy, which for a pure species does not change during a phase transition such as 
melting, vaporization, or sublimation. Consider a pure liquid in equilibrium with its vapor in 
a pistonlcylinder arrangement at temperature T and the corresponding vapor pressure P Sat. 

When a differential amount of liquid is caused to evaporate at constant temperature and pres- 
sure, Eq. (6.6) applied to the process reduces to d(nG) = 0. Since the number of moles n 
is constant, dG = 0, and this requires the molar (or specific) Gibbs energy of the vapor to 
be identical with that of the liquid. More generally, for two phases a, and B of a pure species 
coexisting at equilibrium, 

G" = G B  (6.66) 

where Ga and GB are the molar or specific Gibbs energies of the individual phases. 
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The Clapeyron equation, first introduced in Sec. 4.2, follows from this equality. If the 
temperature of a two-phase system is changed, then the pressure must also change in accord 
with the relation between vapor pressure and temperature if the two phases continue to coexist 
in equilibrium. Since Eq. (6.66) applies throughout this change, 

Substituting expressions for dG

ff 

and dGB as given by Eq. (6.10) yields: 

V f f d P S a t  - S f f d T  = v B d p s a t  - S B ~ T  

which upon rearrangement becomes: 

The entropy change ASaB and the volume change A vffB are the changes which occur when a 
unit amount of a pure chemical species is transferred from phase a! to phase B at the equilibrium 
temperature and pressure. Integration of Eq. (6.8) for this change yields the latent heat of phase 
transition: 

AH@ = T  AS"^ (6.67) 

Thus, AS"B = A H ~ B /  T ,  and substitution in the preceding equation gives: 

which is the Clapeyron equation. For the particularly important case of phase transition from 
liquid I to vapor v, it is written 
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Temperature Dependence of the Vapor Pressure of Liquids 

The Clapeyron equation is an exact thermodynamic relation, providing a vital connection 
between the properties of different phases. When applied to the calculation of latent heats 
of vaporization, its use presupposes knowledge of the vapor pressure-vs.-temperature relation. 
Since thermodynamics imposes no model of material behavior, either in general or for particular 
species, such relations are empirical. As noted in Ex. 6.5, a plot of In P Sat vs. 1/ T generally 
yields a line that is nearly straight: 

where A and B are constants for a given species. This equation gives a rough approximation 
of the vapor-pressure relation for the entire temperature range from the triple point to the 
critical point. Moreover, it provides an excellent basis for interpolation between values that are 
reasonably spaced. 

The Antoine equation, which is more satisfactory for general use, has the form: 

A principal advantage of this equation is that values of the constants A, B, and C are readily 
available for a large number of species.5 Each set of constants is valid for a specified temperature 
range, and should not be used outside of that range. 

The accurate representation of vapor-pressure data over a wide temperature range requires 
an equation of greater complexity. The Wagner equation is one of the best available; it expresses 
the reduced vapor pressure as a function of reduced temperature: 

where t = l - T ,  

and A, B, C, and D are constants. Values of the constants either for this equation or for 
Eq. (6.71) are given by Reid, Prausnitz, and poling6 for many species. 

's. Ohe, Computer Aided Data Book of Vapor Pressure, Data Book Publishing Co.,Tokyo, 1976; T. Boublik, 
V. Fried, and E. Hala, The Vapor Pressures of Pure Substances, Elsevier, Amsterdam, 1984. 

6 ~ .  C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed., App. A, McGraw-Hill, 
1987. 
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Two-Phase LiquidIVapor Systems 

When a system consists of saturated-liquid and saturated-vapor phases coexisting in equilib- 
rium, the total value of any extensive property of the two-phase system is the sum of the total 
properties of the phases. Written for the volume, this relation is: 

nV = nlv" n U v U  

where V is the system volume on a molar basis and the total number of moles is n = n1 + nu.  
Division by n gives: 

where x 2  and x u  represent the fractions of the total system that are liquid and vapor. Since 
X I  = 1 - x u ,  

In this equation the properties V ,  v', and V U  may be either molar or unit-mass values. The 
mass or molar fraction of the system that is vapor x u  is called the quality. Analogous equations 
can be written for the other extensive thermodynamic properties. All of these relations are 
represented by the generic equation: 

where M represents V ,  U ,  H, S ,  etc. An alternative form is sometimes useful: 

M = M' + x U ~ M z U  (6.73b) 

6.5 THERMODYNAMIC DIAGRAMS 

A thermodynamic diagram represents the temperature, pressure, volume, enthalpy, and entropy 
of a substance on a single plot. (Sometimes data for all these variables are not included, but the 
term still applies.) The most common diagrams are: temperaturelentropy, pressurelenthalpy 
(usually In P vs. H), and enthalpylentropy (called a Mollier diagram). The designations refer 
to the variables chosen for the coordinates. Other diagrams are possible, but are seldom used. 

Figures 6.2 through 6.4 show the general features of the three common diagrams. These 
figures are based on data for water, but their general character is the same for all substances. 
The two-phase states, which fall on lines in the P T diagram of Fig. 3.1, lie over areas in these 
diagrams, and the triple point of Fig. 3.1 becomes a line. When lines of constant quality are 
shown in the liquidlvapor region, property values for two-phase mixtures are read directly from 
the diagram. The critical point is identified by the letter C ,  and the solid curve passing through 
this point represents the states of saturated liquid (to the left of C )  and of saturated vapor (to 
the right of C) .  The Mollier diagram (Fig. 6.4) does not usually include volume data. In the 
vapor or gas region, lines for constant temperature and constant superheat appear. Superheat 
is a term used to designate the difference between the actual temperature and the saturation 
temperature at the same pressure. Thermodynamic diagrams included in this book are the P H 
diagrams for methane and tetrafluoroethane in App. G, and the Mollier diagram for steam on 
the inside of the back cover. 

Paths of processes are easily traced on a thermodynamic diagram. For example, consider 
the operation of the boiler in a steam power plant. The initial state is liquid water at a temperature 
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Figure 6.2 PH diagram Figure 6.3 TS diagram 

Figure 6.4 Mollier diagram 
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below its boiling point; the final state is steam in the superheat region. Water enters the boiler and 
is heated at constant pressure (line 1-2 in Figs. 6.2 and 6.3) to its saturation temperature. From 
point 2 to point 3 the water vaporizes, the temperature remaining constant during the process. 
As more heat is added, the steam becomes superheated along line 3 4 .  On a pressurelenthalpy 
diagram (Fig. 6.2) the whole process is represented by a horizontal line corresponding to the 
boiler pressure. Since the compressibility of a liquid is small for temperatures well below T,, 
the properties of liquids change very slowly with pressure. Thus on a TS diagram (Fig. 6.3), 
the constant-pressure lines in the liquid region lie very close together, and line 1-2 nearly 
coincides with the saturated-liquid curve. 

A reversible adiabatic process is isentropic and is therefore represented on a T S diagram 
by a vertical line. Hence the path followed by the fluid in reversible adiabatic turbines and 
compressors is simply a vertical line from the initial pressure to the final pressure. This is also 
true on the HS or Mollier diagram. 

6.6 TABLES OF THERMODYNAMIC PROPERTIES 

In many instances thermodynamic properties are reported in tables. The advantage is that data 
can be presented more precisely than in diagrams, but the need for interpolation is introduced. 

Thermodynamic tables for saturated steam from its normal freezing point to the critical 
point and for superheated steam over a substantial pressure range, in SI units, appear in App. F. 
Values are given at intervals close enough that linear interpolation is satisfactory. (Procedures for 
linear interpolation are shown at the beginning of App. F.) The first table for each system of units 
presents the equilibrium properties of saturated liquid and saturated vapor at even increments of 
temperature. The enthalpy and entropy are arbitrarily assigned values of zero for the saturated 
liquid state at the triple point. The second table is for the gas region, and gives properties of 
superheated steam at temperatures higher than the saturation temperature for a given pressure. 
Volume, internal energy, enthalpy, and entropy are tabulated as functions of pressure at various 
temperatures. The steam tables are the most thorough compilation of properties for any single 
material. However, tables are available for a number of other  substance^.^ 

7 ~ a t a  for many common chemicals are given by R. H. Perry and D. Green, Perry's Chemical Engineers' Handbook, 
7th ed., Sec. 2, McGraw-Hill, New York, 1996. See also N. B. Vargaftik, Handbook of Physical Properties of Liquids 
and Gases, 2d ed., Hemisphere Publishing Corp., Washington, DC, 1975. Data for refrigerants appear in the ASHRAE 
Handbook: Fundamentals, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, 
1993. 
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Then, since H: = H: and H:' = H y ,  

(m2H2)t3nk = (1250.65)(415).1) + (0.1 16)(2676.0) = 524 458 kJ 

Substitution of appropriate values into the equation for Q gives: 

Q = 524 458 - 21 1 616 - (750)(293.0) = 93 092 W 

6.7 GENERALIZED PROPERTY CORRELATIONS FOR GASES 

Of the two kinds of data needed for evaluation of thermodynamic properties, heat capacities 
and P V T  data, the latter are most frequently missing. Fortunately, the generalized methods 
developed in Sec. 3.6 for the compressibility factor are also applicable to residual properties. 

Equations (6.47) and (6.48) are put into generalized form by substitution of the relation- 
ships: 

The resulting equations are: 

The terms on the right sides of these equations depend only on the upper limit Pr of the integrals 
and on the reduced temperature at which they are evaluated. Thus, values of H R / ~ ~ c  and S ~ / R  
may be determined once and for all at any reduced temperature and pressure from generalized 
compressibility-factor data. 

The correlation for Z is based on Eq. (3.54): 

Differentiation yields: 

Substitution for Z and (aZ/aTr)pr  in Eqs. (6.74) and (6.75) gives: 
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The first integrals on the right sides of these two equations may be evaluated numerically or 
graphically for various values of T, and P, from the data for 2' given in Tables E.l and E.3, 
and the integrals which follow w in each equation may be similarly evaluated from the data for 
2' given in Tables E.2 and E.4. Alternatively, their evaluation may be based on an equation of 
state (Sec. 6.3); Lee and Kesler used a modified form of the BenedictIWebbRubin equation of 
state to extend their generalized correlation to residual properties. 

If the first terms on the right sides of the preceding equations (including the minus signs) 
are represented by ( H ~ ) ~ / R T ,  and (sR)O/R and if the terms which follow w, together with the 
preceding minus signs, are represented by (HR)' /RT, and (SR)' /R, then: 

Calculated values of the quantities (HR)O/RTC, ( H ~ ) ~ / R T ~ ,  (sR)O/R, and (sR)'/R as deter- 
mined by Lee and Kesler are given as functions of T,. and P, in Tables E.5 through E.12. 
These values, together with Eqs. (6.76) and (6.77), allow estimation of residual enthalpies and 
entropies on the basis of the three-parameter corresponding-states principle as developed by 
Lee and Kesler (Sec. 3.6). Calculated values of 2 ,  HR,  and sR for n-butane at 500 K and 50 bar 
based on the LeeIKesler correlations are included in Table 6.3. 

Tables E.5 and E.6 for (H~)O/RT, and Tables E.9 and E.10 for (s~)'/R, used alone, 
provide two-parameter corresponding-states correlations that quickly yield coarse estimates of 
the residual properties. The nature of these correlations is indicated by Fig. 6.5, which shows 
a plot of (HR)O/R~, VS. P, for six isotherms. 
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As with the generalized compressibility-factor correlation, the complexity of the func- 
tions ( H ~ ) O /  RTC, ( H  R ) l  / R  T ~ ,  (sR)O/ R,  and (SR)'  / R  precludes their general representation 
by simple equations. However, the generalized second-virial-coefficient correlation valid at low 
pressures forms the basis for analytical correlations of the residual properties. The equation 
relating B to the functions B0 and B1 is derived in Sec. 3.6: 

g ves: Since B ,  BO,  and B' are functions of temperature only, differentiation with respect to T i 

Equations (6.54) and (6.55) may be written: 

Combining each of these equations with the previous equation yields after reduction: 

The dependence of B0 and B1 on reduced temperature is given by Eqs. (3.61) and (3.62). 
Differentiation of these equations provides expressions for d B O / d ~ ,  and d B ' / d ~ , .  Thus the 
equations required for application of Eqs. (6.78) and (6.79) are: 

Figure 3.15, drawn specifically for the compressibility-factor correlation, is also used as a 
guide to the reliability of the correlations of residual properties based on generalized sec- 
ond virial coefficients. However, all residual-property correlations are less precise than the 
compressibility-factor correlations on which they are based and are, of course, least reliable 
for strongly polar and associating molecules. 

The generalized correlations for H R  and sR, together with ideal-gas heat capacities, 
allow calculation of enthalpy and entropy values of gases at any temperature and pressure by 
Eqs. (6.49) and (6.50). For a change from state I to state 2, write Eq. (6.49) for both states: 

H2 = Hig + c c $ ~ T + H :  and H l = H $ + l : C b g d T + H f  
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The enthalpy change for the process, A H  = Hz - H I ,  is the difference between these two 
equations: 

Similarly, by Eq. (6.50), 

Again these equations may be written in alternative form: 

Just as we have given names to functions used in evaluation of the integrals in Eqs. (6.82) and 
(6.83) and the mean heat capacities in Eqs. (6.84) and (6.85), so also do we name functions 
useful for evaluation of H R  and SR.  Equations (6.78), (3.61), (6.80), (3.62), and (6.81) together 
provide a function for the evaluation of H R /  RT,, named HRB(TR, PR,OMEGA): 

A numerical value of H~ is therefore represented by: 

RTc x HRB(TR,PR,OMEGA) 

Similarly, Eqs. (6.79) through (6.81) provide a function for the evaluation of s R / R ,  named 
SRB(TR,PR,OMEGA): 

A numerical value of SR is therefore represented by: 

R x SRB(TR,PR,OMEGA) 

Computer programs for evaluating these functions are given in App. D. 
The terms on the right sides of Eqs. (6.82) through (6.85) are readily associated with 

steps in a calculationalpath leading from an initial to a final state of a system. Thus, in Fig. 6.6, 
the actual path from state 1 to state 2 (dashed line) is replaced by a three-step calculational 
path: 

Step 1 -+ l'g: A hypothetical process that transforms a real gas into an ideal gas at TI 
and PI .  The enthalpy and entropy changes for this process are: 

~ f g  - H I - - H ~  - and S ; " - S 1 = - S 1  R 



Step l i g  -+ 2ig: Changes in the ideal-gas state from ( T I ,  P I )  to (T2, P2). For this process, 

Step 2'" 2: Another hypothetical process that transforms the ideal gas back into a real 
gas at T2 and Pz. Here, 

H2 - H? = H; s2 - s? = st 
Equations (6.82) and (6.83) result from addition of the enthalpy and entropy changes for the 
three steps. 
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Extension to Gas Mixtures 

Although no theoretical basis exists for extension of generalized correlations to mixtures, 
approximate results for mixtures can often be obtained withpseudocriticalparameters resulting 
from simple linear mixing rules according to the definitions: 

The values so obtained are the mixture w and pseudocritical temperature and pressure, T,, and 
P,,, which replace T, and P, to define pseudoreduced parameters: 

These replace T, and P, for reading entries from the tables of App. E, and lead to values of Z 
by Eq. (3.54), H~/RT,,  by Eq. (6.76), and SR/R by Eq. (6.77). 
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PROBLEMS 

6.1. Starting with Eq. (6.8), show that isobars in the vapor region of a Mollier ( H S )  diagram 
must have positive slope and positive curvature. 

6.2. (a)  Making use of the fact that Eq. (6.20) is an exact differential expression, show that: 

What is the result of application of this equation to an ideal gas? 
(b) Heat capacities Cv and C p  are defined as temperature derivatives respectively of U 

and H .  Because these properties are related, one expects the heat capacities also to 
be related. Show that the general expression connecting C p  to Cv is: 

Show that Eq. (B) of Ex. 6.2 is another form of this expression. 

6.3. If U is considered a function of T and P ,  the "natural" heat capacity is neither Cv nor 
C p  , but rather the derivative (d U / a  T ) p .  Develop the following connections between 
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(aU/aT)p ,  Cp ,  and C V :  

To what do these equations reduce for an ideal gas? For an incompressible liquid? 

6.4. The P V T behavior of a certain gas is described by the equation of state: 

where b is a constant. If in addition Cv is constant, show that: 

(a )  U is a function of T only. 
(b )  y = const. 
( c )  For a mechanically reversible process, P ( V  - b)Y = const. 

6.5. A pure fiuid is described by the canonical equation of state: G = r ( T )  + RT In P ,  
where T ( T )  is a substance-specific function of temperature. Determine for such a fluid 
expressions for V, S ,  H ,  U ,  C p ,  and Cv.  These results are consistent with those for an 
important model of gas-phase behavior. What is the model? 

6.6. A pure fluid, described by the canonical equation of state: G = F(T)+ K P, where F ( T )  
is a substance-specific function of temperature and K is a substance-specific constant. 
Determine for such a fluid expressions for V, S ,  H ,  U ,  Cp ,  and Cv.  These results 
are consistent with those for an important model of liquid-phase behavior. What is the 
model? 

6.7. Estimate the change in enthalpy and entropy when liquid ammonia at 270 K is com- 
pressed from its saturation pressure of 38 1 Wa to 1200 Wa. For saturated liquid ammonia 
at 270 K, V' = 1.551 x m3 kg-', and B = 2.095 x lop3  K-'. 

6.8. Liquid isobutane is throttled through a valve from an initial state of 360 K and 4000 kPa 
to a final pressure of 2000 kPa. Estimate the temperature change and the entropy change 
of the isobutane. The specific heat of liquid isobutane at 360 K is 2.78 J g-' "c-'. 
Estimates of V and /3 may be found from Eq. (3.63). 

6.9. One kilogram of water (Vl = 1003 cm3 kg-') in a piston/cylinder device at 298.15 
K (25°C) and 1 bar is compressed in a mechanically reversible, isothermal process to 
1500 bar. Determine Q ,  W, AU,  A H ,  and AS given that /3 = 250 x lop6 K-' and 
K =45  x lop6 bar-'. 

6.10. Liquid water at 298.15 K (25°C) and 1 bar fills a rigid vessel. If heat is added to the wat er 
until its temperature reaches 323.15 K (50°C), what pressure is developed? The average 
value of ,6 between 298.15 to 323.15 K (25 and 50°C) is 36.2 x K-l. The value of 
K at 1 bar and 323.15 K (50°C) is 4.42 x bar-', and may be assumed independent 
of P. The specific volume of liquid water at 298.15 K (25°C) is 1.0030 cm3 g-'. 

6.11. Determine expressions for G ~ ,  H ~ ,  and S R implied by the three-term virial equation in 
volume, Eq. (3.39). 
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6.12. Determine expressions for GR, H ~ ,  and SR implied by the van der Waals equation of 
state, Eq. (3.34). 

6.13. Determine expressions for G ~ ,  H ~ ,  and sR implied by the Dieterici equation: 

Here, parameters a and b are functions of composition only. 

6.14. Calculate Z, H ~ ,  and sR by the RedlichIKwong equation for one of the following, and 
compare results with values found from suitable generalized correlations: 

(a) Acetylene at 300 K and 40 bar. 

(b) Argon at 175 K and 75 bar. 

(c) Benzene at 575 K and 30 bar. 

(d) n-Butane at 500 K and 50 bar. 

(e) Carbon dioxide at 325 K and 60 bar. 

( f )  Carbon monoxide at 175 K and 60 bar. 

(g) Carbon tetrachloride at 575 K and 35 bar. 

(h)  Cyclohexane at 650 K and 50 bar. 

(i) Ethylene at 300 K and 35 bar. 

('j) Hydrogen sulfide at 400 K and 70 bar. 

(k) Nitrogen at 150 K and 50 bar. 

(1) n-Octane at 575 K and 15 bar. 

(m) Propane at 375 K and 25 bar. 

(n) Propylene at 475 K and 75 bar. 

6.15. Calculate Z, HR,  and sR by the Soave/Redlich/Kwong equation for the substance and 
conditions given by one of the parts of Pb. 6.14, and compare results with values found 
from suitable generalized correlations. 

6.16. Calculate Z, HR,  and sR by the PengIRobinson equation for the substance and conditions 
given by one of the parts of Pb. 6.14, and compare results with values found from suitable 
generalized correlations. 

6.17. Estimate the entropy change of vaporization of benzene at 323.15 K (50°C). The vapor 
pressure of benzene is given by the equation: 

(a) Use Eq. (6.69) with an estimated value of A v'". 
(b) Use the Clausius/Clapeyron equation of Ex. 6.5. 

6.18. Let PIsat and PZsat be values of the saturation vapor pressure of a pure liquid at absolute 
temperatures TI and Tz. Justify the following interpolation formula for estimation of the 
vapor pressure P Sat at intermediate temperature T: 
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6.19. Assuming the validity of Eq. (6.70), derive Edmister's formula for estimation of the 
acentric factor: 

where 13 - T,/T,, T, is the normal boiling point, and PC is in atm 

6.20. Very pure liquid water can be subcooled at atmospheric pressure to temperatures well 
below 273.15 K (0°C). Assume that 1 kg has been cooled as a liquid to 267.15 K 
(-6°C). A small ice crystal (of negligible mass) is added to "seed" the subcooled 
liquid. If the subsequent change occurs adiabatically at atmospheric pressure, what 
fraction of the system freezes and what is the final temperature? What is AStota for 
the process, and what is its irreversible feature? The latent heat of fusion of water 
at 273.15 K (0°C) is 333.4 J g-', and the specific heat of subcooled liquid water is 
4.226 J g-' "c-'. 

6.21. The state of 1 kg of steam is changed from saturated vapor at 1.38 bar to superheated 
vapor at 15 bar and 81 1.15 K (538°C). What are the enthalpy and entropy changes of the 
steam? What would the enthalpy and entropy changes be if steam were an ideal gas? 

6.22. A two-phase system of liquid water and water vapor in equilibrium at 8000 kPa consists 
of equal volumes of liquid and vapor. If the total volume V' = 0.15 m3, what is the total 
enthalpy H t  and what is the total entropy St? 

6.23. A vessel contains 1 kg of H20  as liquid and vapor in equilibrium at 1000 kPa. If the 
vapor occupies 70% of the volume of the vessel, determine H and S for the 1 kg of H20. 

6.24. A pressure vessel contains liquid water and water vapor in equilibrium at 450.15 K 
(177°C). The total mass of liquid and vapor is 1.36 kg. If the volume of vapor is 50 
times the volume of liquid, what is the total enthalpy of the contents of the vessel? 

6.25. Wet steam at 503.15 K (230°C) has a density of 0.025 g cmP3. Determine x ,  H ,  and S. 

6.26. A vessel of 0.15-m3 volume containing saturated-vapor steam at 423.15 K (150°C) is 
cooled to 303.15 K (30°C). Determine the final volume and mass of liquid water in the 
vessel. 

6.27. Wet steam at 1 100 kPa expands at constant enthalpy (as in a throttling process) to 101.325 
kPa, where its temperature is 378.15 K (105°C). What is the quality of the steam in its 
initial state? 

6.28. Steam at 2100 kPa and 533.15 K (260°C) expands at constant enthalpy (as in a throttling 
process) to 125 kPa. What is the temperature of the steam in its final state and what is its 
entropy change? What would be the final temperature and entropy change for an ideal 
gas? 

6.29. Steam at 20.7 bar and 533.15 K (260°C) expands at constant enthalpy (as in a throttling 
process) to 1.38 bar. What is the temperature of the steam in its final state and what is 
its entropy change? If steam were an ideal gas, what would be its final temperature and 
its entropy change? 

6.30. Superheated steam at 500 kPa and 573.15 K (300°C) expands isentropically to 50 kPa. 
What is its final enthalpy? 



228 CHAPTER 6. Thermodynamic Properties of Fluids 

6.31. What is the mole fraction of water vapor in air that is saturated with water at 298.15 K 
(25°C) and 101.325 Wa? At 323.15 K (50°C) and 101.325 kPa? 

6.32. A rigid vessel contains 0.014 m3 of saturated-vapor steam in equilibrium with 0.021 m3 

of saturated-liquid water at 373.15 K (100°C). Heat is transferred to the vessel until 
one phase just disappears, and a single phase remains. Which phase (liquid or vapor) 
remains, and what are its temperature and pressure? How much heat is transferred in 
the process? 

6.33. A vessel of 0.25-m3 capacity is filled with saturated steam at 1500 kPa. If the vessel is 
cooled until 25 percent of the steam has condensed, how much heat is transferred and 
what is the final pressure? 

6.34. A vessel of 2-m3 capacity contains 0.02 m3 of liquid water and 1.98 m3 of water vapor 
at 101.325 kPa. How much heat must be added to the contents of the vessel so that the 
liquid water is just evaporated? 

6.35. A rigid vessel of 0.4-m3 volume is filled with steam at 800 kPa and 623.15 K (350°C). 
How much heat must be transferred from the steam to bring its temperature to 473.15 K 
(2OO0C)? 

6.36. One kilogram of steam is contained in a pistonlcylinder device at 800 kPa and 473.15 K 
(200°C). 
(a )  If it undergoes a mechanically reversible, isothermal expansion to 150 kPa, how 

much heat does it absorb? 

(b)  If it undergoes a reversible, adiabatic expansion to 150 kPa, what is its final tem- 
perature and how much work is done? 

6.37. Steam at 2000 kPa containing 6% moisture is heated at constant pressure to 848.15 K 
(575°C). How much heat is required per kilogram? 

6.38. Steam at 2700 kPa and with a quality of 0.90 undergoes a reversible, adiabatic expansion 
in a nonflow process to 400 H a .  It is then heated at constant volume until it is saturated 
vapor. Determine Q and W for the process. 

6.39. Four kilograms of steam in a pistonlcylinder device at 400 kPa and 448.15 K (175°C) 
undergoes a mechanically reversible, isothermal compression to a final pressure such 
that the steam is just saturated. Determine Q and W for the process. 

6.40. Steam undergoes a change from an initial state of 723.15 K (450°C) and 3000 kPa to a 
final state of 413.15 K (140°C) and 235 kPa. Determine A H  and AS: 
(a)  From steam-table data. 

(b )  By equations for an ideal gas. 

(c )  ~y appropriate generalized correlations. 

6.41. A pistonlcylinder device operating in a cycle with steam as the working fluid executes 
the following steps: 

Steam at 550 kPa and 473.15 K (200°C) is heated at constant volume to a pressure 
of 800 kPa. 
It then expands, reversibly and adiabatically, to the initial temperature of 473.15 K 
(200°C). 
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Finally, the steam is compressed in a mechanically reversible, isothermal process 
to the initial pressure of 550 kPa. 

What is the thermal efficiency of the cycle? 

6.42. A pistonlcylinder device operating in a cycle with steam as the working fluid executes 
the following steps: 

Saturated-vapor steam at 20.7 bar is heated at constant pressure to 755.15 K 
(482°C). 
The steam then expands, reversibly and adiabatically, to the initial temperature of 
487.15 K (214°C). 

Finally, the steam is compressed in a mechanically reversible, isothermal process 
to the initial state. 

What is the thermal efficiency of the cycle? 

6.43. Steam entering a turbine at 4000 kPa and 673.15 K (400°C) expands reversibly and 
adiabatically. 

(a) For what discharge pressure is the exit stream a saturated vapor? 

(6) For what discharge pressure is the exit stream a wet vapor with quality of 0.95? 

6.44. A steam turbine, operating reversibly and adiabatically, takes in superheated steam at 
2000 W a  and discharges at 50 kPa. 

(a) What is the minimum superheat required so that the exhaust contains no moisture? 

(6)  What is the power output of the turbine if it operates under these conditions and the 
steam rate is 5 kg s-'? 

6.45. An operating test of a steam turbine produces the following results. With steam supplied 
to the turbine at 1350 W a  and 648.15 K (375"C), the exhaust from the turbine at 10 kPa 
is saturated vapor. Assuming adiabatic operation and negligible changes in kinetic and 
potential energies, determine the turbine efficiency, i.e., the ratio of actual work of the 
turbine to the work of a turbine operating isentropically from the same initial conditions 
to the same exhaust pressure. 

6.46. A steam turbine operates adiabatically with a steam rate of 25 kg s-' . The steam is 
supplied at 1300 kPa and 673.15 K (400°C) and discharges at 40 W a  and 373.15 K 
(100°C). Determine the power output of the turbine and the efficiency of its operation 
in comparison with a turbine that operates reversibly and adiabatically from the same 
initial conditions to the same final pressure. 

6.47. From steam-table data, estimate values for the residual properties vR, HR, and SR for 
steam at 498.15 K (225°C) and 1600 Wa, and compare with values found by a suitable 
generalized correlation. 

6.48. From data in the steam tables: 

(a) Determine values for G' and Gu for saturated liquid and vapor at 1000 Wa. Should 
these be the same? 

(b) Determine values for AH'"/ T and AS" at 1000 kPa. Should these be the same? 
( c )  Find values for V R,  H I and sR for saturated vapor at 1000 kPa. 
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(d) Estimate a value for d P  Sat/dT at 1000 kPa and apply the Clapeyron equation to 
evaluate AS'" at 1000 kPa. Does this result agree with the steam-table value? 

Apply appropriate generalized correlations for evaluation of v R ,  H ~ ,  and sR for satu- 
rated vapor at 1000 kPa. Do these results agree with the values found in (c)? 

6.49. From data in the steam tables: 
(a) Determine numerical values of ~ b n d  GU for saturated liquid and vapor at 10.3 bar. 

Should these be the same? 

(b) Determine numerical values of AH"/ T and AS" at 10.3 bar. Should these be the 
same? 

(c) Find numerical values of v R ,  HR,  and sR for saturated vapor at 10.3 bar. 

(d) Estimate a value for dPSat/dT at 10.3 bar and apply the Clapeyron equation to 
evaluate AS'" at 10.3 bar. How well does this result agree with the steamtable value? 

Apply appropriate generalized correlations for evaluation of vR,  H ~ ,  and sR for 
saturated vapor at 10.3 bar. How well do these results compare with the values found 
in (c)? 

6.50. Propane gas at 1 bar and 308.15 K (35°C) is compressed to a final state of 135 bar 
and 468.15 K (195°C). Estimate the molar volume of the propane in the final state and 
the enthalpy and entropy changes for the process. In its initial state, propane may be 
assumed an ideal gas. 

6.51. Propane at 343.15 K (70°C) and 101.33 kPa is compressed isothermally to 1500 kPa. 
Estimate AH and AS for the process by suitable generalized correlations. 

6.52. A stream of propane gas is partially liquefied by throttling from 200 bar and 370 K to 
1 bar. What fraction of the gas is liquefied in this process? The vapor pressure of propane 
is given by Eq. (6.72) with parameters: A = -6.722 19, B = 1.332 36, C = -2.138 68, 
D = -1.385 51. 

6.53. Estimate the molar volume, enthalpy, and entropy for 1,3-butadiene as a saturated vapor 
and as a saturated liquid at 380 K. The enthalpy and entropy are set equal to zero for the 
ideal-gas state at 101.33 kPa and 273.15 K (0°C). The vapor pressure of 1,3-butadiene 
at 380 K is 1919.4 kPa. 

6.54. Estimate the molar volume, enthalpy, and entropy for n-butane as a saturated vapor and 
as a saturated liquid at 370 K. The enthalpy and entropy are set equal to zero for the 
ideal-gas state at 101.33 kPa and 273.15 K. The vapor pressure of n-butane at 370 K is 
1435 kPa. 

6.55. Five moles of calcium carbide is combined with 10 mol of liquid water in a closed, rigid, 
high-pressure vessel of 750-cm3 capacity. Acetylene gas is produced by the reaction: 

Initial conditions are 298.15 K (25°C) and 1 bar, and the reaction goes to completion. 
For a final temperature of 398.15 K (12S0C), determine: 
(a) The final pressure; (b) The heat transferred. 
At 398.15 K (125"C), the molar volume of Ca(0H)z is 33.0 cm3 mol-'. Ignore the effect 
of any gas present in the vessel initially. 
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6.56. Propylene gas at 400.15 K (127°C) and 38 bar is throttled in a steady-state flow process 
to 1 bar, where it may be assumed to be an ideal gas. Estimate the final temperature of 
the propylene and its entropy change. 

6.57. Propane gas at 22 bar and 423 K is throttled in a steady-state flow process to 1 bar. 
Estimate the entropy change of the propane caused by this process. In its final state, 
propane may be assumed to be an ideal gas. 

6.58. Propane gas at 373.15 K (100°C) is compressed isothermally from an initial pressure of 
1 bar to a final pressure of 10 bar. Estimate AH and AS. 

6.59. Hydrogen sulfide gas is compressed from an initial state of 400 K and 5 bar to a final 
state of 600 K and 25 bar. Estimate AH and AS. 

6.60. Carbon dioxide expands at constant enthalpy (as in a throttling process) from 1600 kPa 
and 318.15 K (45°C) to 101.33 kPa. Estimate AS for the process. 

6.61. A stream of ethylene gas at 523.15 K (250°C) and 3800 kPa expands isentropically 
in a turbine to 120 kPa. Determine the temperature of the expanded gas and the work 
produced if the properties of ethylene are calculated by: 

(a) Equations for an ideal gas; (b) Appropriate generalized correlations. 

6.62. A stream of ethane gas at 493.15 K (220°C) and 30 bar expands isentropically in a turbine 
to 2.6 bar. Determine the temperature of the expanded gas and the work produced if the 
properties of ethane are calculated by: 

(a) Equations for an ideal gas; (b) Appropriate generalized correlations. 

6.63. Estimate the final temperature and the work required when 1 mol of n-butane is com- 
pressed isentropically in a steady-flow process from 1 bar and 323.15 K (50°C) to 
7.8 bar. 

6.64. Determine the maximum amount of work obtainable in a flow process from 1 kg of steam 
at 3000 kPa and 723.15 K (450°C) for surrounding conditions of 300 K and 101.33 kPa. 

6.65. Liquid water at 325 K and 8000 kPa flows into a boiler at the rate of 10 kg s-' and 
is vaporized, producing saturated vapor at 8000 kPa. What is the maximum fraction of 
the heat added to the water in the boiler that can be converted into work in a process 
whose product is water at initial conditions, if To = 300 K? What happens to the rest 
of the heat? What is the rate of entropy change in the surroundings as a result of the 
work-producing process? In the system? Total? 

6.66. Suppose the heat added to the water in the boiler in the preceding problem comes from a 
furnace at a temperature of 873.15 K (600°C). What is the total rate of entropy generation 
as a result of the heating process? What is No,,? 

6.67. An ice plant produces 0.5 kg s-I of flake ice at 273.15 K (0°C) from water at 293.15 K 
(20°C) (T,) in a continuous process. If the latent heat of fusion of water is 333.4 kJ 
kg-' and if the thermodynamic efficiency of the process is 32%, what is the power 
requirement of the plant? 

6.68. An inventor has developed a complicated process for making heat continuously available 
at an elevated temperature. Saturated steam at 373.15 K (100°C) is the only source of 
energy. Assuming that there is plenty of cooling water available at 273.15 K (O°C), what 
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is the maximum temperature level at which heat in the amount of 2000 kJ can be made 
available for each kilogram of steam flowing through the process? 

6.69. Two boilers, both operating at 13.8 bar a discharge equal amounts of steam into the 
same steam main. Steam from the first boiler is superheated at 488.15 K (215°C) and 
steam from the second is wet with a quality of 96%. Assuming adiabatic mixing and 
negligible changes in potential and kinetic energies, what is the equilibrium condition 
after mixing and what is SG for each kg of discharge steam? 

6.70. A rigid tank of 2.265 m3 capacity contains 1896 kg of saturated liquid water at 494.15 
K (221°C). This amount of liquid almost completely fills the tank, the small remaining 
volume being occupied by saturated-vapor steam. Since a bit more vapor space in the tank 
is wanted, a valve at the top of the tank is opened, and saturated-vapor steam is vented 
to the atmosphere until the temperature in the tank falls to 488.15 K (215°C). Assuming 
no heat transfer to the contents of the tank, determine the mass of steam vented. 

6.71. A tank of 50-m3 capacity contains steam at 4500 Wa and 673.15 K (400°C). Steam is 
vented from the tank through a relief valve to the atmosphere until the pressure in the 
tank falls to 3500 Wa. If the venting process is adiabatic, estimate the final temperature 
of the steam in the tank and the mass of steam vented. 

6.72. A tank of 4-m3 capacity contains 1500 kg of liquid water at 523.15 K (250°C) in 
equilibrium with its vapor, which fills the rest of the tank. A quantity of 1000 kg of 
water at 323.15 K (50°C) is pumped into the tank. How much heat must be added 
during this process if the temperature in the tank is not to change? 

6.73. Liquid nitrogen is stored in 0.5-m3 metal tanks that are thoroughly insulated. Consider 
the process of filling an evacuated tank, initially at 295 K. It is attached to a line 
containing liquid nitrogen at its normal boiling point of 77.3 K and at a pressure of 
several bars. At this condition, its enthalpy is - 120.8 kJ kg-'. When a valve in the line 
is opened, the nitrogen flowing into the tank at first evaporates in the process of cooling 
the tank. If the tank has a mass of 30 kg and the metal has a specific heat capacity of 
0.43 kJ kg-' K-l, what mass of nitrogen must flow into the tank just to cool it to a 
temperature such that liquid nitrogen begins to accumulate in the tank? Assume that the 
nitrogen and the tank are always at the same temperature. The properties of saturated 
nitrogen vapor at several temperatures are given as follows: 

TIK 

80 
85 
90 
95 

100 
105 
110 

Plbar vUlm3 kg-' 

0.1640 
0.1017 
0.066 28 
0.044 87 
0.031 26 
0.022 23 
0.015 98 

6.74. A well-insulated tank of 50-m3 volume initially contains 16 000 kg of water distributed 
between liquid and vapor phases at 298.15 K (25°C). Saturated steam at 1500 Wa is 
admitted to the tank until the pressure reaches 800 Wa. What mass of steam is added? 
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6.75. An insulated evacuated tank of 1 .75-m3 volume is attached to a line containing steam at 
400 Wa and 513.15 K (240°C). Steam flows into the tank until the pressure in the tank 
reaches 400 kPa. Assuming no heat flow from the steam to the tank, prepare graphs show- 
ing the mass of steam in the tank and its temperature as a function of pressure in the tank. 

6.76. A 2-m3 tank initially contains a mixture of saturated-vapor steam and saturated-liquid 
water at 3000 kPa. Of the total mass, 10% is vapor. Saturated-liquid water is bled from 
the tank through a valve until the total mass in the tank is 40% of the initial total mass. 
If during the process the temperature of the contents of the tank is kept constant, how 
much heat is transferred? 

6.77. A stream of water at 358.15 K (85"C), flowing at the rate of 5 kg s-' is formed by 
mixing water at 297.15 K (24°C) with saturated steam at 400 kPa. Assuming adiabatic 
operation, at what rates are the steam and water fed to the mixer? 

6.78. In a desuperheater, liquid water at 3100 kPa and 323.15 K (50°C) is sprayed into a 
stream of superheated steam at 3000 kPa and 648.15 K (375°C) in an amount such that 
a single stream of saturated-vapor steam at 2900 kPa flows from the desuperheater at 
the rate of 15 kg s-I. Assuming adiabatic operation, what is the mass flowrate of the 
water? What is SG for the process? What is the irreversible feature of the process? 

6.79. Superheated steam at 700 kPa and 553.15 K (280°C) flowing at the rate of 50 kg s-' is 
mixed with liquid water at 313.15 K (40°C) to produce steam at 700 kPa and 473.15 K 
(200°C). Assuming adiabatic operation, at what rate is water supplied to the mixer? 
What is Sc for the process? What is the irreversible feature of the process? 

6.80. A stream of air at 12 bar and 900 K is mixed with another stream of air at 2 bar and 
400 K with 2.5 times the mass flowrate. If this process were accomplished reversibly 
and adiabatically, what would be the temperature and pressure of the resulting air 
stream? Assume air to be an ideal gas for which C p  = (7/2)R. 

6.81. Hot nitrogen gas at 673.15 K (400°C) and atmospheric pressure flows into a waste-heat 
boiler at the rate of 18.14 kg s-' , and transfers heat to water boiling at 1 atm. The water 
feed to the boiler is saturated liquid at 1 atm, and it leaves the boiler as superheated 
steam at 1 atm and 423.15 K (150°C). If the nitrogen is cooled to 436.15 K (163°C) 
and if heat is lost to the surroundings at a rate of 140 kT for each kg of steam generated, 
what is the steam-generation rate? If the surroundings are at 294.15 K (21°C), what is 
SG for the process? Assume nitrogen to be an ideal gas for which C p  = (7/2)R. 

6.82. Hot nitrogen gas at 673.15 K (400°C) and atmospheric pressure flows into a waste-heat 
boiler at the rate of 20 kg s-' , and transfers heat to water boiling at 101.33 Wa. The water 
feed to the boiler is saturated liquid at 101.33 Wa, and it leaves the boiler as superheated 
steam at 101.33 kPa and 423.15 K (150°C). If the nitrogen is cooled to 443.15 K (170°C) 
and if heat is lost to the surroundings at a rate of 80 kJ for each kilogram of steam 
generated, what is the steam-generation rate? If the surroundings are at 298.15 K (25"C), 
what is SG for the process? Assume nitrogen to be an ideal gas for which C p  = (7/2)R. 

6.83. Show that isobars and isochores have positive slopes in the single-phase regions of a 
T S  diagram. Suppose that C p  = a + bT,  where a and b are positive constants. Show 
that the curvature of an isobar is also positive. For specified T and S, which is steeper: 
an isobar or an isochore? Why? Note that C p  > CV. 
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6.84. Starting with Eq. (6.8), show that isotherms in the vapor region of a Mollier ( H S )  
diagram have slopes and curvatures given by: 

Here, B is volume expansivity. If the vapor is described by the two-term virial equation 
in P,  Eq. (3.37), what can be said about the signs of these derivatives? Assume that, 
for normal temperatures, B is negative and d B / d T  is positive. 

6.85. The temperature dependence of the second virial coefficient B is shown for nitrogen on 
Fig. 3.11. Qualitatively, the shape of B ( T )  is the same for all gases; quantitatively, the 
temperature for which B = 0 corresponds to a reduced temperature of about T, = 2.7 
for many gases. Use these observations to show by Eqs. (6.53) through (6.55) that the 
residual properties G ~ ,  HR, and SR are negative for most gases at modest pressures 
and normal temperatures. What can you say about the signs of vR and c;? 

6.86. An equimolar mixture of methane and propane is discharged from a compressor at 
5500 kPa and 363.15 K (90°C) at the rate of 1.4 kg s-'. If the velocity in the discharge 
line is not to exceed 30 m s-', what is the minimum diameter of the discharge line? 

6.87. Estimate vR, H ~ ,  and sR for one of the following by appropriate generalized 
correlations: 

(a )  1,3-Butadiene at 500 K and 20 bar. 

(6) Carbon dioxide at 400 K and 200 bar. 

( c )  Carbon disulfide at 450 K and 60 bar. 

( d )  n-Decane at 600 K and 20 bar. 

( e )  Ethylbenzene at 620 K and 20 bar. 

(f) Methane at 250 K and 90 bar. 

(g)  Oxygen at 150 K and 20 bar. 

(h )  n-Pentane at 500 K and 10 bar. 

( i )  Sulfur dioxide at 450 K and 35 bar. 

(j) Tetrafluoroethane at 400 K and 15 bar. 

6.88. Estimate Z, H ~ ,  and sR for one of the following equimolar mixtures by the LeelKesler 
correlations: 

(a )  Benzene/cyclohexane at 650 K and 60 bar. 

(b) Carbon dioxidelcarbon monoxide at 300 K and 100 bar. 
( c )  Carbon dioxideln-octane at 600 K and 100 bar. 

( d )  Ethanelethylene at 350 K and 75 bar. 
( e )  Hydrogen sulfidelmethane at 400 K and 150 bar. 

( f )  Methanelnitrogen at 200 K and 75 bar. 
(g )  Methaneln-pentane at 450 K and 80 bar. 

(h )  Nitrogen/oxygen at 250 K and 100 bar. 



Chapter 7 

Applications of 
Thermodynamics to Flow 

Processes 

The thermodynamics of flow is based on mass, energy, and entropy balances, which have been 
developed in Chaps. 2 and 5. The application of these balances to specific processes is con- 
sidered in this chapter, The discipline underlying the study of flow is fluid mechanics,' which 
encompasses not only the balances of thermodynamics but also the linear-momentum principle 
(Newton's second law). This makes fluid mechanics a broader field of study. The distinction 
between thermodynanzics problems and juid-mechanics problems depends on whether this 
principle is required for solution. Those problems whose solutions depend only on mass con- 
servation and on the laws of thermodynamics are commonly set apart from the study of fluid 
mechanics and are treated in courses on thermodynamics. Fluid mechanics then deals with 
the broad spectrum of problems which require application of the momentum principle. This 
division is arbitrary, but it is traditional and convenient. 

Consider for example the flow of gas through a pipeline. If the states and thermodynamic 
properties of the gas entering and leaving the pipeline are known, then application of the first 
law establishes the magnitude of the energy exchange with the surroundings of the pipeline. 
The mechanism of the process, the details of flow, and the state path actually followed by 
the fluid between entrance and exit are not pertinent to this calculation. On the other hand, if 
one has only incomplete knowledge of the initial or final state of the gas, then more detailed 
information about the process is needed before any calculations are made. For example, the exit 
pressure of the gas may not be specified. In this case, one must apply the momentum principle 
of fluid mechanics, and this requires an empirical or theoretical expression for the shear stress 
at the pipe wall. 

' ~ l u i d  mechanics is treated as an integral part of transport processes by R. B. Bird, W. E. Stewart, and E. N. 
Lightfoot in Transport Phenomena, John Wiley, New York, 1960; by C. 0. Bennett and J. E. Myers in Momentum, 
Heat, and Mass Transfer, 2nd ed., McGraw-Hill, New York, 1982; by R. S. Brodkey and H. C. Hershey, Transport 
Phenomena: A UniJiedApproach, McGraw-Hill, New York, 1988; by D. P. Kessler and R. A. Greenkorn in Momentum, 
Heat, and Mass Transfer Fundamentals, Marcel Dekker, New York, 1999; and by D. E. Rosner in Transport Processes 
in Chenzically Reacting Systems, Butterworths, Boston, 1986; DOVER, Mineola, New York, 2000. 
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Flow processes inevitably result from pressure gradients within the fluid. Moreover, 
temperature, velocity, and even concentration gradients may exist within the flowing fluid. 
This contrasts with the uniform conditions that prevail at equilibrium in closed systems. The 
distribution of conditions in flow systems requires that properties be attributed to point masses 
of fluid. Thus we assume that intensive properties, such as density, specific enthalpy, specific 
entropy, etc., at a point are determined solely by the temperature, pressure, and composition at 
the point, uninfluenced by gradients that may exist at the point. Moreover, we assume that the 
fluid exhibits the same set of intensive properties at the point as though it existed at equilibrium 
at the same temperature, pressure, and composition. The implication is that an equation of state 
applies locally and instantaneously at any point in a fluid system, and that one may invoke a 
concept of local state, independent of the concept of equilibrium. Experience shows that this 
leads for practical purposes to results in accord with observation. 

The equations of balance for open systems from Chaps. 2 and 5 are summarized here 
in Table 7.1 for easy reference. Included are Eqs. (7.1) and (7.2), restricted forms of the mass 
balance. These equations are the basis for the thermodynamic analysis ofprocesses in this and 
the next two chapters. When combined with thermodynamic property statements, they allow 
calculation of process rates and system states. 

7.1 DUCT FLOW OF COMPRESSIBLE FLUIDS 

Such problems as the sizing of pipes and the shaping of nozzles require application of the 
momentum principle of fluid  mechanic^,^ and therefore do not lie within the province of ther- 
modynamics. However, thermodynamics does provide equations that interrelate the changes 
occurring in pressure, velocity, cross-sectional area, enthalpy, entropy, and specific volume of 
a flowing stream. We consider here the adiabatic, steady-state, one-dimensional flow of a com- 
pressible fluid in the absence of shaft work and of changes in potential energy. The pertinent 
thermodynamic equations are first derived; they are then applied to flow in pipes and nozzles. 

The appropriate energy balance is Eq. (2.32). With Q, W, and Az all set equal to zero, 

L 

In differential form, 

The continuity equation, Eq. (2.27), is also applicable. Since m is constant, its differential 
form is: 

d V  du  d A  = o  
V u A  

'see W. L. McCabe, J. C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, 5th ed., Sec. 2, 
McGraw-Hill, New York, 1993; R. H. Peny and D. Green, Perry's Chemical Engineers' Handbook, 7th ed., Sec. 6, 
McGraw-Hill, New York, 1997. 
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The fundamental property relation appropriate to this application is: 

d H  = T d S + V d P  (6.8) 

In addition, the specific volume of the fluid may be considered a function of its entropy and 
pressure: V = V(S, P). Then, 

This equation is put into more convenient form through the mathematical identity: 

Substituting for the two partial derivatives on the right by Eqs. (3.2) and (6.17) gives: 

where p is the volume expansivity. The equation derived in physics for the speed of sound c 
in a fluid is: 

Substituting for the two partial derivatives in the equation for dV now yields: 

Equations (7.3), (7.4), (6.8), and (7.5) relate the six differentials-dH, du, dV, dA, dS, 
and d P .  With but four equations, we treat d S  and dA as independent, and develop equations 
that express the remaining differentials as functions of these two. First, Eqs. (7.3) and (6.8) are 
combined: 

T d S f  V d P  = -udu (7.6) 

Eliminating dV and du from Eq. (7.4) by Eqs. (7.5) and (7.6) gives upon rearrangement: 

where M is the Mach number, defined as the ratio of the speed of the fluid in the duct to the 
speed of sound in the fluid, ulc. Equation (7.7) relates d P  to d S  and dA. 

Equations (7.6) and (7.7) are combined to eliminate V d P :  
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This equation relates du to d S and d A. Combined with Eq. (7.3) it relates d H to d S and 
dA,  and combined with (7.4) it relates dV to these same independent variables. 

The differentials in the preceding equations represent changes in the fluid as it traverses 
a differential length of its path. If this length is dx ,  then each of the equations of flow may be 
divided through by dx.  Equations (7.7) and (7.8) then become: 

According to the second law, the irreversibilities due to fluid friction in adiabatic flow cause 
an entropy increase in the fluid in the direction of flow. In the limit as the flow approaches 
reversibility, this increase approaches zero. In general, then, 

Pipe Flow 

For the case of steady-state adiabatic flow in a horizontal pipe of constant cross-sectional area, 
dA/dx  = 0, and Eqs. (7.9) and (7.10) reduce to: 

For subsonic flow, M2 < 1, and all quantities on the right sides of these equations are positive; 
whence, 

Thus the pressure decreases and the velocity increases in the direction of flow. However, the 
velocity cannot increase indefinitely. If the velocity were to exceed the sonic value, then the 
above inequalities would reverse. Such a transition is not possible in a pipe of constant cross- 
sectional area. For subsonic flow, the maximum fluid velocity obtainable in a pipe of constant 
cross section is the speed of sound, and this value is reached at the exit of the pipe. At this point 
dS/dx reaches its limiting value of zero. Given a discharge pressure low enough for the flow 
to become sonic, lengthening the pipe does not alter this result; the mass rate of flow decreases 
so that the sonic velocity is still obtained at the outlet of the lengthened pipe. 

The equations for pipe flow indicate that when flow is supersonic the pressure increases 
and the velocity decreases in the direction of flow. However, such a flow regime is unstable, 
and when a supersonic stream enters a pipe of constant cross section, a compression shock 
occurs, the result of which is an abrupt and finite increase in pressure and decrease in velocity 
to a subsonic value. 
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Repeating this example for the case of wversible adiabatic flow is instructive. 
In this case u2 = I I  as before, but SG = 0. The entropy balance then shows that 
T2 = T I ,  in which case the energy balance yields P2 = P I .  Wc. conclude that the 
temperature increase of (b )  and the pressure decrease of (c) orixiiinte from flow 
irreversibilities, specifically from the irreversibilities associated with fluid friction. 

Nozzles 

The limitations observed for flow in pipes do not extend to properly designed nozzles, which 
bring about the interchange of internal and kinetic energy of a fluid as the result of a changing 
cross-sectional area available for flow. The relation between nozzle length and cross-sectional 
area is not susceptible to thermodynamic analysis, but is a problem in fluid mechanics. In a 
properly designed nozzle the area changes with length in such a way as to make the flow nearly 
frictionless. In the limit of reversible flow, the rate of entropy increase approaches zero, and 
d S / d x  = 0. In this event Eqs. (7.9) and (7.10) become: 

d P  u2 du 
and 

dx  

The characteristics of flow depend on whether the flow is subsonic (M < 1) or supersonic 
(M > 1). The various cases are summarized in Table 7.2. 

Table 7.2 Characteristics of Flow for a Nozzle 

1 Subsonic: M < I 1 Supersonic: M > I 

1 Converging Diverging 1 Converging Diverging 

Thus, for subsonic flow in a converging nozzle, the velocity increases and the pressure 
decreases as the cross-sectional area diminishes. The maximum obtainable fluid velocity is the 
speed of sound, reached at the throat. A further increase in velocity and decrease in pressure 
requires an increase in cross-sectional area, a diverging section. Because of this, a converging 
subsonic nozzle can be used to deliver a constant flow rate into a region of variable pressure. 
Suppose a compressible fluid enters a converging nozzle at pressure PI and discharges from 
the nozzle into a chamber of variable pressure P2. As this discharge pressure decreases below 
P I ,  the flow rate and velocity increase. Ultimately, the pressure ratio P2/PI reaches a critical 
value at which the velocity in the throat is sonic. Further reduction in P2 has no effect on the 
conditions in the nozzle. The flow remains constant, and the velocity in the throat is sonic, 
regardless of the value of P2/P1, provided it is always less than the critical value. For steam, 
the critical value of this ratio is about 0.55 at moderate temperatures and pressures. 
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Supersonic velocities are readily attained in the diverging section of a properly designed 
convergingldiverging nozzle (Fig. 7.1). With sonic velocity reached at the throat, a further 
decrease in pressure requires an increase in cross-sectional area, a diverging section in which 
the velocity continues to increase. The transition occurs at the throat, where d A / d x  = 0. 
The relationships between velocity, area, and pressure in a convergingldiverging nozzle are 
illustrated numerically in Ex. 7.2. 

Figure 7.1 Convergingldiverging nozzle 

The speed of sound is attained at the throat of a convergingldiverging nozzle only when 
the pressure at the throat is low enough that the critical value of P2/ PI is reached. If insufficient 
pressure drop is available in the nozzle for the velocity to become sonic, the diverging section 
of the nozzle acts as a diffuser. That is, after the throat is reached the pressure rises and the 
velocity decreases; this is the conventional behavior for subsonic flow in diverging sections. 

The relation of velocity to pressure in an isentropic nozzle can be expressed analytically 
if the fluid behaves as an ideal gas. Combination of Eqs. (6.8) and (7.3) for isentropic flow 
gives: 

Integration, with nozzle entrance and exit conditions denoted by 1 and 2, yields: 

where the final term is obtained upon elimination of V by Eq. (3.29c), P VY = const. 
Equation (7.11) may be solved for the pressure ratio P2/P1 for which u2 reaches the 

speed of sound, i.e., where 

The derivative is found by differentiation with respect to V of P VY = const.: 

These two equations together yield: 

u; = yP2V2 



7.1. Duct Flow of Compressible Fluids 243 

With this value for u; in Eq. (7.11) and with ul = 0, solution for the pressure ratio at the throat 
gives: 



- - - 
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Throttling Process 

When a fluid flows through a restriction, such as an orifice, a partly closed valve, or a porous 
plug, without any appreciable change in lunetic or potential energy, the primary result of the 
process is a pressure drop in the fluid. Such a throttling process produces no shaft work, and 
in the absence of heat transfer, Eq. (2.32) reduces to 

The process therefore occurs at constant enthalpy. 
Since the enthalpy of an ideal gas depends on temperature only, a throttling process 

does not change the temperature of an ideal gas. For most real gases at moderate condi- 
tions of temperature and pressure, a reduction in pressure at constant enthalpy results in a de- 
crease in temperature. For example, if steam at 1000 kPa and 573.15 K (300°C) is throttled to 
101.325 kPa (atmospheric pressure), 

H2 = HI  = 3052.1 kJ kg-' 

Interpolation in the steam tables at this enthalpy and at a pressure of 101.325 P a  indicates a 
downstream temperature of 561.95 K (288.8"C). The temperature has decreased, but the effect 
is small. 

Throttling of wet steam to sufficiently low pressure may cause the liquid to evaporate and 
the vaporto become superheated. Thus if wet steam at 1000 kPa (Tsat/tsat =453.03 W179.88OC) 
with a quality of 0.96 is throttled to 101.325 kPa, 

At 101.325 kPa steam with this enthalpy has a temperature of 382.95 K (109.8"C); it is therefore 
superheated (Tsat/tsat = 373.15 M/lOO°C). The considerable temperature drop here results 
from evaporation of liquid. 
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If a saturated liquid is throttled to a lower pressure, some of the liquid vaporizes or 
jlashes, producing a mixture of saturated liquid and saturated vapor at the lower pressure. Thus 
if saturatedliquid water at 1000 kPa (Tsat/tSat = 453.03K/179.88OC) is flashed to 101.325 kPa 
(Tsat/tmt = 373.15 K/lOOOC), 

At 101.325 kPa the quality of the resulting steam is found from Eq. (6.73a) with M = H: 

Hence x = 0.152 

Thus 15.2% of the original liquid vaporizes in the process. Again, the large temperature drop 
results from evaporation of liquid. Throttling processes find frequent application in refrigeration 
(Chap. 9). 

The following example illustrates use of generalized correlations in calculations for a 
throttling process. 
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3 ~ e c a l l  the general equation from differential calculus, 

($Iz = - ($Iy (Elx 
4 ~ .  G. Muller, Ind. Eng. Chem. Fctndam., vol. 9, pp. 585-589, 1970. 
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Figure 7.2 Inversion curves for reduced coordinates. Each line represents a locus of 
points for which = 0. Solid curve is from a data correlation; dashed curve, from the 
RedlichIKwong equation 

7.2 TURBINES (EXPANDERS) 

The expansion of a gas in a nozzle to produce a high-velocity stream is a process that converts 
internal energy into kinetic energy. This kinetic energy is in turn converted into shaft work 
when the stream impinges on blades attached to a rotating shaft. Thus a turbine (or expander) 
consists of alternate sets of nozzles and rotating blades through which vapor or gas flows in a 
steady-state expansion process whose overall effect is the efficient conversion of the internal 
energy of a high-pressure stream into shaft work. When steam provides the motive force as in 
a power plant, the device is called a turbine; when a high-pressure gas, such as ammonia or 
ethylene in a chemical or petrochemical plant, is the working fluid, the device is often called 
an expander. The process for either case is shown in Fig. 7.3. 

Equations (2.31) and (2.32) are appropriate energy relations. However, the potential- 
energy term can be omitted, because there is little change in elevation. Moreover, in any 
properly designed turbine, heat transfer is negligible and the inlet and exit pipes are sized to 
make fluid velocities roughly equal. Equations (2.3 1) and (2.32) therefore reduce to: 

Normally, the inlet conditions TI and PI and the discharge pressure P2 are known. Thus 
in Eq. (7.14) only H I  is known, and both H2 and W, remain as unknowns. The energy equation 
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Figure 7.3 Steady-state flow through a turbine or expander 

alone does not allow any calculations to be made. However, if the fluid in the turbine undergoes 
an expansion process that is reversible as well as adiabatic, then the process is isentropic, and 
S2 = S1. This second equation allows determination of the final state of the fluid and hence of 
Hz. For this special case, W, is given by Eq. (7.14), written: 

The shaft work I W,(isentropic)I is the maximum that can be obtained from an adiabatic 
turbine with given inlet conditions and given discharge pressure. Actual turbines produce 
less work, because the actual expansion process is irreversible. We therefore define a turbine 
efJiciency as: 

q Ez 
ws 

Ws (isentropic) 

where W, is the actual shaft work. By Eqs. (7.14) and (7.15), 

Values of r/ for properly designed turbines or expanders usually range from 0.7 to 0.8. Figure 
7.4 shows an H S  diagram on which are compared an actual expansion process in a turbine 
and the reversible process for the same intake conditions and the same discharge pressure. The 
reversible path is a vertical line of constant entropy from point 1 at the intake pressure PI to 
point 2' at the discharge pressure P2. The line representing the actual irreversible process starts 
also from point 1, but is directed downward and to the right, in the direction of increasing 
entropy. Since the process is adiabatic, irreversibilities cause an increase in entropy of the 
fluid. The process terminates at point 2 on the isobar for P2. The more irreversible the process, 
the further this point lies to the right on the P2 isobar, and the lower the efficiency r/ of the 
process. 
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Figure 7.4 Adiabatic expansion process in a turbine or expander 
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Example 7.6 is solved with data from the steam tables. When a comparable set of tables 
is not available for the working fluid, the generalized correlations of Sec. 6.7 may be used in 
conjunction with Eqs. (6.84) and (6.85), as illustrated in the following example. 
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7.3 COMPRESSION PROCESSES 

Just as expansion processes result in pressure reductions in a flowing fluid, so compression 
processes bring about pressure increases. Compressors, pumps, fans, blowers, and vacuum 
pumps are all devices designed for this purpose. They are vital for the transport of fluids, 
for fluidization of particulate solids, for bringing fluids to the proper pressure for reaction or 
processing, etc. We are here concerned not with the design of such devices, but with specification 
of energy requirements for steady-state compression of fluids from one pressure to a higher one. 

Compressors 

The compression of gases may be accomplished in equipment with rotating blades (like a 
turbine operating in reverse) or in cylinders with reciprocating pistons. Rotary equipment is 
used for high-volume flow where the discharge pressure is not too high. For high pressures, 
reciprocating compressors are required. 

The energy equations are independent of the type of equipment; indeed, they are the 
same as for turbines or expanders, because here too potential- and kinetic-energy changes 
are presumed negligible. Thus, Eqs. (7.13) through (7.15) apply to adiabatic compression, a 
process represented by Fig. 7.5. 

Compressor ~~37- 
Figure 7.5 Steady-state compression process 
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In a compression process, the isentropic work, as given by Eq. (7.15), is the minimum 
shaft work required for compression of a gas from a given initial state to a given discharge 
pressure. Thus we define a compressor efficiency as: 

W, (isentropic) 
q FE w, 

In view of Eqs. (7.14) and (7.15), this is also given by: 

Compressor efficiencies are usually in the range of 0.7 to 0.8. 

Figure 7.6 Adiabatic compression process 

The compression process is shown on an HS diagram in Fig. 7.6. The vertical path rising 
from point 1 to point 2' represents the isentropic compression process from PI to Pz. The actual 
compression process follows a path from point 1 upward and to the right in the direction of 
increasing entropy, terminating at point 2 on the isobar for P2. 
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The direct application of Eqs. (7.13) through (7.15) presumes the availability of tables 
of data or an equivalent thermodynamic diagram for the fluid being compressed. Where such 
information is not available, the generalized correlations of Sec. 6.7 may be used in conjunction 
with Eqs. (6.84) and (6.85), exactly as illustrated in Ex. 7.7 for an expansion process. 

The assumption of ideal gases leads to equations of relative simplicity. By Eq. (5.18) for 
an ideal gas: 

where for simplicity the superscript "ig" has been omitted from the mean heat capacity. If the 
compression is isentropic, AS  = 0, and this equation becomes: 

where Ti is the temperature that results when compression from TI and PI to P2 is isentropic 
and where (Clp)S is the mean heat-capacity for the temperature range from TI to TL 

Applied to isentropic compression, Eq. (4.9) here becomes: 

In accord with Eq. (7.151, 
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This result may be combined with the compressor efficiency to give: 

Ws (isentropic) 
W, = (7.20) 

rl 

The actual discharge temperature T2 resulting from compression is also found from Eq. (4.9), 
rewritten as: 

Whence, 

where by Eq. (7.14) AH = W,. Here (CPJH is the mean heat-capacity for the temperature 
range from TI to T2. 

For the special case of an ideal gas with constant heat capacities, 

Equations (7.18) and (7.19) therefore become: 

Combining these equations gives? 

For monatomic gases, such as argon and helium, R / C p  = 215 = 0.4. For such diatomic 
gases as oxygen, nitrogen, and air at moderate temperatures, R/Cp  x 217 = 0.2857. For 
gases of greater molecular complexity the ideal-gas heat capacity depends more strongly on 
temperature, and Eq. (7.22) is less likely to be suitable. One can easily show that the assumption 
of constant heat capacities also leads to the result: 

'since R  = C p  - Cv for an ideal gas, 

An alternative form of Eq. (7.22) is therefore: 

( v - l ) l y  

W, (isentropic) = -- y R T 1 [ ( $ )  Y - 1  
I ]  

Although this is the form commonly encountered, Eq. (7.22) is simpler and more easily applied. 
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Pumps 

Liquids are usually moved by pumps, generally rotating equipment. The same equations apply 
to adiabatic pumps as to adiabatic compressors. Thus, Eqs. (7.13) through (7.15) and Eq. (7.17) 
are valid. However, application of Eq. (7.14) for the calculation of W, = A H  requires val- 
ues of the enthalpy of compressed (subcooled) liquids, and these are seldom available. The 
fundamental property relation, Eq. (6.8), provides an alternative. For an isentropic process, 

Combining this with Eq. (7.15) yields: 

W, (isentropic) = (A H)s = V d P l: 
The usual assumption for liquids (at conditions well removed from the critical point) is that V 
is independent of P. Integration then gives: 

Also useful are the following equations from Chap. 6: 

d H  = C p d T + V ( l  -,BT)dP (6.28) 

where the volume expansivity /3 is defined by Eq. (3.2). Since temperature changes in the 
pumped fluid are very small and since the properties of liquids are insensitive to pressure 
(again at conditions not close to the critical point), these equations are usually integrated on 
the assumption that Cp, V, and B are constant, usually at initial values. Thus, to a good 
approximation 
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Figure 7.7 Single-stage ejector 

Ejectors 

Ejectors remove gases or vapors from an evacuated space and compress them for discharge at 
a higher pressure. Where the mixing of the gases or vapors with the driving fluid is allowable, 
ejectors are usually lower in first cost and maintenance costs than other types of vacuumpumps. 
As illustrated in Fig. 7.7 an ejector consists of an inner convergingldiverging nozzle through 
which the driving fluid (commonly steam) is fed, and an outer, larger nozzle through which 
both the extracted gases or vapors and the driving fluid pass. The momentum of the high-speed 
fluid leaving the driving nozzle is partly transferred to the extracted gases or vapors, and the 
mixture velocity is therefore less than that of the driving fluid leaving the smaller nozzle. 
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It is nevertheless higher than the speed of sound, and the larger nozzle therefore acts as a 
convergingldiverging diffuser in which the pressure rises and the velocity decreases, passing 
through the speed of sound at the throat. Although the usual energy equations for nozzles apply, 
the mixing process is complex, and as a result ejector design is largely empiri~al.~ 

PROBLEMS 

7.1. Air expands adiabatically through a nozzle from a negligible initial velocity to a final 
velocity of 325 m s-' . What is the temperature drop of the air, if air is assumed to be an 
ideal gas for which C p  = (7/2)R? 

7.2. In Ex. 7.5 an expression is found for the Joule/Thomson coeficient, p = ( a T / a P ) H ,  
that relates it to a heat capacity and equation-of-state information. Develop similar 
expressions for the derivatives: 

(a )  (aT laP)s ;  (b)  ( ~ T / ~ V ) U .  
What can you say about the signs of these derivatives? For what types of processes 
might these derivatives be important characterizing quantities? 

7.3. The thermodynamic sound speed c is defined in Sec. 7.1. Prove that: 

where V is molar volume and M is molar mass. To what does this general result reduce 
for: (a)  An ideal gas? (b)  An incompressible liquid? What do these results suggest 
qualitatively about the speed of sound in liquids relative to gases? 

7.4. Steam enters a nozzle at 800 kPa and 553.15 K (280°C) at negligible velocity and 
discharges at a pressure of 525 kPa. Assuming isentropic expansion of the steam in the 
nozzle, what is the exit velocity and what is the cross-sectional area at the nozzle exit 
for a flow rate of 0.75 kg s-'? 

7.5. Steam enters a converging nozzle at 800 kPa and 553.15 K (280°C) with negligible 
velocity. If expansion is isentropic, what is the minimum pressure that can be reached 
in such a nozzle and what is the cross-sectional area at the nozzle throat at this pressure 
for a flow rate of 0.75 kg s-'? 

7.6. A gas enters a converging nozzle at pressure P1 with negligible velocity, expands isen- 
tropically in the nozzle, and discharges into a chamber at pressure P2. Sketch graphs 
showing the velocity at the throat and the mass flowrate as functions of the pressure 
ratio P2/ PI .  

7.7. For a convergingldiverging nozzle with negligible entrance velocity in which expansion 
is isentropic, sketch graphs of mass flowrate m, velocity u ,  and area ratio A/Al vs. the 
pressure ratio PI PI .  Here, A is the cross-sectional area of the nozzle at the point in the 
nozzle where the pressure is P,  and subscript 1 denotes the nozzle entrance. 

6 ~ .  H. Peny and D. Green, Perry's Chemical Engineers' Handbook, 7th ed., pp.  10-56-10-57, McGraw-Hill, 
New York, 1997. 
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7.8. An ideal gas with constant heat capacities enters a convergingldiverging nozzle with 
negligible velocity. If it expands isentropically within the nozzle, show that the throat 
velocity is given by: 

where TI is the temperature of the gas entering the nozzle, M is the molar mass, and R 
is the molar gas constant. 

7.9. Steam expands isentropically in a convergingldiverging nozzle from inlet conditions of 
1400 kPa, 598.15 K (325"C), and negligible velocity to a discharge pressure of 140 kPa. 
At the throat the cross-sectional area is 6 cm2. Determine the mass flowrate of the steam 
and the state of the steam at the exit of the nozzle. 

7.10. Steam expands adiabatically in a nozzle from inlet conditions of 9 bar, 488.15 K(215"C), 
and a velocity of 70m s-' to a discharge pressure of 2.4bar where its velocity is 
609.6 m s-' . What is the state of the steam at the nozzle exit, and what is s ~ , ~ ~ ~ ~ ~  for the 
process? 

7.11. Air discharges from an adiabatic nozzle at 288.15 K (15°C) with a velocity of 580 m s-'. 
What is the temperature at the entrance of the nozzle if the entrance velocity is negligible? 
Assume air to be an ideal gas for which C p  = (7/2)R. 

7.12. Cool water at 288.15 K (15°C) is throttled from 5 atm to 1 atm , as in a kitchen faucet. 
What is the temperature change of the water? What is the lost work per lulogram of water 
for this everyday household happening? At 288.15 K (15°C) and 1 atm, the volume 
expansivity j3 for liquid water is about 1.5 x lop4 K-'. The surroundings temperature 
T, is 293.15 K (20°C). State carefully any assumptions you make. The steam tables are 
a source of data. 

7.13. A gas at upstream conditions (Tl,P1) is throttled to a downstream pressure of 1.2 bar. 
Use the RedlicNKwong equation to estimate the downstream temperature and A S  of 
the gas for one of the following: 

(a) Carbon dioxide, with Tl = 350 K and PI = 80 bar. 
(b) Ethylene, with Tl = 350 K and PI = 60 bar. 
(c)  Nitrogen, with TI = 250 K and PI = 60 bar. 
(d) Propane, with Tl = 400 K and PI = 20 bar. 

7.14. A gas at upstream conditions given by one of the parts of Pb. 7.13 is throttled to a 
pressure of 1.2 bar. Use the Soave/Redlich/Kwong equation to estimate the downstream ' 

temperature and A S  of the gas. 

7.15. A gas at upstream conditions given by one of the parts of Pb. 7.13 is throttled to a pressure 
of 1.2 bar. Use the PengRobinson equation to estimate the downstream temperature and 
A S  of the gas. 

7.16. For a pressure-explicit equation of state, prove that the Joule/Thompson inversion curve 
is the locus of states for which: 
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Apply this equation to (a) the van der Waals equation; (b) the RedlichJKwong equation. 
Discuss the results. 

7.17. Two nonconducting tanks of negligible heat capacity and of equal volume initially 
contain equal quantities of the same ideal gas at the same T and P .  Tank A discharges to 
the atmosphere through a small turbine in which the gas expands isentropically; tank B 
discharges to the atmosphere through a porous plug. Both devices operate until discharge 
ceases. 

(a) When discharge ceases, is the temperature in tank A less than, equal to, or greater 
than the temperature in tank B? 

(b) When the pressures in both tanks have fallen to half the initial pressure, is the 
temperature of the gas discharging from the turbine less than, equal to, or greater 
than the temperature of the gas discharging from the porous plug? 

(c) During the discharge process, is the temperature of the gas leaving the turbine less 
than, equal to, or greater than the temperature of the gas leaving tank A at the same 
instant? 

(d) During the discharge process, is the temperature of the gas leaving the porous plug 
less than, equal to, or greater than the temperature of the gas leaving tank B at the 
same instant? 

(e) When discharge ceases, is the mass of gas remaining in tank A less than, equal to, 
or greater than the mass of gas remaining in tank B? 

7.18. A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the tur- 
bine at 2400 kPa and 773.15 K (500°C) and exhausts from the turbine as saturated vapor 
at 20 kPa. What is the steam rate through the turbine, and what is the turbine efficiency? 

7.19. A turbine operates adiabatically with superheated steam entering at Tl and PI with a 
mass flow rate rh. The exhaust pressure is P2 and the turbine efficiency is q. For one 
of the following sets of operating conditions, determine the power output of the turbine 
and the enthalpy and entropy of the exhaust steam. 

(a) Tl = 723.15 K(450°C), P1 = 8000 kPa, riz = 80 kg s-l , P2 = 30 Wa, q = 0.80. 

(b) Tl = 823.15 K(550°C), P1 = 9000kPa, liz = 90kg s-l, P2 =20kPa, q = 0.77. 

(c) TI = 873.15 K(600°C), P1 = 8600kPa, m = 70 kg s-I, P2 = 10 kPa, q = 0.82. 

(d) Tl =673.15 K(400°C), P1 =7000kPa, liz =65 kg s-l, P2 =50kPa, q =0.75. 

(e) Tl=473.15K(2000C),P1=1400kPa,riz=50kgs-1, P2=200kPa,q=0.75. 

v) TI =755.15K(482"C), P1 =75.8 bar, rh = 68 kg s-', P2 =0.14bar, q = 0.80. 

(g) TI =700.15K(427"C), PI =69bar, i+z =45.4kg S-l, P2 =0.28bar, q =0.75. 

7.20. Nitrogen gas initially at 8.5 bar expands isentropically to 1 bar and 423.15 K (150°C). 
Assuming nitrogen to be an ideal gas, calculate the initial temperature and the work 
produced per mole of nitrogen. 

7.21. Combustion products from a burner enter a gas turbine at 10 bar and 1223.15 K (950°C) 
and discharge at 1.5 bar. The turbine operates adiabatically with an efficiency of 77%. 
Assuming the combustion products to be an ideal-gas mixture with a heat capacity of 
32 J mol-' K-', what is the work output of the turbine per mole of gas, and what is the 
temperature of the gases discharging from the turbine? 
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7.22. Isobutane expands adiabatically in a turbine from 5000 kPa and 523.15 K (250°C) to 
500 kPa at the rate of 0.7 kmol s-'. If the turbine efficiency is 0.80, what is the power 
output of the turbine and what is the temperature of the isobutane leaving the turbine? 

7.23. The steam rate to a turbine for variable output is controlled by a throttle valve in the 
inlet line. Steam is supplied to the throttle valve at 1700 kPa and 498.15 K (225°C). 
During a test run, the pressure at the turbine inlet is 1000 kPa, the exhaust steam at 
10 kPa has a quality of 0.95, the steam flow rate is 0.5 kg s-', and the power output of 
thc turbine is 180 kW. 

(a) What are the heat losses from the turbine? 
(6) What would be the power output if the steam supplied to the throttle valve were 

expanded isentropically to the final pressure? 

7.24. Carbon dioxide gas enters an adiabatic expander at 8 bar and 673.15 K (400°C) and 
discharges at 1 bar. If the turbine efficiency is 0.75, what is the discharge temperature 
and what is the work output per mole of C02? Assume COz to be an ideal gas at these 
conditions. 

7.25. Tests on an adiabatic gas turbine (expander) yield values for inlet conditions (TI, PI) 
and outlet conditions (Tz, P2). Assuming ideal gases with constant heat capacities, 
determine the turbine efficiency for one of the following: 

(a) TI = 500 K, P1 = 6 bar, Tz = 371 K, P2 = 1.2 bar, Cp/R = 712. 
(b) TI = 450 K, Pl = 5 bar, T2 = 376 K, P2 = 2 bar, Cp/R = 4. 
(c) Tl = 525 K, PI = 10 bar, T2 = 458 K, P2 = 3 bar, Cp/R = 11/2. 
(d) Tl = 475 K, Pl = 7 bar, T2 = 372 K, P2 = 1.5 bar, Cp/R = 912. 
(e) Tl = 550 K, PI = 4 bar, T2 = 403 K, P2 = 1.2 bar, Cp/R = 512. 

7.26. The efficiency of a particular series of adiabatic gas turbines (expanders) correlates 
with power output according to the empirical expression: 

Here, I w 1 is the absolute value of the actual power output in kW. Nitrogen gas is to 
be expanded from inlet conditions of 550 K and 6 bar to an outlet pressure of 1.2 bar. 
For a molar flowrate of 175 mol s-I, what is the delivered power in kW? What is the 
efficiency of the turbine? What is the rate of entropy generation &? Assume nitrogen 
to be an ideal gas with Cp = (7/2)R. 

7.27. A turbine operates adiabatically with superheated steam entering at 45 bar and 673.15 
K (400°C). If the exhaust steam must be "dry," what is the minimum allowable exhaust 
pressure for a turbine efficiency, 7 = 0.75? Suppose the efficiency were 0.80. Would 
the minimum exhaust pressure be lower or higher? Why? 

7.28. Turbines can be used to recover energy from high-pressure liquid streams. However, 
they are not used when the high-pressure stream is a saturated liquid. Why? Illustrate 
by determining the downstream state for isentropic expansion of saturated liquid water 
at 5 bar to a final pressure of 1 bar. 

7.29. Liquid water enters an adiabatic hydroturbine at 5 atm and 288.15 K (15"C), and 
exhausts at 1 atm. Estimate the power output of the turbine in J kg-' of water if its 
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efficiency is q = 0.55. What is the outlet temperature of the water? Assume water to 
be an incompressible liquid. 

7.30. An expander operates adiabatically with nitrogen entering at Tl and PI with a molar 
flow rate A.  The exhaust pressure is P2, and the expander efficiency is q. Estimate the 
power output of the expander and the temperature of the exhaust stream for one of the 
following sets of operating conditions. 

(a) TI = 753.15 K(480°C), P1 = 6 bar, A = 0.2 kmol s-' , P2 = 1 bar, q = 0.80. 
(b) TI = 673.15 K(400°C), PI = 5 bar, A = 0.15 kmol s-', P2 = 1 bar, q = 0.75. 
(c) Tl =773.15 K(500°C), P1 =7bar, A =0.175kmol s-', P2 = I bar, q =0.78. 
(d) Tl = 723.15 K(450°C), P1 = 8 bar, i z  = 0.1 kmol sf', P2 = 2 bar, q = 0.85. 
(e) Tl = 755.15 K(482"C), PI = 6.55 bar, A = 0.23 kmol s-', P2 = 1.03 bar, q = 0.80. 

7.31. What is the ideal-work rate for the expansion process of Ex. 7.6? What is the 
thermodynamic efficiency of the process? What is the rate of entropy generation sG? 
What is wLOs,? Take T, = 300 K. 

7.32. Exhaust gas at 673.15 K (400°C) and 1 bar from internal-combustion engines flows at 
the rate of 125 mol s-' into a waste-heat boiler where saturated steam is generated at a 
pressure of 1200 kPa. Water enters the boiler at 293.15 K (20°C) (T,), and the exhaust 
gases are cooled to within 10 K (10°C) of the steam temperature. The heat capacity of 
the exhaust gases is Cp / R = 3.34 + 1.12 x lop3 TIK. The steam flows into an adiabatic 
turbine and exhausts at a pressure of 25 kPa. If the turbine efficiency q is 72%, 

(a) What is w,, the power output of the turbine? 
(b) What is the thermodynamic efficiency of the boilerlturbine combination? 
(c)  Determine sG for the boiler and for the turbine. 
(d) Express wl0,, (boiler) and %ost(turbine) as fractions of ( ~ i d , , l  I, the ideal work of 

the process. 

7.33. A small adiabatic air compressor is used to pump air into a 20-m3 insulated tank. The 
tank initially contains air at 298.15 K (25°C) and 101.33 kPa, exactly the conditions at 
which air enters the compressor. The pumping process continues until the pressure in 
the tank reaches 1000 kPa. If the process is adiabatic and if compression is isentropic, 
what is the shaft work of the compressor? Assume air to be an ideal gas for which 
C p  = (7/2)R and Cv = (5/2)R. 

7.34. Saturated steam at 125 kPa is compressed adiabatically in a centrifugal compressor to 
700 kPa at the rate of 2.5 kg s-'. The compressor efficiency is 78%. What is the power 
requirement of the compressor and what are the enthalpy and entropy of the steam in 
its final state? 

7.35. A compressor operates adiabatically with air entering at TI and P1 with a molar flow 
rate A. The discharge pressure is P2 and the compressor efficiency is q .  Estimate the 
power requirement of the compressor and the temperature of the discharge stream for 
one of the following sets of operating conditions. 
(a) Tl = 298.15 K(25"C), PI = 101.33kPa, ti ~ 0 . 1  kmol sC1, P2 = 375kPa, q =0.75. 
(b) Tl = 353.15 K(80°C), P1 = 375kPa, A =0 . l  kmol sf', P2 = IOOOkPa, q =0.70. 
(c) Tl =303.15K(30°C), P1 = 100kPa, A =0.15 kmol s-', Pz =500kPa, q =0.80. 

(d) TI = 373.15 K(lOO°C), PI =5OOkPa, i z  =0.05 kmol s-l, P2 = 1300kPa, 77 = 0.75. 
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( e )  TI = 300.15 K(27"C), PI = 1.01 bar, A =0.23 kmol s-l, P2 =3.8 bar, q =0.75. 

(f) TI = 339.15 K(66"C), P1 = 3.8 bar, A = 0.23 kmol s-', P2 = 9.3 bar, q = 0.70. 

7.36. Ammonia gas is compressed from 294.15 K (21°C) and 200 kPa to 1000 kPa in an 
adiabatic compressor with an efficiency of 0.82. Estimate the final temperature, the 
work required, and the entropy change of the ammonia. 

7.37. Propylene is compressed adiabatically from 11.5 bar and 303.15 K (30°C) to 18 bar at 
the rate of 1 kmol s-'. If the compressor efficiency is 0.8, what is the power requirement 
of the compressor and what is the discharge temperature of the propylene? 

7.38. Methane is compressed adiabatically in a pipeline pumping station from 3500 kPa and 
308.15 K (35°C) to 5500 kPa at the rate of 1.5 kmol s-'. If the compressor efficiency 
is 0.78, what is the power requirement of the compressor and what is the discharge 
temperature of the methane? 

7.39. What is the ideal work for the compression process of Ex. 7.9? What is the thermody- 
namic efficiency of the process? What are SG and WlOst? Take To = 293.15 K (20°C). 

7.40. A fan is (in effect) a gas compressor which moves large volumes of air at low pressure 
across small (1 to 15 kPa) pressure differences. The usual design equation is: 

where subscript 1 denotes inlet conditions and q is the efficiency with respect to 
isentropic operation. Develop this equation. Show also how it follows from the usual 
equation for compression of an ideal gas with constant heat capacities. 

7.41. For an adiabatic gas compressor, the efficiency with respect to isentropic operation q is 
a measure of internal irreversibilities; so is the dimensionless rate of entropy generation 
SG/R = s~/AR.  Assuming that the gas is ideal with constant heat capacities, show 
that q and SG/R are related through the expression: 

where n - ( P ~ / P ~ ) ~ ' ~ P  

7.42. Air at 1 atm and 308.15 K (35°C) is compressed in a staged reciprocating compressor 
(with intercooling) to a final pressure of 50 atm. For each stage, the inlet gas temperature 
is 308.15 K (35°C) and the maximum allowable outlet temperature is 473.15 K (200°C). 
Mechanical power is the same for all stages, and isentropic efficiency is 65% for each 
stage. The volumetric flowrate of air is 0.5 m3 s-' at the inlet to the first stage. 
(a )  How many stages are required? 

(b) What is the mechanical-power requirement per stage? 

(c)  What is the heat duty for each intercooler? 
(d) Water is the coolant for the intercoolers. It enters at 298.15 K (25°C) and leaves at 

318.15 K (45°C). What is the cooling-water rate per intercooler? 
Assume air is an ideal gas with C p  = (7/2)R. 
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7.43. Demonstrate that the power requirement for compressing a gas is smaller, the more 
complex the gas. Assume fixed values of n, r ] ,  TI, PI, and P2, and that the gas is ideal 
with constant heat capacities. 

7.44. Tests on an adiabatic gas compressor yield values for inlet conditions (TI, PI) and outlet 
conditions (T2, P2). Assuming ideal gases with constant heat capacities, determine the 
compressor efficiency for one of the following: 

(a) Tl = 300 K, PI = 2 bar, T2 = 464 K, P2 = 6 bar, Cp/R = 712. 
(b) Ti = 290 K, Pi = 1.5 bar, T2 = 547 K, P2 = 5 bar, Cp/R = 512. 
(c) TI = 295 K, P1 = 1.2 bar, T2 = 455 K, P2 = 6 bar, Cp/R = 912. 
(d) Tl = 300 K, P1 = 1.1 bar, T2 = 505 K, P2 = 8 bar, Cp/R = 1112. 
(e) TI = 305 K, P1 = 1.5 bar, T2 = 496 K, P2 = 7 bar, Cp/R = 4. 

7.45. Air is compressed in a steady-flow compressor, entering at 1.2 bar and 300 K and leaving 
at 5 bar and 500 K. Operation is nonadiabatic, with heat transfer to the surroundings 
at 295 K. For the same change in state of the air, is the mechanical-power requirement 
per mole of air greater or less for nonadiabatic than for adiabatic operation? Why? 

7.46. A boiler house produces a large excess of low-pressure [3.45 bar g, 3 K (3°C) superheat] 
steam. An upgrade is proposed that would first run the low-pressure steam through an 
adiabatic steady-flow compressor, producing medium-pressure r10.35 bar g] steam. A 
young engineer expresses concern that compression could result in the formation of 
liquid water, damaging the compressor. Is there cause for concern? Suggestion: Refer 
to the Mollier diagram of Fig. 6.4. 

7.47. A pump operates adiabatically with liquid water entering at Tl and PI with a mass 
flow rate m.  The discharge pressure is P2, and the pump efficiency is r ] .  For one of the 
following sets of operating conditions, determine the power requirement of the pump 
and the temperature of the water discharged from the pump. 

(a) Tl = 298.15 K(25"C), PI = lOOkPa, m = 20 kg s-', Pz = 2000kPa, q = 
0.75, /3 = 257.2 x ~ o - ~ K - ' .  

(6) Tl = 363.15 K(90°C), P1 = 200kPa, i+z = 30 kg s-', P2 = 5000 kPa, q = 
0.70, B = 696.2 x lou6 K-I. 

(c) TI = 333.15K(60°C), PI = 20kPa,m = 15kgsP1, Pz = 5000kPa,r] = 
0.75, B = 523.1 x K-'. 

(d) Tl = 294.15 K(21°C), P1 = 1 atm, riz = 22.7 kg s-', P2 = 20atm, r]  = 0.70, = 

217.3 x K-'. 
(e)  TI = 366.15K(93"C), PI = 1.03bar,m = 36.3kgs-l, P 2  = 103.4bar, r]  = 

0.75, B = 714.3 x K-'. 

7.48. What is the ideal work for the pumping process of Ex. 7.10? What is the thermodynamic 
efficiency of the process? What is SG? What is WlOst? Take T, = 300 K. 



Chapter 8 

Production of Power from Heat 

Except for nuclear power, the sun is the source of all the mechanical energy used by mankind. 
The total rate at which energy reaches the earth from the sun is staggering, but the rate at which it 
falls on a square meter of surface is small. Energy gathered over a large area is required to make 
practical its use in any large-scale production of work. Nevertheless, solar photovoltaic cells 
are used for electric power in small-scale special applications. Solar radiation also finds direct 
application for heating water and buildings, for generation of high temperatures in metallurgical 
applications (solar furnaces), and for evaporating water in the production of salt. 

The kinetic energy associated with atmospheric winds is used in a few favorable locations 
to produce power by large windmills. The potential energy of tides is another possible source 
of power, but production from these sources remains insignificant in comparison with world 
demands for energy. 

Significant hydroelectric power is generated by conversion of the potential energy of 
water into work, a process that can in principle be accomplished with an efficiency of 100%. 
However, by far the most important sources of power are the chemical (molecular) energy of 
fuels and nuclear energy. Large-scale installations for this purpose depend on the evolution 
of heat and its subsequent partial conversion into work. Despite improvements in equipment 
design, the efficiency of conversion does not approach 100%. This is a consequence of the 
second law. The efficiency of conventional fossil-fuel steam-power plants rarely exceeds 35%. 
However, efficiencies greater than 50% can be realized in combined-cycle plants with dual 
power generation; also known as cogeneration. 

From advanced-technology gas turbines. 

From steam-power cycles operating on heat recovered from hot turbine exhaust gases. 

A common device for the direct conversion of chemical energy into electrical energy, 
without the intermediate generation of heat, is the electrochemical cell, e.g., a battery. One type 
is thefuel cell, in which reactants are supplied continuously to the electrodes. Most successful 
is a cell in which hydrogen reacts with oxygen to produce water through electrochemical 
conversion. The resulting efficiency can be as great as 85%, a considerable improvement over 
processes that convert chemical energy into heat. This is a technology with primary application 
in transportation. Its theoretical basis is considered in Sec. 13.10. 

In a conventional power plant the molecular energy of fuel is released by a combustion 
process. The function of the work-producing device is to convert part of the heat of combustion 
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into mechanical energy. In a nuclear power plant the fission process releases energy of the 
nucleus of the atom as heat, which is then partially converted into work. Thus, the thermody- 
namic analysis of heat engines, as presented in this chapter, applies equally well to conventional 
(fossil-fuel) and nuclear power plants. 

The steam power plant is a large-scale heat engine in which the working fluid (HzO) is in 
steady-state flow successively through a pump, a boiler, a turbine, and a condenser in a cyclic 
process (Sec. 5.2). The working fluid is separated from the heat source, and heat is transferred 
across a physical boundary. In a fossil-fuel-fired plant the combustion gases are separated from 
the steam by boiler-tube walls. 

The intevnal-combustion engine is another form of heat engine, wherein high tempera- 
tures are attained by conversion of the chemical energy of a fuel directly into internal energy 
within the work-producing device. Examples are Otto and Diesel engines and the gas turbine.' 

This chapter is devoted to the analysis of several common heat-engine cycles. 

Figure 8.1 Simple steam power plant 

8.1 THE STEAM POWER PLANT 

The Carnot-engine cycle, described in Sec. 5.2, operates reversibly and consists of two isother- 
mal steps connected by two adiabatic steps. In the isothermal step at higher temperature TH, 
heat 1 QH 1 is absorbed by the working fluid of the engine, and in the isothermal step at lower 
temperature Tc, heat I Qc I is discarded by the fluid. The work produced is I W ( = I QH I - j Qc 1, 
and the thermal efficiency of the Carnot engine is: 

' ~ e t a i l s  of steam power plants and intemal-combustion engines can be found in E. B. Woodruff, H. B. Lammers, 
and T. S. Lammers, Steam Plant Operation, 6th ed., McGraw-Hill, New York, 1992; and C. F. Taylor, The Internal 
Combustion Engine in Theory and Practice: Thermodynamics, Fluid Flow, Perjormance, MIT Press, Boston, 1984. 
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Figure 8.2 Carnot cycle on a T S  diagram Figure 8.3 The Rankine cycle 

Clearly, r~ increases as TH increases and as Tc decreases. Although the efficiencies of practical 
heat engines are lowered by irreversibilities, it is still true that their efficiencies are increased 
when the average temperature at which heat is absorbed is increased and when the average 
temperature at which heat is rejected is decreased. 

Figure 8.1 shows a simple steady-state steady-flow process in which steam generated in 
a boiler is expanded in an adiabatic turbine to produce work. The discharge stream from the 
turbine passes to a condenser from which it is pumped adiabatically back to the boiler. The 
power produced by the turbine is much greater than the pump requirement, and the net power 
output is equal to the difference between the rate of heat input in the boiler I QH I and the rate 
of heat rejection in the condenser I Qc 1. 

The processes that occur as the working fluid flows around the cycle of Fig. 8.1 are 
represented by lines on the T S  diagram of Fig. 8.2. The sequence of lines shown conforms 
to a Carnot cycle. Step 1 + 2 is the vaporization process taking place in the boiler, wherein 
saturated liquid water absorbs heat at the constant temperature T H ,  and produces saturated 
vapor. Step 2 4 3 is a reversible, adiabatic expansion of saturated vapor into the two-phase 
region to produce a mixture of saturated liquid and vapor at Tc. This isentropic expansion is 
represented by a vertical line. Step 3 -+ 4 is a partial condensation process wherein heat is 
rejected at Tc. Step 4 -+ 1 takes the cycle back to its origin, producing saturated-liquid water 
at point 1. It is an isentropic compression process represented by a vertical line. 

The Rankine Cycle 

The thermal efficiency of the Carnot cycle just described is given by Eq. (5.8). As a reversible 
cycle, it could serve as a standard of comparison for actual steam power plants. However, severe 
practical difficulties attend the operation of equipment intended to carry out steps 2 -+ 3 and 
4 + 1. Turbines that take in saturated steam produce an exhaust with high liquid content, 
which causes severe erosion problems.2 Even more difficult is the design of a pump that takes 
in a mixture of liquid and vapor (point 4) and discharges a saturated liquid (point 1). For these 
reasons, an alternative model cycle is taken as the standard, at least for fossil-fuel-burning 

 everthe he less, present-day nuclear power plants generate saturated steam and operate with turbines designed to 
eject liquid at various stages of expansion. 
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power plants. It is called the Rankine cycle, and differs from the cycle of Fig. 8.2 in two major 
respects. First, the heating step 1 -+ 2 is carried well beyond vaporization, so as to produce a 
superheated vapor, and second, the cooling step 3 -+ 4 brings about complete condensation, 
yielding saturated liquid to be pumped to the boiler. The Rankine cycle therefore consists of 
the four steps shown by Fig. 8.3, and described as follows: 

1 -+ 2 A constant-pressure heating process in a boiler. The step lies along an isobar 
(the pressure of the boiler), and consists of three sections: heating of subcooled liquid 
water to its saturation temperature, vaporization at constant temperature and pressure, 
and superheating of the vapor to a temperature well above its saturation temperature. 

2 -+ 3 Reversible, adiabatic (isentropic) expansion of vapor in a turbine to the pressure 
of the condenser. The step normally crosses the saturation curve, producing a wet exhaust. 
However, the superheating accomplished in step 1 -+ 2 shifts the vertical line far enough 
to the right on Fig. 8.3 that the moisture content is not too large. 

3 -t 4 A constant-pressure, constant-temperature process in a condenser to produce 
saturated liquid at point 4. 
4 -+ 1 Reversible, adiabatic (isentropic) pumping of the saturated liquid to the pressure 
of the boiler, producing compressed (subcooled) liquid. The vertical line (whose length 
is exaggerated in Fig. 8.3) is very short, because the temperature rise associated with 
compression of a liquid is small. 

I I 

Figure 8.4 Simple practical power cycle 

Power plants can be built to operate on a cycle that departs from the Rankine cycle solely 
because of the irreversibilities of the work-producing and work-requiring steps. Figure 8.4 
illustrates the effects of these irreversibilities on steps 2 -+ 3 and 4 + 1. The lines are no 
longer vertical, but tend in the direction of increasing entropy. The turbine exhaust is normally 
still wet, but as long as the moisture content is less than about lo%, erosion problems are 
not serious. Slight subcooling of the condensate in the condenser may occur, but the effect is 
inconsequential. 
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The boiler serves to transfer heat from a burning fuel (or from a nuclear reactor) to the 
cycle, and the condenser transfers heat from the cycle to the surroundings. Neglecting kinetic- 
and potential-energy changes reduces the energy relations, Eqs. (2.31) and (2.32), in either 
case to: 

and 
Q = A H  (8.2) 

Turbine and pump calculations are treated in detail in Secs. 7.2 and 7.3. 
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The Regenerative Cycle 

The thermal efficiency of a steam power cycle is increased when the pressure and hence the 
vaporization temperature in the boiler is raised. It is also increased by increased superheating 
in the boiler. Thus, high boiler pressures and temperatures favor high efficiencies. However, 
these same conditions increase the capital investment in the plant, because they require heavier 
construction and more expensive materials of construction. Moreover, these costs increase ever 
more rapidly as more severe conditions are imposed. Thus, in practice power plants seldom 
operate at pressures much above 10 000 kPa (100 bar) or temperatures much above 873.15 
K (600°C). The thermal efficiency of a power plant increases as the pressure and hence the 
temperature in the condenser is reduced. However, the condensation temperature must be 
higher than the temperature of the cooling medium, usually water, and this is controlled by 
local conditions of climate and geography. Power plants universally operate with condenser 
pressures as low as practical. 

Most modern power plants operate on a modification of the Rankine cycle that incorpo- 
rates feedwater heaters. Water from the condenser, rather than being pumped directly back to 
the boiler, is first heated by steam extracted from the turbine. This is normally done in sev- 
eral stages, with steam taken from the turbine at several intermediate states of expansion. An 
arrangement with four feedwater heaters is shown in Fig. 8.5. The operating conditions indi- 
cated on this figure and described in the following paragraphs are typical, and are the basis for 
the illustrative calculations of Ex. 8.2. 

The conditions of steam generation in the boiler are the same as in Ex. 8.1: 8600 kPa 
and 773.15 K (500°C). The exhaust pressure of the turbine, 10 kPa, is also the same. The 
saturation temperature of the exhaust steam is therefore 3 18.98 K (4533°C). Allowing for slight 
subcooling of the condensate, we fix the temperature of the liquid water from the condenser 
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Figure 8.5 Steam power plant with feedwater heating 

at 318.15 K (45°C). The feedwater pump, which operates under exactly the conditions of the 
pump in Ex. 7.10, causes a temperature rise of about 1 K (lnC), making the temperature of the 
feedwater entering the series of heaters equal to 3 19.15 K (46°C). 

The saturation temperature of steam at the boiler pressure of 8600 kPa is 573.21 K 
(300.06"C), and the temperature to which the feedwater can be raised in the heaters is certainly 
less. This temperature is a design variable, which is ultimately fixed by economic considera- 
tions. However, a value must be chosen before any thermodynamic calculations can be made. 
We have therefore arbitrarily specified a temperature of 499.15 K (226°C) for the feedwater 
stream entering the boiler. We have also specified that all four feedwater heaters accomplish the 
same temperature rise. Thus, the total temperature rise of 499.15 - 319.15 = 180 K is divided 
into four 45 K (45°C) increments. This establishes all intermediate feedwater temperatures at 
the values shown on Fig. 8.5. 

The steam supplied to a given feedwater heater must be at a pressure high enough that 
its saturation temperature is above that of the feedwater stream leaving the heater. We have 
here presumed a minimum temperature difference for heat transfer of no less than 5 K (5"C), 
and have chosen extraction steam pressures such that the TSat values shown in the feedwater 
heaters are at least 5 K (5°C) greater than the exit temperatures of the feedwater streams. The 
condensate from each feedwater heater is flashed through a throttle valve to the heater at the 
next lower pressure, and the collected condensate in the final heater of the series is flashed 
into the condenser. Thus, all condensate returns from the condenser to the boiler by way of the 
feedwater heaters. 
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The purpose of heating the feedwater in this manner is to raise the average temperature 
at which heat is added in the boiler. This increases the thermal efficiency of the plant, which is 
said to operate on a regenerative cycle. 
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8.2 INTERNAL-COMBUSTION ENGINES 

In a steam power plant, the steam is an inert medium to which heat is transfenred from a burning 
fuel or from a nuclear reactor. It is therefore characterized by large heat-transfer surfaces: (1) for 
the absorption of heat by the steam at a high temperature in the boiler, and (2) for the rejection 
of heat from the steam at a relatively low temperature in the condenser. The disadvantage is 
that when heat must be transferred through walls (as through the metal walls of boiler tubes) 
the ability of the walls to withstand high temperatures and pressures imposes a limit on the 
temperature of heat absorption. In an internal-combustion engine, on the other hand, a fuel is 
burned within the engine itself, and the combustion products serve as the working medium, 
acting for example on a piston in a cylinder. High temperatures are internal, and do not involve 
heat-transfer surfaces. 

Burning of fuel within the internal-combustion engine complicates thermodynamic anal- 
ysis. Moreover, fuel and air flow steadily into an internal-combustion engine and combustion 
products flow steadily out of it; no working medium undergoes a cyclic process, as does steam 
in a steam power plant. However, for making simple analyses, one imagines cyclic engines 
with air as the working fluid that are equivalent in performance to actual internal-combustion 
engines. In addition, the combustion step is replaced by the addition to the air of an equivalent 
amount of heat. In what follows, each internal-combustion engine is introduced by a qualitative 
description. This is followed by a quantitative analysis of an ideal cycle in which air, treated 
as an ideal gas with constant heat capacities, is the working medium. 

The Otto Engine 

The most common internal-combustion engine, because of its use in automobiles, is the Otto 
engine. Its cycle consists of four strokes, and starts with an intake stroke at essentially constant 
pressure, during which a piston moving outward draws a fuellair mixture into a cylinder. This 
is represented by line 0 -+ 1 in Fig. 8.8. During the second stroke (1 -+ 2 + 3), all valves are 
closed, and the fuellair mixture is compressed, approximately adiabatically along line segment 
1 -+ 2; the mixture is then ignited, and combustion occurs so rapidly that the volume remains 
nearly constant while the pressure rises along line segment 2 + 3. It is during the third 
stroke (3 -+ 4 + 1) that work is produced. The high-temperature, high-pressure products of 
combustion expand, approximately adiabatically along line segment 3 -+ 4; the exhaust valve 
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Figure 8.8 Otto engine cycle Figure 8.9 Air-standard Otto cycle 

then opens and the pressure falls rapidly at nearly constant volume along line segment 4 + 1. 
During the fourth or exhaust stroke (line 1 -+ O), the piston pushes the remaining combustion 
gases (except for the contents of the clearance volume) from the cylinder. The volume plotted 
in Fig. 8.8 is the total volume of gas contained in the engine between the piston and the cylinder 
head. 

The effect of increasing the compression ratio, defined as the ratio of the volumes at the 
beginning and end of the compression stroke, is to increase the efficiency of the engine, i.e., 
to increase the work produced per unit quantity of fuel. We demonstrate this for an idealized 
cycle, called the air-standard Otto cycle, shown in Fig. 8.9. It consists of two adiabatic and two 
constant-volume steps, which comprise a heat-engine cycle for which air is the working fluid. 
In step DA, sufficient heat is absorbed by the air at constant volume to raise its temperature 
and pressure to the values resulting from combustion in an actual Otto engine. Then the air is 
expanded adiabatically and reversibly (step AB), cooled at constant volume (step BC), and 
finally compressed adiabatically and reversibly to the initial state at D. 

The thermal efficiency Q of the air-standard cycle shown in Fig. 8.9 is simply: 

For 1 mol of air with constant heat capacities, 

Q D A  = CV(TA - TD)  and QBC = Cv(Tc - TB) 

Substituting these expressions in Eq. (8.3) gives: 
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The thermal efficiency is related in a simple way to the compression ratio, r = Vc / VD.  
Each temperature in Eq. (8.4) is replaced by an appropriate group PVIR ,  in accord with the 
ideal-gas equation. Thus, 

PBVB PBVC - T B = - - -  PC Vc 
Tc = -- 

R R  R  

Substituting into Eq. (8.4) leads to: 

For the two adiabatic, reversible steps, P VY = const. Hence: 

PA V; = pB V: (because VD = VA and Vc = VB)  

These expressions are combined to eliminate the volumes: 

This equation transforms Eq. (8.5): 

Since 

This equation shows that the thermal efficiency increases rapidly with the compression ratio r 
at low values of r ,  but more slowly at high compression ratios. This agrees with the results of 
actual tests on Otto engines. 

The Diesel Engine 

The Diesel engine differs from the Otto engine primarily in that the temperature at the end 
of compression is sufficiently high that combustion is initiated spontaneously. This higher 
temperature results because of a higher compression ratio that carries the compression step to 
a higher pressure. The fuel is not injected until the end of the compression step, and then is 
added slowly enough that the combustion process occurs at approximately constant pressure. 

For the same compression ratio, the Otto engine has a higher efficiency than the Diesel 
engine. However, preignition limits the compression ratio attainable in the Otto engine. The 
Diesel engine therefore operates at higher compression ratios, and consequently at higher 
efficiencies. 
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The Gas-Turbine Engine 

The Otto and Diesel engines exemplify direct use of the energy of high-temperature, high- 
pressure gases acting on a piston within a cylinder; no heat transfer with an external source is 
required. However, turbines are more efficient than reciprocating engines, and the advantages 
of internal combustion are combined with those of the turbine in the gas-turbine engine. 

The gas turbine is driven by high-temperature gases from a combustion chamber, as 
indicated in Fig. 8.1 1. The entering air is compressed (supercharged) to a pressure of several 
bars before combustion. The centrifugal compressor operates on the same shaft as the turbine, 
and part of the work of the turbine serves to drive the compressor. The higher the temperature of 
the combustion gases entering the turbine, the higher the efficiency of the unit, i.e., the greater 
the work produced per unit of fuel burned. The limiting temperature is determined by the 
strength of the metal turbine blades, and is much lower than the theoretical flame temperature 
(Ex. 4.7) of the fuel. Sufficient excess air must be supplied to keep the combustion temperature 
at a safe level. 

The idealization of the gas-turbine engine (based on air, and called the Brayton cycle) 
is shown on a PV diagram in Fig. 8.12. Step AB is the reversible adiabatic compression of 
air from PA (atmospheric pressure) to PB. In step BC heat QBc ,  replacing combustion, is 
added at constant pressure, raising the air temperature prior to the work-producing isentropic 
expansion of the air from pressure PC to pressure Po (atmospheric pressure). Step DA is a 
constant-pressure cooling process that merely completes the cycle. The thermal efficiency of 
the cycle is: 

IW(net)l - l W c ~ l -  WAB 4'- - 
Q B C  Q B C  

(8.8) 
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Figure 8.1 1 Gas-turbine engine 

where each energy quantity is based on 1 mol of air. 
The work done as the air passes through the compressor is given by Eq. (7.14), and for 

air as an ideal gas with constant heat capacities: 

WAB = HB - HA = CP(TB - TA) 

Similarly, for the heat-addition and turbine processes, 

QBC = Cp(Tc - T B )  and ~ W C D ~  = Cp(Tc - TD)  

Figure 8.1 2 Ideal cycle for gas-turbine engine 
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Substituting these equations into Eq. (8.8) and simplifying leads to: 

Since processes AB and C D  are isentropic, the temperatures and pressures are related by 
Eq. (3.29b): 

and 

With these equations TA and To may be eliminated to give: 
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8.3 JET ENGINES; ROCKET ENGINES 

In the power cycles so far considered the high-temperature, high-pressure gas expands in a 
turbine (steam power plant, gas turbine) or in the cylinders of an Otto or Diesel engine with 
reciprocating pistons. In either case, the power becomes available through a rotating shaft. 
Another device for expanding the hot gases is a nozzle. Here the power is available as kinetic 
energy in the jet of exhaust gases leaving the nozzle. The entire power plant, consisting of a 
compression device and a combustion chamber, as well as a nozzle, is known as a jet engine. 
Since the kinetic energy of the exhaust gases is directly available for propelling the engine 
and its attachments, jet engines are most commonly used to power aircraft. There are several 
types of jet-propulsion engines based on different ways of accomplishing the compression and 
expansion processes. Since the air striking the engine has kinetic energy (with respect to the 
engine), its pressure may be increased in a diffuser. 

The turbojet engine (usually called simply a jet engine) illustrated in Fig. 8.13 takes 
advantage of a diffuser to reduce the work of compression. The axial-flow compressor completes 
the job of compression, and then the fuel is injected and burned in the combustion chamber. The 
hot combustion-product gases first pass through a turbine where the expansion provides just 
enough power to drive the compressor. The remainder of the expansion to the exhaust pressure 
is accomplished in the nozzle. Here, the velocity of the gases with respect to the engine is 
increased to a level above that of the entering air. This increase in velocity provides a thrust 

Figure 8.1 3 The turbojet power plant 
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(force) on the engine in the forward direction. If the compression and expansion processes are 
adiabatic and reversible, the turbojet-engine cycle is identical to the ideal gas turbine cycle 
shown in Fig. 8.12. The only differences are that, physically, the compression and expansion 
steps are carried out in devices of different types. 

A rocket engine differs from a jet engine in that the oxidizing agent is carried with the 
engine. Instead of depending on the surrounding air for burning the fuel, the rocket is self- 
contained. This means that the rocket can operate in a vacuum such as in outer space. In fact, 
the performance is better in a vacuum, because no 'thrust' is required to overcome friction 
forces. 

In rockets burning liquid fuels the oxidizing agent (e.g., liquid oxygen) is pumped from 
tanks into the combustion chamber. Simultaneously, fuel (e.g., hydrogen, kerosene) is pumped 
into the chamber and burned. The combustion takes place at a constant high pressure and 
produces high-temperature product gases that are expanded in a nozzle, as indicated in Fig. 8.14. 

In rockets burning solid fuels the fuel (organic polymers) and oxidizer (e.g., ammonium 
perchlorate) are contained together in a solid matrix and stored at the forward end of the 
combustion chamber. 

Figure 8.14 Liquid-fuel rocket engine 

In an ideal rocket, the combustion and expansion steps are the same as those for an ideal 
jet engine (Fig. 8.12). A solid-fuel rocket requires no compression work, and in a liquid-fuel 
rocket the compression energy is small, since the fuel and oxidizer are pumped as liquids. 

PROBLEMS 

8.1. The basic cycle for a steam power plant is shown by Fig. 8.1. Suppose the turbine operates 
adiabatically with inlet steam at 6800 kPa and 823.15 K (550°C) and the exhaust steam 
enters the condenser at 323.15 K (50°C) with a quality of 0.96. Saturated liquid water 
leaves the condenser, and is pumped to the boiler. Neglecting pump work and kinetic- 
and potential-energy changes, determine the thermal efficiency of the cycle and the 
turbine efficiency. 

8.2. A Carnot engine with H 2 0  as the working fluid operates on the cycle shown in Fig. 8.2. 
The H20 circulation rate is 1 kg s-'. For TH = 475 K and Tc = 300 K, determine: 

(a) The pressures at states 1, 2, 3, and 4. 
(b) The quality xu at states 3 and 4. 
(c)  The rate of heat addition. 
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(d) The rate of heat rejection. 

(e) The mechanical power for each of the four steps. 

( f )  The thermal efficiency 11 of the cycle. 

8.3. A steam power plant operates on the cycle of Fig. 8.4. For one of the following sets of 
operating conditions, determine the steam rate, the heat-transfer rates in the boiler and 
condenser, and the thermal efficiency of the plant. 

(a) P1 = P2 = 10000kPa; T2 = 873.15 K(600°C); P3 = P4 = 10kPa;  turbine) = 
0.80;  pump) = 0.75; power rating = 80 000 kW. 

(b) P1 = P2 = 7000 kPa; T2 = 823.15 K(550°C); P3 = P4 = 20 kPa;  turbine) = 
0.75;  pump) = 0.75; power rating = 100 000 kW. 

(c) P1 = Pz = 8500kPa; T2 = 873.15 K(600°C); P3 = P4 = 10kPa;  turbine) = 
0.80;  pump) = 0.80; power rating = 70 000 kW. 

(d) PI = P2 = 6500kPa;T2 = 798.15K(525"C); P3 = P4 = 101.33kPa; 
 turbine) = 0.78;  pump) = 0.75; power rating = 50 000 kW. 

(e) P1 = P2 = 7760 kPa; T2 = 866.15 K(593"C); P3 = P4 = 7 kPa;  turbine) = 
0.80;  pump) = 0.75; power rating = 80000 kW. 

8.4. Steam enters the turbine of a power plant operating on the Rankine cycle (Fig. 8.3) at 
3300 kPa and exhausts at 50 kPa. To show the effect of superheating on the performance 
of the cycle, calculate the thermal efficiency of the cycle and the quality of the exhaust 
steam from the turbine for turbine-inlet steam temperatures of 723.15 (450), 823.15 
(SO), and 923.15 K (650°C). 

8.5. Steam enters the turbine of a power plant operating on the Rankine cycle (Fig. 8.3) at 
873.15 K (600°C) and exhausts at 30 Wa. To show the effect of boiler pressure on the 
performance of the cycle, calculate the thermal efficiency of the cycle and the quality of 
the exhaust steam from the turbine for boiler pressures of 5000,7500, and 10 000 kPa. 

8.6. A steam power plant employs two adiabatic turbines in series. Steam enters the first 
turbine at 923.15 K (650°C) and 7000 kPa and discharges from the second turbine at 
20 kPa. The system is designed for equal power outputs from the two turbines, based on 
a turbine efficiency of 78% for each turbine. Determine the temperature and pressure of 
the steam in its intermediate state between the two turbines. What is the overall efficiency 
of the two turbines together with respect to isentropic expansion of the steam from the 
initial to the final state? 

8.7. A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, includes 
just one feedwater heater. Steam enters the turbine at 4500 kPa and 773.15 K (500°C) 
and exhausts at 20 Wa. Steam for the feedwater heater is extracted from the turbine at 
350 kPa, and in condensing raises the temperature of the feedwater to within 6 K (6°C) 
of its condensation temperature at 350 kPa. If the turbine and pump efficiencies are both 
0.78, what is the thermal efficiency of the cycle and what fraction of the steam entering 
the turbine is extracted for the feedwater heater? 

8.8. A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, includes 
two feedwater heaters. Steam enters the turbine at 6500 kPa and 873.15 K (600°C) and 
exhausts at 20 kPa. Steam for the feedwater heaters is extracted from the turbine at 
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pressures such that the feedwater is heated to 463.15 K (190°C) in two equal increments 
of temperature rise, with 5 K (5°C) approaches to the steam-condensation temperature 
in each feedwater heater. If the turbine and pump efficiencies are both 0.80, what is the 
thermal efficiency of the cycle and what fraction of the steam entering the turbine is 
extracted for each feedwater heater? 

8.9. A power plant operating on heat recovered from the exhaust gases of internal combustion 
engines uses isobutane as the working medium in a modified Rankine cycle in which 
the upper pressure level is above the critical pressure of isobutane. Thus the isobutane 
does not undergo a change of phase as it absorbs heat prior to its entry into the turbine. 
Isobutane vapor is heated at 4800 kPa to 533.15 K (260"C), and enters the turbine as 
a supercritical fluid at these conditions. Isentropic expansion in the turbine produces a 
superheated vapor at 450 kPa, which is cooled and condensed at constant pressure. The 
resulting saturated liquid enters the pump for return to the heater. If the power output of 
the modified Rankine cycle is 1000 kW, what is the isobutane flow rate, the heat-transfer 
rates in the heater and condenser, and the thermal efficiency of the cycle? 

The vapor pressure of isobutane is given by 

8.10. A power plant operating on heat from a geothermal source uses isobutane as the work- 
ing medium in a Rankine cycle (Fig. 8.3). Isobutane is heated at 3400 kPa (a pressure 
just a little below its critical pressure) to a temperature of 413.15 K (140°C), at which 
conditions it enters the turbine. Isentropic expansion in the turbine produces super- 
heated vapor at 450 kPa, which is cooled and condensed to saturated liquid and pumped 
to the heaterboiler. If the flowrate of isobutane is 75 kg s-', what is the power out- 
put of the Rankine cycle and what are the heat-transfer rates in the heaterboiler and 
cooler/condenser? What is the thermal efficiency of the cycle? 

Repeat these calculations for a cycle in which the turbine and pump each have an effi- 
ciency of 80%. 

The vapor pressure of isobutane is given in the preceding problem. 

8.11. For comparison of Diesel- and Otto-engine cycles: 

(a) Show that the thermal efficiency of the air-standard Diesel cycle can be expressed 
as 

where r is the compression ratio and r, is the cutoff ratio, defined as r, = VA/ VD. 
(See Fig. 8.10.) 

(b) Show that for the same compression ratio the thermal efficiency of the air-standard 
Otto engine is greater than the thermal efficiency of the air-standard Diesel cycle. 
Hint: Show that the fraction which multiplies ( l / r ) ~ - '  in the above equation for q 
is greater than unity by expanding r: in a Taylor series with the remainder taken to 
the first derivative. 

(c)  If y = 1.4, how does the thermal efficiency of an air-standard Otto cycle with a 
compression ratio of 8 compare with the thermal efficiency of an air-standard Diesel 
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cycle with the same compression ratio and a cutoff ratio of 2? How is the comparison 
changed if the cutoff ratio is 3? 

8.12. An air-standard Diesel cycle absorbs 1500 J mol-' of heat (step DA of Fig. 8.10, 
which simulates combustion). The pressure and temperature at the beginning of the 
compression step are 1 bar and 293.15 K (20°C), and the pressure at the end of the 
compression step is 4 bar. Assuming air to be an ideal gas for which C p  = (7/2)R and 
Cv = (5/2)R, what are the compression ratio and the expansion ratio of the cycle? 

8.13. Calculate the efficiency for an air-standard gas-turbine cycle (the Brayton cycle) oper- 
ating with a pressure ratio of 3. Repeat for pressure ratios of 5,7,  and 9. Take y = 1.35. 

8.14. An air-standard gas-turbine cycle is modified by installation of a regenerative heat 
exchanger to transfer energy from the air leaving the turbine to the air leaving the 
compressor. In an optimum countercurrent exchanger, the temperature of the air leaving 
the compressor is raised to that of point D in Fig. 8.12, and the temperature of the 
gas leaving the turbine is cooled to that of point B in Fig. 8.12. Show that the thermal 
efficiency of this cycle is given by 

8.15. Consider an air-standard cycle for the turbojet power plant shown in Fig. 8.13. The 
temperature and pressure of the air entering the compressor are 1 bar and 303.15 K 
(30°C). The pressure ratio in the compressor is 6.5, and the temperature at the turbine 
inlet is 1373.15 K (1 100°C). If expansion in the nozzle is isentropic and if the nozzle 
exhausts at 1 bar, what is the pressure at the nozzle inlet (turbine exhaust) and what is 
the velocity of the air leaving the nozzle? 

8.16. Air enters a gas-turbine engine (see Fig. 8.1 1) at 305 K and 1.05 bar, and is compressed 
to 7.5 bar. The fuel is methane at 300 K and 7.5 bar; compressor and turbine efficiencies 
are each 80%. For one of the turbine inlet temperatures Tc given below, determine: the 
molar fuel-to-air ratio, the net mechanical power delivered per mole of fuel, and the 
turbine exhaust temperature TD. Assume complete combustion of the methane. 

(a )  Tc = 1000 K; (b) Tc = 1250 K; (c)  Tc = 1500 K 
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Refrigeration and Liquefaction 

Refrigeration is best known for its use in the air conditioning of buildings and in the treatment, 
transportation, and preservation of foods and beverages. It also finds large-scale industrial 
application, for example, in the manufacture of ice and the dehydration of gases. Applications 
in the petroleum industry include lubricating-oil purification, low-temperature reactions, and 
separation of volatile hydrocarbons. A closely related process is gas liquefaction, which has 
important commercial applications. 

The purpose of this chapter is to present a thermodynamic analysis of refrigeration and 
liquefaction processes. However, the details of equipment design are left to specialized books.' 

The word refrigeration implies the maintenance of a temperature below that of the 
surroundings. This requires continuous absorption of heat at a low temperature level, usu- 
ally accomplished by evaporation of a liquid in a steady-state flow process. The vapor formed 
may be returned to its original liquid state for reevaporation in either of two ways. Most com- 
monly, it is simply compressed and then condensed. Alternatively, it may be absorbed by a 
liquid of low volatility, from which it is subsequently evaporated at higher pressure. Before 
treating these practical refrigeration cycles, we consider the Carnot refrigerator, which provides 
a standard of comparison. 

9.1 THE CARNOT REFRIGERATOR 

In a continuous refrigeration process, the heat absorbed at a low temperature is continuously 
rejected to the surroundings at a higher temperature. Basically, a refrigeration cycle is a reversed 
heat-engine cycle. Heat is transferred from a low temperature level to a higher one; according 
to the second law, this requires an external source of energy. The ideal refrigerator, like the ideal 
heat engine (Sec. 5.2), operates on a Carnot cycle, consisting in this case of two isothermal 
steps in which heat 1 Qc 1 is absorbed at the lower temperature Tc and heat I Q H  I is rejected at 
the higher temperature T H ,  and two adiabatic steps. The cycle requires the addition of net work 

'ASHRAE Handbook: Refrigeration, 1994; Fundamentals, 1993; HVAC Systems and Equipment, 1992; HVAC 
Applications, 1991; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta; Shan 
K. Wang, Handbook of Air Conditioning and Refrigeration, McGraw-Hill, New York, 1993. 
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W to the system. Since AU of the working fluid is zero for the cycle, the first law is written: 

The measure of the effectiveness of a refrigerator is its coeficient of performance w, 
defined as: 

heat absorbed at the lower temperature 1 Qc 1 w iz -- - 
net work W 

(9.2) 

Equation (9.1) may be divided by I Qc I: 

Combination with Eq. (5.7) gives: 

and Eq. (9.2) becomes: 

This equation applies only to a refrigerator operating on a Carnot cycle, and it gives the 
maximum possible value of w for any refrigerator operating between given values of TH and 
Tc. It shows clearly that the refrigeration effect per unit of work decreases as the temperature 
of heat absorption Tc decreases and as the temperature of heat rejection TH increases. For 
refrigeration at a temperature level of 278.15 K (5°C) in a surroundings at 303.15 K (30"C), 
the value of w for a Carnot refrigerator is: 

9.2 THE VAPOR-COMPRESSION CYCLE 

The vapor-compression refrigeration cycle is represented in Fig. 9.1. Shown on the T S diagram 
are the four steps of the process. A liquid evaporating at constant pressure (line 1 + 2) provides 
a means for heat absorption at a low constant temperature. The vapor produced is compressed 
to a higher pressure, and is then cooled and condensed with rejection of heat at a higher 
temperature level. Liquid from the condenser returns to its original pressure by an expansion 
process. In principle, this can be carried out in an expander from which work is obtained, but 
for practical reasons is accomplished by throttling through a partly open valve. The pressure 
drop in this irreversible process results from fluid friction in the valve. As shown in Sec. 7.1, the 
throttling process occurs at constant enthalpy. In Fig. 9.1 line 4 -t 1 represents this throttling 
process. The dashed line 2 + 3' is the path of isentropic compression (Fig. 7.6). Line 2 --+ 3, 
representing the actual compression process, slopes in the direction of increasing entropy, 
reflecting inherent irreversibilities. 
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Figure 9.1 Vapor-compression refrigeration cycle 

On the basis of a unit mass of fluid, the equations for the heat absorbed in the evaporator 
and the heat rejected in the condenser are: 

l Q c l =  H2-f f1  and IQHI = H3 - H 4  

These equations follow from Eq. (2.32) when the small changes in potential and kinetic energy 
are neglected. The work of compression is simply: 

and by Eq. (9.2), the coefficient of performance is: 

To design the evaporator, compressor, condenser, and auxiliary equipment one must know 
the rate of circulation of refrigerant m. This is determined from the rate of heat absorption in 
the evaporate? by the equation: 

The vapor-compression cycle of Fig. 9.1 is shown on a P H diagram in Fig. 9.2. Such dia- 
grams are more commonly used in the description of refrigeration processes than T S diagrams, 
because they show directly the required enthalpies. Although the evaporation and condensation 
processes are represented by constant-pressure paths, small pressure drops do occur because 
of fluid friction. 

'1n the United States refrigeration equipment is commonly rated in tons of refrigeration; a ton of refrigeration is 
defined as heat absorption at the rate of 12 000 Btu h-' or 12 652.2 kJ h-'. This corresponds approximately to the 
rate of heat removal required to freeze 1 short ton [or 2000 (lb)] of water initially at 32 ( O F )  per day or remove 3.5145 
kW at 273.15 K (0°C). 
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Figure 9.2 Vapor-compression refrigeration cycle on a 
P H diagram 

For given values of Tc and T H ,  the highest possible value of w is attained for Carnot- 
cycle refrigeration. The lower values for the vapor-compression cycle result from irreversible 
expansion in a throttle valve and irreversible compression. The following example provides an 
indication of typical values for coefficients of performance. 
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9.3 THE CHOICE OF REFRIGERANT 

As shown in Sec. 5.2, the efficiency of a Carnot heat engine is independent of the working 
medium of the engine. Similarly, the coefficient of performance of a Carnot refrigerator is 
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Table 9.1 Thermodynamic Properties of Saturated Tetrafluoroethanej 

Temperature Saturation Liquid Specific Enthalpy Entropy 
"C K pressure density volume 

MPa kg m-3 of vapor kJ kg-' kJ kg-' K-' 
m3 kg-' 

normal boiling point 
+Reproduced with permission from ASHRAE Handbook: Fundamentals, p. 17.29, American Society 
of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, 1993. 
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independent of the refrigerant. However, the irreversibilities inherent in the vapor-compression 
cycle cause the coefficient of performance of practical refrigerators to depend to some extent on 
the refrigerant. Nevertheless, such characteristics as its toxicity, flammability, cost, corrosion 
properties, and vapor pressure in relation to temperature are of greater importance in the choice 
of refrigerant. So that air cannot leak into the refrigeration system, the vapor pressure of the 
refrigerant at the evaporator temperature should be greater than atmospheric pressure. On the 
other hand, the vapor pressure at the condenser temperature should not be unduly high, because 
of the initial cost and operating expense of high-pressure equipment. These two requirements 
limit the choice of refrigerant to relatively few fluids. The final selection then depends on the 
other characteristics mentioned. 

Ammonia, methyl chloride, carbon dioxide, propane and other hydrocarbons can serve 
as refrigerants. Halogenated hydrocarbons came into common use as refrigerants in the 1930s. 
Most common were the fully halogenated chlorofluorocarbons, CC13F (trichlorofluoromethane 
or CFC-1 I ) ~  and CC12F2 (dichlorodifluoromethane or CFC-12). These stable molecules per- 
sist in the atmosphere for hundreds of years, causing severe ozone depletion. Their production 
has mostly ended. Replacements are certain hydrochlorofluorocarbons, less than fully halo- 
genated hydrocarbons which cause relatively little ozone depletion, and hydrofluorocarbons, 
which contain no chlorine and cause no ozone depletion. Examples are CHC12CF3 (dichlor- 
otrifluoroethane or HCFC-123), CF3CH2F (tetrafluoroethane or HFC-134a), and CHF2CF3 
(pentafluoroethane or HFC-125). A pressurelenthalpy diagram for tetrafluoroethane (HFC- 
134a) is shown in Fig. G.2; Table 9.1 provides saturation data for the same refrigerant. Tables 
and diagrams for a variety of other refrigerants are readily a~ai lable .~ 

Limits placed on the operating pressures of the evaporator and condenser of a refrigeration 
system also limit the temperature difference TH - TC over which a simple vapor-compression 
cycle can operate. With TH fixed by the temperature of the surroundings, a lower limit is 
placed on the temperature level of refrigeration. This can be overcome by the operation of two 
or more refrigeration cycles employing different refrigerants in a cascade. A two-stage cascade 
is shown in Fig. 9.3. 

Here, the two cycles operate so that the heat absorbed in the interchanger by the refrigerant 
of the higher-temperature cycle 2 serves to condense the refrigerant in the lower-temperature 
cycle 1. The two refrigerants are so chosen that at the required temperature levels each cycle 
operates at reasonable pressures. For example, assume the following operating temperatures 
(Fig. 9.3): 

If tetrafluoroethane (HFC-134a) is the refrigerant in cycle 2, then the intake and discharge 
pressures for the compressor are about 1.45 bar and 7.72 bar, and the pressure ratio is about 
5.32. If propylene is the refrigerant in cycle 1, these pressures are about 1.1 bar and 4 bar, 
and the pressure ratio is about 3.64. These are all reasonable values. On the other hand, for 
a single cycle operating between 227 K and 303 K with HFC-134a as refrigerant, the intake 

3 ~ h e  abbreviated designation is nomenclature of the American Society of Heating, Refrigerating, and Air- 
Conditioning Engineers. 

4 ~ ~ ~ R A ~  Handbook: Fundamentals, Chap. 17, 1989; R. H. Peny and D. Green, Perry's Chemical Engi- 
neers' Handbook, 7th ed., Sec. 2, 1997. Extensive data for ammonia are given by L. Haar and J. S. Gallagher, 
J. Phys. Chem. Re$ Data, vol. 7, pp. 635-792, 1978. 
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Figure 9.3 A two-stage cascade refrigeration system 

pressure to the condenser is about 0.4 bar, well below atmospheric pressure. Moreover, for a 
discharge pressure of about 7.72 bar the pressure ratio is 19.3, too high a value for a single-stage 
compressor. 

9.4 ABSORPTION REFRIGERATION 

In vapor-compression refrigeration the work of compression is usually supplied by an electric 
motor. But the source of the electric energy for the motor is probably a heat engine (central 
power plant) used to drive a generator. Thus the work for refrigeration comes ultimately from 
heat at a high temperature level. This suggests the direct use of heat as the energy source for 
refrigeration. The absorption-refrigeration machine is based on this idea. 

The work required by a Carnot refrigerator absorbing heat at temperature Tc and reject- 
ing heat at the temperature of the surroundings, here designated Ts, follows from Eqs. (9.2) 
and (9.3): 
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Figure 9.4 Schematic diagram of an absorption-refrigeration unit 

where I Qc I is the heat absorbed. If a source of heat is available at a temperature above that 
of the surroundings, say at T H ,  then work can be obtained from a Carnot engine operating 
between this temperature and the surroundings temperature Ts. The heat required I QH I for the 
production of work I W I is found from Eq. (5.8): 

IWI r = - -  Ts - I - -  and TH 

I Q H I  I Q H I  = lwl- 
TH TH - TS 

Substitution for ( W ( gives: 

The value of I QH 111 Qc I given by this equation is of course a minimum, because Carnot cycles 
cannot be achieved in practice. 

A schematic diagram for a typical absorption refrigerator is shown in Fig. 9.4. The essen- 
tial difference between a vapor-compression and an absorption refrigerator is in the different 
means employed for compression. The section of the absorption unit to the right of the dashed 
line in Fig. 9.4 is the same as in a vapor-compression refrigerator, but the section to the left 
accomplishes compression by what amounts to a heat engine. Refrigerant as vapor from the 
evaporator is absorbed in a relatively nonvolatile liquid solvent at the pressure of the evapo- 
rator and at relatively low temperature. The heat given off in the process is discarded to the 
surroundings at Ts. This is the lower temperature level of the heat engine. The liquid solution 
from the absorber, which contains a relatively high concentration of refrigerant, passes to a 
pump, which raises the pressure of the liquid to that of the condenser. Heat from the higher 
temperature source at TH is transferred to the compressed liquid solution, raising its temperature 
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and evaporating the refrigerant from the solvent. Vapor passes from the regenerator to the con- 
denser, and solvent, which now contains a relatively low concentration of refrigerant, returns 
to the absorber. The heat exchanger conserves energy and also adjusts stream temperatures 
toward proper values. Low-pressure steam is the usual source of heat for the regenerator. 

The most commonly used absorption-refrigeration system operates with water as the 
refrigerant and a lithium bromide solution as the absorbent. This system is obviously limited to 
refrigeration temperatures above the freezing point of water. It is treated in detail by Perry and 
  re en.^ For lower temperatures ammonia can serve as refrigerant with water as the solvent. 
An alternative system uses methanol as refrigerant and polyglycolethers as absorbent. 

Consider refrigeration at a temperature level of [Tc = 263.15 K (-10°C)] with a heat 
source of condensing steam at atmospheric pressure [TH = 373.15 K (lOO°C)]. For a surround- 
ings temperature of [Ts = 303.15 K (30°C)], the minimum possible value of 1 QH 111 Qc 1 is 
found from Eq. (9.6): 

For an actual absorption refrigerator, the value would be on the order of three times this result. 

9.5 THE HEAT PUMP 

The heat pump, a reversed heat engine, is a device for heating houses and commercial buildings 
during the winter and cooling them during the summer. In the winter it operates so as to absorb 
heat from the surroundings and reject heat into the building. Refrigerant evaporates in coils 
placed underground or in the outside air; vapor compression is followed by condensation, heat 
being transferred to air or water, which is used to heat the building. Compression must be to a 
pressure such that the condensation temperature of the refrigerant is higher than the required 
temperature level of the building. The operating cost of the installation is the cost of electric 
power to run the compressor. If the unit has a coefficient of performance, I Qc I/W = 4, the heat 
available to heat the house I QH I is equal to five times the energy input to the compressor. Any 
economic advantage of the heat pump as a heating device depends on the cost of electricity in 
comparison with the cost of fuels such as oil and natural gas. 

The heat pump also serves for air conditioning during the summer. The flow of refrigerant 
is simply reversed, and heat is absorbed from the building and rejected through underground 
coils or to the outside air. 

5 ~ .  H. Perry and D. Green, op. cit., pp. 11-88-1 1-89. 
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9.6 LIQUEFACTION PROCESSES 

Liquefied gases are in common use for a variety of purposes. For example, liquid propane in 
cylinders serves as a domestic fuel, liquid oxygen is carried in rockets, natural gas is liquefied 
for ocean transport, and liquid nitrogen is used for low-temperature refrigeration. In addition, 
gas mixtures (e.g., air) are liquefied for separation into their component species by fractionation. 

Liquefaction results when a gas is cooled to a temperature in the two-phase region. This 
may be accomplished in several ways: 

1. By heat exchange at constant pressure. 

2. By an expansion process from which work is obtained. 

3. By a throttling process. 

The first method requires a heat sink at a temperature lower than that to which the gas 
is cooled, and is most commonly used to precool a gas prior to its liquefaction by the other 
two methods. An external refrigerator is required for a gas temperature below that of the 
surroundings. 

The three methods are illustrated in Fig. 9.5. The constant-pressure process (1) 
approaches the two-phase region (and liquefaction) most closely for a given drop in tem- 
perature. The throttling process (3) does not result in liquefaction unless the initial state is at 
a high enough pressure and low enough temperature for the constant-enthalpy process to cut 
into the two-phase region. This does not occur when the initial state is at A. If the initial state 
is at A', where the temperature is the same but the pressure is higher than at A, then isenthalpic 
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Figure 9.5 Cooling processes on a TS diagram 

expansion by process (3') does result in the formation of liquid. The change of state from A to 
A' is most easily accomplished by compression of the gas to the final pressure at B, followed by 
constant-pressure cooling to A'. Liquefaction by isentropic expansion along process (2) may 
be accomplished from lower pressures (for given temperature) than by throttling. For example, 
continuation of process (2) from initial state A ultimately results in liquefaction. 

The throttling process (3) is the one commonly employed in small-scale commercial 
liquefaction plants. The temperature of the gas must of course decrease during expansion. This 
is indeed what happens with most gases at usual conditions of temperature and pressure. The 
exceptions are hydrogen and helium, which increase in temperature upon throttling unless the 
initial temperature is below about 100 K for hydrogen and 20 K for helium. Liquefaction of these 
gases by throttling requires initial reduction of the temperature to lower values by method 1 or 2. 

As already mentioned, the temperature must be low enough and the pressure high enough 
prior to throttling that the constant-enthalpy path cuts into the two-phase region. For example, 
reference to a TS diagram for air6 shows that at a pressure of 100 atm the temperature must 
be less than 169 K for any liquefaction to occur along a path of constant enthalpy. In other 
words, if air is compressed to 100 atm and cooled to below 169 K, it can be partly liquefied by 
throttling. The most economical way to cool a gas for liquefaction is by countercurrent heat 
exchange with the portion of the gas that does not liquefy in the throttling process. 

The Linde liquefaction process, which depends solely on throttling expansion, is shown 
in Fig. 9.6. After compression, the gas is precooled to ambient temperature. It may be even 
further cooled by refrigeration. The lower the temperature of the gas entering the throttle valve, 
the greater the fraction of gas that is liquefied. For example, a refrigerant evaporating in the 
cooler at 233.15 K (-40°C) provides a lower temperature at the valve than if water at 294.15 
K (21°C) is the cooling medium. 

A more efficient liquefaction process would replace the throttle valve by an expander, 
but operating such a device into the two-phase region is impractical. However, the Claude 
process, shown in Fig. 9.7, is based in part on this idea. Gas at an intermediate temperature 

6 ~ .  H. Perry and D. Green, op. cif., Fig. 2-5, p. 2-213. 
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Figure 9.6 Linde liquefaction process 
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is extracted from the heat-exchange system and passed through an expander from which it 
exhausts as a saturated or slightly superheated vapor. The remaining gas is further cooled 
and throttled through a valve to produce liquefaction as in the Linde process. The unliquefied 
portion, which is saturated vapor, mixes with the expander exhaust and returns for recycle 
through the heat-exchanger system. 

An energy balance, Eq. (2.30), applied to that part of the process lying to the right of the 
dashed vertical line yields: 

If the expander operates adiabatically, woUt as given by Eq. (7.13), is: 

Moreover, by a mass balance, m l s  = m4 - m9. The energy balance, after division by m4, 
therefore becomes: 

With the definitions, z - m9/m4 and x = mI2/m4,  solution of the preceding equation for z 
yields: 

x(H12 - H5) + H4 - H15 
z = 

H9 - H15 
(9.7) 

In this equation z is the fraction of the stream entering the heat-exchanger system that is 
liquefied, and x is the fraction of this stream that is drawn off between the heat exchangers 
and passing through the expander. This latter quantity (x) is a design variable, and must be 
specified before Eq. (9.7) can be solved for z .  Note that the Linde process results when x = 0 ,  
and in this event Eq. (9.7) reduces to: 

Thus the Linde process is a limiting case of the Claude process, obtained when none of the 
high-pressure gas stream is sent to an expander. 

Equations (9.7) and (9.8) suppose that no heat flows into the system from the 
surroundings. This can never be exactly true, and heat leakage may be significant when tem- 
peratures are very low, even with well-insulated equipment. 
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7 ~ .  H. Perry and D. Green, op. cit., Table 2-281, p. 2-251; Table 2-282, p. 2-253. 
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PROBLEMS 

9.1. An easy way to rationalize definitions of cycle performance is to think of them as: 

What you get 
Measure of performance = 

What you pay for 

Thus, for an engine, thermal efficiency is q = I W 111 Q H  1; for a refrigerator, the coeffi- 
cient of performance is w = / QC I / /  WI. Define a coefficient of performance q5 for a heat 
pump. What is 4 for a Carnot heat pump? 

9.2. The contents of the freezer in a home refrigerator are maintained at 253.15 K (-20°C). 
The kitchen temperature is 293.15 K (20°C). If heat leaks amount to 125 000 W per day, 
and if electricity costs $0.08/kWh, estimate the yearly cost of running the refrigerator. 
Assume a coefficient of performance equal to 60% of the Carnot value. 

9.3. Consider the startup of arefrigerator. Initially, the contents are at the same temperature as 
the surroundings: Tc, = T H ,  where TH is the (constant) surroundings temperature. With 
the passage of time, owing to work input, the contents temperature is reduced from TG 
to its design value Tc. Modeling the process as a Carnot refrigerator operating between 
an infinite hot reservoir and afinite cold reservoir of total heat capacity Ct  , determine an 
expression for the minimum work required to decrease the contents temperature from 
Tco to Tc . 

9.4. A Carnot refrigerator has tetrafluoroethane as the working fluid. The cycle is the same as 
that shown by Fig. 8.2, except the directions are reversed. For Tc = 261.15 K (-12°C) 
and TH = 3 11.15 K (38OC), determine: 

(a) The pressures at states 1, 2, 3, and 4. 
(b) The quality x u  at states 3 and 4. 
(c)  The heat addition per kg of fluid. 

(d) The heat rejection per kg of fluid. 

(e) The mechanical power per kg of fluid for each of the four steps. 

( f )  The coefficient of performance w for the cycle. 

9.5. Which is the more effective way to increase the coefficient of performance of a Carnot 
refrigerator: to increase Tc with TH constant, or to decrease TH with TC constant? For 
a real refrigerator, does either of these strategies make sense? 

9.6. In comparing the performance of a real cycle with that of a Carnot cycle, one has 
in principle a choice of temperatures to use for the Carnot calculation. Consider a 
vapor-compression refrigeration cycle in which the average fluid temperatures in the 
condenser and evaporator are TH and Tc, respectively. Corresponding to TH and Tc, 
the heat transfer occurs with respect to surroundings at temperature T,,, and To,. Which 
provides the more conservative estimate of  carno not): a calculation based on TH and 
Tc, or one based on To, and To,? 

9.7. A Carnot engine is coupled to a Carnot refrigerator so that all of the work produced 
by the engine is used by the refrigerator in extraction of heat from a heat reservoir at 
273.15 K (0°C) at the rate of 35 kW. The source of energy for the Carnot engine is a 
heat reservoir at 523.15 K (250°C). If both devices discard heat to the surroundings at 
298.15 K (25"C), how much heat does the engine absorb from its heat-source reservoir? 
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If the actual coefficient of performance of the refrigerator is w = 0.6 wc,,,, and if the 
thermal efficiency of the engine is q = 0.6 qcarnot, how much heat does the engine absorb 
from its heat-source reservoir? 

9.8. A refrigeration system requires 1.5 kW of power for a refrigeration rate of 4 kW. 

(a )  What is the coefficient of performance? 
(b) How much heat is rejected in the condenser? 
(c) If heat rejection is at 313.15 K (409C), what is the lowest temperature the system 

can possibly maintain? 

9.9. A vapor-compression refrigeration system operates on the cycle of Fig. 9.1. The 
refrigerant is tetrafluoroethane (Table 9.1, Fig. G.2). For one of the following sets of 
operating conditions, determine the circulation rate of the refrigerant, the heat-transfer 
rate in the condenser, the power requirement, the coefficient of performance of the 
cycle, and the coefficient of performance of a Carnot refrigeration cycle operating 
between the same temperature levels. 
(a) Evaporation T l t  = 272.15 K(- 1°C); condensation T l t  = 300.15 K(27"C); 

q(compressor) = 0.79; refrigeration rate = 633 kW. 

(b) Evaporation T l t  = 266.15(-7°C); condensation T l t  = 300.15 K(27"C) 
q(compressor) = 0.78; refrigeration rate = 527.5 kW. 

(c) Evaporation T l t  = 261.15 K(- 12°C); condensation T l t  = 300.15 K(27"C) 
q(compressor) = 0.77; refrigeration rate = 422 kW. 

(d) Evaporation T l t  = 255.15 K (- 18°C); condensation T l t  = 300.15 K (27°C); 
q(compressor) = 0.76; refrigeration rate = 316.5 kW. 

(e) Evaporation T l t  = 250.15K (-23°C); condensation T l t  = 300.15 K (27°C); 
q(compressor) = 0.75; refrigeration rate = 21 1 kW. 

9.10. A vapor-compression refrigeration system operates on the cycle of Fig. 9.1. The 
refrigerant is water. Given that the evaporation T l t  = 277.15 W 4"C, the condensation 
T l  t  = 307.15 K/34"C, q(compressor) = 0.76, and the refrigeration rate = 1200 kW, de- 
termine the circulation rate of the refrigerant, the heat-transfer rate in the condenser, the 
power requirement, the coefficient of performance of the cycle, and the coefficient of per- 
formance of a Carnot refrigeration cycle operating between the same temperature levels. 

9.11. A refrigerator with tetrafluoroethane (Table 9.1, Fig. G.2) as refrigerant operates with 
an evaporation temperature of 247.15 K (-26°C) and a condensation temperature of 
300.15 K (27°C). Saturated liquid refrigerant from the condenser flows through an 
expansion valve into the evaporator, from which it emerges as saturated vapor. 
(a)  For a cooling rate of 5.275 kW, what is the circulation rate of the refrigerant? 
(b) By how much would the circulation rate be reduced if the throttle valve were 

replaced by a turbine in which the refrigerant expands isentropically? 
(c) Suppose the cycle of (a) is modified by the inclusion of a countercurrent heat 

exchanger between the condenser and the throttle valve in which heat is transferred 
to vapor returning from the evaporator. If liquid from the condenser enters the 
exchanger at 300.15 K (27°C) and if vapor from the evaporator enters the exchanger 
at 247.15 K (-26°C) and leaves at 294.15 K (2I0C), what is the circulation rate of 
the refrigerant? 
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(d) For each of (a),  (b), and (c), determine the coefficient of performance for isentropic 
compression of the vapor. 

9.12. A vapor-compression refrigeration system is conventional except that a countercurrent 
heat exchanger is installed to subcool the liquid from the condenser by heat exchange 
with the vapor stream from the evaporator. The minimum temperature difference for heat 
transfer is 5.6 K (5.6"C). Tetrafluoroethane is the refrigerant (Table 9.1, Fig. G.2), evapo- 
rating at 266.15 K (-7°C) and condensing at 300.15 K (27°C). The heat load on the evap- 
orator is 21 10 kW. If the compressor efficiency is 75%, what is the power requirement? 

How does this result compare with the power required by the compressor if the system 
operates without the heat exchanger? How do the refrigerant circulation rates compare 
for the two cases? 

9.13. Consider the vapor-compression refrigeration cycle of Fig. 9.1 with tetrafluoroethane 
as refrigerant (Table 9.1, Fig. G.2). If the evaporation temperature is 261.15 K (- 12"C), 
show the effect of condensation temperature on the coefficient of performance by 
making calculations for condensation temperatures of 288.75 K (15.6"C), 300.15 K 
(27°C) and 31 1.15 K(38"C). 

(a) Assume isentropic compression of the vapor. 

(b) Assume a compressor efficiency of 75%. 

9.14. A heat pump is used to heat a house in the winter and to cool it in the summer. During 
the winter, the outside air serves as a low-temperature heat source; during the summer, 
it acts as a high-temperature heat sink. The heat-transfer rate through the walls and roof 
of the house is 0.75 kW for each kelvin of temperature difference between the inside 
and outside of the house, summer and winter. The heat-pump motor is rated,at 1.5 kW. 
Determine the minimum outside temperature for which the house can be maintained 
at 293.15 K (20°C) during the winter and the maximum outside temperature for which 
the house can be maintained at 298.15 K (25°C) during the summer. 

9.15. Dry methane is supplied by a compressor and precooling system to the cooler of 
a Linde liquid-methane system (Fig. 9.6) at 180 bar and 300 K. The low-pressure 
methane leaves the cooler at a temperature 6 K (6°C) lower than the temperature of the 
incoming high-pressure methane. The separator operates at 1 bar, and the product is 
saturated liquid at this pressure. What is the maximum fraction of the methane entering 
the cooler that can be liquefied? Perry's Chemical Engineers' Handbook (footnote 7) 
is a source of data for methane. 

9.16. Rework the preceding problem for methane entering at 200 bar, and precooled to 240 K 
by external refrigeration. 

An advertisement is noted in a rural newspaper for a dairy-barn unit that combines a 
milk cooler with a water heater. Milk must, of course, be refrigerated, and hot water 
is required for washing purposes. The usual barn is equipped with a conventional 
air-cooled electric refrigerator and an electric-resistance water heater. The new unit is 
said to provide both the necessary refrigeration and the required hot water at a cost 
for electricity about the same as the cost of running just the refrigerator in the usual 
installation. To assess this claim, compare two refrigeration units: The advertised unit 
takes 14.65 kW from a milk cooler at 272.15 K (-l0C), and discards heat through a 
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condenser at 338.15 K (66°C) to raise the temperature of water from 286.15 K (13°C) 
to 336.15 K (63°C). The conventional unit takes the same amount of heat from the same 
milk cooler at 272.15 K (- 1 "C) and discards heat through an air-cooled condenser 
at 322.15 K (49°C); in addition, the same amount of water is heated electrically from 
286.15 K (13°C) to 336.15 K (63°C). Estimate the total electric power requirements 
for the two cases, assuming that the actual work in both is 50% greater than required 
by Carnot refrigerators operating between the given temperatures. 

9.18. A two-stage cascade refrigeration system (see Fig. 9.3) operates between Tc = 210 K 
and TH = 305 K. Intermediate temperatures are T& = 255 K and Tfl = 260 K. 
Coefficients of performance o of each stage are 65% of the corresponding values for 
a Carnot refrigerator. Determine w for the real cascade, and compare it with that for a 
Carnot refrigerator operating between Tc and TH.  

9.19. Do a parametric study for the Claude liquefaction process treated in Sec. 9.6 and 
Ex. 9.3. In particular, show numerically the effect of changing the draw-off ratio x 
on other process variables. Perry's Chemical Engineers' Handbook (footnote 7 )  is a 
source of data for methane. 



Chapter 10 

VaporILiquid Equilibrium: 
Introduction 

Preceding chapters have dealt largely with pure substances or with constant-composition mix- 
tures. e.g., air. However, composition changes are the desired outcome, not only of chemical 
reactions, but of a number of industrially important mass-transfer operations. Thus composition 
becomes a primary variable in the remaining chapters of this text. Processes such as distilla- 
tion, absorption, and extraction bring phases of different composition into contact, and when 
the phases are not in equilibrium, mass transfer between the phases alters their compositions. 
Both the extent of change and the rate of transfer depend on the departure of the system from 
equilibrium. Thus, for quantitative treatment of mass transfer the equilibrium T, P, and phase 
compositions must be known. 

The most commonly encountered coexisting phases in industrial practice are vapor and 
liquid, although liquidlliquid, vaporlsolid, and liquidlsolid systems are also found. In this 
chapter we first discuss the nature of equilibrium, and then consider two rules that give the 
number of independent variables required to determine equilibrium states. There follows in 
Sec. 10.3 a qualitative discussion of vaporAiquid phase behavior. In Sec. 10.4 we introduce 
the two simplest formulations that allow calculation of temperatures, pressures, and phase 
compositions for systems in vaporlliquid equilibrium. The first, known as Raoult's law, is 
valid only for systems at low to moderate pressures and in general only for systems comprised 
of chemically similar species. The second, known as Henry's law, is valid for any species 
present at low concentration, but as presented here is also limited to systems at low to moderate 
pressures. A modification of Raoult's law that removes the restriction to chemically similar 
species is treated in Sec. 10.5. Finally in Sec. 10.6 calculations based on equilibrium ratios 
or K-values are considered. The treatment of vaporAiquid equilibrium is developed further in 
Chaps. 12 and 14. 

10.1 THE NATURE OF EQUILIBRIUM 

Equilibrium is a static condition in which no changes occur in the macroscopic properties of a 
system with time. This implies a balance of all potentials that may cause change. In engineering 
practice, the assumption of equilibrium is justified when it leads to results of satisfactory 
accuracy. For example, in the reboiler for a distillation column, equilibrium between vapor and 
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liquid phases is commonly assumed. For finite vaporization rates this is an approximation, but 
it does not introduce significant error into engineering calculations. 

An isolated system consisting of liquid and vapor phases in intimate contact eventually 
reaches a final state wherein no tendency exists for change to occur within the system. The 
temperature, pressure, and phase compositions reach final values which thereafter remain fixed. 
The system is in equilibrium. Nevertheless, at the microscopic level, conditions are not static. 
The molecules comprising a phase at a given instant are not the same molecules that later occupy 
the same phase. Molecules with sufficiently high velocities near the interface overcome surface 
forces and pass into the other phase. However, the average rate of passage of molecules is the 
same in both directions, and no net interphase transfer of material occurs. 

Measures of Composition 

The three most common measures of composition are mass fraction, mole fraction, and molar 
concentration. Mass or mole fraction is defined as the ratio of the mass or number of moles of 
a particular chemical species in a mixture or solution to the total mass or number of moles of 
the mixture or solution: 

Molar concentration is defined as the ratio of the mole fraction of a particular chemical 
species in a mixture or solution to its molar volume: 

This quantity has units of moles of i per unit volume. For flow processes convenience suggests 
its expression as a ratio of rates. Multiplying and dividing by molar flow rate ri gives: 

where r i i  is molar flow rate of species i ,  and q is volumetric flow rate. 
The molar mass of a mixture or solution is, by definition, the mole-fraction-weighted 

sum of the molar masses of all species present: 

10.2 THE PHASE RULE. DUHEM'S THEOREM 

The phase rule for nonreacting systems, presented without proof in Sec. 2.7, results from 
application of a rule of algebra. Thus, the number of variables that may be independently 
fixed in a system at equilibrium is the difference between the total number of variables that 
characterize the intensive state of the system and the number of independent equations that can 
be written connecting the variables. 

The intensive state of a P V T  system containing N chemical species and n phases 
in equilibrium is characterized by the intensive variables, temperature T, pressure P, and 
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N - 1 mole fractions1 for each phase. These are the phase-rule variables, and their number is 
2 + (N - l)(n). The masses of the phases are not phase-rule variables, because they have no 
influence on the intensive state of the system. 

As will become clear later in this chapter, an independent phase-equilibrium equation 
may be written connecting intensive variables for each of the N species for each pair of 
phases present. Thus, the number of independent phase-equilibrium equations is (n  - 1)(N). 
The difference between the number of phase-rule variables and the number of independent 
equations connecting them is the number of variables that may be independently fixed. Called 
the degrees of freedom of the system F, the number is: 

Upon reduction, this becomes the phase rule: 

Duhem's theorem is another rule, similar to the phase rule, but less celebrated. It applies 
to closed systems at equilibrium for which the extensive state as well as the intensive state 
of the system is fixed. The state of such a system is said to be completely determined, and is 
characterized not only by the 2 + (N - 1)n intensive phase-rule variables but also by the n 
extensive variables represented by the masses (or mole numbers) of the phases. Thus the total 
number of variables is: 

If the system is closed and formed from specified amounts of the chemical species present, 
then a material-balance equation can be written for each of the N chemical species. These in 
addition to the (n  - l )N  phase-equilibrium equations provide a total number of independent 
equations equal to: 

The difference between the number of variables and the number of equations is therefore: 

On the basis of this result, Duhem's theorem is stated as follows: 

For any closed system formed initially from given masses of pre- 
scribed chemical species, the equilibrium state is completely deter- 
mined when any two independent variables are fixed. 

The two independent variables subject to specification may in general be either intensive or 
extensive. However, the number of independent intensive variables is given by the phase rule. 
Thus when F = 1, at least one of the two variables must be extensive, and when F = 0, both 
must be extensive. 

'only N - 1 mole fractions are required, because xi xi = 1. 
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I 

Figure 10.1 PTxy  diagram for vaporlliquid equilibrium 

10.3 VLE: QUALITATIVE BEHAVIOR 

VaporAiquid equilibrium (VLE) is the state of coexistence of liquid and vapor phases. In this 
qualitative discussion, we limit consideration to systems comprised of two chemical species, 
because systems of greater complexity cannot be adequately represented graphically. 

When N = 2, the phase rule becomes F = 4 - n. Since there must be at least one 
phase (n = I), the maximum number of phase-rule variables which must be specified to fix 
the intensive state of the system is three: namely, P, T, and one mole (or mass) fraction. 
All equilibrium states of the system can therefore be represented in three-dimensional P-T- 
composition space. Within this space, the states of pairs of phases coexisting at equilibrium 
(F = 4 - 2 = 2) define surfaces. A schematic three-dimensional diagram illustrating these 
surfaces for VLE is shown in Fig. 10.1. 

This figure shows schematically the P-T-composition surfaces which contain the equi- 
librium states of saturated vapor and saturated liquid for a binary system. The under surface 
contains the saturated-vapor states; it is the P-T-yl surface. The upper surface contains the 
saturated-liquid states; it is the P-T-xl surface. These surfaces intersect along the lines U B H C ,  



318 CHAPTER 10. Vapor/Liquid Eauilibrium: Introduction 

and KAC2, which represent the vapor pressure-vs.-T curves for pure species 1 and 2. More- 
over, the under and upper surfaces form a continuous rounded surface across the top of the 
diagram between Cl and C2, the critical points of pure species 1 and 2; the critical points of the 
various mixtures of the two species lie along a line on the rounded edge of the surface between 
C1 and C2. This critical locus is defined by the points at which vapor and liquid phases in 
equilibrium become identical. Further discussion of the critical region is given later. 

The subcooled-liquid region lies above the upper surface of Fig. 10.1; the superheated- 
vapor region lies below the under surface. The interior space between the two surfaces is the 
region of coexistence of both liquid and vapor phases. If one starts with a liquid at F and 
reduces the pressure at constant temperature and composition along vertical line FG, the first 
bubble of vapor appears at point L, which lies on the upper surface. Thus, L is a bubblepoint, 
and the upper surface is the bubblepoint surface. The state of the vapor bubble in equilibrium 
with the liquid at L must be represented by a point on the under surface at the temperature 
and pressure of L. This point is indicated by V.  Line VL is an example of a tie line, which 
connects points representing phases in equilibrium. 

As the pressure is further reduced along line FG,  more and more liquid vaporizes until at 
W the process is complete. Thus W lies on the under surface and represents a state of saturated 
vapor having the mixture composition. Since W is the point at which the last drops of liquid 
(dew) disappear, it is a dewpoint, and the lower surface is the dewpoint surface. Continued 
reduction of pressure merely leads into the superheated vapor region. 

Because of the complexity of Fig. 10.1, the detailed characteristics of binary VLE are 
usually depicted by two-dimensional graphs that display what is seen on various planes that 
cut the three-dimensional diagram. The three principal planes, each perpendicular to one of 
the coordinate axes, are illustrated in Fig. 10.1. Thus a vertical plane perpendicular to the 
temperature axis is outlined as AL B D EA. The lines on this plane form a P-xl - y  phase diagram 
at constant T. If the lines from several such planes are projected on a single parallel plane, a 
diagram like Fig. 10.2(a) is obtained. It shows P-xl-yl plots for three different temperatures. 
The one for T, represents the section of Fig. 10.1 indicated by ALB DEA. The horizontal 
lines are tie lines connecting the compositions of phases in equilibrium. The temperature Tb 
lies between the two pure-species critical temperatures identified by C1 and C2 in Fig. 10.1, 
and temperature Td is above both critical temperatures. The curves for these two temperatures 
therefore do not extend all the way across the diagram. However, the first passes through one 
mixture critical point, and the second through two such points. All three of these critical points 
are denoted by the letter C. Each is a tangent point at which a horizontal line touches the curve. 
This is so because all tie lines connecting phases in equilibrium are horizontal, and the tie line 
connecting identical phases (the definition of a critical point) must therefore be the last such 
line to cut the diagram. 

A horizontal plane passed through Fig. 10.1 perpendicular to the P axis is identified by 
HI  J K L H. Viewed from the top, the lines on this plane represent a T-xl-y diagram. When 
lines for several pressures are projected on a parallel plane, the resulting diagram appears as in 
Fig. 10.2(b). This figure is analogous to Fig. 10.2(a), except that it represents values for three 
constant pressures, Pa, Pb, and Pd. 

Other possible plots are vapor mole fraction yl vs. liquid mole fraction xl for either the 
constant-T conditions of Fig. 10.2(a) or the constant-P conditions of Fig. 10.2(b). 

The third plane identified in Fig. 10.1, vertical and perpendicular to the composition 
axis, is indicated by MNQRSLM. When projected on a parallel plane, the lines from several 
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- Saturated liquid (bubble Ilne) - - - Saturated vapor (dew line) 

0 1 
X l , Y l  

(a) 

Saturated l~quid (bubble Ilne) - - - Saturated vapor (dew I~ne) I 
0 1 

X 1 , Y l  

Figure 10.2 (a) Pxy diagram for three temperatures. (b) Txy diagram for three 
pressures 

planes present a diagram such as that shown by Fig. 10.3. This is the P-T diagram; lines U C 1  
and KC2 are vapor-pressure curves for the pure species, identified by the same letters as in 
Fig. 10.1. Each interior loop represents the P-T behavior of saturated liquid and of saturated 
vapor for a mixture of $xed composition; the different loops are for different compositions. 
Clearly, the P-T relation for saturated liquid is different from that for saturated vapor of the 
same composition. This is in contrast with the behavior of a pure species, for which the bubble 
and dew lines coincide. At points A and B in Fig. 10.3 saturated-liquid and saturated-vapor 
lines intersect. At such points a saturated liquid of one composition and a saturated vapor of 
another composition have the same T and P, and the two phases are therefore in equilibrium. 
The tie lines connecting the coinciding points at A and at B are perpendicular to the P-T plane, 
as illustrated by the tie line VL in Fig. 10.1. 

The critical point of a binary mixture occurs where the nose of a loop in Fig. 10.3 is 
tangent to the envelope curve. Put another way, the envelope curve is the critical locus. One can 
verify this by considering two closely adjacent loops and noting what happens to the point of 
intersection as their separation becomes infinitesimal. Figure 10.3 illustrates that the location 
of the critical point on the nose of the loop varies with composition. For a pure species the 
critical point is the highest temperature and highest pressure at which vapor and liquid phases 
can coexist, but for a mixture it is in general neither. Therefore under certain conditions a 
condensation process occurs as the result of a reduction in pressure. 

Consider the enlarged nose section of a single P-T loop shown in Fig.lO.4. The critical 
point is at C. The points of maximum pressure and maximum temperature are identified as M p  
and M T .  The interior dashed curves indicate the fraction of the overall system that is liquid 
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Saturated l ~ q u ~ d  (bubble Ilne) 
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T 

Figure 10.3 PT diagram for several 
compositions 

Figure 10.4 Portion of a PT diagram 
in the critical region 

P 

in a two-phase mixture of liquid and vapor. To the left of the critical point C a reduction in 
pressure along a line such as B D is accompanied by vaporization of liquid from bubblepoint 
to dewpoint, as would be expected. However, if the original condition corresponds to point F ,  
a state of saturated vapor, liquefaction occurs upon reduction of the pressure and reaches 
a maximum at point G, after which vaporization takes place until the dewpoint is reached 
at point H. This phenomenon is called retrograde condensation. It can be important in the 
operation of deep natural-gas wells where the pressure and temperature in the underground 
formation are at conditions represented by point F. If the pressure at the wellhead is that of 
point G, considerable liquefaction of the product stream is accomplished along with partial 
separation of the heavier species of the mixture. Within the underground formation itself, the 
pressure tends to drop as the gas supply is depleted. If not prevented, this leads to the formation 
of a liquid phase and a consequent reduction in the production of the well. Repressuring is 
therefore a common practice; i.e., lean gas (gas from which the heavier species have been 
removed) is returned to the underground reservoir to maintain an elevated pressure. 

A P-T diagram for the ethane(l)/n-heptane(2) system is shown in Fig. 10.5, and a 
yl-xl diagram for several pressures for the same system appears in Fig. 10.6. According to 
convention, one plots as yl and xl the mole fractions of the more volatile species in the 
mixture. The maximum and minimum concentrations of the more volatile species obtainable 
by distillation at a given pressure are indicated by the points of intersection of the appropriate 
y -XI curve with the diagonal, for at these points the vapor and liquid have the same composition. 
They are in fact mixture critical points, unless yl = xl = 0 or yl = xl = 1. Point A in 
Fig. 10.6 represents the composition of the vapor and liquid phases at the maximum pressure 
at which the phases can coexist in the ethaneln-heptane system. The composition is about 
77 mol-% ethane and the pressure is about 87.1 bar. The corresponding point on Fig. 10.5 is 
labeled M. A complete set of consistent phase diagrams for this system has been prepared by 
~arr-David.' 

A 

Crttrcal locus 1 

t 

'F. H. Ban-David, AIChE J., vol. 2, p. 426, 1956. 

T 
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Figure 10.5 PT  diagram for ethaneln-heptane. (Redrawn from F. H. Barr-David, 
AlChE J., vol. 2, pp. 426-427, 1956 with permission.) 

The P-T diagram of Fig. 10.5 is typical for mixtures of nonpolar substances such as 
hydrocarbons. A P-T diagram for a very different kind of system, methanol(l)/benzene(2), is 
shown in Fig. 10.7. The nature of the curves in this figure suggests how difficult it can be to 
predict phase behavior for species so dissimilar as methanol and benzene. 

Although VLE in the critical region is of considerable importance in the petroleum and 
natural-gas industries, most chemical processing is accomplished at much lower pressures. 
Figures 10.8 and 10.9 display common types of P-x-y and t-x-y behavior at conditions well 
removed from the critical region. 

Figure 10.8(a) shows data for tetrahydrofuran(l)/carbon tetrachloride(2) at 303.15 K 
(30°C). Here, the P-xl or bubblepoint curve on a P-xl-yl diagram lies below the linear P-xl 
relation characteristic of Raoult's-law behavior, as described in the following section. When 
such negative departures from linearity become sufficiently large relative to the difference 
between the two pure-species vapor pressures, the P-x curve exhibits a minimum, as illustrated 
in Fig. 10.8(b) for the chloroform(l)/tetrahydrofuran(2) system at 303.15 K (30°C). This figure 
shows that the P-yl curve also has a minimum at the same point. Thus at this point where 
xl = yl the dewpoint and bubblepoint curves are tangent to the same horizontal line. A 
boiling liquid of this composition produces a vapor of exactly the same composition, and 
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Figure 10.6 yx diagram for ethaneln-heptane. (Reproduced by permission from F. H. 
Barr-David, AIChE J., vol. 2, p. 426-427, 1956.) 

the liquid therefore does not change in composition as it evaporates. No separation of such a 
constant-boiling solution is possible by distillation. The term azeotrope is used to describe this 
state.3 

The data for furan(1)lcarbon tetrachloride(2) at 303.15 K (30°C) shown by Fig. 10.8(c) 
provide an example of a system for which the P-xl curve lies above the linear P-xl relation. 
The system shown in Fig. 10.8(d) for ethanol(l)/toluene(2) at 338.15 K (65°C) exhibits positive 
departures from linearity sufficiently large to cause a maximum in the P-xl curve. This state 
is a maximum-pressure azeotrope. Just as for the minimum-pressure azeotrope the vapor and 
liquid phases in equilibrium have the identical composition. 

3~ compilation of data for such states is given by J. Gmehling, Azeotropic Data, John Wiley & Sons, Inc., New 
York, 1994. 
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Figure 10.7 PT diagram for methanollbenzene. (Redrawn from Chem. Eng. Sci., 
vol. 19, J. M. Skaates and W. B. Kay, "The phase relations of binary systems that form 
azeotropes," pp. 431-444, copyright 1964, with permission from Elsevier Science Ltd., 
Pergamon Imprint, The Boulevard, Langford Lane, Kidlington OX5 IGB, UK) 

Appreciable negative departures from P-xl linearity reflect stronger liquid-phase inter- 
molecular attractions between unlike than between like pairs of molecules. Conversely, ap- 
preciable positive departures result for solutions for which liquid-phase intermolecular forces 
between like molecules are stronger than between unlike. In this latter case the forces between 
like molecules may be so strong as to prevent complete miscibility, and the system then forms 
two separate liquid phases over a range of compositions, as described in Sec. 14.4. 

Since distillation processes are carried out more nearly at constant pressure than at con- 
stant temperature, t-xl-y, diagrams of data at constant P are of practical interest. The four 
such diagrams corresponding to those of Fig. 10.8 are shown for atmospheric pressure in 
Fig. 10.9. Note that the dewpoint (t-yl) curves lie above the bubblepoint (t-xl) curves. More- 
over, the minimum-pressure azeotrope of Fig. 10.8(b) appears as a maximum-temperature (or 
maximum-boiling) azeotrope on Fig. 10.9(b). There is an analogous correspondence between 
Figs. 10.8(d) and 10.9(d). The yl-xl diagrams at constant P for the same four systems are 
shown in Fig. 10.10. The point at which a curve crosses the diagonal line of the diagram 
represents an azeotrope, for at such a point yl = XI. 
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Figure 10.8 P x y  diagrams at constant T .  (a) Tetrahydrofuran(1 )/carbon tetrachlo- 
ride(2) at 303.15 K (30°C); (b) chloroform(l)/tetrahydrofuran(2) at 303.15 K (30°C) 
(c) furan(l)/carbon tetrachloride(2) at 303.15 K (30°C); (d) ethanol(l)/toluene(2) at 
338.15 K (65°C). Dashed lines: Px relation for ideal liquid solutions (Raoult's law) 
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Figure 10.9 txy diagrams at 1 atm: (a) tetrahydrofuran(1)lcarbon tetrachloride(2); 
(b) chloroform(l)/tetrahydrofuran(2); (c) furan(1)lcarbon tetrachloride(2); (d )  ethan- 
ol(1 ) I  toluene(2) 
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Figure 10.10 yx diagrams at 1 atm: (a) tetrahydrofuran(l)/carbon tetrachlor- 
ide(2); (b) chloroform(l)/tetrahydrofuran(2); (c) furan(1)lcarbon tetrachloride(2); 
(d )  ethanol(l)/toluene(2) 

10.4 SIMPLE MODELS FOR VAPORILIQUID EQUILIBRIUM 

The preceding section has described what is observed through experimental observation. When 
thermodynamics is applied to vaporAiquid equilibrium, the goal is to find by calculation the 
temperatures, pressures, and compositions of phases in equilibrium. Indeed, thermodynamics 
provides the mathematical framework for the systematic correlation, extension, generalization, 
evaluation, and interpretation of data. Moreover, it is the means by which the predictions of 
various theories of molecular physics and statistical mechanics may be applied to practical 
purposes. None of this can be accomplished without models for the behavior of systems in 
vaporAiquid equilibrium. The two simplest are Raoult's law and Henry's law. 

Raoult's Law 

The two major assumptions required to reduce VLE calculations to Raoult's law4 are: 

The vapor phase is an ideal gas. 
The liquid phase is an ideal solution (Sec. 11.8). 

The first assumption means that Raoult's law can apply only for low to moderate pressures. 
The second implies that it can have approximate validity only when the species that comprise 
the system are chemically similar. Just as the ideal gas serves as a standard to which real-gas 

4~rancois  Marie Raoult (1830-1901), French chemist 
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behavior may be compared, the ideal solution represents a standard to which real-solution 
behavior may be compared. Ideal-solution behavior is often approximated by liquid phases 
wherein the molecular species are not too different in size and are of the same chemical nature. 
Thus, a mixture of isomers, such as ortho-, meta-, and para-xylene, conforms very closely 
to ideal-solution behavior. So do mixtures of adjacent members of a homologous series, as 
for example, n-hexaneln-heptane, ethanollpropanol, and benzeneltoluene. Other examples are 
acetonelacetonitrile and acetonitrilelnitromethane. 

The mathematical expression which reflects the two listed assumptions and which there- 
fore gives quantitative expression to Raoult's law i s5  

where xi is a liquid-phase mole fraction, yi is a vapor-phase mole fraction, and Pi
sat is the 

vapor pressure of pure species i at the temperature of the system. The product yi P on the left 
side of Eq. (10.1) is known as the partial pressure of species i (Sec. 11.4). 

The simple model for VLE represented by Eq. (10.1) provides a realistic description of 
actual behavior for a relatively small class of systems. Nevertheless, it is useful for displaying 
VLE calculations in their simplest form, and it also serves as a standard of comparison for 
more complex systems. A limitation of Raoult's law is that it can be applied only to species for 
which a vapor pressure is known, and this requires that the species be "subcritical," i.e., that 
the temperature of application be below the critical temperature of the species. 

An important and useful feature of Raoult's law is that it is valid for any species present at 
a mole fraction approaching unity, provided only that the vapor phase is an ideal gas. Chemical 
similarity of the constituent species is not here a requirement. 

Dewpoint and Bubblepoint Calculations with Raoult's Law 

Although VLE problems with other combinations of variables are possible, engineering interest 
centers on dewpoint and bubblepoint calculations; there are four classes: 

BUBL P: Calculate {yi) and P, given {xi} and T 
DEW P: Calculate {xi } and P, given {yi } and T 
BUBL T: Calculate {yi} and T, given {xi} and P 
DEW T: Calculate {xi} and T, given {yi} and P 

In each case the name suggests the quantities to be calculated: either a BUBL (vapor) or a 
DEW (liquid) composition and either P or T. Thus, one must specify either the liquid-phase 
or the vapor-phase composition and either T or P, thus fixing 1 + (N - 1) or N phase-rule 
variables, exactly the number of degrees of freedom F required by the phase rule [Eq. (2.7)] for 
vapor/liquid equilibrium. The equations for rigorous solution of VLE problems have a complex 
functionality, and their use to determine bubblepoints and dewpoints requires complicated 
iterative calculations (Secs. 14.1 and 14.2). In the following sections calculations are made for 
conditions where simplifying assumptions prevail. The general procedures for solution of VLE 

 he rigorous equation for subcritical vaporlliquid equilibrium, given by Eq. (14.1), reduces to Eq. (10.1) when 
the two listed assumptions are imposed. 
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problems thus become evident through calculations of relative simplicity. We focus first on the 
application of Raoult's law. 

Because xi yi = 1, Eq. (10.1) may be summed over all species to yield: 

This equation finds application in bubblepoint calculations, where the vapor-phase composition 
is unknown. For a binary system with x2 = 1 - x l ,  

P = P2Sat f (PIsat - P,sat)xl 

and a plot of P vs. xl at constant temperature is a straight line connecting P,sat at xl = 0 with 
PISat at xl = 1. The P - x - y  diagrams of Fig. 10.8 show this linear relation. 

Equation (10.1) may also be solved for xi and summed over all species. With xi xi = 1, 
this yields: 

an equation applied in dewpoint calculations, where liquid-phase compositions are not known. 
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Henry's Law 
Application of Raoult's law to species i requires a value for Pi

Sat at the temperature of ap- 
plication, and thus is not appropriate for a species whose critical temperature is less than the 
temperature of application. If a system of air in contact with liquid water is presumed at equilib- 
rium, then the air is saturated with water. The mole fraction of water vapor in the air is usually 
found from Raoult's law applied to the water with the assumption that no air dissolves in the 
liquid phase. Thus, the liquid water is regarded as pure and Raoult's law for the water (species 2) 
becomes y2 P = P p t .  At 298.15 K (25'C) and atmospheric pressure, this equation yields: 

where the pressures are in kPa, and P p t  comes from the steam tables. 
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Acetylene 1 350 
Air 72 950 
Carbon dioxide 1 670 
Carbon monoxide 54 600 
Ethane 30 600 
Ethylene 11 550 

Table 10.1 Henry's Constants for Gases Dissolved 
in Water at 298.1 5 K (25°C) 

Helium 126 600 
Hydrogen 71 600 
Hydrogen sulfide 55 200 
Methane 41 850 
Nitrogen 87 650 
Oxygen 44 380 

Gas %/bar 

If one wishes to calculate the mole fraction of air dissolved in the water, then Raoult's 
law cannot be applied, because the critical temperature of air is much lower than 298.15 K 
(25°C). This problem can be solved by Henry's law, applied here for pressures low enough 
that the vapor phase may be assumed an ideal gas. For a species present as a very dilute solute 
in the liquid phase, Henry's law then states that the partial pressure of the species in the vapor 
phase is directly proportional to its liquid-phase mole fraction. Thus, 

Gas %/bar 

p=iq (10.4) 

where Xi is Henry's constant. Values of Xi come from experiment, and Table 10.1 lists 
values at 298.15 K (25°C) for a few gases dissolved in water. For the airlwater system at 
298.15 K (25°C) and atmospheric pressure, Henry's law applied to the air (species 1) with 
yl = 1 - 0.0312 = 0.9688 yields: 

This result justifies the assumption made in application of Raoult's law to the water. 
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10.5 VLE BY MODIFIED RAOULT'S LAW 

For low to moderate pressures a much more realistic equation for VLE results when the second 
major Raoult's-law assumption is abandoned, and account is taken of deviations from solution 
ideality in the liquid phase by a factor inserted into Raoult's law, modified to read: 

The factor yi is called an activity coeficient. Bubblepoint and dewpoint calculations made with 
this equation are only a bit more complex than the same calculations made with Raoult's law. 
Activity coefficients are functions of temperature and liquid-phase composition, and ultimately 
are based on experiment (Sec. 12.1). For present purposes,.the necessary values are assumed 
known.6 

Because Ci y ,  = 1, Eq. (10.5) may be summed over all species to yield: 

Alternatively, Eq. (10.5) may be solved for xi, in which case summing over all species yields: 

6 ~ h e  correlation of activity-coefficient data is treated in Secs. 12.1 and 12.2. 
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Dewpoint and bubblepoint calculations are readily made with software packages such as 
~ a t h c a d @  and ~ a p l e @ ,  in which iteration is an integral part of an equation-solving routine. 
Mathcad programs for solution of Ex. 10.3, parts (a )  through (d), are given in App. D.2. 

Calculations for multicomponent systems made without simplifying assumptions are 
readily carried out in like manner by computer. The procedures are presented in Sec. 14.1. 

10.6 VLE FROM K-VALUE CORRELATIONS 

A convenient measure of the tendency of a given chemical species to partition itself preferen- 
tially between liquid and vapor phases is the equilibrium ratio Ki, defined as: 

This quantity is usually called simply a K-value. Although it adds nothing to thermodynamic 
knowledge of VLE, it does serve as a measure of the "lightness" of a constituent species, i.e., of 
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its tendency to favor the vapor phase. When Ki is greater than unity, species i exhibits a higher 
concentration in the vapor phase; when less, a higher concentration in the liquid phase, and 
is considered a "heavy" constituent. Moreover, the use of K-values makes for computational 
convenience, allowing elimination of one set of mole fractions.{yi} or {xi) in favor of the other. 

Reference to Eq. (10.1) shows that the K-value for Raoult's law is: 

and reference to Eq. (10.5) shows that for modified Raoult's law it is: 

According to Eq. (10.10), yi = Kixi; because xi yi = 1, then 

Thus for bubblepoint calculations, where the xi are known, the problem is to find the set of K -  
values that satisfies Eq. (10.13). Alternatively, Eq. (10.10) can be written, xi = yi/Ki; because xi xi = 1, then 

Thus for dewpoint calculations, where the y, are known, the problem is to find the set of 
K-values that satisfies Eq. (10.14). 

Equations (10.1 1) and (10.12) together with Eq. (10.10) represent alternative forms of 
Raoult's law and modified Raoult's law. The great attraction of Raoult's law is that it expresses 
K-values as functions of just T and P ,  independent of the compositions of the liquid and 
vapor phases. Where the assumptions which underlie Raoult's law are appropriate, this allows 
K-values to be calculated and correlated as functions of T and P. For mixtures of light 
hydrocarbons and other simple molecules, in which the molecular force fields are relatively 
uncomplicated, correlations of this kind have approximate validity. Figures 10.13 and 10.14, 
show nomographs for the K-values of light hydrocarbons as functions of T and P, prepared 
by Dadyburjor.7 They do allow for an average effect of composition, but the essential basis 
is Raoult's law. 

7 ~ .  B. Dadyburjor, Chem. Eng. Puogr:, vol. 74(4), pp. 85-86, April, 1978 
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Flash Calculations 

An important application of VLE is thejash calculation. The name originates from the fact 
that a liquid at a pressure equal to or greater than its bubblepoint pressure "flashes" or partially 
evaporates when the pressure is reduced, producing a two-phase system of vapor and liquid 
in equilibrium. We consider here only the P, T-flash, which refers to any calculation of the 
quantities and compositions of the vapor and liquid phases making up a two-phase system 
in equilibrium at known T, P, and overall composition. This poses a problem known to be 
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determinate on the basis of Duhem's theorem, because two independent variables ( T  and P )  
are specified for a system of fixed overall composition, that is, a system formed from given 
masses of nonreacting chemical species. 

Consider a system containing one mole of nonreacting chemical species with an overall 
composition represented by the set of mole fractions {zi  }. Let L be the moles of liquid, with mole 
fractions {xi}, and let V be the moles of vapor, with mole fractions {yi}. The material-balance 
equations are: 

L + V = l  

Combining these equations to eliminate L gives: 

Substituting xi = yi / Ki , and solving for yi yields: 

Since zi yi = 1, Eq. (10.16) is summed over all species: 

The initial step in solving a P, T-flash problem is to find the value of V which satisfies this 
equation. Note that V = 1 is always a trivial solution. 
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Flash calculations can also be made for light hydrocarbons with the data of Figs. 10.13 
and 10.14. The procedure here is exactly as described in Ex. 10.5, where Raoult's law applied. 
With T and P specified, the K-values for light hydrocarbons as given by Figs. 10.13 and 10.14 
are known, and V, the only unknown in Eq. (10.17), is found by trial. 
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PROBLEMS 

Solutions to some of the problems of this chapter require vapor pressures as a function of 
temperature for species which constitute systems in VLE. Table 10.2 lists parameter values for 
tlle Antoine equation, 

Table 10.2 Parameters for the Antoine Equation 

Acetone 
Acetonitrile 
Benzene 
Chlorobenzene 
I-Chlorobutane 
1,4-Dioxane 
Ethanol 
Ethylbenzene 

,d n-Heptane 
Methanol 
Methyl acetate 

\J n-Pentane 
1 -Propano1 
Toluene 
Water 

10.1. Assuming the validity of Raoult's law, do the following calculations for the ben- 
zene(l)/toluene(2) system: 
(a) Given xl = 0.33 and T = 373.15 K (100)"C, find yl and P. 
(b) Given yl = 0.33 and T = 373.15 K (100)"C, find xl and P. 
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(c) Givenxl = 0.33 and P = 120 kPa, find yl and T. 
(d) Given yl = 0.33 and P = 120 kPa, findxl and T. 
(e) Given T = 387.15 K (105°C) and P = 120 kPa, findxl and yl. 
( f )  For part (e), if the overall mole fraction of benzene is z l  = 0.33, what molar fraction 

of the two-phase system is vapor? 
(g) Why is Raoult's law likely to be an excellent VLE model for this system at the stated 

(or computed) conditions? 

10.2. Assuming Raoult's law to be valid, prepare a P-x-y diagram for a temperature of 363.15 
K (90°C) and a t-x-y diagram for a pressure of 90 kPa for one of the following systems: 

(a) Benzene(l)/ethylbenzene(2); (b) l-Chlorobutane(l)/chlorobenzene(2). 

10.3. Assuming Raoult's law to apply to the system n-pentane(1)ln-heptane(2), 
(a )  What are the values of xl and yl at T = 328.15 K (55°C) and P = ; (pFt  + 

Ppt )?  For these conditions plot the fraction of system that is vapor V vs. overall 
composition zl  . 

(b) For T = 328.15 K (55°C) and zl = 0.5, plot P ,  xl, and yl vs. V. 

10.4. Rework Pb. 10.3 for one of the following: 
(a) T = 338.15 K (65°C); (b) T = 348.15 K (75°C); (c) T = 358.15 K (85°C); (d) 

T = 368.15 K (95°C). 

10.5. Prove: An equilibrium liquidlvapor system described by Raoult's law cannot exhibit an 
azeotrope. 

10.6. Of the binary liquidvapor systems following, which can be approximately modeled by 
Raoult's law? For those which cannot, why? Table B. 1 (App. B) may be useful. 
(a) Benzeneltoluene at 1 atm. 

exaneln-heptane at 25 bar. 
gedpropane at 200 K. 

1 at 373.15 K (100°C). 

(e) Waterln-decane at 1 bar. 

10.7. A single-stage liquidvapor separation for the benzene(l)/ethylbenzene(2) system must 
produce phases of the following equilibrium compositions. For one of these sets, deter- 
mine the T and P in the separator. What additional information is needed to compute 
the relative amounts of liquid and vapor leaving the separator? Assume that Raoult's 
law applies. 
(a) X I  = 0.35, yl = 0.70. 
(b) xl = 0.35, yl = 0.725. 
(c) XI = 0.35, yl = 0.75. 
(d) xl = 0.35, yl = 0.775. 

10.8. Do all four parts of Pb. 10.7, and compare the results. The required temperatures and 
pressures vary significantly. Discuss possible processing implications of the various 
temperature and pressure levels. 

10.9. A mixture containing equimolar amounts of benzene(l), toluene(2), and ethylbenzene(3) 
is flashed to conditions T and P .  For one of the conditions following determine the 
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equilibrium mole fractions {xi} and {yi} of the liquid and vapor phases formed and the 
molar fraction V of the vapor formed. Assume that Raoult7s law applies. 

(a)  T = 383.15 K ( l lOcC),  P = 90 kPa. 
(b )  T = 383.15 K ( 1  10°C), P = 100 kPa. 
(c)  T = 383.15 K (llO°C), P = 110 kPa. 
( d )  T = 383.15 K (llO°C), P = 120 kPa. 

10.10. Do all four parts of Pb. 10.9, and compare the results. Discuss any trends that appear. 

10.11. A binary mixture of mole fraction zl is flashed to conditions T and P .  For one of the 
following determine: the equilibrium mole fractions xl and yl of the liquid and vapor 
phases formed, the molar fraction V of the vapor formed, and the fractional recovery R 
of species 1 in the vapor phase (defined as the ratio for species 1 of moles in the vapor 
to moles in the feed). Assume that Raoult's law applies. 

(a )  Acetone(l)/acetonitrile(2), zl = 0.75, T = 340 K ,  P = 115 Wa. 
(b )  Benzene(l)/ethylbenzene(2), zl = 0.50, T = 373.15 K (10OoC), P = 0.75 atm. 
( c )  Ethanol(l)/l-propanol(2), zl = 0.25, T = 360 K ,  P = 0.80 atm. 
( d )  1-Chlorobutane(l)/chlorobenzene(2), zl = 0.50, T = 398.15 K (125"C), P = 

1.75 bar. 

10.12. Humidity, relating to the quantity of moisture in atmospheric air, is accurately given by 
equations derived from the ideal-gas law and Raoult's law for H20.  

(a )  The absolute humidity h is defined as the mass of water vapor in a unit mass of dry 
air. Show that it is given by: 

where M represents a molar mass and p ~ ~ o  is the partial pressure of the water 
vapor, i.e., p ~ ~ 0  = yHZOP. 

(b )  The saturation humidity h Sat is defined as the value of h when air is in equilibrium 
with a large body of pure water. Show that it is given by: 

where P$7a; is the vapor pressure of water at the ambient temperature. 
(c )  ~ h e ~ e r c e k t a ~ e  humidity is defined as the ratio of h to its saturation value, expressed 

as a percentage. On the other hand, the relative humidity is defined as the ratio of the 
partial pressure of water vapor in air to its vapor pressure, expressed as a percentage. 
What is the relation between these two quantities? 

10.13. A concentrated binary solution containing mostly species 2 (but xz # I )  is in equilib- 
rium with a vapor phase containing both species 1 and 2. The pressure of this two-phase 
system is 1 bar; the temperature is 298.15 K (25°C). Determine from the following data 
good estimates of xl and yl . 

'HI = 200 bar P,Sat = 0.10 bar 

State and justify all assumptions. 
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10.14. Air, even more so than carbon dioxide, is inexpensive and nontoxic. Why is it not the 
gas of choice for making soda water and (cheap) champagne effervescent? Table 10.1 
may provide useful data. 

10.15. Helium-laced gases are used as breathing media for deep-sea divers. Why? Table 10.1 
may provide useful data. 

10.16. A binary system of species 1 and 2 consists of vapor and liquid phases in equilibrium 
at temperature T .  The overall mole fraction of species 1 in the system is zl = 0.65. At 
temperature T ,  

Assuming the validity of Eq. (10.5), 
(a )  Over what range of pressures can this system exist as two phases at given T and zl? 
(b )  For a liquid-phase mole fraction xl = 0.75, what is the pressure P and what molar 

fraction V of the system is vapor? 
(c)  Show whether or not the system exhibits an azeotrope. 

10.17. For the system ethyl ethanoate(1)ln-heptane(2) at 343.15 K (70"C), 

Assuming the validity of Eq. (10.5), 

(a )  Make a BUBL P calculation for T = 343.15 K (70°C), xl = 0.05. 
(6 )  Make a DEW P calculation for T = 343.15 K (70°C), yl = 0.05. 
(c)  What is the azeotrope composition and pressure at T = 343.15 K (70°C)? 

10.18. A liquid mixture of cyclohexanone(1)/pheno1(2) for which xl = 0.6 is in equilibrium 

\ 
with its vapor at 417.15 K (144°C). Determine the equilibrium pressure P and vapor 

l\ composition yl from the following information: 

In yl = AX; In yz = Ax?. 
At417.15 K (144"C), PIsat = 75.20 and P p t  = 31.66 kPa. 

The system forms an azeotrope at 417.15 K (144°C) for which x r  = y r  = 0.294. 

10.19. A binary system of species 1 and 2 consists of vapor and liquid phases in equilibrium 
at temperature T, for which 

In yl = 1 . 8 ~ ;  I n n  = 1 .8~: .  
PFt = 1.24 bar P;" = 0.89 bar. 

Assuming the validity of Eq. (10.5), 
(a )  For what range of values of the overall mole fraction z l  can this two-phase system 

exist with a liquid mole fraction XI = 0.65? 
(b) What is the pressure P and vapor mole fraction yl within this range? 
(c)  What are the pressure and composition of the azeotrope at temperature T? 
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10.20. For the acetone(l)/methanol(2) system a vapor mixture for which z l  = 0.25 and z2 = 
0.75 is cooled to temperature T in the two-phase region and flows into a separation 
chamber at apressure of 1 bar. If the composition of the liquid product is to bexl = 0.175, 
what is the required value of T, and what is the value of yl? For liquid mixtures of this 
system to a good approximation: 

10.21. The following is a rule of thumb: For a binary system in VLE at low pressure, the 
equilibrium vapor-phase mole fraction yl corresponding to an equimolar liquid mixture 
is approximately 

P. sat 

where Pi Sat is a pure-species vapor pressure. Clearly, this equation is valid if Raoult's 
law applies. Prove that it is also valid for VLE described by Eq. (10.5), with: 

2 In yl = Ax, 2 In y2 = Axl 

10.22. A process stream contains light species 1 and heavy species 2. A relatively pure 
liquid stream containing mostly 2 is desired, obtained by a single-stage liquid/vapor 
separation. Specifications on the equilibrium composition are: xl = 0.002 and 
yl = 0.950. Use data given below to determine T(K) and P(bar) for the separator. 
Assume that Eq. (10.5) applies; the calculated P should validate this assumption. Data: 

For the liquid phase, In yl = 0.93~: In yz = 0.93~: 

10.23. If a system exhibits VLE, at least one of the K-values must be greater than 1.0 and at 
least one must be less than 1 .O. Offer a proof of this observation. 

10.24. Flash calculations are simpler for binary systems than for the general multicomponent 
case, because the equilibrium compositions for a binary are independent of the overall 
composition. Show that, for a binary system in VLE, 

10.25. Assuming the validity of the Dadyburjor charts (Fig. 10.13 and 10.14), make the fol- 
lowing VLE calculations for the methane(l)/ethylene(2)/ethane(3) system: 
(a) BUBL P, given xl = 0.10, x2 = 0.50, and T = 222.15 K (-51°C). 
(b) DEW P, given yl = 0.50, y2 = 0.25, and T = 222.15 K (-51°C). 
(c) BUBL T, given xl = 0.12, x2 = 0.40, and P = 17.24 bar. 
(d) DEW T, given yl = 0.43, y2 = 0.36, and P = 17.24 bar. 
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10.26. Assuming the validity of the Dadyburjor charts (Fig. 10.13 and 10.14), make the follow- 
ing VLE calculations for the ethane(l)/propane(2)/isobutane(3)lisopentane(4) system: 

(a )  BUBL P, given xl = 0.10, x2 = 0.20, x3 = 0.30, and t = 333.15 K (60°C). 
(b) DEW P, given yl = 0.48, y2 = 0.25, y3 = 0.15, and t = 333.15 K (60°C). 
(c) BUBLT,xl =0.14,xz=O.l3,xs =0.25,andP = 15bar. 
(d) DEW T,given yl = 0.42, yz =0.30, y3 = 0.15,and P = 15 bar. 

10.27. The stream from a gas well is a mixture containing 50-mol-% methane, 10-mol-% 
ethane, 20-mol-% propane, and 20-mol-% n-butane. This stream is fed into a partial 
condenser maintained at a pressure of 17.24 bar, where its temperature is brought to 
300.15 K (27°C). Determine the molar fraction of the gas that condenses and the com- 
positions of the liquid and vapor phases leaving the condenser. 

10.28. An equimolar mixture of n-butane and n-hexane at pressure P is brought to a tempera- 
ture of 368.15 K (95"C), where it exists as a vaporlliquid mixture in equilibrium. If the 
mole fraction of n-hexane in the liquid phase is 0.75, what is pressure P (in bar), what is 
the molar fraction of the system that is liquid, and what is the composition of the vapor 
phase? 

10.29. A mixture- 25-mol-% n-pentane, 45-mol-% n-hexane, and 30-mol-% n-heptane- is 
brought to a condition of 366.15 K (93°C) and 2 atm. What molar fraction of the system 
is liquid, and what are the phase compositions? 

10.30. A mixture containing 15-mol-% ethane, 35-mol-% propane, and 50-mol-% n-butane is 
brought to a condition of 3 13.15 K (40°C) at pressure P .  If the molar fraction of liquid 
in the system is 0.40, what is pressure P (in bar) and what are the compositions of the 
liquid and vapor phases? 

10.31. A mixture consisting of 1-mol-% ethane, 5-mol-% propane, 44-mol-% n-butane, and 
50-mol-% isobutane is brought to a condition of 294.15 K (21°C) at pressure P .  If the 
molar fraction of the system that is vapor is 0.2, what is pressure P (in bar), and what 
are the compositions of the vapor and liquid phases? 

10.32. A mixture comprised of 30-mol-% methane, 10-mol-% ethane, 30-mol-% propane, and 
30-mol-% n-butane is brought to a condition of 258.15 K (- 15°C) at pressure P ,  where 
it exists as a vaporlliquid mixture in equilibrium. If the mole fraction of the methane in 
the vapor phase is 0.80, what is pressure P (in bar)? 

10.33. The top tray of a distillation column and the condenser are at a pressure of 1.38 bar. 
The liquid on the top tray is an equimolar mixture of n-butane and n-pentane. The vapor 
from the top tray, assumed to be in equilibrium with the liquid, goes to the condenser 
where 50 mol-% of the vapor is condensed. What is the temperature on the top tray? 
What are the temperature and composition of the vapor leaving the condenser? 

10.34. n-Butane is separated from an equimolar methaneln-butane gas mixture by compression 
of the gas to pressure P at 3 13.15 K (40°C). If 40% of the feed on a mole basis is 
condensed, what is pressure P (in bar) and what are the compositions of the resulting 
vapor and liquid phases? 



Chapter 11 

Solution Thermodynamics: 
Theory 

Chapter 6 treats the thermodynamic properties of constant-composition fluids. However, the 
preceding chapter demonstrates that applications of chemical-engineering thermodynamics are 
often to systems wherein composition is a primary variable. In the chemical, petroleum, and 
pharmaceutical industries multicomponent gases or liquids commonly undergo composition 
changes as the result of mixing and separation processes, the transfer of species from one 
phase to another, or chemical reaction. Because the properties of such systems depend strongly 
on composition as well as on temperature and pressure, our purpose in this chapter is to 
develop the theoretical foundation for applications of thermodynamics to gas mixtures and 
liquid solutions. 

The theory is introduced through derivation of a fundamental property relation for ho- 
mogeneous solutions of variable composition. Convenience here suggests the definition of a 
fundamental new property called the chemical potential, upon which the principles of phase 
and chemical-reaction equilibrium depend. This leads to the introduction of a new class of 
thermodynamic properties known as partial properties. The mathematical definition of these 
quantities allows them to be interpreted as properties of the individual species as they exist in 
solution. For example, in a liquid solution of ethanol and water the two species have partial 
molar properties whose values are somewhat different from the molar properties of pure ethanol 
and pure water at the same temperature and pressure. 

Property relations for mixtures of ideal gases are important as references in the treatment 
of real-gas mixtures, and they form the basis for introduction of yet another important property, 
the fugacity. Related to the chemical potential, it is vital in the formulation of both phase- and 
chemical-reaction-equilibrium relations. 

Finally, a new class of solution properties is introduced. Known as excesspropevties, they 
are based on an idealization of solution behavior called the ideal solution. Its role is like that 
of the ideal gas in that it serves as a reference for real-solution behavior. Of particular interest 
is the excess Gibbs energy, a property which underlies the activity coefficient, introduced from 
a practical point of view in the preceding chapter. 
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11.1 FUNDAMENTAL PROPERTY RELATION 

Equation (6.6) expresses the basic relation connecting the Gibbs energy to the temperature and 
pressure in any closed system: 

d(nG)  = ( n V ) d P  - (nS)dT (6.6) 

This equation may be applied to a single-phase fluid in a closed system wherein no chemical 
reactions occur. For such a system the composition is necessarily constant, and therefore: 

and 

The subscript n indicates that the numbers of moles of all chemical species are held constant. 
Consider now the more general case of a single-phase, open system that can interchange 

matter with its surroundings. The total Gibbs energy nG is still a function of T and P.  Since 
material may be taken from or added to the system, nG is now also a function of the numbers 
of moles of the chemical species present. Thus, 

where ni is the number of moles of species i .  The total differential of nG is: 

The summation is over all species present, and subscript nj indicates that all mole numbers 
except the ith are held constant. The derivative in the final term is important enough to be given 
its own symbol and name. Thus, by definition the chemical potential of species i in the mixture 
is: 

With this definition and with the first two partial derivatives replaced by ( n V )  and -(nS),  the 
preceding equation becomes: 

Equation (1 1.2) is the fundamental property relation for single-phase fluid systems of 
constant or variable mass and constant or variable composition, and is the foundation equation 
upon which the structure of solution thermodynamics is built. For the special case of one mole 
of solution, n = 1 and ni = xi: 

d G = V d P - S d T +  C P i d x i  ( 1  1.3) 
i 

Implicimthis equation is the functional relationship of the molar Gibbs energy to its canonical 
variables, T, P ,  and {xi}: 
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Equation (6.10) is a special case of Eq. (1 1.3), applicable to a constant-composition solution. 
Although the mole numbers ni of Eq. (11.2) are all independent variables, this is not true 
of the mole fractions xi in Eq. (11.3), because their sum must be unity: Ci xi = 1. This 
precludes certain mathematical operations which depend upon independence of the variables. 
Nevertheless, Eq. (1 1.3) does imply: 

Other solution properties are found from definitions; e.g., the enthalpy, from H = G + T S .  

Whenever the Gibbs energy is expressed as a function of its canoni- 
cal variables, it plays the role of a generating function, providing the 
means for calculation of all other thermodynamic properties by sim- 
ple mathematical operations (differentiation and elementary algebra), 
and implicitly represents complete property information. 

11.2 THE CHEMICAL POTENTIAL AND PHASE EQUILIBRIA 

Consider a closed system consisting of two phases in equilibrium. Within this closed system, 
each individual phase is an open system, free to transfer mass to the other. Equation (1 1.2) may 
be written for each phase: 

where superscripts a and ,6 identify the phases. The presumption here is that at equilibrium T 
and P are uniform throughout the entire system. 

The change in the total Gibbs energy of the two-phase system is the sum of these equa- 
tions. When each total-system property is expressed by an equation of the form, 

the sum is: 

Since the two-phase system is closed, Eq. (6.6) is also valid. Comparison of the two equations 
shows that at equilibrium: 
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B The changes dnq and dni result from mass transfer between the phases, and mass conservation 
requires : 

Therefore, 

Since the dn: are independent and arbitrary, the only way the left side of this equation can in 
general be zero is for each term in parentheses separately to be zero. Hence, 

where N is the number of species present in the system. Although not given here, a similar but 
more comprehensive derivation shows (as we have supposed) that for equilibrium the same T 
and P apply to both phases. 

By successively considering pairs of phases, we may readily generalize to more than two 
phases the equality of chemical potentials; the result for n phases is: 

Thus, multiple phases at the same T and P are in equilibrium when 
the chemical potential of each species is the same in all phases. 
The application of Eq. (1 1.6) in later chapters to specific phase-equilibrium problems 

requires use of models of solution behavior, which provide expressions for G and pi as functions 
of temperature, pressure, and composition. The simplest of these, the ideal-gas mixture and 
the ideal solution. are treated in Secs. 11.4 and 11.8. 

11.3 PARTIAL PROPERTIES 

The definition of the chemical potential by Eq. (1 1.1) as the mole-number derivative of nG 
suggests that other derivatives of this kind should prove useful in solution thermodynamics. 
Thus, 

This equation defines the partial molar property of species i in solution, where the generic 
symbol Mi may stand for the partial molar internal energy U ; ,  the partial molar enthalpy Hi, 
the partial molar entropy Si ,  the partial molar Gibbs energy G i ,  etc. It is a response function, 
representing the change of total property n M due to addition at constant T and P of a differential 
amount of species i to a finite amount of solution. 

Comparison of Eq. (1 1.1) with Eq. (1 1.7) written for the Gibbs energy shows that the 
chemical potential and the partial molar Gibbs energy are identical; i.e., 
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Equations Relating Molar and Partial Molar Properties 

The definition of a partial molar property, Eq. (1 1.7), provides the means for calculation of 
partial properties from solution-property data. Implicit in this definition is another, equally 
important, equation that allows the reverse, i.e., calculation of solution properties from knowl- 
edge of the partial properties. The derivation of this equation starts with the observation that 
the thermodynamic properties of a homogeneous phase are functions of temperature, pres- 
sure, and the numbers of moles of the individual species which comprise the phase.1 Thus for 
thermodynamic property M: 

The total differential of n M  is: 

where subscript n indicates that all mole numbers are held constant, and subscript nj that 
all mole numbers except ni are held constant. Because the first two partial derivatives on the 
right are evaluated at constant n and because the partial derivative of the last term is given by 
Eq. (1 1.7), this equation has the simpler form: 

where subscript x denotes differentiation at constant composition. 
Since ni = xin, 

 e ere functionality does not make a set of variables into canonical variables. These are the canonical variables 
only for G. 
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When dni is replaced by this expression, and d(nM)  is replaced by the identity, 

d ( n M ) r n d M +  M d n  

Equation ( 1  1.9) becomes: 

The terms containing n are collected and separated from those containing dn to yield: 

In application, one is free to choose a system of any size, as represented by n,  and to choose 
any variation in its size, as represented by dn. Thus n and dn are independent and arbitrary. 
The only way that the left side of this equation can then, in general, be zero is for each term in 
brackets to be zero. Therefore, 

and 

Multiplication of Eq. (1 1 .11)  by n yields the alternative expression: 

Equation ( 1  1.10) is in fact just a special case of Eq. (1 1.9), obtained by setting n = 1, which 
also makes ni = xi. Equations (1 1.1 1 )  and ( 1  1.12) on the other hand are new and vital. Known 
as surnmability relations, they allow calculation of mixture properties from partial properties, 
playing a role opposite to that of Eq. (1 1.7), which provides for the calculation of partial 
properties from mixture properties. 

One further important equation follows directly from Eqs. (1 1.10) and ( 1  1.1 1). Since 
Eq. (1 1.11) is a general expression for M, differentiation yields a general expression for dM:  

Comparison of this equation with Eq. ( 1  1. lo) ,  another general equation for dM,  yields the 
GibbdDuhem 2equation: 

'pierre-~aurice-~arie Duhem (1861-1916), French physicist. 
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This equation must be satisfied for all changes in P,  T, and the Mi caused by changes of state 
in a homogeneous phase. For the important special case of changes at constant T and P ,  it 
simplifies to: 

(const T, P )  (11.14) 

Equation (1 1.1 1) implies that a molar solution property is given as a sum of its parts and 
that Mi is the molar property of species i as it exists in solution. This is a proper interpretation 
provided one understands that the defining equation for Mi, Eq. (1 1.7), is an apportioning 
formula which arbitrarily assigns to each species i a share of the mixture pr~perty.~ 

The constituents of a solution are in fact intimately intermixed, and owing to molecular 
interactions cannot have private properties of their own. Nevertheless, partial molar properties, 
as defined by Eq. (1 1.7), have all the characteristics of properties of the individual species as 
they exist in solution. Thus for practical purposes they may be assigned as property values to 
the individual species. 

The symbol M may express solution properties on a unit-mass basis as well as on a 
mole basis. Property relations are the same in form on either basis; one merely replaces n ,  
the number of moles, by m ,  representing mass, and speaks of partial speciJic properties rather 
than of partial molar properties. In order to accommodate either, we generally speak simply of 
partial properties. 

Interest here centers on solutions; their molar (or unit-mass) properties are therefore 
represented by the plain symbol M. Partial properties are denoted by an overbar, with a subscript 
to identify the species; the symbol is therefore Mi. In addition, properties of the individual 
species as they exist in the pure state at the T and P of the solution are identified by only a 
subscript, and the symbol is Mi. In summary, the three kinds of properties used in solution 
thermodynamics are distinguished by the following symbolism: 

Solution properties M, for example: U, H, S ,  G 
Partial properties Mi, for example: Ui, Hi ,  Si, Gi 
Pure-species properties Mi, for example: Ui , Hi, Si , Gi 

Partial Properties in Binary Solutions 

Equations for partial properties can always be derived from an equation for the solution property 
as afunction of composition by direct application of Eq. (1 1.7). For binary systems, however, an 
alternative procedure may be more convenient. Written for a binary solution, the summability 
relation, Eq. (1 1.1 I), becomes: 

Whence, d M  = dM1+ M I  dx l  + xz d M 2  -t M2 dx2 ( B )  

When M is known as a function of xl at constant T and P ,  the appropriate form of the 

30ther apportioning equations, which make different allocations of the mixture property, are possible and are 
equally valid. 
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GibbsIDuhem equation is Eq. ( 1  1.14), expressed here as: 

x l d M 1  + x 2 d M 2  = O  

Since X I +  x2 = 1,  it follows that dx l  = -dx2. Eliminating dx2 in favor of dxl  in Eq. ( B )  and 
combining the result with Eq. ( C )  gives: 

Elimination first of M 2  and then of M I  from Eqs. ( A )  and (D) yields: 

Thus for binary systems, the partial properties are readily calculated directly from an expression 
for the solution property as a function of composition at constant T and P. The corresponding 
equations for multicomponent systems are much more complex, and are given in detail by 
Van Ness and ~ b b o t t . ~  

4 ~ .  C. Van Ness and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions: With Applications to 
Phase Equilibria, pp. 46-54, McGraw-Hill, New York, 1982. 
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Relations among Partial Properties 

We show now how partial properties are related to one another. Since by Eq. (1 1.8) pi = Ci,  
Eq. (1 1.2) may be written: 

d(nG) = (nV)dP - (nS)dT + Gi dni (11.17) 
i 

Application of the criterion of exactness, Eq. (6.12), yields the Maxwell relation, 

plus the two additional equations: 

where subscript n indicates constancy of all ni, and therefore of composition, and subscript n,i 
indicates that all mole numbers except the ith are held constant. In view of Eq. (1 1.7), the last 
two equations are most simply expressed: 

These equations allow calculation of the effect of temperature and pressure on the partial Gibbs 
energy (or chemical potential). They are the partial-property analogs of Eqs. (1 1.4) and (1 1.5). 
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Every equation that provides a linear relation among thermodynamic 
properties of a constant-composition solution has as its counterpart 
an equation connecting the corresponding partial properties of each 
species in the solution. 
We demonstrate this by example. Consider the equation that defines enthalpy: 

H = U + P V  (2.11) 

For n moles, nH = nU + P ( n V )  

Differentiation with respect to ni at constant T ,  P ,  and nj yields: 

By Eq. (1 1.7) this becomes: 

which is the partial-property analog of Eq. (2.11). 
In a constant-composition solution, Gi is a function of P and T, and therefore: 

As a result of Eqs. (11.18) and ( 1  1.19) this becomes: 

which may be compared with Eq. (6.10). These examples illustrate the parallelism that exists 
between equations for a constant-composition solution and the corresponding equations for the 
partial properties of the species in solution. We can therefore write simply by analogy many 
equations that relate partial properties. 

1 1.4 IDEAL-GAS MIXTURES 

If n moles of an ideal-gas mixture occupy a total volume V t  at temperature T ,  the pressure is: 

If the ni moles of species i in this mixture occupy the same total volume alone at the same 
temperature, the pressure is: 

Dividing the latter equation by the former gives: 
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where yi is the mole fraction of species i in the ideal-gas mixture, and pi is known as the partial 
pressure of species i .  The sum of the partial pressures equals the total pressure. 

The partial molar volume of species i in an ideal-gas mixture is found from Eq. (1 1.7) 
applied to the volume, superscript ig denoting an ideal-gas value: 

where the final equality depends on the equation n = ni + x j  nj .  This result means that for 
ideal gases the partial molar volume is identical with the pure-species volume at the mixture 
T and P. Thus, 

An ideal gas (Sec. 3.3) is a model gas comprised of imaginary molecules of zero volume 
that do not interact. Thus, properties for each chemical species are independent of the presence 
of other species, and each species has its own set of private properties. This is the basis for the 
following statement of Gibbs's theorem: 

A partial molar property (other than volume) of a constituent species 
in an ideal-gas mixture is equal to the corresponding molar property 
of the species as a pure ideal gas at the mixture temperature but at a 
pressure equal to its partial pressure in the mixture. 

This is expressed mathematically for generic partial property Mig # vig by the equation: 

Since the enthalpy of an ideal gas is independent of pressure, 

Whence, H ~ ~ ( T ,  P )  = H ~ ~ ( T ,  P )  

More simply, jq" = f f f g  (1 1.22) 
1 1 

where Hig is the pure-species value at the mixture T and P. Application of the summability 
relation, Eq. (1 1.1 I) ,  yields: 

Analogous equations apply for U'g and other properties that are independent ofpressure. [See 
Eq. (4.6) for c?.] 

When Eq. (1 1.23) is written, 
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the difference on the left is the enthalpy change associated with a process in which appropriate 
amounts of the pure species at T and P are mixed to form one mole of mixture at the same T 
and P. For ideal gases, this enthalpy change of mixing (Sec. 12.3) is zero. 

The entropy of an ideal gas does depend on pressure, and by Eq. (6.24), 

Integration from pi to P gives: 

Whence, s?(T, pi) = s ~ ~ ( T ,  P) - R In yi 

Substituting this result into Eq. (1 1.21) written for the entropy yields: 

where Sig is the pure-species value at the mixture T and P. By the summability relation, 

When this equation is rearranged as: 

the left side is the entropy change of mixing for ideal gases. Since l / y i  > 1, this quantity is 
always positive, in agreement with the second law. The mixing process is inherently irreversible, 
and for ideal gases mixing at constant T and P is not accompanied by heat transfer [Eq. (1 1.23)]. 

For the Gibbs energy of an ideal-gas mixture, Gig = Hig - T Sig; the parallel relation 
for partial properties is: 

In combination with Eqs. (1 1.22) and (1 1.24) this becomes: 

~ i g  = ~ j g  - T $8 + R T In yi 

Differentiation of this equation in accord with Eqs. (11.18) and (11.19) confirms the results 
expressed by Eqs. (1 1.20) and (1 1.24). 
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An alternative expression for the chemical potential is obtained when Gig is eliminated 
from Eq. (11.26) by Eq. (6.10). At constant T Eq. (6.10) for an ideal gas becomes: 

Integration gives: Gig = r i ( T )  + RT In P (1 1.27) 

where r ; ( T ) ,  the integration constant at constant T ,  is afunction of temperature only.5 Equation 
( 1  1.26) may therefore be written: 

Application of the summability relation, Eq. ( 1  1.1 I) ,  produces an expression for the Gibbs 
energy of an ideal-gas mixture: 

11.5 FUGACITY AND FUGACITY COEFFICIENT: PURE SPECIES 

Gig = y i r i ( T )  + RT y; In y i p  
i I 

As evident from Eq. ( 1  1.6), the chemical potential pi provides the fundamental criterion for 
phase equilibria. This is true as well for chemical-reaction equilibria. However, it exhibits 
characteristics which discourage its use. The Gibbs energy, and hence pi, is defined in relation 
to the internal energy and entropy, both primitive quantities for which absolute values are 
unknown. As a result, absolute values for pi do not exist. Moreover, Eq. (1 1.28) shows that 
for an ideal-gas mixture pi approaches negative infinity when either P or yi approaches zero. 
This is in fact true for any gas. While these characteristics do not preclude the use of chemical 
potentials, the application of equilibrium criteria is facilitated by introduction of the fugacity, 
a quantity that takes the place of ~i but which does not exhibit its less desirable characteristics. 

The origin of the fugacity concept resides in Eq. (1 1.27), valid only for pure species i in 
the ideal-gas state. For a real fluid, we write an analogous equation: 

( 1  1.29) 

in which pressure P is replaced by a new property f, with units of pressure. This equation 
provides a partial definition of f , ,  the fugacity6 of pure species i .  

These equations, remarkable in their simplicity, provide a full description of ideal-gas behavior. 

5~ dimensional ambiguity is evident with Eq. (1 1.27) and with analogous equations to follow in that P has units, 
whereas In P must be dimensionless. This difficulty is more apparent than real, because the Gibbs energy is always 
expressed on a relative scale, absolute values being unknown. Thus in application only differences in Gibbs energy 
appear, leading to ratios of quantities with units of pressure in the argument of the logarithm. The only requirement is 
that consistency of pressure units be maintained. 

6~ntroduced by Gilbert Newton Lewis (1875-1946), American physical chemist, who also developed the concepts 
of the partial property and the ideal solution. 
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Subtraction of Eq. (1 1.27) from Eq. (1 1.30), both written for the same T and P, gives: 

According to the definition of Eq. (6.41), G; - Gig is the residual Gibbs energy, G:. The 
dimensionless ratio f, / P is another new property, the fugacity coeficient, given the symbol 
# i .  Thus, 

where 

The definition of fugacity is completed by setting the ideal-gas-state fugacity of pure species i 
equal to its pressure: 

Thus for the special case of an ideal gas, G; = 0, 4i = 1, and Eq. (1 1.27) is recovered from 
Eq. (1 1.30). 

The identification of In #i with G ~ R T  by Eq. (1 1.3 1) allows Eq. (6.46) to be rewritten: 

Fugacity coefficients (and therefore fugacities) for pure gases are evaluated by this equation 
from P V T data or from a volume-explicit equation of state. For example, when the compress- 
ibility factor is given by Eq. (3.37), 

Because the second virial coefficient Bii is a function of temperature only for a pure species, 
substitution into Eq. (1 1.34) gives: 

Whence. 

Evaluation of fugacity coefficients through cubic equations of state (e.g., the van der 
Waals, RedlicWKwong, SoaveJRedlicWKwong, and PengJRobinson equations) follows directly 
from combination of Eqs. (1 1.3 1) and (6.63b): 

where pi is given by Eq. (3.50); q,, by Eq. (3.51); and Ii, by Eq. (6.62), all written for pure 
species i .  Application of Eq. (1 1.36) at a given T and P requires prior solution of an equation 
of state for Zi by Eq. (3.49) for a vapor phase or Eq. (3.53) for a liquid phase. 
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VaporILiquid Equilibrium for Pure Species 

Equation (1 1.30), which defines the fugacity of pure species i, may be written for species i as 
a saturated vapor: 

and for species i as a saturated liquid at the same temperature: 

~f = r i(T) + R T  lnf," 

By difference, fi" GP -G: = RT In- 
f,l 

an equation applicable to the change of state from saturated liquid to saturated vapor, both at 
temperature T and at the vapor pressure Pi

sat. According to Eq. (6.66), GY - GI = 0; therefore: 

where f ,  Sat indicates the value for either saturated liquid or saturated vapor. Since coexisting 
phases of saturated liquid and saturated vapor are in equilibrium, Eq. (1 1.38) expresses a 
fundamental principle: 

For a pure species coexisting liquid and vapor phases are in equilib- 
rium when they have the same temperature, pressure, and f~gacity.~ 
An alternative formulation is based on the corresponding fugacity coefficients: 

c sat 

Whence, 

This equation, expressing equality of fugacity coefficients, is an equally valid criterion of 
vaporlliquid equilibrium for pure species. 

Fugacity of a Pure Liquid 

The fugacity of pure species i as a compressed liquid is calculated in two steps: 

First, the fugacity coefficient of saturated vapor = 4: is determined from an integrated 
form of Eq. (11.34), evaluated at P = Pi

sat
.  Then by Eq. (11.39), fisat = 4pt Pi

sat, and 
this is the fugacity of both saturated vapor and saturated liquid at the system temperature. 

Second is the calculation of the fugacity change resulting from the pressure increase, Pi sat 

to P, that changes the state from saturated liquid to compressed liquid. 

7 ~ h e  wordfugacity is based on a Latin root meaning to flee or escape, also the basis for the word fugitive. Thus 
fugacity has been interpreted to mean "escaping tendency." When the escaping tendency is the same for the two phases, 
they are in equilibrium. 
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For the second step, an isothermal change of pressure, Eq. (6.10) is integrated to give: 
r P  

Another expression for the difference on the left side is obtained by writing Eq. (1 1.30) twice, 
for both Gi and GFt . Subtraction yields: 

f i  Gi - Gisat = RT In - 
fisat 

The two expressions for Gi - G y t  are set equal: 

In---=- V , d P  
f i a t  fi RT SP q,, 

Since Vi ,  the liquid-phase molar volume, is a very weak function of P at temperatures well 
below T,, an excellent approximation is often obtained when V, is assumed constant at the 
value for saturated liquid, v!: 

Substituting fi
sat = Pi

sat and solving for f ,  gives: 

v i l ( p  - Pisat) 
fi  = 4isat Pi

Sat exp 
RT 

The exponential is known as a poynting8 factor. 

' ~ o h n  Henry Poynting (1852-1914), British physicist. 
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11.6 FUGACITY AND FUGACITY COEFFICIENT: 
SPECIES IN SOLUTION 

The definition of the fugacity of a species in solution is parallel to the definition of the pure- 
species fugacity. For species i in a mixture of real gases or in a solution of liquids, the equation 
analogous to Eq. (1 1.28), the ideal-gas expression, is: 

pi -- ri (T) + RT In t i  (1 1.42) 

where f i  is the fugacity of species i in solution, replacing the partial pressure yi P. This 
definition of t i  does not make it a partial molar property, and it is therefore identified by a 
circumflex rather than by an overbar. 

A direct application of this definition indicates its potential utility. Equation 11.6 is the 
fundamental criterion for phase equilibrium. Since all phases in equilibrium are at the same 
temperature, an alternative and equally general criterion follows immediately from Eq. (1 1.42): 

Thus, multiple phases at the same T and P are in equilibrium when 
the fugacity of each constituent species is the same in all phases. 

This criterion of equilibrium is the one usually applied by chemical engineers in the solution 
of phase-equilibrium problems. 

For the specific case of multicomponent vaporlliquid equilibrium, Eq. (1 1.43) becomes: 

Equation (1 1.38) results as a special case when this relation is applied to the vaporAiquid 
equilibrium of pure species i . 

The definition of a residual property is given in Sec. 6.2: 

M R  - M - I,@ (6.41) 

where M is the molar (or unit-mass) value of a thermodynamic property and M'g is the value 
that the property would have for an ideal gas of the same composition at the same T and P. The 
defining equation for apartial residual property M: follows from this equation. Multiplied by 
n mol of mixture, it becomes: 

Differentiation with respect to ni at constant T, P, and n j  gives: 

Reference to Eq. (1 1.7) shows that each term has the form of a partial molar property. Thus, 
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Since residual properties measure departure from ideal-gas values, their most logical use is as 
gas-phase properties, but in fact they also find use as liquid-phase properties. 

Written for the residual Gibbs energy, Eq. (1 1.45) becomes: 

an equation which defines the partial residual Gibbs energy. 
Subtracting Eq. (1 1.28) from Eq. (1 1.42), both written for the same T and P, yields: 

This result combined with Eq. (1 1.46) and the identity pi E Ci gives: 

where by definition 

The dimensionless ratio $i is called the fugacity coefJicient of species i in solution. Although 
most commonly applied to gases, the fugacity coefficient may also be used for liquids, and in 
this case mole fraction yi is replaced by xi .  

Equation (1 1.47) is the analog of Eq. (1 1.31), which relates $i to G;. For an ideal gas, 

G: is necessarily zero; therefore $jg = 1, and 

Thus the fugacity of species i in an ideal-gas mixture is equal to its partial pressure. 

The Fundamental Residual-Property Relation 

In order to extend the fundamental property relation to residual properties, we transform 
Eq. (1 1.2) into an alternative form through the mathematical identity (also used in Sec. 6.1): 

1 nG 
d - - --d(nG)- -dT (1;) Ri" RT2 

In this equation d(nG) is eliminated by Eq. (1 1.2) and G is replaced by its definition, H - TS. 
The result, after algebraic reduction, is: 

All terms in Eq. (1 1.50) have the units of moles; moreover, in contrast to Eq. (1 1.2), the 
enthalpy rather than the entropy appears on the right side. Equation (1 1.50) is a general relation 
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expressing nGIRT as a function of all of its canonical variables, T ,  P, and the mole numbers. It 
reduces to Eq. (6.37) for the special case of 1 mol of a constant-composition phase. Equations 
(6.38) and (6.39) follow from either equation, and equations for the other thermodynamic 
properties then come from appropriate defining equations. Knowledge of GIRT as a function 
of its canonical variables allows evaluation of all other thermodynamic properties, and therefore 
implicitly contains complete property information. However, we cannot directly exploit this 
characteristic, and for this reason develop an analogous equation relating residual properties. 

Since Eq. (1 1 SO) is general, it may be written for the special case of an ideal gas: 

In view of Eqs. (6.41) and (1 1.46), subtracting this equation from Eq. (1 1.50) gives: 

Equation (1 1.51) is thefundamental residual-property relation. Its derivation from Eq. (1 1.2) 
parallels the derivation in Chap. 6 that led from Eq. (6.10) to Eq. (6.42). Indeed, Eqs. (6.10) and 
(6.42) are special cases of Eqs. (1 1.2) and (1 1.51), valid for 1 mol of a constant-composition 
fluid. An alternative form of Eq. (1 1.51) follows by introduction of the fugacity coefficient as 
given by Eq. (1 1.47): 

Equations so general as Eqs. (1 1.51) and (1 1.52) are useful for practical application only 
in their restricted forms. Division of Eqs. (1 1.5 1) and (1 1.52) by d P and restriction to constant 
T and composition leads to: 

Similarly, division by dT and restriction to constant P and composition gives: 

These equations are restatements of Eqs. (6.43) and (6.44) wherein the restriction of the deriva- 
tives to constant composition is shown explicitly. They lead to Eqs. (6.46), (6.47), and (6.48) 
for the calculation of residual properties from volumetric data. Moreover, Eq. (1 1.53) is the 
basis for the direct derivation of Eq. (1 1.34), which yields fugacity coefficients from volumetric 
data. It is through the residual properties that this kind of experimental information enters into 
the practical application of thermodynamics. 
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In addition, from Eq. (1 1.52), 

This equation demonstrates that In ai is a partial property with respect to G R / ~ ~  

Fugacity Coefficients from the Virial Equation of State 

Values of )i for species i in solution are readily found from equations of state. The simplest 
form of the virial equation provides a useful example. Written for a gas mixture it is exactly 
the same as for a pure species: 
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The mixture second virial coefficient B is a function of temperature and composition. Its exact 
composition dependence is given by statistical mechanics, and this makes the virial equation 
preeminent among equations of state where it is applicable, i.e., to gases at low to moderate 
pressures. The equation giving this composition dependence is: 

where y represents mole fractions in a gas mixture. The indices i and j identify species, 
and both run over all species present in the mixture. The virial coefficient Bij characterizes 
a bimolecular interaction between molecule i and molecule j ,  and therefore Bij = B j i .  The 
summations account for all possible bimolecular interactions. 

For a binary mixture i = l , 2  and j = l , 2 ;  the expansion of Eq. (1 1.57) then gives: 

Two types of virial coefficients have appeared: Bll and B22, for which the successive subscripts 
are the same, and BI2 ,  for which the two subscripts are different. The first type is a pure- 
species virial coefficient; the second is a mixture property, known as a cross coeficient. Both 
are functions of temperature only. Expressions such as Eqs. (1 1.57) and (1 1.58) relate mixture 
coefficients to pure-species and cross coefficients. They are called mixing rules. 

Equation ( 1  1.58) allows derivation of expressions for In $1 and In $2 for a binary gas 
mixture that obeys Eq. (3.37). Written for n mol of gas mixture, it becomes: 

Differentiation with respect to nl gives: 

Substitution for in Eq. (1 1.56) yields: 

where the integration is elementary, because B is not a function of pressure. All that remains 
is evaluation of the derivative. 

Equation (1 1.58) for the second virial coefficient may be written: 
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where 812 -- 2B12 - Bl l  - B22 

Since yi = n i / n ,  

121122 
n B  = ~ ~ B I I  + n2B22 + -al2 

n 
Differentiation gives: 

A P 
Therefore, In41 = - (&I  RT + ~22812) ( 1  1.59) 

.. P 
Similarly, In42 = -(B22 + yf612) RT 

(1 1.60) 

Equations (1 1.59) and ( 1  1.60) are readily extended for application to multicomponent gas 
mixtures; the general equation is:9 

where the dummy indices i and j run over all species, and 

Sik -- 2Bik - Bii - Bkk & . = 2 B . . - B . . - B . .  ' J  - ' J  1 1  J J  

with Sii = 0 ,  8kk = 0, etc., and Ski = aik, etc. 

9 ~ .  C. Van Ness and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions: With Applications to 
Phase Equilibria, pp. 135-140, McGraw-Hill, New York, 1982. 
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11.7 GENERALIZED CORRELATIONS FOR THE 
FUGACITY COEFFICIENT 

The generalized methods developed in Sec. 3.6 for the compressibility factor Z and in Sec. 6.7 
for the residual enthalpy and entropy of pure gases are applied here to the fugacity coefficient. 
Equation (1 1.34) is put into generalized form by substitution of the relations, 

pr 
Hence, d P, 

ln4i = (z' - 1)- (1 1.62) 
P, 

where integration is at constant T,. Substitution for Zi by Eq. (3.54) yields: 

where for simplicity we have dropped subscript i. This equation may be written in alternative 
form: 

In4  = ln@O + w ln4 '  (1 1.63) 

p, 
where 

,, dP ,  
1 n 4 O - - l  (Z -1)- and l n d  = 

p, 

The integrals in these equations may be evaluated numerically or graphically for various val- 
ues of T, and P, from the data for Z0 and Z' given in Tables E.l  through E.4 (App. E). 
Another method, and the one adopted by Lee and Kesler to extend their correlation to fugacity 
coefficients, is based on an equation of state. 

Since Eq. (1 1.63) may also be written, 

4 = (4O)(4'>" (1 1.64) 

we have the option of providing correlations for 4' and 4' rather than for their logarithms. 
This is the choice made here, and Tables E. 13 through E. 16 present values for these quantities 
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as derived from the LeeIKesler correlation as functions of T, and P,, thus providing a three- 
parameter generalized correlation for fugacity coefficients. Tables E. 13 and E. 15 for #' can be 
used alone as a two-parameter correlation which does not incorporate the refinement introduced 
by the acentric factor. 

A useful generalized correlation for In # results when the simplest form of the virial 
equation is valid. Equations (3.58) and (3.59) combine to give: 

Substitution in Eq. (1 1.62) and integration yield: 

This equation, used in conjunction with Eqs. (3.61) and (3.62), provides reliable values of 4 
for any nonpolar or slightly polar gas when applied at conditions where Z is approximately 
linear in pressure. Figure 3.15 again serves as a guide to its suitability. 
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Named functions, HRB(TR,PR,OMEGA) and SRB(TR,PR,OMEGA), for evaluation 
of H R /  RT, and S R /  R by the generalized virial-coefficient correlation were described in 
Sec. 6.7. Similarly, we introduce here a function named PHIB(TR,PR,OMEGA) for eval- 
uation of 4: 

It combines Eq. (1 1.65) with Eqs. (3.61) and (3.62), as indicated in the representative computer 
programs given in App. D. For example, the value of 4 for 1-butene vapor at the conditions of 
Example 6.8, Step (b), is: 

The generalized correlation just described is for pure gases only. The remainder of this 
section shows how the virial equation may be generalized to allow calculation of fugacity 
coefficients J i  for species in gas mixtures. 

The general expression for calculation of In J k  from second-virial-coefficient data is given 
by Eq. (1 1.61). Values of the pure-species virial coefficients Bkk, Bii, etc., are found from the 
generalized correlation represented by Eqs. (3.59), (3.61), and (3.62). The cross coefficients 
Bik, Bij ,  etc., are found from an extension of the same correlation. For this purpose, Eq. (3.59) 
is rewritten in the more general form: lo 

where BO and B' are the same functions of Tr as given by Eqs. (3.61) and (3.62). The combining 
rules proposed by Prausnitz for calculation of wij, Tcij, and PCij are: 

In Eq. (1 1.68), kij is an empirical interaction parameter specific to an i -  j molecular pair. 
When i = j and for chemically similar species, kij = 0. Otherwise, it is a small positive 
number evaluated from minimal P V T  data or in the absence of data set equal to zero. 

'OJ. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 
2d ed., pp. 132 and 162, Prentice-Hall, Englewood Cliffs, NJ, 1986. 
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When i = j ,  all equations reduce to the appropriate values for a pure species. When 
i # j, these equations define a set of interaction parameters having no physical significance. 
Reduced temperature is given for each i j  pair by TTij --= T/ Tcij. 

For a mixture, values of Bij from Eq. (1 1.66) substituted into Eq. (1 1.57) yield the 
mixture second virial coefficient B, and substituted into Eq. (1 1.61) [Eqs. (1 1.59) and (1 1.60) 
for a binary] they yield values of In $i. 

The primary virtue of the generalized correlation for second virial coefficients presented 
here is simplicity; more accurate, but more complex, correlations appear in the literature." 

"c. Tsonopoulos, AIChE J., vol. 20, pp. 263-272, 1974, vol. 21, pp. 827-829, 1975, vol. 24, pp. 1112-1115, 
1978.; C. Tsonopoulos, Adv. in Chemistry Series 182, pp. 143-162, 1979; J. G. Hayden and J. P. O'Connell, 
Ind. Eng. Chem. Proc. Des. Dev., vol. 14, pp. 209-216, 1975; D. W. McCann and R. P. Danner, Ibid., vol. 23, 
pp. 529-533, 1984; J. A. Abusleme and J. H. Vera, AIChE J., vol. 35, pp. 481-489, 1989. 



384 CHAPTER I I .  Solution Thernzodynanzics: Theoiy 

A P 
In& = - 25 1- 1860 + (0.5)'(?5)] = -0.0172 

R T  
(B22 * 

= (83 14X323.15) 

Whe~lce, 4, = 0.987 and J2 = 0.983 

These results are representative of values obtained for ~ ~ a p o r  phascs at typical 
conditions of low-pressure vapordiquid equilibrium. 

11.8 THE IDEAL SOLUTION 

The ideal gas is a useful model of the behavior of gases, and serves as a standard to which real- 
gas behavior can be compared. This is formalized by the introduction of residual properties. 
Another useful model is the ideal solution, which serves as a standard to which real-solution 
behavior can be compared. We will see in the following section how this is formalized by 
introduction of excess properties. 

Equation (1 1.26) establishes the behavior of species i in an ideal-gas mixture: 

This equation takes on a new dimension when Gig, the Gibbs energy of pure species i in the 
ideal-gas state, is replaced by Gi, the Gibbs energy of pure species i as it actually exists at the 
mixture T and P and in the same physical state (real gas, liquid, or solid) as the mixture. It 
then applies to species in real solutions. We therefore define an ideal solution as one for which: 

where superscript id denotes an ideal-solution property. Mole fraction is here represented by 
xi to reflect the fact that application is most often to liquids. For an ideal solution of gases, xi 
is replaced by yi . 

All other thermodynamic properties for an ideal solution follow from Eq. (1 1.72). The 
partial entropy results from differentiation with respect to temperature at constant pressure and 
composition and then combination with Eq. (1 1.18) written for an ideal solution: 

By Eq. (11.4), (aGi/aT)p = -Si; whence, 

Similarly, as a result of Eq. (1 1.19), 

By Eq. (1 1.5), 
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Since ~i~ = Cjd + T Sid, substitutions by Eqs. (1 1.72) and (1 1.73) yield: 

Hid = G i  + R T  l n x i + T S i  - RT lnxi 

- 
The summability relation, Eq. (1 1.1 I), applied to the special case of an ideal solution is 

written: 

Mid = x xi Mid 
i 

Application to Eqs. (1 1.72) through (1 1.75) yields: 

If in Example 11.3 the solution formed by mixing methanol(1) and water(2) were assumed 
ideal, the final volume would be given by Eq. (1 1.78), and the V-vs.-xl relation would be a 
straight line connecting the pure-species volumes, V2 at xl = 0 and Vl at xl = 1. For the 
specific calculation at xl = 0.3, use of Vl and V2 in place of partial volumes yields: 

Both values are about 3.4% low. 

The LewisIRandall Rule 

A simple equation for the fugacity of a species in an ideal solution follows from Eq. (1 1.72). 
Written for the special case of species i in an ideal solution, Eq. (1 1.42) becomes: 

p,id = Gjd = r i ( T )  + RT In ?id 
When this equation and Eq. (1 1.30) are combined with Eq. (1 1.72), Ti(T) is eliminated, and 
the resulting expression reduces to: 

This equation, known as the Lewis/Randall rule, applies to each species in an ideal solution 
at all conditions of temperature, pressure, and composition. It shows that the fugacity of each 
species in an ideal solution is proportional to its mole fraction; the proportionality constant is 
the fugacity ofpure species i in the same physical state as the solution and at the same T and P. 
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Division of both sides of Eq. (1 1.80) by Pxi and substitution of $id for f j d / x i  P [Eq. (1 1.48)] 
and of @i for f ,  / P [Eq. (1 1.32)] gives an alternative form: 

Thus the fugacity coefficient of species i in an ideal solution is equal to the fugacity coefficient 
of pure species i in the same physical state as the solution and at the same T and P. Since 
Raoult's law is based on the assumption of ideal-solution behavior for the liquid phase, the 
same systems that obey Raoult's law form ideal solutions. 

1 1.9 EXCESS PROPERTIES 

The residual Gibbs energy and the fugacity coefficient are directly related to experimental 
PVT data by Eqs. (6.46), (1 1.34), and (1 1.56). Where such data can be adequately corre- 
lated by equations of state, thermodynamic-property information is advantageously provided 
by residual properties. Indeed, if convenient treatment of all fluids by means of equations of 
state were possible, the thermodynamic-property relations already presented would suffice. 
However, liquid solutions are often more easily dealt with through properties that measure 
their departures, not from ideal-gas behavior, but from ideal-solution behavior. Thus the math- 
ematical formalism of excess properties is analogous to that of the residual properties. 

If M represents the molar (or unit-mass) value of any extensive thermodynamic property 
(e.g., V ,  U ,  H, S ,  G ,  etc.), then an excess property M E  is defined as the difference between 
the actual property value of a solution and the value it would have as an ideal solution at the 
same temperature, pressure, and composition. Thus, 

For example, 

Moreover, G E  = f f E  - T S ~  (1 1.83) 

which follows from Eq. (1 1.82) and Eq. (6.3), the definition of G .  
The definition of M E  is analogous to the definition of a residual property as given by 

Eq. (6.41). Indeed, excess properties have a simple relation to residual properties, found by 
subtracting Eq. (6.41) from Eq. (1 1.82): 

Since an ideal-gas mixture is an ideal solution of ideal gases, Eqs. (11.76) through (1 1.79) 
become expressions for Mig when Mi is replaced by M ~ ! ~ .  For example, Eq. (1 1.76) becomes: 

The two sets of equations, for Mid and Mig, therefore provide a general relation for the differ- 
ence: 
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wherein the summation terms with logarithms have canceled. This leads immediately to the 
result: 

M~ = M~ - x x ~ M ~ ~  (1 1.84) 
i 

Note that excess properties have no meaning for pure species, whereas residual properties exist 
for pure species as well as for mixtures. 

The partial-property relation analogous to Eq. (1 1.45) is: 

where M E  is a partial excess property. The fundamental excess-property relation is derived 
in exactly the same way as the fundamental residual-property relation and leads to analogous 
results. Equation (1 1.50), written for the special case of an ideal solution, is subtracted from 
Eq. (1 1.50) itself, yielding: 

This is the fundamental excess-property relation, analogous to Eq. (1 1.51), the fundamental 
residual-property relation. 

The exact analogy that exists between properties M ,  residual properties M ~ ,  and excess 
properties M E  is indicated by Table 11.1. All of the equations that appear are basic property 
relations, although only Eqs. (1 1.4) and (1 1.5) have been shown explicitly before. 
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The Excess Gibbs Energy and the Activity Coefficient 

The excess Gibbs energy is of particular interest. Equation (1 1.42) may be written: 

Gi = ri ( T )  + RT In f i  

In accord with Eq. (1 1.80) for an ideal solution, this becomes: 

Gjd = r i ( T )  + RT Inxif, 

By difference, Gi - Gjd = RT In - Pi 
x, f i  

The left side of this equation is the partial excess Gibbs energy G:; the dimensionless ratio 
f i  /xi f, appearing on the right is the activity coeficient of species i in solution, symbol yi. Thus, 
by definition, 
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Whence, (1 1.88) 

These equations establish a thermodynamic foundation for the activity coefficient, which 
appeared in Sec. 10.5 as a factor introduced into Raoult's law to account for liquid-phase 
nonidealities. Comparison with Eq. (1 1.47) shows that Eq. (1 1.88) relates yi to GE exactly as 

Eq. (1 1.47) relates $i to c:. For an ideal solution, GE = 0, md therefore yi = 1. 
An alternative form of Eq. (1 1.86) follows by introduction of the activity coefficient 

through Eq. (1 1.88): 

The generality of these equations precludes their direct practical application. Rather, use 
is made of restricted forms, which are written by inspection: 

Equations (1 1.89) through (1 1.92) are analogs of Eqs. (1 1.52) through (1 1.55) for residual 
properties. Whereas the fundamental residual-property relation derives its usefulness from 
its direct relation to experimental PVT data and equations of state, the fundamental excess- 
property relation is useful because VE,  H ~ ,  and yi are all experimentally accessible. Activity 
coefficients are found from vaporniquid equilibrium data, and vE and H~ values come from 
mixing experiments, topics treated in the following chapter. 

Equation (1 1.92) demonstrates that In yi is a partial property with respect to GE/ RT. It 
is the analog of Eq. (1 1.55), which shows the same relation of 1nJi to GR/RT. The partial- 
property analogs of Eqs. (1 1.90) and (1 1.91) are: 

These equations allow calculation of the effect of pressure and temperature on the activity 
coefficient. 
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The following forms of the summability and GibbsIDuhem equations result from the fact 
that In yi is a partial property with respect to G ~ / R T :  

These equations find important applications in phase-equilibrium thermodynamics. 
Equations (11.90) and (11.91) allow direct calculation of the effects of pressure and 

temperature on the excess Gibbs energy. For example, an equimolar mixture of benzene and 
cyclohexane at 298.15 K (25°C) and 1 bar has an excess volume of about 0.65 cm3 molpl and 
an excess enthalpy of about 800 J mol-'. Thus at these conditions, 

0.65 

[ a ( G z T ) ] T , x  = (8314)(298.15) 
= 2.62 x lop5 bar-' 

The most striking observation about these results is that it takes a pressure change of more than 
40 bar to have an effect on the excess Gibbs energy equivalent to that of a temperature change 
of 1 K (1°C). Similar calculations based on Eqs. (1 1.93) and (1 1.94) produce similar results. 
This is the reason that for liquids at low pressures the effect of pressure on the excess Gibbs 
energy and on the activity coefficients is usually neglected. 

Just as the fundamental property relation of Eq. (11.50) provides complete property 
information from a canonical equation of state expressing GIRT as a function of T, P ,  and 
composition, so the fundamental residual-property relation, Eq. (1 1.5 1) or (1 1.52), provides 
complete residual-property information from a PVT equation of state, from P V T  data, or 
from generalized P V T correlations. However, for complete property information, one needs 
in addition to P V T  data the ideal-gas-state heat capacities of the species that comprise the 
system. In complete analogy, the fundamental excess-property relation, Eq. (1 1.86) or (1 1.89), 
provides complete excess-property information, given an equation for GE/RT as a function 
of its canonical variables, T, P, and composition, However, this formulation represents less- 
complete property information than does the residual-property formulation, because it tells us 
nothing about the properties of the pure constituent chemical species. 

The Nature of Excess Properties 

Peculiarities of liquid-mixture behavior are dramatically revealed in the excess properties. 
Those of primary interest are GE, HE,  and sE. The excess Gibbs energy comes from 
experiment through reduction of vaportliquid equilibrium data, and H E  is determined by mix- 
ing experiments (Chap. 12). The excess entropy is not measured directly, but is found from 
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Eq. (1 1.83), written: 

Excess properties are often strong functions of temperature, but at normal temperatures are not 
strongly influenced by pressure. Their composition dependence is illustrated in Fig. 11.4 for 
six binary liquid mixtures at 323.15 K (50°C) and approximately atmospheric pressure. For 
consistency with Eq. (11.83), the product T S E  is shown rather than S E itself. Although the 
systems exhibit a diversity of behavior, they have common features: 

1. All excess properties become zero as either species approaches purity. 
2. Although G E  VS. X I  is approximately parabolic in shape, both H~ and T S ~  exhibit indi- 

vidualistic composition dependencies. 
3. When an excess property M E  has a single sign (as does G E  in all six cases), the extreme 

value of M E  (maximum or minimum) often occurs near the equimolar composition. 
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Feature 1 is a consequence of the definition of an excess property, Eq. (1 1.82); as any xi 
approaches unity, both M  and M" approach Mi ,  the corresponding property of pure species i. 
Features 2 and 3 are generalizations based on observation, and admit exceptions (note, e.g., 
the behavior of H~ for the ethanollwater system). 

A detailed discussion of excess-property behavior is given in Sec. 16.6. 

PROBLEMS 

11.1. What is the change in entropy when 0.7 m3 of C02 and 0.3 m3 of N2,  each at 1 bar 
and 298.15 K (25°C) blend to form a gas mixture at the same conditions? Assume ideal 
gases. 

11.2. A vessel, divided into two parts by a partition, contains 4 mol of nitrogen gas at 348.15 K 
(75°C) and 30 bar on one side and 2.5 mol of argon gas at 403.15 K (130°C) and 20 bar 
on the other. If the partition is removed and the gases mix adiabatically and completely, 
what is the change in entropy? Assume nitrogen to be an ideal gas with Cv = (5/2)R 
and argon to be an ideal gas with Cv = (3/2)R. 

11.3. A stream of nitrogen flowing at the rate of 2 kg s-' and a stream of hydrogen flowing at 
the rate of 0.5 kg s-I mix adiabatically in a steady-flow process. If the gases are assumed 
ideal, what is the rate of entropy increase as a result of the process? 

11.4. What is the ideal work for the separation of an equimolar mixture of methane and ethane 
at 448.15 K (175°C) and 3 bar in a steady-flow process into product streams of the pure 
gases at 308.15 K (35°C) and 1 bar if T, = 300 K? 

11.5. What is the work required for the separation of air (21-mol-% oxygen and 79-mol-% 
nitrogen) at 298.15 K (25°C) and 1 bar in a steady-flow process into product streams 
of pure oxygen and nitrogen, also at 298.15 K (25°C) and 1 bar, if the thermodynamic 
efficiency of the process is 5% and if T, = 300 K? 

11.6. What is the partial molar temperature? What is the partial molar pressure? Express 
results in relation to the T and P of the mixture. 

11.7. Show that: 

(a)  The "partial molar mass" of a species in solution is equal to its molar mass. 
(b) A partial speciJic property of a species in solution is obtained by division of the 

partial molar property by the molar mass of the species. 

11.8. If the molar density of a binary mixture is given by the empirical expression: 

p = ao + a l x l +  azx? 

find the corresponding expressions for V 1  and P2. 
11.9. For a ternary solution at constant T and P, the composition dependence of molar property 

M  is given by: 

where M I ,  M2, and M3 are the values of M  for pure species 1, 2, and 3, and C is a 
parameter independent of composition. Determine expressions for M I ,  M 2 ,  and M 3  
by application of Eq. (1 1.7). As a partial check on your results, verify that they satisfy 
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the summability relation, Eq. (1 1.11). For this correlating equation, what are the Mi at 
infinite dilution? 

11.10. A pure-component pressure pi for species i in a gas mixture may be defined as the 
pressure that species i would exert if it alone occupied the mixture volume. Thus, 

where yi is the mole fraction of species i in the gas mixture, Zi is evaluated at pi and T, 
and V is the molar volume of the gas mixture. Note that pi as defined here is not a partial 
pressure yi P, except for an ideal gas. Dalton's "law" of additive pressures states that 
the total pressure exerted by a gas mixture is equal to the sum of the pure-component 
pressures of its constituent species: P = Ci pi. Show that Dalton's "law" implies that 
Z = xi yi Zi , where Zi is the compressibility factor of pure species i evaluated at the 
mixture temperature but at its pure-component pressure. 

11.11. If for a binary solution one starts with an expression for M (or MR or ME) as a function 
ofxl andapplies~qs.(11.15)and(11.16)tofind~~ a n d ~ 2 ( 0 r ~ f  a n d ~ : o r ~ : a n d  

M;) and then combines these expressions by Eq. (1 1.1 I), the initial expression for M is 
regenerated. On the other hand, if one starts with expressions for M1 and M 2 ,  combines 
them in accord with Eq. (11.11), and then applies Eqs. (11.15) and (11.16), the initial 
expressions for M1 and M2 are regenerated if and only if the initial expressions for these 
quantities meet a specific condition. What is the condition? 

11.12. With reference to Ex. 11.4, 

(a) Apply Eq. (1 1.7) to Eq. (A) to verify Eqs. (B) and (C). 
(b) Show that Eqs. (B) and (C) combine in accord with Eq. (1 1.11) to regenerate Eq. (A). 
(c) Show that Eqs. (B) and (C) satisfy Eq. (1 1.14), the GibbsIDuhem equation. 
(d) Show that at constant T and P, 

(e) Plot values of H, H I ,  and Hz, calculated by Eqs. (A), (B), and (C), vs. XI. Label 
points HI, Hz, By, and H r ,  and show their values. 

11.13. The molar volume (cm3 mol-') of a binary liquid mixture at T and P is given by: 

(a) Find expressions for the partial molar volumes of species 1 and 2 at T and P .  
(b) Show that when these expressions are combined in accord with Eq. (1 1.11) the given 

equation for V is recovered. 
(c) Show that these expressions satisfy Eq. (1 1.14), the GibbsIDuhem equation. 
(d) Show that (dVl/dxl),l,l =-(dV2/dxl)xl=o = 0. 
(e) Plot values of V, V1, and V2 calculated by the given equation for V and by the 

equations developed in (a) vs. XI. Label points Vl, V2, Vy, and Vy,  and show their 
values. 

11.14. For a particular binary liquid solution at constant T and P, the molar enthalpies of 
mixtures are represented by the equation: 
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where the ai and bi are constants. Since the equation has the form of Eq. (1 1.1 I), it 
might be that = ai + bixi .  Show whether this is true. 

11.15. Analogous to the conventional partial property Mi, one can define a constant-T,V 
partial property ki : 

Show that kj and Mi are related by the equation: 

Demonstrate that the ki satisfy a summability relation, M = xi ki . 
I 

11.16. From the following compressibility-factor data for C 0 2  at 423.15 K (150°C) pre- 
pare plots of the fugacity and fugacity coefficient of C02 vs. P for pressures up to 
500 bar. Compare results with those found from the generalized correlation represented 
by Eq. (1 1.65). 

11.20. Justify the following equations: 

11.21. From data in the steam tables, determine a good estimate for f /  f sat for liquid water at 
423.15 K (150°C) and 150 bar, where f sat is the fugacity of saturated liquid at 423.15 
K (150°C). 

z 
0.869 
0.765 
0.762 
0.824 
0.910 

Pha r  

10 
20 
40 
60 
80 

11.17. For SO2 at 600 K and 300 bar, determine good estimates of the fugacity and of G~ / RT. 

11.18. Estimate the fugacity of isobutylene as a gas: 

(a )  At 553.15 K (280°C) and 20 bar; (b)  At 553.15 K (280°C) and 100 bar. 

11.19. Estimate the fugacity of one of the following: 

(a )  Cyclopentane at 383.15 K (110°C) and 275 bar. At 383.15 K (110°C) the vapor 
pressure of cyclopentane is 5.267 bar. 

(b )  1-Butene at 393.15 K (120°C) and 34 bar. At 393.15 K (120°C) the vapor pressure 
of 1-butene is 25.83 bar. 

z 
0.985 
0.970 
0.942 
0.913 
0.885 

Pha r  

100 
200 
300 
400 
500 
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11.22. For one of the following, determine the ratio of the fugacity in the final state to that in 
the initial state for steam undergoing the isothermal change of state: 

(a) From 9000 kPa and 673.15 K (400°C) to 300 kPa. 
(b) From 7000 kPa and 700 K to 345 kPa. 

11.23. Estimate the fugacity of one of the following liquids at its normal-boiling-point tem- 
perature and 200 bar: 

(a) n-Pentane; (b) Isobutylene; (c) 1-Butene. 

11.24. Assuming that Eq. (1 1.65) is valid for the vapor phase and that the molar volume of 
saturated liquid is given by Eq. (3.63), prepare plots of f vs. P and of q5 vs. P for one 
of the following: 

(a) Chloroform at 473.15 K (200°C) for the pressure range from 0 to 40 bar. At 473.15 
K (200°C) the vapor pressure of chloroform is 22.27 bar. 

(b) Isobutane at 3 13.15 K (40°C) for the pressure range from 0 to 10 bar. At 3 13.15 K 
(40°C) the vapor pressure of isobutane is 5.28 bar. 

11.25. For the system ethylene(l)/propylene(2) as a gas, estimate f l ,  f2 ,  $1 , and $2 at 
T/t = 423.15 K (150"C), P = 30 bar, and yl = 0.35: 
(a) Through application of Eqs. (1 1.59) and (1 1.60). 
(b) Assuming that the mixture is an ideal solution. 

11.26. Rationalize the following expression, valid at sufficiently low pressures, for estimating 
the fugacity coefficient: In q5 Z - 1. 

11.27. For the system methane(l)/ethane(2)/propane(3) as a gas, estimate f l ,  f 2 ,  f3 ,  $1, $2, 
and $3 at T  = 373.15 K (lOO°C), P = 35 bar, yl = 0.21, and y2 = 0.43: 

(a) Through application of Eq. (1 1.61). 
(b) Assuming that the mixture is an ideal solution. 

11.28. The excess Gibbs energy of a binary liquid mixture at T and P is given by: 

(a) Find expressions for In yl and In y2 at T and P. 
(b) Show that when these expressions are combined in accord with Eq. (1 1.95) the given 

equation for GE/ RT is recovered. 
(c)  Show that these expressions satisfy Eq. (1 1.96), the GibbsIDuhem equation. 
(d) Show that (d In yl/dxl)x,zl = (d In = 0. 
(e) Plot GE/ R T ,  In yl, and In y2 as calculated by the given equation for GE/ R T and 

by the equations developed in (a) vs. xl. Label points In ylW and In y200 and show 
their values. 

11.29. Show that yi = $i 
11.30. Given below are values of G ~ I J  mol-', H ~ I J  mol-', and CFIJ mol-l K-l for some 

equimolar binary liquid mixtures at 298.15 K (25°C). Estimate values of GE, HE,  and 
sE at 328.15 K (55°C) for one of the equimolar mixtures by two procedures: (I) Use all 
the data; (11) Assume C: = 0. Compare and discuss your results for the two procedures. 
(a) Acetonelchloroform: GE = -622, H~ = -1920, CF = 4.2. 
(b) Acetoneln-hexane: G~ = 1095, H E  = 1595, C: = 3.3. 
(c) Benzenelisooctane: GE = 407, H E  = 984, C: = -2.7. 
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(d) Chloroform/ethanol: G E  = 632, H E  = -208, C; = 23.0. 
(e) Ethanolln-heptane: GE = 1445, H~ = 605, C: = 11 .O. 
(f) Ethanollwater: GE = 734, H~ = -416, C: = 11.0. 
(g) Ethyl acetateln-heptane: G E  = 759, H~ = 1465, C: = -8.0. 

11.31. The excess Gibbs energy of a particular ternary liquid mixture is represented by the 
empirical expression, with parameters A12, A13, and A23 functions of T and P only: 

(a) Determine the implied expressions for In y,, In y2, and In j3. 
(b) Verify that your results for part (a) satisfy the summability relation, Eq. (1 1.95). 
(c) For species 1 determine expressions (or values) for In yl for the limiting cases: 

xl = 0, xl = 1, x2 = 0, and x3 = 0. What do these limiting cases represent? 

11.32. The data in Table 11.2 are experimental values of v E  for binary liquid mixtures of 
1,3-dioxolane(1) and isooctane(2) at 298.15 K (25°C) and 1 atm. 

(a) Determine from the data numerical values of parameters a ,  b, and c in the correlating 
equation: 

E V = xlx2(a + bxl i- cxt) 

(b) Determine from the results of part (a) the maximum value of vE. At what value of 
XI does this occur? 

(c) Determine from the results of part (a) expressions for V :  and v:. Prepare a plot 
of these quantities vs. xl, and discuss its features. 

11.33. For an equimolar vapor mixture of propane(1) and n-pentane(2) at 348.15 K (75°C) 
and 2 bar, estimate 2, £ f R ,  and sR . Second virial coefficients, in cm3 mol-' : 

TIt(W°C) Bii B22 B12 

323.15 (50) -331 -980 -558 
348.15(75) -276 -809 -466 
373.15 (100) -235 -684 -399 

Table 11.2 Excess Volumes for 1,3-Dioxane(1 )/lsooc- 
tane(2) at 298.15 K (25°C) 

R. Francesconi et al., Int. DATA Sex, Ser: A, vol. 25, no. 3, p. 229, 
1997. 

Equations (3.37), (6.54), (6.55), and (11.58) are pertinent. 

XI 

0.027 15 
0.093 29 
0.174 90 
0.327 60 
0.402 44 
0.566 89 
0.631 28 
0.662 33 

vE/10p3 cm3 mol-' 

87.5 
265.6 
417.4 
534.5 
53 1.7 
421.1 
347.1 
321.7 

XI  

0.699 84 
0.727 92 
0.775 14 
0.792 43 
0.829 54 
0.868 35 
0.932 87 
0.982 33 

VE/10p3 cm3 mol-I 

276.4 
252.9 
190.7 
178.1 
138.4 
98.4 
37.6 
10.0 
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11.34. Use the data of Pb. 11.33 to determine $1 and $2 as functions of composition for binary 
vapor mixtures of propane(1) and n-pentane(2) at 348.15 K (75°C) and 2 bar. Plot the 
results on a single graph. Discuss the features of this plot. 

11.35. For a binary gas mixture described by Eqs. (3.37) and (1 1.58), prove that: 

See also Eq. (1 1.84), and note that SI2 = 2B12 - Bll - BZ2. 

11.36. The data in Table 11.3 are experimental values of H~ for binary liquid mixtures of 
1,2-dichloroethane(1) and dimethyl carbonate(2) at 3 13.15 K (40°C) and 1 atm. 
(a) Determine from the data numerical values of parameters a ,  b, and c in the correlating 

equation: 

(b) Determine from the results of part (a) the minimum value of H ~ .  At what value of 
xl does this occur? 

(c) Determine from the results of part (a) expressions for H :  and H:. Prepare a plot 
of these quantities vs. xl, and discuss its features. 

11.37. Make use of Eqs. (3.37), (3.61), (3.62), (6.53), (6.54), (6.55), (6.80), (6.81), (1 1.58), 
and (1 1.66)-(11.71), to estimate V, H ~ ,  s R ,  and GR for one of the following binary 

Table 11.3 H~ Values for 1,2-Dichloroethane(l )/ 
Dimethyl Carbonate(2) at 313.15 K (40°C) 

R. Francesconi et al., Int. DATA Sex, Ser. A, vol. 25, no. 3, 
p. 225, 1997. 

vapor mixtures: 
(a) Acetone(l)/l,3-butadiene(2) with mole fractions yl = 0.28 and y2 = 0.72 at T = 

333.15 K (60°C) and P = 170 kPa. 
(b) Acetonitrile(l)/diethyl ether(2) with mole fractions yl = 0.37 and y2 = 0.63 at 

T = 323.15 K (50°C) and P = 120 kPa. 

HEIJ mol-* 

-204.2 
-191.7 
-174.1 
-141.0 
-116.8 
-85.6 
-43.5 
-22.6 

XI  

0.5 163 
0.6156 
0.6810 
0.7621 
0.8181 
0.8650 
0.9276 
0.9624 

XI  

0.0426 
0.0817 
0.1177 
0.1510 
0.2107 
0.2624 
0.3472 
0.4158 

HEIJ molpl 

-23.3 
-45.7 
-66.5 
-86.6 
-118.2 
- 144.6 
- 176.6 
-195.7 
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(c )  Methyl chloride(l)/ethyl chloride(2) with mole fractions yl = 0.45 and y2 = 0.55 
at T = 298.15 K (25°C) and P = 100 Wa. 

(d) Nitrogen(l)/ammonia(2) with mole fractions yl = 0.83 and y2 = 0.17 at T = 
293.15 K (20°C) and P = 300 Wa. 

(e) Sulfur dioxide(l)/ethylene(2) with mole fractions yl = 0.32 and y2 = 0.68 at T = 
298.15 K (25°C) and P = 420 kPa. 

Note: Set kij = 0 in Eq. (1 1.68). 



Chapter 12 

Solution Thermodynamics: 
Applications 

All of the fundamental equations and necessary definitions of solution thermodynamics are 
given in the preceding chapter. In this chapter we examine what can be learnt from experiment. 
Considered first are measurements of vaporlliquid equilibrium (VLE) data, from which activity- 
coefficient correlations are derived. Second, we treat mixing experiments, which provide data 
for property changes of mixing. In particular, practical applications of the enthalpy change of 
mixing, called the heat of mixing, are presented in detail in Sec. 12.4. 

12.1 LIQUID-PHASE PROPERTIES FROM VLE DATA 

Figure 12.1 shows a vessel in which a vapor mixture and a liquid solution coexist in vaporlliquid 
equilibrium. The temperature T and pressure P are uniform throughout the vessel, and can 
be measured with appropriate instruments. Vapor and liquid samples may be withdrawn for 
analysis, and this provides experimental values for mole fractions in the vapor {yi} and mole 
fractions in the liquid {xi } . 

Fugacity 

For species i in the vapor mixture, Eq. (1 1.48) is written: 

The criterion of vaporlliquid equilibrium, as given by Eq. (1 1.44), is that f?l = f i .  Therefore, 

Although values for vapor-phase fugacity coefficient 4: are easily calculated (Secs. 11.6 
and 11.7), VLE measurements are very often made at pressures low enough (P ( 1 bar) that 
the vapor phase may be assumed an ideal gas. In this case 4: = 1, and the two preceding 
equations reduce to: 
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Figure 12.1 Schematic representation of VLE 

Thus, the fugacity of species i (in both the liquid and vapor phases) is equal to the partial 
pressure of species i in the vapor phase. Its value increases from zero at infinite dilution 
(xi = yi -+ 0) to Pi

sat for pure species i. This is illustrated by the data of Table 12.1 for the 
methyl ethyl ketone(l)/toluene(2) system at 323.15 K (50°C).' The first three columns list a 
set of experimental P-xl-yl data and columns 4 and 5 show: 

f~ = YIP and f 2  = Y ~ P  

Table 12.1 VLE Data for Methyl Ethyl Ketone(l)TToluene(2) at 
323.1 5 K (50°C) 

The fugacities are plotted in Fig. 12.2 as solid lines. The straight dashed lines represent 
Eq. (1 1.80), the Lewis/Randall rule, which expresses the composition dependence of the con- 
stituent fugacities in an ideal solution: 

A .  

fEd = xifi  (1 1.80) 

'M. Diaz Peiia, A. Crespo Colin, and A. Compostizo, J. Chem. Thermodyn., vol. 10, pp. 337-341, 1978. 
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Figure 12.2 Fugacities for methyl Figure 12.3 Composition depen- 
ethyl ketone(l)/toluene(2) at 323.1 5 K dence of fugacity for species i in a 
(50°C). The dashed lines represent the binary solution 
Lewis/Randall rule 

Although derived from a particular set of data, Fig. 12.2 illustrates the general char- 
acteristics of the ?, and vs. x l  relationships for a binary liquid solution at constant T. 
The equilibrium pressure P varies with composition, but its influence on 6 and & is neg- 
ligible. Thus a plot at constant T and P would look the same, as indicated in Fig. 12.3 for 
species i ( i  = 1,2) in a binary solution at constant T and P.  

Activity Coefficient 

The lower dashed line in Fig. 12.3, representing the LewisRandall mle, is characteristic of 
ideal-solution behavior. It provides the simplest possible model for the composition dependence 
of f l ,  representing a standard to which actual behavior may be compared. Indeed, the activity 
coefficient as defined by Eq. (1 1.87) formalizes this comparison: 

Thus the activity coefficient of a species in solution is the ratio of its actual fugacity to the 
value given by the LewisRandall rule at the same T, P, and composition. For the calculation 
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of experimental values, both and f^jd are eliminated in favor of measurable quantities:' 

This is a restatement of Eq. (10.5), modified Raoult's law, and is adequate for present 
purposes, allowing easy calculation of activity coefficients from experimental low-pressure 
VLE data. Values from this equation appear in the last two columns of Table 12.1. 

The solid lines in both Figs. 12.2 and 12.3, representing experimental values of fl, become 
tangent to the LewisIRandall-rule lines at xi = 1. This is a consequence of the GibbsIDuhem 
equation, as is shown later. In the other limit, xi + 0, fl becomes zero. Thus, the ratio j / x i  
is indeterminate in this limit, and application of 1'Hbpital's rule yields: 

Equation (12.2) defines Henry's constant Xi ,  as the limiting slope of the ff-vs.-xi curve at 
xi = 0. As shown by Fig. 11.3, this is the slope of a line drawn tangent to the curve at x; = 0. 
The equation of this tangent line expresses Henry's law: 

It applies in the limit as xi -+ 0, and must also be of approximate validity for small values of 
xi. Henry's law as given by Eq. (10.4) follows immediately from this equation when fl = yi P ,  
i.e., when 6 has its ideal-gas value. 

Henry's law is related to the LewisIRandall rule through the GibbsIDuhem equation. 
Writing Eq. (11.14) for a binary solution and replacing Mi by Gi = pi gives: 

xl d k l  3- x2 d p 2  = 0 (const T, P )  

Differentiation of Eq. (1 1.42) at constant T and P yields: d p i  = R T  d In fl ; whence, 

xi d In f; + x2 d In f2 = 0 (const T ,  P )  

Upon division by dxl this becomes: 

= 0 (const T, P )  

This is a special form of the GibbsIDuhem equation. Substitution of -dx2 for dxl in the second 
term produces: 

'1n a more rigorous treatment (Sec. 14. l), ff is given by Eq. (1 1.48), in which case, 

with 6; evaluated by Eqs. (1 1.59) and (1 1.60) or by Eq. (11.61) 
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In the limit as xl -+ 1 and x2 + 0, 

d f l l d ~ l  
lim - 

df21dx2 
= lim --- 

x l j l  / xz-0 RIQ 
Since fl = fl when xl = 1, this may be rewritten: 

According to Eq. (12.2), the numerator and denominator on the right side of this equation are 
equal, and therefore: 

This equation is the exact expression of the LewdRandall rule as applied to real solutions. 
It also implies that Eq. (11.80) provides approximately correct values of when xi a 1: 

A A.  

fi a fid = x i $ .  

Henry's law applies to a species as it approaches infinite dilution in 
a binary solution, and the GibbsIDuhem equation insures validity of 
the LewisIRandall rule for the other species as it approaches purity. 
The fugacity shown by Fig. 12.3 is for a species with positive deviations from ideality in 

the sense of the LewisJRandall rule. Negative deviations are less common, but are also observed; 
the fZ-vs.-xi curve then lies below the LewisRandall line. In Fig. 12.4 the fugacity of acetone 
is shown as a function of composition for two different binary solutions at 323.15 K (50°C). 
When the second species is methanol, acetone exhibits positive deviations from ideality. When 
the second species is chloroform, the deviations are negative. The fugacity of pure acetone 
facerone is of course the same regardless of the identity of the second species. However, Henry's 
constants, represented by slopes of the two dotted lines, are very different for the two cases. 

Excess Gibbs Energy 

In Table 12.2 the first three columns repeat the P-xl-yl data of Table 12.1 for the system methyl 
ethyl ketone(l)/toluene(2). These data points are also shown as circles on Fig. 12.5(a). Values 
of In yl and In yz are listed in columns 4 and 5, and are shown by the open squares and triangles 
of Fig. 12.5(b). They are combined in accord with Eq. (1 1.95), written for a binary system: 

The values of GE/ RT  so calculated are then divided by ~ 1 x 2  to provide values of G ~ / x ~ x ~  R T; 
the two sets of numbers are listed in columns 6 and 7 of Table 12.2, and appear as solid circles 
on Fig. 12.5(b). 

The four thermodynamic functions, In yl , In y2, GE/ R T ,  and G ~ / x ~ x ~  R T ,  are properties 
of the liquid phase. Figure 12.5(b) shows how their experimental values vary with composition 
for a particular binary system at a specified temperature. This figure is characteristic of systems 
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Figure 12.4 Composition dependence of the fugacity of acetone in two binary liquid 
solutions at 323.15 K (50°C) 

Table 12.2 VLE Data for Methyl Ethyl Ketone(l)/Toluene(2) at 323.15 K 
(50°C) 



406 CHAPTER 12. Solution Thermodynamics: Applications 

Figure 12.5 The methyl ethyl ketone(l)/toluene(2) system at 323.1 5 K (50°C). 
(a)  Pxy data and their correlation. (6) Liquid-phase properties and their correlation 

for which: 

yi > 1 and l n y i > O  ( i = 1 , 2 )  

In such cases the liquid phase shows positive deviations from Raoult's-law behavior. This is 
seen also in Fig. 12.5(a), where the P-xl data points all lie above the dashed straight line, 
which represents Raoult's law. 

Since the activity coefficient of a species in solution becomes unity as the species becomes 
pure, each In yi ( i  = 1, 2) tends to zero as xi + 1. This is evident in Fig. 12.5(b). At the other 
limit, where xi -+ 0 and species i becomes infinitely dilute, In yi approaches a finite limit, 
namely, In y,OO. In the limit as xl + 0 ,  the dimensionless excess Gibbs energy G ~ / R T  as given 
by Eq. (12.6) becomes: 

G E  
lim -- = (0 ) ln  y r  + ( I ) @ )  = 0 

x l - t o  RT 

The same result is obtained for x2 -+ 0 (x l  -+ 1). The value of GE/RT (and G E )  is therefore 
zero at both xl = 0 and xl = 1. 

The quantity G ~ / X ~ X ~ R T  becomes indeterminate both at xl = 0 and xl = 1, because 
G E  is zero in both limits, as is the product ~ 1 x 2 .  Thus for xl + 0, 1'H8pita17s rule yields: 

G E  G ~ / R T  
= lim - = lim 

d ( G E / R T )  
lim - 

X I - 0  x1x2RT X I - 0  X I  x1+0 dxl  

Differentiation of Eq. (12.6) with respect to xl provides the derivative of the final member: 
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The minus sign preceding the last term comes from dx2 /dx1  = -1, a consequence of the 
equation, xl + x2 = 1. The Gibbsmuhem equation, Eq. (1 1.96), written for a binary system, 
is divided by dx l  to give: 

d  In yl d  In y2 
X I -  + x2- = 0 (const T ,  P)  

dxl dxl 

Substitution into Eq. (B) reduces it to: 

Applied to the composition limit at xl = 0, this equation yields: 

lim 
~ ( G ~ I R T )  Y I  

= lim In - = In ylm 
x1+0 dxl  x1+0 y2 

G E  
= In yp" Similarly, 

G E  
By Eq. ( A ) ,  lim - 03 lim - = In y, 

XI-o xlx2RT xl+l x lxZRT 

Thus the limiting values of G E / x 1 x 2 ~ ~  are equal to the infinite-dilution limits of In yl and 
In y2. This result is illustrated in Fig. 12.5(b). 

These results depend on Eq. (12.7), which is valid for constant T and P .  Although the 
data of Table 12.2 are for constant T ,  but variable P ,  negligible error is introduced through 
Eq. (12.7), because liquid-phase activity coefficients are very nearly independent of P for 
systems at low to moderate pressures. 

Equation (12.7) has further influence on the nature of Fig. 12.5(b). Rewritten as, 

it requires the slope of the In yl curve to be everywhere of opposite sign to the slope of the In y2 
curve. Furthermore, when x2 -+ 0 (and xl + I), the slope of the In yl curve is zero. Similarly, 
when xl + 0, the slope of the In y2 curve is zero. Thus, each In yi (i = 1,2)  curve terminates 
at zero with zero slope at xi = 1. 

Data Reduction 

Of the sets of points shown in Fig. 12.5(b), those for G E / x l x 2 R ~  most closely conform to a 
simple mathematical relation. Thus a straight line provides a reasonable approximation to this 
set of points, and mathematical expression is given to this linear relation by the equation: 

G E  

x lx2RT = A21~1 + A12~2 (12.9a) 

where Azl and A12 are constants in any particular application. Alternatively, 

Expressions for In yl and In y2 are derived from Eq. (12.9b) by application of Eq. (1 1.92). 
Since this requires differentiation of n G E / R ~  with respect to a mole number, Eq. (12.9b) is 
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multiplied by n and all mole fractions are converted to mole numbers. Thus on the right side 
xl is replaced by n l / ( n l  + n2) ,  and x2, by n 2 / ( n l  + n2).  Since n - nl + n2, this gives: 

Differentiating with respect to n 1 in accord with Eq. ( 1  1.92) yields: 

Reconversion of the ni to xi (ni = nxi) gives: 

Further reduction, noting that x2 = 1 - X I ,  leads to: 

Similarly, differentiation of Eq. (12.9b) with respect to n2 yields: 

In y2 = x ? [ ~ 2 1  -t- 26412 - A211~21 

These are the ~ a r ~ u l e s ~ e ~ u a t i o n s ,  and they represent a commonly used empirical model of 
solution behavior. For the limiting conditions of infinite dilution, they become: 

In ypO = A12 ( X I  = 0 )  and In y y  = (x2 = 0 )  

For the methyl ethyl ketoneltoluene system considered here, the curves of Fig. 12.5(b) for 
G E / ~ T ,  In yl ,  and In y2 represent Eqs. (12.9b) and (12.10) with: 

A I 2  = 0.372 and A21 = 0.198 

These are values of the intercepts at xl = 0 and xl = 1 of the straight line drawn to represent 
the GE/x1x2 RT data points. 

A set of VLE data has here been reduced to a simple mathematical equation for the 
dimensionless excess Gibbs energy: 

This equation concisely stores the information of the data set. Indeed, the Margules equations 
for In yl and In y2 allow construction of a correlation of the original P-xl-yl data set. Equation 
(12.1) is rearranged and written for species 1 and 2 of a binary system as: 

y1 P = x ly l  PIsat and y2 P = x2 yz P p t  

3 ~ a x  Margules (1856-1920), Austrian meteorologist and physicist. 
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Table 12.3 VLE Data for Chloroform(l)/l,4-Dioxane(2) at 323.1 5 K ( 50°C)  

PlkPa x 1 Y1 In Y I  In y2 G E/RT GE/x1x2RT 

Addition gives, I P = x l y l ~ ~ t + ~ 2 y 2 ~ ~ t  I (12.11) 

Whence. 

Values of yl and y2 from Eqs. (12.10) with A12 and as determined for the methyl 
ethyl ketone(l)/toluene(2) system are combined with the experimental values of PISat and PZsat 
to calculate P and yl by Eqs. (12.11) and (12.12) at various values of x l .  The results are shown 
by the solid lines of Fig. 12.5(a), which represent the calculated P-xl and P-yl relations. They 
clearly provide an adequate correlation of the experimental data points. 

A second set of P-xl-yl  data, for chloroform(l)/l,4-dioxane(2) at 323.15 K ( 5 0 " ~ ) , ~  is 
given in Table 12.3, along with values of pertinent thermodynamic functions. Figures 12.6(a) 
and 12.6(b) display as points all of the experimental values. This system shows negative 
deviations from Raoult's-law behavior; since yl and y2 are less than unity, values of In yl, In yz, 
G ~ / R T ,  and GE/x1x2RT are negative. Moreover, the P-xl data points in Fig. 12.6(a) all lie 
below the dashed line representing Raoult's-law behavior. Again the data points for GE/x1x2 RT 
are reasonably well correlated by Eq. (12.9a), and the Margules equations [Eqs. (12.10)] again 
apply, here with parameters: 

A12 = -0.72 and Azl = -1.27 

Values of G ~ / R T ,  In yl, In y2, P ,  and yl calculated by Eqs. (12.9b), (12.10), (12.1 I), and 
(12.12) provide the curves shown for these quantities in Figs. 12.6(n) and 12.6(b). Again, the 
experimental P-xl - y 1 data are adequately correlated. 

Although the correlations provided by the Margules equations for the two sets of VLE 
data presented here are satisfactory, they are not perfect. The two possible reasons are, first, 

4 ~ .  L. McGlashan and R. P. Rastogi, Tmns. Faraday Soc., vol. 54, p. 496, 1958. 
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Figure 12.6 The chloroform(l)/l,4-dioxane(2) system at 323.15 K (50°C). (a) Pxy 
data and their correlation. (b) Liquid-phase properties and their correlation 

that the Margules equations are not precisely suited to the data set; second, that the P-xl-yl 
data themselves are systematically in error such that they do not conform to the requirements 
of the GibbsDuhem equation. 

We have presumed in applying the Margules equations that the deviations of the exper- 
imental points for G E / x 1 x 2 f ? ~  from the straight lines drawn to represent them result from 
random error in the data. Indeed, the straight lines do provide excellent correlations of all but 
a few data points. Only toward edges of a diagram are there significant deviations, and these 
have been discounted, because the error bounds widen rapidly as the edges of a diagram are 
approached. In the limits as xl -+ 0 and xl + 1, G ~ / X ~ X ~ R T  becomes indeterminate; ex- 
perimentally this means that the values are subject to unlimited error and are not measurable. 
However, tlie possibility exists that the correlation would be improved were the GE/xIx2RT 
points represented by an appropriate curve. Finding the correlation that best represents the data 
is a trial procedure. 

Thermodynamic Consistency 

The GibbsDuhem equation imposes a constraint on activity coefficients that may not be sat- 
isfied by experimental values containing systematic error. If this is the case, the experimental 
values of In yl and In y2 used for calculation of G E / ~ T  by Eq. (12.6), which does not depend 
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on the GibbsDuhem equation, will not agree with values of In yl and In y2 later calculated 
by equations derived from Eq. (1 1.92), which does implicitly contain the GibbsDuhem equa- 
tion. No correlating equation exists that can then precisely represent the original P-xl-yl data. 
Such data are said to be inconsistent with the Gibbsmuhem equation, and are necessarily 
incorrect. 

Our purpose now is to develop a simple test for the consistency with respect to the 
GibbsDuhem equation of a P-xl-yl data set. Equation (12.6) is written with experimental 
values, calculated by (Eq. 12.1), and denoted by an asterisk: 

Differentiation gives: 

~ ( G ~ / R T ) *  y;" d In y; d In y,* 
=ln,+xl- + x2- 

dx1 Y2 dx1 dx1 

Equation (12.8), written for derived property values, i.e., those given by a correlation, such as 
the Margules equations, is subtracted from this equation to yield: 

The differences between like terms are residuals, which may be represented by a 6 notation. 
The preceding equation then becomes: 

d ~ ( G ~ / R T )  dlny;" d lny*  
=Sin- - xl- 

" ( dxl 
+ x 2 2  

dxl Y2 dxl 

If a data set is reduced so as to make the residuals in GE/RT scatter about zero, then the 
derivative d 6 ( G ~ /  ~ T ) / d x ~  is effectively zero, reducing the preceding equation to: 

The right side of this equation is exactly the quantity that Eq. (12.7), the 
GibbsIDuhem equation, requires to be zero for consistent data. The 
residual on the lefi is therefore a direct measure of deviations from 
the GibbsIDuhem equation. The extent to which a data set departs 
from consistency is measured by the degree to which these residuals 
fail to scatter about zero.5 

 his test and other aspects of VLE data reduction are treated by H. C. Van Ness, J. Chem. Thermodyn., vol. 27, 
pp. 113-134,1995; Pure & Appl. Chem., vol. 67, pp. 859-872,1995. See also, P. T. Eubank, B. G. Lamonte, and J. F. 
Javier Alvarado, J. Chem. Eng. Data, vol. 45, no. 6,2000. 
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Table 12.4 VLE Data for Diethyl Ketone(1)ln-Hexane(2) at 
338.1 5 K (65°C) 

'v. C. Maripuri and G. A. Ratcliff, J. Appl. Chem. Biotechnol., vol. 22, pp. 899-903, 1972. 
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 h he simple procedure used here to find a correlation for G ~ / R T  would no doubt be improved by a regression 
procedure that determines the values of Azl and AI2 that minimize the sumof squares of theresiduals S ( G ~ /  R T ) .  
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Figure 12.9 shows plots of In yi based on experimental measurements for six binary 
systems at 323.15 K (50°C), illustrating the variety of behavior that is observed. Note in every 
case that as xi + 1, In yi -+ 0 with zero slope. Usually (but not always) the infinite-dilution 
activity coefficient is an extreme value. Comparison of these graphs with those of Fig. 11.4 
indicates that the In yi generally have the same sign as GE. That is, positive GE implies activity 
coefficients greater than unity and negative GE implies activity coefficients less than unity, at 
least over most of the composition range. 

s ~ .  A. Barker,Austral. J. Chem., vol. 6, pp. 207-210, 1953. 



12.2. Models for the Excess Gibbs Energy 415 

Figure 12.9 Logarithms of the activity coefficients at 323.15 K (50°C) for six binary 
liquid systems: (a) chloroform(l)ln-heptane(2); (b) acetone(l)/methanol(2); (c)  ace- 
tone(l)lchloroform(2); (d )  ethanol(1)ln-heptane(2); (e) ethanol(l)/chloroform(2); 
( f )  ethanol(l)/water(2) 

12.2 MODELS FOR THE EXCESS GlBBS ENERGY 

In general GE/RT is a function of T, P, and composition, but for liquids at low to moder- 
ate pressures it is a very weak function of P. Therefore the pressure dependence of activity 
coefficients is usually neglected. Thus, for data at constant T :  

, X N )  (const T )  

The Margules equation, Eq. (12.9), is an example of this functionality. 
A number of other equations are in common use for correlation of activity coefficients. 

For binary systems (species 1 and 2) the function most often represented by an equation is 
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GE/x1x2 RT,  which may be expressed as a power series in X I :  

(const T )  

Since x2 = 1 - X I ,  mole fraction X I  serves as the single independent variable. An equivalent 
power series with certain advantages is known as the RedlicWKister e~pansion:~ 

In application, different truncations of this series are appropriate, and in each case specific 
expressions for In yl and In y2 are generated from Eq. (1 1.92). 

When A = B = C = . . .  = 0, GE/RT = 0, In yl = 0, In y2 = 0, yl = y2 = 1,  and the 
solution is ideal. 

If B = C = . . . = 0, then: 

where A is a constant for a given temperature. Corresponding equations for In yl and In y2 are: 

The symmetrical nature of these relations is evident. Infinite-dilution values of the activity 
coefficients are In ylm = In y200 = A. 

I f C = . . . = O , t h e n :  

\ 

In this case G E / x 1 x 2 R ~  is linear in X I .  This equation is equivalent to the ~ a r g u l e s  equation, 
which is recovered when new parameters are defined by the equations, A + B = A2, and 
A - B = A12. 

Another well-known equation is obtained when the reciprocal expression x I x 2  R T / G ~  
is expressed as a linear function of X I :  

This may also be written: 

x1x2 -- 
GEIRT 

- A'(xl + xz) + B'(x1 - ~ 2 )  = (A' + B1)xl + (A' - Bf)x2 

An equivalent form results if new parameters are defined by the equations, A' + B' = l / A i l  
and A' - B' = 1/Ai2. Then, 

~ 1 x 2  - xi x2 A/12x1 + A121~2 - - - +-= 
G E/RT A;, A{2 A;,A;, 

90. Redlich, A. T. Kister, and C. E. Turnquist, Chem. Eng. Progr: Symp. Ser: No. 2, vol. 48, pp. 49-61, 1952. 
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The activity coefficients implied by this equation are: 

These are known as the van ~ a a r "  equations. When xl = 0, In ylo0 = Ai2; when x2 = 0, 
1n y F  = Abl. 

The RedlichIKister expansion, the Margules equations, and the van Laar equations are 
all special cases of a general treatment based on rational functions, i.e., on equations for 
GE/x1x2RT given by ratios of polynomials.11 They provide great flexibility in the fitting of 
VLE data for binary systems. However, they have scant theoretical foundation, and therefore 
fail to admit a rational basis for extension to multicomponent systems. Moreover, they do not 
incorporate an explicit temperature dependence for the parameters, though this can be supplied 
on an ad hoc basis. 

Local-Composition Models 

Theoretical developments in the molecular thermodynamics of liquid-solution behavior are 
often based on the concept of local composition. Within a liquid solution, local compositions, 
different from the overall mixture composition, are presumed to account for the short-range 
order and nonrandom molecular orientations that result from differences in molecular size and 
intermolecular forces. The concept was introduced by G. M. Wilson in 1964 with the publi- 
cation of a model of solution behavior since known as the Wilson equation.12 The success of 
this equation in the correlation of VLE data prompted the development of alternative local- 
composition models, most notably the NRTL (Non-Random-Two-Liquid) equation of Renon 
and prausnitz13 and the UNIQUAC (UNIversal QUAsi-Chemical) equation of Abrams and 
prausnitz.14 A further significant development, based on the UNIQUAC equation, is the UNI- 
FAC method,I5 in which activity coefficients are calculated from contributions of the various 
groups making up the molecules of a solution. 

'O~ohannes Jacobus van Laar (1860-1938), Dutch physical chemist. 
"H. C. Van Ness and M. M. Abbott, Classical Thermodynamics of Norzelectrolyte Solutions: With Applications to 

Phase Equilibria, Sec. 5-7, McGraw-Hill, New York, 1982. 
1 2 ~ .  M. Wilson, J. Am. Chem. Soc., vol. 86, pp. 127-130, 1964. 
1 3 ~ .  Renon and J. M. Prausnitz, AIChE J., vol. 14, p. 135-144, 1968. 
1 4 ~ .  S. Abrams and J. M. Prausnitz,AIChE J., vol. 21, p. 116-128, 1975. 
"UNIQUAC Functional-group Activity Coefficients; proposed by Aa. Fredenslund, R. L. Jones, and J. M. Prausnitz, 

AIChE J., vol. 21, p. 1086-1099, 1975; given detailed treatment in the monograph: Aa. Fredenslund, J. Gmehling, and 
P. Rasmussen, Vapor-Liquid Equilibrium using UNIFAC, Elsevier, Amsterdam, 1977. 
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The Wilson equation, like the Margules and van Laar equations, contains just two pa- 
rameters for a binary system (Al2 and A21), and is written: 

For infinite dilution, these equations become: 

Iny? = - InA12+1 -Azl  

Note that A12 and Azl must always be positive numbers. 
The NRTL equation, containing three parameters for a binary system, is: 

Here, Gl2 = exp(-atl2) Gzl = e x p ( - a ~ ~ ~ )  

and 

where a ,  b12, and b21, parameters specific to a particular pair of species, are independent of 
composition and temperature. The infinite-dilution values of the activity coefficients are given 
by the equations: 

The UNIQUAC equation and the UNIFAC method are models of greater complexity and 
are treated in App. H. 

The local-composition models have limited flexibility in the fitting of data, but they 
are adequate for most engineering purposes. Moreover, they are implicitly generalizable to 
multicomponent systems without the introduction of any parameters beyond those required to 
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describe the constituent binary systems. For example, the Wilson equation for multicomponent 
systems is: 

where Aij = 1 for i = j ,  etc. All indices refer to the same species, and summations are over 
all species. For each i j  pair there are two parameters, because Aij # Aji.  For a ternary system 
the three i j  pairs are associated with the parameters AI2, A21; A13, A3i; and hZ3,  A3> 

The temperature dependence of the parameters is given by: 

where Vj and V, are the molar volumes at temperature T of pure liquids j and i ,  and ai, is 
a constant independent of composition and temperature. Thus the Wilson equation, like all 
other local-composition models, has built into it an approximate temperature dependence for 
the parameters. Moreover, all parameters are found from data for binary (in contrast to multi- 
component) systems. This makes parameter determination for the local-composition models a 
task of manageable proportions. 

12.3 PROPERTY CHANGES OF MIXING 

Equations (1 1.76) through (1 1.79) are expressions for the properties of ideal solutions. Each 
may be combined with the defining equation for an excess property, Eq. (1 1.82), to yield: 

The first two terms on the right side of each equation express a difference having the form, 
M  - Ci xi Mi. These quantities are proper9 changes of mixing, symbol A M .  By definition, 
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where M is a molar (or unit-mass) solution property and Mi is a molar (or unit-mass) pure- 
species property, all at the same T and P. Now Eqs. (12.25) through (12.28) can be written: 

G~ = A G-  ~ ~ C x ~ 1 n . x ~  
i 

where AG, AS,  A V ,  and AH are the Gibbs energy change of mixing, the entropy change of 
mixing, the volume change of mixing, and the enthalpy change of mixing. For an ideal solution, 
each excess property is zero, and for this special case Eqs. (12.30) through (12.33) become: 

These equations are alternative forms of Eqs. (1 1.76) through (1 1.79). As written here they 
apply to ideal-gas mixtures as well as to ideal solutions. 

Equation (12.29) may be written for an ideal solution: 

Subtracting this equation from Eq. (12.29) gives: 

In combination with Eq. (1 1.82) this becomes: 

Equations (12.30) through (12.33) show that excess properties and property changes of 
mixing are readily calculated one from the other. Although historically property changes of 
mixing were introduced first, because of their direct relation to experiment, excess properties fit 
more readily into the theoretical framework of solution thermodynamics. Because of their direct 
measurability, AV and AH are the property changes of mixing of major interest. Moreover, 
they are identical with the corresponding excess properties. 

An experimental mixing process for a binary system is represented schematically in 
Fig. 12.10. The two pure species, both at T and P, are initially separated by a partition, 
withdrawal of which allows mixing. As mixing occurs, expansion or contraction of the system 
is accompanied by movement of the piston so that the pressure is constant. In addition, heat 
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Partition 

lQl P 

Figure 12.10 Schematic diagram of experimental mixing process 

is added or extracted to maintain a constant temperature. When mixing is complete, the total 
volume change of the system (as measured by piston displacement d ) is: 

Since the process occurs at constant pressure, the total heat transfer Q is equal to the total 
enthalpy change of the system: 

Division of these equations by nl + n2 gives: 

and 
Q AH H - x l H 1  -x2H2=-  

nl + nz 

Thus the volume change of mixing A V and the enthalpy change of mixing AH are found from 
the measured quantities AVt  and Q. Because of its association with Q, AH is usually called 
the heat of mixing. 

Figure 12.11 shows experimental heats of mixing AH (or excess enthalpies H ~ )  for the 
ethanollwater system as a function of composition for several temperatures between 303.15 
to 383.15 K (30 and 110°C). This figure illustrates much of the variety of behavior found 
for H~ = AH and v E  = AV data for binary liquid systems. Such data are also often 
represented by equations similar to those used for GE data, in particular by the RedlichIKister 
expansion. 
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Figure 12.1 1 Excess enthalpies for ethanollwater 
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Excess volumes (volume changes of mixing) for the methanol(l)/water(2) system at 
298.15 K (25°C) can be calculated from the volumetric data of Fig. 11.2. By Eq. (1 1.85), 

V . E  = q - Vjd 

According to Eq. (1 1.74), vjd = V, . Therefore, 

- E  - E  - V, = vl - Vl and V2 = V2 - V2 

Equation (1 1.11) may be written for the excess volume of a binary system: 
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Figure 12.12 Excess volumes: methanol(l)/water(2) at 298.1 5 K (25°C) 

The results are shown in Fig. 12.12. The values on the figure for xl = 0.3 come from Ex. 11.3. 
Thus, 

and V E  = (0.3)(-2.095) + (0.7)(-0.303) = -0.841 cm3 mol-' 

The tangent line drawn at xl = 0.3 illustrates the determination of partial excess volumes by 
the method of tangent intercepts. Whereas the values of V in Fig. 11.2 range from 18.068 to 
40.727 cm3 mol-', the values of v E  = AV go from zero at both xl = 0 and xl = 1 to a value 
of about -1 cm3 mol-' at a mole fraction of about 0.5. The curves showing VIE and VZE are 
nearly symmetrical for the methanollwater system, but this is by no means so for all systems. 

Figure 12.13 illustrates the composition dependence of AG, AH,  and T AS for six 
binary liquid systems at 323.15 K (50°C) and approximately atmospheric pressure. The related 
quantities GE, H ~ ,  and T S ~  are shown for the same systems in Fig. 11.4. As with the excess 
properties, property changes of mixing exhibit diverse behavior, but again all systems have 
certain common features: 

1. Each AM is zero for a pure species. 
2. The Gibbs energy change of mixing AG is always negative. 
3. The entropy change of mixing A S  is positive. 
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Figure 12.13 Property changes of mixing at 323.15 K (50°C) for six binary 
liquid systems: (a) chloroform(1)ln-heptane(2); (b) acetone(l)/methanol(2); (c) 
acetone(l)/chloroform(2); ( d )  ethanol(1)ln-heptane(2); (e) ethanol(l)/chloroform(2); 
(f) ethanol(1 )lwater(2). 

Feature 1 follows from Eq. (12.29). Feature 2 is a consequence of the requirement that the 
Gibbs energy be a minimum for equilibrium states at specified T and P (Sec. 14.3). Feature 3 
reflects the fact that negative entropy changes of mixing are unusual; it is not a consequence of 
the second law of thermodynamics, which merely forbids negative entropy changes of mixing 
for systems isolated from their surroundings. Defined for conditions of constant T and P, AS 
is observed to be negative for certain special classes of mixtures, none of which is represented 
in Fig. 12.13. 

A discussion of the molecular basis of mixture properties is given in Secs. 16.6 and 16.7. 

Example 12.3 
Property changes of mixing and excess properties are related. Show how Figs. 11.4 
and 12.13 are generated from correlated data for A H ( x )  and G E ( x ) .  
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12.4 HEAT EFFECTS OF MIXING PROCESSES 

The heat of mixing, defined in accord with Eq. (12.29), is: 

It gives the enthalpy change when pure species are mixed at constant T and P to form one 
mole (or a unit mass) of solution. Data are most commonly available for binary systems, for 
which Eq. (12.39) solved for H becomes: 

This equation provides for the calculation of the enthalpies of binary mixtures from enthalpy 
data for pure species 1 and 2 and from the heats of mixing. Treatment is here restricted to 
binary systems. 

Data for heats of mixing are usually available for a very limited number of temperatures. 
If the heat capacities of the pure species and of the mixture are known, heats of mixing are 
calculated for other temperatures by a method analogous to the calculation of standard heats 
of reaction at elevated temperatures from the value at 298.15 K (25°C). 

Heats of mixing are similar in many respects to heats of reaction. When a chemical 
reaction occurs, the energy of the products is different from the energy of the reactants at the 
same T and P because of the chemical rearrangement of the constituent atoms. When a mixture 
is formed, a similar energy change occurs because interactions between the force fields of like 
and unlike molecules are different. These energy changes are generally much smaller than 
those associated with chemical bonds; thus heats of mixing are generally much smaller than 
heats of reaction. 

Heats of Solution 

When solids or gases are dissolved in liquids, the heat effect is called a heat of solution, and 
is based on the dissolution of 1 mol ofsolute. If species 1 is the solute, then xl is the moles of 
solute per mole of solution. Since A H  is the heat effect per mole of solution, A H / x l  is the 
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heat effect per mole of solute. Thus, 

- AH 
AH = -- 

x1 

where A-H is the heat of solution on the basis of a mole of solute. 
Solution processes are conveniently represented by physical-change equations analogous 

to chemical-reaction equations. When 1 rnol of LiCl(s) is mixed with 12 mol of H20, the process 
is represented by: 

The designation LiC1(12H20) represents a solution of 1 rnol of LiCl dissolved in 12 rnol of 
H20. The heat of solution for this process at 298.15 K (25°C) and 1 bar is KH = -33 614 J. 
This means that a solution of 1 rnol of LiCl in 12 rnol of H20 has an enthalpy 33 614 J less 
than the combined enthalpies of 1 rnol of pure LiCl(s) and 12 rnol of pure H20(1). Equations 
for physical changes such as this are readily combined with equations for chemical reactions. 
This is illustrated in the following example, which incorporates the dissolution process just 
described. 

Often heats of solution are not reported directly but must be determined from heats of 
formation by the reverse of the calculation just illustrated. Typical are data for the heats of 
formation of 1 rnol of ~ i ~ 1 : ' ~  

16' '~he NBS Tables of Chemical Thermodynamic Properties," J. Phys. Chem. Rej Data, vol. 11, suppl. 2, pp. 2-291 
and 2-292, 1982. 



428 CHAPTER 12. Solution Thermodynamics: Applications 

LiCl in 3 mol HzO -429 366 J 
LiCl in 5 mol H 2 0  -436 805 J 
LiCl in 8 mol H20 -440 529 J 
LiCl in 10 mol H20  -441 579 J 
LiCl in 12 mol H20 -442 224 J 
LiCl in 15 mol H20 -442 835 J 

Heats of solution are readily calculated from these data. Consider the dissolution of 1 rnol 
of LiCl(s) in 5 rnol of H20(1). The reaction representing this process is obtained as follows: 

Li + + 5H20(1) + LiC1(5H20) AH,",, = -436 805 J 

This calculation can be carried out for each quantity of Hz0 fo~which data are given. 
The results are then conveniently represented graphically by a plot of A H ,  the heat of solution 
per mole of solute, vs. Z, the moles of solvent per mole of solute. The composition variable, 
Z - nz/nl, is related to xl: 

1 
Whence, x1 = - 

l + Z  

The following equations therefore relate AH, the heat of mixing based on 1 rnol of solution, 
and A%, the heat of solution based on 1 rnol of solute: 

Figure 12.14 shows plots of A% vs. Z for LiCl(s) and HCl(g) dissolved in water at 298.15 K 
(25°C). Data in this form are readily applied to the solution of practical problems. 

Since water of hydration in solids is an integral part of a chemical compound, the heat 
of formation of a hydrated salt includes the heat of formation of the water of hydration. The 
dissolution of 1 rnol of LiC1.2H20(s) in 8 rnol of H20 produces a solution containing 1 rnol 
LiCL in 10 rnol of H20, represented by LiC1(10H20). The equations which sum to give this 
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process are: 

Li + ;c12 + 10H20(1) + LiC1(10H20) AH;", = -441 579 J 

LiC1.2H20(s) -+ Li + ;c12 + 2H2 + 0 2  AH& = 1012 650 J 
2H2 + 0 2  + 2H20(1) AH&, = (2)(-285 830) J 
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EnthalpyIConcentration Diagrams 

The enthalpy/concentration ( H x )  diagram is a convenient method for representing enthalpy 
data for binary solutions. These diagrams are graphs of the enthalpy plotted as a function of 
composition (mole fraction or mass fraction of one species) with temperature as parameter. 
The pressure is a constant and is usually 1 atmosphere. Figure 12.17 shows a partial diagram 
for the H2S04/H20 system. 

Enthalpy values are given for a mole or a unit mass of solution, and Eq. (12.40) is directly 
applicable: 

H  = x l H 1  + x2H2 + A H  (12.40) 

Values of H  for the solution depend not only on heats of mixing, but also on enthalpies HI and 
Hz of the pure species. Once these are known for a given T and P, H  is fixed for all solutions at 
the same T and P,  because A H  has a unique and measurable value for each composition. Since 
absolute enthalpies are unknown, arbitrary zero points are chosen for the enthalpies of the pure 
species. Thus, the basis of an enthalpylconcentration diagram is HI = 0 for some specified 
state of species 1 and Hz = 0 for some specified state of species 2. The same temperature need 
not be selected for these states for both species. In the case of the H2S04/H20 diagram shown 
in Fig. 12.17, HI = 0 for pure liquid H20 at the triple point [=273.16 K (O.Ol°C)], and Hz = 0 
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Figure 12.17 Hx diagram for H2S04/H20 (Redrawn from data of Technical Note 
270-3, National Bureau of Standards, USA, 1968; T. R. Bump and W. L. Sibbitt, Ind. 
Eng. Chem., vol. 47, pp.1665-1670, 1955; and C. M. Gable, H. F. Betz and S. H. Maron, 
J. of Am. Chem. Soc., vol. 72, pp. 1445-1448, 1950. By permissions.) 
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0 1 

1 x,, mole or mass fraction of 

Pure 2 species 1 in solution t 
Pure 1 

1 I 

Figure 12.18 Graphical constructions on an Hx diagram 

for pure liquid H2S04 at 298.15 K (25°C). In this case the 273.15 K (PC)  isotherm terminates 
at H = 0 at the end of the diagram representing pure liquid H20, and the 298.15 K (25°C) 
isotherm terminates at H = 0 at the other end of the diagram representing pure liquid H2S04. 

The advantage of taking H = 0 for pure liquid water at its triple point is that this is the 
base of the steam tables. Enthalpy values from the steam tables can then be used in conjunction 
with values taken from fhe enthalpylconcentration diagram. Were some other base used for the 
diagram, one would have to apply a correction to the steam-table values to put them on the 
same basis as the diagram. 

For an ideal solution, isotherms on an enthalpylconcentration diagram are straight lines 
connecting the enthalpy of pure species 2 at xl = 0 with the enthalpy of pure species 1 at 

= 1, as illustrated for a single isotherm in Fig. 12.18 by the dashed line. The solid curve 
represents an isotherm for a real solution. Also shown is a tangent line from which partial 
enthalpies may be determined in accord with Eqs. (1 1.15) and (1 1.16). Equations (1 1.79) and 
(12.40) combine to give AH = H - H"; AH is therefore the vertical distance between the 
curve and the dashed line of Fig. 12.18. Here, the actual isotherm lies below the ideal-solution 
isotherm, and AH is everywhere negative. This means that heat is evolved whenever the pure 
species at the given temperature are mixed to form a solution at the same temperature. Such a 
system is exothermic. The H2S04/H20 system is an example. An endothermic system is one 
for which the heats of solution are positive; in this case heat is absorbed to keep the temperature 
constant. An example is the methanolhenzene system. 

One feature of an enthalpylconcentration diagram which makes it particularly useful is 
the ease with which problems involving adiabatic mixing may be solved. The reason is that 
all solutions formed by adiabatic mixing of two solutions are represented by points lying on a 
straight line connecting the points that represent the initial solutions. This is shown as follows. 
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Let the superscripts a and b denote two initial binary solutions, consisting of nu and nb 

moles respectively. Let superscript c denote the final solution obtained by simple mixing of 
solutions a and b in an adiabatic process. This process may be batch mixing at constant pressure 
or a steady-flow process involving no shaft work or change in potential or kinetic energy. In 
either case, 

and for the overall change in state: 

In addition, the material balance for species 1 is: 

These two equations may be rearranged as: 

Division of the first equation by the second gives: 

Our purpose now is to show that the three points c, a ,  and b represented by ( H C,  x ; ) ,  
( H a ,  x f ) ,  and ( H ~ ,  x f )  lie along a straight line on an H x  diagram. The equation for a straight 
line in these coordinates is: 

If this line passes through points a and b, 

H a  = m x : + k  and H~ = m x f  + k  

Each of these equations may be subtracted from the general equation, Eq. (B): 

Dividing the first of these by the second yields: 

Any point with the coordinates ( H ,  x l )  which satisfies the last equation lies on the straight line 
that contains points a and b. Equation ( A )  shows that ( H C,  x i )  is such a point. 

The use of enthalpylconcentration diagrams is illustrated in the following examples for 
the NaOH/H20 system; an H x  diagram is shown in Fig. 12.19. 
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1 7 ~ .  W. Chase, Jr., et al., "JANAF Thermochemical Tables," 3d ed., J. Phys. Chem. Ref: Data, vol. 14, suppl. 1, 
p. 1243, 1985. 
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PROBLEMS 

12.1. The following is a set of VLE data for the system methanol(l)/water(2) at 333.15 K 
(60°C) (extracted from K. Kurihara et al., J. Chem. Eng. Data, vol. 40, pp. 679-684, 
1995): 

PlkPa xl Y1 PlkPa xl YI  

(a) Basing calculations on Eq. (12. I), find parameter values for the Margules equation 
that provide the best fit of G ~ / R T  to the data, and prepare a Pxy diagram that 
compares the experimental points with curves determined from the correlation. 

(b) Repeat (a) for the van Laar equation. 
(c) Repeat (a) for the Wilson equation. 
(d) Using Barker's method, find parameter values for the Margules equation that provide 

the best fit of the P-xl data. Prepare a diagram showing the residuals 6P  and 6yl 
plotted vs. X I .  

(e) Repeat (d) for the van Laar equation. 
Cf) Repeat (d) for the Wilson equation. 

12.2. If Eq. (12.1) is valid for isothermal VLE in a binary system, show that: 

12.3. The following is a set of VLE data for the system acetone(l)/methanol(2) at 328.15 K 
(55°C) (extracted from D. C. Freshwater and K. A. Pike, J. Chem. Eng. Data, vol. 12, 
pp. 179-183,1967): 

PlkPa xl Y1 PlkPa xl Y1 
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(a) Basing calculations on Eq. (12.1), find parameter values for the Margules equation 
that provide the best fit of GE / R T to the data, and prepare a P-x-y diagram that 
compares the experimental points with curves determined from the correlation. 

(b) Repeat (a) for the van Laar equation. 
(c)  Repeat (a) for the Wilson equation. 
(d) Using Barker's method, find parameter values for the Margules equation that provide 

the best fit of the P-xl data. Prepare a diagram showing the residuals 6 P and 6yl 
plotted vs. x 1. 

(e) Repeat (d) for the van Laar equation. 
( f )  Repeat (d) for the Wilson equation. 

12.4. The excess Gibbs energy for binary systems consisting of liquids not too dissimilar in 
chemical nature is represented to a reasonable approximation by the equation: 

where A is a function of temperature only. For such systems, it is often observed that 
the ratio of the vapor pressures of the pure species is nearly constant over a considerable 
temperature range. Let this ratio be v ,  and determine the range of values of A, expressed 
as a function of r ,  for which no azeotrope can exist. Assume the vapor phase to be an 
ideal gas. 

12.5. For the ethanol(l)/chloroform(2) system at 323.15 K (50°C), the activity coefficients 
show interior extrema with respect to composition [see Fig. 12.9(e)]. 

(a) Prove that the van Laar equation cannot represent such behavior. 
(b) The two-parameter Margules equation can represent this behavior, but only for 

particular ranges of the ratio A21/A12 What are they? 

12.6. VLE data for methyl tert-butyl ether(l)/dichloromethane(2) at 308.15 K (35°C) (ex- 
tracted from F. A. Mato, C. Berro, and A. Ptneloux, J. Chem. Eng. Data, vol. 36, 
pp. 259-262, 1991) are as follows: 

The data are well correlated by the three-parameter Margules equation [an extension of 
Eq. (12.9)]: 
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Implied by this equation are the expressions: 

(a )  Basing calculations on Eq. (12.1), find the values of parameters A12, A 2 ] ,  and C 
that provide the best fit of G E / R T  to the data. 

(b )  Prepare a plot of In yl, In fi, and G E / x I x 2 R T  VS. X I  showing both the correlation 
and experimental values. 

(c )  Prepare a P-x-y diagram [see Fig. 12.7(a)] that compares the experimental data 
with the correlation determined in (a).  

(d) Prepare a consistency-test diagram like Fig. 12.8. 

( e )  Using Barker's method, find the values of parameters A12, A21, and C that provide 
the best fit of the P-xl data. Prepare a diagram showing the residuals 6 P and 6yl 
plotted vs. X I .  

12.7. Equations analogous to Eqs. ( 1  1.15) and ( 1  1.16) apply for excess properties. Since In yi 
is a partial property with respect to G / R T ,  these analogous equations can be written 
for In yl and In f i  in a binary system. 

(a) Write these equations, and apply them to Eq. (12.16) to show that Eqs. (12.17) are 
indeed obtained. 

(6) The alternative procedure is to apply Eq. ( 1  1.92). Proceeding in the manner that led 
to Eqs. (12.10), show that Eqs. (12.17) are again reproduced. 

12.8. The following is a set of activity-coefficient data for a binary liquid system as determined 
from VLE data: 

Inspection of these experimental values suggests that they are noisy, but the question is 
whether they are consistent, and therefore possibly on average correct. 

(a )  Find experimental values for G ~ / R T  and plot them along with the experimental 
values of In yl and In y2 on a single graph. 

(b )  Develop a valid correlation for the composition dependence of G E / R T  and show 
lines on the graph of part (a )  that represent this correlation for all three of the 
quantities plotted there. 
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(c)  Apply the consistency test described in Ex. 12.1 to these data, and draw a conclusion 
with respect to this test. 

12.9. Following are VLE data for the system acetonitrile(l)/benzene(2) at 318.15 K (45°C) 
(extracted from I. Brown and F. Smith, Austral. J. Chem., vol. 8, p. 62, 1955): 

PlkPa 

36.978 
36.778 
35.792 
34.372 
32.331 
30.038 
27.778 

The data are well correlated by the three-parameter Margules equation (see Pb. 12.6). 

(a) Basing calculations on Eq. (12.1), find the values of parameters A12, A21, and C 
that provide the best fit of G 1 R T to the data. 

(b) Prepare a plot of In yl, In y2, and GE/x1x2RT VS. X I  showing both the correlation 
and experimental values. 

(c) Prepare a P-x-y diagram [see Fig. 12.7(a)] that compares the experimental data 
with the correlation determined in (a). 

(d) Prepare a consistency-test diagram like Fig. 12.8. 

( e )  Using Barker's method, find the values of parameters A12, A21, and C that provide 
the best fit of the P-xl data. Prepare a diagram showing the residuals 6 P and 6yl 
plotted vs. xl . 

12.10. An unusual type of low-pressure VLE behavior is that of double azeotropy, in which 
the dew and bubble curves are S-shaped, thus yielding at different compositions both 
a minimum-pressure and a maximum-pressure azeotrope. Assuming that Eq. (12.1 1) 
applies, determine under what circumstances double azeotropy is likely to occur. 

12.11. Rationalize the following rule of thumb, appropriate for an equimolar binary liquid 
mixture: 

GE 1 
-- (equimolar) - ln( ylm yzW) RT 8 

Problems 12.12 through 12.23 require parameter values for the Wilson or NRTL equation for 
liquid-phase activity coefficients. The following table gives parameter values for both equations. 
Parameters al2, a21, ,512, and b21 have units of kJ krnol-' , and Vl and V2 have units of m3 k m o l l .  
Values are those recommended by Gmehling et al. Vapor-Liquid Equilibrium Data Collection, 
Chemistry Data Series, vol. I, parts la, lb, 2c and 2e, DECHEMA, FrankfurtMain, 198 1-1988. 
Antoine equations for vapor pressure are given in Table 10.2, p. 346. 
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Vl x lo3 Wilson equation NRTL equation 
System V2 x lo3 a12 a21 b12 b21 a 

Acetone(1) 
Water(2) 
Methanol(1) 
Water(2) 
1 -Propanol(l) 
Water(2) 
Water(1) 
1,4-Dioxane 
Methanol(1) 
Acetonitrile(2) 
Acetone(1) 
Methanol(2) 
Methyl acetate(1) 
Methanol(2) 
Methanol(1) 
Benzene(2) 
766 Ethanol(1) 
Toluene(2) 

12.12. For one of the binary systems listed in the preceding table, based on Eq. (10.5) and the 
Wilson equation prepare a P-x-y diagram for T = 333.15 K (60°C). 

12.13. For one of the binary systems listed in the preceding table, based on Eq. (10.5) and the 
Wilson equation prepare a t-x-y diagram for P = 101.33 kPa. 

12.14. For one of the binary systems listed in the preceding table, based on Eq. (10.5) and the 
NRTL equation prepare a P-x-y diagram for T = 333.15 K (60°C). 

12.15. For one of the binary systems listed in the preceding table, based on Eq. (10.5) and the 
NRTL equation prepare a t-x-y diagram for P = 101.33 kPa. 

12.16. For one of the binary systems listed in the preceding table, based on Eq. (10.5) and the 
Wilson equation make the following calculations: 

(a) BUBL P: T = 333.15 K (60°C), xl = 0.3. 
(b) DEW P: T = 333.15 K (60°C), yl = 0.3. 
(c) P ,  T-flash: T = 333.15 K (60°C), P = ;(pbubble + Pdew), z1 = 0.3. 
(d) If an azeotrope exists at T = 333.15 K (60°C), find Pa' and x? = y;LZ. 

12.17. Work the preceding problem for the NRTL equation. 

12.18. For one of the binary systems listed in the preceding table, based on Eq. (10.5) and the 
Wilson equation make the following calculations: 
(a) BUBL T: P = 101.33 kPa, xl = 0.3. 
(b) DEW T: P = 101.33 kPa, yl = 0.3. 
(c)  P ,  T-flash: P = 101.33 kPa, T = i(~bubble + Tdew), Z I  = 0.3. 
(d) If an azeotrope exists at P = 101.33 kPa, find TaZ and x? = y?. 
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12.19. Work the preceding problem for the NRTL equation. 

12.20. For the acetone(l)/methanol(2)/water(3) system, based on Eq. (10.5) and the Wilson 
equation make the following calculations: 

(a) BUBL P: T = 338.15 K (65"C), X I  = 0.3, x2 = 0.4. 

(b) DEW P: T = 338.15 K (65"C), yl = 0.3, y2 = 0.4. 

(c) P ,  T-flash: T = 338.15 K (65"C), P = ;(pbubble + Pdew), z1 = 0.3, z2 = 0.4. 

12.21. Work the preceding problem for the NRTL equation. 

12.22. For the acetone(l)/methanol(2)/water(3) system, based on Eq. (10.5) and the Wilson 
equation make the following calculations: 

(a) BUBL T: P = 101.33 kPa, xl = 0.3, xz = 0.4. 

(b) DEW T: P = 101.33 kPa, yl = 0.3, y2 = 0.4. 
(c) P, T-flash: P = 101.33 kPa, T = + Tdew), Z I  = 0.3,z2 = 0.2. 

12.23. Work the preceding problem for the NRTL equation. 

12.24. The following expressions have been reported for the activity coefficients of species 1 
and 2 in a binary liquid mixture at given T and P :  

( a )  Determine the implied expression for G 1 R T. 

(b) Generate expressions for In yl and In y2 from the result of (a). 

(c) Compare the results of (b) with the reported expressions for In yl and In M. Discuss 
any discrepancy. Can the reported expressions possibly be correct? 

12.25. Possible correlating equations for In yl in a binary liquid system are given following. For 
one of these cases determine by integration of the Gibbsmuhem equation [Eq. (1 1.96)] 
the corresponding equation for In yz. What is the corresponding equation for G ~ / R T ?  
Note that by its definition, yi = 1 for xi = 1. 

(a) In yl = AX;; (b) 1n yl = X ~ ( A  + Bxz); (c) In yl = X ~ ( A  + Bx2 + C X ~ ) .  

12.26. At 298.15 K (25°C) and atmospheric pressure the volume change of mixing of binary 
liquid mixtures of species 1 and 2 is given by the equation: 

where AV is in cm3 mol-'. At these conditions, VI = 110 and V2 = 90 cm3 mol-'. 
Determine the partial molar volumes Vl and V2 in a mixture containing 40 mol-% of 
species 1 at the given conditions. 

12.27. The volume change of mixing (em3 mol-') for the system ethanol(1)lmethyl butyl 
ether(2) at 298.15 K (25°C) is given by the equation: 

Given that Vl = 58.63 and V2 = 118.46 cm3 mol-l, what volume of mixture is formed 
when 750 cm3 of pure species 1 is mixed with 1500 cm3 of species 2 at 298.15 K (25"C)? 
What would be the volume if an ideal solution were formed? 
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12.28. If LiC1.2H20(s) and H20(1) are mixed isothermally at 298.15 K (25°C) to form a 
solution containing 10 mol of water for each mole of LiC1, what is the heat effect per 
mole of solution? 

12.29. If a liquid solution of HC1 in water, containing 1 mol of HC1 and 4.5 mol of H20, 
absorbs an additional 1 mol of HCl(g) at the constant temperature of 298.15 K (25"C), 
what is the heat effect? 

12.30. What is the heat effect when 20 kg of LiCl(s) is added to 125 kg of an aqueous solution 
containing 10-wt-% LiCl in an isothermal process at 298.15 K (25"C)? 

12.31. An LiClIfiO solution at 298.15 K (25°C) is made by adiabatically mixing cool water 
at 283.15 K (10°C) with a 20-mol-% LiC1/H20 solution at 298.15 K (25°C). What is 
the composition of the solution formed? 

12.32. A 20-mol-% LiCl/H20 solution at 298.15 K (25°C) is made by mixing a 25-mol-% 
LiCI/H20 solution at 298.15 K (25°C) with chilled water at 278.15 K (5°C). What is 
the heat effect in J mol-' of final solution? 

12.33. A 20-mol-% LiC1M20 solution is made by six different mixing processes: 

(a) Mix LiCl(s) with HzO(l). 
(b) Mix H20(l)with a 25-mol-% LiCVHzO solution. 

(c) Mix LiC1.H20(s) with H20(1). 
(d) Mix LiCl(s) with a 10-mol-% LiC1/H20 solution. 

( e )  Mix a 25-mol-% LiCl/H20 solution with a 10-mol-% LiCVH20 solution. 

(f) Mix LiC1.H20(s) with a 10-mol-% LiC1/H20 solution. 

Mixing in all cases is isothermal, at 298.15 K (25°C). For each part determine the heat 
effect in J mol-'of final solution. 

12.34. A mass of 12 kg s-' of C U ( N O ~ ) ~ . ~ H ~ O  along with 15 kg s-' of water, both at 298.15 
K (25"C), are fed to a tank where mixing takes place. The resulting solution passes 
through a heat exchanger which adjusts its temperature to 298.15 K (25°C). What is the 
rate of heat transfer in the exchanger? 

For Cu(N03)2, AH&*= -302.9 kJ. 
For C U ( N O ~ ) ~ . ~ H ~ O ,  A H;298= -21 10.8 W. 
The heat of solution of 1 mol of Cu(N03)2 in water at 298.15 K (25°C) is -47.84 
kJ, independent of ii for values of interest here. 

12.35. A liquid solution of LiCl in water at 298.15 K (25°C) contains 1 mol of LiCl and 7 mol 
of water. If 1 mol of LiCl.3H20(s) is dissolved isothermally in this solution, what is the 
heat effect? 

12.36. It is required to produce an aqueous LiCl solution by mixing LiC1.2H20(s) with water. 
The mixing occurs both adiabatically and without change in temperature at 298.15 K 
(25°C). Determine the mole fraction of LiCl in the final solution. 

12.37. Data from the Bureau of Standards (J. Phys. Chem. Re$ Data, vol. 11, suppl. 2, 1982) 
include the following heats of formation for 1 mol of CaC12 in water at 298.15 K (25°C): 
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CaC12 in 10 rnol H20 
CaC12 in 15 rnol Hz0  
CaC12 in 20 rnol Hz0  
CaC12 in 25 rnol H 2 0  
CaC12 in 50 rnol H 2 0  
CaC12 in 100 rnol H 2 0  
CaC12 in 300 rnol H 2 0  
CaC12 in 500 rnol H 2 0  
CaC12 in 1,000 rnol H20 

From these data prepare a plot of A-H, the heat of solution at 298.15 K (25°C) of CaC12 
in water, vs. ii, the mole ratio of water to CaC12. 

12.38. Aliquid solution contains 1 rnol of CaC12 and 25 rnol of water. Using data from Pb. 12.37, 
determine the heat effect when an additional 1 rnol of CaC12 is dissolved isothermally 
in this solution. 

12.39. Solid CaC12.6H20 and liquid water at 298.15 K (25°C) are mixed adiabatically in a 
continuous process to form a brine of 15-mass-% CaC12. Using data from Pb. 12.37, 
determine the temperature of the brine solution formed. The specific heat of a 15 mass-% 
aqueous CaC12 solution at 298.15 K (25°C) is 3.28 kJ kg-' OK-'. 

12.40. Consider a plot of TH, the heat of solution based on 1 rnol of solute (species I), vs. li,, 
the moles of solvent per mole of solute, at constant T and P. Figure 12.14 is an example 
of such a plot, except that the plot considered here has a linear rather than logarithmic 
scale along the abscissa. Let a tangent drawn to the A% vs. li, curve intercept the ordinate 
at point I. 

(a) Prove that the slope of the tangent at a particular point is equal to the partial excess 
enthalpy of the solvent in a solution with the composition represented by ii; i.e., 
prove that: 

dA% 
- = H; 

d i  

(b) Prove that the intercept I equals the partial excess enthalpy of the solute in the same 
solution; i.e., prove that: 

12.41. Suppose that A H  for a particular solute(l)/solvent(2) system is represented by the 
equation: 

Relate the behavior of a plot of A-H vs. li, to the features of this equation. Specifically, 
rewrite Eq. (A) in the form A%(;), and then show that: 

(a) lim A% = 0. 
i-2-0 - 

(6) Jim A H  = AI2 
n - t m  

c)  lim dAWH/dii = Azl 
( n+o 
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12.42. If the heat of mixing at temperature To is AHo and if the heat of mixing of the same 
solution at temperature T is A H ,  show that the two heats of mixing are related by: 

where ACp is the heat-capacity change of mixing, defined by Eq. (12.29). 

12.43. What is the heat effect when 68 kg of H2S04 is mixed with 159 kg of an aqueous 
solution containing 25 mass-% H2S04 in an isothermal process at 31 1.15 K (3S°C)? 

12.44. For a 50 mass-% aqueous solution of H2S04 at 333.15 K (60"C), what is the excess 
enthalpy ffE in kJ kg-'? 

12.45. A mass of 180 kg of 35 mass-% aqueous NaOH solution at 327.15 K (54°C) is mixed 
with 79 kg of 10 mass-% solution at 366.15 K (93°C). 
(a) What is the heat effect if the final temperature is 300.15 K (27"C)? 
(b) If the mixing is adiabatic, what is the final temperature? 

12.46. A single-effect evaporator concentrates a 20 mass-% aqueous solution of H2S04 to 70%. 
The feed rate is 11.3 kg s-', and the feed temperature is 300.15 K (27°C). The evaporator 
is maintained at an absolute pressure of 0.1 bar, at which pressure the boiling point of 
70-% H2S04 is 375.15 K (103°C). What is the heat-transfer rate in the evaporator? 

12.47. What temperature results when sufficient NaOH(s) at 293.15 K (20°C) is dissolved 
adiabatically in a 10 mass-% aqueous NaOH solution, originally at 300.15 K (27"C), to 
bring the concentration up to 35%? 

12.48. What is the heat effect when sufficient S03(1) at 298.15 K (25°C) is reacted with H20 
at 298.15 K (25°C) to give a 50 mass-% H2SO4 solution at 333.15 K (60"C)? 

12.49. A mass of 63.5 kg of 15 mass-% solution of H2SO4 in water at 344.15 K (71 "C) is mixed 
at atmospheric pressure with 104.3 kg of 80 mass-% H2S04 at 3 11.5 K (38°C). During 
the process heat in the amount of 21 000 kJ is transferred from the system. Determine 
the temperature of the product solution. 

12.50. An insulated tank, open to the atmosphere, contains 680 kg of 40 mass-% sulfuric acid 
at 293.15 K (20°C). It is heated to 355.15 K (82°C) by injection of live saturated steam 
at 1 atm, which fully condenses in the process. How much steam is required, and what 
is the final concentration of H2S04 in the tank? 

12.51. Saturated steam at 2.75 bar is throttled to 1 atm and mixed adiabatically with (and 
condensed by) 45 mass-% sulfuric acid at 300.15 K (27°C) in a flow process that raises 
the temperature of the acid to 344.15 K (71°C). How much steam is required for each 
kilogram mass of entering acid, and what is the concentration of the hot acid? 

12.52. A batch of 40 mass-% NaOH solution in water at atmospheric pressure and 300.15 K 
(27°C) is heated in an insulated tank by injection of live steam drawn through a valve 
from a line containing saturated steam at 2.4 bar. The process is stopped when the NaOH 
solution reaches a concentration of 38 mass-%. At what temperature does this occur? 

12.53. For a 35 mass-% aqueous solution of &So4 at 311.15 K (3g°C), what is the heat of 
mixing A H  in kJ kg-' ? 



Problems 449 

12.54. If pure liquid H2SO4 at 300.15 K (27°C) is added adiabatically to pure liquid water 
at 300.15 K (27°C) to form a 40 mass-% solution, what is the final temperature of the 
solution? 

12.55. A liquid solution containing 0.9 kmol H2S04 and 6.8 kmol H20 at 311.15 K (38°C) 
absorbs 0.45 kmol of S03(g), also at 311.15 K (3S°C), forming a more concentrated 
sulfuric acid solution. If the process occurs isothermally, determine the heat transferred. 

12.56. Determine the heat of mixing A H  of sulfuric acid in water and the partial specific 
enthalpies of H2S04 and H20 for a solution containing 65 mass-% H2SO4 at 298.15 K 
(25°C). 

12.57. It is proposed to cool a stream of 75 mass-% sulfuric acid solution at 333.15 K (60°C) 
by diluting it with chilled water at 277.15 K (4°C). Determine the amount of water that 
must be added to 0.45 kg of 7 5 %  acid before cooling below 333.15 (60°C) actually 
occurs. 

12.58. The following liquids, all at atmospheric pressure and 322.15 K (49"C), are mixed: 
11.3 kg of pure water, 40 kg of pure sulfuric acid, and 34 kg of 25 mass-% sulfuric acid. 

(a) How much heat is liberated if mixing is isothermal at 322.15 K (49"C)? 
(b) The mixing process is carried out in two steps: First, the pure sulfuric acid and the 

25 mass-% solution are mixed, and the total heat of part (a) is extracted; second, 
the pure water is added adiabatically. What is the temperature of the intermediate 
solution formed in the first step? 

12.59. A large quantity of very dilute aqueous NaOH solution is neutralized by addition of the 
stoichiometric amount of a 10-mol-% aqueous HC1 solution. Estimate the heat effect 
per mole of NaOH neutralized if the tank is maintained at 298.15 K (25°C) and 1 atm 
and the neutralization reaction goes to completion. Data: 

For NaC1, lim A% = 3.88 kJ mol-' 
n+oo 

For NaOH, lim A% = -44.50 kJ mol-' 
ii+m 

12.60. A large quantity of very dilute aqueous HC1 solution is neutralized by addition of the 
stoichiometric amount of a 10-mol-% aqueous NaOH solution. Estimate the heat effect 
per mole of HCl neutralized if the tank is maintained at 298.15 K (25°C) and 1 atm and 
the neutralization reaction goes to completion. . For NaC1, lim A% = 3.88 kJ mol-' 

i i i o o  



Chapter 13 

Chemical-Reaction Equilibria 

The transformation of raw materials into products of greater value by means of chemical 
reaction is a major industry, and a vast array of commercial products is obtained by chemical 
synthesis. Sulfuric acid, ammonia, ethylene, propylene, phosphoric acid, chlorine, nitric acid, 
urea, benzene, methanol, ethanol, and ethylene glycol are examples of chemicals produced in 
the United States in billions of kilograms each year. These in turn are used in the large-scale 
manufacture of fibers, paints, detergents, plastics, rubber, paper, fertilizers, insecticides, etc. 
Clearly, the chemical engineer must be familiar with chemical-reactor design and operation. 

Both the rate and the equilibrium conversion of a chemical reaction depend on the tem- 
perature, pressure, and composition of reactants. Consider, for example, the oxidation of sulfur 
dioxide to sulfur trioxide. A catalyst is required if a reasonable reaction rate is to be attained. 
With a vanadium pentoxide catalyst the rate becomes appreciable at about 573.15 K (300°C) 
and continues to increase at higher temperatures. On the basis of rate alone, one would operate 
the reactor at the highest practical temperature. However, the equilibrium conversion to sulfur 
trioxide falls as temperature rises, decreasing from about 90% at 793.15 K (520°C) to 50% 
at about 953.15 K (680°C). These values represent maximum possible conversions regardless 
of catalyst or reaction rate. The evident conclusion is that both equilibrium and rate must 
be considered in the exploitation of chemical reactions for commercial purposes. Although 
reaction rates are not susceptible to thermodynamic treatment, equilibrium conversions are. 
Therefore, the purpose of this chapter is to determine the effect of temperature, pressure, and 
initial composition on the equilibrium conversions of chemical reactions. 

Many industrial reactions are not carried to equilibrium; reactor design is then based pri- 
marily on reaction rate. However, the choice of operating conditions may still be influenced by 
equilibrium considerations. Moreover, the equilibrium conversion of a reaction provides a goal 
by which to measure improvements in a process. Similarly, it may determine whether or not an 
experimental investigation of a new process is worthwhile. For example, if thermodynamic anal- 
ysis indicates that a yield of only 20% is possible at equilibrium and if a 50% yield is necessary 
for the process to be economically attractive, there is no purpose to an experimental study. On the 
other hand, if the equilibrium yield is 80%, an experimental program to determine the reaction 
rate for various conditions of operation (catalyst, temperature, pressure, etc.) may be warranted. 

Reaction stoichiometry is treated in Sec. 13.1, and reaction equilibrium, in Sec. 13.2. The 
equilibrium constant is introduced in Sec. 13.3, and its temperature dependence and evaluation 
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are considered in Secs. 13.4 and 13.5. The connection between the equilibrium constant and 
composition is developed in Sec. 13.6. The calculation of equilibrium conversions for single 
reactions is taken up in Sec. 13.7. In Sec. 13.8, the phase rule is reconsidered; multireaction 
equilibrium is treated in Sec. 13.9;' finally, in Sec. 13.10 the fuel cell is given an introductory 
treatment. 

13.1 THE REACTION COORDINATE 

The general chemical reaction of Sec. 4.6 is rewritten: 

where I vi I is a stoichiometric coefficient and Ai stands for a chemical formula. The vi themselves 
are called stoichiometric numbers, and by the sign convention of Sec. 4.6 they are: 

positive (+)for products and negative (-)for reactants 

Thus for the reaction, 

the stoichiometric numbers are: 

The stoichiometric number for an inert species is zero. 
For the reaction represented by Eq. (13.1), the changes in the numbers of moles of the 

species present are in direct proportion to the stoichiometric numbers. Thus for the preceding 
reaction, if 0.5 mol of CH4 disappears by reaction, 0.5 mol of H 2 0  must also disappear; 
simultaneously 0.5 mol of CO and 1.5 mol of H2 are formed. Applied to a differential amount 
of reaction, this principle provides the equations: 

dn2 - dn1 
- - dn3 dnl  

- - etc. 
Y v1 v3 v1 

The list continues to include all species. Comparison of these equations yields: 

All terms being equal, they can be identified collectively by a single quantity representing an 
amount of reaction. Thus a definition of d~ is given by the equation: 

The general relation between a differential change dni in the number of moles of a reacting 
species and d~ is therefore: 

'For a comprehensive treatment of chemical-reaction equilibria, see W. R. Smith and R. W. Missen, Chemical 
Reaction Equilibrium Analysis, John Wiley & Sons, New York, 1982. 
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This new variable r ,  called the reaction coordinate, characterizes the extent or degree 
to which a reaction has taken place.2 Equations (13.2) and (13.3) define changes in E with 
respect to changes in the numbers of moles of the reacting species. The definition of r itself 
is completed for each application by setting it equal to zevo for the initial state of the system 
prior to reaction. Thus, integration of Eq. (13.3) from an initial unreacted state where E = 0 
and ni = ni, to a state reached after an arbitrary amount of reaction gives: 

Summation over all species yields: 

where n =  C n i  no -- C fq0 v =  c v i  
1 1 1 

Thus the mole fractions yi of the species present are related to r by: 

Application of this equation is illustrated in the following examples. 

2 ~ h e  reaction coordinate 6 has been given various other names, such as: degree of advancement, degree of reaction, 
extent of reaction, and progress variable. 
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The ui are pure numbers without units; Eq. (13.3) therefore requires E to be expressed 
in moles. This leads to the concept of a mole of reaction, meaning a change in E of one mole. 
When A s  = 1 mol, the reaction proceeds to such an extent that the change in mole number of 
each reactant and product is equal to its stoichiometric number. 
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Multireaction Stoichiometry 

When two or more independent reactions proceed simultaneously, subscript j serves as the 
reaction index. A separate reaction coordinate ~j then applies to each reaction. The stoichio- 
metric numbers are doubly subscripted to identify their association with both a species and a 
reaction. Thus vi,j designates the stoichiometric number of species i in reaction j .  Since the 
number of moles of a species ni may change because of several reactions, the general equation 
analogous to Eq. (13.3) includes a sum: 

d n i = x v i , j d ~ j  ( i = l , 2  , . . . ,  N )  
.i 

Integration from ni = nio and ~j = 0 to arbitrary ni and c j  gives: 

n i = n i 0 + x v i , j s j  ( i = 1 , 2  , . . .  , N )  
j 

Summing over all species yields: 

The definition of a total stoichiometric number v  (E Ci vi)  for a single reaction has its 
counterpart here in the definition: 

Then, 

j 

Combination of this equation with Eq. (13.6) gives the mole fraction: 
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13.2 APPLICATION OF EQUILIBRIUM CRITERIA TO 
CHEMICAL REACTIONS 

In Sec. 14.3 it is shown that the total Gibbs energy of a closed system at constant T and P must 
decrease during an irreversible process and that the condition for equilibrium is reached when 
Gt attains its minimum value. At this equilibrium state, 

(dGf )T ,P  = 0 (14.64) 
Thus if a mixture of chemical species is not in chemical equilibrium, any reaction that occurs 
at constant T and P must lead to a decrease in the total Gibbs energy of the system. The 
significance of this for a single chemical reaction is seen in Fig. 13.1, which shows a schematic 
diagram of G' vs. E ,  the reaction coordinate. Since E is the single variable that characterizes the 
progress of the reaction, and therefore the composition of the system, the total Gibbs energy 
at constant T and P is determined by E .  The arrows along the curve in Fig. 13.1 indicate the 
directions of changes in ( G t ) ~ , p  that are possible on account of reaction. The reaction coordinate 
has its equilibrium value E, at the minimum of the curve. The meaning of Eq. (14.64) is that 
differential displacements of the chemical reaction can occur at the equilibrium state without 
causing changes in the total Gibbs energy of the system. 

Figure 13.1 indicates the two distinctive features of the equilibrium state for given tem- 
perature and pressure: 

The total Gibbs energy G 5 s  a minimum. Its differential is zero. 

Each of these may serve as a criterion of equilibrium. Thus, we may write an expression for 
G h s  a function of E and seek the value of E which minimizes Gt , or we may differentiate the 
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Figure 13.1 The total Gibbs energy in relation to the reaction coordinate 

expression, equate it to zero, and solve for E .  The latter procedure is almost always used for 
single reactions (Fig. 13. I) ,  and leads to the method of equilibrium constants, as described in 
the following sections. It may also be extended to multiple reactions, but in this case the direct 
minimization of G' is often more convenient, and is considered in Sec. 13.9. 

Although the equilibrium expressions are developed for closed systems at constant T 
and P,  they are not restricted in application to systems that are actually closed and reach 
equilibrium states along paths of constant T and P.  Once an equilibrium state is reached, no 
further changes occur, and the system continues to exist in this state at fixed T and P. How this 
state was actually attained does not matter. Once it is known that an equilibrium state exists at 
given T and P ,  the criteria apply. 

13.3 THE STANDARD GIBBS-ENERGY CHANGE AND THE 
EQUILIBRIUM CONSTANT 

Equation (1  1.2), the fundamental property relation for single-phase systems, provides an ex- 
pression for the total differential of the Gibbs energy: 

d(nG)  = ( n V ) d P  - (nS)dT + x pi dni (1 1.2) 
i 

If changes in the mole numbers ni occur as the result of a single chemical reaction in a closed 
system, then by Eq. (13.3) each dni may be replaced by the product vi d s .  Equation (1 1.2) then 
becomes: 

d(nG)  = ( n V ) d P  - (nS)dT + x UiPi d~ 

Since nG is a state function, the right side of this equation is an exact differential expression; 
whence, 

I T ,  P 
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Thus the quantity xi vipi represents, in general, the rate of change of the total Gibbs energy of 
the system with the reaction coordinate at constant T and P. Figure 13.1 shows that this quantity 
is zero at the equilibrium state. A criterion of chemical-reaction equilibrium is therefore: 

Recall the definition of the fugacity of a species in solution: 

pi = r i ( T )  + RT In f i  (1 1.42) 

In addition, Eq. (1 1.30) may be written for pure species i in its standard state3 at the same 
temperature: 

G; = r i ( T )  + RT In f," 

The difference between these two equations is: 

Combining Eq. (13.8) with Eq. (13.9) to eliminate ~i gives for the equilibrium state of a 
chemical reaction: 

where ni signifies the product over all species i .  In exponential form, this equation becomes: 

where 

This equation defines K;  it is given alternative expression by: 

Also by definition, 

3~tandard states are introduced and discussed in Sec. 4.3 
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Since Gp is a property of pure species i in its standard state at fixed pressure, it depends only on 
temperature. By Eq. (13.12) it follows that AGO and hence K ,  are also functions of temperature 
only. 

In spite of its dependence on temperature, K is called the equilibrium 
constant for the reaction; xi vi Gp, represented by AGO, is called the 
standard Gibbs-energy change of reaction. 
The fugacity ratios in Eq. (13.10) provide the connection between the equilibrium state of 

interest and the standard states of the individual species, for which data are presumed available, 
as discussed in Sec. 13.5. The standard states are arbitrary, but must always be at the equilibrium 
temperature T. The standard states selected need not be the same for all species taking part in 
a reaction. However, for aparticular species the standard state represented by GP must be the 
same state as for the fugacity f,". 

The function AGO = xi vi GP in Eq. (13.12) is the difference between the Gibbs energies 
of the products and reactants (weighted by their stoichiometric coefficients) when each is in its 
standard state as a pure substance at the standard-state pressure, but at the system temperature. 
Thus the value of AGO is fixed for a given reaction once the temperature is established, and is 
independent of the equilibrium pressure and composition. Other standard property changes of 
reaction are similarly defined. Thus, for the general property M: 

In accord with this, A H 0  is defined by Eq. (4.14) and AC; by Eq. (4.16). These quantities are 
functions of temperature only for a given reaction, and are related to one another by equations 
analogous to property relations for pure species. 

For example, the relation between the standard heat of reaction and the standard Gibbs- 
energy change of reaction may be developed from Eq. (6.39) written for species i in its standard 
state: 

Total derivatives are appropriate here because the properties in the standard state are functions 
of temperature only. Multiplication of both sides of this equation by vi and summation over all 
species gives: 

In view of the definitions of Eqs. (4.14) and (13.12), this may be written: 

13.4 EFFECT OF TEMPERATURE ON THE 
EQUILIBRIUM CONSTANT 

Since the standard-state temperature is that of the equilibrium mixture, the standard property 
changes of reaction, such as AGO and A H 0,  vary with the equilibrium temperature. The 
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dependence of AGO on T is given by Eq. (13.13), which may be rewritten: 

In view of Eq. (13.1 lb), this becomes: 

d In K AH" 

dT  RT Z 

Equation (13.14) gives the effect of temperature on the equilibrium constant, and hence on 
the equilibrium conversion. If AH" is negative, i.e., if the reaction is exothermic, the equilib- 
rium constant decreases as the temperature increases. Conversely, K increases with T for an 
endothermic reaction. 

If A H 0 ,  the standard enthalpy change (heat) of reaction, is assumed independent of T ,  
integration of Eq. (13.14) from a particular temperature T' to an arbitrary temperature T leads 
to the simple result: 

This approximate equation implies that a plot of In K vs. the reciprocal of absolute temperature 
is a straight line. Figure 13.2, a plot of In K vs. 1 /T  for a number of common reactions, 
illustrates this near linearity. Thus, Eq. (13.15) provides a reasonably accurate relation for the 
interpolation and extrapolation of equilibrium-constant data. 

The rigorous development of the effect of temperature on the equilibrium constant is 
based on the definition of the Gibbs energy, written for a chemical species in its standard state: 

Multiplication by vi and summation over all species gives: 

As a result of the definition of a standard property change of reaction, this reduces to: 

AGO = AH" - T A S O  (13.16) 

The standard heat of reaction is related to temperature: 

The temperature dependence of the standard entropy change of reaction is developed similarly. 
Equation (6.21) is written for the standard-state entropy of species i at the constant standard- 
state pressure P ": 

Multiplying by vi, summing over all species, and invoking the definition of a standard property 
change of reaction yields: 
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Figure 13.2 Equilibrium constants as a function of temperature 
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Integration gives: 

where AS0 and AS: are standard entropy changes of reaction at temperature T and at reference 
temperature To respectively. Equations (13.16), (4.18), and (13.17) are combined to yield: 

However, AH; - AG; 
As; = 

To 

Whence, 

Finally, division by RT yields: 

Recall that by Eq. (13.11b), In K = - A G O/ R T .  
When the temperature dependence of the heat capacity of each species is given by 

Eq. (4.4), the first integral on the right side of Eq. (13.18) is given by Eq. (4.19), represented 
for computational purposes by: 

where "D" denotes "A". Similarly, the second integral is given by the analog of Eq. (5.15): 

where 

The integral is evaluated by a function of exactly the same form as given by Eq. (5.15), and the 
same computer program therefore serves for evaluation of either integral. The only difference 
is in the name of the function, here: IDCPS(TO,T;DA,DB, DC,DD). By definition, 

Thus AG O/RT(= -In K) as given by Eq. (13.18) is readily calculated at any temper- 
ature from the standard heat of reaction and the standard Gibbs-energy change of reaction 
at a reference temperature [usually 298.15 K (25"C)], and from two functions which can be 
evaluated by standard computational procedures. 
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The preceeding equations may be reorganized so as to factor K into three terms, each 
representing a basic contribution to its value: 

The first factor KO represents the equilibrium constant at reference temperature To: 

The second factor K1 is a multiplier that supplies the major effect of temperature, such that 
the product KoKl  is the equilibrium constant at temperature T when the heat of reaction is 
assumed independent of temperature: 

A H t  
Kl  - exp [= (1 - :)I 

The third factor K2 accounts for the much smaller temperature influence resulting from the 
change of A H" with temperature: 

AC; d T  
K2 - exp (- f lr % d ~  R + loT --) R T 

With heat capacities given by Eq. (4.4), the expression for K2 becomes: 

13.5 EVALUATION OF EQUILIBRIUM CONSTANTS 

Values of AGO for many formation reactions are tabulated in standard  reference^.^ The re- 
ported values of AG-e not measured experimentally, but are calculated by Eq. (13.16). 
The determination of AS; may be based on the third law of thermodynamics, discussed in 
Sec. 5.10. Combination of values from Eq. (5.40) for the absolute entropies of the species 
taking part in the reaction gives the value of AS:. Entropies (and heat capacities) are also 
commonly determined from statistical calculations based on spectroscopic data.5 

Values of AGOfZg8 for a limited number of chemical compounds are listed in Table C.4 of 
App. C. These are for a temperature of 298.15 K (25"C), as are the values of A H;298 listed in the 
same table. Values of AGO for other reactions are calculated from formation-reaction values 
in exactly the same way that A HO values for other reactions are determined from formation- 
reaction values (Sec. 4.4). In more extensive compilations of data, values of AGY and AH; 
are given for a wide range of temperatures, rather than just at 298.15 K (25°C). Where data 

4For example, "TRC Thermodynamic Tables-Hydrocarbons" and "TRC Thermodynamic Tables-Non-hydro- 
carbons," serial publications of the Thermodynamics Research Center, Texas A & M Univ. System, College Station, 
Texas; "The NBS Tables of Chemical Thermodynamic Properties," J. Physical and Chemical Reference Data, vol. 11, 
supp. 2, 1982. 

5 ~ .  S. Pitzer, Thermodynamics, 3d ed., chap. 5 ,  McGraw-Hill, New York, 1995. 



13.5. Evaluation of Equilibrium Constants 463 

are lacking, methods of estimation are available; these are reviewed by Reid, Prausnitz, and 

'R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids. 4th ed., chap. 6, McGraw-Hill, 
New York. 1987. 
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13.6 RELATION OF EQUILIBRIUM CONSTANTS 
TO COMPOSITION 

Gas-Phase Reactions 

The standard state for a gas is the ideal-gas state of the pure gas at the standard-state pressure 
P o  of 1 bar. Since the fugacity of an ideal gas is equal to its pressure, f: = P o  for each 
species i .  Thus for gas-phase reactions fi / f," = fi / P O ,  and Eq. (13.10) becomes: 

The equilibrium constant K is a function of temperature only. However, Eq. (13.25) 
relates K to fugacities of the reacting species as they exist in the real equilibrium mixture. 
These fugacities reflect the nonidealities of the equilibrium mixture and are functions of tem- 
perature, pressure, and composition. This means that for a fixed temperature the composition 
at equilibrium must change with pressure in such a way that ni(fi/ P ' ) " I  remains constant. 
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The fugacity is related to the fugacity coefficient by Eq. (1 1.48): 

Pi = $ ,y ip  

Substitution of this equation into Eq. (13.25) provides an equilibrium expression displaying 
the pressure and the composition: 

where v xi vi and P "  is the standard-state pressure of 1 bar, expressed in the same units used 
for P .  The yi's may be eliminated in favor of the equilibrium value of the reaction coordinate 
E,. Then, for a fixed temperature Eq. (13.26) relates E, to P. In principle, specification of the 
pressure allows solution for E,. However, the problem may be complicated by the dependence 
of $i on composition, i.e., on E,. The methods of Secs. 11.6 and 11.7 can be applied to 
the calculation of $i values, for example, by Eq. (1 1.61). Because of the complexity of the 
calculations, an iterative procedure, initiated by setting Ji = 1 and formulated for computer 
solution, is indicated. Once the initial set { Y ~ )  is calculated, {Ji) is determined, and the 
procedure is repeated to convergence. 

If the assumption that the equilibrium mixture is an ideal solution is justified, then each 
$i becomes 4i, the fugacity coefficient of pure species i at T and P [Eq. (1 1.8 I)]. In this case, 
Eq. (13.26) becomes: 

Each 4; for a pure species can be evaluated from a generalized correlation once the equilibrium 
T and P are specified. 

For pressures sufficiently low or temperatures sufficiently high, the equilibrium mixture 
behaves essentially as an ideal gas. In this event, each $i = 1, and Eq. (13.26) reduces to: 

In this equation the temperature-, pressure-, and composition-dependent terms are distinct and 
separate, and solution for any one of E,, T, or P, given the other two, is straightforward. 

Although Eq. (13.28) holds only for an ideal-gas reaction, we can base some conclusions 
on it that are true in general: 

According to Eq. (13.14), the effect of temperature on the equilibrium constant K is 
determined by the sign of A H 0 .  Thus when A H 0  is positive, i.e., when the standard 
reaction is endothermic, an increase in T results in an increase in K. Equation (13.28) 
shows that an increase in K at constant P results in an increase in ni(yi)"l ; this implies a 
shift of the reaction to the right and an increase in E,. Conversely, when A H 0  is negative, 
i.e., when the standard reaction is exothermic, an increase in T causes a decrease in K 
and a decrease in ni(yi)"> at constant P. This implies a shift of the reaction to the left 
and a decrease in E,. 
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If the total stoichiometric number v (- xi vi) is negative, Eq. (13.28) shows that an 
increase in P at constant T causes an increase in ni(yi)"', implying a shift of the reaction 
to the right and an increase in E,. If v is positive, an increase in P at constant T causes a 
decrease in ni(yi)"', a shift of the reaction to the left, and a decrease in E,. 

Liquid-Phase Reactions 

For a reaction occurring in the liquid phase, we return to: 

n (A/  .fy = =K (13.10) 
i 

For the usual standard state for liquids fi" is the fugacity of pure liquid i at the temperature of 
the system and at 1 bar. 

According to Eq. (1 1.87), which defines the activity coefficient, 

where f i  is the fugacity of pure liquid i at the temperature and pressure of the equilibrium 
mixture. The fugacity ratio can now be expressed: 

Since the fugacities of liquids are weak functions of pressure, the ratio f ,  / f," is often taken as 
unity. However, it is readily evaluated. Equation (1 1.30) is written twice, first for pure liquid i 
at temperature T and pressure P ,  and second for pure liquid i at the same temperature but at 
the standard-state pressure of P ". The difference between these two equations is: 

Integration of Eq. (6.10) at constant temperature T for the change of state of pure liquid i from 
P o  to P yields: 

As a result, 

Since Vi changes little with pressure for liquids (and solids), integration from P " to P gives 
to an excellent approximation: 

With Eqs. (13.29) and (13.30), Eq. (13.10) may now be written: 
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Except for high pressures, the exponential term is close to unity and may be omitted. Then, 

n (xi yip = K (13.32) 
1 

and the only problem is determination of the activity coefficients. An equation such as the 
Wilson equation [Eq. (12.19)] or the UNIFAC method can in principle be applied, and the 
compositions can be found from Eq. (13.32) by a complex iterative computer program. How- 
ever, the relative ease of experimental investigation for liquid mixtures has worked against the 
application of Eq. (13.32). 

If the equilibrium mixture is an ideal solution, then yi is unity, and Eq. (13.32) becomes: 

n = K (13.33) 
I 

This simple relation is known as the l~zw of mass action. Since liquids often form nonideal 
solutions, Eq. (13.33) can be expected in many instances to yield poor results. 

For species known to be present in high concentration, the equation fi / f ,  = xi is usually 
nearly correct. The reason, as discussed in Sec. 12.1, is that the LewisIRandall rule [Eq. (1 1.80)] 
always becomes valid for a species as its concentration approaches xi = 1. For species at low 
concentration in aqueous solution, a different procedure has been widely adopted, because in 
this case the equality of fi I f ,  and xi is usually far from correct. The method is based on use 
of a fictitious or hypothetical standard state for the solute, taken as the state that would exist if 
the solute obeyed Henry's law up to a molality nz of unity.7 In this application, Henry's law is 
expressed as 

and it is always valid for a species whose concentration approaches zero. This hypothetical state 
is illustrated in Fig. 13.3. The dashed line drawn tangent to the curve at the origin represents 
Henry's law, and is valid in the case shown to a molality much less than unity. However, one 
can calculate the properties the solute would have if it obeyed Henry's law to a concentration 
of 1 molal, and this hypothetical state often serves as a convenient standard state for solutes. 

The standard-state fugacity is 

Hence, for any species at a concentration low enough for Henry's law to hold, 

and 

The advantage of this standard state is that it provides a very simple relation between fugacity 
and concentration for cases in which Henry's law is at least approximately valid. Its range does 
not commonly extend to a concentration of 1 molal. In the rare case where it does, the standard 
state is a real state of the solute. This standard state is useful only where AGO data are available 

7 ~ o l a l i t y  is a measure of solute concentration, expressed as moles of solute per kilogram of solvent. 
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Figure 13.3 Standard state for dilute aqueous solutions 

for the standard state of a 1-molal solution, for otherwise the equilibrium constant cannot be 
evaluated by Eq. (13.1 1). 

13.7 EQUILIBRIUM CONVERSIONS FOR SINGLE REACTIONS 

Suppose a single reaction occurs in a homogeneous system, and suppose the equilibrium con- 
stant is known. In this event, the calculation of the phase composition at equilibrium is straight- 
forward if the phase is assumed an ideal gas [Eq. (13.28)] or an ideal solution [Eq. (13.27) 
or (13.33)]. When an assumption of ideality is not reasonable, the problem is still tractable 
for gas-phase reactions through application of an equation of state and solution by computer. 
For heterogeneous systems, where more than one phase is present, the problem is more com- 
plicated and requires the superposition of the criterion for phase equilibrium developed in 
Sec. 11.6. At equilibrium, there can be no tendency for change to occur, either by mass transfer 
between phases or by chemical reaction. We present in what follows, mainly by example, the 
procedures in use for equilibrium calculations, first, for single-phase reactions, and second, for 
heterogeneous reactions. 

Single-Phase Reactions 

The following examples illustrate application of equations developed in the preceding section. 
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Reactions in Heterogeneous Systems 

When liquid and gas phases are both present in an equilibrium mixture of reacting species, 
Eq. (1 1.44), a criterion of vaporlliquid equilibrium, must be satisfied along with the equation 
of chemical-reaction equilibrium. Consider, for example, the reaction of gas A with liquid 
water B to form an aqueous solution C. Several choices in the method of treatment exist. 
The reaction may be assumed to occur entirely in the gas phase with simultaneous transfer of 
material between phases to maintain phase equilibrium. In this case, the equilibrium constant 
is evaluated from AGO data based on standard states for the species as gases, i.e., the ideal-gas 
states at 1 bar and the reaction temperature. On the other hand, the reaction may be assumed 
to occur in the liquid phase, in which case AGO is based on standard states for the species as 
liquids. Alternatively, the reaction may be written: 

in which case the AGO value is for mixed standard states: C as a solute in an ideal 1-molal 
aqueous solution, B as a pure liquid at 1 bar, and A as a pure ideal gas at 1 bar. For this choice 
of standard states, the equilibrium constant as given by Eq. (13.10) becomes: 

The second term a-ises from Eq. (13.35) applied to species C, Eq. (13.29) applied to B with 
f s /  f j  = 1, and the fact that f," = P " for species A in the gas phase. Since K depends on 
the standard states, this value of K is not the same as that obtained when, for example, the 
standard state for each species is chosen as the ideal-gas state at 1 bar. However, all methods 
theoretically lead to the same equilibrium composition, provided Henry's law as applied to 
species C in solution is valid. In practice, a particular choice of standard states may simplify 
calculations or yield more accurate results, because it makes better use of the available data. The 
nature of the calculations required for heterogeneous reactions is illustrated in the following 
example. 
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*H. Otsuki and F, C. Williams, Chem. E n g ~  P r o g ~  Symp. Series No. 6, vol. 49, pp. 55--67, 1953. 
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13.8 PHASE RULE AND DUHEM'S THEOREM FOR 
REACTING SYSTEMS 

The phase rule (applicable to intensive properties) as discussed in Secs. 2.7 and 10.2 for 
nonreacting systems of n phases and N chemical species is: 

It must be modified for application to systems in which chemical reactions occur. The phase-rule 
variables are unchanged: temperature, pressure, and N - 1 mole fractions in each phase. The 
total number of these variables is 2 + (N - l)(n). The same phase-equilibrium equations apply 
as before, and they number ( n  - 1)(N). However, Eq. (13.8) provides for each independent 
reaction an additional relation that must be satisfied at equilibrium. Since the pi's are functions 
of temperature, pressure, and the phase compositions, Eq. (13.8) represents a relation connect- 
ing phase-rule variables. If there are r independent chemical reactions at equilibrium within the 
system, then there is a total of ( n  - l)(N) +r independent equations relating the phase-rule vari- 
ables. Taking the difference between the number of variables and the number of equations gives: 

F = [2 + (N - l)(n)] - [(n - l)(N) + r ]  

This is the phase rule for reacting systems. 
The only remaining problem for application is to determine the number of independent 

chemical reactions. This can be done systematically as follows: 

Write chemical equations for the formation, from the constituent elenzents, of each chem- 
ical compound considered present in the system. 
Combine these equations so as to eliminate from them all elements not considered present 
as elements in the system. A systematic procedure is to select one equation and combine 
it with each of the others of the set to eliminate a particular element. Then the process is 
repeated to eliminate another element from the new set of equations. This is done for each 
element eliminated [see Ex. 13.11(d)], and usually reduces the set by one equation for 
each element eliminated. However, the simultaneous elimination of two or more elements 
may occur. 
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The set of r equations resulting from this reduction procedure is a complete set of 
independent reactions for the N species considered present in the system. However, more than 
one such set is possible, depending on how the reduction procedure is carried out, but all sets 
number r and are equivalent. The reduction procedure also ensures the following relation: 

r > number of compounds present in the system 
- number of constituent elements not present as elements 

The phase-equilibrium and chemical-reaction-equilibrium equations are the only ones 
considered in the foregoing treatment as interrelating the phase-rule variables. However, in 
certain situations special constraints may be placed on the system that allow additional equa- 
tions to be written over and above those considered in the development of Eq. (13.36). If the 
number of equations resulting from special constraints is s ,  then Eq. (13.36) must be modified 
to take account of these s additional equations. The still more general form of the phase rule 
that results is: 

I F = ~ - z + N - ~ - s ~  (13.37) 

Example 13.11 shows how Eqs. (13.36) and (13.37) may be applied to specific systems. 
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Duhem's theoremfornonreacting systems was developedin Sec. 10.2. It states that for any 
closed system formed initially from given masses of particular chemical species, the equilibrium 
state is completely determined (extensive as well as intensive properties) by specification of 
any two independent variables. This theorem gives the difference between the number of 
independent variables that completely determine the state of the system and the number of 
independent equations that can be written connecting these variables: 

When chemical reactions occur, a new variable ~j is introduced into the material-balance 
equations for each independent reaction. Furthermore, a new equilibrium relation [Eq. (13.8)] 
can be written for each independent reaction. Therefore, when chemical-reaction equilibrium 
is superimposed on phase equilibrium, r new variables appear and r new equations can be 
written. The difference between the number of variables and number of equations therefore is 
unchanged, and Duhem's theorem as originally stated holds for reacting systems as well as for 
nonreacting systems. 

Most chemical-reaction equilibrium problems are so posed that it is Duhem's theorem 
that makes them determinate. The usual problem is to find the composition of a system that 
reaches equilibrium from an initial state o f j x e d  amounts of of reacting species when the two 
variables T and P are specified. 

13.9 MULTIREACTION EQUILIBRIA 

When the equilibrium state in a reacting system depends on two or more independent chemical 
reactions, the equilibrium composition can be found by a direct extension of the methods 
developed for single reactions. One first determines a set of independent reactions as discussed 
in Sec. 13.8. With each independent reaction there is associated a reaction coordinate in accord 
with the treatment of Sec. 13.1. In addition, a separate equilibrium constant is evaluated for 
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each reaction, and Eq. (13.10) becomes: 

where j is the reaction index. For a gas-phase reaction Eq. (13.38) takes the form: 

If the equilibrium mixture is an ideal gas, 

For r independent reactions there are r separate equations of this kind, and the yi's can 
be eliminated by Eq. (13.7) in favor of the r reaction coordinates E;. The set of equations 
is then solved simultaneously for the r reaction coordinates, as illustrated in the following 
examples. 
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Although the Eqs. (A) and (B) of the preceding example are readily solved, the method of 
equilibrium constants does not lend itself to standardization so as to allow a general program 
to be written for computer solution. An alternative criterion of equilibrium, mentioned in 
Sec. 13.2, is based on the fact that at equilibrium the total Gibbs energy of the system has its 
minimum value, as illustrated for a single reaction in Fig. 13.1. Applied to multiple reactions, 
this criterion is the basis for a general scheme of computer solution. 

The total Gibbs energy of a single-phase system as given by Eq. (1 1.2) shows that: 

The problem is to find the set {ni) which minimizes Gt for specified T and P, subject to 
the constraints of the material balances. The standard solution to this problem is based on 
the method of Lagrange's undetermined multipliers. The procedure for gas-phase reactions is 
described as follows. 

1. The first step is to formulate the constraining equations, i.e., the material balances. Although 
reacting molecular species are not conserved in a closed system, the total number of atoms 
of each element is constant. Let subscript k identify a particular atom. Then define Ak as 
the total number of atomic masses of the kth element in the system, as determined by the 
initial constitution of the system. Further, let aik be the number of atoms of the kth element 
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present in each molecule of chemical species i .  The material balance on each element k 
may then be written: 

I I 

or 
Cn ia ik  - Ak = O  (k = 1,2 ,  . . . ,  w) 

i 

where w is the total number of elements comprising the system. 

2. Next, we introduce the Lagrange multipliers hk, one for each element, by multiplying each 
element balance by its hk: 

These equations are summed over k, giving: 

3. Then a new function F is formed by addition of this last sum to Gt . Thus, 

This new function is identical with Gt, because the summation term is zero. However, the 
partial derivatives of F and G' with respect to ni are different, because the function F 
incorporates the constraints of the material balances. 

4. The minimum value F (and G') occurs when all of the partial derivatives (aF/ani)T,p,nJ 
are zero. We therefore differentiate the preceding equation, and set the resulting derivative 
equal to zero: 

Since the first term on the right is the definition of the chemical potential [see Eq. (1 1.1)], 
this equation can be written: 

pi + x h k a i k  = O  (i = 1,2,  . . . ,  N) 
k 

However, the chemical potential is given by Eq. (13.9): 

For gas-phase reactions and standard states as the pure ideal gases at 1 bar [or 1 atm]: 

p,i = GP + RT l n ( f i / ~ " )  

If GP is arbitrarily set equal to zero for all elements in their standard states, then for com- 
pounds GP = AG>i, the standard Gibbs-energy change of formation for species i. In 
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addition, the fugacity is eliminated in favor of the fugacity coefficient by Eq. (1 1.48), 
f i  = yi&i P. With these substitutions, the equation for pi becomes: 

Combination with Eq. (13.42) gives: 

Note that P o  is 1 bar, expressed in the units used for pressure. If species i is an element, 
AGYi is zero. 

Equation (13.43) represents N equilibrium equations, one for each chemical species, 
and Eq. (13.41) represents w material-balance equations, one for each element- a total of 
N + w equations. The unknowns in these equations are the ni's (note that yi = n, / xi ni), 
of which there are N, and the hk's, of which there are w- a total of N + w unknowns. Thus 
the number of equations is sufficient for the determination of all unknowns. 

The foregoing discussion has presumed that each &i is known. If the phase is an ideal 
gas, then for each species &i = 1. If the phase is an ideal solution, 6, = I#I~, and values can at 
least be estimated. For real gases, $i is a function of the set {yi), which is being calculated. 
Thus an iterative procedure is indicated. The calculations are initiated with Ji = 1 for all i. 
Solution of the equations then provides a preliminary set of {yi). For low pressures or high 
temperatures this result is usually adequate. Where it is not satisfactory, an equation of state 
is used together with the calculated {yi) to give a new and more nearly correct set { J i )  for 
use in Eq. (13.43). Then a new set {yi) is determined. The process is repeated until successive 
iterations produce no significant change in {yi). All calculations are well suited to computer 
solution, including the calculation of {Ji) by equations such as Eq. (1 1.61). 

In the procedure just described, the question of what chemical reactions are involved 
never enters directly into any of the equations. However, the choice of a set of species is 
entirely equivalent to the choice of a set of independent reactions among the specie- any 
event, a set of species or an equivalent set of independent reactions must always be assumed, 
and different assumptions produce different results. 
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13.10 FUEL CELLS 

A fuel cell, similar in some respects to an electrolytic cell or battery, is a device in which a fuel 
is oxidized electrochemically to produce electric power. It has the characteristics of a battery 
in that it consists of two electrodes, separated by an electrolyte. However, the reactants are not 
stored in the cell, but are fed to it continuously, and the products of reaction are continuously 
withdrawn. The fuel cell is thus not given an initial electric charge, and in operation it does 
not lose electric charge. It operates as a continuous-flow system as long as fuel and oxygen are 
supplied, and produces a steady electric current. 

A fuel, e.g., hydrogen, methane, butane, methanol, etc., makes intimate contact with an 
anode or fuel electrode, and oxygen (usually in air) inakes intimate contact with a cathode 
or oxygen electrode. Half-cell reactions occur at each electrode, and their sum is the overall 
reaction. Several types of fuel cell exist, each characterized by a particular type of e l e c t r ~ l ~ t e . ' ~  

Cells operating with hydrogen as the fuel are the simplest such devices, and serve to 
illustrate basic principles. Schematic diagrams of hydrogenloxygen cells appear in Fig. 13.6. 
When the electrolyte is acidic [Fig. 13.6(a)], the half-cell reaction occurring at the hydrogen 
electrode (anode) is: 

and that at the oxygen electrode (cathode) is: 

9 ~ h e  ~ a t h c a d B  formulation of this problem is given in App. D.2. 

'o~onstruction details of the various types of fuel cells and extensive explanations of their operation are given by 
J. Larminie and A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, Ltd., Chichester, England, 2000. 
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(b)  alkaline Figure 13.6 

When the electrolyte is alkaline [Fig. 13.6(b)], the half-cell reaction at the anode is: 

Anode 

Electrolyte 

Cathode 

Load 

(a) 

Anode 

Electrolyte 

Cathode 

Load 

(bf 

Schematic diagrams of fuel cells. (a) Acid electrolyte; 

Hz + 2 OH- + 2 H;?O(g) + 2e- 

electrolyte 

and at the cathode: 

;o2 + 2e- + HzO(g) + 2OH. 

In either case, the sum of the half-cell reactions is the overall reaction of the cell: 

This of course is the combustion reaction of hydrogen, but combustion in the sense of burning 
does not occur in the cell. 

In both cells electrons with negative charge (e-) are released at the anode, produce an 
electric current in an external circuit, and are taken up by the reaction occurring at the cathode. 
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The electrolyte does not allow passage of electrons, but provides a path for migration of an 
ion from one electrode to the other. With an acid electrolyte cation H+ migrates from anode to 
cathode, whereas with an alkaline electrolyte anion OH- migrates from cathode to anode. 

For many practical applications the most satisfactory hydrogedoxygen fuel cell is built 
around a solid polymer that serves as an acid electrolyte. Since it is very thin and conducts H+ 
ions or protons, it is known as a proton-exchange membrane. Each side of the membrane is 
bonded to a porous carbon electrode impregnated with finely divided platinum which serves as a 
catalyst. The porous electrodes provide a very large surface area for reaction and accommodate 
the diffusion of hydrogen and oxygen into and water vapor out of the cell. Cells can be stacked 
and connected in series to make very compact units with the required terminal emf. They 
typically operate at tempertures near 333.15 K (60°C). 

Since fuel-cell operation is a steady-flow process, the first law takes the form: 

where potential- and kinetic-energy terms are omitted as negligible and shaft work has been 
replaced by electrical work. If the cell operates reversibly and isothermally, 

Q = TAS and AH = TAS+ WeleCt 

The electrical work of a reversible cell is therefore: 

WeleCt = AH - TAS = AG (13.44) 

where A denotes a property change of reaction. The heat transfer to the surroundings required 
for isothermal operation is: 

With reference to Fig. 13.6(a), we note that for each molecule of hydrogen consumed, 2 
electrons pass to the external circuit. On the basis of 1 mol of HI, the charge (q) transferred 
between electrodes is: 

q = 2NA(-e) coulomb 

where -e is the charge on each electron and NA is Avogadro's number. Since the product NAe 
is Faraday's constant F ,  q = -2F.11 The electrical work is then the product of the charge 
transferred and the emf (E volt) of the cell: 

Welect = -2FE joule 

The emf of a reversible cell is therefore: 

These equations may be applied to a hydrogedoxygen fuel cell operating at 298.15 K 
(25°C) and 1 bar with pure H2 and pure O2 as reactants and pure H20 vapor as product. If these 
species are assumed ideal gases, then the reaction occurring is the standard formation reaction 
for H20(g) at 298.15 K (2j°C), for which values from Table C.4 are: 

AH=AH;2g8=-241818Jmol-1 and AG=AG:298=-228572~mol-1 

ll~araday's  constant is equal to 96 485 coulomb mol-l . 
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Equations (13.44) through (13.46) then yield: 

WeIec, = -228 572 J mol-' Q = -13 246 J mol-' E = 1.184 volts 

If, as is more commonly the case, air is the source of oxygen, the cell receives O2 at 
its partial pressure in air. Because the enthalpy of ideal gases is independent of pressure, the 
enthalpy change of reaction for the cell is unchanged. However, the Gibbs-energy change of 
reaction is affected. By Eq. (1 1.26), 

Therefore, on the basis of 1 mol of H 2 0  formed, 

A G  = AG;2g, + ( 0 . 5 ) ( ~ $ ~  - Gg2) 

= AGkg8  - 0.5RT In yo, 

= -228 572 - (0.5)(8.314)(298.15)(ln0.21) = -226 638 

Equations (13.44) through (13.46) now yield: 

WeleCt = -226 638 J mol-' Q = -15 180 J mol-' E = 1.174 volts 

The use of air rather than pure oxygen does not significantly reduce the emf and work output 
of a reversible cell. 

The enthalpy and Gibbs-energy changes of reaction are given as functions of temperature 
by Eqs. (4.18) and (13.18). For a cell temperature of 333.15 K (60°C), the integrals in these 
equations are evaluated as: 

Equations (4.18) and (13.18) then yield: 

AH;333 = -242 168 J mol-l and AG>333 = -226 997 J mol-' 

With cell operation at 1 bar and oxygen extracted from air, A H  = AH&, and 

Equations (1  3.44) through (1  3.46) now yield: 

WeleCt = -224 836 J mol-I Q = - 17 332 J mol-' E = 1.165 volts 

Thus cell operation at 333.15 K (60°C) rather than at 298.15 K (25°C) reduces the voltage and 
work output of a reversible cell by only a small amount. 

These calculations for a reversible cell show that the electrical work output is more than 
90% of the heat that would be released (AH)  by actual combustion of the fuel. Were this 
heat supplied to a Carnot engine operating at practical temperature levels, a much smaller 



Problems 499 

fraction would be converted into work. The reversible operation of a fuel cell implies that 
a potentiometer exactly balances its emf, with the result that its current output is negligi- 
ble. In actual operation under reasonable load, internal irreversibilities inevitably reduce the 
emf of the cell and decrease its production of electrical work, while increasing the amount 
of heat transfer to the surroundings. The operating emf of hydrogenloxygen fuel cells is 
0.6-0.7 volts, and its work output is closer to 50% of the heating value of the fuel. Never- 
theless, the irreversibilities of a fuel cell are far less than those inherent in combustion of the 
fuel. It has the additional advantages of simplicity, of clean and quiet operation, and of directly 
producing electrical energy. Fuels other than hydrogen may well be appropriate for fuel-cell 
use, but require development of effective catalysts. Methanol, for example, reacts at the anode 
of a proton-exchange membrane fuel cell according to the equation: 

The usual reaction of oxygen to form water vapor occurs at the cathode. 

PROBLEMS 

13.1. Develop expressions for the mole fractions of reacting species as functions of the reaction 
coordinate for: 

(a) A system initially containing 2 rnol NH3 and 5 rnol O2 and undergoing the reaction: 

4NH3(g) + 502(g> + 4NO(g) + 6H20(g) 

(b) A system initially containing 3 rnol H2S and 5 rnol O2 and undergoing the reaction: 

2H2S(g> + 302(g> + 2HzO(g> + 2SO2(g) 

(c)  A system initially containing 3 rnol NOz, 4 rnol NH3, and 1 rnol N2 and undergoing 
the reaction: 

13.2. A system initially containing 2 rnol CzH4 and 3 rnol O2 undergoes the reactions: 

C2H4(g> + $z(g> -+ ((CH2)2)0(g) 

Develop expressions for the mole fractions of the reacting species as functions of the 
reaction coordinates for the two reactions. 

13.3. A system formed initially of 2 rnol C02, 5 rnol H2, and 1 rnol CO undergoes the reactions: 

COz(g) + 3H2(g) + CH30H(g) + HzO(g) 

Develop expressions for the mole fractions of the reacting species as functions of the 
reaction coordinates for the two reactions. 
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13.4. Consider the water-gas-shift reaction: 

At high temperatures and low to moderate pressures the reacting species form an ideal- 
gas mixture. Application of the summability equation to Eq. (1 1.26) yields: 

When the Gibbs energies of the elements in their standard states are set equal to zero, 
Gi = AG?; for each species, and then: 

At the beginning of Sec. 13.2 we noted that Eq. (14.64) is a criterion of equilibrium. 
Applied to the water-gas-shift reaction with the understanding that T and P are constant, 
this equation becomes: 

Here, however, dnlds = 0. The equilibrium criterion therefore becomes: 

Once the yi are eliminated in favor of E ,  Eq. ( A )  relates G to E .  Data for AG;, for 
the compounds of interest are given with Ex. 13.13. For a temperature of 1000 K (the 
reaction is unaffected by P )  and for a feed of 1 mol H2 and 1 mol C02: 

(a)  Determine the equilibrium value of E by application of Eq. (B) .  
(b)  Plot G vs. E ,  indicating the location of the equilibrium value of E determined in (a). 

13.5. Rework Pb. 13.4 for a temperature of: 

(a)  1100 K;  (b )  1200 K; (c)  1300 K. 

13.6. Use the method of equilibrium constants to verify the value of E found as an answer in 
one of the following: 

(a)  Pb. 13.4; (b )  Pb. 13.5(a); ( c )  Pb. 13.5(b); ( d )  Pb. 13.5(c). 

13.7. Develop a general equation for the standard Gibbs-energy change of reaction AGO as a 
function of temperature for one of the reactions given in parts (a),  (f ), (i), (n), (r) ,  ( t ) ,  
(u), (x) ,  and (y) of Pb. 4.21. 

13.8. For ideal gases, exact mathematical expressions can be developed for the effect of T 
and P on E,. For conciseness, let n (yi)"' - K,. Then: 

i 

(%Ip = (%Ip and (ZIT = (ZIT $ 
Use Eqs. (13.28) and (13.14), to show that: 



Problems 501 

K y  d ~ e  
(b)  (%) = -- (-v) 

T P d K ,  
(c) d s e / d K ,  is always positive. (Note: It is equally valid and perhaps easier to show 

that the reciprocal is positive.) 

13.9. For the ammonia synthesis reaction written: 

with 0.5 mol Nz and 1.5 mol H2 as the initial amounts of reactants and with the assump- 
tion that the equilibrium mixture is an ideal gas, show that: 

13.10. Peter, Paul, and Mary, members of a thermodynamics class, are asked to find the equi- 
librium composition at a particular T and P and for given initial amounts of reactants 
for the following gas-phase reaction: 

2NH3 + 3N0 + 3H20 + g~~ ( A )  

Each solves the problem correctly in a different way. Mary bases her solution on reaction 
(A) as written. Paul, who prefers whole numbers, multiplies reaction (A) by 2: 

4NH3 + 6N0 -t 6H20 + 5N2 ( B )  

Peter, who usually does things backward, deals with the reaction: 

3H20 + ; N ~  -+ 2NH3 + 3N0 (C) 

Write the chemical-equilibrium equations for the three reactions, indicate how the equi- 
librium constants are related, and show why Peter, Paul, and Mary all obtain the same 
result. 

13.11. The following reaction reaches equilibrium at 773.15 K (500°C) and 2 bar: 

4HCl(g) + 02(g> + 2H2O(g) + 2Clz(g) 

If the system initially contains 5 mol HC1 for each mole of oxygen, what is the compo- 
sition of the system at equilibrium? Assume ideal gases. 

13.12. The following reaction reaches equilibrium at 923.15 K (650°C) and atmospheric pres- 
sure: 

N2(g) + C2H2(g) ' 2HCN(g) 

If the system initially is an equimolar mixture of nitrogen and acetylene, what is the 
composition of the system at equilibrium? What would be the effect of doubling the 
pressure? Assume ideal gases. 
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13.13. The following reaction reaches equilibrium at 623.15 K (350°C) 3 bar: 

If the system initially contains 1.5 mol H2 for each mole of acetaldehyde, what is the 
composition of the system at equilibrium? What would be the effect of reducing the 
pressure to 1 bar? Assume ideal gases. 

13.14. The following reaction reaches equilibrium at 923.15 K (650°C) and atmospheric pres- 
sure: 

If the system initially contains 1.5 mol Hz for each mole of styrene, what is the compo- 
sition of the system at equilibrium? Assume ideal gases. 

13.15. The gas stream from a sulfur burner is composed of 15-mol-% SO2, 20-mol-% 02 ,  
and 65-mol-% N2. This gas stream at 1 bar and 753.15 K (480°C) enters a catalytic 
converter, where the SO2 is further oxidized to SO3. Assuming that the reaction reaches 
equilibrium, how much heat must be removed from the converter to maintain isothermal 
conditions? Base your answer on 1 mol of entering gas. 

13.16. For the cracking reaction, 

the equilibrium conversion is negligible at 300 K, but becomes appreciable at tempera- 
tures above 500 K. For a pressure of 1 bar, determine: 

(a) The fractional conversion of propane at 625 K. 
(b) The temperature at which the fractional conversion is 85%. 

13.17. Ethylene is produced by the dehydrogenation of ethane. If the feed includes 0.5 mol 
of steam (an inert diluent) per mole of ethane and if the reaction reaches equilibrium at 
1100 K and 1 bar, what is the composition of the product gas on a water-free basis? 

13.18. The production of 1,3-butadiene can be carried out by the dehydrogenation of 1-butene: 

Side reactions are suppressed by the introduction of steam. If equilibrium is attained at 
950 K and 1 bar and if the reactor product contains 10-mol-% 1,3-butadiene, find: 

(a) The mole fractions of the other species in the product gas. 
(b) The mole fraction of steam required in the feed. 

13.19. The production of 1,3-butadiene can be carried out by the dehydrogenation of n-butane: 

C4H10(g) -+ CH2:CHCH:CH2 (g) + 2H2(g) 

Side reactions are suppressed by the introduction of steam. If equilibrium is attained at 
925 K and 1 bar and if the reactor product contains 12-mol-% 1,3-butadiene, find: 
(a) The mole fractions of the other species in the product gas. 
(b) The mole fraction of steam required in the feed. 
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13.20. For the ammonia synthesis reaction, 

the equilibrium conversion to ammonia is large at 300 K, but decreases rapidly with 
increasing T. However, reaction rates become appreciable only at higher temperatures. 
For a feed mixture of hydrogen and nitrogen in the stoichiometric proportions, 

(a )  What is the equilibrium mole fraction of ammonia at 1 bar and 300 K? 
(h)  At what temperature does the equilibrium mole fraction of ammonia equal 0.50 for 

a pressure of 1 bar? 
(c) At what temperature does the equilibrium mole fraction of ammonia equal 0.50 for 

a pressure of 100 bar, assuming the equilibrium mixture is an ideal gas? 
(d) At what temperature does the equilibrium mole fraction of ammonia equal 0.50 

for a pressure of 100 bar, assuming the equilibrium mixture is an ideal solution of 
gases? 

13.21. For the methanol synthesis reaction, 

the equilibrium conversion to methanol is large at 300 K, but decreases rapidly with 
increasing T. However, reaction rates become appreciable only at higher temperatures. 
For a feed mixture of carbon monoxide and hydrogen in the stoichiometric proportions, 

(a )  What is the equilibrium mole fraction of methanol at 1 bar and 300 K. 
(b) At what temperature does the equilibrium mole fraction of methanol equal 0.50 for 

a pressure of 1 bar? 
(c) At what temperature does the equilibrium mole fraction of methanol equal 0.50 for 

a pressure of 100 bar, assuming the equilibrium mixture is an ideal gas? 
(d) At what temperature does the equilibrium mole fraction of methanol equal 0.50 

for a pressure of 100 bar, assuming the equilibrium mixture is an ideal solution of 
gases? 

13.22. Limestone (CaC03) decomposes upon heating to yield quicklime (CaO) and carbon 
dioxide. At what temperature is the decomposition pressure of limestone l(atm)? 

13.23. Ammonium chloride [NH4Cl(s)] decomposes upon heating to yield a gas mixture of 
ammonia and hydrochloric acid. At what temperature does ammonium chloride exert 
a decomposition pressure of 1.5 bar? For NH4Cl(s), AH;298 = -314 430 J mol-' and 
AG;298 = -202 870 J mol-'. 

13.24. A chemically reactive system contains the following species in the gas phase: NH3, NO, 
NOz, 02 ,  and H20. Determine a complete set of independent reactions for this system. 
How many degrees of freedom does the system have? 

13.25. The relative compositions of the pollutants NO and NO2 in air are governed by the 
reaction, 

For air containing 21-mol-% O2 at 298.15 K (25°C) and 1.0133 bar, what is the concen- 
tration of NO in parts per million if the total concentration of the two nitrogen oxides is 
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5 ppm? 

13.26. Consider the gas-phase oxidation of ethylene to ethylene oxide at a pressure of 1 bar 
with 25% excess air. If the reactants enter the process at 298.15 K (2S°C), if the reaction 
proceeds adiabatically to equilibrium, and if there are no side reactions, determine the 
composition and temperature of the product stream from the reactor. 

13.27. Carbon black is produced by the decomposition of methane: 

For equilibrium at 923.15 K (650°C) and 1 bar, 

(a)  What is the gas-phase composition if pure methane enters the reactor, and what 
fraction of the methane decomposes? 

(6) Repeat part (a) if the feed is an equimolar mixture of methane and nitrogen. 

13.28. Consider the reactions, 

If these reactions come to equilibrium after combustion in an internal-combustion engine 
at 2000 K and 200 bar, estimate the mole fractions of NO and NO2 present for mole 
fractions of nitrogen and oxygen in the combustion products of 0.70 and 0.05. 

13.29. Oil refineries frequently have both H2S and SO2 to dispose of. The following reaction 
suggests a means of getting rid of both at once: 

For reactants in the stoichiometric proportion, estimate the percent conversion of each 
reactant if the reaction comes to equilibrium at 723.15 K (450°C) and 8 bar. 

13.30. The species N2O4 and NO2 as gases attain rapid equilibrium by the reaction: 

(a)  For T = 350 K and P = 5 bar, calculate the mole fractions of these species in the 
equilibrium mixture. Assume ideal gases. 

(b)  If an equilibrium mixture of Nz04 and NO2 at the conditions of part (a)  flows 
through a throttle valve to a pressure of 1 bar and through a heat exchanger that 
restores its initial temperature, how much heat must be exchanged, assuming chem- 
ical equilibrium is again attained in the final state? Base the answer on an amount 
of mixture equivalent to 1 mol of Nz04, i.e., as though all the NO2 were present as 
N204. 

13.31. The following isomerization reaction occurs in the liquid phase: 

where A and B are miscible liquids for which: 
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If AGi9, = -1000 J mol-', what is the equilibrium composition of the mixture at 
298.15 K (25"C)? How much error is introduced if one assumes that A and B form an 
ideal solution? 

13.32. Hydrogen gas is produced by the reaction of steam with "water gas," an equimolar 
mixture of Hz and CO obtained by the reaction of steam with coal. A stream of "water 
gas" mixed with steam is passed over a catalyst to convert CO to C02 by the reaction: 

Subsequently, unreacted water is condensed and carbon dioxide is absorbed, leaving a 
product that is mostly hydrogen. The equilibrium conditions are 1 bar and 800 K. 
(a) Would there be any advantage to carrying out the reaction at pressures above 1 bar? 
(6)  Would increasing the equilibrium temperature increase the conversion of CO? 
(c) For the given equilibrium conditions, determine the molar ratio of steam to "water 

gas" (Hz + CO) required to produce a product gas containing only 2-mol-% CO 
after cooling to 293.15 K (20°C), where the unreacted H20 has been virtually all 
condensed. 

(d) Is there any danger that solid carbon will form at the equilibrium conditions by the 
reaction 

13.33. The feed gas to a methanol synthesis reactor is composed of 75-mol-% Hz, 15-mol-% 
CO, 5-mol-% C02, and 5-mol-% N2. The system comes to equilibrium at 550 K and 
100 bar with respect to the following reactions: 

Assuming ideal gases, determine the composition of the equilibrium mixture. 

13.34. "Synthesis gas" may be produced by the catalytic reforming of methane with steam: 

The only other reaction considered is: 

Assume equilibrium is attained for both reactions at 1 bar and 1300 K. 
(a) Would it be better to carry out the reaction at pressures above 1 bar? 
(b) Would it be better to carry out the reaction at temperatures below 1300 K? 
(c)  Estimate the molar ratio of hydrogen to carbon monoxide in the synthesis gas if the 

feed consists of an equimolar mixture of steam and methane. 
(d) Repeat part (c)  for a steam to methane mole ratio in the feed of 2. 
(e) How could the feed composition be altered to yield a lower ratio of hydrogen to 

carbon monoxide in the synthesis gas than is obtained in part (c)? 
(f) Is there any danger that carbon will deposit by the reaction 2C0 -+ C + C02 under 

conditions of part (c)? Part (d)? If so, how could the feed be altered to prevent carbon 
deposition? 
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13.35. Consider the gas-phase isomerization reaction: A+B. 

(a) Assuming ideal gases, develop from Eq. (13.28) the chemical-reaction equilibrium 
equation for the system. 

(b) The result of part (a) should suggest that there is one degree of freedom for the equi- 
librium state. Upon verifying that the phase rule indicates two degrees of freedom, 
explain the discrepancy. 

13.36. A low-pressure, gas-phase isomerization reaction, A-B, occurs at conditions such that 
vapor and liquid phases are present. 

(a) Prove that the equilibrium state is univariant. 
(b) Suppose T is specified. Show how to calculate X A ,  y ~ ,  and P. State carefully, and 

justify, any assumptions. 

13.37. Set up the equations required for solution of Ex. 13.14 by the method of equilibrium 
constants. Verify that your equations yield the same equilibrium compositions as given 
in the example. 

13.38. Reaction-equilibrium calculations may be useful for estimation of the compositions 
of hydrocarbon feedstocks. A particular feedstock, available as a low-pressure gas at 
500 K, is identified as "aromatic C8." It could in principle contain the CsHlo isomers: 
o-xylene (OX), m-xylene (MX), p-xylene (PX), and ethylbenzene (EB). Estimate how 
much of each species is present, assuming the gas mixture has come to equilibrium at 
500 K and low pressure. The following is a set of independent reactions (why?): 

(a) Write reaction-equilibrium equations for each equation of the set. State clearly any 
assumptions. 

(b) Solve the set of equations to obtain algebraic expressions for the equilibrium vapor- 
phase mole fractions of the four species in relation to the equilibrium constants, KI ,  
KI I ,  KIII .  

(c) Use the data below to determine numerical values for the equilibrium constants at 
500 K. State clearly any assumptions. 

(d) Determine numerical values for the mole fractions of the four species. 

Species A H&/J mol-' A GOf298/J mol-' 



Chapter 14 

Topics in Phase Equilibria 

The simplest models for vaporlliquid equilibrium, based on Raoult's law and Henry's law, are 
presented in Chap. 10, largely from an empirical point of view. The calculations by modified 
Raoult's law, described in Sec. 10.5, are adequate for many purposes, but are limited to low 
pressures. The initial sections of this chapter therefore present two general calculational 
procedures for VLE, the first by an extension of modified Raoult's law and the second by 
equations of state. The theoretical foundation for both procedures is presented in Chap. 11. The 
remainder of this chapter deals more generally with phase equilibria, with consideration given 
in separate sections to liquidliquid, vaporlliquidliquid, solidlliquid, solidlvapor, adsorption, 
and osmotic equilibria. 

14.1 THE GAMMA1 PHI FORMULATION OF VLE 

Modified Raoult's law includes the activity coefficient to account for liquid-phase nonidealities, 
but is limited by the assumption of vapor-phase ideality. This is overcome by introduction of 
the vapor-phase fugacity coefficient. For species i in a vapor mixture, Eq. (1 1.48) is written: 

f^y = y;& P 

For species i in the liquid phase, Eq. (1 1.87) becomes: 

Equation (1 1.44) requires these two expressions to be equal; whence, 

Superscripts v and 1 are not used here because of a presumption that 6; refers to the vapor 
phase and that y; and f ,  are liquid-phase properties. Substituting for f ,  by Eq. (1 1.41) gives: 

where 
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Since the Poynting factor (represented by the exponential) at low to moderate pressures differs 
from unity by only a few parts per thousand, its omission introduces negligible error, and this 
eqJation is often simplified: 

Equation (14.1), called the gammalphi formulation of VLE, reduces to Raoult's law when 
Qi = yi = 1, and to modified Raoult's law when Qi = 1. 

Systematic application of Eqs. (14.1) and (14.2) depends on the availability of correlations 
of data from which values may be obtained for Pi

sat, Qi, and yi. The vapor pressure of a pure 
species is most commonly given by the Antoine equation, Eq. (6.71): 

Restriction to moderate pressures allows calculation of the fugacity coefficients in Eq. (14.2) to 
be based on Eq. (3.37), the two-term virial expansion in P .  They are then given by Eq. (1 1.61), 
here written: 

- - 
A 

lBii + 2 1 9 ~ j ~ k ( 2 ~ j i  - a,) 4i = exp - 
RT 1 

where 8 . .  J l  = 2 B . . - B . . - B . .  - J 1  J J  [ I  J .  ~k -2B .  = ~k - B . . - B  J J  kk 

with 6ii = 0, 6jj = 0, etc., and Jij = Jji, etc. Values of the virial coefficients come from 
a generalized correlation, as represented for example by Eqs. (1 1.66) through (1 1.71). The 
fugacity coefficient for pure i as a saturated vapor +yt is obtained from Eq. (14.4) with Jji and 
Jjk set equal to zero: 

Bii pi sat 
+.Sat = exp - 

RT 

Combination of Eqs. (14.2), (14.4), and (14.5) gives: 

L. 

Qi = exp .i k (14.6) 
RT 

For a binary system comprised of species 1 and 2, this becomes: 

Q1 = exp 
BII(P - P p t )  + ~~22812 

RT 

B22(P - P p t )  + ~ y t J 1 2  
Q2 = exp 

RT 

Activity coefficients [yi in Eq. (14.1)] are evaluated from models for G~ as discussed in 
Sec. 12.2. Thus for data at constant T we presume the availability of a correlation giving: 

G~ 
- = g(xl, x2,  . . . , x ~ - ~ )  (const T) 
RT 
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Dewpoint and Bubblepoint Calculations 

The nature of dewpoint and bubblepoint calculations is evident from the examples of Secs. 10.4 
and 10.5 for Raoult's law and modified Raoult's law. All such calculations made by the 
gammdphi formulation require iteration because of its complex functionality: 

At the moderate pressures where the gammdphi approach to VLE is appropriate, activity 
coefficients are assumed independent of pressure. The need for iteration is evident, for example, 
in a BUBL P  calculation of { y i ]  and P, which requires values of Qi that are functions of P 
and {yi}.  Simple iterative procedures, described in the following paragraphs, apply to BUBL P, 
DEW P, BUBL T, and DEW T  calculations. 

Equation (14.1) may be solved for either yi or xi: 

Because xi yi = 1 and xi xi = 1, these equations may be summed to give: 

Solved for P ,  they become: 

1 
P = (14.11) 

C Y i @ i / ~ ' i p , ~ ~ ~  
i 

BUBL P Ca/Cf.i/atiOnS : Figure 14.1 shows an iteration scheme to be implemented by 
computer. Input consists of the given values, T  and {xi} ,  and the parameters for evaluation 
of {Pi

Sat) ,  { y i ) ,  and { a i ) .  Since the values of { y i }  required for calculation of Qi are not 
yet known, set Qi = 1. Each Pi

Sat is evaluated at the given T by Eq. (14.3) and values of 
yi come from an activity-coefficient correlation. Equations (14.10) and (14.8) yield P  and 
{y i } .  Equation (14.6) then provides { Q i ) ;  substitution in Eq. (14.10) provides a value for P.  
Iteration proceeds until 8 P, the change in P  from one iteration to the next, is less than some 
tolerance E ,  thus converging on final values for P  and {yi}.  

DEW P Ca/Cf.i/atiOnS: Figure 14.2 shows a calculation scheme with input, T, {y i } ,  and 
appropriate parameters. Neither { Q i )  nor { y i )  can be evaluated initially, and all values are 
set equal to unity. Equation (14.3) yields {Pi

Sat} ,  and Eqs. (14.11) and (14.9) are solved for P 
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Figure 14.1 Block diagram for the calculation BUBL P 

Read T,  {x, ] ,  constants. 
Set all @, = 1 .O. 

Evaluate {p,sat}, {y,). 
Calc. P by Eq. (14.10). 

and { x i } .  Evaluation of { y i )  and substitution into Eq. (14.11) gives an improved value of P 
from which to determine { Q i }  by Eq. (14.6). The inner iteration loop then converges on interim 
values for { x i )  and { y i } .  Since the calculated values of xi are not constrained to sum to unity, 
the set is normalized by setting xi = x i /  xi xi. Subsequent recalculation of P by Eq. (14.1 1) 
leads to the outer loop and upon iteration to convergence on final values for P and { x i } .  

Calc. bJ by Eq. (14.8). 
Evaluate {@J. 

Y 
Calc. P by Eq. (14.10). 

In BUBL P and DEW P calculations, temperature is given, allowing immediate and 

Read T,  bJ, constants. 
Set all cP, = 1.0, all y, = 1.0. 

final calculation of {P i
sa t) .  This is not the case for procedures BUBL T and DEW T, where 

the temperature is unknown. However, iteration is controlled by T ,  and an initial estimate is 
required. Depending on whether { x i }  or { y i }  is known, it is given by: 

, 

where q sat = Bi 
- C i  

Ai - In P 

Evaluate {cat]. Calc. (4 by Eq. (14.9). 
Calc. P by Eq. (14.11). Evaluate {@J Normalize the x, values. -+, 
Calc. {xJ by Eq. (14.9). A Evaluate (yJ. 

Evaluate (y,). 
Calc. P by Eq. (14.11). No 

No / 

Yes 
Print P, {x,}. Is6P < E ?  Calc. P by Eq. (14.11). 

Figure 14.2 Block diagram for the calculation DEW P 
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Although individual vapor pressures are strong functions of temperature, vapor-pressure 
ratios are not, and calculations are facilitated by their introduction. Multiplying the right sides 
of Eqs. (14.10) and (14.11) by PTt (outside the summation), dividing by PTt (inside the 
summation), and solving for the P T t  appearing outside the summation gives: 

The summations are over all species including j, which is an arbitrarily selected species. Once 
PFt  is known, the corresponding value of T is found from Eq. (14.3), written: 

BUBL T C a / ~ l l / a t i ~ n ~ :  Figure 14.3 shows an iterative scheme with input, P ,  { x i } ,  and 
parameters. In the absence of T and { y i }  values, set Qi = 1. The simple iteration scheme that 
follows is clear from the figure. 

Figure 14.3 Block diagram for the calculation BUBL T 

Read P, {x,}, constants. Set all @, = 1.0. 
Calc. {T,Sat} by Eq. (14.12). Calc. T = Z,X,  TYt .  

Evaluate ( p Y f ) ,  bl}. Identify species j. 
Calc. p,Sat by Eq. (14.13). Calc. T b y  Eq. (14.15). 

DEW T C a / c l l / a t i o n s :  In this calculation, neither T nor { x i >  is known. The iteration 
scheme is shown in detail by Fig. 14.4. As in the DEW P procedure, the set { x i }  calculated 
within the inner loop is not constrained to sum to unity, and is therefore normalized by setting 
Xi = x i /  xi X i .  

Dewpoint and bubblepoint calculations are readily made with software packages such as 
~ a t h c a d @  and ~ a ~ l e @ ,  in which iteration is an integral part of an equation-solving routine. 
Calculations for multicompollent systems made either with the iteration schemes detailed here 
or with software packages are readily carried out by computer. 

No 

J 

w 

Evaluate {pISat}. 
Calc. {y , }  by Eq. (14.8). 

Evaluate {@,}, {y,). 
Calc. P)B' by Eq. (14.13). 

Calc. T b y  Eq. (14 15). 
L 

* 
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The results for a complete BUBL T calculation are shown in Table 14.1 for the system 
n-hexane(l)/ethanol(2)/methylcyclopentane(3)henzene4). The given pressure P is 1 atm, and 
the given liquid-phase mole fractions xi are listed in the second column of Table 14.1. Param- 
eters for the Antoine equations1 [T in kelvins, P in (atm)], supplied as input data, are: 

Read P, {y,}, constants 
Set all @, = 1.0, all y, = 1 .O. 
Calc. {T,S~'> by Eq. (14.12). 

Calc. i" = Zly ,  T , ~ ~ ~ .  

In addition, the following virial coefficients2 (in cm3 mol-') are provided: 

Evaluate { P Y t ) ,  Identify species j. 
Calc. p,Sat by Eq. (14 14). f valuate {p;at}, {a,} 

Calc. T by Eq. (14.15). A 

Finally, input information includes parameters for the UNIFAC method (App. H). The calcu- 
lated values of T and the vapor-phase mole fractions yi compare favorably with experimental 
values3 Also listed in Table 14.1 are final computed values of Pi

Sat, Qi, and yi. 
The BUBL T calculations for which results are given in Table 14.1 are for a pressure of 

l(atm), a pressure for which vapor phases are often assumed to be ideal gases and for which Qi 

'R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gasesandliquids, 3d ed., app. A, McGraw-Hill, 
New York, 1977. 

2 ~ r o r n  the correlation of J. G. Hayden and J. P. O'Connell, Ind. Eng. Chem. Proc. Des. Dev., vol. 14, pp. 209-216, 
1975. 

3 ~ .  E. Sinor and J. H. Weber, J. Chem. Eng. Data, vol. 5, pp. 243-247, 1960. 

Cakc. {x,} by Eq. (14.9). 
Normalize the x, values. 

Evaluate {y,} 
% 

Evaluate { P , ~ ~ ' ) ,  
Calc. {x,} by Eq. (14.9). 

Evaluate {y,]. Calc. p,Sat by 
Eq. (14.14), rby  Eq. (14.15). 

1 
No 

Yes 

Yes 
Print T, (x,}. 

Is each 6y, < E ? 

Calc. PJsat by Eq. (14.14) 
I s a T c & ?  Calc. T by Eq. (14.15). 

J 

Figure 14.4 Block diagram for the calculation DEW T 
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Table 14.1 System: n-HexanelEthanollMethylcyclopentane(MCP)l 
Benzene 

BUBL T calculations at 1 atm. 

Species k x, yi(calc) y,(exp) Pi
Sat/atm Qi Yi 

T(ca1c) = 334.82 K (61.67"C) T(exp)  = 334.85 K (61.5"C) Iterations = 4 

is unity for each species. Indeed, these values here lie between 0.98 and 1.00. This illustrates 
the fact that at pressures of 1 bar and less, the assumption of ideal gases usually introduces 
little error. The additional assumption of liquid-phase ideality (yi  = I), on the other hand, is 
justified only infrequently. We note that yi for ethanol in Table 14.1 is greater than 8. 

Values of parameters for the Margules, van Laar, Wilson, NRTL, and UNIQUAC equa- 
tions are given for many binary pairs by Gmehling et in a summary collection of the world's 
published VLE data for low to moderate pressures. These values are based on reduction of 
experimental data through application of modified Raoult's law, Eq. (10.5). On the other hand, 
data reduction for determination of parameters in the UNIFAC method (App. H) does not 
include the ideal-gas assumption, and is carried out with Eq. (14.1). 

Flash Calculations 

The treatment of flash calculations in Sec. 10.6 led to calculations based on Raoult's law 
and K-value correlations. Use of the gammalphi formulation of VLE makes the calculations 
somewhat more complex, but the primary equation is unchanged: 

Since xi = y i /K i ,  an alternative equation is: 

Since both sets of mole fractions must sum to unity, xi xi = xi yi = 1. Thus, if we sum 
Eq. (10.16) over all species and subtract unity from this sum, the difference F, must be zero: 

Similar treatment of Eq. (14.16) yields the difference F,, which must also be zero: 

4 ~ .  Gmehling, U. Onken, and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series, vol. I, 
parts 1-8, DECHEMA, FrankfurtMain, 197771990, 
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Solution to a P,  T-flash problem is accomplished when a value of V is found that makes either 
function Fy or F, equal to zero. However, a more convenient function for use in a general 
solution procedure5 is the difference F, - F, = F :  

The advantage of this function is apparent from its derivative: 

Since dF/dV is always negative, the F vs. V relation is monotonic, and this makes 
Newton's method (App. I), a rapidly converging iteration procedure, well suited to solution for 
V. Equation (1.1) for the nth iteration here becomes: 

where AV r Vn+l - V,, and F and (dF/dV) are found by Eqs. (14.19) and (14.20). In these 
equations the K-values come from Eq. (14. I), written: 

where Qi is given by Eq. (14.2). The K-values contain all of the thermodynamic information, 
and are related in a complex way to T, P ,  {yi  ), and {xi} .  Since solution is for {y i }  and { x i } ,  the 
P ,  T-flash calculation inevitably requires iteration. 

A general solution scheme is shown by the block diagram of Fig. 14.5. The given 
information is read and stored. Since it is not known in advance whether the system of stated 
composition at the stated T and P is in fact a mixture of saturated liquid and saturated vapor 
and not entirely liquid or entirely vapor, preliminary calculations are made to establish the 
nature of the system. At the given T and overall composition, the system exists as a super- 
heated vapor if its pressure is less than the dewpoint pressure Pdew On the other hand, it exists 
as a subcooled liquid if its pressure is greater than the bubblepoint pressure Pbubl. Only for 
pressures between Pa,, and Pbubl is the system an equilibrium mixture of vapor and liquid. We 
therefore determine Pdew by a DEW P calculation (Fig. 14.2) at the given T and for {yi}  = {z i} ,  
and Pbubl by a BUBL P calculation (Fig. 14.1) at the given T and for { x i )  = { z i } .  The P ,  T-flash 
calculation is performed only if the given pressure P lies between Pdew and Pbubl. If this is 
the case, we make use of the results of the preliminary DEW P and BUBL P calculations to 
provide initial estimates of { yi ), 1 6 ~ 1 ,  and V .  For the dewpoint, V = 1, with calculated values 
of PdeW, yi,dew, and $i,dew; for the bubblepoint, V = 0, with calculated values of Pbubl, yi,bubl, 
and $i,bubl. The simplest procedure is to interpolate between dewpoint and bubblepoint values 
in relation to the location of P between Pdew and Pbubl: 

5 ~ .  H. Rachford, Jr., and J. D. Rice, J. Petrol. Technol., vol. 4(10), sec. 1, p. 19 and sec. 2, p. 3, October, 1952. 
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and 

Figure 14.5 Block diagram for a P,T-flash calculation 

With these initial values of the yi and Ji, initial values of the Ki can be calculated 
by Eq. (14.22). The Pi

Sat and 4isaf values are already available from the preliminary DEW P 
and BUBL P calculations. Equations (14.19) and (14.20) now provide starting values of F 
and dF/dV for Newton's method as represented by Eq. (14.21). Repeated application of this 
equation leads to the value of V for which Eq. (14.19) is satisfied for the present estimates 
of {Ki}. The remaining calculations serve to provide new estimates of {yi} and {ai] from 
which to reevaluate {Ki}. This sequence of steps (an outer iteration) is repeated until there is 
no significant change in results from one iteration to the next. After the first outer iteration, 
the values of V and (dF/dV) used to start Newton's method (an inner iteration) are simply the 
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most recently calculated values. Once a value of V is established, values of xi are calculated 
by Eq. (14.16) and values of yi are given by yi = Kixi. 

Multicomponent flash calculations based on the gammdphi formulation are readily car- 
ried out by computer as outlined in Fig. 14.5. Table 14.2 shows the results of a P ,  T-flash 
calculation for the system n-hexane(l)/ethanol(2)/methylcyclopentane(3)/benzene(4). This is 
the same system for which results of a BUBL T calculation are presented in Table 14.1, and 
the same correlations and parameter values are used here. The given P and T are here 1 atm 
and 334.15 K (61°C). The given overall mole fractions for the system { z i )  are listed in Table 
14.2 along with the calculated values of the liquid-phase and vapor-phase mole fractions and 
the K-values. The molar fraction of the system that is vapor is found to be V = 0.8166. 

Table 14.2 System: n-HexanelEthanoll 
Methylcyclopentane(MCP)/Benzene 

Calculation of P,T-flash at 1 atm and 334.15 K (61°C). 

P = 1 atm T = 334.15 K (61°C) V = 0.8166 

Solute ( I ) /  Solvent (2) Systems 

The gammdphi approach to VLE calculations, based on Eq. (14. l), presumes knowledge of 
the vapor pressure of each species at the temperature of interest. Situations do arise however 
where a species is either unstable at the system temperature or is supercritical, i.e., the system 
temperature exceeds its critical temperature. Therefore its vapor pressure cannot be measured, 
and its fugacity fi as a pure liquid at the system temperature cannot be calculated by Eq. (1 1.41). 

Consider a binary system wherein species 1, designated the solute, cannot exist as a pure 
liquid at the system temperature. Although Eqs. (14.1) and (14.2) can be applied to species 2, 
designated the solvent, they are not applicable to the solute, and an alternative approach is 
required. Figure 14.6 shows a typical plot of the liquid-phase fugacity of the solute f l  vs. its 
mole fraction xl at constant temperature. This figure differs from Fig. 12.3 in that the curve 
representing f l  does not extend all the way to xl = 1. Thus the location of fi ,  the liquid-phase 
fugacity of pure species 1, is not established, and the line representing the LewisRandall rule 
cannot be drawn. The tangent line at the origin, representing Henry's law (Sec. 12.1), provides 
alternative information. Recall that the slope of the tangent line is Henry's constant, defined 
by Eq. (12.2). Thus, 

f 1 XI = lim - 
XI-0 x1 

Henry's constant is a strong function of temperature, but only weakly dependent on pres- 
sure. Note, however, that the definition of X l  at temperature T presumes the pressure is the 
equilibrium value at xl -+ 0, i.e., the vapor pressure of the pure solvent Ppt. 
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1 

Henry's law 
/ 

/ 
/ 

/ 

3, 

0 1 

X I  

Figure 14.6 Solute fugacity f", vs. XI 

The activity coefficient of the solute is related to its fugacity by Eq. (1 1.87), which may 
be written: 

Combining this with Eq. (14.23) yields: 

z1 = Y p f 1  

where y1O0 represents the infinite-dilution value of the activity coefficient of the solute. Since 
both X l  and y,OO are evaluated at P p t ,  this pressure also applies to f l .  However, the effect of P 
on a liquid-phase fugacity, given by a Poynting factor, is very small, and for practical purposes 
may usually be neglected. Elimination of f l  from Eq. (14.24) gives on rearrangement: 

For vaporlliquid equilibrium, 

where the final term comes from Eq. (11.48). Combining the two expressions for f 1  gives, 
after rearrangement: 

For the solute, this equation takes the place of Eqs. (14.1) and (14.2). For species 2, the solvent, 
Eq. (14.8) becomes: 

Since yl + y2 = 1, a BUBL P calculation for a binary system is based on the equation: 

The same correlation that provides for the evaluation of yl also allows evaluation of ylm. 
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As a simple example, consider a system for which: 

G~ 
- = A X ~ X Z  = 1.0 Q2 = 1.0 
RT 

Then by Eqs. (12.15), 

Yl = exp (AX;)  Y2 = exp (AX:) 

Whence, 
Y? = exp(A> and (yl/ypO) = exp [ A  (xz - I ) ]  

Equation (14.28) here becomes: 

P = xl X l  exp [ A  (xz - I ) ]  + x2 P2sat exp (AX;)  

and by Eq. (14.26), ~1x1 exp [ A  (x: - I ) ]  
Y1 = 

P 
For comparison, if the vapor pressure of species 1 were known, the resulting formulation 

would be: 

P = xl plSat exp (AX;) + x2PZsat exp (AX;)  
X I  PIsat exp (AX;)  

Y1 = P 
The only difference in the input data for the two formulations is that Henry's constant for 
species 1 is required in the former case whereas the vapor pressure of species 1 appears in the 
latter. 

There remains the problem of finding Henry's constant from the available VLE data. For 
equilibrium, 

Division by xl gives: - f 1 = PA: 
X I  

Henry's constant is defined as the limit as xl + 0 of the ratio on the left; therefore, 

The limiting value of y 1 1x1 can be found by plotting y 1 / x l  vs. xl and extrapolating to zero. 

14.2 VLE FROM CUBIC EQUATIONS OF STATE 

As shown in Sec. 11.6, phases at the same T and P are in equilibrium when the fugacity of 
each species is the same in all phases. For VLE, this requirement is written: 

-u -1 
fi = f i  (i  = 1,2,  ..., N )  ( 1  1.44) 

An alternative form results from introduction of the fugacity coefficient, defined by Eq. (1 1.48): 
-1 

Y i  P$Y = xi P(bi 
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Vapor Pressures for a Pure Species 

The simplest application of an equation of state for VLE calculations is to a pure species 
to find its saturation or equilibrium vapor pressure at given temperature T. As discussed in 
Sec. 3.5 with respect to cubic equations of state for pure species, a subcritical isotherm on a 
P V diagram exhibits a smooth transition from liquid to vapor; this is shown on Fig. 3.12 by the 
curve labeled T2 < Tc. Independent knowledge was there assumed of vapor pressures. In fact, 
this information is implicit in an equation of state. Figure 14.7 illustrates a realistic subcritical 
isotherm on a P V diagram as generated by an equation of state. One of the features of such an 
isotherm for temperatures not too close to T, is that the minimum lies below the P = 0 axis. 

Figure 14.7 Isotherm for T < Tc on PV diagram for a pure fluid 

For pure species i ,  Eq. (14.29) reduces to Eq. (1 1.40), 4; = q5:, which may be written: 

1 -In@ = 0 (14.30) 

The fugacity coefficient of a pure liquid or vapor is a function of its temperature and pressure. 
For a saturated liquid or vapor, the equilibrium pressure is Pi Sat. Therefore Eq. (14.30) implicitly 
expresses the functional relation, 

If the isotherm of Fig. 14.7 is generated by a cubic equation of state, then its roots for a 
specific pressure between P = 0 and P = P' include both a liquid-like volume on branch us 
of the isotherm and a vapor-like volume on branch tu ,  represented for example by points M 
and W. Two widely used cubic equations of state, developed specifically for VLE calculations, 
are the SoaveRedlich/Kwong (SRK) equation6 and the PengRobinson (PR) eq~a t ion .~  Both 
are special cases of Eq. (3.49) for a vapor phase and Eq. (3.53) for a liquid phase. 

6 ~ .  Soave, Chem. Eng. Sci., vol. 27, pp. 1197-1203, 1972. 

7 ~ . - ~ .  Peng and D. B. Robinson, Znd. Eng. Chem. Fundam., vol. 15, pp. 59-64,1976. 
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Written for pure species i as a vapor, Eq. (3.49) becomes: 

where by Eq. (3.47), 

For pure species i as a liquid, Eq. (3.53) is written: 

In accord with Eqs. (3.42), (3.43), and (3.48), 

The pure numbers E ,  o, q, and C2 and expressions for a(T,) are specific to the equation of 
state, and are given in Table 3.1 (p. 93). 

As shown in Sec. 11.5, 

In& = Zi - 1 -ln(Zi - p i )  -qiIi (1 1.36) 

Values for In 4i are therefore implied by each of the equations of state considered here. In 
Eq. (11.36), qi is given by Eq. (14.36), and Ii, by Eq. (6.62b). For given T and P ,  the vapor- 
phase value of Zi at point W of Fig. 14.7 is found by solution of Eq. (14.3 1). The liquid-phase 
value of Zi at point M comes from Eq. (14.33). Values for In 4; and In 4; are then found by 
Eq. (11.36). If they satisfy Eq. (14.30), then P = Pi

Sat and points M and W represent the 
saturated-liquid and saturated-vapor states at temperature T. If Eq. (14.30) is not satisfied, 
the correct value of P is found, by trial, by iteration, or by the solve routine of a software 
package. 

The calculation of pure-species vapor pressures as just described may be reversed to allow 
evaluation of an equation-of-state parameter from a known vapor-pressure Pi

Sat at temperature 
T .  Thus, Eq. (1 1.36) may be written for each phase of pure-species i and combined in accord 
with Eq. (14.30). Solving the resulting expression for qi yields: 

For the PR and SRK equations, I is given by Eq. (6.62b) written for pure species i: 
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The application of this equation requires first the evaluation at P = Pi
Sat of Zi by the equa- 

tion of state: the vapor-phase value from Eq. (14.31); the liquid-phase value from Eq. (14.33). 
However, these equations contain qi, the quantity sought. Thus, an iterative procedure is indi- 
cated, with an initial value of qi from a generalized correlation as given by Eqs. (14.34) through 
(14.36). 

Mixture VLE 

The equation of state for a mixture has exactly the same forms as Eqs. (14.31) and (14.33): 

Here, B,  and q are for the mixture, with definitions: 

where a(T) and b are mixture parameters. They are functions of composition, but no established 
theory prescribes the form of this dependence. Rather, empirical mixing rules relate mixture 
parameters to pure-species parameters. The simplest realistic expressions are a linear mixing 
rule for parameter b: 

and a quadratic mixing rule for parameter a :  

with aij = aji. The general mole-fraction variable xi is used here because application is 
to both liquid and vapor mixtures. The aij are of two types: pure-species parameters (like 
subscripts) and interaction parameters (unlike subscripts). Parameter bi is for pure species i .  
The interaction parameter aij is often evaluated from pure-species parameters by combining 
rules, e.g., a geometric-mean rule: 

These equations, known as van der Waals prescriptions, provide for the evaluation of mixture 
parameters solely from parameters for the pure constituent species. 
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Also useful for application of equations of state to mixtures are partial equation-of-state 
parameters, defined by: 

Since equation-of-state parameters are, at most, functions of temperature and composition, 
these definitions are in accord with Eq. (1 1.7). They are independent of the particular mixing 
rules adopted for the composition dependence of mixture parameters. 

Values of 6; and 6; are implicit in an equation of state, and with Eq. (14.29) allow 
calculation of mixture VLE. The same basic principle applies as for pure-species VLE, but the 

calculations are more complex. With 6; a function of T ,  P ,  and { y i ) ,  and 6: a function of T ,  
P ,  and {x i ) ,  Eq. (14.29) represents N relations among the 2N variables: T ,  P ,  (N  - 1) yis and 
(N  - 1) xis. Thus, specification of N of these variables, usually either T or P and either the 
vapor- or liquid-phase composition, allows solution for the remaining N variables by BUBL P, 
DEW P, BUBL T, and DEW T calculations. 

Cubic equations of state give Z as a function of the independent variables T and p (or V ) .  
Use of such an equation in VLE calculations therefore requires 6i to be given by an equation 
suited to these variables. The derivation of such an equation starts with Eq. (1 1.52), written for 
a mixture with vR replaced by Eq. (6.40): 

Division by dni and restriction to constant T ,  n/p(= n V ) ,  and n; ( j  # i )  leads to: 

For simplicity of notation, the partial derivatives in the following development are written 
without subscripts, and are understood to be at constant T, n/p(= nV) ,  and n;. Thus, with 
P = (nZ)RTl (n lp) ,  

Combination of Eqs. (14.48) and (14.49) yields: 
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Equation (6.63a), written for the mixture and multiplied by n, is differentiated to give the first 
term on the right: 

a ( n G R / ~ ~ )  
- a(nz) 1 - ln(1 - p b ) ~  - n [a ln(l - pb) a in z] a I  +- -nq--Iqi  

ani ani ani ani ani 

where use has been made of Eq. (14.47). The equation for ln $i now becomes: 

A a(nz) 1 - ln(1 - pb)Z - n 
a ln(1 - pb) 

= - - 
ani ani 

This reduces to: n a(pb) 31 
= -- - nq- - ln(1 - pb)Z - ijil 

1 - pb ani ani 

All that remains is evaluation of the two partial derivatives. The first is: 

The second follows from differentiation of Eq. (6.62a). After considerable algebraic reduction 
this yields: 

a 1  - a ( ~ b >  - - - 
1 

- 
Zi - -  pb 

ani ani (1 + opb)(l + cpb) nb (1 + apb)(l + cpb) 

Substitution of these derivatives in the equation for In $i reduces it to: 

1.6, = b ' [ b - y  " I - ln(1 - pb)Z - qi I  
b I - pb (1 + cpb)(l + apb) 

Reference to Eq. (6.61) shows that the term in square brackets is Z - 1. Therefore, 

A bi 
lnq5i = -(Z - 1) - ln(1 - pb)Z - q i I  

b 

However, 

Thus, 

whence 
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Because experience has shown that Eq. (14.42) is an acceptable mixing rule for parameter 
b, it is here adopted as appropriate for present purposes. Whence, 

and - a(nb) 

The equation for In $i is therefore written: 

where I is evaluated by Eq. (6.62b). Equation (1 1.36) is a special case for pure species i. 
Application of Eq. (14.50) requires prior evaluation of Z at the conditions of interest by 

an equation of state. This may be accomplished for a vapor phase by solution of Eq. (14.38) 
and for a liquid phase by solution of Eq. (14.39). 

Parameter q is defined in relation to parameters a and b by Eq. (14.41). The relation of 
partial parameter q i  to lii and bi is found by differentiation of this equation, written: 

Whence, 
a(nq) 

q i  [ F ] , , n j  = q  (I+: - )  q 1 - 2 )  (14.51) 

Any two of the three partial parameters form an independent pair, and any one of them can be 
found from the other two.' 

8 ~ e c a u s e  q ,  a ,  and b are not linearly related, i f i  # a, /gi RT 
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Equation (14.50) provides the means to evaluate di ,  and is the basis for the solution of 
VLE problems. A useful procedure makes use of Eq. (14.29), rewritten as yi = Kixi. Because 
xi yi = 1, 

Kixi = 1 (14.52) 
1 

where Ki, the K-value, is given by: 
-1 

Thus for bubblepoint calculations, where the liquid-phase composition is known, the problem 
is to find the set of K-values that satisfies Eq. (14.53). A block diagram of a computer program 
for BUBL P calculations is shown by Fig. 14.8. 

9 ~ .  H. Sage, B. L. Hicks, and W. N. Lacey, Industrial and Engineering Chemistry, vol. 32, pp. 1085-1092,1940. 
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Although the linear mixing rule for b [Eq. (14.42)] has proved generally acceptable, the 
quadratic mixing rule for a [Eq. (14.43)] is often unsatisfactory. An alternative is a mixing rule 
for q that incorporates activity-coefficient data. The connection between activity coefficients 
and equation-of-state parameters is provided by activity-coefficient and fugacity-coefficient 
definitions; thus, 

Whence, In yi = 1 n 6 ~  - (14.54) 
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.ines 
are 

where yi, $i, and q5i are all liquid-phase properties evaluated at the same T and P .  Subtracting 
Eq. (1 1.36) from Eq. (14,50) gives: 

where symbols without subscripts are mixture properties. Solution for q i  yields: 
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Because qi is a partial property, the summability equation applies: 

4 = C xiqi (14.56) 
i 

Equations (14.55) and (14.56) together constitute a thermodynami- 
cally sound mixing rule for q. 

Application of Eq. (14.55) requires prior evaluation of Z and Zi from the equation of 
state. These quantities are also required for evaluation of 1 and Ii by Eq. (6.62b). However, the 
equation of state contains q, evaluated from the qi values through Eq. (14.56). Equations (14.55) 
and (14.56), together with Eq. (14.38) or Eq. (14.39) and the necessary auxiliary equations, 
must therefore be solved simultaneously for {Zi), Z, {Ii), I ,  {qi), and q, either by iteration or 
by the equation-solving feature of a software package. The results make possible the calculation 
of $i values by Eq. (14.50). 

A choice must be made of an equation of state. Only the Soave/Redlich/Kwong and 
PengJRobinson equations are treated here, and they usually give comparable results. A choice 
must also be made of a correlating equation for the liquid-phase composition dependence of 
In yi. The Wilson, NRTL, and UNIQUAC equations (Sec. 12.2) are of general applicability; for 
binary systems the Margules and van Laar equations may also be used. The equation selected 
depends on evidence of its suitability to the particular system treated. 

The required input information includes not only the known values of T and {xi}, but 
also estimates of P and {yi}, the quantities to be evaluated. These require some preliminary 
calculations: 

1. For the chosen equation of state (with appropriate values of a, Q, r ,  and a), for each species 
find values of bi and preliminary values of qi from Eqs. (14.34) and (14.35). 

2. If the vapor pressure Pi
Sat for species i at temperature T is known, determine a new value 

for qi by iterative solution of Eq. (14.37) at P = Pi
sat with pi from Eq. (14.32), Zi and Ii 

for both liquid and vapor phases from Eqs. (14.31), (14.33), and (6.62b). 

3. A reasonable estimate of P is given by the sum of known or estimated Pi
Sat values, each 

weighted by its known liquid-phase mole fraction. 

4. For each species i at the given T and estimated P ,  find liquid-phase values for Zi and Ii 
from Eqs. (14.33) and (6.62b). 

5. For each species i at the given T and estimated P ,  find vapor-phase values for Zi and Ii 
from Eqs. (14.31) and (6.62b). 

6. For each pure species i evaluate $: and $,? by Eq. (1 1.36). 

7. An initial estimate of the vapor-phase composition is based on the assumption that both 
the liquid and vapor phases are ideal solutions. Each fugacity coefficient is then given by 
$i = $i, and Eq. (14.53) can be written (Ki - yi/xi): 

Since these values are not constrained to sum to unity, they should be normalized to yield 
the initial estimate of vapor-phase composition. 

The essential step in the iterative process of Fig. 14.8 is evaluation of {$f } and { $ y }  by 
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Eq. (14.50). This is a complex iterative step, consisting of a number of parts. For a specific phase 
(liquid or vapor), application of Eq. (14.50) requires prior calculation of mixture properties 2 ,  
/3, and I and partial properties qi.  The mixture properties come from solution of the equation 
of state, Eq. (14.38) or (14.39), but this requires knowledge of q as calculated from qi values 
by Eq. (14.56). Moreover, Eq. (14.55) for qi includes the pure-species properties Zi and qi ,  
which must therefore be determined first. The sequence of calculations is as follows: 

1. For each pure species as a liquid at the current value of P (initial estimate or adjusted value) 
determine Z i ,  pi, and 4 by Eqs. (14.33), (14.32), and (6.62b). 

2. For the liquid mixture at known T and composition calculate {In yi} (assumed independent 
of P). For this liquid mixture at the current value of P ,  determine Z ,  I, q, and {qi} by 
iterative solution of Eqs. (14.39), (6.62b), (14.55), and (14.56). The process is implemented 
with an initial value, q = xi xiqi. This allows solution of Eqs. (14.39) and (6.62b) for Z 
and I, which are used with Eq. (14.55) to yield values of qi.  Equation (14.56) then provides 
a new value of q, and the process is repeated to convergence. 

3. Evaluate the set {$f ) by Eq. (14.50). Values of Z,/3, and I for the liquid mixture are known 
from the preceding item. 

4. Repeat the calculations of item 2 for a liquid phase with the current vapor-phase composition 
(initial estimates or updated values) to determine q and { q i )  appropriate to the vapor phase. 
This calculation is done with liquid-phase properties because the mixing rule for q is based 
on Eq. (14.54), which connects liquid-phase properties at the T and P of interest. 

5. Determine vapor-phase-mixture values for 2 ,  /3, and I by Eqs. (14.38), (14.40), and (6.62b) 
at the current vapor composition. 

6. Evaluate the set (6;) by Eq. (14.50), with Z, /3, and I for the vapor-phase mixture from the 
preceding item. 

Values for { K ; )  now come from Eq. (14.53). These allow calculation of { K i x i ) .  The 
constraint xi yi = 1 has not yet been imposed; most likely Ci Kixi # 1, and Eq. (14.52) is 
therefore not satisfied. However, a new set of yi values is given by the normalizing equation: 

thus insuring that the yi values for the next iteration do sum to unity. 
This new set { y i )  is used to reevaluate I$:), { K i ) ,  and { K i x i ) .  If xi Kixi has changed, 

{ y i )  is again calculated and the sequence of calculations is repeated. Iteration leads to a stable 
value of xi Kixi.  If this sum is not unity, the assumedpressure is incorrect, and must be adjusted 
according to some rational scheme. When Ci Kixi > 1 ,  P is too low; when xi Kixi < 1 ,  
P is too high. The entire iterative procedure is then repeated with a new pressure P .  The last 
calculated values of yi are used for the initial estimate of {yi} .  The process continues until 
Ci Kixi = 1. 

A vast store of liquid-phase excess-property data for binary systems at temperatures near 
303.15 K (30°C) and somewhat higher is available in the literature. Effective use of these data 
to extend GE correlations to higher temperatures is critical to the procedure considered here. 
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The key relations are Eq. (1 1.91), written: 

and the excess-property analog of Eq. (2.2 1): 

Integration of the first of these equations from To to T gives: 

Similarly, the second equation may be integrated from TI to T: 

In addition, 

Integration from T2 to T yields: 

Combining this equation with Eqs. (14.57) and (14.58) leads to: 

where 

This general equation makes use of excess Gibbs-energy data at temperature To, excess enthalpy 
(heat-of-mixing) data at T I ,  and excess heat-capacity data at T2. 

Evaluation of integral J requires information with respect to the temperature dependence 
of c;. Because of the relative paucity of excess-heat-capacity data, the usual assumption is 
that this property is constant, independent of T. In this event, integral J is zero, and the closer 
To and TI are to T, the less the influence of this assumption. When no information is available 
with respect to c;, and excess enthalpy data are available at only a single temperature, the 
excess heat capacity must be assumed zero. In this case only the first two terms on the right 
side of Eq. (14.59) are retained, and it more rapidly becomes imprecise as T increases. 

Because the parameters of 2-parameter correlations of G E  data are directly related to 
infinite-dilution values of the activity coefficients, our primary interest in Eq. (14.59) is its 
application to binary systems at infinite dilution of one of the constituent species. For this 
purpose, we divide Eq. (14.59) by the product ~ 1 x 2 .  For CF independent of T (and thus with 



14.2. VLE from Cubic Equations of State 533 

J = O), it then becomes: 

As shown in Sec. 12.1, 

The preceding equation applied at infinite dilution of species i may therefore be written: 

Data for the ethanol(l)/water(2) binary system provide a specific illustration. At a base 
temperature To of 363.15 K (90°C), the VLE data of Pemberton and   ash" yield accurate 
values for infinite-dilution activity coefficients: 

(In Y?)~, = 1.7720 and (In ~ 2 0 0 ) ~ ~  = 0.9042 

Correlation of the excess enthalpy data of J. A.   ark in" at 383.15 K (1 10°C) yields the values: 

= -0.0598 and = 0.6735 

Correlations of the excess enthalpy for the temperature range from 323.15 to 383.15 K (50 to 
110°C) lead to infinite-dilution values of C~/x1x2R,  which are nearly constant and equal to 

= 13.8 and (2) = 7.2 
x1x2R x2=0 

Equation (14.60) may be directly applied with these data to estimate In yIm and In y," for 
temperatures greater than 363.15 K (90°C). The van Laar equations [Eqs. (12.17)] are well 
suited to this system, and the parameters for this equation are given as 

A',, = In ypO and Akl = In y,W 

These data allow prediction of VLE by an equation of state at 363.15 K (90°C) and at 
two higher temperatures, 423.15 and 473.15 K (150 and 200°C), for which measured VLE 
data are given by Barr-David and ~ 0 d ~ e . l ~  Pemberton and Mash report pure-species vapor 

'OR. C. Pemberton and C. J. Mash, Znt. DATA Series, Sel: B, vol. 1, p. 66, 1978. 

"AS reported in Heats ofMizing Data Collection, Chemistry Data Series, vol. 111, part 1, pp. 457-459, DECHEMA, 
Frankfumain, 1984. 

1 2 ~ .  H. Ban-David and B. F. Dodge, J. Chem. Eng. Data, vol. 4, pp. 107-121, 1959. 
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pressures at 363.15 K (90°C) for both ethanol and water, but the data of Barr-David and Dodge 
do not include these values. They are therefore calculated from reliable correlations. Results of 
calculations based on the PengRobinson equation of state are given in Table 14.3. Shown are 
values of the van Laar parameters Aiz and A;, , the pure-species vapor pressures PIsat and P p t ,  
the equation of state parameters bi and qi, and root-mean-square (RMS) deviations between 
computed and experimental values for P and yl. 

Table 14.3 VLE Results for Ethanol(l)/Water(2) 

TIK(tI"C) A;, A;, P,Sat P p t  41 42 RMS RMS 
bar bar % 6 P  6yl 

***** Vapor-phase compositions not measured. 

The small value of RMS % 6 P shown for 363.15 K (90°C) indicates both the suitability 
of the van Laar equation for correlation of the VLE data and the capability of the equation 
of state to reproduce the data. A direct fit of these data with the van Laar equation by the 
gammalphi procedure yields RMS % 6 P = 0. 19.13 The results at 423.15 to 473.15 K (150 and 
200°C) are based only on vapor-pressure data for the pure species and on mixture data at lower 
temperatures. The quality of prediction is indicated by the P-x-y diagram of Fig. 14.10, which 
reflects the uncertainty of the data as well. 

14.3 EQUILIBRIUM AND STABILITY 

Consider a closed system containing an arbitrary number of species and comprised of an 
arbitrary number of phases in which the temperature and pressure are uniform (though not 
necessarily constant). The system is initially in a nonequilibrium state with respect to mass 
transfer between phases and chemical reaction. Changes which occur in the system are neces- 
sarily irreversible, and they take the system ever closer to an equilibrium state. We imagine that 
the system is placed in surroundings such that the system and surroundings are always in ther- 
mal and mechanical equilibrium. Heat exchange and expansion work are then accomplished 
reversibly. Under these circumstances the entropy change of the surroundings is: 

The final term applies to the system, for which the heat transfer d Q has a sign opposite to that 
of d Q,,,, and the temperature of the system T replaces T,,, because both must have the same 
value for reversible heat transfer. The second law requires: 

1 3 ~ s  reported in Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series, vol. 1, part la, p. 145, 
DECHEMA, FrankfurtMain, 1981. 
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Figure 14.10 P x y  diagram for ethanol(l)/water(2). The lines represent 
predicted values; the points are experimental values 

where St is the total entropy of the system. Combination of these expressions yields, upon 
rearrangement: 

d Q  5 T d S

f  

(14.61) 

Application of the first law provides: 

d u f = d ~ + d w = d ~ - p d v t  

Combining this equation with Eq. (14.61) gives: 

dUt  + P d V

f  

5 T d S t  

Since this relation involves properties only, it must be satisfied for changes in state of 
any closed system of uniform T and P, without restriction to the conditions of mechanical 
and thermal reversibility assumed in its derivation. The inequality applies to every incremental 
change of the system between nonequilibrium states, and it dictates the direction of change that 
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leads toward equilibrium. The equality holds for changes between equilibrium states (reversible 
processes). Thus Eq. (6.1) is just a special case of Eq. (14.62). 

Equation (14.62) is so general that application to practical problems is difficult; restricted 
versions are much more useful. For example, by inspection: 

where the subscripts specify properties held constant. Similarly, for processes that occur at 
constant Ut and Vt, 

An isolated system is necessarily constrained to constant internal energy and volume, and for 
such a system it follows directly from the second law that the last equation is valid. 

If a process is restricted to occur at constant T and P, then Eq. (14.62) may be written: 

or d(Ut + PV' - TSt)T,p 5 0 

From the definition of the Gibbs energy [Eq. (6.3)], 

Therefore, [-I (14.63) 

Of the possible specializations of Eq. (14.62), this is the most useful, because T and P ,  which are 
easily measured and controlled, are more logical as constants than are other pairs of variables, 
such as Ut and V'. 

Equation (14.63) indicates that all irreversible processes occurring at constant T and P 
proceed in such a direction as to cause a decrease in the Gibbs energy of the system. Therefore: 

The equilibrium state of a closed system is that state for which the 
total Gibbs energy is a minimum with respect to all possible changes 
at the given T and P. 

This criterion of equilibrium provides a general method for determination of equilibrium states. 
One writes an expression for Gt as a function of the numbers of moles (mole numbers) of the 
species in the several phases, and then finds the set of values for the mole numbers that minimizes 
G" subject to the constraints of mass conservation. This procedure can be applied to problems 
of phase, chemical-reaction, or combined phase and chemical-reaction equilibrium; it is most 
useful for complex equilibrium problems, and is illustrated for chemical-reaction equilibrium 
in Sec. 13.9. 

At the equilibrium state differential variations can occur in the system at constant T and 
P without producing any change in Gt . This is the meaning of the equality in Eq. (14.63). Thus 
another form of this criterion of equilibrium is: 

rn (14.64) 

To apply this equation, one develops an expression for dGt as a function of the mole numbers 
of the species in the various phases, and sets it equal to zero. The resulting equation along 
with those representing the conservation of mass provide working equations for the solution 
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of equilibrium problems. Equation (14.64) leads directly to Eq. (1 1.6) for phase equilibrium 
and it is applied to chemical-reaction equilibrium in Sec. 13.3. 

Equation (14.63) provides a criterion that must be satisfied by any single phase that is 
stable with respect to the alternative that it split into two phases. It requires that the Gibbs 
energy of an equilibrium state be the minimum value with respect to all possible changes at the 
given T and P.  Thus, e.g., when mixing of two liquids occurs at constant T and P ,  the total 
Gibbs energy must decrease, because the mixed state must be the one of lower Gibbs energy 
with respect to the unmixed state. As a result: 

Gt r nG < x n i G i  from which G < x xiGi 
1 1 

or G - x xiGi < 0 (const T, P) 
1 

According to the definition of Eq. (12.29), the quantity on the left is the Gibbs energy change 
of mixing. Therefore, 

Thus, as noted in Sec. 12.3, the Gibbs-energy change of mixing must always be negative, and a 
plot of AG vs. xl for a binary system must appear as shown by one of the curves of Fig. 14.11. 
With respect to curve 11, however, there is a further consideration. If, when mixing occurs, a 
system can achieve a lower value of the Gibbs energy by forming two phases than by forming 
a single phase, then the system splits into two phases. This is in fact the situation represented 
between points a and B on curve I1 of Fig. 14.1 1, because the straight dashed line connecting 
points a and B represents the AG that would obtain for the range of states consisting of two 
phases of compositions x;Y and xf in various proportions. Thus the solid curve shown between 
points a and p cannot represent stable phases with respect to phase splitting. The equilibrium 
states between a and ,f? consist of two phases. 

These considerations lead to the following criterion of stability for a single-phase binary 
system: 

At constant temperature and pressure, AG and its first and second 
derivatives must be continuous functions of XI, and the second 
derivative must everywhere be positive. 

Thus, d2 AG 
> 0 (const T, P )  

dx: 

and > 0 (const T, P )  

This requirement has a number of consequences. Equation (12.30), rearranged and written 
for a binary system, becomes: 
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Figure 14.11 Gibbs-energy change of mixing. Curve I, complete miscibility; curve II, 
two phases between a, and ,6 

from which 

and 

Hence, equivalent to Eq. (14.65), stability requires: 

d 2 ( ~ E / ~ ~ )  1 
> - - (const T ,  P) 

d x t  x1X2 

Further, for a binary mixture Eq. (12.6) is: 

whence 

Invoking Eq. (12.7), the activity-coefficient form of the GibbsDuhem equation, reduces this 
to: 

A second differentiation and a second application of the GibbsDuhem equation gives: 
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This equation in combination with Eq. (14.66) yields: 

din y1 1 > - - (const T, P )  
dx1 x 1 

which is yet another condition for stability. It is equivalent to Eq. (14.65), from which it 
ultimately derives. Other stability criteria follow directly, e.g., 

The last three stability conditions can equally well be written for $species 2; thus for either 
species in a binary mixture: 

d In YZ 1 
> - - (const T, P )  

dxz xz 

d .f i 
- > 0 (const T, P) 
dxi  

(14.68) 

d ~ i  
- > 0 (const T, P )  (14.69) 
dxi  
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At an azeotrope, where = X I ,  

d P  d P  
- = 0  and - = O  
clx, ~ Y I  

Although derived for conditions of low pressure, these results are of general va- 
lidity, as illustrated by the VLE data shown in Fig. 10.8. 

14.4 LIQUID1 LIQUID EQUILIBRIUM (LLE) 

Many pairs of chemical species, were they to mix to form a single liquid phase in a certain com- 
position range, would not satisfy the stability criterion of Eq. (14.65). Such systems therefore 
split in this composition range into two liquid phases of different compositions. If the phases 
are at thermodynamic equilibrium, the phenomenon is an example of liquidniquid equilibrium 
(LLE), which is important for industrial operations such as solvent extraction. 

The equilibrium criteria for LLE are the same as for VLE, namely, uniformity of T, P, 
and of the fugacity Pi for each chemical species throughout both phases. For LLE in a system 
of N species at uniform T and P, we denote the liquid phases by superscripts cr and ,6, and 
write the equilibrium criteria as: 

With the introduction of activity coefficients, this becomes: 

If each pure species can exist as liquid at the temperature of the system, f," = f,' = f,; 
whence, 

In Eq. (14.70), activity coefficients y: and y: derive from the same function G ~ / R T ;  
thus they are functionally identical, distinguished mathematically only by the mole fractions 
to which they apply. For a liquid/liquid system containing N chemical species: 

According to Eqs. (14.70) and (14.71), N equilibrium equations can be written in 2N in- 
tensive variables (T, P, and N - 1 independent mole fractions for each phase). Solution of 
the equilibrium equations for LLE therefore requires prior specification of numerical values 
for N of the intensive variables. This is in accord with the phase rule, Eq. (2.7), for which 
F = 2 - n + N = 2 - 2 + N = N. The same result is obtained for VLE with no special 
constraints on the equilibrium state. 

In the general description of LLE, any number of species may be considered, and pressure 
may be a significant variable. We treat here a simpler (but important) special case, that of binary 
LLE either at constant pressure or at reduced temperatures low enough that the effect of pressure 
on the activity coefficients may be ignored. With but one independent mole fraction per phase, 
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Figure 14.12 Three types of constant-pressure liquidlliquid solubility diagram 

Eq. (14.70) gives: 

xy yp = xfy! 

where Y: = yi(x?, T) (14.73a) 

B With two equations and three variables (x;", x, , and T), fixing one of the variables allows 
solution of Eqs. (14.72) for the remaining two. Since In yi, rather than yi, is a more natural 
thermodynamic function, application of Eqs. (14.72) often proceeds from the rearrangements: 

For conditions of constant pressure, or when pressure effects are negligible, binary LLE 
is conveniently displayed on a solubility diagram, a plot of T vs. xl. Figure 14.12 shows binary 
solubility diagrams of three types. The first diagram [Fig. 14.12(a)] shows curves (binodal 
curves) that define an "island." They represent the compositions of coexisting phases: curve 
UAL for the a! phase (rich in species 2), and curve UBL for the phase (rich in species 
1). Equilibrium compositions x;" and xf at a particular T are defined by the intersections of a 
horizontal tie line with the binodal curves. Temperature TL is a lower consolute temperature, or 
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lower critical solution temperature (LCST); temperature Tu is an upper consolute temperature, 
or upper critical solution temperature (UCST). At temperatures between TL and Tu, LLE is 
possible; for T < TL and T > Tu, a single liquid phase is obtained for the full range of 
compositions. The consolute points are analogous to the liquidlgas critical point of a pure 
fluid; they are limiting states of two-phase equilibrium for which all properties of the two 
equilibrium phases are identical. 

Actually, the behavior shown on Fig. 14.12(a) is infrequently observed; the LLE binodal 
curves are often interrupted by curves for yet another phase transition. When the binodal curves 
intersect the freezing curve, only a UCST can exist [Fig. 14.12(b)]; when they intersect the 
VLE bubblepoint curve, only an LCST can exist [Fig. 14.12(c)]; when they intersect both, no 
consolute point exists, and a fourth type of behavior is observed.14 

Thus it is apparent that real systems exhibit a diversity of LLE behavior. The ther- 
modynamic basis for calculation or correlation of LLE is an expression for G E / ~ ~ ,  from 
which activity coefficients are derived. The suitability of a particular expression is deter- 
mined by its ability to accommodate the various features illustrated by Fig. 14.12. This is a 
severe test, because, unlike their role in low-pressure VLE where they represent corrections 
to Raoult's law, the activity coefficients here are the only thermodynamic contribution to an 
LLE calculation. 

I4~comprehensive treatment of LLE is given by J. M. SBrensen, T. Magnussen, P. Rasmussen, and Aa. Fredenslund, 
FluidPhaseEquilibria, vol. 2, pp. 297-309,1979; vol. 3, pp. 47-82,1979; vol. 4, pp. 151-163,1980. For a compilation 
of data see W. Arlt, M. E. A. Macedo, P. Rasmussen, and J. M. S~rensen, Liquid-Liquid Equilibrium Data Collection, 
Chemistry Data Series, vol. V, Parts 1 4 ,  DECHEMA, Frankfurtmain, 1979-1987. 
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Example 14.5 demonstrates in a "brute-force" way that LLE cannot be predicted by the 
expression G ~ / R T  = Ax1x2 for values of A < 2. If the goal is merely to determine under 
what conditions LLE can occur, but not to find the compositions of the coexisting phases, then 
one may instead invoke the stability criteria of Sec. 14.3, and determine under what conditions 
they are satisfied. 
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Figure 14.15 (a) A vs. T ;  (b) Solubility diagram for a binary system described by 
G ~ / R T  = Axlxz with A = -1500/T + 23.9 - 3 In T .  ( H ~  is negative.) 
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14.5 VAPOR/ LIQUIDILIQUID EQUILIBRIUM (VLLE) 

As noted in Sec. 14.4, the binodal curves representing LLE can intersect the VLE bubblepoint 
curve. This gives rise to the phenomenon of vapor/liquid/liquid equilibrium (VLLE). A binary 
system of two liquid phases and one vapor phase in equilibrium has (by the phase rule) but 
one degree of freedom. For a given pressure, the temperature and the compositions of all three 
phases are therefore fixed. On a temperature/composition diagram the points representing 
the states of the three phases in equilibrium fall on a horizontal line at T*.  In Fig. 14.16, 
points C  and D  represent the two liquid phases, and point E represents the vapor phase. If 
more of either species is added to a system whose overall composition lies between points 
C  and D, and if the three-phase equilibrium pressure is maintained, the phase rule requires 
that the temperature and the compositions of the phases be unchanged. However, the relative 
amounts of the phases adjust themselves to reflect the change in overall composition of the 
system. 

At temperatures above T* in Fig. 14.16, the system may be a single liquid phase, two 
phases (liquid and vapor), or a single vapor phase, depending on the overall composition. In 
region a the system is a single liquid, rich in species 2; in region /3 it is a single liquid, rich 
in species 1. In region a-V, liquid and vapor are in equilibrium. The states of the individual 
phases fall on lines AC and AE.  In region /3-V, liquid and vapor phases, described by lines 
BD and B E ,  also exist at equilibrium. Finally, in the region designated V ,  the system is a 
single vapor phase. Below the three-phase temperature T*, the system is entirely liquid, with 
features described in Sec. 14.4; this is the region of LLE. 

When a vapor is cooled at constant pressure, it follows a path represented on Fig. 14.16 
by a vertical line. Several such lines are shown. If one starts at point k, the vapor first reaches its 
dewpoint at line BE  and then its bubblepoint at line B  D,  where condensation into single liquid 
phase /3 is complete. This is the same process that takes place when the species are completely 
miscible. If one starts at point n ,  no condensation of the vapor occurs until temperature T* 

I 5 ~ o t h  AI2 and are positive definite, because A12 = A21 = 0 yields infinite values for y r  and y p  



550 CHAPTER 14. Tovics in Phase Eauilibria 

Figure 14.16 T x y  diagram at constant Figure 14.17 T x y  diagram for several 
P for a binary system exhibiting VLLE pressures 

is reached. Then condensation occurs entirely at this temperature, producing the two liquid 
phases represented by points C and D. If one starts at an intermediate point m, the process 
is a combination of the two just described. After the dewpoint is reached, the vapor, tracing a 
path along line BE, is in equilibrium with a liquid tracing a path along line B D. However, at 
temperature T* the vapor phase is at point E. All remaining condensation therefore occurs at 
this temperature, producing the two liquids of points C and D. 

Figure 14.16 is drawn for a single constant pressure; equilibrium phase compositions, 
and hence the locations of the lines, change with pressure, but the general nature of the diagram 
is the same over a range of pressures. For most systems the species become more soluble in one 
another as the temperature increases, as indicated by lines C G  and DH of Fig. 14.16. If this 
diagram is drawn for successively higher pressures, the corresponding three-phase equilibrium 
temperatures increase, and lines C G  and DH extend further and further until they meet at the 
liquidlliquid consolute point M, as shown by Fig. 14.17. 

As the pressure increases, line C D  becomes shorter and shorter (indicated in Fig. 14.17 
by lines CrDr and C1'D"), until at point M it diminishes to a differential length. For still 
higher pressures (P4) the temperature is above the critical-solution temperature, and there is 
but a single liquid phase. The diagram then represents two-phase VLE, and it has the form of 
Fig. 10.9(d), exhibiting a minimum-boiling azeotrope. 

For an intermediate range of pressures, the vapor phase in equilibrium with the two liquid 
phases has a composition that does not lie between the compositions of the two liquids. This 
is illustrated in Fig. 14.17 by the curves for P3, which terminate at AN and B". The vapor in 
equilibrium with the two liquids at C" and Drr is at point F. In addition the system exhibits an 
azeotrope, as indicated at point J. 

Not all,\systems behave as described in the preceding paragraphs. Sometimes the upper 
critical-solution temperature is never attained, because a vaporlliquid critical temperature is 
reached first. In other cases the liquid solubilities decrease with an increase in temperature. In 
this event a lower critical-solution temperature exists, unless solid phases appear first. There 
are also systems which exhibit both upper and lower critical-solution temperatures.16 

I 6 ~ o r  a comprehensive discussion of binary fluid-phase behavior, see J. S. Rowlinson and F. L. Swinton, Liquids 
and Liquid Mixtures, 3d ed., Butterworth Scientific, London, 1982. 
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Figure 14.18 is the phase diagram drawn at constant T corresponding to the constant- P 
diagram of Fig. 14.16. On it we identify the three-phase-equilibrium pressure as P*, the three- 
phase-equilibrium vapor composition as y;, and the compositions of the two liquid phases 
that contribute to the vapor/liquid/liquid equilibrium state as x r  and xf . The phase boundaries 
separating the three liquid-phase regions are nearly vertical, because pressure has only a weak 
influence on liquid solubilities. 

Figure 14.18 Pxy diagram at constant T for two partially miscible liquids 

The compositions of the vapor and liquid phases in equilibrium for partially misci- 
ble systems are calculated in the same way as for miscible systems. In the regions where a 
single liquid is in equilibrium with its vapor, the general nature of Fig. 14.18 is not differ- 
ent in any essential way from that of Fig. 10.8(d). Since limited miscibility implies highly 
nonideal behavior, any general assumption of liquid-phase ideality is excluded. Even a com- 
bination of Henry's law, valid for a species at infinite dilution, and Raoult's law, valid for a 
species as it approaches purity, is not very useful, because each approximates actual behavior 
for only a very small composition range. Thus GE is large, and its composition dependence 
is often not adequately represented by simple equations. Nevertheless, the NRTL and UNI- 
QUAC equations and the UNIFAC method (App. H) provide suitable correlations for activity 
coefficients. 

1 7 ~ .  A. Villamaiian, A. J. Allawi, and H. C. Van Ness, J. Chem. Eng. Data, vol. 29, pp. 431435, 1984. 
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Thermodynamic insight into the phenomenon of low-pressure VLLE is provided by 
the modified Raoult's-law expression, Eq. (10.5). For temperature T and the three-phase- 
equilibrium pressure P*, Eq. (10.5) has a double application: 

x";pimt = =y*p* and xi B yi B pi
Sat = yI*p* 

Implicit in these equations is the LLE requirement of Eq. (14.70). Thus four equations can be 
written for a binary system: 

B B X2 y2 P p t  = y; P *  ( D l  

All of these equations are correct, but two of them are preferred over the others. Consider the 
expressions for y; P*: 

For the case of two species that approach complete immiscibility (Ex. 14.4), 

XI -+o yp + y r  x;-+ 1 y !+  1 

Thus, (O)(ypO) PISat = P y t  = yT P* 



554 CHAPTER 14. Topics in Phase Equilibria 

This equation implies that y? + oo; a similar derivation shows that y,OO + oo. Thus Eqs. (B) 
and (C), which include neither yp nor y!, are chosen as the more useful expressions. They 
may be added to give the three-phase pressure: 

In addition, the three-phase vapor composition is given by Eq. (B): 

For the diethyl ether(l)/water(2) system at 308.15 K (35°C) (Ex. 14.8), the correlation for 
G ~ / R T  provides the values: 

These allow calculation of P *  and yl by Eqs. (14.75) and (14.76): 

and 

Although no two liquids are totally immiscible, this condition is so closely approached 
in some instances that the assumption of complete immiscibility does not lead to apprecia- 
ble error. The phase characteristics of an immiscible system are illustrated by the tempera- 
ture/composition diagram of Fig. 14.20(a). This diagram is a special case of Fig. 14.16 wherein 

Figure 14.20 Binary system of immiscible liquids. (a) Txy diagram; (b) Pxy diagram 
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phase a is pure species 2 and phase is pure species 1. Thus lines ACG and B D H of Fig. 14.16 
become in Fig. 14.20(a) vertical lines at xl = 0 and xl = 1. 

In region I, vapor phases with compositions represented by line BE are in equilibrium 
with pure liquid 1 .  Similarly, in region 11, vapor phases whose compositions lie along line A E  
are in equilibrium with pure liquid 2. Liquidlliquid equilibrium exists in region 111, where the 
two phases are pure liquid 1 and pure liquid 2. If one cools a vapor mixture starting at point 
m,  the constant-composition path is represented by the vertical line shown in the figure. At the 
dewpoint, where this line crosses line B E ,  pure liquid 1 begins to condense. Further reduction 
in temperature toward T* causes continued condensation of pure liquid 1; the vapor-phase 
composition progresses along line BE until it reaches point E. Here, the remaining vapor 
condenses at temperature T*,  producing two liquid phases, one of pure species 1 and the other 
of pure species 2. A similar process, carried out to the left of point E ,  is the same, except that 
pure liquid 2 condenses initially. The constant-temperature phase diagram for an immiscible 
system is represented by Fig. 14.20(b). 

Numerical calculations for immiscible systems are particularly simple, because of the 
following equalities: 

x; = 1 y; = 1 Xj3 = 1 yp = 1 

The three-phase-equilibrium pressure P* as given by Eq. (14.75) is therefore: 

from which, by Eq. (14.76), 

For region I where vapor is in equilibrium with pure liquid 1, Eq. (10.5) becomes: 

Similarly, for region I1 where vapor is in equilibrium with pure liquid 2, 

Example 14.9 

Prepare a table of ternperaturelcomposition data for the benzene(l)/water(2) system 
at a pressure of 101.33 kPa (1  atm) from the vapor-pressure data in the accompanying 
table. 
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14.6 SOLID1 LIQUID EQUILIBRIUM (SLE) 

Phase behavior involving the solid and liquid states is the basis for separation processes (e.g., 
crystallization) in chemical and materials engineering. Indeed, a wide variety of binary phase 
behavior is observed for systems exhibiting solidlsolid, solidlliquid, and solid/solid/liquid equi- 
libria. We develop here a rigorous formulation of solidlliquid equilibrium (SLE), and present 
as applications analyses of two limiting classes of behavior. Comprehensive treatments can be 
found elsewhere.'' 

The basis for representing SLE is: 

..I AS 

fi = fi (all i) 

where uniformity of T and P  is understood. As with LLE, each fi is eliminated in favor of an 
activity coefficient. Thus, 

xi y / f i z  = zi yff i" (all i)  

where xi and zi are, respectively, the mole fractions of species i in the liquid and solid solutions. 
Equivalently, 

Xi y: = Zi )'is @i (all i) (14.77) 

where 

The right side of this equation, defining @i as the ratio of fugacities at the T and P  of 
the system, may be written in expanded form: 

where T,, is the melting temperature ("freezing point") of pure species i, i.e., the temperature 
at which pure-species SLE obtains. Thus the second ratio on the right side is unity because 
fil = fis at the melting point of pure species i. Hence, 

According to Eq. (14.79), evaluation of Qi requires expressions for the effect of temper- 
ature on fugacity. By Eq. (1 1.31), with @i = f, / P ,  

Whence, 

I8see, e.g., R. T. DeHoff, Thermodynamics in Materials Science, chaps. 9 and 10, McGraw-Hill, New York, 1993. 
A data compilation is given by H. Knapp, M. Teller, and R. Langhorst, Solid-Liquid Equilibrium Data Collection, 
Chemistry Data Series, vol. VIII, DECHEMA, FrankfurtMain, 1987. 
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where the second equality comes from Eq. (1 1.54). Integration of this equation for a phase 
from Tm, to T gives: 

Equation (14.80) is applied separately to the solid and liquid phases. The resulting expressions 
are substituted into Eq. (14.79), which is then reduced by the identity: 

-(ffF>" - H . ~ . ' )  = -[(Hf  - H f g )  - ( f f :  - f f j g ) ]  = f f :  - Hf 

This yields the exact expression: 

and 

Evaluation of the integral proceeds as follows: 

r T  

Hence, for a phase, 

Applying Eq. (14.82) separately to the solid and liquid phases and performing the integration 
required by Eq. (14.81) yields: 

where integral I is defined by: 

In Eq. (14.83), AH;' is the enthalpy change of melting ("heat of fusion") and A C ~  is the 
heat-capacity change of melting. Both quantities are evaluated at the melting temperature Tmt. 

Equations (14.77), (14.81), and (14.83) provide a formal basis for solution of problems 
in solidliquid equilibria. The full rigor of Eq. (14.83) is rarely maintained. For purposes of 
development, pressure has been carried through as a thermodynamic variable. However, its 
effect is rarely included in engineering applications. The triple integral represented by I is a 
second-order contribution, and is normally neglected. The heat-capacity change of melting can 
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be significant, but is not always available; moreover, inclusion of the term involving A C ~ ; "  
adds little to a qualitative understanding of SLE. With the assumptions that I and ACpsi are 
negligible, Eqs. (14.81) and (14.83) together yield: 

With qi given by Eq. (14.84), all that is required for formulating an SLE problem is a set 
of statements about the temperature and composition dependence of the activity coefficients 
y," and y:. In the general case, this requires algebraic expressions for G ~ ( T ,  composition) for 
both liquid and solid solutions. Consider two limiting special cases: 

I. Assume ideal-solution behavior for both phases, i.e., let yi' = 1 and y: = 1 for all T 
and compositions. 

11. Assume ideal-solution behavior for the liquid phase (y/ = l), and complete immiscibility 
for all species in the solid state (i.e., set zi y: = 1). 

These two cases, restricted to binary systems, are considered in the following. 

Case I 

The two equilibrium equations which follow from Eq. (14.77) are: 

where and are given by Eq. (14.84) with i = 1 and i = 2. Since x2 = 1 - xl and 
z2 = 1 - z l ,  Eqs. (14.85) can be solved to give xl and z l  as explicit functions of the $i s and 
thus of T: 

with 

AH;' ( T ;Tmz) 
$2 = exp - - 

RTmZ 

Inspection of these results verifies that xi = z ,  = 1 for T = Tm, . Moreover, analysis 
shows that both xi and zi vary monotonically with T. Hence systems described by Eqs. (14.85) 
exhibit lens-shaped SLE diagrams, as shown on Fig. 14.21(a), where the upper line is the 
freezing curve and the lower line is the melting curve. The liquid-solution region lies above 
the freezing curve, and the solid-solution region lies below the melting curve. Examples 
of systems exhibiting diagrams of this type range from nitrogenlcarbon monoxide at low 
temperature to copperlnickel at high temperature. Comparison of this figure with Fig. (10.12) 
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Figure 14.21 Txz  diagrams.(a) Case I, ideal liquid and solid solutions; (b) Case II, 
ideal liquid solution; immiscible solids 

suggests that Case I-SLE behavior is analogous to Raoult's-law behavior for VLE. Compar- 
ison of the assumptions leading to Eqs. (14.85) and (10.1) confirms the analogy. As with 
Raoult's law, Eq. (14.85) rarely describes the behavior of actual systems. However, it is an 
important limiting case, and serves as a standard against which observed SLE can be compared. 

Case I1 

The two equilibrium equations resulting from Eq. (14.77) are here: 

where Q1 and $2 are given as functions solely of temperature by Eqs. (14.88). Thus xl and x2 
are also solely functions of temperature, and Eqs. (14.89) and (14.90) can apply simultaneously 
only for the particular temperature where + $2 = 1 and hence xl +x2 = 1. This is the eutectic 
temperature T,. Thus, three distinct equilibrium situations exist: one where Eq. (14.89) alone 
applies, one where Eq. (14.90) alone applies, and the special case where they apply together 
at T,. 

Equation (14.89) alone applies. By this equation and Eq. (14.88a), 

This equation is valid only from T = Tm, , where xl = 1, to T = T,, where xl = xl,, 
the eutectic composition. (Note that xl = 0 only for T = 0.) Equation (14.91) therefore 
applies where a liquid solution is in equilibrium with pure species 1 as a solid phase. This 
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is represented by region I on Fig. 14.21(b), where liquid solutions with compositions xl 
given by line BE are in equilibrium with pure solid 1. 

Equation (14.90) alone applies. By this equation and Eq. (14.88b), with x2 = 1 - X I :  

This equation is valid only from T = Tm,, where xl = 0, to T = Te, where xl = xl,,  
the eutectic composition. Equation (14.92) therefore applies where a liquid solution is 
in equilibrium with pure species 2 as a solid phase. This is represented by region I1 
on Fig. 14.21(b), where liquid solutions with compositions xl given by line AE are in 
equilibrium with pure solid 2. 

Equations (14.89) and (14.90) apply simultaneously, and are set equal since they must 
both give the eutectic composition xl,.  The resulting expression, 

is satisfied for the single temperature T = T,. Substitution of T, into either Eq. (14.91) or 
(14.92) yields the eutectic composition. Coordinates Te and xle define a eutectic state, a 
special state of three-phase equilibrium, lying along line CED on Fig. 14.21(b), for which 
liquid of composition xle coexists with pure solid 1 and pure solid 2. This is a state of 
solidsolid/liquid equilibrium. At temperatures below Te the two pure immiscible solids 
coexist. 

Figure 14.21(b), the phase diagram for Case 11, is an exact analog of Fig. 14.20(a) for 
immiscible liquids, because the assumptions upon which its generating equations are based are 
analogs of the corresponding VLLE assumptions. 

14.7 SOLID/VAPOR EQUILIBRIUM (SVE) 

At temperatures below its triple point, a pure solid can vaporize. Solidvapor equilibrium for 
a pure species is represented on a P T  diagram by the sublimation curve (see Fig. 3.1); here, 
as for VLE, the equilibrium pressure for a particular temperature is called the (solidlvapor) 
saturation pressure P 

We consider in this section the equilibrium of a pure solid (species 1) with a binary vapor 
mixture containing species 1 and a second species (species 2), assumed insoluble in the solid 
phase. Since it is usually the major constituent of the vapor phase, species 2 is conventionally 
called the solvent species. Hence species 1 is the solute species, and its mole fraction yl in the 
vapor phase is its solubility in the solvent. The goal is to develop a procedure for computing 
yl  as a function of T and P for vapor solvents. 

Only one phase-equilibrium equation can be written for this system, because species 2, 
by assumption, does not distribute between the two phases. The solid is pure species 1. Thus, 

Equation (1 1.41) for a pure liquid is, with minor change of notation, appropriate here: 

V'(P - Plsat) 
f f = @sat Pl

sat exp 
RT 
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where PIsat is the solid/vapor saturation pressure at temperature T and V; is the molar volume 
of the solid. For the vapor phase, by Eq. (1 1.48), 

Combining the three preceding equations and solving for yl gives: 

PISat 
y1 = -F1 

P 

where @sat V;(P - PIsat) 
Fl = -;, exp 

41 R T  

Function Fl reflects vapor-phase nonidealities through @" and 6 ,  and the effect of 
pressure on the fugacity of the solid through the exponential Poynting factor. For sufficiently 
low pressures, both effects are negligible, in which case Fl % 1 and yl % PIsat/ P .  At moderate 
and high pressures, vapor-phase nonidealities become important, and for very high pressures 
even the Poynting factor cannot be ignored. Since Fl is generally observed to be greater than 
unity, it is sometimes called an "enhancement factor," because according to Eq. (14.94) it leads 
to a solid solubility greater than would obtain in the absence of these pressure-induced effects. 

Estimation of Solid Solubility at High Pressure 

Solubilities at temperatures and pressures above the critical values of the solvent have important 
applications for supercritical separation processes. Examples are extraction of caffeine from 
coffee beans and separation of asphaltenes from heavy petroleum fractions. For a typical 
solid/vapor equilibrium (SVE) problem, the solidlvapor saturation pressure PIsat is very small, 
and the saturated vapor is for practical purposes an ideal gas. Hence q5yt for pure solute vapor 
at this pressure is close to unity. Moreover, except for very low values of the system pressure P ,  
the solid solubility yl is small, and can be approximated by $:, the vapor-phase fugacity 
coefficient of the solute at infinite dilution. Finally, since PISat is very small, the pressure 
difference P - P F t  in the Poynting factor is nearly equal to P at any pressure where this factor 
is important. With these usually reasonable approximations, Eq. (14.95) reduces to: 

1 P v; 
Fl = - exp - 

6: RT 

an expression suitable for engineering applications. In this equation, PIsat and Vf are pure- 
species properties, found in a handbook or estimated from a suitable correlation. Quantity $?, 
on the other hand, must be computed from a P VT equation of state- one suitable for vapor 
mixtures at high pressures. 

Cubic equations of state, such as the SoaveRedlich/Kwong (SRK) and PengRobinson 
(PR) equations, are usually satisfactory for this kind of calculation. Equation (14.50) for $i, 
developed in Sec. 14.2, is applicable here, but with a slightly modified combining rule for 
interaction parameter aij used in calculation of qi. Thus, Eq. (14.44) is replaced by: 

aij = (1 - ltj)(aLaj)112 (14.97) 

The additional binary interaction parameter lij must be found for each i j  pair (i # j )  from 
experimental data. By convention, lij = lji and lii = ljj = 0. 
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Partial parameter Gi is found from Eq. (14.45): 

ai = -a + 2 yjaji 
i 

Substitution of this expression into Eq. (14.51) yields: 

where a ,  b, q are given by Eqs. (14.43), (14.42), and (14.41). 
For species 1 at infinite dilution in a binary system, the "mixture" is pure species 2. In 

this event, Eqs. (14.50), (14.97), and (14.98) yield an expression for 6:: 

where by Eq. (6.62b), 1 2 2  + 0192 
I2 = - In 

- E  Z 2 + ~ 8 2  

Equation (14.99) is used in conjunction with Eqs. (14.31) and (14.32), which provide values 
of Z2 and B2 corresponding to a particular T and P. 

As an example, consider the calculation of the solubility of naphthalene(1) in carbon 
dioxide(2) at 308.15 K (35°C) and pressures up to 300 bar. Strictly, this is not solidvapor 
equilibrium, because the critical temperature of C02 is 304.25 K (31.1°C). However, the de- 
velopment of this section remains valid. 

The basis is Eq. (14.96), with 4: determined from Eq. (14.99) written for the SRK 
equation of state. For solid naphthalene at 308.15 K (35"C), 

PIsat = 2.9 x bar and V," = 125 cm3 mol-' 

Equations (14.99) and (14.31) reduce to the SRK expressions on assignment of the values 
o = 1 and E = 0. Evaluation of parameters a , ,  az, bl, and b2 requires values for Tc, PC, and 
w,  which are found in App. B. Thus Eqs. (14.34) and (14.35) give: 

a1 = 7.299 x lo7 bar cm6 rn01-~ bl = 133.1 cm3 mol-' 

a2 = 3.664 x lo6 bar cm6 molP2 b2 = 29.68 cm3 molP1 

By Eq. (14.36), a2 
q2 = - = 4.819 

b2RT 

With these values, Eqs. (14.99), (14.31), and (14.32) become: 
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Figure 14.22 Solubility of naphthalene(1) in carbon dioxide(2) at 308.15 K (35°C). 
Circles are data. Curves are computed from Eqs. (14.94) and (14.96) under various 
assumptions 

To find $7 for a given l I 2  and P,  one first evaluates B2 by Eq. ( C )  and solves Eq. ( B )  for Z2. 
Substitution of these values into Eq. ( A )  then gives 6:. For example, for P = 200 bar and 
112 = 0,  Eq. ( C )  gives B2 = 0.2317 and solution of Eq. ( B )  yields Z2 = 0.4426. Then by 
Eq. (A ) ,  &r = 4.74 x lop5.  This small value leads by Eq. (14.96) to a large enhancement 
factor Fl. 

Tsekhanskaya et al.19 report solubility data for naphthalene in carbon dioxide at 308.15 K 
(35°C) and high pressures, given as circles on Fig. 14.22. The sharp increase in solubility as the 
pressure approaches the critical value (73.83 bar for C 0 2 )  is typical of supercritical systems. 
Shown for comparison are the results of calculations based on Eqs. (14.94) and (14.96), under 
various assumptions. The lowest curve shows the "ideal solubility" Plsat/P, for which the 
enhancement factor Fl is unity. The dashed curve incorporates the Poynting effect, which is 

19y. V. Tsekhanskaya, M. B. Iomtev, and E. V. Mushkina, Russian J. Phys. Chem., vol. 38, pp. 1173-1176, 1964. 
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significant at the higher pressures. The topmost curve includes the Poynting effect as well as 
$?, estimated from Eq. (14.99) with SRK constants and with l I 2  = 0; this purely predictive 
result captures the general trends of the data, but overestimates the solubility at the higher 
pressures. Correlation of the data requires a nonzero value for the interaction parameter; the 
value l I 2  = 0.088 produces the semi-quantitative representation shown on Fig. 14.22 as the 
second curve from the top. 

14.8 EQUILIBRIUM ADSORPTION OF GASES ON SOLIDS 

The process by which certain porous solids bind large numbers of molecules to their surfaces 
is known as adsorption. Not only does it serve as a separation process, but it is also a vital 
part of catalytic-reaction processes. As a separation process, adsorption is used most often for 
removal of low-concentration impurities and pollutants from fluid streams. It is also the basis for 
chromatography. In surface-catalyzedreactions, the initial step is adsorption of reactant species; 
the final step is the reverse process, desorption of product species. Since most industrially 
important reactions are catalytic, adsorption plays a fundamental role in reaction engineering. 

The nature of the adsorbing surface is the determining factor in adsorption. The molecular 
characterization of solid surfaces is not yet fully developed; however, current knowledge allows 
a helpful description. To be useful as an adsorbent, a solid must present a large surface area 
per unit mass (up to 1500 m2 per gram). This can only be achieved with porous solids such as 
activated carbon, silica gels, aluminas, and zeolites, which contain many cavities or pores with 
diameters as small as a fraction of a nanometer. Surfaces of such solids are necessarily irregular 
at the molecular level, and they contain sites of particular attraction for adsorbing molecules. 
If the sites are close together, the adsorbed molecules may interact with one another; if they 
are sufficiently dispersed, the adsorbed molecules may interact only with the sites. Depending 
upon the strength of the forces binding them to the sites, these adsorbate molecules may 
be mobile or fixed in position. The relatively weak electrostatic, induction, and dispersion 
forces discussed in Sec. 16.1 favor mobility and result in physical adsorption. On the other 
hand, much stronger quasichemical forces can act to fix molecules to the surface, promoting 
chernisorption. Although adsorption may be classified in several ways, the usual distinction is 
between physical adsorption and chemisorption. Based on the strength of the binding forces, 
this division is observed experimentally in the magnitudes of the heat of adsorption. 

In the adsorption of gases, the number of molecules attracted to a solid surface depends 
on conditions in the gas phase. For very low pressures, relatively few molecules are adsorbed, 
and only a fraction of the solid surface is covered. As the gas pressure increases at a given tem- 
perature, surface coverage increases. When all sites become occupied, the adsorbed molecules 
are said to form a monolayer. Further increase in pressure promotes multilayer adsorption. It 
is also possible for multilayer adsorption to occur on one part of a porous surface when vacant 
sites still remain on another part. 

The complexities of solid surfaces and our inability to characterize exactly their interac- 
tions with adsorbed molecules limits our understanding of the adsorption process. It does not, 
however, prevent development of an exact thermodynamic description of adsorption equilib- 
rium, applicable alike to physical adsorption and chemisorption and equally to monolayer and 
multilayer adsorption. The thermodynamic framework is independent of any particular theo- 
retical or empirical description of material behavior. However, in application such a description 
is essential, and meaningful results require appropriate models of behavior. 
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The thermodynamic treatment of gasladsorbate equilibrium is in many respects analogous 
to that of vaporlliquid equilibrium. However, the definition of a system to which the equations 
of thermodynamics apply presents a problem. The force field of the solid adsorbent influences 
properties in the adjacent gas phase, but its effect decreases rapidly with distance. Thus the 
properties of the gas change rapidly in the immediate neighborhood of the solid surface, but they 
do not change abruptly. A region of change exists which contains gradients in the properties 
of the gas, but the distance into the gas phase that the solid makes its influence felt cannot be 
precisely established. 

This problem is circumvented by a construct devised by J. W. Gibbs. Imagine that the 
gas-phase properties extend unchanged up to the solid surface. Differences between the actual 
and the unchanged properties can then be attributed to a mathematical surface, treated as a two- 
dimensional phase with its own thermodynamic properties. This provides not only a precisely 
defined surface phase to account for the singularities of the interfacial region, but it also extracts 
them from the three-dimensional gas phase so that it too may be treated precisely. The solid, 
despite the influence of its force field, is presumed inert and not otherwise to participate in 
the gasladsorbate equilibrium. Thus for purposes of thermodynamic analysis the adsorbate is 
treated as a two-dimensional phase, inherently an open system because it is in equilibrium with 
the gas phase. 

The fundamental property relation for an open P V T system is given by Eq. (1 1.2): 

An analogous equation may be written for a two-dimensional phase. The only difference is 
that pressure and molar volume are not in this case appropriate variables. Pressure is replaced 
by the spreading pressure IT, and the molar volume by the molar area a:  

This equation is written on the basis of a unit mass, usually a gram or a kilogram, of solid 
adsorbent. Thus n is the speciJic amount adsorbed, i.e., the number of moles of adsorbate per 
unit mass of adsorbent. Moreover, area A is defined as the specific surface area, i.e., the area 
per unit mass of adsorbent, a quantity characteristic of a particular adsorbent. The molar area, 
a - A l n ,  is the surface area per mole of adsorbate. 

The spreading pressure is the two-dimensional analog of pressure, having units of force 
per unit length, akin to surface tension. It can be pictured as the force in the plane of the 
surface that must be exerted perpendicular to each unit length of edge to keep the surface from 
spreading, i.e., to keep it in mechanical equilibrium. It is not subject to direct experimental 
measurement, and must be calculated, significantly complicating the treatment of adsorbed- 
phase equilibrium. 

Since the spreading pressure adds an extra variable, the number of degrees of freedom 
for gasladsorbate equilibrium is given by an altered version of the phase rule. For gasladsorbate 
equilibrium, n = 2; therefore, 

Thus for adsorption of a pure species, 
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and two phase-rule variables, e.g., T and P or T and n,  must be fixed independently to establish 
an equilibrium state. Note that the inert solid phase is counted neither as a phase nor as a species. 

Recall the summability relation for the Gibbs energy, which follows from Eqs. (1 1.8) 
and (1 1.12): 

Differentiation gives: d(nG) = pi dni + x ni dp i  
I I 

Comparison with Eq. (14.100) shows: 

or SdT  - a d H +  E x i d p i  = O  
I 

This is the GibbsIDuhem equation for the adsorbate. Restricting it to constant temperature 
produces the Gibbs adsorption isotherm: 

-a dl3 + E xi d p ,  = 0 (const T) (14.101) 
I 

The condition of equilibrium between adsorbate and gas presumes the same temperature 
for the two phases and requires: 

where p f  represents the gas-phase chemical potential. For a change in equilibrium conditions, 

If the gas phase is an ideal gas (the usual assumption), then differentiation of Eq. (1 1.28) at 
constant temperature yields: 

dpf = RTd In yi P 

Combining the last two equations with the Gibbs adsorption isotherm gives: 

where xi and yi represent adsorbate and gas-phase mole fractions respectively. 

Pure-Gas Adsorption 

Basic to the experimental study of pure-gas adsorption are measurements at constant tempera- 
ture of n ,  the moles of gas adsorbed, as a function of P, the pressure in the gas phase. Each set 
of data represents an adsorption isotherm for the pure gas on a particular solid adsorbent. 
Available data are summarized by Valenzuela and ~ y e r s . "  The correlation of such data 

2 0 ~ .  P. Valenzuela and A. L. Myers, Adsorption Equilibrium Data Handbook, Prentice Hall, Englewood Cliffs, NJ, 
1989. 
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requires an analytical relation between n and P ,  and such a relation should be consistent 
with Eq. (14.102). 

Written for a pure chemical species, this equation becomes: 

The compressibility-factor analog for an adsorbate is defined by the equation: 

Differentiation at constant T yields: 

Replace the last term by Eq. (14.103) and eliminate n / R T  in favor of z /a  in accord with 
Eq. (14.104) to yield: 

Substituting a = A / n  and da = -A dn/n2  gives: 

dn  
- d l n P  = -z- - d z  

n 

Adding d n l n  to both sides of this equation and rearranging, 

Integration from P = 0 (where n = 0 and z = 1) to P = P and n = n yields: 

The limiting value of n / P  as n + 0 and P + 0 must be found by extrapolation of 
experimental data. Applying l'H6pital's rule to this limit gives: 

Thus k is defined as the limiting slope of an isotherm as P + 0, and is known as Henry's 
constant for adsorption. It is a function of temperature only for a given adsorbent and adsorbate, 
and is characteristic of the specific interaction between a particular adsorbent and a particular 
adsorbate. 

The preceding equation may therefore be written: 
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This general relation between n,  the moles adsorbed, and P, the gas-phase pressure, 
includes z ,  the adsorbate compressibility factor, which may be represented by an equation of 
state for the adsorbate. The simplest such equation is the ideal-gas analog, z = 1, and in this 
case Eq. (14.105) yields n = k P ,  which is Henry's law for adsorption. 

An equation of state known as the ideal-lattice-gas equation2' has been developed specif- 
ically for an adsorbate: 

where rn is a constant. This equation is based on the presumptions that the surface of the 
adsorbate is a two-dimensional lattice of energetically equivalent sites, each of which may 
bind an adsorbate molecule, and that the bound molecules do not interact with each other. The 
validity of this model is therefore limited to no more than monolayer coverage. Substitution of 
this equation into Eq. (14.105) and integration leads to the Langmuir 

Solution for n yields: 

Alternatively, 

where b = m/ k ,  and k  is Henry's constant. Note that when P  + 0, n/  P  properly approaches 
k .  At the other extreme, where P -+ oo, n approaches m,  the saturation value of the specific 
amount absorbed, representing full monolayer coverage. 

Based on the same assumptions as for the ideal-lattice-gas equation, Langmuir in 1918 
derived Eq. (14.106) by noting that at equilibrium the rate of adsorption and the rate of des- 
orption of gas molecules must be the same.23 For monolayer adsorption, the number of sites 
may be divided into the fraction occupied 0 and the fraction vacant 1 - 0. By definition, 

n rn- n 
1 3 -  and 1 - 0 = -  

rn rn 

where m is the value of n for full monolayer coverage. For the assumed conditions, the rate 
of adsorption is proportional to the rate at which molecules strike the surface, which in turn is 
proportional to both the pressure and the fraction 1 - 0 of unoccupied surface sites. The rate 
of desorption is proportional to the occupied fraction 0 of sites. Equating the two rates gives: 

rn-n  n 
K P  m = K'.- m 

"See, e.g., T. L. Hill, An Introduction to Statistical Mechanics, sec. 7-1, Addison-Wesley, Reading, MA, 1960. 

221rving Langmuir (1881-1957), the second American to receive the Nobel Prize in chemistry, awarded for his 
contributions in the field of surface chemistry. 

231. Langmuir, J. Am. Chem. Soc., vol. 40, p. 1361, 19 18. 
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where K and K' are proportionality (rate) constants. Solving for n and rearranging yields: 

where K - K / K ' ,  the ratio of the forward and reverse adsorption rate constants, is the conven- 
tional adsorption equilibrium constant. The second equality in this equation is equivalent to 
Eq. (14.106), and indicates that the adsorption equilibrium constant is equal to Henry's constant 
divided by m, i.e., K = klm. 

Since the assumptions upon which it is based are fulfilled at low surface coverage, the 
Langmuir isotherm is always valid as 0 -+ 0 and as n -+ 0. Even though these assump- 
tions become unrealistic at higher surface coverage, the Langmuir isotherm may provide an 
approximate overall fit to n vs. P data; however, it does not lead to reasonable values form. 

Substituting a = A / n  in Eq. (14.103) gives: 

Integration at constant temperature from P = 0 (where n = 0) to P = P and Il = Il yields: 

This equation provides the only means for evaluation of spreading pressure. The integration 
may be carried out numerically or graphically with experimental data, or the data may be fit to 
an equation for an isotherm. For example, if the integrand n / P  is given by Eq. (14.107), the 
Langmuir isotherm, then: 

I-IA P + b  
- = kbln- 
RT b 

an equation valid for n -+ 0. 
No equation of state is known that leads to an adsorption isotherm which in general fits 

experimental data over the entire range of n from zero to full monolayer coverage. Isotherms 
that find practical use are often 3-parameter empirical extensions of the Langmuir isotherm. 
An example is the Toth equation:24 

which reduces to the Langmuir equation for t = 1. When the integrand of Eq. (14.108) is 
expressed by the Toth equation and most other 3-parameter equations, its integration requires 
numerical methods. Moreover, the empirical element of such equations often introduces a 
singularity that makes them behave improperly in the limit as P + 0. Thus for the Toth 
equation ( t  < 1) the second derivative d2n /dp2  approaches -cc in this limit, making values 
of Henry's constant as calculated by this equation too large. Nevertheless, the Toth equation 
finds frequent practical use as an adsorption isotherm. However, it is not always suitable, and 

24~alenzuela and Myers, op. cit. 
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Figure 14.23 Adsorption isotherm for ethylene on a carbon molecular 
sieve at 323.15 K (50°C) 
Legend: a experimental data; - - - Henry's law; Toth equa- 
tion; - - - Langmuir equation n -+ 0 

a number of other adsorption isotherms are in use, as discussed by S U Z U ~ ~ . ~ ~  Among them, the 
Freundlich equation, 

n 
$ = - =ap1/fl (P > 1) (14.1 1 1) 

m 
is a 2-parameter (a and B) isotherm that often successfully correlates experimental data for 
low and intermediate values of 8. 

2 5 ~ .  Suzuki, Adsorption Engineering, pp. 35-51, Elsevier. Amsterdam, 1990. 
2 6 ~ .  Nakahara, M. Hirata, and H. Mori, J. Chem. Eng. Data, vol. 27, pp. 317-320, 1982. 
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1 atm. The result is a curve the first part of which is like that in Fig. 14.23. When monolayer 
coverage is nearly complete, multilayer adsorption begins, and the curve changes direction, 
with n increasing ever more rapidly with pressure. Finally, as the pressure approaches 1 atm, the 
vapor pressure of the N2 adsorbate, the curve becomes nearly vertical because of condensation 
in the pores of the adsorbent. The problem is to identify the point on the curve that represents 
full monolayer coverage. The usual procedure is to fit the Brunauer/Emmett/Teller (BET) 
equation, a 2-parameter extension of the Langmuir isotherm to multilayer adsorption, to the n 
vs. P data. From this, one can determine a value for m.27 Once m is known, multiplication by 
Avogadro's number and by the area occupied by one adsorbed N2 molecule (16.2 A2) yields 
the surface area. The method has its uncertainties, particularly for molecular sieves where the 
pores may contain unadsorbed molecules. Nevertheless, it is a useful and widely used tool for 
characterizing and comparing adsorption capacities. 

Heat of Adsorption 

The Clapeyron equation, derived in Sec. 6.4 for the latent heat of phase transition of pure 
chemical species, is also applicable to pure-gas adsorption equilibrium. Here, however, the 
two-phase equilibrium pressure depends not only on temperature, but on surface coverage or 
the amount adsorbed. Thus the analogous equation for adsorption is written 

where subscript n signifies that the derivative is taken at constant amount adsorbed. Superscript 
av denotes a property change of desorption, i.e., the difference between the vapor-phase and 
the adsorbed-phase property. The quantity AH"" - H U  - H a  is defined as the isosteric heat 
ofadsorption, and is usually a positive quantity.28 The heat of adsorption is a useful indication 
of the strength of the forces binding adsorbed molecules to the surface of the adsorbent, and 
its magnitude can therefore often be used to distinguish between physical adsorption and 
chemisorption. 

The dependence of heats of adsorption on surface coverage has its basis in the energetic 
heterogeneity of most solid surfaces. The first sites on a surface to be occupied are those which 
attract adsorbate molecules most strongly and with the greatest release of energy. Thus the 
heat of adsorption decreases with surface coverage. Once all sites are occupied and multilayer 
adsorption begins, the dominant forces become those between adsorbate molecules, and for 
subcritical species the decreasing heat of adsorption approaches the heat of vaporization. 

Assumed in the derivation of the Langmuir isotherm is the energetic equivalence of all 
adsorption sites, implying that the heat of adsorption is independent of surface coverage. This 
explains in part the inability of the Langmuir isotherm to provide a close fit to most experimental 
data over a wide range of surface coverage. The Freundlich isotherm, Eq. (14.11 I), implies a 
logarithmic decrease in the heat of adsorption with surface coverage. 

As in the development of the Clausius/Clapeyron equation (Example 6.5), if for low 
pressures one assumes that the gas phase is ideal and that the adsorbate is of negligible volume 

2 7 ~ .  M. Smith, Chemical Kinetics, 3d ed., sec. 8-1, McGraw-Hill, New York, 1981. 

"other heats of adsorption, defined differently, are also in use. However, the isosteric heat is the most common, 
and is the one needed for energy balances on adsorption columns. 
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compared with the gas-phase volume, Eq. (14.1 12) becomes: 

Application of this equation requires the measurement of isotherms, such as the one at 323.15 
K (50°C) in Fig. 14.23, at several temperatures. Cross plotting yields sets of P vs. T relations 
at constant n, from which values for the partial derivative of Eq. (14.1 13) can be obtained. For 
chemisorption, AHaU values usually range from 60 to 170 kJ mol-'. For physical adsorption, 
they are smaller. For example, measured values at very low coverage for the physical adsorption 
of nitrogen and n-butane on 5.A zeolite are 18.0 and 43.1 kJ mol-l, respectively.29 

Mixed-Gas Adsorption 

Mixed-gas adsorption is treated similarly to the gammalphi formulation of VLE (Sec. 14.1). 
With a gas-phase property denoted by superscript g, Eqs. (1 1.30) and (1 1.42), which define 
fugacity, are rewritten: 

G8 = I '~(T) + RT In Lg (14.114) 

,us = F ~ ( T )  + R T  In f$  
Note as a result of Eqs. (1 1.33) and (1 1.49) that: 

with 

Ag lim - = 1 and J8 lim - = 1 
P-tO P P-0 yi P 

For the adsorbate analogous equations are: 

Gi = Fi(T) + RT In fi 

The Gibbs energies as given by Eqs. (14.1 14) and (14.116) may be equated for pure- 
gasladsorbate equilibrium: 

r f (T )  + RT In fig = Ti(T) + RT In fi 
Rearrangement gives: 

The limiting value of f i  /Lg as both P and n approach zero can be used to evaluate Fi (T): 

f n ni . n lim -5 = lim - = lim - hm - 
P+O f g  P - ~ O  P n,+O P n+o ni 

2 9 ~ .  Hashimoto and J. M. Smith, Ind. Eng. Chem. Fund., vol. 12, p. 353, 1973. 
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The first limit of the last member is Henry's constant k i ;  the second limit is evaluated from 
Eq. (14.104), written n / n i  = z i R T / A ;  thus, 

n RT 
. lim - = - 

n+o ni A  
n;+O 

In combination with Eq. (14.1 18) these equations give: 

Similarly, equating Eqs. (14.1 15) and (14.1 17) yields: 

I ' ~ ( T )  + RT In f f  = Ti(T)  + RT In f i  

from which 

Then by Eq. (14.119), 

These equations show that equality of fugacities is not a proper criterion for gasladsorb- 
ate equilibrium. This is also evident from the fact that the units of gas-phase fugacities are 
those of pressure, while the units of adsorbate fugacities are those of spreading pressure. In 
most applications the fugacities appear as ratios, and the factor ki R T I A  cancels. Nevertheless 
it is instructive to note that equality of chemical potentials, not fugacities, is the fundamental 
criterion of phase equilibrium. 

An activity coefficient for the constituent species of a mixed-gas adsorbate is defined by 
the equation: 

where f i  and f," are evaluated at the same T  and spreading pressure n .  The degree sign ( O )  

denotes values for the equilibrium adsorption of pure i at the spreading pressure of the mixture. 
Substitution for the fugacities by Eqs. (14.120) and (14.121) gives: 

J'i = 
f ; ( p )  

xifig(PiO) 

The fugacities are evaluated at the pressures indicated in parentheses, where P is the equilib- 
rium mixed-gas pressure and Pi

0 is the equilibrium pure-gas pressure that produces the same 
spreading pressure. If the gas-phase fugacities are eliminated in favor of fugacity coefficients 
[Eqs. (11.32) and (11.48)], then: 
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The usual assumption is that the gas phase is ideal, in which case the fugacity coefficients are 
unity: 

These equations provide the means for calculation of activity coefficients from mixed-gas 
adsorption data. Alternatively, if yi values can be predicted, they allow calculation of adsorbate 
composition. In particular, if the mixed-gas adsorbate forms an ideal solution, then yi = 1, and 
the resulting equation is the adsorption analog of Raoult's law: 

This equation is always valid as P + 0 and within the pressure range for which Henry's law 
is a suitable approximation. 

Equation (14.108) is applicable not only for pure-gas adsorption but also for adsorption 
of a constant-composition gas mixture. Applied in the range where Henry's law is valid, it 
yields: 

where k is the mixed-gas Henry's constant. For adsorption of pure species i at the same 
spreading pressure, this becomes: 

Combining these two equations with Eq. (14.124) gives: 

Summing over all i , 

I 

Eliminating k between these two equations yields: 

This simple equation, requiring only data for pure-gas adsorption, provides adsorbate compo- 
sitions in the limit as P -+ 0. 

For an ideal adsorbed solution, in analogy with Eq. (1 1.78) for volumes, 

where a is the molar area for the mixed-gas adsorbate and a: is the molar area of the pure-gas 
adsorbate at the same temperature and spreading pressure. Since a = A l n  and a: = Alnp, 
this equation may be written: 
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where n is the specific amount of mixed-gas adsorbate and np is the specific amount of pure-i 
adsorbate at the same spreading pressure. The amount of species i in the mixed-gas adsorbate 
is of course ni = xin. 

The prediction of mixed-gas adsorption equilibria by ideal-adsorbed-solution theory3' 
is based on Eqs. (14.124) and (14.128). The following is a brief outline of the procedure. Since 
there are N + 1 degrees of freedom, both T and P, as well as the gas-phase composition, 
must be specified. Solution is for the adsorbate composition and the specific amount adsorbed. 
Adsorption isotherms for eachpure species must be known over the pressure range from zero 
to the value that produces the spreading pressure of the mixed-gas adsorbate. For purposes of 
illustration we assume Eq. (14.107), the Langmuir isotherm, to apply for each pure species, 
writing it: 

The inverse of Eq. (14.109) provides an expression for Pi
0, which yields values of Pi

0 

corresponding to the spreading pressure of the mixed-gas adsorbate: 

where 

The following steps then constitute a solution procedure: 

An initial estimate of @ is found from the Henry's-law equations. Combining the definition 
of @ with Eqs. (14.125) and (14.126) yields: 

@ = p C ~ i k i  
i 

With this estimate of @, calculate Pi
0 for each species i by Eq. ( B )  and np for each species 

i by Eq. (A). 
One can show that the error in @ is approximated by: 

Moreover, the approximation becomes increasingly exact as 6@ decreases. If 6@ is smaller 
than some preset tolerance (say 6@ < @ x lop7), the calculation goes to the final step; if 
not, a new value, @ = @ + 6@, is determined, and the calculation returns to the preceding 
step. 

3 0 ~ .  L. Myers and J. M. Prausnitz, AZChE J. ,  vol. 11, pp. 121-127,1965; D. P. Valenzuela and A. L. Myers, op. cit. 
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Calculate xi for each species i by Eq. (14.124): 

Calculate the specific amount absorbed by Eq. (14.128). 

Use of the Langmuir isotherm has made this computational scheme appear quite simple, 
because direct solution for Pi

0 (step 2)  is possible. However, most equations for the adsorption 
isotherm are less tractable, and this calculation must be done numerically. This significantly 
increases the computational task, but does not alter the general procedure. 

Predictions of adsorption equilibria by ideal-adsorbed-solution theory are usually satis- 
factory when the specific amount adsorbed is less than a third of the saturation value for mono- 
layer coverage. At higher adsorbed amounts, appreciable negative deviations from ideality are 
promoted by differences in size of the adsorbate molecules and by adsorbent heterogeneity. 
One must then have recourse to Eq. (14.123). The difficulty is in obtaining values of the activity 
coefficients, which are strong functions of both spreading pressure and temperature. This is in 
contrast to activity coefficients for liquid phases, which for most applications are insensitive 
to pressure. This topic is treated by Talu et al.31 

14.9 OSMOTIC EQUILIBRIUM AND OSMOTIC PRESSURE 

Most of the earth's water resides in the oceans, as seawater. For some regions, this is the ultimate 
source of fresh water for public and commercial use. Conversion of seawater to fresh water re- 
quires the separation of more-or-less pure water from an aqueous solution containing dissolved 
solute species. About 65% of such conversion is currently done by distillation schemes. But 
another 30% is effected by veverse osmosis. Central to an understanding of osmotic separations 
are the concepts of osmotic equilibrium and osmotic pressure, the topics of this section. 

Consider the idealized physical situation represented by Fig. 14.25. A chamber is divided 
into two compartments by a rigid semipermeable partition. The left compartment contains a 
binary solute(l)/solvent(2) liquid mixture, and the right contains pure solvent; the partition 
is permeable to solvent species 2  only. Temperature is uniform and constant throughout, but 
moveable pistons permit independent adjustment of the pressures in the two compartments. 

Suppose that pressure is the same in the two compartments: P'= P. This implies in- 
equality of the fugacity f2 of the only distributed species (the solvent), for by Eq. (14.68), 

meaning that 

Thus, if P1 = P,  the solvent fugacity is smaller in the left compartment than in the right. The 
difference in solvent fugacity represents a driving force for mass transfer, and solvent diffuses 
through the partition, from right to left. 

310. Talu, J. Li, and A. L. Myers, Adsorption, vol. 1, pp. 103-1 12, 1995. 
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Rigid / semipermeable 
partition 

Figure 14.25 Idealized osmotic system 

Equilibrium can be established by increasing pressure P' to an appropriate value P*, 
such that 

f 2 ( T ,  P'= P*, ~2 < 1) = f2(T, P )  

The pressure difference, n - P* - P ,  is called the osmotic pressure of the solution. It is defined 
implicitly through the equilibrium equation for species 2, which we write in abbreviated form 
as: 

Equation (14.129) is a basis for developing explicit expressions for osmotic pressure n. 
Development is facilitated by the identity: 

The first ratio on the right is, by Eq. (1 1.87), 

where M is the activity coefficient of solvent in the.mixture at pressure P .  The second ratio is 
a Poyntirag factor, representing here a pressure effect on the fugacity of a species in solution. 
An expression for this factor is readily found from Eq. (1 1.42): 

By Eqs. (11.19) and (1 1.81, 
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Thus, for solvent species 2, 

Whence, 

Equation (14.130) therefore becomes: 

Combination with Eq. (14.129) yields: 

Equation (14.131) is exact; working expressions for l7 follow by rational approximation. 
If we ignore the effect of pressure on V2, the integral becomes ~ V ~ I R T .  Solution for 

l7 then yields: 

If in addition the solution is sufficiently dilute in solute 1, 

V2 x V2 M x 1 and 1n(x2y2) = ln(1 - xl) -XI 

With these approximations, Eq. (14.132) becomes: 

Equation (14.133) is the celebrated van't Hoff equation.32 
Equation (14.131) is valid when species 1 is a nonelectrolyte. If the solute is a strong 

(completely dissociated) electrolyte containing m ions, then the right side is: 

and the van't Hoff equation becomes: 

32~acobus Henricus van't Hoff (1852-191 I), Dutch chemist who won the first Nobel prize for chemistry in 1901. 
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Osmotic pressure can be quite large, even for very dilute solutions. Consider an aqueous 
solution containing mole fraction xl = 0.001 of a nonelectrolyte solute species at 298.15 K 
(25°C). Then 

1 mol cm3 atm n = o.001 x ---- -- x 82.06- x 298.15 K 
18.02 cm3 mol K 

= 1.36 atm 

With reference to Fig. 14.25, this means that for apure solvent pressure P = 1 atm, the pressure 
P' on the solution must be 2.36 atm to prevent diffusion of solvent from right to left, i.e., to 
establish osmotic equilibrium.33 Pressures P' greater than this value make: 

and a driving force exists for transfer of water (solvent) from left to right. This observation 
serves as motivation for the process called reverse osmosis, wherein a solvent (commonly 
water) is separated from a solution by application of sufficient pressure to provide the driving 
force necessary for solvent transfer through a membrane which for practical purposes is perme- 
able only to the solvent. The minimum pressure difference (solution pressure vs. pure-solvent 
pressure) is just the osmotic pressure lT. 

In practice, pressure differences significantly greater than l7 are used to effect osmotic 
separations. For example, seawater has an osmotic pressure of about 25 bar, but working 
pressures of 50 to 80 bar are employed to enhance the rate of recovery of fresh water. A feature 
of such separations is that they require mechanical power only, for pumping the solution to an 
appropriate pressure level. This contrasts with distillation schemes, where steam is the usual 
source of energy. A brief overview of reverse osmosis is given by Perry and Green.34 

PROBLEMS 

14.1. The excess Gibbs energy for the system chloroform(l)/ethano1(2) at 328.15 K (55°C) 
is well represented by the Margules equation, written: 

The vapor pressures of chloroform and ethanol at 328.15 K (55°C) are: 

(a) Assuming the validity of Eq. (10.5), make BUBL P calculations at 328.15 K (55°C) 
for liquid-phase mole fractions of 0.25,0.50, and 0.75. 

(6)  For comparison, repeat the calculations using Eqs. (14.1) and (14.2) with virial 
coefficients: 

B11 = -963 cm3 mol-' BZZ = -1,523 cm3 mol-I BI2  = 52 cm3 mol 

3 3 ~ o t e  that, unlike conventional phase equilibrium, pressures are unequal for osmotic equilibrium, owing to the 
special constraints imposed by the rigid semipermeable partition. 

3 4 ~ .  H. Perry and D. Green, Perry's Chemical Engineers' Handbook, 7th ed., pp. 22-37-22-42 and 22-48-22.56, 
McGraw-Hill, New York, 1997. 
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14.2. Find expressions for J1 and J2 for a binary gas mixture described by Eq. (3.39). The 
mixing rule for B is given by Eq. (1 1.58). The mixing rule for C is given by the general 
equation: 

where Cs with the same subscripts, regardless of order, are equal. For a binary mixture, 
this becomes: 

14.3. A system formed of methane(1) and a light oil(2) at 200 K and 30 bar consists of a vapor 
phase containing 95 mol-% methane and a liquid phase containing oil and dissolved 
methane. The fugacity of the methane is given by Henry's law, and at the temperature 
of interest Henry's constant is Xl = 200 bar. Stating any assumptions, estimate the 
equilibrium mole fraction of methane in the liquid phase. The second virial coefficient 
of pure methane at 200 K is - 105 cm3 mol-'. 

14.4. Assume that the last three data points (including the value of PF t )  of Table 12.1, p. 401, 
cannot be measured. Nevertheless, a correlation based on the remaining data points is 
required. Assuming the validity of Eq. (10.5), Eq. (14.28) may be written: 

Data reduction may be based on Barker's method, i.e., minimizing the sum of squares 
of the residuals between the experimental values of P and the values predicted by 
this equation (see Ex. 12.1). Assume that the activity coefficients can be adequately 
represented by the Margules equation. 

(a) Show that: ln(yl/yp") = x,2[A12 + 2(AZ1 - A12)xl] - A12. 
(b) Find a value for Henry's constant XI .  
(c) Determine values for parameters A12 and A21 by Barker's method. 
(d) Find values for 6yl for the data points. 

How could the regression be done so as to minimize the sum of squares of the residuals 
in G ~ / R T ,  thus including the yl values in the data-reduction process? 

14.5. Assume that the first three data points (including the value of P,Sat) of Table 12.1, p. 401, 
cannot be measured. Nevertheless, a correlation based on the remaining data points is 
required. Assuming the validity of Eq. (10.5), Eq. (14.28) may be written: 

Data reduction may be based on Barker's method, i.e., minimizing the sum of squares 
of the residuals between the experimental values of P and the values predicted by 
this equation (see Ex. 12.1). Assume that the activity coefficients can be adequately 
represented by the Margules equation. 
(a )  Show that: l n ( ~ ~ / y ~ ~ )  = X ; [ A ~ ~  + 2(A12 - A21)x21 - A2i. 
(b) Find a value for Henry's constant X2. 
(c) Determine values for parameters A12 and All by Barker's method. 
(d) Find values for 6yl for the data points. 
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How could the regression be done so as to minimize the sum of squares of the residuals 
in G E  / R T ,  thus including the yl values in the data-reduction process? 

14.6. Work Pb. 14.4 with the data set of Table 12.3, p. 409. 

14.7. Work Pb. 14.5 with the data set of Table 12.3, p. 409. 

14.8. Use Eq. (14.1) to reduce one of the isothermal data sets identified below, and compare 
the result with that obtained by application of Eq. (10.5). Recall that reduction means 
developing a numerical expression for G ~ / R T  as a function of composition. 

(a) Methylethylketone(l)/toluene(2) at 323.15 K (50°C): Table 12.1, p. 401. 
(b) Acetone(l)/methanol(2) at 328.15 K (55°C): Pb. 12.3, p. 440. 
(c) Methyl tert-butyl ether(l)/dichloromethane(2) at 308.15 K (35°C): Pb. 12.6, p. 441. 
(d) Acetonitrile(l)henzene(2) at 318.15 K (45°C): Pb. 12.9, p. 443. 

Second-virial-coefficient data are as follows: 

I Part (a) Part (b) Part (c) Part (d) 

14.9. For one of the substances listed below determine P Satha from the RedlicldKwong 
equation at two temperatures: T  = T,, (the normal boiling point), and T  = 0.85TC. 
For the second temperature, compare your result with a value from the literature (e.g., 
Perry's Chemical Engineers' Handbook). Discuss your results. 

(a) Acetylene; (b) Argon; (c) Benzene; (d) n-Butane; (e) Carbon monoxide; 
( f )  n-Decane; (g) Ethylene; (h )  n-Heptane; (i) Methane; (j) Nitrogen. 

14.10. Work Pb. 14.9 for one of the following: 

(a) The Soave/Redlich/Kwong equation; (b) The PengRobinson equation. 

14.11. Departures from Raoult's law are primarily from liquid-phase nonidealities (yi # 1). 
But vapor-phase nonidealities ($i # 1) also contribute. Consider the special case where 
the liquid phase is an ideal solution, and the vapor phase a nonideal gas mixture described 
by Eq. (3.37). Show that departures from Raoult's law at constant temperature are likely 
to be negative. State clearly any assumptions and approximations. 

14.12. Determine a numerical value for the acentric factor w implied by: 

(a) The van der Waals equation; (b) The RedlicWKwong equation. 

14.13. Starting with Eq. (14.67), derive the stability criteria of Eqs. (14.68) and (14.69). 

14.14. An absolute upper bound on G~ for stability of an equimolar binary mixture is G~ = 
R T  In 2. Develop this result. What is the corresponding bound for an equimolar mixture 
containing N species? 

14.15. A binary liquid system exhibits LLE at 298.15 K (25°C). Determine from each of the 
following sets of miscibility data estimates for parameters A12 and A21 in the Margules 
equation at 298.15 K(25"C): 
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(a)  xf =O.lO,xf =0.90;(b)xf =0.20,xf =0.90;(c)xf =0.10,xf =0.80. 

14.16. Work Pb. 14.15 for the van Laar equation. 

14.17. Consider a binary vapor-phase mixture described by Eqs. (3.37) and (1 1.58). Under what 
(highly unlikely) conditions would one expect the mixture to split into two immiscible 
vapor phases? 

14.18. Figures 14.13, 14.14, and 14.15 are based on Eqs. (A) and (F) of Ex. 14.5 with C: 
assumedpositive and given by C;/R = 3 ~1x2 .  Graph the corresponding figures for the 
following cases, in which C: is assumed negative: 

975 
(a) A = -- - 18.4+ 31nT 

T 

540 
(b) A=- - -17 .1+3 lnT  

T 

14.19. It has been suggested that a value for GE of at least 0.5 RT is required for liquidlliquid 
phase splitting in a binary system. Offer some justification for this statement. 

14.20. Pure liquid species 2 and 3 are for practical purposes immiscible in one another. Liquid 
species 1 is soluble in both liquid 2 and liquid 3. One mole each of liquids 1, 2, and 3 
are shaken together to form an equilibrium mixture of two liquid phases: an a-phase 
containing species 1 and 2, and a /3-phase containing species 1 and 3. What are the mole 
fractions of species 1 in the a and /3 phases, if at the temperature of the experiment, the 
excess Gibbs energies of the phases are given by: 

(GE)" = 0 . 4 ~ ; ~ ;  (GEIB B B 
and = 0.8 x1 X j  

RT RT 

14.21. It is demonstrated in Ex. 14.7 that the Wilson equation for GE is incapable of repre- 
senting LLE. Show that the simple modification of Wilson's equation given by: 

can represent LLE. Here, C is a constant. 

14.22. Vapor sulfur hexafluoride SF6 at pressures of about 1600 kPa is used as a dielectric in 
large primary circuit breakers for electric transmission systems. As liquids, SF6 and H20 
are essentially immiscible, and it is therefore necessary to specify a low enough moisture 
content in the vapor SF6 so that if condensation occurs in cold weather a liquid-water 
phase will not form first in the system. For a preliminary determination, assume the vapor 
phase an ideal gas and prepare the phase diagram [Fig. 14.20(a)] for H20(1)lSF6(2) at 
1600 kPa in the composition range up to 1000 parts per mega parts of water (mole basis). 
The following approximate equations for vapor pressure are adequate: 
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14.23. In Ex. 14.4 a plausibility argument was developed from the LLE equilibrium equations 
to demonstrate that positive deviations from ideal-solution behavior are conducive to 
liquid/liquid phase splitting. 

(a) Use one of the binary stability criteria to reach this same conclusion. 
(b) Is it possible in principle for a system exhibiting negative deviations from ideality 

to form two liquid phases? 

14.24. Toluene(1) and water(2) are essentially immiscible as liquids. Determine the dew- 
point temperatures and the compositions of the first drops of liquid formed when vapor 
mixtures of these species with mole fractions zl = 0.2 and zl = 0.7 are cooled at 
the constant pressure of 101.33 kPa. What is the bubble-point temperature and the 
composition of the last drop of vapor in each case? See Table 10.2, p. 346, for vapor- 
pressure equations. 

14.25. n-Heptane(1) and water(2) are essentially immiscible as liquids. A vapor mixture con- 
taining 65-mol-% water at 373.15 K (100°C) and 101.325 Wa is cooled slowly at 
constant pressure until condensation is complete. Construct a plot for the process show- 
ing temperature vs. the equilibrium mole fraction of heptane in the residual vapor. See 
Table 10.2, p. 346, for vapor-pressure equations. 

14.26. Consider a binary system of species 1 and 2 in which the liquid phase exhibits par- 
tial miscibility. In the regions of miscibility, the excess Gibbs energy at a particular 
temperature is expressed by the equation: 

In addition, the vapor pressures of the pure species are: 

P F t  = 75 kPa and PZsat = 1 10 kPa 

Making the usual assumptions for low-pressure VLE, prepare a P-x-y diagram for this 
system at the given temperature. 

14.27. The system water(1)ln-pentane(2)ln-heptane(3) exists as a vapor at 101.325 Wa and 
373.15 K (100°C) with mole fractions zl = 0.45, z2 = 0.30, z3 = 0.25. The system is 
slowly cooled at constant pressure until it is completely condensed into a water phase 
and a hydrocarbon phase. Assuming that the two liquid phases are immiscible, that the 
vapor phase is an ideal gas, and that the hydrocarbons obey Raoult's law, determine: 

(a) The dew-point temperature of the mixture and composition of the first condensate. 
(b) The temperature at which the second liquid phase appears and its initial composition. 
(c) The bubble-point temperature and the composition of the last bubble of vapor. 

See Table 10.2, p. 346, for vapor-pressure equations. 

14.28. Work the preceding problem for mole fractions zl  = 0.32, z2 = 0.45, z3 = 0.23. 

14.29. The Case I behavior for SLE (Sec. 14.6) has an analog for VLE. Develop the analogy. 

14.30. An assertion with respect to Case I1 behavior for SLE (Sec. 14.6) was that the condition 
il y,S = 1 corresponds to complete immiscibility for all species in the solid state. Prove 
this. 
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14.31. Use results of Sec. 14.6 to develop the following (approximate) rules of thumb: 

(a) The solubility of a solid in a liquid solvent increases with increasing T. 
(b) The solubility of a solid in a liquid solvent is independent of the identity of the 

solvent species. 
(c) Of two solids with roughly the same heat of fusion, that solid with the lower melting 

point is the more soluble in a given liquid solvent at a given T. 
(d) Of two solids with similar melting points, that solid with the smaller heat of fusion 

is the more soluble in a given liquid solvent at a given T. 

14.32. Estimate the solubility of naphthalene(1) in carbon dioxide(2) at a temperature of 353.15 
K (80°C) at pressures up to 300 bar. Use the procedure described in Sec. 14.7, with lI2 = 
0.088. Compare the results with those shown by Fig. 14.22. Discuss any differences. 
P,sat = 0.0102 bar at 353.15 K (80°C). 

14.33. Estimate the solubility of naphthalene(1) in nitrogen(2) at a temperature of 308.15 K 
(35°C) at pressures up to 300 bar. Use the procedure described in Sec. 14.7, with lI2 = 0. 
Compare the results with those shown by Fig. 14.22 for the naphthalene/C02 system at 
308.15 K (35°C) with lI2 = 0. Discuss any differences. 

14.34. The qualitative features of SVE at high pressures shown by Fig. 14.22 are determined 
by the equation of state for the gas. To what extent can these features be represented by 
the two-term virial equation in pressure, Eq. (3.37)? 

14.35. The UNILAN equation for pure-species adsorption is: 

where rn, s, and c are positive empirical constants. 

(a) Show that the UNILAN equation reduces to the Langmuir isotherm for s = 0. (Hint: 
Apply 17H6pital's rule.) 

(b) Show that Henry's constant k for the UNILAN equation is: 

k(UN1LAN) = sinh s 
CS 

(c) Examine the detailed behavior of the UNILAN equation at zero pressure ( P  -+ 0, 
n + 0). 

14.36. In Ex. 14.10, Henry's constant for adsorption k, identified as the intercept on a plot of 
n/ P vs. n, was found from a polynomial curve-fit of n/ P vs. n. An alternative procedure 
is based on a plot of In(P/n) vs. n. Suppose that the adsorbate equation of state is a power 
series inn: z = 1 + Bn + Cn2 + . . .. Show how from a plot (or a polynomial curve-fit) 
of ln(P/n) vs. n one can extract values of k and B. [Hint: Start with Eq. (14.105).] 

14.37. It was assumed in the development of Eq. (14.105) that the gas phase is ideal, with 
Z = 1. Suppose for a real gas phase that Z = Z ( T ,  P). Determine the analogous 
expression to Eq. (14.105) appropriate for a real (nonideal) gas phase. [Hint: Start with 
Eq. (14.101).] 
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14.38. Use results reported in Ex. 14.10 to prepare plots of l7 vs. n and z vs. n for ethylene 
adsorbed on a carbon molecular sieve. Discuss the plots. 

14.39. Suppose that the adsorbate equation of state is given by z = (1 - bn)-', where b is 
a constant. Find the implied adsorption isotherm, and show under what conditions it 
reduces to the Langmuir isotherm. 

14.40. Suppose that the adsorbate equation of state is given by z = 1 +pn, where p is a function 
of T only. Find the implied adsorption isotherm, and show under what conditions it 
reduces to the Langmuir isotherm. 

14.41. Derive the result given in the third step of the procedure for predicting adsorption 
equilibria by ideal-adsorbed-solution theory at the end of Sec. 14.8. 

14.42. Consider a ternary system comprising solute species 1 and a mixed solvent (species 2 
and 3). Assume that: 

Show that Henry's constant 'HI for species 1 in the mixed solvent is related to Henry's 
constants and for species 1 in the pure solvents by: 

Here xi and xi are solute-free mole fractions: 

14.43. It is possible in principle for a binary liquid system to show more than one region of 
LLE for a particular temperature. For example, the solubility diagram might have two 
side-by-side "islands" of partial miscibility separated by a homogeneous phase. What 
would the AG vs. xl diagram at constant T look like for this case? Suggestion: See 
Fig. 14.11 for a mixture showing normal LLE behavior. 

14.44. With V 2  = V2, Eq. (14.132) for the osmotic pressure may be represented as a power 
series in xl : 

Reminiscent of Eqs. (3.1 1) and (3.12), this series is called an osmotic virial expansion. 
Show that the second osmotic virial coefficient B is: 

What is B for an ideal solution? What is B if G E  = Ax1x2? 



Chapter 15 

Thermodynamic Analysis of 
Processes 

The purpose of this chapter is to present a procedure for the analysis of practical processes from 
the thermodynamic point of view. It is an extension of the ideal work and lost work concepts 
presented in Secs. 5.8 and 5.9. 

Real irreversible processes are amenable to thermodynamic analysis. The goal of such an 
analysis is to determine how efficiently energy is used or produced and to show quantitatively 
the effect of inefficiencies in each step of a process. The cost of energy is of concern in any 
manufacturing operation, and the first step in any attempt to reduce energy requirements is 
to determine where and to what extent energy is wasted through process irreversibilities. The 
treatment here is limited to steady-state flow processes, because of their predominance in 
industrial practice. 

15.1 THERMODYNAMIC ANALYSIS OF STEADY-STATE 
FLOW PROCESSES 

Many processes consist of a number of steps, and lost-work calculations are then made for 
each step separately. By Eq. (5.34), 

For a single surroundings temperature Tu, summing over the steps of a process gives: 

Dividing the former equation by the latter yields: 

wlosf -- - S,; 
C wlost S G  

Thus an analysis of the lost work, made by calculation of the fraction that each individual lost- 
work term represents of the total, is the same as an analysis of the rate of entropy generation, 
made by expressing each individual entropy-generation term as a fraction of the sum of all 
entropy-generation terms. Recall that all terms in these equations are positive. 
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An alternative to the lost-work or entropy-generation analysis is a work analysis. For 
this, Eq. (5.31) becomes: 

For a work-requiring process, all of these work quantities are positive and wS > w i d e a l .  The 
preceding equation is then written: 

A work analysis expresses each individual work term on the right as a fraction of ws. 
For a work-producing process, ws and wideal are negative, and I 1 > 1 ws 1 .  Equa- 

tion (15.1) is therefore best written: 

A work analysis expresses each individual work term on the right as a fraction of 1 widea l  1. Such 
an analysis cannot be carried out if a process is so inefficient that wide,, is negative, indicating 
that the process should produce work, but wS is positive, indicating that the process in fact 
requires work. A lost-work or entropy-generation analysis is always possible. 
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surroundings at 298.15 K (25°C) 
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'R. H. Perry and D. Green, Perry's Chemical Engineers' Handbook, 7th ed., pp. 2-251 and 2-253, McGraw-Hill, 
New York, 1997. 
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From the standpoint of energy conservation, the thermodynamic efficiency of a process 
should be as high as possible, and the entropy generation or lost work as low as possible. 
The final design depends largely on economic considerations, and the cost of energy is an 
important factor. The thermodynamic analysis of a specific process shows the locations of the 
major inefficiencies, and hence the pieces of equipment or steps in the process that could be 
altered or replaced to advantage. However, this sort of analysis gives no hint as to the nature of 
the changes that might be made. It merely shows that the present design is wasteful of energy 
and that there is room for improvement. One function of the chemical engineer is to try to devise 
a better process and to use ingenuity to keep operating costs, as well as capital expenditures, 
low. Each newly devised process may, of course, be analyzed to determine what improvement 
has been made. 

PROBLEMS 

15.1. A plant takes in water at 294.15 K (21°C), cools it to 273.15 K (O°C), and freezes it 
at this temperature, producing 0.45 kg s-' of ice. Heat rejection is at 294.15 K (21°C). 
The heat of fusion of water is 333.4 kJ kg-'. 

(a )  What is widal for the process? 
(b) What is the power requirement of a single Carnot heat pump operating between 

273.15 K (0°C) and 294.15 K (21°C)? What is the thermodynamic efficiency of this 
process? What is its irreversible feature? 

( c )  What is the power requirement if an ideal tetrafluoroethane vapor-compression re- 
frigeration cycle is used? Ideal here implies isentropic compression, infinite cooling- 
water rate in the condenser, and minimum heat-transfer driving forces in evaporator 
and condenser of 255.15 K (18°C). What is the thermodynamic efficiency of this 
process? What are its irreversible features? 

(d) What is the power requirement of a tetrafluoroethane vapor-compression cycle for 
which the compressor efficiency is 75%, the minimum temperature differences in 
evaporator and condenser are 4.5 K (4S°C), and the temperature rise of the cooling 
water in the condenser is 11K (ll°C)? Make a thermodynamic analysis of this 
process. 
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15.2. Consider a steady-flow process in which the following gas-phase reaction takes place: 
CO + ;o2 -+ C 0 2 .  The surroundings are at 300 K. 
(a )  What is Wideal when the reactants enter the process as pure carbon monoxide and 

as air containing the stoichiometric amount of oxygen, both at 298.15 K (25°C) 
and 1 bar, and the products of complete combustion leave the process at the same 
conditions? 

(6)  The overall process is exactly the same as in (a),  but the CO is here burned in an 
adiabatic reactor at 1 bar. What is Wideal for the process of cooling the flue gases to 
298.15 K (25"C)? What is the irreversible feature of the overall process? What is 
its thermodynamic efficiency? What has increased in entropy, and by how much? 

15.3. A plant has saturated steam available at 2700 kPa, but there is little use for this steam. 
Rather, steam at 1000 kPa is required. Also available is saturated steam at 275 kPa. A 
suggestion is that the 275 kPa steam be compressed to 1000 kPa, using the work of 
expanding of the 2700 kPa steam to 1000 kPa. The two streams at 1000 kPa would then 
be mixed. Determine the rates at which steam at each initial pressure must be supplied 
to provide enough steam at 1000 kPa so that upon condensation to saturated liquid heat 
in the amount of 300 kW is released, 

(a )  If the process is carried out in a completely reversible manner. 
(b )  If the higher-pressure steam expands in a turbine of 78% efficiency and the lower- 

pressure steam is compressed in a machine of 75% efficiency. Make a thermody- 
namic analysis of this process. 

15.4. Make a thermodynamic analysis of the refrigeration cycle of Ex. 9.l(b). 

15.5. Make a thermodynamic analysis of the refrigeration cycle described in one of the parts of 
Pb. 9.9. Assume that the refrigeration effect maintains a heat reservoir at a temperature 
5.5 K (5.5"C) above the evaporation temperature and that T, is 5.5 K (5.5"C) below the 
condensation temperature. 

15.6. Make a thermodynamic analysis of the refrigeration cycle described in the first para- 
graph of Pb. 9.12. Assume that the refrigeration effect maintains a heat reservoir at 
a temperature 5.5 K (5.5"C) above the evaporation temperature and that T, is 5.5 K 
(5.5"C) below the condensation temperature. 

15.7. A colloidal solution enters a single-effect evaporator at 373.15 K (100°C). Water is 
vaporized from the solution, producing a more concentrated solution and 0.5 kg s-' of 
steam at 373.15 K (100°C). This steam is compressed and sent to the heating coils of 
the evaporator to supply the heat required for its operation. For a minimum heat-transfer 
driving force across the evaporator coils of 10 K (lO°C), for a compressor efficiency of 
75%, and for adiabatic operation, what is the state of the steam leaving the heating coils 
of the evaporator? For a surroundings temperature of 300 K, make a thermodynamic 
analysis of the process. 

15.8. Make a thermodynamic analysis of the process described in Pb. 8.8. T, = 300.15 K 
(27°C). 

15.9. Make a thermodynamic analysis of the process described in Ex. 9.3. To = 295 K. 



Chapter 16 

Introduction to Molecular 
Thermodynamics 

Classical thermodynamics is a deductive science, in which the general features of macroscopic- 
system behavior follow from a few laws and postulates. However, the practical application of 
thermodynamics requires values for the properties of individual chemical species and their 
mixtures. These may be presented either as numerical data (e.g., the steam tables for water) 
or as correlating equations (e.g., a P VT equation of state and expressions for the temperature 
dependence of ideal-gas heat capacities). 

The usual source of property values is experiment. For example, the ideal-gas equation of 
state evolved as a statement of observed volumetric behavior of gases at low pressures. Similarly, 
the rule of thumb that C p  x 29 J mol-' K-' for diatomic gases at normal temperatures is based 
on experimental observation. However, macroscopic experiments provide no insight into why 
substances exhibit their observed property values. The basis for insight is a microscopic view 
of matter. 

A central dogma of modern physics is that matter is particulate. The quest for the ultimate 
elementary particles is still in progress, but for engineering purposes we may adopt the following 
picture: ordinary matter consists of molecules; molecules consist of atoms; and atoms consist 
of a positively charged nucleus (comprising neutrons and protons), surrounded by negatively 
charged electrons. Atoms and molecules with equal numbers of electrons and protons have no 
net charge and are neutral. 

16.1 MOLECULAR THEORY OF FLUIDS 

Molecules are small and light: typical linear dimensions are 1 0 ~ ' ~  to lop8 m, and typical 
masses are to kg. Hence the number of molecules in a macroscopic system is 
enormous. For example, one mole of matter contains 6.022 x molecules (Avogadro's 
number). Because of these features- smallness, lightness, and numerical abundance- the 
proper description of behavior at the molecular level and its extrapolation to a macroscopic 
scale require the special methods of quantum mechanics and statistical mechanics. We pursue 
neither of these topics here. Instead, we present material useful for relating molecular concepts 
to observed thermodynamic properties. 
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Intermolecular Forces and the Pair-Potential Function 

As noted in Sec. 3.3, an ideal gas is characterized by the absence of molecular interactions; 
nevertheless, it still possesses internal energy. This energy is associated with the individual 
molecules, and results from their motion. Real gases and other fluids are comprised of molecules 
that have not only the energy of individual molecules, but also energy that is shared among 
them because of intermolecular forces. This intermolecularpotential energy is associated with 
collections of molecules, and is the form of energy that reflects the existence of such forces. Well 
established is the fact that two molecules attract each other when they are far apart and repel 
one another when close together. Electromagnetic in origin, intermolecular forces represent 
interactions among the charge distributions of neighboring molecules. 

Figure 16.1 The intermolecular potential energy U for a pair of structureless, neutral 
molecules. (Not to scale.) 

Figure 16.1 is a sketch of the intermolecular potential energy U for an isolated pair of 
spherically symmetric neutral molecules, for which M depends only on the distance between the 
molecular centers, i.e., on the intermolecular separation r.  (More generally, U is also a function 
of the relative orientations of the two molecules.) The intermolecular force F is proportional 
to the r-derivative of U :  

By convention, a positive F represents an intermolecular repulsion, and a negative F an inter- 
molecular attraction. Hence (Fig. 16.1) molecules repel each other at small separations, and 
attract each other at modest-to-large separations. 

An algebraic expression for the pair-potential function 24 is one of the tools of the trade of 
the molecular scientist or engineer. The methods of statistical mechanics provide for its relation 
to both thermodynamic and transport properties. Shown in Fig. 16.1 are specific values for U 
and r that may appear as species-dependent parameters in a pair-potential function. 
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The hard-core diameter d is a measure of the center-to-center separation for which U, 
and hence F, becomes infinite. It is not subject to precise determination, but plays the role 
of a modeling parameter in some expressions for U. The collision diameter o is defined as 
the separation for which U = 0. The equilibrium separation ro is the separation for which U 
attains its minimum value of - E .  At r = ro, the net intermolecular force is zero. Quantity E 

is called the well depth. For a particular class of chemical species (e.g., noble gases, or cyclic 
alkanes), each of these special quantities increases with increasing molecular size. Typical 
ranges of values for o and E are 0 x 3 to 8 x 10-lo m and E x 0.1 to 1.0 x J. Commonly, 
ro is about 10 to 15% greater than o. 

Scores of expressions have been proposed for U.' All are essentially empirical, although 
their functional forms often have some basis in theory. The most widely used is the Lennard- 
Jones (LJ) 12/6pair-potential function: 

Equation (16.1) provides semiquantitative representations of thermodynamic and transport 
properties for nonpolar substances of relatively simple molecular structure. In Eq. (16.1), the 
r-l2 term is supposed to represent bimolecular repulsions, and the rp6  term bimolecular attrac- 
tions. Although the attraction term has significant theoretical justification, the r-l2 dependence 
for repulsions is chosen primarily for mathematical convenience. Table 16.1 shows some values 
of the dimensionless potential energy U/r  as a function of the dimensionless separation r l o ,  
as implied by Eq. (16.1). Clearly, the effects of intermolecular forces are significant only over 
a modest range of separations. Although they operate over an infinite range (U and F together 
approach zero only in the limit as r + oo), both U and F for neutral molecular pairs are 
numerically negligible for separations greater than about 10 molecular diameters. 

Contributions to the Intermolecular Potential Energy 

The origins of intermolecular forces stem from the essential concept that a molecule is a distri- 
bution of charges: a collection of positively charged nuclei, surrounded by a cloud of negatively 
charged electrons. Intermolecular repulsions at sufficiently small separations therefore result 
from the overlap of electron clouds of interacting molecules, giving rise to a Coulombic repul- 
sion. At still smaller separations the positively charged nuclei "see" each other, again promoting 
repulsion. 

The origins of intermolecular attractions are less obvious, and several mechanisms can 
contribute. First, consider the electrostatic interaction of two rigid charge distributions A and 
B. By Coulomb's law, the electrostatic potential energy of interaction U(e1) is: 

 or a compilation of expressions for U see G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Inter- 
molecular Forces: Their Origin and Determination, app. 1, Clarendon Press, Oxford, 1981. 

'A comprehensive discussion of these contributions to U ( r )  is given by J. 0 .  Hirschfelder, C. F. Curtiss, and 
R. B. Bird, Molecular Theory of Gases and Liquids, pp. 25-30, 209, 983-1020, John Wiley and Sons, New York, 
1954. 



604 CHAPTER 16. Introduction to Molecular Thermodynamics 

Table 16.1 Bimolecular Potential Energy as 
a Function of Separation for the Lennard- 
Jones 1216 Potential 

Here, qi is a charge in distribution A, qj is a charge in distribution B, and rij is the separation 
between charges qi and qj. Quantity €0 is the electric permittivity of vacuum, a physical 
constant3 equal to 8.854 19 x lo-'' C V-' m-'. (The unit of electric charge is the coulomb C, 
and the unit of electric potential difference is the volt V.) The sums are taken over all charges 
in the distributions. 

Equation (16.2) is exact, but awkward to use as it stands. Application is facilitated when 
the charge separation rij is replaced by the center-of-mass separation r of the two distributions. 
Statistical averaging of contributions from all orientations of charge distribution yields the 
following approximate expression for U(e1) for two neutral rigid charge  distribution^:^ 

Quantity k is Boltzmann's constant, equal to 1.381 x J K-l ; p~ and p~ are the permanent 
dipole moments for charge distributions A and B associated with the molecules. This contribu- 
tion to the pair-potential function vanishes only when one of the permanent dipole moments is 
zero. The averaging procedure which leads to Eq. (16.3) produces several remarkable results: 

Even though the distributions are electrically neutral, there is a net attraction between 
them. 

The dependence of U(e1) on charge-distribution orientation becomes on averaging an rP6 
dependence. 

As given by Eq. (16.3) U(e1) varies with T-'. Hence the magnitude of the permanent- 
dipole interaction decreases with increasing temperature. 

Equation (16.3) is the simplest example of a direct electrostatic potential for two neutral 
molecules; here, the dipole moment emerges as an important physical property. Dipole moments 
are measures of the net separation of charge within a molecule. For a spherically symmetric 
neutral charge distribution (e.g., an atom of argon), p is zero. For a molecule in which charge 
+ Iq 1 is separated from charge - Iq 1 by distance 1, the dipole moment is p = Iq 1 1. Hence p 

3~nrelated to the well depth E of Fig. 16.1. 

4 ~ h i s  result is only valid for modest dipole moments. For a discussion, see T. M. Reed and K. E. Gubbins, Applied 
Statistical Mechanics, sec. 5-7, McGraw-Hill, New York, 1973. 
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has dimensions of charge x length; its SI unit is the coulomb(C)~meter(m). However, values 
are usually reported in debyes (D);  1 D = 3.3357 x low3' C m. A molecule with a nonzero 
dipole moment is called polar. Water ( p  = 1.9 D), acetone ( p  = 2.9 D), and acetonitrile 
( p  = 4.0 D) are strongly polar molecules. Carbon monoxide ( p  = 0.1 D), propylene ( p  = 0.4 
D), and toluene ( p  = 0.4 D) are slightly polar. Carbon dioxide, neon, nitrogen, and n-octane 
are nonpolar ( p  = 0). 

The dipole moments just discussed are permanent dipole moments, intrinsic properties 
of a molecule. A net separation of charge may also be induced in any molecule by application 
of an external electric field. The induced dipole moment p(ind) so created is approximately 
proportional to the strength of the applied field. Thus, for molecule A, pA(ind) = a A E ,  where 
E is the applied field strength and a~ is the polarizability of A. If the source of the electric 
field is a permanent dipole in a neighboring molecule B, then the contribution to U from the 
permanent dipolelinduced dipole interaction is: 

If molecules A and B are both polar (pA, p~ # 0), then the complete expression for the 
potential energy of induction U(ind) is? 

The polarizability a ,  like the permanent dipole moment p ,  is an intrinsic property of a 
molecule. SI units for a are C m2 V-', but values are usually reported for the quantity B - 
a/4nc0, in cm3. The volumetric units for B suggest a possible connection between polarizability 
and molecular volume. Typically, B increases with molecular volume: very roughly, B x 
0.05 a3, where a is the molecular collision diameter. Hence B normally falls in the range of 
about 1 to 25 x cm3. 

The two types of dipole (and dipole moment) so far discussed, permanent and induced, 
can both be rationalized and treated by the methods of classical electrostatics, and both produce 
a contribution to M proportional to r-6. There is yet a third kind of dipole, an instantaneous 
dipole, whose calculation requires the methods of quantum mechanics. However, its existence 
can be rationalized on semi-classical grounds. If we picture a molecule A as nuclei with orbiting 
(i.e., moving) electrons, then we can imagine that a snapshot might show an instantaneous but 
temporary net separation of molecular charge. This is manifested as an instantaneous dipole, 
which induces a dipole in a neighboring molecule B. Interaction of the dipoles results in the 
intermolecular dispersion force, with corresponding dispersion potential M(disp) given for large 
separations as: 

Here, I is the Jirst ionization potential, the energy required to remove one electron from a 
neutral molecule. Typically, I is of magnitude 1 to 4 x 10-l8 J. All molecules possess nonzero 
ionization potentials and polarizabilities; hence all molecular pairs experience the dispersion 
interaction. 

'see Reed and Gubbins, op. cit. 
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The dispersion potential U(disp), like U(e1) andU(ind), varies as rP6. When molecules A 
and B are identical, these three special results lend justification for the rP6 attraction term in em- 
pirical intermolecular potential functions such as the Lennard-Jones 1216 potential, Eq. (16.1). 
For identical molecules A and B, p~ = pg = p, and Eqs. (16.3), (16.4), and (16.5) produce 
the expressions: 

These equations provide estimates of the contributions of direct-electrostatic, induction, and 
dispersion forces to the intermolecular potential for pairs of identical molecules. Thus, if 

c6 
U(1ong range) = - - 

r6 

then 

Quantity C6 is a measure of the strength of long-range intermolecular attractions. Fractional 
contributions of the three mechanisms to long-range forces are: 

f (el) = U(el)/X f (ind) = U(ind)/ C f (disp) = U(disp)/ C 

where C E U(e1) + U(ind) + U(disp) 

and the U's are given by Eqs. (16.6), (16.7), and (16.8). 
Values of C6 calculated by Eq. (16.9) and the fractional contributions made by electro- 

static, induction, and dispersion interactions to U are summarized in Table 16.2 for 15 polar 
substances, illustrating concepts just developed. Also shown are values of p, 6 ,  and I for each 
species, and, in the last column, the ratio of the direct electrostatic to dispersion contributions: 

f (el) - - 8 p4 -- - - 
f (disp) U(disp) 9 a21kT 

The dimensionless ratio f (el)/ f (disp) is a measure of the effective polarity of a species. Note 
the following: 

In all cases, the magnitude of the dispersion interaction is substantial, even when f (disp) 
is small. These interactions can rarely be ignored. 
The fractional contribution f (ind) of induction interactions is generally small, never 
exceeding about 7%. 



Table 16.2 Long-range Attractions for Polar Molecules at 298 K 

Compound WID 8/ lopz4 cm3 I /  10-l8 J c6/ J m6 f (el) f (ind) f (disp) f (el)/ f (disp) 

HI 
HBr 

CHC13 
HC1 

(C2H5)20 
NH3 
HF 

Hz0 
C5H5N 

(CH3)zCO 
HCN 

CH3 CN 



608 CHAPTER 16. Introduction to Molecular Thermodynamics 

Contributions from permanent dipoles at near-ambient temperatures, through U(e1) and 
U(ind), are small (less than about 5% of the total) for values of p less than 1 D. Hence 
substances such as propylene (C3H6) and toluene (C6H5CH3) are commonly classified as 
nonpolar, even though they have significant dipole moments. 

16.2 SECOND VlRlAL COEFFICIENTS FROM 
POTENTIAL FUNCTIONS 

The molar volume of a fluid depends on the behavior of its constituent molecules, and is 
therefore influenced by intermolecular forces. Thus a gas becomes more dense as the attractive 
forces between molecules become stronger. The reference point is an ideal gas, for which the 
intermolecular forces are zero. The nature and strength of these forces in an actual gas therefore 
determine the departure of its molar volume from that of an ideal gas. 

In the virial equation as given by Eq. (3.12), the first term on the right is unity, and 
by itself provides the ideal-gas value for Z. The remaining terms provide corrections to the 
ideal-gas value, and of these the term B/ V is the most important. As the two-body-interaction 
term, it is evidently related to the pair-potential function discussed in the preceding section. 
For spherically symmetric intermolecular force fields, statistical mechanics provides an exact 
expression relating the second virial coefficient B to the pair-potential function ~ ( r ) : ~  

Quantity NA is Avogadro's number, and k = R/NA is Boltzmann's constant. By assumption, 
U(r) depends only on the intermolecular separation r between pairs of molecules. Given an ex- 
pression for the pair-potential function U(r), one determines B(T) by evaluation of the integral 
in Eq. (16.10). For realistic potential functions (Fig. 16.1), the integration must generally be 
done numerically or by series techniques. However, for rectilinear potential functions- those 
in which U(r) is defined by a collection of straight-line segments- one can obtain closed-form 
analytical expressions for B(T). 

The simplest realistic rectilinear potential function is the square-well potential U(sw), 
shown in Fig. 16.2. It consists of four segments, producing the following piecewise contributions 
to U: 

U(sw) = 00 for 

U(sw) = -E for d 5 r l l . d  

U(sw) = 0 for 

Here, d = a, and the hard-core and collision diameters are identical; r is the well depth; and 1 
is a constant which defines the width of the well. Comparison of Fig. 16.2 with Fig. 16.1 shows 
that U(sw) mimics many of the features of the "true" intermolecular potential energy, for which 
repulsions prevail for sufficiently small separations, and attractions dominate for intermediate 
separations. For sufficiently large separations, U becomes negligible. 

6 ~ .  A. McQuarrie, Statistical Mechanics, p. 228, Harper and Row, New York, 1976. 
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Figure 16.2 The square-well potential U(sw) for a pair of molecules 

With U(sw) given by Eq. (16.11), evaluation of B by Eq. (16.10) is a straightforward 
exercise in integration. The result is: 

where the first term in the square brackets (i.e., 1) arises from the repulsion part of the poten- 
tial and the remaining term from the attraction part. Equation (16.12) therefore provides the 
following insights into the behavior of the second virial coefficient: 

The sign and magnitude of B are determined by the relative contributions of attractions 
and repulsions. 

At low temperatures, attractions dominate, producing negative values of B. The stronger 
the attractions (as determined by the magnitudes of e and l ) ,  the more negative is B at 
fixed T .  
At high temperatures, repulsions dominate, producing positive values of B. In the (hypo- 
thetical) limit of infinite temperature, B approaches the value: 

L 
lim B(sw) = - n ~ ~ d ~  = 4v, 

T+cc 3 

where v, is the volume occupied by a mole of hard spheres of diameter d. 
At the Boyle temperature TB, the contributions of attractions are exactly balanced by those 
of repulsions, and B is zero. For the square-well potential, according to Eq. (16.12), 

Hence, the stronger the attractions, the higher is the Boyle temperature. 
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Figure 16.3 Second virial coefficients'for argon by the square-well potential. Circles 
are data; curve is given by Eq. (1 6.12) 

Although Eq. (16.12) is based on an intermolecular potential function that is in detail 
unrealistic, it nevertheless often provides an excellent fit of second-virial-coefficient data. An 
example is provided by argon, for which reliable data for B are available over a wide temperature 
range, from about 85 to 1000 K . ~  The correlation of these data by Eq. (16.12) as shown in 
Fig. 16.3 results from the parameter values €1 k = 95.2 K, I = 1.69, and d = 3.07 x cm. 
This empirical success depends at least in part on the availability of three adjustable parameters, 
and is no more than a limited validation of the square-well potential. Use of this potential does 
illustrate by a very simple calculation how the second virial coefficient (and hence the volume 
of a gas) may be related to molecular parameters. 

7 ~ .  H. Dymond and E. B. Smith, The Wrial CoefJicients of Pure Gases and Mixtures, pp. 1-10, Clarendon Press, 
Oxford, 1980. 
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Such calculations carried out for more-realistic potential functions, though of greater 
complexity, also lead to values for molecular parameters. For example, experimental volumetric 
data for many gases have been regressed to yield values of a and E for the Lennard-Jones 
potential [Eq. (16.1)]. Values from several potential functions are given by R. L. ~ o w l e ~ . ~  
This is an essential source of values, because theory does not provide the means for their 
prediction. One must remember, however, that potential functions are empirical models, and as 
such are approximations. The deficiency of a model is reflected by the values of the molecular 
parameters regressed from the model, and they must therefore be regarded as effective values 
of the parameters. Different effective values result from the use of different potential functions. 

Since transport properties, such as viscosity and diffusivity, are also related to these 
same potential functions, data for the transport properties, particularly viscosity, are also used 
to provide values for E and a. Note, however, that any deficiency in the potential function 
influences the calculation of values in different ways, and the same molecular parameters 
obtained from different data sources are rarely in exact agreement. 

16.3 INTERNAL ENERGY OF IDEAL GASES: 
MICROSCOPIC VIEW 

Thermodynamic properties such as internal energy and enthalpy are manifestations on a gross 
scale of the positions, motions, and interactions of the countless molecules comprising a macro- 
scopic system. The two theories that relate the behavior of molecules to macroscopic properties 
are kinetic theory and statistical mechanics. These theories together represent a very large body 
of extra-thermodynamic knowledge, well beyond the scope of this text. Our purpose here is to 
indicate in a very elementary fashion how the energy associated with the individual molecules 
of an ideal gas relates to the macroscopic internal energy of the ideal-gas state. 

A fundamental postulate of quantum theory is that energy is quantized, that energy on 
the microscopic scale comes in very small discrete units. Thus a macroscopic system has 
associated with it an enormous number of quanta of energy, which sum to determine its energy 
level. Quantum theory specifies that the set of energy levels "allowed" to a closed system is 
determined by its volume. This does not mean that fixing the volume of a system fixes its 
energy; it just determines the discrete set of energy levels permitted to it. When a system is 
isolated (constrained from exchanging either mass or energy with its surroundings), it exists 
at one of the energy levels allowed to it. Each energy level of a system has associated with it a 
number of quantum states. This number g is known as the degeneracy of the level. Although 
an isolated system exists at a particular energy level, it passes over time through all of the g 
quantum states characterized by this same energy. 

A large number of quantum states is accessible to a system of given volume in equilibrium 
with surroundings at fixed temperature. From the thermodynamic point of view, fixing T and 
V establishes the state of the system, including its internal energy. However, macroscopic 
equilibrium does not imply a static situation on the microscopic scale. The ceaseless motion of 
the molecules and their collisions with the walls of the container result in exchanges of energy 
with the surroundings, which cause momentary fluctuations in the energy of the system. Thus 
the internal energy of thermodynamics is an average over the discrete set of energy levels of 

'R. L. Rowley, Statistical Mechanics for Thermophysical Property Calculations, app. 5, PTR Prentice Hall, 
Englewood Cliffs, NJ, 1994. 
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the allowed quantum states. Statistical mechanics provides the means for arriving at the proper 
average value. 

The fundamental postulate of statistical mechanics for a system of given volume in 
equilibrium with surroundings at fixed temperature is that the probability of a quantum state 
depends only on its energy, and all quantum states with the same energy have the same proba- 
bility. A value for the thermodynamic internal energy is found as the average of the energies of 
the accessible quantum states, each weighted by its probability. The quantity of fundamental 
importance to come out of this procedure is the partition f~nc t i on :~  

where Ei is the energy of level i ,  gi is the degeneracy of the level, and k is Boltzmann's constant. 
This quantity is a state function, from which all thermodynamic properties may be found once 
it is known as a function of T and V. In particular, the internal energy is given by: 

Equations (16.13) and (16.14) are written for the total energy of a macroscopic system. 
The problem of their application is greatly simplified for ideal gases, which (because of the 
absence of molecular interactions) do not possess intermolecular potential energy. The inter- 
nal energy of ideal gases is therefore associated with individual molecules, and results from 
translation and rotation of each molecule as a whole and from rotations and vibrations internal 
to the molecule. Energy is also associated with the electrons and nuclei of atoms. For ideal 
gases all of these forms of energy are usually treated as separable, and this allows the partition 
function to be factored and written as a product of partition functions, each of which relates to 
a particular form of molecular energy. It suffices for present purposes to treat the translational 
kinetic energy as separable from all other contributions. These other contributions together 
constitute the intramolecular energy of a molecule, and they depend on molecular structure. 
We therefore write: 

whence 

In these equations the quantity N! arises because in the summation process the molecules are 
treated as distinguishable from one another, whereas in fact they are indistinguishable. The 
translational contribution comes from kinetic theory, whereas the intramolecular contributions 
derive from quantum mechanics, with the quantized energy levels determined from appropriate 
spectroscopic measurements. 

 he name implies a sum over states partitioned according to energy levels, and the symbol comes from the German 
word, Zustandssumme, sum-over-states. The other commonly used symbol is Q, which is used in this book to represent 
heat. 
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For one mole of an ideal gas, the equation for the translational partition function is:'' 

where NA = Avogadro's number; m = mass of the molecule; and h = Planck's constant. In 
logarithmic form this becomes: 

Substitution into Eq. (16.15) gives: 

where Zintramolecular is evaluated by equations of the form of Eq. (16.13). 

Differentiation of Eq. (16.16) with respect to temperature at constant V (and NA) yields: 

whence by Eq. (16.14) applied to the ideal-gas state, 

Representing the final term by F (T)  and noting that NAk = R reduces this to: 

where R is the universal gas constant. Since Hig = uig + RT, 

In view of Eq. (2.20), 

The molecules of an ideal monatomic gas have no energy of rotation or vibration, and 
F (T)  in Eq. (16.18) is therefore zero except at high temperatures where electronic energy 
contributions become important. Thus in Fig. 4.1 the value of C F I R  for argon is constant at a 
value of 512. For diatomic and polyatomic gases, B(T) in Eq. (16.18) contributes importantly 
at all temperatures of practical importance. The contribution becomes larger the more complex 
the molecule and increases monotonically with temperature, as is evident from the curves 
shown in Fig. 4.1 for N2, HzO, and COz. 

'OD. A. McQuarrie, Statistical Mechanics, pp. 81-82, Harper & Row, New York, 1976. 



614 CHAPTER 16. Introduction to Molecular Thermodynamics 

16.4 THERMODYNAMIC PROPERTIES AND 
STATISTICAL MECHANICS 

The equations of statistical mechanics are derived by application of Eq. (5.41) to a large number 
of macroscopically identical systems (an ensemble) in all of their many allowed quantum states. 
The entropy S as given by Eq. (5.42) is then a statistical average value for the ensemble." 
Ultimately, the result is an equation for the entropy: 

where 2 is the partition function, given by Eq. (16.13), and U is the internal energy as given 
by Eq. (16.14). 

For an ideal gas, combination of Eqs. (16.16) and (16.17) with Eq. (16.19) yields: 

According to Stirling's formula In N A !  = NA In NA - NA; also kNA = R. Making these 
substitutions gives: 

Upon rearrangement, this may be written: 

Equation (16.20) for the molar entropy of an ideal gas allows calculation of absolute 
entropies for the ideal-gas state. The data required for evaluation of the last two terms on the 
right are the bond distances and bond angles in the molecules, and the vibration frequencies 
associated with the various bonds, as determined from spectroscopic data. The procedure has 
been very successful in the evaluation of ideal-gas entropies for molecules whose atomic 
structures are known. 

Both the classical and statistical equations [Eqs. (5.40) and (16.20)] yield absolute values 
of entropy. As is evident from Table 16.3,12 good agreement between the statistical calculations 
and those based on calorimetric data is obtained. Results such as these provide impressive 
evidence for the validity of statistical mechanics and quantum theory. In some instances results 
based on Eq. (16.20) are considered more reliable because of uncertainties in heat-capacity 
data or about the crystallinity of the substance near absolute zero. Absolute entropies provide 
much of the data base for calculation of the equilibrium conversions of chemical reactions, as 
discussed in Chap. 13. 

 his mathematical development is lengthy but not unduly difficult. An elementary treatment is given by H. C. Van 
Ness, Understanding Thermodynamics, chap. 7 ,  McGraw-Hill, New York, 1969; Dover, New York, 1983. Much more 
comprehensive are D. A. McQuarrie, Statistical Mechanics, Harper & Row, New York, 1976, and R. L. Rowley, 
Statistical Mechanics for Thermophysical Property Calculations, PTR Prentice Hall, Englewood Cliffs, NJ, 1994. 

" ~ r o m  D. A. McQuarrie, op. cit., p. 138. 
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Table 16.3 Absolute Entropies, Ideal- 
Gas State at 298.1 5 K (25°C) and 1 atm 

Eq. (5.40) Eq. (16.20) 

The fundamental property relation most intimately connected with statistical mechanics 
is Eq. (6.9), which expresses the differential of the Helmholtz energy as a function of its 
canonical variables T and V: 

d A =  -PdV - SdT (6.9) 

We remarked in connection with Eq. (16.13) that the partition function Z is a state function 
from which all thermodynamic properties may be found once it is known as a function of T 
and V. Its relation to the Helmholtz energy follows from Eq. (16.19), which may be written: 

Reference to Eq. (6.2) shows that the left side of this equation is by definition the Helmholtz 
energy A. Therefore, 

This equation provides a direct link between thermodynamics and statistical mechanics. Since 
R = k N A ,  where NA is Avogadro's number, Eq. (16.21) may be expressed alternatively as: 

Equations (6.37) through (6.39) for the Gibbs energy have as their counterparts analogous 
equations for the Helmholtz energy. Derived from Eqs. (6.9) and (6.2), they are 

The remaining properties come from defining equations: 

S U A  
- 

H U PV 
- - 

R RT RT 
- -+-- 
RT RT RT 

Note that Eq. (16.14) follows immediately from Eqs. (16.24) and (16.21). 
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Thus, when we know how AIRT (or In Z )  is related to its canonical variables, T and 
V, we can evaluate all other thermodynamic properties by simple mathematical operations. 
The Helmholtz energy and therefore the partition function serve as generating functions for 
the other thermodynamic properties, and implicitly represent complete property information. 

Although a powerful tool for the estimation of thermodynamic properties, the application 
of statistical mechanics requires an enormous number of computations. Making the connec- 
tion between the microscopic states of matter and its manifest macroscopic properties is best 
accomplished by molecular simulation, carried out numerically with high-speed computers. 
In Monte Carlo techniques the generation of a very large number of microscopic replicas of a 
system containing on the order of one hundred molecules serves to create an ensemble from 
which by appropriate statistics the partition function of Eq. (16.13) can be deduced. The in- 
termolecular potential-energy function is key to the accurate prediction of the thermodynamic 
properties of real fluids, and this is a continuing area of research. Molecular simulation is a 
subject unto itself, and is treated in detail elsewhere.13 

Fluids for which the intermolecular potential energy U(r) is given by the Lennard-Jones 
equation (Sec. 16.1) are said (as a class) to be conformal. More generally, fluids for which 
U(r) is of the same functional form comprise a conformal class. It is a property of conformal 
fluids that they obey the two-parameter theorem of corresponding states as stated in Sec. 3.5. 
Thus different classes of conformal fluids, distinguished by different functional forms of U(r), 
obey different corresponding-states correlations. The purpose of the acentric factor in Pitzer- 
type correlations (such as LeeIKesler) is therefore to differentiate between classes of non-polar 
conformal fluids, primarily on the basis of molecular asymmetry. These classes then obey the 
three-parameter theorem of corresponding states. An extended set of LeeIKesler correlations14 
incorporates a fourth parameter to characterize classes ofpolar conformal fluids. Thus an even 
larger collection of conformal classes of fluids obeys a four-parameter theorem of corresponding 
states. 

16.5 HYDROGEN BONDING AND CHARGE-TRANSFER 
COMPLEXING 

The intermolecular potential is dominated at small separations by repulsions, and at large 
separations by attractions varying approximately as rP6 (Sec. 16.1). These interactions are 
called "physical," because their origins are explained on the presumption that interacting species 
preserve their identities. For some systems another class of interactions, called "quasichemical," 
operates primarily at intermediate separations, i.e., at r % 1-0 (Fig. 16.1). As the name suggests, 
quasichemical forces are manifested as strong attractive interactions, in which participating 
species combine to form new chemical entities. We describe below two important classes of 
quasichemical interactions: hydrogen bonding and charge-transfer complexing. 

Essential to a discussion of hydrogen bonding is the concept of electronegativity. Ac- 
cording to valence-bond theory, the atoms which combine to form a molecule share electrons. 
If the bonded atoms are identical (e.g., the C1 atoms in a C12 molecule), the bonding electrons 

1 3 ~ .  L. Rowley, Statistical Mechanics for Thermophysical Property Calculations, PTR Prentice Hall, Englewood 
Cliffs, NJ, 1994. Both Monte Carlo and molecular-dynamics simulations, which have a different basis, are considered. 

1 4 ~ .  L. Rowley, Statistical Mechanics for Thermophysical Property Calculations, sec. 11.5 and app. 11, PTR 
Prentice Hall, Englewood Cliffs, NJ, 1994. 
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Table 16.4 Pauling Electronegativity Xp 
for Some Nonmetallic Elements 

Element X p  I /  Element X p  

are shared equally between the atoms. However, if the atoms are different (e.g., the H and C1 
atoms of HCl), the shared electrons are generally attracted more strongly by one of the atoms 
(C1 in the case of HCl), and this atom is said to be more electronegative than the other. Thus, 
electronegativity is a measure of the relative ability of an atom in a molecule to attract electrons 
to itself. 

The notion of electronegativity was introduced in 1932 by pauling;15 he was the first of 
several to propose a quantitative scale for its expression. Based largely on thermochemical data, 
Pauling's electronegativity Xp assumes values between about 0.7 and 4.0 for those elements 
known to participate in compound formation. Metallic elements have values less than about 
2.0; nonmetals, values greater than about 2.0. Table 16.4 shows Pauling electronegativities 
for ten nonmetallic elements. Of these, fluorine is the most electronegative (Xp = 4.0), and 
hydrogen, the least (Xp = 2.1). 

An intermolecular hydrogen bond forms between a hydrogen-donor molecule (conven- 
tionally represented as A-H) and an electron-rich acceptor site (conventionally denoted by the 
letter B). Entity A is an atom (possibly attached to other atoms), which is more electronegative 
than hydrogen. Hydrogen-acceptor site B may be an atom more electronegative than hydrogen; 
the site may also be a double or triple bond, or it may be an aromatic hydrocarbon ring. The 
hydrogen-bonded complex is conventionally represented as A-H . . . B, where the three dots 
denote the hydrogen bond. 

Examples of strong hydrogen donors include hydrogen fluoride (HF), water (HOH), 
hydrogen peroxide (HOOH), alcohols (ROH), carboxylic acids (RCOOH), ammonia (H2NH), 
primary amines (RNH2), and secondary amines (R2NH). In each of these molecules, one or 
more hydrogen atoms is attached to an atom of a highly electronegative element (F, 0 ,  or 
N; Table 16.4). The halogen acids HC1, HBr, and HI are also hydrogen donors, as are a few 
species containing the C-H bond. However, the difference in electronegativity between carbon 
and hydrogen is not large (Table 16.4), and the ability of the H in C-H to function as a donor 
hydrogen seems possible only when the carbon atom is itself attached to highly electronegative 
atoms or electron-rich sites. Verified examples of C-H hydrogen donors thus include chloroform 
(C13CH), dichloromethane (C12CH2), and hydrogen cyanide (NCH). 

The highly electronegative elements F, 0, and N serve as atomic hydrogen-acceptor sites. 
Hence HF, HOH, HOOH, ROH, RCOOH, HzNH, R2NH and NCH are hydrogen acceptors. 
But so are aldehydes (ROCH), ketones (ROCR), ethers (ROR), esters (ROCOR), and tertiary 
amines (R3N), species which have no active hydrogens. 

I 5 ~ i n u s  Pauling (1901-1994), American chemist and (twice) Nobel laureate. 
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The phenomenon of hydrogen bonding is easily rationalized. The H in donor species 
A-H is electron deficient because of the higher electronegativity of A. Hence the H is attracted 
to the electron-rich acceptor site B. Unfortunately, such a simple electrostatic picture is unable 
to account quantitatively for some important features of the hydrogen bond.16 As a result, 
an algebraic contribution cannot generally be ascribed to the intermolecular potential function 
U(r )  for hydrogen-bonding interactions. Nevertheless, we can by example indicate the kinds of 
intermolecular pairs for which hydrogen-bonding interactions are important. Convenience here 
suggests division of hydrogen-bonding interactions into two classes: association and solvation. 

Association is an attractive interaction between molecules of the same kind. In the con- 
text of hydrogen bonding, an associating species must have both an active hydrogen and a 
hydrogen-acceptor site. Examples include water (the O is an acceptor site), ammonia (with N 
the acceptor site), alcohols, primary and secondary amines, and carboxylic acids. Hydrogen 
bonding by association is often reflected dramatically in the properties (e.g., boiling points, 
heats of vaporization, and viscosities) of the pure species. 

Table 16.5 Hydrogen-bonding Interactions among Pairs of 
Species 
2) = nonassociating H-donor; A = nonassociating H-acceptor; 
AD = associating species 

Solvation is an attractive interaction between unlike molecular species. With respect to 
hydrogen bonding, solvation occurs between a species that is a hydrogen donor and another 
species that is a hydrogen acceptor. In "pure" solvation, neither species associates; an example 
is the acetone/chloroform system, in which chloroform is (only) a hydrogen donor and acetone 
(only) a hydrogen acceptor. However, solvation may occur between two associators (e.g., 
ethanol and water), between an associator and a hydrogen donor (e.g., ethanol and chloroform), 
and between an associator and a hydrogen acceptor (e.g., ethanol and acetone). 

Table 16.5 suggests the types of hydrogen-bonding interactions that can occur between 
molecules of various kinds. Here, D denotes a nonassociating hydrogen-donor species (e.g., 
C13CH or Br3CH), A is a nonassociating hydrogen acceptor [e.g., (CH3)2C0 or (C2H5)20], 
and AD is a species that can associate by hydrogen bonding [e.g., CH30H or (C2H5)2NH]. 
Mixtures containing two different associating species offer the richest variety of opportunities 

16see, e.g., J. E. Huheey, Znorganic Chemistry, 3d ed., pp. 268-272, Harper & Row, New York, 1983. 
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for hydrogen bonding. For example, in a binary mixture of ammonia(1) and water(2), hydrogen- 
bonded dimers may be formed in four ways: two by solvation, two by association: 

H H H 
N-H . . . 0 HO-H . . . NH 
H H H 

H H H 
N-H . . . NH HO-H. . .O 
H H H 

Compelling experimental evidence exists for quasichemical interactions between certain 
non-hydrogen-donor polar compounds (e.g., pyridine, ketones, and aldehydes) and aromatic 
hydrocarbons (e.g., benzene). In these cases, the polar compounds have no active hydrogens, 
and hence the interaction cannot be hydrogen bonding. Nevertheless, a complex appears to 
be formed. ~ u l l i k e n ' ~  gave the name electron donor-acceptor complex to these and other 
such entities; they are more commonly called charge-transfer complexes. Proper explanation 
of charge-transfer complexing requires use of concepts from molecular orbital theory, which 
we cannot develop here. Additionally, because of the apparent near-ubiquity of charge-transfer 
phenomena, and of the widely varying strengths of the interactions, it is often difficult topredict 
when they will make significant contributions to intermolecular forces. Mulliken and Person 
(loc. cit.) offer guidance, but most engineers would view the invocation of charge-transfer 
complexing as a helpful explanatory, rather than a predictive, exercise. Its role is clearest for 
the kinds of systems mentioned at the beginning of this paragraph. 

16.6 BEHAVIOR OF EXCESS PROPERTIES 

As suggested by Fig. 11.4, the principal excess properties (GE, H ~ ,  and s E )  can exhibit a variety 
of combinations of signs. The signs and relative magnitudes of these quantities are useful for 
qualitative engineering purposes and for elucidating the molecular phenomena which are the 
basis for observed solution behavior. Abbott et a1. lS have organized GE I H E / ~ E  data for about 
400 binary liquid mixtures in a visual scheme which permits identification of patterns, trends, 
and norms of behavior with respect to mixture type. In what follows, we describe the basis for 
the scheme, and present a few important generalizations which follow from examination of 
representative data. 

Excess properties for liquid mixtures depend primarily on temperature and composition; 
therefore comparison of data for different mixtures is best done a t jxed T and x.  Since many 
ME data are available at near-ambient temperatures, T is chosen as 298.15 K (25°C). Because 
extreme values for ME often occur near equimolar composition; we fix xl = x2 = 0.5. 

Division of Eq. (1 1.83) by RT puts it into dimensionless form: 

1 7 ~ .  S. Mulliken and W. B. Person, Molecular Complexes: A Lecture and Reprint Volume, Wiley-Interscience, New 
York, 1969. 

'*M. M. Abbott, J. P. O'Connell, and Twenty Rensselaer Students, Chem. Eng. Educ., vol. 28, pp. 18-23 and 77, 
1994. 
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The six possible combinations of sign for the three excess properties are enumerated in Table 
16.6. Each combination defines a region on the diagram of Fig. 16.4, which shows GE/RT 
vs. H ~ / R T  in skeleton form. 

Table 16.6 Definition of Regions on the 
G * / R T  vs. H ~ / R T  Diagram 

Region Sign GE Sign H~ Sign SE 

Along the diagonal line on Fig. 16.4, SE = 0. In regions to the right of the diagonal (V, 
VI, and I), SE is positive; for regions to the left of the diagonal (11,111, and IV), sE is negative. 
Lines of constant nonzero SE are parallel to the diagonal. 

Convenience in modeling and rationalizing the behavior of GE suggests a focus on 
enthalpic (energetic) and entvopic contributions, a separation suggested by Eqs. (1 1.83) and 
(16.25). According to these equations, GE can be positive or negative if HE  and SE have 
the same sign. If H E  and SE are positive and if GE is also positive, then H E  > T S ~  and 
"enthalpy dominates"; If H E  and sE are positive and GE is negative, then T S ~  > H E  and 
"entropy dominates". Similar reasoning applies when both H E  and sE are negative, leading 
to the identification of Regions I and IV on Fig. 16.4 as regions of enthalpy domination, and 
of Regions I11 and VI as regions of entropy domination. The notions of enthalpy and entropy 
domination can be helpful for explaining the molecular origins of observed mixture-property 
behavior. 

Abbott et al. classify binary organic and aqueous/organic mixtures by a simple scheme 
based on hydrogen-bonding concepts (Sec. 16.5). A pure species is categorized as nonpolar 
("NP": e.g., benzene, carbon tetrachloride, or n-heptane); polar but nonassociating ("NA": e.g., 
acetone, chloroform, or diethylether); or polar and associating ("'AS": e.g., acetic acid, ethanol, 
or water). With these categories for pure species, there are then six binary mixture types: 
NPINP (e.g., benzeneln-heptane); NANP [e.g., chloroformln-heptane, Fig. 11.4(a)]; ASINP 
[e.g., ethanolln-heptane, Fig. 11.4(d)]; NAJNA [e.g., acetone/chloroform, Fig. 11.4(c)]; ASINA 
[e.g., ethanol/chloroform, Fig. 11.4(e)]; and ASIAS [e.g., ethanollwater, Fig. 11.4(f)]. 

Figure 16.5 is a GE/RT vs. H ~ / R T  plot of data for 135 different binary mixtures at 
298.15 K(25"C), with systems distinguished according to t h e N P M A S  classification scheme. 
For clarity, we mainly omit data for which the three principal excess properties are very small. 
The figure appears chaotic at first glance, but on inspection important patterns emerge. We list 
here a few; statistics, where given, apply to the full data set analyzed by Abbott et al. 

About 85% of all mixtures exhibit positive GE or positive H E  (Regions I, 11,111, and VI); 
about 70% have positive GE and positive H E  (Regions I and 11). Thus positive GE and 
positive H E  are the "norms". 
About 60% of all mixtures fall in Regions I and IV, with only about 15% in Regions I11 
and VI. Thus the enthalpy is more likely to dominate solution behavior than is the entropy. 
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Figure 16.4 Diagram of G ~ / R T  vs. H E / R T  in skeleton form 

NPINP mixtures (the open circles on Fig. 16.5) tend to concentrate in Regions I and VI: 
for such mixtures, H E  and sE are normally positive. When GE is positive (enthalpy 
domination), G E / R ~  rarely exceeds about 0.2. If GE is negative (entropy domination), 
G ~ / R T  is rarely less than -0.2. 

NA/NP mixtures (the filled circles) usually fall in Region I, with occasional significant 
excursions into Region 11. Thus, GE and H E  are positive, as is (normally) sE. Both GE 
and H~ can be large. 

ASNP mixtures (the open triangles) invariably occupy Region I or 11, with Region 11 
behavior (negative SE) favored when the polar species is a very strong associator, such 
as an alcohol or a carboxylic acid. In the latter case, GE can be extremely large owing to 
the reinforcing effects of positive H E  and negative sE [Eq. (1 1.83)]. 
Mixtures containing two polar species exhibit a diversity of behaviors. Perhaps the easiest 
class to categorize involves pure solvation, in which one species is a nonassociating 
hydrogen donor and the other a nonassociating hydrogen acceptor. Here, unless one of 
the species has extremely high effective polarity (e.g., acetonitrile), Region IV behavior 
obtains: GE, H E,  and sE are all negative (enthalpy dominates). Examples are represented 
by the open squares on Fig. 16.5. For AS/NA and ASIAS mixtures (the filled triangles on 
Fig. 16.5), a variety of hydrogen-bonding possibilities is available (see Table 16.5), and 
it is impossible to make easy generalizations. We note however that these are the mixture 
types with significant representation in Region 111; here, both H E  and sE are negative, 
but entropy dominates. 
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Figure 16.5 Equimolar excess properties for 135 binary mixtures at 298.1 5 K (25°C) 

Legend: 0 NP/NP mixtures; NAINP mixtures; A ASINP mixtures; A AS/NA and AS/AS mixtures; 17 
solvating NA/NA mixtures. 

16.7 MOLECULAR BASIS FOR MIXTURE BEHAVIOR 

The relations between excess properties and property changes of mixing (Sec. 12.3) facilitate 
discussion of the molecular phenomena which give rise to observed excess-property behavior. 
An essential connection is provided by Eq. (12.33), which asserts the identity of H E  and AH. 
Thus we focus on the mixing process (and hence on A H )  for explaining the behavior of H E .  

The sign and magnitude of A H  roughly reflect differences in the strengths of intermolec- 
ular attractions between pairs of unlike species on the one hand, and pairs of like species on 
the other. In the standard mixing process (Fig. 12.10) interactions between like species are 
disrupted, and interactions between unlike species are promoted. If the unlike attractions are 
weaker than the average of those between species of the same kind, then in the mixing process 
more energy is required to break like attractions than is made available by formation of unlike 
attractions. In this case AH(= H E )  is positive, i.e., the mixing process is endothermic. If the 
unlike attractions are stronger, then A H  is negative, and the mixing process is exothermic. 

In Secs. 16.1 and 16.5 we identify intermolecular attractive interactions of four kinds: 
dispersion, induction, direct electrostatic, and quasichemical. A summary list of important 
points follows: 
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Of the four attractive interactions, the dispersion force is always present. It dominates 
when interacting molecules are nonpolar or slightly polar. (See Table 16.2 and the 
accompanying discussion.) 

The induction force requires that at least one of the interacting species be polar. It is 
normally the weakest of the "physical" intermolecular attractive forces (Table 16.2). 

For neutral molecules, the simplest and normally the strongest direct electrostatic force 
is that operating between two permanent dipoles. This force can dominate "physical" 
attractive interactions if the molecules have high effective polarity, i.e., if they are small 
and have large permanent dipoles. 

Quasichemical forces, when present, can be the strongest of the four attractive interactions. 
However, their existence requires special chemical make-up of the interacting molecules. 
Hydrogen bonding is the most important interaction of this type, although charge-transfer 
complexing can play a major role in some kinds of systems. 

Excess Enthalpy 

With these notions in mind, we offer some rationalizations of the observed signs and magni- 
tudes of HE(= AH) for binary liquid mixtures of the kinds discussed in Sec. 16.6. 

H E  of N P N P  Mixtures 

Here, dispersion forces are usually the only significant attractive intermolecular forces. Thus 
H E  reflects energetic effects associated with disruption of dispersion interactions between like 
species, and simultaneous promotion of dispersion interaction betweenunlike species. Molecu- 
lar theory19 suggests that dispersion forces between unlike species are weaker than the average 
of dispersion forces between like species. (This is the molecular basis of the "like prefers like" 
rule of elementary chemistry.) Here, then, one expects H~ to be positive. This is what is usually 
observed for NPINP mixtures (Fig. 16.5). 

H E  of NA/NP Mixtures 

For this class of mixtures, interactions between molecules of like species are different in kind 
for the two species. In particular, two molecules of the polar species experience a direct- 
electrostatic interaction and a (usually weak) induction interaction, in addition to the usual 
dispersion interaction; here, the attractive forces are stronger than would be observed for a 
nonpolar species of similar size and geometry. Interaction between unlike species, on the other 
hand, involves only the dispersion and (weak) induction forces. One therefore expects H E  to 
be positive, only more so than for otherwise similar NPNP mixtures. Experiment bears this 
out, on average (Fig. 16.5). 

HE  of ASATP Mixtures 

As for NPNP and NAINP mixtures, one expects positive H E;  this is what Fig. 16.5 shows. 
However, H E  is often observed to be only modest in magnitude, frequently less than H E  for 

19see, e.g., J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase 
Equilibria, 2d ed., sec. 4.4, Prentice Hall, Englewood Cliffs, NJ, 1986. 
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otherwise similar NA/NP mixtures. The reason for this is the unusual strength of the like in- 
teractions for the associating polar species. Here, hydrogen-bonded complexes for the polar 
species can persist in solution up to rather high dilution, thus mitigating the otherwise very 
large positive values of H E  expected from simple disruption/promotion arguments. 

H E  of Solvating NANA Mixtures 

These mixtures are the major occupants of Region IV in Fig. 16.5. Since neither species asso- 
ciates by hydrogen bonding, attractions between like species result from dispersion, induction, 
and dipoleldipole interactions. The same kinds of interaction obtain for unlike molecules, but 
in addition there is superposed a strong attraction owing to the formation of a hydrogen-bonded 
solvation complex. The net effect is a negative value for H ~ ;  the system is exothermic. 

H~ of ASNA and AS/AS Mixtures 

All four types of attractive interaction occur between unlike species, and for at least one of the 
pure species. Thus the sign and magnitude of H E  reflect a balance between competing effects 
of dipoleldipole interactions, association, and solvation. Qualitative prediction of enthalpic be- 
havior is difficult, except by analogy. Figure 16.5 suggests the diversity of behavior observed 
for such mixtures. 

Excess Entropy 

The excess entropy is related to AS through Eqs. (12.38) and (12.35). Thus, 

where = -R x xi Inxi (12.35) 
1 

An ideal solution is one comprising molecules of identical size and shape, and for which 
intermolecular forces are the same for all molecular pairs, whether like or unlike. For such a 
hypothetical solution, the entropy change of mixing, given by Eq. (12.35), is always positive. 

In a real mixture, molecules of different species have different sizes andlor shapes, and 
the intrinsic strengths of molecular interactions are different for different molecular pairs. As 
a result, AS for a real mixture may be greater or less than a s i d ,  and by Eq. (16.26), sE 
may be positive or negative. The behavior of S E is most conveniently rationalized by separate 
consideration of size/shape effects on the one hand and structural effects on the other. (The word 
"structure" refers to the order brought about at the molecular level by intermolecular forces.) 

Pure sizelshape effects result in a AS greater than AS", and hence provide a positive 
contribution to sE. Prausnitz et a1." discuss the relative roles of size and shape, and give 
references to the relevant literature. If size effects alone are considered, an approximate upper 
bound to this contribution to S E is given by the Flory-Huggins equation: 

Qi xi Vi sE = -R x xi In - where Q. I = - - 
I X i  C xj vj 

j 

Here, Qi is the apparent volume fraction, and V, is molar volume of the pure species. 

205. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, op. cit., sec. 7.4 
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Structural contributions to AS (hence to SE) reflect primarily the relative strengths of 
competing intermolecular attractions. Consider the mixing of a nonassociating polar species 
(e.g., acetone) with a nonpolar species (e.g., n-hexane). Energetically, the net result of the mix- 
ing process is determined primarily by the energy associated with disruption of dipoleldipole 
interactions, as discussed earlier with respect to H E  for NANP mixtures. With respect to en- 
tropy, this is a structure-breaking process wherein molecular aggregates promoted by a strong 
dipoleldipole interaction are broken up by mixing. 

Consider instead the mixing of two nonassociating polar species, one a hydrogen donor 
and the other a hydrogen acceptor [e.g., chloroform/acetone, Fig. 1 1.4(c)]. Energetically, the net 
result of the mixing process is determined primarily by the energy associated with formation of 
a solvation complex, as discussed earlier regarding H E  for solvating NA/NA mixtures. This is 
a structure-making process, wherein molecular aggregates promoted by a strong quasichemical 
interaction are formed on mixing. 

Structure breaking implies a positive contribution to S E  (AS > a s i d ) ,  and structure 
making a negative contribution to S" (AS < nsid) .  When used in conjunction with sizelshape 
arguments, these simple notions help to explain observed signs for s E .  By way of example, 
we consider again binary liquid mixtures of the kinds discussed in Sec. 16.6. 

S" of N P N P  Mixtures 

In the absence of significant sizelshape effects, SE is usually positive, owing to the relative 
weakness of unlike vs. like intermolecular attractions. Thus structure breaking on mixing 
is a stronger effect than structure making. However, the enthalpy contribution to GE often 
dominates, and Region I behavior obtains. For mixtures of species of significantly different 
size (e.g., n-hexaneln-hexadecane), positive sizeishape contributions can reinforce structural 
effects, producing values of sE large enough for entropy to dominate; GE is then negative and 
Region VI behavior is observed. 

of N A M  Mixtures 

As already noted, the mixing process here primarily involves structure breaking (positive con- 
tributions to SE). Sizelshape effects can have an augmenting influence to produce substantial 
positive s". However, H E  often is also large, and enthalpy usually dominates (Region I). 

of AS/NP Mixtures 

Mixing nominally promotes a structure-breaking disruption of hydrogen-bonded complexes of 
the associating species. However, the persistence of these complexes in solution up to rather 
high dilution can greatly reduce this positive contribution to sE, leading to negative values of SE 

over much of the composition range. This effect is observed for mixtures of strong associators 
(e.g., alcohols and carboxylic acids) with hydrocarbons. An example is the ethanolln-heptane 
system of Fig 11.4(d), which shows Region I1 behavior. 

sE of Solvating NNNA Mixtures 

As noted in earlier discussion, this is predominately a structure-making situation, and SE is 
negative. However, H E  is also negative (and large), whence enthalpy usually dominates, mak- 
ing GE negative (Region IV). 
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sE of ASNA and AS/AS Mixtures 

The complexities discussed with respect to H~ also apply to s E ;  structure-breaking and 
structure-making effects compete to provide a variety of sign combinations and a range of 
magnitudes for SE. 

16.8 VLE BY MOLECULAR SIMULATION 

In Secs. 16.2, 16.3, and 16.4 we describe how macroscopic thermodynamic properties, such 
as internal energy, entropy, and the Helmholtz energy are connected to properties of individual 
molecules and their assemblies. These connections are exploited quantitatively through com- 
puter simulation of collections of  molecule^.^^ This approach has also been applied directly 
to VLE, primarily to pure species and to binary and simple ternary mixtures. Descriptions of 
assumptions, methods, and calculational procedures are given by ~ a n a g i o t o ~ o u l o s ~ ~  and in an 
extended review by ~ u b b i n s . ~ ~  Their extensive bibliographies are a guide to relevant literature. 

The method requires suitable intermolecular potential energy functions U(r) and solution 
of the equations of statistical mechanics for the assemblies of molecules. As mentioned in 
Sec. 16.1, potential energy functions are as yet primarily empirical. Except for the simplest 
molecules, U(r) cannot be predicted by ab i n i t i ~ ~ ~  calculations, because of still-inadequate 
computer speed. Therefore, semi-empirical functions based on quantum-mechanical theory 
and experimental data are employed. 

Two procedures are used for the very large number of computer calculations required to 
treat molecular assemblies. The first, proposed by ~ a n a ~ i o t o ~ o u l o s , ~ ~  is called the direct Gibbs- 
ensemble Monte Carlo method. One considers two separate phases, each represented by a finite 
number of molecules contained in a simulation box. Both are at the same specified temperature 
but are of different initial densities and compositions. The idea is to implement a sequence of 
perturbations which gradually bring these two phases into equilibrium. This ultimately insures 
internal equilibrium for each phase separately, equality of pressures between the two phases, 
and equality of the chemical potentials for each species in the two phases. The perturbations 
("moves") designed to bring about these conditions of equilibrium are therefore: 

1. Random displacement of molecules within each box. These are the usual moves of Monte 
Carlo simulation, insuring internal equilibrium and generating the ensemble upon which 
the partition function is based, thus leading to a set of thermodynamic properties for the 
molecules of each box. 

2. Random equal and opposite volume changes in the two boxes. These moves alter the pres- 
sures in the boxes and ultimately bring about their equality. As the pressures change, the 
ongoing Monte Carlo simulations in the boxes generate evolving thermodynamic properties. 

2 1 ~ .  P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1989; D. Frenkel and 
B. Smit, Understanding Molecular Simulations: From Algorithms to Applications, Academic Press, San Diego, 1996. 

2 2 ~ .  Z. Panagiotopoulos, Molecular Simularion, vol. 9, pp. 1-23, 1992. 

2 3 ~ .  E. Gubbins, "Applications of Molecular Theory to Phase Equilibrium Predictions" in Models for Thermody- 
namic and Phase Equilibrium Calculations, S. I .  Sandler, ed., pp. 507-600, Marcel Dekker, Inc., New York, 1994. 

24~eaning:  from the beginning, i.e., from first principles. 

2 5 ~ .  Z .  Panagiotopoulos, Molecular Physics, vol. 61, pp. 813-826, 1987. 
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3. Random transfer of molecules between the two boxes. These moves alter compositions and 
chemical potentials pi of the species in the boxes, ultimately bringing about equality of the 
chemical potentials for each species in the two boxes. These moves also contribute to the 
evolution of the thermodynamic properties of the molecules in the boxes. 

Moves may be accepted or rejected on the basis of certain probabilities that insure progression 
on average to states of lower Gibbs energy for the two boxes considered together. Phase 
equilibrium obtains at the state of minimum total Gibbs energy. 

A limitation of the Gibbs-ensemble Monte Carlo method is that the successful transfer of 
molecules between phases (item 3) becomes difficult (improbable) for dense fluids, leading to 
excessive calculation time. In this event, a second, more indirect, procedure can be employed. 
The idea here is to calculate the chemical potentials of the species in each box for a range of 
states. Equilibrium compositions are then identified as those states having the same temperature, 
pressure, and chemical potential for each species in the two boxes. Much more computation is 
needed by this procedure than for the direct procedure, except where the molecular-transfer step 
becomes difficult. For high-density fluids and for solids, the indirect procedure is preferred. 

Molecular simulation is not a routine method for VLE calculations nor does it substitute 
for experimental data. At present, it is most useful for extrapolating to conditions not accessible 
by other means. 

The Gibbs-ensemble procedure has also been employed to estimate adsorption isotherms 
for simple systems. The approach is i l lu~t ra ted~~ by calculations for a straight cylindrical pore 
where both fluidtfluid and fluidladsorbent molecular interactions can be represented by the 
Lennard-Jones potential-energy function [Eq. (16. I)]. Simulation calculations have also been 
made for isotherms of methane and ethane adsorbed on a model carbonaceous slit pore.27 
Isosteric heats of adsorption have also been ca l c~ l a t ed .~~  

PROBLEMS 

16.1. The following rectilinear potential is an augmentation of the square-well potential [See 
Eq. (16.1 I)]: 

U = oo for r 5 d 

U = <  for d s r 5 k . d  
U =- E  for k . d r r 5 l . d  

U = O  for 1 . d ~ r  

Here, quantities k, 1 ,  6, and E are positive constants, with k < I. Draw a sketch of 
this potential, and find an algebraic expression for the second virial coefficient B ( T ) .  
Demonstrate that B ( T )  for this model can exhibit a maximum with respect to T. 

16.2. Table 16.2 applies for like molecularpairs. Prepare a similar table for all unlike molecular 
pairs comprising species from the following: methane, n-heptane, chloroform, acetone, 

2 6 ~ .  Z. Panagiotopoulos, Molecular Physics, vol. 62, pp. 701-719, 1987. 

2 7 ~ .  F. Cracknell and David Nicholson, Adsorption, vol. 1, p. 7, 1995. 

2 8 ~ .  E Cracknell, D. Nicholson, and N. Quirke, Molecular Simulation, vol. 13, p. 161, 1994. 
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and acetonitrile. Discuss the result. Data in addition to values that appear in Table 16.2: 
For methane, p = 0,B = 2.6 x lopz4 cm3, I = 2.1 x J. For n-heptane, = 0, 
B = 13.6 x 10-14 cm3, I = 1.7 x 10-lsJ. 

16.3. The heat of mixing (or heat of solution) is negative for the systems represented on 
Figs. 12.14, 12.17, and 12.19. Offer molecular explanations of why this is so. 

16.4. Naive numerology suggests that there should be 23 = 8 possible combinations of sign 
for G ~ ,  H ~ ,  and sE. Table 16.6 shows only six. Why? 

16.5. Listed below are excess-enthalpy data at 298.15 K (25°C) for two series of equimolar 
binary liquid mixtures. Explain why the mixture containing benzene is the "outlier" in 
each series. 

Series Mixture HEIJ mol-I 

A CH2C12/benzene -18. 
lcyclohexane 1,188. 
In-hexane 1,311. 

B acetonebenzene 144. 
Icyclohexane 1,574. 
In-hexane 1,555. 

16.6. What signs would you expect to observe for G ~ ,  H ~ ,  and SE for equimolar liquid 
solutions of the following pairs of species at 298.15 K (25"C)? Explain your answers. 

(a) Acetonelcyclohexane 
(b) Acetoneldichloromethane 
(c) Anilinelcyclohexane 
(d) Benzenelcarbon disulfide 
(e) Benzeneln-hexane 
(f) Chloroform/l,4-dioxane 
(g) Chlorofonnln-hexane 
(h) Ethanolln-nonane 

16.7. The quantity Jij r 2Bij - Bii - Bjj plays a role in the thermodynamics of gas mixtures 
at low pressures: see, e.g., Eq. (14.4) for &. This quantity can be positive or negative, 
depending on the chemical nature of species i and j. For what kinds of molecular pairs 
would one expect S i j  to be 
(a) Positive; (b) Negative; (c) Essentially zero? 



Appendix A 

Conversion Factors and Values 
of the Gas Constant 

Because standard reference books contain data in diverse units, we include Tables A.l and 
A.2 to aid the conversion of values from one set of units to another. Those units having no 
connection with the SI system are enclosed in parentheses. The following definitions are noted: 

(ft) E U.S. defined foot = 3.048 x lo-' m 
(in) E U.S. defined inch = 2.54 x lop2 m 

(gal) - U.S. liquid gallon E 231(in)~ 
(lb,) - U.S. defined pound mass (avoirdupois) 

= 4.535 9237 x lo-' kg 
(lbf) - force to accelerate l(lb,) by 32.1740 (ft) sP2 
atm - standard atmospheric pressure = 101 325 Pa 

(psia) E pounds force per square inch absolute pressure 
ton - pressure exerted by 1 mm mercury at 273.15 K (0°C) and standard gravity 

(cal) - thermochemical calorie 
(Btu) 2 international steam table British thermal unit 

(lb mole) E mass in pounds mass with numerical value equal to the molar mass 
(R) E absolute temperature in Rankines 

The conversion factors of Table A. 1 are referred to a single basic or derived unit of the 
SI system. Conversions between other pairs of units for a given quantity are made as in the 
following example: 

1 bar = 0.986 923 atm = 750.061 torr 

thus 

750.061 
latm = = 760.00 ton: 

0.986 923 
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Table A.l Conversion Factors 

Quantity 

Length 

Mass 

Force 

Pressure 

Volume 

Density 

Energy 

Power 

Conversion 

I m = 100 cm 
= 3.280 84 (ft) = 39.3701 (in) 

I kg= 103 
= 2.204 62 (lb,) 

1 N = 1 kg m s-' 
= lo5 (dyne) 
= 0.224 809 (lbf) 

1 bar = lo5 kg m-' sp2 = lo5 N m-2 
= lo5 Pa = 10' kPa 
= 1 O6 dyne cm-2 
= 0.986 923 atm 
= 14.5038 (psia) 
= 750.061 torr 

1 m3 = lo6 cm3 

= 35.3147 (ft)3 
= 264.172 (gal) 

1 J = 1 k g m 2 s ~ ' = 1 N m  
= 1 m 3 P a =  1 0 ~ 5 m 3 b a r = 1 0 c m 3  bar 
= 9.869 23 cm3 atm 
= lo7 dyne cm = lo7 erg 
= 0.239 006 (cal) 
= 5.121 97 x 10-3(ft)3(psia) = 0.737 562 (ft)(lbf) 
= 9.478 3 1 x (Btu) 

1 kW = lo3 W = lo3 kg m2 s - ~  = lo3 J s-' 
= 239.006 (cal) s-' 
= 737.562 (ft)(lbf) s-' 
= 0.947 83 1 (Btu) s-' 
= 1.341 02 (hp) 

Table A.2 Values of the Universal Gas Constant 

R = 8.314 J mol-' K-' = 8.314 m3 Pa mol-I K-' 
= 83.14 cm3 bar mol-I K-' = 8314 cm3 kPa mol-' K-' 
= 82.06 cm3 atm mol-' K-' = 82 363.95 cm3 torr mol-' K-'= 0.082 06 m3 atm kmol-'K-' 
= 1.9872 (cal) mol-' K-' = 1.986 (Btu)(lb mole)-'(R)-' 
= 0.7302 (ft)3(atm)(lb mo1)-'(R)' = 10.73 (ft)3(psia)(lb mo1)-'(R)-' 
= 1545 (ft)(lbf)(lb mol)-'(R)-' 



Appendix B 

Properties of Pure Species 

Listed here for various chemical species are values for the molar mass (molecular weight), 
acentric factor w ,  critical temperature T,, critical pressure PC, critical compressibility factor Z,, 
critical molar volume V,, and normal boiling point T,. Abstracted from Project 801, DIPPR@, 
Design Institute for Physical Property Data of the American Institute of Chemical Engineers, 
they are reproduced with permission. The full data compilation is published by T. E. Daubert, 
R. P. Danner, H. M. Sibul, and C. C. Stebbins, Physical and Thermodynamic Properties ofpure 
Chemicals: Data Compilation, Taylor & Francis, Bristol, PA, 1,405 chemicals, extant 1995. 
Included are values for 26 physical constants and regressed values of parameters in equations 
for the temperature dependence of 13 thermodynamic and transport properties. 

Electronic versions by the same authors include: 

DIPPR@ Data Compilation of Pure Compound Properties, ASCII Files, 
National Institute of Science and Technology, Standard Reference Data, 
Gaithersburg, MD, 1458 chemicals, extant 1995. 
DZPPR@ Data Compilation, Student DIPPR Database, PC-DOS Version, National In- 
stitute of Science and Technology, Standard Reference Data, 
Gaithersburg, MD, 100 common chemicals for teaching purposes, 1995. 



Methane 
Ethane 
Propane 
n-Butane 
n-Pentane 
n-Hexane 
n-Heptane 
n-Octane 
n-Nonane 
n-Decane 
Isobutane 
Isooctane 
Cyclopentane 
Cyclohexane 
Methylcyclopentane 
Methylcyclohexane 
Ethylene 
Propylene 
1-Butene 
cis-2-Butene 
trans-2-Butene 
1 -Hexene 
Isobutylene 
1,3-Butadiene 
Cyclohexene 
Acetylene 
Benzene 
Toluene 
Ethylbenzene 
Cumene 
o-Xylene 
m-Xylene 
p-Xylene 
Styrene 
Naphthalene 
Biphenyl 
Formaldehyde 
Acetaldehyde 
Methyl acetate 
Ethyl acetate 
Acetone 
Methyl ethyl ketone 
Diethyl ether 
Methyl t-butyl ether 
Methanol 

APPENDIX B. Properties of Pure Species 

Table B.l Properties of Pure Species 

Molar vc 
mass w TcIK P,/bar Z, cm3 mol-' T,/K 

or m3 kmol-' 

16.043 0.012 190.6 45.99 0.286 98.6 111.4 
30.070 0.100 305.3 48.72 0.279 145.5 184.6 
44.097 0.152 369.8 42.48 0.276 200.0 231.1 
58.123 0.200 425.1 37.96 0.274 255. 272.7 
72.150 0.252 469.7 33.70 0.270 313. 309.2 
86.177 0.301 507.6 30.25 0.266 371. 341.9 

100.204 0.350 540.2 27.40 0.261 428. 37 1.6 
114.231 0.400 568.7 24.90 0.256 486. 398.8 
128.258 0.444 594.6 22.90 0.252 544. 424.0 
142.285 0.492 617.7 21.10 0.247 600. 447.3 
58.123 0.181 408.1 36.48 0.282 262.7 261.4 

114.231 0.302 544.0 25.68 0.266 468. 372.4 
70.134 0.196 511.8 45.02 0.273 258. 322.4 
84.161 0.210 553.6 40.73 0.273 308. 353.9 
84.161 0.230 532.8 37.85 0.272 319. 345.0 
98.188 0.235 572.2 34.71 0.269 368. 374.1 
28.054 0.087 282.3 50.40 0.281 131. 169.4 
42.081 0.140 365.6 46.65 0.289 188.4 225.5 
56.108 0.191 420.0 40.43 0.277 239.3 266.9 
56.108 0.205 435.6 42.43 0.273 233.8 276.9 
56.108 0.218 428.6 41.00 0.275 237.7 274.0 
84.161 0.280 504.0 31.40 0.265 354. 336.3 
56.108 0.194 417.9 40.00 0.275 238.9 266.3 
54.092 0.190 425.2 42.77 0.267 220.4 268.7 
82.145 0.212 560.4 43.50 0.272 291. 356.1 
26.038 0.187 308.3 61.39 0.271 113. 189.4 
78.114 0.210 562.2 48.98 0.271 259. 353.2 
92.141 0.262 591.8 41.06 0.264 316. 383.8 

106.167 0.303 617.2 36.06 0.263 374. 409.4 
120.194 0.326 631.1 32.09 0.261 427. 425.6 
106.167 0.310 630.3 37.34 0.263 369. 417.6 
106.167 0.326 617.1 35.36 0.259 376. 412.3 
106.167 0.322 616.2 35.11 0.260 379. 411.5 
104.152 0.297 636.0 38.40 0.256 352. 418.3 
128.174 0.302 748.4 40.51 0.269 413. 
154.211 0.365 789.3 38.50 0.295 502. 528.2 
30.026 0.282 408.0 65.90 0.223 115. 254.1 
44.053 0.291 466.0 55.50 0.221 154. 294.0 
74.079 0.331 506.6 47.50 0.257 228. 330.1 
88.106 0.366 523.3 38.80 0.255 286. 350.2 
58.080 0.307 508.2 47.01 0.233 209. 329.4 
72.107 0.323 535.5 41.50 0.249 267. 352.8 
74.123 0.281 466.7 36.40 0.263 280. 307.6 
88.150 0.266 497.1 34.30 0.273 329. 328.4 
32.042 0.564 512.6 80.97 0.224 118. 337.9 



Table B.l (Continued) 

Molar VC 
mass w T,/K P,lbar 2, cm3 mol-I T,/K 

Ethanol 
l -Propano1 
1-Butanol 
1 -Hexan01 
2-Propanol 
Phenol 
Ethylene glycol 
Acetic acid 
n-Butyric acid 
Benzoic acid 
Acetonitrile 
Methylamine 
Ethylamine 
Nitromethane 
Carbon tetrachloride 
Chloroform 
Dichloromethane 
Methyl chloride 
Ethyl chloride 
Chlorobenzene 
Tetrafluoroethane 
Argon 

Krypton 
Xenon 
Helium 4 
Hydrogen 
Oxygen 
Nitrogen 
Air+ 
Chlorine 
Carbon monoxide 
Carbon dioxide 
Carbon disulfide 
Hydrogen sulfide 
Sulfur dioxide 
Sulfur trioxide 
Nitric oxide (NO) 
Nitrous oxide (NzO) 
Hydrogen chloride 
Hydrogen cyanide 
Water 
Ammonia 
Nitric acid 
Sulfuric acid 

+pseudoparameters for y~~ = 0.79 and yo, = 0.21. See Eqs. (6.88)-(6.90). 



Appendix C 

Heat Capacities and Property 
Changes of Formation 

Table C.l Heat Capacities of Gases in the Ideal-Gas State 

Table C.2 Heat Capacities of Solids 

Table C.3 Heat Capacities of Liquids 

Table C.4 Standard Enthalpies and Gibbs Energies of Formation at 298.15 K (25°C) 



Table C.l Heat Capacities of Gases in the Ideal-Gas State? 
Constants in equation C;IR = A + BT + CT' + DT-2 T (kelvins) from 298.15 to T,,, 

Chemical species Tmax ~ 2 " ~  I R  A 1 0 3 ~  1 0 6 c  IO-'D 
- -- - - - - - ~ -- - - 

Paraffins: 
Methane CH4 1500 4.217 1.702 9.081 -2.164 
Ethane C2H6 1500 6.369 1.131 19.225 -5.561 
Propane C3H8 1500 9.001 1.213 28.785 -8.824 
n-Butane C4H10 1500 11.928 1.935 36.915 -11.402 
iso-Butane C4H10 1500 11.901 1.677 37.853 -11.945 
n-Pentane C5HI2 1500 14.731 2.464 45.351 -14.111 
n-Hexane C6H14 1500 17.550 3.025 53.722 -16.791 
n-Heptane C7H16 1500 20.361 3.570 62.127 -19.486 
n-Octane C8H18 1500 23.174 4.108 70.567 -22.208 
1 -Alkenes: 
Ethylene c2H4 1500 5.325 1.424 14.394 -4.392 
Propylene C3H6 1500 7.792 1.637 22.706 -6.915 
1-Butene C4Hs 1500 10.520 1.967 31.630 -9.873 
1 -Pentene CsHlo 1500 13.437 2.691 39.753 -12.447 
1 -Hexene C6H12 1500 16.240 3.220 48.189 -15.157 
1-Heptene C7H14 1500 19.053 3.768 56.588 -17.847 
1-Octene C ~ H I ~  1500 21.868 4.324 64.960 -20.521 

Miscellaneous organics: 
Acetaldehyde C2H40 1000 6.506 1.693 17.978 -6.158 
Acetylene C2H2 1500 5.253 6.132 1.952 . . . . . .  - 1.299 
Benzene C6H6 1500 10.259 -0.206 39.064 -13.301 
1,3-Butadiene C4H6 1500 10.720 2.734 26.786 -8.882 
Cyclohexane C6H12 1500 13.121 -3.876 63.249 -20.928 
Ethanol CzH6O 1500 8.948 3.518 20.001 -6.002 
Ethylbenzene CsHlo 1500 15.993 1.124 55.380 -18.476 
Ethylene oxide CzH40 1000 5.784 -0.385 23.463 -9.296 
Formaldehyde CH20 1500 4.191 2.264 7.022 -1.877 
Methanol Cki40 1500 5.547 2.211 12.216 -3.450 
Styrene CsHs 1500 15.534 2.050 50.192 -16.662 
Toluene C7Hs 1500 12.922 0.290 47.052 -15.716 

Miscellaneous inorganics: 
Air 2000 3.509 3.355 0.575 . . . . . . -0.016 
Ammonia NH3 1800 4.269 3.578 3.020 . . . . . .  -0.186 
Bromine B rz 3000 4.337 4.493 0.056 . . . . . . -0.154 
Carbon monoxide CO 2500 3.507 3.376 0.557 . . . . . . -0.031 
Carbon dioxide COz 2000 4.467 5.457 1.045 . . . . . . -1.157 
Carbon disulfide CS2 1800 5.532 6.311 0.805 . . . . . . -0.906 
Chlorine cl2 3000 4.082 4.442 0.089 . . . . . . -0.344 
Hydrogen Hz 3000 3.468 3.249 0.422 . . . ... 0.083 
Hydrogen sulfide H2S 2300 4.114 3.931 1.490 . . . . . . -0.232 
Hydrogen chloride HC1 2000 3.512 3.156 0.623 . . . . . .  0.151 
Hydrogen cyanide HCN 2500 4.326 4.736 1.359 . . . . . . -0.725 
Nitrogen N2 2000 3.502 3.280 0.593 . . . . . . 0.040 
Nitrous oxide NzO 2000 4.646 5.328 1.214 . . . - .  . -0.928 
Nitric oxide NO 2000 3.590 3.387 0.629 . . . . . . 0.014 
Nitrogen dioxide NO2 2000 4.447 4.982 1.195 . . . . . . -0.792 
Dinitrogen tetroxide Nz04 2000 9.198 11.660 2.257 . . . . . . -2.787 
Oxygen 0 2  2000 3.535 3.639 0.506 . . . . . . -0.227 
Sulfur dioxide SO2 2000 4.796 5.699 0.801 . . . . . . -1.015 
Sulfur trioxide SO3 2000 6.094 8.060 1.056 . . . . . . -2.028 
Water Hz0 2000 4.038 3.470 1.450 . . . . . . 0.121 

+selected from H. M. Spencer, Ind. Eng. Chem., vol. 40, pp. 2152-2154, 1948; K. K. Kelley, 
U.S. Bul: Mines Bull. 584, 1960; L. B. Pankratz, U.S. Bul: Mines Bull. 672, 1982. 
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Table C.2 Heat Capacities of Solidst 
Constants for the equation C p / R  = A + BT + D T - ~  T (kelvins) from 298.15 K to T,,, 

Chemical species T,, C ~ 2 9 8  lR  A lo3 B lo4 D 

CaO 
CaC03 
Ca(OH12 
CaC2 
CaC12 
C (graphite) 
Cu 
c u o  
Fe (u) 
Fez03 
Fe304 
FeS 
I2 
LiCl 
NH4C1 
Na 
NaCl 
NaOH 
NaHC03 
S (rhombic) 
Si02 (quartz) 

iselected from K. K. Kelley, U.S. Bul: Mines Bull. 584, 1960; 
L. B. Pankratz, U.S. Bur Mines Bull. 672, 1982. 

Table C.3 Heat Capacities of Liquidst 
Constants for the equation C p / R  = A + BT + CT' T from 273.15 to 373.15 K 

Chemical species C 4 9 8  lR A lo3 B lo6 C  

Ammonia 
Aniline 
Benzene 
1,3-Butadiene 
Carbon tetrachloride 
Chlorobenzene 
Chloroform 
Cyclohexane 
Ethanol 
Ethylene oxide 
Methanol 
n-Propanol 
Sulfur trioxide 
Toluene 
Water 
- - 

t ~ a s e d  on correlations presented by J. W. Miller, Jr., G. R. Schon; and 
C. L. Yaws, Chem. E~zg., vol. 83(23), p. 129, 1976. 



Table C.4 Standard Enthalpies and Gibbs Energies of Formation at 
298.1 5 K (25"C)t 

Joules per mole of the substance formed 

Chemical species 

State A H?298 AG?298 

(Note 2) (Note 1) (Note 1) 

Paraffins: 

Methane 
Ethane 
Propane 
n-Butane 
n-Pentane 
n-Hexane 
n-Heptane 
n-Octane 

Ethylene 
Propylene 
1-Butene 
1-Pentene 
1 -Hexene 
1 -Heptene 

Miscellaneous organics: 

Acetaldehyde 
Acetic acid 
Acetylene 
Benzene 
Benzene 
1,3-Butadiene 
Cyclohexane 
Cyclohexane 
1,2-Ethanediol 
Ethanol 
Ethanol 
Ethylbenzene 
Ethylene oxide 
Formaldehyde 
Methanol 
Methanol 
Methylcyclohexane 
Methylcyclohexane 
Styrene 
Toluene 
Toluene 
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Table C.4 (Continued) 

State A H?298 AG>298 

Chemical species (Note 2) (Note 1) (Note 1) 

Miscellaneous inorganics: 

Ammonia NH3 (g) -46 110 -16 450 
Ammonia NH3 ( 4  -26 500 
Calcium carbide CaC2 ($1 -59 800 -64 900 
Calcium carbonate CaC03 (s) - 1206 920 -1128 790 
Calcium chloride CaC12 (s) -795 800 -748 100 
Calcium chloride CaC12 (a91 -8101900 
Calcium chloride CaClz .6Hz0 (8) -2607 900 
Calcium hydroxide Ca(OH)2 (s) -986 090 -898 490 
Calcium hydroxide Ca(OH)z (a91 -868 070 
Calcium oxide CaO (s) -635 090 -604 030 
Carbon dioxide c o z  (8) -393 509 -394 359 
Carbon monoxide CO (8) -110525 -137 169 
Hydrochloric acid HC1 (g) -92 307 -95 299 
Hydrogen cyanide HCN (8) 135 100 124 700 
Hydrogen sulfide Hz S (8) -20 630 -33 560 
Iron oxide FeO (s) -272 000 
Iron oxide (hematite) Fez03 (s) -824 200 -742 200 
Iron oxide (magnetite) Fe304 (s) -1118400 -1015 400 
Iron sulfide (pyrite) FeSz ($1 -178 200 - 166 900 
Lithium chloride LiCl (s) -408 610 
Lithium chloride LiCl.Hz0 (s) -712 580 
Lithium chloride LiC1.2H20 (s) -1012 650 
Lithium chloride LiC1-3Hz0 ($1 -1311 300 
Nitric acid HN03 (1) -174 100 -80 710 
Nitric acid HN03 (a91 -111 250 
Nitrogen oxides NO (g) 90 250 86 550 

NO2 (g) 33 180 51 310 
NzO (8) 82 050 104 200 
N204 (g) 9 160 97 540 

Sodium carbonate Na2C03 (s) -1 130 680 - 1044 440 
Sodium carbonate Na2C03.10H20 (s) -4081 320 
Sodium chloride NaCl (s) -411 153 -384 138 
Sodium chloride NaCl ( a d  -393 133 
Sodium hydroxide NaOH (s) -425 609 -379 494 
Sodium hydroxide NaOH ( a d  -419 150 
Sulfur dioxide so2 (g) -296 830 -300 194 
Sulfur trioxide so3 (g) -395 720 -371 060 
Sulfur trioxide so3 (1) -441 040 
Sulfuric acid HzS04 (1) -813 989 -690 003 
Sulfuric acid HzS04 ( a d  -744 530 
Water Hz0 (g) -241 818 -228 572 
Water H20 (1) -285 830 -237 129 

t ~ r o m  TRC Thermodynamic Tables-Hydrocarbons, Thermodynamics Research Center, Texas A & 
M Univ. System, College Station, TX; "The NBS Tables of Chemical Thermodynamic Properties," 
J. Phys. and Chem. Reference Data, vol. 11, supp. 2, 1982. 

Notes 

1. The standard property changes of formation AH& and AG>29x are the changes occurring when 
1 mol of the listed compound is formed from its elements with each substance in its standard 
state at 298.15 K (25°C). 

2. Standard states: (a)  Gases (g): pure ideal gas at 1 bar and 298.15 K (25OC). (b) Liquids ( I )  and 
solids (s): pure substance at 1 bar and 298.15 K (25°C). (c) Solutes in aqueous solution (aq): 
Hypothetical ideal 1-molal solution of solute in water at 1 bar and 298.15 K (25°C). 



Appendix D 

Representative Computer 
Programs 

D.l DEFINED FUNCTIONS 

MCPH - - 
B C D 

( C p ) ~  - A +  T g ( t  + I ) +  -T;(T'+T + I ) +  - 
R 2 3 t ~ , 2  

from which, 

ICPH = -dT = MCPH * (T - To) L: : 
B y  Eq. (5.17), 

from which 

LoT %$ = MCPS * In t 

where 
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D. I .  Defined Functions 64 1 

By Eqs. (6.78) and (6.79), 

and 

By Eq. (1 1.65), 

PHIB = @ = exp I 

HRB:=(TR,PR,omega)- >PR*(BO(TR)-TR*DBO(TR)+omega*(Bl (TR) 
-TR*DB1 (TR))): 

SRB:=(TR,PR,omega)- >-PR*(DBO(TR)+omega*DBl (TR)): 

PHIB:=(TR,PR,omega)- >exp((PR/TR)*(BO(TR)+omega*Bl (TR))): 
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D.2 SOLUTION OF EXAMPLE PROBLEMS BY MATHCAD@ 

Example 3.8 - Molar volumes by the RedlichIKwong equation. 

(a) Saturated vapor: 

Given: q:=6.6048 j3:=0.026214 

Initial guess: Z:=1 

Solve block: GIVEN Z=1 + j3 - q.j3 z-j3 

Z.(Z + B )  

(b) Saturated liquid: 

Initial guess: Z:=B 

Example 10.3 - Dewpoint & bubblepoint calculations. 

The problem formulation is the same for parts (a )  through (d): 

Antoine vapor-pressure equations: 

A1 :=16.59158 A2:=14.25326 

B1:=3643.31 B2:=2665.54 

C1:=-33.424 C2:=-53.424 

Expressions for activity coefficients: 

A(T):=2.771 - 0.00523.T 

(a) BUBL P Calculation: 

Given: T:=318.15 x1 :=0.25 x2:=1 -XI 

xl . yl(T,xl). P1(T) 
P:=xl.yI (T,xl).PI (T) +X~.Y~(T,XI) .P~(T)  yl := 

P 

Calculated results: P=73.5 yl=0.282 



0.2. Solution of Example Problems by Mathcad 643 

(b) DEW P Calculation: 

Given: T:=318.15 yl:=0.60 y2:=1 -y l  

Initial guesses: P:=50 x1:=0.8 

Solve block: GIVEN 

yl . P 
XI = 

y l  (T,xl) . P I  (T) 

(c) BUBL T Calculation: 

Given: P:=101.33 x1:=0.85 x2:=1 - xl 

Initial guesses: T:=300 yl:=0.7 

Solve block: GIVEN 

P I  (T)= 
P XI . y 1 (T,xl) . P I  (T) 

y l =  
~ 2 .  y2(T,~l)  

XI . y l  (T,xl) + P 

a (TI 

(d) DEW T Calculation: 

Given: P:=101.33 yl:=0.40 y2:=1 - yl 

Initial guesses: T:=300 XI :=0.5 

Solve block: GIVEN 

y l  . P 
x l =  

~l (T,xl) . P I  (T) 

T= 
B 1 

A1 +ln(P1 (T)) 
+ C1 
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Example 13.13 - Solution of two reaction-equilibrium equations. 

Given: Ka:=l .758 Kb:=2.561 

Initial guesses: Ea :=O. 1 sb:=O.7 

Solve block: GIVEN 0.52 &a 2 -0.5 O s ~ b ~ l  

Example 13.14 - Reaction equilibrium by minimizing the Gibbs energy. 

In the following, define: Ai e Ai/RT and RT- R x T = 8314 

Definition: RT=83 1 4 

Initialguesses: A c : = l   AH:=^ A o : = l  n : = 1  

ycH4:=0.01 ~ ~ ~ ~ : = 0 . 0 1  yco:=O.Ol yCO2 :=0.01 yH2 :=0.96 

Solve block: GIVEN 



Appendix E 

The LeeIKesler 
Generalized-correlation Tables 

The LeeIKesler tables are adapted and published by permission from "A Generalized 
Thermodynamic Correlation Based on Three-Parameter Corresponding States," by Byung Ik 
Lee and Michael G. Kesler, AIChE J.,  21, 510-527 (1975). The numbers printed in italic type 
are liquid-phase properties. 

TABLES 

Tables E . l-  E.4 Correlation for the compressibility factor 

Tables E.5 - E.8 Correlation for the residual enthalpy 

Tables E.9 - E.12 Correlation for the residual entropy 

Table E.13 - E.16 Correlation for the fugacity coefficient 

PAGE 
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658 



APPENDIX E. The Lee/Kesler Generalized-correlation Tables 

Table E.l Values of ZO 



Table E.2 Values of Z' 
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Table E.3 Values of ZO 



Table E.4 Values of z1 
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Table E.5 Values of ( H ~ ) ' / R T ,  



Table E.6 Values of ( H ~ ) ' / R T ,  

0.0500 0.1000 0.2000 0.4000 0.6000 
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Table E.7 Values of ( H ~ ) O / R T ,  



Table E.8 Values of ( H ~ ) ' / R T ,  
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Table E.9 Values of (sR)O/~ 
P, = 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000 

T, 



Table E.10 Values of ( s ~ ) ' / R  

P,= 0.0100 0.0500 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000 

T, 



APPENDIX E. The Lee/Kesler Generalized-correlation Tables 

Table E.ll Values of (sR)O/~ 



Table E.12 Values of ( s ~ ) ' / R  
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Table E.13 Values of @O 



Table E.14 Values of 4' 



APPENDIX E. The Lee/Kesler Generalized-correlation Tables 

Table E.15 Values of q5O 



Table E.16 Values of 4' 
1.5000 2.0000 3.0000 5.0000 7.0000 10.000 



Appendix F 

Steam Tables 

F.l INTERPOLATION 

When a value is required from a table at conditions which lie between listed values, interpo- 
lation is necessary. If M, the quantity sought, is a function of a single independent variable 
X and if linear interpolation is appropriate, as in the tables for saturated steam, then a direct 
proportionality exists between corresponding differences in M  and in X .  When M, the value 
at X, is intermediate between two given values, M I  at XI  and M2 at XZ, then: 

For example, the enthalpy of saturated vapor steam at 413.95 K (140.8"C) is intermediate 
between the following values taken from Table F. 1: 

Substitution of values into Eq. (F. 1) with M = H and X = T yields: 

When M is a function of two independent variables X and Y and if linear interpolation is 
appropriate, as in the tables for superheated steam, then double linear interpolation is required. 
Data for quantity M  at values of the independent variables X and Y adjacent to the given values 
are represented as follows: 



E l .  Interpolation 663 

Double linear interpolation between the given values of M is represented by: 
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E2. Steam Tables 665 

F.2 STEAM TABLES 

Table F.1 Properties of Saturated Steam, SI Units 

Table F.2 Properties of Superheated Steam, SI Units 

Page 

666 

672 

All tables are generated by computer from programs' based on "The 1976 International 
Formulation Committee Formulation for Industrial Use: A Formulation of the Thermodynamic 
Properties of Ordinary Water Substance," as published in the ASME Steam Tables, 4th ed., 
App. I, pp. 11-29, The Am. Soc. Mech. Engrs., New York, 1979. These tables served as a world- 
wide standard for 30 years, and are entirely adequate for instructional purposes. However, they 
have been replaced by the "International Association for the Properties of Water and Steam 
Formulation 1997 for the Thermodynamic Properties of Water and Steam for Industrial Use." 
These and other newer tables are discussed by A. H. Harvey and W. T. Pany, "Keep Your Steam 
Tables up to Date," Chemical Engineering Progress, vol. 95, no. 11, p. 45, Nov., 1999. 

'we  gratefully acknowledge the contributions of Professor Charles Muckenfuss, of Debra L. Sauke, and of Eugene 
N. Dorsi, whose efforts produced the cornputer programs from which these tables derive. 



Table F.l Saturated Steam, SI Units 

V =  SPECIFIC VOLUME cm3 g-I 
U =  SPECIFIC INTERNAL ENERGY kJ kg

p

1 

H = SPECIFIC ENTHALPY kJ kg

p

1 

S = SPECIFIC ENTROPY kJ kg-' K-' 

INTERNAL ENERGY U ENTHALPY H NTROPY SPEC IFIC VOLUME V 

sat. 
evap. vap. 

sat. sat. sat. sat. sat. 
liq. evap. vap. liq. evap. vap. liq. 

sat. 
liq. 

sat. 
vap. evap. 
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Table F.l Saturated Steam, SI Units (Continued) 

SPEC 

sat. 
liq. 

1.190 
1.194 
1.197 
1.201 
1.205 
1.209 
1.213 
1.217 
1.221 
1.225 
1.229 
1.233 
1.238 
1.242 
1.247 
1.251 
1.256 
1.261 
1.266 
1.271 
1.276 
1.281 
1.286 
1.291 
1.297 
1.303 
1.308 
1.314 
1.320 
1.326 
1.332 
1.339 
1.345 
1.352 
1.359 
1.366 
1.373 
1.381 
1.388 
1.396 

:IFlC VOL 

evap. 

84.85 
81.67 
78.62 
75.71 
72.92 
70.24 
67.68 
65.22 
62.86 
60.60 
58.43 
56.34 
54.34 
52.41 
50.56 
48.79 
47.08 
45.43 
43.85 
42.33 
40.86 
39.44 
38.08 
36.77 
35.51 
34.29 
33.1 1 
31.97 
30.88 
29.82 
28.79 
27.81 
26.85 
25.93 
25.03 
24.17 
23.33 
22.52 
21.74 
20.98 

.UME V 

sat. 
vap. 

86.04 
82.86 
79.82 
76.91 
74.12 
71.45 
68.89 
66.43 
64.08 
61.82 
59.65 
57.57 
55.58 
53.66 
51.81 
50.04 
48.33 
46.69 
45.1 1 
43.60 
42.13 
40.73 
39.37 
38.06 
36.80 
35.59 
34.42 
33.29 
32.20 
31.14 
30.13 
29.14 
28.20 
27.28 
26.39 
25.54 
24.71 
23.90 
23.1 3 
22.38 

INTEl 

sat. 
liq. 

940.9 
950.1 
959.2 
968.4 
977.6 
986.9 
996.2 

1005.4 
1014.8 
1024.1 
1033.5 
1042.9 
1052.3 
1061.8 
1071.3 
1080.8 
1090.4 
1100.0 
1 109.6 
1119.3 
1 129.0 
1 138.7 
1148.5 
11 58.3 
1 168.2 
1178.1 
1 188.0 
1198.0 
1208.0 
1218.1 
1228.3 
1238.5 
1248.7 
1259.0 
1269.4 
1279.8 
1290.3 
1300.9 
1311.5 
1322.2 

3NAL ENE 

evap. 

1659.4 
1650.7 
1642.0 
1633.1 
1624.2 
161 5.2 
1606.1 
1597.0 
1587.7 
1578.4 
1569.0 
1559.5 
1549.9 
1540.2 
1530.5 
1520.6 
151 0.6 
1500.5 
1490.4 
1480.1 
1469.7 
1459.2 
1448.5 
1437.8 
1426.9 
1415.9 
1404.7 
1393.4 
1382.0 
1370.4 
1358.7 
1346.8 
1334.8 
1322.6 
131 0.2 
1297.7 
1284.9 
1272.0 
1258.9 
1245.6 

:RGY U 

sat. 
vap. 

2600.3 
2600.8 
2601.2 
2601.5 
2601.8 
2602.1 
2602.3 
2602.4 
2602.5 
2602.5 
2602.5 
2602.4 
2602.2 
2602.0 
2601.8 
2601.4 
2601 .O 
2600.5 
2600.0 
2599.3 
2598.6 
2597.8 
2597.0 
2596.1 
2595.0 
2593.9 
2592.7 
2591.4 
2590.1 
2588.6 
2587.0 
2585.3 
2583.5 
2581.6 
2579.6 
2577.5 
2575.3 
2572.9 
2570.4 
2567.8 

El 

sat. 
liq. 

943.7 
952.9 
962.2 
971.5 
980.9 
990.3 
999.7 

1009.1 
1018.6 
1028.1 
1037.6 
1047.2 
1056.8 
1066.4 
1076.1 
1085.8 
1095.5 
11 05.3 
11 15.2 
1 125.0 
1134.9 
1 144.9 
1 154.9 
1 165.0 
1175.1 
11 85.2 
11 95.4 
1205.7 
1216.0 
1226.4 
1236.8 
1247.3 
1257.9 
1268.5 
1279.2 
1290.0 
1300.9 
1311.8 
1322.8 
1333.9 

VTHALPY H 

sat. 
evap. vap. 

El 

sat. 
liq. 

2.51 78 
2.5363 
2.5548 
2.5733 
2.591 7 
2.6102 
2.6286 
2.6470 
2.6653 
2.6837 
2.7020 
2.7203 
2.7386 
2.7569 
2.7752 
2.7935 
2.81 18 
2.8300 
2.8483 
2.8666 
2.8848 
2.9031 
2.9214 
2.9397 
2.9580 
2.9763 
2.9947 
3.0131 
3.0314 
3.0499 
3.0683 
3.0868 
3.1053 
3.1238 
3.1 424 
3.161 1 
3.1798 
3.1 985 
3.21 73 
3.2362 

VTROPY 

evap. 

3.7639 
3.731 1 
3.6984 
3.6657 
3.6331 
3.6006 
3.5681 
3.5356 
3.5033 
3.4709 
3.4386 
3.4063 
3.3740 
3.3418 
3.3096 
3.2773 
3.2451 
3.2129 
3.1 807 
3.1484 
3.1161 
3.0838 
3.051 5 
3.0191 
2.9866 
2.9541 
2.921 5 
2.8889 
2.8561 
2.8233 
2.7903 
2.7573 
2.7241 
2.6908 
2.6573 
2.6237 
2.5899 
2.5560 
2.521 8 
2.4875 

s 
sat. 
vap. 

6.281 7 
6.2674 
6.2532 
6.2390 
6.2249 
6.21 07 
6.1967 
6.1826 
6.1686 
6.1546 
6.1406 
6.1266 
6.1127 
6.0987 
6.0848 
6.0708 
6.0569 
6.0429 
6.0290 
6.0150 
6.0010 
5.9869 
5.9729 
5.9588 
5.9446 
5.9304 
5.9162 
5.9019 
5.8876 
5.8731 
5.8586 
5.8440 
5.8294 
5.8146 
5.7997 
5.7848 
5.7697 
5.7545 
5.7392 
5.7237 





Table F.2 Superheated Steam, SI Units 

TEMPERATURE: T kelvins 
(TEMPERATURE: t OC) 

PlkPa 
~ ~ ~ ~ l ~ ( t  s a t / o ~ )  

sat. sat. 
liq. vap. 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t°C) 

PlkPa sat. sat. 573.1 5 623.15 673.15 723.1 5 773.15 823.15 873.15 923.1 5 
T ~ ~ ~ I K ( ~  S a t / o ~ )  liq. vap. (300) (350) (400) (450) (500) (550) (600) (650) 





Table F.2 Superheated Steam, SI Units (Continued) 

(TEMPERATURE: T kelvins) 
(TEMPERATURE: t 'C) 

PlkPa sat. sat. 423.15 448.15 473.15 493.15 513.15 533.15 553.15 573.15 
T ~ K  ( t  s a t / o ~ )  liq. vap. (150) (1 75) (200) (220) (240) (260) (280) (300) 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t°C) 

sat. 
vap. 

561.75 
2545.7 
2728.3 

6.9640 
524.00 

2548.2 
2731.6 

6.9392 

491.13 
2550.6 
2734.7 

6.9160 
462.22 

2552.7 
2737.6 

6.8943 
436.61 

2554.8 
2740.3 

6.8739 
41 3.75 

2556.7 
2742.9 

6.8547 
393.22 

2558.5 
2745.3 

6.8365 
374.68 

2560.2 
2747.5 

6.81 92 

sat. 
lia. 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: f 'C) 

sat. 
liq. 

1.112 
708.467 
709.301 
2.0195 
1.113 

71 4.326 
715.189 
2.0328 
1 .I 15 

720.043 
720.935 
2.0457 
1.117 

725.625 
726.547 
2.0583 

sat. 
vap. 

255.43 
2573.3 
2764.8 

6.681 7 
247.61 
2574.3 
2766.2 

6.6705 
240.26 
2575.3 
2767.5 

6.6596 
233.34 
2576.2 
2768.7 

6.6491 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins) 
(TEMPERATURE: t°C) 

PlkPa 
T ~ ~ ~ I K  (t S a t / o ~ )  

sat. 
liq. 

1.112 
708.467 
709.301 

2.0195 
1.113 

714.326 
715.189 

2.0328 
1.115 

720.043 
720.935 

2.0457 
1.117 

725.625 
726.547 

2.0583 

sat. 
vap. 

255.43 
2573.3 
2764.8 

6.6817 
247.61 

2574.3 
2766.2 

6.6705 
240.26 

2575.3 
2767.5 

6.6596 
233.34 

2576.2 
2768.7 

6.6491 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t ' C )  

sat. 
liq. 

1.146 
820.944 
822.491 

2.2676 
1.149 

828.465 
830.074 

2.2837 
1.151 

835.791 
837.460 

2.2993 

1.154 
842.933 
844.663 

2.3145 
1.156 

849.901 
851.694 

2.3292 

sat. 
vap. 

145.74 
2589.9 
2786.6 

6.4780 
140.72 

2590.8 
2787.8 

6.4651 
136.04 

2591.6 
2788.9 

6.4526 

131.66 
2592.4 
2789.9 

6.4406 
127.55 

2593.2 
2790.8 

6.4289 
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Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t OC) 

PlkPa sat. sat. 698.15 723.15 748.15 773.15 798.15 823.15 873.15 923.15 
T ~ ~ ~ ~ K  ( t  Sal/o~) liq. vap. (425) (450) (475) (500) (525) (550) (600) (650) 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t OC) 

sat. 
liq. 

1.256 
1089.4 
1094.6 

2.8099 
1.259 

1096.3 
1101.6 

2.8231 
1.262 

1103.1 
11 08.5 

2.8360 
1.266 

1 109.8 
1115.4 

2.8487 

1.269 
1116.4 
1122.1 

2.8612 
1.272 

1 122.9 
11 28.8 

2.8735 
1.276 

1 129.3 
1 135.3 

2.8855 
1.279 

11 35.6 
1141.8 

2.8974 

sat. 
vap. 

48.500 
2601 .O 
2799.9 

6.0583 
47.307 

2600.7 
2799.4 

6.0482 
46.168 

2600.3 
2798.9 

6.0383 
45.079 

2599.9 
2798.3 

6.0286 
44.037 

2599.5 
2797.7 

6.0191 

43.038 
2599.1 
2797.0 

6.0097 
42.081 

2598.6 
2796.4 

6.0004 
41.161 

2598.1 
2795.7 

5.9913 





PlkPa sat. sat. 
T ~ ~ ~ / K  (tmt/Oc) iiq. vap. 

Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t°C) 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t°C) 

PlkPa sat. sat. 553.15 563.15 573.15 598.15 623.15 648.15 673.15 698.15 
(tmt/"c) liq. vap. (280) (290) (300) (325) (350) (375) (400) (425) 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t "C) 

PlkPa sat. sat. 723.15 748.15 773.15 798.15 823.15 848.15 873.15 923.15 
T~~'IK ( t " t / o ~ )  liq. vap. (450) (475) (500) (525) (550) (575) (600) (650) 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t OC) 

PlkPa sat. sat. 573.15 593.15 613.15 633.15 653.15 673.15 698.15 723.15 
r S a t / ~  (tSat/'c) liq. vap. (300) (320) (340) (360) (380) (400) (425) (450) 





Table F.2 Superheated Steam, SI Units (Continued) 

TEMPERATURE: T kelvins 
(TEMPERATURE: t OC) 

PlkPa 
T ~ ~ ~ I K  ( t  s a t / o ~ )  

sat. 
liq. 

1.391 
1315.2 
1326.6 

3.2239 
1.398 

1324.3 
1336.1 

3.2399 
1.404 

1333.3 
1345.4 

3.2557 
1.41 1 

1342.2 
1354.6 

3.2713 
1.418 

1351 .O 
1363.7 

3.2867 
1.425 

1359.7 
1372.8 

3.301 8 
1.432 

1368.2 
1381.7 

3.31 68 
1.439 

1376.7 
1390.6 

3.3315 

sat. 
vap. 

22.863 
2569.5 
2757.0 

5.7338 
22.231 

2567.2 
2754.0 

5.7207 
21.627 

2564.9 
2750.9 

5.7076 
21.049 

2562.6 
2747.8 

5.6948 
20.495 

2560.1 
2744.6 

5.6820 

19.964 
2557.7 
2741.3 

5.6694 
19.455 

2555.2 
2738.0 

5.6568 
18.965 

2552.6 
2734.7 

5.6444 





Appendix G 

Thermodynamic Diagrams 

Figure G.l Methane 

Figure G.2 1,1,1,2-tetrafluoroethane (HFC- 134a) 

Extensive tables of data for 1,1,1,2-tetrafluoroethane, refrigerant (HFC- 134a), can be accessed 
through the URL: 
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Appendix H 

UNIFAC Method 

The UNIQUAC equation1 treats g  r G ~ / R T  as comprised of two additive parts, a combina- 
torial term gC to account for molecular size and shape differences, and a residual term g R  
(not a residual property as defined in Sec. 6.2) to account for molecular interactions: 

g - g C + g  R (H. 1) 

Function gC contains pure-species parameters only, whereas function g R  incorporates 
two binary parameters for each pair of molecules. For a multicomponent system, 

where 

Subscript i identifies species, and j is a dummy index; all summations are over all species. 
Note that t;i # 1;;; however, when i = j, then qi = tj; = 1. In these equations ri (a relative 
molecular volume) and qi (a relative molecular surface area) are pure-species parameters. The 

'D. S. Abrams and J. M. Prausnitz,AIChE J., vol. 21, pp. 116-128, 1975. 
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influence of temperature on g enters through the interaction parameters tji of Eq. (H.3), which 
are temperature dependent: 

- (u ji - uii) 
t j i  = exp 

RT 
Parameters for the UNIQUAC equation are therefore values of (u ji - uii). 

An expression for In yi is found by application of Eq. (1 1.92) to the UNIQUAC equation 
for g [Eqs. (H. 1) through (H.3)]. The result is given by the following equations: 

where in addition to Eqs. (H.5) and (H.6), 

(H. 10) 

9' L .  - " 
1 - (H. 11) 

C qjxj 
j 

(H. 12) 

Again subscript i identifies species, and j and 1 are dummy indices. All summations are over 
all species, and t i j  = 1 for i = j. Values for the parameters (uij - u jj) are found by regression 
of binary VLE data, and are given by Gmehling et a1.2 

The UNIFAC method for estimation of activity coefficients3 depends on the concept that 
a liquid mixture may be considered a solution of the structural units from which the molecules 
are formed rather than a solution of the molecules themselves. These structural units are called 
subgroups, and a few of them are listed in the second column of Table H. 1. A number, designated 
k, identifies each subgroup. The relative volume Rk and relative surface area Qk are properties 
of the subgroups, and values are listed in columns 4 and 5 of Table H. 1. Also shown (columns 6 
and 7) are examples of molecular species and their constituent subgroups. When it is possible to 
construct a molecule from more than one set of subgroups, the set containing the least number 
of different subgroups is the correct set. The great advantage of the UNIFAC method is that a 
relatively small number of subgroups combine to form a very large number of molecules. 

'J. Gmehling, U. Onken, and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series, vol. I, 
parts 1-8, DECHEMA, Frankfurtmain, 1974-1990. 

3 ~ a .  Fredenslund, R. L. Jones, and J. M. Prausnitz, AZChE J., vol. 21, pp. 1086-1099, 1975. 



Table H.l UNIFAC-VLE Subgroup Parameterst 

Examples of molecules and their 
Main group Subgroup k Rk Q k  constituent groups 

1 "CH2" CH3 1 0.9011 0.848 n-Butane: 2CH3,2CH2 
CH2 2 0.6744 0.540 Isobutane: 3CH3,lCH 
CH 3 0.4469 0.228 2,2-Dimethyl 
C 4 0.2195 0.000 propane: 4CH3,lC 

3 "ACH ACH 10 0.5313 0.400 Benzene: 6ACH 
(AC = aromatic carbon) 

4 "ACCH2" ACCH3 12 1.2663 0.968 Toluene: SACH, 1ACCH3 
ACCHz 13 1.0396 0.660 Ethylbenzene: 1CH3, SACH, lACCH2 

5 " O H  OH 15 1.0000 1.200 Ethanol: 1CH3,1CH2,10H 

7 "H20" HzO 17 0.9200 1.400 Water: lH20 
- - 

9 "CHzCO" CH3C0 19 1.6724 1.488 Acetone: lCH3C0, lCH3 
CH2C0 20 1 4457 1.180 3-Pentanone: 2CH3, ICHzCO, 1CH2 

13 "CH20  CH30 25 1.1450 1.088 Dimethyl ether: lCH3,lCH3O 
CHzO 26 0.9183 0.780 Diethyl ether: 2CH3,1CHz, lCHzO 
CH-0 27 0.6908 0.468 Diisopropyl ether: 4CH3, lCH, 1CH-0 

15 "CNH" CH3NH 32 1.4337 1.244 Dimethylamine: lCH3, 1CH3NH 
CHzNH 33 1.2070 0.936 Diethylamine: 2CH3, 1CH2, 1CH2NH 
CHNH 34 0.9795 0.624 Diisopropylamine: 4CH3, lCH, lCHNH 

19 "CCN" CH3CN 41 1.8701 1.724 Acetonitrile: lCH3CN 
CHzCN 42 1.6434 1.416 Propionitrile: 1CH3, 1CH2CN 

+H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, 
pp. 2352-2355,1991. 

Activity coefficients depend not only on the subgroup properties Rk and Qk,  but also 
on interactions between subgroups. Here, similar subgroups are assigned to a main group, 
as shown in the first two columns of Table H. 1. The designations of main groups, such as 
"CH2", "ACH, etc., are descriptive only. All subgroups belonging to the same main group are 
considered identical with respect to group interactions. Therefore parameters characterizing 
group interactions are identified with pairs of main groups. Parameter values a,k for a few 
such pairs are given in Table H.2. 

The UNlFAC method is based on the UNIQUAC equation, for which the activity coef- 
ficients are given by Eq. (H.7). When applied to a solution of groups, Eqs. (H.8) and (H.9) are 
written: 

(H. 13) 

(H. 14) 



Table H.2 UNIFAC-VLE Interaction Parameters, a ,k ,  in kelvinst 

1 CH2 
3 ACH 
4 ACCH2 
5 OH 
7 H 2 0  
9 CHzCO 

13 CH20 
15 CNH 
19 CCN 

t ~ .  K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, pp. 2352-2355, 1991. 



The quantities Ji and Li are still given by Eqs. (H.10) and (H.ll). In addition, the following 
definitions apply: 

(H. 18) 

(H. 19) 

- a m k  
rmk = exp - 

T 
(H.21) 

Subscript i identifies species, and j is a dummy index running over all species. Subscri t k f! identifies subgroups, and rn is a dummy index running over all subgroups. The quantity v;) is 
the number of subgroups of type k in a molecule of species i . Values of the subgroup parameters 
Rk and Qk and of the group interaction parameters a m k  come from tabulations in the literature. 
Tables H.l and H.2 show a few parameter values; the number designations of the complete 
tables are retained.4 

The equations for the UNIFAC method are presented here in a form convenient for 
computer programming. In the following example we run through a set of hand calculations to 
demonstrate their application. 

4 ~ .  K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IECResearch, vol. 30, pp. 2352-2355, 
1991. 
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Appendix I 

Newton's Method 

Newton's method is a procedure for the numerical solution of algebraic equations, applicable 
to any number M of such equations expressed as functions of M variables. 

Consider first a single equation f (X) = 0, in which f (X) is a function of the single 
variable X. Our purpose is to find a root of this equation, i.e., the value of X for which the 
function is zero. A simple function is illustrated in Fig. I. 1; it exhibits a single root at the point 
where the curve crosses the X-axis. When it is not possible to solve directly for the root,' a 
numerical procedure, such as Newton's method, is employed. 

Figure 1.1 Newton's method applied to a single function 

 o or example, when ex + x2 + 10 = 0. 



The application of Newton's method is illustrated in Fig. I. 1. In the neighborhood of an 
arbitrary value X = Xo the function f (X) can be approximated by the tangent line drawn at 
X = Xo. The equation of the tangent line is given by the linear relation: 

where g(X) is the value of the ordinate at X, as shown in Fig. 1.1. The root of this equation is 
found by setting g(X) = 0 and solving for X; as indicated in Fig. 1.1, the value is XI .  Since the 
actual function is not linear, this is not the root of f (X). However, it lies closer to the root than 
does the starting value Xo. The function f (X) is now approximated by a second line, drawn 
tangent to the curve at X = X1, and the procedure is repeated, leading to a root for this linear 
approximation at X2, a value still closer to the root of f (X). This root can be approached as 
closely as desired by continued successive linear approximation of the original function. The 
general formula for iteration is: 

where 

AX, 3 X,+l - X, or X,+l = X, + AX, 

Equation (I.l), written for successive iterations (n = 0, 1, 2, . . .), produces successive values 
of AX, and successive values off (X,). The process starts with an initial value Xo and continues 
until either AX, or f (X,) approaches zero to within a preset tolerance. 

Newton's method is readily extended to the solution of simultaneous equations. For the 
case of two equations in two unknowns, let fr = fI(XI, XII) and fII = f I I (X~,  XII) represent 
two functions, the values of which depend on the two variables XI and XII. Our purpose is to 
find the values of XI and XII for which both functions are zero. In analogy to Eq. (I.l), we 
write: 

These equations differ from Eq. (1.1) in that the single derivative is replaced by two partial 
derivatives, reflecting the rates of change of each function with each of the two variables. For 
iteration n the two functions fI and fII and their derivatives are evaluated at X = X, from 
the given expressions, and Eqs. (1.24 and (I.2b) are solved simultaneously for AXI and AXII. 
These are specific to the particular iteration, and lead to new values XI and XIr, applicable to 
the next iteration: 

The iterative procedure based on Eqs. (1.2) is initiated with starting values for XI and XII, and 
continues until the increments AXI8 and AXIIn or the computed values of fI and fII approach 
zero. 
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Equations (1.2) can be generalized to apply to a system of M equations in M unknowns; 
the result for each iteration is: 

with 

Newton's method is well suited to application in multireaction equilibria. As an illustra- 
tion, we solve Eqs. ( A )  and ( B )  of Ex. 13.13 for the case of T = 1000 K. From these equations 
with values given there for K, and Kb at 1000 K and with P I P  O = 20, we find the functions: 

and 

Equations (1.2) are written here as: 

fb  + (g) As, + (g) A E ~  = 0 

The solution procedure is initiated with a choice of starting values for sa and sb. Numerical 
values are obtained for f ,  and fb and for their derivatives from Eqs. ( A )  and (B). Substitution 
of these values in Eqs. ( C )  and ( D )  yields two linear equations which are readily solved for the 
unknowns As, and A E ~ .  These yield new values of s, and sb with which to carry out a second 
iteration. The process continues until As, and Acb or f ,  and fb approach zero. 

Setting E ,  = 0.1 and sb = 0.7 as starting  value^,^ we find initial values of f ,  and fb and 
their derivatives from Eqs. ( A )  and ( B ) :  

These values are substituted in Eqs. ( C )  and ( D )  to yield: 

0.6630 + 3.9230 As, + 1.7648 Asb = 0 

0.4695 + 1.3616 As, + 2.0956 Asb = 0 

The values of the increments that satisfy these equations are: 

As, = -0.0962 and Asb = -0.1614 

2 ~ h e s e  are well within the limits, -0.5 5 E, 5 0.5 and 0 5 ~b 5 1.0, noted in Ex. 13.13 



from which, 

E ,  = 0.1 - 0.0962 = 0.0038 and eb = 0.7 - 0.1614 = 0.5386 

These values are the basis for a second iteration, and the process continues, yielding results as 
follows: 

~1 6, ~b As, A E ~  

Convergence is clearly rapid. Moreover, any reasonable starting values lead to convergence on 
the same answers. 

Figure 1.2 Finding the roots of a function showing extrema 

Convergence problems can arise with Newton's method when one or more of the functions 
exhibit extrema. This is illustrated for the case of a single equation in Fig. 1.2. The function has 
two roots, at points A and B. If Newton's method is applied with a starting value of X smaller 
than a ,  a very small range of X values produces convergence on each root, but for most values 
it does not converge, and neither root is found. With a starting value of X between a and b, it 
converges on root A only if the value is sufficiently close to A. With a starting value of X to 
the right of b, it converges on root B. In cases such as this, a proper starting value can be found 
by trial, or by graphing the function to determine its behavior. 
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for pure species, 207,370,516-518 
by Raoult's law, 326-333 
reduction of experimental data, 407410 
for solutelsolvent systems, 516-5 18 
and thermodynamic consistency, 410415 

Vapor/liquid/liquid equilibrium (VLLE), 
549-556 

Vapor pressure, 58-61,9 1, 124,207-209, 
519-521 

empirical expressions for, 208-209 
Vaporization, 58-6 1, 124125,207-208 

latent heat of, 123-125,207-208 
from Clapeyron equation, 124,208 
from Riedel equation, 125 
from Watson correlation, 125 

Velocity, 9-10,4245,239-245 
average value in pipes, 4 4 4 5  
maximum in pipes, 239 
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profiles in pipes, 44-45 
sonic, 239,241-242 

Virial coefficients, 66, 83-84, 97, 378, 
382-383 

generalized correlation of second, 97-98, 
382-383 

for mixture, 378, 382-383 
Virial equation of state, 64, 66, 82-86, 97-98, 

202-204,377-380 
Volume, 2-3 

change of mixing, 419-422 
critical, 60-61 

effective, for HZ, 97 
interaction (VCij), 382 
table of values, 632-633 

excess, 420,423-424 
residual, 196-197, 376 

Volume expansivity, 62, 191-194 

Wagner equation, 209 
Watson correlation for latent heat, 125 
Wilson equation, 416 
Work, 8-9,20-21, 148 
Work: 

of adiabatic compression, 71-72,255-259 
ideal, 169, 172-173,592 
of isothermal compression, 70 
lost, 173-176,590-591 
for pump, 260-261 

Work: 
and reversibility, 28-30 
shaft, 44 
sign convention for, 20 
from turbine or expander, 249-255 

yn diagram, 322, 326 
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