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PREFACE

This book provides an introduction to many mglhor:ls of a_nalysis ll}al arise in
engineering for the solution of ordinary and partial dlﬁgrentlal equations, M_any
books, and often many courses, are oriented towards linear problems, yet it is
nonlinear probl that freq ly arise in engi ing. Here many methods—
finite difference, finite element, orthogonal collocation, perturbation—are applied
to nonlinear problems to illustrate the range of applicability of the method and the
usefulresults that can be derived from each method. The same problems are solved
with different methods so that the reader can assess these methods in practical and
similar cases. The examples are from the author’s own experience: fluid flow
Y (including polymers), heat transfer, and chemical reactor modeling.
Thz}v{el of the book is introductory, and the treatment is oriented toward the
:s;r'\‘spmahs\. Even so'lhe reader is introduced to the latest, most power{ul
niques. The course is based on a successful graduate course at the University
;fﬂ:i:l:lissr:nsng_:%:, r::g most. _chemical engineers {aking the course are .exP"i'
o ler desiring to delve deeper into a particular technique o
aPP‘_latmn can follow.lhe leads given in the bibliography of each chapter.
wersion ;‘:}“‘e’fgﬁm:"y thanks the class of 1979, who tested the first written
about providing co'::c“eosp“lﬂ“y Dan David and Mike Chang, who were diligent
Sylvia Swimm, ns. The draft was expertly typed by Karen Fincher and
The au i .
pmjec\_bo‘ltoz;:aﬁ;sz“lga":m': llﬂ his family_ for supporting him during the
whole family. Special thangs 1o b 21~ Writing a book really involves (¢
Chrisine, who gave up some o ls}?_m the author’s children Mark, Cady. and
and 0 the author's wife, pa for he" father—child time to make this book possible:
Sl er continued support and t

Seattle 1980
Bruce A. Finlayson



CHAPTER

ONE
INTRODUCTION

The goal of this book is to bring the reader into contact with the efficient
computation tools that are available today to solve diflerential equations
ing physical ph such as diflusion, reaction, heat transfer, and fluid
flow. After mastering the material in this book you should be able to apply a
variety of methods—finite difference, finite element, collocation, perturbation,
etc.—although you will not be an expert in any of them. When faced with a
problem to solve you will know which methods are suitable and what information
can be easily determined by which method. The emphasis is on numerical
methods, using a computer, although some of the approaches can also yield
powerful results analytically. The author’s phil hy is to use prepr d
p pack when il because they allow the reader to sample,
peruse, and solve difficult problems with less effort. The reader is, however,
introduced to the theory and techniques used in these computer programs.

I-1 CLASSIFICATION OF EQUATIONS

Equati deli b

physical have different characteristics depending
on how they model evolution in time and the influence of boundary conditions.
When confronted with a model, expressed in the form of a differential equation, the
analyst must decide what type of equation is 1o be solved. That characterization
determines the methods that are suitable.

CPnsider a closed system (i.e. no interchange of mass with the surroundings)
containing three chemical whose ions are given by ¢, ¢z,
and ¢;. The three components can react (say when the system is illuminated with
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Figure 1-1 Reaction systcm-
oal is to predict the concentration of each

ency), and the g >
limc)ILThe rates of reaction are known as a function of the

hown in Fig. 1-1, and the differential

light of a specified l'rcqu
species as 8 function of um ]
concentrations. The reaction system IS s
equations governing this system are

"—’;'1 = —kyoy +kacaey

L2 - ke —kaeres —kach (1-1)
dt

Initially the concentrations of components two and three are zero, and the initial
concentration of component one is given as ¢, We thus wish to solve Egs. (1-1)
subject to the initial conditions

a0)=c¢,  20)=¢;0=0 (1-2)

Note that the conditions apply only at time zero. not to later times t. The reaction
proceeds in time; if we know where to start we can integrate the equations
indefinitely. This evolution property yields equations that are called initial-value
problems. In this case Egs. (1-1) are ordinary differential equations. since there is
only onc independent variable, time . Thus Egs. (1-1) and (1-2) are governed by a
system of ordinary differential equations that are initial-value prob . In this
text this is abbreviated to ODE--1VP.
hﬂ::gr:;iocr next diﬂusign and rea\c.lion in a porous medium. We have a
Do d_us system (solid material with pores through which the reactants and
iffuse), but here we model the system as simple diflusion using an

':x:s“ve diffusion coefficient, A mass balance on a volume of the porous medium

.i(» _ (S N N
R (R + '("y) + 0 ) + Riey -
where R is the rate of reaction
fux of material (in units of
solid and void area),
eflective diffusion coelf

! per uni} volume (solid plus void volume), J is the

o ;OTW:;,I““.IM per time per unit area —including both

foh » Is the x componer_n of the vector J. By using an
tent we express the llux J in a form similar to Fick's law
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or

ac .
Jo= =Dy Jy=-D.z

(1-4)

This equation assumes equimolar diffusion (one mole of reactant diffuses in and
one mole of product diffuses out), and all the microscopic details of the porous
medium are lumped into the diffusion coefficient. Obviously to model a specific
physical situation the diffusion coefficient must either be measured or deduced
from similar systems. With this approximation the equation becomes

é 2 3 4 ac 9
K(Dca'x) + B}(D'a_y) + E(D'E> + R(c) (1-5)
or
X = v-DVe+RE)
@
Impermeable
boundary
2,
> 0

Figure 1-2 Diflusion ina slab.
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4 NONLINE {hat the diffusion occurs ina po(?:sdsill;l‘:’s;::‘l':lrmﬁmle .
u
o o {Issm.nes giving 4 large p.la"e-smel w: 5) to one dimeons-gh the
extent in 1WO directions, e A s,mpmy E.q‘ i o X
iknes o i e (_sc:;on of the concentrations in the y and 2 irections. Also
wsuming e 800 vlar::aclion and diffusion so that the time derivative is gepe
; -state
we assume steady-S

4 D, Et-) +R(c)=0 (1-6)
dx\"“dx

from a partial differential equation (the
As we go from EQ. (‘:.5'));03(11}2:5‘52 independent variables) 10 an ordinary
mnm""-a"on degen s||he concentration depends on Dﬂ'Y_ one independent
differential equa_uon“'ﬁ) is second-order and the theory of linear second-order
variable). l§qua“o'nl equations says that we must specify two constants in the
ordinaty dln‘mn:;lne dg that by stating two boundary conditions, one at each side
gen;ral]soblu;;:::we consider one side of the slab as impermeable f'f” flux) and (he
st::\c::\?a(}on is held fixed at the other side. These boundary conditions are
de

x=0 -D,—=0 (-7
dx

x=L c=q¢ (1-8)

The problem in Egs. (1-6) to (1-8) is an ordinary differential equation and a
boundary-value problem ODE-BVP. It is also called a two-point boundary-value
problem because the two conditions are expressed at differcnt positions x. If they
had both beenspecified at the same point, say x = 0. then the problem would have
been an initial-value problem. This nature of boundary-value problems—having
conditions at each end of the domain— complicates the solution techniques but is
characteristic of diffusion. heat transfer, and fuid-flow problems.
Rel_mcing oursteps back to Eq. (1-5) describing diffusion and reaction in a
L’:rr::::cr::rfslgzr:p:%« this time let us simplify the equation for one space
N -butinclude transient phenomena, such that

a ‘e
@ :(D:) +R(c) (19

I;:lesp::n:e::l 'vl::asf:rf""“' equation, because the solution depends on two
dillerent, however, Only a si e dert racter of the dependence on x and on ¢ is
an qo]u\ion Phenomenon, We f_lva'nv? In ¢ occurs, and the dependence on  is
POsition fequire an initial value of the concentration at each

“%0) = ¢o(x) (1-10)
on x is like
iliOn: llnsklelk:.:e : b?""d“'y“’ﬂ'“e problem, and two conditions afe
afunciion 0?[{11:;7) and (1-8) gre feasible, but the concentration
o call this Sysle‘r:o{mpo."di"g 10 variations in the bulk-stream
2ion in one space i " Eas. (1-7) 1o (1-10) 4 parabolic partial

one varigble : ension (1-D P efers
€ variable js evolulionury in chxlr::?:.)' The term parabolic ref

The dependence
necessary. Cond
€1 Could noy

di erenyia) eau
10 the fact thay
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Figure 1-3 Diflusion in a long catalyst pellct.

If we solve Eqg. (1-5) in two or three space di ions we also have a paraboli
partial differential equation, with the ¢ variable being evolutionary and the x. y.

and z variables being of boundary-value type. In two dimensions we have

ac é
(2.50) 5

If we include two space di i but allow only dy i ions then the

equation reduces to
@ dc a éc
- — — f) = 1-12
= (D.. r7x> + Oy(D'Py) +R()=0 (1-12)

This equation would model both diffusion and reaction in a catalyst particle that is
verylong in the z direction, so that z variations are negligible (sce Fig. 1-3). The
type of boundary conditions allowed are Dirichlet-type or boundary conditions of
the first kind

“)+Rlc) (-1

c=cp (1-13)
Neumann-type or boundary conditions of the second kind
0% _pavVe=fy (1-14)
“an
and Robin-type or boundary conditions ofthe third kind or mixed conditions

0%~ ke—cn) (1-15)
n
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mal, fp is the specified mass flux, and eaisthe
ation external (o the porous medium. The mass _tr:nsfer coefficient js k.
;Pnr:’i:ﬁ::'{,oundary conditions apply 10 hea_l transfer, ';n w}‘:u: h case D, is replaceg by
i |;ermal conductivity k. fp is the specified heat flux, k,, is replaced by the i
:he,;rer coefficient h, and the value cp becomes the external temperature, These
ral

boundary conditions are

where n is the outward pointing nor’

T=Tp
T
—kzy =l (1-16)
4T wT=Ty
on

Equation (1-12) is an elliptic partial differential equation, and the independent
variables are of the boundary-value type.

Generally diffusion problems are elliptic in nature; if the problem is unsteady-
state or evolutionary the added accumulation term makes them parabolic. This
classification is deduced for the following general linear second-order equation

& &2

Az +B—
OxCy

(1-17)

ox?
Thetype of equation is deduced from the discriminant

D = B2—44C

D<0 elliptic

D=0 parabolic (-18)

D>0 hyperbolic
Forexample, the heat transfer equation
T _ kT
o pC, ox?

=0,B=04 and D =0 and is therefore parabolic. The

(1-19)

would have 4 >0, ¢
steady-state equation
3T 1
5 o - ° (1-20)
as =C=].B=Oad i i :
-and D is negative. The equation is therefore elliptic whereas
T _ k (PT
= L T
Must be tested o "Cn(”"z * ‘7?) o
) or each vari. .
imensions x ang ;:‘:: variable. The time variapje is i e spati!
clliptic in character. persbolic whereas fhesPt

Hdenity  with
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Olhﬂ mhll‘cfcnlhﬂ ‘,qlld(lOl’\S are introduced below in the context of specific
are most easily solved in nondimensional
l'“n“ and we illustrate here the procedure for turning a model equation into
nondimensional form. Take Egs. (1-6) to (1-8) for the case R = —kc? and D, is a
constant. We define ¢’ = ¢/c, and x’ = x/L and introduce these new variables into
the differential equation, noting that ¢, and L are constants that can be brought
outside the differential

Dye, d*c
ﬁl i kej@)? =0 (1-22)
~D,c, de
L”L' d; 0 axL=0 (1-23)
o c'=c¢ atx'L=1L (1-29)
We multiply Egs. (1-22) to (1-24) by I2/(D,c,) and simplily the equations to
d* kc, "
Fred ©r=0 (1-25)
dc
L0 ax=0 (1-26)
dx
=1 atx'=1 (1-27)

Equations (1-25) to (1-27) are then the nondimensional form of the problem,
which is solved mathematically. In this case the parameter ¢? = kc,[?/D, has a
specific meaning (ratio of reaction to diffusion phenomena) and name (Thiele
modulus squared). Insights obtained from the nondimensional form of the
equation are left to the appropriate section treating that problem. If no character-
istic parameter suggests itsell (as do ¢, and L above) then we just assign a standard
¢, and proceed. This situation is actually more suggestive than it seems. The
implications are explored in Sec. 5-1.

The remainder of the book is organized according to the type of problem:
ODE-IVP, ODE-BVP, I-D PDE, 2-D PDE, elliptic and parabolic. When solving
problems in each category, however, systems of nonlinear algel
must be considered. The next chapter reviews methods for doing this.




CHAPTER

TWO
ALGEBRAIC EQUATIONS

Systems of nonlinear algebraic equations must be solved. Two useful techniques—
successive substitution and Newton-Raphson--are reviewed here. The first
method is considered because it is simple and sometimes very useful, and the
second because it is an excellent method, although not fool-proof. In other sections
of the book more specialized techniques are considered —see Sec. 4-8 for lower-
upper decomposition of matrices, which is important for large sets of equations.

2-1 SUCCESSIVE SUBSTITUTION

Consider the set of nonlinear algebraic equations

Fyi(x;,X3...,x,) =0
L Falxpxgx,)=0

@1

Falxi X2, %) = 0

which we write in compact form as

Fix)=0 ij=1,..,n

or

Fix)=0 i=1...,n 2-2)
or

F(x)=0
We wish (0 find the set of x, satisfying Eq. (2-1). The notation x means the set of xis
{x/li = 1,n}. Reformulating the equations by adding x; to the ith equation gives
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X+ Fi(x)=x, 23
Theiterative scheme is defined from Eq. (2-3) as
= xb+ i) @4

where the superscript k denotes the iterate number. We m, o

Eq. (2-4) to find x', repeat to find x2, and so forth. The scel:::{leg ;lse:isr:plzr:g :pp:y

and quick to use. A programmable calculator can be used for small problemspll.,,cyl

us apply the method to a simple example. )
The goal is to find the x satisfying the equation

Fix)=x*-2=0 (2-5)
We apply successive substitution in the form

x=x2-2+x
or (2-6)
A= XM+ 1) =2

Starting at x° = 1 we get successive values of x* of 0, —2,0, —2,0,.... The method
does not converge. If we try x° = 1.4 we get successive iterate values of 136, 1.21,
067, —0.88, and again the method does not converge. Even if we insert the
exact answer in a hand calculator the method diverges. Obviously for this example
convergence of the successive iterates is a problem.

Next we apply the successive substitution method when the equation is
written in the form

Fy=t-%=0 @
x 2
Now the successive iterates are calculated by
1
o|=§xk+F 2-8)

Starting with x° =16 we get values of x*= 1425, |..41425. l.4.l421:f563,
1414213562, .., or the first 10 digits of the exact answer with only 4 iterations.
Starting from x° = 12 gives similar results. Obviously Eq. (2-8) is a better
iteration scheme than Eq. (2-4), and we would like to know this in advance. The
needed information is given by the following convergence theorem, which we
prove.

Theorem 2-1 Let o be the solution to @, = f(a). Assume that given an h >0
there exists a number 0 < s < 1 such that

for [x,—ol <h  i=l.n 29

= fixY)

Then x¥ converges 10 a,as k increases.
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Proor We apply a Taylor series and the mean-value theorem o the equation
e, = f(x* )= fi@)
32

o 57 -a)=fla)  @-10)
< 0x)

=fila) +
i

qea 4 -2
which holds exactly for some 0 < §; < 1. If each term in the summation is
made positive the result will be larger than if some of the terms are negative
and offset the positive ones, thus

IX.‘—z.-lsl)::‘ %I?f‘— 7] (2-11)
The maximum norm is defined as
Xl =  max Ixil (2-12)
Then R
IIx“—all, < ” ):. (2-13)
I
Ifwe replace |x4~' — 2| by |Ix*~" —a]|, on the right-hand side we get
IIx* —all,, < ‘ ‘; .‘:% mllx""—ﬂll, (2-14)
<N el (2-15)
We applythis fork = 1
Ix' ~all, < ullx*=all, < uh (2-16)
lIx* — el < pllx' = edl, < u?h 2-17)
Combining the results gives
lIxf—«ll, <u*h i=L...n (2-18)

and if u<1,as assumed, the right-hand side goes to zero as k increases,
proving the theorem.

We note two things about this theorem. First it gives conditions under which
the iteration will converge, but says nothing about what happens if the conditions
of the theorem are not met. In that case the iteration may converge or diverge, and
the theorem is not applicable. It may converge because the conditions of the
theorem are too restrictive and were only needed to prove the theorem, rather than
being needed to ensure convergence. The second point is that to apply the theorem
we must ensure that Eq. (2-9) is satisfied. This may restrict the allowable choices of
x°, and finding the limits on x° may not be a trivial task. However, we can learn
some interesting things from the theorem. Suppose the problem we wish to solve is

4 X =) :19)
where [y is a parameter, and we apply successive substitution.
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X = ey (2-20)

We need to look at fdffdx. Clearly for large § the conditions of the th i

not be met because Bdfjdx > 1 and convergence is not assured, \:l:e::?rl ;i" Inli

small. /;‘l(/l‘l‘\' < 1 and the iteration scheme converges. Knowing this ahead of time,

and knowing the range of § for which we desire solutions, can influence the

jteration strategy.

We now apply the theorem to the example tried in Eq. (2-4). Here

4

Friataad @21
d for
an . x—1414...|<¢ @22)
we ne
d
| < 1204450 @)

Clearly we cannot find a ¢t < 1 and the theorem does not apply. Also we found by
example that the method diverges. When we change to Eq. (2-8) we need to look at
f(x) = x/2+ 1/x and get

df 1

gy 2-24,

ik Al 224)
For 12 <x< 1.6, |f/{<020. Thus for 12 <x < 16 the theorem says the
iteration converges to the solution, as it does.

Now the theorem on successive substitution can be used to turn a divergent

scheme into a convergent one. In place of Eq. (2-4) let us use

X = )k RGN = (3 (2-25)
and make f3 sufficiently small that
% =l+p2x <1 2-26)
We choose § = —0.25 and apply the iteration scheme
= xR L) -2) @-27)
Starting with x° = Ogivesus successive values of 0.5, 09375, 1.22, 1.35...... 141416

takes many

afier 10 jterations. The iteration scheme converges. although
iterations, ‘

22 NEWTON-RAPHSON

2-1) in a Taylor series
To apply the Newton Raphson method we expund qu. (2-1) in a Tayl
about the x* jterate. We do this first for a single equatio

dF| v+ CF
R R I R N
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i i i F(X“'l)=05in
tives of second and higher orders, a_nd we set ) , since

vvvvee\:i:ﬁhl:;lc:t;::: <%+ 150 that this is true. The result is rearranged to give
F(x*)

dF/dx(x*)

ply Eq. (2-29) successively. This is the Newton method.

(2-1), we do the same thing

& OF,
Ft* ) = Fi(x) + l_; J_x:

= xk—

2-29)

Again we choose x° and app 2
If we have several equations, as in Eq.

T = (230)

define the jacobian matrix

231

and set Fi(x**')=0. We can write the Newton-Raphson method in alternate
forms

L A =) = =R @32)

FARES R Z (445 'Fixt) 2-33)
i=1

i Al = 3 AL - Fix) (2-34)

i=1 =1

To use this method for a system of equations we must solve the system of
equations over and over, either by inverting the matrix A or by decomposition.
Since all computer centers have matrix inversion routines readily available, it is
assumed here that the reader can do that. Problem 2-4 is a useful review, and the
subroutine INVERT can be used.

The convergence of the Newton-Raphson method can be proved under
certain conditions (see Isaacson and Keller, p. 115).

Theorem 2-2 Assume x° is such that

AT X0 < a (2-35)
and
IIx* = x| = A ()F NI < b @-36)
and
0% .
Tl forlx-xl <2 =l @3

& o] Sh

Then the Newton iterates lie in the 2b sphere

and IIx* = x| < 2b (2-38)

lim x*=a (2-39)



ALGEBRAIC EQUATIONS 13

where
Fi@) =0
2b
I —all < 5 (2-40)
and
Il = T, bl (2-41)
flAll = max (Z |"u|) (2-42)
V-
Forexample, for F(x) = x2—2 we get
F(x)=2x (2-43)
e W2 2
P (244)

Thus the second iteration scheme, Eq. (2-8), is actually a Newton-Raphson
method. Indeed it was prior knowledge of this fact that permitted the selection of
the form of Eq. (2-8) which would lead to a convergent iteration scheme.

The Newton-Raphson method, contained in one of the three versions given in
Egs. (2-32), (2-33), or (2-34), requires calculating the jacobian Eq. (2-31). At first

glance this means the function must be difl: iated F
however, numerical derivatives are suitable, and they do not affect the answer,
only the speed of B¢ to get there. Obviously if the i i

ation is very poor then the Newton-Raphson method would not converge as
predicted. We would then use in place of Eq. (2-31) the approximation
Fixh(1 +8,)) = Fi(xh)

T =

Where ¢ is a small number. (Using &£ =10"¢ has proved feasible for a CDC
computer with a machine accuracy ofabout 10~ '%.)

(2-45)

3 COMPARISON

E:iv::mi" substitution method has l!-ne advanlag; of simplicity in that no
owey Ives need be calculaied and no matrices need be inverted. It may not work,
the m, er. In the Newton-Raphson method the derivatives must be calculated, and
ow:alnx inversion may take considerable computation time for large problems.
meth, Ver, the chances of success are considerably better. Another feature of the
coOds is how many iterations are necessary to reach a specified accuracy.
1o lh;y $4y5 that the i itution method IinelnrlyA Clc;s.e
will la: nswer, if it takes three iterations to reduce the errorzrrom 107210107 % it
the p_ 2 10tal of 18 iterations to reduce the error from 10”* to 10~*. By contrast,
‘©Wlon-Raphson method converges quadratically. To go from an error of
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Iy mi

Ermor

T

p=-1/4

T

E Newton-Raphson

I

[0 S S S S I R S
0 2.00 4.00 6.00 8.00 10.00 12.00

Iterate number

Figure2-1 lierateerror as function of number of iterations,

?igniﬁcﬂnl figures that are correct js doubled at each iteration. Of course each
leration may take more work, since derivatives must be calculated, and perhaps 2
matrix must be inverted, The final trade-off involves the number of iterations and
the work per iteration,
and Fora sample problem the error is plotted in Fig. 2-1 versus the iterate number
and the rapid convergence of (he Newton-Raphson method is shown. The speed
nﬁ::vrrggnce t'Jl' the successive substitution method depends on the value of
ults for several f are shown, A smaller f§ ensures convergence, but the rate of
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convergence is slower. For ll?is _sim_ple problem the two
work (same number of multiplications) and Newton-R:
stiems of cquations the Newton-Raphson method taki
ce it lakes about #%/3 multiplications 1o solve the I

methods take equivalent
aphson is preferred, For
€S a great deal more work
/ Inear system of size n x n,
e ! e may then be preferred, if it
works.

STUDY QUESTIONS

Successive substitution and Newton-Raphson methods
1. How to write the iteration scheme

2. Which one has the wider range of convergence

3, Which one converges faster

4. The amount of work necessary to solve each of them
5. What does the convergence depend upon

6. What happens when the problem is linear

PROBLEMS

21 Considertheproblcm
—15¢, +150; =
=10

Set up a calculation scheme that is useful for small ¢? (successive substitution) and for large ¢*
(Newton-Raphson). Apply your scheme to the following cases (solve within 10°°):

(@ ¢! =1f(c)=c

(b) ¢ = 40,f(c)

(© & =1f(¢) = ¢

(@) $* =1000.f (c) = c/(1 +ac).a = 20
22 Discuss the following points after working problem 2-1. Apply the convergence theorem for
suceessive subsiitution to problems 2-14 10 2-1d. Does the method converge when the conditions of the
theorem are sqtisfied” When they are not? How many iterations are required (0 achicve the required
accuracy for the two methods and the four cases? What happens in the Newton- Ruphson method for
linear problems? Comment on the case of applying the two methods in the four cascs.
3 Solve ~ 10.5¢ +10.5 = 2Rlc)

]
fory = 30, 04, = 04 The solution s in [0, 1).
4 Solve using the Newton Raphson method .
~13.59530877c, + 2042831009, ~ 68330013216, = 6 (1)
14.57168991¢, —91.40469119c; +76.83300129¢, = Y1)
0.9482702526¢, — 149482702566 + 14 = Bia(l =¢3)

Ric)=¢ ”"’[7"|+//T

for
) f16) = ¢, g < 1, B = 100
B fley = 3¢t 21 e, = 100
)= cftl +ae)t, 2 = 20,4 = 32,Bin = 100
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25 Apply the theory on convergence of Newlon-Rapison method 1o Eq. 12-51 Choose an
permits satrdaction of the inequabitics. Eqs 12-35110 42-3%s What values of w b, and ¢ are a, ,,",,""
10 your chence of x,” If sxch contants cxnt then the theorem says that the Newton n.m::'mu

converges Try 1t for your 5, and verd conserpence
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CHAPTER

THREE

ORDINARY DIFFERENTIAL EQUATIONS—
INITIAL-VALUE PROBLEMS

Evolution p lead to initial-val in time. Here we outline some
successful and popular methods of solvmg those problems. After mlroducmg the
terminology, interpolation and quadrature schemes are presented, since they lead
to many of the methods for solving ordinary dll'[:renllal cquauons Special

lation and step-size control e explained and the important
matter of stability is treated in depth. Standard integration packages, such as
Gear's and the Runge-Kutta method, are summarized before comparing the
methods on some easy and some difficult problems.

31 TERMINOLOGY

ll;x this chapter we consider how to solve systems of initial-value problems of the
pe

,,, =Sy P=heon G-y

yi0) = g, = given (3-2)

We note (hat all the boundary condluons are prescribed at time zero, which is
necessary if the problems are i lue. If the conditions must be applied at two

ecahmo:e times the problem is a bonndary-value type. These problems are treated in

apter 4,
What if we wish to solve higher-order systems? The equation
Y EGT I,y D,y Y y) =0 33)

17
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can be reduced to the form of Eq. (3-1) by making the substitution
vy

=@

(The reader is encouraged to write this out in detail) The initial conditions for (he
high-order equation may be of the form
G,0"" ™ 1(0), 5"~ 2(0).....,'(0), (0)) = O (3-4)
reduce this system of equations to the form of Eq. (3-2) by solving
:’l:‘:s;:e:zr Eq. (3-4)for y;(0) = 3%~ 1(0) using the techniques of Chapter 2.
Another simplification we have made in Eq. (3-1) is to have the right-hand
side depend only on {y} and not on r. This is not limiting, because if we wish 10
solve a problem for which the function f depends on 1 we need only append the
differential equation
dYns1
dr
to the system. Of course y,.,, = 1, S0 the system of equations can be written in the
form of Eq. (3-1). Sometimes the notation of Eq. (3-1) is simplified and written in
the form of a vector equation, withy = {y;},

dy

di

vi0)=g @3-7)

We call a method explicit or implicit depending on whether the function f is
evaluated at known conditions );(t,), or at unknown conditions y;(t, ). Explicit

methods of integration, such as the Euler method, evaluate the function f with
known information

=1 yu10)=0 (3-5)

=1(y) (3-6)

dy
al. = flva) Y=y (3-8)

Implicit methods of integration, on the other hand, evaluate the function f at the
unknown solution ¥, . ;- An example is the trapezoid rule
dy

dt

=300 (yn) + (¥, 4 1)] (3-9)
=1,

n An important characlgrislic of a system of ordinary diflerential equations is
Whether or not they are stifl. The idea of stiffness is easily illustrated. Suppose we
wish o solve the problem

= —u n© =15 (3-10)
The solution is

o= 15¢"" (3-11)
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Numerical intcgration may be desired from 1 = 0 10 1 =

N i 10,
iz we an use with explicit methods is limited by - 525 The stable step

argp (3-12)
in Sec. 3.7.) For one method p = 2, thus

(We see the reason for this restricti

imately 10,2 = 5 time steps are necessary to integrate to 1 = 10. Now we
numerically solve the equation
du,
—2 = — 1000
di "
u(0) =05  u, = 0501000 (3-13)
This time the largest step size wecan useis
4
At € —— .
< 1000 (3-14)

and with p = 2 Ar < 0.002. We generally only want to integrate until ¢
this requires 0.01,0.002 = 5 steps. If we integrate to t = 10 we would need 5,000
integration steps.

Next suppose we are not able to separate out the functions u, and u, and we
must solve for v, = u, +u, and y, = u, —u,. The dilerential equations governing
yarethen

dy

i Ay yo) =217 (3-15)

—500.5 499.5°
= 3-16]
A= ( 4995 —sms) 16

and the solution is

iy = 1.5¢7! +0.5¢710%

et 056 00 @17
a= L .

Now we must integrate to 1 = 10 to see the full evolution of v, and y». However,
the largest step size is limited by
P (3-18)
Ar g oF—
(B
et i, s the largest of the absolute magnitudes of the eigen values. The cigen
‘alues of the matrix A are 7, = — 1,000, 2, = — 1. This means that the largest step
Siz¢ is limited by :
P
1000 )
quires 10/0.002 = 5,000 integration

YRS (3-19)

For p =2 und integration to 1 = 10, this re
seps,

We have the unfortunate situation with systems of cquations that the lurgest
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red by the largest cigen value and the final time is usually
smi i alue. Thus we must use a very small time
soverned by the smallest cigen value ] ey
(bl::.nru‘:‘w. ol‘y(hc large eigen value) for a very long time (because of the small eigen
For a single equation we do not have this dichotomy; the eigen value and
ed integration time B8O hand-in-hand. This characteristic of systems of

step size is gOVe!

v

S:;_\ulions is called stilfness. We define the stiffness ratio SR (see Lambert, p. 232)
as
max |Re 2]
= ..
SR = amnTRe Al (3-20)

Typically SR = 20 s not stiff, SR = 10° isstiff,and SR = 10° is very stifl.
If the system of equations is nonlinear, Eq. (3-1) instead of Eq. (3-15), we
linearize the equation about the solution at that time

dy, _ . i,
= s 3 2
a,=2 (3-22)

oy

= Yilta) (3-21)

We calculate the eigen valucs of the matrix A. the jacobian matrix. and define
stiffness. etc. based on the jacobian matrix. The stiffness then applies only to that
particular time, and, as the cvolution proceeds. the stiffness of the system of
equations may change. This. of course. makes the problem both interesting and
difficult. We need to be able to classifly our problems as stifl or not, however,
because some methods of integration work well for stiff problems. Some methods
do not work at all well and must not be applied to stifl problems. Generally we
find that implicit methods must be used for stiff problems because explicit methods
are too expensive. Explicit methods are suitable for equations that are not stiff.

3-2 INTERPOLATION AND QUADRATURE

Il we have values of a function at successive times and wish to evaluate ‘lhe
function at some point in between these data points we need an interpolation
scheme. Suppose the times are f, |, ,, f,,1,... and are equally spaced, and let
¥a = ¥(t,). Let us define the lorward differences
Ay, Y (323
A% = Byys =By, = Vyy2 =21+ (3-24)
and then the finite interpolation formula

r=yotady+ 2D pn o et ) o)

2! nt
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»n
»n

o h 2
@

Figure 3-1. Interpolation. (a) Function to be
interpolated. () Linear interpolation.
(c)Quadratic interpolation.

h=A (3-26)

Thisis just

{

@
Yotalyi~yo) +-

-1
e RS 3-21)

This formula is derived by making an nth-order polynomial in x go through the
Points y, yy,...., y,. Equation (3-27) provides an interpolation formula to deduce
the value of y at any point between f, and 1,. If we truncate at the first term the
Interpolation is linear, as shown in Fig. 3-1. Keeping the second-order terms
corresp 1o fitting a q i jial through the points Yo, y1. and ys.
Equation (3-27) is a continuous function of a and can be dillerentiated. Let us
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differentiate it with respect to f, using
d _dda da_ 1 dy ldy

&t dadt (~h  di hde

to give
dy _d) 2
"7’=FJ— Ayo +TA Yo

la—l)(a 2) +a(x— 2i+a(u—|)

3!
At the point x = 0 we get
dy
"(d-’,) = Byo— 4%y, +18%,
o
or, since tq is arbitrary,
hyy = (A—-$A2+44° -

Expanding this gives

hyy = Yus1=¥a

“300ns2=2mey )+

(3-28)

ot... (].29)

(3-30)

(3-3y

(3-32)

Thus if we know the values of y at times t,, 1,, 1, and ,, , we can estimate the first
derivative v,. Returning to Eg (3-29), we differentiate it again to get the second

derivative
’ll .
1 = Ao am DAY+ ..
Ata=0
By, = B, = 8%, +

(3-33)

(3-39)

This gives a way to estimate the second derivative. Alternatively, we can say that
the second difference A%y, is of order /i*. More generally the nth-order difference is

of order h".
To obtain an integration formula for

o+l
1= -[ y(r)de
. "

we simply insert y, and integrate

to+h
-1
j [y»ﬂAy» +3e=0) Alyo+.. .]xh
It

2!
-[ [,vo+aAy +- (—GJ Alyg+

(3-35)

]hda (3-36)

and then use the mean-value theorem to include the higher-order terms in the
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«wcond derivative. Thus we get for some 0 < ¢ < 1
toth
'[ e = D340, o)~ ohy0))
" (3-37)
=3 0o+y1)+0(r)

The notation 0(4*) means that 0(h*)/1 is bounded as h ~ 0. Usually this means a
term multiplied by ir*. More generally we can write Eq. (3-37) as

s h
J. YOt = 5 G0+ yas ) +008) (3-38)
W

and add up integrals from a to b, with successive divisions at a= to, h = .
Y=tp....Nh=ty.and (N+Dh = b =1y, giving

g h
j FOdU=3 o+ 21+ 22 4.+ W+ 1) +O0() (3-39)

Thealert reader will recognize this as the trapezoid rule. It is derived by passing a
linear interpolation betwcen the data points and integrating exactly under the
piecewise linear interpolant.

Next let us integrate over two intervals and keep the cubic terms to obtain

1o+ 2h _ T
1= j [)'0 iy 202 poy 22 Mem0) A{.-o+0(r)]d:

2 - —1)@-2
-h _[ [y,. +adr, + ﬁz'l') a2 oy +0(¢"):|dx (3-40)
o
Carrying out the integration gives the following result (see problem 3-3):
1= §u~o+4y. +y2)+00r°) (-40)

The term involving A%y, is zero since the « term integrates to zero. More generally.
foran arbitrary pair of intervals,

e
f YO = 8 (4500430 2)+OU) @42)
.
W we add up several pairs of intervals we get Simpson's rule in which

h
r”'l'h = 3: (o +4y, +2y2 +4y3+20s + ...
Sy H 2Nt HO) - (3-43)
N must now be even since the number of intervals must be a multiple oftwo. This
formula corresponds to passing a quadratic polynomial through the three points

and integrating i lant. We note in passing that as we go
g exactly under the interpolant. | ¢ >
fm one subinterval (1o, 11, 1) to the next (13, I3, t+) the interpolant is continuous,
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, is the same in both subintervals, but the first and higher derivatives 5

essarily continuous across the subintervals. The linear interpolant, Eq (r;nm

has an error of 0(h”) and the quadralic interpolant would have an error -°|_0-3h9‘),

except for the fortuitous cancelling of the A%, term, giving one higher order 0“!51
Backward difference formulas can also be used

V¥a = Ya=Ya-1 (44)

V2 = Vn= Va1 = Ya= -1+ Va2 (345)

The interpolation formula is obtained by requiring that a jth-order polynomial in N
goes through the POINIS Yy Y- 15+-+5Ya~j- Thus

ale+1)

51 Vi, +. .

Ynra =Yt aVyp+

ale+1).. (a+j—1)
+ js!”V’y.. (3-46)

Alternatively, we can use the points Y4 1, ¥n- .-, 1. In which case

alx—1)

Yars=Jner +@—DVy 0 + 2 Viasr .o
@—1)(@)(@+1)...(a+j-2
[( )(@)( j" (@ ) ieer  (347)

These interpolation formulas can be written for the first derivative as well

dya(@) _ . Lot ) o)
2 e e = a4 TV

dt
+ ala+ |)4.-.l(a+j— 1) iy, (3480)
j!
—1
y:..,=y’,..+(a—l)‘7y£.u+(a2,'aV’.\'Z.u+~»-
- -2
+(u “ala+l-. (u+j_.)v1y.ﬂ (3-48b)
J!

Il Eq. (3-48a) is differentiated with respect to ¢ and evaluated at ¢ = 0 we obtain an
estimate of the second derivative

iy = Vi) + 920 + . e
Similarly, the higher derivatives are given by
WY = D)+ 6-50)

Nol'e lh_ul an estimate of a higher derivative can be obtained trom values of lower
derivatives at successive points. Only values of y; are needed to obtain )" and only
values of y; are needed to obtain y". If only the first terms of Egs. (3-49) and (3-50)
'I“E Ugﬂl the error incurred is one order of i higher, and hence decreases to zero as
h— 0.
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33 EXPLICIT INTEGRATION METHODS

We can use ‘he_i‘“efpolalion formulas to deduce integration methods. 1f we tak
the single equation ake

dy _
a=/® (3-s51)
and integrate both sides [romt,to¢,, ,
e dy
4[‘. ah J: S(0)de (3-52)
we gel
he
Yaer =Jat J. Syt =y, + (3-53)
t
or
1
Yar1 =Yath J y'(@)da (3-54)
o

The integration schemes are generated by inserting various interpolation formulas
for dy/dt(=) = )’(x). Substitution of Eq. (3-48a) into Eq. (3-54) gives

s
Yart =Jath Y ¥V, (3-55)
=
1 i—
a= j M'—l!‘l“ (3-56)
o it
Yuer = Yat h(I+3V+EV+.00, (3-57)

This can be expanded to give

h
Yuer = Yathyy 50035 0)+ -

2, (3-58)
=y thy,+ l;y,’,’ +...
The Euler method is obtained by truncating at ¢ = 0 and using ¥, = /'(v,)
Faer = Yat W () +0(h?) 3-59)
The formula is more revealing in the form
Yor II_ S(y)+0(h)  explicit Euler (3-60)
"

The left-hand side is a representation of the derivative dy/d1 and the derivative is
evaluated using the solution at y,. Graphically this means we evaluate the slope at
the nth time level and extend that slope to the next time level to obtain yu. . (sce
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»
Yot P

.
PR R,

.
lope /(¥a)

fn st
(@)
y —
T ' ! oy
thoytn-2 la1 dn fael Figure 3-2 Explicit integration methods.
(a) Euler method. (b) Fourth-order
[(2) Adams- Bashforth method.

Fig. 3-2). Notice also that the linear interpolation gives a method that has
accuracy proportional to /i or O(h). [Note the difference between Egs. (3-59) and
(3-60)]

The second-order Adams- Bashforth method is obtained by truncating Eq.
(3-55)at g = L Thus

Yoot = Yot h(5+4V35) (-61)

=yt ',' Gra-yi-y) (3-62)

The accuracy of the method is 0(4?) and the appropriate interpolation formula is
Eq. (3-46) keeping terms up to second-order differences.
The fourth-order Adams-Bashforth method is obtained by truncating Eq.
(3-55)at g = 3. Thus
Yusy = Vuth( + 400+ 4V, 4303 (3-63)
h
= 55 (55K, =59, -+ 37y, =90, 5) + Oh) (3-64)

T}?e accuracy of the method is 0(h*), and the method corresponds to passing 3
third-order polynomial through past values of y;,_,, etc. At the beginning of the
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calculation we know only Yo = f(yo). so we must use another method o get
started. After several steps we can then shift to the Adams-Bashforth method. The
starting method must be done with a small time step if its accuracy is less than
fourth-order, but a low-order method with very small steps is feasible because only
afewsteps are needed.

34 IMPLICIT INTEGRATION METHODS
To obtain an implicit method we use the interpolation formula Eq. (3-48b) and
substitute into Eq. (3-54) (see problem 3-5).

Yarr = Yath(1 -4V -V £V = )y, (3-65)
Ifwe truncate this with the first term we get the backward Euler method

Yner = Yot hy, s, +0(h?) (3-66)

¥ .
7T =1 =S0ae)+0(h)  implicit Euler (3-67)

Theaccuracy of this mcthod is only O(h), as in the case of the Euler method, but we

see below that this method is more stable. Compare Egs. (3-60) and (3-67) to

illustrate the difference between the explicit and implicit Euler methods.
Truncation of Eq. (3-65) at the second term gives a method

Faer = VathDies —305. = 3W] +00) (3-68)
h
=504 300 4 S0 +008%) 69

which has an accuracy proportional to 0(/). This method is variously called the
modified Euler method, trapezoid rule, or Crank-Nicolson method. Truncation at
the fourth term gives the fourth-order Adams-Moulton method

[
Yas1 =J¥at 2—:, (941 + 1953 = 5yp-1 +ya-2)+0(h*) (3-70)

How are these equations solved? Since the value of ¥, is unknown, all the
equations represent a nonlinear equation to solve for y,, . If we have several
equations instead of just one we get systems of nonlinear equations for ¥,. .
Chapter 2 describes methods for solving such systems by writing the general
implicit methods in the form

N .
deer= X abith A 67

] i
Diflerence methods have different choices o f k. as, and . 11 flo = 0 the !“‘,‘h"]‘? is
explicit since the right-hand side can be evaluated. If fo # 0 the method is imp! icit
since the right-hand side depends on f (a4 1 )» Which is not known. To solve such an
equation we write Eq. (3-71) in the form
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Yasr = oS One )+, (3-12)
where w, represents all the known information. Successive substitution applied o
Eq. (3-72) gives
Yed = hBo SO )+ w, (3-13)
and we iterate until an error tolerance is met where
P =yl <e R (3-12)
If this tolerance is not met in N iterations we halve the step size and try again. We

know that the successive substitution method converges provided that there is a
pt < I 'such that

hBo

¢
fT| <pu<l1 (3-75)

- is bounded there is always such a u since we can decrease h to satisfy the
inequality. Thus we know that for small enough h the successive substitution
methods works.

Newton-Raphson is applied in a similar way with

= h/‘u[l’()',’.‘l O+

R =y ]+ w, (3-76)

Rearrangement gives

¥ @3-

(’ —hfo Lf) ORd =y = Mo S )+ w,

If we had multiple equations we would get a system of equations at this point, with
I =d;; and &f /¢y /2y; as the jacobian matrix. The Ncwton-Raphson method
also converges provided h is small enough, but it may be more robust than the
successive substitution method. It does require calculation of the jacobian matrix,
however.

We can conclude that any implicit method is soluble provided the step size is
small enough. The strategies described in Secs. 3-6 and 3-9 ensure that this is so.

3-5 PREDICTOR-CORRECTOR AND RUNGE-KUTTA
METHODS

An alternative, which is between the explicit and implicit methods, is a predictor-
corrector method. In this scheme the predictor is an explicit equation Which gives
an estimate of y, , y, called ,,,. This value is then used in the corrector, which is
an implicit equation, except that the right-hand side is evaluated using the
predicted value y,,, rather than y,,,. Combining the Euler method as the

predictor and the modified Euler method as the corrector gives the improved
Euler method

Favr = Yuthyy = vt B (n) (3-78)
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h
ot = a5 0her )

ho (3-19)
=Yt 5[/ Cas )+ /0]
Alternatively We can iterate several times with the corrector to give
Vv = yathy, (3-80)
el =yats3 [f(y"' D+ (3-81)

The Adams predictor—corrector uses the Adams-Bashforth method to predict

- h ,
Taer = Yot 57 55yt (3-82)

and the Adams~Moulton method to correct
LI
Yoot = Ynt5g ON0e i #1957+ (3-83)

The corrector can be applied several times as well. The .ndv tage of these methods
is that the stability limitations are less severe than for explicit methods without the
necessity of solving the nonlinear equations in the implicit methods.

Runge-Kutta methods are widely used. The explicit schemes involve evalu-
ation of the derivative at points between r, and t,,,. Let us write the general
formula

Yar1 =Yt Y wiki (3-84)
i=1
with !
i-1
ki= hf(l,.ﬂ'ih. ity ui,k,) (3-85)
=1
¢ =0 (3-86)
and expand both fand y in a Taylor series
) 2
Yuer = Yatyuh + % Yoo (3-87)
o= (3-88)
¥ = (‘11 & v) = Ut (3-89)
U "

Pulting this into Eq. (3-84) gives
e :
Foor = vt 4 (4 )+ 650

Now this procedure is repeated for the values of &;.
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ki =1t ya) = Wfy (391)
ka = Wty +ch, yo+az,ky)
UG AR T VAN A ER s
Substituting this into Eq. (3-84) gives
Yner = Vot willytwallytwol (e fi+ a3 )+ (3-93)

Comparison of Eqgs. (3-90) to (3-93) shows them to be identical if the following
conditions are satisfied:
wy+w, 4. +w, =10
wady, + .5 (3-94)
wyc+...=0.5

Examination of the full set of equations reveals that some of the parameters are
redundant. For v =2 we have one free parameter at our disposal while still
satisfying the equations. For v = 3 we have two such free parameters. We obtain a
Runge-Kutta method by specifying v and the free parameters. For v = 2 we have

wi+w, =10
wycy = 0.5 (3-95)
€2 =4y

Specification of ¢, then gives ayy, w,, and w,. With ¢, = 0.5 we get the second-
order Runge--Kutta scheme
You1 = Yat W (1 +3, 3, +40f,) (3-96)

or a midpoint scheme. With ¢, = 1 we get
h- .
Inor = bk 3 Ut Stath 3t )] 9

which is identical to the Euler predictor-corrector scheme in Eq. (3-79).
A very popular scheme is the Runge-Kutta-Gill method, which is fourth-
order and expressed by the algorithm

ky = If (ta, )

ky = hf (ta+h, yo+ 3k1)

ky = hf (t,+3h, y,+ak, +bk,)
kg = hf (ty+h,y,+cky +dky)

Yt = Yt (ky +ke)+4(bk, +dky) (3-98)
V2=t 2-/2
a= T b= T
2 NE
e==Y"  d=14F
off

The parameter choices have been made to minimize round-off error. Round-
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error occurs in a computer when two n digit numbers are
digit number, but only the first » digits are retained.

It is possible to have implicit Runge-Kutta schemes and here we introduce a
semi-implicit scheme due to Caillaud and Padmanabhan.? We again write Eq.
(3-84) but now allow the summation in Eq. (3-85) to gofrom 1 to i, making |hé
scheme implicit. Thus

multiplied, giving a 2n

i
ki= hf(y,, + 3 agk ) (3-9)
=

We expand this in a series
i-1 o i-1
ki = hf| (y.. +3 au",-)+h —(y, + 3 ak;
=1 dy =1

and generalize to

(3-100)

i-1 i1
'(y,,+ ¥ d,/ki)]k,- = hf(y,,+ Y a,-lk,) (3-101)
=t =1

As before we choose ¢ and expand the equations to the vth order. We choose the
parameters so that the same factor multiplies k; for each i—this minimizes the
work of inverting matrices in Eq. (3-102) below—and also so that the method has
ability properties (see Sec. 3-8). The final algorithm for a system of
equations is given in the form suggested by Michelsen.®

-
k, = h[l—ha. g (y..i] f(ya)

o
k= n[u-m., a 1y.)] [a+bsky) @102
"

K= h[l—lm. g—:tyn)} (b3 +bsaks)

The parameters are

a=a,
a, = 0.43586659
wy = H—bs, wy =10
byy = 2 (6aP—6a+1) (3-103)
%
= 8-
by = = g @0 =2a+1)

Notice that the jucobian matrix is evaluated only once per time step, and that the
inversion or decomposition of the matrix is needed only once per lime step.

We have introduced a variety of methods; many more are known. The
Possible methods we have discussed are listed in Table 3-1 along with their order
of accuracy. Needless to say, to achieve a given overall accuracy with a low-order
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Table 3-1 Methods for integrating ordinary differential equations a;
problems

vale

Need a
Truncation starting Stabilty
[2% Method crror method? limit p
Explicit

Euler 0(h) No 20

Second-order Runge-Kutta

or mid-point rule o(h?) No 20
(3-64) Fourth-order Adams-Bashforth o) Yes 03
(3-98) Fourth-order Runge-Kutta-Gill o) No 28

Implicit

(3-67) Backward Euler o(h) No P
(3-69) Modificd Euler or

Trapezoid rule o

Crank-Nicolson o(h?) No x
(3-10) Fourth-order Adams- Moulton ochy Yes 30

Predictor-corrector

(3-78)
(3-79) ﬁ::’:fﬁ:‘d order ) No 20
3:97) &
082 A . .
Ghny  Adams ok Yes 13

method requires a smaller step size h than with a high-order method. The actual
trade-off may be dependent on the problem, however. We have the general
categories explicit, implicit, and predictor-corrector, and a selection of order
within each category. Before comparing the performance of the methods let us
examine the truncation error and stability of the methods.

3-6 EXTRAPOLATION AND STEP-SIZE CONTROL

Once we know the truncation error, or the power n in the formula 0(h"), we can
sometimes obtain a more accurate answer by using extrapolation techniques.
Suppose we solve the problem with a time step h giving the solution y, at time I+
and also with a time step h/2 giving the solution v, at the time . Ifa Euler method
is used the error in the solution should be proportional to the time step. Let yo b¢
the exact solution, and write the error formulas

Vi =Yo+ch (3-109)
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| ch
Ya=yoty (3-105)
Subtraction and rearrangement gives
Yo =2y,—y, (3-106)

If the error formulas are exact then this procedure gives the exact solution in Eq.
(3-106). Usually there is some error in the calculation and the formulas only apply
as h—0. so that Eq. (3-106) is only an approximation to the exact solution.
However, it is a more accurate estimate than either y, or y,. The same procedure is
used for higher-order methods, except that the error formula Eq. (3-104) must
have the correct truncation error. For the trapezoid rule

¥1 = Yyo+ch? (3-107;

Table 3-2 Errors in integrating )’ = —yto1 = |

Number of Total number
steps of steps Error
Culer
2 2 -on8
4 4 -0.0515
8 8 -0.0243
16 16 -00118
32 2 —~0.00582
Extrapolated Fuler
24 6 +0.0149
4.8 2 +0.00293
816 2] +0.00066
Trapesoid rule
! | -0.0345
2 2 ~0.00788
M 4 ~000193
8 8 ~0.000480
' 16 ~0000120
2 3 00000299
“ 64 ~0.00000748

12 3 +0.00101
24 6 +0.0000543
a8 12 +0,00000328

e 2 +0.000000204
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h\?
Y2 =Jotel3 (3-108)
_Ya-n
Yo 3 (3-109)
Let us illustrate the result using a simple problem
y=-y
»O) =1 (3-110)

A simple Euler method is used, with a truncation error of 0(k). Look at the error at
¥(t = 1) as a function of h. (See Table 3-2.) The results are plotted in Fig. 3-3. The
straight line demonstrates that the error is proportional to the step size h. Next we
use the extrapolation formula Eq. (3-106) and obtain the results given in Table 3-2.
Clearly the error is much reduced for the same total number of steps. Indeed the
extrapolated results based on 8 and 16 steps, or 24 total steps, give results as
accurate as using 282 steps without extrapolation. Alternatively, the computation
time is only 8 percent of that needed without extrapolation. Results shown in Fig.
3-3 for the trapezoid rule, which has a truncation error of 0(k?), illustrate that the
error is proportional to /% and extrapolation based on Eq. (3-109) with h? is
equally successful. The extrapolated results scem to have a truncation error that is
the square of the truncation crror of the basic method, and indeed the extrapolated
results can even be extrapolated to improve the results. Unfortunately the
extrapolation is successful only if the step size is small enough for the truncation
error formula to be reasonably accurate. In some nonlinear problems this is a very
small value and in fact out of reach computationally. It is always a technique
worth trying, however.

All the methods discussed so far have used a fixed step size h. This is not
necessary provided we have a reasonable way of adjusting the step size while
maintaining accuracy. We discuss here three successful methods or doing that.

Bailey' has a simple criterion for Eq. (3-1). Lettingy? = y;(1") we compute

Ay =t =yl @-111)

IfAy; < 0.001 weignore that i in the following tests. We take one of the following
actions:

L IfallAy;/y; < 0.01 we double the step size.
2. Ifany Ay;/y, > 0.1 we halve the step size.
3. Otherwise we keep the same step size.

Bailey applied this scheme to problems involving moving shock fronts and found
it worked re.xsomlbly well. This method uses no information about the integration
method and ignores the information contained in the truncation error formula.
The olher two schemes do use that information.

® used a third-order method—a i-implicit Runge-Kutta scheme,
Egs. (3-102) and (3-103)—and solved the problem twice at each time step, once
with time step h and again with two steps of size h/2. The error is defined as
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ORDINARY DIF}
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uler, extrapolated

Jrapezoid \ 7
+

2 Jrapezoid, extrapolated ]

A

10° 2 4 6 810 2 4
Number of steps

Figure 33 Error versus step size, integrating y = =y 104 = 1.
+ I +1
=y (3)-n (3-112)
and the maximum relative error controls whether the step is accepted (¢ < 1) or
not

4 = max (3-113)

e
D
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where g,
stakenas

user-speciticd tolerance. Theactual solution for the (1 4+ 1)th (ime step

(M 87 /2= 37 V()
w ‘=r,"(2)+3,t’,"'=”"' EE R (3-114)
where the numbers 8 and 7 come from 2* and 2° — | for a third-order method. The
derivation is identical to that used in Egs. (3-104) to (3-106) and Egs. (3-107) 10
(3-109). With extrapolation the method is fourth-order with error 0(h*). The nex(
step size is taken as

hyoy = h,min[(4g)~ 1%, 3] (3-115)

where the —} comes from the fourth-order method and the 3 is to avoid large
increases in step size. If ¢ > 1 the result is not accepled, the step size is halved, and
reevaluated. In this method the user specifies the desired accuracy in ¢;, and the
method tries to achieve it. Even if all the error estimates are exact the error in the
solution at ¢ (the global error) is not guaranteed to be less than &, because ¢,
controls the error at only one step, whereas the solution at any time is the result of
many steps. Even so. such a scheme gives a reasonable control on the step size to
make the global error decrease when ; decreases. The disadvantage of this method
is that it requires three calculations, and three matrix decompositions, to advance
one time step.

Gear? estimated the local truncation error LTE and compared that to the
desired error ¢. If the local truncation error has been achieved using a step size h,,

LTE = ¢} (3-116)

then we wish 1o use for the next size one giving

£=chy @3-117)
or
LTE _ ("_x> (-118)
Iy

Thisis similar to Eq. (3-115) except it does not require three steps to compute the
local truncation error. This is achieved using Eq. (3-50). If we have a first-order
method the second derivative is estimated as

Iy

Vi) (3-119)

S‘Iarling the calculation 1o get ¥, = f(yo) and stepping forward to 1,. we get
¥y = f(3,). Then we can estimate

nyy

Vi) = h's = xg) = hsy =10) (3-120)
The truncation error of a ¢th-order method is given by

Faet = aboook Cyu 0¥ 1yl 1 (3-121)
or

LTE = C,, Ji#* 1yie' 0 (3-122)
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We estimate ¢ " and must know C, ., for the method being used. We can then
estimatc the local truncation error LTE achieved with step size h,, and then
choose the step size /i, to satisly Eq. (3-118). The complete integration package is
outlined in Sec. 3-8.

3-7 STABILITY

Every numerical analyst has at some time or other seen results of a computer
calculation that have a sequence something like the following: 1, 100, ~ 103, 1024,
—10'%%,.... Indeed the reader of this book, if he or she has not experienced such a
result, should reproduce it on a calculator—easily done on a programmable
calculator—by applying the Euler method to y' = —y with a time step of 4 and
integrating to 1 = 100. The problem could, of course, be a programming error. but
it is also possible that the program is correct and the problem is caused by an
unstable calculation due to a step size that is too large. We wish 1o see why this
happens. how large is too large, and compare the stability characteristics of the
diferent methods.
We illustrate the phenomenon using the test equation

dy

dr
where /. is real and positive. Let us write the solution as the sum of the exact
solution y, and an error £. We put this expression into Eq. (3-123) and note that
theexact solution satisfies the dilferential equation, too. Then the error satisfies

de

—=—Jc (3-124)
de

-y 0 =1 (3-123)

We examine the error in successive lime steps by looking at ¢
integration method is stable if the error decays in successive time steps. Because of
round-off error the computer never solves equations exactly. If the scheme is
unstable this round-off error grows with successive time steps and soon swamps
the solution.

Applying the Euler method to Eq. (3-124) from 1, to 1, , , gives

.
h (3-125)
ey = ta(l = A)

Stability requires that

Fnarl ¢y (3-126)
el

and this in turn requires that

H—A<]  O0<ih<2 (-127)
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Thus the Euler method is unstable if the time step is greater lhun»2'/|).|_ Notice thay
if hs.> 1 then the errors change sign at each step: i «, is positive then Grey is

negative. . .
Next we apply the trapezoid rule to Eq. (3-124) and obtain
1—=hi/2
fner = En T+hij2 (3-128)

Equation (3-126) is satisfied for any h7. > 0. Thus IEIB lrap:zfaid rule is stable for
any step size. This is a great ge, but the d ge is lhal_we must solve
a system of algebraic equations (il we hav‘e more_lhun one dlﬁergnllal eql_!auon to
solve) and the equations may be nonlinear (if the differential equations are
nonlinear). Another feature of this method is the oscillatory error. Suppose h is
very big. ie. h7. - . Then

et = Ty (3-129)
and the errors are of opposite sign at successive time steps. This causes the
numerical solution to oscillate about the exact solution. For some problems these

illations are noticeable and ble. The point at which the errors are of
opposite sign is seen f[rom Eq. (3-128) to be /. > 2.
Finally we apply the backward Euler method and obtain

Gy = o0 (3-130)

which is stable for all i and does not oscillate.

The results of all three methods are summarized in Table 3-3. We see that the
Euler method, simple as it is, requires a small time step for stability. The trapezoid
rule requires a small time step to avoid oscillations but is stable for any time step.
The backward Euler method does not oscillate at all and is stable for any time
step. Both the trapezoid rule and backward Euler method are implicit and require
solving sets of algebraic equations. Also the trapezoid rule is second-order, giving
a smaller truncation error. The method of choice depends on the difficulty of
solving the algebraic equations, whether a time step can be taken small enough
that the oscillations are not observable, and whether high accuracy is needed. This

T':)blc 3-3 Comparison of integration methods. Based on
y0) =1

Stable stej

) Stablestepsize, Unstable
nooscillation oscillation in step
Method in sign of error sign of error size
Euler 0<hi<l
. t<hi<2 2 <hi
Trapezoid O<hi<2 2 N
Buckward Euler FONC Nowe

O<hi<ax None Nono
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comparison we provide below. after putting the stability theory on a firmer

foundation. L L
The rational approximation to the exponential ¢ * is defined as

T2 =

4nlc) G131
where P, is a polynomial in_z of degree n and g,, is a polynomial in z of degree m.
Consider three such approximations

et emr = 12202 313
“i+m2 G-132)
We now solve the equation
L By+S
7= Byt (3-133)
where B is a constant matrix and § is a constant vector. The solution is
¥(0) =¢'""P[y(0)-B~'S]+B"'S (3-134)

We need to define the notation for matrix polynomials. The exponential can
beexpanded to give

. 1 1
I3 -=1—:+2!z‘—i:’+... (3-135)
and we define the exponential ofa matrix in a similar way
LIPTea |
‘,rm=|_,B+i,-5-_J!:’B’+..A (3-136)
Of course
B =BB B’ = BR? (3-137)

and so forth. We want to define rational approximations to the exponential of a
matrix argument in a fashion similar to Eq. (3-131). I

X=c¢® (3-138)
wedefine the rational approximation as
4w(IB)X = p,(iB) (3-139)
where p, and g,, arc matrix polynomials in (B of degree 11 and m, respectively. We
<an diflerentiate Eq. (3-136) with respect to 1 to obtain

;’qu'“' = -B+iB*— .= —Be® (3-140)

The reader can (hus verify Eq. (3-134). .
Next we rearrange Eq. (3-134) by evaluating it from r to 1 + At instead of from
010110 give

Vit + A0 = ¢~ 88[y(1)-B~'S]+B”'S (3-141)
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Now il we try to approximate the exponential term using rational approximations
we would use

AnABINU+80) = p(ABIY0) -BT ]+ 4u(ABIB'S (314
Using in turn the three rational approximations given in Eqs. (3-132) with 4=
and p, = 1 -z, we get

YU +A1) =y(1)-B~'S—AB[y()-B~'S]+B"'S

(3-143)
or
-yl
Y+AD-yO __giyis (3-144)
At
Similarly for g,, = | +z and p, = 1, we get
y(t+Ar)+ABy(r + At) = y(t)+ ArS
or
it %’%‘L(’) = —By(1+An+S (3-145)
Usingg,, = 1 +z/2and p, = /2 we obtain
YOHAD=N) B+ A0+ y()] +A1S (3-146)

At

Examination of Egs. (3-144) to (3-146) reveals that we have applied the Euler
method, the backward Euler method, and the trapezoid rule. Indeed, the rational
approximations in Eq. (3-132) look very similar to Egs. (3-125), (3-130), and
(3-128) for the three methods. There is a close correspondence between integration
schemes and the rational approximations to the exponential. To pursue this
relationship more deeply we must solve the equations.

Let 7, and x; be the cigen values and eigen vectors, respectively. of B, i.e. they
satisfly

Bx; = A;x; (3-147)
We assume

Tox, =10 (3-148)
and since they are cigen vectors they arc orldeThus
x'x;=0  i#j (3-149)
We thus have a set of n cigen values ;. 2 an ei " .
define the mateios igen values 7;, and for cach one an eigen vector x;. Let us
A
X=[uxaex,]  AG) = ding(h) = 42 O] @150
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and compute
XA(2) = [21X 122X 201 2nXa) (3-151)
Also the matrix multiplication of X and its transpose gives
1 [
|
XTX = = . =1 (3-152)
0 T
sothat
XT=x"! (3-153)

Next we multiply X by the matrix B and use the fact that X is made up ofthe eigen
vectors [see Eq. (3-150)]

BX = XA(2.) (3-154)
Let us postmultiply this by X7 to get
BXX" = XAG)XT =B (3-155)

andcalculate B?
B? = BB = [XA()XTI[XA(A)XT] = XACGIAL)XT (3-156)
Calculation of A2 gives A(/.%)

7 o |4 0 I 0
AGIAG) = . A = 2 F AG2)
o i 0 Ll Lo 2laasn
so that
Bl = XAGHXT  and  B*=XAGHX' (3-158)
and
BAX = XA() = [y, A%, 0 2] (3-159
* B*x = Aix (3-160)

With these preliminaries we return to Eq. (3-142) and insert XX ™' = loget
4.(AB)XX " 'y(t + A1) = p,(AB)XX " '[y()—B"'S]
FA(ABXXT'BT'S  (3-161)
We simplify the notation
vii+AN = X" "y(t+41) and w=X"'B'S (3-162)
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and rewrite Eq. (3-161) giving
4w (ATBYXV(1 + A1) = p,(ArB)X[V(1) = W] +4,,(A1B)Xw 3-163)

Both the g, and p, are matrix polynomials so that we can use Eq. (3-158) o
evaluate them. If

m
gu(2) = Y a (-164)
k=0
then the matrix polynomial is

Gm(AIB)X = i abMBX = Y 4, AFXA(K)
K=o k=0

=X Z @BMA* = Xq,,(AtA) (3-165)
k=0
Thus
Xgn(AIAW(+At) = X{p,[AIATLV(1) = W] + g, (A1A )W} (3-166)

Next we multiply by X" and use Eq. (3-152). Note that g,,(AtA) and p,(AtA) are
diagonal matrices since each A* is diagonal, and we can decouple the equations to
write them in the form

YAV + A1) = p,(AL7)[Vi(1) — W] +qa(AL7.)W; (3-167)
We can perform the same operations for Eq. (3-141) to get
vt + A1) = e Y [vi()—w]+w; (3-168)
Comparing Eq. (3-167) with (3-168) shows we want the rational approximation
. pa(AL2)
L) = 3-169)
Fan(A14,) TN (

to approximate ¢~ as well as possible. Based on these results we can examine
this relationship for each cigen value individually.

We can now define stability, which has several definitions (see Lambert, p.
233). Dahlquist introduced the term A stability. A numerical method is said to be
A stable if its region of absolute stability contains the whole of the left-hand plane
(sec Fig. 3-4a). Widlund called a numerical method A(a) stable if its region of
stability includes the infinite wedge W (see Fig. 3-4b). I is A(0) stable if it is A(2)
stable for some small . Ehle introduced the term L stabili y. A numerical method
is L stable if it is A stable and when applied to ¥ = —ir, ReA> 0 yields
Yasr = r(hi)y where |r(n)] - 0 as Re(hi) = oo, .

Furthermore a rational approximation Fmal2)10 €% st

L. A acceptable il < 1for Rez > 0.
2. A(0) acceptable if |r,

wal < 1forzreal, z > 0,
3 Lacceptable i i js

A acceptable and

lim ) =0 (3-170)



‘ Figure 3-4 Regionsofstability.
) (a) A stability. (b) A (a) stability.

Consider one-step methods which, when applied 10 y' = —Jy, give
Yas1 = FmnYor With 1, a polynomial in hi. The method is A, A(0), or L stable
according 1o whether the rational pol ial is A, A(0), or L Lambert,
Pp. 237). Since each one-step integration method can be related by a rational
approximation to ¢, we use that rational approximation to deduce the charac-
teristics of the integration method. We can say:

1. The point where r,,,(;Ar) = + I gives the AAt for stability limitation.

2. The closer the approximation is to ¢~* the more accuratei is.

3 Ifr,,, < 0 the solutions can oscillate since then the error at the (n— 1)th step has
the opposite sign to the error at the nth step. X .

4. We can look at a single eigen value 4; for systems of equations ant_! in l‘acT m|;|sl
concentrate on the largest eigen value since it is for large |2A1 that the
Integration methods break down.

We now apply these guidelines to the methods already treated. ‘Flg:reu fl5 SE"::[S
the rational approximations to the three methods discussed ::1" :elo;v = is-
¥apezoid rule, and backward Euler. The point at which the curve fi 8 whereas the
the limit of tabiity. The Euler method requires A < 2for siblRY KR 5 4o
Other methods are always stable. The point a which the ap;‘n‘wmrﬂs o e Euler
200 represents the criterion for the onset of oscllatory &FOR Ll Ciiares
™Method and |;Ar] < I the method does not oscillate. The trape
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Figure3-$ Rational approximations representing integration methods.

for |2.A1] > 2, whereas the backward Euler mecthod does not oscillate at all. The
trapezoid rule is O(h?), whereas the other methods are O(h). and the greater
accuracy of the trapezoid rule is cvident but only for small |A1] of less than two.
This analysis has to hold for cach eigen value. and so it is the largest eigen value
that matters.

The other explicit methods are evaluated in a similar way. The rational
approximation can be determined by applying the Runge--Kutta methods to Eq.
(3-124) (see problem 3-12). The rational approximations arc shown in Fig. 3-6.
The second-order Runge Kutta method is stable for

1741 £ 2.0 (3-171)
while the [ourth-order Runge ‘Kutta Gill method is stable lor
p.an <28 (3-172)

The actual ;A1 must be kept to about one-third of this limit if accurate results are
to be achieved.

fof nonlinear equations we can only apply the ideas locally, that is we can
consider the system of equations at time 1, For Eq. (3-1) at time 1, we linearize
about the solution y,, which is known, Thus

dy; _ L

B,‘;r; we examine the stability of a method for the eigen values of the matrix

A, the jacobian. Of course at a later time we have different eigen values. s
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Figure 3.6 Rational approximations for explicit methods

the method must be stable for whatever cigen values occur during the course of the
Integration.

We thus reduce the problem of characterizing a method for integrating
ordinary differential equations down to an cxamination of the rational approxi-
mation to ¢ *. The rational approximaition gives information about the stability of
the method and the tendency of the solution to oscillate, and how these leatures
change with [7A1).

3-8 HIGH-ORDER SCHEMES THAT ARE STABLE AND
DO NOT OSCILLATE

For very stiff problems (some 4 large, some /; small) we would like a scheme that
is stable, does not oscillate, and is reasonably accurate. The Euler method is not
such a scheme since it is not stable for large 2Ar]. The backward Euler method is
stable and does not oscillate, but it is not very accurate, being a first-order method.
The trapezoid rule is of higher order (second) but oscillates for large J4Ar. Thus
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Figure 3-7 Rational approximations for implicit methods.

none of the methods meet our requircments. All the explicit methods fail since they
have a stability limitation in terms of |7.Arl. We want a high-order, implicit method
which is A(0) and L stable. There are two methods that have been developed to
meet our requirements: semi-implicit Runge-Kutta methods and the Ngrsett
methods.

The semi-implicit Runge-Kutta method is presented in Eqs. (3-102) and
(3-103) and was developed by Caillaud and Padmanabhan? (o be A and L stable.
If we apply the method to Eq. (3-123) and look at y,,,/y, We get the rational
approximation

1+0.3075998z —0.23766072z%
(1 +0.435866592)°

This function, which is plotted in Figs. 3-7 and 3-8, is always between | and —1.
Thus the integration method is A(0) stable. Since r(co) = 0 it is also L stable.
Furthermore, the method has a truncation error of 0(h), which can be seen by
comparing the polynomial expansion of Eq. (3-174) to the Taylor series for e™*;
they agree up to the z* term. We must evaluate a jacobian each time step and
decompose the matrix only once per time step.

Two other methods are the Ngrsett methods of second- and third-order.
These are based on Hermite polynomials as rational approximations to ™" For
Eq. (3-133), the method is

(I +2ArB,)W, = 2At(B,y,—S,)
(I +aAB,)w,,, = cAB,w, (3-175)

k-1
U+atiBy,,, =y, + T ’-;G)W;MA'S’-
&

ra2) = (3-174)
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Figure 38 Rational approximations for implicit methods for large Ar,

For a second-order method k = 2, a = 1.707106781 and L,(l/a) = 0.4142135623,
while for a third-order method k = 3, a = 2.405147015, L (l/x 84225001,
and L,(1/2) = 0.254884425. The order of the truncation error is Oth®) and O(h*),
respectively, and both methods are A and L acceptable. Once we have inverted the
matrix in Egs. (3-175) we only need to multiply several right-hand sides by the
inverse 10 obtain the solution. Thus we have only one inversion or decomposition
of the matrix per time step. The decomposition of the matrix is usually a ume-

i s 1o the i ion by the right-hand side. Thus
the work effort is only a little bit greater than that necessary to apply the backward
Euler method or the trapezoid rule. In return for the modest increase in work
eflort we get a second- or third-order method that is L stable as well.

39 EQUATION SOLVERS

You are probably already fumiliar with the Runge-Kutta routine for solving
initial-value problems because you may have used the package vailable at your
Omputer center. These packages usually use a fourth- or fifth-order Runge-Kutia
Method, such g5 the Runge-Kutta-Gill method described in Eqs. (3-98), combined
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with a variable sicp size. The step size is adjusted to control l'he chal truncation
error within a limit sct by the user. The local truncation error is es"m‘“ﬁ? using a
theory developed for the parlu_:ular Runge—K}xlla melhoc_l. The melhold is. highly
accurate, O(i*) or O(h®), requires ‘."fly I‘upcuon cvallfa_uor]s '(no_ denvul‘nves or
matrix decompositions), and is explicit, so it has a stability limitation. While such
packages work well ror.u variety of prol?lcms, they will not _work well for s‘“n'
problems with large |/.{ since the time step is too small for stability reasons, I=§dlng
1o excessive computation time. However, tlgere are other systems, not as widely
known. that perform the same function for suﬂ'syslems ..

Gear's method and the package developed by H]ndmarsh is one such system,
The system has options of variable step size and variable ordgr ol‘_u!legrulion_ The
user can specify either explicit or implicit methods, and the implicit methods can
be solved using either i bstitution or N Raphson. There are
consequently a variety of choices. The first-order, implicit method is the backward
Euler method, but the other-order methods have not been discussed here. We can
imagine a program that includes Euler, trapezoid, and Adams-Moulton methods,
and the Gear system is similar except that other implicit methods are used. The
user specifies a tolerance that is allowed for the local truncation error (the
maximum error in one time step). The program then controls the step size to meet
this truncation error, as explained in Sec. 3-6. The order of the method is con-
trolled too.

Suppose we are calculating with a kth-order method. The truncation error is
determined by the (k+ 1)th derivative. We can estimate this derivative using
difference formulas, and we can also estimate the kth derivative and the (k+2)th
derivative. We thus have a means of estimating the local truncation error of the
kth-order method, and the (k+ 1)th- and (k— I)th-order methods. We can then
determine the step size allowed for each method and choose the method for the
next step so as to minimize the work. We generally want the order giving the
!’lighesl h, but the extra work associated with higher-order methods must be taken
into account. We thus can control both the step size and the order of the method.

Hindmarsh's version of Gear’s method works as follows, as applied to Eq.
(3-1). The user provides a subroutine that evaluates f given ). A tolerance level is
specified ¢ and the user chooses an explicit or implicit approach. If implicit is
chosen successive substitution or Newton-Raphson is selected. The integration
then proceeds with a small time step and a first-order method. As the solution
3:!“{:: lhe' proghmm cl;ecks_lhe trungulion error, adjusts the step size and order.

mm:od‘sr:::is":\_eﬁfz oI;:“ in a;_e{'ﬁt_:nenl a way as it can, The Nf‘.wlon—R:ll:"'S‘f'n
Subroutine spec«medlg lh“m, wl |l‘c| ns) evaluated numerically using the function
matrix dWOmpcsilionyis aiisuser. owever, this is an expensive operation, and l!le
every time siep. The old flle"P.el'lslV:;1 so ",“" |hE‘JZICO|.JIG.In is not reevaluated at
im plicit equ'.nicvns) P ";;\ :;nls use 'unul the lu_:rauo_n (needed }0 sol\_/e the

verge within three iterations, at which point an

upda i ian i P .

"{’:“l'i"r:el“s‘:‘::l o Icie used. ILlhls iteration does not converge within three iterations
b creased a ins agai "
iterations converg, nd the process begins again. We know that the

e for a small enough time step, so that this scheme always works.
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Another system is the fourth-order semi-implici
Michelsen.® In this scheme a semi-implicit RungI:lp(i:xclllla xs:m':d _dev:loped_ b
fined-order (l_hll'd) and a variable time step. The problem is solv:dllsw‘;“d w“.h °
step. once With @ step /i and once with two steps h/2. The lrunca(i:: Z:—uc'h
estimated [see Egs. (3-112) to (3-114)] and the two solutions are exlrapolaleodr [‘s
give an even better rc::ult that is fourth-order. If the truncation €rror is within lho
tolerance . the step is accepted, and the next step size is estimated using E )
(3-115). If the tolerance is not achieved the step size is reduced by a factor ogf IW%
and the process repeated. This method is implicit, A and L stable, high-order, and
thus a candidate method. !

In order to illustrate the basic ideas in the Gear system the reader will now be
helped to develop his own integration package. To simplify the algebra we use
first-order methods. but we can include all the basic features of an integration
system that corzl{r«onlfilhe step size to maintain a user-specified accuracy, wi s
implicit and L aceeptable. The step size is controlled by estimating the truncation
error and making it less than the user-specified accuracy ¢. We obtain the
estimated truncation error by using a simple predictor equation. For the first-
order predictor we usc Eq. (3-57) with g = 1. We write here the formula with g = 2
so that we can see the error term

Va1 = Yot b0, +3V37)+0(h2) (3-176)

Using Eq. (3-50) the second difference is related to the second derivative and we
obtain

Fue1 = Fathyt+ 4000 +008) (3-177)
For the corrector we use the backward Euler method, which is implicit and L
acéépiable. The formula is Eq. (3-67) with the error term included. Thus
ot a0 1 =4V 1) +0012) (3-178)
Furt 1 O 1) = 3hEYY ) +0082) (3-179)

Yat1

Now the calculations proceed by using the predictor equation

¥y = Yat S0 (3-180)

followed by the corrector equation
Yeur = Yathaf0h01) (3-181)
so the

1t should be noted that the predicted value is not used in the corrector.
method is not a predictor-corrector method. o "
The exact solution satisfies Egs. (3-177) 10 (3-179). Th’m ec!}gu:cr:isv:{; r_llg'w
written for % , and subtracted from Egs. (3-180) and (3-181), resp:
result is
(3-182)

J0u =S, = — iy +00R)
= by +00h) (3-183)

Yeo—maa =



We do not know either the exact solution or the second derivative,

these equations for those two quantitics and obtain We can soly,
vy = Vi =Y (134
¥ =400 40 (-185)

The truncation error is then
dyiy = Ve —ya% = 10540 —yR41) (3-186)
The calculation P! ds as follows. Equations (3-180) and (3-181) are used 1o

obtain ¥, , and y§. 1, and the truncation error is obtained from Eq. (3-186). If the
\runcation error is less than the specified tolerance £ the step is accepted. If not the
step is repeated. In either case the next time step i calculated according to the
lormula

d;l;‘ = hi, (3-187)
. 12
h=h, (](ILJ (3-188)
1

which ensures that the truncation error is equal to &, within the accuracy of the
formula. To avoid small errors we use an /i 20 percent smaller than that obtained
from Eq. (3-188). The solution of the implicit equations is performed with
Newton-Raph and the jacobian can be eval d every time, or old jacobians
can be used until convergence is not obtained within N iterations, at which point a
new jacobian is evaluated. Also if the iteration does not converge within N
iterations the step size is decreased by a factor oftwo and the calculation resumed.

Since the time step is constantly changing, it is unlikely that results at a given
time can be obtained in an integral number of time steps, whose length is
unknown. To obtain results at time t between t,, and t,,, we use an interpolation
formula, such as Eq. (3-47), of the same accuracy as the calculation to find y, from
Yaand yo, .

Such an integration system is easy to understand and higher-order schemes
can be done as well. For the applications in this book GEARB works quite Well

and economically. For other specialized applications it may be useful to develop
such an integration package.

310 COMPARISON

We are now in a position to compare methods using various criteria so as to make
an informed and reasonable choice for our problem. First consider methods that
have a fixed time step, i.e. those we might program ourselves, and then consider a5
a separate classification the systems that have a variable step control to maintain
the user-specified accuracy (at least locally).

For methods with a fixed step size we must compare accuracy, stability. thé
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tendency of the method to oscillate if large
required. We have already provided a qua
Let us now provide one for the last.
The work is associated with three function evaluations, ja
angi ‘matrix d 1 We count only the number of mul
cations and divisions necessary to perform each of these operations, since
additions and subtractions are usually much faster operations on the col;|puler.
Let us take a system of equations of the form given by Eq. (3-1) with n unknowns.
We assume that each y; appears in each , i.e. thejacobian is dense, without bands
of zeros. We define the following terms:

e |ifne steps are used, and the work
ntitative basis for the first three criteria,

m, = average number of operations to evaluate one term ;

verage number of operations to evaluate onejacobian term ofj/ey;

umber of operations to evaluate f, nm,

total number of operations to evaluate thejacobian

12m. or n’(m, + 1) if numerical differentiation is used

(n*—n);3 = number of operations to decompose the matrix

. =n? = number of operations o solve the linear system for one right-hand side
T = total number of time steps needed

An explicit method might require several function evaluations for each time
step. Call that number ms. Then the total number of operations needed to apply
theexplicit methods is

M, = mgmnT,, (3-189a)

An implicit method will requireajacobian evaluation and assuming it requires one
each time step, the total number of operations needed to apply the method (for a
numerical jacobian evaluation) is

M = {[n2m, + D) +mn]+300 =n)+0*) T (3-189h)

Equations (3-1894) and (3-189h) may be compared for different conditions to
illustrate their implications. Suppose n = 10,ms = 5.and m, = 5. Then

My _ Ta 3190)

Min 43T

This means that an implicit method must use a time step at least 4.3 times larger
than an explicit method if it i to require fewer operations, and presumably o8
computational cost. If we change n to 100 the number 4.3 'f;'?"f‘ugm ‘hen an
problem is not stfl,so that using a step size in the range 481 = 24 "8 2 U bl
Method of the same order as an implicit method would be prelstect 1 70
siuation the two methods would have aboul equivalent sccuricy ot theshme: o0
ep but the explicit method would involve less Work. If the probiem i % 1
however, 5o that the maximum eigen value is large, then & 1o something like
an impiicit method with 2A¢ = 100. An explicit method limited 1o SothCl Lo
81~ 2 would be more capensive, Thus we know at the outset
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Table 3-4 Comparison of cxplicit integration methods

Number of
Function  Multipli- Stability

Method Eq. evaluations  cations Accuracy  limit p
Euler (3-59) 1 1 " 20
Second-order Runge  Kutta (3-96) 2 2 n” 20
Euler predictor - corrector (3-78).3-79) 2 2 " 20
Adams -Bashforth (3-64) 1 5 i 03
Fourth-order

Runge Kutta- Gill (3-98) 4 6 I 28
Fourth-order Adams.

predictor-corrector (3-82).(3-83) 2 9 I 13

methods are likely to be preferred for non-stiff problems, while implicit methods
are preferred for stiff problems.

Considering a non-stiff system of equations we examine the explicit schemes.
The cost is mainly associated with the function i and the i
by step length. Table 3-4 summarizes information gleaned from the formulas for
the different methods. Comparing the Euler method with the second-order Runge-
Kutta method we see that the Runge-Kutta method requires twice as many
function evaluations and multipli ons. The Runge-Kutta method is more
accurate, however, so that a larger step size should be feasible for the same
accuracy. The truncation error for the second-order Runge-Kutta method with a

step size h is
24 (dr\?
S - 28 L (CL R
h [ J P +of (dj') ],. G-190

while the error for the Euler method with two steps of size h/2 is

N\ df 192
1) (1), oo

Clearly the error depends on the properties of the function being approximated,
but .lhc Runge- Kutta method has the advantage of a higher power of h, which is
sturgubly less lh_am one, g‘_lv g a smaller crror. The actual comparison would
d::rs)ﬁ:d lohn vumencul experiments, although it is clear that if high accuracy is
correstor rcn :f;g:q-ordgr method would be preferred. The first-order predictor—
o hod is equivalent to the scco'n_d-or_de_r Runge Kutta method in terms

requirement, accuracy, and stability limitations. Numerical experiments

might show one second- 4 i
o ke s second: ct:der method preferable to the other, but it probably does

Next let us examine the fo
requires fewest function evalu:

urth-order methods. The Adams- Bashforth method
ations --only one per time step -compared to four



ORDINARY DIFFERENTIAL EQUATIONS -INITIAL-VALUE PROBLEMS 53

for the fourth-order Runge-Kutlta method. The Runge-|
. ility limitation, however, in fact nine 1;

higher stability N N s in € times as large, so th:

are possible. However, if the time step is very small to Oblainggood acaclu:::y":':‘?s
within the fimits where the Adams-Bashforth method is stable, then the A‘da" :
Bashforth method yonld be preferred because of fewer function evalualio,,sms—
(ime step. Some finite element methods lead to ordinary difTerential equalionsp:xl
the form

Kutta method has a

dy

Ca=m (3-193)
instead of Eq. (3-1). In principle, these can easily be solved by taking the inverse ol
C. If C depends on l_he solution, however, this must be done for each time step.
Consequently, explicit methods are not as suitable for equations in the form of Eq.
(3-193). Implicit methods handle such equations easily since a matrix is inverted

anyway, but the actual equations may need to be rearranged or derived again.
Now let us turn to stff problems, in which the ratio of maximum to minimum
eigen value (in absolute value) is larger than 1,000. In these cases implicit methods
must be used because of their stability characteristics, since the maximum eigen
value might be very large. The major work in solving these methods is in the
formation and decomposition of the jacobian, or the inversion of the matrix. For
most cases the major cost is the matrix decomposition (inversion) [see Eq.
(3-189b)]. We do not ksow in advance how many iterations will be required to
solve the implicit equations. Without any other guidance we can only assume that
the same number of itc. wtions is required by all methods. Since the major work is
then the matrix decomposition and since it is assumed that all methods have the
same number of decompositions per time step, all methods involve equivalent
work. To be more precise we must perform numerical experimentation using the
methods for our problems. We can then judge the methods based on the accuracy
and their tendency to give solutions that oscillate. The fourth-order Adams-
Moulton method can be discarded because it has a stability limitation (see Table
31). The other methods are listed in Table 3-5. The trapezoid rule would be
eliminated based on its tendency to oscillate, leaving a selection of first-, second-,
and third-order methods that are L acceptable. Further selection from the

Table 3-5 Comparison of impli

integration methods

Oscillution
Metkod Eq. Accurucy limit on 480 _
l;lckmrd Euler (3-67) h "

Trapesoid syl (3-69) n” 2

kimplicn

unge Kutea (3-102), (3-103) » «

Srseut (175 W0 x -
R L
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remaining list in Table 3-5 depends on numerical experimentation ang the
conclusion may depend on the accuracy desired. If a low-accuracy solution is all
that is required cven the backward Euler method may be best. For higher accy,
the second- and third-order L acceptable, semi-implicit Runge-Kutta methogd or
the Ngrsett methods may be preferred.

Finally. we consider the integration packages with variable step-size control 1o
meet a user-specified local truncation error. We can only compare these Packages
by calculations using the same problem. Naturally the results depend on the
computer program, and the specific numbers may show some variation from one
computer installation to another. We used three packages:

. Runge-Kutta, fourth-order, in the Math. Science Library of Boeing Computer
Services. This is a fourth-order scheme with extrapolation to achieve fifth-order
accuracy.

GEARB. a variable order and time-step method. See Bibliography for
availability.

The fourth-order. semi-implicit Runge-Kutta method, described by Egs.
(3-102) and (3-103) with the algorithm presented by Michelsen.®

~

Lod

First we apply the GEAR and Runge--Kutta packages to the problem
dy;
Pl s T UL (3-194)

[} = (+1,000, 800, —10, 0001) ¢, = —(1+f,)

Table 3-6 Comparison of integration methods applied to Eq. (3-194)

Number of
Timestep Order of Function  Jucobian
1 used methodused  Steps evaluations  evaluations v, error
GEAR,c = 107"
001 47x10+ 5 66 110 9
04 TEx1070 4 99 152 13
10 35x10°F s 154 122 17 ~80(=8)
10 : 5 205 279 23 19(-6)
|£2 . 5 249 329 29
! 5 285 m 35
—_ > 00® wm  s D
Runge Kutta,:: = 10~
o 4-5 21 -49(-12)
10 45 460 -7.7(-12)
. 4-5 2,631 —L1=12)
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with the solution

B
Lteeht

a1 =0the cigen values are — 1002, —802. 8 —2.001, giving a
500 AL 2 1,000 values are — 1.000. —800. — 1.0. —0.001. giving a stiffness ratio of
100, We expected at the outsct that GEAR would be better. Typical results are
shown in Table 3-6. Up to time 1 =1 the two methods used about the same

Table 3-7 Comparison of integration methods applicd to Egs. (1-1)and (1-2)

Number of
Orderof Function  Jacobian
method evalu- evalu-
f used Swps  ations ations 5 ¥2
Implicit GEARB.c = 1074
04 2 " 57 7 0985155 338178(-5)
02 19 61 7 0966345 72690 - 5)
0 3 26 79 8 0905537 40701 - 5)
0o 3 2 94 9 0841470 162419(-5)

5 0985172121 33

6 0.966466087 307474038( - )

7 0905542691 224076524( - $)
1621234 5)

8 0.841361601

y 0905519
3992 0841370

Senamphen Runge Kutta.o = 10 *

0985172
0966460
0905519

162348~ $)

“ogss1721 3.386406( - 5)
09664597 3074631( - 5)
09055186 2.240481(- 5)
08413699 1623412(-5)
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amount of computer time (1.6sec on a CcDC 6@0). Notice that the Runge-Kuyty
method used very many more [unction evaluations up to t = 1, but did not require
much more time because it did not have to iterate to solve equations or have to
invert matrices. The Runge-Kutta method was not run past t =1 because j
would take excessive computation time. The time step could not be increased
much beyond what it was in the region up to = L The GEAR package, on the
other hand, increased the time step drastically; at (= 1000 the time step was
about 3,000 times larger than that at r =1L It is this factor of 3,000 that makes
implicit methods very powerful when the largest eigen value is large and the
equation needs to be integrated for a long time, i.e. forsl_iITsyslems.

For the second example we used the problem given in Eqs. (1-1) and (1-2) with

k=004 k;=10* ky=3x10" ¢o=10 (3-195)

At 1 = 0 the maximum eigen value is 0.04, while at 1 = 0.02 it is 2,450. We applied
the explicit Runge-Kutta, implicit GEARB, and semi-impli Runge-Kutta
packages. Typical results are given in Table 3-7. For the semi-implicit Runge-
Kutta package the jacobian was evaluated analytically, so that the number of
lunction evaluations docs not include [unction evaluations for the jacobian.

Notice in the GEARB results that going from & = 10* to & = 10~* did not
increase the cost very much. Another run with ¢ = 107'° took about 8 times as
long as ¢ = 10~ %. The Runge- Kutta method did not work for ¢ = 107 but did for
£ =10"% The solution was quite accurate, but at a cost of about 400 times as
many function evaluations. The computation time of 15 CPUsec for the
Runge-Kutta method was about 40 times larger than the 0.4 CPUsec for the
GEARB package, & = 10, Such results are expected for this stiff problem.

The semi-implicit Runge-Kutta method worked very well and took fewer
function evaluations. It used more jacobians than GEAR, but for & = 10™* proved
to take the same overall time of 0.4 CPU sec and to be about as accurate.

It may be concluded that we generally use implicit methods for stiff problems
and explicit methods for the others. Which method within these classifications
depends on accuracy, stability, tendency to oscillate, and work effort. The eventual
decision depends on the user’s goals and the problem to be solved, but the material
in this chapter, if properly applied, will lead the reader to a suitable, and possibly
the best, method.

STUDY QUESTIONS

L. Interpolation—how to applyit
2. Terminology
a. E)Eplicil versus implicit
b. Stiffequations
c. Stiffness ratio
3. Explicit schemes
a. Advantages and characteristics
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b. Order
¢. Stability li ons
i Euler methods
ii Adams-Bashforth methods
iii Runge-Kutta methods
4. Implicit schemes
a. How to solve equations
h Application of the theory of algebraic equations to the difficulty in solving
equations
¢. Advantages and characteristics
d. Order
e. Stability limitations
i Backward Euler methods
i Crank-Nicolson methods
Adams-Moulton methods
Predictor-corrector methods—difference from implicit methods
Extrapolation techniques --Richardson extrapolation
Step-size control --information needed to control the size
Stability
a. Relationships to rational polynomials
b. How to interpret rational polynomials
¢. Determination of A and L stability
. Integration of ordinary diffcrential cquations
a. Information nceded to choose a method
b. How information is obtained

o N,

o

PROBLEMS
31 Interpolate the following sequence to obtain v, ; using first-, second-, and third-orderinterpolation
orders:

Yo=10  y, =03678794411 v, = 0.1353352832 1, = 0497870683
32 Develop first-, second-, and third-order extrapolation formulas to give v from known values of y,.
2 ¥s,and y,. Apply the formulas and compare results for the functions:
(@ = v oo
(b) y, = sin(i+ 1) tn radians).
33 la) Duna, Eq. (3-41 ). Why is there no 0(1%) term*?
the fourth-order Adams Bashforth method. Eq. (3-63), from the general formulas,
Eqs u ss; (3-54), and (3-4Ka).
34 Derive the derivative estimate, Eq. (-49), from the generul formula, Eg. (-48a).
T»Sd :)ur-vt the implicit interpolation formula, Eq. (3-65), from the interpolation formulas, Egs. (3-48b)
:6 Solve the following problem from t = 0 to 1 = I as a test of your computer pmgmmmmg Usea
K:r:c Kutta method, Gear's method, and a scheme you choose with a fixed step size. The Runge-
4 mahod and Gear's method should be availa ble as packuges.
Yi= =y = -0 M=
noO)=1 0 =1 "0 = |
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stants given in g, (3-195) using the ame three integration
1-2) with the constants given in

7 Solve Fas. (1-Dand €
“chemes afler testing (o
& Ui the best mailable method 1o inegra
[WCLINTYT 8 SRV N

dr

in problem -6

e the following equations from ( = 0101 = 1.0

‘!;1 = —105(c, —€3)- R,
dr
=10 Ty=10 R o=dlen'
= 1
TO=10 (=07
p=015 ¢*=12 =30 Le=o0l

3.9 Develop the cquations to solve the problem

1 dc de

ST R =0

Pedx? " dx

de
“= 1
=0«

from.x = 110 x = 0. The function R(c)is a general reaction fate expression.
In Chapter 4 we will use this method 1o solve two-point boundary-value problems. choosing the
constant a such that c(0) satisfies a boundary condition at x = 0.
310 Derive theextrapolationformaula. Eq, (3-114). Write the solution obtained with step size h as y (k)
and that obtained with step size A2 as y(h/2). The crror formulas are
Y =y +al™

WL (Y
oz) =+l
Solvethesefor y“toget Eq, (3-114)

311 Consider the general nonlincar problem of Eq. (3-1) 10 be solved with a backward Euler method
with a variable step size. The nonlincar equations are to be solved using either successive substitution
or Newton-Raphson. Using the theorems stated in Chapter 2 determine the conditions under which
these iteration schemes will converge. What happens for Ar — 07 Apply your theorem to the case
dyidt = —y? andy(0) = 1.

12 Apply the second-order Runge-Kutta method of Eq. (3-96) 1o Eq, (3-123) to go from Tato,
Compute y; . /y,. the characteristic polynomial or rational approximation. Compare this polynomial

l: the Taylor series for ¢-+%. Find the conditions under which the rational approximation is greater
than onc.

313 Answer the same

questions as in problem 3-12 but for the semi-impli - X
B o the same p or the semi-implicit Runge-Kutta method.

)- Derive therational approximation, Eq. (3-174)
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CHAPTER

FOUR

oen 0
ORDINARY DIFFERENTIAL EQUATIONS—
BOUNDARY-VALUE PROBLEMS

Diffusion problems in one space dimension lead to boundary-value problems.
These problems are characterized by ordinary differential equations. usually of
second order. with two boundary conditions. which are applied at two different
locations in space. This means that initial-value methods cannot be applied in a
straightforward fashion (but see Scc. 4-11) and also leads to the other nomen-
clature: two-point boundary-value problems. In this chapter we examine a variety
of techniques applicable to these problems and see what information is best gleaned
from which method.

41 METHOD OF WEIGHTED RESIDUALS

The first example considered is steady-state heat conduction n a slab, as
illustrated in Fig. 1-2. We allow the thermal conductivity to depend on tem-
perature in a linear fashion, which makes the problem nonlincar. We take

k= ky+ko{T = Ty) @n

The c‘_luuliﬂﬂ is the analog o f Eq. (1-6) for heat transfer instead o f mass transfer.
and with no heat generation in the slab

d(,dT
& - 4-2)
dx ( dx ) 0 ¢
ne side is maintained at T, while the other side is
di i problem can be written as

We assume the temperature of o
kept at temper: T,. The
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d do
K[“H’mﬁ]:o

00)=0 0(1)=1
or

d*0 do\?
1l+aﬂ)p+u(d—x) =0 3)

We expand the solution in a series of known functions with unknown
coefficients. These coefficients are determined to satisfy the differential equation in
some best sense. The criterion used to choose this “best” sense determines the
method. The approximate solution is taken as a polynomial because of its
simplicity.

This function can be made to satisly the boundary conditions by requiring
=0 i =1 (4-5)
Thus Eq. (4-4)can be written as
On=x+ i Glx!t —x) (4-6)
=

We note that this function satisfies the boundary conditions for any value of the
unknown constants {c,}. Alternatively, the first term satisfies the boundary
conditions of the problem, and each of the additional terms satisly the homo-
geneous boundary conditions, i.e. the same boundary conditions but with the
right-hand side zero. Making our trial function satisfy the boundary conditions
means we have already satisfied part of the problem.

. Thenext step is to form the residual. We substitute the trial function. Eq. (4-6),
into Eq. (4-3) to form the residual

10y
R(x,0n) = ‘;i- [(I + ul'N)“h?‘] (4-7)

The weighted residual is required to be zero. Thus
)
J' WeR(x, Oykdx = 0 -8
o

Finally we choose a criterion or a weighted function. If we take the weighting
functions to be the dirac delta function we have the collocation method

W, = d(x—x,) (4-9)
'
I W, R(x, 0n Mx = R(x,,0y) = 0 (4-10)
o
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islyi if ial equation at the collocation po;

(o satisfying the diferentia poing

onds for \,y ing between. In the method of moments we chogy,
X hoose W, to be one on a subdom,:

k-1 ubdomain method we € e 1€ omas,
A =,<\ <.l:| lheu;d 2ero elsewhere. For the Galerkin method we choose e
g - Ry Xk+1 A X " !
;‘r/leig‘h(ing function to be 0n/dcks which in thiscaseis

This correspt 3
but not necessarily

W= x** ' —x )
The least squares method uses
R
=2 @12)

so that the interpretation is that the mean square residual
1
1= -[ R%(x,0y)dx @13
o

is being minimized. It is clear to see that as the number of collocation points
increases we satisfy the differential equation at more and more points, and
p y we force the approximation to become the exact solution, which has a
zeroresidual for all points. Similarly, in the subdomain method as the intervals get
smaller and smaller, the residual approaches zero on average in smaller and
smaller subdomains. In the least squares method the mean square residual is zero
lor the exact solution, so that as more and more parameters are allowed, and the
mean square residual gets smaller. the approximate solution approaches the exact
solution. The rationale behind the moments and Galerkin methods is more
abstract and uses functional analysis. The key thcorem states that if a function is
orthogonal to each member of a complete set of functions then that function can

only be zero. Two functions f; and f; are orthogonal if the integral of their product
is zero

!
I fifudx =0 (&14)
0

In vlhis'casc one function is the residual and the complete set of functions are the
wel_gh(mg functions. The Galerkin and the moments methods then make the
residual orth to the weighting functions in Eq. (4-8), thus making the
residual approach zero as N — oo Further details and historical remarks about
the Method of Weighted Residuals are given elsewhere.’

Let us apply several methods in the first approximation

0, =x+¢,(x*=x) 0y = 1+¢,2x—1) 0 =2 @15)

First we apply the collocati
i : cation method. We choose ati int x =3
S by the ol e as the collocation point x =3

then nt of the interval. The residual evaluated at this point is

I—c
<l+u ;:/2)24'.+:,=0 (416)
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which determines ¢,. We choose to calculate numerical results only for the case
a= L when
o

F7+3+1=0 o ¢ =-0317 @17

. (
The other solution to the quadratic is rejected as being Physically unrealistic, since
it gives the heat flux in the wrong direction at x = 1. The approximate solution is
then

0, = x-0317(x* ~x) @18)

We can put this approximate solution into the difTerential equation and look at the
residual. It is zero at x = 4, but nonzero elsewhere. When the residual is zero
everywhere we have the exact solution. Indeed in some cases the size of the
residual can be related to the error in the solution (see Finlayson, p. 338). Without
going into details we can apply some tests to the approximate solution. How good
a heat balance does it give? Since Eq. (4-3) governs heat transfer across a slab
under steady conditions the heat flux at both sides should be the same. Indeed the
heat flux at all x should be the same. We find that at x = 0

d0,
| +a0,)=L =1-¢, =
( +al ')dx l—c, =1317 419)
andatx = |
do,
(I+u0,)m—=211+c,)= 1.366 (4-20)

Thusthereis a 4 percent difference in the two fluxes.
The next step is to compute the next approximation by taking N = 2. The trial
function is then

0y = x+¢y(x* =x)+y(x* = x) (421)

We substitute this trial function into the differential equation t o form the residual
and now make the residual zero at two points (since we have two constants to
find). We again choose the equispaced points of x = 4 and x = §. For a = | we get
two nonlinear algebraic equations

23 -4, —fhea) (e +ea)+ (1 =3¢, —§c2) = 0 @22
2@ =4y = H02) (¢ +2e2) + (1 +4ey +32) = 0 (423

The methods of Chapter 2 can be used to solve these equations, giving
€, = —0.5992 and c; = 0.1916. The fluxes at the two sides are 14076 and 1.568.
with the average 1.49. The exact answer is 1.5, so we have a better result than the
first approximation. Figure 4-1 shows that the residual is smaller on average and is
7o at the collocation points. Thus the second approximation is an improvement
over the first approximation. We could continue in this fashion, but find it easier to
use orthogonal collocation as described in Sec. 4-4.



64 NONLINEAR ANALYSIS IN CHEMICAL ENGINEERING
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Figure 41 Residuals for collocation solutions.

Returning to the first approximation we use the Galerkin method

|
[ x( =x)R(x,0,)dx = 0 @
o

This gives the following equation to solve for ¢, :

)
_f X =x){[1+x+¢,(x*=x)2¢, +[1+¢,2x =1 }dx =0 (425)
o

Solving gives ¢, = —0326, with the fluxes at .x=0 and x = 1 being 1.326 and
1.348, respectively. Notice that in the Galerkin method we must calculate the
integrals appearing in Eq. (4-25), whereas in the collocation method we merely
needed to evaluate the residual at specific points. Thus the collocation method is
easier to apply.

Next let us apply the method of moments in the first approximation
1
J R(x,0,)dx =0 (4-26)
o
This results in the solution ¢, = ~0.333. The second approximation requires that

) \
I R(x,0;)dx = 0 J XR(x,0;)dx = 0 @2
o o
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Table 41 Approxi solution to heat ion Eq. (4-3)

Collocation Galerkin Moments

- —————————— Finite
‘ Eq (4-18) Eq.(421) ¢ = 0326 c,= ~0333 Eq428) dilerence Exact

0129 0435 0129 0.130 03 ons
3;2 0309 0317 03nl 0313 0332 0310 g:;;‘}
050 0579 0578 0582 0583 0594 o080 o
015 0809 0800 081l 0813 0809 0810  og03
090 0929 0921 0929 0930 0925 0929 0924
0.0 1317 1408 1326 1333 1500 1320 o
w41 1367 1568 1348 1333 1500 1360 1500
Averageflux 134 149 134 133 150 134 1500
which gives two non i ions that have the solutions ¢, = —3 and c, = 4,
Theapproximation is then
02 = 3x=ix* + 1 (428)

and the fluxes at the two boundaries are both 1.5. This result suggests that the
answer is perhaps the best of all the methods, since the integral energy balance is
satisfied.

Another way to test the methods is to compare them to the exact solution,
which in thiscase is easily found to be 0 = —1+ (1 + 3x)"'2, as shown in Table 4-1.
All the methods give results within about 10 percent, and the first approximation is
easy to derive. If this accuracy is acceptable we can stop with the first approxi-
mation. The accuracy is not guaranteed, however! Il the accuracy is unacceptable,
we must compute higher approximations to obtain more accurate answers as well
as o assess the accuracy of the results. We see that the accuracy given by the
different criteria is about the same, so that the choice of criteria can be based on
other considerations, such as the ease of setting up the problem.

The advantages of the Method of Weighted Residuals are that the first
Approximation is easy to do, often contains the main features of the result, and
may even be quite accurate. Higher approximations are more accurate, but only a
few terms are necessary in any case. The disadvantage, which is shared by many

fumerical methods for boundary-value problems, is that the accuracy of the
:"Hﬁzmule solution is difficult to del:r-ming. We see below that the appr.ouch
sradient, here w_t)rk§ well when the solution is relatively srl_loolh. Wllh?m =h"TP
other 's or derivatives. Solutions with sharp gl’adl?n.ls require so large an N that
methods are preferable, as outlined below for finite element methods.

42 FINITE DIFFERENCE METHOD
T e A N .
uh i fnite difference method also is concerned with specific points in the domain

Fig, f{:‘d Points. The domain is divided up into equidistant intervals, as shown in
+ although the assumption of equal intervals is not necessary. Let us
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©®

Figure4-2 (a)Finitc diflcrence grid. (b) Variablegrid spacing.

suppose we have a continuous function ((x) and use Taylor series expansions to
deduce difference formulas for first and second derivatives involving only the
values at x;_, X,, and x,, ,. We let 0; = 0(x;) and write a Taylor series for 6;,, and
6i_, giving

LA A At

0;y1 = 0,4 0;0x +0; 72-!7+(i 3—!+0; TR 4-29)
. LA A A

Orcy = 0= O 407 5 = 0 S0+ 07"+ o (4-30)

These formulas are rearranged and divided by Ax to obtain two expressions for the
first derivative

@31

(432)
Each formula is correct to 0(Ax). Alternatively, we can subtract Eqs. (4-29) and
(4-30), rearrange, and divide by Ax to obtain

001 —0;, 1
=0+ — 0" Ax? 33]
Sis O+ 37008 + .. (433)

:hizd, is correct to 0(Ax?). We add Egs. (4-29) and (4-30), rearrange, and divide by
x

to obtain an expression for the second derivative

0141 =20,+0,_ L, L2
e =0+ P S (434

This is correct 1o 0(Ax?).

Next let us consider Eq. (4-3). In the ca i ilferentia
N consider Eq. (4-3). ase of a = 0 we can write the diflerential
€quation at the ith grid point using the difference formulas just derived
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€5=0

a0 0141 =20,40,_,
dx? A

=0 (35)
If this equation is repcnl_cd for each interior point, and the values 0,=0and
Py = lare taken to satisly the boundary conditions, we have enough equations
(o solve for the 0. We thus have a representation of the solution.

Next we consider when the thermal conductivity varies with temperature. We
write the equation as

dq do
“x=° 9=~k (4-36)

and apply the second-order-correct Eq. (4-33) to get

_Givia=bi-2 _
a0 437

Equation (4-36) can in turn be applied using the second-order-correct Eq. (4-33)
giving

Gior2= —k(o,.”n)”"A‘;o' +0(Ax?)
(4-38)
G2 = —k(ﬂi,,,,)%'— + 0(Ax?)
Combining the formulas gives
k(0,4 1.2) 001 =00 = k012 @i=0i- ) _ o @39)

Ax?
10 solve at eachgrid point. To do this we must find a way to evaluate k;, , > and
ki-1,2. There are several ways this can be done. .
The first method is to use the interpolation formula developed in Chapter 3.
Here we use Eq. (3-47) for 0 instead of yr

ale—1) -
Vs = Oryy +(@= D000y + ‘ln,,vzu..,. “-40)
Applying this formula at o« = 4 and a = —} gives
4-41
Orvrrz = 0,0y = 40,01 =0 =801 = 20+ 0i-) (4 N )
Oic vz = Oy =301 — 00+ 300, =20 +00-1) -4

We must solve Eq. (4-39) combined with Eqs. (4-41) and (4-42). Let us do that for
= Y and define the variables:
0,=0(x=0)=0
0,,=0x=1%
0,=0x=19
O0p5=0(x =1
Dy=0x=1)=1

(4-43)
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(1 +0,.5)(1=0) = (1+01.5)(0, —0) = 0
0,5 =3+30;  Ois=—4+10; (444
Simplifying gives
-363-30,+4 =0 (45

i ion 0, = 0.580. We can use the interpolation formula o obyy;
:)vhlc: Ia?;l?::glg:f: = (;810. To find 0(x = 0.1) we nged_lo interpolate 80 p(:::::
Dl‘fhe way from 0, back to 0, ; or use Eq. (4-40) with i =2 and a = —08. | ;s
found that 8, ; = 0.129; likewise 03 5 = 0929_‘ These values are comparable 1
others derived by the Method of Weighted Reslfiuals, as shown in Table 4-1,

Again we apply a test of the results by looking at the heat flux at the (wo sides,
We cannot apply Eq. (4-33) at the point x =0 since we have no value of
8, = 0(—Ax). Applying Eq. (4-31) in terms of only 0, and 0, gives fluxes at the
two sides

_ql=(1+0,)02—A_}=1.16

0,-0 “a
—qy = 0272 _ 1,
4a=(1+0y) == 1.68

These fluxes clearly difTer greatly. Such inaccurate results are achieved when we
use a formula correct only to 0(Ax).
To improve on this result we develop a one-sided derivative that is correct to
0(Ax2). The Taylorseriesfor 0, , is
4 8
Oy = Ui+20;Ax+0}'ﬁAx2+l:"§Ax’ (447
Four times Eq. (4-29) minus Eq. (4-47) gives after rearrangement the desired result

—30:+40i1, ~0;r
2Ax

This one-sided dilference formula is correct to 0(Ax?). The analogous formula in
the other direction is

0;= + 0(Ax?) (4-48)

2=40,_,+30, o 49
Tk + 0(Ax%) (4-49)

to evaluate the derivatives then gives the fluxes at

4

Using these diflerence formulas
the sides

—G1=—30,+40,-0; = 1.32
4= 200, -40,+30,) = 1.36 50
':;hac are comparable to the results obtained with the Method of Weighted
esiduals. Clearly we must evaluate fluxes to 0(Ax?2),

The second method for treati i vty i
) eating the nonlinear 2 ctivity is 10
average the k at the two grid points. ¢ thermal conductivity
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kO:vyj2) = Hky+ ki, ) (4-51)
Now ki = 1. ky = 1+0,, and ky = 2. Applying this method o the three-node

solution gives

241400, -0,) - 401 +140,)(0,~0,) = 0 @52

which is
—-203-40,+3=0 @s3)

The result is 0, = 0.581, giving a result very close to that obtained ysj
interpolation formula for 0. ned using the

The second approximation uses Ax =4 and the points 0, = 0/

=0(x =0
0, = 0(8x). 0, = 0(2Ax),‘and 04 =0(x = 1). Using the averaged l;mrmal cun’:
ductivities gives the cquations
(ks +k2) (03— 0;) = (k2 + 1) (0,) = 0

(ks +2)(1=03)~ (ky +K;) (03— 0,) = 0 (54

These are solved using an iterative scheme in which the thermal conductivities are
evaluated at the old itcration and the set of linear equations solved. Thus
(Ky+K3) (O3 =057 )= (ky + ey = 0
Ry +2)(1 =03 ") = (k3 + k) (03 =05 ") = 0
The solution is 0, = 0.414 and 0; = 0.732. The fluxes evaluated with the three-
sided second-order expressions of Egs. (4-48) and (4-49) are 139 and 146.
respectively. The finite difference second approximation is not as accurate as the
second approximation found with the Method of Weighted Residuals.
When the grid spacing is not uniform the same procedures can be applied. For
the variable grid shown in Fig. 4-2b we want to write the difTerence ¢quation for
Eq. (4-36). The first equation is

14-55)

_divizT%-02 ¢ (4-56)
HAx+Ax,1)

while the constitutive equations are

Oy
divva = —kierz Ax, .y

WL AL @57
-2 = —ki-1n2 Ax,
With the approximation of Eq. (4-51) we get the difference formula
00— 0V/A, o — [kt ki )00 VY g (a58)
T AN+ AN
lun,,Tle finite difference method has the advantage that the method is easy to
Deriyg.. Although it may need a large number of grid points for high accuracy.

lives must be carefully evaluated in order not to destroy the accuracy that

Uhio 4k
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n must be interpolated at points between the grid

ol icved. solutio >
has been achicved. The urate as the error in the difference

points. using 2 formula that is at least as acc|
formulation.

4-3 REGULAR PERTURBATION

e useful when a parameter in the problem is either very

ion methods ar P . .
f:.:ffﬁa:z; Jarge. Consider Eq. (4-3). The exact solution is derived by integrating

the equation twice by separating variables

do
(1 +a()l$ =¢ (4-59)
f(1+a0)d0 = ¢, fdx (4-60)
0+ ;()2 = extes @61)

Application of the boundary conditions gives¢; = 0,¢; = 14+4a/2,and
0= -1+1'[l+(2u+uz),\‘]‘3 (4-62)
a 4

The solution is a function of both x, position. and the parameter a. Usually this
parameter is given and the problem is solved for that specified a. However, let us
consider the exact solution as a function of both x and «, and expand in a Taylor
series (actually a Maclaurin series) about a = 0 to give

a0 20 a?
0(x,a) = 0(x,0 +L, = (x - 4
(x,a) = 0(x,0) (.mlx.oiu + wa l.\.0}2! + ... (4-63)

Wecan combine terms and write this simply as
0(x, @) = 0(x)+0,(x)a+05(x)a* + ... (4-64)
The various terms can be evaluated using I'Hospital's rule
i 114) _ a0)
a=0 gla)  dy/da(0)

Oo(x) = x 0,(x) = ix(1 —x) (4-66)
Thus the first two terms are

when  f(0) = ¢4(0) =0 (4-65)

0%, a) = x + Jx(1 =x) (@67
For a = 4 - X -
percent c:r:rlc Hepeorimite solution gives the value 0(0.5) = 0625, with an 8
shown in Table 4.2, Wi.a(r\:;nd"er values of a we gel more accurate, answers. 2§

Wwithout having 1o solve the pro:’l:rl:‘:'u!;‘:!e * & method for obtaining these resul
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In the perturbation method we expand the sclulio_n in the serlies of Eq. (@64,
This expansion is substituted into the differential equation 10 obtain, in this case
(| +alo+a20, + )O3+ a0 +a?03) + a0 +ali+ )P =0 (agp
We next collect terms multiplied by like powers of a.
a®(03)+al07 + 0,05+ (05)2] +a?(05 40007 +0,05+20500)+ ... =0 (@69
We do the same thing for the boundary conditions to give
0(0) + a0, (0) +a*0,(0)+ ... = 0
uo 0(0)+a0,(0) 2 @)
a%0o(1)+ a0, (1) +a20,(1)+ ... =1

Now if these equations are to be satisfied for all a they must be satisfied for a = 0,
This gives the first problem to solve:

=0 040)=0 0Op(1)=1 @)
If Egs. (471) are satisfied, then these terms drop out of Egs. (4-69) and (4-70),
leaving only powers of a. ”. etc. We then divide the result by a and apply the same
argument. Il the equation is true for a = 0 the next collection of terms must be

zero. In a similar way we can obtain the result that the coefficicnt of each power of
amust individually be zero. Thus we have the separate problems for ¢’

07+ 0l + (00 = 0,(0)=0,(1)=0 @)
and for a*
05+ 0407 +0,05+ 20,0, =0 0,(0) = 0,(1) =0 413)

We solve these in turn to obtain the perturbation solution. Putting the results back
into Eq. (4-64) gives the solution

Os.a) = x+ §x(1=0) + 5 2= 1) @7

This upprpach is a regular perturbation method. In this case it is easier to solve the
pel:lurballon equations than it is to evaluate the derivatives of the exact solution.
asin Eq. (4-65). With the regular perturbation method we get the expansion of the
c'):aCl solution without knowing what it is. The algebra and the difficulty of solving
'AE :q::ll;!'n may l_ncr;:se tremendously as we solve for higher approximations.
metod ° ;;fl‘;o:’ s " more terms are needed for a good solution. Thus the
o s fo smm‘; dydlues of the parameter. The fact that the solution is made
rore o approxin{- i cluding more terms is demonstrated in Table 4-2, where the
oy Do lu‘:' |gn is also recorded. Fg( small a only a first approximation is
We noed 3 memsd a the sec?nd approximation improves the accuracy greatly-
perturbation matods l’o provide the solution for large parameters when the
Weighted Ruenod are not accurate. Techniques that do this are the Method of

esiduals and the finite difference method. In the next section the best of

the methods usj i . 0
described, ing weighted residuals—-the orthogonal collocation method—is
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4 ORTHOGONAL COLLOCATION

The orthogonal collocation method has several advantages over the collocayj
method presented in Sec. 4-1. ]\lamely, the collocation points are if:ke?‘jc.d won
matically. thus avoiding the arbitrary choice (and a possible poor 'one‘;b thy Juo-
and the crror degreases much faster as the number of terms increases, %‘hecr:s'ﬂ‘
three dif in the orth I collocation method: the trial funcion is ml:"e
as a series of orthogonal polynomials, the collocation points are taken as the rooe("
10 one of those polynomials, and the dependent variables are the solution values ai
the collocation points rather than the coefficients in the expansion.

First we examine the advantage of solving for the solution at the collocation
points rather than the coefficients. (Note that the same approach can be used with
the Method of Weighted Residuals.) We expand the solution in the form

N
yx) =Y axio (415

where {y(x)} are known functions of position. Usually we express the solution by
providing the set {a,}. Then we evaluate Eq. (4-75) ataset of N points to give

N
yix) =Y ayidx;) (4-76)
=]

Remember that for all problems the yi(x;) are known numbers. Thus using Eq.
(4-76) gives y(x,) if the coefficients {a;) are known. Conversely, rearranging Eq.
(4-76) and solving for {a,} we obtain o\
N
ai=Y [nx)]1"'Dix;)] @M
=
This means that if the value of the solution is known at N points then the
coefficients {a;} arc determined. Consequently, we can solve a problem using as
unknowns either the coefficients {a;} or the set of solution values at the collocation
paints {y(x,)}. )
To solve a differential equation that includes derivatives of y as well we
differentiate Eq. (4-75) once or twice, for example, and evaluate the result at the
collocation points

Ld 7!
ylx)= Y ayitx) win
&

N
3 = Y ani(x) @
&
Since the coeficients {a,) can be expressed in terms of the SOIVICE A f;;l;e)
llocation points iy the derivatives can also. Wesimply SUbSICC L iy
Mo Eqgs. (4-78) and 141-79i- Then the derivative at 8 particular ol ation M he
Which 1y e Tor she sesidual, is expressed in terms of the solution
“llocation points
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N
)= Y D)) D dyity;) (4-80)
w1

We writc the result as M
N
Yoy = T Aw) )= F Buytx) (@81
i=1 i=

To illustrate the idea let us take a function of 0 € x < 1 and apply Eq. *75)
with N = 3 and the functions
p=2x=1) (=) p=4x(l-x)  yy=2x(x=h) (482
The series Eq. (4-75) is just linear combinations of 1, x, and x2, but so chosen that
yilx;) = ;;and
a, = y(x) (4-83)
We let x, =0, x, = 3,and x, = 1. Next we differentiate Eq. (4-75) once and twice,
and then evaluate the results at the midpoint
Y@= —a,+a;
¥'(}) = 4a, —8a,+4a, (4-84)
Thus the first and second derivatives at the midpoint are given in terms of the
values of the function at the collocation points
¥l = =y(x)+y(x3)
3() = dy(x,) = 8y(x;)+4y(x;)

In this respect the method is similar to the finite difference method, which
would write in place of Eq. (4-84)

dx?

& _, 2 (o) 2505 )
’iJ""Jﬁ).’& By ) = S)- zii;z)ﬂ(w @89

These are in fact {deqlical in this case. When more collocation points are used,
however, the derivatives are expressed in terms of the solution at all the
zollocal;:n plomls. whereas in the finite diference method the derivatives are
xpressed only in terms of the soluti id points i i jacent.
Similarly we gut solution at the grid points immediately adjacen
Yi=4x-3  y _4_gy =
¥10)= -3 120)=4 ¥0) = -1
N =1 )= -4 ¥()=3
¥(0) = —3a, +4a, —a, =3+ -y,

™ YY) =4, ~da, + 34, = Fi—dys 43y,
ese a i " .
e Lre the same as the finite difference formulas of Eqs. (4-48) and (4-49), with

The next j .
improvement 1o be introduced into the collocation method is 0
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hoose orthogonal polynomials for trial functions. We define the "
s . Polynomial
Po(x)= e ox)
'm(x) l; €jx! (86)
and we say that the polynomial has degree m and order m+ 1. The coefficients ;
Eq. (4-86) are defined by requiring that P, be orthogonal to Py, P, be orlhogosn:;
to both P, and P?._ and P,, be orthogonal to each P, where k < m—1. The
he lity )

orthog di can include a weighting function W(x) > 0. Thus
»
J. W(x)Pi(x)Pm(x)dx = 0 k=0,1,2,....m—1 (4-87)
This procedure specifies the poly ials to within a multiplicative constant, which

we determine by requiring the first coefficient to be one. For illustration, let us use
W(x) = 1,a =0,and b = 1. The polynomials are

Po=1 Pi=1l4bx  Py=ltcx+dx? (4-88)
‘The first one is already known: Py = 1. The second one is found by requiring
' 1
J‘ PoPdx=0  or J. (1 +bx)dx =0 (4-89)
0 o
which makes b = —2. The third one P, is found from
' 1
J. PoPydx =0 J‘ P\Pydx =0 (4-90)
° o
andso forth. The results are
Po=1 @91)
Pi=1-2x Px)=0atx=4 @92)
and
Py=l—6x+6xr  Pyx)=0at x=1312/33) @93)

and these serve as

The i in the interval a to b,
polynomial P,(x) has m roots d these e oo

convenient choices of the collocation points. Thus if the expansion
Py.such that
94)
y = ayPo(x)+aPi(x) @949
N i wo
W€ need (wo collocation points to evaluate two residuals to determine the twi

= hat the
Constangs \wo roots 10 Pa(x) = 0. We see U
whole ¢, and ;:,' and we choose the 1wo ro o cion W(x) is chosen. The

once the weighting [ur h The

"1sc T thus has fewer arbitrary choices as 10 trial functions and collocation points.
al lh“vlllxh the weighting function must be specified.
‘@ next apply orthogonal collocation to
£30and in onhoganal polynomials, Egs. (491 to (+93)
" term thay satisfies the boundary conditions followed

We
dary-value problems.

bounc {;ul we wish 10 have &
by a series that hus



76 NONLINEAR ANALYSIS IN CHEMICAL ENGINEERING

unknown coefficients, with each term satisfying the homogeneous b°“ndary

conditions. Let us take ~

y=x+x(1=x) ¥ aPi-y(x) @95
-

Wecan easily write this in the form
N+2
y= ¥ bPi_i(x) )
=1

and identify coefficients so that the two series are identical. For simplicity ip
deriving the derivative matrices we can also write the series as

N+2
);’ dix'™! (497)

In subroutine PLANAR in the appendix a more sophisticated way of finding the
matrices is used based on Eq. (4-95). Taking the first and second derivatives of Eq
(4-97) we evaluate them at the collocation points. We take the collocation points
as the N roots to Py(x) = 0; these roots are between zero and one. The collocation
points are then x, = 00, x3,..., Xy, are the interior roots, and xy,, = 10, as
shown in Fig. 4-3. The derivatives at the N + 2 collocation points are

¥

N+2
Mx)= Z. dixi™? (498)
dy Ner o
2= Z. dli-1)? (99
l‘zl' N+2
i = ):. dli— 1) (i-2)xi3 (4-100)
—
.
MRS —
TNer Xnez
6,
' 51 6I«/vl ’Nv!
x=0
x=1
(@
x=0 ! L L 0,
x=1
®)

Figure 43 (a) Locutio
n of collo: )
symmetric problems. . -0/I2¢44100 Points or A 3. ) Location ofc-ollocation points for N = 39
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We can write these equations in matrix notation, where
N +2xN +2 matrices, Q C and D are
dy dy
=Qd L=C 3=
y=Qd =0 5 @101)

Cu=li-Dx™ Dy =(i-1)(i-2->

) (4-102)
Solving the first equation for d we can rewrite the first and second derivatives as

¥ _coly= dy -
x-CQy=Ay 5 =DQly=By @103

Thus the derivative at any 1| ion point is expr d in terms of the value of
the function at the collocation points.

To evaluate integrals accurately we use the quadrature formula

1 N2
| S hx= 3 W) (4104)
g
Table 4-3 Polynomial roots and weighting
functions defined by Eq. (4-87)
N % W
1 050000 00000 0.66666 66667
2 0.21132 48654 0.50000 00000
078867 51346 050000 00000
3 0.11270 16654 02777777778
44444 44444
088729 83346 0217177771778
4 00694 18442 017392 74226
033000 94763 03260725774
066999 05218 032607 25774
093056 81558 017392 74226
5 004691 00771 0.11846 34425
023076 53450 023931 43353
050000 00000 028444 44444
076923 46551 023931 43353
095308 99230 0.11846 34425
¢ 00337652429 008566 22462
016939 53068 0.18038 07865
03806904070 023395 69678
0.6193095931 023395 69678
08306046933 0.18038 07865
096623 47571 0.08566 22462
ey N Eq 487) W = 1,a=0,and b= I qumnu
g Nocation poinis xy,..., 1 are given u
*veim 10, For N =1, W, = W, =4 ond !nrN:L

s W, w0
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Table 4-4 Matrices for
Tabled-3

A
4 -8 4
4 -8 4
4 -8 4
(_7 8196 -2.19

+1 4 -3I8 2518
a2 2 -oma) 1839 -24 2 g3
2 oma -1z -1z 212 )\ -a3e2 12 -4 ey
-1 2196 -8.19% 7 -12 2508 348 34
Todetermine W, we evaluate Eq. (4-104)for f; = x'~ ! Thus
' Ne2 o
j xldx = Y Wx§ (4-105)
o i
wQ=f WwW=fQ' (4-106)

The quadrature formula is exact if f (x) is a polynomial of degree 2N — 1 in x. The
needed collocation points are listed in Table 4-3 and the matrices for the first two
approximations are given in Table 4-4. Note that for N = 1 we get the second-
order finite dilference derivatives, Eqs. (4-48) and (4-49).

Let us next apply the method to solve Eq. (4-3). The boundary conditions
require that

0,=0  Oy,,=1 (4-107)

and the residual is evaluated at the N interior collocation points {x,, X3, XNl

A4+2 N +2
(1+0) ¥ B,,.a,+( Y A0, (4-108)
i -
This can also be written as
N+2 N+2
T Aull+0,) ¥ A,0,=0 (4109)
k=1 i

These equations are solved for {0,,0,,...,0 y,,}. The derivative at the two sidesis
given by the A matrix for the appropriate row. The fluxes at the two sides are then

N+2

flux (0) = (1+0,) 3 A0,

e @110

Mux (1) = (1404, ,) T Anaasl,
=1

For the first approximation we have for Eq. (4-108)
(14+02)(40,~ 80, +40,)+ (=0, +0,)* = 0 @iy
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where the By, and A; matrices are found in Table 4.4, With 0,=0and 0, =10
3= 1
we get

(140,)(-80,+4)+1=0
which gives 0, = 0.579. The fluxes at the boundaries are given by
flux (0) = (1+0,) (=30, +40,—05) = 40,~1 = 1.317
flux (1) = (1+0,)(0, —40,+30,) = —80,+6 = 1.367 (113)
We notice that this solution is the same as that derived by collocation jn Sec. 4.
This is because for N = I the trial function is a second-order polynomial in x in
both cases, and the collocation point for orthogonal collocation js x=4forN =
asis used in Sec. 4-1. Thus the solutions must be the same. '
For the second approximation N = 2 we again use the matrices listed in Table
44 10 evaluate the residuals at the two collocation points 0.21132 and 0.78868.
Since these are different collocation points from those used in Sec. 4-1 we expect
slightly different solutions. The solutions are 0, = 0.2844 and 0; = 0.8392. The
fluxes at the two sidesare

@112)

fNux (0) = 1.488
Nux (1) = 1.493

Thetwofluxes agree very well and are within 0.3 percent, lending confidence to the
accuracy of the solution. The values of 0(x) at x that are not collocation points are
found from any of the cxpansions, Egs. (4-95) to (4-97). Equation (4-95) gives

0 = x+x(1 =x)[a, +a(1-2x)] (4115)

which can be evaluated at x, and x,, since we now know 0, and 0, there. The
resulting set of equations can then be solved for a, and a. In this case we get
% =03709 and a, = 0.1173. The values of 0(x) are very close to those from the
second approximation by the method of moments, Eg. (4-28).

A detailed comparison of the methods is provided in Sec. 4-13. We note here
that the second imation using 1 ion is very accurate,
Bving the Auxes within 0.8 percent of the exact solution, whereas the collocation
Method using equispaced collocation points gives an accuracy of only 6 percent.

finite difference method with two interior grid points (X = §) has the same
number of terms as the two-term orthogonal collocation method and takes the
Same work (0 solve, but provides an accuracy in flux of only 8 percent. Thus the
Onthogonal collocation method provides the highest accuracy for this example.

(“114)

5 DIFFUSION AND REACTION—EXACT RESULTS

f Lo i ifMusi nd
,A: important problem in chemical engineering is 1o predict the f'g;'s::o':m
,:“"’“ in a porous catalyst pellet. Diffusion is expressed by Eq-} ourse more

ion rute can depend on concentration and temperature. OF Ounse o0y
¥0etal cases are possible. For example, the reaction rate may depend on
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concentrations or on the activity of the ca(_alysl, which( may depend on Positon
We consider here the reaction of A — B, with she reaction rate deP?nding on lh;
mh power of concentration of A, C_l:nolcd by ¢'. The goal is to predict (he overa))
reaction rate, of the mass transfer into and out of the catalyst pellet. C°“5“Va|io,,
of mass in a spherical domain gives

LT PP
WI’,;[D.-(I) o koR'(c, T) =0 “11g)
while conservation of energy gives
1 d ,zk:lT' AH O RC.T) = 0
TR kg |+ (A RkeR . T) = @)

Here D, is the efective dillusivity of the porous medium, kq is the rate constant, k,
is the effective thermal conductivity of the porous medium, and — AH is the hn;
of reaction. The rate of removal of A is k,R’ in units of concentration per time, or
mass or moles per volume per lime. We use boundary conditions at the center 1o
have no flux through the centcr. making the problem symmetric about the origin.
Atr=0
de’ dT’
s= . =0

@ @iy
At the boundary of the pellet we usc the boundary conditions of the third kind
Thusatr' = R

dT’ ,
= h(T' = Ty) @19
where k, and ), are mass and heat transfer coefficients of the transfer from the
porous pel]el_ to the surrounding medium. The concentration and temperature in
the surroundmg‘medium are ¢o and T, respectively, while R is the pellet radius.
The_ ensionless equations are derived from these boundary conditions. here
for the limiting case of constant physical properties, thus D,, k,. ky, —AHpg, k,, and
hy are constants. Let r = r'/R ¢ = ¢/ce, T = T'/Tg,and R, = R’;c’y. Thus

de -
Do gy =hale' —co) =k

1 d de
" :1,( ’i) =¢’R\(,T) (#120)
and
1 d IT A
E .:,:(rr Id,?) = —p$*R,(,T) @121
ar=0
de d
=0 ‘*,,T =0 (122
whileatr = |

& _ g aT
= 4r = Binlc=1) “‘:T’B“T_” @123)
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The dimensionless groups are:

oR¥G! )
—_— Thiele modulus squared

Bi, = 2 Biot number for mass transfer
4129y

Biot number for heat transfer

B=—" Dimensionless heat of reaction
kTo

The corresponding equations for cylindrical and planar geometry are obtained by
replacing r* by rand 1, respectively, in Egs. (4-120) and (4-121).

The dimensionless groups have physical meaning. The most important
parameter is the Thiele modulus ¢. The group 1/(koch™") is a characteristic time
forreaction, while R?/D, is a characteristic time for difTusion. The Thiele modulus
squared is thus the ratio of two characteristic times, diffusion to reaction. If the
reaction is very fast its characteristic time is small and the Thiele modulus is large.
Likewise, if the difTusion is very fast its characteristic time is small and the Thiele
modulus is small. The Thiele modulus thus measures the relative importance of the
diffusion and reaction phenomena.

The Biot number for mass transfer Bi,, is the ratio of two characteristic times:
R?/D, for difTusion or mass transfer across the inside of the pellet and R/k, for
mass transfer across thc boundary layer outside the pellet. For large Bi, the
characteristic time for internal diffusion is large compared with external difTusion,
and internal diffusion dominates. The Biot number for heat transfer Bi is likewise
the ratio of the characteristic time R2pC, To/k, for diffusion of heat internal to the
pellet 10 the characteristic time RpC,Tolhy, for heat transport across the thermal
boundary layer external to the catalyst pellet. Typically the Biot number for mass
islarge (say 100 or larger), making internal diffusion important. The Biot number
for heat s smaller (about five) making external heat transport important. The
effect of temperature is also related to the dimensionless heat of reaction Band the

dimensionless activation energy

_ER @125)
T
Wh‘:'f is the activation energy and R is the gas constant. Clearly,
Perature effect is less. o .
ese equations can be reduced to a single equation in 'h; ’?“i"":'“s steps.
wemultiply the first equation by /j and add it to the secon el

L[ afyde 'ﬂ)] =0 e
Adr dr = dr

if por y is small

Firsuy
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and then integrate this once to obtain
de
(”_ * _) Ki=0 @,

The boundary conditions at r = 0 make both derivatives zero so that the constan
is zero. We integrate once more to give

Betn+T(r) = K, @is)
and evaluateatr = |
BeM+T() =K, (4129
We also have from Eq. (4-127)
dc dT
/33(1'+F(1)=0 (@130)

Multiplying the first boundary condition, Eq. (4-123), by 8 and adding it to the
second we obtain

dc dT "
_(,,di+ }17) = Bi, fle()~ 11+ Bi[T(1)—1] @31
The left-hand side according to Eq. (4-130) is zero, however, so that we get
) T(1)= 1+ p3[1-c(1)] 4132
with
Bi,,
5= 5 (4-133)
Now the constant K, can be evaluated solely in terms of ¢(1)
Kz = Be()+ 1+ B[ 1-c(1)] @139
The temperature is then given by
T) = —Be(r)+ 1+ fe(1)+Bo[1 —c(1)] (4135)
The original problem can be rewritten as
1 d de
7 ‘,7(# Tj) = Y (clr).c(1). .0) @13
de
W1()) =0 (4-137a)
de .
‘m(”: Bin[c(1)=1] (4137b)

Ir jon i i
the reaction is th-order and irreversible the reaction rate expression is
Ry(e,T) = crer=ir7 @138
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Then
f = c(r)er-vIT
where T(r)is given by Eq. (4-135).

One special case is important, namely when the Biot
mass transfer become large. Then the boundary conditions

@139)

numbers for heat and
are simply
ch=1  T)=1 (&140)
and the relation between temperature and concentration is
T(r) = 14 f~Bc(r)
Equation (4-141) also holds when é = 1 or Bi = Bi,.

Before solving these ions consider their impli If the reaction is
external mass transfer-limited (ie. small Bin) the concentration change occurs
primarily from the bulk-stream value (here one in nondimensional form) to the
value on the surface of the pellet c(1). If the reaction is irreversible and very fast,
the concentration on the surface of the pellet is very small. Letting c(1) - 0 in Eq.
(@-132) gives T(1) = 1 + 36 and T(0) = 1+ f35. Also c(0) = 0if c(1) = 0. Thus the
maximum temperature rise is 1+ 6 and the pellet temperature is constant. If the
reaction is very slow. however, then c(r) is very close to the bulk-stream value, and
setting ¢(r) = c(1) = 1 in Eq. (4-135) gives T(r) = 1, or the bulk-stream value. This
case is isothermal and can also be brought about by having a small heat of
reaction fi.

We define the eflectiveness factor as the average reaction rate with diffusion
divided by the average reaction rate if the rate of reaction is evaluated at the bulk-
stream (or boundary condition) values. This last quantity is the average reaction
rate if diffusion is very fast, presenting no limitation to the mass transfer. The
eflectivenessfactor is thus

(4141

1
2| Ry(etr), T(r))P ™ tdr
[3 1), TUr e

p=—

C—
¢ J.I Ry (1, 1) tdr
o

The parameter a = 1, 2, or 3 respectively, for planar,
£omeiry. We can integrate Eq, (4-120) over the domainr =

"
f i -l!'(rzfl—r)r’dr e I’ R Tt =y 4D
dr

o 1 dr N

cylindrical, or spherical
0o 1 to obtain

Hence we can rewrite Eq. (4-142)as

"= g RMLD
lr::ral“ solutions give the same result in Egs. (4-142) to (4
Urbation solutions may not.

a defdr(l) @144)

-144), but numerical or
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Next we consider Eq. (4-126) for an isothermal reaction that is nth-order and
ine"ﬂ’ibk in planar geometry

d*c

g ¢e=0 (@-145)

de
FO=0 =1

1 de '
n= ?Elli= J; (ridr
We first solve Eq. (4-145) for the still simpler case of a first-order equation. Since
the equation is linear with constant coefficients we try a solution of the form ¢*
and find that we need certain k to satisfy the equation

Kt -2 =0 or k=¢? (4-146)

Concentration

—
0.20 0.40 0.60 0.80 1.00

Radius.
«
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We thus write the solution as

o) = Ae® 4 B'e~% = Asinh ¢r+ Bcosh @r 4-147)
where
o e eV e
sinh ¢r = T cosh¢r = - (4-148)

Application of the boundary conditions gives the solution A4 =0, B = I/cosh ¢,
and

cosh ¢r
)= Cosh ¢ (4-149)
The effectiveness [actor is then
1
= —tanh (4-150)
=3 [ )

The effectiveness factor is plotted as a function of Thiele modulus ¢ in Fig. 4-4a. At
small ¢ the efectiveness factor is one, meaning that the rate of reaction is relatively
uninfluenced by diffusion. For large ¢ the effectiveness factor is smaller than one,
meaning that the average reaction rate is reduced below what it would be without
diffusion limitations. The reaction rate as a function of ¢ is shown in Fig. 44b. We
see that the rate is proportional to ¢* for small ¢ but is proportional to ¢ for
larger ¢ values. Since ¢? is proportional to the reaction rate constant this means
that the actual reaction rate is lowered due to the influence of diffusion. This effect
must be correctly modeled by the chemical engineer in the design and operation ol
catalytic chemical reactors. The concentration profiles inside the pellet shown in
Fig. 4-4c illustrate the same phenomenon. For small ¢ the concentration remains
at the boundary value and diffusion effects are minimal. For larger ¢, the
concentration decreases away [rom the pellet surface due to diffusion, and since the
reaction rate is less when the concentration is less, the inner part of the pellet
contributes less to the overall reaction rate. For the largest ¢ shown the mass is
confined to a narrow layer near the boundary.

We next simplify the exact solution for the efectiveness factor in preparation
for the perturbation solution. For small ¢» — 0 we get

2
n=1-% (@-151)
3
while for large ¢
1
n=- (4152)
¢
The dependence of 5 on ¢ for large ¢ is clearly represented in Fig. 4-4a.
The nonisothermal problems are very interesting subjects for numerical
analysis. Consider Egs. (4-136), (4-1374) and (4-137b) with a first-order reaction,
n=1in Eq. (4-139). We first look at situations with the boundary conditions
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B=04,9=30

Effectivoness factor, n

- L L
S 2 s o100 2 5 a0b 2

‘Thiele modulus, ¢

102

“

i ical catalyst pellet
Figured-5 ENfectiveness factor for first-order. irreversible reaction in spherical catalyst pel

Biven by Eq, (4-140) in the case of large Biot numbers for mass :“d r:;:e:;ur;::e:
We take the specific numbers § = 0.4 and y = 30, and sochI lweAplypicﬂl Jor
variety of 2, The solution methods are the ones descnb;dl Ig o ;hrongh PR
oF 0 Versus  is shown in Fig. 4-5. Notice that a vertical mciw’1 ough = 04
Passes three times through the curve. This means that r:r u_l%‘ oy
‘ondition, set by g, the problem has three solutions, each wi o dleent o and
difleren ¢(r). We say the problem has multiple solul:)n:.u AR oo
Multiple soluions for 0.21 < ¢ < 0.56. In this range of ¢ the
nd the solution js idable. . ically so large as
Values of /;1 (lh?rd"i'mensionless heat of reaction) ur; n{)_ol=l¥l’ll;: {mm Fihe
e or 002 are common, and iR 3'0 l;‘:"‘ 4-5. Clearly, no multiple
cﬂecliv:ncss factor versus Thiele modulus is shown in ‘ni. 150) and Bi (ay ) the
solutions are possible. If we use realistic vnlu:s. of Bi,, ; ysmles ‘are then possible
forve takes the shape shown in Fig. 45 Multiple sates come about becuuse the
for 4 fange of ¢, In (his case the multiple steady states



28 NONLINEAR ANALYSIS IN CHEMICAL pissstesees oo

i C i t that the heat of reaction liberateq ;;
~rernal heat transfer resistance is so grea ; ing
L\IIILI‘III[::;:‘:I escape. thus raising the temperature. The net reaction ral"‘_:
P righer temperature even though the effect of concentratjoy

ince ¢ to the
:1‘:0‘“:;:::1:‘:‘: dlcurcusc the reaction rate. o ] )
A similar phenomenon occurs fur_ ccrlafr: 1s_olherm.nl reactions. Here we e
the form appropriate to carbon ona catalyst
. kot
kR = 1K 0 “isy)

We thus must solve Egs. (4-136), (4-137a) and (4-137h) when
(4

S=TFacyg =K% (@154)
For large values of « this problem has multiple solutions. Here they are caused by
the adsorption of carbon monoxide onto the catalyst. The reaction rate is inversely
proportional to the carbon monoxide concentration except at very small
concentrations. Thus at any point in the catalyst, il the reactant is used up the
reaction rate is actually larger than it would be at zero concentration.

We can now turn to the task of predicting the results shown in Fig. 4-5. First
we apply the perturbation method, and then the orthogonal collocation and finite
dilference methods.

4-6 PERTURBATION METHOD FOR DIFFUSION
AND REACTION

We see in the heat transfer example that the perturbation method can simplify a
nonlinear problem to a succession of linear problems. The solution to these
problems gives results that reflect the exact results for small values of the
perturbation parameter. The diffusion and reaction problems have many para-
meters, and we next derive perturbation solutions by using ¢* as a perturbation

parameler,
We apply the perturbation method first for small ¢. The series
lry @) = §Ocolr)+ P2, () + d*car)+ ... (4-155)
is substituted into Eq. (4-145) with n = 1 to obtain the perturbation problems
W G=0 GO)=0  cyl)=1 (4-156)
(38 GO =0  ¢)=0 iz (@&157)
bt =c (@158)

These arcsolved to obtain

@l =1 ()= _1“2 ) = t?t,"%“rﬁ @159
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wetthe eflcctivencss factor from Eq. (4-145) for n = |

1= 1307+ @160)

tice that il we use the derivative ex| res‘sion, Eq.
:romiymss factor we must find the c, lerpm to get th:I ¢(14;;:2.i;<:h:v::ua:;_me
but i we use the integrated expression, Eq, (4-145), we get the @2 term rm‘.’n lhleon'
term and ¢* from the ¢, term. We don’t know how good the solution s, allhouq
weknow we need ¢ — 0. If we somewhat arbitrarily say the first appmx'imauong-h
acceptable if the additional term in the second approximation is only 10 percent :,s{
he first approximation, the solution is good for ¢ < 05. A 1 percent criterion
Jeads to thecondition ¢ < 0.16.

For a large ¢ we try a perturbation series in 1/¢. Letting a = 1/¢? we rewrite
Eq. (4-145)as

we

a & —-c=0
a (4-161)
The perturbation method gives the simpler problems
a® —co(r)=0  co(l)=1 ¢(0)=0 (4-162)
a': cg—a)=0 c)=0 ¢ (0)=0 (4-163)

If we try to solve Eq. (4-162) for c, we see that the conditions are mutually
exclusive; ¢, cannot be zero throughout but be one at the boundary. Thus the
method does not work. Notice that for a = 0 the type of equation is changed.
Indeed the equation is no longer a differential one. This feature is a clue that the
regular perturbation method will not work: il the coefficient of the highest
derivative goes to zero on application of the regular perturbation method. then it
does not work.

The solution to the dilemma is to apply asymptotic expansions, or inner and
outer expansions. We know that for large ¢ the solution is confined to a region
rear the boundary r = 1, so we use a coordinate system which expands that
region. Near r = | we derive the inner solution c, as a function of s = ¢(1 —r). The
€quations are then

ds = —dr (4-164)
ilxiz' = (4-165)
ds’
aE=0=1 (4-166)

We do not apply a boundary condition at the other end point, thus we get the
lution

(@-167)

Near r = 0 we derive the outer solution c; as a function of r (We could expand this

: jtion at r = t at
l"g“}n, 100, if necessary) and apply the boundary condition at r = 0 but no!

o)=A sinhs+coshs
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90 NONLINI
% -¢la=0 (4-168)
*0=0 @169)
dr
The solution is thus ex) = Ceoshr .

olutions to be the same where they meet, at least for Jarge ¢,

ike these s " 3 st fo
g ¢. ca(r) as rincreases = ¢,(s) as s increases. This gives

Thus we want at large

1
) _Cer  lim =2 esan @i
o"ﬂ er) = 7( ‘Ln: ey 5 )
The matching condition at large @ requires
%lm = AZL]EM -n @)

Theonly way this can be true is if C = 0 and A+ | = 0. Thus the inner and outer
solutions are

¢ =coshs—sinhs ¢, =0 (4173
TheefTectiveness lactor at large ¢ is then
1 de, 1 de, 1
=5 =—- =— (4-174)
R B S R @174
! 1 (¢ 1 e®
= J; r(r)rlr:;,;J; feosh s —sinh skdy = - = (*175)

The solution for small ¢ is Eq. (4-155) together with Egs. (4-159). For large ¢
we have Egs. (4-173) and (4-174). These are compared to the exact solution in Fig.
4-6. The solution is good for small ¢ (<0.6) or large ¢ (> 3).

Next we treat the nonlinear problem

e
o ¢ =0

de (4-176)
=0 =1
The outer solution is valid near r = 0and satisfies
de; dey
J,T—vﬁfu,)_o 'l;(m—o (@11
C'e‘flflLy for large ¢ it is necessary that the reaction rate term be zero, making ¢, the
mustsatisy . For an ible reaction ¢, = 0, The inner solution
dic,
G -Sle)=0  )=1 (@178)

ds’
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‘ \
. .
a First-order perturbation \
x Asymptotic X,
N \ A
%
H
\-
10! | Lo L 1
107 2 4 6 810° 2 4 6 810
Thiele modulus, ¢
(a)
1.00 T T T T

x’

¢=1
oo % Second-order
_/l/
T Asymptotic
¢=10
020 |-
0
° 020
i

,mn'f: ;:‘ Comparison of exact und perturbution son..:‘::: ‘(I::‘ e

foctiveness fuctor. (b) Comparso

n of
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oI . , '
: ion is still difficult to solve, but the following technique provides an
This equation is sl
exact solution. Letting W .

P=gs
Iculate
- (4-180)
Thus Eq. (4-178) becomes
P:l =/f(c1) @181
<1
This we integrate o obtain
) 1
- ,[ JleMey (4-182)
2o Jo

er solution, which has ¢; =0 for all r, it is clear that p(c0)

with the inn i i
To match s where the inner and outer solutions

‘must be zero, i.e. a zero slope condition hold:
are matched. We thus obtain

_ l[ﬂ (0;]1 - J-‘ S(eMe (4-183)
20 ds o
and this gives the effectiveness factor as
patde L - l[z 'r /md(-]l ’ (4-184)
o drl, -, sli=0 &L Jo

For other geometries and the more general boundary condition, Eq. (4-123), the
corresponding result is
[ [ A -
'l—j;{[J.o J(tlu] [3 51}'?“’ (4-185)
X o 12
Bife(l) 1] = - ﬁusH sioue] (@186)
{

In these formulas it is assumed that S()=1.V, and A, are the volume and

external surface area of the catalyst pellet. For regufar pellel: $ = ¢/a.

(“;;exl We apply the perturbation method to the nonisothermal problem, Egs.
). (4-137a) and (4-137h). We take the case when the Biot numbers for heat

and mass transfer are large so that the problem reduces to

1 d de’

rzm( ’d—:)=¢‘f((-)
yBQ -
1+p1
CO=0  y=1

Sle)=cexp @187)
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For small ¢ we use the regular perturbation method

reaction rate expression but we must expand (he

€= Cotdle gt 4.

) = (e d) 4
1) =f(co) + (é)%,,zcl . “188)
We get the simpler problems
1 d dey de,
—_(n.zF>=0 di;"o)=o coll)=1
(4189)

de de
(,.zd_,l) = f(co) f(o) =0 ¢()=0

We can easily solve for ¢o =1 and ¢, = 4(r*~1). The effectiveness factor for
spherical geometry is

1
¢’ J’ c(r)ridr
__ J

! 3 dc
" =3 I clr)rtdr = — b= (4-190)
2 ridr o ¢ dr|,_,
Theintegral expression gives
2
n=1- % (4191)

The next approximation is very difficult to calculate so we obtain useful

information only for small ¢. We might choose ¢ < 1.2, as the region of validity of

Eq. (4-191), since then the second, correction term is 10 percent or less of the first

one. Unfortunately, the approximation is not valid at all. As shown in Fig. 4-5, n

nereases with ¢ at small ¢.

e For large ¢ we use the singular perturbation method with Egs. (4-185) giving
result

a=2 4o (4-192)
¢
where
4= 3ﬁ[ f cexp U 'Lu-]”’ @193)
o 1+f—fic

but does provide the exact
0.4 and y = 30 suggest that
urbation

g','f fequires numerical quadrature to evaluate,

Stant in Eq. (4-192). Results given below when § =

- (4-192) jg adequate for ¢ > 0.6. Thus we have no reasonable pert
soluton for ¢, <

,‘lim:J:uaI]y the regular and singular perturbal

pprox, limited regions of parameter space.

imation, but more laborious to find th :

Work s done there is still a significant region of parameter space

tion methods provide useful inform-
It may be possible to find the first

approximation, and when
e second e for which no
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i found. We need a method to prqvid_e lhe‘ solmi_on for
-511,‘:",,:’.';:.15,,,532 of ¢, when neither perturbation solution is valid. Section 4-7
:;pli:s a very good ‘method for doing this—the orthogonal collocation method.

94 NONLINEAR Al

4-7 ORTHOGONAL COLLOCATION FOR DIFFUSION

AND REACTION

The orthogonal collocation method has proved to be a useful method for
problems of diffusion and reaction. Frequently, a first approximation gives
accurate results, and it also gives insight into the solution. If desired the higher
approximations can be calculated to provide more accu‘rale answers, and the
method is suitable for bridging the gap between the regions of validity of the
perturbation solutions.

We next turn to problems of the type given in Eq. (4-136). In many of these
problems it is possible to prove that the solution is a symmetric function of x, i.e.a
function of only even powers of x and excluding all the odd powers. In such a case
it is our prerogative to include that information in the choice of trial functions. To
do this we construct orthogonal polynomials that are functions of x?. One chojce

is

N
W) =y()+(1=x?) ¥ aiPi_y(x?) (4-194)
i=1
Equivalent choices are
N
Y3 = 3 biPi_y(x?) (4-195a)
=1
N+l
= Z. A2 (4-195b)

Wedefine the polynomials to be orthogonal with the condition
1
2 ‘=
J; WOAP(HP(F)x " Tdx =0 k gm—1 (4-196)

whel =
msp;sﬁ:’v:l u:c : =1L 2 or 3 for planar, cylindrical, or spherical geometry,
o ol‘u{;: wg_ u;‘ we take l'IIC first cocfficient of the polynomial as one, so that the
henes o the cighting function W(.\")complelcly determines the polynomial, and
o ;_:;ml fupclnon and the collocation points. '
illerentiate Eq. (4-195h) once and take the laplacian of it, too, where

Af e dy
xeor S @197

dx

for the three geometries

dy N1
i :)::. d(2i=2)x-3 (4-198)
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thus
N+t
Vi = 3 di2i-2)[2i-3)+a—1]x¥"* (4199)
I
Now the collocation points are N interior points 0 < x; < | and one boundary
point Xy o1 = 1. The point x = 0 is not included because the symmetry condition

requires that the first derivative be zero at x = 0 and that condition is already built |
into the trial function. The location of the collocation points is shown in Fig. 4-3p. ~
by na

luated at the ion points to give
N+l
s = T i, (4-200)
I
dy N+t _
ax (x)= Y x}72Qi-2); (4-201)
Ix =1
N1
Viix)= T Vx| d, (4202)
o
and in matrix notation we have
y=Qd :% =Cd vy =Dd (4-203)

Qu=x¥"t Cuy=Qi=2xFT Dy=VAETH, (4204)

Solving for d gives, as before,

Nl
:¥ -CQ-ly=Ay Vly=DQy=By (@205)
x
Quadrature formulas are
' Nel
.[ SN x = Z W,f(x}) (4-206)
o =

and W, found by using Eq. (4-206) for f; = x*~*

[ , N |

(201G = 1 B S,

L SRR P Y/e R T F

wQ=f Ww=fQ"'

The integration is exact for functions f that are polynomials of degree 2N in x°,

provided the interior collocation points are the roots to Pw(x?) defined by Eq.

(4-196) with W = | —x2 If W = | then the integration is exact for polynomials of

degree 2N — 1. The collocation points for the dillerent geometries and weighting

functions are given in Table 4-5. The matrices for W = 1-x? and N = 1 or 2are
given in Tabled-6.

(4-207)
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nomials defined by Eq. (4-196) with W

Geometry

Table 45 Roots of poly

6

Planar

a=1

057735 02692
033998 10436
086113 63116
023861 91861
066120 93865
093246 95142
0.1834346425
052553 24099
079666 64774
096028 98565
0.14887 43390
043339 53941
067940 95683
0.8650633667
097390 65285

0.12523 34085
036783 14990
058731 79543
076990 26742
090411 72564
0.98156 06342

a=2

070710 67812
0.4597008434
0.8880738340
0.33571 06870
070710 67812
0.94196 51451
0.26349 92300
0.57446 45143
0.81852 94874
096465 96062

0.21658 73427
0.48038 04169
0.70710 67812
0.8770602346
097626 32447
0.18375 32119
0.41157 66111
0.61700 11402
0.78696 22564
091137 51660
0.98297 24091

|CAL ENGINEERING

Spherical

a=

0.7745966692

0.53846 93101

0.90617 93459

0.40584 51514

0.74153 11856

094910 79123

0.3242534234
0.61337 14327
0.83603 11073
0.96816 02395
0.26954 31560
0.51909 61292
0.73015 20056
0.8870625998
0.97822 86581
0.23045 83160
0.44849 27510
0.64234 93394
0.80157 80907
0.91759 83992
098418 30547

Fora given N the collocation points.x,

v are listed above. xy . = 1.0,

The orthogonal collocation method is first applicd to the diffusion-reaction

problem, Eq. (4-145) with n =2. We initially test whether the solution is
symmetric in x. To do this we derive a power series solution using the expansion

This form is substi

of x are set to zero

Application of the b,
Eq. (4-210) a, is 2

tuted into Eq. (4-

clx)= i axt
=0

X

20— ¢*a; =

6ay—$p*(aguy) = 0

Ray—¢*a} +2a0a,) = 0
20as = $*(2aqa; + 2aya) = 0

oundary condition at x = 0 gives q,
€10, 100 and Eq. (4-212) then says

(4-208)

145) and the coefficients of successive powers

(4-209)
(4-210)
(4-211)
(4-212)

= 0. Il a, is zero then by
hat a¢ = 0. This can be
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Table 4-6 Matrices for orthogonal collocation for polynomials in Eq. (4-196) with
w=1-x

N w A B

Planargeometeya = |
08333 EISICER It _1s 25
! ( o.1667 -2500 15"0) (—zs 25

02852\ /05549 ~1753 2508 -07547\(-4740 5677 _ngyy
2 (0165I oms -1371 -0es3s 2024 )| 8323 -232 wu)

1792 -k391 7 1907 -4700 B

Cylindrical geometrya = 2

05774 ( 0375 -1132 17132 ( 6 6
! ( 10000) | 0125 -3 3 6
03938 01882 - 2540 3826 1286 -9902 1230 -2397
2 (omn) 02562 ~1 1268 2 9034 -3276 7 )
10000/ \ 00556, s —9oms 2% -6542 4267

Sphericalgeometry a = 3

06547} (02333} (-12?! -108 105

1.0000 o) -35 -105 ms)

0468k 00949 3199 SOIS - 1KI6\(-1567 2003 -4365
2 (muoz) (un-m) 1409 —1807 3215 )| 9965 —4433 M6

10000 00476 1697 - 1070 9 2693 3693 60

continued by induction to prove that all the odd powers of x are absent from the
series. Thus it is appropriate to use the matrices in Table 4-6. The residuals at the
N interior collocation points are

'
S Bue— *213)
S
while the boundary condition is
cxnr=1 @214
After solution the effectiveness lactor, Eq. (4-145), is given by
4-215)
The first approximation is taken to give
—25¢,+250,- 9% e=l (+216)
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The solution is -
—2.5+(6.25+109%)

asT 2 @217
and the effectiveness factor is
=4+t @8

ess factor is ploned versus the ¢ in Fig. 47 and gives an accurate
Ther:(f::cl;f:n for ¢ < 2. For large ¢ a higher approximation is required, The
approsi approximation at large ¢ can be deduced from the ap-

son for the poor
pr:;xnmale profile. When put into the form

c=1+a(l-x?) (@219
the coefficient a is determined from ¢y, which applies at x,. Here 1 —x} = . Hence
a=125(c,—1) (4-220)

The concentration at the center of the pellet (x = 0) is then
(0) = 1.25¢,-0.25 (@221
and this value becomes negative for ¢ 2 > 50. This is clearly unrealistic and higher

approximations are necessary.
The asymptotic analysis gives another reason why Eq. (4-218) is not good for

large ¢. Equation (4-184) gives the exact result for large ¢
Cepn
¢

This is shown in Fig. 4-7 and the one-term orthogonal collocation OC solution

4-222)

Enecuveness wuwor, 7

Perturbation

Asymptotic

2 4 6 g g0 !
Thiele modulus,

Figure4-7
Effectiveness factor for u second-order reaction in slub,
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does not approach this asymptote. Conversely the orthogonal collocation solution
does approach lhe_ exact st_)luuon _I‘or small_ ¢ and does a considerably better job
than the perturbation solution for mlermednaleﬁ To improve the results we apply
Eq. (4-213) with N = 2. The results are shown in Fig. 4-7 and provide a very good
approximation for¢ < 3.

The diffusion-reaction problem, Eq. (4-145), is solved for a finear reaction
@=1ina slab using orthogonal collocation with different levels of approxim-
ation (N). For three different ¢ the errors in the effectiveness factors are given in
Fig. 4-8. For small ¢ the concentration distribution is well approximated by a
quadratic or quartic function of position (see Fig. 4-d4c), and the effectiveness
factors are well determined with a two-term solution (which corresponds to a
quartic function of x). For the larger ¢ (¢ = 10) the concentration profile is much

Percentage error in 7

T2 3 4 s ©
N

igure 48 Acc vers of on i 1
F c ion method for linear reaction in & ‘“\\
racy versus N in orthogonal callocation %\\
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is very flat over much of the region. A much higher degree of

hen necessary 10 approximate the concentration, and the errors in

steeper nnd_
Conversely higher N must be used 1o

lynomial is >
:o a}rlc consequently larger for a given N.

acy i ases.
rve the same accuracy as ¢ increa: . . ‘
pm;'hcsc examples of the orthogonal collocation method illustrate one of jis

Pt oas: 4 » n is often quite accurate and easy to derive. |
22:;’;'"‘5"%,;ﬁ;,s'.;"i":u:ﬁ: O features of the solution and thus useful for
analysis and study. Higher approximations can be obtained to improve the
accuracy, and the accuracy of the orthogonal collocation method is generally
higher than that of the straight collocation method as well as usually being more
accurate than the Method of Weighted Residuals. It is also easy to apply and has
the further of expressing the i terms of the solution at the
collocation points rather than the coefficients. It suflers from the difficulty that a
high-degree polynomial (large N) is necessary if the solution has sharp gradiens,
In such cases other approaches are necessary.

The orthogonal collocation method is next applied to the problem of
nonisothermal diffusion and reaction in a spherical catalyst pellet expressed by
Egs. (4-136). (4-137a) and (4-137h). We take the case of a first-order. irreversible
reaction so that thereaction rate term is given by Eq. (4-138) with the temperature
given by Eq. (4-135). We look only for solutions that are symmetric about r = 0'so
that we can usc the collocation points and matrices in Tables 4-5 and 4-6,
respectively. The residuals are

N+l
L Bii= 9 (cex 1 h0) = 0 (223)

and the boundary condition gives

Nad
=¥ v =By, -1 (@224
[
with
ey 1 hd) = ¢y 1 (4-225)
B= =Bttt fes 4 pal -y ) (4-226)
The effectiveness fuctor is
N
, 3 z Ax e
n= ;s - = 0=t
N o " (4-227)
and this can be evaluated using the average reaction rate as
N+
_Zl Wil ey, p.8)
"="r @-228)

L Waa )
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Figure 49 Multiple steady states in catalyst, Egs. (4-229) and (4-230),

The set of nonlinear cquations is solved using Newton - Raphson. since the
successive substitution method would only converge for small ¢. The program

OCRXN does this.
Ascexample computations, we consider the case with Bi, —» x sothate(l) =1

=30, and f§ = 04. The first approximation gives the equation
—10.5¢, + 10.
‘:f 5:‘.”,,7,1 = Riey) <29
¢
T = 14— fe,

+230

This equation can have more than one solution. This can be seen by plotting the
right-hand side versus ¢, in Fig. 4-9. The left-hand side then depends on ¢. For
large particles, hence large ¢, the two curves intersect only once, as is the case for
¢ = 1.0. This corresponds 1o a diffusion-controlled situation and gives a unique
steady state. For small particles, only one intersection occurs (¢ = 0.62) which
corresponds 10 the case of fast diffusion and for which the concentration gradients
are small. For intermediate values of ¢, for example ¢ = 0.25, however, the two




NLINI N N CHEMICAL E EERING
102 NONLINEAR A ALYSIS IN CHEMIC? L ENGINEERINS
place. Graphically we can obtain more than one

< 0.62. More accuraté finite difference compu.
ive the values 0.22 < ¢ <0.54, so that the
ble results very easily in this case. The essentia)
ge changes in the reaction rate. We recall thay

cta more than on¢
wtion for 0.17 < ¢
100 grid points) g
gives reasona
blem is the lar}

curves interse
steady stalc sO’
tations (using
collocation method
difficulty in this pro

Temperature

o 0.20 0.40 0.60 0.30 1.00
Radius

Concentration

Figure 4-10 Profiles for first-order,
irreversible reaction with spherical
i geometry for § = 0.4,y = 30,
Radius ¢=05andd = 1.
® (@) Temperature profile.
(b) Concentration profile.
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the convergence properties of an iterative solution method are dependent on the
derivative €quation. in this case on dR(c,)/dc,. Figure 4-9 reveals that this quantity
goes through large changes as the concentration ¢, goes from zero to one.

Higher approximations can be calculated as shown above, and the iterations
will usually converge to one of the steady-state solutions. Which solution js chosen
depends on the initial guess, and some experimentation is necessary (o obtain
them all. The !owcr steady-state solution (lower temperature) is usually obtained
by starting with an initial guess c(r) = 1, while the upper solution is usually
obtained by the guess c(r) = 0. The intermediate solution is more difficult to
obtain, but the ﬁrs!-ordcr approximation gives a good first guess when calculating
the higher appr i Typical ¢ and ion profiles are
shown in Fig. 4-10 for ¢ = 0.5, with N = 10 and W = I —r2 The upper steady
state is very flat over much of the region, necessitating a large number of terms in
the series. These solutions were obtained with the program OCRXN, which is
listed in the appendix. The Newton-Raphson method does not always converge.
and the convergence may depend critically on the initial guess. This is an
unfortunate feature of this problem. Solutions on the lower leg of the curve are
readily found. The intermediate steady states (¢ = 0.22-0.55. § = 2-48) and the
upper steady states (highest 1) are much harder to obtai

The case studied is for an extreme value of f§, which is usually much smaller
(B < 0.1). For boundary conditions of the first kind (i.c. Bi,, = x) and with f§ this
small, the solution is unique. However, if the complete boundary condition of the
third kind is used as in Eq. (4-123) multiple solutions are possible. For example
with Bi,, = 250, Bi = 5. /§ = 0.02,; = 20.and d = 50 we get

Ky = 14036+ =d)c(1) @231)

For a case with ¢ = 14.44 one solution has (1) = 0.16 and ¢(0) = 0, which gives
K, = 184. Then

T(r) = K, — fetr) (4+232)

giving T(1) = 1.836 and T(0) = 1.84, while the external value of temperature is
T = 1. The corresponding values of ¢~*7 for T = 1.0, 1.836, and 1.84 are 10.
9005, and 9232, Thus the reaction rate is extremely large. The solution for these
parameters is confined near the boundary. The concentration is essentially
nonzero only between r=0998 and r =1, and is zero in the inner
0<r < 0998. If the orthogonal collocation method is applied to such a case it i
necessary 10 use at least 40 terms before a collocation point is contained within
this region. In this case the concentration has a sharp gradient near the boundary.
and some other method, which allows steep gradients, must be used. .

Before proceeding to alternative methods let us retrn to the question of the
choice of weighting function in the defining cquation for the orthogonal collo-
cation method, Eq. (4-87) or (4-196), since that one choice determines the
collocation points and all the matrices, etc. For symmetric_polynomials we
provided two choices, W = 1 or W = 1 —x?, while for polynomials in x we used
W = 1. Other choices are possible. The author has found from expericnce when
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1o diffusion and reaction problems that the first approximation is more
solving dmw:“n;.a:‘:ices corresponding to W = 1—x? are used. For highcer
approximations it is not too crucial, although for boundary condi_(ions of the thirg
kind the choice W = 1 seems better. This may be because the chou:_e w =1 makes
the collocation points closer to the boundary (x = 1) and the solution is unknown
there. Hence collocation points are needed there. By contrast, if the boundary
condition is of the first kind the solution is known a x =1, and the chojce
W = 1 —x? moves the collocation points away from x = 1 (o regions where they
are presumably needed more. The author’s philosophy, however, is not 10 optimize
the choice of polynomial—through the choice of W(x)—for a given problem, bug
to depend on the higher approximations to give the needed accuracy,
Improvements achieved by changing polynomials are rarely signifi P
(0 those obtained by adding more terms to the expansion. The only exception 1o
this philosophy is for problems with symmetry, and then only for the first
approximation.

When solving a problem it is usually necessary to solve it for several choices of
N, the number of interior collocation points, in order to assess the accuracy. The
question then arises as to the way in which the errors decrease as N is increased.
Theoretical results are discussed in Sec. 4-13, but the following extrapolation
technique may prove useful. We denote the answer obtained with N as Sy. An
improved result is frequently given by the Shanks’ formula®

accurate il th

S
N +1 “23)

Nl

4-8 LOWER-UPPER DECOMPOSITION OF MATRICES

Three methods - finite difference, collocation finite element, and Galerkin finite
glemgnl—give rise to large sets of equations. and their solution inevitably requires
inverting a matrix. or at least solving a large set of equations. These equations
have a special property in that a great many of the elements are zero, and indeed
there is a pattern of zero and nonzero elements. Such matrices are called sparse.
For example, a finite difference method with 1,000 grid points would yield a
1,000 x 1,000 matrix with 10° elements. Only about 3,000 of these are nonzero,
however. The work to solve the system of equations without taking advantage of
|I3e 2eros would be about 3 x 10* multiplications, Even with a fast computer sucha
fr:‘:.u:ar:':“ ]wonflc_i be lengthy. For example, if one multiplication takes 10~®sec
taken im? 4cul‘u|on would take 300sec or 5 minutes. If the pattern of zeros is
mulliplicaliod:sco-um ‘;ve would be able 1o solve the system with about 5000
soluin ans. s‘: r'e luction by a factor of 60,000. Consequently for an efficient
Tt take into account the pattern of zeros or the structure of the
dcc:':c Ossl_la:pdmd method of solving a linear system is to do a lower-upper (LU)

position on the matrix or a gaussian elimination, We illustrate the LU
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decomposition first on a dense nx n matrix (all elements nonzero) before
consi ¢ matrices with special structure.
Inthe n x n lincarsystem

Ax=f

(4-234)
an ay a4
an an a4
a an ase[x] _(5 s

The 21 element can be made to be zero by multiplying the first row by —a,,/a,,
and adding it to the second row. The same operation o f multiplying the first row
by —ay,/a,, and adding it to the third row leads to a zero in the first element of
the third row. By doing this [or each row we can end with a column of zeros in the
first column, except for the diagonal position

Lo
_
h-4,
= LT P
AVx = Lok =f
T @
In the sequel wedefine
(4-237)
(4-238)

We now want to do the same thing on the second column, to make it a column of
2eros below the diagonal

4y @z X7 A
0 df o} X2 !::::
0o 0 af S

Ay = R I (4-239)
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1

e contit oing this in sequence until the whole lower triangle is filled

Wo nuc doi

seros. The resultis upper (riangular and we set A" =L with

Xy A
a ay; @3 2
o a2 dh x|
3
o 0 af | |Xs| oS3 (@240
amx=lo o o0 df x| |
o | < »
am) | Xn 4

the matrix with zeros in the upper triangle, one on the

L as 1 i !
di g::\eald:::elhc scalar multiples we just used in the lower triangle
12} N

i 0 0 0
_4 0 0
i 2)
ay : @.2)
e iman T
o 0
_ G @ 1
]

The unit diagonal can be understood and then L and U can be stored in lhe_samg
space as A. We see that the solution is casily obtained now. because we can simply
solve for ™
"

(2-242)

In reverse sequence.

Itis possible 1o show (see Forsythe and Moler,* p. 28) that A = LU. Then we
can represent the equations to be solved as

Ax = LUx = (2-243)
This represents two triangular systems that are easily solved
Ly=f Ux =y (2:244)

Once L and U have been found additional problems can be solved that have the
same matrix and difTerent right-hand sides. The triangular systems of Eq. (2-244)
are easily evaluated; solving the first one is called the forward sweep and solVing
the second one is called the aft sweep. The combined process of a fore-and-aft
sweep takes fewer multiplications than the original decomposition. The sub-
routines DECOMP and SOLVE in the appendix do this.
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The number of multiplications und divisions nceded to do one

LU decomposi-
non and m fore-and-aft sweeps for a dense matrix is pos

Operation count = §n* —§n+mn? (4-245)

This is fewer operations than it takes to calculate an inverse, so the decomposition
s usually the method of choice. Notice that the decomposition is proportional to

the forc-and-aft sweep is proportional to n® For large n the
tion is a significant cost. This was the reason why the integration
s. such as GEAR, described in Chapter 3 do not always re-evaluate the
cach time step. Instead these packages use the old jacobian for several
time steps 10 avoid the continual decomposition cost.

Before secing how the LU decomposition works for matrices with a significant
number of zeros. let us apply the finite difference method to the difusion and
reaction problem. Egs. (4-135) to (4-139). The grid spacing is taken as shown in
Fig. 4-2a. and the equation is written at each grid point, including r, = 0 and
faer =1

iy =2 .-
g St Zm) ~ ¢iR(e) “246)
Fori=1and i = n+1 the above equation involves ¢, and c,, ,, which are

undefined. To definc them we introduce a false boundary and apply the boundary
condition. At r = 0. we define y, as the value of y at r = — Ar. Then the boundary
condtion. Eq. (4-137a). is
€3—Cp
T2Ar
and is correct to O(Ar2). Also at r=0 the value of the second term in the
difTerential equation is evaluated using I'Hospital’s rule

=0 (@247

1
Combining Eq. (4-246) for i = 1 with Egs. (4-247) and (4-248) gives

i el _ deldr?l 2o @28)
o

u2(rzr—1¢'|i = $?R(c,) (4-249)

Al r = | we introduce a false boundary and let ¢o+2 reprc‘sem the solution a:

r = 1+ Ar. We apply the boundary condition of Eq. (4-137b) in a manner correc!
to second order to give 250
- 5_*2,’5:—”— = By~ 1) (4-250)

1 this is substituted into Eq. (4-246) for n+ 1 we get
26, = Bin28r(cy s D)= 2ot _ g )Bigeyss 1) = $°REEwr) @-251)
Ar
Neat we collect the equations, multiply each of them by rf-
succemive yubstitution method. The resulting matrix problem is

and solve with #



(2sTH)

[(1=0My+ gay1g —

("*0)y v, (1= saw v -z- ¢ .

()4 4v.¢ 9+1 - 9—1 .

(=54 4y, ¢ I q+1 - el_. 0
@x.&fs ! .wv 0 fq+1 - mT I
[§520 vy 1 +_,u 9+1 -
[ X B s
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where we have fet

(4-253)

We say the Eq. (4-252) is tridiagonal, and we w.
decomposition for such a matrix.

The LU decomposition of a tridiag
elimination and is sometimes called the T
of the tridiagonal matrix as

ant to learn how 10 do an LU

gonal matrix is done using gaussian
homas algorithm. Using a standard form

by x 4
@ boq 0] x d,
G boo x5 dy @2
H Bl 54;
0 a b, Xa d,
er bas| (%04 dyy,
we calculate in succession
L_a _d
a=h 4=,
Goymomtit e —ady (4-255)
biri—aua6 et by =y 406
Cnrr = Xpiy =dy Xy = dy—ciXypy

doing a gaussian elimi We can rearra the slightly to make
it perform an LU decomposition. The important point is that there is no fill
outside the tridiagonal matrix, in other words the structure of the matrix remains
the same. This is an important advantage when we want to reduce the amount of
work. This algorithm is contained in subroutines INVTRI and SWEEP in the
appendix. The number of operation counts to solve m suchsystemsin a tridiagonal
matrix,size n + 1, is

If these steps are performed on the Eq. (4-254) the reader will see that we are just
h .

Operation count = 2n+m(3n+1) (4-256)

which is a significant saving over 4n* of Eq. (4-245). o

While applying the finite difference method to the problem of diffusion and
Teaction in a pellet the successive substitution method might not be a very good
Method 10 solve the nonlinear equations. It is clear from the structure of Eq.
#-252) that if Ar is taken small enough, the successive substitution method
converges. It is better, however, to use a more robust method, like Newton-
Raphson, In that case the structure of the zero and nonzero elements in Eq. (4-252)
femains the same, although the nonzero diagonal entries are different, so that the
same economy results. If the reaction rate expression also depends on c(1), the
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1 be adjusted to allow operation on the last column, which has 5
his is easily done, however.

(4-246) we get

algorithm mus!
nonzero entry for each row. T_ 2
‘When Newton-Raphson is applied to Eq.

R@*) = R + %—?Lm" ) @)
This means that the diagonal term in Eq- (2-252)is changed to
—2—¢’A!%§ . i=2,..,n (4-258)
while the right-hand side is changed to
‘“"[ Re) = %L‘f] (@259)

We then use these definitions and the tridiagonal algorithm to solve the equations.
This algorithm is in program FDRXN in the appendix. Reaction problems can
then be solved with the finite diference method.

Solving Egs. (4-136), (4-137a), and (4-137b) with 8 = 0.4, = 30, and Bi,, =
for ¢ = 1 gives the results listed in Table 4-7. These results indicate that the error is
proportional to Ax?, which is because the derivative boundary conditions are
evaluated to 0(Ax?). Problem 4-13 illustrates that only O(Ax) is achieved if the
boundary conditions arc evaluated to 0(Ax).

We can also apply extrapolation techniques to these results as we do in Sec.
3-6. Let 1o be the exact solution for the effectiveness factor, », the solution with
grid size Ax, and n, the solution with grid size Ax/2. For a second-order scheme
the error obeys

Ny = No+cAx?
Ax\2
= vr.;n(%) @260)

with higher-order terms neglected. Solving this for i, we obtain

gy
o = '“T o (4261

This estimate of the effectiveness factor is more accurate than either ny or . The
::'1"‘; extrapolation can be applied to the solution, except that a more accurate
1{(:‘ is obmmed_onl)_' at the grid points of the coarsest grid.

Richar:iss::"marlohl::jw“ is )usll ll;‘e first step in a Richardson extrapolation. In the
thod we apply the lation 1o a series of calculations. If we

:\::: ur]r( sc:gl-:ulanons then we obtain i — | new, improved values. If the first series of
i resuts else:‘:::;:;‘e% ormxh) the next series of n—1 results is correct to O(Ax*)
urther until only one an: i ich i .

result. For most problems in engi ynsingle trap rfm_amsi.s opiat 'lhe >

The finite element methods, and finite difference methods with more than one
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Figure 411 Matrix structures. (a) Banded matrix. (b) Block diagonal matrix

The other type of matrix is a block diagonal (sce Fig. 4-11b). This matrix is
characterized by NE blocks, cach of size N2 x N2, but with a NU x NU block
overlapped at the corner. The work estimate for such a matrix is
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NE
Operation count = —=[N2(N2*~ 1)~ NU(NU?~1)]

+INUINU?~ 1)+ m[NE(N2* ~NU)+NU?] (4-2626)

Computer programs to perform the decomposition and/or the fore-and-aft
sweep are provided in the appendix for dense matrices (DECOMP and SOLVE),
the block diagonal matrix (LUD and FAS), and a tridiagonal matrix (INVTRI
and SWEEP). Using NE = 1 in the program for block diagonal matrix also
corresponds to a dense matrix. Thus we can regard as solved the problem of linear
equations with a matrix that is dense or sparse with the tridiagonal or block
diagonal structure.

49 ORTHOGONAL COLLOCATION ON FINITE ELEMENTS

Previous ications of the orthogonal
function that is a series of orthogonal polynomials, each of which is defined over
the entire domain 0 < x < 1. When the solution has steep gradients it is more
advantageous to use trial functions that are defined only over part of the region
and piece together adjacent functions to provide an approximation over the whole
domain. Then small rcgions can be utilized near the steep gradients and the
approximationimproved. We are thus led to the method of orthogonal collocation
on finite elements. We present two forms of the method that differ only in the trial
functions. One uses lagrangian functions and adds conditions that make the first
derivatives or fluxes continuous between elements, and the other form uses
Hermite i which i have i first ivati
between elements.

We apply the method to the catalyst pellet problem of Egs. (4-136), (4-137a),
and (4-137h). The domain is divided into elements as shown in Fig. 4-12. Within
each element we apply orthogonal collocation as we have before; the residual is
evaluated at the internal collocation points. If we have NE elements and NCOL
internal collocation points then NEx NCOL is the total number of residual
conditions. With the two boundary conditions the number of conditions falls short
of that needed to define the polynomial, which is (NCOL+1)NE +1. We thus
append NE- I conditions at the element boundaries by making the first deriva-
tives continuous there. Then the resulting solution has continuous derivatives
throughout the domain. Alternatively, when there are material inhomogeneities
present we can make the flux continuous across element boundaries, resulting in a
solution that is continuous, with continuous flux, as in the exact solution.

The equations are written for the kth element, in which we define

= X=Xy

hy
£0 that the variable u goes from zero (o one in the element. Then we can use the
formalism of Sec. 4-4 to provide the collocation points and matrices to represent

(4263)

by = Xus n— Xw
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the derivatives. We transform the equation into the u variable to obtain
1 d* a—1 1 dc

ac 24 b2
W @t xgrulty iy du = O (@269
andatu =1
1 de .
g du~ Binle=D) “283)

Figure 4-12 illustrates the global numbering system i and the local numbering
system / in an element. We then refer to ¢; as the solution at the ith point and
understand it to be according to the global numbering system. We also refer to ¢,
and understand it to refer to the local numbering system on an element. Usually
the element in question is obvious, so we do not note the element, but that is
understood. It is necessary to know both I and k, the element number, to obtain
the global number. These numbers are related by

i=(k=1)(NCOL+1)+1 (4-266)
X, = X+ urhy
On an element we then apply orthogonal collocation to Eq. (4-264) giving
1 NP 11 hYd
= ¥ By + — 3 Ayc;=dfler)  I1=2...NP—1 (4267)
Lt S0

The local points I = 2,...,NP—1 desi the interior coll points. The
continuity of flux betwcen elements requires
(4-268)
and this is obtained by requiring
D NP NP
(,IME 3 AN,.JL-,> = (5 Y A”z',) (4-269)
k-1 J=1 clement k - 1 h /= elementk

Here we must carefully specify the element. When the difusivity is constant across
the element (ie. no material inhomogeneities), Eq (4-269) makes the first
derivative of the solution ¢(x) continuous in the entire region 0 < x < 1. The two
hou:dary conditions are applied in their respective elements. For the first element
we have

1 NP

— oy = 4-270)
n EIA.JL, 0 (
while the boundary condition at x = 1 affects the last element
N
" e ]ZI Anpacs = Big(enp=1) @27

The equations are then assembled in a global way, so that the terms for ¢ %
putinto the appropriate place corresponding o ¢, The final structure of the
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Figure 413 Mair structure for onthogonal collocation of finite clements with lagrangian cubic
polynomuals.

matrix is shown in Fig. 4-13. The successive substitution method of solving the
nonlinear equations is illustrated since it displays the matrix structure, while
the Newton-Raphson method has the same structure but more complicated
equations. We write the final, assembled equations in the form

AAc=1 @“2m)

We note in passing that all the methods can be represented in the form of Eq.
(4-272). Orthogonal collocation on finite elements gives the matrix AA with the
structure illustrated in Fig. 4-13. Finite difference gives the matrix AA with the
structure dclj:|ed_ in Eq. (4-252), whereas orthogonal collocation gives a dense.
square matrix with every clement filled. The decomposition of equations of the
form shown in Fig. 4-13is done using subroutines LUD and FAS in the appendix-
Theoperation count for such a matrix is

NE
Operationcount = = NP(NP? — 1) 4 mNE(NP — 1) 4m NP = NCOL+2
@2m)
Asa detailed illustration et us solve the problem

de
])':i = ¢ @21
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de ©=0
- 0)= cl)y=1
dx ) (4-275)
using two elements (NE = 2) and two inter,
which corresponds to a cubic polynomial on
and elements are

nal collocation poj
points (NCOL =2
each element. The collocation poinl’s‘

hy=hy=14
x; =0  x;=4x021132 = 0.10566 ;T
X . X3 =} x0.78868 = 0.39434
xe=05  x5=06056 x, = 089434 X, =10
and the equations are
AnAnAsn A € o
By BBy Bu 0 af | higr,
By1B32Bss Bis 3 e,
AnApAy A=Ay -4, -4, -4, A L
Bi Bu By By | || |Mekes
o By By By By | |G "5;";""

9 0 0 1 .

The Newton-Raphson method merely requires expanding the reaction rate term
as

4

S& =)+ 3 6= @)

and putting the (dfjdc)c}* ! term on the left-hand side, thus allecting only the
diagonal element of the matrix. Here df/dc = 1 and the problem is linear. Solving
this for ¢ =6 gives ¢, = 0.00597, ¢, = 0.00608, ¢, = 0.02863. ¢, = 005478,
¢5 =0.08308, ¢, = 0.51965, and ¢, = I. The efectiveness factor is obtained by
integrating the reaction rate over the domain

0 = H(Wyer+ Wacs) +3(Wacs + Wace) = 0.1594 42719
The exact solution gives i = 0.1667, so the answer is 4 percent off. .

The same problem can be solved with orthogonal collocation. Using sym-
metric polynomials N = 1, we get the same equations as Egs. (4-216) but for a
first-order reaction rate. The result is ¢, = 0.0649 and y = 0.221. or a 33 percent
ermor. If two terms are used the equations are, with matrices evaluated from Table

—4.740¢, +5.677c, —0.9373 = 36¢, (4-280)
8.323¢, —23.26¢, +14.94 = 36¢;
The solution is ¢, = 0.0128, ¢, = 0.2539, and § = 0.1699, or a 2 percent error. This

solution requires much less effort than orthogonal collocation on finite elements,
as 1t involves solving only two equations rather than six, and is more accurate.
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Figure 414 Concentration in pellet, for a first-order, irreversible reaction in slab. with ¢ = 6.

This is because the solution does not have very steep gradients. and the necessity of
finite elements is not apparent. Furthermore, the orthogonal collocation uses only
even polynomials in x whereas orthogonal collocation on finite elements uses both
even and odd pol; ials, thus ically doubling the number of equations
without improving the accuracy.

The solution is plotted in Fig. 4-14 for these approximations. We note that the
gradient of concentration is greatest near the boundary, indeed from x = 0.60566
10 x, = 1.0. Let us solve the problem again using orthogonal collocation on finite
elements but using a smaller element near the boundary. We take xm=°~7v
X =0, x, =014792, x; = 0.55208, x, = 0.7, x; = 0.76340, x, = 0.93660, and
x; = 1.0. Equation (4-277) is used with diferent h, and a revised fourth equation,
and the solution is ¢, = 0.0093, ¢, = 0.0052, ¢; = 0.0692, ¢, = 0.1744, ¢ = 02437,
¢ = 0.6810, and ¢, = 1.0. Now the efTectiveness lactor is

0 = 0.7(Wyey + Wic3) +0.3(Wes + Wace) = 0.1648 (4-281)

r‘"hiCh is within 1 percent o the exact solution, compared with the 4 percent efror
or WO elements of equal size. This result illustrates the advantage of finite

el St : . p "
ements: smaller elements can be concentrated in the region with steep gradients

toimprove the accuracy.

The use of orthogonal i i i i
when e ot 0 g collocation on finite elements is particularly valuable

lents are even grealer. Let us consider the nonisothermal problem of
EQ: (4:136) with 7 = 20, /= 0.02, Bi, = 250, and Bi 5, giving 3 = 50. By Ed
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135) the temf ture is related to the _

":u_u the savﬂmiun is extremely steep, having |t::y vTa(I:n)e_;’((l’)-_ﬁé(";' For
= 0. which gives T} = |83~ 002ctr) The remperature in the pelletis s
S0 e 1440 1443, and the reaction rate i very high The resull s that all the
s that diffuses into the pellet is reacted near the boundary, and the concentra-
ion drops 1© zero at r = 0._997. With uniform elements, in this case it takes 330
clements to have 1 clement in the region in which the solution is important. Thus
e way to locate dements ffciently. For this problem a simple two-
element solution is satisfactory.

We separate the domain into two zones or elements. In the innermost zone
0gx<h. the components are in equilibrium and ¢ = ceq. In the outer reaction
2oneh < x < . the reaction takes place and there is a concentration gradient. We
\ransform the domain X = (0. 1] using
b
=)

u

so that u goes from zero to one in the reaction zone. Equation (4-136) then
becomes

| ode, a-1 | de_

Gobit dut + hruli=b) (1=b) du #Re.T) (+282)

andtheboundary condition of Egs. (4-137a) and (4-137b)at = lis

1 de
- — = Biglc— 283)
Toh 4o B (4-283)
For continuity betwecn zones we impose the condition at u = Othat
de
= —= (4-284)
c=ca @ 0 (4-284)

Orthogonal collocation is next applied to the reaction zone. The polynomials
arenot symmetric functions of u anymore (even though the solution is 2 symmetric
function of x) so we use the matrices from ‘Table 4-4. The collocation equation is
applied at u = 4 for a three-term series (quadratic polynomial)

. amt Vo

g Bartart Bracat Buaes) ¥ 47 =) (1-0)

)((Az‘lvm+/1’1(‘:+/41’l')) — Ry ey) (4289

T = 1+ o+ Pesti =8 =P e
The boundary condition is
| et @287
Ta -b)MnrM‘u"z*"”"’ Bites =)
Aplying the conditions of Eqs. (4-284) givesthesolutio™ intheform
@28

.t
c= ',,+(t':—lﬂ)"
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The equations can be rearranged with ¢, = ceqto BIVE

o= g:_"g: (@-289)
(1 —b)Bin+2¢sq 4
=35 (1-b)Bin 0
1 =1l —ce) = #*R(caics) (4291
fatm* i Jlome = omene '

The effectiveness factor is

) )
q=311—")[b’ J' Rdu+2b(1-b) L Rudu+(1-b)? L Ru’:lu] for a sphere
o

' f _
n=21 —h)[h J Rdu+(1—b) J Rualujl for a cylinder  (4-292)
o o

1
n=(|—h)J‘ Rdu for a slab
o
and the quadrature is given by
1
J Rdu=}(R,+R,)+3R, (4-293)
o

We can apply these equations as follows. Given ¢ we can solve the three
equations for b. Conversely, given b we can calculate directly the corresponding
value of ¢. By choosing various values of b we can obtain the solution for various
¢ values without iteration, and obtain the n versus ¢ curve. The valueb =
nonzero ¢ and this is the smallest b for which this method works. This case
corresponds to having a zero concentration at the center. For smaller ¢ it is
necessary (and both possible and efficient) to usc orthogonal collocation, perhaps
with N = 1. When b > 0 we are applying orthogonal collocation on finite elements
using NE = 2 and allowing the element location to be determined.

We now solve the problem using OCFERXN for the given parameters to
obtain the solution shown in Fig. 4-15. For ¢ = 14.44 (or example, the value of b is

0.99725. To apply orthogonal collocation on linite elements to this case we put
elements at

X = 0,0.5,0.997,0.998,0.999, 1.0 @294
and obtain a solution wi
the region approaching
extension of our ca

W

th an accuracy of 0.1 percent in . Such a value of ¢ is it
g the asymptotic solution and represents a considerable
olov pability. Additional elements can give improved accuracy.
Hermifci:; :IOS;"aIPpIy orthogonal collocation using trial functions that are
functions on)’m‘e :: s. We ‘reslncl allgnhqn here to cubic polynomials. The trial
Parameters 1o sefi oo 4r€ shown in Fig. 4-16. Each trial function needs four
o define the cubic polynomial. There are also four quantities f
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Effectiveness factor, n

107 L I Lo
10° 2 4 6 810 2 4 6 810

Thiclemodulus,¢

Figure 4-15 Comparison of one-term collocation with exact answer, using Eq. (+-136) with a = 3,
7= 20,8 =002.Bi, = 250, Bi = 5.and 3 = 50.

interest: the value of the function and the first derivative at each end. The trial
lunctions are defined such that three of these quantities are zero and the fourth is
one. Thus we take in the kth clement
Hy = (1 —u*(1+2u)
Hy = u(l—u)h, (4-295)
Hy = u*(3-2u)
Hy = =)y
The representation of the function in the kth element is then

s
)= Y aHin) (4-296)
Il

and thefirst derivative is
(4297)
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Figure 416 Hermitc cubic polynomials.

while the second derivative is

P ‘,‘L‘= 3 @ oH, (@298)
a3 a? TR S ad

Atu=0,H, = land H, = Hy = H, = 0 5o that ¢(0) = a,. Likewise, H(0) = b,
Hi(1) = 1,and Hy(1) = h,.
To apply the collocation method we need 1o be able to evaluate the function
and its derivatives at the collocation points. These are given by
: s . 2
g RSB )
dul,, <y dul, |, S i,
which are just linear oombmauons or the nodal values ¢(0), ¢(0), c(1),and c'(1)- W&
write these equations in the form

a

X de 3 20
eluy) = Z Hya “—Lllu)= Z Ayay %(u,) Z Byay (4300

Where the matrices H, A, and B are 2 x 4 matrices listed in Table 4-8.
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Tuble 48 Matrices for Hermite polynomials

(88490 0180 0.13144 5856k, 0.11509 9820  ~0.03522 0811 )

0.03522 0811k, 0.88490 0180 —0.13144 5856k,

He) (\\IISM 9820

1 028867 5136k, 1 —0.28867 5136k,
A ( -1 0288675136k, | 028867 su(ah.)

—14641 01620 -2732050810h,  3.46410 1620 ~-0.73205 0810k,
B ( 641 01620 073205 0810k, —3.46410 1620 273205 onmh.)
e

Element k ' Element k + 1
m m+2 m+4
m+l m+3 m+s
Fif 417 Hermute polynomials on finite elem ents.
b ) = IO+ HY + e sHE g sHE
e a0 g HE Dt B s
Element e

‘boundaries -—
M"
NT

A=

[EXERNAN /s,s 7.8

= Residual
x=0 collocation
@
3,4
e 10
u=00.21132... 0.78868 ... 1
® ‘
15, Hermte cubic polynomials: (4) Globsl numbering
nts,

Figare 418 Collocation points on Mnitc cleme!
system i. (h) Local numbcring system -
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When we use finite elements we have as parameters lhe_ function and s
derivative at each node, as illustrated in Fig. 4-17. The trial functions are combined
such that the parameters at the right end of the kth el_emenl_are the same as those
at the left end of the (k+1)th element. The collocation pgmls are still the same
points, but the solution is now written in terms of the function and its derivative ay

han the function at the collocation points, which

the ends of each element, rather t!
are internal to the element (see Fig. 4-18). We let NE be the number of elements
and then we have NT = 2NE +2 parameters, with 2NE residual equations and

1wo boundary conditions.
Application to the Egs. (4-136) and (4-137) gives the residual in the kth

element .

18 a-11 & &
e £ o+ S 8 =0 (F ) o
We also have the boundary conditions
a; =0 (4-302)
—ayr = Binlaxyr_1 = 1) (4-303)

We have no need for conditions that make the first derivative continuous

-
Eq. (4-302) -‘

Eq. (4-301)

Eq. (4-301)

Eq. (4-301)

Eq. (4-303) J
fasaded N S A

Figure 419 Mayri
arix structure
Polynomials cture for orthogonal collacation on finite clements with H ubi
lermite cubx



OKDINAKY DIFFERENTIAL EQUATIONS-BOUNDARY.VALUE PROBLEMS 125

across the element boundaries because it is already so. Consider thepoint betw
the kth and the (k+1)th element. We suppose the fourth Coeliient in the kih
element is denoted by the global index m+3, as in Fig. 4-18, Then the first
derivative at u = 1 in the kth element is

de| 1, dH,
dx|

',T.“-u—,,l__l =y (4-304)

The first derivative at u = 0 in the (k+ 1)th element is

e _ 1 dH,

PR Rl 11
Equations (4-304) and (4-305) are the same, so that the first derivative of the
solutioniis continuous between elements.

The equations are assembled in a global way, using the boundary condition
given by Eq. (4-302). Each element then contributes two equations of the form
given in Eq. (4-301). Finally we have the last boundary condition, Eq. (4-303). The
equations can be written in the form given in Eq. (4-272).

The structure of the matrix AA is illustrated in Fig. 4-19. This can be solved
using an appropriate LU decomposition. The operation count to solve an
equation with m different right-hand sides using Hermite polynomials is

Operation count = SNE+4+m(INE+5) (4-306)

=an,y (4305)

u=o

We next apply this method to the special case of a linear reaction rate and use
twoelements of equal size i = 4. The equations are then
a; =0
Bi1ay +Bysas+ Biyay = hi¢*(Hyyay + Hyyay + Higty)
Byyay+ Byyay + Bagay = If@*(Hya, + Hysay + Hygay)
Byiay+ Byya,+ B ya, + Byaag = Wid*(Hy ay+ Hya, +Hysas +H gas)
By1a3+ Byya,+ Bayas + Baag = W9 (H21ay+ Hyza, + Hasag+ Hyuae)
ag =10

(4-307)

These equations can be solved most easily if the right-hand side is moved to the
left. For the case ¢ = 6, we get the solution

0.0060 ;=0 a,=00548
03125 as=10 ag=5731
This solution is the same as that derived in Eq. (4-279). This can be seen by using
the lagrangian solution to evaluate the derivatives at the element end points o the
Hermite solution to evaluate the solution at the interior collocation points.

The advantage of using Hermite rather than lagrangian polynomials is that
the former do not require a subsidiary cond to make the first derivative
continuous, This reduces the number of equations by _NE- 1, 0r myghly hy_ongl
third, for cubic 1rial functions. The Hermite polynomials may require pivoting il

(4-308)
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i al element of thematrix is zero during the decovm;vaosi(ion, but most Ly
the diagonc tines do the pivoting automatically within a certain structure,
momp?smo“ r:: any element in the matrix then the sparse nature of the matrix
_(ll'(he pivot \c;nnotc that the two approaches give identical results, however, since
o cm“}?ty’mnei the polynomial is a cubic function of the independent variable, the
::,‘: a;o:ndmy conditions are satisfied by _bol_h solulions.‘ the residuals are
evaluated at the same points, and the first derivatives are continuous between the
elements. These conditions are sufficient 10 require the polynf)mmls 1o be '!’e same,
so the only preference for one I‘orrl_mlal_lon over another is for convenience or
economy. The lagrangian formulation is dgﬁn!lel)_' pr:ferre_d when_ the flux is
continuous between elements but the first derivative is r.|ol. This can arise wh_en. the
diffusivity, for example, is discominuou§ because two difTerent r_nulena]s are joined
together between two elements. In this case the exact sol?mon does not hgve
continuous derivatives, and it makes no sense to use a Hermite polynomial which

4-10 GALERKIN FINITE ELEMENTS

The Galerkin finite element method is similar to orthogonal collocation on finite
elements except that the Galerkin method is used instead of collocation. It is
possible to use the same trial functions but it is more common to use lower-order
functions, which are either linear or quadratic in position. We consider first the
linear basis functions.

First we break the domain 0 < x < 1 into elements, as shown in Fig. 4-20. The
ith element has size /i, We define the basic functions as N.. As shown in Fig. 4-20a
the value of N, is one at the ith point , is zero at the (i— 1)th and (i + 1)th points,
and is a linear function in between. In the rest of the domain the function is
d ically zero. In 1 i licati it is important to develop the
€quations on an element-by-clement basis, and we do that here in one dimension,
t0o. We thus define a local coordinate system in each element using the
transformed coordinates. Thus in ith element

u= =
hy
Now as u goes from zero 10 ony i ithi
€ the corresponding x goes rom x; 1o x;, ,. Within
] R Xi 10 Xy
eachelement we define the linear basis functions ‘ :

Ny = {N.(u): I-u
Ny =u

(4-309)

@310)

which are shown in Fig.
numbering system J and thy
glnbal numbering sysiem js
18 necessary to keep in min

4-20. We must always be able to relate the local
< global numbering system i. For example N; in the
N3 in the (i 1)th element but N, in the ith element. It
d that the function N, is defined with a global index i,
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Ny Moy
—t ¥ ¥
=1 2 -1 ‘ " NT
=0 e x=1
(@
L A
1=1 1=2
u=0 u=1
®

Pigure 4-20 Galerkin finite clement- lincar trial functions. (a) Global numbering system i. (b) Local
numbering sysiem 1.

while the function N, refers 1o the local coordinate /. The numbering for three
elements is illustrated in Fig. 4-21.
With this rite the full trial functi

NT
) =Y eN(x) @311
o

Where each N,(x) is defined only on the approprinte elements. in particular the
(i=1)th and ith elements, by Eq. (4-310). In the Galerkin method we form the
fesidual by substituting the trial function into the differentiul equations. For
illustration we use Eqs. (4-136), (4-137a), and (4-137b), replucing r by x.
residual is then multiplied by each triul function, in this case N,, lo obwin the
Galerkin equations. We o this for the (wo boundary conditions as we . giving

g d d ' a1y
[ M (e s emyJix = * [[ REaIN s w12

o
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N,
" N Ny 3
" w
4
i=1 2 3
M
Neax
=1 2
N, M
Niea
1=1 2
1=1 2
N, N
Nl'l 2 1
b t —
=1 2
"= 2
Niaa /
¥ + ——— Figure4-21 Local und global trial
I=1 2 functions.
NT
dN,
MY T o .
[ XS ]“ 0 (@313)

(4-314)
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These cquations are combined by integrating Eq. (4-312) by parts 1o give
4 se
ax (Bl [dx

a1 d ! an,
=[N.x ’E'z""’"],,"_[ dxf dx(EcN)A‘ Ydx  (4315)

The weighted boundary residuals are inserted to obtain the final Galerkin
equation

NT ldN’ (ﬂ
dx dx

~'dxe;—[N;Bin(Ec,N;~1)],.,

—n-l 0
\
=¢1J' NR(Ec,N)x*~tdx  (4-316)

o

We now examine the evaluation of the first integral in Eq. (4-316). The
weighting function N, is nonzero only in the elements j — | andj, and is identically
zero elsewhere. Thus we only need to integrate over these elements. In addition the
function N, is only nonzero in the (i— 1)th and ith elements, and we only need to
integrate over them. Consequently, we can break the integration up into integ-
rations over elements. We use in the kth element Eq. (4-309) and

N, _ 1 aN,
a, - +
Gl = @317
Then we have
NT 1 NE 2 1
N, e, = 5 3 L I Ny ANy oy @318)
P v R v,

In each element there are at the most two trial functions that are nonzero. In the
local coordinate system these are / =1 and I = 2, hence the summation over
I'=1,2. The integral must be evaluated over every element, however, hence the
summation over k. The local integral is zero except in two elements. Henceforth we
note this summation over all elements by £, We then can write the Galerkin
equation, Eq. (4-316), in terms of local coordinates

2
-3 .;): VNS AN —):{N,Bi,,,[zl «-‘,'N,(")]— l}
3 -

v o du du

=4 Th I NJR(EGN -l @319)
Lhe |,

The element integrals are defined as
1 [YdN; dN

B?:=",T, |, dn

= ¢*h, J“ N GOR(ECSN,)xe " du @320
o

(4-320)
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and
X = Xo+uh, 4322

Boundary terms may be added if needed (they are only nonzero for elements op

the boundary)
5 = —BinNy(x = DNj(x = 1) (@323

and .
F§= —BipNy(x=1) (+324)

We can then write Eq. (4-319) as
Y Byci =Y F5 (4325)

where we sum over all elements. The equations can be constructed within each
element using the local numbering system, and then added together to obtain the
final matrix. Note in particular that or planar geometry, in which a = 1, the local
matrix of Eq. (4-320) is the same in each element except for the scale factor h,_
Thus we do not have to calculate many integrals. We can use 100 elements but still
only calculate 4 integrals (I,J = 1, and 2). This is the reason for using the local
numbering system and local coordinates. The local matrices for certain terms are
listed in Table4-9.

Tocalculate the term F§ we need the concentration as a [unction of position.
Within the eth element the concentration is given by

() = cf(l—u)+cjau (@326)

Usually Eq. (4-321) cannot be integrated lytically so we use
quadrature. The same formula, quadrature points, and weights are used as in Eq.
(4-104) to give

! NG
L Ny@RIZN ]x* du = Y WN(u)R[ECGN (u)]xi™t  @-327)
=

ThF quadrature points and weights are given in Table 4-3; usually NG=2or3
points are sufficient. Two quadrature points will integrate exactly a term that is a
cubic polynomial in u whereas three points give exact integration for a quintic
polynomial in . If the reaction rate expression is not a polynomial in ¢, the
integration may not be exact for any number of quadrature points. This introduces
another source of error in the approximation, and some experimentation may be
neoe‘slfaryrlo makg the error resulting from inaccurate quadratures less than that
The equma;ns accura ?ppl imation due to too few elements.

decommpen Mions resulting rom Eq. (4-316) or (4-325) are tridiagonal. The LU
Theapeguion couml tagonal matrices can thus be used to solve the equations.
nonlincar thep Newlm solve m systems is 2N!:‘+ml§NE+ 1). If the reaction rate is
the nonfinens dgebr:'m—kﬂpl«‘m" OF successive substitution can be used to solve
and one fore-agafr equations. Ne“.llon—'kaphsqn uses one LU decomposition

sweep for each iteration. while the successive substitution
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Table 49 Galerkin clement matrices

_—

Linear shape functions

Frane() [

Quadratic shapefunctions

NMo=2u-na-h ™ a3
&

2= du) —u) N _
PR

'\ = 2l

Ny = 2ulu=1) Ny ey
du

;-3
J-‘ d—N"‘ﬁ'.m: (-3; ,;’. >§>
o du du HE

s -1 4 -t
[ o

" 1
I N,.l.,:(;) J“N,...l..:
3 : o

method uses one LU decomposition per problem and one fore-and-aft sweep per
iteration. We can see that the matrix values for the first and second derivatives are
identical to those obtained for the finite diference method, but the Galerkin
method gives different results for the reaction rate term. In the finite diference
method this term is just evaluated at a grid point whereas in the Galerkin method
itis integrated over the element.

We next solve a simple problem, Eq. (4-145), using four elements ; = § with
the linear shape functions. For simplicity we do only the linear reaction (1 = 1) in
Plane geometry (« = 1). The overall problem can be represented in the r9rm of
Eq. (4-272). Let us begin with that matrix, filled with zeros, for the case with five
vahiese
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000 0 0 0
0000 Offc 0
0000 Of|lc,|=]|0 (4-328)
0000 0ffcs 0
000 0 0lles 0

The clement matricesare Egs. (4-320) and (4-321) with the appropriate terms from

Tabled-9
—~1 -4 4
17\ 4 -4

¢t (254
T 2a\¢5+2¢5

We assemble the first element. The local number system is one and two, as is the
global numbering system. Thus the B and F terms are placed in the locations
corresponding 10 the global indices one and two

(“329)

-4 4, 0 0 0l 2¢,4¢,

4 -4/ 0 0 Ofc, ¢ +2¢s

00 0o 0o ol 0 (4330)
0 0 0 0 ofle 0
o o o0 o olle 0

Next we assemble the second element. The local matrices are the same, see Eq.
(4-329), but the global numbering is two and three. Thus the local matrices are
placed into the appropriate locations of the global matrix at the two-three
position

-4 4 0 0 0] [ 20+c,
48T 0 ofe 2| e Hdertey
0 0 0 o ofc| ® 0
0 0o o o ol 0
We continue in this fashion for all the elements to get the result
-4 4 0 o 0} c,“ [ 2¢+¢,
g —i -: 0 0|, # Cp+dey ey
o ot 4 0ffe, ~eatdes+ey (4-332)
o -8 4l eyt tes
0 4 —alled L ci+204

The last cquation for ¢ is not

boundary condition rather than going 10 be used because ¢5 is determined by &

the residual. We can replace the last equation by
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the boundary condition to obtain the final matrix problem

4 4 0 0 O)fc ke
4 8 4 0 o0 c; , e +dcy ey
= _ 9 e ey e,
A A BT eyt des (4333)
0 0 4 -8 4lc o
o o o o e

e

Since this is a linear problem we can solve the system in one iteration by
moving the reaction rate terms to the left-hand side. For ¢ = 6 we get the solution
¢, = 000233, ¢, =000651. cy=0.03414, ¢, =0.18467. and ¢5=10. The

Ny Ny
N + "
— - ——* + -+
=1 2 3 4 56 ? NT
=0 D x=1
@

Ny Ny Ny

1=1 2 3

w=o wel wel

®

Figure 422 Galerkin linite clement -quadratic trinl functions. (a) Global numbering system (- (b)
Local numbering system 1.
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lated using the i d rate

lactor is

) ;¢

f " edy = ):/.,f cldu=Th Y ¢ | Niwdu (433
o - 0 e I=1 o

The value for  is 0.1816 compared to the exact answer of 0.1667.
We can also use quadratic polynomials on each element. The trial funcyion

are shown in Fig. 4-22. Within each element the trial functions are
Ny =2u—=1u=})

Ny= {N;=du(l—u) (4-335)
Ny =2u(u—})
The concentration is represented by the series
() = N )+ N (W) +¢50 N () (4-336)

within the eth element. Equations (4-316) and (4-319) apply so that they are ot
repeated. The element matrices, Egs. (4-320) to (4-324), are now difTerent, coming

from Table 4-9.
The equations resulting [rom quadratic polynomials have the structure shown

in Fig. 4-23, and the LU decomposition is the same as for orthogonal collocation
on finite elements with NCOL = 1. When there are NE elements with quadratic
polynomials, the number of operations to solve m such systems is

Operationcount = SNE+m(8NE+1) (4-337)

i
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We next solve Eq. (4-145). for a first-order reacti
. . fo eaction (n = | 2
geometry (@ = 1). with the quadratic shape functions. We use only :wao“fle::n? 4
which gives five unkno wrs, as in the case with four elements and lincar h“ .
functions. Theelement m atrices are shape

[ B
= =2 [—9 kS —;]
LI

4-338
2 205 +e5—4e w38
”:ﬁ o +8c5+c§
=4 s+ 205
The first element is assembled into Eq. (4-328) to give
S e B | ) 2, +¢,—des
o -5 8 0 oflal et
U A AL L] | KT B T B DRI N S )
0 0 0 0 Oflc o
0 0 0 0 ¢s. 0
Assembling the second clement gives
-4l 3 0 0)fe 20, +¢; ey
A e SR o SN | £ 2 oy +8c,+cy

S5 =R el =55 [-ata oot (@340
0 0 ¢ -y e, ¢y +8cy+eg

o 0 -3} =13 ey ~deytet2

Again the last equation is replaced by ¢ = L The resulting system of equations is
solved for ¢ = 6 1o give the solution ¢, = 0.00784, ¢, = 0.01442, ¢, = 0.06286,
, and ¢5 = 1.0. The efectiveness factor is given by Eq. (4-334) with
I'=1-3;n=0.1715. We note the improved accuracy obtained from quadratic as
opposed to linear shape functions.

The Galerkin method has one advantage over the collocation method in
certain cases: the boundary conditions that involve derivatives need not be
satisfied by the trial function, and boundary terms can be included in the
formulation. Of course this means that the approximate solution does not satisly
the boundary conditions exactly, whereas the collocation method results in the
satisfaction of the boundary conditions. If the highest derivative in the difTerential
cquation is second-order, then any boundary conditions involving first-order
derivatives can be treated in this way and are called natural boundary conditions.
Boundary conditions involving only the function must be satisfied explicitly, which
is why we have always used ¢5 =1 but have not needed to apply any special
condition for dc/dx = 0at x = 0.

In addition to the case of incorporating the natural boundary con ns the
Galerkin method is advantageous for cases in which a variational principle exists.®
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is i the Galerkin methog

ines blems this is not true, and then has

For most nonlinear ,:’:; over the collocation method. Both methods use popy:
articular advanta "
no p-'“l.mu"“ :|,‘.,"em, but the Galerkin finite element methods generally use |oy,.
numnalscfp afn ctions. The collocation on finite element methods generally yge
order bu?l? ‘:,n( are éubic functions, or higher, of the independent variable,
pplynon“d:uln?mve important implications (see SecA.4—l3). ll' both Galerkin apq
d.ﬂeren:;sn on finite element methods use the same trial functions, the collocatiop
coll:cz Iis preferred because of its simplicity and because fewer calculations are
":zld:d {0 derive the equations. These considerations are discussed more quapg;.
n
jvely in Sec. 4-13. .

la“v;']:e:re‘ is an alternative for the treatment of nonlinear terms, such as (he
reaction rate (erm, or terms involving a difusivity or |herr_nal conductivity thag
depends on the solution. Instead of evaluating lhe' reaction rate term at the
gaussian quadrature points and integrating, it is possible to evaluate the reaction
rate term at the nodes, and then interpolate using the shape functions. For

example, we have used
Rate = R(c*(u)) = R [Z f?Nliu)] (4-341)
T
where ¢“(u) is given by Eq. (4-326) or (4-335).
Alternatively, we could calculate the rate at the nodes
I R} = R(c*(0)
Rj =1 R = R(c()) (4-342)
' RS = R(c(1))
The reaction rate term is then expressed as

Rate = ¥ RiN (1) (4343
1

Then the integrals are easily evaluated explicitly, or exactly, since they are
polynomial expressions in the shape functions. If the reaction rate is highly
nonlinear and cannot be well represented by linear or quadrative functions on an
clement, this approach sives additional errors. It is useful, however, in one
problem treated in Sec. 5-9.

411 INITIAL-VALUE TECHNIQUES
AnDl‘l:lﬂ_ apprgach ljor sol\.'ing boundary-value problems is to convert them to

partial diff | equations that are i to steady state. A
wmp!ele_lrefilmgnl of the methods for solving the parabolic partial diferential
€quationis given in Chapter 5, but here the ideas are introduced.

Consi P N :
hand ::zlder Eq. (4-136). We write this equation with a me derivative on left-

3 _1a o
o= () - emo @
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We begin the calculation with an initial guess of the solution

(r,0) = colr)

(4-345)
and integrate Eq. (4-344) until steady state is reached.
Let us write at the ith point
erit) = ¢) (@346)
and replace Eq. (4-344) by
de,
@ = AA4C—$*R(c) (&347)

where the matrix AA depends on the spatial discretization used (finite dilTerence,
collocation, etc.). We now have a set of ordinary differential equations that can be
integrated by the methods discussed in Chapter 3. We integrate 1o steady state (i.e.
1— o0) thus we want to use an implicit method so that large time steps can be
introduced. The method should also have a variable time-step [eature so that small
time steps can be used initially when the calculations might be unstable for 00
large a Ar. Large time steps can be used as the steady state is approached and the
solution becomes stationary in time.

This method of integration has a parallel 1o the successive substitution
method of solving algebraic cquations if an Euler explicit scheme is used. Let us
take the representative equation

Sx)=0 (4-348)
Successive substitution would use the iterative scheme
B 2 o) (4-349)

and for f# small enough the method would converge. If we change Eq. (4-348) to an
initial-value problem

ox
== (4-350)
e S(x)
andapply the Euler method with x" = x(1,) we get
Xt

= " (4-351)
— = J{X
A J(x")
This is clearly the same as Eq. (4-349). W e know that the Euler method isnot a
sitable method of integration if Eq. (4-350) is stifl, and this suggests that ll:je
Successive substitution method is not ble either. The backward Euler method,
animplicit method, is satisfactory for stillf problems, and would give in place of Eq.
(4-351)

) (4-352)




F EERING
NONLINEAR ANALYSIS IN CHEMICAL ENGINEERINS

138
The right-hand side is expanded in a Taylor series

’ i . )

L e 4 =) @353
and rearrangement gives .

(l —A' %) (erh =) = A7) (@354)

ize At the method is Newton-Raphson, but for small At it js 5
;z.:::f,: :.l,ebps;:f,e(i:n method. This suggests a combined s'lralegyll' or solving sets
of nonlinear algebraic equations. Of course any method of integration can be used

. (4-347). .

0 s(g[l:,eerEqusl:-: al{crna(ivc method of applying initial-value 1ef:|1.n_1ques 1o solve
boundary-value problems. The only reason we cannot apply mmal-value‘mcm
niques to integrate in x is that two or more bqundary cond ns are applied at
different positions. If we knew all the conditions at one po‘sman x we could
integrate with x as a time-like variable. The next method uses this approach.

We suppose the two boundary conditions are that the function takes specified
values at x = 0and x = 1. We do not know a priori the value of the first derivative
at x =0, although once we have the exact solution that value is known. Let us
guess the value of )'(0) and use the known value of y(0). Then we have two
conditions at the same point, and these are sufficient to solve a second-order
equation by integrating forward from x = 0. We integrate until x = 1 and check
the value of y(1). If it is correct we made a good guess of 1*(0); if not we must make
another guess and try again.

For linear problems we proceed as follows. Suppose the problem is

Ly = gtx) (4-355)
yO) =a y)=b (4356)
w(here Ly is an arbitrary second-order differential operator. The forcing function
9(x) and the boundary values a and b are all specified. Consider then three
problems:
problem I-solution y,(x)
=40 y0=a yo)=0 35T
problem 11— solution yalx)
Ly=0 y0=0 V(0) = 1 (4-358)
3(x)
Ly=0  yo0)=1 d
- Y(0)=0 (4-359)
Each of these problepns j i
o MS IS an initial-value one, and 2 f
Pter 3 10 solve them numerically. We construct lh‘:‘:‘ucﬁ‘:oalssz\ :hse methods©
Y= 31+ ey yalx) +eps(x) (4-360)

Problem [11—solution ¥y
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This function satisfies the differential equation for alj ch

oices of ¢, and c,. |
satisfies the boundary conditions if we require ond et

a=a+ey,(0)+esy,(0)
b= yy(D)+ey(1)+es(l) (4-361)
or
o= _b=n(1)
ya(l)

Thus the solution to the two-point boundary-value problemist o solve two initial-
value problems (three in the general case) to find y,(x) and y,(x). This procedure
works unless ¢, becomes very large, in which case round-ofl errors are important,
or unless ¥y and c¢,y, are both large but with opposite signs, in which case the
solution is poorly determined due to round-off errors. Unlortunately, we cannot
predict either occurrence while we are choosing a method. This approach has the
advantage that il the solution has a steep gradient, in the initial-value method, a
variable step size is used with a small step size at that region and a large step size
elsewhere. Il a variable step is used, however, the various solutions |, y,, and y,
may not be known at the same points, so that construction of the complete
solution must use interpolated values.

The same type of initial-value method can be used for nonlinear problems in
an iterative fashion. Keller® gave a good treatment and called this approach the
shooting method. Consider the second-order problem

=f(x5y)
aoy(0)—ay'(0) =a fora,=0 (4-362)
boy(1)+by'(1)=f  forb, >0
We convert this to
u” = f(x,uu')
uw(0) = a;5—ca (4-363)

1'(0) = aps — cort

where we choose the ¢, and ¢, such that
(4-364)

ayo—toty =
We next convert the second-order initial-value problem of Eq. (4-363) to two first-
order problems

(4365)

0(0) = oS — o
and define the quantity

25) = bou(1,5)+byu(1,5) = = bou(1,5)+b,0(1.)=P w3ee)

thatwe would like to make zero.
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1) =0 @367)
. e and @ hod 1o do thi
bstitution and a Newton metl othis. In
loy both & successive SU i o
:’):: :::gccs:fe s{xbﬂiuution jteration W replace EQ- (4-367) by
s=5 m#0 (4-368)
5 showed that ir
Keller® sho' ﬂ.[ o o
&y
for some N and 0 <M< Jr, where T increases a$ N increases, then the iteration
for some .
scheme

#o1 = homls') @370)
i J he initial-value

as k — 0. The procedure is then to choose an s, solve the ir
:‘::;:fs‘ d'sEqs (4-365), check the function given by Eq. (4-367), and iterate with

. (4-370).
B lFc.r Newton's method of iteration we replace Eq. (4-367) by the Newton

formula .
;m=g‘_1{“_) (@37

The funclion 7 = dz/ds is determined as the solution t0 2 subsidiary problem. We
let

(4-372)

_y LY,
=31+l
Uoy=a, 0 =do
7(s) = bol(1,5)+byn(1,5)
of lh?ﬂlml‘[:% :::I“.'Ddﬁ we can “shoot” in either direction, and we can use any
and Hicks,” the melhov:jng mv':;' I-value problems. Applied to Eq. (4-136) bY Weisz
¢ was large and the proved very powerful because it could be used even when
integration uses the b Cov:emrauo.‘\vws small (say 10-2°) at the center. Th®
we want 10 find the Z:‘(Iirdry condition ¢'(0) = 0 and guesses the value of ¢(0) 1
e ¢ (o e cnire curve of y versus ¢, rather  (han solve just for o0
as even more advantages because the nonlinear

"
37)

can bessolved without iteration. problem
Next we change the problem
Lo de
! Ir(" 'm) $*R(c) @34

_de
TO=0 =1
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into an initial-value one

(4-375)

de
~Z@=0 cbz=D=1
dz
by the choice r = bz and d = b¢. For any d we choose an arbitrary c(0) and
integrate this last problem until the concentration reaches one. Suppose this
happens at z = z,. Now we let

b=t e-d_u @376)
z

and we have theexact solution witbout iteration to Eq. (4-374)(or the case ¢ = dz,.
We don't know the value of ¢ ahead of time, of course, so that this method is
suitable when we want to traverse the entire curve of n versus ¢, which
corresponds to making successive choices of ¢(0). For each choice we get a
solution without iteration. We also note that the method is not possible, without
iteration, when the boundary condition is of the third kind as in Egs. (4-137a) and
(4-137b), because then the reaction rate expression depends on c(1), which is not
known in the initial-value technique. The shooting method would be applicable for
thespecialcaseof 6 = 1.

For illustration we apply the shooting method to Eq. (4-374). The ordinary
dillerential equations are

w=r

o= $2R(U) +

. (4377
e =n

L _g2dR a1

W=t gl

where the concentration is u and its first derivative with respect to position is v.
The variables { and 1 are defined in Eq. (4-372). We must solve these equations
with the boundary conditions

u0) = v(0)=0 Lo =1 n0)=0 (4-378)
and the(lunctions 7 and j are given by
M) =u)=1 ) =) @-379)

These equations can be easily integrated using the initial-value techniques. (See
program IVRXN in the appendix.) The iteration scheme of Eq. (4-371) works well
for simple reactions, such as R = ¢ or R = ¢2, but is not robust for large ¢. The
same is true for the first-order, irreversible reaction with fi = 0.4 and ¢ = 30.
Intermediate steady states in Fig. 4-5 are easily determined with an appropriate
8Uess of s, but the iteration scheme may oscillate for large ¢. When the scheme
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ing technique

Table 4-10 Results from sho
) ¢ " Exact

ol 09967 09967
gfz:: 03 0.9710 09710
0.6481 10 0.7616 07616
00993 30 037 0337

R=c

09950 2] 09934
09581 03 09449
07123 10 06525

10 Failed

R=com T = 1+ffic.f =04,

09983 010 1007
09930 02 1.032
09829 03 1077
09654 04 1160
09307 05 1336
07661 055 2368
06498 0s 3265
04135 04 5445
01442 03 1084
00499 02 2046
002177 023 30.84
0.6583-4 025 8098
01097 5 03 85.167
Guess 1077 07 Oscillated

works the answers are quite accurate and the calculation is fast. Typical results are
given in Tabled4-10.

4-12 QUASILINEARIZATION

The ion method can be ill
simpl, two-
point hound.nry -value problems. Suppose the eq“rlllolr: as a way of solving
&y _
=l (4-380)

Weexpand the nonlinear function as

JOoxy =107, \)+0Jf 0=+ ... (@-381)
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and rewrite Eq. (4-380) as

. ¥,
i a0 @382)

We use the original boundary conditions. This is linear in y** ! and we can solve
this using scvv_:ral methods. If we use shooting methods, we call the method
quasilinearization. If we use finite dilferences, we get the same results as if finite
diflerence is applied to Eq. (4-380) and the Newton-Raphson method is used to
solve the resulting nonli Igebrai i If we use orthog I i
the method is the same as if orthogonal collocation is applied to Eq. (4-380) and
Newton-Raphson is used to solve the nonlinear algebraic equations. One new
result appears from quasilinearization: the iterations converge for all y(x) if

’72

i'*:{ =0 (4-383)

or il the reverse inequality holds everywhere. Further details are available in the
book by Lee (1966). This result does provide a convergence theorem for finite
difference. collocation. or finite element methods; the Newton-Raphson method
converges provided Eq. (4-383) is satisfied.

4-13 COMPARISON

The previous sections introduce a variety of methods for solving two-point
boundary-value problems. While the advantages of each method are mentioned as
it is introduced 1t is instructive to discuss all the methods together now that the
details of solution arc understood. We do that in the context of three problems:
heat conduction in a slab, diffusion and reaction in a catalyst pellet, and
viscoelastic fluid flow in a pipe.

Many of the ical hod: 1 ion OC, finite difl
FD, orthogonal collocation on finite elements OCFE, and Galerkin finite elements
method GFEM  differ in the method of approximating the solution and the
principle generating the governing equations. To compare these methods we need
10 summarize the known information about errors, storage requirements, and
work required to set up and solve the problems. .

An important consideration is how the error decreases as more points or
unknowns are added to the approximation. Information for the various methods is
given in Table 4-11. The error estimates give the principle term in the expression

lle=call = K" (384
The mean square error is defined as

:
lle el =t j (e=cq)x*™tdx (@-385)
o
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The constants are dilerent for each method. For each method the error estimate is

actually

Error < KAxmintkm (4-386)
where the power k dep;nds on properlies qflhe exact solution. If the exact solution
is highly continuous (it has many derivatives which are bounded), k is large and
the error bound: n Ta_ble 41 apply, If the exact solution is not highly continuous
(perhaps first derivatives are con!mpous,.bm second derivatives are not), the
power k overrules the error bounds listed in Table 4-11. We speak of the rate of
convergence of the errors as the number of terms or elements increases. The rate of
convergence is fixed by the power of Ax in Eq. (4-386). For a case with low k (i.e.
the solution does not have many continuous derivatives) the rate of convergence of
all methods is essentially the same. Then the preferred method is determined by the
work requirements, as discussed below. For a case with large k the rate of
convergence of each method is difTerent: finite difference methods converge as Ax?,
finite element methods with cubic polynomials converge as Ax*, and so forth.

To compare the methods we assume that an orthogonal collocation solution
with three internal collocation points gives the same accuracy as a ten-term finite
difference solution. The finite element methods are then scaled to have the number
of elements that give the same error using Table 4-11. Results are listed in Table
412 under low accuracy. The number of elements needed for each method
decreases as the degree of the polynomial increases. This is because each element of
a high-order method has more parameters than each element of a low-order
method. Most of the finit¢ element methods need about ten terms under this
assumption, with high-order orthogonal collocation on finite elements being the
exception needing only seven.

Now suppose we wish io improve the accuracy. If we increase the number of
interior collocation points in orthogonal collocation from 3 to 5, the error
decreases by a factor of 5°/3* = 116. The number of elements for each of the other
methods is then increascd to improve the error 116 times, giving the number of

Table 4-12 Number of terms required for similar accuracy
Low accuracy High accuracy
Operation Operation
NT count® NT count®
4 » 5 67
7 36 2 120
10 1n2 3 m
1" 80 45 160
" 5 109 545
1 55 19 545

Number of multiplications to perform one LU decomposition and one fore-and-uft sweep.
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Over 100 grid points are needed for finite difference
ith linear polynomiaIsA Twenrljy-lwo elements suffice
n ent with quadratic polynomials, and only ten elemens
ol S . The v e
terms is needed for the high-order method. using cubic polynomials on finje
clements. Of course. even fewer terms are required for global O'ﬂhog?nﬂ collo-
cation. using one high-degree polynomial over the cntire domain. This example
reinforces the point that high-order methods converge rapidly ar!d require (ewer
(erms for a given error than do low-order methods. such as finite difference or
finite clement methods with linear polynomials.

The next question to ask is how much work is required to solve the problem?
Except for very difficult problems. or those solved thousands of times, the work is
not a significant factor. given present-day computer speeds and costs. It is
worthwhile to discuss the work requirements. though. because they are significant
for parabolic differential equations. which are treated in Chapter 5. and those
work requirements are directly related to ordinary differential equations. Likewise,
the storage requirements arc modest for one-dimensional problems.

First we consider the work needed to solve one iteration once the matrix is
a allfﬂb c. T?Ic work is computed by counting the number of multiplications and
divisions, since these operations are usually the slower ones on a computer
f’“"f”_“d m“nlh uddilioll_illrd subtraction. The operation counts are given in Table

11. as obtained from Egs. (4-257). (4-273). and (4-306). We notice that the work
requirements increase with clement size in the reverse order as th F
given number of clements or grid points the loy dei et
Galerkin with lincar polynomials) m-mru' ;)\v-nr or methods (finite dilference,
clements may be required by the l(‘ww-ur‘i{vr:nc::«i:l:“:;“uum. 1bul o mol:
operation counts are listed in T 5. For equivdl lent accuracy
fewer mulllphcauonc: 2;‘:‘3]:\:\1;‘::‘:;:‘.2 .We see that high-order methods require
much less than the number rn:cded. huT “,w number of clements needed is very
convergence of the high-order meth, d'y U‘T order methods. vThe rapid rate of
the number ofements i mercined ods overshadows the slow increase in work as

Finally the work nee .
required 1o dclumkintul‘ll:] llo Ll up the matrix can be evaluated by the work
nformation such g5 listed mtr:s in the matrix. Here we assume that the
caleulation of those results is o ldb,h:S 4-4. 4-6, and 48 is available, since the
done once. We count then anly e ! P4t of the total program and is only
Lerms s st in Table 41, F:rlu(cr OPerations needed to obtain the remaining

collocat ical difusios acti
;2'::::;0; f.otl'::,('ion with th n reaction P;:!'blﬁm with the following choices: A
in orthogony| w'l'lf)':"lﬂferenc solution with 19 cation points is often equivalent it
other collocation and n = 10 ; intervals or 11 nodes. Take NP =

other methods we cho, in the finite differ for the
about ten. For ortp 0s€ the parameters such 1 ence method. Then fo! .
and hres loqorthoBOnal cOlocation on e that the number of unknowds
- For Galerkin finite ele, elements we use cubic polynomidl®

ments with linear polynomials we US°

elements listed in Table 4-12.

or Galerkin finite element W




wi

Table 4-13 Operation counts to formulate problem

Exaluate at all nceded points

Evaluatecquations$

d d( d\*

Method AT - Rt it “h i dx ("J\) Riett
oc 0 mNP-2) NP NP 0 NPINP=24my)  m(NP-2)
OCFE-H INPNE 2m,NE INPNE NPONE4HD) O INE(NP+a+m, 2m,NE

+my)
OCFE-L (NP-UNE+1 0O mNENP-2) NP-NT NP NT 0 2NP-NE(NP-2) m,NEINP-2)

+m,NT
GFEM- INE+1 INQ NE mNQ-NE  MNT WT [ NE-NQU+m:)  NE NQum, +3)
GFEM Interpolate Dic) and R(c) NEQm;+9)+m;  NEQm, +9)4+m,
GFEM-1 NE+1 INQ-NE m,NQ-NE AT 0 NE-NQQ+m;)  NE-NQ(m +2)
GFEM-1 Interpolate D(c)and Ric) NEm,+4)4m,  NEm,+4)+m,
FD 0 myn=1) n+l A+ 1) ° nimy+3)+my =3 n

* At collocation points or Gauss’ points.
+Takes m, operations to find R given ¢
4 At grid points or collocation points.

=+ Takes m; operations to find D piven c.m, 1o find dD ‘dc given c. Evaluate at collocation points. grid points. or with nodal weighting function.

+4To find the term involving Ric)in Eq. (4-321). assuming ¢ is known but including the evaluation of R.

44 All operations of the solutionc

ce and the results are stored. These operations ure not included
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Table 4-14 Simplifics

n of Table 4-13. Operation counts for m, = 15.m, = 4.m;

Evaluate equations Solve one iteration®

Evaluate at nceded points — -
o - Setup Solve one

J— - d( d
Method AT« Re) [T (DJ; ) Re)  RO&c problem iteration
ocAP=4 4 0 E 16 4 30 30 36 90
OCFE-H.cubic. NE=3 8 £ 90 40 9% % 114 45 255
10 0 90 40 40 88 90 90 106 284
NQ=3 " 45 25 B 3 105 270 38 81 sol
Interpolate Dic) and Ric) ¥ 20 200 81 380
450 1 150 510 570 st so01
Interpolate Dic) and R(c) 84 205 208 51 340
n Bs o 22 7n 135135 H 256

*Set up problem: solse one iteration.
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ten clements While for quadratic polynomials we use five elements. In the Galerkin
method three quadrature points per element are used to evaluate the integrals. [t is
assumed that the reaction rate can be evaluated with 15 my| iplications once ¢ is
known, where the number 15 includes several multiplications for evaluating the
exponential. We also assume that the diffusivity, which depends on c, is evaluated
in four multiplications, given c. and dD/dc requires four more multiplications.
Table 4-13 then simplifies to Table 4-14, "

We see using the above example that the orthogonal collocation method is by
far and away the best method. The finite dilference method and high-order
orthogonal collocation on finite element method are equivalent, and the Galerkin
methods are not compelitive due to the expensive quadratures for nonlinear
problems. High-order orthogonal collocation on finite elements is better than the
equivalent low-order method except for solving the equations. These general
conclusions, based on many i seem to be by detarled
ccomputations lor specific problems.

The first example problem is heat conduction in a slab with a temperature-
dependent thermal conductivity

o T
dx a = (4-387)
00)=0 o()=1

This problem has been solved by hand calculation for several methods. The author
found that the Method of Weighted Residuals was easy to apply in the first
approximation and gave reasonable results, The accuracy was unknown. however,
50 that higher approximations were needed to deduce the accuracy. These were
complicated to set up and laborious to solve by hand. The finite difference method
was easier 1o set up but also laborious to solve for several terms, which
unfortunately were needed. The perturbation method was easy to apply in the first
approximation, but the results were limited to low values of a. Even the second
approximation gave maccurate results for a = 1. Higher approximations were
laborious to find. It was found that the orthogonal collocation method gave very
accurate results, that a few terms sufficed, it was easy to set up, and it was easy 10
solve, since only a few terms were needed. Indeed, using N = 2 gave only a 2x 2
matrix 10 invert at each iteration and the fluxes agreed to within 0.3 percent of
each other and were within 0.7 percent of the exact solution. By contrast, straight
collocation with uniform distribution of collocation points and two terms (ie. the
same degree polynomial) only gave an accuracy of 5 percent. The finite difference
method with two interior nodes (ie. the same degrees of freedom and the same
work 10 solve) gave the fluxes at the two sides within 5 percent of cach other and
the average flux was within 5 percent of the exact solution. A summary ?f results
given in Table 4-15 suggests that the orthogonal collocation method is a very
Powerful one. .

There are problems, however, for which the orthogonal collocation melho_d is
10t suitable, and this prompts introduction of the finite element methods. This is
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' Jution to heat conduction Eq. (4-387)
Table 4-15 Approximate solt! [
Finite Orthogonal
} oo
Moments difercnce - eollosation
T T N =2 =3 N Eraa
N
. 0129 o142
0143 0116 0124 e
" gl;g 032 0291 03I 0309 03N oz
ol O%3  oss 081 0SB 0519 0593 g
o oss 0809 079 079 0809 0809 o3
o Os0 0925 0916 0520 0929 095  ogy
o a3 Lsoo 1325 1387 1317 a8 s
oo 133 1500 1351 1459 1367 1493 |s;p
iﬂll) flux 1333 1.500 1.338 1.423 1339 1490 1.500
verage .

-

illustrated by reference to the problem of diffusion and reaction in a pellet witha
first-order, irreversible reaction

G- #e=0 (@39)
%10)=0 ely=1

Results for the eflectiveness factor as a function of the number of terms are given i
Fig. 4-8 for various values of ¢. When ¢ is large (say 30). the solution is very stecp
(see Fig. 4-4c) and many terms (N = 6) are necessary to achieve a | percent
accuracy. When ¢ is small (say 3), the solution is well approximated by a
quadratic polynomial and only two terms are needed for 1 percent accurdcy.
wherea§ six terms give accuracy greater than 10~ '! percent. Thus we are ledtotb¢
conclusion that the orthogonal collocation method is most suitable for problems
with smooth solutions and becomes less suitable if the solution has steep gradients
We then need finite elements or finite diflerences,

e I the advantages of the orthogonal collocation method s thal i e
Mo the mi:mfneln_c (a function of x? and not of x alone) this fact can b
unknowns,In the ypor \METEDY reducing by a factor of two the n“mwm
the center, An al|El?|:::irv:|i:l:?ds this cannot be done, except in the first elemen

transform the differential equation using

soll

[l 2 (4,389]
" = x
Doing this gives
4 de e . 0
= xet dc de (@
X" hdx (" ‘) =4u— + 2a—
Ir the problem s solved o dx du? du

ion B
" OSu<1, rather than 0 <x <1, the solu_uono'l

automatically «
Symmetric function of X2 The diflerential equation
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singular. since the cocflicient of the highest derivative is zero at u = 0. This typeof
tion has not been for the solutions given below.

b The next problem is for a nonisothermal reaction and provides a useful

comparison of the dilerent numerical methods. Let us consider

;l, :'—’r(r"%) = ¢?R(c) = pcer#T
T=1+p-fic @391
:%‘(0) =0 =1
f=03 =18 ¢$=05
We first examine the nonlinearity to see how severe it is. The needed quantity is
%‘: =¢’ e?"”( (4-392)

and this ranges from — 2.8 to 16 as ¢ ranges [rom zero to one. Clearly this is not a
large variation. We know that the solution also depends on ¢. For small ¢ the
solution is a smoothly varying function, such as the one represented for ¢ = 0.1 in

Ll B
~
x
N T——
\ Finite difference
)
6| |
.
g -sp Equispaced g
g collocation
o
S0k ]
i \ d
Orthogonal
el collocation

NlogN Figure4-24 Error in bounduryflux.
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. imit consideration to 0.9 < ¢ < 1.0 then the rate derivative
T%;:‘ dl:;d\:'e <lm:"|A1, In that case the problem is even easier. Results omg:ﬁ
with finite difference (equally spaced grid points), collocation (equally spaceq
jon points), and | n are p ted in Fig. 4-24. Clearly
the best results are for orthogonal collocation since with only one term ype
accuracy in the effectiveness factor is 10~ # percent, which is only achieved with the
finite difTerence method for n = 10. In addition, the orthogonal collocation results
can be derived on a hand calculator, while the finite difTerence method requires
computer. We also see in Fig. 4-24 the importance of using the collocation points
from the orthogonal pol; ials, since equi d ion points degrade the
accuracy from one to six orders of magnitude.

The finite difference and orthogonal collocation on finite elements using
lagrangian polynomials give results plotted in Fig. 4-25 to display the decrease in
error as the number of elements is increased. By the error estimates listed in Table
4-11 the slope of the curve should have the values —2, —4, and ~6; as they do.
The most accurate solutions with N = 5 arc reaching the machine accuracy for
single precision arithmetic on a CDC computer which keeps 15 digits.

The final choice of method, of course, depends on the accuracy achieved for a
given computation time. Results of this type are shown in Fig. 4-26. The successive
substitution method was used for the finite dilference and orthogonal collocation
on finite clement methods. while the Newton Raphson method was used for

o T T
-2 Finite difference )
x
e ——,
N=2
-6 Slope -4.05 -

E I

“1obk 4, Slope 6.4

aN=s -
N

i}

~14 |

-16

° 2 4 6 8 Figure4-25 Error in boundaryheat flux as3
NE function o fthe number o felements.

Orthogonal collocation onfinite clements.
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® oC
© OCFE,N=2

-2 4 OCFE\N=3
oOCFEN=s 107
3
-4 polation to -
'\:‘w\! obtain Ax? tran. | 0.1%
el N ~=x cation error g 0.01%
5 -8
H
°
g
“1ok
2k ]
13
-14f- \ i
16} . 4
; L 1
o1 02

CPU, sec

Figured-26 Error in boundary flux as a functionofcomputationtime.

| coll ion. For a given time the error is largest for finite
dilTerence, smaller for orthogonal collocation on finite elements, and very much
smaller for orthogonal collocation. Clearly for problems of this type the ortho-

gonal collocation method is the best.
We next turn to a problem whose solution has a steep gradient. The problem

isfor a nonisothermal reaction in a catalyst pellet with external resistances

1 i(.l"_”) = R() = ¢pZcer™iT
dr

de de P
7 @=0  —2(h=Bifc(h) 1]

(+393)

T(r) = 1 +[c(1)+ BoC1 - e(1)] —fe(r)
We examine the case with parameters f§ = 0.02, y =20, Bip, = - 0
4nd ¢ = 14.44. We first examine the strength of the nonlinearity. Evaluation for
€=cll)=1 and T =1 gives dR/dc = — 110, while for ¢ =0, c(1) = 1, and
T'= 1.3 gives 15.92. Results below show that c(1) = 0.16 0 that T(1) = 1.84 With
these resujis we get dR/dc = 189 x 10¢ at_the boundary r = 1. and dR/dc =
196 x10° at the center where c(0) = 0 and T(0) = 1.8432. Clearly this problem is

=250, Bi = 5,8 = 50,
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a difficult onc. We have already discussed in Sec. 4-7 that orthogonal
needs at lcast 40 terms just to have one collocation point in the COllocatjon
¢(x) = 0. and so for this problem we need finite elements. We apply :‘Slo.-. where
with the solution ¢ = 0 in one element and a parabola in the other WO elemenyg
[sce Egs. (4-282) to (4-291)] that the separation between the elOnc and fing
r = | —b and b = 0.00275. Thus we know a priori that the solution .seme"l§ is at
a small region near the boundary. A finite difference method 0,'ﬁ°‘?"la.ned in
method with uniform grid points or elements is going to require a lar, nite element
e 300). We can use the information contained in the simple solugon. o
10 locate the elements. The solution is presented in Sec. 4-9 when th. o though,
placed at xg = 0,0.5,0.997,0.998, 0.999, and 1.0. Carey and Finlay e Clemen_ls are
the solution by examining the residual after obtaining the s.,,miof‘o'_;_ continued
was, of course, zero at the collocation points, but it was nonzero in b he residual
regions of space had a larger residual. The elements that had “':I‘lﬁ,:'znisom
argest

1073 T T
10-4}-
=
s
= 10-¢|-
£
&
1079
1071
. 1)
5
e 10 20 40

Figure 427 Breor
Ercor in effec
h ectiveness Fac
(136) with y = 20,y eness factor for orthogonal collocation on finite ol ied 10 E
" ite elements applied (0 Eq-
S0

=002, Bi,, = 250, Bi = 5. und & =



ORDINARY DIFFRENTIAL EQUATIONS -NOUNDARY-VALUE PROBLEMS 1S5
EM:

siduals were subdivided. and the calculations re i
?:‘d process Was continucd. and the residual ;?::::ea‘:lyw I;’;?::s::jor;;hmem'
dooreased, 100- 48 shown in Fig. 4-27. In this fashion the elements can be k; e:iors
optimum advantage. Let us compare the rates of convergence with the ::Ii 9
ones for uniform elements. For N = 2 we get —4 as expected. For N = San‘;md
et —12 and —20. which arc much higher than the expected values d —6 nd
" 10. Thus for (hrjs problem finite elements or finite differences are required, ab“d
even so the location of grid points and elements must be specified. Use of l:;
residual provides an eﬂeﬂlye means for doing that in this case. Orthogonal
collocation (global polynomial) is completely ineffective in solving this proile
but orthogonal collocation on finite elements is quite useful. ™
For the final example we turn to a problem not yet treated: flow of a non-
newtonian fluid through a pipe or between two plates. Under the assumption of
fully developed flow the equations are

1 d du
a-1
( dr) b=0

rtdr
_ ApR?

i (394)

du
—(0)=0 u1)=0

dr
where R is the radius of the pipe or half the distance between the two plates, and
Ap/Listhe pressure drop per unit length, which is a constant. The equation is written
so that b is positive. and u is some characteristic viscosity. The 1 is the viscosity,
which can depend on the velocity gradient. The goal is to compute the average
velocity as a function of the pressure drop or b. We integrate Eq. (3-394) once to
obtain

g b (#395)
dr a

where the constant of integration is set to zero (o satisfy the boundary condition at
r = 0. We thus need to solve

du b (4-396)

Z=—-r

dr a
when u(1) = 0 and calculate the average velocity
'
wy = aI u(r)edr @39n
o
The viscosity function can take several forms and here we use

Ao LR (@398
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n=0.082A1=105

10°

1 n=044,1= 105

Viscosity, n

102

0T 50tz 5 108 2 510t 2 5102 2 5 10

Shear rate, ¥

Figured-28 Apparentviscositybased on Eq. (4-398)

Both /, and n are constants characteristic of a material; difTerent polymers have
diflerent values of the constants. The viscosity function is displayed in Fig. 4-28for
several choices. For small du/dr = the viscosity is constant and we have a
newtonian fluid. For large du/dr the viscosity approaches

=gl e
and we have a power-law fluid. The same is true for small and large 4, which is @
parameter characterizing the elasticity of the material. The case 4 = 0 gives 30
inelastic fluid and large . represents an elastic fluid.
I wfli'::eﬁe&?mme Eq. (4-39) to seef the solution is a symmetric function or.
o o he power seies and attempt 0 equate like powers of r. We find the
(12 Ty al g o Xe€PA for integeal values of n. For certain of these values
only symmetric solutionn wre of r drop out. For other values of n we assume that
because the velocity at "s are needed, which is reasonable for flow in 2 pipe
other side of the ce, one radius r is the same as at the same radius =r o0 the
problem nier line. We try the transformation = = r* to obtein W

nZﬁ‘J—::_E

dul" St @)

(4400)

Next we write Eq. (4-396) as

oy = < @41

-=r
a
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This is just an algebraic equation in the shear rate
uation to obtain 7 at that r. We then have j =

W Next we solve the equation

i

7. For any r we can solve the
du/dras a function of r,calling it

du
el ) u(l)=0 (4-402)

This solution method means that the nonlinear part of the problem has been
isolated into a single algebraic equation, Eq. (4-401), that is 1o be solved several
times for different 7. The diferential equation part of the problem is now linear—
Eq. (¢-402)—and can be solved wi(lgoul iteration. Thus the method takes the large
system of nonlinear algebraic equations resulting from solving Eq. (4-394) directly
by any numerical method and resolves them into the same number of nonlinear
algebraic equations, each of which has only one unknown plus a set of linear
equations. This greatly reduces the computation time necessary to solve the system
because the matrix to be inverted need be inverted only once rather than once each
iteration.* Unfortunately, the transformed Eq. (4-400) does not admit this easy
solution method (7 depends on \/z(du/dz)), so that translormation is not used

The limiting behavior is useful to obtain before deriving numerical solutions.
When ; = 0 we have a newtonian fluid. Then the problem is linear and an analytic
solution exists. When % = 0 the problem reduces to

du b
-
dr a
w=2a-r (03
2a

__t
W =¥

The velocity profile is a parabola and so orlhogonaloolloca\ionwilh N = 1 would
givethe exact solution. When 4 —» c or y —» co the problem reduces to
e e ,_,r (4-404)
a
which has the solution
(2N gy (405
“=\ai) n+t
by 1 (@-406)
W =\gi) a@+1+1/m file i
3y ' ) locity profile Is
This is the solution for a power-law fluid. If n is small (n — 0) the vel O erceptfor

s W i tire ref
#high-order polynomial in , and is nearly constant in reentte ™8

. Patien.
This soution procedure wasfistsuggesed 0 heuuthorby ThoT P4
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_ | The profile is quite flat, and mahy terms woyly
r==- zonal collocation. Finite elements or finite
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all boundary layer near

a smil i rthof |
n;: "ccded o s:);‘/‘v;‘ cf:fb: ..“;.rﬁ ?Ve now apply O:;)ch_ oru:'; n:q";:::?lsmlho ds.
diflrences wo o applied to Eq. (4-402) gives n
Orthogonal collocation
N=1 . i L N
3 At = i) J oo
= @i,
Uy =0
or simply .
S A =3r;) j (408,
=
The average velocity is given by
N
wy=ay Wu @409)
=

This method is easy to apply for small N. For example N = 2 is easily done on a
hand calculator. It is expected to be a good method for small and intermediate
values of b or /.

The finite diference and finite element methods are all applied with a uniform
grid or element spacing. All methods give equations of the form

AAu =1

where the matrix A has a different structure for different methods. For the finite
diflerence method the equations are

0 j<i-1

!
24r

an;=1o =i a0

1

24r =i+l

0 Ji>i+l1

fi=it) @

For the first nod,

e the equay;
Cannot introdyc quation mus;

€ d fake boundy
=0. There is no bfo)’

! be modified (0 retain the Ax* accuracy. W
ubc‘clauSe Wwe do not have an additional equation
0,50 that we oapeg.r 7 CO7dilion to be applied there, only 3
the cquagions VAUVE At r < 0, Bg. (g 4g) S0UCE 2 new unknown. Instead we U5¢
Sduations. To preyen pa ey 4-48). This destroys the tridiagonal nature of
© st o equarions 0 MOdfY the matrix solution technique ¥¢
Structure. Thig |Flkb 't suc ha way (o make them both fit !
ke doing yn Ly decomposition in reverse: '©

tridiagona
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clmimate the 4y term using the 4, term. Finally, the equation ay the Jast node i
the boundary condition uxy =0. To calculate the average velocity we ol
simpson's rule when the points are equally spaced, and the trapezoid rule if u‘::;
are not. .

The method of orthogonal collocation on finite element:

the form shown in Fig. 4-13. but with Eq. (4-267) replaced by

s gives equations of

| ne
e & A =) @z
The average velocity is
NE NP
@=aXh g W (@413)

With Hermite polynomials we get equations in the form of Fig. 4-19 with Eq.
(4-301) replaced by

1 NP
T 2, A =i @414)

The same formula applies for the average velocity.

The Galerkin methods give equations of tridiagonal (linear trial functions) or
slock diagonal (quadratic trial functions) form. The terms replacing Eq. (4-325)
e

L A5ui =Y Fy (@415)
.
a5, = f Ny N g (&416)
o du

F§ = Ax, '[ F(rIN s(u) du
o
The average velocity is given by
'
)y =a Z uy Ny~ ' du (4-417)
0 o

We apply each of these methods to the problem with b changing from a small
number (where the fluid is essentially newtonian) to a large number (where
iUis essentially a power-law fluid). We do this for parameters typical of low-
density polyethylene (i = 10.5, n = 0.44, pu = 1.1 x 10° g/cm/sec, R = 1cm, and
L =469cm). The flow curve is shown in Fig. 4-29. The corresponding velocity
profiles arc illustrated in Fig, 4-30. .
_For this problem the major portion of the computation time is as:
theiteraive solution of Eq. (4-401) for each node. The computation ti
4re mostly proportional to the number of nodes, so the results are
that fashion, The number of elements is proportional to the number of nodes, so

sociated with
ime and work
presented in
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es should have slopes of —2, —3,0r —4 dependin
consider a low flow rate, for b = 0.1 in planar gesoon the
7.5 lbyin? and a flow rate of0.034 Py
-The
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we know the error cur¥

method chosen. First we
ds to a pressure drop of

This correspon
10°

107

108

10¢

Average velocity

104

1078
10~

10-?
-2
10 107 100
10!
Figure4-29 Pressure g, i ’ ’
IrOp versus flow rye curve wi
With i = 044 4ng 4
Mand i = 105
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asd

aso 4
Q0 4=0.1, 10 x velocity .

030 -
5=10,10 * x velocity

S

N

Velocity

I L L 1
o 0.20 0.40 0.60 0.80 1.00
X

Figure 30 Velocity profile

apparent shear rate at the wall for a newtonian fluid is -, = 3¢v)/R. and here
¥v=0.6sec” ! The error in average velocity is plotted in Fig. 4-31; the exact value
15 0.03393013. Orthogonal collocation gives the best results since it provides the
best accuracy with the fewest unknowns. Using symmetric polynomials for a three-
term solution gives seven-digit accuracy. Such accuracy is achieved with the other
Methods only for much larger numbers of terms. Orthogonal collocation on finite
clements with quartic polynomials needs two elements and nine terms. Orthogonal
collocation on finite clements with cubic polynomials needs eight elements and 25
‘ems. The Galerkin method using quadratic polynomials needs 80 elements and
161 nodes while using lincar polynomials needs 250 terms, and the finite difTerence
method needs 310 terms.

Next we consider a more severe case with b = 10. This case corresponds 10 a
Pewure drop of 748 Ib/in? and an apparent shear rate of 3,660sec ™', which is at
the hgh end of possible shear rates. The errors in average flow ratcare showq in
hg 432 e exact result is 195.8262. Here we get 0.08 percent accuricy using
M hogonal collocation with N = 6, cubic orthogonal collocation of finite elements
wim2 clements and 7 unknowns, the Galerkin method using quadratic polynomials
*h 21 clementy and 43 unknowns. the Galerkin method usinglinear polynomials
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with 31 clements and 32 unknowns, and finitedifference with 50 “"kHOWns E
this casc the orthogonal collocation method proved very successfy, - Evenfo,

1073

8
6
4

Error in average velocity

2
&
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This problem has results that are similar 10 those for the chemical reaction
roblemn. evert though the source of the nonlinearity is completely different. We

“:ym-]udp on the basis of the examples given in this chapter that if the solution is

10

Error in averoge velosity
Z

) 4 6 810

2 4 6 810

View, NT
3 Merage vl o
'8 velocity errorfor dilferent methods Withb =
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thogonal collocation method is best, but _ir steep gradiems occur

hr finite dilference or finite element mell-fods is better. The ?"Eh-ordu
then on|1c °ernll ;elhods are best if high accuracy 1s desired. Any of the finite element

ite elem¢ n
ﬁmlg:!ile dillerence methods are suitable for low accuracy.
or

smooth the O

4-14 ADAPTIVE MESHES

i ail ry-value problems depends on using variable
Su.ccess'fu_l Sl:l::::neloelr.::x:l“slir;eb:::gaoi the prgper location of small elements. The
gr!d s_pacmﬁblcm displayed in Fig. 4-15 is one such problem. There we use physical
;:Fcﬂ:::lip;n about the solution to justify putting small elemenlsv near lh.e boundary
x = 1. In Sec. 413 the use of the residual to locate elements is r.nenlloncd, Here
{hree mathematical strategies for locating grids and eleme'nls are dlscu'ssedt
The first strategy, which is due to Pearson,® was appl‘|ed to the finite difTerence
methods. Suppose we have a solution at n poml_s l“;_;» We then calculate the
maximum allowed difference in solution between grid points

8* =0.01 (max {¢;y — min {t-,}) (4-418)
i i /

The solution at successive gridpoints is compared to 6*. When

le;=Ciayl > 0% (4-419)

grid points are inserted between x; and x; , . The number of grid points is taken as

(4-420)

The new set of grid points is called {x;}. The locations are smoothed to avoid
abrupt changes in x, by using the algorithm

X =40+ xi) (4-421)

in turn, beginning with i = 1, The final location of grid points is {x;}. The problem
is then solved again on this better grid.

Itis clear that this method can be uscd for finite element methods also. by
just substituting the element nodes for the grid points. Thus we have a method of
automatically locating the grid points or elements. The only difficulty is that @
lower-order solution may not be very good, or it may be difficult 10 obtain a low-
orde!' solution, so that it is difficult to start the process. The technique has been
applied to Eq. (4-393) with good results very similar to those shown in Fig. 4-27.

The second method of locating the elements is based on the residual. We know
that the residual is zero for the exact solution. For some problems (see Finlayson.”
P- 388) it is possible 1o show that the error in the solution is bounded by the

residual: small residuals mean small errors in the solution. We can use this
principle for all problems; locate the elements in order to make the residuals
approach :.croA This method has been applied 1o Eq. (4-393) by Carey and
Finlayson.? The values of ¢; at the ends of elements are compared to 0*. The
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ments inserted in place of the one with lee=coyl > 6%

aumber o ele is taken as

_le—ci, NP
Number of elements = 6\_’ (@422)
ded to an integral value. This is the approach used to obtain the results in Fig.
m;11 ‘As can be seen, using a little insight into the physical problem gives a hint to
- ;mall elements near x = 1. The calculation begins with element nodes at 0,05,
;:91 0998, 0.999, and 1.0. The problem is solved and the residual evaluated,
Mdi{ioﬂm elements are added_ in elements with a large residual. The element
Jocations are then smoothed using Eq. (4-421), and the calculations are repeated
with this new, larger problem. The procedure is repeated until the residual is small
eough. The analyst may note that as the process proceeds the overall residual
decreases, lending confidence in the results.
The final method is based on work by Ascher, et al.' and Russell.” For a
second-order differential equation and orth | ion on finite elements
with cubic trial functions, the error in the solution u(x) is given in the ith element

by

[Exrorll; = Ch lu‘l; (4-423)

Ifweknow the fourth derivative of the exact solution we can choose Ax so that the
right-hand side is small in precisely the right place to make the solution meet our
accuracy requirements. Unfortunately, we cannot even calculate the fourth
derivative of the approximate solution since, with cubic polynomials, the fourth

Third
ivative

Linear approximation to
piecewise constant
function

Xpay Xie2
X0y X 11 X1

Yxiar = X)) dx m XD

Pigw, " estimation.
33 Lincar approximation 1o piccewiscconstant function for error
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te the third derivative in successive elements
. Pt

P (4-424)

o is zero. So let us cvalua

4= a7

10 x;+1 and call the (constant) third derivative
The third derivative is 2 piecewise coys(gnt funcluoq, as shown in
in the element d;. ximate this function by the piecewise Imem,’ function as shown,
Fig,4-33: v??f:: be taken of this piecewise linear function, and this is an
One derivalive
approximation 10 {
different one ?l Xiv
fourth derivative

Let the ith element extend from Xi

he fourth derivative. One value exists at the node x; and a
. The average of these values is taken as the estimate of the

- g ] (@425
O P ey )
Now we choose the element sizes so that the following error bounds are satisfied
for the user-specified &:

Ché*), < e foreachi @426)

Russell has built a computer program COLSYS around this idea. In this program
the user needs to define the type of differential equation and provide a subroutine
to evaluate the terms in the equation. The user spccifies the desired tolerance ¢ and
the program finds a solution that is correct to that tolerance. After one solution the
element sizes are readjusted to meet Eq. (4-426) and the problem is resolved. When
Eq. (4-426) holds in every element the solution is complete. Such programs are the
analog for boundary-value problems of the packages. such as GEAR and Runge-
Kutta, for initial-value problems. When they become more widely available and
used, such packages will be employed routinely to solve two-point boundary-value
problems of the type discussed in this chapter.

STUDY QUESTIONS

1. Technical details
a. Mellhod_o[ Weighted Residuals
b. Finite difference method
zdx OFlhogonaI collocation
¢ &ih.-cwder orthogonal collocation on finite elements
; Ga]e:;(r_dc( o_rlhogonal collocation on finite elements
E Galerkli: :_::::: ::z:enls method using linear polynomials
2 Perturbaen el ents method using quadratic polynomials
a. Regular
b. Asymptotic
3. Solution of nonlinear |,
. Successive Substitugiy
bh. Newton Raphson

gebraic equations usi
ns
on using

method
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4 Convergence oreuc.h method
" a Asthe elelmqm snlz|e decreruse 10 zero
As the solution changes from a smooth gpe . i .
5. ’\);a;ialion in work required for each method as fc“::,:l‘;lol:‘h:;"p gradiens
. Number of clements
b. Number of trial functions
6. Initial-value techniques--methods of integration 1o integrate to steady
7. Shooting methods state
a. How to apply them
b. When to expect problems
8. Interpolation between grid points, collocation points, or nodes using
a. Finitediffercnce method
b. Collocation methods
c. Galerkin finite clement methods
9. Extrapolation techniques
a. Finitedifference method
b. Finiteelement methods

PROBLEMS

Methodsof Weighted Residuals,

+1 Apply the Method of Weighted Residuals to the problem
o= -1
0O =0 0(1=0
Deduce a trial function by assuming a polynomial, Eq. (4-4), and applying the boundary condition.
Compare 10 the exact solution.

L2 (u) Apply a one-term colloc:
he cxact answer

x o1 02 03 04 05
utx) -0041a | 00733 | o098 | —onow2 | -0n3?

. ) Write the equations for a one-term Galerkin method. What difficulties do you see?
,3"’"" the Method of Weighted Residuals 1o integrate dyir = v using the lincur trial function
= (e =1)/A1 + y,/ar, Show tht the Galerkin criterion leads to

= ¢.ul0) = u(l) = 0. Compare to

on method at x = } 10 solw

yi=¥o
=i+
A frg+iv

an ’
4 collocytion method leads to

i~ Yo
= etry)

These vl o o

metho 3 OF Weightings, when applicd to yf = /(1) correspond 10 implicy
i55ust the trapezoid rule.

Orthogonal collocyion
4 Evaly, .
N oy auate the integral 1  [3 £ for f(x%) = |

Note l‘nnl the results should be exact for f (3
the weights und quudrature points in Table 4-3.

t methods: the collocation

il la for
2 ¢ and x® using the quadrawre formu
3)a polynomual of degres 2N in x*. Evaluate

'
Bata v
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10 a iving the
T TR e
: \:fhl::e polynomials &Y IM:“I subject 0 1he DU
1entily MY T Fin0 <X
@0 S
) ) Zo ).v(||+JH

o -
@t et ! ferential cquation " +25 = x.
P o e with the differential €4 :
iy sin o) b0 Jutions of  vers
® ‘1";-:9'\ ‘boundary wm:nwlm o apherical geometry: Compare the sol 1 veesus §
N = lex
e Eg (421
46 Rovaae 8 210 K L0
i w0
fore wm;nucmnmoml collocation method
47 Apply 2

vd (,:".‘) = ¢
A\ dr

de L)
4y =Bile)-11
)

for B, = 100300
(@f=c0 =

= o anm -
il ooy Its for N = 2 that were solved
@) =i arc these resuls 10 the resul
olievt ‘T".:"""“.'-i"fi.iw""’.,'ﬁ;','“ e - and the Quadraturc \eights are W, = 01387779991,
1n problem 24, The equations
W, =01945553342.and Wy =0 )
o8 canhave mullip

1 "")= *R(c)
nale)-*
+¢)

de o= CEr
To=o =1 RO= G g

’ n
The raction rate oceurs with Langmuir-Hinshelwood kinetics and one of the reactants 15 1
is represented by E). Solve for

R S NI R
HI\\WJ‘IM)‘(IM\]IOO

49 Solveproblemd-Tusingthe programOCRXN for N = 1,2.....6.

410 Solveproblems 4-8a 10 4-He using the program OCRXN for N = 6. cd on your esti Jgs:‘f
tn‘mh ple solutions oceur, do calculations for small ¢, values of ¢ givingmultiple solutions. ¥
84

Finite Difference Method

413 Solve problem
technigues oy ang
14 Wri vhe equg

in 7 Modily the progrmn L

47 using the finite differe

.

jor
nce method and program FDRXN. Apply extrapoit!

placing Egs. (4:247) ang 4.
Mogram I
15 Wt th e e AN

et

250) with equations correct only 1© st

nd fedo problem 4.11. Compare.

Suations for solving problem 4-8 with a variuble grid SPAGinS ¥
applytof = ¢, ¢ = 6.

conditions of high i

. Modily th

ndet
 progrum FDRXN ung.
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problms d-ta to 4-8¢ using the program FDRXN. Compare 1o resuls from problem 4-10.

+16 Sahe ProvE 2 @-39), & i

e Eq. (4920 0 Eq. (4-39), and express K, and &, in Taylor serics in 0.
bl’llsyz':;:‘“‘mdq»rdcrA\ proximation o AU+ (dk/d0Y (Y. 4 Sho the
result N
pernrtationMethod

18 Derivc  perturbation solution 1o problem 4-7.Obtain the 1 versus ¢ curve up 1o the ¢% term
- . Derive the solution (r.8). Plot 1 versus ¢, and the concentration versus position for
|dentify points on the 1 versus ¢ curve with the concentration profiles.

+
ndford
various ¢-
419 Problem 418 but for reaction rate in problem 4-7e.

420 Derive EQ. (4-66)

Orthogons! Collocation on Finite Elements

421 Apply the method to problem -1 using wo elements and lagrangian as well as Hermite cubic
polynomiaks.

22 Apply Eqs. (4-289) 10 (4-291) 10 problem 4-7 for planar geometry. Construct the 1 versus ¢ curve
forlarge 6. Write the cquations for a four-element solution with lagrangian cubic polynomials,

+23 Wate the equations for problem 4-7. planar geometry and four clements using Hermite
polynormials.

24 Use the program OCFERXN to solve problem 4-7. Apply extrapolation techmiques 1o the
<l factor. with the original correct 10 0(8.x*) when cubic polynomials are used.
425 Apply orthogonal collocation on finite clements with lagrangian polynomials 1o initial-value
problems of the form dy/di = f1y). AU the beginning of cach clement the initial value v, is known.
Collocation is then applied at the remaining collocation points of the element and the set of equations
issolved fory'y ,». This valueis used as the initial valuefor the next element.

426 Solve problemsd-8t 10 4-Kc- using the program OCFERXN.

GalerkinFiniteElements Method

427 Apply the Galerkin method to problem 4-1 using lincar elements.

428 Apply the Galerkin method 10 problem 4-1 using two quadratic elements.

429 Apply theGalerkin finiteclement method to the problem in Fg. (4-145) with n = 2 usi
{a) Twolinear clements, derive an analytic solution.
(b) Writethe equations for many lincar clements.
() Write the equationsformany quadratic clements.

430 Solve theheat transferproblem in layered slabs with heat gencration in someof them

7 k=ky=ho=1
7 0 =0,=0,=0
s ky=ky=25
! / 0:=0.=25
x=q o 3 ,l: 144
H
:T(nlzn =25 =100 Tx=29
Ueanen x dx

. . ins
With g 2" €le Ment 1n each domain without heat gencration und two linear clements in the domai
@l gencration,

Hin -
Vi derive heelementequationsandcompare to Eds. (4-120) und (43211
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‘Shooting Method ,
431 Apply a shooting method to problem 4-7 using the program IVRXN.
432 Solve the problems 4-8a 10 4-8e using the program !VR).(‘N_ e
433 Apply a shooting method to problems 4-35a to c using (if possible):
(@) Forward intcgration !r‘om x s_n.l
Backward integration from x = %
me‘:anlnsions about the effectiveness of (a) and (b).

Genersl ) )
4:34 Consider the problem for axial conduction and diffusion in a tubular reactor
| de_d_pey=0
Pey d¥  dx
2
AT AT e T)=0
Pegdv  dx
| e 14T
Ly -1 o=@ =TO)-1
poy =0 =@ Pon dz

Al('“' dT | °
a=M=g =

(a) Write the orthogonal collocation equations for NCOL = 3.

(b) Write the equationsfor the | difference method, ten interior nodes-

(c) Write the equations for orthogonal collocation on finite clements with three clements and
lagrangiancubicpolynomials.

(d) Write the equations for orthogonal collocation on finite elements with Hermite polynomials.
three elements.

(e) Write theequations for the Galerkin method with linear trial functions. ten elements.

(/) Write the equationsfor the Galerkin method with quadratic trial functions. five elements.
435 Program and solveonc of the methods listed in problem 4-34 for the cases

(@) p=0,Pey = L R=2*
~0.056.Pe,,
~0056, Pe,, = » 38170370
436 Solve Eq. (4-394) for a fluid with viscosity function given by Gy, (4-398)ind /. = 1, n = 05. Apply
one of the methods listed in problem 4-9 and write down the equttions to be solved.
437 Solve the equations derived in problem 4-36 for the cases b = 0.1, 1. 10, and 100.

Value Problems

438 Consider the successive substitution
stability of systems for integrating diferenti
¥ou say about the size and sign of the
apply ing successive substitution Lo a systes
depe ndent on how the analyst writes dow,

method of solving Eq. (4-349). Using your knowledge of
il equations using the Euler method, Eq, (4-351), what can
constant ff in Lig. (4-349)? What difliculties do you see in
m of equattions f(x) = 0 when the signs of the equations J; are

n the cquartions?

BIBLIOGRAPHY

The Method of Weightcq R,
been reviewed recently by
Eason, E. D, and C.
 E-D..and C. D. Mote, Jp.; »
Least SQuares,” n. J. Num, Apetpo

esiduals s covered in depth by Finlayson. Least squates methods have

Solution of Nonlineur Boundary-Value Problems by Discrete
s Engi, vol. 11, pp. 641652, 1977,



ORDINARY DIFFERENTIAL EQUATIONS—BOUNDARY-VALUE PROBLEMS 171

. giference methods are treated by Keller®as well as by

i ahan. B.. H. A. Luther, and 1. O. Wilkes: Applied Numerical Methods,
Jnc. New York. 1969. A

o i book s compuer programs for many engincering problees, but oftn they are lincar

Fin John Wiley & Sons,

problem. are treated b
et e awaton Techmiues i
F1d winston, New York, 1964.
yeh. A, H.: Perturbation Methods, John Wiley & Sons, Inc, New York, 1972,
andthe orthogonal collocation method is covered in Chapter 5 by Finlayson® as well as in
Villadsen. J, and M. L. Michelsen: Solution of Differential Equation Models by Polynomial
Approximation, Prentice-Hall, Englewood Ciffs, 1978.
There is no book treating orthogonal collocation on ﬁni(g elemeyls, and books on Galerkin finite
dement methods are listed in Chapter 6. The following review article describes the methods thal are
vaablefor solving boundary-value problems, and nearly all the methods are included in this chapler.
The review does provide a convenient list of references giving applications and original papers.
Altas, A and H. J. Stetter: “A Classification and Survey of Numerical Methods for Boundary-
Value Problems in Ordinary Dillerential Equations,” Int. J. Num. Methods Eng., vol. 11, pp.
TN-796,1977.
Extensionsof the idea introduced in problem 4-3 are given by
Hulme, B. L.: "One-Step Piccewise Polynomial Galerkin Methods for Initial-Value Problems,”
Math. Comp.. vol. 26. pp. 415-426,1972.
The A(0) stability of both Galerkin and orthogonal collocation methods are deduced.
Quasilinearization is treated in depth by
Lee. E. S.: Quasilinearization and Invariant Imbedding, Academic Press, New York, 1968.

Physics, and i . Holt, Rinehart

REFERENCES

1. Ascher, U., J. Christiansen. and R. D. Rossell: “A Collocation Solver for Mixed-Order Systems of
Boundary-Value Problems.” Math. Comp., vol. 33, pp. 659-619, 1979.
Carey, G. F., and B. A. Finlayson: “Orthogonal Collocation on Finite Elements.” Chem. Eng. Sci.,
vol. 30, pp. 587596, 1975,
Finlayson, B. A: The Method of Weighted Residuals and Variational Principles. Academic Press.
New York. 1972,
Forsythe, G., and C. B. Moler: Computer Solution of Linear Algebraic Systems, Prentice-Hall,
Englewood Cliffs, 1967. §
::;Ilz:r H. B.: Numerical Methods for Two-Point Boundary-Value Problems, Blaisdell. New York,
;'s‘:'wu C. F: "On a Differential Equation of Boundary Layer-Type,” J. Math. Phys.. vol. 41, pp.
~358, 1968.
7. Russell, R. D., and J. Christiansen: “Adaptive Mesh Selection Strategies for Solving Boundary-Value
' :mhlems," SIAM J. Num. Anal., vol. 15, pp. 59-80, 1978. ). Math.
hanks, D.: “Nonlinear Transformations of Divergent und Slowly Convergent Sequences,” J. Mat
Phys. vol. 34, pp. 142, 1955,
Weisz. P. B, and J. . i
and Heat Diffusion Effects,

-

The Behavior of Porous Catalyst Particles in View of Internal Mass
Chem. Eng. Se, vol. 17, pp. 265-275, 1962.




- —_
CHAPTER

FIVE

PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS—
TIME AND ONE SPATIAL DIMENSION

Chapter 3 treats evolution problems beginning at some point in time and
continuing indefinitely. Chapter 4 treats two-point boundary-value problems in
which the conditions at the far end influence the solution everywhere. Generally,
evolution problems have time as the independent variable, and the two-point
boundary-value problems have space as the independent variable. Here we
combine the two problems and treat parabolic partial differential equations. Now
the independent variables are both time and space, and the problem is evol-
utionary in time and similar to two-point boundary-value problems in space. As a
consequence the techniques of solution are combinations of those found in
Chapters 3 and 4. We first present similarity methods, however, because if a
similarity transformation exists the analyst should always employ it. It reduces a
problem having two independent variables to a problem having only one such
variable, with resultant savings in solution time and effort.

5-1 SIMILARITY TRANSFORMATION

Wenowstudy diffusion and reaction in a medium under transient conditions. The
prototype problem is

d 0
q [Du-) -0

172



PARABOLIC PARTIAL DIFI'ERENTIAL EQUATIONS—TIME AND ONE SPATIAL DIMENSION

173

¢(x.0) = h(x) one initial condition (5-2)
0,0) =91

" ) =90 two boundary conditions (5-3)

c(@,1) = cq (5-4)

We ask ourselves if there is some way the ¢ and x coordinates can be combined so
that the solution is only a function of their combination, not of time and space
individually. The answer to this question requires group theory (see Ames'), and
here we give a simplified method of answering the question following Ames.2

The simplified approach is to transform both the independent variables ; and
x and the dependent variable ¢ to see if the equation may be simplified. The
boundary conditions must also smplify, and indeed the three conditions must
collapse into two, since the resulting equation will be second-order with only one
independent variable. Only two boundary conditions are necessary to solve such a
problem. The transformation we try is

i=at xX=a'x ¢=alc (5-5)
where for the present the values of g, &, i, and y are parameters to be freely chosen.
It is at this step that we have restricted the problem from the general realm of

group theory; we will only answer the question of the similarity transformation for
transformations of the type given in Egs. (5-5). Putting these into Eq. (5-1) gives

= z"’i[Dla”E)ic:]+R(ﬂ"F) (5-6)
0% ox

Grouptheory says a system is conformally invariant if it has the same form in _lhe
new variables. For this system to be conformally invariant the transformation
must be independent of . We then nced
y=0 ()]
a—y=2-y or a=20 (5-8)
When we have a general reaction rate term we see that the result still depends on a
unless ¢ = f§ = 0, in which case we have no transformation. Thus we cont_:lude that
a similarity transformation of the type given in Eq. (5-5) does not exist f?r all
expressions R(c). For R(c) = ", with D(c) = constant, similarity “‘3"5'0""3“‘_?3 is
possible (see problem 5-1). Next we leave out the reaction rate term and consider
further the case with D(c). The invariants are

. I 5-9)
=35 o= a ¢
and the solution is
(5-10)
Here
sty S = ete0) @1n
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We check the boundary conditions
c(xa~*,0) = h(%a™") (5-12)
c(e0,a™%) = ¢ (5-13)
These must combine and be conformally invariant. The first one cannot depend on
x and the second one cannot depend on . They must also have the same value for
the right-hand side. Thus the following boundary conditions are allowed:

c(%a™,0) = cq (5-14)
c(o0,a™%) = cqo (5-15)
The other boundary condition is
(0,ia™*) = g(fa™) (5-16)
and this cannot depend on ¢, so that the allowed boundary condition is
9 =¢, (5-17)

We note that
(5-18)

is infinite at either x — co or ¢ = 0,and this allows the initial condition and thefar
boundary condition to be combined. Likewise, x = 0 gives # = 0 so that we have
ch=0)=c,

We next rephrase the problem with

Cc= N=—— (5-19
€ =Cp V/4Dot &
Equation (5-1) then becomes, with R = 0,
d dC dc
—| K(C)— |+ 2y — -
m,[ © .1.,:|+ e (5-20)
D(C
K(C)= . Do=Dlc1) (5-21)
o
and the boundary conditions are
C(0) =0 (5-22)
s . . co)=1 (5-23)
is is oblained using the chain rule of dilTerentiation C = C(y(x, 1))
#C _dCdq  aC dC
S-=50 ¢ _dCoy -
a - dg o ox  dy Ox 24
2C _dc (on)?
5 = (o ¢
M___x2 wm_ (5-26)

o Jabe  x T Japg
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several solutions to this problem have been tabulated by Crank.?
we have to assume uniform initial concentration, a steady bound:
infinite planar geometry, and that the diffusivity depends on c
leave it as an exercise (see problem 5-2) to determine if the s
cylindrical geometry has a similarity transformation. We h
problem greatly but have not yet solved it.

Another transformation is useful for simplifying the
usapply the KirchhofT transformation

To reach this far
ary value, a semi.
-oncentration, We
ame equation for
ave simplified the

problem even further. Let

c
V= J‘ K(z)dz
A (2)d: (5-27)
Then the first and second derivatives are
day dc dy d dc
o~ K(©) i d_n[K(Cjﬁ] (5-28)
We must also invert Eq. (5-27) so that we can write
K(¥) = K(C) (5-29)
Then Eq. (5-20) becomes
L]
K(lﬁ)?n—z-i-b]ﬂ—l) \ (5-30)

This may or may not be simpler depending on the difficulty of inverting the
transformation Eq. (5-27).
We have transformed the problem into a two-point boundary-value problem,
but what do we do when one boundary is at infinity? There are several
ives. The first app h is to the domain by letting

c=e (5-31)

The resulting equation is

d dC dC 5.32)

- = +2xinx-==0 (5-32

*ax [K(C)x dx]+ ™

which is now on a finite domain, although it has singular coefficients (which are

zeroat x = 0). All the methods of Chapter 4 applyllo Eq. (5-:}2} e
Another approach is to transform the equation to an integral equation.

write Eq. (5-20) as

dC 33
d(dC)_ M4 63
dn dn K dn
and form
dy _ Zl'___y (5-34
dn = T K(Ce
Then

[ J" —/Z_z, dz] -3
y=Aexp| ~ | K(C@)
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and from Eq. (5-33)

dC
y=K an (5-36)
Thus w2
dC _A ol - | o2 d ] .
a K exp[ L Kc@n (5:37)

We can integrate this once to obtain

"k By djl:B 4
(‘(ul=3+/‘L ,ac@“""[ J:)K(C(z)i 2| = Braftn) 538

For the boundary condition ¢(0) = I we need B = 1,and for ¢(c) = 0 we need

1+ Af(0)=0 (5-39)
Thus the solution is written as
S
Co)=1—--"—= (5-40
o S(x) 40

This is an exact solution to Eq. (5-20), even though it is not directly soluble except
when K is a constant. We can, however, solve it iteratively by choosing a c(z),
integrating to get c¢(y), and repeating. When K = 1 we get the complementary
error function

fo= J Tt (5-41)
o
S
o= T ey = erfe 5-42
Cip=1 ) 1 —erfy = erfcy (5-42)

which is a tabulated function.

Another alternative is to place the condition 5 -  at some arbitrary location
n =1, and then apply the methods for two-point boundary-value problems. The
location of y, is chosen by experience with similar problems and the eventual
solution. The location can be varied to ensure that the particular choice does not
influence the results.

Still another alternative is to recognize that the solution approaches an
asymplote as y - . A shooting method is started at y = 0, and eventually the
solution quits changing for large 1. By using an implicit method with a variable
step size, in the region with a constant solution the step size can be quite large.
Then we can integrate to a large 5, which although still finite is much larger than in
any Olhef_ option. We must then iterate to fit the boundary condition, but we
€xpect 1o iterate in this nonlinear problem anyway. A method such as Gear's for
SUff problems or just Runge-Kutta for easier problems should suffice.
diﬂe:’!::;ljlh:pp-ﬂ"s if we actually have a finite domain? Suppose we have the same

quation, Eq. (5-1), but the boundary conditions are

cOn=1 cl.n=0 (5-43)
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andinitial condition is

¢(x,0)=0
The transformation Eq. (5-18) gives (5-44)
¢ = - _ i
X=0ou=0 x=legm iy (5-45)
The analogs of Eqgs. (5-12) and (5-13) are
¢(%a=".0) =_0 (5-46)
@47 ) = 0 (547

and these must combine into one condition and be conformally invariant. Despite
the fact that the right-hand sides are the same it is not possible to combine the
conditions: Eq. (5-46) applies at § = co, while Eq. (5-47) applies at # = 1/1'"2. The
similarity transformation fails for this problem with a finite domain.

One clue to the existence of a similarity transformation for the original
problem expressed in Egs. (5-1) to (5-4) is the infinite domain. Examination of the
equations reveals that there is no natural length scale, such as provided by the
domain thickness il the problem had a finite domain. Yet the equations contain the
dimensions of length, and if they are made nondimensional a length scale must be
introduced. What length scale should be used when the problem has no natural
one? There is nonc. In such situations a similarity transformation is always
suggested.

Similarity transflormations can often be applied to problems with finite
domains as an approximation [or small times. Consider Fig. 5-1 for difTusion in a
slab. At small times the solution is nonzero only near x =0. and the other
boundary x = 1 may as well be at infinity. In fact, of course, the exact mathema-
tical solution is not exactly zero near x = 1 but it may be so small, such as 107,
that we can regard it as being zero. Only when time proceeds and the solution
begins to change significantly near the point x = 1 does the finite boundary have

etx. 1)

Increasing ¢

Figure 5-1 Diffusion ina slab.
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10 be introduced. For small limes, then, we can regard the domain as semi-infinite
and apply a similarity transformation. o .

and I:‘:Fz ply this technique to the following linear problem for diffusion of
heat or mass in a slab where

(5-48)
(x,0)=0 ¢0,0)=1 (5-49)
c(1,1)=0 (5-50)
For small times let us replace the condition of Eq. (5-50) by the approximation
¢(0,) =0 (5-51)

The solution to Egs. (5-48), (5-49) and (5-51) is Eq. (5-42). We are interested in
when the solution at x = 1 is noticeable, and we choose 10~ 3 as a noticeable value,
The erfc takes the value 1073 for 7 = 2.327. The point x at which 5 takes the value
2327 moves with ' ? since

X =232 (5-52)
When the time is large enough that this point reaches x = | the approximation of
the similarity solution is no longer valid. For larger times another technique must

be employed, as illustrated in Sec. 5-2.
The problem to be considered is the transient version of Eq. (4-3) for heat

conduction in a slab with a temperature-dcpendent thermal ductivity. We take
only the case a = 1, thus
Y O\
g [u +miﬂ} (5-53)
p X
0(x00=0 00,1)=1 (5-54)
01,n=0 (5-55)

Because of the finite domain the problem has no similarity solution. We replace
the last boundary condition by the condition at infinity
0(0,1) =0 (5-56)

Equations 15753).15-54) and (5-56) have a similarity solution, and this solution is &
good approximation to the original problem with Eq. (5-55) for small time.
Weintroduce the similarity variable
_ 7.\'
Jar
and transform [see Eq. (5-20)] the equation to

] (5-57)

d do do
—|a+0)=— < 5-58
dn [( ) rhy] +2 dy 0 ( )
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The transformation Eq. (5-27) gives
¥ =0+40? (5-59)

but Eg. (5-30) is no easier 10 solve than Eq. (5-58). The integral solution given by
Eq. {5-38) cannot be evaluated analytically. The alternatives are to resort to
numerical_solution of Eq. (5-32), iteralive solutions of Eq. (5-38), or numerical
solutions obtained with shooting methods. All of these require the use of a
computer- Instead, we solve Eq. (5-58) using the Method of Weighted Residuals.

We assume that Eq. (5-58) is written for the trial function so that it is the
residual. Mulliplying by the weighting function, denoted here by 50,

N d do ” do
30 — (1+0)—]d +2J 60n—dn =0 X
J; g ll'l[ an n o 'Y'l" In (5-60)

and integrating by parts we obtain

*d do = dd0 do i do
— 6()(|+1)]—]d —I (140)— —dn+2 80n—dn =0 (5-61
L tl'l[ )" ay a2 | gy =0 G0

The first term can be evaluated at the boundaries, but we are going t o require that
80 = 0 at both boundaries. Thus the Galerkin equation is

. d50d0 < dg
| a0 2 [ s0qPan = 0 5-62
J:,(")d.,.h, "+ J:, an" o6

We need to choose a trial function that takes the value one at n = 0 and
approaches zero as 1) — -x. It would also be advantageous i the first derivative
approached zero as ) — . A polynomial function meeting these criteria is

1
—an)? -
(1—an) r1<“

0 1
">

0= (5-63)

The parameter a is to be chosen by the Galerkin criterion. For this lunction we
have

40 _za(t-an) (5-64)
dn
K=140=1+(1—an)? (5-65)
The variation, or weighting function, is
50=2_ _oq(1—an (5-66)
da
dsn (5:67)

— = =2(1-2an)
dy
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The Galerkin criterion then requires that
f [+ (1 =) ~201 = 2am)][ — 2a(1 ~ amdn
Va
+2I [-2n(1—an)Inl—2a(l —an))dn =0 (5.68)

 integration is taken as 1/4, since the function and residual are

upper limit ol
The ©PP a we transform the integrals into

zerofory > 1/a.BY takingu =
_I2+;‘;l| =0 (5-69)

1
L= J- (2= 2u+u)(1 = 20)(1 = u)du

o

\ (5-70)
I, = J’ w(l—u)du
o

For the linear problem with a constant thermal conductivity the first term in the
integral I is 1.0. The values arc

h=do

’ -7
lor constant k 6
for nonlincar 572

lor lincar

The final solution is Eq. (5-63) with «* defined by Egs. (5-72). This solution is an
approximation of the finite domain problem, too. provided that the outer
boundary n = 1.« does not reach x = 1. This condition is
welo - b 5-73)
a Jalhar 4
so that the same solution is used for the finite domain and r < «*4. The
approximate solution is compared 1o the exact solution of the problem on an

infinite domain in Fig. 5-2 and gives an approximation that is within engineering
accuracy.

5-2 SEPARATION OF VARIABLES

When the domain is finite the cl
apply the separation of variabl

ical methad of solving the linear problem is to
- Let us consider difusion in a slab with reaction

¢ o] e db 4
X [D" ) t‘.\'J + R = Dm(’\" g ((’ \) +RO G

de

«(x,0)=0 (5-75)
a0, =1 al,)=0 (5-76)
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—— exact

- 2pprotimate - Eq. (5-63)

k = constant

Figure 52 Diffusion in semi-infinite medium.

We try a solution of the form
c(x, 1) = X(x)T(1) (5-77)

Il we can separate the problem into one ordinary differential equation for X(x)
and another for T (1) the solution will be simpler than if we have to solve for ¢(x.1)
logether. Putting Eq. (5-77) into Eq. (5-74), dividing by TX. and rearranging we
get

et Z2a2 .27 = 5-78)

Tdi ~ X dx® 7 de X \dx XT &7

1Wthe diffusion coeffici depends on ion D(c) or if the reaction rate

em R(c) is nonlinear, it is not possible to. separate Eq. (5-78) into one side that

depends on time only ‘and one side that depends on position only. Separation of

Variables then fyils. ) .
Simplfying Eq, (5-74) by taking D constant and the reaction rate linear (ic.

= ko), we get

14T _DdX dD I(dx)’ RXT)

(5-79)

Equation (5.78) then gives
| AT _ LXK (5-80)
PTdt ~ X dx' D

Ones; s
e side of Eq. {5-80) is a function of ¢ alone, and the other side i

s a function of X
aloy !

o5 is if the

oo™ Vet both sides equal each other. The only way this can be W02 L0 o,

coutonis 4 consiant. Otherwise, if x is fixed one side is fixed 41¢ BE D0 iy
4¢ changed by chunging 1, the equality would not hold We
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be 4 and write the separate equations

LT _ _,
DT dt 5-81)
L&X _k__,
XdZ p- " (5-82)
Equation (5-81) s easily solved in the form
T() = Ae~0 (5-83)
andEq. (5-82) is written as
X (0 k
W+("-5)X=D (5-84)
We next simpli(y the boundary conditions
o(l,)=0=TOX() (5-85)
0,1)=1=T@X(©) (5-86)

The first condition, Eq. (5-85), gives X (1) = 0 but the second one, Eq. (5-86), does
not separate. We nced to make the boundary conditions of the problem homo-
geneous, This is donc by finding a function that satisfies the nonhomogeneous
boundary conditions (1 —x), and then solving for the remainder. Let us then solve
for

ux, ) = (x=D+c(x, 1) (5-87)
The dilferential equation in uis
% =D 317‘: (5-88)
which is the same, while the initial condition is
u(x,0)= x—l+c(x,0) = x—1 (5-89)
The boundary conditions on u are then
w0,0) = =1+¢(0,0)=0 (5-90)
ullby=c(l,n =0 59

Weuse u(x, ) = X(x)T(1) and arrive at the same equations for T and X , but with
X(0)= X(1)= 0.

Wessolve Eq. (5-84) for the case without reaction k=0
d2x
aex - 5-92)
G HAx =0 ¢

X0)=x()=0 (5-93)
Th.e equation i§ linear and easily solved. The general solution is obtained by trying
" and finding that m?+4 =0, thus m= +i /i The exponential term
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“p(ii\/jx) is written in terms of sines and cosines, 50 that the general solution i
lution is
X = Beos/Ix+Esin/Ix

The boundary conditions are (5-94)
X(1) = Beos /I +Esin /2 = 0 595)
X0=8=0 (5-96)

Now if B = 0and we want D # 0 (otherwise the solution is Zero), wemust have
sin \/I =0 597

This is true only for certain values of 4, which are called the eigen or characteristic
values,

A= n'n? (5-98)
Foreach eigen value we have a corresponding eigen function
X,(x) = Esinnnx (5-99)
The composite solution is then
X,(x)T,(t) = EAsinnnxe=%0t (5-100)

This function satisfies the boundary conditions and the differential equation but
not theinitial condition. To do that we add up several of these solutions, each with
adiflerent eigen function, and replace EA by 4,

u(x, 1) = i‘ A, sinnnxe-"00 (5-101)
=
The constants A, are chosen by making u(x, f) satisfy the initial condition
u(x,0) = i A,sinnax=x—1 (5-102)
Azt
We define the residual as the error in the initial condition
R(x)=x-1- i: A,sinnnx (5-103)
e

We next apply the Galerkin method and make the residual orthogonal to a
complete set of functions, which are the eigen functions,

' « . A ]
L (x=1)sinmnxdx = ZI A,J; sinmmxsinnnx dx = = (5-104)

atisfies a least squares
ized by the A, given

It twrns out that the Galerkin criterion for finding Ay, alsc
criterion: the residual squared and integrated over x is mi
byEq. (5-104) (see problem 5-6). The final solution is then
—aiar (5-105)

c(x,0)=1-x+ Z‘ A,sinnnxe
e
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This solution is an exact solution to the linear problem. To evaluate the solution
an infinite number of terms must be evaluated, but a finite number of terms can
give a good approximation. For large times a single term is sufficient since (he
exponential term decreases so rapidly with #, but for small times, a large number of
terms is necessary. For  —0 only an infinite number suffices. In that case it may
be better to use the similarity approximation (assuming the domain at x = | js
really at x — o). Problem 5-5 illustrates this point.

For nonlinear problems the method of separation of variables fails, and we
must use either similarity solutions (for small times). Alternatively, the Method of
Weighted or the methods below may be employed,

5-3 METHOD OF WEIGHTED RESIDUALS

The method is first illustrated using the linear problem, Eqs. (5-48) to (5-50). This

problem has been solved twice before. Then the nonlinear problem of Eq. (5-53) is

solved. The latter problem has been solved before. but only with an approximate

solution, and only for an infinite domain. If the domain is finite and the solution is

desired for all times, none of the techniques in Secs. 5-1 and 5-2 apply. The Method

of Weighted Residuals or one of the numerical methods is the only choice then.
For the linear problem we expand the trial function in the series

N
e t) = colx) + Y At)e,(x) (5-106)
b=
We choose ¢o(x) to satisly the hy boundary diti
o0) =1 (=0 (5-107)
The simplest form is
Colx) = 1-x (5-108)
Next we choose the ¢;(x) to satisfy the homogencous boundary conditions
@ =c(l)=0 (5-109)
Possible choices are
(X} = sininx (5-110)
=x'l-x) or x(l-x)y (s-111
=x(1=x)P,_,() (5-112)
First weconsider Eq. (5-110) and apply the Galerkin method, The residuals
1d P | N da, N
ba~aTp Z. dr S+ Y (i) A sin inx (513
[ S

1 .
n the Galerkin method we make the residual orthogonal to sin jxx. This gives
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Ldd, _ _ o
pa - A (5-114)
which is solved to give
A= A@)er (5-115)
and the finalsolution is then
.
clxn=1-x+ Z‘ Ai(0)sin inx ¢ =i'x'or (5-116)

The constants 4,(0) are obtained by applying the Galerkin method 10 the
residual ¢(x. 0) = 0. As before we get

'
14,0 = L (x—1)sininxdx (5-117)

and we get the same solution. Thus the Galerkin method applied to linear
problems gives the first N terms of the exact solution found by separation of
variables when the expansion functions are the exact eigen functions.

Next. we make the choice

(x) = xi(1 =x) (5-118)
Then thederivatives of ¢,(x) are

=it i X

) (5-119)
= ix' 2o =i+ 1x]

and the residual is

1 X a4, L .
Residual = = ¥ ~Zx'(1=x)= ¥ Aix 2[i=1-(+1x] (5120
DS d &

We make this orthogonal to x’(I - x)

1 Xda, [
5% T:'J‘ X1 = x)dx
/ 3

el

These equations can be written in the format

121 = x)[i- 1= (i+ Dxddx  (5-121)

L& da X
L A S (5-122)
52w = T
d“'!"ch can be solved with matrix methods or numerically. We note that the only
[lﬂc(mog between this solution and Eq (5-116) is the choice of trial function--sine
;:x:uons versus polynomials- making the matrices in Eq. (5-122) different.

ause the sinc functions are the exact eigen functions in that case, Eq. (5-122)
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simplifies to Eq. (5-1 14). but otherwise the mg:lhods are similar. Equation (51 14y
much simpler than Eq. (§-122) because the time cquations decouple and are easil,
solved. The initial con ns are evaluated b_y making the initjal ruid.,,y|
orthogonal to ¥(1 =X)- This gives a set of N equations to s9lv{e for the NA(0). we
expect that as N is increased the accuracy o[ the 'solulmn is improved, just ag ye
know that if only N terms of the exact solution given by Eq. (5-101) are useq -
have an error that decreases as more terms are included.
For a single term we have from Eq. (5-122)

| Ldd,

D304 37 (5-123)

A1) = 4,(0)e =100
c(x,0)=1-x+A4,0)x(1-x) =0 (5-124)

Applying the Galerkin method to Eq. (5-124) gives A4,(0) = —2.5. The complete
solution is then

¢(x,0) = 1 —x—2.5¢~ %0 x(1 —x) (5-125)

We do not expect this solution to be good for small times, and it is not. It is a
reasonable approximation for larger times, however, and Eq. (5-63) is valid for
small times.

Whenever we need the solution for small times we know that we must use
many terms of the exact solution in order to achieve accurate results. Note at this
point that we must usc a computer to evaluate the exact solution even if we can
write it down in analytic form. Thus any Method of Weighted Residuals that
expands the solution in a similar way must need many terms to achieve good
results for small times. If we want the solution for small times, it is easier to replace
the finite domain by an infinite domain and solve that problem. Then when the
concentration begins to change at the far boundary we go back to the expansion
solution. One advantage of the Method of Weighted Residuals is that we can write
the approximate solution as the solution derived from the similarity transform-
ation plus a series. Initially, the series is small, but later it becomes important. In
this problem we use

(1) = | —eff —= +ulx.1) (5-126)
V4Dt
The first term satisfies the differential equation and all boundary conditions.
except that at x = 1. We make u(x, 1) satisly

Lou_ 2 ©127)
Do ox?

u@,1)=0

ulln = —1+erf— (5-128)

/4Dt

u(x.00=0



PARABOLIC PARTIAL DIFIERENTIAL EQUATIONS-TIME AND ONE SPATIAL DIMENSION 7]

For small time u is small. bul.l‘or larger times u increases,
given in Eq. (5-12_6] always satisfies all conditions: differenti;
and initial conditions. If the Method of Weighted Residuals is used 1o satisfy Eq
(5-127). the dillerential equation is satisfied approximately. However, a single term
often suffices for good accuracy. As an example, we use a single term

1
Jm)+ Al)x(1 - x) (5-129)

The in..ial condition is satisfied if 4(0) = 0. The Galerkin weighted residual is

but the total solution
ial equation, boundary

ulx, 1) = x(— I +erf

1 ' - Ldar .,
BUUULXU x""”oﬂ uxﬂ—tl‘dx

1
+2A(lij x(1-=x)dx=0 (5-130)
o

where
(s-131)
Thisgives
25
LdA _ o4+ 20000 (5-132)
D d b
A0) =0 (5-133)

The complete solution, Eq. (5-126), is a good approximation for all times, as
shownin Fig. 5-3. The exact and approximate solutions are indistinguishable on
the graph.

Suppose we have a nonlinear difTusion problem with D(c) in a finite domain. A
rity transformation is not possible on the finite domain, and separation of
variables is not possible for a nonlinear problem. However, the Method of
Weighted Residuals is applicable and can give good results. We apply it to Egs.
(5-53)10 (5-55).

For small time we simply use Eq. (5-63) for t < a*/4; a* = 4/19 for the
ronlinear problem, and a? = 2/5 for the linear problem. For larger times we use
theexpansion

0 1) = alt) +b(x+c(x (5-134)
The boundary conditions require
a=1 a+b+c=0 (5-135)
‘The trial function is then
(5-136)

O(x,0)=(1 —x2)+b(n)x(1 —x)

We apply the Galerkin fethod to Eq. (5-53) and integrate by parts as in Egs.
(5-60) to (5-62)
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10
~—Exact and -
08 approximate,
Eq. (5-126)
06 7
cx. 1)
1=0.1 i
04H
£=0.01
02| T
1= 0.001
L N n
0 0.2 0.4 0.6 0.3 1.0
x
20 T

0
0.001 0.01 0.1 1.0
'

Figures-3 Lincar diffusion problems using Egs. (5-74) to (5-76).

L ' 430 00
80~ -dx = — 1+0)- = = dx
J‘D Tl J‘., o+ )dx x d
The weighting function is

80 = x(1-x)

(5-137)

(5-138)



. FFERENTIAL FQUAT T
PARAROLIC PARTIAL DI "QUATIONS —TIME AND ONE sPAT)
AL DIMENSION
1

189
The other termsare
0 db 20
@ =@ xa-x 3% = ~2x+b(l-2y) (5139)
Combiningall terms gives
db
hg=L+Lb+1p? 5-140)
'
I =] x}(1-x)%dx =
) L (1—x)2dx = 4
1
L=2| x@-x)(1- -
2 J;xl x?)(1=2x)dx #%
! 5-1
Iy= Zj X1 =x)(1-2x)dx = -4 (-14h
o
'
Io= = | x(1=x)(1-2x)%dx = —
4 L (1=x)(1=2x)%dx 3%
Thus
db ,
=~ 1=17=b (5-142)
Forthelinear problem /, = —1/30,/; = ~1/3,and I, = 0 giving
db
== -10-10p (5-143)

dt

We fit the initial conditions at 1 = 1 = a?/4,wherea? is given byEgs. (5-72). At
that time Eq. (5-63) gives

0=(1-xp (5-144)

while Eq. (5-136) gives
0= 1-x2+bx(1-x) (5-145)

These agree if we take
btg) = ~2 (5-146)

Therefore the nonlinear problem of Egs. (5-53) to (5-55) is solved by Egs.
(5-63), (5-57) and (5.72) for 1 < a%/4 and by Eq. (5-136) for 1 > a%/4, with b()
determined by Eqs. (5-142) and (5-146). The linear problem is solved by the same
function for 1 < a?/4 with difTerent ¢?, and with () the solution to Egs. (5-143)
and (5-146). These approximations are shown in Fig. 5-4 and ure reasonable
compared with the exact solution. Interestingly, these approximate solutions are
simple enough 1o be solved entirely on a programmable calculator with aboull 3
Program steps and cight memory registers, Equation (5-142) s solved using Eu ers
method with a fixed At for several Ar. The results are then extrapolated to get the
best estimate as Ar — 0
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1.0 T T T T
pproximate, kqs. (5-63)
0.8 and (5-136)
06 4
\
clx. 1)
04| -4
0.2 -4
L 1 N
0 0.2 04 0.6 0.8 1.0
x
(@
1.0 T T T T
—— Exact
\ Approximate, Eqs. (5-63)
o osk\ Y and (5-136) i
N\
06 4
\
clx.n \
04 N 4
\ S
\
0.2} \ X\ J
LN S
o 0.2 0.4 0.6 0.8 1.0
x
®

Figure $4 Lincarand nonlincardiffusion problems. (a)k = 1 +0. (b)k = | +0.
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tion is easy to apply to i
Orthogonal collocal PP’y 10 transient problems. Take the inea
giflusion pmblem_, Egs. (5-74) to 15-76)A The solution exhibits no no::!; '
symmetry properties so that we expand in polynomials in x particular

e(x, ) = al1)+b(t)x +x(1 —x) i a()P,_,(x)
=

(5-147)
Wecan Write this as
N+2
clx,t)= 3 dex-!
,Z:, 4 (5-148)
and evaluate it at the collocation points
N+2
(1) = di(nxi~t -
clx;1) 2:’ (1)xy or o) = Qd() 5-149)
The first space derivative evaluated at the collocation points gives
ac N+2 ) - a
i Z =17t or 5=l (5-150)
However, @;, = x;~ ! is independent oft so we caninvertit once to obtain
E=CQ"1:EA(: (5-151)
ox

Thisisthe same as Eq. (4-103), except that now both ¢ and dc/dx are [unctions of

time. In addition

de| _d _dg (5-152)
al, T &= w

Thus for the difusion problem of Eq. (5-74) we write the collocation equations

either as

N+2 N+2
4 N 4uDie) Y. Aver (5-153)
dt = =t
oras
N2 ap (N2} (5-154)
Die) 3. But g un( A

conditions. Equation (5-153) can be written as

with the usual boundary and ini
N2

4 NY:Z AdfO)  Adp= T AD(E) A (-155)
de S & . i

i tial equation
By applying orthogonal collocation we can reduce the pE“r"(“s'_fs’g')’f:“‘l"m itial-
Eq. (574) 10 a set of ordinary diferential equations as dg giscussed in Chapter 3-
value problems. We solve them using any of the mﬂoh‘:w mlay want to solve the
For both linear and nonlinear problems near f=
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subsidiary problem of Eqs. (5-126) and (5-127), and apply orthogonal collocayigy

(N 1) L
*© g":n:‘:: mo)sl idespread application of or is in reaction ang
diffusion problems, such as the transient counterpart 1o problems solved i
Chapter 4. The first example is for the equations governing a packed bed reacior
with radial dispersion. The basic equations in cylindrical geometry are

9T 4V T+BR,T)
0z

] (5-156)
gi_ — aV2c+ BRI, T)
T _dc
LI =0 X
il [ (5-157)
.
T B T(Lo-Tu@]. -=| =0 (5-158)
or =1
T =T, cr0)=c (5-159)
M" - MP
*= R, 7 RPe,
Pe, = G% Pe, = G4,
pD. e 160
5 kol (= 8H, koo
b= C,GT,
hR

The reactor length is L, its radius is R, and the catalyst diameter is d,. The mass
flux is G (mass per total cross sectional area per unit time) and the density is . S0
that the superficial velocity is G/p. Dispersion in the radial directions is modelc_d
by the dispersion coefficients D, for mass and k. for heat. The fluid heat capacity is
C,, while the reaction rate constant is k. The heat of reaction is —AH, . Heat is
transferred at the wall from the reactor to the surroundings, and the rate is
governed by the heat transfer coefficient h,, in Eq. (5-158). In Egs. (5-156). the first
term represents the convection of heat and mass, while the next term is for m{“al
dispersion caused by the flow around the packing. The last term is the reaction
rate term.

It is possible to have a problem in which this reaction rate depends on the
diffusion of heat and mass in a catalyst pellet. In such cases it is necessary to solve
a two-point boundary-value problem (i ing several depend ables) at
each (r,2) location in order to evaluate R(c,T) in Egs. (5-156). Orthogonal
collocation, which is also useful then, is illustrated below for a stirred tank

problem. Here we assume that the reaction rate is just a known function of the
bulk temperature and concentration
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Re. T) = (1 —c)er-4T

(5-161)
Applying orthogonal collocation gives the following equations from (he residuals:
ar, _
Pl Z By T+FR(c,, Ty)
d (5-162)
L =« ): Byc,+BR(C T)
The initial conditions are
T0) =T, c(0)=co (5-163)
and the boundary conditions are
N+1 X N+t
S L AN =BTy -T) - T Avae =0 (5-164)
i I
The bound: atr=0are i satisfied by using polynomials

y
that are functions of r. This gives 2N ordinary diflerential equations coupled with
two linear algebraic equations. It is convenient to solve the boundary conditions
for ¢y, and Ty and to introduce these values into the diflerential equations

Bi,T,
!’,l=,r): B, T4 i BTy pp
= Bint Ansine: 5165
. N
%2 S By +BR,
dz I
5 ByiAnsus 5166

I T By A

i, = 0 for the concentration equation. These are integrated [rom the initial
conditions, Eq. (5-163), using a variety of methods for comparison.

The orthogonal collocation method gives a first approximation that can be
used to gain a physical insight into the solution. For the first approximation and
cylindrical geometry the equations are

—T+FR,
(5-167)

These equations take the same form as the lumped parameter model, in which case
no gradients are allowed,
ll'l
L _NuJT-T)+BR
Nu(T-T)+FR (5-168)
1’(’
=R
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16 ’—-1 T T T
14 { N=14
n
N=2,3,456
1.2 F 4
1.0 1 1 |
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z
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1.0

Figure 5§ (a) Average temperature
for Eq. (5-165), with By, = | und
) T, = 0.92. (b) Averageconversion.
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16

FigureS.6 () Rudial temperature
profiles for Eq (5-165) with

r Bi, = 1.7, = 092,and N = 6.
® (b) Rudinlconversionprofilcs.
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N, = 22
U= G GR (5-169)
Equations (5-167) 10 (5-169) are the same provided
62'Bi,, or 1
Now =37 i, Nu,, (5-170)
or when
R
T (5171

The relative importance of the wall resistance is evident by computing the wo
terms in Eq. (5-171). Comparing 1/h,. to 1/U gives an idea of the fraction of the
total heat transfer resistance that occurs at the wall. The equivalent comparison s

(5-172)

ForBi, = 1. 75 percent of the resistance is at the wall, and the temperature profiles
are expected to be relatively uniform inside the bed. A low-order approximation
(say N = 1or 2)is i For Bi,, = 10 the wall resistance is 23 percent ol
the total. and for Bi,, = 20 it is only 13 percent. In the latter case steep temperature

0.173 T T T

Improved Euler. N = 3.

L
0.005 0.01

az

Figure $-7 Extrapolation of orthogonal collocation solution with Az and Bi, = 1.0.
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gradicnts are possible in the radial dircction and more collocation points (N = 6)
are needed.

For the lirst example we choose x = #' = 1, f = 03. f = 02,7 = 20, Bi, = |,
and To =092, Since this case ha§ a low Biot number we expect that the
\emperatre profiles are relatively uniform in the radial direction, and a low-order
collocation solution may suffice. The temperature averaged in the radial direction
i shown in Fig. 5-5 s a function of length. The solution with N = I s close to the
exact solution. and the solutions with N = 2, 3, 4, 5, and 6 are indistinguishable
from cach other. The temperature and concentration profiles at specific axial
positions are illustrated in Fig. 5-6. The small radial gradients are evident,
permitting a low-order polynomial in the radial direction.

Results are first given for methods that use a fixed step size Az, The Euler
method and the improved Euler method (second-order Runge-Kutta) are all
explicit. Whereas the trapezoid rule and the backward Euler method are implicit.
To illustrate the accuracy of the different methods we choose the average
concentration al 0.4 as a quantity of interest. The exact value is 0.172903 as

v T T
ok J
® Ne2 1
Rl
£ e,
3
B
5
Euler
18 Ne=4 1
N=3
Second-order, Runge-Kutta
N=3 =4
\o—u—o A e
o B 10 1s L
Computation time, sec
Flgwre sy fror =10
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determined by extrapolation of the most accurate results. At the outlet of the
reaction the concentration is 1.0, since the reaction has proceeded to completion,
The errors in solutions calculated with difTerent N land the Euler and (he
improved Euler methods are shown in Fig. 5-7 as a function of step size A, Itis
apparent that no improvement occurs for N larger than three and that the error i
the Euler results is proportional to Az. The error in the results using the improved
Euler method is proportional to Az?, which is appropriate for a second-order
method. The errors are plotted versus computation time in Fig. 5.8. The
computation time increases with N, and for N greater than three no improvement
is noted. The second-order Runge-Kutta method is very accurate, fast, and not
much more difficult to program than the Euler method. Three methods are
compared in Fig. 5-9 for N = 3. Results obtained with a backward Euler method
and fixed step length are too inaccurate to be shown in Fig. 5-9. The trapezoid rule
is more expensive than the explicit methods, even though large steps can be taken.
For Az = 001 we see that the use of four iterations rather than just one improves
the accuracy very little but increases the computation time by 50 percent. It is
more efficient to reduce the step size and take one iteration per step than to use a
larger step and several iterations per step. The extra time spent solving the matrix
problem is illustrated in Table S-1, which shows the computation time as a
function of step size. Comparing explicit and implicit methods for the same step
size reveals that the explicit methods are from five to ten times faster, but require
smaller step sizes for equivalent accuracy. Among the methods that have a fixed
step size the second-order Runge-Kutta method is preferred. This is based on the
best accuracy for the least computation time and on simple programming.

o
3[- Euler 4

%

*

3 2| 4

< x

< Trapezoid,

g 1 iteration

&

Sccond-order
Runge-Kutta

x 4 iterations

VI S N N T
10 15

Computation time, sec

o s

Flaure S Comparison of methods with fixcd sicp size, using orthogonal callocution with N = 3and
i -1,



ARTIAL DI

PARABOLIC FRENTIAL EQUATIONS - TIMI: AND ONE SPATIAL DiMENSION 19

Table 51 Step sizes and errors for Eq. (5-16S) in which
Bi, = 1. T.=092.and N =3

Errorin Computation
a (s (Do x10%  time.sec
Euler.0(82)
0002 01721659 74 16
0001 0725256 38 34
00005 0727072 20 67
Improved Euleror second-order Runge. Kutta.0(Az4)t
001 01728603 049 074
0005 01728821 021 L5
0002 01728886 014 35
000 01728896 013 70
Trapezoid rule. 0(Az )t
002 Viteration 18 28
ool iteration 035 49
4iterations 035 5
0005 literation 0 100
Backward Euler. 0(Az)}
004 Unstable 066
002 Unstable 20
001 02066 336 39

* Using0.172903 as the exact solution,
Using FORTRAN compileron CDC 6400,
3 Using MNI- compiler on CIDC 6400,

Next we consider the variable-step methods: fourth-order Runge-Kutta and
GEARB. For GEARB the matrix is assumed to be banded, whereas the actual
matrix is dense. GEARB is used with the proviso that the bandwidth is arbitrarily
taken as half the dimension of the matrix. The average concentration at = = 0.4 is
listed in Table 5-2. For a given choice of N the Runge -Kutta and GEARB
methods give about equivalent results, with GEARB being slightly faster for high
N. For N =3 the second-order Runge-Kutta method with fixed step length
8z = 0,01 is faster, but less accurate, than the results obtained using a variable step
length. None of the computation times are expensive, however, and cither Runge--
Kutta or GEARB could be used because of the good accuracy and reasonable
Computation time.
For the second case we choose Bi,, = 20 and T,, = 1. Now more of the heat
transfer resistance is interior to the bed, as given by Eq. (5-172). As a consequence,
more terms are needed in the polynomial expansion (higher N). The average
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7¢5-10 Profilcs for Eq. (5-165) with Bi, = 20and T, = 1. (a) Temperature. (b) Conversion.
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temperature and concentration profiles in the bed are illustrated in Fig, 510, Tpe
radial profiles illustrated in Fig. 5-11 demonstrate the need for a high-order
polynomial to approximate such a profile. This time we choose the average

L6

12
10
o
-
(a)
L0 or
08
2=05
06 i
o4t i
2=04
02 N
2=02
I
o 0.2 04 ofﬁ Dlﬂ .o Figure S-11 Radial profiles for
’ : . Eq. (5-165) with Bi,, = 20, T, = 1,and
N = 6.(x) Temperature.
®)

th) Conversion.
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concentration at = = 0.6, which is at the peak of 1|
hence is a sensitive mdl_cmor of acauracy. The exact
concentration at the exit of the bed is 0.99230. For t
not risc s much and the conversion is not complete
at the wall resulting from the higher Biot number.
Results are first presented for methods using fixed step sizes. The average
oncentrations are listed in Table 5-3 for several methods. Apparently N = Sgls
necessary to achieve adequate results. The fourth-order Runge-Kutta method is

he temperature profiles, and
v_zlue 50.91926; the average
his case the temperature does
due to the better heat ransfer

Table5-3 Errors for Eq. (5-165), with Bi,, = 20and T, = |

Numberof
Error® Computation Function  Jacobian
N A < x10* ¢ time,sec Steps  evaluations evaluations
Fourth-order Runge-Kutta, RKINIT
| 03348  SK40 107> 022
3 0go3 1110 107% 097
3 08985 208 107 18
1 09037 156 107 38
5 0.91979 53 10°% 19
6 091937 [ R
GEARB. MF = 22
1 03347 S840 10 018 “ i 3
2 08088 1110 10 10 126 26 2
3 08956 ™ 10 13 155 367 2
4 09045 w10 21 175 445 7
5 092059 13100 3 12 531 »
6 091969 43107 40 160 545 2

Second-order Runge-Kultta.lixedd:

10005 0348 5840
0002 03348 5840
2 0005 08068 1120
0002 08080 1110
0001 08081 1110
3 0005 o952 20
0002 08982 211

0001 08984 208
4 0005 08989 204
0002 09035 158
0001 09037 156
S 0002 0919 34
000} 09197 a4

*Using 0.91926ustheexuct unswer.
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ivale ¢ GEARB method for low N, but GEARB is faster for
a.::?: ::::l‘ %:: li;:v}:v:—mm point to note in the l"esulls from (_}E'ARB is that the
number of steps Reeded does not change dn!sllcqlly as N is Inclea.sedA With
Runge Kutta.on the other hand. the computation time increases drastically as N
is increased. This is because the system becomes Stifl (see below). Thus as
the GEARB method is preferable, taking larger step sizes so that it is
faster overall. Also. the variable step methods are faster, for the same accuracy,
than the second-order Runge-Kutta method (sccATabIe 5-3). )

The difficulty of integration depends on the eigen values of the .Jaccbian on the
right-hand side. The jacobian, of course, depends on the reaction rate, which
depends on the solution. For “easy” p[?blems ufeful |nrorrqallo!1 can be obtained
by ignoring the reaction rate term and just looking at the diffusion term. Then an

explicit scheme is stable provided
ar<-r min(l.L,> (5-173)
1Almax @«
where |£|ma, iS the maximum eigen value of the matrix B'. and p is about two (see
Table 3-1). We can calculate the eigen values of the matrix, but a simpler approach
is to estimate the largest one. The largest eigen value of the matrix B’ is bounded
by

N
[Almax < max Y |Bj| = LB (5-174)
1€jSNi=)
Table5-4 Parameters for i eigen value in orth | collocati
N
1 2 3 4 6
Planar
s 00 105 501 142 325 642
1x) 30 425 185 536 1244 2491
q 0323 0.0932 0.0423 00248 0.0160 00112
Cylindrical
J0) 00 16.0 65.3 175 385 743
JUx) 80 662 250 677 1503 2921
q 0248 00750 0.0373 0.0222 0.0146 0.0103
Spherical
ﬂ[ﬂ) 00 25 824 21 450 851
Jiey o 1s0 951 32 835 1787 3386
) 00625 00327 00200 0.0134 000957
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when Bi is large B = _B. Values of LB can easily be calculated once the matrix B i
determined and the Biot number chosen. The maximum eigen value of the matrix
is corrclated by the following equation, with parameters given in Table 5-4,

J(Bi) =

ABillmas = S(0)+Lf (%)= f(O)] f"m (5-175)
The importance of this information is best illustrated by an example. For planar
geometry and polynomials determined by W = | (see Table 4-5) the eigen value
for N = 1is0.097 for 0.1, and 2.9 for Bi = 100. Clearly the stablestep size is a
strong function of the Biot number since the maximum eigen value varies by a
factor of 30 in this example. For N = 6 the correspondingeigen values are 644 and
1620 and the dependence on the Biot number is less dramatic. For the same Biot
number (say Bi = 10) and changing N the maximum eigen value changes from 5.7
at N = 110950 at N = 6. Thus large N requires a smaller step size. Furthermore,
the stilfness ratio (i.e. the ratio of largest to smallest eigen value) increases
dramatically with N. For an infinite Biot number the stilfness ratio is | for N =1,
17for N =2, 75 for N = 3,and 1,000 for N = 6. As the number of collocation
points increases the stilness ratio increases, also, necessitating longer computation

00 T T T T
E N=6
2 400 1
&
K}
4 N=3
F
€
2
] J
3 200}
E
3
o 0.2 04 06 08 10

z

colloc: th Bi, = 20.
Figute 512 Cumulative number ofsteps for GEARB und orthogonul collocation wit
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i i ici s. This is why Runge-Kutta takes longer than the
um:n:“r:;;ﬂc;rr?::: 74 (se: Table _J;, We can apply these ideas to choose
l?: step sizes reported in Table 5-1.Fora 1, Vlmax = ;Dg[or N =3and the
improved Euler method has p =2. Thus Az < PlliAmax = 0.02 é.&sliep sizes of
001 arc stable, The cumulative number of steps needed with " B and the
problem with Bi, = 20 is shown in Fig. 5-12. Near the region ol the sharp rise
in lemperature more steps (smaller Az) are needed.
The next application is the difusion of heat and mass in a porous catalyst
pellet, ie. the transient version of Egs. (4- I’ZOi to (4-123). The specific problem is
the one solved by Ferguson and Finlayson.

T 2 2 -
M = VI R T
“" (5-176)
. =Vi—¢R(c. T
M, & c—¢*Ric.T)
o T =0 (5-177)
(X |s=0
= Bi[T(1.)=g,(n]
N (5-178)

= Bi[c(1.0)—g2(1)]

The functions ¢,(1) and (1), which can vary in time. represent the external
temperature and concentration surrounding the pellet. We can apply orthogonal
collocation to these equations 10 obtain
dar, 3 B,y .1Bigi(n)
M B, T+ R, + N
va T L IR e

(5-179)
de, 3 By, 1 Bing:(0)
MY Y Bt .8+ 1 Bimd2
S y-zl Gl (0 RI+ B‘m"'"l\vl.\.l
T(x0) = Tolx)  clx.0) = ¢col¥) (5-180)

where B, is given by Eq. (5-166). We use Bi for heat transfer and Bi,, for mass
transfer. We must integrate the 2N equation: (5-179). subject to the initial
conditions given in Egs. (5-180). These equations are similar to Egs. (5-165) and
the same method can be used by replacing length = by time t. The major difference is
that as time proceeds mass can be added to the system through g (1), Whereas in
the reactor problem Bi,, = 0 and no mass is added down the length of the reactor-
I the reaction is very fast compured to radial dispersion in the pellet, the mass
injected at r = | can be rapidly consumed, leading 10 steep gradients in the radial
direction. In the reactor, on the other hand, the reaction proceeds somewhat
uniformly at all radii since no mass is injected at r = 1. If the temperature does not
vary radially, there would be no concentration chanue radially at all; N = 1 would
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PAR:
low N orthogonal collocation y Proximation j; i

-onsequently. P imation is more likely
’ﬁ“r‘ﬁi for the reactor and the transient pellet problem with low ¢, but not for
su“"sicﬂl pellet problem with high ¢.
the '\' we next integrate Egs. (5-179)for two cases. Both use a first-order, irreversible
reaction with

suf

R(c, T) = cer=uT ©181)
=20, =06, and ¢* = 0.25. The values of M, and M, are 176 and 199,
wwﬂ"ive]} The first case corresponds to boundary conditions of the first kind
{5 2. Bi, o). The initial conditions for i
i+ . Biny

and are

1.0

02 0.4 0.6 08

! and
(5-177), (5-182)
Figare Eqs. (5-176)
513 Radial temperature profiles 1n catalyst peliet bused on Eds-
5-183) with N . g,
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T(x0)=105  c(x0)= 10 18
Attime zero the boundary value of temperature is changed to
T(0)=10 c(L)=10 18y,

Thus the problem represents an approach to steady state when the pou,

temperature is lowered. For ; = 20 and an activation energy of 20 kcal/mole the
reference temperature is 1000K, so that a decrease by 5 percent is a SOK. change,
The temperature profile is shown in Fig. 5-13. Here we see that the Center
temperature first rises and then falls to the steady-state value. By using GEARB to
integrate 1o steady state we can integrate quickly. As the steady state is
approached the profiles change slowly and large time steps can be taken by the

1.8, T T T
1=50
1=20 \
1.6 -
T 14f
=10
1.2)-
1.0
02 04 06 08 1.0

r

Figure 514 Radja)
tem
B = 2765 and Bi, = )Jz’*'""‘ profiles in catalyst petlet bused on Eqs. (5:176) and (5-177) with
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jicit method. An explicit method would be less economical as small tim:
:‘.‘.‘.:.l have to be taken all the way to steady state, since the stable s‘epeﬂszl:pi:
controlled by the stability limit.

For the next example we take the same equations, but now for boundary
cwnditions of the third kind with Bi = 27.65 and Bi, = 33.25, The initial tempera-
(ure and concent r?lion profiles are taken as the N = 2 approximation to the middle
steady-state solution with bnundar): temperature and concentration of one. At
time 2ero the boundary temperature is raised to 1.1 and held there. This 10 percent
\emperatur¢ perturbation is suf Iicm_u to drive the solution from the intermediate
to the upper steady state (with the highest temperature). The temperature solution
uing N = 6 and GEARB is shown in Fig. 5-14, and we sec that very steep
gradients are present. Consequently, a large N is necessary. This problem has also
been solved with the improved Euler method. In this case the stable step size given
by Eq. (5-173)is 0.23. Calculations made with At = 0.1 are stable, indicating that
Eq. (5-173) gives a reliable estimate of step length.

This demonstrates the application of orthogonal collocation as a numerical
method [or solving the problem of transient diffusion and reaction in a pellet. The
orthogonal collocation method is also useful in a first approximation lor studying
the stability of a set of equations. We illustrate that advantage here. The steady-
state version of Eq. (5-176) can have three steady-state solutions under certain
conditions. The second solution is unstable and the upper steady state is stable for
large Lewis numbers. where Le = M /M, but unstable lor small Lewis numbers
(ie. Le < 1). Indeed. for Lewis numbers of less than one a limit cycle develops. and
the concentration and temperature profiles in the catalyst change in a periodic
fashion with time. We apply a one-term orthogonal collocation method to study
this phenomenon. The equations become

i1, B, B

ai = e M-+ R

" B —e-Ry (5-184)
l* =1

M,

—An(=T+T) = Bi(T,~1) (5-185)

—An(—c +¢) = Biy(c:—1)

where B, and 4, are obtained from Table 4-6 for the appropriate geometry. The
boundary - " h n

are ined with the dil to obtain
dT, ] -B, _Bi
—d(1 =Ty + ] d="M -
g ST R A= AR (5-186)

de,

Bi
&t =b(l-¢,)-R, b= _B‘A’,;+E
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We call the steady-state solutions T and o, define T =T,—T; and ¢ = ¢ =c,
and then linearize Egs. (5-186) about T;, and ¢, to get

9T _ir+ B RyTHRO
d Le
de (5-187)
& o _be—(RrT+R.)
dr
oR oR
== =5 5-1
Rr=3r Touco 0 |Tco ©-188)
We solve these linear ions by ing an ial solution T = geu

¢ = B* giving rise to a set of homogeneous equations in 4 and B. A solution exisl;
only for certain values of u, which are the roots to the determinant

B B
-= -ER
prd=geRr R -0 (5-189)
Ry u+b+R,
This gives a quadratic in 2
w4+uQ+c=0 (5-190)

B _ _BbRr
Q=d+h= [R+R  c=dbrdR—"p T
The quadratic has the solution 2y = — Q+(Q*—4¢)"'2. 1f Q is negative then one
eigen value has a positive real part and the solution is unstable. By expressing the

R, and R, in terms of the reaction ratc at steady state R, we can write Q in the
form

-7
Q—d(l+7~.’.‘r+Le.
co b _Bin 4y +Bi

“dLe  Bi A, +Bi,

(5-191)

Clearly if T, <1 then Q is positive. If T, > 1 then we obtain the following
condition for negative Q:

(5-192)

The right-hand side is a numerical value, which depends on the steady-state
solution. If the Lewis number is below a critical value, the steady state is unstable.
For the example in Fig. 5-14, the upper steady state is ¢, = 0.02075 and
T, = 15989, and we get from Eq. (5-192) Lex < 0.077. Since Len' = 0.90 the upper
solution is stable. Further calculation reveals that the lower steady state is also
stable (both p are negative), while the intermediate steady state is unstable (one s
is positive). For realistic values of parameters occurring in chemical engineering



JoLIC PARTIAL DIFFERENTIAL EQUATIONSTIME AND ONE SPATIAL DIMENSION 211
ABOL

AR
Well mixed

Out  Figure 515 Schematic stirred tank with catalyst pellets.

the Lewis number is usually much greater than one. Thus this problem represents
an interesting mathematical one, although not of much importance for industrial
chemical reactions. Problem 3-8 is a particular case of Egs. (5-184). For the small
Lewis number used there no steady-state solutions are stable, and the solution is a
limit cycle.

For the next example we take the case of a stirred reactor filled with catalyst
pellets. Then we must solve the equations governing the reactor as well as the
difusion-reaction problem in the pellet. The stirred tank is shown in Fig. 5-15 and
atypical mass balance is

v Z—‘l = Flcjn—c)+VR(c) (5-193)

where F is the volumetric flow ratein and out, V is the volume of reactor,and R is
the rate of reaction per reactor volume. We consider such a reactor for the
reduction of nitric oxide by the two reactions

NO+CO - CO; +iN,
NO+H, = H,0+iN,
The reaction rate is given by an expression of the form

R= __ kkiknoPPno (5-194)
T+ kipi +knoPno)

whete p, is the partial pressure of carbon monoxide and hydrogen for the two

*eactions, and k and k, are the reaction rate parameters. The dimensionless

“Quations are for the concentration of ith species in the pellet ¢, and. the

“oncentration in the reactor ¢;,

L 2, N
qﬁ—V(,—d.(r.‘H;) (5-195)
ac, &

- %l = Bife(l.0-cl
o ©,n=0 ol Bij[ei( i
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0 T VI b (- AH - AHyry)
B

. (5-196)
Ton=0 - = Bi[T(1,n-T"
1
ol
o =G —CGt+ds[a(l, ) —c]] o
. -197)
’-‘lef = Typ=T'+d[T(1,0=T"]
d
P (Er )4
¢ F2R,pyc,,

The catalyst density is p,, the particle radius is R, and the effective diflusivity and
thermal conductivity are D, and k.. respectively. The mass transfer coefficient
between the fluid in the stirred tank and the pellet is ki, while the heat trangfer
cocfficient is h. The void fraction is «. the heat capacity of the pellet is p,C,,, while
that of the fluid is p,C,.. We wish to solve these equations under transient
conditions when the flow rate. and the concentration and temperature of the
entering stream vary. We can casily apply orthogonal collocation to Egs. (5-195)
and (5-196) and reduce them to a sct of ordinary differential equations to be solved
along with Egs. (5-197). The time constants associated with different phenomena
are

2 .
why o WCR (5-198)
D, 2 k. T F

For typicalcases 1, = 0.3scc. 1, = 2l s¢
this different we know that the problem i:
This is called the complete model.

We can make a physical approximation and say that really fast phenomena
occur instantancously. Then we can neglect the time derivatives in those equa-
tions. We thus obtain the quasistatic model by neglecting time derivatives in Egs.
(5-197) and in the diffusion .of mass given by Egs. (5-195). The slowest pheno-
menon is the heat transfer. and we retain the time derivative in the heat conduction
equation for the pellet, Egs. (5-196). )

Still another simplification can be made in this case, and that is to recogniz
that the carbon monoxide is usually far in excess and that the reaction rate 1
essentially a first-order reaction in relation to nitric oxide concentration. The
major temperature drop occurs outside the pellet; the temperature profile inside
the pellet is relatively uniform. Thus the problem of diffusion and reaction of ymlss
in the pellet reduces 10 a steady-state boundary-value problem and, in fact, a linca
one that can be solved analytically. Doing so then relieves us from solving "?e
coupled equations for the three species and the temperature in the pe"el: T}‘ns
model we refer to as the simple model. All three models are integrated with an
improved Euler method, Egs. (3-78) and (3-79).

T, =

and t; = 0.003 sec. With time constants
ifl and implicit methods are needed.
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—
© Dynamic model,N = 6 (

o Dynamicmodel, N =3 .

& Staticmodel, N =6
Static model, N'= 3

02

Figure 5-16 Concenuration in catalyst pellet. (After Ferguson and Finlayson.%)

A typical concentration profile for carbon monoxide is shown in Fig. 5-16 for
the dynamic and quasistatic models. This solution occurs 0.0l sec after a step
change in carbon i ion. The istatic model i
the concentration by 500 percent, but the error in the carbon monoxide coming
out of the stirred tank is only 8 percent, and 0.1 sec later is correct to 0.5 percent.
The effect of assuming a quasistatic model on the nitric oxide is similarly small.
The original article gives other reasons why the quasistatic model is appropriate.®
We are interested here primarily in the computation time for the various models.
These are listed in Table 5-5. The dynamic model used an explicit, improved Euler
method. It is apparent that an implicit scheme would have been best, but at the
time of the study the useful implicit integration packages were not available. The
Quasistatic model and simple model used the same integration routine, but since
the problem was not so stiff larger time steps could be used. The results in Table
5-5 indicate that small time steps of 0.0004 sec were necessary for the dynamic
model, whereas the quasistatic model could use time steps of 0.5sec and was
consequently much faster. For the same time step N =3, Ar=4x107%, the
Quasistatic model was more expensive than the dynamic model, because in the

ynamic model the right-hand side was evaluated at each time step, but in the
Quasistatic model a two-point boundary-value problem (with 4N unknowns) was
solved at each time step, and this involved iteration. The simple model was about
seven times as fast as the quasistatic model as a result of not having to solve the
boundary.value problem at cach time step. In that case the efTectiveness factor was
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Table 5-5 Computation times for different models
Stablestep

atio of
N o Ratio size by Eq. (5-173)

real time to
computationtime

Dynamic model

. Sx10-t 700 000018

N 10t 4 0.0018
Quasistaticmodel. t, = 1., = 0. Eqs. (5-196)

1 4x107* 100

1 1x10°? 6

1 sx10°" 014 17

Simple model. 1, = t, = 0. lincar reaction at average lemperature

5x107" 0.02 17

given as an analytic lunction. Thus the major part of the computation time is
associated with solving the equations for diffusion in the pellet. This means that
having an efficient tool, such as orthogonal collocation, is particularly welcome for
problems of this type, because it may be necessary to solve such two-point
boundary-value problems of times in a sii ion. Esti of stable
time steps are obtained from Eq. (5-173) for each cquation individually, and the
stability limits are listed in Table 5-5. The time steps uscd were about half of the
maximum permissible, and the much smaller step size needed for N =6 is
correctly indicated.

In conclusion, the orthogonal collocation method is effective when applied to
parabolic partial difTerential equations in one space dimension. The first term in
the solution may give useful qualitative information and higher approximations
are very accurate. Eective integration methods include the fixed step, improved
Euler method (a second-order Runge-Kutta), and variable step methods:
RKINIT (a fourth-order, explicit Runge-Kutta) and GEARB (a multiple-order,
implicit Adams method).

5-5 FINITE DIFFERENCE

We illustrate the finite difference method by applicati i
e illusur y application to Eq. (5-74) without the
reaction rate term. If we let ¢, (1) = ¢(x;, 1), the equation is ¢
de; 1
= a7 P )6 =)= Dies e =, 1)] (5-199)
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We can write this in the general form of Eq. (5-155)
de
& = AAe (5-200)
The only difference between orthogonal collocation and finite dilference is the
form of the Matrix AA and the number of terms needed for good accuracy. The

integration method can be any of the methods presented in Chapter 3. A simple
Euler method gives

axz PE R = =D NG~ )] (5-200)

o = clxpty) (5-202)
We expect the truncation error to be 0(Ar) and 0(Ax?) since these are the
truncation errors of the respective parts in Chapters 3 and 4. We can check the
truncation error by expanding ¢** * in a Taylor series about ¢*
&l ar

A+ 5 St o@r) (5-203)

o

éel
=g+ o
o

The spatial derivatives arc also expanded by Eqs. (4-29) and (4-30). Substitution
into Eq. (5-201) gives

!
| +or) = biet, "”(Zx‘

. 1 ac
-0t (g5
If D(c) is constant then the truncation error of the right-hand side is 0(Ax2). If D
depends on ¢ then we can use

i",r = Do) =D 1) (5-205)
x| Ax

and the scheme is second-order provided
D 2)+ DI )] = D) +0(Ax?) (5-206)
This is the case for the two approaches in Egs. (4-40), (4-41), and (4-51) given in
Sec. 4-2. The time truncation error is 0(Ar). As Af -0 and Ax —0 we get the
original equation evaluated at the ith spatial grid pointiind the nith time level.
The stability of Eq. (5-199) can be studied using the methods of Chupter 3. Let
s do this for the case D = constant. Then Eq. (5-199) reduces to

de,

D el
- B (5-207)
di ;; g

b
= =2k = 4

where the matrix B is tridiagonal. Suppose the boundary conditions are the first
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The stability of Eq. (5-207) is governed by (p,

ind 4 i=landi=n+l
kind at both | = L5 de (see Sec. 3-7)

largest eigen value in absolute magnitu

D r
#EAEE S (5-208)
The largest eigen value is bounded by
Vlmas € _max ¥ B;] (5-209)
2< <=2

and this gives |Zlmsx = 4. Substitution into Eq. (5-208) gives stability for

AtD <P
a7 <a (5-210)
Now if we do a calculation with finite n and actually calculate the eigen values we
find they are smaller than the upper bound, Eq. (5-209). For n = 2, 3,and 5 we get
Vilmax = 2. 3. and 3.41. respectively. For 1 — o, V|, = 4 and the upper bound is
in fact the exact value. This means that for any finite n we can calculate with a step
size At larger than Eq. (5-210) by some small amount and retain stability, For the
Euler method of integration p = 2 and Eq. (5-210) gives the value § on the right-
hand side.

There is another. more common, way to study stability of the equations, using
the following theorem:

Theorem If
@l = A, +BAHCL -211)
and A. B, and C arc positive and A+ B+ C < L then the scheme is stable and
the errors die out.
Proor Apply absolute values to Eq. (5-211) and make the right-hand side
larger by replacing each term by its absolute value
S IACT AL+ B ICE || = Alet, ||+ Bl + Cleg | (5-212)
Replace each |7| by max,ci| where k ranges from 2 to n. Thus
13" < (4+B+C) max |f] = max |cf (5-213)
&

But this equation holds for each i i i
3 s ach i and so it holds if ac eft-hand
side by hemanmin o5 1" 0 0lds il we replace the left-han

max |7 '] < max |f] -214)
. . . ! .
This equation is applied to each time level to obtain

max |c] | < max |c| (5-215)
i "
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Thus the solution is bounded as n — 0. If the problem is

(5-216)
O =S cOn=g)  dln=g0 (5217
then the €rror u = ¢ — ¢, is governed by
)

(5-218)
u(x,0) = u(0,1) = u(l.1) =0 (5-219)

Iferror is introduced at time 1. then this error decreases in time, according to
Egs. (5-214) u_nd (5-215). provided that the calculations are done exactly. Now
Eq. (5-201) with D = constant can be rearranged to the form of Eq. (5-211)

t=ad, (1= 22 +ad (5-220)
DAt
Ll vy (5-221)

If A. B. and C arc positive and 4+ B+C = | then the scheme is
coefficients add up to one and A and C are always positive. B is positive when

1-2x20 x<d (5-222)
thus
DAt
e -22.
AL (5-223)

If At obeys Eq. (5-223) then the calculations are stable. [Compare to Eq.
(5-210).] We have not proved that a larger At is unstable. Such a proof is more
difficult although true for n — .. We have seen by actually calculating the eigen
values that larger At are in fact stable for finite n. The implications of Eq. (5- )
are that if Ax is decreased by a factor of two then the time step must be decreased
by a factor of four. Richtmyer and Morton'? suggest for nonlinear problems D(c)
that the same cri n be used as a guide using the current local value of D(c}).
Other geometries are examined in problem 5-19.

Other methods than Euler's can be used to integrate Eq. (5-199). The Crank
Nicolson method was developed by evaluating the right-hand side at the average
of its values at time levels n and n+ L We illustrate this classical method for the
case with D = constant. We evaluate the right-hand side at the two time levels and
weight them by 1 — ff and fl, respectively, giving

_ =24, q.’.‘—l""«n‘.‘j,‘) 5-224)
i —Du—m( ac )+ op ax? ¢

Now the equations are of the form

“aBelI (1420 —afi | = all = - 2T+ (5-225)
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These can be written as
AAc = f(c) (5-226)

- is tridiagonal. The case f8 = 4 is the classical Crank-Nicolson
:::I::cliheﬂm: l(;‘xg:/:slsl;:d!iugler method, and f8 = 1 gives the hackwayd Euler
method. We have seen that the implicit methods with S =4 and | are suitable for
Still problems and that the choice f# = 1 provides an L slab}e method. The chojce
B = } is second-order with error 0(Ar?); the other choices give 0(Ar). The stability
of the equations is governed by

DAt _ 05

*=ax ST (5-221)

4. T
3s| |
30F 1
Unstable
251 .
=Dar
ax?
20 -
Oscillates
15 i
L0 |
0.5 Stable
without oscillation
o Crank- Backward
er  Nicolson | Euler
0 02 04 06 0.8 1.0
8

Flgure $-17 Oscillution undstubility limits for thefinitedifference method.
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= bound on At is infinite indicating A stabili

For f§ = § the upper ating A stability. Only the

— 1 gives L stability. A chart of the stability regions for difTerent s show‘l:l‘:
g, 5-17. The oscillation limit is derived using the analysis of Eqs. (3-125) to
(3-127)to give

14 max

(5-228)

Lo bar_02s
= A Sl (5-229)
When using the Euler method (/$=0) we must use x <0.5 for stability but
2 <025 10 avoid oscillations. When using the Crank - Nicolson method we can
use large 2 and have a stable scheme, but it oscillates unless x < 0.5. In that case
we should compare the extra work to solve the tridiagonal equations of Crank -
Nicolson (/¢ =0.5) with the work needed to solve the equations using Euler's
method (f = 0) and a slightly smaller Ar: a < 0.25. The reason Crank-Nicolson is
so popular compared with the Euler method is that for many problems the former
solution oscillates. Such oscillations are small, however, since the accuracy goes as
Ar*.and may be smaller than the errors in the Euler solution. For harder problems
with large |Zlpg in EQ. (5-208) [or D in Eq. (5-227) replaced by |lm,/4] the
tendency to oscillate may be very noticeable because x is taken so large. Then the
enhanced stability of the backward Euler method is needed.
TheefTect of a reaction rate term on the stability limitation is easy 10 deduce il
rate is lincar ion. The eqy are then lincar

@y =2+ )=k (5-230)

Theyrearrange to give

A=l (1= 22— kA At (5-231)

Now A+B+C < 1, and 4 and C are positive. B is positive and the calculations

arestable if

(5-232)

Asthe reaction rate increases the stable step size is decreased, although thiseflect is
mitigated by a grid with small Ax. .

The boundary and initial conditions are also important in the calculations. I
the boundary con¢ i n are incompatible at their common
points, the analyst must make an arbitrary choice. Suppose the conditions are:
€1,0)= 0, ¢(0,x) = . What value do we assign to ¢(0.0)? Whateser choie we
make introduces errors which, if the scheme is stable, will decay in successive ime
levels. The recommendation is to use the boundary-condition value and make
€(0.0) = 1, based on the comparison by Wilkes.'* .

When the cquation is nonlinear we have several options to solve it. The Euler
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sted in Eq. (5-201). The modified backward Euler method can pe
ati ight-ha i he n+1 level, except for the p
by evaluating the right-hand side at 1 o
f:r‘ulu’l‘:}\l:)?ichyure evaluated at the nth time level. The same approach can be useq
with the Crank-Nicolson method, giving

method s illustr:

qri-d

= D @+ )= [P )+ DI )]
At 2Ax? !

X (@ +ED+D(el ) (€ +el)) (5.233)

An improvement is made il the diTusivity is evaluated at the n+4 time level. The
value of ¢ there is obtained by applying a Euler method to step forward At/2. This
approach is a combination of a second-order Runge-Kutta method

e S )mn_y.= . )
Ry L T Jom (5234

and the trapezoid rule
=30M)+6" ) (5-235)

In all of the implicit methods the tridiagonal matrix must be decomposed twice for
each time step. Problem 5-20 shows that the truncation error of this scheme is A2,
We can also just take the equations in the form

de; .
b Fi) (5-236)

In this form we can apply any of the methods of Chapter 3. Below we use the
improved Euler method (or second-order Runge-Kutta method). with fixed step
size, the fourth-order Rungc—Kutta method with a variable step size (RKINIT)
and the implicit GEARB system. In the latter cases the nonlinear system of
equations is solved with Newton- Raphson, and the derivatives are calculated
numerically. Thus in the last two cases, the user just has to provide a main
program and a subroutine to calculate the right-hand side F given c.

We first apply these methods to Egs. (5-156) to (5-158) for a packed bed
reactor with radial dispersion. The radial direction is divided into n—1 equal
intervals using n points. The equation for concentration at an internal grid point is
obtained from Eq. (5-156) by applying the difTerence formula (or the laplacian

=2+¢y, | (a=1\G 5
il G i Sar + BR; (5-237)

i

Here we use ¢ o denote geometry, thus for planar geometry a = I, cylindrical
a =2, or spherical a = 3. At either boundary we employ a false boundary point,
giving the d-ord ions lor the boundary diti

ez

2Ar

Cari=Cay

0 = Bi,(c,—¢,) (5-238)
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For the boundary node we must then employ Eq. (5-237) with the boundary
conditions

de, 2a
T T A e+ IR, (5-239)
2esy = )= 2Biadiricy —cy '
%,,[M'_M'#) + ta=1)Bifeo— ",]+ R, (52400

Thesetof n equations—Eq. (5-239)for i = 1, Eq. (5-237)for j = 2 to n— 1, and Eq.
(5-240) for i = n—is then solved using the different methods to integrate in time.
Results for the first case with Bi,. 0.92 are shown in Table 5-6.
Notice that as the step length is decreased in the second-order Runge-Kutta
method the answer for the average concentration approaches the value obtained
with the variable step. fourth-order Runge-Kutta method. This suggests that the

Table 56 Average concentration for Eq. (5-156)with Bi, = 1 and T, = 0.92

Number of
Function  Jacobian
Error  Computation cvaluas  evalua-
as bl ar (O x10* time;sec  Sicps tions tions

Second-order Runge-Kutta.fixcdaz

001 308 oy M 0w
0005 305 oms6 25 OM
00025 305 oSy s 14
00 5025 01mle 26 051
0005 5015 0 28 11
00025 5025 a9 29 23
o001 9 0125 Unstable
0005 9 0125 01729509 048 Unsuble
00025 9 015 0un9se 39
Fourth-order Runge-Kutta, variable Az.c = 10°*
305 omsm o2 1
5025 0UmI0s 29 16
9 0125 0179587 056 46
Exirapolated Ar 0172814 022 61

GEARB,variubleds, MF = 22,0 = 107

3005 ogTsaeed 25 12 195 M »
S 03 ommn 33 18 17 x
7 01666 01730533 15 26 s 4 B
9 ons  omoel L1 31 o 393 e
o0l omsen 07 40 66 A1 3
13 00833 0473014 10 51 188 460 b
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04760 — T |

0.1750 [-

o RKINIT

o4 01740 - RKIRE
x GEAI

0.1730 —n{/ R

0.1720 L n L n
[ 0.05 01 015 02 025
an
Fiy S centra s = I
e 18 Average concentration at : = 04, Bi, = I, and , = 092, using the finite ifference

fourth-order Runge-Kutta method gives results that have very little truncation
error of Az; the only error is due to Ar. The results can be interpolated to give

{¢)g 4 = 0.1728814 +0.004945Ar* —0.3945A2* (5-241)

For the fourth-order Runge: Kutta method we use Az = 0 in the above formula.
The results with n =3 or Ar = 0.5 do not follow this formul, so that in this case
z(s; is not small enough ! the truncation error formulas are followed:
(Remember that the truncation error applies only as Ar — 0, This is demonstrated
in Fig. 5-18. Results obtained with GEARB are less accurate than those oblained
with Runge: Kuta, but for large n the GEARB results require less computation
"meiIWv-‘ recall that the explicit method must use a smaller Az when Ar becomes
small, due 10 the stability limit, Eq. (5-223). An implicit method, however. has no
such limitation by stability and larger Az can be used for small Ar; A2 is then
chosen by the accuracy requirement. The results from the second-order Runge”
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Kutta method shows that a step size that is stable for large Ar is not stable for
smaller . For other geometry the stability limit comparable 10 Eq. (5-223) is

bar _ 1

& <

5-242)
fora single linear equation with boundary conditions of the first kind. Using the
\alues Az =0.005 and Ar=0.125 we get a value of Az/Ar? = 0.32, and with
Az = 00025 we get 0.16. The stability limit gives Az/Ar? < 0.25 and the results in

10— T .
nedn xn=3
i
107 \ N
L \
\
\ x—a—x FD, RKINIT
\ =0 OC, RKINIT
\ —x FD, second-order
Runge-Kutta
- — —o 9C, second-order
£ === Runge-Kutta
= 10t b
4 =9
10|
N=4
10!
01 10 10

CPU. sec

y
'§ure .19 Compurison of orthogonal collacution und finite difference for By, = I
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Table 5-6 indicate this limit is close to that achieved even with the reaction rate
term included. . o

Results obtained by orthogonal collocation are compared in Fig. 5-19 1o those
using finite diference. The collocation results are very much more accurate thay
the finite difference results. We can use Eq. (5-241) to determine how many finjte
difference grid points are necessary (o achieve the same accuracy as obtained it
(hrec collocation points, 1.3 x 1075,

1.3 x 107 % = 0.004945Ar2

(5-243)
We need Ar =005 or 21 grid points o give equivalent accuracy to only three
collocation points. To make the temporal error the same size with a second-order
Runge-Kutta method requires Az = 0.006, which is within the range of the step
lengths used.

We next compare the finite dilference and orthogonal collocation solutions
when both methods use the fourth-order Runge-Kutta method to integrate in

Table 5-7 Average concentration for Eq. (5-156) with Bi 20and T, =10
Number of
Error  Computation Function Jacobian
a: n+l (Dye x10*  time.scc Steps. cevaluations evaluations
Second-order Runge- Kutta, fixed Az
[} 3 081644 1000 037
0.005 3 087564 w0 om
0.0025 3087619 4 14
0.01 5 089975 195 Unstable
0005 S 091630 o0 1
00025 5 0920054 89 23
0.00125 5 0920465 12 45
00025 9 09193089 049 39
Fourth-order Runge - Kutta, =107
3 087634 430 096
5 0920564 3 18
7091518 I 34
9 0919566 el
1 0920657 uo 92
13 092070 woon
3 087655 L N 192 387 2
5 092292 0 8 180 403 2
9 0920027 77 32 154 408 )

Extrapolated Ar

0919605 35
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ime. The collocation solution with N = 2 has about the same 4 "
imite difference solution with = 5, and the collocation sqne S only s e
percent faster. For more accurate solutions, however, the collocation method is
plainly superior. 114 sec are spent in the calculation, the collocation results are 40
(imes more accurate than the finite difference results. The difference between the
methods is accentuated for small errors: the orthogonal collocation method is
better the smaller the desired error.
Consider next the same problem with Bi,. = 20 and T, = |, which exhibits
more severe spatial gradients (compare Figs. 5-6 and 5-11). We might expect at the
outset that a method that uses finite differences or finite eleme nts might be more
suited to this problem. Finite difference results are shown in Table 5-7. We pote
that the errors are generally larger than those in Table 5-6; this illustrates the fact
that this problem has more severe gradients and more radial points are needed. As
before the fourth-order Runge-Kutta method is more accurate than GEARB for
the same Ar, but GEARB takes less computation time, at least for small Ar. The
errors in the second-order Runge-Kutta method are not proportional to
that the Az values are not small enough for this problem to achieve the li
behavior as small Az. The formula for the truncation error is

(o6 =0.91923+0.0213Ar - 64A7* (5-244)

The coefficient of Az? is uncertain but illustrates the fact that small Az are
necessary for a fixed-step method.

The computation times are illustrated in Fig. 5-20. Calculations made with a
Crank-Nicolson method but with the reaction rate term evaluated at the nth time
level are generally less accurate than the solutions reported in Table 5-6. These
solutions are also comparcd to the collocation results. Now the Runge-Kutta
method is better for finite diference and the GEARB method is better for
orthogonal collocation. In this case the finite dilference method is superior for low
errors. For an error of 0.01 the finite diflerence method takes about half the
computation time, while for an error of 0.001 the two methods are equivalent. and
for smaller errors the trend is that the collocation method takes less time. For 4sec
computation time we need six interior collocation points and about eight finite
diflerence grid points; both calculations give the same error. This illustrates again
the fact that this problem has steep gradients in the radial direction and more
points arc needed in this direction.

The computation times for these methods are proportional to the total
number of grid points at which the reaction rate is evaluated. It is interesting to
examine the computation times for fixed-step methods and compare them with the
work estimates. In the orthogonal collocation method we need 2N* multiph-
cations 10 evaluate the right-hand side involving the dispersion terms and mN
multiplications to evaluate the reaction rate, where m is the number of multipli-
Cations needed 1o evaluate one rate. Thus the computation time CPU should be a
function of N and N2 The data are fit to a quadratic and the best least squares fit
is

CPU = (number of axial steps) 0.0025N (5-245)
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10!

©=——==0 OC, RKINIT 1
O====0 OC.GEARB
et FD, RKINIT

107

Enorin{clgq

g

1074 L
0.1 1.0

CPU, sec

Figure5-20 Comparison of orthogonal collocation und finite diference for Bi,, = 20.

which shows that the computation time is proportional to the number of
collocation points. This suggests that the major computation time is associated
with the evaluation of the reaction rate term. The finite difference method gives

(5-246)

d side

CPU = (number of axial steps) 0.00060N

but in this case the number of calculations needed to cvaluate the right-hand sid
is proportional to the number of terms. In both cases the computation time IS
proportional to the total number of grid points in both axial and radial directions.
We can thus arrive at an estimate of the cost per grid point for the two methods
Cost for orthogonal collocation ~ 00025 llocation point/axial point (5-247)
Cost for finite difference ~ 0.00060 sec/grid point
Thus for these methods the finite difference method uses only 24 percent of the
computation time per grid compared with the collocation method. The

method must achieve its dramatic improvement because it can use many fewer
terms.
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«
Ar=0.05 * Finite difference
© Orthogonal
collocation
2%
£
£ oo0s
X
Ar=0.025 1%
Neg Se—
ool *
A S
oo §
o L 2 o
CPU, sec

FigureS-21 Error in the temperature surface flux versuscomputation time, with Bi = Bi = x

Next we apply the finite diference method to the problem treated with
orthogonal collocation, Egs. (5-176) to (5-178), for difTusion and reaction in a
catalyst pellet. This problem was solved earlier by Ferguson and Finlayson.* The
collocation results were obtained with an improved Euler method in time. and the
finite difference method used Crank-Nicolson. Errors in heat flux are shown in
Fig. 5-21. The collocation method can use 6 collocation points and achieve the
accracy of a finite difference solution found using 100 grid points. Alternatively,
the collocation solution is obtained with only 5 percent of the computation time
Let_sdm for the finite difference method. Part of this speed udvantage comes from
m;ﬂe able (o take a larger step size in the collocation method (Ar = 005 instead of

01) and _lhe rest comes from having many fewer unknowns to represent the

spatial variations of the solution (6 instead of 100).

i In summary, for many dilTusi action problems the collo-

o method gives very accurate answers, but as the gradients become larger the
"te difference method may be competitive. The fourth-order Runge-Kutta

Gethod and GEARB both are good schemes to use o integrate in the time-ike
"ection. RKINIT is more accurate and usually faster for a small number of
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terms, whereas GEARB is faster for a larger number of terms when the equation
are stiller due to the spatial approximation.

5.6 ORTHOGONAL COLLOCATION ON FINITE ELEMENTS

The dilTusion-reaction problems treated above are all well suited to orthogonal
collocation. The parameters can be chang_ed, how.ever,‘ to ones that give steep
profiles during the transients. This is done in a fashion similar to the steady-state
case. For example take Bi small (5) and Bi,, large (250), even for f8 = 0.02 steep
profiles are obtained. If that happens it is necessary to resort to a method that

pp the solution pi ise (i.e. we must use the finite difference method,
orthogonal collocation on finite elements, or Galerkin finite elements). The details
of applying the method of orth | collocation on finite el 10 transient

problems are similar to those for steady-state problems, so we need only outline
them.

Considering Eqgs. (5-176) to (5-178) we apply orthogonal collocation on finite
elements. The domain is discretized as shown in Fig. 4-12. First we apply
lagrangian interpolation. The residual is evaluated at the collocation points. The
equations for concentration only are given since the ones for temperature are

a—11 %

de, 2
o i L A —$RE. T (6248)
K J=1

1 N+2
i s v

whereas before

i=k=DN+1)+1 (5-249)

We require continuity of the derivative across the clements, Eq. (4-269). The
buyndury conditions are Egs. (4-270) and (4-271). The system of equations can be
written in the form

de
CC = Ade—rfle) (5-250)

where lh:_ matrices CC and AA have the structure shown in Fig. 4-13. The matrix
cc lrfuluplying the time derivative has the value M, on the diagonal of each
€quation representing a residual and zero elsewhere, since the boundary con-
dmol_ls und_ qu c_onlinuily conditions have no time derivatives in them. The
malrix AA is identical 10 that given in Sec. 4-9. The vector fincludes the reaction
rate l_c_rm in the residual equations and either zero or some value for the boundary
com:nruons and flux continuity conditions,
we af i 4 i in ti

henwe g l:s:.ya :;o: s'ci:‘::::oﬁ:m method or Crank- Nicolson method in time

e
CC=g= = AL =™+ e )4 (1 - ey prien ) (5-250)
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. _
cc-panKk? ! = [CC+(1 = BAAATE +(1 - ey pavtir 1)

_hand side has the struct, i
The left hand side ure of Fig. 4-13, The reacti
jinearized. EQ- (4-278). to solve Eq. (5-252). The solution (hI:

(5-252)
n rate term must be
cpt (he iti n proceeds as in 2
cthod, except that the LU decomposition of n then as in any
::wum \he structure of Fig. 4-13. the matrix is done taking into
Explicit methods are possible il desired. Each residua i
clcylated using \\'_'Iale‘\'er method is chosen. After doing lhisu‘:le ::\ll.: u'o " can be
solution at each interior collocation point at the new time. We al::luesd(he
boundary \va!ucs andllth so_luuon at the points between elements. We mr:,e«:, lhe
these by solving the equ for boundary conditions, Eqs (4-278 Edm
(#271) and the clement continuity equation, Eq. (4-269), using the solution ')(‘l;d
interior collocation points as known. Then the matrices are in tridiagonal lor:| the

AAc =1 (5-253)
with
1 A TR
E( ne+Aneene) = i .vzz Ayey (5-254)
1
“b AN
AA; = L/‘»uzwu—l—A (5-255)
hy-y N2 T, A
1
+1 _KALNvZ
1 N+l 1 N+1
fi=i X Aues Y Ans2sCs (5-256)
L =] [ )
_m("r\wz.xflvn:«ul+AN.:.~‘20NH—BimCNT

1 N+1 )

= ime Z An+2s€y—Bin 257

This part of the solution is referred to as smoothing. It takes the solution at the

interior collocation points and provides the solution at the element bqundanes in

such a way that the final solution is continuous and has continuous first
derivatives (or fluxes).

inve One disadvantage of the equations in the for

pa:(]“" coupled differential cquations and algebraic e

ackages are not suitable for such systems, so that U

:;.‘»srl‘"m"’y package. This is not true of the finite difference

ich can easily be applied using the integr tion packages. .

g the integral ion pilckages .

ins he cumbersome algebraic equations can be eliminated bysu:?_’g) I;lveersn:xl::

'“‘Iflﬂdln[ lagrangian interpolation. Doing this for Egs. (5-176)to - 8
uals

m of Eq. (5-250) is that they
quations. Most integration
he analyst must provide a
method, however,
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. s
sy 1 E a=l s 4 a - ’R( H a) 5.
M :; Ho g =g ,Zl Buart l}:—'l i ¢ ’g' ) G2

- ) it . and (4-303). The Ia
lone with the boundary conditions of Egs. (4-302) and (4- last two
:Il?:graic equations are easily solved and the [=Sulls can be Irlllrod‘uced into the
reziduals by eliminating two unknowns. The residuals can be written in the form

cc‘% = AAa—f(a) (5-259)

where the CC matrix has the structure of Fig. 419 without _(he boundary
conditions and is not a diagonal matrix because of H. The AA matrix has the same
structure and is the same matrix as that derived in Sec. 4-9. Explicit methods
cannot be applied to this system of equations easily because of the nondiagonal
nature of the CC matrix. Even if the right-hand side is evaluated using known
i ion, a set of coupled i still remains due to the CC matrix. An LU
decomp: n must be performed. For this problem the CC matrix is constant in
time, so that it can be decomposed once per problem, and an explicit method used
with successive fore-and-aft sweeps to solve for the successive right-hand sides.
This is not a disadvantage for implicit methods since the LU decomposition must

p anyway. The di I nature of the CC matrix also presents
problems when using integration packages, which are often written for equations
in the form

da
=t (5-260)

rather than in the form of Eq. (5-259). The analyst must then devise a suitable
package.

5-7 GALERKIN FINITE ELEMENT METHOD

Galerkin finite elements are also useful when the transient solution has steep
gradients. We apply them here to the diflusion-reaction equations, Egs. (5-156) to
(5-158). Thc‘ domain is divided into finite elements as shown in Figs. 4-20 to0 4-22.
The Galerkin method is applied in the same way: a trial function is assumed on
cach eleme!n. it is substituted into the dilferential equation to form the residual,
and the weighted residual is set to zero with the weighting function as one of the

trial functions. The equations are the same : - i i
dependent enm same as Egs. (4-320) 1o (4-325) with the time-

« des
Ty Gls ) (5-261)

di

with the mass matrix

'
Cyr = Ax, L NN ()= du (5-262)
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and Br and F* are defincd by Eqs. (4-320) and (4-321). We must then integrate
(hese in time. The_nonlmear r;action rate term must be evaluated using n“ms:iul

adrature each time step or it can be interpolated. The form of (he equation is Eq,
(5-250). and the structure o_r the equations is tridiagonal for linear basis func(ions.
Quadratic basis functions give the structure shown in Fig. 4-23. )

The time integration has the same difficulties which the Hermite polynomials
have on finite elements: explicit methods involve at least one LU decomposition
each problem and integration packages are not readily available. The equations
present no problem though if an implicit method is applied and the analyst
provides a suitable package.

There is an alternative to the time integration problem that has been called
lumping. In this procedure each row of the CC matrix is added up and put on the
diagonal. The off-diagonal terms are set to zero. With this approximation the
equations can now be solved with explicit methods and the integration packages
are suitable. The accuracy can be degraded, however, as described for the
convective difusion equation treated below.

The Galerkin method has this disadvantage for time-dependent problems (a
nondiagonal mass matrix), and it has the added disadvantage of extensive
computation time to evaluate nonlinear integrals each iteration and each time
step. Each of these problems can be overcome, but at the expense of degrading the
accuracy or increasing thc computation time. While the Galerkin method is not
too promising for one-dimensional problems, it proves to be a superior method in
twodimensions (see Chapter 6).

5-8 CONVECTIVE DIFFUSION EQUATION

Several methods are applied to the convective difusion equation because it has a
sharp front but is a linear problem with an exact solution. We examine the steady-
state problem first to assess the difficulty of the problem.

In steady state we wish to solve the ordinary differential equation

de _pode o (5-263)
dx? dx
with boundary conditions
=1 «()=0 (5-264)
Theexact solution is
ePe—elex (5-265)
T

Successive derivatives of the exact solution are
(5-266)

d'c
o=

—= Pe"e™e
ax e
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and the norm of the nth derivative is

eI T PR
= [ [mroc] =[] FEy

rpolation error if a finite diflerence or finite element
he exact solution. The error estimates are provided
terpolation of order n the errors are

We wish to investigate the intel
method is used to interpolate t
by Prenter.'® For lagrangian in|
Jle Ve

o e 27"~ "

fle=Pll < =303 1) (5-268)

where p(x) is the lagrangian interpolation. For Hermite cubic polynomials the

error estimate is
e Dl thn 1

Jle9 = p | < U—] it +’l’—j)! 1€j<n (5-269)
A -
0 — p| < e 0<j<3 (5-270)
Il IS goppem 0%

where [j] =j if jis even and [j] = j+ 1 ifj is odd. Using the properties of the exact
solution gives an estimate for the mean square error. and we wish to make this less
than a prescribed value r.
pert byt . .
le=pll € =~ -- <& lagrangian interpolation (5-271)
420+1)

Pesh* o .
lle=pll < Qs St Hermite interpolation (5-272)

This limitation requires a certain number of intervals in. each method. The number
of intervals is given in Table 5-8. We note that for a large error (¢ = 0.1) the
piecewise constant lagrangian interpolations (n = 0) require the fewest points.
This is becausc the number of intervals needed in the higher-order methods
depends on higher-order derivatives of the function, and the derivatives and their
norms increase with cach differcntiation. As the desired error is reduced (say
&= 0,001), the linear lagrangian interpolation requires the fewest intervals of the

lagrangian interpolants of various orders. For even more stringent error criteria
(¢ =107°) the third-order interpolants requirc the fewest intervals. The Hermite
1} ials, which have i first derivatives, do a better job than the

i which are only i (We should recall though that

the llocation with || ian interpolation is made to have continu-

ous first derivatives and hence is equivalent to the Hermite interpolation.) Indeed
for errors lower than 0.01, the Hermite cubics require the fewest intervals.

Suppose we use these error estimates for the interpolant and combine them
with the work nccessary to solve Eq. (5-263). The error of the approximate
solution is not necessarily that given by the interpolation error, but it cannot be
any smaller than the interpolant error. The work necessary to apply the methods is
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Tabe &8 Number of intervals required to s:
able §

f y the error criteria of Eqs. (5-271)
Mempe= 100

Numberofintervals

Lagrangian

ne0 n=1
w! pod Ton
[N 5600 17.000
0" 56,000 53.000
b 560000 170,000
o 5600000 530000
0 56.000.000 1.700.000
FD. GFEM -2, OCFE-L, OCFE-H,
n 16NE ILINE 2NE
o 0026 019 044 0093 0030
10 0084 043 0 016 0054
10 026 09t 14 029 0094
10 034 19 25 052 o7
1078 26 43 44 093 030
0 8 91 78 6 054

10"* needed to solve a line:

iko given in Table 5-8. For large errors (c > 0.1) the finite diflerence method
requires less work. The work estimates for the Hermite cubics are given for both
order and high-order orthogonal collocation on finite elements, with the latter
dearly preferable. The interpolation error is plotted versus the number of
multiplications necessary 10 solve the problem in Fig. 5-22. This graph clearly
ponirays the guidelines: if low accuracy is desired in a solution with steep gradients
the fnite diference method is best, but if high accuracy is desired higher-order
methods are preferable.
he transient problem has the same difficulties if the solution has large
&radients. Consider the convective diffusion equation with a steep change of
concentration at x = Q

e P
e | pele L ¢ 5:273)
atPn ¢
%x 74
0=0 cOn=1 F(L0=0 (5274
ax

Wedo ngy
from '.':‘:,‘PP'Y orthogonal collocation (with a global polynomial) because the
P for large Pe. The finite difference, orthogonal collocation on finite
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-2

i

-6

- 10° 10! 10?
Work X 106 mutiplications

10-2

Figure 5-22 Interpolation error as a function of work.

elements, and Galerkin finite element methods are all applied in turn. For the finite
element methods the backward Euler methed is used in time, with a small time
step, so that illati are not duced by the time il i whereas
GEARB is used with the finite dilerence method.

The finite dilference method applied to Eq. (5-273) gives the following
equation, accurate to 0(Ax?),

(5-275)
This equation can be represented in the form
de
CE = AAc (5-276)

and for the finite difTerence method C = I. Results for Pe = 1,000 and Ax = 0.01
are shown in Fig. 5-23. Oscillations in the solution are evident. These results were
oblained using a time step small enough that the oscillations were not due to the
smt:::’r:l‘;:tﬁmuonf Thus we are left with an unsatisfactory solution. Another
523 The omnal:isszsl;ecumes as many grid points, Ax = 0.002, is shown in Ifig.
time (22 imes). now gone, but at a increase in

Another approach to improve the solution is to introduce upstream deriva-
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T T

PAR:
12

1.0 4
7= 500, centered
08 and exact
=50, upstream 1
¢ o6l ]
04t 4
02 ]
. ! .
o 02 04 06 08

Figure5-23 Convccti diffusion equation with Pe = 1,000 and 1 = 0.00u>.

tives when the Peclet number is large. We use a first-order expression for the first
derivative

5-21m)

(5-278)

Truncation error = — o2 ©¢ (5-219)
FRE

The truncation error is found by inserting a Taylor series for ¢, into Eq. (5-278).
Thus solving Eq. (5-278) is the same as solving the following equation to second
order 0(Ax?):

_ 1+Pedx/2 Y (5-280)
X

Ax? “le

The effect of this upstream derivative is to add dispersion o the numerical
solution. Figure 5-23 shows the solution for Pe = 1,000 and 51 grid points, while
Fig. 5.24 shows the solution for Pe = 87.790 and 301 grid points. With a second-
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NT =

e S-24 Finite diflerence soluijon att=5x0-°,
300

order scheme the solyjjon oscillates. With a first-order scheme, Eq. (5-280) or
(5-278), the Oscillations disappear and instead we have smoother solution with
the front smoothed oyt by the numericy) dispersion. If this effect is acceptable,
numerical dispersion cyn be introduced, .
The method of orthogonal collocation on finite elements with lagrangian
interpolation Would yse

dey | pe N1z (RS

T:‘ * i ng Apyey =

+ Pe=87.790. Co = 0.13, o/ = 5x 10-°, and

& X, Bues a8
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The problem can be written in the form of Eq. (5-276) and the max block
gingonal (s¢e Fig. 4-13). The condition at the clement boundaries is still the
lminuily of the lirst derivative. If Hermite interpolation is used, the matrix has
::cslnlclurt of Fig. 4-19 and the residuals are
&y day  Pe & '
Bty B A =5 %, Bues (5-282)

Results are shown in Fig. 5-25 for the orthogonal collocation method using
Jagrangian interpolation. Oscillations are very small when 50 elements are used,

10

——Co=0044,8r =107,
NE=50,NP=5,NT =301
—=-=C0=0.044,47=2x10"%,
NE=25.NP=5,NT= 151

08

e(x.n)

04

0 02 04 06
x

Piture $:28 Orhogonalcofiocation solution at 1 = $1x 10° *und Pe = ¥1.790.
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is somewhat when only 25 elements are used. Ty
and lll‘c‘fr‘?r:llml}r ;:::O;::‘yedbe correctly modeled but 301 collocation points wg'::
swi’l::;s:r:\c collocation s8iution with 301 collocation points is more expensjy,
:‘::,, a hnile difference solution with 301 grid .pmms, bl‘ll lh; collocation sOlution
goes not oscillate nearly as much. (Compare Fig. 5-25 with Fig. 5-24)
With the collocation method we can introduce numerical dispersion jn an ag

hoc way by solving

ac ac Ax\ %
atPea= (' “’eT)oxz (5-283)
We rearrange this equation by dividing by 1+ PeAx/2 and define new variables
Ax , Pe
= '(1 * PeT) Pe = T+ Pedr/2) (5284)

Ifwe wish to solve for Pe = 1,000 using Ax = 0.1, we simply solve

(5-285)

with Pe’ = 1.000/51 = 19.61 and translate the terms using Eq. (5-284). Such an
approach is unsatis(ying. but may bc nccessary in order to solve the problem in a
given amount of computer time

TheGalerkinmethod gives

3
e -286
W A (5-286)

The matrices are given in Table 4-9 for the appropriate choice of basis function.
The structure of the equations is tridiagonal for linear basis functions and is shown
in Fig. 4-23 for quadratic basis functions. The linear basis functions give the
explicit equation

Vdeioy | 2de; | 1dei, (Civ1=¢)

8 a 3w teTa tPT aa =

(5-287)

Onedisadvantage in the Galerkin method is that the left-hand side is not diagonal-
Thu5_ the integration codes that are discussed in Chapter 3 are not directly
applicable. One approach 1o this difficulty in the Galerkin method is called
lumping. The lefi-hand side represents the time derivative of the mass in an

clement, and in lumping the entire mass is “lumped” with the ith Equation
(5-287) then becomes P ith node. Eq

(5-288)

This il‘s just the finite difference equation,
17we apply Galerkin finite clements method: illations if Pedx i
' nite s we also get oscillations if PeAx is
not small enough. Thus artificial dispersion needs 1o be introduced here. too. This
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& donc using a different weighting function. The Galerkin equations are wrilten as
2 o ' e
W= +Pes)ax = — | oW,

J: g (e: o) o dx ax 9% (5-289)

(he weighting function is chosen to introduce numerical dj; .
::?ghling function (see Fig. 5-26a)is taken as \spersion. The

Wi=Ni+aFlx)  x.,<x<x
Wi =N-aF(x) xi<x<x,,

o (5290

Flu) = ~3( —u)

11X

The Galerkin linear element equations become

Lde,,, | 2d Pe )
a_m—'i' + 3 L =201+ 20, = (L4206, ]

1
B (e =2¢,4¢,0y) (5291

The choice of  can be used to optimize the results. The upstream dispersion as i

-1 T T+
—
‘One element
ShapefunctionN
-1 ' 1 -1 ‘ il
One clement
Functionf ()

ShapefunctionN;

®
basts functions.

; ue
Figure $.26 Upstreum weighting functions. (a) Linear busis functions. (b) Quadra



240 NONLINEAR ANALYSIS IN CHEMICAL ENGINEERING

the finite dilference method is given when x = 1. The choice

h PeAx 2
a = col 2
makes the errors zero at the nodes for the steady-state problem. With upstr,

dispersion the calculation can be made with a larger element size and Osci"m‘am
are not present provided ions

PeAx (5292

2
PcAx < 1—a (5.293

For the quadratic trial functions we choose the weighting function® for j as an end
node

W, = N, —aF
for i as a midside node
W, = N, +apF (5:294)
and
Fly = 52 =34 1)
PeAx El
/f,,:uulh( | ) “penc
pe A | 1
7 - :lx.mh("f‘ )I(; cak Ll RSy
2 Pedv o PerAnt ) peax — 1

—— Standard scheme

Lumped
mass matrix

0.6

04

0.2

02 04 0.6 08

Figures.27 Galey
27 Galerban soluuons with bnear 1l funcuonsfor pe - 1000, ¢ = 0.0005, and 1 = 50.
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Lich is also pictured in Fig. 5-26h. With upstream weighting functions the
e docs not oscillte. but it is damped more than the exact solution (see Fig.
527 each of the methods then we see that the solution frequenty oscillate, but
(hese oscillations can be_ehml_nmed by introducing more points/elements or by
introducing numerical d-spcr_smn in some form. _Whnch method is best? Using
several methods Jensen and Finlayson® have examined the sicady-state equation

pede _ d%
Cix Al (5-295)
cO=1 cl)=0 (5-296)

The steady-state equation can be solved exactly by dilference formulas, and the
results show that oscillations occur unless Ax is small. In particular, a criterion can
be developed that

PeAx < B (5-297)

tocliminate oscillations. The value of B depends on the method, and several values
are listed in Table 5-9. We sce that all the methods have a limit and that the limits
areclose to cach other. Thus based on this theoretical limit we cannot choose the

Table $-9 Limits to element size to prevent oscillations. Table value is B in
PeAx<B
Theoretical B
(based on Practical
M monotoni Ipercent 10 percent
)
n
Centea) 2 3
Upwind P
GFEM ) N 7
Lincarstandard

L

=

Withupstreamweightingfunction

GFEM

Quadracstandard 2

Withdispersionweightngfunction 2
GFEM

Cubic,C 464
OCFE L

Quadratic 2

Cubic 3464

Quariic 4644
OCFE 1y

Cubie 3464

Quartic
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4 rical solution, however, oscillations can be
best me!hg:g'dlz; 'S':::ﬁ that they are not observa_ble. The criteri:::nuh"“ﬁ
smu"":‘_ not available and Eq. (5-297) only growqcs.a Buide. Bagey on':m'&
standar ‘s. tion, Ehlig* reported some practical limits as shown iy T)gt,&.‘
gxpenimt:“:I 13 }eponed practical limits far the finite difference m e 5,
ettari. et al.

) ethog o

lerki lement method with Hery, o ¥
§ an two. For the Galerkin finite el erMite oy
r:;::ro:h;;o proved a satisfactory limit, rather than about 4.6, t js ooncluc“h'xa
Ve

for any method a great many intervals are necded to Prevent oscilja "
artificial numerical dispersion is inl_mduccd into I}_\e method. o

artif é‘ utation time for the various methods is illustrated in Fig 5.1
resullsoglrl: for a calculation with a lim; s(eP 50 small that lh.erc is o s
truncation error. On this basis, the finite difTerence meilhod is very mucy
expensive than the finite clement mcthod, even when h_near basis f“nﬂiom,,l
used. The higher-order methods are preferable on this scale. When wing;

-1k o D ]
& GFEM, lincar
| + GFEM, cubic

Log error

0 6 12 8 - R
CPU, min

Figure S-28 Computarion (ime

pe = 81*
(After Price, e gl i) VEFSUS €TTor for convective diffusion equation With
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1.0
08
1=00002| |r=0002 =001
06
¥
$
s
02|
1 . J
0 007 .08 0.09
x

color cquation. using orthogonal collocation on finiteclement:
=0075. NP = 7.4t = 2x 10", andCo = 0.04.

Figwe 5-29 Movement of sharp fro
with200 elements. Frontinitiall

practical time step, rather than a very small one, the diflerences may not be so
marked, and the relative position of the curves may change.

We next consider the color cquation, which eliminates the dispersion term
altogether, such that

(52981

ax

«(x,0)=0 c0,1)=1

This quation is hyperbolic and has an exact solution since the inlet conwnlml_ion

S propagated with velocity 1.0 without chunge in shape. Solutions at an eurly time

e shown in Fig, 5-29. Initially, there are oscillations becuuse the front is vertical.

S the calculation proceeds these oscillations are damped, but the steep front is
Smoothed, too.

The properties of the exact solution are dependent on the Courant number

_a (5-300)
Co = A%

(5-299)
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1t can be shown that a finite difference solution with
and an explicit integration scheme is stable if the Cour:
and that an implicit method is stable for all Coura
convective terms, the explicit scheme is unstable fo
scheme is stable for aPy At. (Sec problem 5.32,)
The influence ol dill‘_ercnl Courant numbers while keepin,

clements fixed is shown in Fig. 5-30. As the Courant num‘l;ergis“‘i:c::zxrug
oscillations are damped but the profiles are less steep. As the Courant number is
decreased by 8 the time step oscillations are introduced, We thus have a
dilemma: if we use too large a Ar we get numerical dispersion and the front is
damped. if we use too small a At we get the oscillations inherent in the spatial
approximation. Only by a judicious choice of Ax and At, and by some relaxation
of our standards, can we solve such a problem numerically. In the convective
diffusion problem the Courant number is

_ PeAr
" Tax

upstream convective terms
ant number is less than one
nt numbers. With centered
T any Ar, while the implicit

Co (5-301)
We see in Figs. 5-24 and 5-25 that the Courant number isin the range 0.04-0.13
for good solutions.

The convective diffusion problem is an interesting and useful one because it
gives guidelines that arc relevantif a problem has steep [ronts that move in time.
Wesee that all the nur: -“:al methods give a solution that oscillates unless enough
elements or grid points ire uscd. For very large Peclet numbers, and very steep
fronts, we can introduce numerical dispersion into all the methods to make the
calculation possible with a larger Ax, but the solution is less accurate, If we must
model the sharp front then sufficient points must be employed.

59 FLOW THROUGH POROUS MEDIA

An important area of numerical analysis is the simulation of the flow of fluids
through porous media. Applications exist in the flow of water in underground
aquifers and the flow of oil-water mixtures in oil fields. Here we consider the flow
of water in dry soils by solving the partially saturated equations.
The mass balance for liquid water is

2 A

S005) + 5 (o) =0 (5302
Where p is the water density (p = 1 g/cm?), ¢ is the porosity of
the saturation defined as mye (rlruc(ioﬁ of I're:;pacc that is occupied by water. The
combination S is the mass density per system volume. The mass flux is p¢ r'.“
units of mass of water per unit time per unit total cross sectional area, 3"‘1"{1',“ e
volumetric fux. Darcy's law is used to relate the mass flux to pressure gradients,
which drive the flow,

the rock, and S is

(5-303)
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Table 5-10 Typic-lsoilprnperlics

3 0.50
ko(microns®) oass
s, 032
A (em) P2l
B (cm) 146
[ 365
i 665
[ o

where k is the permeability, ¢ the viscosity of water (4 = 0.00894 g/cm/sec), Pl
water pressure, and g the acceleration of gravity (9 = 980cm/sec?). Here wear
going to assume that the density, porosity, and viscosity are constap;, Tl\:
saturation and permeability depend on the capillary pressure

Pe=Par—P (5304
Since we are allowing the air to fill the void spaces not filled with water the ajp
pressure is taken as constant, which we take as zero. Then the capillary pressureis

Pe=—r (5-305)

The saturation time derivative can then beexpressedas

(5-306)

This equation is
S
Thus -

(5-308)

Where k; is the absolute permeabilit i ili il
> Yy and is the permeability when the soil is
:omri)‘l:lely ﬁl!ed Wllh'waler. The last term is not used il gra: i
se the following relations for the dependence of S and k, on Pe:
N p
!
T LBE
+(p;L/BY (5-309)
|
) U+ (0 L/Ay
Typical soil Properties are |j i 0 j
to the boundary conldi\i“o‘:shs‘ed in Table 5-10. Equation (5-308) is solved subje

P'=BPl =constany  y y 530

op
w=0 ax=)
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al conditions

p' =BPO=constant atr=0 (5-311)

For convenience we now drop the primes in Egs. (5-308) to (5-311).

We anticipate the solution somewhat by recognizing that when the initial
conditions and boundary conditions are very different the solution will proceed
with a sharp front. Suppose the soil is initially dry and at time zero the boundary
at x =0 is brought in contact with water, which begins to infiltrate the soil, If the
front is sharp initially it is located near x = 0, and only as time proceeds does the
front move into the entire ﬂfgion 10 x = L Thus for small time, at least, we can
ignore the boundary cgndiuon at x =1 and solve the problem on an infinite
domain. We then try a similarity transformation as derived in Sec. 5-1, and we find
that it works when gravity is neglected. Making the change of variable y = x/r'/2
weobtain the equation

d
dn [k

with the boundary conditions

p(0)=BPl  p(c) = BPO (5-313)
This equation can be solved using any of the methods for boundary-value
problems. It has been solved using the time-dependent method by adding a time
derivative and integrating to steady state (using finite diTerences with a variable
grid spacing) and by orthogonal collocation on finite elements (using a variable
element spacing). The solutions for difTerent boundary conditions are shown in

(5-312)

T T T T
0 4

-01 \.n\’\

-02 "Q 7
£
[ e

-0

BPI =-200cm
BPI = -300 cm
-0.7
BP) =~
BPI ==1.000 cm
-ol - 55 230 0.40

x

Figures. 31 Simitarity solution to flow through poraus Media when Bruvityis neglected
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Fig. 5-31 and we see that the profile is very stecp. The steepness of the profile ey,
be changed by changing the initial condition or initial soil dryness. The wid
spacing in the finite difference method for B!’l_ =- l.OQOcm was An = 0,005

the front and Ay = 0625 near the origin, giving a ratio of 125 for the larges; (o
smallest clement size. )

These solutions have the interesting behavior that for very dry soils the frontis
very steep and a convective-type solution results. The nature of this solution can
be seen ifwe difTerentiate Eq. (5-308) and divide by k, to get

1dSéap 1 ok dp_é*p

Tkdp Tk 0x 0x T ax*

(5-314)

Comparing this equation to the convective dilfusion equation we find the Peclet
number is equivalent to ¢Ink,/éx. In the very dry regions of the soil the k, varies
with p; * and the term is

- = = (5-315)

‘When the pressure gradient is large (see Fig. 5-31)thisterm is very large, too, giving
a problem with a large convective term.

We can also define a pseudo-Courant number based on a parallel with the
convective diffusion equation. I we measure the actual velocity of the front ¢,
then accurate simulations have been obtained for v A1/Ax =~ 0.1-04, as in the
convective diffusion equation. Such a guideline is not useful until one knows ¢,
which is usually not known until one solution has been determined, but it does
provide some guidance for At when Ax is changed or if ¢, is known a priori.

In addition, the coefficient of thc time derivative changes many orders of
magnitude. It is a function of p. = —p, and for p = 0. —200, —300, and - 1,000
cm it takes the value 0, 0.29, 0.17, and 0.0012, respectively, for L = 100cm. Thus
the problem is stifl because the ient of the time derivative varies over 1
orders of magnitude for nodes from the boundary through the front We thus
expect all the difficulties apparent in the solution of the convective dilTusion
equation. Namely, small elements are needed to eliminate oscillations, and if large
clements are used some form of ical dispersion must be i d. Typical
solutions obtained by solving Eq. (5-308) are shown in Fig. 5-32, and the
oscillations are apparent in all the methods. It is also clear that the solutions do
not agree with each other and the fromt is moving with diferent velocities
depending on the method used to solve the problem.

_ Thestifness of the system of equations is quantified by uctually calculating the
cigen values. Several less severe cases arc integrated and ut specific times

jracobia.. of the right-hand side is evaluated. If the equations are written 1 the
lorms

ap, 1
o 5-316)
Cra =zt 0 ¢

dy _ 1y (5317

[ 1
@ AP =ga
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o m
® GEFM-2, Simpson's
rule quadrature
o2k & OCFE-L, cubic
© FD,averagek,
= Exact
-04 .
-06 -
-08 4
-1 ]
-12 E
-4 1 i 3 3
0 o1 0.2
o
Figures-32 Solutions at 1 = 0.005 and L. = 1,000cm.

Thejacobian is
L
AXT p,
This can be done for any d the

orthogonal collocation on finite elements. We are interestec
largest 10 the smallest eigen value, which gives the stillness fatio SR

V(Y _h Eé) (5-318)
iT,

" C

methods. The method used i this case is
d in the ratio of the

X

(5-319)

max
L

mini
k

We find numerically that the lowest eigen value is characteristic of the problem.
and using different Ax and degree of polynomial gives the sume value for the
OWest eigen value. If the solution has some oscillations in it, one or two of the
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cigen values are imaginary, with an occasional one with a positive
(indicating a growing error). For a good numerical solution, however, al :;1';:"
values must be real and negative. The largest eigen value depends on the Ax &
and the method chosen to approximate the spatial dependence. Results for the
gillusion problem (dS/dp, = 1, k, = 1)are given in Table 5.1 .

When the equation is written in the form of Eq. (5-314) it suggests that the
stiffness may come [rom the coefficient in front of the time derivative. Thus we
definc a coefficient ratio CR as

2<iSNT-1 |kl ::_s
= , dp.|;
R=—— (5-320)

and we correlate the stilTness ratio versus the coefficient ratio in Fig. 5-33. For a
variety of different problems there is a reasonable correlation. Thus we can look at
the coefficient ratio before solving a problem and determine the difficulty of the
problem. One unpleasant fact is that the coefficient ratio must be evaluated only
fornodes in the domain (i.e. not the boundary conditions) since the boundary
conditions do not involve the time derivative. In fact, before calculating the eigen
values of the jacobian 1t is necessary to solve the linear algebraic equations and
insert them into the diferential equations. The solution at the first node in from
the boundary condition may not be known so some guess is necessary. If the
boundary condition has a positive head. an internal node can have p = 0.in which
case the coefficient of the time derivative is zero. This means that the equation for
thisnodeis also algcbraic, and this equation must be eliminated before calculating

Log, stiffncss ratio

0,100,
dif ferent sail

2 3 4 5 6
log,coefficientratio

Flgure 533 Spiffness ratio versuscoeffici
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obian. In spitc of these difficulties, which apply mainly o the actual
calculation of the cigen values, it is [easible to choose a representative value for the
pressurc at the first node and cvaluate the coefficient ratio. Eq. (5-320), using thay
value. The result is only a guide to the analyst anyway. We know that for Problems
with large coefficient ratios the stifness ratio is large and the problem is stiff, This
means we must use an implicit method to integrate the equations, and since the
eigen value is so large either a small time step is necessary or the method must e L
stable. We have found in Chapter 3 that methods that are not L stable end (o give
oscillatory errors for large ZAt. In particular, the Crank-Nicolson method in time
requires 2Ar < 2 to avoid oscillations. By contrast, for the solutions shown in Fj
5-33 the largest eigen value may be 7x10° or 6x 10'® with a time step z
At =10"*or 5x 10~ * for solutions with BP1 = — 200 and — 300cm, respectivel
Then 7Aris 7x 10* or 3 x 10°, which is very large. Y
We next see how 1o introduce numerical dispersion into the solutiops, [n the
finite difference method, the equation is
ds dp,

1
P Pl anz 2o =p) =Koy 2 (pi=pi 1)) (5-321)

We can introduce upstream dispersion by evaluating the permeability in either of
twoways.

kw2 =kipio 1) exact (5-322)
k=ki_, upstream when k,_, > k; (5-323)
0
§
<
1o+
-1o000
! it} P ¢

Fi - .
ure 534 Permeabilities for a sharp front,
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§k,+k;. ) average (5-324)
Here we assume the front is moving from the (i— 1)th node to the ith node, so that
the wa;.m re cvaluated at the upstream position. The second of these

equations defines upstream permeability and the third uses average permeabilities,
If the front is very steep as shown in Fig. 5-34, the pressure at the ith node may be
0.at the (i+ 1th node — 1,000cm, and at the (i+4)th node — 500cm. This can give
rise to permeabilities of 1, 10 3, and 10°°, respectively, at the three nodes i, i+4
and i+ 1. The upstream permeability found using Eq. (5-323)is | and the average
permcab“ily using Eq. (5-324)i5 0.5, and these are both very different from the true

value at the (i+1)th node of 107> Taking p;,, = —1,000, too, gives for Eq.
(5-321)
dS| dp; 10°2
Tdp) dr = T axr PPy exact (5-325)
1
~ T'FI-I’FI) upstream (5-326)
1
~ - m(p,—p,_,) average (5-327)
The truncation error of the method using an average permeability is 0(Ax?) as

we have determined before. The use of upstream permeabilities gives

1
RHS; = 2 5 klpie 1 =P) ~kie 1 (.= Pi-11] (5-328)
whenp,_, > p,and k, _, > k, or ¢k/¢x < 0. Using Egs. (4-29) and (4-30)we get
2 s P
RHS, = . <k ‘.—") - (i @) +0(Ax) (5-329)
ax\ex x\@x ax
Thus the use of upstream permeability gives a method that is only accurate to

0(Ax). The errors have the form of a dispersion term and correspond to solving the
original problem with the dispersion coefficient

(5-330)

Since k/éx < 0 the numerical permeability is positive, and we are adding
numerical dispersion to the equations. This increases the errors but dun.lpens_lhe
oscillations. The use of average permeabilities introduces numerical dispersion.
100, but pot as much as is introduced by the upstream permeability. .

For the Galerkin method, we can introduce an upstream Weighting function
into the Galerkin cquations to bring in numerical dispersion. It tums oul
however, that the interpolation of k, onlo the trial function space introduces
numerical dispersion, too. To see this let us look at the Galerkin term

VAN, dNy

-):,517 J' 8, AV 4up, (5-331)
J X o
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We evaluate the relative permeability at the nodes and write it as

k =Y kxN 3
K
Then the evaluation of (5-331) s straig| ward yielding
tOAN ANy sy J"N Ny dN, |
J’ok'W du du ; Ko K du du u (5-333)
Ifweuse linear basis functions the integrals are
VAN, dN, ( ! _§)
= K=12 .
LNK dw dwT\-4 4 (5-3%)

Then a typical right-hand side for the ith node RHS; is, remembering we have to
assemble two terms of the form of Eq. (5-333),
1
RHS, = 235 (ki oy +k) (P o1 = P)— (K,
This is the same as the finite difference equation with average permeabilities. (The
left-hand sides are difTerent though.) Since the finite difference equation introduces
numerical dispersion so does the interpolation of permeabilities, Eq. (5-332).
If we evaluate Eq. (5-331) using two gaussian quadrature points at
u=0211...,0.788... in the element we get

i
el l'l’..k,(u,.i(‘M ﬂv—’) P, (5-336)

-0 pi—pi- )] (5-335)

du du

For the same pressure profile in Fig. 5-34 typical values of the k, at the two
quadrature pointsare 10”2 and 10~%. Using these values gives

RHS,; ~

1072
AP (5-337)
This is much closer to the original finite diference equation With
Kiv1z = kpis1i2) and has lijtle dispersion. Consequently, the interpolation of the
relative permeability, Eq. (5-332), rather than using a more exact quadrature.
i i i ion into the i

Instead of using gaussian quadrature to evaluate (5-331) let us use the trapezoid
rule. In thiscase we get W, = § in (5-336), with u, = 0,and u, = L The resultis

v ds ds
-2 IRl J=1
L ( tlr.)N’ Nidu { idﬂr ) (5-338)

J#1
ight-hand side is given by Eq. (5-335) since the trapez0id
3) exactly. If we combine the equations for the ith node We

The equation for the rj
rule integrates Eq. (5-33
get

_ S dp,
dp., dr

1
25 UKt K Prv =P = ki + ko) (py=p-1)] (5339
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which is exactly the same as the finite diffe i

meabilities. Thus the Galerkin method, with Iin:::cl:ia’;‘fel::z?io;“h :V;mgm per.

e for quadratures. is cquivalent 10 the finite difference method i ezt

vemle;lbililies, This method has some damping features com, aredw o e g

Fewation but i stillsecond order, 0(Ax?), pared to the exact
The weighted Galerkin equation is

1
(- 2)2-- [
o dpe/ ot o ox ox (5-340)
which leads to equations of the form
dpy
LChg =L Burs (5-341)

-100 _100

— Avcrage k,

— Average k,

—== Upstream k, === Upstream k,

\ n=21 s

) cm
|
o
3
3
T

n=41

[0} ()

Fiture .35 e ofupaircum permeability at £ = 0.015,BP0 = 5 BP1 = =300cm-
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with the clement matrices
' ds
= — 22N, di
i = ax [[ i = G o
=11 ANy dW,
M Rx Jo T du du
Ifwe interpolate the relative permeability we introduce more numerical dispersion

The weighting functions are taken as Eq. (5-290) or (5-294).
There has not been any systematic way developed to introduce Numerica)

du (5-342)

0 T .
& OCFE-L, cubic
o FD,averagek,
© FD, upstream k,
200p = Exact s
-400 -
]
]
H
£
5
&
-600 |
~800 |-
1000
: -

0.2
x

Figure 836 f:fre,,
fect of upsircam Permeability ut « = 0,015, |, 1,000,
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nto the collocation method. One wa
given by Eq. (5-330), and another
ility at the pressure one node upstream. These a roaches A
possible o solve the problems with the collocation memu%pa"d I;g:;::e:‘;“;‘::
the high-order accuracy of the collocation method would then be lost. Th
author's philosophy is that if one needs to introduce numerical dispersion inio |h:
problem one might as well use the simplest low-order method, which is the finite
difference method.

The effect of the numerical dispersion is illustrated in Figs. 5-35 and 5-36.
Figure 5-35a shows the accurate solution obtained with the finite djnemwe'
method Wwith average permeabilities and n = 161. The other solutions are obtained
when upstream permeabilities and fewer grid points are used. For this case, which
is relatively mild. the solution (not shown) with the exact permeabilities
k=ki2= k(p;+1/2) is very poor using a large Ax (ie. n = 21 and 41). For
= 80 the solution is better, and for n = 161 the same solution is obtained as with
average permeabilities. Of course, as Ax — 0 the permeability does not vary much
from one node to another, so that the averaged permeability is a closer and closer
approximation to the exact value. Figure 5-36 gives results for a much steeper
profile. The curves for the finite diference method and averaged permeabilities
show that the front is at different positions depending on Ax, for 21, 4l. and 81
intervals. The use of upstream permeability makes the (ront location depend less
on Ax, but its position is still incorrect. The method of orthogonal collocation on
finiteelements gives (he location of the [ront, which is incorrect, but as close as the
finite difference method. Unfortunately the solution oscillates, too. It is clear that
small elements arc nccessary il we wish to model this phenomenon. All these
simulations arc with the backward Euler method in time. The boundary condition
atx = Ois a fixed pressure.

Let us compare solutions obtained with different numerical methods (or the
case of a soil column with L = 100cm, an initial dryness of p = —300cm. and a
boundary condition of p = +5cm. The finite difference method is applied using
averaged permeabilities and the collocation method is applied without nuﬂ}ﬂlCN
dispersion. The backward Euler method is used in time with a fixed step size- In
both methods we use permeabilities at the known time

o (k,"'l"" ! ) (5-343)
; - "

Y would be (o use the relati:

ve
would be to evaluate the relative
perme:

Typical errors and computation times are shown in Fig. 5-37. Wedsn:«- 'l:::: Zj :::
computation time is increased in any method by taking smaller an 5"’"" it
error ¢ " m hes an error dictated entirely by the spati

" s and Y PP i< cretizali ec reases.
discretization. Then as we decrease Ax the spatial discretization error d

: :tion a =21
The time steps for the first point shown for eich dlS(WCIIl:I}LOﬂ are for f; :’ o
SX10°%, for NT = 41 2x 104, and for NT =81 2x10°% Using ortio8Sl
c‘:'I!"Calinn on finite elements, the values are for NE = l(l’x- ’;d l'or'lhe fnite
NE=2010 % 1 is clear that an even smaller time step must 5 WS 50 Fop
difference method (n = 801 each the spatial discretization 8

order 1O r
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10t

LD FD,NT=21__
g —— — e
¢ 0 o, QFE NPT NE= 10
o 0 OCFE, NP =4, NE = 20
£ - . ]
5107 T, RN
5 N e
@ FD, backward Euler \ \\
\ ~o
o OCFE,backwaterEuler -
» Extrapolated O (81) “FD.NT=81
" \ . .
10 1 10 100 1000
CPU, sec

t=0015. fixed Ar. and

Figure 5-37 Accuracy versus computation time. Error at x =

P =-12220.

collocation results arc not as good as the finite difference results because no
numerical dispersion is introduced. because many nodes arc needed to ap-
proximate the steep profile. and because larger time steps than the finite difference
method are not possible for this problem.

In Fig. 5-38 we comparc the fixed time step backward Euler method with a

107 v|\‘ T
S~ E=
e L
D i — ) 1Y
OE=1.0
a
<
ool 0 i
g e IN— = — — —FD,NT =41
o FD, backward Euler \\ N
o Extrapolated 0(Ar) \ \\
\
o FD, Gear b ———
- FD, NT= 81
1
10 100 1000
CPU, sec
Figure 838 (o

method Parivon of backwird Euler (fixed Ai) and GEAR (variable A0 for finite difference
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" to make the tem,
o ncation error smaller than the spatial truncation eror and, in this 5 GP:":!

" is inefficient because it solves the (ime-d i
algorithm is inefl ¢ . time-dependent equations
securalely than is necessary. with an appropriate increase in :o{k_ Fo,m‘?"i:
problem the finite dillerence answers follow the extrapolation

FDerror = 12441 +129Ax?

(5-344)
and thecomputation time is
CPUyp = 0.0012 sec/time step/grid point
CPUgcri = 0.0044 sec/time step/collocation point (5-345)
usinga fixed time step and the backward Euler method,

Iuis of interest to explore why Gear's algorithm does not achieve better results
for this problem. In this problem the variable coefficient of the time derivative
takes large and small values as we go from the boundary to the interior region,
thus making the problem stfl. As the front moves, however, the range of values is
always the same. since the boundary points are fixed at each end of the front. Thus
there are always nodes with small coefficients and nodes with large coefficients in
front of their time dervatives and the problem is always stifl. It is not possible for
large time steps to be taken while the front is moving, in contrast to other
problems for which Gear's algorithm has proved useful. Since the eigen values are
so large, however, /At is large and an A and L stable method is required.

The next set of comparisons all use a fixed time step but use different methods
ofintegrating the equations. The temporal methods of integration are:

(1) Crank-Nicolson with a variable weighting f8. /3= 1 is the backward Euler
method. The matrices arc evaluated at an estimated time and solution.
according to [3. Either one or more iterations may be taken each ume step.
with the matrix reevaluated each iteration. The Crank-Nicolson method
(B =1})is 0(Ar2), and A but not L stable.

) Modified backward Euler method with the matrices evaluated at the known
time and solution. This method is 0(Ar), and both A and Lstable.

() Ngrsett method, either second- or third-order, using the same algorithm for
nonlinear problems as derived for lincar ones, with the matrices evaluated at
the known solution. This is high-order [0(Ar?) or 0(Ar*)]. and both A and L
stable.

The spatial approximations are made for the collocation method on finite

enls using porl‘;nom s of orders two through six. The Gulerkin mnm{d eI;
4Ppled using polynomials of order one, two, and three. Quidratures arc cvaluated
\Sing a vaiety of quadrature schemes. NQ = 2 uses the trapezoid rule. _Ng -

the two end points and the midpoint (Simpson's rule), and NO =4 4nd
NQ =5 use gaussian quadrature involving two and three quadrature poi
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" f = ite dilference method wj
i olynomials and NQ =2 gives the finite dile me with
ﬂ,’;:’fg:":,::,,gﬂ et cs, although the program was written in the finite elemen

scheme.

Table 512 Numerical errors for differcnt methods for 5~ —300cm. Valuey o
plx = 0.25.1 = 0.015).exact = = 1.22:
(a) Effect ofintegrationmethod

Orthogonalcollocation onliniicelements. NP = 4. NE = 20.NT = 61
e

Computation
Method ar » Error time.sec
Crank-Nicolson 25 (=4) -1426 0.206 W
f=0SITER =1
BackwardEuler 25 (-4 ~1.269 0047 a2
#=10.1TER 1.25(-4) =241 0.019 81
O.ent e 0009 123
Norsett
Second-order 25 (-4) —1247 0025 53
Third-order 25 (=4) —12a2 0020 61

Galerkin method.quadratic. A Q

Crank-Nicolson

B < 0S.ITER 25 (-4) - 1226 0,006
ITER=2 50 (=4 -3 0.108
Backward Euler 25 (~4) -1.260 008
B=10ITER =1 125(-4) 1241 0019
Oext 22 0000
Norsett
Second-order 25 (=4 0016 6.
Third-order 1 -3 0766 li
0048 39
0011 71
0005 188

e S

(b) Galerkin method, different p«:lynumlnls and quadrature using Norsett integ-

ration, third-order, At = 2.5 x 10

Computation

[

~1243 0o
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Typical crrors for the problem with an initial iti

poundiry condition of +Scm are listed in Table sfzo';i:::z.; o iacbom and a
llocation Fesults we sce that the Crank-Nicolson method dos ot o s gy
of intcgrating the equations. but both the backward Euler and Narseugr::lhmb
are good. with no clear preference. For the Galerkin method, the Crank-Ni :: .
method is best. although the Ngrsett method is nearly as good. Using m::oolu':
(jon techniques we estimate the spatial truncation error 10 be 0009 [o‘: the
collocation method with 20 elements and 61 nodes, and 0 for the Galerkin method
using quadratic trial functions with 30 elements and 61 nodes. The collocation
method is less accurate and slightly faster for the same number of nodes.
Comparing Galerkin methods with dilferent degrees of polynomials we gel the
following comparisons: take linear (NP =2) with three quadrature points
(NQ = 3). quadratic (NP = 3) with four quadrature points (NQ = 4. and cubic
(NP = 4) with five quadrature points (NQ = 5). This ensures that the numerical
quadratures are relatively accurate. Results in Table 5-12b indicate that when the
number of elements is changed to keep the total number of nodes fixed the errors
and compultation times are comparable. Thus we cannot make a case in this
example for high- or low-order elements.

Looking next at the effect of quadrature we see that when using linear
elements the use of two quadrature points (giving the finite dilference method with
average permeabilities) is slightly better than that using three quadrature points.
but for this case the importance of the dispersion is not manifest. The low-order
quadrature with quadratic trial functions is not suitable. We can also see the effect
of taking several iterations in the Crank-Nicolson method. The results in Table
5-12 and other calculations indicate that if we take two iterations with a step size
At the error is greater than if we take one iteration and two steps, each with a size
step At/2, giving equivalent computation times. Thus it may not always pay to
iterate on the nonlinear terms. Therefore, it is concluded that the Ngrsett methods
are a viable alternative to the backward Euler (L stable) or Crank-Nicolson (A
stable) method. None of the spatial approximations consistently proves itselfbest.

In summary, we see that the soil problem can be a very difficult one and gives
very steep solutions. The best method in space is the finite dillerence method with
average permeabilities, while the best method in time is the ba_ckwnyd EI!lEf
method or a Ngrsett method. Small elements are required or numerical dispersion
can be introduced to make the solution less steep and allow larger elements, but
the accuracy is degraded, too.

510 COMPARISON

We are now in a position to compare the methods and include in our comparison
ly ion, finite difl I ion on finite elements,

g collo !
and Galerkin finite elements. The spatial discretization errors decreu}::: wl,l‘h
smaller Ax as listed in Table 4-11, while the temporal trunction efrofs have the
truncation error A" depending on the method chosen in Chapter 3. If we choose




262 NONLINEAR ANALYSIS IN CHEMICAL ENGINEERING

icit method involving the decomposition of a matrix, then tpe
shown in Table 4-11. !

ximations allow different time steps and we have see,
aller At. This effect can be quantified for the diffusion

to apply an impli 1
worl?re)t;uired to do thisis

Different spatial 2PPr:
that smaller Ax requires sm
equation

*c
"t (5-346)
When we apply a spatial appr to this ion we get ions of the
form
de;
o = AAiCi (5:347)

and the difficulty of integration depends on the eigen values of the matrix. For
collocation and finite difTerence methods the matrix C is the identity matrix and
we just need the eigen values of the matrix AA. The lowest eigen value is the one
corresponding to the physical problem, i.e. the first eigen value to the eigen
function problem arising in separation of variables,

ax o
FrrhK=0 a=r (5-348)
The highest eigen value is generally dependent on Ax
. LB
Fmax = 37 (5-349)

This has been determined by computations similar to those reported in Table 5-11.

Values of LB are given in Table 5-13 for the different methods. For the
Galerkin methods and the Hermite collocation method the eigen values are the
solution to the equation

det|Cyh— A, =0 (5-350)

Table 5-13 Value of LB in Eq.

(5-349)
=
Method LB
B S
FD A
OCFE L NP =4 36
NP=5 9
NP=¢6 pros
OCFE-H,NP = 4 36
GFEM-1 ™
GFEM-2 60
GFEM |, lumped 4

GFEM-2, lumped 2



PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS—TIME AND ONE SPATIAL DIMENSION 263
nd thesc values behave similarly to Eq. (5-349). What this means
:‘i““‘ss ratio for a linear diffusion problem is given by cans is that the
LB
TAE (5-351)
and thus as Ax decreases the problem becomes more stiff, and the explicit time step
must decrease, since

SR =

P pAx?
MSB=<TE (5-352)
Wetakefirstan “easy” problem of the type
d 9 ac
i 3[9(“5] + R(c) (5-353)

Suppose we apply an explicit method of integration. Then the work estimates are
just the time needed to calculate the right-hand side for each time step, multiplied
by the number of time steps, which can be determined from Table 5-13. Suppose
we integrate to a time such that the total number of time steps is LB/Ax?. We can
then calculate the work necessary to derive the solution. We choose the number of
elements and grid points such that the results should give comparable accuracy,
based on the experiences related in Sec. 5-5. We use collocation with three interior
grid points, finite difference with ten nodes, orthogonal collocation on finite
elements with cubic polynomials and three elements, and Galerkin linear poly-
nomials with ten elements and five Galerkin quadratic elements. Also we use the
same estimates of m, = 15 multiplications to evaluate the rate of reaction and
m; = 410 evaluatc the nonlinear diffusivity. The work per time step for each of the
methods is given in Table 5-14 for the cases of large numbers of points. Using
Tables 5-13 and 5-14 and the number of time steps given by LB/A.x* gives the
results in Table 5-14 for the number of multiplications required to solve this
problem, when each method has comparable accuracy.

The fastest methods are the orthogonal collocation method and the collo-
cation on finite clement methods. This is primarily due to the low number of terms
and the large time step allowed. The finite difference method is the next best
method, with the Galerkin methods being the slowest. These conclusions, of
course, depend on the number of terms needed in the various methods, which have
been chosen here to correspond with experimental results and the error terms in
Table 4-11. Table 5-14 just confirms the conclusion of Sec. 5-5 in which we found
the orthogonal collocation method is far superior to the other methods for
diffusion-reaction problems.

Next we consider a problem that has steep profiles. Now we solve an LU
decomposition at each time step so the work estimates are derived from Table
4-11. We suppose the number of time steps is the same for each method and choose
the element size so that each method has the same number of unknowns. Take

thogor m with 60 ion points, | ion with 67
clements, finite difTerence with 200 grid points, and the Galerkin methods with 200




Table 5-14 Operation count for explicit and impl

Explicit Implicit

Evaluate  Numberof Total count

Onctime Numberof Totalcount

Method Formula Values RHSoncc timesteps  x 107° Values step timesteps  x 107¢
oc NP(2NP+20) K 134 0.014 73.000 1.000 3

OCFE-H  NE(IONP+33) 219 324 0.0M 6.400 1.000 64
OCFE-L  NE[NP(2NP+21)-27] 267 24 0.086 6,400 1.000 64
GFEM-2  103NE 515 1,500 077 9.200 1,000 92
GFEM-2*  B4NE 420 1.500 0.63 1.200 1.000 12
GFEM-1 BONE 800 1.200 096 15.000 1.000 15

GFEM-1*  36NE 360 1,200 043 6.400 1.000 64
FD 23n 230 400 0.092 5400  1.000 54

* Interpolate D(¢) and Ric).



PARAROLIC PARTIAL DIFFEKENTIAL EQUATIONS  TIME AND ONE SPATIAL DIMENSION 265

and 100 clements for linear and quadratic trial functions. Then

the same numbcr of unknowns, 200, except for orthogonal Tl;;;‘:‘:i?: h;-;e
aumber of time steps is the same for each method and let us assume it s | 000 T1.e
summary of results is given in Table 5-14. The finite difference method _s,b“l.b :
small margin. This result is in accord with the experience of Sec. 5-9. Notice ‘im
finite element or finite dilference methods have to be used; global orthogonal
collocation is too expensive.

In summary, il a problem is not too difficult and does not have a solution with
steep gradients. the orthogonal collocation with a global polynomial is the
preferred method of spatial approximation. If the problem has steep gradients then
a finite difference or finite element method is preferred. For large errors the finite
dillerence method is quite suitable, whereas for small errors the higher-order finite
element methods are preferred. This is the casefor interpolation of a steepsolution
(see Sec. 5-8). 1t may be that the solution is so steep that numerical dispersion must
be introduced. In that case the simplest method is probably the finite difference
method, as we found in Sec. 5-9.

STUDY QUESTIONS

1. How to apply the following methods to parabolic partial differential equations

a. Method of Wcighted Residuals

b. Finitedifference method

c. Galerkin finite elements method

d. Orthogonal collocation on finite elements
2, Similarity transformation

a. Application

b. General limitations

c. Clues to when one exists
3. Treatment of semi-infinite domain
4. Separation ofvariables

a. Limitations

b. Relationshipto

i Method of Weighted Residuals
ii Galerkin finite elements method

5. Stability limitations

a. Orthogonalcollocation

b. Finite diference method
6. Timeintegration methods

a. Application

b. Stable step size—influence of

i Degree of polynomials

Elementsize
Geometrv
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jal: d with

7. App of global poly
«. Finite dilerence method
b. Finite elements methods

s prediction of stable stepsize for explicit methods and any spatial approximatioy,

PROBLEMS

Similarity transformation
51 Derive a similarity transformation, ifpossible, for th
o oy
o x?
€(x,0)=0 c(e0,1) =0 00 =1
52 Derive asimilarity transformation, if possible, 10 the problem

 nonlincar problem

(.0 =0 ()
Make a conclusion about the different geometrics for a = 1,2,and 3.
3 Derive Eq. (5-312). Consider an initial-value method of solving this cquation by adding a time
derivative. What dilference is there between solving that time-dependent equation and solving the
original time-dependentequation. Eq. (5-308)?
54 The boundary-layer equations for flow past a flat plate are

u(x.0)=0 ulx, ) = u0.y) = U
Is the problem an initial-value or boundary-value problem in the x variable and/or in the ¥ variable?
Write

and derive a similarity transformation for the problem u = (). Derive the equation for f(). where
dffdn = ¢ andf(0) = 0. Write down the equations to solve the resulting boundary-value problem forf
using a shooting method.

Separation of variables

;’;?IOE;]lnzn:ns (5-48).(5-49), and (5-50) have been solved twice, once using separation of variables. Eq

Bt cnd ance using & similarty transformatia . . (5-42), a5 an approimation for small ume.

it e solution at x = 0.25,0.5, 075, and 1.0for umes 001, 0.1, and 1.0. Notice that 85 the

approaches z¢fo more and more of the expansion given by Eq, (5-105) is needed for a 8000
g)r;:; imation, Comment on the relative case of using the two solutions.

T M2 Z It i

5 Miimie /I:'l le;-': 2‘;:;::’2 mmL -’:- Eq. (5-103) und show that the leust squares method gives the

$7 Derg . .
Derive a solution 1o the following problem using sepuration of variables:

e
% _pZe
o or?

ar0) =0 (=1
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2
S=0 ar=0
Derive theeigen valueproblem
&R
G+ IR=0
aR
RI)=0 —©O=0
@
hecigenfunctionsare

R e
= cos2n+ 1)

Method of Weighted Residuals

58 Derive the cquations that when solved give an approximation valid for large time for the problem
a of
‘._—,=er(ﬂé-x) D=1+ac
=1 cx0=

éc

atx

ox
Do not solve them. but use any Method of Weighted Residuals to derive them.
59 (a) Apply the integral method to the boundary-layer equations in problem 5-4. Use the trial
‘unction
w=U g;,u—.,?)

nd integrate over 0 < 1 < 1. Show that this solution is lhc same as found if the equation for dffdy in
problem 5-4 is solved by the integral method usingthesame tial function forg(r).

() Derive the that has 1o be used )
*quations:
i) 9(0)=0.9(1) = 1
(i) conditions (i) plus ¢'(1
(iii) conditions (i) plus ¢"(0)
(iv) conditions (iii) plus ¢”(1)
What do these conditions mean in words? What criteria are we upplying?

Orthogonalcollocation

510 Write down the orthogonal collocation equations for problem 5-8.

S11 Consider diffusion and reaction in a spherical cotalyst with u frst-order. irreversible, var.
isothermal reaction. Initially. the temperature is 1.0 and the concentration ¢ = 1= .4725(1 = r¥). am
theboundaryconditionsare

T =c)=10 .
Derive the for a one-term | ion solution. Check these uguinst problem 3-8.
$12 Checkthe enriessn Table 54 for N = | andspherical geometry. )
S-13 For the ¢ xample in Fig, 5-14 determine the three steady-state solutions and their
Determine the fimits on Lewis number that make the upper steady state unstable. \ condition
s14 ""cym the mmsmm version of problems 4-Ta 10 4-7c (o steady state from the initial co
clr) = 0.Use
sis lvuu-uc mu transient version of problem 4-8 to sicady state from the initial conditio

gen values p

n clr) = 0.
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1 with orthogonal collocation

similarity transform

&16 Thefollowing problem represents diffusion into a fluid flowing down an inclined plane:
E efollos

s
ac
HIEES]

HS a

1 (x.0)=0

i

=0 ax=I
x

Apply a similarity transformation and solve this problem for asolution valid for small z. Apply a one.
\erm orthogonal collocation method to derive a solum?n for large time. Deriv e the equations that one

1d solve if the expansion were the similarity solution plus the orthogonal polynomial expansion
\:}:‘; and ion is applicd.

Finitedifference

517 Write a finite difference equation for the following diffusion -reaction problem using a variable
erid spacing:

o ! R(©)
&t
«r0)=0
“lo wr=0

= B idto-1]
'

518 Apply the finite difference method to Eq. 15-199) with D constant and Ax = 0.5 and 03333,
Calculate the cigen value of the right-hind side if an explicit method is used to integrate in time. How
doesthis compare to the upper bound of four?

519 Apply the finite difference method to the problem of diffusion in a sphere and a cylinder. Deduce
the limit on step size if an explicit method is used. by employing the positi

about for the i

ity rule. What can you say
 planar. . and spherical?
3) and (5-280).

5-21 Integrate the transient version of problems 4-7c 1o 4-7c o steady state from the initial conditions
clr)=0.

520 Determine thetruncation error of ligs. (5-

522 Integrate the transient version of problem 4-K 10 steady state from the initial condition ¢(r) = 0.
523 Determine the truncation error of . (5-321) when using upstream permeabilities.
5-24 Determine the stability limits for the finite difference method applied 1o the color equation.

Consider explicit and implicit methods. and upstream and centered difference expressions, To do this
writethe diflerence equation and then substitute the solution

& ={"expimy/ = |
Solve for { and find the conditions under which || < I, which cnsures the solution decays an¢
methodis stable,

d the

Orthogonal collocation on finite elements.
25 Ittt the wansient version of problems 4-7a 10 4-Tc 1o scady state from the inital condiion
£26 Integrate the rapie

Integrate the transicntversion of problem 4-# 10 steady state from the initial condition clr) = &
(5l|evkinﬁniltclcmommﬂhnd

527 Derive the Galerkin cquations for
517, Compare with the fing

n
ble element spucing for fincar trinl functions for proble?
ons

¢ difference car
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28 DeriveEQ.(5:261)
<19 Inigrale the transicnt version of problems 4-7a 104-7¢ (0 steady state from the initial condrions
an=0

problem 4-8 y heiniti -0,

30 Intege
531 Derive Eq. (5-335)

Geoersl

5,32 Consider the transicnt problem whose stcady-siatc cquations are given in problem 4.8, The initial
condution s the stcady-state solution derived in problem 4-8. At ime 7cro the boundary concentration
{now ) is changed (0 1.1. Identify an appropriate method for both space and time for the five cases in
problems 48a (0 4-Be. The final steady state can be detcrmined using the same program employed for
proble hthenew

533 A more accurale way 0 integrate the convective diffusion cauation was given by Van
Genuchten.'* Crank-Nicolson is applied but the diffusion term is augmented. For the term at the
{n+ Ith level use the coefficient (1 ~ PeAt/6) times the sccond derivative. ot the erm a1 the mh level
use the coefficient (1 + PeAr/6) times the sccond derivative. Show that such a scheme is third-order
correct n timeforanymethod

34 The diflusion equation in plane geometry is to using a variety of

10d the improved Euler method in time. Determine the largest stable step size for: OC: OCFE.
NP = 4,NP = 5:FD.n = 40, GFEM- . NE = 40: GFEM-2, NE = 20.

BIBLIOGRAPHY

bles is given by
Weinberger, H. F.: A First Course in Partial Differential Equ
Transformation Methods. Blaisdell, New York, 1965.
The application of orthogonal collocation to chemically reacting partial differential cquations was
oneerod by Ferguson and Finlayson. and by
Finlayson, B. A.: “Packed Bed Reactor Analysis by Orthogonal Collocation.” Chem. Eng. Sci.. vol
26,pp. 10811091, 1971,
Themethod s reviewed in
Frmlayson, B. A: “Orthogonal Collocation in Chemical Reaction Enginecring.” Cut. Rev- Sci
Eng.vol 10,pp.69-138. 1974
A careful ical analysis of the diff thod applied to
is made by Richtmyer and Morton.'* Many applications are discussed
Carnahan, B, H. A. Luther, and J. O. Wilkes: Applicd Numerical Methads, John Wiy & Sons
Inc, NewYork, 1969.
The abilty (o apply the Galerkin finite clement method 1o the convective diffusion equation with
srong convection was first shown by Price, er al.'* The upplication 1o the color equution (with no
dispersion) wasmade by
Gresho, P. M, R. L. Lee, and R. L. Sani: “Advection-Dominuted Flows, with Emphusts on the
Conscquences of Muss Lumping” in Preprints of Second Inernational Symposium on Finite
Element Methods in Flow Prablems, S. Murgherita Ligure, lialy, June 1418, 1976.pp. 145 756,
A Fourier analyssisprovided here s wellus n
Pind and W. G, Gray: Finite Element Simulation in Surfuce and Subsurface Hydroloyy.
- mn New York, 1977, wh
'"'Dmvul method for solving problems with large convec-tion terms is provided by Price, et al.
mnmelhnmn“elem:nhw h thefront, und by
Jensen, 0. K., and B. A. Finluyson: “Solution of the Tmnspnn Equutions Using 8 Moving
‘Dunlmllesyﬂem Adv. Water Resources, vol. 3, pp. 9- 18, 18

ns with Complex Variables and




FNGINEERING

270 NONUINEAR ANALYSIS IN CHIMIC

n 5o that the sharp front is fixed in time. The concepi of siffne,
s first expressed by % apphieq
Water Movement in Des ils” in W. G. Gray. ef al. (cq, f,
sonis in Water Resources, Pentech Press. London, 1977, pp. 391-3.106. inite
Applications 10 water movement in welter soils are describad in the book by Pinder and Gray (197,
A bove. The finie difference and orthogonal collocation methods arc camparcd in the papey p)
Fimkayson (1971) cited above. T followng paper compares methods used for integrati
\he spatial approximation is by fnite difference: . )
Kurt L. A. R, E. Smilh, C. L. Parks.ind L. R.Boncy: "A Comparison of the Methad of Lings
Finite Diflsrence Techniques in Solving Time-Dependent Partial Diflerential Equaionge
Computers and Fluids. vol. 6. pp. 49 70, 1978.
A comparison of several methods of spatial approximation is provided by
Douglas. J.. Jr: *A Survey of Numerical Methods for Parabolic Differential Equations.” g,
Comp..vol. 2.pp. I 54.1961. o 3
Wexler, A: “Computation of Electromagnetic Fields.” IEEE Trans. Microwate Theory Tech
vol. 17. pp. 416-439. 1969.

in time whep

Walsh, J:: “Finite Difference and Finite Flemeni Methods of Approximation.™ Proc. Roy. Soc,
(London. vol. AX23, pp. 155 165.1971
Gourlay. A. ome Recent Methods for the Numerical Solution of Time-Dependent Pargial

Diferential Equations.” Proc. Roy. Soc. (London). vol. A323. pp. 219- 235, 1971,

Madsen. N. K..and R. F. Sincovee: “General Software for Partial Differential Equations.” in L.
Lapidus. ¢t al. (cd) Numerical Methods for Differential Systems: Recent Developments m
Algoruthms.Softwareand Applications. Academic Press. New Yor .
Hopkins. T. R.. and R. Wait: A Comparison of Galerkin, Collocation and the Method of Lines
for Partial Differential Fquations.” Int. J. Num. Methods Eng.. vol. 12. pp. 1081-1107. 1978,

REFERENCES

1. Ames. W. I "Recent Developments m the Nonlinear Equitions of Transport Processes.” Ind. Eng.
Chem. Fund..vol. 8. pp. 522- 536. 1969,

2. Ames. W. F.: Nonlinear Partial Differential Equations in Engincering, Academic Press, New. York,
1965.

3. Crank.J.: The Mathematicso Diffusion. Oxford University Press, 1956.

4. Chlig. C:*Comparison of Numerical Mcthods for Solution of the Diffusion-Convection Equation
in One- and Two-Dimensions.” in W. G. Gray. et al. {ed) Finite Elements in Water Resources.
Pentech Press. London. 1977, pp. 191 1.102.

k5. Ferguson, N. B.. and B. A. Finlayson: “Transient Chemical Reaction Analysis by Orthogonal
Collocation.” Chem. Eng. J..vol. 1. pp. 327-336, 1970,
6. Ferguson, N. B., and B. A. Finlayso sient Modeling of a Catalytic Converter to Reduce
Nitric Oxide in Automobile Exhaust.” 4.1 vol. 20, pp. 539- 550, 1974,
7. Heinrich, J. C., P. S, Huyakorn, O, C. Zienkiewicz, and A. R. Mitch
Flement Scheme for Two-Dime:
E 11.pp. 131 143, 1977
8. ?emncﬁ.l nd O, C. Zienkiewiez: “Quadratic Finite Llement Schemes for Two-Dimensional
. l:nv./eu(lve-Tmnspml Problems.” Int. J. Num. Methids Eng.,vol. 11, pp. IK3 1 184, 1977.

ensen, O. K., and B. /l\ l';“':';‘yion. “Oscillation Limits for Weighted Residual Methods.™ Int. J-
0 . 1980,
Splines and Variational Met hods, John Wiley & Sons, Inc., New York. 1975. h
C ;rln:;h‘ and .l‘l.ssv vlw Numerical Methods of Higher-Order Accuracy for
1 O Equations,” Suc. Pet. Eng. J., vol. 8, pp. 29 300
2 ?J:E'C‘Zfi: - and K. W. Morton: Diflreuce Methods for bnitial-Value Problems. Intersien-

ichell: “An “Upwind® Finite
asional Convective Transport Equation.” Im. J. Num. Methods




L R T YR TNy . 1}

TN sl Sppaa s
.

.Y e M b
ML e Tt b el Ve -
S P N T R

L T O S S
L Rl P R U P
e -

L O T B YTRY I RS TR




PARTIAL DIFFERENTIAL EQUATIONS IN
TWO SPACE DIMENSIONS

In Chapter 3 we treated evolution problems in time, which were ordinary
diflerential equations. Chapter 4 deals with ordinary differential equations in
space, which give boundary-value problems. There it is found that the solutions
near one boundary are influenced by the boundary condition at the other end of
the interval. Chapter 5 combines these problems to give evolution problems in
time or a time-like variable together with one spatial coordinate. We now extend
10 two dimensions in space. Then the problems have a boundary-value character
in the two spatial coordinates and. in addition, the problem may be evolutionary
in time.

6-1 INTRODUCTION
Thesteady-state diffusion problem

&

e, ) =c, 0sx<l1 ©2)
oly)=c, 0yt

ary-value problem, and we see that there are boundary
the x and y intervals. The corresponding time-dependent

e REVI LR
& p(fe, P 3
a D( 3t ,7).2) ©3)

is cul_lc'd an elliptic bound
conditions at each end of
problem is

m
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(@) ©®)

(C] 1))

Figure 6-1 Domains with regular and irregular shapes.

c=c¢,ony=0 c=c,ony=1

c=c;onx=0 c=cgonx=1 (6-4)
o= f(x,y) att=0
This is a parabolic partial differential ion, and the evoluti y hods of

Chapter 3 can be applied to it. There are some special techniques, though, which
areonly applicable to problems of the type shown above, and it is these techniques
which are to be considered.

The addition of the second dimension is seemingly straightforward. but can
have far-reaching consequences. Consider the two domains in Figs. 6-1a and 6-1b.
Each of these has a boundary on one of the coordinates lines, such as x = constant
of y = constant. Separation of variables is then a suitable technique for solution if
the problem is linear, and the Method of Weighted Residuals is suitable if the
problem is nonlinear, since the boundary conditions can be easily met by the trial
function. If the two domains are combined, however, to obtain the domain in Fig.
6-1c then this feature is lost. Now the boundaries are not a coordinate line. Holes
in the region, as shown in Fig. 6-1d, are even worse. Yet regions like these arise in
::e analysis of enginecring problems, and methods must be developed to solve

em.

Another difficulty that can arise is when the boundary data are not conunfn-
ous. For example in Eq. (6-1) it may be that ¢; = ¢ = ¢4 = 0 but ¢, = 1. Then at
the corners y = 0 and x = 0 or y = 0 and x = I, the boundary C?"d_ on is not
defined. The solution will have u discontinuity there, and the derivatives will be
infinite. Such a problem is not well posed in a mathematical sense, and even in
egular geometrics, like Fig. 6-la, the solution to Eq. (6-1) is not unformly
convergent under these boundary conditions.'*
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- u=f®

[)
S ,  Figure 6-2 Boundary conditions for
o Egs. (6-5) 10 (6-8).

Difficulties can also arise even when boum_:lary_ data are continuous. Consider
the following problem for the domain pictured in Fig. 6-2

1
- ©5)
>
(6-6)
u
= 0 along0=2a (6-7)
n
. .m0
u=[(0)= sing along r =1 6-8)

Separation of variables can be applied to the differential equation by assuming a
trial function in the form

u=R(TO) (6-9)
and substituting into Eq. (6-5). The resulting solution is of the form
u= "2'3 + Z(a,r"cos n +b,r" sinn0) (6-10)
We take n > 0 for finite solutions. For the boundary conditions u = 0on 6 = 0we
must have ag =0 and a, = 0, while the conditions that /¢ = 0 on 0 = « gives

b,cosna =0 (6-11)
or

ne = odd mul(ipleol‘%l

Jhc ﬁrsl term _h:{s n=n/2x) and gives sin n0/(22). Then the boundary
condition at r = | climinates all but the first term. The solution is then

u(r,0) = Feagin :“ (6-12)
2%

The radial derivative of the solution is

L n a0
Pk ek 'sm:-" (6-13)

o
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«ms
s YA
Q. =0
0 0 “
(@ ®
re—y e
1 o 1
f=a=—}—=0=0
@

Figure 6-3 Problems with singularities. (a) 1 = r¥, dudr = r~¥3, (b) u = rV%, dujdr = r™V2, ()
42 e dujdr x 115, (d) Solution along 0 = 0 or § = a for ().

Whenever 2 > 7/2 the power of r in the solution is less than one, and the power of
7 in the radial derivative is negative. This means that the solution has an infinite
radial derivative at the center. Three cases and their behavior are given in Figs.
6-34,6-3b, and 6-3c. The solution along 0 = 0 or 0 = « for case (b)is plotted in Fig.
63d. The derivative is infinite at r = 0. These results occur even though the
Problem is ingly benign: no di inuities are prescribed, the domain is
fegular, and separation of variables gives the exact solution.

What is the impact of such results? In Sec. 4-13 we see that the convergence of
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different methods is diﬂ'er)enl: the ﬁ.nile di!Tere_ncelmeAlhﬁ'd converges as A2
Galerkin quadratic as Ax*, and cubic collocation as Ax®. There is a proyjs,
however, that the exact solution is continuous and has a cer}aln number of
continuous derivatives. The same results apply to two-dimensional problems,
except now we see that the restriction ql‘ continuous deriv?llv;s may be a sleeper;
an otherwise nice problem does not give continuous dEI_'lvalIV.es. We see in Sec,
413 that the higher-order methods, such as Galerkin finite elements With
quadratic trial functions or orthogonal collocation on finite elements with cupjc
trial functions, require more work per element than the low-order methods, such
as finite dilference or Galerkin linear finite elements. The extra work per elemen
must be made up by having to use fewer elements to achieve the same accuracy,
Otherwise the high-order methods are not competitive. Yet in the examples given
above the high-order methods do not converge rapidly, because the rate of
convergence, or the power m in Ax™, is set by the properties of the exact solution
rather than the method. In such cases the low-order methods may prove more
economical. Thus the things we have learned in one dimension may or may not
help us in two di i The whole ion is very probl d

6-2 FINITE DIFFERENCE

We can easily write down the finite difference equation for Eq. (6-3) by using the
same techniques developed above and applying them in the x, ¥, and t variables.
Let

§ (6-14)
and an explicit method applied to Eq. (6-3) gives

D
3 ey =20+ o) (619)

D
= e e =2 )+ A

Thiscan bearranged to give

et _ DAL DA
= g erdog) + 'A;T"(t:"'*"':l )

By the positivity rule, extended to involve five terms, the calculation is stable

rovide i are 4 i :
:labili(';dlilmhicl coefficients are all positive and add up 1o one or less. This gives the

(6-17)

(6-18)
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IrAx = Ay weget

Ax?
€ —
< (6-19)
or atimestep half as large as in the one-dimensional problem. Thus th
size goes do wn as the number of dimensions increases. cstablestep

An imp r col on in mu idi i problems is that the scale of

the problem increases dramatically with the number of dimensions. To illustrate
this point let us cc_)nsidef solving a transient diffusion equation, Eq. (6-3), in one,
wo, and three dimensions. We assume that the domain is a squzre‘ in lwo‘
dimensions and a cube in three dimensions. We divi h dimension into n equal
intervals and take the domain extending from zero to L in each applicable
coordinate x, , or z. We then have

At

Ax=Ay=Az=% (6-20)
Steady state is reached at about t = L*/(Ds), where s is the number of dimensions.

The equations in one, two, and three dimensions, respectively, are then
uptt = aludy buloy)+ (1= 2000 (©21)
G =l )+ (1 —daul; (6-22)

=l el bl bl b W 1)

+(1-6apfy  (6-23)
To calculate the solution at one grid point at the new time requires two

multiplications in one, two, or three dimensions. The stable step sizes are

Ax?
6-24)
Arsg 203 (

and we need 1o solve for enough steps to reach ¢ = L¥/(Ds)
20s

2
Number of steps = g —om (6-25)
Take a multiplication time of } psec, which applies to the CDC 7600 computer,
and which is very fast. The total computation time is then

Multiplication time = 2 x n* x 21 x } psec (6-26)

Table 6-1 summarizes the results for different numbers of mesh points and
dimensions. If we need 100 mesh points in each direction the three-dimensional
calculation takes about one hour. With computer time sold at about $1,000 per
hour on this machine, this is clearly too expensive to do many calculations unless
they are very important. Of course more complicated problems take longer. Such
stringent computing requirements are relieved in the one-dimensional case by
using an implicit method, which allows larger step sizes and which works in two
and three dimensions as well.



278 NONLINEAR ANALYSIS IN CHEMICAL ENGINEERING

Table 6-1 Multiplication times for diffusion problems

Multiplication time

Number of sec
dimensions.s n=10

min hr
n=100 n=1,000

Explicit, Eq. (6-26)

00007 0005 001 02
; 0007 ol 1 2% 10t
§ 0.07 2 1x 10t 2x 10°

Implicit, Eq. (6-28)

1 00002 0.001 0.003 5
2 008 5 1x10° 20
3 80 4x 10* 1x10° 2% 10'®

n = number of grid intervals n cach direction.
Let us apply an implicit method to Eq. (6-3) to give
2. |n 2 .| N2 .+t A2a|n+1

4‘4=(|_/:)D<f~‘| + 0 )+;.D<‘;-‘2 +23 ) 627)

At a7 i xy; 4
The unknowns are now ¢/ ', ¢f;}y, ¢}, ¢ff ! ;. and 72} ;. If the unknowns are
numbered with the i index sct to one, letting j go from one to ., then increasing i,
etc, a typical grid is shown in Fig. 6-4a and the corresponding matrix structure is
shown in Fig. 6-4b. The matrix is now pentadiagonal. but unfortunately the
bandwidth is large since it extends from the diagonal at least n entries away in each
direction. Such matrices can be decomposed using a banded LU decomposition,
but alternative methods have been ped because the bandwidth is so large.
The number of multiplications needed to solve the implicit equations (just for the
LU decomposition) is BW (BW + )N, where BW is the half-bandwidth and N is
the total number of terms. The half-bandwidth is one, n, and n* in one, two, and
three dimensions, while the total number of equations is n, n*, and n>. Take a step
size four times as large as that needed for the explicit method (this provides an
accurate solution but one that oscillates only slightly). The multiplication time is
then

Multiplication time = BW (BW + 1) x ’% x 1 psec (6-28)

_Values are given in Table 6-1. For one-dimensional problems the implicit method
is cheaper than the explicit method, but not for two or three dimensions. Indeed.
bu:‘ause of the large bandwidth the calculations become prohibitive if many grid
points are.used. Clearly, another method of solution is needed.
dimel:ler'a“ve Methods have been developed to solve the equations that arise in

sions higher than one. (Sometimes these are used for one-dimensional




PARIIAL DI

TIAL EQUATIONS IN TWO space DIMENSIONS 279

Figure 64 Pentadiagonal matrix
structure. (a) Numberingsystem.
(b) AA matrix structure

problems, t0o.) These iterative methods are illustrated by application to a heal
ion equation, or the equi mass transfer equation,

ViT-Q=0 (6-29;

in0<x<l O<sy<l

We consider two types of boundary conditions: Dirichlet where

T = given on boundary (6-30]
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and Neumann where
N
o given on boundary
on

The finite dilference formulation of the equation is

1

! )+ 5 (Tje 2T+ T j-)— Q=0

'AF(I“"_Z’E’*-TE""H- Aylm-hl i+ Tj-1)—Qy ©31)
i i i i hods dependi
i methods are classified as point or Imy. met 0 pending on

I::ll:leer'?[l;:nons are performed simultaneously on single points or on lines of

ints. .
Pm"The first point-iterative method is the Jacobi method. We rearrange Eq. (6-31)
to the form

2 Ax?
(14 )= Tt Tons* gz (T ¥ Tm) =080 (62

and then write it in the generic formula

AY
21+ A0) I = F = T T Gy (e #0005 (639
where

A =gm  AY= a7 (6-34)
We thereby have assumed that the grid spacing is uniform in each direction, but it
may be different in the x and y directions. Furthermore anisotropies in the
material can be included. These can affect the final equations in the same way as
the ratio of grid spacings. Thus the ratio AX/AY can be different from one either
due to different grid spacing in the x and y directions or due to anisotropy in the
material parameters (here thermal conductivity), or both. The Jacobi method can
be improved by noting that if the points are calculated in a definite order, namely
from small to large i and then from small to large j, some of the values on the right-
hand side are known for the (s + 1)th iteration. We replace them by those values to
obtain the Gauss-Seidel method

1)—AxiQy (639

AX\ ., AX
2(1 +W)T"” =TT+ 2y Tia+ T

The Gauss-Seidel method generally converges twice as fast as the Jacobi method.
Both methods converge provided

Z\d<ay for¥aT= (6-36)

For the equation used above < can be replaced by <, and Eq. (6-36) is true.
Still another improvement is possible. Rather than using Eq. (6-35) ©
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Number of
iterations

1.0 2.0
[ Figure6-5 Optimal relaxation parameter.

calculate T** ! we use it to calculate an estimate for T+*1

AX
2 e = )
z(l+“) =1} (6-37)
Then using the values at T* and T* weextrapolate to find T**"
T3 = T+ -T5) (6-38)

The parameter f§ is called the relaxation parameter. If f =1 we have just the
Gauss-Seidel method. If [3 < 1 we use underrelaxation (i.e. we use only part of the
estimated value), while for (3> 1 we call it overrelaxation. The relaxation
parameter must be chosen. Values between one and two are usually best. but some
experimentation is necessary to find the best value. Crichlow® suggests making
several test calculations: First we compute the number of iterations necessary to
reduce the residuals to a specified small value. The residuals are just the value of
theoriginal equation, Eq. (6-31). with the approximate solution substituted in. We
then do this calculation for a variety of .. The number of iterations is plotted
versus [f and a graph similar to Fig. 6-5 results. Clearly we wish to choose the f
that results in the minimum number of iterations. An alternative is to compute a
fixed number of iterations and look for the maximum residual. A plot of the
maximum residual versus {3 looks similar to Fig. 6-5 and provides a similar choice.

The rates of convergence can be calculated and a very good summary is in the
book by Peaceman.” Assume that we have the same number of grid points in both
x and y directions. The rate of convergence is expressed by means of the formula
for the ratio of the maximum error from one iteration to thatfrom the next

st

Error’!__g (6-39)
Values of R close to one are needed for a fust convergence. After N iterations the
error is reduced by the factor

N
Error . _ 1—R)¥ (6-40)

Error®
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where for Neumann boundary conditions

Ll L
R= (i} man(AX/AY, AY/AX)] (6-41)
and for Dirichlet boundary conditions
2
o
k= (6-42)

Note that Dirichlet boundary com_iilions lead to faster convergence since R js
bigger by at least a factor of two. Anisotropy (Ax # Ay) causes slower convergence
for Neumann boundary conditions but nolll'or L richlet conditions. It can be
shown that R for the Gauss-Seidel method is twice that for the Jacobi method,
leading to faster convergence. In (hg successive overrelaxation method the
optimum f8 should be chosen. Young'' gives the formula

22 —168+16 =0 643
where 1 = 2cos(x/n). Peaceman’ showed that, in the vicinity of the optimum
relaxation parameter,

R= =In(fop =1 (6-44)
We thus have a way of estimating the rates of convergence. If we wish to make the
error decrease by a factor of 100, we need to use N iterations, where N is given by
001 = (1R (6-45)
The number of iterations for various n and thc different methods is given in Table
6-2. We notice that the simple change of using f # 1 means that many lewer
iterations are needed. Also more iterations are needed as the grid is refined by
using a higher n.

Table 6-2 Iterative methods for Eq. (6-31) with Neumann
boundary con

Method 10 20 100
Jacobi
R = njant 0,025 0.0062 000025
1-R 0975 09938 099975
Nin Eq. (6-45) 180 740 1900
Gauss Seidel
R
005 0012 0,000
Nin Fq. (6-45) 90 370 940s
Successive overrelaxation
f,
o Lsgu 1728 1939
0639
Nn kg, (6-45) s 0':;7 0’2‘:29
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In line iterative methods we iterate on an entire line at once. In Eq, (6-33) we
evaluate all terms involving j, but not j— 1 or j+ 1, at the (s+ 1)th jteration
AX) 1 s+ s AX
z(l + ﬁ) Tt = T T + 27 (T + T-)-8x205  (646)
If. in addition. we employ Eq. (6-38) we have line successive overrelaxation LSOR.
The rates of convergence for the same limiting cases are given by Peaceman’ for
Neumann boundary conditions

2n

B (6-47)
andfor Dirichlet boundary conditions
2n Ay\2
R= ;(I + H) (6-48)

Line Jacobi is twice as fast as point Jacobi (when AX = AY) and line successive
overrelaxation is \/5 as fas as point successive overrelaxation.

The alternating direction implicit method ADI can be used to solve the
transient problem, Eq. (6-3). Let us define the operators

Thu -2+ TR,
8, Ty =~ Ax; o1 (6-49)
n 2T+ T
ST = HH—1 (6-50)
VAT = 8, T3+, T 651
Then Eq. (6-15) becomes
T3t = T = DANS, T +35,,T)) = MIV3T] (6-52)

while the implicit equation, Eq. (6-27), is
T3t =T = DAU(I = 7) By T + 8, T + DA, T '+, T Y (6-53)
Rather than evaluating all the terms on the right-hand side at the (n+ 1)th time

level, leading to a large banded matrix, let us first evaluate only the x derivatives,
but step forward only At/2, using A = 0 for 3,,and A = 1 for 3,
DAr R
T =T = o5 G Ty 48, T &34
Next evaluate the x derivatives at the n + 1/2 time level and the y derivatives at the
(n+1)th level
TJ"*TJ"”=¥(6X,Tﬂ""+"ﬂ&"' (6-55)

lE‘:I“i?lians (6-54) and (6-55) give rise to a tridiagonal matrix, and hence are
relatively easy lo solve. We must solve Eq. (6-54) n times, once for each i, and then
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¥y
Solve Eq. (6-55)
for successive /
i n+
Time-
7 x level
Diagram of (6-54)
Solve Eq. (6-54)
for successive i
(@

Diagram of (6-57)

®)

Figure 66 Alternating dircction methods. O known value, [ unknown value. (d) Alternating
direction implicit method. (b) Alternating direction explicit method.

solve Eq. (6-55) n times, once for each j, assuming an n x n grid. The operation
count is reduced from n* for the direct solution of Eq. (6-53) to 4n+6n* to do one
LU decomposition in each of the x and y directions, and n fore-and-alt sweeps for
each direction. The computational savings are dramatic, being roughly n?/6.
Figure 6-6a illustrates the process.

The tr ion error is obtained by adding Egs. (6-54) and (6-55) 10

give

A DAl o .
T3 =Ty = DAL TS 2 + 2 (3, T +0,T5 ") (6-56)

T"‘f x derivative is thus treated using a midpoint rule, which has lruncali(?n errof
Ar?, and the y derivative is treated using a Crank-Nicolson method, \P;hlch also
has truncation error Ar, Thus the overall system has truncation error Af”.
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There are other alternatives. Equation (6-15) can be written as
2T T | p (T 2T T
ax? 2y

LS
=Ty = DA’( : ©:57)
and the value for T;*' can be calculated explicitly if the calculations for the

(i-1J) and G+ y vomls have been done prevlously We do the calculations in
|h= order of iand in Fig. 6-6b. Such a scheme
is an alternating direction explicit mzlhod The truncation error is determined in
problem 6-2.

The alternating direction mclhod is also suitable when the equation is elliptic.
Let us take Eq. (6-32) and write it in two s,

MTG =Ty = Dé..T;;"”HD&,, W (6-58)

BT*" = T5°V2) = D6, Tj* V2 +D6 , T+ (659)

Itis clear that this is just the same as a time-dependent method, since the iteration

paramelter fi is lar 1o the inverse of the time step in Egs. (6-54) and (6-55). If we

use a single iteration parameter, though, corresponding to a single time step, the

iteration proceeds slowly. It corresponds to integrating to steady state with a small

lime step, necessitating many time steps. Instead we use a sequence of iteration

paramelers, which corresponds to a variable time step. The sequence was

suggested by Peaceman.” We define for an n xm grid

24X 24y %
AXFAY d "= AXFAY am?

24X () 24Y ‘_n’)
M= axFar\ CTAXEAY\  am?

where AX = 1/Ax? and AY = 1/8y*. The iteration parameter must lie between the
values

(6-60)

m, <y <my and my< fosmy (6-61)
Ifthe intervals overlap we choose
ms+fh<m, and  ms=min(m,my)  mg=min(m;,mj) (6-62)
For large n the value of m; and m, is usually two. We then use the parameters for
the sth iteration
o= m (""')’7 R (6:69
my

As an example for s = 5, m, = 2, and M, = 00246 (1 =m = 10) the iteration
Paramelers are

f, = 00246, 0.0739,0.221,0.666, 2.0 (6-64)

Peaceman” suggested using these equations to estimate the iteration parameters,
and if divergence occurs 1o raise ms and try again. If m, is raised too high the
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is slow, so some care must be excrcised. Even so, for
m:;lccrf‘?ucw;;tmlr;' nonlinear ones or ones with appreciable anisotropy, ils:"':"
.F:;( be po;siblc 1o find a set of iteration parameters that cause convergence, y
When convergence does not result the anulysl has one more technique 1o y:
the strongly implicit procedure SIP. The details of this method are beyong the
scope of this book, and the interested reader is directed to Peaceman’s excelleny
book.” Peaceman pointed out that the ullern_aung Quecuon implicit methog i
fastest when it works, and it works well for simple, ideal problems. However, jy
works less Well, and maybe not at all, for difficult probleljns involving compiex
geometry, or high or low ratios of AX to AY. The strongly implicit procedure, on
the other hand, is only a lile slower but is more robust, and the iteration
paramelers are more easily chosen. Peaceman suggest_ed that good computer
codes have options for direct solution, strongly implicit procedure and fine
ive over i instein, et al.'® also compared several methods ang
mentioned that the point or line iterative methods do not work well for nonlinear
problems and may converge slowly or not at all.

6-3 ORTHOGONAL COLLOCATION

Theorthogonal collocation method can be applied to two-dimensional problems
as is illustrated for flow through a lar duct. Reactor pi are more
difficult but are illustrated for both packed bed reactors and monolith reactors (i.e.
where the reaction occurs only on the wall).

The trial function in two diinensions is just the product of trial functions in
each of the dimensions. Consider a problem whose solution is a function of .x* and
y%. We write Eq. (4-194) for the dependence on x* and a similar dependence on *

NX
T() = do+(1=x1) ¥ aPi-y(x?) (6-65)
i

NY
TO?) = bo+(1=y?) ¥ b;P;-,07) (6-66)
S

For the two-dimensional case we need T(x?,y2). W e multiply Eq. (6-65) by Eq-
(6-66) and renumber the coefficicnts to obtain the trial function

T y?) = ach 2 X Ny N
Y7 = dobo+(1=x%) T boaiPy_y(x*)+ (1 =3%) T aoh,P,-1(*)
=1 =1

NX NY
HU=x)1=3) T Y ab, P, (P07 (68D
=1

We then use ¢, =aphy ¢, = his
i Use Co = dgly, ¢, = boay, ¢;, Ny = agh,, and ¢, yany = aby THE
:mcrpohuon is not actually used in ’lhe solulim"l since v'é'?ﬁve' the pr(;blem in
:s":‘: 0f the value of T at the collocation points. The collocation points are choseh
dime;;)") where x, and y,; are the same collocation points as we used in On¢
sion. One case is illustrated in Fig. 6-7. We define the temperature at the ith
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o . . . * Boundary collocation point

10 [AE © Interior collocation point
7 8 9

. .

4 5 6

. .

1 2 3

0 1.0 x

Figwe 6-7 Collocation points for NX = 2, N¥ = 3, and symmetric polynomials from Table 4.6 and
planar geometry. Numbering scheme by Eq. (6-69).

collocation point in x and the jth collocation point in y as
Tiy = Tlx,y)) (6-68)
and must define a local to global numbering scheme to convert the IJ pair to a

singleindex k
=WU-DINX+1)+I (6-69)

We can evaluate x derivatives using the matrices from Table 4-6 for the
appropriate geometry, replacing B by BX or BY as required. Both x and y can be
planar, or one of them can be cylindrical.

‘aZT NX
.= Azl BX 1« Txs (6-70)
v ) 3
5T Ny
‘;? 1 = kzl BYJK T‘K '6—71)

In the collocation method we evaluate the residual at the interior collocation
Points in Fig. 6-7, and use the boundary conditions at the collocation points on the
boundary. . "

Application of orthogonal collocati is i 6138
solving the problem of flow of a newtonian ﬁuld ina reclangular duct. Figure
illustrates the geometry. The dilTerential equation is

Fu O 1op (6-72)

W T Tk

We define the new coordinates as
Ly (6-73)
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Figure 6-8 Flow n a rectangularduct

where L is the aspect ratio. and the equation becomes

2 o2
HyE (674)
éx ¢

subject to the boundary conditions
ux=tLy)=uxy=+1)=0 (6-75)

that imply no slip on the boundary. This problem is symmetric so that poly-
nomials in x? and y? are appropriate.
We apply orthogonal collocation to Eq. (6-74) at the 1J collocation point
NPX 41 NPY+1
A): BX\kTxs+ L § BY)Tix=—b (©76)
= K1

The boundary conditions give

Tinrys1 = 1=
Tarxars=0  J=
The average velocity is given by

L....NPX +1 (6-77)
NPY +1 (6-78)

NPX 41 NPY 41
WX, WY, T,y
@ = A — - ©79

wx,wy,
I=1

All matrices come from Table 4-6 for planar geometry. W e write the equations
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iq:l ity Ik;: :u’:x‘iu;e'::;nal cl“t:v‘l’c :ucnor collocation point, and a square duct
BX yuyy +BY, uy, = =1
My ==l =0 (6-80)
Since BX,, = BY;; = 25and W, = § we get
= (25425, = -1
uy, =0200  Cuy=0.139 (6-81)

This answer is actually very close to the exact solution, with an error of 1.2 percent.
The exact solution is found using separation of variables and involves a doubly
infinite series. Collocation is much easier to use. Using two collocation points in
each direction (ie. NPX = NPY = 2) gives four unknowns and requires solving
four equations in four unknowns.

Consider next a chemical reactor with cooling at the wall and axial conduc-
tion. The temperature equation can be written as

1 1¢
= + n~;—(r£r) +BR=0 (682)

with a similar equation for concentration. The boundary cons
direction arc the usual ones

ons in the radial

B
AL "
-0

i, [T(L,2)-T.] (6-83)

whilethose in the axial direction are more complicated. Here let us just note that
we must specify a boundary condition at and z = 1. Define the solution at
the ith collocation point in the r direction and the jth collocation point in the =
direction by

Ty = T2) (6-84)
Also we use matrices BZ, AZ, and BR for the collocation matrices in the = and r
directions. Since the problem is symmetric in r we use the polynomials in r? for
symmetric problems. Then the residual evaluﬂled at the ijth collocation point is
Nz+2
('iﬁ’ﬁ - AZM)T,K +a ): BRix Ty + B Ry
KD
We can solve this system of equations using Ncwleanaphson by expanding the
reaction rate expression about the current iteration T to yield

Nzy2 (Bz

o (6-85)

5 —AZ,K)T:‘K‘M Z BRiTRS'

Lel
i Kk —@,,;] =0 (686)

d

+Il'[R,, + | T =T +
Alternatively the itution method can be used when the reaction
fate (erm is small. In cither case we must invert or decompose & matrix of size
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x NR where there are NZ im;riq collocation points jp the

 collocation points in the r direction, and two Variables . :..;

T. (The boundary conditions are glimlnfiled to obtain the number 2NZ x NR)In
addition the alternating direction implicit method can be used.

Whether or not one Wishes to apply orthogonal colloc_auon depends on the
difficulty of the problem. C_onsider first the cases treated in problems 4-34 4,
4-35. Orthogonal collocation is suitable to apply to lheﬁ? cases with axjg|
dispersion. If cooling is provided at the wall the additional radial gradients can e
expected to be mild enough to allow use of orthogonal collocau9n in the radia)
direction, too. Next consider the case treated in Sec. 5-4 with only ragiy
dispersion. The problem is initial-value in the z dlrecufm, and l‘he al-value
techniques use very small steps Az for an accurate solution. If axial dispersion jg
introduced into the model then a trial function must be assumed in the axig|
direction. Orthogonal collocation would not be expected to give a good result
since the profile is steep. Either collocation on finite elements or the finite
diference method would be appropriate in the z direction. Judging from ex-
perience discussed in Secs. 5-8 and 5-9 we would probably choose the finite
difTerence method in the z direction. Even so we can still take advantage of the
accurate i lutions by using orth | collocation in the radial
di

2NZxNR hy.ZNZl
direction, NR interiol

n.
Young and Finlayson'® used orthogonal collocation in both directions to
solve for the oxidation of sullur dioxide to sulfur trioxide. One aspect of the study
involved determining rate constants [rom experiments that included significant
axial and radial gradients. - significant in the sense that they afected the rate of
reaction—but not so large that orthogonal collocation could not be used. The rate
parameters were determined by performing a numerical nonlinear least squares
analysis on the experimental results. This involved solving Eq. (6-82) for a set of
assumed rate parameters, for cach experimental run, and then resolving the same
problem for another set. To determine the best set of rate parameters it was
necessary to solve the problem over 300 times, and the efficiency of the orthogonal
collocation method was particularly welcome. Once the rate paramelers were
determined they were used in another simulation to explain the way axial
dispersion influenced the experimental results.

Another type of reactor ing with orth it ion is the monolith
In this problem steep fronts arc expected in the axial direction but not in the other
lwfl. Thus global polynomials arc appropriate in the transverse direction. whereds
finite elements or finite differences are necessary in the axial direction.'*

The last cxample used finite clements only in one direction. What if the
problem is expected to have a steep profile in two or more directions? Then finite
elements are indicated in two or more directions. The collocation finite element
p'“rf)':lzdm:“"hb‘galipied in such cases. Applications indicate that for engiqnﬁﬁ
addition the firet s MeWod can handle irregular domains more eusily
and i the proﬁledi[s’psr[om!d:w;. in the collocation method is a cubic !rnal Iunkll;'ep
more, discominit :ch d. igl 4-o(dcr mcl!-nod may not be appropriate. Furtt -

inuities often appear in two-dimensional problems, making the hight
t 1o achieve. For all of these reasons the promise of thé

order accuracy difficul
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orthogonal collocation method shown in one dimension has not yet bee i
. N N n
in two dimensions. The reader is referred to the Bibliography for d:le:i:ludf
ications of orthogonal collocation in two di : s of

6-4 GALERKIN FINITE ELEMENT METHOD

The Galerkin finite element mg(hod is widely used to solve elliptic boundary-value
problems in two and.lhree dimensions. The reason for this widespread use is
related to the ease with which the finite element method accommodates com-
plicated and irregular geometries, which are important in engineering applications.
We first introduce the ideas for application of the Galerkin finite element method
to a two-dimensional heat conduction problem and then give a complete
with detailed applicati

The prototype problem is taken as steady-state heat conduction problem with

three types of boundaries

V-kVT =Q inAd (6-87)
T=T on C, (6-88)
~
—k",‘—T =4, on C,
an (689

oT

=(T-Ty) onCs

On C, the temperature T, is given, on C, the heat flux ¢, is given, and on C, we
have a boundary condition of the third kind involving a heat transfer coefficient,
and hy and T, are given; Q < 0 for generation. The trial function is substituted into
Eq. (6-87) to form the residual, and the weighting function is taken as 5T. The
weighted residual gives a system of equations

J STV -kVTdA = J‘ dTQdA (6-90)
A A
The first term is integrated by parts. Thus
'[ ATV -kVTdA = J V- (8Tk\VTdA — 'L kVT -VoTdA (6-91)
A A &

The divergence theorem gives

-92|
.[ V- (dTKVT)A = I 8Tkn"VTdC (6-92)
A «C .
inati -9 d (6-92)in
where n is the outward pointing normal. Combination of Egs. (6-91) an
Eq. (6-90) gives

‘. 3]

5Tkn - = | oTQdA (693
- .VoTdA + | 0Tkn-VTdC I
L kVT - VOT d . 4
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The boundary conditions are applied as weighted residuals

J‘ STkn-VTdC = — J 6T¢j,dC
c &

N (6-94)
'[ OTkn-VTdC = — J‘ OThy(T - T3)dC
o c

These are substituted into Eq. (6-93) where T = 0on C, and S = C, +C, +c,
- J kVT -V3TdA — J 8Tq,dC — J’ SThy(T-T5)dC = J' 3TQdA (695
4 e cs 4

Equation (6-95) is the Galerkin statement of the problem. If we apply the same
steps in reverse we get

J ST(V-kVT-Q)dA — J‘ (kn-VT +¢,)0TdC
A <

_J [kn-VT+hy(T—T3)10TdC =0 (69)
<

If this is true for arbitrary 6T then the terms in parentheses must be zero. The
Euler equation is Eq. (6-87), and the natural boundary conditions are given in Eq
(6-88). The trial function must satisly the essential boundary conditions of 6T =0
or T = T, on C,, allowing no variation of T on C . Thus the value of T is fixed.
The difference between essential and natural boundary conditions is an
important one. For an equation that is second-order, any boundary condition
involving first derivatives is natural and any boundary condition setting the
function value only is essential. The interested reader should read Chapter 7 of
Finlayson* to see the origin of the terms, which arise for variational principles.
‘What is important for people using a finite element method to realize is that some
boundary condition will be satisfied on each boundary. The user must do
ing 10 specily the on C,. The user must also do something ©
specily a given heat flux ¢, on C, These conditions are clear enough. However. ir
the user does nothing then the Galerkin method automatically uses the natural
boundary condition, regardless of the user’s intent. In the case of Eq. (6-97) il 4>
Iy, and T, are not specified, and the value T, is not specified on the boundary, then
the boundary condition is automatically

kn-VT =0 onC (691
The user must be careful to know what the natural boundary conditions are fora
problem, and if they are not the desired conditions, then the correct ones must b
specified.
The finite element part of the method comes in the choice of trial function

Teny) = ¥ TN(x.y) ©99)
;

"The basis functions N, are known, chosen functions of position, The variation of T
with respect 10 T is just N, so that is the weighting function. Equation (6-95)
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then

([ s [

~—

= Nyg2dC - j
J‘Q 192 -, NyTodC + | NQdA (699)
We define the element matrices

55 = —[kVN,-VN,d4 ©100)
F5=[N,QdA (6-101)
andelements on the boundary have an additional contribution
Ajy=— L IyNN,dC ©102)
F5= I N,g2dC — I N,iyTydC (6-103)
[ e
Then the equations are
AT =L F; (6-104)

If an element has boundary conditions on C, then the Galerkin equations for that
nodeare replaced by the boundary condition

T=T ionC, (6-105)

1n addition to being able to handleirregular geometries. another advantage of

the Galerkin method is to be able to refine the mesh. We can use large elements in

regions in which the solution has small gradients and small elements in regions in

which the solution has large gradients. The mesh is most easily refined if the

s 08 3 @6 @

(@ o

®)

Figure 69 Triangular finiteelements. (a) General clement. (b) Regular urray.
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domai

divided into triangles rather than rectangles. Here we present

; the shy
functions for linear functions on the triangle, although quadratic fun, e

| T e tri " ¢ clions can
also be used. For the triangle shown in Fig. 6-9a the trial function is
T = Ny(x )T + Ny (00 Ty + N (6,0 T (6-106)
and the shape functions are
aj+bx+¢yy
Ny = (6-107)
ap =Xk =Xk)s
Yi-yk plus permutationon I,K,J (6-108)
Kk=Xs
Lxe n
det|l x; y,;|=2(areaoftriangle) (6-109)
I oxk

These parameters obey the restrictions
ay+ay+ag =1
by+by+bg =0 (6-110)
ctesteg =0

The Galerkin clement equations are then (with k and Q constant)

k
Ajy=— 7y (byby+cicy) (6-111)
F‘,‘=%(u,+h,.\‘+c,f)=QTA (6-112)

The centroids of the triangle are given by

Xp+xp+xg
3
RETSIeeY:

) 3

©113)

ay+bi+ey =34
As a simple example let us solve Eq. (6-87) on the domain shown in Fig. 6-9b-
Take k = —Q = 1 and let the boundary condition be T = T, = 0 on C,. or nodes
1.2,3,4,6, 7,8, and 9. This situation represents uniform heat generation in the
rectangle with zero boundary conditions around.
We first note that only T, is nonzero, since the other nodes are on the

boundary and the temperature is zero there. We compute the terms Aj, and Fi
element by clement. For element 2 we have

by=y-y, =04 ¢, =x,-x, =05 (6114
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using Egs. (6-108) to find b and c5. When applyi ;
issiways five and J and K ure the other anplying E. (6-108)ineach clemen, £
s go in counter-dockwise order while thoss of ¢ g0 in a dloceuiee e, A®
clement matrix is then lockwise order. The
az, o 041405
* 4 (6-115)
‘Werepeat this for the otherelements
Element 3: by = y;—y,
Element 4: by = yo—y; =
Element 5: by = y,—y,
Element 6: bs = y,—ys

€5 =

2= X3
€5 =x3=Xg

€5 = x7=xy = 0.

€5 = Xg=Xq =

Element 7: by = yg=y, o = xemxy
T=0
T=0 =0
T=0
@
q=0
T=1
T=0 4=0

Figure6-10 Hea wunsfer domain. (a)
Completedomain. (b) Purtial domein
™ includingsymmetry.
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The total matrix A is the sum of all the element matrices
Ags = Als+ A+ ASs+ ASs + ASs + Al

4(0.4)+4(05)?° _ 041 (6-117)
=-" 4 a4
The right-hand-side vector is
A A
Fi:QT= 73 ©118)

and this is the same in each element. The total right-hand side is the sum of these
for the elements with node 5

Fs=F}+F3+F$+F3+F$+F]= -2 (6119
The area of the triangle is 0.1 so the final equation is
AssTs=Fs
24
Ts = 00488 (6120

It turns out that the same answer is given by orthogonal collocation using
quadratic trial functions.
The above example is very simple and is more easily solved using other
methods, such as orthogonal collocation. If the shape of the domain is more
complicated, however, only the finite element method is easy to use. For the next
example we consider a heated cylinder embedded in a square domain. The cylinder
is maintained at a dimensionless temperature of one while the outside boundary of
the square domain is kept at dimensionless temperature of zero (see Fig. 6-10a)
We only need to solve the problem in one-eighth of the domain (see Fig. 6-10b).
since the solution in the rest of the domain can be obtained by symmetry. We need
to divide the calculation domain into triangular elements. We do this for different
meshes, each one more refined than the last, as shown in Figs. 6-11a, 6 1b, and
6-1lc. The circular boundary al the corner is approximated by straight-line
segments, and as the mesh is refined the segments become smaller and smaller, and
represent the circle more accurately. Typical solutions are shown in Fig. 6-12. As
the mesh is refined the temperature profile along the diagonal becomes more
smooth, as we expected. Temperature contours can be constructed as illustrated in
Fig. 6-13. These solutions were obtained using the finite element program® and ar¢
easily solved. Most other iques require consi jpulation to hand®
the irregular geometry, if they are applicable at all. This particular problem hss
been solved using the boundary collocation method by Shih.® In this method the
solution is expanded in trial functions that satisfy the dillerential equation. "
collocation is applied on the boundary. The method is probably more accurat
than the finite clement method used here, but it must be set up anew for €ac! hen
problem. the boundary collocation method can only be applied W m
the differential equation is linear and can be solved analytically, The finite ¢leme -
in contrast, is applicable when the problem is nonlinear and can be applied €&
easily to any arbitrary, irregular domain.
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©
Figure 6-11 Meshes for heat transfer problem in Fig. 6-10. (a) Mesh L (b) Mesh 2. (c) Mesh 3.
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Figare 612 Temperaturealongdiagonal.
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Figure 6-13 Temperature contours
for problem in Fig. 6-12

Nextwe consider the nonlincar problem in which the thermal conductivity k.
rate of heat generation Q, or heat transfer coefficient /1;. are functions of
temperature. We define the elcment matrices the same way, but with the nonlinear
function of T included. (For this illustration the heat transfer coefficient is taken as
constant.)

AT = = j. k(T“)VN,-VN,dA (6121
A

Fy(T) = I N,Q(T)dA (6-122)
A

Equation (6-104) is now a nonlinear equation since the element matrices depend
on the clement temperature. The equation can be solved using a successive
substitution method. We evaluate the thermal conductivity and heat-generation
terms using the old iterate value T*and we use Eq. (6-104) to solve for T** !, Thus

T AT = ¥ F5(T™) (6-123)
Alternatively Newton- Raphson can be applied to obtain faster convergence

& (TeoyTear dag,
TAuTT 4 3 oy e e

._.z F5(T*) + 'l_r_fi(n.;on_ns‘ (6-124)
dT,
v 7 AT,

Incither case the integrals must be calculated numerically, as shown below.
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1tis possible (o usc clements that are rectangles, and to use trial functiors that

are not linear, but quadratic or cubic. First we divide the domain into rectangular
clements and consider linear functions. We define the coordinates on the element
tobe
XXk v /]

i By, (6-125)
and u and ¢ go from zero to one on the element as x and y go from x, to x,, , and
1110 Y1+ . Tespectively. The trial function in wand v istakenas a bilinear funcion

=

N'j(1,0) = @+ bu+co+duv (6-126)

This shape function is called bilineal
One trial function is illustrated in Fi
N, =

Ny

x and y,sinceit includes the ux or xy term.
6-14 and the equations are
I=u)(l=v)  Ny=u(l-v)

w Ny=(1—up
Thetrial function for N is obtained by taking the product of two polynomials,
each of which is zero along one boundary. The function | —u is zero along u = 1,
and hence makes N = 0 at nodes 2 and 3, while the function v is zero along v = 0,
and hence makes N zero along nodes | and 2. The product v(l —u) is zero at
nodes 1, 2. and 3, and takes the value one at node 4.

(6127

u Figure &-14 Bilincurshupefunction onu
Ni=(-u) rectangulur element
A
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v
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8 4
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0 1.0
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4
°
x u
()

Figure 615 Quadratic shape functions on rectangles. (a) Lagrangian polynomials. (b) Serendipity
polynomial. (c) Transformed clement

Quadratic functions can also be assumed on the rectangle. Let us consider the
case illustrated in Fig. 6-15a, and concentrate on node 1. The function ¢ —} is zero
for nodes 8, 9, and 4, while the function v—1 is zero for nodes 7, 6, and 5. The
function u—14 is zero for nodes 2, 9, and 6, while the function u— 1 is zero for nodes
3,4, and 5. The product of these is zero at all nodes except node 1. We choose a

constant multiple of the product as the basis function so that the value is one at
node |

Ny = 4u=H - @e-He-1) (6-128)
For node 2 similar reasoning leads to the function
Ny = =8Bu(u—=1)(v=3)(@-1) (6129

These functions are referred to as lagrangian quadratic functions since they use the
same interpolation as is used in lagrangian interpolation.

An alternative is to use the serendipity elements shown in Fig. 6-15b. For node
1 now we need functions which are zero at nodes 2 through 8 but not at the center
node. The function v— | iszero at nodes 7, 6,and 5, while the function u— | is 2er0
atnodes 3.4, and 5. The function u+ v 1 is zero at nodes 8 and 2, and the product
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of these functions is zero at the nodes 2 throy,
clement. Typical serendipity functions are

Ny==@=DE=l)@u+v~1)
Ny = =8ulu=1)(v-1) (6-130)
These functions do just about as well as the lagrangian quadratic functions, except
in certain fluid mechanics situations. It should be noted that along the line u = 4
the serendipity function is not a complete quadratic function of v, since it only has
two unknowns rather than three. Certain problems may have an exact solution,
which is a quadratic function of position. The finite element method with
serendipity functions will not give exact results. Despite this qualification the
economical savings from the serendipity element are substantial (perhaps 20
percent). and the elements are widely used. Once the trial functions are chosen the
same element integrals, Egs. (6-100) to (6-103), must be calculated and assembled
into Eq. (6-104).
If the domain is irregular it may be desirable to use elements with an irregular
6-1 5¢). In that case we need to transform the terms in the integral
) i system to the u-v i system, which we again take
as rectangular. The integrand is transformed using

gh 8 but not at the center of the

ON,ON, (eN,du N, dv\(ON, du oN, d
Ny Ny (Xt Ny N CTyon 005 00 613
ox x (.‘-u ta ox)\au ax o ax ©130
and
dxdy = Jdude (6132)
ey oca
Toudv dvdu

The part of the integral, Eq. (6-104), is then
ON,;du N, dv @i’l 5’_&@
=, e ax T e A\ ax T E

Such an integral must be evaluated using quadrature techniques. G :u?si:n

quadraqure is usually used on rectangles, and this is just a combination of U el
d for the [ ion method. A

integral is evaluated as 2 one-dimensional integrals

" " N+2 1
j J S okdude =3 w,j StuoMdy
Jo Jo o o

)J dude (6-133)

(6-134)
N+2 N+2
=y L wW/ )
&
: i zero, so that
Notice that for N > 2 the quadrature weights on the boundaries are zer e

i i i i i rals. When k =
only interior points are involved in evaluation of the integrs. ) ihe
added complication in evaluating Eq. (6-133) is wrivial. We just need 10 K
k(T (u,v,)) at the quadrature points.
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uer=0
Bu
u o
a=21-r) x
va0
=0 p=0

u=r=0

Normaland tangential

Fig.6-16 Dicswell problem.

The Galerkin finite element method has been used to solve a variety of
engineering problemsin diverse fields: flow in estuaries, flow in porous media, heat
transfer, etc. The power of the method is that irregular geometries are easily
handled and the mesh can be easily refined where needed, without refining the
mesh over the whole domain. The last feature is a great aid in reducing the
computational cost.

To illustrate some features of such applications we consider the flow of a
newtonian fluid down a long pipe. The pipe stops and the fluid is emitted into the
atmosphere in the form of a jet. For this illustration we neglect gravity and solve
the flow problem. One aspect of the problem is the unknown position of the jet.
The finite element method is easily applied since irregular geometries can be

] |

©®
Fiure 6-17 Mcsh for dic swell problem, (@) Initiul mesh. (h) Finul mesh.
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handled. The cquations arc thosc of Navicr-Stokes, written here in dimensionless
QN dp P 10w
"“(“m A «) Scatimt: a—,(’a + 'a—x)

a N 1af 0\ dfou oy (&1
"“("ax“ar)"a—,”;.a*r(’a)w—z(a—r*x)

In addition we have the continuity equation

form.

u  1ar)
i (6-136)
The boundary it h are il in Fig. 6-16. Thelr face of the

jet is located by requiring a mass balance. The average velocity at every axial
location should be the same, and this provides a criterion for either increasing or
decreasing the jet radius. We assume a shape, calculate the flow, check the mass
balance. and change the shape if need be. Usually only three or four iterations on
shape are necessary.

The finite element program FLUID uses lagrangian quadratic functions for
the two velocities

u =Y uN(x,r)
I

ZeNilx,r) Sl

—— Theory

1.10] © Experimentaldata? |

Re

Figure 6-18 Dic swell dependence on Reynolds number
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The pressurc is expanded in terms of bilinear functions
P =X pNixr) (613
The element shape is rectangular, and these functions are transformed into
rectangles to calculate the integrals. The mesh locations are illusirated in
6-17a before the calculation begins and in Fig. 6-17b after solution, The jet
increases in diameter for small Reynolds numbers and decreases in diameter for
large Reynolds numbers. The dependence of the final jet diameter on the Reynolds
number is compared 1o experimental data in Fig. 6-18. The agreemenq is ve,
good This problem was first solved for Re =0 in 1974 by the finite elemen

n
2
T Y B
I
(@)
T+n+2 T+n+2
! 1
fmn-2 1-n-2
» ©
[y tere 1+3n+3
° o
i
—o— !
° o
I-4n-4
— 1-3n-3 N j
()
©

Figure 6-19 Noda
Linear triungles (f‘. ;:ﬂh'""“_ for bundwidth calculutions. (a) Rectangular mesh, i x i clements. (6}
eAr rectangles. d) Lagrangiun quadratics. ¢) Serendipity quadratics
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method. but has not yet been solved using finite dii
been solved using orth location o fimte, ‘,"""‘"‘“; methods. It has also
The Galerkin equation, Eq. (6-104), can also be writien with a global

numbering sysiem

SAT=F, (6:139)
The matrix A is sparse since many of its terms are zero. |,
arrangement of clements, the unknowns can be numbered al’on
another, etc* The Galerkin equation with weighting function ,
butions from the trial functions deﬁned_in the elelr'lenls surrounding the ith node,
but no others. For an nxn array, as illustrated in Fig. 6-19a, the contributing
nodes are shown for the different basis functions (see Figs. 619 to 5]9,)“-;’,“5
number of unknowns per row, total number of unknowns, and hall-bandwidth of
each of the trial functions are listed in Table 6-3. The computation time o perfu:n
an LU decomposition on the matrix A is BW?N, Eq. (4-262a), where BW is the
half-bandwidth and N is the total number of equations. The work estimates for
each basis function are given in Table 6-3. This work estimate is only for the
solution of the matrix equations, not the calculation of the matrix, which can be
from 10 to 50 percent of the total computation time and is typically 20 percent.
The work estimate also assumes that pivoling is not necessary, which is valid in
most cases.

Changing from linear functions to quadratic functions causes a significant
increase in computation time, by a factor of 27 lor serendipity lunctions to 64 for
lagrangian quadratics. Of course each quadratic element has more nodes. so that
we can perhaps take linear basis functions and n x n elements, and compare wi
quadratic basis functions with n/2 x n/2 elements. On this basis the serendi
quadratics are only 27/16 as expensive as the linear elements. The lagrangian
quadratics are four times as expensive as the linear elements. If the error is smaller
for the quadratic clements then even fewer elements can be used. The error bounds
are the same as listed in Table 4-11 provided that the solution and its derivatives
are continuous. Then the errors for linear elements go as

n a rectangular
g onerow, then
 involves contri-

Error = K,Ax? Ax = Ay
and for quadratic elements

Error = K,Ax® Ax=A4y
For smooth solutions and highly accurate solutions the quadratics are usually cost
elfective, but for solutions with steep gradients the linear functions are usually
cheaper.

The number of entries needed to store the
storage is roughly twice the hall-bandwidth mult
equations, assum ing that pivotin g is not necessary.
(even for n? = 10x 10) the storage requirements are

(6-140)

matrix A is listed in Table 6-3. The
iplied by the total number of
For lurge numbers of elements
large and small computers

han rows and
* A more efficient numbering system is (o number along the diugonuls rather tha
colums.



g 9 raur {ug windueiosy  snespenb uerduesdey
gt w0 yaug [+u 10
1 sendueioy  sonespenb Sudipuasas
gz K Tau 1en Iendurooy resug
" i 4w [ sendueu) eour
Swawannbas QTWN0d  \ sumouyun jo A woi13d wawap wonouny siseg
Beiong vonendp  AqWINUTIOL  yipiwpuRqH sumouyun) Jo xdeys

YSIUI 1 X U UO SPOIdWS JUdWI[

1uy urysa(eo) Jo uosusduio) €-9 AqeL



PARTIAL DIFFERENTIAL EQUATIONS IN TWO SPACE. DIMENSIONS 307

cannot store the whole matrix. Fortunately, without pivoti i .
doces not necd to be.in the fast storage of lhye compulc\'p ::lot::‘eg (ilr:ee e:':ldreom;ulr':x
small part thal is being processed need be kept there. The remaindér can be ke
on slower discstorage and called as needed. P
In summary, the Galerkin finite element method is a very useful tool for
solving engincering problems. Irregular geometries are easily handled, and small
mesh sizes can be used in local regions where the solution changes dl:amalicall
For domains with regular boundaries other methods may be possible, but "{,
finite element method is possible for these as well as those with irregular d;wmains,

65 COMPARISON

Finite difference, collocation, and Galerkin finite element methods can all be
applied to two-dimensional problems, but detailed, comparative studies are rare
because of the expense of solving such problems. Some general guidelines have
emerged, however. To illustrate them we look at work estimates for the different
methods under two conditions. In the first case we require that the number of
nodes be the same in all methods. This case is typical of situations with steep
gradients where a great many nodes are needed to resolve the front without
oscillation. The error in the solution is governed by the solution more than by the
method of analysis. In the second case we make the number of elements such that
all methods have equivalent error. This case is typical of situations with smooth
solutions for which the continuity of the method governs the accuracy, rather than
the continuity of the exact solution.

Work cstimates are given in Table 6-4 for all methods having the same
number of nodes. Specific numbers are given for a 30 x 30 grid. We see that the
alternating direction implicit methods are the best choice, where we have assumed
that 20 iterations are needed. The direct methods are less suitable, with the
Hermite polynomial collocation on finite element method taking 30 times as long
as the finite difference, alternating direction implicit method. This is a case that
corresponds to a steep gradient; low-order methods prove superior. There is one
qualification: in the alternating direction implicit method, we assume only 20
iterations are necessary. For linear problems, and some nonlinear problems, this
may be valid. In other cases, including some linear ones that are very asymmetric,
more iterations arc necessary and the method may not converge. In those cases
direct methods are more suitable, but low-order methods are still preferred.

Next take the case of “equivalent” accuracy. We define equivalent accuracy as
when the principal term in the error expression is the same [or all methods. The
error bounds for two-dimensional problems are similar to Fq. (4-384). Here we
assume that Ax = Ay and make the term Ax™ the same for all methods. We thus

n? = NE? = NE3 = NE3} (6-141)
where NE, is the number of elements in one direction for a method with an ith-
degree ial for i lation. For linear, quadratic, or cubic trial functions

i~ 1,2, 0r 3 respectively. Now the constant in Eq. (4-384) may not be the same for



Table 64 Work esti for two-di ional p
Operation count Matrix storage
Method Estimate Estimate n x10°¢ !
Work for equivalent number of nodes. n = NE, = 2NE, = 2NE,
FD. ADI 6sNE] 6sn* i o1l
OCFE-L.ADI 16sm® 15 028
GFEM-1 or FD. direct " 3o 0.81
GFEM-2S. direct L 15 14
GFEM-2L. direct an* 15 32
an* 15 32

OCFE-H.direct

E,.NE} = NE} = NE3

Work estimate for equisalent accuracy. n =

OCFE-H. direct 64NE3 64n* 316 0.0064 128NE3 = 4.000
GFEM-1. or FD. direct n 0 0.010 2NE} = 20,000
FD.ADI 6sn? 10 0.012
GFEM-2S.direct 27%? 464 0013
OCFE-L.ADI 6dsn 3.16 0013
GFEM-2L. direct 64n® 4.64 0.030 32NE} = 3200
* For direct methods the work is the number of for the LU ion using BW?N, where BW is the half-

idth and N is the total number of nodes. For ADI methods the work estimate is for the fore-and-aft sweep: s is the number of

when neede:
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the diflerent methods, since it depends on the solution,

fourth derivative of the solution. However, using Eq. (&pf;rf?vz';:cﬁsfﬁ:d ?:f
the number of nodes needed for equivalent accuracy in a case with a Sm:'.leolh
solution. The work estimates are given in Table 6-4. Specific values are given for
n = 10. The smaller value is used because fewer nodes are probably needs:d when
the solution does not have steep gradients. Now the collocation finite element
method is the fastest, andA the linear and quadratic polynomials require about
equivalent work efforts. This example demonstrates that the method of choice ma;

depend on the problem being solved, si nce the best method for a smooth so]ulioi
is the worst one for a solution with steep gradients.

Certain qualifications must be imposed for the comparisons just made. The
calculations assume a n x n grid that is uniform, and the finite element methods, in
particular the Galerkin finite element methods, usually use a graded mesh. thus
saving on the number of elements and, consequently, on the computation time.
Furthermore, the comparison assumes a regular domain, and some of the
methods. in particular the Galerkin finite element method, are very easily applied
to irregular domains. Thus the evental choice of method must involve a
compromise between many important factors.

Another way to compare methods is to solve the problem using several
methods and examine the accuracy and computation time, as well as the
programming effort. Houstis, et al.> have done that for linear elliptic boundary-
value problems of the type

2u du
PRI Sl

o

; ; xteyt u=f (6-142)
The boundaries werc often irregular. All finite elements methods used Hermite
cubic polynomials; collocation, Galerkin, and least squares methods were tried.
Finite difference mcthods were also applied. The collocation finite element method
proved superior to Galerkin and least squares finite element methods and was
usually superior to finite dillerence methods. For good accuracy, the collocation
method always was more efficient than the finite dilference method. This is the
only careful, controlled comparison of methods for two-dimensional problems.
and is limited to linear problems.

The collocation and Galerkin finite element methods were compared in
application to Egs. (6-135) to (6-136) illustrated in Fig. 6Av1‘&"‘ The (:'lalz.l“km
method used lagrangian quadratics for the velocity and bilinear functions for
pressure. The collocation method used Hermite cubic functions for velocities and
Pressure. The Galerkin method used a frontal solution method. whereas lhhﬂ
collocation method used a block diagonal LU decomposition. Some DJI the
Problems solved had discontinuities in the solution, whereus some of the Prod/erts
had continuous functions but discontinuous or infinite derivatives of the ex:
solution. All ofthe problems had a singularity of some type. 99

At the oset the Gaterkin method looked betir: nh:'f"';"l“:'i:: ol od
unknowns whereas the collocation element had 48. Thus the ¢ol c::mm sc of the
Must use many fewer elements to be competitive. H""‘“’_“"was found for 8
singularities. many clements might still be needed. In fact it
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i id that the collocation method did about as well as the Galerkin
nmee‘;litoogl.“‘?‘h':uglll:cmion method with fewer elements (2 4) gave belter integral
mass and force balances than did the Galerkin method with more elel!!enls (Bx9).
The Galerkin method. which could use gnesh rcﬁnemgnl because it hqd more
elements. gave morc accurate local properties of the solution. When th fluids were
non-newtonian, and the viscosity depended on shear rate,_ the collocation methods
were not competitive. For viscoelastic fluids the coll method proved to be
very much more expensive than the Galerkin me!hod, l_n addition, ll_ie Galerkin
method had the capability of refining the mesh in arbitrary ways since it used
isoparametric clements. The collocation method treated irregular domains by
(ransforming the problem to a regular domain. Thus the range ofpossi‘billu&t was
much less. Based on all these considerations only the Galerkin finite element
method was used in the subsequent work because of its greater versatility in
treating irregular domains, its ability to use refined meshes, and a desire 10 solve
flow problems that contained singularities so that the high accuracy of high-order
method could not be achieved.

Finally we consider the application of different methods to the flow through
porous media. The equations governing the pressure, and hence the velocity, are
similar to Eq. (5-308) for a two-phase situation. The equations simplify for
ible flooding when only one phase is present. Let us consider solving either the
ible or immiscible looding case along with the convective difusion equation,
Eq. (5-273). in a two-dimensional domain shaped as a square by injecting fluid at
one corner and producing flud at the opposite corner.

Settari, et al.® solved problems like this for miscible displacement using finite
diference methods with either upsiream weighting or central differences for the
convective term. The Galerkin method was applied using either lagrangian
quadratic functions or Hermite cubic functions. Enough calculations were made
that the accuracy could be assessed and compared to the computation time. Table
6-5 lists sample results. We see that the Galerkin methods are able to use many
fewer elements, giving a smaller computation time per time step. The computation
time per time step per node is smallest for the finite dilference method, but many
more nodes are necessary for equivalent accuracy. For this comparison, at least,
the most efficient method is the Galerkin finite element method with quadratic
trial functions.

Spivak, et al.'® solved a similar problem for immiscible flooding. They found
that a complete simulation using a 5x 5 grid with Hermite cubic functions took 24
sec per time step on a CDC 6600 computer. A finite dilference method with the

same number of nodes would need a 12 x 12 grid, and a typical computation time
is 0.72 sec per time step. Thus for an equivalent number of nodes the finite
difference method is fastest. These methods were not compared on a basis of
equivalent accuracy on this problem because the exact solution was not known.

Young'? compared a cubic Galerkin method using line successive over-
relaxation with a Hermite cubic Galerkin method using a direct method of
solution. Typical computation times for a miscible displacement are shown in
Table 6-5. For the case with a velocity that must be determined (i.e. we solve both
the concentration equation and the pressure equation) the line successive over-
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Table 6-5 Comparison of methods for flow through porous media

cpu ”
W——  Grid ' "
Method Grid Time i T
siep  points Grid point  Element
Miscibleflooding, sharp front®*
FD. upstream 25x25 39
FD.central 30x30 74 o fponss 00062
GFEM-2L. dircet 5x5 08 121 0083 00083
GFEM-3H. direct 5xs 22 ™ Frod 0032
- 0.088
Miscible looding, smooth fron™*
FD.upstream 20x20 19 400 004
FD.central 1x1l 035 121 ooom S0
GFEM-2L. direct 3x3 030 9 00061 oﬁ?
GFEM-3H. direct Ix3 076 64 0.012 0088
Miscible flooding, Pe = 2902+
GFEM-JL.LSOR
Knownvelocity ~ 10x 10 007 931 000075 00007
Unknown velocity  10x 10 093 931 0.0010 00093
GFEM-3H. dircat
Unknown velocity  10x 10 2 484 oon 020

* CDC 6600 computer.
11BM 370/168computer.

relaxation is about 20 times faster than the Hermite cubic direct solution method.
The cubic polynomials on a 10x 10 grid are more accurate than quadratic
polynomials on a 20 x 20 grid or linear functions on a 50x 50 grid. For this case,
with Pe = 290, the higher-order methods are preferred.

In conclusion, we have seen that there is a great dillerence between one- and
two-dimensional problems, and this diference has important implications on the
method of choice. The best method may depend on the problem being solved, its
discontinuities o singularities, and whether mesh refinement is useful and/or
whether irregular geometries are needed. Even once a method of discretization is
chosen the way the algebraic equations are solved may influence the method of
choice. While no one method emerges as superior in all cases, we generally expect
low-order methods, such as finite dilference or Galerkin finite element Wi linear
trial fupctions, to be best for problems with singularities, and high-order melhIOdS‘
such as quadratic Galerkin or Hermite cubic collocation, to be best for p}'nl{e{r‘r’t:
with smooth solutions. Even these guidelines may be overturned when l;: |lg“ra llhe
method has difficulty converging and then direct methods are used. m:p ;e e
lack of a clearcut decision the reader should be able to assess the meth ﬂs'I e o
she is using and determine whether they are likely to be better or worse in
application
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PROBLEMS

FinitedilTerence
&1 Formulate an explicit finite differcnce algorithm 10 solve
ac a &
+2| o)
£ M e
Determine the truncation error in Ax. Ay.and At for your method. Give a rough guide 10 a first choice

of it for a stable solution when.x = 0— I.c = 0~ 1.D = | +.c.and i = 2.
62 Determine the truncation error of Eq. (6-57) by expanding the function in a Taylor series,

Orthogonalcollocation
63 Find the cffectivencss factor for a cylindrical peflet of radius R and length 2R by solving the
problem

i)

‘The concentration is one on the boundary. Apply orthogonal collocation using different trial functions

m the r and = directions. Find y for ¢ = 1. What is the trial function? How doess) compareto the value
foran infinitecylinder?
64 Solve
¢ 0<xygl
w=0  onboundary
Galerkinfinite clement method

65 DeriveEq. (6:96)romEq, (6-95)
66 Solve the heat conduction problem in the shaded region of Fig. 6.20 when the temperature along
the inner curvedsurfuce is 100 and on theoater surfice is 0. Sketch the geometry, mesh layout.give
nodal temperature values. and sketch the isotherms for T = 10 and 50.

7 1.5, 1.5

'
|
/%

Figure 6-20 Heat transfer region, problem 6-6.
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&7 Solve the heat teansferproblem ilustrated in Fig, 6,21 using a Galerkin fnit e
lement code

Insulated

Figure 6-21 Heat transfer withheat gencration,

ol
0 T=0 1.0 problemé.7,

68 Considerthe rectangle with two tringles shown in Fig. 6-22. The locatarrayis

-2 1 1

= 1 -1 0

1 0 -1

Construct theglobalarray A, with 1) = 1.4
1.0
? 3 2 1
1o

! 3 1 2 3

Figure 6-22 Local and global triangles, problem 6-8
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APPENDIX
COMPUTER PROGRAMS

INVR 317
INVERT 318
DECOMP 319
SOLVE 3
FAS 322
LUDECOM 324
INVTRI 324
SWEEP 324
coLL 325
PLANAR 328
OCRXN 31
FDRXN 335
OCFERXN 337
IVRXN 345
PDE 349

e



SUBROUTINE INVRIASNsNI)

THIS SUBROUTINE CALLS DECOMP ONCE AND SOLVE SEVERAL TIMES
CCC  TO CONSTRUCT THE INVERSE. IT SOLVES AXel WHERE EACH MATRIX
ccc IS N BY No

CCC  INPUT
A(NsN) = AN N BY N ARRAYs STORED IN MATRIX WITH DIMENSIONS

ccc N

cce N = THE SIZE OF THE MATRIX TO 9€ INVERTED, <=20

cce NI = THE SIZE CF THE OIMENSION OF A

ccc ouTPUT

cce A(NsN) = ON OUTPUT THIS IS THE INVERSE OF THE ORIGINAL A
cce THE ORIGINAL A IS OESTRCYED

DIMENSION A(NI,NI)» B(20)s C(400)
cce PACK A DENSELY INTO C

C(INDOII = AlI» )
5 CONTINU
ccc PE!FOIH AN LU DECBHPOS]TIDN ON C
CALL INVERT (N»1,C
ccc SOLVE AXel
00 20 J N
02 10 I=1,N
10 B(I) = O,
B(J) = 1,
CALL INVSW (thhl:ll
CCC  PUT 8 INTD INVERSE
00 15 Iel,N
Atl,J) = B(I)
15 CONTINUE

oue

L 2 3
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20 CONTINUE
RETURN

END

SUBROUTINE INVERT(NsNE»A»B>ITYPE)

DIMENSION A(100053)» B(N)» A1(1000), 81(1000)» C1(1000)
CCC THIS SUBRCUTINE CALLS DECOMP» LUDECOM» OR INVTRI TO PREFORM LOMWER
CCC DECOMPOSITICN DEPENDING ON WHETHER THE MATRIX A IS
cce ITYPE A

ccc 1 DENSE
cce 2 BLOCK TRIDIAGONAL
cce 3 TRIDIAGONAL

CCC 1F A IS DENSE THE MATRIX IS STORED AS Al NoN )
CCC IF A IS BLOCK DIAGONAL THE MATRIX IS STORED AS A ( NsN»NE )
CCC IF A IS TRIDIAGONAL THE ELEMENTS A,B»C ARE STORED AS A(Ns1) = A(N),
cce A(N22) = BIN)» A(N»3) = C(N)
CCC N IS LIMITED TO 2C1 WITHOUT CHANGING DIMENSION STATEMENT FOR A(N),
ccc B(N)» CIN)
CCC THE MATRICES ARE DIMENSIONED AS A(NsN)» A(N,N,NE) DR A(N,3)
GO TO (5,10,15), ITYPE
5 CALL DECOMP (N»A)
RETURN
10 NP = (N=1)/NE+1l
CALL LUDECOM (NPsNEsA)
RETURN
15 DO 20 K=1,N
AL(K) = A(K»1)
Bl(K) = A(K»2)
Cl(K) = A(K»3)
20 CONTINUE

CALL INVTRI (NsAl,B81,C1)
00 25 Ke1,N

bl P e T L L L L X L L L R ]



A(Ks1) = AL(K)
AlKs2) = B1IK)
AlKs3) = CL(K)
25 CONTINUE
RETURN

ENTRY INVSW
CCC THIS PORTION OF SUBROUTINE DOES THE FORWARD AND BACKWARD SWEEP TC

CCC SOLVE AX = B85 WITH THE X STORED IN B AND INVR MUST BE CALLED FIRST
GO TO (30»35540)» ITYPE
30 CALL SOLVE (NsAsB)
RETURN
ELH] CALL FAS (NPSNEsNsA»B)

40 CALL SUEEP (NsAlsB1,5C1,8)

WD
SUBROUTINE SING(I)
GO TO (5,15), I

5 WRITE (6,10)

10 FORMAT (////,% WATRIX WITH ZERO ROW IN DECOMPOSE #////)
RETURN

15 WRITE (6,20)

20 FORNAT (////5% SINGULAR MATKIX IN DECOMPOSE. ZERD DIVIDE IN SOLVE

. 1)
RETURN
END
SUBROUTINE DECOMPINsA)
OIMENSION A(NsN)
CCMMON /DENSE/ IPS(201),5C(201)
CCC PAGE 68, FORSYTH AND MOLER
2 CCC INITIALIZE IPS» A AND SCALES

©®®ocoo
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IF (N.EQe1) RETURN
00 25 I=1,N
IPS(I) = I
ROWNRM = 0,0
D0 10 Jel,N
IF (ROWNRM=ABS(A(I»J))) 5,10,10
5 ROWNRM © ABS(A(I,J))
10 CONTINUE
IF (ROWARM) 15,2015
15 SC(I) = 1./ROWNRM
60 TO 25

20 CALL SING (1)
SC(I) = 0,
25 CONTINUE
€CC  GAUSIAN ELIMINATICN WITH PARTIAL PIVOTING
NMl ® N-1

D0 65 Ks1,NM1
16 = 0.
DO 35 IeKsN
IP = IPS(I)
SIZE = ABS(ACIP,K)I®SC(IP))
IF (SIZE-BIG) 35,35,30
30 816 = SIZE
IDXPIV = I
3 CONTINUE
IF (B1G) 45,40,45
40 CALL SING (2)
GO TO 65

o5 LF (I0XPIV-K) 50555550

®®®0000000000000D00D000OOOC0000
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e

10

IP = IPS(1)
SC(1) = B(IP)
DO 15 Ie2sN

IP e IPS(D)
IN1 = -1
SUM = 0,
D0 10 JelsIMl
SUM = SUM4A(IP,J)*SC(J)
CONTINUE
SC(I) = B(IP)=SUM

15 CONTINUE
CCC BACK SUBSTITUTION

20

IP = IPS(N)
SCIN) = SCIN)/ACIPsN)
D0 25 IBACKs2,N

1 = NP1=IBACK
1P = IPS(I)
IP1 = I+
SUM = 0,
00 20 J=IP1,N
SUM = SUM+A(IP,J)*SC(J)
CONTINUE
SCUI) o (SC(L)=SUN)/ACLIP,I)

25 CONTINUE

D0 30 I=1,N

30 B(I) = SCID)

RETURN

%l{:lé?‘léllhi FAS (NPSNESNTsA,B)
ON A(NP ,NP
CCC  FORWARD SWEEP Lotk DiassnaL

BLOCK D1AGONAL MATRIX
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NeHer 02 DO

IN‘I=) 52 00
T=dN = IN st
CINCANCINIVI (LNIE » (INDE
6T 01 D9 (3N°3IN°T) 31
T417=3N = 1
IN‘T=17 62 00
NOTLNLTLSENS WIvE 339
3NNILINGD OT
S=(2n18 = (2118
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(2P)18e01¢r¢IIVeS = §

0= S
T4(T=dN)e(T-T1) = 21
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dN = TdN



8 SUBROUTINE LUDECCH(NP:NEIA)
® DIMENSION A(NP2 NP5 NE)

ccc LOWER DECOMPOSI TICN BLOCK DIAGONAL MATRIX
N1

= NP-1
00 10 Le1,NE
D0 5 KelsNL
K1l = K¢l
00 5 I*K1sNP
S e AlloK:L)IA(K:KiLI
AlIsKsL) = S
DO 5 J=KlsNP

A(TsdsL) = l(loJ:L)-S'l(K:JpL)

5 CONTINUE
IF (LoEQ.NE) RETURN
Alls1sL¢1) AINPsNP»L)
10 CONTINUE
END

SUBROUTINE INVTRI(NsA585C)
DIMENSION A(N)» BIN)» CIN

)
€CC LOWER DECOMPOSITICN TRIDIAGONAL MATRIX
JeBCI)#T(I)+C(I41)#T (141

CCC SOLVES A(I-1)*T(I-1
00 5 Le2sN
S o A(L)/B(L=1)

B(L) = BIL)=S*C(L=1)
5 A(L) = S

RETURN

SUBROUTINE SWEEP(N»A»B,Cs0)
DIMENSION A(N)» BIN)» C(N)» D(N)

CCC FOKWARD SWEEP TRIDIAGO
QUUARD St NAL MATRIX

) = DI

T StE L e

-
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peL) = D(L)=A(LI®*D(L=-1)

5
cCC BACK SUBSTITUTION

10

D(N) = D(N)/B(N)
00 10 L=2,N
K ® N=L+1
D(K) = (D(KI=C(KI*D(K+1))/B(K)
RETURN
END

SUBROUTINE COLL(A»B»QsXsWsNDsNsAA)

DIMENSION A(ND,ND), B(ND,ND), C(NDsND), X(ND), W(ND)
DIMENSION QINV(?s7)s 2(7)s C(7s7)s O(7»7

THIS SUBROUTINE COMPUTES THE MATRICES FOR ORTHOGONAL
CCLLOCATION USING SYMMETRIC POLYNOMIALS, TABLE 4-5,64=6

INPUT VARIABLES
N = NUMBER OF INTERIOR CCLLOCATION POINTS
ND = ARRAY DIMENSION OF MATRICES IN CALLING PROGRAM
AA = GEOMETRY FACTOR
® 1 PLANAR
® 2 CYLINDRICAL
= 3 SPHERICAL

OUTPUT VARTABLES
A ® MATRIX FOR FIRST OERIVATIVE,» EQ. 4=205
8 = MATRIX FOR LAPLACIAN, EQ. 4=205
Q = MATRIX FOR Q INVERSEs» EQ., 4-203
X ® VECTCR OF COLLOCATION POINTS, TABLE 4-5
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Le

IA = AA+0.001

GO TO (10,15,20), IA
10 X(LL) = X1(LLsN)

GO TO 25

15 X(LL) = X2(LLaN)
60 TO 25

20 X(LL) = X3(LL,N)
25 CONTINUE
X(N1) = 1,0
D0 30 I=1,N]
Al = I
2UI) = 1e/(24%AL¢+AA=24)
30 CONTINUE
00 35 I=1,N1
QtIs1l) = 1,
QINV(Is1) = 1,
00 35 J=2,N1
QUIsJ) = X(I)oe(244-2)
35 QINV(I,J) = Q(I,J)
D0 40 Je=1sN1
CA = 2,%J=2,
DA = (2.%J=2,)%(2.%J+AA=4,)
00 40 I=1,N1

ClIsd) = CAsX(I)oe(249-3)
0(Isd) = DAOX(IDe®(28J=4)

40 CONTINUE
CALL INVR (QINV,N1»7)
00 50 I=1sN1
W) = 0.0
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cce

ccc
{4

00 50 J=1,N1
A(IsJd) = B(I»J) = 0.0
D0 45 KelpNl
A(Isd) ® A(I»J)+CLILKI*QINVIKSY)
B(Isd) = B(I»J)+D(IsKI*QINVIKSI)
45 CONTINUE
Q(IsJd) = QINV(INJ)
W(I) = H(I)OZ(J).GINV(J-I)
50 CONTINUVE
WRITE (6555) (X(I)sIelsN1)
55 FORMAT (7E15.5//)
RETURN

END

SUBROUTINE PLANAR(A,B»QsXsWsNsNX)

DIMENSION A(NsN)» B(N»N)» QINsN)» X(N)s WIN)p» ZU(T)

DIMENSION R(30,30)» S(30)

DIMENSIOM POINT(5,3)

THIS SUBROUTINE COMPUTES THE MATRICES FOR COLLOCATION WITHOUT

SYMMETRY, USING COLLOCATION POINTS IN TABLE 4=3,

INPUT VARIABLES
NX o NUMBER OF COLLOCATION POINTS, INCLUDING TWO END POINTS
N = ARRAY DIMENSIONS OF MATRICES IN CALLING PROGRAM

OUTPUT VARIABLES
MATRIX FOR FIRST DERIVATIVE, EQ. 4-103

! ® MATRIX FOR SECOND DERIVATIVEs EQ. 4=-103
Q = MATRIX FOR Q INVERSE» EQ. 4=101
= : VECTOR OF COLLOCATIONS POINTS, FROM TABLE 4=3

VECTOR OF WEIGHTS, EQ. 4~106

OATA lPﬂlN‘(llnl'1.15)10-)0-5773502691!9626:0.774595569201“300-

»»
LT T I T I T I I T I I 2 2 dd



$861136311594053, 0.90617984593866453%0450. 339981043584856,0.
$53846931C105683,5%0./
L = NX=2

NCO
IF (NXeGT+7) GO TO 35

JRT = (NCOL+1)/2
00 5 J=1,JRT
5 2UCJ) = POINTU(NCCLsJ)

J =1

D0 10 I=1,JRT
X(J) = (1.0-2U(I))/2,
XGJ+1) = (1.0¢2U(Id)/2,

10 J = Je2
C BUBBLE SGRT ON COLLCCATION PCINTS
NC1 = NCOL-1
00 20 Je=1,NC1
1ey
15 IF (X(I+1).6T.x(I)) GO TO 20
STOR = X(I)

X(I) = X(I+1)
X(I1+1) « STOR

IF (I.EC.1) GC TO 20
PELIR O3

G0 10 15

20 CONTINUE
2 :::TE‘“(nfil (L x(1,1e1,nc0L)
HAT (3 7)510X»%COLLOCATION PTS*5/,5x,4p b *
X015, 5 1150 0% »5Xs%POINT#,5x, ORDINATE®,/,
NC1 = NCOL+)
D0 30 I.2,NC1
K = NCl-I+42

626



30 X(K) = X(K-1)
X(1) = 0.0
X(NX) = 1leC
35 00 50 I=1sNX
R(1,I) = 0.0
A(I»I) = 0.0
S(f) = 1.0
B(I»1) 0.0
D0 40 J=1sNX
IF (I.EQeJ) GG TG 40
R(Isd) = 1,0/(X(I)=XLJ))
S(I) » S(I)eR(IsJ)
40 CONTINUE
DO 45 JelsNX
JX ® NX=J+1
IF (JX.LTed) GO TO 50
IF (JX.EQ.J) ALILI) = A(IsIV+R(IJ)

IF (JXe6Ted) AlLSD) = ACI,I)+R(T5J) 4RI IX)
45 CONTINUE

50 CONTINUE
00 60 Ie=l,NX
D0 55 Je=1pNX
IF (1.EQ.J) GO TC 55
A(I,J) o SCJI*R(I»I/SLI)
B(IsJ) = 240%A(1,3)¢(ACI,1)=R(I,J))
B(I»I) » B(I,IN¢R(I»JI*(ALI,I)=R(I,JD)
55 CONTINUE
60 CONTINUE
DO 85 Ie=1lpNX
QL1 = S(I)
K =1




65

10

W(I) = 040
DO 75 JelsNX
IF (JJEQ.I) GO TC 75
Lek

K = K¢l

QK I) = QL I)

IF (L.E3.1) GC TO 70

Mo L=l

Q(L,I) = QN I)=X(J)*Q(L,T)
Len

GO TG 65

Q(11) = =X(J)*Q(1,1)
CONTINUE
DG 80 Jel,NX
WEI) = W(I)I+QUJsI)/FLOATC(S)
CONTINUE
RETURN
END

PROGRAM OCRXN (INPUT,OUTPUT,TAPES=INPUT,TAPE6=OUTPUT)

DIMENSION A(757)» B(T757)s Q(T7s7)s XCUT7)s» W(T)» AAL49)s D(7)» TH(T?)
COMHON /RXN/ PAR(8)

THIS PROGRAM USES ORTHOGONAL COLLOCATION TO SOLVE

DEL#¢2 C = PHI®PHI®R(C)
<DC/DR = BIN#(C = 1 ) ATR =1

>>>>r2222>
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= CcC VARIABLES

g
) ggg N = NUMBER OF INTERIOR COLLOCATION POINTS
cce AS = GEOMETRY FACTOR
ccc e 1 PLANAR
cce e 2 CYLINDRICAL
ccc s 3 SPHERICAL
ccc PHI = THIELE MODULUS
ccc BIM = BIOT NUMBER FOR MASS TRANSFER
ccc CGUESS = INITIAL GUESS FOR CI(R)» A CONSTANT

ccc  INTERACTIVE VERSION

ccc

cce
ccc

cce

CALL CONNEC (5)
CALL CONNEC (6)
5 WRITE (6,510)
10 FORMAT (* ENTER N» A» PHI»BIM)CGUESS *)
READ #,NsASsPHI»BIN)CGUESS
WRITE (6515)
15 FORMAT (# ENTER FOUR REACTION RATE PARAMETERS *)
READ ‘-PAR(II;PAR(Z)pPAR(3):PAR(4l
Nl = N+l
N2 = N*N
DELTA = PHI*PHI
SET INITIAL CONDITION
DO 20 Is=1,Nl

20 TH(I) = CGUESS

CALCULATE MATRICES
CALL COLL (AsBsQsXCoWsTsN»AS)
BEGIN ITERATION
00 50 ITER=1,20
SET THE MATRICES
00 25 le1,N2



25 AA(I) = 0.
00 35 J=1,N
CALL RXN ITH(J);RATE;DR)
D(J) = DELTA*(RATE=DR*TH(J))
D(J) = D(J)=BIM®B(J,N1)/(A(N1,N1)+BIN)

00 30 I=1sN
KN = N#(I=1)+J

AA(KN) = B(JpI)=B(J)N1)*A(NLsI)/(A(NI,N1)+BIM)

IF (I.EQeJd) AA(KN) = AA(KN)=DELTA#DR
30 CONTINUE
35 CONTINUE
CCC DO THE LU DECOMPOSITION
CALL INVERT (N»1,AA»D»1)
ccc SOLVE FOR THE RIGHT HAND SIDE
CALL INVSW (N»1,A4,D»51)
CCC  FIND MAXIMUM CHANGE IN SOLUTION
ER = 0.
D0 40 I=1,N
ERR = ABS(TH(I)=D(I))
TH(I) = D(I)
IF (ERReGT.ER) ER = ERR
40 CONTINUE
WRITE (6545) ITER,ER
45 FORMAT (* ITERATION #,I3,% ERROR IS #5E15.4)
IF (EReLT+1.E~6) GO TO 55
CCCso gstzbtuiE THE
A HE EFF
CCC_ ETAl USES EQ. ‘-zgc'”VENESS FaCTOR
55 sun = 0,
00 60 I=1,N
60 SUM = SUM+A(N1,I)*D(I)

RS
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e

ccc

ccc

ccc

D(N1) = (BIM=SUM)/(A(N1>N1)+BIM)

00 65 I=1,N1
CALL RXN (D(I),RATE,OR)
SUNL = SUMLeW(I)
65 SUM = SUM*W(I)#RATE
ETAL = SUN/SUML
WRITE (6,70) ETA
FORNAT (o EFF. FACTOR *,F20.15)
WRITE (6,75)
75 FORMAT (# DO YOU WANT TO SEE THE SOLUTION #,/,% IF SO ENTER 1, OTH
SERWISE 0%)
READ *,KON
IF (KON.EQ.0) GO TO 5
WRITE (6,80) (D(I),I=1,N1)
FORMAT (25(4F10.65/))
60T0S
EXIT BY ENTERING %A
sTOP
END
SUBROUTINE RXN(CsRsDR)
COMMON /RXN/ PAR(8)
PAR(1) = BETA PAR(2) = GAMMA
T o 1.¢PAR (1) (1e=C)
E = EXP(PAR(2)%(1e=14/T))
:Hxsciusnounns COMPUTES R AND DR/DC» GIVEN C
H

7

°

°

DR = E*(1,=PAR(L)*C*PAR(2)/T*+2)
RETURN
END

® >
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PROGRAN FDRXN (INPUT;UUTPUT;TAPEs-INPUT;T‘PEG'DUTFUY’
OIMENSION A(1000), B(1000), €(1000)5 TH(1000)» 0(1000), AA(1000,3)
DIMENSION R(1000)
EQUIVALENCE (A(1),AA(1,1)),
COMMON /RXN/ PAR(8)
ccc INTERACTIVE VERSION
CALL CONNEC (5)
CALL CONNEC (6)
5 WRITE (6510)
10 FORMAT (* ENTER N, As» PHI,BIM,CGUESS #)
READ *>N>AS,PHI,BIM,CGUESS
WRITE (6515)
15 FORMAT (s ENTER REACTION RATE PARAMETERS #)
READ ‘;PAR(llﬁPAR(ZI;PARlJ)pPAR(#)
Nl = Ney
DELX = 1,/N
DELTA = PHI®pHI
85 = DELTA*DELX#42
cce SET INITIAL CONDITION
00 20 =1,N1

(8(1),a4(1,2)), (€(1),aa(1,3))

R(I) = DELX#(I-1)
20 TH(I) = CGugss
CCC  BEGIN ITERATION
00 40 ITER=], 20
CCC  SET THe MATRICES
Cl1) = 2,455

A(N1) »
DIN1) =

BIH‘DELX‘(Z-ODELX‘(AS-X-)'
B(N1) o 2,+0(N1)

03 25 re,N
E CALL RXN (YM(I)’IATE'DR)

VoNocVvLrwnE



9%E

g(I) = -2.-BB#DR

o(I) = 8B+ (RATE-DR*TH(I))

IF (I.EQ.1) A(l) = B(1)#2e=2%AS
IF (I.EQel) 6o TO 25

ceI = IAS-I.)'DELKI(Z.‘R(IH
A(I) = le=C(D)

c(I) = le+ctI

25 CONTINUE

ccc
ccc
ccc

30
35

40
ccc
cce
ccc

45

D0 THE LU DECOMPOSITION
CALL INVERT (Nlp1lsAA»D,3)
SOLVE FOR THE RIGHT HAND SIDE
CALL INVSH (N1s15AAs0»3)
£IND MAXINUM CHANGE IN SOLUTION
ER = 0.
D0 30 I=1»N1
ERR = ABS(TH(I)=D(I))
TH(I) = D(I)
IF (ERR.GT<ER) ER = ERR
CONTINUE
WRITE (6,35) ITERSER
FORMAT (% ITERATION #*,I3,%
IF (ER.LT.1.E=6) 6O TO 45
CONTINUE
CALCULATE THE EFFECTIVENESS FACTOR
ETAL USES EQe 4=144s4-49
ETA2 USES EQe 4-144,4-1378
SLL = (D(N=1)=4o*D(N)+3.#D(N1))/(DELX*2.)
SL2 = BIM®(1.=D(N1))
ETAL = AS®SLL/DELTA
ETAZ = AS#SL2/DELTA
WRITE (6,50) ETAL,ETA2

ERROR IS *»E15.4)



g

5

50 FORMAT (* EFF. FACTOR #,2F20.15)

55 Foé;:r(?osou YOU WANT TO SEE THE SULUTION #,/,% IF SO ENTER 1, OTH
SERWISE 0%)
READ *,KON
IF (KON.EQ.0) GO TO 5
WRITE (6,60) (D(I)sI=1,N1)

60 FORMAT (25(4F10465/))
60TO S

CCC EXIT BY ENTERING ZA

sTOP

END
SUBROUTINE RXN(C»R,DR)
CCOMMON /RXN/ PAR(8)
T = le+PAR(1)*(1.=C)
E = EXP(PAR(2)%(1e=14/T))
ccc THIS SUBROUTINE COMPUTES R AND DR/DC, GIVEN C
R = CoE
DR = E#(1s=PAR(1)*C*PAR(2)/T#+2)
RETURN
END

PROGRAM OCFERXN (INPUT,OUTPUT,TAPES=INPUT,»TAPE6=OUTPUT)
DlHil:SlDN A(T57)s B(T27)s QUT57)s XC(T)s» W(T)s» AA(T757)s D(101)s TH
(10
DIMENSION HE(40), X(101), AM(1000), C(7)s F(7)
COMMON /RXN/ PAR(8)
ccc THIS PROGRAM USES ORTHOGONAL COLLOCATION ON FINITE ELEMENTS

L s S g
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g

cce
ccc
ccc
cce
ccc
cce
cce
ccc
cce
ccc
ccc

cce
cce
cce
cce
ccc
cce
cce
cce
cce
cce
ccc
cce
ccc
cce

TO SOLVE
DEL*#2 C = PHI*PHI*R(C)

-DC/DR = BIMSIC = 1 ) AT R = 1
VARIABLES
NCOL = NUMBER OF INTERIOR COLLOCATION POINTS IN EACH ELEMENT
<s

NE = NUMBER OF ELEMENTS, <=40
NR = O.UNIFORM SIZE OF ELEMENTS
1 NON-UNIFORM SIZE READ X LOCATIONS
OF ELEMENT BOUNDARIES IN SUBROUTINE ELEMENT
NT = TOTAL NUMBER OF COLLOCATION POINTS
® NE*(NCOL+1) + 1 <= 101
KON = 0 DO NOT PRINT MATRICES
1 PRINT A,B,Q»W MATRICES
AS = GEOMETRY FACTOR
= 1 PLANAR
= 2 CYLINDRICAL
® 3 SPHERICAL
PHL = THIELE MODULUS
BIM = BIOT NUMBER FOR MASS TRANSFER
CGUESS = INITIAL GUESS FOR C(R)», A CONSTANT
INTERACTIVE VERSION
CALL CONNEC (5)
CALL CONNEC (6)

5 WRITE (6,10)

10 FURMAT (* ENTER NCOL,NE» A» PHI»BIM,CGUESS *)

READ *,NCOLsNEsAS»PHI,BIMsCGUESS

Ll ST S S S S 2 g ke



6€€

ccc

ccc

KON = 0
NR = O
WRITE (6,15)

15 FORMAT (# ENTER FOUR REACTION RATE PARAMETERS #)
READ *,PAR(1),PAR(2),PAR(3),PAR(4)

NP = NCOL+2
NT = NE®(NCOL+1)+1
N2 = NE*NP*NP
DELTA = PHI#PHI
SET INITIAL CONDITION
D0 20 I=1,NT
20 TH(I) = CGUESS
CALCULATE MATRICES
CALL PLANAR (A»B»QsXCrW»TsNP)
IF (KON.EQ.0) GO TO 65
WRITE (6,25)
25 FORMAT (//:% A=MATRIX*y/)
DO 30 I=1,NP
30 WRITE (6,60) (A(I,J)sJ=l,NP)
WRITE (6,35)
35 FORMAT (//»% B=MATRIX#*,/)
D0 40 I=1,NP
40 WRITE (6,60) (B(I»J)sJ=1l,NP)
WRITE (6545)
45 FORMAT (//,% Q=MATRIX*,/)
D0 50 I=1,NP
50 WRITE (6,60) (Q(I,»J)sJ=1,NP)
WRITE (6,55)
55 FORMAT (//,% W=MATRIX#*,/)
WRITE (6,60) (W(J)sJ=1,sNP)
60 FORMAT (TE17.8)

>»
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65 CONTINUE
CALL ELEMENT (XsHE»XC»NE»NCOL»3sNR)
cce BEGIN ITERATION
DO 135 ITER=1,20
ccc SET THE MATRICES
DO 70 I=1,N2
70 AM(I) = 0.
CCC  CALCULATE MATRIX
00100 K=1,NE
Nl = (K=1)#(NP=1)
DO 95 I=1,NP
CCC N1 + I IS THE GLOBAL NODE NUMBER
C(I) = THI(N1+I)
CALL RXN (C(I),RATE,DR)
DO 90 J=1,NP
IF (I.EQ.NP) GO TO 80
IF (I.6T«.1) GO TO 75
ccc I = 1, FIRST ROWs» EQes 4=269
AA(I»J) =A(1,J)/HE(K)
F(I) = 0,

GO TO 85
ccc I = 2 THROUGH NP=1, EQ. 4=267

75 AA(I»J) = B(I»J)+(AS=1e)*HE(K)®A(I»J)/X(NL+I)
F(I) = DELTA®HE (K)*HE(K)*(RATE=DR*TH(N1+I))

IF (I.NE.J) GO TO 85

AA(L»J) = AA(I,J)=DELTA®HE (K)*HE(K)*DR

GO TO 65
cce 1 = NP,EQ. 4-269
80 AA(I-J) ® A(NP»J)/HE(K)
F(L) = 0.

85 INDEX = NPSNP¢(K=1)¢NP*(J=1)+]
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AMCUINDEX) = AA(I,J)

90 CONTINUE
D(N1+I) = F(I)
95 CONTINUE

100 CONTINUE
IF (NE«EQs1) 6O TO 110
NE1 = NE-1
00 105 KKe1,NE1
INDEXL = NP#NP#KK
INDEX2 = INDEX1+1
AMCINDEX1) = AMCINDEX1)+AM(INDEX2)
105  AM(INDEX2) = AMCINDEXI)
110 CONTINUE
CCC SET THE BOUNDARY CONDITION AT R = 0.,EQ. 4=270
D0 115 Ie1,NP
115 AMINP#(I-1)+1) = A(l,1)
D(1) = 0.
CCC SET THE BOUNDARY CONDITION AT R = 1., EQ. 4=271
DO 120 I=1,NP
INDEX = (NE=1)*NP*NP+NP*]
120 AMCINOEX) = A(NP,I)
INDEX = NE®NP&NP
AWCINDEX) = AM(INDEX)+HE(NE)®BIH
O NT) = BIM®HE(NE)
CCC DO THE LU DECOMPOSITION
CALL INVERT (NT,NE»AN,D,2)
cee SOLVE FOR THE RIGHT HAND SIDE
CALL INVSW (NT,NE»AM,D,2)
cce ”"2:"“5""" CHANGE IN SOLUTION
- .

00 125 Is1,NT

we



we

ERR = ABS(TH(I)=D(I))
TH(I) = D(I)
IF (ERR.GT.ER) ER = ERR
125 CONTINUE
WRITE (6,130) ITER,ER
130 FORMAT (¢ ITERATION #,I3+#  ERROR IS ,E15.4)
IF (ERsLT.1,E=6) GO TO 140
135 CONTINUE
ccc CALCULATE THE EFFECTIVENESS FACTOR
cce ETAl USES EQe 4=142, 4=279
ccc ETA2 USES EQ. 4=144
140 SUM = 0.
D0 145 I=1,NP
145 SUM = SUM+A(NP,I)®D((NE=1)*(NP=1)+])
ETA2 = SUM*AS/(DELTA*HE(NE))

D0 150 K= 1, NE
NL = (K=1)%(NP=1)
DO 150 I=1,NP
CALL RXN (D(N1+I),RATE,DR)
SUM = SUM#W(I)*#HE(K)*RATE
SUML = SUML+W(I)®HE(K)
150 CONTINUE
ETAL = SUN/SUNL
:;::ﬁ'(o.un ETAL
(¢ EFF. FACTOR *
VRITE (6,155) ETas - ° 20*13)
10 URITE (6,160)
6 “E:T;: ;:inu YOU WANT TO SEE THE SOLUTION ¢,/,¢ IF SO ENTER 1, OTH

15!

)
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w

READ *, KON

IF (KONJEQ.0) GO TO 5
WRITE (65165) (D(I),I=l,sNT)
FORNAT (25(4F10482/))

GO T0 5
EXIT BY ENTERING XA
sTop

END
SUBROUTINE ELEMENT(X,H»Zs NELTSSNCOL,METHsNR)

DIMENSION X(101), H(101), 2(7)
THIS SUBROUTINE READS IN ELEMENT LOCATION IF NReNE«O AND MAKES
THEN UNIFORM IF NR=0O.

INPUT
2(I) = LOCAL COORDINATES IN ELEMENT
NELTS = NUMBER OF ELEMENTS
NCOL = NP = 2
WHERE NP = NUMBER OF NODES OR POINTS PER ELEMENT
METH = 2 GALERKIN
= 3 COLLOCATION
® 4 COLLOCATIONs HERMITE INTERPOLATION
IF NR.NE.O THE VALUES OF X AT THE END OF EACH ELEMENT
ARE TO BE ENTEREDs X = 0, IS NOT INSERTEDe
THERE ARE NELTS NUMBER OF ENTRIES.

ouTPUT

X(I) = X LOCATION OF I=TH GRID POINT (GLOBAL INDEX)
H{I) = SIZE OF I=-TH ELEMENT

NP = NCOL+2
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ccc

cce

RETURN

END
SUBROUTINE RXN(CsR»DR)

COMMON /RXN/ PAR(8)

PAR(1) = BETA PAR(2) = GAMMA
T » 1.4PAR(1)*(1.=C)

E = EXP(PAR(2)*(1.=14/T))

THIS SUBROUTINE COMPUTES R AND OR/DC» GIVEN C
R = C*E

DR ® E#(1.=PAR(1)*C#PAR(2)/T*+2)
RETURN

END

PROGRAM IVRXN (INPUT,OUTPUT,»TAPES5=INPUT,TAPE6=OUTPUT)
COMMON /RXN/ PAR(B
DIMENSION XI(4), XX(4), STORE(4511)
EXTERNAL RHS
READ GEOMETRY AA= 1, PLANAR
25 CYLINDRICAL
3» SPHERICAL
NUMBER OF CASES» ANUM
ACCURACY = ACCUR
REACTION PARAMETERS (8F10.0)
ANUNM TIMES: PHI»SO = INITIAL GUESS OF C(X=0)
READ (5,5) AAANUM,ACCUR
5 FORMAT (8F10.0)
IF (ACCURGEQ.0+) ACCUR = 1,E=6
READ (5,5) (PAR(I),1e=1,8)

fCOomNNNANNAD®

[l

ww

NouvwsrwnmOow

Qow

-

CDNC VL wNn-



10

NUH = ANUM
DO 35 KK=1,NUM

READ (555) PHI»SO
PAR(B) = PHI*PHI
ITER = 0

S = S0

PAR(7) » AA

SET RUNGE=KUTTA PARAMETERS

SET ON ENTRY
RHS = NAME OF SUBROUTINE CALCULATING RIGHT HAND SIDE
NV = NUMBER OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS
X = INITIAL #TIME#
XP = FINAL #TIME=#
XI(1=4) = VECTOR OF SOLUTION AT
ACCUR = DESIRED LOCAL ACCURACY IN INTEGRATION
NR = DIMENSION IN STORE,>=NV
IPRINT = 0» NO DIAGNOSTICS
IN = 0y SET = O ON FIRST CALL

ISET = 0
RETURNED
XX(1=4) = VECTOR OF SOLUTION AT XxP
IRR = 0 = NO ERROR
1 = ERROR TEST COULD NOT BE SATISFIED
2 - EXCESSIVE COMPUTATION TIME WILL RESULT
CONTINUE
NV = 4
X = 0,
NR = 4
IPRINT = IN = ISET = 0
XP s )

.
IF (S.GE.0.) GO TO 15

PP PPPLOEPPPPPPDPEPPERERPDPPDEPERRE
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cce
cce

S0 = 50/10.
$ = S0
CONTINUE

XI(1l) = §

XI(2) = 0.

XI(3) = 1.

XI4) = 0.

XI(1) = UsC, XI(2) = V = DC/DX
XI(3) = DU/DS» XxIt4) = DV/DS
SEE EQs 4=365

ITER = ITER+1
CALL RKINIT (RHS:NV;X;XI!ACCUR;NR;IPR(NT:IN:!SET:STDRE:XP:!X;
IRR)

PSI = XX(1)-1,
0PSI = XX(3)
SN = S=PSI/0PSI
IF (ABS(SN=5).LT.ACCUR) GO TO 25
WRITE (65200 S,SN,»PSI,0PSI
20 FORMAT (4E15.4)
S = SN
IF (ITER.GE.100) GO TO 25
60 To 10

25 WRITE (6,30) S»PHI»XX(2)
30 FORMAT (II:?O(IN');I:3515.'0;/1;28(1“0);”
35 CONTINUE

sTop

EN
SUBROUTINE RHS(X»XI,XF)
COMMON /RXN/ PAR(8)
DIMENSIQN X1t4)s XF(4)



3

(114
ccc
ccc

ccc

w

THIS SUBROUTINE COMPUTES F(XI) IN DXI/DX=sF(XI,X)

PAR(8) = PHI®##2 PAR(7) = AA = GEOMETRY FACTOR

SEE EQ. 4=365
CALL RXN (XI(1),R,DR)
DIV = 1.
IF (X.EQ.0.) DIV = PAR(T)
XF(2) = PAR(B)®R/DIV
XF(&) = PAR(B)#DR®XI(3)/DIV
XF(1) = XI(2)
XF(3) = XI(4)
IF (X.EQ.0.) GO TO 5
XF(2) = XF(2)=(PAR(7)=10)#XI1(2)/X
XF(4) = XF(4)=(PAR(7)=1¢)*XI(4)/X
RETURN
END
SUBROUTINE RXN(C,R,DR)
COMMON /RXN/ PAR(8)
THIS SUBROUTINE COMPUTES R(C) AND DR/DC,
T = 1.4PAR(1)#(1.=C)
E = EXP(PAR(2)*(1.=1./T))
R = COE
DR = E#(1.=PAR(L)#C#PAR(2)/T#+2)
RETURN
END

GIVEN C.
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PROGRAM PDE (INPUT,O0UTPUT,TAPES=INPUT»TAPE6=OUTPUT)
COMMON /SUBFO/ DELX»XX(102)

COMMON /SUBOC/ NPsAL(TsT)sB(7sT)sF(75T)sM(T)5XC(T)
COMMON 7GEAR9/ HUSEDsNQUSEDsNSTEPSNFESNJE

CGMMON /DE/ PAR(?),METH

THIS PROGRAM SOLVES THE PARTIAL DIFFERENTIAL EQUATION

0C/DT = F(C)

WHERE F(C) IS A DIFFERENTIAL OPERATOR. IT USES FINITE
OIFFERENCE OR ORTHOGONAL COLLOCATION, AS CHOSEN BY METH.

METH = 1 FINITE DIFFERENCE
= 2 ORTHOGONAL COLLOCATION, SYMMETRIC» TABLES 4455446
= 3 DRTROGONAL COLLOCATIONs» UNSYMMETRIC» TABLES 4e3s4.4

DATA INPUT

1e NpME THsAG 2155F10.0
N = NUMBER OF INTERIGR FINITE DIFFERENCE POINTS
OR NUMBER OF INTERIOR COLLOCATION POINTS
(<e6 IF F.ETH = 2 AND <=5 IF METH e 3)
METH = METHOD INDICATOR, AS LISTED ABOVE
AG = GEOMETRY FACTOR
1=-PLANAR, 2-CYLINDRICAL» 3I=SPHERICAL
2¢ PAR(1-7) E10.0
N ::RED;EYE(S THAT CAN BE USED IN THE DIFFERENTIAL EQUATION
o WF,
HMF = METHOO PARAMETER FOR GEARB, USUALLY 22

LR N
->>>->>>>>>.-.»»-»»»-»’
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£es - :nnn CRITERION USED IN GEA
4 SER SUPPLIES FORNA‘I IN INITIAL
xunm. cononxuns

5e E10.
TIME YCU WISH TO SAMPLE THE SOLUTION
REPEAT THIS DATA INPUT FOR AS MANY TINES (UP TO 100)
THAT YCU WANT THE SOLUTION PRINTED OUT.
THE LAST DATA INPUT SHOULD BE ZERO OR A NEGATIVE NUKBER
T0 STOP.

THE USER ALSO SUPPLIES SUBROUTINES AS FOLLOWS

SUBROUTINE BC(Co»N,METH,C1,CN)

INPUT = NpMETHsC(1=N)

OUTPUT = C1sCN
CleC(X=0)» USED IF METH = 1 OR 3
CNe=C(X=1)» USED FOR ALL METH

SUBROUTINE DIFFUN(N,T,C,CDOT)
INPUT = N,T,C(1=-N)
T = TIME
C = SOLUTICN AT THAT TIME
OUTPUT = CDOT(1,N)
CDOOT = RIGHT HAND SIDE OF DIFFERENTIAL EQUATICN,
EVALUATED AT T FOR C(1=N)

SUBRUUTINE INITIAL(C,N)
INPUT =

outPuT - C(l;N) ® INITIAL CONDITIONS
THIS 1S WHERE DATA INPUT 4. IS USED

S 2
ST I T 2 2 2 2 e



IF NO DATA IS READ IN INITIAL THEN SKIP DATA INPUT 4.

DATA OUTPUT

METHOD AND NUMBER OF POINTS

COLLOCATION MATRICS IF METH = 2 OR 3

PARAMETERS IN DIFFERENTIAL EQUATIONS
MFSEPS
TF» HUSED» NQUSEC» NSTEPs NFESNJE
TF = TIME AT WHICH THE FOLLOWING SOLUTION APPLIES
HUSED = LAST STEP SIZE USED
NOUSED = LAST CROER USED
NSTEP = NUMBER OF STEPS TAKEN (TOTAL)
NFE = NUMBER OF FUNCTION EVALUATIONS (TOTAL)» INCLUDIN
THOSE TO EVALUATE THE JACOBIAN
NJE = NUMBER OF JACUBIANS EVALUATED (TOTAL)
1,C(I)» I=1,N» THE SCLUTION
FD = C(1l) = C(X=QELX)
C(N) ® C(1,=DELX)
0Csr SYM = C(1) = C(FIRST INTERIOR COLLOCATION POINT)
C(N) = C(LAST INTERIOR COLLOCATIN POINT)
CIN+1) = C(Xxel.)
0C» UNSYM = C(1) = C(0.)
C(2) = C(FIRST INTERIOR COLLOCATION POIAT)
C(N+1) = C(LAST INTERIOR COLLOCATICN POINT
C(N+2) = C(X=1,0)

OIMENSION C(100)
READ (5,5) NsMETHsAG

>
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5 FORMAT (215,FL0.C)
TF (METH.GT.1) 6C TO 20
ccc  FINITE DIFFERENCE
(1) N
10 Hr (:‘FIN!TE OIFFERENCE HETHOD WITH $215»% GR1D
DELX = 1e/(N#10)
Xx(1) = 0.
N1 = Nel
MU = ML = 1
00 15 I=1sN1
15 Xx(I+1) = DELX*I
60 TO 90
Ccc  ORTHOGONAL CULLDCATIDN
20 WRITE (6525) N
25 FORMAT (* aarunsaNAL COLLOCATION WITH #5135 INTERID
SON POINTS #)
MU = HL = MAXD(1sN/2)
1 (nzrn.sz.a) 6 TO 35
WRITE (6530
30 FngAT s svnnernxc POLYNDHIALS, TABLES 4055406 #)
. Nel
CALL COLL (AsBsFsXCousTsNsAG)
60 TO 45

35 WRITE (6540
40 FORMAT (¢ UNSVHH
NP = N+2
CALL PLANAR (AsBoFsXCoWs7sNP)
45 WRITE (6550)
50 FORMAT (//s% A=HATRIX®,/)
00 55 1=1,NP

ETRIC PGLYNOMIALSs TABLES 439400 *)

POINTS®)

R#,* CCLLOCATI



55 WRITE (6585) (A(I»J)sdelsNP)
WRITE (6,60)
60 FORMAT (//5s% B=NATRIX#,/)
D0 65 I=1,NP
65 WRITE (6,85) (B(I,J),dsl,NP)
WRITE (6,70)
70 FORMAT (//5% Q=MATRIX#,/)
D0 75 I=1,NP
5 WRITE (6,85) (F(1yJ),del,Np)
WRITE (6,80)
80 FORKAT (//,% W=MATRIX%,/)
WRITE (6585) (W(J)sdal,Np)
85 FORMAT (7E17.8)
90 WRITE (6,95) AG
9% FOKMAT (¢ GEOMETRY FACTOR IS #,75.0)
READ (5,100) (PAR(I),Ie1,7)
100 FCRMAT (7€10,0)
WRITE (6,105) (PAR(I),1e1,7)
105 FORMAT (/7,4 PARAMETERS In OIFFERENTIAL EQUATIONS ARE *5054E15,7,/
$53E15.7,5/4)
Teo,
READ (5,115) WF,Eps
INDEX = )

NSTEP = NFE o NJE = o

WRITE (6,110) NFsEPS
110 FGRMAT (¢ GEARB IS USED wITH MF = 4,13,5%,% anp FPS = #,E10,3)
115 FORNAT (15,€10.0)

CALL INITIAL (CrNy

CALL PRINT (CoN, T

A 125
A 126



00 125 KK=1,100
READ (5,120) TF
120 FCRMAT (E10.0)
16 (TF.LE.D.) GO TO 130
CALL DRIVEB (NsTsHO»CsTFoEPSsMFs INDEXs HUs ML)
CALL PRINT (CoN>TF)
125 CONTINUE
130 sYopP

SUBRGUTINE PRINT(CoN»TF)
CCMMON /SUBFD/ DELX, XX (102)
COMMON /SUBOC/ NPsA(727)sB(TsT)sF(T57)aN(T)sXC(T)
COMMON /GEAR9/ HUSEDsSNGUSEDsNSTEPSNFE» NJE
COMMON /DE/ PAR(T),METH
DIMENSION C(100)» Cx(102)
CALL BC (CoN,METHsC1,oCN,TF)
IF (METH.EQ.2) GC TO 10
ccc FINITE DIFFERENCE AND OCs UNSYMMTRIC
NX = N#2
Cx(l) = C1
DO 5 1sl,N
5 CX(I+1) = C(I)
G0 7O 20
€cC  oC,SYM
10 Nx = N+1
00 15 I=1,N
15 Cx(I) = C(D)
ccc ALL METHOODS
20 CX(NX) = CN
1F (METH.EQ.1) GC TO 30
0C 25 I=1,NX



&

25 xx(1) - xea
TE (6,
;g ORRAT (/75% TINE = #,E12.5)
WRITE (6,40) HUSED,NQUSEDsNSTEP, NFESNJE
40 FGRMAT (/,% LAST STEP SIZE USED = #,E10.35% FOR %, 13,4 =THs,
s+ DRDER METHOD®,/,¢ NUMBER OF STEPS = #,110»/»% NUMBER OF FUNCTICN
s EVALUATIONS = *»I1057,% NUMBER OF JACOBIAN EVALUATIONS = #,11C,/)
00 50 Isl5NX»2
Je 14l
IF (JoGT.NX) GO TD 45
WRITE (6555) IsXX(IDpCX(IDsdsXX(JDsCX(J)
60 TO 50

45 WRITE (6555) IsXX(I)sCX(I)

50 CONTINUE

55 FORMAT (I552XsF10465F12.9510Xs1552XsF10460F12.9)
RETURN

END

SUBROUTINE INITIAL(C»N)
DIMENSION C(N)

DO 5 Isl,N

C(I) = 0,

RETURN

END

SUBROUTINE BC(CoNsHETHsC1oCNyT)
OLMENSIDN C(N)

CCC  SET CleC(X®=0.) IF METH = 1 OR 3
cce SET CNeC(X®1.) FOR ALL METH

1IF (METH.EQ.2) GC TO 5
a -1,
5 CN = 0,

CcooocoonnaAmnRrrvsrrPrerrEETEP oDe®
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RETURN
EN

SU:IDUTINE DIFFUNIN»T»C»CDOT)

COMMON /SUBFD/ DELX»XX(102)

COMMON /SUBOC/ NPsA(757)sB (75 T)sF(T57)sW(TI»XC(T)
COMMON /GEAR9/ HUSED»NQUSED,NSTEP»NFEs NJE

COMMON /DE/ PAR(7)sMETH

DIMENSION C(N)» CDOT(N), TH(10)

SOLVE FOR

0C/0T = D((1.+PAR(1)*C)DC/DX) /DX
IF PAR(2) DIFFERS FROM ZERD ADD TO THE EQUATION
/PAR(2) + 2#X#DC/DX

CALL BC (CaNsMETH»C1,CN»T)
GO TO (5,15,30), METH
FD

5 DG 10 IslsN
DELX = 1./(N+1l,)
X = [®DELX
CI = C(D)
€0 = Cl
IF (1.NE.1) CO = C(I-1)
CL = CN
IF (I.NE«N) CL = C(141)
AA - (1o40.5%PAR(1)$(CL4CI))*(CL~-CI)

AA = AA=(1.40.5%PAR(]1)" =
o AAIDELXO;Z 1)%(CI+CO))*(CI~-CO)

Mmoo
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IF (PAR(2).EQ.0.) GO TO 10
AA = AA/PAR(2)+X#(CL=CO)/DELX
10 COOT(I) = AA
60 To 55
€CC URTHOGONAL COLLOCATION, SYMMETRIC

CCC  ThlS IS NOT AN APPROPRIATE CHOICE FOR DIFFUSION PROBLEM.
CCC SET UP IS PROVIDED FOR DC/DT = DEL**2 C + R

15 N = N4
NO = O
Nl e 1

00 20 I=1,NX
20 SUM1 = SUM1+8(JsI)eC(I)
25 COOT(J) = SUM1+R
60 TO 55
ccc ORTHUGONAL COLLOCATION, UNSYMMETRIC
30 Nx = N+2
NGO = 1
Nl = 2
00 35 I=1,N
35 THLI+ND) = C(I)
IF (METH.EQ.3) Th(l) = C1
TH(N+14NO) = CN
D0 50 JelsN
SUM2 = 0.
SUM3 = 0.
JJ = JeNO
D0 45 Kkel,NX
SUM2 = SUM2+4A(JJsK)I*THIK)

memmm
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Acr.clcmuon of gravity, 246
acy (see Frror)
Acll\ ion encrgy. 81, 208
Adams Bashforthmethod. 26. 29, 32, 52
Adams - Moulton method. 27.29. 32, 53
Adaptive mesh. 154 155,164 166
(sce alo Mesh refinement)
ADI (se¢ Alternating direction implicit method)
Adsorption, 88
Air. 246
Alternating dircction explicit method, 284. 285
Alternating direction implicit method. 283- 286,
290, 307
comparisons. 31 3
Am\mropy. 280, 282, 286
Aquifer, 2
Aspect r.lllon 288
Asymptotic expansion, 89 94, 98, 120

d Fuler method, 27, 32, 45, 49, 54, 58,

1

application, 197 199, 228 229, 257, 259 261
error, 198

in finite difference mclhad 218 219
oscillation limit, 53,46,47

rnll:lml ippmllmnllon to cxponential, 40, 44

truncation error, 53
Basis funcuion, 292
comparison, 144 -149, 232 234, 305- 306
Hermite cubic, 310 311
lincar, 126 127, 131-134, 231, 238, 239, 242

SUBJECT INDEX

Basisfunction—continued
linear on rectangles. 299, 304
linear on triangles, 294
quadratic. 133-134, 231, 238-240. 242
quadratic on rectangles. 300. 303
Beta, 81

Biot number for heat transfer. 81
Biot number for heat transfer. 196
Biot number for mass transfer, 81
Boundary collocation method. 296
Boundary condition. 4
ion method, 75-76
292

. method. 135

natural, 135

Boundary condiion of first kind (see Dirichlet
ndary condition)
nonmn.ry condition of second kind (see
Neumann boundary condition)

Boundary condition of the third kind. 5. 103
Boundary, false, 107
Boundary luyer, IS§
Boundary-valuc problem, two-point:

Caleulutor, 189
Cupillary pressure, 246

Carbon monoxide reuction. 88
Catalyst uctivity, 80

Catalyst diameter, 192
Ctalyst pellet.80 81, 206, 211

361



362 SUBJECT INDEX

Catalyst radius. 80

entroid. 294
Characteristic lvmt;lﬂl 212
Civil engineering,
Cocflicient ratio. 251-252
Collocation method, 61. 143
applicaion. 62 63, 151
convargen ce.
(see als0O mo;mul collocatior
collocation)
ollocallnn pamls 62,73.75,76,95-97.
123, 152 191
Iommdavy 137 314
interior, 287, 290
Colorequation, 243,268
COLSYS,
Comparison ofmethods:
crror, 65, 144-146
operation count. 144 149, 263-264, 277, 278,
n

n. and Matrix,

storage. 144
(sec also Specilicmethods)
Completeset offunctions. 183
Computation tme, 199, 214, 221, 224 227, 242,
257.261
Computational work (see Comp:
methods. operation count)
Concentration
bulk strcam, 50, 83
Conformal invariance, 173, 174, 177
Continuity equation, 303
Courant number.243.248
Comecive difusion cquaion. 231- 242, 244, 269
155, 276, 281, 202
ittt
Coordinatesystem. local, 113, 114, 119, 126
Crank_Nicolson method:
for ODE (see Trapezoid rule)
for PDE tsee Finite difference)
Colmdcal geometry. Bl 94, 16k, 175, 220, 266,
o

n of

Darcy's law, 2
Dccow- |uo 113,319 321

Die swell, 302
Difference formulu, 66, 64
‘backward, %
forward, 20
Differenual 4l qustions
high-orde
ordinary, 5!
partial, 4
DlITuuon 2. 172, 1, 180, 262, 272
an
[ ..h. Reaction-di
Diffusion of heat
tsce Heat conduetion)

ffusion problems)

Diffusivity. 149
Iconccnlyrahon dependence. 173, 175, 181, 187,
191. 2]

effective, 2.3, 80, 212
Dirac delta function. 61
Dlnchlcl houndary condition, 279, 282, 283

defini
D!sconlmully 273,309, 311
effect on convergence. 276
Dispersion:
axial, 290
numerical, 241, 245, 248
in collocation, 238, 249, 256- 257
in finite difTerence, 235- 236, 249, 252-257
in GFEM, 238 241,249, 253256
radial, 192
Dispersion coefficient, 192
Divergence theorem. 291

Effectiveness factor:
definition. 83
usc in reactor model, 213
Eigen function, 183. 185, 267
Figer .

cn val

dilerent \.quaunn 182- 183, 248- 252. 259.
262, 267.

estimation of. ‘\H 20 216

_matrix. 19,

n vector, 40, 41
stic Nuid. 156
14, P\ 126,127, 154-155

2 -

transformation. mo 301,304
triangular, m k

variable size. |
Element inte 129. 0
Element matrix, 131, 132, 135, 293-296, 298, 31.
Ellipic p.minl dilferential equation

definition,

example, 272 265, 291, 309

Error:

ODE, 65,99, 143 146, 150 155, 161 165

edifference mcmud 217 219

ion limit, 3%,

! umunmnunn to exponential, 40, 44

subility, 37, 38, 43,

truncutionerror, 34, 52

work, 52

(see also Buckward Euler, Improved Euler und
Predictor corrector methods)




methods, 18, 20,25 27
lity limit, PDE. 204 205

ofa m:mx 39
polation fo
evond-order, 4. 110
third-order.36

se in ODE, 32-36
use in PDE. 198

Falscboundary point,220
FAS. 113,116,322 323

FDRXN. no 168. 169. 335-337

chlllcvcnmmclhnﬂ 65-170,171,228.232.
233.269.290
adaptive mesh. 164
application, 102, 107- 110, 151155, 158,
68 170. 234 236.257.262. 268.276,
277,280,312
backward Eulermethod. 217-219
comparison, 143-153. 263-264,270, 307- 311
comparisonto GFEM. 238, 242 255, 261
comparison to OCFE. 257 258,261
comparison to OC. 223 227
computation time.226
convergence. 110, 143,276
cornercondition, 219
Crank Nicolson metiod, 217 218,225,227
error. 111 l61 163,223,224
Eulermethod. 217 21%
modified backward Euler method. 220
oscillation limit. 218 21
stability. 215 219, 245, 268, 276,277
truncation error, 215, 225
variablegridspacing. 66.69. 164, 268
Finiteclement method:
see Galerkin, Orthogonal collocation or Least
squares finiteclementmethod)

Flow:

in duct, 266, 287

in muaie, 3oz

in pipe. |

n pomummlu 302,310
FLUID, 303
Flux.continuity. 113. 114,125,229
Fourieranalysis. 209
Freesurface.303
Frontalsolutionmethod, 309, 314

Galerkin fimte element method, 126- 134, 143,
150, 159,228, 230 231, 262, 291 293
apphication, 131 135,169, 170,238 241,
53 256,259 261,268 269.294- 296,
302 304,312 313
comparison.263 264307 311
comparsonto D 23k 24255 261
comparison to

SUBJECT INDEX 363

convergenee, 276
error, 161-163
quadrature, effect of, 259-261
Galerkinmethod,
application.64-65, 167, 179-180. 183-189
Gamma.gl
aussian climination (see LU docompositi
Gauss- Scdel method, 280282+ )
GEAR, 107, 166
GEARB, 50, 54, 214, 220,222, 227,228
application, 54-58,208,209
error, 199-200, 203 204, 221, 224-226
work,200, 203, 221
Gezrmclhod 48,176, 258-259
GFEM. |
Gndpalnls 65. 66, 154-155
variable, 164
GroupTheory. 173

Heat capacity. 212
Heat conduction, 60-61. 149, 169, 178.279.291.
312-313

axial, 170

Heat flux,6.68. 78.79.291

Heatof reaction.80, 192

Heat transfer cocfficient, 6. 80, 192, 212.291
dependenceon temperature.298

Homogeneous boundary condition. 182, 184

Homogeneous cquation, 210

Hydrogen, 211

Hydrology. 314

Hyperbolic equation, 6,243

Implicit methods. 18, 20.27-28. 53, 137. 176
work, 51,277,278

(see also Trapezoid rule, Norsettand

dams-Moulton methods)

Improved Euler method

Gsee Runge Kutta, second-order)
Inclastic fluid. 156
Inhomogencousmaterial, 113, 126
Initinlconditions,
Initial value problem,definition, 2. 17
Innersolution.90.92

Integralequation, 175, 179
Integralmethod. application. 267
Integratio

Interpoluti
application, 57.67
error, 23
formuln, 20,22,24
INVERT, 12. 318 319
INVTRI, 109, 113,324
Isopurametricelement, 311,314
Iterativemethod. 280 286
(wvalsoJacobi, Gauss- Seidel, LSOR, ADI)
leration purumeters, 285
IVRXN, 141,170,345~ 348



364 SUBIECT INDEX

Jacobi iterative Incllmd :uo le..

Jacobian matrix. 12 RN
work, §

Jer, 303

KirchhofT transformation. 175

v|i4 248-249

Laplacian. qal. ."zno
angian cle
t:ﬁ;msn H|nshl-‘:wood k;r:llcs 168
res.nonlin
t:::: m:m ‘inite clement method. 309
Least squares method. 62. 170, 183
Lows number, 209, 210.267
I'Hospital'srule. 107
cle. 211
t:nmcuufeyumc method (see terative method)
Lincsuccessiveoverrelaxation, 283. 286.310.311
comparison. 313
Loweririangular matrix, 106
Lower-upperdecomposition
(seeLU decomposition)
LSOR (seeLine successiveoverrelaxation)
LTE (see Truncation error.local)
LUD. 113,116,324
LU decomposition, 12. 130-131. 229- 231, 263,
278.284.289.305. 309. 314
dense, 104- 106
cpsratoncount:
banded. 1
block- dugonal 13116
dense. 51.
Hcrmncpnlynommls 125
tridiagonal, |
pivot, 126
ridiagonal, 109
Lumpedparametermodel, 193
Lumping, 231, 238

MassFlux. 2,192, 245
Massmalrix.230
Mass transfer coefficient, 6,80, 212
Matrix:
bandwidth of, 111, 12, ’7! 305 306
block-diagonal, 112, 1 13,
collocation, 76 77, 95,97, |’Z 123,191

desomposiion of e LU decomposi

inverseof, 41
pgmad,-gomm 179
sparse, 104, |
:ri:spoaenl 4
ridiagonal, 10. |

Matrciverson, 12 20

Matrix pnlynomul »

Matrixsiructure:
finite difference, 108
finiteelement, 110
urlhouo:;:lcollo“"o" on finte clements,

1,

uare error. 232
Mo square residual. 62
Mean-value theorem. 10, 22
Mesh refinement, 293, 311
(see also Adaplive mesh)
Methods of moments, 62. 64-65
Method of Weighicd Residuals. 61-62.149, 61,
170,179, 186, 187, 267
(see also Galerkin, Collocation. Integral, Least
squares methods)
ibleflooding. 310,311

Mi

Model:
complete, 212-213
quasi-static, 212-213
simple, 212 213
Modificd backward Euler method, 220, 259261
Monolith reactor.290
Mulllplcsleadysmlcs 87.88. 101 - 103, 168-170.
209. 2

slnbxlllyo{ 209 210

Navier- Stokesequations. 3
Neumann boundary mndllmn 5.80, 280, 282.
283

Newtonian fluid, 157, 159, 287,302
Newton- Raphson method:
applicauon. 15,28, 58, 101. 110,
152.220.

Nondlmcmlonnll/ulmn 7. 61.80. 246
Nonhomogencous boundarycondition, 182. 184
Non-ncwtonian fluid. 155.310
Norm, 10, 232
Normal, 6, 291
Numbering system:
global. 114, 115,123,126, 132, 287. 305
local. 114,123, 126. 130, 132, 287
Nussclt number, 196
Nersett method,46- 47, 54
application, 259 261
oscillauon limit, 53
rauonal approximation to exponential, 46, 47
{runcation error, 53

OC. 143
OCHE, 143
OCFERXN, 120, 169, 337 us
OCRXN, 101, 103, 168, 331
ODE gvp,4

ODE (vp,2

Ordlnnrydmer niial
dcfml entinlequation, 137

o stant coeffcients, §5
rllmgunn] Lullnulllnn on finite clements,
116, 143, 228--230, 233, 262, 290, 314
Ippllcnnnn.l” m 125, 152- 155, 159, 169,
170,236 238, 257, 259.- 261, 268
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