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PREFACE

After publication of the pioneering book Transport Phenomena by Bird,
Stewart, and Lightfoot in 1960, educators everywhere recognized that the
previous “unit operations-unit processes” organization of material for the
curricula of chemical engineers was inadequate for modern engineering
education. Many schools found that the 1960 book was suitable for graduate
courses and an excellent reference, but too difficult for most undergraduates,
especially if the course was offered early in the curriculum. Others followed
this pioneering effort by writing simpler versions.

This book was designed to provide an integrated treatment of the three
areas of transport: momentum, heat, and mass. The similarities and the
differences of the three transports are clearly stated at a level suitable for
second-semester sophomores and first-semester juniors in engineering or the
other sciences where the mathematics requirement is similar. Many of the
basic equations are mathematically identical, when expressed in terms of the
generalized flux and property variables. This identity helps the student
understand transport phenomena and forms the basis for the organization of
the material here. A typical curriculum teaches momentum transfer before
heat and mass because a complete treatment of these latter two is not possible
without a prior discussion of fluid dynamics. This text allows heat transfer,
which is encountered daily by everyone and easily visualized, to explain by
analogy momentum transfer, which is not easily visualized or understood by
neophytes. Transport is rapidly becoming more widely used in most branches
of engineering, and this text provides all engineering disciplines with a
readable and otherwise useful treatment of this difficult subject. In most of the
other books on this subject, these topics are covered separately.

We believe that this text provides a solid foundation for engineering
design and research. At the same time, some interesting and important
problems are solved. A study of transport phenomena does not replace unit
operations, but understanding of transport phenomena provides deeper insight

xv
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into the fundamental processes occurring in the unit operations. The engineer
who masters the material in this text will be better able to analyze the unit
operations he or she encounters.

McGraw-Hill and the authors would like to express their thanks for the
many useful comments and suggestions provided by colleagues who reviewed
this text during the course of its development, especially Charles E. Hamrin,
Jr., University of Kentucky; Richard W. Mead, University of New Mexico;
Robert Powell, University of California-Davis; and James Wei, Massachusetts
Institute of Technology.

Finally, the authors owe much thanks to many who have helped over the
years with this project. A partial list (in alphabetical order) includes F.
Bavarian, A. M. Cameron, J. F. Davis, L. Economikos, L. S. Fan, L. Fishler,
K. S. Knaebel, S. G. Nychas, J. Y. Oldshue, C. E. Patch, A. Syverson, G. B.
Tatterson, J. L. Zakin, and the many typists who have helped with this effort,
especially Pat Osborn.

Robert S. Brodkey
Harry C. Hershey
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TO THE INSTRUCTOR

This text covers transport phenomena in an integrated manner. It is our
opinion that a solid understanding of fluid mechanics is essential to
understanding and solving problems in heat and mass transport. Hence, all
topics suitable for a course in undergraduate fluid mechanics are covered in
detail. This text introduces the basic equations of heat and mass transfer as
well. This text also covers heat and mass transport applications that are in the
transport phenomena area. It does not cover topics that are traditionally
taught as unit operations. It is expected that the students will purchase a unit
operations book for course work and reference beyond our coverage.

After the introductory chapter, the basic equations of molecular trans-
port are covered first, then the general property balance, followed by the
combination of the balance and molecular transport. The topic of convection is
in Chapter 5. Our treatment is especially strong in discerning the differences
between transport problems with flow but no net convective flux, and those .
with a net convective flux. Chapter 5 also contains a lengthy section on the
fundamentals of mass transport phenomena. Chapter 6 on turbulent flow
provides a thorough discussion of modern turbulence theory. There are also
two chapters (7 and 8) on methods of analysis-integral methods and
dimensional and modeling approaches. Dimensional analysis is applied to
agitation in Chapter 9. The remaining chapters contain advanced applications.
Chapters 10 and 11 cover transport in ducts. Flow past immersed bodies and
fluidization are discussed in Chapter 12. Chapter 13 covers unsteady-state
transport phenomena. Chapter 14 covers the estimation of the transport
properties p,  k, and DAB;  this chapter can be covered in conjunction with
Chapter 2, or anything thereafter, as the instructor wishes. Chapter 15 on
non-Newtonian phenomena is unique in that this important topic is largely
ignored in other texts. This chapter also can be covered whenever the
instructor wishes; at Ohio State, we have found that our students cannot really
appreciate non-Newtonian flow until they understand Newtonian flow. Hence,
we teach Chapter 15 in conjunction with Chapter 10. If the instructor desires
to cover only the laminar aspects of non-Newtonianism, the appropriate
material from Chapter 15 could be taught much earlier in the course. The

Xvii



xviii TO THE INSTRUCTOR

$ appendix is in five parts: properties of materials, mechanical characteristics of
piping and tubing, conversion tables, vector mathematics, and a list of
computer programs.

Taken as a whole, this text covers the area of fluid mechanics thoroughly.
The basic equations of change are in the early chapters. Laminar  flow solutions
are found in both Chapters 4 and 5 on molecular and convective transport. The
sections on agitation, turbulence, and fluidization contain the most modem
concepts and procedures. Fluid statics is covered in Chapter 7 on integral
methods, where it arises naturally from the general integral balance equations.
Advanced topics include discussions of design of complex piping systems, the
boundary layer, ideal flow, flow past immersed bodies such as spheres and
cylinders, fluidization, packed beds, banks of tubes, and non-Newtonian fluids.
The inclusion of an entire chapter on non-Newtonian transport phenomena is
an indication of the importance of this subject to chemical engineers;
non-Newtonian fluids are encountered daily in our lives, as well as being
common in industry. The engineer needs some familiarity with this area.

The topics of heat and mass transfer are covered only to the extent that
transport phenomena can be applied. Excellent books exist for these topics,
especially for heat transfer, for which our colleagues in mechanical engineering
have written well-conceived textbooks. In 1984 and 1985, three major books
on mass transfer were published. Because heat and momentum transport are
so closely linked, a weakness of many heat transfer texts lies in their limited
treatment of the fluid mechanics topics needed for heat-exchanger design. Our
integrated approach is intended to explain fully the coupled nature of heat and
momentum transport. The heat transport and momentum transport equations
are presented together for laminar applications, turbulent flow, flow past
immersed bodies, fluidized beds, etc. Similarly, the basic equations for mass
transport are integrated with those for heat and momentum. Chapter 5
discusses mass transport phenomena in detail, including the additional
complexities inherent in mass diffusion. The presentation is in a clear fashion
that undergraduates can understand, especially the reasons why the mass
diffusion equations as simplified for gases  do not strictly apply to liquid
systems. The basic principle of diffusion in solids is also covered; this topic is
important in catalysis, and other areas as well. The unsteady-state chapter
combines heat and mass transfer and includes the modern numerical methods
as the Crank-Nicolson.

Our text is expected to serve widely as a reference. Hence, more material
and more detail have been included than undergraduates can usually assimi-
late. At the Ohio State University, this text is used for a 4-credit-hour,
one-quarter course, in transport phenomena which is offered to sophomores
who have completed differential equations, freshman chemistry, stoichiometry,
and two quarters of physics. In our course, the material in Chapters 1 to 8 is
covered in detail. The topics of agitation (Chapter 9) is covered rapidly. The
design material in Chapters 10 and 12 occupy the last part of the course.
Chapter 15 on non-Newtonian phenomena is covered briefly after Chapter 10
on fluid flow in ducts. Our thermodynamics course, usually taken later or



concurrently, emphasizes the applications of the first law to flow problems.
Note that this material is in Chapter 7 in our text and in Chapter 2 in
Introduction Co Chemical Engineering Thermodynamics by Smith and Van
Ness. Fluid statics is also covered at the start of the thermodynamics course.
At Ohio State, a second course in transport focuses entirely on heat transfer;
that course covers Chapter 11 in detail plus, of course, much more. That
second course requires the students to purchase a specialized heat transfer text
(usually a mechanical engineering series) in order to cover the specialized
topics in heat transfer, such as radiation, boiling, and condensation.

Further topics in mass transfer can be taught in an additional course or
courses that combine discussions of mass transfer with unit operations not
previously covered, such as absorption, distillation, drying, evaporation, and
filtration. The basic material for mass diffusion is in Section 5.3; most of the
material presented is not covered in the traditional unit operations texts.
Again, the analogy with heat and momentum assists the student in under-
standing the difficult concepts in mass diffusion.

In solving the example problems, we used a computer or a hand-held
calculator. Calculations with these retain many digits in order to reduce
truncation errors. The example problems in this text make no serious effort to
ascertain the correct number of significant  digits for every final answer,
inasmuch as the purpose of the examples is to illustrate the method of
calculation. The instructor should point out from time to time the probable
accuracy of final  answers, especially when the physical constants (such as mass

.diffusivity)  are not usually known accurately or approximate methods of
solution are used. Also, many of the example problems and homework
problems in this text have been in use at Ohio State for more than 20 years.
Hence, their origins are obscure:  We sincerely apologize if we have inadver-
tently used problems that originated with someone else.

A book on transport phenomena always encounters nomenclature
problems, because the three areas of transport developed independently in the
early days. A problem of more recent vintage is the decision of the American
Institute of Physics to switch the viscosity notation from ~1  to q.  Chemical
Engineers have used p from the beginning; this text will also use cc,  although
the instructor may wish to point out that the other symbol is also recom-
mended by some.

Finally, there are some excellent films available, which illustrate most of
the import t topics in fluid mechanics. The Encyclopaedia  Britannica
Educationa?Corporation, 425 North Michigan Avenue, Chicago, IL, 60611 has
available for purchase or loan twenty-two 16-mm  films and a hundred
thirty-three &mm  film loops as a part of their fluid mechanics program. At the
Ohio State University, we use the &mm  loops, which are shown with a small
portable projector and lend themselves easily to informal discussion. These
fihn loops are referenced by number at the appropriate-locations in the text.

Robert S. Brodkey
Harry C. Hershey
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NOMENCLATURE

A
a
CA
F
&
m
n
P
R
T
V
X

Y
z
t

Area (m*,  ft*)
Acceleration (m s-*,  ft s-*)
Concentration of species A (kmol mv3, lb mol ft-‘)
Force (N, lb3
Gravitational conversion constant (32.174 lb,,, lb;’  ft s-*)
Ma= (kg, lb,)
Number of moles of gas (kmol, lb mol)
Pressure (kPa,  atm, lb,  in.-*)
Gas constant, see Appendix, Table C.l
Temperature (K, “R, “C, “F)
Volume (m3, ft’)
Unknown in algebraic equation
Unknown in algebraic equation
Unknown in algebraic equation
Shear stress (N m-*, lbf  ft-‘)

This chapter provides a brief introduction to the material to be covered in
detail in subsequent chapters. First, a brief historical perspective of the role of
transport phenomena in the solution of engineering problems is discussed.

3
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? Then some fundamental concepts from physics, chemistry, and mathematics
are presented.

1.1 TRANSPORT PHENOMENA AND
UNIT OPERATIONS

The pioneering work Principles of Chemical Engineering was published in 1923
under the authorship of Walker, Lewis, and McAdams [Wl].  This book was
the first to emphasize the concept of unit operations as a fundamental
approach to physical separations such as distillation, evaporation, drying, etc.
This was the era when the profession of chemical engineering matured into a
separate area, no longer the province of the industrial chemist. The study of
unit operations such as distillation is predicated on the idea that similarities in
equipment and fundamentals exist regardless of the process. In other words,
the principles of distillation apply equally to the separation of liquid oxygen
from liquid nitrogen as well as to the thousands of other distillations routinely
carried out in industries around the world. The study of transport phenomena
is undertaken because this topic is the basis for most of the unit operations. In
simple terms, transport phenomena comprise three topics: heat transfer, mass
transfer, and momentum transfer (fluid flow).. In many of the unit operations
(such as distillation), all three transport phenomena (i.e., fluid flow, heat
transfer, and mass transfer) occur, otten simultaneously. The concepts
presented in transport phenomena underly the empirical procedures that are
used in the design of unit operations. Empiricism is required because the exact
equations cannot be solved.

1.2 EQUILIBRIUM AND RATE
PROCESSES
Many problems can conveniently be divided into two classifications: equi-
librium and nonequilibrium. Under conditions of nonequilibrium, one or more
variables change with time. The rates of these changes are of much interest,
naturally. A typical engineer-scientist reading this book will be involved with
four types of rate processes: rate of heat transfer, rate of mass transfer, rate of
momentum transfer, and rate of reaction. The first three of these are the
subject of this text. The fourth, rate of reaction, will not be covered in any
detail, except for the inclusion of the appropriate terms in the general
equations and in a few elementary examples.

Equilibrium processes. The science of thermodynamics deals mainly with
systems in equilibrium. Consider Fig. 1.1 which shows a gas composed of 50
mole percent nitrogen and 50 mole percent oxygen enclosed in a tank at a
pressure of 2 atm at 300 K. Let this gas be surrounded by ambient air at the
same temperature. After an appropriately long time, the gas inside the tank is
at physical equilibrium. Its temperature is the same as that of the surrounding
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$/ FlGURFa  1.1

1 Gas mixture
Closed valve (SO  percent N2,  50  percent 0,)

gas, 3OOK. Inside the tank, there will be no concentration gradients. The
science of chemistry tells us that this gas will not be in chemical equilibrium.
Although oxygen and nitrogen can form a series of compounds, such as NzO,
NO, NO,, and N,O,, in actuality none of these is formed in the present system
because the rate of reaction is essentially zero. If the gas in the tank were pure
nitrogen, then there would be complete equilibrium inside the tank, i.e.,
physical (often called mechanical) and chemical equilibrium. .,  ,

Rate proeemes.  When nonequilibrium processes are considered, the system
under consideration progresses in a manner such as to approach equilibrium.
All such rate processes are characterized by a driving force. The rate of
transport is proportional to the driving force. The topic will be discussed
thoroughly in Chapter 2.

1.3  F'IjNJJAMElWAL  VARIABLES AND
UNITS
Temperature. Interestingly, temperature (T) can be defined only in the
empirical sense as a relative measure of “hotness” [Dl,  Ml]. The temperature
scales in present use are defined with only one fixed point, the triple point of
water, 273.16 K. Temperature scales are based on changes in properties of
materials with temperature. The change of resistivity of a solid such as
platinum or the change of volume of a liquid such as mercury is easily
measured as a function of temperature, and therefore can be used as an
indication of temperature. Temperature units are Kelvin (K), Celsius (“C),
Fahrenheit (“F),  and Rankine (“R). The reader already knows how to convert
from one to the other. Temperature is one of the most important quantities in
a system. Temperature manifests itself in the motions of the molecules: the
higher the temperature, the higher are the velocities of the molecules. Almost
all properties are strongly dependent on temperature. The rate processes are
likewise functions of temperature.

Pressare.  The pressure in the tank in Fig. 1.1 has units of force (F)  per unit
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?
area (A); The force is a result of the collisions of molecules with the wall of the
tank. The pressure acts equally in all directions. At equilibrium, the pressure
inside the tank is uniform. It is important to distinguish between pressure and
force. Force equals pressure times area. Since the tank in Fig. 1.1 is a
rectangularly shaped box, with width 4 m and height and depth both 2 m, the
total force on the front face is twice as great as that on either end, since the
front area is twice the area of an end.

Volume. The volume (V) is the easiest variable to understand. An equation of
state expresses the volume of a material in terms of temperature, pressure (p),
and composition or total number of moles (n). For an ideal gas, the equation
of state is

pV = nRT (1.1)

where R is the gas constant (see Appendix, Table C.l).

Coneentralion.  The concentration of species A (CA)  has units of moles (or
mass) per volume. The following example illustrates concentration.

.
Example 1.1. Calculate the concentration of nitrogen in the tank in Fig. 1.1,
assuming that the ideal gas law holds. The answer is to be in lb mol tY3.

Answer. The total volume of the tank is given as ‘0.01283 m3, which in English
units is 0.4531 ft?  (using the conversion 35.316 ft’ = 1 m3  from the Appendix,
Table C.18). The total number of pound moles is found from Eq. (1.1):

n = (pV)/(RT)  = (2)(0.4531)/[(0.73)(300)(1.8)]~ (a;;;$t’)

(lb mol)(“R)  (“R)
= 2.299 x lo-’  lb mol (9

where the gas constant R is from Table C.l. The temperature in K is multiplied
/I by 1.8 to convert to “R. Since the mole fraction of N2  is 0.5, then the amount of

Nz in the tank is 1.149 x low3  lb mol. Therefore the concentration is

6, = (1.149 x lo-‘)/(0.4531)  (lb mol)/(ft’) = 2.54 x lo-’  lb mol fte3 (ii)

Shear stress. The shear stress (t) is also a force per area, as is pressure. The
shear stress may have components in any or all directions in contrast to
pressure which acts in a direction normal to a surface. For now, let us consider
a simple view of shear stress, Fig. 1.2. A block with an area of 2m2  is
imbedded in a concrete floor. A force of 5 newtons is impressed against the
side of a second block that is glued to the bottom block. The shear stress on
the glue is 5 N per 2 m*,  or 2.5 N m-*. The pressure on the glue is atmospheric
pressure plus the weight of the block (due to gravity) divided by the area.

Flux. A flux is a certain quantity per unit area per unit time. Answers to
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as
Force=SN-

Area = 2 m2

FIGURE 1.2
Shear stress and pressure.

problems in ‘heat transfer are often expressed ,in units of Btu, cal, or J.
Therefore, a heat flux may have units of J me2  s-i.  Similarly, a mass flux may
have units of kg m-* s-l.

Phases. In a simple view of matter, there are three states: solid, liquid, and
gas. Any given system contains only one gas phase, but may possess several
solid or liquid phases. For example, if a small amount of crude oil is added to a
container half filled with water, then at equilibrium there are two liquid
phases, water on the bottom and hydrocarbon floating on top, plus a vapor
phase consisting of air, water molecules, and hydrocarbon molecules. Trans-
port phenomena often occur in systems where several phases are present.
Naturally, solutions of such problems are more complicated than solutions of
single-phase problems.

Units. Engineers must be familiar with all systems of units. The abundance of
tables in the literature that use English or CGS units requires all of us to be
reasonably familiar with all systems of units. This text will use SI units
(Systeme International dUnit&),  as well as the traditional English system with
units such as Btu, pound force (lbt), and pound mass (lb,,,).

In the SI system, mass in kilograms (kg), length in meters (m), time in
seconds (s), and temperature in kelvins (K) are taken as basic units. Many
other units are derived from these. In practice, some of the SI units are quite
cumbersome. For example, the SI unit for pressure is the Pascal  (Pa), which is
defined as N me2. One atmosphere is 101325 Pa; obviously the use of the SI
system is clumsy here. Some authors use the bar, which is 100 kPa or
0.986 923 atm. But one can argue that the bar is no more fundamental a unit
than the atmosphere.

Another point of confusion in the use of SI units is in the definition of the
mole. The basic SI unit is mol, which is defined as the amount of a species
whose mass in grams is numerically equal to its molecular weight (also called
its molar mass, symbol M). Thus 1 mol of a molecular substance always
contains Avogadro’s Number of molecules. Since most tables present molecu-
lar weights in units of g mol-‘, this SI unit is the same as the old “g-mole”
unit. Since the SI unit of mass is the kilogram, many authors prefer the kmol
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;sp unit (1600 mol) as the most practical for tables of properties, etc. This text will
use kmol, as well as lb mol. For example, the molecular weight of CO2 is
approximately 44 kg kmol-‘.  Therefore, 1 kmol of CO? contains 44 000 g, and
1 lb mol of CO1 contains 44 lb,.

Force. The relationship between force and mass may be expressed by
Newton’s second law of motion:

F = m a (1.2)

where a is the acceleration. A conversion factor g,  is sometimes included to
make Eq. (1.2) dimensionally consistent:

F=mdgc (1.3)

Early authors called g,  the gravitational conversion constant or the
standard gravitational constant. The origin of this nomenclature lies in the fact
that the definition of the pound force (lb3 in the English system of units is the
force necessary to accelerate one pound mass (lb,,,) in a standard gravitational
field on earth. Thus in the English system, the constant g,  has the value
32.1740 lb,,, lb;’ ft s-*.  In spite of this origin, g,  is a conversion constant having
the same value on the moon and everywhere else in the universe.’

In the SI system, two viewpoints of the role of g,  are prevalent. The unit
of force is a derived unit from Eq. (1.2),  i.e., kg m s-*,  which has been named
the newton (N) in honor of Sir Isaac Newton. One view is that g,  equals
1.0 kg m NW1  s--*. A second interpretation is that g,  is really unity and
dimensionless, since 1 N is identical to 1 kg m s-*.  This text takes the latter
view, and therefore g,  will be omitted from equations in the future.

Numerous example problems with English units have been included, in
order to illustrate the proper use of g=. Note that in the CGS system, the
gram-force unit (analogous to the lbr)  is almost never used and, since the dyne
is defined as gems-*, when F is expressed in dynes, g,  is again unity and
dimensionless.

Many equations in transport phenomena involve both lb,,, and lbr  if
English units are used. The reader must always be very careful to use
consistent and correct units in all problems. Also, there are some unusual mass
and force units in the English system, such as the slug (lbrs2  ft-‘), and the
poundal  (lb,,, ft s-*). Each of these is defined via Eq. (1.2). These will be
ignored in this text.

’ The acceleration due to gravity is approximately 32.174 ft SK’  here on earth. It is this value that
changes from location to location. Its equivalent is 9M665ms-*  in the SI system or
980.665 cm s-’ in the CGS system.
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;rpt 1.4 TI-iE  ROLE OF INTERMOLECULAR
FORCES

Intermolecular forces are responsible for the behavior of matter in the world
around us. The balance between attractive (long-range) forces and repulsive
(short-range) forces is responsible for the existence of the gas, the liquid, and
the solid phases. Liquids and solids exist at the lower temperatures, at which
the kinetic energy of the molecules is less than at higher temperatures at which
only the gas phase can be present.

Intermolecular forces are also responsible for the transport phenomena.
The basic equations for momentum, heat, and mass can be derived directly
from the Boltzmann equation of statistical mechanics. This derivation is
extremely complex [Hl].  Any effort at an exact solution gives results so
simplistic as to have no direct use in the solution of engineering problems.
Instead, the following chapters will introduce transport phenomena via both
empirical laws such as Newton’s law of viscosity, and fundamental laws such as
conservation of mass, momentum, and energy. The empirical nature of these
laws obscures their molecular origin. The reader should always keep in mind
that intermolecular forces are responsible for the phenomena at hand but that
the exact equations are too difficult to solve.

1.5 SIMPLE BALANCES

Material balances. Perhaps most fundamental of the physical laws is the
conservation of mass. The classic reference is in Chapter 7 of the text by
Hougen, Watson, and Ragatz [H2], although more modem books are used
today. The idea of conservation of mass is simple: the total mass entering (IN)
must equal the total mass leaving (OUT)-unless  there is generation,
depletion, or accumulation. Generation or depletion might come from a
nuclear reaction. For example, uranium-238 can decay upon emission of an LY
particle into thorium-234. An example of accumulation is the simple filling of a
tank. The reader of this text is expected to be familiar with these types of
balances, at least in a general manner.

Example 1.2. The waste acid from a nitrating process contains 15 percent HN03,
45 percent H2S04,  and 40 percent H,O by weight. This acid must be concentrated
to 25 percent HN03, 50 percent H2S04,  and 25 percent H,O.  Available are
concentrated solutions of acid in water, one of 95 percent H2S04  and the other of
85 percent I-INO,.  If 1500 kg of final product is required, find the mass of each
concentrated solution to be added.

Answer. In this  problem, there is  no accumulation or generation.  The solution
requires an overall mass balance, plus balances of two of the specie-water,
HN03, or H2S04.  All concentrations are known. All weight percentages are
converted to weight fractions by dividing by 100. The convenient basis is to
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consider 1500 kg of product. Convenient variables are as follows:
Let x = kg, concentrated H$O.,,  5 percent H,O
Let y = kg concentrated HNO,, 15 percent Hz0
Let z = kg of waste acid before concentration.
Overall balance (IN = OUT)

x+y+.2=1500

Water balance (Hz0 IN = Hz0 OUT)

0.05~  + 0.15~  + 0.40~  = (1500)(0.25)

H,SO, balance (H,SO, IN = H&SO,  OUT)

0.95x  + o.ooy + 0.452 = (1500)(0.50)

HNO, balance (I-INO,  IN = I-IN03  OUT)

(9

(ii)

(iii)

O.OOx+O.85y  +0.15z=(1500)(0.25) 69
Since the summation of Eqs. (ii), (iii), and (iv) results in Eq. (i), only three

of Eqs. (i) through (iv) are independent. Arbitrarily, Eq. (iv) will not be used.
Now Eqs. (i) through (iii) constitute three equations in three unknowns. Solution
is by elimination of variables. First, Eq. (i) is solved for z and the results are
substituted into Eqs. (ii) and (iii):

0.05x  + 0.15y  + (0.40)(1500  - x - y) = 375 6.9
0.95x+(0.45)(1500-x  -y)=750 (4

Simplifying these:

0.35x+O.25~=225 (vii)
0.5ox  - 0.45y  = 75 (viii)

Equation (viii) is multiplied by 2 and rearranged to

x = 15o+o.!Xly 6)
This equation is substituted into Eq. (vii) and the result is solved for y. Then:

(0.35)(150  + 0.90~)  + 0.25~  = 225 (4
225 - (0.35)(150)

’ = (0.35)(0.!90)  + 0.25 = 305

From Eq. (xi), the amount of concentrated HNOg  is 305 kg. From Eq. (ix), x, the
amount of concentrated H2S04,  is 425 kg. The amount of waste acid is 770 kg
[from Eq. (i)].

Energy balances. The principle of the energy balance is similar to the mass
balance: IN equals OUT, if there is no accumulation or generation. However,
in practice energy balances involve several more concepts not yet introduced.
These will be explained thoroughly in Chapter 7 on Integral Methods. Briefly,
either the first law of thermodynamics or the mechanical energy balance is
needed in order to provide the correct relationship of the many terms in the
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energy balance: molecular (internal) energy, potential energy, kinetic energy,
radiant energy, electrical energy, magnetic energy, chemical reaction effects,
heat supplied from external sources, and work done.

A further consideration of Example 1.2 illustrates some of the com-
plexities of the energy balance. Suppose in that example all three streams
(waste, concentrated HN03,  and concentrated H2S04)  were at 25°C. What
would be the final temperature upon mixing? The answer requires knowledge
of the “heat of mixing”. When the concentrated acids are added to the waste
stream, there will be a substantial temperature rise, owing to the large heats of
mixing in this system.

PROBLEMS

1.1. If g equals 9.8 m s-‘, find the we&It of a 20  kg object in units of: (a) N; (b) lb,
1.2. The heat capacity of carbon dioxide gas at very low pressure is expressed by the

equation
cp  = 10.57 + 0.0021T  - (2.06 x l@)V

where cp has units of calmol-‘K-l  and T is in K. What  are the units of the
constant of value  2.06 X laS?

1.3. Pure  sulfur is burned with air at the rate of 400  lb,,, h-r of s,uIfur.  The outlet gas is
10 percent 9.
(a) Find the number of lb mol of SO, produced per hour.
(b) Find the number of tih-’  of air required if the entering air is at 1 atm pressure

and 100°F.
1.4. A waste acid stream (to be designated as stream W) contains 4 percent HN4,  20

percent HzS04,  and the r&t  water, by weight. A ton of acid of concentration 21
percent HNOs  and 35 percent H2S04  is required. Available are concentrated acid
solutions as follows? stream A (92 percent H2S04,  8 percent H,O); stream B (81
percent HNO,,  2 percent H,SO,,  and 17 percent H,O).  Find the number of
pounds of each concentrated solution to be added to make 1 ton of product.

1.!5. Wet green lumber containing 12.5 percent moisture is fed continuously to a drying
oven at a rate of 10 ton h-‘.  The drying oven consists of two kilns, operated in
series. From the first kiln the “partially dried” lumber is fed to a second. Tests on
the second show that the final dried lumber leaving contains 4.0 percent moisture.
Also, 650 lb, h-’ of moisture are removed from the entering lumber in the second
kiln.
(a) Find the lb, h-’ of “dried” lumber exiting from the second kiln.
(b) Find the lb, h-’ of water removed in the first kiln.
(c) What is the percentage moisture in the “partially dried” lumber exiting Erom

the first kiln?
1.6. Zinc is to be extracted from a roasted ore. All zinc is present as ZnSO,. Roasted

ore of the following composition is obtained: ZnSO, 18 percent; gangue 75
percent; moisture 7 percent. The roasted ore at a rate of 25 ton h-’ is extracted
with pure water. The resulting solution containing 12 percent ZnSO, represents a
100 percent recovery of the ZnSO.,.  One ton of inert gangue will carry with it 2
tons of solution. Calculate the lb, h-’ of water required.
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FIGURE 1.3

Residual liquor

Process flow diagram for production of borax (Problem 1.8).

1.7. Peat as dug from the ground contains 88 percent moisture, 8.05 percent volatile
combustible matter, 3.18 percent fixed carbon, and 0.77 percent ash. For use as a
domestic fuel, the peat is dried until it contains 10 percent moisture. The cost of
drying is 9 cents per 100 lb, water removed, and the cost of mining the peat is
$7.58 per ton. Find the cost of processing 1 ton of dried peat.

1.8. Borax (NazB40,-10HrO)  is produced from a mineral containing 85 percent
Na2B40,-4Hz0  by dissolving in water under pressure at lOOT,  filtering, and
crystallixing  at 20°C.  The flow sheet for the process is shown in Fig. 1.3. The
mineral is fed along with the water into a vessel at 100°C.  When all the
NarB,O,*4H,O is dissolved, the solution passes to a second vessel where the
temperature is lowered to 20°C. The borax is then filtered, leaving a residual
liquor. The solubility of anhydrous sodium tetraborate is 525  parts per 100 parts
water (by weight) at lOO“C, and 3.9 parts per 100 at 20°C.  For 1000 kg of borax
produced, calculate the following:
(a) number of kg of mineral required
(b) number of kg of water used

’ (c) number of kg of residual liquor produced
1.9. Methanol is’ synthesized from carbon monoxide and hydrogen according to the

reaction

CO + 2Hr-t  CH,OH

The feed stream to a methanol plant consists of 250 kmol h-’ CO, 625 kmol h-’
Hz, and 50 kmol h-r Nr.  The process flow diagram for this process is shown in Fig.
1.4. The gross feed enters a reactor where the conversion per pass is 50 percent.
The gross product stream enters a condenser where all the methanol is removed.

FIGURE 1.4

1 Product stream
(‘WOW

Process flow diagram for synthesis of methanol (Problem 1.9).
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The unreacted gases are recycled to the gas mixer located just before the reactor.
From the condenser, there is a purge stream which removes the inert nitrogen,
plus some valuable CO and HP  The concentrations in the purge stream are
identical to those in the recycle line. If the ratio of moles of feed gas to moles of
purge gas is 3.5, find the flow rate (km01  h-‘)  of all components in all streams.
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CHAPTER

MOLECULAR
TRANSPORT

MECHANISMS

NOMENCLATURE

A
A

A
B
B

C

CP

D

14

Area (m*,  ft?)
Empirical constant in viscosity correlation, Eq. (2.52) (kg m-r s-l
or N m-*  s, lb,,, ft-’ s-l,  lbf  ft-*  s)
Species A: Al and A2 are species A at locations 1 and 2
Species B; subscripts 1 and 2 represent locations
Empirical constant in viscosity correlation, Eq. (2.52) (units same
as RT)
Concentration (km01 mm3, lb mol ftm3);  C, and Ca  are concentra-
tions of species A and B; CT  is total concentration
Heat capacity at constant pressure (kJ  kg-‘K-l,  Btu Ib;‘T-‘);
c,,  is heat capacity at constant volume
Diffusion coefficient (mass diffusivity) (m*  s-l,  es-‘);  DAB is
diffusion coefficient for A in a mixture of A plus B; Do  is diffusion
coefhcient  at base temperature To  and pressure pa
Diameter (m, ft)
Base of natural logarithm, 2.718 2818. . .
Force (N, lb;)
Acceleration due to gravitational field (m s-*,  ft s-*)
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O’AIAL

i
k
k

L
MA

n

n
P

::
T

T

t

u

V
x
x‘4
Y
YA
z

s”
A

Gravitational conversion constant (32.174 lb,,, lb;’ ft s-~)
Unit vector in x direction
Molar flux vector in Fick’s law, Eq. (2.4),  defined with respect to
a plane of no net volume flow (kmolm-2s-‘,  lb mol ftT2  s-l);
subscripts A or B are for flux of species A or B; called J”A/A  in
Chapter 5
Mass flux of species A in the x direction, defined with respect to a
plane of no net volume flow (kg m-’ s-‘,  lb, ftT2  s-‘)
Unit vector in y direction
Unit vector in z direction
Thermal conductivity (W m-l K-’ or J m-l K-l  s-l,  Btu ft-’
OR-’  s-‘1
Length (m, 5)
Molecular weight (molar mass) of species A (kg kmol-‘,
lb,,, lb mol-‘)
Mass  (kg,  hd
Molar flow vector for species A, defined with respect to fixed
coordinates (kmols-‘,  lbmol s-l); subscripts A or B are for
species A or B; (NA/A),  is the flux of species A in the x
direction; N,/A is the flux of species B
Mass flow vector, equal to molar flow N times molecular weight
M (kg s-l,  lb, s-‘)
Number of moles of gas (kmol, lb mol)
Pressure (kPa,  atm, lbt  in.-2);  p. is reference pressure at To;  pA is
partial pressure of species A, Eq. (2.38)
Energy (heat) flow vector (J s-l,  Btu s-l)
Gas constant; see Appendix, Table C.l, for values
Temperature (K, “R, “C, “F); To  is reference temperature for
correlations; Tl  and T2  are temperatures at locations 1 and 2
Superscript meaning transpose of a tensor or matrix
Time (s); subscripts: to  is initial time; tl and t2  are intermediate
times, t,  is steady-state time
Velocity vector (m s-l, ft s-l); U is magnitude of U; U,,  U,,  U,
are components in directions x, y, z
Volume (m3,  ft’)
Rectangular (Cartesian) coordinate
Mole fraction of species A in liquid in Problem 2.17
Rectangular (Cartesian) coordinate
Mole fraction of species A in gas, dimensionless
Rectangular (Cartesian) coordinate
Thermal dSusivity (m2  s-‘,  ft2  s-l),  defined by Eq. (2.10)
Angle in Problem 2.21
Difference, state 2 minus state 1; e.g. AT means T2  - TX, the
value of the temperature at location 2 minus the value at location
1
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‘b  s
P

v

k

v
vu
(W’

Generalized diffusivity (m’ s-l,  ft*  s-l)
Viscosity (kg m-l s-l  or N m-* s, lb,,, ft-’  s-l,  cI?)
Kinematic viscosity (momentum diffusivity) (m” s-l,  ft2  s-l)
Density (kg mm3,  lb,,, fte3); subscripts refer to species
Generalized flux vector (e.g., units for heat flux are J m-*  s-r or
W m-*, Btu ft-* s-‘;  see Table 2.1 for more details); YX,  YY, Yz
are components in directions X,  y, z
Generalized concentration of property (e.g., units for concentra-
tion of heat are J me3  or Btu ftT3;  see Table 2.1 for more details)
Momentum flux (or shear stress) tensor (N m-*, lbf  ft-‘); rXY,  rYX,
etc. are components of the momentum flux tensor, where
subscripts refer to direction of momentum transfer and direction
of velocity
Vector operator del, defined by Eq. (2.16) (m-l,  ft-‘)
Shear rate tensor, defined by Eq. (2.41) (s-l)
Transpose of shear rate tensor, defined by Eq. (2.42)

In Chapter 1, the role of intermolecular forces was briefly introduced. The
discussion concluded that the exact equations for the rate processes could
not be solved for most engineering problems. The empirical approach usually
separates transport into two major divisions: transport by c turbulent mechan-
isms and transport by molecular means, with or without convection. Turbulent
flow will be introduced in Chapter 6. This chapter treats the equations and
mechanisms of molecular transport. Molecular transport may occur in solids,
liquids, gases, or mixtures thereof. The simplest example of molecular
transport is the conduction of heat from a high-temperature region to a
low-temperature region through a rod, as shown in Fig. 2.l(a). If one end of a
rod at ambient temperature is held firmly while the other end is thrust into a
roaring fire, heat is transferred to the hand-held end of the rod from the end in
the fire by molecular transport, The hot molecules in the fire have more energy
than the adjacent cooler molecules of the rod. As the molecules collide, energy
is transferred from the hotter molecules to the cooler molecules. The process is
repeated millions of times until the rod is too hot to hold. The difference in
temperature (temperature of the hot fire minus hand temperature) is the
driving force for the heat transfer. For mass transport, the situation is more
complicated because there must be at least two species present. Consider two
identical flasks joined through a valve as shown in Fig. 2.1@).  Let one flask be
filled with pure nitrogen, the other with pure oxygen, both at the same
pressure and temperature. If the valve in the middle is opened, oxygen will
diffuse into the nitrogen srhleand  nitrogen into the oxygen side until each flask
contains 50 percent nitrogen and 50 percent oxygen. Concentration is the
driving force.

Of the three types of molecular transport, momentum transfer is the most
difficult to explain briefly and concisely. First, the basic equation relates shear
stress (introduced in Chapter 1) and velocity gradient. The velocity of each
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(a) Molecular heat transfer
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X

Nitrogen flask Oxygen f lask

(b) Molecular mass transfer

Laminar or molecular transfer

--ys=-=E”

Direction of
fluid  flow Turbulent or eddy transport

(c) Momentum transfer L Examples of transport.

molecule in the fluid changes from point to point in many flow problems.
Mathematically the velocity gradient is XJJdy,  the rate of change of the
velocity in the x direction (U,)  with respect to the y direction. In the last two
paragraphs describing heat and mass transfer, the reader easily visualized what
was being transferred and the nature of the driving force. In the case of
momentum transfer, momentum flux (t) is being transferred, and the velocity
gradient (dU,/dy)  is the driving force; both of these are difficult to visualize
and will be discussed further.

. Fluid flow is a simple example of momentum transfer. The driving force
for fluid flow is a pressure difference. For example, when the valve in a
drinking fountain is opened, the water flows out in a jet because the water
pressure inside the fountain is much higher than the atmospheric pressure into
which the jet discharges. Figure 2.l(c)  shows a simple example of the flow of a
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? fluid (gas or liquid) in a pipe. A pump or fan may force the fluid through the
pipe. If a very small pump or fan is used (thus creating only a small pressure
drop), the flow in the pipe will be relatively slow and will be laminar. If there
is a large pressure drop, the flow in the pipe will be much larger and probably
turbulent. Let Fig. 2.l(c)  represent smoke-filled air being blown through the
pipe. In the laminar case (molecular transport), the fluid issues from the pipe
in a smooth, ordered fashion. In the turbulent case, the fluid motion is chaotic
with blocks of molecules (called eddies) moving in all directions.

In summary, the molecular mechanisms involve transport of heat by
conduction, of mass by molecular dilfusion,  and of momentum as occurs in
laminar fluid flow. A limited analogy among these three transport phenomena
can be used to help gain better insight into the processes of the transfer.
However, care must be taken not to carry the analogy too far, and its
limitations will be indicated as our development proceeds.

2.1 THE ANALOGY

It is common to formulate a general rate equation as

(RATE) = (DRIVING FORCE)/(RESISTANCE) (2-1)

In Eq. (2.1),  as the driving force increases, the rate increases. Also the larger
the resistance, the smaller is the rate. Common sense verifies Eq. (2.1),  and it
is useful to begin discussion of the transport analogy with a simple example
from our experience of heat transfer in the world around us.

2.1.1 The Case for Heat Transfer

In heat transfer, the driving force is the temperature difference. Our intuition
and experience tells us that heat can be transferred from a hot region to a
colder area. For example, consider a block of copper, in which the sides are
insulated so that heat conduction occurs only in one direction, the x direction.
At this point, it may be helpful for the reader to draw a picture of the block on
a piece of scratch paper. Let the initial temperature of the block be 273.15 K
(OOC).  Next to your drawing of the block, plot a temperature profile, i.e., T
versus x. Note that initially for all values of , T is constant and equal to
273.15 K. Label this curve “t = to”. f

i

Now a temperature difference is established by placing the copper block
on top of a block of ice and by immersing the toR  of the block in steam so that
the top temperature is instantaneously raised to 373.15 K. Let us draw a
second picture of the block and a second temperature profile, this time with
the temperature at the hot end equal to 373.15 K. Elsewhere, the block is still
at 273.15 K. Since this is the very first instant of time for the experiment, there
has been no time allowed for the temperature below the upper surface to be
raised. However, shortly after commencing the experiment, the temperature
begins to rise in the areas below the upper surface. At this point a third
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q temperature profile must be drawn-a curved shape from 273.15 to 373.15 K.
Label this curve “t = t ”i . This curve is shaped like a parabola, but its exact
nature is a complex solution of the unsteady-state problem (to be covered in
Chapter 13).

At some later time tz, the temperature profile will still be curved.
However, the profile will be flatter and more nearly a straight line. Finally,
when time equals infinity (t = t,, steady-state), the profile will become a
straight line.

These temperature profiles have been plotted together in Fig. 2.2. The
linear temperature gradient in Fig. 2.2 is an experimental observation and,
provided enough time is allowed, the linear temperature distribution is
observed as long as the temperatures at the bottom and the top are maintained
at the same preset values. The observation is attributed to Fourier, and the
equation given below is named after him. The readers’ attention is drawn to
the fact that once steady-state is achieved (t = r,),  the temperature profile in
the block is invariant with further increase in time. The system is therefore said
to be at steady-state. The heat from the steam is conducted down the
temperature gradient to the bottom where it is absorbed by the ice and causes
melting. The heat being transferred per unit time and unit area, or what is
called the heat flux, is directly proportional to the difference between the
temperatures and inversely proportional to the distance;~  this is the tempera-
,ture gradient (dT/dx).  The proportionality is shown by the equation in the
figure and is

(q/A),  = -k(dTldx) (2.2)

where q is the amount of heat transferred per unit time, A is the area, and the
subscript x on the flux term denotes that in Eq. (2.2) the heat flux is considered
in the x direction only. The proportionality constant k is called the thermal
conductivity. It varies from material to material over a wide range, as will be
discussed later. For now, only this one-dimensional case will be treated.;
multidimentional  cases will be introduced in Section 2.2. Partial derivatives
were used in Eq. (2.2),  rather than total derivatives because more than one
direction may be involved.

The minus sign in Eq. (2.2) is required because the heat flows from hot to
cold. In Fig. 2.2, the plot of T versus x shows that the gradient or derivative
(dT/dx)  is positive. Common sense tells us that the heat will flow from the top
of the block (373.15 K) to the bottom (273.15 K). Hence the heat flux (q/A)x  is
in the negative direction, and Eq. (2.2) requires the minus sign. Note that the
direction of (q/A), is labeled in Fig. 2.2.

The quantity q is the rate of heat transfer, and has typical units J s-’ or
Btu h-‘.  Therefore, if Eq. (2.2) were to be rearranged into the form of the
generalized rate equation, Eq. (2.1),  the results would be.

rate = q

resistance = ax/(M)

driving force = LJT

( 2 . 3 )
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FIGURE 2.2
The  analogy of the transport phenomena (SI units are shown below the quantities in the
equations).
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It is often useful to cast Eq. (2.2) into its “resistance” form, especially when
heat conduction through a wall is combined with heat transfer to and from
fluids on either side. Such advanced problems are in later chapters.

The profiles in Fig. 2.2 for t = cl and t =. t2  are for the case of
“unsteady-state” heat transfer. The temperature at any location x in the block
is increasing as time passes from the start to steady-state. Calculation of
unsteady-state profiles will be given in Chapter 13.

2.1.2 The Case for Mass Transfer

A gaseous material in a box is taken as the mass transfer example. Let us
suggest that by some magical means, possibly chemical, the concentration at
the bottom is maintained at zero level. At the top there will have to be a
source of the material maintained at a higher level denoted by C,,  which has
units of moles per volume. At the instant of starting the experiment, the
concentration distribution is given by the line marked t = to.  Not enough time
has been allowed for any of the material to ditIuse  into the box. However, at
some later time Cl, material has diffused  towards the bottom and the
concentration gradient as shown in Fig. 2.2 is formed. A little later in time at
t = t2,  the gradient will look like that shown. If enough time is allowed, a
linear gradient will form as denoted by t = t,.

The similarity of mass transfer to heat transfer is apparent. The curves in
Fig. 2.2 for various times are nearly the same, and one might suspect that the
equations are similar also. Let the molar flux (JJA), be the moles of species
A being transferred per unit time per unit area with respect to a plane across
which there is no net volume flow.’ Experimentally it is observed that the
molar flux (JJA), at steady-state (and constant temperature and pressure) is
proportional to the difference in concentration and inversely proportional to
distance from boundary to boundary. The difference in concentration of
species A divided by the difference in length for a differential element of the
box is called the concentration gradient. The concentration gradient is denoted
by (X,J&). The equation which represents the experimental observation at
steady-state is

(J,lA), = -D(ac,/ex) i
(T = constant)
(p = constant)

Again, the subscript x denotes mass transfer in the n direction only. The
proportionality constant D is called the diffusion coefficient. Less commonly,
D is referred to as the molecular mass diffusivity or just mass difisivity.

’ Most other authors denote this fh~x as JA or Jx.  Our convention of the flux  as (JJA),  is justified
to emphasize the analogy being developed in Fig. 2.2 and to assist in solving problems where the
area is not constant (Chapter 4).
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Equation (2.4) is named after Fick who suggested it in 1855. In Fick’s law, the
flux of A, (J,JA)x,  occurs with respect to a plane across which there is no net
volume flow (cf. Section 2.3). The added complication of a net volume flow is
considered in detail in Chapter 5.

2.1.3 The Case for Momentum Transfer

As the final example, consider a fluid maintained between parallel plates, as
illustrated in the bottom picture of Fig. 2.2. The lower plate remains
motionless, and a force is applied to the top plane to maintain it at a velocity
17. Because of the internal frictional resistance in the fluid and the friction
between the fluid and the plate, the fluid between the plates begins to move
with the top plate. For the same reasons, the fluid in contact with the lower
plate which is not moving remains stationary. This is an experimental
observation and is called the no-slip condition at the boundary. It is, however,
true even for such non-wetting materials as mercury in contact with glass.*

Figure 2.3 shows the coordinate system that is usually used for momen-
tum transfer. Note the change from the simple, one-direction coordinate in
Fig. 2.2. In Fig. 2.3, it is necessary to have two coordinates: x (the direction of
the velocity U,) and y (the direction for the change in U,  and the direction of
momentum transfer).3

At the instant of starting the upper plate into motion,.there  has been no ,

-F-

Fhdd  between
plates

cJx  =o

FIGURE 2.3
The no-slip boundary condition. A force F is needed everywhere along the plate to hold it
stationary.

‘The  fluid dynamics film loop, Fh46, dramatically illustrates the no-slip condition. See page xix for
details.
3 The convention of x as the direction of flow and y as the direction of momentum transfer, as used
here, was established in the early literature.
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i time allowed for the fluid to be accelerated and the velocity gradient is given
by the curve marked t = to  in Fig. 2.2. At a larger value of t,  some of the fluid
is pulled along with the plate. As time progresses, more and more fluid is
drawn along with the plate until at a very long length of time, denoted by
t = t,,  a linear velocity gradient develops.

Let the force on the top plate in Fig. 2.3 be of magnitude F and let the
area of the plate be A. The ratio F/A is commonly called the shear stress,
which is equal in magnitude to the momentum flux t.  For the steady-state case
(t = tm)  where the flow is laminar between the moving plate and the stationary
plate, it is experimentally observed that

FIA = rYx  = -p(dU,.dy)

Equation (2.5) is Newton’s law of viscosity, where the proportionality constant
~1  is the viscosity of the fluid. Typical units of p are kg m-l s-i  (N m-* s) in SI,
or lb,,, ft-’  s-l (lbf  ft-* s) in the English system. At steady-state, the velocity
gradient aU,Jay  is constant, the viscosity p is constant and, since A is
constant, F must also be constant or the same everywhere. The sign of F
depends on the coordinate system being used, and may be equal in sign or
opposite in sign to the momentum flux r. Regardless, the velocity gradient is
always opposite in sign to the momentum flux. Physically, the momentum flux
is the transfer of momentum through the fluid from the region of high velocity
to the region of low velocity. The force F will not be considered further until
Chapter 7.

In Eq. (2.5),  the double subscript on the shear stress, i.e., rrX,  implies
that there must be other components of the shear stress (see Section 2.4). For
now, the part being considered is the transfer in the y direction as a result of
an x velocity component; note that the x velocity component changes
magnitude as y increases or decreases. Convention dictates that the first
subscript (y) refers to the direction of momentum transfer, and that the
subscript (x) refers to the direction of the velocity; thus rvX is used in Eq. (2.5)
and Fig. 2.3.

The similarity of Newton’s law, Eq. (2.5),  to the laws of Fourier and Fick
is readily apparent. In the case of Fourier’s law, the example was a hand-held
rod in a fire. If the temperature of the fire increases, the temperature gradient
aT/ax  also increases, and therefore the heat flux increases. This simple
experiment is easy to visualize. The mass transfer example in Fig. 2.l(b)  is just
as easy to understand. However, in Fig. 2.l(c), the reader can easily visualize
a fluid in motion, but not a shear stress or momentum transfer. Hence a
detailed explanation of momentum transfer is required.

In the case of both the mass and the heat transfer, a quantity was being
transferred per unit time per unit area. The case of momentum transfer is the
same. The definition of momentum is mass times velocity. In the following unit
analysis, the momentum flux (also called shear stress) ryX is shown to be
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equivalent to a force per unit area:

trx = (mass)(velocW  _  E
(time)(area) -A

SI Mitt?
(W(m s-l)  (W(m)

(s)(m”) =(s30=Nm-2

CW

(lb,)@  s-l)
(s)(ft’)(lb,,, lb;’ ft s-2) = lbf  *-2

In the above equation using SI units, velocity has units of m s-l,  and one
newton is one kg m s-~. Thus, both the shear stress and the product of velocity
times mass per area per time are clearly shown in Eq. (2.6) to be force per
area. Therefore, the shear stress, which was previously defined as force per
area in Chapter 1, is indeed a momentum flux, as proven by Eq. (2.6).

Momentum transfer is easier to visualize’ in Fig. 2.3 than in Fig. 2.l(c).
At steady-state, when the top plate is pulled in the x direction with force F,
there must be the same force on the bottom plat-qua1  and in the opposite
direction. Thus, the momentum of the top plate is transferred via the fluid to
the bottom plate.

Momentum transfer is not experienced in the same sense as heat being
transferred along a rod from the fire to a hand. To illustrate the existence of
momentum transfer, let us use as an example a deck of playing cards. When
the cards are sitting on the table and they are new, one can, with a simple flick
of the thumb, cause the topmost card to fly from the deck. There is little
interaction between the cards and they fly off one by one. After a few hours of
card playing and in particular on a warm and humid night, if the experiment is
repeated, one will find that a number of cards wilI move, and the deck will fan
out. Yet all that has been done is to push the top card. What has happened?
The top card has a mass and, because it has been given a velocity, it has
momentum. In the first experiment, little of this momentum was transferred to
the card below. But in the latter experiment, a considerable amount of the
momentum was transferred because the frictional resistance between the cards
caused an. interaction. In effect, by pushing the top card, one has induced a
momentum in the card below: the card has a mass and has been given a
velocity. Looking at the third card, the same thing has happened but somewhat
less, and so forth. Momentum, mass times velocity, has been transferred from
the top card all the way down the deck. In the analogous case, as in Fig. 2.3,
the fluid during laminar fluid flow can be pictured as lying .in layers, i.e.,
laminae. Moving the top layer transfers momentum from the top layer to the
next and so forth. The fact that momentum is first applied only to the top and
that subsequently momentum appears below is indicative of momentum
transfer. The momentum, mass times velocity, has been transferred from the
top layer to layers lying further down in the fluid.
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An important manifestation of transfer of momentum is in the pumping
of fluids. As a result of flow in pipes, tubes, ducts or channels, a pressure drop
or loss occurs when momentum is transferred from fluid to wall. In the design
of flow systems, this pressure loss determines the size of pump or compressor
needed to maintain the desired flow.

2.1.4 The Analogous Forms

Three analogous equations (often called constitutive relations) have been
introduced: Fourier’s law for heat transfer, Eq. (2.2),  Fick’s law for mass
transfer, Eq. (2.4),  and Newton’s law for momentum transfer, Eq. (2.5). In
each of the foregoing equations, a minus sign has been used in the
proportionality. This was not arbitrary, for in each case the flux is transported
down the corresponding gradient. For example, the heat is transferred from
the higher to the lower temperature. In the direction from our hand to the fire,
the temperature increases so that the temperature gradient from the hand to
the fire is positive, but the heat goes from the fire to our hand. Thus, the flux
of heat is transferred from the higher to the lower temperature and down the
temperature gradient. The same is true for the concentration gradient and
molar flux.

Fluid mechanics developed as a subject earlier than heat or mass transfer.
Momentum transfer is a modem way to look at fluid mechanics. For
momentum transfer, momentum is transferred from the high-velocity region to
the low and thus the negative sign is required in Eq. (2.5). However, in earlier
days, before the momentum transport concept and the analogy, a positive sign
was used in Eq. (2.5). Since momentum transfer and its direction were not of
concern, it did not matter what sign was used, as long as the use was
consistent. There are some textbooks today which do not concern themselves
with transport phenomena concepts and still retain the use of a positive sign in
Eq. (2.5).-  -

The three empirical laws [Eqs.  (2.2),  (2.4),  and (2.5)]  established by
observation many years ago are useful only when point properties are
involved. Thus when the properties cannot be regarded as continuous these
equations do not apply. Simply stated, the laws of Fourier, Fick, and Newton
apply only to a continuum. The three proportionality constants in these
equations are three fundamental properties. The first, k, is the thermal
conductivity; the second, D, is the diffusion coefficient (the mass diffusivity);
and the third, ,u,  is the viscosity (also called the molecular or dynamic
viscosity).

The analogy is of much more recent origin. The three equations (Eqs.
(2.2),  (2.4),  and (2.5)) are quite similar. Each involves a flux term, a
proportionality constant, and a gradient of some measurable parameter.
However, the equations are not exactly in their analogous forms. A general
one-dimensional flux equation is % ‘.?,

w, = -s(a (2.7)
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9 where W’,  is the flux in the x direction of whatever is going to be transferred
per unit time per unit area, 6 is the proportionality constant, which this book
will refer to as the diffusivity, and finally G’q/ax is the derivative (gradient) of
the concentration of property pv.  The quantity q  is the concentration of
whatever it is.  that is transferred in the units of the item to be transferred per
unit volume. In order to apply Eq. (2.7), each transport equation must be in
the appropriate form. Inspection of Eqs. (2.2) and (2.5) shows this not to be
the case. For example, the temperature in Eq. (2.2) is in units of degrees and
is not a quantity per volume. Also, as a result of our coordinate selection in
Fig. 2.2, the derivative aq/ax  must be changed to ary/ay  in the case of
momentum. Nevertheless, it is a simple matter to convert the equations to
their mathematically analogous forms.

Heat transfer. In the case of heat conduction, q is being transferred; its units
are joules (or cal or Btu) per unit time. The term ly,  which is the concentration
of property, must have the units of J md3, which is not consistent with any of
the terms in Eqs. (2.2) or (2.3). The following illustrates how to convert
temperature driving force (dT)  into the heat contained in the body (J m-‘).
First, the property that is associated with the heat content of a body is the heat
capacity I+, typical units J kg-’ K-i.  Therefore, the product of (c,T)  may have
units of J kg-‘. To convert the term aT  to units of J rnm3,  ,the density p must
also be included:

T Punits: CP = pc,T

(2.8)
K  k g  mm3 J  k g ”  K-’  =  J  mV3

The term pc,T  is the concentration of heat and has units of J rne3.  Now,
Eq. (2.2) is converted into its analogous form by multiplying the right-hand
side by the fraction pcp/pcp  :

(q/AL  = -~ki(pc,)i[a(pc,T)iaxi  = -4wc,Twi (2.9)

Mathematically, there was an additional assumption in Eq. (2.9),  namely that
the product pep  is constant, in order to arrive at the term a(pc,T)/ax.  The
group k/(pc,)  is often represented by (Y (units m* s-‘)  and is called the thermal
diffusivity; i.e.,

k(y=-
PCP

(2.10)

Mass transfer. In Fick’s law, Eq. (2.4),  the mass transfer flux (JJA), is in
units of kmol m-*s-r,  and the concentration CA is in units of km01m-~.
Therefore, the equation is already in its analogous form. The proportionality
constant D is the diffusion coefficient or mass diffusivity in units of mz s-l.

Momentom  transfer. The momentum equation, Newton’s law, must be treated



MOLECULAR TRANSWRT MECHANISMS 27

$ in a manner similar to that for the heat. The left-hand side of Eq. (2.5) is in
the form of a flux. In order to obtain the concentration of momentum that is
being transferred, the density is multiplied by U,. The units of PU, are
kg rn-‘s-r  or N mV3 s. After multiplying Eq. (2.5) by (p/p)  and rearranging,
the result is

tyx  = F/A  = -[~/P][~(PUJ/~Y]  = -v[WUx)t~yl (2.11)

The proportionality constant ~1  is the molecular viscosity. When ~1  is divided by
the density p,  the result is called the kinematic viscosity v (or sometimes the
momentum diffusivity):

v=ptp (2.12)

In Eq. (2.11) the density p has been assumed constant in order to form the
term f%dL)l+~.

Srunmary. The one-dimensional transport equations are now in their analo-
gous form and are reviewed in Table 2.1. One must emphasize that Eq. (2.7) is
a mathematical analogy as applied to the three transport phenomena. The
equations are the same from the mathematical standpoint. With a given set of
boundary conditions, a solution for one is a solution for all; the only difference
is in the symbols representing the various terms. This mathematical analogy in
no way means that the physical mechanisms occurring in the three cases are in
any way the same. The mechanisms are totally different. For the heat
conduction example, the heat is conducted from the fire towards our hand
through energy transfer mechanisms which are dependent upon the material
contained in the rod. In metals, the rapid migration of an energy-containing
“electron gas” is the primary energy transfer mechanism. Mass transfer often
involves at least two materials, one material being transferred by relative
motion through the other. In the latter case, the molecules move from one

TABLE 2.1
The one-dimensionaI  transport equations in their analogo1~3  foms

kglll-‘S-Z

@@m-2s-’ ds-’ @@  m-‘mm’

IO  the row for units, the symbol (@@)  stands for whatever is being transferred. It can be joules  (J) for the case
of  heat  transfer ,  kilomoles  for the case of  mass transfer,  or momentum (in units  of  kg m s-’  or  i t s  equivalent
Ns).
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ib
place to .another, whereas in heat transfer through a solid rod the molecules
are relatively stationary. Momentum transfer involves a combination of
mechanisms which, for the most part, are different from those of the other
transports. Thus, let us emphasize again that our analogy is mathematical in
nature. However, even this mathematical analogy is not completely adequate.
Each of the transports has its own complications, and these will be discussed in
future sections.

The following examples illustrate the use of the basic transport laws.

Example 2.1. Calculate the steady-state heat flux across a copper block 1Ocm
thick, one side of which is maintained at 0°C and the other at 100°C (see Fig.
2.4). The thermal conductivity can be assumed constant at 380 W m-i  K-l.

Answer. The physical situation is that given by the steady-state curve of Fig. 2.2,
and the controlling equation is Eq. (2.2). The area through which the heat is
being transferred is constant, and there is only one direction of transfer, the x
direction. First, the variables in Eq. (2.2) are separated:

[=‘(q/A),  dx  = 41%  dT (9
1, T1

This equation can be easily integrated- if the heat flux (q/A), is constant. At
steady-state, it is obvious that all  the heat (q) that enters at face 2 must leave at
face 1, if there is no internal generation. Since the area is constant, then it follows
that the flux is constant. In Section 4.1.1, it will be proved that (q/A), is constant
for this geometry. After integration, Eq. (i) becomes

(q/A)&  -xl) = -4Z - T)

The quantities AT and Ax are

(ii)

AT=T,-T,=lOO-0=100degC=100degK (iii)

h=xxz-x,=lOcm=O.lm 69

Insula t ion

- (q/A),  - -)x

T,=looT

= 273.15 K = 373.15 K

Insu la t ion

FIGURE 2.4
Heat transfer across a block.
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Fluid between
p l a t e s Y

t.r
II

u, = 0

FIGURE 2.5
The moving plate problem.

These  are  subs t i tu ted  in to  Eq.  ( i i ) :

(q/A)* = -(380)(100)/(0.1)  = -3.8 x 16 W mm2

or in alternate units:

(4

(q/A)z  = -3.8 x 1O’J m-* s-’ = -9.1 cal cm-‘s-l (4

_* The temperature increases from 1 ,to  2 ;  the  minus  s ign  indica tes  the  hea t  f lux  i s
oppos i te  to  th is ;  i . e . ,  f rom 2  to  1 .

Example 2.2.  Two paral le l  p la tes  are  10 cm apar t .  The bot tom plate  is  s ta t ionary.
The fluid between the plates is water which has a viscosity of 1 centipoise.
Calculate the momentum flux and force per unit area necessary to maintain a
plate in motion at a velocity of 30 cm s-‘.

Answer. Figure  2 .5  i l lus t ra tes  th is  example ,  and Eq.  (2 .5)  appl ies :

ryx = F/A = -p(dU,/dy)

It will be proved later that tYI is a constant for this problem. If so, the variables in
Eq. (2.5) may be separated and integrated, as shown in the previous two
examples for heat and mass.  The result  is

The  quant i ty  ACJ,/Ay  for  the moving plate  problem is  cal led the shear  rate:

AU,/Ay = XJ,/ay  = (0.3)/(0.1) = 3 s-’ (ii)

Viscosity conversions are in Table C.17:

fi  = 1 CP  = 0.01 poise = 0.001 kg m-’ s-l (iii)

Using this  information in Eq.  (2.5)  gives the momentum flux rYX:

qx  = -(0.001)(3)  = -0.003 kg m-’ s-*  = -0.003 N m-’ (iv)

The minus s ign indicates  the momentum is  t ransferred in  the minus y direct ion
(down in Fig. 2.5); note that the shear stress (F/A) at the top plate is the same in
magnitude as  the momentum flux,  but  of  opposi te  s ign.
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9 Expslple  2 .3.  Consider  the  apparatus  in  Fig .  2 .5 .  I f  water  i s  replaced wi th  a  f lu id
of viscosity 10 cP, and if the momentum flux remains at 0.003 N m’*, find the new
velocity of the top plate.

Answer. Equat ion ( i )  of  the  previous  example  is  solved for  AU,:

A& = -r,,(Ay)/y  = -(0.003)(0.1)/(0.01)  = 0.03 m s-’ = 3 cm s-r (9

Thus, it is seen that increasing the viscosity by a factor of 10 reduces the velocity
of the plate by the same factor.

2.2 HEAT TRANSFER

The transfer of heat can be found throughout industrial processing. Heat must
be removed when it is generated in compressions or in chemical reactions such
as found in process reactors, power plants using chemical combustion or
nuclear sources, etc. Heat or other energy must be provided in purification
processes and is often needed in mass transfer operations such as drying and
distillation. The conservation of heat in plants is important because heat loss is
costly; thus, in large plants one finds extensive use of heat exchangers, which
are pieces of equipment to remove heat from one stream and transfer it to a
second stream. One aspect common to all three transport phenomena is the
three-dimensional nature of the world. All previous equations have been valid
for transfer in one direction only. Suppose a camper held one end of a copper
rod in the shape of a wide “L” in a fire and the other in his hand. Our
experience tells us that his hand would get burned. The flow of heat would not
travel just in one coordinate direction, but would travel around the bend in the
rod. The conclusion from this experiment is that the heat flux, and the
temperature gradient as well, are vector quantities.4  Fourier’s law is

(q/AL  = -k(dTlax) (2.2)

Equation (2.2) is actually only the x component of the general three-
dimensional equation. The other two components are:

y component: (q/A), = -k(dTl+) (2.13)

2 component: (q/A)*  = -k(dTldr) (2.14)

These components can be added as any components of a vector and result in

(q/A) = -k[i(dTldx)  +j(i?Tli?y)  + k(dTldz)]

or
(q/A) = -kVT (2.15)

4 For those not familiar with vectors from their calculus courses, a brief tutorial should be covered
here before going further. Physics film loops VK 1 through VK6 can be of considerable help at
t h i s  P o i n t .
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;siE where (q/A) is a vector quantity. Also i,  j, and k are the unit vectors in the x,
y, and z directions, respectively, and V (del) is an operator which may operate
on any scalar. Using T as an example, the term VT is:

VT = i(dT/dx)  + j(aT/cSy)  + k(dTlh) (2.16)

In Eq. (2.15) it has been assumed that the thermal conductivity is the same in
each direction, i.e., it is isotropic. If the material is anisotropic, a reasonable
approximation is

(q/A) = -[ikJaT/&)  + jk,,(aT/ay)  + kk,(~3T/az)] (2.17)

where k,, k,.,  and k,  are the thermal conductivities in the three directions.
Anisotropic conduction can occur in wood, films, fibers, and certain crystalline
materials. In wood, differences are observed if the conduction is with or across
the grain. The solution of differential equations such as Eq. (2.17) is relatively
simple for the one-dimensional case, but can be quite complex for two- or
three-dimensional problems. The general vector form can be derived in a
similar manner, but also can be written down by inspection and the use of our
analogy; i.e.,

\v= -6Vly (2.18)

Example 2.4.  Compare the rates of heat  transfer across a’sample of  whi te  p ine
wood when the transfer is across the grain and when it is parallel to the grain.

Answer. The thermal conductivity of this sample can be found in standard
references, such as Perry’s Chemical Engineers’ Handbook [Pl]. For white pine

Across  the  gra in :

k = 0.087 Btu h-’  fi-’ ‘-‘F-l - (9

Parallel to the grain:

k = 0.20 Btu h-’ ft-’ OF-’ (ii)

For a  given area and temperature gradient ,  the relat ive rates  of  heat  t ransfer  are
g iven  by  the  thermal  conduc t iv i t i es  (Eq .  2 .17) ;  thus ,  whi te  p ine  wood conduc ts
heat 2.3 times faster (0.20/0.087 = 2.3) parallel to the grain than across. Note that
one need not convert to SI units, as clearly all the conversion factors cancel out.

Example 2.5.  A glass rod of  diameter  1.3 mm is  1 m long.  One end is  maintained
at the normal boiling point of toluene, 110.6”C.  The other end is af8xed to a
block of  ice .  The thermal  conduct ion a long the  rod is  a t  s teady-s ta te .  The heat  of
fusion of ice is 79.7calg-‘. The thermal conductivity of glass in SI units is
0.86 W m-*  K-’ (Equivalent units are J m-’ s-r K-’ and J m-‘s-’  (K-r m).)
Assume no heat is lost from the exposed surface of the rod. Find:

(a)  the amount  of  heat  t ransferred in  joules  per  second;
(b) the number of  grams of ice that  melt  in 30 minutes.

Answer.  This  problem is  a  one-dimensional  heat  conduct ion problem,  and Eq.
.
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(2.2)  appl ies

(q/A),  = +X/i%) (2.2)
At s teady-s ta te ,  (q/A), is  constant .  Thus,  Eq.  ( i i )  f rom Example 2.1 fol lows:

(qlA)x(hx)  = 4 A T (9
where AT is  the  temperature  dif ference a long the rod and Ax is  the  tota l  length of
the path of conduction. Ice melts at 0°C.  Now the quantities AT, AX,  and the
heat flux are

AT= T2- T,  = 110.6-0=  110.6degC=  110.6degK (ii)

Ax=x*-x,=lm (iii)
(q/A), = -k(AT)/(Ax)  = -(0.86)(110.6)/1=  -95.1 Jm-‘s-’ (iv)

The +x coordinate has been selected from T, to T2, i.e., in the direction of the
increase in temperature.  Thus,  the f lux must  be negative.  The area of the rod in
m*  is

A = nd2/4  = 3t(0.0013)2/4  = 1.327 x 10m6  mz

The heat flow is flux times area:
(4

qx  = (q/A),(A) = (-95.1)(1.327  x 10-6)  = -1.26 x lo-‘J s-r

The heat  of fusion of ice is
.e

(79.7 cal g-‘)(4.184  J ca-‘) = 333.5 J g-r (vii)

By  making the appropria te  uni t  equat ion,  the  ice  mel ted in  grams per  30 minutes
equa ls  q t imes  6Oseconds  per  minute  t imes  30minutes  d ivided by the  heat  of
fusion:

(1.26 X 10~4)(30)(60) (J s-‘)(min)(s  min-‘)
(333.5) (J g-‘) > = 6.8 X 10e4  g of ice melted (viii)

2.3 MASS TRANSFER

Like heat transfer, mass transfer is also described by a vector equation in three
dimensions. Fick’s law becomes

(J,/A)  = - DVC,
(T = constant)
(p = constant) ,

(2.19)

where ,’

vcA  = i(ecA/&)  + j(ac

any of the three coordinate directions. Equation (2.19) is obtained by analogy
from Eq. (2.15) or from Eq. (2.18). However, even in one dimension, the
mass transfer analysis has an additional complexity which does not exist for the
corresponding heat transfer case. Let us return to our example, the two flasks
of nitrogen and oxygen in which the diffusion of two components is occurring.
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ie Whenever a particular molecule of this mixture diffuses, it must diffuse
through other molecules; consequently, in almost every practical example
there are at least two components present and possibly more. In many
chemical engineering operations, separation of molecules is paramount, and
mass transfer is the process that effects the separation.

Mass transfer in industrial equipment often occurs between two streams,
one of which is being enriched by mass transfer at the expense of the second.
For example, in distillation the rising vapor contacts the descending liquid with
the more volatile components being transferred from the liquid to the gas,
which results in an enriched overhead product of the more volatile materials.
Production of brandy is a tasty example. Such mass transfer operations are
usually classified as being unsteady-state or steady-state and batchwise or
continuous. Drying is an unsteady-state batchwise operation. Evaporation of
water in a cooling tower is a steady-state continuous operation. Successive
washing of a solid containing a soluble salt by water is a batchwise operation.
The distillation system described above is often done as a continuous
operation, but can also be done batchwise. A gas absorption column is another
continuous-contact operation where the gas rises as bubbles through a
descending liquid. Equations (2.4) and (2.19) are for the diffusion of the
component A. Let us call the second component B, and let us say that A is
diffusing through a mixture of A plus B. There are two possibilities for B: B
may diffuse or it may not. The case of B nondiffusing is called “diffusion
through a stagnant film of B” (see Section 53.3). If B diffuses, then there must
be another equation for the diffusion of the B component; i.e., for the x
direction:

(JtilA),  = -D(X,lih)
(T = constant)
0, = constant)

For the three-dimensional case:

#,/A)  = -DVC,
(T = constant)
(p = constant)

(2.21)

(2.22)

Equations (2.4),  (2.19),  (2.21) and (2.22) all contain the diffusion
coefficient D, thus implying that D is identical in all these equations. This
assumption is true only for a system of two ideal gases. The approximation is
often reasonable for real gases; however, for liquids, the diffusion coefficient in
Eq. (2.19) does not equal the diffusion coefficient in Eq. (2.22). If the system is
binary, Eqs. (2.4),  (2.19),  (2.21),  and (2.22) in more general form require that
the quantity D be replaced with DAB  (the diffusion coefficient of component’ A

diffusing  through a mixture of A plus B) or with DaA  (the diffusion coefficient
of component B diffusing through A + B). When it is important to distinguish
between DAB  and L&, the appropriate subscripts will be used. Diffusion with
three or more components is extremely complex, and will be discussed briefly
in Section 5.3.7.

Diffusion may occur in solids, liquids, or gases. In this section, the case of
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c A . 1
(I,lA),  - c B . 2

-  (J,lA), C C
a.1

A.2

1
i Fluxes i c4ulcentration  protiks

(T = constant) (P = cmstant)

FIGURF, 2.6
One-dimensional, two-component equimolar counter diffusion.

binary  diffusion between two ideal gases under conditions of constant
temperature and pressure will be considered. A more general treatment is
given, in Chapter 5.

Notation.  Figure 2.6 represents a typical case of steady-state dilfusion  between
points 1 and 2 under conditions of constant temperature and pressure. Let
both species A and B be ideal gases. A typical problem of interest to engineers
is to calculate the,rate of movement of gases A and B through the apparatus in
Fig. 2.6. Since the apparatus is fixed in space, the rates of movement of A and
B must be determined relative to fixed coordinates, not relative to the volume
velocity, as in the term (JJA),.  Let NA  be the moles of A that pass by an
arbitrary location x in Fig. 2.6; let & be the-moles of B that pass by the same
location. The quantities NA  and Nu are termed the molar flow rates, typical
units (km01 s-l); these are vectors as well. Often, it is convenient to define  a
molar flux (NJA),  that is the flux of A with respect to fixed coordinates. In all
problems in this chapter, the flux (JJA), equals the flux (N,/A)x.S

,

Eqaimolar  counter dilfosion.  Figure 2.6 shows two gases that are diffusing
under conditions of constant temperature and pressure. Since both gases are at

s In most engineering processes involving mass transfer, there is a volume flow rate. caused by a
diEerence  in pressure. In this chapter, (IA/A),  is the molar flux with respect to a plane of no
volume Bow. Fick’s law, which is presented in terms of the flux (JJA),,  applies in a coordinate
system that moves exactly with that volume flow. Naturally, it is more useful to solve problems
with respect to lixed  coordinates, i.e., with respect to the boundaries represented by the walls of
the apparatus. Then it is necessary to calculate the fhtx (NJA),,  not the flux (JJA),.  In Chapter
2, all mass transfer problems have been selected so there is no net volume flow; then these two
fluxes are equal. Unfortunately, the mass transfer literature has introduced other guxes  as well. A
complete discussion is in ,Chapter 5.
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)e the same pressure, it follows from the ideal gas law that as a malecule  of gas A
traverses from left to right in Fig. 2.6 that molecule must be replaced with a
molecule of B in order to maintain a constant pressure. Since at any arbitrary
location x the number of molecules is always constant, there can be no volume
fiow.  Such a diffusion is called “equimolar counter difIusion”.  Then for
equimolar counter diffusion:

NA  = -NB w3)

The minus sign in Eq. (2.23) is required because B diffuses in the minus x
direction. Since the diffusional area in the apparatus in Fig. 2.6 is constant,
then the fluxes of A and B are equal in magnitude and opposite in sign:

WA/AL  = -(WA), (2.24)

Since there is no volume flow in Fig. 2.6 under conditions of constant pressure
and temperature, the flux with respect to stationary coordinates equals the flux
with respect to the volume velocity:

(N,,/A),  = (J,JA),  = -D,.&X,lax) (2.25)

(Nd4)x  = (&/A), = --DB,&CB/~~) (2.26)
(T = constant) (P = constant) (Ideal gas)

In conclusion, Fick’s law applies directly to the examble  in Fig. 2.6 if the
three restrictions noted above-apply. Note that gas A is being supplied at face
1 at the same rate as it is being diffused and removed at face 2. Likewise, gas B
is diffusing in the same manner but in the minus x direction (hence the term
counter). As many moles are being put in as are being taken out; the total
concentration C-r remains constant since the pressure is maintained constant in
the system:

Cr = C,  + Cu = constant (2.27)

When Eq. (2.27) is differentiated with respect to x, the result is

ac,iax=  ac,lax+ac,iax=o (239
or

ac,lax=-(ac,iax) (2.29)

Combining Eqs. (2.24) through (2.29) results in

DA&%=&A (2.30)

Equation (2.30) is restricted to the binary diffusion of ideal gases at constant
temperature and pressure.

Mass  llnx.  A mass flux is defined simply as the mass per area per time. It is
common practice to define two new fluxes similar to the molar fluxes already
introduced:

(iJ4x = NJ,JAMM.d (2.31)

(d-+x  = W’LI~~I(~A) (2.32)
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bF where & is the molecular weight. The flux (jJA)* is the mass flux of A with
respect to a plane of no net volume velocity; typical units are (kg m-* s-l). The
fhrx  (n,/A), is the mass fhrx  with respect to fixed coordinates in the same
units; then the mass flow rate is nA;  units are (kg s-l).

The corresponding driving force for mass transfer is the mass concentra-
tion of A. The mass concentration is the density P,,,  typical units (kgmm3).
The density and concentration are related by

PA = CAMA (2.33)

When Eqs. (2.31) and (2.33) are substituted into Fick’s law, the result is

O'AIA)~ = -D(dpAldx)
I

(T = constant)
(p = constant) (2.34)

where the diffusion coefficient D in Eq. (2.34) is identical to thz&  in the
previous equations. Equation (2.34) is another expression of Fick’s law. Both
Eqs. (2.4) and (2.34) are restricted to constant temperature, constant pressure,
and no net volume flow.

Equation (2.34) is seen to be in the analogous form of Eq. (2.18),  with

yx = O'AIAL (2.35)

W=PA (2.36)

Partial  pressure!. Under many conditions the ideal gas law is a reasonable
assumption:

pV = nRT (1-1)

Using Eq. (l.l), the concentration can be expressed as

CA = n/V  =p,J(RT) (2.37)

where PA is the partial pressure of A:

PA = ydtotal (2.38)

In Eq. (2.38),  yA  is the mole fraction of A in the gas phase and ptot., (or p) is
the total pressure. When Eq. (2.37) is combined with Eq. (2.19),  one obtains

VA/A)  = -[DI(W][VFA]
I

(T = constant)
(p = constant)

(2.39)

where the flux is now in terms of the partial pressure of A.
The following examples illustrate the application of Fick’s law to a

problem in molecular diffusion and the use of Eqs. (2.37) through (2.39).

Example 2.6. Two gas streams, CO, and air, are flowing in the same direction in
a channel. The channel is divided into equal volumes by a piece of iron 4 cm thick
(see Fig. 2.7). At the plane A-A, there is a hole 1.2 cm in diameter drilled in the
iron so that CO, di&ses from left to right and air from right to left. At the plane
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-A-  - - -A-

t-hem -I FIGURE  2.7
How  system for diffusion.

A-A, both gases are at  a  pressure of  2 atm and a temperature of  20°C. Upstream
of  the  hole  both  gases  a re  pure .  Under  the  condi t ions  g iven ,  the  concent ra t ion  of
COZ equals 0.083 kmol mm3,  i.e., the concentration of CC,  on the left at the point
A. At the right-hand side of the hole, the concentration of CO, in air may be
assumed to  be  zero  because  a i r  i s  f lowing rapidly  pas t  the  hole .  The diffusion
coefficient of CO2  in air is 1.56 x 10m3  m*  s-i.
(a) Find the molar flux of CO,.
(b)  F ind  the  number  of  pounds  of  CO,  tha t  pass  through the  hole  in  the  i ron  in

one hour .

Answer. The CO,  di f fuses  through the  hole  in  the  i ron a t  s teady-s ta te  i f  the  f low
rates of  CO, and air  are constant .  Since both gases are at  the same temperature
and pressure ,  Eq.  (2 .25)  appl ies :

(WA),  = (JJA), = -D,ux(aC,/h) (2 .25)

The concentrat ion of  CO, at  the  a i r  end of  the hole  is  zero (C,  = 0)  as  indicated
in the s tatement  of  the problem. The character is t ics  of  the hole are

L=4cm=O.O4m

d=1.2cm=O.O12m

A = ndd2/4  = 1.131 x 10e4 mZ
(9

At steady-state, the molar fluz  (NJA),  must be constant in the hole
th roughou t  i t s  l eng th  because  a l l  t he  CO2  enter ing f rom the lef t  exi ts  in to  the  a i r
stream. Hence Eq.  (2.25) rearranges to

[(N,IA)ID]  dx  = -dC, (ii)

where (N,/A)/D  is constant and DAB  has been replaced by D. Integrating Eq. (ii)
f rom point  1  (pure  CO,)  to  point  2  ( length  0 .04 m) yie lds

o r
[(N,/A)I(D)][0.04]  = 0.083 (3
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Since D = 1.56 X lo-’  m*  s-‘,  the molar flux with respect to stationary coordinates
(i.e., the &paratus)  is

@,/A),  = [0.083/(0.04)][1.56  X 10e3] = 3.237 x 10m3  kmol m-’ s-’ (v)

For part  (b),  the mass flux expressed in terms of the molar flux (NJA),  i s

hlA)x  = KWA),I(Mt) (2 .32)

where MA  is  the  molecular  weight  of  Cot,  44 .01  kgmol-‘.  The mass f low is the
mass flux times the area:

no = h/ALA  = [WAIA)~IWA)(A)
= (3.237 x lo-‘)(1.131  x 10-4)(44.01)(3600)

0.4539

x (kmol m-*  s-‘)(m’)(kg  kmql-‘)(s  h-‘)

(kg  Wi’) >

/I = 0.128 lb,,, h-r

The mass flow is positive because the CO*  flows from right to left.

(4

Example 2.7. Air. and carbon dioxide are mixed together in a simple “T” pipe.
Air at 3 atm pressure and 30°C enters one end of the ‘,‘T”  at a flow rate of
2  km01  mm-‘.  Carbon dioxide at  3  a tm pressure  and WC enters  the  o ther  end  of
the “T” at  a  f low rate of  4 kmol nun-‘. The two gas streams exit  from the middle
of the “T”, still at 3 atm and 30°C.
(a)  Calculate  the  concentrat ion of  CO1  en te r ing  in  kg  me3.
(b)  Calcula te  the  concentra t ion of  NZ  enter ing in  the  a i r  s t ream in  lb  mol  fim3.
(c)  Calculate  the concentrat ion of  CO, exi t ing in  mol  cmm3.
(d)  Calcula te  the  concentra t ion of  Oz exi t ing  in  kmol  me3.

Answer.  The molecular weight of CO2  is  44.01.  The temperature is

T=30+273.1$=303.15K (9

For gases,  concentrat ion may have units  of  moles per  volume,  n/V. From
the ideal gas law

CA  = n/V =j,/(RT) (2.37)

where p,,  i s  the  par t ia l  pressure  of  component  A,  Eq. (2.38) .  For  a  pure gas ,  such
as the CO*  entering, y,,  is one and PA equals pmt.,,  3 atm.
Put  (a). From Table C.l, the value of the gas constant is 8.2057 x
10m2  atm m3  kmol-’  K-l.  Using  Eq.  (2 .37)  above ,  the  concent ra t ion  i s  ca lcu la ted :

c 3 (atd
co* = (0.082057)(303.15) (atm m’  kmol-’ K-‘)(K) > = “12’  kmo’  m-3

(ii)

which is equivalent to (0.121)(44.01)  or 5.31 kg m-‘. Note that the concentration
is  independent  of  the f low rate  for  the pure mater ia l .
Part  (b). Air is  79 mole percent  ni t rogen and 21 mole percent  oxygen.  Therefore,

.t
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“1E the mole fract ion of  ni trogen is  0.79 and from Eq.  (2.37):

pN2  = (0.79)(3)  = 2.37 atm (iii)

From Table C.l, the gas constant is 0.7302 atmf?lb  mol-‘“R-i.  The
temperature must  be in “R:

From Eq. (2.37):
T = (303.15)(1.8)  K(“R/K)  = 545.7”R

C,,=j&.,,/(RT)=  2.37/[(0.7302)(545.7)]=  5.95 x 10-31bmolft-3 (v)
Part (c). The exiting stream composition must be calculated. The appropriate
basis  is  one minute.  In one minute,  2  kmol of  air  enter  the tee and are mixed with

4 kmol of CO,. Hence the total is 6 kmol, and

kmol CO, = 4

kmol0,  = (2)(0.21)  = 0.42 64
kmol Nz = (2)(0.79)  = 1.58

The mole fract ions (y)  in the vapor phase are:

yq  = 416  = 0.667

yo, = 0.4216  = 0.07 (vii)

Y N2  = 1.5816  = 0.263 /

As a  check,  these  sum to 1 .000;  the  sum of  the  mole  f ract ions  in  any phase
always  sums to  uni ty .  The ca lcula t ion  now proceeds  as  in  par t  (b) :

R = 82.057 atm cm’  mol-’ K-’

Pco, ~~~~~~~~~  = (3)(0.667)  = 2 atm (viii)

C,,=pce/(RT)=2/[(82.057)(303.  15)]=8.04  x 10-5molcm-’
put  (d). The mole fraction of 0,  in the exit stream was found to be 0.07 in part
(c) .  The calculat ion proceeds as  in  par t  (b) :

R = 8.3143 kPa  m3  kmol-’ K-’

po, = (3)(0.07) = (0.21 atm)(101.325  kPa  atm-‘)  = 21.28 kPa (ix)
C,  =p%/(RT) = (21.28)/[(8.3143)(303.15)] = 8.44 x 10m3  kmol mm3

ExampIe 2 .8 .  A tank conta in ing 15 mole  percent  of  CO,  in  a i r  i s  connected  to  a
second tank containing only air. The connection line is 5 cm in diameter and
3Ocm long, as shown in Fig. 2.8. Both tanks are at 1 atm pressure and at
298.15 K.  The volume of  each tank is  very large compared to the volume of  gas in
the 3O-cm  connection line so that concentration changes in each tank are
negligible for a very long time after the beginning of the experiment. The
diffusion  coefficient of CO, in air at 1 atm and 25°C is 0.164 x low4 m*  s-l.
Calculate the ini t ial  rate of  mass transfer  of  the CO,.  Is  the air  t ransferred?

Answer.  Assume that  both gases  are  ideal .  The difisional  transfer  is  equimolar
counter  d i f fus ion,  and Eq.  (2 .25)  appl ies :

(WA),  = (IA/AL  = -D,,,(X,lax) (2.25)
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FIGURE 2.8
Mass  t r ans f e r  sy s t em.

Equat ions  (2 .25)  and  (2 .39)  can  be combined as  fol lows:

WA/A), = -[D/(RT)][@,ldr]  = -[DI(RT)][A~,/h] (9

where (TVA/A),  i s  the  f lux  wi th  respec t  to  the  appara tus  in  F ig .  2 .8 .
The  in i t ia l  ra te  i s  tha t  under  the  condi t ions  g iven  in  the  problem s ta tement

above. After the diffusion has progressed, the rate will decrease as the
concent ra t ion  in  the  two tanks  equal izes .  For  the  case  under  cons idera t ion :

Ax=30-0=30cm=0.3m  ’ ( i i )

A = nd*/4  = (3.1416)(5)*/4  = 19.6 cm*  = 1.96 X 10m3  mZ (iii)

R = 8.314 X 103  N m kmol-’  K-r (9
A~A=~2-~1=O-(0.15)(p)=(-0.15)(1)=-0.150atm

= -1.52 x 104Nm-’ (4

Equat ion  ( i )  i s  so lved  for  the  molar  f low ra te ,  and  the  above  va lues  subs t i tu ted:

=- (1.64 x lo-‘)(l.%  x 10-3)
(8.314 x 103)(298.15)

= +6.57 x lo-”  kmol s-r (9

The plus sign indicates that the diffusion is from 1 to 2 (to the right) in Fig. 2.8. In
order  for  the pressure to remain at  1 atm, a  diffusion of  air  must  occur which is  in
the  oppos i t e  d i rec t ion  and  equa l  to  6 .57  x lo-”  kmol s-l.

2.4 MOMENTUhJ  TRANSFER

Momentum transfer or fluid dynamics is a part of nearly every process in the
chemical industry. Often heat and mass transfer occur in association with
moving streams, and thus ‘it is necessary to have some understanding of the
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fluid floiv  before one can really understand the other superimposed operations.
Examples of fluid dynamics ‘problems typically encountered are press&-drop
in systems so as to determine pumping requirements, flow rate measurements
and control, flow over immersed bodies and through porous media, motions of
solid particles in fluids (e.g., smoke), heat or mass transfer between flowing
streams, and the motions of drops and bubbles.

Temperature and mass are scalar quantities. The gradients of these (VT
or VCA)  and the flux terms (q/A or J,/A  or N,/A)  are vectors. In marked
contrast, the velocity itself is a vector, and the gradient of this (VU) is  a
second-order tensor.6

Correspondingly, the momentum flux or shear stress is also a second-
order tensor. Instead of a simple vector equation as in Eqs. (2.15) or (2.19),
the momentum equation in three dimensions is a tensor relation, which for an
incompressible fluid is

z = -p[VU + (vu)=] (249

Equation (2.40) shows that the stress tensor I is a function of the shear
rate tensor VU and its transpose (VU)‘. Additional discussion of Eq. (2.40)
can be found elsewhere [B2, B3]. Because of this extreme complexity, let us
dwell longer on this tensorial nature of the momentum transfer equation.

Velocity, which is a vector quantity, has three compbnents.  Any one of
these components can vary in three directions. Consequently, there are three
components taken three ways, or nine possible terms. In the form of an array,
these terms are

(

au,1  ax  au,iax au,iax

vu= au,fay  au,iay au,iay (2.41)
au,ia2 abye  au,ia2 )

Equation (2.41) is, of course, in the most general form; in most
problems, many of the components will be identically zero. The transpose
tensor (VU)’ is just Eq. (2.41) with the rows and columns exchanged:

au,iax  au,iay  au,ia2
(vu)T= auyax au,iay aqia2 (2.42)

awax au,iay au,ia2

6Tensors will be discussed only in a very superficial manner in this text. Tensors, like matrices,
find most of their use in engineering as “shorthand” for writing complex equations in a simple
form. The censorial  representation being developed here is really shorthand for nine equations.
The material in this section is by no means simple or complete, and the student is to be warned
that he or she should not expect to have a full understanding without work beyond this text. It is
hoped, though, that this brief introduction will provide an idea as to this complexity and some of
the physics involved in momentum transfer.
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Since Eq. (2.40) must be homogeneous, the left-hand side must also be a
second-order tensor, i.e.,

=xX Gy Gz
s=

( )
ZYX ‘tyr gYZ (2.43)
%*  ‘tzy g**

Each row of the tensor has three terms. In the first row of Eq. (2.43) there is
one normal stress Z, and two tangential stresses, rxv  and rXZ.  The three normal
stresses in Eq. (2.43) (the diagonal elements) act in the x, y, and z directions,
and each is the’ force per unit area on a plane perpendicular to the direction in
which it acts.

As already indicated, Eq. (2.40) is a shorthand representation for nine
equations. Several of these are’

7& = -~~av~ia~+av,ia~~=-2~~dv,ia~~ (-4)

ryx  =  -p[(au,/dy)  +  (au,lax)l (2.45)

'L;u  = -cc[(au,lax)  + (wrlay)l (2.46)

For the one-dimensional problem of Eq. (2.5),  U, varies in the y
direction only, and both V, and 0, are zero. Thus, most derivatives in VU are
zero:

av,lax  = av,/az  = 0 (2.47)

av,la~=av,iay=av,la~=0 (2.48)
av,laz=av,iay=av,fa~=0 (2.49)

From the nine equations represented in shorthand by Eq. (2.40) only two
equations remain, Eqs. (2.45) and (2.46),  both of which are identical to Eq.
(2.5) since dV,ldx  is zero and rXy  equals a,,. It therefore follows that for the
one-dimensional problem where Eq. (2.5) is valid, there are only two non-zero
shear stress terms, which are ryX  and rXy.

The physical interpretation of z is complicated by the fact that ‘F  is
commonly used both as a momentum flux and as a shear stress (F/A). Hence,
t in Eq. (2.43) is commonly called the stress tensor. Figure 2.9 considers the
shear stresses ru,  rXy, and rX,  at a point in space, Fig. 2.9(a).  Figure 2.9(b)
shows a typical experiment that might generate rXy,  i.e., a flat plate moving
with velocity UN, in the y direction. This plate causes a velocity gradient so
that V, in the fluid is a function of x. There is a momentum flux rxv  that acts in
the x direction on the yz plane, shown as shaded in Fig. 2.9(a).

The shear stress, on the other hand, is in the y direction as a result of a

‘The ordering of subscripts comes from writing Newton’s equation (2.5) as tYx  = -~(a/ay)(b’,),
i.e., the y (momentum transfer direction) precedes x (velocity direction).
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r,=FIAasa
shear stress

(a)  Stress tensor on the yz p lane

FIGURE 2.9
The momentum flux TV.

(b) The xy component as a momentum flux

force F (not shown) in the y direction that is needed to pull the plate with
velocity UP,,,,. It is admittedly confusing when the-same symbol rxu is used to
denote the momentum flux and the shear stress, especially when they are equal
in magnitude but in differing directions.

Figure 2.10 shows the momentum flux and the shear stress for a flat plate
moving in the x direction. The momentum flux r,.=  acts on the xqplane,  shown
as shaded in Fig. 2.1O(a). The shear stress rYx acts in the x direction. Note that
the terms r,, rYx, and t;*  all act in the same x direction and are coincident.
They are also the flux of x momentum in the three directions x, y, and z.

vetit*L  5x;m o m e n t u m  f l u x

c’,  V&q

yF,Aai%

shear stress
b\

.-

1 .-  u,.,Flat  p late

(a) Stress tensor on the XI p lane

FIGURE 2.10
The momentum flux tF.

(b) The yx component as a momentum flux
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.The  symmetry of the stress tensor (i.e., rYx  = rx,,, etc.) can be demon-
strated by taking the moments of the forces per unit area on a small element of
volume (dr  dy dz) centered at the origin. In such a derivation [Cl], only shear
stresses need be considered since the pressure and gravitational effects act
through the center of mass and, consequently, have no moment. If the system
is at equilibrium or at rest, all the shear stresses are zero because there are no
velocity gradients [by Eq. (2.40)].

Example 2.9. Toluene is contained between two identical and parallel plates each
of area .5.0m2.  The top plate is pulled in the minus x direction by a force of
0.083N at a velocity of 0.3 ms-‘.  The bottom plate is pulled in the opposite
direct ion by a force of  0.027N at  a  veloci ty  of  0 .1  ms-‘,  a s  shown in  F ig .  2 .11 .
The pla tes  are  10 mm apar t .  Calculate  the  viscosi ty  of  to luene in  cent ipoise .

Awwr.  Since the  pla tes  are  paral le l ,  the  f low is  one-dimensional ,  and Eq.  (2 .5)
applies

tyx = F/A = -p(dU,/~y) (2.5)
Since for  this  problem F, A, and p are  a l l  cons tants ,  Eq.  (2 .5)  in tegra tes  to

FIA = -AAUxfAy) (9
AU,  = U,,,  - U,,,  = -0.3 - 0.1:  -0.4 m s-’ (ii)

Ay=yy,-y,=10mm=0.01m (iii)

Therefore ,  the  veloci ty  gradient  is

AU,/Ay  = (-0.4)/(10-*)  = -40 s-’ (iv)

The shear s;ess  is force divided by area. Logically, if the bottom plate were
sta t ionary,  then the force would be 0 .083 N.  I f  the  force on the bot tom plate  were
in the same direction as the force on the top plate, it follows that the force
avai lable  in  the shear  s t ress  term would be diminished.  In  fact  i f  the  force on the
bot tom pla te  were  equal  in  magni tude  and di rec t ion  to  the  force  on the  top  p la te ,
both  p la tes  would  move in  the  same di rec t ion and wi th  the  same veloci ty .  The
f lu id  be tween,  a t  s teady-s ta te ,  would  not  move wi th  respec t  to  the  p la tes  and  the
shear stress in the fluid would be zero. For the problem of Fig. 2.11 the force on
the bottom plate acts in the opposite direction from the force on the top plate and

(I, = -0.3 m s-’

F=-0.082N

Y 10inm

Lx U,=O.lms-

F=O.O27N

FIGURE 2.11
Parallel plate system.
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thus increases the shear s tress in the f luid.  Therefore,  the momentum flux is

. ~Yx=F/A=[0.083-(-0.Ct27)]/5.0=0.022Nm-2 6)

Note that it is easy to confuse the sign when the problem is given in terms of the
forces  on the  f la t  p la tes .  Perhaps  i t  i s  bes t  to  refer  to  Eq. (2.5).  In this  problem,
s ince  XJJay  i s  nega t ive ,  then  tYx  must  be  pos i t ive .

Equat ion  (2 .5)  can  be  so lved  for  the  v i scos i ty

p = rJ(  -dlJJdy)  = (O.O22)/(4O)(N  m-*)/(s-‘)

= 5.5 x 10L4 N s m-* (4

Since one newton (N)  is one kg m s-*,  the viscosity in CP  is

p = 5.5 X 10m4  kg m-’ SC’  = 5.5 x lo-’  poise = 0.55 CP w

Example 2.10. An incompressible fluid flows between two large plates in the x
di rec t ion  a t  s teady-s ta te .  The  bot tom pla te  i s  f la t .  The  top  p la te  i s  d iv ided  in to
two f la t  p la tes  by a  reducer  p la te  se t  a t  an  angle  to  the  bot tom pla te .  The fluid
flows in a 2-cm  wide channel at the inlet, then into the reducer section, and out a
l -cm-wide channel  (see Fig.  2 .12) .  The f low is  laminar  throughout  the channel .  In
the reducer, which of the nine componehts of the velocity tensor VU and the
s t ress  t ensor  r are non-zero?

Answer. Since both plates are large and flow is in the x and y directions only, the
ve loc i ty  in  the  z d i rec t ion  (perpendicular  to  the  p lane  of  the  paper  in  Fig .  2 .12)
will be zero as will all derivatives of U,:

au,lax = au,fay  = au,ia2  = 0 (9
In  the reducer  the incompressible  f luid  must  accelerate  because the area is  being
reduced whi le  the  mass  enter ing the  reducer  equals  the  mass  exi t ing.  Since the
fluid is accelerating in the x direction:

au,iax  f 0 69
The veloci ty  U,  i s  a  funct ion of  y  everywhere  between the  pla tes  (zero  a t  both

Reducer
s e c t i o n

Fluid flow -

FIGURE 2.12
Convergent plate system.
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walls, finite and variable in between):

au,iay + 0 (iii)

Furthermore, the fluid must flow in the minus y direction as well as the positive n
direction in order to squeeze into the l-cm-wide channel. The velocity U, will
vary in the x direction as well as in the y direction:

aqlax 20  * au,/ay (iv)
Since the plates are large, there is no variation of any velocity with the z
di rec t ion ,  thus

au,faz  = 0 = aqiaz (v)
In conclusion, for the two-dimensional flow in the reducer, there are four
non-zero derivatives in VLI:  XJ,l&,  WJay,  WY/ax,  and aU,/+

To find the non-zero shear stress terms, each shear stress is written in terms
of the velocity derivative, as done in Eq. (2.44) through (2.46). The normal
stresses  are

tu = -2p(au,/ax)  z 0
tyy = -2p(abyay) + 0 (4
bz = -2p(au,/az)  = 0

The other  s ix shear  s t resses are for  the x d i rec t ion :

txv = -mu.iax) + (away)] 20
txz = -p[(au,iax) + (au,iaz)l= 0

For  the  y  d i rec t ion :

qx  = -mway)  + wpx)]  zo

t y z = -~[w4lay)  + (au,iaz)l = 0
(viii)

For  the  z d i rec t ion :

rzx  = -p[(au,iaz) + (au,iax)] = 0

tzv = -kwu,iaz)  + wday)]  = 0
w

Hence, there are four non-zero shear stress terms in the reducer, i.e., rxx,  rYY,
rxY, and  rYx.  Note the symmetry of  the s tress  tensor:

Gy = qsx TX, = tzx etc. (4

The s t ress  tensor  i s  a lways  symmetr ica l  under  normal  condi t ions .

2.5 HEAT, MASS, AND MOMENTUM
DIFFUSIVITIES

In the previous sections a mathematical analogy between the molecular
transports has been developed. The analogy is mathematical in the sense that
Eq. (2.9) for heat transfer, Eq. (2.4) for mass transfer, and Eq. (2.11) for
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momentum transfer (fluid flow) have the same form. Therefore, these three
differential equations have similar solutions for an identical set of boundary
conditions. The mechanisms for molecular transfer are obviously not the same:
molecular diffusion commonly occurs in multicomponent mixtures with a
concentration gradient as the driving force; momentum transfer occurs
perpendicular to the direction of flow (the direction of the pressure drop, i.e.
the driving force that causes the flow); heat transfer by molecular transport
(conduction) in solids does not involve flow or relative motion of the molecules
at all.

Fourier’s law, Eq. (2.2),  Fick’s law, Eq. (2:4) and Newton’s law, Eq.
(2.5) are all empirical. The respective constants in these three equations have
different units:

(1) thermal conductivity, k: units of W m-* K-’
(2) diffusion coefficient, D: units of m2 s-*
(3) viscosity, p: units of kg m-l s-’

In developing the analogous equations, these three empirical constants
were modified (see Table 2.1) in order to equate the flux W,  with the
concentration gradient, &&lax:

where 6 is the general diffusivity which can be the thermal diffusivity for heat
transfer ((u),  the diffusion coefficient (mass diffusivity) for mass transfer (D),
or the kinematic viscosity (momentum diffusivity)  for momentum transfer or
fluid flow (Y). In this form, the proportionality constant, S ((u,  D, or Y),  has
the same units (m’ s-l).

The empirical constants (k, D, and p) are material constants which vary
widely from material to material. Furthermore, these three constants vary with
changes in temperature, pressure, and, in the case of D, concentration.
Generally, it is necessary to find the individual properties (k, p,  cp,  and p) in
order to compute the diffusivities.  Tabulations and/or correlations of thermal
diffusivity (Y  and momentum diffusivity (kinematic viscosity) v are rarely
directly available; these are normally computed from k, p,  cp,  and p.  Table 2.2
provides some experimentally determined transport properties for a variety of
systems. More complete tabulations are available [Pl,  Rl]. Methods of
predicting the transport properties are discussed in Chapter 14.

2.5.1 Thermal Conductivity

Two properties of materials which are important in heat transfer are the
thermal conductivity and thermal diffusivity. The thermal conductivity has
been defined in Eq. (2.2) and its use illustrated in Examples 2.1, 2.4, and 2.5.
Some typical values of the thermal conductivity are given in Table 2.2.

As with the other transport properties, the thermal conductivity of gases
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TABLE 2.2
The transport properties

~isrosity lll~comdactivtty
Temperature, K pXlo(,  Nsm-* Temperature, K k,  W  m-l  I(-’

Air
2 7 3 . 1 5
2 8 0 . 0 0
3w.00
3 5 0 . 0 0
4 0 0 . 0 0

1 7 . 2 2 7 3 . 1 5 0 . 0 2 4 1
1 7 . 5 2Eo.00 0 . 0 2 4 7
1 8 . 5 3cnoo 0 . 0 2 6 1
2 0 . 8 3 5 0 . 0 0 0 . 0 2 9 7
2 2 . 9 4 0 0 . 0 0 0 . 0 3 3 1

2 7 3 . 1 5 93.3
3 7 3 . 1 5 131
6 7 3 . 1 5 2 5 1

Carbon dtostde
3 0 3 . 1 5
3 7 3 . 6 5
4 7 3 . 2 5

151
181
2 1 9

EtbIlOl
3 8 3 . 1 5
4 2 3 . 1 5
4 7 3 . 1 5
5 7 3 . 1 5

Solfor  dioxide
2 8 3 . 1 5
3 7 3 . 1 5
7 7 3 . 1 5

1 1 7 3 . 1 5

Water
3 7 3 . 1 5

111
123
1 3 7
165

120
1 6 3
3 1 5
4 3 2

1 2 . 0

2 1 3 0 . 0 1 6 4
2 7 3 . 1 5 0 . 0 2 2 1
3 7 3 . 1 5 0 . 0 3 2 0

300

4 7 3 . 1 5 Oh83

3 7 5
4 0 1

2 7 3 . 1 5 0 . 0 0 8 3

3 7 3 . 1 5

0 . 0 1 6 7

0 . 0 2 2 2
0 . 0 2 4 9

0.0248

(See page 50 for footnotes)

may be predicted more accurately than the thermal conductivity of liquids or
solids. In gases the energy is carried by the molecules themselves, and our
ability to describe statistically the molecular motion in gases is good. In liquids
and solids other mechanisms are operative. Since heat transfer by conduction
is effected by transfer of energy through molecular collisions, it follows that the
thermal conductivity ip liquids and solids is much greater than in gases. For
example, in Table 2.2 for water vapor at 0°C  k equals 0.0228 W m-l K-i,
whereas for liquid water at O‘C,  k equals 0.561 W m-l K-‘, which is a factor of
24.6 greater.



TABLE 2.2
The transport properties (continued)

Dilhsion  codklents  of hinary  gases at atmoqhetle  pteaate’

Gmpllt Temperahe,  K D X lo’, m* s-l

Hz-CO2 298.0 0.646
D,-air 2%.8 0.565
He-N, 323.2 0.766
He-N, 413.2 1.20
He-N, 600 2.40
He-N, wo 4.76
He-N, 1 2 0 0 7.74
He-propanol 423.2 0.676
O,-H,O 308.1 0.282
O,-H,O 352.4 0.352
0+3uene 311.3 0.101
Freon-12-benzene 298.2 0.0385
Air-co* 293.0 0.165
Air-water 298.2 0.260
Air-ethanol 298.2 0.135

TABLE 2.2
The  tmmsport  properties (continued)

=-w Ibetmal  eondmtivlty

Temperatnre,  K pXld,  Nsm-* Temperature, K k, Wm-‘K-l

Carbon tetrwhloride
273.15
303.15
343.15
373.15

Ethd
273.15
313.15
348.15

Toheae
293.15
303.15
330.15

Water
273.15
290.00
300.00
373.15

1.369 273.15 0.107
0.856 293.15 0.103
0.534
0.404

1.770 293.15 0.165
0.826 313.15 0.152
0.465 3 4 7 0.135

0.587
0.550 303.15 0.145
0.380

1.750 273.15 0.569
1.080 290.00 0.598
0.855 300.00 0.613
0.279 373.15 0.680

49
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TABLE 2.2
The  transport properties (continued)

solmte  (at imthite
dihtiOD)

n-Propanol
Ethanol
Ethanol
Ethanol
Wwn
Methanol
Water
Iodine

solveat T=P-~-,  K D X Id’, IO* s-l

Water 283.15 8.7
Water 283.15 8.4
Water 283.15 1 0 . 0
Water 298.15 1 2 . 4
Water 298.15 24.0
Water 288.15 1 2 . 6
Ethanol  298.15 1 2 . 4
Hexane 298.15 4 1 . 5 ”

TABLE 2.2

The  trttttsport  properties (continued)

solids

Tkmdcoadoctlvityof
sekctedsoIidsat3OOK~ ~&ticientof~Ahasalid4’

MawhI k,  Wm-‘K-’  !Spe&sA  Solid Temperate, K D, m2  s-’

Steel 4 5 Hydrogen Silicon 1473 2.1 x w8

Copper 3 9 8 Copper Silicon 1473 1.5 x lo+
Silver 424 Carbon Silicon 1 4 7 3 3.3 x lo-l5
Aluminum 2 7 3 Phosphorus S i l i c o n 1473 2.4 x lo-l6
Drywall 0.17 Germanium S i l i c o n 1473 5.2 x lo-‘*
Glw  fiber 0.036 Gold Silver 1033 3.6 x lo-l4

Brick 0.72 Carbon Steel 1273 2.0 x lo-”
Corkboard 0.43 Nitrogen Steel 1273 1.3 x lo-”
Plywood 0.12

= From reference Pl
b From reference Rl
’ From reference Fl

d From reference Bl  .
’ From reference Sl

’ From Appendix A.

2.5.2 Diiion Coefficient

The diffusion coefficient, as defined in Eqi (2.4), is in one sense the simplest of
the diffusivities in that other properties are not involved; however, it is the
most difficult to measure and correlate. The complexity arises from the fact
that according to Fick’s  law the diffusion coefficient D must be measured in an
experiment where there is no net volume velocity. Also, the diffusion
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coefficient is small in magnitude; therefore, experimental errors are magnified
in relation to the actual value of D. Some typical values are given in Table 2.2.
Other  tabulations are available [Gl, Pl,  Rl]. In general, the diffusion
coefficient of binary mixtures increases with temperature, but not linearly, and
decreases with pressure. The diffusion in gas systems depends upon gas
molecules moving from one point to another. Since at higher temperatures
the molecules have a higher kinetic energy, they move further and faster;
consequently, the diffusion coefficient increases with temperature as just
stated. When the pressure is increased, there are more molecules in the system
and collisions between molecules increase; consequently, molecular motion is
retarded, and the diffusivity decreases with pressure. By the same token, there
are large differences between the diffusivities in gases and those in liquids and
solids as is observed in Table 2.2. Also, the difference among the dilfusion
coefficients in solids is 26 orders of magnitude! In silicon, copper diffuses  at a
rate lo9  times faster than germanium at 1200°C [Sl].

There are a number of equations available for estimating the diffusion
coefficient of gases [Pl, Rl]. These will be covered in Chapter 14, along with a
discussion of diffusion coefficients in liquids and solids. For gases, the pressure
and temperature dependence can be expressed as:

D = Do;(f)’ ’
0

where Do  is known at To  and po, and the exponent n varies between 1.75 and
2.0 over a range of normal temperatures and pressures. Usually, the value of n
is closer to the 1.75 value than to the higher figure. As long as the pressure is
less than approximately 5 atm, there is no concentration dependence of the
diffusion coefficient. Details are elsewhere (Ml).

ExampIe 2.11. Predict the diffusion coefficient of water vapor in air at 2 atm and
75”C,  if the diffusion coefficient is 0.219 x 10e4  m2 s-’ at 1 atm and 0°C. Assume n
is 1.75.

Answer. The value of n  to be used in Eq. (2.50) is 1.75. Then

Do = 0.219 x 10V4 m2  s-’ (T,  = 273.15 K, p0 = 1.0 atm)

T=273.15+75=348.15K (p=2.0atm)
(9

(ii)

D = D,,; (6,“=  (0.219 x lo-‘)(;)(s)“”

= 0.167 x lo-’  m*  s-’ (iii)

25.3  Viscosity

Most pure (single-component) materials obey Newton’s law of viscosity at
conditions commonly encountered in practical problems:

(2.51)
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Table 2.2 contains some typical values of viscosity. Extensive tables and charts
are available in various handbooks [G2,  Ll, Pl].  In Chapter 14 we review the
theory of viscosity and discuss methods of prediction. In general, the viscosity
of gases increases with temperature at low pressures, while that of liquids
usually decreases. The reason for the difference in the temperature depend-
ence lies in the differences in the mechanisms by which momentum is
transferred. For gases at low pressures, it can be shown that the expected
variation with temperature is the square root of temperature in absolute units,
if the molecules are rigid spheres. Actually, the observed dependency is from
about 0.6 power of temperature to the first power of temperature. The
viscosity of gases is independent of pressure in the low-pressure region up to
ten times atmospheric pressure. Of course, the kinematic viscosity of gases is
quite dependent on both temperature and pressure change through the effect
of these on the gas density. For liquids, the theories are far less developed.
However, an approximate empirical observation for the temperature depend-
ency of liquids is

(2.52)

where A and B are empirical constants in this equation. Equation (2.52) can be
used with viscosity data (minimum two points) for interpolation or modest
extrapolation. Because of the incompressibility of liquids, ‘their viscosities are
relatively independent of pressure.

There is an important class of materials that do not obey Newton’s law
when the shear rate is varied in an experiment. These fluids are called
non-Newtonian. There are many non-Newtonian materials that one encounters
in chemical processing. Common examples include multigrade motor oils,
greases, elastomers, many emulsions, oil well drilling muds, clay suspensions,
concrete mixes, toothpaste, milkshakes and other foodstuffs, and some
medicines. If the material has a very high molecular weight (in the order of
thousands), as do polymer melts, such a material will also be non-Newtonian.
Non-Newtonian materials will be discussed in detail in Chapter 15.

Example 2.12.  Estimate the viscosity of air and of water at 53°C.

Answer. For air (a gas), a simple solution is to plot the data as given in Table 2.2,
and read the value at 53 “C  (326.15 K). It is expected that the viscosity of gases
will follow this approximate equation:

p=AT” (9
or after taking logarithms

Inp=lnA+BlnT (3
Therefore, the data should be plotted on log-log graph paper or as Inp versus
In T.

Another solution is to use Bq.  (ii) to interpolate between the values in
Table 2.2. For air at 40°C (313.15 K) and 74°C (347.15 K), the substitution into



MOLECULAR TRANSPORT MECHANISMS 53

Eq:  (ii) yields two equations in two unknowns (A and B):

ln(1.91 X 10e5)  = In A + B ln(313.15)

ln(2.10 x lo--‘)  = In A + B ln(347.15)

Solving these simultaneously yields

B=0.92005
A = 9.656 x lo-’  N s m-’

At 326.15 K from JZq.  (i)

(iii)

69

p = 9.656 x 10+(326. 15)“=‘S  = 1.98 x lo-’  N s rn-’  = 0.0198 CP (vi )

For water, Eq. (2.52) applies. A similar calculation using data from
Appendix A.1 at 325 K and 330 K yields

B/R= 1646 A = 3.336 x lo-* N s me2 (vii)

Thus,  from Eq. (2.52):

p(T  = 53°C) = 3.336 x W8exp(1646/326.15)  = 5.19 x 10e4  N s m-*

= 0.519 CP (viii)

These can be compared to handbook values of 0.01% and 0.523cP
respectively at 53°C.

2.6 A COMPARISON OF THE
TRANSPORTS

At the beginning of this chapter a set of analogous equations for heat, mass,
and momentum transfer was developed. These equations, based on the laws of
Fourier, Fick,  and Newton, apply only in a continuum, i.e., in applications
where all properties are continuous. It was emphasized that this was a
mathematical analogy and that the fundamental physical processes of the
transfers were quite different. In the three previous sections, the mathematical
analogy has been demolished in the sense that the equations are by no means
identical. In its more complicated form, heat transfer is described by a vector
equation as is mass transfer. However, mass transfer involves at least two
equations, since there must be equations for each of the species present.
Finally, it has been demonstrated that the momentum transfer is described by
a second-order tensor equation and, in the most general case, there are nine
component equations. Nevertheless, any given single component of these
equations is of the same mathematical form as those in mass and heat transfer.

Let us return to the case of the ditTusion  between flasks [see Fig. 2.1(6)]
and try to picture our analogy in physical terms. Further, let us restrict our
view to a very dilute gas. For mass transfer, in order to move a molecule from
one flask to the other through the connecting tube, that molecule must be
moved physically. For one such molecule, the movement is shown by the
dotted line in Fig. 2.13. If the molecule should strike another molecule or the
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A FIGURE 2.W
1 A - - 2 Mass transfer mechanism.

container wall during its transfer, it may not arrive at the other side; this
situation is indicated by the dashed line. In this crude dilute gas experiment, a
molecule has a difficult, tortuous path in order to be transferred from one side
of the vessel to the other. This process of diffusion by random molecular
collisions is called a “random walk” process, and it can be observed in the
Brownian  movement in suspensions [Bl].  The mass diffusion process may be
contrasted to the transfer of energy of the molecule as indicated in Fig. 2.14.
As in the case of mass transfer, every time a molecule is moved, its
temperature is transferred with it. However, there is another mechanism which
contributes even more to the transfer of heat. This mechanism is analogous to
the transfer of energy encountered in playing pool, and it is shown by the
dashed line in Fig. 2.14. There are both migration and collision mechanisms
for the transfer of the energy or temperature. Thus, in relatively dense
systems, the thermal diffusivity is greater than the mass diffusivity. The same is
true for the momentum transfer case for which there are still other mechanisms
as a result of its tensorial nature. To provide a simple comparison, the

FIGURE 2.14
Heat transfer mechanism.
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transport.properties for liquid water at 0°C are compared:

D= 1.36~ 10-9m2s-’

a = 142 x lo-9  m2 s-l (2.53)
v=  1800 x 10-9m2s-’

It is fortunate that, from an experimental standpoint, the various
mechanisms are described by the same equation. Equation (2.53) shows that
the various diffusivities, of mass, of momentum, and of heat, are not equal. If
only one mechanism had been controlling all three phenomena, then these
diffusivities would be equal.

Finally, all problems with a numerical solution in this chapter can be
solved only because the flux is constant and due to one of the fundamental
laws discussed. More complex problems will be forthcoming in following
chapters.

PROBLEMS

2.1. What is meant by the analogy between mass transfer, momentum transfer, and
heat transfer?

2.2. Write the three molecular transport equations and discuss the meaning of, and
units for, each term in the equations.

2.3. The ratio of momentum diffusivity  to heat diffusivity and the ratio of momentum
dilTusivity  to mass diffusivity  form two dimensionless ratios. Discuss the meaning
of these ratios.

2.4. What are the analogous terms for heat, mass, and momentum transfer? Discuss!
2.5. Give a physical interpretation of equimolar counter di&sion.
2.6. Mass transfer has a complication that does not exist in heat transfer. Discuss!
2.7. Momentum transfer has a complication that does not exist  in either mass or heat

transfer. Discuss!
2.8. Consider a flat  plate that is submersed in a fluid and is moving at velocity U,,

which is entirely in the z direction. Prepare a figure similar to Fig. 2.10 for this
example.

2.9. In the discussion of Fig. 2.10, it is pointed out that t,, z,,=,  and tu  all act in the
same x direction and are coincident. Find the coincident shear stresses in the y
and z directions.

2.10. Find the thermal conductivity (in W m-’ K-‘) and thermal difisivity (m*s-I)
for a new insulating material for which the following information has heen
determined:
Test sample: iin.  by lftsquare
AT across sample: 5°F
Heat flow: 24 Btu  in a 10 h test at steady-state
Sample density: 0.15 g cm-3
Sample heat capacity: 0.3 kcal  kg-’ K-’

2.11. The heat input to a cold hox is to he reduced by adding extruded polystyrene
sheets (p = 55 kg mw3, k = 0.027 W m-l  K-l,  c, = 1.21 kJ kg-’ K-l)  to all sides.
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The box is 3ft  on a side and all sides are in contact with air. When the box is
placed in  a  constant- temperature  room which is  maintained at  7O“F,  t he  hea t  loss
is 40 000 Btu h-‘.  It is desired to reduce this by a factor of 100 while maintaining
the inside temperature at -30°F. Find the appropriate insulation thickness in
inches.

2.12. A house wall consists of $ in. drywall, 3; in. glass fiber insulation, and an outside
br ick  wal l ,  4-in.  thick.  Assume that  there  is  perfect  contact  between each layer .
The thermal  conduct ivi t ies  of  drywal l ,  g lass  f iber ,  and br ick are  0 .17,  0 .036,  and
0.72 W m-’ K-‘,  respect ively .  The ins ide temperature  of  the  house is  70°F;  the
outs ide  a i r  tempera ture  (no  wind present )  i s  O”F.
(a) Find the heat flux in Btu ti-’  h-l.
(b)  Find the temperature (K) a t  the  junc t ion  be tween  the  d rywal l  and  the  g lass

fiber insulation.
(c) Find the location (in inches from the inside surface of the drywall) where

moisture freezes.
2 .13.  Two cyl inders  of  d i f ferent  mater ia ls  are  brought  in to  contact  as  shown in  Fig .

2.15. Cylinder 1 is 2m long’with cross sectional area of 0.03 m*  and thermal
conduc t iv i ty  0 .7  W m-’ K-‘.  Cyl inder  2  i s  3  m long wi th  c ross  sec t iona l  a rea  of
0 .04  m2  and thermal  conduct iv i ty  1 .2  W m-’ K-‘.  The temperatures at  each end of
the apparatus are 280 (T,)  and 310K (Q,  as shown in Fig. 2.15. Find the
temperature T2  a t  the  po in t  where  the  two  cy l inders  a re  jo ined .

2 .14.  Two cyl inders  of  d i f ferent  mater ia ls  are  brought  in to  contact  as  shown in  Fig .
2.15. Cylinder 1 is 2m long with cross sectional area of 0.03 m2  and thermal
conduc t iv i ty  0 .7  W m-’ K-‘.  Cyl inder  2  i s  3  m long wi th  c ross  sec t iona l  a rea  of
0 .04  m2  and unknown thermal  conduct ivi ty .  The temperatures  a t  each end of  the
apparatus are 280 (T,)  and 310 K (TX),  as shown in Fig. 2.15. If the temperature at
the  poin t  of  juncture  i s  300 K,  f ind  the  thermal  conduct iv i ty  of  cyl inder  2 .  Your
solution contains an assumption not discussed in Chapter 2. What is it?

2.15. A conditioning room has an atmosphere of air with a 30mole percent CO*
concentration. Outside of the room, the concentration of CO, is very small;
however ,  there  is  a  hole  in  the  wal l .  The pressure  is  1  a tm and the  temperature  is
25°C.  Under  these  condi t ions ,  the  d i f fus iv i ty  of  CO,  in  a i r  i s  0 .164 x  low4 m*  s-l.

tm-,  L, .+L, -4 mxJRE  2.15
Heat transfer in adjoining cylinders

? T2 T3 (Problems 2.13 and 2.14).
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The hole is  10 cm in diameter ,  and the wall  is  30 cm thick.  Determine
(a) the amount of CO1  that  exi ts  the room (km01 h-‘)
(b)  the amount  of  a ir  that  enters  the room (kg h-i)

2.16. In Problem 2.15, the loss over a long period is considered to be excessive.
Unfortunately, for other reasons, the hole cannot be reduced below 4cm in
diameter, but it is still desired to reduce the loss by a factor of 10. Design
something to reduce the loss by a factor of 10, if the diameter of the hole is
reduced by a factor  of  2.5.

2 .17 .  A d is t i l l a t ion  co lumn separa tes  a lcohol  A and  a lcohol  B a t  1  a tm and 372 K.  At  a
par t icu la r  loca t ion  in  the  co lumn,  the  l iqu id  phase  and  gas  phase  conta in  30  mole
percent  A and 40mole  percent  A,  respect ively .  Assuming that  the  res is tance  to
mass transfer is  a gas-phase fi lm of thickness 0.3 mm, calculate the molar flux of
A from the  l iquid  to  the  gas  phase .  The fol lowing informat ion is  required:

D = 5.4 x 1O-6 m*  s-’

PA = YAP = HAXA; Henry’s  l aw cons tan t  HA = 8.7056  atm.
2.18. Two horizontal plates are placed 5 cm apart. The space is filled with a

high-v i scos i ty  lubr ica t ing  o i l  (100  po ise ) .  The  bo t tom p la te  i s  s t a t ionary  and  the
upper plate moves at a velocity of +0.8 m s-‘. Considering an area of 0.01 m*
located far  f rom any edges f ind the force ( in  uni ts  of  newtons) ,  the shear  s t ress ,
and the momentum flux (N m-‘).

2 .19.  In  Problem 2.18,  conver t  the  veloci ty  to  f t  s-‘,  the  d is tance  be tween  p la tes  to  f t ,
the area to ft*,  and the viscosity to lb,,, fi-’ s-‘. Then find the force on the plate in
lb,.  Do you prefer  the  Engl ish  or  the  SI  sys tem and why?

2.28. A possible design for a parallel plate viscometer consists of a vertical, rectangular
box wi th  a  cent ra l ly  loca ted  p la te  ins ide .  The  f lu id  to  be  tes ted  i s  p laced  in  the
box and the force necessary to remove the plate at  a  f ixed speed is  measured.  The
unit is shown in Fig. 2.16. Calculate the viscosity in CP  for the following
cond i t ions :  the  we igh t  o f  the  p la t e  i s  neg l ig ib le ;  the  p la t e  i s  loca ted  equ id i s t an t
between the  wal ls ;  c learance between pla te  and each wal l  i s  0 .5  cm;  to ta l  area  of
plate  immersed at  ins tant  of  reading is  70 cm’ on  a  s ide ;  when the  p la te  i s  moved

at a velocity of 1 ems-‘, the force required is 5.6 x 10m4N;  end effects are
negligible.

2.21. When a film of liquid flows down an inclined plate, it can be shown that the stress

F = 5.6 x 10m4 N

t

x Plate

t Y

FIGURE 2.16
Plate viscometer  (Problem 2.20).



58 BASIC CONCEPTS IN TRANSPORT PHENOMENA

developed due to gravity is

where  the  x  coord ina te  i s  a l igned  wi th  the  d i rec t ion  of  f low and the  y  coord ina te
begins at the surface of the him and is positive in the direction towards the plate.
The angle /I i s  the  angle  be tween the  surface  and the  ver t ica l .
(a) Determine the velocity distribution (U as a function of y) in the film  if the

film thickness is L.
(b)  Find the maximum velocity and the value of  y  a t  which  i t  occurs .

2 .22.  Three  paral le l  f la t  p la tes  are  separated by two f luids .  Pla te  1  (on the  bot tom) is  a t
rest. Water, viscosity O.MO7cP  at 3o”C,  lies between plates 1 and 2. Toluene,
v i s c o s i t y  OS179cP  at  3O”C, l ies  be tween p la tes  2  and 3 .  The  d is tance  be tween
each pair  of  plates is  10 cm. Plate 3 moves at  3 m s-‘. Fmd:
(a)  the  ve loc i ty  of  p la te  2  a t  s teady-s ta te
(b)  the force per  uni t  area on plate  3  required to  maintain the 3  m s-r ve loc i ty

2.23.  The thermal  conduct ivi ty  of  a  sol id  is  approximated by

k = A + B T

where A i s  a  pos i t ive  cons tan t  and  B> may be  pos i t ive  or  negat ive .  Consider  F ig .
2.4 and Example 2.1; sketch the temperature profile corresponding to B CO,
B=O,  and B>O.

2.24.  Est imate  the  thermal  conduct ivi ty  of  gold a t  500 K from the data  below.

T,  K 200 400 600 800 loo0

k, W  m-’ K-’ 323 311 298 284 270

2.25. Estimate the thermal conductivity of silicon carbide at 13OOK from the data
below.

T,  K 1000 1200 1500

k, Wm-‘K-’  87 58 30

2.26.  The kinet ic  theory  of  gases  predic ts  tha t  the  thermal  conduct iv i ty  of  a  gas  equals
the product of the heat capacity at constant volume times the viscosity; this
theory also predicts that the viscosity varies as the square root of temperature and
is independent of pressure. For CO, at 1 atm and 273.15 K, the following data are
available:

c, = 0.640 kJ  kg-’ K-r

p = 1.38 x lo-’  N s m-*

k = 0.01435 W g-’  K-’

Assuming that c,,  is proportional to the first power of absolute temperature,
estimate k  at  300 K and 1 atm.  Find the percent  error  of  your  es t imate  based on
the literature value of 0.01655 W m-r K-l.

2.27.  Use the data  in  the Appendix to  est imate for  a i r  a t  348.15 K and 2 atm:
(a )  the  v i scos i ty
(b)  the  thermal  conduct iv i ty
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(c) the  k inemat ic  v i scos i ty
(d) the thermal diflirsivity

2.28.  Use the data  in  the Appendix to  est imate for  water  a t  348.15 K and 1 atm:
(a )  the  v i scos i ty
(h)  the  thermal  conduct iv i ty
(c)  the  k inemat ic  v iscos i ty
(d) the thermal difhrsivity

2.29. The difhrsion  coefficient of air-carbon dioxide at 1 atm and 276.2 K is 0.142 x
10e4  m2  s-‘. Est imate  the  difision  coefficient  at  3 atm and 320 K.
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CHAPTER

3
THE GENERAL

PROPERTY
BALANCE

NOMENCLATURE

A
A
B
C

C

C

CP
D
F

.

LA

AlA

60

Area (m’,  ft’)
Species A; AI  and A2  are species A at locations 1 and 2
Species B; subscripts 1 and 2 represent locations
Concentration (km01 rnm3,  lb mol ftm3);  CA,  Cn,  Ci are concentrations
of species A, B, i; C, is total concentration
C1,  Cz, C3,  C(x, y), C(y, z) are integration constants, evaluated
from given boundary conditions
Subscript denoting flux contribution due to convection
Heat capacity at constant pressure (kJ kg-’  K-‘, Btu lb;’  OF-‘)
Ditfusion coefficient (mass difiusivity)  (m’  s-l,  ft2  s-‘)
Force (N, lb,); subscripts refer to force in coordinate directions; also
F is the force vector with components in coordinate directions
Unit vector in x direction
Molar flux vector in Fick’s law, Eq. (2.4)  defined with respect to a
plane of no net volume flow (kmol m-’ s-l,  lb mol ftm2 s-l); subscripts
A or B are for flux of species A or B; called J”,/A in Chapter 5
Mass flux vector of species A, defined with respect to a plane of no
net volume flow (kg rn-‘s-l,  lb,,, ftW2  s-l)



THE GENERAL. PROPER7Y  BALANCE 61

i
k
k
m
m
n
n
P
Q

d
T

Unit vector in y direction
Unit vector in z direction
Thermal conductivity (W m-l K-l or J m-* K-’  s-l,  Btu ft-’  “R-‘sbl)
Mass  (kg, lb,)
subscript denoting contribution due to molecular transport
number of moles (kmol, lb mol)
number of components in a mixture
Pressure (kPa,  atm, lbfin.-‘)
Volume rate of flow (ft?  s-l)
Energy (heat) flow vector (W, J s-l,  Btu s-‘)
Cross sectional area (m’,  ft’)
Temperature (K, “R, “C, “F); T, and T2  are temperatures at locations
1 and 2
Time (s)
Velocity vector (m s-l, fts-‘);  U is magnitude of U; V,, U,, (I, are
components in directions x, y, z; U is the mass average velocity [see
Eq. (3.22)],  whereas U* is molar average velocity [see Eq. (3.23)]
Volume (m3, ft”)
Mass flow rate (kg s-l,  lb, s-l)
Rectangular (Cartesian) coordinate
Rectangular (Cartesian) coordinate
Rectangular (Cartesian) coordinate .f

Thermal diffusivity (m” s-l,  ft2  s-‘)
Difference, state 2 minus state 1; e.g., AT means & - Tl
Generalized diffusivity (m’  s-l,  ft2  s-‘)
Viscosity (kg m-l s-’ or N me2 s, lb, ft-’  s-l,  cP)
Kinematic viscosity (momentum diisivity) (m’  s-l,  ft2  s-l)
Density (kg me3, lb,,, ft-“);  subscripts refer to species
Generalized flux vector (e.g., units for heat flux are J m-’ se1  or
Wmm2, Btufte2se1;  see Table 2.1); W,, Y,,,  Yz are components in
directions x, y, z; Y=,, or Y, is flux due to molecular transport; Yx,,
or lu, is flux due to convection
Generalized concentration of property (e.g., units for concentration
of heat are J rnm3, Btu fte3; see Table 3.1 for complete listing)
Rate of generation of heat or mass or momentum in a unit volume
(e.g., for heat, units are J me3  s-l,  Btu ftm3 s-‘)
Momentum flux (or shear stress) tensor (N rne2,  lbr  ft-“);  rxr, ryx,
etc., are components of the momentum flux tensor, where subscripts
refer to direction of momentum transfer and direction of velocity
Vector operator del, defined by Eqs. (2.16) or (3.45) (m-l,  ft-‘)
Laplacian  operator, defined in Eq. (3.64) (mw2,  ft-‘)

The conservation laws of mass, energy, and momentum are the most widely
applicable laws in our universe. Many practical problems can be solved by
application of these laws either alone or in combination. The conservation of



6 2 BASIC CONCEPIYS  IN TRANSPORT PHENOMENA

energy forms the basis for the first law of thermodynamics, a separate subject
in itself. Einstein’s theory of relativity relates mass to energy, but the relation
becomes important only under conditions encountered in some nuclear
engineering applications. In the case of nuclear fission, a small amount of mass
is converted into a large quantity of energy. However, neither relativity nor
nuclear fission plays a very important role in most applications of the laws of
conservation. In this chapter, the laws of conservation of mass, energy, and
momentum will be expressed in an analogous fashion. The resultant general-
ized equation is called the general property balance.

3.1 THE BALANCE OR CONSERVATION
CONCEFSC
Conservation of energy, conservation of mass, and conservation of momentum
are mathematically analogous; a discussion of one applies equally to the
others. Let us select conservation of energy to discuss in detail. Further, let us
consider one-dimensional conservation. A simple volume is illustrated in Fig.
3.1. Heat enters from the left and exits to the right. The inlet and outlet areas
need not be equal, but the input and output must occur only in the x direction.
No transfer of any kind occurs in the.  y direction or z direction. The problem
we are considering is described as a one-directional transfer problem. Also, the
specify:  shape of the inlet and outlet areas is unimportrkrt. They can be
-pictured as circles. Since there is no heat gained or lost through the sides of the
cylinder, the volume in Fig. 3.1 may be considered as a hole in a piece of
insulation. There are four types of terms to be considered:

1. INPUT The input is the amount of heat that enters the
volume (V) in a given period of time. Let us say
that the heat enters through face 1 in the x

2.oulxJT

3. GENERATION

direction only.
The amount of heat that exits the volume through
the outlet face 2 in the same period of time is the
output. The output is also restricted to the x
direction.
It is possible for heat to be generated in the

FaCeI

GENERATION
fJx  - L.  _..:

INPUT

FlGURE  3.1
A  volume V with INPUT and OUTPUT.
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volume during the period of time. A common
mechanism for heat generation is by means of
chemical reaction. Absorption of heat by chemical
or other means is simply negative generation or
depletion.

4. ACCUMULATION If the heat transfer is not occurring under steady-
state conditions, the temperature in the volume
between faces 1 and 2 may increase or decrease in
the period of time (i.e., be positive or negative).
At steady-state, the accumulation term is always
zero.

These four concepts (INPUT, OUTPUT, GENERATION, AND
ACCUMULATION) are sufficient to describe the heat balance for the volume
in Fig. 3.1. For steady-state conditions the total rate of heat input into the
system plus the rate at which,heat  is generated within the system must equal
the total rate at which heat is removed; otherwise heat accumuiates.  The law
of conservation of energy (or mass or momentum) says

INPUT + GENERATION = OUTPUT + ACCUMULATION (3.1)

In other  words: what goes in (INPUT) plus what is made there
( G E N E R A T I O N )  m u s t  c o m e  o u t  ( O U T P U T ) ,  ’ o r  m u s t  .  s t a y
(ACCUMULATION). At this point a further comment on the
GENERATION term is required. Some authors separate this term into two
parts: generation and depletion. A more prevalent viewpoint is that depletion
is simply negative generation. Equation (3.1) is the general property balance.
It was discussed in terms of heat transfer, but it applies to conservation of mass
and momentum by analogous reasoning. In its present form, Eq. (3.1) is not
particularly useful, since it is not in mathematical terms.,

In the preceding chapter, the concept of a flux (Y) and property
concentration (q)  were introduced and found to be useful in presenting the

I analogy between transfer of heat, mass, and momentum. Table 2.1 provided a
summary of the various analogous forms. In each case, $J  was related to the
flux, Y, by a transport equation. Thus, the concentration of property tc,  is
conserved and represented in the general property balance. For heat or energy
transfer, I# is pc,T;  for mass transfer, 1~ is the total mass per unit volume (p)
or the concentration of any individual species in mass units (pA)  or in molar
units (CA); for IUOITIentUm  Wmfer,  $9 can be pU,,  pU,,  or &, depending on
the direction being considered. The various properties are summarized in
T a b l e  3 . 1 .

As shown, the four concepts of INPUT, OUTPUT, GENERATION,
and ACCUMULATION are sufficient to make a balance on the volume in Fig.
3.1. Remember that, in the present analysis, the input and output may occur
only in the x direction and that no transfer occurs in the y or z directions. Let
us first consider the INPUT and OUTPUT, then GENERATION, and finally
ACCUMULATION.
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T A B L E  3.1.
Complete list of Y, q, and S for use  in the general property balance

wfi
inthe
bahce

DIIfwIvIty, C-htIO0
Flau Fllu  MIt.9  (SI) lo*  s-l ofpropertyw Unitsofly

Heat 0 J mm2 s-l
kmol m-* s-lMass JAIA

n-h - iAlA kg m-*  s-’
Total.mass - -
Momentum

x direction s N m-’
y direction z N mm2
I direction z N m-*

;
D
-

Y
Y
Y

eJ
CA
P A
P

PK

PUY
PfJz

J m-s
kmol mm3
kg mm3
kg mw3

kg m-* s-l
kg me2 s-’
kg m-* s-’

3.1.1 Input-Output Balance

The INPUT is related to the flux of the property being transferred. The
concentration of property is q, and its flux in the x direction is YX.  The flux YX
is the total amount of property transferred per area per time, regardless of the
mechanism of transfer. The units of W,  are (property m-*s-l),  as shown in
Table 3.1. The rate of transferred material (property s-l)  ’ is simply the flux
times the area (\Y,A),.  The same reasoning can be applied to the OUTPUT to
give (W,A),.  As an example of flux times area, in heat transfer, the flux in the
x direction is (q/A)x  in units of J me2s-i.  The amount of the property
transferred per unit time for heat transfer is (q/A),(A), which equals qx and
has units of J s-i.

As an example of how the flux may be used in a balance such as in Eq.
(3.1),  consider the number of people transported into and out of a room. Let
us assume that the people enter by a door (area about 2 m2)  and leave through
a window (area about 1 m’).  If more people come into the room per hour than
leave per hour, then there will be an accumulation. In a long enough period of
time, there may even be a generation (positive through births or negative
through deaths). Note that even without accumulation or generation, the
fluxes in and out need not be equal. Suppose the number of people per time
coming in equals the number of people per time going out. If there is no
accumulation or generation, the input people flux (number of people per unit
area per unit time) is one-half the output people flux because of the differences
in the areas.

Substitution of the input and output terms into Eq. (3.1) gives

(w,A), + GENERATION = (YxA)2  + ACCUMULATION (3.2)

It is important to emphasize that the terms in Eqs. (3.1) and (3.2) are rates,
i.e., the property per second transferred in, transferred out, generated or
accumulated. The flux YX represents a flux that may be caused by molecular
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transport, by convection, or by some other means. A common application of
Eq. (3.2) is the case in which generation and accumulation are zero and the
area is constant throughout the volume. Under these conditions the area can
be canceled from the input and output terms in Eq. (3.2). As a result of the
conditions imposed, the flux is uniformly constant throughout the volume:

WA  = WA  = WAllx  = constant (3.3)

The example problems of Chapter 2 involved applications of these conditions,
for which the flux YX is related to the property concentration q  through Eq.
(2.7).

3.1.2 Generation

The generation of the property occurs by mechanisms other than transport.
The generation sometimes depends on the flux W,  or the property concentra-
tion q. Since generation is not a transport, an arbitrary symbol qo  will be used
to represent the rate of generation of heat, mass, or momentum in a unit of
volume. Clearly, the generation term must be consistent with the other terms
in Eqs. (3.1) or (3.2) as far as units are concerned. Each term in Eqs. (3.1) or
(3.2) has the units of property per second.

Because generation of a specific chemical species by a chemical reaction
is a common phenomenon, let us consider mass generation. Equations (3.1) or
(3.2) can be applied to problems in mass transfer, i.e., a balance on a specific
species of mass. In Fig. 3.1, the amount of the specific species under
consideration generated by chemical reaction is related to the total volume
since, if the volume were doubled, the amount of the species generated would
be doubled. Thus, the logical unit of & is the property per unit volume per
unit time, which is kmol m-’ s -’ for mass transfer. The dot (e)  in the symbol
tjo  emphasizes that a rate is being considered, i.e., a variation with time.

To express the generation term in Eqs. (3.1) or (3.2) in units of kg s-l  or
kmol s-‘,  the rate of generation & is multiplied by the volume (V) as shown
in Fig. 3.1, i.e.,

GENERATION = (&)(V) (3.4)

Equations (3.4) and (3.2) may be combined:

(Y,A),  + (w&(V) = (YxA), + ACCUMULATION (3.5)

Equation (3.5) is, of course, restricted to the one-directional transport case.

Example 3.1. Consjder  the copper block shown in Fig. 2.4. This block cor-
responds to the volume of Fig. 3.1 with a length of 10 cm. Face 2 is maiutained  at
100°C. The thermal conductivity is 380 W m-’ K-‘. Let the area of face ‘1 and of
face 2 be 6 cm2 (O.oooC  m’).
(a) Find the heat flux if face 1 is maintained at 0°C.
(b) If the same flux as in part (a) enters at face 2, find the flux at face 1 if there is

now a uniform generation within the volume of 1.5 X lo6 J mm3 s-l.
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Answer. For part (a), the conditions of this problem &respond to Eq. (3.3):

VX = constant (3.3)

Equation (2.2), Fourier’s law, is used to find the fhrx:

(q/A), = -k(dTldx) (2.2)
After  separating variables in Eq. (2.2) and integrating both sides, the flux is
found from

(q/A), = -k(AT/Ax)  = -3.8 x 10s J m-* s-l (9
Details of this calculation are in Example 2.1.

For part (b), the area is 0.0006 m*.  The volume is the area times the length
(0.1 m):

V = (A)(k)  = (0.0006)(0.1)  = 6 x 10m5  m3 (ii)

Equation (3.5) with no accumulation, and with the known terms inserted, is

(YJ,(O.OOO6)  + (1.5 x 106)(6x lo-‘)  = (-3.8 x 1@)(0.0006) (iii)

The above equation is solved for YX; the flux  at face 1 is

(YJ, = -5.3 x 16 J m-‘s-’ . (iv)

Note that the positive generation term increases the amount of heat
transferred through face 1. The minus sign in Eq. (iv) indicates that the heat flnx
is from right to left (negative x direction). Also, qx  and thus (q/A), are not the
same at faces 1 and 2, and thus dT/dr  must change with x by Eq. (2.2). The
balance equation has not been expressed in a convenient differential form in
order to evaluate T, at face 1 and throughout the block. Example 3.2 in the next
section will illustrate how to find the temperature profile.

3.13 Accumulation

Accumulation occurs when the concentration of property ly increases or
decreases in the volume V in Fig. 3.1 with progression in time. Problems in
which the accumulation is non-zero are termed unsteady-state. Conversely, if
there is no change with time, the problem is said to be at steady-state. The
nature of the accumulation term is similar to that of the generation term just
discussed. The rate of accumulation of v  is &)/at,  in the units of property per
volume per time. The total balance requires that the total amount of r/r
accumulated be proportional to the total volume so that

ACCUMULATION = (aq/&)(V) (3.6)

The sign of the derivative EJtp,li?t  indicates whether the concentration of
property is increasing or decreasing with time in Eq. (3.6). Equation (3.6) can
be combined with Eq. (3.5) to give

Wx41  + ~&dtV  = WA),  + (W/W(V) (3.7)

Equation (3.7) is the general property balance in mathematical terms, although
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the equation is restricted to the one-directional case of Fig. 3.1. The restriction
is easily removed, as will be shown later.

3.1.4 The Balance Equation in
Differential Form

Equation (3.7) is most useful in differential form. When combined with
expressions for the flux, Eq. (3.7) can be integrated to give useful results. The
equation can be rearranged to

w/at - & = -[(VA),  - (YxA),]IV (3.8)

Now consider a differential volume AV of length Ax as shown.in Fig. 3.2.
The differential volume in the figure is the volume between x1 and x2, and can
be expressed as

AV = (Ax)~  - (Ax), (3.9)
Replacing V in Eq. (3.8) with AV gives

w/at  - &i = -[(‘PA2  - (YA),]lAV (3.10)

The limit of (\Y,A),  minus (YxA)l, divided by AV, as AV approaches zero is
the definition of the derivative:

lim (\Y,&  - (w*A)t  AP’A  W’xAl=-=-
AV+O AV AV av (3.11)

Using Eq. (3.11) in Eq. (3.10) gives the one-dimensional balance equation in
differential form:

alyiat - lyG = -a(y,.4yav (3.12)

From Eq. (3.9),  it follows that dV equals d(px). Thus, Eq. (3.12) may be
recast into

aq/at - GG  = -ap-&4ya(Rx) (3.13)

Face1
at x,

ux  -

INPU

Y

L x

FlGURE  3.2
A differential volume of length Ax.
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If the area is constant, it can be canceled out on the right-hand side of Eq.
(3.13):

alyfat - & = -(aw,iax) (3.14)

Equation (3.14) is restricted to one-directional transfer in a constant area
system. In Eq. (3.14) the term W,  is the total flux. Equation (3.14) is not yet in
a form suitable for easy problem-solving because both the concentration of
property r/~  and the flux YX are included. In the next section YX will be written
in terms of q.

Example 3.2. For the copper block in Example 3.1, find the temperature profile
if face. 2 is at lCWC, the fhtx  through face 2 is -3.8 x 16 J mm2 s-l, and there is
uniform generation in the volume of 1.5 x lo6 J mm3  SK’.  Assume steady-state
conditions.

An.swer.  The problem is one of steady-state; therefore, the accumulation is zero.
Since the area perpendicular to the heat flow is constant throughout the block
represented in Fig. 3.1, Eq. (3.14) applies with the time derivative equal to zero:

- $,  = -(d’PJd.x) (9

where total derivatives are now used since dx  is the only differential in Eq. (i).
Separation of variables gives

&.ak=dYx (ii)

Since Go is constant, Eq. (ii) can be integrated to

(idW = yx  + Cl (iii)

Let x be zero at face 1, then x equals 10 cm or 0.1 m at face 2. The boundary
condition to evaluate C, is

YX(atx=O.lm)=-3.8x10sJm-*s-l (3
Inserting these into Eq. (iii) along with the value of the generation and evaluating
C, gives

Cl = (1.5 x 106)(0.1)  - (-3.8 x 105) = 5.3 x 10s J mm2  s-’ 69

From Eqs. (iii) and (v), the flux at any point in the volume may be calculated:

Yx = (1.5 x W)(x)  - 5.3 x 105 (4

where YX is (q/A)x in units of J mm2 s-i and x is in meters.
To find the temperature profile, Eq. (2.2) is used to write the flux in terms

of the temperature

\rr, = (q/A), = -k(dT/d.i) (2.2)

Equation (2.2) can be combined with Eq. (iii):

- k(dTld.x) = (Q&)(X)  - C, 6%

Note  that Eq. (2.2) also could have been combined with Eq. (vi) in terms of the
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actual  values  of  th is  problem.  The var iables  in  Eq.  (vi i )  are  again  separated and
the resulting equation is integrated to give

- kT = (&3)(x2)/2  - (C,)(x)  + c2 (viii)

‘Ihe cons tan t  o f  in tegra t ion  C, can be  evaluated f rom the  boundary condi t ion

which gives  for  C,
T(x  = 0.1 m) = 100°C  = 373.15 K 64

C, = -(380)(373.15)  - (1.5 x 106)(0.1)2/2  + (5.3 x ld)(o.])

= -9.63 x 1O“  J m-’ s-’ 6)
NO W  al l  the  constants  in  Eq.  (v i i i )  a re  known.  The temperature  profile  can

then be obtained from Eq. (viii) with the constants being inserted and by dividing
through by (-k):

T = (-1.974 x ld)(x’) + (1.395 x l@)(x)  + 253.41

where T is in units of kelvins.

64

It  is  interest ing to  compare the temperature  a t  face 1 in  this  example with
that  obta ined in  the  preceding example ,  par t  (a) ,  where  there  was  no generat ion.
The f lux enter ing the  block through face  2  is  ident ica l  in  both  examples .  With  no
generat ion,  the temperature at  face 1 is  0°C.  With  generat ion,  the  temperature  is
253.4 K or -19.74”C,  as determined from Eq. (xi).

Example 3.3.  For the copper block in Example 3.2,  let  the heat  f low at  face 1 be
-270 J  s-i.  At  face 2 the heat  f low is  -228 J  s-‘. The generat ion is  the  same as  in
Example 3.2:  1.5 X 106  J mm3  s-‘. The heat  capaci ty  of  copper  is  0 .093 cal  g-r K-’
and the specific gravity is 8.91.
(a)  Find the rate  of  accumulat ion.
(b)  Find the equation for  the temperature profi le ,  and determine the temperature

at face 1 after 1 min, if  at  the start  face 2 is at  100°C.

Answer.  The solut ion to  par t  (a)  is  easy i f  Eq.  (3 .1)  is  used.  The volume of  the
block was found in  Example 3 .1  to  be  6  x lo-’  m3. By Eq. (3.4):

GENERATION = (G,)(V) = (1.5 x 106)(6  x lo-‘)  = 90  J s-’ 6)

In  Fig .  3 .1  the  input  i s  the  heat  f low in  a t  face  1 ,  and the  output i s  the  heat  f low
out at face 2. This convention must be maintained; if the actual heat flow is
reversed in a specific problem, this will be signified by the sign on the flow. Using
Eq.  (3 .1)  wi th  each term known:

ACCU~~ULATI~N  = INPUT + GENERA TION - OUIIU-I (3.1)

ACCUMULATION = -270 + 9 0 - (-228)

=48Js-’

In th is  problem the  ra te  of  accumulat ion is  constant  because  the  input  f lux,  the
o u t p u t  llux,  and  the  genera t ion  a re  a l l  cons tan t .

In part (b), the equation for the temperature profile will be found. On a
unit  volume basis ,  from Eq.  (3.6), one  can  obta in

dtp/df  = 48/V  = 4846  X lo-‘)  = 8 x ld  J rnm3s-’ (ii)
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However, it is more instructive to solve this example through the use of Eq.
(3.14): , ,

atpI& - $0  = -(iw*/&) (3.14)

Solut ion of  the  more  di f f icul t  problems to  be  discussed in  Chapter  4  must  begin
wi th  d i f ferent ia l  equat ions  such as  Eq.  (3 .14) .  By se t t ing  1~  equa l  to  ppT  (from
Table 3.1), Eq. (3.14) becomes

3(pc,T)ldt  - $0  = -(3Yx/3x) (iii)

The  var iab les  a re  separa ted  in  Eq.  ( i i i )  and  the  resu l t ing  equat ion  i s  in tegra ted :

[a(w,T)/et  - &&x)-=  -Y=  + c, 69

Note that the term [3(pc,T)/dt  - Go]  is a constant in this problem. The heat
flow qx  is converted into a flux by dividing qx  by the area (0.0006 m”)
perpendicular  to  the  direct ion of  the  f lux;  i .e . ,

‘y,,,  = -270/0.0006  = -4.5  x l@ 3 m-*s-l (3
Y,,* = -228/O.o006 = -3.8 x 10s  J m-’ s-’ (4

The constant of integration C, in Eq. (iv) is evaluated from the following
boundary  cond i t ion :

Y&=O)=-4Sxl@Jm-*s-’  ‘ ’ (vii)

Using  Eq.  (v i i )  in  Eq.  ( iv)  g ives  for  C,:

C,  = Yx,, + [3(pc,T)/3t  - &J(O) = -4.5  x 105  J m-‘s-’ (viii)

The rate  of  accumulat ion is  found from the second boundary condi t ion:

Y&x = 0.1 m) = -3.8 x l@ J m-* s-’ (ix)

Through use  of  Eq.  ( iv)  and Eq.  (v i i i ) ,  one  obta ins

[3(pc,,T)/3t - 1.5 x lo”l(O.1)  = -(-3.8 x ld) - 4.5 x l@ ‘lx)

Solving for  the  accumulat ion gives

d(pc,T)/&  = (3.8  X  l@ - 4.5 x ld)/O.l  + 1.5 x 106  = 8.0 x ld  J mm3  s-’ (xi)
-.-

This answer is ,  of  course,  the same as was obtained from Eq.  (3.1)  in part  (a) .
To f ind the temperature profi le  for  part  (b) ,  the procedure fol lows that  in

Example 3.2. First, Eq. (iv) is written with all the constants included:

[3(Pc,T)l3t  - I&)  = -Y* + c,
(8.0  x 105  - 1.5 x l@)(x)  = -w,  - 4.5 x 10s

4.5  x 16 - (7 x lOS)(x)  = -w,

Equa t ion  (2 .2 )  i s

Y, = (q/A),  = +(X/ax)

Equat ions  (x i i )  and (2 .2)  can be  combined as  fo l lows:

4.5  x 16 - (7 x W)(x)  = k(Wl3x)

(3
(xii)

(xiii) ’

(2.2) .

(xiv)
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Upon separat ion of  var iables  and integrat ion,  Eq.  (xiv)  becomes

kT = - (7 x 16)(x3/2 + (4.5 x l@)(x)  + c, (-1

The constant  in  Eq.  (xv)  may not  be evaluated unt i l  the  temperature  a t  face 2
(X  = 0.1 m) is expressed as a function of time. First, the density and heat capacity
of  copper  are  conver ted  to  the  appropr ia te  uni t s :

p = 8.91 g ctn3  = 8.91 x ld  kg rnT3

cp = 0.093 cal g-’ K-’ = (0.093 Cal g-r  K-‘)(4.1840 J cal-‘)(ld  g kg-‘)

= 389 J kg-’ K-’
(xv9

k=38OWm-‘K-’

The var iables  in  Eq.  (xi )  can be separated and the  equat ion integrated.  The result
i s

pcpT  = (8.0 x lo’)(t) + C, c? (mii)  ‘\

The  boundary  condi t ion  needed  to  eva lua te  C, i s ‘\. /,

T (t=Oandx=0.1)=100”C=373.15K
The constant ,  from Eq. (xvii) ,  is

(xviii)

C, = (8.91 x 1@)(389)(373.15)  = 1.293 x lo9  J mm3 (@k,‘
L. _,i

To find the relationship between T and t at x = 0.1 m, Eqs. (xvii) and (xix) are
combined and solved for  T. After  the  use  of  a lgebra ,  the  resul t  i s

T = 0.231t  + 373.15 (xx)

where T is in units of kelvins. Now Eq. (xx) is used to evaluate C, in Eq. (xv). Of
course, C, will be a function of time. The boundary condition is given by Eq. (xx)
which applies to the position x = 0.1 m for any time. Combining Eq. (xx) with
Eq. (xv)  gives ,  when solved for  C,:

C, = (k)(0.231t + 373.15) + (3.5 x lti)(x’)  - (4.5 x Id)(x)

= 87.7t + 1.418 x 105  + (3.5 x l@)(O.  1)’ - (4.5 x lo’)(O.  1)

= 87.7t + 1.00297 x ld (4

Substituting Eq. (xxi) into Eq. (xv) gives the temperature profile as a
funct ion of  both  x and  t :

kT = -(3.5  x l@)(x’)  + (4.5 x Id)(x) + 87.7t + l.C0297  x 10s

or  s ince  k=380Wm-‘K-’
T = -(921)(xq  + (1184)(x) + 0.231t  + 263.9 (arii)

At face 1, x = 0, and at 1 min (60 s), Eq. (xxii) can be used to. determine
the temperature:

T = (0.231)(60)  + 263.9 = 277.7 K.=  465°C (xxiii)

In the same period of t ime,  the temperature at  face 2 wil l  have changed and can
be determined from Eq. (xx) or from Eq. (xxii):

T = -(921)(0.1)*  + (1184)(0.1)  + (0.231)(60)  + 263.9

=387.0K=113.8”C NW
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3.2 THE. ONE-DIRECI’IONAL BALANCE
EQUATION INCLUDING MOLECULAR
AND CONVECTIVE TRANSPORT

The general balance equation for heat, mass, or momentum transfer, Eq.
(3.12) is complete for the one-directional transfer case as written in terms of tj
and W,.  However, more useful forms of the equation would contain either rj~
or Yz, but not both. The flux in Eq. (3.12) was included as a consequence of
the input and output contributions to the general balance. Considering Fig.
(3.1) again, the flux that enters through face 1 and that which leaves through
face 2 may occur by several mechanisms. The two mechanisms general to all
transports are molecular transport (as covered in Chapter 2) and convection:

yx  = yx,rn + w,,, (3.15)

where W,,, is the contribution due to molecular transport as discussed in
Chapter 2 and YX,, is the contribution due to convection. In the case of heat
transfer, a third mechanism, radiation, exists:

(q/AL  = (q/Ah.m + (q/AL,,  + (q/A),,  radiation (3.16)

The flux contributions due to molecular transport and due to convection will
be considered in turn.

3.2.1 Molecular Transport

In Chapter 2, the flux YX,, was related to the concentration of property ly by
the empirical laws of Fourier, Fick, and Newton. The general equation is

Ym = -6Vl) (2.18)

where the subscript ni has been added to emphasize that in Chapter 2 only
molecular transport was included. Likewise, for the one-directional, one-
dimensional case as in Fig. 3.1:

w,,,  = -s(aqlax) (2.7)

The definitions of 6, YX,,, and 1~ for heat, mass, or momentum transfer are
given in Tables 2.1 and 3.1.

3 . 2 . 2  Convection1

A property can also be carried into and out of a volume by a flow mechanism.
Convection is the bulk flow of a fluid due to the external influences such as a
pressure difference or the force of gravity. The pressure difference may be a

’ The term conveyance is sometimes used instead of the term convection.



‘ITiE  GBNBRAL  PROPERTY BALANCB 73

Face1

uz-

Face2

T2

-I

- aUmber
wall

I n s u l a t i o n

FIGURE 3.3
Heat transfer with conduction, convection, and generation.

result of a density difference, as for the case of air in a room heated with
radiators. The radiator is supplied with hot water or steam from a furnace. At
the radiator surface, the room air is heated; its density decreases, and the air
rises toward the ceiling. Thus the air at the radiator surface is continually
replaced and convection currents are set up. In a solid there is no convection
possible and thus no flux contribution due to convection. ,

A flux may consist of both a molecular and a convection contribution,
each occurring simultaneously. This situation can be visualized by referring to
Fig. 3.3, in which a fluid enters a chamber with a temperature Ti  and velocity
(I,. If the chamber is subjected to, for example, a strong microwave field (as in
a microwave oven), then heat can be generated within the volume.

Because of the generation, the temperature at the outlet in Fig. 3.3 is
higher than the temperature at the inlet. Thus, by Fourier’s law, heat wiIl  be
conducted by molecular transport from the right to the left, against the flow.
Heat will be removed from the volume only by the hot fluid flowing out
(convection mechanism). Of course, heat is also being carried in by the flow at
the inlet since the inlet stream has a finite temperature. In other words, if the
contents of the volume are at steady-state, the net convected heat plus the net
conducted heat must balance exactly the heat generated within the volume.
Whether by the convection or the conduction mechanism, the net heat is
output minus input. In Fig. 3.3, if the temperatures were high enough, one
might also have a contribution from radiative effects.

The convection flux W,,, is associated with the property being convected
and the flow velocity. When the velocity is zero, there is no convective
contribution. The correct form is simply the property concentration times the
velocity:

\rr,,, = (property concentration)(velocity)

For heat transfer, the units are

J m-* S-’ = (J m-“)(m  s-i)

(3.17)

(3.18)
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For mass transfer, the units are

km01  m-’  s-*  = (km01  m-‘)(m  s-i)

For momentum transfer, the units are

N mu2  = kg m-i  s-* = (kg)(m s-‘)(m-‘)(m  s-l)

(3.19)

(3.20)

Note that Yx,,  has the same units as the flux due to molecular transport. In
mathematical terms, Eq. (3.17) is

w,,, = rvu, (3.21)

where ZJ,  is the average velocity of the property rj~  that is being convected. This
velocity U, takes different forms for each property. Let us first discuss
momentum transfer in the absence of mass transfer. In Fig. 3.4 a volume
(1 m3)  of fluid of density p is convected with velocity U, through a unit area
(1 m2)  in unit time (1 s). The density determines the mass contained in that
volume. The velocity of the mass that is convected with that volume is called
the mass_average  velocity, which is defined mathematically for a mixture of II
components as

(3.22)

where G is the velocity of species i and pi  is its density.
In this problem, each cubic meter of volume is associated with a certain

amount of momentum, e.g., pU,  (units of which are kg mP2  s-l). Recall that
the amount of momentum is equal to the mass in the volume times the velocity
of that mass (i.e., the mass average velocity). In one second, one unit of _
volume (1 m’) is convected past the one-square-meter area. This one unit of
volume contains (T/J  - 1) amount of the property per unit time and unit area
(the flux of the property) and is numerically equal to 9. If the velocity were
doubled, so that two units of volume were convected in unit time, the flux
would be twice as large. Thus, Eq. (3.21) is seen to be in appropriate form.

UnitprepthRl@WhiCb
volume is convected

FIGURE 3.4
Convection of a unit volume
(dimensions in meters).
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For heat transfer with no mass transfer, the concentration of property ly
is the concentration of heat in J me3, and the same reasoning applies. In mass
transfer, the velocity U, is as depicted in Fig. 3.4 for the case of one
component (species A) undergoing mass transfer. For the most general case of
a convection flux coupled to molecular fluxes in both positive and negative
directions, ZJ,  must be selected on the same basis as the property ly in Eq.
(3.21). If I/)  it3  taken as PA in kgmm3, then U, is the mass average velocity of
species A, denoted by V, or U, and is the same velocity as that defined by Eq.
(3.22). If ly is taken as CA in lcmol rne3,  then the velocity in Eq. (3.21) is the
molar average velocity of the species (denoted by Uz),  which is defined in
general as

where Ui is the same species velocity that appeared in Eq. (3.22) and Cj is the
concentration of species i. The difference between molar average and mass
average velocity will be discussed fully in Chapter 5. This difference is not
often of practical importance in solving problems in science and engineering.
For homogeneous systems, there is no difference between the mass average
velocity U and the molar average velocity U*.

The total flux is the sum of’ the contributing fluxes which, in one-
directional flow, is given by Eq. (3.15). Combining Eq. (3.15) with Eq. (2.7)
and Eq. (3.21),  the total flux is

Yx = Yx,, + w,,,  = -s(al)/ax) + qxJ, (3.24)
molecular convective

Keep in mind that for heat transfer a third mechanism, radiation, exists.
Taking the partial derivative of Eq. (3.24) with respect to x gives

ew,  a(w,,m+~x,c)=~  -** + a(w.A-=
dX t3X ( >ax ax ax

(3.25)

Equation (3.25) can be combined with Eq. (3.14) to give the general equation
for one-directional transfer in a constant area system in terms of the
concentration of property only:

a4C,  . a- -
a t  qG=-z

If S is constant, Eq. (3.26) reduces to

w . = 6* wad- -
dt- vG ax2  ax

( 3 . 2 6 )

(3.27)

ACC GEN MOLEC CONV

Equation (3.26) is the general property balance equation for the concentradon
of property t&.  The assumptions of one-directional transfer and constant area
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apply. In the cast  of heat transfer, there may be a radiation contribution at
high temperatures. It must bc  emphasized that the equation is for one-
directional transfer only, and there can be no contributions, either by
molecular or convective means, from the y or L directions. For these, a
three-dimensional treatment is necessary and will be considered in the next
section.

Equations (3.26) and (3.27) are commonly presented in the following
rearranged form:

(3.28)

In Eq. (3.29,  W is the concentration of property per unit volume being
conserved, in other words, any one of the seven entries in Table 3.1. For
example, consider heat transfer with no radiation for which Eq. (3.28) reduces
t o

(3.29)

since, from Table 3.1, r/~  is pc,T and 6 is CY or k/(pc,).  For constant k, p,  and
cp,  this equation becomes

dT a(TQ)  I,& d2T  ’
-z+-ax  =pC,+(‘S

For mass transfer, Eq. (3.28) becomes

when W is expressed in terms of mass units. For r/.~  in terms of molar units, Eq.
(3.28) becomes

where V:  has been used because the property is concentration of moles and
the velocity is now a molar average velocity [defined by Eq. (3.23)].  For
momentum transfer in the x direction with constant p and p [therefee  v by
Eq. (2.12)],  one obtains

au, a(G) ik a2u,
dt+-ax  =JT+’  ax2 (3.33)

Actually the second term on the left-hand side of Eq. (3.33) is zero, as will be
shown in Section 3.4.

If the area were variable rather than constant, as assumed in Eq. ‘(3.14),
then Eq. (3.24) would have to be multiplied by the variable area,
differentiated, and then combined with Eq. (3.12). The equation parallel to
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Eq. (3.28) for the case of variable area is

(3.34)

As will be illustrated in Chapter 4, one-directional transfer problems with a
variable area can be treated by use of this equation.

3.3 THE THREE-DIMENSIONAL
BALANCE EQUATION

In a volume in space, the generation and accumulation terms were seen to
apply to the volume as a whole, as discussed in Sections 3.1.2 and 3.1.3. Thus
in the general balance equation (3.1) the form of these two terms is unchanged
whether the discussion is for three-dimensional or for one-dimensional
transfer. The balance in each direction contributes to the accumulation and
each directional effect can be added. In other words, the input and output
terms may have contributions from one, two, or three directions.

Consider the volume in Fig. 3.5, a parallelepiped of dimensions dr,  dy,
and dz. The volume of the parallelepiped is the product of these dimensions:

dV  = (dn)(dy)(dz) ( (3.35)

The generation from Eq. (3.4) in the parallelepiped is

GENERATION = +o dV = [&][(dr)(dy)(dz)] (3.36)

From Eq. (3.6)  the accumulation in the cube is

ACCUMULATION = (awlat) = (aq/at)[(dx)(dy)(dz)] (3.37)

2
Y

kc x

FIGURE 3.5
The balance on a cube.
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For the two faces perpendicular to the x axis, the area is (dy)(dz),  and so
on for the other pairs of faces in Fig.’ 3.5. Thus, the input is the sum of the
total flux in each direction times the appropriate area:

INPUT  = WXWYW)  + (iI’,), + (~z)1(~)(dY) (3.38)

Similarly, for the output one obtains

OUTPUT  = 0-‘xMd~W)  + (y,J,(~)(dz)  + WY,M~)VY) (3.39)

Next, the basic definition of the derivative is reviewed with the aid of Fig.
3.6. The definition of the derivative dy/uk  is the limit of Ay/Ax  as AX
approaches zero. Thus, the value of y at location x + dx,  i.e., y(x + dx),  equals
the value of y(x) plus the derivative times AX. In other words, the derivative
times Ax is really Ay. Applying this result to YX at the face x + dr, the result is

(w,), = (~A+*  = WA  + (ayxlax)  cfx (3.40)

Similarly for the y and z directions:

WY)*  = WY)y+dv  = WA,  + (-‘Jay)  dy (3.41)

WA  = WYr)z+dr  = (Yu,), + (aYz/az)  dz (3.42)

The above three equations are substituted into Eq. (3.39):

OUTPUT  = WxLWW)  + (‘J’J,(~Wz)  + WzL(~Wy)
+ (6’YJax  + iS’YJi3y  + aY,laz)[(dx)(dy)(dz)] (3.43)

Now every term in Eq. (3.1) has been defined for the three-dimensional
case. Equations (3.36),  (3.37),  (3.38),  and (3.43) are substituted into Eq. (3.1).

After canceling, the general property balance in three dimensions becomes

aqiat  = --(avxiax + ay,/ay  + aw,iaz)  + I& (344)

As stated previously in conjunction with Eq. (3.12),  Eq. (3.44) must be cast in
terms of the property concentration $J  rather than the flux W,.  Considerable
simplification is possible by the introduction of the operator V. The V operator
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was introduced previously in Eq. (2.16). The operator may be applied to a
scalar such as temperature or concentration:

VT = i(dT/&)  +j(eT/ay)  + k(dT/&) (2.16)

vc,  = i(ac*lax)  +j(ec,/ay)  + k(dC,ldz) (3.45)

where once again i, j,  and k are the unit vectors in the x, y, and z directions.
The term VT is called the gradient of T. The operator can be pictured as a
“short-hand” notation for the string of unit vectors and partial derivatives as
shown above.

The operator V may be also applied to a vector such as the flux Y. The
flux vector in rectangular coordinates is

Y = iVJx  + jY,, + kY, (346)

The application of the operator V to a vector is called the divergence of that
vector, or more simply the dot product; for rectangular coordinates:

(v.~)=d\~,lax+d~~/ay+a~,/d2 (3.47)

which when combined with Eq. (3.44) gives

al/J/at  = -(V * Y) + $0 (3.48)

Equation (3.44) and Eq. (3.48) are identical, but, Eq. (3.48) is a more compact
way of writing the expression.

As a further example, consider the convective flux of Eq. (3.21),  but as a
vector, i.e.,

Y,=  ?/dJ (3.49)

If the same operation is done on the convective flux, one obtains

(V  * qu)  = a(lyu,)lax  + a(~u,)lay  + e(lyu,)laz (3.50)

This can be expanded by use of the general relation

d(xy)=xay+yax (3.51)
The result is

Equation (3.52) is written in terms of the V operator. The product (U* V)
operating on r# is

(3.53)

The right-hand side of Eq. (3.53) is seen to be the last three terms in Eq.
(3.52). Similarly,

w(v.u)=l)($+f$+~) (3.54)
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where (V  - v)  is of the same form as (V  . V), shown in Eq. (3.47). The last two
equations can be used to simplify Eq. (3.52):

(v~l)u)=q(v*u)+(u~v)ly (3.55)

Equation (3.55) means the same as Eq. (3.50) and Eq.(3.52);  yet it is much
simpler to write.

The product (V - VU’) is called the divergence of VU or the dot product
of V and Lyle,  the resulting product is a scalar. Note that the gradient (a vector
V times a scalar such as T) yields a vector. As will be seen in Chapter 5, the
operator V has a further advantage in that it may be expressed in curvilinear
coordinates. This will be helpful when the balance equations must be
expressed in alternate coordinate’ systems.

In Eq. (3.24),  the flux was presented as the sum of molecular and
convective terms. For the three-dimensional problem, the corresponding
vector equation is

Y=Ym+Yc (3.56)

The divergence of the flux is

(V-Y)=(V~Ym)+(V~Yc) (3.57)

The flux due to molecular transport is given by Eq: (2.18) and the flux
due to convection by Eq. (3.49). When these equations are substituted into
Eq. (3.57),  the result is

(v~Y)=(v~-6vl))+(v~l/Ju) (3.58)

. Equation (3.58) can now be combined with Eq. (3.48) to give the three-
dimensional property balance:

ayjylat  = (V  * SVlp) - (V  * l/w)  + $0 (3.59)

This equation can be expanded by use of Eq. (3.55) and rearranged into a
more common form:

aly/at+(u*v)lC,=~o+(v.svly)-ry(v.v) (3.60)
ACC CONV GEN MOLEC CONV

The reason for the two convection terms in Eq. (3.60) will become clear in
Section 3.5. If the diffusivity is constant, a further simplification is possible:

(V  * SVlp) = 6(V * VI/J) (3.61)

Inserting this equation into Eq. (3.60):

alyjat  + (u . ~1~9  = & + 6(v. vq) - ly(v.  u) (3.62)

The term (V *  Vq)  can be easily presented in rectangular coordinates by
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using Eq:  (3.47); i.e.

(3.63)

The dot product (V  - V), operating on a scalar occurs so often that it is
given a special symbol V2,  and a special name, the Laplacian operator:

v2v _ #1cI+  a2v  ] a21y
a2 ay2  az2 (3.64)

The general heat or mass balance is easily obtained from Eq. (3.60) by
the appropriate substitution for r/~  from Table 3.1. For heat transfer the
equation is

a(pc,T)/at+(CI.V)(pc,T)=  &+[V*  nV(pc,T)]-(pc,T)(V.  U) (3.65)

For mass transfer the result in terms of mass concentration is

hiat + (u - VIP,  = ih + (v. ~vp.4  - (p,d(V.  v) (3.66)

In terms of molar concentration, the equation is

ac,/at  + (u* . v)cA  = & + (v  . mcA) - (c,)(v  . u*) (3.67)

The momentum transfer balance is complicated by the fact that t#  is  a
vector composed of three components: pU,, pU,, and pU,. However, the
proper equations for rectangular coordinates can be obtained by simply
considering each component separately as a scalar term. For example, the x
component of momentum is pU,, which is substituted for q  in Eq. (3.60):

awwt  + (us v)(Pu,)  = & + [v.  vv(~wl-  (PU,)(~  a v) (3.68)

The equations for the y and z components are similarly obtained.

Exanrple  3.4.  Obtain the three-dimensional equation for heat transfer in vector
notation and show the form that can be obtained for constant properties. Also,
express this equation completely in rectangular notation.

Answ+w.  The vector equation is obtained by replacing q  with pcpT and 6 with LY
in Eq. (3.60). The resulting equation is Eq. (3.65):

d(pc,T)lat  + (U - V)(pc,T)  = $G  + [V  . cuV(w,T)l  - (pc,T)P. u) (3.65)
For constant properties p, cpr  k, and thus a; Eq. (3.65) reduces to

aT/dt + (Cl.  V)T  = Ijl&cp)  + cu(V*  T) - T(V . U) (9

The expression in rectangular (Cartesian) coordinates may be obtained from Eqs.
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(i);  (3.53), (3.54), and (3.64):

(ii)

3.4 THE COlvTmurm EQUATION

A s  indicat
system is2

earlier, one of the most important properties conserved in a
total mass. Naturally, the total mass is the total amount of all

materials in the system. The total mass must be distinguished from the amount
(or concentration) of some individual species that can diffuse in and out of the
system. In heat or momentum transfer problems it is vital to account for the
mass in or out, even if a single-component system is present or if the
composition is invariant in a multiple-component system (such as air). Let us
assume that no mass is manufactured or lost by nuclear means (i.e., no
generation), then the mass balance becomes

INPUT = OUTPUT + ACCUhfULATION (3.69)

For a single component system, there can be no di@usional  contribution
to the flux, hence Eq. (3.59) reduces to

a~/at+(v*qm)=o (3.70)

where the concentration of property Q is now the total mass per volume and is
the density p:

ap/af+(v-pu)=o (3.71)

Equation (3.71) is the “Equation of Continuity”, a general mass balance that
holds in all problems with no net generation of mass by nuclear means and
with no mass transfer.

In the presence of mass transfer, Eq. (3.71) sometimes applies under the
following restriction. In Eq. (3.71) there is no net molecular contribution to
mass transfer. Therefore, Eq. (3.71) applies if the mass transfer contributes
nothii to the overall mass balance. Equation (3.21) defined the convective
contribution of property in the overall balance in terms of the average velocity
of that property. If there is no net mass difIusion  relative to that velocity,
which is the mass average velocity V, then Eq. (3.71) applies equally to mass
transfer problems as well as to heat and momentum transfer.

Using the identity of Eq. (3.55) with p replacing $,  Eq. (3.71) becomes

ap/at + (U. V)p  = -(p)(V  * u) (3.72)

The equation of continuity can be simplified under conditions of steady flow or
constant density or both. Under steady-state conditions, the time derivative is
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zero  and Eq. (3.71) reduces to

(3.73)

In many engineering problems, the density can be assumed constant, i.e.
the flow is incompressible. The assumption of incompressibility is true even for
gas flows when the changes in pressure are modest. If the density is constant,
then Eq. (3.71) reduces to

(v- u)=au,la~+aqtay+  au,la2=0
since p is in general not zero.

(3.74)

Equation (3.74) is extremely important and has wide application. It
should also be emphasized that Eq. (3.74) is true for any constant density
system; it is not necessary to assume steady-state, since apl6’t must be zero  if
the density is constant. This means, for example, that the correct form of the
continuity equation for an unsteady-state fluid flow problem, such as blood
flow from the heart, is still described by Eq. (3.74).

It is possible to express the equation of continuity on a molar basis.
Equation (3.70) expresses the conservation of moles if there is no change in
the number of moles throughout the system. Remember that Eq. (3.70) is
restricted to no net ditfusion  relative to the velocity of the property. Here the
property is the total molar concentration CT, and the corresponding average
velocity in Eq. (3.70) must be the molar average velocity U*.  Equation (3.70)
becomes

ac,lat+(v-c,u*)=o (3.75)

At steady-state and constant overall molar concentration, Eq. (3.75) reduces
to

(v-u*)=0 (3.76)

Equation (3.76) is not as useful as Eq. (3.74) because more problems involve
constant density than involve constant concentration.

Example  3.5. A how  in rectangular  coordinates is given by

U = i(x’y)  + j(2$2) (9
Is this  flow compressible?

AJSUW.  If the flow is incompressible, then (V - v) will be zero as required by Eq.
(3.74). ‘The components of the velocity vector from Eq. (i) are

u, = xp IJ, = 2yx2x u, =o (3
lkls

au,iax  = 32~ auyay  = 2x3 au,m  = 0 (iii)
These derivatives are substituted into Eq. (3.74):

(V  - U)  = XJ,li3x  + XJJ~y + XJ,/&  = 0 = 3xzy + 2x2z  = (x2)(3y  + 22) (iv)
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The dot product (V - U)  is zero at the plane (X  = 0). It is also zero along the plane

3y+2z=O 69
or

y = (-2r)/3 w

Therefore, this flow is compressible because the dot product (V - v) is not zero
throughout the entire flow field.

Example 3.6. An incompressible flow at steady-state in rectangular coordinates is
given by the vector components

u,  = x’y

and U, is unknown. Find U,.

u, = 2yx2z (9

Answer. Equation (i) above for U,  and U,  contains two of the wmponents of the
velocity given in the previous example. If the flow is incompressible, then Eq.
(3.74) holds. Using the derivatives in Eq. (iii) from the previous example gives

(v - v) = 3x9  + 2x22  + au,iaz = 0 G9
After separating variables, Eq. (ii) becomes .

au, = -(~x*Y + 2~22)  az , (iii)
Next, this equation is integrated:

u, = -3x2yz - x*z2  + C(x, y) 69

The term (-x’z)  can be factored out of the first two terms in Eq. (iv). Then the z
component of velocity U,  becomes

u, = ( -xZz)(3y + z) + C(x, y ) (9

Note that C(x, y) is a constant of integration to be determined from the boundary
conditions and may be a function of x and y; it cannot be determined from the
information given in this problem. Hence, the final answer will express the vector
u as follows:

u=  i(x3y)  +j(2yx*z)  + k[(-xZz)(3y  + z) + C(x, y)]

The flow is incompressible for all values of x, y, z, and C(x, y).

w

Example 3.7. Does the velocity in a one-directional incompressible flow in
rectangular (Cartesian) coordinates change with the direction of flow?

Answer. For inwrnpressible flow in rectangular coordinates, Eq. (3.74) holds

(v. v) = awax  + auyay + au,iaz  = 0 (3 .74)

Now if a. one-directional flow is in the x direction, U, and U, must be zero

Therefore
u, = u, = 0

auyay = au,laz = 0
(9

(3
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and ‘from Eq. (3.74)

awax = 0 (iii)

Integration of Eq. (iii) yields

v,  = ccv>  z) (iv)
Therefore U, does not change in the direction of the flow, the n direction, since
C(y,  z) can only vary in the y or z directions. The importance of this result must
be emphasized again. The continuity equation demands that in a one-dimensional
incompressible flow, the velocity cannot change in the direction of flow for any
reason.

.3.5  THE GENERAL PROPERTY
BALANCE FOR AN INCOMPRESSIBLE
FLUID
In most applications in this text, the fluid in the system may be assumed
incompressible, which means constant density with respect to time and
position. Equation (3.60) is the general property balance equation:

al/l/at  + (U  - V)l)  = Ijo + (V  * 6Vlp) - (q)(V  * u) (3W

If the flow is incompressible then the last term on the right-hand side is zero by ’
Eq. (3.74),  and Eq. (3.60) reduces to

ap/ar + (U  * V)q = ?jG + (V * SVt)) (3.77)
ACC CONV GEN MOLEC

If the transport coefficient S can be considered constant, then Eq. (3.77)
reduces further:

dlylat+(U.V)ly=lj,+SV*ly

where Vz is the Laplacian operator, Eq. (3.64).

(3.78)

Equation (3.78) is the starting point for almost all transport phenomena
problems. If the density and diffusivity are allowed to vary, the corresponding
equations, such as Eq. (3.60) and Eq. (3.77),  are frequently too complicated
for exact solution. From this chapter, the reader is expected to know how to
write down the general balance equation for any property being conserved by
tinding  the appropriate values of 1~ and S in Table 3.1 and plugging those
values into Eq. (3.78),  Eq. (3.60),  or Eq. (3.77). Solutions of the resulting
equations will be discussed in the subsequent chapters. In Chapter 4, the
general balance equation will be applied to problems where the total flux, Eq.
(3.56),  consists of the molecular transport contribution only. In Chapter 5, the
general balance equation will be applied to problems where the total flux is the
sum of molecular plus convective contributions and where the flow is relatively
slow. In Chapter 6 the flows under consideration will be at high velocities
where turbulent conditions prevail. In Chapter 13, these equations will be
applied to unsteady-state problems.
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Example 38. Obtain the equation for x direction momentum for a general
momentum transfer problem that can have velocities in all three directions. Show
the equation for (a) compressible flow and (b) incompressible flow in both vector
notation and in rectangular coordinates.

Answer. (a) For the x direction of momentum, the property 1~  is replaced with
pU,  and 6 with Y (which is p/p)  from Table 3.1. Equation (3.60) in vector form
for compressible flow is

ff the density is constant, then the divergence of (I is zero  by Eq. (3.74),
and Eq. (i) reduces to

au,/at + (U - V)U*  = &lp  + (V * VVU,) (ii)

Note that Eq. (ii) has been simplified by division by p. This equation also could
have been directly obtained from Eq. (3.77). Now if v is also constant, one
obtains from Eq. (ii) or Eq. (3.78):

au,lat  + (U * V)vx = l&p  + v(V u,) (iii)

In rectangular coordinates, as one example, Eq. (iii) with the help of the
expressions for (V. V)I)  and V2 $ as given in Eqs. (3.53) and (3.64) respectively,
becomes

,

If v were not constant, then Eq. (ii) would have to be expanded and, if p
were also not constant, then Eq. (i) would have to be expanded.

Exnmp#a  3.9. Obtain the equation for mass transfer for a two-dimensional gow in
the x and y directions when the density and diffusion coefficient can be considered
constant and when there is no chemical reaction.

Answer. For constant-density problems, the property r/~ is conveniently taken as
pA.  Note that there must be at least two components in order to have a mass
transfer problem. From the statement of the problem, the following are true:

U = iU,  + jUy *=PA 6=D &=o

Equation (3.78) with the substitutions from Eq. (i) becomes

(9

aPpA/at  + (U - v)PA  =  D(V* P A ) (ii)

The second term on the left is obtained from Eq. (3.53):

In Eq. (3.53) U,  for this problem is zero since there is no variation in the z
direction for a two-dimensional flow. The Laplacian of pA  is given by Eq. (3.64):

2P.4  #PAv2p,pax,+-
3Y’

(iv)
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where again the last term in Eq. (3.64) is zero. Equation (3.78), in rectangular
coordinates, becomes

3.6 SUMMARY

The basic idea in this chapter is that mass, energy, and momentum must be
conserved. The law of conservation says that INPUT plus GENERATION
yields OUTPUT plus ACCUMULATION. This law was developed in a
general mathematical form as Eq. (3.40):

a~lat+(v~v)~=~~+(V’~V~)-~(V’LI) (3.W
ACC CONV GEN MOLEC CONV

This equation is the starting point for the solution of many problems, as
will be illustrated in subsequent chapters.’ Also, there are some important
simplifications of Eq. (3.60). The first of these is the “Equation of Continuity”,
which arises when the concentration of property q  equals density p and there
is no generation of mass:

’ _:
am + [v - (ml = 0 , (3.71)

An important simplification of Eq. (3.71) is the case of incompressible flow
(constant density) where

(V*u)=O (3.74)

Equation (3.74) is often applicable because the assumption of constant density
is reasonable in many problems. For example, liquid systems are almost always
at constant density, even when there are changes in composition, temperature,
etc. Note that steady-state need not be assumed with regard to Eq. (3.74).
Equation (3.74) is valid as long as the density is -constant with changes in
position and in time.

The constant density case arises so often that Eq. (3.60) is simplified for
this assumption. If the transport coefficient is also constant, then,

aqiat  + (v-  v)q  = & + 6(vz  q~) (3.78)

The reader must understand the derivations of these four equations, what
each term means, and how to begin problem solving with these equations by
eliminating the terms that are zero.

PROBLEMS

3.1. Consider a rectangular piece of iron (k = 80.2 W m-’ K-l,  p = 7870 kgm-‘,
c,=447  J kg-‘K-l),  insulated in both y and L directions; the distance between
face 1 and face 2 (cf. Fig. 3.1) is 1.5 m; the other dimensions of the rectangle are
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0.5 m and 0.02 m. An electric current is passed through the iron, thus generating
4.0 J s-‘,  while the fluxes at faces 1 and 2 are held constant at -2941 J me2  s-l and
-2643 J m-* s-‘,  respectively. At time zero, the temperature of face 2 is 320  K.
(a) Find the rate of accumulation in J s-r.
(b) Find the equation for the temperature profile and determine the temperature

at face 1 at time-zero and after 104  s.
3.2. Show that the velocity U satisfies the Equation of Continuity at every point

except the origin for a fluid of constant density.

U=i&+j&
x +Y x +Y

3.3. Does the velocity U satisfy the law of mass conservation for incompressible flow?

U = i(k)  + j(5y)  + k( -lOz)

3.4. A certain two-dimensional shear flow near a wall has the velocity component (I,.
Derive from the Equation of Continuity the velocity component Ll,(x,y)
assuming that U, = 0 at the wall, y = 0. The,equation for U, is:

where U and a are constants.
3.5. Given two incompressible-flow components U, and U,,  t$d  the most general

form of the third component UJx,  y, z)  that satisfies the Equation of Continuity.

u, = xy2  + x2z u, =y%

3.6. Determine whether U satisfies the Equation of Continuity for a steady-state,
incompressible flow:

U = i(2xy) + j(x - z) + k(y - 2xy)

3.7. A fluid flows into a channel through an entrance (as in Fig. 2.12) in such a way
that its velocity distribution is uniform across the opening to the entrance.. From
this point the velocity profile changes gradually downstream, to that for fully
developed flow, such as a parabolic profile for laminar flow. Using the Equation
of Continuity:
(a) Show whether there is a y component of velocity in the entrance region.
(b) Show whether there is a y component of velocity in the fully-developed

region where the velocity U, is not a function of x, which is the direction of
flow down the channel.

3.8. Consider the flow of a fluid in a pipe. Define the cross sectional area of the pipe
as S (m’); the velocity is U (m s-l);  the volume flow rate is Q (m’  s-r); the mass
flow rate is w (kg s-l);  the density p of the fluid is constant. Show that:
(4  w  = QP.
(b) w = pSU

3.9. Water (density 995 kgmm3)  enters one end of a perforated, round pipe of
diameter 0.3 m and length 2.0 m with an average velocity of 8.0m  s-l.  Water
discharges from the pipe in two places: the opposite end from the inlet and from
the perforations in the walls of the pipe. The discharge velocity can be
approximated by a linear velocity profile, as shown in Fig. 3.7, the equation for
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Velocity through the

FIGURE 3.7
Velocity through a perforated
pipe wall.

which can be found from the following boundary conditions:

I!/ (x = 0) = 0 u (x =L)=O.4&

where Cl,  is the velocity of water exiting the pipe in the x direction and y is the
corresponding mass flow rate. Using the equations in Problem 3.8:
(a) Find the mass flow rate (kg SC’)  of water exiting the pipe in the x direction.
(b) Find the mass flow rate (kg SC’)  of water exiting through the perforated wall.

3.10. Repeat Problem 3.9 for the same boundary conditions, but assume that the
velocity profile is parabolic (i.e., follows the equation U = C$).

3.11. Repeat Problem 3.9, but assume that the velocity profile is parabolic as

u=c,+czx2

Also, let the discharge velocity through the perforated pipe wall be subject to the
following boundary conditions:

U(x=O)=0.6Uz U(x=L)=O.lU*
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Gravitational conversion constant (32.174 lb,,, lb;’ ft s-*)
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Unit vector in x direction
Molar flux  vector in Fick’s law, Eq. (2.4),  detined with respect to a
plane of no net volume flow  (km01 rn-:s-l,  lb mol ft-z  s-l); sub-
scripts A or B are for flus of species A or B; called J”A/A  in Chapter 5
Mass flux vector of species A, defined  with respect to a plane of no
net volume flow  (kg mm2 s-l,  lb, ftw2  s-t)
Unit vector in y direction
Unit vector in z direction
Therma l  conduc t iv i ty  (Wm-‘K-l  o r  J  m-‘K-‘s-r,  B t u  ft-’
“R-‘s-l);  k, is mean thermal conductivity over the range of
integration
Specitic reaction rate constant of order n,  as given in Eq. (4.105)
Length (m, ft)
rate of generation of momentum in a unit volume (kgmm2sm2,
N me3, lb,,, fte2  sT2, lb, ft-“)
Mass  (kg, lb,)
Subscript denoting contribution due to molecular transport
Molar flow vector for species A, defined with respect to tixed
coordinates (km01 s-l, lb mol s-l); if written not as a vector, then N is
subscripted for direction of transfer
Mass flow vector for species A, equal to molar  flow N* times
molecular weight (kg s-l lb,,, s-‘)
Order of reaction in Eq, (4.105)
Pressure @Pa, atm, lb, inT2);  P,%,  is partial pressure of Species  A, Eq.
(2.38)
Volume rate of flow (m3 -l ft3  s-l); also subscript denoting torques ,
Energy (heat) flow vector (J s-l,  Btu s-‘)
Gas constant, see Table C. 1 for values
Cylindrical coordinate
Radius (m, ft); in heat transfer, ri is radius of inside tube wall  and r,, is
radius of outside tube wall; in momentum transfer, the convention is
to, designate r,, (and d,)  as the radius (and dieter) of the tube
through which the fluid is flowing (i.e., the inside radius)
Area perpendicular to the direction of the velocity vector U
Temperature (K, “R, “C, “F);  & and T2  are temperatures at locations
1 and 2; T,  is temperature of the wall or surface; Tq  is temperature at
the center line
Rate of generation of heat (J rnF3  s-l,  Btu fte3  s-l)
Time (s)
Velocity vector (m s-l, fts-‘); V is the magnitude of U; V,, LJ,, V,,
V,,  V,  are wmponents in directions x, y, z, t?,  r; U is the mass
average velocity [Eq. (3.22)],  whereas U’  is molar average velocity
M &WI
Volume (m3, f?)
Rectangular (Cartesian) coordinate; x, is thickness of Iaminar film
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Rectangular (Cartesian) coordinate; (2~~)  is distance between two
parallel plates
Rectangular (Cartesian) coordinate
Thermal diffusivity (m’  s-i,  ft*  s-l)
Constant used in Problem 4-16
Difference, state 2 minus state 1; e.g., AT means TZ  - T,
Generalized diffusivity (m’ s-l,  ft*  s-i)
Angle, curvilinear coordinate direction
Viscosity (kg m-’ s-l  or N m-*  s, lb,,, fi-’ s-l,  cP)
Kinematic viscosity (momentum diffusivity) (m” s-l,  ft*  s-l)
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg rne3, lb,,, ft-‘); subscripts refer to species
Rate of generation of mass (kg mu3  s-i,  lb,,, ftm3 s-l)
Momentum flux (or shear stress) tensor (Nm-*,  lbrft-*);  rxy,  r,,*,
etc., are components of the momentum flux tensor, where subscripts
refer to direction of momentum transfer and direction of velocity
Generalized flux vector (e.g., units for heat flux are J rn-*s-l  or
W  m-*; see Table 3.1 for complete listing); W,,  v,.,  Yl, Qp,  are
components in directions x, y, z, r; Yx,,  or Y,,, is flux due to
molecular transport; YX,, or Y= is flux due to convection
Generalized concentration of property (e.g., units for concentration
of heat are J rnm3, Btu fte3; see Table 3.1 for complete listing)
Generalized rate of generation of heat or mass or momentum in a
unit volume (see Table 4.2 for units)
Vector operator del, defined by Eq. (2.16) or Eq. (3.45) (m-l,  ft-‘)

In the preceding chapter the general property balance was developed for both
one-directional transfer and for the more general three-dimensional case. In
this chapter specific applications of the balance to molecular transport will be
discussed. In the problems considered in this chapter, it will be found that the
convective contributions are zero even though in several cases there is flow.
Chapter 5 will cover non-zero convective contributions.

This chapter will treat a number of molecular transport problems by
using the general property balance. The simplest problems are one-directional
and involve only input and output, i.e., no generation and also no accumula-
tion because of steady-state conditions. First, constant area will be treated,
then variable area problems. Next, generation will be added but still the
problems will be at steady-state so that there is no accumulation.

In Chapter 2 the molecular transport equations were developed. To
review briefly, the general flux Y and the concentration of the property being
transferred rj~ were useful to present the analogy among heat, mass, and
momentum transfers. Table 4.1 reviews the terms with an emphasis on the
units involved. Table 4.1 will be needed often in the material to follow. In a
limited one-directional form, the same information was presented in Table 2.1.
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TABLE 4.1

Definitions and units for Y and t)

concellIraIion units of (Ijw)
F l u s  Dafnsi* dpropertycy  SI Em

General Y s (k
Heat qlA pc,T  J Btu
Mass JAlA : CA kmol lb mol

NAtA D CA hOI lb mol
n,tA D PA kg Jbm

M o m e n t u m  s Y NJ kg m s-l lb,ft  s-l

NsO Lbf:  ,

Note: the basic transport equation is

rg  = -bvv  = -.qi(a*ulax)  + j(aqlay)  + k(avla2)1 (2.18)

4.1 STEADY TRANSPORT IN ONE
DIRECTION INVOLVING INPUT-
OUTPUT WITH NO GENERATION

As shown in Chapter 3, if there is no accumulation and no generation, then a
balance on a volume such as shown in Fig. 3.1 yields

WA  = PA), (4.1)
This equation is Eq. (3.2) with the appropriate terms equated to zero. If the
area is constant, then A cancels from both sides of Eq. (4.1):

(YJ1 = (Y& = (Y&ix = constant (3.3)
Equation (3.3) states that for constant area and no generation or accumula-
tion, the flux is uniformly constant throughout the volume. Equation (4.1) may
also be generalized to the following:

(Y,A),  = (YxA),  = (YXA)al,X  = constant (4.2)
For variable area and no generation or accumulation, Eq. (4.2) states that the
product of flux times area is uniformly constant throughout the volume. This
equation is the starting point for many solutions to one-directional molecular
transport problems.

The net result given by Eq. (4.2),  when applied to heat transfer, is

(YA),  = (q/A),(A,)  = qx  = constant (4.3)
For mass transfer, Eq. (4.2) becomes

(YA),  = (J,JA),(A,)  = JAJ = constant (4.4)
The analogous equation for momentum transfer is more complex because
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there are two coordinate directions to be considered (see Fig. 2.2),  and the
momentum transfer is perpendicular to the flow velocity or the force. The
result is

(YA),  = (ryxAy)  = (Fx/Ay)Ay  = F,  = constant (45)

The total flux is the sum of the molecular and convective contributions:

w, = yx,m + ‘y&C (3.15)

The discussion in this chapter will be restricted to problems where the net
convective flux YL,= is zero. The reader already knows that in problems of heat
conduction through a solid there is no net convective flux, since in Section
3.2.2 convection was detined as the bulk flow of a fluid due to the external
influences of a pressure difference or a force of gravity. In Chapter 5, it will be
shown that the term Y,,,  is also zero for a variety of other problems, such as
onedirectional laminar pipe flow.

For the case of Ur,,, equal to zero, Eq. (2.7) is used to replace W,,,  in
Eq. (3.15):

yx  = yx.ln = -S(dt)/dr) (4.6)

Equation (4.6) is combined with Eq. (4.2):

(Y,,,A),  = constant = -GA,(d~@/cfx) , (4.7)

Since  (Y,A),  is constant for all values of x, the variables in Eq. (4.7) are
separable. After separation, the result in integral form is ’

(4.8)

where the product (Y,,,A), is taken outside the integral because it is constant
for all x.

Equation (4.8) is general for one-directional, molecular transport with no
generation or accumulation. For heat transfer, (Y,,,A), is qx from Eq. (4.3).’
Using the values of I/J and 6 from Table 3.1 or 4.1, Eq. (4.8) becomes

(4.9)

Reviewing, the definition of the thermal diffusivity (Y is

k(y=-
PC,

(2.10)

The right-hand side of Eq. (4.9) may be simplified considerably for constant p

’ Note that in the rest of this chapter the subscript m will not be carried through even though only
molecular transfer is being considered.
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and cr. After canceling, Eq. (4.9) becomes

(4.10)

where the limits of integration are now from x1 and Ti  to x2 and T2.
With the appropriate substitutions from Tables 3.1 or 4.1, a correspond-

ing relation exists for mass transfer:

(4.11)

where NA  equals JA for the case of no convective (volume) flow, as discussed in
Section 2.3.

Again, momentum transfer is more complicated because the flow
direction differs from the transport direction; it will be discussed separately in
Section 4.2.2. The general equation, Eq. (4.8) and its specific forms, Eq.
(4.10) an?lEq.  (4.11),  apply for one-directional, steady-state transfer with no
generation, no accumulation, and no net convective flux.

4.1.1 Constant Area Transport

For most of the sample problems in Chapter 2, the material properties (k, p,
p,  D) were assumed constant so that the right-hand side of Eq. (4.8),  Eq.
(4.10),  or Eq. (4.11) could be easily integrated. If A, is constant, then the
left-hand side can also be easily integrated. Under these conditions, Eq. (4.10)

for heat transfer integrates to

&2 -xl) = -~xP-i - T,) (4.12)

Using the following definitions:
Ax=x2-xx (4.13)

AT=T,-T, (4.14)
Eq. (4.12) becomes

(q/AL  = -k(ATlA.x) (4.15)

Equation (4.15) confirms the results already intuitively used in Fig. 2.2; i.e.,
the temperature gradient dTldx, which here is AT/Ax,  is constant. Note that
both (q/A), and k are constant in Eq. (4.15). A constant gradient AT/Ax in
Eq. (4.15) corresponds to a linear temperature gradient in Eq. (4.10) for
one-directional, steady-state heat transfer problems with constant area and no
generation, no radiation, and no net convective flux.

4.1.2 Variable Area Transport

Input-output transport in one-directional problems with variable areamost
often occurs in cylindrical or spherical geometries. Especially important are
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problems ,in cylindrical coordinates such as the flow of fluid in a circular pipe or
heat transfer through a pipe wall. Up to this point in the discussion, only
rectangular (Cartesian) coordinates have been considered. In Chapter 5, the
complete equations for both cylindrical and spherical coordinates will be
presented, but for now the discussion wiIl  be limited to transfer in the radial
direction only. In such cases, the area through which transport occurs varies
with radius.

The empirical laws of heat transfer (Fourier’s), mass transfer (Fick’s) and
momentum transfer (Newton’s) for one-directional transfer along a radius are

(q/A), = -k(dTldr) (4.16)
VA/A), = -D(dCAldr) (4.17)

zrz = -p(dU,ldr) (4.18)

These equations can be written in the following analogous form:

Yr = -S(dvldr) (4.19)

where r is the distance from the origin in the radial direction.
The reader is no doubt familiar. with cylindrical coordinates, in which the

rectangular coordinates x and y are expressed in terms of radius r and the
angle 8:

cose=x
r

(4.20)

In cylindrical coordinates, the most general problem will have terms in all
three directions, Y,, Ye,  and W,. For one-directional transfer in a geometry
where cylindrical coordinates are appropriate (e.g., heat transfer in. the r
direction through the wall of a tube), both Y, and Ye are zero.

Equation (4.18) for the shear stress r,=  assumes that there is no angular
velocity U,.  Angular velocity, measured in radians per second, introduces
some complexity into the problem, and this will be covered in Chapter 5.
Equations (4.16) through (4.19) are often required for use in systems in which
cylindrical coordinates simplify the boundary conditions so that a solution to
some given problem is possible. Similar equations exist for spherical coordin-
ates, with r being the coordinate along the radius of the sphere.

For one-directional transfer along the radius, Eq. (4.19) is substituted
into Eq. (4.2):

(WA), = constant = -(SA,)(dv/dr) (4.21)

Again, the product (YA), is constant for all values of r except at the origin
(r = 0), which is a singular point. The variables in Eq. (4.21) are separated and
integrated with the result

(4.22)
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From Table 4.1, the appropriate substitutions for @  and S are made. The
resulting equations for heat and mass transfer are

H e a t :  q.[$=-$kdT (4.23)

Mass: %r[~=-~mcA (4.24)

These two equations are for heat and mass transport along a radius only, at
steady-state and with no generation or convection. Note that the transport is
still one-directional (the radial direction).

Figure 4.1 shows the geometry for heat or mass transfer through a pipe
wall in the radial direction. The area term in Eq. (4.22) is A,, the area through
which the property is being transferred. That area at any distance I is the
distance around (i.e., the circumference, 23~)  times the distance in the z
direction, L:

A, = 2mL (4.25)
Note that A, varies as r changes. Unfortunately, the transport area is often
confused with the inside area perpendicular to the direction of fluid flow (S) in
Fig. 4.l(c), since the inside of the tube usually contains a fluid in heat or mass

(a) Coordinate sytem (6) Transfer area, A,

(c) Flow area, S

FIGURE 4.1
Heat or mass transfer through a pipe wall.
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transfer Rroblems.  Example 4.1 will emphasize the seriousness of confusing A,
with the inside area (S = z<).

If simple symmetry exists, heat or mass transfer through a pipe wall is a
one-dimensional transfer problem as described by Eq.  (4.22),  Eq. (4.23),  or
Eq. (4.24),  and as shown in Fig. 4.l(b). An appropriate set of boundary
conditions  specifies  the skin temperatures or concentrations at both the inside
wall c and the outside wall r,,  of the tube. There is no variation of T or CA with .

\
the 8 coordinate if the tube is uniformly manufactured. In many problems the

. length L is chosen so that the inside skin temperature Tl or wncentration CA,1
and outside skin conditions do not vary with changes in Z. * .

For simplicity, the discussion following will deal with heat transfer,
because it is more commonly encountered in this geometry than is mass
transfer.2  The area of heat transfer A,, given by Eq. (4.25),  is substituted into
Eq. (4.23):

kdT (4.26)

After integration, the result is

qr In z = -(2nLk,)(  G - &) (4.27)

If the two temperatures T2  and Tl  are fairly close, it is common to replace k
with the average value k,. If k is a known function of T, then the right-hand
side of Eq. (4.26) can be integrated analytically or graphically.

Historically, in heat transfer work authors have preferred to use the
following form of Rq.  (4.15):

(q/A), = -k,,,(ATlAr)  = q,JA, (4.28)

For application to the problem of heat transfer through a tube wall, the
appropriate area term A, depends on the geometry under consideration. The
actual form of the area term in Eq. (4.28) is obtained by comparing Eqs. (4.27)
and (4.28). Equating the heat flux terms gives the area as

A, = @L)(r,  -  rd  = A

W2lrd
hn (4.29)

The quantity A,,,, is called the log-mean area. Reference to it is often made in
the literature; hence one should know what the log-mean area is, and how it is
derived. However, in this text, and in general, any problem encountered
should be analyzed from fundamentals by integrating with the appropriate

*There are practical examples of mass transfer through a tube wall. For instance, helium diffuses
rapidly through glass. Hence, the helium present in many natural gas wells may be separated from
natura l  gas  by  the  rad ia l  d i f fus ion  through  g las s  tubes .
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boundary  conditions. Such an approach has the advantage of avoiding misuse
(or forgetfulness of the source and meaning) of the log-mean area. The
derivation of Eq.  (4.29) clearly shows that Eq.  (4.29) applies only for the
transfer across a pipe or tube wall. The mean area does not in any way depend
on the type of flux or the property being transferred. The mean area is a
geometrical term and will vary with the geometry being considered.

The following examples illustrate the importance of careful consideration
of boundary conditions.

Example  4.1. A worker desired to measure the thermal conductivity of piping
used in a processing system. A small sample of pipe, shown in Fig. 4.2, was
insulated both inside and outside. The worker then maintained the top edge of
the pipe at WC and the bottom edge at the temperature at which ice meIts.  He
determined that 3.2 Btu h-’ was transferred from top to bottom by measuring the
amount of ice that melted in a given time under steady-state conditions. The pipe
was 2-inch schedule 40 pipe, 5 inches long. From Appendix B, Table B.l, the
following data are available:
inside diameter: 2.067 in.
wall thickness: 0.154 in. ~...--F----
wall sectional area of metal: 1.075 in.*

Determine the thermal conductivity. What would be the error if the
log-mean area were incorrectly used?

Answer. In this problem heat transfer is in the L direction only because. the pipe
is insulated in the r direction. In the z direction the pipe area is constant:

A, = (l.O75)(1/144)(in.“)(ft*  in.-*)  = 7.46 x lo-’  ft* * (9

The length of transfer in the L direction [which corresponds to hx  in Eq. (4.13)]  is

AZ = 5/12 = 0.4167 ft ( i i )

- Bottom at 0°C

I Heat flow direction

FIGURE 4.2
Pipe test sample.
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Note that the heat transferred q is now -3.2Btu  h-l;  the minus sign indicates
that heat flows from top to bottom (warm to cold). The temperature difference is
from Eq. (4.14)

AT=lO-0=10”C=18”F (iii)

Equation (4.15) applies to this problem except that heat transfer is in the z
direction. Replacing x with z, Eq. (4.15) becomes

(q/A), = -k(ATlAz)

Since the data were obtained in engineering units, these will be used. Solving Eq.
(iv) for k and substituting:

(q/AL
k=gmj= -

(-3.2)/(7.46x  10-3)
(18)/(0.4167)

= 9.92 Btu h-’  ft-’ ‘T-i

= 17.17 W m-’ K-’ (4

The use of A,,,, is incorrect in the geometry of Fig. 4.2. The log-mean area
[Eq. (4.29)]  for a section of the pipe 5 in. long is

A Inl = (2~w.154/12)(5/12)  = o 242 fi2
ln(2.375/2.067) ’

The miscalculated k is

kimr, = ko,m(A,,IAi.,m,)
= (9.92)(7.46  x lo-‘/0.242)  = 0.306 Btu h-’ fi-’ “F-i  = 0.529 W m-’ K-l (vii)

The error is a factor of 32.4.

Exunple  4.2. Calculate the heat loss from a 2-inch, schedule 40 pipe if the inside
skin temperature is maintained at 10°C  and the outside skin temperature is
maintained at 0°C.

Answer. The data for a 2-inch, schedule 40 pipe are given in Example 4.1. Note
that this problem involves heat transfer between 10°C  and 0°C  with a piece of
pipe just as in Example 4.1. But there is an important difference: in this problem,
heat transfer is in the r direction. Solution&  Example 4.2 therefore involves the
derivation of Eq. (4.27) as done previously:

The value of k,  from the previous problem will be used to calculate the heat loss
per unit length of pipe (1 m):

q, = -(17.17) P40)
ln(1.1875/1.0335)

(-  10) = 7767 W

In English units, q, is 8080 Btu h-’ for 1 ft of length. The plus sign indicates that
the heat flow is radially out from the center.

Example 4.3. Solve Example 4.2 by the log-mean area concept.
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Answer. Equations (4.28) and (4.29) define the concept:

q,lAm  = -k,(AT/Ar) (4.W

The log-mean area was determined in Example 4.1 as 0.242 ft’  for a 5-in.  length
of pipe which is (0.242)(12/5)  or 0.581 ft’  for a 1-ft length. Thus,

(-10)(1.8)
4r = -(g’92)(oe581)  (0.154/12)

= +8079  Btu h-’

In SI units, the log-mean area is 0.177 m2 per meter of length and

(9

(-10)
4,  = -(17.17)(0.177)  (o.154)(o*0254) (Srn’E)  = +7767  W (ii)

Of course, the results of Examples (4.2) and (4.3) must he the same.

The preceding discussion on variable-area one-directional transfer prob-
lems emphasized heat transfer, which is more  commonly encountered in this
geometry. However, analogous equations for mass transfer exist and are
solved similarly. The next example illustrates a problem in mass transfer
through a variable area.

Example 4.4. Determine the mass transfer rate for the conical section shown in
Fig. 4.3. The concentratiion  of CO, in air is 30 mole per cent at the 10cm
opening, and 3 mole per cent at the 5 cm opening. For this mixture, the diffusion
coefficient is 0.164 cm2 s-‘. The gas is at 1 atm and 25°C (298.15 K) everywhere.
The section is 30 cm thick. Neglect any possible two-dimensional effects.

An&r.  Since diffusion takes place at constant temperature and pressure, IA
equals NA,  as discussed in conjunction with Eq. (2.25) and in Example 2.6.

I 10cm 5cm

A

-X

3%
co2

FIGURE 4.3
A conical section for mass transfer.



102 BASIC CONCEPIS IN TRANSPORT PHENOMENA

Equation (4.11) is

(4.11)

In Section 2.3, the concentration was calculated from the partial pressure
and temperature. Equation (4.11) may be cast in terms of the partial pressure DA
from Eq. (2.37):

(2.37)

Naturally, Eq. (2.37) applies for gases only. The derivative of Eq. (2.37) at
constant temperature is

(9

Then Eq. (i) is substituted into Eq. (4.11):

d/J, (ii)

The area for mass transfer is circular:

A, = nd=/4 (iii)

The  area A, decreases as x goes from 0 to 3Ocm. The variation of the diameter
with n is linear:

d=lO-;

where d and n are in units of centimeters. This equation and Eq. (iii) are inserted
into Eq. (ii):

N
AJ (n,4)[1Of  (x/6)]’ = - 6

Integrating:

4 (6) y,
(NAa)  ; [ 10 - (x/6)] 0

=(N,,);(&;  =(N,,)y
>

= --ge%2-PA.l)

69

w

NA,  = -g&u&*-h)  = -;(*2  ggJ8  15) (0.03 - 0.3). .

cm2  s-i
’ (cm’ atm mol-’ K-‘)K atm

= +2.37 x 10m6  mol s-i = +8.53 x 10m3  mol h-’ (vii)

The plus sign indicates diffusion to the right.



MOLECULAR TRANSPORT AND THE GENERAL PROPERTY BALANCE 103

4.2 STEADY-STATE TRANSPORT WITH
GENERATION

As discussed in Section 3.1.2, at steady-state there may be a generation or
depletion of the property of interest. For example, there can be generation of
heat or its removal through chemical reaction. There can be heat generation
through electrical means or nuclear reactions. Individual species can be
produced or depleted through chemical or nuclear reaction. For momentum
transfer, a generation term appears as a result of external forces (pressure
drop, drag on surfaces, etc.). Table 4.2 provides the symbols and units used for
generation terms. The generation will be constant in many cases but will vary
in others. Generation may often be a function of position in the system and of
temperature. In such cases the solution of transport problems can be
complicated by this variation.

For one-directional transfer at steady-state, Eq. (3.12) reduces to

6’(YxA)  = & dV (4.30)
Let us not assume constant area; therefore, in Eq. (4.30),  the proper variation
of area must be used. Furthermore, let us consider only molecular transport so
that W,  is given by

‘Yx = -s(at)lax) (2.7)

Combining Eqs. (4.30) and (2.7):

-a[(dA)(aq/&)]  = & EW (4.31)

For a system in which transfer is in the radial direction, Ea. (4.31) hecomes

--a[(s~(alylar)]  = & dV (4.32)

In summary, Eq. (4.31) or Eq. (4.32) is the starting point for solving
steady-state problems for molecular transport only and with variable area and
generation included. It is useful to discuss constant generation of heat and of
mass together because the final equations are very similar. Momentum transfer
will be discussed separately because of the complication of convection.

TABLE 4.2
The  generation term

General *0

Heat t3
Ma.S.5 C4.G

P&G

M o m e n t u m  hG

J  me3  se1  or W mv3 Btu fC3 s-l

km01  mm3  s-’ Ibmolft-3s-’
kgmA3s-’ lb,,, fi-‘s-‘
kg m-*  s-* or N me3 lb, ft-* s-’  or lb,fC3
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4.2.1 ‘Heat or Mass Transport with Constant
Generation

Again, only one-directional problems will be considered. In order to solve Eq.
(4.31) or Eq. (4.32),  the thermal conductivity, area of transfer, and the
generation term must be known before integration. In the following discussion,
the thermal conductivity and generation terms will be assumed constant. For
example, let us determine the temperature distribution in a wire with electrical
heat generation. Figure 4.4 shows a wire of length L with mean thermal
conductivity k,. Let the temperature at the wall be T, and the temperature at
the center line (r = 0) be T%.  The area for transfer is the surface area of the
cylinder [i.e., as given in Eq. (4.25)]  and not the cross sectional area; the
surface area is

A, = 2nrL (4.25)

The volume is given by

V = m2L (4.33)

From this equation, the differential volume is

dV = 2nrL dr (4.34)

The basic equation that leads to thmtion  oxwith  r is-..
With $J and 6 for heat transfer taken from Tables 3.1 or 4.1 and the generation
from Table 4.2, Eq. (4.32) becomes

-~{(cuA,)[Wc,T)l~r]} = I’m  dV (4.35)

As shown in conjunction with Eq. (4.10),  the assumption of constant (PC,)
results in simplification of Eq. (4.35) to

-d[(kA,)(dT/dr)]  = I& dV L/ (4.36)

The differential volume from Eq. (4.34) and the area from Eq. (4.25) are

. I FIGURE 4.4
Heated wire geometry.
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substituted into Eq. (4.36):

-d[(kr)(dT/dr)]  = (To)r dr (4.37)

This equation is integrated once:

-(kr)(dTldr) = (f’,‘,/2)(rz)  + Cl  ’ (4.38)

Note that at this step, the thermal conductivity k need not be constant, as it is
inside the differential during the integration. The constant of integration C1 is
zero for this problem. There are two ways to prove this. The first is to realize
that the temperature in Fig. 4.4 will be symmetric about the center line of the
conduit, i.e., T(r) is independent of the coordinate 8. While T varies with r,
the slope dT/dr  also must vary with r and furthermore must be a continuous
function (i.e., either a maximum or a minimum at the center line, r =O).
Under these restrictions, the slope or gradient dT/dr  at the center line will be
zero. Then by inspection of Eq. (4.38),  the constant C, is seen to be zero.

The second way to prove C1 to be zero is to integrate Eq. (4.38) a second
time and apply the known boundary conditions. This procedure will be
detailed in Example 4.6, as well as in Section 4.2.4.

Equation (4.38) with C1 equal to zero is

dT/dr  = -[I&/(2k)]r ( (4.39)

The equation is integrated again by separation of variables:

T = -[ l&/(4k,)]r*  + C, (4.40)

where at this step the thermal conductivity has been assumed constant at an
average value k,. The constant of integration C,  can be evaluated at the
surface where the temperature is designated as T, at r = r, (the wire radius):

C2  = T, + f,Grtl(4k,) (4.41)

Equation (4.41) is inserted into Eq. (4.40):

T - T, = [&/(4k,)](rz  - r’) (4.42)

Example 4.5. Calculate the temperature distribution in the steel wire (l-inch
O.D.) of Fig. 4.4 if electrical current generates heat at the rate of 2 x
1O’J mm3  s-‘. The outside surface of the wire is maintained at 30°C. For steel
wire, the mean conductivity is 17.3 W m-’ K-‘.

Answer. For this problem

r,, = 0.5 in. = 0.0127 m ?“=2x107Jm-3s-1 T, = 30°C

Equation (4.42) describes the temperature distribution for this problem:

(9

T=  Tw+$-(rz-r2)
m
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Substituting:

T = 30 + (4)(17.3)
= [(0.0127)’  - If]  = 30 + 46.6 - (2.89 x ld)(r*)

= 76.6 - (2.89 x lti)(?) 69

where r is in meters and T is in “C. At the center line (r = 0), the maximum
temperature is 76.6% At the  outside, the  temperature reduces to the boundary
condition value of  30°C. The  distribution is parabolic between these  limits.

The problem just considered was one in which the temperature distribu-
tion was symmetrical about the axis of symmetry. In such cased  the constant of
integration can  he evaluated directly. However, there are problems in which
this constant cannot be determined, and one must carry it through the second
integration. After the second integration, two boundsty  conditions can be used
for the determination of the two constants of integration by the solution of a
pair of simultaneous equations. The following example illustrates this point for
the.problem  of heat transfer in a slab, the two faces of which are maintained at
Merent temperatures.

Example 4.6. Obtain the  temperature distribution for the  slab shown below in
wbicb  there is a uniform heat generation. The  slab in fig. 4.5 is assumed to be
large in both y and z directions so  that  any boundary effects may be neglected.

AWNWE  The  basic equation for this  problem comes from Eq. (4.31); again Table
3.1 is used to replace r/~  and cI)  for heat transfer. Upon assumption of constant
physical properties p and cp,  JZq.  (4.31) reduces to

-d[(kA,)(dT/dx)]  = fG dV (9
The area of transfer is constant. Tbe volume is tbe area times tbe distance:

V=As

or in differential form, for constant area:
:,

dV=A,dx.

(ii)

(iii)

ix FIGURE 45
Heat transfer across a slab with  generation.
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Equation (iii) is used to eliminate dV in Eq. (i):

-d[(kA,)(dT/dz)]  = &A, dr (iv)

The area term can be canceled from both sides of Eq. (iv), since the transfer area
is constant in Fig. 4.5. At this point, it is also convenient to assume that the slab
has a constant thermal conductivity k,  as discussed before. Then Eq. (iv) can be
integrated:

dT/dx  = -(%Jk,)(x)  + C, (4

The problem is not symmetric. Although dT/dx  might be zero somewhere,
it is not known where, so C, cannot be determined. However, Eq. (v) can be
integrated again:

T = -[&/(2k,)](x’) + C,(x) + C, w

There are two boundary conditions that can be used to determine the two
constants of integration. These are

T(x = -x,) = T,

T(x = +xo)  = q
(vii)

These are substituted into Eq. (vi) to give two equations in two unknowns:

? = -mwmm)  - G&J+ G
T2  = -[&/(2k,)](x3  + C,(x,)  + c,

(viii)

The two equations can be solved for C, and C,:

Cl  = -vi  - T,MkJ)  = G - T,YGkJ 64

G= [~G/',l(an)1(~2,)  + G?  + Q12 (xl
Combining these into Eq. (vi) gives

T = [k/(2k,,)](x: -x2) + t(Z - T)(x/xo)  + f(T,  + T2) 64

At x =x,, T in Eq. (xi) reduces to z and at x = -xor  it reduces to T,,  both of
which are the given boundary conditions, Eq. (vii). One can determine the
maximum temperature point from Eqs. (v) and (ix):

dT/dx  = 0 = -(&/k,)(x)  + (G - T,)/(2x,) (xii)

Solving for x:

-Gnu = Mt2~do)I(Tz  - T,) (xiii)

When T2  = T,,  xmu is zero; i.e., the temperature profile is symmetric about
the center line with maximum temperature at x = 0, as already &own in Example
4.5. For the unsymmetrical distribution problem, Eq. (xi) applies.‘An  example of
such a problem is a steel wire pressed into a narrow wide slab with the conditions
of Example 4.5 and with

q =  30°C and G =  85°C (xiv)
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Thus from Eq. (xi)

T = (~)[(O.il”Y-XT  + (2;(g7)  + (115,2)

= 93.2 - (5.78 x 16)(x2) + (2165.4)@)  $57.5

= 150.7 - (5.78 x lti)(x’)  + (2165.4)@) (xv)
In Eq. (xv), x is in meters. At x =x,, T equals 85°C and at n = -x,,  T becomes
30°C  which are the given boundary conditions. The temperature at the center is
150.7”C,  but this is not the maximum. The maximum point is given by Eq. (xiii):

(17.3)(55)
xm==(2)(4x  1g/)(o.o127)=  +"*94x  lom3m

The plus s ign means x,, is to the right of the center line. From Eq. (xv),
this temperature is

T,,  = 150.7 - 0.51+  2.03 = 152.2”C (xvii)

Although no mass transfer problems have been presented in this section,
the solution to problems of mass transfer in solids with constant generation is
basically the same as just outlined. However, a complication arises because the
rate of generation. in mass transport problems (i.e., the rate of reaction)
generally depends on concentration; hence, it is rarely permissible to assume
C,,o for generation of moles of species A as constant. Variable generation is
discussed in Section 4.2.5. Also, the more common problems in mass transfer
involve convection, which is not considered in the heat transfer problems of
this section.

4.2.2 Momentum Transfer with Generation at
Steady-State

In Chapter 2, momentum was introduced as the product of mass times
velocity. Momentum in a fluid can be created by a boundary moving with
respect to a second boundary, as seen in Example 2.9. In such an example,
there is no generation of momentum within the fluid; the moving plate in Fig.
2.13 imparts momentum to the fluid as a result of the no-slip-at-the-wall
condition and the fluid viscosity.

Industrial problems in fluid transport do not often involve a moving
boundary. Instead, the fluid flows in a pipe or similar conduit, propelled by a
pressure gradient or by the force of gravity. Thus, there are two mechanisms
for the generation of momentum: pressure gradients and force fields. Gravity
is by far the most commonly encountered force field, and all subsequent
discussion in this book will be limited to pressurejgradients  and gravitational
fields. ,..

To derive the form of the momentum generation term, it is necessary to
reconsider the simple volume in Fig. 3.1. Let there be a pressure gradient
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Ap / L where

AP  =PZ - P I (4.43)

If the flow of fluid is in the +x direction, the pressure difference Ap must be
negative because p1  must be greater than p2  to cause a positive U,. Newton’s
second law of motion states that the sum of all the forces on a body equals the
mass times the acceleration. Under conditions of steady-state one-directional
flow, there is no acceleration; hence the sum of the forces equals zero. One
force, acting in the x direction on the faces 1 and 2, is that associated with the
pressure. The product pS, where S is the cross sectional area shown in Fig.
4.l(c), is a force term since the pressure is the total force divided by the area:

p=FJS (444)
Another force acting on the volume in the x direction is that associated

with the momentum transfer shown in Eq. (4.5). A balance of these forces
gives

qAy = ~(--AP) (4.45)

The minus sign is required since Ap is negative for p1  >p2.  For the case of
pl>p2,  there is a force in the +x direction. Note that the x direction force
associated with the shear stress rYx is a result of momentum transfer in the y
direction through an area A,. In the specific set of coordinates in use here, the
area S is equivalent to A,.

The nature of the term S(-Ap) can be obtained from a rate of
momentum balance, but a simple one-dimensional balance is inadequate since
there is more than one direction to be considered. A comparison of Eq. (4.45)
with a steady-state version (zero accumulation) of a three-dimensional
counterpart to Eq. (3.2) suggests that

GENERATION = S(  - Ap) (4.46)
Now, by Eq. (3.4):

GENERATION = &V  = ii&V (3.4)
where the kfo  term is defined in Table 4.2. The volume is the length times the
constant flow area:

v = s A x (4.47)

Thus, from the above equations, one obtains

lci,  = (S)(-Ap)IV  = (S)(-Ap)/(S  Ax) = -Ap/Ax (4.48)

where Ap is given in Eq. (4.43). For a differential element, AplAx  becomes
dpldx.

The analysis in terms of the rate of momentum transfer suggests that the
negative of the pressure gradient is the generation of momentum, &lo. In this
brief analysis, it has been assumed that the only molecular momentum transfer
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term is +,,x and that there is no net contribution as a result of convection; both
of these assumptions are true for the constant-area case. This latter point will
be shown later in this section.

A gravitational field may also generate momentum. The most general
treatment is to assume that gravity is a vector with a component acting in each
direction in an arbitrarily oriented rectangular coordinate system:

where g, is the component of gravity in the x direction and similarly for g,  and
g,. For coordinates aligned with the earth, g,  and g,  are zero, and g,, the
vertical component, is the local acceleration due to the earth’s gravitational
field. This quantity varies slightly from location to location on earth. At
Columbus, Ohio

g,  = -9.80089 m s-* (4.50)

Gravity causes an acceleration; hence the force due to gravity on an
element is mass times acceleration, by Newton’s second law of motion. Mass is
density, times total volume, so the force due to gravity on the volume is

F,=pVg=pSAzg (4.51)

If only the gravitational force in the z direction is included in the force
balance and a vertical orientation (z) is considered (see Fig. 4.6),  then Eq.
(4.45) becomes

txZA,  = -S Ap + pS  Azg, (4.52)

Since the volume is now S AZ, Eq. (4.48) takes the form

k&G-=  --&/AZ  + pgz (4.53) ’

uz
Faa.2

c I_-----

11

I

- e L
Y

- - - - - x

(
Face  1

t FIGURE 4.6
uz A vertkaUy  .o&nted  flow  system with gravity. ,
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TABLE 4.3
The generation term for momentum trans-
port in rectangular coordinates

D i o Presore  tern Gravity term

x -dplh P&
Y -dpldy PgY
z -dpldz P&

Again, Eqs. (4.52) and (4.53) are for one-directional, constant-area flow.
The quantity g,  will be positive or negative depending on whether it acts in the
positive or negative z-direction. For the vertical flow depicted in Fig. 4.6, the
flow is upward in the +z direction with pi >p2.  Thus, the first term will be
positive. Gravity acts oppositely to the flow, and the second term will be
negative because of the sign on g,  as given in Eq. (4.50). Should there be
components of the gravitational force in two or more directions because of the
orientation of the coordinate system, Eq. (4.53) becomes

&=-vp+pg (4.54)

Since most fluid flow problems involve non-zero’ pressure gradients
Ap/L,  Eq. (4.53) or Eq. (4.54) will find frequent application. Table 4.3
summarizes the components for &fo. Note that each term in Eq. (4.53) or Eq.
(4.54) has units N me3  or, equivalently, kg me2  s-*.

In this section, discussion has been limited to one-directional, constant-
area transfer. For fluid flow, the further restriction of constant density (i.e.,
incompressible fluid) is added. In general, all liquids (and many gases too) may
be considered incompressible in flow problems without appreciable error. For
the steady flow of an incompressible fluid, the term (V  . v)  is zero as shown in
Section 3.4:

(3.74)

For one-directional flow in the z direction only, V,  and V,  are zero, and from
Eq. (3.74):

a%0
dr- (4.55)

Thus,
V,  = constant = C(x, y) (4.56)

A complete discussion of the last two equations is given in Example 3.7.
In Section 3.5, it was shown that for an incompressible fluid

~+(u.v)~=~o+(v.svry) (3.77)
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The first’term of Eq. (3.77) is zero at steady-rate. The second term is expanded
in Eq. (3.53). After substituting pU, for t/~  from Table 3.1 and using the
incompressibility condition of constant density, Eq. (3.53) becomes

(u~v)~=(u~v)(pu~)=p(uo)u,=p(~~+u,~+u*~)  (4 .57 )

In Eq. (4.57) the first  two terms of the expansion are zero because U’ and U,
are zero for one-directional flow in the z direction. The last term is likewise
zero because the gradient of the z velocity in the z direction is zero by Eq.
(4.55). In other words, there is no net convective flux in the steady-state,
one-directional, constant-area flow of an incompressible fluid. Even though in
all momentum transport problems with fixed boundaries there is convection,
there is no net convective flux of momentum for the reasons just stated. All
momentum transfer is by molecular transport. Thus, Eq. (4.30) applies

i3(YxA)  = I/& W (4.30)

Since the flux occurs by molecular transport only, Eq. (4.31) or Eq.
(4.32) applies as well. For a system where momentum transfer is in the radial
direction, Eq. (4.32),  with the appropriate substitutions for I/J,  6, and t/~o,
becomes

-d{(vA,)[~(pU,)/dr]}  = A& dV (4.58)

or, for constant density, through use of the definition of v in Eq. (2.12):

-a[(pA,)(au*lar)]  = MO  av (4.59)

For a.system in which momentum transfer is in the y direction as a result
of a flow in the x direction, Eq. (4.31) with the appropriate substitution is

.

-~[(@,)(+H’dy)l  = n;lG  dV (4.60)

Equation (4.59) or Eq. (4.60) applies to.  the steady-state, one-directional,
constant-area flow of an incompressible fluid. Equation (4.59) is analogous to
Eq. (4.36),  which was applied to heat transfer in a wire with generation. When
the appropriate substitutions are made in Eq. (4.30) for momentum transfer in
a constant area, one-directional flow, the result is

a( t,,A,)  = & dV (4.61)

Integrating: <

t;,A,  = S(-Ap) = i&V (4.62)

where the term S(-Ap) comes from the force balance of a horizontal flow,
Eq. (4.45). Note that Eq. (4.62),  when Ap/Ax  is substituted for ho,  becomes
Eq. (4.48). Thus, the brief analysis given in the derivation of Eq. (4.48) is
confirmed.
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4.2.3 Laminar  Flow in a Tube

Tube flow is the most important laminar flow problem because circular
conduits contain the most volume for the least amount of construction
material. Also, circular tubes have the easiest geometry to manufacture, and in
them friction losses are least. Let us consider the laminar flow of a fluid in a
tube or pipe, at some distance from the inlet so that there are no entrance
effects. The problem is shown in Fig. 4.7. The area and volume terms for
momentum transport in the r direction are given by Eq. (4.25) and Eq. (4.33),
respectively. These terms are identical to those used in the analogous heat
transfer case shown in Fig. 4.4.

Velocity distribution. Substituting Eq. (4.25) and Eq. (4.33) into Eq. (4.59),
the answer is

- d 2nprL5
>

= &f,-&rL  dr

with h& given bv Es(4.53)  if the flow is vertical. Equation (4.63) applies to
t/he  tube flow problem because for a uniformly manufactured tube there will be
no velocity in either the r direction or the O-direction:

u, = u,  = 0 (4-64)

A=[[-

I- -i. I
dp

FIGURE 4.7
Laminar flow in the pipe geometry.

I3
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Momentum will be transferred from the fluid to the tube wall in the r direction
only.

Five assumptions are involved in arriving at a solution to Eq. (4.63) forL
the tube flow problem:

1. Steady-state [Equation (4.63) includes this assumption.]
2. No entrance or exit effects [as expressed by Eq. (4.64)]
3. Constant molecular viscosity (no change with shear stress or shear rate)
4. Constant density [as assumed in obtaining Eq. (4.63)]
5. Laminar flow.

As a result of assumption (3),  the viscosity is taken outside the partial
derivative in Eq. (4.63). After canceling and rearranging, Eq. (4.63) integrates
to the following:

r(dU,ldr)  = --[&/(2p)]r*  + Cl (4.65)

At the center line in Fig. 4.7 (r = 0), the velocity gradient dU,/dt  must be
zeta. The argument for this assertion is the same as that for the constant Cr  in
Eq. (4.38) for the heat generation problem. The velocity U, is a smooth and
continuous function of r. Since V;  is symmetric, then %,IJar  is zero at the
center line of the pipe. Thus, the constant C1  is zero because in Eq. (4.65) the
radius r is zero at the center line. With C1  zero, Eq. (4.65) is divided by r and
integrated again:

(I, = -[&/(4p)]r*  + C2 (4.66)

The velocity V,  is zero at the wall, where r = r,,, because of the no-slip
condition when a fluid contacts a solid boundary; thus, C2  is found from Eq.
(4.66) at r = r,:

C2 = [n;rGl(4p)lri (4.67)

The final velocity profile equation is obtained from Eq. (4.66) and Eq. (4.67)
a s

U,  = [&3/(4p)](r2  - r*) (4.68)

where, if both pressure an&gravity  act to caudfrom  Table 4.3 in the
z direction is

& = -(dpldz) + pgz (4.69)

The velocity profile  represented by Eq. (4.68) is analogous to the
temperature profile in a heated wire, Eq. (4.42). Table 4.4 summarizes the
comparison. The wall temperature corresponds to the velocity at the wall
which is zero as seen in the table. The derivations e two equations are also
similar.
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TABLE 4.i

Comparison Of velocity  protile  iu a
tube with temperature in a wire

Eq. (4.42)

T

TV
k.=
TG

Eq. (4.68)

4
cl,  - 0 (at wail)

F
MG  = -dpldz

For a horizontal tube, g,  is zero, and Eq. (4.68) and Eq. (4.69) become

u =  _ (dpldz)  2
L 7 (r,  - r2) (4.70)

Since UZ,,  p,  r, and r, are all constant with changes in p or z, Eq. (4.70) can be
integrated according to the boundary conditions:

P(z=O)=Pl p(z=L)=p, (4.71)

These are used to replace dp/dz:

v, = -AP
( >- (r: - r’)

4crL
(4.72)

The velocity profile of fluid flowing in a horizontal tube (under the five
assumptions listed previously) is given by Eq. (4.72). A plot is shown in Fig.
4.8. At the center line (r = 0), the velocity reaches a maximum, and the slope
(dU,/dr)  is zero; i.e., at r = 0

usz max  = (r:)(-AP)
4PL

(4.73)

If Eq. (4.72) is differentiated with respect to r, then at the center line the

vclocily  Pro/ilc
FIGURE 4.8

Shear  stress projik

Laminar  flow in a tube.
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velocity gradient (13UJar)  is zero. The velocity profile is often written in terms
of v,  malt- By algebraic manipulation of Eq. (4.72) and Eq. (4.73),  one obtains

VL+$.
V

(4.74)
L, max 0

Hagers-PoiseuiIIe  law.  The volume flow rate Q is the product of velocity times
area. Since  both V,  and the area are functions of the radius r,  V,  must be
integrated over the area. The appropriate area is

rdrd6= 2nr dr = nr$ (4.75)

A similar integration yields the volume flow rate:

2n= Ifr. [(-Ap)l(4yL)](rZ  - r2)r  dr d0

= ~~-47~I@pL)J(k3 (4.76)

Equation (4.76) is the well-known Hagen-Poiseuille  law, named after the two
scientists who independently discovered it between 1839 and 1841. The law
was experimentally established from the observation that the flow rate was
proportional to both the pressure difference and the fourth power of the
capillary radius and inversely proportional to the length. Actually, the workers
were interested in the medical application of blood flow in capillaries. As it
turns out, it was quite fortunate that they did not select whole blood as their
experimental fluid, because it is now known that whole blood is non-
Newtonian and does not obey Newton’s law of viscosity.

The average velocity V,, ave is the volume rate of flow divided by the area

V Q @:I(-AP)  = (d%-Ap)
z, ave  = - =S 814~5 32pL

(4.77)

The derivation of Eq. (4.77) uses Eq. (4.69) for the generation of momentum
in the z direction, but the gravity term is zero because the tube is horizontal. If
the tube is vertical, then Eq. (4.77) becomes

(4.77A)

In the above equations, it is easy to show the relationship between
average velocity and maximum velocity in laminar flow:

V z,  ave = u, nmxl2 (4.78)

The equations for velocity and velocity profile in laminar pipe flow are
summarized in Table 4.5.
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TABLE 45

Eqoations  for hminac  pipe flow

Hagen-Poiseuille  law

Q =K-&MW)l(~~:)
Velocity and velocity protile

Shear stress

r(-APIz,,  = -
2L

cd-AP)  U-AP)z,=  trqwBI1=-=
2 L 4 L

Shear rate at the wall

(4.76)

(4.72)

(4.73)

(4.74)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

Shear stress. The shear stress can be established from the force balance given
as Eq. (4.45). For pipe flow, the areas involved are shown in Fig. 4.7 and are
given by Eq. (4.25) and Eq. (4.33). Equation (4.45) becomes for cylindrical
coordinates:

t;+ = s(-hp) = m2(-Ap)  _  r(-AP)
A, 2mL 2L

(4.79)
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The latter form is included to remind the reader that the pressure difference
Ap (which is p2  -pl)  is negative, and as a result the shear stress rrZ  is positive.

At the wall (r = ro),  Eq. (4.79) becomes

ro(--Ap)  &(--AP)
z,  = t,z*  wdl  = - =

2 L 4 L (4.80)

The shear stress is seen to be zero at the tube center line, maximum and equal
to r,(-Ap)/(2L)  at the wall, and varying linearly with r in between:

where Eq. (4.81) comes from dividing Eq. (4.79) by Eq. (4.80). Figure 4.8 also
shows r as a function of r, as given by Eq. (4.81).

The Hagen-Poiseuille law, Eq. (4.76),  is often expressed in a useful form
involving the shear stress at the wall, Eq. (4.80). Newton’s, law of viscosity,
Eq. (4.18),  applied at the wall, is

(4.82)

The Hagen-Poiseuille law can be rearranged into a similar form. Equation
(4.77) can be solved for r,(-Ap)/(2L):

ro(-Ap)rw=,-=p(%)  =p(y)  =p($) (4.83)

The term -(dU,ldr),,, is called the shear rate at the wall. As shown in Fig.
4.8, the wall shear rate is the maximum shear rate in pipe flow. Comparison of
Eqs. (4.82) and (4.83) yields several useful expressions for the wall shear rate:

(4.84)

Equation (4.83) is used to determine whether a particular fluid obeys
Newton’s law. The fluid is made to flow in a tube in laminar flow. Usually, it is
best to use a small-diameter tube, called a capillary, because Eq. (4.76) shows
that for a constant-volume flow the pressure drop increases with the fourth
power of diameter. Hence, a tube with a small diameter will yield a large Ap
that can be measured more accurately than a small Ap. If, for different values
of Q, the viscosity p as measured experimentally is not the same, then the fluid
is said to be non-Newtonian. Chapter 15 considers non-Newtonian fluids in
detail.

Example 4.7. A capillary viscometer, shown in Fig. 4.9, contains a tube 1OOcm
long and 0.2 cm in diameter. A pressure reading of 145 psig in the fluid reservoir
causes a flow of 360 cm” h-‘. The fluid’s specific gravity is 1.1. In the analysis of
this viscometer, the possible problems associated with end effects, viscous heating
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Fluid reservoir

- - - - - - --_ = - - -  -__

Pressure indicator (gauge) --c

vessel

FIGURE 4.9
Horizontal capillary viscometer.

effect ,  and turbulence are to be neglected (see ref .  Bl for more information on
these) .  Assume the f low is  laminar  and determine the  viscosi ty  of  the  f luid .

An.wer.  The SI system of units will be used. The radius is 0.1 cm or lo-‘m.  The
length is 1 m. The flow rate is

Q =3&)&h-'=().l  cm3s-'=  l()-'m3s-*

Since a pressure of 1 atm equals 14.696 psia or 1.01325 x lo5 N mm2:
(9

(-Ap)  = (145)(1.01325  X 16)/(14.6%)  [(psia)(N m-‘)/psia]

= lbNm-*=  106Pa (ii)

The densi ty  of  the  f lu id  equals  the  speci f ic  gravi ty  times the  densi ty  of  water  a t
some reference temperature. If no reference temperature is specified, 4°C  i s  u s e d ,
at which the density of water is 1.OOOOg  cm-3 or 1000 kg m-3:

p = (1.1)(1000.0)  = 1100 kgm-’ (iii)

Since  Q is  known,  Eq.  (4 .83)  i s  so lved for  p:

~ = c,(-Ap)(dJ = (10-3)(-106)(n)(10-3)3 (m)(N  m-‘)(m’)
(4m2~) (4w-7)(2)w ( (m’  s-‘)(m) >

=3.927Ns  mm2

Viscosity is commonly reported in poise or centipoise:

p=3.927Nsme2= 39.27poise=3927  CP

(3

(-4

4.2.4 Laminar  Flow Between Parallel Plates

Consider Fig. 4.10, which depicts two parallel plates a distance 2y, apart. The
plates make an angle 0 with respect to the vertical. Fluid flow between the
plates in the x direction in Fig. 4.10 is caused by both gravity and a pressure
gradient. Momentum is transferred from the moving fluid to the stationary
walls in the y direction.@ is desired to know the shear stress distribution and
the velocity profile between the plates. The solution to the parallel plate
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Facelatx=O
P =Pl

Y

Face2atx=L

FIGURE 4.10
Laminar flow between parallel plates with gravity.

problem is very similar to that for the problem of heat generation in a slab,
Example 4.6; the solution to the tube flow problem is also similar. First, it is
always important to align the coordinate axis with the flow,so  that

vy  = v, = 0 (4.85)

Therefore only V,  is non-zero. The components of the force due to gravity are
also shown in Fig. 4.10. Note that because of the coordinate system selected,
the force of gravity has components in both the x and y directions.

The parallel plate problem is usually solved with the following
assumptions:

1. Steady-state
2. Plates infinitely large in the z direction
3. Constant molecular viscosity ,u  (no change with shear rate or shear stress)
4. Constant density
5. Laminar flow

Equation (4.60) applies:

-mw(wJ~Y)l  = & w (4.W
The area of transfer is constant with changes in y. The volume is the area times
distance

V=A,y (4.86)
or in differential form e

dV=A,dy (4.87)



MOLECULAR TRANSPORT AND THE GENERAL  PROPERTY BALANCE 121

The last two equations are inserted into Eq. (4.60),  and A,, cancels from both
sides since it is constant. The resulting equation is integrated once:

-~(dU,ldY) =&y + Cl (488)

From the analogy with the tube flow problem it may be surmised that dU,/dy
is zero at y = 0, which means C, is zero. But it is more rigorous to carry C,
through the next integration and evaluate it afterwards, as done in Example
4.6. Upon a second integration, Eq. (4.88) becomes

-pu, =  (&/2)(y2)  +  ClY  +  c2 (4.89)

The velocity of the fluid is zero at each plate. In mathematical form, the
boundary conditions for the parallel plate problem are

u,(y = *yJ  = 0 (4.90) .

These are substituted into Eq. (4.89) to give two equations in two unknowns

0 = (n;r,/~)(Y3  + GYO  + c2 (4.91)

0 = (&/2)(Y2,)  -  GYO  + c2 (4.92)

First, these two equations are added and the result solved for C2:

c, = --&y:l2

Then C2 from Eq. (4.93) is inserted into either Eq.
the result solved for Ci:

Cl =
1ciGy32  - &y32  = o

YO

(4.93)

(4.91) or Eq. (4.92) and

(4.94)

As predicted after Eq. (4.88),  the constant C, is zero, and as a result the
velocity gradient dU,/dy is zero at y = 0. The velocity profile for the parallel
plate problem is obtained from Eqs. (4.89),  (4.93),  and (4.94):

u,  = Nfdcwl(Y”o  -Y’)  = [~GY:/m)lP  - (YlYJ’l (4.95)

Equation (4.95) is very similar to Eq. (xi) in Example 4.6 for the.temperature
distribution in a slab, if T,  = T2 = 0. This boundary condition corresponds to
zero velocity at the wall.

Next, the generation of momentum A&  will be evaluated for the problem
in Fig. 4.10. Let us consider the gravity term. There is a component of gravity
in both x and y directions as shown in Fig. 4.10. If 6 is the angle of each plate
with the vertical, then

g,=gcose (4.96)

g,  = -g sin 8 (497)

Of these, only g,  causes flow. Thus from Table 4.3:

ilo = -(dp/d.r)  + pg,  = -(dp/dx)  + pg cos 8 (4.98)
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Equation (4.98) is used to replace &fo  in Eq. (4.95):

fJ
x

= -(dPlh)  + P&z  cos  l9 (y’ _ y*)
a4

0 (499)

Since none of the variables in Eq. (4.99) varies or depends uponeither p or x,
dp  may be easily separated from dx  and integrated according to the boundary
conditions in Eq. (4.71) and shown in Fig. 4.10. The result is

”
x

= (-APYL  + Pt?  cos f3  (y’ _ y’)
34

0 (4.100)

The velocity is maximum at y = 0:

ux. max  = K-APYL + pg  ax WY%~L)~ (4.101)

The dimensionless velocity UJIJ,, mur is found by dividing Eq. (4.100) by Eq.
(4.101):

u,l  ux, max  = 1  - (Y /YcJ2 (4.102)

This equation is analogous to Eq. (4.74) for U,/U,,  ,,,-  in a tube. The average I
velocity is found by integrating U,  over the cross sectional area to obtain the
volume rate of flow and then dividing by the area. The answer is similar to
Eqs. (4.76) and (4.77):

Q=[ U’,dy=(~+pgcosf+~,
0

(4.103)

Equation (4.103) applies for a unit distance in the z direction. If there had
been variation in the z direction, then integration over that direction would
also have been necessary. The average velocity U,,.,  is found from the
quotient Q/S. When Eq. (4.103) is divided by the flow area S, the result is

2

U Q
i. ave = - = (-+pgc0se c- AP

s L > 3P
(4.104)

Note that the area S equals 2y,  for unit distance in the z direction, and this
result was used to obtain the last equation. The average to maximum velocity
ratio from Eqs. (4.101) and (4.104) is

UI, aYe = 3UX.lW

Recall that for pipe flow the factor was 4.

(4.105)

Shear stress. The equations for shear stress in the parallel plate geometry are
similar to those in Table 4.5 for laminar pipe flow. Following the development
for Eq. (4.79),  the shear stress is

qx =
S( -Ap)  + pSLg cos 8

4
(4.106)
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Again for unit distance in L direction, the flow area S is 5, the
momentum transfer area A, is 2L, and the volume is 2yL; thus Eq. (4.106)
b e c o m e s

tvx = (2~)(-&)  + CWw)(~s  0) Y(--AZ-J)
2 L

= 7 + (ypg)(tis e) (4.107)

Note that the shear stress is linear in y; for pipe flow, the shear stress was
linear in r.

Figure 4.8 shows the velocity and shear stress distribution for the pipe
problem; the forms of the plots for the plate problem and the pipe problem are
similar except that the shear stress in the parallel plate problem switches sign
between the location y = -y,,  and y = +y,.  Remember that the equations just
presented are subject to the five assumptions listed after Eq. (4.85)..

In conclusion, the solution to the problem of laminar flow between
parallel plates has been shown to be similar to that for heat transfer in a slab
with uniform generation, if the faces of the slab are maintained at zero
(equivalent to zero velocity at the walls). The shapes of the plots of shear
stress and velocity are identical with those in the tube flow problem.

ExampIe 4.8. Consider Fig. 4.11 in which a fluid  of constant p and p is flowing
between parallel plates. The bottom plate is at rest. The top plate is moving at a
constant velocity U,.  Prepare a graph of y versus UJU,  for various pressure
gradients.
Answer. Equation (4.60) is the equation for steady-state flow in the x  direction
only. Equation (4.60) is integrated appropriately to obtain Eq.  (4.89):

-rK = (W2)y’  + c,y + c, (4.89)

The boundary conditions for this problem are

u,(y = +yJ  = u, u,(y = -yo)  = 0 (9

The twundary’ccnditions  are substituted into Eq.  (4.89) to yield two equations in
two unknowns (C,  and C,):

-ruo=(&/21Y~+  c,yo+c* (ii)

o=(&/2)Y~-c,Yo+c* (iii)

After adding these two equations, the constant C, is eliminated, and C2  is

c*=  -(Puc./2)-(&/21Y~ 64

Y=+Yo~uoy

y = o . . . . . . . . . . . . . - u,  -  dpldr LX

FlGURE  4.11
Flow between hvo parallel flat
plates (Cmette  flow).
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Backflow  region
I

Forward flow u”-

- 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

WK

Backflow region
I

Forward Bow

FIGURE  4.U
Ccuette  flow between two parallel Rat plates. (Adapred  from  Schlichdng,  “Boundary Layer
Theory”, 7th ed., p. 85, McGraw-Hill, N. Y. 1979. By permission.)

The constant C, is substituted into either Eq. (ii) or Eq. (iii) to find C,:

Cl = -PUol(2Yo) (4

From Eq.  (4 .89)  and the  values  of  the  constants ,  the  f inal  resul t  i s

v, = WJW  + Y /Yo) + [&Y3(2P)l[l  - (Y  /YJ’l 63
where & is  the  pressure  grad ien t

ni,  = -dpl& w

The solution is shown in Fig. 4.12. For the case of dp/dx  = 0, the velocity is
linear across the fluid. This case is called simple Couette flow. For a negative
pressure  drop, the  veloci ty  i s  posi t ive  everywhere ,  and for  a  pressure  increase ,
the veloci ty can become negat ive,  i .e . ,  a  backflow [Sl]. The point  of  reversal  i s
that point at which dU,/dy  = 0 at y = -y,. From Eq. (vi), this occurs when

dpldr  = U,P&!Y@ (viii)

4.2.5 Variable Generation

The preceding four sections have discussed generation in applications of heat,
mass, and momentum transport. In every case the generation tw qG in Eq.
(4.31) or Eq. (4.32) was constant. In momentum transport, prackal  applica-
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tions usually involve a constant pressure gradient. Gravity, the other contribu-
tion to momentum generation as seen in Table 4.3, is always constant for a
specific location on this planet. Thus & is safely assumed constant, as it was
previously in the steady-state generation problems.

In heat transfer, the generation term may be a weak function of
temperature. For example in the electric wire problem, if the voltage is kept
constant, then the power input varies with temperature because the resistance
of the wire is a function of temperature. With the aid of modem instrumenta-
tion, the power input could easily be kept constant by continually varying the
voltage.

In mass transfer with generation, variable generation is the rule rather
than the exception in most problems. Suppose species A is initially present.
For the depletion or generation of an individual species in a chemical reaction,
a general expression for CA,o  is

c,,G = -k,,C: (4.108)

assuming that the rate of the reverse reaction is negligible. The exponent n is
called the order of reaction; n is usually 1, 2, or 3, although it may be a
fraction. Both k,, and n are determined empirically. If there are three species
present, A, B, and F, all of which react, then

c4.G  = -k,(C,)nl(C,~(C,~  ‘ (4.109)

Equation (4.108) assumes that there is no reverse reaction.
For illustrative purposes consider that the Eq. (4.32) in cylindrical

coordinates applies to a problem with variable mass generation. After
substituting for q and 6 from Table 3.1, Eq. (4.32) for mass transport is

-D d[r(X,Jdr)]  = 6A,Grdr (4.110)

Let L,G be given by Eq. (4.108); substitution of C,,d from Eq. (4.108) into
Eq. (4.110) yields

d[r(dC,Jdr)]  = (k,lD)(rCi) dr (4.111)

which cannot be easily integrated, except for n = 1, but can be rearranged to

d2CAldr2  + (l/r)(dC,ldr) - (k,,/D)C%  = 0 (4.112)

For n = 2 the solution is in terms of Bessel functions; for other values, an
analog computer solution or numerical solution is best.

Solutions to mass transport problems such as these are considered under
the topic “kinetics”. The reader should refer to texts on kinetics for an
in-depth treatment of this subject.

4.3 CONCLUDING REMARKS

This chapter has considered at length several important transport problems in
which there was only molecular transport. All these problems involved
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one-directional transfer. A procedure was given to handle easily one-
directional transport through a variable area.

The generation term was discussed in detail. In momentum transport it
was shown that an incompressible fluid in a one-directional flow must flow in a
constant-cross-sectional area conduit. Further, in such a problem there is no
net convective flux, even though there must be convection in most practical
fluid flow problems. The generation term in fluid flow was shown to be equal
to the negative pressure gradient plus the gravity term.

Not discussed so far are problems in unsteady-state molecular transport;
in these, the concentration of property t,i~  varies with both time and position.
The resulting equations, even with the simplification of no net convective flux,
are partial differential equations. Solution of partial differential equations is
primarily mathematical and not very instructive in understanding and applying
the balance concept; discussion of this topic will be delayed until Chapter 13.

PROBLEMS

4.1.
4.2.
4 3 .

4.4.

4.5.
4.6.

What are the dangers of the log-mean area concept?
Why is the Hagen-Poiseuille  law important?
A liquid metal transfer pipe (1 inch outside diameter, 10 ft long) carries mercury,
which transfers heat from a nuclear reactor to a heat exchtiger. The heat loss
from this lo-ft  line is minimized by using an insulation, 8-inches thick. Find the
heat transfer (Btu h-‘) through the insulation, if the temperature on the pipe side
is 1000 K and the temperature on the outside is 300 K. The thermal conductivity
for the insulation is k = 0.120 + 4.5 X lo-’  T,  where T is in “F, and k in
Btu h-’ ft-’ “F-l.
Find the error in the heat loss in Problem 4.3 if (a) the log-mean is used and (b)
an arithmetic mean is used.
Derive the equation for the mean area of a hollow sphere.
A copper plug has been instal led in an insulated wall .  The shape of  the plug is
shown in Fig. 4.13 and is in the form of a truncated cone. The temperature TI is

T,=7oT Tz  = 140°F

FIGURE 43
1.1 ft* m Copper  plug in an insulated wall.
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70°F; the temperature G is 140°F. Find q in J s-’ and in Btu h-‘.  Neglect any
two-dimensional  effects .

4.7.  Determine the heat  loss for  Problem 4.6 if  the temperature difference.  is  reversed.
4.8. It is desired to reduce the CO, transfer in Example 4.4. The shape of the hole

must  be maintained,  but  the diameter  can be reduced by a factor  of  3.  Find the
new diffusion rate  in  kmol s-i.

4 .9 .  A p iece  of  porous  g lass  tub ing  i s  used  as  a  diBusion  cel l  to  measure the diffusion
coefficient  of an air-gas mixture.  The inside diameter and outside diameter of the
cell  are 1 mm and 4mm respectively.  I t  was found that  with a difference in mole
fraction of 10 percent at 25°C and 1 atm pressure, the molar flow rate was
4.0 x 10-6mol s-’ per centimeter of length. Find the diffusion coefficient in
mz  s-‘.

4.10. Heat is generated within a spherical catalyst particle because of chemical
reaction. The particle is 8mm  in diameter, has thermal conductivity of
0.003 ca l  cm-’ s-’ K-‘,  and has a surface temperature of 300°C. The generation of
heat  decreases  l inear ly  towards  the  center  of  the  par t ic le  because of  the  decrease
in the amount  of  mater ia l  that  reacts  ( longer  diffusion path) .  The generat ion is
given by [(67S)(r/r,)]  cal s-’ cme3. Assume that  the  generat ion of  heat  i s  exact ly
balanced by the loss of heat at the surface. Determine the temperature
distr ibut ion and more part icular ly the maximum temperature.  The catalyst  tends
to  lose  ac t iv i ty  above 700°C;  i s  th is  tempera ture  exceeded?

4.11. In Problem 4.10, it was stated that the catalyst tends to lose activity above 700°C.
I f  the  ac t iv i ty  were  revers ib le  ( i .e . ,  i f  the  ca ta lys t  would  regain  i t s  ac t iv i ty  when
the temperature again dropped below 7OO”C),  describe what you think would
happen if the generation were doubled in Problem 4.10. Locate the region (in
terms of r/r”) of maximum temperature.

4.12.  Nuclear  reactor  elements  can be in the form of  long thin s labs,  0 .5 cm thick.  One
side is at 100°C  (boiling water) and the other side is in contact with a liquid metal
at 175°C. The thermal conductivity is 50 Btu ft-’ h-i  OF-‘,  and the heat generation
is 109BtuftA3  h-‘.  Determine the maximum temperature reached under these
condit ions.  The elements  are  expected to fai l  a t  1100°F.  What  is  the temperature
at the center line of the element? What is the temperature distribution, T as a
function of x?

4.W.  Water  a t  30°C f lows through a  hor izonta l  p ipe  (1  inch ins ide  d iameter ) ,  in  which
the pressure drop is to be limited to 0.015 lbr ft-’  per foot of length. This low
pressure  per  foot  i s  imposed by  the  excess ive ly  long l ine  involved.  Calcula te  the
volume flow rate (f t’  s-i),  the mass Row rate ( lb, , ,  s-l),  the average and maximum
velocities (ft s-l),  and the velocity distribution U, as a function of r.

4 .14 .  Der ive  the  ve loc i ty  d is t r ibut ion  for  the  f low of  a  Newtonian  f lu id  in  an  annulus;
your  answer  wi l l  be  an  equat ion  for  U, as  a  funct ion of  pressure  drop (-dpldz),
v i scos i ty ,  r, r, ( the radius  of  the  smal l  tube) ,  and r, ( the  radius  of  the  large tube) .
Then f ind the average veloci ty  U,, by integrating this equation across the flow
area [cf. Eq. (4.76)].  Determine also the point at which the maximum velocity
occurs. Finally, note the limiting form of velocity in the velocity distribution
equa t ion  as  r,  approaches  zero .

4 .15 .  Consider  F ig .  14 .11 ,  in  which  water  a t  330 K is  conta ined  be tween two para l le l
plates (separated by 0.02 m), one of which is moving. Let the system in Fig. 14.11
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Slit

FIGURE  4.14
Thin film flow on the outside of a solid surface.

be  ro ta ted  so  tha t  the  p la tes  and the  f low are  in  the  ver t ica l  (y)  d i rec t ion .  The
velocity of the moving plate U, is maintained constant at 5.0 m s-r,  and gravity (in
the -y direction) is 9.8ms-‘. Neglect ing al l  end effects ,  compute the pressure
gradient in Nm-’ required to obtain a velocity of 6.0m  s-’ at the midpoint
be tween  p la tes .

4 .16.  In  a  gas  absorpt ion exper iment ,  a  v iscous  f lu id  f lows down a  tlat p l a t e  in  a  th in
film, as shown in Fig. 4.14. Gravity is the driving force causing the flow. The film
of liquid is of thickness x, after a fully-developed velocity profile has been
established. Find the velocity distribution in the falling film, neglecting entrance
effec ts ;  neglec t  any in terac t ion  between gas  and l iquid;  express  your  answer  in
terms of g,.

4.17. Suppose Fig. 4.14 depicts a tube of radius r,; let a viscous fluid flow upward
through the center of the tube and then downward through the slit. In the
ful ly-developed region,  the  d is tance  f rom the  tube .  center  l ine  to  the  outs ide  of
the laminar film is pro,  and the difference between /Ir., and r, is x,. Find an
equat ion  for  the  ve loc i ty  d i s t r ibu t ion  of  the  fhrid  f lowing uniformly down the
outs ide of  the  tube in  terms of  /Ir,,.
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5
TRANSPORT

WITH A NET
CONVECTIVE

FLUX .

NOMENCLATURE

A

A
B
C

C
C
co

C

CP
D

Area (m’,  ft2); subscripts denote direction normal to coordinate,
e.g., A, is area normal to radius (area of the surface of a cylinder)
Species A; AI  and A2  are species A at locations 1 and 2
Species B; subscripts 1 and 2 represent locations
Concentration (kmol mm3, lb mol ft-‘); C,,  Ca, Ci are concentra-
tions of species A, B, i; C-r is total concentration; C,,,  and CA2  are
concentrations at locations 1 and 2
CI and C2 are constants of integration
Species C
Rate of generation of mass (kmol mm3sV1,  lb mol ftm3 s-l); other
subscripts refer to species
Subscript denoting flux  contribution due to convection
Heat capacity at constant pressure (kJ kg-’  K-l,  Btu lb:’  OF-‘)
Diffusion coefficient (mass difhrsivity)  (m” s-l,  ft2  s-l); DAB  is
diffusion coefficient for A diffusing through A + B; DuA  is for B
diffusing through A + B; D” is diffusion coefficient based on
volume average velocity; 0: is intradiffusion (tracer) dig&ion
coefficient; DAA  is self-diffusion coefficient of A in pure A; Do- is



l30 BASIC CONCEPTS M TRANSPORT  PHENOMENA

DlylDt
d
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jAIA

i
k
k

L
M

MG
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I

n
P’

P

Q
4
R
r
r

coefficient of A in essentially pure B; & is Knudsen ditfusion
coefficient, Eqs. (5.78) and (5.79)
Substantial derivative of ly,  defined by Eq. (5.16)
Diameter (m, ft); do is diameter of a tube or pipe
Force vector (N, lb3;  subscripts denote components in coordinate
direction; F, is the force due to a gravitational field
Acceleration due to a gravitational field (m s-‘,  ft se2);  also, g is the
gravitational vector, Eq. (4.49)
Gravitational conversion constant (32.174 lb, lb;’ ft s-‘)
Unit vector in x direction; i,, ie, i+ are unit vectors in the subscript
directions
Molar flux (kmol me2 s-l, lb mol fte2  s-l); subscript A is for species
A; superscripts * and v refer to molar flux with respect to the molar
average velocity U*  and volume average velocity U”
Mass flux (kg m- s2  -’ lb,,, ftT2 s-l); subscript A refers to species A;,
superscripts * and v refer to molar flux with respect to the molar
average velocity U*  and volume average velocity U”
Unit vector in y direction
Unit vector in z direction
T h e r m a l  c o n d u c t i v i t y  ( W  m-‘K-’  o r  Jm-lK-ls-l,  B t u
ft-’  “R-’  s-l); k, is mean thermal conductivity over the range of
integration
Length (m, ft)
Molecular weight (molar mass) of species i (kg kmol-‘,
lb,,, lb mol-‘)
Rate of generation of momentum in a unit volume (kgme2  sm2,
N mm3,  lb,,, ftv2  se2,  lbr  fte3)
Mass (kg, lb,,,)
Subscript denoting contribution due to molecular transport
Molar flow vector, defined  with respect to fixed coordinates
(kmol s-l,  lb mol s-l); subscripts A or B are for species A or B; if
written not as a vector, then N is subscripted for direction of
transfer; NT  is total net molar flow due to all species present
Knudsen number, defined as (A/do),  dimensionless
Mass flow vector, equal to molar flow N times molecular weight M
(kg s-l,  lb, s-‘)
Order of reaction in Eq. (4.108)
Permeability constant, defined by Eq. (5.73)
Pressure &Pa,  atm, lb,in.-2);  PA is partial pressure of species A,
Eq. (2.38)
Volume rate of flow (ft’  s-l); also subscript denoting torque
Energy (heat) flow vector (J s-l,  Btu s-‘)
Gas constant, see Appendix, Table C.l
Cylindrical coordinate (m, ft)
Radius, (m, ft); r, is value of r at the tube wall (the distance from
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the center of the tube to the wall of the tube); in heat transfer, 9 is
radius of inside tube wall, r,,  is radius of outside tube wall
Area perpendicular to the direction of the velocity vector U
Cm*,  fi*)
Temperature (K, “R,  “C, “F);  T1  and T2  are temperatures at
locations 1 and 2; T, is temperature of the wall or surface; T, is
temperature in open channel
Subscript denoting total; C-r is total concentration
Torque at inner wall in a Couette viscometer (N m, ft lb,)
Rate of generation of heat (J rnw3  s-l,  Btu fte3 s-‘)
Time (s)
Velocity vector (m s-l, fts-‘);  U is magnitude of U; U,,  U,,  U,,
U,,  (I,,  U, are components in directions x, y, z, 8,  r,  $; U is the
mass average velocity [cf. Eq. (3.22)];  U*  is molar average velocity
[cf. Eq. (3.23)];  U ” is volume average velocity [cf. Eq. (K&t)];  CJ,
is velocity in open channel (free stream velocity);
Volume (m3,  ft’);  c is partial molar volume of species i
Superscript denoting volume; U” is volume average velocity, Eq.
(5.24)
Mass fraction of species A; also, w is the mass flow rate (kg s-l,
lb,,, s-‘)
Rectangular (Cartesian) coordinate
Mole fraction of species A in a solid or liquid (dimensionless)
Rectangular (Cartesian) coordinate; (2~~)  is distance between two
parallel plates
Mole fraction of species A in a gas (dimensionless); yA,l  and yA.2
are concentrations at locations 1 and 2
Rectangular (Cartesian) coordinate
Thermal ditfusivity (m’ s-l,  f? s-l)
Difference, state 2 minus state 1; e.g., (-Ap)  means pl -p2
Generalized ditfusivity  (m’  s-‘,  ft?  s-l)
Angle, curvilinear coordinate direction
Mean-free-path (m, ft); cf. Eq. (5.74)
Viscosity (kg m-l s-’ or N m-*  s,  lb, ft-’ s-l,  cP)
Kinematic viscosity (momentum diffusivity) (m’ s-l,  ft*  s-l)
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg me3,  lb,,, ftT3);  subscripts refer to species
Rate of generation of mass (kgmm3  s-l,  lb, ftw3  s-l); subscripts
refer to species
Momentum flux (or shear stress) tensor (N m-*,  lbtft-*); rxy,  rYx,
etc., are components of the shear stress tensor, where subscripts
refer to direction of momentum transfer and direction of velocity
Spherical coordinate (rad)
Generalized flux vector (e.g., units for heat &tx are J m-*  s-r  or
W m-*,  Btu ft-*  s-‘; see Tables 2.1 and 4.1 for more details); W,,
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Y,,, Y, are components in directions x, y, z; W,,,  or Y,,, is flux due
to molecular transport; YX,, or W,  is flux due to convection

v Generalized concentration of property (e.g., units for concentra-
tion of heat are J me3, Btu ft-‘; see Table 3.1 for complete listing)

lyG Generalized rate of generation of heat, mass, or momentum in a
unit volume (see Table 4.2 for units; e.g., for heat, units are
J me3  s-l,  Btu ftm3 s-l)

0 Angular velocity, velocity of rotation in a Couette or plate-and-
cone viscometer (s-l)

$
Vector operator del, defined by Eqs. (2.16) or (3.45) (m-l,  ft-‘)
Laplacian operator, defined in Eq. (3.64) (m-‘, ftt-.“)

v u Shear rate tensor, defined by Eq. (2.41)
WI’ Transpose of shear rate tensor, defined by Eq. (2.42)

In Chapter 3, the general equations were derived for the conservation of a
property. In Chapter 4, these equations were applied to problems for which
the net convective flux was zero. In one case, momentum transfer in a pipe
(laminar flow), the net convective flux of momentum was zero even though
there was a flow of fluid. In this chapter, problems that involve the convection
term will be discussed. The complete equations for rectangular (Cartesian) and
curvilinear (cylindrical and spherical) coordinates will be presented.

Convection is the bulk flow of a fluid due to the external influences of a
pressure difference or a force field such as gravity. In Section 3.2.2, convection
as just defined was represented by the convection flow -flux  Y,,,. The
convection flux is always zero if there is no net velocity in the fluid or solid.
However, mass transfer may induce a velocity and therefore a non-zero
convection flux. The mass transfer effect may or may not be superimposed on a
bulk flow caused by external infIuences.  Both cases will be considered in this
chapter.

5.1 CONVECTIVE FLUX CAUSED BY
1

FORCED CONVECTION

A convective flux contribution to the transfer of a property by forced
convection must involve a flow velocity. There are situations where there is no
convective flux even though there is a velocity. For example, momentum
transfer as a result of incompressible laminar flow in a channel or pipe is an
important case that was considered in Chapter 4. Reviewing briefly, if the fluid

FIGURE 5.1
One-directional laminar pipe flow of an incompressible fluid.
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is incompressible and flows in a one-directional parallel flow, the amount of
momentum carried into an element of the pipe at any given position 1 is equal
to that carried out at position 2 (see Fig. 5.1),  as discussed in Section 4.2.2.
For the flow shown in Fig. 5.1, the change in momentum due to convection is
zero, but there is a momentum flux down the velocity gradient to the wall in
the r direction, perpendicular to the direction of the flow. If the flow in Fig. 5.1
is laminar, then the momentum flux in the r direction occurs by a molecular
mechanism, as discussed in Section 4.2.3.

The flow shown in Fig. 5.2 is two-dimensional because there are non-zero
velocity components in the z and r directions, but U, is zero. Figure 5.2 may
be visualized as a pipe with an increasing circular cross section (like a
megaphone used by a cheerleader at a football game). In this case, there must
be a net convective flux of momentum in both the r and z directions because
the velocities in both directions at point 2 are different from the velocities at
point 1 (by the conservation of mass). There is, of course, molecular transfer
in these directions, but by symmetry there is no transfer of any kind m the 0
direction.

Figure 5.3 represents laminar flow with heat transfer through walls into
the flowing fluid. From Table 4.1, the concentration of property Q!J  for heat ,is
pc,T.  If heat is added through the wall, then T2  will be greater than T,,  and
pc,T, will be greater than pc,T,.  Thus, there will be a net convective flux of
heat. A systematic approach is needed to solve problems such as illustrated in
Figs. 5.2 and 5.3.

The selection of the coordinate system is arbitrary. The object is to select
that system which makes the problem simplest. For example, one could use
rectangular coordinates, but then all three components of the velocity are
non-zero in the conical section in Fig. 5.2. Clearly a solution in cylindrical
coordinates is simpler. Hence, the momentum equations of Chapter 3 must be
readily available in cylindrical and spherical as well as rectangular coordinates.

9

FiGURE  5.3
Laminar  flow with heat transfer.
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The problem in Fig. 5.3 shows that heat and/or mass transfer can occur
simultaneously with momentum transfer; thus, the equations for these trans-
fers must also be available in the various coordinate systems as well. In this
chapter, tables of the important equations will be presented in the three
coordinate systems. Example problems illustrating the use of these tables will
follow.

51.1 The Balance Equation

The balance equation was developed in Chapter 3 to relate the concentration
of property I# to the flux I. The four types of terms (INPUT, OUTPUT,
GENERATION, and ACCUMULATION) were considered in turn, and the
most general form of the general balance was shown to be

al/l/at  = (V  * SVI))  -(V - lyu)  + $0 (3.59)

In expanded form, Eq. (3.59) became

al/J/at + (cl - V)lc,  = $0 + (V  * ml)) - qJ(V  * U) (3.60)
ACC CONV G E N M O L E C C O N V

The nature of each term is written under I$q.  (3.60) for emphasis.
In Section 3.4 it was shown that an important consequence of the

continuity equation (conservation of mass) for problems of constant density is
Eq. (3.74):

(v~u)=au,~a~++3u,~ay  + au,ja2=0 (3.74)

Hence, the last term in Eq. (3.60) is zero for an incompressible fluid, and Eq.
(3.60) reduces to

aryiat+(v.v)W=~G+(v.SvW) (3.77)

If the transport coefficient 6 is constant, Eq. (3.77) becomes

aWiat+(v.~)ry=~~+S(v*W) (3.78)
ACC CONV GEN MOLEC

Equation (3.78) is restricted to problems of constant density and constant
coefficient 6. This equation is the starting point for solving practically all
transport phenomena problems. If the density and the transport coefficient are
allowed to vary, Eq. (3.60) applies. However, Eq. (3.60) is even more
complicated than Eq. (3.78),  and thus there are few exact solutions. For each
problem to be solved, each term in Eq. (3.78) must be investigated to
determine if that term is zero or non-zero. Tables to be presented subsequently
will assist in this task.

5.1.2 Coordinate Systems

The balance equations in rectangular coordinates were presented in detail in
Chapter 3. The property concentration, diifusivity,  and generation forms from



TRANSPORT WlTH A NET CONVECIWE  FLUX ns

Tables 3.1 and 4.2 are substituted into the vector equations just discussed.
Then it is necessary to eliminate the operators by the appropriate equations,
such as those in Eqs. (3.53) and (3.64). Several such example problems were
solved in Chapter 3. But, as seen in Chapter 4, some problems may be better
solved in cylindrical or spherical coordinate systems (curvilinear systems).
Extension of the V operator and of other vector operations to curvilinear
coordinates is tedious, and only the results will be given in this text.

The need for vector shorthand notation such as (V  - U), (U  - V)I/J,  v  I/J,
etc., was amply demonstrated in Chapter 3. Table 5.1 provides these quantities
and several other useful ones in curvilinear coordinates as well as in
rectangular coordinates. It must be emphasized that the concentration of
property I,Q  is a scalar quantity; for rectangular coordinates I/J can be the
rectangular vector components: p(l,,  pU,, or pU,. For curvilinear coordinate
systems, if $J  is a vector (such as pv), the forms given in Table 5.1 for
(Z.J  - V)q and V* I/J cannot be used. For these two operations, additional terms
are introduced and will be discussed more fully in Section 5.1.6 on the
momentum balance. Of course, in curvilinear coordinates, the forms as given
in Table 5.1 can be used as long as the I# is a scalar.

5.1.3 R&tionsbip  Between Shear Stress and
Shear Rate

Newton’s law of viscosity, Eq. (2.5),  which is

qx = -P(wxl~Y) (2.5)
originated from experimental observations. The shear stress (or momentum
flux) z,,~  is proportional to the velocity gradient for a simple laminar parallel
flow. The law was also presented for one-directional molecular transport along
a radius:

Gz = -p(dUzldr) (4.18)

These simple forms are correct as given. But for flows in two or three
directions the relationship between shear stress and velocity gradient is more
complex. A more general tensor form for an incompressible fluid was
previously given as

z = -p[VU + (Vuy-j (2.40)

and was illustrated for rectangular coordinates in Section 2.4 and particularly
iti  Example 2.10. An additional term (2~/3)(V  - v)  exists and contributes only
if the subscripts on z are the same and if the flow is compressible [B3]. Table
5.2 summarizes in several coordinate systems the relationships between the
shear stress and velocity gradient. Included in Table 5.2 is the compressibility
effect that gives rise to additional terms in the normal (XX, yy, or zz)
components. Clearly, these terms are zero if the flow is incompressible
w -,  w = 01.

.



TABLE 5.1

Vector expansions in rectangular and curvilinear coordinates

Rectmghr  coordinates Cylindrical  coordinates Spherical coordinates

Note: The quantity rl,  represents the scalar concentration of property, which is C,  for mass transfer or (pc,T)  for heat transfer. For momentum transfer, $I represents the
rectangular  vector components (pU,,  pUY,  or ~0,)  when V is substituted for in the rectangular coordinate column. It is incorrect to substitute the rectangular vector
components for * in the cylindrical or spherical column. Also, the quantities f,, is,  f*,  etc., represent the unit vectors in the subscript direction.

I ,
I
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TABLE 5.2

Shear stress-velocity gradient relationships for constant viscosity

Rectquhrcoordi~tes

r, = -2j4(6’U,/~x) + (2~/3)(V* Uj (4

tyy  = -2~(au,ia~)  + (2d3)(V  - v) @I

tzz  = -2~(x4iw  + (2d3)(V  - u) ((3

rxy  = ryx = -P[(a.!JaY)  + (q/WI 09

?),= = r*y = -P[(NJyaz) + (wlaY)l , 03
r,, = r, = -p[(.3uxl13z)  + (au*lax)] 09

cyltdrical  coordtMtes

r,  = -2p(XI,/&) + (2p/3)(V  - (I) W

5,  = -2wuw  + (28/3)(V  - u) (1)

(J)

(K)

trz  = b, = -P[(XJJ~Z) + (~U,lWl
Spherical coordinates

tn = -24dU,/&)  + (2/~/3)(V  * U)

\ w

W

WI

(0)

(9

(Q)

(RI

Use of Table 5.2 is illustrated by considering incompressible laminar flow
in a tube, as shown in Fig. 4.7. The first step in applying Table 5.2 is to choose
the coordinate system; cylindrical coordinates are the logical choice. Next the
various terms are examined in order to eliminate the zero terms. Flow in a
tube is one-directional, so

u,=o=  u, (5.1)
If U,  and UO  are zero, then all derivatives of these are zero. The velocity in the
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z-direction is a function of tube radius and independent of z and  8:

uz  =f (4 (5.2)
From Eq. (5.2) the derivative of U, with respect to z or 8 is zero, but the
derivative of U,. with respect to r is non-zero. Referring to Table 5.2, since
(V - U) is 0, z,  is zero from Eq. (G):

rm = -2/@U,l%)  + (2/~/3)(V  *  U) = 0 (5.3)
Similarly

tee  =  r**  =  rd  =  r#j,  =  rez  =  rze = o (5.4)
Only Eq. (L) in Table 5.2 has a non-trivial result:

r,, = rrr = -r(wla~) (5.5)
This result extends Eq. (4.18) to show that tz,  equals z,, for laminar tube flow.

Example 5.1. Find the relations between shear stress and shear rate in a fluid  of
constant density and viscosity that flows in a tube of expanding diameter, as in
Fig. 5.2.

Answer. The flow is incompressible (constant density) ,so  that (V * U)  is 0.
Cylindrical coordinates are chosen. There is no velocity in the O-direction, i.e.,

LIB=0 (9
All derivatives with respect to 0 are likewise zero. Both CJ, and CJ, are non-zero
and vary with both r and z, but not with 13. Hence, Eqs. (G) through (L) become

r, = -2/,J(dU,ldr) w
‘5 - -2jlUJre*  - (iii)

G. = -2p(euzlaz) 69
r* = l& = 0 69
r,pz = rze = 0 (4
r,=  = r,,  = -p[(au,/az)  + (au,/ar)] w

A flow such as in Fig. 5.2 is called decelerating if the flow is left to right. Note
that all three normal stresses (r,,, ree,  rZr) are non-zero, whereas in the
one-directional tube flow of Fig. 4.7 or Fig. 5.1, all three were zero as shown by
Eqs. (5.3) and (5.4).

5.1.4 The Continuity Equation

The continuity equation expresses mathematically the law of the conservation
of mass:

ap/dt+(v~pu)=O (3.71)

where p is the denbity  of the fluid under consideration. Equation (3.71) appliesI
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TABLE ii.3
The continuity equation

General equation

Rectangular coordinates

Cylindrical coordinates

Spherical coordinates

(C)

For steady-state, kompresaible  fluid  (V  - U) = 0 (3.74)

Rectangular coordinates

au,  %+a~,=,
aX+ ay a2 (D)

Cylindrical coordinates
0

(E)

Spherical coordinates

(F)

. for the fluid as a whole at a given point; i.e., it does not apply to individual
species in the mixture. For steady-state problems, apldt  is zero [see Eq.
(3.73)].  For an incompressible fluid at steady-state or unsteady-state, Eq.
(3.71) reduces to Eq. (3.74). Both Eq. (3.71) and Eq. (3.74) are expanded in
the three coordinate systems in Table 5.3. Note that the fourth line in Table
5.1 was used for the terms in Table 5.3. The use of Table 5.3 is illustrated in
Example 5.2, which follows. Table 5.3 may be used to solve Examples 3.5, 3.6,
and 3.7 as well.

Example 5.2. A flow in cylindrical coordinates is given by

U = i/B  + ie2r20z
Is this flow compressible?

(9

Answer. If the flow is incompressible, then (V . U)  will be zero as required by Eq.
(E) from Table 5.3

(V  - U)  = (l/r)[a(rQ)/ar)]  + (l/r)(au,/ae)  + XJ,/az  = 0 (E)
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The velocity in cylindrical coordinates is

U=iJJr+i,Ue+izUz (ii)
Thus,  from the problem statement:

u,  = r’e (iii)

u, = 23e2 (9
u, = 0 (4

The derivatives required in Eq. (E) are found from Eq. (iii) through Eq. (v):

a(ru,)iar  = a(#e)lar  = 4r3e (4
au,iae  = a(2fZetyae  = 2rz~ (vii)

au,iaz  = 0 (viii)

Now Eqs. (vi) though Eq. (viii) are inserted into (V - U)  given by Eq. (E) above:

(v - tr)  = (iir)(4&) + (1ir)(2r*1)  + 0 = 4r*e  + 2r~ (ix)

Equation (ix) is seen to be zero only at r = 0 or along the surface

2er  = -Z (4

Clearly the flow is compressible.

The general mass balance for species A, also called the continuity
equation for species A, is given by Eq. (3.66),  and after substituting fiA,o  for
I)~,  Eq. (3.55) becomes

(5.6)
apAm  + w - VIP,  = hG  + (v a  ~vp.4  - (emu  43

ACC CONV GEN MOLEC CONV

where D is the diffusion coefficient of species A diffusing through the rest of
the mixture. Below the equation is written the nature of each term. Exact
solutions to Eq. (5.6) must contend with several subtle problems due to the
presence of mass transfer; for instance, the average molecular weight might
vary with position (as well as D) owing to mass transfer. Another problem
occurs in diffusion in liquid systems, where the total concentration and density
change as a result of mass diffusion. Lastly, U in Eq. (5.6) is the mass average
velocity [cf. Eq. (3.22)];  therefore, the molecular term must also be based on
the mass average velocity.

For an incompressible fluid, (V - U) is zero [Eq. (3.74)],  and the last term
in Eq. (5.6) is dropped. For a binary system, an analogous equation exists for
the other species present, B. For an incompressible fluid, diffusion of B is
governed by

apam  + iv  - v)p,  = h,G + (v . Dvp,) (5.7)

where @n,o is generation of species B by chemical reaction, and D here is the
diffusion coefficient of species B through the rest of the mixture (again based
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on the mass average velocity). For mass transfer to occur, there must be at .
least two components present, or identifiable. An example is self-diffusion,
which is the mass transfer of one isotope of a material through a different
isotope or isotopes of the same material.

For a binary system, the conservation of mass yields three equations: Eq.
(3.71),  the overall balance; Eq.(5.6),  the conservation of species A; and Eq.
(5.7),  the conservation of species B. However, only two of these are
independent; the third can be obtained from the other two. Any two of these
equations may be used to solve a binary mass transfer problem. Similarly, for a
ternary system a total of four continuity equations may be written, the overall
equation and one for each of the three components, but only three are
independent because the sum of the individual masses of each species must
equal the total mass of the system. Diffusion in systems with three or more
components is a much more difficult problem than indicated by this discussion,
since the various diffusion coefficients are coupled and depend on the fluxes as
well [G?,  LI]. For a ternary system, there are four distinct diffusion coefficients
[Rl]. In systems with three or more components, there are little data and no
satisfactory correlations for diffusion coefficients. This topic will be mentioned
briefly in Section 5.35. Additional reading is available [B2,  B3, C2,  Hl, I-I&
Ll, Rl,  T3].

Equation (5.6) can be expressed in terms of molar concentration by
dividing by the molecular weight of species A: or4d

I_-_~ \ 5.z
dC,ldt  + (U; V)CA  = CA,o,+  (V  * DVC,)  - (C*)(Y  * u)
--Y--i  / (5.8)

fi  \..  k 2 -- r-t
where the last term is zero for an’ iinkkmpressidl~  fluid. This equation can be
contrasted to Eq. (3.67) written directly in terms of the molar concentration.
After substitution for & from Table 4.2, Eq. (3.67) is

ec*/at  + (u* * V)C*  = c,,o  + (V  * DVC,)  - (C*)(V  * u*) (5.9)

In this form Eq. (5.9) is not particularly useful since (V . v*) is not equal to
zero in most problems, as discussed in Chapter 3 in conjunction with Eq.
(3.76). Equation (5.8) is preferred, since in a mass transfer problem in a
flowing system the same mass average velocity U appears in the overall
continuity equation, the equation for an individual species, and in the
momentum balance equations. Table 5.4 summarizes in several coordinate
systems the continuity equation for species A in an incompressible medium,
Eq. (5.8).

Mass transfer problems may be solved in terms of concentration [i.e., Eq.
(5.6)]  or in terms of the flux vector N,/A, which in rectangular coordinates is:

NAM = i(N,/A), +j(N,/A), + k(N,JA)z (5.10)

The flux vector Y was introduced in Eq. (3.56) for three-dimensional flow and
contains both the molecular and convective contributions. The flux vector may
be N,/A or q/A. The general property balance in terms of P is Eq. (3.48)
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TABLE s.4
The continuity equation for species A

General equation

+ (V . DPC,)  - (C&V * u) (5.8)

Incompressible media, rectangular coordinates

(*)
hwompressible  media, cylhdricd  coordinates

Incompressible media, spherical coordinates

I a
(

ac,
>

1 a
( >
Dac,

+rZsin  Dsine3F +r2sin2t3Zj  ag (C)

Note that D is the difhuion  coefficient of species A in the mixture.
_.-

‘

which after substitution for mass transfer becomes

Molar msits

ac,iat  = -[V * (NJA)]  + c,,C3 (5.11)
ACC FLUX GEN

Masslmits

dp,.,ldt = -[V - (nA/A)]  + PA,G (5.12)

Equation (5.11) expands easily in curvilinear coordinates by using the fourth
line of Table 5.1, with U replaced by N,/A. Similar equations can be written
in terms of pA and nA/A. The results are given in Table 5.5, the continuity
equation for species A in terms of the molar flux. No further simplification
results for the case of an incompressible media.

5.1.5  The Energy Balance

The general heat (or energy) balance was presented in Chapter 3 as Eq. (3.65).
After substitution for ho  from Table 4.2, Eq. (3.65) becomes

aw, wat  + (u  - v)(~~J-)  = PO + p . dqpc,  T)]  - tpc, T)(V  . U) (5.13)
ACC CONV G E N MOLEC CONV

Once again, the nature of each term has been included beneath the equation.
For an incompressible fluid, the last term is zero as a consequence of Eq.
(3.74). IJsina  Table 5.1, Eq. (5.13) can be expanded routinely for various
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TABLE 5.5
The continuity equation for species A in terms of the molar flux

General equation

Rectengular  coordinates

ac,=-
at ( + eA Ga(N+.IA)x  + @N,IA),  + d(N,/A),

a x aY a2 > (A!

Cylinclriepl  coordinates

’ 09

Spheticai coordinates

coordinate systems; the incompressible form of Eq. (5.13) in several coordin-
ate systems is presented in Table 5.6. Note that the generation term must also
account for the generation of heat by viscous dissipation. In systems with large
velocity gradients or with fluids of very high viscosity (such as molten
polymers), the viscous dissipation term may be significant [B3]. Thus,
generation of heat may occur by several mechanisms such as viscous
dissipation, presence of fields (electric, magnetic, microwave), chemical
reaction, and nuclear reaction.

TABLE 5.6

The energy equation

Gaeml  equation

a(y)+  (V- v)(pc,T)  = &+p  * aV(pc,T)J  -.(pc,T)(V  * v)

lncompredi  media, rectangular coordinates

IncompmdbIe  media, cylindrical coodoatea

Incompresil~h~ media, spherical coordinates

(z+vaT  U G”
. c--,  L”-x

dT‘

?’
-+2-+2LaT=To+Id  2

’ ar I a e  rsine&$  pc, r2ar1’ >Imy%

\ \

:

(5.13)

(A)

(B)

(Cl
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Equation (5.13) and Table 5.6 are often inadequate for many problems.
Suppose, for example, one must design a gas compressor system with a heat
exchanger, which pressurizes the gas and removes the heat in order to keep the
gas reasonably cool. Equation (5.13) provides no insight into the terms
necessary for such a design. These complexities will be considered in later
chapters; Chapter 7 deals with the mechanical engineering equation, useful in
compressor design.

Example problems using some of these tables follow. It is important for
the reader to be able to apply the tables in Chapter 5 to problems that are
encountered. Admittedly, the equations in these tables are lengthy, boring to
contemplate, and confusing initially. However, these equations describe “the
real world” and must be mastered. The procedure for problem-solving is:

1. Make a drawing that represents the problem. ’
2. From the problem statement, determine if the flow is incompressible

[(V . v) = 0] and which physical properties (p,  k, p,  D, etc.) may be
considered as constant.

3. Identify the coordinate system that best describes the transport occurring.
4. Determine which velocity components (U,,  U,,  U,, U,,  U,,  U..) are zero.
5. Determine which velocity gradients (6’U,l&,  etc.) are zero.
6. Write the applicable differential equations from the tables in Chapter 5,

eliminating all the zero terms.
7. Determine the boundary conditions from the statement of the problem.
8. If the number of variables exceeds the number of equations, it is necessary

to formulate additional constitutive equations from kinetics, stoichiometry,
physical properties, etc., until the number of equations equals the number
of unknowns.

9. Integrate the equations analytically or numerically and obtain the solution,

Example 5.3. Consider the problem in Fig. 2.4 from Example 2.1. A copper
block is subjected to a temperature difference across the face at x = 0 and at
x = 10cm.  All other faces are insulated. Derive the differential equation to be
solved using Table 5.6.

Answer. Rectangular coordinates are chosen; the thermal transfer is in the x
direction. Since the copper is a solid in Example 2.1, all velocities are zero in this
problem. Thus

u, = v, = v, = 0 (9

Equation (A) of Table 5.6 applies with the following terms being zero for the
reasons given

aTiat  = 0 (steady-state) (ii)

Fo  = 0 (no generation of any kind) (iii)
aTlay = 0 = aTja2 (temperature varies only in the x direction) (iv)
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Thus, Eq. (A) has only one non-zero term for this problem

This equation integrates to

(4

where C, is a constant of integration and where ordinary differentials are used /
because the variation is only with x. Equation (2.10) is

k(y=-
PC,

(2.10)

This is used to replace (Y  in Eq. (vi). For constant density and heat capacity, Eq.
(vi) becomes

c =kdTz
ak

(vii)

where C, is a new constant equal to (C,pc,).  Equation (vii) is integrated between
the limits

x (T=T,)=n,
x (T=T,)=x, (viii)

The result is

C&z  -XI)  = k(T,  - T,) w

Comparison of Eq. (ix) with Eq. (ii) in Example 2.1 shows that

C, = (q/AL (4

Thus, it is shown that for the conditions of this problem, the flux (q/A)*  is
constant with changes in x.

Example 5.4. Figure 5.3 illustrates a typical problem in laminar flow with heat
transfer. Let the tube be of uniform cross sectional area so that the flow is
one-directional. From Table 5.6 set up the differential equation that describes the
temperature profile if the flow is steady-state and incompressible.

Answer. Cylindrical coordinates are chosen to describe the temperature distribu-
tion in the pipe, Eq. (B). Only U, is non-zero:

u, = u, = 0 (9

Since the flow is at steady-state

c3T/6’t  = 0 (ii)

The temperature will vary with r and z,  but not with the e-direction. As is typical
for applications involving a gaseous fluid, or even water and oil, there is no
generation of heat by viscous or other means:

PO = 0 (iii)
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\

Substituting the above relations in\o  Eq. (B) in Table 5.6:

Equation (iv) is a second-order partial differential equation that describes exactly
Further assumptions are

necessary to solve this equation subject to typical boundary conditions. In
Example 5.6 this specific  problem will be  discussed further.

51.6 The Navier-Stokes Equation

The balance equation for momentum transport is most often applied when the
density and viscosity are assumed constant. Equation (3.78) is for constant
density and constant transport property S. The equation was given earlier in
this chapter. After substitution from Tables 4.1 and 4.2 and from Eq. (4.54),
Eq. (3.78) becomes

%-Jv)la~  + w -.yz)  = -VP + Pi?t  + VP2  wol
or after dividing by p:

(5.19

au/at + (u . v)u = -(iip)vp  + g + v(V’, u) (5.15)

Equation (3.78) is a scalar equation when applied to heat transfer, mass
transfer, or the overall conservation of mass. In contrast, Eqs. (5.14) and
(5.15) are vector equations; i.e., they represent three equations each.
Equation (5.15) is called the Navier-Stokes equation after the men who first
derived the equation in the 1820s.

In rectangular coordinates there is an equation for each of the x, y, and z
directions. Each one of these component equations can &obtained  directly
from Eq. (3.78) by considering each component sebarately as a scalar term.
Following this procedure, Eq. (3.68) for the x component of momentum was

momentum balance equations are more complex in curvilinear coordinates
than in rectangular. A rigorous mathematical treatment can show that
additional terms exist in curvilinear coordinate systems [B3, B4]. Considera-
tion of a simple experiment leads to insight into the source of these additional
terms. Consider a tieight tied to a string, The string is attached to a shaft
rotating at a constant angular velocity. At steady-state, the velocity corn-
ponents in the r and z directions are zero; the only non-zero momentum
contribution is in the 0 direction. However, a force balance (such as was made
in Section 4.2.2) on the weight must take into consideration the centripetal



TABLE  5.7
The  Navier-Stokes equations for tluids  of constant p and p

Navier-Stokes eq+ion  in vector  form  (~eoordioates  only)
au/at + (U*V)U= -(llP)VP  +g+ vp*u)

Rectanguiarcoo~~ \ .
(5.15)

au, au, au, au,
xcomponent:  ~+lJX~+U-+Uz~=--  - +g,+v

y 3
i(Z) <gk+g+g,

ycomponent:  %+CJ,z+U %+Uzz=-- - +g  +v
y 3 &x$) y ( ax2 ay2  aA

a2v,+!%!Y+!%

zwmponent:  3+~=~+U~~+LI,~=-~(~)+g,+v(~+~+~r/

cyIiicaI  eoordiMtes

r component: z+ U,$++g+  IT=%-?

1 &J=-- -
( >

#u, v au, v a2u  2~au  3%
P al

+g,+vdr2+;ar-v  3 +~jg--~+v-j-g
( >r2 r2 a e

f3 component: %+  UrT+?$$+  Uzz+y

1 ap a2u, v  au, va2u  2vau  2=---+g,+yar2+;ar-V  44 +17-$+-p-&+v$$?
pae ( >rz

,
a u au  uat4  au

* component: 2 + lJ,,A’+  4 t + U Lat I ar r ae .‘?z
I / .

=-‘4+g  +v,g+;Y%+;g.$+v~
r pp  I=,

(A)

@‘I

0

6’)

tE)

(F)

r component: alarr,+ u,i%+$  ?s+ ( >
ue au,  6 u:- 1 ap
rsint3  a@  i r - par +&+;(pg)

2!2?!&2YUgCOte- 2v
? ae r2 (4

z!e
r’sin  e a# ((3

- e component:
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force exerted by the string which counteracts the centrifugal force due to the
mass of the rotating weight. A second force whose existence is similarly proven
is the Coriolis force. The Coriolis force is an effective force in the 8 direction
that appears when a mass moves in both the r and 8 directions. A fluid
mechanics problem involving Coriolis forces is the problem of flow near a
rotating disk in a large tank.

Contributions from such forces as the centripetal and Coriolis forces are
the source of. the additional terms that appear in the momentum balance
equation in curvilinear coordinates. The final results are given in Table 5.7 for
the various coordinate systems. Note that on the left-hand side of each
equation in curvilinear coordinates the form for (U  - V)U from Table 5.1
appears in addition to the extra terms. On the right-hand side, the form for
V*lJ from Table 5.1 appears in addition to the extra terms. For rectangular
coordinates there are no additional terms.

Application of the Navier-Stokes equation to problems requires first the
selection of the most appropriate coordinate system. Then every term in each
component equation must be investigated to determine whether it is zero or
non-zero. Naturally most terms must be zero in order for an exact mathemati-
cal solution to exist. The following four examples illustrate the many practical
problems that can be solved by using Eq. (5.15),  the Navier-Stokes equation.

Example 5.5.  Determine the velocity distribution for the steady-state,  laminar,
incompressible flow of a fluid in a pipe. The flow configuration is horizontal.

Answer. The problem is best expressed in cylindrical coordinates as shown in Fig.
5.1 or Fig. 4.7. From Table 5.7, Eqs. (D), (E), and (F) apply. The flow is
one-directional (z direction), so that U, is non-zero and

u,  = u, = 0 6)
If the pipe is perfectly round, i.e., circular in cross section, U, is symmetric in the
r and 0 directions. By symmetry, all derivatives with respect to 8 are zero. The
fluid velocity U, is zero at the wall and a maximum at the tube center line. Thus,
iNJ,lar  is finite and non-zero.

The continuity equation for this problem, Eq. (E) in Table 5.3, is

(llr)[a(ru,)lar]  + (lh)(au,lae)  + au,ia2  =o (ii)

As a consequence of Eq. (i), the first two terms in Eq. (ii) are zero; hence

auJa2  = 0
After integrating once, Eq. (iii) becomes

: *>--- --1,
+ = constagS-/--

(iii)

(iv)
where the constant or U,  can vary with r, but not with z.  Thus, by the use of the
continuity equation [Eq. (ii)] for an incompressible one-directional pipe flow, the
velocity in the flow direction is invariant in that direction as was previously
proved for rectangular coordinates in Example 3.7.

In Eq. (D), for the r component of the Navier-Stokes equation, the entire
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left-hand side is zero as a result of Eq. (i). Similarly the right-hand side reduces to

-(llP)(~PlW  + g, = 0

where g, is the component of the gravitational force acting in the r direction. The
usual assumption in the horizontal tube problem is that the effect of g, is very
small compared to the force causing the flow; thus g, is taken as zero and ap/dr  is
zero as well by Eq. (v). This assumption is equivalent to neglecting the
hydrostatic pressure as a result of g, when compared to the dynamic pressure
giving rise to the flow (e.g., the pressure provided by a pump). The total pressure
is the sum of the hydrostatic and dynamic pressures. For the horizontal pipe
problem, the Navier-Stokes equation is exact if the dynamic pressure is used.

In Eq. (E) for the 0 component of the Navier-Stokes equation, all terms
are likewise zero as a consequence of Eq. (i). Equation (F) for the L component
has non-zero terms. For steady-state

By continuity, as just shown

aK-()at-
a uI=0
3Z

(4

(iii)

The gravity component g, in the horizontal direction is zero. Since U, varies with
r, but not with 0 or z, Eq. (F) reduces to

_

Equation (v) was used to prove that the pressure is independent of radius.
Symmetry considerations show that the pressure is not a function of 8; thus, the
pressure is a function only of the z direction. By the force balance resulting in Eq.
(4.80), dp/dz  must be constant and is given by

3~  AP-=-
az L

The derivative ofaaproduct  is given by Eq. (3.51),  Thus
,’

a au, \_  aW  au- j.- =r--f+lzr aw, 1 au,
’ ( >ar  ar i3r2  dr ( 3+-- >rdr J

The kinematic viscosity vis related to the molecular~visco&  p by

v,e
P

Using Eqs. 2.12, (viii), and (ix), Eq. (vii) becomes

Separation of variables results in

pd r% =xrdr[ 1 AP

(viii)

w

(2.12)

(x)

(fi)
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where the partial derivatives have been replaced by total derivatives, since the
only variation is with r. Integrating:

dU  AP

” dr L
-=-r2/2+C, (xii)

The constant of integration can be determined from the center line boundary
condition. At the center line r = 0 and dU,/dr  = 0 from symmetry; thus C,  equals
0, and Eq. (xii) reduces to

dU,  A p r
w-&=y-j (xiii)

Further integration gives

(xiv)

The second constant of integration is determined from the wall condition:

(I,  (r = ro)  = 0 6-9

From Eqs. (xiv) and (xv), the constant C, is

c
*

_ (-APYL rz’
4P o ‘

Combining Eq. (xvi) with Eq. (xiv) gives the final result as

u ky(r:-r*)2.

(xvi) -

(xvii)

This answer is the same as Eq. (4.72), previously derived for laminar flow.

Example 5.6. Consider laminar heat transfer in a tube. Begin with Eq. 1(4.72)
velocity profieland Eq. (iv) in Example 5.4 and develop an equation to describe
the variation of temperature with radius. Assume no viscous dissipation, no heat
generation, constant physical properties, and a fully developed ‘temperature
profile (AT/L = constant). Figure 5.3 applies; in heat transfer, the inside radius
of the tube is ri.

Answer. The energy equation, Eq. (B) of Table 5.6, in cylindrical coordinates
was simplified in Example 5.4; the result was a differential equation describing
the variation of T with r. The answer from Eq. (iv) in that example (for constant
a) is

(9

The variation of the velocity U,  with r is given by&  Navier-Stokes equation,
which simplified to Eq. (x) m Example 5.5:

(ii)
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Equation (ii) is said to be coupled to Eq. (i) because U, appears in both
equations, and the final solution for U, must satisfy both differential equations
and all applicable boundary conditions as well. Every problem in mass or heat
transport with convection results in coupled differential equations. Exact solu-
tions are usually not possible, but a reasonably good solution is sometimes
attainable if the equations can be decoupled, i.e., solved independently as Eq. (ii)
was in Example 5.5.

Let us assume that the temperatughange  in this problem is relatively
small. Then the physical properties may be assumed constant with little error. If
the density and viscosity (the property most sensitive to temperature changes) are
constant, then the fact that heat transfer is occurring will have no effect on the
momentum transfer. Under these conditions, Eq. (ii) is no longer coupled to Eq.
(i). Measurement of the velocity profile will prove or disprove the validity of this
assumption. If the equations can be decoupled, the velocity profile is given by the
solution to Example 5.5: r+

uI = @$!A (rf _ r2) (iii)

where r,  is the inside tube diameter. Equations (i) and (iii) can be combined:

(9

Equation (iv) is a most complex equation to solve without more assumptions. For
the special case of flow far away from the entrance to the pipe and the beginning
of the heat transfer section, the temperature profile will be fully developed, i.e.,
the following slope is constant:

i?T/&  = AT/L  = constant (9

If Eq. (v) is integrated, the result states that T is a linear function of z.  If Eq. (v)
is differentiated, the result is

d2T----co
. a2

Note that T is a function of both r and z.  The above equations are next used to
simplify Eq. (iv):

(vii)

where both Ap/L  and AT/L are constants. Ordinary differentials can be used
since the only variation of T is with r. Separation of variables and integration
yields

dT
*z=-

(APIW~TIL)  (rr;) + c,

The center line boundary condition is

(viii)

$(r=O)=O
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Therefore, C, is zero, and Eq. (viii) becomes

dT-= -
dr

(4

This equation must satisfy the second boundary condition of Eq. (v), the
derivation of which will be covered in Chapter 11. Equation (x) is integrated
again:

A useful equation is/obtained from Eq. (xi) by eliminating C, in favor of the
temperature at the wall T,:

T (r = ri)  = T, *(xii)

Using this boundary condition, Eq. (xi) becomes

T = _ (ApIL)(ATIL) (ApIL)WIL)  3rf
w

4W 4W
i-6  + C, (xiii)

Equation (xiii) is subtracted from Eq. (xi):

T _ T =  -(AplL)(ATIL) r?” r4 3ri’-----
w

4W 4 16 16 >

Equation (xiv) expresses the temperature as a function of radius for heat
transfer between adine  wall and-e. :Ihe most tmportant
assumption in the derivation of Eq. (xiv) is that the gradient AT/L is constant.
This assumption is equivalent to assuming constant heat rate (qw)  at the wall, as
will be proved in Chapter 11. Also in that chapter it will be shown that T, is not
constant, but varies down the pipe when AT/L  and qw  are constant. Note also
that this derivation eliminates C, from the final equation.

A useful form of Eq. (xiv) replaces Ap/L  with the average velocity, which
in Chapter 4 was shown to equal half the center line velocity (I,,  ,,,-. From Eq.
(4.73) or Eq. (iii) evaluated at r = 0:

-AP  4uz max guz,.ve
-=L=2L r f ri

Then Eq. (xiv) becomes

T - T , = (4

Over a good part of the cross section, the fourth-power term (r/tf is small
compared to the other term, and the distribution has a parabolic shape. At the
center line (r = 0), the maximum (or minimum) temperature equals

3 U,  a, AT&,=  T,------g (y  L rf=C, (xvii)
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FIGURE 5.4
Temperature distribution for laminar
pipe flow with constant heat flux at
the wall. * .

8 T,-  Tl ordinafe=~(Uz,,/cu)(AT/L)(r~)

Note that from Eq. (xi) T,,,,  equals C,. Figure 5.4 shows the temperature
distribution (Eq. (xvi)) in a non-dimensional form:

8 T, - T

3 (Uz,  . ../4WIW.)
+!If+l!-d

3 r: 3 i;

Recall that the following assumptions were made in order to arrive at Eqs.
(xiv), (xvii), and (xviii):

1. The properties cP and k are constant and independent of temperature if
temperature changes are small; also p and p are likewise constant so that
momentum transfer (i.e., the velocity profile) is untiected  by heat transfer.

2. The temperature profile is fully established, and the gradient AT/L is constant
[cf. Eq. (v)], i.e., constant wall flux qw.

3. Laminar  flow exists.
4. The velocity profile is fully estabhshed when the fluid enters the heat transfer

section of the tube.
5. The final equations are valid far from the entrance to the heat transfer section

so that Eq. (v) is satisfied.

Example 5.7. Solve the Couette flow problem shown in Fig. 5.5. This geometry is
often used for viscosity measurements. The tluid  is placed in the gap between the
outer and inner cylinders. The outer cylinder is rotated at a constant speed W,
which is low enough that the flow is laminar. A torque is measured at the inner
cylinder by means of a calibrated spring. The apparatus is designed so that there
are no end effects.

Answer. The Couette flow is interesting because the flow is in the 0 direction
only, so that

u, = u, = 0 (9 ’
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Fluid with unknown viscosity

FIGURE 5.5
Flow between concentric cyiiders (Couette  flow).

and of course all derivatives of CJ,  and U, are zero. The logical choice of
coordinates is cylindrical. The angular velocity is carefully controlled so that
steady-state prevails:

a&J
- 0x-- (ii)

The viscometer is long enough in the z-direction so that end effects are negligible;
t h u s

If the viscometer is manufactured carefully so that the cylinders are concentric,
then the flow will be symmetric

au@-,ae-
Equation (iv) also follows from the continuity equation (E) of Table 5.3. The
viscometer configuration is such that gravity acts only in the I direction so that

g,=o=g, 69

The value of g, at Columbus, Ohio, is

g, = 9.80089 m s-’ (4 .50)

The Navier-Stokes equations for cylindrical coordinates are Eqs. (D), (E), and
(F) in Table 5.7. Equation (D) for the r component becomes

-U’, 1 ap-= _--
r P ar

Equation (E) for the 8 component is
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Equation (F) for the z component is

o=-;g+,, /
(viii)

Equation (viii) shows that the vertical pressure drop is due only to gravity acting
on the fluid mass:

The equation for the 0 velocity, Eq. (vii), does not involve a convective
contribution. It is an exact differential and can be written as

.c(;!!p)=o (4

where the partial derivatives are replaced by total derivatives, since all variation
in this problem is in a single direction r. Equation (x) can be verified by use of the
derivative of a product given by Eq. (3.51), which was used similarly for Eq. (ix)
in Example 5.5. After integration, Eq. (x) becomes

1 WJe)--EC*
r dr

Integrating again: ‘
rU, = C,(12/2)  + C, wi)

The two boundary conditions are

u, (r = rJ = 0 u, (r = To) = or, (xiii)

where w  is the velocity of rotation of the outer cylinder. Substitution of the
boundary conditions into Eq. (xii) results in two equations in two unknowns:

0 = c,ry/2  + cz or: = C,r:/2  + C, (xiv)

These equations are solved for C, and C2:

c, = 2wrf/(rf  - rf)

c* = -w(rX)/(rf  - rf) (xv)

Equations (xii) and (xv) are now combined to give the velocity distribution:

or

u _ or’, (r2  - rf)B - - -
r  ( r f - r f )

(xvii)

Note that Eq. (xvii) satisfies the boundary conditions in Eq. (xiii).
With U,  now given by Eq. (xvii), the radial pressure distribution can be

determined from Eq. (vi). Note that there is a convective contribution; i.e., the
centrifugal force balanced by the radial pressure gradient. From Eqs. (vi) and
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(xvii), the radial pressure gradient is

(xviii)

The appropriate boundary conditions for this equation are: at r = c, dplar  = 0
and at r = r,, dplar  = pu’r,.  Equation (xviii) may be integrated with respect to r
to give the pressure distribution across the flow, but this integration is of no
interest in operating the viscometer and will be left to the discretion of the
reader. The pressure distribution is highly nonlinear owing to the v’, term.

As discussed earlier, in the Couette viscometer, the angular velocity w  and
force F on the inner cylinder are measured. If A is the area of the inside cylinder
contacted by the fluid,  then the wall shear stress at r = c is

r,  = F/A w4

where rti is the 8 momentum transferred in the r direction. Note that this
equation is very similar to Eq. (2.6). From Table 5.2, Eq. (J) is the equation for
tfi:

For this problem, the term %J,/atI  is zero, and Eq. (xx) reduces to

Combining Eqs. (xvi) and (xxi) at r = ri gives

The shear stress (rti)i  can be related to the torque Z’Q,i  as follows:

TQ,i  = Fri (xxiii)

and

(t&J  = -F/A  = -F/(2nriL) WV)

where L is the length of the cylinder. Combining Eqs. (xxii) through (xxiv):

T,i  _ J&
--flrLr22nrFL o ,

or

Clearly, a knowledge of the rotation rate w and the torque at the inner wall Tp,i
plus the geometry (ri,  r.,,  and L)  is required to establish the viscosity.

An interesting extension of this problem is consideration of the heating
effects in the viswmeter. The heating wmes from viscous dissipation within the
fluid. If appreciable, the viscosity will vary because of its temperature depend-
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ence.  The velocity equation then becomes coupled to the energy equation
through the dependence of viscosity upon temperature. Such solutions have been
reviewed by Fredrickson [Fl] and Brodkey [B4].

5.1.7 The Boundary Layer

Whenever a fluid is forced to flow along a solid surface (boundary), a
boundary layer is formed as a result of the fluid velocity being zero at the
surface. Recall Fig. 2.3, in which the no-slip boundary condition was illustrated
for a fluid contained between two parallel plates, one being stationary. In the
fluid mechanics literature, the boundary layer is defined as that portion of fluid
whose velocity profile is appreciably affected (say, by greater than one percent)
by the presence of a solid surface. Figure 5.6 illustrates this definition. The
velocity of the fluid at some distance from the plate is called the free stream
velocity U,;  the fluid with velocity U, is not in the boundary layer. Fluid with
velocity U,, where U,  is less than 99 percent of U,,  is in the boundary layer. A
detailed discussion on the boundary layer will be delayed until Chapter 12.
However, for now some of the basic principles of the flow itself will be
discussed so that the governing equations can be obtained.

The classical boundary layer problem is the flow ,over  a flat plate, as
illustrated in Fig. 5.6. The experiment is designed so that the velocity profile of
the fluid approaching the leading edge of the plate is flat. As the fluid passes
along the flat plate, the influence of viscosity between molecules at rest at the
solid boundary surface and molecules in the bulk flow causes the velocity to
decrease in the neighborhood of the boundary. The dotted line in Fig. 5.6
marks the edge of the boundary layer, where the velocity is 99 per cent of the
free stream velocity U,. The example that follows illustrates the equations
necessary for the mathematical analysis of the flat plate problem.

Free stream region
q = fJ=

uy=uz=o

- us Edge of boundary layer
-

- 74,
-

- c*.m

FIGURE 5.6
Boundary layer flow past a flat plate.
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Example 5.8. An incompressible fluid flows in laminar flow past a flat plate.
Assume that the plate is able to transfer heat and mass as well as‘momentum to
the fluid. Find the non-zero terms in the appropriate balance equations. Figure
5.6 shows the geometry of system.

Answer. The flat plate experiment is perhaps the simplest explanation of
boundary layer flows because there is only one surface under consideration. The
fluid approaches the plate at uniform velocity ZJ,,  temperature T,,  and
concentration C,,,. Flow is in the x direction. The z direction is perpendicular to
the paper in Fig. 5.6, and there are no changes of any kind taking place in that
direction. When the fluid reaches the front or leading edge of the plate (X  = 0),
the velocity profile must change because of the boundary condition of no slip:

u, = u, = 0 (Y  =O)
The velocity must be zero at any solid surface as Eq. (i) states. As x increases, the
boundary layer thickness 6 increases. The fluid whose velocity has decreased
must go somewhere. It moves outward and gives rise to a small but finite velocity
U,.  Inside the boundary layer, therefore, the local velocity is a function of both x
and y. Qutside the boundary layer, the velocity is constant and equal to the free
stream velocity U,. Clearly, both the x and y directions must be considered, but
the z direction can be ignored as discussed previously. Thus

au au-2=-..2=u,=o az  az  0 .’ (ii)

However, the remaining four partial derivatives of CJX  and U,  are non-zero
(aU,lax,  XJJay, XJJax, and aU,l@).  Equations (A) and (B) from Table 5.7
for steady-state apply, and by using Eq. (ii) they reduce to

UdU,,u~=v  8ux av,
x ax * ay (~-+--Tay >

u*g+,~=v ,,iy+yy(
a2u  aw

ay >
It has also been assumed that both dpldi and dp/dy  are small and therefore
negligible. The additional boundary condition at the outer edge of the boundary
layer is

u, (y=m)=U,

From Eq. (D) in Table 5.3, the overall continuity equation reduces to

(4

It will be assumed that 6 (and consequently y) are small, so that

In the literature, Eq. (vii) is called the boundary layer assumption. These
approximations are valid only for fairly high velocities in laminar flow (see
Chapter 12 for more details [B4]).  After invoking the boundary layer assumption,
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Eqs. (iii) and (iv) reduce to

These equations, plus the continuity equation, are the starting point for the
boundary layer analysis. However, Eq. (ix) need not be used since Eq. (viii) and
the continuity equation (vi) are enough to define the system and allow a solution
for U, and U,,.

If the flat plate is maintained at a uniform temperature TO  which is different
from the free stream temperature T,,  then another equation must be added to
those above. The energy equation (A) from Table 5.6 for steady-state, no
generation, and constant properties reduces to

(4

where dissipation has been neglected. The boundary layer approximation for heat
transfer is i3ZT/dx*  << d2T/dyZ.  Equation (x) then simplifies to

u CT+  ” dT,  (ya2T
x ax yay ay l

In order to solve the heat and momentum transfer problems together, Eqs.
(vi), (viii), and (xi) must be solved simultaneously for U,,  UY, and T as a function
of x and y for given values of the momentum and thermal difbrsivities  and the
given boundary conditions. Note that the temperature changes have been
assumed small enough so that the physical properties can be considered constant.
Even so, the “coupled” set of equations are a formidable task to solve.

Mass transfer may also be present in the problem. For example, if the plate
were porous, or perhaps soluble in the fluid passing over it, so that a constant
concentration C,,, could be maintained at the surface, then there would be a
mass boundary layer formed on the plate as a result of mass transfer to or from
the plate. The assumptions to be invoked have already been discussed. The mass
transfer case is analogous to the heat transfer case, which resulted in Eq. (xi).
The final equation is

$cA : =A

ax2 ay’ >

This equation can also be obtained from Eq. (A) in Table 5.4. The boundary
layer approximation for the mass transfer problem is

(xiii)

Thus
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Equation (xiv) applies for constant D and no chemical reactions to produce
or remove C,. If the transfer is equimolar, which implies no induced velocity as a -
result of mass transfer, then UX  and Cl,.  are the forced convection velocities as
solved for from the momentum equations. If, however, the transfer is not
equimolar, then there will be additional terms associated with an induced velocity
(cf., Section 5.3.1).

In summary, for the problem of a laminar boundary layer over a flat plate
with no heat or mass transfer, both Eqs. (vi) and (viii) must be solved
simultaneously. If either heat transfer or mass transfer occurs in addition, then
three differential equations [Eqs. (vi), (viii), and either (xi) or (xiv)] must be
solved simultaneously. If all possibilities (heat, mass, and momentum) occur,
then all four equations [(vi), (viii), ( XI , and (xiv)] must solved simultaneously.‘)

No attempt will be made to solve these equations here as the mathematics
are quite involved. The point to be appreciated by the reader is that the general
equations presented in this chapter form the basis of solution to practically all

t laminar flow engineering problems. The nine-step procedure for problem solution
was summarized in Section 5.15  Briefly, the applicable differential equations are
to be selected from the tables in Chapter 5. Then the zero terms are identified in
order to simplify those equations so that a solution of some kind will be possible.
Solution of the most common of these problems is available in the technical
literature, as well as in Chapter 12.

5.2 CONVECTED COORDINATES

Visualize a situation in which an observer is moving exactly with an element of
fluid in a simple flow such as in Fig. 5.3. The problem is easiest to visualize if
there is no appreciable velocity profile, as exists in the middle of a wide river.
For example, an observer in a canoe floating down a lazy river is being
convected with the flow. The element of fluid is convected at some velocity U,
but from the viewpoint of the observer there is no velocity. The velocity U is
relative to stationary coordinates (the river bank). Analytical solutions to
reasonably complex problems are sometimes possible if a coordinate system
convected with the flow is chosen.

The generalized balance equation for incompressible fluids with constant
properties is:

~+(u.v)y,=lj~+6(v2y)) (3.78)

In a coordinate system convected with U, there will be no contribution from
convection. Hence, a new derivative, given the symbol Dt)/Dt  and called the
substantial derivative, is defined mathematically as

(5.16)

This substantial derivative has the property of being zero for a steady-state
problem with no net velocity vector relative to the position of the observer.
Equation (5.16) is combined with Eq. (3.78) to give the balance equation in
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terms of the substantial derivative:

g = ljJG + qv*  7)) (5.17)

The substantial derivative is particularly convenient in simplifying the con-
tinuity equation, Eq. (3.71):

DplDt  = -p(V  . U) (5.18)

Equation (5.17) is identical to Eq. (3.78) with U zero except for the derivative
notation. A solution in terms of “D” would be the same as a solution in terms
of “3”  if there were no velocity in the latter case; i.e., the result that the
moving observer sees is the same the stationary observer sees with no velocity.
Problems of this nature were solved in Chapter 4, where in each case (Us  V)t#
was zero, either as a result of no velocity or as a result of the derivatives being
zero, as m the case of laminar fluid flow.

The defining equation for the substantial derivative, Eq. (5.16),  can be
used to express the various forms of the general property balance in terms of
this derivative. The Navier-Stokes equation, Eq. (5.15),  is often found in
terms of the substantial derivative [B3, B4]. The heat transfer literature makes
little use of convected coordinates. In mass tranfer, there are several choices
for convected coordinate systems; these will be covered in the following
section.

5.3 MASS DIFFUSION YHENOMENA

In Section 5.1 it was shown that there can be a momentum flux due to
convection as caused by a pressure gradient or other force. It is also possible to
have mass transfer occurring SimultaneousIy  with momentum transfer. For
example, if the pipe in Fig. 5.3 were made of a soluble material, then as the
fluid flowed through the pipe there would be mass transfer between the wall
and fluid. The bulk flow in such an experiment is caused by a pressure
gradient. Sometimes a bulk flow can also be caused by mass transfer even
when there is no measurable pressure gradient. Of course, contributions to the
bulk flow may involve both momentum transfer and mass transfer mechanisms.
Both of these cases will be considered in this section.

Mass diffusion is the most complex of the three transports because there
are several useful choices for the frame of reference in mathematically
describing the mass flux. The presentation of mass diffusion in the presence of
forced convection begins with this topic.

53.1 Mass Fluxes in Stationary and
Convected Cqordinates

There are at least eight fluxes that have been introduced at one time or
another. These are distinguished by two parameters. First, the frame of
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reference can be with respect to fixed coordinates or with respect to one of the
velocities to be discussed in this section. Secondly, the flux can be on a molar
or a mass basis. The most important flux, NJA,  introduced in Chapter 2, is
the number of moles of component A per unit time moving through the area
A, relative to stationary coordinates. Also introduced in Chapter 2 was n,/A
which is the mass flux relative to stationary coordinates. The flux N,/A is
sufficient for most problems; other fluxes will be introduced briefly in order to
point out their significance and to assist the reader in understanding the
literature. The other fluxes are especially important in calculating diffusion
coefficients from experimental data.

Convective flux. Equation (3.15) equated the total flux with the flux due to
molecular transport plus the flux due to convection:

yx  = y*,nl  + Y&C (3.15)

where the convective flux W,,, is

w,,,  = w-x (3.21)

The velocity U, in-  Eq. (3.21) is the average velocity of whatever property is
being convected. For one-directional flow in the x direction, the total mass flux
convected is ‘

(ndAL,,  = PU, (5.19)

In this equation, appropriate units for (n,/A),,, are (kg m-*s-l),  for p
(kgmP3),  and for 17,  (ms-l).  The velocity in Eq. (5.19) is the velocity of the
mass being convected through the area A, as shown in Fig. 3.4.

At this point, it is desirable to change the notation in order to avoid
confusion and to be consistent with the presentations of other authors in mass
transfer. From this point on in Chapter 5, let the diffusion be in the z direction
i
P

order to avoid conflict with xA (mole fraction of species A in the solid or
iquid phase) and y,  (mole fraction of A in the gas phase). For a mixture of n

components, U, is the z component of U,  the mass average velocity vector,
which was defined rigorously as (rkK’)CGJ G3)  - KcJ  /&’

where pi is the density of species i and Vi is the velocity vector of species i. The
velocity Ui is commonly called the species velocity.

The species velocity Ui is the velocity of species i with respect to
stationary coordinates by any and all mechanisms. The species velocity of A,
U,, isfound  by realizing that Eq. (3.21) can be written to relate U, to the total
flux of species A convected:

’(NJA),  = C,U. = (PAIMJU~ (5.20)
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where (NJA),  is the molar flux based on stationary coordinates and
----- - ~. ._ - ----._ ..f

PA = CAMA (2.33)
If Eq. (5.20) is multiplied by the molecular weight MA,  then the mass flux
(n,/A), (units of which are kg m-‘s-l)  appears:

(n~l-41, = PAUA (5.21)

where the mass flux (~E~/A)~  is based on stationary coordinates and is also
defined as

(~,/A),  = WAIALWA) (5.22)
For a fluid mixture, it is possible that one or more species of the mixture

are diffusing in addition to being convected by a flow which is caused by some
external force such as a pressure drop or gravity. In this case there are three
average velocities to be considered: the mass average velocity. the molar
average velocity, and the volume or nondiffusional average velocity. The mass
average velocity is given by Eq. (3.22). The molar average velocity appears in
the equation for the total molar flux, NT/A  (units kmol m-* s-i), which comes
from applying Eq. (3.21) for the case of total moles being convected:

(NT/A),  = cTuf , (5.23)
where Uz is the z component of the molar average velocity U*.  Recall that U*
is the velocity of the molecules being convected through the area-A, as shown
in Fig. 3.4. The molar average velocity has already been defined rigorously as

ll*  = ,$ (ciG)/,$l ci (3.23)

where Ui  is again the species velocity of component i. Note that the species
velocity is a unique quantity, independent of mass units or molar units. The
species velocity Ui appears in both Eqs. (3.22) and (3.23).

The volume average velocity U” is defined as

U”= 2  (piU,)(c/Mi)  = 2  CitLJVi  = 2  (Ni/A)V, (5.24)
i=l i=l i=l

where fl is the partial molar volume’ of species i and M, is its molecular
weight. The velocity given by Eq. (5.24) is also the velocity of any and all
nondiffusing components. These nondiffusing components must move at the
velocity of the volume in Fig. 3.4.

‘The partial molar volume is computed from density-composition data. See any standard
thermodynamics text for more details [Sl].
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If there is no diffusion, all three average velocities are exactly equal:

u=u*=(I” (5.25)
Of course, flows of single components cannot involve mass diffusion and Eq.
(5.25) applies.

Induced velocity. As implied, a concentration gradient for species i super-
imposed on a bulk flow causes a net velocity of species i relative to the
volume average velocity; in other words, the species velocity Ui does not equal
UY  In this case, all three average velocities (mass, molar, volume) may be
different, as will be illustrated by Example 5.11. Naturally, it is possible to
design an experiment in which the volume average velocity is zero. In the
presence of mass diffusion with zero volume average velocity, there is normally
a non-zero mass average velocity and a non-zero molar average velocity as a
consequence of the three velocities differing. Therefore, the conclusion is that
mass transfer induces a net convective flux. Similarly, a bulk flow can be
caused by mass transfer even when there is no measurable pressure gradient.
Of course, contributions to the bulk flow may involve both momentum transfer
and mass transfer mechanisms.

Experimentally it is possible to measure all three velocities. The mass
average velocity is found through various momentum-measuring devices such
as a Pitot tube, which is discussed in Chapters 7 and 10. The molar average
velocity is found by somehow counting molecules passing through a plane
perpendicular to the flow. The volume velocity can be measured by introduc-
ing an additional component such as a tracer particle or other nondiffusing
species and by measuring its velocity. Because of the complexity with these
three “average” velocities, it may be advantageous to consider the velocity of
species i relative to the mass or molar average velocity.

As a consequence of Eq. (3.15),  the total flux is always the sum of the
flux due to molecular transfer (i.e., Fick’s law) and the flux due to convection.
The above discussion has shown that the velocity U,  in Eq. (3.21) is the
average velocity of whatever property is being convected, and that velocity is
not, in general, equal to the volume average velocity. In other words, there
can exist in a multicomponent mixture a nondiffusing species whose species
velocity (with respect to fixed coordinates) is zero; furthermore, there could be
and often is a net molar or mass average velocity due to mass diffusion alone
when the volume average velocity is zero.

In order to compute the mass flux due to convection, it is helpful to
define the “mass diffusion velocity” and the “molar diffusion velocity”:

V;  - U = diffusion velocity of i with respect to U ( 5 . 2 6 )

U, - U*  = diffusion velocity of i with respect to U* ( 5 . 2 7 )
A diffusion velocity relative to the volume velocity also exists, but since Eqs.
(5.8) and (5.9) are in terms of either mass average or molar average velocity, it
is not included here.
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’ TABLES.8
Fluxes for bii systems (After Bird et al., 1960.)

Reference system Mohr  Ru

Fiied coordinates N,IA  = CA  U,
Molar average velocity JXIA = C,(U,  - II*)
Mass average velocity JJ-4 = cA(uA  - v)
Volume average velocity rA/A  = C,(U,  - Uv)

Masahlx

n,lA  = PA UA
Cl-4 = PAW,  - u*)
/,lA = PAWA  - v)
/;/A  = PAWA  - vu)

Notation. Flwes  are likewise defined on a mass or molar or volume basis,
with the choice of stationary coordinates, coordinates relative to U,
coordinates relative to U*,  or coordinates relative to WY  The notation in the
literature unfortunately differs in practically every article or book. This text
will adopt notation similar to that in Bird, Stewart, and Lightfoot [B3],2
namely that N,,IA and nAIA are with respect to fixed coordinates and JAIA
and /*/A are with respect to mass, molar, or volume velocities. The quantities
IA and jA are superscripted to indicate the frame of reference, as shown in
Table 5.8. No superscript refers to mass velocity (in order to be consistent with
the heat and mass transfer equations), while the superscripts *  and u refer to
molar and volume velocity, respectively.

Table 5.8 summarizesthe various fluxes. For example, for component A,
the mass and molar fluxes relative to stationary coordinates have been
discussed previously:

Molar flux: N,IA = C, U, (5.20)
Mass flux: nAlA  = pAUA (5.21)

The mass and molar fluxes relative to the mass average velocity U are-
Molar flux: JAIA = CA&J..  - U) (5.28)
Mass flux: AlA = P.&J.. - U) (5.29)

where .J and j are relative to moving coordinates (here, the mass average
velocity) and N and n are relative to stationary coordinates.

Of the eight fluxes, N,.,IA  is probably the most useful in design because
process equipment design is primarily concerned with the size of equipment. In
this regard, N,/A  must always be determined. Other fluxes are useful in

‘In  Bird, Stewart, and Lightfoot [B3], and most other texts, the area is not explicitly noted; in
other words, the molar flux is called NA, .JX,  lvA, or IA and not N,/A,  JX/A,  JV,/A,  or J,IA  as
done here. The units for the flux  are moles (or mass) per unit time per unit area regardless of the
symbol or symbols used. The motivation for including the area in this text lies in clarity of
presentation for those being exposed to mass transfer for the first time, and an emphasis that in
equations such as Eq. (5.11),  and in examples such as Example 4.4, the area may vary.
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determining diffusion coefficients and in other applications [HI,  T31.  The
relationships among the fluxes are detailed elsewhere [B3, C2, HI].

Example 5.9 illustrates the numerical difference among three average
velocities and shows how; since the molar average velocity differs from the
volume average velocity, it is possible for mass diffusion to cause a bulk flow.

Example 5.9. In Fig. 5.7 is a cubic volume which is 1 cm on each side and is being
convected at 1 cm s-’  .m the z direction. In the volume at steady-state are 2 mO1  of
A (molecular weight 2), 3 mol of B (molecular weight 3) and 4mbl of C
(molecular weight 4). Superimposed on the flow is un-equimolar  counter
ditision.  Molecules of A diffuse  in the +z direction at a rate of 2mOls-‘;
molecules of B diffuses in the opposite direction at a rate of 1 mO1  s-l. Find U,
and U:.

Answer. In this problem, the z subscript will be dropped for simplicity. First,
from the problem statement the volume velocity or bulk velocity  is given as
1 cm s-l; also, there must be nine moles total in the 1 cm3  volume. On a mass
basis, moles times molecular weight yields grams:

(2 mol of A)(2)  = 4 g of A

(3 mol of B)(3) = 9 g of B

(4 mol of C)(4) = 16 g of C ,

Total = 29 g cme3

At steady-state there is no accumulation. Across any face perpendicular to
the flow direction, the total flux of each component equals the diffusion flux  plus
the-convection flux [from Eq. (3.191. For each component of the mixture:

N,/A  = 2 mol cm-’ SK’  diffusing  + 2 mol cm-’ s-l convected = 4 flol  Cm-*  s-’ (i)
N,,/A  = - 1 mol cm-’ s-l diffusing + 3 mol cm-’ SC’  convected = 2 mol  cm-*  S-I

(ii)

NC/A  = 0 mol crnm2  s-’  diffusing  + 4 mol cm-*  s-’  convected = 4 1Po1  Cm-* s-’ (iii)

The total flux is found from the sum of these:

NT/A  = NJA  + NJA  + N.-/A  = 10 mol cm-’ SK’ (iv)

N,=2mols-’

N,=-lmols-’ -

- (uz)vo,Jme  = 1 cm  SC’

FIGURE 5.7

Volume = 1 cm’

Convected volume for Examples 5.9 and 5.10.
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On a mass basis, these correspond to

nJA = 4 g cmm2  S-’  diffusing + 4 g cm-‘s-r  convected = g g cm2 s-r (4
n~IA=-3gcrr~Zs-‘diffusing+9gcm-*s-1convected=6gcm-*s-’  ( v i )

nJA = 0 g cd s-’ ditfusing  + 16 g cm* s-r convected = 16 g cm-’  s-r (vu)

The total mass flux is the sum of these:

n,/A = nJA + n,/A + n,/A = 30 g cm-’  s-’

Concentrations are expressed on a molar basis:

CA  = 2/1 = 2 mol cm-’

C, = 3/1 = 3 mol cmm3

Cc = 4/1 = 4 mol cmm3

C,=CC,=C,+C,+Cc=9molcm-’

Densities are on a mass basis:

(viii)

6x1

(4

(N

(xii)

PA = (2)(2)/1 = 4 g cme3 (xiii)

pe = (3)(3)/1 = 9 g cm-’ (xiv)

pc  = (4)(4)/1=  16 g cmm3 , (xv)

P=~Pi=PA+PB+Pc=29gcm-3 /
64

The species velocity is found from Eq. (5.20):

U,+,  = (NJA)/C,  = 4/2 = 2 cm s-’ (xvii)

Us  =  213  = 213  cm s-’ (xviii)

&=4/4=1cms-’ cw

Exactly the same result is obtained from Eq. (5.21):

UA  = (n,/A)/p,  = 814  = 2 cm s-’ (xx)
U,  = (n,/A)/p,  = 619 = 213 cm s-’ (4
U, = (nJA)/p,  = 16/16  = 1 cm s-’ (xxii)

The species velocity of the nondiffusing species C is 1 cm SK’,  i.e., exactly the
same as the given volume velocity, e.  The nondiffusing material is carried with
the volume.

The mass average velocity follows from the z component of Eq. (3.22):

u _ ci p;e-  t4)(2)  + (g)w)  + mm = 30,2g  cm s-,

z CiPi 4+9+16

= 1.034 cm s-’ ( x x i i i )

The same result can be obtained from Eq. (5.19) by using Eqs. (viii) and (xvi):

u _  hIAL

I -------=30/29=  l.O34cms-’
P

(xxiv)
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The molar average velocity follows from the L component of Eq. (3.23):

,r,*  = Ci  (‘3-4)-=2
cici

CW + WW)  + (4)O) = 1o,9  cm  s-,
9

= 1.11 cm s-’
Again, the same result can be obtained from Eq. (5.23):

cm

-“:-Np- 10/9=1.11cms-’ (-9T

For this example, both l.J,* and U, are slightly greater than the volume
velocity of 1 cm s-l, because there is a net molar and mass diffusion in the
positive direction. Had the net diffusion been negative, then U: and UZ  would
have been less than c.  Clearly, for equimolar counter diffusion, U: would be
the same as e and for equimass counter diffusion, U,  would equal U:.  Finally,
since the three velocities differ, it is entirely possible for mass diffusion to induce
a net volume velocity.

5.3.2 Total Flux and Fick’s Law

So far in Section 5.3, the total mass flux of species A (i.e., any of the eight
quantities in Table 5.8) has been shown to be the sum of the molecular
diffusion flux plus the convective diffusion flux [cf. Eq. (3.15)].  As a result, the
experimental techniques to measure the diffusion coefficient D are usually
designed so that the total flux due to convection is zero. In Chapter 2, Fick’s
law was introduced as

(JJA),  = -D(X,/3x) (2.4)

In actuality, this equation is restricted to the diffusion of species A across a
plane of no net volume flow.

Let us further consider this equation in the z direction, because it will be
desirable to introduce xA and xu as mole fractions:

XA  = CA/CT (5.W
xB= c,/c,= 1  -xA (5.31)

(JJA), = -D(XA/az). (5.32)

where C, is the total concentration of all species. Equation (5.32) is Fick’s law
for species A in the z direction, again restricted to a plane of no net volume
flow.

The total molar flux of species A in the z direction is

WA/A),  = VA/AL  + WA/AL,, (5.33)

Recall that the notation NJA  is with respect to fixed axes; therefore, all
concentrations must be measured with respect to lixed axes. To measure D
experimentally, it is necessary to design an experiment in which the convective
flux  (Ar,lA),c is zero. Then the .total  flux (N,/A), reduces to the molecular
flux  VA/A),,, which contains the diffusion coefficient.
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TABLE 5.9
Fkk% law for binary systems (Vp  = 0 = VT)

Molar  flus Massflux

rA/A = -DVC, J”A/A = - DVp,
J:lA  = -C,DVx, j:lA  = -pDVw,

JZlA  = -(& > DVw,

&IA  = -C,DVx,  + x,(N,IA  + N,/A) n,lA = -&VW,  + w&,/A  + n,/A)

Note: For constant pressure, Vp  = 0; for constant temperature, VT = 0.

Fick’s law. A complication to Fick’s law arises because it is possible and often
desirable to use driving forces other than concentration in Eq. (5.32); these
driving forces include the mole fraction xA or yA,  the mass fraction w,,  and the
volume fraction, although for chemical engineers the mole fraction XA  or yA  is
by far the most useful. Each driving force can gives rise to a modification of
Fick’s law. At this point, it is possible to introduce a different diffusion
coefficient, each with its own frame of reference and units, for each driving
force. A better approach is to keep the units of the diffusion  coefficient as area *
per unit time and to use flux expressions with consistent diffusion  coefficients in
the most convenient frame of reference. Table 5.9 summarizes the forms of
Fick’s law for binary systems. The various fluxes were defined earlier in Table
5.8; note that JIA and N/A  refer to molar fluxes, whereas j/A and n/A  refer
to mass fluxes. Cross-definitions, such as the mass flux with respect to the
molar average velocity, are not used in this text; accordingly, the notation is
simplified so as to identify readily which flux is being represented: PA/A  with
respect to volume average velocity, Jz/A with respect to molar average
velocity, and JA/A with respect to mass average velocity. It is important to
emphasize that D is identical in each equation in Table 5.9. Note the
restriction of constant temperature and pressure for each relation in Table 5.9;
in practice, there is always a small temperature or pressure gradient, but this is
neglected. A complete discussion of this table follows.

TotaI  flux. The total flux is the diffusion contribution plus the convection
contribution [cf. Eq. (5.33)], as well as the sum of the individual fluxes; for a
binary system, the total flux is

NT/A = NAIA  + NB/A (5.34)

where NT/A  is the total mass flux vector, N,/A  is given by Eq. (5.10),  and
NB/A  is of similar form.

TO find the total molar flux in terms of mole fraction, the derivation
begins with the equation for Ji/A  from Table 5.8:

JiIA = CA(UA  - U*) (5.35)
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Using Eq. (5.20) to replace C,U, and Eq. (3.23) as the definition of U*, the
above equation becomes

NA/A  = J~/AYG,U*  = Ji/A + (C,/CT)(C,UA + C,UB) (5.36)

Using Eq. (5.20) again, plus the corresponding equation for species B and the
definition of mole fraction, Eq. (5.36) becomes

N,t,/A  = J;/A + xA(NA/A  + N,/A) (5.37)
where

J:IA  = -C,DVx, (5.38)

In one dimension, these equations are

(&/A), = --c,D(~xA/az)  + xA[(NA/A),  + (%,/A),] (5.39)
TOTAL DIFFUSIONAL coNvEcrIvE
FLUX FLUX FLUX

J&/A=  -c,o(ax,laz) (Vp +O=VT) (5.40)

Equation (5.39) is extremely useful, and therefore is included in vector form in
Table 5.9. Note the simplicity of the convective flux term; it states in
mathematical terms that the convective flux of species A is the total flwr  of all
molecules times the mole fraction of A. The principal assumptions in Eq.
(5.39) are those of steady-state, constant temperature, constant pressure, and a
binary mixture.

A similar derivation leads to an equivalent expression in terms of the
concentration gradient and the convection (in terms of the product of species
concentration and flux):

(N,/A),  = -D(ac,la2) + c,[V~(N~IA)~  + VB(~d~),] (5.41)

where the convective flux of species A is the last term in the above equation:

(N&L,  = G[~A(NAIA),  + %Wd4zl (5.42)

Fick’s law was originally proposed as Eq. (2.4). A comparison of Eqs.
(2.4) and (5.41) shows that the original Fick’s law was valid only for the case of
fixed volume, i.e., zero convective flux with respect to the volume average
velocity. Note also that Eq. (2.4) is valid only for Vp = 0 = VT.

Equations (5.37) through (5.40) are based on the molar average velocity
and are often the most convenient to use. Since the diffusion coefficient D in
all equations presented thus far is identical to those in Table 5.9, the diffusion
coefficient can be determined using Eq. (2.4) in experiments where the
convective flux term in Eq. (5.41) is zero. Note that for a binary system [Rl]:

(JA/A)VA  + (J~;/A)%  = 0 (5.43)

Also, it can be shown that

J”,/A  = + (J:/A) and J;;/A  = + (J;/A) (5.44)
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Note that for ideal gases, the partial and molar vohtmes  are identical, and Eq.
(5.44) shows that the flux with respect to the volume average velocity equals
the flux with respect to the molar average velocity. Other relationships
between the fluxes in Tables 5.8 and 5.9 are available [B3,  C2,  Hl].  These are
often more confusing than helpful, however; the reader should convert any
given problem into concentration or mole fraction driving forces and use the
fluxes given previously.

Example 5.10. Calculate the fluxes for the problem of Example 5.9.

Answer. The stationary fluxes were found in Example 5.9 in order to find the
species velocities:

n,/A=8gcn-‘s-l (9
&A  = 6 g cm-’ s-’ (ii)
&A  = 16 g cm-’ s-’ (iii)
N,/A  = 4 mol cm-*  SC’ (iv)
NB/A  = 2 mol cm-*  SC’ w
N,/A = 4 mol cm-’ SC’ w

The fluxes relative to the mass average velocity are found by substituting
into Eq. (5.211) and Eq. (5.29):

JJA  = CA(~A  - cr) (5.W
J,/A  = (2)(2 - 30/29)  = 1.9310 mol cm2 s-r (vii)
&,/A  = (3)(2/3 - 30/29)  = -1.1034 mol cm-*  s-r (viii)
J,-/A  = (4)(1- 30/29)  = -0.1379 mol cm-*  s-’ (ix)
h/A  = P,(u.  - u) (5.29)
jA/A  = (4)(2  - 30129)  = 3.8621 g cm-‘s-’ (x)
ja/A  = (9)(2/3 - 30/29)  = -3.3103 g cmW2  s-’ 69
j,/A  = (16)(1-  30/29)  = -0.5517 g cm-’ s-’ (xii)

The fluxes relative to the molar average velocity are found from the molar
average equations in Table 5.8:

JilA  = CA(UA  - UI*)
J:/A  = (2)(2  - 10/9)  = 1.7778 mol cm-‘s-l

Ji/A  = (3)(2/3 - 10/9)  = -1.3333 mol cm-‘s-’

Jg/A = (4)(1- 10/9)  = -0.444 mol cm-*  s-’

Z/A  = p&J,,  - U*)

j:/A = (4)(2 - 10/9)  = 3.5556 g cm-*  s-’
jg/A = (9)(2/3 - 10/9)  = -4.0000 g cm-*  s-l

jE/A  = (16)(1-  10/9)  = -1.7778gc1r-~s-’

(5.35)

(xiii)
(xiv)

(xv)

64
(xvii)
(xviii)

(xix)
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The fluxes relative to the volume average velocity are found from the
volume average equations in Table 5.8:

WA  = c,(u,  - u”) (W
Jl/A  = (2)(2  - 1) = 2 mol cm-* SC’ W
Jk/A  = (3)(2/3  - 1) = -1 mol crnm2  SC’ ( x x i i )

J:/A = (4)(1-  1) = 0 (xxiii)

AlA  = p,(CJ..  - CJ”) (=w

IX/A  = (4)(2 - 1) = 4 g cm-’  s-’ c-v)
J%/A  = (9)(2/3 - 1) = -3 g cm-* s-’ ( x x v i )

];/A = (16)(1-  1) = 0 ( x x v i i )

Note that the flux .IEIA  is zero because species C is nonditiusing.  Likewise, the
fluxes J”,/A  and Jk/A  are equal to the values given in the problem statement of
Example 5.9; the rates of molecular diffusion were with respect to the reference
volume.

5.3.3 Binary Mass Diffusion in Gases

Mass diffusion in a gas due to the presence of a concentration gradient can be
separated into three categories: equimolar counter diffusion, diffusion through
a stagnant film, and unequimolar counter diffusion. In this section, each will be
considered in turn, after the basic equations are presented. Equation (3.67) or
Eq. (5.9) applies to all the aforementioned cases:

dc,/dt  + (u* ’ v)cA  = CA,0  + (v . DVCA) - (c/&v  ’ u*) (5.9)

Discussion of Eq. (5.9) will proceed with the following conditions:

’ 1. Steady-state: X,/i%  = 0.
2. No generation: CA,,  = 0.
3. Binary mixture.
4. Constant diffusion coefficient: D = DAB = DBA. This condition is true for

ideal gases and other fluids under certain frames of reference; also,
aoiax=aoiay=  aDia2=0.

5. Constant total concentration CT; this condition, together with condition (2),
indicates that (V *  LI*)  = 0 from Eq. (3.76) (also true for ideal gases and a
good approximation for real gases).

6. No pumping or external force field present to generate convection by
momentum transfer mechanisms.

7. Constant temperature and pressure.

Under these restrictions, Eq. (5.9) simplifies to

(U* . V)C, = D(V* C,)’ (5.45)
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If the problem is further restricted to a one-dimensional case (the z direction),
Eq. (5.45) reduces to

acA a%,
U;,=D-a2 (5.46)

In this equation, ordinary differentials may also be used since variation is only
with the z direction. Partial derivatives have been retained, however, to
emphasize that the mass transfer flux N,/A  and the concentration gradient are
vectors or vector components. This equation is consistent with the previous
development. Using the same procedure introduced earlier when Eq. (5.35)
was transformed into Eq. (5.39),  Eq. (5.46) becomes

(NAIA)z  + (NB/A), aCA  _  D aTi

cT a2 a2
This equation can be integrated once to yield

s [(NA/A),  + (N,IA),]  = D 2 + cl
T

(5.47)

A comparison of Eqs. (5.39) and (5.48) indicates that the constant of
integration C1 must equal the total flux ‘of species A. The derivative dCA/&
for constant total concentration is

(5.49)

where the mole fractions in the gas phase yA  and yn  are &fined as

YA  = CA/CT = FAip (5.50)

YB  = c,/cT  =aB/p  = I- YA (5.51)

From either Eq. (5.39) or a combination of Eqs. (5.48) and (5.49),  the final
equation for diffusion in the gas phase is

3; WA/AL  = -CTD  2 + y.J(NA/A),  + (N,/A),]

Equation (5.52) will be solved for three cases: equimolar counter diffusion,
diffusion through a stagnant film, and unequimolar counter diffusion.

Equimolar  counter diffusion. In Chapter 2, equimolar counter diffusion was
defined as

NA  = -NB (2.23)

Consequently, for equimolar counter diffusion the total bulk flow NT  equals
zero, and Eq.(5.52)  reduces to

(NJA), = -CT0  $f (5.53)
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Equation (5.53) can be integrated between locations 1 and 2 (for constant
area):

(5.54)

where yA,i  is the mole fraction of A at location zi and yn,z  is the mole fraction
of A at location z2. Similarly, for component B in equimolar counter diffusion:

(NB/A)~  = -C,D  2 =  -C,D  yy  1 cB.1
’

2 1
(535)

Since yA  is 1 - yg,  for equimolar counter diffusion the concentration gradients
are equal in magnitude and opposite in sign:

~YA AYB  dYA  dy,-=--z-c - -
AZ AZ dz dz _

(5.56)

This equation can also be proved from Eq. (2.24) and Eqs. (5.54) and (5.55).
In Chapter 2, Example 2.2 illustrated an application of Eq. (5.54). If the

area is not constant, then the area variation must be accounted for. In Chapter
4, Example 4.4 illustrated the additional complexity introduced in variable-
area problems. Equation (5.54) can be easily expressed in terms of partial
pressures, as was done for the solution in both Examples 2.8 and 4.4.
Assuming an ideal gas, the total concentration is

Using Eqs. (5.50) and (5.57),  Eq. (5.54) becomes

(5.58)

In’equimolar counter diffusion involving two components, concentration
(or partial pressure) varies linearly with distance, as the preceding equations
indicate. Figure 5.8 shows the profile of partial pressure versus distance for the
equimolar case. Example 5.9 demonstrates once again how to apply the
preceding equations. Equimolar counter diffusion is a commonly occurring
mass transfer process in gases. As an example, it can often be assumed that
equimolar counter diffusion occurs in distillation operations. Although there is
no net transfer of number of moles [cf. Eq. (2.23)]  in equimolar counter

Pe.2
PA.2 FIGURE 5.8

Pressure-distance profile in equimolar counter
22 diffusion.
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diffusion, there will be a net transfer of mass if the molecular weight of A
differs from the molecular weight of B.

DSusion  through a stagnant Wm. It is possible for orie component to diffuse
through other molecules that are not diffusing. If component B is nondiffusing
and the six assumptions listed before Eq. (5.45) apply, then NB is zero by
definition:

NB=O (5.59)
The equation above constitutes the definition of diffusion through a stagnant
film. Note that a truly stagnant film does not really exist, owing to small
pressure and temperature gradients, etc.

Equation (5.52) for the transfer of species A by all mechanisms can be
simplified with the assistance of Eq. (5.59):

(NAIA), = -cT~(ayA/az)  + YA(NA,A)z (5.60)
This equation rearranges to

@‘,.,/A), = z 2
A

(5.61)

Equation (5.61) is similar to Fick’s law for equimolar counter diffusion
[Eq. (5.53)],  but with the additional factor l/(l - yA),  which must always be
greater than one for any finite )‘A. Thus, there is an enhancement of the
transfer of component A because of the bulk flow that is caused by the motion
of A and,  B. This induced velocity in the direction of diffusion carries with it
component A, which then adds to that transferred by the diffusion process.

A simple example of diffusion through a stagnant film occurs when a
mixture of CO* and N2 is passed across the surface of a sodium hydroxide
solution. Carbon dioxide is very soluble in aqueous sodium hydroxide and is
absorbed, whereas the nitrogen is not absorbed appreciably. Thus, CO2
diffuses from the bulk stream through a thin, almost stagnant layer to the
liquid surface, and N2 does not diffuse. The N2 is the stagnant component.

Equation (5.61) -rated  for constant area and diffusion
coefficient by separation ofvariables.  The boundary conditions are the same as
used in obtaining Eq. (5.54). For diffusion of species A through a stagnant
film, the result is

(5.62)

where y,,,  and yA\z  are the mole fractions at locations x1 and x2, respectively.
Equation (5.62) can also be expressed in terms of partial pressure:

(NAIA),  = Op lnP-PA,Z= DP
RT(z2  - zl) P -PA,1 RT(z2 - zl)

(5.63)

where p is the total pressure. The partial pressure-distance profile is nonlinear
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Pa.1 PA.2 FIGURE 5.9
Pressure-distance  protile  in diffusion through

4 Z2 a stagnant film of species B.

for the (ZVn  =0) case, as shown in Fig. 5.9. Note that in Fig. 5.9 the
nonlinearity is exaggerated, compared to typical curves encountered in
practical problems; in fact, in practical problems a straight line is often a
reasonable approximation. It must be emphasized that there is a net bulk flow
of moles (and mass) from the region of high concentration of A to the region
of low concentration. This transfer is induced by the diffusion of component A.
Diffusion though a stagnant film is important in many industrial operations,
including gas absorption, leaching, and extraction.

Mass diffusion through a stagnant film may be compared to the example
of the moving sidewalk. The velocity of the moving sidewalk is the convection
velocity. A person (species B) walking in the opposite direction at the same
speed is stationary with respect to fixed coordinates (i.e., Nn  is zero). A second
person (species A) walking in the same direction as the moving sidewalk
moves at higher velocity than the sidewalk. The net transfer of A (i.e., NA)  is
enhanced.

Example 5.11. A tube 1 cm in inside diameter that is 20 cm long is filled with CO,
and H2  at 2 atm total pressure at 0°C. The diffusion coefficient of the C02-H2
system under these conditions is 0.275 cm2 s-r.  If the partial pressure of CO, is
1.5 atm at one end and 0.5 atm at the other end, find the rate of diffusion for (a)
steady-state  equimolar counter diffusion and (b)  steady-state  diffusion of  CO,
through stagnant HZ.

Answer. For the equimolar case (NJA  = -N,/A),  Fick’s  law in the form of Eq.
(5.53) applies. The most convenient equations for gaseous systems involve partial
pressure terms:

The conditions of the problem are:

T = 0°C = 273.15 K

B A,2  = 1.5 atm Es,,,  = 0.5 atm
2,=20cm r,=Ocm

p=2atm

From Table C.l:

A = nd2/4  = (n)( 1)*/4  = 0.7854 cm*

R  = 0.082 057 atm m3  kmol-’  K-r

(5.58)

(9

(ii)
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For  part (a), substitution of these values into Eq. (5.58) yields

-(0.275)(1.5  - 0.5)(0.7854)
(NA)’  = (0.082 0157)(16)~(273.15)(20)

(cm” s-‘)(atm)(cm’)
(atm m3  kmol-’ &‘)(cm  m-‘)3(K)(cm)

= -4.82 x lo-”  kmol s-’ (iii)

Note that the negative sign indicates diffusion from point 2 to point 1.
Next, part (b) will be solved. For difision through a stagnant film, Eq.

(5.63) applies: .P

(NAIA),  = Op lnP -ijA,- DP
RT(z2 - 21) p -DA,, RT(zZ  - I,)

(5 .63)

This equation is solved for NA,  and the answer is

(0.275)(2)(0.7854)
(NA)z  = - (0.082 057)(1@)3(273.  15)(20) )ln(gg)

x
(cm’  s-‘)(atm)(cm’)

(atm m’ kmol-’ K-‘)(cm m-‘)3(K)(cm) >

= -9.637 X lo-”  ln(0.5/1.5) = -1.06 x 10e9 kmol s-l 69

The induced velocity increases the net transport of A by the ratio of 10.6 x lo-”
to 4.82 x lo-”  or 2.2 times. This increase is equivalent to 120 percent.

Counter dihsion  with non-zero fluxes. The most important diffusion prob-
lems are the equimolar and stagnant film cases; however, other situations
occur for which the number of moles transferred in one direction are different
from in the other and neither is zero. For the same general restrictions, Eq.
(5.52) still applies, but the physical situation is different. For example, consider
Fig. 5.10 in which .a  chemical reaction at the surface of a catalyst occurs. The
catalyst accelerates the rate of reaction of A to B while remainiw  unchanged
in any way. The reaction on the surface of the catalyst is

A+2B (-9

Reacting surface
of catalyst particle

c

FIGURE 5.10
Reaction on surface is A -) 2B Diffusion  and chemical reaction.
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In Fig. 5.10, molecules of A diffuse to the surface, but for each molecule A
reaching the surface two molecules of B form and diffuse away from the
surface. The diffusion rate of B is twice that of A, but in the negative
direction. There are two moles of B leaving this surface for every mole of A
arriving. Consequently, the following holds:

NB  = -2N, (5.6)
Equation (5.65) is substituted into the general steady-state, mass transfer
equation, Eq. (5.52). The rate of transfer of A to the surface is

WA/A), = -Go  2 + YAWA/&  - W.JA),] (5.66)

This equation, when solved for (NJA),,  becomes

GD  @A(NJA),  = - -1+y*  a2

Equation (5.67) can be integrated between points 1 and 2:

(N,/A),  = - -cd’ ln  1+ YA,2-
=2  -  =1 1 + YA.1

(5.67)

(5.6@

Equation (5.68) implies the existence of a hypothetical “film” of thickness
(z2  - zl),  through which diffusion occurs. This film does not exist in reality, but
experience shows that modeling of real mass transfer processes is often
successful with a similar approach. More details are given in Section  6.3.

Equations (5.67) and (5.68) can be compared with the stagnant difIirsion
case given by Eqs. (5.61) and (5.62). For the present case, the diffusion of
component A is reduced because of the net induced flux counter to the
diffusion of component A. The result will be valid only if the generation of B
at the catalyst surface occurs so rapidly that two molecules of B leave the
surface at essentially the same time A arrives. Under such conditions, the rate
of reaction is said to be diffusion-controlled, and consideration of diffusion
rates will be paramount in designing the reactor. The opposite case often
occurs, namely, that the rate of reaction is slow compared to the rate of
diffusion. Solution of such problems is beyond the scope of transport
phenomena.

Example 5.12.  Repeat Example 5.11, this time assuming that Nr,  is 0.75N,  in
magnitude.

Answer. The basic equation for counter diffusion with non-zero fluxes is Eq.
(5.52):

(NAIAL =  -GD 2  + YA[(NAIA),  + (WA),] (5.52)

For the sake of generality, let ND  be expressed in terms of NA  as follows:

NB  = -kN,, (9
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where k = 1 for equimolar counter d%usion,  0 for diffusion through a stagnant
film, 2 for the example in Fig. 5.10, and 0.75 for this example. Upon substitution
of Eq.  (i) in Eq. (5.52), the answer is

(ii)

where the partial derivatives are replaced by total derivatives because the molar
fhtx  is in the z direction only.

Equation (ii) can be expressed in terms of the partial pressure, using the
definitions in Eqs. (5.50) and (5.57):

(DIRT) dP,
(NJA)z  dz = - 1 _ (p,/p)(l  _ k)

For the conditions of the problem as given:

T=273.15K

pAJ  = 1.5 atm pA,i = 0.5 atm
&=2Ocm z,=Ocm

p=2atm
A = nd2/4 = (z)(l)‘/4  = 0.7854 cm’

R = 0.082057 atm m3 kmol-’ K-’ ,

Integration of Eq. (iii) with the above ,boundary  conditions results in

@‘,/A),  = - D 1  - (PA.Jp)(l-  k)
RTtzz - 11) In I - (p,,~~)(l_  k)

(iii)

(iv)

69

Note that Eq. (v) is inwrrect if k equals unity [see Eq.  (5.54)].  If k is zero
(difIusion  through a stagnant film), then Eq.  (v) reduces to Eq.  (5.63). In this
example, k equals 0.75, and the flux is

(0.275)(2)(0.7854)
(NA’A)z  = (0.082057)(ld)3(273.15)(20)1n

1.0 - (1.5/2.0)(1-  0.75)
1.0 - (0.5/2.0)(1-  0.75) >

= 9.636 x lo-loIn  0.8667 = -1.38 x lo-”  km01 s-’ tv3

Note that this answer is larger than the rate for equimolar counter diffusion  but
smaller than the rate for diffusion through a stagur+nt  film. Sometimes the rate for
diffusion through a stagnant Elm can be wnsidered as an “upper bound”, if k ties
between zero and one.

5.3.4 Binary Mass Diffusion in Liquids

Mass diffusion in liquids is important to many industrial separation processes
such as distillation  and extraction. Often, the largest resistance to overall mass
transfer is in the liquid phase. In Chapter 2, it was pointed out that the
diffusion coefficients in liquid systems are very low when compared to gas
systems. For example, the diffusion coefficient for air diffusing in Iiquid  water
at 293.15 K has been reported as 2.5 x low9 m’s-l,  whereas the diffusion
coefficient for the gas-phase air+ water system at 313.15 K and 1 atm is



180 BASIC CONCEPTS IN TRANSPORT PHENOMENA

2.88 X  10e5  mz s-i  [S2]. Hence, the low rates of diffusion in the liquid phase
make small effects, such as the volume change upon mixing, very important;
the presence of a concentration gradient causes mass diffusion,  but that rate
may be equally dependent upon other factors.

Equations (5.39) and (5.40) are valid for liquid systems as written;
however, in order to integrate Eq. (5.39) exactly, both D and Cr  must be
constant, and neither are. The total concentration varies in general because of
the volume change just cited. This effect is often highly significant in view of
the low rates of diffusion common in liquid systems.

’
It is possible to relate the diffusion coefficient in Eqs. (5.39) and (5.40) to

the coefficient that can be experimentally measured with respect to a cell-fixed
reference frame. Tyrrell and Harris [T3]  show that the difference between the
two coefficients depends on the absolute value of CA,  the concentration
gradient X,/&,  and the quantity a&/&.  Hence, for dilute solutions
(C,-+O), or for small concentration gradients, or for partial molar volume
independent of concentration, the difference between diffusion  coefficients is
negligible. Otherwise, some complex corrections are required.

Diffusion through a stagnant film. Equation (5.39) can be integrated ap-
proximately by assuming some average value of D and C,. Generally, the total
concentration is calculated by the linear average between locations 1 and 2:

(5.69)

where M is molecular weight. Since NB equals zero, the integration yields an
equation similar to that obtained for gases [cf. Eq. (5.62)]:

(N,JA),=~ln~=~ ln xg,2
A.1 2 1

C, )
B.1

(5.70)

Un-equimolar  counter diffusion. In the case of diffusion in gases, it was
possible to obtain useful solutions for both equimolar and unequimolar counter
diffusion. The equimolar counter diffusion  case almost never occurs in liquid
diffusion because of the concentration dependence of D and c. The
unequimolar case occurs, but any type of a solution similar to Eq. (5.68) or
Eq. (v) in Example 5.12 is of doubtful value, since the product C,D  varies.

5.3.5  Diffusion in Solids

This section provides a brief overview of diffusion in solids. A more complete
treatment can be found elsewhere [Bl, Gl]. The most important chemical
engineering problems where species diffuse in solids are those of unsteady-
state (covered in Chapter 13).

Diffusion coefficients in solids are much less than those in gases and range
from slightly less than those in liquids to very small, as indicated in Section
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2.5.2. Diffusion in solids often occurs in conjunction with adsorption and
chemisorption phenomena. Metallurgists have been interested in solid
diffusion because of its importance in such problems as degassing of metals and
graphite, carburization, nitriding and phosphorizing of steel, and desulfuriza-
tion of steel [Bl].  An example of diffusion  coupled with adsorption is the
sulfur-iron system. It has been suggested that sulfur diffuses  in iron by an
alternate dissociation and formation of sulfides, rather than by interpenetration
or by place change.

There have been many studies of the interdifision  of metals. For
instance, it was known before 1900 that at 300°C gold diffuses more rapidly
through lead than does sodium chloride through water at 18°C [R2].
Radioactive tracers are convenient in following interdiffusion in metals.
Diffusion in polymers is another active research area [Cl]. The presence of
vapors or gases sometimes alters the internal structure and external dimensions
of a polymer solid. Diffusion in polymers is of interest in the drying and dyeing
of textiles, in the air or water permeability of paint films and packaging
materials, and in the migration of plasticizers.

Diffusion in solids may be divided into two classes: structure-insensitive
and structure-sensitive diffusion [T2]. Structure-insensitive diffusion refers to
the case in which the solute is dissolved so as to form a homogeneous solution.

\ An example is the interdiffusion of metals, where the solute is part of the solid
structure. The copper-zinc system behaves in this manner, as does the
lead-gold system. In contrast, structure-sensitive diffusion  occurs in the case of
liquids and gases flowing through the interstices and capillary passages in a
solid; an example is the diffusive flow of fluids through sintered metal, such as
that used in catalysts.

For structure-insensitive diffusion, the recommended equation for
diffusion in solids is Fick’s law in a fixed volume, which in the z direction is

\Ghere  the bulk flow term included in Eq. (5.41) and similar equations is always
neglected, even if bulk flow is present [Gl]. In essence, any contribution to
mass transport due to bulk flow is considered to be part of the diffusion
coefficient. Integration of this equation between locations 1 and 2 is trivial (cf.
Example 2.6). If diffusion occurs through a cylinder wall, then Fick’s law is
converted to transport in the r direction:

N
s2=-D

=A

dr
(5.71)

where the area A is (2nrL) and L is the length of the diffusion area. This
equation is integrated with the result

NA = $$$  (CA.1 -  cA,d (5.72)
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5.3.6 Diffusion Due to a Pressure Gradient

Structure-sensitive diffusion may occur in porous media, such as beds of
granular solids, oil-bearing rock formations, and sintered metals. Diffusion
occurs because of a pressure gradient, in contrast to Eq. (5.32). Thus, viscous
flow may be present as a result of the pressure gradient, in addition to the
diffusive flow. The relative importance of these separate mechanisms depends ,
on the physical structure of the solid and the nature of the solute.

In porous media, transport of species A can be by molecular diffusion,
induced flow, and/or by forced flow; it is not possible to separate the
individual contributions and treat flow through porous media in the fundamen-
tal manner presented in this chapter. Normally, a lumped or combined
empirical approach is required, as will be considered in Chapter 12. Here, a
few brief comments are provided to put the subject in proper perspective.

Often, the resistance of porous media to the passage of fluids is given in
terms of a permeability constant P’, which is defined by

P~=-$ (5.73)

where Q is the volume of fluid at standard conditions diffusing per unit time
through the cross sectional area S under the pressure gradient (-u’pldz).
Equation (5.73) is also a form of the well-known Darcy’s law for viscous flow
through porous media [Pl].  Whether viscous flow or diffusive flow is present,
the permeability constant must be determined experimentally.

For the case of gas flowing through porous media, there are strong
differences between diffusive flow and viscous flow that allow the mechanism
of a particular experiment to be determined. The easiest is to measure the
variation in P’ with temperature. The variables in the laminar flow equations
[cf. Eq. (4.76),  the Hagen-Poiseuille  law] are weak functions of temperature;
thus, viscous flow shows only a slight temperature effect, while the diffusion
coefficient is a strong function of temperature.

In fundamental studies of catalysis, diffusion  in porous solids is very
important; four types of diffusion will be discussed next: ordinary (molecular)
diffusion, Knudsen diffusion, transition diffusion, and surface diffusion. Sur-
face diffusion occurs when molecules are adsorbed on a solid surface and
subsequently transported by diffusion from the region of high concentration to
the region of low concentration. Ordinary diffusion is governed by Fick’s law
and the equations and principles presented earlier; it occurs when the
mean-free-path of the molecules of the gas is small in comparison to the
diameter of the pores. The mean-free-path is the average distance a molecule
travels before it collides with a surface or with another molecule. From the
kinetic theory of gases, the mean-free path-is

(5.74)
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where AA  is the mean-free-path (m), p,.,  is viscosity (kg m-l s-l), p is total
pressure (Pa), R is the gas constant (cf. Table C.l), T is in K, and MA  is the
molecular weight of A.

Knudsen diffusion.  The Knudsen flow regime [K2]  occurs when the Knudsen
number, N,, is of the order of 100 or greater [Gl]. The Knudsen number is

where d,  is the diameter of the tube or pore in a porous solid. The equation
for Knudsen flow in a long capillary tube is [L2]

(5.76)

where wA  is the mass flow rate (kg s-‘)  and the term (ApA)  is the difference in
the partial pressure of A in the length L. The assumptions for Eq. (5.76) are
reviewed elsewhere [Bl, Kl, Ll]. In the region (10 5  Nk,,  I lOO),  the error
using Eq. (5.76) can be as great as 10 percent [Gl]. Of course, Knudsen
diffusion can occur in tubing if the pressure is very low. It is possible to have
Knudsen diffusion with a single component if a means ‘exists to create and
maintain a difference in partial pressure. It is also possible to have Knudsen
diffusion at constant total pressure, if a partial pressure difference exists.

In Knudsen diffusion, the mean-free-path of the molecule is of the order
of the system size; the gas molecules collide with the walls, rather than with
each other. Because the boundary is interacting with individual molecules, a
colliding molecule may bounce off in any direction (i.e., at a random angle). In
Knudsen diffusion, there are not enough molecules present for the tempera-
ture to be meaningful (although the solid has temperature), nor are there
enough molecules to have any interactions between molecules, such as would
be necessary to have viscous effects. In laminar flow of a gas (governed by the
Hagen-Poiseuille law), the presence of the large number of molecules, all
colliding with one another as well as colliding with the walls, results in viscous
effects that completely negate Knudsen diffusion.

It is interesting to compare the Knudsen flow equation, Eq. (5.76),  with
the Hagen-Poiseuille equation, Eq. (4.76),  which for the laminar flow of an
ideal gas can be written as

NKn  5  lo-* (5.77)

The mass flow rate in laminar flow depends on d:,  whereas in Knudsen flow
the dependence is dz. Also, Knudsen diffusion is independent of the total
pressure and viscosity, in contrast to Eq. (5.77).

A Knudsen diffusion coefficient DKA  can be defined by the following
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equation.:

WAIA), = -&A%=  -g %=+$iyA,,  -YA,2) (5.78)

where the Knudsen diffusion coefficient is

(5.79)

Equations (5.78) and (5.79) predict that if two species are diffusing in Knudsen
flow the flux ratios will be inversely proportional to the square root of the
molecular weight. This result is the same as predicted by the well-known
Graham’s law of diffusion [G2],  first proposed in 1831 [Ml]:

N~INr,=(MdM.#* (5.80)

This equation applies to equal-pressure counter diffusion,3  which is not usually
of engineering interest; it can be shown that Eq. (5.80) also applies to Knudsen
diffusion, as well as to transition diffusion  and effusion of gases into a vacuum,
although the mechanisms and governing equations of each of these are entirely
different [Dl,  Ml]. As a point of interest, equimolar counter diffusion of real
gases does not take place at constant pressure. If the experiment begins at
constant pressure, the presence of equimolar counter diffusion causes a small
but measurable pressure gradient [Ml]. Graham’s law does not hold for
equimolar counter diffusion. Diffusion through a stagnant film also does not
take place at constant  pressure.

Transition. As might be expected, in the transition region between Knudsen
diffusion and Poiseuille flow, flow occurs by both mechanisms. Rothfeld [R3]
showed that the transition region covers a lOOO-fold  range of Knudsen
numbers. Geankoplis presents equations for the transition region [Gl]:

(5.81)

D P 1  - BYAZ + DIGA

(NA’A)z  = /3RTL  In 1 - )6YA,J  + DID-
lo-*  5  NKn I 10 (5.82)

In the region lo-*  I NKn 5  lo-‘,  the error using Eq. (5.82) is no greater than
10 percent [Gl]. Note that these equations are not particularly useful, because
the ratio of fluxes (related to /3) must be known before Eq. (5.82) can be
solved for the flux of A.-

Example 5.13. A s&less-steel tubing is 1.6 X lo-’  m in inside diameter and 4 m
long. One end is evacuated. Calculate the pressure in the other end in order for

3 See Mason and Kronstadt  [Ml] for details.
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the Knudsen number to be 10. The gas inside is of molecular weight 92, viscosity
6.5 x 10m4  kg m-’ s-i, and temperature 300 K.

Answer. Since the Knudsen number is given, Eq. (5.75) is solved for the
mean-tree-path:

A, = NK,do  = (10)(1.6  x 10e3)  = 1.6 x lo-‘rn 6)

Equation (5.74) is used to calculate the pressure from the mean-free-path:

(5.74)

p=(32)(~~~~~~~~)(8~~~~~~~))‘“(kgm~s~i)((kgm*s~~~~~~1)(K))1n

(ii)

= 85.39 kg m-’ s-’ = 85.39 Pa = l~ol~~~lti(~)=8.43x10~4atm

(iii)

where R is 8314 kPa  m’ kmol-’  K-’ (or kg m’s?  kmol-’  K-‘) in SI units (cf.
Table C.l). The  value of 10 for the Knudsen number is on the border between
Knudsen diffusion and transition flow.

Molecular effusion. Effusion is the passage of free molecules through a small
aperture in a thin plate into a vacuum. The mean-free-path of the gas in the
pressurized compartment is small compared with the size of the compartment;
in other words, gas-gas collisions are favored. However, the mean-free-path of
the gas is large compared with the diameter of the hole in the plate; the
thickness of the plate is small compared with the diameter of the hole. Effusive
flow differs from Knudsen flow in that the length of the capillary is very short.
The equation governing effusive flow is [Ll]

5.83)c“\
According to the kinetic theory and Eq. (5.83),  molecules in effusive flow ’

must pass through the hole at the same flow rate as their flow across a cross
sectional area of equal size located anywhere else in the flow. Further, since
the plate is very thin, there exists a very small chance bf  a molecular collision
inside the hole.

Another experiment in effusion consists of two compartments of unequal
pressure. In this case, molecules will pass through the hole in either direction.
However, the net transfer will be from the high-pressure side to the
low-pressure side. By analogy with Knudsen diffusioir,  there are three regions
of flow through an aperture in a plate: effusive flow, orifice flow (see Section
10.4.1),  and a transition region where both types are important. There also
exists a transition from the case of an infinitely long capillary (Knudsen flow)
to the case of the very thin plate (effusive flow); this has not been investigated
extensively.



186 BASIC CONCEFlS  IN  TRANSPORT PHENOMENA

Both effusive flow and Knudsen flow might be used for separation of
gaseous species of differing molecular weights, were it not for the fact that the
low pressures and small diameters required for the proper range of Knudsen
number would result in impractically low flow rates. However, of more interest
is that in many industrial catalysts the diffusion mechanism is governed by both
Knudsen and molecular (Fickian) diffusion (i.e., the transition region
[R3,  Wl]). Also related are flows through porous plates, refractories, and
sandstone [Bl].  Finally, note that the equations of change, such as Eqs. (5.6)
through (5.12) and those in Tables 5.4 and 5.5, do not apply to rarefied gases.
These aforementioned equations assume a continuum, which is not justified
when considering molecular collisions and the mean-free-path.

5.3.7 Diffusion  with Three or More
Components

Equations for diffusion in multicomponent (three or more) systems may be
generalized from the treatment presented earlier, and are available elsewhere
[I-Q T3]. Solutions have been worked out for several cases of steady-state
molecular diffusion in multicomponent systems. Unfortunately, there have
been relatively few measurements of multicomponent diffusion coefficients.
Also, there appears to be no reliable method of predicting these coefficients.
In general, the diffusion coefficients in multicomponent systems are strongly
concentration-dependent. As a result, specific solutions to steady-state mole-
cular diffusion problems with three or more components are not likely to be of
practical value to engineers. Multicomponent diffusion can sometimes be
treated by considering two or more components as a single system, e.g., an
air-water system. In this instance, an “effective” diffusion coefficient is used
with success.

In spite of the intractability of multicomponent diffusion in general, there
are many industrial examples of multicomponent mass transfer. Toor [Tl]
pointed out three phenomena occurring in multicomponent diffusion in gas
mixtures that are of practical significance. The first is that the rate of diffusion
of a species may be zero even though the concentration gradient of that species
is not zero. This is called a diffusion barrier. Secondly, there may be osmotic
diffusion, in which the rate of diffusion of a species is not zero even though its
concentration gradienris  zero. Lastly, there may be reverse diffusion, in which
a component diffuses against the gradient of its concentration. Under the right
set of circumstances, such phenomena might be observable in industrial
equipment.

5.4 LESS COMMON TYkES  OF MASS
AND THERMAL TRANSPORT

For heat transfer and mass transfer, the most important driving forces for
transport are temperature gradient and concentration gradient, respectively.
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However, other mechanisms exist and will be discussed briefly here. From a
rigorous standpoint, a general presentation of the conservation equation must
include terms representing these effects. The tables presented earlier in this
chapter have not included these effects, which are usually negligible.

5.4.1 Heat Transport

For heat transport the energy flux vector may, in general, be composed of five
contributions:

q/A = qcv/A  + q”‘/A  + qcd’/A + qcp’/A + q”‘/A (534)

In Eq. (5.84)  the first contribution is that expressed by Fourier’s law: ordinary
heat conduction due to a temperature gradient (see Table 4.1):

qtT’/A = -LY[V(pcpT)] = -k(VT) (5.85)

The second contribution is the convective contribution, which is the heat
being convected by the mass average velocity. By analogy with Eq. (3.21),  this
term is

q”‘/A  = (PC,  T)(U)

dominate.
(5-st~In most practical heat transfer problems the conduction and convection terms

./
The third contribution is the energy flux due to the fact that all species

diffusing with respect to the mass average velocity carry with them a certain
amount of intrinsic energy, the sum of which may or may not be zero with
respect to (I [B3].

The fourth contribution is the energy flux associated with a superimposed
concentration gradient. This effect is also known as the “diffusion-thermo
effect” or the “DuFour effect”. The energy flux associated with the DuFour
effect is quite small, and no general expression has ever been developed [B3].

The last contribution is the radiation flux. The general equation for
radiation is the Stefan-Boltzmann equation [cf. Eq. (ll.l)], which is discussed
in detail in heat transfer texts [M2].  Radiation is important at the elevated
temperatures encountered in equipment such as furnaces.

5.42 Mass Tmnsport

For mass transport the mass flux vector may in general be composed of five
contributions. One contribution is mass transport by convection, Eq. (3.21),
which is eliminated if coordinates relative to the mass average velocity are
considered. Then

j,lA =&)/A  + j$‘)lA’+  jp/A -!-j$?fA (5.87)

In Eq. (5S7)  the first contribution is that expressed by Fick’s law: ordinary
mass diffusion due to a concentration gradient.
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The second contribution to the mass flux is mass transport due to
pressure diffusion. Under ordinary conditions, pressure diffusion through some
sort of barrier such as a plastic tube wall, a rubber tube wall, or a clay pipe
wall results in separation. The separation efficiency of such a process depends
on relative molecular weights. For example, pressure diffusion is the mechan-
ism used for separation of the isotope 235U from 238U.  This process is called the
gaseous diffusion process. Uranium is converted to the volatile hexafluoride.
Pressure diffusion has also been used for laboratory-scale separations. Natur-
ally, pressure diffusion is limited in practice to gases.

The third contribution to the mass flux is mass transport due to external
forces. For example, ions in solution may diffuse as a result of the presence of
an electrical field. Recently, many countries have sponsored research projects
in which the isotopes of uranium hexafluoride are separated by gas centrifuges,
in which the heavier gas 238UF6  is preferentially separated from 235UF6  at high
speeds of rotation.

The last contribution to the mass flux vector is the mass transport by
thermal diffusion. Thermal diffusion, sometimes identified with the name
Soret, is a reciprocal process when compared to the DuFour effect. A
concentration gradient causes a small heat flux; a temperature gradient causes
a mass flux. Mass flux by thermal diffusion is usually a very small contribution
if fluxes by other mechanisms are present. Thermal diffusion is a practical,
although expensive, way of separating isotopes [B3]. The Clusius-Dickel
column produces very high temperature gradients and may be used in stages to
effect separations.

The four contributions to the mass flux vector in Eq. (5.87) can all be
important in effecting separations of various types. Separations employing
pressure diffusion, external forces, and thermal diffusion are used only when
other iless  expensive separation methods fail.

5.5 SUMMARY

Chapter 5  is the last of the introductory chapters covering the theory and the
applications of the transport of heat, mass, and momentum with either laminar
flow or zero flow. This chapter accomplishes three main goals. First, it covers
in detail the application of the equations in Chapters 2, 3, and 4 to
three-dimensional problems, especially where curvilinear coordinates (cylin-
d,rical  and spherical) are required. Secondly, it introduces in detail the
nomenclature, equations, and assumptions that are required in the study of
mass diffusion. Lastly, it covers some specialized and not too commonly
encountered phenomena. One example is mass transfer, in which a net
convective flux is induced by mass transfer in the absence of a pressure
gradient. Other specialized phenomena include Knudsen diffusion, effusion,
multicomponent mass diffusion, the DuFour effect in heat transfer and the flux
contributions due to pressure diffusion, thermal diffusion (Soret effect), and
centrifugal forces.
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Chapter 5 begins with a review of convection. Convection is defined as
the bulk flow of a fluid due to external influences, such as a pressure difference
or a force field such as gravity. In order to convert equations from Chapters 2
to 4 into curvilinear coordinates, it is necessary to have the common vector
expansions, such as V2 I#,  in all three coordinate systems. The reader must
cover in detail and master the material on the three-dimensional balance
equations in the three coordinate systems. The balance equations in their most
general forms are used as the starting point for solution of common problems.
These equations are simplified by omitting the terms that are zero or
negligible. This chapter emphasizes the formulation of the appropriate
equations and the identification of the terms that are zero or negligible.

If the density and viscosity of a fluid may be assumed constant, then these
simplifications to the momentum balance result in the well-known Navier-
Stokes equation, Eq. (5.15). In rectangular (Cartesian) coordinates, there is an
equation for each coordinate, as given in Table 5.7. The equations in
curvilinear coordinates, also given in Table 5.7, are even more complex. The
terms for the centripetal and Coriolis forces arise in the balance equations in
curvilinear coordinates as a result of the mathematics of transforming
rectangular coordinates into curvilinear ones. The Navier-Stokes equations
are complex, even after the simplifications of constant density and viscosity.
However, four example problems are included to illustrate the many practical
problems that the Navier-Stokes equations can be used to solve.

The boundary layer concept is also introduced in this chapter by applying
the Navier-Stokes equations to the flow past a flat plate. The Navier-Stokes
equations are simplified for this example. A full discussion of the boundary
layer is delayed until Chapter 12.

Section 5.3 deals with mass diffusion and the complexity in this subject
caused by convection. Mass transfer is unique in that mass transfer itself can
contribute a convective flux. Section 5.4 discusses less common types of heat
and mass transport.

PROBLEMS

5.1. Discuss the meaning of each term of Eqs. (3.59) (3.60),  (3.74),  and (3.77). These
equations are given at the beginning of this chapter.

5.2. Discuss the term (LI . V)U. Consider its source, meaning, etc. What happens to
this term if the view is changed to that of an element moving with the stream?

5.3. The equations used with this chapter very rapidly become too complex to solve.
What suggestion could you make for some kind of solution to these more
complex problems? For example, consider the flow over a sphere in which the
important equations are given as Eqs.  (D),  (E) and (F) in Table 5.7.

5.4. Three derivatives have been considered in this chapter (d, 3, D).  Discuss these in
terms of their physical meaning.

5.5. The total and partial derivatives of temperature with respect to time are zero at
steady-state. Is the substantial derivative always zero at steady-state?

--L
11
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5.6. Set up the ditferential  equations for Ruid flow along a porous flat plate with a
suction velocity of CJO  and a uniform flow U,, which is the free  stream velocity.
Assume steady-state.

5.7. The  normalstresses are r,, rW, and rZZ.  Show that the sum of these must be zero
using a generalized form of Eq. (5.3):

fori=x,y,orrandx;=x,y,orr.
5.8. The plate-and-cone viscometer, shown in Fig. 5.11, is used to measure the

viscosity of non-Newtonian fluids. Assume this viscometer is to be used  for a
Newtonian fluid. The plate (on the bottom) rotates an angular velocity of o
(direction Cp).  The angle (direction 0) between the plate and the cone (which is
stationary) is uniform as shown in the figure. The flow is maintained laminar by
keeping the angular velocity small. Find the equations to describe this experi-
ment, indicating which terms are zero and why. Also, give the boundary

~conditions  necessary to solve the system of equations, but do not solve.
5.9. Fluid flows at steady-state between two inclined plates, as shown in Fig. 5.12. The

plates are kept at constant temperature T,, which is greater than T,, the
temperature of the entering fluid. Set up the differential equations that describe
the temperature distribution, as well as the boundary conditions.

5.10.  Set up the differential equation for equimolar counter d&&on (mass transfer)
between parallel plates with a forced  flow  in the x direction.

5.11. Obtain the equation for the case of the steady-state ditfitsion  in a slab that is
completely uniform in the I direction if the rate of reaction is first-order.

Opt ional  rod  for
force measurement

i

FL  _
surface

Fixsd  c o n e

Rotat ing plate

I I

N o n - N e w t o n i a n
- fluid

FIGURE 5.11
Plate-andizone  viscometer.
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FIGURE 5.12
Heat transfer during flow between converging plates.

5.12. A fluid is flowing down a cylindrical tube whose walls are soluble in the fluid.
Obtain the equation for the variation of concentration of the wall material with
distance. Assume steady-state conditions and no chemical reaction. ‘I&e velocity
profile is flat (plug flow) and equal to a constant U over the entire length and
radius of the tube. It is not necessary to solve the resulting equation, but rather
indicate simplifying assumptions that might be made in order to obtain an
ordinary dilTerentia1  equation.

5.W. Discuss and compare equimolar counter diffusion  and diffusion through a
stationary gas.

5.14. A-drop is suspended in an atmosphere of air. The drop’s radius is r,. What is the
integrated equation for the mass transfer of the fluid from the spherical shape?

5.15. Find the equation for the flux of A that diffuses  in an equimolar diffusion system
from the surface of a sphere q through a distance of Ar.

5.16. Find the equation for the flux of A that ditises  from the surface of a circular tube
of radius r, and length L for a distance. AK
(a) if the diffusion  is equimolar.
(b) if the diffusion  is through a stagnant film.

5.17. Water is at the bottom of a can 4 inches in diameter and 1 ft high. The ambient
temperature is 77°F and the pressure is 1 atm. There is a slight wind across the
top of the can, which maintains a water concentration of zero. The wind is not
strong enough to disturb the air in the can. Calculate the rate of loss of water
from the can in lb,,, s-’ at steady-state when the water is 2 in. deep.

5.18. A spherical drop of compound B is surrounded by fluid A. Component B is
nondiffusing, but does react with fluid A to form product P according to the
reactions below. Find the integrated equation for the molar flow of P for each
case:
(a)  A+B=P;
(b) A+B=2P;
(c) 2A + B = 3P;

5.19. Prove DAB equals DBA for an ideal gas. Is this true for a diffusion in a binary
liquid system? Why, or why not?

5.2@.  For an ideal gas, prove that the molar volume equals the partial molar volume of
each component present.

5.21. Beginning with Eq. (5.46), derive Eq. (5.47).
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5.22. Derive the following general equation for mass transfer by difFusion  and
convection. Assume constant area.

DP

NJA = WA RT
-hl

N,tA + NJ-4 .G - 21 (9

5.23. A circular tank 3m in diameter contains liquid toluene (C,H8)  at 31.8”C,  for
which the vapor pressure is 0.0526atm. When this tank is open to the
atmosphere, diffusion may be assumed to be occurring through a film 0.001 m
thick. Assume the concentration of toluene on the ambient side equals zero. The
diffnsion  coefficient of toluene in air at 30°C is 0.88  x 10e5 mZ  s-r. Find the loss of
toluene in kilograms per day.

5.24. It is desired to extract methanol from a methanol-water solution. Assume that
the water is insoluble in the extracting solution, that all mass transfer takes place
by diffusion of methanol through a thin film of thickness 0.005 m and that the
concentration of methanol on the water side is 15 percent by weight and on the
other side 6 percent; assume the ditfusion  coetlicient is 16 x lo-”  m*  s-‘. Find the
steady-state flux with respect to fixed axes if the pure component densities are
990  kg me3  for water and 800 kg mm3 for methanol. Assume that the volume
change upon mixing is zero.

5.25. A mixture of air (A) and carbon dioxide (B) at 0°C  is diffusmg  through a capillary
of diameter 10m6m  and 2 m long. Assume that it is possible to have the inlet
concentration of carbon dioxide at 50 mole percent and the outlet at 0 mole
percent. The molecular diffusion coefficient is 1.4 x 10-‘m2s-  at 1 atm. The
viscosity of CO, at 0°C is 0.013 cP;  assume for air that the value at 1 atm from
Table A.2 in the Appendix applies.
(a) Calculate all six ratios of molecular diffusion coefficient to Knudsen diffusion

coefficient at total pressures of 0.030, 3.0, and 300 atm.
(b) At total pressures of 0.030, 3.0, and 300 atm, find the mass flow rate of CO,

in kgs-‘. HINT: for the transition region, you may assume Graham’s law in
order to find  f3;  for the Fickian region, the total pressure is constant.

5.26. Consider the volume in Fig. 5.7 for the following system: convected velocity of
the volume (1 m on each side) is 2 m s-l; species A is nitrogen (NZ),  concentration
0.2 km01  mW3;  species B is carbon dioxide, concentration 0.1 kmol rn?  species C
is water vapor, concentration 0.3 kmolm-‘.  The nitrogen is not diffusing;
however, carbon dioxide diffuses  in the --z direction at a rate of 0.6 kmol S-‘,  and
water vapor diffuses in the +z direction at a rate of 0.8 kmol s-l.  Find U, andp:.

5.27. For the data in Problem 5.26, find all fluxes defined in this chapter. /
5.28. Calculate the mean-free-path of:

(a) air at 25°C and 1 atm;
(b) helium (viscosity 1.348 X lo-‘kg  m-’ s-‘)  at OYJ,and  0.001  atm;
(c) carbon dioxide (viscosity 22 x 10e6 kg m-’ s-‘) at 200°C  and 0.1 atm.

5.29. Pure nitrogen is d&sing  through a capillary tube 50 urn in diameter and 0.1 m
long at 0°C  under a pressure difference of 2 x 10m6  atm. At the inlet, the absolute
pressure is 2 x 10e6 atm and the viscosity is 0.016 cP.
(a) Calculate the flow regime.
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Side B-air
-

Side A-50 mole percent H,
50 mole percent N,

FIGURE 5.13
Diffusion of hydrogen through a palladium membrane.

(b) Calculate the flow rate in kg s-’
(c) If a one to one mole ratio of hydrogen to nitrogen is originally present at the

capillary inlet, calculate the outlet composition in mole percent at the outlet.
5.30. It is desired to separate helium (viscosity 1.348 x low5 kg m-’ s-i) from methane

(viscosity 1.030 X 10m5  kg m-i  s-‘)  using a thin Pyrex glass wall as a diffusional
barrier. The inlet stream contains 2 mole percent He at 0°C and 1 atm. The thin
Pyrex glass may be approximated by an effusive barrier model, with a diameter of
35 A, negligible length, and 108  pores per m’.  The pressure drop for diffusion is
0.5 atm.
(a) Calculate the Knudsen number (high-pressure side only).
(b) Calculate the mass flux (kg mm2  s-r) of He through the barrier.
(c) Find the steady-state He composition in the low-pressure chamber.
(d) Find the cross sectional area in m2  necessary to remove 1 kmol of He per

hour.
5.31. A thin metallic membrane of palladium (0.1 mm thick) is permeable to the

diffusion of hydrogen only. On side A of the membrane, as shown in Fig. 5.13, is
a mixture of 50 mole percent hydrogen and the rest nitrogen; on side B, air flows
at high velocity in order to maintain the concentration of hydrogen as zero. At
293 K and 1 atm, the diffusion coefficient of the hydrogen-nitrogen system is
7.63 x lo-’  mz  s-r. Let the apparatus be operated at 313 K and 1 atm pressure, at
which it can be assumed that the resistance to mass transfer in the gas phase
occurs through a hypothetical film of thickness l.Omm,  immediately adjacent to
side A. Further, it.is known that the concentration of hydrogen on side A of the
membrane (between the solid and the film) is 20 mole percent. Calculate:
(a) the flux (kmol m-‘s-l) of hydrogen through the Pd membrane;
(b) the diffusion coefficient of hydrogen through the Pd membrane.
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6 \

NOMENCLATURE

A
A
A
a
B
B
C

c

CP

D
d
E

E

Species A; Ai and AZ are species A at locations 1 and 2
Constant in velocity profile equation
Example quantity to be averaged in Reynolds rules of averaging
Empirical constant in Pai’s  equations; subscripts 1, 2; see Eq. (6.113)
Empirical constant in the logarithmic velocity distribution, Eq. (6.77)
Example quantity to be averaged in Reynolds rules of averaging
Instantaneous concentration (kmol md3,  lb mol ft-‘); C,,  Cn,  Ci  are
concentrations of species A, B, i; CA,1  and C,,i  are concentrations at
locations 1 and 2; CA,w is time-averaged concentration of species A at
the wall; CA,avc is bulk concentration of species A
Constant of integration
Heat capacity at constant pressure (kJ  kg-’ K-‘, Btu lb;’  OF-‘);  other
subscripts defined as used
Diffusion  coefficient (mass diffusivity) (m’  s-l,  ft*  s-‘)
Diameter (m, ft); d, is inside diameter of pipe, as used in fluid flow
Eddy diifusivity  (m*s-‘,  ft*s-‘);  E,, EM, EH  are eddy diffusivities  of
momentum, mass, and heat, respectively
Voltage
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gc
h

Z
I,
i
i
k
k
k::

kn
L
1

i

N
NRe
II
n
P
4

r
r
s
T

T

u
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Pipe roughness (m, ft); see Table 10.2 for more details
Base of natural logarithms (2.718 2818. . .)
Fanning friction factor, Eq. (6.89)
Vector representing the acceleration due to a gravitational or other
field (m s-‘,  ft s-*)
Gravitational conversion constant (32.174 lb,,, ft lb;’ s-*)
Heat transfer coefficient, defined by Eq. (6.86) (W m-* K-l,
Btu ft-*  h-’  ‘F--l)
Number of intervals during integration
Intensity of turbulence, defined by Eq. (6.31)
Unit vector in x direction
Unit vector in y direction
Unit vector in z direction
Thermal conductivity (W m-i K-’  or J m-i K-’  s-l,  Btu ft-’  OR-’  s-‘)
Equimolar mass transfer coefficient, de f ined  by  Eq .  (6 .87 )
[kmol m-* s-l (km01 rnm3)-l, lb mol ft-* s-’ (lb mol ft-‘)-‘I
Specific reaction rate constant in Eq. (4.108) or Eq. (6.45)
Length (m, ft)
Prandtl mixing length, cf. Eq. (6.69)
Integer parameter in Pai’s equation, Eq. (6.113)
Molar tlow  vector, defined with respect to fixed coordinates (kmol s-l,
lb mol s-l); subscripts A or B are for species A or B; if written not as
a vector, then N is subscripted for direction of transfer
Number of points to compute the average
Reynolds number, Eq. (6.1) or Eq. (6.2),  d,V,,  avc  p/p  for pipe flow
Order of reaction, Eq. (4.108) or Eq. (6.45)
Constant in Eq. (6.99)
Pressure (kPa,  atm, lbr  in.-*)
Energy (heat) flow vector (Js-‘, Btus-I);  subscripts denote com-
ponents in coordinate directions
Cylindrical coordinate (m, ft)
Radius (m, ft); r, is value of r at the tube wall
Parameter in Pai’s equation, Eq. (6.117)
Instantaneous temperature (K, “R, “C, “F); TI  and T2  are temperatures
at locations 1 and 2; T, is temperature of the wall or surface; T, is
temperature in open channel; T,,, or Tb  is bulk temperature, Eq.
(11.31)
Total time
Time (s); t, is contact time in Eq. (6.101)
Instantaneous velocity vector (m s-l,  ft s-l); U is magnitude of U; U,,
U,, V,, V,, V,,  U, are components in directions x, y, .z, 0, r, 4; V*  is
friction velocity, Eq. (6.53); V,, ay~ is mean velocity in z direction; oz
is time-averaged velocity in z direction; Vi is instantaneous velocity
fluctuation in x direction; V, is velocity in open channel (free stream
velocity); V+  is dimensionless time-averaged velocity, Eq. (6.78),
OJV*



W

X

X

Y

‘Subscript denoting wall

Y
Y+
z

:
6
&
8

P

Rectangular (Cartesian) coordinate
Distance from leading edge of a flat plate (m, ft)
Rectangular (Cartesian) coordinate; (2y,,)  is distance between two
parallel plates
Distance from the wall, r, - r (m, ft)
Dimensionless distance from the wall, Eq. (6.79),  yU*p/p
Rectangular (Cartesian) coordinate
Thermal diffusivity (m’ s-l,  ft2  s-l)
Difference, state 2 minus state 1; e.g., AT means T2  - T,
Generalized diffusivity (m” s-i,  ft2  s-l)
Eddy viscosity, Eq. (6.62) (units the same as for p)
Curvilinear coordinate direction
Viscosity (kg m-i s-l or N mm2s,  lb,,, ft-‘s-l,  cP); p,  is viscosity at
wall

Y
K

5

Y

lyG

Kinematic viscosity (momentum diffusivity) (m2 s-l,  ft2  s-i)
Empirical constant in several correlations in Chapter 6
Generalized transport coefficients associated with h,  f, k:,  Eq. (6.90);
also, &, &, &,  refer to generalized coefficient for heat, momentum,
and mass, respectively
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg rne3,  lb, ft-‘); subscripts refer to species
Momentum flux (or shear stress) tensor (N mv2, lbffte2);  rxy,  r,,*, etc.,
are components of the momentum flwr  tensor, where subscripts refer
to direction of momentum transfer and direction of velocity; rL  is
laminar-like contribution; rr is turbulent contribution; t,,, is shear
stress at the wall
Generalized flux vector (e.g., units for heat flux are J rna2se1  or
W mv2, Btu fte2  s-i; see Tables 2.1 and 3.1 for more’details); Yx, ‘u,,
Yv,  are components in directions x, y, r; W,,,  or W, is flux due to
molecular transport; W,,, or W,  is flux due to convection
Generalized concentration of property (e.g., units for concentration of
heat are J rne3,  Btu fte3; see Table 3.1 for complete listing)
Generalized rate of generation of energy or mass or momentum in a
unit volume (see Table 4.2 for units; e.g., for heat, units are J mm3 s-l,
Btu ft-3 s-‘)

v

V2
Vector operator del, defined by Eq. (2.16) or Eq. (3.45) (m-l,  ft-‘)
Laplacian operator, defined by Eq. (3.64) (me2, ft-‘)

Note

TURBULENT FLOW w

The overbar denotes time average (0, CA,  F, etc.); the prime denotes
fluctuation with respect to the mean (U’, T’, etc.)

In Section 2.1.3, a phenomenological description of momentum transfer in
fluid flow was given using the metaphor of a deck of playing cards. Such a flow
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between’ parallel plates, one stationary and one moving, as in Fig. 2.3, is called
laminar or streamline flow. Laminar flow predominates at low flow rates in
such pressure-driven flows as that between parallel plates or in a circular tube
or pipe. At high flow’ rates the streamlines represented by the playing cards
metaphor are destroyed by small groups of fluid that are called eddies. These
eddies move in all directions, not just in the direction of bulk motion.
Naturally, there is a transition region between laminar and turbulent flow. This
chapter contains a detailed description of the physical nature of transitional
and turbulent flow.

The general balance equation [Eq. (3.60)]  applies in all flows-laminar,
transitional, or turbulent. The Navier-Stokes equation for constant density
(i.e., incompressible fluid) and for constant viscosity is

auiat+(u.v)u=-(iip)(vp)+g~;(v*U) (5.15)

Equation (5.15) was derived from the general property balance [Eq. (3.60)]
with the appropriate substitutions for momentum transfer. Equation (5.15) can
be applied to any incompressible fluid flow field. However, problems solved in
the preceding chapters were laminar in nature. The complexities, of applying
Eq. (5.15) to turbulent flow will be discussed in the following sections.

’6.1 TRANSITIONAL AND TURBULENT
FLOW

The physical nature of transitional and turbulent flow is best illustrated by
describing the results of some flow visualization experiments, which have been
remarkably useful in studying turbulent flows. The earliest technique to
observe the nature of the flow was to inject a thin stream of dye into the flow
and observe the dye stream as it moved with the bulk motion. Alternative and
more recent experiments involve adding very small particles as flow markers
and taking photographs. Also, the use of small hydrogen bubbles formed by
electrolysis in the flow has proved successful. Brodkey, Hershey, and
coworkers [C2, N3, IV] used high-speed cinematography to obtain motion
pictures with stereoscopic flow visualization. These experiments, which
allowed observation of three-dimensional motions using both particle flow
markers and dye injection, have been in part responsible for the present-day
understanding of turbulent flows.

6.1.1 The Reynolds Experiment

The 1883 experiments of Reynolds [Rl]  were the first to illustrate the
differences between laminar and turbulent flow. In Reynolds’ experiments (see
Fig. 6.1),  a fluid initially at rest in a tank was allowed to flow through a glass
pipe. A thin stream of dye was injected at a point in the tank, and the motion
of the dye was observed as it moved into the pipe and downstream with the
fluid. At low velocities, the dye moved in a straight line along the tube,
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Dye injection
Air m

DYE INJECTION RESULTS

Low flow rate Laminar flow

Mediup  flow rate y Transitional flow

High flow rate Turbulent Row

FIGURE 6.1
The Reynolds experiment.

,

indicating laminar flow. As the velocity was increased, the dye line became
thinner and began a wave-like or sinuous motion. A further increase in the
velocity caused the dye line to break up into segments, or what are pictured as
turbulent eddies.’ Reynolds’ results are summarized as follows: as the flow
velocity is increased, a transition between laminar and turbulent flow occurs,
and at higher velocities the flow becomes fully turbulent.

In a one-dimensional flow, such as flow through a pipe, turbulent eddies
often move in directions oblique to the bulk flow velocity vector. The local
velocity vector associated with an eddy of fluid will have non-zero components
in the r,  8,  and z directions. This local velocity vector is called the
instantaneous velocity. The flow on the average moves only in the axial
direction, while instantaneously the velocity vector of a particle of fluid can be
in any direction. Note also that there is no net flow in the radial direction,
since the pipe has no holes in its wall and there is no generation of mass. But
there is an instantaneous velocity component in the radial direction at any
instant in time. This radial component is zero only when averaged over a long
period of time. Thus, at any given instant in time, there can be three

‘Fluid dynamics fdm loops FM-I, FM-8, FM-25, FM-32, and FM-147 can be used to assist the
reader in visualizing laminar, transitional, and turbulent flows.
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components of the velocity. To repeat, in turbulent flow the instantaneous
velocity of a molecule or group of molecules. (eddy) is a strong function of
position and time.

Reynolds found from his experiments on the laminar-turbulent transition
that a dimensionless group, now called the Reynolds number NRC, could be
used to predict empirically the transition point:

Nee  = LUPIP (6.1)

where L is a characteristic length, U is a charactersitic velocity and p and p are
the fluid density and viscosity, respectively. Specifically, for pipe flow,
Reynolds found

he  = do  Uz,  ,,PIP (6.2)

where d, is the pipe diameter and U, aVe is the average velocity across the
pipe. For laminar flow, U,,  aye is given by Eq. (4.77). In the SI system of units,
d, has units of meters, U, Bye  has units of m s-l,  and p units of kg rne3.  Hence,
the net units of the product d,U,,~,,p  are kg m-l s-l.  Since kg m-i s-i  are the
units of p,  the Reynolds number is seen to be dimensionless.

The transition to turbulent flow occurs when the shear sq  (momentum
o.large that the lave.rJ&e
eddies are formed which

d in turbulent flow. The point
where laminar flow no longer exists in a pipe is known as the “critical
Reynolds number”. When experimenters have taken elaborate precautions to
still the fluid in the tank and to eliminate any disturbance at the entrance to the
pipe, critical Reynolds numbers as high as 40000 have been obtained.
Although the critical Reynolds number depends rather markedly on the
geometry and the conditions of the system, the critical Reynolds number is
typically 2100 for a pipe flow system with a highly disturbed entry. Above a
Reynolds number of 10000 in most flow systems that are in commercial
installations, the flow is fully turbulent.

Example 6.1. Water flows in a Zinch  schedule 40 pipe, at a rate of 50 gallons Per
minute (gpm).  The actual inside diameter of commercial piping can be deter-
mined from Table B.l in the Appendix. If the temperature is 86”F, determine
whether the flow is laminar, turbulent, or transitional. At M’F,  the viscosity of
water is 0.8007 cP, and the density of water is 0.99568 g cmm3.

An.wer.  From Table B.l, a 2-inch schedule 40 pipe has an inside diameter of
2.067 in. and a flow  area of 0.02330 ft*.  The solution can be accomplish@-ia  any
set of units; the English system of units will be used for this example. The
following conversions are needed:

lgcm 3 = 62.43 lb,,, tY3
7.48 gal = 1 ft3

1 CP  = 6.72 x 1O-4 lb,,, K’ s-’
(9
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The velocity of water in the pipe is found by converting the gallons per minute to
cubic feet and dividing by the cross sectional (flow) area:

u
50

zVaYC  = (60)(7.48)(0.0233) (
(gal min-‘)

(s min-‘)(gal  K’)(ft’) > = 4’78  ft ‘-’
(ii)

The properties of water converted to the.proper  units are

p = (0.99568)(62.43)[(g  cm-3)(lb,  tT’)/(g  cm-‘)] = 62.16 lb,,, fi-’
/J = (0.8007)(6.72  x 10-4)[(cP)(lb,  fi-’ s-‘)/(cP)]

= 5.381 x 1O-4  lb,,, R-’ s-’

The Reynolds number is calculated from Eq. (6.2):

(iii)

NRc-*-p (2.067/12)(4.78)(62.16)
IJ 5.381 x 10-4

NRC  = 95 100

Hence, the flow is turbulent. Note also that NRe  is dimensionless.
(iv)

6.1.2 Transitional Flow

The Reynolds experiment indicated a transitional region in tube  flow as seen in
Fig. 6.1. Equations (4.82) and-  (4.83) show that the slope of the velocitv  nrofile
at theow  is prom
As the pressure drop is increased in a given pipe such as in Fig. 6.1, the
velocity profile at the wall becomes steeper and steeper. A simplistic picture of
the transition is that a disturbance such as a bit of roughness in the pipe, a
pulse in the flow caused by a pump or valve, or a vibration in the system can
trigger the transition. The velocity profile given by Eq. (4.72) breaks down,
and turbulent eddies form.

Tube flow is actually a special case of a more general flow termed.
boundZrv  lay_er  how.  -I’lKlaminar  boundary layer over a solid flat  surface
(boundary) was discussed in Section 5.1.7 and illustrated in Fig. 5.6.. T&e
boundarylayer~forms  as a result .of-eeztil boundary condmo+
which was illustrated in Fig. 2.3. The experiment is designed so that t&
vemfile  approaching the leading edge of the plate is flat, as is shown to
the left in Fig. 6.2. The free stream guide  approaches the leading edge at a
velocity V,. Adjacent to the leading edge of the plate, the flow in the
b-aver  is laminar, However, as the fluid s the plate and
the boundaly!ayer  becomes larger (thicker), the flow becomes un---_ stable anda
transition to turbulent flow beginS.  Example 5.8 considered the laminar flow
along a flat plate. For the flat plate, the Reynolds number corresponding to the
form of Eq. (6.1) is

N ReJ = XucPlY 63)

where x is the distance from the leading edge of the plate in Fig. 6.2.
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FIGURE63
The boundary  layer.

the boundary layer adjacent to a flat plate
time ovyf

occurs at a Reynolds number
leading edge of the flat plate is

made rough, then the laminar boundary layer can be “tripped” to become
turbulent immediately. Also influencing the location of the transition is the
shape of the leading edge of the plate and the degree of turbulence in the free
stream where the velocity is V,.

Example 6.2. Calculate the location along a flat plate (Fig. 6.2) where transition
would be expected to occur for a free stream velocity of 4.78fts-’  for water at
86°F.

Answer. The appropriate Reynolds number is

iv Re.I = XUQdP (6.3)
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This  equation is solved for x. The lower limit of 5 x lo’  for the transition
Reynolds number range is substituted along with the properties of water as cited
in Example 6.1:

N, zp
n=G=

(5 x 105)(5.381  x 10-4) (lb, ft-’ s-l)
(4.78)(62.16) (ft s-‘)(lb,  K3) > = o’91 ft

(9

Thus, the transition could start at about 0.9 ft. The Reynolds number at the upper
end of the transition range is 5 X 106.  The value of x  at this location is ten times
the value in Eq. (i), or 9.1 ft.

A transition from laminar flow occurs in a11 D For each
geometry there will be a critical Reynolds number of the general form as given
by Eq. (6.1). Sometimes the transition can be from one specific form of
laminar flow to another well-defined laminar flow. A good example of this
phenomenon is the Taylor instability [Tl]: in which the flow between
concentric cylinders (considered in Example 5.7) undergoes a transition to a
complex vortex motion superimposed on the basic flow. A photograph of this
motion is shown in Fig. 6.3. There are further transitions at still higher
Reynolds numbers, and finally there is a transition to turbulent flow.

Outer
cylinder Observed

fluid

Colored
fluid

(a) Rotation in same direction

Outer
cylinder

(b) Rotation in opposite direction

FIGURE 6.3
Taylor instability for inner cylinder in rotation and outer cylinder at rest. (From Taylor, Phil.
Trans. Roy. Sot.  (London) A223, 289 (1923). By perrnksion.)

‘Film loop FM-31 illustrates this type of transition.
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------A
TABLE 6.1 -----.. I.

Characteristic length for the Reynolds number “Y,\

Symbol for length Flow

4 Pipe
x past flat plate
6 past flat plate

LO between parallel
\ plates

do-~ past sphere or
.-  . -- ~~---.--  ~- - cyli_nder..  ..__.  _

Description \

inside diameter

separation distance

All laminar boundary layer and related flows undergo transition to

generally labeled as “flow past immersed bodies”; this will be discussed in
Chapter 12.

The nature of the transition has been carefully researched over the years
and is still an active research area. In terms ofthe  changes in the flow, the idea
of a critical Reynolds number is much too simplistic’and fails to explain the
mechanistic changes such as the presence or absence of turbulence. A further
discussion of transition is warranted to explain these ideas.3  v
from laminar to turbulent flow,occurs..in the region where the flow becomes
unsfable~nd~iulent  s ots?Tlie3@Gpread  o rep ace the
lamin%viding  ?5=7?&&3@&-
turbulent o . ‘Tli?s-  transttton  i%%~tmuous;  i.e., the process’is
c -number  o f  deve lop ing  s t eps  and  i s  no t  a  sudden ,  s ing le
catastrophic change. In general, the transition process for the flow over a flat
plate can be pictured as occurring in four steps: first, small two-dimensional
waves are formed and amplified; secondly, the two-dimensional waves develop
into finite three-dimensional waves and are amplified by nonlinear interactions;
thirdly, turbulent spots form as localized points at the fronts of the three-
dimensional waves; and finally, the turbulent spots propagate to fill the entire
flow field with turbulence, at which point the flow is said to be fully turbulent.

For pipe flow, the mechanism is somewhat different in that the flow is
stable to small disturbances and it takes a finite disturbance to start the
transition. Slugs of turbulence form along the pipe, and the flow looks much
like an aiternating sequence of laminar and turbulent parts. The turbulent

3 See film loops FM-23, FM-92, and FM-148.
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regions grow as the flow progresses down the pipe. When the turbulent regions
occupy the entire flow, the fluid is in the fully developed turbulent flow regime.

cry small, electricallv-heat&cLwkfilm~he
instantaneous velocifln  a flowlam,This  hot-wire or hot-film
anemometer senses temp&krre  changes that are caused by changes in flow
velocity. The wire or film is electrically heated so that its temperature is above
the temperature of the fluid. Thus, the fluid passing over the surface of the
probe cools the film; the amount of cooling is related to the instantaneous
velocity by a complex 4th-power relationship. The electronics of the system
detect the temperature changes in the film that occur when the velocity over
the sensing element changes. A typical sensing element for one of these
devices is shown in Fig. 6.4. A hot-wire anemometer isused.mla$&s,--..--_____..

shift in the frequency of the light (called the Doppler effect), which can be
easured and related to the velocity of the particles.

The hot-wire or hot-film anemometer quantifies the qualitative results
found by Reynolds and others. If such a probe is placed in a pipe flow stream
and the velocity of the flow is increased by steps until some high steady-state
flow rate is obtained, a trace similar to that in Fig. 6.5 will be obtained. At low
velocities, the flow remains steady and is laminar in nature. As the velocity is
further increased, a transition region occurs. In the transition region, the flow
is seen to be laminar part of the time and turbulent the rest of the time. As the
flow rate is further increased, the turbulence occurs continuously, and the flow
is said to be fully turbulent. When the flow rate is increased further, the

i l m (30 pm X I mm)

\
FIGURE 6.4

F low dlrection Hot-film sensor.



206 BASIC CONCEPrS  IN TRANSPORT PHENOMENA

Laminar flow (NRC  = 300)  *

Time

FIGURE 6.5
The instantaneous velocity.

turbulent trace from the anemometer shows larger amplitudes of velocity
fluctuations and a broader range of frequencies.

6.1.3 Fully Developed Turbulent Flow

Most industrial flows are turbulent.. In
flow i.n the z direction only. In-__.4
the average veloci$s~co~ns~&~

- eddies varies .“+bQut  ,J&z+~  time.
- time-averaged velocity and the

hot-wire or hot-film anemometer. The instantaneous velocity in the z direction
in the pipe is denoted by U,  and i and nosition  across

Ate  p&e. &any..  one Goint  in ed velocity can be
obtained by _.^

(6.4)

Note that U,, aVe is the velocity usually used in the Reynolds number, Eqs.
(6.1) and (6.2).

Figure 6.6 shows three typical velocity profiles in a pipe. The axes are
“normalized” by plotting a dimensionless velocity oZ/oI,,  max  versus the
dimensionless position in the pipe r/To, Included are two average velocity
profiles in the turbulent region and the laminar velocity profile,. which is
obviously independent of Reynolds number. The laminar velocity profile is
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1 . 0

0.8

‘2 ’ 0 /’
QM

0.4
o Laminar, Eq. (4.74)

A Turbulent, NRC = 20 000

0.0 0 . 2 0 . 4 0.6 0.8 1.0

f+4 r/r,, r-. r(-J

FIGURE 6.6
Turbulent velocity profile for water in a l-in pipe.

given by Eq. (4.74):
(4.74)

where U,  is the velocity at any given radius r, U,, max  is the velocity at the pipe
center line (r = 0), and r,,  is the pipe radius. Note that in this equation U,  is
used and not oz. For laminar flow,~@~aenofluctuations  about the rng-an  SO

that az  is exactly &Ge as U,. The dimensionless form o the plot in Fig.------T-----’
6.6 allows for easy comparisons among the three curves.

It is instructive to discuss the Reynolds number effect in the profiles
shown in Fig. 6.6. The velocity profile in turbulent flow is considerably flatter,
in the center core region  than that observed in laminar flow. Similariy~&e
p%%lSin  turEiuIeiit%~&-much  steeper in the wall regio‘n  (r-r, , ) .  3
st=er  vwgradie.nt  near the wall creates .a zone of high ins-us
shear stress, which>a-wtor  m thkpduction  of turbulent eddies4  Note
also in Fig. 6.5Ihat  the velocity profile-at t_he.hrgher  Reynolds.n.umber  is flatter_-_  ..--.-_‘.
in the core regio?iZid  s&e.per-m-the~wallregionthan~-- -- -“.-31ds

number ‘(20 000). Ke_eg..in  -mind that the turbulent.prafiles.jR”Fig.  6.6 are
average veloSies.~At  any given instant in time, the instantaneous velocity
profile will be much different.4

4Film loops FM-89, FM-134, and FM-135 can be used to illustrate the cross-stream mixing that
gives rise to the flatter turbulent profiles and also to illustrate instantaneous velocity profiles.
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Most turbulent flows of practical importance occur during “shear flow”.
Shear flow is defined as a flow of a fluid in which there is a gradient in the
mean velocity. The motions in such flows are not totally random since
measurements have shown that the velocity in one direction is highly
correlated with the velocity in another direction.

In spite of a century of research, many aspects of turbulent flow are
poorly understood. Fully developed turbulent flow is currently being exten-
sively studied by visual and other experimental means in order to further
understand the mechanisms involved. Visual studies [C2, Kl, N3, P7]  have
shown that turbulent eddies are much less random in nature than previously
thought and that turbulent even%%&&  %n  an organized sequencq  The- __-.-
occurrence of-the sequeiZe:-of  these eEr&iGmg.@Or-

periodic in the sense of a sine w_ave+For  pu~oses  of this discussion a turbulent
event is an acceleZoni~Eleceleration,  a ik&&o~n~~~~  a constant
velocity that is experienced, y a relatively large-cluster of molecul~which‘i
p “;ddhe.  The size ebbranges trom a traction ot a mil ime er to
t e order o t e charactertsttc  dimensions of the system. All molecules of fluid
within..an,  eddy folloa.t~sam~n~al  flu>  motions and share a common
fate. Which event is actually the start of the turbulent cycle is not cie5.
Therefore,  thisdiscus@r~gin  wit a

..pipe.  svheretheh~w  is firmly  turbulent. In a local region not ‘far removed from
the wall, the flow decelerates and shows almost no velocity gradient. From the
center core region, a large eddy structure at a relatively high rate of speed
comes into the wall region at an angle oblique to the pipe axis and begins to
interact with the low-speed fluid. This process is called a sweep. As shear i
forces build up, an ejection occurs in which the low-speed fluid accelerates j
rapidly away from the wall region.

Figure 6.7 depicts the series of events in the boundary layer flow past a
flat plate. The ordinate in this figure is the distance (y) normal to the plane of
the surface. Figure 6.7(a)  shows the flow and the camera both moving in the
--x direction. The high-speed front crossing the whole boundary layer is also
moving in the --x direction. As the high-speed front contacts the decelerated
fluid in the wall region, a rotation results in the transverse vortex as shown.
This vortex increases in size.as time elapses, as shown in the successive figures.
In Ecig.  6.7(6),  the vortex has increased in size from that in Fig. 6.7(a);
furthermore, it has moved away from the wall and has caused a bulge in the
boundary layer edge, as shown. In Fig. 6.7(c),  the ejection is labeled; note
that the bulge in the boundary layer has increased to the point where a large
inflow has formed in front of the transverse vortex. In Figs. 6.7(d) and 6.7(e),
the end of the first ejection isshown,  plus the beginning of a new cycle some
distance behind the first.

The picture of turbulent flow just described suggests that transfer from
the wall region to the center core primarily involves acceleration and ejection
events. As an eddy accelerates away from the wall, a second eddy must fill the
space behind the first. This sequence has to be important when considering
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(Q)
F l o w

(b)

Irrotational region

Ejectionb
0

//

FIGURE 6.7

Wall W a l l  a c t i v i t y *  Cjj

Sketch of the progession of the flow. (From Praturi and Brodkey, A Stereoscopic Visual Study of
Coherent Structures in Turbulent Shear Flow, 1. Fluid Mech.  89, 251  (1978). By permirsion.)
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heat and,  mass transfer. Heat or mass transfer from a wall to the bulk fluid in
turbulent flow occurs by a combination of molecular transport and convective
transport. In turbulent flow, the convective mechanism predominates. The
eddy that is swept away from the wall probably ,accounts  for a significant
portion of the heat or mass transfer. Farther out in the flow, the fluid from the
wall region merges with the fluid of different temperature or concentration.

The sequence of events in turbulent flow is quite complex and not fully
understood at this juncture. This complexity precludes the development of
anything but simple models as an attempt to describe turbulent shear flow.
Even though a complete description is lacking, a great deal has been done that
can be used by the engineer in the design of turbulent flow systems.

6.2 THE EQUATIONS FOR TRANSPORT
UNDER TURBULENT CONDITIONS

The general property balance equation was previously presented in the most
general form as Eq. (3.60):

alyiat+(v.v)ry=lyG+(v'gvlV)--(v.U)
ACC CONV GEN M O L E C CONV

(3J50)

This equation is valid for turbulent flow, provided it ,is applied to the
instantaneous values of all quantities being considered. At this point the reader
may question why equations heretofore used to solve laminar problems apply
in turbulent flows as well. In the earlier chapters the balance equations were
formulated generally and included all known mechanisms of transfer. An
assumption of a laminar flow regime was not made in the derivations.
Turbulent flow introduces no new transport mechanisms. As just discussed,
convective transfer dominates in turbulent transport over molecular transfer,
but both mechanisms contribute and are in Eq. (3.60) and subsequent
equations. The derivation does assume that the fluid is a continuous medium
rather than composed of discrete molecules. In laminar flow under normal
conditions for gases and for liquids, the fluid can be considered continuous.
For this assumption, as has been seen, the equations can be solved under
restricted conditions.

In the case of turbulent flow, the assumption of a continuum is valid
be&use  it is known that the smallest scales of turbulence are still orders of
magnitude larger in size than molecules. Within a given lump of turbulent fluid
or eddy, the medium is continuous, the flow is laminar-like, and the molecular
transport equations apply at each local point, i.e., to the instantaneous value at
that local point.

The relegation of the concentration of property t&  in Eq. (3.60) only to
instantaneous or local values turns out to be a serious barrier to the use of the
balance equations in solving practical problems. Design of systems involving
heat, mass, or momentum transfer generally requires knowledge of the
time-averaged values of W and U.  The instantaneous values of w and U are
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FIGURE 6.8
Instantaneous velocity in turbulent
flow.

always fluctuating and are therefore often less useful. As suggested in Figs. 6.1
and 6.5, the instantaneous property values vary to such a degree that little
information can be obtained by a direct application of the basic equations, and
thus some modification is necessary. It is necessary to use a statistical average
and a measure of the deviation from that average.

Figure 6.8 is a sketch of a typical trace of the instantaneous velocity (I, as
a function of time in a fully developed turbulent flow (like that in Fig. 6.5).
The instantaneous point velocity U, is denoted by the solid line. Again, the
long time-average of all the U,  values is denoted with a dashed line marked &
The difference between the average and the instantaneous value is the n
d&e&on velocity fluctuatioa:

LJ; = u,  - ox (6.5)

Equation (6.5) is solved for U,:

u, = il;  + u: (6.6)

where the prime superscript is used to denote the velocitv-  about the
mean 0;.  Now the instantaneous velocity U, is represented as a sum of the
mean value uz  and a superimposed fluctuation U: about the mean. In terms of
vectors, this concept can be expressed in terms of the vector velocity:

U = iU, + jU,  + kU, (6.7)

where U is a point velocity. If the time-average is the true average of this
velocity, then the instantaneous velocity can be written as the sum of its
average velocity and the instantaneous deviation from that average; i.e.

u=O+u’ (6.8)

where 8 is the mean velocity at the point and U’  is the relative motion as a
superimposed fluctuation on the mean.

The mean at a point is determined from Eq. (6.4) by integration over a
total period of time T that must be large enough so that a statistically
representative sample occurs in the period T. In modern turbulence research
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the data ‘are obtained in discrete digital form rather than as a continuous
signal. In such cases, the values of U,, for example, that are equally spaced in
time are summed and averaged, i.e.,

where N is the number of points available to compute the average. In the limit
of a large data set there will be no difference in the results from Eqs. (6.4) and
(6.9). Since such data are often taken with hot-film or hot-wire anemometers
or with laser-Doppler anemometers, these averages are obtained electroni-
cally, and the average velocities in question are simply read from a meter or a
computer printout.

Example 6.3. Calculate the mean velocity for the flow data in Table 6.2.

TABLE 6.2
Instantaneous velocity data

1, s Index i u,, m s-’ U,, m se1 u,,  m s-l

0.00 1 3 . 8 4 0 . 4 3 0 . 1 9
0.01 2 3 . 5 0 0 . 2 1 0 . 1 6
0.02 3 3 . 8 0 0 . 1 8 0 . 1 7
0.03 4 3 . 6 0 0 . 3 0 0 . 1 3
0.04 5 4 . 2 0 0 . 3 6 0 . 0 9
0.05 6 4 . 0 0 0 . 2 8 0 . 1 0
0.06 7 3 . 0 0 0 . 3 5 0 . 1 6
0.07 8 3 . 2 0 0 . 2 7 0 . 1 5
0.08 9 3 . 4 0 0 . 2 1 0 . 1 3
0.09 10 3 . 0 0 0 . 2 2 0 . 1 8
0.10 11 3 . 5 0 0 . 2 3 0 . 1 7
0.11 12 4 . 3 0 0 . 3 6 0 . 1 8
0.12 13 3 . 8 0 0 . 3 5 0 . 1 7

Answer. Since the velocity in the x direction is the largest, it appears that these
data were gathered from a channel or a flow past a flat plate, as in Figs. 6.2 and
6.7. The time-averaged vel&ity  in the z direction is given by Eq. (6.4):

Similarly for the x and y directions:

where T is 0.12 s for this example. There are 13 data points for each component
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of velocity in Table 6.2. This number is insufficient to use the discrete sample
equation, Eq. (6.9).

It is possible to plot the given data in the form of velocity versus time and
evaluate the time-averaged velocities graphically by measuring the area under the
curves. In Table 6.2, the time interval between each of the 13 points is constant
and equal to 0.01 s. Let the increment in time be At and the number of intervals
in time be Z so that

At =O.Ol  s z=12 (iii)

Then the limit T in Eqs. (6.4)  (i), and (ii) is

T=ZAt=O.l2s (iv)

Instead of preparing three graphs, it is convenient to solve this example by
performing a numerical integration, since the data are evenly spaced in the
abscissa. One possibility is to use Simpson’s rule, which is described in standard
textbooks on numerical analysis and in handbooks [P4].  However, the simplest
method is the trapezoid rule, which will be demonstrated here. Consider the first
two points for the x direction in Table 6.2:

t=o.oo UX=3.84ms-’

t = 0.01 UX=3.50ms-’
69

Let y denote the ordinate and n the abscissa. The trapezoid rule finds the average
height in the interval as the mean of the two values: ‘

y,, = (3.84 + 3.50)/2 = 3.67 m s-’ (4

The area contribution is the area of the rectangle formed by y.,. and At:

AREA = (y&(At) = (3.67)(0.01)  = 0.0367 m (vii)

The trapezoid rule repeats this calculation for all N - 1 intervals, where N is the
total number of points, 13 for this example. Using the index i, which goes from 1
to 13, as shown in Table 6.2, the generalized formula for the trapezoid rule is

When Eq. (viii) is applied to this problem, it becomes

AREA = $ (U, + U,;+  2 ,zz  &)

Equation (ix) is applied to each of Eqs. (6.4), (i), and (ii):

(ix)

0
I [3.84  + 3.80 + (2)(3.50  + 3.80 + 3.60 + * . * + 4.30)]

= 3.61 m s-i

Similarly

(4

uy  = 0.28 m s-r (xi)
17, = 0.15 m s-r. (xii)
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The,magmtude  of any vector is the square root of the sum of the squares of the
components in each direction:

U=(E+ q+  oy
= [(3.61)‘+  (0.28)*+  (0.15)2]*n  = 3.624 m s-r (xiii)

Because of the low magnitude of 0; and oZI,,  the direction of the velocity vector is
very close to the x axis. The cosine of the angle between fi and the x axis is &/fi.

In the solution just presented, the simplest type of numerical integration
was used to obtain the average velocities from the small sample of 13 points. As a
matter of curiosity, let us compute these averages from Eq. (6.9):

= (1/13)(3.84 + 3.50 + 3.80 + 3.60+  . . . + 3.80) = 3.626m s-r (xiv)

This answer differs only 0.4percent  from that obtained in Eq. (x). This
agreement is deemed fortuitous. Repeating the calculation for the y and z
components of velocity, the approximations from Eq. (6.9) as applied to each
direction are

0; = (1/13)(0.43 + * * . + 0.35) = 3.75/13  = 0.289 m s-’ (xv)
ii, = (1/13)(0.19 + . . . + 0.17) = 1.98/13  = 0.152 m s-r (xvi)

These answers vary from those in Eqs. (xi) and (xii) by dnly 3.0percent  and
1.5 percent, respectively.

6.2.1 Reynolds Rules of Averaging

When the important equations of Chapters 3 and 5 are applied to time-
averaged values of $J  and U,  some complex terms arise. As a result, the
nomenclature becomes complex. For example, it is often necessary to take the
average of a quantity already averaged. L$t  us denote the average of the
average with a double bar superscript, e.g., A.

Another consideration is that if any fluctuating quantity (e.g., U’) is
time-averaged, that average must be zero as a consequence of its definition
[cf. Eq. (6.6)].  However, if any quantity such as U’  is squared before it is
averaged (e.g., u:‘),  that average will be non-zero because each value of U:” is
never less than zero. Also if the product of two fluctuating components is
averaged (e.g., m), that average can be non-zero as well. Note the notation
used in this case.

Because these averages are so important in turbulent theory, Reynolds
formulated certain rules of approximation in the calculation of averages. These
will not be discussed fully here but will be presented with the assumption that
they do apply to the turbulence problem. The rules are:

1. Quantities which have already been averaged may be considered as
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constants in subsequent averaging:

A=2 (6.10)
;iB=Afi (6.11)

2. Averaging obeys the distributive law:

A+B=ii+B
3. Derivatives of quantities obey the averaging law:

aAiax=a&ax

(6.12)

(6.13)

An important consequence of these rules is evident from the following
treatment of the average of the product AB, where the A and the B are
instantaneous quantities, each composed as the sum of a mean and a
fluctuating value [cf. Eq. (6.6) for U,]:

-AB=(~+A')(B+B')=~+A'B+AB'+A'B'=iiB+A'B'  (6.14)
7

where the terms A’B and AB' are zero for the reasons discussed at the
beginning of this section. The application of the Reynolds rules in Eq. (6.14)
shows that upon averaging any product of instantaneous quantities a meaning-
ful term Liij  is recovered that contains the averages of, the two quantities;
however, in addition, an unwanted term appears, i.e., the average of the
product of the fluctuations of those two quantities. It will be shown shortly that
this average of the product of fluctuations cannot be eliminated in the analysis
of turbulent flow.

The product of a vector A times a vector B is a second-order tensor and
involves nine terms.’ For example, the product UU produces nine terms; note
that U was defined in Eq. (6.7). If U is the  instantaneous velocity and is
replaced [via Eq. (6.91  by the sum of the mean velocity plus the fluctuation
u’,  then the product UU will contain nine terms of fluctuation products, as
well as nine terms of average products:

im= m + U’U (6.15)

where each term is a second-order tensor and is a representation of an array of
nine elements. Equation (6.15) is the vector counterpart of Eq. (6.14). Several
examples of the elements of Eq. (6.15),  taken term by term, are

uJJ,=~=  Dx,iix +u:2 (6.16)

uxvy=  i7&  +qq (6.17)

The other seven products follow similarly.

‘For  a brief discussion of tensors, see Section 2.4 and especially Eqs.  (2.40) through (2.46).
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At the beginning of this section, it was stated that the time average of any
fluctuating component is zero. This conclusion is logical when Eq. (6.8) is
examined:

U=O+U’ (6.8)

After all, the average velocity 8 is found by averaging U.  It is easy to prove
that v is zero by applying Reynolds rules to Eq. (6.8):

e=fi+s (6.18)

Since the first rule is that the average of an average is the average [cf. Eq.
(6. lo)],  this equation becomes

fl=u.+s (6.19)
or

v=o ( 6 . 2 0 )

The quantity 77; is a vector, and clearly each part must be zero in order
to satisfy Eq. (6.20):

~=q=~=o (6.21)

Even though c and q are zero, the quantity m will, not be zero in the
general case. Similarly, the quantity m, or c, is non-zero and must
always be positive as well. The quantities u:‘,  v,  and u:”  must often be
computed for turbulent flows. The equation for u:‘,  sometimes called the
mean square of U:, is

~=fIT(LI:)2dr=fIT(LI,_~)2dt

0  . 0

where Ui is replaced with its definition, Eq. (6.5). This equation is similar to
Eq. (6.4),  which defined the mean of U,. For equally spaced digital data, Eq.
(6.22) is approximated by

(6.23)

Again, N is the number of points available to compute OX  and therefore v:‘.
The equations for the other two components in the y and z directions are
analogous to Eqs. (6.22) and (6.23).

Since the property r,!~ in Eq. (3.60) refers to the instantaneous value at
any point of time, it follows that

qJ=lj+lp’ (6.24)

In heat or mass transfer in a turbulent flow field, not only is there a
distribution of velocities but a distribution of fluctuating temperatures or
concentrations as well. The following equations based on Eq. (6.24) may be
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written:
pc,T = c&@  + PT’  + p’T  + p’T’) (6.25)

c*=cA+c:, (6.26)

p=D+p’ (6.27)

In Eq. (6.25),  cP  has been assumed constant; the product  (pT)  is first
expanded as illustrated in Eq. (6.24) and the product (pT)  simplified as
illustrated in Eq. (6.14). Rigorous solutions of turbulent heat or mass transfer
problems must consider random fluctuation of p, T,  or CA as well as the
velocity. Of course, for incompressible flow with constant properties, there are
no fluctuations in p or cP, and Eq. (6.25) simplifies considerably:

pc,T = PC,@ + T’) (6.28) *

A familiar analogy to the mean and fluctuation velocities can be found in
electrical power applications. In the United States, electric lights, clocks,
televisions, etc., are powered by electricity at 115 volts and 60 hertz (cycles per
second). In this case, the average voltage E is zero, and the instantaneous
voltage (E) is identical to the fluctuation in voltage (E’). Clearly, this is a
special application of the analysis just presented for turbulence. Figure 6.9
shows a typical sine wave electrical signal. The current alternates in direction,
and 115 volts corresponds to the root-mean-square (r.ms.) voltage. The mean
square of a quantity is computed by integrating its square over a period of time
T [see Eq. (6.22) for the mean square of UJ].  The root-mean-square is simply
the square root of the mean square. In turbulence, the concept of mean square
is applied to fluctuations about a mean quantity. In the study of a.c. electricity,
where ,!? is zero, the r.m.s. voltage is defined by

(6.29)

For a pure sine wave:

e = fl= 0.707E,, (6.30)

The term i? is similar to p, which appears in Eqs. (6.16) and (6.22).

+115

E(volts)  0

+162.66

FlGURE  6.9
A sine wave electrical signal.
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Note that direct current (d.c.) has a non-zero ,!?;  direct current is used in
some electrical systems and in low-voltage applications. The r.m.s. voltage
about the mean in d.c. circuits is ideally zero because the voltage is held
constant and there is no fluctuation about the mean, i.e., E’ is zero.

The mean square concept as expressed by Eq. (6.22) may be applied to
any of the fluctuating variables cited in Eqs. (6.14) through (6.28). The
fluctuating velocities are also used to compute the intensities of turbulence.
The intensity of turbulence is defined as the ratio of the r.m.s. value of the
fluctuating component to the magnitude of the velocity vector, expressed as a
percentage:

r2I JfJG
x u

(6.31)

The equations for y and z components are similar. All intensities are, of
course, zero in laminar flow, up to lo-15  percent in turbulent pipe flow and as
much as 100 percent in a mixing vessel near the impeller.

Example 6.4. For the data of Example 6.3, calculate the three r.m.s.  values of
the fluctuating velocitieae  corresponding intensities of turbulence, and the
cross turbulence term U#..  Express the cross term as a ratio to the r.m.s.
values .

-
Answer. Equation (6.22) gives the mean squared value U:‘,  and the r.m.s.  value
is the square root. The z component of velocity will be illustrated; Eq. (6.22) for
the I component becomes

The trapezoid rule as given by Eq. (viii)  in Example 6.3 will  be used to evaluate
the integral in Eq. (i):

=--lAt[tu,-~):+((I.-~):+2~([1,-cI,):]T 2
(ii)

For T and At equal to 0.12 s and 0.01 s respectively, the mean square velocity in
the z direction is

u:‘=
(0.12)(  2 >
-!- 0.01  [(0.19  - 0.15)*  + (0.17 - 0.15)*  + (2)(0.16  - 0.15)*

+ (2)(0.17 - 0.15)’ + . . . + (2)(0.17  - 0.15)‘+  (2)(0.18  - 0.15)7
= 8.917 X 10m4  m* s-’ (iii)

where the value 0.15 is the mean value of U, from Eq. (xii) of the preceding
example. The r.m.s.  value is obtained from Eq. (iii) by taking the square root:

e = v8.917  x 10e4 = 0.02986 m s-l 64
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Equation (6.16) relates the mean square velocity to the square of the mean
plus the mean of the square of the fluctuating velocity; for the z direction, Eq.
(6.16) becomes -

@  = (4)’  + u:’ (9

After substituting in the numbers and taking the square root, the r.m.s. value of
the instantaneous z velocity is

l@  = d(O.15)’ + 8.917 x 10e4 = 0.1529 m s-’ (9

Note that the result in Eq. (iv) is the r.m.s. value of the fluctuating velocity as is
commonly reported for turbulence data, while Eq. (vi) is the r.m.s. value of the
instantaneous velocity (of less interest).

It is also possible to evaluate E directly through use of the following
equation:

Applying the trapezoid rule to Eq. (vii) results in

{(0.19)*+ (0.17)’ + (2)[(0.16)*  +, . . . + (0.18)*]}

=2.807x  10-3/0.12=0.02340  m’s-’ (viii)

The i.m.s.  value is

Cz = VOm  = 0.1529 m s-r (ix)

This answer agrees with that in Eq. (vi) because the equations used are
mathematically identical.

The r.m.s. values of the fluctuating velocities can also be calculated from
Eq. (6.23), which is recommended for large samples. Equation (6.23) for the
mean square velocity in the z direction is

Using this equation, the mean square fluctuating L velocity is

[(0.19  - o.1523)2  + * . . + (0.17 - 0.1523)‘]

= 8.947 X lo-’  m2  sm2

The corresponding r.m.s. value is

e = d8.947  x 10e4 = 0.02991 m s-i (xii)

Agreement between Eqs. (iv) and (xii) is excellent. It is more common to find
that the error in the fluctuating velocity exceeds that in the mean velocity,
because errors are compounded as a result of subtracting the mean from the
instantaneous velocity.
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The answer in Eq. (xii) can be used in calculations similar to those in Eqs.
(v) through (ix). Using Eq. (v):

e = ( oz)*  + v:’  = (0.1523)’ + 8.947 x 10e4 = 0.02409 m*  s-* (xiii)

The r.m.s.  value is

fl=~O~=O.l552ms-’ (xiv)

This answer compares with that in Eq. (ix) by 1.5 percent.
The intensity of turbulence in the z direction may be obtained from

applying Eq. (6.31) to the z direction:

I, = lOO~/U  = (100)(0.02986)/(3.624)  = 0.82 percent (xv)

where 3.624ms-’  is the magnitude of the velocity [Eq. (xiii) of Example 6.3).
Similarly for the x and y directions:

@=3.63ms-’ (xvi)

rz=0.41ms-l (xvii)

I, = 11.37 percent (xviii)

rE=0.288ms-’ (xix)

G!T=0.069ms-1 (xx)
I, = 1.92 percent (xxi)

Computation of the quantity U:fJi  is more tedious. First, Eq. (6.8) is used
to obtain ZJ:  and 17;  at each instant in time; the product of these is then
integrated as before. For example, for time zero:

lJ:  = 3.84 - 3.61 = 0.23 m s-’ (xxii)

Ui=O.43-0.28=  O.l5ms-’ (xxiii)

Z/:U;  =(0.23)(0.15)=0.0345  m’s-* (xxiv)

These calculations are repeated for the remaining points. The average is obtained
from

- I
U;U;=f  r(U~U~)dr=0.01108m2s~2 (xxv)

0

The ratio requested can then be calculated as

U;U;/(eq)  = (0.01108)/[(0.41)(0.069)]  = 0.39 (xxvi)

6.2.2 Reynolds Equations for Incompressible
Turbulent Flow

Equation (3.78) is the general property balance for constant density and
constant transport coefficient 6:

sly/at  + ((I * V)lr, = $0 + qv*  q) (3.78)

This equation can be applied to turbulence with the instantaneous vector
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velocity given by Eq. (6.8) and the instantaneous property given by Eq. (6.24).
Substitution of Eqs. (6.8) and (6.24) into Eq. (3.78) yields an equation that
involves average and fluctuating components:

alyiat + afiat  + (De  v)$  + (0.  v)qf  + (u’ - v)$  + (47’  - v)f
= z + lj& + 6(V2  ij)  + S(V q’) (6.32)

If this equation is averaged by applying Reynolds rules of averaging, the
following equation is obtained, after considerable manipulation:

-;-
&j/at  + (U - V)7j + (LI’  - V)gJ’  = l/J, + qv*  q> (6.33)

Again, without showing the details of the mathematics, this equation can be
rearranged to T-

&j/at  + (6 - V)$ = ?/lo + 6(V2 I&  - [V - ( U’V’)] (6.34)

Note that this equation has the same form as the original equation, Eq. (3.78),
except that average properties now appear in place of point properties, and an
additional term is included that is associated with the fluctuations. Equation
(6.34) cannot be solved, even with the assumptions of constant density and 6
already made, for there are more unknowns than there are available
equations. It should be noted that Eq. (3.78) is determinate in the sense that
there are as many equations as unknowns. Equation (3,78)  cannot be solved
analytically because of the complexity of the instantaneous velocities and
properties. It is clear that one pays quite a penalty for the use of averages, i.e.,
more unknowns than equations.

Since neither Eq. (3.78) nor Eq. (6.34) may be solved analytically, the
possibility of solving Eq. (3.78) by direct numerical means may be considered
[B7]. Such a solution bypasses the last term in Eq. (6.34),  which was
introduced through Reynolds rules of averages and the presence of which
results in more unknowns than equations. Such an approach encounters the
difficulty that instantaneous U and q  in Eq. (3.78) fluctuate in three
dimensions even for a turbulent flow in one direction, as in a pipe. Thus, the
numerical solution is inherently three-dimensional. Turbulent eddies range in
size from a fraction of a millimeter to those approximating the size of the
system (i.e., a meter). This range can be of order of 1000 in any one direction.
A solution space to be solved numerically would therefore comprise a cube
1000 units on each side or a numerical mesh of (1000)3, which is lo9  and is
indeed a large number. Thus, a full direct numerical solution has yet to be
accomplished, and the use of averages cannot yet be abandoned.

Over the years a tremendous amount of work has been focused on
Reynolds’ rules of averaging and the resultant Eq. (6.34). In most practical
applications, only the average quantities (0, F, CA,  or p) can be easily
measured. For example, a thermometer or thermocouple in a pipe line
measures 7. Examination of Eq. (6.34)hows  that it contains only one term
with instantaneous fluctuations, [V . (U’q’)],  whereas in Eq. (3.78) every term
contains instantaneous properties.
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The nature of Eq. (6.34) can be seen more clearly if some of the
equations for transport are written out in detail. To repeat, both the density
and the transport coefficient are assumed constant in the following equations.
The x component equation for momentum is found by substituting for t+!~  and
tf  in Eq. (6.34):

= -g + p(V” Ox) - (p)($ (u:“) + ; (m) + -$ (m)) (6.35)

where the operation (ii - V) from Table 5.1 is in this case

(6.36)

Also, from the same table the term V* ux  is

The term [V - (WI/J’)] is of the form (V  - A), which from Table 5.1 is

(6.37)

(6.38)

Thus, the term [V  - (U’I#‘)] becomes

[P.(~,]=~(~)+~(~)+~(~) (6.39)

The x component of momentum is found from Eq. (6.39) with I# equal to pox
and I&’  equal to pll::

p[v~(~)~=p(-$~)+;(LI;u:)+~(m)) (6.40)

The equations for the y and z components of momentum also follow from Eq.
(6.34):

= - $ + y(V* &) - p($ (m) +; (ul’)  + 5 (m)) (6.41)

p$+p(O.  v>u*
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The equation for heat transport is

=E+k(v*T)-pc&U:T’)+-!(@F)+ ; (m)) (6.43)

The equation for mass transport is

aC,--$+(ii.V)C,=~+D(V2C,) (qzg --&Ci)
(6.44)

The mass generation term might involve a contribution from a chemical
reaction such as

.A,G  = -k,cn,C (6.45)

which for it = 1 is klcA  and for n = 2 is k2(cL + c).
The overall mass balance equation (continuity) can also be worked out in

a similar manner. Equation (3.71) reduces to

apiat = -P * (ial - P.  (p’W1 (6.46)

If the flow is incompressible, Eq. (6.46) reduces to

(V.O)=O (6.47)

This result is similar to Eq. (3.74). but now applies to the mean velocity. By
use of Eq. (6.8),  it can be easily shown that

(V-u’)=0 (6.48)

A comparison of any of these equations [Eqs. (6.35),  (6.41),  and (6.42)]  with
the corresponding laminar flow equations of Chapter 5 shows the difference to
be the appearance of time-averaged terms and the additional term involving
fluctuating quantities. These nine additional terms are called the Reynolds
stresses. Equations (6.35),  (6.41) and (6.42) are commonly called the Reynolds
equations for turbulent flow with constant density and transport coefficients.

6.2.3 Reynolds Stresses

Nine terms can be obtained by multiplying the density by [V  - (m)], which is
the last term in Eq. (6.34) with (pV’)  substituted for I/J’. These terms are
called the Reynolds stresses. Specifically, the Reynolds stress tensor is
p(U’u’),  which has nine components, as seen from inspection of Eqs. (6.35),
(6.41) and (6.42). When completely written out, the Reynolds stress tensor is

LI:’ mu:v:
p(U’v’)=p  trlrr:  q

-(

m (6.49)
cl:u:(I:(II,p
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FIGURE 6.10
Turbulent stresses for pipe flow. (From L.uufer,  NACA Report  1174 (1954). By permission.)

Each element on the right-hand side of Eq. (6.49) is called a Reynolds stress
because those terms arise from the Reynolds rules of averaging. Less
commonly, those terms are called eddy stresses or turbulent stresses. There are
nine Reynolds stresses in total, six of which are different, since UiV: equals
m and so on; the tensor on the right-hand side of Eq. (6.49) is said to be
symmetrical. Four of these fluctuating velocity elements in Eq. (6.49) were
calculated in Example 6.4 for the data of Example 6.3. The Reynolds stresses
are obtained by multiplying the velocity terms by the density.

The velocity components of the normal Reynolds stresses pp,  pv,
pc  can be measured with the hot-wire or hot-film anemometer shown in Fig.
6.4; however, a more complex multi-element probe must be used for the cross
stress measurements. The instantaneous output from the unit in Fig. 6.4 can be
directed into a root-mean-square meter to measure q.  In Fig. 6.10, these
terms are plotted as a function of dimensionless distance for pipe flow. The
normalizing velocity U*  and the dimensionless distance y+  used in Fig. 6.10
will be explained in the next section. 6  Reynolds stresses are also often plotted
as a fraction of the maximum center line velocity. There is some variation of
the Reynolds stresses with Reynolds number, but these are not shown in the
figure except as a range of the values reported in the literature. Near the
center of the pipe the effect of Reynolds number is quite small. For the region
close to the wall, which is the region of most interest for turbulent transport
phenomena, Fig. 6.11 shows that, as expected, the fluctuating terms go to
zero. For the area near the wall, the effect of Reynolds number is large and is
shown in Fig. 6.11. A review and summary is available [B6].

6See  Eq. (6.53) for CI’ and Eq. (6.79) for y+.
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FIGURE 63
Turbulent stresses near the wall of a pipe; (r. - r)/r,,  < 0.1. (From Laufer, NACA Report  2174
(19.54). By permission.)

6.2.4 Turbulent Flow in Channels and Pipes

Typical coordinates used for a channel are shown in Fig. 6.12(a).  A channel is
formed by two parallel plates, infinitely large in the z direction so that the
partial derivative of any variable, such as the time-averaged velocity, with
respect to z is zero. The time-averaged velocity is also constant in the x
direction if the density is constant. To prove this, one need only repeat
Example 3.7, this time using the continuity equation for turbulent flow as given
in Eq. (6.47). Since the equations used differ. only in the overbar,  the final
results will be the same, but will apply to the time-averaged velocity.

The velocity profile in a channel varies from zero velocity at the wall to
the maximum velocity at the center line. Here y is the distance from the center
line, in contrast to the flat plate problem in Fig. 6.2 for which y is the distance
from the flat plate surface.

-Y‘>

(a) Channel flow

FIGURE 6.12

(b) Pipe flow

Coordinate systems for flow in channels and pipes.
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Equation (6.35) when applied to steady-state turbulent flow in a channel
is simplified considerably. The term (ii - V)&‘;  is seen to be zero since both I$
and DZ  are zero and au&/& is zero because of continuity, Eq. (6.47). The
terms a(z)/&  and S’(U$Yi)/&  will both be zero when the average is for a
long time period. Hence, Eq. (6.35) reduces to

(6.50)

In Eq. (6.50),  ordinary differentials can be used since (@/dx) is a constant and
the only variation is with y. The appropriate boundary conditions are

~~(y=fy,)=O
W(y=fy,)=O (6.51)

P(X = 0) = Pl P(X  = u = P2

Equation (6.50) can be integrated once and rearranged to yield

P(YlYoW’)”  = -PW;MY)  + PEql (6.52)

where the f * tia* is defined by

(U*)”  = zwlp  = cy,lp)[(-&J/L] , (6.53)

The wall shear stress rW  was discussed in detail in Chapter 4 [see Eq. (4.80)].
Note that the friction velocity has units of length per time. The friction velocity
U* used here should not be confused with the molar velocity V* given in Eq.
(3.23).

The equation corresponding to Eq.  (6.52) in cylindrical coordinates for
pipe flow is

p(rlro)(u*)2 = -j4(dmfr)  + p(m) (6.54)

where the coordinate system is in Fig. 6.12@).  The friction velocity for pipe
flow is

** (6.55)

where rW  is from Eq. (4.80). The shear stress was shown to be linear in Eq.
(4.81):

x,x  = W)[(-Ap)lL]  = (r/r& (6.56)

Equations (6.55) and (6.56) for rW  in terms of U*:

(6.57)

Equations (6.54) and (6.57) can be combined:

tn = -j@Jdr)  + p(u;u;) (6.58)

The shear stress rrZ in Eq. (6.58) contains one term that looks identical to
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Newton’s law of viscosity, Eq. (2.5),  except that (I,  is replaced with 4.  On
this basis, it is possible to consider that rrZ  contains a laminar-like contribution
(henceforth to be called rr.)  and a turbulent contribution (denoted as rT):

where
trz = TL +’  r-f’ (6.59)

tL  = -p(d@dr) (69
tT = p(m) (6.61)

Note that Eq. (6.60) is the same.  as the defining equation for viscosity, Eq.
(4.18),  but with the time-averaged velocity being used. This idea of a laminar
contribution and a turbulent contribution will be carried forward in the next
sections.

The only restriction on Eq. (6.54) for pipe flow is constant physical
properties. Unfortunately there are still two unknowns in the one-ation,
Eq. (6.58), i.e., & and m.  A second equation relating ii, and V:U: does
not exist. There is no solution that yields both the variation of oZ  with r and
the quantity cl:v:.

The dilemma of having more unknowns than equations is fundamental
and insurmountable when analyzing problems in turbulent flow. Practical
problems require average properties such as &; Reynolds rules are required to
introduce average properties into Eq. (3.60) or (3.78); Reynolds rules
introduce terms such as the Reynolds stresses; no new equations are available
to relate the new terms to the average property, so no solution exists. This
inability to solve exactly for the variables of the turbulent flow system
constitutes one of the major problems of turbulence.

There are ways of generating additional equations; however, even more
unknowns are always introduced in the process. Accordingly, approximate
solutions or correlations make some reasonable assumptions about one of the
unknown terms so that a solution is possible. Often a simple mechanism for
the turbulence is assumed. Then the nature of the Reynolds stress is known,
and the form of the velocity distribution is derived therefrom.

6.3 TURBULENCE MODELS

The problem of having more unknowns than equations is called the “closure
problem of turbulence”. This section will cover some of the earlier and
well-known attempts at closure. More modem theories will also be presented.

63.1 The Boussimsq Theory

In the last section, Eq. (6.59) separated the shear stress into a laminar-like
contribution and a turbulent contribution. Boussinesq’s idea [B4] was to
express Eq. (6.61) in a form similar to the laminar shear stress-shear rate
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equation, Eq. (6.60) or Eq. (4.18):

rT  = p(m) = -&(auz/ar) (6.62)

In Eq. (6.62),  the term a&/%,  which is the slope of the velocity profile in the
pipe or channel, is the shear rate, and E is ca$d-the  eddy viscosity, Note that E
is defined very similarly to p.  Combining gqs. (6.62) with (6.58) and using the
linear variation of shear stress of Eq. (6.57) gives

t,= = &/r&U*)‘=  -(p  + i5)(dUJdr) (6.63).

The eddy diffusivity of morn&turn  E, is defined ‘as follows:

Then Eq. (6.63) becomes

trz  = p(rlr&U*)”  = 4~ + &) i (p&t)

664)

Equation (6.65):can  be converted to a dimensionless form involving the
ratio of the eddy diffusivity of momentum to the kinematic viscosity:

Equation (6.66) applies for the case of ’ constant density. Example 6.5
illustrates the use of Eq. (6.66) in conjunction with some velocity profile data.

Equation (6.65) does not solve the closure problem as there are still two
unknowns and onlye  equation. The velocity is still unknown, and-now E or
E, has replaced LJ:U: as an unknown. The eddy viscosity E is associated with
the turbulent contribution to the shear stress; it is caiculated from the gradient
of the mean velocity anJar  after subtracting the laminar contribution to the
shear stress. The eddy viscosity is also known as the turbulent coefficient or
exchange coefficient.

The molecular coefficient of viscosity ,u  is defined in laminar flow by Eq.
(4.18). It is independent of the Reynolds number, the flow geometry, the
position in the fluid, and, for Newtonian materials, the shear rate. The eddy
viscosity, on the other hand, is dependent on all of these.

The concept of eddy diffusivity of momentum is easily extended to the
transfer of heat and mass:

(q/A),  = --(a + En) $  (PC, F’) (6.67)

(N,/A),  = -(D  + E,)(&,/dr) (6.68)

where EH and EM  are the eddy thermal diffusivity and the eddy mass
diffusivity, respectively. Note that E, and EM  can have three components, one
for each coordinate direction; the eddy diffusivity of momentum E, may have
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as many components as there are Reynolds stresses, i.e., nine according to Eq.
(6.49).

The concept of eddy transfer has been applied to many engineering
problems involving heat and mass transfer in turbulent flow. Generally, the
method is not the most satisfactory, and a great deal of caution must be
exercised so that improper assumptions will not be made. For example, the
eddy viscosity values are constant as an exception rather than as a rule, and in
any practical case the various eddy diffusivities are not equal to each other.
Nevertheless, the use of the eddy viscosity concept is one of the most powerful
practical tools available for treating turbulent flay problems, and consequently
it will be considered further. If the assumption is made that the various eddy
diffusivities are equal to each other and that the molecular properties are
known, there is a possibility of solving certain mass and heat transfer
problems. Although the assumption is only approximate over most of the
turbulent flow and probably quite invalid in the vicinity of the wall, it is in
many cases the only method available for even an approximate solution. An
example of the method will be given near the end of this chapter when further
necessary information on the turbulent velocity distribution has been
developed.

6.3.2 The Prandtl  Mixing Length

The concept of eddy viscosity replaced one unknown, the Reynolds stress, with
another. The dependence of the eddy viscosity on the variables of the system
must still be established for the eddy viscosity to be useful.

The early researchers usually formulated some mechanistic picture of the
turbulence. One of these theories was that of Prandtl who expressed the eddy
stress in terms of the mean velocity by means of a length that is characteristic
of the degree of the turbulence. Prandtl called his new variable the mixing
length, symbol f,  which he characterized as the length of the path of a mass of
fluid before it loses its individuality by mixing with its neighbors. This mixing
length is analogous to the concept of the mean-free-path of the kinetic theory
of gases. The difference between laminar flow and turbulent flow is explained
as the difference between the exchange of individual molecules between layers
and the exchange of whole groups of molecules. Prandtl’s theory assumes that
the momentum of a group of particles or fluid mass in one layer is transferred
to$another  layer.

In Fig. 6.13, a mass of fluid is assumed to have a velocity ozi,,i  in a stream.
A velocity exists in the direction perpendicular to the flow, which displaces this
mass of fluid a distance 1 in the radial direction. The change in velocity is the
difference between the velocity at the point of origin and that at its new
position which is approximately given by /(du=/dr).  The fluctuation U:
experienced at the new point is this difference; i.e.,
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FIGURE 6.U
Mixing length for flow in a pipe.

The motion at right angles to this, Ui, must be of the same order because of
the assumed momentum conservation, and is taken to be equal to Vi:

Thus, the eddy stress is

(6.70)

(6.71)

The partially integrated $%eynolds  equation (6.54) can be combined with
the expression obtained from the mixing length concept:

(6.72)

Equation (6.72) was solved by Prandtl assuming that the mixing length is
directly proportional to the distance from the wall. In addition, Prandtl
assumed that the shear stress was constant and equal to the wall value over the
region of the flow being considered, and further that the viscous contribution
was negligible. Thus, for fully developed turbulent flow the assumptions are as
follows.

1. In the region being considered, the turbulent effects are much larger than
the viscous effects. Thus, the term /A(&~/&)  in Eq. (6.72) can be
neglected.

2. In the region being considered, the stress r,=  can be taken as t,.  In other
words r equals r,.

These two assumptions are rather extreme, and Prandtl’s mixing length theory
is justly criticized on this basis. However, the final results support the
assumptions and Eq. (6.72) has been greatly simplified; the densities cancel
and after taking square roots, the result is

(6.73)
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The third assumption is that the mixing length is proportional to the distance
from the wall (y) k

I= KY (6.74)

where K is a universal constant and

y=r,-r (6.75)

Equation (6.75) is used to change the variable of integration from r to y, and it
follows easily that

U,/U’=flny+C (6.76)

Equation (6.76) is the logarithmic velocity distribution for turbulent flow and is
usually written as

-e (6.77)

where the dimensionless velocity U+  and dimensionless distance y+  are defined
by ,

(J+=$

Yu* Yu*P
y+=.,--P

(6.78)

The difference between Eqs. (6.76) and (6.77) is in the definition of the
constant of integration; otherwise, the equations are the same. The two
constants K and B must be determined from the data obtained by measure-
ments of the velocity distribution in the turbulent flow.  Equation (6.77) has
proved useful in correlating velocity profile data and will be referred to later in
the appropriate section.

In the region very near the wall, Prandtl assumed that the fluid motion
was greatly influenced by the wall through viscous forces. In this region, often
called the viscous sublayer, it is the turbulence effects that are negligible and
Prandtl’s first assumption of negligible viscous effects must be modified. Thus,
in this region he assumed that the first term -p(dii,/dr)  in Eq. (6.54) was
important and that the second term pm involving the Reynolds stress could
be neglected. Prandtl also assumed that r/r0  is unity in the near-wall region.
After changing the variable of integration by use of Eq. (6.75),  Eq. (6.54)
b e c o m e s

Equation (6.80) can be integrated with the boundary condition of zero velocity
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at the wall:

p(“*)2=y (6181)

This equation can be rearranged to

Dz  yu*-=-
u* Y

or in terms of the dimensionless variables:

(6.82)

u+ =y+ (6.83)

Thus, very near the wall, Eq. (6.83) is valid; away from the wall, Eq. (6.77) is
valid. As will be shown later by the available data, Eq. (6.83) is valid between
y+=O  and y+=S.

Example 6.5. Figure 6.6 plotted uZ/uZj,.  ,,,*=  versus r/r0 for three Reynolds
numbers. Using the points at NRC equal to 100000, prepare a graph of E./v
versus (1 - r/To).  The following information is available:

ti,.,,,/V* =24.83 (9
r,U*lv  = 2312 (ii)

Answer. Eq. (6.66) is used to find E,lv:

EZ -@4l5bJ
/
Y- 1

v = &6'&~)
(6.W

The s lope of  the  data  in  Fig .  6 .6  i s

r, do
SLOPE = -ii -L

=.  maX  dr

Combining Eqs .  (6 .66)  and ( i i i )  g ives

(iii)

EZ r,U*lv r/r0-=- - -
v C.‘,,,,.!U*  S L O P E  .1

Using Eqs. (i) and (ii), Eq. (iv) simplifies to

69

To calculate the eddy viscosity ratio EJv,  the term SLOPE [cf. Eq. (iii)] is
determined from Fig. 6.6 at a Reynolds number of 100000 by using a ruler to
draw a tangent at each point given in Table 6.3. That answer and r/r0 allow
calcula t ion of  E,/v  from Eq.  (v) .  The resul ts  are tabulated in Table 6.4.

Examinat ion  of  F ig ,  6 .6  indica tes  tha t  i t  i s  prac t ica l ly  imposs ib le  to  obta in
an accurate slope  of  the  veloci ty  prof i le  near  the  center  l ine ,  At  the  center  l ine ,
Eq.  (v)  becomes indeterminate because both the numerator  r/r0 and denominator
SLOPE are zero. Therefore, the eddy viscosity is undefined. Moreover, it is
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TABLE 6.3 .
Tbe velocity distribution

(1  - r/d (1  - r/r01

0.00 0.00 0.50 0.93
0.025 0.63 0.60 0.95
0.05 0.70 0.70 0.97
0.10 0.77 0.80 0.98
0.20 0.84 0.90 0.99
0.30 0.88 1.00 1.00
0.40 0.91

impossible  to  obta in  meaningful  values  of  E, in  the  cen te r  reg ion .  In  th i s  reg ion
where  the  s lope  approaches  zero ,  even  very  prec ise  da ta  wi l l  y ie ld  s lopes  wi th
unacceptable scatter when differentiated. An alternative is to model the ex-
perimental  data .  In  Table  6 .3,  the four  points  between y/r,, of  0.7 and 1.q  form a
s t ra ight  l ine-c lear ly  an  unrea l i s t ic  model .  Equat ion  (6 .77)  i s  commonly  used to
predict velocity profiles in turbulent flow. The chief limitation of Eq. (6.77) is that
it does not predict a zero slope at the center line (an unrealistic prediction). In

I
Table  6 .4 ,  a  model  in  the form of  Eq.  (6 .77)  was used,  but  the  s lope at  the  point
r/r,, = 0.04 is much too large.

In  summary,  an accurate  representat ion of  the  eddy viscosi ty  is  m d o u b t  i n
the  center  region of  the  pipe .  Popular  models  of  the  veloci ty  prof i le  yield  wide ly
varying slopes in the center region. Figure 6.14 presents a graph of the eddy
viscos i ty  ra t io  versus  d imens ion less  rad ius ,  us ing  Eq .  (6 .77)  to  represen t  the
center  region of  the  pipe.

TABLE 6.4
Calculations  for tbe eddy visqsity  ratio, E,/v

r/r0 w%. 111 SLOPE &Iv

O.OCKl l.ooo O.OCHl Indeterminate
0.040 0.997 0.105 35.4
0.100 0.991 0.112 84.4
0.200 0.981 0.126 150.8
0.300 0.%7 0.144 198.2
0.400 0.951 0.168 226.6
0.500 0.930 0.201 236.1
0.600 0.904 0.252 226.6
0.700 0.870 0.336 198.2
0.800 0.819 0.503 150.8
0.900 0.730 1.007 84.4
0.960 0.609 2.517 35.4
1.000 0.0 94.59 0.0
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FIGURE 6.14
Eddy viscosity ratio (E,/v)  versus
dimensionless  radius.

63.3 Analogies

Another approach in analyzing turbulent transport data is to assume that the
basic mechanism of transfer is the same for heat, mass, and momentum.
Equation (6.66) expressed the eddy diffusivity of momentum in terms of the
slope of the velocity profile, which is reasonably well-known from equations
such as Eq. (6.77) and (6.83). The simplest analogy is ‘to equate the eddy
diffusivity to the eddy heat and mass diffusivities:

E,=EH=EM (6.84)

Then Eqs. (6.67) and (6.68) can be easily integrated and solved with the
appropriate boundary conditions. This approach assumes that the mechanism
of turbulent transfer of heat or mass is by eddy motion and and that this
mechanism is exactly the same as that for momentum. The assumption of
equal eddy properties is one analogy between the mechanisms of heat, mass,
and momentum transfer.

Example 6.6. Show how the  analogy of equal eddy properties may be used to
estimate the temperature distribution in water flowing in a heated pipe. Assume
for this problem that f is a function only of radius and not of coordinates z or 8.

An.wer.  The  equation for temperature distribution will be derived from Eq.
(6.67), which after  separation of variables is

dr
- = -[(&lk/A)d  dfa+E,

(9

From Eq. (6.56):

It is assumed that in general

(6 .56)

(ii)
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For heat  transfer,’  Eq.  ( i i)  becomes

(q/A), = ; (q/A),,, (iii)

Eq. (i) becomes

‘0 rdr
(rJ(cu+EH)=

Upon integration of the right-hand side, Eq. (iv) is

(iv)

where (Y  is constant [k/(pc,)] and E, depends on the Reynolds number as well as
the radius. Equation (6.84) is used to replace EH  in Eq. (v):

The right-hand side of Eq. (vi) can be determined for a given set of T,,,  (q/A),,,,
p,  c,,, (Y, and E,  values such as those given in Table 6.4. However, Table 6.4
includes too few data points in the wall area to allow an accurate integration of
Eq.  (vi). A much better procedure is to use Eq. (6.66),  to evaluate E,  as a
function of radius, with the slope dU,/dr  determined from an empirical
correlation. Such a solution will be detailed in Example 6.8.

The basic equations defining the eddy diffnsivities were given as Eqs.
(6.65) through (6.68). The general equation which encompasses these is

Y, = -(6 + E)(dl#ldr) (6.85)

where E is E,,  EH,  or EMI.  In Eq. (6.85) the variables Y, 6, and q  are defined
as usual.

In many practical problems, the transfer at the wall is the main item to be
predicted; thus, simplified forms are often used in place of Eq. (6.85). For heat
transfer, the empirical equation is defined as

(q/A).,  = WV  - T,“,) (6.86)

where h is called the heat transfer coefficient and may have units of
(J m-l s-‘-K-‘).  For mass transfer, the empirical equation is

U’LIALw  = k&w  - CA,  we) (6.87)

where /CL is  the mass transfer coefficient  and may have units  of
[(kmolm-’ -’s )(kmol m-‘)-‘I. For momentum transfer, the empirical equation

7Equation  (iii) is approximately correct for heat transfer under the conditions of this problem:
steady-state conditions, constant wall heat flux, and a location far away from the entrance.
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takes the form:

(6.89)

where (-Ap/L)  is the pressure drop per unit length. Note that the friction
factor is dimensionless, in contrast to h and kf. A more detailed discussion of
the friction factor will be given in Section 6.5.

The empirical coefficients h,  kf, and f are determined from correlations
of vast amounts of experimental data. The general form of these empirical
equations is

‘Irl,W = E(4w  - ewe) (6.90)
For heat transfer:

EH = h /(PC,) (6.91)

where I/J  is defined as ppt  for constant properties (PC,).  For mass transfer:

Ew=kd (6.92)

For momentum transfer:

(6.93)

If the transfer coefficients 5 are equated, the Reynolds analogy is found:

Equation (6.94) is the Reynolds analogy [R2],  which for heat transfer is

h/&J =fuz,  a&
For mass transfer, the Reynolds analogy predicts

(6.95)

WUz,  ave  =f 12 (6.96)

This analogy is reasonably valid for gas systems but should not be considered
for liquid systems. The development of this analogy is similar to the
development of the transport equations in laminar systems. Other analogies
are in the literature. All of these involve a high degree of empiricism in order
to correlate heat and mass transfer coefficients and friction factors with the
important variables. Further discussion of the analogies is delayed until
Chapter 11.

6.3.4 Film and Penetration Theories

In contrast to the analogies that say nothing about the mechanism except that
it is the same for all three transfers, another approach is to model the specific
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fluid motions that occur in the flow. These motions are very important in the
mechanism of heat or mass transfer under flow conditions. Actually, one such
model of turbulence has been already presented, at least for a part of the
turbulent flow; that is, the Prandtl mixing length picture of Fig. 6.14 with the
resulting analytical expression for the velocity distribution with the two
empirical constants given by Eq. (6.77). Such attempts at modeling specific
motions in turbulent flow are still at the frontiers of science. Perhaps as more
insight into the mechanism of turbulence is gained, better models will be
proposed than exist presently.

The simplest model is the film theory based on Prandtl’s mixing length,
the development of which is largely due to Lewis and Whitman [Ll, L2, Wl].
In the film theory, it is assumed that the total resistance to heat or mass
transfer is the same as the resistance of a “hypothetical laminar layer” of finite
thickness adjacent to the wall to or from which the transfer is occurring. It is
sometimes assumed that the effective film thickness of this layer is equal to the
thickness of the “viscous sublayer” where Eq. (6.83) applies. Based on the
actual velocity distribution data to be discussed later, this thickness cor-
responds to a y+  of 5. For equimolar counter diffusion, Fick’s law can be
integrated over the arbitrary, effective small distance Ayr  with the assumption
of a linear concentration gradient:

(6.97)

where Ayr  is the distance necessary to make the concentration at the outer
limit on the integration equal to the average bulk concentration as shown in
Fig. 6.15. If Eqs. (6.87) and (6.97) are compared, one sees that the mass
transfer coefficient kf is effectively (DlAyr).  Unfortunately, Ayr  is unknown,
although it could be taken as that distance equivalent to a y+  of 5. If Ayr  is
taken as a constant at this or any value, the film theory predicts a first-order
dependence of the mass transfer coefficient on diffusion coefficient. Experi-

Distance from wall

FIGURE 6.15
Film theory for mass transfer at the wall.
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mentally, a D” dependence is observed where n may vary from almost zero to
about 0.9 [TS].  Probably the most serious shortcoming of the film theory is the
observation, cited earlier, that the mechanism of turbulent flow in contact with
a wall (the viscous sublayer  region) simply does not involve a laminar sublayer
and that disturbances actually occur right at the wall.

Recognizing the extreme importance of a small amount of eddy motion
near the wall, ‘many authors have attempted to determine empirically the eddy
diffusivity in this region. The theory given by Eq. (6.68) is most often used
with the assumption that the eddy diffusivity for turbulence and mass are the
same [Eq. (6.84)].  Murphree [M4]  made the assumptiorrthat  the eddy viscosity
is proportional to y3  and derived a corresponding equation for a nondimen-
sional form of the mass transfer coefficient. Lin, Moulton, and Putnam [L3],
who made interferometric measurements of concentration profiles in turbulent
flow, inferred that the eddy diffusivity of mass is predicted by

EM  = v(~+/14.5)~ (6.98)

Using this eddy diffusivity, they derived an expression for the nondimensional
form of the mass transfer coefficient and by use of Eq. (6.84) inferred the
nature of the velocity profile. Deissler [D2] proposed that

E,  = EM  = (r~‘~~y)[l-  exp(-n*  aXy/v)] (6.99)

where n = 0.124. Notttr and Sleicher [N2] confirmed the third power depend-
ency by an empirical analysis of the available high Prandtl (c,plk)  and
Schmidt (p/pD)  number data for heat and mass transfer at a wall. On the
other hand, Shaw and Hanratty [Sl]  more recently obtained new data that
indicated a 3.38 power dependency of EM  or E,  on y. Their data imply that
any simple model that would give rise to integer values cannot be correct.
Fractional powers might result from the nonlinear terms in Eq. (6.44),  and
these would have to be modeled as well.

The penetration theory, introduced by Higbie [H4],  represents an
entirely new approach to the prediction of mass transfer coefficients. Higbie
was interested neither in the problem of turbulent mass transfer nor in
solid-liquid contact. Higbie predicted the mass transfer between gas bubbles
and a liquid, both of which were in laminar flow and in contact for short
periods of time. Even so, his approach has wide application. Higbie assumed
that the liquid could be considered as a semi-infinite medium and represented
the transfer by the unsteady-state equation:

acA/at  = D(a2cA/ay2) (6.100)

This equation can be solved with certain specific boundary conditions and then
used to calculate the mass transfer rate at the wall as

($),  w = 2($IR@A -  CA,,) (6.101)

where t, is the contact time of the fluid element with the wall. When Eq.
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(6.101)’ is compared to Eq. (6.87),  a 0.5 dependency of the mass transfer
coefficient on the diffusion coefficient is obtained. Later investigators showed
that the experimentally observed exponent may be around 0.5 for, very short
contact times, but in general may vary from nearly zero to as high as 0.9 as
discussed earlier [T5]. The derivation of the penetration theory required some
unrealistic assumptions such as equimolar counter diffusion, laminar flow, and
no gas phase resistance. Still, it represented considerable improvement upon
the older film theory.

Danckwerts [Dl] extended Higbie’s work by assuming that fluid elements
in contact with the wall are randomly replaced by fluid elements that have the
bulk stream composition. The penetration theory postulated that every
element was removed at the mass transfer surface when it reached an age of tF.
On the other hand, Danckwerts’ surface renewal theory suggested that there
should be no correlation between the age of a fluid element and its chance of
being replaced. When the fluid element was at the wall, mass transfer occurred
according to the prediction of Higbie’s theory. Further modifications and
criticisms have been suggested by Hanratty [Hl],  Toor and ‘Marchello [T4],
Perlmutter [P3], Harriott [H2], Ruckenstein [R4],  Koppel, Patel, and Holmes
[K2] and Thomas and Fan [T2, T3]. One of the most realistic models yet
proposed along these lines is the one suggested by Harriott [H2]. In this
model, Harriott assumes that fluid elements penetrate wallward  with random
frequencies to random depths. Eddies which penetrate to y = H are assumed
to sweep out all material between y = H and y = m. During the interval
between the arrival of eddies, the concentration is assumed to obey the
unsteady-state solution by Higbie. The model contains three adjustable
parameters that are varied so as to fit experimental data. The mass transfer
coefficient varies with the 0.5 power for high diffusion rates (gases) and the
dependency increases as the diffusion rate decreases. The chief criticism of
Harriott’s approach is that it neglects all eddy transport between penetrations.
Further modifications were considered by Thomas and Fan [T&T31 and
Macleod and Ponton [Ml]. Bullin  and Dukler [BS]  introduced an efficient
means of performing the necessary numerical calculations.

Models have also been based on the concept of an unsteady state flow
over a flat plate. In this model, the flow field (velocity distribution) is thought
to develop in a manner similar to laminar flow over a flat plate (a solution that
is based on the principles of Chapter 5). At some point in time (t), the
boundary layer is swept away from the plate and a new one starts to form.
Einstein and Li [E2] introduced the concept and Ruckenstein [R5],  Black
[Bl, B2] and Meek and Baer [M2,  M3]  elaborated. Pinczewski and Sideman
[P5]  combined many features of the previous models using as a basis the visual
studies of Corino and Brodkey [C2]. They solved their model equations using
only hydrodynamic data rather than mass or heat transfer information. It must
be emphasized here that this and all previous models deal only with the mean
concentrations and not with fluctuating components which are also of
importance.
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Several investigators [B7,  B9,  Cl] presented a stochastic model of tur-
bulent diffusion. In models of this type, the unaveraged mass transfer equation
[e.g., Eq. (3.63)]  is solved, but with considerable restriction, in order to reduce
the numerical problem to one that can be managed on today’s computers.

6.4 THE VELOCITY DISTRIBUTION

The Prandtl mixing length theory was introduced in Section 6.3.2. It resulted
in a logarithmic velocity distribution [Eq. (6.77)]  for the flow away from the
wall and in a simple linear velocity distribution [Eq. (6.83)]  near the wall.
Equation (6.77) does well in correlating the data for a y+ value greater than
30, while Eq. (6.83) is valid for a y+ less than 5. The values of the constants
that have been found to provide the best fit to the data in the turbulent core
for Eq. (6.77) are K = 0.4 and B = 5.5 and the final form of the equation is

U+=2.5Iny++5.5 y+r30 (6.102)

Between the two limits represented by Eq. (6.102) and Eq. (6.83),  Eq. (6.77)
can also be used but with different constants than are used in Eq. (6.102).
Although historically the three regions have been described as a “laminar
sublayer”, “buffer zone”, and “turbulent core”, it has turned out that these
are poor descriptions of the actual mechanism.* It has been discovered by
detailed visual studies that the wall region is not laminar and the descriptive
term “viscous sublayer” is more appropriate. The region that has been called
the buffer zone is really the region in which the turbulent velocity fhrctuations
are generated. The term “generation region” is far more satisfactory than
“buffer zone”.

The velocity distribution equations for smooth tubes, channels, and most
of the boundary layer arising from Prandtl’s theory are known as the
“universal velocity distribution” equations. Summarizing, these are:
v&eeos  sublayer

u+ =y+ y+s5 (6.83)

Generdon  ulne
u+=5.ohly+-2.05  f 5<y+<30 (6.103)

U+=2.5lny++5.5 301y+ (6.102)

In Fig. 6.16, a semi-logarithmic plot of U+ versus y +  shows the three equations
and two sets of experimental data. One set was measured in a pipe at a
Reynolds number of 43 400 [B6] and the other in a channel flow for a low
Reynolds number [El]. These equations are appropriate only for fully

*Film  loop FM-2 shows the character of the flow in the different regions for the boundary layer.
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FIGURE 6.l6
Universal turbulent velocity distribution. ,

developed velocity profiles, i.e., reasonably far from any entrance effects. It is
surprising that Eq. [6.102] applies almost all the way to the center line of a
pipe because the form of this equation originates from Prandtl’s mixing length
theory. Recall that Prandtl assumed r,*  to be equal to rW  throughout the
profile; in reality, the ratio r,,/rW  equals r/lo.  Clearly, Prandtl’s assumption is
unreasonable but successful. The equations shown in Fig. 6.16 adequately
represent the velocity distribution over most of the flow cross section. As
previously mentioned, Eq. (6.102) does not meet the boundary condition at
the center line where the profile is flat. Equation (6.102) does not allow the
velocity gradient duJdr  to be zero at the center line, as it must be (see Fig.
6.6).

Another problem with these three correlating equations is that the
derivative is discontinuous at the juncture point of y+ = 30, whereas the
experimental data present a smooth continuous curve without discontinuities at
the juncture point. The curve is continuous in its first derivative at y+ = 5, as
can be verified by differentiation of Eqs. (6.83) and (6.103). Unfortunately,
correlations that satisfy both the boundary conditions at the wall and center
line and present a smooth distribution curve have proved elusive. Equation
(6.99) was an attempt to eliminate one of the juncture points, but such efforts
have not been sufficiently successful to gain wide acceptance. A more complete
discussion of alternate representations for a velocity distribution can be found
elsewhere [B2,  K3]. Here, only a brief review of some of the efforts will be
given.

.
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Even though Eq. (6.102) has been extensively used in problems involving
the turbulent core, there are equations that are more satisfactory, especially
for the outer edge of the turbulent boundary layer. The reason for this is that
the outer edge of the turbulent layer is not a smooth surface but rather has a
highly contorted shape as suggested in the two-dimensional cut shown in Fig.
6.2. In pipe and channel flows the effects of the walls overlap at the center line,
and the same problem does not exist. Thus, one finds that Eq. (6.102) is quite
good for the velocity distribution near the center line for these two flows, but
of course does not meet the center line boundary condition of zero slope as
previously noted.

Von Karman’s [V2]  approach for the outer region of the boundary layer
was to consider the similarity of local flow patterns. He assumed, first, that
viscosity is important only in the vicinity of the wall, and second, that the local
flow pattern is statistically similar in the neighborhood of every point, with
only the time and length scales variable. The ratio between derivative terms
has the dimension of length and is taken to be proportional to the mixing
length. Thus

VU;l&h @&ldy)z  . I
(d2UJdy2)z = (d2tjJdy2)2  = i

(6.104)

where K is a universal constant. When Eqs. (6.71) and (6.iO4)  are combined,
the result is

(&Jdy2)2 (6.105)

Von Karman combined this equation with Eq. (6.57) and integrated it with the
proper boundary conditions to obtain the velocity defect law, which takes the
form:

k,, max - 0;
lJ*

=f(*) (6.106)

where f denotes some arbitrary function, not yet defined. Von Karman next
applied Eq. (6.106) to pipe flow. Without going into the details of the
integration, but noting that the boundary condition of the maximum velocity at
the center line is used, the final resulting equation for pipe flow is

R,,  *ax  - c
UL

= -;  [ln(l - (rlr,)‘n) + (~lLyl

Equation (6.107) differs very little from the corresponding Prandtl equation,
which is obtained by integrating Eq. (6.76) and using the center line boundary
condition:

E,. max -  4

IJ*
= - i ln[l - r/r01 (6.108)

The best values for K are 0.36 and 0.4 for Eqs. (6.107) and (6.108),
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respectively. These values are based on the experimental work of Nikuradse
[Nl] and are valid from the center line to about 85 percent of the distance to
the wall [R3].

A simple parabolic form of the velocity defect law can often be used over
limited ranges:

The velocity profiles in terms of the velocity defect laws are compared with
experimental data in Fig. 6.17.

Prandtl [P6] presented an approximation for the turbulent core region,
based on the well-known Blasius friction-factor equation [B3] [to be presented
in Eq. (6.133)].  The approximation is known as the 1/7  power law:

\ wL* *ax  = (yh,)‘” (6.110)

This equation is surprisingly accurate in representing velocity profiles in spite
of the simplicity and the omission of any Reynolds number dependency.

Van Driest [Vl] suggested a correlation for velocity profile by modifying
the Prandtl mixing length:

I+ = (~y+)[l  - exp(-y+lA)] t (6.111)

Equation (6.111),  which contains two arbitrary constants, was suggested by the

Data range m

Wall

FlGURE  6.17
Velocity defect plot.

Center line
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theory of ,damping  in a fluid when a simple harmonic oscillation is set up by a
plate. For the asymptotic solution yL+ ~1, U+  is obtained from Eqs. (6.72)
and (6.111):

(6.112)

C2 = 1 + 4(~y+)*[l-  exp(-y+lA)]*

This equation fits the data quite well with K of 0.4 and A of 36; however, it
does require numerical integration for its solution and it cannot satisfy the
boundary condition of the slope at the center line. This latter failure is a
consequence of using the asymptotic solution rather than the complete
solution.

Pai  [Pl,  P2] developed a complete solution to the Reynolds equation
[Eqs. (6.52) or (6.54)]  for pipe and channel flows, by assuming the velocity
profile to be of the form:

(6.113)

where y is now measured from the center line. For pipe flow, r/r0  replaces
y/y,,,  and z replaces X.  The equation becomes

(6.114)

The simplicity of Pai’s final result, added to the fact that his equation can meet
the boundary conditions, makes his method very attractive. However, it also
has limitations, as will be discussed shortly. The terms a, and a, can be
uniquely determined from the boundary conditions:

a, = (s - m)l(m - 1) (6.115)

a, = (1 - s)/(m  - 1) (6.116)

where m is an integer (in order to apply Eq. (6.113) to a channel flow in which
y can be negative) and

(u*)‘b
s = 2vUz, max

(6.117)

The average velocity is obtained by integrating the velocity profile over the
cross section of the pipe as was illustrated in Chapter 4 in conjunction with Eq.
(4.77). Pai’s equation, Eq. (6.114),  when so integrated predicts

U+E.....l++a’a*
Uz, max 2 (m+l)

(6.118)

The term m is a parameter which is expected to be a unique function of the
Reynolds number. A computation of literature data for U,, ,.uz,  max  and U*
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by Brodkey [B5] showed that the parameter m can be expressed as the whole
integer closest to the value given by

m = -0.617 + (8.211 x 10-3)(N,,)o.‘8” (6.119)

The quantity S, as defined in Eq. (6.117) can also be correlated in terms of the
Reynolds number [B5]:

IAnhar  now
s=l NRe < 2040 (6.120)

TraMitiollal  now
s = 2.417 x JO-‘2(NR,)3.5’ 2040 I NRC  5  2808 (6.121)

Tmbmlent  tlow
s = 0.585 + (3.172 x 10-3)(N,,)o.=3 2800 < NRe (6.122)

Although the correlation for s extends beyond a Reynolds number of 100000,
the use of Pai’s equations does not; above NRe = 100 000, there is a serious
error in the predicted profile in the vicinity of y+  = 75. Above and below this
region the fit is reasonably good. Therefore, above a NRe of 108000, Eqs.
(6.83),  (6.103),  and (6.102) are recommended.

The most common velocity profile problem is to obtain the profile for a . .
flow in a tube of known dimensions with a fluid of known properties at a
specific Reynolds number. The procedure to compute the profile using Pai’s
method is:

1. Compute the average velocity V,, ave from Eq. (6.2) or from the experimen-
tal data.

2. Compute s and m from Eqs. (6.119) through (6.122). Round off m to an
integer.

3. Compute a, and uZ  from Eqs. (6.115) and (6.116).
4. Compute I!?,,  max  from Eq. (6.118).
5. Compute the velocity profile from Eq. (6.114). Note that the term (r/,),

will be very small away from the wall and will cause computer errors due to
underflow wherever r/r0  decreases below 0.07, depending on the particular
computer being used.

If Eq. (6.120) for the laminar flow region is substituted into Eqs. (6.115) and
(6.116),  then a, is -1 and a2  is zero. Hence for laminar flow Eq. (6.114)
reduces to Eq. (4.74),  the theoretical laminar flow profile. Pai’s approach
correctly predicts all the boundary conditions as well in the turbulent region.
But these equations are limited to Reynolds numbers of 100000 or less, and
the extreme degree of empiricism in Eqs. (6.119) through (6.122) is evident.
Nevertheless, Pai’s equations yield a smooth profile with no discontinuities in
slopes. Pai’s equations also provide an estimate of the velocity profile in the
transition region. Other velocity profile correlations may be found in the
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literature; and undoubtedly more will be suggested in the future. It may be
hoped that some day there will be formulated a simple, completely smooth
representation with a minimum of constants, or parameters, that meets all
boundary conditions.

All of the previously cited equations for velocity distribution have two
major limitations. First, as briefly mentioned, the equations apply only for
fully developed turbulent flow. When flow first enters a pipe, there is an
“entry” region where the velocity profile is changing shape and the turbulence
is not fully developed. The entry region is usually defined as the region up to
the point where the center line velocity achieves 99percent of its final value.
Usually one is interested in the value of this entry length and in the excess
pressure drop associated with the acceleration in the entry region. Since these
are quite specific practical problems, the topic will be further considered in
Chapter 12. Secondly, all the equations apply only for smooth walls; roughness
was not considered in any way. Roughness is very important in pressure drop
calculations and as such will also be considered later. As far as the roughness
effect on the velocity distribution is concerned, the following brief discussion
will introduce the subject.

For rough pipe, as most commercial pipe is, some modification is
necessary. If the Reynolds number were large, the laminar sublayer  would be
small and roughness would be controlling. On the other hand, if the Reynolds
number were low and the sublayer  relatively large, then the roughness would
be buried in the sublayer, and the pipe would act if it were smooth. In either
case, the velocity distribution of Eq. (6.77) would be approximately valid, but
the boundary conditions would be changed. For a rough surface, the outer
edge of the sublayer  is considered proportional to e, the average depth of the
roughness. With this new assumption, Eq. (6.77) becomes

“+=!&!+B  eU*
K e ( 1V

(6.123)

The value of K  is the same; the new constant B will depend on the degree of
roughness. For pipe made completely rough with sand particles, and in which
roughness is the controlling factor, Nikuradse determined the value of B to be
8.5. The surface is completely rough if the parameter eU*/v is greater than
100; if less than 5, the roughness is negligible, and the wall acts if it were
smooth [B6, K3].

Example 6.7. Calculate the velocity distribution by the various methods available
for the flow of cyclohexane at 2.778 ft s-  ’ (0.8467 m s-‘)  and 25°C in a 2-inch I.D.
smooth tube.  The frict ion factor was measured and found to be 0.00570.  At the
given temperature, the density of cyclohexane is 0.7749g cm-’  (774.9 kg m-‘),
and the viscosity is 0.8892 CP  (8.892 x 10m4  kg me’  s-l).
Anmwr.  Either the SI  or the engineering system of units is in common usage for
this type of calculation. This solution will use the SI system. The diameter in SI
units is 0.0508m. The first step is to compute the Reynolds number from Eq.
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(6.2j:

NC+  = do rr,. awp/p =  (0.0508)(0.8467)(774.9)/(8.892  x lo-3

x [(m)(m s-‘)(kg mM3)/(kg  m-’ s-‘)] = 37 483 = 3.75 x lo’ (9

A Reynolds  number  of  37  500 indica tes  tha t  the  f low is  fu l ly  turbulent .  The  wal l
shear  s t ress  is  obtained from Eq.  (6.88):

tw = fP@,  .,f
= (1/2)(774.9)(0.8467)‘(0.00570)  [(kg m-‘)(m  s-‘)‘I

= 1.583 kg m-’ s-’  = 1.583 N m-’

The fr ic t ion veloci ty  is  obtained from Eq.  (6 .53)  and Eq.  ( i i ) :

(ii)

U* 7 G = d(1.583)/(774.9)  (v(kgrn-’  s-*)/(kg  m3))

= 0.04520 m s-’  = 0.1483 ft s-’ (iii)

Universal  velocity  distribution.  For purposes of illustration, values of y of
0.001,0.02,  and  1 .0  inches  wi l l  be  chosen .  F i rs t ,  y+  is computed from Eq. (6.79):

YU*Py+=-
P

( 6 . 7 9 )

For  the  three  se lec ted  values  of  y  and f lu id  proper t ies  as  in  Eq.  ( i ) ,  the  values  of
y+  are

For y = 0.001 in. (2.54 x lo-’  m):

y+  = (2.54 x lo-‘)(0.@4S20)(774.9)/(8.892  x 10-4)

x [(m)(rn  s-‘)(kg  m-‘)/(kg  m-’ s-l)] = 1.00

For y = 0.02 in.: y’  = 20.0 (9
For y = l.Oin.: y’=lOOO

_ Note that y’ is dimensionless. At y =O.OOl  in., the location is well within the
viscous  sublayer ,  and Eq.  (6 .83)  appl ies

u+ =y+ (6.83)

At y = 0.001 in., U’ is equal to 1.0, and 4 is found from Eq. (6.78):

ii, = U*U+  =(0.04520)(1.0)=0.04520ms-‘=O.l48fts-’ (4

At  y  =  0 .02  in . ,  the  loca t ion  i s  wi th in  the  genera t ion  reg ion  5  my+  5 30,  where
Eq. (6 .103)  appl ies :

U’ = 5.0 ln(20) - 3.05 = 11.929 (vi)

Us ing  Eq .  (6.78), the value of  4 i s

I?, = (0.04520)(11.929)  = 0.5392 m s-’ = 1.77 ft s-l (vii)

At y = 1.0 in., the location is at the center line in the turbulent core, and Eq.
(6.102) is appropriate:

U’ = 2.5 ln(1000)  + 5.5 = 22.77 (viii)
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Using  the  def in i t ion  of  U’,  4 i s

Dz  = u,,  max  = (0.04520)(22.77) = 1.029 m s-’ = 3.38 ft s-’ (ix)

In a similar manner, as many points as desired can be calculated in order to
obtain  the  complete  veloci ty  dis t r ibut ion (see  Table  6 .3) .  For  example,  a t  y  equal
to 0.9 in., y+  is 900, and from Eqs. (6.102) and (6.78) & is 1.017 m s-‘. The ratio
m~z.  max is 0.988. This value will be compared with the results from other
cor re la t ions .

Velocity defect laws.  The veloci ty  defect  laws do not  permit  es t imat ion of  uz,,  ,,,=;
in fact, it must be known or estimated from some other source in order to
de te rmine  the  ve loc i ty  d i s t r ibu t ion . Generally, the defect laws are used in
conjunction with the universal velocity distribution equations so that the
maximum velocity is  determined from Eq. (6.102) at  the center l ine.  Clearly,  the
use  of  the  defect  laws wi l l  conta in  any error  involved in  es t imat ion of  the  center
line velocity. To illustrate the use of the defect laws, let us calculate the velocity
at  0 .9  inches from the wal l .  Firs t ,  the von Karman equat ion,  Eq.  (6.107),  w i th  t he
value of 0.36 substituted for K,  is

fiz.  max - i-x
u*

= -(1.0/0.36)[ln(l- fi) + GE1 (6 .107)

The value of 0.1 is substituted for r/r0 into the above:

a,,  max  - 0, = -(U*)(1/0.36)[ln(l  -a) +a]

This  equat ion can be  rearranged so  the  ra t io  0,  Joz,,  max  i s  ob ta ined .  S ince  U* i s
0.04520 m s-‘,  the result is

~zl~z.m.x  = 1 - (0.04520)(0.1775)/fiz,  mall 64

Using the  maximum veloci ty  as  calculated f rom the universal  veloci ty  dis t r ibu-
tion, i?,,  max  = 1.029 m s-‘, the veloci ty  rat io  f rom Eq.  (xi)  is

4lUz. max  = 1 + (0.04520)(-0.1775)/(1.029)  =0.992 (xii)

Note  tha t  th i s  answer  i s  no t  sens i t ive  to  the  va lue  o f  oz.,,...  This ratio compares
with 0.988 from the universal velocity distribution alone.

P rand t l ’ s  equa t ion ,  Eq .  (6.108),  rearranges to

LIz/Dz,  Dlpx  = 1. + (U*lU,,  ,,,)(l/~)[W - rlrJ1 (xiii)

At r/r0 = 0.1, with the same values of U* and u,  m_ax  as in Eq. (xii) and with
K = 0.4 as suggested, Prandtl’s equation predicts Uzl~z,,.X  to be 0.988. As
expected, the result from Prandtl’s equation verifies that from the universal
veloc i ty  d is t r ibut ion ,  f rom which  i t  was  obta ined .  The  s imple  parabol ic  ve loc i ty
equation, Eq. (6.109),  can also be used, but the constant A is unknown; however,
th i s  cons tan t  i s  de te rmined  by  the  Pai approach,  and thus  the  compar ison wi l l  be
covered under  the  Pai  equa t ions .
Power IBW.  The 1/7 power law is simple to use. For the same location of
0.9 inches from the wall ,  the resul t  f rom Eq.  (6.110) is :

4l~z.  max  = (0.9)'"=0.985 (xiv)

The maximum possible  deviat ion among al l  of  the  las t  three  resul ts  i s  less  than
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1 percent ,  which is  usual ly  wel l  within the experimental  error  of  measurement  of
the velocity.
pai% equtions. This calculation follows the outline in the discussion of Pai’s
equations. The average velocity is given, and the Reynolds number was
previously  computed as  37 483.  Thus ,  the  f low is  fu l ly  turbulent ;  the  parameter  s
is computed from Eq. (6.122):

s = 0.585 + (3.172 x 10-3)(37  483)“.*33  = 21.066
The parameter m is  obtained from Eq.  (6.119):

(xv)

m = -0.617 + (8.211 x 10-3)(37  483)‘.‘=  = 31.70 = 32

Thus,  from Eqs.  (6.115) and (6.116):

b4

and
a, = -0.3527 (xvii)

a* = -0.6473 (xviii)

Equat ion  (6 .118)  i s  used  to  ob ta in  perhaps  the  bes t  poss ib le  es t imate  of  0,.  max:

c, max  = (0.8467)/[1.0 + (-0.3527)/(2)  + (-0.6473)/(32  + l)]

= 1.053 m s-i  = 3.455 ft s-’ (xix)

As wi l l  be  seen,  th is  es t imate  of  nz,,  max  is  sometimes more rel iable than that  from
the universal velocity equations [Eq. (ix)]. With the values of both oz,.-  and the
parameters now determined,  the velocity predicted from Pai’s equa t ions  can  be
calculated from Eq.  (6.114):  For  y of  0.001 inch

u; = (1.053)[1-  (0.3527)(0.999)*  - (0.6473)(0.999)~]

= 0.04302 m SC’  = 0.141 ft s-’ (=I

This  predict ion can be compared to  0.0452 m s-l,  which was computed from the
universal  veloci ty  d is t r ibut ion,  Eq.  (v)  (a  5  percent  d i f ference) .

Similar calculations for y = 0.02 in. give a value of 0.5092 m s-’ for 4,
based  on  Pai’s  equations.  This  number can be compared to 0.5392 m s-l  from Eq.
(v i i )  ( the  un ive rsa l  ve loc i ty  d i s t r ibu t ion) ,  o r  l e s s  than  6percent  difference. The
las t  term in  Eq.  (xx)  contr ibutes  s ignif icant ly  to  the  f inal  answer;  however ,  when
r/r, becomes smal l  enough,  the  las t  term becomes negl igible  s ince  i t  i s  ra ised to
the power 2m.  When r/r0 equals 0.92, the last term (a2)(r/ro)”  is about one
percent of the value of the term (a,)(r/r,)‘.  Thus,  the las t  term can be neglected
whenever  r/r0 i s  l e ss  than  0 .92 .  For  th i s  reg ion  in  the  p ipe ,  the  Pai  equa t ion ,  Eq .
(6.114),  reduces to the velocity defect, Eq. (6.109),  with A given by a, of Pai’s
theory.  At  the  center  l ine  of  the  pipe ,  y  =  l.Oin.,  and the  radius  is  zero .  Hence,
4 becomes ez,,  MX, which is  1 .053 m SC’  as calculated from Eq. (xix).  The various
calculat ions  are  fur ther  compared in  Table  6 .5  wi th  tabulat ions  of  &/uz,.,,  at
selected values  of  y+.  A set of experimental measurements [H3]  under the same
conditions is included. There are only two correlations that provide an estimate of
02,.  max. The value from the universal velocity distribution, Eq. (6.102),  was
1.029 m s-‘,  whereas Pai’s equation predicted 1.053 m s-l.  The experimental
value is  1 .045 m SC’  [H3],  and so for  this  case the predict ion from Pai’s method is
somewhat  be t te r  than  tha t  f rom the  universa l  ve loc i ty  d is t r ibut ion ,  Eq.  (6 .102) .  A
check of  the s tandard deviat ion from the experimental  data  shows that  a l l  of  the
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TABLE 6.5
Comparison of calculated velocity pro6lea  with  experimental data

Uuivexsat
Expduatal  vekeay VtHW

r/r. y+ data(W)  DbT&ibmtioa~  defectId 1/7powcf Pa+

0.999 1.0 - 0.044 - 0.373 0.041
0.98 20.0 0.557 0,524 - 0.572 0.484
0.97 30.0 0.5% 0.615 -- 0.606 0.576
0.95 50.0 0.633 0.671 - 0.652 0.657
0 . 9 0 loo 0.701 0.747 - 0.720 0.714
0.70 300 0.830 0.868 0.881 0.842 0.827
0.50 500 0.887 0.924 0.936 0.906 0.912
0.30 700 0.945 O.%l 0.970 0.950 0.968
0.20 800 0.973 0.976 0.982 0.969 0.986
0.10 900 0.988 0.988 0.992 0.995 0.996
0.05 950 0.992 0.994 0.996 0.993 0.999

Nom: EEqs.  (6.83). (6.102).  or (6.103). b Eq. (6.107). ' Eq. (6.110). dEq.  (6.114).

correlations are within 3 percent. Noteworthy are the excellent predictions from
the 1/7  power law, of Eq.  (6.110) which is within lpercent.  This simple and
unsophisticated equation often  performs as well as the equations that are more
tedious to use. Note also that the comparisons in Table 6.5 do not reflect the
errors introduced through the estimation of the maximum velocity, uz,  -. This
quantity is difficult to estimate accurately, and as just stated, only two of the
correlations presented allow any estimate whatsoever.

Example 68. Estimate the temperature distribution in water as it flows through a
heated pipe of radius 5 cm at a Reynolds number of 12OooO.  The wall
temperature is 4o”C,  and the heat flux at the wall is 1.7 x 10’ W m-‘.  The friction
factor is 0.0045. Use the analogy proposed in Example 6.6.

ARSWV.  This problem will be worked by assuming that the eddy diffusivity of
momentum E, equals the eddy heat difhrsivity  EH.  If the details of this example
are fully understood, it will be easy to apply a more sophisticated analogy to this
or any other problem. The following properties of water will be used.

c,=l.Ocalg-‘K-‘=4184Jkg-‘K-*

p=1.0gcm-3=1000kgm-”
k=0.628Wm-‘K-’ (9
v=~/p=0.01cm2s-‘=1.0X10-6m2s-’

k WWW
a = z = (looO)(4184) (

(W mm’  K-‘NJ  W-’  0 = l m1 x 1o-7  m2  s-,
(kg m-‘)(J  kg-’  K-‘) ) .

The temperature at any point in the fluid is given by Eq. (vi) in Example 6.6,
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which is

(ii)

In  Eq.  ( i i ) ,  F is  the  temperature  a t  locat ion r, and  E, i s  ob ta ined  by  rear ranging
Eq. (6.66):

E, = -(r/r.,)(U*)‘/(d&idr)  - v (iii)

The s lope of  the  veloci ty  prof i le  d&/dr  may be obtained from any sui table
cor re la t ion .  The  universa l  ve loc i ty  d i s t r ibu t ion  i s  perhaps  the  mos t  genera l ly
accepted  of  the  equat ions  for  the  ve loc i ty  prof i le  in  a  p ipe ,  and i t  wi l l  be  used
here:

Viscous sublayer: u+=y+ (6 .83)

Genera t ion  reg ion: CJ’  = S.Olny+  - 3.05 (6.103)

Turbulen t  reg ion: U+=2.5lny++5.5 (6.102)

c!%uations  (6.75), (6.78), and (6.79) are used to replace U’, y+  and y. The
equat ion  for  the  v iscous  sublayer becomes

0 =  u*y’ =  uJ*)=Y (W
z -=y(ro-r)

V (iv)

The equat ions  for  the  other  regions  fol low s imilar ly .  Sutrtmarizing:

Viscous sublayer: lJz  = ro(U*)2/v - r(U*)‘/v

Genera t ion  reg ion: 4 = (U*)[5.01n[(r0  - r)(U*)/v]  - 3.051

Turbulen t  reg ion: 4 = (U*)[2.5 In[(ro  - r)(U*)/vl+  5.51

From these  equat ions ,  the  appropr ia te  s lopes  are

Viscous sublayer: d&ldr  = -(U’)2f  Y

(4

(4

(4

(viii)

G e n e r a t i o n  r e g i o n :  2du Jdr = (-5-o)(u*)  = -5.0U*jy
r, - r

Turbulent region: z&j I&  = (-2-5)fU*)=  -2.5u*jy
r, - r

(ix)

(xl

These slopes are substituted into Rq. (iii) to obtain the eddy diffusivity of
momentum for  the generat ion and turbulent  regions.  However ,  for  the viscous
region,  Eq.  (6 .83)  was  der ived by Prandtl by  assuming tha t  the Reynolds  s t ress
(in other words E,) in Eq. (6.54) was zero. Hence, if Eq. (6.83) is assumed to
apply very close to the wall, then E, must be taken as zero in the region

* 05~’  55.0.  Under this stipulation, Eq. (ii) can be integrated analytically as
follows:
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Equation (xi) will serve as a check on the forthcoming calculation [which will
integrate Eq. (ii) numerically] at y+  equal to 5.0. Next, the ratio (qlA),,,/(pc,),
which appears  in  Eqs .  ( i i )  and (xi ) ,  wi l l  be  determined:

6zlA)r.w  _ (1.7 X lO’)(l) (W m-*)(J W-i  s-‘)

PCP (looO)(4184) ((kg m-‘)(J  kg-’ K-‘) >

= 4.063 X 10m3  m K s-’ w
The average veloci ty is  avai lable from rearranging Eq.  (6.2):

uI,  YYC =&v/d,  = (1.2 x lO’)(l x lo-6)/[(2)(0.0S)][(m’s-‘)/(m)]

=1.2ms-‘=3.94fts-’ (xiii)

The fr ict ion veloci ty is  found from Eqs.  (6.55)  and (6.88):

U* = U,,  .,m = (1:2)(0.0045/2)‘R  = 0.05692 m s-’ (xiv)

The viscous sublayer  equation, Eq. (6.83), applies up to the location y+  = 5.0.
Using  Eq .  (6 .79)  the  va lue  of  y  a t  th i s  loca t ion  i s

y =y+v/lJ*  = (5.0)(1  x 10-6)/(0.05692)[(m2s-‘)/(m  s-l)]

= 8.784 x lo-’  m = 8.784 x 10F3 cm (xv)

This value corresponds to a radius of 49912cm.  Similarly, Eq. (6.103) applies
from y+  = 5 to y+  = 30 (a radius of 4.473 cm), and Eq. (6.1$2)  applies from this
poin t  to  the  cen te r  l ine .

The calcula t ion hencefor th  i s  s t ra ightforward but  tedious .  The procedure  is

1. Select r.

2.  Locate  the  appropr ia te  reg ion  (v iscous ,  genera t ion ,  or  turbulent )  according  to
the  p rev ious ly  ca lcu la ted  bounds .

3. Find the slope from Eqs. (viii), (ix), or (x), according to the appropriate
region as  found in  (2) .

4. Compute E, from Eq. (iii) (zero for the viscous region).
5 .  Repeat  s teps  (1)  through (4)  for  a l l  poin ts  be tween r  and r,.
6.  Integrate  Eq.  ( i i )  graphical ly  or  numerical ly  and compute the temperature  that

cor responds  to  the  r  se lec ted  in  s tep  (1) .
7 .  Repeat  s teps  (1)  through (6)  for  a l l  r.

For purposes of illustration, the integration in step 6 will be performed using
Simpson’s  ru le ,  as  d iscussed in  s tandard  references  in  numerica l  analys is  and in
handbooks [P4].  Using the nomenclature of Example 6.3: the generalized

‘Equation (xvi) evaluated the integral of ydr  for evenly spaced intervals of x, i.e., Ax. Any
analytical function can be cast into a form appropriate for Simpson’s rule; experimentally
determined functions of arbitrary spacing are not suitable. In Simpson’s rule, the number of points
must  be odd;  therefore,  the index i  goes from 0 to N,  where N is  the number of intervals,  always
an even number.
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N),5X,10HRADIVS(CN),3X,10NSLOPcf1/S1,3X,
FREDDY VIS(N*N/S),2X,14HTENPERATVRc~C)/1H  1
i.5,c14.5,C16.5,?14.2)
J O B )

II,  THE RADIVS(CN)IS,c35.5/19X,15RWALL  TCIIP(C
r PLUX(N/N*+2)  IS,c27.5)
IID,TNC  REYNOLDS NO IS,P33.1/19X,
'ACTOR IS,E2l.5/19X,26RXINcNATIC  VIS-NU(U+?l/S

..5/19X,35liTHCRNAL  DIP?VSIVITY-ALPHA(N*N/S)  IS,E12.5)

.HO/39NOVIsCOVS  SVBLAYER  REGION PRO11  RAOIVS  0?,~12.5,2~,
b,C12.5,4H  N.)
.H0/33HOGCNcRATION  REGION PRON RADIUS OP,E12.5,6H  !I TO,
In n.)

I. NOTE ALL INPUT DATA HAVE  SME  UNITS AS GIVEN IN
:II  STATE?lCNT.  A L L  ?VRTRER  CALCULATIONS ARC IN 8.1.
021
sxn/1.0,1.0,0.01/
I/

9 PORNATi1R0/3OHOTVRBVLcNT  CORE FROR  RADIUS 0?,212.5,21H  M TO TAC C
~ENTERLINC~

10 PORNATf29WOTHC  AVERAGE VELOCITYfH/S)  IS.P11.5/30H  THE IRICTION  VEL
lOCITY(U/S)  IS,Pl0.53

PORItAT(lW  111

C

IO-7
WRITcfI0,5)  RADIVS,TWALL,H?LUX

?RON  TRIS POINT, ONLY SI VNITB ARE USED - J,M,S,KG
CP-CP l A2 l A3
RHO-RHO l Al+*3  / A3
VIri-vIsRn  /  A l * * 2
mwuunvs
RADIUS-RADIVB / Al
D-RADIUS + RADIUS
ALPHA-CON / (RHO l CP)
WRITc(IO,C)  RC,PP,VIS,ALPHA
Bl-NPLUX  / (RHO l CP)
UAVG-RI  l VI8  / D
USTAR-UAVG  + SQRT  (P? l 0.5)
WRITE (10,101 UAVG,USTAR
NINT-100

C
3 0

::

C

SLOPEV-USTAR**  / (-VIS)
821 USTAR+*  / (-RADIUS)
T-TWALL
Y-O.0
ARMT-0.0
SLOPE-SLOPIV
DO 100 IGO-1.3
GO T0(30,40,50),IGO

VISCOUS RLGION
YLOW-0.0
YPLUS-5.0
YHI-YPLUS + VIS / USTAR
H-f  YHI - YLOW)  / FLOAT(NINT)
RVPdAVIUS  - YLOW
RLO-RADIUS  - YRI
GO T0(55,61,631,IGO

GENERATION OR TRANSITION REGION
40 YLON-YHI

YPLVS-30.
GO TO 32

C TURBVLRNT CORE
50 YLOW-YHI

YIiI-RADIUS
GO TO 33

FIGURE  6.18
program for Example 6.8

253
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55

61

63
C

65

1::

C
C
C
C

C
12

C
20

C
30
40

WRITS (IO,7)RLO,RUP
GO TO 65
WRITE (10,8) RLG,RUP
G O  T O  6 5
WRITB  (IO,91 RUP

LOAD TRE ORDINATES IN ?X FOR NURCRICAL INTEGRATION BY SIIIPSONS
Y-YLOW
CALL EDDYV(EDDY.Y,B2,VIS,SLOPB,RADIUS,R,RCR,USTAR,IGO)
FX(l)-R  / (RADIUS l (ALPSA  + EDDY))
WRITC(IO;2)
WRITE (10.3) Y,RCB,SLOPE,ALPSA.EDDY,T
Y-YLOW + R
CALL EDDYV(EDDY,Y.B2,VIS,SLOPE,RAUIUS,R,RCR,USTAR,IGO)
FX(2)-R  / (RADIUS l (ALPHA  + EDDY11
WRiTi  (1b.j) Y,RCR,SiOPR.ALPSA,ED~i
NRITE  (10,ll)
DD 80 I-2,NINT
Y-YLOW + ii l ?LOAT(I)
CALL CDDYV(CDDY,Y,B2,VIS,SLOPE,RADIUS,R.RCN,USTAR,IGO)
?X(I+l)-R  / (RADIUS + (ALPHA  + EDDY))
CALL sn~s~  (ARW,PX,W,I)
TOTWALL  - 81 + (ARM  + AREAT)
WRITE (IO.31 Y.RCX.SL0PE.ALPiUbSDDY.T
MEAT-ARWT  + A R E A
WRITE (10.0
STOP
END
SUBROUTINE EDDYV(EDDY,Y,B2,VIS,SLOPE,RADIUS,R,RCB,USTAR,IGO)

TRIS SUBROUTINE COHPUTES  THE EDDY VISCOSITY (CDDY, UNITS R**2/
I) ASSURING TRE VEL PROlILE  ?OLLOWS  THE UNIVERSAL VEWCITY
DISTRIBUTION. IGO TRAWS?ERS  CALCULATIONS TCI  CORRECT REGION.

NOTE TEAT ?OR VISCOUS REGION SLOPE IS COUPUTED IN NAIN PGM.
R-RADIUS - Y
XII-R  l 100.
GD TO (12,20,3O),IGD

VISCOUS REGION
EDDY- 0.0
RETURW

GGNRRATION  OR TRANSITION REGION
SWPE-(-5.0)  / Y l USTAR
G o  M 4 0

TURBULXNT  CORE
SLOPE-(-2.5) / Y l USTAR
E D D Y -  82 + R / SLOPE - VIS
MTURH
BWD

C . . . . . . . . . . . . . . . . . . . . . . . . . ..SUBROUTINE SI’IPBN . . . . . . . . . . . . . . . . . . . . . . . . . . .
C
C DESCRIPTIDN  - S?IPSN  IINDS  TtlE  INTEGRAL(MEA  UNDER  TM  CURVE) OF F(X)

:
VERSUS X, WHERE  TEE INDBPSBDENT  VARIABLB  X IS SUBDIVIDED
INTO BVBNLY SPACBD  INCRMENTS. SIRPSONS RULE

C IS USED IF TBB NVNBER OF INCRBWBNTS  IS BVEN. IF TRE

s
NURBER  IS ODD, TEEN NBWTGNS  3/8 FCWUlVIA(A  CUBIC),
IS USED  FOR TRL FIR8T  THREE

C INTRRVALS,  A N D  SIHPSONS  R U L E  FUR  THE RLIUINDLR  O F  THE
C INTERVALS.
C
C CALLING PARAMETERS

E
A R M  -
FX -

VALUE OF THE  INTEGRAL RETURNED BY S?l?SN
VLCTGR  OF TABULATED F(X)
NOTE TBAT NINC+l  VALMS  ARE REQUIRED
SPACING IN TEE  X DIRECTIDN
NVMBLR  O F  INTERVALS OF X BElWLEW  XO AMD  X N .  NINC RUST BE
TWV OR GREATER.

C
C Ii  -

s
NINC -

C

FIGURE 6.18
(Continued)
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SURROUTINE  SMPSN(AREA,?X,R,NINC)
DIRCNSION  FX(1)

2 FORFtAT(1HO/4ONO”****ERROR  IN SURROUTINE  SIPIN.  NINC IS,I5,228,  WHI
1CH IS NOT ALLOWED/SlROCONTROL  RETURNED TO CALLING PROGRAM  WITH ARC
2A - O./lROI

10

C
C
C

12
C
C
C

13

1 5
C

E
16

C
C
C

17

19
C
C
C

2 0
C
C
C

21

2 6

2 9
C

E
C
C

::

34

36

IO-6 .
AREA-O.0
IF(NINC-2)  10,12,15
WRITE(I0.2)NINC
RETURN

FOR NINC-2

J-l

SIMPSON6  3 POINT FORMULA

AREA-H/3.*(FX(J)+4.+FX(J+l)+FX(J+2))+AREA
RETURN
IFfNINC-4)  16,20,19

FOR NINC-3

J-l

NEWTONS 3/8 RULE  FOR NINC ODD

AREA-3.*H/S.*(FX(l)+3.*(FX(2)+FX(3))+FX(4))
GO T0(29,21,36).5
11(2*(NINC/2)-NINC)  30.20.30

NINC IS EVEN

11-2

SII'IPSONS  RULE

SUNl-0.0
sun2-0.0
N - N I N C - 2
DO 26 I-K,N,2
SUM4-SUR4+FX(I)
SUR2-SURZ+FX(I+l)
SUt44..SURQ+FX(N+2)
ARCA-H/3.*(FX(K-1)+4.*SUM4+2.*SUH2+FX(N+3))+AREA
RETURN

NINC IS ODD. NSWTONS  3/8 RULE CONPUTES  AREA OF FIRST THRSE
INTERVALS. SIMPSON6  RULE COMPUTES THE REST. IF NINC-5,  SPECIAL
CASE.

IF(NINC-5)  31.34.31
K-5
5-2
GO TO 17
5-3
GO TO 17
J-4
GO TO 13
END

FIGURE 6.18
(Continued)
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formula for Simpson’s rule is

where yi  represents the ordinate evaluated at index i. Note that Simpson’s rule,
Eq. (xvi), is restricted to an odd number of points, i.e., N must be even. Also,
Eq. (xvi) represents a second-order approximation to the function being
integrated numerically, i.e., it fits three points exactly with a parabola. A
computer program is listed in Fig. 6.18. This program integrates Eq. (ii)
numerically with 100 intervals for each of the three regions. The subroutine
SMPSN will also handle N odd by resorting to Newton’s three-eighths rule for the
first three intervals. The results are plotted in Fig. 6.19. Note that most of the
temperature drop is in the- wall region. In the wall region, the conduction
mechanism accounts for all the heat transfer.

At y+  = 5, the radius equals 0.049912 m. From Eq. (xi), the temperature at
this point is

T=T--

(4.063 x W3)
(q(()05)(1.501 x 1o-7) KO~W -  (0~0499w*1

= 40.0 - 2.38 = 37.62”C (xvii)

The results of the numerical integration for the viscous re#on  verify the answer
of 37.62”C  exactly. At y+  = 5.0, the velocity profile for the generation region, Eq.
(6.103),  gives a negative E,, which is an unreasonable result. Note that Eq.
(6.103) has been adjusted so that its slope at y+  = 5.0 equals that of the slope of
Eq. (6.83). Therefore, Eq. (6.103) should not be applied at this location because
of Prandtl’s assumption of zero Reynolds stress. At y+  = 5.0, E, is zero. Similarly
at the center line, a negative E, is found because Eq. (6.102) does not predict a
zero velocity gradient at this point. Obviously, a major deficiency of Eq. (6.102)

40

3 9

G
; 3 8

3
5
er
Ec” 3 7

3 6

3 s

Genera t ion  boundary (y ’ = 30)

I I I I

I 2 3 4
Distance from wall. y (cm)

5
FiGURE  6.19
Temperature distribution in turbulent
flow.
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is the fact that its predictions do not result in a zero velocity gradient at the center
of a pipe, an obvious expectation because of symmetry.

6.5 THE FRICTION FACTOR

The Fanning friction factor f was introduced in Eq. (6.89) as a nondimensional
ratio of the wall shear stress r, to the kinetic energy of the flow, jpU2 ave.  As
such, the friction factor can be pictured as a relative measure of the frictional
losses in a system. The Fanning friction factor” as given in Eq. (6.89) is

do(-4)
f=-L= (d,/4)(-Qldz)  = 4 L

iPUf,  il”C iPUZ,  ave 4PUZ.  ave
(6 .89)

For laminar flow, the combination of Eqs. (4.77),  Eq. (6.2),  and (6.89) results
in an equation that is easy to remember:

f = ~WW,,  .,p/j4  = MN,,

For turbulent flow, the definition of friction factor and the definition of friction
velocity [Eq. (6.55)]  result in the following simple expression:

u* = (I,,  .,m
The friction factor can be predicted from the velocity profile. However,

as has been emphasized previously, all the velocity profile equations proposed
to date are subject to a number of serious limitations. Since this approach does
provide a useful form for correlation purposes, one possibility is to start with
the universal velocity distribution equation, Eq. (6.76),  and integrate across
the flow cross section to obtain the average velocity. The result expressed as a
velocity defect is

a,,  Inax  - uz, ave 3
U*

=g=  3.75

Equation (6.126) has been confirmed experimentally, although there is
considerable scatter in the data. The equation is usually referred to as
Stanton’s law. Equation (6.126) can be combined with Eq. (6.125) and
rearranged:

uz  ave  0, max  3 2)=A---=  -
Ju*  u*  2K f

(6.127)

“‘Alternative fr ict ion factors that are various mult iples off  as defined in Eq. (6.89) have been used
in the literature. For example, in common usage is the Darcy or Weisbach friction factor,  which is
four times larger than the Fanning friction factor presented here. Since the same symbol is often
used, the reader must always check the exact definition when using other texts, graphs, and tables
in order to avoid any serious errors.
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At the ‘center line, the velocity can be estimated from the universal velocity
distribution equation, Eq. (6.102),  whicl?%  Example 6.7 was shown to
estimate the center line velocity reasonably well. Equation (6.77),  which is the
generalized form of Eq. (6.102),  can be written in terms of 6, ,,,=:

0, maxL = (UK)  lny,+  + B
u*

(6.128)

where y:  is the value of y+  at the center line. Combining Eqs. (6.127) and
(6.128),  the result is

fif= (l/rc)  lnyz  + B - 3/(2~) (6.129)

The yz in Eq. (6.129) can be eliminated by using its definition and Eq. (6.125)
as follows:

yo’  = U*cJv  = (U*lU,,  . ..Wz.  ave)(dv)(W~2)

= WmRm%e)  = Nm)&e)

The above, with Eq. (6.129),  yields

(6.130)

flf= (UK)  ln[&fl] + B - 3/(2~) (6.131)

Equation (6.131) provides the best form for correlating friction factors. Von
Karman first derived Eq. (6.131),  and Nikuradse [Nl]“used  this form and
modified the constants slightly to correlate his extensive data:

l/fl= 4.0 log,,(Nr&  - 0.4 (6.132)

Equation (6.132),  often called the Von Karman correlation, is valid to a
Reynolds number of 3 200 000 for turbulent flow of fluids in smooth tubes. It is
superior to any other correlation now in existence, although simpler correla-
tions such as that of Blasius [B3] have been proposed:

f = 0.079(NRJ1’4 (6.133)

The Blasius equation approximates Eq. (6.132) up to a Reynolds number of
100 000 and can be used for quick estimates. This equation is the basis for the
1/7  power law of velocity, previously presented as Eq. (6.110).

Figure 6.20 shows a plot of friction factor versus Reynolds number. Note
that the slope of Eq. (6.124) is -1 on a log-log plot for the laminar region. No
equation or line exists for the transition region because the data are not
reproducible from one experimental apparatus to another. Equation (6.132) is
plotted in the turbulent region. Figure 10.3 is recommended for actual design
calculations because it is larger in size and therefore more accurate to read.

Example 6.9. Crude oil with specific gravity 0.84 is pumped at 2ooO  bbl/day
(barrels per day) through 2OOOft  of steel pipe under a pressure drop of 8Opsi.
The pipe is 2 inches in diameter and schedule 40 in wall thickness. Compute the
Fanning friction factor.
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lo-’ ’ “11111’  ’ “11111’  ’ “llill’  ’ “llril’  ’ ’ I”’
102 10” 104 ld 106 IO’

Reynolds number

FIGURE 6.2tl
Friction factor versus Reynolds number for pipe flow.

Answer. Since all the information is given in engineering units, those units will be
used in this solution. This problem requires conversion of each variable in Eq.
(6.89) into a consistent set of units so that f will be dimensionless. After slight
rearrangement, Eq. (6.89) is

(0

If the units of pressure drop are to be lblWt,  then the units for Eq. (i) as written
must be

f[=l( (Wlbf ft-%fi-‘)
(lb, fC3)(ft2s-*) >

= lb lb-,  fi-l  sz
f m (3

Thus, to make Eq. (i) dimensionless with pressure in units of lbffte2,  the equation
must be multiplied by the gravitational conversion constant g,:

g, = 32.174 lb,  lb;’ ft s-’ (iii)

From Example 6.1 or Table B.l, the diameter for 2-in., schedule 40 pipe is
2.067 in., and the cross sectional flow area is 0.02330 ft*.  The pressure drop is

(-dpldz)  = (80)(144)/(2000)  [(lb,in.-2)(in.2  ft-“)(K’)]

=5.761bfft-3 (iv)
The velocity is computed by dividing the value for the flow rate by the area. One
barrel (bbl) is equal to 42 US gallons, and 7.48 gallons is equal to 1.0 ft3:

V z,  ave = (2~)(1/24)(1/3600)(42)(1/7.48)(1/0.02330)
x [(bbl day-‘)(day  h-‘)(h  s-‘)(gal  bbl-‘)(ft3  gal-‘)(tt-‘)]

=557tlfts-' 69
The density is the specific gravity times the density of water:

p =(0.84)(62.4)=52.42  lb,,, ft-3 w
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Substituting these quantities into Eq.  (i) gives

f = (
(2.067/12)(5.76)(32.174)

>(
(ft)(lb,ft-‘)(lb,  lb;’  !I  s-*)

(2)(52.42)(5.578)*  - (lb,,, ft-‘)(ft*  s-*) >

= 0.00979 (dimensionless) (vii)

6.6 SUMMARY

This chapter has introduced two very important dimensionless groups: the
Reynolds number, which for pipe flow is

and the Fanning friction factor:
dot-Ap)

f=A= (&/4)(-dP/dz)  4~.
WZ.  ave w:, ave = wt.  ave

(6.89)

The magnitude of the Reynolds number is the criterion used for predicting
whether the flow is laminar, turbulent, or in the transitional region. For pipes,
the laminar region extends up to a Reynolds number of approximately 2100. In
laminar flow, the fluid moves in straight lines along the pipe axis. There are no
groups of fluid that move in the r or 6 direction. For the laminar region, the
pressure drop equations of Chapter 4 may be rearranged into

f = 16/&, (6.124)

The velocity profile in the laminar region in pipe flow is parabolic in shape:

UJUZ, ma% = 1 - (rlrcJ2 (4.74)

The turbulent region is characterized by high flow rates. It is also the
region in which most common applications of fluid mechanics are found. In
turbulent flow, there are eddies of fluid moving in all three coordinate
directions, even though the bulk flow may be in only one direction. There will
be instantaneous values of velocity (and sometimes of temperature and
concentration) that differ significantly from the mean values. It is important to
understand the difference between transitional and turbulent flow, both in a
pipe and along a solid surface such as a flat plate. Although turbulent eddies
appear to be random in nature, the reader must understand that nonrandom
series of events do take place in turbulent flow; these are summarized in
Fig. 6.7.

This chapter has presented and, discussed the equations that apply in
turbulent flow. The conclusion was that there were no exact solutions.
Averaging of the instantaneous values of velocity, etc., and subsequent loss of
information were covered thoroughly. In view of this dilemma, several classical
models of turbulence were discussed, including Boussinesq’s theory, the
Prandtl mixing length, the film and penetration theories, and the simple
analogies such as that of Reynolds.
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Finally, correlations of velocity profiles in turbulent flow were discussed
in some detail. Although the turbulence models were useful in representing
velocity profiles, empirical correlations are in widespread use today. Basically,
all existing correlations of velocity profiles in turbulent flow are deficient in
some way, but most do an adequate job of prediction, as shown in Example
6.7. The universal velocity distribution is perhaps the most generally accepted
of the equations for the velocity profile in a pipe:

Viscous sublayer: u+ =y+ (6.83)

Generation region: U+  = 5.0 In y+ - 3.05 ( 6 . 1 0 3 )

Turbulent region: U+=2.5lny++5.5 (6.102)

In turbulent flow, the friction factor must also be correlated empirically. For
flow in smooth tubes, the most accurate correlation is that of von Kartnan:

l/IQ=  4.0 log,, (Nt&  - 0.4 (6.132)

PROBLEMS
L-
33
: . . When the equations of motion are time-averaged for turbulent flow, what

additional terms are introduced? ,,-

3ii.2  What are the assumptions involved in Eq. (6.34)?
6.3. In the vicinity of the wall there is a specific form for the velocity distribution that

does not involve empirical constants. Derive this and discuss its limitations.
6.4. What are the limitations of the eddy viscosity concept?

6.5. For pipe flow a student measures the laminar-turbulent transition at a Reynolds
number of 2300.  Is this result of general validity? Discuss.

6.6. What are the limitations of the Prandtl mixing length concept? Do you think
turbulence corresponds to this mechanistic picture? Give your reasons for this
answer.

6.7. What is the problem in estimating the eddy viscosity at the center line in pipe
flow?

6.8. Discuss the turbulent velocity profile in general terms from the most ideal
representation to the least desirable.

6.9. List the advantages and limitations of using Pai’s equations (Eq. (6.114),  ff.) to
represent the turbulent velocity distribution.

6.10. In terms of the eddy viscosity concept, discuss the mechanism of the transfer of
mass, heat, and momentum.

6.11. Water is flowing in a 3-in. schedule 80 pipe at a flow rate of 40 gpm  at 320 K.
Determine if the flow is laminar, transitional, or turbulent. Use. Tables A.1 and
B.l in the Appendix.

6.12. Water (p = 1000 kg m-‘)  flows in a pipe of diameter 2~. At some distance from
the wall, a hot-film anemometer yields the data below. Calculate the Reynolds
stress rT.
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c s l.J;  m s-l cr”  m s-l

0.1 4.0 1.0
0.2 1.0 -4.0
0.3 6.0 0.0
0.4 0.0 5.0
0.5 0.0 -3.0
0.6 -3.0 0.0
0.7 -5.0 2.0
0.8 2.0 -5.0
0.9 5.0 0.0

0
6.1 Using the universal velocity distribution, calculate the eddy viscosity E  a t  a

distance (dJ4)  from the wall of a 3-in. schedule 40 pipe for a steady-state water
flow at 15°C if the Reynolds number is 9.0 x 104  and the friction factor is
4.56 x 10W3.  Use SI units throughout your calculation.

6.14. Equation (6.110),  the 1/7 power law, is simple to use and surprisingly accurate in
spite of its lack of theoretical basis.
(a) Using the integral in Eq. (4.76), calculate the volumetric flow rate based on

Eq. (6.110).
(b) Find the distance flom the wall where oz equals U,  BYC.
(c) Find the slope dU,/dr  as a function of r. Discuss ,@et&er the resulting

equation is reasonable. throughout 0 I y 5 r,. +
6.15. Find an approximate expression using Eq. (6.53)  for the’mixing length distribu-

tion for a turbulent flow that is described by the 1/7 power law, Eq. (6.110).
6.16. For the 1/7 power law, Eq. (6.110),  derive an equation in terms of y/r, for (a)

s/(~U*r,)  and (b) (Ez  + v)/(U*r,).  For each, locate the maximum.
6.17. For the universal velocity distribution of Eq. (6.102), derive an equation in terms

of y/r,  for (a) s/(PU*r,,) and (b) (Ez  + v)/(U*ro).  For each, locate the maximum.
6.18. For the velocity distribution given by Pai’s equations (Eq. (6.114),  ff.), derive an

equation in terms of r/r0 for (a) c/(@Y*rO)  and (b) (E, + v)/(V*r.,). For each,
locate the maximum.

6.19. How does the group E/(pU*r,) vary with Reynolds number at a given position, if
the universal velocity distribution, Eq. (6.102),  applies?

6.29. Find an approximate expression for the mixing length distribution for a turbulent
flow that is described by the universal velocity distribution, Eq. (6.102).

6.21. Beginning with Eq. (6.72) the general expression for the Prandtl mixing length I
for pipe flow, determine whether the dimensionless Prandtl mixing length (I/r,) is
a function of Reynolds number in the turbulent core. Assume that Eq. (6.102)
applies.

6.22. Repeat Problem 6.17 without assuming t = rW  as did Prandtl.
6.23. The hot-film probe in Figure 6.4 isto  be used for measurements near the wall in a

pipe flow of water. It is desired to gain information about the viscous sublayer.
Criticize the experiment and justify your criticism.

6.24. Determine the velocity distribution and eddy .viscosity  distribution using the
universal plot (U’,  y’) when a fluid of density 1300 kgm-3  and kinematic
viscosity 2.0 x 10m6  m*  s-i flows in a smooth pipe whose I.D. is 6 in. The pressure
drop causing the flow is 1000 Ibitt-*, and the pipe is lOOft  long. Do all
calculations in the English system of units.
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6.25. Water at 20°C  flows in a 4-in.  schedule 40  pipe at a Reynolds number of 55 m.
Determine the velocity distribution and eddy viscosity distribution using Pai’s
equations. Work in Enghsh units.

6.26. Determine the velocity distribution and eddy viscosity distribution using the
universal plot (U’,  y+)  when air at 20°C  and 1 atm pressure flows in a 3-in.
schedule 40 pipe. The velocity at the center line o=,.,,,  is 120fts-‘.  Do all
calculations in the SI system of units.

6.27. Determine the velocity distribution and eddy viscosity distribution using Pai’s
equations for the flow of air at 20°C and 1 atm at 16 m s-’ average velocity in a
3-inch schedule 40 pipe. Work in SI units.

6.28. Use Pai’s equations to compute the ratio CJ,  .,/oz,.  RuI  for laminar flow.
Find the error in the friction factor predicted from the Blasiurrelation  as
compared to that from the vonI&rmaLr equation at Revnolds numbers of-.
and loogQ0.  Also, find the error at a Reynolds number ofswhere  the Bmsfns
correlation is not satisfactory.
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7
INTEGRAL

METHODS OF
ANALYSIS

NOMENCLATURE

A
A
Ai

c

G
d
e
E

;

F’

Species A; AI and AZ are species A at locations 1 and 2
Area for heat transfer (m’,  ft’)
Projected area of the elbow in Fig. 7.5; subscripts refer to direction
and location
Concentration (km01 mm3,  lb mol ftm3);  CA,  Cu,  Ci  are concentrations
of species A, B, i; C, is total concentration; CA,r  and CA,*  are
concentrations at locations 1 and 2; C,,,  is time-average concentra-
tion of species A at the wall; CA, Bye is bulk average concentration of
species A
Heat capacity at constant pressure (kJ  kg-’ K-‘, Btu lb;’  OF-‘);  other
subscripts defined as used
Heat capacity at constant volume (kJ  kg-’ K-‘)
Diameter (m, ft); do  is inside diameter of pipe, as used in fluid flow
Base of natural logarithms (2.718 2818 . . .)
Total energy of system (J kg-‘, Btu lb:‘)
Time rate of change of energy (J s-l,  Btu s-‘)
Force (N, lbr);  F is vector; various subscripts defined as used
Energy loss due to fluid friction between walls and fluid (J, Btu)

265



266 BASIC CONCEPTS IN TRANSPORT PHENOM ENA

f
if

:
4

R
RA
R shit
r

r
S

T

t
U
u

V
v
v
W

W

W

Fanning friction factor, Eq. (6.89)
Vector representing the acceleration due to a gravitational or other
field (m s-*,  ft s-*)
Gravitational conversion constant (32.174 lb, lb;’ ft s-*)
Initial height of fluid in Fig. 7.2
EnthaIpy  of system (J, Btu); subscripts denote location
Height of a fluid in a tank (m, ft)
Unit vector in the n direction
Molecular weight (molar mass) (kg kmol-‘, lb, lb mol-‘)
Time rate of change of mass in the volume V (kg s-l,  lb,,, s-l)
Mass (kg, lb,)
Normal vector, perpendicular to the surface S
Power in Eq. (7.9)
Number of moles (or the mass) of the system (mol, lb mol)
Pressure &Pa, atm, lb, in.-*); p is always.absolute  pressure unless
otherwise stated
Time rate of change of momentum (N, lbr);  if written not as a vector,
then P is subscripted for direction of transfer
Volume flow rate (m’ $-‘,  ft3  s-i)
Heat added to system (5,  Btu)
Energy (heat) flow vector (Js-l,  Btus-3;  subscripts denote com-
ponents in coordinate directions
Gas constant; see Appendix, Table Cl for values
Generation of species A by chemical reaction
Manometer reading of a slant tube manometer (m, ft)
Cylindrical coordinate (m, ft)
Radius (m, ft); r,  is value of r at the tube wall
Area perpendicular to the direction of the velocity vector U; S,  or S,
are areas at locations 1 or 2; also used as a subscript to denote the
integral over a surface
Temperature (K, “R, “C, “F); Tl  and T2 are temperatures at locations
1 and 2; T,,is  temperature of the wall or surface; T,  is temperature in
an open channel; T,,  or Tb is bulk temperature, Eq. (11.31)
Tie (s); tc  is contact time in Eq. (6.101)
Internal energy of the system (J, Btu); subscripts denote location
Velocity vector (ms-‘,  fts-‘);  U is magnitude of V; U,,  U,,  U,,  U,,
U,,  U, are components in directions x,  y, 2,  0,  r,  9; U*  is friction
velocity, Eq. (6.53); U,,, or U,,,  is mean velocity in z direction
Volume (m’,  f?);  also used as a subscript to denote volume integral
Displaced volume
Molar volume of a gas, RT/p  (m3  kmol-‘, ft3  lb mol-‘)
Total work done by the system (J, Btu); W, is shaft work from a piece
of equipment such as a pump, compressor, or turbine
Mass flow rate (kg s-‘,  lb,,, s-l);  subscripts denote location
Subscript denoting wall.



X

Y
Z

lr

s”

2;

z

8

P

Rectangular (Cartesian) coordinate
Rectangular (Cartesian) coordinate
Rectangular (Cartesian) coordinate
The ratio (U&.)/(U3)ayc, Eq. (7.54)
Angle between i and U; also angle of slant manometer leg
The ratio (U~,,e)/(Uz)pye,  Eq. (7.24)
The ratio of heat capacities, cp/c,
Difference, state 2 minus state 1; e.g., AT means T2 - Tl
Pump efficiency
Curvilinear coordinate direction

n

P

Y

1v

1vG

Angle between U and N [see Eq. (7.3)]
Viscosity (kg m-’ s-i or N m-* s,  lb,,, ft-’  s-l,  cP); /.L is viscosity at
wall
Kinematic viscosity (momentum diffusivity) (m’  s-l,  ft*  s-i)
Generalized transport coefficients associated with h,  f, k:,  Eq. (6.90);
also, Z$,, &, &,  refer to generalized coefficients for heat, momen-
tum, and mass, respectively
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg rne3, lb,,, ft-‘); pf and pm  are the densities of process
fluid and manometer fluid, respectively
Generalized flux vector (e.g., units for heat flux are J m-* s-’ or
W m-*, Btu ft-* s-i;  see Tables 2.1 and 3.1 for more details); W,,
Y,,,  Y, are components in directions x, y, z; Y,,, or W, is flux due
to molecular transport, YX,, or Y, is flux due to convection; YO is
flux by mechanisms other than convection or molecular transport
Generalized concentration of property (e.g., units for concentration
of heat are J rnT3,  Btu ftb3;  see Table 3.1 for complete listing)
Generalized rate of generation of.energy or mass or momentum in a
unit volume (see Table 4.2 for units; e.g., for heat, units are
J me3  s-l,  Btu fte3  s-i)

V Vector operator del, defined by Eq. (2.16) or Eq. (3.45) (m-l,  ft-‘)

Note
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The overbar  for time average, as used in Chapter 6, is largely discarded in this
and subsequent chapters because time-average properties, not instantaneous
properties, are considered. As a result, the notation is considerably simplified.

In the previous chapters, detailed balances to quantify the conservation of a
property (energy, mass, moles, and momentum) have been made on a
differential element in the system. After simplification of the overall balance
equations, the result was integrated in order to obtain the velocity, tempera-
ture, and concentration distributions for specific geometries and boundary
conditions. For many cases, such detailed information is not necessary and, in
fact, is impossible to obtain because of the complexity of the equations and the
nature of the boundary conditions. The complexity of the system is often due
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to the presence of a turbulent flow in a complex flow geometry, together with
heat and/or mass transfer. Much of the complexity can be eliminated if the
principle of conservation of property is applied to the system on an integral
(overall or macro) basis rather than on a differential (micro) basis. Balance
equations can be applied over a finite volume of the system, thereby obtaining
the overall balance of mass, momentum, and energy. A limited application of
this approach (for a simple one-dimensional system) is given in Chapter 3. In
developing Eq. (3.7),  a balance was used on a finite volume but, as noted
there, the interest was more in developing a differential equation [see Eq.
(3.14),  the one-directional balance equation]. Since the overall balance
equations to be presented in this chapter represent an integration over a
volume, they can give no information as to conditions inside the system.
However, these equations will give the relationship between the variables at
the inlet and outlet of the volume, and often this type of information is more
useful than the conditions inside the system. Since the details of the flow are
not needed in the analysis, the equations apply equally well for both turbulent
and laminar flow. However, the nature of the flow will have an effect at both
the entrance and the exit. There are four equations of this type to be
considered: the overall balances of mass, momentum, energy, and mechanical
energy. This chapter begins with a general overall balance on a finite volume.

7.1 THE GENERAL INTEGRAL
BALANCE EQUATION

The balance, or conservation, concept presented in Section 3.1 is valid whether
the volume is small (differential) or large (finite or integral). Thus, it would be
well for the reader to reread that section so that the development to follow can
be put into proper perspective. The balance equation given as Eq. (3.1) is
repeated here:

INPUT + GENERATION = OUTPUT + ACCUMULATION (3.1)

which can be rearranged to:

ACCUMULATION = -(OUTPUT - INPUT) + GENERATION (7.1)

Equation (7.1) simply says that the property will accumulate if there is more
flowing in than out when no property is generated within the volume. The
individual terms have all been defined in Section 3.1. The approach here is to
integrate the terms for accumulation and generation that are occurring within
the volume; the integration must encompass the entire volume. For the
input-output terms that account for transport through the surfaces of the
system, the integration must be over the surface through which the transport is
occurring.

Three transport modes must be included in the input-output balance:
that due to convection (cf. Chapter 5),  that due to molecular transport (cf.
Chapter 4),  and that by other means not involving the actual flow or molecular
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transport, such as heat transferred by the mechanism of radiation. In terms of
the general property and the flux of that property, the equation can be
expressed as

ACCUMULATION INPUT-OUTPUT GENERATION
BY

CONVECMON MOLECULAR OTHER
TRANSPORT TRANSPORT MEANS

where the meaning of each term is beneath the equation. Here the area UX  is a
vector quantity with direction N, where N is the normal vector perpendicular
to the surface. The accumulation and generation terms are unchanged from the
presentations in the earlier chapters. They must be integrated over the volume.
The fluxes for the input-output balance are the convective flux, Eq. (3.49),  the
molecular flux, Eq. (2.18),  and the flux Y,, which is the flux by mechanisms
other than convection or molecular transport. All these fluxes must be
integrated over the surfaces involved in the inputs and outputs. The convection
term in Eq. (7.2) can be modified by using the definition of the dot product
(U * ds):

I
“ZdV = -f (lpU)(cos  e)  dS - f (Yv,  * ds)

s S

-
+&.~w+J--&dV  ‘I
s

where the angle 8 is between the velocity vector U and the normal vector N
(perpendicular to the area through which the transfer is occurring). The term
(+TJ)(cos 6) dS arises from the definition of a dot product: the magnitude @Y
times the magnitude dS times the cosine of the angle 8. Note that U is the
scalar magnitude of the vector U. Equation (7.3) contains both dS and ds;
these are related by (N dS = ds).

Figure 7.1 shows a typical system in which a fluid flows into a process
through surface 1 and out through surface 2. At each surface the normal vector
is directed away from the interior of the system. Commonly the surfaces 1 and
2 will be perpendicular to the velocity vector, in which case the angle 8 in Eq.
(7.3) is IT  radians at the entrance and zero radians at the exit. Thus, the cosines
of 0 will be -1 and 1, respectively, as is seen in Fig. 7.l(a). Note that cos 8
times dS is the projection of the surface in the direction of the velocity vector
as shown in Fig. 7.l(b). Such a correction was not necessary in the case of the
differential balance because all transport areas were in coordinate directions,
as shown in Fig. 3.5. Note also in Eq. (7.3) that the symbol & denotes the
surface integral over the entire surface area. Naturally, flow enters and exits
the volume only through the pair of areas S, and &, so the rest of the system
contributes zero to the value of the surface integral.
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\
‘e= 180” N = Normal vector

cost)=-1

(a)  System
(b) Vector N,

FIGURE 7.1
System for integral mass balance.

7.1.1 The Integral Mass Balance

Equation (7.3) will be considered now for conservation of overall mass. The
first term of Eq. (7.3),  as applied to the overall mass, becomes the time rate of
change of mass integrated throughout the volume. The entire first term will
now be replaced by a single symbol &f.  The second term in Eq. (7.3) is the
gain or loss of mass per unit volume (p) from the volume by convection as a
result of the velocity (1.  If it is assumed that equimolar counter diffusion occurs
(NA  = -Nu),  there is no net mass flux due to molecular transport (i.e.,
W,,, = 0), and the third term is zero. If no miscellaneous mechanisms exist in
the integral mass balance (YO = 0), the fourth term is zero. The generation
term (Go) is zero regardless of the presence of any chemical reaction; Go is
non-zero only in problems where there is a nuclear reaction that converts mass
into energy. If both I, and Y, are zero, Eq. (7.3) reduces to

ni=-
f (Pw- 0) dS (7.4)
s

Equation (7.4) is the unsteady-state overall maSs  balance.
In Figure 7.1, the fluid enters at 1 and leaves at 2; the surfaces across the

flow are selected so that they are perpendicular to the lines of flow. For this
system, Eq. (7.4) becomes

ni = -
I

(pU)(cos 0)  d.S  - (pU)(cos 6) dS
Sl I.%

(7.5) ’

At S, the angle between N, and U,  is 180”,  and cos 8 equals -1; at S, the angle
between NZ  and U, is O”,  and cos 0 equals +l.  Then Eq. (7.5) reduces to

(7.6)

Often, the product pU may assume an average value across the surface, so
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when Eq. (7.6) is integrated, a useful result is

il=p,v,, . ..Sl  - P2V2,  WCS, (7.7)

where U1, avc  and  UZ. ave are the average (bulk) velocities at positions 1 and 2,
respectively. In each case, the velocity Vav,  is the average over the cross
section at the point in question. The average velocity V,,, is defined in general
as

(7.8)

When Eq. (7.8) is applied to pipe flow, it is often advantageous to define a
quantity  WL., which is U raised to a general power n and then averaged:

(7.9)

For a circular pipe, the denominator is simply the area, &.
For turbulent flow, U is replaced by u, where 6 is the time mean of the

instantaneous velocity vector U.  This time mean must not be confused with the
average across the pipe given by Eq. (7.8). The replacement of l.J by 0 in
effect neglects the flow associated with the deviations from the mean. The
exact analysis for turbulent flow follows from the insertion ‘of Eq. (6.8),  given
below, into Eq. (7.9):

u=ll+u (6.8)

Recall that u’ is the deviation from the mean. If Eq. (6.8) is time-averaged,
then by definition v is equal to zero. For the mass balance in which n = 1, the
approximation is without error. For n other than 1, these averages are not
zero, i.e., (v’)‘+O,  but in practice the error is small, and the more exact
analysis is usually impossible to carry out. Henceforth, the instantaneous
values of U,  CA,  T, etc., will not be not used; the overbar notation on these
quantities will be dropped. The notation without the overbar  will now signify
the time-average values.

If the densities are asssumed constant or equal to some average value
across the cross section, the mass flow rate w (typical units of kgs-‘)  is in
general

w = PLJ (7.10)

Since the term j$f is the time rate of change of mass in the system, it follows
. that

ni=w,-y (7.11)

For steady-state, &f  is zero and

or

w=w,=y

w=Plul . a&  = P2fJ2,  .YJ2

(7.12)

(7.13)
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Example 7.1. A tank of radius b  is filled to a height H with a liquid of density p,
as shown in Fig. 7.2. The fluid drains from the bottom of the tank through a hole
with a  radius  of  r,.  The flow velocity at the exit  is  approximated by Torricell i’s
law:

U:,. = 2gh (9

where h is the instantaneous height. What is the total time required to empty the
tank?

Answer. Equation (7.11) applies.  Since nothing enters the system

w, = 0 (ii)

The mass flow exiting is the density times the velocity-times the flow area (I&)),
Eq. (7.10):

w = PG.  .&a (iii)

After substituting Torricelli’s law, this equation becomes

pi = (p)(d)(2gh)‘R (iv)

Since the term &f  has units of mass per second, the following unit equation is

ni  = d(pnr$h)/dt

where n&h  is the volume of fluid in the tank at any given h. Equations (ii), (iv),
and (v) are combined with Eq. (7.11):

d(pn&h)/dt  = 0 - (nr2p)(2gh)ln (4

which rearranges to

The following boundary conditions apply:

h(t = 0) = H

h (t  = t,,.,)  = 0 (viii)

Equation (vii) is integrated with these boundary conditions to give the total time
of emptying,  ttotd:



INTEGRAL  METHODS OF ANALYSIS 273

Example 7.2. A tank of inside diameter 4 m and with a water level of 2 m is to be
emptied by draining through a 3 cm exit hole. How long will it take to remove
one-half of the contents? How long will it take to empty the tank?

Answer. This problem is solved by integrating Eq. (vii) in the previous example
with the general boundary conditions:

h(t =0)= H

h(t = t) = h (9

.The answer is

The original height H is 2 m, h is 1 m, r., is given as 3 cm or 0.03 m, and r, is 2 m.
Substituting these into Eq. (ii), the result is

(l.O)rR  = (2.0)lR  - (0.03/2.0)2(9.80665/2)‘nt (ii)

where g = 9.80665 m sC2. The time t to reach a height of 1 m is found from Eq.
(iii):

t=830.9~=13.8min (iv)

The time to completely empty the tank is found from Eq.  (ii) of the previous
example:

t 1”=(2.0/0.03)2[(2)(2)/(9.80665)]’”

= 2838.5 s = 47.3 min 69

The calculated times are too long to be practical for commercial applications.
Either one must pump the fluid  out at a greater rate than can be obtained by
Torricelli’s  law or one must enlarge the exit hole. The hole size  to empty the tank
in 10 min can be calculated from Eq. (ix) of the previous example:

r$i = (r:)(2H/g)‘“l(t,~,.,)  = (2.0)2[(2)(2)/(9.80665)l’nl[(10)(60)1
= 0.004 258 m2 (4

o r
r,,  = 0.065 m = 6.5 cm w

This answer is quite reasonable for a large tank as given in this problem.

7.1.2 The Integral Balance on an Individual
species

The concentration of species A can be substituted for the property 11, in Eq.
(7.3) to produce an equation similar to Eq. (7.7):

n;r, = CA,I~I,  a&  - CA.&  a.& + RA (7.14)

The term RA represents the generation of species A by chemical reaction. For
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no chemical reaction, the term RA is zero. For steady-state (no chemical
reaction) both RA and & are zero, and Eq. (7.14) shows that the mass or
number of moles of species A entering equals the mass or moles of species A
leaving.

It is easiest to solve mass balance problems with chemical reaction on a
mole basis. The procedures are relatively straightforward, and there are
several books that contain sections on mass balances [Fl,  Hl, S2]. The topic is
usually referred to as stoichiometry. Example 7.3 is presented as an example
that involves the combustion of coal.

Example 7.3. A coal hydrogasification plant normally converts coal into a
hydrocarbon gas that is subsequently processed into useful organic compounds.
However, owing to restricted capacity in the plant it is sometimes necessary to
use the output gas as a furnace fuel. In this particular case, the fuel is burned with
40 percent excess air in a multistage furnace system that gives essentially 100
percent conversion and no CO formation. Calculate the flue (exit) gas composi-
tion. The fuel  gas composition in mole per cent is

H2 N2  CO H$ w-b  GKS m co2

2 4 0.5 5.9 1.5 0.1 1.0 64 3.0

Answer. As a basis, let us select 100 moles of fuel gas.‘Then  the percentages
above are the actual moles of each compound in the feed stream. Solution of this
problem follows easily, if the amount of oxygen required for complete combus-
tion (called the theoretical oxygen) is computed. The possible chemical reactions
a r e

HZ  + $4 = H,O (9
co + $0,  = co, (ii)

H,S + $4 = SOa  + H,O (iii)

CJ3, + 34 = 2C02  + 2H20 (iv)
GH,  + $0,  = 2C02  + 3H,O 69
CH, + 24  = CO, + 2H20 (4

The nitrogen is assumed to be inert at the combustion temperature.  The CO2  i n
the feed is also assumed not to change. The theoretical O2  required is:

12.00 moles O2  required for 24 moles H,

2.95 moles O2  required for 5.9 moles CO
2.25 moles 4 required for 1.5 moles H,S

0.30 moles Oz  required for 0.1 moles CJ&

3.50 moles O2  required for 1.0 moles C&
12SOO  moles O2  required for 64 moles CH,

149.00 total moles theoretical 0, required



INIEGRAL METHODS OF ANALYSlS ns

Since the fuel gas is burned with 40 percent excess, the actual oxygen supplied is
1.4 t imes the 149 moles,  or  208.6 moles.  The ni t rogen is  found from a ni t rogen
balance, i.e., the nitrogen input equals nitrogen output in the exit stream (the flue
gas) .  There are two sources of  ni t rogen:  OS moles N2 in  the  fuel  gas  and a  large
quantity in the air, which is 79 percent N2 and 21 percent 0,. The calculation
proceeds as follows:

to ta l  moles  a i r = 208.6 moles 4/0.21=  993.3 (vii)

to ta l  moles  N2 =(993.3)(0.79)=784.7 (viii)

moles of N2 in flue gas = 784.7 + 0.5 = 785.2 (ix)
moles Of  0,  in f lue gas = (moles in air)  - (moles reacted)

=208.6-149359.6 (x)

Water ,  carbon dioxide,  and sulfur  dioxide are  found by making the  appropria te
balance using the  chemical  react ions .  The calcula t ions  fol low.

I&O ad  CO2  babnce.  Using the reactions in Eqs.  (i) through (vi):

24 moles H,O and 0 moles CO, formed for 24 mol& Hz reacted ,

0 moles Hz0 and 5.9 moles CO, formed for 5.9 moles CO reacted

0.2 moles H,O and 0.2 moles CO, formed for 0.1 moles CJE, reacted

3.0 moles Hz0 and 2.0 moles CO2  formed for 1.0 moles C& reacted

128 moles  Hz0 and 64 moles CO, formed for 64 moles CH, reacted

156.7  to ta l  moles  H,O and 72.1  to ta l  moles  CO1  formed

The to ta l  CO*  formed is  72.1 moles ,  which when added to  the three moles  in  the
fuel gas gives a total of 75.1 moles of CO*.  The total Hz0 is 156.7 moles.
SO2 bakce. From the 1.5 moles of H$  in the fuel gas, 1.5 moles of SO*  are
formed and exit  in the f lue gas.

At  this  point ,  the  moles  of  each of  the  f ive  gases  in  the  f lue  gas  have been
computed on the basis of 100 moles of fuel. The compositions are found by
dividing the  moles  of  each gas  by the  tota l  moles .  The f inal  composi t ion of  the
flue gas is

.
g= NZ 4 Hz0  CO, SO*

moles 785.2 59.6 156 .7 75 .1 1 .5

mole percent 72.8 5.5 14.5 7.0 0.1

7.13 The Integral Momentum Balance

The momentum balance is obtained by substitution of pU for the concentra-
tion of property q, as found in Table 4.1. Note that q is a vector, since pU is
substituted. Each term in Eq. (7.3) will be considered in turn. Figure 7.3 shows
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f’4.x  = -

N,., = cos a2

FIGURE 7.3
System for integral momentum balance.

the general system for an integral momentum balance. The time rate of change
of momentum after the accumulation term is integrated over the system
volume is called P:

(7.15)

Note that $ has units of property per second, which is a,, force unit such as
newtons. Thus each term in Eq. (7.3) as applied to momentum will have the
units of force.

The second term in Eq. (7.3) is separated into two integrals, as was done
in deriving Eq. (7.5). Since cos 8 is either -1 or 1, the second term becomes

-
f (P~~)(cos  0)  dS  = I, (PUU)  dS  - I, (puu)  dS (7.16)

Again, it has been assumed that there is no flow through surfaces other than S,
and S, and that the flow is perpendicular to these surfaces.

The third term in Eq. (7.3) arises from the input-output flux by
molecular transport. There are three contributions to this term. The internal
surfaces of the system in Fig. 7.3 are stationary. The moving fluid transfers
momentum to these walls. The viscous drag (sometimes termed skin friction) is
the largest contribution to the molecular input-output flux and is included in a
term denoted as F,,,,.  In this analysis, F&,,  is the force of the fluid on the
solid. The units of Fdrag are force, such as newtons.

The second contribution to the flux by molecular transport is from the
pressure at the inlet and outlet of the system:

- I,,pNdS=-l,pNdS-hpNdSI
(7.17)

The pressure p is a scalar quantity. In Eq. (7.17) the quantity pN is a vector
acting normal to the surfaces S, and $. The pressure term also contributes a
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pressure drag (sometimes called form drag) on the internal surfaces of the
system, which is included in Fdrag. All pressures in Eq. (7.17) are absolute, a
key point often confused in discussing this equation.

The third contribution to the fhrx by molecular transport is associated
with the viscous forces at the inlet and outlet of the system volume. This
contribution is usually neglected. Then the third term in Eq. (7.3) becomes

J f (‘I’m  * d.S) = -I (PN)  dS  - I, (pN)  ds - Fdra,
S Sl

(7.18)

In this equation, the flux Y,,, is the shear stress r,  which is a tensor; the dot
product of V,,,  with ds is a vector, as is every term in Eq. (7.18).

The fourth term in Eq. (7.3) is zero because other means of momentum
transport do not exist. The fifth term, the generation of momentum, is caused
by the action of external forces on the fluid, such as the force of gravity. Such
effects are denoted as Fe,,. If gravity alone is to be considered, then Fen  equals
Fg, and Eq. (4.51) applies:

4 = PVg (4.51)

The overall momentum balance is the result of substituting the five preceding
equations into Eq. (7.3):

“=I WWdS-j  (pUU)dS-1  (pN)dS-j  (pN)dS-Fbg+F,
S .% Sl .%

(7.19)

After performing the integrations, as for the mass balance, Eq. (7.19) becomes

P=  pl(uu) 1, ave&  - Pz(uu)z.  d2 - PINIsI  - P2w2  - bag  + &rn (7.20)

The first difference in Eq. (7.20) can be expressed in terms of the mass flow
rate w  [from Eqs. (7.12) and (7.13)] in order to eliminate the product pS.  Then
Eq. (7.20) becomes

P = (uu)l’ave  wl  - (uu)2’ave  ~4 - pINISI  - p2N2&  - Fdrag  + Fe*
u

(7.21)
1, BVC u2, ave

where again p, and p2  are absolute pressures.
Equation (7.21) is a vector equation that must be resolved into its

component parts before being used. For example, let us reconsider the system
of Fig. 7.3, in which the angle 8 is the angle between the velocity vector for the
flowing fluid and the normal vector to the area of the control volume (see Fig.
7.1). The angle (Y is the angle between the unit vector in the x direction and
the velocity vector. For the x direction, the following are true from Fig. 7.3:

u,,, = u, cos ffl U2 . x  =  u2 cos  a2

N,,,  = cos(l80  - Q) = -cos  CY~ N2,x  = cm  a2 (7.22)
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Thus, Eq. (7.21) becomes

-~2s,cos  (yz - Fc~rag,x+Fext,x (7.23)

For the y component (or the z component), the cosines become sines:
otherwise, the equations are the same.

Quite often the term (U2),,/CJave  is replaced by U,,lj3, where

(7.24)

If the velocity entering the control volume in Fig. 7.3 is constant everywhere
across area S,, then /3 is unity at the entrance because (I,,, equals U for a flat
profile (i.e., plug flow). The same would apply for the exit stream if the profile
were flat. Naturally, plug flow represents an idealized case. There is always a
velocity profile in a real fluid with non-zero viscosity, beginning with zero
velocity at a solid-fluid interface. If the velocity profile is known, then the
numerator and denominator can be evaluated separately using Eqs. (7.8) and
(7.9) and /3 can be determined. Although /3 is usually assumed to be unity, it
has been evaluated for a number of flows:\

Turbulent flow 0.95Ij3SO.99 (7.25)

Lamillar  flow B=3 (7.26)

In the general case, /3 at the inlet of the volume as in Fig. 7.3 does not
necessarily equal /3 at the outlet. However, this degree of rigor is rarely
required for most problems, and the assumption of /3 equal to unity is often
satisfactory.

Force balance and Newton’s second law. Inspection of Eq. (7.21) shows that
the last four terms are forces, while the first three terms involve momentum
changes:

k=(uu)lTave~  -(uu)2’““~-plNlSl-p  N&-F,,+Feti  (7.21)
U 1 U 2 2

1.av.z 2, avc

In this equation, the terms (-pINISI)  and (-p2N2SJ  are vector forces,
associated with the absolute pressure acting in a direction perpendicular to
each surface S, and $. Let us call these two pressure forces Fpress:

F p r e s s  = -PIN& - p2N2s2 (7.27)

With this definition, the definition of /3 [Eq. (7.24)],  and the definition of A
(state 2 minus state l), Eq. (7.21) becomes

2  F = Fprcss  - Fdras  + Fe,  = t’ + A(wUlP) (7.28)
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The left-hand side of Eq. (7.28) is the sum of three forces. Equation (7.28)
equates these to the sum of two momentum changes: i’ is the time rate of
change of momentum, and the term A(wU//3) is the change in momentum
between points 2 and 1, i.e., the convection of momentum into and out of the
volume.

Newton’s second law of motion can be expressed as

c F = P = d(mU)ldt (7.29)

where the term d(mU)ldt  is the total time rate of change of momentum at a
point. In Eq. (7.29) convection is not explicity expressed. However, the
convection term can be obtained if the total time derivative is replaced by the
substantial derivative, Eq. (5.52). The result is a differential relationship
similar to Eq. (7.28) that contains convection. At steady-state,. the flow rate is
constant, and all derivatives with respect to time, including P, are zero. For
this case, Eq. (7.28) becomes

c F = F,,  - Fc,ras  + Fe,,  = A(wull.9 (7.30)

In other words, at steady-state the sum of the forces is not equal to zero as Eq.
(7.29) implies because the velocity vector may change from,state 1 to state 2 as
a result of a change in flow area, a change in direction, and/or a change in fluid
density. Equation (7.30) clearly shows that at steady-state the convection of
momentum balances the sum of the forces.

Equations (7.15) through (7.28) comprise a rather complex application of
the general property balance concept to momentum. This application has the
advantage of clearly indicating the nature of convection and the source and
reason for the /3 correction factor and the other terms in the equation. In
contrast, Eq. (7.29),  Newton’s law, tends to bypass these important concepts.

Equation (7.30) is the basis for making a force balance on a free body; a
free body is the widely used term for a control volume in which all forces act
on the body. The pressure force FpreS can be determined from Eq (7.27). The
magnitude of Fprras in any direction is the pressure times the projected area
(from St and S, only) in that direction, and its sign can easily be determined by
common sense, rather than resorting to the normal vectors as used in Eq. -
(7.27). When a fluid is contained within a solid boundary, such as a nozzle, the
walls of the solid exert forces on the body, i.e., F,,.  The normal and shear
stresses counterbalance Fcxt  [S5]. A complete discussion of pressure forces is
available elsewhere [Dl, S5].

The concept of gauge pressure greatly simplifies the solution to some
common momentum balance problems, as will be illustrated by Example 7.6.
The gauge pressure is the pressure relative to the atmospheric pressure pat,,,:

Pgeuge  = pabso1utc  -patIn (7.31)

As a final point when engineering units are employed in the momentum
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and force balance equations, the units lb,,, and lbr will both appear. The
conversion factor g,  will be needed in the denominator of the right-hand side
of Eq. (7.30), as can be verified by checking units in the equation. Example 7.4
illustrates the use of Eq. (7.21), the momentum balance equation, and
Examples 7.5 and 7.6 illustrate the force balance on a free body that Eq. (7.30)
suggests.

Example 7.4. Water flows at a rate of 10 ft3 s-’  through a horizontal 60”  reducing
elbow, as shown in Fig. 7.4. The inlet absolute pressure is 100 psia, and the outlet
abso lu te  p ressure  i s  29.0psia.  The in le t  and out le t  d iameters  are  6  in .  and 4in.,
respect ively .  Find the  force  exer ted  by the  e lbow on the  f lu id .

Answer.  The force to be found here is  F,,,, as  g iven by Eq.  (7 .21) :

&wJh.avc wJ)* .“S
- 4 --w-PINS, -PA’&%  -Fdrag  +F,,  (7.21)

u I/
-\

1,xwc 2.  B”S

Since  the  p rob lem i s  p resen ted  in  eng ineer ing  un i t s ,  those  wi l l  be  used  in  th i s
solut ion.  The areas  S, and  S, are

S, = nd;/4  = (3.14159)(6.0/12.0)‘/(4)  = 0.1963 ft’

s,  = nd:/4  = (3.14159)(4.0/12.0)‘/(4)  = 0.0873 ft* (9

The velocities I!J,+~  and U,,, are determined from the’ volumetric f low rate
divided by area:

lJ 1,  ~YS  = Q/S,  = (lO)/(O.  1963)[(ft”  S-‘)(ft-*)] = 50.93 ft s-’

U 2,ave = Q/s, = (10)/(0.0873)[(ft3  S-‘)(tF*)] = 114.6 ft s-’ (ii)

Next ,  the  Reynolds  number  of  the  f low wil l  be  checked in  order  to  determine i f
t he  quan t i t y  b can  be  assumed uni ty .  For  water ,  the  v iscos i ty  and dens i ty .  in
English units are 6.72 x 10m4  lb,,, fi-’ SC’  and 62.4 lb,,, ftV3, respectively. Thus, at

(a) Fluid inside elbow (b) Resultant forces on elbow

FIGURE 7.4
Momentum balance on the thud  in a reducing elbow.
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the‘inlet:

NRe = d,U,p/p  = (6.0/12.0)(50.93)(62.4)/(6.72  x 10-3  = 2.4 x 106 (iii)
Similarly, the outlet Reynolds number is even greater, 3.6 x 106.  Thus, the
assumption of jl = 1 is valid:

For this problem, there is no time rate of change of momentum because of
steady-state:

k=o (4

The mass f low entering equals  the mass f low exit ing;  these are found from Eq.
(7.10) and Eq.  ( i )  or  from the product  of  densi ty t imes volume flow rate:

w,  = w = pU.,,S = pQ  = (62.4)(10)  = 624 lb,,, s-’ 64

The drag  on the  wal ls  Fdral will be neglected because the length of fluid travel is
shor t  (see  Chapter  10 for  deta i ls ) .  Equat ion (7 .21)  [or  i t s  res ta tement ,  Eq.  (7.23)]
both contain F,,,, which is the external force acting on the fluid inside the walls of
the  e lbow and between surfaces  S, and  &. In  o ther  words ,  Fe, wil l  be  exer ted  by
the  e lbow o n  the  f lu id .  The quant i ty  Fe.,  has  a  component  in  the  z  d i rect ion f rom
gravity and in the x and y directions from the elbow. In Eq. (7.21) the normal
vector  N,  ac t s  in  the  nega t ive  x di rect ion,  a t  an  angle  of  180” from the x axis ;  N2
acts obliquely at an angle of 60”. Since cos l&T=  -cost”:  Eq. (7.21) becomes
Eq. (7.23) which with the reductions and simplifications already discussed is

0 = (wIgc)[(U,....)(~s  a,) - W*,,,)(~S  %)I  +p1s,  cm  @I
- ~2% ~0s  (~2 + Fe,,, (vii)

The angles  (Y, and  cu,  are zero and 60”,  respec t ive ly .  Af te r  subs t i tu t ing  a l l  va lues
and solving Eq. (vii) for Fe.,.,,  the result is

F sxt.x  = -(624/32.174)[(50.9)(cos  0) - (114.6)(cos  60)]

- (100)(144)(0.1%3)(c0s 0) + (29.0)(144)(0.0873)(c0s  60)

= 123.5 - 2645.2 = -2522 lb, (viii)

where the absolute pressures have been converted to units of lbr fi-‘. The
equation equivalent to Eq. (7.23) or Eq. (vii) for the y direction is

Fem,y  = -(624/32.174)[(50.9)(sin  0) - (114.6)(sin  6O)J

- (100)(144)(0.1%3)(sinO)  + (29.0)(144)(0.0873)(sin  60)

= 1924.8 + 315.6 = 2240 lb, w

The forces F,,,  and F,., are the forces exerted on the fluid by the elbow.
Equations (viii) and (ix) indicate that F,,,  acts to the left and F,,,,  acts in the
pos i t ive  y  d i rec t ion ,  a s  shown in  F ig .  7.4@).  No te  t ha t  t h i s  e lbow i s  ho r i zon ta l ,
and gravity acts in the z direction in Fig. 7.4. If the elbow were rotated, then
another  force must  be included in  Eq.  (7 .21)  or  Eq.  (7 .30):

F,,  = - PQ (x)

where pV is the mass of the control volume in units of kg or lb,,,.
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Eximple  7.5.  Repeat  Example 7 .4  using the force balance concept  given by Eq.
(7.30).

Answer .  A force  ba lance  solu t ion  to  th is  problem begins  wi th  Eq.  (7 .30) :

CF=F,S -F&,,  + F..,  = A(wut19 (7 .30)

The  f ree  body  under  cons idera t ion  i s  the  f lu id  ins ide  the  e lbow shown in  F ig .
7.4(a).  All  forces  act ing on the free body must  be considered.  Here Fdrsg  i s  ze ro ,
and p is one, as explained in Example 7.4. The change in momentum is easily
computed for each direction,  using information from Example 7.4:

w  Av, = w(K,z - v,,,)
= (624/32.174)[(114.6)(cos  60) - (50.9)(cosO)]  = 123.5 lbf (9

w AU,  = w(U,,, - U,,,)  = (624/32.174)[(114.6)(sin  60) - 0] = 1924.7 lb, (ii)

The remaining term in Eq. (7.30) to be found is Fpmn.  The force balance
approach to this problem differs from the momentum balance approach in that
the  momentum balance  ass igned the  di rec t ion to  the  veloci ty  vector  N,  whereas
in  the  force  balance as  appl ied to  obl ique or  curved surfaces  the  pressure  force  is
determined by the projected area in  each coordinate  direct ion.  The pressure force
can be computed from Eq. (7.27):

F p m = -PIN&  -PAL% (7 .27)

If  the numbers as found in Example 7.4 are inserted,  the components of  F, are

F pns% * = -(100)(144)(0.1%3)(cos  180) - (29.0)(144)(0.0873)(cos  60)

= 2645 lb, (iii)

F p*esr. Y = -(100)(144)(0.1%3)(sin  180) - (29.0)(144)(0.0873)(sin  60)

= -315.6 lbr (9

In Eq. (7.27), the product (NS) is the projected area. This quantity may be
determined wi thout  resor t  to  vectors .  From inspect ion of  Fig .  7 .4 ,  the  pressure
force  a t  locat ion  1  in  the  x d i rec t ion  i s  the  pressure  p, t imes the projected area,
s imply S,, and  the  s ign  must  be  pos i t ive  s ince  the  pressure  ac ts  on  the  f ree  body
in the positive x direction:

Fp ->=, 1=p,S,=(100.0)(144)(0.1963)=2827.41b, (4

Since there is no projected area in the y direction at location 1, Fprcm,y,  1  is zero.
Similarly, the pressure force at location 2 in the x direction is the pressure pz
t imes the projected area:

s& = s,  cos  u, = (O.O873)(cos  60) = 0.04363 ti (4
F pIen.  2,2 = -pz&,x  = -(29.0)(144)(0.04363)  = -182.2lbr (vii)

The sign in Eq. (vii) is determined by inspection of Fig. 7.4; the pressure force on
the  f ree  body i s  ac t ing  in  the  negat ive  x d i rec t ion  a t  loca t ion  2 .  The  ne t  pressure
force is

Fp-.= =Fpm.r.~+Fpr.m,x,z = 2827.4 - 182.2 = 2645 lb, (viii)
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Note  that this answer is the same as found in Eq. (iii). When all numbers are
inserted into Eq. (7.30), F,,,.,  is

F CR,r  = 123.5 - 2645.2 = -2522 lbi @4
This answer is the same as was obtained in Eq. (viii) of Example 7.4.

For the y direction, the calculation of the pressure force using the free body
concept proceeds similarly. Inserting the numbers in the appropriate equation,
the force in the y direction is

F cxI,y  = 1924.8 + 315.6 = 2240 lbr (4
The force exerted by the elbow on the fluid is the resolution of F,,,, and Fs:,.,,:

Fe., = (F:;,,,  + F:.,ey)la  = [(-2522)’  + (2240)71R  = 3373 lb, w
u = arcsin  (F.n,y/F.,)  = 180 - 41.6 = 138.4” (xii)

The force has a magnitude of 3373 lbr  and a direction of 138.4” from the positive x
~direction  (in the second quadrant).

Example 7.6. The elbow in Fig. 7.4 is secured by flanges at either end. Calculate
the force exerted by the bolts on the flanges. Let the atmospheric pressure be
14.7 psi.

Answer. Figure 7S(a) shows the 60” reducing elbow previously considered in Fig.
7.4. In this problem the free body to which Eq. (7.30) till’be  applied is the elbow
plus the fluid inside.’ The elbow is naturally stationary, but the tluid  inside is
moving. Now F, is the force exerted by the bolts on the llanges.  The solution

I
Pam ’ Elbow

(u) Elbow and flange (b) Force exerted by the
beltsonthetlange

FIGURE  7.5
Atmospheric pressure distribution on a reducing elbow.

l Recall  that  only the fluid was considered as the control volume or fret  body in the previous two
examples, 7.4 and 7.5.
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will show that this F.., is not equal to the force exerted by the elbow on the fluid,
as  found in  the  preceding two example  problems.  The solut ion begins  wi th  the
force balance:

xF=F,,- Fdras  + F,,  = A(wUlls) (7 .30 )

In this problem, the pressure force due to the atmosphere must be
cons idered ,  as  shown in  F ig .  7S(a).  The pressure force due to the atmosphere
F,,  acts  on al l  exposed surfaces of  the elbow. The pressure force on surfaces S,
and S, i s  g iven  by  Eq .  (7.27), which a l ready includes  the  a tmospher ic  pressure .
Let Al  be the total area projected by the elbow (including S, and SJ in the x
direction. Obviously, Al  as projected in the positive x direction equals A, as
projected in the negative x direction. This key point allows the atmospheric
contribution to Fe., to cancel in all directions as will be shown shortly. The basic
equat ion for  pressure force,  Eq.  (7 .27)  must  have addi t ional  terms:

L FP-u = -P,NS,  -P&S,  + Fat, (9

Rather  than use  Eq.  ( i ) ,  perhaps  i t  i s  eas ier  to  consider  the  pressure  forces  ac t ing
on the  f ree  body in  Fig .  7S(a).  Recal l  f rom Eq.  (7 .31)  that  the gauge pressure is
related to p, and pz by:

P1=Pl,ga”ge+Patln (ii)

Pz  = p2. gauge  + patm (iii)

In  order  to  s impl i fy  nota t ion ,  le t  us  cons ider  only  the  pressure  forces  in  the  x
di rec t ion  and  drop  the  subscr ip t  x .  The pressure  force  ac t ing  in  the  pos i t ive  x
d i rec t ion  F+  i s  (pIgi) p lus  the  a tmospher ic  pressure  ac t ing  on the  area  projec ted
in the negative direction, which is (A, - S,):

F+=P 1,  pug&  + P.&  + ~ntm(A  , - S,) (9

where p, has been replaced via Eq. (ii). Next, the pressure force acting in the
negative x direction F- is p& cos 60 plus the atmospheric pressure acting on the
area projected in the positive direction (A, - S,  cm 60”):

F-  = (pzgauge&)(~s  W + (P,&)(~s  60)  + ~acm[A,  - (&)(~s  WI 69

The net  pressure  force act ing in  the x di rect ion is  the  sum of  F+  and F-:

Fpress,x=F+  +F-  =p~,gsu& -(~z.gauge&)(~sW

+ (P,,&  + AI  - 4 - (&)(ms 60)  -A, + (&)(cos  @)I (vi)

where pz has been replaced using Eq. (iii). In Eq. (vi), the p.,, term is identically
zero ,  and  the  resul t  i s

F pres.x  = Pl.ga”ge s - ( P1 2. ~.“ses)(~s w (vii)

or in vector form:

Fpress  = -P*.ga”&vl  -P2.w&SZ (viii)

This  equat ion is  an  extremely useful  and general  equat ion that  can be  general ly
applied to the computation of the forces necessary to design supports in all types
of  e lbows,  bends,  valves ,  e tc .
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Equations (ii) and (iii) are used to find the gauge pressures:

ppusc,,  =pl  -p.- = 100.0 - 14.7 = 85.3 psig
ppup.2  =p2  -p.- =29.0-  14.7 = 14.3 psig

The pressure force in the x direction is computed from Eq. (vii):

(ix)

(xl

F prus,x  = (85.3)(144)(0.1%3)  - (14.3)(144)(0.0873)(cos  60)
= 2322.0 lb, (xi)

The derivation of Eq. (vii) was for the x direction. Obviously, the derivation is
easily generalized for all directions, and thus Eq. (viii) was presented. The
equation for the y direction corresponding to Eq. (vii) is

F pren*Y=(P l,,Sd(S~O) - (P2,*wes2)(s~~) w

Inserting the appropriate numbers, Fp-,y  is

Fp”,Y  = (85.3)(144)(0)  - (14.3)(144)(sin  60) = -155.6lbt (xiii)

Using the pressure forces from the last two equations and the assumptions and
numbers  from Example 7.5, the external forces are

F,,,=123.5-2322.0=-22OOlbr’ W)
Fat.),  = 1927.7 + 155.6 = 2083  lbf (4

In conclusion, the atmospheric pressure forces cancel on a solid body, even
when that body contains a fluid that enters at a pressure p, and exits at p2.  when
the free body is taken as the solid plus the fluid inside, the atmospheric
contribution to P&t cancels in all directions, and F,, must be calculated from
Eq.  (viii):

Then F., becomes the force necessary to hold the solid in place and is the key
quantity in the determination of the thickness of the material of construction-the
bolts, etc. Note that the resultant force and angle found in this problem differ
from those obtained in Example 7.5. For this problem

F,, =(F:nez  + F;xt,y)lR  =[(-2200)'  +(2083)2]'n=  3030 lb, (xvi)
LY = arcsin  (F,.,,/F,,) = 180 - 43.4 = 136.6” (xvii)

Also, there is a force on the elbow in the z direction owing to the weight of the
elbow plus the weight of the fluid inside.

Cancellation of the atmospheric pressure terms becomes obvious if one
considers the elbow without flow. With no flow, the pressures at locations 1 and 2
are 1 atm; in other words, the elbow  is lying at rest, totally surrounded by
atmospheric pressure. Obviously, the elbow will be stationary. The conclusion is
that the forces due to atmospheric pressure must balance one another; if the
forces were unbalanced, Newton’s second law of motion would require that there
be an acceleration.
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7.1.4 The Integral Energy Balance

A complete discussion of energy balances requires a thorough background in
thermodynamics as well as in transport phenomena. In this section a brief
introduction to the Srst  law of thermodynamics will be presented in order to
introduce and explain the concepts of heat, work, and internal energy.

Equation (7.3) can be used to obtain an energy balance upon substitution
of the concentration of heat, pc,T,  for the property r& The resulting equation
is of limited value because the first three terms in the final equation are
negligible for most problems. The last two terms are often of little use because
they are too general in nature for specific use. Instead, what is needed is not a
balance on the concentration of heat, but rather a balance on the concentra-
tion of the total energy in the system. Such a balance will be formulated from
the first law of thermodynamics and alternately from Eq. (7.3).

Figure 7.6 depicts a boundary of a system of arbitrary shape. The
surroundings are the entire universe with the exclusion of the system. One
statement of the first law of thermodynamics is that the total energy of the
universe (i.e., system plus surroundings) is constant. It follows that the change
in the total energy in the system equals the negative of the change in the total
energy of the surroundings. This statement is an expression of a simple energy
balance:

’CHANGE IN TOTAL ENERGY OF SYSTEM
= -CHANGE IN TOTAL ENERGY OF SURROUNDINGS (7.32)

In Fig. 7.6, the heat added to the system from the surroundings is positive in
sign and Q in magnitude; the work done by the system on the surroundings is
positive and of magnitude W. The units of Q and Ware simply those of energy
(joules) as given in Table C.19. In Fig. 7.6, it is very important to realize that
Q and W represent the energy changes in the surroundings. Allowing for the
sign convention, therefore, Eq. (7.32) becomes

CHANGE IN TOTAL ENERGY OF SYSTEM = Q - W (7.33)

where W is the total work, all kinds, passing across the boundary in Fig. 7.6.
Equation (7.33) is a statement of the first law of thermodynamics.

B o u n d a r y W = work done by the system

Surroundings Surroundings

FIGURE  7.6
Q = heat added to system

Boundary of a system for the first law of thermodynamics.
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In Eq. (7.33) and subsequent equations, the thermodynamic sign
convention will be used exclusively, namely, work done by the system is
positive and heat added to the system is positive. Sometimes the opposite
convention with regard to work only is found, in which case the reader must
substitute (- W)  for W. When consulting other references, one must always
determine which sign convention for the work is being used. For a more
complete discussion of the first law, the reader is referred to reference books in
physics [Sl],  physical chemistry [Gl, IQ,  Wl],  or engineering [Bl, S3, S4].
Note that the first law amounts to an overall energy balance on the universe.

The system of Fig. 7.6 does not have any components that involve flow.
Many problems correspond to this case, which is commonly called a nonflow
process, and Eq. (7.33) becomes:

(Au) system  = U2 - ~1 = Q - W (734)

where u is the internal energy of the system [Bl, Gl,  K2, Sl, S3, S4, Wl].  The
internal energy is energy stored in the molecules of the system and is
composed of contributions from the velocities of the atomic particles (kinetic
energy) plus contributions from the attractive and repulsive forces in each
atom (potential energy). The internal energy is a strong function of
temperature:

,
r

@honstant vo,ume  = (u2 - ul)v  = nj c, dT (7.35)

where c, is the heat capacity at constant volume and II  is the number of moles
(or the mass) of the system. Note that in Eq. (7.35) the quantities n,  c,, and T
must be in consistent units, so Au may be expressed in units of energy. The
enthalpy H is related to u by the defining relation:

H=U+’
P

(7.36)

or

AH=H~-H~=&J+L~  p
0 P

(7.37)

In this equation, the term A(plp)  is

A !!  ,!?e&
0P P2 Pl

(7.38)

Note that the quantity p/p  has units of energy and might require an
appropriate conversion factor in order to be summed with u in Eq. (7.36).
Enthalpy is also a strong function of temperature. It can be shown that for a
reversible constant pressure process:

(7.39)
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Outlet  ----  L--7\)
* ---- Q

FIGURE 7.7
A flow system for the first law of thermodyotics,

where cp is the heat capacity at constant pressure. Solutions to nontlow
problems are outside the scope of transport phenomena, and the reader is
referred elsewhere for a detailed discussion [Gl, K2, Sl,  S3, S4,  Wl].

It is often necessary to extend Eq. (7.33) to a flow process such as that
shown in Fig. 7.7. The total energy of a flowing system now consists of three
contributions:

CHANGE IN TOTAL ENERGY OF SYSTEM
= CHANGE IN INTERNAL ENERGY
+ CHANGE IN KINETIC ENERGY
+ CHANGE IN POTENTIAL ENERGY (7.40)

Let the total energy be denoted by E; the internal energy is u. The kinetic
energy is of the form $u” (where U is velocity), and the potential energy is gz,
where z is the vertical direction parallel to g. The units of these terms may be
energy, energy per unit time, or energy per unit mass. For a change in total
energy, dE,  on a differential basis, these three contributions are

dE=du+UdU-tgdz (7.41)

where each term is energy per unit mass, J kg-’ or its equivalent, m2  s-*.
A flow system of general interest, such as that in Fig. 7.7, consists of a

heat exchanger and a piece of machinery which either extracts work from the
system or does work on the system. In addition, the system in Fig. 7.7
undergoes both an elevation change and a velocity change between the inlet
and the outlet. The system is at steady-state. The equations to describe this
flow process may be set forth either on a unit time basis or on a unit mass
basis. Either is perfectly general, and the ease of solution to any particular
problem is the criterion for choosing one or the other. ’

For the system in Fig. 7.7, the changes in total energy E are considered at
the inlet and the outlet; Eq. (7.41) is substituted into Eq. (7.33) after the
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appropriate integrations to yield

I

u at $
Au+ UdU+gAz=Q-W (7.42)

uatq

where again W is the total work. The first law of thermodynamics, as applied
to the system in Fig. 7.7, fails to provide sufficient information to integrate the
kinetic energy term in Eq. (7.42):

A(KINETIC ENERGY) = j” a*  ’ U dU
u at  s,

(7.43)

As discussed in conjunction with Eq. (7.24),  all real problems involve a
velocity profile. For the approximation of plug flow along a streamline and for
a unit mass basis, Eq. (7.43) integrates easily as follows:

A(KINETIC ENERGY) = (Us - Uf)/2 (7.44)

The exact term is determined only through consideration of Eq. (7.3),  as will
be done shortly.

Equation (7.42) is combined with Eq. (7.37),  the definition of enthalpy,
and applied to the flow system in Fig. 7.7. Details of this derivation can be
found elsewhere [S3].  The resulting equation, which is ,the basis for much
design work on flow systems involving temperature changes in the process
fluid, is

AH + A(KINETIC ENERGY) + wg AZ = Q - W, (7.45)

where W,  is the shaft work. Note that the units of each term in Eq. (7.45) are
energy per unit time, since w appears explicitly in the potential energy term
and therefore must also be included in the kinetic energy term. For the flow
system in Fig. 7.7, the total work W appearing in Eq: (7.42) consists of three
contributions: force-times-distance work, shear work, and shaft work (which
will be explained shortly). The force-times-distance work appears as a
pressure-times-volume term [S3], which is finally combined with Au in Eq.
(7.37) so that AH appears in Eq. (7.45). The shear work is negligible. The shaft
work is associated with a piece of machinery, as seen in Fig. 7.7. The system
can do shaft work when a gas or liquid flows through a turbine. The flowing
fluid strikes blades connected to a shaft. The pressure energy in the fluid is
converted to mechanical energy in order to turn the shaft. Likewise, shaft
work is done on the system by a pump, in the case of a liquid system, or by a
compressor or fan if the system is a gas.

The heat transferred to or from the system in Fig. 7.7 is Q, the duty or
load in the heat exchanger as shown. The units of Q, AH, and W,  in Eq. (7.45)
are energy per unit time (J s-l),  whereas the units of Q, Au, and W in Eq.
(7.34) for nonflow  systems are simply those of energy (J). The units of Q, Au
and W in Eq. (7.42) are energy per unit mass (J kg-‘).

Many texts in fluid mechanics introduce a special set of symbols to
differentiate the two cases of units as applied to the first law: energy per time
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and energy per mass. The differing symbols are more confusing than helpful.
In any case, the reader must check units carefully and use appropriate
conversion factors, particularly in using Eq. (7.45) and subsequent equations,
in order to make terms such as wg  AZ compatible with Q, etc.

There are two important simplifications of Eq. (7.45). The first is for
problems where both Q and W,  are zero. Then Eq. (7.45) reduces to

AH + A(KINETIC ENERGY) + wg AZ = 0 (7.46)
A common application is the case in which density is constant and the fluid is
isothermal. For both gases and liquids under isothermal conditions, the change
in internal energy Au as a result of pressure changes is very small and may be
assumed zero. Therefore AH reduces to Aplp,  as seen in Eq. (7.37). If this
simplification and Eq. (7.44) are substituted into Eq. (7.46),  the result is

p,v:-cr:
P

- + w g A z = O
2

(7.47)

Equation (7.47) is a simplified form of the well-known Bernoulli balance. Note
that Eq. (7.47) is presented on a unit mass basis. Again the kinetic energy term
is valid only for problems with no velocity protile (plug flow). This equation
and the more exact forms of the Bernoulli balance will be discussed in much
detail later in this chapter.

When Eq. (7.45) is applied to systems in which there are large
temperature changes, AH will be so large that the potential and kinetic energy
terms are negligible. Then Eq. (7.45) reduces to

AH=Q-W, (7.48)
Equation (7.48) corresponds to the most common situations and will be used
frequently to solve flow problems where the first law is required.

A balance equation for the total energy in the system can be derived in
general form if the concentration of energy, PE,  is substituted for the property
I)  in Eq. (7.3):

(7.3)

Note that E is on a unit mass basis (J kg-‘) so that PE  is energy per unit volume
(Jme3).  The first term in Eq. (7.3),  after substitution of PE  for ly in this
derivation, becomes the time rate of change of energy B (units of which are
J s-l).  The units of every term in Eq. (7.3),  after substitution of PE  for 111,  are
now J s-l. The second term is

Ip,  (PEu)@-  8)  dS  = I,  (PEU)  ds - I,  (PEU)  ds (7.49)
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since there is no flow through surfaces other than the areas 5, and &,, which
are taken perpendicular to the lines of flow. The third term (input-output by
molecular transport) is associated with the net energy flux (q/A, units of
J mm2 s-‘)  entering the system through its entire surface (units of m’).  When
integrated, the third term becomes a flux times an area, equivalent to a time
rate of change of energy by heat flow, and is denoted by Q (units of J s-’ for a
flow system). The fourth term represents the transport of energy by other
methods, i.e., work that is positive if done by the system. The work consists of
shear work, shaft work (W,), and pressure-volume work over the inlet and
outlet. The contribution of shear work is generally neglected. The fifth term,
the generation of energy, can be neglected unless electrical or nuclear
contributions exist. The energy associated with chemical reaction is included as
a change in the internal energy u which is a part of the total energy.
Combination of these considerations into Eq. (7.3) results in

k= j (pEU)  dS - I (/JEU)  dS  + Q - W,  + 1 @U) dS  - 1 (pu)  dS (7.50)
.% & SI .%

Equation (7.41) is used to eliminate E in Eq. (7.50). After performing all
integrations, the result is

e = PI&  Ul, adI  - P2U2 u*,  22 + ~[Plw:)a”esl  - P,(m”;&,l

+ ~P,ZI  k ad,  - iw,Wz,  a& + Q - w, + ~1 U,,  a&  -PA, adz (7.51)

In terms of the mass flow rate w [Eq. (7.10)],  Eq. (7.51) becomes

E=UIWl +g~lY-g~zY

+ Q - Ws  + P,Y/P,  - ~24~2 (7.52)

Each term of the balance equation [Eq. (7.50) through Eq. (7.52)]  is in
units of energy per unit time. For steady-state B  is zero, and w, equals w,  and
can be replaced by w. Equation (7.37) is used to introduce AH into Eq. (7.52),
and the result in terms of differences is

( U’)*w
AH  + wA 2u,,,( >
- +wgAz=Q-WS (7.53)

Equation (7.53) is the overall energy balance. Note the similarity between this
equation and Eq. (7.45) as derived from the first law of thermodynamics. Each
term is identical with the exception of the kinetic energy term. The kinetic
energy term in Eq. (7.53) is now exact. Thermodynamics gives no hint
whatsoever as to the correct kinetic energy term. That can be deduced only via
the property balance with the total concentration of energy. Yet Eq. (7.53)
cannot be derived without thermodynamics. The first law states that work and
heat are related to energy, and thus it was appropriate to introduce Q and W
into the energy balance. For a nonllow  process, the terms involving flow,
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change of height, and pressure are identically zero, and Eq. (7.53) can be
simplified to Eq. (7.34),  the most basic equation for the first law.

Equation (7.53) is useful for design of flow systems, as discussed earlier.
The term (U3),,/(2U,,)  can .be replaced by U%,/(2@),  where the kinetic
energy correction term LY  is defined as

(7 .54)

The correct kinetic energy term for Eq. (7.45) is now

A(KINETIC ENERGY) = ; (+ - +) (7 .55)

and Eq. (7.53) becomes

+wgAz=Q-WS (7 .56)

While LY  is usually assumed to be unity, it has been evaluated for a
number of flows. Figure 7.8 is a plot of LY  versus NRC for pipe flow [Kl]. Note
that for laminar flows (Y = 4, whereas for turbulent flows LY  = 0.88 at low NRe
and approaches 0.96 as the velocity profile flattens out at high NRe.  The kinetic
energy correction term LY  is analogous to the momentum correction term, /3,
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FIGURE 7.8
Kinetic energy correction factor as a function of Reynolds number for pipe flow. (From Kays,
Trans. ASME  72, 1057 (1950). By petmission  of ASME.)
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Eq. (7.24). The kinetic energy correction factor is illustrated in Example 7.7.
The use of the energy equation itself is in Example 7.8.

Example 7.7.  Calculate the kinetic  energy correct ion term for the f low of water
between parallel plates in Fig. 7.9 when one wall moves at unit velocity.

An.wer. The correction factor LY  is evaluated from JZq.  (7.54) where (U”),,,  is
from Eq. (7.9). From Fig. 4.12 with ,no pressure drop, it is evident that the
velocity profile follows the equation:

u, Y-=-
uo Yo

(9

where V, is 1 m s-’ for  this  problem and y is  def ined as  in  Fig.  7 .9  (different ly
from that in Fig. 4.12). For this simple flow,  a convenient flow area extends y,
units in the y direction and one unit in the z direction. Then in Eq. (7.9) the
denominator  i s  y,,  and the  equat ion,  when t ransformed to  rectangular  coordin-
ates, becomes

W”),=~~V”dy (ii)

To find U,,  aVcI the  power  n i s  one ,  and  Eq. (ii) becomes

V 1 YZ  y”-l=--
X’ .“=  Y; 2 0 - 2

To find (U&., the  power  n is  three ,  and Eq. (ii) becomes

Therefore,

LY  = v:w,,/(  Vl),  = (i)‘/(i) = f 69

Note  tha t  the  k inet ic  correc t ion  term (Y  has the same final  value for laminar pipe
f low as  i t  has  for  laminar  f low between paral le l  p la tes .

Example 7.8.  A ver t ica l  p ipe  of  7  cm ins ide  diameter  and length  7  m is  used in  a
heat exchanger to heat a 0.03 m’s1’ water flow from 25°C to 45°C. Let the

FIGURE 7.9
U = 0 Flow between parallel plates with

one wall in motion.
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acceleration  due to gravity be 9.81 m s-*.  The pressure loss due to friction is
4 x 104  N m-*.  Find the  duty  (heat  load)  needed to  accomplish  the  heat  exchange.
The water  enters  a t  the  top .

Anmw. The problem is  one of  s teady-state  f low,  and hence Eqs.  (7 .53)  or  (7.56)
apply.  Since the  exchanger  is  ver t ical ,  the  potent ia l  energy term is  non-zero.  In
problems of this nature, the error in assuming water to be incompressible is
negligible. The mass flow rate w is given by

w  = PLS (7.10)

Since for  this  problem w, p,  and S are  a l l  constant ,  CJ.,  i s  a l so  cons tan t ,  which
makes the kinetic energy term zero [cf.  Eq. (7.55)].  Also,  s ince there is  no pump
or  turb ine ,  W.  i s  zero .  Equat ion  (7 .53)  now reduces  to

AH+wgAz=Q (9

The mass f low rate  is  the volume f low t imes the densi ty:

w = (0.03)(1000)[(m3  s-‘)(kg m-“)I  = 30 kg s-’ (ii)

where the density of water is 1.0 g crnm3 or 1000 kg mT3.  Also, the heat capacity of
water is 1.0 cal g-’ “C-’  or 4184 J kg-’ K-l.  Thus, AH from Eq. (7.39) is

I
45+273.15

AH=IZC~ dT = (30)(4184)(45  - 25)[(kg  s-‘)(Jckg-’ K-‘)(K)]
23+273.15

= 2.510 x lo6  J s-’ (iii) s.

The potential energy term turns out to be negligible as previously predicted
in  conjunct ion wi th  the  der ivat ion of  Eq.  (7 .48) .  The term AZ  is  -7 m. Thus,  the
potent ia l  energy term is

wg AZ  = (30)(9.81)(-7)[(kg  s-‘)(m s-‘)(m)] = -2060 kg m*  sm3

The fo l lowing convers ion  i s  needed:

(iv)

lJ=lkgm’s-’ (4
Thus ,  the  po ten t ia l  energy  in  SI  un i t s  i s  -2060  J  s-l.  Equa t ion  ( i )  p rov ides  the
duty on the  heat  exchanger :

Q = 2.510 x 106  - 2060 = 2.508 x lo6  J s-’ (vi)

Note that the potential energy term was less than 0.1 percent of the total
contribution in this problem, in which the temperature rise was only 20°C. If
there  had been a  densi ty  change,  then the  k inet ic  energy term could  have been
determined,  but  i t  would be several  orders  smaller  yet .  I f  the diameter  of  the pipe
at the outlet differs from that at the inlet, then in some problems the kinetic
energy must  be calculated.  The procedure is  to  compute the Reynolds numbers  at
the  in le t  and  ou t le t ,  f ind  (Y,  and  [Y*  f rom Fig.  7 .8,  and f inal ly the kinet ic  energy
term from Eq. (7.55). As a first approximation, the (Y’S may be assumed to be
uni ty  in  order  to  see  i f  the  k ine t ic  energy te rm is  l ike ly  to  be  s igni f icant .  I f  so ,
then the Reynolds numbers  may be determined and the exact  values computed.
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7.1.5 The Mechanical Energy Balance and the
Engineering Bernoulli Equation

The mechanical energy balance equation, an alternate form of the general’
conservation of energy, is often in a more convenient form for problem
solving. The integral energy balance in its most general form is Eq. (7.53) or
Eq. (7.56). These equations and their simplifications, such as Eq. (7.47) and
(7.48),  are particularly useful in problems when the term Q is significant. In
contrast, the mechanical energy balance is often advantageous because, as will
be seen, that equation does not involve thermal terms such as heat, internal,
energy, or enthalpy.

A rigorous derivation of the mechanical energy balance equation requires
the use of tensors, is quite lengthy, and is beyond the scope of this text [B2].
The mechanical energy balance equation is simple in concept and in applica-
tion, but difficult to derive. In differential form, on a unit mass basis, the
equation [B2, S3, W2]  is

(l/p)cip+gdz+UdU+dF’+dW,=O (7.57)

Volume-pressure: (l/p)  dp
Potential energy: gdz
Kinetic energy: VdU  ’

Friction: dF’

Shaft work: d W,

where the nature of each term is summarized below the equation. Note that
dF’  is the energy contribution due to friction between the fluid and its
environment. Equation (7.57) applies under the following limitations:

1. A unit of mass flows through a control volume, such as in Fig. 7.1, that is
stationary in space.

2. The flow is at steady-state.
3. There are no energy terms to be considered save the five denoted in Eq.

(7.57).

The mechanical energy balance arises from a consideration of the
conservation of momentum and the laws of thermodynamics. If a momentum
term such as mU  is scalar-multiplied by the velocity vector U,  the result is a
term of the form of mass times velocity squared, which is an energy term. The
scalar multiplication is necessary since momentum and velocity are vector
quantities and energy is a scalar. The derivation proceeds by taking the scalar
product between the velocity vector and the momentum balance equation. The
momentum balance has previously been accomplished by substituting pU for t#
in the general property balance equation. This substitution resulted in the
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Navier-Stokes equation as given in Eq. (5.15). The derivation of the
mechanical energy balance uses as the starting point an earlier form of the
equation in terms of the flux vector. Recall that the general flux equation is

w=  -6Vl) (2.18)

Rather than using this equation in the derivation, the momentum flux tensor z
is retained. The derivation for the mechanical energy balance utilizes Eq.
(5.15),  the equation above, and Eq. (4.54) for the generation term. The
resulting equation is

p(avlat)+p(u~V)U=  -vp  + p g - ( V - r ) (7.58)

Equation (7.58) is then scalar-multiplied by the velocity vector:

p[V.(au/ar)]+p[V.(U.V)U]=-(U.V)p-tp(U.g)-[U*(v-t)] (7.59)

After performing the indicated mathematical operations, a scalar equation
with 45 terms is obtained. The complexity of the derivation is not only in
determining these terms, but also in knowing how to rearrange the terms and
how to make the appropriate simplifying assumptions that are necessary to
arrive at Eq. (7.57).

Equation (7.56) applies equally as well as Eq, (7.57) or an integrated
form of this. The reader must choose the more convenient of the two to solve
any given problem at hand. In spite of the similarity between the two
equations, Eq. (7.57) does not follow from Eq. (7.56) directly.’ To solve any
general problem, five principles or laws are involved:

1. Conservation of mass
2. Conservation of energy
3. Conservation of momentum
4. Equivalence of work and energy and their relationship to heat (the first law

of thermodynamics)
5. Inability to convert energy entirely into work without rejecting part of

energy input to the surroundings as heat (second law of thermodynamics)

All five principles apply at all times, both to differential volumes and integral
control volumes. Furthermore, the resulting equations are often coupled in
such a manner that a term appearing in, say, both the energy balance and the
first law is precisely defined only by onein  this case the energy balance. Such
an example is the kinetic energy term presented in Eq. (7.55).

The mechanical energy balance arises as a consequence of princples (2)
(3), and (4) above. In fact, it may be substituted for the first law, principle (4),
and therefore may be included as one of the five basic laws. However, since
the conservation of energy, the conservation of momentum, the first law, and
the mechanical energy balance are interrelated, only three of the four are
independent equations and can be invoked in any single instance.
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An integrated form of Eq. (7.57) will be more useful for problem solving
than the present differential form. By analogy with the energy equation, the
appropriate kinetic energy term is given by Eq. (7.55). The potential energy
term is restricted so that the elevation change dz is relative to the change of
the center of mass. The term comprising volume 17~  times dp must be
integrated from entrance to the exit through the control volume. This
integration requires knowledge of the actual pressure versus volume relation
that exists in the mass of fluid as it travels through the system. The integrated
form of Eq. (7.57) is

(7.60)

where the first integral must be left in general form. If the density is constant,
the mechanical energy balance equation becomes

+F’+ W,=O (7.61)

Equations (7.60) and (7.61) can sometimes be utilized in situations in which
the fluid is incompressible and friction and shaft work are both zero. Under
these conditions, Eq. (7.61) reduces to I

or more simply

z+gAz+A 3 =o
( >

(7.62)

Equation (7.63) is often called the “engineering Bernoulli equation”; the
classical derivation by Bernoulli yields a similar equation in differential form
with the assumptions of flow along a streamline ((u  = l), zero viscosity
(F’ = 0), incompressible fluid (p = constant), and no shaft work (W, = 0).

The energy equations [Eq. (7.53),  Eq. (7.56),  and Eqs. (7.60) through
(7.63)]  apply only to a continuum where functions such as velocity, pressure,
and density are continuous point functions. They do not apply across a
solid-fluid boundary or a fluid-fluid boundary such as the interface between
two immiscible liquids.

The mechanical engineering balance equations give approximate or exact
answers to many important problems. All liquids may be assumed incompres-
sible in most circumstances, and in many gas flows the incompressible fluid
assumption is warranted as well. In a short section of pipe, the friction losses
are often insignificant. Lastly, there are many situations in which the fluid is
not flowing at all; in these the kinetic energy and friction terms are zero. These
latter problems are studied under the general topic of fluid statics and will be
covered in the next section. The following group of problems was selected to
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illustrate the mechanical energy balance and the more limited engineering
Bernoulli equation. The simple Bernouli balance problems will be considered
first.  As pointed out previously, most of the equations in this section require
careful scrutiny of units, since g, will have to be added if the engineering
system involving lb,,, and lbf is used, Example 7.11 is a good example of this. In
Problems 7.13 and 7.14, g, is again added where needed to keep the units on
each term consistent. In SI units, eaclr term is usually in units of m2  s-‘, and in
engineering.units, each term is usually in units of ft lbt lb;‘.

Example 7.9. Derive Torricelli’s law, Eq. (i) of Example 7.1.

Answer. Torrioelli’s  law related the velocity of discharge to the elevation of fluid
in a tank, as depicted in Fig. 7.2. Here, the liquid is assumed incompressible. The
friction loss is assumed to be negligible so that Eq (7.62) can be used:

=o (7.62)
b-~

Following the nomenclature of Example 7.1, the difference  z1  - & is h: -

z* - 2, = - h
,

Since the pressure on the top of the liquid is the same as the pressure of the
lluid  issuing from the drain, pz in the first term in Eq. (7.62) equals pi,  and that
term is zero. Equation (7.13) relates the velocity exiting through the drain to the
velocity with which the liquid level in the tank drops by equating the mass flow r
rate at point 1 with the mass flow rate that exits at the bottom at point 2. For
constant density Eq. (7.13) becomes

or in terms of diameters if both tank and drain are circular:

u 4 ’*=-
u 042. .yc

It is reasonable to assume that the diameter of the tank, d,, is many times larger
than the diameter of the drain, dZ,  so that the ratio of diameters in Eq. (iii) is
approximately zero. Then for a flat velocity profile ((y2  = 1) the only non-zero
terms left in Eq. (7.62) are *i

fv’,,.ve+g(-h)=O (iv)
o r

vt,.ve=W (4

This is Eq. (i) in Example 7.1. Note that for an outlet with a small diameter, the
flow  might be laminar  and a = f. Torricelli’s law is significantly in error for this
case.

ExampIe 7.10. A hose of diameter 3 cm is.used  to drain a tank filled with water.
The hose is draped over the side of the tank so that the water is siphoned out.
The acceleration due to gravity is 9.7&4 m s-‘.  If the hose discharge is 1 m below
the surface of the water, estimate the mass flow rate in kg s-*, I )
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FIGURE 7.10

1.5mIl.Om

Answer. Figure 7.10 shows a siphon. A siphon implies a continuous liquid leg
f rom the  water  in  the  tank  up  the  s iphon  to  po in t  2 ,  the  h ighes t  e leva t ion ,  and
down to the discharge at point 3. If frictional forces are neglected, the
engineer ing  Bernoul l i  equa t ion ,  Eq .  (7.62), app l ies .  I t  i s  conven ien t  to  wr i t e  the
ba lance  be tween  poin t  1  and  poin t  3 ,  s ince  the  pressures  a t  these  loca t ions  a re
equal .  -Hence,  Eq.  (7 .62)  reduces  to

1 rr: .ve ti  aw- k-k
2 ( a3 a1 >

+gAz=O (9

It is reasonable to assume that (Y, = CX*  = 1. Since the diame&’  of the tank far
exceeds  the  d iameter  of  the  hose ,  the  veloci ty  a t  point  1  must  be  negl ig ible  when

’ compared to  the  veloci ty  a t  point  3 ,  the  hose  discharge (see  Example  7 .9) .  Thus,
the  discharge veloci ty  f rom Eq.  ( i )  i s

u3,avc = (-2g  Az)lR

Equat ion ( i i )  i s  essent ia l ly  the  same as  Eq.  (v)  of  the  preceding example ,  and wi l l
be  used  to  f ind  U,,.,, with the change in elevation being 1.0 m:

u 3,ave  = [(-2)(9.7&t)(-1)]‘R=4.42ms-’ (iii)

The densi ty  of  water  is  approximately 1.0 g cme3  o r  1000  kg  rne3.  The discharge
diameter is 0.03m.  The mass flow is velocity times density times area [Eq.
(7.10)]:

w = pU,v,S,  = (1000)(4.42)(n/4)(0.03)2[(kg m-‘)(m  s-‘)(m’)]

= 3.13 kg s-r (iv)

The minimum pressure in the siphon tube is at point 2. Before the result of
3.13kgs-’  is accepted as the final value, the pressure at point 2 must be
calculated in order to see if the water might boil at this point. Equation (7.62)
again applies. Again, U, is negligible; crz  is assumed to be unity. In the siphon of
cons tan t  c ross  sec t ion ,  U, is  the same as U,.  The height  for  the  potent ia l  energy
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term is 1.5 m. So Eq. (7.62) becomes

Ap  =p2-p1  =p(U$/2+g  AZ)= -(1000)[(4.42)2/2+  (9.7&1)(1.5)]
= -2.446 X l@ kg m-’ s-’ = -2.446 x 10’ N m-’  = -24.46 kPa (v)

Atmospheric pressure is 1.01325 x 105  N m-‘.  Thus, the pressure at point 2 is

p2  =pl  + Ap  = 1.01325 X 10s  - 0.2446 x 10s = 0.7686  x l@ N m-* (vi)

At normal room temperature (UPC  or 293.15 K), the vapor pressure of water
(Table A.l) is 0.02336 bar, or 0.02336 x 10s N m-‘. Thus, the siphon can operate
since the pressure p2  is greater than the value at which the fluid boils.

Exmuple 7.ll.  A venturi is used in a trichloroethylene line to measure the flow
rate. The difference in pressure between the inlet and the throat is 4.2 psia. The
inside diameter of the inlet is 1.049in.  The diameter of the throat is 0.6in. The
specific gravity of the process fluid is 1.45. Find the flow rate in kg s-r.

Amwer.  Figure 7.11 is a schematic of a venturi meter. A venturi meter consists of
an inlet section with a pressure tap, a converging portion where the flow
accelerates, a throat section of constant diameter with a second pressure tap, and
a gradually diverging section that expands to the original pipe diameter to
minimixe friction losses. A venturi meter is relatively short in length, and friction
losses are negligible if the meter is carefully manufactured,

The engineering Bernoulli equation, Eq. (7.62), applies. If the meter is not
horizontal, any elevation changes will be included in the pressure readings.
Again, the velocity profile is assumed to be flat so (Y  is unity. Hence, Eq. (7.62)
reduces to

(9

The density of the fluid is its specific gravity times the density of water:

p = (1.45)(62.4)  lb,,, ft-’ = 90.48 lb, ft-’ (3
The mass flow rate at the inlet equals that at the throat. The velocities at these
points are related through Eq. (7.13). Since the fluid is incompressible, the

d, = 1.049 in d,  = 0.6 in
Point 1 P o i n t  2

da=  1.049in
P o i n t  3

1  Differential pressure
indicator

FIGURE 7.11
Venturi meter.
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densi t ies  cancel ,  and Eq.  (7.13)  becomes

U,*.“e&  = u2.22
o r

(iii)

ul.ave = ~~..vS%lS,)  = U,,  .&G/d:)  = &,,(0.6/1.049)*
= 0.3272U,,,, (iv)

Substituting Eq. (iv) into Eq. (i) yields

-(-M/P)  = f[v’;,ave  - (0.3272)'C&J  = 0.4465U& 69
o r

U 2,ave  = (1.497)(-W~)~~ w

In  Eq.  (v i ) ,  the  uni ts  of  Ap/p  determine the uni ts  of  U,,,,. Since  the  preceding
examples have been worked in SI units, this problem will be worked in
engineer ing  un i t s  where  the  g rav i ta t iona l  convers ion  cons tan t  g, i s  needed  in
order to balance units. In engineering units, Eq. (7.62) must be mod&d  by
in t roduc ing  g, in to  the  k ine t ic  energy  and  the  po ten t ia l  energy  te rms .

Since  the  pressure  drop Ap  is  def ined as  (pf  -pl),  the term (-Ap) equals
4.2 psi since p1  is greater than pz.  First, Ap  is converted to units of lbf  ft-*:

- Ap  = (4.2)(144)[(1b,in.-2)(in.2ft-*)] = 604.8 lbrft-* (M

The throat  veloci ty is  found from Eq.  (vi) : /

U*,  Eve  = (1.497)(604.8/90.48)‘R  [(lbf  fi-2)(lb,1)(ti)]1n

= 3.869 [(ft lb,)(lb,‘)]“= (viii)

Clear ly  these  a re  not  the  uni t s  of  ve loc i ty  and  g, must  be  int roduced.  Since g, i s
32.174 lb,  lb;’ ft s-*,  Eq. (viii) must be modified by multiplying by g, inside the
brackets:  i .e . ,

U2.pVc = (3.869)(32.174)ln  [(ft lbr)(lb,l)]‘n[(lb,  lb;’ ft s-‘)I’”

= 21.95 ft s-’ (3

The mass f low is  given by Eq.  (7.10):

w = pU,,,S = (90.48)(21.95)[(n)(0.6/12.0)2/(4)]  [(lb,,, t--‘)(ft  s-‘)(f?)]

= 3.90 lb,,, s-’ (4

or in SI units:

w = (3.90)/(2.20462)  [(lb,,, s-‘)(kg lb;‘)] = 1.77 kg s-’ 64

Example ‘7.12. Calculate the temperature rise for the water in Fig. 7.12 where
water  discharges at  a  rate  of  50 gal lons per  minute from a pipe 1 inch in diameter
and drops 5 feet into a large tank. The acceleration of gravity is 32.1 ft SK’.

Answer. This  p rob lem wi l l  be  so lved  in  eng ineer ing  un i t s  in  o rder  aga in  to
illustrate the use of g,. Since a temperature change is being calculated, the energy
balance equation, Eq. (7.56) will be applied directly. For this problem there is
no shaf t  work W.. Furthermore,  the t ime required for the water to fall  the 5 feet
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1 inch

FIGURE 7.12
Discharge pipe for Example 7.12.

is assumed to be very short, so that the amount of heat Q transferred between the
ambient air and the water stream is negligible. With these assumptions, Eq.
(7.56) reduces to

AH  + (w/2)[(@,  we/4  - (ti,  ,/~I)]  + wg  AZ = 0 N

When the units are checked, it is found that g,  will have to be introduced into the
denominator of the 2nd and 3rd items. The cross sectional area of the pipe is

S, = (n)(1/12)‘/(4)  = 5.454 x 1O-3 ftr  ‘ (ii)

The velocity of water at the receiving tank, U,,  can be taken as zero.  The velocity
of discharge IJ, and the mass flow rate w are found from the volume rate Q,  the
flow area S,, and Eq. (7.13):

Q = (50)/[(7.48)(6O)][(gpm)(gal-’  ft’)(s-’  min)] = 0.1114ti  s-r (iii)
u I,sVe  = Q/St = (0.1114)/(5.454  x lo-‘)[(ft’ SC’)@-*)I  = 20.43 ft s-r (iv)

w =  pU,,,S,  = pQ = (62.4)(20.43)(5.454  x lo-‘)[(lb,  tY3)(ft s-‘)(f?)]
= 6.952 lb, s-r 64

In Eq. (i), (Y,  will be assumed to be unity. From the problem statement, AZ  is -5
feet. Equation (i) is solved for AH and the appropriate numbers substituted,
including g,:

AH = -{(6.952)/[(2)(32.174)]}[0  - (20.43)*]  - (6.952)(32.1/32.174)(-5)
= 79.76 ft lb,  s-r 64

The units on each term should be checked to verify the results. The acceleration
due to gravity g is given as 32.1 ft s-*  and changes from place to place over the
earth’s surface and in the universe, whereas g,  is a conversion constant, the same
everywhere. It is customary to express AH in units of Btu:

AH = (79.79)./(778)  [(ft lbrs-r)(Btu K’ lb;‘)] = 0.103 Btu s-’ (vii)

The temperature rise is found from Eq. (7.39) with w replacing n:

AT = AH/(wc,)  = (0.103)/[(6.952)(1.O)][(Btu  s-‘)(lb&’  s)(Btu-’  lb,,, “F)]
= 0.01475”F (viii)
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Common sense  te l l s  us  that  the  temperature  r ise  wi l l  be  qui te  smal l  in  th is  case ,
and  the  answer  re f lec ts  tha t  v iewpoin t .

Example 7.W.  I t  i s  des i red  to  des ign a  pump to  del iver  water  f rom a  holding tank
at atmospheric pressure to a process at 100  psig at a tlow  rate of 1OOgpm.  The
process is located 30 feet higher than the holding tank. The acceleration of gravity
is 32.1 ft s-‘.  The specific  volume of water is 0.0161 ft3  lb,‘, and the density is the
reciprocal :  62.11 lb , , ,  ft-‘.  Calculate  the horsepower required i f  the centr i fugal
pump is 77 percent efficient and if fluid friction is negligible.

Answer .  Equat ion  (7 .61)  i s  appropr ia te :

(7 .61)

The kinetic energy term is usually negligible in problems in which the heat
transfer  and/or  the  shaf t  work is  s ignif icant .  The f luid  f r ic t ion F’ i s  n e g l i g i b l e
according to  the s ta tement  of  the problem. The pressure of  the water  a t  the tank
is atmospheric, or in other words the gauge pressure is zero. Again Ap must be in
uni t s  of  lbf ft-*.  The pressure term in Eq. (7.61) becomes

T = (0.0161)(100  - 0)(144)((ft31b~‘)(lb,in.?)(in.ZiY2)]

= 231.84 ft lb, lb,’

The potent ia l  energy term is

(9

(AZ)@/&  = (30)(32.1/32.174)[(ft)(ft  s-‘)(lb,’  lb~fi-‘sz)]

= 29.93 ft lb, lb,’ (ii)

where  once again g, has  been  added  to  ad jus t  un i t s .  Equa t ions  ( i )  and  ( i i )  a re
subs t i tu ted  in to  Eq .  (7 .61)  to  f ind  the  shaf t  work  W,:

W,  = -231.84 - 29.93 = -261.77 ft lb,lb,’ (iii)

This work is the energy delivered to the fluid by the pump in order to raise 1 lb,,,
of water from atmospheric pressure to 1OOpsig  a t  an  e levat ion  30f t  h igher .  An
actua l  pump wi l l  requi re  more  energy  input  than  i t  can  de l iver  as  output  because
of  losses  due to  mechanical  f r ic t ion,  turbulence,  and so on.  I f  the  work found in
Eq.  ( i i i )  is  termed theoret ical  work,  then a pump eff iciency may be defined as the
ra t io  of  theore t ica l  work  to  ac tua l  work  requi red:

Thus ,  the  ac tua l  work  i s

W I, actual = w I,  theoretic.,/tj,,..mp  = -261.77/0.77  = -340.0 ft lbr lb,’ (v)

The mass f low is  found from the product  of  the volume f low rate  and the densi ty:

w = ep = (100)(62.11)/[(7.48)(60)] [(gpm)(lb,  ft-‘)(ft’gal-‘)(min  SK’)]

= 13.84 lb, s-’ (4
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‘The answers from Eqs.  (v)  and (vi)  are  combined to f ind the actual  shaft  work
that  must  be  del ivered by an e lectr ic  motor ,  or  whatever ,  to  the  pump:

W ,,-=  -(340.0)(13.84)  [(ftlbflb,‘)(lb,s-‘)]

= -4705 ft lb, s-’ (vii)

The following conversions are useful in converting ft lb, s-’ to horsepower (hp):

1 Btu = 778 ft lb, (viii)

1 hp = 0.7870 Btu s-i w

Thus,  the  required  horsepower  i s

4705
‘Ower = (778)(0.7070)

(ft lb, s-‘)
(ft Ibr Btu-r)(Btu  s-i hp-‘) (‘)

ExampIe  7.14.  Ni t rogen  a t  5 a tm and 450 K expands through a  turbine to  a  f inal
pressure of 0.75 atm. It is known that at all times during this expansion the
relationship between the pressure of nitrogen and its density follows

~(l/p)~  =  cons tan t (9

where y for nitrogen is the ratio of c,, to c,, and is equal to 1.4. In Eq. (i) the
cons tant  has  uni t s  such  tha t  the  equat ion  i s  d imens ional ly  homogeneous .  Assume
the ideal gas law holds. Find the shaft work done by the system in J kmol-‘.

Anwer.  The mechanical  energy balance with  var iable  densi ty  appl ies  here:

c7.w

In Eq. (7.60), the kinetic energy, potential energy, and fluid friction terms are
neglected because of  the large value of  W,,  so  tha t  Eq.  (7 .60)  reduces  to

(ii)

Equa t ion  ( i )  i s  so lved  fo r  l /p :

l/p = (constant)“‘rp-“r (iii)

and the result substituted into Eq. (ii):

W,  = -constan?’
I

P-“~ dp (iv)

This  equat ion is  in tegra ted  f rom the  in le t  pressure  p1 to  the  ou t le t  p ressure  p2:

w,= -
constat@

1 - l/Y
(p;-llY -p;-‘“)

The fo l lowing ident i t ies  are  useful :

l-l/y=(y-l)/Y
and from Eq. (i):

constanP  =p:/y(l/pi)

(4

(vii)
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These are used to rewrite Eq. (v) as follows:

w,= -J&p;-“‘-p;-“3

PlY P:“PY
=--Y-l  PI( Pl> (viii)

The product of p, to an exponent and p2  to another exponent in Eq. (viii) can be
simplified if it is multiplied by the term p~-“y/p:-l’y,  which is unity. The result is

p:“{p;-“‘}  p;-l”  _ p1 ~ I-Uy

PI PI,-,/,-,  p,( > w
When Eqs.  (viii) and (ix) are combined, the equation for work becomes:

Equation (x) is useful in estimating the work of compression. The assumptions
implicit in the use of the path of Eq. ( )i are: ideal gas, no frictional losses, no heat
losses, and constant ratio of cP  to c,. If frictional losses are considered, Eq. (7.56)
is often a more useful starting point, and enthalpy data for the real gas will be
required to evaluate W,.

Equation (x) requires the quotient p,/p,. This term provides the work
units, and so it is convenient to choose the value of the gas constant in units of J
or Btu (see Table C.l):

pI/pI  = RT = (8314)(450)  [(J kmol-’ K-‘)(K)] = 3.741 X 106  J kmol-’ (xi)

Now, all quantities in Eq. (x) are known and the shaft work of the gas as it
expands through the turbine and transmits its molecular energy to the rotating
blades is

W,  = -(g)(3.741  x lti)[  (~)caU’~4’-  LO]  J kmol-’

= 5.48 x lo”  J kmoll’ 64

7.2 FJXJID STATICS

In fluid statics, stationary fluids with zero velocity are considered. If there is no
velocity gradient, then by Newton’s law, Eq. (2.9, there is no shear stress in
the fluid, and the fluid is in an equilibrium state. These problems are
sufficiently complex in their own right to warrant special discussion. Three
topics will be discussed in this text: manometers, buoyant forces, and variation
of pressure with depth.

7.2.1 Manometers

A manometer is a device for measuring pressure by reading one or a pair of
fluid elevations. The simplest type of manometer is the U-tube manometer
shown in Fig. 7.13(a). Such a manometer can be connected to the pressure
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<$*+-  Compressed air

((I) U-tube manometer (b) Inverted U-tube manometer

(c) Well manometer

F I G U R E  7x3
Manometers.

(d) Slant well manometer

taps of a venturi meter, Fig. 7.11. The purpose of such a manometer is to read
the pressure difference in the venturi, pz -pl.’ Under steady-state conditions,
there is no movement of fluid in the manometer lines. If there is no movement,
the kinetic energy change, shaft work, and frictional loss are all zero, and Eq.
(7.61) or the Bernoulli equation, Eq. (7.63),  reduces to

Ap/p+gAr=O (7.64)

However, as discussed previously, Eq. (7.63) is restricted to a continuum; in

2 Film loops FM-H, FM-16, FM-35, and FM-36 offer other examples.
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Fig. 7.13(a)  there is not a continuum but rather an abrupt change at the
interface where the process fluid and the manometer fluid meet. A satisfactory
relation is obtained by considering that points 4 and 6 in Fig. 7.13(a)  are at the
same elevation. Since the manometer fluid makes a continuous leg between
points 4 and 6, the pressure at 4 equals the pressure at 6:

P4=P6 (7 .65)

If the pressure at point 4 does not equal the pressure at point 6, there will be
flow in the manometer leg.

Pressure is transmitted without change across interfaces such as those at
points 4 and 6. Furthermore, the pressure at point 4 is greater than that at
point 1 owing to the weight of the fluid between points 1 and 4. Since this leg is
a continuous liquid phase composed of process fluid of density PA,  Eq. (7.64)
applies:

~4  - P I  =  PA~AZI  +  At) (7.66)
or

P4 =  P I  +  PA&!  AZI  +  PAg  AZ (7 .67)

Equation (7.64) also applies for the column of manometer fluid of density P,,,
in the leg between points 5 and 6: ,

P6=Ps+PmgAZ (7.68)

and for the column of process fluid between points 2 and 5:

P5 = P2 + PAg  AZ,

Equations (7.68) and (7.69) are added as follows:

(7 .69)

P6 = P2 + Pmg AZ  + PAg  AZ, (7 .70)

Equation (7.67) is substituted into Eq. (7.65) along with Eq. (7.70).
After completing the algebra, the pressure drop p1 - p2 becomes

PI - P2 = (Pm - pA)g  AZ (7.71)

Note that the pressure drop is independent of the distance Azr  from location 1
or 2 to the manometer fluid. There must be continuous fluid legs from pressure
tap to manometer fluid, with no gas bubbles if fluid A is a liquid.

Equation (7.71) is the general equation for alI manometers, since AZ is
vertical height. In the case of the U-tube manometer, the manometer legs are
positioned vertically; the manometer reading comes from noting the location
of the manometer fluid meniscus in each leg with respect to the scale, usually a
meter stick, as shown in Fig. 7.13(a).  The low-pressure reading is subtracted
from the high-pressure reading to yield AZ. The area of each manometer tube
does not enter into Eq. (7.71). An error is introduced if small diameter tubes
of unequal area are used in a U-tube manometer. Capillary rise or depression
may lead to serious error if the manometer tube diameter is ! inch or less. In
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practice; manometer tubing is a inch O.D. or greater, and the capillary
correction is negligible.

The derivation of Eq. (7.71) from Eq. (7.64) points to the general
procedure for deriving the appropriate equation for any manometer problem.
This procedure is to apply Eq. (7.64) stepwise  from some point in the system
at which pressures are equal [Eq. (7.65)].  Equation (7.64) points out the
equivalence between pressure and height (or head) of liquid. This equation can
be used to show that 760 mm of mercury (Hg) or 29.92 inches Hg corresponds
to 1 atm. Using Fig. 7.13(a),  the general procedure is illustrated by realizing
that the pressure at point 4 is the pressure at point 1 plus that due to the head
of liquid between point 1 and 4:

PI + Pt,g(AZI  + AZ)  = ~4 (7.72)

where AZ, + AZ is the total height and pA  is the density of the process fluid.
The pressure at point 4 is equal to that at point 6 by Eq. (7.65). For the

entire manometer leg, the heads on the low-pressure leg can be subtraced from
the left-hand side of Eq. (7.72) to obtain pz:

PI + p,tg&  + AZ)  - Pmg  AZ - PAg AZ, F ~2

Equation (7.73) reduces to

(7.73)

AP=Pz-P1=(PA-Pm)gAz  ’
This equation is the same as Eq. (7.71).

(7.74)

One problem with the simple U-tube manometer, such as shown in Fig.
7.13(a),  is that the range of measurable pressures is limited. In Eq. (7.71),
there are only two variables to manipulate, AZ, the height of the tubing, and
pm,  the density of the manometer fluid. If one is interested in measuring large
pressure differences, physical space limitations and the strength of the material
of construction limit AZ. The greatest pressure drop may be read with mercury
as the manometer fluid, since mercury is the most dense liquid at room
temperatures. Accurate readings at low pressure differences are obtained
either by minimizing the difference pm -PA or by somehow modifying the
apparatus so as to measure a small AZ accurately.

Liquid process fluid. Obviously the process fluid and the manometer fluid
must be immiscible. For large pressure differences, space limitations usually
dictate that the term pm - PA in Eq. (7.71) be made as large as possible so the
reading AZ is reasonable.

For small pressure differences, it is sometimes possible to find a
manometer fluid that is immiscible with the process fluid and slightly more
dense. If the term pm - PA is small, then AZ can be read with considerable
accuracy. Such fluids are available commercially for aqueous-type process
fluids. Another possibility is to use the process fluid itself as manometer fluid.
Such a manometer is the inverted U-tube in Fig. 7.13(6).  Air is used as the
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fluid in the top of the manometer. Equation (7.71) still applies with

Pm-PA=PPm (7.75)

The air at the top in Fig. 7.13@)  is compressed by the two liquid columns; the
pressure is approximately the pressure at the downstream tap less that due to
the height of the low-pressure leg above the pressure tap. The tee at the top of
the inverted manometer is required to adjust the amount of air present in
order to keep the reading on the scale. The line from the top of the tee leads
through a valve to a small manifold that can be evacuated to the atmosphere or
pressurized by a source of compressed air. Manipulation of the three values
surrounding the manifold allows air to be introduced or withdrawn from the
U-tube manometer so as to place the readings at the desired location on the
scale. Three valves allow finer control and less chance of manometer fluid
escaping out the atmospheric vent than a two-valve arrangement.

-’  It is possible to increase the accuracy of reading the manometer legs,
especially in research equipment, by using such instruments as cathetometers.
A typical cathetometer has a telescope.-like optical system with a crosshair that
is attached to a vernier scale and can be read to within 0.02 mm.

Gas process fluid. When the process fluid is a gas, the approximation in Eq.
(7.75) holds. Eq. (7.71) then becomes

P I -  PZ=P,~AZ (7.76)

The manometer usually contains mercury for large pressure differences or
water for small pressure differences. A common variation of the U-tube
manometer is the well manometer, Fig. 7.13(c),  in which the area of the
high-pressure leg (i.e., the well) is very large compared with that of the
low-pressure leg. When the well manometer is used to read gauge (and not
differential) pressure, the low-pressure leg is open to the atmosphere.

Consider the well manometer shown in Fig. 7.13(c)  with both pressure
taps disconnected. Fluid is added to the well, and the meter stick is adjusted
until the meniscus is at the zero mark. Now the line is connected to a source of
high pressure. The high pressure causes manometer fluid to exit from the well
into the tube. The mass of fluid entering the tube is given by density times
volume, where the volume is area times height:

Mass in tube = &,,A,& Az)~,~ (7.77)

The mass that left the well is

Mass from well = P,,,A~&Az)~~~ (7.78)

This mass equals the mass in the tube above the zero mark. Equations (7.77)
and (7.78) are equated and the density canceled from both sides. The result is

Atube@~)tube  = Awe,,(Az (7.79)
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where the total height of manometer fluid, AZ  in Eq. (7.71) or Eq. (7.76),  is

AZ  = (Az)tub,  + (Azhveu (7JW

In a typical well, the area of the well is about 100  cm2, whereas the area of the
tube is about 1.25 cm2.  Hence

(7.81)

So for every centimeter the well drops, the tube rises 8Ocm. In practice the
scale on a well manometer, instead of being a true meter stick as used in the
U-tube and inverted manometers, is a scale calibrated to correct for (AZ),,
and to read AZ directly. Hence the principal advantage of a well manometer is
that there is only one leg to read and that the pressure tap is located at the
well, which is at the base of the manometer.

Many types of micromanometers are available to measure low pressures
in gas flows. These all work on the principle of measuring the small AZ very
accurately. The simplest low-pressure manometer is the slant leg type, which
may be a U-tube or a well-type as shown in Fig. 7.13(d).  In the slant well
manometer, the tube makes a small angle (Y with the horizontal. If the
manometer is zeroed properly with both ends open to the atmosphere, then let
R slant be the reading when a pressure is applied to the well: This reading is the
actual length (perhaps measured in centimeters) the manometer fluid has
moved up the slant leg as a result of the applied pressure. Now Eq. (7.71) or
Eq. (7.76) applies; AZ is the vertical distance the manometer fluid moves,
which is related to Rslant  by

sin (Y  = AZ/R,,,,, (7.82)

Hence, the pressure drop for a slant well manometer in terms of Rslant  is

p1  - p2 = (pm  - PAlgRs~mt  sin w (7.83)

Most slant manometers are used for gas service, and the slant leg is open to the
atmosphere so that the manometer reads gauge pressure.

Traps. It is easy for manometer fluids to be blown out of the manometer into
the atmosphere or into the process via the low-pressure line, either through
equipment malfunction or operator negligence. Mercury, a common mano-
meter fluid for high pressure readings, is extremely hazardous to humans;
clearly, any mercury manometer should be trapped. If a pressure difference is
suddenly applied, a column of manometer fluid may escape owing to its own
momentum, even though the pressure applied may be within the range of the
manometer. For liquid systems, a trap also serves to eliminate gas bubbles
from the manometer lines.

A typical manometer trap, shown in Fig. 7.14, consists of a cross-like
cavity, located near the top of a U-tube manometer and at the highest point in
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FIGURE 7.14
Manometer trap.

the manometer tubing system. The top of the trap is equipped with a clear or
translucent section, such as nylon tubing, in order to observe the gas-liquid
interface. The trap portion is large enough to contain all the manometer fluid,
which in case of accident may be drained out of the bottom.

Example 7.15. Gas flows through a venturi meter such as depicted in Fig. 7.11.
The pressure drop across the venturi is read with a U-t&e manometer, whose
reading is 15cm. The manometer fluid is mercury, specific gravity 13.45. All
temperatures are 25°C. The  gas pressures in the manometer tines are all
approximately atmospheric. Find the pressure drop across the venturi. The
acceleration due to gravity is 980.7 cm s-*  (9.807 m s-‘).

Answer. The basic equation for any manometer calculation is Eq. (7.71):

PI - PZ  = (A,  - P,lg A.z (7.71)

The density of air can he estimated from the ideal gas law [cf. Eq. (l.l)]:

where iU is the molecular weight of air, 29 kg kmol-‘. For Eq. (i):

T = 25°C = 298.15 K

R = 82.057 atm cm3 mol-’ K-’ = 8.314 kPa  m’ kmol-’ K-’
p = 1 atm = 101.325 kPa

(ii)

The density of a gas, which is the reciprocal of the concentration as found in
Example 1.1, is now calculated from Eq. (i):

PA  = [(29)(101.325)]/[(8.314)(298.15)]  ( ,kp~$;;;:;(;f;cK,)
= 1.185 kg me3 (iii)

Specific gravity is defined as the ratio of the density of the material to the density
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of ivater.  Taking the density of water as 1 g cme3  or 1000 kg mm3, the density of
mercury is

p,,, = (1000)(13.45)  = 13 450 kg me3 (3
The pressure drop is found from Eq. (7.71):

Ap = -(13  450 - 1.19)(9.807)(15)(0.01)  [(kgmm3)(m  s-‘)(cm)(m cm’)]
=-1.98~1~kgm-‘s-~=-1.98~1~Nm-~

= -413 lbr  ft-*  = -2.87 psi (4
The minus sign means the upstream pressure p1 is greater than pz,  i.e., there is a
pressure drop. Note the density of air is negligible, less than 0.01 percent that of
mercury, and would still be negligible if the manometer fhrid  were water or some
other liquid. Thus, Eq. (7.75) and Eq (7.76) are shown to be correct.

Example 7.16. Rework Example 7.15, this time using engineering units.

Anmwr.  As discussed in Examples 7.11 and 7.12, the gravitational conversion
constant g,  is required in Eq. (7.71) in order to balance units when we are using
the engineering system. When g.  is appropriately placed in the denominator, the
ratio g/g, appears and has the net units of lbrlb,‘.  The ratio is often numerically
equal to unity for all practical purposes. The reading AZ in feet is

AZ = (15)/[(2.54)(12)] [(cm)(in. cm-‘)@ in.-‘)] ‘= 0.4921 ft (9
Equation (i) of Example 7.15 is used to estimate the density of air. In English
units, the conditions are

T= 25°C = 298.15 K = 536.67”R

R = 10.73 lb,in.-zft’  lb mol-‘OR-’
p = 14.6% Ibr  in.-*

g = (9.807)(3.2808)  [(m s-*)(ft  m-r)] = 32.175 ft s-*

g/g=  = 32.175/32.174  = 1.00004  lb, lb;’

(3

Then the density of air is

pA  = (29)(14.6%)/[(10.73)(536.67)]  ((lb,~~~~~l~~~!~~~~~~R))

= 0.074 lb, ft3 (iii)

Using 62.4 lb, ftW3  as the density of water, the density of mercury is

pm = (13.45)(62.4)  = 839.28 lb, ft-3 (iiia)

The pressure drop (-Ap) is found from Eq (7.71):

p1 -pz  = (839.28 - 0.074)(32.175/32.174)(0.4921)  [(lb, ft-‘)(lb, lb;‘) (ft)]

= 413.0 Ibr  ft-* (3
or in units of psi:

p1 - pz = 413.0/144  [(lb, ft-‘)(ft’ in.-‘)] = 2.87 psi of)
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FIGURE 7.15
Pressure tap and Pitot tube for measuring flow  velocity.

Example 7.17. Obtain the equations for a pressure tap and Pitot?  tube
(Fig. 7.15). Summarize the assumptions made.4  A pressure tap is made by drilling
a hole through the tube wall with no burrs on the inside. Generally, some type of
coupling is brazed over  the tap so that connections can be made to a pressure
measuring device. A Pitot  tube is a hollow tube of small diameter inserted into
the flow  so the tip is exactly parallel to the flow axis. Lines from the pressure tap
and the Pitot  tube are connected to a pressure-measuring device such as a
manometer, as shown in Fig. 7.15(a)  and Fig. 7.15@).

Answer. The pressure tap is always located at the same point in the flow as the
end of the Pitot  tube.. Figure 7.15(6) shows a side view of the Pitot  tube. Figure
7.15(c)  shows a Prandtl tube, which is similar to a Pitot  tube. except the Pitot  port
and the pressure tap are located on a single assembly constructed of two

3 After the inventor, Henri de Pitot  (16951771).

4Film loops FM-33, FM-37, and FM-38 illustrate the various pressures that are important in this
experiment.
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concentr ic  tubes .  In  Figs .  7.15(a) and  (6) two manometer  legs are connected to
the  pressure  tap  and the  end of  the  Fi to t  fube ,  so  tha t  a  reading R i s  the  pressure
di f ference  between the  Fi to t  tube  reading and the  wal l  tap  reading:

R=z,-z,=(z4-z3)-(z,-ZJ (9
The Bernoul l i  balance of  Eq.  (7 .62)  or  Eq.  (7 .64)  appl ies :

Aplp+gAz=O (764)
Considering the pressure tap first, point 2 is the pressure at the wall, which is also
the  s ta t ic  pressure  across  the  ent i re  c ross  sec t ion  of  the  p ipe .  In  the  pressure  leg
from the tap to the top of the manometer leg,  Eq. (7.64) becomes

Pz = p1+  P&l  - 4 (ii)

where pr  i s  the  densi ty  of  the  process  f lu id  which a lso  serves  as  the  manometer
fluid in this case.

For  the  Pitot tube ,  the  pressure  a t  the  t ip  of  the  tube ,  ps, i s

Ps  = P4 + PC& - 4 (iii)

Since p1 and p.,  are  both  equal  to  the  pressure  of  the  a tmosphere ,  Eqs .  ( i i )  and
( i i i )  can be  rearranged so  these  can be  equated:

~3  -  PZ  = P,gk  - 4 - (II - 41  = PM 64
Next, a Bernoulli balance is made in the fluid between the wall (zero

velocity) and the center of the tube or the location of the Pitot tube. The
Bernou l l i  equa t ion  i s

P2 -PI 1 v: PVC  u: avc-+g(z2-zl)+z (y-k =o
P ( * a1 >

Since  the  sys tem is  hor izonta l ,  the  potent ia l  energy term disappears ,  and Eq.
(7.62) as applied to points 2 and 3 reduces to

ps-pz  1-=$(l:-0)
Pf

or  af te r  subs t i tu t ing  Eq.  ( iv) :

u: = 2ugR (4
Usua l ly  Q  is  taken as  uni ty ,  in  which case ,  Eq.  (vi )  becomes

U, = (2gR)lR

The assumptions in Eq. (vii) are that the velocity profile is flat (an excellent
assumption for a small-diameter Pitot tube) ,  that  there  are  no t ip  effects  due to
the wall of the probe, and that the flow can be considered incompressible,
isothermal ,  and without  heat  exchange,  shaf t  work or  f r ic t ional  losses .  Fur ther-
more ,  in  obta in ing Eqs .  (7.49), from which Eqs.  (7 .55)  and (7.62)  were derived,
it was assumed that the cos 0 term was unity, which means that the velocity
vector  must  be  perpendicular  to  the  Fi to t  opening  a t  poin t  3 .  Because  of  th is
assumpt ion  about  the  ve loc i ty  te rm,  a  s igni f icant  e r ror  i s  in t roduced unless  the
velocity profile is perpendicular to the tube entrance. Specially designed multiport
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Pitot tubes are sometimes used to eliminate the problem that arises when the
Pitot opening  i s  no t  exac t ly  perpendicu lar  to  the  ve loc i ty  vec tor .  However ,  i t  i s
recommended that  the  c lass ic  des ign be  used and great  care  taken to  a l ign the
Pitot p robe  proper ly .

If  the shape of  the veloci ty profi le  and the geometry of  the Pitot tube are
known,  then the  factor  (Y  can be computed,  instead of  making the assumption of
unity. For laminar flow, the correction may be large. For turbulent flow, ’
however, the profile is relatively flat, and little or no correction is necessary if the
Pitot probe is of small  diameter.

Exam@ 7.18. A well manometer as depicted in Fig. 7.16 is filled with mercury
so that  the  mercury  level  reaches  0  on the  meter  s t ick  when both  legs  are  open to
the a tmosphere .  The cross  sect ional  area  of  the  manometer  tubing is  0 .049 in . ‘ ,
and the  cross  sec t ional  a rea  of  the  wel l  i s  lS.Sin*.  A pressure  vesse l  f i l l ed  wi th
water is located so that its pressure tap is 45 cm above the zero mark on the meter
stick. This tap is connected to the well so that there are no air bubbles in the line;
the water  displaces al l  a i r  in  the manometer  well .  I f  the water  pressure forces the
mercury column to a reading of  70cm on the meter  s t ick,  f ind the pressure at  the
vessel pressure tap. Let g = 32.174 ft s-*.

Answer. Since this manometer is being operated with water on top of the
manometer  f lu id  in  the  wel l  leg  and a i r  on top of  the  f lu id  in  the  other  leg ,  none
of the previously derived equations applies without further considerations.
Solution of this problem is reached by first calculating the pressure at the
water-mercury interface and thereafter  f inding the tap pressure.

With air  on both s ides of  the manometer  f luid,  the height  of  mercury is  a t
the zero mark on the meter  s t ick.  At  the f inal  condi t ions,  however ,  the mercury
level  drops  be low the  zero  e levat ion  in  the  wel l .  Solu t ion  of  the  problem requi res
computa t ion  of  th is  drop (A Z),.,,. The volume of  mercury leaving the well  equals

FIGURE  7.16
Well manometer in Example 7.18.
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the  volume in  the  tube when the reading is  70 cm:

VHg,  we”  -- VHg.  tube

or from Eq. (7.79):

(9

or:

(Az)wc,,,=  (A~L(A,u,/A,,)  = (70)(0.049)/(15.5)
= 0.2213 cm (ii)

Note  tha t  the  a reas  a re  used  as  a  ra t io ,  and  i t  i s  unnecessary  to  conver t  un i t s .
Let the water-mercury interface be a datum point. The pressure at this

elevation is that exerted by the column of mercury, which is 70.2213cm long.
Equation (7.64) is the basic equation that is used to find the pressure exerted by a
column of f luid:

Aplp+gAt=O (7.64)

This equation, as applied to the manometer fluid of density pm  and with g, added,
becomes

(AP)H~  = -P&k.)  AZ

= -(13.45)(62’4)(32.174  (2.54)(12)
32l74)(  70.2213 )

[(lb,  fi-:)(lbr  lb,‘)(fi)l

= -1934fb,ft2 (iii)

The pressure at the tap will be the pressure at the interface, as given by Eq. (iii),
less the contribution of the water leg, which is 45.2213 cm long:

(APL=  @P)H,  - ( -CpH2d:  @r),,,)

45.2213= -1934 + (62.4)(l)((2.54)(12))  = -1841 Ibrfi-‘=  -12.79psi (iv)

The pressure tap is 12.79psi  above atmospheric, since Ap is negative and
therefore p1  i s  grea ter  than  p2.

7.2.2 Buoyant Forces

A body submerged or floating in a static fluid has a net upward force exerted
on it by the fluid. This buoyant force FB  is equal to the weight of the fluid
displaced. The principle of buoyancy dates from the time of Archimedes in the
3d century BC [W3].  If V is the displaced volume, then

FB=ma=p#g (7.84)

where Pf  is the density of the fluid displaced; pfV is thus the displaced mass,
and g is the gravitational acceleration.

Naturally, the buoyant force FB  has no horizontal component; it always
acts through the centroid of the volume (the center of buoyancy). Note that
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FIGURE 7.17
Free body  diagram of submerged solid.

Eq. (7.84) says that every body present in the atmosphere is subject to a
buoyant force from the surrounding air. The buoyancy of air may be important

when weighing objects very accurately, because the object is often less dense
than the weights on the balance. The buoyant force due to air must be
considered when weighing to a tenth of a milligram. Consider Fig. 7.17, in
which a solid body of volume V is suspended in a fluid of density Pf by a thin
string. Three forces act upon this body: the force of gravity Fw (W for weight),
the buoyant force Fsr  and the force on the string as measured by the deflection
of a spring (F,&.  Newton’s second law, Eq. (7.29),  applies with the
acceleration zero because the body is at rest:

2 F = F,I,+F,-F,=O (7.85)

If Eqs. (7.84) and (7.85) are combined, the result is

Fscale  + Ng - Fw = 0 (7.86)

Equation (7.86) is the basic problem-solving equation relating buoyant forces
to weight. Two applications of this equation follow.

Example 7.19. A person brings a coin into a local coin shop, where he represents
that the coin is  pure gold.  The numismatist’s  pan balance shows that the coin
weighs 53.32 g in air (barometer 749 Torr at 21°C) and SO.22 g in water. Is the
coin gold?

Answer. Equation (7.86) applies,  but there are two unknowns in this example:
the volume of the sample V and its density p. The readings from the pan balance
are actually in grams as a force, because of the method of determination, i.e., a
force balance. Furthermore, Eq. (7.86) is a force equation that must be converted
to a mass basis in order to solve this problem. Force  and mass are related through
Newton’s second law, Eq. (7.29), with the acceleration being that of gravity:

F=mg (9
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Suhstituting this equation into Eq. (7.86)  the result is

g(mmk + PP)  = “4 (ii)

where mvrlc is  the  reading  of  the  ba lance  in  mass  uni t s  when the  objec t  be ing
weighed is in a fluid of density pr.

Now the mass of  any object  in  a  vacuum (in uacuo) is  the  t rue  mass  m,
and is invariant. To solve Example 7.19, Eq. (ii) is applied twice to each fluid,
water (pHzo)  and air (p&:

mj; + paLV  = m,

mH20  + pHzoV = mtruc

(iii)

(iv)

Equat ing  these ,  the  volume of  the  objec t  i s

I+=
m,i,  - mHfl
PH20  - Pair

6.9

The densi ty  of  water  i s  0 .998 g  cme3  a t  21°C.  The density of air  may be est imated
from the ideal gas law as follows:

p = 749/760  [(Torr)(atm TOIT-‘)]  =  0 .9855  a tm 64
T = 21°C = 21+  273.15 = 294.15 K (vii)

u = W/p  = (82.06)(294.15)/(0.9855) = 24 490 cm3,mo1-’ (viii)

M 29
PG.  =  ;= 24490

(g mol”)
tcm3  mo,-,j = 0.001184 g cme3 (4

fn the above, the value of the gas constant R is from Table Cl, u is the molar
volume of air, and M is the molecular weight from Table A.2, 29gmol-‘.  The
volume of the coin may now be found from Eq. (v):

53.32 - SO.  22
v = 0.998  - 0.001184

= 3.11 cm3

The density of the coin is

p = mass/volume = 53.32/3.11=  17.14 g crnm3 (xi)

Consulting a handbook it is seen that this result is the correct density for
g o l d .

Example 7.29. In an experiment to f ind the heat  of  combustion of  a  piece of  oak,
a small sample is found to exactly balance 6.7348g of brass weights in a pan
balance.  The densi ty  of  oak is  38lb,  tV3,  and of  brass  i s  5341b,ftW3.  Make the
appropriate buoyancy correction to find the true mass of the wood if the
temperature is  21°C  and the barometer  reads 749 Tot-r.

Answer .  Since two systems of  uni ts  are  mixed in  th is  problem,  le t  us  pick the
CGS sys tem.  Fi rs t ,  the  densi t ies  of  oak and brass  are  conver ted  to  CGS uni ts :

p~~~=(38~(~)((‘b”(:~)~~-)))  =0.6090gcm-’
m

pbraa.  = 534162.4  = 8.5577  g cmm3 (9
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Equation (7.86) applies. After conversion to a mass basis, as done in deriving I%+
(ii) in the previous example, the equation can be expressed as

mm, = revue - Pa+ (ii)

If the piece of oak balances the brass weights, then F- for the oak equals F,,
for the brass. Equating these forces and converting to mass via Eq. (ii), the result
i s

m- = mMk - ~~3~  =  w.-  - ptirVbrur (iii)

The volume of oak equals the true mass divided by density; for oak and brass:

V-k  = moaklpwk (9
I+ brus  = mbrJPbras (4

Combining Eqs. (iii), (iv), and (v) yields the equation required to calculate the
buoyancy correction:

( 1 - PnirlPt.ras¶
m,  = mbns

1 - PiAPoak >
(4

The density of air was found in the previous example:

pair  = 0.001184 g crnm3

Substituting the known quantities into Eq. (vi) yields

(vii)

I- (0.001184)/(8.5577)
moak = (6*7w)L  - (0.001184)/(0.60!%)

= 6 7470  g
.

(viii)

The numbers from the above calculation show that buoyancy correction is
12.2 mg and must be made when claiming a weighing accuracy of 0.1 mg.

7.2.3 Variation of Pressure with Depth

Equations to describe the variation of pressure with depth in a static fluid are
derived by considering a differential element such as the one in Fig. 4.7 with
no flow. The derivation follows the force balance developed in Section 4.2.1,
but in differential form. The result is a limited form of the mechanical energy
balance equation, Eq. (7.57),  with the kinetic energy, fluid friction, and shaft
work terms all zero:

This equation is the same as Eq. (7.64) but in differential form.
There are two important cases in which Eq. (7.87) is applied. For an

incompressible fluid such as a liquid, the density p is constant, and Eq. (7.87)
is integrated directly to find

AP = ah (7.W

where h is measured vertically downward from the air-liquid interface. This is,
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of course, the same as Eq. (7.64) with AZ  replaced with (-h)  and is the basis
for the analysis of manometers, as already presented.

The second case considers a gas in which the pressure varies. The
simplest case involves an isothermal gas that obeys the ideal gas law:

P
M M P=-=-
u RT

(7.89)

where M is the molecular weight of the fluid and u is the molar volume.
Equation (7.89) is substituted into Eq. (7.87) and the variables separated:

(7.90)

This equation is integrated according to the following limits:

P (2 =W=Po p (z=Az)=p

and the answer is

Wp/po)  = -g FT AZ

or

(7.91)

(7.92)

P =p0e
-gM  Azl(RT) (7.93)

Equation (7.93) is valid for the assumptions mentioned above. If AZ is small,
e.g., 50 ft, then the pressure variation is negligible as is seen in the following
example.

Exampie 7.21. Calculate the pressure 50ft  above a beach in Fort Lauderdale if
the temperature both on the beach and in the air is 30°C and the pressure at the
beach level is exactly 760 Torr.

Answer. Since temperature is  constant,  Eq. (7.93) applies.  As an example,  the
English system of units will be used, in which the potential energy term g AZ  has
units of ft lb,lb,‘.  Let R be 1544 ft lb,lb  mol-’  OR-‘,  as found in Table C.l. The
temperature must be in Rankine degrees:

T = WC = 303.15 K = 54567”R (9

and M for air is equal to 29 lb, lb mol-‘. Note that since engineering units are
being used, g,  will have to be introduced in the exponent of Eq.  (7.93) in order to
obtain the correct units; i.e.,

gMAr (lb, lb mol-‘)(ft)---=l(lb~lb;‘)((It~qlbmol-~~R-,)(’R)8, RT
(ii)

This equation is now dimensionless. If g = 9.807 m s-‘, then the ratio g/g=  can be
taken as unity (see Example 7.16), so that Eq. (7.93) becomes

p = 760 exp{( -50)(29)/[(1545)(545.67)]}  = (760)(0.99828)  = 758.7 Torr (iii)

Thus, the pressure decrease for an elevation of 50 ft is very small.
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If’ Eq. (7.93) is applied to large changes in elevation, such as those
encountered by an airliner, then the assumption of constant temperature is
very poor. If the variation of temperature with elevation is known, Eq. (7.90)
may be integrated analytically or numerically. The simplest model is to assume
that the temperature decreases linearly with elevation:

T=T,+@ (7.94)

where /I  may be assumed to be approximately constant (-0.00357 “ F ft-‘) up
to the stratosphere (about 6-15 miles above the earth’s surface). Substitution
of Eq. (7.94) into Eq. (7.90) yields

& glU dz-=---
P RT,+/3z

If this equation is integrated with the limits of Eq. (7.91),  the answer is

ln(p/po)  = @In To
Rj3 T,+@Az

(7.95)

(7.96)

More complicated models of the temperature profile may require numerical
integration.

Example 7.22. Calculate the pressure and temperature 25 600 ft above a beach in
Fort Lauderdale if the air temperature is WC  and the pressure at beach level is
exactly 760 Torr.

Answer. Equation (7.%) can be used. Since a change of 1 deg F is a change of 1
deg R, the constant B  may be written as

/3=  -O.O0357"Fft-'=  -0.00357 “Rft-’ (9
All other terms in Eq. (7.96) were determined in the previous example problem.
Equation (7.96) is exponentiated and the substitutions made:

p =760exp K(1545)(%0357)
545.67

545.67-(0.00357)(25000) >I
= 760 exp(-0.939) = 297.16Torr (ii)

The temperature at 25 000 ft is calculated from Eq. (7.94):

T=545.67-(0.00357)(25000)=  456.42=‘R=  -325°F (iii)

Note that Mount Everest is more than 29000ft above sea level; hence the
pressure is even lower at that location.

7.3 RECAPITULATION

In this chapter are the detailed balances on a fhrite  volume, rather than on a
differential volume, as was done in the early chapters. The resulting equations
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are extremely useful. The basic equation is Eq. (7.3):

The appropriate quantities for Y, W, and Go  are substituted into Eq. (7.3) to
obtain the integral equations of mass, momentum, and heat. The integral mass
balance problems are usually covered in courses and texts on stoichiometry.
The integral momentum balance can be used to compute the forces a fluid
exerts on a solid body, such as on a bend in a pipe. These two balances are
easy to formulate, easy to understand, and quite useful, especially the integral
mass balance. However, the energy balance is much more complex. In fact,
the energy balance is an important link between transport phenomena and
thermodynamics, a complete subject in itself. Complexity aside, the resulting
energy equations are very powerful and must be studied in detail.

Substitution of pc,T  for I/J  in Eq. (7.3) is unsatisfactory because the
resulting terms in the equation are too general for specific use. There are three
other approaches to the energy balance that are quite satisfactory. The first of
these is the first law of thermodynamics:

(Wsystem  = Q - W (7.34)

where Q and W are the heat and work associated with changes in the
surroundings. The second approach is to substitute PE, the energy per unit
mass, for the concentration of property T/J  in Eq. (7.3). The resulting equations
are used in conjunction with the first law of thermodynamics to obtain the
overall energy balance, Eq. (7.56):

+wgAz=Q-W, (7.56)

It is interesting to note that thermodynamics provides no clue whatsoever as to
the nature of the kinetic energy term in Eq. (7.56). The terms with CY arise only
from the integration of Eq. (7.3).

Alternately, a modified form of the Navier-Stokes equation [Eq. (7.58)]
can be used to make a balance on the concentration of total energy in the
system. The basic concept is that when a momentum term such as mU is
scalar-multiplied by the velocity vector U, the result is an energy term. After a
lengthy and complex derivation, the result is the mechanical energy balance,
which can be expressed in differential form as follows:

;dp+gdr+OdZJ+dF’+dWs=O (7.57)

These two conservation of energy equations [Eqs. (7.56) and (7.57)]  are really
complementary in that one or the other may be used, but not both together.
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The choice is based on the nature of the problem. Generally problems in which
heat and work are involved together with significant temperature changes
dictate that Eq. (7.56) be used, whereas, if there is no Q, then often the
mechanical energy balance is more useful.

These two conservation of energy equations are widely used for design.
For example, Eq. (7.57) is the principal equation for the approximate sizing of
pumps and compressors, as well as turbines, although other equations in
thermodynamics are used for exact calculations. Other applications include the
rate at which a tank drains, the rate at which a siphon transfers liquid, the
output from flow-measuring devices such as venturis and Pitot tubes, and the
temperature rise due to changes in elevation.

An important simplification to Eq. (7.57) results in the engineering
Bernoulli balance:

(7.63)

This equation, with the kinetic energy term zero, is the basis for the subject of
&rid statics; see Section  7.2. The reader is advised to study this section closely,
because the principles and applications wntained therein are often
encountered.

PROBLEMS

7.1. Why are the.  integral methods used at times, rather than a complete solution for
the velocity distribufion?

7.2. Discuss the meaning of each term of Eq. (7.3).
7.3. Explain why the cosine  appears in the convection term in Eq. (7.3).
7.4. The term p is called the momentum correction factor. Discuss.
7.5. What is the relation between Eqs. (7.21) and (7;29)?
7.6. Discuss the meaning of the various terms u, E, H.

7.7. What is the meaning of each term in Eq. (7.52) and in Eq. (7.56)?-
7.8. The term CY  is called the kinetic energy correction factor. Discuss.
7.9.  Discuss  the meaning of each term in Eq. (7.61), the mechanical energy balance.

7.10. Tabulate the assumptions that have been invoked in deriving the Pitot  tube
equation in Example 7.17, U, = (2gR)lR.

7.11. A funnel without a stem is allowed to drain. Determine the time required to
empty the funel, if the exit velocity is given by

UIy.  = 2gh

where h is the height of fluid in the funnel, H is the original height, ru is the
radius at H, and r, is the radius of the funnel drain. Hint: the volume of a cone is
(dh/3);  assume r(h = 0) = 0.

7.12. A funnel with a long vertical stem of radius r, and length L is allowed to drain.
Determine the time required to empty the tunnel; let h be the  height  of  f lu id  in



324 BASK  CONCEFTS  IN TRANSPORT PHENOMENA

the ‘funnel, H the original height, and r, the radius at H. Assume that the flow is
laminar and that there are no losses in the funnel. Neglect the time to drain the
stem. Hint: the volume of a cone is dh/3;  assume r(h  = 0) = 0.

7.W.  Determine the time required to remove half of the contents of the tank of
Example 7.1, if a horizontal length of pipe with radius r,, and length L is attached
to the drain. Assume all the losses are in the pipe and that the flow is laminar.

7.14. A line has an expanding section that changes the diameter from 3 inches to 6
inches. Water (viscosity l.OcP and specific gravity 1.0) is flowing at 0.5ft3s-‘,
and the pressure is 45 psia at the upstream end. Find the pressure (psia) at the
downstream end. Use English units.

7.15. In Problem 7.14, the expanding section has an angle of 45”. If the inlet pressure is
40 psia, the inlet velocity is 12.22 ft s-‘, and the outlet pressure is 40.94 psia, find
(a) the resultant force on the fluid; (b) the resultant force holding the fitting in
place. Do all work in English units.

7.16. In Problem 7.14, the flow direction is reversed (flow through a reducer). Find (a)
the pressure (psia) at the downstream end; (b) the resultant force on the fluid; (c)
the resultant force holding the fitting in place. Do all work in English units.

7.17. Water (viscosity 1.0 CP  and specific gravity 1.0) flows through an expanding bend
that turns the fluid 120”. The upstream inside diameter is 3 inches, and the
pressure at this point is 80 psia. The downstream inside diameter is 5 inches. The
flow is 2 f? s-‘.  Neglecting the energy loss within the elbow, find the downstream
pressure (psia). Use English units throughout.

7.18. Water (viscosity 1.0 CP  and specific gravity 1.0) flows through an expanding bend
that turns the fluid 120”. The upstream inside diameter is 3 inches, and the
pressure at this point is lO.Opsig. The downstream inside diameter is 5 inches,
and the pressure is 19.7 psig. The flow is 2 ft3  s-l. Find (a) the resultant force on
the fluid; (b) the resultant force holding the fitting in place. Do all work in
English units.

7.19. Water at 295 K is flowing at 1 m s-’ in turbulent flow in a pipe whose internal
diameter is 10cm. The fluid enters a U-shaped bend such that the direction of
tlow  of the exiting fluid is 180” from that of the entering fluid. The absolute
pressure of the entering fluid is 2.2 atm; the pressure of the exiting fluid is
2.0 atm. Find (a) the resultant force on the fluid; (b) the resultant force holding
the fitting in place. Do all work in SI units.

7.20. A jet of water at 290 K, 1 inch in diameter, strikes a fixed vane that deflects the
jet 90” from its original direction. The jet velocity is 25fts-‘.  Find (a) the
resultant force on the fluid: (b) the resultant force holding the vane in place. Do
all work in English units.

7.21. A two-dimensional jet of fluid, which flows at a rate of Q m3 s-‘, strikes a plate at
an angle 8. Find the split of the flow (i.e., Q, and Q2,  where Q2 is in the
direction U cos 0). Hint: neglect the drag force and use a coordinate system
where the y-axis is parallel to the plate. If there is no drag force, then there is no
deceleration of the fluid.

7.22. Determine the total or stagnation pressure for the flow of air at 100 miles per
hour, if the air is at atmospheric pressure and has a density of 0.08 lb,,, ft-‘. Do all
work in English units.
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P o i n t  A
Diameter = 5 inches

Level of fluid  in tank

FIGURE 7.18
Siphon for Problem 7.23.

Nozzle diameter = 2 inches

7.23.  Determine the rate of f low (kg s-‘)  o f  wa te r  a t  310  K th rough  the  s iphon  in  F ig .
7.18. Neglect all losses. Let g equal 9.75 m s-*.  Work in SI units.

7 .24.  Find the  pressure  (ps ia)  a t  point  A in  Problem 7.23.  Let  a tmospher ic  pressure  be
14.4  ps ia .  Can  the  sys tem opera te?  Why or  why not?

7.25.  A tank conta ins  both  water  and oi l .  The water  and oi l  are  immiscible ,  and specif ic
gravity of the water is 1.0 and of the oil is 0.8. If the fluid layers are each 5 m in
depth and contained in the tank shown in Fig. 7.2, determine the rate of
discharge Q if the internal diameter of the drain and tank are 5 cm and 5m
respectively. Let g equal 9.8 m s-*.  Work in SI units.

7 .26.  Find the  f low ra te  in  m3  s-r in  Problem 7.23 i f  the  losses  are  5 .0  f t  lb ,  lb , ‘ .  Work
in SI units.

7.27. Find the flow rate in m3  s-r in Problem 7.25 if a length of line, of internal
diameter 5 cm and losses 5 ft lbr  lb,‘,  is attached to the exit. Neglect entrance
effects .  Work in  SI  uni ts .

7.28. A Pitot tube is schematically pictured in Fig. 7.15. Calculate the pressure
difference ( in units  of  inches of  water ,  psi ,  and kPa) obtained from a manometer
connected to a Pitot tube that is located at the center line of a 2-inch  schedule 40
pipe (see Table B.l),  through which water at 290 K is flowing at a Reynolds
number of 10s. Let the acceleration due to gravity be 32.21 ft s-*.  Convert all
numbers  to  SI  and work in  tha t  sys tem of  uni ts .

7 .29 .  A chemis t  br ings  the  fo l lowing da ta  to  you .  F ind  the  in vucuo  mass of  the sal t
so lu t ion .  Use  S I  un i t s  t h roughou t .
Density of brass weights: 84QO  kg mm3
Density of salt solution: 1100 kg m-”
Densi ty  of  Pyrex  beaker: 2500kgmm-’
Grams of  brass  weights  used to tare  beaker: 57.952 g
Grams of  brass  weights  used  for  beaker  p lus  sa l t  so lu t ion: 143.859 g
Atmospher ic  condi t ions  dur ing measurements : pressure = 742 Torr

temperature = 22°C
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8
METHODS OF

ANALYSIS

NOMENCLATURE

A Species A

i
Exponent
Exponent

c Concentration (kmol mw3, lbmolftT3);  CA,  Cn,  C’i are concentrations

cl
of species A, B, i
Rate of generation of mass (kmol m-’ s-‘,  lb mol fte3  s-l)

C Exponent
C Velocity of sound in Problem 8.11 (m s-r)
CP Heat capacity at constant pressure (kJ kg-’  K-‘, Btu lb;’  OF-‘)
D Diffusion coefficient (mass diffusivity) (m” s-‘,  ft’  s-‘)
d Diameter or characteristic dimension (m, ft); d, is inside diameter of

pipe, as used in fluid flow; d, is particle diameter
d Exponent
e Pipe roughness (m, ft); see Table 10.2 for more details

i
Exponent
Force or drag force (N, lb& F,,  Fp, F,,  and Fg  represent viscous,
inertial, surface, and gravitational forces, respectively, in Example 8.6

f Fanning friction factor, Eq. (6.89)
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f
G
g

g

f

k
L
L
M
lci,

N

u

W

W

X

(Y

a:

B

‘Exponent
Mass average velocity, pU (kg rn-‘~-~,  lb,,, ft-’  s-l)
Vector representing the acceleration due to a gravitational or other
field (m s-*,  ft s-*); g is scalar magnitude of gravity, cf. Eq. (8.26)
Exponent
Gravitational conversion constant (32.174 lb, lb;’ ft s-*)
Heat transfer coefficient, defined by Eq. (6.86) (W m-* K-‘,
Btu ft-* h-’  “F-l)
A linear dimension (m, ft)
Sound intensity
Number of dimensions in Eq. (8.36)
Thermal conductivity (W m-l K-’  or J m-l K-’  s-l Btu ft-’  OR-’  s-!)
Number of dimensionless groups in the Buckingham-Pi method, Eq.
(8.36)
Equimolar mass transfer coefficient, defined by Eq. (6.87)
[kmol m-* s-l  (kmol mp3)-‘, lb mol ft-* s-l  (lb mol ft-‘)-‘I
Specific reaction rate constant in Eq. (4.108) or Eq. (6.45)
Length (m, ft); L is used as a characteristic length
Basic unit in dimensional analysis, length (m)
Basic unit in dimensional analysis, mass (kg)
Rate of generation of momentum (kg m-* s-*,  N me3, lb,,, ft-*s-*,
lbr  ft-“)
N represents a dimensionless number or group; Table 8.1 lists all
dimensionless numbers in this text
Rate of rotation of impeller in Problem 8.12 (s-l)
Number of variables identified for analysis in Eq. (8.36)
Order of reaction, Eq. (4.108) or Eq. (6.45)
Power in Problem 8.12 (W)
Pressure (kPa,  atm, lbr  in.-*)
Volume rate of flow (m3 s-l,  ft3  s-l)
Representation of variables identified for analysis; see Eq. (8.40)
Energy (heat) flow (J s-l,  Btu s-‘)
Distance, cf. Eq. (8.26)
Temperature (K, “R, “C, OF)
Basic unit in dimensional analysis, temperature (K)
Rate of generation of heat (J me3  s-l,  Btu tY3 s-‘)
Time, cf. Eq. (8.26); trelmation is the relaxation (or characteristic) tune
of the fluid; tprocess is the characteristic time of the process
Velocity (m s-l, ft s-l); U is used as a characteristic velocity
Subscript denoting wall
Weir width in Problem 8.13
Rectangular (Cartesian) coordinate
Thermal diffusivity (m’  s-l,  ft*  s-l)
Constant in Eq. (8.32); also (Y’  is the reciprocal of (Y
Coefficient of expansion (K-l,  ‘R-l)
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Difference, state 2 minus state 1; AT means T2  - Tl
Generalized diffusivity (m’ s-l,  ft*  s-‘)
Efficiency of removal in Problem 8.17 (dimensionless)
Basic unit in dimensional analysis, time (s)
Viscosity (kg m-’ s-i or Nmm2s,  lb,ft-‘s-l,  cP); pw  is viscosity at
wall
Kinematic viscosity (momentum diffusivity) (m2 s-l,  ft2  s-l)
Generalized transport coefficients associated with h,  f, kf, Eq. (6.98)
Dimensionless groups in the pi theorem
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg rnw3, lb,,, fte3); subscripts refer to species
Surface tension (kg sm2 or N m-‘, lb,,, sm2 or lb, ft-‘)
Momentum flux (or shear stress) tensor (N rnm2,  lbr  fte2); rX,,,  T,,~,  etc.,
are components of the momentum flux tensor, where subscripts refer
to direction of momentum transfer and direction of velocity; t,  is
shear stress at the wall
Generalized flux vector (e.g., units for heat flux are J rnv2sT1  or
W rne2,  Btu ftT2 s-‘;  see Tables 2.1 and 3.1 for more details)
Generalized concentration of property (e.g., units for concentration of
heat are J rne3, Btu ftv3;  see Table 3.1 for complete listing)
Generalized rate of generation of energy or mass’or momentum in a
unit volume (see Table 4.2 for units; e.g., for heat, units are J mm3 s-l,
Btu ft-3 s-l)
Vector operator del, defined by Eq. (2.16) or Eq. (3.45) (m-l,  ft-‘)
Laplacian operator, defined by Eq. (3.64) (mm2,  ft-‘)

The equations of the transport phenomena in laminar or turbulent flow as
presented in the preceding chapters are, in general, so complex that in most
practical cases exact solutions are impossible. In these situations relationships
between variables must be established empirically rather than analytically. If
there are many variables, as usually is the case, the resulting correlations in
terms of any one variable are hopelessly complex; however, if variables are
grouped in a logical manner, the correlations are considerably simplified.
Experience has shown that dimensionless groups of variables are the most
useful in correlating experimental data. This chapter will present general
methods of analysis that .establish  dimensionless groups of variables such as the
Reynolds number and friction factor that were discussed in Chapter 6.

The first step in dimensional analysis is to establish all the variables (such
as velocity, tube diameter, density, viscosity, etc.) necessary to describe the
transport phenomena being considered. When the governing differential
equation is known, then obviously all the significant variables are present in
that equation, which is then inspected and rearranged in the appropriate form.
Some)ifnes the significant variables are discovered by deductive reasoning or
experieince  with the process. Once all the variables are established, the
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dimensionless groups can be determined. The number of dimensionless groups
is always less than the number of variables. Thus, the number of experiments
to establish a correlation between dimensionless groups is correspondingly less
than if each variable were considered in turn.

The use of dimensionless groups, also called numbers in engineering, is
widespread, and because of this several extensive lists have been compiled.
One [Bl]  lists the name of each group, the formula, significance, area of use
(fluid mechanics, heat transfer, mass transfer, and chemical reactions), and
source.

8.1 INSPECTION OF THE BASIC
DIFFERENTIAL EQUATIONS

The general property balance for incompressible conditions and constant
properties is Eq. (3.78):

&/J/at + (U  * V)l)  = IjIG + S(V2 q) (3.78)

Obviously each term in this equation has the same dimensions, regardless of
which concentration of property is substituted for $J.  Therefore, the ratio
between the various terms must be dimensionless and form some sort of
dimensionless number or group. 8

.A good starting point for dimensional analysis is to take the ratio of the
convection term (U  - V)I/J  to the molecular transport term 6(V* w). As seen in
Eq. (2.16),  the operator V is of the form a/%x  and must have units of
reciprocal length. Let us replace the operator V with l/L (a reciprocal
characteristic distance) and the velocity vector U with I/,  a characteristic
velocity. Then the ratio of the terms ((I. V)p/r  and 6(V* 111)  in Eq. (3.78)
b e c o m e s

(cJ*V)qJ  VqJIL  UL-=-=-
qv* 2))  SlyIL2  6 (8.1)

The term ULIG,  where U and L are generalized in concept to signifiy a
velocity and a length appropriate to the experiment, represents the ratio of the
convection transport to the molecular transfer. This very important dimension-
less number will be considered in turn for heat, mass, and momentum.

For momentum transfer, the diffusivity 6 equals the kinematic viscosity v
so that the term lJL/6 becomes the Reynolds number, Eq. (6.1). With the
definition of kinematic viscosity [cf. Eq. (2.12)],  Eq. (8.1) becomes

The Reynolds number is the ratio of the convection to the molecular
momentum transport; it is also often referred to as the ratio of the inertial to
viscous forces. A low value of the Reynolds number means viscous forces
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(molecuIar transfer) are large when compared to inertial forces (convective
transfer). This analysis is certainly consistent with the discussion on transition
in Section 6.1.2.

The term UL/6  is equally important in heat transfx  applications. When
6 is replaced with the thermal diffusivity, Eq. (2.10),  the term UL/6  becomes
the Peclet number:

N =(/LzuLPc,Pe (Y k (8.3)

The Peclet number is the ratio of the heat transported by convection to that
transported by conduction. The Peclet number when divided by the Reynolds
number results in the Prandtl number:

The Prandtl number depends only on the fluid properties.
A similar substitution (6 = D) for the case of mass transfer yields the

mass transfer Peclet number:

N
VL

Pe, lnass  = -
D

The mass transfer Peclet number is the ratio of convective mass transfer to
molecular mass transfer. If the Peclet number is divided by the Reynolds
number, just as in the case of heat transfer, one obtains the Schmidt number:

v PN,,=-=---
D PD

The Schmidt number is the ratio of momentum diffusivity to mass diffusivity; it
is analogous to the Prandtl number and contains only fluid properties.

These five dimensionless numbers (N,,,  Np,, NPe.mass,  Np,,  and NsJ are
of great importance in momentum, heat, and mass transfer. The first three
represent the ratios of the convection to molecular transport of the property in
question, and the remaining two involve the ratios of the diffusivities between
pairs of the three transports. The ratio in NPr or in Ns,  is a measure of the
relative magnitude of one transport to the other.

A similar analysis can be done between the terms (U - V)IJJ and Go of
Eq. (3.78):

(UsV)V  UVIL vq-c-c-
lllG VG LqG

(8.7)

Thus, the term (Uq)/(L$G)  is a second important generalized dimensionless
number. It represents the ratio of convection to generation.

For momentum transfer, the generation term is given by Eq. (4.54):

h&y=-vp+pg (4.54)
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Since there are two terms in Eq. (4.54),  there will be two dimensionless
numbers formed. The first of these is the Euler’ number:

o r

w UN upu  pu2  1-=T=-=p=-
L& LMo UpILl P ku

Note that in this equation dp/dx  was replaced with the simpler form p/L. The
Euler number is the ratio of pressure to inertial forces or of momentum
generated from pressure effects to momentum transfer by convection. The
number is associated with the friction factor (Eq. 6.89),  which will be
considered in more detail in Chapter 10.

The second dimensionless number obtained from the ratio of the
convection to generation terms in momentum transport yields

upu pu2

Ln;r,=Lni,

which if restricted to the effect of gravity (pg) gives the Froude number:

(8.9)

(8.10)

The Froude number is the ratio of the convection to gravitational factors, and
it is often referred to as the ratio of inertial to gravitational forces.

In the case of  heat  t ransfer , the term (U1y)/(L&)  becomes
(Upc,T)I(L&).  In Chapter 4 the generation of heat was treated as a general
term usually initiated from the outside; however, heat can be generated
internally in the system owing to viscous dissipation, which for the one-
dimensional case is

& = -tYx  2 = p(dU,/dy)2

From a dimensional standpoint,. this is equivalent to pU2/L2,  and when
combined with the term (Uq)/(Ltj~~) Eq. (8.11) becomes

Upc, T = UPC,  TL2  _ PC, TL

LFG L#ilJ2  @I
(8.12)

This equation expresses the ratio of the heat transported by convection to that
produced by viscous dissipation in the system. If Eq. (8.12) is divided into the

’ Euler is pronounced as “oil-er”.
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Peclet number [Eq. (8.3)],  the result is the Brinkman  number:

ULpc,lk  p U2

NBr  = (pc,TL)/(pU)  = kT
(8.13)

The Brinkman  number is the ratio of the heat produced by viscous dissipation
to that transported by molecular conduction. The Brinkman  number can also
be obtained directly from the ratio between & and 6(V2 I/J):

VG qG  L2qG-=-=-=

6(V2v)  SVlL2  NJ
(8.14)

A high Brinkman  number implies that heat produced by viscous dissipation is
not easily conducted away.

In the case of mass transfer , the term (Uq)/(L$G)  becomes
(UCA)/(LcA,G)  where the rate of reaction c&o  is given by Eq. (4.108):

CA,, = -k,Ci (4.108)

with n being the order of reaction and k, the reaction rate constant. Equation
(4.108) is used to replace CA,& and the reciprocal is known as the first
Damkohler number:

N
Lk, Cl-’

Dml =
u

(8.15)

The first Damkohler number is the ratio of the chemical reaction rate to the
rate of mass transfer by convection.“Xnother  dimensionless number, the
second Damkohler number is formed by multiplying the first Damkohler
number, Eq. (8.15),  by the mass transfer Peclet number, Eq. (8.5),  so as to
eliminate velocity:

N
L2k,C;-1

Dm2 =
D

(8.16)

The second Damkohler number is the ratio of the chemical reaction rate to the
rate of mass transfer by molecular diffusion. There are other Damkohler
numbers in the literature [Bl].

Finally, when a free surface is present, surface forces may be important.
A good example is the surface force which must be overcome during the
breakup of drops. The dimensionless ratio of inertial to surface forces is the
Weber number:

where (I is the surface tension in units of kg sC2 or N m-‘. If the gravitational
conversion constant g,  is included in the denominator of Eq. (8.17),  then the
surface tension u has units of lbr  ft-‘.

In many cases with turbulent flow, the general balance equation, Eq.
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(3.78),  is replaced by the transfer equation given in general terms as Eq. (6.90)
and repeated here:

Any transfer of flux Y at the wall must necessarily be by molecular means,
since the no-slip boundary condition means zero velocity. In addition, the
transfer must be in the direction normal to the wall; i.e., only the radial
component (not &/~/a@  or &/J/&)  can cause a flux towards or away from the
wall:

Y’,,,  = -s(e$lar), (8.18)

Equating Eqs. (6.90) and (8.18) gives

E<Ww  - Wave)  = -w~wdv (8.19)

A dimensionless group is formed by dividing one side of Eq. (8.19) by the
other

aww - wwe.)  Ew ELs(a?j/ar),  =iigx=x (8.20)

The term EL/6  represents the ratio of total transfer by all mechanisms
(including turbulence) to molecular transfer, a concept discussed in great detail
in conjunction with eddy viscosity in Section 6.3.

For heat transfer the term EL/6 becomes the Nusselt number with the
aid of Eqs. (6.91) and (2.10):

(8.21)

where again L is a characteristic length. The Nusselt number is the ratio of
convective heat transfer to molecular heat transfer. It is widely used in the
correlation of heat transfer data. In pipe flow, the characteristic length L
becomes the inside pipe diameter d,.

For mass transfer, the corresponding number derived from Eq. (8.20) is
the Sherwood number:

The Sherwood number (also called the Nusselt number for mass transfer) is
equally important in mass transfer correlations. If Eq. (6.93) for the fluid flow
transfer coefficient is substituted into the group EL/c?,  the result is

(fUI2)L  UL  f-=y2=NRe;
Y

where f is the Fanning friction factor, Eq. (6.89). Equation (8.23) yields no
new dimensionless groups. Note the similarity between Eq. (8.23) and the von
Karman correlation equation for turbulent friction factors, Eq. (6.132).
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Other dimensionless numbers can be generated at will, since any
combination of one or more dimensionless numbers results in a new
dimensionless number. Thus, it is common to find in the literature other
numbers that may simply be the square roots of some of those cited here or
other simple combinations. One of the most important of these for heat
transfer is the Stanton number:

N,,=N,,= Lhlk h- -
& & r  W-Wd(c,/W’- PC&’

One final number of importance in heat transfer by natural convection is the
Grashof number:

N
GI

= L’p=gSAT
P2

(8.25)

The Grashof number is obtained by dimensional analysis, as the reader may
verify for himself or herself in Problem 8.16 at the end of this chapter. The
term /3 is the coefficient of expansion or thermal fluid expansion; the units of /3
are reciprocal temperature difference.

The various dimensionless groups just introduced are summarized in
Table 8.1. Included are other groups that are sometimes encountered.
Complete lists are available elsewhere [Bl, Ll, Ml, Pl].

8.2 DIMENSIONAL ANALYSIS

The first step in dimensional analysis is to establish all the variables; the second
step is to arrange these in dimensionless groups. The various procedures for
the second step of dimensional analysis are mathematically rigorous [Ll].
Furthermore, these procedures are easily double-checked by inspection of
units in the final result. Great care must be taken to include all the variables in
the analysis, for there is no way to prove whether or not all the variables have
been included. The validity of those variables that are important must be
decided on the basis of considerable experimental knowledge. Gross errors in
the final dimensionless numbers result either when extraneous variables are
included or when important variables are omitted.

Dimensional analysis is based on the requirement of dimensional
homogeneity, which must exist between variables descriptive of a given
system. A minimum number of fundamental dimensions or units is used, and
all other dimensions are related to these. Dimensional analysis can be used
without a knowledge of the controlling equations, so long as all governing
variables are included in the analysis. The selection of a set of fundamental
units is arbitrary. A convenient set includes length, time, mass, and tempera-
ture. In the SI system of units, the basic units are length (L) in meters, mass
(M) in kilograms, time (0) in seconds, temperature (T) in kelvin%  electric
current in amperes, light intensity in candela, and molecular substance in



TABLE 8.1

Summary of dimensionless numbers &

(A) Generd  number: UC/i3
if
z

Symbol, N a m e Variables
II

Eq .  No. Description or usage 8
Q

General
number

N Rc R e y n o l d s

Peclet

Prandtl

Peclet, mass

Schmidt
LiZAViS

UL/6

ULLplr

ULpc,lk

c,dk

VLID

PI(PD)
k/&J)

(f3.1)

(8.2)

(8.3)

(8.4)

. (8.5)

(8.6)
-

convective to molecular
t r a n s p o r t

inertial to viscous forces or
convective to molecular
momentum transfer

convective to molecular
conductive heat transfer

momentum to thermal
d i f f u s i v i t y

convective to molecular mass
transfer

momentum to mass diffusivity
thermal to mass diffusivity;

also, ratio of Schmidt to
Prandtl number

(B)  General nomber: (U$J)/@~~)

General
number

NE”

NR

Euler

Froude

(8.7)

- (8.8)

(8.10)

(8.12)

c o n v e c t i v e  t r a n s p o r t  t o
g e n e r a t i o n

pressure to inertial forces or
momentum generation to
convective momentum transfer

inertial to gravitational
forces or convective momentum
transfer to gravitational
momentum transfer

convective heat transfer to
v i s c o u s  d i s s i p a t i o n  h e a t
g e n e r a t i o n



431 Brinkman

NDrnl Damkohler 1

NDrnZ Damkohler 2

NW C Weber

(8.13)

(8.15)

(8.16)

(8.17)

viscous dissipation heat
generation to molecular
conductive heat transfer

chemical reaction generation to
convective mass transfer

chemical reaction generation to
molecular diffusion mass
transfer

inertial to surface forces

(C) General number:* &L./S

General
number

NN” Nusselt

CL/6 (8.20)

hL/k (8.21)

kfLfD (8.22)

rJ(PW2) (6.89)
= [(~,AP)~(~L)I~(PvZ/~)

h&J) (8.24)

k L. ,,lV,,  avc (11.81)

(D)  MisceUaneo~~~  numbers?

total transfer to molecular
transfer

total heat transfer to
molecular heat transfer

total mass transfer to
molecular mass transfer

shear stress at the wall to the
kinetic energy of flow

total heat transferred to total
heat capacity: N,, = NNu/(NRcNPr)

NSf. mss = Ns&S&~)

NSL

f

4,

NSt.  mas

Sherwood

Fanning
friction factor

Stanton

Stanton

N
N;;

Archimedes (Pp - P)(P&)M _  (12.89) fluidization
Biot hL/k ., (13.16) unsteady-state heat conduction

4. blend Nt (9.10) agitation
in Colbum heat @‘stW~,)~~ (11.79) Colburn factor for heat

transfer analogy
jM Colburn mass Wst, m.,sWsJM (11.81) Colbum factor for mass

transfer: f /2 = jH = jM
l The groups  j,  Ns,,  and Nst.  ms,~  are derived from the general number EL/&
TThere  are SeVerd  SymbdS  in this  table that are not used elsewhere  in the text.  See  r.$feraces  at  the  end  of the  chapter  for  more  det&
[Bl,  Ll,  Ml, Pl].



TABLE 8.1 (Contio~~ed)

Summary of dimensionless numbers
ii

r
(D)  Miscellaneous numbers (Continued) R

Symbol N a m e Variables
8

Eq.  No. Description or wage
i?

NC0 condensation @l~)b2/k&w’ condensation 3
ND” Dean Kd414)“z (10.20) flow in curved tubes
N

B

De Deborah 4dtproccss (15.18) flow of elastic fluids

CD drag coefficient 2Fl(@‘*A) (12.15) flow past immersed bodies g
NFo Fourier cut/L2 - nondimensional time parameter
N Graetz

a
or (wc,YW) - heat transfer, laminar forced TJ

convection
Nor Grashof (L3hWW~* (8.25)

z
Reynolds number times the ratio E2

of buoyancy force to viscous P
force (natural convection heat

2transfer)
NK ” Knudsen AIL (5.75)
N

flow of gases at low pressure
Ma Mach VlC

Npo

flow above the speed of sound
power Pl(pN3d:) G.8) agitation

NP pumping Q/W’) (9.11) agitation
4, Strouhal f’LIV periodic flows
NVK von Karman N&f  )o.5 (lo.  13) eliminates velocity in

correlations for Ap
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kmol. For most problems of interest in the transport phenomena, the basic
units involve only LMBT,  and these are the simplest to use. All other derived
units are expressed in terms of these basic units. Other units may be added if
desired; e.g., the force (F) in newtons.

8.2.1 Rayleigb  Method of Analysis

There are several essentially equivalent procedures that can be used to
determine dimensionless numbers. One of the most straightforward is the
Rayleigh method, which will be illustrated by a simple example. A great
number of experiments have measured both the time and distance of fall of
various objects in a vacuum under the influence of gravity. Experimental
knowledge has indicated that the distance of fall, time of fall, and gravity are
the only variables of importance. These are summarized in Table 8.2.

Let each variable (s,  t,  and g)  be raised to an as-yet-unknown power, a,
b, and c, respectively. If all the variables raised to the appropriate power are
multiplied together and placed on the left-hand side of the equation, then this
grouping of variables must be equal to a constant that will have no dimensions:

satbgc  = constant (8.26)

If the dimensions raised to the power indicated in the pfevious equation are
substituted, the result is

L”ObL”O-2C  = dimensionless (8.27)

If this equation is to have no dimensions on the left-hand side, then the sum of
the power on any given dimension must be zero; therefore

L: a+c=O

0: b-2c=O
(8.28)

There are in these two equations three unknowns, which correspond to the
original three variables being considered. The solution to Eq. (8.28) requires
that either u,  b, or c be arbitrarily assigned. For example, one method is to
select a single variable and write the other two in terms of it. The obvious
choice in Eq. (8.28) is c, since neither a nor b appears in both equations. Then

a = - c

b = 2c
TABLE 8.2

Variables in a gravity experiment

Symbol Exponent Name S1  Units Dimensions

s II distance m L
t b time s 8
g c gravity m s-* LB-*

(8.29)
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which when combined ‘with Eq. (8.26) gives

s-“&f  = constant (8.30)

The constant in Eq. (8.30) is dimensionless because u,  6,  and c in Eq. (8.28)
were so chosen. If both sides of Eq. (8.30) are raised to the reciprocal c power,
the resulting constant, now called ly’, is also dimensionless:

or
&Is  = a’ (8.31)

s = LYgt* (8.32)

where LY is the reciprocal of (Y’.  Equation (8.32) is recognized as the result
obtained by Galileo.

The solution leading up to Eq. (8.32) is equivalent to assigning a value of
1 to c. Then from Eq. (8.29) a is -1 and b is 2. The dimensionless group in
Eq. (8.31) results. If c were assigned a value of 2, then the dimensionless
group t4g2/s2  is obtained. In this simple problem there were three variables
and two independent equations, Eq. (8.29). Therefore, it follows that one
dimensionless group can be formed. In general, the number of dimensionless
numbers or groupings of variables that are required equals the number of
variables considered less the number of independent equations available. At
this point, the word independent is stressed; later in this chapter, an example
will be given where not all the equations [obtained here as Eq. (8.28)]  are
independent.

Equation (8.32) is correct only if the object were dropped in a vacuum. If
Galileo had dropped a feather and a steel ball from the Leaning Tower of Pisa,
the results would not follow Eq. (8.32). If the vacuum restrictions mentioned
at the beginning of the example were removed, the list of variables is greatly
expanded to include such things as the drag of the air and the weight and shape
of the object. This point illustrates the danger in omitting important variables
from consideration when using dimensional analysis. From physics, the
proportionality constant (Y  in Eq. (8.32) is exactly f. Dimensional analysis finds
the single dimensionless number that relates the three variables, but cannot
establish the value of the constant LY or whether c should be assigned one or
two, or whatever.

A simple variation of the Rayleigh procedure is to write Eq. (8.26) as

s = cYt@gb (8.33)

where (Y  is a dimensionless proportionality constant. Equation (8.27) becomes

L = &“(LO-*)b (8.34)

Equation (8.28) becomes
L : l = b

0: O = a - 2 b
(8.35)

Solving these gives b = 1 and a = 2. For this alternate procedure, the number
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of dimensionless numbers is 1 plus the difference between the number of
unknowns and the independent equations available; i.e., 1 + 2 - 2 = 1. Placing
these values back into Eq. (8.33) gives Eq. (8.32):

s = agf (8.32)

Either procedure is satisfactory; the same result is always obtained.
Practically all problems have more variables than the three in the Galileo

experiment. In this relatively unique example, the actual form of the equation
was established. Because there is only one dimensionless number, the power is
known. Of much more practical interest are those problems using or involving
many more variables; as an example of this, the problem of the flow of fluid in
a pipe is used in the next example. Afterwards, an example suggested by
McAdams  [Ml] will be worked by the alternate procedure [Eq. (8.33)].

Example  8 .1 .  The  f low of  f lu id  in  a  pipe  has  been s tudied exper imental ly ,  and i t
has  been determined that  the  var iables  of  importance  are  the  fo l lowing:  veloci ty ,
pressure  drop ,  dens i ty ,  v iscos i ty ,  d iameter ,  length ,  and  roughness  of  the  wal l .
Determine the necessary dimensionless  numbers .

Answer.  A tabula t ion of  the  var iables  i s  in  Table  8 .3 .  Each var iable  in  Table  8 .3
is  ra ised  to  an  exponent ,  as  was  done  previous ly  in  Eq.  (8 .26) .  The  product  of
these  wi l l  be  d imensionless  i f  the  exponents  a  t h rough  g are  chosen according to
the  Rayleigh procedure .  Firs t ,  the  fol lowing product  is  formed:

U”pbpCpdd~Lfe8  = cons tan t (9

Dimensions from Table 8.3 are substituted into Eq. (i), in a manner similar to
that used in obtaining Eq. (8.28):

L”8-“M”L-be-26McL-3~L-de-dLeL/Lg  = dimensionless (ii)
Equat ion  ( i i )  wi l l  be  d imens ionless  only  i f  the  sum of  the  power  on  any  g iven
dimension i s  zero:

L: a - b - 3 c - d + e + f  + g = O (iii)

M : b+c+d=O (9
0: - a - 2 b - d = O (4

TABLE 8.3
Variables in pipe flow

SYnM Exponent Name SI  units Dtmensiod

V a v e l o c i t y ms-’ LW’

P b p r e s s u r e kg m-r SC’  (N m-*) ML-W2

P
5;

d e n s i t y kg mW3 ML-3

ii
v i s c o s i t y kgm-Is-’ ML-‘W’

L” i

diameter m L
l e n g t h m L

e g r o u g h n e s s m L
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There are seven unknowns (a through g) and three equations, a fact which
suggests that four groups are needed. Equations (iii) through (v) can be solved in
terms of  any four  of  the  unknowns.  Any of  the  unknown var iables  that  i s  se lected
wi l l  appear  only  once .  Let  us  se lec t  b ,  d, f, and g .  Equat ion (v)  can be  solved for
a:

a = - 2 b - d
From Eq. (iv):

(4

ci-b-d (vii)
From Eq. (iii):

e=-a+b+3c+d-f-g

=2b+d+b-36-3d+d-f  -g
z-d-f-g

All  the powers  are  now evaluated,  and Eq.  ( i )  becomes

PbU -2b-dp-b-d~dd,d-f-#Lfeg  = constant

In  Eq.  ( ix) ,  the  var iables  are  grouped according to  exponent :

(viii)

(ix)

($-r(k)($)l(t)‘=constant

The f i rs t  group of  var iables  is  the  Euler  number ,  the  second is  the  reciprocal  of
the Reynolds  number ,  and the third  and fourth are  geometr ic  ra t ios .  These and
other  numbers  are  summarized in  Table  8.1.  Dimensional  analysis  provides no
further clues to the application of Eq. (x). Experimental data are required to
es tab l i sh  the  powers  or  the  va lue  of  the  cons tan t .  In  prac t ice ,  i t  tu rns  ou t  tha t  f
equa ls  -b,  so  tha t  the  f i r s t  and  th i rd  groups  can  be  combined:

No-y--  = 2f
u  PL

where f in this equation is the Fanning friction factor, Eq. (6.89) and is not to be
confused with the use off  as  one of  the exponents .  I t  must  be emphasized that
the  combinat ion of  groups  b and f  i s  based on exper imenta l  evidence and not  on
dimensional analysis.

Example 8.2. The heat transfer coefficient h has  been  found to  depend on  the
velocity, density, heat capacity, viscosity, thermal conductivity, and diameter of a
rod in a  specif ic  experiment .  Determine the necessary dimensionless  numbers.

Answer. A tabula t ion  of  the  var iab les  i s  g iven  in  Table  8 .4 .

A common variat ion of the Rayleigh method  wi l l  be  i l lus t r a t ed  he re ;  th i s  so lu t ion
uses  one less  exponent  than in  Example 8 .1 .  The uni ts  of  h can be  obta ined f rom
the defiining equation:

(q/A)w  = h(%  - T,,.)

Equat ion  (6 .86)  rear ranges  to  the  fo l lowing:

(6.86)
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TABLE 8.4

Variables for the heat transfer coefficient

Symbol Exponent Name SI Units Dimensions

h - heat transfer
c o e f f i c i e n t

V v e l o c i t y
P ; d e n s i t y
5 c heat capacity

k”
d v i s c o s i t y
e thermal

c o n d u c t i v i t y
do f diameter

J SC’  m-*  K-’ or
kg SC3 K-’

ms-’
kg m-’
J kg-’ K-’  or

mz  s-*  K-l

kgm-‘s-’
J SC’ m-’ K-’  or

kg m sC3  K-’
m

Mw%-

LW'
ML-3
LZ@-ZT-l

ML-%-'
ML@-?-'

L

Now,  one  joule  ( J )  i s  one  kg  mz  SC*;  therefore the uni ts  of  h are

h [=I J S-’  ,-z  K-’  = (kg ,$ S-2)(S-1  m-Z  K-l)  = kg S-3 K-’

For  heat  capaci ty  the  uni ts  a re

(ii)

cp  [=] J kg-’ K-’ = (kg m*  s-*)(kg-’ K-‘) = m*  SC’  K-’

For  thermal  conduct ivi ty ,  the  uni ts  are  found from Fourier’s  law:

(iii)

(q/A)x  = -k $

The resul t  i s

k [ =] (J m-* s-‘)(m  K-‘)  = kg m s-’  K-’ 69

Now that the units have been established for all quantities in Table 8.4, the
solution of this problem follows the development of Eq. (8.33)ff.  The heat
transfer coefficient is given by the following general expression:

h = cyU“pbc;pdk’d’, (4

Next ,  the  un i t s  a re  subs t i tu ted  in to  the  above :

MWT-’  = a(LO-‘)“(ML-3)b(L2Q-*T-‘)C(ML-‘O-’)d(MLO-3T-’)e(L)f

(vii)
The exponents  on each uni t  are  col lec ted as  fo l lows:

L: O=a-36+2c-d+e+f (viii)

M: l = b + d + e (ix)

0: -3=-a-2c-d-3e (4

T: -I=-c-e (xi)

These four  equat ions  conta in  s ix  unknowns,  and for  th is  procedure  the  number  of
groups is (1 + 6 - 4) or three dimensionless groups of variables, if all four
equations are independent. Let us proceed to solve in terms of a and c, which will
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then appear  only  once.  Recal l  that  two exponents  are  suff ic ient  to  e l iminate  the
other  exponents  s ince  there  are  s ix  exponents  and four  equat ions  (6  - 4). The
exponent  e  is  e l iminated using Eq.  (xi ) :

e = l - c (xii)

From Eq. (x):

d=3-a-2c-3e=3-a-2-3+3c=c-a (xiii)

From Eq. (ix):

From Eq. (viii):

byl-d-e=l-c+a-l+c=a

f=-a+36-2c+d-e=-a+3a-2c+c-a-l+c=a-1 (xv)

When all of these results are substituted into Eq. (vi), the result is

h = cuU”p”c~~‘~-“kk-‘d”,d,’ W)

Equat ion (xvi)  rearranges  as  fo l lows:

h&/k  = 4-LUd~Y(cpdk) (xvii)

In terms of the dimensionless numbers of Table 8.1,  Eq. (xvii)  becomes

NNu  = (uN:fl- (xviii)

Example 8.3. Repeat Example 8.2 with the density and,velocity combined into
the mass average velocity, since in Eq. (xvii) of Example 8.2 the product pU
occurs, which is  the  mass  average veloci ty  G.

Answer.  A tabula t ion  of  the  var iab les  i s  g iven  in  Table  8 .5 .

Here  the  or ig ina l  Rayleigh  procedure  is  used.  The equat ions  are

h”GbQdk’d’,  = cons tan t (9

TABLE 8.5
Variables for Example 8.3

Symaol Exponent Name

h a heat transfer
coefficient

G b mass average
velocity

5 c heat capacity

d
e

f

viscosity
thermal

conductivity
diameter

SI units Diielwions

J s-l me2 K-’  or
kg s-~ K-’

kg m-*  s-l

MtY3T’

ML-‘8-’

J kg-’ K-’  or
m2  S-z  K-l

kg m-l s-l
J s-l m-l K-’  or

kg m sm3  K-’
m

L28-2T-l

ML-%X’
MLW3T’

L
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MaB-~T-“MbL-Zb~-bL”6-ZfT-c~dL-de-dMrLee  = djmensionless

Therefore:
[ii)

M : o+b+d+e=O (iii)

8: -3a-b-2c-d-3e=O (iv)
L: -2b+2c-d+e+f  =0 (4
T: -a-c-e=0 (4

The number cf d imensionless  groups  of  var iables  appears  to  be  6  - 4  or  2 b y  t h i s
procedure .  Let  us  pr-;eed  on th is  bas is ,  and solve  in  te rms of  a  and c .  Beginning
wi th  Eq.  (v i ) ,  the  exponent  e  i s

e = - a - c
From Eq. (iii):

(vii)

From Eq. (iv):

b + d = - a - e = - a + a + c = c (viii)

b+d=-3a-2c-3e=-3a-2c+3a+3c=c (3

Note that Eqs. (viii) and (ix) are identical and therefore so are Eqs. (iii) and (iv).
These  are  c lear ly  not  independent ,  and one  must  be  e l iminated  in  the  analys is .

In the correct solution to this problem, there ark three independent
equations. Equation (iv) will be eliminated. Thus, the final result will be in terms
of  three  dimensionless  groups of  var iables .  Let  us  now solve in  terms of  a ,  6, and
c. Equation (vii) still is valid. Equation (iii) or (viii) can be rearranged as

d = - b + c (4

Now, Eq.  (v)  gives

f =2b-2c+d-e=26-2c-b+c+a+c=b+a w

All  powers  are  now evaluated,  and Eq.  ( i )  becomes

o r
Nk&wfi  = cons tan t (xiii)

This  equatiod is  equiva len t  to  the  las t  equat ion  in  the  preceding  example .  I t  i s
very  impor tant  to  ascertain the  number  of  independent  equat ions  correct ly ,  as
th is  example  i l lus t ra tes .

Sometimes a solution by dimensional analysis is not possible. If G were
to replace p and U in Example 8.1, no solution would exist, because p and U
do not always occur together.

Example 8.4. Repeat Example 8.1 with G replacing p and U.

Answer. A tabulation of the variables is given in Table 8.6.



346 BASIC CONCEPTS IN TRANSPORT PHENOMENA

TABLE 8.6
Variables for Example 8.4

Symbol  Exponent  Name SI  units Diiemions

G a mass average kg m-2s-1 ML-W’
velocity

P b pressure kg m-l se2 (N m-*) ML-%-*

f fi
viscosity kgm-‘s-l ML-‘e-’

L”
diameter m L
length m L

e roughness m L

The same procedure will be followed as in Example 8.1:

L: -2a-b-c+d+e+f  =0 (9
M : a+b+c=O (ii)
8: - a - 2 b - c = O (iii)

From Eq. (ii):

From Eq. (iii):

a + c = - b (9

a+c=-26 (4

Equations (iv) and (v) are clearly inconsistent. The correct conclusion is that the
required dimensionless numbers cannot be obtained.

8.2.2 Buckingham  Method

The Buckingham method, sometimes called the Buckingham pi theorem [Ll]
or the pi theorem [Ml], is still another procedure to accomplish the same
result of obtaining a proper set of dimensionless numbers. The so-called “pi
theorem” states that the number of dimensionless groups obtained (k) is in
general equal to the difference between the number of variables identified for
analysis (n) and the number of dimensions (j):

k = n - j (8.36)

Actually, the pi theorem is an extension of the discussion that follows Eq.
(8.32). In the paragraph following Eq. (8.32) it was pointed out that the
number of dimensionless groups equals the number of variables less the
number of independent equations. Examples 8.1 and 8.2 illustrate that the
number of independent equations usually equals the number of dimensions;
hence the pi theorem follows directly. The exception to the pi theorem is a
problem such as Example 8.3, in which the number of dimensionless groups
exceeds the difference between the number of variables and the number of
dimensions, since the exponent equations for M and 0 were identical and not
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independent. In such a case:

k>n-j (8.37)

The Buckingham method is usually restricted to geometrically similar systems.
tit  QI. . . Q n be the n variables identified for analysis. Let Iii be the symbol
for each dimensionless number composed of Q,.  . . Q,,  variables. These
dimensionless numbers may be combined in a general way so that the
functional relationship is dimensionally homogeneous:

fW1. . .I&)=0 (8.38)

Such a dimensionless equation was illustrated in Example 8.1 by Eq. (x):

(&--(&--($(t-=constant (8.39)

Now each dimensionless group in Eq. (8.38) must consist of

II, = Q;llQil.  a e QpQj+l
I-I, = Q;2Q,bz.  . . QpQj+2

fI,  = Q;*Ql.  . . QFQj+k (849

where the exponents on the variables are chosen so each Iii is dimensionless,
as was done in the Rayleigh  method.

The following example illustrates the Buckingham method for the heat
transfer problem previously investigated.

Example 8.5.  Solve Example 8.2 by the Buckingham method.

Answer. A tabula t ion  of  the  var iab les  and  uni t s  i s  g iven  in  Table  8 .4  in  Example
8 .2  and wi l l  not  be  repeated  here .  In  th is  problem

h =fCC  P, c,,P,  k 44 (9
In Table 8.4, four dimensions are noted, L, M, 0, and T, which suggest four
poss ible  equat ions .  Therefore  j  i s  4 ,  rt is  7,  and from Eq. (8.36) k i s  3 .  Thus ,  the
pi  theorem s ta tes  tha t  three  d imensionless  groups ,  II,,  TI,,  and  IT,  are  required.
Equation (8.38)  becomes

f O-L  l-b,  I&) = 0 (ii)

i f  a l l  four  poss ib le  equat ions  a re  independent .
The next  s tep in  the Buckingham method is  to  examine Table 8.4 to  locate  j

var iables ,  which  when taken together  conta in  a l l  the  fundamenta l  d imensions .
Sometimes there are more than j var iab les  ava i lab le ,  in  which  case  the  se lec t ion
of  those to  appear  in  each dimensionless  group is  arbi t rary.  From Table  8 .4 ,  d,,,
p,  p and  k are  se lec ted  to  appear  in  a l l  TIi.  Now accord ing  to  Eq.  (8.40), each lTi
i s  a  combinat ion of  these  var iables  plus  one other  f rom the remaining three  (h ,
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c,,,  and U);  i.e.

I-I,  = d:p*p=k%= (iii)

l-l2  = d”,p”p’k”c; (3
n, = d:pbp=kdU’ (4

At this point the solution proceeds like the Rayleigh method described
previously. Dimensions from Table 8.4 are substituted into each of Eq. (iii)
through Eq. (v). For II,, Eq. (iii) becomes

L”MbL-bB-b~cL-3cMdLde-3dT-dMee-3eT-e  = dimensionless (vi)

The equat ions  are

L: O=a-b-3c+d (vii)

0 : 0 = - b - 3 d - 3 e (viii)

M: O = b + c + d + e (ix)
T: 0 = - d - e (x)

These equations can be solved in terms of e.  From Eq. (x)

d = - e (4

From Eq. (viii):

b=-3d-3e=3e-3e=O (xii)

From Eq. (ix):

c=-b-d-e=e-e=O (xiii)

From Eq. (vii):

a=b+3c-d=-d=e W)

Thus

I-I,  = @do/k) (xv)

or from Eq. (8.21) for the Nusselt  number:

l-I, = @do/k)’  = Nhu (x9

as  obta ined in  Example  8 .2 .
The procedure is repeated for the next two II’s.  The algebra in the

Buckingham method i s  qui te  easy  as  only  the  las t  four  uni t s  in  Eq.  (v i )  change.
The equat ions for  II,  become

L: O=a-b-3c+d+2e (xvii)

0: 0=-b-3d-2e (xviii)

M : O = b + c + d (xi4
T: 0 = - d - e (xx)

Note  tha t  in  these  equat ions  only  the  e  te rms change .  Solv ing  these  in  te rms of  e
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Thus

For II,,  one obtains

d = - e

b=-3d-2e=3e-2e=e

c = - b - d = - e + e = O

a=b+3c-d-2e=e+e-2.e=O

L: O=a-b-3c+d+e

0: 0 = - b - 3 d - e

M : O = b + c + d

T: 0 = - d

Solving these in terms of e gives

d=O

b=-3d-e=-e

c=-b-d=-b=e

a=b+k-d-e=-e+3e-e=e

Thus

I-I,= -( >
doVp  &ReP

(4

(xxii)

(xxiii)

(fiv)

(-4

Exactly the same result is obtained by the Rayleigh  method as by the
Buckingham method. Note that the selection of j variables to appear in each II,
was not as crucial as it might have first appeared. In II,, both b and c were zero,
and neither p nor p appeared in the Nusselt number. Likewise, I’&  dropped out
d,, and p;  II, did not include k. However, the four variables selected must include
all dimensions, or the method fails.

The Buckingham method is easily applied to Example 8.3 where the pi
theorem does not hold, i.e., Eq. (8.37) where k will be 3, not 2. When k is first
incorrectly chosen to be 2, as was done in Example 8.3, solution of the
exponent equations will result in identical equations for two of the exponents.
At this point the analysis will be repeated for k = 3, and the correct solution
obtained.

Since the Rayleigh method and the Buckingham method are both
mathematically rigorous and provide identical results with approximately the
same amount of labor, selection of one method over the other is strictly a
matter of personal preference. In fact, only one really needs to be mastered.
Perhaps the Buckingham method is more confusing because of the selection of
the j variables (four in the case of Example 8.5) which are to appear in each
dimensionless group.
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8.2.3 CJompleteness  of Sets

Another means of obtaining the dimensionless numbers is by inspection and a
knowledge of Table 8.1. For example, based on the results of Example 8.2 or
Example 8.5, one might guess that h and k could go together as well as cP  and
k (based on all of these having the units of joules in them). From Table 8.1,
one would select

NNu = hd,lk  and Npr  = cpplk (8.41)

The variables that are left involve velocity and density, and one thinks of the
Reynolds number:

NR~  = do UPIP (6.2)

These three certainly are possible dimensionless numbers, but further analysis
is required to see if these form a complete set. A complete set of dimensionless
numbers is one in which a number outside the set can be expressed as a
product of numbers in the set, but no number in the set can be identically
expressed by means of other numbers in the set.

Clearly Eq. (6.2) cannot be obtained from any combination of the
numbers in Eq. (8.41),  since these do not contain the density or the velocity.
Likewise, NR cannot be obtained from either NNU  or NRe,  since cP  is not
contained in the latter two. The same reasoning holds for NNU  from Npr  and
NRe,  as neither of these contains the heat transfer coefficient h. Since three
groups were required, and these are three independent groups containing all
the variables, they must be a complete set. This procedure will work for a
reasonably small set of variables, but one should be cautious in using it for
complex problems. Remember, the Rayleigh and Buckingham dimensional
analysis methods will always work if a solution exists.

The following problem illustrates another procedure for testing for
completeness of a set of dimensionless numbers.

Example 8.6. The important variables in a two-phase gas-liquid system were
found to be velocity, gravity, length, and system properties: density, viscosity,
and surface tension. Suggest a set of dimensionless numbers and test the set for
completeness.

Answer. The variables are given in Table 8.7. There are six unknowns and three
dimensions. So by the pi theorem, Eq. (8.36), three groups are required. Either
by dimensional analysis or simply by inspection, three groups that can be used are

NR~  = LUPIP
NR = U’I(Lg) (9

N,, = U=Lp  / o

These three dimensionless numbers contain all the variables. These numbers may
also be expressed as a ratio of forces. The  following forces may be defined  [Ll]:
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TABLE 8.7

Variables for two-phase flow problem

Symbol Exponent Nmne SI units Dtenstons

u v e l o c i t y m  s-l LC’
l? ; g r a v i t y m s-2 LW2
L l e n g t h m L
P : d e n s i t y kg me3 ML-’
P v i s c o s i t y kg m-‘s-l ML-%-’
u s u r f a c e  t e n s i o n kg s-’ MC2

Viscous forces: F, = pLU  [(kg m-i  s-‘)(m)(m  SC’)] (ii)

Inert ia l  forces: FP = pU2L2  [(kg m-‘)(m’  s-*)(m’)] (iii)
Surface forces: F, = uL  [(kg s-‘)(m)] 64
Gravi ta t ional  forces : FE = pgL3  [(kg mm3)(m  s-‘)(m’)] 69

Each dimensionless  group in  Eq.  ( i )  represents  a  ra t io  of  a  pair  of  the  forces  in
the  above  equa t ions :

F, pU2L2  LUp  8
NRe=F=-=-II PLU  P

FP pU=L’
NFr=F=

U=

8 pgL3=Lg

FP pU=L=  U=Lp
Nwe=F=-=-(I OL (7

(vii)

(viii)

The four forces in Eqs. (ii) through (v) are represented as vertices of a
tetrahedron, as shown in Fig. &l(a),  with six possible connecting lines. A
complete  set  can be made up of  three l ines  (one for  each group)  which do not
form a t r iangle .  One must  be able  to  go from one point  to  another  by one path
only for  the  set  to  be  complete .  The set  of  Eq.  ( i )  i s  complete  and noted in  the

NFL&$ NW=. .#F,
(u)  Tetrahedron

NFr& Nwc
NB”“d

(b) Triangle (set not complete)

FIGURE 8.1
Representation of forces in two-phase Row.



352 BASK CONCEPTS IN  TRANSPORT PHENOMENA

f igure  by  the  so l id  l ines .  The  l ines  connect ing  the  forces  in  Fig .  8l(a)  can be
assoc ia ted  wi th  the  ra t ios  in  Eqs .  (v i )  th rough  (v i i i )  and  a re  l abe led  accord ing ly .
Another possible set is

AL  = U’/(Lg)

Nwe  = U’Lp la 6)
NBond  = L2pgla

The Bond number is  the rat io  of  gravi tat ional  to  surface forces:

N F PgL”  L2pg-A-Boml - --=-
F,  aL u

The four  forces are plot ted again in Fig.  8.l(b)  and  the  d imens ion less  g roups
labeled.  This  set  is  not  complete .  These three numbers form a t r iangle,  as  shown
in  Fig .  8l(b), because the Bond number  is  the  ra t io  of  N,,  t o  NFr.

Example 8.7 .  An inves t iga tor  has  proposed  the  fo l lowing d imens ionless  number
for  an  appl ica t ion  in  two phase  f low (e .g . ,  f low of  suspended sol ids  in  water  in  a
Pipe):

Kc = LUPIII

&r  = U’l(Lg)

NW.  = U=Lpla
(9

Npropcny  = (Pm&34

Determine whether  these  numbers  are  a l l  independent .

Answer. Note that N,-,, conta ins  on ly  var iab les  tha t  a re  a l ready  inc luded  in
the other three groups. Hence, a figure such as Fig. 8.l(b)  will show that the four
numbers he,  NFr,  he,  ad  Npmpcny l ie  in  the same plane,  and hence these are
no t  i ndependen t .

Another solution is to find the exponents on the following equation:

The exponents  in  Eq.  ( i i )  a re  eas i ly  found by inser t ing the  correct  var iables  f rom
Eq. (i):

pa3g-‘p-4  = (Lupp-‘)“(u2L-1g-‘)b(~Lpu-1) (iii)

I f  the  above equat ion  i s  to  be  val id ,  then there  must  be  unique  values  for  II,  b ,
and c.  From the exponents  on u:

3 = - c 69
o r

c = - 3 (4

From the exponents  on p:

l=a+c w
o r

a = 4 w
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From the exponents on g:

-I=-b (viii)
o r

b = l 64
Therefore, Nproprty in terms of the other three numbers is:

Nproperty  = @‘~e)~(N~rWwe)-~ (4

Clearly, the four numbers cannot be independent, since N,,,,, is an exact
function of the other three, as shown by Eq. (x).

8.3 MODELING

In modeling, the idea is to make some tests or experiments on a small scale in
such a fashion that the results for a large scale may be accurately predicted. An
ideal setup would be to keep all of the dimensionless numbers constant
between the model and the full-scale system.’ However, in modeling it is
impossible to keep these numbers constant. Attempts to keep these numbers
constant often require test fluids with impossible combinations of properties,
e.g., a fluid with the density of mercury and the viscosity of air. Consequently,
limited modeling methods are developed for each specific’ case. In modeling,
one always attempts to maintain geometric similarity. A model and a larger
unit are geometrically similar if all dimensions in the model are proportional to
the dimensions in the larger unit by the same ratio. Retaining geometric
similarity is an obvious necessity. For example, it is illogical to test a model of
a large airplane in which the model has a full-size body and wings one-tenth of
the final size. Modeling also requires kinematic similarity. Suppose two
geometrically similar systems I and II are established in which kinematic
similarity is required. Then the three components of velocity in the three
coordinate directions (U,,  U,, and U,) are related:

(8.42)

Also, for kinematic similarity the velocity gradients must be the same at every
dimensionless location in systems I and II.

A third similarity is dynamic similarity, or Reynolds modeling. Dynamic
similarity considers the viscous forces, inertial forces, and frictional forces as
well as the distribution of shear stresses (and therefore shear rates) and normal
forces. For example, let the ratio of inertial force to viscous force and the ratio

’ Film loop FM-26 illustrates the desirability of being able to use laboratory models.
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of inertial force to frictional force be maintained:

INERTIAL FORCEr INERTIAL FORCEII
VISCOUS FORCE* = VISCOUS FORCEu

INERTIAL FORCE1 INERTIAL FORCEu
(8.43)

FRICTIONAL FORCE1 = FRICTIONAL FORCEll

Reynolds modeling is very successful when applied to the case of the flow of
fluids in smooth pipes. It is not successful when applied to the agitation of
liquids (Chapter 9).

Other types of similarity, such as static, thermal, and chemical, are
discussed elsewhere [Bl]. Modeling with dimensionless groups has been
successful in many areas, such as with rivers and harbors, with cavitation in
pumps, and for thermal and chemical reaction systems. In each case geometric
similarity is maintained. Usually the similarity required by one dimensionless
number is of most importance. ,The effects of other factors are often
successfully neglected. The importance of modeling will be illustrated further
in later chapters.

Example 8.8 .  A new pipe  mater ia l  i s  to  be  used  in  some new plant  cons t ruc t ion ,
but  there  i s  not  enough informat ion  avai lable  to  a l low an  exact  des ign  because  of
the noncircular cross sectional area of the pipe. Assume the pipe is smooth.
Consider  model ing i f  a  sample  is  avai lable  that  i s  l/l0  the  s ize  considered for  the
p l a n t .

Answer. From the results  of  Example 8.1,  i f  the pressure drop or  Euler  number is
to remain the same, one must maintain as constant the following three
dimensionless  groups:  the  Reynolds  number ,  the  length  to  d iameter  ra t io  L/d,,
and the relative roughness e/d,. Thus, the test model should have the same
values for these three dimensionless numbers as the full-scale model. If the pipe is
smooth,  the  roughness  e  i s  essent ia l ly  zero;  therefore ,  e/d, remains  constant
(zero) for  any diameter .  The modeling wil l  henceforth be based on the premise of
keeping  cons tan t  the  Reynolds  number  and  the  ra t io  L/d,.  If do i s  to  be  reduced
by l/lo,  then L must be likewise reduced to maintain the ratio LJd, constant.
The Reynolds number is

Nce  = do UPIP (6.2)

The Reynolds  number  wi l l  be  constant  when d, i s  reduced  by  l/l0  if  any of the
following changes take place:
(a)  increase in  U by a factor of 10
(b)  increase  in  p by a factor of 10
(c)  decrease in p by a factor of 10
Of course ,  a  combinat ion of  these  changes  is  a lso  feas ible .  Usual ly  i t  i s  eas ier  to
increase U rather  than to  use a  different  f luid .
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PROBLEMS
8.1 .  Discuss  the  purpose  and  l imi ta t ions  of  d imens iona l  ana lys i s .
8 .2 .  Sect ion  8 .1  cons idered  the  inspect ion  of  the  bas ic  d i f ferent ia l  equat ions .  Discuss

the  advantages  and  l imi ta t ions  of  th i s  approach .
8.3 .  Discuss  the  mechanis t ic  meaning of  the  general ized dimensionless  numbers:

(a) [IL/6
(b)  WYV&)

8.4.  What  is  meant  by a  complete  set  of  dimensionless  numbers?
8.5. Put Eqs. (3.65), (4.77) and (4.112) into dimensionless form by using the

dimensionless  numbers  l i s ted  in  Table  8 .1 .
8 .6 .  Determine the  dimensionless  numbers  for  the  noise  produced in  a  mixing tank i f

the  no i se  depends  on  the  sound  in t ens i ty  (I, in  uni ts  of  power  per  uni t  area) ,
dens i ty  (p ) ,  v i scos i ty  (p), p rope l l e r  t ip  ve loc i ty  (U), diameter of propeller  (d),
and diameter of tank (h).

8 .7.  The unsteady-state  heat  t ransfer  f rom a s lab depends on the heat  source (To),
surface heat transfer coefficient (h), time (I), thermal diffusivity ((u),  thermal
conductivity (k), temperature (T), reference temperature (To),  and the system
dimension (L). Determine the  dimensionless  numbers ,  which must  include the
group  T/T,.

8.8.  The velocity of  f low (CZ)  through a  f low-measuring nozzle  has  been determined to
be a function of diameter of pipe (d), density (p), diameter of nozzle (a),
v i s c o s i t y  (p), and pressure  drop  (Ap).  Determine the dimensionless  numbers .

8 .9 .  A system depends on the  veloci ty  of  f low (U), g rav i ty  (g),  surface tension (a) ,
two dimensions  of  the  system (L, d) ,  dens i ty  (p), v i s c o s i t y  (p), and pressure  drop
(Ap).  Determine the dimensionless  numbers .

8 .10.  Obta in  the  d imensionless  numbers  for  the  concentr ic  cyl inder  problem that  i s
described by Eq.  (xxv) in Example 5.7.

8.11. The drag force (F) on certain bodies at high speed is thought to be controlled by
the  charac ter i s t ic  length  (L), the  approach  ve loc i ty  (U), g rav i ty  (g ) ,  dens i ty  (p),
v i s c o s i t y  (p),  surface tension (a) ,  and the veloci ty  of  sound (c) .  Determine the
dimensionless  numbers .

8.12. The power (P) from a rotating impeller in a mixer is a function of the rate of
rotation of the impeller (N,  in units of rpm), impeller diameter (d), gravity (g),
dens i t y  (p), and  v i scos i ty  (p).  Determine the dimensionless  numbers .

8.W. A weir  is  a  f low-measuring device used in open channel  f low. The f low rate  (Q)
depends  upon the  wei r  width  (w) ,  the  depth  of  f lu id  above  the  bot tom of  the  wei r
(h), viscosity (p),  surface tension (a), density (p), and gravity (g). Determine
the  d imensionless  numbers .

8.14. The heat transfer coefficient for an annular flow (h) depends on the thermal
conduct iv i ty  (k) ,  hea t  capac i ty  (c,), dens i t y  (p), v i s c o s i t y  (p), veloci ty  of  f low
(U), characteristic dimension (d), and gap thickness (6). Determine the
dimensionless  numbers .

8.15. The mass transfer coefficient (k@ depends on the diffusivity (D), density (p),
v i s c o s i t y  (p), veloci ty  of  f low (U), and character is t ic  dimension (d) .  Determine
the  d imensionless  numbers .
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8.16.  In  natural  convect ion heat  t ransfer ,  the  heat  t ransfer  coeff ic ient  (h)  depends upon
the f luid thermal  expansion (/J,  in  un i t s  o f  K-l),  dens i t y  (p), v i s c o s i t y  (p), heat
capaci ty  (cP),  character is t ic  dimension of  the  system (d) ,  thermal  conduct ivi ty  of
the  f lu id  (k) ,  gravi ty  (g), and the temperature difference between the f luid and
the body (AT).  Determine the necessary dimensionless  numbers .  Explain why
your  answer  can  be  reduced  to  the  th ree  groups  usua l ly  g iven  in  the  l i t e ra ture
(Nor,  Npr,  and Nd

8.17.  The deposi t ion of  f ine  par t ic les  (r],  efficiency of removal)  in f i l ter  separators is
dependent upon the particle diameter (d,), particle density (p,), diffusivity of
particle (D), terminal velocity of particle (U,),  filter fiber diameter (d), gas
velocity (U), density (p), and viscosity (p).  Determine the dimensionless
numbers  for  th is  opera t ion.

8 .18.  The surface  of  a  meta l l ic  sphere  i s  coated wi th  a  specia l  l iquid  by suspending the
sphere  wi th  a  th in  wire  in  a  l iquid  ba th .  Af ter  an  appropr ia te  t ime,  the  sphere  i s
wi thdrawn f rom the  l iquid;  a  th in  coat ing of  l iquid  remains  on the  surface .  Lis t
the s ix (or  more)  important  variables  that  must  be considered for  this  experiment
and the  dimensions  of  each.  Make a  table  of  SI  uni ts  and dimensions .
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NOMENCLATURE

A
a
B
b
C
CO
G

C

CP
D
DL

Area (m*,  ft*);  A, is area projected perpendicular to the velocity vector
Exponent used in dimensional analysis and in scale-up equations
Baffle width (m, ft)
Exponent used in dimensional analysis
Distance from tank bottom to impeller center line (m, ft)
Drag coefficient, used for flow past immersed bodies
Conversion factor in torque equation, Eq. (9.6); values of C, are given
in Table 9.2

/

Exponent used in dimensional analysis
Heat capacity at constant pressure (kJ kg-’ K-‘, Btu lb,’  “F-l)
Impeller diameter (m, ft)
Liquid phase diffusion coefficient (mass diffusivity) (m’ s-l,  ft*  s-l)

1  The authors wish to acknowledge Dr. Gary B. Tatterson, Department of Mechanical Engineer-
ing, Texas A L M University, College Station, TX7754?.  :vho  assisted !hr  authors in the
preparation of this chapter.
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gc
h

I*
i
i
k
k

k:.

L
M

i

N

n

F
P
Q
R

s
T
T

Tg
t
u

V

Exponent used in dimensional analysis
Exponent used in dimensional analysis
Force exerted by a fluid on an immersed solid (N, lb*)
Fanning friction factor, defined in Eq. (6.89)
Exponent used in dimensional analysis
Exponent used in dimensional analysis
Vector representing the acceleration due to a gravitational or other
field (m s-*,  ft s-‘)
Gravitational conversion constant (32.174 lb,,, lb;’  ft S-‘)

Heat transfer coefficient, defined by Eq. (6.86) (W m-‘K-l,
Btu ft-2 h-l “F-l)
Intensity of turbulence, defined by Eq. (6.31)
Exponent used in dimensional analysis
Exponent used in dimensional analysis
Thermal conductivity (W m-’ K-t or J m-l K-’  s-r,  Btu ft-’  OR-’  s-‘)
Empirical constant in several equations and correlations; used with
subscripts 1, . . . ,9
Equimolar mass transfer coefficient, defined by Eq. (6.87)
[kmol rn-‘~-~  (kmol mw3)-‘, lb mol ft-2 s-l  (lb mol ft-“)-‘I
Liquid phase mass transfer coefficient [kmol rnw2 s-l  (kmol rn-‘)-l,
lb mol fte2  s-l  (lb mol ft-“)-‘I;  cf. Table 9.2 ’
Basic unit in dimensional analysis; length (m)
Basic unit in dimensional analysis; mass (kg)
Exponent used in dimensional analysis
Impeller  speed (rpm or s-l); NI  is speed of small unit; N2 is speed of
large unit
N represents dimensionless number or group; Table 9.3 lists those for
agitation
Exponent used in dimensional analysis
Speed scale-up exponent, Eq. (9.31)
Power (J s-l,  ft lbf  s-‘)
Exponent used in dimensional analysis
Volume flow rate (m’ s-l,  ft3  s-l)
Scale factor, defined as D2/D1,  etc.; cf. Eqs. (9:‘25)  and (9.27); Rf  is
scale factor between bench unit and plant unit in Example 9.4
Scale-up exponent based on power per unit volume in Eq. (9.28)
Basic unit in dimensional analysis; temperature (K)
Tank diameter (m, ft)
Torque (N m, ft lb,  or in. lbf)
Time (s)
Velocity vector (m s-l, ft s-l);  lJ is magnitude of U; uz  is  time-
averaged velocity in z direction; ZJl  is instantaneous velocity fluctua-
tion in x direction; Ut is the impeller tip speed, Eq. (9.7); V,,, and U,*,
are impeller tip speeds in units 1 and 2
Volume (m3, ft’)
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Width of impeller (m, ft)
Subscript denoting wall
Scale-up exponent based on torque per unit volume in Eq. (9.29)
Exponent in Eq. (9.23)
Depth of fluid in tank (m, ft)
Generalized dilfusivity  (m” s-‘,  ft’  s-l)
Basic unit in dimensional analysis; time (s)
Blend time (s)
Viscosity (kg m-i s-’ or N me2  s,  lb,,, ft-’  s-l,  cP); pw  is viscosity at wall
Dimensionless groups in pi theorem
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg m-3,  lb,,, ft-“)
Surface tension (kg s-* or N m-‘, lb,,, s-* or lbr  ft-‘)
Generalized concentration of property (e.g., units for concentration of
heat are J m-‘, Btu ftm3;  see Table 3.1 for complete listing)
Generalized rate of generation of energy or mass or momentum in a
unit volume (see Table 4.2 for units; e.g., for heat, units are J mm3 s-l,
Btu ft-3 s-‘)
Vector operator del, defined by Eq. (2.16) or Eq. (3.45) (m-l,  ft-‘)

The first eight chapters in this text introduced the basic equations of transport
along with the various methods to analyze these equations. The remaining
chapters will be devoted, in the main, to applying these equations and methods
to important problems of a practical nature. At this point, the ordering of
topics not yet covered is arbitrary, as any of several important areas may be
covered first. Agitation logically follows the discussions of dimensional analysis
and similarity ratios (especially geometric and kinematic) in Chapter 8. The
topic of agitation perhaps illustrates best the use of dimensionless groups and
similarity for analysis and design. Many agitation problems commonly encoun-
tered in engineering involve turbulent flow, although applications in polymer
processing constitute an important example of laminar flow. The complexities
of turbulent flow have been detailed in Chapter 6. Agitation constitutes an
excellent example of fluid flow occurring in various combinations with heat
transfer, mass transfer, chemical reaction, and preparation of mixtures.

The terms “agitation”, “mixing”, and “dispersion” have different mean-
ings. Agitation is the process of providing bulk motion to a liquid, thus aiding
mixing and dispersion. To explain the terms mixing and dispersion, it is helpful
to begin with the definition of the word “mixture”. A useful definition of the
word “mixture” is a complex of two or more ingredients that do not bear a
fixed proportion to one another and retain their separate identity no matter
how thoroughly the ingredients are commingled. In its most general sense, the
word “mixing” is used to mean any blending into one mass. As a consequence
of these definitions, the process of mixing begins with two or more materials,
each distinct from one another in one or more properties such as composition,
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density, or temperature. Complete mixing occurs if the final mass has reached
the maximum possible state of uniformity; the process of molecular diffusion
proceeds until all temperature, pressure, and concentration gradients have
been eliminated and until no further chemical reaction is possible. Unfortun-
ately, in the literature the words “blending”, “mixing”, and “dispersion” have
been freely interchanged in their usage and intended meanings. In this chapter,
more precise definitions will be offered.

In the literature on agitation, dispersion is defined as the combination of
two materials into a final product in which there are still two separate
materials. Examples of dispersion processes are suspending of solids, dispers-
ing of gases in liquids, and mixing of immiscible liquids such as are
encountered in emulsions and in liquid-liquid extraction. As can be seen from
the examples, in dispersion the starting materials are separated into smaller-
sized groups and scattered among each other on a scale that is large when
compared to molecular dimensions. The process of molecular diffusion is not
present, or is present only to a minor extent, in dispersion.

Another way to consider mixing and dispersion is to realize that in the
preparation of a completely homogeneous mixture, such as pure water and
pure ethanol being combined in equal proportions, the first step in the process
is to disperse one material in the second by some means (such as agitation). If
there is no agitation, the homogeneous mixture will be achieved by the process
of interdiffusion of the water and ethanol molecules, which will take a long
time. If agitation is present, the eddies formed by turbulence from the
agitation unit will speed up the diffusional  process. However, diffusion will still
be necessary in order to reach the final homogeneous state. Two other
examples of complete mixing are the dissolution of solids in a liquid phase and
heat transfer between two commingling streams containing the same liquid at
different temperatures. Heat transfer is a mixing process, since molecules of
high kinetic energy interact with those of low energy. The result is a fluid at
some intermediate temperature. Mixing is very important in processes in
chemical reactions, because there must be contact for a reaction between
molecules to occur. Molecular diffusion is required, since the scale of the
molecules is many orders of magnitude smaller than the smallest fluid elements
that can be formed by turbulence or by mechanical means.

In summary, agitation produces motion in the process fluid. This motion
is responsible for the desired process result, which may include mixing,
blending, dissolution, heat transfer, dispersion of liquids and gases into liquids,
solid suspension, and crystal growth. The purpose of this chapter is to discuss
agitation and show how to design a large-scale agitation unit using the
principles of Chapter 8.

9.1 INTRODUCTION TO AGITATION

Agitation of liquids is usually accomplished in a container equipped with an
impeller such as a propeller, paddle, or turbine. The impeller is inserted into
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the liquid and rotated in such a manner as to cause both bulk motion and
fine-scale eddies in the fluid. Mechanical energy is required to rotate the
impeller, which in turn transmits this energy to the fluid. The mechanism of
transmission is similar to that in the parallel-plate problem of Fig. 2.3, in which
the moving top plate transmits velocity to the fluid nearby by the effect of
viscosity. In agitation, the impeller is rotating, the sides and bottom of the tank
are stationary, and the resultant velocity gradients cause mixing and
dispersion.

No doubt agitation of liquids has been practiced since early mankind
made the first liquid containers. The general property balance equation from
Chapter 3 is

ely/et + (U - V)l) = & + (V  - cwq) - W(V  * U)

where the last term is zero for an incompressible fluid, as is usually the case in
agitation. Obviously, application of this or any similar equation inside an
agitation vessel is highly complex. In the first place, the flow is three-
dimensional, and the initial and boundary conditions are not usually known.
Often heat, mass, and momentum transfer must all be considered simul-

‘taneously.  Moreover, in the case of agitation of liquids of low viscosity, such as
water and hydrocarbons, the flow is highly turbulent, with intensities of
turbulence ranging from near zero in dead zones to as much as 100 percent or
greater near the impeller. Recall that the intensity of turbulence is defined in
Eq. (6.31) as

I, = lQo~/U (6.31)

With no quantitative solution to the general property balance possible,
dimensional analysis approaches have been tried and found to be quite
successful.

Agitation in a process generally accomplishes physical changes, chemical
changes, and/or increased rates of transport. These may occur simultaneously
or singly. An example of a physical change is the increase in the surface area of
a solid. An example of a chemical change is the occurrence of chemical
reactions; agitation assists in bringing the reactants (or reactants and catalyst)
together in order for the reaction to occur. Agitation promotes high rates of
heat transport. Also, agitation can increase the rate of mass transfer when
mixing a miscible solute (or other material) in a liquid solvent. If the solute
consists of solid crystals, then agitation is typically responsible for producing
and maintaining the maximum possible concentration driving force between
the solid interface and the solution. The solute may be a liquid or a gas as well.
Agitation often disperses an insoluble material throughout the liquid; a
common example is the case of pigments such as TiO,?  being dispersed in paint.
Agitation may disperse a gas in the form of small bubbles throughout the
liquid for purposes of absorption or gas-liquid reaction. In batch chemical
reactors, agitation often serves the double duty of maintaining high concentra-
tion gradients and moving the fluid over a heat transfer surface so as to control
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the reactor temperature. In the case of a highly exothermic reaction or the
production of a heat-sensitive material, temperature control and proper heat
transfer may be quite important.

9.2 EQUIPMENT

Agitation equipment usually consists of a tank to hold the liquid, one or more
impellers to provide the shear flow, a motor or some other means to drive the
impeller, and usually wall bafles,  the installation of which permits higher
power input. Wall baffies are longitudinal strips attached to the inside walls of
the tank. Figure 9.1 shows an agitation tank with the sides and bottom
surrounded by a “jacket” that contains a fluid to provide the necessary heat
transfer. Obviously, some applications, such as those involving a chemical
reaction, will require a jacket while others will not. A tank with a sloping or
dished bottom is often recommended, although tanks whose bottom and sides
form a right angle are also commonly used. A tank with a dished bottom is
often specified for suspension of solids. Some tanks have coils of tubing
surrounding the impeller to transfer heat in or out of the vessel, but a jacketed
vessel is easier to clean and provides better mixing. Fabrication of jacketed
vessels is very routine for equipment manufacturers.

The literature on agitation uses its own nomenclaturer and the definitions
of those symbols are not consistent with the definitions of the same symbols as
used in the earlier chapters. The biggest change in nomenclature involves the
physical dimensions of the agitation unit. For the unit in Fig. 9.1, the following

Dished bottom

Jacket drain
Y Tank drain

J a c k e t

Ballles

FIGURE 9.1
Agitation tank with baftles,  jacket, and dished bottom.
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definitions are in common usage:
B Width of each baffle
C Distance from tank bottom to impeller center line
D Impeller diameter
T Inside diameter of tank
W Width of impeller
z Depth of fluid in the tank
These definitions are labeled in Fig. 9.1.

Impeller design has a strong impact on the agitation characteristics and
the energy requirement. Figure 9.2 illustrates some common impeller designs
for both turbulent and laminar flow; note that the design is strongly dependent
on whether the application is laminar or turbulent. The laminar impellers are
usually as large as the tank itself. Since laminar flow does not transport
momentum as well as turbulent flow, laminar flow impellers must be large to
effect the desired physical, chemical, and transport results throughout the
tank.

Figure 9.3 shows the gross flow patterns for four important types of
impellers in agitation equipment. Turbines with pitched blades and marine
propellers cause axial flow patterns in baffled tanks, as shown in Fig. 9.3(a).
These turbines and propellers are often used for suspension of solids because
the flow patterns result in the solids being swept off the bottom of the vessel
where they might otherwise settle. Impellers with vertical flat blades produce
flow patterns that are radial, as shown in Figs. 9.3(6)  and 9.3(c).  The anchor
and helix impellers in Fig. 9.2(6)  are for liquids of very high viscosity, e.g.,
20 kg m-l s-’ (20 000 cP) or above. In these liquids, the agitation process is
under laminar flow conditions, and unusual impeller shapes, such as the
anchor, a helical ribbon, the screw impeller, or some other similar shape are
most satisfactory. Many non-Newtonian solutions, usually having a high
viscosity, are agitated with these types of impellers. The anchor, for example,
primarily removes the fluid next to the heat transfer surface so that fresh fluid
of differing temperature replaces the old fluid. The flow pattern in Fig. 9.3(4
is basically tangential, as shown. The impeller speed is low owing to its large
diameter and mechanical constraints. There is no room for baffles, nor is there
a need for them.

The motor required for agitation is sized from the power requirements.
Most alternating current motors operate at speeds of 1750 rpm or 1150 ‘pm.
For many applications, a lower speed is desired from the standpoint of
operating efficiency  and cost. Gear drives provide speed reduction and tend to
be rated according to the torque requirements. Thus accurate determination of
torque is important, particularly since gear drives are expensive relative to
other components in the mixing system.

For general mixing, the most common impeller used is probably the
six-blade disked  turbine impeller, as shown in Fig. 9.2(a)(l).  This impeller is
often called the Rushton impeller, named after J. H. Rushton,  an early
pioneer in the field of agitation [R2,  R3]. Flow patterns behind and around the



366 APPLICATIONS OF TRANSPORT PHENOMENA

(1) Disk-blade turbine

(2) Curwd-blade  turbine

FIGURE 9.2
‘nY.)Some common impeller designs. (Courtesy of Mixing Equipment Compo

((I) Impellers for turbulent flow
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(4) Turbine impeller with 45” pitched blades, open style

(5) Three-blade propeller
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(1) Anchor

(b) Impellers for laminar  flow

FlGURE  9.2 (Continued)

(2) Helix

impeller have been the object of considerable research using flow visualization
techniques and other methods. In the vicinity of the impeller, complex eddy
systems and high-speed jets have been observed. Whenever a fluid element
travels in a circular motion, that motion is termed a vortex. In agitation, the
term vortex is used to describe two major flow phenomena: (1) vortex systems
near the impeller blades; and (2) the vortex formed in the center of an
unbaflled tank. The first of these is associated with the local turbulent flow, as
shown in Figure 9.4(a),  in which a disk-style impeller discharges a high volume
of flow in the radial direction [T2]. In the figure, the blade is moving into the
paper, and the fluid in front of the blade is forced over the blade at a high
speed. When the fluid passes over the blade, it attempts to re-attach itself to
the back of the blade, causing the appearance of a dual vortex system. Thus
the vortices form in the wake of the impeller blade as it passed through the
fluid and shed from the rear side of each blade as a result of the high velocity
of flow over and around the blade. As a result of these vortices, the Rushton
impeller is often selected for gas dispersion. For the pitched-blade turbine in
Fig. 9.4(6),  the turbulent vortices are similar to those occurring on wings of
aircraft [Tl].  More studies are needed in order to help in obtaining an indepth
understanding of vortices in agitation.

Almost all industrial applications that involve agitation in the turbulent
region require the installation of baffles in the tank. Without baffles, a center
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FIGURE 9.3
Agitation flow regimes. (Adapted from Philadelphia Mixers, division of PhircldeIphia  Gear

Corporation, with permission.)

Rotation
-

High-
speed
jet

Rotation e

A-

Vortex system -rsx-
e
4
Vortex system
1

.:kx

rtex flow

(u) Disk style turbine

FIGURE 9.4

(b) Pitched-blade turbine

Flow systems and turbulent vortices. (Reprinted from  Food Technol. 35(5):  65 (1981). Copyright
@ by Instihue  of Food Technologim.  By permission.)
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vortex forms, as shown in Figure 9.5, and the fluid simply rotates around the
vessel with little shear between the impeller and the adjacent fluid layers.
Stirring a cup of coffee or tea with a spoon is a simple illustration of this vortex
phenomenon. This large-scale motion represents the second usage of the term
vortex. The power input is much less in unbaffled tanks, and this is often a
disadvantage in mixing. The vortex forms as a result of the centrifugal force
field as expressed in the (Us  V)U term that appears in the general momentum
balance equation. In Table 5.7 for the Navier-Stokes equation [Eq. (5.15)]  the
centrifugal force term is CJ’,/r  in Eq. (D).

The vortex phenomenon shown in Fig. 9.5 is usually not desired in
mixing operations, for several reasons. First, although the fluid moves around
the vessel, there is very poor mixing between adjacent fluid layers because the
impeller and fluid are moving at nearly the same angular velocity. Secondly,
air can be easily entrained into the liquid even at modest impeller speeds
because the liquid level at the center can fall below the top of the impeller, as
shown in Fig. 9.5. Thirdly, the formation of a vortex raises the liquid level at
the top edge of the tank significantly, which may cause spillage. On the
positive side, the formation of a center vortex can be desirable as a mechanism
of solid submergence in applications where suspensions or slurries are formed.

The design of baffles is based on experimental data that show that four
equispaced baffles provide reasonable performance. F6r center-mounted
impellers, the ratio of baffle width B to tank diameter D should be l/l2 for
turbine or paddle agitation and l/l8 for propellers to maximize power input.
In large tanks, there may be surface baffles to break up large surface waves, as
well as other internal baffles.

Figures 9.1, 9.3, and 9.5 show the impeller to be centrally mounted.
There are other options, including side-entering propellers, multiple impellers
on the same shaft, off-center mounting, and multiple impellers mounted
separately around the tank, each with its own drive motor and gear drive.
Design details for these latter cases are described elsewhere [Nl,  01).
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9.3 GkOMETRIC  SIMILARITY AND
SCALE-UP

The most accurate approach to the design of a plant-scale agitation unit is to
obtain data from an appropriate experiment in a plant-scale apparatus.
Unfortunately, this approach is usually not possible for new processes, and
data must be taken in laboratory-scale equipment. Naturally, the closer the
size of the laboratory vessel is to that of the actual process, the more reliable
the scale-up will be. Often, it is impossible to fulfil this requirement, and the
design must proceed with data from a small-scale unit only.

Scale-up in agitation follows the modeling principles outlined in Section
8.3. First, geometric similarity is maintained. Figure 9.6 considers two
agitators, one laboratory-scale and one plant-scale. For exact geometric
similarity between units, the following ratios are satisfied:

c,/T,  = C,lT, ZIIT  = z?/Tz

DJT,  = DJT, BJT,  = BJT2 (9.1)

WJD,  = KID,

If these ratios are not held constant, techniques of scale-up require correction
factors of uncertain magnitude. The most important ratios are discussed in
more detail in the following paragraphs.

D/T ratio. Normally the D/T ratio is set at 1/3  [Bl]  for turbulent flow
regimes. It is important that this ratio be maintained constant during scale-up.
This ratio may be varied in the range:

0.2sDjTs0.5 Turbulent flow

0.7 = D/T  5  1.0 Laminar flow
(9.2)

(9.3)

(a) Laboratory agitator (b) Plant-scale agitator

FIGURE 9.6
Princ ipal  d imens ions  in  sca le -up.
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In a qualitative sense, as D/T  approaches 0.2, the purchase price of the unit is
relatively low, and high shear is produced with high power input and high
operating costs. As D/T  approaches 0.5, the operating costs decrease, but the
low power requirement produces low shear [Vl].

Z/T &IO. This ratio describes the fluid level in the tank. Normally, this ratio
is unity, although the ratio Z/T can range from 0.5 to 1.0. This ratio has little
bearing on the power consumption. Changes in Z/T can change flow patterns
in the tank. But if Z/T exceeds 1, there may be dead zones in the tank, which
can be eliminated with the addition of more impellers.

Baffles. The design of baffles is based upon maximizing power input to the
fluid. The normal ratio is

B/T  = l/l2 (9.4)
with four baffles being spaced equidistantly apart along the wall.

Bottom clearance. The bottom of the impeller is located a distance C from the
bottom of the tank. The normal range for C/T is

O.lsCITs0.4 (9.5)

However, the most common value of C/T is 1/3 [Bl]. Normally C/T will
approach the lower limit if a low level of mixing is desired or if off-bottom
suspension of solids is desired.

Impellers.  Scale-up must be accomplished with geometrically similar impellers
[T2]. The important considerations are the number of blades, the pitch of the
blades, the ratio of blade height to tank diameter, and the ratio of impeller
diameter to tank diameter.

9.4 DESIGN VARIABLES

In addition to the six dimensions in Fig. 9.6, other important variables are fluid
properties (viscosity p, density p, surface or interfacial tension a, thermal
conductivity k, heat capacity cp),  and impeller rotational speed N [units of s-’
or ‘pm  (revolutions per minute) or rps (revolutions per second)]. These
variables are used to calculate the power P and the torque Tq.

Power. The principal operating cost for an agitation unit is the cost of the
power. In turbulent flow, the power P is proportional to the density p of the
liquid, to the third power of the impeller ‘rotational speed iV and the fifth
power of impeller diameter D, as shown in Table 9.1 [P2].  In laminar flow, the
power P is proportional to viscosity p, to the rotational speed N squared, and

’ to the third power of impeller diameter D.
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TABLE 9.1
Design variables in agitation

Splhol  Item Tluhulellt  eqMtion* Landoar  eqMtion*

P Power k,pN3DS ksN=D’
V Tank volume kjTP k,T3
PIV Power per unit k4N3D51T3= (k4N3D2)(D/T)3 k+N=D’lT’=  kspN2(D/T)”

volume

Tq Torque P/N = kgN=D’ k,pND’
T-/V Torque Per unit kspN2D’lT3  = kgN2D2(DIT)3 kc,pND31T3  = k9pN(D/T)3

volume
u, Tip speed nND nND

l The k,‘s  are proportionality constants

Torque. The basic definition of torque is force times distance or power times
time:

T g
P P

=cN=j-pf

In Eq. (9.6),  the impeller speed was multiplied by the quantity 2ar  to form the
angular velocity of rotation 2~rN.  Table 9.2 provides the values of the
conversion factor C,,  as defined in Eq. (9.6),  for the three most commonly
encountered units of torque, which are N m, in. lbr, and ft lbf. Note that the
units of torque are identical to the units of work and energy.

The torque greatly affects the purchase price of the agitation unit. Not
only is the gear drive sized according to torque, but the size’ of the shaft and
the weight of the impeller depends on torque as well. Since the torque Tq is
proportional to the power divided by impeller rotational speed, as seen in Eq.
(9.6),  the quantity T,/V is proportional to D/T to the third power, as was the
power per unit volume. The quantity D/T  is constant when geometric
similarity is maintained; hence, Eq. (9.6) emphasizes the importance of
geometric similarity in scale-up.

TABLE 9.2

Value of the conversion factor Cr  for torque iu Eq. (9.6)

Comwsion  factor
UnitSofT, UnitsofP Units of N c, im  Eq. (9.6)

N m (J) W (Js-‘)  rps l/W)
in. lbf b rps 1050.4
in. lb, hp rpm 63025
A 14 hp w 87.535
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Impeller ,tip speed. The tip speed of the impeller, given the symbol U,,  is an
important variable:

U,  = nND (9.7)

Note that the rotational speed N in Eq. (9.7) and subsequent equations is
expressed in units of s-‘, not in radians per time. When N is in units of s-l,  the
angular velocity is 2~rN,  and the tip speed is the angular velocity times the
radius of the impeller, or nND.

The torque per unit volume can be written in terms of the tip speed.
Using the turbulent flow equation for T,/V in Table 9.1, Eq. (9.7) can be
subsiituted,  with the result

T,/V = k8pN2D2(D/T)3  = k,,(pUf)(D/T)3 (9.8)

Therefore, when geometric similarity is maintained in scale-up in turbulent
flow, the torque per unit volume becomes proportional to the square of the tip

sspeed.

9.5 DIMENSIONLESS NUMBERS

There are at least ten dimensionless numbers associated with agitation
accompanied by heat and mass transfer. These are summafized  in Table 9.3.
Six of these are of sufficient importance to warrant individual discussion.

TABLE 9.3
Dimensionless numbers in agitation

Name SphOl Deli&ion Comments

Blend
Froude

Nusselt

Power
Prandtl
Pumping
Reynolds*

Schmidtt
Shetwoodt

Weber’

Nb
NF,

NNu

NP
N,
Np
NRe

NSC
NSh

Nw e NZD3pla

N O

N’D/g

hT/k

Related to uniform mixing or blending
Correlates with NRe  and Npo  for unbamed  systems
[R2], also important in addition of powders to
liquids in agitated tanks
Heat transfer to an agitation unit (jacketed or
otherwise)
Constant in baffled systems if NRe  > 10 000
Fluid properties for heat transfer correlation
Related to impeller pumping capacities
Laminar flow if NRe  <  10; turbulent flow if
N,,>lOOOO
Fluid properties for mass transfer correlation
Mass transfer between solute and solvent in an
agi tat ion uni t
Related to surface behavior for two-phase systems

l This number  is based on the impeller.

‘The symbols DL and k,  represent the liquid-phase mass diffusion coefficient and the liquid-phase mass transfer
coefficient, respectively, where k,  is similar to ki in Eq. (6.87). except that the driving force is in accordance
with the requirements of the mass transfer under consideration.
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Reynolds  number. In the defining equation for Reynolds number [Eq. (6.1)],
the characteristic velocity is the tip speed, Eq. (9.7). Therefore, the Reynolds
number for agitation is

he  = D2Nplru (9.9)

This Reynolds number is sometimes referred to as the impeller Reynolds
number.

In agitation, there are three flow regions, laminar, transitional, and
turbulent, .just  as discussed in Chapter 6 for pipe flow. For a given agitation
unit, when N is slowly increased from zero a laminar flow regime exists
initially. The region where laminar flow ends and fully turbulent flow begins is
still under investigation. A large transitional region extends from NRe = 10 to
NRe = lo3  (or higher, depending on the choice of impeller [Bl, P2]). In this
range of Reynolds numbers, vortex systems near the impeller (not the surface
vortex) begin to form. At high Reynolds numbers, the power number tends to
be independent of impeller Reynolds number and dependent only on the ,
geometry of the impeller, as will be discussed later. Note also that since the .,
ratio D/T is usually constant and equal to 1/3  upon scale-up, the impeller
Reynolds number increases with the square of the vessel size for the same
rotational speed N.

Power number. The power number is defined as

NW  = P/(pN3D5) (9.10)

where the power P has units of ft lbr  s-i  or hp or J s-l.  The power number
correlates well with Reynolds number for baffled systems [B2], as shown in
Fig. 9.7.
An interesting result seen in Fig. 9.7 is that the power number is constant and
independent of the Reynolds number in baffled systems above a Reynolds
number of 103-104, depending on the impeller:

NV=
P
- = constant
pN3D5

(9.11)

Bates et al.  [Bl]  found that for the six-blade turbine impeller [cf. Fig.
9.2(a,l)]  the constant in Eq. (9.11) is equal to 4.8 at high Reynolds numbers.
Note that the disk style of construction (curve 1 in Fig. 9.7) takes approxi-
mately 25 percent more power than a flat-blade style (curve 2). Turbines with
pitched blades consume considerably less power, but their flow patterns are
different, as shown by the flow patterns in Fig. 9.3. Figure 9.7 is useful for
predicting the power in scale-up, but other factors come into play when it is
desired to perform the same mixing at minimum, cost. From Eq. (9.11) it is
noted that at high Reynolds numbers (i.e., constant Ni,,, and D) the power
consumption increases as the cube of the speed.

The power number and other important dimensionless groups may be
deduced from dimensional analysis, as will be illustrated shortly in Example
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9.1. An ‘alternate treatment is to derive the form of the power number from a
consideration of the forces acting on a flat plate (such as the blade of an
impeller) as a result of its passage through a fluid. The shear stress at the wall
is force per area:

zy*  = (mass)(velocW  _  5
(time)(area) -A (2.6)

The Fanning friction factor f relates the shear stress at the wall to an inertial
term in the turbulent flow in tubes:

44-4)
f=L= (&/4)(-dpldz)  = 4 L

WJ;,  ave 4PG,  ave fNJ2,  ave
(6.89)

Combining Eqs. (2.6) and (6.89),  for turbulent flow, the force F (which the
fluid exerts on the impeller blade) is proportional to the projected area A,, the
density p, and the velocity U squared:*

Fo:pA,U* (9 .12 )

The basic definition of power is a force times a distance divided by a time.
Replacing distance divided by time with velocity, the result is

PaFU (9.13)

Substitution of F from Eq. (9.12) into the above equation yields

PapA,,U3 (9.14)

The velocity in this equation can be replaced by N and D via Eq. (9.7). Also,
when geometric similarity is maintained upon scale-up, the projected area is
proportional to the impeller diameter squared. Then Eq. (9.4) becomes

P ct pN3Ds (9.15)

This equation is very close to Eq. (9.11). If the proportionality is removed and
a constant inserted, the result rearranges to Eq. (9.11),  i.e., the power number
is a constant.

For laminar flow, the Hagen-Poiseuille  equation for tubes, Eq. (4.76),  is
conveniently expressed as

f = 16/N,, (6.124)

*The  forces exerted by a Ruid  on a solid body are more properly treated in Chapter 12,
“Transport Past Immersed Bodies”. In Chapter 12, the drag coefficient C,  is the force per area
divided by the quantity (pU2/2).  The drag coefficient and Fanning friction factor are similar, the
former being used for immersed bodies and the latter for flow through conduits. Consideration of
CD  also leads to Eq. (9.12).
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The Reynolds number is replaced with Eq. (9.9); then the result is combined
with Eqs. (6.89) and (9.12):

FI(A,pUZ)  0~ ,u/(ND*p) (9.16)

In this equation, the area is assumed to be proportional to the square of D;
thus, the A, term cancels the D*  term, and the density cancels as well:

F u pU*/N (9.17)

If Eq. (9.7) is used to replace U in Eq. (9.17),  and the speed is canceled from
numerator and denominator, Eq. (9.17) becomes

FapUD (9.18)

This equation is also elegantly derived from the classic Stokes’ equation for
creeping flow past a sphere.3  The final equation is obtained as before, using
Eqs. (9.18),  (9.7),  and (9.13):

Pa  ,uN*D’ (9.19)

This treatment of power shows the origin of the power number, the
origin of the entries for power in Table 9.1, and the consistency of the
empirically determined curves in Fig. 9.7 with other areas in fluid mechanics,
such as flow through a circular conduit. <

Froude number. The Froude number, introduced previously in Table 8.1, is
defined as follows for agitation:

NFr = N*D  /g (9.20)

This number includes the gravitational forces and is used to account for the
effect of surface behavior (e.g., the center vortex) on the power number.
Hence, the Froude number is included in correlations of NRe and NP  for
unbaffled systems [R2]. In baffled systems, there is no center vortex formed,
and therefore the curves in Fig. 9.7 are independent of the Froude number.

Blend number. The blend number is

N,=N8 (9.21)

where 13 is the blend time in seconds. The blend time 8 is a measure of the
time required for mixing miscible liquids or gases uniformly throughout the
agitator tank volume. If the blend number is constant, then the blend time is
proportional to the reciprocal of impeller speed. Correlations indicate that the
blend number is constant for both laminar and turbulent mixing; however, the
value of the constant is different for the two regimes.

3 Stokes’ law is covered in Section 12.2.2.
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Pumping number. The pumping number NP relates the impeller pumping rate
Q (i.e., the volumetric flow rate through the impeller area per unit time) to the
speed and size of the impeller:

N,=e
ND3 ( 9 . 2 2 )

An expanded pumping number has proved more useful:

N =QWTY
P ND’

(9.23)

where y is approximately 0.5. This number contains the very important D/T
ratio which must be kept constant during scale-up. The pumping number
correlates pumping capacities of different impellers with different vessel
geometries.

Weber number. The Weber number was introduced as Eq. (8.17) and relates
inertial to surface forces. The impeller Weber number for agitation is

NW,  = N2D3p/a (9.24)

Because of the importance of both inertial and surface forces in many
dispersion operations, the Weber number is obviously important. However, it
may be just as reasonable to use characteristic velocities or lengths other than
those of the impeller. For instance, a tank Weber number or a drop Weber
number may be useful. In Eq. (9.24),  the characteristic velocity is the impeller
tip velocity, Eq. (9.7),  and the impeller diameter D.

Some of the more important dimensionless numbers in agitation may be
deduced from dimensional analysis, as shown in Examples 9.1 and 9.2. Use of
these dimensionless numbers for scale-up of agitation units will be illustrated in
subsequent examples.

Example 9.1. From a survey of the literature on agitation, it has been established
that  the  important  var iables  are  the  rota t ional  speed (N),  impel ler  diameter  (D),
tank diameter (T), power input (P), and fluid properties of density (p) and
v i s c o s i t y  (p).  Although other  variables may be important ,  perform a dimensional
analysis for these six variables.
Answer.  Table 9.4 summarizes the six variables. Here the original Rayleigh
procedure  is  used.  The equat ions  are

and
NaDbTcpp’$  = cons tan t (9

8-“LbL’MdL”O-MM’L-3-f  Sf = dimensionless (ii)

The three equat ions are
L: b+c+2d-3e-f  =0 (iii)

M: d+e+f =0 (iv)
0: - a - 3 d - f  = 0 (4
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TABLE 9.4
Variables for agitation, Example 9.1

S)TIlbOl Exponent Name SI  units Diiensions

N 0 rotational speed SC’ e-*
D b impeller diameter m L
T tank diameter m L
P i power kgm’s-’ ML2W3

P
;

d e n s i t y kg me3 ML-3

P v i s c o s i t y kgm-‘s-r ML-W’

There are  s ix  unknowns and three equat ions .  Thus,  the  number  of  dimensionless
groups of variables is 6 - 3, or 3. Examining Eqs. (iii) through (v), the variables a
and b or c appear once. Experience tells us that b and c cannot both be
eliminated because Eq. (iii) can be used for one or the other but not both; so b is
arbitrarily chosen. The next best candidate for elimination is e. The three
variables  to  be  e l iminated (a ,  b and e) can be expressed in terms of c,  d, and f b y
us ing  the  th ree  equa t ions  above:

a = - 3 d - f 64
e = - d - f (vii)

b=-c-2d+3e+f  =-c-2d-3d-3f  +f =-c-Sd-2f (viii)

Using all these results in Eq. (i) gives
N-3d-fD-‘-Sd-YT’pdp-d-f~f  = constant

6)

Rearranging Eq. ( ix):

@‘(&~(&--)‘=  cons tan t

Each of  these  dimensionless  numbers  has  been in t roduced previously .  The f i rs t  i s
the reciprocal  of  D/T, perhaps the most  important  geometr ic  rat io .  The second
ratio is the power number, Eq. (9.10), and the third is the reciprocal of the
impeller Reynolds number,  Eq. (9.9).  Thus, Eq. (x) becomes

Npo  = k,(DITV%.Y (4

where k, i s  an  empir ica l  cons tant .  Note  tha t  c  and f assume different values from
those in  Eq.  (x) .  Equat ion (xi )  appl ies  for  baffied  t ank  sys tems  as  shown in  F ig .
9.6. However, Eq. (xi) is insufficient for scale-up, as will be shown subsequently.

Example 9.2 .  Uhl  [Ul] corre la ted heat  t ransfer  data  in  agi ta ted,  jacketed vessels
wi th  the  var iab les  l i s t ed  in  Tab le  9 .5 .  Deve lop  the  d imens ion less  g roups  su i tab le
for  a  correla t ion.

Answer. The exponents  in  Table  9.5 were chosen to  avoid confusion as  much as
possible .  A complete  explanat ion of  the  dimensions of  k, cP, and  h i s  g iven  i n
Example 8.2. The Rayleigh  procedure  as  expla ined  in  Chapter  8  wi l l  be  used;  the
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TABLE 9.5

Variables for beat transfer in agitated vessels, Example 9.2

SphOl Exponent N a m e SI units Diiensions

P
P
rw
k

5
h

N
D
T

m
n
P

d e n s i t y
v i s c o s i t y
w a l l  v i s c o s i t y
thermal conductivity
heat capacity
heat transfer

c o e f f i c i e n t
rotational speed
impeller diameter
tank diameter

kg mm3
kgm-‘s-’
kg m-l SC’
kg m sW3  K-’
m2  s-2  K-l
kg s-~ K-’

SC’
m
m

ML-3
ML-W’
ML-%-’
MLB-‘T-l
L2e-ZT-l

Mw3T-

e-’
L
L

equat ions  are

pdpe&k8c~NmD”TP  = cons tan t (9
and
MdL-M,,#‘L-‘@-‘MfL-f  ~-f~KL8~-~8T-8Lti’8-“T-iMj~-~jT-j~-~LnLP

= dimensionless (ii)

The four  equat ions represent ing each dimension are

0: - e - f  -3g-2i-3j-m=O (iii)

L: - 3 d - e - f  +g+2i+n+p=O 69
M : d + e + f  + g + j = O 69
T: -g-i-j=0 64

There  are  n ine  unknowns and four  equat ions .  Thus ,  f ive  groups  wi l l  be  produced.
In the above four equations, either R  or p may be eliminated, and n is chosen
arbitrari ly.  Also,  m from Eq. ( i i i )  and g from Eq. (vi)  are easy to el iminate:

g=-i-j (vii)
d=-e-f-g-j=-e-f+i+j-j=-e-f+i (viii)

m = - e - f  -3g-2i-3j=-e-f  +3i+3j-2i-3j

= - e - f  + i (ix)
n=-p+3d+e+f  -g-2i=-p-3e-3f  +3i+e+f +i+j-2i

= - p - 2 e - 2 f  +2i+j (4

Using all three results in Eq. (i) gives
N-e-f+iD-2e-2f+2i+j--pTpp--e-f+i~Le~~k-I-j  ic# = cons tan t (4

Next ,  the  var iables  are  grouped by s imilar  exponent :

(D-PTP)(N-cD-~p-‘~e)(N-fD-2fp-f~~)(N’D2’p’k-ic~)(Djk-jhJ)  = cons tan t

(xii)
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This  equat ion  i s  rear ranged as  fo l lows:

(D/T)-P(ND2p/~)-e[~cw/(NDZ~)]~(ND2~p/k)i(hD/k)i  =  cons tan t (xiii)

The fol lowing may be subst i tu ted for  each group:

l-l,  = D/T I& = ND=pc,lk

II2  = NRC  = ND’plp II, = hD/k 64

n, = AWD~P)

These  groups  a re  now subs t i tu ted  in to  Eq.  (x i i i ) :

lI;W;WrrI~II{  =  cons tan t (xv)

These f ive dimensionless  groups are  al l  val id,  but  experience and common
sense dictate some changes. The first group is the familiar geometric ratio
encountered  previously .  The second group is  the  impel ler  Reynolds  number ,  Eq.
(9 .9) .  The  th i rd  group  a l so  looks  l ike  a  Reynolds  number ,  bu t  the  wal l  v i scos i ty
does  no t  be long  wi th  the  impel le r  var iab les  N and  D. In fact ,  groups I&, II4,  and
II5 are actually combinations of some other, more commonly encountered
groups; a viable correlation will be obtained only if these three groups are
modif ied.  Let  us  consider  II,  first .  In II, ,  h is  heat  t ransfer  coeff icient  a t  the wall
of the tank.  The area of the tank for heat  transfer is

A ,,sat  = I&T (x4

where T and Z are dimensions of the tank as shown in Fig. 9.6. If II,  is divided by
II,,  then  a  new d imens ion less  g roup  wi th  T replac ing  D is  formed. The group is
the  important  Nussel t  number  for  heat  t ransfer  in  an agi ta ted,  jacketed vessel :

NNu  = I&/l-I,  = hT/k (xvii)

The a l tera t ion of  groups II,  and  l& is  a lso  required.  In  the  case  of  I-I,,  the  wa i l
viscosity was added to the list of variables in Table 9.4 because experimental data
showed that  the  heat  t ransfer  coeff ic ient  was  a l tered whenever  the  wal l  v iscos i ty
y,  differed from the bulk f luid viscosi ty /A.  I f  the group ll,  i s  mul t ip l i ed  by  NRC
from Eq. (9.9), wh ich  i s  a l so  II,,  a  more reasonable  dimensionless  group yW/p  i s
ob ta ined :

~,NR, = PL,I  CL (xviii)

In group I&, the ratio c,/k is found. This ratio also appears in the Prandtl
number, Eq. (8.4),  which  has  been  found to  be  h ighly  s igni f icant  in  hea t  t ransfer
cor re la t ions .  The  Prandt l  number  i s  ob ta ined  by  d iv id ing  II.,  b y  l-I,,  the  Reynolds
number:

The Prandtl number depends only on fluid properties and is a much more
reasonable  d imensionless  group for  da ta  corre la t ion  than II4,  which  combines  too
many diverse  var iables .

The final correlating equation is found by including in Eq. (xv) the
modif icat ions represented by Eqs.  (xvi i)  to  (xix):

(D/T)-“(NR,)-‘[(rw/~)fl(NfR,)](N’p,Nk,)[(N~~)(D/T)il  =  cons tan t (xx)
Equation (xx)  is  rearranged to the usual  form for  heat  t ransfer  correlat ions:

NN~  = k,WLNb,,(~l~w)‘(DIT)“ (xxi)
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TABLE  9.6
Heat transfer to jacketed walls*

constants in Eq.  (xxii)
lmpeUer Range of
type kz  a b e NRC Comments

Paddle 0.40 213 113 0.14 300-6 x 16 k, from 0.36r a n g e s
to 0.40

Paddle 0.415 213 113 0.24 20-4000 baftled  and unbaffled

Two curved-blade turbines
0.60 213 1/3 0.14 2000-8 x 16

Pitched-blade turbine
0.44 213 113 0.24 80-200 low position

C = 4 inches
0.53 213 113 0.24 20-120 intermediate

position, C = 11 inches

Disk flat-blade turbine
0.54 213 113 0.14 40-3 x 10’ unbaftled
0.74 213 113 0.14 300-3 x ld 1, 2, or 4 bafAes

l From reference [Ul],  p.  284, by permission.

Note  tha t  the  exponents  a ,  b, c,  and d  are algebraic combinations of  e ,  f, i, j, and
p so as to make Eq. (xxi) compatible with Eq. (xx). Under the restriction of
cons tan t  D/T, and in  terms of  the  var iables  ra ther  than the  groups,  Eq.  (xxi)  is

hTlk  = k,(D=Np/~c)“(c,~lk)*(~/~L,) (xxii)

This  procedure  in  modify ing  the  resul t s  of  d imensional  analys is  to  obta in
reasonable  and common dimensionless  groups is  of ten fol lowed.  Dimensional
analys is  and exper ience  d ic ta te  how to  mul t ip ly  one  group by some other  in  order
to arrive at such common groups as NPr  or N,.,“.  Equation (xxii) has proved
sat is fac tory  in  corre la t ing  NNu  as  shown in Table 9.6 from Uhl [Ul].  Dimensional
analysis  emphasizes  the  importance of  the  res t r ic t ion of  constant  D/T.

There is a correlation in the literature [Dl] that includes the D/T term as
wel l  as  a  Z/T ra t io .  The group Z/T can a lso  be  predic ted  through dimensional
analys is ,  i f  the  var iable  Z is  inc luded in  the  l i s t  in  Table  9 .5 .  The corre la t ion for
jacket  Nusse l t  number  in  the  turb ine  ag i ta t ion  of  a  jacke ted  tank  i s

hT/k = (0.85)(D2Np/y)0~66(c,~/k)0~33(Z/T)~”~56(D/T)o~’3(~/~~)0~‘4  (xxiii)

9.6 SCALE-UP

Scale-up (or scale-down) in agitation systems is a fairly complicated topic.
Many complex problems exist, such as mixing of highly non-Newtonian fluids
and of three or more phases (multiphase processing). Not much is known
about these; hence, a conservative approach to design and scale-up is
recommended, in addition to consultations with equipment manufacturers and
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other qualified personnel. The objective in the design of agitators during
scale-up is to obtain the same (or similar) process result in the large unit as was
demonstrated in the small unit. This is relatively a difficult task [02], although
the necessity occurs so often that the procedures for simple systems are
well-understood.

Geometric similarity. Maintaining geometric similarity during scale-up allows
definition of a single scale factor R, which is equal to any of the ratios between
dimensions of agitators (a) and (b) in Fig. 9.6:

R = D21D1  = TJT, = W,lW,  = Z,lZ,  = C,lC,  = BJB, (9.25)

where the subscript 2 represents the large agitator and 1 represents the small
unit. The tank volume is the tank area nT’l4  times the height Z. Since the
ratio Z/T is constant for scale-up [see Eq. (9.1)]  and Z usually equals T,  the
volume is proportional to T cubed:

V = 3rT314 (9.26)

Then the scale factor in terms of volume is

R = T,lT, = (V,lV,)“3 (9.27)

In general, geometric similarity is desirable. In Section 9.6.5, a class of
problems will be discussed in which it is neither useful nor required to maintain
similarity.

size.  The size of the agitation unit is determined from considerations beyond
the scope of this chapter. However, the most important considerations are the
throughput in the process and the processing time (which is similar to the time
constants encountered in process control). For instance, if there is a chemical
reaction in the tank, then the size of the tank will be dictated by the desired
flow rate of product and the kinetics of the reaction or the reaction time. If the
agitation unit is to disperse a solid in a liquid, then again the size of the tank
will be determined by the desired rates of flow of solid and liquid and the
length of time required to disperse the solids.

9.6.1 Scale-up Procedures for Turbulent Flow
with Three or More Test Volumes

In general process studies, the most reliable scale-up is obtained by performing
agitation experiments in vessels of several sixes. From these results, scale-up
trends are obtained which can be extrapolated to the final vessel size. The
smallest test equipment recommended [P2] is a tank about 1 ft in diameter that
holds 5-10 gallons. Normally, a second tank about 2 ft in diameter is also used.
Each tank is capable of operating at two volumes, so that a total of four runs
can be mad-at  volumes of 5, 10, 45, and 90gallons. Each tank should be
equipped with a variable-speed drive and a dynamometer to measure the
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power input accurately. It is necessary to vary the speed of the impeller until
satisfactory process results are obtained.

When appropriate performance has been achieved in each volume, there
are two procedures for scale-up in common use. The data are expressed as
P/V, T,/V, and V. Then two plots are prepared: log(P/V)  versus log V and
log(T,/V)  versus log V. Whichever of these looks most linear is then
extrapolated to the volume of the final vessel. These procedures correspond to
the following equations:

(P/V), = (PIV),(GITl)”  = (PIV),R” (9.28)

(T,/V),  = (Tq/V)~(T2/T,)x  = (T&W?” (9.29)

In these equations, s and x are the scale-up exponents for power per unit
volume and torque per unit volume, respectively, and R is the scale factor,
defined in Eqs. (9.25) and (9.27). The subscripts 1 and 2 correspond to vessels
of different size. It is possible that the data will not fall on a straight line in
either plot. Then a least-squares analysis is recommended to obtain the final
scale-up, using Eq. (9.29). The scale-up using a plot of log(P/V) versus log V
is an excellent design procedure, and it is often used in industry [P2].

9.6.2 Scale-up Procedures for ,Turhulent  Flow
with Two Test Volumes

If only two volumes were tested, then there would be no point in preparing
graphs, as suggested in the previous section. A simple scale-up equation,
suggested by Rautzen, Corpstein, and Dickey [Rl], is

Iv2=Iv1(~,“=Iv1(~) (9.30)

where IZ  is the speed scale-up exponent. The above equation can be solved
directly for n:

(9.31)

In this scale-up procedure, the diameter of the impeller for the process vessel
(4) is determined from Eq. (9.25),  assuming geometric similarity. Equation
(9.30) is used to determine the speed of the agitator in the process vessel (AQ.
The power requirement can be found from Eq. (9.11) or Fig. 9.7 after
determination of V,,  4,  and N3.  Similarly, the torque requirement can be
determined from Eq. (9.6) or Eq. (9.8). This calculation is illustrated in
Example 9.4, which follows shortly.

When only two volumes are available for scale-up tests, the design
engineer has no estimate of the error of the experiments and no estimate of the
accuracy of n from Eq. (9.31). The overall design is extremely sensitive to
small changes in the value of n.  In the case of four test volumes, if one were
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erroneous, the recommended graphs would clearly show one data point to be
inconsistent with the rest. Hence, the procedure outlined in Section 9.6.1 is
recommended.

In Eqs. (9.28),  (9.29),  and (9.30) there are three scale-up exponents: s,  X,
and n. From two experiments, all three exponents can be calculated, but they
will not be independent. In other words, each of the three equations predicts
the same values of P, T4,  and N for the vessel being designed [P2, T2]. This
point will be further illustrated in the next section and in Example 9.4.

9.6.3 Scale-up Procedures for Turbulent Flow
with  a Single Test Volume

. Sometimes it is necessary (although highly undesirable) to design and scale-up
a process unit based on an experiment performed in a single unit at a single
volume. Any of Eqs. (9.28),  (9.29), or (9.30),  each with its own scale-up
exponent, may be chosen, although identical results will be obtained because
the equations are not independent. The success in scale-up with a single test
volume lies in correctly choosing the appropriate value of the scale-up
exponent. Note that none of the following scale-up procedures corresponds to
constant Reynolds number [03]. .

Criteria for scale-up. The purpose of scale-up is to obtain in a plant-size
agitation unit the same process results as were obtained in a small-scale unit.
Much of the old literature in chemical engineering suggests that scale-up can
be accomplished while keeping the ratio of power per unit volume constant
from the small unit to the large unit. More sophisticated approaches [Cl, Pl,
Rl, Vl] take account of the fact that different applications in mixing require
different ratios to be maintained constant. The ratios to be suggested are all
based on appropriate correlations and explicitly stated scale-up criteria [P2].

There are many types of criteria and procedures for scale-up. These can
be separated into two distinct classes: physical uniformity and equal kinetic
and/or transport conditions. A partial list can be found in Penney [Pl].  Five
common procedures for turbulent flow are listed below:

1. Equal liquid motion. Kinematic similarity will be maintained; in other
words, the velocities in the large-scale unit will everywhere be approxim-
ately equal to those in corresponding locations in the small-scale unit. This
scale-up approach is suggested for processes that are termed “flow
sensitive” [Cl]; here constant torque per unit volume is maintained. Also,
it will be shown that constant torque per unit volume is identical to
maintaining a constant tip velocity U,.

2. Equal soliak  suspension. The level of solids suspension is maintained
approximately constant upon scale-up. This approach is also fairly common.

3. Equal mass transfer. Mass transfer includes dissolving of solids or gases or
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mass transfer between two liquid phases. Equal rates of mass transfer are
maintained during scale-up.

4. Equal surface behavior. The surface of the liquid during agitation remains
the same. The vortex shape (or lack thereof) will be unchanged. The shape
of the surface of the liquid is important when dry solids added to the
surface are dispersed. This type of scale-up, also called equal Froude
number, is less commonly encountered.

5.  Equal blend time. Equal blend time is the limiting case at the opposite end
from equal liquid motion. It is rarely practical to duplicate in a large unit
of, say, 10000 gal the fast blend times (in the order of seconds) in a
gallon-size unit.

There are other criteria in the literature, but these are of lesser
importance. For example, in the 194Os,  equal apparent superficial velocity was
maintained, but this procedure is outdated today [Cl]. The apparent superfi-
cial velocity is found by dividing the volumetric flow rate that the impeller
produces by the tank area.

The criterion for scale-up should be clearly stated. Sometimes it is clear
to the design engineer what scale-up criterion to use. For example, if fast
processing is required, then equal blend time will be chosen, and so on. Often,
however, it is unclear which of these to select for a given process. Further-
more, complicated processes could fall under several different scale-up
procedures.

Constant torque per unit volume. Scale-up based on a torque per unit volume
criterion is a recommended procedure [Cl, Vl] because torque is the variable
that most directly correlates with initial cost. Also, when the ratio T,/V is
maintained, equal liquid motion is accomplished, which will do the same job of
agitation at the corresponding points in the small and large units [Vl].  In Eq.
(9.29),  the exponent x is zero for this case:

The assumption of constant torque per unit volume is identical to assuming
constant tip speed in scale-up. If Eq. (9.8) or T,/V from Table 9.1 is
substituted into Eq. (9.32),  under conditions of constant density and geometric
similarity the foliowing is obtained:

(TJV),  N2,D$ U:,
(T,/V), = N:D:

=A= 1
U;,,

Equation (9.33) shows that the tip speed U, is the same in both volume 1 and
volume 2 for constant torque per unit volume. Equation (9.33) can be also be



388 APPLICATIONS  OF TRANSPORT PHENOMENA

used to calculate the exponent 12 in Eq. (9.30):

N=D=  = N=D=2 2 1 1 or N2=  N(z)‘= N(f) (9.34) .

Equation (9.34) shows that when the torque per volume exponent x is zero,
the speed exponent IZ  equals 1.0.

Equation (9.6) relates torque to power and speed. This equation can also
be used to find the power per volume exponent s when x is zero:

Equation (9.6) is substituted into Eq. (9.32):

K,IV)2  =  P,lW2W p2Iv2  NI=--

(&IV),  PIIW,~,)  SW,  N2

P2IV2  4=-- P2lV2  R,  =  1=-

SW,  D,  &Iv,
(9.35)

This equation can be rearranged and the result compared with Eq. (9.28). The
result shows that the power per volume exponent s equals -1.0.  Summarizing,
for constant torque per volume or tip speed:

n = 1.0

s = -1.0 (9.36)

x= 0 . 0

Table 9.7 contains the values of the three scale-up exponents for all five
criteria listed previously [P2, T2]. When the design engineer is in a quandary as
to which criterion in Table 9.7 to use, many authors recommend scale-up be
accomplished with constant tip speed [Cl, Vl], because the torque per unit
volume is maintained constant, equal liquid motion is approximately main-
tained (kinematic similarity), and experience with “flow-velocity-sensitive”
applications has been favorable. Connolly and Winter [Cl] recommend this
criterion for many mixing operations, including suspending solids.

TABLE 9.7
Scale-up exponents for turbulent flow

Most important
SC&-op criterion

(1) Equal fluid motion
(2) Equal solids suspension
(3) Equal mass transfer
(4) Equal surface
(5) Equal blend time

Valoe of s for Voloe of x for Value of II  for
Eq .  (9 .28 ) Eq .  (9 .29 ) Eq .  (9 .30 )

-1.0 0.0 1.0
-0.55 0.5 314

0.0 213 213
0.45 1.0 0.5
2.0 2.0 0.0
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Constant power per unit volume. Under conditions of constant power per unit
volume upon scale-up, equal bubble or drop diameter is maintained [P2].
Inspection of Eq. (9.28) shows that the exponent s is zero for this case:

(plv),=,
(PIVh

(9.37)

The values of n and x for this criterion are found in the same manner as those
in Eq. (9.36). Returning to Table 9.1, power per unit volume is proportional to
the speed cubed and the diameter squared (under geometric similarity):

Substituting this result into Eq. (9.37),  the relation between speed and
diameter is

N3D2  = N3D21 1 2 2 or

Comparison of Eq. (9.39) with Eq. (9.30) yields

Thus, IZ  for this scale-up procedure is 3. Similarly, it is easy to show that x also
equals 3:

n =2/3

s=o.o (9.41)

x = 213

These results are shown in Table 9.7 under the heading of equal mass transfer
[Rl].  This criterion is also called “equal dispersion” [Vl].

Equal blend time. Under the criteria of equal blend time and constant blend
number Nb,  the impeller speed remains constant upon scale-up:

N,=N, (9.42)

Following the previous derivations, the scale-up exponents are

n =o.o

s=2.0 (9.43)

x=2.0

Compared to the other values of the exponents in Table 9.7, the values in Eq.
(9.43) represent the opposite extremes from criterion (l)-equal  fluid motion.
The criterion represented by Eq. (9.43) is rarely used because the power to be
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specified upon scale-up is usually too large. Equation (9.28) with s = 2.0
becomes

P2/Pl  = (VJVl)R2=R5 (9.44)
Thus, for constant blend time, the power increases as the fifth power of the
tank diameter [cf. Eq. (9.11), from which the same result can easily be
obtained]. It is rarely practical to require the fast blend times obtained in a
small unit in a plant-sized vessel.

Example 9.3 .  An agi ta t ion uni t  consis ts  of  a  9- inch diameter ,  four-bladed,  45”
pi tched-bladed turb ine  impel ler  in  a  tank tha t  i s  30inches  in  d iameter  and has
four baffles. The unit is filled to a height of 30 inches with a fluid of viscosity 10 CP
and specif ic  gravi ty  1 .1 .  The agi ta tor  operates  a t  a  speed of  300 rpm. Calculate
the power per unit volume and the torque per unit volume if the ratio C/T is 0.3.

Answer. Figure 9.6 or literature sources will be used to find the power. The
diameter of the impeller and the volume of the tank [from Eq. (9.26)]  are

D = 9112  = 0.75 ft (9
V = nT3/4  = ~(30/12)~/4  = 12.27 ft3  = 91.79 gal (ii)

where 7.48 gal equals 1 ft3.  The fluid viscosity and density in engineering units are

p = (10)(6.72  x 10-4)  [(cP)(lb,  fi-’ s-’ cP-‘)]

= 6.72 x 1O-3 lb,,, ft-’ s-’ (iii)

p = (1.1)(62.4)  = 68.64 lb,,, K3 (iv)

The impeller  speed is

N = 300/60  [(rev min-‘)(min  s-l)] = 5.0 s-’ 69

The Reynolds number for  agi tat ion from Eq.  (9.9)  is :

i&e  = D=Nply

=(O.75)'(5.O)(68.64)/(O.OO672)((ftz~~~~~~b~f'~3))  = 2.87 x 10“ (vi)
m

Therefore ,  the  agi ta tor  operates  in  the  turbulent  region.  Curve 6  for  a  s ix-bladed
pi tched-blade turbine shows a  power  number  of  1 .37.  From the l i tera ture  [Vl],
the  power  number  for  th is  ag i ta tor  equals  1 .62 .  Equat ion  (9 .11)  i s  the  def in i t ion
of the power number; solving for P, the answer is

P = N,(pN'D')  = (1.62)(68.64)(5.0)3(0.75)5[(lb,  ft-3)(s-‘)3(ft)5]

= 3298 lb,,, ft’  ss3 (vii)

To convert P to units of horsepower, the gravitational conversion factor g, will be
needed in  the denominator  of  Eq.  (vi i ) :

P = N,(pN'D')/g,  = (3298)/(32.174)[(lb,  ft*  s-‘)(lbrlb,’  fi-’ s’)]

= 102.5 ft lb, s-’

= 102.5/550[@  lb,s-‘)(hp  s  ftt’  lb;‘)]

= 0.1864 hp (viii)
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The torque is  found from Eq. (9.6)  us ing  the  va lue  of  C,  from Table 9.2:

T,  = (P/N)(C,)  = [(0.1864)/(300)](63025) = 39.16in.,lb, 6)

The power  per  uni t  volume and the  torque per  uni t  volume can be  found e i ther  in
units of gallons or ft3:

P/V = 0.1864/12.27 = 1.52 x lo-* hp K3  = 2.02 X lo-’  hp gal-’ (x)

TJV  = 39.16112.27  = 3.19 in. lb, W’  = 0.427 in. lb,gal-’ (xi)

Example 9.4. An engineer has the task of designing a reactor of capacity
12000gal  to  agi ta te  the  mater ia l  in  the  previous  example .  She  i s  able  to  obta in
equal process results in the following geometrically similar units under the
conditions given in Table 9.8.

Answer. Both test units as described in Table 9.8 operate in the turbulent range.
Three scale-up equations have been presented in this chapter and will be
compared in  the  fol lowing design.  The important  equat ions  are

R = TJZ  = (VJV,)‘” (9.27)

(P/V), = (P/V),(T-IT,)”  = (P/VW (9.W

(T,/V),  = (T,/V),G/T,)”  = (T,/V),R” (9.29)

TV2  = N,(D,/DJ  = N,(l/R)” ’ (9 .30)

n = [~n(N,/N,)l/[ln(4/D,)l (9.31)

Speed scale-up. Fol lowing the  procedure  out l ined  in  Sec t ion  9 .6 .2 ,  the  va lue  of  R
is found from Eq. (9;27)  and the value of n from Eq. (9.31):

‘.  R = T,,,/ Tlab  = 30110  = 3 (9
n = [ln(690/271)]/[ln(3/1)]  = 0.8507 (ii)

TABLE 9.8

Results of tests for Example 9.4

Description Laboratory unit Pilot phlt unit

Vessel diameter, inches
Impeller diameter, ft

Impeller type-four-biaded,

10 3 0
0 . 2 5 0 . 7 5

45” pi tched-bladed turbine  impel ler

Y E S Y E S
1 . 0 1 . 0

12 12
4 4

6 9 0 2 7 1
7 3 4 2 2 . 5 9 5  x lo4

3.40 91.79
9.33 x lo-3 0.1374
0 . 8 5 2 5 3 1 . 9 5
2.744 x 1O-3 1 . 4 9 7  x lo-’
0.2507 0 . 3 4 8 1

Z/T
TIB
Number of baftles
Speed, rpm
Reynolds number
Volume of unit, gal
Power, hp
Torque, in. lb,
P/V,  hp gal-’
Z’JV,  in. lb,@’
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Let’ the subscript 3 denote the 12 000-gal reactor. Arbitrarily, let us scale-up from
the pi lo t  p lant  uni t .  The tank diameter  and that  sca le  fac tor  (Rr)  i s

V = 12 OOO/7.48[(gal)(ft3  gal-‘)] = 1604 ft3

T= (~V/Z)'~  = 12.69 ft
Rf = TJT,  = 12.69/[(30)/(12)] = 5.075

Equat ion  (9 .30)  i s  used to  f ind  the  impel ler  speed in  the  reac tor :

(iii)

(iv)

.(v)

N3 = N,(DJD3)n  = N,(l/RJ"  = (271)(1/507~i)~.‘~  = 68.05 rpm w

The reactor impeller diameter is calculated from R,, assuming geometric
similarity:

D3 = DIR,  = (0.75)(5.075)  = 3.806 ft ( v i i )

Using Eq. (9.11) for constant power number [or Eq. (9.15) or Table 9.11,  it is
seen that the power is proportional to speed cubed and diameter to the fifth
power ,  for  constant  densi ty .  Hence

N:D:
P3 = Pz -

( >N'D=
= P2(NJNJ3Rs  = (0.1374)(68.05/271)‘(5.075)5  = 7.32 hp (viii)

2 2

The torque can be found from Eq. (9.6) and Table 9.2:

Tq = (P/N)(C,)  = [(7.33)/(68.07)](63 025) = 6789 inch lbr w

At th is  poin t ,  the  des ign  i s  comple te .  A s tandard-s ize  impel le r  would  be
chosen, as well as a standard-size motor (7.5 hp or 10 hp). It is instructive to use
Eqs.  (9 .28)  and (9 .29)  and see  whether  the  above resul ts  are  confi rmed.
Power per unit volume. Equation (9.28) is used for this procedure. The solution
begins  wi th  the  de terminat ion  of  the  sca le-up exponent  s :

s =
ln[(PIV)pi,,,I(PIV)l,~I

In R
= {ln[(1.497  x 10m3)/(2.744  x W3)]}/(ln  3) = -0.5516 (4

Now Eq. (9.28) becomes

(P/V), = (P/V),R;".s5'6 64

This equation is the general scale-up equation, based on the power per unit
volume procedure.  To f ind the power in  the 12000-gal reactor,  the numbers are
inse r ted :

P3 = VQP/V)zR;  = (12 OCKl)(1.497  x 10-3)(5.075)-0~s516  = 7.33 hp (xii)

The impel ler  speed in  the 12 000-gal  reactor  can be determined by several
methods .  One poss ib i l i ty  i s  to  compute  the  power  number  for  both  the  labora tory
uni t  and  the  p i lo t  p lan t  uni t  f rom Eq.  (9 .11) .  The  answers  should  agree  to  wi th in
exper imenta l  er ror ,  and they do.  For  i l lus t ra t ion,  the  power  number  in  the  p i lo t
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plant unit is

(0.1374)(550)(32.174)
t

(hp)(ft lbr  hp-’ s-‘)(lb,  lb;’ ft s-*)
= (68.64)(271/60)3(0.75)5  \ (lb,,, tY3)(s-‘)3(ft)’ >

= 1.62 (xiii)

This  value is  the same as  used in Example 9.3 [Vl].  Since the power number  is
cons tan t  in  the  tu rbu len t  r eg ion  when  the  ag i t a t ion  un i t  i s  p roper ly  baflled, a s  i s
this unit, Eq. (xiii) can be used to solve for the speed of the impeller in the
12 000-gal reactor:

pzgc PI&-=-
pN:D: pN:D:

(xiv)

Solving Eq.  (xiv)  for  N2  and  inser t ing  the  numbers :

N2 = N,(?)“‘(z,”  = (271)(&)‘n(~~  = @.@i’rpm (xv)

The torque can be found from Eq. (9.6) and Table 9.2 as before [cf. Eq.
( ix)] .  The answers  obtained here  agree within roundoff error  with those from the
speed  sca le -up  sec t ion .
Torque per unit volume. Equation (9.29) will be used for this procedure; the
identical answers will be obtained. Equation (9.29) is solved for the scale-up
exponent  x.  Insert ing the numbers ,  x i s

x = ln[(T,/V),i,~,l(T,lV),.,]/(ln  R)
= {1n[(0.3481)/(0.2507)]}/(1n  3) = 0.2988

Now Eq. (9.29) becomes

(T,IV),  = (T,IV),R;2w

(xvi)

(xvii)

This equation is the general scale-up equation, based on the torque per unit
volume procedure. Proceeding with the solution, Eq. (xvii) is solved for the
torque  in  the  12  000-gal  reac tor  and  the  numbers  inser ted :

T,,3  = V3(T,/V),R0.2988

= (12 OOO)(0.3481)(5.075)“~2~  = 6787 in. lbr (xviii)

Thus,  the  answer  in  Eq.  (xvi i i )  f rom the torque per  uni t  volume procedure  is  the
same (within roundoff error)  as  obtained earl ier .  Therefore the speed and power
wil l  be  unchanged a lso  f rom the  ear l ier  answers .
SMIIIIU~.  If there had been three or more sets of test data, each in reactors of
different size,  then a graph of log(P/V)  ve r sus  log  V or  log(T,/V)  ve r sus  log  V
would have been prepared and extrapolated to  the f inal  volume.  I f  there  are  only
two sets  of  tes t  data  (as  in  th is  example) ,  any of  the  three  scale-up equat ions
[Eqs.  (9 .28)  (9 .29)  or  (9.3O)J  produces  the  same resul t s  as  the  o thers .

Example 9.5. Suppose the pilot plant data in Table 9.8 never existed. Use the
laboratory data  only f rom Example 9 .4  to  design the  12 000-gal  reactor .
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A&W.  Any of Eqs. (9.28), (9.29), or (9.30) may be used, since they are
equivalent, as shown in the previous example. In this example, the scale-up
exponent must be determined from Table 9.7.  The scale-up exponent n may vary
from 0 to  1 .0  in  the  speed equat ion:

N,=N,(D,/D$  = N,(l/R) (9.30)

Since power is proportional to speed cubed, the larger the value of n in Eq. (9.30)
the smaller  wil l  be the predicted power requirement .  The value of  n most  l ike ly
l ies  be tween 0 .5  and 1 .0 ,  but  no  bas is  for  choosing  a  va lue  of  R exists.  Therefore
the design engineer is certainly gambling if data on only one size are used as the
basis for scale-up. In this problem, the scale factor R is

R =DJD,=3.806/0.25=  15.23 (9

where the impeller diameter D, is taken from Table 9.8 and the agitator diameter
of the reactor is taken from Eq. (vii) in Example 9.4. Table 9.9 summarizes the
resul ts  for  values  of  n ranging from 0.5 to 1.0.  The speed is  calculated from Eq.
(9.30). The power is calculated as follows. Equation (9.11) for this example
(turbulent flow) is

N,  = P/(pN3D5)  = constant (9.11)

Applying this equation to unit 2 (the 12000-gal reactor) and unit 1 (the
laboratory unit), the following is obtained:

(ii)

When Eqs. (9.30) and (i) are substituted into Eq. (ii), the following is obtained:

p2  = plR(-) (iii)

This  equat ion was used to  compute the power for  each value of  n .  The torque
fol lows di rec t ly  f rom Eq.  (9 .6)  and is  not  inc luded.

The conventional wisdom is to scale up with Eq. (9.32),  or equivalently Eq.
(9.36), u s ing  a  value of n equa l  to  1 ,  which  i s  a  c r i t e r ion  of  cons tan t  t ip  speed ,
constant  torque per  uni t  volume,  and equal  f lu id  mot ion.  Table  9 .9  shows that
such  a  c r i te r ion  would  requi re  a  2-hp  motor,  whereas in Example 9.4 need for  a

TABLE 9.9
Power and speed versus scale-up
exponent II

ll N rpm p, hP

0.5 1 7 7 129
0 .6 135 5 7
0 .7 103 2 . 5
0 . 8 7 8 1 1
0 . 9 6 0 5
1 .0 4 5 2



7.3%hp motor was predicted. This problem clearly indicates the sensitivity of the
design calculations to the scale-up exponent n  (or x  or s). Tests in several
volumes are clearly warranted for a reasonably reliable design. Table 9.9 has
“narrowed” the range of possible power requirements to between 2 and 129 hp!

9.6.4 Scale-up Procedure for Laminar Flow

In laminar agitation, experimental data confirm that the power number and
impeller Reynolds number are related by

where k,  is 75 for curves 1 and 2 and 50 for curves 3, 4, 5, and 6 in Fig. 9.7.
The proportionality between power and the variables N and D may be found
by substituting the definition of Nn=  [Eq. (9.9)]  and NP  [Eq. (9.10)]  into Eq.
(9.45) and rearranging: .

(j&)(F) =k1 (9.34)

or
P 0:  ,uN2D3 (9.19)

Recall that this equation was also deduced from the equation for the laminar
flow of a Newtonian fluid such as-water or air in a straight pipe.

Scale-up in laminar flow is carried out exactly as recommended for
turbulent flow. Equal process results should be obtained in vessels of several
sizes. The data are reduced in order to make plots of log(P/V) or log(T,/V)
versus log V, which are extrapolated to the plant-size unit. If only one or two
sizes of units are available for a test run, any of the three scale-up equations
presented previously may be used [Eqs. (9.28),  (9.29),  or (9.30)].

Design with a single test unit. Again, it is undesirable to design a process unit
based on an experiment performed in a single volume. The ranges of scale-up
exponents for laminar flow exceed those in the turbulent flow case. Neverthe-
less, Table 9.10 presents the scale-up exponents for some typical cases

TABLE 9.10

Lamimr  flow scale-up using Eq. (9.28) ’

criterion Exponent s

(1) Equal heat transfer per unit volume 8
(2) Equal heat transfer coefficients 2
(3) Equal blend time 0
(4) Equal tip speed - 2
(5) Equal impeller Reynolds number - 4
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[Pl, P2;T2].  These are easily worked out, using the same procedures as
illustrated previously for the turbulent flow cases.

9.6.5 Scale-up Without Geometric Similarity

The scale-up procedures detailed in the preceding sections are valid for many
agitation applications. These methods, all of which involve geometric scale-up,
are applicable when the process is governed by a single factor, such as equal
liquid motion. When there are two or more factors that must be controlled,
then it is often necessary to deviate from the concepts presented; in particular,
it is often desirable to deliberately vary certain geometric ratios, instead of
maintaining similarity [02,03].

As an example of nongeometric scale-up, consider the conflicting
requirements .of  a shear-sensitive material being produced in a reactor.
Suppose the desired product is capable of further reaction to produce an
undesirable side-product. This process will be hard to scale up because as the
vessel size increases, the angular velocity o  decreases, but the tip speed U,
increases; the increased tip speed causes increased amounts of shear degrada-
tion of the product. If the speed of the impeller is further reduced to
compensate for the increased degradation, the product will be retained in the
agitation vessel for a longer time in the large unit, as compared with that in a
small unit. Hence, there will be more opportunity for the product to react and
produce the undesirable side-product. To design and operate such a complex
agitation process, it is necessary to build either a full-size unit or a large pilot
unit and then perform tests until the desired operating results are achieved in
the full-size unit.

Oldshue [03]  compared the operating variables in a large unit with those
in a small unit. Summarizing briefly, he pointed out that the larger vessel has a
longer blend time (owing to too high pumping capacity in the small unit), a
higher maximum shear rate (owing to higher tip speed), a lower average shear
rate (owing to a lower operating speed), and thus a greater range of shear rates
[03].  Clearly, for complex processes, scale-up is hampered by the uncon-
trollable changes in the aforementioned process variables. In the example of
the shear-sensitive product, too much blend time was as undesirable as too
high a rate of shear. When more than one variable is of importance, as in this
case, nongeometric scale-up is often required. Controlling geometric similarity
and one other scale-up parameter will not suffice.

The reader must identify those applications that may potentially require
nongeometric scale-up. Each of these must be considered on an individual
basis. Further diffusion is beyond the scope of this chapter, as these constitute
some of the most difficult problems in agitation [Rl].

9.7 SUMMARY

This chapter has provided a short overview of the subject of agitation. Three
scale-up equations have been presented in this chapter. The important
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equations are
R = T,/T, = (VJV,)‘” (9.27)

(P/V),  = (P/V),(T,IT,)s  = (PIV)IRS (9.28)
(Tq/V)z=  (T,/V),(G/T,)”  = (T,IV)IR” (9.29)

TV2 = N,(D,/&)”  = N,(l/R) (9.30)

Agitation provides an excellent example of the use of dimensionless variables
and scale-up using geometric and sometimes kinematic similarity. Reliable
design is obtained through tests performed in agitation vessels of various sixes
that are geometrically similar. Scale-up procedures using at least four different
volumes are recommended. The practicing engineer who only occasionally
needs to handle agitation problems is advised to consult qualified individuals in
the field, as well as equipment manufacturers.

PROBLEMS

9.1. An agitation unit consists of an g-in. diameter disk impeller (curve 3 in Fig. 9.7).
The ratio D/T is 0.3, the ratio Z/T is 1.0, and the tank is properly bathed. The
impeller operates at 420 rpm. The fluid viscosity and specific gravity are 3 CP  and
1.25,  respect ively.  Calculate  the  Reynolds  number ,  the  power number ,  and the
quantities P/V and T,/V.  Use English units.

9 .2 .  Repeat  Problem 9 .1  us ing  SI  uni t s .
9.3. Suppose variables for heat transfer in agitation units are correlated with 10

variables as follows: p,  p,  p,,.,  k, cp,  h, N,  D, T,  2. Perform a dimensional
analysis to obtain a useful equation suitable for correlation of actual data.

9.4. One reliable method of scaling up agitation units for a processing application is to
mainta in  cons tant  the  torque  per  uni t  volume.  I t  i s  des i red  to  increase  the  tank
diameter of a baflled unit by a factor of 6. The large unit will be geometrically
similar to the small unit. Both operate in the high-Reynolds-number region.
Determine  the  s izes  ra t ios  be tween the  new uni t  and  o ld  uni t  for
(a) tank diameter
(b) impeller
(c)  horsepower
(d)  torque

9.5. A six-bladed disk-style turbine impeller (curve 1 in Fig. 9.7) is located in a bagled
tank  Sft  in  d iameter  tha t  i s  f i l led  wi th  a  6Opercent sucrose  so lu t ion  of  spec i f ic
g rav i ty  1 .29  and  v i scos i ty  55  CP  at  23°C. The design of the turbine,  baffles,  etc. ,
fol lows the normally accepted pract ice.  The tank is  f i l led to  a  depth of  5 f t .  The
turbine  opera tes  a t  100 rpm.  Find the  torque  ( in .  lbr)  and horsepower  required
for this unit. Also find the values for B and C in feet. Use English units.

9.6. A company owns two test units as described in Table 9.11. It is desired to build a
14 000-gal reactor containing a fluid of viscosity 4 CP  and specific gravity 1.3. Tests
are  performed,  and equal  process  resul ts  are  obtained as  fol lows:
Labora to ry  un i t : N=750rpm;  P=O.lOhp
Pilot plant unit: N=370rpm;  P=0.4Ohp
Find the horsepower, the torque, the speed and the impeller diameter for the
14 000-gal reactor.
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TA.BLE  9.11

Test units for de-up

Description Laboratorynnit PiIotphtMit

Vessel diameter, inches 1 2 2 4
Ratio Z/T 1 . 0 1 . 0
Ratio D/T 0 . 3 0.3

Impeller type: disk style, flat blade turbine (6 blades)

9.7. An agitation unit is being designed to handle a latex of viscosity 1200 cP, thermal
conduc t iv i ty  0 .610  W m-r K-‘,  and  dens i ty  48  lb, , ,  ftT3.  The  tank i s  to  be  3  f t  in
diameter ,  3  f t  high,  and with D/T equa l  to  113. Suppose  a  12  hp  motor  i sava i lab le

. to  dr ive the impel ler  a t  any speed;  le t  the  overal l  eff ic iency of  the motor ,  dr ive
train, etc., be 75 percent. Compute the speed (rpm), Reynolds number, and
torque (in. 1bS  to operate a six-bladed turbine with no pitch in a baffled tank. Let
the ratio W/D  be 0.125 so that curve 4 applies.

9.8.  In Problem 9.7,  est imate a heat  transfer coefficient  from Table 9.6 if  the Prandtl
number of  the f luid is  8 .0.  Compute the driving force in “F  be tween  bu lk  l i qu id
tempera ture  and the  tank wal l  i f  the  fo l lowing equat ion  appl ies  (where  Q is  in
Btu  h-‘)

Q = h&,At

Is  this  dr iving force a  reasonable number to  remove the equivalent  of  9  hp of  heat
th rough  the  wal l s  o f  a  j acke ted  vesse l?  Note  tha t  a l l  power  added  th rough  the
agi ta t ion shaf t  i s  t ransferred to  the  f lu id  by the  impel ler  so  that  the  temperature
of  the f luid r ises  unless  the heat  can be removed through the heat  t ransfer  area.

9.9. Consider the two units in Table 9.11. In this problem, a polymer is being
prepared in a solution whose viscosity is 2.0 x 10’ CP  and density 50 lb,,, tV3.  Tests
are  performed,  and equal  process  resul ts  are  obtained as  fol lows:
Labora to ry  un i t : N=6OOrpm;  P=O.l7hp
Pilot plant unit: N=36Orpm;  P=0.43hp
Find the horsepower,  the  torque,  the  impel ler  speed,  and the impel ler  diameter
for a 12000-gal reactor.

9.10. Consider laminar flow scale-up. Using Table 9.10, determine the scale-up
exponents  n and  r for  a l l  f ive  cases  l i s ted .
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10
FLUID
FLOW

IN. DUCTS

NOMENCLATURE

A
A ’
a
a
BS
b
c

c
CO

CP

CV

d

Species A
Area of transfer (m’,  ft’)
Empirical constant in Pai’s equations; subscripts 1,2;  see Eq. (6.113)
Constant in design of nozzle or venturi, Eq. (10.71)
Empirical parameter in Fig. 10.4 and Eq. (10.8)
Constant in design of nozzle or venturi, Eq. (10.72)
Instantaneous concentration (kmol rne3,  lb mol ftW3);  C,,  C,,  Ci are
concentrations of species A, B, i; CA,,,  is time-averaged concentra-
tion of species A at the wall; CA+ is bulk average concentration of
species A
Chezy coefficient in Eq. (10.51)
Orifice (or nozzle or venturi) coefficient, cf. Eq. (10.63); also, Cr,
C2,  and C3 are similar coefficients as used in derivations
Heat capacity at constant pressure (kJ kg-’ K-‘, Btu lb;’  “F-r)
Heat capacity at constant volume (kJ kg-’ K-‘, Btu lb;’  OF-‘)
Diameter (m, ft); d, is inside diameter of pipe, as used in fluid flow;
d, is coil diameter in Eq. (10.19); d, is equivalent diameter, Eq.
(10.44)
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F

f
i?

gc
h

h
i
K’
k
k

k
k:.

L

m
4
N
N
NA

NDn

NRe

NV K

Pipe roughness (m, ft); see Fig. 10.1 and Table 10.2 for more details
Base of natural logarithms (2.718 2818. . .)
Frictional loss term in Eq. (7.61),  the mechanical energy balance
( m2 s-*, ft lbf  lb,‘);  F’ is the original term in Eq. (7.61); Floss  is the
frictional loss term due to expansion or contraction [Eq. (10.22) or
Eq. (lO.Wl; Fpipe  and Fhttings are losses in pipes and fittings,
respectively
Force in rotameter derivation; FG  is gravitational force, Eq. (10.74);
FB  is buoyancy force, Eq. (10.75); FD  is drag force, Eqs. (10.76) and
( 1 0 . 7 7 )
Fanning friction factor, Eq. (6.89)

R  or  A+’ is the ith.  or (i + 1)th  iteration in Newton’s method in
Example 10.2
Subscript denoting rotameter float
Vector representing the acceleration due to a gravitational or other
field (m s-*,  ft SC*)
Function in Example 10.2 whose root is to be located; g’(f) is the
derivative of g(j)  where f is the friction factor root to be located
Gravitational conversion constant (32.174 lb,  lb;’ ft s-*)
Heat transfer. coefficient, defined by Eq. (6.86) (W m-* K-r,
Btu ft-* h-’  “F-i)
Height in a triangular duct (m, ft)
Unit vector in the x direction
Empirical constant in non-Newtonian viscosity equation, Eq. (10.5)
Ratio of cp  to c, for gases, Eq. (10.69)
Loss coefficient, cf. Eq. (10.40); k, is expansion loss coefficient in Eq.
(10.22); k, is contraction loss coefficient; kettings  is sum of all loss
coefficients of fittings [cf. Eq. (10.40)]
Thermal conductivity (W m-’  K-’  or J m-l K-‘s-l Btu ft-’  OR-’  SC’)
Equimolar mass transfer coefficient, defined’ by Eq. (6.87)
[kmol m-* s-l  (kmol me3)-‘, lb mol ft-* s-’ (lb mol ft-“)-‘I
Length (m, ft); L, is equivalent length of pipe [feet or meters of
straight pipe necessary to produce the same pressure drop as the
fittings-cf. Eq. (10.42)];  L,  is wetted perimeter in definition of
hydraulic radius, Eq. (10.45)
Integer parameter in Pai’s  equation, Eq. (6.113)
Mass of rotameter float, Eq. (10.74)
Number of velocity heads, Eq. (10.16)
Total points in velocity profile determination in Eq. (10.87)
Molar flow defined with respect to fixed coordinates (kmol s-l,
lb mol s-l); subscript r, w means molar flow in the r direction at the
wall
Dean number in Eq. (10.20),  defined as NR,(d,/dC)1’2
Reynolds number, Eq. (6.1) or Eq. (6.2),  d,U,,  avep/p  for pipe flow
von Karman number, Eq. (10.13)



4 0 2 APPLICATIONS  OF TRANSPORT PHENOMENA

n
n
n’
P
Q
4

r
r

T

T
t
u

v ,
K
W

I

Y
z
Z

a

B

B
A

Roughness factor in Eq. (10.51)
Index in Eq. (10.87)
Empirical constant in non-Newtonian viscosity equation, Eq. (10.5)
Pressure (kPa,  atm, Ibrin.-*)
Volume rate of flow (m3 s-i,  ft?  s-l)
Energy (heat) flow vector (Js-‘, Btus-‘);  subscripts denote com-
ponents in coordinate directions
Cylindrical coordinate (m, ft)
Radius (m, ft); r, is value of r at the tube wall; ru is the hydraulic
radius, Eq. (10.45)
Pressure ratio in design of gas orifice meters, Eq. (10.68)
Area of a pipe or tube that is perpendicular to the z direction (i.e.,
the flow or cross sectional area) (m*,  ft*);  cf. Eq. (7.10); S, is area of a
rotameter float in the direction perpendicular to the flow (the
projected area)
Instantaneous temperature (K, “R, “C, “F); T;.  is time-averaged
temperature of the wall or surface; T,,, or Tb  is time-averaged or bulk
temperature, Eq. (11.31)
Total time
Temperature in “C in Eq. (i) of Example 10.1
Instantaneous velocity vector (m s-l,  ft s-l); UC is magnitude of U;
U,, UY, U,, U,, (I,, U, are components in directions x, y, z, 0, r, qb;
U*. avc  and U,,  max are mean velocity and maximum velocity in z
direction, respectively; U,, V,, U2,  or U, is time-averaged velocity in
z direction at locations b, 1, 2, or 3; U*  is the friction velocity, Eq.
(6.53)
Volume of rotameter float in Eq. (10.74) ff.
Shaft work done by the system in the mechanical energy balance, Eq.
(7.61) (J, Btu)
Mass rate of flow (kg s-i,  lb,,, s-l); cf. Eq. (7.10)
Subscript denoting wall
Correlation variable in Eq. (10.20),  defined as the log of the Dean
number
Expansion factor in the design of gas orifices, Eq. (10.67)
Rectangular (Cartesian) coordinate
Height in potential energy term in the mechanical energy balance,
Eq. (7.61) and Eq. (10.39)
The ratio of the average velocity cubed to the average of the cube of
the instantaneous velocity, Eq. (7.54),  as used in the mechanical
energy balance, Eq. (7.61) and in Example 10.17
The ratio of the average velocity squared to the average of the square
of the instantaneous velocity, Eq. (7.24); this ratio appears in the
momentum balance equation, Eq. (7.23)
The ratio of orifice diameter to pipe diameter, Eq. (10.62)
Difference, state 2 minus state 1; e.g., Ap means pz - pl
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tl Efficiency of a pump, defined as the theoretical power divided by the
actual power

K Empirical constant in Eq. (10.8),  usually equal to 0.4
P Viscosity (kg m-l s-’ or N mm’s, lb, ft-’  s-‘,  cP); pW  is viscosity at

wall
II Ratio of circumference of a circle to its diameter (3.141592 65. . .)
P Density (kg mv3, lb,,, ftm3);  pr is density of float; pA is density of the

process fluid
r Momentum flux (or shear stress) tensor (N m-*, lbr  ft-“);  rX,,,  r,,=,

etc., are components of the momentum flux tensor, where subscripts
refer to direction of momentum transfer and direction of velocity; t,
is shear stress at the wall

Transport in ducts is one of the most important areas of study for engineers. A
consideration of fluid transport through piping systems is a first step in this
study. Generally, the fluid flow problem must be solved before any progress
can take place on the problems of heat and mass transport. Most common
applications involve fluids in turbulent flow. Chapter 6 emphasized the
difficulties in arriving at exact solutions to turbulent flow problems, even in the
absence of heat and mass transfer. Hence, the methods of analysis to be
presented in this chapter will be empirical and will utilize the dimensionless
numbers of Chapter 8. In this respect, the presentation here is much like that
of Chapter 9 on agitation.

The most basic design of a duct is the pipe or tube. Design of piping
systems will be covered in considerable detail. ,These  methods are easily
extended to ducts of other shapes through the introduction of an equivalent
pipe diameter.

Finally, a section on measurements during transport is included. After
design and building of duct systems, one often needs to make measurements of
the transport variables to ascertain whether or not the system is performing
properly. Furthermore, methods of measurements during transport are ex-
cellent illustrations of the principles of transport covered so far.

10.1 REVIEW
This section begins with the exact solutions to isothermal laminar tube flow
problems from Chapter 4 and reviews turbulent flow conditions, first men-
tioned in Chapter 6.

10.1.1 Laminar Pipe How
In laminar pipe flow, the fluid elements move in the z direction only; as a
result there are no components of velocity in the r and 8 directions. Most
laminar flows normally occur at Reynolds numbers of 2100 or less, although it
‘is possible to have laminar flow at much higher Reynolds numbers; however, it
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is relatively easy to initiate the transition to turbulence by vibrations, rough
spots in the tube, etc. The laminar flow problem is solved under the five
assumptions listed just before Eq. (4.65). Generation of momentum arises
from the applied pressure difference and the acceleration due to gravity. If the
tube is horizontal, then the velocity (I, is related to pressure difference and
radius by Eq. (4.72):

UZ  = $ (rz - r*)

or

-=I- L2UZ
u z, max 0r.

a n d

e= 2 nr4

8pL o

where Q is the volume rate of flow and

(4.74)

Table 4.5 summarizes the equations for laminar flow.
The pressure difference term is conveniently included in the dimension-

less group f, the Fanning friction factor of Eq. (6.89). The friction factor was
introduced in Chapter 6 and is seen to occur naturally in Example 8.1 from a
dimensional analysis of the flow of a fluid in a pipe. Equation (6.89) can be
written as .i’

f=A= (&4)(-AplL)

iP% ave tpe.  ave
(10.2)

where rW  is the shear stress at the wall and - AplL  is the pressure drop per
unit length. From Eq. (4.80) and Eq. (6.88),  the wall shear stress can be
expressed as

z =do(-AP)w
4 L

= iPC,  . ..f

As discussed in Chapter 4, the shear stress rrZ  is zero at the pipe center line
and a maximum at the wall:

t r-Lf,-
t,  r,

(4.81)

Equations (4.77) and (6.89) and the definition of the Reynolds number [Eq.
(6.2)]  can be combined to give the relationship

f = WUJz,  ave~l~)  = 16/N,, NRe  I 2100 (6.124)
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Equations (10.2) and (6.124) are easily manipulated into the following
form, useful in capillary viscometer experiments:

I& = dot-ApI  = cc guz,  ave
4L do

(10.4)

where the quantity &!J,,  .,fd, is equal to the shear rate at the wall in a
Newtonian fluid, (XJJdr),:

(4.84)

Equation (10.4) is useful because the pressure drop is isolated on the left-hand
side and the velocity is on the other side. In the capillary viscometer, the
pressure drop and the flow rate are measured; the velocity is computed from
the flow rate through Eq. (7.10):

w = NJ,, ad (7.10)

where S is the inside area of the capillary in the direction perpendicular to the
flow. Hence, by measuring Ap and w, the viscosity p is computed using Eqs.
(7.10) and (10.4).

Equation (10.4) can be generalized for non-Netipnian  fluids whose
viscosity varies with shear rate and/or shear history:

(10.5)

where K’ and n’  are empirical constants. A more extensive discussion of
non-Newtonian fluids will be given in Chapter 15.

Example 10.1. Hershey [Hl] determined the viscosity of toluene at 30°C in a
capillary viscometer with a 0.03254-in.  diameter tube.. A flow rate of 28.36
cm3 min-’ yielded a pressure drop of 0.9364 psi per foot. Compute the viscosity in
CP.

Answer.  The International Critical Tables gives the following equation for the
density of toluene [Ill:

p = 0.88412 - 0.92248 x 10-4 (9

where p is in units of g cm-3  and t is in “C. Either Fqs.  (6.124) or (10.4) can be
used to find the viscosity if the flow is laminar, but Eq. (10.4) is more convenient.
The pressure drop can be converted to SI units by the conversions in the
Appendix, Table C.15:

Ap/L  = (-0.9364)(2.2631  x 104) = -2.119 x 10’ kg m-* s-* (ii)

The negative sign is required since Ap  must be negative to cause a flow through
the capillary tube (p2  <pl).  The other quantities are also converted to SI:

d, = 0.03254 in. = 0.08265 cm = 8.265 x lo-‘m (iii)
Q = 28.36 cm” min-’ = 4.727 x lo-’  m3 s-’ (3
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From Eq. (i), the density at 30°C  is:

p = 0.88412 - 0.92248 x 10~‘t  = 0.8564 g cmm3  = 856.4 kg me3 (4
The cross sectional flow area S is

S = nd:/4 = 5.365 x lo-’  mz (9
The velocity in the tube is

u 1. ave = Q/S = 4.727 x lo-‘/5.365  x lo-’  = 0.8810 m s-l (vii)

The shear stress at the wall is found from Eq. (10.4):

L = d,(-Ap)l(JL)  = (&A)(-Q/L)
= (8.265 x 10m4/4)(2.119  x 104)  [(m)(kg m-‘s-‘)I  = 4.379 kg m-’ s-’ (viii)

The shear rate at the wall for a Newtonian fluid is

8U z,  .,/do  = (8)(0.8810)/(8.265  x 10-4)  = 8527 s-’ 64

Next, Eq. (10.4) is solved for the viscosity and the numbers are inserted:

p = t,/(8U,  pvJdo) = 4.379/8527  = 5.135 x 10e4 kg m-l  s-’  = 0.5135 CP (x)

Finally, it is important to check the Reynolds number to make sure Eq. (10.4)
applies. From Eq. (6.2):

Kc = do  Uz, ,PIP
= (8.265 x lo-“)(0.8810)(856.4)/(5.135 x 10-4)

x [(m)(m s-‘)(kg me3)/(kg  m-’ s-‘)]
= 1214 w

The flow is well within the laminar region, and Eq. (10.4) is valid.

10.1.2 Turbulent Pipe FIoW

In processing equipment, with the desire for high throughput, turbulent flow
conditions often prevail, and thus constitute the main emphasis for this
chapter. Chapter 6 contains the discussion of turbulent flow in which the
Reynolds equations were presented. It was indicated that, in general, these
equations cannot be solved because they have more unknowns than equations.
Thus, pressure drop and profiles of temperature and concentration must be
predicted from empirical correlations. The earliest correlation was that of
Blasius  [B2]:

f = o.079(NR,)-“4 (6.133)

This equation is approximately correct up to a Reynolds number of 105. The
von Karman correlation, Eq. (6.132),  is more accurate and easy to use with
today’s technology in computing:

l/(f)“*  = 4.0 log,,, [NReCf)ln]  - 0.4 3000 5 NRe  5  3.2 x lo6 (6.132)
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This equation applies for fully turbulent flow of Newtonian fluids in smooth
tubes.

The turbulent flow equations for heat and mass cannot be solved
analytically to yield equations for any of the profiles, either instantaneous or
time-averaged. Empirical coefficients, called heat and mass transfer coefficients
(h and kf, respectively), were defined previously in order to proceed with
equipment designs:

(q/AL  = @w  - LA (6.86)

WAIA),~  = k&w - CA, me) (6.87)

In later parts of this book, these coefficients will be correlated as functions of
fluid properties and flow variables, just as Eqs. (6.124) and (6.132) give the
friction factor as a function of the Reynolds number for laminar flow and
turbulent flow, respectively. More specifically, use will be made of the Nusselt,
Sherwood, and Stanton numbers that can be found in Table 8.1.

Finally, it should be re-emphasized that the transition from laminar to
turbulent flow is ill-defined. Consider a fluid flowing through a tube in laminar
flow. If the flow rate is increased sufficiently, a transition to turbulent flow will
begin. The Reynolds number of 2100 is often quoted as the upper limit of the
laminar region. Section 6.1.2 discusses transitional flow in some detail. Above
a Reynolds number of 10000 the flow is almost always’ fully turbulent. If
conditions include a low-viscosity fluid in a system with lots of vibration from
pumps, etc., then the flow is probably fully turbulent at a Reynolds number of
4000-5000.

‘.
Example 10.2. It is desired to operate the viscometer  in Example 10.1 in the
turbulent region. Compute the pressure drop for the same 0.032%in. tube at a
Reynolds number of 13 700 using toluene  at 30°C. Consider that the ratio L/d, is
744 for  the  tube.

Answer. Since each term in the Reynolds number of the previous example,
except the velocity, remains the same, the new velocity can be obtained by a
simple  ra t io :

u2.  avc = U,,  ave. d&IN Rc,& = (0.8810)(13  700)/(1214)

=9.94ms-’ (9

Next ,  Eq.  (6 .132)  must  be solved by t r ia l  and error  for  the  f r ic t ion factorf:

l/(f)“’  = 4.0 log,, [NRccf)l’z]  - 0.4 (6.132)

The root of this equation can be found by any of the common root-finding
methods, such as Newton’s method [F?],  which is particularly convenient when an
ana ly t ic  der iva t ive  i s  eas i ly  found.  Exper ience  wi th  Eq .  (6 .132)  ind ica tes  tha t  a
general computer program should start at a value of friction factor of 0.005.
However ,  for  hand calcula t ions ,  as  in  th is  example ,  Fig .  6 .19 provides  a  bet ter
guess, approximately 0.007. The root of Eq. (6.132) occurs when the function
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TABLE 10.1
Calcubation  of friction factor by Newton’s method horn  Eq.
(632) at NRC  = l3 700

IterMioIl A SW S’W  A+t

1 0.007ooO -0.1152 9 7 7 . 8 2 0.007 1 1 8
2 0.007 118 -0.0014 9 5 4 . 6 6 0 . 0 0 7 1 1 9
3 0.007 119 1 . 8 3  x 10-5 9 5 4 . 3 7 0 . 0 0 7 1 1 9

g(f)  is zero:

g(f) = 4.0 logro  [iv&~)‘R] - 0.4 - l/(f)‘” = 0 (ii)

The der ivat ive  of  th is  funct ion is  cal led g’(f ) :

g ’ ( f )  =  (2.0)(0.4342945/f)  +  (O.S)(f)-” (iii)

Newton’s  method,  in  the  nomenclature  of  th is  problem,  is

fi+, =A  - dJ)lg’G) (9

Table  10.1  summarizes  the  resul ts  of  Newton’s  method as  appl ied to  the  root  of
Eq.  ( i i )  a t  a  Reynolds  number  of  13 700.  Convergence is  very  quick as  a  resul t  of
the combined eff ic iency of  the method and the close ini t ia l  guess .  The fr ic t ion
factor  f rom Eq.  (6.132)  at  a  Reynolds number of  13 700 is  0 .007 119.

The pressure drop is easily calculated in SI units, using Eq. (10.3):

d.S-4)  = tpuz
rw = 4L =’  avcf (10.3)

First ,  the numbers from Example 10.1 and this  problem are inserted to f ind t,:

%I =  tpc,  . ..f
= (1/2)(856.4)(9.94)2(0.007  119)

= 301.1 kg m-’ s-*  = 301.1 N me2 (3

Then,  Eq.  (10.3)  i s  solved for  the  pressure  drop:

-Ap  = (t,)(4)(L/d,) = (301.1)(4)(744)  = 8.961 x l@ N m-*  = 896.1 kPa (vi)

where L/d,, i s  744 as  s ta ted  in  the  problem.
This problem is solved with more difficulty in English units. First, all

quantities must be converted to English units:

do = 0.03254/12  = 2.712 x 1O-3 ft

u z,  oyc  = 9.94lO.3048  = 32.61 ft s-’ (vii)

p = (856.4)(62.4/1000) = 53.44 lb,,, ft-’

Equat ion  (10 .3)  requi res  the  grav i ta t iona l  convers ion  cons tan t  g , :

rw  =  44-ApYW)  =  KP~:,  ,AlRM.f) (viii)



FLUID FLOW IN DUCTS 409

This equation is solved for -Ap  and the numbers inserted:

= (2)(53.44)(32.61)‘(0.007  119)(744)/(32.174)  (I; ;b:!(;$‘)
m f

= 18 710 Ibf  tY2 = 130 psi 6x1
A pressure drop of 130psi on a tube of length 2.017ft [(0.03254)(744)/(12)]  is
high and shows the impracticality of flows at high Reynolds number in small
tubes.

10.2 PIPING SYSTEMS

Equation (6.132),  as repeated in the preceding section, and Fig. 6.19 (the
friction factor as a function of Reynolds number) are adequate for turbulent
flow of fluids in smooth pipes. However, the methods for design in smooth
round pipes must be extended to more complex systems. Innumerable
experiments on a wide variety of systems for fluid flow have been performed in
the past for evaluation of the friction factor. To try to tabulate all of these
would be impracticable and not very convenient for use by engineers.
Applicable, however, are the concepts developed so far in this text, namely the
use of dimensionless correlations based on dimensional analysis or inspection
of the governing differential equations. In this section, the detailed working
equations and correlations for isothermal fluid transport will be presented
together with a number of sample problems to illustrate their applications.

The correlations for pressure drop (the friction factor) and their
applications to practical fluid flow problems are relatively simple and straight-
forward; however, there are some precautions, minor problems, and exten-
sions that the reader should be aware of in order to apply the results.

10.2.1 Roughness
The roughness of the pipe wall is a factor of importance in turbulent flow. The
pipe roughness e may be defined as shown in Fig. lO.l(a).  In practice, the
roughness e is not measured visually because the surface of commercial pipe
contains smooth areas and rough areas. The determination of e will be covered
later. The roughness was one of the variables correlated in Example 8.1, and
in that problem the dimensionless group e/d,  was formed. This group is
sometimes called the relative roughness.

Moody [M3]  prepared a plot of the group e/d, versus pipe diameter for a
number of materials; this plot is given elsewhere [B3, C3, F2, Kl, P2]. Many
design engineers find so many uncertainties in other aspects of piping design
that they use a typical value of e, as tabulated in Table 10.2. Most installations
use commercial steel pipe, the roughness of which is seen to be 1.5 x
10e4  ft (4.572 x lo-’  m).
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(a) Cross section of a pipe with rough walks

(6)  Laminar  flow (c) Turbulent flow

FIGURE 10.1
Pipe roughness.

It is interesting to note the manner in which therelative roughness e/d,  is
established. Nikuradse [Nl]  determined the pressure drop in artificially
roughened pipes. He used several sizes of pipe, all initially smooth, and glued
sand grains of constant size to the interior so that the values of the relative
roughness for the different pipes were well characterized. By selection of the
size of the sand grains, he was able to have as many as three pipes differing in

TABLE 10.2
Values of absolute roughness for various materials*

Material

Drawn tubing
Commercial steel,

wrought iron,
or welded steel pipe

Asphalted cast iron
Galvanized iron
Cast iron
Wood stave

Concrete

Riveted steel

5 m 0

1.524 x lo+ 5 x 1o-6

4.572 x lo-’ 1.5 x lo-’
1.219 x 1o-4 4 x 1o-4
1.525 x 1o-4 5 x 1o-4
2.591 x 1O-4 8.5 x 1O-4
1.829 x 1o-4 to
9.144 x lo-’ 6 x 1O-4 to 3 x 1O-3
3.048 x 1o-4 to
3.048 x lo+ 10-3 to 10-2
9.144 x 1o-4 to
9.144 x 1o-3 3 x 10-3 to 3 x 1o-2

l An adaptation of the original  from Moody, Trans.  ASME 66:  671 (1944);  Mcch.
Eng. 69:  lW5  (1947).  By permission of ASME.



FLUID FLOW IN  DUCTI? 411

1- - -
;-30
e 1-=-
d,  6 1 . 2
e 1-=-
d, 1 2 0
e 1-=-

do  23;

Lo4
-=-

e” 1-=-
d,  1014

NRc

FIGURE 10.2
Sand-roughened pipe flow data of Nikuradse. (From Schlichting,  Boumfkuy  Layer Theory, 7th  ed.,
p. 617, McGraw-Hill, New York, 1979. By permission.)

diameter but with identical relative roughness values. He showed that the
friction factor was a function of the Reynolds number and the relative
roughness together, as can be clearly seen from a plot of his data. Figure 10.2
is a plot of Nikuradse’ data in the form of friction factor versus Reynolds
number. In laminar flow, the experimental data in Fig. 10.2 show that the
dimensionless group e/d,  has no effect on either the velocity protile  or Eqs.
(6.124) and (10.4). In the first place, laminar flow is inherently stable, and
disturbances decay and disappear. In the qualitative sense, the roughness is
essentially buried in the laminar flow as suggested by Fig. lO.l(b).  In turbulent
flow the viscous sublayer, which is extremely small as established in Chapter 6,
is of the same order or smaller than the size of the roughness e. As a result, the
roughness has an effect upon the velocity gradient at the wall, which is related
to the wall shear stress, upon which the pressure drop depends. Figure lO.l(c)
shows the case for turbulent flow. For simplicity, the influence of roughness on
the friction factor was not shown in Fig. 6.19, but a more complete plot to be
shown shortly will include the group e/d,.  If the group e/d,  is not of
significance for a given pipe, that pipe is said to be hydraulically smooth.

It is difficult to determine the relative roughness by direct visual
measurements because the roughness is not uniform in commercial pipe. The
common procedure is to measure the friction factor as a function of Reynolds
number for a given commercial pipe and establish the relative roughness e/d,
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FIGURE 10.3
Friction factor versus Reynolds number for rough pipes. (From McCabe, Smith, and Harriott,  Unit Opercitions  of Chemical Engineering, 4th ed.,
p. Ss,  McGraw-Hill, New York, 1985. By permission.)
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by comparing the measurements with the correct line in Fig. 10.2 or Fig. 10.3
(to be presented shortly).

10.2.2 Pressure Drop in Rough Pipes

The most common representation of friction factor is to present the logarithm
of friction factor versus the logarithm of Reynolds number with the relative
roughness e/d, as a further parameter. This plot is shown in Fig. 10.3 and is
sometimes called the Stanton plot or the Moody plot [M3].  Note that Fig. 10.3
contains the Fanning friction factor, widely used by chemical engineers
because that dimensionless group is the shear stress at the wall divided by a
kinetic energy term [cf. Eqs. (6.89) and (10.2)].  Another friction factor,
sometimes called the Darcy-Weisbach friction factor, is four times larger and
is given in some of the fluid mechanics literature. The reader can always
determine which friction factor is being used by examining the equation for
laminar flow, Eq. (6.124): if the constant is 16, the Fanning friction factor is
used; if the constant is 64, the Darcy-Weissbach friction factor is used.
Unfortunately, many authors have confused the two and intermingled both in
their equations and figures. The reader must always check the accuracy of
other references.

As can be seen in Fig. 10.3, for a given relative roughness, the friction
factor becomes constant and independent of Reynolds number at high flow
rates. Nikuradse [Nl]  proposed the following correlation in this region:

l/(f)“*  = -4.0 log,,; + 2.28
(eldO)~R.lf)LR  < “01

(10.6)
0

The curves in the region where f varies with NRe were successfully correlated
by Colebrook [C2]:

l/(f)“*  = -4.0 log,0{[e/(3.7dO)]  + [1.255/(NR,cf)1n)]} (10.7)

This equation is restricted to the region between the von Karman line (Eq.
(6.132) for smooth tubes) and the zone where the friction factor is independent
of NRe (i.e., where Eq. (10.6) applies).

Equation (10.7) for rough pipe is a modification of the von Karman
equation for smooth pipe, Eq. (6.132). An alternate representation for
sand-roughened pipe data is the equation upon which Eq. (6.132) is based,
i.e., Eq. (6.129). An empirical modification of Eq. (6.129) can be obtained by
replacing ~0’ with r,le:

2 ‘r2  1 r,
0
7 =;ln;+&-$ (10.8)

where B,  is given in Fig. 10.4 and K  is usually 0.4. The subscript s is used to
denote data for flow in sand-roughened pipes. Equation (10.8) simplifies to

l/Cf)rn  = 4.0[logI,,(rJe)]  + B,/(2)“*  - 2.53 (10.9)
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9
4

8 . From pressure drop

7
o From velocity profile

6L  I  I  I I I  I  I  ,I I  I  I
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.42.6

h3o(~*ePlP)

FIGURE 10.4
Sand roughness data and the constant B,.  (From Schkhting,  Boundary Layer Theory,  7fh  ed.,  p.
620, McGraw-Hill, New York, 1979. By permission.)

where the constants have been modified slightly to improve the fit to the data.
Many authors divide Fig. 10.3, the Moody chart, into three or more regions:
(1) the laminar where Eqs. (6.124) and (10.4) apply; (2) a “fully turbulent”
where Eq. (10.6) applies; and (3) a “transition” where the lines of constant
e/d,  in Fig. 10.3 are curved and Eq. (10.7) applies. ’ However, these
designations are at variance with the nature of transitional and turbulent flow
as presented in Chapter 6 and thus will be avoided in this text.

If the friction factor is constant and Eq. (10.6) applies, then for a given
pipe the pressure drop should be proportional to the square of the velocity
(flow rate):

AP  0: % ave (rough pipe, large ZV,,) (10.10)

In hydraulically smooth tubes, the exponent is more nearly 1.75:

AP  a ui;‘,“, (smooth pipe, turbulent flow) (10.11)

This result can be verified from the Blasius equation, Eq. (6.133),  since the
friction factor contains Ap to the first power and velocity to the second power
(The exponent 1.75 equals 2.0 minus 0.25.). In laminar flow, the pressure drop
is proportional to the first power of velocity, as can be derived easily from Eq.
(10.4).

If the flow is transitional, as described in Chapter 6, the exact friction
factor cannot be predicted. However, Fig. 10.3 may be used to establish limits.
In the transitional region, for rough or smooth pipes, the following is true

0.0075 If 5  0.02 / 2100 c iv&  < 4000 (10.12)

Example 10.3. Calculate the pressure drop in a pipe of 6-cm  inside diameter for
water flowing at 1 m min-’ over a length of 300 m. The pipe is commercial steel.
For water, assume the density to be loo0  kg mm3  and the viscosity 1.0 cP.
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Answer. I t  i s  f i rs t  necessary to  determine the Reynolds  number  to  see i f  the  f low
is laminar, transitional, or turbulent. From Eq. (6.2), with 1 CP  equal to
1 x lo-’  kg m-l  s-i,  the velocity (1/60) m s-‘,  and the diameter 0.06 m:

NRC  = dJJ.,p/p  = (0.06)(1/60)(1000)/(10-3)(  cm)‘;;?;;!,m-3))

=lOOO (9

Therefore the f low is  laminar .  Ei ther  Eq.  (6.124) or  Eq.  (10.4)  can be used.  From
Eq. (6.124):

f = 16/N,  = 0.016 (ii)

Equat ion  (10 .2)  i s  so lved for  the  pressure  drop,  and the  numbers  in  SI un i t s  a re
inserted:

-AP = (4f  WdoWEvJ2)  = (4f  /WWo)W:v,)
= (4/2)(0.0I6)(~/0.~)(1~)(1/~)*  [(m m-‘)(kgm-3)(mzs-Z)]

= 44.4 kg m-’ s-’  = 44.4 N me2  = 0.0444 kPa  = 6.45 x lo--’  psi (iii)

This  resul t  could a lso have been calculated from Eq.  (4 .77)  or  Eq.  (10.4) .

Example 10.4. Repeat the previous example for Reynolds numbers of 10 000 and
100 000.  Contras t  smooth  p ipe  wi th  commercia l  s tee l  p ipe  and cas t  i ron  pipe .

Answer. The result in Example 10.3 applies for all kinds of pipe and will be
included in  the  compar ison  of  resu l t s .  F i rs t  the  re la t ive  roughness  e/d,  wi l l  be
computed,  using the data from Table 10.1:

Commercial steel pipe: e/d, = 4.572 x 10-5/0.06  = 0.000 762 (i)

Cast  i ron  p ipe: e/d, = 2.591 X 10-4/0.06  = 0.00432 (ii)

At Reynolds numbers  of  lo’ and  lo’,  the  f low i s  fu l ly  tu rbulen t .  F igure  10 .3  wi l l
be  used to  es t imate  f,  ins tead of  one of  the  more  tedious  equat ions  [Eqs .  (6.132),
(10.6) (10.7), (10.9)]:

For  smooth pipe:

N,,=l@  f=0.0076 (iii)

NRe=l@  f=0.0045 (iv)

For commercial steel pipe:

NRe  = 10” f = 0.008 (3
NRC  = l@ f =0.0053 (4

For  cas t  i ron pipe:

NRC  = 10’ f =0.009 (vii)

NRC  = l@ f = 0.0073 (viii)

The veloci t ies  for  Reynolds numbers of  lo4 and  10’ are  found by solv ing Eq.  (6 .2)
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TABLE 10.3

Comparison of pressure drops in a 0.06 m pipe

Ap (psi) forL.=3OOm

NRe Smooth commercial steel castiron

ld 0.0064 O.CKKi4 0.0064
la4 0.31 0.32 0.36
16 18.1 21.4 29.4

for velocity:

u.,  = &&/(4.P)l
= [(l@)(lO-‘)]/[(O.O6)(ld)]  [(kg m-’ s-‘)(m-‘)(kg-’  m3)]

U.,  = 1/6 m s-’ (for NRC  = 10”) (ix)
Il.,.  = 1016  m s-’ (for NRC  = 10s) (xl

The calcula t ion of  pressure  drop fol lows that  in  Eq.  ( i i i )  in  Example  10.3:

-AP  = (4fwhwLm  = ~4fmwdx~~~,~ (xi)

The resul ts  of  the  pressure  drop ca lcula t ions  are  in  Table  10.3 .
It is interesting to compare the results in Table 10.3 with a “quick-and-

dirty” est imate from Eq.  (10.10) or  Eq.  (10.11).  One way to make a comparison
is  to  genera l ize  e i ther  equa t ion  wi th  an  unknown exponent :

AP  = UL, (xii)

If Eq. (xii) is applied to the data in Table 10.3, it is possible to solve for the
exponent  n :

@PV@P)I = (Uave.JUave.  d (xiii)

n = Iln[(Ap)ZI(AP)~I)l[ln(u,~,,~/U,,.  dl (xiv)

Using Eq. (xiv), the exponent n is ‘computed from the results at Reynolds
numbers of 10’  and 16:

n = 1 .76 (for a smooth pipe) (xv)
n = 1.82 (for a commercial steel pipe) (xvi)

n = 1.91 (for  a  cast  i ron pipe) (xvii)

Note  tha t  the  ve loci ty  ra t io  i s  the  same as  the  ra t io  of  Reynolds  numbers  (10:  1)
for all three tubes. The above results confirm the Blasius prediction of the
exponent n, Eq. (lO.ll),  for a smooth pipe or tube. For the rough pipes, the
Reynolds  numbers  are  not  h igh enough for  the  f r ic t ion fac tor  to  be  independent
of  Reynolds  number ;  hence  the  exponent  d id  not  qui te  reach 2 .0 ,  which is  the
predict ion of  Eq.  (10.10) .

\
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10.2.3 von Karman Number

The von Karman number is the product of the Reynolds number and the
square root of the friction factor:

&K  = N4f)1n  = (d,pI~CL)[d,(--~)I(2Lp)11’* (10.13)

This dimensionless number does not contain the velocity, but is determined
from the pipe dimensions, fluid properties, and pressure drop. Recall that this
group has appeared in many previous equations, including Eqs. (6.132) and
(10.7),  and in the criterion of applicability in Eq. (10.6). Hence, in problems in
which the flow is the only variable to be determined, computation of the von
Karman number saves a solution by trial and error. However, the trial and
error is relatively simple and usually takes only a few steps. To avoid the trial
and error solution an alternate plot to Fig. 10.3 is used in which the groupf,
l/(f)‘“,  or  cf)‘” is plotted versus I&x with relative roughness as a third
parameter. This useful plot is shown in Fig. 10.5 as f versus IVvx.  A typical
problem will be solved first by the trial and error approach and then with the
assistance of Fig. 10.5. Obviously, the von Karman line, Eq. (6.132),  becomes
a straight line if cf)- ‘12 is plotted against the von Karman number. An
equivalent form of Nvx  in terms of d,lJ*p/p  can be obtained from Eqs.
(10.13) and (6.130).

Example 10.5. A commercial steel pipeline 300m long and of inside diameter
0.06m is to carry water. A pump is available that can supply pressures up to
147 kPa.  Find, the maximum flow velocity by trial and error. Use the fluid
properties from Example 10.3.

Answer. The relative roughness for this pipe was computed in Example 10.4 in
Eq. (i). This and other values from Example 10.4 are

e / d ,  =  0 . 0 0 0  7 6 2

p=lOOOkgm-”
p = 1 cp = 0.001 kg m-’  SC’

(9

The solution to this problem requires first a guess of the friction factor,
then computation of the velocity and the Reynolds number, and evaluation of the
friction factor corresponding to NRe  and e/d, from Fig. 10.3 until convergence is
obtained. Equation (10.3) which is a rearrangement of the defining equation for
f,  is

(10.3)

The wall shear stress is a constant for this.problem:

t, = d,(-Ap)/(4L) = [-(0.06)(-1.47  x 1~)]/[(4)(300)]  [(m) (N  m-‘)/(m)]
= 7.35 N m-‘=  7.35 Pa = 7.35 kg m-’ s-’ (ii)
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where 1 pascal (Pa) is 1 Nm-*  or 1 kgm-‘s?.  Next, Eq. (10.3) is solved for
velocity in terms of f, and values for the quantities that are known so far are
substituted:

C,  aye  = (2r,)l(pf)  = [(2)(7.35)]/[(1OOO)(f)]  = O.O147/f  m’s-’ (iii)

Examinat ion of  Fig .  10.3  shows that  f i s  e s sen t i a l ly  cons t an t  a t  h igh  NRe.
Thus, convergence will be hastened if this value of f is used to estimate the
velocity. For the value of e/d, in Eq. (i), the limiting value off from Fig. 10.3 is
0 .005 .  Inser t ing  th i s  number  in  Eq .  ( i i i ) ,  the  resu l t  i s

u I.  ave = (0.0147/0.005)‘” = 1.715 m s-r

The corresponding Reynolds number from Eq.  (6.2)  is

(9

Nce  = do U, aYe p/p = (0.06)(1.715)(1000)/(0.001) = 1.029 x 16 69

Now Fig. 10.3 is used to estimate f at a Reynolds number of 1.029 x lti  and
rela t ive  roughness  of  0 .000762.  From Fig.  10.3:

f=O.o054  _ (4

Use of Eq. (ii) yields a new U,,  a=:

u*,  ave = (0.0147/0.0054)‘R  = 1.650 m s-r (vii)

and the  new Reynolds  number  i s

NRe  = (0.06)(1.650)(1000)/(0.001) = 9.899 x lo (viii)

Consulting Fig. 10.3 at a Reynolds number of 9.899 x 10’  and the relative
roughness of 0.000762, the new value of f will be 0.0053. Summarizing, the
resul ts  of  the  second i tera t ion are :

U I.  ~VC  = 1.650 m s-’

NRC  = 9.899 x lo4 (ix)
f= 0.0053

Similar ly ,  the  resul ts  of  a  th i rd  i tera t ion are_~-  ~--

u=,  iv, =lT665  m s-’

NRe  = 9.992 x lo4

f=O.o053
(4

At this  point ,  the  value off  is  deemed unchanged from the las t  i terat ion.  Hence,
the  va lues  above are  the  converged values .  Note  tha t  the  f ina l  answer  i s  one  of
the  condi t ions  in  Example 10.4 ,  the  case  of  NRe  e q u a l ’ t o  1 6 .

Example 10.6. Repeat Example 10.5 using the von Karman plot, Fig. 10.5.
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Aniwer.  The von Karman number is calculated from Eq. (10.13):

NVK = NE&y  = (d.plp)[  WI”,

= (0.06)(1ooo)  -(0.06)(-1.47x  105)  ‘lz
1o-3 C (2)(300)(1000) 1

X [CmMkg  mS3)/(kg  m-’ s-‘)]{[(m)(kg  m-’ s-2)]/[(m)(kgm-3)]}‘n
= 7275 [(s m-‘)(m* s-*)I~]  = 7275 6)

From Fig. 10.5 at a von Karman number of 7275 and a relative roughness of
0.000 762, the friction factor is 0.0055. The Reynolds number can be computed by
solving Eq. (10.13) for NRe:

NRc=NVK/(f)"*=7275/(0.0055)'n=  9.81~  10”

From Eq. (6.2) the average velocity is

(ii)

u Z, aYe = N&/WP)I
= [(9.81  x lO”)(lO-‘)]/[(0.06)(103)]  [(kgm-’  s-‘)(m-‘)(kg-’  mZ)]

=1.63ms-’ (iii)

This answer differs from the velocity found in Example 10.4 by less than 2
percent, which exceeds the accuracy obtained with the graphs in Figs. 10.3 and
10.5.

10.2.4 Solutions of Large Molecules

The Reynolds number-friction factor correlations represented by Figs. 10.3
and 10.5 apply for ordinary fluids such as gases, water, and most organic
materials. These figures also apply for many solutions such as sea water or
gasoline or crude oil or sugar dissolved in water. Unfortunately, there are
important exceptions, liquid solutions whose behavior deviates significantly
from that predicted by Figs. 10.3 and 10.5. These fluids are called “non-
Newtonian” because they either do not follow Newton’s law of viscosity or
they exhibit elastic properties, or both. Non-Newtonian transport phenomena
are covered in Chapter 15.

Typical examples of non-Newtonian fluids include suspensions, disper-
sions, or solutions of polymers, soaps, surfactants, or solids. An important and
interesting group of fluids exhibits a phenomenon called drag reduction [Hl,
H3, Pl, Vl]. If a small amount of a special high-molecular-weight polymer is
added to a simple fluid such as water in turbulent flow, the pressure drop will
actually decrease significantly. Figure 10.3 predicts an increase in pressure
drop at constant flow, because the addition of polymer increases the viscosity
and thus decreases the Reynolds number; from Fig. 10.3 it is seen that the
friction factor increases if the Reynolds number decreases. For aqueous
solutions, concentrations of a polymer in the parts-per-million range are
sufficient to cause deviations. For nonaqueous solutions, minimum concentra-



\

FLUID FLOW  IN DUCT3 421

tions in’ the order of 0.1 percent are usually required. Polymer solutions of
concentrations exceeding 1 percent are usually so viscous that it is impossible
to achieve turbulent flow.

Some correlations are available for the simpler non-Newtonian materials
and will be discussed in Chapter 15; however, data from the turbulent flow of
drag-reducing solutions have not been correlated adequately. Up to now the
dimensionless number approach to correlating friction factors has failed for
these materials. The important variables for their analysis are yet to be fully
identified. Design of such systems can always be based on the data for a
particular solvent, with plenty of safety factors included to ensure satisfactory
operation.

10.2.5 The Velocity Head Concept

The preceding example problems have shown that pressure drop calculations
can be tedious. The concept of velocity head will be introduced to serve as a
quick (and inexact) estimate of pressure drop. First, Eq. (10.3) is rearranged
to the following

(10.14)

(10.15)

with the number N of velocity heads being

N=4f;
0

(10.16)

In this development, the magnitude of a velocity head equals IJZ,  ,,/2.
Equation (10.15) is exact as written, but usually an approximation is
introduced through use of an average value off. From Table 10.2, the absolute
roughness for commercial steel pipe is 0.0018 in. Considering pipe diameters
from f in. to 18 in., and Reynolds numbers from 5 x 103 to 106,  an average f of
0.0055 seems reasonable.

Equation (10.16) can be solved for the dimensionless
L/d,: h,

For one velocity head (N = 1) and an average f (0.0055),  an estimate for L/d,
of 45 can be computed from Eq. (10.17). Thus, as a crude approximation it
takes 45 pipe diameters for the pressure drop to equal one velocity head
U$ ,/2. Hence, the number N of velocity heads is estimated by

(10.18)
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where (Lid,),,, is the dimensionless length of the piping system for which a
quick estimate of the pressure drop is to be made.

The accuracy of the velocity head approach is determined by the
proximity of the true friction factor to 0.0055. The results may sometimes be
off by a factor as large as 2, but never by a factor of 10 or more. Note also that
N depends only on the piping system. Thus, for a given system, Eq. (10.15)
predicts that the pressure drop is proportional to the square of the velocity (cf.
Eq. (10.10) for rough pipes). The usefulness of the concept of velocity heads is
clearly illustrated in the following example and in later sections.

Example 10.7. Using the velocity head concept, estimate the pressure drop in a
0.06-m  ID commercial steel pipe at Reynolds numbers of 104  and 16. The fluid is
water  as  in Example 10.4.  The pipe length is  300 m.

Answer. Consider  the Reynolds  number  of  lo’ f i r s t ;  the  ve loc i ty  was  computed  in
Example 10.4 to be (10/60) m s-‘. The  ve loc i ty  head  i s

Uz,  .J2  = (10/60)‘/2 = 0.01389 m*  s-’

The dimensionless  length  of  the  p iping sys tem,  L/d,,  i s

L/d, = 300/0.06 = 5000 (ii)

The number of velocity heads N is  computed from Eq. (10.18):

N = W4Js,.stm 145 = 5000/45  = 111.1 (iii)

-APIP  = NC@,  a.&) (10.15)

-Ap  = pN(@ .,,/2)  = (1000)(111.1)(0.01389)  [(kg m-‘)(m’  se*)]

= 1543 kg m-r s-’  = 1.543 kPa  = 0.224 psi (iv)
The calculat ions for  a  Reynolds number of  l@  are summarized below:

uz,  ave = 100/60  m s-’

U:. .,/2 = 1.389 m2  s?

L/d, = 5000
I

i
N= 111.1

-Ap  = 1.543 X ld  kg m-’ se2  = 154.3 kPa  = 22.4 psi (4

Comparisons of  these est imates with the values in Table 10.3 for  commer-
c ia l  s tee l  p ipe  show errors  of  31  percent  and 5 percent  for  Reynolds numbers of
lo4  and lo*,  respectively. The Reynolds number of 10’  is too low for a close
estimate via the velocity head method. Note that N is the same for both flow
rates ,  s ince  i t  depends  on ly  on  the  equipment  be ing  used .

10.2.6 Curved Tubes

The pressure drop in curved tubes is larger than that predicted in the earlier
sections for straight pipes of identical length. For rigid pipe, turns are
accomplished by pipe fittings such as elbows; calculations for these will be
presented in Section 10.23. Flow through curved tubes or helical coils occurs
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FIGURE 10.6
Flow in a curved pipe, after Prandtl
[P3]. (From Schlichfirlg,  Boumlary
Layer  Theory,  7 th ed. ,  p. 626 ,
McGraw-Hill, New York, 1979. By
permksion.)

in a number of beat transfer applications. Usually such coils are immersed in a
second fluid. The object is to be able to predict the pressure drop in the curved
tube so that the required pump size can be designed. It is also possible to have
flow in spiral coils [Al]. A thorough review is available elsewhere [S4].

In curved tubes, the momentum of the fluid rounding the curve causes
the velocity profile to be distorted. The maximum velocity no longer occurs at
the tube center line but nearer the wall at the outside of the coil bend, as
shown in Fig. 10.6. Visual studies have indicated the presence of secondary
flow patterns in which fluid flows outward from the center of the tube to the
top of the bend and then around the outside in a pair of loops, as sketched to
the right in Fig. 10.6 [P3]. The secondary flow pattern, often called the
double-eddy or Dean effect, stabilizes laminar flow and increases the transition
Reynolds number, NRe,  critical  [S4]:

N~e,ctitica~  = (2100)[1+ (12)(d,ld,)‘“] (10.19)

where d,  is the inside pipe diameter and d,  is the coil diameter.
The effect of coil curvature is substantially greater in laminar flow than in

turbulent flow [S4]. For a gentle curvature, the pressure drop in laminar flow is
essentially the same as that in a straight pipe, and Eqs. (6.124) and (10.4)
apply. At the maximum curvature and just before the transition, a given length
of coiled pipe or tubing may require five times the pressure drop of a straight
length at the same flow rate. Thus, the correction for curved tubes can be
highly significant. The following equation introduces the Dean number Nu,
(named in honor of an early worker in this field) and an empirical fit of White’s
data [Wl] for laminar flow in coils:

lnCf,+i/fstraighJ  = 2.8276 + 4.3719X  - 0.8903X2 X = In Nun (10.20)

ND~=NR,(&&)~~=  (d,U,.,pl~)(d,ld,)ln ll.6~ND,52c@o

Below a Dean number of 11.6, the ratio fcoil/fstraight  equals 1. Equation (10.20)
predicts that at a Dean number of 2000 there will be five times the pressure
drop during laminar flow in a coil as compared with that in a straight tube. .

For turbulent flow in coiled tubes, the following correlation is offered
[W2]:

foil  = (0.08)(NR,)-“4  + (0.012)(d~/d,)‘n

10 5  d,/d,  I 250

N Re,critical  s NRe 5 100  OfH

(10.21)



424 APPLICATTONS  OF TRANSPORT PHENOMENA

The accuracy of Eq. (10.21) is probably only f10.  percent, especially for
Reynolds numbers of less than 15 000, for which predictions of fcoil  from Eq.
(10.21) may be high. Notice the similarity of Eq. (10.21) to the Blasius
correlation, Eq. (6.133),  from which it originated.

10.2.7 Expansion and Contraction Losses

In any real piping layout, flow does not begin and end in a straight pipe.
Instead, the fluid may originate in a tank or other large reservoir; often it
proceeds through a short section of pipe into a pump or compressor where the
pressure is raised significantly. From the pump the fluid flows through a
number of pipe elbows to change directions, valves to control the flow rate,
tees to split or combine streams, unions to connect sections of pipe, expansions
to change pipe diameters, etc. Each of these expansions, contractions, fittings,
valves, etc., contributes significantly to the pressure drop. This section deals
with expansions and contractions in turbulent flow.

Sudden expansion. Consider first a sudden expansion, shown in Fig. 10.7, in
which a fluid experiences an abrupt increase in flow area so that its velocity
decreases. As the fluid enters the large pipe of cross sectional area &, a jet is
formed as the fluid separates from the wall of the small tube. Because at
location 2 there is no longer a pipe wall restraining the jet of fluid as it issues
from the small*  pipe, the jet expands until it fills the entire area, shown
between locations 2 and 3 in Fig. 10.7. Some fluid breaks away from the jet
and circulates between the wall and the jet around location 2. The net effect of
these eddies and of the fluid expansion coupled with the three changes in
velocity profile, stable at location 1 in the small tube, relaxed (i.e., becoming
more plug-like) at location 2, and re-established at location 3, is a significant
drop in pressure and a resulting energy loss. This loss, called Floss,  may be
expressed as

Floss  = k(U:D)
where k, is the expansion loss coefficient (dimensionless), to be calculated later
as Eq. (10.31). For brevity, the “z, ave” subscript has been dropped, and U,  is
the average upstream velocity at location 1 in the small tube in the z direction.
The loss coefficient k, is sometimes called the resistance coefficient.

In any problem in which the piping system is more complex than a single

FIGURE
A sudden
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length of pipe it is advisable to begin the problem with the mechanical energy
balance, Eq. (7.61):

Pz-Pl
- + &2 - 4 +

P
(7.61)

The term Floss is identical to the F' term in Eq. (7.61),  if Eq. (7.61) is applied
to the expansion in Fig. 10.7. Equation (7.61) then becomes

P3-Pl-+ @J:-- U:)+F,oss=O
P

where cyr  and cu,  are assumed to be unity and the potential energy and shaft
work terms are zero for this problem. Thus, the units of F,, are ft lbt  lb;’  in
English units or m2se2 in SI units. In the English system, k, must be divided
by g,  to keep the units consistent in Eq. (10.23). Note also that Eq. (10.22) is
in the form of the velocity head U2/2 times number of heads k,, as discussed in
Section 10.2.5.

The expansion’ loss coefficient k, is readily calculated through the
mechanical energy balance, Eq. (10.23),  and the integral momentum balance,
Eq. (7.23). In Fig. 10.7, location 2 is chosen so that

u, = u, (10.24)

Again, the distance between location 1 and location 2 is very short, so there is
no friction loss and p, = p2.

The integral momentum balance equation, Eq. (7.23) for the x direction,
i s

P = (“L w,  cos  Lyl  - ~uL  y cos  a2  + pls, cos  c.xx U U 1
1,ave 2, ave

- P2s2 COS  cu,  - Fx.  drag + Fx,  ext (7.23)

where or  and o2  are the angles between the velocity vector U and the
horizontal unit vector (i) (both equal to 0” in Fig. 10.7). As discussed in
Chapter 7, each term with (U2),,lUave is replaced with U,,l~, and then /3 is
assumed to be unity in turbulent flow. When Eq. (7.23) is applied to the
sudden expansion in Fig. 10.7, it is convenient to choose locations 2 and 3; the
usual assumptions are that both fi2  and p3  are unity, and the losses are
negligible:

(10.25)

where w is the steady-state flow (units of kgs-‘)  and S3 is the cross sectional
area at both locations. Note that location 2, which is defined solely by Eq.
(10.24),  is vital in the use of Eq. (7.23). If the integral momentum balance
equations were to be applied between locations 1 and 3 in Fig. 10.7, there
would be components in the y and z directions as well as the x direction, plus
some other non-Lero terms.



426 AFFLlCATlONS OF TRANSFQRT  PHENOMENA

The mass flow rate w  in Eq. (10.25) is replaced by using Eq. (7.10):

w = PV3% (10.26)

The velocity V, is replaced with VI  [Eq.  (10.24)],  and Eq. (10.25) becomes

(10.27)

since p1 equals p2 and the area S3 may be factored out and cannot be equal to
zero. Equation (10.27) is solved for the term b3 -pJlp,  and the result is
substituted into Eq. (10.23). After rearrangement, F,  is

F ,-=j(u:- us)-(u,)(u,--  ~3)=4(~:-2~,~3+  u:)

= I(V,  - u3y (10.28)

Equations (10.22) and (lO.&) are combined to solve for k,:

(10.29)

Use of the integral mass balance, Eq. (7.13),  at constant density yields
the ratio of V3 to VI

(10.30)

where d, and d3  are the inside diameters of the small and large sections,
respectively, in Fig. 10.7. Thus, the final expression for the expansion loss
coefficient k, is

where dl is the diameter of the small section and d2 is the diameter of the large
section. The most restrictive assumption in the derivation of Eq. (10.31) is that
both CY  and #? (defined in Chapter 7) are unity; this assumption limits Eq.
(10.31) to turbulent flow. For a typical turbulent flow, say a Reynolds number
of 16 or 106,  both LY  and j3 are very close to unity, and Eq. (10.31) is
essentially rigorous, since the other assumptions are reasonable.

Sudden contraction. A sudden contraction (also called reduction) is shown in
Fig. 10.8. The flow phenomena in the case of a contraction are quite different
from those in an expansion. At location 1, the velocity profile is fully
developed as the fluid flows in the large section. The sharp-edged contraction
causes the fluid to accelerate as it enters the small section. The fluid actually
contracts to an area smaller than the area of the small section. This well-known
phenomenon is termed the “vena contracta”, and is noted in any flow that
abruptly enters a section of a smaller diameter, such as flow through an orifice.

Determination of the loss due to a sudden contraction is accomplished by
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v-

a

the introduction of a contraction loss coefficient k,:

F loss  = WJ:/2)

FIGURE 10.8
A sudden contraction.

(10.32)

Note that in Eq. (10.32) the contraction loss coefficient is based on V,, the
velocity in the small section. Unfortunately, an exact determination of kc  for
turbulent flow is not possible. Let us illustrate by attempting the analysis
followed previously for the equations leading to Eq. (10.31). The first
assumption is that the loss between locations 1 and 2 in Fig. 10.8 is zero. Then
all the loss occurs between locations 2 and 3. Recall that the integral
momentum balance must be applied to a pair of areas for which the velocity
vector U has a non-zero component in one direction only. Examination of Fig.
10.8 shows that the only possibilities are locations 2 and 3. When the integral
momentum balance, Eq. (7.23),  is applied to locations 2 and 3 in Fig. 10.8, the
resulting equation is

w(&-4)+Pzsz-P&=0 (10.33)

Unfortunately, Eq. (10.33) contains the vena contracta area &.,,  which is
unknown. Thus, it is impossible to factor out S, and/or S, from Eq. (10.33),  as
was done previously to obtain Eq. (10.27) for the case of a sudden expansion.
The analysis stops at this point, and k,  is obtained from experimental data.
The curves for both the expansion and the contraction loss coefficients are
shown in Fig. 10.9. For turbulent flow, a suitable empirical equation for the
curve in Fig. 10.9 is

k,=0.42
( 1

1 -f dzfd,  5  0.76 (10.34)
1

where dz  is the diameter of the smaller section in Fig. 10.8 and dl  is the larger
diameter. Note in Fig. 10.9 that the sudden contraction curve merges with the
sudden enlargement curve above dzld,  = 0.76. Hence Eq. (10.31) can be used
above d2/dl  = 0.76 for the determination of k,  if the definitions of dl  and dz
are reversed. For laminar flow, k,  has been found to be less than 0.1 and
therefore is negligible.

Sometimes a gradual transition is used to change a small-diameter pipe dl
to a larger diameter d,. Let 0 be the total angle between the walls of
transition, as shown in Fig. 10.10. For a sudden enlargement, 8 equals 180”.
Figure 10.10 presents k, for such pipe transitions, usually called conical
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FIGURE 10.9
Resistance due to sudden enlargements and contractions. (Reproduced from  Tech. Paper 410,
Flow of Fluids.  Courtesy Crane Co.)

expansions, conical diffusers, or uniformly diverging ducts. The curves pass
through a minimum at an angle of 7”. Note also that above 8 = 40 to 60”,  the
loss coefficient k, actually exceeds that for a sudden enlargement. In other
words, a sudden enlargement is preferred to a fairly sharp-angled conical
expansion.

A pipe transition that uniformly converges (flow from right to left in Fig.
10.10) has a very low loss coefficient. Figure 10.11 shows that a well-rounded
pipe entrance (i.e., a contraction) has a k, of 0.04. All loss coefficients such as
those in Figs. 10.9, 10.10, and 10.11 apply in Eq. (10.22) or Eq. (10.32) for
Floss,  just as do those from Fig. 10.9. Use of these loss coefficients is easy when
the mechanical energy balance is combined with the velocity head concept.

Consider first the flow in a straight pipe of constant diameter. The
mechanical energy balance [Eq. (7.61)]  applies with all terms zero except the
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FIGURE 10.10
Loss coefficient for conical diffusers. (Excerpted by special pennWon  from Chemical Engineering
(June 17, 1968), copyright 0 1%8  McGraw-Hill, New York.)

two associated with pressure drop and losses:

(PP.  - PIIIP  = F’ = F,, (10.35)

where F,i, is the frictional loss due to pressure drop in the pipe. The
definition of friction factor was rearranged and solved for the term (PI -p2)/p

previously in Eq. (10.14). Combining Eqs. (10.35) and (10.14) yields

(PI  - PZ)/P  = F,,  = (4fLld,)(ti,  ,/2) (10.36)

Again, Eq. (10.36) is restricted to a straight pipe of constant diameter and
length L. The loss from expansions and contractions is found from the sum of
Eqs. (10.22) and (10.32):

Floss  = We  + k)(@,  a.&) (10.37)

These last two equations can be combined and included in Eq. (7.61),  which
may be solved for the pressure drop. The general design equation for piping
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FIGURE 10.11
Resistance due to pipe entrance and exit. (Reproduced from Tech. Paper 410, Flow of Fluids.
Courtesy  Crane  Co . )

systems is Eq. (7.61) with F’ expanded to include all possible losses. Complete
details will be presented in the next section.

10.2.8 Pipe Fittings and Valves

In general, any time the velocity profile in a pipe is disturbed, there is an
increase in the pressure loss, as compared to a straight pipe of equivalent
length. This section deals with the pressure loss in pipe fittings and valves, the
presence of which disturbs the velocity profile.

Equipment. In the United States, pipe and tubing are sized in English units.
Complete tables of pipe and tubing data are in Table B.l and B.2,
respectively. For tubing, the nominal size is the actual outside diameter. Many
homes have j-in.  copper tubing in use as water supply lines. Such tubing has an
outside diameter of 0.500 in.

Pipe tends to be thicker than tubing. Pipe and pipe fittings are
interconnected by screw-type tapered threads, by flanges that bolt together
with a gasket in between, or by flanges that are welded together. Pipe sizes are
strictly nominal, as is evident in Table B.l. For example, l&in. pipe has an
outside diameter of l.!XlOin.  All l&in. fittings, unions, elbows, tees, valves,
bushings, etc., are sized to this diameter. The schedule number denotes the
wall thickness, which is designed according to the allowable stress and the
pressure to prevent bursting. For ordinary water service, galvanized pipe of
thickness schedule 40 is adequate. Note that the inside diameter of If-in.  pipe,
schedule 40, is 1.610 in. For higher pressures, schedule 80 la-in. pipe, which
has an inside diameter of 1.500 in., may be used. Table 10.4 compares pressure
and schedule numbers.
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TABLE 10.4
Comparison of schedule number and pressure rating  for steel
pipe*

Valve or fitting
ASA pressure chssitication

steam rattrIg Cold rating

250~pound  and lower 500 psig
300-pound  to 600-pound 1440 psig
W-pound 2160 psig

MO-pound 3600 psig

2500-pound:  4-6  in. 6000 psig
8 in. and larger 3600 psig

Schedule No.
of pipe thiiknewt

Schedule 40
Schedule 80
Schedule 120
Schedule 160

xx (double extra strong)
Schedule 160

’  Reproduced from Tech. Paper 410, Flow of Fluids. Courtesy Crane Co.
t These schedule numbers have been arbitrarily selected only for the purpose of identifying
the various pressure classes of valves and f i t t ings with specif ic pipe dimensions for the
interpretation of Row test data; they should not be construed as a recommendation for
installation purposes. Note that schedule numbers indicate the approximate values of the
expression (lCUlOp/S,),  where p is the internal pressure (psi) and S,  is the allowable stress
(psi).

Figures 10.12 and 10.13 show the common fittings and valves. Note that a
nipple is simply a length of pipe threaded on either end. The pipe threads must
be tapered in order for the nipple to snug up to the corresponding threads in
the female end of the fitting. Usually some type of pipe dope is required for a
tight seal.

Pressure loss. Valves or fittings increase the pressure drop in a pipe system in
turbulent flow as compared with that predicted for a straight pipe without the
valve or fittings. Even a coupling or union, which joins two long lengths of
pipe, disturbs the velocity profile in turbulent flow  sufficiently to increase the
pressure drop by a small amount.

There are two standard procedures for determining the pressure loss in
turbulent flow due to the presence of fittings. One procedure is to use a table
of equivalent lengths; the second is to define a loss coefficient k for each type
of fitting, which is to be used in an expanded form of Eq. (10.37). These
factors are listed in Table 10.5. More complete lists are available from
equipment manufacturers or from handbooks [C3, P2]. Either procedure is
accurate to only f30 percent. Any type of fitting that changes the direction of
flow, such as a globe valve, causes a large  loss. On the other hand, frictional
losses in fittings such as couplings and unions are usually negligible, especially
in view of the overall accuracy. A third procedure, not covered in this text, is
especially recommended for design in large pipes [H2].

The equivalent-length procedure rates each fitting in terms of the
equivalent length of straight pipe. For example, a common globe valve, fully
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90” Reducing street elbow

Nipples

(a) Typical screwed pipe fittings

El
Reducer

Cap

Union

FIGURE 1O.U
Some typical pipe fittings. (From Faust  et al., Principles of Unit Operation,  2nd ed., pp. 550-551,
Wiley, New York, 1980.  By permission.)

open, is rated at 340 equivalent lengths, as stated in Table 10.5. Thus, if the
pipeline had an inside diameter of 0.02 m, the equivalent length of the open
globe valve would be 6.8 m. The total length of the pipe system is considered
to be 6.8 m longer as a result of flow through this fitting. The equation for total
length L is

L = Lpipe + Le, fittings + Lloss (10.38)



FLUID  FLQW  IN DUCTS 433

Screwed flange Slip-on flange Blind flange

Elbow Tee Lateral Taper reducer\

(b) Typical flanged pipe fittings

(c) Sectional view of gate valve (left) and globe valve (right). A-wheel; B-wheel nut;
D-spindle;  E-packing nut;  F-gland;  G-packing;  H-bonnet;  I-disk holder;  J-disk;
K-disk nut; L,-body.

where L, fittings is the sum of the equivalent lengths of all fittings, Lloss  is for
expansions and contractions, and Lpipe is the length of straight pipe. The total
equivalent length [L from Eq. (10.38)] may be used in an equation similar to
Eq. (10.36),  which relates Ap to p, f, L, d,,  and U,, ave.

Design and calculations with equivalent lengths are especially useful to
the engineer who works only occasionally with Table 10.5. The equivalent
length shows quickly the penalty associated with each fitting in easy-to-
visualize terms. Also, it is easy to verify the equivalent length for a plant pipe
system if it is possible to measure one pressure drop and one flow rate.
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FIGURE l&W
Types of valves. (Reproduced from Tech. Paper 410, Flow of Fluids. Courtesy Crane Co.)
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TABLE 1O.S
Lass coefficient and equivalent length  L/d, for turbulent flow through valves
and fittings*

Typeoftlttingorvalve

Lass Equivalent
coeaicknt, kn@,
k Lldo

45” ell standarda*b*‘Vs*’9
45” ell, long radiu.@
90”  ell standard”SbS”g.‘P”

1011;  radius~*b*CS8
square or miteP

180”  bend, close return”P”*c
Tee, std, along run, branch blanked offs

used as ell, entering rundah
used as ell, entering branchbe”  ’
branch flowin&h*’

C4mpling*,8
Union*
Ball valve, orifice to do  ratio 0.9, fully open
Gate valve, open“,s”

f opefl
f opeff

f opeff
Diaphragm valve, open”

a openp
f opefl
! opefl

Globe  valve, bevel seat, openb*’
t opefl

Globe valve, composition seat, open
1 wff

Globe  valve, plug disk, open

t opefl
t w-f
t ape@

Angle valve, open”B
Y or blowoff valve, open”.’
Check valve, swingaPbSj

disk check valve
ball check valve

Foot valv@

0 . 3 5
0.2
0.75
0.45
1 . 3
1 . 5
0.4
1 . 0
1 . 0
1 . 0
0.04
0.04
0 . 1 7
0.17
0.9
4 . 5

24.0 2
2 . 3
2.6
4 . 3

21 .o
6.0
9 . 5
6.0
8 . 5
9.0

1 3 . 0
36.0

1 1 2 . 0
2.0
3.0
2.0‘7

10.09
7 0 . 0 4
1 5 . 0

1 6
-
30
2 0
5 7
5 0
2 0
60
60
-
0.1
0.1

13
13
3 5

1 6 0
900
-
-
-
-
340
-
340
-

450
-
-
-
145
175
135
-
-
420

l This table was compiled  from Lapple  [Ll];  Chemic~  Engineers’ Wm&wk  [P2];  and the Crane Co. [C3].
Excerpted  by special  permission from Chemical Engineering (May, 1949). copyright 0 1968 by McGraw-Hill,
New York; from Perry’s  Ckemical  Engineers’ Handbook, 6th ed.,  Perry and Green (eds.) ,  McGraw-Hill ,  New
York, 1984; reproduced from Tech. Paper 410, Flow of Fluids, courtesy Crane Co.

‘How of Fluids  tkrough  Valva,  Fiaings,  and Pipe,  Tech Paper 410.,  Crane Co., 1969.
b Freeman: Expmimtnts  upon the F&w  of Water in Pipes and  Pipe Finings, American Society of Mechanical
Engineers, New York, 1941.
’ Gibson: lfydradics  and  1~  Applications, 5th ed., Constable, London, 1952.
’ Giesccke  and Badgett:  Heafing,  Piping Air Conditioning 4(6):  443 (1932).
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TablelO.S'@otnotes  continued)

’  Giesecke: 3.  Am. Sot.  Heat. Vent. Engrs.  32:  461 (1926).
’ Gilman:  Heating, Piping Air Conditioning 27(4):  141 (1955).

‘Pipe  Friction Manual. 3rd ed., Hydr?ulic  Institute, New York, l%l.
’ Hoopes,  Isakoff,  Clarke, and Drew: C/tern.  Eng.  Progr.  44:  691 (1948).

‘Ito:  J. Basic  Eng.  82:  131 (1960).

’ Lansford:  Loss  of Head in Flows of Fluids  through Variow  Types of l$in. Valves, Univ. Illinois Eng. Expt.
Sta .  BuII.  Series 340, 1943.
’ LappIe:  Chem.  Eng.  S6(5):  96  (1949). [General survey reference.]

’ McNown:  Proc.  Am. Sot.  Civil Engrs.  79, Separate 258, 1-22 (1953); see discussion, ibid., 80,  Separate 3%,
19-45 (1954).
m  Schoder  and Dawson:  Hydraulics, 2d  ed., McGraw-Hill, New York, 1934, p. 213.

” Streeter: Prod. Eng.  l8(7): 89 (1947).
O  This  is pressure drop (including friction loss) between run  and branch, based on velocity in the main stream
before branching. Actual value depends on the Row split, ranging from 0.5 to 1.3 if main stream enters run  and
from 0.7 to 1.5 if main stream enters branch.

JJ  The fraction open is directly proportional to stem travel or turns of hand wheel. FIow  direction through some
types of valves has a small effect on pressure drop (see Freeman, op. cit.). For practical purposes this effect may
he neglected.

‘I  Values apply only  when check valve is folly open, which is generally the case for velocities more than 3 ft s-’
for  water .
’  Values should be regarded as approximate because there is much variation in equipment of the same type from
different manufacturers.

The loss coefficient calculation for pipe fittings is similar to that presented
previously for losses in enlargements and contractions. Equation (7.61) is
expanded to include specifically all losses-straight pipe, fittings, expansions,
and contractions:

P2-Pl 1 G,,  G, aYe
-+g(z2-z1)+2

P ( a2 a1 >

+ Fpipe  + Fhttings  + Floss  + W, = 0 (10.39)

where Fpi,  is from Eq. (10.36) and Floss is the expansion and contraction
losses, Eq. (10.37):

(Pt - P2)-=F _ 4fL &we

P
Pve  d 2

(10.36)
0

Floss = (k, + k,) + (10.37)

By analogy with Eq. (10.37),  the term FYtings  may be expressed as

with  kings being the sum of all loss coefficients (cf. Table 10.5). Equation
(10.39) is the general design equation for piping systems. Equations (10.36)
through (10.40) are supporting equations for the terms in Eq. (10.39). Use of
Eqs. (10.36) through (10.40) for piping systems in which the diameter varies



FLUID FLOW IN DUCI-S 4 3 7

from section to section will require each section to be considered separately.
There will be as many sets of Fpip, Fsttinss,  and F,, as there are diameters.

Sometimes it is useful to have available an equation relating the
equivalent length L,,6ni,,BJ  to khnings* First, Eq. (10.36) is recast in terms of
Ftittings and  L, fittings:

When Eqs. (10.40) and (10.41) are equated, the result is

Lc,  f i t t i n g s  _ktittings

do 4f

(10.41)

The sum of the loss coefficients (k, + k,) may also be expressed in terms
of an equivalent length Le.,,,. The derivation uses Eq. (10.37) and follows
exactly that just given:

Le 10s  ke  +kA=-
do 4f

Thus, at high Reynolds numbers in rough pipe for whichf is constant, the
equivalent length is directly proportional to the sum of the, loss coefficients. All
losses may be converted to equivalent lengths via equations of the type of Eqs.
(10.42) and (10.43). If the system consists of a single-size pipe, then Eq.
(10.38) yields the total length due to pipe, fittings, expansions, and contrac-
tions. That total length is used in Eq. (10.36) to find F,i,,  which then includes
all losses (straight pipe, fittings, enlargements, and contractions). If the system
consists of several pipe sixes, then Eq. (10.39) must be used, and there is no
point in converting losses into equivalent lengths. ,Instead,  Eq. (10.39) must be
expanded to include a set of Fpipe,  Ffinings,  and F,-,  for each section of pipe.
This calculation will be illustrated later in Example 10.11.

These two methods for determining the pressure loss in fittings are
approximate to the point that fine details are more of theoretical interest than
of practical interest. Nevertheless, it is noted that the dependence of pressure
drop through fittings on changes in flow rate differs slightly in the two
methods. In the case of the equivalent length method, pressure drop through
fittings varies as the 1.8 power of the flow rate at low Reynolds numbers. But
in rough pipe at high Reynolds numbers, pressure drop varies as the second
power of the flow rate, since Fig. 10.3 shows that f becomes constant. Note
that Eq. (10.38) shows that the loss coefficient approach also predicts
second-power variation of pressure drop with flow rates.

Finally, careful measurements have discerned that the equivalent length
or loss coefficient is sometimes a function of Reynolds number and roughness
as well as diameter and geometry. Equipment manufacturers do not in general
maintain geometric similarity between sixes; thus, a Reynolds number depend-
ency is predicted theoretically. Figure 10.14 shows how k varies with diameter
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FIGURE  10.14
Variation of the loss coefficient k with nominal pipe size. (Excerpted by special  pem&ion  from
Chemical Engineering (June 17, l%~?),  copyright @ 1%8 by McGraw-Hill, New York.)
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for some common fittings (S3). In general, differences between screwed
fittings, welded fittings, and flanged fittings are ignored for most fittings. At
high Reynolds number, k and L,  are independent of the Reynolds number.

The data in Table 10.5, in which each type of fitting has a single k value
or equivalent length, are reasonably reliable for l-in. to 6-in. diameter
commercial steel pipe. Even charts such as Fig. 10.14 extend the reliability
range marginally. Hooper’s method is recommended for large pipe and for
Reynolds numbers under 10 000 [H2].

Laminar  flow. It has already been mentioned that pipe roughness is not a
factor in pressure loss in laminar flow. The data and methods for Table 10.5
greatly underestimate laminar head losses. The loss due to a fluid undergoing a
sudden contraction is usually small. In precise’ work, such as viscometry,
entrance effects are important, however [Hl, M2].  Methods for laminar flow in
fittings [H2] and correlations for expansion [P2]  are available.

Example 10.8. Figure 10.15 shows a pipe flow system where air at pressure p1
forces water from a large tank through a pipe of total length 137 ft that contains a
series of valves and fittings. The discharge is at atmospheric pressure. All
elements are on the same horizontal plane. The pipe and all components are
24-in.  schedule 40. The Reynolds number in the pipe is 105.  Compute p, by (a)
the equivalent length method and (b) the loss coefficient method.

A n s w e r .  English units  wil l  be used.  The properties of  water as given in Example

Globe  open

Note: All pipe and fittings are on the same
horizontal elevation

FIGURE 10.1s
An example pipe flow system.
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10.3 include viscosity of 6.72 x 10m4  lb,,, fi-’ s-! and density of 62.4 lb,,, ft-‘. The
proper t ies  of  s tee l  p ipe  are  g iven in  Table  B. l :

S (flow area) = 0.03322 ft’ ’

d, = 2.469 in. = 0.206 ft (9
.

From Table 10.2, the absolute roughness for commercial steel pipe is 1.5 x
10m4  f t .  Then the  re la t ive  roughness  i s

e/d, = 1.5 X 10Y4/0.206  = 7.29 x 1O-4 (ii)

The friction factor, as read from Fig. 10.3 at a Reynolds number of la’ and
relative roughness 7.29 x 10e4,  is 0.0053.

The veloci ty  is  computed fro& the Reynolds number,  Eq.  (6.1):

u z,  ave = N&M&)
= [(1@)(6.72  x lo-*)]/[(62.4)(0.206)]  [(lb, fi-’ s-‘)(lb,’  ft’)(&-‘)]

= 5.234 ft s-’ (iii)

The volume rate of  f low is  thk veloci ty t imes the f low area:

Q = U l,PVC  S = (5.234)(0.03322)((fts-')(ft*)]

= 0.1739 ft3  s-’ = 78.0 gal min-’ (3

where 7.48 gal equals 1.0 ft’.
_.  Eqrivaleat length  method. Since the flow rate and friction factor are known, the

pressure drop per foot can be computed from Eq. (10.3):

-&J/L = (f)Wdo)W:,  .,/&c)l

= [(0.0053)(4/0.206)(62.4)(5.234)2]/[(2)(32.174)]  ((;;;br;;F;;:;))

= 2.74 lb,K3  = 0.0190 psi K’ 6)

Note  the  inc lus ion  of  g,,‘which conver ts  the  pressure  drop in to  force  uni ts .  I f  the
pressure  d rop  per  un i t  l eng th  in  Eq .  (v )  i s  mul t ip l i ed  by  the  equ iva len t  l eng th  L
[Eq.  (10.38)],  then the  pressure  a t  the  in le t  can be  ca lcula ted  f rom the  fo l lowing:

L ’ Lpipe + Le. fittings + LIoss (10.38)

-Ap  = (-Ap/L)(L) = 0.0190 L (vi)

PI =pstm  - AP (vii)

where Le. httingr is the sum of the equivalent lengths %f  all fittings, Lloss  is for
expans ions  and  cont rac t ions ,  and  Lpi, is the length of straight pipe (137ft,  as
given) .  The  equivalent  lengths  for  a l l  f i t t ings  in  ‘Fig . .  10 .15  are  obta ined f rom
Table  10 .5  and  l i s ted  in  Tzlble  10.6.  The sum of these is

L5,  mtingslda  = 2342.1 q ( v i i i )

Solving Eq. (viii) for the equivalent length of the fittings:

L 5, wings = (L,,,,,,.,ld,)(d,)  = (2342.1)(0.206)  = 481.9 ft 6x1
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TABLE 10.6

Losses in valves and fittings for Example 10.8

Fining Equivalent length, L,/d, Loss coefficient, P

Gate valve, 4 open 1 6 0 4.5
Globe valve, open 340 6.0
90”  standard ell 30 0.75
90”  standard ell 30 0.75
90”  standard elf 30 0.75
90”  standard ell 30 0.75
Globe valve, open 340 6.0
90”  standard ell 30 0.75
Tee, run flow 20 0.4
Tee, branch gow 6 0 1.0
45” standard ell 16 0.35
45” standard ell 16 0.35
Globe valve, open 340 6.0
Gate valve; a open 900 24.0
U n i o n 0.1 0.04

Total 2342.1 52.39

Examination of Fig. 10.15 reveals an entrance loss where the water at
pressure  p,  enters  the  pipe;  there  is  an  exi t  loss  where  the  water  dra ins  f rom the
pipe  in to  the  pond.  S ince  the  problem does  not  spec i fy  the  type  of  cons t ruc t ion ,
sharp-edged connect ions  wi l l  be  assumed.  From Fig.  10.11:

Entrance (contract ion) : k, = 0.50

Exit (enlargement): k. = 1.0 (4

Equation (10.43) is used to express these loss coefficients as an equivalent length:

Lc.,oss/do = (k, + k,)/(4f)  = (0.5 + 1.0)1[(4)(0.0053)]  = 70.75 (4

o r

Le,,oss  = (70,75)(0.206)  = 14.56 ft . (xii)

From Eq.  (10.38)  the  to ta l  length  for  pressure  drop is

L = Lpi,  + Le. fittings + Llou = 137 + 481.9 + 14.6 = 633 ft (xiii)

Note that the fittings contribute 3.5 times the length of straight pipe in this
example .  The  in le t  pressure  i s  computed  by  subs t i tu t ing  the  numbers  in to  Eqs .
(vi) through (viii):’ l

-Ap = (-Ap/L)(L) = (0.0190)(633)  = 1ZOpsi (xiv)

p, =patm  - Ap = 14.696 + 12.0 = 26.7 psia (xv)
Loss coefficient method. The loss  ‘coeff ic ient  method uses  Eqs.  (10.36))  (10.37)  and
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(10.40) to find the terms needed for the general design equation, Eq. (10.39):

+ F,,  + Fhttir + F,,  + W, = 0 (10.39)

b-p2F

P
(10.36)

vz
F,,  = (k, + k,) += (10.37)

u2
Ffittin,  = km,,  += (10.40)

The sum of the loss coefficients for all fittings in Fig. 10.15 is also in Table 10.6:

kattins,  = 52.39 (xvi)
The sum of all the loss terms is found from Eqs. (10.36),  (10.37); and (10.40). For
Fpip.,  the length was 137 ft and the friction factor 0.0053:

= [(4)(0.0053)(137)/(0.206)  + 1.0 + 0.5 + 52.39](5.234);/[(2)(32.174)]
x [(ft)(ft-‘)(ft’s-2)(lb,’  lbrft-’ s’)]

= 28.95 ft lb, lb,’ (xvii)

In Eq. (10.39) the kinetic energy term is negligible and the potential energy and
shaft work terms zero. Inserting the numbers into the remaining terms, the
pressure drop is

-Ap  = pc  F’ = (62.4)(28.95)  [(lb,,, ft-‘)(ft  lbr  lb;r)]

= 1807 lbrft-*  = 1807/144  = 12.5 psi (xviii)

The inlet pressure is atmospheric plus Ap, or 27.2 psia.  Computation of the
pressure drop by the loss coefficient method differs from that by the equivalent
length method by less than 1 psia.

10.2.9 Gases

The methods described in this chapter are applicable to incompressible fluids
that are Newtonian, as discussed earlier. The engineer must sometimes
consider a piping system with a gas flow. Usually, changes in the density of
such a gas are negligible, and the methods and charts presented previously can
be used directly.

In fluid mechanics, the topic of “compressible flow” is important in
aeronautical research, compressors, high-speed turbines, and the design of
nozzles that operate at velocities near the speed of sound. The basic equations
of compressible flow originate in the field of thermodynamics, and will not be
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covered here. Most of the general references cited at the end of this chapter
treat compressible flow, and the reader is directed to those.

In piping systems, sonic flow will be achieved across any valve or other
fitting that has a ratio of outlet to inlet pressure of 0.5 or less. In long pipe
systems, it is possible to consider sections of short length in which an average
density may be assumed with negligible error. If the flow is isothermal, then
the volume and hence the velocity of the gas will increase as the pressure
decreases. This consideration will lengthen the computation, but it presents no
further complexities.

10.2.10 Complex Fluid Flow Systems

Many pipe systems are designed with different pipe diameters in different
sections to achieve the most economical design. Similarly, branching pipe
systems are often encountered in processing situations. These multiple systems
are illustrated in Fig. 10.16. The principles needed to solve the systems in Fig.
10.16 have already been introduced. In the parallel case, Fig. lO.l6(a),  the
pressure drop across each leg is the same. Hence it will be necessary to find the
flow rate in each leg. For the series example, Fig. 10.16(6),  the flow rate is the
same in each diameter section. The intermediate pressures pE and pd are
unknown. The solution to the series network will involve a system of equations
that may be solved directly or by trial and error.

The following examples illustrate the approach. Note that the presence of
valves and fittings may be included as equivalent length by using Eq. (10.38).

Example 10.9. A three-pipe system is connected according to Fig. 10.16(0).  Pipe
one is 50m long and 0.04 m in diameter, pipe two is 150m long and 0.06m  in
diameter ,  and pipe three is  100 m long and 0.08 m in diameter .  All  the pipes  are
smooth. Assume all losses due to entry, exit, and pipe fittings are already
included in the lengths given. The ‘overall pressure drop is 1.47 x 16 N m-*

* (147 kPa).  The properties of water were given in Example 10.3. Determine the
total  f low rate  of  water  through the pipe system.

Answer .  The  pressure drop between a  and b  i s  g iven,  but  the  f low ra te  in  each
branch  i s  unknown.  Le t  w,  be  the  f low (kg s-l)  in  l ine  1 ,  e tc .  Then

WmA  = WI  + Y + Y = PW,  + PUS2  + PU& (9

(u)  Three pipes in parallel

FIGURE 10.16

(b) Three pipes in series

Complex f lu id f low systems.
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where once again,  for  brevi ty,  U,  i s  used for  I!J,,~“~, etc. Equation (10.36) applies:

(PI -PZYP = F,,, = (4fU~")(C.../2) (10.36)

Since the pressure drop across each line is the same and equal to 147 kPa
(1.47 X l@ kg m-r SC’), this equation will be applied to each pipe to find the
product of friction factor times velocity squared. Rearranging Eq. (10.36) for
branch  1 ,  the  product  i s

fiU:= [(-~PYP~@~/LW/~)

= (1.47 x 10'/1000)(0.04/50)(0.5)((~'~~~~~~))=0.0588 m’s-* (ii)

The method of  solut ion of  Eq.  ( i )  i s  g iven in  Examples  10.5 and 10.6.  From
Eq.  (10.13)  the  dimensionless  von Karman number  is

NW  = &.(f)‘n = (dopl~)[-(d~Ap)l(zLp)l’~
= [(0.04)(1000)/(10-4]{[-(0.04)(-1.47  x 10’)]/[(2)(50)(1000)1)‘”

x ([(m)(kg  me3)/(kg  mm’ se’)l{[(m)(kg  me’  s-2)l/[(m)(kg  mm311’n)
= 9699 [(m-l s)(m2  s-~)“*]  = 9699 (iii)

Ei ther  Fig.  10.5  or  Eq.  (6 .132)  can be used to  f ind the  f r ic t ion factor :

l/(f)“’ = 4.0 log,, NvK  - 0.4 = 15.55, (3
f=  0.00414 (4

The velocity is  found from Eq.  ( i i ) :

U, = (0.0588/fI)"*= 3.77 ms-’ (4

The mass flow from Eq. (7.10) is

w, = p&S,  = (1000)(3.77)[n(0.04)*/(4)] [(kg m-‘)(m  ss’)(m”)]

= 4.74 kg s-’ (vii)

Repeat ing  the  ca lcula t ions  for  branch 2:

fiG  = (1.47 X 10’/1000)(0.06/150)(0.5) ((~~m-~)~tt))  = 0.0294 m*  s-’ (viii)

Nvk  = [(0.06)(1ooO)/(10-‘)]{[(0.06)(1.47  x 10’)]/[(2)(150)(1000)1)‘”

= 1.029 x lo4 6x1
fz  = 1/[4.0 logO 1.029 x 10“ - 0.4]* = 0.00408 (4
U,=(0.0294/0.00408)'n=2.68  ms-’ (xi)
y = (1000)(2.68)[ir(O.O6)*/(4)]  = 7.59 kg s-’ (xii),

For  branch 3:

J&=O.O588 NVK  = 1.940 x 10’

f3=0.00356 U,=4.062  ms-’

~=20.42kgs-' (xiii)
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The total  f low from Eq. ( i)  is

wtota,  = 4.74 + 7.59 + 20.42 = 32.7 kg s-’ (xiv)

Example 10.10. Find the flow rate in Example 10.9 if the three sections of pipe
are  connected  in  ser ies  as  shown in  Fig .  lO.l6(b).

Answer. In this  example,  the f low rate  in each sect ion is  the same:

w=w,=y=y=puls,=pu&.=pu&

The areas of the pipes are
(9

S, = nd:/4  = n(0.04)‘/4  = 0.001257 mz

S, = 0.002 827 m*

S, = 0.005 027 m*

(ii)

The to ta l  pressure  drop (pa  -pb)  is  the  sum of  the  pressure  drops  per  sec t ion:

-Ap  =p.  -pb  = 1.47 x 16 kPa  = (p.  -pJ  + (PC  -pd)  + (p,,  -pb)

(-Ap,)  + (-ApJ  + (-Aps)  = 1.47 x 1O’kPa (iii)

The pressure  drop in  each sec t ion  i s  express ib le  in  terms of  the  equivalent  length
L, veloci ty ,  densi ty ,  diameter ,  and fr ic t ion factor  by any of  Eqs.  (10.3),  (10.14),
or (10.36):

-!p4fg!+ (10.14)
0

Equation (10.14) is applied to each section, with the average velocity replaced by
the mass flow rate w from Eq. (i):

-API = [(4f,)(L,ld,)l[w*l(2~~:)1

= 1.583 x 106(fiw2) (3
-Apz  = [(4fz)(L,/d,)][w’/(2pS:)l  = 6.254 x 10Scfzw”) 69
-Aps = [(4&.)(L3/d3)][wzl(2pS:)l  = 9.895 x l@&w’) (vi)

Equat ions  ( i i i )  th rough (v i )  cons t i tu te  four  equa t ions  in  four  unknowns ,  i . e . ,  w,
Ap,,  Ap2,  and  Aps.  To so lve  these  nonl inear  equat ions  in  the i r  present  form is  a
sophis t ica ted  task .  However ,  a  c lever  choice  of  the  order  of  ca lcula t ion  y ie lds  a
one-dimensional  root - f inding  problem tha t  can  be  so lved  by  hand ca lcula t ion  or
by a computer program.

The friction factors are functions of the Reynolds numbers [Eq. (6.2)],
which may also be expressed in terms of  w:

Nme.  I = 4 &P/P  = (d,wYW)  = [PJ+(w)1/[(0.~1257)(0.~1)1
= 3.183 x 104w (vii)

N ,,,=2.122x  Ww (viii)

NRe.  3 = 1.592 x 104w 64
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Equations (iii) through (vi) can be combined as follows:

(-4-4 + (-44 -I-  (-44
= (w3[(1.583 x lo”)&)  + (6.254 x 1ti)Q-J  + (9.895 x lo”)(&)] = 1.47 x l@ (x)

Thus, the final answer to this problem will be the value of w  that yields friction
factors from Eq. (6.132) or Fig. 10.3, all of which satisfy Eq. (x). The method of
successive substitution works well for this problem because the friction factors
vary slowly with small changes in i (i.e., Reynolds number). The solution
proceeds as follows:

1. Obtain a good initial guess for w. Let 0.0055 be the estimated value off, as
was used in deriving Eq. (10.18) in the velocity head approximation. Then Eq.
(x) is solved for the initial guess:

(0.0055w*)[1.583  x 106  + 6.254 x l@ + 9.895 x 1041 = 1.47 x 10’ (xi)

From this equation, the value of w is 3.40 kg s-l.
2. For the value of w at hand, compute the three Reynolds numbers from Eqs.

(vii), (viii), and (ix).
3. From Eq. (6.132) or from Fig. 10.3 find the friction factor for each of the three

sections.

TABLE 10 .7

Summaryofcakulationsfor  Example 10.10

Fig. or
Tlid Q-W Eq. Number Value

0
&%I

Eq.  (xl 3.4Okgs-’
1 Eq. (vii) 1.082 x 16

NIts.2 Eq. (viii) 7.215 x 104
NRC.3 Eq.  64 5.411 x 104

;
Fig. 10.3 0.00445
Fig. 10.3 0.00475

3 Fig. 10.3 0.00513

ke.  1
Eq.  (4 3.74 kgs-’
Eq. (vii) 1.190 x 16

Nlb.2 Eq. (viii) 7.937 x 104
NRc.3 Eq.  w 5.952 x 104

2
Fig. 10.3 0.00440
Fig. 10.3 0.00470

h Fig. 10.3 0.00500
Es.  (4 3.76 kg s-’

3 ke,  1 Eq. (vii) 1.197 x 16
NRe.2 Eq.  (viii) 7.980 x 104
N Ise.3 Eq.  CW 5.984 x 104

2
Fig. 10.3 0.00440
Fig. 10.3 0.00470

f3 Fig. 10.3 0.00500
W Eq.  (4 3.76 kg s-r
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4. substitute the values of the friction factors into Eq. (x) and solve for the new
estimate of w.

5. Test the new w for convergence. An appropriate test is

wmw  - wI I- <EPS
W

where EPS is an appropriate tolerance, commonly 0.5 x lo-‘.
6. If there is no convergence, then loop to step 2. If there is convergence, then

calculate the flow rate.

The calculations using this procedure are given in Table 10.7. The pressure drops
and velocities can be computed from the equations given previously if desired.
The flow rate at convergence is 3.76 kg s-‘, which is close to the initial guess.
Naturally the parallel configuration of the previous example yielded a much
higher flow rate for the same pressure drop.

The design equations presented so far in this text are by no means
complete, in that many more equations are available for a wide variety of
specific systems. For example, in Chapter 12 flow over immersed objects will
be covered. The engineer often must design systems that involve more than
just the material presented thus far. Thus, recourse to mori:  specific references
will often be necessary.

Figure 10.17 is an example of a complex process flow system for which it
is desired to determine the overall pressure drop so that the type and size of
pump and motor can be selected.

Example 10.11. A hydrocarbon of specific gravity 1.1 and viscosity 2cP is
introduced into a process through a complex flow system, which is shown in Fig.
10.17. This compound is unloaded from a tank car at 10°C and held in the storage
tank at that temperature. When the storage tank is full, the level at point (a) is
15ft.  When the level at point (a) reaches 1 ft, the tank is refilled. The
acceleration due to gravity is 32.1 ft s-‘.  For this preliminary design the properties
of the hydrocarbon are to be assumed constant at the values shown, since the
heating needed is modest. Determine the pump size necessary to maintain a spray
velocity of 15 ft s-’  and a flow rate of 400 gpm if the pump is 60 percent efficient.

Answer. In this case all the information needed to estimate the pressure drop has
already been given or can be found in the tables or graphs in this chapter or in the
Appendix. The pump must operate under the most severe of the conditions
given; thus, the inlet tank height will be taken at the minimum value of 1 ft. The
pump will require slightly less power as the level at point (a) approaches its
maximum value of 15 ft. The basic design equation is Eq. (10.39):

+ FpiF + Fmtingr  + F,, + K = 0
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3rd floor
30 ft above 1st floor

Spray system that produces
25 psi pressure loss.
Spray velocity is 15 ft s-’

loft

22 ft of 4-in.  sch. 40
commercial steel pipe
3 open gate valves
1 open globe  valve
4 90” elbows Y-

2nd tleor
15 ft above 1st floor

-=I

100 parallel helical coils
2.,-tn., 18 gauge tubing.
Coil  diameter is 1 tt
Length per tuba is 15 ft
Steam heated

Storage
tank
outside
10°C

Vent L
L

Suction line on pump 5-in  sch. 40, 15 ft long
6-ln.  sch. 40,4  ft long commercial steel pipe
commercial steel pipe - - 4 9V elbows

- 2Welhows S-in. sch. 40.85 ft, long 1 open gate valve
1 gate valve commercial steel pipe ‘
sharp-edged entrance 2 90” elbows

1 open gate valve
t

LPomt (a)-Height of liquid in the tank

FIGURE 10.17
Process flow system for Example 10.11.

This equation is applied between the  surface of the reservoir (a) and the spray
po in t  (b )  w i th  g, inc luded  as  needed  for  Engl i sh  uni t s .  Wi th  the  assumpt ion  tha t
cu.  and CY~  are unity, Eq. (10.39) becomes

(9

The veloci ty  at  the surface of  the tank can be taken as  zero,  and the pressure at
both points  is  the  same,  namely a tmospher ic .  In  th is  equat ion,  each of  the  loss
terms may contain  several  contr ibut ions;  e .g . ,  F,  consis ts  of  the sum of  the
losses in the three sections: 4-in., S-in., and 6-in. Additional factors that must also
be included are the losses in the helical coils, losses in the spray system, entrance
losses from the outside storage tank, and expansion and contraction losses
assoc ia ted  wi th  the  hea te r .  Other  equa t ions  bes ides  Eq .  ( i )  tha t  wi l l  be  used  in
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this ‘example are
(~‘1  -d/p  = Fpipe  = (rlfL/d,)(U:,  .,/2) (10.36)

Floss  = (k + k)WZ, a&) (10.37)

L = Lpi,  + L, fittings + Ll, (10.38)

Ft~ttitings = httinp,(K  a&) (10.40)

In these equat ions,  there are  some terms that  can appear  twice;  here,  Fhtting.  w i l l
be included in L,,ht,ings,  and L,, will be in F,,.  Even though the flow is not
isothermal ,  a l l  proper t ies  wi l l  be  assumed independent  of  temperature ,  s ince  th is
design is  prel iminary.  The temperature  r ise  of  10°C through the  s team coi ls  wi l l
only  serve to  decrease  the  required horsepower .  The proper t ies  of  the  hydrocar-
bon in English units are

p = (1.1)(62.4) = 68.64 lb,,, ft-3 (ii)

p = (2)(6.72  x 10-4)  = 1.344 x 1O-3 lb,,, ft-’ s-’ (iii)

The roughness e of steel pipe from Table 10.2 is 1.5 x 1O’ft.  From Table
B.l ,  the diameter  and veloci ty  at  400 gpm-can be found:

441. schedule 4 0 p i p e

d, = 4.026/12 = 0.3355 ft

1 ft s-’ = 39.6 gal min-’ (gpm) ’

U4 = 400/39.6 = 10.10 ft s-’

e/d, = 1.5 x 10e4/0.3355  = 4.47 x lo-”

5411. schedule 40 p i p e

do = 5.047/12 = 0.4206 ft

1 ft s-’ = 62.3 g p m

lJ5 = 4 0 0 1 6 2 . 3  = 6.42 ft s-’

e/d, = 1.5 x 10e4/0.4206  = 3.57 X 10M4

641. schedu le 40 p i p e

d, = 6.065/12 = 0.5054 ft

lfts-‘=9Ogpm

lJ, = 400/90  = 4.44 ft s-’

e/d, = 2.97 x 10e4

$irh.  18 gauge tube  (100 in parallel)

do = 0.652112 = 0.05433 ft

0 . 9 6 2 ft s-’ = 1 g p m

U3,4  = (400)(0.962)/(100) = 3.848 ft s-r

e/d, = 0.0 (smooth tube assumed)

(iv)

(9

w

(vii)
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where in the j-in. tube the flow rate in each tube is assumed to be &th  of the
total flow.

The two lines of Sin.  p ipe  wi l l  be  cons idered  toge ther .  The  to ta l  l eng th  i s
100 f t .  From Table  10.5  the  fol lowing equivalent  lengths  are  found:

Sin.  ga te  va lves : (2)(13)(0.4206)  = 10.94 ft
(viii)

90”  elbows: (6)(30)(0.4206)  = 75.71 ft

The to ta l  equivalent  length  f rom Eq.  (10.38)  i s

L=L,,+Le~,,,+L,,=100+10.94+75.71+0.0=186.6fi

Repeat ing for  the 4-in.  p ipe  and  6-in.  pipe:

6x1

4-m.  pipe

6-m.  pipe

gate valves: (3)(13)(0.3355)  = 13.08 ft

globe valve: (1)(340)(0.3355)  = 114.1 ft

90”  elbows: (4)(30)(0.3355)  = 40.26 ft

L = 22 + 13.09 + 114.04 + 40.25 + 0.0 = 189.4ft
(4

gate valve: (1)(13)(0.5054)  = 6.570 ft

90” elbows: (2)(30)(0.5054)  = 30:36  ft (xi)
L=4.0+6.57+30.36+0.0= 40.91ft

The Reynolds numbers from Eq. (6.2)  friction factors from Fig.  10.3,  and
the pipe fr ic t ional  losses  from Eq.  (10.36)  are

4-h  pipe

NRC  = d&p/p = (0.3355)(10.10)(68.64)/(1.344x  lo-‘)  = 1.731 X 16

F,,  = Wldo)(~M2gc)
= [(4)(O.fKM75)(l89.4/O.3355)(1O.1O)2]/[(2)(32.174)]

= 17.00 ft lbf  lb,’

S-m.  pipe
NRC  = 1.379 x ld

f=  0.00470

F, =5.34ft  Ibrlb,’

(xii)

(xiii)

6h.  pipe

N,=l.l47xl@

f=  0.00487

F+ =0.484ft  lb,lb,’ (xiv)

I t  i s  a lways  impor tan t  to  des ign  the  en t rance  leg  to  a  pump wi th  as  low a
pressure  loss  as  poss ib le .  Otherwise ,  the  pump wi l l  cav i ta te  a t  h igh  f low ra tes .
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Cavita t ion occurs  when the suct ion pressure  f rom the pump becomes lower  than
the  vapor  pressure  of  the  f lu id ,  which wi l l  then boi l  and evapora te .  Hence ,  the
inlet pipe is usually at least one pipe size  larger than the outlet from a pump.
Furthermore,  since the tank must be valved off from the pump, which may leak
when shut down, a low-loss valve such as a ball valve or a gate valve is specified.
The  loss  due  to  the  sharp-edge  ent rance  to  the  6-in.  p ipe  is  found as  in  Example
10.8.  From Fig.  10.11,  k. i s  0 .50.  The f r ic t ional  loss  a t  the  entrance is  found f rom
Eq. (10.37) as

F ,ar,.s-in. = k[G/(2g,)] = [0.50(4.44)‘]/[(2)(32.174)]
= 0.153 ft lb, lb,l (xv)

Thus ,  the  to ta l  f r ic t iona l  loss  in  the  in le t  leg  to  the  pump wi l l  be  the  sum of  the
losses  in  the  en t rance  and  the  losses  in  the  6-in.  p ipe  p lus  f i t t i ngs .  A t  t h i s  po in t
the  pressure  drop f rom tank to  pump should  be  computed to  check for  poss ible
cav i ta t ion .  Equa t ion  (10 .39)  i s  app l ied  for  th i s  sec t ion  on ly ,  where  the  cont r ibu-
t ions  of  potent ia l  and  k ine t ic  energy  are  neglec ted  and  W,  i s  ze ro .  So lv ing  Eq .
(10.39) for Ap  gives

-Ap  =p[F,  + Fettic+  F,]=(68.64)(0.484+0.0+  0.153)

= 43.75 IbrtT2  = 0.304 psia (xvi )

A pressure  drop  of  on ly  0 .3  ps ia  i s  very  low and  assures  no  cav i ta t ion  in  the
pump. The 6-in.  l i ne  i s  des igned  p roper ly .

The calculation continues by considering the S-in. line on the pump
discharge.  That  t ine  expands into  a  header  before  feeding the 100 paral le l  ]-in.
helical tubes (each carrying 4gpm). The expansion into the header is best
approximated as a sharp-edge expansion into a tank and similarly for the
con t rac t ion  in to  the  4-in.  p ipe and the  entrance and exi t  of  the  s-in.  tubes .  From
Fig. 10.11:

ketit=  1.0

kentnna = 0.5
(xvii)

From Eq.  (10.37)  the  loss  for  a  s ingle  f - in .  tube is

F ,ou.3/4-in. = (k.  + MC ad3  = itI.  + 0.5)(3.848)21/[(2)(32.174)1
= 0.3452 ft lb,lb,’ (xviii)

or for 100 tubes:

F ,oss.3,4.in. = (0.3452)(100)  = 34.52 tt  lb,lb,’ (xi-4

Similarly for the 5-in.  expans ion  and  the  4- in .  cont rac t ion :

F ,mar.5-in.  = [(l.O  + 0.0)(6.42)‘]/[(2)(32.174)] = 0.641 tt  lbr lb,’ (xx)

F ,orr.4.in.  = [(O.O + 0.5)(10.10)‘]/[(2)(32.174)] = 0.793 ft lb, lb,’ (xxi)

For the coils themselves, the Reynolds number at the laminar-turbulent
transi t ion is  found from Eq.  (10.19):

% .cri*icd  = WW[l  + u2)(~0/~,)‘“1
= (2100)[1+ (12)(0.05433/1.0)1n]  = 7974 (xxii)
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The Reynolds  number  in  the  f - in .  tube is

NRC  = d,U,,p/p  = (0.05433)(3.848)(68.64)/(1.344 x 10T3) = 1.068 x 10“ (xxiii)

Clearly the flow is turbulent, and Eq. (10.20) yields the friction factor:

fmi,  = (O.O8)(N,,)-‘” + (0.012)(d,/d,)‘R

= (0.08)(1.068  x l@)-‘”  + (0.012)(0.05433)‘n

= 7.870 x 1O-3 + 2.797 x 1O-3 = 0.01067 NW

Note that the correction for curvature in the above equation (2.797 X lo-‘)
amounted to  26 percent  in  this  problem.

The pressure  drop across  each coi led  tube may be  calcula ted  by applying
Eq. (10.36) to a single coil:

-AP = (4pfLldo)[(u’y,)l(2gc)l
= [(4)(68.64)(O.O1o67)(15/O.O5433)(3.848)2]/[(2)(32.174)]

= 186.1 lbrtY’=  186.1/144  = 1.292 psi (xd

\
The frictional loss for all tubes is also computed from a modification of Eq.
(10.36),  which is:

(P,  - PJ/P = Fpipe  = (4fUMU;z.  ,,/2) (10.36)

This equation applies for the loss in a single tube for which f and the other
variables  are  known.  For  N tubes,  Eq.  (10.36)  becomes

FL = (N)(4fLld,)[(LI:,~)l(2g,)l
= [(1oO)(4)(O.O1o67)(15/O.O5433)(3.848)2]/[(2)(32.174)]

= 271.1 ft lb, lb,’ 6x4

The maximum potential energy occurs when the level in the tank is 1 ft
above ground level; hence 39ft is the approximate A Z, as seen in Fig. 10.17.
Then the  potent ia l  energy term in  Eq.  ( i )  i s

(g/g&  - 4 = WU32.1WW  (,,,‘,:;;:)~!,)
= 38.9 ft lbf lb,’ (xxvii)

The frictional losses in the spray system are computed from another
modif icat ion of  Eq.  (10.36) .  The pressure  drop in  the  spray nozzles  i s  25 ps i ,  and
the loss in the spray system is

F spray system = (Ap)/p  = 25168.64 = 0.3642 lb, in.-* lb;’ ft3

= (0.3642)(144)  = 52.45 ft lbf lb,’ (xxviii)

The method of  comput ing the  f r ic t ional  losses  in  the  nozzles  i l lus t ra tes  a  useful
procedure .  Whenever  a  pressure  drop i s  known,  the  f r ic t ional  loss  i s  eas i ly  found
by dividing by density.

Al l  f r ic t ional  losses  have  now been computed  and are  l i s ted  in  Table  10 .8 .
The pressure drops are computed from Eq. (10.36) where appropriate. The
pressure  drop in  the  entrance and exi t  sect ions  before  and af ter  the  one hundred
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TABLE 10 .8
Summary of frictional losses for Example 10.11

Item F, ft  lb, lb;’ AP.  H

Entrance to 6-in. pipe 0.153
6-in.  pipe, 40.87 ft equivalent 0.484
5-in. pipe, 186.6 ft equivalent 5 . 3 4
Entrance from 5-in.  pipe to chamber of heater 0 . 6 4 1
Entrance and exit, 100 $-in. coils 34.52
$-in.  coils, 100 in parallel 2 7 1 . 1
Exit from chamber of heater to 4-in.  pipe 0.793
4-in. pipe, 189.4 ft equivalent 1 7 . 0 0
Spray system loss 5 2 . 4 5

Total 382.5 ft Ibr  lb;’

0.07
0.23
2 . 5 5
0.31
0.38
1 . 2 9
0.38
8.11

25.0

f - in .  co i l s  i s  found by  the  fo l lowing equat ion ,  obta ined  by  inspec t ion  f rom Eqs .
(10.36) and (10.37):

-AP = [(p)@.  + kWt42gc)l
=  (@-w.O  + 0.5)(3.84w=  o 1645psi

(2)(32.174)(144)  ’
(xxix)

To f ind the shaf t  work,  Eq.  ( i )  is  solved for  W,:

-W-Pb-Pa  : c-eg
s

P 2&
+ gc (Gl  - 4 + F,i,  + Ffittings  + Floss

= 0 + [(15)*  - 0]/[(2)(32.174)] + 38.9 + 382.5 = 424.9 ft Ibr  lb,’ (xxx)

The mass  f low ra te  can be  calcula ted us ing Eq.  (7 .10)  a t  any point  in  the
system or from the density of  hydrocarbon and the volume flow rate,  400 gpm:

w  = Qp = (400)(68.64)/(7.48) [(gal min-‘)(lb,  ftt’)(gal-’  ft’)]

= 3671 lb,,, min-’ (xxxi)

Thus ,  the  horsepower  tha t  must  be  suppl ied  to  the  f lu id  i s

-W,  = (424.9)(3671)/(33 000) [(ft lb, Ib;r)(lb,  min-‘)(hp-’  min-’ ft lb,)]

= 47.26 hp (xxxii)

Since the  pump eff ic iency is  60 percent ,  the  power  suppl ied to  the  pump is

(-  wactua,  = (- W,Ruid)/q  = 47.26/0.6 = 78.8 hp (xxxiii)

Note in Table 10.8 the large loss in the heater and spray system. Nearly
80 percent  of  the  energy being used in  pumping is  be ing consumed in  the  heater
a lone .  A be t te r  des ign  could  be  found,  perhaps  e l imina t ing  the  he l ica l  co i l s  in
favor  of  a  s t ra ight  tube  des ign .

Example 1 0 . 1 2 .  Est imate  the  power  requi red  in  the  previous  problem by us ing
the  ve loc i ty  head approximat ion .
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Anher.  The veloc i ty  head  concept  was  in t roduced in  Sect ion  10 .25 .  I t  i s  meant
to be a rough field estimate of the pressure drop requirement. The basic
equat ions  are

(-API/P  = NW:, ,./2) (10.15)

N = (L/&L,-./45 (10.18)

The calculat ions are s imilar  to  those of  the previous example.  The 5-in.  p ipe  i s
100 ft long:

LJd, = (100)(12)/5.047 = 238 (9

Valves  contr ibute  26 diameters ,  and s ix  e lbows contr ibute  30 diameters  each.  The
total  diameters  (LJd,)  is  the sum of these:

(L,/d&,.  = 238 + 26 + (6)(30)  = 444 (ii)

From Eq. (10.18),  the  corresponding number  of  ve loci ty  heads  i s

N = (L/d&em /45 = 444145  = 9.9 (iii)

From Eq. (xvii) of the previous example, kexit and kcnlrann  are 1.0 and 0.5,
respect ive ly .  The sum of  these  i s  the  veloci ty  head contr ibut ion  of  cont rac t ion
into and expansion from the 5-in.  p ipe .  The  value  for  to ta l  ve loci ty  heads  i s

Ns.i,.  = 9.9 + 1.0 + 0.5 = 11.4 (iv)

The calculat ions for  the 4- in.  pipe are  summarized below: ’

pipe: LJd, = (22)(12)/(4.026) = 66

fittings: L,/d, = (3)(13)  + (1)(340)  + (4)(30)  = 500 (4
N,,,  = (66 + 500)/(45) + 0.0 + 0.5 = 13.1

For  the  6- in .  p ipe:

pipe: L./d, = (5)(12)/(6.065) = 9.9

fittings: L,/d,  = (1)(13)  + (2)(30)  = 73 64
Ncin.  = (9.9 + 73)/(45) + 0.0 + 0.5 = 2.3

For  the  100 f - in .  heater  tubes ,  the  Reynolds  numbers  calcula t ions  are  repeated,
and the friction factor is 0.01067, as found in Eq. (xxiv) from the previous
example.  The number  of  veloci ty  heads per  tube is  found by solving Eq.  (10.17)
for N:

N = (4f)(L/d,)  = (4)(0.01067)(15/0.05433)  = 11.78 (vii)

The entrance and exit velocity heads for the heater tubes are identical to those for
the  5-in.  p ipe .  Thus ,  for  100 tubes:

Ntota,,  %-in. = lOO(11.78  + 1.0 + 0.5) = 1328 (viii)

The next step is to convert the velocity heads into a frictional loss term that
is  needed by Eq.  ( i )  in  the previous example.  The fr ic t ional  losses  term FPi,  i s
given in  Eq.  (10.36) .  Compar ison of  Eqs .  (10.15)  and (10.36)  y ie lds

Fpi,  = WLldJI~,  a&k)1  = (NW:,  . ../G%Jl (ix)
This equation is essentially unchanged from Eq. (xxvi) in Example 10.11, in
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which Fki, was computed to be 271.1 ft Ib,Ib,‘.  Likewise, it is necessary to
calcula te  the  loss  in  the  spray  sys tem by Eq.  (xxvi i i )  in the previous example.
Equat ion  ( ix)  i s  used  for  the  three  la rge  p ipes :

FGi,.  = [(2.3)(4.44)‘]/[(2)(32.174)] = 0.719 ft lb,lb,’

F5ein.  = [(11.4)(6.42)‘]/[(2)(32.174)] = 7.28ft  lb,lb,’

F,i,  = [(13.1)(10.1)‘]/[(2)(32.174)] = 20.69fi lb,lb,’ (4

F ,,,,i,,=0.719+7.28+20.69=28.68ftlbflb,’

From this point on, the solution follows that in the previous example. Since
the veloci ty  head concept  was not  used for  e i ther  of  the  pieces  of  equipment  that
cause the major pressure drop, naturally the final answer will be close to the
previous  answer .  Comparing the  sum of  the  losses  in  the  three  large  pipes  f rom
Eq. (x) (28.68 ft lb, lb;‘) with the numbers for the large pipes in Table 10.8
(22.82 ft lbf lb;‘),  the error is seen to be 25 percent if the velocity head concept is
used.

In the preceding two problems an estimate was made of the pumping
requirement for a specific flow system. More often than not, the pump selected
is a centrifugal pump unless other circumstances dictate some other design.
The selection is often dependent more on the material to be pumped than on
the specific requirements of the flow system. The most economical approach is
to order standard pump sizes. Extensive discussions elsewhere cover the details
of pump selection [Cl, P2].

10.3 NONCIRCULAR CONDUITS

Conduits with noncircular cross sections are extremely useful for many
applications. It is granted that circular pipes have the lowest pressure drop and
the greatest ratio of volume (which translates directly to throughput) to metal
weight of any duct design. Nevertheless, many ducts commonly used in furnace
and air conditioning systems are rectangular in cross section. A rectangular
shape is the only practical duct to place in the stud space of a house in order to
deliver air from a basement furnace to a second floor room. Also, most
forced-air furnaces for homes require duct areas at the entrance or exit in the
order of 200 in*.  A typical rectangular duct of this area would be 8 in. by 24 in.,
but a circular duct equivalent would be 15.6 inches in diameter and would
reduce the ceiling-to-floor clearance as well as the attractiveness of the
installation.

Secondary flow. Visual studies of the turbulent flow of water in ducts has
revealed that secondary flows exist in triangular, trapezoidal, and rectangular
ducts. Naturally, the primary flow is in the z direction down the length of the
conduit. Superimposed on this longitudinal flow are secondary flow patterns in
which eddies move toward the corners of the conduit and away from the sides,
as shown in Fig. 10.18.
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FIGURE 10.18
Secondary flows in ducts of triangular
and rectangular cross section. (From
Schlichting,  Bounaizry  Layer  Theory ,  7th
ed., p. 614, McGraw-Hill, New York,
1 9 7 9 .  B y  p e r m i s s i o n . )

Equivalent diameter. Introduction of the equivalent diameter d, allows the
previous smooth tube friction factor correlations for tube flow to be applied to
turbulent flows in noncircular conduits. The equivalent diameter d, is four
times the hydraulic radius rH:

d, = 4rH (10.44)

rH = S/L, (10.45)

where Eq. (10.45) defines the hydraulic radius, S is the cross sectional area of
the flow, and L,  is the wetted perimeter. The equivalent diameter as defined
above is based on applying Eq. (10.45) to a pipe running full:

ndfJ4  d,
rH=--=-nd,  4

Equation (10.46),  when solved for d,,  yields Eq. (10.44) where d, is renamed
d,,  the equivalent diameter. Note also that the hydraulic radius has meaning in
circular pipes that are not full, such as is usually the case for storm and sewer
pipes leading away from one’s home.

The procedure for determining pressure drop in partially filled conduits
or conduits with noncircular cross sections is to determine the hydraulic radius
from Eq. (10.45) and the equivalent diameter from Eq. (10.44). Then this
diameter d, is used in all the previous equations to solve the problem in a
standard manner, as illustrated previously. Note that the hydraulic radius rule
does not apply in laminar flow.

Equations for determining the hydraulic radius or various cross sections
are available [P2]. For a circular tube that is completely full, as already
indicated in Eq. (10.44),  the hydraulic radius is a the diameter. For a
rectangular duct of size L1 by Lz:

LlL2

rH = 2L1+ 2Lz
(10.47)

If the duct width is four times the height, then Eq. (10.47) shows rH  to be 0.4
times the height.

Relative roughness is also important in turbulent flow in channels,
partially filled pipes, and other noncircular conduits. For these, the relative
roughness is e/d,, where e is the height of a protrusion and d, is the equivalent
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diameter, Eq. (10.44). Schlichting [S2]  reports that for geometrically similar
roughness the following proportion holds:

f 0: (e/rH)o.314 (10.48)

The normal procedure is to measure pressure drop versus flow rate and
determine the equivalent sand roughness from Fig. 10.3 or Fig. 10.5. Many
experiments are on record in which the effective equivalent sand roughness
varied by a large factor from actual measurements of e/d,, which do not take
into account the spacing, the pattern, and the shape of protrusions. In the
absence of data, the engineer’s only choice is to use the rough pipe correlation
with the equivalent relative roughness.

Flow in annuli.  An important flow problem is to determine the pressure drop
of a fluid as it flows in the annular space between two concentric pipes. The
hydraulic radius is

r, =
Idd~l4  - ndzf  4 _  d,  - di

.nd,  + ndi 4
(10.49)

where d, is the inside diameter of the large pipe and di is the outside diameter
of the small pipe. From this equation, the equivalent diameter can be
calculated and used in all the previous equations. Also, there has been
considerable experimental work on flow in annuli, and specific correlations are
available [Kl].

Open channel. Flow in open channels is extremely sensitive ta the roughness
factor of the walls and the slope of the bottom surface, which is responsible for
maintaining the flow. A more complete discussion can be found elsewhere [Cl,
P2, S5, S6].  The flow velocity V in ft s-l  is

V = C[(rH)(SLOPE)]‘R (10.50)

where r, is hydraulic radius in feet, SLOPE is the slope of the channel for
small changes in flow depth, and C is the Chezy coefficient. The value of the
Chezy coefficient in open channel flows is

C = 1.49(rH)o.167/rr (10.51).

where n is the roughness factor, r, is in units of ft, and V is in units of ft s-l.
The roughness factor normally varies from 0.012 for a wood flume to 0.023 for
an earth ditch to 0.07 for a weedy, natural stream. There are other formulas
for C, depending on the application.

When Eqs. (10.50) and (10.51) are combined, the result is the widely-
used Manning formula for incompressible, steady flow at constant depth in
open channels:

V = (1.49/n)(R)U3(SLOPE)‘/2 (10.52)

Note that the constant 1.49 becomes equal to 1.0 when Eqs. (10.51) and
(10.52) are used in SI units.
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Ekufrle  1O.W.  Determine the hydraulic radius for the following conduits: (a)
square  running  fu l l ;  (b )  equi la te ra l  t r i angle  running  fu l l ;  (c )  equi la te ra l  t r i angle
resting on its base and filled with running water to a depth of 4 the height.

Anrwer.  Equat ion  (10 .45)  wi l l  be  app l ied  to  each  par t :

r, = S/L, (10.45)

Put (a). For a square, Eq. (10.45) reduces to Eq. (10.47) witb L, = L,,  or

rH = Ll4 (0

where L i s  the  length  of  one  s ide .
Part  (b).  Since  a l l  angles  of  an  equi la tera l  t r iangle  are  W, the  he ight  i s  computed
f r o m

sin 60” = h/L = (3)lR/2 69

Equat ion ( i i )  may be solved for  h in terms of L, the  length  of  a  s ide:

h = L(3)lR/2 (iii)

The flow area is  the area of  the tr iangle,  $h times L:

S = [;(L)(3)ln/2](L)  = L2(3)94 69

The wetted per imeter  of  a  completely f i l led equi lateral  t r iangle  is  s imply 3L:

rH = S/L, = [(L*)(3)94]/(3L)  = L(3)?12  = L/[(4)(3)‘7 69

put (c). Determination of S and L, for a triangular duct tilled to half the height is
a  s imple problem in geometry.  The f lowing water  actual ly occupies  a  trapezoidal-
shaped area ,  whereas  the  vapor  space  above the  water  i s  t r iangular .  A s imple
procedure is  to  subtract  the  vapor  area  f rom the tota l  area ,  s ince the  vapor  area  is
t r iangular .  The solut ion offered here  wil l  use  the concept  of  s imilar  t r iangles .  The
top of  the  water  must  b isect  each of  the  top s ides  of  the  duct .  Hence the  wet ted
per imeter  is  the  base  plus  the  contr ibut ions  f rom each s ide:

Lp=4L+L+$L=2L (4

Note  tha t  the  top  of  the  water  contac t ing  the  vapor  space  does  no t  cont r ibu te  to
L,. The vapor space triangle is also equilateral; its base is of length L/2. The area
of  a  t rapezoid is  the  average of  the  top and bot tom edges  t imes the  height  of  the
t rapezoid .  For  the  case  of  a  hal f - f i l led  t r iangular  duct ,  the  height  i s  hal f  that  in
Eq. (iii), and the area of the water is

S = [(L + L/2)/2][(L)(3)‘?4]  = L*(3)(3)‘“/(16)

Thus ,  Eq .  (10 .45)  y ie lds  the  hydraul ic  rad ius :

(vii)

r, = L2(3)(;r(r6)  = (3L)(3)ln/(32) = 0.16241; (viii)

Example 10.14. Consider a triangular duct, 0.09238 m on a side, in which water is
f lowing turbulent ly  a t  a  depth of  one-half  the  height ,  as  in  Example  10.13,  par t
(c). The equivalent relative sand grain roughness is 0.0008. Determine the
pressure drop over a length of 300 m if the flow velocity is 1.667 m s-‘.
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Avower.  The hydraulic radius is given by Eq. (viii) in Example 10.13:

r, = 0.1624L  = (0.1624)(0.0!9238)  = 0.015 m (9
From Eq. (lo&),  the equivalent pipe diameter is

de  = 4rH  = 0.06 m (ii)

The properties of water from Example 10.5 are

p=1000kgm-3
p = lo-’  kg m-’ SC’ (iii)

From Eq. (6.2), the Reynolds number is

NRC  = d,U,,p/p  = (0.06)(1.667)(1000)/(10-3)  = 10s (iv)
At e/d, = 0.0008 and a Reynolds number of Id,  the friction factor is 0.0053 from
Fig. 10.3. Now the pressure drop can be found from Eq. (10.36):

-Ap  = (4fL/do)(pU~~a,/2)  = (4)(0.0053)(300/0.06)(1000)(1.667)*/(2)

= 1.473 X 105  kg mm’ s-’ = 1.473 x 16 N m-* = 147.3 kPa (4

The pressure drop (1.45 atm or 21.4 psia in English units) is sufficiently high to
indicate that the problem as formulated is unreasonable. The height of the fluid
will bc  much greater at the inlet to the duct, and hence the pressure drop per unit
length will be correspondingly higher than at the discharge 300 m away. The exact
solution to this problem is beyond the scope of this text.

10.4 MEASUREMENT OF FLUID FLOW
In any process the flow rate is one of the most important variables; therefore,
it must often be precisely measured and must usually’ be controlled. Because of
the need for fluid flow measurement, much effort has gone into the
development and design of fluid meters. The methods range from direct
weighing or volume measurement to those generating an analog or digital
signal. The main measuring devices that will be discussed here are turbine flow
meters, variable-head meters, and variable-area meters. These are summarized
in Table 10.9. Other reviews are available [Bl, B3, IQ, Ml, P2].

Measurements of temperature and concentration will be discussed briefly
to round-out the material provided. Also, the reader should be aware of the
vast amount of help that is available from specific equipment manufacturers of
measuring devices. Indeed, the task of the design engineer is often the
evaluation of competing proposals, where performance must be balanced
against cost, both in initial investment and subsequent operation.

Several measuring devices for fluid flow have already been encountered
in this text. In Exatnple 7.11 and Fig. 7.11, a venturi metering device was
considered for a trichloroethylene flow. The venturi was used to measure the
overall flow rate. A simple engineering Bernoulli balance was used in the
solution of this problem as will often be the case for such devices. Note that
the pressure drop in a venturi meter is a measure of the overall flow, as
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TABLE 10.9

Summary of flow measuring devices*

(A) Varhble-head  meters
1. Venturi (Fig. 7.11)
2. Orifice (Fig. 10.19)
3. Pitot tube (Fig. 7.15)

(a) point velocity (Fig. 7.15)
(b) Prandtl tube [Fig. 7.15(c)]
(c) Delta Pitot gauge (Fig. 10.26)

4. Flow nozzle
(a) standard nozzle (Fig. 10.22)
(b) critical flow nozzle

(B) Positive  disptacement
1. Reciprocating piston
2. Nutating disc
3. Rotary piston
4. Rotary vane

(C)  Mechantcal
1. Rotameter (Figs. 10.23 to 10.25)
2. Turbine meter (electromagnetic) (Fig. 10.28)

(D)  Acoastlc
1. Ultrasonic (travel time difference) (Fig. 10.29)
2. Beam deflection
3. Doppler method

(E) EkctrtcaUy  heated
1. Hot-wire
2. Hot-film (Fig. 6.4)

* From Cheremisinoff,  Fluid Plow: Pumps, Pipes and Channels,
copyright 1981,  Ann Arbor Science Publishers.  Used with per-
mission of  the author.

contrasted to the Pitot tube presented in Example 7.17 and Fig. 7.15. The Pitot
tube measures the local velocity at the tip of the tube. Again, the engineering
Bernoulli equation provided the relation between the pressure drop and the
fluid velocity at the tip of the tube. These and other devices will now be
treated in more detail.

10.4.1 Orifice  Meter

An orifice meter is a widely used flow-measuring device. An orifice is a metal
plate with a reasonably large hole carefully machined in the center. The orifice
plate is inserted into a straight length of pipe. As fluid enters the orifice, it
must accelerate because the flow area, as expressed by Eq. (7.10),  is reduced.
The Bernoulli balance predicts a corresponding pressure decrease, which may
be measured and used to correlate the mass flow ‘rate.

A typical orifice meter is shown in Fig. 10.19. A pair of flanges (see Fig.
10.12) is welded or screwed onto the pipe, and a suitable gasket prevents
leaks. There are five common designs for locating the pressure taps as listed in
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FIGURE 10.19
Sectional diagram of an orifice meter. Flange taps as shown are 1 inch from faces. Comer taps are
as close as possible.

Table 10.10 and illustrated in Fig. 10.19. The shape of an orifice plate is
usually square-edged, although less common designs such as rounded or
beveled edges are in use. A truly sharp-edged orifice plate is machined with a
complete bevel on the downstream side so that entering flow first encounters a
knife edge. Such an orifice plate has the same coefficient as a square-edge plate
except at very low Reynolds numbers; also the sharp-edged orifice plate will
wear out rapidly, and therefore the opening will tend to enlarge as time passes.

TABLE 10.10
Orifice designs

L4xatlon of
DMliptioll upstrum*

Locatinn  of
downstream tap

Comer tap i n  f l a n g e

Radius  tap 1 .O diameters
Pipe tap 2.5 diameters
Flange tap l-in.

Vena contracta
tap

0.5-2.0
diameters

i n  f l a n g e

0.5 diameters
8.0 diameters
l-in.

0.3-0.8
diameters

Remarks

widely used; most convenient
des ign;  taps  bu i l t  in to  f l ange
theoretically best
measured Ap is low
also widely used; taps built
into extra thick “orifice
f lange”
inconvenient to use because
location of vena contracta
varies with flow rate and
orifice size
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FIGURE 10.24
4 Pressure distribution in an orifice meter.

Flow through an orifice is an excellent example of flow entering a sharp
contraction, as discussed in Section 10.2.7. The phenomenon of the vena
contracta was illustrated in Fig. 10.8 and occurs at location 3 in Fig. 10.20.
Since the vena contracta contains the highest velocity reached by the fluid as it
passes through the orifice, the Bernoulli theorem indicates that this will be the
point of minimum pressure, as shown in Fig. 10.20. In the vena contracta
design, the downstream tap is at location 3 in order to provide the maximum
Ap for the greatest accuracy in pressure measurement. The vena contracta
usually occurs at 0.3 to 0.8 diameters downstream, depending on the flow
conditions. The problem with vena contracta taps is that if the flow conditions
are changed drastically or if the orifice size is changed, the location of the vena
contracta will change. Then one has to relocate the downstream tap. The
radius tap or corner tap configuration is probably the best compromise,
especially since the radius tap and the corner tap have the advantage of the
taps being an integral part of the flange that mounts the orifice. The corner tap
is the easiest to install, since an orifice meter could be inserted at any point in
the system where there is already a flange. The radius flanges would require
the pipe to be shortened and rethreaded or welded. With these differences in
mind, the following discussion concentrates on the design of the corner-tap,
square-edge orifice meter.

Liquids. The mechanical engineering balance, Eq. (7.61) [or Eq. (10.39)],  is
the starting equation for analysis of flow through an orifice:

(10.53)

where the kinetic energy correction term has been included but the potential
energy and shaft work terms are assumed to be zero. Equation (10.53) was
applied between location 1 (upstream of the orifice) and the vena contracta
(location 3) because it is impossible to measure the pressure in a commercial
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orifice at location 2. Also, Eq. (10.53) assumes isothermal flow. If the orifice is
mounted at an angle with the horizontal, the pressure head may be included in
PI and  PP

Equation (7.13) can be used to relate the mass flow at locations 1 and 3:

w = pu,s,  = p&S, (10.54)

For (yl  equal to a3  and constant liquid density, Eq. (10.53) is solved for VI,
and U,  is eliminated by using Eq. (10.54):

(10.55)

Note that both p3 -pl and 1 - (ST/S:) are negative quantities. The pressure
and frictional contribution can be expressed by

(10.56)

where C1 is obviously not a constant but a parameter that depends on the
orifice tap design, the ratio of orifice diameter dz  to pipe diameter dI, and on
the orifice Reynolds number NRc,2:

N
d2U2p  4w

Ice,z=-=
P &cc

(10.57)

where U2 is the average velocity through the orifice and w is the mass flow, Eq.
(7.10) or Eq. (10.54).

Equation (10.56) is used to introduce C1 into Eq. (10.55):

(10.58)

The flow cross section at point 3 is unknown because of the contraction in the
flow stream jet. Recall that this problem also occurred in Eq. (10.33) and
prevented an exact solution to the flow through the sudden contraction in Fig.
10.8. At this juncture, it is useful to relate S, to the known area of the orifice
S, by a second empirical constant C2:

s,  = c2s3 (10.59)

where C2 is also a complex parameter. With this substitution, Eq. (10.58)
b e c o m e s

u* = 6,[2(yy/(l-  Go)]‘” (10.60)

It is difficult to determine the two coefficients separately. Considering the
problems associated with accuracy of calibration, accuracy of pressure meas-
urement, wear on the orifice plate, etc., the calculation of both constants is not
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warranted. Thus, the following simplified formula is used:

4 = c,[2~~)/(1-~)1’” (10.61)

where C,  is the dimensionless orifice coefficient that must be correlated with
N Rc.  2. Let p be the ratio of orifice diameter to pipe diameter:

/3  = d2/dl or 8’ = us, (10.62)

If both sides of Eq. (10.61) are multiplied by psi,  then the design equation for
orifice meters in terms of the mass flow rate w becomes

w = w2F2[(2PNPl  - PW  - B”)l’”  = cJ32~l[(2P)(Pl  -P,)l(l - 8”)l”’.
(10.63)

Equation (10.63) is the general design equation for the flow of liquids through
an orifice. A check of units will show that for English units the quantity 2p  will
become 2pg, in Eq. (10.63) and other similar equations. Equation (10.63) is a
fourth-order equation in /I:

p= 1
1+ [c%3Ml  -P3Mc‘mw)2 ,

(10.64)

This equation can be solved directly for j3.
The orifice coefficient C,  has been determined for a wide variety of tap

designs [Fl].  For the comer tap, square-edge orifice, Fig. 10.21 shows how C,,
varies with Nne,  2 and /I. Above orifice Reynolds numbers of 30 000, the orifice
constant is independent of flow rate and diameter ratio, that value being 0.61.
In this region, the most consistent performance is obtained; note that Eq.
(10.63) shows that the flow rate is directly proportional to the square root of
the pressure drop across the orifice.

Figure 10.21 can also be used for radius and flange  taps with errors of
only a few percent, but the correlation deviates significantly from that for an
orifice with pipe taps [RX].  Figure 10.21 does not apply for orifices with
rounded edges. Finally, the location of the orifice with relation to other fittings
in the system can be critical. A safe general recommendation is to have at least
fifty pipe diameters as the distance from the upstream fitting to the orifice and
ten pipe diameters as the distance from the orifice to the downstream fittings
[Fl].  If these distances are impossible for your specific configuration, flow
straightening vanes can be used within the pipe. Careful fabrication of the
orifice assembly is necessary for Fig. 10.21 to apply. The following are some
guidelines: (1) the walls of the hole and the upstream surface of the plate must
meet sharply at right angles; (2) the diameter of the opening must be precisely
known; (3) the plate should not be thicker than (d,/30),  (d,/8),  or one-quarter
of the distance from the pipe wall to the edge of the opening; and (4) the
upstream face of the orifice plate should be smooth.

‘Ihe orifice meter is extremely simple and inexpensive, in contrast to a
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1.00 Sharp-edged or i f ick III
LA\

diameter ratio.

0 .30 1’
10 2 0 4060 1w 10’ l(P 10’

Orifice Reynolds number. d,fAplp

FIGURE 10.21
Orifice coefficients for circular, square-edged, corner tap orifice [Tl] and rotameters. (From
Perry’s Chemical Engineers’ Handbook, 6th ed., p. 5-15,  Perry and Green (eds.),  McGraw-Hill,
New York, 1984; Tuve and Sprenkle,  Instrumentr,  6: 201 (1933); rotameter curves courtesy of
Fischer  and  Porter  Co . )

venturi meter or other similar device that is classified under the general
heading “variable-head meters ” in Table 10.9. The principal disadvantage of
the orifice meter is its large pressure loss; indeed, the basic design creates an
excessive amount of turbulence, which results in a large, irrecoverable pressure
drop. The permanent or overall fraction of the pressure differential developed
by the orifice meter that is lost can be estimated as follows:

PI  -P4--Cl-p 05/350.9 (10.65)
Pl -P3

where p1 is the upstream pressure, p3 is the pressure at the downstream orifice
tap, and p4 is the fully-recovered pressure (4-8 pipe diameters downstream).
Equation (10.65) applies to sharp-edged orifices. This pressure loss is
permanent, i.e., friction that must be overcome by the pump. If the design
Reynolds number is high enough to ensure that the orifice coefficient is kept
equal to 0.61, the calibration will be constant even if there is variation of the
flow from the design level. However, if the flow rate is increased far above the
design level, the permanent pressure loss across the orifice may become
excessive because the orifice diameter is too small.
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Gases. The mechanical energy balance cannot be used to obtain a useful
correlating equation for design of an orifice meter for gases. The pressure drop
through an orifice is significant, and thererefore so is the volume increase.
Nevertheless, orifices are commonly used to meter gas flows. Therefore, Eq.
(10.63) is empirically modified to include an expansion factor Y:

w = Cc.Y~[(2P)(Pl  -Pd(l  - B4)1’” *
= cm2&Km171  --PM1  - B’)l’”

(10.66)

where Y is a function of the compressibility ratio k, the downstream to
upstream pressure ratio r, and the diameter ratio /3:

Y = 1 - (1 - r)(0.41+ 0.35p4)/k ’ (10.67)

r=ph (10.68)

k = c&, (10.69)

In Eq. (10.69),  cP  and c, are the heat capacities of the gas at constant pressure
and volume, respectively. For air, the compressibility ratio k is approximately
1.4, and for steam 1.3. The expansion function Y may typically vary only by
5-10 percent over a fairly extended flow range. Orifice meters in gas service
produce modest pressure drops so r is nearly unity. Then Y as calculated from
Eq. (10.67) approaches values of 0.95-1.0.

If the mass flow rate is increased to extremely high rates, the flow
becomes sonic when r reaches the neighborhood of 0.5 [P2, Sl]. Solution to
sonic flow problems is in the realm of thermodynamics, because sonic flow is
created in flow nozzles that are designed so that the entropy change of the
gases is as close to zero as possible. Sonic flow nozzles are commonly used in
industry for accurate metering, because the flow rate is proportional only to
the upstream pressure when the downstream pressure is maintained at a value
less than half the upstream pressure. Application of sonic nozzles is restricted
to gas flows.

Example 10.15. Size a sharp-edged, corner-tap orifice meter for the 4-in. leg in
Fig. 10.17 if the flow rate and fluid are unchanged from Example 10.11.

Answer. From Example 10.11, the following are available:

Q=?of)gpm (9

p = (1.1)(62.4) = 68.64 lb, K3 (ii)

p = (2)(6.72  x 10-4)  = 1.344 x 1O-3  lb, fi-’ s-’ (iii)

The roughness e of steel pipe from Table 10.2 is 1.5 x left. From Table B.l, the
diameter and velocity at 400 gpm can be found:

44i.  schedule 40 pipe

d, = 4.026112 = 0.3355 ft

S, = nd:/4  = 0.08840 ft’
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1 ft s-’ = 39.6 gal mitt-’ (gpm)

U, = 400/39.6 = 10.10 ft s-l

e/d, = 1.5 x 10-4/0.3355  = 4.4 x lo-“ (9
w = 3671 lb, min-’ = 61.18 lb,,, SK’ (4

For convenience of  reading,  a  l iquid mercury manometer  height  of  30 in.  (2.5 f t )
is selected; this height is approximately equal to 1 atm for mercury whose specific
gravity is 13.45:

o,,,  = (specific gravity)(density of water) = (13.45)(62.4)  = 839.3 lb, ft-3 (vi)

The 30-in.  reading on the mercury manometer establishes the pressure drop
across the comer taps via the manometer  equation,  Eq.  (7.71):

PI -PZ  = kkc)(Pm  - P.&AZ)

= (32.1/32.174)(839.28 - 68.64)(2.5)  ((*(;b’)$;;:ty))
m  f

= 1922 lbrtT’=  (1922)/(144) = 13.35 psi (vii)

where g, is inserted as needed for English units and pA  is the density of the
process  f luid  in  the  manometer  equat ion.

The design equat ion for  l iquid orif ice meters  is  Eq.  (10.63) .  Orif ice meters
are usually operated in the constant-C,, range, in which C, is 0.61. The only
unknown in Eq. (10.63) becomes /3,  the ratio of areas. Using Eq. (10.64),  p is
given by

1

= 1 + [(2)(68.64)(32.174)(1922)][(O.61)(O.O884o)/(6l.18)]2

x [(lb,,, fi-l)(lb,  lb;’  ft s-*)(lbf  fi-*)(fP)/(lb;  s-‘)]

= 0.13163

~=0.6023 (viii)

Thus, from Eq. (10.62) the orifice diameter d2 i s  g iven  by

d2  = /Sd, = (0.6023)(0.3355)  = 0.2021 ft = 2.43 in. 6x1

The Reynolds number through the orifice must be checked in order to
ascertain whether  the orif ice coeff icient  of  0.61 is  val id.  From Eq.  (10.57):

N,,  z = 4 &PIP  = (4w)lW,~r)

= [(4)(61.18)]/[(n)(O.2021)(1.344 x lo-‘)]  ((&;$: s-I))

= 2.87 x 10’ (4

The Reynolds  number  i s  h igh  enough tha t  fur ther  ca lcula t ion  i s  unnecessary .
Furthermore,  a t  the high Reynolds  number ,  the square-edged or i f ice  correlat ion
in Fig.  10.21 is  adequate  for  the  sharp-edged or i f ice  as  specif ied in  this  problem.
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For’ a square-edged orifice and orifice Reynolds number below 30 000, a trial and
error computation would be necessary to match /zl  with C, and NRc.Z  in Fig.
10.21.

The permanent  pressure  loss  through the or i f ice  meter  can be obtained
from Eq. (10.65):

~~=l-B’=l-(0.6024)2=0.64 (4
1 3

The permanent  pressure  loss  is

(Ap)iO,  = (0.64)(pl  -ps) = (0.64)(1922)  = 1225 Ibrft-‘=  8.51 psi (xii)

The frictional loss corresponding to this pressure drop is calculated from a
modificat ion of  Eq.  (10.39) in the same manner as  that  used for  the spray nozzles
in a previous example [cf .  Eq.  (xxvii i)  in Example 10.111:

Fori,  taxa = (Ap)lp  = 1224/68.64  [(lbfft-2)(lb,1 ft’)]
= 17.84 ft lbr  lb,’ (xiii)

The or i f ice  loss  t imes the  f low rate  equals  the  power  required to  pump this  f lu id
through this orifice [cf. Eq. (7.61) or Eq. (10.39)]:

- K = wFo,ificc  loss
= (3671)(17.84)/(33 000)  [(lb,,, min-‘)(ft  lbr lb,‘)(hp  min fi-’ lb;‘)]
= 1.98 hp (xiv)

If electricity costs 7 cents per kilowatt-hour, then assuming 24-hour
operat ion the  cost  of  operat ing an or i f ice  meter  of  th is  des ign is

Cost  =  (1.98/1.341)(365)(24)(0.07)

x [(hp)(kW hp-‘)(days  yr-‘j(h  days-‘)I[$  (kW h))‘]

= $908 yr’ (xv)

This result shows that orifices are often expensive to operate. The pertinent
orif ice  detai ls  are

orif ice diameter  = 2.43 in.
corner  taps ,  square  edge
or i f ice  pla te  not  over  0.134-in.  thick,  from the smallest  of

(1/30)(4.026) = 0.134 in.
(1/4)(2.013 - 1.21) = 0.20in.
(1/8)(2.42) = 0.30in.

If  the upstream edge of the orif ice plate were rounded,  so as to minimize
the permanent  pressure  loss ,  the or i f ice  coeff ic ient  would approach uni ty .  The
pressure loss for a rounded orifice plate is quickly estimated from Eq. (10.63)
which  predic t s  tha t  the  f low ra te  th rough an  or i f ice  i s  p ropor t iona l  to  the  square
root of the pressure drop and to the first power of the coefficient C,. Then a
rearrangement  leads  to  the  fo l lowing re la t ion:

C,(Ap)“, = C.(Ap);‘* (xvi )

where  the  subscr ip t  r denotes  the  rounded or i f ice .  This  equat ion can be  solved for
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the pressure drop available for measurement:

(Ap),  = (Ap)(CJC,)’  = (30)(0.61/1.0)*  = 11.2 in. Hg (xvii)

This pressure drop might be too low for accurate metering over the desired range
of flow rates.

10.4.2 Venturi and Nozzle

Venturi meter. The venturi meter was considered previously in Example 7.11
and Fig. 7.11. Referring to Fig. 7.11 and the discussion in Section 10.2.7
(expansion and contraction losses), a venturi is designed to minimize the.
permanent pressure loss. The throat diameter dz  is usually in the range of
one-quarter to one-half of the pipe diameter d,. The angle of the throat
leading up to dz  is usually 25-30”  so that no vena contracta is formed. The
expansion angle (in the section downstream of the throat) must be 5-7”  to
prevent separation of tlie boundary layer from the wall.

The general design equation is Eq. (10.63),  which was presented
previously for orifices. Note that this equation differs from those derived in
Example 7.11 because of the orifice coefficient C,, and the fact that the throat
velocity  U, was used instead of U,. If the Reynolds numbers in the pipe section
is above 104,  the value of C,  is 0.98 for a venturi installed in pipes of diameters
of 8 inches or less; for larger units, C,  is 0.99. The permanent pressure loss in
a venturi is usually about 10 percent of the total pressure drop across the unit.

Flow nozzles. A typical flow nozzle is shown in Fig. 10.22. The design of a
flow nozzle is similar to the specifications for a venturi in the inlet section

FIGURE 10.22
Sectional diagram of a flow nozzle.
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leading to the throat. Consequently, the coefficient C,  is nearly unity; the
design engineer should consult the manufacturer or the literature [SS] for more
exact values. The flow nozzle is more expensive than an orifice but less costly
than a venturi and takes up less room in the piping system than a venturi. Its
principal disadvantage is that the permanent pressure loss is about the same as
that for an orifice, because the fluid separates from the solid boundary after it
passes through the throat. The general design equation is Eq. (10.63),  which
was also used for orifices and venturis. The advantage of the venturi over the
orifice and nozzle is that its use results in a considerably lower permanent
pressure loss.

Gas design. For both nozzles and venturi meters, Eq. (10.66) applies with Y
computed from

Y2 = [(r”)(l  ‘_  r”)(l  - /!14)]/[(b)(1  - r)(l - /I%“)] (10.70)

a = 2/k (10.71)

b = l - l / k (10.72)

k = c& (10.69)

The expansion factor Y for nozzles and venturis is approximately double the
value for orifices at the same value of (1 - r)/k. This observation results in the
measured. pressure drop p, -p2  for venturis  and nozzles being considerably
less than that for a typical orifice at the same flow rate.

Example 10.16. Size a  ventur i  meter  for  the  appl icat ion ci ted in  Example 10.15.

Answer. First, it is necessary to compute the Reynolds number in the pipe:

N = d uplFL = (~~~~~~)(~~~~~~(~~~~~~
Re I1 1.344 x 1o-3 (

(ft)(fts~‘)(‘b,ft-3)

lb,,, ft-’ s-’ >
= 1 73 x 105 (i)

’

S ince this  Reynolds number far  exceeds 104,  the  ventur i  coeff ic ient  for  th is  l iquid
is 0.98. Using Eq. (10.64) the diameter ratio /3  is

1
= 1 + [(2)(68.64)(32.174)(1922)][(O.98)(O.O884O)/(61.18)]2

x [(lb,,, K3)(lb,  lb;’  ft s-‘)(lb,  tV2)(ft4)/(lb;l,  s-‘)I

= 0 .05547

j3 = 0.4853

From Eq. (10.62),  the  diameter  of  the  ventur i  throat  i s

d, = /3d, = 0.163 ft = 1.95 in.

(ii)

(iii)
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The pertinent details of the venturi design are:

Throat diameter = 1.95 in. (use nearest l/&in.)
Approach angle 25”
Divergence angle 7”

The permanent loss in the venturi is about 10 percent of total pressure drop
across the unit. Actually, this is a poor venturi design-the pressure drop
specified is too large for such an efficient device.

10.4.3 Rotameter

A rotameter consists of a float, free to move, within a tapered glass  tube as
shown in Figs. 10.23, 10.24, and 10.25. The position of the float is noted
visually and correlated with the mass flow rate. Rotameters are classed as
“variable area” meters because the area available to the fluid to pass  around
the float increases as the flow rate increases. The equibium  position  of the
float indicates the flow rate; naturally, the rotameter must be mounted
vertically. The actual position of the float depends upon the gravitational force
acting downward, the change in kinetic energy of the fluid as it passes through
the annular space between the float and the glass wall, and the frictional losses
of the fluid passing around the float (also called form drag}.

With proper design, the rotameter reading can be insensitive to the effect
of viscosity variation over a wide range and to fluid density changes over a
narrower range. Furthermore, the design of the tube and float can be such that
a linear relation between position and flow rate is obtained. Many designs
allow the interchanging of floats and tubes, or even the use of more than one
float at a time. As a result, the rotameter can be used over wide ranges of the
flow variables. In addition, it is insensitive to the nature of the approach
stream, and, as a result, long lengths of straight pipe or straightening vanes are
not necessary as in the case of the orifice or venturi meter. The only
disadvantage is that the cost of the rotameter increases rapidly with the
diameter. Consequently, it has generally been restricted to systems of a few
inches in diameter or less, although much larger units are available.

For precise work, the rotameter is often calibrated with the working fluid
by means of weighing for a given period of time. However, the flow rates
through rotameters of modern design can be reasonably estimated with a
knowledge of the meter coefficient, which is a function of the Reynolds
number in the annular space. Usually such information and calibrations are
obtained from the manufacturer.

Derivation of a useful equation for the performance of a rotameter
begins with the mechanical energy balance [Eq. (7.61) or Eq. (10.39)].  The
early steps follow those for the orifice until Eq. (10.61) is reached:

(10.73)
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FIGURE 10.23
Sectional diagram of a rotameter float in a
tapered tube.  (Courttxy  of Fischer & Porter
Co.)
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Metering float

FIGURE 10.24
Sectional drawing of a rotameter. (Courresy
of Fischer &  Porter Co.)

where the subscripts have been changed to 1 (inlet) and 2 (minimum flow area
between the float and the tapered tube). At steady-state, the rotameter float is
stationary; hence, a force balance can be made to describe the equilibrium. A
rotameter float is depicted in Figure 10.26 along with the forces of gravity
(Fo),  buoyancy (Fa), and drag (Fo)  that act on that float:

& = mig  = Kfpfg (10.74)

FB  = VfpAg (10.75)



474 APPLICATIONS  OF TRANSPORT PHENOMENA

FIGURE 1 0 . 2 5
A comme rcial  n
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neter. ((
C o . )
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Flow

FIGURE1026
Force balance on a rotameter float. (From
Fotut,  et al., Principles of Unit Operations,
2nd ed., p. 565, Wiley,,New York, 1980.  By

p e r m i s s i o n .  )

where the subscripts f and A refer to the float and the process fluid,
respectively. The difference between these forces equals the drag force:

4, = FG - FB  = (v,kdh  - PA) (10.76)

In a rotameter, the drag force is assumed to be proportional to the pressure
loss times the float area, or

FD&  = G(- Aphoss (10.77)

where C1 is a constant. The pressure loss is not exactly equal to p1  -pz

because a small fraction is recovered downstream. Therefore, another constant
must be introduced:

(-APL = C&I - PZ) (10.78)

Equations (10.77) and (10.78) can be combined and the result used to replace
pressure in Eq. (10.73):

PI  - PZ = GhJs,  = G(v,g)h  - PA)/& (10.79)

4  = c3~YGmmf  - PAwI(PA&w:ISZZ  - W” (10.80)

A rotameter tube can be tapered so that the following relation is true:

s,  = s,  - s, (10.81)



476 APPLICATIONS  OF TRANSPORT PHENOMENA

When this equation is substituted into Eq. (10.78),  the result can be simplified
t o

& = clX(s2~&~{[(2v,d(~f - PA)ld(PA)@l  + &)I)‘” (10.82)

If the area & is much smaller than Si, then the following holds:

s:-s;=s: (10.83)

Equation (10.82) can be simplified with this approximation to

ul = ~R@‘2~sl){[(2v;g)(&-  PA)]/(PA&))ln (10.84)

The rotameter Constant  CR is alS0  plotted in Fig. 10.21. In Eq. (10.84),  for  a
fluid of constant density the terms within the brackets raised to the power 1  are.
nearly constant so that Eq. (10.84) reduces to

&a% (10.85)

This equation shows that the flow area increases directly with the flow rate,
i.e.,  a linear calibration instead of the square root relation alluded to
previously in conjunction with orifices, venturis, and flow nozzles.

In practice, the design equations just presented will not be used; instead,
calibration curves will be supplied by the rotameter manufacturer, or the
rotameter will be calibrated by the user. One company makes units no larger
than 200 gpm but can provide a by-pass design (where only a fixed part of the
flow is measured) that can be used to measure much higher flows. Typical
specifications include pipe diameter, the maximum flow rate of fluid to be
handled, and the range of density and viscosity to be encountered.

10.4.4 Pitot  Tube

The Pitot tube was introduced in Fig. 7.15. For pipe service, the Pitot tube is
more commonly used as a research tool than as a commercial flow metering
device. Sometimes a Pitot tube is used to measure air velocities in a duct when
errors in the determination are tolerable. The appropriate equation was
derived in Example 7.17 as Eq. (vii):

V2  = 2(  - Ap)/p (10.86)

Note that in this equation the velocity is proportional to the square root of
pressure drop, just as predicted by Eq. (10.63) for orifices, venturis, and
nozzles.

There are several ways in which the Pitot tube can be used to establish
the average velocity across the pipe from measurements made at several radial
locations. If the point of measurement is far enough downstream from any
interference, then a single measurement at the center of the pipe will give the
maximum velocity. Using the velocity profile equation of Pai, the average
velocity in the pipe is related to the maximum velocity by Eq. (6.118). While
this procedure seems simple enough, in practice it works out poorly. First, the
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experimental data from which Eq. (6.118) was derived show much scatter.
Secondly, the Pitot tube must be perfectly aligned with the velocity vector, a
condition that may be hard to meet in an industrial installation. Thirdly, the
flow field must be undisturbed, and the velocity profile must be fully
established. A final observation is that for liquid flows there is considerable
capacitance in the probe itself and in the manometer lines. Depending on the
type of pressure readout, equilibrium may be hard to obtain.

Use of Eq. (6.118) includes a trial and error calculation, since
is a function of Reynolds number and so are the constants in Eq.

~l?$%h~equation  can be graphed as ZJ,,  ,,/V,,  B,.e versus NRe to avoid the
trial and error [P2].

The commercial device that is shown in Fig. 10.27 is an averaging Pitot
tube system that has low pressure drop and the convenience of not needing
the sensor to be moved to several positions. The Pitot tube is most useful in
research applications when a velocity profile is desired. The velocity profile is
obtained by measuring the velocity U,  with the Pitot tube probe at a series of
radial locations. If desired, the average velocity can be computed graphically
or numerically from the velocity profile via Eq. (7.8) or Eq. (7.9),  but the
experiments and calculations are tedious. It is even possible to divide the pipe
cross section into equal annular areas to improve the statistical accuracy. For
an even number of points, N, equal annular areas will be found from

r/r0  = [(2n - l)/N]in II  = 1,2,  . . . , (N/2) (10.87)

It is recommended that an additional point be taken at the pipe center line
(r =O),  if possible. The usefulness of Eq. (10.87) is limited because a
traversing Pitot tube probe will not be able to approach both +r, and -r,.

Of more common use is the three-point traverse which is based upon the
Gauss method of integration. The three points are located at the center and at
l 0.880r,. The mean velocity is

u z, ave = dk,,  max + &3(~+0.ssor0  + ~-mao,o) (10.88)

Example 10.17. Use the results in Example 6.7 to estimate the velocity at 0.88Or,,
by Pai’s method. Then compute the average velocity by Eq. (10.88) and compare
with the 2.778 ft s-l as given.

Answer. In Example 6.7, the following values were computed for cyclohexane at
a Reynolds number of 3.75 x lo4 using Pai’s equations:

u =,  max = 3.455 ft s-’ (9

m = 32 (ii)

a, = -0.3527 (iii)
a, = -0.6473 69

Equation (6.118) was used to compute the value of U,, max  in Eq. (i). The velocity
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lXe  Delta  PM tw-vs.  Nom  M&f-  West Instrument, Troy,  ~1. ~~ p~sjon.j

a* 023f% is calculated from 9. (6.114):

WUZ,.  = 1  f a&/r,)*  + n2(r/ro))^

= I-  (0.3527)(0.8q2  - (0.6473)(0.880)~  = 0.7267
cv)From  this  equation, Uz  at fO.@&,  is

4 = (LJ(O.7267)  = (3.455)(0.7267)  = 2.511  fi s-’

64
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Note that the a, term is negligible because of the large value of the exponent 2m.
If these are indeed the velocities observed with a traversing Pitot  tube

probe, then Eq. (10.88) estimates the average velocity as follows

u z. ave = %um,  + iF3i(L1+0.880,,  + U-o.,)
= $3.455) + &(2.511+  2.511) = 2.93 tl s-l (vii)

Thus, in this example there is an inherent error in Eq. (10.88) of 5.5 percent,
even before any experimental errors are introduced.

10.4.5 Other Flow Metering Devices

The turbine flow meter, as shown  in Fig. 10.28, features within the flow a
propeller that is rotated by the flowing fluid. Mounted in the hub of the vane is
a magnet that gives a pulse for each rotation as detected by an electrical coil.
The output is digital and usually indicated by a frequency meter. Turbine flow
meters are becoming increasing popular because the digital output is com-
patible with digital control computers.

The permanent pressure loss in turbine flow meters is low, being from 2
to 10 psi for normally sized units. Their sizes and ranges aire  usually obtained
from the manufacturer’s specifications. The -turbine flow meter and its
associated digital electronics are expensive, however. To make a rough
comparison, flow meters rank in the order of most expensive to least expensive
as follows: turbine meter, Delta Pitot gauge, rotameter, venturi meter, and
orifice meter.

There are many other metering devices that are fundamentally similar to
those previously discussed, as well as metering devices that are based on totally
different principles. Several, like the Pitot tube probe, are designed for point
measurements and are more often used in research. The most important of

FIGURE 10.28
Turbine flow meter.
Flow Technology, Inc.

(courresy of
Tempe, A2.1
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FIGURE 10.29
Ultrasonic flow
Controlotron t
NY.)  I

these are the hot-wire and hot-film anemometers and the laser Doppler
anemometer (see Chapter 6). Such units are available commercially and can be
very expensive, especially when one wants to measure all components of a
velocity vector rather than just one component of that vector.

Ultrasonic flow meters are highly recommended for those applications
that require no internally mounted components in the flow. In some designs,
the time of flight of a sonic pulse is determined. From the known distance and
time, the velocity of flow is obtained. In others, measurement of the Doppler
shift in the sonic frequency is measured (similar in principle to the laser
Doppler velocimeter). Some units can even be clamped onto a pipe without
any internal connections, as shown in Fig. 10.29. Other designs include a
complete unit to be inserted into the pipe. Again, design is with the assistance
of the manufacturer.

Finally, there are other devices worthy of brief mention. The electromag-
netic flow meter is often used for blood flows, since probe designs that do not
require any internally mounted components are available. Other flow meters
use the pressure drop across a short capillary or the variation in heat transfer
(temperature) along a hot pipe as an indication of flow. Indeed, nearly any
change effected by flow can be used as a flow indicator if the relation between
flow and the variable can be established.
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Bourdoi  tube FIGURE 10.30
Bourdon pressure gauge.

10.5 MEASUREMENT OF PRESSURE

Pressure measurement is. required in order to use many flow-measuring
devices, as well as being important in general plant and laboratory operations.
Figure 10.30 shows the internal mechanism of an inexpensive and low-accuracy
Bourdon pressure gauge. For process work, such gauges are being replaced by
modern pressure transducers that can be used for either analog or digital
control. The modem pressure transducer has an electrical detection system
that senses a change in some property as the pressure changes. One common
design features a strain gauge. When a wire or other electrical conductor is

FIGURE 10.31
Pressure transducers. (Photograph by M. B.  Kukla.)



482 APPLICATIONS OF TRANSPORT PHENOMENA

FIGURE 10.32
Piezoelectric  pressure transducers. (Courtesy of Endevco,  San Juan Capistrano, CA.)

stretched as a result of a pressure increase, the length increases and the
diameter decreases. As a result, the resistance changes, and this change can be
detected by a Wheatstone bridge or similar circuit. Other common designs
operate on a principle of variable reluctance or a piezoelectric effect. More
information is available from handbooks [P2] and manufacturers. Some typical
strain gauges and piezoelectric transducers are shown in Figs 10.31 and 10.32.

Pressure transducers are purchased with a calibration curve included. For
high accuracy the transducer usually must be calibrated against a manometer,
which is the primary standard of pressure measurement (see Section 7.2).

10.6 MEASUREMENT OF
TEMPERATURE AND CONCENTRATION

Temperature. Temperature is measured by detecting the change in some
property as temperature changes. Temperature is measured industrially by
utilizing one of the coupling phenomena that are often introduced in physics.
An excellent example is a thermocouple. Two dissimilar metals, such as copper
and constantan, an alloy composed of 60 percent copper and 40 percent nickel,
when in contact will generate a small potential difference that is a function of
temperature. This voltage is then detected and either displayed or converted to
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FIGURE 10.33
Typical thermocouples. (Courresy  of Conax  Corp., Buffalo, NY.)

a more useful electric signal that can be transmitted elsewhere and recorded or
detected. Figure 10.33 shows some commercially available thermocouples.

The resistance of a metal such as platinum is a reproducible function of
temperature and can thus be utilized for temperature measurement. The same
is true for certain glass and ceramic compositions which are given the special
name of thermistors. For either device, its resistance is the basis for
temperature measurement and is converted into an appropriate electrical
voltage for output. Some of these devices are fairly expensive but can be
extremely useful because of their portability and non-contacting nature.
Several thermistors are shown in Fig. 10.34.

Concentration. Concentration measuring devices are more complex and spe-
cialized than the devices for flow metering, which use the equations of
transport. For example, instruments are available for pH  measurement. Also,
the hot-wire anemometer can be used for concentration measurementsifrthe
differences in concentration produce differences in thermal conductivity that
can be detected. Concentrations of gases are measured by the same principle
that governs mass spectrometers, i.e., that molecules of differing molecular
weights are deflected by varying amounts. Species of each molecular weight
are separately collected and counted. Devices to measure concentrations do
not in general involve transport phenomena and are beyond the scope of this
text.
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FIGURE 10.34
Typical  thermistors .  ( C o u r t e s y  K e y s t o n e  C a r b o n  C o . ,  S t .  M a r y ,  P A . )

PROBLEMS’

10.1. The friction factor can be pictured as the combination of two other dimension-
less  numbers .  Explain .

10.2.  Describe the usefulness of  the von Karman number NvK, Eq.  (10.13) .
10.3. Compute the percentage error in the Blasius friction factor equation, Eq.

(6.133),  at a Reynolds number of 10h  as compared with (a) smooth pipe; (b)
rough pipe  (e /d ,  =  0 .001) .

10.4 .  What  i s  the  usefulness  of  the  veloci ty  head approximat ion?
10.5. Determine the pressure drop in psi and the horsepower required to pump the

fluid in lOOft  of*2-in.  schedule 40 cast iron pipe for the flow of:
(a) water at 295 K at 5 ft3  min-’
(b) air at 295 K and 1 atm at 500 ft3  min-’
(c) ethanol at 20°C at 5 ft3  min-’
(d) air at 295 K and 6 atm at 500 ft3  min-’
(e) mercury (specific gravity 13.59, viscosity 1.554 cP)  at 5 ft3  min-’
(f) air at 295 K and 1 atm at 50 ft3  min-’
(g) air at 295 K and 1 atm at 5 ft3  min-’
(h) oil at 500 gpm (viscosity 4.0 cP,  specific gravity 0.9)

10.6. Determine the flow rate in gpm and the horsepower required in lOOft  of l-in.

1  These problems are in English units. If practice is needed with SI  units, the assignments may be
so lved  in  SI .
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schedule 40 steel pipe if the pressure drop is
(a)  60 psi  for  the  f low of  water  a t  295 K
(b)  10 ps i  for  the  f low of  a i r  a t  295 K and 1  a tm

10.7. Determine the velocity in fts-’ at the beginning of the laminar-turbulent
transition for the flow of water at 68°F in the following:
(a) a z-in.  smooth tube, BWG 14
(b) a l-in. smooth tube, BWG 14
(c)  a  2- in .  smooth tube,  BWG 12
(d)  a  l - in .  cas t  i ron  p ipe ,  schedule  40 .

10.8. Repeat Problem 10.7 if the flow is air at 295 K and 1 atm.
10.9 .  Es t imate  for  the  ass igned cases  the  to ta l  pressure  drop (ps i )  and horsepower ,  i f

the  p ipe  in  Problem 10.5  i s  replaced wi th  the  same length  of  cas t  i ron  square
pipe ,  2.067-in.  on  a  s ide .

10.10. Determine the pressure drop in psi, the loss in units of ft lbr lb;‘, and the power
requirement (hp) for  the pump in an annulus be tween a  $- in .  schedule  40  p ipe
and a 6-in. schedule 40 pipe which is lOOft  long for:
(a) water at 295 K at 5 ft3  min-’
(b) air at 295 K and 1 atm at 500 ft3  min-’
(c) ethanol at 20°C at 5 ft3  min..’
(d) air at 295 K and 6 atm at 500 ft3  min-’
(e) mercury (specific gravity 13.59, viscosity 1.554 cP)  at 5 ft3  min-’
(f) air at 295 K and 1 atm at 50 ft”  min.’
(g) air at 295 K and 1 atm at 5 ft3  min-’
(h) oil at 500 gpm (viscosity 4.0 cP, specific gravity 0.9)

10.11. In Problem 10.10, determine for the assigned cases the correct size of round
commercia l  p ipe  that  wi l l  g ive  the  same pressure  drop as  the  f low ins ide  the
annulus.

10.12. Determine the loss in ft lb,lb,’  in a sudden expansion from a 6-in.  schedule 40
to  a  12-in.  schedule  40  p ipe  fo r  a  l iqu id  (v i scos i ty  1 .171  CP  and speci f ic  gravi ty
1.0)  a t  400gpm. Then determine the  loss  i f  the  f low is  in  the  reverse  di rect ion,
and compare resul ts .

1O.W.  Determine the pressure drop in psi and the loss in ft lbrlb;’  in a gradual
expansion of  20” from a 6-in.  schedule  40  to  a  12-in.  schedule  40 pipe  for  water
at 300 K at 400 gpm.

10.14. Calculate the percentage decrease in pressure drop if the sharp-edged contrac-
tion in Problem 10.12 is changed to a well-rounded contraction.

lOAS.  Calculate the equivalent length of the following system in feet:
200 ft of 4-in. schedule 40 pipe
2 open gate valves
1 open globe valve, bevel seat
4 90” standard elbows ’
2  s tandard  tees ,  f low through run
1 s tandard  tee ,  f low through branch

10.16. Determine the pressure  drop in  psi  and the power requirement  (hp)  in  278ft
(equivalent) of 3-in. schedule 40 pipe for:
(a)  100 gpm water  a t  295 K
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(b) 100 gpm ethanol at 20°C (density 789.45 kg mm3,
viscosity 1,18  x lo-’  N s m-‘)

(c) air at 295 K and 1 atm at 50 ft min-’
10.17. Ethanol at 20°C (density 789.45 kg rnm3,  viscosity 1.18 x 1Om~3  N s m -‘) flows at

U,,,  = 3 m s-’ through 100 m of O.l-m  diameter steel pipe. Compute: (a) the
head loss (ft lb, lb;‘);  (b) the wall shear stress (N m-‘);  (c) the local velocity U,
(fts-I)  at r =O.O2m;  (d) the horsepower required; and (e) the percentage
increase  in  head  loss  due  to  the  roughness  of  the  tube .

10.18. Calculate the equivalent length of the following system in feet:
250 ft of 2-in. diameter wrought iron pipe, schedule 40, with screwed fittings
1 open globe valve
1 open gate valve, plug disk
3  regular  rad ius  e lbows
1 tee ,  branch f low,  the  thi rd  end is  p lugged off

10.19. You are to design a pump to move 80gpm of water from a pond at 20°C to a
holding tank 328ft higher than the pond. The acceleration due to gravity is
32.1fts-‘.  There  i s  negl ig ib le  pressure  loss  in  the  suct ion  p ipe  be tween pump
and pond.  The res t  of  the  p ip ing sys tem is :

4000 ft  of 0.05-m  cas t  i ron  p ipe  be tween pump and tank
2 45” elbows
4 90” long-radius elbows
1 open globe valve, bevel seat
sharp  ex i t  in to  tank

(a)  Find the  power  requirement  in  hp.
(b)  Find the  pressure  drop in  the  pipe  f rom the  pump discharge to  the  entrance

to  t he  t ank .
10.20. Determine the flow rate in gpm of water at 295 K through a 0.02-m  globe valve

(p lug  d isk  cons t ruc t ion)  wi th  ups t ream gauge  pressure  of  236  k&  and  down-
stream pressure  a tmospheric  when the valve is
(4 open
(b) a closed
(c) f closed
(d) $ closed

10.21. A tank contains oil (kinematic viscosity 1.2 x 10e4 ft’  s-  ‘,  density 118.6 lb,, ft-‘).
A p ipe  loca ted  loft below the  surface  of  the  oi l  in  the  tank drains  oi l  f rom the
tank.  The tank is  a t  a tmospher ic  pressure .  The pipe  out le t  i s  located  20 f t  be low
the surface  of  the  o i l  in  the  tank,  and the  o i l  d ischarges  f rom the  p ipe  in to  the
atmosphere. If g = 32.Oft  se2, determine the mass flow in lb, s-‘. The pipe
system consists of:
12 000 f t  of  6-in.  diameter  commercial  s teel  pipe,  schedule 40
14 000 ft  of  3-in.  diameter  commercial  s teel  pipe,  schedule 40
1 6-in. ball valve, wide open
HINT: assume f i rs t  that  the f low is  laminar  and check the Reynolds number to
verify this assumption. Losses in fittings are usually negligible in laminar flow.

10.22. Water at 295 K is to be withdrawn from a large main, in which the pressdre is 35
ps ig ,  and  car r ied  through 175 f t  (equiva len t  length)  of  p ipe  to  d ischarge  to  the
atmosphere at a point 22ft above the main. Select the appropriate size of
commercial steel pipe to assure a flow of 275 gpm. Let g = 32.0 ft s-‘.
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10.23. Water at 20°C flows in a g-in.  smooth tube, BWG 16, 20ft long, between two
reservoirs which differ in surface height by 20ft. The existing pipe must be
replaced with another design where the water will be flowing in the annular
space whose inside diameter is 0.5 in. and outside diameter is l.Oin. The
roughness is  the same as commercial  s teel  pipe.  Let  g = 32.0 f t  s-*.  Compute the
flow rate in the new design in ft3  s-’ if the length is unchanged.

10.24.  Water  a t  20°C f lows through a  6- in .  d iameter  p ipe ,  schedule  40,  of  equivalent
l eng th  2000  ft wi th  a  head  loss  of  165  ft of water at a flow rate of 950 gpm. Let
g = 32.0 ft s-‘.
(a )  Es t imate  the  p ipe  roughness  in  inches .
(b)  I f  th is  roughness  i s  doubled ,  f ind  the  percentage  increase  in  head loss  i f  the

same flow rate is  maintained.
10.25. A leaky pipe has allowed an oil tank to fill with water at 330K to a depth of

20 ft. There is oil of specific gravity 0.8 floating on the surface of the water at a
depth of 5 ft. At the bottom of the tank is located a drain line consisting of 3000
equivalent ft of 6-in. commercial steel pipe schedule 40. This line leads to a
second tank a t  a  pressure  of  5 ps ig ,  bu t  conta ins  no  pump.  F ind  the  a i r  pressure
(psig)  necessary in  the f i rs t  tank to remove the water  a t  a  rate  of  450gpm. Let
g = 32.0 ft s-‘.

10.26.  A pipe  sys tem consis ts  of  a  reservoir  wi th  a  smooth tube a t tached to  the  bot tom.
The tube is  8  m long and 0.04 m in diameter .  I f  the reservpir  is  f i l led with water
at 20°C to a height of 1 m above the top of the tube, find the volume flow in gpm
at the point in time being considered. Let g = 32.05 ft s?.

10.27 .  A tank  holds  water  a t  20°C and 1OOpsig.  This  tank  empt ies  in to  a  second tank
through a  complex piping sys tem as  fo l lows:
(1)  3000  equ iva len t  ft of g-in. diameter  commercial  s teel  pipe,  schedule 40
(2) two pipes in parallel:

1300  ft of g-in. commercial  s teep pipe,  schedule 40
1 3 0 0  ft  of  6-in.  commercial  s teel  pipe,  schedule 40

If the flow rate is 450 gpm, find the pressure in the second tank in psig.
10 .28 .  Suppose  tha t  the  g-in. branch in  Problem 10.27 is  va lved off  so  that  the  f low is

only through the 3000 ft of g-in. and 1300 ft of 6-in. pipe. If the flow is 450 gpm,
find the pressure in the second tank in psig.
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NOMENCLATURE

A

A
A
a
B

b
C

C

CP

D

Area (m*,  ft’);  subscripts denote direction normal to coordinate,
e.g., A, is area normal to radius (area of a cylinder); Ai is heat
transfer area of the inside surface of a pipe or tube (2n~iL);  A, is
heat transfer area of the outside surface (2nrJ)
Species A
Constant in Eq. (11.68)
Empirical constant, Eqs. (11.65),  (11.68),  and (11.69)
Empirical constant, Eqs. (11.65) and (11.68); also, B,  and B2  are
used to simplify Eqs. (11.123) and (11.124)
Empirical constant, Eqs. (11.65),  (11.68),  and (11.69)
Concentration (kmol mV3, lb mol ft-‘); CA is concentration of
species A
Subscript denoting cold; ci and co are subscripts for entering cold
fluid and exiting cold fluid respectively
Heat capacity at constant pressure (kJ kg-’  K-‘, Btu lb;’  OF-‘); c,
is cp  of cold fluid; cr,  is cp  of hot fiuid;  other subscripts defined as
u s e d
Diffusion coefficient (mass diffusivity) (m* s-l,  ft2  s-‘)

489
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d
E

F

f
f
f

h”

h

i
i

k

k L. ave

L
LMTD

lm
1
mb

NNu

NP~

NRe

Diameter (m, ft); di is inside diameter of a pipe
Eddy ditisivity  (m’ s-l,  ft2  s-l); E,, EM,  EH are eddy diffusivities
of momentum, mass, and heat, respectively
Correction factor for design of multipass heat exchangers, Eqs.
(11.122) to (11.124)
Fanning friction factor, Eq. (6.89)
Subscript denoting fouling; cf. Eq. (11.96)
Subscript denoting film; when subscript f is applied to a dimen-
sionless group (e.g., Np,,r), then all physical properties in the
dimensionless group are to be evaluated at the film temperature Tf
Enthalpy (J, Btu); subscripts denote location
Subscript denoting hot fluid; hi and ho are subscripts for entering
hot fluid and exiting hot fluid respectively
Heat transfer coefficient, defined by Eq. (6.86) or Eq. (11.3)
Wm -’ K-l,  Btu fte2  h-’  OF-‘); hi and h,  are based in the inside
area Ai  and outside area A,, respectively [cf. Eq. (11.24)];  6 is the
mean heat transfer coefficient, as averaged over a length L
Subscript denoting the inside surface of a pipe or tube
The Colburn j-factor; ju  is for heat, Eq. (11.79); jM is for mass,
Eq. (11.81)
Thermal conductivity (W m-l K-’  or J rn71  K-‘s-l,  Btu ft-’
OR-’  s-l); k,  is mean thermal conductivity over the range of
integration
Liquid phase mass transfer coefficient in wetted wall column, Eq.
(11.73) [kmol rn-‘s-l  (kmol me3)-‘,
lb mol ftV2  s-r (lb mol ft-‘)-‘I
Length (m, ft)
Log mean temperature difference (K, “R, “C, “F);  see Eq.
(11.115) for single pass; see Eq. (11.122) for multipass
Subscript denoting log mean; cf., Eq. (11.115)
Prandtl mixing length, cf. Eq. (6.69)
Subscript denoting mean bulk; when subscript mb is applied to a
dimensionless group (e.g., NPr,mb),  then all physical properties in
the dimensionless group are to be evaluated at the mean bulk
temperature Tmb
Nusselt number, hdi/k,  defined in general by Eq. (8.21) or Eq.
(11.39);  NNu,mb is Nusselt number with properties evaluated at the
mean bulk temperature r&; NNu,r  is Nusselt number with pro-
perties evaluated at the film temperature Tf
Prandtl number, c,p/k,  Eq. (8.4); in NPr,mb,  all physical pro-
perties are evaluated at the mean bulk temperature T&,; NPr,r  is
Prandtl number with properties evaluated at the film temperature
T,;  N~r,w is Prandtl number with properties evaluated at the wall
temperature T,
Reynolds number, di U,, ave p/p  for pipe flow, Eq. (6.2); NRe,mb  is
Reynolds number with properties evaluated at the mean bulk
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NSC
Nsh
Nst

Ns,,

0

4

R
Rf
r
r

T

t
u

u

W

W

x Rectangular (Cartesian) coordinate

mass

temperature Tmb;  NRe,f is Reynolds number with properties
evaluated at the film temperature Tf
Schmidt number, v/D, Eq. (8.6)
Sherwood number, kL,avedi/D  for pipe flow,  Eq. (11.73)
Stanton number, defined as the Nusselt number divided by the
product of the Reynolds number times the Prandtl number, Eq.
(8.24);  &t,mb is Stanton number with properties evaluated at the
mean bulk temperature
Stanton number for mass transfer, defined as the Sherwood
number divided by the product of Reynolds number times
Schmidt number, Eq. (11.81)
Subscript denoting the boundary between solid and fluid in
convective heat transfer
Energy (heat) flow vector (J s-l,  Btu s-l); qrad  is heat transferred
by radiation; subscripts denote components in coordinate
directions
Resistance to heat transfer, cf. Eq. (11.7)
Fouling factor, cf. Eq. (11.97)
Cylindrical coordinate
Radius (m, ft); in fluid flow equations, r, is value of r at the inside
tube wall; in heat transfer, ri  is radius of inside tube wall, r, is
radius of outside tube wall; if the pipe is insulated, r, is the radius
of the pipe plus insulation
Temperature (K, “R, “C, “F); T, and T2  are temperatures at
locations 1 and 2; T, is temperature of the wall or surface; T, is
temperature in open channel; T,,, or Tb is bulk temperature, Eq.
(11.31); Tf  is film temperature, Eq. (11.32); Tmb  is mean of two
bulk temperatures, Eq. (11.34); T,,, is saturation temperature,
temperature of condensing vapor; Thir The,  Tci,  T,, are tempera-
tures in multipass shell-and-tube heat exchangers, as defined in
Eq. (11.120)
Time (s)
Velocity vector (m s-l, ft s-l); U,  is component in z direction;
uI, ave is mean velocity in z direction; U,, max  is velocity at the
center line; u, is time-averaged velocity in z direction; U* is
friction velocity, Eq. (6.53)
Overall heat transfer coefficient, Eq. (11.90) (W m-‘K-l,
Btu ft-* h-’  OF-‘); U,  and V,,  are based in the inside area Ai and
outside area A,,, respectively [see Eqs. (11.90) and (11.91)]
Mass flow rate (kg s-l, lb,,, s-l); w, and ti  are mass flow rates of
cold and hot fluid, respectively
Subscript denoting wall; when subscript w is applied to a
dimensionless group (e.g., NPr,w),  then all physical properties in
the dimensionless group are to be evaluated at the wall tempera-
ture T,
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;I
Jd

P
0

Rectangular (Cartesian) coordinate
Hourly heat capacity ratio, Eq. (11.118)
Rectangular (Cartesian) coordinate
Thermal diffusivity (m’s-l,  ft’s-‘)
Difference, state 2 minus state 1
Generalized diffusivity (m” s-l,  ft2  s-l)
Emissivity (0 I E g  1.0)
Heating effectiveness, Eq. (11.119)
Viscosity (kg m-l s-r or Nmw2s,  lb,,,ft-‘~-~,  cP); p,,, is viscosity
at T,
Kinematic viscosity (momentum diffusivity) (m’ s-‘,  ft2  s-‘)
Generalized transport coefficients associated with h,  f, k:, Eq.
(6.90)
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg rne3,  lb,,, ftm3);  subscripts refer to species
Stefan-Boltzmann constant, 5.670 x lo-‘J  s-l  me2  Km4 (W m-*
K-4),  0.1714 x lo-‘Btu  h-’  ft-2 0R-4
Generalized flux vector (e.g., units for heat flux are J me2  s-l  or
W rnm2, Btu ftm2 s-‘; see Tables 2.1 and 4.1 for more details); YX,
\Ily,  Y, are components in directions x, y, z; YX,,  or Y,,, is flux
due to molecular transport; YX,,  or Y, is flux due to convection
Generalized concentration of property (e.g., units for concentra-
tion of heat are J rnp3,  Btu ftv3;  see Table 3.1 for complete listing)

This chapter is a continuation of the previous one, which covered fluid flow in
ducts under steady-state conditions. Many of the most important examples of
heat transfer are concerned with flow in ducts or other conduits. A common
type of heat exchanger is a radiator in an automobile or freon coils in an air
conditioner. A liquid flows through tubes, and heat is transferred from the
liquid to the tubes. The tubes are attached to fins, and air flows in the spaces
between the fins. In the heat exchanger just described, the momentum transfer
must be understood first, and the reader may need to return to Chapter 10
periodically. It is similarly possible to have mass transfer in ducts; however,
most mass transfer equipment does not involve transport in ducts. Some
examples of mass transfer equipment in this text are the mixing tanks as
discussed in Chapter 9 and packed beds as will be discussed in Chapter 12. In
general, the rates of heat or mass transfer are significantly increased in the
presence of flow; hence, these multi-transport problems are commonly
encountered and must be mastered.

This text has emphasized the close analogy between the transport processes,
and in particular between heat and mass transfer. In this chapter there will be
further examples of this analogy, sometimes with physically different trans-
ports. These will be explained as encountered. This chapter begins with a
review of molecular transport from Chapter 4 and transfer coefficients and
analogies from Chapter 6. The molecular transport is recast into the resistance
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form, which is particularly suited to heat transfer with fluid flow in pipes and
exchangers. Next, the heat or mass transfer during laminar pipe flow is
covered, followed by turbulent flow.

11.1 REVIEW AND EXTENSIONS

The three modes of heat transfer: conduction, convection, and radiation, will
be reviewed first. The resistance concept will be covered and then applied to
problems with both conduction and convection.

11.1.1 Radiation

Energy may be transferred through a transparent fluid by electromagnetic
radiation. The driving force is temperature. Radiation usually occurs from a
solid surface, although emission may also originate from liquids or gases.
Radiation is transferred by electromagnetic waves or photons that pass through
a fluid or through a vacuum from one body to another according to the
Stefan-Boltzmann law:

4rad  = AaT (11.1)

where q is the amount of energy transferred per unit time (J s-l  or W), A is
the area surface, T is absolute temperature (K) and u is the Stefan-Boltzmann
constant (5.670 x lo-*  J s-l  mm2 Km4).  A surface for which Eq. (11.1) applies is
termed an ideal radiator or black body. A real surface emits radiation at a
lower rate, and Eq. (11.1) is corrected by multiplying by the emissivity E:

grad = EAoT~ O=Esl.o (11.2)

The emissivity is an empirical constant. Treatment of the topic of radiation
requires many other considerations, and the reader is directed elsewhere [Fl,
G2, H3,11,  M2, M3, Pl].

11.1.2 Convection

Convection was introduced in Section 3.2.2 and further covered in Chapters 5,
ti, and 10. Convection is defined as the bulk flow of a fluid induced by unequal
molar mass transfer or by the external influence of a pressure difference or a
force field such as gravity. The general balance equations of Chapter 5 can
sometimes be solved approximately for cases of convective heat transfer, but
more often the empirical heat transfer coefficient h is introduced and
correlated. Equation (6.86) for heat transfer between a pipe wall and a fluid is

(q/Ah  = h(%v  - Eve) (6.86)

where the units of h may be J s-’ me2  K-’  (W mm2 K-l). Equation (6.86) in
various forms is often called Newton’s law of cooling, although engineering
practice uses it for both-heating and cooling. In the sequel, the overbar on T
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will be ‘dropped where it will be assumed that if turbulent flow is being
considered the time-averaged temperature is used:

(q/AL  = W’w  - T&e) (11.3)

The concept of average temperature T,, will be explained in Section 11.1.6.
Furthermore, the overbar on all turbulent flow quantities will be dropped in
order to simplify the notation.

11.1.3 Conduction

Conduction is the most easily understood of the three modes of heat transfer;
our discussion of it began with Section 2.1.1 and Fourier’s law:

(q/AL  = -k(aTldx) (2.2)

where k is the thermal conductivity. The mechanism of conduction for fluids is
explained by the collision of the more energetic molecules (at higher
temperatures) with those at lower temperatures. The result is a net transfer of
energy in the direction of the lower average temperature.

Simple conduction problems were introduced in Chapter 4, which
covered molecular transport with no convection. Equation (4.2) began the
discussion with the statement that the product of the flux Y times the transfer
area A is constant when there is no accumulation or generation. The general
flux equation for one-dimensional molecular transfer, which reduces to Eq.
(2.2) for heat transfer, is Eq. (2.7) or Eq. (4.6). Either of these equations can
be combined with Eq. (4.2) to yield Eq. (4.7),  which can be integrated for
constant area to

+‘,,,A),  = GA,(AWlAx) (11.4)

This equation is the starting point for the discussion of the resistance concept,
which is particularly useful for problems with both convection and conduction.

11.1.4 The Resistance Concept

Equation (11.4) can be rearranged into the form of the general rate equation:

(RATE) = (DRIVING FORCE)/(RESISTANCE) (2.1)

Aly
-(ymA)x  = (Ax)/(GA,)

(11.5)

The resistance concept is widely applied to a variety of transfer problems. Heat
transfer is by far the most common in this respect, and examples of heat
conduction and convection in which the resistance concept is important are
encountered daily around the home, as well as in industry.

A comparison of one-dimensional heat conduction with electrical circuits
is useful at this point. In the study of electrical circuits, Ohm’s law states that
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T Y

t x

AT=&-T,

FIGURE 11.1
Heat transfer across a slab.

the rate of flow of electrons (current) equals the potential difference (voltage)
divided by the resistance. In molecular transport under conditions of steady-
state and no generation, the product Y,A  is analogous to current; the
difference A$J  is analogous to voltage. Hence, the remaining terms may be
lumped together and termed resistance. Specifically, for the one-dimensional
heat transfer case shown in Fig. 11 .l,  Eq. (11.5) becomes after substitution
from Table 4.1:

pc,  AT AT AT
-CL = Ax = Ax/(kA,)  =x

WXPC,)
where the resistance R is given by

Equations (11.6) and (11.7) apply at steady-state. Also, they are useful only if
the thermal conductivity is constant. For heat transfer, the driving force is the
temperature difference AT:

AT=&-T, (11.8)

Notice again that the minus sign in Fourier’s law requires a positive heat flow
for a negative temperature gradient. It is also possible for the quantity pc,AT
to be considered as the driving force, in which case the resistance R becomes
(~)l(d).

Suppose the slab in Fig. 11.1 represents a concrete wall. If this were the
wall of a building, the owner might add fiber glass insulation and dry wall, as
shown in Fig. 11.2(a).  At steady-state, all the heat entering face 1 (the dry
wall) passes through each section of the composite wall in Fig. 11.2(a):

CL= 4 12 = 923 = 934 (11.9)

Equation (11.6) can be applied to each resistance in Fig. 11.2(a);  substituting
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Direction of -
positive
heat flow

Dry wall Fiber glass Concrete

+-+-  4 -+-  A% --=j

(a) Temperature protile

(b) Electrical analogy

FIGURE 11.2
Heat transfer through three resistances in series.

those into the constant heat flow equation, Eq. (11.9),  the following is
obtained:

-9x =
PIC,,I  AT,  = ~2cp.2 AT2  = ~3cp,3  AT3

A.% Ax2 Ax3
(11.10)

[Wbwp,~)l(Ax)  [~2lb~2cp;z)l(Ax) [k&wp,3)1(Ax)

Equation (11.10) reduces to

AT AT, AT,
-‘I = Ax,l(k,A,)  = Axzl(kzA,)  = Axgl&Ax)

(11.11)

From Eq. (ll.ll),  the following r&istances can be defined:

RI = ~,l(kA) R2 = ~J&Ax) R3 = AxJ(k3Ax) (11.12)

The overall temperature difference equals the sum of the differences across
each resistance:

AT=T,-T,=(T,-T,)+(T,--T,)+(T,--T,) (11.13)
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Direction
positive
heat flow

(a) Composite wall

(b) Electrical analogy

FIGURE 11.3
Complex wall and electrical analogy.

If each part of Eq. (11.11) is solved for the respective AT and substituted into
Eq. (11.13),  one obtains

or
AT=T,-T,=-q,(R,+R,+R,) (11.14)

G-T, AT
-qx=R,+R2+R3=-C  Ri

(11.15)

In Fig. 11.2(6),  the electrical analogy for the composite wall is shown.
The electrical analogy is also valid for more complex systems, such as thermal
resistances in parallel. A complex wall with parallel resistances is shown in Fig.
11.3. This wall is constructed from four materials, some of which are in parallel
as well as in series. The electrical analogy is also shown. Note that, if the
thermal conductivities of the materials in parallel differ significantly, it is
possible that some two-dimensional heat transfer occurs. Analysis of these
problems is covered elsewhere [H3, II].

Example 11.1. Suppose that in Fig. 11.2 the dry wall is f-inch thick, the
insulation is 3.625-inch  thick, and the concrete wall is OS-ft  thick. A check of
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handbooks  shows  the  fo l lowing  da ta :

k dVwS,, = 0.28 Btu h-’ ft-’ “F-’

k fikrglau = 0.024 Btu h-’  ft-’ “F-’

k ao,,mte = 0.5 Btu h-’ B-’ “F-’
(0

Let  the  temperature  on the  ins ide  of  the  dry  wal l  be  65°F and the  temperature  on
the outside of the concrete wall be 0°F.  Compute and plot the temperature
profile.

Answer. Assume that the construction was done in the United States, where
English units are still used. In Fig. 11.2(a), z is 65°F and & is 0°F; Eq. (11.13)
yields the driving force for  heat  t ransfer :

AT=T,-T,=O-65=-65°F (ii)

Let  us  pick an area of  1  ft2.  Then us ing  Eq.  (11.12),  the  three  res is tances  are

R, = bl(k,A,)

= (0.5/12)/](0.28)(l.0)1((Btu  h-l  hfi oF-l)tti2J

= 0.1488 h “F  Btu-’

R,  = (3.625/12)/[(0.024)(1.0)]  = 12.59 h “F  Btu-’

R3 = (6/12)/[(0.5)(1.0)]  = 1.00 h “F  Btu-’

(iii)

64

(4

Equat ion  (11 .15)  i s  used  to  compute  the  hea t  f low:

-65
-‘I =0.1488 + 12.59 + l.OO=

-4.73 Btu h-’

qx  = 4.73 Btu h-’ w

Note that the overall resistance is completely dominated by the highest resistance,
tha t  of  the  insula t ion .  Four ier ’s  law,  Eq.  (2 .2)  or  Eq.  (ll.ll),  i s  used  to  compute
the intermediate temperatures:

-qn  = k,Ax(AT,lW (vii)

This  equat ion  i s  so lved  for  AT,  and the  numbers  for  dry  wal l  inser ted:

AT, = (-qlZ)(Ax,)/(k,Ar)  = [(-4.73)(0.5/12)]/[(0.28)(1.0)]  = -0.70degF (viii)

where q,2  equa ls  qx  from Eqs. (11.9) and (vi) .  Therefore,  the temperature at  the
dry wal l - f iber  glass  interface is

T2 = T, + AT,  = 65.0 - 0.70 = 64.3O”F

The other  intermediate temperatures are found similarly:

AT,  = (-qz&WlWL)

(ix)

= [(-4.73)(3.625/12)]/[(0.024)(1.0)]  = -59.56 deg F

T,=T,+AT,=4.73”F

AT,  = (-qd(b)l(kA)

(4

64

.= [(-4.73)(6/12)]/[(0.5)(1.0)]  = -4.73 degF (xii)
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Note that T4  as computed from T3  + AT, is 0°F (within round-off error), the
boundary condition given in the problem.

Fourier’s law states that, for conduction with constant transfer area and
constant physical properties, the temperature profile is linear with distance. Thus,
the temperature gradient is found by plotting the interface temperatures and
connecting them with straight l ines.  The temperature profi le is  plotted accord-
ingly in Fig.  11.2(a),  and one notes that essential ly al l  the temperature drop is
across the insulation.

In the foregoing example, the heat transfer area was constant throughout
the composite wall (Fig. 11.2). Variable-area problems are often encountered,
e.g., an insulated pipe, as shown in Fig. 11.4. Derivation of the thermal
resistance to heat flowing through a cylinder wall begins with Eq. (4.23),  which
is Fourier’s law for one-directional transfer in the r direction:

(4.23)

The area of heat transfer in Fig. 4.l(b)  is circumference times length:

4, = 2JrrL (4.25)

If the heat flow qr is constant, Eqs. (4.23) and (4.25) can be combined and
integrated to yield

4, WJ4  = --(2~J%m!  - T) (4.27)

where k,  is the appropriate average value of thermal conductivity. Equation
(4.27) can be rearranged into the resistance form:

Tz- Tt T2- C
-a=-=R [ln(~~/rt)ll(2~N,,)

(11.16)

where L is the distance in the z direction in Fig. 4.1. The resistance R follows

Inside temperature T,
I n s u l a t i o n
resistance R,

- Direction of
positive
heat flow

Outside temperature Z’s

FIGURE Il.4
Heat flow through an insulated pipe.
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from Eq; (11.16):

R = [ln(r2/rI)]l(2nLk,)  = [In(dJdl)]/(2~k,)

For the insulated cylinder in Fig. 11.4, the equations are

-qr  = (G  - WRA

-9, = (T3  - GYRB
RA=[In(r*/r~)]l(2~nLkA)=  [ln(dald,)]l(2nLkA)

RB = [In(rJ~2)]/(2~Lkg)  = [ln(d~/d~)]/(2~~~u)

These equations may be combined into

(11.17)

(11.18)

(11.19)

(11.20)

(11.21)

-4,  = (& - n/(RA  +&d (11.22)

or in general form:

(11.23)

The derivations of Eqs. (11.22) and (11.23) follow exactly the derivation of
Eq. (11.15).

Convection resistance. The thermal resistance approach is even more useful
when modes of heat transfer are mixed. Suppose the pipe in Fig. 11.4 contains
high-temperature steam and is located outdoors, where the temperature is low
and a wind is blowing. Now there will be four resistances to be included in Eq.
(11.23): two conduction resistances [Eqs. (11.20) and (11.21)]  and two
convection resistances, as shown in Fig. 11.5. The convection resistance is
found by examination of Eqs. (11.3) and (2.1). From Eq. (11.3):

qr,o  = b%(To,w  - Towe) 9r.i  = hiAi(Z,w  - Ti,ave) (11.24)

where the subscript i stands for the inside and the subscript o stands for the

r, or r,

t
Air

FIGURE 11.5
An insulated pipe with convection.
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outside. The subscript w refers to the wall or actual surface conditions, i.e.,
To,,  means the outside wall surface temperature. The subscript ave means the
average fluid temperature in contact with the wall, i.e., T,,,  means the
average temperature of the fluid on the outside of the insulation. The outside
fluid in Fig. 11.5 is the air. The average temperature will be defined precisely
in Section 11.1.6.

Equation (11.24) in resistance form is

AT,
qrd3  = l&A,)

AT
qr.i - l/(hiAi)

Obviously, the convection resistances are of the form

1

R”=k.& , ,
Ri=&

(11.25)

(11.26)

where the wall areas A, and Ai  are the areas through which the heat is being
transferred. For a circular pipe, that area is circumference times length:

A, = nd,L Ai  = Xdi  L (11.27)

For the problem in Fig. 11.5, the steam flowing on the inside with coefficient hi
and air flowing on the outside with coefficient h,,  the term C  Ri becomes

(11.28)

The log-mean area, Eq. (4.29),  can be used to. form an alternate
definition of the conduction resistance in the radial direction of a pipe or tube.
Equations (11.17),  (11.20),  and (11.21) can be cast into the following, which is
similar to Eq. (11.7):

Ar
R=kAl,

(11.29)

where Ar is the appropriate difference in the radii, r2 - r,.

Example 11.2. In Example 4.2, the heat loss was calculated through the wall of a
2-in. schedule 40 pipe with inside temperature 10°C (WF) and outside tempera-
ture 0°C (32°F). Let the pipe be lagged (insulated) with a 3-in.  layer of 85 percent
magnesia; the temperatures are unchanged. Find the heat loss and compute the
temperature at the steel-magnesia interface. For steel and 85 percent magnesia,
the thermal conductivities  are 26 and 0.04 Btu  h-l ft-’ OFF-‘,  respectively.

Answer. Figure 11.4 applies as well as Eqs.  (11.16) through (11.23). The
dimensional data for the Zin.  pipe are in Example 4.1. The radii as defined in
Fig. 11.5 are

r,  = 2.067/2  = 1.0335 in. = 0.086125 ft

rz  = 0.086125 + 0.154/12  = 0.098% ft
r, = 0.09896 + 3/12  = 0.348% ft

(9
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The small  differences in some of  the above numbers and other  considerat ions
requi re  the  re tent ion  of  as  many d ig i t s  as  poss ib le  in  the  in termedia te  resul t s  of
this and many other problems. The resistances R,  of the pipe and Ra of the
insula t ion  wi l l  be  computed f rom Eqs .  (11 .20)  and (11.21)  for  uni t  length:

RA = ln(rJrl)@rW)
= 1n(0.09896/0.Q86125)/[(2)(n)(1.0)(26)]  = 8.502 X 10e4 h+‘FBtu-’ (ii)

Re = 1n(0.34896/0.09896)/[(2)(n)(1.0)(0.04)]  = 5.014 h “FBtu-’ (iii)

The total  res is tance is  the sum of  these:

R = 8.502 x 1O-4 + 5.014 = 5.015 h “F  Btu-’ (iv)

Note that the pipe resistance is often negligible. The overall driving force is
-10°C  which  i s  equiva len t  to  -18°F.  Equat ion  (11 .23)  y ie lds  the  hea t  f low per
foot of pipe:

-qr=AT/xR=  -( 18)/5.015  = -3.589 Btu h-’

qr = 3.589 Btu h-’ (4

Note  that  in  Example  4 .2  the  heat  f low was 8080 Btu h-‘.  The  insula t ion  reduced
the  heat  loss  f rom the  p ipe  by 99.96 percent .

The intermediate temperature T2 i s  found by  cons ider ing  e i ther  res i s tance
individual ly .  For  the  s tee l ,  the  tempera ture  change i s

AT, = (-q,)(R,) = (-3.589)(8.504  x 10-4)  = -3.052 x lo-’  deg F (vi)

The interface temperature is

L$ = T, + AT, = 50 - 3.052 x 1O-3  = 49.997 “F (vii)

Example 11.3. Suppose a 2-in. schedule 40pipe lagged with 3 inches of
85 percent  magnes ia  insu la t ion  has  s team f lowing  on  the  ins ide  a t  400°F wi th  a
heat  transfer coefficient  of 840 Btu h-’  iY* OF-‘.  The outs ide temperature is  0°F.
The wind is blowing, and h, = 25 Btu h-‘ft-20F-‘.  Estimate the heat loss for
500 ft of pipe.

Answer. In this  problem, heat  is  t ransferred from the s team to the surrounding
air  by both conduct ion and convect ion mechanisms (cf .  Fig.  11.5) .  There  are  a
total of four resistances, and Eq. (11.28) applies. From Example 11.2 for a 1-ft
length:

pipe: RA  = 8.502 x 1O-4 h “F  Btu-’ (9
insulation: Rs = 5.014 h “F  Btu-’ (ii)

The diameters from Example 11.2 are

di = 2r, = (2)(0.086125)  = 0.17225 ft

d, = 2r, = (2)(0.34896)  = 0.6979 ft
(iii)

The convect ion res is tances  R, and Ri are found from Eqs.  (11.26) and (11.27).
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Consider  a  1- f t  length:

R, = l/&A,)  = l/(h,nd,L)

= 1/[(25)(~)(0.6979)(1)]  = 0.01824 h “F  Btu-’

Ri = l/(hiAi)  = l/(h,nd,L)
(3

= 1/[(840)(n)(0.17225)(1)]  = 0.002200 h “F  Btu-’ (4
The tota l  res is tance is  the  sum of  those in  Eqs.  ( i ) ,  ( i i ) ,  ( iv) ,  and (v) :

R = 0.00220 + 8.504 x 1O-4 + 5.014 + 0.01824 = 5.036 h “F  Btu-’ (4

This value is substituted into Eq. (11.23),  with the driving force equal to -400°F:

-q,=AT/zR=  -( 400.0)/5.035 = -79.43 Btu h-’ (vii)

Equation (vii) presents the heat loss per foot. For 500 ft:

-4,=(  )AT/z  R (L) = (-79.43)(500)  = -3.97 x 104Btu  h-’

q, = 3.97 x lo4 Btu h-’ (viii)

Equat ion  (v i )  t e l l s  the  engineer  tha t  the  insu la t ion  accounts  for  more  than
99 percent of the resistance to heat loss.

Example  11.4 .  Prove that  i t  i s  poss ible  to  add a  layer  of  mater ia l  to  an  arbi t rary
cyl inder  of  radius  r, and  l eng th  L and thereby increase  the  amount  of  heat  los t .
The “critical” thickness is the radius r, where the heat transfer rate is a
maximum. If the convection coefficient h,  i s  7 .0  W m-’  K-‘,  determine the cri t ical
radius for 85 percent magnesia (k =0.07  W  m-’ K-l)  and for steel (k =
45 W m-r K-‘).

Answer. Let us assume that Fig. 11.5 applies and that the temperature of the
pipe- insula t ion  in ter face  Tz  i s  cons tan t .  A  hea t  ba lance  now con ta ins  on ly  two
res i s tances :  the  insu la t ion  res i s tance  and  the  convec t ion  res i s tance  be tween  the
outside area of the insulation A,, and the surrounding fluid. Under this restriction,
Eq.  (11.28)  reduces  to

6)

where k  i s  the  thermal  conduct iv i ty  of  the  insu la t ion  and  r, i s  t he  ou t s ide  r ad ius .
The heat flow from Eq. (11.23) and Eq. (i) is

A T A T
=ZnL(AT)(F+&)-’ (ii)

where AT is the driving force for heat transfer in the radial direction (the
temperature  of  the  f lu id  surrounding the  outs ide  surface  of  the  insula t ion minus
the temperature at  rz).
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The next  s tep is  to  form the derivat ive dq,/dr,  and  se t  tha t  equa l  to  ze ro  in
order to determine whether a maximum or a minimum exists:

~=o=(-I)(-2rL)(aT)(~+&)-2(~-$-J (iii)

Equation (iii) is zero only if the following term is zero:

1 1---=()
r,k h,r;

Equation (iv) can be solved for the critical radius:

(iv)

In order to determine if  this  value corresponds to a maximum or a minimum, i t  is
necessary to obtain the second derivative d2q,ldrz at the above point and
determine i ts  s ign.  The second der ivat ive  is  negat ive ,  and therefore  the  cr i t ica l
radius in Eq. (v) corresponds to a maximum.

Under  the  assumpt ions  of  cons tant  & and  cons tan t  k,  the  c r i t i ca l  rad ius
depends  only  on the  thermal  conduct iv i ty  and the  convect ion  coeff ic ient .  For  the
two materials ,  the numerical  values are

For 85  percent magnesia

(ro)criticnl  = k/h, = 0.07/7 = 0.01 m = 1 cm w
FOI  steel

(ro),itid  = 45/7 = 6.43 m w

In conclusion, when insulation is added to a cylindrical solid such as a pipe
or an electrically heated wire, the heat loss actually increases up to some
“cr i t i ca l ”  r ad ius  (rO)titiul. Beyond th is  radius ,  the  heat  loss  decreases .  For  la rge
pipe ,  adding  insu la t ion  a lways  decreases  the  hea t  f low,  thereby  saving  energy .
Also ,  insu la t ion  decreases  the  sk in  tempera ture  and  i f  des igned proper ly  wi l l
prevent bums upon contact. For small wires, adding a layer of electrically
insula t ing  mater ia l  may ac tual ly  help  keep the  wire  cool  by  increas ing the  heat
flow.

The calculation for steel proves that adding a high-conductivity solid
increases the area avai lable  for  convect ive t ransfer  and therefore increases the
heat transfer up to a large radius. Of course, it is not practical to fabricate a
thick-wal led s teel  p ipe 6 .43 m in  diameter .

11.1.5 Slope at the Wall

If Newton’s law of cooling, Eq. (11.24),  is combined with Fourier’s law of
conduction, Eq. (2.2),  the result expresses the heat transfer coefficient as a
function of the temperature gradient in the sulid  (U/&x),  and of the driving
force in the fluid (TW  - T,,,):

h = -k(aTlax)w
L - Le
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There are no assumptions in Eq. (11.30). This equation is useful in analytical
or numerical solutions of heat transfer problems.

11.1.6 Bulk and Film  Temperatures

In heat transfer with convection, the fluid properties such as viscosity and
density affect the shape of the velocity profile, and hence the rate of heat
transfer. Similarly, heat capacity and thermal conductivity are important. All
these are functions of temperature, which varies from the value at the wall to
the center line temperature. This section defines several “average” tempera-
tures to be used in such problems.

Bulk temperature. The bulk temperature Tb  is defined as the temperature
reached when the fluid at a particular axial location is removed and allowed to
come to equilibrium with no heat loss to the surroundings. A more descriptive
definition of Tb  is the “mixing cup” temperature, i.e., the temperature reached
at equilibrium if the fluid removed were to be placed in an adiabatic mixing
cup. Mathematically, the full expression for Tb  is

I’ (p2nr)(CJ,c,T)  dr

Tb  = Eve  = ’ r,

I
Wnr)(Qc,)  dr

0

(11.31)

The bulk temperature appeared previously in Eq. (11.3),  which defined the
heat transfer coefficient:

(q/AL  = Ww  - L) (11.3)

In the sequel, Tb  will be used to replace T,,,. The numerator of Eq. (11.31)
represents the total energy flow through the tube; the denominator is the
product of mass flow and specific heat, integrated over the flow area. Equation
(11.31) is rarely used in practice because both the velocity and temperature
profile must be known. Instead, the average temperature Tb  (or T,,) is
specified or computed at the location of interest, and the calculations proceed
from that point. Note also that Tb  (or T,,,)  is the appropriate temperature to
be used in heat or enthalpy balances.

Film temperature or concentration. The “film” temperature Tf  attempts to
average the properties of the fluid at the wall (at temperature T,) with those in
the free stream (at T, or Tb).  For pipe flow & is defined as

& = (Tw + Ti)/2 (11.32)

A film concentration can be defined similarly:

CA,f  = (cA,w  + CA. a..)/2 (11.33)
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The word “film” originates from the old film theory, described in Section
6.3.4. As discussed previously, this model of transfer is incorrect, but the
subscript f remains because many correlations use Tr.

Mean bulk temperature. The bulk temperature is not always a sufficient
definition for heat transfer problems because both T, and Tb  vary with length
down the tube and their difference is not constant or simply described. Hence,
heat transfer correlations define the mean bulk temperature Tmb  as

.

Z-k  = &,I  + Tb,2)/2 (11.34)

where T,,,  is the bulk temperature at location 1, etc. This temperature is also
known as the arithmetic mean temperature.

11.2 LAMINAR PIPE FLOW

Momentum transport in laminar pipe flow was covered in Section 10.1.1.
Examples 5.4 and 5.6 presented solutions for the temperature profile in a tube.
For the pipe in Fig. 5.3, the energy equation from Table 5.6 simplified to

(11.35)

where (Y  has been taken as a constant. This equation is identical to Eq. (i) in
Example 5.6. Equation (11.35) is a partial differential equation that is very
complex to solve; hence, a further simplification (the boundary layer assump-
tion first introduced in Example 5.8) is required. When the conduction in the z
direction (#T/&*)  is assumed to be much less than that in the radial
direction, Eq. (11.35) becomes

(11.36)

Equation (11.36) is the basis for solutions of heat transfer in laminar flow. It
applies when fluid at some temperature passes through a duct whose walls are
at a different temperature.

11.2.1 Fully  Developed Transfer

The term “fully developed profile” denotes that the profile (temperature,
concentration, velocity) is fully established at the location in question; in other
words, the profile does not change with tube length and is not a function of z.
Let us consider Eq. (11.36) for a fully developed temperature profile; both U,
and dT/dz  are constant. Therefore, the following must hold:

(11.37)
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Combining Eqs. (11.30) and (11.37) results in

h lk = constant (11.38)

Equation (11.38) contains the group h/k,  which is part of the Nusselt number,
Eq. (8.21); NNU  can be obtained by multiplying both sides of Eq. (11.38) by the
tube diameter di:

NNu  = hdJk  = constant (11.39)

Equation (11.39) states that for constant fluid properties, h is a constant,
independent of z, the distance down the pipe. This prediction is approximately
true for some applications in fully developed laminar flow.

It is useful to develop an equation for Tb  as a function of z, the distance
down the tube. Equation (7.48) is the energy balance on the fluid, and since
the shaft work W,  is zero inside a heat exchanger tube, Eq. (7.48) becomes

An=q, (11.40)

where qw is the heat flow at the wall. For an ideal gas or liquid (and heat
capacity not a function of T):

An=wcrAT=q,, (11.41)

where w is the mass flow rate (kgs-‘)  and AT is the change in bulk
temperature. Equations (11.3) and (11.41) can be written, in differential form:

dq,  = h( T, - T,)  dA (11.42)

dq,  = wcp  dT, (11.43)

Since the radial area for heat transfer to or from a circular tube is the
perimeter ndi  times length dz, Eqs. (11.42) and (11.43) yield

h(Zdi)(  Tw  - T&)  dz  = WCp  dT, (11.44)

This equation can be rearranged into the following form:

h(ndi)(AT)  dT, 4A  7’)=-= --
WCP dz dz

(11.45)

where the driving force AT is
AT=T,-T, (11.46)

Equation (11.45) is a very general equation with no assumptions save the form
of the enthalpy in Eq. (11.41). There are two boundary conditions that are
applied to Eqs. (11.35) and (11.45),  constant wall temperature and constant
heat rate (or flux):

Constant wail  temperatare
T(r = ri:,)  = Tw (L~~Z~L,) (11.47)

Constant beat rate or flux
qw = constant (lq5z~L.p) (11.48)

These will be discussed in turn. *
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Constant wall temperature. This boundary condition, Eq. (11.47),  is com-
monly encountered in such heat exchangers as condensers and evaporators, in
which a phase change occurs on the outside of the tube. The wall temperature
is also approximately constant when the product wcP  for one fluid greatly

exceeds that for the second fluid. For the boundary condition of constant T,,
Eq. (11.45) becomes

nd.h dGLdz=-
WCP Tv  - G

(11.49)

Next, Eq. (11.49) is integrated with the following boundary conditions:

T(z = 0) = Tb,l .

T(z = L) = Tb,2

AT(z  = 0) = AT,
(11.50)

AT(z  = L) = AT,

with the result

(11.51)

where h is the average value of h between zero and the point L. Figure 11.6(a)
shows the temperature predicted by Eq. (11.51). Note the exponential decay
of AT as L increases.

A second important relation is the estimation of the Nusselt number for
this boundary condition. The variation of T with radius has been expressed by
the differential equation from the energy balance, Eq. (11.36). More impor-
tantly, it is useful to calculate h for fully developed laminar flow. For the
boundary condition of constant wall temperature, a general solution to Eq.

T

w

A

b T

z (or L) z (or 15)

(a) Constant wall temperature (b) Gxistant  heat rate

FIGURE  11.6
Bulk temperature in laminar pipe flow for boundary conditions of constant wall temperature and
constant heat rate.
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(11.36) is possible only through the use of a successive approximation method
[Kl].  The procedure is to assume a velocity profile, Eq. (4.72),  and then solve
Eq. (11.36) iteratively by making successive approximations to T(r). There is
no simple algebraic expression for the profile, but NNu approaches the
following limit [Kl]:

NNu = ~dilk  = 3.658

where k is evaluated at Tmb.

(T,  = constant) (11.52)

Constant heat rate. This boundary condition, previously expressed in Eq.
(11.48),  is commonly found in electric resistance heating, radiant heating,
nuclear heating, etc. It is also found in counterflow heat exchangers where the
product WC,,  is approximately the same for both fluids. If Eq. (11.48) applies,
then Eq. (11.24) shows that if h (or h)  is constant, AT must be constant:

AT = T, - Tb  = constant

Under this restriction, every term in Eq. (11.45) is constant:

(11.53)

h(Zdi)(AT)  dTb WT)C-C
dz

- - = constant
WCP dz

(11.54)

The prediction from this equation is shown in Fig, 11.6(b)  for flow in the fully
developed region.

The Nusselt number will now be determined for this boundary condition.
The variation of temperature with radius at a given z, with qw constant, can be
found using the energy equation. For cotistant  qw, the term AT/L  is constant
and Eq. (11.36) applies. The solution to Eq. (11.36) with the constant qw
boundary condition was presented in Example 5.6 [cf. Eq. (xviii)] and Fig. 5.4:

(11.55)

qw = constant AT/L  = constant
V 5.  ave = constant Apt L = constant

There are five assumptions listed underneath Eq. (xviii) that apply to Eq.
(11.55),  two of which are listed above.

Equation (11.39) showed that for fully developed transfer the Nusselt
number is constant. To find this constant, the parabolic velocity profile, Eq.
(4.74),  is expressed in terms of V,, ave:

(11.56)

Equation (11.55) is solved for T, and that result and Eq. (11.56) are
substituted into Eq. (11.31),  the definition of Tb.  After integration and
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simplification, Tb  is

Equation (11.57) can be rearranged with the definition of AT and solved for
the aveage velocity:

u
48c~L  48  kLc - - c - -

G a v e 1 1  t-f  llpc,r?
(11.58)

Equation (11.54) also applies, and the term d(AT)/dz  equals AT/L after
integration. The mass flow rate w is eliminated by using Eq. (7.10):

w =  PU,  a”3 =  PU,,  a..~~ (11.59)

Then Eq. (11.54) can be solved for U,, ave  and equated to Eq. (11.58):

Uz. am? (11.60)

From this equation, the Nusselt number is

NNu = hdilk = 48/11= 4.3636 (qw = constant) (11.61)

where k is evaluated at Tb.  It is seen that the boundary condition of constant
heat rate increases the Nusselt number and the heat transfer coefficient by
19 percent as compared with the boundary condition of constant wall
temperature.

Correlations for heat transfer in the entry region will be discussed in the
next section. Laminar flows in other geometries are covered elsewhere [Kl,
K5, S2].

11.2.2 Entry Region

Flow in the entry region of a pipe was discussed briefly in Section 10.2.7.
Figure 11.7 shows the velocity profiles when fluid from a large tank enters a

B C
FIGURE 11.7
Development of the velocity profile in the entry region.
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pipe. At location A-A, just outside the entrance, the velocity profile is
essentially plug-like. At location B-B, the presence of the wall has led to the
establishment of zero velocity at the wall and a gradient from the wall toward
the center. At this point, the influence of the wall has not reached the fluid
near the center. At location C-C, the velocity profile is completely established
and follows Eq. (4.72).

Considerable work has been done on heat transfer in the entry region
during laminar flow. Excellent summaries are available [Kl,  K5, M3, S2]. For
engineering design, the Sieder-Tate equation [S4]  is recommended [Wl]:

NNumb -- y = 1.86(NRe~,b)1’3(N,r,,b)1’3(~)1’3(  E)“14

= 1.86(~)1’3(~)OI( (11.62)

T,  = constant

0.48 < Nfi,,,b  < 16 700

0.0044 < @,,,b/&)  < 9.75

NNu,mb/l.86 2 2

In Eq. (11.62),  the subscripts mb and w refer to the evaluation of properties at
the mean bulk temperature Tmb, Eq. (11.34),  and the wall temperature T,.
Also, R is the mean heat transfer coefficient from the entrance of the tube to
the location L. The term (~mb/~,,,)0.14  is an empirical correction for the
distortion of the velocity profile by a large AT [cf. Eq. (11.46)].  McAdams
noted that experimental data sometimes deviate from Eq. (11.62) by several
hundred percent, but that the deviations are such that heat exchanger design
will be conservative [M3].  The reliability of any such laminar flow correlation
is greatly reduced by the effects of natural convection, which is important in
slowly moving fluids for which AT is large. If the value of the term NNu,mb/l.86
falls below 2, then it is likely that fully developed conditions exist throughout
most of the tube radius. In this instance, the Nusselt number is constant and
equal to 3.658 [Il,  Wl] [cf. Eq. (11.52) for constant wall temperature].

For the case of a long pipe with laminar flow, the discharge temperature
Tb,* approaches the wall temperature T,.  Then Eqs. (11.42) and (11.43) can be
combined and integrated from the entrance to length L:

WCp(Tb,~-  Tb,,)=
I
‘h(Tw- Tb)dA=k(Tb,z-  Tb.,)(J?JdiL) (11.63)

0

This equation can be rearranged into the following form:

(11.64)

Note that the same dimensionless groups appear in Eq. (11.64) as in the
Sieder-Tate equation, Eq. (11.62).
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There are no mass transfer problems worthy of discussion for the case of
laminar flow in ducts. There is an overwhelming amount of work published in
the area of laminar forced-convection heat transfer [S2].

11.3 HEAT AND MASS TRANSFER
DURING TURBULENT FLOW

Chapter 10 covered momentum transport of fluids in ducts. For turbulent flow,
it was necessary to develop empirical correlation for design. In Section 11.2,
empirical correlations were also necessary for laminar heat transfer in the entry
region of pipes. Most process equipment involves turbulent flow, especially
equipment designed for heat and/or mass transfer. Correlations for heat and
mass transfer for turbulent flows are likewise empirical in nature and will be
covered in this section.

11.3.1 Review of Turbulence Models

Models for heat, mass, and momentum transfer in turbulent flow were
discussed in Section 6.3. Reviewing briefly, Boussinesq separated the total
shear stress into the laminar contribution p plus a turbulent contribution E,
which is called the eddy viscosity. This term was divided by density to obtain
E,,  which was defined as the eddy diffusivity of momentum. The resulting
equation contains both Y and E,:

Similar equations were written for heat and mass transfer. The Prandtl mixing
length theory expressed the shear stress in terms of a laminar term as in Eq.
(6.65) and a turbulent term, where E, was replaced by the mixing length 1. The
result was Eq. (6.72).

More modern theories, such as the penetration theory and stochastic
models of turbulent diffusion, were also discussed in Section 6.3. None of these
turbulence models is refined to the point of being fully satisfactory for design.
Hence, an alternate approach is to propose analogies that model one transport
based on a second transport process for which data are obtained more easily.

11.3.2 Correlations for FuIIy Developed
Turbulent FIow

Heat and mass transfer coefficients have been successfully correlated for
turbulent flow. These correlations are empirical, as were the fluid flow
correlations in Chapter 10.

Heat transfer. The form of the heat transfer equation was derived through
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dimensional analysis in Example 8.3; the result can be expressed as

NNu  = hdilk = B(NRe)“(Npr)b (11.65)

where a, b and B are empirical constants. This equation is widely used for all
fluids except liquid metals. Note that this equation does not take into account
wall roughness conditions. The modern form [M3,  S6]  of the Dittus-Boelter
correlation [D3], which is based on Eq. (11.65),  is

NNu,mh  = Ldilkrnb  = 0.023(N~e,rnb)“.~(Npr.mb) (11.66)

0
a

0.7 5  NPr,mb 5  100

lOOOO(N Re,mb  5 120  Ooo

Lldi  2  60 (smooth tubes)

where n is 0.4 for heating (T,  > T,) and 0.3 for cooling, Note that the
conditions listed below Eq. (11.66) are the range of data used in the
correlation and applies only for smooth tubes. Equation (11.66) evaluates all
properties at the mean bulk temperature Tmh  [see Eq. (11.34)],  which restricts
its use to small AT [Eq. (11.46)].

For large AT, another equation by Sieder and Tate [S4]  is
recommended:’

NNu.mb  =  ~~~~~(~Re,mb)“~8(~~r,~~~“~~~~b~~~~”~’4

0.7 < NPr,,,b  5  160

N Re,mb  z 10 OOO

L/di 2  60 (smooth tubes)

(11.67)

where all properties save ,u,,,  are to be evaluated at Tmh.
Equations (11.66).and  (11.67) are not valid for long lengths of pipe, for

entry regions, or for very rough pipes [K4]. In general, the thermal profile in
turbulent flow is quickly established, perhaps in 10 to 12 diameters and almost
always by 50 diameters [M2].  These equations are used anyway, because that
section is small compared to the total length and the predicted h is
conservative, i.e., h in the entry region is substantially greater than the value
at L/di of 60. Equations for the entry region are available [K5, M2].  Example
11.5 will demonstrate how to use Eqs. (11.66) and (11.67).

The correlations of Eqs. (11.66) and (11.67) were developed in the 1930s.
They are still widely used and are especially recommended for hydrocarbons.
Although Equations (11.66) and (11.67) are often applied to gases, they’ are
less accurate, and better correlation methods are available, especially for gas

’ Seider and Tate used 0.027. McAdams  reported that 0.023 is better for air [M3]; Drexel and
McAdams  reported 0.021 for other air data [D4]. It is recommended that 0.027 be used for liquids
and 0.023 for gases. The values of h are larger for rough pipes than for smooth pipes [K5].
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applications with large AT [K3, P2, S6]  and for water with large AT [H4]. The
prediction of heat transfer coefficients is often improved by arbitrarily
including an additive constant to the general equation, Eq. (11.65):

Np+  = hdi/k = A + B(NRe)“(Npr)’ (11.68)

The form of Eq. (11.68) has also proved useful for liquid metals, for which the
thermal conductivity is very large and the Prandtl numbers are small
(Npr<O.l).

The correlations for gases and liquids are generally divided into two
categories: constant properties (for which the fluid properties change only a
little) and variable properties. Petukhov prepared complex and accurate
equations for both cases [P2]. A useful and simple equation is that of Sleicher
and Rouse [Nl, S6]:

Variable properties

N Nu,mb  = 5.0  • t  0-015(NRe,X(N~r.w)” (11.69)

a = 0.88 _‘0.24/(4.0  + NPrew)

b = 1/3  + 0.5 exp[(-0.6)(N,,,,)]

lo4  5  NRe,t  I lo6 0.1 5  NPr.w I ld

This equation is recommended for use with liquids for both constant-property
and variable-property design. For the constant-property case, all properties are
evaluated at Tmb.  For gases, the equation becomes

NNu,,,b = 5.0 + 0.012(NR,,f)0~83(Np,,,  + 0.29) (11.70)

lo4  5  NRe,r  I lo6 0.6 5  NPr,w 5  0.9

Here, the Nusselt, Reynolds, and Prandtl numbers are evaluated as for Eq.
(11.69). These two equations have been compared to others in the literature,
as well as the best experimental data, and are sufficiently accurate for use [S6].
Again, both equations apply only for smooth tubes.

There are many correlations besides those presented here, both for
smooth tubes as given, and for many other applications, such as annuli,
noncircular tubes, etc. Some excellent references are available [Kl, K3, K4,
K5, M3, Pl].

Liquid metals. Liquid metals find application in removing heat from nuclear
reactors. Heat transfer in liquid metals poses a unique set of problems because
the thermal conductivity is very high compared with that of other liquids.
Hence, the Prandtl number of liquid metals is very low, ranging between 0.001
and 0.1. Molecular conduction is the dominant mechanism of transfer, even in
turbulent flow [Kl]. Excellent reviews of heat transfer in liquids metals are
available [ K5, S8].

In the 1950s  Seban and Shimazaki [Sl]  and Skupinski et al. [S5]
developed correlations for liquid metals for constant wall and constant heat
flow, respectively. More modern correlations have been proposed by Sleicher
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and Rouse [S6]:

Constant heat flow

NNu,mb  = 6.3 + 0.0167(NR,,r)0~85(Np,,,)0-93 NPr,w c 0.1 (11.71)

Constant wall  temperature

NNu,mb  = 4.8 + 0.0156(NRe.f)0.85(Np~,~)o.93 NPr,w 5  0.1 (11.72)

These equations are especially recommended for the variable-property case, in
which the Nusselt number is evaluated at Z&  the Reynolds number at T,,  and
the Prandtl number at T,. It is expected that these equations also hold for the
constant property case, although they are presently untested [S6].

Mass transfer. There are essentially three experiments in which mass is
transferred to or from a flowing fluid in a duct: the wetted-wall column (shown
in Fig. 11.8),  flow through soluble pipes, and diffusion of ions in a
diffusion-controlled electrolytic system. None of these experiments has any
important practical applications in industry. Therefore, the resulting correla-
tions from these experiments are used primarily to gain understanding of the
transfer mechanisms and to extend the range of data for correlations.

The earliest correlation was that of Gilliland and Sherwood [Gl], who
studied the evaporation of nine liquids in a wetted-wall column:

NS,,=k L, a,di/B  = 0.023(NR,)“.83(Nsc)o.44

2OOO~N,,~35000 0.6 s N,,  5  2.26

N,, = v/D

(11.73)

Pm

FIGURE 11.8
Cross section of a wetted-wall column. (Reprinted with permir-
sion from Gilliiand and Sherwood, Ind. Eng. Chem. 26:  516
(1934). Copyright 1934 American Chemical Society.)
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where th’e Schmidt number N, [Eq. (8.6)]  is the kinematic viscosity divided by
the diffusion coefficient, and the Sherwood number is based on the average
liquid-phase mass transfer coefficient kL,  ave  [Ll, S3, T2]. The data of Gilliland
and Sherwood covered a pressure range of O.l-3.0atm. Later data extended
the range of Eq. (11.73) and corrected some high-Schmidt-number results
[Ll, Tl].  The most recent and the recommended correlation is that of Harriott
and Hamilton [Hl]:

Ns,,  = 0.0096(NR,)o.9’3(Ns,)o~3~ (11.74)

10000%N,,~100000 432sN,s97600

The general similarity of the above equations, (11.73) and (11.74). to the
corresponding equations for heat transfer [cf. Eqs. (11.66) and (11.67)]  is
noteworthy. It must be pointed out that the Sherwood number, defined in.Eq.
(11.73),  is based on kL,a,,e. This mass transfer coefficient is for a single
component being transferred from a liquid to the bulk gas, as in the case of the
wetted-wall column, or from a solid wall to the bulk liquid, in the case of a
pipe manufactured from a solid that slowly dissolves as the liquid passes
through it. It is possible to relate this coefficient to kf, as defined by Eq. (6.87)
PA.

11.3.3 The Analogies

The concept of a valid analogy among mass, heat, and momentum transport is
that the basic mechanisms of transfer are essentially the same. The earliest
analogy was that of Reynolds in 1874, which was presented in Chapter 6 in
Eqs. (6.91) through (6.96). These can be summarized as follows:

As stated after Eq. (6.96),  this analogy is approximately valid for gas systems
in which the Prandtl or’schmidt  number is near unity. The influence of the
fluid properties expressed in these dimensionless groups is not adequately
accounted for in the Reynolds analogy, which was obtained by equating the
generalized transport coefficients, as suggested by Eq. (6.94). This failure
results from the fact that the Reynolds analogy considers conditions at the wall
and neglects transfer of property through the fluid to the wall.

Momentum transfer analogy. The analogy between momentum transfer and
heat or mass transfer is valid only if there is no form drag (the subject of
Chapter 12). Thus, the analogy cannot be applied to any flow for which
separation of the boundary layer occurs, e.g., flow around spheres, cylinders,
and other “bluff’ objects or flow perpendicular to pipes or tubing. Flow in
ducts and flow over flat plates do qualify, however. A second point to consider
is that heat or mass transfer may distort the velocity profiles, especially under
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large driving forces. The analogy does not hold if the velocity profile with
momentum transfer alone differs from that with both momentum transfer and
heat or mass transfer.

For any turbulent flow analogy to be valid, the mathematical statement of
the boundary conditions used to solve all the applicable differential equations
must be analogous (i.e., for momentum, heat, and mass). In practically all
mass transfer equipment, mass transfer occurs between two fluid phases (a gas
and a liquid or two immiscible liquids), while the momentum transfer occurs
between the fluid phases and a solid (the duct wall, packing, etc.). In such
equipment, the analogy is impossible.

For a mechanistic analogy between the transports to exist, the appropri-
ate eddy diffusivities must be equal:

E,=E,=EM (6.84)

In practice, none of the three eddy diffusivities is usually known, and so the
engineer must use his or her intuition as to whether or not Eq. (6.84) is a
reasonable assumption.

Heat and mass transfer anaIogy.  The analogy between heat and mass transfer
is usually sounder than the momentum analogy discussed previously. Most of
the restrictions in the previous section apply; additionally, some new restric-
tions may appear. The applicable restrictions to the analogy between heat and
mass transfer are: (1) same velocity profile; (2) analogous mathematical
boundary conditions; and (3) equal eddy diffusivities. The analogy between
heat and mass transfer is often valid even if there is form drag. The analogy
between heat and mass .transfer  will not be valid if there are additional
mechanisms of transfer present in one transfer but not in the other. Examples
in which analogies would not be applicable include: (1) viscous heating; (2)
chemical reaction; (3) a source of heat generation (such as a nuclear source)
within the flowing fluid; (4) absorption or emission of radiant energy; and (5)
pressure or thermal mass diffusion.

The analogy between heat and mass transfer is obtained by substituting
the analogous dimensionless groups. The Reynolds number appears unchanged
in both heat and mass transfer equations. The Prandtl number in the heat
transfer equations is replaced by the Schmidt number in the mass transfer
equations. Similarly, the Nusselt number in heat transfer is analogous to the
Sherwood number in mass transfer. A true analoe-  between heat and mass
transfer would differ only in the substitution of the proper dimensionless group
from these two pairs. This point will be illustrated in the following paragraphs
on the Colburn and Friend-Metzner analogies.

Colbum analogy. The Colburn analogy [C2], or the Chilton-Colburn analogy
[Cl], has proved useful since its introduction in 1933 because it is based on
empirical correlations, as previously introduced, and not on mechanistic
assumptions that are only approximations. Thus, the Colburn analogy repre-
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sents experimental data extremely well over the range in which the empirical
correlations are valid. Of course, caution should be exercised in any
extrapolation of an empirical equation. If extrapolation is required, then a
sound mechanistic theory is necessary.

The starting point for the Colburn analogy is the Blasius relation between
Reynolds number and friction factor in a smooth tube, given as Eq. (6.133).
Equation (6.133) was determined in 1913, and McAdams  [M3]  presented
constants based on more accurate data over a Reynolds number range of 5000
to 200 000. The resulting equation for turbulent flow in circular tubes is

f = 0.046(N,,)-“.2 (11.76)

which, if divided by two on each side, becomes

f /2  = 0.023(NRe)-‘.* (11.77)

Note that the constant 0.023 has already appeared in previous correlations,
Eqs. (11.66) and (11.73).

The Dittus-Boelter turbulent correlation, Eq. (11.66),  may be rear-
ranged into the following form with n set arbitrarily to 1/3:

(Nst)(Np,)2/3  = 0.023(NRe)-‘.* (11.78)

where the Stanton number for heat transfer Ns,  is related to the Reynolds,
Nusselt, and Prandtl numbers by

N
N,,=-=

NR.~~P,

h

P C ,  uz, ave
(8.24)

The Colburn analogy in its present form empirically defines a j-factor for
heat transfer, jH:

jH = (Ns~,~LJ(NP~.~*‘~ (11.79)

where the physical properties in NPr are evaluated at the film temperature Tf
and the physical properties in N,, are evaluated at Tmb.  Note that the Colburn
analogy evaluates cp  at two different temperatures in the same correlation: at
Tr  in NPr and at Tmb  in Ns,. The Colburn analogy combines the two
correlations, Eqs. (11.77) and (11.78); the j factor is equated to f/2 and the
film Reynolds number substituted into Eq. (11.77) to account for nonisother-
ma1  flow:

jH = f /2  = 0.023(N,,,)-0.2 (11.80)

where the physical properties in the Reynolds number are evaluated at the film
temperature. The Colburn analogy is restricted to the same range and
conditions as the Sieder-Tate correlation, Eq. (11.67). For extension to mass
transfer, it is necessary to alter slightly the exponents in the Gilliland-
Sherwood correlation, Eq. (11.73),  in order to define the j-factor for mass
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transfer, jM:

jhI  =  &, mass)(&c)z3  =  (&h)(NRe)-l(NSc)-*n (ii.81)
N Ns,,  kL  ave

St,  mass=  NR,Nsc  = z

2000~N,,~300000 0.6 5  Nsc  I 2500

where N,,  is based on the fluid properties at Tt  and the ranges are subject to
considerable error [Fl].

Colburn’s analogy is based on the similarity of constants in the empirical
equations that in his day were used to correlate heat, mass, and momentum
transfer. The Colburn analogy may be summarized as

fD=j,=j,

where f is the friction factor for smooth tubes.

(11.82)

Friend-Metzner analogy. The Friend-Metzner analogy uses an equation of
substantially different form in order to correlate data over wide ranges of NR
and N,,  [F3]. Their correlation for heat transfer is

N N~e,mdV~r,rnbCf/2)(~Lmbli~lw)‘.l~
N”‘mb  = 1.20 + (ll.8)Cf/2)1’2(Npr.mb  - l)(Npr.mb)-1’3

(11.83)

0.5  5 NPr,,,b  5 600 NRe.,,b  2 10 ooo
where f is the friction factor for smooth tubes. An important exclusion for the
Friend-Metzner correlation is the region for liquid metals where the Prandtl
number is much less than 0.5. Again, no correlation is valid at high heat
transfer rates when the velocity profile is distorted and fluid properties vary
significantly across the pipe radius. By analogy, the mass transfer correlation is

N fl2
St,mass  = 1.20 + (11.8)cf/2)“*(Nsc - 1)(NsJ-1’3

(11.84)
.

N Nsb  kf
st7  maSS  = a = c

0.5 <N,,  < 3000

Equation (11.84) is based on limited data, especially at high Schmidt numbers.
The scatter and inherent error in mass transfer data are usually much larger
than those in corresponding heat transfer data. Mass transfer data in gases
(low Schmidt numbers) follow Eq. (11.84) or Eq. (11.81),  since for gases the
analogy between heat transfer and mass transfer has been shown experimen-
tally to be valid. Application of Eq. (11.84) to liquid mass transfer coefficients
(high Schmidt numbers) should be made with the realization that experimental
data vary between investigators over a range as large as 35 percent [Hl].
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Summa&. In view of the many conflicting correlations, a summary is
warranted. The analogies are most useful for predicting or correlating mass
transfer data. The analogies are less useful for heat transfer because accurate
correlations exist. Also, the variation of temperature between T, and Tb
complicates the evaluation of the physical properties of the fluid. All the
correlations in this chapter apply to smooth tubes, as are normally found in
typical commercial heat exchange equipment. Roughness in air flows has been
reviewed elsewhere [El]. The Sleicher-Rouse equation, Eq. (11.69),  is
recommended for general usage; it is simple and can be adapted to both
constant-property and variable-property design. For hydrocarbons, the Dittus-
Boelter and Sieder-Tate equations, Eqs. (11.66) and (11.67) respectively, are
still in use. The two best equations for predicting mass transfer coe&cients  in
pipe flow are the Friend-Metzner analogy, Eq. (11.84),  and the Harriott-
Hamilton correlations, Eq. (11.74). At present one has no firm basis upon
which to pick one over the other. Deviations up to 25 percent may be expected
from either.

11.3.4. Other Methods

More complex analogies and similar methods of analysis have been proposed.
Some of the well-known ones are by Von Karman [Vl],‘Boelter  et al. [Bl],
Martinelli [Ml], Seban and Shimazaki [Sl],  Deissler [Dl, D2], and Lyon [L2].
Some of these are based on constant heat rate and the rest on a constant wall
temperature. Sleicher and Tribus studied heat transfer in a pipe with turbulent
flow and arbitrary wall temperature distribution [S7]. These really do not offer
significant improvement over the empirical equations presented earlier [H2].
However, they may allow prediction of the Nusselt number for geometries for
which no data exist. Excellent reviews are available [El, Fl,  H3, K5, M3].

If the velocity profile is known, then the temperature (or concentration)
distribution throughout the fluid stream can be obtained by equating the eddy
diffusivities, as in Eq. (6.84). In Example 6.6 the equation was derived, and in
Example 6.8 the numerical solution for the temperature distribution was
shown for a typical turbulent flow. Clearly, the turbulent flow problem can be
treated as was the laminar flow problem just analyzed in Section 11.2. The
procedure usually involves two integrations, one to obtain the temperature
profile, as done in Example 6.8, and the second to obtain Tb  by Eq. (11.31).
Then the new value of Tb  is used to repeat the two integrations until all
equations and boundary conditions are satisfied.

An early attempt to bypass the simplifying (but unsatisfactory) assump-
tions in the analogies relaxed the assumption of equal eddy diffusivities and
made the ratio of eddy diffusivities a unique function of Prandtl number [Jl].
A single consistent theory and numerical computing procedure were used later
by Kays and Leung [K2]  to predict the Nusselt number over the entire range of
NPr and NRe.  Their results are in Fig. 11.9. These authors indicate that the plot
agrees very favorably with the experimental data over most of the Prandtl
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FIGURE 11.9
Nusselt number for turbulent flow, fully developed profiles, circular tube, constant heat rate.
(From Kays and Crawford, Convective Heat and Mass Transfer, .W  ed.,  p. 248, McGraw-Hill,
New York, 1980. By permhion.)

number range, but that at low Prandtl numbers for liquid metals and at high
Reynolds numbers deviations of up to 40 percent have been reported.

Example 11.5. Estimate the heat  t ransfer  coeff icient  when water  at  20°C f lows in
a smooth pipe 0.04 m in diameter at a Reynolds number of 50 000, if the pipe wall
is maintained at 40°C. Assume that a very short section of pipe is being
considered so that  20°C is  the  mean bulk temperature .
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TAiLE  11.1

Physical properties of water for Example 11.5

T, K T, “c P, Irg  m-’ c, cp k, W m-’  IL-’ cp,  J kg-’  K-’ N,.,

293.15 20 999.0 1.001 0 . 6 0 3 4 1 8 2 6.94
303.15 30 996.0 0.800 0 . 6 1 8 4 1 7 8 5 . 4 1
313.15 4 0 992.1 0.654 0.632 4 1 7 9 4 . 3 2

Answer. The flow is fully turbulent. The physical properties of water will be
needed at  temperatures of 20°C 3o”C,  and  4o”C,  in  order  to  use  the  s ix  methods
of  predict ion covered in  Sect ion 11.3.  Data  in  Table  11.1 were taken from Table
A.1  in  the  Appendix;  the  l iquid  dens i ty  i s  the  rec iprocal  of  the  speci f ic  volume.
Since the tube diameter  is  0 .04 m,  the rat io  k,b/di  i s

k,,/di = 0.603/0.04 = 15.08 W m-* K-’ (9
Dittus-Boelter.  This  correct ion evaluates  a l l  proper t ies  a t  the  mean bulk tempera-
ture ,  which  i s  20°C here .  Equat ion  (11 .66)  i s  used  for  the  condi t ions  g iven .  This
equa t ion  i s  so lved  for  h below and the  values  for  k,,/di, NRC,  Npr, and n (0.4 for
hea t ing)  a re  inser ted:

h = (k,bldi)(O.023)(NR,,,b )0.8(Npr.,,b)0.4  = (15.08)(0.023)(5.0~  104)o.8(6.94)o-4

= 4322 W me2  K-’ (ii)

or  in  Engl i sh  uni t s ,  us ing  the  convers ion  f rom Table  C.10 in  the  Appendix:

h = (4322)(0.17611)  = 761 Btu ft-’  h-’ “F-’ (iii)

Sieder-T&e.  This correlation evaluates all properties save p,  at the mean bulk
temperature .  Equat ion (11.67)  is  solved for  h, us ing  the  def in i t ion  of  NNU  i n  E q .
(11.65),  and the  appropr ia te  subs t i tu t ions  are  made:

h = (k,,ldi)(~.~7)(N,,,,,)0~8(~~,~~~1’3~~~~/~~~o~’4
= (15.08)(0.027)(5.0  x 104)o~8(6.94)1”(1.001/0.654)o~‘4

= 4733 W me2  K-’ = 834 Btu ft-*  h-’  “F-’ (3
skirber-Rouse. The Sle icher-Rouse equat ion is

N Nu,mt,  = 5.0 + O.~WL.~“(NP~,~)~ (11.69)

a = 0.88 - 0.24/(4.0 + NR,J

b = 1/3 + 0.5 exp[(-0.6)(N,.,)]

The film temperature from Eq. (11.32) is:

Tf  = (T,  + T,,)/2  = 30°C (4

The properties of water at  the fi lm temperature,  30°C are in Table 11.1.  The f i lm
Reynolds  number  is

N Rc.f = ~~,.,4~m/~&~m/~20)
= (5.0 x 10”)(1.001/0.800)(996.0/999.0)  = 6.24 x 10” (4
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The Prandtl  number at  the wall  temperature (40°C) from Table 11.1 is  4.32.  The
exponents  a  and b  are

a =0.88-0.24/(4.0+N,~,)=0.88-0.24/(4.0+4.32)=0.8512

b = 1/3  + 0.5 exp[(-0.6)(N,,,,)]

= 1/3 + 0.5 exp[(-0.6)(4.32)]  = 0.3708 (vii)

The Nusselt  number from Eq. (11.69) is

N~u,mb  = 5.0  + 0.015(N,,,,)“(N,,,,)*

= 5.0 + 0.015(6.24  x 104)o.85’1(4.32)o.3708  = 316.2 (viii)

The thermal  conduct iv i ty  in  the  Nusse l t  number  i s  evaluated  a t  2O”C, Tmb.  The
heat  transfer coefficient  is

h = (Nrwnd(km~l4)  = Wi2)@.603)/(0.04)
= 4766 W m-’ K-’ = 839 Btu ft-’  h-’  “F-l (4

Colbum analogy.  The j factor  for  heat  t ransfer  is  calculated from Eq.  (11.80) using
the film Reynolds number from Eq. (vi):

jH = f /2 = O.O23(N,,,,)-“.’  = (0.023)(6.26  x 104)-‘== 2.528 x 1O-3

The Stanton number from Eq. (11.79) is

(x)

NSt,,,,* = &)(NpJz3  = (2.528 x 10-3)(5.41)-u3  = 8.202 x 1O-4 64

where the Stanton number  a t  Tmb  i s

Nst,mb = hl(~m,c,.,,~z,  a..) (xii)

In order to obtain h using Eq. (xii), the velocity in the pipe must first be
calculated using the Reynolds number, Eq. (6.2). When the properties are
evaluated at the mean bulk temperature Tmb,  the Reynolds number is 50000.
Therefore,  the veloci ty is

uz,  avc = Wrd~L)l(dip)  = l(5.0 x 104)(l.001)(10-‘)1/[(0.04)(999.0)1
= 1.253 m s-’ (xiii)

Equation (xii) is solved for h and the correct values for the properties are
substituted

h = Wst,md~mb~p,mJJz,  avc) = (8.202 x 10-4)(999.0)(4182)(1.253)

= 4292 W m-’ K-’ = 756 Btu ft-’  h-’  “F-’ (xiv)

Friend-Metmer.  The Fr iend-Metzner  equat ion is

N
NRc,rndV~r,rnbCf/2)(~L,bl~~,)‘-~~

N”‘mb  = 1.20 + (11.8)Cf/2)11*(Nfi,mb  - 1)(Npr,J”3
(11.83)

The friction factor f  may be estimated from Eq. (11.76) or Eq. (6.132) for smooth
tubes .  Using Newton’s  method,  as  i l lus t ra ted  in  Example  10.2 ,  the  f r ic t ion fac tor
from Eq. (6.132) is

f (N,,  = 50 000) = 0.005 227 (xv)
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TABLE 11.2

Comparison of h from various correlations

Method h, W m-*  K-’ h, Bto ft-’  h-’ OF-’

Dittus-Boelter 4 3 2 2 161
Seider-Tate 4 7 3 3 8 3 4
Sleicher-Rouse 4766 8 3 9
Colburn analogy 4 2 9 2 7 5 6
Friend-Metzner 4 7 1 3 8 3 0
Numerical analysis 4 8 2 4 850

Next ,  the  appropria te  numbers  are  inser ted into  Eq.  (11.83) :

N
(5 x 104)(6.94)(0.005  227/2)(1.001/0.654)“-‘4

N”*mb  = 1.20 + (11.8)(0.005  227/2)‘“(6.94  - 1)(6.94)-“3
= 313

(xv9

Equat ion (11.65)  is  solved for  the  heat  t ransfer  coeff ic ient :

h = N.,u,md(km~ldi)  = (313)(0.603)/(0.04)
= 4713 W m-* K-’ = 830 Btu ft-*  h-*  OF-’ (xvii)

Numerical analysis .  From Fig.  11.9 ,  the  Nussel t  number  is ’  about  320.  The heat
transfer coefficient is

h = N&/dJ  = (320)(0.603)/(0.04)

= 4824 W m-*  K-r = 850 Btu ftt’  h-’  OF-1 (xviii)
Summruy.  Table 11.2 summarizes the various values of the heat transfer
coefficients as calculated from all six methods. There is roughly a 10 percent
spread among the values-cer ta inly  very reasonable  in  l ight  of  other  problems
such  as  tube  fou l ing  and  cor ros ion .  In  genera l ,  the  Colburn  ana logy  i s  ou tda ted .
For small driving force AT, the Dittus-Boelter correlation is preferred; it is
based on good experimental data. For large AT, such as in this problem, the
Sleicher-Rouse correlation is preferred for water and gases. The Seider-Tate
correla t ion is  recommended for  hydrocarbons,  a l though the Sleicher-Rouse and
Friend-Metzner equations are also satisfactory. The graph of Fig. 11.9 is
excellent for a quick estimate of NNU,  given NRe  and NPr,  but it is inconvenient for
computer-a ided des ign.

This  example was s implif ied by considering the mean bulk temperature to
be constant  and equal  to  20°C.  In  a  real  heat  exchanger ,  the  f lu id  temperature  is  a
s t rong funct ion of  length .  The procedure  i s  to  d ivide  the  exchanger  in to  smal l
sect ions,  perhaps 1 f t  or  1  m in length.  The mean bulk temperature is  the average
of  tha t  a t  the  beginning  and  end  [Eq.  (11.34)].  The heat  t ransfer  through the  wal l
must  balance the enthalpy change [cf . ,  Eq.  (11.44)].  A t r ia l  and  er ror  ca lcula t ion
is required: the temperature at the end of the small section is guessed; the
propert ies are calculated,  the mean heat  t ransfer  coefficient  h is  est imated from a
suitable correlation, and the heat through the wall is calculated [Eqs. (11.23) and
(11.28)];  the  temperature  a t  the  end of  the wal l  is  calculated from the enthalpy
equat ion;  f inal ly ,  when the  guess  equals  that  temperature  calcula ted f rom the
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entha lpy  equat ion ,  convergence  has  been  obta ined  for  tha t  length  in terva l .  This
procedure  i s  repeated  unt i l  the  ent i re  length  of  the  exchanger  has  been t raversed.

Example 11.6. The l iquid metal  NaK is  of ten used in  nuclear  reactors  to  t ransfer
heat  be tween the  core  and the  boi lers .  Consider  an  NaK mixture of 45 percent Na
that  i s  f lowing in  a  smooth tube ( ins ide  diameter  0 .04 m) a t  a  Reynolds  number  of
50 000. Find the Nusselt number if the fluid temperature is 640 K and the wall
temperature is 680 K. Assume that a very short section of pipe is being
considered so  that  640 K is  the  mean bulk  temperature .

Answer. The Sle icher-Rouse equat ions  for  l iquid  metals  apply:

Constant heat flow

N Nu,mb  = 6.3 + 0.0167(N,,,,)“~“(N,,,)“-93 NR.w  5 0.1 (11.71)

Constant wall temperature

N Nu.mb  = 4.8 + 0.0156(N,,.,)““(Np~.w)0.93 NPr,w  s 0.1 (11.72)

These equations require physical properties at T,,  (64OK),  T,  (680K), and T,,
which from Eq.  (11.32) is

T,=(T,+T,)/2=(680+640)/2=66OK (9

The physical  proper t ies  needed for  these  equat ions  are  es t imated in  Table  11.3 ,
which was  prepared by a  l inear  in terpola t ion  f rom data  a t  644 K and 977 K [Ill.
The kinemat ic  v iscosi ty  Y  i s  in  the  def ini t ion of  Reynolds  number:

NRC  = di U,,  . ..lv (ii)

Therefore,  the fi lm Reynolds number is

N Rc,f  = NRc(vmb/vf)  = (50 000)(2.88  x lo-‘)/(2.84  x lo-‘)  = 50 700 (iii)

From Table 11.3, the Prandtl number at the wall is 8.74 x 10m3.  The Nusselt
numbers and heat  transfer coefficients follow from Eqs.  (11.71) and (11.72):

Constant beat flow

N NY,mb  = 6.3 + 0.0167(NR,.,)0.85(Np,,,)0.93

= 6.3 + (0.0167)(50  700)‘=(8.74 x 10-3)o.93 = 8.33

h = (Ni.,.,,,)(k,,l4)  = (8.33)(27.48)/(0.04)
= 5723 W rn-’  K-’ = 1010 Btu ft-’ h-’  “F-’

(4

69

TABLE 11.3
Estimated physical properties of NaK  for Example 11.6

T,  K Y  m’s+, k, W m-l K-’ Nh

640 2.88 x lo-’ 27.48 9.14 x 1o-3
660 2.84 x lo-’ 27.57 8.94 x 1O-3
680 2.80 x lo-’ 21.65 8.74 x 1o-3
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Constant wall temperature

N Nu.mb  = 4.8 + 0.0156(N,,,,)0.85(N,,,)0.93

= 4.8 + (0.0156)(50  700)“~~(8.74  x 10-3)o.93 = 6.70 (vi)

h = @‘~u.m~, )(k,,JdJ  = (6.70)(27.48)/(0.04)

= 4600 W ,-*  K-’ = 810 Btu ft-*  h-’  “F-’ (vii)

The  cons tan t  wal l  boundary  condi t ion  i s  p robably  more  apropos .  Note  tha t  th i s
example problem used the same pipe and the same Reynolds number as Example
11.5.  For  l iquid metals ,  the Nussel t  number was much lower,  6 .70 as  compared to
over 300 for  water ,  but  the heat  t ransfer  coeff icient  was comparable as  a  resul t  of
the  large  thermal  conduct iv i ty :  27.5 ,  compared wi th  0 .598 W m-’ K-’ for water at
20°C.

11.4 DOUBLE-PIPE HEAT EXCHANGER

A double-pipe heat exchanger is shown in Fig. 11.10. Among heat exchangers
the double-pipe model is particularly simple and easy to understand. Double-
pipe heat exchangers are fairly common, especially where the temperature
driving force is large and the transfer area small, say 15 m* (15Oft*)  or less
WI.

In Fig. 11.10, fluid A is flowing in the annular space’between the pipes,
and fluid B enters from the opposite end and flows inside the smaller pipe or
tube. This case is called counterflow, as depicted in Fig. ll.ll(a).  For
cocurrent  (parallel) operation, both fluids A and B enter the equipment at the
same end, as shown in Fig. ll.ll(b). A third case is that in which one fluid
changes phase. Figure ll.ll(c) presents the case of the hot fluid condensing as
a result of heat exchange with a cold fluid. Note that the left-hand end of the
exchanger is denoted as “l”,  and the other as “2”. This convention allows the
same equations to hold for all cases. Not shown and less common is the case in
which the cold fluid boils. That temperature profile is the mirror image
(vertically) of that in Fig. ll.ll(c).

Temperature notation. The equations for the double-pipe heat exchanger are
all expressed in terms of the mean bulk temperature, Eq. (11.31). The

Fluid B inlet --)
T,

Fluid  B out let  -
co

FIGURE 11.10
Double-pipe heat exchanger.
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( a )  Countertlow  t

(b) Parallel (cocurrent)  flow
I

(c) One Fluid Condensing

4

FIGURE 11.11
Flow configurations in the double-pipe heat exchanger.

subscript b is dropped for the sake of clarity, however. There are four bulk
average temperatures in conjunction with Fig. 11.10. It is convenient to denote
the two fluids as hot (h) and cold (c), rather than as A and B. It makes no
difference in the following analysis whether fluid A (in the annular section) is

hot or cold.
Two separate sets of notation are required in order to develop the design

equations for heat exchangers. In Fig. 11.10, the inlet and outlet temperatures
are denoted as follows:

Thi  = inlet temperature, annular-side (or hot) fluid

ThO = outlet temperature, annular-side (or hot) fluid

ci  F inlet temperature, tube-side (or cold) fluid
(11.85)

T,, = outlet temperature, tube-side (or cold) fluid

For utilization of the equations to be developed in this section, it makes no
difference whether the cold fluid is on the tube side [cf. Eq. (ll.SS)]  or on the
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outside. When considering the exchangers in Figs. ll.ll(a),  ll.ll(b),  and
ll.ll(c), it is convenient to designate location 1 and location 2. Figure
ll.ll(a), which is the same case as Fig. 11.10, indicates this notation. At
location 1, the temperatures of the two streams are I& and T,,,; at location 2,
the temperatures are Thz and Tc,*. Let us further consider the case of the
counterflow  exchanger, Pigs. 11.10 and ll.ll(a).  The terminal point tempera-
ture ditferences are called the approach temperatures, AT, and AT,:

Approach at location 1: ATI  = %,I  - T,,I
Approach at location 2: AT,  = T&z  - Te,2

(11.86)

The range of each stream is the absolute difference between inlet and outlet
temperatures:

Hot fluid range: AT,  = Thi  - The  = I Th.1  - Th,2I
Cold fluid range: AT,=T,-Td=(T,,2-lJ

(11.87)

Figure 11.11 also shows the temperature distribution for the counter-flow and
parallel cases where neither fluid changes phase. The approach temperatures
for parallel flow are defined identically to those for counterflow, as noted in
Figs. ll.ll(a)  and ll.ll(b).  Usually the counterflow  operation is preferred
since the driving force can become very small in the parallel case. The
countertlow  configuration allows the temperature of each ‘exiting stream to
approach that of the stream entering at the same end. Parallel operation has
proven successful when the cold stream is heat-sensitive because the cold
stream approaches a well-defined plateau, as shown in Fig. ll.ll(b).

When the hot fluid is a condensing vapor, as in Fig. ll.ll(c), the
temperature of the hot fluid is essentially constant and equal to the saturation
temperature T,,,. For a pure vapor;the  saturation temperature is governed by
the pressure in the annulus.  The approach temperatures become

Approach at location 1: AT,  = Th.1  - T,,, = T,,, - T,.I
Approach at location 2: AT,  = Th.2  - Tf,2  = L,  - Tc.2

(11.88)

The case of a hot fluid transferring heat to a cold fluid which is evaporating is
less common in a double-pipe heat exchanger.

The notation AT is used to denote the driving force for heat transfer
between hot and cold streams at a given point in the exchanger:

Ai’-=T,-T, (11.89)

When for each fluid the products of heat capacity times mass flow rate differ,
the driving force AT changes with length in the counterflow  case.

11.4.1 The Overall Heat Transfer Coefficient

Design of heat exchange equipment is usually formulated in terms of the
overall heat transfer coefficient U:

q = U,Ai  AT = U,A,  AT (11.90)
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Equation (11.90) emphasizes that there are two overall heat transfer
coefficients, Vi  and V,,,  but this equation has no use for design because both
AT and V vary with length. The inside overall heat transfer coefficient Vi  is
based on the inside heat transfer area Ai of the inside pipe or tube in Fig.
11.10. Similarly, (I,, is based on A,. These areas were defined in Eq. (11.27).
The existence of two heat transfer coefficients is admittedly confusing. Either is
valid, however, and it is common to choose whichever corresponds to the
largest resistance in Eq. (11.28) (cf. Fig. 11.5). Note that AT is defined in Eq.
(11.89) as the driving force for the heat transfer, the bulk temperature of the
hot fluid minus that of the cold. Also, Q and V, are related by

(11.91)

as is obvious from Eqs. (11.27) and (11.90).
Now let us consider the resistance to heat transfer in Fig, 11.10. At any

cross section in the exchanger, there are three phases, fluid h, fluid c, and the
pipe wall. Following the analysis in Section 11.1.4, there must be two
convection resistances, as given by Eq. (11.26),  and one conduction resistance
as given by Eq. (11.17). Equation (11.23) still applies

AT
-cL=C (11.23)

where AT is from Eq. (11.89) and the sum of the resistances for the
double-pipe heat exchanger is

(11.92)

Comparing Eqs. (11.23) and (11.92) with Eq. (11.90) yields for the overall
heat transfer coefficients:

1 1 1 ln(&l4)  1-=-=-+~ -
US% ViAi  hiAi  2~Lk,  +h,A,

This equation may be solved for either Vi  or (lo:

1 1 Ailn(d,/di)-=-+ Ai
Vi  hi 2nLk, + Aoh,

1 A-=2+
(I, Aihi

A0 ln(dJ4)  + 1
23rLK, h,

(11.93)

(11.94)

(11.95)

These important equations are used frequently in the design of heat
exchangers.

It is possible to have more than the three resistances that are included in
Eq. (11.92). One example is an outside steam pipe with insulation. In this
case, there are two convection resistances and two ‘conduction resistances.
Contact resistance and fouling may require other resistances to be included, as



530 APPLICATIONS  OF TRANSPORT PHENOMENA

TABLE 11.4
Approximate magnitudes of heat transfer coefficients*

Baqge of dues

Application h,  W m-* I<-’

Steam (dropwise condensation) 3 x 104-1 x 16
Steam (film-type condensation) 5Xld-2x104
Boiling water 2 x Id-5  x lo4
Condensing organic vapors lx@-2Xld
Water (heating) 300-2 x 104
Oils (heating or cooling) 60-2Xld
Steam (superheating) 30-100
Air (heating or cooling) 1-60

h, Bh  ff -’  II-’ OF-’

5x103-2XlP
lx@-3Xld

3Oo-9x104
2cQ-400
50-3 x ld
lo-300
5-20

0.2-10

*From McAdams,  Hear Tranmirsion,  3d ed., p.  5, McGraw-Hi, New York, 1954. By permission.

will be discussed in the next section. Equation (11.95) contains two convection
coefficients, hi and h,,  which were defined in Eq. (11.3) and Eq. (11.26). Heat
transfer coefficients may be defined by similar equations for a variety of heat
transfer applications. Some common examples are boiling, condensation,
radiation, and natural convection. Table 11.4 indicates some typical values of
heat transfer coefficients; note that the variation is of the order of 16.

11.4.2 Contact Resistance and Fouling Factors

Previous discussion has neglected the fact that whenever two solids are in
contact, there may be an additional resistance to heat transfer due to imperfect
contact. One example occurs in the installation of insulation around a pipe.
Insulation is often held in place by means of metal straps. Obviously the
thermal expansion coefficients of the pipe, the insulation, and the straps are all
different. Hence, the tightness of the fit will vary with temperature. In this
case, the existence of an additional resistance between the pipe and the
insulation will serve to increase the effectiveness of the insulation. Another
common example is that of fins attached to tubes or to other surfaces in order
to increase the area available for heat transfer. Common examples include
finned-tube heat exchangers in car radiators and air conditioners, as well as fins
on air-cooled engines such as used in lawn mowers. Whenever the fins are
imperfectly joined to the solid object, an additional resistance will be needed
in Eq. (11.23). The contact resistance may be due to a pair of rough surfaces
that touch in some spots and have voids elsewhere. In this case, there is a
conduction resistance in parallel with a convection resistance through the void
spaces. The contact resistance may simply be due to a poor fit. Although some
analysis is possible, in general contact resistances must be determined
experimentally. A more complete discussion is available [IQ].



HEAT AND MASS TRANSFER IN DUCT FLOW 5 3 1

Fouling factors. The heat exchange surfaces can become dirty during opera-
tion because of corrosion or deposition of contaminants on the heat exchange
surfaces. The term fouling denotes that the heat transfer surfaces have been
altered by such processes. Thus, when fouling occurs on both surfaces, there is
a total of five resistances to heat transfer. Equations (11.92) through (11.95)
require two additional resistances corresponding to the resistances to heat
transfer on the inside and outside surfaces as a result of the fouling. If the
fouling resistance is expressed in the form of two additional coefficients hi,f or
h,,r, Eq. (11.92) becomes

1 1 ln(444)  + 1 1Ri=--- ~--
hi,,Ai  ’ hiAi  + 2nLk, hA, + ho,,&

(11.96)

where hi,r  and h,,f are the inside and outside fouling film coefficients,
respectively. Fouling film coefficients are usually in the range of 1700-
5700 W me2  K-’  [M2].

Practically all industrial heat exchangers undergo fouling after a period of
time, especially exchangers using water or steam. This fouling represents lower
overall coefficients and thus decreased performance. Fouling factors cannot be
calculated from theory; they must be obtained experimentally. There are
several ways to express fouling factors quantitatively besides Eq. (11.96). One
way is to define a fouling factor Rf by determining valuei of U, or Ui  for both
clean and dirty conditions [K4]:

1 1
-= R,+-
udirty u

(11.97)
clean

where values of Rf are given in Table 11.5. Note that use of Eq. (11.97) and

TABLE 11.5
Typical values for fouling resistance*

Fouling factor

Types of fluid IlftZOFBtU-’ m*  K W-’

Sea water below 50°C O.MKX O.OClOO!J
Sea water above 50°C 0 . 0 0 1 0.0002
Treated boiler feed water above 50°C 0 . 0 0 1 0 . 0 0 0 2
Fuel oil 0 . 0 0 5 0.0009
Quench ing  o i l 0.004 O.ooO7
Alcohol vapors 0 . 0 0 0 5 0.00009
Steam, non-oil-bearing o.Oc05 O.OOOO!J
Indus tr ia l  a i r O.CKJZ 0.0004
Refr igerat ing  l iquid 0 . 0 0 1 0 . 0 0 0 2

l From Holman,  Hear  Tranrfer,  4th  e d . ,  p.  392,  McGraw-Hil l ,  New York,  1976,  modif ied from the Tubular
Exchangers Manufacturers Association [Tl]. By permission.
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Table 11.5 emphasizes only one fouling resistance. Better tabulations are
avaialble [Pl,  Tl].

There is a tremendous amount of uncertainty in choosing values for
fouling resistances or fouling film coefficients. In dirty service, these resistances
are continuously increasing with time. Nevertheless, it is possible to design so
as to minimize fouling. In the first place, the fluid most likely to foul is placed
on the inside of the tube. Secondly, heat exchanger tubes are carefully
manufactured with extremely close tolerances on the inside diameter. This
precision allows the tube to be cleaned easily by disassembling the heat
exchanger and pushing out the build-up with a metal rod. In fact, this is a
routine procedure, and many companies are available to perform this task.
The design engineer should also keep in mind that many fluids, especially
organic liquids, do not foul at all. Furthermore, fouling rates decrease with
increasing fluid velocity. The rule of thumb is to attempt to design with
velocities above 3 m s-i  [Pl].

11.4.3 Design Equations

Enthalpy balance. Application of the first law of thermodynamics, Eq. (7.45),
to a heat exchanger results in

AH =  0 =  &mt  fluid +  AHcold  fluid

Since there is no pump or turbine in the exchanger, kinetic and potential
energy changes are small, and the usual assumption is that the heat exchanger
is insulated from its surroundings so that q is zero. Equation (11.98) is
commonly called an enthalpy balance and states that the enthalpy change in
the hot fluid plus the enthalpy change in the cold fluids adds algebraically to
zero. If neither fluid changes phase, then in differential form Eq. (11.98)
b e c o m e s

dH,, = M+,c,,  dT,

dH,  = w,c,  dT,
(11.99)

where the signs of d&,  and dH,  are governed by the signs of dTh  and dT,,
respectively. In Eq. (11.99) and subsequent equations, ch  and c, refer to the
heat capacities at constant pressure, and ul, and w, are the mass flow rates of
the hot and cold fluids, respectively. If the heat capacities are not functions of
temperature, each part of Eq. (11.99) can be integrated at steady-state and
included in Eq. (11.98):

%Ch(  The - T,J  + W,Cc(Tw  - %) = 0 (11.100)

This equation must always be satisfied in a heat exchanger.
Next, a heat balance on a differential element in a counterllow  exchanger

will be considered, as shown in Fig. 11.12. At steady-state, the enthalpy
decrease of the hot fluid is

dHh  = -dq  = W,,Ch  dT,, (11.101)
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AT=T,-T,

I I
1 2

x

FIGURE 1l.U
Balance on a differential element--countertlow  exchanger.

where dTh  is negative as shown in Fig. 11.12. The cold fluid flows in the
opposite direction. The enthalpy increase of the cold fluid is

dH,=dq=w,c,dT,  ,

An expression for dq is

dq = w,c,  dT,  = -w,,c,  dT,

It is convenient to solve Eq. (11.103) for dT,  and dT,,:

dr,,-d4
WhCh

(11.102)

(11.103)

(11.104)

From Fig. 11.12 and Eq. (11.104),  it is seen that d(AT) is

d(AT)=d(Th-T,)=dTh-dT.=(-dq)(;+$C)  ( 1 1 . 1 0 5 )

Equation (11.90) can also be expressed in differential form:

dq = Ui(  Th - T,) dAi  = Vo(  Th - T,) dA, (11.106)

Equation (11.106) is the general design equation for double-pipe heat
exchangers. In many problems, both U and AT vary with position in the
exchanger, sometimes nonlinearly. Hence, Eq. (11.106) is usually rearranged
for integration according to the problem at hand, often in combination with
Eq. (11.98),  the enthalpy balance. Equation (11.106) wiII  next be solved for
some commonly encountered cases.

If neither hot nor cold fluid changes phase, then it is useful to eliminate
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dq by combining Eqs. (11.105) and (11.106):

>
lJ,dA, (11.107)

If the overall heat transfer coefficient varies with length in the exchanger, then
a numerical or graphical solution will be required. The exact manner in which
the equations in this section must be combined depends on what the design
engineer is given and needs to find. For instance, if all temperatures, flow
rates, physical properties and convection correlations are given, then the
unknown is the size of the exchanger, i.e., the area. The solution begins by
finding the total duty qtota, of the exchanger from integration of Eq. (11.103)
for either fluid:

GO T,.
4total  = I

,,+,Ch  dTh  =
I

w,c, dT, (11.108)
Thi r,,

or if the heat capacity may be assumed constant:

qtotal  = WhCh(  The  - Gi) = WcC,(  T,o - G) (11.109)

Either Eq. (11.105) or (11.106) must be integrated with the following
boundary conditions:

J
(11.110)

where AT, and AT, are the approach temperatures defined earlier and AT is
the driving force for heat transfer [cf. Eq. (11.89)].  One result is

&Id., &,.I,0
4 total  = I l( ATdAi= I U, ATdA, (11.111)

0 0

A more useful set of equations for trial and error calculations, also based on
Eq. (11.106),  is

Ai=  -
I

9rota’  &
0 u,AT  Or

A,= -
I

9’o’a’  4 (11.112)
0 U, At

Equation (11.112) allows the length to be divided into a series of small
increments when U varies strongly and nonlinearly throughout the exchanger.
Generally, dq will be replaced with wcP  dT,  where either the hot or cold fluid
(whichever is more convenient) can be used:

Ai=
I

T2  wcp  dT

T,  q.Ai-  Or
A , =

I
E wcp  dT

T,  &AT
(11.113)
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Both the enthalpy balance, Eq. (11.108),  and the transport equation, Eq.
(11.112),  must be satisfied. Equation (11.113) combines both into a useful
equation. Next, some useful solutions to Eqs. (11.112) and (11.113) will be
presented.

11.4.4 Simple Solutions

The simplest solution to the design of a double-pipe heat exchanger makes the
following assumptions: (1) U is constant throughout; (2) fluid properties (c,,
and c,) are constant; (3) no heat losses from exchanger to surroundings; (4)
steady-state; and (5) flow is either counterflow or parallel, as in Fig.
ll.ll(a,  6, c). Then Eq. (11.107) is integrated according to the limits in Eq.
(11.110):

-+L
1

>
= LI,A,=  UiAi

uhch  wccc
(11.114)

Log-mean temperature difference. The log-mean form has been previously
introduced, beginning in Chapter 4 with Eq. (4.29) for log-mean area.
Equation (11.114) can be represented in another form by eliminating flow rates
and heat capacities with the enthalpy balance, Eq. (11.109),  which reintro-
duces q:

9 total qtotal-=-= (T,,z  - z.2)  - (Th.1  - T,,I) A&-AT,

UA U,Ai, ln[(q,z  - %t)/(G,,  - K,dl =ln(AT,/AT,)
=Al;,=LMTD (11.115)

Equation (11.115) defines the log-mean temperature difference AI;,, which is
commonly abbreviated LMTD. The assumptions used in Eq. (11.114) are
fairly reasonable, except for assuming U to be constant. In practice, U may
vary over a wide range.

Linear  overall coefficient. A solution more accurate than Eq. (11.114) may be
obtained by assuming that U varies linearly throughout the exchanger. Let U,
and U,  be the overall coefficients at the ends of the exchanger where the
approach temperatures are AT, and AT2 and AT is given by Eq. (11.89).
Equation (11.109) can be solved once for l/(&c,)  and once for lI(w,c,).  The
sum of these can be substituted into Eq. (11.107) and the result rearranged to
the following form:

(11.116)

Beginning with this equation, Colburn [C3] derived the following:

= Atotal (
U,  AT, - (II AT2qtotal ln[(U2 AT)/(G  AT,)11

(11.117)
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where Aioti, Ui, and (I, are all based on either the inside area or the outside
area. Equation (11.117) is often useful when U varies substantially with
temperature. The procedure is to divide the exchanger into a number of small
increments, and assume that Eq. (11.117) applies across each increment. It can
also  be used as a rough but quick approximation to the performance of a heat
exchanger.

Example 11.7. It is desired to heat 12 gpm of water from 50°F  to 110°F. Saturated
steam at 67psia is available. Estimate (a) the duty of the exchanger, (b) the
number of  pounds per  hour  of  s team required,  and (c)  the length of  a  double-pipe
heat exchanger to perform this task. Use $-in. 16BWG  tubing with steam on the
shell side and water on the tube side. For simplicity let the heat transfer
coefficient of water and steam be constant and equal to 80 and
500 Btu h-’  fi-* “F-’  respectively. Neglect fouling.

Answer. In this  problem, the overal l  heat  t ransfer  coeff ic ient  is  constant .  Hence,
the length of exchanger is found from Eq. (11.114) or Eq. (11.115). Table B.2
provides the following for $-in.  tubing, 16-BWG  thickness:

d, = 0.620 in. Ai = 0.1623 ft*  per ft

d, = 0.750 in. A, = 0.1963 ft2  per ft

1 ft s-’ = 0.9425 gpm = 471.3 lb,,, h-’ (9

An impor tant  des ign considera t ion  i s  the  f low ra te  of  67psia  s team required  to
heat  the 12 gpm of cold water .  The monetary value of  the steam can be calculated
from the flow rate by an economic analysis.  The steam flow rate is found from an
enthalpy balance  around the  exchanger .  The usual  pract ice  i s  to  f ind  the  enthalpy
of  s team in a  “s team table” [Pl] ;  the temperature  of  saturated s team at  67 psia  is
300°F.  Both the temperature  and pressure of  the s team wil l  be assumed to be
constant  in  the  exchanger .  The enthalpy of  water  vapor  i s  1179.7  Btu  lb , ‘ ,  and
the enthalpy of liquid water is 269.59 Btu lb;‘, both at 67 psia and 300°F. The
mass flow of liquid water in the tube is

w,  = (12)(471.3)/(0.9425) [(gal min-‘)(lb,  h-‘)/(gal  min-‘)]

=6CKIOlb,h-’ (ii)

The duty is found from Eq. (11.108) with the heat capacity of water approxi-
mately 1.0 Btu lb,’  “F-l:

I

cn
qt0t.l  = w,c,  dT, = w&T,,-  TJ

= (&)(l.O)(llO  - 50) [(lb,,, h-‘)(Btu  lb,’ “F-‘)(“F)]

= 3.6 x 10’ Btu h-’ (iii)

The mass f low of s team is  calculated start ing from Eq.  (11.98).  The duty is  the
enthalpy increase  of  the  cold  s t ream,  Eq.  ( i i i ) ,  which equals  the  enthalpy decrease
of  the hot  s t ream. Since the enthalpy change of  the s team is  i ts  mass t imes i ts
enthalpy of  vaporizat ion,  the mass f low rate  of  s team is :

ko,d water
wh  = ~~~~~~~~~~  =

117~:~~ :Ii.59  ($)  = 395.6 lb,,, h-’ (iv)
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The areas for  heat  t ransfer  are the table values (f t ’  per  f t )  t imes the length L:

Ai  = 0.1623L  ft* A, = 0.1963L  ft* (4

The inside overall heat transfer coefficient Ui will be selected, since the
tube-s ide  res i s tance  i s  the  h ighes t .  Wi th  the  thermal  conduct iv i ty  of  s tee l  as
26 Btu h-’ fi-’ OF-‘,  Q is calculated from Eq. (11.94):

1 1 Ailn(d,/di)-=-+ Ai 1 (0.1623)(L)[ln(0.750/0.620)]
Ui hi 2nLk, +A,h,=Ki+ (2~WW)

(O.l623)(L)
+ (O.l963)(L)(500)

= 0.0125 + 1.891 x 1O-4 + 0.001654

= 1.434 x lo-’  h ftZoF  Btu-’ (vi)

From Eq. (vi), u is the reciprocal of 1.434 x lo-*, or 69.7 Btu h-’ ft-*  OF-‘.
Since u is assumed constant for this example, Eq. (11.115) can be used

direct ly  to  f ind the  area  required to  t ransfer  3 .6  x  105  Btu  h-‘:

q  tOta qtotal (Th.2  - T,,*)  - oil  - Z,,) AT,-AT,-=-=
&A0 LIiAi ln[(K,  - T,,#(T,,,  - T,.,)]  = ln(ATJA.T,)

=AT;,=LMTD (11.115)

The approach temperatures from Eq. (11.88) are

AT,=T,,-T,,,=300-50=250degF

AT,  = T,, - T&  = 300 - 110 = 190 deg F
(vii)

First ,  the log-mean temperature difference is found from Eq. (11.115):

AT,-AT, 190 - 250
LMTD  = ln( A7’J  AT,)  = ln( 190/250)  = 2186 deg  F

Next ,  Eq.  (11.115)  is  solved for  the  ins ide area:

(3.6 x 105)
Ai = (UJ~kkD)  = (69.7)(218.6)  = 23-63  *’

The length of the exchanger comes from Eq. (v):

(viii)

(ix)

This  answer  indica tes  tha t  a  double-pipe  heat  exchanger  i s  not  prac t ica l
because a  length of  145.6ft i s  too  long.  Bet ter  des igns  might  increase  the  heat
t ransfer  coeff ic ient  on the tube s ide,  s ince hi  i s  a lways  grea ter  than  the  la rges t  Ui
or U,.  Another possibility is to use a shell-and-tube or a multipass heat
exchanger, which will be described in Section 11.5.

Example 11.8. Water  enters  a  double-pipe heat  exchanger  at  50°F and 12gpm.
The inside tube is a-in., 16-BWG tubing stock, 30ft long. Saturated steam at
67 ps ia  i s  in t roduced in  the  shel l  s ide .  Let  the  heat  t ransfer  coeff ic ients  of  water
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and s team be 80 and 500 Btu h-’  fi-*  OF-‘,  respect ive ly .  I f  foul ing  i s  negl ig ib le ,
est imate the outlet  temperature of  the water .

Answer. The physica l  d imensions  of  the  tube  are  ident ica l  to  those  in  Example
11.7.  Hence for  a  30 f t  length:

Ai  = (O.l623)(L) = (0.1623)(30)  = 4.869 ft* (9

Also ,  Q is  unchanged from the previous  problem as  are  the  proper t ies  of  the  hot
f luid (s team) and the cold f luid f low rate .

The enthalpy balance is  not  useful  immediate ly  in  th is  problem because
nei ther  the  s team f low rate  nor  the  cold water  out le t  temperature  is  known.  The
solution proceeds by equating the enthalpy change of the cold fluid, Eq. (11.103)
with the heat transferred through the tube wall from the hot fluid to the cold
fluid, Eq. (11.106):

dq  = w,c,  dT,  = u,(  Th - T,)  dA, (ii)

The  boundary  condi t ions  a re
Ai(z  = 0) = 0

A,(z = L) = A,,,,, = 4.869 ft2

T(z = 0) = T,,,  = 50°F
(iii)

T(z = L) = T,,z

The var iables  in  Eq.  ( i i )  are  separated:

Next, this equation is integrated with the above boundary conditions:

(v)

Equat ion  (v)  i s  so lved  for  AT,  and the  numbers  inser ted:

AT, = A&/exp[(U,AJ/(w&]  = (300 - 5O)/exp{[(69.7)(4.869)]/[(6OOQ(l.O)]}
= (250)(0.9450)  = 236.3 deg F (vi>

Therefore,  the outlet  temperature of  the cold f luid is

T,,,  = Th,z  - AT2  = T,,,  - AT, = 300 - 236.3 = 63.7”F (vii)

If  desired,  the duty of  this  exchanger  and the s team flow rate  can be found as  in
the previous example.

Example 11.9. Repeat Example 11.8 if the water side fouling factor is
0.002 h ft’“F  Btu’.

Answer. Table 11.5 indicates that 0.002 is a reasonable value for a typical fouling
factor .  Equat ion (11.97)  i s  solved for  lJdir,,,:

1 1
“diw  = R,+  (l/UC,,.“)  = 0.002 + (U69.685)

= l/O.01635  = 61.16 Btu h-’ ft-‘OF-’ (0
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Tht derivations of Eqs. (iv), (v), and (vi) in Example 11.8 apply here, and AT, is
found using Udiny  in place of Ui in Eq. (vi) from that example:

AT,  = A~lexp[(u,i,ai)l(w,c,)l
= (300 - 50)/exp{[(61.16)(4.869)]/[(6000)(1.0)]}  = 237.9 deg F (ii)

The outlet temperature is

T,,z  = Tw -AT,=300-237.9=62.1”F (iii)

For this problem, fouling reduced the overall heat transfer coefficient  by
12 percent, which reduced the range of the cold fluid by 13.5 percent. Sometimes,
fouling reduces the amount of heat transferred by much greater amounts.

11.5 MULTIPASS HEAT EXCHANGERS

The double-pipe heat exchanger of Fig. 11.10 is very inefficient for most heat
transfer applications. Long pipe lengths, such as the 145.6 ft found in Example
11.7, require high pressure drops, which in turn cause high pumping costs. If
several double-pipe exchangers are placed in parallel, the weight of the heavy
outer tubes quickly becomes excessive. A better design is to eliminate the
outer pipe in favor of a single shell, as shown in Fig. 11.13. The shell-side fluid
flows essentially perpendicularly to the inside tubes as a result of the baffles.
The exchanger in Fig. 11.13 is called a l-l exchanger‘ because it has one
shell-side pass and one tube-side pass.

11.5.1  Equipment
Design of heat exchangers is highly developed because of their widespread use
in both industry and homes. Often, selection of a piece of heat exchange
equipment depends as much on considerations such as the space available as
on other factors such as efficiency and cost. Various standards and codes, such
as the Standards of the Tubular Exchange Manufacturers Association,
abbreviated TEMA [Tl],  and the ASME-API Unfired Pressure Vessel Code
[Al] are helpful in design work.

D;ain

FIGURE 11.13
Single pass l-l counterflow heat exchanger. (A) baftles;  (B) tubes; (C) guide rqds;  (D, D’) tube
sheets; (E) spacer tubes. (From McCabe, Smith, and Harriott, Unit  Operations of Chemical
Engineering, 4th ed., p.  383, McGraw-Hill, New York, 1985. By permission.)
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FIGURE 11.14
1-2 Parallel counterflow exchanger. (From McCabe, Smith, and Harriott, Unit 0peration.v  of
Chemical Engineering, 4th ed., p. 385, McGraw-Hill, New York, 1985. By permission.)

The l-l exchanger is rarely used except when the shell-side fluid changes
phase. The 1-2 or 2-4 heat exchangers, shown in Figs. 11.14 and 11.15, are
usually cheaper and more efficient. More complex designs are also used [B2].
The 1-2 exchanger has two passes of fluid on the tube side and one pass on the
shell side. Note that the number of passes on the tube side is always even, in
order to save on construction costs.

The multipass exchangers of Figs. 11.14 and 11.15, ‘when applied to a
given process application, usually have short tubes and high velocities. The
high velocities result in higher heat transfer coefficients and less fouling, but
considerably higher pressure drops and higher pumping costs than designs
having low velocities. Note also that the 1-2 exchanger has nearly parallel flow
on the shell side, which is a disadvantage when trying to extract or add as
much heat as possible from the shell-side fluid. The 2-4 exchanger in Fig.
11.15 is more counter current and in general can extract more heat from the
hot fluid than the 1-2 exchanger. Of course, if one fluid is changing phase
(usually on the shell side), then the l-l or the 1-2 exchanger may prove
cheaper and quite satisfactory. There are many other configurations in

FIGURE 11.15
2-4 Shell-and-tube heat exchanger. (From McCabe, Smith, and Harriott, Unit Operations of
Chemical Engineering, 4th ed., p. 386, McGraw-Hill, 1985. By permission.)
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common use besides the few presented here. For example, for a condenser, a
1-4 exchanger might be most economical.

11.5.2 Design Equations

The log-mean temperature difference was introduced with the five assumptions
in conjunction with Eqs. (111114) and (11.115). In shell-and-tube heat
exchangers, the outside flow is neither entirely counterflow  nor parallel to the
inside flow. The baffles shown in Figs. 11.13 through 11.15 cause cross flow,
where the shell-fluid flow is perpendicular to the tubes.

No phase change.  For heat exchangers in which the fluids do not change phase
and which operate according to the assumptions listed for Eq. (11.114),  the
quantity LMTD is always less for parallel operation than for counterllow. In
multipass exchangers, LMTD lies between these extremes. The differential
equations in Section 11.4.3 were integrated by Bowman et al. [B2] with the
following assumptions:

1. U is constant
2. fluid properties are constant
3. steady-state
4. no phase change for either fluid
5. no heat losses to ambient
6. equal heat transfer surface in each pass
7. no leakage of fluid around any baffles
8. the temperature of the shell-side fluid in any shell-side pass is uniform over

any cross section

Bowman er  al. [B2] introduced two dimensionless ratios:

Gi - Goz=-- wccc
T,- T,i-YlCh

(11.118)

T&a  - Tti
vH-  Thi-zi

(11.119)

McAdams [M3]  calls Z the “hourly heat-capacity ratio”, equal to the
temperature fall over rise, and nH  the “heating effectiveness”. The nomencla-
ture for the temperatures in the equations in this section is

Thi  = inlet temperature, shell-side (or hot) fluid

The  = outlet temperature, shell-side (or hot) fluid

Tti  = inlet temperature, tube-side (or cold) fluid
(11.120)

T, = outlet temperature, tube-side (or cold) fluid
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This notation is very similar to that in Eq. (11.85) for the double-pipe
exchanger. The notation selected is consistent with that in Eq. (11.85),  and it is
arbitrary as to whether the hot fluid is on the shell-side or the tube side. In any
case, let the subscripts “hi” and “ho” refer to the fluid on the shell-side. Note
that if the shell-side and tube-side temperature definitions are interchanged,
the value of the design factor F (to be introduced subsequently) will be
unchanged.

For multipass shell-and-tube heat exchangers, the following is the basic
design equation:

qtotal  = (UAi)(LMTD)  = (UoAo)(LMTD) (11.121)

In this equation, the true mean temperature difference LMTD is defined by

AT, = Thi  - T,,

AT,= The- T,i (11.122)

F(AT,  - AT,)
LMTD  = ln[(AG)/(AT,)]

where F is a geometric correction factor applied to the log-mean temperature
difference for counterllow, Eq. (11.114). Comparison of the definitions in Eq.
(11.122) with that of the approach temperatures, Eq. (11.86),  as illustrated in
Figs. 11.10 and ll.ll(a),  shows that AT, and AT,  are defined as the approach
temperatures for a counterflow heat exchanger. Graphs of F versus 2 and nH
will be presented for some common designs of heat exchangers for the case of
no phase change. Note that F = 1 for a l-l heat exchanger.

1-2 Heat exchanger. The following equation represents the value of the
correction F for the 1-2 heat exchanger:

Bl = (2’ + l)O.5

Figure ll.l6(a)  shows a plot of Eq. (11.123) as Fl,2 versus vu,  with lines of
constant Z. Since F is a purely geometric factor, it is immaterial which is the
hot or cold fluid; the direction of flow is also immaterial. When F is less than
0.75, the design is unacceptable because the exchanger configuration chosen is
inefficient [Pl],  i.e., the driving force LMTD is reduced to an unacceptably
small value.

2-4 Heat exchanger. The following equation represents the value of correc-
tion F in the 2-4 heat exchanger:

Bl = (Z’  + l)O.5

B2 = (2/71~)  - 1 - Z + (2/71~)[(1-  rldl  - %Z)1°.5

ho(  %)I/[  lo&,(  e)] (11.124)
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0 0.1 0 .2

(a) I-2  Exchanger

FIGURE 11.16
Correction of LMTD for multipass heat exchangers. (From McCabe, Smith, and Hamion,  Unit
Operations of  Chemical  Engineering ,  4th  ed . ,  p .  390 ,  McGraw-Hill ,  New York,  198 .5 ;  as  modif ied
from Bowman, Mueller, and Nagle,  Trans. ASME  62: 283 (1940). By permission.)

Figure ll.l6(b)  is a plot of Eq. (11.124). Similar plots are available for more
complex exchangers [Fl,  G2, H3,11,  Kl, K4, M2, M3, Pl].

Phase change. If one fluid in a multipass exchanger changes phase, then Fig.
11.16 does not apply. In fact, if either or both fluids are at constant
temperaure, as in a condenser or vaporizer, then the design follows that for a
simple double-pipe exchanger, as detailed previously [Fl].
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Emple  11.10. Water at the rate of 1.2 kg s-’ is to be heated from 15°C to 50°C
by a  hot  hydrocarbon s t ream of  specif ic  heat  0 .45 at  120°C.  The hydrocarbon
stream is to be cooled to 65°C. Let the overall heat transfer coefficient Vi be
cons tan t  and  equa l  to  325  W mm2  K-l.  Calcula te  the  hydrocarbon f low ra te  and
the heat  exchanger  area for  the fol lowing heat  exchangers:  (a)  paral lel  double-
pipe ;  (b)  counter f low double-p ipe ;  (c )  1-2  she l l -and- tube;  and  (d)  2-4  she l l - tube .

Answer. The hydrocarbon f low ra te  i s  determined by the  enthalpy balance ,  Eq.
(11.100) and therefore is  the same for ah four exchangers:

bqJ,( The  - Gi)  + w.c.(  T, - Td)  = 0 (11.100)

where the temperatures are

Thi  = 120°C The  = 65°C
Td  = 15°C T, = 50°C (9

The heat capacity of water is 1.0 kcal kg-‘k-’ or 4184 J kg-‘K-‘;  the heat
capaci ty  of  the  hydrocarbon is

c,, = (4184)(0.45)  = 1883 J kg-’ K-’

I S solved for  ry,  and the numbers  2For the  hydrocarbon f low rate ,  Eq.  (11.100)  ’
inserted:

w,  = Kwe)(L - KJl/[(cd(Thi - LA ’
= [(1.2)(4184)(50  - 15)]/[(1883)(120  - 65)]  = 1.697 kg s-’ (iii)

The duty of  the exchanger is  also identical  for  al l  exchangers.  From Eq.  (11.109),
the duty is

qmtai  = wc(T-  - T,)
= (1.2)(4184)(50  - 15) [(kg s-‘)(J  kg-’ K-‘)(K)]

= 1.757 x ld  J s-r = 1.757 x l@ W 64

Put (a)-PataIM  double-pipe.  For this  exchanger,  the factor  F is  uni ty.  A summary
of the temperature notation for the double-pipe exchanger in parallel flow
follows:

q.,  =  120°C G,z  = 65°C

T,,,  =  15°C TE.2  = 50°C
69

Fol lowing  Eq .  (11.86),  the approach temperatures are

AT, = Th,,  - T,.,  = 120 - 15 = 105 deg C = 105 deg K

AT, = Th,z  - T&  = 65 - 50 = 15 deg C = 15 deg K
(vi)

For  paral le l  or  counterflow double-pipe heat  exchangers ,  Eq.  (11.115)  appl ies  for
the  assumptions  in  th is  problem:

qtotd qtow (To  - Tc.2)  - (To  - T,.d AT,-AT,-=-=
UOAO U,Ai ln[(T,,.,  - T&/(T,.,  - T,.,)]  = ln(AT,lAT)

=A~,,,=IMTD (11.115)
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From this  equat ion,  the  LMTD is

AT,-AT, 15 - 105
LMTD  = AL  = ln(AT,,AT,) = ,n(15,105) = 46.25  deg K (vii)

Equat ion  (11.115)  i s  so lved for  area  and the  numbers  inser ted:

Ai = qtot.,/[(WLMTD)I
= (1.757 X 1@)/[(325)(46:25)]  [(W)(W-’  m’K)(K-‘)I  = 11.69 m* (viii)

Part (b)-CounterEow  double-pipe.  For  th is  case ,  a l l  equat ions  are  unchanged f rom
part (a). Again, the factor F is unity. From Fig. ll.ll(a),  the temperature
nota t ion  for  the  double-pipe  exchanger  in  countertlow  i s

Th,,  =  120°C I&  = 65°C

T,.,  = 50°C XT2  = 15°C
(ix)

The approach temperatures from Eq. (11.86) are

AT,=120-50=70degC=70degK

AT,=65-15=50degC=50degK
(4

The LMTD and area from Eq. (11.115) are:

A&-AT,
LMTD  = ‘Tm = In(AzlAT,)

50-70
=--59.44degK

ln(50/70) (xi)

A = qtot.J[(UWMTD)l
= (1.757 x 1@)/[(325)(59.44)]  [(W)(W-’  m*  K)(K-‘)I  = 9.10mZ (xii)

Part (c)-l-2 Shell-and-t&e.  If Ui is assumed constant, then the area does not
depend  on  which  f lu id  i s  in  the  tube  s ide ;  usua l ly ,  the  wa te r  i s  in  the  tube  s ide
because of  foul ing considerat ions.  The temperatures  in  Eq.  (11.120)  are

Thi  = inlet temperature, shell-side (or hot) fluid = 120°C

Ku = out le t  temperature ,  shel l -s ide  (or  hot )  f lu id  =  65°C

T,  =  in le t  temperature ,  tube-s ide  (or  cold)  f lu id  = 15°C
(xiii)

T,,  =  out le t  temperature ,  tube-s ide  (or  cold)  f lu id  = 50°C
To evaluate F, the quantities 2 and r,~”
(11.119):

are found using Eqs. (11.118) and

Z = (Thi  - T,,)/(T,  - Te)  = (w,c,)/(~c,)  = (120 - 65)/(50 - 15) = 1.57

qH = (7& - T,)/(T,, - T,J  = (50 - 15)/(120  - 15) = 0.3333 (xiv)

The  quant i ty  F can be evaluated from ei ther  Eq.  (11.123) or  Fig.  ll.l6(a),
and the value is  about  0 .92.  The LMTD from Eq.  (11.122)  is

ATI=Thi-T,=120-50=70degC=70degK

AT,=T,,-T,i=65-15=50degC=50degK

F(AT,  - “)
LMTD  = In[(A?;)/(AT,)]

= (0.92)(70  - 50)/[1n(70/50)]

= (0.92)(59.44)  = 54.69”C  = 54.69 deg K (xv)
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TABLE 11.6

Summary of calculated areas

Exchanger type Required area, m*

(a) Parallel double-pipe 11.69
(b) Counterflow  double-pipe 9.10
( c ) 1-2 Shell-and-tube 9 .89
(d) 2-4 Shell-and-tube 9 .33

The approach temperatures calculated in Eq. (xv) are identical to those
calculated in Eq. (x) for the counterflow  double-pipe. Thus, the LMTD for
multipass exchangers is the value for counterflow  (5944K)  times F. The area
follows from Eq. (11.121):

Ai  = qtot.,/[(U)Wf~)I
= (1.757 x 10’)/[(325)(54.68)]  [(W)(W-’  m* K)(K-r)] = 9.89 m* (xvi)

Part (d)-2-4  She&and-tube.  The definitions of Eq. (xiii) are unchanged, as are the
values of 2  and qH,  Eq. (xiv). The quantity F can be evaluated from either Eq.
(11.124) or Fig. ll.l6(b),  and the value is about 0.975. Therefore

LMTD = (0.97$)(59.44)  = 57.95 K (xvii)

Ai = (1.757 x 1@)/[(325)(57.95)]  [(W)(W-’  m’K)(K-‘)I  = 9.33 m* (xviii)
Summary. Table 11.6 summarizes the results. The counterflow double-pipe
exchanger always gives the lowest area when the problem is specified as in this
example. However, it is usually not a practical design when the other factors are
considered (such as size and weight of the exchanger, variation of U with fluid
velocity, temperature-dependent fluid properties, and pressures losses).

11.6 OTHER TOPICS

This chapter has reviewed or presented perhaps all the undergraduate engineer
needs to know about heat and mass transfer in duct flow. In addition, the topic
of heat transfer by one-dimensional conduction and convection has been
discussed, particularly as it relates to transport phenomena. This chapter has
also introduced the design of heat transfer equipment that involves flow in
ducts. Further texts and references cited as well as further course work can
provide a much more in-depth discussion or further extension. For example,
computer calculation for heat exchangers is now common; here, the assump-
tions of constant properties and constant heat transfer coefficients are relaxed,
and a stepwise  trial-and-error calculation is made along the length of the
exchanger. No new principles are introduced in this more precise approach.
More detailed discussion of the heat and mass transfer coefficients is possible,
i.e., for boiling or condensing fluids, extended surfaces such as fins, and direct
contact exchangers invohing gas-liquid, liquid-liquid, or gas-liquid-liquid
exchange.
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PROBLEMS

11.1. A 4-in.  schedule 40 pipe is maintained at a temperature of 400  K at the inside
wal l .  The pipe  i s  lagged wi th  a  l - in .  layer  of  85 percent  magnesia  p ipe  cover ing.
On top of the magnesia is a 2-in. layer of fiber glass (see Table 2.2). The outside
temperature  i s  300 K.  Compute  the  heat  loss  in  W and in  Btu  h-’  per  100 f t  of
p ipe .  Conver t  a l l  g iven data  to  SI .

11.2. For Problem 11.1:
(a)  Compute the temperatures  in  kelvins  at  the s teel-magnesia  interface and the

magnesia-fiber glass interface.
(b)  Prepare  a  p lo t  of  temperature  versus  radius .  Locate  the  ins ide  and outs ide

surfaces ,  the  two in ter faces ,  p lus  three  o ther  poin ts  ins ide  each  insula t ing
material .

11.3. Heat transfer at steady-state in a hollow sphere is one-dimensional if the inside
surface is  at  a  constant  temperature T1  and  the  outs ide  sur face  i s  a t  a  cons tant

5) Show tha t  the  hea t  f low i s  g iven  by
4nk(T, - ZJ

-qr = l/r, - l/r,

(b)  Find the expression for  the thermal  res is tance R.
11.4. The thermal conductivity of rock wool is approximately 0.025 + 0.00005T  where

T is in “F  and k is in Btu h-’ ft-’ OF-‘.  A 2-in. schedule 40 pipe, 18 ft long, is
insulated with  a  2- in .  layer  of  rock wool .  I f  the  outs ide  temperature  of  the  rock
wool  i s  50°F and the  temperature  a t  the  p ipe-wool  in ter face  i s  2OO”F,  f ind the
heat loss in Btu h-‘.

11.5. Consider the composite wall in Fig. 11.3 where k,  = 0.28, kB  = 0.12, kc = 0.07,
and k,  = 0.19, all in W m-’ K-‘. Let the area of B be 1.5 times the area of C;
the area of A is 1 m*. Let AxA= Axg=Axc=Aro=  l.Om;  neglect the
thickness of the insulation. If the overall temperature drop is 100 deg K,
compute the heat flow in watts through the wall for unit area. Assume
one-dimensional  heat  f low ( i .e . ,  tha t  the  boundary  between B and C is  insula ted
perfectly).

11.6. A furnace wall is constructed with fire brick (k = 1.1 W m-’ K-l)  of thickness
b.3m. To reduce heat loss and to prevent burns, the outside of the wall is
covered with 0.05 m of an insulating material (k = 0.086 W  m-‘K-l).  If the
inner  wal l  temperature  is  1200 K and the  heat  f lux q/A i s  930  W m-‘,  determine
the outside temperature of the insulation. Is the operation safe; if not, what
correct ions  would you make?

11.7. A 3-in. schedule 80 steel pipe is covered with a layer of 85 percent magnesia that
is  0.06 m thick.  The ambient  temperature is  25°C. The pipe contains s team that
mainta ins  the  ins ide  p ipe  wal l  a t  550°C.  Calcula te  the  hea t  loss  for  a  length  of
1 m, and the temperature at  the steel-magnesia interface.  Repeat  the calcula-
t ion neglect ing the  thermal  res is tance of  the  s teel  and compute  the  percentage
error.

11.8. Let the thermal conductivity of a certain solid be expressed as a linear function
of temperature:

k = a + b T (9
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(a)  Find the expression for  the heat  f low if  the  geometry is  a  s lab.
(b) Find the expression for the heat flow if the solid is in the shape of a pipe and

the heat flow is in the radial direction only.
11.9. Suppose the wall in Fig. 11.2 is composed of g-in.  thick drywall, 5.625in. thick

insula t ion  ( f iber  g lass ) ,  and  0.16-m  thick concrete .  Let  the  ins ide  heat  t ransfer
coefficient be 8 W m-*K-l,  and let the outside heat transfer coefficient be
16 W mm2  K-i.  #en the inside temperature is 20°C and the outside tempera-
tu re  i s  -20°C  determine the heat  f lux and the surface temperatures,  both inside
and  ou ts ide .  Conver t  a l l  quant i t i es  to  SI  un i t s  and  work  the  prob lem en t i re ly  in
SI.

11.10. In Problem 11.9, convert all quantities to English units and work the problem
entirely in English units.

11.11. Find for Problem 11.9 in both SI and English units: (a) (I,; (b) u.
11.12. A thick-walled copper tube is insulated on the outside and is heated by an

electric current. The inside diameter is 0.01 m. Air flows through the pipe and is
heated. At a point far from the entrance, the air is at 200 kPa, 8O”C, and
veloci ty  1 .2  m s-i.  A thermocouple  indicates  tha t  the  wal l  temperature  i s  400 K.
Assuming constant  heat  f lux,  est imate the rate  of  heat  t ransfer  (W m-‘) a t  t h i s
p o i n t .

11.W.  Assuming a  ful ly  developed f low,  determine the length ( in  meters)  of  capi l lary
tubing required to  ra ise  the  bulk  temperature  of  water  f rom 290 K to  330 K in  a
bath that maintains the wall temperature at 350 K..  The capillary tubing is
0.0025 m inside diameter .  The Reynolds  number  is  1800 at  330 K.

11.14. Estimate the Nussel t  number and the heat  t ransfer  coeff icient  by (a)  Dittus-
Boelter ,  (b)  Sieder-Tate,  (c)  Sleicher-Rouse,  (d)  Colbum analogy,  (e)  Friend-
Metzner,  (f)  Figure  11.9 ,  for  the  ass igned cases  below.  In  each case ,  the  f luid  is
flowing in a l-in. schedule 40 drawn pipe that is smooth on the inside and whose
inside wal l  temperature  is  mainta ined a t  55°C:
(1) water at NRe  = 70 000 and 293.15 K
(2) water at NRe  = 20 000 and 320 K
(3) air at NRC  = 50 000, 1 atm, and 20°C
(4) air at NRe  = 18 000, 1 atm, and 30°C

11.15.  A heat exchanger has been in operation for a year and by now transfers
10 percent  less  heat .  Assume tha t  the  opera t ing  condi t ions  have  been main-
ta ined the same and that  there  have been no geometry changes.  Est imate  the
fouling factor in terms of the original design overall coefficient.

11.16. Your task is to design a heat exchanger to cool 150 gpm of water (measured at
30°C) from 45°C to 35°C. A cold water stream is available at 2O”C, and its outlet
temperature must be 26°C. The overall  heat transfer coefficient may be assumed
cons tan t  a t  900  W m-* K-‘.  Assume that  the  heat  capaci ty  of  water  i s  constant
and equal to 4.18 kJ  kg-’ K-l.  Using SI units, find
(a)  the area in mZ  required for  a  paral le l  f low double-pipe exchanger
(b)  the  area in  mZ  required for a counterflow  double-pipe exchanger
(c)  the area in m*  required for  a  1-2  exchanger ,  the  hot  water  being on the  tube

side
11.17. Your task is to design a heat exchanger to cool 1500 kg h-’  of kerosene (specific

heat  0 .5)  f rom 100°C to 65°C.  A cold water  s t ream is  avai lable  at  20°C and  i t s
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outlet temperature must be 35°C; let the heat capacity of water be
4.184 W kg-’ K-’ (independent of temperature). The overall heat transfer
coefficient U,  may be assumed constant  at  280  W mm2  K-l.  Us ing  SI  un i t s ,  f ind
(a) the area A,  i n  m2  required for  a  paral le l  f low double-pipe exchanger
(b) the area A,  i n  m2  required for a counterflow  double-pipe exchanger
(c) the area A,  i n  m2  required for  a  1-2 exchanger ,  the  water  being on the tube

side
(d) the area A,  i n  m2  required for  a  2-4 exchanger ,  the  water  being on the tube

side
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NOMENCLATURE

A Area (m*,  ft*);  A is usually the heat transfer area, as opposed to S,
the flow area; A, is surface area of packing in a packed bed

A Species A; AI  and A2  are species A at locations 1 and 2
A Constant in Problems 12.11 and 12.13
a, Surface area of particles divided by the volume of the bed, Eq.

(12.104); in a packed bed, a, is surface area of packing per unit
volume, Eq. (12.140)

B Constant in Eq. (12.24) and Table 12.1
b Width of a flat plate (m, ft) (z direction)
C Concentration (kmol m-3,  lb mol ftm3);  CA,  Cn,  Ci are concentrations

of species A, B, i, respectively; CA,ave  is average concentration of A
in the fluid; C,,,,, is concentration of A at saturation; CApw  and CA,-
are concentrations at the wall and in the free stream approaching a
flat plate or other bluff object, respectively

C Constant; C1 = 0.33206 (in the solution of boundary layer equations);
Cr and C2 are constants in Eq. (12.97)

CD Drag coefficient defined by Eq. (12.15); C,, is the local drag
coefficient based on Nn,&,; other subscripts defined as used
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C

c

CP

D
RX
d

gc
h

i

Kmb

k

k

Empirical constant used in Example 12.9
Subscript denoting start of the transition (critical)
Heat capacity at constant pressure (kJ kg-’ K-l,  Btu lb;’  “F-l);  other
subscripts defined as used
Diffusion coefficient (mass diffusivity) (m’  s-l,  f? s-‘)
Axial dispersion coefficient in Eq. (12.110)
Diameter (m, ft); for fluidization, d, is diameter of column; for pipe,
d, is inside diameter for flow area; d, is diameter of sphere or
particle; d, is mean diameter of sphere having same surface area as
the particle; d, is equivalent diameter used in hydraulic radius based
on area in banks of tubes [cf. Eq. (12.152)];  d, is equivalent diameter
based on volume; d, is diameter of a cylinder
Constant in Eq. (12.161)
Constant in Eq. (12.161)
Total force or drag on one side of a flat plate (N, lb,); FB  is buoyancy
force, Eq. (12.70); Fp  is drag force on a particle (or sphere), Eq.
(12.66); Fw is gravity force, Eq. (12.71)
Dimensionless function, Eq. (12.8); f ‘, f”, f’” are derivatives off with
respect to r~
Fanning friction factor, Eq. (6.89)
Function of x in root-finding problem, Example 12.16
Subscript indicating that the property is to be evaluated at the film
temperature T,, Eq. (12.146)
Subscript denoting fluidization (or fluidized bed)
Mass flow rate in the minimum area in a heat exchanger (kg rnw2 s-‘,
lb,,, ft-2 s-‘)
Acceleration due to a gravitational field (m se2,  tt sV2);  g is the
gravitational vector, Eq. (4.49); g,  is acceleration due to the angular
velocity 0
Gravitational conversion constant (32.174 lb,,, lb;’ ft se2)
Heat transfer coefficient, defined in a general manner by Eq. (6.86)
Wm -’ K-l,  Btu ftm2 h-l OF-‘); h,, is based on the log mean driving
force, cf. Eq. (12.139); h, is integrated mean, Eq. (12.41); h, is
evaluated at the location x, cf. Eq. (12.39); h, is the coefficient
between the wall and the fluidized bed; ho  is local heat transfer
coefficient at location 13 around the circumference of a cylinder (cf.
Fig. 12.29)
The Colburn j-factor, cf. Eq. (12.47); jH is for heat, cf. Eqs. (12.136)
and (12.137); jM is for mass, cf. Eqs. (12.89),  (12.90),  and
(12.136)
Constant in Eq. (12.99) for estimation of minimum bubbling velocity
u
G&ma1  conductivity (W m-l K-’  or J m-l K-r  s-‘,  Btu ft-’  “R-l  s-l);
k, is mean thermal conductivity over the range of integration
Mass transfer coefficient [km01 mm2 s-l  (km01 mm3)-‘,  lb mol ftm2 s-l
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k

k3
k
L

lm
m
m
mf
m s
N
N

N.4r
NNU

N Pe,f

&I

NRe

NSC
NSb

n
‘7

(lb mol ft-“)-‘I;  kf is equimolar coefficient, cf. Eq. (6.87); k,  is
coefficient for a single component; k,  is overall mass transfer
coefficient for fluidization
Subscript in fluidization indicating transition between slugging and
turbulent .fluidization
Fluidization constant, Eq. (12.123)
Correction factor for hindered settling, Eqs. (12.82) through (12.84)
Length (m, ft); L,  is pipe entry length, Eqs. (12.19) and (12.26); in
fluidization, Lm  is height of a fluidized bed (also L1 and L2);  L,f is
height of a fluidized bed at the velocity at which the onset of
fluidization occurs
Subscript denoting log-mean, cf. Eqs. (12.139) and (12.141)
Mass (kg, lb,,.,)
Subscript denoting mean value
Subscript denoting minimum for onset of fluidization
Subscript denoting minumum for onset of slugging
Number of rows in the flow direction in a heat exchanger
Molar flow vector (kmol s-l, lb mol s-l); subscripts A or B are for
species A or B, respectively; if written not as a vector, then N is
subscripted for direction of transfer; w is wall subscript
Archimedes (or Galileo) number, Eq. (12.96)
Nusselt number, defined in general by Eq. (8.21) hLlk;  subscripted _
for various characteristic lengths, for particular applications, and for
temperature at which k is evaluated: NNU,x, cf. Eq. (12.40); NNU,L,  cf.
Eq. (12.43); NNu,p,  cf. Eq. (12.85); NNu,pt,,  cf. Eq. (12.142); NNU,e,
cf. Eq. (12.102); NNu,t,  cf. Eq. (12.147); NN,,e is the local Nusselt
number at location B  around the circumference of a cylinder, cf. Fig.
12.2% NNu,tb, cf. Eq. (12.161)
Peclet number with all properties evaluated at the film temperature,
the product of NRe and Np,,  cf. Eq. (12.151)
Prandtl number, cpp/k,  Eq. (8.4); NPr,f  evaluates p and k at T,; NPr,w
evaluates properties at the wall temperature
Reynolds number, charactersitic length times characteristic velocity
divided by kinematic viscosity (p/p);  for a flat plate at location x, NRe
is xU,p/p,  cf. Eq. (6.3); NRe,=,  cf. Eq. (12.16); Nr+ is the flat plate
Reynolds number evaluated with x,; NRe,r,  cf. Eq. (12.68); NRe,fb,  cf.
Eq. (12.94); NRe,,,,f,  cf. Eq. (12.95); NMRe,  cf. Eq. (12.113); NRe,pb,
cf. Eq. (12.130) NRe,=,  cf. Eq. (12.121); NRe,t  is cylinder Reynolds
number evaluated at T,, Eq. (12.145); NRe,v is Reynolds number
based on d,,  Eq. (12.156); NRe,,b,  Eq. (12.162)
Schmidt number, v/D,  Eq. (8.6)
Sherwood number, defined generally in Eq. (8.22); NSh,y,  Eq.
(12.87); Ns,,&, Eq. (12.111); Na,,@, Eq. (12.143)
Number of spheres
Exponent defined in Eqs. (12.109) and (12.161)
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n

P

P
pb
Q
r
r

S

2
s
T

t

t b
tr
u

V
v f

V

W

W

X

Exponent in Richardson-Zaki equation, Eq. (12.114),  correlated by
Eqs. (12.116) through (12.120)
Pressure @Pa, atm, lbf  in.-’ or psi); pA and pB are pressures along a
streamline at locations A and B in Figs. 12.18 and 12.19; - Apd  is
pressure drop at minimum fluidization
Subscript denoting particle or sphere
Subscript denoting packed beds
Energy (heat) flow vector (J s-l,  Btu s-‘)
Cylindrical coordinate (m, ft)
Radius, (m, ft); rr is radius of a sphere or particle; r, is hydraulic
radius, Eqs. (12.126) and (12.128)
Flow area, cf. Chapter 7; subscripts defmed as used
Spacing of rows in a tube bundle in flow direction (m, ft)
Spacing of rows perpendicular to flow in a tube bundle (m, ft)
Subscript denoting solids in U,
Temperature (K, “R, “C, “F);  T, is temperature of the wall or surface;
T, is temperature of the fluid approaching a flat plate or cylinder or
other bluff object; T,, or Tb  is bulk temperature, Eq. (11.31); Tf  is
film temperature, Eq. (11.32) or (12.146); Tmb  is mean of two bulk
temperatures, Eq. (11.34); Al;,, Eq. (12.141)
Time (s)
Subscript denoting cylinder; also, U, is terminal (settling) velocity of a
particle (sphere) settling in a fluid
Subscript denoting tube bank
Subscript denoting fast fluidization (entrainment)
Velocity vector (m s-r,  ft s-l); U is magnitude of U; U,., U,, U,, U,,
U,, U, are components in directions x, y,  z, 8, r, 9;  U,,  ave  or U,,, is
mean velocity in z direction; U, is velocity in open channel (free
stream velocity); U,  is terminal (settling) velocity; in fluidization, U,
is superficial velocity, calculated on the basis of an empty column;
U,,  is minimum superficial velocity for fluidization; U,,,, is minimum
superficial bubbling velocity [Eq. (12.99)];  U,,,, is minimum superficial
velocity for onset of slugging fluidization; U, is minimum superficial
velocity for onset of turbulent ffuidization [Eq. (12.100)];  Ut,  is
minimum superficial velocity for pneumatic transport of solids by a
gas or hydraulic transport of solids by a liquid; Us  is mean
(superficial) solids velocity; Ui  is superficial velocity for a void
fraction equal to unity, from Eq. (12.115)
Volume (m3, ft”); V,  is volume of packing in a packed bed
Specific volume of liquid (m’kg-‘); in this chapter, vf  is specific
volume of water from Table A.1
Subscript denoting that d, is based on volume; NResY  is based on d,
Mass flow rate (kg s-r,  lb,,, s-l); w, is mass of solids m a fluidized bed
Subscript denoting wall
Rectangular (Cartesian) coordinate
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X

X

X

XS

Y

Y
z,
z

A
6
6

&

8
P

Y
n

P

3

Distance from the leading edge of a flat plate; x, is location of the
transition from laminar to turbulent flow
Subscript denoting that h, or NRea  or NNur  is based on the distance x
(flat plate)
Unknown in root-finding problem, Example 12.16
Volume fraction of solids involved in mass transfer
Rectangular (Cartesian) coordinate; in the flat plate geometry, y is
the distance normal to the plate
Mole fraction; ylm  is the log-mean mole fraction, Eq. (12.88)
Distance between tube centers in a bundle of tubes
Rectangular (Cartesian) coordinate; in the flat plate geometry, z is
the width of the plate
Variable in the decomposition of Eq. (12.11) in Example 12.1; also z,
Thermal diffisivity, k/(pc,),  cf. Eqs. (2.10) and (12.31) (m’sr,
ft2  s-l)
Difference, state 2 minus state 1; e.g., -Ap  means p1  -pz
Generalized diffusivity (m” s-‘,  ft2  s-‘)
Thickness of boundary layer, usually the distance in the y direction
where UX equals or exceeds 99 percent of the free stream velocity U,
(m, ft); I& and 6, are the thicknesses of the heat and mass boundary
layers, respectively
Void fraction (also called porosity or voidage), defined as the ratio of
free volume to total volume, Eq. (12.81); e,f  is minimum porosity or
void fraction for the onset of fluidization; cf. Eq. (12.92)
Similarity variable, Eq. (12.5)
Dimensionless temperature, Eq. (12.29); 0’ is derivative with respect
to n;  Or.,,  is dimensionless concentration, Eq. (12.48)
Curvilinear coordinate
Viscosity (kg m-l s-l or N rnp2  s, lb,,, ft-’  s-‘,  cP); pw  is viscosity at
wall; in fluidization, p is viscosity of solids-free fluid
Kinematic viscosity, p/p  (momentum diffusivity) (m” s-l,  ft2  s-‘)
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg mm3, lb,,, ft-“);  in fluidization equations, p is density of
solids-free fluid; subscripts 1 and 2 refer to overall density of fluidized
bed at heights Ll and L2;  P,,, is density of solid-fluid mixture; pp  is
density of particle; pE  is solids density in Eq. (12.100)
Velocity potential, defined by Eq. (12.53) (m’s-l,  ft2  s-l)
Sphericity, defined by Eq. (12.105)
Shear stress at the wall of a flat plate, Eq. (12.13) (N me2, lbf  ft-‘)
Generalized flux vector (e.g., units for heat flux are J me2  s-l  or
W rne2,  Btu fte2  s-‘; see Tables 2.1 and 4.1 for more details)
Stream function, defined in Eq. (12.6) (m’s-l,  ft2  s-‘)
Generalized concentration of property (e.g., units for concentration
of heat are J me3, Btu ft-‘; see Table 3.1 for complete listing) (see
Table 4.2 for units; e.g., for heat, units are J rnw3 s-l,  Btu ftm2 s-l)
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5
‘Angular velocity in Eq. (12.91) (rad-‘)
Vector operator del, defined by Eqs. (2.16) or (3.45); cf. Table 5.1
(m-i,  ft-‘)

The laminar boundary layer concept as presented in Chapter 5, Section 5.1.7
can be considered as a flow over an immersed body (i.e., a flat plate). Only the
basic equations were presented there. In this chapter, the analysis will be
extended to indicate the nature of the solution, its limitation (separation), and
the equations useful for design. The equations for heat and mass transfer in a
boundary layer will be discussed, as well as the analogous equations for
turbulent flow conditions. One of the most important aspects of the developing
boundary layer is in the entry region of ducts, and a discussion for both
laminar and turbulent flow is included.

The boundary layer on a flat plate is one aspect of flow over an immersed
body. Practical applications of flow over immersed bodies abound; for
instance, streamlining is applied to automobiles in order to reduce the drag
forces and increase gas mileage. Streamlining is also important in airplanes, in
missiles, and in the shields mounted on top of the cabs of tractor-trailer trucks
(the so-called “semis”).

In this chapter, considerable emphasis is placed on the flow of a fluid past
a stationary sphere; note that this problem is identical to the movement of a
sphere in a stationary fluid. Stokes’ law applies to a fluid flowing at a very low
rate past a stationary sphere. Plow at higher velocities generally requires an
empirical solution. Applications include settling of smoke particles, collection
of dust to prevent air pollution, settling of solids in liquids, flow in packed
(fixed)  beds, and flow in fluidixed beds. Often the packed or flmdixed  beds
contain catalyst particles, and a chemical reaction takes place along with heat
and mass transfer [H2];  thus, correlations for these are needed also.

This chapter also covers flow over a stationary cylinder, as well as flow
through a group of cylinders. An important application is in the design and
operation of heat exchangers, in which both heat transfer and momentum
transfer must be considered. Empirical correlations will be presented and
discussed. Another, application is in the operation of research equipment, such
as the hot-wire anemometer.

In chemical engineering, the flow over individual objects is important,
but more important is the flow over multiple bodies. Thus, this chapter will
cover hindered settling, transport in packed beds, transport in fluidiied beds,
and flow across tube banks.

12.1 THE BOUNDARY LAYER AND
THE  ENTRY REGION

The boundary layer is considered to be the region of changing velocity when a
viscous fluid flows past a solid boundary, such as a flat plate. In the boundary
layer region, both fluid inertia (or momentum convection) and viscous effects
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are important. The no-slip condition of the fluid at the solid surface means that
the velocity of the flmd  is zero at the surface. The velocity then increases as
distance from the surface increases, as illustrated in Figs. 5.6 and 6.2. In those
figures, the fluid external to the boundary layer is shown with a uniform
velocity U,.  The boundary layer begins when the fluid passes over the plate, as
shown by the dotted line, and includes the entire region in which the velocity is
less than the free-stream velocity U,.  In the case of the flat plate, the boundary
layer continues to increase in thickness with increasing distance x. Eventually
there will be a transition to turbulent flow. For pipe flow, flow in ducts, etc.,
the entry region is that region in which the velocity profile changes with the
distance from the entrance until a fully developed protile is reached.

The next sections will cover the laminar boundary layer, the turbulent
boundary layer, and then heat and mass transfer during boundary layer flow.

12.1.1 The Lamimu Boundary Layer

The flat plate boundary layer is the classical problem to present, since only one
surface need be considered. Again consult Fig. 5.6. Analysis of this problem
begins with Example 5.8. The Navier-Stokes equations for fluids of constant
density and viscosity from Table 5.7 are greatly simplified because most terms
are zero, as shown in Example 5.8. All velocities and derivatives in the z
direction are zero. After the usual boundary layer assumption was made, the
following two equations were obtained in Example 5.8 [cf. Eqs. (iii) and (iv)]:

#Kc&z+ uy%=v,
aY

uzQJav,=yazu,
X ax  Y ay ay2

(12.1)

(12.2)

For this problem the continuity equation from Table 5.3 reduces to Eq. (vi) in
Example 5.8:

(12.3)

Equations (12.1) and (12.3) adequately define the system. These two
independent equations include the two unknowns U, and U,, and may be
solved with appropriate boundary conditions. Equations (12.2) need not be
used to obtain the solution for U, and U,. In essence, the problem is
over-determined. An analysis of the orders of magnitude of the terms shows
that those in Eqs. (12.1) or (12.3) are of Iirst  order, while those in Eq. (12.2)
are of a much smaller order (of the boundary layer thickness). Thus, only the
first-order equations are selected for the solution.

Equations (12.1) and (12.3) were derived for the following assumptions:
(1) the approach velocity U, is in the x direction only; (2) the flmd  is
incompressible and of constant viscosity; (3) the flow is at steady-state; (4)
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there is’ no pressure gradient in the x direction because U,,  the free stream
velocity, is constant; (5) there are no external forces, such as gravity; and (6)
#UXlax2  <<  a%JXlay2  and thus a2U,l&2  can be neglected [B2].

The appropriate boundary conditions are

Aty=Oforallx

U,(y=O)=O U,(y=O)=O

Aty-m (12.4)

Ux(y = m)  = u,
Equations (12.1) and (12.3) are simultaneous partial differential equa-

tions that were first solved by Blasius [Bl]  in 1908. Blasius deduced that the
velocity profiles at various points along the plate were similar. He was able to
recast Eqs. (12.1) and (12.3) into a dimensionless form through use of a
“similarity” variable q,  where

ICY u-  1/2
( >vx

(12.5)

A similarity transformation is defined mathematically as a transformation to
reduce the number of independent variables [Al]. ‘

It is convenient to express the continuity equation, Eq. (12.3),  in terms of
a “stream function” I/J,  which is defined as follows:

u=dlV
x ay a n d u-A?!

Y- ax
where tj~ is not to be confused with the general concentration of property from
Chapter 2. The stream function rj~ satisfies the continuity equation, because
upon substitution of Eq. (12.6) into Eq. (12.3),  the result is

e2q  XL0--
axay ayax

Next, a dimensionless function f is detined as

f = (xv&n

(12.7)

(12.8)

where f is a function of n only. Now, Eq. (12.1) with the aid of Eq. (12.6)
b e c o m e s

w 3% wa%  6~-----=v-ay axay ax ay2 ay3 (12.9)

After using Eqs. (12.5) and (12.8),  Eq. (12.9) becomes

f$+2$=0 (12.10)
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tl =YILl~l(vx)l”2

FIGURE l2.1
Boundary layer solution for flat plate problem.

or, using the common notations, f” and f”’  to indicate derivatives:

~++f”=() (12.11)

Since Eq. (12.3) was used in the definition of the stream function, Eq. (12.6),
the introduction of the similarity variable r,r  and the function f has resulted in
the coupled set of partial differential equations being reduced to a single
ordinary differential equation, Eq. (12.11),  with transformed boundary
conditions:

At the wall

f (q=O)=O  f’(q=O)=O

Far from the wall

f’(r)=m)=l (12.12)

Equation (12.11) is nonlinear but can be solved (with the boundary conditions)
in terms of a power series [H4]. A modem computation might use an analog
computer or, better yet, a digital computer simulation of the analog formula-
tion by numerical methods, as shown by Example 12.1. Figure 12.1 shows the
solution to Eq. (12.11) in terms of the dimensionless variables n,  UJU,,  and
(u,/u&JidY)‘“. Note that when n exceeds 6 the slopes of both curves
approach zero.

Example 12.1. Set-up the boundary layer solution of Eqs. (12.11) and (12.12) for
a digital computer.
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Answer.  Rather than a series solution (which involves finding many terms), a
digi ta l  s imula t ion  tha t  u t i l izes  in tegra t ion  by numerica l  means  wi l l  be  performed.
Firs t ,  Eq.  (12.11)  i s  rewri t ten  as

f”+fff”=-J
(9

This  problem is  classif ied as  a  boundary value problem, s ince from Eq.  (12.12)

f’(?#l=“)=l (ii)

Hence, it will be necessary to guess values of f”(O) until Eq. (ii) is satisfied.
Equat ion  ( i )  i s  decomposed in to  a  coupled  se t  of  d i f ferent ia l  equat ions :

df
“‘=&=f’

d2f
z2=;i;;I=y

f-=$=  -(f/2)2* f”(O)  = c, (9

where  the  cons tan t  C,  i s  va r ied  un t i l  Eq .  ( i i )  i s  sa t i s f i ed . ’  S ince  in f in i ty  i s  no t  a
v iable  opt ion ,  the  va lue  of  n mus t  a l so  be  var ied  un t i l  the  boundary  condi t ion  of
Eq. (ii) is satisfied. A value of n equal to 6 is satisfactory.

The solution to Eqs. (iii) through (v) in FORTRAN or BASIC using
Runge-Kutta or some other method [Pl, Rl] is fairly involved, since the step
size, the boundary condition r] = m, and the constant C, must all be located
properly  by t r ia l  and error .  Since systems of  ordinary dif ferent ia l  equat ions  are
commonly encountered,  several  excel lent  s imulat ion languages ,  including CSMP'

and ACSL,~ have been developed.  These  are  easy to  use ,  and the  reader  should
consul t  the  appropr ia te  manuals  for  de ta i led  ins t ruc t ions .

F igure  12 .2  i l lus t ra tes  the  so lu t ion  o f  Eqs .  ( i i i )  th rough  (v )  wi th  ACSL. The
ACSL program is 13  lines long, whereas an analogous FORTRAN program would be
quite lengthy. First, application of algebra and calculus to the appropriate
definitions yields a useful pair of equations:

U,IU,=f 64
(rr,lu~)(v,xlv)“‘=f(~f’-f) (vii)

In  the  ACSL program,  l ine  2  def ines  cons tan ts  tha t  a re  the  boundary  condi t ions ,
Eq. (iii)--FIC; Eq. (iv)-FDIC; Eq. (v)--FDDIC;  and the condition for n = 01,
which is ETAT. Line 4 contains ETA, or r,r,  since ACSL always uses time as the
independent variable. Line 5 solves Eq. (i) for f “‘.  Then lines 6, 7 and 8 integrate
(by  Runge-Kut ta )  the  sys tem of  equat ions  in  Eqs .  ( i i i )  th rough (v) .  L ines  9  and
10 compute the quantities in Eqs. (vi) and (vii). Line 11 terminates the
in tegra t ion  when  n exceeds 6.

’ C, is used in this text to avoid confusion; other authors use (Y.

‘Trademark of IBM Corp., White Plains, NY 10604.

3 Trademark of Mitchell and Gauthier, Assoc., Inc., Concord, MA 01742.
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PROGRAM BOUNDARY LAYER $ "LINE 1"
CONSTANT FIC-O.O.FDIC-O.O.FDDIC-0.33206.ETAT-6.
CONSTANT CINT-O.bl
DERIVATIVE
ETA-T
FDDD--0.5*F*FDD $ "LINE 5"
FDD-INTBG(FDDD,FDDIC)
FD-INTEG(FDD,FDIC) 6 "LINE 7"
F-INTEG(FD,FIC)
D - F D $ "LINE 9" FIGURE 12.2
V-O.S*(ETA*FD-F)
TERI¶T(ETA.GT.ETAT)
END

$ "LINE 11"
Simulation program for
boundary layer over a

E N D $ "LINE 13" flat plate.

The program given in Fig. 12.2 was used to prepare Fig. 12.1, which
presents the nondimensional velocity curves for the boundary layer flow over a
flat plate. Note that in this simple program no provision is made for automatically
varying C, so as to force Eq. (ii) to be correct. The constant C, or FDDIC in the
program is changed by repeatedly editing and executing the program until Eq. (ii)
is satisfied.

Boundary layer parameters. From the results of Example 12.1, certain
parameters of the flow in a laminar boundary layer can be obtained. The shear
stress at the wall at any position along the plate is given by

z,  =  -p(Z)  =  -(puxl)(yn
w

(12.13)

where Ci = 0.33206 from the numerical solution to the problem.
The total force or drag on one side of the plate is the shear stress

integrated over the area of the plate:

F = (pac,b)(:)‘n[ (--)  dx = (2C1  U,b)(ppLU,)‘n (12.14)

where b is the width and L is the length of the plate. Note that the drag force F
in Eq. (12.14) is represented as a scalar (kthout  sign); F acts on the plate in
the same direction as U,.

If the shear stress t,  were constant over the area, then r,., times the area
bL would equal F. Since r, varies with x according to Eq. (12.13),  it is often
useful to introduce a dimensionless “drag coefficient” CD,  which is defined as

Note that Co is similar in form to the Fanning friction factor previously defined
in Eq. (6.89):

FIA Ff=A=-=-
tP& 4PGW tpUZ,eA
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After some algebra, Co becomes
1R

c =  4Cl(NRe.L)-1n (12.16)

where the constant C, is 0.33206 as before. The Reynolds number is based on
the length of the plate, and the subscript “laminar” is used to note the
conditions. Some authors also define a “local” drag coefficient CnJ:

-1R

cD,  = = 2C,(N,,,)-‘n (12.17)

This equation utilized Eq. (12.13) which is the expression for the “local” shear
stress at the wall.

A precise mathematical definition of the laminar boundary layer thick-
ness is arbitrary; in the solution to Example 12.1, the velocity approaches U,
but theoretically never reaches U,. If UJU, is taken as 0.99, the boundary
layer thickness 6 can be found from the following equation:

(vxlUcy$5.0  x = 5.0(N,,)-ln (12.18)

where NReJ is based on the distance x from the leading edge:

NR.&x = xu-PIP (6.3)

Note that Eq. (12.18) predicts that the boundary layer thickness 6 is
proportional to the square root of x.

Example 12.2 .  A wal l  in  a  wind  tunnel  i s  used  as  the  tes t  a rea  for  drag  and  o ther
measurements.  The forward edge of the test  area is  located 1 ft  from the leading
edge of the test  wall .  The test  area is  a  square,  1 f t  by 1 f t .  The free-stream air
velo&y  is 6fts-’  (1.829 m s-l),  and the temperature is 68°F. Estimate the
boundary  layer  th ickness  and the  local  drag  coeff ic ient  a t  the  t ra i l ing  edge of  the
tes t  sec t ion .  Also  es t imate  the  force  (drag)  on  the  tes t  sec t ion .

Answer .  This  p rob lem wi l l  be  so lved  in  Engl i sh  un i t s  to  i l lus t ra te  the  use  of  g , .
The trailing edge of the test section is 2 ft (0.6096 m) from the leading edge of the
test wall. The necessary conversions are in Tables C.5, C.6, and C.17; the
proper t ies  of  a i r  a t  68°F (2O”C,  293 K) from Table A.2 are

p = (1.2047 kg m-‘)(0.06243 lb, W3 kg-’ m’) = 0.07521 lb,,, tY3

p = (18.17 x 10e6 kg m-l  s-‘)(0.6720 lb,,, ft-’ s-’ kg-’ s m)

= 1.221 x lo-’  lb,,, R-’ s-’

v= p/p = 18.17 x 10m6/1.2047  = 1.508 x 10-5mZs-1  = 1.623 X 10m4  ft’s-’ (9

Firs t  i t  i s  necessary  to  determine whether  the  f low is  laminar  or  turbulent .  The
local Reynolds number at  2 f t ,  from Eq. (6.3), i s

NRsz =xU,/v = (2)(6)/(1.623 x 10-4)  = 7.391 x 104 (ii)
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This Reynolds number is well within the laminar region, since the Reynolds
number at the transition to turbulence is usually around 5 x ld. See Fig. 6.2 and
the discussion following that equation.

The boundary layer thickness 6  is calculated from Eq. (12.18):

6  = (S.O)(x)(N,,,,)-rR  = (5)(2)(7.391  X l@)-rn = 0.03678 ft = 0.44 in. (iii)

In other words, if the y distance from the plate at two feet from the leading edge
is 0.44in. or greater, the air velocity is 6fts-‘.  From Eq. (12.17),  the local drag
coefficient is

CD, = 2C,(N,,,)-1R  = (2)(0.33206)(7.391  x l@)-lR = 2.443 x 1O-3 (iv)

Since Eq. (12.14) was integrated from the leading edge of the plate to L, the
force or drag on the test section of 1 ft?  must be calculated as the difference
between the drag on the test wall from the leading edge to the end of the test area
and the drag on the test wall up to the test area:

F,-m=Fwn-Fun (9

From Eqs. (v) and (12.14),  the force on the test section is

F,,,  = (2C, Uch)(~pUeJ’n[(L,)‘n  - (L,)‘=] (vi)

where the constant C, is 0.33206. After inserting the appropriate numbers, plus a
width of 1 tt,  into Eq. (vi), the force is

F = [(2)(0.33206)(6.0)(1)][(1.221  x 10-5)(0.07521)(6.0)]‘R[(2)1n  - (l)=j
x {(A s-‘)(ft)[(lb,  ft-’ s-‘)(lb,  ft”)(ft  ~-‘)]‘~(ft’~)}

= 3.874 x 1O-3 lb,  ft s-’ w

The value of F is properly expressed in force units, using g,:

F = 3.874 x lo-“/32.174 [(lb,,, ft s-‘)(lb,’  lbrfi-’  s’)]

= 1.204 x 1O-4 lbr (viii)

Entry region for a pipe. Solutions exist for other boundary layer problems
such as the flow between parallel plates and the flow in the entry region of a
pipe. For this latter case, Fig. 12.3 shows the nature of the flow to be expected.
Of particular interest is the length of pipe necessary for the development of the

FIGURE 12.3
Boundary layer formation at the entrance to a pipe.
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\ I I / Outer edge of

-7  y dU,ldy =o
\ \b

dU,ldr  >  0 dlJ,ldr  <  0

ygz.?  zjf;E;:e

dpld9  <  0 dpld8  >  0 region

FIGURE 12.4
The boundary layer over a cylindrical object.

velocity profile. In any experimental study of velocity profiles in laminar flow,
the length of pipe necessary for the complete development of that profile must
be known. In addition, this length is necessary when calculating the additional
pressure drop in the entry region of a capillary viscometer. Langhaar [L2] gives
the entry length L, in laminar flow as

LJd, = O.O567N,, (12.19)

where L,  is the point at which the center line velocity reaches a value of
K1.9W~z.avJl.  For a flow with a Reynolds number of 2000, the entry length
from Eq. (12.19) is a distance of 113 pipe diameters. The excess pressure drop
experienced in the entrance region during the laminar flow can be computed
from information given elsewhere [B2].

Separation. For flow over a flat plate and flow in the entry region of a pipe,
the boundary conditions are in such a form that a mathematical solution is
obtainable, as just discussed. Exact solutions are not obtainable if the
boundary layer separates from the solid. A classic example of separation
occurs when a fluid of uniform velocity (I,  flows over a cylinder, as shown in
Figure 12.4. Note the reverse flow region where the pressure gradient dpldx
becomes positive. When an adverse pressure gradient exists, i.e., if the
pressure is increasing in the direction of flow (opposing the flow), the
boundary layer can separate from its associate body. A flow over a cylinder, as
shown in Fig. 12.4, is used to illustrate the problem, although separation can
occur along a flat plate also. For a detailed analysis of boundary layers and
separation, the reader is referred elsewhere [Sl].  Figure 12.5 shows the flow
separation over an elliptical shape4  as photographed by Prandtl and Tietjens
P51.

‘Film loops FM-12, FM-4, and FM-6 can be used to illustrate separation.
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‘ (4

(4

FIGURE l2.5
Boundary layer separation. (From Prandtl  and Tietjens,  Applied Hydro- and Aeromechanics,
Dover Publications,  Inc . ,  New York.  Reprinted by permission o f  publisher . )

The reason for separation can be analyzed in terms of the Bernoulli
equation, Eq. (7.63),  as follows: as the flow passes over the cylinder in Fig.
12.4 it must accelerate over the forward portion and decelerate over the rear
part. Over the forward part, the increase in velocity is accompanied by a
decrease in pressure (dp/&  < 0) or a favorable pressure gradient exists, as
shown by Eq. (7.63). The opposite is true over the rearward part. Since the
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pressure .drop  across the boundary layer is negligible, this adverse gradient
penetrates to the wall. The gradient in pressure, as well as the shear force,
causes a rapid deceleration of the fluid elements in the immediate vicinity of
the wall. The deceleration continues until the fluid elements come to rest, at
which point the viscous forces are zero, since the velocity is zero. However,
the adverse pressure effect will continue to act, and the fluid will reverse and
flow backward. The point at which the reversal occurs is that at which
(dU,/dy),  is zero, and is the point of separation of the boundary layer from
the surface. The separation must occur so that the flow can continue in the
direction of the increasing pressure.

12.1.2 Tbe Turbulent Boundary Layer

The boundary layer for laminar flow was presented in Section 12.1.1 as a
solution to the Navier-Stokes equations for flow over a flat plate. However,
laminar flow will only exist over a short distance before transition occurs and
turbulence ‘is introduced. The flow in the laminar and turbulent boundary
layers was illustrated in Fig. 6.2.’ Along the front part of the plate a laminar
boundary layer forms. When the Reynolds number, Eq. (6.3),  is in the range
of 5  X 10’  to 5 x 106,  the transition to turbulent flow begins. The transition can
begin at lower Reynolds numbers in the presence of roughness or trip wires.’
Once the transition occurs, there is a rapid change to the turbulent boundary
layer as illustrated on the right of the figure. For each case, the velocity
distribution is shown.

Equations (12.13) through (12.16) presented the relations for the stress at
the wall, the total drag, and the drag coefficients for laminar boundary layers.
Equation (12.19, relating the force or drag on a plate to the drag coefficient
CD,  still applies:

F = %PU~,)W)(CD) (12.20)

where the area A has been replaced by Lb. The drag coefficient CD has been
correlated empirically [Sl]:

c D, turbulent = 0.455[log,,(NR,,L)]-z.5E (12.21)

where the subscript “turbulent” indicates that Eq. (12.21) is restricted to the
portion of the boundary layer that is turbulent. Similarly, the local shear stress
at the wall is

z, = $(pU:)[2  log,,,(NR,,)  - 0.65]-2.3 (12.22)

If the turbulent velocity profile is approximated by the 1/7th-power law,
Eq. (6.110),  then the boundary layer thickness is

d/x = 0.376(iV,,,)-0.2 (12.23)

‘Film  loop FM-5 illustrates the laminar and turbulent boundary layers and the tripping of a
laminar layer.
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TABLE 12.1
Variation of B with transition
Reynolds number in Equation
w-w

* Values taken from Knudsen and Katz, Fluid
Dymmdc.s and Heat Transfer. P .  277,
McGraw-Hil l ,  New York,  1958.

Since Eq. (12.23) is based on the Blasius equation, Eq. (6.133),  both are
subject to the same restrictions.

The correlation in Eq. (12.21) applies to fully turbulent flow. Equation
(12.21) can be empirically modified to account for the transition region and the
effect of the laminar initial length [Sl]:

CD = 0.455[log,,(N,,,L)]-=*  - 6 (12.24)
Re,L

where B is a function of the transition Reynolds number NRe,c,  as shown in
Table 12.1. Here no subscript to denote conditions has been added since Eq.
(12.24) applies over the entire region. If the point of transition is not known
precisely, Eq. (12.24) will be approximate. The assumption of B equal to 1050
will be the most conservative, and a value of B equal to 1700 will be the most
probable.

The total force obtained from Eqs. (12.20) and (12.21) assumes that the
plate is subject to turbulent flow only. However, this condition is rarely
encountered, and there is normally a laminar section preceding the turbulent
region. Instead of using Eq. (12.24),  an alternate procedure combines Eq.
(12.14) for the force exerted in the laminar section and Eq. (12.20) for the
force exerted in the turbulent section:

Factual  = FIaminar,~x,  + Fturbtient,&L  - FturbuIent,~x, (12.25)

FIaminar,~x, evaluated from Eq. (12.14) from x = 0 to x =x, (at N&c)

Fturbulent,GL  evaluated from Eqs. (12.20) and (12.21) from x = 0 to x = L
Fturbulent,%XC  evaluated from Eqs. (12.20) and (12.21) from x = 0 to x = x,

Here, the subscript O-L refers to the entire length of plate and O-x, refers to
the leading edge of the plate to x,, the location of Nne,c.  Use of Eq. (12.25)
will be illustrated in Example 12.3. Note that Eq. (12.24) included the laminar
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contribution when the parameter B was determined; thus Eqs. (12.24) and
(12.25) cannot be used together.

Entry region for a pipe. For turbulent flow, the length in which the center line
velocity reaches 99 percent of the maximum value is correlated by

L,ld,  = 0.693(NRe)1’4 (12.26)

Equation (12.26) is satisfactory for most normal problems where vibrations
and flow disturbances result in a transition Reynolds number of approximately
2100. As a rule, Eq. (12.26) will compute a much shorter length L, than will
Eq. (12.19),  the corresponding equation for the laminar entry in a pipe:

LJd, = O.O567N,, (12.19)

Summary. The boundary layer equations of this and the previous section are
summarized in Table 12.2.

TABLE 12.2
Summary of boundPry  layer equations

Description Regime Equafion

Boundary layer thickness

Wall shear stress

Total drag force

Local  drag coefficient

Drag coefficient

Pipe entry length

laminar
turbulent

laminar
turbulent

laminar
turbulent

laminar

turbulent
combined

laminar LJd,  = 0.0S67NR,

turbulent LJd,  = 0.693(N,)“’

(12.18)

(12.23)

(12.13)
(12.22)

(12.14)

(12.20)

(12.17)

(12.16)
(12.21)

(12.19)

(12.26)

N o t e s :
B constant, cf. Table 12.1 L, entry length in a pipe
b plate width NW esd  to x&P/r
c, value of 0.33206 x distance from leading edge
do diameter of pipe u, fIee stream velocity
L length of plate 6 location at which u*/cJ~=o.!99
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Emimple  12.3.  Water  f lows over  a  f la t  p la te  a t  a  veloci ty  U,  of 3 m s-r. Ca lcu la te
the total drag on a section of the plate that is 1 m wide and 2 m long, the
beginning of the section coinciding with the leading edge of the plate. Assume the
transition occurs at a Reynolds number of 5 x 16. Also, calculate the shear stress
a t  the  wal l  ( in  un i t s  o f  N m-*) at  a distance of 1 m from the leading edge of the
pla te .

Answer. The f i rs t  s tep  is  to  ca lcula te  N,,  at distances of 1 m and 2 m from the
leading edge. From Table A.l, the properties of water at room temperature
(20°C or 293.15 K) are

1 1
~=v,=1.001x10-~

=999kgmd3
6)

p = 1 CP  = 0.001 kg m-i  s-’

A t  x = 1 m and x = 2 m, the Reynolds numbers from Eq. (6.3) are

NRcJ  (x = 1) = (1.0)(3.0)(999)/(0.001) = 2.997 x 106

NRe,L  (x = 2) = (2.0)(3.0)(999)/(0.001)  = 5.994 x 106
(ii)

The flow is clearly turbulent at both locations. The shear stress at the wall is given
by Eq. (12.22):

tw  = ;(pU2,[2 log,,,(N,,)  - 0.65]-2.3

= @B9)(3.0)‘[2 log,o(2.997  x l@)  - 0.65]-=

= 14.0 [(kg m-‘)(m’  s-‘)I = 14.0 kg m-*  s-*  = 14.0 N m-’ (iii)

The easiest approach is to calculate CD from Eq. (12.24). For this problem
B = 1700 from Table 12.1:

CD = 0.455[log,,(N,.,~)1-258 - BIUL,d
= 0.455[loq,(5.994  x lo”)]-‘.”  - (1700)/(5.994 x 106) = 0.00298 (3

From Eq. (12.20),  the  d rag  on  the  p la te  i s

F = &dY?)(Lb)(C,)=  #99)(3.0)'(2.0)(0.00298)

= 26.8 [(kg mV3)(m2  s-‘)(m’)] = 26.8 kg m s-’  = 26.8 N (4

The drag force on the plate  can al ternat ively be calculated from Eq.  (12.25):

Fmma,  = F,amimar,crxc  + Fttiulcnt.rx  - Fturme.t,wr, (12.25)

Fh&~,&X, evaluated from Eq. (12.14) from x = 0 to x = n, (at NRC+)

Fhub"km,~L evaluated from Eqs.  (12.20) and (12.21) from n =  0  to  x = L

Ft"*"kmt,cLx, evaluated from Eqs.  (12.20) and (12.21) from x =  0  to  x =xy

The f i r s t  s tep  i s  to  loca te  the  po in t  o f  t rans i t ion  x,,  which can be found from the
def ini t ion of  NRcJ, Eq. (6.3), where NRc,=  is 5 X ld:

x, = (NRec  p)/(U,p)  = [(5 x 10’)(0.001)]/[(3.0)(999)]  = 0.167 m (vi)

In other  words,  the  boundary layer  is  laminar  for  the  f i rs t  16.7 cm,  the point  a t
which the  t rans i t ion to  turbulence begins .  Next ,  the  laminar  drag coeff ic ient  and
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the force on the plate are calculated from the leading edge (x  = 0) to x, (0.167 m).
Equa t ion  (12.16),  evaluated  a t  x., y i e ld s

c D.  ,aminar = 4C,(N,,)-“2  = (4)(0.33206)(5  x Id)-‘” = 0.00188 (vii)

This result is used in Eq. (12.15),  which is solved for the drag force F:

F,aminar.~x,  = fW:)W)(G,  ,aminar)
= ‘,(999)(3.0)*(0.167)(1.0)(0.00188)  [(kgmm3)(m*  s-‘)(m)(m)]

= 1.411 kg m s-*  = 1.411 N (viii)

The last two terms in Eq. (12.25) are calculated from Eqs. (12.20) and (12.21)
using the lengths indicated in the subscripts. The middle term is

CD  = 0.455[log,,(N,.,,)]-2.58

= 0.455[log,,(5.994 x 1P)]-*.58  = 0.003 264 64  ’
F turbulsnt.~L  = 4WZ,Wb)(GJ

= #99)(3.0)Z(2.0)(1.0)(0.003  264) = 29.35 N (4

For the  length O-n, ,  the  drag force  is

c, = 0.455[log,&V,,~,)]-‘.58  = 0.455[log,,(5 x l@)]-‘.‘”  = 0.005 106 (xi)
F turbu,snt.~x,  = +W:Wb)(‘G)

= f(999)(3.0)*(0.167)(1.0)(0.005  106)  = 3.833 N (xii)

Substitution of the results from Eqs. (viii), (x), and (xii) into Eq. (12.25) yields
the  to ta l  d rag  on  the  p la te :

F actua,  = 1.411+ 29.35 - 3.833 = 26.93 N (xiii)

This  va lue  agrees  wel l  wi th  tha t  ob ta ined  by  the  shor t  p rocedure ,  Eq .  (12.24),
i.e., 26.8 N in Eq. (v).

Example 12.4.  Calculate the entry lengths in pipe flow for 99percent develop
ment  of  the  veloci ty  prof i le  a t  turbulent  Reynolds  numbers  of  2100,  4000,  lo’ ,
and 16.  Compare  these  to  the  laminar  length  that  might  be  obta ined under  very

TABLE U.3
Entry lengths for Example 12.4

L,ld,

Reynolds number Lamblu
NRC.= O.O567N,,

Twbdeat
0.693(N,,)”

2100 119 4.1
4rJw 221 5.5

lo4 561 6.9
16 5610 12.3
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unusual conditions where no instabilities exist to trigger the transition to
turbulence.

Anmw.  At Reynolds numbers of 2100 and 4000, the flow in most equipment is
really neither fully laminar nor fully turbulent. Therefore, the correct entry length
is open to question. At Reynolds numbers of 10“  and lo’, the flow is almost
always fully turbulent, and Eq: (12.26) applies.

The results from Eq. (12.19) for laminar entry and from Eq. (12.26) for
turbulent entry are compared in Table 12.3. The entry lengths for turbulent flow
are quite small.

12.1.3 Heat and Mass Transfer During
Boundary Layer Flow Past a Flat Plate

Of particular interest are problems of mass and heat transfer in boundary layer
flows past a flat plate [El, Sl].  The simplified momentum equations for
steady-state laminar flow have already been given as Eqs. (12.1) and (12.3),
which must now be coupled with an additional equation for either heat or mass
transfer, or both. The appropriate simplifications of the general equations, Eq.
(5.13) or Eq. (5.8)  were detailed in Example 5.8. The results were

These equations are similar to Eq. (12.1),  the momentum equation:

u au,  : u au,=  y 3%
x ax y ay ay2

(12.27)

(12.28)

(12.1)

Reviewing briefly, Figure 12.1 presented the solution to the coupled
differential equations, Eq. (12.1) and Eq. (12.3),  which were solved together
through the introduction of a similarity transformation. If there is also heat
transfer as well as momentum transfer, then Eqs. (12.1),  (12.3),  and (12.27)
must all be solved together. If there is heat, mass, and momentum transfer all
in the same problem, then Eqs. (12.1),  (12.3),  (12.27) and (12.28) form a
“coupled set” and must be solved together.

Heat transfer. The simplest heat transfer problem is the case of fluid at U, and
T, passing over a flat plate that is maintained at a constant and uniform
temperature T,. Even this problem is not solvable directly. The usual
assumption is to “decouple” the partial differential equations by assuming that
T, differs only slightly from T, so that the solution of Eqs. (12.1) and (12.3) in
Fig. 12.1 remains valid. In actual practice, the presence of a temperature
gradient alters the velocity profile.



512 APPLICATIONS OF TRANSPORT PHENOMENA

The boundary conditions for this problem in terms of the dimensionless
variable 8 are

Aty=O,foraltr
ux-=
u,

0 Q=  L-T-=()
Tw  - T,

(12.29)

Aty=y,aadatx=Oforatly

v,-clUC0
Q= TV-T

T,-T_=l
The Prandtl number is

NR = c,dk 03.4)

The thermal ditfusivity,  Eq. (2.10),  can be expressed in terms of the Prandtl
number:

k va=-=-
PC,  NP~

(12.31)

Equation (12.27) is converted into an ordinary differential equation by
another similarity transformation:

d*Q  NpJd@T+--=(J
drl 2 drl

(12.32)

where q is from Eq. (12.5),  f (a function of ~7) is from Eq. (12.8),  0 is from
Eq. (12.29),  and (Y  is replaced via Eq. (12.31). Equation (12.32) is an ordinary
differential equation that can be integrated directly [K3]. This problem was
solved by Pohlhausen [P4], and the results are shown in Fig. 12.6. For each

0 0.85 1.71 2.57 3.43 4.29 5.14 6.00

r) = Y[uJ(vx)]‘n

FIGURE 1 2 . 6
Dimensionless temperature distribution for flow over a flat plate.
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Prandtl number, the slope of the temperature gradient at the wall, W(O),
necessary for the integration of Eq. (12.32),  must be adjusted to give the
dimensionless temperature 0 far from the wall as unity as specified in Eq.
(12.30). This is analogous to the adjustment of the constant C1  [equal to f”(O)]
in Eq. (v) of Example 12.1 to give f’(q  = 00)  = 1.

For fluids whose Prandtl numbers are unity, Eq. (12.27) reduces to Eq.
(12.1). Then the ordinate in Fig. 12.1 can represent both the dimensionless
velocity distribution UJV,  and the dimensionless temperature distribution @
as well. Many gases and a few liquids, such as water at 35VF,  have a Prandtl
number of about unity. The condition of the momentum transfer equation
being identical with the heat transfer equation is another statement of the
Reynolds analogy, Eqs. (6.94) and (6.95).

The thermal boundary layer thickness & is defined as the thickness
(distance in y) at which 0 = 0.99. Pohlhausen [P4]  showed that for fluids
whose Prandtl number exceeds 0.6:

6,/x  = 5.O(N,,)-‘“(N&l” (12.33)

Equation (12.18) can be divided by Eq. (12.33) to find the ratio of the
momentum boundary layer thickness to the thermal boundary layer thickness:

a/&i  = (NP,)‘” (12.34) ’

which applies for NR > 0.6. Equation (12.34) actually comes from the values of
W(O)  that were necessary to satisfy the boundary condition of Eq. (12.30);
i.e., the ratio 6/6u  is approximately equal to the quantity W(O)/C,.  For liquid
metals, the exponent j becomes 4 [C5].

The form of Eq. (12.33) suggests that for Nfi>  0.6 the dimensionless
temperature 8 can be plotted against the product q(NR)ln,  which is

tl(N~,)“~  =  f (NR,,)‘~(&)‘”

This plot is given in Fig. 12.7; the slope is 0.33206 at low abscissa values, i.e.,
the value of Cl. Both Figs. 12.6 and 12.7 may be generated by numerical
integration of the appropriate equations, as illustrated in Example 12.1. For
example, the ACSL program for Fig. 12.6 is listed in Fig. 12.8. The variables

4.0 FIGURE 12.7
Yf)(Npp3  = ; (NRe,x)“2(Np,)“-~ Dimensionless temperature versus [r)(N,)‘“)

for laminar flow past a Rat plate (NR >  0.6).
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PRGGRAN  FOHLRAUSSN
INITIAL
ARRAY NPR(C).TDIC1(6)
INTEGSR I
CONSTANT FIG-O.O,FDIC-O.O,FDDIC-0.33206,ETAT-6.
CONSTANT TIC-l.O,I-l,NPR-0.6,1.,5.,10.,100.,1000.
CONSTANT TDICl-0.28007,0.33206,0.57626,0.7282.1.5735,3.39
CONSTANT CINT- 0.01
Ll..CONTINUE
TDIC--TDICl(I)
E N D
DYNAMIC
DERIVATIVE
ETA-T
FDDD--O.S*F”FDD
FDD-INTEG(FDDD,FDDIC)
FD-INTEG(FDD,FDIC)
F-INTEG(FD,FIC)
U-FD
V-0.5*(ETA*FD-F)
TDD--O.S*NPR(I)*F*TD
TD-INTSG(TDD,TDIC)
TN-INTEG(TD,TIC)
THETA-l.0 - TN
E N D
TERRT(ETA.GT.ETAT)
END
TERMINAL
I-I+1
IF(I.GT.6)GO  TO L2
GO TO Ll
L2..CONTINUE
END
END

FIGURE 12.8
Program to generate Pohlhausen’s solution.

TDICl and TN are O’(O) and (l-O), respectively. The values listed for
TDICl on line 7 in Fig. 12.8 are within 2 percent of those calculated from Eq.
(12.34),  expressed in terms of O’(O)lC,.

Heat transfer coefficient. Let us assume that there is a stagnant and very thin
layer of fluid adjacent to the wall of the plate; heat is conducted through this
layer from the plate at uniform temperature T, into the boundary layer:

dq = -(k)(dA)(dTldy),=c, (12.36)

The heat transferred by convection to this thin film is

dq = h,(  T, - T,) &I (12.37)

where h,  is the local heat transfer coefficient at position X.  The heat transfers
represented by Eqs. (12.36) and (12.37) are equal. When these equations are
combined, the result can be solved for h,:

h, = k(db/dy)Y,,,  = k@‘(O) (12.38)

Equation (12.38) is an equivalent definition of the local heat transfer
coefficient over a flat plate [cf. Eq. (11.30)].
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The quantity (dOldy),=O  [i.e., O’(O)] can be found from the slope in Fig.
12.7 at a zero value of the abscissa. Using Eq. (12.38),  it can be shown that

h = 0.33206k
x

x
(NRe+)“Z(NPr)“3

where Eq. (12.39) is restricted to NPr > 0.6. The group h&/k  contains the same
variables as the Nusselt number, Eq. (8.21); thus, Eq. (12.39) may be
rewritten as

N -y = 0.33206(Nr&‘“(Np,)‘”Nu,x  -

Equations (12.39) and (12.40) correlate the local heat transfer coefficient
h,. This quantity is often less useful than a mean coefficient h,, which may be
found from

L
h,=$ h,dx

I
(12.41)

0

where 6 is the width of the flat plate in the z direction and A is the area for
heat transfer in the following expression for q, the total heat transferred:

q = h,A(Tw - T,) = (T,  - T,)b

The mean Nusselt number is

(12.42)

N h,L
Nu,L = -k

(12.43)

Then Eq. (12.40) becomes

N - +$ = 0.664(NR,,~)1n(Np,)“3 = (~NN”,~)(NR~,L/NR~~)‘~Nu,L - (12.44)

Equation (12.44) applies in the laminar region (NRe,L  < 5 x 105) for fluids
whose Prandtl number is greater than 0.6. The primary exclusion of the
Prandtl number constraint is heat transfer in liquid metals.

In laminar heat transfer, as x approaches zero, h must approach infinity,
as shown by Eq. (12.39). Similarly, as x becomes very large, the temperature
in the boundary layer approaches the plate wall temperature. From Eq.
(12.39),  it can be shown that h, is proportional to x-l’*;  thus for large x, Eq.
(12.39) predicts that h, approaches zero.

For turbulent flow, the recommended equations for correlation of the
local heat transfer coefficient h, are [H3]

N - F = o.0296(NR,,)0.8(Np,)1’3Nu,x  - 5 x 10’ I NRer 5  10’

N NUJ = F = 0.185(N,,,)(Np,)“3[log10(NReJ)]-2~’”4

(12.45)

10’ I NReJ 5  lo9



576 APPLICATIONS  OF TRANSPORT PHENOMENA

The average Nusselt number over both the laminar and turbulent boundary
layer (x goes from 0 to L) is [H3]

N - !$ = [0.037(NRe,L)0.8  - SSO](N,,)“’Nu,L - 5 x 10’  5  NRer  5  10’

(12.46)

This latter equation in terms of the Colburn j-factor becomes

jH = jM  = f /2  = 0.037(N,,,L)-o.2 (12.47)

where the analogy has been indicated and the j-factors are as discussed in
conjunction with Eqs. (11.79) to (11.82). Note the similarity of Eq. (12.47) to
the corresponding pipe flow equation, Eq. (11.80). Also, Eq. (12.46) is quite
similar to the heat transfer correlations for pipe flow, such as the Dittus-
Boelter and the Sieder-Tate, Eqs. (11.66),  and (11.67),  where the Reynolds
number exponent is identical and the Prandtl number exponent is similar or
identical.

Methods of correlating turbulent boundary layer heat transfer are given
by Churchill [C6].

Example 12.5 .  Water  i s  f lowing over  a  f la t  p la te  tha t  i s  mainta ined a t  a  constant
290 K. The free stream velocity is  3 m s-‘. The free stream temperature is 285 K.
Find (a) the length of the laminar boundary layer, (b) the thickness of the
momentum boundary layer and the thermal boundary layer at the transition
point ,  (c)  the  local  heat  t ransfer  coeff ic ient  a t  the  t rans i t ion  point ,  and (d)  the
mean heat transfer coefficient between the leading edge of the plate and the
transition point.

Answer. For this problem, all properties to be evaluated at 285 K will be assumed
constant. From the Appendix, Table A.l, the properties of water in SI units are

p = l/uf  = l/(l  x 10m3)  = 1000 kg me3
p=  1225 x 10-6Nsm-Z= 1.225 CP  = 1.225 x lOA  kg m-’ SC’

k = 0.590 W m-’ K-i
(9

Np,=  8.70
(a) Length. The transition will be assumed to occur at NRc.=  equal to 5 x ld  (for a
typical flat plate), although this number can be lowered if a disturbance is
in t roduced in to  the  f low.  Thus

x, = (N,,,)[p/(pU,)]  = [(5 x 1@)(1.225  x lo-‘)]/[(1000)(3.0)]  = 0.2042 m (ii)

‘~bic~ne~  The thickness of  the momentum boundary layer is  computed from
g. (12.18):’

6 = (S.O)(x)(N,,)-iR  = (5.0)(0.2042)(5  x l@)-in  = 1.444 x 10m3  m (iii)

The thickness  of  the thermal  boundary layer  is  computed from Eq.  (12.33)  or  Eq.
(12.34):

SH = (6)(N,)-‘”  = (1.444 x 10-3)(8.70)-‘” = 7.019 x lOA  m (iv)
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(c) t.acal  beet  transfer coetkient.  The local  heat transfer coefficient at x equal to
0.7 ft is computed from Eq. (12.39):

h,  = (~)(N,J”(Npr)le  = (‘“*33;;~*590’)(5  x 16)‘R(8.70)“3

= 13% W mm2  K-’ = (13%)(0.17611)  = 246 Btu h-’ ft-*  “F-l 69
where the conversion between SI and English units is from Table C.10.
(d) Mean heat traasfer  coe5cient.  The mean heat transfer coefficient between the
leading edge (x = 0) and the transition (x = L = 0.2042 m) is found from Eq.
(12.44). Since x equals L for this problem, the ratio N,,JN,,,  is unity.
Therefore,  Eq. (12.44) reduces to

NN~,L  = 2N~u.x (4

Since the ratio k/L  equals k/x,  the expression reduces to

h, = Ur,  = (2)(1396)  = 2791 W m-’ K-’ = 492 Btu h-! ft-“F-l (vii)

Mass transfer. If the flat plate were porous, or perhaps soluble in the fluid
passing over it, so that a constant concentration CA,, could be maintained at
the surface, then there would be a mass boundary layer as a result of mass
transfer from (or to) the plate. The basic equations are the coupled set formed .
by Eqs. (12.1),  (12.3),  and (12.28). The assumptions to be invoked were
discussed in Example 5.8.

For the case of mass transfer from a flat plate in isothermal, constant
density flow, the concentration is changed to dimensionless form so that the
boundary conditions become

Aty=O,foraUx

u,  0-=
u,

(12.48)

Aty=y,andatx=OforaUy

eM = c A*w - C A

(I, CA.=J - CA,, = ’
(12.49)

where C,+,w is the concentration of A at the plate surface and is constant. The
definition of the dimensionless mass concentration &., is similar to that of the
dimensionless temperature 8 [cf. Eq. (12.29)].

The method of solution of the coupled set of differential equations, Eq.
(12.1),  Eq. (12.3),  and Eq. (12.28),  for the boundary conditions of Eqs.
(12.48) and (12.49) is analogous to the solution of the previous heat transfer
problem:

d2G3,

F+
Kcfd%  o--=

2 drl
(12.50)

where f is the dimensionless function in Eq. (12.8),  er., is defined in Eqs.
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(12.48) and (12.49),  and Ns,  is the Schmidt number, Eq. (8.6):

The Schmidt number is the ratio of the momentum diffusivity to the mass
diffusivity, and is the dimensionless group in mass transfer that is analogous to
Npr  in heat transfer. If the Schmidt number is unity, then the dimensionless
concentration profile is identical to the dimensionless velocity profile of Fig.
12.1.

For the general case, the dimensionless mass transfer solution is
analogous to the dimensionless heat transfer solution of Fig. 12.6. The
ordinate (1 - 0) in Fig. 12.6 is replaced by the dimensionless concentration
(1 - O,),  the abscissa is unchanged, and each curve corresponds to a
particular value of Nsf  instead of Npr. Figure 12.7 can be similarly altered for
the mass transfer case. The ratio of the momentum boundary layer thickness to
the mass boundary layer thickness is

_ S/SM = (N,)“3 (12.51)

for fluids whose Schmidt number is greater than 0.6, as expected from
. comparing with Eq. (12.34).

12.2  FLOW OVER CYLINDERS AND
SPHERES

Flow over bluff bodies such as spheres and cylinders is a natural extension of
the boundary layer flow concepts; indeed, the flow over a cylinder was
depicted in Fig. 12.4 to illustrate boundary layer separation. In this section, the
concepts of ideal and potential flow will be outlined to show one possible
approximation for the flow over a cylinder. A more realistic approximation will
then be outlined for the laminar flow over a sphere (called Stokes flow).
Turbulent conditions will be treated next, and finally the necessary extensions
for heat and mass transfer correlations will be discussed.

12.2.1  Ideal Flow (Nonviscous Fluids)

In many problems, viscous forces are negligible when compared with other
forces that might be present and acting on the fluid. Such cases are termed
“ideal flow”; the viscosity is assumed to be zero. This assumption reduces the
order of the differential equation, and as a result all the boundary conditions
cannot be satisfied. The no-slip condition at the wall cannot be maintained;
thus, the concept of ideal flow might be valid where the field of interest is the
main fluid stream and not the interactions of the stream with the boundaries.

When the assumption of ideal flow (Y = 0) is made, the Navier-Stokes
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equation, Eq. (5.15),  reduces to Euler’s equation:

g+(u.v)=  -++g (12.52)

Equation (12.52) can be rewritten as three equations, one for each component
of velocity; these plus the equation of continuity constitute a set of four
equations, which can be solved in theory for the four unknowns. Even for
steady-state, Eq. (12.52) is nonlinear and, in general, much too complicated to
solve.

Potential and stream functions. Useful solutions to some important problems
in fluid mechanics can be found through use of potential and stream functions.
The stream function q  was given previously as

where again 1~ is not to be confused with the generalized concentration of
property from Chapter 2. Note that Eq. (12.6) assumes no variation of velocity
in the z direction (i.e., a two-dimensional flow field).

The velocity potential 4 is defined so that the derivative of Cp  in any
direction gives the velocity in that direction:

Equation (12.53) can be expressed in vector form:

U=Vlp (12.54)

where V is the de1  operator, Eq. (2.16).
The velocity potential as defined in the above equations is a mathematical

quantity that is picked more or less by trial and error so as both to satisfy Eq.
(12.54) and to represent some practical flow situations. These will be
illustrated later. For an incompressible fluid, the equation of continuity
reduces to Eq. (3.74),  which after substituting Eq. (12.54) gives the well-
known Laplace equation:

(v.u)=(v.vc#Q=v*~=o (12.55)

Thus, for a flow of an incompressible fluid for which a velocity potential exists,
Eq. (12.55) shows that # follows Laplace’s equation. Furthermore, the term
V* U can be expanded to show with the aid of Eq. (12.55):

v*u=v*(vc#J)=v(v*f$)=o (12.56)

Therefore, the term v(V’u)  in the Navier-Stokes equation [Eq. (5.15)]  is
zero. In ideal flow, the viscosity was assumed zero; in potential flow, the term
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V2 U is zero by the definition of the velocity potential for an incompressible
fluid. Hence, it follows that solutions of Laplace’s equation with appropriate
potential functions and boundary conditions are legitimate solutions to the
Euler equation, Eq. (12.52),  under the condition just outlined.

Equation (12.55) can be expressed in any coordinate system by use of the
de1  operator as given in Table 5.1. For two dimensions and rectangular
coordinates, Eq. (12.55) reduces to

?2+?9=()
aY2

(12.57)

which is the two-dimensional form of the Laplace equation. Equation (12.57)
is a linear partial differential equation of the second order. Furthermore, Eq.
(12.55) with r$  replaced by the appropriate variable applies for many different
problems, such as steady-state conduction (heat transfer), electrical conduc-
tion, etc. Solutions of the Laplace equation are available for many boundary
conditions [Cl].

Equation (12.54) can be differentiated and the results used to show the
assumption of a velocity potential @ requires that the flow be irrotational. In
an it-rotational flow, the angular velocity of the fluid elements about their
center axis is zero. In other words, in potential flow, fluid elements may
deform but not rotate. Note that the property of irrotation is a mathematical
consequence of the introduction of 9  [B2, Ll], not an assumption.

The flow potential 9, which obeys Laplace’s equation, Eq. (12.55) forms
an orthogonal (right-angle) set of lines with the stream function ~9,  Eq. (12.6).
The lines of constant potential represent the lines of constant force during the
flow, while the lines of constant stream function q  represents the lines of the
flow direction that result from the flow potential 9. The lines formed by
constant values of 9  and ly form a “flow net”. Such a system of lines can be
very useful when, in addition, the functions obey the Cauchy-Riemann
conditions. which are

a#  w w sly-=- -= --
ax ay ay ax (12.58)

The functions $J  and I/J are said to be analytic when Eq. (12.58) applies and if
$I and I/J are real, continuous, single-valued, and if all four derivatives in Eq.
(12.58) are continuous. It can be shown that when 9  and I/J are analytic
functions, the stream function t#  must also obey Laplace’s equation:

The Cauchy-Riemann equations, Eq. (12.58),  are used to relate the stream
function #  to CJ,  and UY.  The result of combining Eqs. (12.53) and (12.58) is

u 2Q!.!
x ax ay

&!s!=AY
y ay ax (12.60)
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Entrance ___)

FIGURE 12.9
Ideal flow between nonparallel plates.

When equations are available to describe the potential 4, this set of equations
can be integrated to find equations for the stream function ly,  if the flow is
incompressible and h-rotational.

StrearnIInes.  Figure 12.9 shows the ideal flow between infinite nonparallel
plates, which form a diverging duct. In this figure, the, intervals between
adjacent 9’s  and I&‘S  are constant. The area abed  is a typical mesh. Notice how
the meshes become larger as the flow progresses through the diverging section.
The lines of constant 11’ are called streamlines. No element of fluid ever crosses
a streamline. The separation of the streamlines is a measure of the relative
velocity [recall that aly/ay  = U,, cf. Eq. (12.60)].  Notice how the streamlines
are more closely spaced at the entrance than at the exit in Fig. 12.9. The
streamlines display the velocity pattern, and by use of the Bernoulli equation,
Eq. (7.63),  the pressure pattern as well.

There are an infinite number of solutions to the Laplace equation, Eq.
(12.57),  each corresponding to a particular set of boundary conditions (four
needed). Although most problems (turbulent flow, for example) are not
solvable as ideal flow, many important examples of nonviscous, incompres-
sible, irrotational flow abound, including flow through diverging (Fig. 12.9)
and converging sections of large two-dimensional ducts, flow through sharp-
edged orifices, flow over sharp-crested weirs, flow past Pitot tubes, and the
discharge of fluids to or from large reservoirs through small inlets.

Example 12.6.  A simple velocity potential known to be analytic is

@=LX (9

Determine the flow so described and the equation for the stream function.
Prepare a graph of U, and U, as functions of x and y.

Answer. Since 4 is an analytic function, the potential in Eq. (i) must obey
Laplace’s equation.  Using Eq. (12.57),  i t  i s  seen that  V’ $ is  zero,  and the f low
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in the x direction for

therefore  is  incompressible  by Eq.  (12.55) .  As previously shown,  for  the same
boundary  condi t ions  th i s  incompress ib le ,  po ten t ia l  f low wi l l  be  equ iva len t  to  an
ideal (nonviscous), irrotational flow.

Equa t ion  (12.53),  which  def ines  the  ve loc i ty  po ten t ia l ,  i s  used  to  eva lua te
U, and U,:

The der ivat ives  of  Eq.  ( i )  y ie ld

” ,?k”
x ax - ” 2Lo

y ay u, = 0

(12.53)

This flow, shown in Fig. 12.10, is simply a flow in the x direction with the x
velocity U, equal to U, for all values of y and z,  since I4 and U, are zero. The
streamlines can be obtained from Eq.  (12.60):

” =z!QY
x ax ay

“=?!?=A!
y ay ax

(12.60)

Each equat ion can be  in tegrated in  order  to  solve  for  the  s t ream funct ion ~JJ:
c

TJJ  =
J

U, dy = “my + C(x) from u, = U,  = a*tay (iii)

v = C(Y) from u,=o=aqfax (iv)

There  are  rea l ly  no  boundary  condi t ions  for  f inding  the  two cons tants  of
in tegra t ion,  C(x)  and C(y) .  However ,  the  only  way the  second equat ion ( iv)  can
be true is  if  C(x) = 0;  therefore

* = u-y 69

The veracity of Eq. (v) can be checked via Eq. (12.60). Indeed, ayr/ay  does
equal  U, and -@/ax equa ls  U,, which  i s  ze ro .

Example 12.7 .  Repeat  Example  12.6  for  the  analyt ic  veloci ty  potent ia l :

l#J  = “,(xZ - y’) 6)
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Answer. Since #J is an analytic function, the potential in Eq. (i) must obey
Laplace’s  equat ion ,  Eq.  (12 .57) :

v=l#l=o=2v,-2v, w
The f low therefore  is  incompressible  by Eq.  (12.55) .  As previously  shown,  for  the
same boundary conditions this incompressible, potential flow will be equivalent to
an ideal  (nonviscous) ,  i r ro ta t ional  f low.  From Eq.  (12.53)  and the  der ivat ive  of
Eq. (i):

v 2&J&
.x ax ’

v, =$ -2Ly v, = 0

The  s t reamlines  of  f low can be obtained by integrat ion with  the  Cauchy-Riemann
condi t ions ,  Eq.  (12 .60) :

l/J  = 2v3y  + C(x) from 2vd = aviay
qJ  = 2cLxy  + C(y) from -2vm1,y=  -ayjax (iv)

For  these  to  be  t rue:

q = 2vsy (9

The s t reamlines  and potent ia ls  are  shown in  Fig .  12.11 for  a  negat ive  V, a n d  a
pos i t ive  x .  Both  pos i t ive  and  nega t ive  va lues  of  I+ are shqwn. The f low can be
pic tured  as  occurr ing  around the  ins ide  of  a  corner  (upper  quar te r )  or  aga ins t  a
f la t  plate  (ent i re  picture) .  The actual  veloci t ies  are  obtained from Eq.  ( i i i ) .

Example 12.8.  Repeat  Example  12.6  for  the  fol lowing analyt ic  veloci ty  potent ia l
in polar (cylindrical) coordinates.

$J  = UJ.2  - y2)

9 = u,(r  + $cos e)

FIGURE l2.11
Poten t ia l  f low around  the
inside of a corner or against
a plate.
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A&wer.  The Laplace equation in cylindrical coordinates is given in Table 5.1:

(ii)

I f  the  potent ia l  in  Eq.  ( i )  sa t i s f ies  Eq.  ( i i ) ,  the  Bow  is  incompress ible .  Combining
Eqs. (i) and (ii):

U,(cos 8)(2r-“) + (UJr)(cos  e)(i  - r-‘)  + (U,/r’)[r  + (l/r)](-cos e)  = 0 (iii)

Equation (iii) can be simplified:

U,(cos e)(2r-3  + r-’  - re3 - r-l  - re3)  = U,(COS  e)(o)  = 0 (iv)

Thus ,  Laplace’s  equat ion  i s  sa t i s f ied .  For  polar  coordina tes ,  the  ve loc i t ies  a re
given by

69

To obta in  the  s t reamlines :

q = U,
( >
r -i sin e + C(r) from U cl*I r a e

(vii)

11,  = U,  r -b
( >

sin e + c(e) from U = -*B dr
(viii)

Clear ly

The streamlines and potentials are shown in Fig. 12.12. They may be visualized as
the flow outside a cylindrical shape (r > l),  or the flow inside a semicircle (r <  1).

Example 12.9 .  F ind severa l  representa t ive  s t reamlines  for  the  potent ia l  g iven in
Example 12.8:

(9

FIGURE  1222
Potential flow outside and
inside a cylindrical shape.
(From Prandtl  and Tieq’ens,
Fwuiameruals  of Hydra-  and
Aerome&znics,  Dover Pub-
llcaiions, Inc., New York.
Reprinted by permission of
publisher.)
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Answer. The stream function IJJ  i s  Eq.  ( ix)  in  Example 12.8:

Equations (i) and (ii) are not in convenient form for plotting. The streamline
ly  = 0 is located by realizing that Eq. (ii) can be zero two ways:

r-(l/r)=0 ( i i i )

sin 8 = 0 (iv)
Equation (iii) is the equation for a circle of unit radius and constitutes the
cylinder in Fig. 12.12. Equation (iv) is the equation for the x axis.

The remaining s t reamlines fol low easi ly  i f  Eq.  ( i i )  is  parameter ized through
a constant  c ,  where

*=cu, 69

Equat ing  Eqs .  ( i i )  and  (v) ,  the  resu l t  i s

1 .
c=  r - -  sure( >r

This  equat ion  rear ranges  to  the  fo l lowing quadra t ic :

S ince  r  i s  the  rad ius  in  po la r  coord ina tes ,  on ly  the  pos i t ive  roo t  o f  Eq .  (v i i )  i s
meaningful .  From the quadrat ic  formula,  the posi t ive root  is

r=
c + (c’ + 4 sin* O)ln

2 sin 8
(viii)

The graph of  Fig .  12.12 can be plot ted f rom Eq.  (vi i i )  by select ing a  value
for  c  (e .g . ,  1 .0 ,  1 .9 ,  2 .0 ,  e tc . )  and then calculat ing the corresponding values  of  r
f o r

o”ses3600 (ix)
Some representative values for c of 1 are given in Table 12.4. The values for
$J = U, (c = 1) and 9 = 0 are plotted in Fig. 12.13. This calculation is repeated
until Fig. 12.12 is complete.

TABLE 12.4
Values of r and 8 for the stream function 9  = U,

0,  dege= (1 + 4 sin*  ep r

Oor180 1.ooo
15 or 165 1 . 1 2 8
30 or 150 1 . 4 1 4
50 or 130 1 . 8 2
7 0  o r  1 1 0 2 . 1 3

9 0 2 . 2 4

0
-0.247 or 4 . 1 1
-0.414 o r 2 . 4 1 5
-0.535 or 1 . 8 4
-0 .602 or 1 . 6 6
-0.620 or 1 . 6 2
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Fluid moving at (I,

I = u,

LT&

yJ=o

FIGURE l2.W
The streamlines of flow about a cylindrical shape.

Path and streamlines. There are three types of lines to be considered. First,
there are the streamlines of flow just mentioned, which map out the velocity
direction at every point in the field. Second, there are path lines, which
describe the paths of separate fluid particles (a small fluid element) with time.
Finally, there are streak lines, which at a given instant are the loci of all fluid
elements that had previously passed through some specific point in the flow
field. These lines are of experimental interest in flow visualization studies; for
example, one obtains a streak line when smoke or dye is injected into a
moving stream.

For steady-state motion, all three lines are identical. The streamlines are
fixed in the flow field with time. At each point, the fluid particle moves in the
direction of the velocity, but since this is fixed, each fluid particle that
originates on a given streamline must remain on that streamline. Thus, for
steady-state motion the fluid path is the same as the streamline. The streak line
will coincide with the streamline and path line, since there is only one
streamline at any specific point in the flow field, and each fluid element that
has passed this point must have been on this streamline and must remain there.
For steady-state, streak lines can give useful  information about the streamlines
of flow and paths of fluid elements.

For unsteady-state motions, the three lines do not coincide and are
related in a complex manner. The path and streak lines can be obtained from a
knowledge of the instantaneous streamlines.6

Since in electrical conduction the voltage distribution obeys the Laplace
equation, an electrical analogy can be used to solve potential flow problems
experimentally. The method involves the use of a conducting plate, a solution,
or a conducting paper, in the manner suggested by Fig. 12.14. The voltages, or

6The movie Flow Visualization and film loops FM-47 and 48 illustrate these lines for both
steady-state and unsteady-state.
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+
Conduct ing

Nonconducting

FIGURE 12.14
Electr ical  analogy to ideal  f low.

potentials (dashed lines), are read using a probe, voltmeter, or a conducting
paint. The streamlines (solid lines) can be obtained directly by exchanging the
conducting elements for the nonconducting, including the center disk in the
figure.

12.2.2  Stokes Plow Past a Sphere

The problem of a sphere moving very slowly through a stationary fluid was first
solved by Stokes [S6]  in 1851. Actually, there is a whole class of problems
dealing with very slow motion (or creeping motion) of fluids past bodies of
various shapes [Ll].  Stokes’ law is commonly encountered and is by far the
most important of these.

Most practical applications of Stokes flow involve determination of the
settling velocity, i.e., the velocity with which small solid or liquid particles fall
through a fluid such as air or water. In flows where Stokes’ law applies, viscous
effects are paramount; the ideal flow solutions of the last section made the
opposite assumption and are clearly inapplicable. Engineering applications of
Stokes flow occur in problems of settling, viscosity determination, air
pollution, aerosols, fluidization, and other two-phase flows with very low
relative motion between fluid and particle.

Solution of the Stokes problem begins with the Navier-Stokes equation,
Eq. (5.15),  for steady flow. Since motion is very slow, the inertial term
(U - V)U  is negligible, and Eq. (5.15) for an incompressible fluid reduces to

vp = p(V  U) (12.61)

where the boundary conditions are

u, = u, = u, = 0 (12.62)

At r=r,

u,  = (/, u, = u,  = 0 (12.63)
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Note that these boundary conditions assume that the sphere is stationary and
the fluid moves past it. In engineering practice, the problem usually involves a
sphere moving relative to a stationary fluid or relative to a fluid of constant and
uniform velocity. The solutions to all three problems are identical.

Equation (12.61) is of the same order as Eq. (5.15),  and all boundary
conditions in Eqs. (12.62) and (12.63) can be satisfied. Contrast this with the
ideal or potential flow solutions of the previous section where the important
boundary condition of no-slip-at-the-wall was not satisfied because the analysis
reduced the order of the differential equation. By further differentiation of Eq.
(12.61),  Stokes showed that Laplace’s equation for pressure holds:

v*p=o (12.64)

The solution by Stokes to the sphere problem is approximate because it
neglects the inertial term and assumes incompressibility. The mathematics
involved is lengthy, and will not be reproduced here. Naturally, the velocities
U,, U,, and .iJ, are all complex functions of position relative to the sphere.
Equations for these are reproduced elsewhere [B2]. Figure 12.15 compares
streamlines calculated from Stokes’ equations with streamlines calculated by
the potential flow assumption. Stokes’ streamlines predict curvature around
the sphere at distances much greater from the solid surface than does the
potential flow prediction.

Stokes’ law relates the force (or drag) on the sphere, exerted by the fluid,
to viscosity, particle radius rp,  and free stream velocity U,:

Fp  = 6npr, U, (12.65)

In this equation, the drag force Fp  due to the fluid passing around. the
stationary sphere acts in the direction opposite to the direction of the velocity
U,. Equation (12.65) is commonly expressed by means of Eq. (12.15) in terms
of the drag coefficient CD:

Fp  = &&)(nr~)(C,)  = 6nprpU, (12.66)

where the area used is the projected area of the sphere. This equation can be

-----.!I
----- Potential

7.

FIGURE l2.15
Streamlines for flow past a sphere.
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rearranged as follows:

24
cD  = (2rpi:P),P  = NR~,~

(12.67)

where the particle Reynolds number NRe,p  is based on the diameter of the
sphere:

N d&mp
R%P  -

‘P
(12.68)

The free-settling velocity (also called “terminal velocity”) of a small
particle (at steady-state) can be obtained by a force balance using Newton’s
second law, Eq. (7.29). There are three forces acting on the sphere: the Stokes
drag Fp, the buoyancy force FB,  and the weight Fw:

xF=Fp-l-FB+Fw=ma=o (12.69)

where at steady-state the acceleration is zero. In the following derivation, it is
customary to assume that the velocity in the direction of gravity is positive.
Following the analysis in Section 7.3.2, the buoyancy force is obtained by
applying Eq. (7.84) to a sphere submerged in a fluid of density p:

-FB  = P+% = (P)(!)(+%d (12.70)

where the buoyancy force acts in the negative direction (upward). The gravity
force (due to the weight of the sphere) Fw is

FW = mpg  = (p,)(~W~k) (12.71)

where the weight acts in the positive direction. If the sphere is falling with
positive velocity, the drag force acts oppositely. After the appropriate
substitutions, Eq. (12.69) becomes

-6v,U,  - (p)(f%r~)(g)  + (p,)(!)(nr&)  = 0 (12.72)

where U, is the terminal velocity of the sphere relative to a medium of uniform
velocity and replaces U, (defined earlier as the velocity of the fluid relative to a
stationary particle). Solving for the terminal velocity gives

u =  @grW,  -  p)

t

9P
(12.73)

This equation is restricted to the region where Stokes’ law applies. Note also
that the sphere falls when pp  exceeds p.

The movement of particles in fluid systems is very important, and much
work has been done to determine, both by theory and experiment, the range
of application of Stokes’ law. For example, the law is found to be accurate up
to a Reynolds number of 0.5 (which, for drops of water in air, would be
diameters less than 0.1 mm). At a Reynolds number of 1, predictions from the
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law are’about 7 percent low. At Reynolds numbers above 8, vortex rings form
that are stable up to a Reynolds number of 150; above this value, the rings
become unstable and, from time to time, move off downstream. The flow at
these higher Reynolds numbers will be discussed further in the next section.

Very small particles are subject to Brownian  motion, whereby collisions
between the particles and fluid molecules result in the particles following
random paths. This effect is stronger than gravity for very small particles of
0.1 pm  (microns) or less in diameter. When Brownian  motion is important,
there is no settling by gravity. In fact, Brownian  motion is often significant up
to a particle size of 3 pm,  depending on the relative density difference.

Example 12.10. Find the  terminal  veloci ty  and drag force  when a  spher ical  water
drop,  5  pm  in diameter ,  fa l ls  through air  a t  20°C.  Let g = 9.80 m s-‘.

Answer. From the Appendix, Table A.l, the density of the water drop at
293.15 K is

1 1
pp  = v,  = 1.001 x lo-’

= 999.0 kg me3 (9

From Table A.2,  the properties of air  are

p = 0.01817 CP  = 1.817 x lo-’  kg m-’ s-i

p = 0.001205 g crnm3  = 1.205 kg mm3
(ii)

The particle diameter is 5 pm  or 5 x 1O-6 m (from Table C.ll).
The  te rmina l  se t t l ing  ve loc i ty  i s  g iven  by  Eq . (12.73) in the Stokes’ law

region:

(12.73)

The procedure is to calculate the terminal settling velocity using Eq. (12.73),
check to  see  i f  the  Reynolds  number  is  less  than 0 .5 ,  and then f ind the  force  on
the sphere. From Eq. (12.73),  with rp  being half the diameter or 2.5 x 10m6m,  CJt
i s

U,  = (2)(9.80)(2.5  x 10-6)2(999.0  - 1.205)/[(9)(1.817  x lo-‘)]

x [(m s-*)(m’)(kg  mm3)(kg-’  m s)]

= 7.474 X 1O-4 m s-’

From Eq. (12.68),  the  par t ic le  Reynolds  number  i s

(iii)

N Re,p  = d,U,p/j~  = (5 x 10-6)(7.474  Y 10-4)(1.205)/(1.817  x lo-‘)  = 2.478 x 1O-4

(9

In the  above  equat ion ,  U,  can be used for U,, s ince  i t  does  not  mat ter  whether
the particle is stationary and the fluid moves with velocity U,  or the fluid is
stationary and the particle moves with velocity U,. Clearly, the flow is in the
Stokes’  law region a t  th is  low Reynolds  number;  therefore ,  the  drag force  f rom
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Eq. (12.65) is

F,  = 6n&J, = (6n)(1.817 x lo-‘)(2.5  x 10+)(7.474 x lo-3

x [(kg m-r s-‘)(m)(m  s-r)]
= 6.40 x lo-l3 kg m s-*  = 6.40 x lo-r3 N (-4

Example 12.11. Calculate  the t ime for  the drop of  water  in Example 12.10 to
accelerate from an ini t ial  veloci ty of  zero to  0.9!XJ,.

An.ww.  The resu l t s  of  Example  12 .10  show tha t  S tokes’  law appl ies .  Newton’s
second law of  motion,  Eq.  (7.29), i s  appl ied  to  the  acce le ra t ing  sphere .  As  in  the
derivations of Eqs. (12.70) through (12.73),  let the y coordinate be positive in the
direction of gravity. Newton’s second law applies with the same three forces as in
Eq.  (12.69),  except  tha t  in  th is  problem the  accelera t ion  i s  not  zero:

Using Eqs. (12.66),  (12.70),  and (12.71),  Eq. (i) becomes

-6vr,LI,  - (P)G)(J$)W  f (&J(%nr&+  = m 2 = (P,)($(~$) 5 (ii)

where U, is  the terminal  veloci ty of  the sphere relat ive to a  medium of  uniform
velocity and replaces U,  and U,.  Equation (ii) is an ordinary differential equation
whose  var iab les  a re  eas i ly  separa ted  and  in tegra ted  according  to  the  boundary
conditions:

u, (t = 0) = 0 u,  (t = t) = O.BU, (iii)

After integration of the equation, the form of which is (a + bx))’  a!~,  the
answer  i s

lag ln l-
9P [(

(9P)(0.9wt)  ’
cma%  - P) >I (9

Next, I.Jt  i s  e l iminated  v ia  Eq. (12 .73)  to  y ie ld  the  f ina l  equa t ion

t = - % [ln(I - 0.99)]

The numbers from Example 12.10 are subst i tuted into Eq.  (v)

t = -
(2W.5  x 10-6)‘(~9.0))[,n(o.ol)]  = 3.517  x 10-4 s

(9)(1.817  x 1O-5) (4

In other words, the drop accelerates almost instantaneously to its terminal
velocity.

12.2.3  Drag Coefficient Correlations

This section covers form drag and skin friction for a variety of bodies of
revolution (spheres, cylinders, disks, etc.) over a wide range of flows. Also to
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be discussed are some miscellaneous topics such as hindered settling, separa-
tion by centrifugal force, stagnation pressure, and streamlining.

The drag coefficient, tist  introduced in Eq. (12.15),  finds its most useful
application in flows past bodies of revolution. For these bodies, the area A is
the area of the object that is projected on a plane normal to the flow direction:

(12.74)

Equation (12.74) is a generalization of Eq. (12.66),  in which the projected area
of a sphere zri is replaced by A.

There are no exact solutions for flow past a single sphere at high
Reynolds numbers. Figure 12.16 [LJ] presents the experimental data for a
sphere in the form of a plot of CD versus the particle Reynolds number:

(12.68)

where U, is the free stream velocity if the particle is at rest. More accurately,
U, represents the difference in velocity between the fluid and the particle.
Clearly, if the particle is settling at its terminal velocity in a fluid at rest, U,
would be replaced by U,.

Figure 12.16 shows that Eq. (12.67) from Stokes’ law applies accurately
up to a Reynolds number of 0.5. The curves for spheres is available in
equation form [M3]  by using three correlations. Stokes’ law is usually applied
in the region 0 G NRe,r  G 2:

Co = 24/N~e,~ OSNR,,~~~ (12.67)

~ CD = 18.5/(Nue,p)0.6 2 5  NRe,p  < 500 (12.75)

c, = 0.44 5~~N,,+,<2x 16 (12.76)

Equation (12.76) is commonly termed “Newton’s law”; the Newton’s law
region ends at a critical Reynolds number of 2 X 105; above this number, the
boundary layer over the sphere becomes fully turbulent, and Cu = 0.2.

The terminal velocity is given by a force balance similar to that used to
obtain Eq. (12.72) except that the Stokes drag is replaced by Fp from Eq.
(12.74):

Fp = huf)(~rf)(Cd (12.77)

Retaining the earlier convention, the terminal velocity is positive in the
direction of gravity, and the drag force acts in the direction opposite to the
velocity. After substituting Eqs. (12.77),  (12.70) and (12.71),  Newton’s
second law [Eq. (12.69)]  becomes

-!(~v:)(+(c,)  - (P)(!)(~~;&) + (P,)(+)(J+W  = 0 (12.78)

Equation (12.78) can be solved for the terminal velocity:

,.,; = 8w(~p  - P) = +dp,  - P)
3PG 3PG

(12.79)
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Notice that above the Stokes region the terminal velocity depends on the
square root of the density difference, as compared to Eq. (12.73) for the
Stokes region in which the density difference and fluid viscosity were to the
first power. Also the diameter dependence of U,,  squared in the Stokes region,
is less in the above equations.

Disks. The drag coefficient curve for disks is also included with the curve for
spheres in Fig. 12.16. For disks the line is based on data taken with the flat side
perpendicular to the direction of motion. Thus, the projected area for a disk
and for a sphere in Eq. (12.74) for CD is the same, ndi/4.  Similarly, the
Reynolds number is based on the diameter of the disk, d,. Note that the curve
for disks bears little resemblance to that for spheres. There is no critical
Reynolds number. Above a Reynolds number of 2 x 104,  all available
experimental data show C,,  = 1.1.

Cylinders. The drag coefficient for the flow of a cylinder perpendicular to the
axis is defined in terms of the projected area, diameter times length. The
Reynolds number in Fig. 12.16 is based on the cylinder diameter, d,. Figure
12.16 shows only the line for cross flow over a cylinder of infinite length;
Knudsen and Katz [K3] and Streeter and Wylie [S7]  summarize the data for
other values of L/d,,  as well as for ellipsoids and other shapes. For the infinite
cylinder in cross flow, Newton’s law regime shows Co = 1.0 from NRe = lo4  up
to a critical Reynolds number of 4 x 16. Above the critical Reynolds number,
the boundary layer becomes fully turbulent and C,  = 0.3. Note that in the
Newton’s law region, the drag coefficient is a strong function of L/d,,  and up
to a 50 percent reduction in CD can be expected. In the fully turbulent region,
C,  is not a function of L/d,.

Example 12.12.  A 2-mm diameter lead particle (p, = 1.13 x 104  kg m-‘)  falls in
air (p = 1.22 kg rne3,  p = 1.81 x 10m5  kg m-’ s-l). Determine its terminal velocity.
Then compare that velocity with the values from Stokes’ law and Newton’s law.
Let g be 9.80 m s-*.

Answer. If the Reynolds number lies outside the Stokes region, then the terminal
velocity must be found by trial and error. The terminal velocity of this heavy
particle is probably outside the Stokes’ law region. The diameter d,  is 2 x 1O-3 m.
From Eq. (12.79),  the terminal velocity is

uz = f3wh - P)  = %dp,  - P)
I

3PG 3PG

= (4)(2  x 10-3)(9.80)(1.13  x lo4 - 1.22)

(3)0.22)w
242.0=-
CD

6)

where the units of U: are m’s-‘. The drag coefficient C,, is a function of the
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Reynolds number,  Eq.  (12.68):

N Rc,p  = U,dp/p  = U,(2  x 10-3)(1.22)/(1.81 x lo-‘)  = 134.89 (ii)

This  p rob lem wi l l  be  so lved  by  us ing  F ig .  12 .16 .  F i r s t ,  Newton’s  l aw,  Eq .
(12.76),  will be tried. Let CD be 0.44, and from Eqs. (i) and (ii):

U,  = (242.0/0.44)‘n = 23.45 m s-’ (iii)

NRC  = (134.8)(23.45)  = 3162 (iv)

From Fig. 12.16, Cr,  is 0.4. Repeating:

Ut  = (242.0/0.4)‘-’  = 24.60 m s-’ (9
NRe  = (134.8)(24.60)  = 3316 w

Within  the  readabi l i ty  of  the  char t ,  C,  is  unchanged,  and 24.60 m SK’  is  the f inal
answer.

Note that Newton’s law, Eq. (12.76),  predicted 23.45 ms-‘,  which is not
signif icant ly different  from the correct  answer.  Stokes’  law,  Eq.  (12.73),  p red ic t s

v, = &$)(P,  - P)l@P)
= (2)(9.80)(1  x 10-3)2(1.13  x lO’- 1.22)/[(9)(1.81 x lo-‘)]

=1.36xldms-‘=446Ofts-’

This  answer  i s  c lear ly  unreasonable!

(vii)

Example l2.W.  A fa l l ing-bal l  v iscometer  for  l iquids  genera l ly  consis ts  of  a  tube
s imi la r  to  a  g radua ted  cy l inder  tha t  i s  long  enough  and  wide  enough  to  e l imina te
side and end effects .  A colored sphere,  made from plast ic  ( insoluble in  the f luid
of  in te res t ,  dens i ty  58  lb ,  fte3),  wi l l  be  d roppd  in to  the  l iqu id ,  which  i s  ca re fu l ly
maintained at  a  constant  temperature of  25°C.  The rate of  fal l  of  the sphere is  to
be t imed between two marks .  The design cr i ter ion dic ta tes  that  the  sphere  fa l ls
1 inch in 1 minute. The test fluid is to be a moderately viscous polymer solution of
density 50 lb,fte3  and approximate zero-shear viscosity of 2500 CP
(1.68 lb, ft-*  s-r).  Determine the appropriate diameter of the sphere to achieve
the design criteria, if g = 32 ft s-*.  Is this a practical design?

Answer. The terminal velocity is easily computed from the statement of the
problem:

u _ distance l/l2
t --=60=1.389x10-3fts-’

time

Next ,  the part ic le  radius is  calculated from Eq.  (12.73),  assuming tha t  the  f low is
in the Stokes’ law region:

‘p  = wPwtwg)-‘(P,  - PI-‘Y
= [(9)(1.68)(1.389  x 10-3)(64-‘(58  - 50)-‘]rR

x [(lb, t--l  s-r)@  S-r)(fi-’  s*)(lb,l ft3)]“=

= 6.404 x 10m3  ft = 0.077 in. (ii)

The required particle diameter would be about 0.15in.  (approximately i-in.),
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which is reasonable. The Reynolds number from Eq. (12.68) is

NReVP  = d,U,p/p  = (O.oo640)(2)(1.389  x lo-‘)(50)/(1.68)  = 5.29 X 10m4 (iii)

This Reynolds number is well within the Stokes’ law region; thus, the design is
reasonable.

Separation  of boundary layer. The flow patterns associated with Eqs. (12.75)
and (12.76) are complex. The previously-alluded-to vortex ring, stable at
Reynolds numbers between 8 and 150, is shown in Fig. 12.17. This ring is a
laminar flow phenomenon. The vortex increases in size as the free stream
velocity U, (and therefore the particle Reynolds number NRe,J  increases;
further increases in U, result in the vortex being detached from the sphere
(commonly referred to as being “shed”).

Figure 12.18 shows the patterns during flow past a sphere. As the
Reynolds number increases, the separation of the boundary layer from the
solid surface is actually shifted towards the rear of the sphere. At first, the
boundary layer and the circulation within the wake are both in laminar flow.
The transition to turbulence begins in the wake, as NRc,p  increases, and
eventually moves to the front of the cylinder. The point B is called the
‘stagnation point”, which is the point of highest pressure around the body.
That pressure may be estimated from the Bernoulli equation, Eq. (7.63),
which simplifies to

AP=P stagnation -PA  =  Pu:f2 (12.80)

The description accompanying Fig. 12.18 is useful in explaining the
experimental data in Fig. 12.16. In the transition region where Eq. (12.75)
applies, the wake behind the sphere is changing from laminar to turbulent
flow. The third region where Eq. (12.76) applies, sometimes called the
Newton’s law region, has a nearly constant drag coefficient that drops suddenly
to a very low value, before rising to a nearly constant yalue at particle

FTGURE  12.17
Vortex ring on a sphere.
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(a) Laminar  flow in the boundary layer.

(b) Turbulent flow in the boundary layer.

FIGURE l2.U
Flow past a single sphere, showing separation and wake formation. (A) free stream velocity; (B)
stagnation point; (C) separation point. (From McCabe, Smith, and Harriott,  Unit  Operations of
Chemical Engineering, 4th ed., p. 132, McGraw-Hill, New York, 1985. By permission.)

Reynolds numbers exceeding 3 x 10’.  At this drop point, the boundary layer
over the sphere becomes fully turbulent.

Form drag. The drag force on a body can be divided into two parts: that
attributed to skin friction (sometimes called skin drag) and that attributed to
form drag. Skin friction is the tangential friction associated with the fluid
flowing over the surface. For pipe flow, all of the friction is skin friction. In
flow over spheres or other bodies, a part of the total drag is attributed to the
skin friction. The remainder, the form drag, is associated with the pressure
difference which must exist in front of and behind the object. The fluid must
accelerate to get around the body, and if the body is not perfectly symmetrical
or if separation occurs, the streamlines and flow patterns in front of the body
differ from those in back. Consequently, the velocities will be different, and by
a Bernoulli balance the pressures will be different. The difference in pressure
acting on the projected area is responsible for the form drag.

In Stokes flow around a sphere, there is no form drag because the
pressure on the surface is everywhere the same, i.e. the flow is symmetrical in
front and back of the body. However, there is form drag for the flow in Figs.
12.17 and 12.18, in which the boundary layer separates from the object. Bodies
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AB is the streamline to the stagnat ion point  B

FIGURE 12.19
Streamline body. (From
McCabe, Smith, and Hatriott,
Unit Operations of Chemical
Engineering, 4th ed., p. 133,
McGraw-Hill, New York, 1985.
By permission.)

which cause boundary layer separation are called “bluff objects”. Spheres are
bluff objects at high flow rates, but not in the Stokes region.

Form drag can be minimized by streamlining, as is done with the design
of an airfoil such as shown in Fig. 12.19. Note that the airfoil has a tail that
tapers to a point, in order to minimize turbulence in the wake. However, it is
impossible to reattach the top boundary layer to the bottom boundary layer so
as to eliminate turbulence completely and hence eliminate form drag.

There has been additional work on the drag of objects other than
spheres, cylinders, and disks. Corrections to Eqs. (12.67) and (12.75) for
nonspherical particles are available [Pl];  details are to be found elsewhere

-[KS,  Sl].  Liquid drops have also been studied [Pl].  As the Reynolds number
increases, the drag on the liquid drop can cause fluid motions within the drop
itself and therefore changes the drag coefficient, as compared with that for a
solid particle of the same diameter.

Hindered settling. If there is only one sphere in an infinitely large fluid, or if
the particles are so far apart that the passage of one does not affect the rest,
then “free settling” takes place. However, if there is more than one sphere (or
particle of any shape) passing through a fluid, the frictional force may change
as the wake of one particle interferes with the passage of adjacent particles. In
this case “hindered settling” will take place. The usual criterion is that the void
fraction or porosity E is less than 0.999 [Pl].  The void fraction is the ratio of
the free volume to the total volume:

V total&= - v,
V total

where VP is the total volume of all particles. Values of VP may be either
measured or calculated from the weight fraction of solids and the densities pp
and p.  In other words, E is unity minus the volume fraction of particles.
Another example of hindered settling is the settling of particles near a wall or
boundary. Details can be found elsewhere [Pl].

For hindered settling in the Stokes’ law region, spheres or cylinders only,
a correction factor to the viscosity k, has been proposed [S5].  Thus, the



TRANSPORT PAST IMMERSED BODIES 59

terminal velocity is
rr,  = 24dP,  - Pm)(Wl(9P) (12.82)

where o,,, is the density of the solid-fluid mixture and k, is correlated with E:

k, = exp[(-4.19)(1-  E)] (12.83)

Generally, Eqs. (12.82) and (12.83) are valid if the particle Reynolds number
is 2 or less; this criterion can be recast into

0 s 4&mn(~,  - ~mNW)211’3  s 3.3 (12.84)

For nonspherical and angular particles, the effect of concentration is
greater [Gl]. For transitional and turbulent flow, there are no recommended
generalized correlations for hindered settling, although an alternative approach
has been suggested [M3]. In summary, hindered settling is a difficult area, and
experimental data may be required for many applications.

Heat and mass transfer. There are correlations available for both heat and
mass transfer between spheres and fluid. For heat transfer between the surface
of a single sphere of size d,,  a simple equation is [R2]:

NNu,p = h,d,lk  = 2 + 0.6(Np,)“3(N,,,p)‘” (12.85)

where k and NPr [cf. Eq. (8.4)] are properties of the pure fluid and NNu,r  is the
Nusselt number for the sphere. The particle Reynolds number NRe,p  is given in
Eq. (12.68). If the fluid surrounding the sphere is stagnant (i.e., U,=O and
N ue,+,  = 0), Eq. (12.85) predicts that NNu,+ = 2. This result is also obtainable by
solving the one-dimensional conduction equation in spherical coordinates with
the appropriate boundary conditions.

An improved correlation for heat transfer to a single sphere is [W2]:

N Nu,p  = 2 + [o.b(N~~,~)‘~  f 0.06(NR,,p)“3](Np,)o~4(~/~w)o~14 (12.86)
3.5 5  NRe,p = 7.6 x lo4

0.71~ Npr  I 380

1.0 5  (y/Q  5  3.2

where the heat transfer coefficient is applied in conjunction with the area of
the sphere, 4nd$.  ‘Equation (12.86) correlates the data to f30 percent at the
worst and much better most of the time [W2].  In Eq. (12.86),  k, p,  p,  and Nb
are evaluated at the free stream temperature T,; pL, is evaluated at the wall
temperature.

The mass transfer equation [K4]  is analogous to Eq. (12.85):

N Sh.y  =  kdpy,mlD  =  &h,g,m  =  2 +  WNSc)“3WRe.,)‘R (12.87)

where D and N,,  [cf. Eq. (8.6)] are properties of the pure fluid. The Sherwood
number is modified from that in Chapter 8 by multiplying by y,,,,, which is the
logarithmic mean mole fraction of the inert or nondiffusing component (usually
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close to unity):

‘lrn = ln[(l -;,/:I  - yi)]
(12.88)

where yi is the concentration of the diffusing species at the surface of the
sphere and y is the_ concentration in the bulk fluid.

Equation (12.87) is often recast in terms of the j-factor:

iM = (kYhnl  wwm (12.89)

In terms of dimensionless groups, the j-factor is

h =  NSh,~(NRe,,)-‘(NsC)-‘” (12.90)

This equation is similar to Eq. (11.81),  but the Sherwood number has been
modified and the particle Reynolds number is appropriate.

Flow across a simple cylinder or a bank of cylinders is important and will
be covered in Section 12.3.3. Also, flow across beds of spheres will be covered
in Section 12.3.2 under the topic of packed beds.

Miscellaneous topics. There are many practical applications of centrifugal
force being used to separate solids. Examples include cyclone separators for
removal of solids from stack gases, centrifuges in the chemistry laboratory, and
ultracentrifuges for separation of species of slightly differing molecular
weights. The acceleration due to a circular motion is

g,  = rw2 (12.91)

where r is the radius of the particle path and w is the angular velocity. The
presence of o overwhelms the acceleration due to gravity; hence, in such a
case g,  can be used to replace g in the equations for terminal velocity, Eqs.
(12.73),  (12.79),  and (12.82).

For particles with nonspherical shapes, the drag coefficient may be
estimated with the aid of Fig. 12.16. Usually C&  is replaced by an equivalent
diameter, defined as the diameter of a sphere having the identical surface-to-
volume ratio as the particle. The further the particle deviates from a sphere,
the worse is the error. A correction factor for nonspheres is available [P3].

Flow through packed beds (towers), flow past banks of tubes as in heat
exchangers, and fluidized beds are important enough to be covered in detail
later in this chapter. In closing, it must be noted that Fig. 12.16 does not apply
to needle-shaped particles or to short cylinders falling through a fluid. The
particles must be somewhat spherical in shape.

12.3  FLOW PHENOMENA WITH SOLIDS

Operations such as slurry transport, flow through packed beds, flow outside of
heat exchanger tubing, settling, fluidization, pneumatic transport, etc., often
involve the relative movement of a solid phase with respect to a fluid phase. To
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begin, let us consider a &cm-diameter  vertical pipe, filled with solids.
Suppose the solids are very fine, like talcum (baby) powder. If air is introduced
into the pipe at a high rate, the air will entrain the solids and carry them out of
the pipe. This is called “pneumatic transport”, because the air will transport
the particles until all the particles are removed. A second case is a pipe filled
with small ceramic cylinders, each a centimeter long and a centimeter in
diameter. If air is passed through the pipe, the solids will not be entrained.
This second case is an example of a packed bed, which is in common use in
chemical engineering operations. Typical applications occur in absorption
towers, drying of solids (e.g., grain), heat treating, and both catalytic and
non-catalytic reactions.

An important phenomena, called fluidization, is intermediate between
the extremes of pneumatic transport and flow through packed beds. Actually,
pneumatic transport can include some types of fluidization, and this topic will
be discussed later. The pneumatic transport of solids not involving a fluidized
bed is outside the scope of this text. The interested reader should consult other
references for details [B2, Dl, Hl, L4, Pl].

12.3.1  Introduction to Fluidization

Fluidization is the process by which a bed of solids is changed to a fluid-like
state by the passage of a gas or liquid through the bed. Let us replace the
ceramic packing in the 15cm  pipe with granular particles whose sizes are of
the order of 250 pm (250 microns, 50 mesh, or 0.01 in.). If the air velocity is
initially very low, the bed behaves as a packed bed. If the air velocity
continues to rise, then fluidization occurs. A gas-fluidized bed closely
resembles a thin soup that is boiling vigorously. The solids appear to be in
random motion, without being excessively entrained or being removed by the
gas passing through the bed. There is a definite solid boundary at the top;
hence, the term fluidized bed is appropriate.

Fluidization is best described by discussing the changes in the system of the
pipe plus the 250~pm  particles as the air velocity is increased. At very low
velocities, there is no change in the physical appearance of the bed, as shown
schematically in Fig. 12.20(a).  As the velocity increases, friction produces an
ever-increasing pressure drop until the force on each particle exceeds its
weight. At this point, the bed expands. This expansion increases the space
between particles, which reduces the velocity of fluid between particles and the
pressure drop as well. Hence, the particles are not transported out of the pipe.
Initially the bed simply expands slightly from its static or rest position. But as
the air velocity continues to increase, the bed expands until the particles no
longer touch. Figure 12.20(b)  shows the particles at this point of incipient
fluidization. At this point, the bed has become fluidized. The length of bed at
the point of incipient fluidization is L,f. The velocity at the point of incipient
fluidization is the superficial velocity U,, which is calculated as the velocity of
the fluid were it to pass through an empty column of the same diameter at the
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FIGURE 12.20
The lixed bed (a) and incipient
fluidization (b). (From Kunii  and
Levenspiel,  Fluidization  Engi-
treering,  p. 2, Wiley, New York,
1%9.  By permission.)

same conditions. The supertlcial  velocity is used because it is impossible to
measure the actual velocity between particles. The air velocity can be
increased at least three to five times U, for large particles and ten to twenty
times U, for small particles before excessive entrainment occurs.

A fluidized bed resembles a boiling liquid in many ways. For instance, if
the tube containing a fluidixed bed is tilted to one side, the top surface remains
horizontal. If an object more dense than the bed is thrown in from the top, it
sinks to the bottom, and a lighter cork will float at the top interface. The bed
can be drained from a valve in the side of the pipe.

Particulate fluIdIxatIon.  As the fluid velocity is increased above that required
for incipient fluidization, the behavior of gas-solid fluidixed beds differs
substantially from the behavior of liquid-solid fluidized beds. Figure 12.21
details these differences [P2]. In particulate fluidixation, the particles move
individually and randomly throughout the bed without formation of voids
(often called bubbles). This behavior is found especially in liquid-solid
systems, although some gas-solid systems can exhibit particulate fluidization
over a limited range of velocities [Dl].  The bed is relatively homogeneous, so
that large clumps or aggregates of particles do not form (see Fig. 12.21). For
liquid-solid systems, the particulate fluidixation is basically the only type
observed, except for a few cases in which the density difference can be

FIGURE l2.21
Various contacting modes of solids in gas-solid and liquid-solid Buidization.  (Adapted from  Peters
and Fan, Design of Gas-Solid Catalytic Fluidized Bed Reactors, CACHE Corp. Module DES%,
1983; and from Yerushalmi  and Avidan  in Fluidization, 2d ed., p. 226, Davidson, Clifi,  and
Hation  (e&X  Academic Press, New York, 1985. By permission.)

17, = supe.rlicial  velocity at transition from slugging to turbulent
U,,  = superkial  velocity at transition to bubbling bed fluidization
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extreme,. such as in the fluidization of lead particles with water. There is a
smooth expansion of the bed as the velocity increases above Umr, the minimum
velocity for incipient fluidization. Increasing the velocity increases the bed
height in a predictable manner.

The liquid-solid fluidized bed is not completely homogeneous. Normally,
the fluid is introduced into the bed by means of some type of distributor plate.
At this location, there can be channeling, where a region of low density (high
void fraction) exists. Sometimes parvoids  are observed; these are low-density
strata that form near the distributor plate. At high velocities, hydraulic
transport occurs.

Aggregative  linidization.  Gas-solid systems exhibit aggregative fluidization,
which is completely different from particulate fluidization. In aggregative
fluidization, the beds contain void volumes where the particle concentration is
almost zero. The aggregative or bubbling fluidized bed is characterized by
bubbles of gas rising from the distributor plate at the bottom. These bubbles
will not completely break down as they rise rapidly upward. However, the gas
void does exchange some of its gas with the mixture of gas and solids that
surround the bubble. When the bubbles break the surface, they eject solids
above the free surface of the boiling bed; these solids often fall back into the
bed or are recaptured in a cyclone separator. The total ,region of the gas
bubbles is called the bubble phase; the rest of the bed, comprising solids plus
gas, is called the emulsion phase. A third phase, the cloud phase, is found
between the bubble phase and the emulsion phase. The size of the cloud phase
depends on the relative velocities between the bubble phase (rising up the
column) and the interstitial gas velocity (in the emulsion phase). A detailed
description of the cloud phase is complex; the reader is referred elsewhere
WI.

Slugging occurs when a bubble grows until it is about the same size as the
bed (or pipe) diameter. Slugging is undesirable from the standpoint of scale-up
and modeling; therefore, most commercial units are designed to avoid
slugging. A shallow, wide bed is often preferable to a tall and narrow bed,
which tends to promote slugging.

In gas-solid fluidization, there are four separate regimes of operation (in
contrast to the liquid-solid case, for which there is just one). As shown in Fig.
12.21, these are (1) bubbling fluidized bed, (2) slugging bed, (3) turbulent
fluidized bed, and (4) fast fluidized bed. In addition, the spouted bed is a
separate design. At extremely high velocities, pneumatic transport occurs, and
the solids are entrained by the gas. In “fast fluidization”, this entrainment is
designed into a fluidized bed unit, as shown in Fig. 12.21. Here, the solids are
entrained by the gas in the fluidized bed. At the top of the bed is located a
cyclone separator, in which the solids are separated from the gas phase and are
recycled. This regime of operation is common in industry. The first commercial
fluid catalytic cracking plant, which converted crude oil into aromatics suitable
for high-octane aviation gasoline, operated in the fast fluidization regime.
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FIGURE 12.22

Fluid inlet

A spouted bed. Arrows indicate direction of movement
of  solids.  (From Mathur  and Epstein ,  Spouted Beds ,  p .
2, Academic Press, New York, 1974. By permission.)

Spoated  bed. The spouted bed, shown in Fig. 12.22, is a special type of
fluid&d  bed. Fluid is injected upward through a centrally located aperture in
the bottom of a bed of coarse solids. At high velocities, the fluid will stay in a
column for a long distance because the coarse solids act more or less as tube
walls. As the fluid progresses upward, more and more solids are entrained,
until finally the fluid velocity contains a significant radial component. If the bed
is filled with solids to an appropriate height, a fountain (or spout) occurs at the
top of the bed surface. Note the velocity vectors in Fig. 12.22. The gas core is
called the spout. The region where the solids are falling downward is called the
annulus.  There is a systematic cyclic pattern of movement of solids, as shown
by the arrows in Fig. 12.22. Continuous operation is possible; solids may be
fed into the bed either at the top near the wall or with the entering gas. Solids
may be removed conveniently near the top by an appropriate pipe. The
spouted bed is not completely fluidized, yet some of its charactersitics resemble
the behavior of coarse particle fluidization. The spouted bed may operate with
either a gas or a liquid. However, particulate liquid fluidization is much
preferred; consequently, almost all applications of spouted beds are in
gas-solid systems. The reader is referred elsewhere for more details [Dl,  Ml].

Fast tluMization.  Fast fluidization was introduced in Fig. 12.21. The gas
veIocity  is sufficiently high so that the solids are transported out the top of the
reactor. The cyclone in Fig. 12.21 separates the solid catalyst from the gas; the
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FIGURE 12.23
Slip velocity versus (1 -void
fraction) for a fluid cracking
catalyst. (From Yerushalmi
and Avidan,  in Fluidization,
2nd ed., p. 226,  Davidson,
Clifi, a n d  Harrhon  (eds.),
Academic Press, New York,
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solids are then recycled via a standpipe to the bottom of the reactor [Yl].  Fast
fluidization is characterized by a large concentration of solids and a high
throughput of gas. The high .velocity  improves performance by overcoming
particle.agglomeration.

Yerushalmi and Avidan  [Y2] present some fluidization data taken on a
fluid cracking catalyst in a 15.2-cm column. They define a “slip velocity” as the
difference in the superficial gas velocity divided by porosity (I,,/& and the mean
solid velocity US.  Figure 12.23 shows a comparison of fast fluidization with
bubbling and turbulent fluidization. Over the bubbling and turbulent ranges,
there exists a unique curve for various solids rates. However, in the fast
fluidization range, a different curve is found for each solids rate.

There are few, if any, correlations for fast fluidization. Commercial
processes are plentiful, but careful scale-up is required [Y2]. The region of fast
fluidization (pneumatic transport) generally occurs at void fractions in the
range 0.75-0.95, depending on V, and the type of solids. There are no
correlations available for CJ,,,  the minimum velocity for pneumatic or hydraulic
transport. Certainly, large values of the particle diameter d,  and particle
density pP favor large values of U,,. Based on present results, there are no
valid correlations for pressure drop or for prediction of Q,, [G5,  Y2].

12.3.2  Gas-Solid Fhidization

Gas-solid fluidization, as described previously, consists of five separate
regimes; these are: (1) bubbling fluidized bed, (2) slugging bed, (3) turbulent
fluidized bed, (4) fast fluidized bed, and (5) pneumatic transport. All of these
are normally in the aggregate region. Lengthy reviews of aggregate fluidization
can be found elsewhere [Dl, Hl, K4].

The void fraction or porosity E, as defined in Eq. (12.81),  is an important
variable in fluidization. When the static bed of solids is introduced into the
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FIGURE 12.24
Typical values of minimum voidage  for
gas-solid fluidization near atmospheric
pressure. (From Leva,  Fluidization,  p.
21, McGraw-Hill, New York, 1959. By
permission. )
(a) soft brick; (b) absorption carbon;
(c) broken Raschig rings; (d) coal and
glass powder; (e) silicon carbide; (f)
sand; (g) round sand, #,=0.86;  (h)
sharp sand,  #,=0.67;  (i)  Fischer-
Tropsch catalyst, #.  = 0.58; (j) anthra-
cite coal, $,=0,63;  (k) mixed round
sand, $,=0.86;  (I) coke; (m) silicon
carbide.

B-cm  pipe mentioned previously, the void fraction becomes a function of the
method of loading. As air passes through the pipe, the void fraction reaches a
predictable value, called the minimum porosity or void fraction for fluidization
& mfy where the onset of fluidization occurs. Figure 12.24 shows some
approximate values of c,,,r for some common particles at atmospheric pressure.
Note that c,,,r does depend somewhat on the shape of the particles (a fact
neglected in Fig. 12.24),  as well as on d,. Also, the sphericity &,  which is
included in Fig. 12.24 for reference purposes, will be defined in Eq. (12.104).

For particles for which no data exist, the following equation has been
proposed for gas-solid fluidization [L4]:

E,f  = 1.0 - 0.356[log,,(d,)  - l] (12.92)

where d,  is the particle diameter in pm (microns). Note that Eq. (12.92) is
based on data near 1 atm total pressure. Equation (12.92) is plotted in Fig.
12.24 for reference.

The void fraction after fluidization can be calculated from .smf,  L,f (the
height of the bed at E,,,~), and Lfb  (the height of the bed after fluidization). In
fact for any two heights, L, and Lz, ~2  is related to E, by

L2 l-E1  Pl-=-=-

Ll l-  E2 P2
(12.93)

where p is the overall density. Equation (12.93) applies to both gas-solid and
liquid-solid fluidized beds.

The appropriate Reynolds number for fluidization NR,,-,,  is defined as

NRC+  = d,  &d~ (12.94)

where p and ,u are properties of the pure fluid.
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FIGURE 12.25
Pressure drop in fhidized  beds. (From Kunii  and Levenspiel, Fluidimtion  Engineering, p. 74,
McGraw-Hill, New York, 1969 By permission.)

The change in pressure drop with superficial velocity U,, is shown in Fig.
12.25. In the fixed (or static) bed region, log(-Ap) is linear with logNn+,
which increases as U, increases (slope of -1 on the log-log plot). The pressure
drop actually goes through a maximum [G5,  K4, LA,  W3]  just before the onset
of fluidization (at &); one explanation of this phenomenon is that more
energy is required to “unlock” the solid particles than to maintain a state of
fluidization [LA]. The pressure drop at the onset of fluidization is approxim-
ately equal to the buoyancy force on the solid particles divided by the area
[K4, L4].

When a column is initially filled with solids, the particles are oriented
randomly; however, when the bed is fluidized for the first time, the particles no
longer touch. Furthermore, the particles, which are irregularly shaped in most
applications, tend to be oriented during fluidization by the flow of fluid on all
sides. Thus, the hysteresis shown in Fig. 12.25 when the pressure drop is
lowered after a bed has been fluidized is caused by the fact that on the
downward curve the particles have been oriented, as compared to the upward
curve for which the particles were packed randomly. If the bed were to be
fluidized a second time, there would be no hysteresis. Therefore, the minimum
voidage  E,,,~  is represented by the value for the downward curve in Fig. 12.25.
The height Lmf represents the height of the bed upon reaching the superficial
velocity U,,,, in a bed of “oriented” particles.

When the velocity is increased above (Id,  the pressure drop increases
only slightly as the velocity increases lO-fold.  At even a higher velocity,
entrainment is initiated. At U,,,  the void fraction approaches 1.0, and
pneumatic transport occurs. The entrainment velocity U, exceeds by many
times the minimum velocity for fluidization, Umr, as seen in Fig. 12.25. Also,
the entrainment velocity is much greater than the terminal settling velocity U,.
The solids in gas-solid fluidization form “clusters” of particles, even at void
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fractions approaching unity. The effective diameter of these clusters is much
greater than that of any one particle; hence, it is observed that Vt,>>  V,. In
fact, a bed of fine solids can be maintained at gas velocities that are 10-20
times V,  [Yl].  Note that V,  (the calculation of which was discussed in Section
12.2.3 and Example 12.12) is the settling velocity of a single particle in an
infinite fluid; this velocity is equivalent to a superficial velocity, since the void
fraction is unity.

Estimation of velocities. The velocity for minimum fluidization (low pressure
only) can be estimated from the following [G5]:

N~e,mf  = dp  Vmd~ (12.95)

NAP  = m&p - PVP’ (12.96)

(12.97)

Note that some researchers prefer Cr = 33.4 [C3]. The term NAr  is the
Archimedes number (sometimes called the Galileo number), and p and ~1  are
properties of the pure fluid.

The minimum pressure drop for fluidization (- Apmf)  should equal the
value predicted by the Bernoulli equation, i.e., the pressure drop necessary to
support the bed weight plus the vertical fluid head:

-4,r = (P, - pldl  - ~n&md + pghnf (12.98)

In practice, -Apmr  can be less than the value predicted by Eq. (12.98) because
of channeling.

The simplest equation for minimum bubbling velocity V,, is [G2,  G3]

hb = Kmb& (12.99)

where d,  is the mean surface diameter of the powder. This simple equation
works well for many cases, but more sophisticated equations are available for
solids that contain a considerable mass fraction of “fines” [C?, G3].  To assist in
evaluating solids with a wide range of sizes, the solids must be classified
according to mean particle size and density range. Details can be found
elsewhere [Cl, G3].

The transition from bubbling or slugging to turbulent fluidization can be
estimated by [Yl]

v, = 7.0(psd,)‘n - 0.77 (12.100)

where V,  is the transition velocity (m s-l)  and p,d,  is the solids density times
mean diameter (kg m-‘). The transition from bubbling to slugging can also be
predicted. These criteria include diverse factors, such as the stable bubble size
and the aspect ratio of the column (height-to-diameter ratio), as well as V,,
[W

The transport velocity V,,  cannot be predicted with any reliability [G5].  It
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is advisable to perform careful scale-up in any case when designing fluidization
equipment.

Heat transfer. Heat transfer in fluidized beds occurs as a result of several
mechanisms, including conduction, convection, and often radiation. There is
heat transfer from particle to particle and from the bed to surfaces (or the
walls). The correlations in the literature are numerous [Dl, Hl, K4, L4];  more
than 35 have been proposed to date. For aggregative fluidization, a simple
correlation of h,  (heat transfer coefficient at the wall), for estimation only, is
K41

N Nu,tb  = O.W~NR,,~~.~ (12.101)

where

N~e,e  = d,Ul~ (12.94)

NNu,fb  = hwd,lk (12.102)

Npr  = c,dk 03.4)

with k, cP, and p being properties of the pure fluid and h, the heat transfer
coefficient at the wall.

Heat transfer in gas-solid fluidization is relatively high; in fact, the
attractiveness of fluidization lies in the favorable rates of heat transfer, the lack
of “hot spots”, and the thoroughness of mixing between the fluid and the solid
phases. Typical values of heat transfer coefficients are in the range 200-
500 W me2 K-‘, as shown by the data for quartz sand in Fig. 12.26 [Zl].  This
number is a factor of 100 greater than the coefficient for a corresponding flow
of the same gas through an empty tube [G5].

Finally, note that Eq. (12.101) will not predict the maximum in h that is
observed experimentally. Also, radiation effects must be included for high-
temperature reactors.

0 0.4 0.8 1.2
Superficial gas velocity, U,, m s-’

FIGURE 12.26
Bed-to-wall heat transfer coefficients for quartz
sand particles. (Modifiedfrom  Zabrodsky,  Hydro-
dynamics and Heat Transfer in Fluidized Beds,
p. 272, MIT Press, Cambridge, MA, lW12.  Per-
mission purchased.)

(a) 14O~m; (b) 198pm; (c) 216pm;  (d) 428pm;
(e) 515pm;  (f) 650pm;  (g) 11OOpm.
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Mass  transfer. Knowledge of mass transfer coefficients in fluidized beds is
important since mass transfer occurs in many of the common applications of
fluidization, such as gas-solid reactions, drying, absorption, ion exchange, and
dissolution (leaching). There are three modes of mass transfer in fluidized
beds: fluid-to-solid, lean-to-dense, and bed-to-surface. In mass transfer be-
tween fluid and solid, a transferable species moves between the bulk fluid to
the fluidized solid. Most often, the solid is a catalyst, and the reactants move to
the solid and the products move away from the solid. In an aggregative
fluidized bed, transfer occurs between the lean phase (large void fraction) and
the dense phase (high concentration of solids). Lastly, bed-to-surface mass
transfer is analogous to the corresponding heat transfer, just discussed. Of
these, mass transfer between bed and surface is not important and has been
reviewed elsewhere [Wl].

Let us review mass transfer coefficients briefly. Mass transfer in the
wetted-wall column of Section 11.5 is expressed in terms of the overall mass
transfer coefficients kf, where

(N~/A)r,sv  = kf(C,,w  - CA, ave i (6.87)

In this equation, the normal overbar  on  CA,w has  been dropped for
convenience. For mass transfer between fluid and the fluidized particles, the
flux (NJA),,  is replaced by a bulk flow term that is taken as the superficial
velocity U,, (assuming plug flow) times dC,Jdz,  the rate of change of
concentration with bed height [K4]. Note that the units agree, moles divided
by the product of area times time. The term k:  in Eq. (6.87) is replaced with
the overall mass transfer coefficient for fluidization kfb times the specific
surface area of solids a,:

uo  2 = (kt+s)(C~,  sat - C,) (12.103)

where CA,  sat is the saturation concentration of solute A and C, is the average
concentration of A in the bulk gas. Additionally, for convenience the subscript
“ave” has been dropped. The term a, is a function of the diameter d, and of
the sphericity &,  which is defined as

Q = surface area particles = (6)(1-  E)
s volume bed d&s

(12.104)

The sphericity & is an important term in fixed and fluidized beds; its definition
is

Thus, for a sphere the sphericity is 1; for particles of other shapes, the
sphericity lies between 0 and 1. Note that d, is the diameter of a sphere that
has the same volume as the particle; also, the quantity 6/(d&,)  in Eq. (12.104)
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0.6 -
.=

FIGURE 12.27

0.2 - Correlation of sphericity versus void
fraction for uniformly sized randomly
packed beds.  (Adapted from Brownell,

OO
I I I , I , I .

0.2 0.4 0.6 0.8
Dombrowski, and Dickey, Chem. Eng.

’ Progr.  46:  415 (1950). By permission of
Void fraction. P AIChE.)

is the ratio (rcd~l$,)/(~rd~/6),  i.e. the surface area of the equivalent spherical
particle divided by the volume of the particle. The sphericity correlates well
with the void fraction in a packed bed [B3, B4], as shown in Fig. 12.27.

Equation (12.103) applies at any point in the bed. A more useful
equation relates ktb  to the inlet and outlet concentrations CA,in and CA,out.  The
usual assumptions are plug flow and k,  independent of z; then the variables in
Eq. (12.103) are separated and integrated with the obvious boundary
conditions:

C
(12.106)

After integration, Eq. (12.106) becomes

In
c A ,  sat - C A ,  ouf ktt,asLfb=-
C A, sat - CA,  in Vo

(12.107)

Equation (12.107) points out that if either C&in or CA,out  approaches C&sat,
the accuracy of determination of kfb rapidly diminishes. Equation (12.107)
rearranges to

CA, out =  (CA,  id(exP  n, +  (CA,  %dl  - exp  n, (12.108)
with

n = -k~a,L~lU, (12.109)

If the ratio of L, to bed diameter is less than 10, axial dispersion
becomes important. Now the flux (N,JA),,,  in Eq. (6.87),  which was replaced
with the bulk flow term &(dCA/dz)  to give Eq. (12.103),  now consists of two
terms: the bulk flow term and Fick’s law for the axial diffusion:

u dCAd’C..x

o dz
D

- = @&)(CA,  sat - CA)ax dz2
(12.110)

where D, is an axial dispersion coefficient correlated by Chung and Wen [C3]
for gas to particle mass transfer.
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Mass transfer coefficients for gas to particle have been correlated
reasonably well; the Sherwood number, Eq. (12.87),  is a function of the
Schmidt number [Eq. (8.6)],  the fluidization Reynolds number [Eq. (12.94)],
and the quantity d,/(x,L,),  where x,  is the volume fraction of solids involved
in the mass transfer (xs  = 1 when no inert solids are present).

The most recent correlations, as recommended by Wen and Fane [Wl]
for gas to particle fluidized beds, are:

Ns,,,m  = k,,d,ylD  = 0.43(NM,,)o~w(N,)o~33 0.5 5 NMRe  I 80 (12.111)
NSh,fb = k&d,ylD  = 12.5(N,,,)“~2(iVsJo.33 801~~~~510~  (12.112)

where NMRe is the empirically modified Reynolds number defined as

NMRe-- N~e.e 5 < NRe,e  < 120

(12.113)

These equations work fairly well, except in the case of catalytic reaction
systems, where km  is underestimated [W2].

The above correlations can be of use in heat transfer estimation by
assuming that the Colburn analogy is valid; i.e., jH equals jM.

12.3.3  Liquid-Solid Fhidization

Liquid-solid fluidization is almost exclusively particulate fluidization-a mostly
uniform bed where the solids circulate randomly and individually throughout
the bed without significant bubble formation. The void fraction in particulate
fluidization has been correlated by many investigators [C2]. The most widely
used equation is that of Richardson and Zaki [R3,  R4, R5]:

E” = UJUi (12.114)

where U. is the superficial velocity measured in the empty column and Ui  is the
superficial velocity for a void fraction equal to unity. Equation (12.114) is
useful for both particle sedimentation and fluidization; for fluidization, Ui  is

log,, ui  = log,, U, - d,ld, (12.115)

with’ d, being the particle diameter and d, the column diameter, and U, the
terminal free-falling velocity (cf. Section 12.2.3). The empirical exponent n in
the Richardson-Zaki equation for fluidization has been correlated as follows
1~1:

n = 4.65 + (20)(d,ld,) NRe,T  < 0.2 (12.116)

n = [4.4 + (18)(d,/d,)](N,,,T)-0.03 0.2 < NRe,T  < 1 (12.117)

n = [4.4 + (18)(d,/d,)](N,,~)-0’01 1 <NR~,T <200 (12.118)

n = ~.~(NR~,T)-‘.’ 200 C NRe,T  c 500 (12.119)
tr = 2.4 NRc.T>  500 (12.120)
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where the Reynolds number NRe,r7  is based on the terminal velocity U, and the
viscosity and density of the fluid at zero solids concentration:

Nwr  = do  Qplp (12.121)

Correlations for nonspherical particles and fluidization with a range of particle
sizes have been reviewed elsewhere [C2, Fl].

The expanded bed height Lfb  is calculated from

(12.122)

The velocity for minimum fluidization can be estimated from Eqs.
(12.116) through (12.120). Also, the Richardson-Zaki equation, Eq. (12.114)
applies to gas-solid fluidization, although the experimentally observed values
of IZ  are significantly higher than those predicted by Eqs. (12.116) through
(12.120). Likewise, Eq. (12.122) applies equally for gas-solid and liquid-solid
fluidization.

The pressure drop between fluid and particles during particulate fluidiza-
tion has not yet been correlated satisfactorily. The pressure drop is a complex
function of the fluid properties as well as d,,  pP,  E, the shape of the particles,
(p,  - p), and the flow patterns within the bed. This lack of correlation is not a
serious problem, however, as the use of purely particulate beds is usually
limited to liquid systems. A modification of the Ergun equation [E2] is widely
used to correlate pressure drop; however, no generalization is recommended
because the resulting equations are very sensitive to the values of E,,,~  and to
the sphericity [C2]. Figure 12.25 is based on gas-solid fluidization, but it
applies equally to particulate fluidization. Since the pressure drop increases
only slightly with a 3- to 5fold  velocity increase from Vmr,  Eq. (12.98) can be
used to calculate -AP,,,~, once e,f  and the other variables have been
determined. Note that the liquid head is often significant and must be included
in -Ap.

Equations (12.95) through (12.97) for prediction of U,,,, apply equally for
liquid-solid fluidization, since the constants in Eq. (12.97) were obtained from
both liquid and gas systems. In order to correlate the superficial velocity with
pressure drop, it is recommended that several bed heights, Lfb,  be measured
experimentally for known U,, (and, better still, known AplL).  Then from Eq.
(12.93) and the following

(J,A?c= (- Ap)d;E3

I - E (15O)(L,p)(l-  &)2

the constant k3  may be determined for the system of interest.

(12.123)

‘The notation used in the !iterature  is that N,,., is the Reynolds number based on the terminal
settling velocity, and NRe.t is the Reynolds number based on the diameter of a cylinder [cf. Eq.
(12.145)].
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Heat and mass transfer. Grace [G5]  has reviewed the heat transfer correla-
tions applicable to liquid-solid fluidixation. It is evident that gas-solid heat
transfer equations do not apply to liquid-solid systems. For mass transfer
between particle and liquid, Wen and Fane [Wl] recommend

Liquid allidized  beds

N Sh,fb  = k&d,y/D  = 2.0 + 1.5[(1-  E)(N~~,~)]“~‘(N~)“~~~ (12.124)

Also, Shen et al. [S3]  studied particle-liquid mass transfer in a fluidixed bed
using Reynolds numbers from 0.6 to 7.3.

Conclusion.  Fluidixed beds have several advantages over static beds. The
small size of the particle used in fluidixed beds results in a large surface area
for a given quantity of solids, which in turn gives high rates of surface reaction,
heat transfer, and mass transfer. Also, the small size reduces’the resistance to
mass diffusion within the particle. The rapid mixing of solids with fluid within a
fluidized bed results in a uniform temperature within the bed and a high rate of
heat transfer between the fluid and the walls. This increased heat transfer is
especially important when highly exothermic or endothermic reactions are
taking place in the bed. Another advantage lies in the ability to increase the
velocity by varying the area so as to transport the solid particles into or out of
the reactor. Fluid catalytic cracking of petroleum is a very important example
of fluidization and pneumatic transport.

Of course, there are problems associated with fluidization. If the particles
are the catalyst, which is so often the case, then the fluidization process will
cause attrition (i.e., breakdown) of the solids. These “fines” are immediately
entrained and must be removed after the fluid has exited the bed. The process
by which the small particles are pneumatically transported out the top while
the normally sized particles are fluidized in the bed is called elutriation. Over a
period of time, the catalyst must be replaced because of the combined
processes of attrition and elutriation.

At the present time, there is no satisfactory way to design a large-scale
fluidization unit with bench-scale kinetic data alone. Scale-up is a serious
problem in fluidization. Careful attention must also be given to the design of
the fluid distributor plates that introduce the gas into the bed of solids.

Example 12.14. Anthracite coal, density 94lb,K’  (1506 kgmm3),  is to be
fluidized with air at 20 psia and 842°F in a vessel 10 ft in diameter. Fifteen tons of
coal, ground to an average diameter of 200 pm, are placed in the vessel, which is
filled to a height of 7 ft. The acceleration due to gravity is 9.78 m s-*.

Compute (a) the static void fraction, (b) the minimum void fraction and
bed height for fluidization, (c) the settling velocity for a single particle in a static
fluid, (d) the minimum pressure drop for fluidization, (e) the minimum velocity
for entrainment, and (f) the heat transfer coefficient at the wall for a superficial
velocity 2.5 t imes U,,.
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For air at 842°F and 14.6% psia, the following are available:

p = 0.487 x 10M3  g cm-’ = 0.487 kg me3

p = 3.431 x lo-* cP = 3.431 x lo-’  kg  m-’ s-’

k = 0.05379 W m-’ K-’

NR  = 0.7025

(9

Answer. English units will be selected for this solution.
(a) Static  void fract ion.  To f ind the void fract ion,  f i rs t  the volume of  coal  and the
total volume are calculated. The total volume of coal is the mass divided by
density:

Vd = (15)(2000)/94 [(ton)(lb,  ton-‘)/(lb,  ft-‘)I = 319.1 d (ii)

The total volume of the vessel at a height of 7 ft is

V toul  = (area)(length) = (Z&/~)(L)  = ~(10)‘(7)/(4)  = 549.8 ft3 (iii)

Using Eq. (12.81),  the static void fraction is

volume a i r V- - V,, 549.8 - 319.1
&= =

total  volume v = 549.8
= 0.42

toti
(iv)

(b)  Minimum void &action  and bed height.  The minimum void fraction for fluidiza-
t ion can be est imated from ei ther  Fig.  12.24 (for  atmospheric  pressure only)  or
Eq. (12.92). The particle diameter is 200 pm,  or 0.00787 in. Figure 12.24 predicts
E,~ to be about 0.58. From Eq. (12.92):

E,,,~ = 1.0 - 0.356[log&,)  - l] = 1.0 - 0.356[loglo(200)  - l] = 0.537 (v)

This value seems a little low, and 0.58 wil1 be used. Note that the effect of
pressure is to increase emf s l igh t ly .  The  cor responding  bed  he ight  f rom’  Eq.
(12.93) is

J!+,,~=  (L,)(l  - ~~)/(l- E,,,~) = (7)(1-  0.42)/(1-  0.58)

= 9.675 ft = 2.949 m (4
(c) Minimpm  flaidipti011  velocity.  The minimum velocity for fluidization is esti-
mated using the Archimedes number.  Of the propert ies  of  a ir  in  Eq.  ( i ) ,  only the
density changes appreciably with a small increase in pressure to 20 psia:

PlIPl  = PJPZ

p = (0.4&7)(20)/(14.696)  = 0.663 kg me3  = 0.0414 lb, ftw3

From Eq. (12.96),  the Archimedes number is

NA, = h&)(P, - P)/Y’

(vii)

= (0.663)(9.78)(200  x 10-6)3(1506  - 0.663)/(3.431 X lo-‘)’

x [(kg m-‘)(m  s-‘)(m3)(kg m-“)/(kg  m-l  s-‘)‘I

= 66.33

From Eq. (12.97),  the Reynolds number at  minimum fluidizat ion is

N ~e,mf  = CC:  + W’A~)‘~  - Cl
= [(27.2)*  + (0.0408)(66.33)]1n  - 27.2 = 0.04970

(viii)

(ix)
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Using  the  def in i t ion  of  NRc.,,,r, Eq.  (12.95)  the veloci ty for  minimum fluidizat ion
i s

CJ,,  = (NR,,,&)/(dpp)  = [(0.04970)(3.431  x lo-‘)]/[(200  x 10-6)(0.663)]

= 0.012% m s-l  = 0.0422 ft s-’ (4

This veloci ty seems low, but  remember that  U,,,,  i s  a  superf ic ia l  ve loc i ty ,  based  on
an empty chamber .  The veloci ty  in  the  gaps surrounding these  very f ine  par t ic les
wil l  be  much higher .
( d )  Miaimum  pressllre  dmp. The minimum pressure drop for f luidization is  calcu-
lated from Eq. (12.98):

-A~mr = (P, - PM1  - GAS,,~  + mL (12.98)

-Apmr=  (1506 - 0.663)(9.78)(1-  0.58)(2.949)  + (0.663)(9.78)(2.949)

x [(kg  m-‘lb  s-%m)l
= 1.825 x 104  kg m-’ s-‘= 1.825 x 104  Pa = 2.647 psi (xi)

(e)  Par t ic le  setthug  ve loc i ty .  Assuming  no  h indered  se t t l ing ,  Eq .  (12 .79)  wi l l  be
used to  f ind an express ion for  the  terminal  veloci ty :

U:  = (~w)(P,  - P)/(~PCD) (12.79)

ir: = [(8)(200  x 10-6/2)(9.78)(1506  - 0.663)]/[(3)(0.663)(&,)]

x [(m)(m  s-*)(kg  m-‘Mkg  me3)1
= 5.923/C, (xii)

where the units of (I: are m*s-*. Following the procedure in Example 12.12,
Newton’s law, Eq. (12.76),  will be tried (CD  = 0.44):

U,  = (5.923/0.44)‘R  = 3.669 m s-’ = 12.04 ft s-’ (xiii)

The part icle  Reynolds number,  Eq.  (12.68),  i s

N Rc,p  = U,d,p/p  = (U,)(200  x 10-6)(0.663)/(3.431  x lo-‘)  = 3.8659

= (3.865)(3.669)  = 14.18 (xiv)

Clearly, at the point of minimum velocity for fast fluidization, the terminal
set t l ing  veloci ty  i s  not  in  the  range of  Newton’s  law.  Therefore ,  Eq.  (12.75)  for
the transition region will be tried. Equation (12.75) is solved for Cu  and then
substituted into Eq. (xii):

G= “F  = 5;89:  (NRs)o.6  = $!$  ( !.if)“‘6  (v,)“.”
D

= +!$
( .I( .

“;;;;~(f;~3’)o.6  ( ut)o.6  = (0.7205)(  CJJ”.6 (xv)

Equat ion (xv)  i s  solved for  the  terminal  veloci ty  ( the  ent ra inment  veloci ty) :

IJ, = (0.7205)“(*-“.6)  = 0.7912 m s-’ = 2.596 ft SK’ tx4

Checking the solution, from Eq. (xiv) the Reynolds number is 3.06; from Eq.
(12.75) CD is 9.46, and from Fig. 12.16 CD is about 12. Since U,  is for a single
par t ic le ,  the  void  f ract ion is  zero ,  and U,  i s  bo th  a  super f ic ia l  ve loc i ty  and  the
actual velocity.
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The spread between the calculated values  of  U,  and U,  i s  large:

UJIJ,  = 0.7912/0.01286  = 61.5 (xvii)

(f)  Bedtowa~beattmmfezadicknt.  Equations (12.94),  (12.101),  and (12.102) are
used  to  find  the Nussel t  nmnber:

NRem = dJJ.od~ (12.94)

N r.,u.m = 0.W.r(N,,m)“.3 (12.101)

N Nu,t~,  = hwdplk (12.102)

From Eq.  (12.94)  the Reynolds  number a t  superf ic ia l  veloci ty  2 .5  t imes U,  i s

N Re,ft. = 4 U,plp

= (200  X 10~p)(2.5)(0.01~6)(0.663)/(3.431  x lo-‘)

X [(m)(m Sr)(kg  mm3)/(kg  m-*  s-r)]
= 0.1242

From Eq. (12.101),  the  Nusse l t  number  i s

(xviii)

N,.,“,&  = 0.6N,(NRe,,)o.3  = (0.6)(0.7025)(0.1242)“~3  = 0.2254 (xix)

From Eq. (12.102),  the heat transfer coefficient at the wall at a velocity of 2.5
times CJ,, i s

h, = (N,,,,)(k/d,) = (0.2254)(0.05379)/(2W x 10-6)  = 60.6 W m-’  K-r (xx)

Compar ison of  th is  va lue  wi th  tha t  f rom Fig .  12 .26 shows tha t  a t  the  ve loci ty  of
0.032 m s-’ (i.e., 2.5U&,  the value of h, is low for particles of size 200 ,um.  The
velocity should be around 0.2 m s-r for maximum heat transfer. Note a&that
Eq.  (12.101)  does not  predict  the  maximum in Fig.  12.26.

Example 12.15.  A bed of activated alumina catalyst of size 400pm is to be
tluidized  in liquid of viscosity 1OcP  (6.72 x 10-31b,ft-‘s-‘)  and density
58 lb, fte3.  The height and void volume of the static bed are 5 ft and 0.45,
respectively. The density of the catalyst is 4 g cmw3  (249.6 lb, fi-‘).  Calculate the
pressure  drop  in  ps i  and  the  superf ic ia l  ve loc i ty  ( f t  s-l)  a t  the  po in t  o f  inc ip ien t
fluidiiation. Let g = 32.174 ft s-*.

Annucr.  Since 1 pm  = 3.937 x IO-‘in.,  the diameter of the catalyst is 0.0157 in.
(a relatively coarse catalyst). For this problem, in which coarse particles are
fiuidized  by a liquid, c,,,r  is probably not much greater than 0.45. The pressure
drop at  the minimum fluidizat ion veloci ty from Eq.  (12.98)  is

= (249.6 - 58)(1.0)(1-  0.45)(5)  [(lb, tT3)(lb,lb,‘)(ft)]

= 526.9 lbr  ft-’  = 3.66 lbf  in.? 6)

where g, is added to Eq. (12.98) in order to introduce the unit of force. Equations
(12.95)  through (12.97)  are  used to  f ind the  minimum veloci ty  for  f lu idizat ion.
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From Eq. (12.96),  the Archimedes number is

NA,  = (pgd;)(p, - PI/P*
= (58)(32.174)(0.0157/12)3(249.6  - 58)/(6.72 x 10-3)2

x [(lb, tY3)(ft s-‘)(ft’)(lbm  W3)/(lb: ft-*  s-‘)I
= 17.73 (ii)

A value of N,,  = 17.73 is still in the small-particle range, and following the
calculation in Bq.  (ix) in Example 12.14:

NRc,mf  = d,U,,p/p  = [(27.2)*  + (0.0408)(17.73)]1n  - 27.2 = 0.01330 (iii)

Solving for V,, as done in Example 12.14, Eq. (x), gives

V,,,,  = (Ne,,J[p/(dpp)]  = (0.01330)(6.72  x lo-‘)(0.0157/12)-‘(58)-’

= 1.18 x 1O-3 ft s-l (iv)

12.3.4  Packed Beds

Figure 12.20 illustrated flow through a bed of solids at superticial  velocities
below the minimum velocity for fluidization, i.e., U, < U,,,,. Equipment so
designed is termed a packed or fixed bed. Important applications include
drying operations, absorption or desorption of gas or liquids to or from solids,
mass transfer through gases or liquids to catalyst particles, and mass transfer
between gas and liquid promoted by increased contact provided by the solid
surfaces.

Pressure drop. Pressure drop in packed beds is usually correlated in the form
of friction factor versus a modified Reynolds number. In Chapter 10, the
COnCept  of hydraulic radius ru [Eq. (10.45)]  was used by relating rH to an
equivalent diameter d,. Then the Reynolds number in Eq. (6.2) becomes

NR~  =  Lded~  =  (uave)(4rH)(dp) (12.125)

where U,, is the average velocity in the voids of the packed bed. The most
convenient definition of hydraulic radius for a packed bed is on a volume to
area basis:

VOID VOLUME IN BED
rH  = SURFACE AREA OF PARTICLES

(12.126)

Since the void (free) volume is the total volume minus the volume of solids,
and E [Eq. (12.81)]  is the ratio of void volume to total volume, the following
identities are true for IZ  spheres, each of volume rids/S:

(12.127)
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Equation (12.127) is inserted into Eq. (12.126) along with the surface area,
njtdi:

r, =
n(@6)[el(l-  E)]  = 4

njcdi
(12.128)

The velocity in Eq. (12.125) is simply related to the superficial velocity U,
(the velocity in the empty chamber) by

u,  = EU, (12.129)

which can be proved from Eq. (7.10) for constant flow W.
Equations (12.125),  (12.128), and (12.129) can be combined to yield a

modified Reynolds number for packed beds N&,pb:

(12.130)

where the factor (2/3)  that naturally arises is always dropped from Eq.
(12.130),  since NRe,pb will be used in empirical correlations.

The friction factor can be similarly cast into the previously introduced
variables for the packed bed. Using Eqs. (12.128) and (12.129) with Eq. (6.89)
gives

f=zL= (de/W-ApplL)  = (--WQ(E3d,)

P~vef2 PC& 3Ptiv&-  E)
(12.131)

The packed bed friction factor fpb  is defined from Eq. (12.131) by omitting the ,
factor of 3:

&3 (d,)(-Q/L)
fpb = -l--E pvo

(12.132)

For laminar flow, the variables N&,@  and fpb form the Kozeny-Carman
equation [E2,  K4]:

fpb = j+= N~e,~b  <  20 (12.133)
Re,pb

Equation (12.133) is similar to Eq. (12.67) for flow past a sphere. Note that Ap
will usually include a static pressure head, since Ap will be small in laminar
flow.

The Burke-Plummer equation [B5, K4]  is

fpb = 1.75 ld < N,,,, < lo4 (12.134)

The Burke-Plummer equation applies only at very high Reynolds numbers.
Again, Eq. (12.134) and Eq. (12.76) are very similar in form.

Ergun [E2] combined Eqs. (12.133) and (12.134) into a general equation
for flow in packed beds:

fpbC-p + 1.75 1  < N,,,, < lo4
Re,pb

(12.135)
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Ergun’s equation applies in the region of intermediate Reynolds numbers.
Also,  this equation can be used for gases by using the density of the gas as
evaluated at the mean of the inlet and outlet pressures [Gl]. Additional
references are available (B3,  E2, Gl, K4, Pl].

Often the pressure drop Ap and superficial velocity U, are measured in
order to calculate E from Eq. (12.135) since E is difficult to measure in
industrial equipment. There may be substantial errors in predictions from Eq.
(12.135),  especially in view of uncertainties in E and d,  for many types of
packing.

Heat and mass transfer. Heat and mass transfer to a single sphere were given
by Eqs. (12.85) or (12.86) and (12.87). For flow in a packed bed of spheres,
Sen Gupta and Thodos [S2]  showed that the analogy between heat and mass
transfer is valid. The following is the most recent correlation [D2,  Gl]:

jM = jH = (0.4548/e)(ZV,,,p)-o’4069 10  5 i&c,p  5 104 (12.136)

where jM is from Eq. (12.89) and jH is slightly modified from Eq. (11.79) (as is
everything else in packed beds) to give

.
jH  =  %t(NPr)z3  =  @&/  uo)(k)m (12.137)

with p, cp,  and NR all being properties of the pure fluid; &,  is the superficial
velocity.

For heat transfer only, the most accurate correlation is [W2]:

u
k

(i+v~)-‘~  = (0.5)(+-)1a(NRe,p)1”  + ~~4~)~~NR~.~~m

(12.138)

In Eq. (12.138),  ah properties are evaluated at the average fluid temperature
in the bed. The heat transfer coefficient hi,,,  is the log-mean coefficient in the
equation:

In Eq. (12.139),  V is the total volume of the fixed bed and a, is the surface
area of the packing per unit volume:

a, = (A,IV,)(l  - E) (12.140)

where A, and VP are the surface area of the packing and the volume of the
packing, respectively; AT, is the log-mean temperature difference:

AT,,- ATti
ATh=  ln(AT,,/AT,)

(12.141)
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Note that all data used to obtain Eq. (12.138) were taken with air, NPr = 0.7.
Hence, the dependency of IV,+ on NR is strictly a guess based on other
boundary layer correlations.

Reference data for mass transfer are available at Reynolds numbers
above 4000, but no equation exists. An excellent review is available [Gl].
Also, other equations for packed beds may be found in the literature [Gl, H3,
M3].  For beds of coarse solids, the following can be used:

N Nu,pb  =  2.0  +  1.8(&r)1’3(NRe.pb)1R NRe,pb  ’ 100 (12.142)

&h.pb  = 2.0 + 1-8(Nsc)1n(NRe,pd’n NRe,,  ’ 80 (12.143)

The mass transfer problem in tixed beds is more important than the heat
transfer problem. Fluidized beds are more satisfactory than packed beds for
applications in which appreciable heat transfer is likely. The mass transfer data
for packed and fluidized beds are surprisingly good. Figure 12.28 summarizes
the equations and data for mass transfer between solid particles and fluid.
Looking at a constant Nue,p,  say 1000, it is seen that

k c, sphere <  kc,  Ruidized  <  kc,  tied (12.144)

1oof

1Of

1t

4.h

0.

xl’

x)-

IO-

10 -

2-

l-

1,
0 :

I I I

Typical trace for a given

I 1 10 100 loo0 IOC
NRc.p

Liquid-solid
Nsc=  loo0

FIGURE l2.28
Sherwood number versus Reynolds number for mass transfer with spheres and beds of solids.
(Adapted from Kunii and Levenspiel,  Fluidization  Engineering, p. I%, Wiley, New York, 1969.  By
permission.)
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In Fig. 12.28, it is surprising to see mass transfer data for both fixed and
fluidized beds below the prediction for single spheres, Eq. (12.87). At such low
flows, it can be surmised that significant channelipg  occurs so that some parts
of the bed see no flaid movement. Yet Eq. (12.87) predicts a Sherwood
number of 2.0 for diffusion from a sphere into 2  stagnant fluid. At this point,
there is no satisfactory explanation for this discrepancy.

In summary, this section has discussed the momentum, heat, and mass
transfer in flow through packed (fixed) beds; these form the basis for solution
to any problem in this subject. These solutions are detailed in books on unit
operations and kinetics [Gl, H2, M3, Pl, S3, Tl].

12.3.5  Single-Cylinder Heat Transfer

Prediction of the heat transfer coefficient from a cylinder to a flowing fluid is
an important problem. In this section heat transfer to a single cylinder is
covered, and in the next section heat transfer to a group of cylinders (a bank of
tubes or tube bundle) is covered. The drag force on a single cylinder was
discussed previously in conjunction with Fig. 12.16. There are no important
mass transfer problems in this area.

Heat transfer from a cylinder in cross flow is shown in a plot of the local
Nusselt number versus the angle 8 from the stagnation point in Fig. 12.29
[G4].  The first minimum at 0 = 90” is at a point where the turbulent boundary
layer separates, as shown in Figs. 12.4 and 12.18. There are many correlations
for heat transfer to a single cylinder over which the fluid is flowing in a normal
direction with velocity U,. Only the most modern will be offered here. In the
following correlations, the appropriate Reynolds number is NRe,t:

N Re.t = 4 Um~,l~r (12.145)

FIGURE Lt.29
Local Nusselt number for heat transfer from a cylinder
in cross flow. (Adapted from Giedt, Trans. ASME  71:

Angle !rom the stagnatlon  pomt, B 375 (1949). By permission of ASME.)
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where dt  is the diameter of the cylinder and Pf and ,uf  are evaluated at the film
temperature Tf  [cf. Eq. (11.32)]:

l T,=(Tm+Tw)/2 . (12.146)

The Nusselt number for flow past a single cylinder of diameter d, is correlated
by F41

N~u,t  = hdtlkf

= 0.3 + (0.62)(N,,,~)‘“(N,,31’3
[l + (0.4/N,,f)2”]“4

)[ 1 + (,.,“;&)“T (12.147)

100 I NRe,,  I 10’ k&‘pr,f  2  0.2

where all fluid properties are evaluated at the film temperature &. The
correlation in Eq. (12.147) covers a wide range of Reynolds numbers; closer
agreement with the experimental data for the midrange of Reynolds numbers
is obtained from the following simplification of Eq. (12.147) [H3, L5]:

N
N”,t  = Oe3  + (

(0.62)(N,,,,)‘“(NR,f)‘”
[l + (0.4/Np,32n]“4 )[I+  (2.;;‘;ti)1n]  (12.148)

2x104(NR,,~~4x105 Nre,t&r,f  2  0.7

Another correlation is [Nl]

N Nu,t  = [0.8237 -0.5 hl(NRe,tNPr,f)]-l

Nrd’hr,f<0.2

(12.149)

Again, all properties in the above three correlations are evaluated at T,; the
heat transfer coefficient h in Eqs. (12.147) through (12.149) is defined by

4 = h&ylindTv  - T,) (12.150)

Note that the product of the Reynolds number and the Prandtl number is the
Peclet number [cf. Eq. (8.3)]:

NRe,tNpr,f  = U=d,pfc,,flkf  = Npe,f (12.151)

Example 12.16. A new design of  a  hot-wire anemometer  24 ym  in  d iameter  i s  to
be used to measure the veloci ty of  a ir .  The anemometer  is  operat ing at  a  constant
temperature of  415 K,  and the anemometer  indicates  that  the power consumption
is 0.1 W. The length of the wire is 250 diameters. If the air in the duct is at 385 K,
est imate  the  veloci ty  in  m s-i.

Answer. The area for heat transfer is the circumference of the wire (nd,)  times
the  l eng th  25Od,:

A hea,  = (~&,)(250d,)  = ~r(24  x 10-6)2(250)  = 4.524 x 10m7  m2 (9

From Eq.  (12.146) the f i lm temperature is  the average of  385 K and 415 K, which
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is 400 K. The properties of air at 400 K are given in Table A.2:

pr  = 0.8825 kg mm3

/.A~  = 2.294 X lo-‘cp = 2.294 X lo-’  kg m-’ s-’

cpvf  = 1013 J kg-’ K-’

k, = 0.03305 W m-’ K-’ (ii)

N,,,f = 0.703 (iii)

S ince  the  ve loc i ty  i s  unknown,  the  Reynolds  number  and  the  Peclet number are
unknown.  But  the Nussel t  number  can be calculated from the information given
and Eq.  (12.150):

(12.150)

= 0.1/[(4.524 X lo-‘)(415  - 385)]  = 7.368 X ld  J m-*  K-’ s-’

From Eq. (12.147),  the  Nusse l t  number  i s
(iv)

N NU,t  = k&/k,  = (7.368 x 103)(24  x 10-6)/(0.03305)  = 5.351 (4

The Reynolds number must  be found by tr ial  and error  from whichever of
Eq. (12.147) or (12.148) applies. In this problem, Eq. (12.147) will be tried first,
s ince  the  Nusse l t  number  appears  to  be  low;  the  root  of  Eq.  (12 .147)  i s  the  va lue
of N~e,t that  makes  the  fol lowing zero:

f(NRe,t)  = 0 = N,,,  _ 0.3 _ (“‘62)(NR=.,)‘“(Np,.f)‘~]  [ 1 + (2 ,;.$“]”
11  + (0.4/N,.3u3]““ .

Let n replace N,,,,  for ease of notation in finding the root in Eq. (vi); after the
appropriate substitutions:

f(x)=O=5.351-0.3-
(0.62)(~)‘~(0.703)“~[1+ (x/2.82  x 1@)“‘]4’s

[1+ (o.4/o.703)u3]“4 3 *

= 5.051 - 0.48375(~)“~[1.0  + (x/2.82  x 105)5’8]4’s (vii)

The  s tandard  root - f inding  techniques ,  such  as  Newton’s  method and the
false position [Pl, Rl],  are satisfactory for the solution of Eq. (vii). Alternatively,
a short program to calculate f(x) for each entry of x may be written in FORTRAN
or  BASIC or with a  programmable calculator .  Figure 12.30 presents  a  program in
BASIC, written for a microcomputer. As a first guess, the term (x/2.82X  105)  is
neglected.  Then

xl = (5.051/0.48375)*  = 109.0 (viii)

The value of the function f(x) for 109.0 is

f(x,) = 5.051 - (0.48375)(109.0)“‘[1.0  + (109.0/2.82 x ld)5’*]“’

= -2.957 x lo-* 64

The value of x1 selected should be too high, since inclusion of the term xl282  000
wil l  decrease x.  Since Eq.  (12.147) is  recommended down to NRe,l  equa l  t o  100 ,
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.

70 REM
80 REM
100 REM EXAMPLE 12-16 - HEAT TRANSFER FRON  A TUNGSTEN WIRE
110 PI=3.141592654#
120 0NE=1!:E13=0NE/3!:E14-0NE/41:E23~2!/31:E58.51/81:E45.4!/5!
130 REM PROPERTIES OF AIR IN SI UNITS
140 RH0..8825#:XMU=.00002294Y:CP=lOl3!:XK-.03305
150 PR=.703
160 REM DIAMETER OF CYLINDER
170 OT..000024
180 A=PI*DT*DT*250!
200 REM HEAT TRANSFER COEFFICIENT AND N-NUSSELT
210 Q=.l#:TD=415!-385!
220 H-Q/(A*TD)
230 XNU.H*DT/XK
240 PRINT"EXAMPLE  12-16”:PRINT” AREA - ";A:PRINT' N-PR = ";PR
250 PRINT" H = ";H:PRINT" N-NU - q ;XNU
260 C1-.62*PR"E13/(ONE+(.4/PR)"E23)^E14
270 PRINT"
300 REM LOOP FO:'Ti&?:NCI  ERROR TO FIND THE ROOT F(X)
310 PRINT:INPUT"ENTER X";X
315 IF X-O THEN GOT0 500
320 F-Cl*SQR(X)*(ONE+(X/282OOO!)^E58)^E45
330 F-XNU - .3# - F
340 PRINT" x - ";X
350 PRINT" F - ";F
360 GOT0 310
500 PRINT:PRINT"END OF JO8":END

FIGURE 12.30
BASIC program to find the root of Eq. (vi) in Example 12.16. *

let us try 100:
x2 = 100 f(xJ  = 0.1862 (4

Now a  bracket  on the  root  has  been located,  i .e .

100.0 <x  < 109.0 (xi)

After  several  more  t r ia ls ,  the  fol lowing root  i s  located:

x = NRC,  = 107.7 f(x) = 1.037 x lo-3 (xii)

Equation (12.145) is solved for velocity, and the result is

” _ &d~f-  W’7.7)(2.294  x lo-‘)
m

dtpr (24 x lo-9(0.8825)

= 116.6 m SC’  = 382 ft s-l (xiii)

In pract ice ,  the  hot  wire  anemometer  is  pr imari ly  a  research tool ;  in  this
application, the anemometer is carefully calibrated, rather than relying on
corre la t ions  such as  i l lus t ra ted  above.  In  fac t  Eqs .  (12 .147)  and (12.148)  fo l low
the well-known King’s law [K2]:

Nr.,u  0: Wac)“* h a (,)‘~ (xiv)

However ,  a  s igni f icant  par t  of  the  King s tudy was  conducted a t  low f low ra tes
where natural  convect ion effects  are important  ( i .e . ,  buoyancy of  the heated air) .

12.3.6  Banks of Tubes

Flow across a bundle of tubes occurs in many heat exchangers. As a result,
there are many excellent summaries of pressure drop [K3]  and heat transfer
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[G6,  H3, 11, K3, W2, Z2] across banks of tubes. Most of the work was done
over 30 years ago but is still valid. There is no practical mass transfer
application here.

A number of new terms apply to flow across banks of tubes. Figure 12.31
shows the two possible configurations: in-line and staggered. From Fig. 12.31,
the following are defined:

1. Spacing of rows perpendicular to flow: S,
2. Spacing of rows in flow direction: S, (both in-line and staggered)
3. Number of rows in flow direction: N
4. Effective flow length through tube bundle: Ltb
5; Equivalent diameter based on volume: d,
6’.  Equivalent diameter based on area: d,
7. Mass velocity through the minimum area perpendicular to the flow: G,,,,

Direction of flow

1111111111111111
R0~100000  ’

(a) In-line tube rows

Direction of flow

I
Row 1

Row 2

Row 3

Row 4

lllll
0 0

0

00°
-it-4

0 0
010

(b) Staggered tube rows

FlGuREl2.31
Notation for in-line and staggered tube rows.
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Expanding on the above:

Ltb  = Ns, (12.152)

d, = (4)(FREE  CROSS SECTIONAL AREA)/(WETTED  PERIMETER)

’= (4W&.  - d/4)
ndt

d,=
(4)(FREE  VOLUME IN TUBE BANK)

EXPOSED SURFACE AREA OF ALL TUBES

(12.153)

(12.154)

G,,,= = (MASS FLOW RATE)/(MINIMUM AREA) (12.155)

Note that d, and d, are essentially equal for large banks of tubes with no fins.
The mass velocity has units of mass divided by area times time. The Reynolds
number based on d, is

N ~e,v = 4Gnaxl~ (12.156)

Comparison of results between researchers is diicult because each favors
a slightly different definition of the friction factor for use in heat exchangers.
The friction factor of Gunter and Shaw [G7] is

,

where Z,  is the distance between tube centers in adjacent rows:

&=&. (in-line)

Z = ($ + Sc)ln (staggered)

Figure 12.31 includes Z,  for these cases. For laminar flow:

f;b=p
R6Z.V

For turbulent flow (NRe,”  > 100):

ftb  = 1.92(N~~,~)-~.~~’

(12.157)

(12.158)

(12.159)

(12.160)

From Fig. 12.31, it is obvious that the first line of tubes that the fluid
encounters is essentially isolated from the effects of adjacent tubes. This is in
fact the case, and Eqs. (12.145) through (12.151) apply. The tubes behind the
first row are subject to higher levels of turbulence, and the heat transfer
coefficients are much higher.

The best correlation for Nusselt number in tube bundles is that of
Zukauskas [Z2] who proposed the following:

N Nu,tb  = M/k  = E(Np,)“““(Np,/Np,,w)n(NRe.tb) (12.161)

where E, e,  and II  are constants and where the tube bundle Reynolds number
is

NRe.tb  = 4 GnaJcI = 4 Unaxpl~ (12.162)
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with G,, already detined in Eq. (12.155). Obviously, G,, equals the product
of u,, and p, both of which depend on temperature. Therefore, it is best to
find G,, directly; the velocity U,, is the velocity of the fluid as it passes
through the minimum area along the flow path. In Eq. (12.161),  NR,W  is
evaluated at the constant wall temperature T,. AlI other properties are
evaluated at the mean bulk temperature Tb:

Tb = (Ti  + L)/2 (12.163)

The heat transfer coefficient in Eq. (12.161) is defined in a manner similar to
that in Eq. (12.150) for single cylinders:

q = W,(T,  - T,)

where AhlkS  is the surface area of all the tubes.

(12.164)

The constants for Eq. (12.161) are given in Table 12.5. Note that n is
zero for gases and 0.25 for liquids. Also,  researchers have found that heat
exchangers with the in-line configuration operate poorly if Sr/S, L 0.7. Hence,
no correlations in the range 0.7 5 Sr/&s  2.0 are recommended because no
exchangers are manufactured with this design. The analysis of Grimison [G6,
H3,11, M3] includes correlations for various geometries; the optimum must be
ascertained for each design.

Since the upstream rows of tubes have lower heat transfer coefficients
than the “inner” ones, Eq. (12.161) was prepared using the inner rows of tubes
only. Figure 12.32 corrects in an approximate way for this effect, if it is desired
to compute an average h for bundles where N is smaller than 10. DetaiIs  may

TABLE l25
Heat transfer correlation for tube bank in cross flow*

Co&ads  for F.q.  (l2.161)t

In-lime f%lFd
R-twdReW
nmmbereppkbay Rwvof Rnseof

Upper &I& E c &I& E c

10 l o o al l 0 . 8 0 .4 a u 0 .9 0 .4
100 l am all $ $ au -4

loo0 2x16 co.7 0 . 2 7 0 . 6 3 12 :o.J@= 0.6

>2.0 0 . 4 0 0 . 6 0
2x16 all 0 . 0 2 1 0 . 8 4 a u P 0 . 8 4

l Compiled from Zukauskas  [22] and Lienhard  [L5],  p. 333. The reference temperature for all  properties is Tb,
Eq.  (12.163).
t The F’randtl  number  exponent n equals zero for gases  and 0.25 for liquids.
#Equations (12.145) to (12.151) for isolated tubes apply in  this  range.  Do not use  Eq.  (12.161).
0 For NR = 0.7, the constant E equals  0.019; for N,.,  2:  1.0, E equals O.U22.
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- Aligned rows
--- Staggered rows

0.6 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ . ’ ’ ’ ’ ’ ’ ’ ’
0 2 4 6 8 10 12 14 16 18 20

Number of rows from front, N

FIGURE l2.32
Correction to Eq. (12.161) for heat transfer in the front rows of a tube bundle. (From Zukawkas,
in Advances in Heat Transfer, vol. 8, p. 156, Hartnett  and Irvine teds.),  Academic Press, New
York, 1972. By permission.)

be found in Example 12.17. Table 12.6 summarizes the data for the
high-Reynolds-number region [Kl].  Corrections are also available for cases in
which the flow crosses the tube bundle at an angle [LS, 221. In Chapter 11, the
flow patterns in the shell side of a heat exchanger were briefly discussed. A big
problem in these designs is leakage of fluid through the baffles where the tubes
pass from one section into another. This leakage greatly reduces the heat
transfer coefficients, sometimes by as much as 60 percent.

Example 12.17. A heat exchanger consists of a bank of tubes, 12 rows high and 8
rows deep, arranged in-line. The surfaces of all tubes are maintained at 55°C
(328.15 K). The tube diameter is 0.75 inches, and the length is 1 meter. The ratio
s/d,  is 1.5, and SJD, is 3.0. Air at 14.696 psia and 20°C (293.15 K) enters at a
velocity of 7 m s-l. Calculate the exit temperature of the air if its properties can
be estimated from the following correlations:

p [kg mm’]=  -0.208 x 10m3  + 353.044/T
p [kg m-’ s-l]=  -9.810 x 10m6  + 1.6347 X 10-6(T)‘n

cp [J kg-’ K-l]=  989.85 + 0.05T 6)

k [J s;’ m-’ K-l]=  0.003 975 + 7.378 X lo-‘T

TABLE  12.6
Ratio  of h for N tubes divided by h for 10 tubes (NRe.tb  > lti)*

N 1 2 3 4 5 6 7 8 9 1 0

I n - l i n e 0.68 0.80 0.87 0.90 0.92 0.94 0.96 0 . 9 8 0.5’9 1.0
Staggered 0.64 0.75 0.83 0.89 0.92 0 . 9 5 0 . 9 7 0.98 0.99 1.0

l From Kays and Lo, Stanford Univ. Tech. Rept. 15, Navy Contact NbONR-251  T.0.6, 1952. By
permission.
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where T is in K (273 5 T 5 333) and cpr  p,  k, and p are in SI units. Aho, find the
pressure  drop  th rough  the  bundle .

Answer. The ca lcula t ions  begin  wi th  the  tube  bundle .  Refer r ing  to  Fig .  12 .31 ,  the
minimum flow area is the width (L,  = 1 m) times the area between tubes. The
ratio of total  area to minimum flow area is therefore

TOTAL AREA N&L+
MIN AREA = VW&  - 4)V.J  = &

(ii)

The values of S, and  S, are

S, = l.Sd,  = (1.5)(0.75) = 1.125 in

S, = 3d,  = (3.0)(0.75) = 2.25 in

&IS, = 1.12512.25  = 0.5

(iii)

In accordance with the recommendations for  Eq.  (12.161),  the above numbers
indicate  a  good geometr ic  design.  The total  and minimum areas are  also needed:

Stom  area  = NW,
= (12)(1.125/12)(0.304@(1)  [(ft)(m  ft-l)(m)]  = 0.3429 m2

s an,” arca = NC&  - d,)(L)
= (12)[(1.125  - 0.75)/(12)](0.3048)(1) = 0.1143 m*

(3

Here i t  i s  assumed that  the  f ree  area  is  equal  to  12 spaces  between tubes ,  i .e . ,  11
spaces  be tween the  12  tubes  p lus  ha l f  a  space  (S, - d,)L,  on  the  top  and  ha l f  a
space on the bottom. The propert ies  of  air  at  293.15 K from Eq.  ( i )  are

p = 1.204 kg m-3

p = 1.818 x lo-’  kg m-l  s-’

cp = 1005 J kg-’ K-i

k = 0.02560 J s-’ m-’ K-’
(4

NR  = c&k = 0.7132

A mass balance [Eq.  (7.13)]  a l lows the  ca lcula t ion  of  the  to ta l  mass  f low and the
maximum velocity Urnax:

w  = PI u,,  we& = P2  k we&! (7.13)

Note  the  poss ib le  confus ion  regard ing  the  nomencla ture :  in  Eq.  (7.13), S, and  S,
are  the  f low areas  a t  locat ions  1  and 2 ,  whereas  S, and  S, are dimensions.  Hence,
S, and  S, wi l l  be  abandoned in  favor  of  S,,, ana and  Sdi. -=a.  A t  cons t an t  dens i t y ,
Eq. (7.13) becomes

Klaxs mm area = =Lal  area (4

Combining  Eqs .  ( i i )  and  (v i )  resu l t s  in

urns=  u”&-d,-=(7)( (vii)

The total  mass  f low rate  enter ing can be found using Eq.  (7 .13)  above:

w  =  PLsmii.  asp  = (1.204)(21.00)(0.1143)  = 2.890 kg s-’ (viii)
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The heat transferred from the bundle to the air is calculated from Eq.
(12.164):

4 = h&,(T,  - a (12.164)

The area for heat transfer is computed with the assistance of Table B.2, which
gives the circumference for 0.75 in. tubing as 0.1963 f? fi-’ or 0.05983 m’m-‘.
The total area for heat transfer is the circumference of each tube times its length
L, times the number of tubes, (12)(8):

A hlbn  = (0.05983)(1.0)(%) = 5.744 m* 6)

In Eq. (12.164),  the heat q is the sensible heat that passes to the air, which
raises the enthalpy of the air according to the following:

q = I&,(  T, - IL,)  = WC,,  AT (x)

where AT is the temperature rise of the air:

AT=T,,-Tti (4

In Eq. (x), the heat transfer coefficient h  is estimated from Eq. (12.161):

Nr.,u,tb = W/k  = E(NR)O.~(NRINR,V~(NR~.~~) (12.161)

where E, e,  and n are constants in Table 12.5 and where

N,,c.tb  = 4Gm.J~  = d,Um,d~ s (12.162)

In Eqs. (12.161) and (12.162),  all properties are evaluated at the mean bulk
temperature Tb:

Tb  = 6% + T,.W (12.163)

Since the outlet temperature T,, is unknown, the calculation proceeds by trial
and error. The usual starting assumption is to let Tb  equal Tb  (293.15 K). From
Eq.  (12.162),  the Reynolds number is

d, = (0.75)(0.0254)  = 0.01905 m

G,, = w/S,,  =a  = U-p = (2.890/0.1143)  = 25.28 kg m-* s-i Gm
NRem = d,G,,,Jp  = (0.01905)(25.28)/(1.818  x lo-‘)  = 2.649 x 10’

Note that G,, is independent of the temperature of the air, whereas neither cl,
nor p are. Therefore, G,. is used in Eq. (xii).

Next, Eq. (12.161) is applied to this problem. Table 12.5 states that n =0
for gases; also, for Z&,/S,  < 0.7, E and e are 0.27 and 0.63, respectively. Now Eq.
(12.161) reduces to

NNu  = hdJk  = E(NR)a.x(NRc,&=  = (0.27)(N,)“.“(N,,,)o-65

Equation (xiii) is solved for the heat transfer coefficient:

h = 0.27(k/d,)(N,)“.“(N,,,)o~a

For the first guess (T,, = Tb  = 293.15 K), the heat transfer coefficient is

h = (0.27)(0.02560/0.01905)(0.7132)“~~(2.649  x lO’)‘.@

= 1%.5  J m-* s-i K-’
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The value of h in the last equation is the mean heat transfer coefficient for all
tubes in a large bundle. If the number of rows N is less than 10, a correction from
Fig. 12.32 must be made. This figure is difficult to read, but the correct value
from Table 12.6 is 0.98. Therefore

h, = (h,,+)(0.98) = (1%.5)(0.98) = 192.6 J m-‘s-’  K-’

Next, Eq. (x) is solved for AT:

CM

AT=+(T,-+ (192.6)(5.744)(32&15  - 293.15) = l3 33 K (xvii)

P (2.890)(1005)

Thus,  the exi t  temperature for  the f i rs t  t r ia l  is

T,, = Th + AT = 293.15 + 13.33 = 306.5 K (xviii)

The second trial begins by finding the local fluid bulk temperature. From Eq.
(12.163):

Tb  = (T,,  + T,,)/2  = (293.15 + 306.5)/2 = 299.8 K w4

The second i tera t ion  uses  299.8  K to  f ind  the  f lu id  proper t ies .  The resul ts  are

T,=299.8K NR  = 0.7122

G,,  = 24.72 kg me2  s-r NRC  = 2.547 x 104

h, = 191.4 J m-’  s-’ K-’ AT= 13.55 K
(4

T,,,  = 306.7 K T,=299.9K

The value of T,,  f rom the  second i tera t ion has  changed l i t t le  f rom that  obta ined
on the  f i rs t .  In  fac t ,  a  th i rd  t r ia l  y ie lds  no change a t  all from the second.
pressl~e  drop.  The correlat ions for  pressure drop are  based on isothermal  f low.
The usual procedure is to use Tb.  At Tb  = 299.9 K, the viscosity and density are

p = 1.850 x lo-’  kg m-r s-i p = 1.177 kg me3 (Jw

Next, the equivalent diameters d, or de must be computed. Using Eq. (12.153)
and assuming d, = d,:

d, = de = 4(&&  - nd:/4)/(lad,)  = (4)[(1.125)(2.25)  - n(O.75)‘/4]/[(n)(O.75)]

= 3.547 in. = 0.09010 m (xxii)

From Eqs.  (12.156) and (12.160) the Reynolds number and fr ic t ion factor  are

NRe,v  = d,G,,/p  = (0.0901)(24.72)/(1.850 x lo-‘)  = 1.204 x 16

ffb  = 1.92(NRe,V)-o.14s  = 0.3521
(xxiii)

Notice that N,,” does not equal N,,,. For in-line geometries, Eq. (12.158)
appl ies

z=&=225in. (=w
Equat ion  (12 .157)  i s  so lved  for  -Ap,  wi th  the  f low leng th  Z,, from Eq. (12.152):

Ltb  = NS,  = (8)(2.25)  = 18 in. = 0.4572 m k-9

(12.157)
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(0.3521)(24.72)*
= (2)(1.177)(3.547/18)(1.125/~3.547)o~4(1.125/2.25)o~6

x [(kg mm4  s-*)(kg-’  m’)(in.  in.-‘)(in.  in.-‘)“.4(in.  in.-1)0.6]
= 1113 kg m-’ se2  = 1113 N m-* = 0.1614psia (=4

The pressure drop across the tube bundle is extremely small. This example
points out the advantages of baffling heat exchangers so as to increase velocity,
increase h,  and improve performance. For example, in this problem, two baftles
would triple the velocity G,,,.. or U,,,.,. The cost in pressure-energy dissipated
would increase but would still be small. The heat transfer coefficient in Eq.
(12.161) predicts that h  is proportional to (G,,,J”.@.  Thus, tripling Cm. doubles
h,  which would double the performance of the exchanger, except for the possible
inefficiencies discussed previously in this section and Chapter 11.

12.4 FLOW PHENOMENA WITH
GAS-LIQUID AND LIQUID-LIQUID
MIXTURES

Problems in transport phenomena with two-phase flow are considerably more
difficult to analyze than thei.r  single-phase counterparts. First to be considered
is a single flow, as in a pipe, of a gas-liquid (two-phase) or a gas-liquid-solid
(three phase) mixture. The presence of two or three phases alters drastically
the rate of transfer of heat, mass, and momentum. In spite of much work on
the subject [B2, Hl], there are no totally reliable and simple correlations for
design methods.

Many of the important unit operations are carried out with gas-liquid
mixtures-absorption, evaporation, and distillation, for instance. Design of
equipment for these usually bypasses the transport phenomena approach. The
flow patterns are too complex and poorly characterized. Besides, there are so
many successful applications that design by comparison is a safe and easy
alternative. Absorption is usually carried out in a three-phase system-a fixed
bed of ceramic packing with large surface area, through which the gas rises and
the liquid falls. Also, three-phase fluidized beds are important. A complete
review by Muroyama and Fan [M4]  is available.

Another important area is “free flow” [B2], i.e., motions of drops, jets,
bubbles, etc., in which the boundary between solid and fluid plays only a
minor role (if any) in the phenomena. Formation of liquid drops or gas
bubbles constitutes an important consideration in the design of spray dryers,
distillation columns, boilers, and condensers. Perhaps heat transfer in boilers
and condensers is the most completely characterized topic in this area. The
phenomenon is well-understood from both mechanistic and computational
viewpoints. Excellent summaries are available [Gl,  Hl, M2, M3, Pl].

Transport in systems of two immiscible liquids is also important.
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Liquid-liquid extraction involves at least a three-component system in which
solute A is preferentially transferred from one liquid phase (the feed) to the
second (the extract) [S4,  Tl].  The two phases must be brought into close
contact, which can be accomplished in a packed column, a mixer, or a sieve
plate. There may be flow of two immiscible fluids in a pipe as well.

Clearly, a detailed discussion of such transport phenomena is not
warranted here, because current practices preclude the use of the basic
equations presented in this text. The use of transport phenomena constitutes
an active research area for many of the applications just cited.

PROBLEMS

12.1 .  Def ine  en t ry  length .  Why i s  i t  des i rab le  to  know the  en t ry  length?
12.2 .  Def ine  and d iscuss  separa t ion .
12.3.  Make an equation by equation comparison between the laminar and turbulent

boundary  l ayers .
12.4. Compare the form of the drag coefficient over a sphere to the Fanning friction

factor.
12.5.  A baseba l l  announcer  says :  “Because  of  the  h igh  humidi ty  today, the  baseba l l

wi l l  not  t ravel  as  far  as  i t  normal ly  does  on a  dry day”. ,  Comment  cr i t ical ly  on
the announcer’s logic.

12.6.  Air  a t  283 K and 1  a tm is  f lowing a t  10 m s-’ past  a  plate  2 m wide.
(a)  Find the thickness  of  the boundary layer  30 cm from the leading edge.
(b)  Calculate  the drag force on the plate  f rom the leading edge to  x = 30 cm.
(c) Find the direction and magnitude of the velocity vector at x = 30 cm and

y = 618.
12.7.  Air at  300 K and 1 atm moves over a  f lat  plate at  a  speed of  15 m s-‘. F ind  the

boundary layer  thickness  and the shear  s t ress  1  m from the front  edge of  the
pla te  i f  turbulent  f low is  assumed in  the  boundary  layer .

l2.8.  A smooth, flat plate 3 m wide and 30 m long is towed through still water at 20°C
with  a  speed of  6ms-*.
(a)  Determine the drag force ( in  newtons)  on one s ide of  the plate .
(b)  Determine the location,of  the  laminar- turbulent  t rans i t ion ( in  meters) .
(c)  Determine the tota l  drag force ( in  newtons)  over  the laminar  port ion of  the

boundary  layer .
12.9.  A laminar boundary layer of  air  is  in some manner maintained over a  2-m  l o n g ,

l-m wide, flat plate. The air is at 273 K and 1 atm; its velocity with respect to the
plate is 3 m s-‘. Find  the  drag  force  in  newtons .

l2.10.  A flat plate is located in a wind tunnel; the fluid is air at 283 K and 1 atm, with
free stream velocity 2 m s-‘. An instrumented test  area is  located 1 m from the
lead ing  edge ;  th i s  t e s t  a rea  i s  50 cm by 50 cm. Est imate the veloci ty components
of  the air  at  a  dis tance 1.25 m from the leading edge and at  y = 612.

12.11. Find the equations for the streamlines of the flow described by the following
potential functions:
(a) # = A(ln r)
(b) #=A@
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l2.l2.  Find the  equat ions  for  the  s t reamlines  of  the  f low descr ibed by the  fo l lowing
potential functions:

#=3x+lnr

12.W. Find the  equat ions  for  the  s t reamlines  of  the  f low descr ibed by the  fol lowing
potential function:

@=U,(r+~)cosB+A6

12.14. On a sheet of graph paper, plot lines of constant ty  and @ for the following
potential:

l$  = 12(x2  - yZ)

Include the following values only:

4): 10, 20, 30
V’: 10, 20, 30

12.15.  A glass  sphere  (speci f ic  gravi ty  2 .62)  fa l l s  through carbon te t rachlor ide  (speci f ic
gravity 1.595, viscosity 0.958 cP)  at 20°C. The terminal velocity is 0.65 m s-‘.
The gravi ta t ional  accelera t ion is  9 .78 m s-‘. Find the diameter  of  the sphere in
meters.

12.16.  Calculate the terminal velocity in m s-*
density 160 kg rnw3,

for a O.OOl-in.,  diameter particle of
falling through a pressurized gas of density of 32 kg me3  and

viscosity of 0.1 cP.  The gravitational acceleration is 9.81 m s-‘. Work entirely in
SI units.

12.17. Find the distance in km that a 5-pm  smoke particle travels in 1 h if the wind
blows a t  8  km h-‘.  The  par t ic le  dens i ty  i s  1  g  cm?. The gravi ta t ional  accelera-
tion is 9.80 m s-‘. The re lease  height  i s  a  s tack 100 f t  h igh.  Neglect  turbulence .
The air temperature is 300 K, at atmospheric pressure. Work entirely in SI units.

12.18. A particle 5 pm  in diameter (specific gravity 2.5) is ejected horizontally with
velocity 8 m s-’ in to  s t i l l  a i r  a t  300  K and  1  a tm.  Assuming  tha t  S tokes ’  l aw i s
valid, calculate the distance (in meters) traveled by the particle in the x direction
between t ime zero and t ime infinity;  assume tha t  y  space  i s  inf in i te  so  tha t  the
par t ic le  never  touches  the  ground .

12.19.  Calculate the rise velocity in ms-’ of O.Ol-cm  a i r  bubble  (dens i ty  1 .2  kg  rnm3)
r i s ing  in  an  o i l  o f  v i scos i ty  o f  0 .04  po i se  and  dens i ty  900  kg  rnm3.  The gravita-
tional acceleration is 9.80 m s?. Assume that  the  bubble  remains  spher ica l .

l2.u).  Est imate  the  normal  force  ( in  newtons)  on a  c i rcular  s ign 8  ft in  diameter  dur ing
a hurr icane whose winds  are  blowing a t  120mph.  Assume that  the  temperature
is 293 K and the pressure is 1 atm (although usually the barometer is much lower
in  hurr icanes) .

12.21. A jet aircraft discharges solid particles of matter (10,um in diameter and of
specific gravity 2.5) at the base of the stratosphere at 11000 m. The  gravitational
accelerat ion is  9 .79 m s-*. Let the viscosity of air be expressed by

p = 1.74 x 10-5  - 3.06 x lo-‘Oy

where  y  i s  the  e levat ion  re la t ive  to  sea  level  ( in  meters)  and p i s  i n  k g  m-’ s-‘.
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EMmate  the time (in seconds and in hours) for these particles to reach sea level.
Neglect air currents and wind effects.

12.22.  A member of the university aviation club drops three objects from an airplane
5000 m from the earth. Each object has a mass of 12 kg, and is manufactured
from a special light-weight composite of aluminum (specific gravity 2.017). For
simplicity, assume that the air  temperature is u)“C,  and that the properties at
1 atm apply. Let g = 9.81 m s-‘.  Estimate the time of descent for the following
geometries:
(a) sphere
(b) disk, L/d, = 1.0, falling with axis always perpendicular to the ground
(c) cylinder, L/d, = 100, falling with axis always parallel to the ground.

12.23. A particle 5  microns in diameter (specific gravity 3.0) is falling in still air at
300 K and 1 atm. Let the acceleration due to gravity be 9.82 m s-‘.  Estimate the
heat transfer coefficient in SI units.

12.24.  A fluidixation  catalyst, specific gravity 1.75, is fluidized with air at 65OK  and
1.8atm.  The catalyst may be assumed spherical, with diameter 175 pm. The
gravitational acceleration is 9.8ms-*. The static void fraction is 0.55. The
unfluidized bed height is 3 m. Find in SI units:
(a) The  minimum void fraction and the bed height for fluidization
(b) The settling velocity for a single particle in a static fluid
(c) The minimum pressure drop for fluidization
(d) The minimum velocity for entrainment
(e) The heat transfer coefficient at the wall for a supe&ial velocity 3.0 times

umf’
12.25.  A coarse catalyst of size 300 pm  and density 4200 kg rnA3  is to be fluidized in an

oil (8 CP  and specific gravity 0.8). The height and void volume of the static bed
are 2 m and 0.48, respectively. The gravitational acceleration is 9.81 m s-‘. Find
the pressure drop (N m-‘)  and the superficial velocity (m s-l) at that point of
incipient fluidization.

l2.2& A packed bed is composed of cylinders of diameter 0.03 m; the cylinder length is
1.5 times the diameter; each cylinder has a density of 1800 kg m-3. The bulk
density of the overall packed bed is 950 kg m-‘.  Calculate the void fraction.

12.27.  Show that EU,,, = CJ,  for a fluidized bed, where U,,  ~c  is the actual average
fluid velocity.

12.28.  An electrically heated rod 0.01 m in diameter is immersed in a rapidly flowing
air stream whose bulk temperature is 450 K. The surface temperature of the rod
is maintained constant at 550 K. The  rod is 350 diameters in length. Estimate the
air velocity required to remove 2400 W.

123.  Solve Example 12.17 if the 0.75-in.  tubes are replaced with l.OO-in.  tubes.
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CHAPTER

13
UNSTEADY-STATE TRANSPORT

NOMENCLATURE

A
A
A
a
aj
b

bi
C

C

C

Area (m*,  ft2)
Species A: AI and A2 are species A at locations 1 and 2
Constant in Eq. (13.128)
Constant in Example 13.3
Constants in the general Fourier series, Eq. (13.38)
Radius of a cylinder (m, ft)
Constants in the general Fourier series, Eq. (13.38)
Concentration (kmol mT3, lb molftm3);  C, is concentration of
species A; subscripts 1 and 2 refer to locations; CA,O  is initial
concentration (assumed constant); CA,r  is concentration at slab
boundary (constant); CA,.. is concentration of species A in the free
stream or surrounding fluid; C,,c  is concentration at the center of a
slab or cylinder
C1,  C,,  C3  are integration constants, evaluated from given bound-
ary conditions
Subscript denoting center; for a slab, c denotes the center plane,
located a distance L from either face in the x direction; c denotes
the line at a radius of zero in a long cylinder; also, c is a subscript
denoting characteristic, e.g., L,
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CP

C”

D
DqlDt
d
erf

f
g

h

h
i
i
i

k

kS

L

L(f)

m

NBi
NNU

N
n
n
0
P

P
Q

Heat capacity at constant pressure (kJ kg-’  K-l,  Btu lb;’  “F-l)
Heat capacity at constant volume (kJ kg-’  K-‘, Btu lb;’  OF-‘)
Diffusion coefficient (mass diffusivity) (m” s-l,  f$ s-l)
Substantial derivative of I#,  defined by Eq. (5.52)
Diameter (m, ft); d, is diameter of a particle or sphere
Gauss error function, Eq. (13.14) and Table 13.1; erfc is the
complementary error function, 1 - erf, Eq. (13.15)
f(x) is a general function of X; f(t) is a general function of t
The function g(s) is the Laplace transform of the function f(t); cf.
Eq. (13.67)
Heat transfer coefficient, defined in a general manner by Eq. (6.86)
(W rnp2  K-‘, Btu fte2  h-’  “F-l);  h, is heat transfer coefficient to the
surface of a particle or sphere
h is spacing in the x direction, cf., Eq. (13.89),  as used in Fig. 13.24
Index in finite difference equations (distance)
Index in finite difference equations (time)
Index in summations; e.g., cf. general Fourier equation, Eq.
(13.38)
Thermal conductivity (W m-’  K-’  or J m-’ K-’  s-l,  Btu ft-’
OR-‘s-l)
Equimolar mass transfer coefficient, defined by Eq. (6.87)
[kmol mm2 s-l  (km01 me3)-‘, lb mol ftm2 s-l  (lb mol ft-‘)-‘I
Length in the x direction; 2L is the length of slab, cf. Figs. 13.1 and
13.5; L, is characteristic length (m, ft); other subscripts denote
directions
Laplace transform of the function f; L-‘(g)  is the inverse trans-
form
Relative resistance in unsteady-state transport, used in the Heisler
charts and defined in Table 13.3; for heat transfer, m is k/(hL)  (the
reciprocal of the Biot number); for mass transfer, m is D/(k,L) ’
Biot number, hL,/k,  Eq. (13.16); cf. Table 8.1
Nusselt number, defined in general by Eq. (8.21),  hL/k;  NNu,p is
Nusselt number for a particle or sphere, h,d,/k  [cf. Eqs. (12.85)
and (12.130)]
Number of unknowns in a system of equations in Example 13.8
Number of moles (or the mass) of the system (kmol, lb mol)
Dimensionless distance (x/L),  used in the Heisler charts
Denotes order, cf. Eqs. (13.91) and (13.92)
Pressure; p is partial pressure, defined in Eq. (2.38); PA is partial
pressure of A; subscripts 1 and 2 denote locations
Subscript denoting particular (i.e., steady-state) solution
Heat added to the system in the first law (5, Btu); cf., Eq. (13.85);
Q,  is initial heat, Eq. (13.86)
Energy (heat) flow vector (J s-l, Btu s-l); subscripted for location
Gas constant; see Appendix, Table C.l for values
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Radius of a cylinder (m, ft); r, is the distance from the center to the
e d g e
Parameter that becomes the transformed independent variable in a
Laplace transform (s-r);  cf. Eq. (13.67)
Subscript denoting surface; cf. T,
Temperature (K, “R, “C, ‘F);  T, and Tz  are temperatures at
locations 1 and 2; T, is the temperature of the free stream or
surrounding fluid; To  is the initial temperature (assumed constant);
Tf  is the temperature at the slab boundary (a constant); T, is
temperature at the center of a slab, cylinder, or sphere
A variable that is a general function of time (t)  only; T’ is the first
derivative of T with respect to t
Time (s); At is spacing in time, cf., Eq. (13.90)
Independent variable in function f(t)  in Laplace transforms, cf. Eq.
(13.67)
Subscript denoting steady-state solution
Internal energy of the system (J, Btu); subscripts denote location
Velocity vector (m s-l, ft s-l); U is magnitude of U, U,, U,, 17,  are
components in directions x, y, z
Argument in error function, erf(u),  cf. Eq. (13.14)
Volume (m’,  ft’)
Variable of integration in Eq. (13.14)
Variable in transformation in Eq. (13.131)
Total work done by the system in the first law (J, Btu)
Relative time, used in the Heisler charts and defined in Table 13.3
(dimensionless); for mass transfer, X is Dt/L2; for heat transfer, X
is crt/L2,  which is the Fourier number, defined as NFO  in Chapter 8;
other subscripts denote directions
A variable that is a general function of distance (x) only; X” is the
second derivative of X with respect to x
Rectangular (Cartesian) coordinate
Unaccomplished change, used in the Heisler charts and defined in
Table 13.3 for heat or mass transfer; dimensionless; Y, is change at
center, cf., Eq. (13.83); other subscripts denote directions
Rectangular (Cartesian) coordinate
Mole fraction
Dimensionless group in unsteady transport to a semi-infinite slab,
xl[2(c~t)~]  or xl[2(Dt)‘n]
Rectangular (Cartesian) coordinate
Thermal diffusivity (m” s-l,  f? s-‘)
Constant in Fourier series solutions, introduced during the separa-
tion of variables [cf. Eq. (13.47)]
Dimensionless parameter in finite difference equations, Eqs.
(13.95) and (13.184)
Constant in Laplace transform solutions (m-l,  ft-‘); for heat
transfer, y = ((y~)l~,  cf. Eq. (13.75)
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Difference, state 2 minus state 1; e.g., AT means T2- Tl
Generalized diffusivity (m2 s-l,  ft2  s-l)
Transformed variable for analytic solutions of the heat equation
(K, “R); for heat, 0 is T - Tr  [cf., Eq. (13.31)]  and 8, is To - T,;
for mass, GM is C,  - CA,$ [cf., Eq. (13.36)];  8, is steady-state
solution in Example 13.2; 0, is transient solution in Example 13.2
Constant in integral formula in Example 13.2, @r)/(2L)
Transformation variable, cf. Eq. (13.112)
Viscosity (kg m-l s-r or N mm2 s, lb,,, ft-’  s-l,  cP)
Kinematic viscosity (momentum diffusivity) (m” s-l,  ft2  s-‘)
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg rne3,  lb,,, fte3); subscripts refer to species
Summation
Thermal time constant in lumped capacitance heat transfer (s), cf.
Eq. (13.23)
Momentum flux (or shear stress) tensor (N mv2, lbfftd2);  rxr, rvx,
etc. are components of the momentum flux tensor, where subscripts
refer to direction of momentum transfer and direction of velocity
Generalized flux vector (e.g., units for heat flux are J me2 s-l  or
W mT2,  Btu fte2  s-‘; see Table 2.1); YX,  Y,,,  Yz are components in
directions x, y, z; Y,,,, or Y, is flux due to m6lecular  transport;
YX,,  or W,  is flux due to convection
Generalized concentration of property (e.g., units for concentra-
tion of heat are J me3, Btu fte3; see Table 3.1 for complete listing)
Rate of generation of heat or mass or momentum in a unit volume
(e.g., for heat, units are J mm3 s-i,  Btu ftm3 s-l)
Vector operator del, defined by Eqs. (2.16) or (3.45) (m-l,  ft-‘)
Laplacian operator, defined in Eq. (3.64) (me2,  ft-“)

The previous chapters have discussed steady-state transport. In unsteady-state
(or transient) transport, the concentration of property $J  is a function of time
as a result of a sudden change in the environment. Unsteady-state analysis may
be used to describe conditions in the body of interest between the time of the
sudden environmental changes and the time at which steady-state is again
reached. In Chapter 3, the general property balance or conservation law was
given as

INPUT + GENERATION = OUTPUT + ACCUMULATION (3.1)

For an incompressible medium (constant density) and constant transport
coefficient 6, the general equation is Eq. (3.78):

~+(LI-v)~=?jG+6v2t) (3.78)

where V2 is the Laplacian operator, Eq. (3.64). Table 3.1 contains the
appropriate values of 6 and the concentration of property I&  for the three
transports. In Eq. (3.78),  the first term (eq/&)  is the accumulation term; the
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accumulation term is not zero under transient conditions:

ACCUMULATION = z+O (13.1)

As indicated in Chapter 5, Eq. (3.78) can be expressed in terms of the
substantial derivative:

W W-=,,+(U-V)ry
Dt

(5.52)

The substantial derivative has the property of being zero for a steady-state,
incompressible flow with no net velocity vector relative to the position of the
observer. However, it is important to recall that steady-state means that the
term alylat  is zero, not the substantial derivative DqlDt.

Unsteady-state or, as it is often called, transient transport occurs
commonly. In the kitchen, all cooking involves transient heat transfer. In the
chemical industry, transient conditions exist whenever a unit or a piece of
equipment begins operation, or whenever a change in process conditions is
effected. Generally speaking, few problems in unsteady-state transport are
solvable. Some of those that are solvable require advanced mathematical
procedures, such as the use of Fourier series, Bessel functions, or Laplace
transforms [W2].  There are also graphical and numerical solutions [Dl, Jl,
Sl].  All these will be covered here.

This chapter excludes flow problems of all types. Solutions that are
available in unsteady laminar flow are mostly of limited practicality. In reality,
turbulence is an inherently unsteady phenomenon, as discussed at length in
Chapter 6. It was pointed out previously that no exact solutions to even the
most simple problems in turbulence are known. Furthermore, when averages
are taken, information is lost; thus, empirical methods are predominant in
turbulence. As a result of these limitations, only problems in unsteady heat
and mass diffusion will be discussed in this chapter.

W.1  BASIC EQUATIONS

In this chapter, transient problems in heat and mass transfer with no
generation and no convection are considered. For the assumptions of constant
density, constant transport coefficient, no generation, and no convection, Eq.
(3.78) becomes

This equation assumes many useful forms. The simplest case considers
transient transport in the x direction in a solid, as shown in Fig. 13.1 for heat
transfer and Fig. 13.2 for mass transfer. Equation (13.2) is classified as a
parabolic partial differential equation, the solution of which requires’ three
boundary conditions.
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r Insulated  surface  ( q  =  0 )
Face at constant
temperature T2
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FIGURE l3.1
Transient heat transfer in the x direction.

l3.1.1  Heat Transfer Equation

For heat transfer, Tables 2.1, 3.1, and 4.1 yield

6 = a = k/(pc,) (13.3)

W=LW (13.4)

Assuming constant physical properties, Eq. (13.2) becomes, after
rearrangement:

v2T2$ (13.5)
\

where the V2 operator is presented in Table 5.1 for the various coordinate
systems. If heat transfer is in the x direction only, as shown in Fig. 13.1, Eq.
(13.5) reduces to

#T  1dT-=-A
dX2 CY  at

(13.6)

In Fig. 13.1, To is the initial temperature of the solid. In the most general
case, To may be a function of x. At time zero, the temperature Tl  is imposed
instantaneously on the surface at the point (x = 0), and the temperature T2  is
imposed instantaneously on the surface at the point (x =x2).  Mathematically,

c A.1 c A.2

FIGURE 13.2
Trans ient  mass  d i f fus ion  in  the  x direct ion .
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these boundary conditions are

At rs0 and Osxsx,

T=T, (13.7)

At t>O

T (x = 0) = q

T(x=x,)=T, (13.8)

Exact solutions of Eq. (13.6) exist if the boundary conditions and the geometry
are simple. Sometimes, simple boundary conditions are obtainable if the
dependent variable (temperature) is transformed. These points will be
illustrated in later sections.

13.1.2 Mass Transfer

Following the procedure just covered for heat transfer, the equations for mass
transfer are

6=D (13.9)

*==CA (13.10)

(13.11)

A typical problem in transient mass diffusion is shown in Fig. 13.2, in
which a solid bar contains a concentration of species A equal to CA,O.  In the
most general case, CA,O may be a function of X.  At time zero, the
concentrations at faces 1 and 2 are changed instantaneously to CA,,  and CA.2.
These boundary conditions are

CA = CA.0

At r>O

CA (x  = 0) = CA,1

C A  (x  =  x2)  =  C A . 2

(13.12)

(13.13)

13.1.3 Error Function

Exact solutions to the transient equations may involve the Gaussian error
function:

(13.14)
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TABLE l3.1
Short table of the error tnnetion

u -fW erfc(u)

0.0 o.fxooQ 1.00000
0.1 0.11246 0.88754
0.2 0.22270 0.77730
0.3 0.32863 0.67137
0.4 0.42839 0.57161
0.5 0.52050 0.47950
0.6 0.60386 0.39614
0.7 0.67780 0.32220
0.8 0.74210 0.25790
0.9 0.7%91 0.20309
1.0 0.84270 0.15730
1 . 1 0.88021 0.11979
1.2 0.91031 0.08969
1.3 0.93401 0.06599
1.4 0.95229 0.04771
1.5 0.96611 0.03389
2.0 0.99532 0.00468

m l.OOOOO O.OOOOQ

Also useful is the complementary error function:

erfc(u) = 1 - erf(u) (13.15) -

Table 13.1 shows a few typical values of the error function. Larger tables are
included in most handbooks, although the reader must ascertain that exactly
the same integral is tabulated. The error function is sometimes called the
probability integral [Pl].  Most large computer systems have the error function
in their library of subroutines. Unfortunately, the error function is usually not
available on small computers. Hence, Fig. 13.3 provides a useful pair of
FORTRAN subroutines, plus the check program used to generate Table 13.1. The
reader may easily convert the program provided into BASIC, PASCAL, or some
other language, if desired.

13.1.4 Heat Transfer with Negligible Internal
Resistance

When the internal resistance to heat transfer is small compared to the
resistance due to convection at the surface, the solution to the transient heat
problem is greatly simplified. The Biot number compares heat transfer due to
convection with heat transfer due to conduction:

NBi  = hLJk (13.16)

where L, is a characteristic length in the direction of conduction and h is the
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FIGURE 13-3. PROGRAH FOR TABLE OF ERF AND ERIC
IHPLICIT RWL'S(A-H,O-2)
REAL*4 US
FORMT(lHl.lOX.'TABLE  13-1.')
FORMT(Fl0~l,Fil.5,Fl2.5)
?ORMT(lHO/1R0,7X,1HU,5X,6RBRF(U),3X,7HSRFC(Ul/lR )
FORHAT(SX.2Hoo.?11.5.F12.5)
FORMT(llHlSND-OF  JOi,
IO-6
WRITE(I0.2)
WRITE(IO,I)
ONE-1.0D0
ZERO-O.ODO
WRITE(I0,3)ZCRO,ZERO,ONE
DU-O.lDO
DO 20 I-l,15
IIID;*DFLOAT(I)

m
Ul-ER?(US)
UC-ER?C(US)
WRITE(I0,3)U,Ul,UC
us-2 .0
Ul-ERF(U.9)
UC-ERFC(US)
WRITE(IO,3)US,Ul,UC
WRITE(I0.5)ONE.ZERO
WRITE(IO,6)
STOP
END
FUNCTION ERF(X)
DATA PI/3.141592654/
DATA TOL/0.5C-07/
DATA IN,IC/5,6/
FORMAT(A)
FORMT('O***  CRROR  IN FUNCTION ERF.'/
lH0,5X,'ARGURCNT  IS OUT OF BOUNDS: X -',~16.7/
'OPRESS  RETURN TO CONTINUE'/lH  )

IF(X)20,25,30
WRITC(IC,3)X
READ(IN,2)1
ERF-0.0
RETURN

5

IF(X-4.)  35,35,31
ERF-1.0
RETURN

35 X2-x*x
s3-x
T4-X
I-O
-I-I+1
Ii)-S3
T4-T4+X2*2.O/FLOAT(l+I+I)
S3-T4+83
IF(T4-TOL*S3)  50,50,40
ERF-2.0*S3*CXP(-X2)/SORT(PI)
RETURN
END
WNCTION  ERFCfX)
DATA PI/3.141592654/
DATA TOL/0.5C-07/
DATA IN.IC/5.6/
FORHAT
FORMT('O*+*  ERROR IN FUNCTION CRW.‘/

t
~HO,~X,'ARGUIICNT  IS OUT OC BOUNDS: X -'.Cl6.7/
‘OPRESS RETURN TO CONTINUC'/lH  )

I?(X)20,25,30

FIGURE 13.3
FORTRAN program for the error function.
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2 0 WRITE(IC,3)X
RMD(IN,2)1

2 3 BRCC-0  .
RETURN

2 5 ERFC-1.0
RETURN

:P
rr(x-4.)  32,32,23
IF(X-1.5)  35.35.40

3 5 ERFC-l.O-ERP(X)

4 0

5 0

RETURN
xz=x*x
lb12
V-O.S/XZ
y;j+V*FLOAT(K+l)
N

:"JY I-leKm
S3-l.O+V*FLOAT(J)/U
u-s3
ERFC-EXP(-X2)/(X*S3*SQRTtPI))
RETURN
E N D

FIGURE W.3
(Continued)

heat transfer coefficient from the surroundings to the solid. The Biot number
determines the relative magnitudes of the conduction in the solid and the
convective heat transfer to the solid. Note the similarity of the Biot number to
the Nusselt number used in Eq. (12.85): NNuLp  = h,d,/k.  Here, the particle
Nusselt number contains the thermal conductivity of the fluid, whereas the
Biot number contains the thermal conductivity of the solid.

When the Biot number is less than 0.1, the conduction in a solid occurs at
a much more rapid rate than the rate of transfer by convection. Figure 13.4
shows a simple problem that can be solved when ZVni  is less than 0.1. A solid,
depicted as a sphere in Fig. 13.4 but of arbitrary shape, is initially at
temperature To.  Subsequently, the solid is submerged in a fluid of temperature
T,. The mass of the fluid is assumed to be much larger than that of the solid so
that T, is constant. The solid may be assumed to be at a uniform temperature
when the Biot number is small. Analysis of this problem is via the first law of
thermodynamics:

CHANGE IN TOTAL ENERGY OF SYSTEM = Q - W (7.33)

FIGURE 13.4
Transient heat transfer to a solid at
low Biot numbers.
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The solution may proceed by assuming either constant volume or constant
pressure, as the answer to either case is approximately the same. Let us
assume that the volume of the system is approximately constant so that the
work term W is zero. The system is taken as the solid. Then Q is the heat
received by the solid due to convection, which on a differential basis is

dQ  = hA(T,  - T) dr (13.17)

where the temperature difference (T, - T) is positive when the fluid is warmer
than the solid. The change in total energy of the system is (Au),,, which
was previously given as Eq. (7.35):

W~Ltant  vo,ume  = (u2 - uJv = njcv  dT (7.35)

For a solid body, the heat capacities at constant volume and constant pressure
are approximately equal. Since cP  is usually in mass units, the mass of the solid
is density times volume; then Eq. (7.35) becomes

Au = pVc, dT (13.18)

Combining Eqs. (7.33),  (13.17),  and (13.18) gives ’

hA (T, - T) dt = PVC,  dT 1 ( 1 3 . 1 9 )

The boundary conditions are

T (t = 0) = & T (t = t) = T (13 .20 )

The variables in Eq. (13.19) are separated:

-= -

Equation (13.21) is easily integrated and rearranged as follows:

$$  = exp[( -hAt)l(pVc,)] NBi < 0.1
0 m

(13.21)

(13.22)

In any transient heat transfer problem involving both convection and
conduction, the Biot number should be calculated first. If Nui  is less than 0.1,
the simple analysis just given, which is also known as the lumped capacity
method or the Newtonian cooling (or heating) method, is adequate. The
quantity (pVc,)/(hA)  may be interpreted as a thermal time constant r,:

tt = pVc,l(hA) (13.23)

The thermal time constant can be used to represent the thermal decay by an
electrical RC circuit [Ill.

The total heat transferred between fluid and solid is found by integrating
Eq. (13.17):

Q=lfqdt=hAlr(Tm-  T)dt (13.24)
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Using Eq. (13.22) to replace T, - T, the total heat is

Q = pVC,(T,  - T,)[l  - exp(-t/r,)] (13.25)

If the solid is being quenched by a cold fluid, then Q is negative because the
term T, - To  is negative. As time approaches infinity, the temperature of the
solid approaches the temperature of the surrounding fluid T,; also, the
exponential term in Eq. (13.25) is zero, and the total heat transferred is

Q = pVc,(T,  - To) (13.26)

In the Biot number, the characteristic length L, is obtained from the
volume divided by the surface area for heat transfer:

L, = V/A (13.27)

In the following example, the characteristic length L, is calculated and the Biot
number for several geometries determined.

‘w
Example 13.1. The thermal conductivity of copper is 400  W m-’ K-i. If the heat
transfer coefficient is 12 W m-*  K-i, find the Biot number for: (a) a copper sphere
of radius 5 cm; (b) a copper cylinder of radius 5 cm and length 30 cm; and (c) a
square copper rod of length 40 cm and cross sectional area the same as the
cylinder of radius 5 cm.

Answer. The equations for Biot number and characteristic length are

NBi  = hLJk (13.16)
L, = V/A (13.27)

(a) For a sphere. Let r be the radius. Then Eq. (13.27) becomes

L =_V=4nr3/3  r
= A 4nrz=3 (9

The Biot  number is

NBi  = hL,/k  = (12)(0.05/3)/(400)  [(W m-‘K-‘)(m)/(W  m-i K-i)] = 5 x 10e4

(3
(b) For a cylinder. The circumference of a cylinder is 2nr  and the heat transfer area
2nrL, neglecting the areas at each end:

V nr2L  r&c-z-=-
A 2xrL  2

(iii)

NBi  = hL,/k  = (12)(0.05/2)/(400)  = 7.5 x 1O-4 (3
Note that the Biot number is greater for a long cylinder than for a sphere of the
same radius.
(c) For a long square red.  Let x be the length of one side of the square. From the
area of the cylinder of radius 0.05 m, n  is

x = (A)ln  = (nr2)1R  = [n(O.O5)‘]‘”  = 0.08862 m (9
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Fro&  Eqs. (13.16) and (13.27):

L J=&=*
= A 4xL 4

Nai = hL,/k  = (12)(0.08862/4)/(400)  = 6.647 x lo+ w
The Biot number for the square rod is 11.4 percent less than that for a circular
rod of the same cross sectional area. The  Biot numbers calculated in this example
are all less than 0.1 because copper is an excellent conductor.

13.2  FINITE SLAB AND CYLINDER

In this section, one-directional heat transfer in a finite slab is considered; this
problem is analogous to one-directional mass transfer as depicted in Fig. 13.2.
Consider Fig. 13.5, which shows a slab of infinite extent in both the y and z
directions. Let the initial temperature be Tu,  as previously illustrated in Fig.
13.1. At time zero, the temperatures at either side are instantaneously changed
to T, and T,, as shown in Fig. 13.5. In this section, solutions will be offered for
the cases illustrated in Figs. 13.1, 13.2, and 13.5. Heat transfer will be used to
illustrate the solutions, and the mathematically analogous mass transfer will be
discussed briefly. Heat transfer may also be restricted to one direction if
insulation prevents heat transport in the other directions. Similarly, in Fig.
13.2 the surface of the bar is impervious to mass transfer; thus, mass transfer in
that figure is in the x direction only.

The problem of transient heat transfer to a slab infinite in the y and z
directions is the simplest case of unsteady transport. The equation for
one-dimensional heat transport becomes

a2T 1 aT-=--
ax2 (Y  at (13.6)

The boundary conditions illustrated in Fig. 13.5 are

AtrsOandOsxsZL
T=T, (13.7)

At r>O
T (x =0)= & T(x=2L)=T, (13.28)

where Tl is the temperature at one edge of the slab and T2 is the temperature
at the other. Because the slab is infinite in the y and z directions, the transport

I I
x=o x = 2L

T(r>O)=  6 ?-(r>U)=T,

FIGURE 13.5
Transient heat transfer in a one-directional
slab.
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is one-dimensional. These simple boundary conditions are actually too
complex. for a direct analytical solution. However, a solution is possible
through use of a superposition of solutions, as will be illustrated later in
Example 13.2.

A simplified set of boundary conditions is

G = constant [#f(x)] Ti  = G = & = constant [#f(t)] (13.29)

where To  and T, are constants and not functions of time. For this special case of
the same temperature Tf  being superimposed on each side of the slab, the
temperature distribution is always symmetric about the center plane (X  = L),
and the derivative at the center plane is zero:

T(x) = T(2L -x)
dT
-&x=L)=O (13.30)

The implications of Eq. (13.30) will prove useful in the solution of the
transient transport equations by Fourier series and Laplace transforms.

For the finite slab, four methods of solution of the one-directional
transient heat (or mass) transfer equation, Eq. (13.6) [or a simplified Eq.
(13.11)],  will be presented: Fourier series, Laplace transforms, graphical
solutions, and numerical integration. The boundary conditions in Eq. (13.28)
are too complex for the first two of these, and the restrictions in Eq. (13.29)
are required.

In the case where To  and G are constants, a simple transformation is
useful. In Chapter 12, a dimensionless temperature 8 was introduced to
facilitate the presentation of the Pohlhausen solution for the temperature
distribution for flow over a flat plate. In Eq. (12.29),  0 was the ratio between
the temperature difference of the wall and the boundary layer fluid and the
temperature difference of the wall and the free stream. For transient heat
transfer, the variable 8 is defined as

O=T-T, (13.31)

where T is the temperature at any point in the slab and & is defined in Eq.
(13.29). Note that 8 has dimensions of temperature (K, etc.). The transient
heat transfer equation, Eq. (13.6),  can be expressed in terms of 0:

a%3  Id@-=--
ax2 (Y at (13.32)

This transformation is useful only when the boundary conditions are not a
function of temperature, i.e., Eq. (13.29) applies. The boundary conditions in
terms of 0 are

Atr~OandO~x=2L
o=s,=T,-T, (13.33)

Atr>O

8 (x = 0) = 0 @(x=2L)=O (13.34)
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It is common practice to abbreviate Eqs. (13.33) and (13.34) as

8 (x, 0) = 630

8 (0, t)  = 0

8(2L,t)=O

(13.35)

Similarly, it is desirable to transform the mass transfer equation, Eq. (13.11),
using some convenient variable such as &:

% = CA - CA,f (13.36)

where again the transformation is useful only if the boundary conditions are
not a function of time. For one-dimensional transient mass transfer, Eq.
(13.11) becomes

(13.37)

The boundary conditions in terms of & are almost identical to those in Eq.
(13.35); the variable & is simply substituted for 8.

W.2.1 Fourier Series Solution

The solution of partial differential equations using Fourier series is usually
given in an advanced mathematics course at most universities. Hence, in this
section only a typical Fourier series solution to Eq. (13.32) will be given. The
reader is referred to the several excellent texts devoted to a more complete
treatment [C3, Ml, M4, Rl,  W2].

A Fourier series may be defined as

f(x)  = ~0  + ,zl  Uj COS  jnx + i  bj sin jzx Osx52L (13.38)
j=l

where the function f(x) is represented in terms of two periodic infinite series,
as shown in Eq. (13.38). If the function f(x) is assumed to be periodic, with
period’ 2L as shown in Fig. 13.6, then it is easily shown that

(13.39)

(13.40)

(13.41)

’ A function is periodic if f(r  + 2L)  =f(r)  for all r.
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The power of Fourier series arises from the fact that any function may be
assumed periodic, even if it is not, by assuming that the length of the period is
the region of interest. For clarification, let us consider the following boundary
conditions:

0(x, 0) = 00 0(0,  t)  = 0 0(2L, t)  = 0 (13.35)

These are the simplest possible; since the transformed temperature is zero at
either end, these boundary conditions are termed “homogeneous”. Obviously,
those are not in themselves periodic; yet they may be considered as a periodic
function of period 2L,  as shown in Fig. 13.7. Physically the boundary
conditions in Fig. 13.7 have no meaning for x less than zero or greater than
2L, but the mathematical assumption of periodicity allows a Fourier series
solution, as will be shown later.

Many functions likely to be encountered in our engineering problems can
be expanded in a Fourier series. There are some mathematical restrictions,
known as the Dirichlet conditions [M4], that cannot be violated. A function is
Fourier expandable if in the interval 0 5  x 5  2L the following are true:

1. The function f(x) is single-valued.
2. The function f(x) never becomes infinite.
3. The function f(x) has a finite number of maxima and minima.
4. The function f(x) has a finite number of discontinuities.

A practical concern that does limit the utility of Fourier series solutions is that

-4L -2L 0 2L 4L (13.35) as a periodic function.
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the integrals in Eqs. (13.39) to (13.41) must be analytic, since Uj and bj are
coefficients in an infinite series. Also, not all boundary conditions are
amenable to Fourier series solution [C2, C3, C6, 52, Ml, M4, Rl, W2].

The first step in the Fourier series solution of a partial differential
equation is to assume that the solution is a product of two quantities:

@(x, t)  = X(x) - z-w (13.42)

where & is a function of x only and T is a function of t only. This assumption
can be justified only in that it leads to a solution satisfying the partial
differential equation and its boundary conditions. The assumed solution, Eq.
(13.42) is substituted into the partial differential equation of interest, Eq.
(13.32). Since X is a function of x only, it follows that

Similarly

Substituting the above into Eq. (13.32),  the result is

(13.43)

(13.44)

The variables in Eq. (13.45) are separated as follows

X ”  1T’-z-z-
x aT

(13.46)

It is argued that, if x is varied there is no effect on the term T’/(LY~)  since
T’/(arT)  is not a function of x. Thus, the term T’/(@‘)  must be independent
of x. A similar argument about varying t and its effect on the term r/;Y  leads
to the conclusion that each side of Eq. (13.46) must be equal to a constant.
This constant shall be designated as --/3”  to facilitate later forms of the
solution:

X”  1T’L=-L=
x ffT

-B’ (13.47)

The constant -p’  in Eq. (13.47) must be negative in order to avoid an
exponential solution that would be inconsistent with the boundary conditions
[Rl].  Equation (13.47) may be decomposed into two ordinary differential
equations:

r+p2g=o (13.48)

T’+/32aT=o (13.49)
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The solutions to Eqs. (13.48) and (13.49) are assumed to be

T = Cl exp( -B*&) (13.50)

X= C2cos/3x+  C3sin/3x (13.51)

Appropriate boundary conditions for a direct Fourier series solution must be
the simplest possible, i.e., homogeneous:

O(x,  0) = 00

O(0,  t)  = 0

0(2L, t)  = 0 (13.35)

At this stage in the solution, there are four constants (C,,  C,,  C3.  and p) to be
determined from the boundary conditions. Using the boundary condition at
the point x = 0, Eq. (13.42) becomes

O(0,  t)  = T(O) * T(t) = 0 (13.52)

Since for the nontrivial case T(t) cannot be zero for all t,  it follows that Eq.
(13.52) is true only if

X(O)  = 0 (13.53)

Substituting the results of Eq. (13.53) into Eq. (13.51),  Eq. (13.51) becomes

0 = C2  cos  [UNO)l  + C3  sin [WUU (13.54)

Since the sine of zero is zero and the cosine of zero is one, then by Eq. (13.54)
C2 must be zero. Next, the boundary condition at the other end is applied, and
by similar reasoning

&(2L)  = 0 = C3 sin 2/3L (13.55)

Equation (13.55) equals zero only if C3 is zero or if sin 2f?L is zero or if both
are zero. However, if C, is zero, then ;Y  is zero and our assumed solution, Eq.
(13.42) is trivial. Therefore

sin 2j3L =0 (13.56)

The sine of an arbitrary angle LY is zero if (Y  = n,  2~r,  3n, etc. Hence

2/3L=jn o’= 1, 2, 3, . . .) (13.57)

From Eq. (13.57),  the constant /3 is found to be

(13.58)

The solution as determined so far is substituted from Eqs. (13.50),
(13.55) and (13.58) into Eq. (13.42):

O(x, t)  = C,C,(sin$) exp(-(g)zm) (13.59)
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where each and every j, as j goes from 1 to 00,  is a solution to the original
partial differential equation, Eq. (13.32). Thus, the total solution is the sum
over j of all possible solutions, since Eq. (13.32) is a linear partial differential
equation:

@(X,  t)=i  [bjSiIl~~)eXp(-(~)‘cxt)] (13.60)

where the product Cr C,  has been replaced by bj.
The remaining boundary condition at time zero, Eq. (13.33),  is used to

evaluate bjs  Applying that condition to Eq. (13.60):

@(cc,  0) = B,=g  [bj sinrg)exp(-(g)*&(O))] (13.61)

Since the exponential of zero is one, Eq. (13.61) reduces to

O,,  = 2  bj sin($$)
j=l

(13.62)

A comparison of Eq. (13.62) with the Fourier series of Eq. (13.38) shows that
aj  must be zero for all j and

(13.63)

By substituting Eq. (13.63) into Eq. (13.60),  a complete solution is now
available. Note that a Fourier series solution is possible as long as the
integration in Eq. (13.63) can be performed. For the case of constant 00,
integration of Eq. (13.63) yields

= 7 [-cos  jn - (-cos 0)] = F [for odd j] (13.64)

The simplification of Eq. (13.64) resulted from the following reasoning. The
cosine of zero is one. The cosine of Jo equals -1 for odd j and +l for even j.
Hence

-(cos jn) + 1 = 0 if j is even

-(cos jn)  + 1 = 2 if j is odd (13.65)

Note that a single value of bj  from Eq. (13.64) cannot possibly satisfy the
boundary condition of Eq. (13.33). Hence, it is argued that only the sum from
one to infinity of all possible bj will satisfy the boundary condition, since Eq.
(13.32) [or Eq. (13.37)]  is a linear partial differential equation.

Combining results, the final solution to Eq. (13.32) as determined by the
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method of Fourier series is

Equation (13.66) expresses in terms of an infinite series the dimensionless
temperature 8/@,  for any x and t when the boundary conditions of Eq. (13.35)
are valid. However, the engineer will usually be interested in the temperature
for a particular x and c or for a series of x and t combinations. In general a
Fourier series such as Eq. (13.38) or Eq. (13.66) converges very slowly,
especially for small t.  Often thousands of terms are required in order to
evaluate 8  to the required accuracy. In fact, evaluation of Eq. (13.66) on a
digital computer requires almost as much effort as a direct numerical method
(to be discussed subsequently), not including the lengthy steps required to get
Eq. (13.66).

A mass transfer problem with nonhomogeneous boundary conditions is
solved in Example 13.2.

Example l3.2.  A 3-in. schedule 40 pipe is 3 ft long and contains helium at
26.03 atm and 317.2 K (44“C),  as shown in Fig. 13.8. The ends of the pipe are
initially capped by removable partitions. At time zero, the partitions are
removed, and across each end of the pipe flows a stream of air plus helium at the
same temperature and pressure. On the left end, the stream is 90 percent air and
10 percent He (by volume) and on the right 80 percent air and 20percent He. It
may be assumed that the flow effectively maintains the helium concentration
constant at the ends. If isothermal conditions are maintained and there are no
end effects associated with the air flowing past the pipe, calculate the composition
profile (to four decimal places) after 1.2 h at space increments of OSft.  Use
Fourier series. The value of DHtti is 0.7652 x 10m4  m’s-’  (2.965  ti  h-‘) [F2].

Answer. First, note that mass transfer in Fig. 13.8 occurs in the z direction only;
there is no transport in either the r- or e-directions. Since the previous equations
(derived with heat transfer as the example) are in terms of the x direction, the
solution to this problem H;ill  arbitrarily use the x direction as the direction of mass
transfer.

.

f FIGURE l3.8
90% air, 10% He 80% air, 20% He

1  atm, 44°C 1 atm, 44°C
Transient diffusion of helium
in a pipe.
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Concent ra t ion  i s  re la ted  to  par t ia l  pressure  by  Eq.  (2 .37) :

CA = n/V  =p.J(RT) (2.37)

where R is the gas constant (0.082057 atm m3  kmoll’  K-i from Table C.l). The
part ia l  pressure  of  species  A is  def ined by Eq.  (2 .38) :

PA = YAPto, (2.38)

where yA  is  the mole fract ion of  A and ptow  i s  the  to ta l  p ressure .
Example 2.7 illustrated the method of converting partial pressures into

concentrations. Initially, the partial pressure of helium in the tube equals the total
pressure, 26.03 atm. When the partitions are removed, the partialpressures  of
hel ium at  the  ends of  the  pipe are

B*  = YIPtotal = (0.1)(26.03)  =  2 .603  a tm

B2  = Y2Pmal  = (0.2)(26.03)  = 5.206  atm

Inser t ing  these  in to  Eq .  (2.37), the  concent ra t ions  are

C,, = &/(RT)  = (26.03)/[(8.2057 x lo-‘)(317.2)]  = 1.0 kmol mm3

C,,,  =p,/(RT)  = (2.603)/[(8.2057 x lo-‘)(317.2)]  = 0.1 kmol mm3

C,,* =p,/(RT)  = (5.206)/[(8.2057 x lo-‘)(317.2)]  = 0.2 kmol mm3

Fol lowing the  nomenclature  of  Eq.  (13.35),  these are

C,&,  0) = 1.0 kmol mm3

C,,,(O, t)  = 0.1 kmol mm3

C.42L.  t)  = 0.2 kmol mm3

(9

(ii)

(iii)

where the total length of the pipe is 2L, or 3 ft.  Although C..,,  does not equal
CA,2, it is still convenient to transform C,  to 0,:

%I = CA  - CA.1 (3
0”(X, 0) = CA,0  - CA,,  = 0.9 = 00 69

@%.4(O,t)  = CA.1  - CA.1  = 0 (4
0,(2L, t) = C,,J  - c,,, =.0,  = 0.1 (vii)

where the definition of 0, is arbitrarily based on CA.I;  for ease of notation, 0,
and 0* have also been introduced in the above equations. Using the above
transformat ion,  Eq.  (13 .37)  s t i l l  appl ies :

(13.37)

where the total length of the pipe is 2L, or 3 ft.
The  boundary  cond i t ions  in  Eqs .  ( iv )  th rough  (v i i )  do  no t  a l low a  so lu t ion

by Four ie r  ser ies  because  the  condi t ion  in  Eq.  (v i i )  does  not  equal  zero .  This
limitation is easily circumvented by expressing the total solution as the sum of the
unsteady-state (or transient or particular) solution 0, and the steady-state
solution 0, [Rl]:

0&,  t)  = e,(x) + 0,(x,  t) (viii)
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The steady-state solution 8, is obtained from Fick’s law, Eq. (2.4). For
equimolar  counter  d i f fus ion ,  i t  i s  eas i ly  shown tha t  the  ra t io  ApA/Ax  must be
constant  a t  s teady-s ta te .  I f  the  ra t io  ADA/Ax  i s  cons tan t ,  then  the  ra t io  AC,/Ax
is also constant [cf. Eq. (2.37)].  Since two points uniquely determine the equation
for  a  s t ra ight  l ine ,  the  equat ion for  8,  i s

8,=%l(0,~)+[%&,  ~)-~M(0,~)l[.dw)I
= 0 + (63, - O)[xl(2L)]

= @,[x/(ZL)] = (O.l)(x/3)  = n/30 64

The boundary  condi t ions  for  the  t rans ien t  so lu t ion  are  found by  combining
the  las t  two equa t ions .  F i r s t ,  Eq .  (v i i i )  i s  so lved  for  @(x,  t ) ;  t hen  the  cond i t i ons
in Eqs. (v) through (vii) are inserted into the resulting equation:

@(x,  0) = c&(x,  0) - e,(x) = 0.9 -x/30  = 8, - 8,[xl(2L)] (x)

@(O,  t) = &(O,  t) - e,.(o)  = 0 - 0 = 0 (xi)
e,(2L,  t)  = 63,(2L,  t)  - 6,(2~) = 0. i - (o.i)(2L)l(2L)  = 0 (4

The solution to Eq. (13.37) subject to the above boundary conditions follows the
derivation of Eq. (13.66) from the inception, Eq. (13.42),  up through Eq.
(13.60),  which af ter  replacing (Y  w i t h  D i s

e,(x, t)  =s  [b, sintg)exp(  - (g)*Dt)] (xiii)

‘Ihe boundary  condi t ion  of  Eq.  (x)  i s  used  to  evaluate  the  remaining cons tant ,  bj:

et+,  0) = e. - e,[xipL)] = 0.9 -x/30  =s [ bj sin($$)exP(  - (~)z~~~(~))]

A comparison of Eq. (xiv) with the Fourier series of Eq. (13.38) shows that a,
must be zero for all  j and

b,=; 8 0 - 8 X
>o

sin JZ  h
22L 2L

Equat ion  (xv)  equals  the  sum of  two in tegra ls :

The first integral is identical to that in Eq. (13.64):

$rsin($$)  dr =F [for odd j]

The second in tegral  may be  located in  a  s tandard table  of  in tegrals  [Pl]:

I xc0sl.x  sink
xsinAxak=--+-

a A2

(4

(xviii)
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where A  equals jn/(2L).  Substituting, the second integral is

The f i rs t  term in the above is

$z[IL(cosjn)-(O)(cosO)]=~cosjn=~(-1)’  ( x x )

s ince  cos  jlt  = +l  for  even values of  j  and -1 for  odd values of  j .  The second term
is zero since sin jn equals zero for all values of j:

sin[@r)(2L)/(2L)]  - sin 0 = sin jn - 0 = 0 (4

The value of bj is the combination of Eqs. (xvii) and (xx). The final
expression is obtained by the summation of all bj between 1 and infinity, which is
then included in Eq. (xiii):

C&(x, t) = ?j=li5  ,__  5 [ sin@q.(  - (E)*Df)]

+Ti:s3  .,.i(-l)j[sint$)exp(-($)*Dt)]  ( x x i i )
, . 3

As a rule, these infinite series converge slowly; hence, it may be advantageous to
combine  the  two inf in i te  ser ies :

B,(x,t)=:$i[C&+(-l)j(B,-B.)][sit@exp(-(g)iDtl]  (xxiii)
I

Note that if &=O,  Eq. (xxiii) reduces to Eq. (13.66). Inserting Eqs. (ix) and
(xxiii) into Eq. (viii) yields the final expression for the concentration or for 8,  as
a function of  t ime and distance:

=&(&)  +zii[@,+(-ly(&-&)][sin($$)exp(  -(g)‘DI)]

where
(xxiv)

&=0.9 &=O.l 2L=3ft D = 2.965  ft2  h-’ cm

A computer program to evaluate Eq. (xxiv) at the t and I of interest is
given  in  F ig .  13 .9 .  Equat ion  (xxiv)  i s  a  converging  inf in i te  ser ies ,  in  which  the
signs of the terms alternate in an irregular pattern. The best procedure is to
combine a l l  terms of  l ike  s ign,  then tes t  the  magni tude to  see  i f  that  combinat ion
is  less  than the  accuracy des i red .  In  the  case  of  a  s imple  a l ternat ing converging
series, the truncation error is smaller in absolute value than the first term
neglected and is  of  the  same s ign.  The resul ts  are  given in  Table  13.2.  The las t
column is  an indicat ion of  how many terms are  required for  the inf ini te  ser ies  to
converge.
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C . . . . . . . . . . . . . . . . . . . . . . . . . ..EXAEPLE 13-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C
C FOURIER SERIES SOLUTION OF AN UNSTEADY-STATS WASS TRANSFER PROBLEH
C WITH NONsOwOGENEOUS  BOUNDARY CONDITIONS
C

IWPLICIT  REAL*s(A-H,O-2)
DIWLNSION  ZZ(S),TIwE(sl,AWS(5)

2 FORMT(1W0/113H0EXAWPLE  13-2 - FOURIER SERIES SOLUTION OF AN UNS
STEADY-STATE  w~ss TRANSFER  PROBLEW  WITB  NONR~H~GENEOUS  BOUNDARY/
216XlORCONDITIONS)
3 FORWAT(llHlEND  OF JOB)
4 FORWAT(lH9/19ROTHE  TUBE LENGTH IS,F20.4/29HOTHE  DIFFUSIVITY(FT*FT/
1AR) IS,?10.4/lR0/4OROTEE  BOUNDARY CONDITION FOR ZERO TIME IS,F11.4
2/368  THE BOUNDARY CONDITION FOR Z - 0 18.115.4
3/37s  THE BOUNDARY CONDITION FOR 2 = 2L IS,F14.4)

5 FORWAT(lHG,2sX,'CONCLNTRATION  CA AT DISTANCE (X/2L)',
1 2X,'<KG  w**-3>'/sROTIwE(S~,5X,3iiO.O,7X,3Hl/6,7X,
2 381/3,7X,3H1/2,7X,3A2/3,7X,3H5/6,7X,3H1.0,7X,'wAX  TEMS'/lH  )

6 FORWAT(lIiO/llHOEND  OF JOB)
7 F0RXAT(F7.1,7F10.4,112)

IN-5
IO-7

C
C 22 IS X IN FT; D IS IN FT*FT/H;  T IS S;TWOL IS IN FT
C TWOL IS TOTAL THICKNESS OF SLAB
C

TWOL-3.0DO
D - 2.965DO
PI-3.141592653589793DO
NZ-5
ZZ(l)-0.500
ZZ(2)-l.ODO
ZZ(3)-1.5DO
ZZ(4)-2.ODO
ZZ(5)-2.500
TIHE(l)-l.DO
TINEl2)-lO.DO
TIHE(3)-lOO.DO
TIwC(4)-6OO.DO
TIHE(5)-l099.DO
TIME(6)-3600.DO
TIME(7).6000.DO
TIwE(sl-l.DlO
SPS-b.iD-05
ZERO-O.DO

C
C CO IS CONCENTRATION AT T - 0
C Cl IS CONCENTRATION AT Z - 0

E
C2 IS CONCENTRATION AT Z - TWOL

CO-l.ODO
Cl-O.lDO
C2-0.2D0
WRITC(IO.2)
WRITE(IO,4)TWOL,D,CO,C1,C2

C TRETA-w  IS CA - Cl
THO-CO-Cl
TE2-CZ-Cl

C THE FOLLOWING ARE COHPUTED  ONCE ONLY FOR EFFICIENCY
A7-TH2/TWOL
A&Z.DO/PI

C A9- IS FOR ODD J ONLYi  FOR EVEN J, USE TH2
A%TliO+THO-TH2
WRITE(IO,S)
WRITE(I0,7)ZERO,(C0,I-1,7)
Do 200 11-1,s

FIGURE 13.9
Program to evaluate Fourier series in Example 13.2.
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C T IS TIHE  IN R
TSEC-TIRL(I1)
T-TSEC/3600.DO
DU 100 K-1,NZ
J-l
IALT-2
JRAX-0
Al--D"T*(PI/lWOL)+*2
;~;P;;~;tK)/TWOL

m
TERI'lJl-PS(Al,A6,J)+A9
SURT-TERHJl
BLAST-IERO

C

:
C
C
C
C

4 0

SUH - SURRATION  Or TERRS OP SERIES
TERRJl  - CONTAINS 1ST TERU  WITR SIGN
TERIJ  - CALCULATIONS ?OR J
SWIT - SUHMATION  OP TERMS  NITH SAME SIGN
BLAST - VALUE 01 THE PREVIOUS SURMTION

J-J+1

C

41
C

42

TLRHJ-PS(Al,AC,J)
BYPASS IP TCRRJ  IS IDENTICALLY ZERO

I~(TERJlJ)41,4~,41
GO TO (42,43),IALT

FOR ODD J

C
43

44

E
C
45

C
5 0

TERRJ-TERIJ*A9
IALT-2
GO TO 44

POR EVEN J
TERMJ-TERRJ'Tii2
IALT-1
CONTINUE
I~(DABS(TERWJ)+DABS(TEMJ1)-DABS(TBRRJ+TERRJl))55:5~,4~

DIIFERENT  SIGN - TSST  POR  C O W V C R G E N C E .
(WHEN THE SUR 01 TERM O? LIKE SIGN BECOHES  LESS
THAN EPS

sun-sun+sLrm
IF(DABS(SUI'lT)-EPS)60,50,50

NO CONVERGENCE
SLAST-SUWT

SURT-TERIJ
TERRJl-TERRJ
GO TO 40

C
5 5

C
6 0

C
100

200

SME  SIGN -ADDAND  LOOP
SURT-SURT+TERRJ

GO TO 40
CONVERGENCE - BUILD TRE SOLUTION

TRETA-ZZ(K)+A7+A8*SUM
I~(J.GT.JRAX)JRAX-J

CHANGE PROI  THETA4  TO CA
ANS(K)-TRETA+Cl
IP(TSEC.GT.9999.DO)TSEC-2ERO
WRITE(IO,7)TSEC,C1,(ANS(I),I-l,5),C2,JRAX
CONTINUE
WRITE(IO.6)
STOP
E N D
FUNCTION ?SfA,B,J)
REAL*8  PS,A,B,XJ
XJ-D?LOAT(J)
PS-DSIN(B+XJ)/XJ+DLXP(A*XJ*XJ)
R E T U R N
END

FIGURE 13.9
(Continued)
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TABLE l3.2
Solution to Example KU-transient  difhwion

Concentration CA at distance x

Tiie,s  Oft 0.5 ft l.ofi l.5fl 2.0 ft 258 3.0ft  Maxj

0.0 l.OtNM 1.0000 1.0000
1.0 O.lNKl 1.0000 1.0000

10.0 0.1m 0.9999 1.0000
loo.0 0.1000 0.8038 0.9876
600.0 0.1000 0.4373 0.6816

1000.0 0.1000 0.3368 0.5139
3600.0 0.1000 0.1376 0 . 1 6 %
6ClW.O O.lcm 0.1191 0.1375
co 0.1000 0.1167 0.1333

l.CNOO 1.0000 l.OONl 1.0000
1.0000 1.0000 1.0000 0.2000
1.0000 1.0000 0.9999 0.2000
0 . 9 9 % 0.9390 0.8256 0.2000
0.7767 0.7087 0.4977 0.2000
0.5885 0.5458 0.4520 0.2000
0.1919 0.2030 0.2043 0.2000
0.1548 0.1708 0.1857 0.2000
0.1500 0.1667 0.1833 0.2000

8 1
2 9
1 1

5
5
3
3
2

13.2.2 Laplace  Transform Solution

The Laplace transformation is one of the most important forms of operational
calculus. In the field of chemical engineering, the most important application
of. the Laplace transform is in the area of process control. The Laplace
transform can also be used to solve ordinary and partial differential equations
[Cl, C4, Ml, M3, Rl, W2].

The solution of partial differential equations by Laplace transforms
comprises three steps: (1) the given partial differential equation is transformed
into an ordinary differential equation; (2) the ordinary differential equation is
solved by standard procedures; and (3) the solution is transformed back into
the original variables such that it becomes the correct solution of the original
problem.

Let f(t) be a function defined for all positive t and let the following
integral exist:

&) = 1 bd--Nf(t)l  dt (13.67)

where s is a parameter that becomes the transformed independent variable in
g. Then the function g(s) is defined as the Laplace transform L(f) of the
original function f(t):

Wf)  = &)  = irn  [ed-NfO)l  dt (13.68)

The inverse transform L-‘(g)  is defined as

f-(t)  = L-‘(g) (13.69)

The Laplace transform possesses many useful properties that allow
transforms of many seemingly complex functions to be computed simply.
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Tables of Laplace transforms are available in ‘many references [Cl, C4, 52,
Ml, M3, Rl,  W2].  The following example problem illustrates two simple
transformatiotls.

Example 13.3. Find the Laplace  transform of: (a) f(t)  = t;  and (b) f(t) = exp(at),
where a is a constant.

Answer. For part (a), r must be nonnegative. Application of Eq. (13.68) to the
function yields

L(f) = g(s) = lm  [exp(-st)][f(t)]  dt  = [ [exp(-st)]t  dt  = 5 (--SC  - I)11

For part (b), with the restriction of r nonnegative

L(e”) = I [exp(-st)][exp(ar)]  dt  = & exp[-(s  - a)(1)]1,

1=-
s - a

(s-a)>0 (ii)

The Laplace transform can also be applied to dehvatives [J2]. If the
derivative of the function f(t) is f’(t), then the Laplace transform of this
derivative is

W’WI = jrn  If’ Wlbd-41  dt
0

= [f(Ol[exp(-4ll~  - slffi  IfWllexp(-4l  dt = WWI -fW (13.70)

The Laplace transform involves integrating from zero to infinity. The
above equation can be extended to show how a derivative may be removed
from a partial differential equation. The method of Laplace transforms can be
used to reduce a partial differential equation to an ordinary differential
equation if all variables except one have an open range.* The Laplace
transform is very useful in solving some problems in which one boundary
condition is a function of time. A compendium of solutions is available for heat
transfer problems [C2] and for mass transfer problems [Bl, C6].

For purposes of illustration, let us reconsider the simple boundary

2 In considering boundary conditions, the range of a variable is said to be open if the boundary
conditions specify the value of that variable at the start of a range; in other words, the problem
with respect to that variable is an “initial value” one.
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conditions of Eq. (13.35):

qx, 0) = eo 8(0,  t)  = 0 8(2L, t)  = 0 (13.35)

These cannot be used directly for Laplace transforms because the last two are
both boundary value boundary conditions. However, as mentioned previously,
these boundary conditions result in a symmetric temperature distribution about
the center plane. When the above boundary conditions apply, the derivative of
8 with respect to distance must be zero at the center plane. In the Laplace
transform solution using the above, it is convenient to translate the x axis so
that the origin in Figs. 13.5 through 13.7 is now at L. After translation, the
slab extends from -L to L. Then the following boundary conditions describe
the physical problem:

@(x, 0) = 00 O(L,  t)  = 0 2  (0, t)  = 0 (13.71)

The boundary conditions of Eqs. (13.35) and (13.71) are compared in Fig.
13.10. The temperature profiles in Figs. 13.10(a)  and 13.10(b)  are identical in
the region 0 sx  5  L. Hence, the Laplace transform solution using Eq. (13.71)
must yield the same numerical result as the Fourier series solution using Eq.
(13.35). This comparison will be illustrated in Example 13.4.

The boundary conditions of Eq. (13.71) will now be applied to Eq.
(13.32):

Insulated surface (q = 0)

(a) Fourier problem
qx,  0) = 80

q-I.,  t) = 0

e(+L,  I) = 0

FIGURE l3.10

a%  1 d@-=--
ax* LY  at

Insulated surface (y = 0)

I fi=n

Insul
(9 =

(b) Laplace  transform problem
e(x,  0)  = e.

e(+L,  t)  = 0

g (0, I) = 0

(13.32)

Comparison of boundary conditions for one-dimensional unsteady-state transport.
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The first. step in the Laplace transform solution of Eq. (13.32) is to transform
Eq. (13.32) along with the boundary conditions, which for illustration are Eq.
(13.71). The details of this transformation are lengthy; since ample discussion
is elsewhere [Cl, C2, C4, 52, Ml], the results will be summarized here.
Recalling that g(s) is the Laplace transform of the original function f(t), Eq.
(13.32) becomes

(13.72)

The transformed boundary conditions [from Eq. (13.71)]  become

g(x=fL)=O &z (x = 0) = 0 (13.73)

Note that Eq. (13.32),  the partial differential equation, has been transformed
into Eq. (13.72),  which is an ordinary differential equation, the solution of
which is [C4, Rl]

g = O,,/s + C1 sinh(yx)  + C, cosh(yx) (13.74)

where

y = (cYs)‘a (13.75)

The boundary conditions of Eq. (13.73) are used to evaluate C1 and C2 in Eq.
(13.74). Using the derivative of g:

&z = 0 = yC1  cash(0) + yC, sinh(0) (13.76)

The following is true:

sinh(0) = 0 cash(0) = 1 (13.77)

Comparing the last two equations, obviously Eq. (13.76) is true only if the
constant Cr is zero. Then Eq. (13.74) reduces to

g = &,/s  + C,  cosh(yx) (13.78)

Using the other boundary condition, Eq. (13.78) becomes

or

g = f&/s  + Cz cosh(yl)  = 0 (13.79)

(13.80)

After substituting the above expression for C, into Eq. (13.78),  the result is

(13.81)
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The last step in the solution by Laplace transforms is to find the inverse
transform of Eq. (13.81). Equation (13.81) is converted to exponentials, and
after simplification an inverse transformation is obtainable. The answer is [C4]

(13.82)

An example problem using this equation is presented in the next section.
Obviously, Eq. (13.82) is mathematically equivalent to Eq. (13.66),  since each
is a solution to the same physical problem. Note, however, that the
independent variable x is defined differently in Eq. (13.66),  as compared with
Eq. (13.82) (cf. Fig. 13.10).

13.2.3 Generalized Chart  Solutions

Generalized charts for unsteady-state heat transfer were originally prepared by
Gurney and Lurie [G4],  who presented the mathematical solutions to useful
heat transfer problems in graphical form. Their charts avoided the tedious
evaluation of the many terms of the infinite series that often comprise the
solutions.. In the solutions presented in Sections 13.2.1 and 13.2.2, the
boundary conditions were fairly simple; however, the charts allow for
convective heat or mass transfer to solids of various shapes, such as slabs,
cylinders, and spheres.

The charts prepared by Heisler [Hl]  are more accurate than those of
Gurney and Lurie. Heisler prepared graphs for the temperature history at the
center of the slab (or other body), the temperature of which is hereafter called
T,. Other graphs correlated T, tvith  the temperature T at any position. Figures
13.11 and 13.12 are the graphs of T,  and T for the slab or flat plate, as
discussed in the last two sections (cf. Figs. 13.1, 13.5, and 13.10). Table 13.3
presents the necessary nomenclature for use of the charts. Figure 13.11 was
prepared using a dimensionless temperature which McAdams [M2]  termed
“unaccomplished change”. For heat transfer, the unaccomplished change at
the center Y, is

Tm-  T,
y,=-

Z-i,-  To
(13.83)

where T,  is the temperature at the center plane of the slab, T, is the
temperature of the surrounding fluid, and To  is the initial temperature of the
slab at time zero. The Heisler charts were prepared using m, which in heat
transfer is the reciprocal of the Biot number:



l.O-
0.8.

0 . 4

0 . 2

0.1.
0 .08

mPlate

Temperature or concentration at the center plane of a large flat plate of thickness 215.  (From Hebler,  Trans. ASME  69: 227 (1947). By permission of
ASME.)
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m

FIGURE l3.12
Position-correction chart for Figure 13.11 (flat plate). (From Heisler,  Tram. ASME 6% 227
(1947). By permission of ASME.)

where L is half the thickness of the slab as before. To find the temperature at
some specified location x, the variables tn and X are calculated; then Y, is
determined from Fig. 13.11; T, is calculated from Eq. (13.83); Y, is determined
from Fig. 13.12; and finally T, is calculated from the definition of Y,, as given
in Table 13.3.

The charts just presented apply to the case of the boundary conditions of
Eq. (13.29):

& = constant [#f(x)]

Tl  = & = q = constant [#f(t)]
(13.29)

These boundary conditions are equivalent to a Biot number of infinity, or a
value of m equal to zero. The line of m = 0 is included in the preceding figures.

Example 13.4. A sheet of extruded polystyrene (rigid) is 8 ft long, 4 ft wide, and
2 in. thick. Initially, its temperature is 253 K. If the temperature at each face is
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T A B L E  1 3 . 3

Nomenclature for transient transport charts

SpbOl DeseriptiOll Heat trader Mass  transfer

Y, unaccomplished change
at the center

e-T,
T,-  T,

r, dimensionless ratio T,-T,
at location x L-T,

X relative time lYt/L2
m relative resistance k/W)
m, relative resistance (Jdk)(at)lR

;
dimensionless distance XlL
dimensionless distance xl[2(crrynl

c A . -  - cA,c

c AP - cA,O

CA.-  - cA.x

CA? - cA.c

DrJL’
D/(W)
(k,lD)(Dt)‘R
XlL
xl[‘4D01’7

Snbsaipts
m, fluid sumundii~  the solid
0, wdue.  at time zero
c, value at the center of the body
x, value at position x (or r)

instantaneously increased to 303 K, find the temperature at the center line after
640s by three methods: (a) Fourier series; (b) Laplace transform; (c) Heisler
charts. For this plastic, the density is 55 kgmm3,  the thermal conductivity
0.027 W m-’ K-‘,  the  heat  capaci ty  1 .21  kJ  kg-’ K-l,  and the thermal  diffusivi ty
4.057 X 10m7  m2  s-‘.

Answer. The sheet  of  polystyrene is  large enough so that  end effects  may be
neglected. Therefore, there is negligible error in the assumption that all heat
transfer occurs in the x direction, i.e.. the  coord ina te  cor responding  to  the
thickness, which in SI units is

2L = (2)(0.0254)  [(in.)(m in.-‘)] = 0.0508 m (9
L=O.O254m (ii)

The boundary  condi t ions  as  g iven  correspond to  those  of  Eq.  (13 .29) :

& = 253 K = constant

T,= T,=T,=303K=constant
(iii)

The  above  boundary  condi t ions  and  the  govern ing  t rans ien t  hea t  equa t ion ,  Eq .
(13.6),  are  easi ly  t ransformed into the var iable  8 us ing  Eq.  (13 .31) :

E+=T-T,=T-303 (iv)

The appl icable  par t ia l  d i f ferent ia l  equat ion is  Eq.  (13.32) :

28  1%-=--
3x2 lY a t

(13.32)
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The boundary conditions in terms of 0 are in the form of Eq. (13.35):

0(x,O)=0,=T,-q=253-303=-50

0(0,  t) = 0 0(2L, t) = 0 (4

(a) Fourier series. The Fourier series solution to Eq. (13.32) was presented
previously:

0 _ z-(x,  I) - Tf 4
s,-  T,-Tf =;jGz5,.,.i  [sin(X$+P(-(g)‘M)]  (13.W

For this problem, the ratio x/(2L)  is 1/2. Then

sin(jn/2) = (-1)’

(gr(ti)  = (Ar(4.057 X lo-‘)(t)  = 1.522 X 10e3j2t (vii)

Equation (13.66) for this problem becomes

T(L,t)=303+(4)0  i ( 1 )A j=1.3.5 ,...
,  (-l)j(exp[(-1.522  X  lo-‘)j’t])  (v i i i )

The program for Example 13.2 in Fig. 13.9 is easily modified to compute the
answer in Eq. (viii); the result is in Fig. 13.13.

C
C . . . . . . . . . . . . . . . . . . . . . . . . . ..CXAHPGE 13-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P.
C ?OIJRIZR SERIES AND LAPLACC  SOLUTION OF AN UNSTEADY-STATE HEAT TRANS?ER
C PROBLEM WITH HOMOGENEOUS BOUNDARY CONDITIONS
C

INPLICIT RCAL*S(A-H,O-2)
DII'IENSION  ZZ(S).ANS(5).ANSL(S)

2 FORNAT(lHO/~0CXklPLC  i3-4 --FOURIER SERIES AND LAPLACE  TRANSFORM '
1 ' SOLUTION OF AN UNSTEADY-STATE HEAT TRANSFER PROBLCII'/

WITH HONOGCNCOUS BOUNDARY CONDITIONS')
32F;JRMAT(llRlCND  OF JOB)
4 FORMT(lHO/'OTHC  SLAB THICKNESS (.2L, IN ?I) IS',F20.4/
1 'OTHC THERNAL  DIFFUSIVITY  (n*n/S)  1s',Dl6.4/
2 'OTTHE  VARIABLE TEETA  IS THE TRANSFORICD  TEMP. T - TF'/
3 4OAOTHE  BOUNDARY CONDITION FOR ZERO TIHC IS.Fl1.4
4 /36R  THE BOUNDARY CONDITION IOR Z - 0 IS,Cl5.4
5 /37H  THE BOUNDARY CONDITION ?OR Z - 2L IS,?14.0
5 FORFlAT(lH0,20X,'THETA  (I()  AT DISTANCE (X/2L)',
1 /6HOTIHC(S),5X,3H0.0,7X,3Hl/6,7X,
2 3H1/3,7X,3H1/2,7X,382/3,7X,3H5/6,7X,3H1.  TCRHS'/lH  )

6 FORNAT(lHO/11H0CND  OF JOB)
7 ?0RHAT(F7.1,7110.4,112)
8 FORMT(lH' )
9 :;y(‘OTHE TEMPERATURE TF (II)  IS ',F10.2)

m
IO-6

C

:
ZZ IS X IN PI; ALPRA  IS IN MT*M/S;  T IS S;TWOL  IS IN H
TWOL IS TOTAL THICKNESS OF SLAB

FlGURE  13.13
FORTRAN program for Example 13.4.
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C

5

:
C
C

C

C

C
C
C
C
C
C
C

40

a3

:
C

45

C
50

4VPLICATlONS  OF TRANSPORT PHENOMENA

TkOL-O.OSOSDO
XL-TNOL/I.ODO
ALPHA-4.057D-07
PI-3.141592653589793DO
NZ-3
DO I=l,NZ
ZZ(I)-TWOL/6.ODO*D~LOhT(II
BNDDU
BPS-0.5D-05
ZERO-0.00
ONE=l.ODO

TRCTA  IS T(K) - TP WSERE  T? IS TIHP  AT PACES  AT T > 0
TIiO IS TNETA  AT T - 0
THl IS TBETA  AT 2 - 0
TH2 IS TBETA  AT T - TWOL

THO--5O.ODO
THl-ZERO
TH2-ZERO
TF-303.DO
NRITE(I0.2)
NRITE(IO,4)TWOL,hLPSh,THO,TRl,TH2
NRITE(I0.9)TF

TNB POLLDWING ARS  COIIPUTED ONCB ONLY POR EP?ICIENCY
AS-4.DO+TRO/PI
WRITE(IO,S)
WItITE(I0,7)ZERO,(TijO,I~1,7)
Del  200 II-l.10
TSEC=DPLOhT(II+64)

DO 100 K-l,NZ
FOURIER SERIES SOLUTION

J-l
JHhX-0
IZERO-O
KOUNT-0
Al--hLPRh*TSEC*(PI/TWOL)**2
M;P~;~~(x)/TwoL

w
TERHJl-CS(hl.h6,J)
SUIT-TERHJl
SLAST-ZIRO

SUH - SUHHhTION O? TERHS  OI SERIES
TERHJl - CONTINS  1ST TERH  WITE  SIGN
TERHJ - ChLCULhTIDNS  ?OR J
SUHT  - SUHHhTION OC TEMS WITH ShHB  SIGN
SLAST  - VALUE 01 TNE PRIVIOUS  SUHHhTION

J-J+2
IF(J.GT.lOOOO)GO  TO 60
TCRHJ-PS(hl.h6.JI
XOUNT=KOtiNTil
IP(TERRJ)43,52,43
II(DhBS(TERnJ~+DhBS~TLRnJ1)-DhBS(TERHJ+TCRHJl~~55,55.45

DI??BRENT  SIGN - TEST TOR CONVBRGENCC
(WHEN  THE  SUH  OC TERM OF LIKE SIGN BECOHBS  LESS
THAN EPS

SUH-SUH+SLhST
I?(DhBS(SUHT)-EP8)60,50,50

NO CONVLRGENCS
SLhST-SUHT

SURT-TERHJ
TBRNJl-TBMJ
GO TO 40

FIGURE 13.13
(contiNued)



C
52

C
55

C
60

C
C
C

C

70

C
C

75
C

80

85

C
90

100

200

TERRJ  RAY BE ZRRO THREE TIRES ONLY
IZERO-IZBRO+l
I?(IZERO-3j43.45.45

SME  SiGN - ADD AND LOOP
SVIIT-BVUT+TBRUJ

IZBRO-0
GO TO 40

CONVERGENCE - BUILD THE SOLUTION
TRETA-AB+BVU

TPOVR-THETA+T?
I?(Jl¶AX.LT.J)JRAX-J

LAPLACC  TRANBPORR  SOLUTION

JHAXl-0
DENOR-2.ODO*DSQRT(ALPRA*TSEC)
Z-XLfDPLOAT(3-K)/3.D0
ISIGN-

J-O TERM
BVR-DERrC((XL-Z)/DENOR)+DBRIC((XL+Z)/DRNO~)
J-O
J-J+1
XZJ-DILOAT(J+J)+ONE
TBRR-DER?C((X2J*XL-Z)/DENOU)+DERIC((X2J*XL+Z)/DBNO~)
IP(DABS(TERR)-EPS)90.75.75
IF(K.GT.SO)GO  TO 90

NO CONVERGENCE
GO TO (80,S5),ISIGN

SUBTRACT ?OR ODD J
SVII-SVI-TERM
ISIGN-
GO TO 70
SVU-SVU+TBRU
ISIGN-
GO TO 70

CONVERGENCE - THOTRO IS TRETA  DIVIDED BY TIiBTA  ZERO
TkOTHO-ONE-SUM
TLAPL-TF'+THO+TROTRO
IF(JRAXl.LT.J)JRAXl-J
AUS(THETA
ANSL(K)-TRO*THOTRO
CONTINUE
ANS(~)-ANS(~)
ANS(5)-ANS(1)
ANSL(4)-ANSL(2)
ANSL(S)-ANSL(1)
WRITE(I~,~)TSEC,TH~,~ANS~I).I-~.~).TH~.J~
WRITE(I~,~)TSBC,TH~,(ANSL(I),I-~.~)~TH~.J~~
WRITE(I0.8)
CONTINUE
WRITE(IO,C)
STOP
END
FUNCTION FS(A.B,J)
RML*S  FE,A,B,XJ
XJ-DILOAT(J)
cS~DSIN(B*XJ)/XJ*DCXP(A+XJ*XJ)
RETURN
END
FUNCTION DBRFC(X)
IMPLICIT REAL*E(A-H.O-Z)
DATA eI/3.14159i653~897~30/
DATA TOL/O.5D-67/
DATA IN,IC/5,6/
DATA ZERO,ONE/O.OD0,l.ODO/

FIGURE l3.W
(Continued)
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2
3

20

23

25

30
32
35

40

50

:

20

25

:i

35

40

50

?OiWAT(A)
FORMT('O***  ERROR IN FUNCTION DERFC.'/

; liiO,SX,'ARGvMENT  IS OUT OT BOUNDS: X -',616.2/
'OPRESS  RETURN TO CONTINUL'/lH  )

Ip(X)20,25,30
WRITC(IC.3)X
READ(IN,2)1
DERFC-ZERO
RLTVRN
DERFC-ONE
RETURN
IT(X-4.)  32,32,23
II(X-1.5)  35,35,40
DERFC-ONE-DERF(X)
RETURN
xz-x*x
K-l2
V-O.SO/xZ
V=ONE+V*D?LOAT(K+l)
J-13
DO 50 I-1.K
J - J - 1
S3=ONE+V*DFLOAT(J)/V
v-s3
DERFC-DEXP(-XZ)/(X*S3*DSC?RT(PI))
RETURN
END
FUNCTION DERF'(X)
IHPLICIT  REAL*S(A-H,O-Z)
DATA PI/3.1415926535897930/
DATA TOL/0.5D-07/
DATA IN,IC/5,6/
DATA ZERO,ONE/O.ODO,l.ODG/
FORHAT
FORMTi'6***  ERROR  IN FUNCTION  DERF.'/

1 lHO,SX,'ARGVMENT  IS OUT O? BOUNDS: x -',El6.7/
2 'OPRESS  RETURN TO CONTINVE'/~~I  1
1F(X)20,25,30
WRITK(IC.3)X
READ(iN,i)i
DERWZERO
RETURN
IF(X-4.)  35,35,31
DERP-ONE
RETURN
XZ-x*x
s3-x
T4-X
I-0
I-I+1
83-53
T4-T4*X2*2.0D0/Dl'LOAT(l+I+I)
S3-T4+H3
Ir(TQ-TOL*S3)  50,50,40
DERF=t.ODO*S3*DSXPf-XZ)/DsQRT(PI)
RETURN
END

FIGURE l3.W
(Conrinued)
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(b) Laplace  transform. As indicated in Fig. 13.10, the boundary conditions in the
form of Eq. (13.71) are required:

e(x, 0) = e. = -50 K O(L, t)=OK Z(O,  t)=0

The Laplace transform solution given in Eq. (13.82) applies:

64

= l-z (-lY[erfc((2’2;~~D-x) + erfc((“2;~~~“)] (13.82)

where x is now zero at the center of the slab (cf. Fig. 13.10). The computer
program in Fig. 13.13 also computes the answer to this equation for this problem.
(c) Generalized chart.  Using the definitions in Table 13.3, the following dimension-
less groups are calculated:

x= cYr/L2=(4.057  x 10-7)(640)/(o.0254)~=o.04025

m=k/(hL)=O n=xlL=l (4
From Fig. 13.11, the value of Y, at the above values is 0.45. The temperature at
the center plane is obtained using the definition of Y,, Eq. ‘(13.83):

T--T,  303-T,y,=O.45=-=-
T--T,  303-253

T,=  303 -(0.45)(50)=280.5  K

The answers from the computer program in Fig. 13.13 are

T,  (Fourier) = 279.5 K T,  (Laplace) = 279.5 K

These compare well with the graphical solution.

(xiii)

Example W.5. A jacketed agitation vessel is depicted in Fig. 9.1. Consider such a
vessel of inside diameter 1.3 m, the outside of which is well insulated. The jacket
wall is 1.3 cm thick and is made of steel with the following properties: density
7800 kg mm3,  heat capacity 435 J kg-’ K-r,  thermal conductivity 84 W m-r K-‘,
and thermal diffusivity 2.476 x lo-’  m2  s-r. The initial temperature of the steel is
300 K. At time zero,, hot oil at 400 K is pumped through the jacket. If the heat
transfer coefficient is 600 W me2  K-‘,  calculate the time for the temperature at the
steel-insulation interface to reach 380 K.

Answer. The Heisler charts will be used to solve this problem. The thickness of
the jacket wall is 1.3 cm (0.013 m). Since the diameter of the jacket wall in the r
direction exceeds 1.3 m, the ratio of these two numbers exceeds 100. Obviously,
with such a thin wall it can be assumed that the cylindrical-shaped jacket wall can
be approximated as a plane wall. In Table 13.3 and the accompanying figures, L
is half the thickness of the slab when the same temperature is imposed on each
face in the x direction of the slab. When one face is insulated, then L becomes



0.002

0.001
_I” I” I” 1,”  I-I”  I-I”  LJ”  JJ”

X

FIGURE 13.14
Temperature or concentration at the center axis of a long cylinder of radius L (or rO).  [From Heider,  7’ran.v.  ASME  69: 2.27  (1947).  By  pembSsion  Of
ASME.]
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tht thickness, as discussed previously:

L = 0.013 m (9

Using the definitions in Table 13.3, the following dimensionless groups are
calculated:

y-T--T, 4 0 0 - 3 8 0c--=-=(-J2
T--T, 4 0 0 - 3 0 0  ’ 60

m = k/(hL)  = (64)/[(600)(0.013)]  = 8.205 (iii)
n=xlL=l (3

From Fig. 13.11 the value of Xis 14.3. With the definition  of the Fourier number,
the time is

t = XL*/CY  = (14.3)(0.013)*/(2.476  x lo-‘)  = 97.6 s 69

Cylinders and spheres. Graphs are also available for solids with other
geometries, such as cylinders and spheres [G4,  Hl].  Figures 13.14 and 13.15

In

FIGURE WAS
Position-correction chart for Figure 13.14 (cylinder). [From Heisler,  Trms. ASME  69: 227 (1947).
By permission of ASME.]
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FIGURE 13.16
Temperature or concentration at the center of a sphere of radius r,.  [From Hei.&, Tram.  MM.5  69: 227 (1947). By  permission of ASME.]
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are the corresponding figures for transient heat or mass transfer to (or from) a
long cylinder. Here, it is assumed that the length in the z direction is large so
that all heat transfer is in the r direction only. The characteristic length of such
a cylinder is its radius, r,; the value of r,  is used in place of L in the variables in
Table 13.3. Figures 13.16 and 13.17 are for transient heat or mass transfer to
(or from) a sphere.

Total heat transferred.  If a mathematical expression, such as in Eq. (13.66),
Eq. (xxiii) in Example 13.2, and Eq. (13.82),  is available to relate T to X, then
the instantaneous rate of heat transfer (at any time) can be calculated directly
with Fourier’s law:

(q/A)x  = -k(aTldx) (2.4)

where the partial derivative is evaluated analytically. The total heat Q is then

FIGURE 13.17
Position-correction chart for Figure 13.16 (sphere). [From HeLder,  Tram  ASME  69:  227 (1947).
By permkion  of ASME.]
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FIGURE l3.18
Dimensionless heat transfer for a slab of thickness 2L. (From Grober, Erk,  and  Grigd,

FundamentaLF  of Heat Transfer, p. 52, McGraw-Hill, New York, l%l.  By permission.)

found by integrating Eq. (2.4):

These integrals are in the literature [C2, Sl]  for some simple boundary
conditions.

Grober et al. [G3] prepared charts for the dimensionless heat transfer
between solid and fluid for the cases in Figs. 13.11, 13.14, and 13.16. The
charts are shown in Figs. 13.18 through 13.20, respectively. In these figures,

e
Q.

1o-4 IO-’ 1o-2 10-1 1 10 102 lo’ 104

vL,)*wF<,) =9

FIGURE l3.19
Dimensionless heat transfer for a long cylinder of radius L (or 3.  (From Grober, Erk,  and
Grigull,  Fundamentals of Heat Transfer, p.  56,  McGraw-Hill, New York, 1961.  By permission.)
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FIGURE l3.20 ;t
Dimensionless heat transfer for a sphere of radius r,.  Note hrJk  = l/m.  (From Grober, Erk, and Grigull,  FundamenmCr  of Hear Transfer, p.  60, %
McGraw-Hill, New York, 1961.  By permission.) 0

s
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the ordinate is Q/Q,,. The quantity Q, is the quantity of heat that can be
transferred when the driving force is constant and equal to its greatest (i.e.,
initial) value:

Qo = w,V(G  - T,) (13.86)

where V is the total volume of the solid. The quantity Q is the total quantity of
heat transferred from time zero to time t. The abscissa in Figs. 13.18, 13.19,
and 13.20 is the product of the Biot number squared times the Fourier
number:

(13.87)

Unsteady-state transport in two- and three-dimensional systems. There are a
few exact solutions to unsteady transport in multidimensional systems, as well
as for geometries and boundary conditions more complex than have been
discussed here [C2,  05, H3, 11, M2].  It is interesting to note that it is possible
to solve some multidimensional problems by combining solutions from the
preceding graphs or equations. The’ principle of superposition of solutions
allows combination of one-dimensional solutions [Nl].  This topic will be
illustrated by the following example.

Example 13.6. A piece of banana 1.2 inches long and 1.b  inch in diameter is
initially at room temperature, 295 K. The banana is placed in a convection oven
that has been preheated to 400 K. Calculate the temperature at the center after
1.2s if the heat transfer coefficient is 20 W m-*K-l.  The following data for
banana are available [Ill: density 980 kg rne3, thermal conductivity
0.48i W m-’ K-‘,  heat capacity 3.35 J kg-’ K-l,  and thermal diffusivity 1.465 X
10e4 m*  s-l.

Answer. This cylindrically-shaped object is much too short to assume that heat
transfer is in either the radial or the axial direction exclusively. It is more likely
that each direction contributes more or less equally to the heating of the center.
Therefore, it is necessary to use superposition.

Let the subscript r be introduced to designate transient heat transfer in the
r direction, while the subscript z hereafter refers to the axial direction. Using the
definitions in Table 13.3:

L, = do/2 = 0.5 in. = 0.0127 m

L, = 1.2/2 = 0.6 in. = 0.01524 m

m, = k/(hL,)  = (0.481)/[(20)(0.0127)]  = 1.894

m, = k/(hL,)  = (0.481)/[(20)(0.01524)]  = 1.578

n,=rlL,=l

n,=xlL,=l

6)

X, = rut/L;  = (1.454 x lo-‘)(1.2)/(0.0127)‘=  1.090

X, = at/L;  = (1.454 x 10-4)(1.2)/(0.01524)2  = 0.7569

The value (hereafter called Y,.,)  for the above m,, IZ,,  and X, using Fig. 13.14 is
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0.42. Similarly, the value for Y& from Fig. 13.11 is 0.70. Note that the charts are
hard to read accurately. According to the principle of superposition, the value of
Y, is given by

Y,=  l&Y,,,  = (0.42)(0.75)  = 0.294 @I

Using the definition of Y,  from Eq. (13.83),  the temperature at the center is

T, = T, - y,(T,  - G) = 400 - (0.294)(400  - 295) = 369 K ( i i i )

13.2.4  Numerid  Solution

The solution to unsteady transport phenomena by the previous methods is
limited to those problems in which the boundary conditions are relatively
simple. In this section, the modem approach will be presented, i.e., numerical
solutions using a digital computer.

The approach is to approximate the partial differential equation by finite
differences. The slope is related to the derivative as follows:

R I S E  dT
SLOqE=-----=---

R U N  dr
(13.88)

Let the “RUN” in the x direction be Ax and in the f-direction be At:

AX=Xi+l-Xi (13.89)

At=q+l-ti (13.90)

The transient heat equation for one direction is

$T 1dT-z-e
ax* (Y  at

(13.6)

Let the quantity T(xi, tj) be the temperature at location Xi  and time 4.

Explicit method. Experience has shown that the best choice for a second-order
differential is the central difference formula

aZT T(xi+l,  tj) - 2T(xi,  tj) + T(Xi-1,  tj)-
a2 = Ax* +  O(A2) (13 .91 )

x=x<,  t=tj

where the term O(k*)  denotes that the truncation error is of the order of the
square of Ax. A simple choice for the first-order derivative is the forward
difference equation:

dT
dt *=y,  ‘=,,  =

T(xi,  $+I)  - T(xis tj)
At

+ O(At) (13.92)

where the truncation error is of the order of At. Equations (13.91) and (13.92)
can be used to approximate the derivatives in Eq. (13.6):

T(x,,l, _ I T(xi,  $+I) - T(xi,  tj)
fh* lx At

t13 93)
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---------~---------- ---, j+,

----+----++---++---~. FIGURE l3.21,
i - l i i + l Explicit method.

Thus, the partial differential equation has been replaced with a finite difference
equation, Eq. (13.93),  which may be solved for T(xi,  rj+i):

T(xi,  $+*)=BT(&+*,  tj)+(l  -W)T(xi,  ti)+BT(Xi-1,  tj) (13.94)

where the quantity /I  is given by

/3  = (Y  At/(Ax)’ (13.95)

The quantity p .is related to X, used in the charts, and to the Fourier number,
given in Table 8.1.

This method of computation, as performed using Eqs. (13.94) and
(13.95),  is called the “explicit” method, because each unknown point
T(xi,  tj+i) is computed directly from the three adjacent points in the tj row, as
shown in Fig. 13.21. Sometimes, each interior point T(.xj,  tj+i) is called an
“interior node”. It is easy to apply the explicit method to any set of boundary
conditions. However, for certain values of /I,  the finite difference solution may
become unstable, i.e., the solution may oscillate or even become unreasonable
and not converge to the true solution. The criterion of stability is [Kl, R2]

p=o.5 (13.96)

In practice, this equation constitutes a serious limitation of the explicit
method. Usually, a value of Ax is chosen from geometrical or other practical
considerations. Then Eq. (13.96) is used to compute the maximum value of
At so that Eq. (13.96) is satisfied.

Insulated boundary. Consider the boundary conditions illustrated in Fig.
13.10(6):

O(x,  0) = 00 op.,  t)  = 0 2 (0, t)  = 0 (13.71)

It is possible to transform these boundary conditions to those of Eq. (13.35)
[cf. Fig. 13.10(a)],  but that would effectively double the amount of calculation
required. A better approach is to force the derivative of 0 with respect to x to
be zero at the insulated boundary through use of the central finite difference
formula:

i3T

2%  *=*‘,& “4 =
T(xN+I,  tj)  - T(xN--I,  tj)

A x
(13.97)

where the insulated boundary is assumed to be at the node (i = N). The
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Node at

FIGURE l3.22
Surface node for a convection boundary condition.

derivative dTldx  is zero if

WN+I I= WV-~) (13.98)

This result is used in Eq. (13.94) to compute the temperature at the insulated
boundary:

_T(xi,  tj+t)  = @T(xIv-~, tj) + (1 - W)~‘(XN,  tj) (13.99)

Convection boundary condition. Consider a solid body of which one or both
faces are subjected to a fluid with heat transfer coefficient h,  as shown in Fig.
13.22. Let the temperature at the boundary correspond to the location xl,
since some computing languages do not allow a zero subscript. The convection
boundary condition is introduced into the finite difference solution by making
an energy balance on the node at the surface. Let the thickness of this node be
(AX/~)  and the area A; thus, the volume becomes (AA-X/~).  Energy enters this
node by convection, leaves by conduction, and is also accumulated:

INPUT = hA[Tm  - T(x,,  tj)]

OUTPUT = -kA
T(xz,  fj) - T(xt, tj)

A x

AX T(xI,  $+t) - T(xI,  tj)
ACCUMULATION = ,ocpA  Y

A t
(13. loo)

These terms are combined according to the law of the conservation of energy
[cf. Eq. (3.1)]:

hA[T, - T(x~,  tj)]
= -kA  T(xz,  $I-  T(xt, tj) T(xt, $+I)  - T(xt, tj)

Ax A t
(13.101)
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This expression can be solved for T(x,,  tj+I):

2h At
T(xI,  ++I)  = T,- + T(x,,  tj)

2h  At

PC,  Ax
l---

2kAt

PC,  Ax pc,W)’ >

+ T(x2, tj)
2k At

PC, (W2
(13.102)

Equation (13.102) is incorporated into the finite difference solution as
required.

Mass transfer. The mass transfer equation for an impervious boundary follows
from Eq. (13.99):

CA($,  tj+l)  = W*(~N-l,  tj)  + (1 - W)C*(xN, tj)
j3  = D At/(Ax)2

For a convection boundary condition, the mass balance terms are

(13.103)
(13.104)

INPUT = k&[CA,m  - CA(X~,  tj)]

ou~pm  = -DA  cA(x2,  $1 - CAh  $1

A x
(13.105)

A AX CA&I,  tj+d - CA&~,  tj)ACC~~~~LA~ON  = 2
At

These are combined according to Eq. (3.1):

CA&I,  $+I)  = CA,=
2k,  At

hx
2k,  A t  20  At

1- r - 2
(Ax)

(13.106)

The following example illustrates the explicit method for a heat transfer
problem. The mass transfer problem is exactly analogous.

Example 13.7. Consider the agitation vessel in Example 13.5. Divide the
thickness into 10 increments and perform two iterations of the explicit method.

Answer. From Example 13.5, the following are obtained:

T(x,  0) = 300 K
T,=4OOK

L = 0.013 m

CY  = 2.476 x 10m5  m2 s-’

h=600Wm-2K-’

pc,  = (7800)(435)  = 3.393 x ld  J mT3 K-’

(9
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FIGURE 13.23
Nodes in Example 13.7.

Figure 13.23 shows the tank wall with the fluid located at x = 0 and the insulation
at x = Z,  in order for the notation in Eq. (13.102) to apply. The problem
statement specifies Ax:

Ax = L/l0  = 0.0013 m (ii)

The time increment At is calculated with the aid of the criterion of Eq. (13.96),
i.e., /3 must be less than 1.  Equation (13.95) yields, for /3  7 0.5:

At = ~@~)*/a.  = (0.5)(0.0013)*/(2.476  x 10-5)  = 0.03413 s (iii)

To be sure that the solution is stable, it is customary to truncate this number:

At = 0.03 s (9

With the temperature increment thus reduced, the actual value of j3 to be used is

6 = CY At/(Ax)’  = (2.476 x 10-s)(0.03)/(0.0013)2  [(m*  s-‘)(s)/(m’)]  = 0.4395 (v)

Note that a total of 12 nodes, including the half-node at the convection
boundary are required, as shown in Fig. 13.23. The surface node (labeled 1) is
calculated using Eq. (13.102):

2h  At
T(Xl,  tj+l)  = T,- + T(x,,  I,)

2h A t 2k At

PcPh
l----

PC,  h PC&w*

(13.102)

where

,” z = (3 JG?j~$9~oO~13)
P

2 k  A t-= (2)(2.476  x lo-‘)(0.03)  (m’s-l)(s)

PC,(~)’ (0.0013)~
( ,* ) = 0.8791

64

(vii)

A computer program for the explicit method requires only two dimen-
sioned variables, TOLD(U) and TNEW(12). At time zero, all values of TOLD in
this problem are equal to the initial temperature, 300K. The value of T,  plus
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Eqs. (13.102),  (vi), and (vii) are used to find the values for TNEW(1):

TNEW(1) = (400)(0.08162)  + TOLD(l)(l  - 0.98162 - 0.8791)

+ TOLD(2)(0.8791)

= (400)(0.08162)  + (300)(0.03933)  + (300)(0.8791)  = 308.16 K (viii)

The temperatures at the interior nodes (2 through 10) are computed using Eq.
(13.94):

T(xi9  r,+l)  = BT(Xi+l,  tj) + (1 - 2B)T(Xi, tj) + bT(Xi-1, tj) (13.g4)

In terms of TOLD and TNEW, this equation becomes

TNEW(1)  = /3TOLD(I  + 1) + (1 - 2/3)TOLD(I)  + pTOLD(I  - 1) 251510

(3

A consideration of Eq. (ix) demonstrates a serious deficiency of the explicit
method. Since all values of TOLD(I) in the range (251110)  are initially the
same and equal to 300 K, the values of TNEW(1)  calculated from Eq. (ix) are
also 300  K; in other words, only TNEW(l) has changed value on the first time
increment.

The node at the boundary of the insulation is calculated using Eq. (13.98),
which in terms of TOLD is

TOLD(N + 1) = TOLD(N - 1) (4

where N in this example equals 11. Using Eq. (x), Eq. (ix) becomes

TNEW(N) = (2@TOLD(N - 1) + (1 - 2/?)TOLD(N)

TNEW(ll) = (2/?)TOLD(lO)  = (1 - 2/3)TOLD(ll)
w

Since both TOLD(lO) and TOLD(ll) equal 300K for the first time step,
TNEW(l1)  also equals 300K. In summary, the first time step in the explicit
method changes only the temperature next to any uninsulated boundary.

For the second time step, a computer program transfers all the newly
computed values of TNEW(1)  to TOLD(I) and then repeats the above
calculation:

TNEW(l) = (400)(0.08162)  + TOLD(l)(l  - 0.08162 - 0.8791)
+ TOLD(2)(0.8791)

= (400)(0.08162)  + (308.16)(0.03933)  + (300)(0.8791)  = 398.48 K (xii)

From Eq. (ix), the interior nodes are

TNEW(2) = /ITOLD  + (1 - 2p)TOLD(2) + BTOLD(1)

= (0.4395)(300  + 308.16) + [l - (2)(0.4395)](300)  = 303.59 K (xiii)

TNEW(1)  = BTOLD(I + 1) + (1 - 2/3)TOLD(I)  + /ITOLD(I - 1) = 300 K

311~~10

From Eq. (xi) the insulated boundary node is

TNEW( 11) = (2@TOLD( 10) = (1 - 2B)TOLD( 11) = 300  K (xiv)
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A complete computer program to perform this calculation for an arbitrary
set of time and space increments is very easy and is left as a homework problem.

Crank-Nicolson method. The shortcomings of the explicit method were
obvious in the previous example. Changes in the interior nodes come only
after many steps in time; information at the boundary at G+~  is not used to
calculate any of the points at time tj+l. A better numerical method involves
using a second derivative that is spaced half-way between tj and tj+l.  The
Crank-Nicolson method [C5] computes the space derivative as the mean of
the derivative at tj and that at tj+l. After completing the algebra, the finite
difference equation becomes

(B/2)T(xi-l,  tj+l)  - (B  + l)T(-Gs  tj+l)  + (8/2)T(Xi+*,  tj+l)

= @/2)T(Xi-l,  tj) - (B  + l)t(Xi,  tj) + (B/2)t(Xi+l,  tj) (13.107)

This equation for the Crank-Nicolson scheme is to be compared with Eq.
(13.94) for the explicit method. Equation (13~94)  expresses a single node at
time tj+l in terms of three closely located nodes at tj,  whereas Eq. (13.107)
expresses three nodes at time tj+l in terms of three nodes at tj.  Hence, the use
of Eq. (13.107) requires that a system of equations be solved at every time
step. The choice of the intervals Ax and At is restricted for stability [Kl,  R2]
by

p51 (13.108)

Note that this criterion allows increments in time twice as large for fixed (Y and
AX as does the explicit method. The ability to use twice the time interval
enables the Crank-Nicolson method to execute a solution more rapidly than
the explicit method. The programming of Crank-Nicolson requires more
steps, but is still very simple. The approximation of the derivative i32T/d~Z  in
the Crank-Nicolson method results in the lowest truncation error possible
[Fl].  The following example problem illustrates the ease of computation of the
Crank-Nicolson scheme. Note that the system of equations formed by Eq.
(13.107) is tridiagopal in nature and hence easily solved by standard numerical
algorithms [Wl].  The convection and insulated boundary conditions are
handled just as in the explicit case.

Example 13.8. Find the temperature distribution in a bar of iron (insulated on all
surfaces except both ends) after 50 h if the initial temperature distribution is given

T(x,0)=500-4x  -42 (9
where T is in K and x is in m. Let the bar be 4 m long. After the temperature
distribution has been fully established, the temperature at each exposed face is
instantaneously lowered to 400 K and maintained constant at that value. For iron,
p = 7870 kg rnm3, c,=447Jkg-‘K-l,  k=8OWm-‘K-l,  a n d  cu=2.274~
lo-’  mz s-‘.

Answer. Let  the space increment Ax be 0.1 m. If the time incremeht  is arbitrarily
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selected to be 12Os,  then /l  is

/l  = (Y  A.f/(Ax)*  = (2.274 x 10-s)(120)/(0.1)2  = 0.2729 (ii)

This value is well within the stability limit imposed by Eq. (13.108).
The lirst  step in the solution of this problem is to form the tridiagonal

system of equations. Let a one-dimensioned variable in a computer program be
called a vector. The following notation will be used to avoid any two-dimensioned
computer variables: the vector U contains the temperatures at time tj+l
(unknown, except at the boundary); the vector T contains the temperatures at
time tj  (all known); the vector R contains the main diagonal; the vector C
contains the upper diagonal; the vector A contains the lower diagonal; the vector
D contains the constants; and N is the number of unknowns and the number of
simultaneous equations to be solved. For illustration, suppose that N equals 5,
and the unknowns are U(l)  through U(5). Then the tridiagonal system of
equations is

R(l)U(l)  + C(l)U(2)  + 0 + 0 + 0 = D(l)
A(2)U(l)  +,R(2)U(2) + C(2)U(3) + 0 + 0 = D(2)
0 + A(3)U(2) + R(3)U(3) + C(3)U(4) + 0 = D(3) (iii)

0 + 0 + A(4)U(3)  + R(4)U(4) + C(4)U(5) = D(4)
0 + 0 + 0 + A(5)U(4) + R(S)U(5) = D(5)

The tridiagonal nature of the above system of equations is’ evident. When N is
large, the representation of Eq. (iii) by four vectors eliminates the need to store
all the zero elements that are present.

In Eq. (13.107),  the tj  temperatures are all known at each step in time.
There are N unknown temperatures at time tj+l,  plus the two known boundary
conditions:

U(l)=U(N+2)=4OOK (iv)
N = (LENGTH OF BAR)/&) - 1 = 4.0/0.1-  1 = 39 (4

Nl=N+l (4
N2=N+2 (+ii)

T( 1) = T(N2) = 400 K (viii)

The vector U now consists of the N unknown temperatures, plus the two above
boundary conditions (total length N2). For the first  time step (J = l), and in all
subsequent time steps, U(l)  and U(N2) are considered to be equal to 400 K. Let
the index I go from 2 to (N2). Then the first  unknown is U(2). The
Crank-Niwlson formula is Eq. (13.107):

(B/2)T(xi-l* tj+l)  - (B + ljTtxi,  tj+l)  + (B/2)T(xi+13  tj+l)
= (B12)T(&19  tj)  - (B + l)T(xi*  5)  + (B12)T(Xi+l,  tj) (13.1cn)

which in terms of the computer variables T and U is

WlwJ(I  - 1)l  - [B + wu)1+ wmJ(I + 111
= D3IN’W  - 111 - W + NW1 + b3IW’O + 1)l W
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For I = 2, Eq. (ix) becomes

-[B + 11[U(2)1+  [B/21tU(3)]  = [/3/2]lT(l)] - [/3  + 1]p(2)]

+W211T(3)1-  wiw~i~l  cx)
In terms of the vectors U, R, C, and D, Eq. (x) is

R( l)U(2)  + C( l)U(3)  = D( 1) (4

For I = 3, Eq. (ix) becomes

wmm1- w + w(3)1+ ]B/21ru(4)1
=wLw(2)1-  w + llP(3)1+ u3/211T(4)1 CM

This equation in terms of the computer variables is

A(2)U(2) + R(2)U(3) + C(2)U(4) = D(2)

Equation (xiii) is easily generalized for the range 3 I I I N:

A(1 - l)U(I)  + R(1  - l)U(I  + 1) + C(1 - l)U(I  + 2) = D(1  - 1)

The last equation is for I = Nl:

(xiii)

(3sIz=I’I)

69

WlWJ(N1-  III-  [B + WJU’J1)1=  b3/21[‘W1-  111 - W  + lI[W1)1
+ W4N’W  - WWW)l W

or in terms of the computer variables:

A(N)U(Nl  - 1) + R(N)U(Nl)  = D(N) (x-4

The system of equations is now complete; the notation now allows  a concise
formulation of the solution:

A(I) = /W (2515N)
R(I)=-(#3+1) (111sN) (xvii)

C(I) = B/Z (ls11Nl)

Note that the values of A(I), R(I), and C(I) do not change with each time step.
An efficient computer program takes advantage of this fact. The values of D(I) do
change, however:

D(l) = b3/WW)  + T(3) - U(l)1  - W + ll[W)1
D(N) = [B/2][T(Nl-  1) + T(N2)  - U(N2)]  - [/3  + l][T(Nl)] (xviii)

D(I) = U3/21[T(I) + T(I + 2)1- [B + l][T(I + l)] (3=I=N-1)

The final program using these equations is shown in Fig. 13.24. The
subroutine TRIDG2 is used to solve the system of N equations at each time step.
Since TRIDG2 does not alter the numbers stored in A, R, and C, it is necessary
to compute these only once. After 50 hours, the temperature at the center of the
bar has dropped from its initial value  of 476 K to 407.4 K. Figure 13.25 shows the
temperature of the center of the bar as a function of time.
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C
C
C
C

C
C
C
C
C
C
C
C
C
C

SOLUTION OC UNSTEADY-STATE BEAT  TRANS?lZR PROBLER BY PINITE
DIPYERENCES USING TRE CRANK-NICHOLSON UETROD

IHPLICIT  REAL*s(A-H,O-Z)
DIRENSION U(41),A(39),R(39),C(3s),D(39),XL(41)

2 PORRAT('OEXARPLE  13-8 - SOLUTION 01 AN UNSTEADY-STATE HEAT'*
1 ' HEAT  TBANSIER  PROBLEM USING THL CBANK-NICROLSON  APPROACH’)
3 PORRAT(llHlEND  OF JOB)
4 PORHAT(4OHOTHE  NURBER O?  UNKNOWNS ALONG TNE BAR IB,Ilo)
5 PORMT(4oRoTHE  NURBER O? TIRE STEPS TO BE TAKEN IS,Ilo)
6 ?ORMT('OTRE  TRERRAL  DIPKUSIVITY(SG  R/S) IS',El8.8)
7 FORNAT(2lHoTRC  VALUE 01 BETA IS,c1s.s,10X4lNBETA  RUST BE LESS THAN
1 ONE FOR STABILITY.)

8 PORRAT(1HO/lOHoAT  TII4L  =,P6.1,’ ROURR, THE TRRPRRATURR  DIRTRI’.
1 'BUTION  IS'/1RO,lOX,9RLcNGTH(R),llX,l4RTCRPERATURE(K))

9 PORMT(?l9.5,P23.3)
10 PORRAT('OTRS  SPACE INCRERENT (DELTA X) IN R, EQ.  (13-89). Is'

1 ,ElS.B/
2 *oTac TIME n4cRcncwT (DELTA T) IN S, ~0. (13-go),  Is',Els.s)

H - SPACE INCRERENT (DELTA X) IN I, EQ. (13-89)
XK - zinc INCRER~NT  (DELTA T) IN s, cG. (13-90)
ALPHA - THERML  DIFFUSIVITY IN SG N/S
BAR - LENGTR OF  BAR IN R
PIN - LENGTH OF TIRE TO BE COUPUTED  IN S
N - NURBER OF UNKNOWN TEUPERATURES  ALONG THE BAR
NT - NUUBER  OF TIRE STEPS
BETA - EG. (13-95)

IO-7
ZERO-o.oDo
ONE-l.ODO
H-O.100
XK-120.00
ALPHA-2.2740-05
BAR-4.Do
FIN-SO.ODO*3600.D0
TIUE-ZERO
TBOUND-4oo.Do
N-(BAR/H)*l.oool
N-N-l
NT-(FIN/XK)*l.0661
WRITE(IO.2)
WRITE(IO,lo)H,XK
WRITE(IO,I)N
WRITE(IO,s)NT
WRITE(I0,6)ALPHA
BETA-ALPHA*XK/(H*H)
WRITE(I0,7)BETA
Al-BETA*O.sDO
AZ--BETA-ONE
A3-BETA-ONE
Nl-N+l
N&N+2
IPRNT-Nl/4
JPRNT-6'3

C
C THE BOUNDARY CONDITIONS AT X-o AND X-L FOR ALL TIRC
C

U(l)-TBOUND
XL(l)-ZERO
U(N2)-TBOUND
WRITE(IO,B)TIRE

C
C BOUNDARY CONDITIONS AT TIRE EQUAL ZERO

FIGURE 13.24
FORTRAN program using the Crank-Nidson  method-Example 13.8.
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C
C
C

2 6
C
C
C

30

38
C
C
C
C
C

42

44
45

C

:
C

46

DO 20 I-2,Nl
XL(I)-H"C'LOAT(1-1)
U(I)-SOO.DO-4.DO*XL(I)*(ONE+XL(I))
XL(NI)-BAR
WRITE(IO,9)(XL(I),U(I),I-l,N2,IPRNT)

SET UP THE THREE DIAGONALS IOR SUBROUTINE TRIDG2

R(l)-A2
C(l)-Al
DO 26 I-2,N
A(I)-Al
C(I)-Al
R(I)-A2

THE D VECTOR. FIRST THE J-TH ROW LLCUENTS

DO 30 I-1.N
D(I)-A3*U(I+l)-Al*(U(I)+U(I+2))
ISTEP-O
IMOD-
ISTEP-ISTEP+l

THE FINAL D VECTOR REQUIRES TWO TERMS FROM  J+l ROW. THESE ARE
SHOWN FOR COMPLETENESS EVEN THOUGH THEY ARE ZERO FOR THIS
PARTICULAR PROBLEM.

D(l)-D(l)-Al'U(1)
D(N)-D(N)-Al"U(N2)
CALL TRIDGZ(A,R,C,D,U,N)
IF(IMOD-JPRNT)  45,42,42
IMOD-O
THOUR-TIME+XK*DFLOAT(ISTCP)/3600.DO
WRITE(IO,S)THOUR
DO 44 I-l,NZ,IPRNT
WRITE(IO,9)XL(I),U(I)
IMOD-IMOD+l
IF(ISTEP-NT)46,50,50

AREREINITIALIZE D VECTOR FOR NEXT TIME STEP. NOTE THAT A.R. AND C
NOT ALTERED BY TRIDG2  AND THUS DO NOT NEED TO BE RESET.

DO 47 I-l,N
47 D(I)-A3*U(I+l)-Al*(U(I)+U(I+2))

GO TO 38
50 CONTINUE

WRITE(I0.3)
CALL EXIT
E N D

C . . . . . . . . . . . . . . . . . . . . . . . . . ..SUBROUTINE
C

SYSTCM  O? LINRAR  EQUATIONS BY-DC DCSCRIPTION - FINDS TEE SOLUTION OC A
C WHOSE COEF?ICIENT  MATRIX B IS TRIDIAGONAL
C THE NOMENCLATURE IS EXPLAINED IN EXARPLE  13-8
C

TRIDGZ..........................

C CALLING PARAMETERS
C A - VECTOR CONTAINING N-l ELEMENTS OF THE BAND BELOW THE MAIN
C DIAGONAL. A(l)  IS NOT USED, AS THE BAND IS STORED IN A(2)

: R
TO A(N). THE CONTENTS OF A ARR  UNCHANGED BY TRIDG2.

- VECTOR CONTAINING MAIN DIAGONAL IN R(l) TO R(N). THE
C CONTENTS OF R ARE UNCHANGED BY OjTRIDG2.
c c - VECTOR CONTAINING N-l ELEMENTS O? THE BAND ABOVE THE MAIN
C DIAGONAL. THE BAND IS STORED IN C(l) TO C(N-1). THE CONTENTS
C OP C ARE UNCHANGED BY TRIDG2.
C D - VECTOR REPRESENTING THE PRODUCT O? B TIMES Y. THE CONTENTS
C OF D ARE DESTROYED BY TRIDGI.

FIGURE 13.24
(Conhued)
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c Y
C

9 0 4 2

9 0 4 6

- SOLUTION VECTOR.

SUBROUTINE TRIDG2  (A.R,C,D,Y.N)
IBtPLICIT RSAL*S(A-H,O-2)
DIUENSION  ~~l~,R~l~,C~l~.D~l~.Y~l~
t$T;+~/l.ODO/

m
NA-NC-2
Y(I)-D(l)/R(1)
D(l)--C(l)/R(l)
DO 9042 I-2,NA
AA-ONS//(R(I)+AfI)*DfI-1))
Y(I+l)-(D(I)-A(I)+Y(I))+M
D(I) --C(I)*AA
CONTINGS
y(NC)-(D(N)-A(N)*Y(N))/(R(N)+A(N)*D(NA))
DO 9046 I-l,NA
IJ-NC-I
Y(IJ)-D(IJ-l)*Y(IJ+l)+YfIJ)
RETURN
END

FIGURE W.24
(ConrinNed)

13.3 OTHER GEOMETRIES
Other geometries, such as the cylinder and the sphere, have been briefly
mentioned previously in Section 13.2, where it was convenient to present the
various charts together. Remember that those charts are based on actual
solutions of Eq.  (13.2) for the specific geometry and boundary conditions as
specified. In this section, some additional comments will be made on some of
these alternate geometries.

13.3.1  Intinite  Slab
A solution to the unsteady-state transport equations is obtainable for the
infinite  slab geomery. A simple example of transient heat transfer is an
experiment in which two identical solids are contacted at time zero along a

soo- I I I I

4 8 0 -

420 -

400-
0

I
10

I I I
20 30 40 50

Time, h

FIGURE 13.25
Temperature at the center of
iron bar-Example 13.8.
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Removable partition-

Time = 0
FIGURE 13.26
Schematic  of  tbe  free .  di f fus ion cell.

common plane face. Suppose one solid is at Tl  initially and the other at T2.  If
the solids are instantaneously joined at a common surface, then the heat
transfer will follow the solutions for an infinite slab until there is appreciable
temperature change at the boundaries removed from the contact surfaces.
Heat transfer applications are discussed by Carslaw and Jaeger [C?]. Since
these are less important than the mass transfer applications, this section will
discuss mass transfer.

Transient diffusion in an infinite slab is the theoretical basis for
determining diffusion coefficients in liquids by the free diffusion method.
Figure 13.26 shows a schematic diagram of a free ditfusion  cell. Since mass
transport is in the z direction only, Eq. (13.11) reduces to

a? ac
Ds=, (13.109)

where CA has been replaced by C for simplification of notation. The four
boundary conditions for the experiment in Fig. 13.26 are

Attimezem
C(zCO)=C, C(z>O)=C* (13.110)

At time t
C(.z+--Q))=C1 C(z++w)=C, (13.111)

Boltxmann’s similarity transform [B2] is

q = z/(t)lQ (13.112)

Note that this transform is similar to that used in the boundary layer analysis
[cf. Eq. (12.91,  but naturally involves the time derivative, since Eq. (13.109) is
substantially different from Eqs. (12.1) through (12.3). The chain rule states

ac acaq-=-A
az  av  az (13.113)

ac acaq-=--
at a7j at (13.114)
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From Eq. (13.112):
aar = (t)-‘”

(13.116)

Using Eqs. (13.113) through (13.116),  Eq. (13.109) becomes

(13.117)

Equation (13.117) is an ordinary differential equation whose solution is
well-documented in the literature [G2].  There are two useful  solutions, the first
of which relates the concentration gradient aC/dz  to the diffusion coefficient D
and to the independent variables z and t; the second predicts the actual
concentration as a function of D, z, and t:

dC  ICI--  C*l

C(z,  t) = &Cl + C,)  + 3 IC,  - -‘21 ‘4 &)1n

(13.118)

(13.119)

where ]C1  - C2]  is the absolute value of the concentration differences at the
distances z = fm.

In the free diffusion cells, the refractive index is used as a measure of
concentration. Since the refractive index is often directly proportional to
concentration, it is easy to show that Eq. (13.118) and Eq. (13.119) are
changed only in that the refractive index replaces concentration [G2,53].  In
practice, the cell  is loaded with liquids of two concentrations, C1  and C,;  the
loading time is short compared to the time of diffusion. Then the refractive
index or the refractive index gradient is measured as a function of time and
position. The value of D may be obtained from either Eq. (13.118) or (13.119)
by a relatively simple trial-and-error solution.

13.3.2 Semi-Idinite Slab

A semi-infinite slab is characterized by a single face in the yz plane on which
the boundary conditions’ are imposed. At this face, x is zero and extends
positively to infinity so that heat transfer or mass transfer is in the x direction
only. This geometry also leads to a plethora of exact solutions to the unsteady
transport equations, both for heat transfer [C2] and for mass transfer [Bl,  C6,
531.  These solutions are well-documented and follow the procedures outlined
for the infinite slab in the preceding section.

The boundary conditions for this geometry are

T(x,  0) = T(m,  t)  = To (13.120)



tJNmAD,‘-STATE  TRANSI’ORT  6 9 9

The simplest surface condition is for the yz  plane at the location x = 0 to be
held constant:

T(0, r) = T, (13.121)

wt 0  - T. = erf x
TO-T, ( >2o’n

(13.122)

qxzo=-kg  = =
I

MT,  - To)
x 0 (~@o’n

(13.123)

Another important solution is the case of surface convection:

qx=o  = hA[T,  - T(0, t)]

w9  0 - To = erfc x
T, - To ( )2o’n

- [exp(F+$$)erfc(*+y)]

Lastly, if the surface flux (x = 0) is maintained constant:

q,,o,l  = constant = q.

T(x,  t) = r, + ( (Qo)(;‘n)

(13.124)

(13.125)

(13.126)

(13.127)

Of these, Eq. (13.125) is most often encountered and is shown in Fig. 13.27.
A Fourier series solution in the form of an infinite series exists for this

problem also [M3]. There are many other solutions in the literature for
transfer in a semi-infinite plate with various boundary conditions. For example,
exact solutions exist for the temperature at the surface (x = 0) being a
harmonic function of time:

T(0,  t) = A cos(ot - E) (13.128)

FIGURE l3.27
Distr ibut ion  in  a  semi- inf in i te  so l id .
(From Schneider, Conductioh  Heat
Transfer, p. 266, Addison-Wesley,
Reading, MA, 1956.  Adapted with
permission.)



700 APPLICATIONS OF TRANSPORT PHENOMENA

where w and E  are constants. Carslaw and Jaeger [C2] compiled many other
solutions, including those with generation, periodic s&face temperature, and
radiation. The exact solutions have proved to be useful for a variety of
applications; for fluid mechanics, the physical picture is one of a flat plate
immersed in an infinite fluid. At the initial time, a constant velocity U, is
imposed on the plate. Thus, the velocity field as a function of time and space
can be determined. The semi-infinite solid has also served as a model for
explaining the mechanism of turbulent flow. Higbie [H2] proposed that Eq.
(6.101) be used to model the absorption of a slightly soluble gas in packed
towers. His model formed the basis for more sophisticated treatments of the
mechanisms of mass transfer in turbulent flow.

Example 13.9. It is desired to estimate the depth to which the ground freezes in a
northern town. Assume that the ground reaches 20°C by early autumn, and that
the air temperature can average -20°C. Estimate the depth that corresponds to a
temperature of -5°C if it is assumed that the period of time is 4 months.

Answer. Obviously, an exact solution to this problem is very complex. The
ground temperature is not uniform at early autumn, and the air temperature
cycles continuously between day and night, sun and shade, etc. Furthermore,
there is not a “step change” at time equal to zero. Additionally, the properties of
the soil are likely to be highly variable, depending on factors such as soil type and
moisture received during the spring and summer. However, a reasonable estimate
may be made by assuming an infinite heat transfer coefficient and the following
boundary conditions:

T(x, 0) = T(y t) = 20°C T(0, t) = -20°C (9

The properties of soil are [Ill

p = 2050 kg mm3 cp  = 1840 3  kg-’ K-’

k=O.S2Wm-‘K-’ a = 0.138 x 10e6 m2 s-’ (ii)

The number of seconds in 4 months is

t = (4)(30)(24)(3600)  [(month)(day month-‘)(h day-‘)(s  h-l)] = 1.037 X 10’s (iii)

The unaccomplished change is

Y,,,  =
Z-TO
T,  - To

=-54fj25
-20 - 20

The relative resistance is
m, = (h/k)(cYt)‘”  = 03 (4

From Fig. 13.24, the dimensionless distance is 0.46. Then the depth is

x = 2(c~t)‘~(Z)  = (2)((0.138  x 10m6)(1.037  x 10’)](0.46)  = 1.10 m = 3.6 ft (vi)

In many northern cities in the USA, water pipes must be buried much deeper
than the above depth. Of course, when water flows in the buried pipes, the
temperature of the surrounding soil must be much colder than -5°C in order to
freeze the water inside the pipes.
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13.3.3 Cylinder

In this section, the problem of unsteady-state transfer in the radial direction (r
direction) is considered. Either the cylinder is infinite along the z axis or the
end faces are insulated or impervious so that there is no transfer along the z
axis or in the 8 direction. Then the transport is in one direction only.

Let us use mass transfer as the example. For transfer in the radial
direction only, Eq. (13.11) reduces to

Da a ac- -  p.-  =-
( 3r ar ar at (13.129)

where the concentration C, has been abbreviated to C and Table 5.1 has been
used to express V* CA in cylindrical coordinates. The boundary conditions are

C(r,  0) = c, C(b, t)  = 0 (13.130)

where b is the radius of the cylinder. The following transformation is
proposed:

C = v exp[(-Dt)(/J)‘] (13.131)

where b  is a parameter to be determined from the boundary conditions. This
transformation reduces Eq. (13.129) to an ordinary differential equation with v
as the dependent variable:

d*v  dv
r2-jp+r~+/3*r2v=0 (13.132)

Equation (13.132),  a special case of an ordinary differential equation that
appears repeatedly in practical problems, is known as Bessel’s equation. The
general form of Bessel’s equation is

(13.133)

Equation (13.133) is known as Bessel’s equation of order k. A comparison of
Eq. (13.132) with Eq. (13.133) shows that Eq. (13.132) is Bessel’s equation of
order zero. Because Bessel’s equation appears so often, its solutions have been
widely discussed and tabulated in terms of coefficients called Bessel functions
[C2, 52, M3, M4J.  The solution of Eq. (13.132),  even with the aid of Bessel
functions, is tedious and still requires evaluation of an infinite series in terms of
Bessel functions. However, Figs. 13.14 and 13.15 can be used to solve many
problems.

Example l3.10.  A cylindrical porous plug of diameter 1 cm is saturated with a
10.0  kg me3  KC1  solution. The plug is  then washed by a high-velocity stream of
water passing over the outer surface. If the diffusion  coefficient is 2 x 10e9 mZ  s-l,
find  the concentration of KC1 at the center after  60min. Assume that the plug is
covered on both top and bottom so that all mass transfer is in the radiril  direction.
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Atwver.  Figure 13.14 will be used for this example. The  radius is 0.005 m, and
the parameter L in Table 13.3 is the radius of the cylinder. The  resistance
parameter m is zero because the mass transfer coefficient is very large:

_ m = D/(k,b)  = 0 0)

Using Table 13.3, the relative time is

X = LB/b*  = (2 x 10-‘)(60)(60)/(0.005)2  [(m’s-‘)(min)(s  min-‘)(m-‘)I  = 0.288
(ii)

From Fig. 13.14, the ordinate is about 0.7. Note that the readability of Fig. 13.14
is poor in this region; a better chart for the case (m = 0) is to be found in Crank
[C6].  From the definition of the unaccomplished change:

y,  = CAs=
c

- cA.c  = 0 7 (iii)
A.- - c*,o  .

C&c  = c&m - Y,(C,,m - C,,J  = 0.0 - (0.7)(0.0 - 10.0) = 7.0 kg mm3 (3

13.3.4 Sphere

Both heat transfer and mass transfer to spheres are commonly encountered, as
discussed in Chapter 12. This section will illustrate the equations  for mass
transfer, which are similar in form to those for the cylinder. For the case of
unsteady-state equimolar mass transfer in a sphere, Eq. (13.11) becomes

(13.134)

Equation (13.134) is simplified by the following transformation:

q = Cr (13.135)

Substitution of Eq. (13.135) into Eq. (13.134) after taking the first derivatives
of q with respect to t and the second derivative of 9 with respect to r yields

Da2?pll
&* at

(13.136)

Equation (13.136) is the same equation as for unsteady-state transfer in a slab
[cf. Eqs. (13.6),  (13.32),  and (13.37)]. Hence, the solutions presented here and
in the literature for the slab geometry apply to the unsteady-state transport in a
sphere when the boundary conditions are transformed by Eq. (13.135). Many
texts contain generalized charts for unsteady-state transport in a sphere [C2,
C6, Gl,  G4, Hl, H3, 11, M2], as well as Figs. 13.16, 13.17, and 13.20,
presented earlier.

Example 13.11. The  inside surface of a hollow spherical shell is maintained at a
concentration of C,. The  inside radius of the sphere is r,, and the outside radius
is r,. Tbe outside surface of the sphere is maintained at C,. If the initial
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concent ra t ion  a t  t ime zero  i s  g iven by

C(r, 0) = C,lr

Derive  the  equat ion for  the  concentra t ion as  a  funct ion of  r  and t.

(9

Answer. One boundary  condi t ion  was  g iven  as  Eq .  ( i ) .  The  o ther  two boundary
condi t ions  a re

WI, 0 = c, C(h  1) = G (ii)

The solution proceeds by transforming the boundary conditions with Eq.
(13.135):

rl(r, 0)  = CO tlh  0 = rlG tl(r2. t) = r2C2
where the products r,C, and r,C, are constants. This problem was solved in
Example 13.2.  The computer  program in Fig.  13.9 could be used,  or  the problem
could be  solved by numerical  methods ,  as  d iscussed ear l ier .

PROBLEMS

l3.1.  A steel ball of diameter 0.3 m is at a temperature of 273 K. It is suddenly
plunged into  a  large water  bath  whose temperature  is  350K.  The heat  t ransfer
coeff icient  may be assumed constant  and equal  to  10 W 16  K-‘.  For  th is  s tee l
ball, the following physical properties may be used:

k=43Wm-‘K-’ p = 7850 kg m-3 c,=46OJkg-‘K-’

(a)  Find the Biot  number.
(b)  Find the temperature and the heat  t ransferred af ter  50 s .
(c)  Find the t ime required for  the temperature to reach 349.9 K.
(d)  Find the heat  t ransferred between t ime zero and s teady-state .

W.2. A large slab of steel is 4m thick. Initially, the temperature is uniform and at
500K. Suddenly, both faces are reduced to, and maintained at, 300K. Using
Fourier series, compute the temperature at midplane after 1 h. Properties of
steel  are

k=6OWm-‘K-l p = 7850 kg me3 c,=434Jkg-‘K-’
W.3.  Cons ider  a  s tee l  bar ,  wi th  proper t ies  as  g iven  in  Problem 13.2 ,  tha t  i s  insu la ted

on the  s ides .  The  bar  i s  0 .1  m long.  F i rs t ,  one  end i s  mainta ined  a t  350 K whi le
the other is at 4OOK,  until steady-state is achieved. Then suddenly the
temperature  a t  the  350 K end is  ra ised to  390 K,  whi le  the  temperature  a t  the
400 K end is lowered to 340 K. Using Fourier series, compute the temperature at
midplane after  1 h.

W.4. Consider a silver bar l.Om long. Initially, the bar is maintained at a uniform
temperature of  400 K. Suddenly,  the ends of  the bar  are raised to temperatures
of  500 K and 600 K,  respect ively .  Assume that  the  s ides  of  the  bar  are  insula ted
so that heat transfer is in one direction only. Using Fourier series, find the
temperature at  midplane after  15 s .  For si lver:

k=430Wm-‘K-’ p = 1.05 x lo’kg  mm3 c,=235Jkg-‘K-’
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w.5.  TWO copper blocks, each cubic in shape and 4Ocm  on a side, are insulated on
five sides. One block is allowed to reach 800 K throughout, and the other 300 K.
‘Ihen the  b locks  a re  b rough t  toge the r  so  tha t  the  un insu la ted  s ides  touch  in
themd contact; let h, = 25 000 W m-’  K-l.  Assuming the lumped-capacity
method of  analysis ,  plot  the temperature of  each block as a  function of  t ime.  For
copper:

k = 380 W m-’ K-’ p = 8930 kg mT3 cp = 385 J kg-’ K-’
W.6. TWO blocks, each cubic in shape and 40 cm on a side, are insulated on five sides.

One block, which is steel, is allowed to reach 800K throughout; the other,
which  i s  copper ,  i s  a l lowed to  reach  300 K.  The  b locks  a re  brought  toge ther  so
tha t  the  un insu la ted  s ides  touch  in  the rmal  con tac t ;  l e t  h, = 25 OtM  W m-*  K-l.
Assuming the lumped-capaci ty method of  analysis ,  plot  the temperature of  each
block as a function of time. Use the properties given in Problems 13.2 and 13.5.

W.7. A polymer solid is saturated with a salt solution such that the initial
concent ra t ion  of  sa l t  i s  cons tant  and  equal  to  0 .1  kmol  rne3.  The  so l id  i s  in  the
shape of  a  s lab,  1  cm thick.  At  zero t ime,  both s ides  of  the  s lab are  washed with
pure water of sufficient velocity that the mass transfer coefficient may be
assumed infinite. The diffusion coefficient of salt in the polymer is equal to
2  X  lo-”  m*  s-l.  F ind  the  concent ra t ion  of  sa l t  a t  th ree  equispaced  loca t ions  in
the slab after 10 h.

13.8.  Repeat Problem 13.7 if the mass transfer coefficient equals 8 X
lo-’  kmol m-* s-’ (kmol rn-‘)-l.

13.9. A polymer solid is saturated with a salt solution such that the initial
concent ra t ion  of  sa l t  i s  cons tant  and  equal  to  0 .1  kmol  rnm3.  The  so l id  i s  in  the
shape of a cube,  10 cm on a side.  The diffusion coefficient  of  sal t  in the polymer
is equal to 2 x lo-”  m*  s-‘. At zero time, four sides of the cube are washed with
pure water of sufficient+ velocity that the mass transfer coefficient may be
assumed inf in i te .  The  two s ides  not  contac ted  wi th  water  a re  kept  dry ;  these
s ides  a re  loca ted  a t  the  p lanes  L = 0  and z = 10.  Find the  t ime in  hours  for  the
concent ra t ion  in  the  middle  of  the  so l id  to  drop  to  10  percent  of  the  or ig ina l
concen t ra t ion .

W.10. A polymer solid is saturated with a salt solution such that the initial
concent ra t ion  of  sa l t  i s  cons tan t  and  Lequal  to  0 .1  kmol  rnm3.  The  so l id  i s  in  the
shape of a cylinder 1 cm in diameter and 1.2 cm in length. The ends of the
cyl inder  are  capped so that  no mass  t ransfer  is  a l lowed.  At  zero t ime,  the  curved
surface  of  the  cyl inder  is  washed with  pure  water  of  suff ic ient  veloci ty  that  the
mass transfer coefficient may be assumed infinite.  The ditbrsion  coefficient of salt
in the polymer is equal to’2 X lo-“’ m’s-‘. Find  the  concent ra t ion  of  sa l t  a t  the
center  of  the cyl inder  af ter  10 h.

W.11.  A polymer solid is saturated with a salt solution such that the initial
concent ra t ion  of  sa l t  i s  cons tant  and  equal  to  0 .2  kmol  rnm3.  The  so l id  i s  in  the
shape of a cylinder 1 cm in diameter and 1.2 cm long. At zero t ime, al l  surfaces
of  the  cyl inder  are  washed with  pure  water  of  suff ic ient  veloci ty  that  the  mass
transfer coefficient may be assumed infinite.  The diffusion  coefficient  of  sal t  in
the polymer is equal to 2 x lo-“‘m* s-‘. Find  the  concent ra t ion  of  sa l t  a t  the
center  of  the cyl inder  af ter  10 h.

l3.12.  A polymer solid is saturated with a salt solution such that the initial
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concent ra t ion  of  sa l t  i s  cons tan t  and  equa l  to  0.2km0lm-~.  The  so l id  i s  in  the
shape of a sphere 1 cm in diameter.  At zero t ime, the surface of the sphere is
washed with pure water  of  suff icient  veloci ty that  the mass t ransfer  coeff icient
may be assumed infinite.  The diffusion coefficient  of  sal t  in the polymer is  equal
to 2 x lo-” mZ  s-l.  Find the concentration of salt at the center of the sphere
after  10 h.

W.W. A slab of  meat  served by a  fas t - food res taurant  is  rectangular  in  shape,  wi th
dimensions O.O8cm,  lOcm, and 5 cm. The uncooked meat is kept in a
refrigerator at 275 K. It is then dropped into a vat of cooking oil at 400 K.
Calculate the t ime for the center  of  the meat  to reach 350 K if  the heat  t ransfer
coeff icient  is  120 W m-* K-‘.  The properties of the meat are

k=0.5Wm-‘K-’ p=900kgm-3 c,=3500Jkg-‘K-’

13.14. A piece of meat served by a fast-food restaurant is .spherical  in shape, with
diameter  2 cm. The uncooked meat  is  kept  in  a  refr igerator  at  275 K.  I t  is  then
dropped in to  a  vat  of  cooking oi l  a t  400 K.  Calcula te  the  t ime for  the  center  of
the meat  to reach 350 K if  the heat  t ransfer  coeff icient  is  120 W m-’  K-i.  The
propert ies of the meat are

k=0.5Wm-‘K-’ p=900kgm-3 c,=35OOJkg-*K-l

W.15. In  the  USA,  bu t te r  i s  genera l ly  so ld  by  the  pound ,  wi th  four  s t i cks  per  pound ,
and each stick being 11.45cm in length. If each stick‘is in the shape of a
rectangle with square cross section, find the dimensions of each stick in SI units.
For  but ter :

k=0.2Wm-‘K-’ p=998kgmm3 cp = 2300  J kg-’ K-i

Suppose  tha t  a  s t ick  of  but ter  i s  kept  for  a  week a t  280  K.  Then i t  i s  p laced  in
surroundings at room temperature (293 K) so that all six sides are exposed to air
with convective coefficient 8 W mm2  K-l.  Find the temperature at the center
after 1 h.

13.16.  Wri te  a  computer  program to  solve Problem 13.3.  Use the  expl ic i t  method.  Pr int
out  the  temperatures  a t  l -cm intervals  and Xl-s  in te rva l s ,  up  to  100  s .

W.17.  Wri te  a  computer  program to  solve  Problem 13.3  wi th  the  fol lowing changes:
initially, one end is at 450 K and the other at 300 K; finally, the 450 K end is
mainta ined a t  375 K,  and the  o ther  a t  400 K.  Use  the  Crank-Nicolson method.
Pr in t  out  the  temperatures  a t  l -cm intervals  and lO-s  in t e rva l s ,  up  to  100  s .

W.18. A semi-infinite slab of silver is initially at 500K. Suppose that the slab is
exposed to a  constant  heat  f lux at  the surface of  16 W m-*. Use the  proper t ies
of  s i lver  in  Problem 13.4 .
(a)  Find the surface temperature after  1000 s .
(b) Find the temperature 4 cm from the surface after loo0 s .

l3.19.  A large piece of steel at 300K has one plane surface. Suppose the surface
temperature is suddenly changed from 300 K to 400 K. Find the time for the
temperature 5 cm from the surface to reach 350K. Use the properties in
Problem 13.2 .

l3.u).  In Columbus, Ohio, the temperature changed from 10°F to 72°F in 30 h. It is
desired to estimate the influence of this temperature change on the soil
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temperature. Assuming that the soil temperature was uniformly 32”F,  calculate
the soil temperature 2 cm from the air-soil interface after 10 h. Assume that
initially the temperature of the soil is o”C,  that at time zero the air temperature
instantaneously becomes 22”C,  and that the convective heat transfer coefficient
is 12 W m-’ K-l. For this soil:

k = 0.5 W m-x  K-’ p=2000kgm-3 cp = 1600 J kg-’ K-’

Do all work in SI units.
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NOMENCLATURE

A
A
B .
B
b
c

cp,  C”

D

d

Species A
Constant in Eq. (2.52)
Species B
Constant in Eq. (2.52)
Subscript referring to boiling point
Concentration (kmol me3);  C,  is molecular concentration or total
molecules per volume, cf. Eq. (14.4); Cr  is total molar concentration
Heat capacity (kJ kg-‘K-l);  cp  or c, is heat capacity at constant
pressure or constant volume; cPb is constant pressure heat capacity at
the boiling point; c,,~,  is translational contribution [cf. Eq. (14.45)]
Diffusion coefficient (m’  s-‘);  DAB is diffusion coefficient of species A
diffusing through a mixture of A plus B; DAA  is self-diffusion
coefficient, Eq. (14.26) ff.; Do  is the diffusion coefficient at the
reference temperature To and reference pressure p,,  in Eq. (2.50); DL
is tracer diffusion coefficient of labeled A within the mixture of A and
B; DiB  is mutual diffusion coefficient at infinite dilution, i.e., a single
molecule of A diffusing in pure B
Diameter (m) of gas molecule in kinetic theory (assumed to be a
smooth, rigid, elastic sphere)

711
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ED
e
Fp

h
G*
h
J,IA
k

k

ka
L

E
N
n
II
P

R
r
r
T

t
u

u

V

X

Y
z

Activation energy of diffusion, defined by Eq. (14.79)
Base of natural logarithms (also called exp) (2.718 2818. . .)
Force (N); in Stokes’ law, Fp is the drag force on a particle (or sphere)
as given in Eq. (12.66) or Eq. (14.76)
Frictional resistance defined in Eq. (14.76)
Molar free energy of activation (J mol-‘)
Plan&s  constant, 6.625 x 1O-34  J s molecule-’
Molar flux vector of species A (kmol rnB2 s-‘)
Thermal conductivity (W m-l K-’  or J m-l K-l s-i); k,, is the transla-
tional conductivity
Specific rate constant where the subscripts f, r, and 0 refer to forward,
reverse, and equilibrium, respectively; cf. Eqs. (14.55),  (14.56)
(14.58),  and (14.59)
The Boltzmann constant, defined as R/N
Length (m)
Mass of a single molecule (kg molecule-‘)
Molecular weight (kg kmol-l);  subscripts refer to species
Avogadro’s number, 6.022 143 8 x 163  molecules per mole
Number of moles
Power in Eq. (2.50)
Pressure (kPa,  atm); p,, is pressure at reference conditions; pc is critical
pressure (atm); in Eq. (14.48) the units of p are Pa; in Eq. (14.49) pati
is in atm
Gas constant; see Appendix Table C.l for values
Cylindrical coordinate (m)
Radius (m); ri, is the particle radius
Temperature (K, “C); Tb is the boiling point; T,  is the critical
temperature (K); T* is dimensionless temperature in the Chapman-
Enskog theory, Eq. (14.38),  for viscosity or thermal conductivity and
Eq. (14.50) for mutual diffusion coefficient; To is reference tempera-
ture, Eq. (2.50)
Time; the time interval in kinetic theory of gases (s)
Instantaneous velocity vector (m s-l); U is magnitude of U, U,, U,,
U,, U,, U,,  U, are components in directions x, y, z, 0, r, 9;  VA  is  a
net velocity given by Eq. (14.55); U, is velocity of the fluid in Stokes’
law; Us  is velocity of sound in a liquid
Molecular speed in the kinetic theory (m s-l); u  is the mean speed of a
gas molecule in kinetic theory
Volume (m’);  V,  is the molar volume of a liquid at its normal boiling
point; VA  and V,  are molar volumes of A and B at the normal boiling
point; V’ is atomic diffusion volume increment in Table 14.3; (C V’),
and (C V’), are atomic diffusion volumes, calculated from data in
Table 14.3
Rectangular (Cartesian) coordinate
Rectangular (Cartesian) coordinate
Rectangular (Cartesian) coordinate
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Thermal dilfusivity (m” s-i)
Parameter in the Eyring rate approach, Eq. (14.60)
Constants in equation for a straight line; see Example 14.7
Ratio of heat capacities, c,lc,;  cf. Eq. (14.32)
Difference, state 2 minus state 1; e.g., Ap means p2  -pl
Characteristic energy of interaction used in the Lennard-Jones poten-
tial, Eq. (14.37); subscripts A for component A, etc., AB for an
averaged value defined by Eq. (14.52)
Collision frequency per molecule (s-l), i.e., the number of collisions
divided by the time interval
Transmission coefficient used in Eq. (14.54)
Mean-free-path (m)
In the Eyring rate approach, L  is the distance of two equilibrium
positions of the molecule (or a cluster of molecules); 1i is the distance
between sets of parallel shear layers; )L2  is the distance between
neighboring molecules (or clusters) in the direction of ic;  A3  is the
distance between neighboring molecules in the moving layer in a
direction at right angles to the shear
Viscosity (kg m-* s-l or N mm2 s)
Kinematic viscosity (m! s-l)
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Mass density (kg mm3);  P,, is the density at the boiling point
Characteristic diameter used with the Lennard-Jones potential, Eq.
(14.37); subscript A is for component A, etc.; AB is for an averaged
value defined by Eq. (14.51)
Momentum flux (or shear stress) tensor (N rnm2,  Ibr  ft2);  rX,,,  rrX,  etc.
are components of the momentum flux tensor, where subscripts refer
to direction of momentum transfer and direction of velocity; r,. is the
shearing force per unit area in Eq. (14.57)
Association parameter in Wilke-Chang correlation, Eq. (14.80)
Generalized flux vector (e.g., units for heat flux are J rne2sm1  or
W rnT2,  Btu ftm2 s-‘; see Table 2.1 for more details); Y,, Y,,, Yz are
components in directions X, y,  r; Y,+ is flux of component A
Generalized concentration of property (e.g., units for concentration of
heat are J me3 or Btu ftm3;  see Table 2.1 for more details); r&,  is
molecules per unit volume
Collision integral, subscript p is for viscosity and D is for diffusion
Acentric factor, defined as minus log,, (vapor pressure at a reduced
temperature of 0.7 divided by critical pressure) minus 1.0

The proportionality constants in the transport equations are thermal conduc-
tivity k or thermal diffusivity a; diffusion coefficient or mass diffusivity D, and
viscosity p or momentum dilfusivity (kinematic viscosity) v. Since these
coefficients appear in the design equations for equipment that involves
transport phenomena, they must be determined, either from experimental
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tabulations or by using suitable estimation methods. For the most part, the
physical properties have been measured, and tables are available in the
literature [C3, Fl, G7, 53, Ll, L6, P2, Rl,  T4-T7,  V3],  as was indicated in
Section 2.5. In order to reduce the bulk of tabular material, research workers
have been striving to provide compact correlations for the physical properties
of materials. Ideally, one would like to have a thorough understanding of the
basic molecular processes occurring so that the properties could be estimated
from first principles. Some progress has been made in this regard, but,
unfortunately, the task is far from complete. Nevertheless, because of their
importance, some of the accomplishments along these lines will be reviewed.

This chapter introduces sufficient information for the estimation of
transport properties for most materials. A short section on measurements is
also included. In this chapter, the viscosity is treated as a function of pressure
and temperature, but not of the shear rate or stress level; i.e., the materials
are considered Newtonian in nature. The next chapter is devoted to non-
Newtonian fluids.

Most of the progress on theoretical prediction of the transport properties
has been for gas systems, and is based on the kinetic theory of gases. The
theoretical approaches for liquids and solids are not as well developed because
of the complexities in these denser systems.

14.1 GASES

This section considers the simple “mean-free-path” kinetic theory, which is the
starting point for more realistic approaches.

14.1.1 Kinetic Theory of Gases

The kinetic theory of gases attempts to explain and correlate the basic physical
properties of gases and gaseous phenomena on the basis that the molecule is
the smallest quantity of a substance that retains its chemical properties. This
theory is commonly used in several areas besides transport phenomena,
especially physical chemistry [M4]  and physics [P3]. The kinetic theory
provides estimates of the transport properties k, D, and p from molecular
considerations. Furthermore, the theory predicts variations of these with
temperature and pressure, as well as ways to compute one from the others.
Many excellent references are available, including Chapman and Cowling [C2],
Hirschfelder, Curtiss, and Bird [HS], Jeans [Jl], Kennard [K2], and Present
P31-

The kinetic theory of gases require many assumptions. This text will
present only the most elementary treatment. The most important general
assumptions are:

1. The molecule is the appropriate quantity of a substance to be treated.
2. The conservation laws of classical mechanics are valid: namely, the
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conservation of momentum and the conservation of energy in regard to
collisions between molecules and to collisions between molecules and
container walls.

3. The behavior of the gas is described by the average behavior of the
molecules (i.e., statistical averages can be used and the laws of probability
are valid).

4. The molecules can be idealized as smooth, rigid, elastic spheres of diameter
d. The assumption of a smooth surface precludes any rotation effects. The
assumption of elasticity allows all collisions to follow the “billiard ball”
model, in which all collisions are sudden and result in a sharply defined
change in direction.

5. The presence of long-range forces can be neglected.

Mea&tee-path.  The mean-free-path is defined as the average distance a
molecule travels before it collides with a surface or with another molecule. The
collision frequency per molecule, 0, is defined as the average number of
collisions per unit time. The mean speed 0 is the time-averaged velocity of
asingle  molecule; 8  is assumed to be also the statistical average over the
velocity distribution, the velocity distribution being caused by the temperature
distribution present in a sample of gas molecules existing in an appropriate
container at some average temperature and pressure.

In order to define the mean-free-path, let us picture a molecule over a
long time period f,  during which it would travel on the average a distance L:

L =  ut (14.1)

The number of collisions is frequency times time, i.e., Or collisions. The
mean-free-path 3, is the average distance between collisions; therefore, the
distance L is also the product of the average distance between collisions and
the number of collisions:

L=Ut=A@t (14.2)

This equation is solved for the mean-free-path:

A= O/O (14.3)

Thus, the mean-free-path is the mean speed n  (m s-‘)  divided by the collision
frequency 0 (s-l).

Let the molecular concentration be C,,, (molecules per m3), where C,  is
the total number of gas molecules present divided by the total volume; C,  is
related to the total molar concentration CT by Avodagro’s number N:

C m =C N,P,pN
T

m M
(14.4)

where p is the mass density (kg mm3),  m is the mass of a single molecule
(kg molecule-‘), and M is molecular weight (kg kmol-‘).  For an ideal gas [Eq.
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(l.l)],  the total molar concentration Cr  is the number of moles n divided by
volume V [cf., Eq. (2.37)]:

C,=C,N=1NJ?=L&!-
V  R T  (R/N)T  kBT

where k,  is the Boltzmann constant:

(14.5)

(14.6)

A collision occurs between two rigid, elastic spheres of diameter d when
the centers of the two spheres are separated by the distance d. Let us picture
ourselves as moving with one sphere through the other spheres. The speed of
our sphere is denoted by U. Our sphere traces out a cylinder of length U and a
cross sectional area nd*/4  in a given unit of time. Any molecules whose edge is
located within the cylindrical trace will be hit by our moving molecule. An
equivalent expression is that any sphere whose center lies within a larger
sphere of influence of diameter 2d will be hit by our moving molecule. The
cross sectional area of this larger cylinder of influence is nd*;  i.e., the cross
sectional area of a diameter of 2d. The number of molecules struck per unit
time (i.e., the collision frequency, 0) is

0 = nd*UC, (14.7)

where nd*U  is simply the larger volume of influence of the cylinder traced out.
Actually, the average relative speed u,) not the absolute speed U,

between our molecule and the others in the volume is important. This relative
speed must lie between zero and twice the mean speed; i.e., for a grazing
collision, the relative speed is zero, and for a head-on collision the relative
speed is twice the mean speed when the molecules are assumed to be moving
at the same speed. A simple picture of the collision process is that the average
collision (between the grazing and head-on extremes) is a collision at 90”. The
vectors form a right triangle and the relative speed is 2l’*u.  Thus

@ = 21”nd2uCm (14.8)

When Eqs. (14.3) and (14.8) are combined, the mean-free-path becomes

n=‘=  l k,T
0 21”nd2C,  = ?%&

(14.9)

The mean-free-path is inversely proportional to the molecular density, which
for constant temperature means that it is inversely proportional to the cross
sectional area of the sphere of the molecule.

The preceding results can be obtained by a rigorous integration of a
Maxwellian distribution of velocities [P3]. It can also be shown that the mean
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relative speed is

(14.10)

where m is the mass of the molecule or sphere.

Transport balance. The treatment that follows is similar to that found in
several of the books already cited. Let t/~,,,  denote the concentration of
property for a single gas molecule; q  is defined in Table 4.1, as are the various
fluxes Y. Over the range of a few mean-free-paths, let us assume that the
variation in the concentration of property is uniform in the arbitrary direction
x. Consider now the flux YVA  across the plane located at x = 0. The average
number of molecules that will cross the plane in a unit area and time will be
proportional to &,,u,  since the plane is one side of a cube and represents
one-sixth of the direction. The molecules that cross the plane carry the
PropeW  lVm, which is characteristic of the region from which the molecule
originated. The region or source in the x direction will be denoted by Ax; thus
the volume of interest is of length Ax and area unity. The length Ax is of the
same order of magnitude as the mean-free-path. The transport from the region
on the negative side of the plane (at x = 0) is

Transport from the negative side = $C,,,~?lw,;(Ax) (14.11)

where p,,,, is for side 1 or the negative side of the plane. The property entering
the volume of interest across the plane at x = Ax is

‘km2 =  Vml  +  2 @Ax)

The factor of 2 comes from the fact that molecules enter the volume of interest
across two planes (at x = 0 and x = AX). The transport on the positive side is

Transport (positive side) = ~C,I?$J,,,~(AX) (14.13)

The net amount of the property transported across a unit area and unit time is
found by subtracting Eqs. (14.11) from (14.13):

‘I’~  = &,@x)(q,,,,  - q4,,2)  =;  C,l@x)(  -3W

= -fC,D(Ax)%

Assuming the region is of the size of the mean-free-path; i.e., Ax equals A, the
flux of A becomes

yA
= -!c &!!k

3” dx

In this simple model, the transport rate is proportional to the mean-speed, the
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mean-free-path, and the density. By Eq. (14.9) the mean-free-path varies
inversely with the molecular density so that the transport rate is independent
of the pressure and density of the gas. The similarity of this equation to the
empirical transport equations of Chapter 2 should be noted.

Heat transport. The energy exchanged in a collision between a smooth, rigid
sphere (or molecule) of mass M is translational energy:

&CC? (14.16)

where @  is the mean-square-speed. Equation (14.16) can be related to the
temperature. It can be shown that the pressure exerted by gas molecules is
[W p31

p = $C,mP (14.17)

This equation can be multiplied on both sides by the volume of the gas; the
resultant is then equated to the product pV that can be found from Eq. (14.5):

(14.18)

or, in terms of the Boltzmann constant:

rn@ 3 R T  3k,T-=-=-
2 2N 2

(14.19)

where m@/2  is the kinetic energy of a gas molecule. Equations (14.16) and
(14.19) define Q$,,  in terms of temperature:

q,,, = 3kB  T/2 (14.20)

From Table 4.1, the flux YVA  in Eq. (14.15) becomes (q/A),; this result plus
Eq. (14.20) yields

dTC,,,t%kg
(q/AL  = -  2 dr (14.21)

Comparison of Eq. (14.21) with Fourier’s law, Eq. (2.2),  results in the
definition of the thermal conductivity based on the kinetic theory of gases:

k = C,  uLk,l;! (14.22)

Equation (14.22),  which is derived for a monatomic gas, can be further
modified by the introduction of the heat capacity of the gas. In Eq. (14.19),
m@/2  is the translational energy, which can be shown [M4]  to be equal to
mc,T,  where c, (k.I  kg-’ K-‘)  is the heat capacity at constant volume; thus, by
use of Eq. (14.19):

mc, = 3kB/2 (14.23)
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Now, the thermal conductivity becomes

k = jmCmh, = $p&, (14.24)

since the mass density p equals mC, [cf. Eq. (14.4)].  If k from Eq. (14.24) is
introduced into Fourier’s law, the quantity pc,T  is formed, which is similar to
the definition of r/~  for heat transfer in Chapter 2, i.e., pc,T.

Mass  transport. The kinetic theory of gases can be applied to “self-diffusion”,
i.e., the case of a molecule diffusing through identical molecules.’ Let DAA  be
the self-diffusion coefficient of species A diffusing through pure A. For
self-diffusion, the property being transferred is C,,,/C,. The flux in the x
direction is denoted by (JJA),. Substituting in the general flux equation, Eq.
(14.15),  gives

(JAI-~),  = - i C,  0~  d(Cm;'Cm)  = _  5 ,Q  d(C&r,.d (14.25)

where, at constant temperature and pressure, the total concentration of
molecules C,  is constant if there is no chemical reaction. Comparison of Eq.
(14.25) with Fick’s law, Eq. (2.4),  yields

D,,=$~?. (14.26)

where DAA is the self-diffusion coefficient. The double subscript on the
diffusion coefficient is used to emphasize that it is the diffusion of a marked
molecule (or sphere in this analysis) through otherwise identical molecules.

While the kinetic theory estimates DAA for a simple spherical molecule
reasonably well, the mean-free-path method of treatment gives a very poor
approximation to DAB, the diffusion coefficient of species A diffusing through a
mixture of A plus B [K2, P3].

Momentum tmnspnrt.  In momentum transport, the concentr_ation  of property
rj~ is momentum pu,  or, on the basis of a single molecule, mU.  The flux YA is
zyx; now Eq. (14.15) becomes

This equation can be compared with Newton’s law of viscosity, Eq. (2.7):

p = fmC,UL  = jpUn (14.28)

Finally, Eqs. (14.9) and (14.10) are used to eliminate 3c and u, respectively:

2 (mk,T)ln
’ = Gus d*

(14.29)

’ Self-diffusion coefficients are contrasted with tracer and mutual diffusion coefficients in Section
14.2.3.
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Equation (14.29) relates viscosity to the. square root of temperature and to the
zero power of pressure. This prediction is only qualitatively satisfactory, as
discussed in Section 2.5.3. The observed temperature dependency ranges from
0.6 to almost 1.0. The viscosity is essentially independent of pressure up to ten
times atmospheric pressure, a result in agreement with Eq. (14.29).

Since Eq. (14.15) is the starting point for estimating all three transport
coefficients, naturally- an interdependency is predicted. From Eqs. (14.24),
(14.26),  and (14.28),  the following is predicted:

or, in terms of the thermal diffusivity LY:

k kc DAA  DA(y=-=-.L =-=-
PC, PC&I, Y 3 Y

(14.31)

where the heat capacity ratio y is

y = cpIc, (14.32)

The above equations are restricted to dilute monatomic gases that act as
rigid spheres; these equations are usually not valid for real materials under
most normal conditions. Note the relationship between the transport
coefficients:

k = c,p = pc,D,, (14.33)

DAh=f=v=q (14.34)

where v is the kinematic viscosity. The mean-free-path development has
predicted equality among the transport coefficients.

Equation (14.30) can be used with Eq. (14.29) to determine estimates of
the temperature and pressure dependency of k and DAA.  For an ideal,
monatomic gas (called the perfect gas in many chemical engineering texts), the
heat capacity c, is equal to the following constant, independent of temperature
and pressure:

3 R
cv=ixi

(14.35)

where R is the gas constant. In the case of DAA, the density may be substituted
through use of the ideal gas law:

p 2!!J?!
V RT

(14.36)

The reliability of the predictions for thermal conductivity or self-diffusion
-coefficient is about the same as for viscosity.
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14.1.2 Non-Uniform Gas Theory

The mathematical theory of non-uniform gases (developed about the time of
World War I by Chapman [Cl] and Enskog [E2])  allows a much more rigorous
and realistic treatment of the problem of estimating transport coefficients from
molecular properties. Its development requires four important assumptions:

1. The gas  is “dilute” in that only binary collisions occur.
2. The motion of the molecules during the binary collision can be described by

classical mechanics.
3. All collisions are elastic.
4. The intermolecular forces act only between fixed centers of the molecules;

i.e., the forces at any radius r are identical for all angles.

The Chapman-Enskog theory itself is too lengthy to treat in detail and is
available elsewhere [C2, H5]. The “dilute” gas assumptions must always be
satisfied. The theory is often successfully applied to viscosity and diffusion
coefficients of polyatomic gases (in fact, no better theory has been developed),
but in the case of thermal conductivity, bignificant  corrections are necessary.

me Lennard-Jones 12-6 potential [L5] is commonly used to describe the
potential energy, u(r),  of the interaction of two ~spherical,  ‘nonpolar  molecules
as a function of distance:

u(r)=4e[(92-(f)“] (14.37)

where E is the minimum value of U(T) and is called the characteristic energy of
interaction and u is a characteristic diameter of the collision and is of the same
order as d from the mean-free-path kinetic theory. The Lennard-Jones 12-6
potential, plotted in Fig. 14.1, contains two characteristic parameters (a and
E); these are determined from viscosity data when estimating transport
coefficients. Table A.3 contains these constants, which are to be used to
evaluate a certain integral in the Chapman-Enskog theory called the collision
integral: 51,  for viscosity or thermal conductivity and Bo for diffusion. The
collision integral has a value of unity for collisions between rigid spheres. For
real gas molecules, the collision integrals have been worked out [C2, H5, Rl].
Convenient equations for both S2, and BD (nonpolar and polar molecules) are

FIGURE 14.1
Lennard-Jones 12-6 potential for the interaction
of two spherical, nonpolar molecules.



722 T R A N S P O R T  P R O P E R T I E S

in Appendix A, Section A.2. The collision integral is a function of the
dimensionless (also called reduced) temperature T*:

TT*=-
elka

(14.38)

When the Lennard-Jones parameters are not known, it is possible to
estimate them from thermodynamic data [B4, H5]. The recommended equa-
tions for estimation are [Tl]

113

= (10-10)(2.3551  - 0.0870) (14.39)

E/b- = 0.7915 + 0.16930
T,

(14.40)

where pc is the critical pressure (atm), T, is the critical temperature (K), o  is
the acentric factor,* and the parameter u is in meters. Substantial errors may
result when u and E/kB  are estimated by Eqs. (14.39) and (14.40) or by other
equations listed in Appendix A. Note that because log S2,,  is almost a linear
function of log T*,  the set of Lennard-Jones parameters for a given compound
cannot be unique [Rl].  Therefore, it is very important to use a consistent set of
Lennard-Jones parameters, without worrying about disagreement in values
from different investigators.

Viscosity. For viscosity, the Chapman-Enskog theory predicts

where M is the molecular weight, T is the absolute temperature in K, p is the
viscosity in SI units (kg m-l s-l or Pa s-l), and the parameter u is in meters.
Use of Eq. (14.41) and the associated Appendix material will be illustrated in
Example 14.1.

Thermal  conductivity. For thermal conductivity, the Chapman-Enskog theory
predicts

k = 8.3224 x lo-**

where the units of k are W m-l K-l, and the units of the remaining quantities
are the same as for Eq. (14.41).

The predictions from the Chapman-Enskog theory [Eqs. (14.41) and

2 Extensive tabulations of pC,  T,,  and UJ are in many standard references [e.g. Rl] and all modertl
thermodynamics texts.



ESTIMATION OF TRANSPORT COEFFICIENTS 723

(14.42)]  can be combined [H5]:

(14.43)

where c,  for an ideal, monatomic gas is given in Eq. (14.35). Note that Eq.
(14.43) predicts k to be 2.5 times larger (for the same cVp)  as that from the
mean-free-path approach, Eq. (14.33).

Equation (14.43) applies to gases that are composed of spherically
symmetric molecules having only translational energy. For such systems, one
can see from Eq. (14.43) that the prediction of temperature and pressure
dependence for thermal conductivity is the same as for viscosity. Equation
(14.43) can be rearranged into dimensionless form:

k 5-=-
PC”  2

(14.44)

where the group k/(pc,)  is called the Eucken factor [E3,  Rl]. The constant 5/2
is confirmed to within experimental error by data for monoatomic gases, but
the Eucken factor for even the simplest polyatomic gases, such as hydrogen, is
much lower [Rl]. Note the similarity between the dimensionless Eucken factor
and dimensionless Prandtl number, Eq. (8.3).

Polyatomic  gases. Equations (14.42) to (14.44) are valid only for noble or
monatomic gases. In the theory presented in Section 14.1.1, only translational
energy was considered [see comments following Eq. (14.22)].  For polyatomic
gases, the problem becomes more complicated. Inelastic collisions and
molecule orientation become important factors and contribute to internal
energy changes.

The perfect gas used to obtain Eq. (14.43) is capable only of translational
energy. Therefore, let us denote k,, as the translational contribution; then
from Eq. (15.43):

where the subscript “tr” denotes the translational contribution only. The
thermal conductivity and heat capacity of a polyatomic molecule contains
potential and kinetic energy contributions from vibrational and rotational
modes of motion. Eucken [E3] proposed that these internal-energy contribu-
tions be added to those from Eq. (14.45). His simplistic analysis yields the
Eucken correlation for polyatomic gases:

5R 9R
=CP+4M=C,+4M (14.46)

where y is the ratio of heat capacities, Eq. (14.32). Later analyses yielded the
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modified Eucken correlation [RI]:

k
-= 1.32c,+

1.4728 x lo4 =132cp+1.4728x104

P M  ‘Y M ’

7.032~  - 1.720
= c,

4
(14.47)

where k is in W m-* K-‘, p is in kg m-l s-l,  and c, (or cp)  is in J kg-’ K-r.
The modified Eucken correlation, Eq. (14.47),  predicts larger values  of k

than the original correlation, Eq. (14.46); both reduce to Eq. (14.43) for the
perfect gas. According to Reid, Prausnitz, and Sherwood [Rl], experimental
values of k lie between values calculated by the two Eucken correlations,
except for polar gases, for which both predict k values that are too high.

Diion  coeffident. The Chapman-Enskog equation for the diffusion
coefficient in a binary mixture is

D = DAB  = hA = 1.8829 X lo-** {T3[(l/M~)  + O/MB)I~‘~
P&3%

c14  48)

where DAB  is in m* s-‘,  p is pressure (N m-* or Pa), and T is in K. A useful
form of Eq. (14.48) has the pressure in units of atm: c

DAB  = 1.8583 x lo-*’ {T3[(lIM~)  + (l/M~)l)‘~
Pad&Q2D

(14.49)

The collision integral B,, differs markedly from that determined from viscosity
data. Appropriate correlating equations for nonpolar and polar gas pairs are in
Appendix A, Section A.2. The appropriate dimensionless temperature for
mixtures is

(14.50)

Experience has shown that the following combining rules are often adequate to
determine uAB  and &Au  [Rl]:

uAB  = i(“A + uB) (14.51)

E A B  =  tEAEB)ln (14.52)

Inspection of the symmetry of the subscripts A and B demonstrate the
equality of the diffusion coefficients as noted in Eq. (14.48). Note that DAB  is
often called the mutual diffusion  coefficient. Equation (14.48) also applies to

. . .self-drffusron,  i.e.,  DAA.

Summary. The mean-free-path treatment is instructive in explaining some of
the basic principles and mechanisms that take place in transport phenomena.
That theory leads to the more rigorous and successful Chapman-Enskog
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theory, which can be used to predict transport coefficients. The Chapman-
Enskog theory is particularly satisfactory in predicting viscosities of nonpolar
gases and gas mixtures at low density, since the Lennard-Jones parameters
were determined from  such data. Accuracies in the order of 1 percent or less
are common [Rl]; when o and e/kB  must be estimated from Eqs. (14.39) and
(14.40),  the errors Mayo  be 3 percent [Rl].

For thermal conductivity, the modified Eucken correlation, Eq. (14.47),
predicts larger values of k than the original, Eq. (14.46). Bird, Stewart, and
Lightfoot [B4] compared the experimental Prandtl number with that from the
original equation and found good agreement for monatomic and diatomic
molecules and poor agreement for more complex gases. Usually, the ex-
perimental values of k lie between the values calculated from Eqs. (14.46) and
(14.47),  except for’ polar gases whose thermal conductivities are less than those
from the equations [Rl].

Prediction of the mutual diffusion coefficient DAB from Eq. (14.48) or
Eq. (14.49) is usually within 6 percent for nonpolar gas pairs at low density, if
the collision constants are available from viscosity data [B2,  B4, Fl]. If the
Lennard-Jones parameters must be estimated from Eqs. (14.39) and (14.40),
the errors increase to about 10 percent.

A deficiency of the Chapman-Enskog theory is that it fails to predict a
variation in the diffusion coefficient with concentration. For example, diffusion
coefficients in some binary gas systems such as chloroform-air may vary as
much as 9 percent with concentration, whereas in other systems such as
methanol-air the diffusion coefficient is independent of concentration, at least
within the experimental accuracy, usually 3 percent [MS].

The Chapman-Enskog equations for the transport coefficients are valid
for the range 200-1000 K. Below 2OOK,  quantum effects become important
[IG],  and above 1000 K the Lennard-Jones potential function is no longer
applicable. However, if the force constants are derived from diision data
(instead of the usual viscosity data), the equations may be extended to 1200 K
or so. Above 1200 K the force constants must be evaluated from molecular
beam scattering experiments.

The transport property equations that have been presented were de-
veloped for dilute gases composed of nonpolar, spherical, monatomic mole-
cules. Empirical functions and correlations (the Lennard-Jones potential) must
be used, with the net result that the equations are remarkable for their ability
to predict transport coefficients for many gas systems. The pressure and
temperature limitations have already been discussed. Agreement in nonpolar
gas systems is excellent, even for polyatomic molecules. For a polar-nonpolar
gas system the same equations are used with different combining laws, which
must be modified slightly [I%,  Rl]. For polar-polar gas pairs, the changes are
more severe [Rl], and there have been very few experimental investigations to
support the proposed methods. Brokaw [B6] shows how to estimate transport
properties of polar-polar systems; more details are in Example 14.5 and
Appendix A, Section A.2.
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Example 14.1. Est imate  the  v iscos i ty  of  a i r  a t  40°C (313.15 K)  and a tmospher ic
pressure; compare the answer with the value of 19.11 x 10m6  N s m-*  (0.01911 cP)
given  in  Table  A.2 .

Answer .  Equa t ion  (14.41),  which  i s  based  on  the  Chapman-Enskog theory ,  i s
used to estimate the viscosity:

p=2.6693xlO- -(~)

From Table A.3, the Lennard-Jones parameters for air  are

a=3.711  X lo-“rn E/kg=78.6  K

The col l is ion integral  is  calculated from Eq.  (A. l ) :

52
A c E

I4 "onpo'ar  = (T*)B  + exp(DT*)  + expo

where  the  constants  in  Eq.  (A. l )  a re

A = 1.16145 B = 0.14874 C=O.52487
Li =0.77320 E = 2.16178 F=2.43787

0.3IT*5100

The dimensionless temperature T*  from Eq. (14.38) is ’

Substituting the above numbers into Eq. (A.l),  the collision integral is

$2, =0.96984

The molecular  weight  of  a ir  (Table A.2)  is  28.966 kg kmol-‘.  From Eq
the viscosity of air is

p = 2.6693 x lo-
= 2h6g3  ’ lo-=

[(28.966)(313.15)]‘”
(3.711 x 10-‘“)2(0.96984) >

6)

(A.11

64.2)

(ii)

(iii)

(14.41),

= 19.03 X 10m6  N s m-’ = 0.01903 CP (iv)

The excellent agreement of about 0.4percent  is expected, since the Lennard-
Jones constants  were determined from viscosi ty  data .

Example 14.2. Calculate  the  thermal  conduct ivi ty  of  a i r  and of  argon at  40°C  and
1 a tm us ing  the  Chapman-Enskog equat ion .

Answer. The Lennard-Jones  parameters  and col l is ion integral  for  a i r  are  in  Eqs.
(i) and (iii) in Example 14.1. Using Eq. (14.42),  the estimate of k is

k=8.3224x  lo- =8.3224x  lo-=

=O.O2049Wm-‘K-l (9
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Agreement between this value and that from Table A.2 (0.02709) is poor; the
Chapman-Enskog theory  i s  in  e r ror  when appl ied  to  the  thermal  conduct iv i ty  of
polya tomic  gases .

For argon (molecular weight 39.948) the Lennard-Jones  parameters from
Table A.3 are

u = 3.542 x lo-“’ m &Ike  = 93.3 K (ii)

Proceeding as in Example 14.1 for  air :

T*+z$L3.356 Q, = 1.010
B *

Using Eq.  (14.42)  the  es t imate  of  k  i s

[(313.15)/(39.948)]‘”
(3.542 x 10-10)2(1.010)

= 0.01839 W m-’ K-’ (iv)

The thermal  conduct ivi ty  f rom the Chapman-Enskog theory agrees  c losely  with
the exper imental  value of  0 .0185;  note  that  argon is  a  monatomic gas .

Example 14.3.  Calculate  the thermal  conduct ivi ty  of  a ir  a t  40°C  and 1 atm, given
that the heat capacity cp is 1005 J kg-’ K-‘.

Answer.  The Eucken formulas  require  the  heat  capaci ty  ra t io  y .  For  an ideal  gas ,
i t  can  be  shown tha t

c,=c,-RIM (9

where from Table C.l the value of R i s  8 .3143  x  ld  J kmol-’ K-l.  Then

c, = 1005 - 8314.3/28.966  = 718 J kg-’ K-r (ii)

y = c,/c, = 1005/718  = 1.400 (iii)

From Table A.2, the viscosity of air is 19.11 X 10e6  kg m-’ s-l.  Using the original
Eucken correlation, Eq. (14.46),  k is

k=p(c,+;; =) (19.11 x lo-$1005  + (5);:)$&;@))

= 0.02606 [(kg m-l  s-‘)(J  kg-’ K-l)]

= 0.02606 J s-’ m-l  K-’ = 0.02606 W m-l  K-’

The modified Eucken correlat ion,  Eq.  (14.47),  y i e ld s

(3

1.4728 x
k=p(1.32;+  M

104

= 0.02782 W m-’ K-’ (4

As discussed,  the  value  f rom the  modif ied  Eucken equat ion is  h igher  than
the experimental  value (0.02709),  and  the  value pred ic ted  by  the  or ig ina l  Eucken
equation is lower than the experimental value, each being about 3 percent
different ,  in this  case.
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TABLE 14.1
Comparison of resulti for Example 14.4

Difhuioa  adkient,  Dm  X l@, mz  s-l

part  (d Part  (b) pad (cl
T, K T* S2, Eq.  (14.49) Eq.  ( v i i i )  4. (2.50)  Experimeptd*

3 2 3 ll.% 0 . 7 2 0 5 0 . 7 9 4 - - 0 . 7 6 6
4 1 3 1 5 . 2 9 0 . 6 9 2 9 1 . 1 9 4 1 . 1 5 2 1 . 1 7 8 1 . 2 0
6 0 0 2 2 . 2 1 0 . 6 5 3 5 2 . 2 1 6 2 . 1 3 8 2 . 2 6 4 2 . 4 0
9 0 0 3 3 . 3 2 0 . 6 1 3 4 4 . 3 3 6 4 . 1 8 5 4 . 6 0 3 4 . 7 6

1 2 5 0 4 4 . 4 2 0 . 5 8 6 5 6 . 9 8 3 6 . 7 3 8 7 . 6 1 5 7 . 7 4

l From sager,  hrtson, and Giddings,  1.  Chem.  Eng.  Data 8:  168 (1W).

Example 14.4. The diffusion coefficient of the helium-nitrogen system is 7.66 X
lo-’  m* s-l  at 323 K and 1 atm [S5].
(a) Use the Chapman-Enskog equation to find the diffusion coefficient at 413 K,

6OOK,  9OOK,  and 12OOK.
(b) Use. the experimental diffusion coefficient and the Chapman-Enskog equa-

tion to estimate the diffusion coefficients in part (a). ,
(c) Use Eq. (2.50).
(d) Compare all answers with experimental results [SS].

Answer. A sample calculation for 413 K will be given for each of parts (a), (b),
and (c). The complete results will be summarixed  in Table 14.1.
&t  (a). The Chapman-Enskog equation, Eq. (14.49),  applies:

DAB = 1.8583 X 1O-n { T’[(lIM4) + ww3)I~m
PUd4FlQD

(14.49)

For helium, the molecular weight [p2]  and Lennard-Jones parameters (Table
A.2) are

MA  = 4.0026 a, = 2.551 X lo-”  m eA/kB  = 10.22 K 6)
For nitrogen, the molecular weight [P2] and Lennard-Jones parameters (Table
A.2) are

MB  = 28.0134 a, = 3.798 X lo-*’  m EB/kB = 71.4 K 6)

The combining rules, Eqs. (14.51) and (14.52),  yield

a, = $(a,, + uB) = i(2.551 x lo-”  + 3.798 x lo-lo)  = 3.1745 x lo-“‘m (iii)

E*s,ke.~m= [(10.22)(71.4)]rn  = 27.01 K
B

The dimensionless temperature from Eq. (14.50) is

T 413.0T*=-=-=l529
eABjkS  27.01 .
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This  temperature ,  p lus  the  constants  in  Eq.  (A.15)  in  Appendix  A,  are  used in
Eq. (A.14) to find the collision integral for diffusion:

C2,  = 0.6929 (4

Equation (14.49) is used to find the mutual diffusion coefficient:

DAB  = 1.8583 x lo--= u-3K1/M4)  + wwm’n
Pd&&

= 1.8583 x lo-” {(413)3[(1/4.~26)+(1/~.016)1}'"=1  194x 10-4mzs-~
(1.0)(3.1745  x lo-‘y(O.6929) ’

(vii)

Part  (h).  In this calculation, Eq. (14.49) will be used to establish the ratio of
DAB evaluated at the four unknown temperatures, divided by DAB  at 323K
(D3&.  Let  us  ca l l  DAB at  the  unknown temperatures  4,.  All  terms cancel  except
tempera ture  and col l i s ion  in tegra l :

W4u  = (T/323)3R(R~,323/9~,=) (viii)

Fol lowing the  procedure  in  par t  (a ) ,  the  d imensionless  tempera ture  and col l i s ion
integral  are

T 323.0T*=-=--11.96
cABIke  27.01 6)

Q D.3u  = 0.7205 (4

For  413  K,  the  co l l i s ion  in tegra l  QD,d,, \yas  found in Eq. (vi). Equation (viii) is
solved for  D4,3:

= 1.152 x 10e4 m2  SC’ (xi)

part  (c). Equation (2.50) is

(2.50)

where  the  exponent  n varies from 1.75 to 2.0.  For this  example,  let  n be  equa l  to
1.75:

Da3  = Dm(g)“’  = (7.66 x 10m5)(~)1.‘s  = 1.178 x lo-“  m*  s-’ (xii)

Note  that  th is  answer  agrees  c losely  wi th  that  f rom par t  (a) .
Part  (d). Table 14.1 summarizes the results at all temperatures. Note that Eq.
(14.49) is within 10 percent at 1200  K and within 1 percent at 413 K; however, the
temperature  dependence is  c lear ly  erroneous,  as  seen by the resul ts  of  par t  (b) .
The exponent  1 .75 is  c loser  to  the  exper imental ly  observed exponent  (which can
be easi ly  calculated from Table  14.1 to  be 1.74)  than is  the  predicted temperature
dependence of Eq. (14.49). Therefore, if one or more experimental points are
avai lable,  Eq.  (2.50)  is  preferable.
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TABLE 14.2
Data for Example 14.5*

Methyl bwfmr
chloride dieaide

Dipole moment, debyes
Normal boiling point, K
Liquid  molar volume at Tb,  m3  kmol-’
Molecular weight MA,  kg kmol-’

1 . 9 1 . 6
249 2 6 3

5.06 x lo-* 4.38 x 10-2
50.48806 64.0628

l From Reid, Prausaitz,  and Sherwood, Properties  of Gases  and Liquids, 3d ed., p. 552. McGraw-Hi&  New
York, WE’.

Example 14.5. The ditfusion  coefficient of the methyl chloride-sulfur dioxide
system is 7.7 x 10m6  rn’s-l  at 1 atm and 323 K [Rl].  Compare this result with that
predic ted by the  Chapman-Enskog theory.  Table  14.2  conta ins  some per t inent
information.

An.swer.  The solution to this problem differs from that in Example 14.4 in that
the Stockmayer  potent ia l  replaces  the Lennard-Jones for  es t imat ing diffusion
coeff ic ients  in  polar  gas  systems.  Let  species  A and B be methyl  chlor ide  and
sulfur  dioxide,  respect ively .  Fol lowing Appendix A,  Sect ion A.2,  the  Stockmayer
parameters and the dimensionless dipole moment are calculated from Eqs.  (A.8)
(A.9),  and (A.lO):

6 = WWPW*--= (1.94)(1.9)2
A

v,T, (5.06 x lo-‘)(249)  = oS559

(1.94)(1.6)*
‘,  = (4.38 x lo-*)(263) = o’4311

,,=1.166xlo-9(~)m=1.166xlo-9(l+:;q63;;of~~39)2)‘~

(9

(ii)

= 3.854 X lo-”  m (iii)

4.38 x lo-*
>

I/3
a,  = 1.166 x lo+ = 3 824 x lo-”  m

1+  (1.3)(0.4311)*  . (iv)
cA/kB  = (1.18)(1+  1.36*)(T,)  = (1.18)[1+  (1.3)(0.5559)*](249)  =411.9K (v)

.cB/kB  = (1.18)[1+  (1.3)(0.4311)7(263) = 385.3 K (4

Using the  combining ru les  of  Eqs .  (14.51),  (14.52)  and (A.17):

uAB  = $(a,.,  + uB)  = i(3.854 X lo-”  + 3.824 X lo-“)  = 3.839 x lo-*’ m (vii)

EAg,~g&!$?= [(411.9)(385.3)]ln  = 398.4 K (viii)

s,,  = (6,6,;n  = [(0.5559)(0.4311)]‘R  = 0.4895 64
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The dimensionless temperature from Eq. (14.50) is

T
T*=-=---=323*o  0.8108

E,JkB  398.4 (x)

This temperature, plus the constants in Eq. (A.15) in Appendix A, is used in Eq.
(A.14) to find the nonpolar collision integral for diffusion:

51 D,  nonpolar  = 1.602 (3

Next, the polar ditTusion  integral is found via Eq. (A.16):

!a D.  pal= = QD.  nonpolPr + (O.l96*,)/T*  = 1.602 + (0.19)(0.489V=  1 658 (ti)
0.8108 .

Finally, Eq. (14.49) is used to find the mutual diffusion coefficient:

DAB  = 1.8583 x 10-n ~T3K1/K)  + WhJl~lR
POJCl&

= 1.8583 x lo-”
{(323)3[(1/50.488)  + (1/64.063)]}‘R

(1.0)(3.839  x 10-‘“)2(1.658)

= 8.308 x 10e6  m2 s-’

The Chapman-Enskog prediction is about 8 percent high.

(xiii)

14.1.3 Empirical Correlations for Gases

Viscosity. Inasmuch as the Chapman-Enskog equation is often as accurate as
1 percent, no empirical equations are ‘recommended. Estimation of the
viscosity of mixtures is covered in Appendix A.

Thermal  conductivity. The Eucken equations are recommended in spite of
their simplicity. Reid, Prausnitz, and Sherwood [Rl]  discuss other correlations
that may be somewhat more accurate. There is significant disagreement
between investigators in determining k for gases, and these uncertainties carry
over into the empirical correlations. Small errors in k for gas systems are not
usually of significance in engineering design.

Diion coefficient. The experimental uncertainty in the mutual diffusion
coefficient DAB is larger than that for either p or k. Naturally, this uncertainty
affects the accuracy of any correlation. The Chapman-Enskog theory is
reasonably accurate, as illustrated in Examples 14.4 and 14.5.

The early correlations of DAB were based on data of questionable
accuracy [S4].  An excellent correlation, proposed by Fuller, Schettler, and
Giddings [Fl],  considered only the most modem and reliable data. In the FSG
correlation, use was made of high-temperature data taken by techniques not
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TABLE 14.3

Atomic diffusion volumes for the correlation of
Fuller, Schettler, and Giddings, Eq. (14.53)

Atomic strnct~~ral  diffusion volume
increments, V’

C 16.5 19.5
H 1 . 9 8

E”
17.0

0 5.48 Aromatic ring -20.2
(N) 5.69 Heterocyclic ring -20 .2

Diffusion vohmes  for simple moledes,  (Z V’),

H2 7 . 0 7 c o 1 8 . 9
D2 6 . 7 0 CO2 2 6 . 9
Hc 2 . 8 8 N20 3 5 . 9
N2 17.9 NH, 1 4 . 9
02 1 6 . 6 Hz0 1 2 . 7
Air 2 0 . 1 WWJ 1 1 4 . 8
Ar 16.1 (SF,) 69.7

ge) 2 2 . 8  3 7 . 9 (Brd  W,) 3 7 . 7  6 7 . 2
N e 5 . 5 9 (SO,) 4 1 . 1

l Parentheses indicate that the value listed is based on only a few data
points.

available when the earlier correlations were made:

DAB = 1O-7
T’.‘5[(1/M*)  + (l/M,)]‘n

p.,,[(C  V’)X3  + (C V’)iL3:‘12
(14.53)

where D is in m* s-‘,  T is in K, and pat,,,  is the pressure in atm. For each
species, the term Z V’ is found by summing the atomic diffusion volumes given
in Table 14.3. Example 14.6 illustrates this calcuiation.

The FSG correlation, Eq. (14.53),  although strictly empirical, requires
less supplementary information than the Chapman-Enskog equation, Eq.
(14.49),  and therefore is recommended for general use. Equation (14.49) is
more rigorous and gives comparable results when the force constants are
available from Table A.3. Otherwise, the FSG correlation, Eq. (14.53),  is
recommended.

Dense gases. There are very few experimentally determined diffusion
coefficients for dense gases. Theoretical treatments of dense gases are usually
valid for liquids as well, as has been treated elsewhere [B3, C2, H5]. They are
of little use to engineers in their present state of development.

Example 14.6.  Find the diffusion coeff icient  of  the hel ium-1-propanol  system at
423.2  K and 5  a tm using the  FSG correla t ion.  The molecular  weights  are  4 .0026
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and 60.09121, respectively. Compare your answer with the experimental value of
1.352 x 10m5  m* s-’  [S5].

Answer. Equation (14.53) will be used to obtain the diffusion coefficient. For
1-propanol (chemical formula CH3CH2CH20H),  the atomic diffusion volumes for
carbon, hydrogen, and oxygen are found in Table 14.3 and used in the following:

(C V’), = 3Vb + SV& + V& = (3)(16.5)  + (8)(1.98)  + (1)(5.48)  = 70.82 (i)

For helium, the atomic diffusion volume is 2.88. Substituting in Eq. (14.53),  the
mutual diffusion coefficient for the helium-1-propanol system is

DAB = lo-’
zy(  l/M,) + (l/M,)]“*

P.m[(C V’)X + (C V’)Fl’

= 10-7 (423.2)‘~“[(1/4.0026)  + (1/60.091)]1’2
(5)[(70.82)"3  +(2.88)'"]' 1

=  1.32 x lo-’  mz s-’ (ii)

The FSG correlation agrees to about 2 percent with the experimental value.

14.2 LIQUIDS

While estimation of transport properties in gas systeins  is on a sound
theoretical basis, in liquid systems the hi& densities, and therefore short
separation distances between molecules, result in a strong influence of the
intermolecular force fields. Our present knowledge of intermolecular forces is
insufficient to allow direct calculation of liquid transport properties. Of most
importance to the engineer are the extensive tabulations and empirical
correlations available for the liqt/id state.

Theories of the liquid state may be separated according to their basic
premises, which differ substantially, to say the least. Various models treat
liquids as dense gases, as disordered solids, from a hydrodynamic view, or as
kinetic systems.

14.2.1 Viscosity

The kinetic approach’ of Eyring and coworkers [G4,  H5] is based on the
theory of rate processes applied to relaxation processes that may be important
in determining the nature of the flow. Eyring’s rate theory postulates the
existence of an intermediate and unstable “activated complex” that is first
formed from the reactants and later decomposes into the products. The
decomposition of the complex is assumed to be the rate-controlling step, with
an associated activation energy. The form of the specific rate constant k for the

‘The  discussion on the  kinet ic  approach is  adapted from Brodkey [BS].
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- Activated stateActivated state

\
. y Without impressed shearing forceWithout impressed shearing force

\\
&A,--> With impressed shearing force FWith impressed shearing force F

cc

DistanceDistance

FIGURE 14.2FIGURE 14.2
Model for the relaxation theory of liquids. (Adapted from Hirschfelder, Curfiss,  andModel for the relaxation theory of liquids. (Adapted from Hirschfelder, Curfiss,  and
Molecular Theory of Gases ana’  Liquids, p. 626, Wiley, New York, 1954. By permission.)Molecular Theory of Gases ana’  Liquids, p. 626, Wiley, New York, 1954. By permission.)

B i r d ,

decomposition reaction is

k = (K)(k,Tlh)exp[(-AG*)I(RT)]  , (14.54)

where kB is the Boltzmann constant, h is Plan&s  constant, AC* is the change
in the molar free energy of activation, and K  is a transmission coefficient used
to correct for the fact that not all molecules arriving at the activated state
continue to complete the reaction.

The application of Eq. (14.54) to the relaxation theory of liquids is
suggested by the model given in Fig. 14.2, which is a cross section of an
idealized liquid. The flow is pictured as taking place by a unimolecular process
[E5];  when a shearing force is applied to the fluid, the shaded molecule in Fig.
14.2 squeezes past the neighboring particles and moves into an unoccupied
hole. The distance traveled by the particle is denoted by 1, which is shown as
the forward direction in Fig. 14.2. The distance A is the distance between two
equilibrium positions of the molecule (or a cluster of molecules). The
movement from one equilibrium position to another is termed a “jump”.
Shown also in Fig. 14.2 are the molecular distances A,,  &, and 3c3,  which are
defined as follows [E5]:

hr  The distance between sets of parallel shear layers
AZ  The distance between neighboring in the moving layer in a direction at

right angles to the shear
& The distance between neighboring molecules (or clusters) in the

direction of A
The net velocity of flow is the net number of jumps times the distance per
jump:

U,  = A(k,  - k,) (14.55)
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where U,  is the net velocity and kr and k,  are the specific jumping rates in the
forward and reverse directions, respectively. If no force is acting, the forward
and reverse rates will be equal, and from Eq. (14.54):

kf=  k,  = k. = (rc)(knTlh)exp[(-AG*)/(RT)] (14.56)

where k. is the specific rate for the flow process (the jumping process of a
molecule from an equilibrium position into the neighboring vacant site at zero
stress). If the force is acting in the positive (forward) direction, then the
forward process is increased and the reverse decreased. The amount of change
per mole is the stress (force per unit area, rL) times the area, acting over a
distance & times Avogadro’s number N:

Change in free energy = (r&&)($)(N) (14.57)

where the area 3c& is shown in Fig. 14.2. Using the Boltzmann constant as
given in Eq. (14.6),  the forward and reverse specific rates become

kf  = koeti (14.58)

k,  = koe-& (14.59)

where (Y is constant at a given temperature:

A-A2&
&=2kBT

(14.60)

Equation (14.55) becomes

U,  = Ak,,(e&  - e-“)  = 2Ako  sinh ((Yz~) (14.61)

Viscosity is defined by Newton’s law, Eq. (2.5). The velocity U,  is
introduced into Newton’s law via the shear rate, which in terms of U,  is

dux  ux UA-c-c-
dy Y 4

(14.62)

This result, plus Eqs. (14.60) and (14.61),  is substituted into Eq. (2.5):

t;X

’ = - dU,ldy
t;x  _-=  --_ - ~yxh

u.i4 2Ako  sinh (- cur,J
(14.63)

The shear stress rA  in Eq. (14.61) was replaced by the negative of the shear
stress in Eq. (14.63). For small external forces, the sinh term can be expanded
in a Taylor’s series. If only the first term in the expansion is retained, Eq.
(14.63) becomes

(14.64)

Equations (14.56) and (14.64) can be combined and rearranged:

(14.65)
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Equation (14.65) is more simply expressed as

p = &WR’) (2.52)

This equation is often called an “Arrheniirs” equation. Equation (2.52)
was used in Example 2.12 to determine p for water at 326.15 K by
interpolation of data at 300 K and 373.15 K. Equation (2.52) should not be
used for extrapolation, as illustrated in Example 14.7.

Example 14.7. Prepare a plot of viscosity of water between 273 K and 373 K; use
Eq. (2.52) to extrapolate to 420 K. Compare the answer with 0.185 x lo-3 N s m-’
(0.185 cP),  given in Table A.l.

Amwer.  Equation (2.52) is
p = A@/‘RT’

Equation (2.52) is transformed as follows:

(2.52)

y=Inp (9
x=l/T (3

B,,=lnA (iii)

19, = BIR 69
Y=Bo+hx  ’ (9

Equation (v) is the equation of a straight line. The 22 data points in Table A.1 for
the viscosity of water between 273.15 K and 373.15 K can be fitted by least-
squares, using standard techniques [P2].  With viscosity in cP,  the constants are:

PO = -6.301289 /3,  = 1853.374 (4
At 42OK:

p = exp(& + &x) = exp(-6.301289 + 1853.374/420)  = 0.151 CP (vii)

When Eq. (v) is extrapolated to 420K, the error is seen to be 18 percent. At
midrange (320 K), Eq. (v) is approximately 4 percent in error.

Figure 14.3 is a plot of the data, plus Eq. (v) and the Table A.1 value at
420K. Note the pronounced curvature of the data. Equation (2.52) is clearly
inadequate over this temperature range. If Eq. (2.52) were to be used to
interpolate, then only the adjacent points should be used to evaluate PO and &.
not the 22 points used to compute the constants in Eq. (vi).

14.2.2 Thermal Conductivity

The semi-theoretical approach of Sakiadis and Coates [Sl]  considers a
molecule that travels the intermolecular distance A at the velocity of sound Vs.
Upon collision, this molecule transfers an amount of heat pc, per unit
temperature gradient. This analysis yields

k = PC,  VJ (14.66)
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FIGURE 14.3
Temperature variation of the viscosity of water.

While all the quantities in Eq. (14.66) can be estimated or measured, this
equation is not particularly convenient to use. Presently, there is no theory
available to predict k from fundamental information alone, such as from
critical properties, or from molecular models such as Lennard-Jones.

Many empirical equations have been proposed to estimate k; these are
reviewed elsewhere [Rl].  For a quick, approximate value of k for organic
liquids, the method of Sato [Rl] is recommended:

(14.67)

where the subscript b refers to the boiling point, T is in K, and M is the
molecular weight. The units of k are W m-l K-‘. Note that for the thermal
conductivity at the normal boiling point, the equation simplifies because the
last three ratios are unity.

Example 14.8. Estimate the thermal conductivity of tetrachloromethane (carbon
tetrachloride) at its boiling point (349.90 K) and 20°C (293.15 K). The heat
capacities at the two temperatures are 0.9205 and 0.8368kJ  kg-‘K-l,  respec-
tively.  The corresponding densit ies  are 1480 and 1590 kgmd3.  The molecular
weight of CC& is 153.82.
Answer.  Equation (14.67) is used to estimate k. At the normal boiling point, Eq.
(14.67) reduces to

kJ105c,  jr “Tb
m

1 . 1 0 5
M ( >cpb  PL, T=jpF (9

Thus, at the boiling point of 349.90 K, the estimated thermal conductivity is

kb  = 1.105/(153.82)‘n  = 0.08910 W m-l s-r (ii)
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At’293.15 K (20°C) Eq. (14.67) yields

p  y3 Tb1.105 cp
k= Mm  c ( >pb Pb

7 = (o.of39w(o~9205!E)(E)“(~)1480

=O.l064Wm-‘K-’ (iii)

The estimate in Eq. (iii) is 3.4percent  higher than the experimental value of
0.1029 W m-’ K-’ [Rl].

14.2.3 Diffusion Coefficient

Diffusion in liquids is complicated by nonideal  effects, such as the variation in
DAB  with concentration. In gas systems, it is usually possible to assume that
DAB  is independent of concentration. This assumption is poor for liquids.
Present theories or correlations are not able to deal with these nonlinear
effects.

In this text, two diffusion coefficients have been introduced; DAA  is the
self-diffusion coefficient for the case of species A diffusing through pure A, and
DAB  is the mutual or binary diffusion coefficient for the case of species A
diffusing through a mixture of A and B. There are two others that are of
interest in liquid systems: DzB is the tracer (or intradiffusion) diffusion
coefficient for the diffusion of a labeled component within a homogeneous
mixture [Rl],  and D OAB  is the mutual diffusion coefficient at infinite dilution,
i.e., a single molecule of A diffusing in pure B.

Self-diffusion is the measure of mobility of a species in itself.4  To perform
the measurement, a small concentration of tagged molecules is followed.
Tagging the molecule presumably does not measurably alter its properties or
diffusion coefficient. The solution of tagged A in A is thus ideal, and there are
no actual gradients “forcing” or “driving” the diffusion. Thus, the progress of
the tagged A is purely statistical in nature. Self-diffusion measurements are of
significant theoretical use in understanding the mechanisms of diffusion. Also,
in theory, the mutual diffusion coefficient DAB  might be predicted from the
pure-component self-diffusion coefficients DAA  and DBB.

Tracer diffusion is similar to self-diffusion in that a small sample of tagged
molecules is added; the difference is that tracer diffusion is the diffusion of
tagged A in a mixture of A and B. Hence, tracer diffusion is often strongly
concentration-dependent [Vl], whereas self-diffusion is not. Another similarity
is that no concentration gradient for diffusion exists in tracer diffusion
experiments. Nevertheless, measurements can be important in providing
insight into the nature of diffusion, as well as order-of-magnitude estimates of
D AB. Note that as the mole fraction of A approaches unity, D.& approaches
D AA-

4 Adapted from Kaysex,  J. C., and Knaebel, K. S., Diffusion Coeficienr  fitimurion,  Oct. 10, 1985.
Unpublished course material. Department of Chemical Engineering, The Ohio State University,
Columbus, OH 43210 [Kl].
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Some progress has been made in the theory of diffusion in liquids in that
the theory at least predicts what variables to correlate. Again, none of the
liquid theories has been developed to the point of engineering usefulness.
There have been three approaches to the theory of diffusion in liquids:
hydrodynamic, thermodynamic, and kinetic [B4, G6, H5, 53, 54, Rl,  TY].
Each of these will be discussed briefly in the next sections.

Hydrodynamic theory. In the formulation of the laws of Brownian motion,
Sutherland [S9]  and Einstein [El] independently derived an equation for the
diffusion coefficient by regarding the diffusion flow as a balance between a
driving force and a flow resistance. These are usually called hydrodynamic
theories. Sutherland and Einstein originally used the gradient of osmotic
pressure as the driving force, but more modern developments use chemical
potential.

Let us consider diffusion by Brownian motion in one dimension only; the
following are assumed:

1. The solute particle concentration is sufficiently dilute so that all particles
move independently under the influence of Brownian motion.

2. Each particle moves the same distance s in a given time At.
3. Half of the particles move in the +x  direction and the rest move in the --x

direction.

Figure 14.4 depicts a shape whose cross sectional area S is 1 m’. Let us
consider the flow across the plane QQ in the time At. First, by assumption (2),
particles outside the planes PP and RR are not considered because they cannot
cross the plane QQ in the time At. Let the average concentration in the PPQQ
region be Ci and the concentration in the QQRR region be C2 where C2 is
greater than Ci.  Under the influence of the concentration difference C2 - C,
there will be a net transfer of particles from right to left across the plane PP as

P Q R

I I I
Area=lm’  1

I c1 ; cz ;

I I I
I I +X

P Q R

FIGURE 14.4
Movement of molecules due to Brownian  motion.
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follows:

Particles per second in QQRR moving to the left = (14.68)

Particles per second in PPQQ moving to the right = (14.69)

Net transfer across QQ = - k ft (C2  - C,) (particles mW2  SK’)
( >

(14.70)

In Eq. (14.70),  the minus sign signifies that transfer occurs from right to left, in
the --x direction. If the distance between planes PP and.RR  is small, then the
concentration gradient is

dC C,-C,-=----
dx  x

or

(14.71)

Combining Eq. (14.70) with Eq. (14.72) gives the net transfer across QQ:

(14.73)

The quantity (particles m-‘s-l) is a diffusion flux, based on particles (or
molecules). Therefore, Eq. (14.73) is seen to be in the form of Fick’s law, Eq.
(2.4). As discussed previously, the diffusion coefficient is the proportionality
constant in Fick’s law that relates the flux to the concentration gradient. Thus
the diffusion coefficient is

,=!Z
2At

(14.74)

Einstein showed that the mean-square displacement in the x direction due to
Brownian movement is [El, G3, G6]

where k,  is the Boltzmann constant, T is the absolute temperature, and f, is
the frictional resistance of the liquid on the particle (defined as the friction
force Fp  divided by the velocity U,). If the solution is sufficiently dilute, then
Stokes’ law [Eq. (12.65)]  can be assumed:

fi = F,l U, = 6npBrp (14.76)

where rp  is the particle radius and pB is the viscosity of the surrounding fluid.
Since Stokes’ law considers a single particle in a fluid, pr.,  is the viscosity of the
solvent. From Eqs. (14.74) through (14.76),  the Stokes-Einstein equation is
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obtained:

D = kB Tl(6qwJ (14.77)

The Stokes-Einstein equation predicts

D&T = constant (14.78)

Equation (14.78) is reasonably valid for liquids over small changes in viscosity
and temperature. Equation (14.78) has been widely used as a basis for
interpreting experimental data in liquids, both for the diffusion of electrolytes
and for nonelectrolytes.

Thermodynamic theory. From the thermodynamics of irreversible processes,
as originally formulated by Onsager  [02],  a formalized approach to the
evaluation of diffusion coefficients has been developed. In spite of considerable
effort, irreversible thermodynamics offers little to the engineer interested in
predicting diffusion coefficients in liquid systems.

Kinetic theory. Two types of kinetic theories have been developed for liquids.
The first is based on statistical mechanics as was the Chapman-Enskog theory
for dilute gases. However, the liquid theory has not evolved to the same point
as the dilute gas theory. The more successful kinetic theory was originally
formulated by Eyring to explain chemical reaction rates [E4,  G4],  and was
considered earlier in regard to the temperature dependence of viscosity. The
Eyring approach to liquid diffusion predicts that the diffusion coefficient times
the solvent viscosity divided by the temperature is a constant [i.e., the identical
result to that reported in Eq. (14.78)].  The Eyring constant is a function of the
distances between molecules in the lattice structure. From the Eyring theory,
the dependence of diffusion coefficient on temperature is

.DAB  = &--Ed(RT) (14.79)

where A is a constant and ED is the activation energy of diffusion. Equation
(14.79) suggests that diffusion data plotted as the log D versus l/T should be a
straight line, and such is the case over a limited, temperature range. The
temperature dependence in Eq. (14.79) has been used as a basis for
correlations by several investigators [L7, Rl].

Correlations. Since the theories of diffusion  in liquids are still incomplete from
the standpoint of being able to predict the transport coefficient DABI  empirical
.correlations  and direct laboratory measurements are the only recourse. The
large variation in diffusion coefficient with changes in concentration canpot  be
predicted theoretically or empirically with consistency. The concentration

-.tffects are reviewed elsewhere [H4, Rl, T7]. Even the most modern
correlations are often in considerable error. Again, there is substantial
disag&!@tit  between different experimentalists studying the same system.
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TABLE 14.4

Correlations for liquid phase diffusion coefficients*

Type of system Correlation reference

sinnry
Electrolytes

Nonelectrolytes
Self-diffusion coefficients

Dilute A through solvent B
Macromolecules
Viscous solvents
Gases in liquids

Diffusion in water (B)

Diffusion of water (A)

Normal paraffins
Organic (A) in organic (B)

Concentrated

Multicomponent

1. Nemst-Haskill  (1888) WI
2 . Gordon (1937) WI

1. Hildebrand (1971)
2 . Dullien  (1972)

W31
P31

1. Stokes-Einstein (1905)
1. Hiss-Cussler (1973)
1. Sridhar-Potter (1977)
2 . Wilke-Chang (1955)
1. Wilke-Chang (1955)
2 . Hayduk-Laudie (1974)t
1. Sitaraman et al. (1963)
2 . Olander (1961)
3 . Wilke-Chang (1955)
1. Hayduk-Minhas (1982)
1. Scheibel (1954)
1. Bearman  (1961);  Darken (1948)
2 . Vignes (1966)
3 . LefRer-Cullinan  (1970)
4 . Cussler  (1980)
5. Duda  etal.  (1982)

1. Perkins-Geankoplis (1969)
2 . Cullinan-Cusick  (1967)
3 . Lcffler-Cullinan  (1970)
4. Akita (1981)

*Adapted from  Kayser,  J. C.,  and Knaebel,  K. S., Diflwion  Coeficienr  Estimdon,  Oct.  10, 1985. Unpublished
course  material .  Department  of  Chemical  Engineering,  The Ohio State  Universi ty ,  Columbus,  OH 43210 [Kl] .

t The proposed equation in this article, as cited in references [Hl, Rl], has an incorrect exponent for viscosity;
the correct exponent is 1.14 [H2].

Correlations for liquid diffusion coefficients usually apply only to specific
systems, such as nonelectrolyte or electrolyte solutions, dilute or concentrated
solutions, and even aqueous or nonaqueous systems. Table 14.4 presents a
summary of the available (and recommended) correlations for these
categories.

Wiie-Chang correlation. Equation (14.78) forms the basis for the Wilke-
Chang correlation. Although not the most modern correlation for dilute
solutions of nonelectrolytes, the Wilke-Chang [W2]  is the most general
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correlation proposed to date:

D
AB

= 1.17 x 10-‘6(T)($Mn)lQ

PBVY
(14.80)

where DAB is the diffusion coefficient of solute A in solvent B (m* s-l), I&,  is
the molecular weight of the solvent, T is the temperature in K, pB is the
viscosity of the solvent in kgm-‘s-l  (Ns m-* or Pas), and VA  is the molal
volume of the solute at its normal boiling point in (m” kmol-‘).  The subscripts
are used on DAB, since Eq. (14.80) is clearly not symmetric (see discussion in
Chapter 2). The term # is the Wilke-Chang “association parameter” with the
following values: water, 2.6 (a value of 2.26 appears better [Rl]);  methanol,
1.9; ethanol, 1.5; other unassociated solvents (such as benzene, ether,
heptane), 1.0. The molal volume VA  of the solute is obtained by the Le Bas
method [L2, Rl], using the volumes or the volume increments in Table A.4,
Appendix A. To find V,, the number of each atom appearing in a molecule of
species A times its increment is summed for every atom in the molecule. The
additive volume method is illustrated in Example 14.9. Note that Eq. (14.80) is
an empirical equation whose constant has units.

The Wilke-Chang correlation is usually accurate to within lo-15  percent
[Rl]  in the temperature range lo-30°C;  most of the data used by these authors
were in this range. The Wilke-Chang correlation was proposed for both
aqueous and nonaqueous systems. Later, studies have shown that the Eq.
(14.80) is satisfactory for most cases of an organic solute diffusing in water. In
the opposite case, water diffusing through an organic solvent, a study by Reid,
Prausnitz, and Sherwood [Rl]  showed that both the Wilke-Chang and the
Olander modification [Ol]  fail for many systems. The correlation of Sitara-
man, Ibrahim, and Kuloor [S6]  requires latent heats of vaporization; if these
must be estimated, then the uncertainty increases.

In summary, most of the correlations proposed for liquid systems are
valid only for a particular subset of solutes and solvents. The Wilke-Chang is
the most general and requires a minimum of supplementary data. Because
diffusion coefficients in liquids are so low (10m9  m* s-l), they are difficult to
measure accurately. Careful investigations at different laboratories often yield
results that differ from one another by 50 percent [J3]. The concentration
dependence of DAB is difficult to predict accurately.

Example 14.9. Compare the diffusion coefficient of water drffusing  through
1-propanol (chemical formula CH3CH2CHZOH)  with that of 1-propanol diffusing
through water, each at infinite dilution, at 288 K. For 1-propanol, the viscosity at
288 K and the molecular weight are 2.6cP (2.6 x 10e3 kgm-’  s-‘)  and
60.09 kg kmol-‘. For water, the viscosity at 288 K and the molecular weight are
1.14 CP  (1.14 x lOA  kg me’  s-l) and 18.015 kg kmol-‘.

Answer. The Wilke-Chang correlation will be used to find DAB  in each case.
First, the Le Bas method of calculating the molal volumes of solute and solvent
will be used. From Table A.4, Appendix A, the increments for carbon, hydrogen,
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and oxygen are 14.8 x 10e3,  3.7 x lo-‘,  7.4 x 10m3  m3  kmol-‘,  respectively. For
water, the Le Bas volume is 18.9 x 10m3  m3  kmol-‘.  The Le Bas volume for
1-propanol is

VP = [(3)(14.8)  + (8)(3.7)  + (1)(7.4)]  x lo-”  = 0.0814 m3  kmol-’ (9

For the diffusion of I-propanol (A) through water (B), the association
factor is 2.26. Equation (14.80) yields

D = 1.17 x 10-‘“(T)(~MB)“2= (1.17 x 10-‘6)(288)[(2.26)(18.015)]‘n
*a

h3VY (1.14 x 10-3)(0.0814)o.6

= 8.52 x lo-‘”  m*  s-’ (ii)

For  water  (A)  di f fus ing through 1-propanol ,  the  associa t ion factor  for  1-propanol
is unknown. It is possible to use the value for ethanol; alternatively, since # is 1.9
for  methanol  and 1.5  for  e thanol ,  an arbi t rary choice  might  be  1 .2 .  Let  us  choose
1.5:

DAB  = (1.17  x 10-‘“)(~)[(1.~)(~.~)1’”  = 1 33  x lo-9  m2 s-I
(2.6 x 10-3)(0.0189)“~6 ’

(iii)

Literature comparison. The diffusion coefficient in the 1-propanol-water system
changes by a  factor  of  a lmost  10 over  the ful l  concentrat ion range [J3].  Further ,
the  d i f fus ion  coeff ic ient  changes  most  rapid ly  wi th  concent ra t ion  in  the  d i lu te
region ,  whether  the  so lvent  i s  water  or  1-propanol .  Thus ,  a  r i sky  ext rapola t ion  i s
necessary to obtain the diffusion coefficient at infinite dilution. The  following data
are available:

Dilute l-propanol  (A) through  water (B)-literature

DAB  = 7.7 X lo-”  m2  s-’ at284K[U] (9
D =87~1O~!~~s-’AB . a t  288-K-{TyI (9
DAB  = 4.4 x lo-I“  m*  s-’ at 293 K [G216 w

Note that these data do not form a consistent set with regard to temperature
dependence,  owing to  experimental  error .  The Wilke-Chang correlat ion est imate
of DAB  for  the  da ta  a t  288 K is  about  2  percent  in  er ror ,  obvious ly  much bet ter
than the experimental error. The Hayduk-Laudie correlation [Hl],  also  recom-
mended in  Table  14.4,  is  about  2 .3  percent  in  error  for  this  system [Rl].

For water as the dilute species, the correlations are not satisfactory:

Dilute water (A) though  1-propanol (B)-litedure

DAB  = 4.7 x lo-”  mz  s-’ at284K[U] (vii)

DAB  = 6.1 x lo-‘”  m2  s-’ at 288 K’ (viii)

D =72x10~~“mm2s-’Aa  . at 283 K [Gl] (ix)

‘Corrected to 288  K by Thovert [T2].  This value has been misquoted in ref. [GZ]  as being for
water through 1-propanol.
6 Probably erroneous.
‘Quoted in Johnson and Babb [J3];  source unknown.
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While these values are at least consistent, they are far from the prediction of
13.3 x lo-‘” from the Wilke-Chang correlation. .

14.3 SOLIDS

The most important transport property for solids is the thermal conductivity. It
is fortunate that the thermal conductivity of a solid can be easily and accurately
measured, since the theories proposed to date are of limited value. Diffusion in
solids was covered in Section 5.3.5. As discussed previously, diffusion in solids
may occur by several mechanisms. The variation of the diffusion coefficient
shown in Table 2.10 for diffusion in silicon indicates that there is little hope for
a genera1 correlation.

14.4 MEASUREMENT OF THE
TRANSPORT PROPERTIES

This section provides a brief, qualitative overview of the type of equipment
required to measure the transport coefficients. Actually, a detailed study of
such equipment provides excellent examples of the use of the equations
developed in this text.

14.4.1 Viscosity Mkasurementd’

“Viscometry” is defined as the measurement of the shear stress and the shear
rate such that the viscosity of a fluid can then be determined from Newton’s
law, Eq. (2.5). It is often necessary to distinguish viscometry from “rheogoni-
ometry”, which is the measurement of all the stresses [Eq. (2.43)]  within the
material [J2]. Naturally, rheogoniometry encompasses viscometry and is far
more difficult [M2,  S2].  In this section, some measuring equipment will be
considered.

The reader will rarely have to measure the viscosity of gases. The success
of the Chapman-Enskog equation, documented in Section 14.1.2, makes such
measurements more of a scientific interest, rather than an engineering
necessity. Hence, most viscosity experiments deal with liquids. For materials
that follow Newton’s law, commercial equipment is readily available. The
simplest viscometers are glass. For example, the Ostwald viscometer and its
many modifications [V2] are of the gravitational type, and are single-point
instruments (i.e., they measure p at a single shear rate). Other commercial
viscometers are rotational in nature, but likewise easy to use.

The most interesting problem in viscosity measurement is the study of
non-Newtonian materials. These materials do not follow Newton’s law of
viscosity, in that the viscosity is a function of the shear rate (or shear stress).
Hence, to characterize a non-Newtonian fluid, it is necessary to make shear

‘Adapted from Brodkey [BS].’
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stress-shear rate determinations at many points, often over a range of lo4  in
shear rate. This topic is the subject of Chapter 15.

There are two major types of viscometers that are capable of determining
the viscosity as a function of the shear rate: the capillary tube viscometer and
the rotational instrument. There are many variations of these. In the capillary
tube viscometer, the flow can either be induced by gravity or by imposed
pressure, although for non-Newtonian fluids adequate characterization can be
made only with imposed pressure. This instrument is capable of very high
shear rates. The rotational viscometer is usually of the concentric cylinder type
(in which either cylinder can be rotated) or of a plate-and-cone design. Van
Wazer ef al. [V2] have compiled an extensive list of the commercially available
units. They have presented detailed descriptions, advantages and disadvan-
tages, possible modifications, and recommended experimental procedures.
Rotational, capillary, and miscellaneous commercial viscometers are covered,
and there is a chapter on viscoelastic systems.

Of considerable interest in any measurement system are the various
problems that can introduce unexpected complications [T3].  Among these are:
the existence of plug flow, wall slip, temperature heating effects, end effects,
laminar instability, and turbulence. In most cases the effect can be eliminated
or corrections can be made.

14.4.2 Thermal Conductivity

Measurement of the thermal conductivity of gases and liquids is inherently
inaccurate because of the ease with which convection currents are established
in the fluid. The lack of agreement between investigators has already been
discussed.

The thermal conductivity can be measured by placing the unknown
sample between two parallel plates of known separation and measuring the
resulting temperature difference for some given impressed heat flux. To
minimize convection effects, the heat is transferred downward so that the
upper plate is at a higher temperature than the lower one. The amount of heat
input lost to the surroundings must be minimized in order to make accurate
measurements. At low temperatures, transfer by radiation is not important; at
high temperatures, appropriate instruments have been designed to obtain
reasonably accurate measurements [M3].  A concentric cylinder design can also
be used. As in viscometry, the cylinder gap is kept 3s small as possible, and the
unit is operated vertically.

14.4.3 Diffusion Coefficient Measurements

Marrero and Mason [Ml] provide an excellent review of measurement
techniques for gas-phase diffusion coefficients. Summarizing briefly, the Stefan
method [S8]  for the measurement of the diffusion coefficient in gases uses the
rate of evaporation of a liquid in a narrow tube. The first component must be a
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liquid, while the second gas is passed across the top of the tube. The inside
capillary diameter is known, and from the evaporation rate the diffusion
coefficient can be determined. Precision is poor at high or low vapor pressures,
and so the range of temperatures for a given system is restricted.

In the Loschmidt method [L7], two gaseous components are placed in a
tube that is divided into two sections by a removable partition. The partition is
removed for a time and the gases are allowed to diffuse under unsteady-state
conditions. The partition is reinserted and the contents of each chamber are
analyzed. From this, the diffusion coefficient can be calculated. The method
often yields diffusion coefficients that are in error because of convection
currents. If the gases have different densities, then there may be appreciable
mass transfer by natural convection currents. The apparatus is also very
sensitive to variations in temperature during the course of the experiment.

The point source method for gases, developed by Walker and Westen-
berg [Wl],  has been used to measure diffusion coefficients at temperatures up
to 1200 K with a precision of about 1 percent. The point source method injects
a trace sample of one gas into the laminar flow of a second gas stream. In a
flow system it is relatively easy to control the temperature by adding a constant
amount of heat to a constant flow of gas. In the region of the injection probe,
the total pressure may be assumed constant, and the injected species diffuses
along the direction of flow as well as in a radial direction. The concentration of
the injected gas is measured by a special sampling technique in which the gas
sample is continually withdrawn and passed through a thermal conductivity
cell. The point source technique appears to be the most satisfactory technique
developed so far for measurements of diffusion coefficients over wide ranges of
temperature and pressure. The Stefan method was severely limited by the
requirement that one component be a liquid with vapor pressure neither too
high or too low, and the Loschmidt method, while capable of high temperature
measurements, is relatively imprecise even with the best available constant-
temperature equipment.

Diffusion coefficients in liquids are of interest not only t,o  engineers
designing mass transfer equipment but also to physical chemists and others
studying the properties of proteins and other high molecular weight polymer
and colloid solutions. This interest has resulted in a proliferation of ex-
perimental methods. The details of these methods have been reviewed
elsewhere [Gl, G3, 53, 54, N2, T7].

PROBLEMS

14.1. The kinet ic  theory can predic t  a l l  three  t ranspor t  coeff ic ients .  Discuss  the  er ror
in using this theory for engineering calculations and illustrate with experimental
data from Table 2-10 or another source.

14.2.  Descr ibe the concept  of  sel f -dif fusion and out l ine  an experiment  to  es t imate  a
self-diffusion coefficient.
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14.3.  Compare the temperature  dependency of  viscosi ty ,  thermal  conduct ivi ty ,  and
diffusion coefficient for both gases and liquids.

14.4. The molecular diameter of nitrogen is 3.16 x lo-“‘m  (M4). Using the kinetic
theory of gases at 1 atm and 300 K
(a) Find all diffusivities in m2  s-‘.
(b) Estimate k in W m-’ s-‘, given cp = 29.16 kJ  kmol-’ K-‘.

14.5.  The Lennard-Jones parameters for  ethyl  acetate are in Table A.3.
(a) Compare the table values with those estimated from the Tee-Gotoh-

Stewart equations; obtain the necessary thermodynamic data from a
handbook .

(b) Compare the table values with those estimated from Eqs. (A.l) through
(A.4).

14.6. Estimate the error of prediction of the Chapman-Enskog theory for the
viscosity of air at 1 atm and temperatures of 300 K, 400 K, 1000 K, and 2000 K.

14.7. Estimate the error of prediction of the Chapman-Enskog theory for the
viscosity of saturated water vapor at temperatures of 300  K, 4QOK,  XKJK,
6OOK,  and64OK.

14.8.  Compare the est imation of k  f rom both  Eucken  equa t ions  wi th  publ i shed  da ta
for saturated water vapor at 1 atm and temperatures of 295 K, 400 K, and 640 K.

14.9. Compare the estimation of k from both Eucken equations with published data
for  air  at  1  atm and temperatures of  293 K, 1000 K, and 2000 K.

14.10. Find an equation to relate the thermal conductivity of liquid water as a function
of  temperature between 283 K and 303 K.

14.11. Freon-12 (CCl,F,,  molecular weight 120.92 kg kmol-‘)  boils at 245 K, at which
temperature cp = 0.898 kJ  kmol-’ K-’ and p = 1.484 x 10’ kg mm3.
(a)  Est imate  the  thermal  conduct ivi ty  a t  Tb;  compare  wi th  the  publ i shed  va lue

of 0.0695 W m-’ K-r [fl].
(b) Using the above value of k, estimate k at 300 K if cp = 0.9781 kJ  kmol-’ K-’

and p = 1.3058 kgme3;  compare with the published value of
0.072 W m-’ K-’ [Xl].

14 .12 .  Prove  the  fo l lowing:

14.W. Using  the  func t ion  in  Problem 14 .12:
(a)  Graph D.&p,,  versus  T for  a i r  a t  1  a tm between 200 K and 600 K.
(b) Draw any possible conclusions about the temperature variation of the

Schmidt number with temperature.
14.14. Find the mutual diffusion coefficient of oxygen diffusing through water vapor at

atmospheric pressure and 352.3 K; compare with the experimental value of
0.352 x 10e4 m2  s-’ [Rl].
(a)  Use  the  Chapman-Enskog theory  wi th  the  Lennard-Jones  potent ia l .
(b)  Use  the  FSG corre la t ion .

14.15. Find the mutual diffusion coefficient of hydrogen diffusing through sulfur dioxide
at  a tmospheric  pressure and 285.5 K;  compare with the experimental  value of
0.525 x 10e4 m2  s-’ [Rl].
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(a)  Use  the  Chapman-Enskog theory  wi th  the  Lennard-Jones  p o t e n t i a l .
(b)  Use  the  FSG corre la t ion .

14.16. The diffusion coefficient of fluorine in air is 6.26 x 10m6  rn’s-’  at 300°F  and
5 atm.
(a)  Compare  th is  va lue  wi th  tha t  predic ted  by the  Chapman-Enskog theory .
(b) From this one point, estimate the special diffusion volume of molecular

fluorine (F2)  in  the  FSG cor re la t ion .
14.17.  The diffusion coeff ic ient  of  e thanol  in  aqueous solut ions has  been measured at

inf ini te  di lu t ion for  three  temperatures  [Rl]:

DAB,  mZ  s-l T,  K

0.84 x 1o-9 2 8 3
1.00 x 1om9 2 8 8
1.24 x lo-’ 2 9 8

(a)  Est imate  the  d i f fus ion coeff ic ient  of  e thanol  in  aqueous  solut ion a t  inf in i te
d i l u t i o n  a t  40°C  from the above data.

(b)  F ind  an  equat ion  to  corre la te  DAB  with temperature.
(c) Estimate the diffusion coefficient of ethanol in water at 298 K; determine the

error  as  compared with  the  value given above.
14.18.  Est imate  the error  of  predict ion of  the Wilke-Chang equat ion for :

(a)  di lute  benzene in  chloroform at  313 K;  observed:  3 .35,  X 1O--9  m*  s-’ [Rl]
(b)  d i lu te  water  in  e thanol  a t  298  K;  observed:  1 .24  x  10m9  m*  s-’ [Rl]
(c)  oxygen in  water  a t  298 K;  observed:  2 .41 X IO-.’  m*  s-’ [Rl]
(d)  benzene in  water  a t  293 K;  observed:  1 .02 X lOmy  mZ  ss’  [Rl]
(e)  d i lu te  methanol  in  benzene a t  298 K;  observed:  3 .30  x  IO-’  mZ  s-’ [J3]
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NOMENCLATURE

A
A
A
UT.
c
Cl
D
DR
d
E

;
f
G
&

Parameter in the Reiner-Philippoff model, Eq. (15.9)
Species A
Area upon which shear stress acts (m’,  ft’)
Shift factor defined by Eq. (15.20),  dimensionless
Concentration in Eq. (15.19) (km01 mV3,  lb mol ft-‘)
Constant in Eq. (15.19)

- Diffusion coefficient (m’ s-l)
Drag ratio, Eq. (15.31)
Diameter (m, ft); d,  is inside diameter of pipe, as used in fluid flow
Constant in Eq. (15.35)
Base of natural logarithms (also called exp) (2.718 2818. . .)
Force (N, lb3
Fanning friction factor, Eq. (6.89)
Shear modulus in Eq. (15.11) (kg m-’ s-l  or N mm2 s, lb,,, ft-’  s-‘)
Gravitational conversion constant (32.174 lb,,, lb;’ ft s-*)

’ Adapted from Chapter 15 in Brodkey [B7]  The  Phenomena of Fluid Motions.
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h

i
K

K’

k

k

k’,

L
M
N
NDe

NNu,  mb

NPI,  mb

NRe

n

11’

P
Q
4

R
r

;

T

T

Heat transfer coefficient, defined by Eq. (6.86) (W m-‘K-l,
Btu ft-* h-i OF-l)
Unit vector in the x direction
Empirical constant in the power law, Eq. (15.6); K, is constant in
Ellis model, Eq. (15.7); K, is constant in Sisko model, Eq. (15.8)
Empirical constant in non-Newtonian viscosity equation, Eq.
(10.5)
Thermal conductivity (W m-l K-’  or J m-l K-’  s-l,  Btu ft-’
OR-’ s-1)

k, is constant in agitation equation, Eq. (15.33); k, is a constant in
the temperature-dependent form of the power law, Eq. (15.34)
Equimolar mass transfer coefficient, defined by Eq. (6.87)
[kmol m-* s-l  (kmol m-‘)-‘, lb mol ft-* s-l  (lb mol ft-‘)-‘I
Length (m, ft)
Molecular weight (molecular mass) (kg kmol-‘,  lb,,, lb mol-‘)
Rotational impeller speed, Eq. (15.33)
Deborah number, Eq. (15.18),  defined as the characteristic time of
the viscoelastic material divided by the characteristic time of the
experiment
Mean bulk Nusselt number defined in Eq. (11.66)
Prandlt number, defined in Eq. (8.4); all properties are evaluated
at the mean bulk temperature
Reynolds number, Eq. (6.1) or Eq. (6.2),  d,U,,.,p/p  for pipe
flow; NRe,s  is solvent Reynolds number with p and /J based on
solvent properties, Eq. (15.32); N&,  is the Metzner-Reed Reyn-
olds number, Eq. (15.28); NRe,mb  is the mean bulk Reynolds
number, Eq. (11.62)
Empirical constant in the power law, Eq. (15.6); exponent in Eqs.
(15.10) and (15.34)
Empirical constant in non-Newtonian viscosity equation, Eq.
(10.5),  defined in Eq. (15.25)
Pressure (kPa,  atm, lbr  in.-*)
Volume rate of flow (m’ s-l,  ft3  s-l)
Energy (heat) flow vector (Js-‘, Btus-‘);  subscripts denote
components in coordinate directions
Gas constant; see the Appendix, Table C.l, for values
Cylindrical coordinate (m, ft)
Radius (m, ft); r,, is value of r at the tube wall
Area of a pipe or tube that is perpendicular to the z direction (i.e.,
the flow or cross sectional area) (m*,  ft”);  cf. Eq. (7.10)
Reduced shear rate for heat transfer in laminar flow; cf. Eq.
(15.35)
Instantaneous temperature (K, “R); To is reference temperature for
shift factor aT
Superscript meaning transpose of a tensor
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t

u

B
f

A
P

v
vu
WJ)’

Time (s); tM  is Maxwell relaxation time, Eq. (15.14); tK  is
retardation time in Kelvin model, Eq. (15.17); t,  is a material time
constant given in Eq. (15.19)
Instantaneous velocity vector (m s-l,  ft s-l); U is magnitude of U,
U,, U,, U,, U,, U,, U, are components in directions x, y, z, 8, r,

9; uz, ave is mean velocity in z direction
Mass rate of flow (kg s-‘, lb,,, s-l);  cf. Eqs. (7.10) and (15.29)
Subscript denoting wall
Rectangular (Cartesian) coordinate
Rectangular (Cartesian) coordinate
Rectangular (Cartesian) coordinate
Thermal diffusivity (m’ s-‘)
cu,  is constant in Ellis model, Eq. (15.7); (Y,  is constant in Sisko
model, Eq. (15.8)
Constants in equation for a straight line; see Eq. (i), Example 15.1
The rate-of-strain tensor; for one-dimensional flow, the rate of
strain y is the derivative of velocity with respect to the distance
perpendicular to the flow direction, cf. Eq. (15.1); PC is constant in
Cross model, Eq. (15.10)
Difference, state 2 minus state 1; e.g., Ap means p2 -pl
Viscosity (kg m-l s-l  or N rnp2  s, lb,,, ft-’  s-l,  cP); p,  is viscosity at
wall; p,  is apparent viscosity, Eq. (15.4),  often a function of shear
rate and tube diameter for non-Newtonian fluids; /,+,  is viscosity in
Bingham model, Eq. (15.5); cl,, is limiting viscosity of a pseudo-
plastic fluid at very low shear rates; pm  is limiting viscosity of a
pseudoplastic fluid at very high shear rates; ps  is viscosity of the
solvent
Ratio of circumference of a circle to its diameter (3.141592 65. . .)
Density (kg rne3,  lb,,, ft-“)
Momentum flux (or shear stress) tensor (N rnp2,  Ibr  ft-‘); rXY,  zyX,
etc., are components of the momentum flux tensor, where sub-
scripts refer to direction of momentum transfer and direction of
velocity; note that in this chapter, the subscripts are usually
omitted to simplify the notation; t,  is shear stress at the wall; z. is
yield stress in Bingham model, Eq. (15.5); teq  is shear stress at
infinite time at constant shear rate, cf. Fig. 15.7
Vector operator del, defined by Eq. (2.16) (m-l,  ft-‘)
Shear rate tensor, defined by Eq. (2.41) (s-l)
Transpose of shear rate tensor, defined by Eq. (2.42) (s-l)

The three material properties (k, D, and p) introduced in Chapter 2 may vary
with the conditions of the transport. For example, the thermal conductivity is a
weak function of temperature, and the diffusion coefficient may vary with
changes in concentration. Similarly, for many fluids, Newton’s law of viscosity
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is valid ‘only at a single point. Newton’s law is

where ryX  is the momentum flux and XJJay is the shear rate, also noted as 9.
A Newtonian fluid is a gas or liquid for which Eq. (2.5) is valid. Examples of
Newtonian fluids are pure gases, mixtures of gases, pure liquids of low
molecular weight (i.e., nonpolymeric), and solutions of these liquids in which
the solute is also of low molecular weight. In some cases, fluids may be
Newtonian at commonly encountered shear rates but deviate from Newton’s
law under extreme conditions.

For “non-Newtonian” materials, the viscosity is a strong function of the
shear rate. In other words, for a non-Newtonian fluid, the viscosity in Eq. (2.5)
is not constant over the range of shear stresses and shear rates encountered,
but may vary by a factor of 100  or more. Rheology is the science of the
deformation and flow of matter. The field of rheology concentrates on
non-Newtonian fluids, as well as on the solids that deform and flow under an
applied shear stress.

Non-Newtonian fluids often have both solid-like (i.e., elastic) behavior
and viscous behavior. Such fluids are called “viscoelastic”; examples are
molten high-molecular-weight polymers like polyethylene, solutions of high-
molecular-weight polymers, and colloidal suspensions. Non-Newtonian fluids
are commonly encountered in chemical processes. Examples mentioned in
Chapter 2 include multigrade motor oils, greases, elastomers, many emulsions,
clay suspensions, concrete mixes, toothpaste, foodstuffs (such as milk shakes,
ketchup, and mayonnaise), and fluids including high-molecular-weight poly-
mers (either molten or in solution). Naturally, liquids (as opposed to gases)
comprise practically all examples of non-Newtonian materials, with materials
that are often considered solids (like aluminum) being capable of deformation
and/or flow as well. This chapter will introduce the topic of non-Newtonian
phenomena, which are often important in the application of the principles of
transport phenomena to practical problems.

The correlations for Newtonian heat transfer, mass transfer, and pressure
drop are significantly different from those for non-Newtonian fluids. Thus, this
chapter will include a brief discussion of non-Newtonian transport.

15.1 RHEOLOGICAL CHARACTERISTICS
OF MATERIALS

In Chapter 2, Newton’s law was seen to be a one-dimensional simplification of
a tensor equation as given in Eq. (2.42):

z = -p[VV + (VU)‘] ww
o r

%=-/A* (15.1)
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where 7 is the rate of strain tensor that equals the sum of ViJ and (Vu)‘. The
symbol x  is commonly used for either shear stress or momentum flux. The
momentum flux and rate of strain will always be of opposite sign. When t is
used as a shear stress, it is customary to use the first quadrant (O-W) for
plotting z versus 7 (or 7 versus r) and disregarding any sign difference between
x and +. Just as the tensor z contains nine terms, so does 9. In Eq. (2.9,  which
applies to simple, one-dimensional flows, most components in the stress
tensors t and the rate of strain tensor q are zero, and the rate-of-strain tensor
reduces to simply the shear rate p,,*:

au,
Yyx = ay (15.2)

Under such conditions, Newton’s law becomes

qx  = -PYp (15.3)

The literature abounds with many other symbols used for the shear rate and/or
the rate of strain tensor. For simplicity, the subscripts yx  will be discarded in
the sequel in favor of r and p.

The variables in Eq. (15.3) can be determined by a variety of experi-
ments. Design of some representative apparatuses will be covered in Section
15.2. A plot of t versus i, is called “the basic shear diagram”‘. If a log-log plot
of t versus 9 is linear with slope unity, then Newton’s law is obeyed. The basic
shear diagram is used to describe the various types of non-Newtonian
behavior.

Non-Newtonian materials can be classified as shear-thinning or shear-
thickening. In addition, they can be classified by their time-dependence,
viscoelasticity, and the extent to which they exhibit the effects of normal stress.
There has been much confusion in the literature over the classification of
non-Newtonian materials; the reader is referred elsewhere for a more
complete account [B7].

An apparent viscosity, which will not be constant for a non-Newtonian
fluid, can be defined as follows:

t = -pap (15.4)

The apparent viscosity is useful in understanding the physics of non-Newtonian
behavior, as will be illustrated next.

El.1 Time-Independent Behavior

Figure 15.1 shows the basic shear diagram for several materials, plotted both
as a linear plot, Fig. 15.l(a),  and a log-log plot, Fig. 15.l(b).  Pseudoplastic
fluids, also called shear-thinning, show a decrease in viscosity with increasing
shear rate; the slope in Fig. 15.l(b)  is less than 1. Shear-thickening fluids, also
called dilatant fluids, show a viscosity increase with increasing shear rate; the
slope in Fig. 15.l(b)  exceeds 1. The Bingham plastic is a fluid with a constant
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Shear rate, 9

(~3) Linear plot

FIGURE 15.1

Shear-thickening Newtonian

Log shear rate, log y

(b) Log-log plot

Bas ic  shear  d iagram i l lus trat ing  typ ica l  behav ior  o f  rea l  f lu ids .

plastic viscosity pu  and a yield stress ro:

t-to=-j‘,j

Note that pu  is not a real viscosity, but a viscosity defined after the t axis is
shifted by to;  thus, the term plastic viscosity is used. A Bingham plastic fluid
does not flow until the shear stress exceeds the yield value to.  In practice, Eq.
(15.5) represents an ideal material; experimental observations confirm that the
plastic viscosity pa is usually not constant over an appreciable range of shear
rates. Hence, in Fig. 15.1 the curve marked “generalized plastic” is more
representative of actual behavior. Examples of fluids with yield stresses include
many suspensions, mayonnaise, ketchup, paints, printing inks, toothpaste, and
drilling muds.

Pseudoplastic fluid. Of the four non-Newtonian fluids identified in Fig. 15.1,
the most commonly encountered is the pseudoplastic fluid (or shear-thinning
fluid). The term “pseudoplastic” was introduced to distinguish this material
from the Bingham material, which possesses a yield stress at low rates of shear.
Examples of pseudoplasticity include solutions and melts of most high-
molecular-weight polymers, emulsions, and colloidal solutions. Ostwald [05]
pointed out that the curve of the pseudoplastic fluid in Fig. 15.1 is incomplete.*
The complete pseudoplastic (or Ostwald) curve under laminar flow conditions
is depicted in Fig. 15.2. When a complete basic shear diagram is determined,

‘The  so-called “pseudopl.astic”  or shear-thinning fluid is more correctly called the Oshvald fluid,
since the early investigators relegated the term “pseudoplastic” to describe fluids that deviated
from Bingham’s “plastic” fluid (cf., Fig. 15.1). However, usage of the term “pseudoplastic”. is
more common and will be continued here.
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Upper Newtonian region
Slope = I -y

Pseudoolastic

/

region {“S”-shaped)

Lower Newtonian region
Slope = 1

Log shear rate, log r

FIGURE 15.2

Shear rate. y

Complete basic shear diagram for a pseudoplastic fluid.

the pseudoplastic material exhibits three distinct regions: (1) the lower
Newtonian, (2) the variable viscosity, and (3) the upper Newtonian. The
viscosity in the lower Newtonian region is pO;  the viscosity in the upper
Newtonian region is pa. Naturally, this curvature over widely varying ranges of
shear rates makes mathematical modeling of the flow curve difficult. However,
in the central region of the curve, the Ostwald-de Waele equation [06],
commonly called the power law, is often used to correlate the shear stress and
the shear rate:

t = K(-jf)” (15.6)

The power law equation, Eq. (15.6),  applies to variations of shear rates
over one to three decades. Other empirical laws more complicated than Eq.
(15.6) have been suggested to extend this region of fit. Clearly, to describe a
pseudoplastic solution adequately, equations with more parameters are re-
quired. One solution is to use the Ellis model [B7] at low shear rates and the
Sisko model [S4]  at high shear rates:

Ellis: p =.- ryX (A+  Ke  ( qxl-‘) (15.7)

Sisko: qx  = -iW + K I ~,*I”-‘) (15.8)

where K,,  KS,  ak, and cu,  are parameters to be determined experimentally.
Both of these equations contain three adjustable parameters in contrast to two
for the power law. The Ellis model is extremely flexible, containing Newton’s
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dlJ,ldr,  s-’

FIGURE 15.3
Data fitted with the Ellis and Sisko models.

law and the power law (with CY~  equal to l/n) as limiting forms. The Sisko
model has similar limiting forms, and was originally proposed to describe
greases at high shear rates [S4].  For a pseudoplastic fluid (n < 1 and LX,  > l),
the Ellis model approaches the limiting lower Newtonian range as the shear
rate approaches zero; the model fails as the shear rate becomes large, because
the model cannot predict the curve above the inflection point in Fig. 15.2.
Similarly, the Sisko model approaches the upper Newtonian range as the shear
rate approaches infinity; however, the Sisko model fails as the shear rate
becomes small. Figure 15.3 shows how Eqs. (15.7) and (15.8) may be
combined to approximate the basic shear diagram for a pseudoplastic fluid.
The parameters for the data [B8] are given elsewhere [B7].

Several equations that have three or more constants can be used to fit the
entire Ostwald curve. For example, the Reiner-Philippoff model [P3]  contains
three parameters: po,  pm, and A:

(15.9)



760 TRANSPORT PROPERTIES

A similar model is that of Cross [C7]:

(15.10)

where the Cross model has four constants: po,  pm, fc, and it.  The value of n is
approximately 2/3;  typically, PC is evaluated rigorously as the value of 9 at the
apparent viscosity that is the mean of ,uo  and pm, using a plot of ,u.  versus 9.
Many other models have been proposed, and detailed reviews are available
[B7, S3].

Shear-thickening fluids are less commonly encountered than pseudoplas-
tic fluids. One example of a shear-thickening fluid is a dilatant fluid; dilatancy
is a term introduced by Reynolds [RS] to describe an increase in rigidity that
takes place in materials when they are closely packed. The increase in viscosity
with increasing shear rate is thought to be associated with an increase in
volume, or a dilatant effect. However, since fluids may exhibit an increase
in viscosity with increasing shear rate without an accompanying increase in
volume and vice versa [M9], the term .“dilatancy” is best restricted to those
fluids where it is known that there is an increase in volume. Otherwise, the
more general term “shear-thickening” is recommended, since all dilatant fluids
are shear-thickening, but not all shear-thickening fluids are dilatant. Metzner
and Whitlock  [M9]  suggest that dilatancy occurs in concentrated suspensions
when the breakdown of structure, which causes shear thinning, just balances
the increase in rigidity as a result of the volume’s dilating. Over some ranges of
shear rates, this effect may produce dilatancy when it predominates over other
effects causing pseudoplasticity.

Example 15.1. Table 15.1 contains data for  the basic shear  diagram for  a  molten
polymeric material. Determine whether this fluid is a pseudoplastic. If so, find the
power law parameters .

Answer. The data as given are first plotted on log-log paper to determine

TABLE 15.1
Basic shear data for a molten
polymeric material

9,  s-l r, N m-* X lo-'

1 0 2 .2
2 0 3 .1
50 4 .4

1 0 0 5 .8
2 0 0 7 .4
4 0 0 9 .8
6 0 0 11.1

lcno 1 3 . 9
2ooo 1 7 . 0
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Shear rate, SC’
Basic shear diagram for the fluid in Ex-
ample 15.1.

whether they obey the power law, Eq. (15.6):

t = K(-j,) (15.6)

The data fall on a nearly-straight line; thus;Eq.  (15.6) is satisfactory as long as no
extrapolations are attempted. The constants n and K can be determined
graphically or by a least-squares analysis for a straight line [F2].  Equation (15.6)
is transformed as follows:

Y =Bo+B,x (9
y = ln( r) (ii)
x=lnlpl (iii)

From least-squares:

/IO = In(K)  = 9.17046 or K=0.9609~ lvNrn-’ (3
/VI = n = 0.3841 69

This fluid is a pseudoplastic, since the slope n  is less than 1. Figure 15.4 shows the
log-log plot,  and the line represented by the power law.

15.1.2 Tie-Dependent Behavior

There are several types of -time-dependent behavior [B7], the most important
of which is thixotropy. The terminology used for describing time-dependent
behavior is very confusing. Thus, thixotropic behavior is best explained by
describing the results of a simple experiment. Let a fixed shear rate be applied
to the thixotropic material in a rotational viscometer. The observed stress hrst
increases rapidly to a maximum, depending on the measuring instrument’s
response; the stress then decreases until eventually an equilibrium stress is
reached, as shown in Fig. US(a). If the fluid is then allowed to rest (shear
stress equal to zero) for an appropriate period of time, the material recovers its
initial viscosity, and the curve in Fig. 15S(a)  can be duplicated.

A thixotropic material can be pictured as a material that undergoes a
slow reaction from some unbroken structure to its equilibrium state. A more
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Time, t

(8) Stress-time curve

FIGURE 15.5

Time-dependent
x curve

cuNe

Shear rate, Jo

(b) Stress-strain curve

Ostwald  curve  for  a  pseudoplast ic  f lu id  inc luding thinning with  t ime.

complete flow curve for a thixotropic fluid is shown in Fig. 15.5(b).  The
equilibrium shear-thinning curve is denoted by OABC. For an experiment in
which the shear rate is first increased and then decreased, a thixotropic
material will exhibit a loop as shown by curve OADE. To obtain such a loop,
the material must have been at rest for an extended period of time. The
viscometer is turned on; the shear rate is slowly increased, and readings of the
shear stress form the curve OAD. When the shear rate reaches the value at
point D, the shear stress will follow the curve DE if the shear rate is decreased
to the value at point E. If the shear rate is reduced to zero, then the material
structure will slowly return, and the entire curve can be repeated. If the shear
rate is maintained constant at the value of point D, the structure in the fluid
will break down, and the equilibrium shear stress at point C will be obtained
after a period of time. Note that the results of this loop experiment are
instrument-dependent, as the time for the shear rate to change differs from
instrument to instrument.

Thixotropic behavior is of importance in the paint and coatings industry,
in the polymer industry, and in the food industry. Fluids whose viscosities
increase with time are less important. A more complete review of time-
dependent behavior is to be found elsewhere [B7, M4].

15.1.3  Viscoelastic  Behavior

Some non-Newtonian fluids exhibit both fluid-like (viscous) behavior and
solid-like (elastic) behavior; these are termed viscoelastic. The experimental
manifestations of viscoelasticity are strong indeed. For example, when a
rotating shaft is placed in a viscoelastic fluid, the fluid actually climbs the shaft.
Naturally, this phenomenon (called the Weissenberg effect [R3,  Wl,  W2]  and
shown in Fig. 15.6) leads to considerable difficulty in agitation. In Fig,. 15.7(a),
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a Newtonian fluid issues from a tube as a jet; in Fig. 15.7(b)  is a similar
photograph for a viscoelastic fluid. Instead of the normal contraction, the latter
fluid shows a swelling or expansion, which is a result of normal stress effects
associated with the viscoelastic properties [M5]. If the transient experiment,
shown in Fig. 15.5(a)  for a purely viscous non-Newtonian fluid, is repeated for
a viscoelastic fluid, the viscoelastic material often exhibits “stress overshoot”;
stress overshoot can be observed only by an instrument whose response time is
much faster than the time scale of viscosity changes. Figure 15.8 shows a set of
typical  curves for stress overshoot [CS].  The solution is 35 percent by weight
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(a) purely viscous

FIGURE 15.7

(b) viwxlastic

Flow  from a jet. (From Lodge, Elavic  Liquti,  p. 242, Academic Press, New York, 1964. By
permission.)

poly(methy1  methacrylate) (PMMA) in diethyl phthalate (DEP) at 20°C. At a
shear rate of 0.54 s-l,  there is no stress overshoot. However, at shear rates of
1.67 and 4.25 s-l,  the phenomenon appears. Data for Fig. 15.8 were obtained
by fixing the shear rate and measuring the shear stress as a function of time. In
Fig. 15.8, the stress is normalized with t,,-+, the equilibrium value of the shear
stress (reached after the transient effects have decayed to zero).

There are many other manifestations of viscoelastic behavior. The reader
is directed elsewhere for more details [B3, B7, F3, L2, MlO].

A-f=o.s4s~’

0.4 B-?=1.67s-’

C - f = 4.25 s-’

Time, s

FIGURE 15.8
Stress overshoot: 35 percent PMMA in DEP at 20°C.  (From Chung, PhD Dissertation, The Ohio
State  University, Columbus, Ohio, 1985.)
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Woke’s  Iaw. Elastic behavior is normally associated with solids; however,
non-Newtonian fluids may also exhibit elasticity. An ideal elastic material
possesses neither time-dependent nor viscous effects during deformation and
obeys the classic Hooke’s law, which states that the applied stress is
proportional to the deformation. Hooke’s law has several forms, all of which
are analogous to Newton’s law of viscosity. Hooke’s law is

t=-Gy (15.11)

where G is the shear rigidity modulus and y is the shear deformation divided
by the shear thickness.

Many common materials, such as cross-linked plastics and even some
hard metals, depart from ideal elastic behavior in physical situations of
interest. Usually, the larger the deformation, the more nonideal  is the
behavior. Rubber is a common example of a cross-linked polymer. Rubber and
rubber-like materials have two remarkable characteristics. They are capable of
sustaining large deformations without rupture; many rubbers can elongate to
five or ten times their unstretched length without breaking. The second
characteristic of rubber is.that  the material returns very nearly to the initial
dimensions after the deforming stress has been removed; in other words, no
appreciable fraction of the deformation remains after removal of the stress.
Note that rubber-like materials resemble liquids in their deformability without
rupture; they resemble solids in their capacity to recover from a deformation
WI-

Mechanical and con&u&e  models. Massless  mechanical models have been
successful in depicting rheological  behavior of viscoelastic materials. If the
total deformation under a shear stress is the sum of contributions from a
Hookean spring in series with a Newtonian dashpot,  then a Maxwell model
results (Fig. 15.9). The fundamental differential equation for the Maxwell
model is obtained by differentiating Eq. (15.11) with respect to time and
adding the shear rate to that in Newton’s law:

(15.12)

Note again that minus signs have been used to maintain consistency with the
concepts of momentum transfer. For any specific application in rheology, one
must carefully determine the correct sign to be used.

If a constant strain y is imposed on the Maxwell model, then the shear
rate 9 is zero, and the solution to Eq. (15.12),  for constant G/,u, is

z = z,exp(-Gtlp) (15.13)

‘A  dashpot  is similar to a fluid shock absorber on an automobile. A cylinder filled with fluid
contains a frictionless  piston with a rod extending from the top. The viscosity of the fluid resists
movement of the rod.
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(a) Maxwell model

FIGURE 15.9
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(b) Kelvin model

The relaxation time of a Maxwell element tM  is

tM = p/G (15.14)

When a constant deformation y is applied for a time equal to tM,  Eq. (15.13)
predicts that the stress has decayed to l/e of its initial value.

Another useful model is the Kelvin (or Voigt) model, also shown in Fig.
15.9. The Kelvin model assumes that the total shear stress under a constant
strain is the sum of contributions from a Hookean. spring in parallel with a
Newtonian dashpot.  The fundamental equation for this model is the sum of
Newton’s law and Eq. (15.11):

t=-/L?-Gy (15.15)

If the Kelvin model is subjected to a constant stress rO, then the solution to
Eq. (15.15),  for constant G and p,  is

Y = (dG)[l  - exp(-Gtlp)] (15.16)

k = PIG (15.17)

where tK  is the retardation time of the material. When the constant stress has
been applied to a time equal to tK, the strain will have reached 1 - (l/e) of its
ultimate value, r,,/G.

The Maxwell model is used to depict stress-relaxation behavior, particu-
larly of liquids such as polymer solutions. In general, several Maxwell models
in parallel are found to approximate experimental data more closely. Similarly,
a “generalized” model of several Kelvin models in series is often useful,
particularly in creep experiments.
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The fundamental relationships among elastic, viscous, and viscoelastic
materials may be illustrated by consideration of the simple Maxwell model,
Eq. (15.12). If the material is such that (G at) >> p (where dt  is the
characteristic time scale of the deformation), then the last term in Eq. (15.12)
becomes negligible, and the material behaves in a viscous manner. For purely
viscous liquids, the Maxwellian G approaches infinity. Conversely, if the
material is such that (G at) <<P, the last term in Eq. (15.12) dominates, and
the material behaves in an elastic manner.

The preceding analysis leads to a useful definition of a viscoelastic fluid.
A viscoelastic material can be defined as one in which the viscosity and the
term G df  are of the same order of magnitude. It may be seen that in the most
general case, all materials are viscoelastic, since all have some viscous and
some elastic response. A dimensionless group, the Deborah number ZVD,
[C2, R4],  quantifies this definition. The Deborah number represents the ratio
of the duration of the fluid memory to the duration of the deformation process,
and is often used as a measure of the degree of viscoelasticity. For any fluid,
the Deborah number is

(15.18)

where tfltid is a characteristic time for the fluid. For a material whose behavior
follows the Maxwell model, rffuid  is tM, the relaxation time defined in Eq.
(15.14). The characteristic time of the process t,,-, is less specifically defined.
For a Maxwell material, this time is dt, the characteristic time scale of the
deformation, as before.

It has been proposed that the behavior of generalized mechanical models
is analogous to the behavior of real materials. This suggestion has led to
continuum models or the linear theory of viscoelasticity for small strains.
Other theories, such as those of Oldroyd [02,03],  Rivlin and Ericksen  [R6],
and Coleman and No11 [C5] have attempted to describe nonlinear viscoelas-
ticity as well as shear dependence of viscosity.

Through the use of such models, a coupling between the time aspects of
viscoelasticity and steady-state behavior can be made. Viscoelastic materials
under apparently steady-state conditions can be anything but steady-state to an
individual fluid element of material progressing through the flow. For example,
a fluid element leaves a container and enters a pipe, passes through the pipe,
and exits into the atmosphere. The element undergoes a contraction and is
stretched in the entry. It flows through the tube and then expands upon exiting
from the pipe. Clearly, if one moves with a fluid element, one sees that the
element undergoes a time rate of change at both the entry and at the exit,
Under these conditions, the finite normal stresses (r,, rru,  and rz,)  for
non-Newtonian liquids are found by experiment to differ appreciably. These
normal stresses can be related to the viscoelastic time constants of the specific
model under consideration.
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Molecular models. An alternate approach to viscoelasticity involves formula-
tion of models based on moiecular theories. The best known of these are the
theories of Rouse [R7] and Bueche [B9], which apply to the linear viscoelastic
properties of solutions of free-draining monodisperse polymer molecules.
Discrete values of relaxation times were obtained from each theory, with those
from Rouse being half those from Bueche. Also, Zimm [Zl]  developed a
theory which includes hydrodynamic interaction and treats both the free-
draining and non-free-draining case. The theories of Rouse, Bueche, and
Zimm predict a steady flow viscosity independent of the shear rate. Pao [Pl]
found that if Rouse’s theory is extended to include perturbations from all shear
rate components, then the viscosity becomes dependent on the shear rate. Pao
also developed continuum theories on the flow of polymer solutions. Bueche
[B9] later extended his theory to account for the distribution of forces that can
exist along a polymer molecule. This theory also resulted in a non-Newtonian
shear-thinning viscosity. Common to all of these theories is a relaxation time
parameter that has the general form

f = MCLO  -  k)M
m n2CRT

(15.19)

where C1 is a constant that depends on the theory, p.  is the zero-shear
viscosity, pFr,  is the solvent viscosity, M is the molecular weight, and C is the
concentration of the polymer. Furthermore, Bueche’s theory predicts that the
dimensionless viscosity term (p - pS)/(po  - pS) is a unique function of the
product (f,,,?). This product can be used to define shift conditions, and in
particular a shift temperature [MlO], as will be described next.

Superposition. In the aforementioned theories, the time constant t,  contains
the effects of temperature, concentration, and molecular weight. Thus, a shift
factor &r can be defined by taking the ratio of Eq. (15.19) at the specific
temperature under consideration to that at a reference temperature:

(PO - Psh  T o
aT  = (PO - Ps)To 7

(15.20)

where To  is an arbitrary (or convenient) reference temperature (in units of K).
According to Bueche’s theory, a plot of the dimensionless viscosity term
(p - ~S)/(~o  - cc.)  versus the quantity aTp  should be universal for any and all
temperatures. This point is illustrated in Figs. 15.10 and 15.11 for the molten
polyethylene data of Philippoff and Gaskins [P4]. Figure 15.10 shows viscosity
versus shear rate for six temperatures. In Fig. 15.11, a master curve is found by
computing &r via Eq. (15.20),  using 112°C as the reference temperature;
however, the data at 250°C do not superimpose with the rest. Figure 15.11
shows that principle of superposition can be used to estimate the flow curve at
any temperature from data obtained over a range of temperatures. Note that
this method is based on an inexact theory, and therefore the results are not
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FIGURE 15.10
Viscosity-shear rate curves for molten polyethylene at various temperatures. (From Philippoffand
Gavkins,  J.  Polymer Sci. 21: 205 (1956). By permission. Adapted from  Middleman, The Flow of
High Polymers, p. 150,  Wiley, New York, 196tZ.  By permission.)

exact; thus, the data at 250°C do not superimpose. Note also that for a pure
material the solvent viscosity pS  is arbitrarily dropped; in fact, in most
polymer-solvent data at higher concentrations, pS  is negligible.

A shift factor similar to ur can be formulated for the other variables in
Eq. (15.19),  i.e., concentration and molecular weight. The field of rheology
includes many other applications of superposition. Among the most successful
of these is the Williams-Landel-Ferry (WLF) equation for viscoelastic effects
[B2, W3].

Kinetic models. Three classes of models for non-Newtonian behavior may be
identified. The first of these is based on observations of the fluid response on a
macroscopic scale, e.g., the Bingham ideal plastic law of Eq. (15.5),  the other
empirical laws such as Reiner-Philippoff, Cross, etc., and the mechanical and

I I I I I I I I I I I

o -

%
2 -l-

a

-yc

$-2-
112-190°C

-3 I I I I I I I I I I I
-7 -6 -5 -4 -3 - 2 - 1 0 1 2 3

b3,0(+~)

FIGURE 15.11
Data of Fig. 15.10, “shifted” to 112°C using aT (From Philippoffand  Caskins,  .I.  Polymer Sci.  21:
20.5 (1956). By permission..Adapted  from Middleman, The Flow of High Polymers, p. 150,  Wiley,
New York, 1968 By permission.)
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continuum models reviewed briefly. A second class consists of the molecular
models just discussed. The third class of models is based on kinetic concepts.
The rate of shear is postulated to affect the rate of breakdown of the polymer
structure formed within the fluid, resulting in a change in apparent viscosity
with shear rate. The concept is one of a balance between the rates of
breakdown and reformation. At each point on the equilibrium curve, the two
rates are exactly balanced. For time-dependent behavior, the two are out of
balance, and in addition the viscoelastic time-dependent nature must be taken
into consideration. More recently, researchers have combined many aspects of
the molecular models with the concepts of kinetics [B4, B5].

The change that occurs during the flow process can be considered to be a
result of several mechanisms. For example, a preferred molecular orientation
occurs during flow. This alignment in the direction of flow increases as the
shear rate increases, and may lead to non-Newtonian behavior. A second
mechanism that has been suggested is the possible rotation of a large polymer
molecule or a mass of aggregates in the flow field. Steric and other hindrances
may lead to non-Newtonian effects because the polymer molecular cannot
respond instantaneously to the deforming stress. When the time for rotation of
the molecule is less than the relaxation time of the coil, then the molcule  can
respond less effectively to the applied stress by expansion and contraction as
the shear rate increases. The molecule demonstrates elastic behavior, and
energy is stored to be released at a later time, thus causing less viscous loss.

In Chapter 14 there was presented a theory of liquid behavior that
showed that the viscosity can be a function of shear rate [see Eq. (14.63)].  Ree
and Eyring introduced a mathematical treatment of thixotropic substances [R2]
based on this development. Their analysis applied the theory of rate processes
to the molecular relaxations that are fundamental to the nature of flow.
Although this theory is formulated in terms of various molecular distances and
the specific rate for molecular jumps from equilibrium positions into neighbor-
ing vacant sites, these parameters are not known in general and must be
determined from experimental data. In final form, the model of Ree and
Eyring consists of a Newtonian term plus as many non-Newtonian terms as are
needed.

Brodkey and coworkers developed a kinetic interpretation of time-
dependent non-Newtonian flow [Jl, Kl]. They assumed that the non-
Newtonian characteristics of flow are associated with a structural breakdown,
to which reaction kinetics can be applied. Time-independent non-
Newtonianism can also be treated by this approach.

15.2 RHEOLOGICAL MEASUREMENTS

Equation (2.9,  Newton’s law, is a laminar flow equation. Naturally, all
viscosity determinations are conducted under conditions of laminar flow. Four
common experiments to determine viscosity are: flow in a capillary
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viscometer,4 laminar flow between parallel plates, laminar flow in a Couette
(or plate-and-cone) viscometer,5 and a falling-ball viscometer.6 The falling-ball
viscometer measures viscosity at very low shear rates and can be used to find
pO,  the viscosity at zero shear. In the other experiments, the rate of shear is
easily varied. Therefore, the capillary and/or rotational experiments are used
to determine the viscosity as a function of the shear rate.

15.2.1 - Capillary Viscometer

In the capillary viscometer, the flow rate is varied by varying the pressure.
Usually, tubes of differing diameters are used, along with a range of pressures,
in order to obtain the widest possible range of shear rates. The tubes are
carefully chosen to ensure that the inside is as smooth as possible in order to
maintain perfectly laminar flow. It is common to determine the tube diameters
by actual calibration using one or more fluids of known viscosity.

The equations for laminar flow are summarized in Table 4.5. For laminar
flow of a Newtonian fluid, the Hagen-Poiseuille  equation applies:

(4.76)

Equation (4.76) can be rearranged into an equivalent form given by Eq.
(4.83):

As indicated in Eq. (4.84),  the term (4Q)/(lcr%)  has several equivalent forms:

au
( >
2 4 Q  4Uz ave  8uz avec-----c )=A

dr 3
Wall  nr, r. do

In the notation being used here, the shear rate at
gradient at the wall, which for tube flow is

Example 4.7 illustrated the use of the above relations to determine the

(4.84)

the wall yW is the velocity

(15.21)

viscosity of a Newtonian material. For a non-Newtonian material, the wall
shear stress from the force balance [Eq. (4.79) and shown above in Eq. (4.83)]

4A  horizontal capillary viscometer is depicted in Fig. 4.9; most units are vertical, however, as was
used i n  E x a m p l e  1 0 . 1 .  E x a m p l e s  4 . 7  a n d  1 0 . 1  i l l u s t r a t e  t h e  a n a l y s i s  o f  d a t a .
‘A Couette flow is shown in Fig. 5.5. Equation (xxv) in Example 5.7 is the relation used to find
the viscosity from the measurements available in the Couette experiment.
6A  falling ball viscometer is a simple device in which a sphere settles in the fluid of interest in the
Stokes’ law region. The terminal settling velocity is determined by timing the descent over a
known distance. Examples 12.10 and 12.11 illustrate some of the calculations.
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is still ‘valid, no matter what the nature of the fluid, as long as it is
homogeneous. From the definition of the flow rate, Q in terms of the velocity
c/,,  and the definition of the velocity in terms of the velocity gradient dU,ldr,
the following rigorous relation can be obtained [B7,02]:

(15.22)

Equation (4.83) can be obtained by substituting Newton’s law for -9 [Eq.
(15.3)]  into Eq. (15.22) and integrating. A simple relation for the shear rate in
laminar flow through round tubes, as first derived independently by Weissen-
berg and Rabinowitsch [Rl] and Mooney [M12], is obtained by differentiating
Eq. 15.22 twice [B7]:

-pw=  -(!%),=;  (y) +~(d@u;;;ido)) (15.23)

Equation (15.23) is a general equation for all fluids in tube flow, the only
assumption being no slip at the wall. This equation is used extensively to
obtain the variables in the basic shear diagram from capillary viscometric data.
Equation (15.23) can be rearranged to [M8]

dUz( >
3n’  + 1 su,  a”e  ’

-yw=-  z w=4n’ ( >d,

where
d(ln  G,)

Iz’  = 4nWz, ,/d,)1
(15.25)

Equation (15.25) is actually a definition of n’ as given in Eq. (10.5):

(10.5)

where K’ and II’  are material parameters (not necessarily constant for
non-Newtonian fluids) and rw  is given by Eq. (4.83) above. The only
assumptions in Eqs. (15.23) and (15.24) are no slip at the wall and purely
viscous behavior; there are no assumptions about fluid behavior or about the
constancy of K’ and n’. Naturally, for a Newtonian fluid the exponent n’ is
unity, and the constant K’ equals p.  The constants K’ and n’ are evaluated
from a plot of In r,,. versus ln(8U,,  mte ld,); this plot is termed the capillary shear
diagram.

The power law, Eq. (15.6),  is perhaps the best known empirical model
for non-Newtonian fluids. This equation is often adequate to describe
non-Newtonian behavior over a considerable range (10 to lOO-fold)  of shear
rates [M4].  If K and n are both constant, then the following can be shown:

n’=n
K’=K  s?  n( )

(15.26)
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Non-Newtonian Reynolds number. The Hagen-Poiseuille  equation for a
Newtonian fluid can be cast into the form of a friction factor:

f = W&Uz,  ,,P/P)  = W&e NRe %  2100 (6.124)

where the Fanning friction factor f is

(10.1)

Note that Eq. (10.1) contains the expression for the wall shear stress in tube
flow that had been given previously in Eqs. (4.80) and (4.83).

Equations (10.5) and (6.124) can be used to define N&.,  the non-
Newtonian Reynolds number of Metzner and Reed [M8].  After some algebraic
rearrangement, Eq. (10.5) can be cast into the same form as Eq. (6.124):

f = 16/NK, (15.27)

where the Reynolds number N&  is

N,
Re

= d:‘u:.-,“;,p
K’g”‘-l (15.28)

Equation (15.27) must always be valid for laminar flow  (Nk,  < 2000),  since  it is
merely a rearrangement of Eq. (10.5).

As discussed in Chapter 4, the shear stress rrZ  is zero at the pipe center
line and a maximum at the wall. Equation (4.81) shows that rrZ  varies linearly
with radius:

t r‘=-
rw r.

(4.81)

This equation applies equally to Newtonian and non-Newtonian materials and
to laminar and turbulent flows.

Measurements. In the capillary viscometer, the pressure drop and the flow
rate are measured; the velocity is computed from the flow rate through the use
of Eq. (7.10):

w  = PU,,  ad  = PQ (15.29)

where S is the inside area of the capillary in the direction perpendicular to the
flow. Hence, by measuring Ap and w, the quantities r, and 8lJ,,...ld, are
computed. As previously indicated, the material constants K’ and 12’ are
determined from a log-log plot and Eq. (10.5); K’ and rr’ are often constant
over the shear rate range of interest.

In Example 15.2, the parameters K’ and IZ’  [Eq. (10.5)]  are found from a
typical set of viscometric data taken with a capillary instrument. In Example
15.3, the power law parameters are found from the same set of data. In
Example 15.4, the basic shear diagram is determined from capillary data for
which the slope IZ  ’ varies.
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TABLE 1 5 . 2

lihw  data for  pdyisobutylene L-80  in cydobexaue  at WC

BiJ,  . ..ld..  s-l &,  N m-* 8&,  . ..I&  s-l q,, N I-’

6 5 1 3 . 7 1 7 5 7 5 3 5 . 2 1
1361 7 . 4 9 1 1 1 4 0 4 6 . 2 5
Xl86 11.41 1 9 2 7 0 7 7 . 5 0
5 0 8 9 2 4 . 0 8 2 5 0 3 0 96.68

Example 15.2.  Hershey [Hl] measured the flow of a 1 percent solution of
polyisobutylene L-80 (viscosity-average molecular weight approximately 700 000)
in cyclohexane at 25,o”C.  Use the eight points given in Table 15.2 to find the
parameters in Eq. (10.5). The literature value of n’ using 25 points is 0.887 [Hl].

Answer. The capillary shear diagram for the data in Table 15.2 is found in Fig.
15.12. The data appear linear, and this result is confh-med  by a statistical analysis
[Hl].  Equat ion  (10 .5)  can  be  l inear ized  as  fo l lows:

In r., = In K’ + n’ In (8U,  ,/do) (9

Equation (i) is in the form of a straight line:

Y =Bo+B1x (ii)

where
y = In r,

x = ~n(8~~,.v.ldo)
/&,=InK /3,  =fl’ (iii)

Next ,  natura l  logar i thms are  taken for  both  ordinate  and abscissa  in  Table  15.2;
those  numbers  are  used  to  ca lcula te  the  l inear  leas t -squares  l ine  by  the  s tandard
technique  [I%?].  The resul ts  are

PO = -4.3790514 o r K’ = 0.01254 N m-*

/3,  = n’ = 0.8851 (iv)
The final rheological  model  is

t,  = (0.01254)(81/,,  ave/do)“~RR5’ w

Equation (v) is also plotted in Fig. 15.12.

Example 15.3.  Find the power-law parameters for the data of Example 15.2
(Table 15.2).

Answer. The parameters K’ and n’, computed in  Example 15.2 ,  wi l l  be  used to
find K and n in  the  power  law,  Eq.  (15.6) .  Using Eq.  (15.26)  the  answers  are

n =n’=0.8851 (9

K = [(3n +:;/4n]

0.01254
= - = 0.01219 N mm2

1.029
(ii)
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Pseudoshear rate, 8l&,Jd,,,  s-’

FIGURE 15.12
Capillary shear diagram for
butylene L-80 in cyclohexane.

polyiso-

Example 15.4. The data given in Table 15.3 ( a commercial  polyethylene melt  at
19O’C)  were  ob ta ined  on  a  cap i l la ry  un i t  [M3];  the  appropr ia te  end correc t ions
were also made.  Obtain the basic shear diagram.

Answer.  The basic  shear  diagram is  a  plot  of  the  wal l  shear  s t ress  tW  versus  the
actual wall shear rate pW. The wall shear stress is measured directly in the
capillary experiment; the actual wall shear rate must be calculated from the
pseudoshear  ra te  as  fo l lows:

dU,
( >

3n’  + 1 NJ,  Bye
-yw=-  z ,=4n’ ( >

Ad, (15.24)

The data as given in Table 15.3 are first plotted as log rW  versus
log(8U,, Jd,) in Fig. 15.13; from this plot the slope n’ &an be evaluated at each
point by drawing a tangent and dividing the actual vertical distance (in inches or
cent imeters)  by  the  hor izonta l  d is tance .

At first glance, the data in Fig. 15.13 may appear linear;,however,  the slope
n’  var ies  s igni f icant ly .  The  bes t  procedure  to  de termine  the  s lope  i s  to  f i t  these
da ta  wi th  the  lowes t  order  po lynomia l  tha t  adequate ly  represents  the  observed

TABLE 15.3
Flow data for a commercial polyethylene
melt at 190°C

guz,  .,I&,  s-’ r, X 10e4,  N m-’

10
2 0
5 0

loo
200
400
600

2ooo

2.24
3.10
4.35
5.77
7.50
9.13

11.00
13.52
16.40
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Pseudoshear  r a t e ,  8Uz,,,Jd,,, SC’ from Table 15.3.)

variation [H3].  Such a calculation finds that a second-order polynomial is optimal:

Y =Bo+/%x+W (9

where,  as  in Example 15-2:

y = In r, (ii)

x = lnW.Jz,  ,,l&) (iii)

Note  that  Eqs .  ( i i )  and ( i i i )  can be  def ined a l ternate ly  in  terms of  log, , ,  s ince  the
s lope  n’  wi l l  be  iden t ica l  in  e i ther  case .  A leas t - squares ’ regress ion  [P2]  of the
above  da ta  y ie lds

j.?,,  = 8.966 94 /3,=0.48452520 /I2  = -0.010 923 041 (iv)

The s lope n’  is  found by different ia t ing Eq.  ( i ) :

n’=&+2&x (4

The nine values of  x a re  used  a long  wi th  the  cons tan ts  in  Eq .  ( iv )  to  f ind  n’  at
each point. The answers are given in Table 15.4. Next, Eq. (15.24) is used to
calcula te  the  ac tual  wal l  shear  ra te  f*jd; these  va lues  a re  a l so  g iven  in  Table  15 .4 ,
along with the correction factor (3n’+  1)/(4n’). The correction factor is
appreciable ,  ranging from 33 percent  to  53 percent .

TABLE 15.4
Calculations for Example 15.4

SUz, ,Id,,,  s-l n’ (30’  + 1)/(4n’) q”, s-l K9 poise

0 . 4 3 4 1 . 3 3 1 3 . 3 16900
0 . 4 1 9 1 . 3 5 2 6 . 9 11500
0 . 3 9 9 1 . 3 8 6 8 . 8 6320
0.384 1.40 1 4 0 4120
0 . 3 6 9 1 . 4 3 285 2 6 3 0
0.354 1.46 5 8 3 1670
0.345 1.48 8 8 5 1240
0 . 3 3 4 1.50 1500  . 9 0 2
0.318 1.53 3 0 7 0 5 3 4
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Table 15.4 also includes the apparent viscosity at the wall conditions, which
is found from Eq. (15.4):

t = -/.I.? (15.4)

Note the dramatic variation of the apparent viscosity, and thus the need to
consider some materials as non-Newtonian.

15.2.2  Rotational Viscometers

Two additional designs in common use for viscometric measurements are the
Couette (concentric cylinders) and the plate-and-cone. These can be designed
to give a rate of shear that is essentially constant in the gap. The two systems
are shown in Fig. 15.14. For the Couette viscometer, the best design includes a
fixed inside cylinder, with the outside cylinder rotating at variable angular
velocities. This scheme minimizes the formation of Taylor vortices (mentioned
briefly in Chapter 6); however, the opposite design is more common.

In the plate-and-cone design, the top plate is stationary and is usually
equipped with instrumentation to measure the torque To exerted by the fluid.
Also, the total force exerted by the fluid on the plate can be measured and
then used to calculate the normal stresses. In practice, the cone is usually
located on top, so that the material under test will not te?d to flow down-hill
and out of the system. Note that careful design is necessary for both
instruments in order to ensure that the shear rate is constant in the gap. The
equations required to analyze rotational viscometers are summarized else-
where [B7,01].

Since rotational viscometers can be designed with constant shear rate p,

Cylinder coordinates

FIGURE lS.14

Spherical coordinates

Rotational Couette system and plate-and-cone system.
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and since the shear stress r is directly measured, rotational viscometers are
especially suitable for determination of constants in rheological  laws. A
modern rotational viscometer can be used to determine the basic shear
diagram over the lower ranges of shear rates. However, in order to determine
the entire curve for a pseudoplastic fluid (cf. Fig. 15.2),  a capillary viscometer
is usually required to obtain data in the laminar flow regime at high shear
rates.

15.3 TURBULENT FLOW

In Chapter 6, it was shown that the Fanning friction factor was correlated for
Newtonian fluids by the Reynolds number; both the friction factor and the
Reynolds number are, of course, dimensionless. Naturally, early investigators
tried to extend the same techniques to flow problems involving non-Newtonian
materials. The most successful (and most widely quoted) correlation is that of
Dodge and Metzner [Dl]:

(15.30)

Figure 15.15 is a plot of this equation plus Eq. (15.27) for,the laminar region.

$0
---Extrapolated regions

l@

FlGUREI  15.15
Reynolds number, Nk,

Fanning friction factor for shear-thinning materials. (From Dodge and Metzner,  AK%!? J. 5: 198
(1959). By permi.wion.)
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W,,v,ld,,  s-’
(a) Newtonian fluid

10’ lo5
W,,,/d,,  s-’

(b) Non-Newtonian fluid

FIGURE 15.16
Laminar and turbulent flow on a capillary shear diagram.

Equation (15.30) is a generalization of the von Karman equation, Eq. (6.132).
The generality of Figure 15.15 is open to question, since it is based on several
concentrations of only two fluids, aqueous solutions of carbopol (a polymer)
and attagel (a clay suspension). Many fluids do not follow the Dodge-Metzner
correlation; these will be discussed shortly under the subtopic of “drag
reduction”. Nevertheless, Eq. (15.30) is appealing in its logical construction.

The Reynolds number in Eq. (15.30) is that of Reed and Metzner [Eq.
(15.28)].  Evaluation of this Reynolds number is straightforward in those cases
where K’ and n’ are constant. When K’ and n’ vary, Dodge and Metzner
recommend that these parameters be evaluated from the capillary shear
diagram at the same wall shear stress. This recommendation is strictly
empirical and is based on the fact that the best correlation is obtained in this
manner.

Actually, selection of an appropriate Reynolds number for the turbulent )
flow of non-Newtonian fluids is arbitrary. For Newtonian fluids, the viscosity in
the definition of Reynolds number is based on laminar flow conditions. The
value of the viscosity is independent of either shear rate or shear stress. Figure
15.16(a)  is a log-log plot of the wall shear stress versus the pseudoshear rate

L  . ../d for a typical Newtonian fluid; three turbulent flow curves [calcu-
gh  from Eq. (6.133)] are plotted along with the laminar line representing the
Hagen-Poiseuille  equation. The slope of the laminar Newtonian line n’ is of
course unity. The viscosity of the fluid is K’. In small-diameter tubes, the flow
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will be laminar at higher shear stresses when compared with flow in larger
tubes at the same shear stress.

For a non-Newtonian fluid, Fig. 15.16@),  the slope for laminar flow can
vary or be constant, but will not be unity. Suppose that a turbulent flow is
established in a pipe of diameter d1 such that r,,,  and gU,,  ,/do  are at point A
in Fig. 15.16(b).  The shear stress actually varies throughout the fluid from r,,,
at the wall to zero at the center line [Eq. (4.81)].  Point C may be a logical
choice for the estimation of the rheological  parameters (i.e., at the same flow
conditions), but Dodge and Metzner recommend evaluating K' and ?r’  at point
B; their value is more indicative of the viscosity of the fluid in the wall region.
A review of the many other possibilities for defining other Reynolds numbers
is available [B7].

Drag  reduction. Experimental observations have shown that many non-
Newtonian fluids do not obey the Dodge-Metxner correlation. The most
important of these fluids exhibit drag reduction in turbulent flow. During
World War II, Agoston and associates [Al] investigated the turbulent flow of
both gasoline and gasoline thickened with an aluminum disoap additive. The
aluminum disoap-gasoline mixture forms napalm, which has a gel-like
structure. They found that the pressure drop of the napalm in a Q-id.  tube was
as much as 70 percent less than that of gasoline alone at a flow rate of roughly
11 gallons per minute. In 1949, Mysels received a patent on this type of
friction-reducing additive [M13]. About the same time, Toms published data
on the laminar and turbulent flow of poly(methy1  methacrylate) in monochloro-
benzene [Tl].  From Tams’  plots of his data, it was obvious that in considering
any one flow rate the effect of increasing the concentration of polymer was to
lower the pressure drop until a minimum was reached. Further increase in
concentration increased the pressure drop gradually, until the pressure drop
exceeded that of the original solvent.

Savins was the first to describe this phenomenon as drag reduction [Sl].
His drag ratio & is the ratio of the observed pressure gradient for the solution
in question to the observed pressure gradient for the solvent under the same
flow conditions [S2]:

(&‘huid
DR = &)so,vent (15.31)

From Eq. (15.31),  it follows that any fluid whose drag ratio is less than unity is
a drag-reducing fluid.

Figure 15.17 shows a typical plot of the drag ratio & versus the
pseudoshear rate 8Uz: aVe /do; these particular data are for 0.8 percent
aluminum monohydroxrde  distearate in toluene at 25°C in an 0.165-cm  tube
[H4,  M2]. In Fig. 15.17, the drag ratio exceeds unity in the laminar region and
is below unity in the turbulent region. A similar plot for a solution of sugar. in
water never crosses below the line of incipient drag reduction (OR = 1) because
no drag reduction exists in the sugar-water system. The presence of sugar
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increases the viscosity of the solution; hence, the drag ratio in sugar solutions
exceeds unity in both the laminar and the turbulent regions.

Drag reduction in solutions may be separated into two categories:
solution drag reduction and suspension drag reduction. It is likely that each
category has a different mechanism. The mechanism of drag reduction has
been a topic of much speculation ever since the discovery of the phenomenon.
Yet the exact mechanism has remained elusive. It was noted early that
drag-reducing solutions were also viscoelastic. However, that observation has
not led to any general and successful correlations, in spite of numerous
attempts.

Solution drag reduction has been studied extensively using both polymers
and micellar solutes such as surfactants and aluminum disoaps. Typical
experimental data plots of friction factor versus Reynolds number show a large
diameter effect. This diameter effect is present regardless of which Reynolds
number is plotted. Hence, a useful approach is to define a “solvent Reynolds
number” as

N Re, s = 4, uz, . ..P~!h

where p and cc,  are the density and viscosity of pure solvent. A plot of NRe,s
versus f will clearly show the presence or absence of drag reduction. Drag
reduction is occurring whenever the experimental points fall below the line of
the von Karman equations [Eq. (6.132)].

Figure 15.18 shows friction factor versus solvent Reynolds number for a
solution of 0.1 percent polyisobutylene in cyclohexane [Hl].  There is turbulent
flow in several pipe sizes, ranging in diameter from 0.032 in. to 0.999 in., and
the diameter effect is striking. Note the presence of the critical solvent
Reynolds number [H2], shown best in the 0.509 in. tube. At low flow rates, the
friction factors for this tube are clearly in the turbulent region; yet they lie
above the von Karman line [Eq. (6.132)],  as would be expected from the
viscosity increase alone in Eq. (6.132). At a solvent Reynolds number of
approximately 61000 (i.e., the critical solvent Reynolds number), the onset of
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A-O.032-in.  tube
c-o.509-in.  tube 0-0.0464.  tube
+o.min.  tube ~.062-in.  tube
0-1.~in.  tube m-o.1o3-ii.  tube

FIGURE 15.18
Friction factor versus solvent Reynolds number (0.1 percent polyisobutylene in cyclohexane at
25”Cj.  (From Hershey und  Zakin,  Ind. Eng. Chem. Fundam.  6: 381 (1967))

drag reduction occurs. Further increases in flow rate result in increasing
amounts of drag reduction. For the 0.032in.  tube, Fig. 15.18 shows that the
drag reduction begins almost immediately as the flow becomes turbulent; note
the small transition between laminar and turbulent flow at a solvent Reynolds
number of 2500. The data points for the 0.999 in. tube are barely in the drag
reduction region in Fig. 15.18. At this point, the maximum flow rate of the
pump has been reached; no data at higher flow rates were obtainable. Note
that in the 1.998-in. tube the solvent Reynolds number was not sufficiently high
to observe drag reduction.

Numerous effects affecting drag reduction, in addition to the diameter
effect, have been investigated. For example, there exists a minimum con-
cemration  below which drag reduction will not occur [Hl].  Each tube diameter
has its point of maximum drag reduction at a given flow rate at a different
concentration. The phenomenon of drag reduction is a strong function of the
molecular weight of the additive [Fl,  H2]. The higher the molecular weight,
the more drag reduction is observed. However, the problem of degradation
has limited the applications of the drag-reduction phenomenon. When polymer
drag-reducing additives are introduced into a piping system, they quickly
degrade mechanically when passing through a pump (i.e., the molecular weight
decreases as a result of cleavage of the long polymer chains), and drag
reduction is quickly reduced to zero. The type of solvent strongly affects the
amount of drag reduction. The conformation of the polymer molecule in
solution (i.e., whether the polymer molecule is expanded or contracted) is a
crucial consideration in the presence or absence of drag reduction [H2]. Also,
experimental studies have shown that solutions of some polymers are drag
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reducing, while others are not; possibly, if sufficiently high-molecular-weight
polymer were available, drag reduction might be found. Studies have shown
that the most effective coiled polymer additives are those with flexible chains
[Ll].  Significant drag reduction has been reported at concentrations of only a
few parts per million for some polymers, primarily in aqueous solutions. other
additives such as aluminum disoaps, surfactants, and fibers can be very
successful in causing drag reduction, although higher concentrations may be
required. Presently, it is difficult to predict the behavior of a new polymer-
solvent combination in the absence of experimental data, although some
guidance is available [Ll].

There are no useful and general correlations for drag-reducing fluids.
Dodge and Metxner showed that Fig. 15.15 did not apply to drag-reducing
fluids [Dl].  Basically, any precise design of a piping system must rely on an
empirical [B6] or semi-empirical [G2] method and experimental data. The
diameter effect is especially troublesome. Also, the design must allow for the
degradation of molecular weight that always occurs.

The most successful application of drag reduction is the pipeline transport
of crude oil. In the trans-Alaska (Alyeska) pipeline, drag reducing additives
are injected to reduce pumping costs and to increase flow rates by 10 to 20
percent [BlO]. In oil wells, drag-reducing additives have been used to increase
water flow rates and reduce pressure losses during fracturing operations, thus
increasing the effectiveness of the project. In offshore oil production,
drag-reducing additives enable pipe of smaller diameter to be used, thus
reducing capital costs and increasing production through existing pipe net-
works [Bl].  Other applications include storm sewers, hydroelectric plants,
hydraulic machines, biomedical applications, marine performance, heating
systems, and fire-fighting [Gl].

15.4  AGITATION OF NON-NEWTONIAN
FLUIDS

Design of agitation equipment with non-Newtonian fluids requires con-
siderable experience. First, if the fluid is barely non-Newtonian, then the
methods introduced in Chapter 9 are probably satisfactory. Secondly, if the
fluid is highly non-Newtonian, in the sense that IZ  or 11’ are much less than
unity, the mixing may occur in the laminar regime where correlation is more
certain. If neither of these cases applies, then unpredictable behavior, as.well
as difficulties in correlating results, may be expected.

Early investigators in agitation of non-Newtonian liquids assumed that an
average shear rate (dU/dr),  must exist in an agitated vessel. The apparent
viscosity y,  corresponding to this average shear rate was assumed to be equal
to the viscosity of a Newtonian fluid showing exactly the same power
consumption under the same conditions in the laminar region. Metxner and
Otto [M7]  assumed that this average shear rate is linearly related to the
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rotational speed N of the impeller:

(15.33)

The constant k, is determined in a pilot plant by measuring the power number
Z$,,,  Eq. (9.10),  and using Fig. 9.7 to estimate the Reynolds number for
agitation &, Eq. (9.9). The equivalent apparent viscosity PA is calculated
from A& and then (dU/dr),  is determined from the flow curve. Note that
dilatant materials are difficult to handle, because their viscosity increases with
increasing shear [Cl]. Skelland compiled a list of values of k, [S3].

Most companies that sell agitation equipment are experienced in assisting
with problems involving non-Newtonian fluids. Skelland [S3]  and Giesekus et
al. [Gl] reviewed the agitation literature. Ulbrecht and Carreau [Ul]
presented a thorough survey of agitation in non-Newtonian liquids, particularly
emphasizing the strong influence of elasticity. Oldshue [04]  pointed out that
the scale-up methods of Chapter 9 (geometric similarity, etc.) are often
inadequate in tough scale-up problems, such as those with viscoelastic,
non-Newtonian fluids. Also, the considerable work in heat and mass transfer in
agitated vessels has been summarized [Gl].

15.5  HEAT TRANSFER IN PIPE FLOW

LamInar  flow. Many solutions to laminar flow heat transfer have been
proposed. The most useful of these have been reviewed by Skelland [S3].  In
general, the heat transfer equations for a particular geometry are solved in
terms of a reasonable model.

For pipe flow, a general solution for the constant wall temperature case is
available. Christiansen and Craig [Q]  introduced a temperature-dependent
form of the power law:

z,,  = k&’ (15.34)

with 5,  being the “reduced shear rate”:

where R is the gas constant; k,,  E, and II  are constants which are independent
of temperature. These equations can be combined with the energy equation:

(15.36)

The resulting equation has been integrated numerically with the aid of some
simplifying assumptions by Christiansen and Craig [C3]. The results appear to
apply to many solutions, both drag-reducing and non-drag-reducing.
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Thrlmlent flow. Many non-Newtonian fluids are inherently so viscous that heat
transfer occurs in the laminar regime. On the other hand, the early
investigators such as Winding, Dittman,and Kranich [W4] and Miller [Mll]
found that the Dittus-Boelter equation using p, gave a reasonable prediction
of the heat transfer under turbulent conditions. Another popular equation is
the Friend-Metxner analogy [F4]:

N NRe,mb&r,  xnb(f/%4ndrw)“~”
N”‘mb  = 1.20 + (ll.8)(f/2)1n(Np,,,b  - l)(Nfi,,b)-lD (11’83)

where for non-Newtonian fluids the Prandtl number is evaluated using the
apparent viscosity at the wall shear stress. Metxner and Friend [M6] showed
that Eq. (11.83) is applicable when

Npr,  mdvke,mb  f
0

‘.’  > 5m
(?t’y-  2 - (15.37)

The Friend-Metzner correlation was developed and tested using some 80 data
points, none of which was drag-reducing in nature. It is therefore not
recommended for drag-reducing fluids.

Studies of heat transfer to drag-reducing fluids [C2,  C6,  G3, Ml] showed
that the heat transfer rate is reduced significantly in these fluids. Figure 15.19
summarizes the data of Corman  [C6] for five concentrations of guar gum in
water in a 0.62-in.  pipe. The order of magnitude of the decrease in heat
transfer is approximately the same as that for the decrease in pressure drop.
All these investigators correlated their data by various means, but none of
these correlations appears to be sufficiently general to be used without
experimental data.

One important difference between heat transfer with Newtonian and

Average fluid velocity = 7.7 ft SC’
Pipe I.D. = 0.62 inch

Ratio

0.2 - FIGURE lit.19
Heat transfer data for guar  gum.

0 I I I I I
12 16

(From Comma,  I n d .  Eng.  Chem.
0 4 8 2 0 24  Process Des. Deu. 9: 254 (1970). By

Concentration, ppm X lo-’ permission.)
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non-Newtonian fluids is that the entry length for heat transfer with non-
Newtonian fluids is far greater, i.e., 400-500  diameters [CX].  Also, it has been
shown that there is no direct analogy between momentum, heat, and mass
transfer phenomena for drag-reducing viscoelaatic  fluids  iii turbulent pipe flows
[C2]. A lengthy review by Cho and Hartnett [CZ]  covers  all three phenomena
in non-Newtonian fluids.

15.6 SUMMARY

Non-Newtonian fluids occur in many practical chemical engineering applica-
tions. Their anomalous behavior has long been recognized. A careful analysis
of the literature reveals progress in characterizing the laminar behavior, but
precious little progress in general turbulent correlations for engineering design.

PROBLEMS

15.1. Clarify the following terms:
shear-thinning shear-thickening thixotropy
thinning with time thickening with time rheopectic
pseudoplastic dilatant anti thiiotropic
Why do you think materials exhibit non-Newtonian characteristics in general?

15.2. Discuss the origin of thixotropy and why a particular material might be
thixotropic. Explain what effect, if any, thixotropy has on behavior in pipe flow
(laminar and turbulent). Lastly, discuss the meaning of a basic shear diagram for
such a material.

15.3.  The power law, Eq. (15.6),  has only two constants; yet, it is still very useful.
Describe three major drawbacks and two major advantages, explaining each in
detail.

15.4. For Fig. 15.3, the Ellis parameters are:

)~~=6.25P K, = 1.35 x 1O-5 n;-1=1

where the shear stress is in units of dyne cm-*  and the shear rate is in s-‘.  Find
the constants in SI and find the shear stress (Nm-*) for a shear rate of
2.224 x 104  s-‘.

15.5.  A clay-silica material is to be produced by your company. The data shown in
Table 15.5 (with all corrections properly made) were obtained in the laboratory.

TABLE 15.5
Data for Problem 15.5

-j,  s-’ c, N me2 f,  s-l r, R me2 9, s--1 1, N mm2

5 5 .8 2cm 1 8 6 0 0 3 4
2 5 7 .4 3 0 0 2 2 700 3 7
50 9 .0 4 0 0 2 6 8 0 0 4 1

100 1 2 . 5 5fxl 2 9
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TABLE 15.6
Raw viscometric  data for Problem 15.6

lbbe diameter,
cm

0 . 2 7 1

0 . 2 7 1

0 . 1 8 2

0 . 1 8 2

0 . 0 8 5 6

0 . 0 8 5 6

‘robe knbth,
e m

9 4 . 4

6 7 . 4

6 3 . 4

4 5 . 2

2 9 . 7

2 0 . 9 5

Volmme  Bow rate, ReMore  drop,
alI3  s-l lbf  in.-*

0 . 5 9 1 . 20.0
2 . 9 5 3 9 . 3
8 . 3 2 5 9 . 5

2 1 . 0 8 5 . 8
0 . 7 3 3 1 5 . 0
1 . 2 6 2 0 . 0
7 . 0 6 3 9 . 5

1 7 . 6 5 8 . 0
3 5 . 1 7 9 . 5

0 . 1 9 2 2 0 . 5
0 . 4 7 7 2 8 . 0
0 . 8 0 1 3 7 . 5
2 . 5 8 5 9 . 0
5 . 5 6 7 9 . 5
9 . 3 4 1 0 0 . 3
0 . 0 6 7 9 .0
0 . 3 5 0 2 0 . 5
0 . 9 7 2 3 1 . 0
2 . 7 2 4 5 . 0
5 . 7 5 5 9 . 5
9 . 8 4 7 5 . 0
O.oslos 4 1 . 0
0 . 5 8 1 8l.d
1 . 0 0 1 0 0 . 0
1 . 7 4 1 2 6 . 5
2 . 6 6 154.0
0 . 1 0 8 3 1 . 3
0 . 5 0 6 5 5 . 0
0 . 9 7 4 7 0 . 0
1.81 9 1 . 5
3 . 2 0 1 1 3 . 5
3 . 8 5 1 3 4 . 0

TABLE 15.7
Basic shear data for a gel: Problem 15.7

3,  s-l r, N m-* 9, s-l ‘c,  N m-* q,  s-l r, N m-*

0 . 0 0 3 5 2 5 0 . 1 2 5 0 . 2 8 1 . 4 8 2 7 . 8 3 . 6 9
o.al881 0 . 2 7 0 0 . 8 8 1 1 . 4 8 8 8 . 1 6 . 9 5
O.t?23O 0 . 7 7 5 2 . 8 0 1 . 8 3 280 1 5 . 5
0 . 0 8 8 1 1 . 3 5 8 . 8 1 2 . 3 3 8 8 1 4 1 . 0

1 7 6 2 7 6 . 0
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You are asked to describe this material to the company management at a
technical committee meeting for the “R&D” department. Prepare a brief written
description for this meeting.

15.6.  Prepare a plot of the basic shear diagram (in SI units), given the data [B7,  B8]  in
Table  15 .6 .

15.7. Your company is planning to produce a thixotropic material that forms a complex
gel. Table 15.7 contains data for the basic shear diagram at steady-state. Prepare
a brief report describing the nature of this material.

15.8. Prove that the constant f. in the Cross model,  Eq. (15.10),  equals the shear rate
evaluated at the mean of p0 and p,.
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APPENDIX

A
PROPERTIES

OF MATERIALS

A.1 PROPERTIES OF WATER AND AIR

Table A.1 contains the properties of saturated water, as taken from Liley
[Il,  Ll]. The methods introduced in Chapter 14 were used to expand the
temperatures to include five-degree-Celsius intervals in the neighborhood of
room temperature and to correct some entries.

Table A.2 contains the properties of (dry) air at 1 atm (101.325 kPa),  as
compiled from data published by Kays and Crawford [Kl],  who compiled their
table from the three volumes of Thermophysical Properties of Matter,
published by the Thermophysical Properties Research Center (TPRC) at
Purdue University [Tl,  l?,  T3]. The table entries for density p,  viscosity ~1,
and kinematic viscosity v are from the National Bureau of Standards Circular
564 [Hl].  The data above lOOC-K  are from reference [Pl].

Hl.  Hilsenrath. J.,  C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi,  R. L.
Nuttall,  Y. S. Touloukian and H. W. Woolley: Tables of Thermal Properties of Cares,  NBS
Circular 564, Washington, DC, 1955.

Il. Incropera, F. P., and D. P. Dewitt: Funahnentals  of Hear  and Mass  Transfer, 2d ed., Wiley,
New York, 1985, pp. 774-775.

Kl. Kays, W. M., and M. E. Crawford: Convective Heat and Mass Transfer, 2d ed.,
McGraw-Hill, New York, 1980.
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TABLE A.1
Tkemophysical  properties of saturated water (A4  = 18.015 kg kmol-‘)

Subscript f denotes liquid phase; subscript g denotes vapor phase

273.15 0.00611 1.000 2a6.3 2502 4.217 1.854 1750 8.02 569 18.2 12.99 0.815 75.5 -68.05 273.15
275 o.w697  1.000 181.7 2497 4.211 1.855 1652 8.09 574 18.3 12.22 0.817 75.3 -32.74 275
280 o.oo99o  Lam 130.4 2 4 8 5 4.198 1.858 1422 8.29 582 18.6 10.26 0.825 74.8 46.04 280
285 0.01387 1.000 99.4 2473 4.189 1.861 1225 8.49 590 ’ 18.9 8.70 0.836 74.3 114.2 285
288.15 0.01703 1.001 79.79 2466 4.186 1.863 1831 8.61 595 19.1 7.95 0.842  7 4 . 1 152.5 288.15
290 0.01917 1.001 70.51 2461 4.1a4  1 .864 l&O 8.69 598 19.2 7.56 0.841 73.7 174.0 290
293.15 0.02336 1.001 57.57 2454 4.182 1.866 1001 8.82 603 19.4 6.94 0.850 73.1 208.3 293.15
295 0.02617 1.002 51.33 2449 4.181 1.868 959 8.89 606 19.5 6.62 0.849 72.7 227.5 295
298.15 0.03165 1.003 42.53 2442 4.180 1.870 892 9.02 610 19.7 6.11 0.858 72.1 258.7 298.15
3lm 0.03531 1.003 38.23 2438 4 .179 1.872 855 9.09 613 19.8 5.83 0.857 71.7 276.1 300
303.15 0.04240 1.004 32.10 2430 4.178 1.875 am 9.22 618 20.0 5.41 0.865  7 1 . 2 304.6 303.15
305 0.04712 1.005 29.08 2426 4.178 1.877 769 9.29 620 20.1 5.20 0.865 70.9 320.6 305
308.15 0.05620 1.006 24.73 2418 4.178 1.880 721 9.42 625 20.3 4.82 0.874 70.3 346.9 308.15
310 0.06221 l.lm7 22.56 2414 4.178 1.882 695 9.49 628 20.4 4.62 0.873 70.0 361.9 310
313.15 0.07373 1.008 19.40 2407 4.179 1.886 654 9.61 632 20.6 4.32 0.881 69.5 386.4 313.15
315 0.08132 1.009 17.81 2402 4 .179 1.888 631 9.69 634 20.7 4.16 0.883 69.2 400.4 315
320 0.1053 1.011 13.98 2390 4.180 1.895 577 9.89 640 21.0 3.77 0.894 68.3 436.7 320
325 0.1351 1.013 11.06 2378 4.182 1.903 528 10.09 645 21.3 3.42 0.901 67.5 471.2 325
330 0.1719 1.016 8.82 2366 4.184 1.911 489 10.29 650 21.7 3.15 0.908  6 6 . 6 504.0 330
335 0.2167 1.018 7.09 2354 4.186 1.920 453 10.49 656 22.0 2.88 0.916 65.8 535.5 335
340 0.2713 1.021 5.74 2342 4.188 1.930 420 10.69 660 22.3 2.66 0.925 64.9 566.0 340
345 0.3372 1.024 4.683 2329 4.191 1.941 389 10.89 6 6 4 22.6 2.45 0.933 64.1 595.4 345
350 0.4163 1.027 3.846 2317 4.195 1.954 365 11.09 668 23.0 2.29 0.942 63.2 624.2 350
355 0.5100 1.030 3.180 2304 4.199 1.968 343 11.29 671 23.3 2.14 0.951 62.3 652.3 355
360 0.6209 1.034 2.645 2291 4.203 1.983 324 11.49 674 23.7 2.02 0.960 61.4 697.9 360
365 0.7514 1.038 2.212 2278 4.209 1.999 306 11.69 677 24.1 1.91 0.969  6 0 . 5 707.1 365
370 0.9040 1.041 1.861 2265 4.214 2.017 289 11.89 679 24.5 1.80 0.978 59.5 728.7 370
373.15 1.0133 1.044 1.679 2257 4.217 2.029 279 12.ct2 6aQ 24.8 1.76 0.984 58.9 750.1 373.15



375 1.0815 1.045
380 1.2869 1.049
385 1.5233 1.053
390 1.794 1.058
400 2.455 1.067
410 3.302 1.077
420 4.370 1.088
430 5.699 1.099
440 7.333 1.110
450 9.319 1.123
460 11.71 1.137
470 14.55 1.152
480 17.90 1.167
490 21.83 1.184
500 26.40 1.203
510 31.66 1.222
520 37.70 1.244
530 44.58 1.268
540 52.38 1.294
550 61.19 1.323
560 71.08 1.355
570 82.16 1.392
580 94.51 1.433
5% 108.3 1.482
6al 123.5 1.541
610 137.3 1.612
620 159.1 1.705
625 169.1 1.778
630 179.7 1.856
635 190.9 1.935
640 202.7 2.075
645 215.2 2.351
647.3t 221.2 3.170

1.574 2252 4.220 2.036 2 7 4 12.09
1.337 2239 4.226 2.057 260 12.29
1.142 2225 4.232 2.080 248 12.49
0.980 2212 4.239 2.104 237 12.69
0.731 2183 4.256 2.158 217 13.05
0.553 2153 4.278 2.221 m 13.42
0.425 2123 4.302 2.291 1 8 . 5 13.79
0.331 2091 4.331 2.369 173 14.14
0.261 2059 4.36 2.46 162 14.50
0.208 2024 4.40 2.56 152 14.85
0.167 1989 4.44 2.68 143 15.19
0.136 1951 4.48 2.79 136 15.54
0.111 1912 4.53 2.94 129 15.88
0.0922 1870 4.59 3.10 124 16.23
0.0766 1825 4.66 3.27 118 16.59
0.0631 1779 4.74 3.47 113 16.95
0.0525 1730 4.84 3.70 108 17.33
0.0445 1679 4.95 3.% 104 17.72
0.0375 1622 5.08 4.27 101 18 .1
0.0317 1564 5.24 4.64 9 7 18 .6
0.0269 1499 5.43 5.09 9 4 19 .1
0.0228 1429 5.68 5.67 9 1 19 .7
0.0193 1353 6.00 6.40 8 8 20 .4
0.0163 1274 6.41 7.35 8 4 21 .5
0.0137 1176 7.00 8.75 8 1 22 .7
0.0115 1068 7.85 11.1 7 7 24 .1
0.0094 941 9.35 15.4 7 2 25 .9
0.0085  8 5 8 10.6 18 .3 7 0 27.0
o.Ocr75 781 12 .6 22 .1 6 7 28.0
0.0066 683 16.4 27 .6 6 4 30.@
0.0057 560 26  42 5 9 32.0
0.0045 361 90 - 5 4 37 .0
0.0032 0 m  m 4 5 45.0

681
683
685
686
688
688
688
685
682
678
673
667

z
642
631
621
608
594
580
563
548
528
513
497
467
444
4 3 0
412
392
367
331
238

24 .9
25 .4
25 .8
26 .3
27 .2
28 .2
29 .8
30 .4
31 .7
33 .1
34 .6
36 .3
38 .1
40 .1
42 .3
44 .7
47 .5
50 .6
54 .0
58 .3
63 .7
69 .9
76 .7
84 .1
92 .9

103
114
121
130
141
155
178
238

1.70 0.987 58.6
1.61 0.999 57.6
1.53 Loo0  56.6
1.47 1.013 55.6
1.34 1.033 53.6
1.24 1.054 51.5
1.16 1.075 49.4
1.09 1.10 47 .2
1.04 1.12 45 .1
0.99 1.14 42 .9
0.95 1.17 40.7
0.92 1.20 38.5

0.86 1.28 31.6
0.85 1.31 29 .3
0.84 1.35 26.9
0.85 1.39 24.5
0.86 1.43 22.1
0.87 1.47 19 .7
0.90 1.52 17 .3
0.94 1.59 15 .0
0.99 1.68 12 .8
1.05 1.84 10.5
1.14 2.15 8 . 4
1.30 2.60 6.3
1.52 3.46 4.5
1.65 4.20 3 . 5
2 . 0 4 . 8 2 . 6
2.7 6.0 1 . 5
4 . 2 9 . 6 0 . 8

1 2 2 6 0 . 1
m m 0 . 0

761
788
814
841
896
952

1010
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

375
380
385
3 9 0
4bo
410
4 2 0
430
4 4 0
4 5 0
4 6 0
470

4%
500
510
520
530
540
550
560
570
580
590
600
610
620
625
630
635
640
645
647.3t

l lbar=ldNm-*

t Critical temperature..



TABLE A.2

Themophysical properties of dry air (44 = 28.966 kg kmol-‘)  at 1 atm (101.325 kPa)

Tempera-
ture
T,  K

Density

P, kg  mw3

Kinematic H e a t Thermal Pmndtl
Viscosity viscosity capacity conductivity Immber
p X 106,  kg m-l  s-l vx106  m*s-’f cp,  kJ kg-’ K-’ k x ld, W m-l  K-’ N,.,

1 0 0 3.5985 7.060 1.962 1.028 9.220 0.787
1 5 0 2.3673 10.38 4.385 1.011 13 .75 0.763
2 0 0 1.7690 13.36 7.552 1.006 18.10 0.743
2 5 0 1.4119 16.06 11.37 1.003 22.26 0.724
2 6 3 1 .3421 16.70 12.44 1.003 23.28 0.720
2 7 3 1.2930 17.20 13.30 1.004 24.07 0.717
2 7 5 1.2836 17.30 13.48 1.004 24.26 0.716
2 8 0 1.2607 17.54 13.92 1.004 24.63 0.715
2 8 3 1.2473 17.69 14.18 1.004 24.86 0.714
2 8 5 1 .2385 17.79 14.36 1.004 25.00 0.714
2 8 8 1.2256 17.93 14 .63 1.004 25.22 0.714
2 9 0 1.2172 18.03 14 .81 1.004 25.37 0.714
2 9 3 1.2047 18.17 15.08 1.004 25.63 0.712
2 9 5 1.1966 18.27 15 .27 1 .005 25.74 0.713
2 9 8 1 .1845 18 .41 15.54 1.005 25.96 0.712
3 0 0 1.1766 18.53 15 .75 1 .005 26.14 0.711
3 0 3 1.1650 18.64 16.00 1.005 26.37 0.710
3 0 5 1.1573 18.74 16.19 1.005 26.48 0.711
3 0 8 1.1460 18.88 16.47 1.005. 26.70 0.711
3 1 0 1.1386 18.97 16.66 1.005 26.85 0.710
3 1 3 1.1277 19 .11 16 .95 1 .005 27.09 0.709
3 1 5 1.1206 19.20 17.14 1.006 27.22 0.709
3 2 0 1 .1031 19.43 17.62 1.006 27.58 0.709
3 2 3 1.0928 19.57 17 .91 1.006 27.80 0.708
3 2 5 1 .0861 19.66 18.10 1.006 27.95 0.708
3 3 0 1.0696 19.89 18.59 1.006 28.32 0.707
3 3 3 1.0600 20.02 18.89 1.007 28.51 0.707
3 4 3 1 .0291 20.47 19 .89 1.008 29.21 0.706

5
8k
b



3 5 0
3 5 3
3 6 3
3 7 3
4 0 0
4 5 0
5 0 0
5 5 0
6cH.J
6 5 0
7 0 0
7 5 0
800
8 5 0
9 0 0
9 5 0

1 0 0 0
1 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0
1500
1HlO
1 7 0 0
1 8 0 0
1 9 0 0

2100
2 2 0 0
2 3 0 0
2 4 0 0
2 5 0 0

1.0085 20.81 20.63 1.008 29.70 0.706
1.0000 20.91 20.91 1.008 29.89 0.705
0.9724 21.34 21.95 1.009 30.58 0.704
0.9463 21.77 23.01 1.010 31.26 0.703
0.8825 22.94 26.00 1.013 33.05 0.703
0.7844 24.93 31.78 1.020 36.33 0.700
0.7060 26.82 37.99 1.029 39.51 0.699
0.6418 28.60 44.56 1.039 42.60 0.698
0.5883 30.30 51.50 1.051 45.60 0.699
0.5431 31.93 58.80 1.063 48.40 0.701
0.5043 33.49 66.41 1.075 51.30 0.702
0.4706 34.98 74.32 1.087 54.10 0.703
0.4412 36.43 82.56 1.099 56.90 0.703
0.4153 37.83 91.10 1.110 59.70 0.703
0.3922 39.18 99.90 1.121 62.50 0.702
0.3716 40.49 109.0 1 .131 64.90 0.705
0.3530 41.77 118.3 1 .141 67.20 0.709
0.3209 44.4 1 3 8 1.160 73.2 0.705
0.2942 46.9 1 5 9 1.177 78.1 0.705
0.2715 49.3 1 8 2 1.195 83.7 0.705
0.2521 51.7 2 0 5 1.212 89.1 0.704
0.2353 54.0 229 1.230 94.6 0.704
0.2206 56.3 2 5 5 1.248 1 0 0 0.703
0.2076 58.5 2 8 2 1.266 1 0 5 0.702
0.1961 60.7 3 1 0 1.286 1 1 1 0.701
0.1858 62.9 3 3 9 1.307 1 1 7 0.700
0.1765 65.0 3 6 8 1 .331 1 2 4 0.699
0.1681 67.2 4 0 4 1.359 1 3 1 0.6%
0.1605 69.3 4 3 2 1.392 1 3 9 0.693
0.1535 71.4 4 6 5 1.434 1 4 9 0.688
0.1471 73.5 500 1.487 1 6 1 0.681
0.1412 75.7 5 3 6 1.556 1 7 5 0.673
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Pl.

Tl.

T2.

l-3.

Liley,  P. E.: in Handbook of Hear Transfer Fundamental, 2d cd., W. M. Rohsenow, J. P.
Hartnett, and E. N. Ganic  (eds.), McGraw-Hill, New York, 1985, chap. 3.
Poferl,  D. J., R. A. Svehla,  and K. Lewandowski:  Z7wmodynamic  and Transport Propertics
of Air and the Combustion Produca  of Natural Gas and ojASTM-A-1  Fuel wiih  Air, NASA
Technical Note D-5452, Washington, DC, 1969.
Touloukian,  Y. S., P. E. Liley, and S. C. Saxena: Thermophysical Properties of Matter, vol.
3: Thermal Conductivity, Nonmetallic Liquids  and Gases, IFI/Plenurn,  New York, 1970.
Touloukian, Y. S., and T. Makita: Thermophysical Properties of Matter, vol. 6: Specijic  Heat,
Nor~~~tnNic  Liquids  and Cares,  IPI/Plenum,  New York, 1970.
Touloukian, Y. S., S. C. Saxena, and P. Hestermans: Thermophysical Propertirs  of Matter,
vol. 11: Viscosity, LFI/Plenum,  New York, 1975.

A.2 PREDICTION OF TRANSPORT
PROPERTIES
The tables in this section supplement the material in Chapter 14 on the
prediction of transport properties. Table A.3, taken from reference [Rl],

TABLE A.3
Constants in the Lemmrd-Jones  l2-6 potential as determined from viscosity
data*

MUh?COh?
Compooad Collishn  diameter
name uXld”,m

Energy ratio
eJJk,w  K

A
H e
Kr
Ne
Xe
A i r
AsHs
BCI,
BF3
BWHA
Brz
CQ
a,
CHCI,
CHH,Cl,
CH,Br
CH,Cl
CH,OH
a4
c o
c o s
co2
Cs,

2:

EgCl
W-W-I
GN,

Argon 3.542 93.3
He&n 2.551t 10.22
Krypton 3.655 178.9
Neon 2.820 32.8
Xenon 4.047 231.0
Air 3.711 78.6
Arsine 4.145 259.8
Boron chloride 5.127 337.7
Boron fluoride 4.198 186.3
Methyl borate 5.503 396.7
Bromine 4.2% 507.9
Carbon tetrachloride 5.947 322.7
Carbon tetrtiuoride 4.662 134.0
Chloroform 5.389 340.2
Methylene chloride 4.898 356.3
Methyl bromide 4.118 449.2
Methyl chloride 4.182 3 5 0
Methanol 3.626 481.8
Methane 3.758 148.6
Carbon monoxide 3.690 91.7
Carbonyl  sulfide 4.130 336.0
Carbon dioxide 3.941 195.2
Carbon disulfide 4.483 467
Acetylene 4.033 231.8
Ethylene 4.163 224.7
Ethane 4.443 215.7
Ethyl chloride 4.898 3 0 0
Ethanol 4.530 362.6
Cyanogen 4.361 348.6



TABLE A.3

(continued)

Moleale
Collision diameter Energy ratio
oxlo’e m, Qke,  K

a3-3
CHzCHCH,
CH,CCH

2:
n-G,HOH
CHsCOCH,
CHsCOOCHs
~-Cd%,
i.ro-C,H,s
‘-7WGHs
CH,COOCzH,
n-C&
wwa

226 12
n-C6Hl,

Cl2
F2
HBr
HCN
HCI
I-IF
HI
H*
W
Hz02
W
Hit

I-b%
WA
H&
I2
NH3
NO
NOCI
N2
N,O
02
PH,
SF,
SO*
SiF.,
SiH,
SnBr,
UF6

Methyl ether 4.307 395.0
Propylene 4.678 298.9
Methylacetylene 4 . 7 6 1 251.8
Cyclopropane 4.887 248.9
Propane 5.118 2 3 7 . 1
n-Propyl alcohol 4.549 576.7
Acetone 4.6cKl 569.2
Methyl acetate 4.936 469.8
n-Butane 4.687 531.4
Isobutane 5.278 3 3 0 . 1
Ethyl ether 5.678 313.8
Ethyl acetate 5.205 521.3
n-Pentane 5.784 3 4 1 . 1
2,ZDimethylpropane 6.464 1 9 3 . 4
Benzene 5.349 412.3
Cyclohexane 6.182 2 9 7 . 1
n-Hexane 5.949 3 9 9 . 3
Chlorine 4.217 316.0
Fluorine 3.357 1 1 2 . 6
Hydrogen bromide 3.353 449
Hydrogen cyanide 3.638 5 6 9 . 1
Hydrogen chloride 3.339 344.7
Hydrogen fluoride 3.148 3 3 0
Hydrogen iodide 4 . 2 1 1 288.7
Hydrogen 2.827 5 9 . 7
Water 2 . 6 4 1 8 8 9 . 1
Hydrogen peroxide 4.1% 2 8 9 . 3
Hydrogen sulfide 3.623 301.1
Mercury 2.969 750
Mercuric bromide 5.088 686.2
Mercuric chloride 4.550 7 5 0
Mercuric iodide 5 . 6 2 5 695.6
Iodine 5.160 474.2
Ammonia 2.900 558.3
Nitric oxide 3.492 1 1 6 . 7
Nitrosyl chloride 4.112 3 9 5 . 3
Nitrogen 3.798 7 1 . 4
Nitrous oxide 3.828 232.4
Oxygen 3.467 186.7
Phosphine 3 . 9 8 1 251.5
Sulfur hexafluoride 5.128 2 2 2 . 1
Sulfur dioxide 4.112 335.4
Silicon tetrafluoride 4.888 1 7 1 . 9
Silicon hydride 4.084 287.6
Stannic bromide 6.388 563.7
Uranium hexafluoride 5.967 236.8

l From Svehla,  NASA Technical Report. R-132, Lewis Research Center, Cleveland, OH, 1%2.  Source: Reid,
Prausnitz,  and Sherwood, The Properties of Gases  and Liquids, 3d ed., McGraw-Hill, New York, W77,  pp.
678-679. By permission.
t The parameter u was determined by quantum-mechanical formulas.
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contains the collision diameter o and the energy ratio c/kg,  where E is the
characteristic (minimum) energy. in the Lennard- Jones potential energy func-
tion [L3], and kB is the Boltzmann  constant. For compounds not included in
Table A.3, Eqs. (14:39)  and (14.40) are recommended; also satisfactory are
the following equations [H2]:

(7  = 1.18 x 10-9(v,)‘” (A4
&/kB  = 1.21T,

E/k, = 0.75T,
(A4

(A.3)
E/kB  = 1.92T, (A.4)

where o is in meters, E/kB  is in K, V,  is the molar volume (m’ kmol-‘)  at the
normal boiling point Tb  (K), T,  is the melting point temperature (K), and T, is
the critical temperature (K). Note that the Lennard-Jones constants must
always be determined together, i.e., from the same set of data for a given
compound; otherwise, serious errors may result.

The molar volume is estimated from Table A.4; if the compound is not
given, then the volume increments published by Le Bas [L2], as given in Table
A.4, are summed in order to estimate the molar volume at Tb.  Example 14.9
illustrates this calculation.

Viscosity. The Chapman-Enskog theory [Cl, H2] relates. the viscosity p of a
gas at low pressure to the collision diameter a, the molecular weight M, the
temperature T, and the viscosity collision integral S2, [see Eq. (14.41) and
Example 14.11. For nonpolar molecules, the collision integral (dimensionless)
is conveniently available in equation form [Nl]:

Q
c E

p,  nonpolar =$p+ exp(DT*)  + exp(FT*) (A.5)

where the constants in Eq. (A.5) are

A = 1.16145 B = 0.14874 C = 0.52487

D = 0.77320 E = 2.16178 F = 2.43787 644
0.3~T*1100

The dimensionless (also called reduced) temperature T* is

For quick estimates, Eq. (A.6) may be approximated by [K2]

52
1.604

P. nonpolar  = O’R 0.4 < T* < 1.4

(14.38)

(A.7)

Polar  molecules, For polar molecules, the Lennard-Jones potential is not
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TABLE A.4
Le Bas atomic and molar volumes at the normal boiling point*

Atom

carbon
Hydrogen
Oxygen (except as noted below)

in methyl esters and ethers
in ethyl esters and ethers
in higher esters and ethers
in acids
joined to S,  P,  N

Nitrogen
doubly bonded
in primary amines
in secondary amines

Bromine
Chlorine
Fluorine
Iodine
Sulfur
Ring, three-membered

four-membered
five-membered
six-membered
naphthalene
anthracene

Vohmet
V, X ld,  m3  kmol-’

1 4 . 8
3 . 1
7.4
9 . 1
9.9

1 1 . 0
1 2 . 0

8 . 3

1 5 . 6
10.5
1 2 . 0
2 7
2 4 . 6
8.7

3 7
2 5 . 6

- 6 . 0
-8.5 ‘

-11.5
-15 .0
-30 .0
-47.5

l From Le Bas,  The MokcuLw Volunws of Liquid Chemical  Compounds.  Sourn:  Reid, Prausnitz,
and Sherwood, The Properties of Gaws and Liquids, 3d ed., McGraw-Hill, New York, 1977, p. 58.
By permission.

t The additive-volume procedure should not be used for simple molecules. The following ap
proximate values  are  employed in est imating diffusion coeff ic ients  by the methods of  Chap.  14:  H, ,
14.3; 0,, 25.6; N,, 31.2; air, 29.9; CO, 30.7; CO,, 34.0; SO,, 44.8; NO, 23.6; N,O,  36.4; NH,,
25.8; H,O,  18.9; H,S,  32.9; COS, 51.5; Cl,,  48.4; Br,,  53.2; I,,  71.5.

adequate. Brokaw [Bl]  determined the parameters in the Stockmayer poten-
tial [Sl];  these are available elsewhere [Rl], or can also be estimated by

e/kB  = (1.18)(1+  1.36*)(T,) (A%

where V, (m’  kmol-‘)  is the liquid molar volume at the normal boiling point Tb
(K), &/ke  is in K, and u is in meters. The quantity 6 is a dimensionless dipole .
moment, which Brokaw recommends be calculated by

6 = WWPM)*
vb  Tb

(A.10)
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In this equation (DPM) is the dipole
3.162 x lo-* Nln m*), and the units of
dipole moments are availableelsewhere

moment in debyes  (1 debye  equals
V, and Tb are as before. Tables of
[P2].  The collision integral for polar

molecules is a modification of that for nonpolar:

S-J P.  polar = Qp>,,onpo,ar+ 0.2S2/T* (A.ll)

Mixtares.  For gas mixtures, the following semiempirical equation is recom-
mended (Wl):

(A.12)

where

(A. 13)

n = number of species in the mixture
xi, xi  = mole fraction of species i ,  j
pi, pj = viscosity of pure i, j at the T and p of the mixture

Mi,  Mj = molecular weights of species i, j

These equations are good to about 2 percent.

Thermal conduetlvity.  The Chapman-Enskog theory is satisfactory only for
estimating the thermal conductivity of noble or monatomic gases. For these,
the viscosity collision integral is satisfactory.

DiHirslon  coefficient.  The Chapman-Enskog theory for diffusion requires a
unique collision integral, as discussed in conjunction with Eq. (14.48). Use of
the necessary combining rules, etc., is illustrated in Example 14.4.

The diffusion collision integral for nonpolar gas molecules is [Nl]

D c E G
D , nonpolar =&ii+ exp(DT*)  +exp(FT*) +exp(HT*)

(A.14)

with the following constants:

A = 1.06036 B = 0.15610 c = 0.19300
D=O.47635 E = 1.03587 F = 1.529%
G = 1.76474 H = 3.89411 (A.15)

The dimensionless temperature for mixtures is

TT*=-
ct&.s

(14.50)

The Lennard-Jones parameters in Table A.3 are also used for diffusion.

PoIar  molecrdes.  For polar molecules, the equation proposed by Brokaw [Bl]
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is recoinmended:

!aD. polar =BD, nonpolar + o.l%,/T* (A.16)

Again, the Stockmayer potential parameters must be used, not those in Table
A.3; these are to be found elsewhere [Rl] or may be estimated from Eqs.
(A.8)  and (A.9). The following combining rule is needed:

8m  = (S*&p (A.17)

where aA and C& are found from Eq. (A.lO). Example 14.5 illustrates the use
of these equations.

Bl.
Cl.

H2.

K2.
L2 .

L3.

Nl.
P2.

Rl.

Sl.
Wl.

Brokaw, R. S.: Ind.  Eng. Chem. Process Des. Dev. 8:  240 (1%9).
Chapman, S., and T. G. Cowling: The Mathematical Theory of Non-Uniform Gases, 3d ed.,
Cambridge University Press, Cambridge, 1970.
Hirschfelder, J. O., C. F.  Curtiss,  and R. B. Bird: Molecular Theory of Gases and Liquids,
fourth printing April 1%7,  Wiley, New York, 1954.
Kim, S. K., and J. Ross: I. Chem. Phys. 46:  818 (1%7).
Le Bas, G.: The Molecular Volumes of Liquid Chemical Compounds, Longmans, Green,
London, 1915.
Lennard-Jones,  J. E.: Z?roc.  Roy. Sot.  (London) Al&k  463, 709 (1924); AlO?  157 (1925);
A109: 476, 584 (1925); Alu:  214, 230 (1926).
Neufeld, P. D., A. R. Janzen,  and R. A. Aziz: J. Chem. Phys. 57: 1100 (1972).
Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo: Mdlecular  Thermodynamics of
Fluid-Phase Equilibria, 2d ed., Prentice-Hall, Englewood  Cliffs, NJ, 1986.
Reid, R. C., J. M. Prausnitz, and T. K. Sherwood: Properties of Gases and Liquids, 3d ed.,
McGraw-Hill, New York, 1977.
Stockmayer, W. H.: J. Chem. Phys. 9: 398, 863 (1941).
Wilke, C. R.: 1.  Chem. Phys. 18: 517 (1950); see also Buddenberg, J. W., and C. R. Wilke:
fnd.  Eng. Chem. 41: 1345 (1949).
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TABLE B.2

Condenser and heat-exchanger tube data*

WEB cross-sectional Ciierence,  f t , Velocity Glprcity  at 1
tbiclmess mea Ins ide or surface, f? ft-’ ft s-l  for 1 ft/s-’  velocity

O.D., B W G I.D., metal, sectional or length U.S. U.S. Water, Weight,
in. no. in. in. in.* mea, f? Outside Inside gal InIn-’ gal min-l lb,,, b-’ lb, ft-‘t

s
8 1 2 0.109

1 4 0 . 0 8 3

1 6 0 . 0 6 5
1 8 0.049

: 1 2 0.109
1 4 0 . 0 8 3
1 6 0.065

1 8 0.049
1
8 1 2 0.109

1 4 0 . 0 8 3
1 6 0 . 0 6 5

1 8 0.049
1 1 0 0.134

1 2 0.109
1 4 0 . 0 8 3

1 6 0 . 0 6 5

14 1 0 0.134
1 2 0.109

1 4 0 . 0 8 3
1 6 0 . 0 6 5

lf 1 0 0.134
1 2 0.109

1 4 0.083
2 1 0 0.134

1 2 0.109

0.407 0.177 0 . 0 0 0 9 0 3 0.1636 0.1066 2 . 4 6 8 0 . 4 0 5 3 202.7 0.602
0.459 0 . 1 4 1 0 . 0 0 1 1 5 0.1636 0.1202 1 . 9 3 8 0.5161 2 5 8 . 1 0.479

0.495 0.114 o.OO134 0 . 1 6 3 6 0.12% 1.663 0 . 6 0 1 4 3 0 0 . 7 0.388
0.527 0.089 0 . 0 0 1 5 1 0 . 1 6 3 6 0 . 1 3 8 0 1 . 4 7 6 0 . 6 7 7 7 3 3 8 . 9 0 . 3 0 3

0.532 0.220 0 . 0 0 1 5 4 0.1963 0.1393 1 . 4 4 7 0 . 6 9 1 2 3 4 5 . 6 0.748
0.584 0.174 0 . 0 0 1 8 6 0 . 1 9 6 3 0 . 1 5 2 9 1 . 1 9 8 0 . 8 3 4 8 4 1 7 . 4 0.592
0.620 0.140 0.00210 0 . 1 9 6 3 0 . 1 6 2 3 1 .061 0 . 9 4 2 5 471.3 0.476
0.652 0.108 0 . 0 0 2 3 2 0 . 1 9 6 3 0 . 1 7 0 7 0 . 9 6 2 1 .041 5 2 0 . 5 0 . 3 6 7
0.657 0.262 0 . 0 0 2 3 5 0 . 2 2 9 1 0.1720 0 . 9 4 8 1 .055 5 2 7 . 5 0 . 8 9 1

0.709 0.207 0 . 0 0 2 7 4 0.2291 0.1856 0 . 8 1 3 1 . 2 3 0 615.0 0 . 7 0 4
0 . 7 4 5 0.165 0 . 0 0 3 0 3 0.2291 0.1950 0 . 7 3 5 1 . 3 5 0 680.0 0 . 5 6 1

0.777 0.127 0 . 0 0 3 2 9 0 . 2 2 9 1 0 . 2 0 3 4 0.678 1 . 4 7 7 7 3 8 . 5 0 . 4 3 2
0.732 0.364 0 . 0 0 2 9 2 0 . 2 6 1 8 0 . 1 9 1 6 0 . 7 6 3 1 . 3 1 0 655.0 1 . 2 3 7

0.782 0 . 3 0 5 0 . 0 0 3 3 4 0 . 2 6 1 8 0 . 2 0 4 7 0 . 6 6 7 1 . 4 9 9 7 5 0 . 0 1 . 0 3 7
0.834 0.239 0 . 0 0 3 7 9 0 . 2 6 1 8 0 . 2 1 8 3 0 . 5 8 8 1 .701 8 5 0 . 5 0 . 8 1 3

0.870 0 . 1 9 1 0 . 0 0 4 1 3 0 . 2 6 1 8 0 . 2 2 7 8 0 . 5 3 8 1 . 8 5 4 9 2 7 . 0 0 . 6 4 9
0.982 0 . 4 7 0 0 . 0 0 5 2 6 0 . 3 2 7 2 0.2571 0 . 4 2 4 2 . 3 6 1 1181 1 . 5 9 8
1 . 0 3 2 0 . 3 9 1 0 . 0 0 5 8 1 0 . 3 2 7 2 0 . 2 7 0 2 0.384 2.608 1304 1 . 3 2 9

1 . 0 8 4 0.304 0 . 0 0 6 4 1 0 . 3 2 7 2 0 . 2 8 3 8 0 . 3 4 8 2 . 8 7 7 1 4 3 9 1 . 0 3 3
1 . 1 2 0 0.242 0 . 0 0 6 8 4 0.3272 . 0.2932 0 . 3 2 6 3 . 0 7 0 1535 0 . 8 2 3

1 . 2 3 2 0 . 5 7 5 0 . 0 0 8 2 8 0.3927 0.3225 0 . 2 6 9 3 . 7 1 6 1858 1.955
1 . 2 8 2 0.476 0 . 0 0 8 9 6 0.3927 0.3356 0 . 2 4 9 4.f321 2011 1.618

1 . 3 3 4 0.370 0 . 0 0 9 7 1 0 . 3 9 2 7 0 . 3 4 9 2 0 . 2 2 9 4 . 3 5 8 2 176 1 . 2 5 8
1 . 7 3 2 0 . 7 8 5 5 0 . 0 1 6 4 0.5236 0.4534 0.136 7 . 3 6 0 3680 2 . 6 8

1 . 7 8 2 0 . 6 4 7 5 0 . 0 1 7 3 0.5236 0.4665 0 . 1 2 9 7 . 7 6 4 3 882 2 . 2 2

‘From McCabe, Smith, and Harriott,  Unit Operadons  of Chemical Engineering, 4th ed., McGraw-Hill, New York, 1985,  p.  925; condensed from Perry and Green, Perry’s Chemical
E n g i n e e r s ’  H a n d b o o k ,  McGraw-Hil l ,  New York,  1984,  pp .  6-42  to  6-44 .  By permiss ion .

t  Fo r  s t ee l ;  fo r  coppe r ,  mu l t ip ly  by  1 .14 ;  fo r  b ra s s ,  mu l t ip ly  by  1 .06 .

“i;- /’
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C
PHYSICAL

CONSTANTS, .
UNITS AND

CONVERSION
TABLES

TABLE C.l
Physical consta@s

Gas Constant R io Ideal  Gas Law [Eq. (Ll)]

R = 1.9872 cal  mol-’  K-’  = 1.9872 Btu lb mol-’  OR-’

= 82.057 atm cm3  mold’ K-’  = 0.082 057 atm I$  kmol-’  K-’

= 8.3143 kJ kmol-’  K-’  = 8.3143 kPa  m3  kmol-’  K-’

= 0.7302 atm ft” lb mol-’  “R-’

= 10.731 lb,in.-*  ft3  lb mol-’  OR-’

= 1.5453 x ld ft lbf lb mol-’  OR-’

Atmosphere (standard)

p=1atm=1.01325xldNm-2

Avogadds nmmbeP

N, = 6.022 143 8 x 1023 molecules mol-’

Base of natural lo@thms

e=2.7182818285..

Boltmmanm’s  constant

k,  = R/N = 1.380 x lo-=  J  molecule-’ K-’
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TAijLti  C.1

(eQirtinucd)

GravItational  axehahn  (sea level)

g=9.8066Sms-2=32.1740ft~-2

&de’s constant (medmnicd  equivalent of beat)

J,=4.184xlO’ergcal-‘=778.16ftIb,Btu~’

Pi

n=3.1415926536...

Plmlek’scomstant

h = 6.625 x lo-”  J s molecule-’

speedoflightinnvaclmm

c=2.998X10sms-’

SW-Boltamann  constant

(I  = 5.670 x lo-*  W m-* Km4  = 0.1714 X lo-s Btu b-’  ti-‘“Re4

‘Taylor, B. N., J. Res.  Nod. Bur.  Stand. 90:  91 (1985).

TABLE C.2

SI base and supplementary quantities and units* \

QmntIty  or udimension”

Base quantity or “dimension”
length
mass
time
electric current
thermodynamic temperature
amount of substance
luminous  intens i ty

Supplementary quantity or “dimension”
plane angle
sold  angle

SlUhtSpbOl
(“abbreviat ion”);
USeronUa

SI  unit (wm0 type

meter m
kilogram kg
second s
ampere A
kelvin K
molet mol
cande la cd

radian rad
s terad ian sr

l From Perry and Green, Perry’s  Chcmicol  Eqineem’  Handbook, 6th  ed., McGraw-W, New York, 1984,
pp. 1-2.  By permission.
t When the mole is used, the elementary entities must he spechied;  they may he atoms, molecules, ions,
electrons, other particles, or specised  groups of such Part&s.
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T A B L E  C’.3
Derived units of SI  with special names*

Q-w unit SymaOl Formuh

Frequency (of a periodic phenomenon) hertz Hz s-’
FOrCe newton N kg m se2
Pressure, stress Pascal Pa N m-’
Energy, work, quantity of heat joule J N m
Power, radiant flux watt W Js-’
Quantity of electricity, electric charge coulomb C A s
Electric potential, potential difference.,

electromotive force volt V WA-’
Capacitance farad F cv-’
Electric resistance o h m 56 V A - ’
Conductance siemens S A V-’
Magnetic flux weber w b v s
Magnetic flux density tesla T Wb m-*
Inductance henry H WbA-’
Luminous flux lumen lm cd sr
Illuminance hut IX Im m-’
Activity (of radionuclides) becquerel Bq S-’
Absorbed dose gray GY J kg-’

l From Perry and Green,  Perry’s  Chemical  Engineers’  Handbook,  6th ed . ,  McGraw-Hi l l ,  New York,  1984,  pp.
1-2.  By permission.

TABLE C.4
SI prefixes* .

Multiplication facto5/ Prefix SplhOl

1ooocKlooooooooooooo=10’*
1oooooooooocJoooo=10’5

1oooooooooooo=10**
1ooo@Ooooo=  lo9

1oooooo=106

1ooo=103
lao=ld

10 = 10’

0.1 = lo-’
0.01 = lo-2

0.001 = lo-3

o.ooo 001 = 1o-6
o.ooo ooo 001 = 1o-9

o.ooooooooooo1=1o-i*

o.oooooocKloooooo1=  lo-”
o.oooooooooclooooooo1=1o-‘8

exa

peta

tera

giga
mega

kilo
hectot
dekat

decit
centi
milli

micro
nano
pica

femtq
atto

E
P

T
G
M

k
h
da

d
C
m

*From Perry and Green, Perry’s Chemical  Engineers’ Hadbook,  6th ed., McGraw-Hill,
New York,  1984,  pp.  1-2.  By permission.
t  Genera l ly  to  be  avo ided
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TABLE C.5
Density (or specilic  volume)

1 kg III-~ = 1O-J g an-3  = 0.06243 lb,,, ft-3

1 g cmm3 = 62.43 lb,.ftv3  = 1000 kg mm3

= 8.345 lb,,, gal(U.S.)-’

1 lb, ft-”  = 16.0185 kg me3

TABLE C.6
Diihmivity

Momentum diffusivity Y, thermal
diffusivity a, diffusion coefficient D

1 m* s-’ = 3.875 x 104 ft’ h-’  = 10.764 ft* S-’

= 106centistokes  (cSt) = 104 cm s-’

TABLE C.7
Force

lkgms-‘= 1 N = ld  dyne (g cm s-‘)

= 7.2330 poundals  (lb, ft s-‘)

= 0.22481 lb,

llb,=4.44!32N 4

TABLE CB
Gravitationai  conversion constant

& = 32.1740 lb,,, lb;’  ft i-*

= 9.80665  kg, kg;’ m s-l

TABLE C.9
Heat capacity  (cpj
I cal(lT)  g-’ “C-’  = 1 cal(IT) g-’ K-’

= 4.184 kJ kg-’ K-’  = 1 Btu lb,’ “F-’

= 1 Bhi  lb,’ “R-l

1 cal(lT) mol-’  “C-l  = 1 cal(IT) mol-’  K-’

=4.184kJkmoI-‘K-’

= 1 Btu lb mol-’  Tz’  = .l Btu lb mol-’  OR-’
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TABLE d.10
Heat transfer coefficient

1 W me2 K-’  = 1 kg sm3  K-’

=0.17611  Btufi-Zh-lT-l

= 0.17611 Btu  fY2  h-’ “R-l

1 Btu ft-‘h-l “R-’  = 5.6783 W m-* K-’

=5.6783x 1O-4  Wan-‘K-’

= 1.3571 X 10m4  cal  cm-‘s-l  “C-’

*
1

TABLE C.ll

lm=lOOcm=106pn=3.2808ft=39.37in.

lpm=lmicron

1iu.=2.540cm=0.02540m
.

1 A (Angstrom) = lo-” m = 10 nm

lmiie=528Oft

,c
TABLE C.12
Mass

1kg=1000g=2.2046Ib,

llb,=16oz=7000grains=453.59g

= 0.45359 kg

1 ton (short) = 2000 lb,

1 ton (long) = 2240 lb,,,

1 ton (metric) = 1000 kg

TABLE C.W
Mass transfer coefficient

l k g m -2s-‘=0.1gcm-2s-’

= 0.20482 lb,,, ft-’ s-l

= 6.3659 x lo-3  lb, ft-‘s

= 737.34 lb,,, ft-*  h-’

1 lb,,, ft-‘h-’  = 1.3562 x 10m3  kg m-’  s-’

= 2.7778 x W4  lb,,, ft-2  s-l
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1  W = 1 J s-l  = 0.23901.cai  s-l
= 14.340 Cal  min-’  = 3.4122 Btu  h-’

1 hp = 550  ft lb, s-l  = 745.70 W
= 0.7068  Btu s-’

1 Btu h-’ = 0.29307 W

TABLE C.l5
Pressure or momentum flux or shear

1xldNm-2=1xldPa(Pascal)=1bar
1 atm = 1.01325 x 16 N me2  = 101.325 kPa

= 1.01325 bar = 14.696 lb, in.-’  (psi)
= 760 Torr = 760 mm Hg (OOC)
= 29.921 in Hg ((PC)
= 33.90 ft H,O (4°C)

1Nm-2=1kgm-‘s-2
= 10 dyne cm-’ (g cm-’ s-*)
= 9.8692 X lo-” atm

TABLE C.16
Thermal conductivity

1 W m-l  K-’ = 0.57779 Btu h-’ ft-’ “F-l
= 2.3901 x 10e3  cal s-’ cm-’ K-’

1 Btu h-’ ft-‘“F-’  = 1.73073 W m-l  K-’
= 1.73073 x 16 g cm s-~  K-’

(erg se1  cm-’ K-‘)
= 4.1365 X 10m3  cal  s-’ cm-’ OC-’
= 6.9546 lb,,, ft s-~  T=’
= 0.21616 Ib,s-’  “F-l



‘TABLE C.17
vllty

lkgm~~s~‘=lNgm~2=l~as=l~cP
= 1O‘P  (poise) = 0.67197 lb,,, ft-’  s-l

1 CP  = 10-2  g cm-’ s-l  (poii)
= 10e3  kg m-l  s-l  = 2.4191 lb,  tI-’  h-’
= 6.7197 x 1O-4  lb, ft-’  s-l
= 2.0886 x 1O-5 lb,  s ft-*

1 lb,,, fi-’  s-l  = 14.882  P
= 1.4882 kgm-’ s-l  = 3.1081 x lo-*lb,sft-*
= 1.4882 x ld  CP  = 3600 lb, ft-’  h-’

TABLE C.18
Volume

1 m3  = 106  cm3 = ld  L (liter)
= 264.17 gal(U.S.)  = 35.316 ft3

1 d = 28.317 L = 0.028317 m3
= 7.481 @(U.S.)

1 gal(U.S.)  = 4 qt = 3.7854 L
= 3.7854 x ld  cm3 = 0.8327 gal(British)

TABLE C.19
Work, energy, and torque

lJ=lNm=lkgm*s-*=0239Olcal
= 10’ g cm*  se2 (erg) = 23.730 lb,,, ft2  SC*
= 0.73756 ft lbf  = 9.4783 x 1O-4  Btu
= 3.7251 x lo-’  hp h = 2.7778 x lo-’  kW  h

1 Btu = 1.05506 k.l
= 252.16 cal  (thermochemical)
= 778.16 ft lb,
= 3.9301 x 1O-4  hp h
= 2.9307 x 1O-4  kW  h

1 Cal=  4.1840 J = 3.9657 x 1O-3 Btu
=1.1622~10-~kWh

1 ft lb,  = 1.3558 J = 0.32405 cal
= 1.2851 x 1O-3 Btu

1 hp h = 0.7457 kW  h = 2544.5 Btu
= 6.4162 x ld  Cal

‘=1.98OOx106ftib,
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TABLE C.20
Miseellrrneoos

1 ft Ib,lb;’  = 2.98!JO  J kg-’

Molccularweightofair:  28.966kgkmoI-’

Molecular weight of water: 18.01534 kg kmol-’

lOOT=211.95:

273.15 K=O.O“C=491.6PR  = 32.OOT

0.O-F  = 459.67% = 255.37 K = - 17.78”C
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D
VECTOR

MATHEMATICS

This Appendix is adapted from Brodkey, Phenomena of Fluid Motions,
Addison-Wesley, Reading, MA, 1967. (Fourth printing available from The
Ohio State University Bookstores, Columbus, Ohio, 43210.) By permission.

D.l INTRODUCTION

In the study of transport phenomena, the physical quantities to be considered,
such as temperature, velocity, and shear stress, are scalar, vector, and tensor
quantities, respectively. In dealing with these quantities the convenient
shorthand vector and Cartesian tensor notation can be used to advantage. To
ignore this tool would necessitate the use of a number of long, cumbersome
equations in various coordinate systems when a single vector equation would
suffice. For this reason, a summary of the necessary mathematics is provided
here.

D.2 SCALAR QUANTlTIES  AND
VECTORS

Scalar quantities are numbers which may be dimensional or dimensionless.
They are physical quantities which do not require direction in space for their

814
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Y
FIGURE D.l
Vector A in Cartesian coordinate space.

complete specification. Volume, density, viscosity, mass, and energy are
examples of scalars.

Vector quantities need both magnitude and direction for their complete
specification. Velocity and linear momentum are two good examples. Speed is
the magnitude of the velocity vector and is a scalar quantity. Geometrically, a
vector can be represented by a straight arrow in the direction of the vector,
with its magnitude being shown by the length of the arrow compared to some
chosen scale. Analytically, a vector can be represented by its projections on
the coordinate axes (see Figs. D.l, D.2, and D.3). If i, j, and k are taken as
unit vectors (magnitude unity) in the x, y, and z directions, then

A = iA, + jA,  + k4, (D.1)
A=IAI=dA:+A;+A; CD.21

The sum and difference of vectors can be obtained either geometrically or
analytically. Geometrically, vectors are added by drawing the diagonal on a
parallelogram constructed from the two vectors to be added. Analytically, the
components of the vectors are added and the result is the new vector. One can

FIGURE D.2
Cylindrical coordinate system.
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FIGURE D.3
Spherical coordinate  system.

use the vector notation instead of a complicated coordinate notation for
obtaining relations between variables.

D.3 TENSORS

When there is a change in the coordinate system, tensors must follow certain
transformation laws. If an array obeys these transformation laws, then we may
manipulate it by means of tensor algebra, which is simply a method of
performing a number of proved operations (addition, differentiation, etc.) on
the symbols used to represent the array. The use of tensor notation substitutes
a symbol for the array; any operation on the symbo1  must be performed
exactly as though we were performing an analogous operation on the array.

Scalars are tensors of zero order, and vectors are tensors of the first
order. The second-order tensor is an array of nine components expressed as

CD.31

The rows are associated with the i’s and the columns with the j’s. The tensor
array is an ordered set of numbers (but is not a determinant, which is a certain
sum and products of the numbers). The diagonal terms are those in which the
two subscripts are the same; all others are the nondiagonal terms. If rXy  = ry,,
IJ  Gx9XL = and ryz  = rzy , then the tensor is symmetrical.

The transposed tensor of t is rT  and is formed by exchanging the rows
and columns.
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COMPUTER
PROGRAMS

TABLE E.l

Index of computer programs

L-iiww Deaaiption P a g e

FORTRAN

FORTRAN
ACSL

A C S L
B A S I C

FORTRAN
FORTRAN

FORTRAN
FORTRAN

FORTRAN

FORTRAN

FORTRAN

Temperature distribution in a heated pipe (eddy diffusivity) 2 5 3
SMPSNsubroutine  for numerical integration 2 5 5
PROGRAM BOUNDARY LAYER 561
PROGRAM POHLHAUSEN 5 7 4
Heat transfer from a tungsten wire 6 2 6
Table of ERF and ERFC 6 4 8
ERF and ERFC-single-precision  function subprograms for error

function and complementary error function
Fourier series in unsteady-state mass transfer
Fourier series and Laplace  solution of unsteady-state heat transfer
DERF and DERFC-double-precision  function subprograms for

error function and complementary error function
Unsteady-state heat transfer using Crank-Nicolson method
TRIDG2-subroutine  for solving tridiagonal system of equations

6 4 8
6 6 3
6 7 3

6 7 5
694
6 9 5
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SUBJECT
INDEX

Citations of a generic nature are indexed only to the fust  and other major locations, not every time
the name appears, e.g., Reynolds as in Reynolds number.

Accumulation, 63,66,644
Aggregative fluidiiation, 604
Agitation, covered in Chapter 9, 359-399

Chemical changes, 363
Design, 370

BafRes,  370
Multiple impellers, 370
Off-center mounting of impeller, 370
Side-entering propeller, 370
Tank diameter, 370

Design variables, 372
Fluid  properties, 372
Impeller rotational speed, 374
Impeller tip speed, 374
Power, 372
Torque, 373

Dimensionless numbers, 374
Blend number, 378
Froude number, 378
Power number, 375
Pumping number, 379
Reynolds number, 375
Weber number, 379

Equipment, 364
Dished bottom, 364
Gear drive, 365
Impeller, 364

Anchor, 365
Helix, 365
Marine propeller, 365

Pitched blade tubine, 368
Rushton,  365
Screw, 365
Turbine With  pitched blade, 365
Turbulent and laminar flow, 365
Vertical flat  blade, 365

Jacket, 364
Nomenclature, 364
Wall  baf8es,  364

Geometric similarity, 371,373, 384
Heat transfer, 380
Increased rates of transport, 363
Introduction, 362
Mixture, 361 .n

Non-Newtonian fluid, 365,783
Paddle, 362
Physical changes, 363
Propeller, 362
Scale-up, 371, 383

Baffles, 372
Bottom clearance, 372
D/T ratio, 371
Impeller, 372
Laminar  flow, 395

Single test unit, 395
Turbulent flow, single test volume, 386

Constant power/volume, 389
Constant torque/volume, 387
Criteria, 386
Equal blend time, 389

825
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Agitation;covered  in Chapter 9 (con&)
Scale-up  (co&f.)

Turbulent flow, single test vol. (co&.)
Equal dispersion, 389
Equal mass transfer, 389

Turbulent flow, three or more test vol-
umes, 384

Turbulent flow, two test volumes, 385
Without geometric similarity, 3%
Z/T ratio, 372

Tank, vessel, see Equipment
Turbine, 362
Vortex, 368

Center of an unbailled  tank, 368
Near the impeller blade, 368

Air properties, 794
Analogy (analogies) 18, 516

Boundary layer theory, 571
Boussinesq  theory, 227
Chilton-Colbum, see Colbum below
Colbum, 517,519
Difhtsivities,  46-53
Dimensionless groups, 330-335
Equal eddy diiIusivities,  234,517
Film theory, 236
Friend-Metxner, 519

Non-Newtonian, 785
General vector form, 31
Heat

j-factor, 518
Transfer, 18,517

Heat and Mass, 517
M a s s

Diffusion coefficient, 21
j-factor, 518
Transfer, 21,517

Mass, heat, and momentum transport, 516
Mechanistic, 517
Momentum transfer, 22,516
Numerical methods, 520
Chte-dimensional  flux equation, 25
Penetration theory, 236
Reynolds analogy, 236,516
Spheres, 621
Transport equations, 25
Turbulent transport, 234

Analysis, see Chapter 8, Methods of Analysis
Dimensional, 335
Inspection, 330

Analytic function, 580
Anemometer,hot-wireorhot-film,205,212,624
Annulus,  friction loss in, 457

Heat exchanger, see Double-pipe heat
exchanger

Archimedes number, 337,609
Area, log-mean, 98
Arrllenius  equation, 736

Viscosity  equation, 52,736
Average(s)

Definitions
Log mean area, 98

Temperature difference,  535
Time-averaged velocity, 206

Reynolds rules, 214
Temperature, 494,505
Tie, 216
Velocity, 212,271

Kinetic energy term, 292
h+.ss,  74, 162
Molar, 163
Momentum correction term, 278
Tube flow, 116,271
Turbulent flow, 206
Volume, 163

Avogadro’s number, 7, 715, 806
Axial dispersion coefficient, 612

Balance(s)
cube, 77
Energy, 268,290
Equation

Differential form, 67
Discussion, 134
Overall, 672

Force., see Force/Balance
Mass, 268
Momentum, 268
Three dimensional, 77

Bank of tubes, see Tube/Bank
Barometric equation, 320
Bernoulli equation

Classical, 290
Engineering, 297,323
Fluidixation, 609

Bessel functions, 125,701
Bingham  plastic, 756
Binary mass diffusion,  see Mass diffusion
Biot number, 337,647,669,684
Black body, 493
Blasius

Correlation for turbulent (smooth) tube flow,
258,406,518

One-seventh power law, 243
Solution, 558

Blend number, 337, 374, 378
Blending, 362
Bluff  bodies, flow over, 578



Boltzmann
Constant, 716,798,806
Equation, 9,493
Radiation, 187,493
Similarity transform, 697

Bond number, 352
Bottom clearance, 365
Boundary conditions

Homogeneous, 655
No-slip, see No-slip
Transient heat conduction, 686

Boundary layer, 157-160,556
Assumption (approximation), 158, 506, 557
Coherent structures, 208
Drag coefficient correlations, 591
Equations, 557

Summary table, 568
Entry region for a pipe

Laminar, 563
Turbulent, 568

Flat plate, 157,201,208,557
Heat and mass transfer to flat plate, 571

Laminar, 157, 557
Boundary value problem, 560
Drag coefficient, 561
Entry region, 563
Heat transfer, 158

Coefficient, 574
Local drag coefficient, 562
Mass transfer, 158
Parameters, 561
Separation, 564
Shear stress, 561
Siiarity variable, 558
Stream function, 558
Thickness, 158,562,573
Total force. or drag, 561

Momentum thickness, 562,573
Separation, 564,5%
Similarity, 558
Solution

Integral, 559
Siiarity, 558

Summary, 568
Thermal thickness, 573
Transition to turbulent flow, 201,566
Turbulent, 208,566

Drag coefficient, 566
Heat transfer, 575

j-factor, 576
Local shear stress, 566
Mass transfer, 577
Thickness, 566
Total force, 567

Velocity, 557
Boussinesq  theory, 227

Eddy diffusivity  of momentum, 228
Eddy viscosity, 228

Brinkman  number, 333,337
Brownian  motion, 590,739
Bubbling fluidization,  see Fluidization
Buckingham method of dimensional analysis,

3 4 6
Buffer layer zone; 240
Bulk (average)

Concentration, 505
Temperature, 505
Velocity, 271

Bundle of tubes, see Tube/Bank
Buoyancy (Buoyant)

Forces, 316
Rotameter, 473
Stokes’ law, 589

Burke-Phmuner  equation, 620

capiuary
Shear diagram, see Basic shear diagram
Tube, 118
Viscometer, see Viimeter/Capillary

Cauchy-Riemamr  equations, 580
Centrifugal force

Equation of motion, 146.189
Pressure diffusion, 188

Chamtel  ~QW, open, 457
Chapman-Enskog theory, 721

Diion  axfficient,  724
Thermal conductivity, 722
Viscosity, 722

Characteristic length
Heisler charts, 672,678,680
Lumped capacitance, 651
Reynolds number, table for, 204

Chemical reaction(s)
Dimensional analysis, 333
Generation of species A, 12S,140-142,273

Chilton-Colbum analogy, see Analogy
Circular tube, see Pipe, Tube
Closure problem of turbulence, 227,228
Chtsius-Dickel  column, 188
Coefficient

Chezy,  457
Drag correlation, 591
Heat transfer, see also Heat transfer/

Coefticient,  2 3 5
Mass transfer, 235
Turbulent, 228

Coherent structures in turbulence, 208



Colbum
Analogy, 517~519,613
j-factor, 518

Cylinder, 600
Number heat, 337,518
Number mass, 337;2!8
Sphere, 621 I

Completeness of sets for dimensional analysis,
350

Complex fluid flow systems, 443
Composite walls, heat conduction in, 4%
Computer programs, index, 817
Concentration, 6

Boundary layer theory, 157-160,556
Definition, 6
Film,  505
Gradient, 21
Ideal gas, see Ideal gas
Measurement, 455
Molecular, 715
Of property

Definition, 63
Units, table, 64

Concentric
Cylinders, see Viscometer/Couette
Tubes, see Annuhts

Condensation number, 338
Conduction, see Heat transfer/Conduction
Conduits, noncircular, 455
Cone-and-plate viscometer, 777
conical

Difhrser,  428
Expansion, 427

Conservation
Energy, 62
Equations, see Equations/Change
Laws, 61
Mass, 62
Momentum, 62

Constant
Area transport, 95
Generation transport, 104
Wall temperature, 508

Constants, Physical, 806
Constitutive equations, 25,765
Contact resistance and fouling factors, 530
Continuity equation, 82, 138, 139

For one species, 142
Molar flux, 143

Table for various coordinate systems, 139
Ttubulent  , incompressible, 223

Continuum, 25, 53, 186
Contraction, sudden, losses, 426

Control volume
Diierential.  77
Finite, 270

Convected
coordinates,  160
Derivative, see Substantial derivative

Convection, see also Fhrid  Bow, 72
Coefficients, heat or mass, 235
Forced, 108,132
Heat transfer, 187,493

Convective
Derivative, 160,694
Flux, covered mostly in Chapter 5, 73, 132,

1 6 2
Forced convection, 132
Transport, 72

Conversion factors
Density, 809
Dilfusivity,  809
Diffusion coefficient, 809
Energy, 812
Force, 809
Gravitational factor, 809
Heat capacity, 809
Heat transfer coeffiqent,  810
Length, 810
Mass, 810
Mass transfer coefficient, 810
Mechanical equivalent of heat, 807
Momentum diffusivity, 809
Momentum flux, 811
Power, 811
Pressure, 811
Shear stress, 811
Specitk  gravity, 118
Temperature, 813
Thermal conductivity, 811
Thermal diffwivity,  809
Torque, 373
Viscosity, 812
Volume, 812
Work, 812

Conveyance, see Convection
Cooling, Newton’s law of, 493
Coordinate(s)

Cartesian, 189, 267
Convected, 160
Curvilinear, 135
Cylindrical, %,  815
Del, table, 136
Rectangular, 135
Spherical, 816
System, 134



Coriohsforce,  in equation of motion, 148, 189
Couette flow,  123,153,771
Countercurrent flow, 527
Creeping motion (Stokes gow),  587
critical

Reynolds number for huninar-turbulent  tran-
sition, 198,204,206,407

llliCkn~  of insulation, 503
Cup-mixing temperature., 505
curved tubes, 422

secot~dary  tlow, 423
cwilinear  coordinates

Energy Equation, 143
Equation of conthmity, 139
Equation of continuity for species A, 142
Equation of continuity for species A in terms

of the molar em, 143
Navier-Stokes equation, 147
Shear stress-velocity gradient relationships

for constant viscosity, 137
Vector expansions, 136

Cyclones, 600
Cylinder

Banks of tubes, 626
Cross e0w,  drag coefficient for single cylitt-

der, 593-594
Energy generation in, 103
Flow over, 578
Forced convection heat loss from, 623-634
Friction factor for flow across, 628
Heat generation in, 103
Heisler and’Grober  charts, 678
Ideal flow around, 578-587
Nusselt  number, 624
Reynolds number, 623 ’
Smgle-cylinder  heat transfer, 623
Steady-state conduction, 96-100
Transient heat conduction in, 652,701

cylindrical
Coordinates, 96,815
Tube, see Pipe, Tube

Damkohfer  number, 333,‘337
DW

Friction factor, 257
Law,  182

Dean number, 338,423
Deborah number, 338,767
Deformation, 755,765-767
Del operator (also calfed  nabla  operator), 31,

79

Table of expansions in several coordinate
systems, 136

Density, conversion table for units, 809
specific gravity, 118

Derivative
Graph, 78
substantial,  160,644

Differential balance, 67
Three-dimensional, 77

Diffuser, conical, 428
Diffusion, see also Mass diffusion

Equation, 21
Analogy with heat conduction, 25
Binary mixmres,  161-186

Therm0  effect, 187
Velocity, 162

Diffusion coefficient, 21,33
Axial, 612
Chapman-Enskog equation, 724
Correlation for gases, 732
Empirical correlation, 731
Gases,

ChapmanrEnskog  equation, 724
Fuller-Schettler-Giddings  correlation,

732
Kinetic theory,‘719
Pressure dependence, 51
Temperature dependence, 51-52
Table of typical values, 49-58

Knudsen, 184
Liquid, 50,52,  179,738

Correlations, 741
Hydrodynamic theory, 739

Kinetic theory, 741
TheJmodynamic  theory, 741
Wilke-Chang  correlation, 742

Mutual, 738
In8nite  dilution, 738

Self-diffusion, 738
Tracer, 738

Measurement, 746
Mutual, 725,738
Non-uniform gas theory, 724
Prediction, supplement to Chapter 14, 7%

8 0 1
Polar molecule, 808

self-dieilsion,  719
solids, 50,180
Typical values, 49-50

Diiivity
Comparison table, 27,64,93
Conversion table for units, 809
Eddy diffusivity of momentum, 228
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Dithsivity  (co&.)
Eddy mass diiivity, 228
Eddy thermal diffusivity,  228
General discussion, 46-53
Mass, see DitIusion  coefficient
Momentum, 27
Thermal, 26
Units, 27

Dilatent fluid,  756, 760
Dimensional analysis, 335-353

Agitation, 379
Analogous groups  in heat and mass transfer,

331-338
Buckingham method, 346
Completeness of sets, 350
RayIeigh  method, 339

DimensionIess
Concentration, 654
Numbers (groups), listed separately by name

Agitation, table of, 374
Table of, 336-338

Position, 206
Temperature, 653

Collision integral, 720,798
Mixtures, 724,800

Unaccomplished temperature, 669
Velocity, 206

Disks,  drag coefficient plot, 593-594
Dispersion, 361
Dittus-Boelter correlation; 513
Divergence of a vector, 79
Doppler anemometer, 205,  212, 480
Dot product, 79
Double-pipe heat exchanger, 526-539

Contact resistance and fouling factors, 530
Design equations, 532

Enthalpy  balance, 532
Fouling factors, 531
Linear overall coefficient, 535
Log-mean temperature difference, 535
Overall heat transfer coefficient, 528
Temperature notation, 526

Approach temperatures, 528
Driving force for heat transfer, 528
Inlet and outlet temperatures, 527
Range of each stream, 528
Temperature distribution, 528

Drag
Coefficient, 338,566,591,592

Correlations for spheres, etc., 591
Cylinder, 594
Disk, 594
Newton’s law, 592
Stokes’ law, 592

Flat plate, 566
Force, 567

Sphere, 588-
Form, 597
Reduction, 420,780

Solutions of large molecules, 420
Ratio, 780
Skin friction, 591
Sphere, 592

Driving force
Heat exchanger, 526,533
Heat transfer, 19,495
Mass transfer, 169
Momentum transfer, 108

Duct
Fluid flow, covered in Chapter 10, 400-488
Heat and mass transfer during flow, covered

in Chapter 11,489-550
Dufour effect, 187
Dynamic similarity, 353

Eddy
Diffusivity, 228

Film theory, 238
Mass Diffusivity, 228,
Stress, 224
Thermal dithrsivity, 228
Viscosity, 228

Ratio, 232
Efhtsion,  185
Electrical analogy

Heat conduction, 497
Potential flow, 586

Ellis model, 758
Empirical correlations, see Heat transfer cor-

relations, Mass transfer correlations,
Friction factor/Equations

End effects, 746
Energy

Activation, 733
Balance, 10, 142, 268, 290

Heat exchanger, 532,536
Integral, 286
Lumped capacitance, 650
Mechanical, 295-305

Conversion table for units, 812
Equation, 142, 143
First law, 286
Fhu

Fourier’s law for, 30
Turbulent, 187

Friction, 295,297
General differential equation for, 142, 223
Generation, 104, 143,332



Integral equation, 290,291
Internal, 287
Kinetic, 288
Mechanical, 268,295
Siphon, 298
Tort&hi’s  law, 298
Translational, 718
Venturi, 300
Work, 286

Engineering Bernoulli  equation, 295-301,323
English units, see Units
Enlargement, friction loss in, 424
EnthaIpy

Balance, see application
Detinition,  287

Entrance, see Entry
Entry region, 556

pipe
Laminar, 510, 563-564
Turbulent, 568

Equation
Change

Continuity, 138
Dimensional analysis of, 330
Energy, 143
Mass, 143
Motion, 146
Tie-smoothed,  220

Continuity
Curvihnear  coordinates, 82, 138, 139

Species A, 143
Constant mass density, 83, 85
Constant molar density, 83
Energy

Curvilinear coordinates, 143
Table of equivalent forms, 143

Euler, 579
Heat transfer in a constant area duct, 506
Laplace,  579, 588
Mechanical energy, 295-305
Momentum, integral, 275
Motion, 146

Curvilinear coordinates, 147
Euler, 579
Navier and Stokes, 146
Turbulent flow, 222

Navier-Stokes, 146
Newton’s law, table, 137
Of state, 6
Turbulent flow, 210-225

Equilibrium processes, 4
Equimolar counter diffusion, 34-35, 173
Equivalent

Diameter, 456

Length method, 431-442
Ergun  equation, 620
Error function

Computer program, 648
Table of, 647

Estimation of trahsport  coefficients, covered in
Chapter  14,711-751

Eucken
Correlation, 723,724

-Factor, 723
Euler

Equation, 579
Number, 332,336

Exchange coefficient, 228 ’
Exchangers, see Heat exchangers
Expansion

Conical, 427
Loss coefficient, 424
Resistance coefficient, 424
Sudden, 424

Eyring  formulas, 733-736

Falling film,  see Film
Fanning friction ‘ factor, see Friction

factor/Fanning
Fast Ikrhhxation,  604,605
Fick’s law, 21, 32, %, 168, 169

Axial, 612
Generalization, including convection, 169-

1 7 0
In terms of total flux, 170
One-dimensional, 21
Radial direction, 96
Rectangular coordinates, 32
Tabular summary, 169
Various flux units, 169
Vector form, 33 - -

Fick’s second law, see Unsteady-state
phenomena

Film(s), see Stagnant tilm,  Boundary layer
Concentration, 505
Temperature, 505
Theories, 236

Finite Difference methods, transient
Central difference, 685
Forward difference, 685
Explicit, 686
Implicit, 691
Stability criteria, 686
Tridiagonal,  691

Fit  law of thermodynamics, 286,289,649
Fittings and valves, 430

Equipment design, 430
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Fittings and valves (co&.)
Laminar flow, 439
Pressure loss, 431

Flat plate
Boundary layer, see Boundary layer

Theory for, 157
Visualixation,  208

Flow around, 202
Heat or mass transfer from, 158
Reynolds number, 201
Transition, 201

Flow
Boundary layer, see Boundary layer

. Circular pipe, see Pipe or tube
Couette, 123, 153, 771, 777
Flat plate, over, see Boundary layer
FIuid,  see Fluid  flow
Hagen-Poiseuille,  116-118
Ideal, 578
Incompressible, 82
Meters, see Measurement/Flow
Net, 580
Node, 469
Over

Bluff bodies, 578
Cylinders, 578
Flat plate, 556
Spheres, 578

Past bodies of revolution, 592
Patterns in gas-solid systems, see Fhridixation
Plug, 289,612
Potential, 579,580
Poiseuilie,  113
Ik0ce.s  in thermodynamics, 288
RateandwaUshearrate,relationbetween,  117
Rotating concentric cylinders, see Couette

above
Stokes, past a sphere, 587
System, 288
Transitional, 198
Turbulent, 198

Profiles,  see Velocity distribution
Two  phase, 352
Work, 289

Fluctuations
In concentration, 217
In temperature, 217
In velocity, 198-225
Instantaneous velocity, 286,211

Fluid flow, see also Boundary layer, Laminar
flow, Momentum balance, Momentum
transfer, Turbulent flow, Velocity

Complex systems, 443.-

Ducts, covered in Chapter 10,400-488
Equivalent lengths, 432-442
Gases, 442
Laminar,  see Laminar  flow, 113

Boundary layer, 157
Pipe or tube, 113-119,403-406

Losses, 424-441
Measurement, see Measurement
Navier-Stokes, 147
NoncircuHr  conduits, 455
Pipes, covered in Chapter 10,~488
pumps,  six of, 447
Turbulent, see Turbulent flow
Tubes, see Pipes above
Velocity head concept, 421

Fluid statics, 305-321
Buoyant forces, 316
Manometers, 305
Pitot  tube, 313
Variation of pressure with depth, 319

Fluidixation, 601-619
Aggregative, 604
Bubbling, 604,606
Expansion of beds, 607,613
Fast, 604-686  ,
Gas-solid, 606

Heat transfer,,610
Mass transfer, 611

Incipient, 602
Liquid-solid, 613
Minimum

Bed porosity, 607
Fressure  drop, 609
Velocity, 609 I
Void fraction, 607

Packed beds, 619
Particulate, 602, 613

Heat and mass transfer, 615
Minimum velocity for ibridixation,  613

Fressure  drop
Fluidixed  beds, 608,614
Packed beds, 619

Reynolds number, 607
Modified, 613

Slugging in, 604,606
Spouted bed, 605
Three phase, 634
Transition from bubbling  or slugging to tur-

bulent, 609
Turbulent, 604,606
Types of, 603

Fhidized  bed, see Fluidixation
Flux, 6

Curved tubes, 422 Anaiogous  equations for, 25
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compaigoa  f&&;  20, @,%4,93
DeEnition.6, ’
3nergy.187 ,. :‘:. , (.
Hut, 19
Kinetic theury  of geoer;ri’l
Mass,  35,‘lF
Molar,  21,165
Momentum, 23
NotatioD t&k,  6% 165
~&me&mll  equation, 25
&tionary coordinates, 165

TotaI,  1 6 8
Turbulent, 228
units, 27

Force, 8
Agitation, 377
BaIance

Newton’s second law, 278-28.5, ;121
Rotameter Soat,  473
Shear stress in a pipe, 117
Weight on a string, 146

Buoyancy, 316,473,589
Convection, 332
Conversion table for units, 809
Drag, 279, 281, 473, 567

Sphere, 589
External, 279
Frictional, 353
Gravitational, 316,332,351,473,  589
Inertial, 332, 351, 353
Pressure, 279, 332

Atmdspheric,  283-285
Surface tension, 351
units, 8
viscous, 351,353

Form drag, 597
Fouling factors, 530,531
Fourier

Law, 19,30,  %
Curvilinear coordinates, 30, 136
Radia l ,  %
Vector form, 30

Number, 338,679,684,686
Series for transient, 654

Free body, 280,2&?-285
Free diiTusion cell, 697
Free 735energy,
Free-settling velocity, 589
Friction factor, see also Fluid flow, 257-260

Charts and correlations, 406-440
Newtonian fluid,  259, 412
Non-Newtonian fluid, 778
von Karman plot, 418

Coefficient, see Drag Coefficient

Darcy,  257
Definition,  236,257,404
Drag reduction, 420,780
Effect of roughness, 409
Equation

Blasius, smooth tube,  258
Colebrook, rough pipe, 413
Lamillar, 257,260
Nikuradse,  rough pipe, 413
von Karman, smooth  tube, 258,261

Fanning, 236,257,334,337,404,409
Charts, 259,412,418
Dimensional analysis, 341

Heat exchanger, banks of tubes, 628
Laminar flow, 257
Non-Newtonian flow, see Non-Newtonian
Packed beds, 620
pipe

Rough, 413
Smooth, 258,403-409

Transition, 414
Tube, see Pipe above
Weisbach, 257

Friction loss
Dimensional analysis of, 341
Energy equation, 295
Factors, definition of, 424

Table of, 435
Manifolds, 429
Non-Newtonian flow, see Non-Newtonian
Sudden contraction, 426
Sudden enlargement, 424

Friction velocity, 226,257
Friend-Metzner  analogy, 519

Non-Newtonian, 785
Froude number, 332,336,374,378
Fully developed turbulent flow, 206

Galileo,  340
Number,  609

Gas law, see Ideal gas law
Constant, table of, 806

Gases, see item wanted
Gauge pressure, 279
General property balance, covered in Chapter

3,60-89
Incompressible fluid,  85
Integral methods, 268
Turbulent flow, 210

Generalized chart for unsteady-state beat or
mass transfer, 669

Generation, 62,65,  103-125
Heat (energy), 104, 143, 332
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Generation (co&f.)
Mass, 104
Momentum

Dimensional analysis, 332
Gravitational field, 110
Pipe flow, 109
Pressure drop, 109

Slab, 106
Species A, 273
Summary table, 103
Symbols, 103
units, 103
Variable, 124
Wire, 105

Geometric similarity, 353,371,373,384
Gradient (grad) of a scalar, 79

Curvilinear coordinates, 136
Graetx  number, 338
Graham’s law of diffusion, 184
Grashof number, 334,338
Gravitational

Acceleration (sea level), 807
Conversion constant, 8, 809
Force, see Force, gravitational

Gravity
Columbus, Ohio, 110, 154
Role in generation, 110, 120
Standard acceleration of, 807

Grober charts, 682

Hagen-Poiseuille  law, 116-118
Laminar flow of an ideal gas, 183

Heat balance, see Energy balance
Heat capacity

Constant 26, 287pressure,
Constant volume, 58, 287
Conversion table for units, 809
Ratio, 466, 720
Solid, 650

Heat conduction
Basic discussion, 30-32, 494-505
Fourier’s law, 19
Through composite walls, 4%
Unsteady-state, see Unsteady-state/Heat

transfer
Variable area, 95-101

Heat convection, see Heat transfer/Convection
Heat exchanger, 526-546, 626-634

Contact resistance, 530
Countertlow,  527-528
Cross-flow, 539
Design equation, 502

Double-pipe, see Double-pipe heat exchan-
ger, 526-539

EnthaIpy  balances, 532,536
Flow system, 288 c

Fouling factors (resistance), 530
Heat transfer coefficients,  529,626
Log-mean temperature difference, 535
Multipass

Design equations, 541
1-2 heat exchanger, 542
2-4 heat exchanger, 542
No phase change, 541
Phase change, 543

Equipment, 539
Overall  heat transfer coefficients, 528
.Parallel  (cocurrent)  flow, 527-528
Shell-and-tube, 539
Temperature notation, 526, 626

Approach temperatures, 528
Driving force for heat transfer, 528
Inlet and outlet temperatures, 527
Range of each stream, 528
Temperature distribution, 528

Heat flux, see Flw
Heat transfer 1

Agitation, 380
Analogies, see Analogies, 516-526
Basic discussion, 18
Boundary layer, flat plate, 158, 571
Coe&icients, 235

Agitated vessels, 380
Boundary layer

Lam&r,  574
Turbulent, 575

Conversion table for units, 810
Flat plate, 574
Fouling, 531
Individual, 500

Typical values, 530
Laminar fIow,  506
Linear overall, 535
Liquid metals, 514
Overall, 528
Shell-and-tube heat exchangers, 539
Turbulent flow, 512
Typical values, 530

Conduction, see Heat conduction
Constant generation, 104
Convection, 187,493
Correlations

Laminar, 506
Liquid metals, 514
Turbulent, 512
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Cylinders
Banks of tubes, 626
SinglecyIinder,62.3  *

Dimem3ional  analysis, 342,347
Duct flow, covered in Chapter 11,489-550
Equation for transient, 645
Flat pIate.  571-597
Fluidixed  bed, gas-solid,  610
Generation, 104
Heat exchanger, see Heat exchanger
Laminar now, 506-512

Flat plate, 571
pipe  or tube., 145,150,506-512
Rhedogicai  material, 784

Liquid metals, 514
Mechanism of, 53
Negligible internal resistance, 647
Non-Newtonian fluids, 785
One-dimensional, 19,30,%
Outside tubes

Siie tube, 623
Tube bank, 626

Packed bed, 621
Pipe wall, 97-100,499-504
Pipes, covered in Chapter 11, 469-550
Radiation, 493
Resistance, 494
Slope at the wall, 504
Sphere, 599

Packed beds, 621
Three-dimensional, 30
Transient, see Unsteady-state below, plus

separate entry
Tubes or pipes, covered in Chapter 11,

489-550
Turbulent, 228
Turbulent flow (smooth tubes)

Analogy, see Analogy
Colbum  analogy, 517-519, 613
Correlations, 512-526
Dittus-Boelter correlation, 513
Equations of change, 223
Flat plate, 575
Friend-Metzner analogy, 519
Fully developed, 512
Liquid metals, 514
Non-Newtonian, 785
Reynolds analogy, 236
Rheological  material, 785
Sieder-Tate correlation, 513
Sleicher-Rouse correlation, 514

Unsteady-state, 645
Finite slab and cylinder,  652

Lumped capacity method, 650
Negligible internal resistance, 647
Temperature variable, 653

Heat transport, see Heat transfer
Heated wire, 104
Heisler  charts, 669

Multidimensional, 684
Henry’s constant or Henry’s law, 57
Hindered settling, 598
Hooke’s law,  765
Hot-film  anemometer, 205
Hot-wire anemometer, 205, 480
Hydraulic radius or diameter, 456
Hysteresis

Fhlidixed  beds, 608
Rheology, 761

Ideal
Flow, 578

Potential flow, 579
GZ3S

Concentration, 36-39, 102, 174,716
Density, 720
D-ion  equation for, 6, 174-179,320
Heat capacity, 720.
Monatomic, 718, 720
Table of ideal gas constants, 806
Transport properties, 720

Impeller(s), agitation, see Agitation
Incompressible flow

Bernoulli equation for, 297,323
Discussion, 83
Equation of continuity, 139

Species A, 142
Equation of energy, 143
Equation of motion, 147
Equations of change, see Equation/Change
General balance equation, 85

Newton’s law, 135
Induced velocity, 164
Inertial force, see Force, Inertial
Input, 62
Inspection analysis, 330
Insulation, 500

Optimum thickness, 503
Integral methods of analysis, covered in Chap-

ter 7, 265-326
Energy balance, 286

Equation, 290
Equation, 268
Equations of change, 268-305
Individual species, 273
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Integral methods of analysis (co&.)
Mass balance, 270
Momentum balance, 275

Equation, 277
Force balance and Newton’s second law,

278
Integral

CoIlision,  721, 798 -._
surface, 269

Integration
Analog simulation, boundary layer, 559,573
Simpson’s rule, 213, 252
Trapezoid rule, 213

Intensity of turbulence, 218, 363
Intermolecular forces, 9
Internal energy, 287
Itrotational  flow, 580

Jet, comparison of elastic fluid with inelastic
fluid, 764

j-factor, see Colbum

Kelvin model, 766
Kinematic viscosity, 27
Kinetic

Energy, 288
Correction factor, 292

Reynolds number graph, 292
First law of thermodynamics, 289

Eyring  approach, 733
Tlleory  of gases, 714

Cohision  frequency, 715
Heat transport, 718
Mass transport, 719
Mean speed, 715
Mean-free-path, 715
Momentum transport, 719
SeIfdilIusion  coefficient, 719
Thermal conductivity, 718

King’s law, 626
Knudsen di#usion  (flow), 183

Coefficient, 183,184
Number, 183,338

Kozeny  (Koxeny-Carman)  equation, 620

Laminar  (flow)
Boundary layer, see also Boundary

layer/Laminar,  157, 557
Equation of motion, 147
Fittings and valves, 439
Hagen-Poiseuihe,  116

Heat transfer, 506-512
constant heat rate, 507,509
Constant heat rate or flux, 507,509
Constant wall  temperature, 507,508
Entry region, 510
Flat plate,  571
Fully developed, 506
Pipe or tube, 145,150

NavierYStokes,  147
Parallel plates,  119
Pipe tlow,  113,403
shear stress, 117
Sublayer, 231,236, 240 \
Table of equations, 117
Transition to turbulence, see Transition
Tube flow, 113-119
Velocity distribution (profile), 113, 115, 117,

148,509
Parallel  plate, 119-124
Pipe or tube, 117,240-257

Laminated walk,  heat conduction in, 494-505
Laplace

Equation, 579, 588
Two-dimensional, 580

Operator, 81, 136,643
Transform for unsteady-state, 665

Laser, 212
Leading edge of boundary layer, 202
Least souares.  736.761.774.776
Le Bas itomic  and molar volumes, 743, 799
Lennard-Jones  12-6 potential, 721,7%

Table of parameters, 7%
Lewis number, 316
Linear overah  coefficient, 535
Liquid metals, heat-transfer coefficients, 514
Liquids, see item wanted
LMTD, 535

Heat exchanger correction factors, 541-546
Local  drag coefficient, 562
Log-mean

Area, 98,501
Temperature ditIerence  (LMTD), 535

Lumped capacity method for unsteady-state
heat transfer, 650

Mach number, 338
Magnetic flow meter, 480
Manometers, 305

Gas process fluid, 309
Liquid process fluid, 308
Traps, 310

Mass average velocity, 74, 162, 344
Mass balance, see also Equation of continuity



IIntegrai,  270
For one species, 148
OveraIl,  unsteady-state, 270

Mass diffusion, seealsoh4amdBfusion
phenomena

Axial, 612
Between two phases, 611
Binary *

Gases, 172
Liquids, 179

Comparison with heat or momentum trans-
fer, see Analogy

Constant generation, 104
Driving forces, 169
Eddy diffirsivity,  228
EtIttsion,  185
Equimoiar counter diffusion, 34, 173
Fick’s law

One-dimensional form, 21
Radial direction, 96
‘Ihree-diiensionai  form, 32

Free, 697
Gases, binary, 172
Graham’s law, 184
Knudsen, 183

Coefficient, 183,184
Transition, 184

Laminar flow, 158
Liquids, 179
Mechanisms of, 53
Multicomponent, 186
Packed bed, 621
Pressure diffusion,  182
Pressure gradient, 182
solids, 180
Stagnant film, 33, 172, 175, 180
Thermal, 188
Transient mass diffusion, see Unsteady-state
Turbulent, see Analogy
Unequimolar counter, 172, 180
Velocities, 164

Mass diffusion phenomena, 161-188
Binary mass difhuion  in gases, 172
Convected Coordinates, 161
Convective Bun,  162
Counter ditIitsion with non-zero fluxes, 177
Diffusion due to a pressure gradient, 182
Diffusion  through a stagnant film, 175
Equimolar counter dilIusion,  173
Fick’s law, general forms, 169
Fluxes, see Mass fluxes
Knudsen, 183
Liquids, 179
Multicomponent  diffusion, 141, 186
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Pressure gradient, l82
solids, 180
stagnant film, 175
Stationary coordinates, 161 -
Tlmx or more components, 186

jb48~~ diffmivity,  see Diffusion coe4Ment
Mass Row rate, 271
rbfti~~  Diivity,  see Diffusion coefficient,  46

EddydifhGvity,22R
Mass fluxes, 35,165,168

Binary systems, 165
tknveeted  coordinates, 162
Fkk’s  law, 168
Stationary and convected coordinates, 161
Tabular summary of, 165
Total  flux, 169
Turbulent, 187 b-v
Various definitions, 165

Mass transfer, see aiso Mass Diiion and
Mass Diiion phenomena, 21,187

Boundary layer, flat  plate, 158
Constant generation, 104
Duct flow, covered in Chapter 11,489-550
Equimolar counter diffusion, 34
External forces, 188
Fiat  plate, 577
Fluidized bed, gas-solid, 611
Flux, 35
Laminar flow, 5Ou  -512
Packed bed, 621
Pipe flow, covered in Chapter 11,489-550
Pressure diffusion, 188
Sphere, 599
Thermal diffusion,  188
Transient, see Unsteady-state
Tube  flow, covered in Chapter 11,489-550
Turbulent flow, 228,515

Fully  developed, 512
Gilliland-Sherwood  correlation, 515
Harriott-Hamilton, 516
Wetted-wall column, 515

Mass transfer coefficients
Analogy, 516
Conversion table for units, 810
Detinition, 235
Film theory, 236
Fhtidized  beds, 611
Packed beds, 621
Penetration theory, 238
Pipe flow, see Analogy
Reynolds analogy, 236
Sphere, 599
Tube flow, see Analogy
Turbulent pipe ftow,  228



Mass transport, see Mass transfer
Mass velocity, 74
Material balance, 9
Matrix

Finite difference  analysis, 685
Tridiagonal,  691

Maxwell model, 765
Mean

Free path, 182,715-716
Kinetic theory, 714

Speed, 715
Square speed, 718
Square velocity, 216
Temperature (bulk), 505-506
Velocity, 206,271

Measurement
Flow, 459

.  N o d e ,  4 6 9
Orilice  meter, 460

Coefficient, graph, 465
Gases, 466
Liquids, 462

Other means, 479, 480
Pitot tube, see Pitot tube
Rotameter, 465, 471
Turbine flow meter, 479
Venturi meter, 300, 469

Pressure, 481
Summary of flow-measuring devices, 460
Temperature and concentration, 482, 483
Transport coefficient, 745

Mechanical
Energy balance, 295-305

Engineering Bernoulli equation, 297
Equivalent of heat, 807
Model, 765

Metering devices, see Measurement/Flow
Methods of analysis, covered in Chapter 8,

327-356
Minimum

Entrainment velocity, 606
Fluidixation  velocity, 601
Transport velocity, 606

Mixing, see Agitation, 361
Mixing length, see Prandtl
Mixture, 361

Gas viscosity, 800
Modeling and models, 353

Similarity, 353
hbduhs,  Maxwell model, 765
Molar

Average velocity, 75, 165
Flux, 169
Volume, 798

Transport, 72
Chapter 4 on, *l28

Velocity, 715
Weight for air, water, 813

Momentum
Balance, see Equation of motion

Integral, 275
Basic discussion, 23,40
Correction factor

Lamhar  flow,  278
Turbulent flow,  278

Integral, 275
Transfer, see Boundary layer, Fluid flow,

Laminar flow, Turbulent flow,
Velocity

Generation, 108
Table, 111

Reynolds equations, 222
Momentum Diffusivity, 27,46
Momentum flux, see also Shear stress, 23,41

Conversion table for units, 811
Non-Newtonian Ruid,  773
Turbulent, 227

Momentum thickness ‘of boundary layer, 562,
5 7 3

Monatomic gas, see Ideal gas
Moody diagram, see Fanning friction factor
Multicomponent di&rsion (three or more com-

ponents), 141, 186
Multipass heat exchanger, see Heat exchanger

Nabla operator, see Del
Natural convection, 335
Navier-Stokes equation, 146,296, 557, 587

Constant density and viscosity, table, 147
Newtonian fluid, see also Laminar flow, Rheol-

ogy, 405, 775
Expressions for stress tensor, 137

Newton’s law
Cooling, 493
Cooling or heating, lumped capacity method,

650
Second law of motion, 8, 109, 110, 279

Force balance, 279
Sphere, 592
Viscosity, 23, 51, %,  135, 755

Radial, 96
Vector form, 41

Newton’s method, roots of equations, 407
Node, 686
Nomenclature, see beginning of each chapter
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N&&&&  phen&&,  covered in Chap-
z;zb 752+j$  i&ml  under

Gemaal  discussion, Z $1.8
Chapter2,52 ’ --
Caapter  4,118
Chapter 10,4@3,4M
Chapter 14, 745
Chapter 15,  en&e  chapter, 752-790

M a t e r i a l ,  7 5 5
Reynolds number.  773

Non-uniform gas theory,  721
Nomiredar

Conduits, 455
Equivalent diameter, 456

Annulus,  457
Open channel, 457
Rectangular, 456

Rectangular, 456
Secondary flow, 455

Pipes, 455
Nondiffusional  average velocity, 163
Nonviscous flow, 578
Normal stress, 42
No-slip-at the wall, 22, 157, 201, 334, 557, 772
Nozzle, flow, 469
Nuclear heating effects, 143
Number-listed under name, for example, see

Nusselt number
Nusselt number (heat transfer), 334,337

Agitation, 374,382
Nusselt number (mass transfer), see Sherwood

number

operators
Del (nabla), 31, 79, 136
Laplacian, 81, 136,643

Or&e  meter, see Measurement/Flow
Ostwald

Curve, 762
de Waele model, 758

Output, 62, 64
Overall balances, see type
Overall heat transfer coefficient, 528

Packed bed, 619-623
Burke-Plummer equation, 620
Ergun  equation, 620
Heat and mass transfer, 621
Hydraulic radius, 619
Koxeny-Carman  equation, 620
Pressure drop, 619
Reynolds number, 620
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Spheres, bed of, 621
Pai’s  equation for velocity distribution,

250
Parallel

Cocurrent  heat exchanger, 527 -
Plates

Laminar flow, 29, 119-124

83!l

245-

Kinetic energy correction factor, 293
Partial

Differential equation, parabolic, 644
Molar volume, 163, 170
Pressure, 36

Particle
Reynolds number, 592
Spheric&y, 611

Particulate fluidixation,  602,613
Path lines, 586
Peclet  number

Heat, 331, 336, 624
Mass, 331, 336

Penetration theory, 236
Higbie’s solution, 238

Perfect gas, see Ideal gas
Periodic function, 655
Permeability constant, 182
Phases, 7
Physical constants, 806
P i

Constant, 807
Theorem of dimensional analysis, 346

pipe
Area

Flow area, 97,269-270
Transfer area, 97

Coiled or curved tubes, 422
Entry region

Laminar, 563
Turbulent, 568

Equivalent length method, 431-442
Fittings, 430-442
Flow

Dimensional analysis, 341, 345
Heat and mass transfer, 489
Laminar, 403
Turbulent, 225, 406

Friction factor, see Friction factor
Charts and correlations, 406-440
Definition, 236, 257, 404

Heat or mass transfer through wall, 97,499
Mechanical characteristics, 803
Pressure drop

Trial and error solution, 417
Velocity head concept, 421
Von Karman number, 417



Pipe (cotlid.)
Reynolds number, 200
Rough, turbulent, 246, 413
Schedule number, 431, 808
Systems, 409

Complex flow systems, 443
Conical expansion or diffuser, 427,428
Contraction

Losses, 424
Sudden, 426

Curved tubes, 422
Secondary Bow, 423

Expansion
Loss coefficient, 424
Losses, 424
Sudden, 424

Fittings and valves, 430
Equipment design, 430
Lamioar flow, 439
Pressure loss, 43i

Gases, 442
Noncircular, 455
Roughness, 409

Pressure drop, 413
Table for standard steel, 803
Valves, 430-435
Velocity head method, 421,453

Piping systems, see Pipe Systems
Pitot tube, 313, 476,478
Planck’s constant, 807
Plane wag, see Slab
Plate-and-cone viscometer, 777
Pneumatic transport, 606
Polymer(s)

Rheology, 755
sohltioos, 420

Porosity, 6%
Porous media, see Packed beds
Potential

Energy, in energy balance, 295
In energy equation, 288

Flow of fluids, 579
Flow of heat

Laplace  equation, 579
Function, 579
kenmud-Jones,  721.796
Stockmayer, 799

Pound force, 8
Power

Conversion table for units, 811
Law model, 758, 772
Number, 338,374,375
Requirementa, for agitated tank, see

Agitation/Design variables/Power

waeregio&23@2  -
Number, 331,336,374

Prediuioaoftra#p@properties,coveredht
chapter 14,.*1-751

-,5
Atmosphere  (-1. ffo6
Cmvemioo  table for  uttita,  811
Dieereoee  (drop), 25

bfi0h~  i0 erddizption, 609
Packed bed, 619
pipe

Rough, 413
Trial  and error solution, 417
Velocity head concept, 421
Voo Rarman  number, 417

Tube bank, 628
lliebsioo, 182
Gauge, 279
Hydrostatic, 308
Gradient diffusion, 182
Loss in fittings and valves, 431
Measurement,  481 f
Partial, 36
static, 305
Tap.  460
Variation with depth, 319

Problem-solving procedure, 144,2%
Properties of water and air, covered in Appett-

dix A, 791-801
Property balance

Accumulation, 66
Convective transport, 72
Equation, 67,77

Three-dimensional, 77
General, 60,62,63
Generation, 65
Incompressible fluid, 85
Molecular transport, 72

Property number, 352
Pseudoplastic thud,  756
Pseudo-shear rate, 405, 772
Pumping number, 338,374,379
-ps

Cavitation, 451
Design, 455
Power requirements of, 447-455

Rabmowitsch-Mooney equation, see
Weisseoberg-Rabinowitsch-Mooney
equation
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Random @tioo or walk, 5%  * .
R a t e

Defommti00.165
Equation, general, l&i9

Driviog  force, 19
Resistaoce,  1 9  ‘.

m.5
Reaction, 108,125,178
Strain tensor, 756
Theory of Eyring,  733

Ratio of heat capacities (specific heats), 466,
720

Rayleigh method in dimensional analysis, 339
Reducing elbow, 280-285
Reduction, sudden, 426
Reiner-Philippoff fluid, 759
Resistance, 493,494

Convection, 500
Heat flow through composite walls, 494-505
Heat transfer coefficients, 500
Negligible internal, for unsteady-state heat

transfer, 647
Thermal, 19,494-505

Reynolds
Analogy, 236
Equations, incompressible turbulent Row,

220-223
Experiment, 198
Modeling, 353
Number, see also specific application, 200,

330
Agitation, 374, 375
Characteristic length, 204
Dimensional analysis, 341
Non-Newtonian, 773
w%  2cm
Solvent, 781

Rules of averaging, 214,221
Stress, 223

Rheological  characteristics of materials, 755
Rheology, see also Non-Newtonian flow, 755

Agitation, 783
Basic shear diagram, 756
Capillary viscometer, 771

Measurement, 773
Cmstitutive  model, 765
Deborah-number, 767
Deformation, 755
Drag reduction, 780
Heat transfer in laminar  flow, 784
Hooke’s law, 765
Kinetic model, 769
Measurements, 770 ”
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Mechanical model, 765
Molecular model, 768
Reynolds number, 773
Rotational viscometer, 777

-Superposition principle, 768
Tie-dependent ,  761

Mechanical and constitutive model, 765
Viielastic,  762

Time-independent, 756
Empirical equation, 758
Pseudoplastic Cd,  757

Turbulent flow, 778
Heat transfer, 785

Viscoelastic  behavior, 762
Weissenbcrg effect, 763
Weisseoberg, Rabiiowitsch, and Mooney re-

lation, 772
Roots of equations, 407

Basic program, 626
Newton’s method, 407

Rotameter, 471
Rotating liquid, shape of surface, 370

Vortex flow, 369
Rotational

Flow, 580
Viscometers,  777

Rough pipes, see Pipe/System
Pressure drop, 413
Universal velocity distribution, 246

Rotameter, 471
Rotational viscometer, 777

Scalar, 814
Scale-up, see Agitation/Scale-up, Modeling

and models, Similarity
Schmidt number, 331,336,374
Self-diffusion coefficient in gases, 719
Semi-iniinite solid, 698
Separation

Of boundary layer, 564,5%
Of variables, 28, 656

Sets, completeness of, 350
settliog

Hindered, 598
Velocity of a sphere, 589

Shear
Diagram, basic, 756, 772, 773
Modulus, 765
Rate, 135

Newton’s law, 135
Pseudo, 405, 772
Tensor, 41
Transposed tensor, 41
wall, 117,405



shear (cckrd)
stress,  see also Stress, 6, 23, 41, 117, 135,

377,404,756
Conversion table for units, 811
Newton’s law, 135, 137,755
Non-Newtonian. 773
Phrallel  plates, 122
Pipe, 117,404
Tensor, 42,756
Turbulent, 227
Velocity gradient relationships, 137
wall, 117,226,236,404

Thickening, 756
Thinning, 756
Viiity. see Viiity

Sherwood number, 334,337,374
SI units, see units
Sieder and Tate correlation, 513
Similarity

Agitation, see Agitation/Geometric
similarity

Boundary layer solutions, 558
Modeling, 353
Variable, 558
von Karman  hypothesis, 242

Simpson’s rule, 252
Single cylinder heat transfer, 623
Siphon, 299, 325
Sisko model, 758
Slab

Heisler and Grobcr  charts, 670
Infinite, 6%
Resistance, 495
Semi-infinite, 698
Steady-state conduction, 494
Transient, 652

Sleicher and  Rouse correlation, 514
Solid(s)

DiEusion  of mass, 180
Transient, see Unsteady-state

Flow of &ids  containing solids, 600
Gas, see Fluidization
Heat transfer

Steady-state, 494-500
Transient, see Unsteady-state

Liquids, see Fluidization
Typical values of transport properties, 50

Soret  effect, 188
SpWifiC

Gravity, 118
Volume,  554

Speed
Definition, 815

.II _,

Mean relative. 717
Mean-square,‘718
Sound, 736

Thermal conductivity and, 736 -
Tip, 374

Sphere
Bed of spheres, see Packed beds
creeping 8ow,  378,587
Drag coefficient, 591
Flow over, 578
Force on, 588
Heat and mass transfer between sphere and

fluid, 599
Heisler and Grober charts, 680
Hindered settling, 598
Ideal flow, 587
Mass transfer, 599
Reynolds number, 592
Stokes law, 587
Terminal velocity, 592
Transient conduction, 702
Wall effects, 598

Spherical coordinates, 816
Table for del, 136

Sphericity, 611 1
Spouted bed, 605
Stability of finite difference methods, 686
stagnant tilm

Diffusion  through, 175
Film theory, 236

Stagnation point, 5%
Stanton number, 335,337
Statics, fluid,  305

Manometer, 305
Steady-state transport, 103

Constant generation, 104
Momentum with generation, 108

Steel pipe, dimensions, 803
Stefan-Boltzmann  constant, 493, 807
Stefan-Bohzmann  law of radiation, 187, 493
Stirred tanks, see Agitation
Stokes

Fiow past a sphere, 587
Law, 588,589

Hindered settling, 598
Strain

Maxwell model, 765
Tensoriai,  756

Streak lines, 586
Stream function

Boundary layer, 558
Ideal flow, 599

Streamline flow, see Laminar  Bow
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Streamlines, 581, 586
Stress, see also Shear stress, 41

Eddy, 224
Normal, 42
Reynolds, 223
Shear, 41
Tangential, 42
Tensor, 42

Normal stresses, 42
Shear stresses, 42
Tangential stresses, 42
Turbulent flow, 227

Strouhal number, 338
Sublayer  and buffer zone, 240
Submerged objects, buoyant force on, 316
Substantial derivative, 160, 644
Sudden

Contraction, 426
Expansion, 426

Superficial velocity, see Velocity/Superficial
Superposition

Of solutions, 684
Polymer data, WLF, 768

Surface
Force, see Force, Surface
Integral, 269
Tension, 333, 351

Surroundings, 286
System, 286

Flow, 288

Range, 528
Wall, 505

Temperature distribution
Boundary layer, 572
Equal eddy ditisivities,  250 -
Generation in a slab, 106
Generation in a wire, 105
Heisler and Grober charts, 669-684
Laminar flow in a tube, 150
Turbulent flow in a pipe, 250-256

Temperature profiles, see Temperature
distribution

Tensors, 41, 816
Second order, 42, 215,816
Symmetry, 44
Transpose, 41, 816

Terminal velocity, 589, 592
Reynolds number based on, ,614

Theory, see specific application
Thermal, see Heat or the specific topic

Boundary layer thickness, 573
Conductivity, see separate entry
Eddy diffusivity, 228

Thermal conductivity, 47
Chapman-EnskFg  $eory  for gases, 722
Conversion table for units, 811
Definition, Fourier’s law, 19
Empirical correlation for gases, 731
Eucken correction, 723-724
Experimental values, 48-50
Gases, 48

Taylor Kinetic theory of gases, 718
Instability, 203 Liquids, 49, 736
Series, 735 Measurement, 746

Temperature, 5 Monatomic gases, 723
Approach, 528 Non-uniform gas theory, 722
Average, 505 Polyatomic gases, 723
Bulk, 505 Prediction, supplement to Chapter 14, 796

Mean, 506 Solids, 50
Conversion table for units, 812 Typical values, 48-50
Critical, 798 Thermal diffusion, contribution to mass flux,

Water, 793 1 8 8
Difference, log-mean, 535 Thermal diffusivity, 26, 46
Distribution, see Temperature distribution Thermal resistance, see Resistance
Film, 505, 626 Thermister, 484
Fluctuations, 217 Thermocouple, 482
Gradient, 19 Thermodynamics
Mean bulk, 505 First law, 286,289, 649
Measurement, 482 Irreversible processes, 741
Melting point, 798 Thixotropic  fluid, 761
Mixing cup, 505 Time
Profiles, see also Temperature distribution, Average

1 9 Turbulence, 211,216
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Time (contd.)
Average (contd.)

Velocity, 206, 211
Contact, 238
Deborah number, 338, 767
Dependent

Material, 761
Phenomena, see Unsteady-state

phenomena
Independent material, 756
Relaxation and retardation, 760

Molecular model, 768
Tip speed, 374
Torque, see Agitat ion/Design variables/

Torque
Conversion tables for units, 373, 812
Couette  viscometer, 156

Torricelli’s  law, 272, \
Total

Flux,  168,169
Mass flux equations, 170
Transfer in unsteady-state by generalized

chart, 681
Transfer

Heat and mass in duct and pipe flow, 489
Pipe, laminar,  506

Transfer coefficients, see also Heat transfer
coefficient; Mass transfer coefficient;
Friction factor

Transient phenomena, covered in Chapter 13,
see Unsteady-state phenomena

In rheology, 761
Transition

Conical diffusers, 428
Fhridization,  609
Knudsen diffusion, 184
Laminar to turbulent

Flat plate, 201
Pipe fldw, 198, 204,206; 407

Sphere, 596
Transitional flow, 198, 201, 206

Flat plate, 201
Transport

Balance, kinetic theory of gases, 717
Coefficient

Estimation, 711
Gas, 714

Empirical correlation, 731
Liquid ,  733 ’
S o l i d ,  7 4 5

Constant area, 95
Convection, covered in Chapter 5

To generation ratio, 331

Convective flux, 129
Ducts

Fluid flow, covered in Chapter 10,400-488
Heat and mass transfer, covered in Chap-

ter 11,489-550
Equations

Analogous forms, 27
Vector form, 31

Heat, 187
Hydraulic, 604
Mass, 187
Molecular to convective ratio, 330
Momentum, 108
Past immersed bodies, covered in Chapter

12,551-639
Pneumatic, 606
Properties, prediction, covered in Chapters

14, 15, ‘Appendix A
Steady-state, one-directional

Constant generation, 104
Generation, 103
No generation, 93

Transient, see Unsteady-state
Turbulent conditions, 210
Unsteady-state, see Unsteady-state
Variable

Area, 95
Generation, 124

Transport properties, see Diffusion coefficient,
Thermal conductivity, Viscosity; co-
vered in Chapter 2, Chapter 14, 711-
751, and Chapter 15, 752-790

Trapezoid rule for numerical integration, 213
Traps, manometer, 310
Tube (smooth), see also Pipe

Bank (bundle), 539,626
Cross flow heat transfer, 629
Flow across, 626
Notation, 627
Reynolds number, 628

Dimensions of condenser and heat-
exchanger, 805

Entrance length, see Pipe
Flow with wall roughness, see Pipe
Friction factors

Charts and correlations, 406-420
Definition, 236, 257, 404

Heat exchanger tube data, 805
Heat transfer coefficients, see Heat transfer
Laminar flow, see Laminar flow
Mass-transfer coefficients, see Mass transfer
Non-Newtonian flow, see Non-Newtonian
Turbulent diffusion, see Mass transfer

To molecular ratio, 330 Turbulent flow,  see Turbulent flow
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Turbine
Flow meter, 479
Impeller, 366

Turbulence
Analogies, 234

Eddy diffusivity, 234
Eddy heat and mass difhtsivities,  234

Closure problem, 227
Coefficient, 228
Coherent structures, 208
Continuity equation, 223
Description of, 198
Distance dimensionless, 231
Equations

Channel flow, 226
Pipe flow, 226
Transport, 210

Fluctuating quantities, 216
Friction factor for pipe or tube, 236, 237,

404,406-420
Heat and mass transfer, 22%
Intensity of, 218, 363
Logarithmic distributions, 240
Models, 227

Analogies, 234
Heat and mass diffusivities,  234

Boussinesq theory, 227
Eddy viscosity, 228
Exchange coefficient, 228
Turbulent coefficient, 228

Fihn  theory, 236,237
Other models, 239
Penetration theory, 236, 238
Prandtl mixing length, 229

Assumptions, 230
Surface renewal theory, 239
Unsteady state flow over a flat plate, 239

Time-averaged values, 211,216
Transport equations, 210
Velocity distribution, 240

Defect laws, 248
Generation zone, 240
One-seventh power law, 243
Pai  power law model, 244,249
Parabolic defect law, 243
Power law, 248
Rough pipes, 246
Similarity, 242
Turbulent core, 240
Universal, 247
Van Driest model, 243
Velocity defect laws, 243
Viscous sublayer, 240

Velocity, dimensionless, 231

Turbulent
Boundary layer, see Boundary layer/

Turbulent
Eddies, 207
Flow, see also fluid flow, covered  in chapter

6,195-264
Analogies, 234
Channels, 225
Cylinders, 594
D i s k s ,  5 9 4
Equation, 210
Flat plate, 208
Fully developed, 206
Heat transfer, see Heat transfer/Turbulent

R o w
Mass transfer, see Mass transfer/

Turbulent flow
Non-Newtonian, 778
Pipes, 225,406

Transfer, 512
Reynolds

Equations, incompressible, 220
Experiment, 198

Rheological,  778
Rough  pipes,  246
sohere%  591-594
Transfer,  fully developed, correlations,

5 1 2
Tubes, see Pipes above

Stress, 227
Velocity distribution, see Velocity/

Distribution
Vortices, agitation, 368 ,

Ultrasonic flow meter, 480
Unaccomplished temperature change, 669
Unequimohu  counter diffusion, 172
Unit operations, 4
Units and conversion factors, see also Conver-

sion factors
Dimensional analysis, 335
Discussion, 7
English, 8,24
.SI,7,25

Base units, 807
Prefixes, 808
Table of derived units, 808

Unsteady-state
Accumulation, 643
Basic equations, 644
Boundary layer, 202
Cylinder, 701
Difision, infinite slab, 697
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Unsteady-state (con&)
Finite  difference solut ion,  see Fini te

difference
Fourier series, 654
Generalized chart, 669

Biot number, 669
Cylinder and sphere, 679
Slab or flat plate, 669
Total transfer, 681
Unaccomplished change, 669

Grober charts, 681-683
Heat transfer

Biot number, 647
Equation, 645
Finite slab and cylinder, 652
Lumped capacity method, 650
Negligible internal resistance, 647
Temperature variable, 653
Total heat transferred, 650

Heisler charts, 669-679
Infinite slab, 6%
Laplace  transform, 665
Mass balance, overall, 270
Mass transfer, 646
Nomenclature for charts, 672
Numerical solution, 685

Convection boundary condition, 687
Crank-Nicholson method, 691
Explicit method, 685
Insulated boundary, 686
Mass transfer, 688

One dimensional, heat or mass transfer, 652
Semi-infinite slab, 698
Slab, 669
Sphere, 702
Two dimensional, heat or mass transfer, 684
Transport, 640

Two- and three-dimensional systems, 684
Unsteady-state transport phenomena, covered

in Chapter 13, 640-707

Valves, 430
Variable area transport, 95
Variation of pressure with depth, 319
Vector(s), 30, 79, 135, 814

Curvilinear coordinates, 136
Mathematics, 814
Unit vectors, 815

Velocity
Angular, %, 156
Average or bulk, 271

General, 271
Mass, 162

Over  conduit cross section, 116,271
Defect laws, 243
Diffusion, 164
Distribution

Data, 207
Discussion, 240-257
Lam&u  equations in tube or pipe, 117,

207
P i p e ,  1 4 8
Ratio of maximum velocity to average

v e l o c i t y
Laminar,  117, 122
Turbulent, 244,248

Rotational Couette flow, 153
Turbulent equations, 233,240

One-seventh power law, 243,566
Pai’s  equations, 245-250
Universal velocity distribution, 240, 261
Velocity defect law, 243
von Kannan, 242

Entrainment, 608
Free-settling, 589
Free stream, 157, 201, 557
Friction, 226, 257
Gradient at the wall, 771

Newton’s law table, 137
Head concept, 421
Induced, 164
Instantaneous, 206, 211
Mass average, 74, 162
Mean, 206,271

Mean-square, 216
Minimum

Bubbling, 609
Fluidixation

Gas-solid, 609
Liquid-solid, 613

Transport, see Velocity/Entrainment,
Velocity/Transport

Molar average, 75, 163
Nondiffusional average, 163
Potential, 579
Profiles, see Velocity distribution equations
S l i p ,  6 0 6
Sound, see Sound
Species, 162
Superficial,  602, 613
Terminal, 589,592
Time-averaged, 206, 225, 271
Transport, 609
Volume-averaged, 163

Vena contracta
Orifice, 461
Sudden contraction, 426
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Venturi meter, see Measur&ent/FLow
Vertical k+inar llow,  116
Very &w motion (Stokes flow), 5 8 7
Viscoels#ic  fluid, 755.762
Viscolaefcr
-, 119.405,n1

Voight body, 766
Volume, 6

Atomic and molar, 7 4 3 , 799
Conversion table for units, 812
Le Bas, 743,799

- Partial molar, 163, 1 7 0
tial -c&dir, 154, m
Cone-and-plate, 777
Couette, 153,771,777
Failing bag, 771
Ostwald,  745
Rotational, 154,761,777

viscometric  flow, 405
viscosity, 51,404

Apparent, 756
Arrhenius  equation, 736
Conversion table for units, 812
Determination from tube gow data, 405
Eddy, 228
Empirical correlation for gases, 731
Experimental values, 48-49
Eyring theory for, 733
Gases, 48

Chapman-Enskog equation, 722
Empirical correlations, 52,731
U’Jetic  theory, 719

,A+ ’
Prediction, supplement to Chapter 14!

796-800
Mixtures, 800

Pressure dependence, 720
Temperature dependence, 52, 722

Kinematic, 27
Kinetic theory of gases, 719
Liquids, 49, 733

Temperature dependence, other, 52, 7 3 6
Measurement, 745
Non-Newtonian phenomena, 756
Non-uniform gas theory, 722
Plastic, 757
Typical values, 48-49

Void fraction, 6%
Volume average velocity, 163
von Karman number, 417
Viscous

Dissipation, 143, 156, 332
Forces, see Force, Viscous
Sublayer, 231, 236, 240

Visuahiation, Row, 203, 208, 763, 764
Void fraction (voidage), 606

specific, 554
Conversion table for units, 809

von Karman
Analogy, 520
Equation (correlation), 258, 261, 406
Number, 338,417
Plot, 418
Similarity hypothesis, 242

Vortex
Agitated tank, 370
Ring, 5%
Turbulent flow;-208

Wake formation, see Boundary layer/
Separation

Wag
Mass transfer rate, 238
No-slip, 22, 201, 334, 557, 772
Shear rate, 771
Shear stress, 117, 226, 236, 404
Temperature, 505
Velocity profile near, 240

Water
Comparison of transport properties, 55
Properties, 792

Weber number, 333,337,374
Weisbach friction factor, 257
Weissenberg effect, 763
Weissenberg-Rabinowitsch-Mooney equation,

7 7 2
Wetted-wag column, 515,611
Wilke-Chang correlation for diffusion

coefficient, 742
Work

Conversion table for units, 812
Force-times-distance, 289
Pressure-times-volume, 289
Shaft, 289
Total, 286

Yield stress, 757
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