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A1.1 The quantum mechanics of atoms and
molecules

John F Stanton

A1.1.1 INTRODUCTION

At the turn of the 19th century, it was generally believed that the great distance between earth and the stars
would forever limit what could be learned about the universe. Apart from their approximate size and distance
from earth, there seemed to be no hope of determining intensive properties of stars, such as temperature and
composition. While this pessimistic attitude may seem quaint from a modern perspective, it should be
remembered that all knowledge gained in these areas has been obtained by exploiting a scientific technique
that did not exist 200 years ago—spectroscopy.

In 1859, Kirchoff made a breakthrough discovery about the nearest star—our sun. It had been known for some
time that a number of narrow dark lines are found when sunlight is bent through a prism. These absences had
been studied systematically by Fraunhofer, who also noted that dark lines can be found in the spectrum of
other stars; furthermore, many of these absences are found at the same wavelengths as those in the solar
spectrum. By burning substances in the laboratory, Kirchoff was able to show that some of the features are
due to the presence of sodium atoms in the solar atmosphere. For the first time, it had been demonstrated that
an element found on our planet is not unique, but exists elsewhere in the universe. Perhaps most important,
the field of modern spectroscopy was born.

Armed with the empirical knowledge that each element in the periodic table has a characteristic spectrum, and
that heating materials to a sufficiently high temperature disrupts all interatomic interactions, Bunsen and
Kirchoff invented the spectroscope, an instrument that atomizes substances in a flame and then records their
emission spectrum. Using this instrument, the elemental composition of several compounds and minerals were
deduced by measuring the wavelength of radiation that they emit. In addition, this new science led to the
discovery of elements, notably caesium and rubidium.

Despite the enormous benefits of the fledgling field of spectroscopy for chemistry, the underlying physical
processes were completely unknown a century ago. It was believed that the characteristic frequencies of
elements were caused by (nebulously defined) vibrations of the atoms, but even a remotely satisfactory
quantitative theory proved to be elusive. In 1885, the Swiss mathematician Balmer noted that wavelengths in
the visible region of the hydrogen atom emission spectrum could be fitted by the empirical equation
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where m =2 and 7 is an integer. Subsequent study showed that frequencies in other regions of the hydrogen
spectrum could be fitted to this equation by assigning different integer values to m, albeit with a different
value of the constant . Ritz noted that a simple modification of Balmer’s formula
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succeeds in fitting all the line spectra corresponding to different values of m with only the single constant Ry,.
Although this formula provides an important clue regarding the underlying processes involved in
spectroscopy, more than two decades passed before a theory of atomic structure succeeded in deriving this
equation from first principles.

The origins of line spectra as well as other unexplained phenomena such as radioactivity and the intensity
profile in the emission spectrum of hot objects eventually led to a realization that the physics of the day was
incomplete. New ideas were clearly needed before a detailed understanding of the submicroscopic world of
atoms and molecules could be gained. At the turn of the 20th century, Planck succeeded in deriving an
equation that gave a correct description of the radiation emitted by an idealized isolated solid (blackbody
radiation). In the derivation, Planck assumed that the energy of electromagnetic radiation emitted by the
vibrating atoms of the solid cannot have just any energy, but must be an integral multiple of v, where v is the
frequency of the radiation and /4 is now known as Planck’s constant. The resulting formula matched the
experimental blackbody spectrum perfectly.

Another phenomenon that could not be explained by classical physics involved what is now known as the
photoelectric effect. When light impinges on a metal, ionization leading to ejection of electrons happens only
at wavelengths (A = ¢/v, where c is the speed of light) below a certain threshold. At shorter wavelengths
(higher frequency), the kinetic energy of the photoelectrons depends linearly on the frequency of the applied
radiation field and is independent of its intensity. These findings were inconsistent with conventional
electromagnetic theory. A brilliant analysis of this phenomenon by Einstein convincingly demonstrated that
electromagnetic energy is indeed absorbed in bundles, or quanta (now called photons), each with energy 4v
where 4 is precisely the same quantity that appears in Planck’s formula for the blackbody emission spectrum.

While the revolutionary ideas of Planck and Einstein forged the beginnings of the quantum theory, the physics
governing the structure and properties of atoms and molecules remained unknown. Independent experiments
by Thomson, Weichert and Kaufmann had established that atoms are not the indivisible entities postulated by
Democritus 2000 years ago and assumed in Dalton’s atomic theory. Rather, it had become clear that all atoms
contain identical negative charges called electrons. At first, this was viewed as a rather esoteric feature of
matter, the electron being an entity that ‘would never be of any use to anyone’. With time, however, the
importance of the electron and its role in the structure of atoms came to be understood. Perhaps the most
significant advance was Rutherford’s interpretation of the scattering of alpha particles from a thin gold foil in
terms of atoms containing a very small, dense, positively charged core surrounded by a cloud of electrons.
This picture of atoms is fundamentally correct, and is now learned each year by millions of elementary school
students.

Like the photoelectric effect, the atomic model developed by Rutherford in 1911 is not consistent with the
classical theory of electromagnetism. In the hydrogen atom, the force due to Coulomb attraction between the
nucleus and the electron results in acceleration of the electron (Newton’s first law). Classical electromagnetic
theory mandates that all accelerated bodies bearing charge must emit radiation. Since emission of radiation
necessarily results in a loss of energy, the electron should eventually be captured by the nucleus. But this
catastrophe does not occur. Two years after Rutherford’s gold-foil experiment, the first quantitatively
successful theory of an atom was developed by Bohr. This model was based on a combination of purely
classical ideas, use of Planck’s constant 4 and the bold assumption that radiative loss of energy does not occur
provided the electron adheres to certain special orbits, or ‘stationary states’. Specifically, electrons that move
in a circular path about the nucleus with a classical angular momentum mvr equal to an integral multiple of
Planck’s constant divided by 27 (a quantity of sufficient general use that it is designated by the simple symbol
Ii) are immune from energy loss in the Bohr model. By simply writing the classical energy of the orbiting
electron in terms of its mass m, velocity v, distance » from the nucleus and charge e,
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invoking the (again classical) virial theorem that relates the average kinetic ((7)) and potential ((V)) energy of
a system governed by a potential that depends on pairwise interactions of the form A via

(T} = %{v} (A1.1.4)

and using Bohr’s criterion for stable orbits
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it is relatively easy to demonstrate that energies associated with orbits having angular momentum #frin the
hydrogen atom are given by

E,=— me (A1.1.6)
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Bohr further postulated that quantum jumps between the different allowed energy levels are always
accompanied by absorption or emission of a photon, as required by energy conservation, viz.
AE=E,— E me' ( 1 ! / (A1.1.8)
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precisely the form of the equation deduced by Ritz. The constant term of equation (A1.1.2) calculated from
Bohr’s equation did not exactly reproduce the experimental value at first. However, this situation was quickly
remedied when it was realized that a proper treatment of the two-particle problem involved use of the reduced
mass of the system p = mm /(m+ m ), a minor modification that gives striking agreement with
experiment.
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Despite its success in reproducing the hydrogen atom spectrum, the Bohr model of the atom rapidly
encountered difficulties. Advances in the resolution obtained in spectroscopic experiments had shown that the
spectral features of the hydrogen atom are actually composed of several closely spaced lines; these are not
accounted for by quantum jumps between Bohr’s allowed orbits. However, by modifying the Bohr model to



allow for elliptical orbits and to include the special theory of relativity, Sommerfeld was able to account for
some of the fine structure of spectral lines. More serious problems arose when the planetary model was
applied to systems that contained more than one electron. Efforts to calculate the spectrum of helium were
completely unsuccessful, as was a calculation of the spectrum of the hydrogen molecule ion (H3) that used a

generalization of the Bohr model to treat a problem involving two nuclei. This latter work formed the basis of
the PhD thesis of Pauli, who was to become one of the principal players in the development of a more mature
and comprehensive theory of atoms and molecules.

In retrospect, the Bohr model of the hydrogen atom contains several flaws. Perhaps most prominent among
these is that the angular momentum of the hydrogen ground state (n = 1) given by the model is ; it is now
known that the correct value is zero. Efforts to remedy the Bohr model for its insufficiencies, pursued
doggedly by Sommerfeld and others, were ultimately unsuccessful. This ‘old’ quantum theory was replaced in
the 1920s by a considerably more abstract framework that forms the basis for our current understanding of the
detailed physics governing chemical processes. The modern quantum theory, unlike Bohr’s, does not involve
classical ideas coupled with an ad hoc incorporation of Planck’s quantum hypothesis. It is instead founded
upon a limited number of fundamental principles that cannot be proven, but must be regarded as laws of
nature. While the modern theory of quantum mechanics is exceedingly complex and fraught with certain
philosophical paradoxes (which will not be discussed), it has withstood the test of time; no contradiction
between predictions of the theory and actual atomic or molecular phenomena has ever been observed.

The purpose of this chapter is to provide an introduction to the basic framework of quantum mechanics, with
an emphasis on aspects that are most relevant for the study of atoms and molecules. After summarizing the
basic principles of the subject that represent required knowledge for all students of physical chemistry, the
independent-particle approximation so important in molecular quantum mechanics is introduced. A significant
effort is made to describe this approach in detail and to communicate how it is used as a foundation for
qualitative understanding and as a basis for more accurate treatments. Following this, the basic techniques
used in accurate calculations that go beyond the independent-particle picture (variational method and
perturbation theory) are described, with some attention given to how they are actually used in practical
calculations.

It is clearly impossible to present a comprehensive discussion of quantum mechanics in a chapter of this
length. Instead, one is forced to present cursory overviews of many topics or to limit the scope and provide a
more rigorous treatment of a select group of subjects. The latter alternative has been followed here.
Consequently, many areas of quantum mechanics are largely ignored. For the most part, however, the areas
lightly touched upon or completely absent from this chapter are specifically dealt with elsewhere in the
encyclopedia. Notable among these are the interaction between matter and radiation, spin and magnetism,
techniques of quantum chemistry including the Born—Oppenheimer approximation, the Hartree—Fock method
and electron correlation, scattering theory and the treatment of internal nuclear motion (rotation and vibration)
in molecules.

A1.1.2 CONCEPTS OF QUANTUM MECHANICS
A1.1.2.1 BEGINNINGS AND FUNDAMENTAL POSTULATES

The modern quantum theory derives from work done independently by Heisenberg and Schréodinger in the
mid-1920s. Superficially, the mathematical formalisms developed by these individuals appear very different;
the quantum mechanics of Heisenberg is based on the properties of matrices, while that of Schrodinger is
founded upon a differential equation that bears similarities to those used in the classical theory of waves.
Schrodinger’s formulation was strongly influenced by the work of de Broglie, who made the revolutionary



hypothesis that entities previously thought to be strictly particle-like (electrons) can exhibit wavelike
behaviour (such as diffraction) with particle ‘wavelength’ and momentum (p) related by the equation A = A/p.
This truly startling premise was subsequently verified independently by Davisson and Germer as well as by
Thomson, who showed that electrons exhibit diffraction patterns when passed through crystals and very small
circular apertures, respectively. Both the treatment of Heisenberg, which did not make use of wave theory
concepts, and that of Schrodinger were successfully applied to the calculation of the hydrogen atom spectrum.
It was ultimately proven by both Pauli and Schrodinger that the ‘matrix mechanics’ of Heisenberg and the
‘wave mechanics’ of Schrodinger are mathematically equivalent. Connections between the two methods were
further clarified by the transformation theory of Dirac and Jordan. The importance of this new quantum theory
was recognized immediately and Heisenberg, Schrédinger and Dirac shared the 1932 Nobel Prize in physics
for their work.

While not unique, the Schrodinger picture of quantum mechanics is the most familiar to chemists principally
because it has proven to be the simplest to use in practical calculations. Hence, the remainder of this section
will focus on the Schrodinger formulation and its associated wavefunctions, operators and eigenvalues.
Moreover, effects associated with the special theory of relativity (which include spin) will be ignored in this
subsection. Treatments of alternative formulations of quantum mechanics and discussions of relativistic
effects can be found in the reading list that accompanies this chapter.

Like the geometry of Euclid and the mechanics of Newton, quantum mechanics is an axiomatic subject. By
making several assertions, or postulates, about the mathematical properties of and physical interpretation
associated with solutions to the Schrodinger equation, the subject of quantum mechanics can be applied to
understand behaviour in atomic and molecular systems. The first of these postulates is:

1. Corresponding to any collection of  particles, there exists a time-dependent function (g,
5, - - - 4,5 1) that comprises all information that can be known about the system. This function

must be continuous and single valued, and have continuous first derivatives at all points where
the classical force has a finite magnitude.

In classical mechanics, the state of the system may be completely specified by the set of Cartesian particle
coordinates r; and velocities dr;/dz at any given time. These evolve according to Newton’s equations of
motion. In principle, one can write down equations involving the state variables and forces acting on the
particles which can be solved to give the location and velocity of each particle at any later (or earlier) time #,
provided one knows the precise state of the classical system at time ¢. In quantum mechanics, the state of the
system at time / is instead described by a well behaved mathematical function of the particle coordinates g,
rather than a simple list of positions and velocities.

The relationship between this wavefunction (sometimes called state function) and the location of particles in
the system forms the basis for a second postulate:

2. The product of ¥ (¢4, g5, - - -, q,,; 1) and its complex conjugate has the following physical
interpretation. The probability of finding the n particles of the system in the regions bounded by

the coordinates @)+ @3- - - -+ @uand 4y @4, . . . . @, at time ¢ is proportional to the integral
4 a
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The proportionality between the integral and the probability can be replaced by an equivalence if the
wavefunction is scaled appropriately. Specifically, since the probability that the n particles will be found
somewhere must be unity, the wavefunction can be scaled so that the equality

fw"tq._qzu..,qn: OV(q. g2, ... g ) dT = | (A1.1.11)

is satisfied. The symbol dt introduced here and used throughout the remainder of this section indicates that
the integral is to be taken over the full range of all particle coordinates. Any wavefunction that satisfies
equation (A1.1.11) is said to be normalized. The product W*W¥ corresponding to a normalized wavefunction is
sometimes called a probability, but this is an imprecise use of the word. It is instead a probability density,
which must be integrated to find the chance that a given measurement will find the particles in a certain region
of space. This distinction can be understood by considering the classical counterpart of ¥*¥ for a single
particle moving on the x-axis. In classical mechanics, the probability at time ¢ for finding the particle at the
coordinate (x") obtained by propagating Newton’s equations of motion from some set of initial conditions is
exactly equal to one; it is zero for any other value of x. What is the corresponding probability density function,
P(x; 1) Clearly, P(x; t) vanishes at all points other than x" since its integral over any interval that does not
include x" must equal zero. At x’, the value of P(x; f) must be chosen so that the normalization condition

f Plx:t)dx =1 (A1.1.12)
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is satisfied. Functions such as this play a useful role in quantum mechanics. They are known as Dirac delta
Jfunctions, and are designated by 8(r — ). These functions have the properties

fﬁ(r —rp)dr =1 (A1.1.13)
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Although a seemingly odd mathematical entity, it is not hard to appreciate that a simple one-dimensional
realization of the classical P(x; £) can be constructed from the familiar Gaussian distribution centred about x’
by letting the standard deviation (o) go to zero,

—(x — )2
Plx;t) = lim u} (A1.1.16)

1

Hence, although the probability for finding the particle at x’ is equal to one, the corresponding probability
density function is infinitely large. In quantum mechanics, the probability density is generally nonzero for all
values of the coordinates, and its magnitude can be used to determine which regions are most likely to contain
particles. However, because the number of possible coordinates is infinite, the probability associated with any
precisely specified choice is zero. The discussion above shows a clear distinction between classical and
quantum mechanics; given a set of initial conditions, the locations of the particles are determined exactly at all
future times in the former, while one generally can speak only about the probability associated with a given
range of coordinates in quantum mechanics.



To extract information from the wavefunction about properties other than the probability density, additional
postulates are needed. All of these rely upon the mathematical concepts of operators, eigenvalues and
eigenfunctions. An extensive discussion of these important elements of the formalism of quantum mechanics
is precluded by space limitations. For further details, the reader is referred to the reading list supplied at the
end of this chapter. In quantum mechanics, the classical notions of position, momentum, energy etc are
replaced by mathematical operators that act upon the wavefunction to provide information about the system.
The third postulate relates to certain properties of these operators:

3. Associated with each system property 4 is a linear, Hermitian operator A.

Although not a unique prescription, the quantum-mechanical operators Acan be obtained from their classical
counterparts 4 by making the substitutions x — x (coordinates); ¢ — ¢ (time); Py -il0/0g (component of

momentum). Hence, the quantum-mechanical operators of greatest relevance to the dynamics of an n-particle
system such as an atom or molecule are:

Dynamical variable A Classical quantity  Quantum-mechanical operator A
Time t t
Position of particle i r r
1 1
Momentum of particle my; —ihv.
]
Angular momentum of particle i my,xr; —ihv_ %,
1
Kinetic energy of particle i Bip ne 2
2 - m i
Potential energy V(q, t) V(q, t)
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where the gradient

ad d J
Vi= —a‘+—j+{—k (A1.1.17)
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and Laplacian
) R A
v:Ev+?=d_.l.2+§ﬁ+dzl (A1.1.18)

operators have been introduced. Note that a potential energy which depends upon only particle coordinates
and time has exactly the same form in classical and quantum mechanics. A particularly useful operator in
quantum mechanics is that which corresponds to the total energy. This Hamiltonian operator is obtained by
simply adding the potential and kinetic energy operators



. ne a2 HE
H=T+V=- Z oy b— [+ V(g.1). (A1.1.19)

+ N
— ]
particles {}"'f {}}f d
i

<
The relationship between the abstract quantum-mechanical operators Aand the corresponding physical

quantities A is the subject of the fourth postulate, which states:

4. If the system property 4 is measured, the only values that can possibly be observed are those
that correspond to eigenvalues of the quantum-mechanical operator A.

An illustrative example is provided by investigating the possible momenta for a single particle travelling in
the x-direction, p, . First, one writes the equation that defines the eigenvalue condition

poflx) = —i?:# = Af(x) (A1.1.20)

where A is an eigenvalue of the momentum operator and f{x) is the associated eigenfunction. It is easily
verified that this differential equation has an infinite number of solutions of the form

filx) = Aexplikx) (A1.1.21)

with corresponding eigenvalues

Ap = hk (A1.1.22)

in which k can assume any value. Hence, nature places no restrictions on allowed values of the linear
momentum. Does this mean that a quantum-mechanical particle in a particular state y(x; 7) is allowed to have
any value of p ? The answer to this question is ‘yes’, but the interpretation of its consequences rather subtle.
Eventually a fifth postulate will be required to establish the connection between the quantum-mechanical
wavefunction v and the possible outcomes associated with measuring properties of the system. It turns out
that the set of possible momenta for our particle depends entirely on its wavefunction, as might be expected
from the first postulate given above. The infinite set of solutions to equation (A1.1.20) means only that no
values of the momentum are excluded, in the sense that they can be associated with a particle described by an
appropriately chosen wavefunction. However, the choice of a specific function might (or might not) impose
restrictions on which values of p_are allowed.

The rather complicated issues raised in the preceding paragraph are central to the subject of quantum
mechanics, and their resolution forms the basis of one of the most important postulates associated with the
Schrodinger formulation of the subject. In the example above, discussion focuses entirely on the eigenvalues
of the momentum operator. What significance, if any, can be attached to the eigenfunctions of quantum-
mechanical operators? In the interest of simplicity, the remainder of this subsection will focus entirely on the
quantum mechanics associated with operators that have a finite number of eigenvalues. These are said to have
a discrete spectrum, in contrast to those such as the linear momentum, which have a continuous spectrum.
Discrete spectra of eigenvalues arise whenever boundaries limit the region of space in which a system can be.
Examples are particles in hard-walled boxes, or soft-walled shells and particles attached to springs. The
results developed below can all be generalized to the continuous case, but at the expense of increased
mathematical complexity. Readers interested in these details should consult chapter 1 of Landau and Lifschitz
(see additional reading).



It can be shown that the eigenfunctions of Hermitian operators necessarily exhibit a number of useful
mathematical properties. First, if all eigenvalues are distinct, the set of eigenfunctions {f}, f, =/, } are
orthogonal in the sense that the integral of the product formed from the complex conjugate of eigenfunction
J {fi)and eigenfunction k (f}) vanishes unless j = £,

fﬂ‘ﬁ-df =0if j # k. (A1.1.23)

If there are identical eigenvalues (a common occurrence in atomic and molecular quantum mechanics), it is
permissible to form linear combinations of the eigenfunctions corresponding to these degenerate eigenvalues,
as these must also be eigenfunctions of the operator. By making a judicious choice of the expansion
coefficients, the degenerate eigenfunctions can also be made orthogonal to one another. Another useful
property is that the set of eigenfunctions is said to be complete. This means that any function of the
coordinates that appear in the operator can be written as a linear combination of its eigenfunctions, provided
that the function obeys the same boundary conditions as the eigenfunctions and shares any fundamental
symmetry property that is common to all of them. If, for example, all of the eigenfunctions vanish at some
point in space, then only functions that vanish at the same point can be written as linear combinations of the
eigenfunctions. Similarly, if the eigenfunctions of a particular operator in one dimension are all odd functions
of the coordinate, then all linear combinations of them must also be odd. It is clearly impossible in the latter
case to expand functions such as cos(x), exp(fxz) etc in terms of odd functions. This qualification is omitted in
some elementary treatments of quantum mechanics, but it is one that turns out to be important for systems
containing several identical particles. Nevertheless, if these criteria are met by a suitable function g, then it is
always possible to find coefficients ¢, such that
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g= Zﬂ-.ﬁ- (A1.1.24)
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where the coefficient ¢ is given by

J fiede (A1.1.25)
Cj=——r": L
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If the eigenfunctions are normalized, this expression reduces to
Cj= f f]edr. (A1.1.26)

When normalized, the eigenfunctions corresponding to a Hermitian operator are said to represent an
orthonormal set.

The mathematical properties discussed above are central to the next postulate:

5. In any experiment, the probability of observing a particular non-degenerate value for the
system property 4 can be determined by the following procedure. First, expand the
wavefunction in terms of the complete set of normalized eigenfunctions of the quantum-
mechanical operator, fi,



W= Efﬁﬁj' (A1.1.27)
J

The probability of measuring 4 = A, where A, is the eigenvalue associated with the normalized
eigenfunction ¢,, is precisely equal to |ez I* (=cjci).. For degenerate eigenvalues, the probability

of observation is given by > | o 2, where the sum is taken over all of the eigenfunctions ¢ . that
correspond to the degenerate eigenvalue 2.,.

At this point, it is appropriate to mention an elementary concept from the theory of probability. If there are n

possible numerical outcomes (&) associated with a particular process, the average value (€) can be calculated
by summing up all of the outcomes, each weighted by its corresponding probability

&)= Z Fi&i. (A1.1.28)
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As an example, the possible outcomes and associated probabilities for rolling a pair of six-sided dice are

Sum  Probability

2 1/36
3 118
4 112
5 1/9
6 5/36
7 1/6
8 5/36
9 19
10 112
11 118
12 1/36

The average value is therefore given by the sum
! 1 1 1 5 1 5 |
320+ 153+ 5@+ 55+ 5O + 5N+ B + 5N+ FU0) + H(ID+ :(12) =T

What does this have to do with quantum mechanics? To establish a connection, it is necessary to first expand
the wavefunction in terms of the eigenfunctions of a quantum-mechanical operator A,

W= ;ckgm. (A1.1.29)

We will assume that both the wavefunction and the orthogonal eigenfunctions are normalized, which implies
that
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Now, the operator Ais applied to both sides of equation (A1.1.29), which because of its linearity, gives

AW = A qu’:k = Zf'l.-f‘ifﬁk = zr‘nfuﬂ’?k (A1.1.31)
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where A, represents the eigenvalue associated with the eigenfunction ¢,. Next, both sides of the preceding
equation are multiplied from the left by the complex conjugate of the wavefunction and integrated over all
space

f VAW dr = f 33 g dr (A1.1.32)
I
= ZZ“;“*’**f¢;¢&dr (A1.1.33)
ik
= Zt';‘nla = th‘slzlx- (A1.1.34)
k
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The last identity follows from the orthogonality property of eigenfunctions and the assumption of
normalization. The right-hand side in the final result is simply equal to the sum over all eigenvalues of the
operator (possible results of the measurement) multiplied by the respective probabilities. Hence, an important
corollary to the fifth postulate is established:

{A) =f'~l-"":'i11-‘dr. (A1.1.35)

This provides a recipe for calculating the average value of the system property associated with the quantum-
mechanical operator A, for a specific but arbitrary choice of the wavefunction ¥, notably those choices which
are not eigenfunctions of A.

The fifth postulate and its corollary are extremely important concepts. Unlike classical mechanics, where
everything can in principle be known with precision, one can generally talk only about the probabilities
associated with each member of a set of possible outcomes in quantum mechanics. By making a measurement
of the quantity 4, all that can be said with certainty is that one of the eigenvalues of Awill be observed, and its
probability can be calculated precisely. However, if it happens that the wavefunction corresponds to one of
the eigenfunctions of the operator A, then and only then is the outcome of the experiment certain: the
measured value of 4 will be the corresponding eigenvalue.

Up until now, little has been said about time. In classical mechanics, complete knowledge about the system at
any time ¢ suffices to predict with absolute certainty the properties of the system at any other time ¢'. The
situation is quite different in quantum mechanics, however, as it is not possible to know everything about the
system at any time ¢. Nevertheless, the temporal behavior of a quantum-mechanical system evolves in a well
defined way that depends on the Hamiltonian operator and the wavefunction ¥ according to the last postulate

6. The time evolution of the wavefunction is described by the differential equation
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The differential equation above is known as the time-dependent Schrédinger equation. There is an interesting
and
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intimate connection between this equation and the classical expression for a travelling wave

Alx, 1) = Aexp (E:Ti Ii - I-ID . (A1.1.37)

To convert (A1.1.37) into a quantum-mechanical form that describes the ‘matter wave’ associated with a free
particle travelling through space, one might be tempted to simply make the substitutions v = E/h (Planck’s
hypothesis) and A = A/p (de Broglie’s hypothesis). It is relatively easy to verify that the resulting expression
satisfies the time-dependent Schrodinger equation. However, it should be emphasized that this is not a
derivation, as there is no compelling reason to believe that this ad hoc procedure should yield one of the
fundamental equations of physics. Indeed, the time-dependent Schrodinger equation cannot be derived in a
rigorous way and therefore must be regarded as a postulate.

The time-dependent Schrédinger equation allows the precise determination of the wavefunction at any time ¢
from knowledge of the wavefunction at some initial time, provided that the forces acting within the system are
known (these are required to construct the Hamiltonian). While this suggests that quantum mechanics has a
deterministic component, it must be emphasized that it is not the observable system properties that evolve in a
precisely specified way, but rather the probabilities associated with values that might be found for them in a
measurement.

A1.1.2.2 STATIONARY STATES, SUPERPOSITION AND UNCERTAINTY

From the very beginning of the 20th century, the concept of energy conservation has made it abundantly clear
that electromagnetic energy emitted from and absorbed by material substances must be accompanied by
compensating energy changes within the material. Hence, the discrete nature of atomic line spectra suggested
that only certain energies are allowed by nature for each kind of atom. The wavelengths of radiation emitted
or absorbed must therefore be related to the difference between energy levels via Planck’s hypothesis, A £ =
hv = hc/h.

The Schrodinger picture of quantum mechanics summarized in the previous subsection allows an important
deduction to be made that bears directly on the subject of energy levels and spectroscopy. Specifically, the
energies of spectroscopic transitions must correspond precisely to differences between distinct eigenvalues of
the Hamiltonian operator, as these correspond to the allowed energy levels of the system. Hence, the set of
eigenvalues of the Hamiltonian operator are of central importance in chemistry. These can be determined by
solving the so-called time-independent Schrodinger equation,

Hiynlq.qa, ..o qu) = Exdnlaq. g, .o Q) (A1.1.38)

for the eigenvalues £ and eigenfunctions . It should be clear that the set of eigenfunctions and eigenvalues
does not evolve with time provided the Hamiltonian operator itself is time independent. Moreover, since the



eigenfunctions of the Hamiltonian (like those of any other operator) form a complete set, it is always possible
to expand the exact wavefunction of the system at any time in terms of them:

W(qr. qas e gui ) = ) (O (1 . ). (A1.1.39)

1
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It is important to point out that this expansion is valid even if time-dependent terms are added to the
Hamiltonian (as, for example, when an electric field is turned on). If there is more than one nonzero value of
c; at any time ¢, then the system is said to be in a superposition of the energy eigenstates y, associated with
non-vanishing expansion coefficients, ¢,. If it were possible to measure energies directly, then the fifth
postulate of the previous section tells us that the probability of finding energy £, in a given measurement
would be e

When a molecule is isolated from external fields, the Hamiltonian contains only kinetic energy operators for
all of the electrons and nuclei as well as terms that account for repulsion and attraction between all distinct
pairs of like and unlike charges, respectively. In such a case, the Hamiltonian is constant in time. When this
condition is satisfied, the representation of the time-dependent wavefunction as a superposition of
Hamiltonian eigenfunctions can be used to determine the time dependence of the expansion coefficients. If
equation (A1.1.39) is substituted into the time-dependent Schrédinger equation

. d
Iﬁa ;q{r)m =H Zk:q{r}m (A1.1.40)
the simplification
i Z: Tffkii'k(” = ZEH'H:N& (A1.1.41)
3 dt k

can be made to the right-hand side since the restriction of a time-independent Hamiltonian means that v, is
always an eigenfunction of 4. By simply equating the coefficients of the y,, it is easy to show that the choice

1E !

o (1) = cp(0) exp (T) (A1.1.42)

for the time-dependent expansion coefficients satisfies equation (A1.1.41). Like any differential equation,
there are an infinite number of solutions from which a choice must be made to satisfy some set of initial
conditions. The state of the quantum-mechanical system at time = 0 is used to fix the arbitrary multipliers ¢,

(0), which can always be chosen as real numbers. Hence, the wavefunction ¥ becomes

1By
=Y o (0exp| — ). (A1.1.43)
; ¥(0) exp ( A ) Ui
Suppose that the system property 4 is of interest, and that it corresponds to the quantum-mechanical operator

A. The average value of 4 obtained in a series of measurements can be calculated by exploiting the corollary
to the fifth postulate



(A} =f'l"ml* dr = ggt';m}ﬂm}fﬂp( Lﬁ ”)u&;A cr.p(l h“)i!q dr. (A1.1.44)
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Now consider the case where Ais itself a time-independent operator, such as that for the position, momentum
or angular momentum of a particle or even the energy of the benzene molecule. In these cases, the time-
dependent expansion coefficients are unaffected by application of the operator, and one obtains

i(Ep — E;ir .
{A) = ngﬂﬂm{ﬂ}&m[%] f‘f’j*‘hdt

- Ej=E -
= Elcjtﬂ}lzf%ﬁ% +Eer{ﬂ}ct{ﬂ}cus [—{ 1 x ”"}fw;ﬁ.wkdr_
i

FookeEf

(A1.1.45)

As one might expect, the first term that contributes to the expectation value of 4 is simply its value at =0,
while the second term exhibits an oscillatory time dependence. If the superposition initially includes large
contributions from states of widely varying energy, then the oscillations in (4) will be rapid. If the states that
are strongly mixed have similar energies, then the timescale for oscillation in the properties will be slower.
However, there is one special class of system properties A that exhibit no time dependence whatsoever. If (and
only if) every one of the states v, is an eigenfunction of A, then the property of orthogonality can be used to

show that every contribution to the second term vanishes. An obvious example is the Hamiltonian operator
itself; it turns out that the expectation value for the energy of a system subjected to forces that do not vary
with time is a constant. Are there other operators that share the same set of eigenfunctions y, with f1, and if

s0, how can they be recognized? It can be shown that any two operators which satisfy the property
ABf=BAf =[ABlf=0 (A1.1.46)

for all functions f'share a common set of eigenfunctions, and 4 and B are said to commute. (The symbol [f’; , ﬁ]
meaning AB- BA, is called the commutator of the operators Aand ﬁ.) Hence, there is no time dependence for
the expectation value of any system property that corresponds to a quantum-mechanical operator that
commutes with the Hamiltonian. Accordingly, these quantities are known as constants of the motion: their
average values will not vary, provided the environment of the system does not change (as it would, for
example, if an electromagnetic field were suddenly turned on). In nonrelativistic quantum mechanics, two
examples of constants of the motion are the square of the total angular momentum, as well as its projection
along an arbitrarily chosen axis. Other operators, such as that for the dipole moment, do not commute with the
Hamiltonian and the expectation value associated with the corresponding properties can indeed oscillate with
time. It is important to note that the frequency of these oscillations is given by differences between the
allowed energies of the system divided by Planck’s constant. These are the so-called Bohr frequencies, and it
is perhaps not surprising that these are exactly the frequencies of electromagnetic radiation that cause
transitions between the corresponding energy levels.

Close inspection of equation (A1.1.45) reveals that, under very special circumstances, the expectation value
does not change with time for any system properties that correspond to fixed (static) operator representations.
Specifically, if the spatial part of the time-dependent wavefunction is the exact eigenfunction . of the
Hamiltonian, then cj(O) = 1 (the zero of time can be chosen arbitrarily) and all other ¢,(0) = 0. The second
term clearly vanishes in these cases, which are known as stationary states. As the name implies, all
observable properties of these states do not vary with time. In a stationary state, the energy of the system has a

precise value (the corresponding eigenvalue of f1) as do observables that are associated with operators that
commute with #. For all other properties (such as the position and momentum),
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one can speak only about average values or probabilities associated with a given measurement, but these
quantities themselves do not depend on time. When an external perturbation such as an electric field is applied
or a collision with another atom or molecule occurs, however, the system and its properties generally will
evolve with time. The energies that can be absorbed or emitted in these processes correspond precisely to
differences in the stationary state energies, so it should be clear that solving the time-independent Schrodinger
equation for the stationary state wavefunctions and eigenvalues provides a wealth of spectroscopic
information. The importance of stationary state solutions is so great that it is common to refer to equation
(A1.1.38) as ‘the Schrodinger equation’, while the qualified name ‘time-dependent Schrodinger equation’ is
generally used for equation (A1.1.36). Indeed, the subsequent subsections are devoted entirely to discussions
that centre on the former and its exact and approximate solutions, and the qualifier ‘time independent’ will be
omitted.

Starting with the quantum-mechanical postulate regarding a one-to-one correspondence between system
properties and Hermitian operators, and the mathematical result that only operators which commute have a
common set of eigenfunctions, a rather remarkable property of nature can be demonstrated. Suppose that one
desires to determine the values of the two quantities 4 and B, and that the corresponding quantum-mechanical
operators do not commute. In addition, the properties are to be measured simultaneously so that both reflect
the same quantum-mechanical state of the system. If the wavefunction is neither an eigenfunction of Anor B,
then there is necessarily some uncertainty associated with the measurement. To see this, simply expand the
wavefunction y in terms of the eigenfunctions of the relevant operators

¥ = Z a f* (A1.1.47)
K

Y= Z by £ (A1.1.48)
&

where the eigenfunctions _fi_"and ﬂ"of operators Aand 8, respectively, are associated with corresponding
eigenvalues lf'and 3-}?. Given that y is not an eigenfunction of either operator, at least two of the coefficients
a; and two of the b, must be nonzero. Since the probability of observing a particular eigenvalue is
proportional to the square of the expansion coefficient corresponding to the associated eigenfunction, there
will be no less than four possible outcomes for the set of values 4 and B. Clearly, they both cannot be
determined precisely. Indeed, under these conditions, neither of them can be!

In a more favourable case, the wavefunction y might indeed correspond to an eigenfunction of one of the
operators. If yr = "’f, then a measurement of A4 necessarily yields A ;‘r, and this is an unambiguous result.

What can be said about the measurement of B in this case? It has already been said that the eigenfunctions of
two commuting operators are identical, but here the pertinent issue concerns eigenfunctions of two operators

that do not commute. Suppose fjis an eigenfunction of A. Then, it must be true that

A 1A A
A.fm = "":n .fm

BAfA =3B fA.

m ar i

(A1.1.49)

-17-



If f‘fis also an eigenfunction of B, then it follows that j ﬁ f": = ﬁ ji Hf- = A8 _'f:f'l, which contradicts the

BT R ]
assumption that Aand Bdo not commute. Hence, no nontrivial eigenfunction of Acan also be an eigenfunction

of B. Therefore, if measurement of 4 yields a precise result, then some uncertainty must be associated with B.
That is, the expansion of y in terms of eigenfunctions of B(equation (A1.1.48)) must have at least two non-
vanishing coefficients; the corresponding eigenvalues therefore represent distinct possible outcomes of the
experiment, each having probability & . A physical interpretation of A ﬁ:is the process of measuring the
value of 4 for a system in a state with a unique value for this property A ‘: However § f, ::'represents a

measurement that changes the state of the system, so that if after we measure B and then measure 4, we would
Aog i S pa A ' o orA A0 rA

no longer find Ayas its value: BA £ = A4 B £ £ AB f1.

The Heisenberg uncertainty principle offers a rigorous treatment of the qualitative picture sketched above. If

several measurements of 4 and B are made for a system in a particular quantum state, then quantitative

uncertainties are provided by standard deviations in the corresponding measurements. Denoting these as 6

and c 5, respectively, it can be shown that

oaos = {4, Bl (A1.1.50)

One feature of this inequality warrants special attention. In the previous paragraph it was shown that the
precise measurement of 4 made possible when v is an eigenfunction of f';necessarily results in some
uncertainty in a simultaneous measurement of B when the operators Aand Bdo not commute. However, the
mathematical statement of the uncertainty principle tells us that measurement of B is in fact completely
uncertain: one can say nothing at all about B apart from the fact that any and all values of B are equally
probable! A specific example is provided by associating 4 and B with the position and momentum of a
particle moving along the x-axis. It is rather easy to demonstrate that [p,, x] =—il, so that Op, &, = hy2 1f

the system happens to be described by a Dirac delta function at the point x,, (which is an eigenfunction of the
position operator corresponding to eigenvalue x,), then the probabilities associated with possible momenta
can be determined by expanding 8(x—x) in terms of the momentum eigenfunctions 4 exp(ikx). Carrying out
such a calculation shows that all of the infinite number of possible momenta (the momentum operator has a
continuous spectrum) appear in the wavefunction expansion, all with precisely the same weight. Hence, no
particular momentum or (more properly in this case) range bounded by p_+ dp is more likely to be observed
than any other.

A1.1.2.3 SOME QUALITATIVE FEATURES OF STATIONARY STATES

A great number of qualitative features associated with the stationary states that correspond to solutions of the
time-independent Schrodinger can be worked out from rather general mathematical considerations and use of
the postulates of quantum mechanics. Mastering these concepts and the qualifications that may apply to them
is essential if one is to obtain an intuitive feeling for the subject. In general, the systems of interest to chemists
are atoms and molecules, both in isolation as well as how they interact with each other or with an externally
applied field. In all of these cases, the forces acting upon the particles in the system give rise to a potential
energy function that varies with the positions of the particles, strength of the applied fields etc. In general, the
potential is a smoothly varying function of the coordinates, either growing without bound for large values of
the coordinates or tending asymptotically towards a finite value. In these cases, there is necessarily a
minimum value at what is known as the global equilibrium position (there may be several global minima that
are equivalent by symmetry). In many cases, there are also other minima
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(meaning that the matrix of second derivatives with respect to the coordinates has only non-negative
eigenvalues) that have higher energies, which are called local minima. If the potential becomes infinitely large
for infinite values of the coordinates (as it does, for example, when the force on a particle varies linearly with
its displacement from equilibrium) then all solutions to the Schrodinger equation are known as bound states;
that with the smallest eigenvalue is called the ground state while the others are called excited states. In other
cases, such as potential functions that represent realistic models for diatomic molecules by approaching a
constant finite value at large separation (zero force on the particles, with a finite dissociation energy), there
are two classes of solutions. Those associated with eigenvalues that are below the asymptotic value of the
potential energy are the bound states, of which there is usually a finite number; those having higher energies
are called the scattering (or continuum) states and form a continuous spectrum. The latter are dealt with in
section A3.11 of the encyclopedia and will be mentioned here only when necessary for mathematical reasons.

Bound state solutions to the Schrodinger equation decay to zero for infinite values of the coordinates, and are
therefore integrable since they are continuous functions in accordance with the first postulate. The solutions
may assume zero values elsewhere in space and these regions—which may be a point, a plane or a three- or
higher-dimensional hypersurface—are known as nodes. From the mathematical theory of differential
eigenvalue equations, it can be demonstrated that the lowest eigenvalue is always associated with an
eigenfunction that has the same sign at all points in space. From this result, which can be derived from the
calculus of variations, it follows that the wavefunction corresponding to the smallest eigenvalue of the
Hamiltonian must have no nodes. It turns out, however, that relativistic considerations require that this
statement be qualified. For systems that contain more than two identical particles of a specific type, not all
solutions to the Schrodinger equation are allowed by nature. Because of this restriction, which is described in
subsection (A1.1.3.3), it turns out that the ground states of lithium, all larger atoms and all molecules other
than Mz, H, and isoelectronic species have nodes. Nevertheless, our conceptual understanding of electronic

structure as well as the basis for almost all highly accurate calculations is ultimately rooted in a single-particle
approximation. The quantum mechanics of one-particle systems is therefore important in chemistry.

Shapes of the ground- and first three excited-state wavefunctions are shown in figure Al.1.1 for a particle in
one dimension subject to the potential ¥ = %k x*, which corresponds to the case where the force acting on the

particle is proportional in magnitude and opposite in direction to its displacement from equilibrium (f=-VJV =
—kx). The corresponding Schrodinger equation

ne d |
—_— W+ —ky? = Eu (A1.1.51)
2mde2’ 2 TV

can be solved analytically, and this problem (probably familiar to most readers) is that of the quantum
harmonic oscillator. As expected, the ground-state wavefunction has no nodes. The first excited state has a
single node, the second two nodes and so on, with the number of nodes growing with increasing magnitude of
the eigenvalue. From the form of the kinetic energy operator, one can infer that regions where the slope of the
wavefunction is changing rapidly (large second derivatives) are associated with large kinetic energy. It is
quite reasonable to accept that wavefunctions with regions of large curvature (where the function itself has
appreciable magnitude) describe states with high energy, an expectation that can be made rigorous by
applying a quantum-mechanical version of the virial theorem.
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Figure A1.1.1. Wavefunctions for the four lowest states of the harmonic oscillator, ordered from the » =0
ground state (at the bottom) to the n = 3 state (at the top). The vertical displacement of the plots is chosen so
that the location of the classical turning points are those that coincide with the superimposed potential
function (dotted line). Note that the number of nodes in each state corresponds to the associated quantum
number.

Classically, a particle with fixed energy £ described by a quadratic potential will move back and forth
between the points where V' = E, known as the classical turning points. Movement beyond the classical
turning points is forbidden, because energy conservation implies that the particle will have a negative kinetic
energy in these regions, and imaginary velocities are clearly inconsistent with the Newtonian picture of the
universe. Inside the turning points, the particle will have its maximum kinetic energy as it passes through the
minimum, slowing in its climb until it comes to rest and subsequently changes direction at the turning points
(imagine a marble rolling in a parabola). Therefore, if a camera were to take snapshots of the particle at
random intervals, most of the pictures would show the particle near the turning points (the equilibrium
position is actually the least likely location for the particle). A more detailed analysis of the problem shows
that the probability of seeing the classical particle in the neighbourhood of a given position x is proportional to
??’%Tm-} Note that the situation found for the ground state described by quantum mechanics bears very little

resemblance to the classical situation. The particle is most likely to be found at the equilibrium position and,
within the classically allowed region, least likely to be seen at the turning points. However, the situation is
even stranger than this: the probability of finding the particle outside the turning points is non-zero! This
phenomenon, known as tunnelling, is not unique to the harmonic oscillator. Indeed, it occurs for bound states
described by every potential
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that tends asymptotically to a finite value since the wavefunction and its derivatives must approach zero in a



smooth fashion for large values of the coordinates where (by the definition of a bound state) /" must exceed E.
However, at large energies (see the 29th excited state probability density in figure A1.1.2, the situation is
more consistent with expectations based on classical theory: the probability density has its largest value near
the turning points, the general appearance is as implied by the classical formula (if one ignores the
oscillations) and its magnitude in the classically forbidden region is reduced dramatically with respect to that
found for the low-lying states. This merging of the quantum-mechanical picture with expectations based on
classical theory always occurs for highly excited states and is the basis of the correspondence principle.

Figure A1.1.2. Probability density (y*y) for the n = 29 state of the harmonic oscillator. The vertical state is
chosen as in figure Al.1.1, so that the locations of the turning points coincide with the superimposed potential
function.

The energy level spectrum of the harmonic oscillator is completely regular. The ground state energy is given
by %hv, where v is the classical frequency of oscillation given by

V= = (A1.1.52)
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although it must be emphasized that our inspection of the wavefunction shows that the motion of the particle
cannot be literally thought of in this way. The energy of the first excited state is v above that of the ground
state and precisely the same difference separates each excited state from those immediately above and below.
A different example is provided by a particle trapped in the Morse potential



Vix) = D [exp(—ax) — 11, (A1.1.53)

originally suggested as a realistic model for the vibrational motion of diatomic molecules. Although the
wavefunctions associated with the Morse levels exhibit largely the same qualitative features as the harmonic
oscillator functions and are not shown here, the energy level structures associated with the two systems are
qualitatively different. Since V(x) tends to a finite value (D) for large x, there are only a limited number of
bound state solutions, and the spacing between them decreases with increasing eigenvalue. This is another
general feature; energy level spacings for states associated with potentials that tend towards asymptotic values
at infinity tend to decrease with increasing quantum number.

The one-dimensional cases discussed above illustrate many of the qualitative features of quantum mechanics,
and their relative simplicity makes them quite easy to study. Motion in more than one dimension and
(especially) that of more than one particle is considerably more complicated, but many of the general features
of these systems can be understood from simple considerations. While one relatively common feature of
multidimensional problems in quantum mechanics is degeneracy, it turns out that the ground state must be
non-degenerate. To prove this, simply assume the opposite to be true, i.e.

Hin = Egln (A1.1.54)
Hyn = Engyn (A1.1.55)

where E ) is the ground state energy, and

fuj.r;;n,fq dr = 0. (A1.1.56)

In order to satisfy equation (A1.1.56), the two functions must have identical signs at some points in space and
different signs elsewhere. It follows that at least one of them must have at least one node. However, this is
incompatible with the nodeless property of ground-state eigenfunctions.

Having established that the ground state of a single-particle system is non-degenerate and nodeless, it is
straightforward to prove that the wavefunctions associated with every excited state must contain at least one
node (though they need not be degenerate!), just as seen in the example problems. It follows from the
orthogonality of eigenfunctions corresponding to a Hermitian operator that

fﬁ!;’rdr=ﬂ (A1.1.57)
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for all excited states y_ . In order for this equality to be satisfied, it is necessary that the integrand either
vanishes at all points in space (which contradicts the assumption that both v and v _are nodeless) or is
positive in some regions of space and negative in others. Given that the ground state has no nodes, the latter
condition can be satisfied only if the excited-state wavefunction changes sign at one or more points in space.
Since the first postulate states that all wavefunctions are continuous, it is therefore necessary that y,_has at
least one node.

In classical mechanics, it is certainly possible for a system subject to dissipative forces such as friction to
come to rest. For example, a marble rolling in a parabola lined with sandpaper will eventually lose its kinetic
energy and come to rest at the bottom. Rather remarkably, making a measurement of £ that coincides with



V. in (as would be found classically for our stationary marble) is incompatible with quantum mechanics.
Turning back to our example, the ground-state energy is indeed larger than the minimum value of the
potential energy for the harmonic oscillator. That this property of zero-point energy is guaranteed in quantum
mechanics can be demonstrated by straightforward application of the basic principles of the subject. Unlike
nodal features of the wavefunction, the arguments developed here also hold for many-particle systems.
Suppose the total energy of a stationary state is £. Since the energy is the sum of kinetic and potential
energies, it must be true that expectation values of the kinetic and potential energies are related according to

E = (T}+ (V). (A1.1.58)

If the total energy associated with the state is equal to the potential energy at the equilibrium position, it
follows that

Vinin = (V) = (T). (A1.1.59)

Two cases must be considered. In the first, it will be assumed that the wavefunction is nonzero at one or more
points for which V> V. (for the physically relevant case of a smoothly varying and continuous potential,
this includes all possibilities other than that in which the wavefunction is a Dirac delta function at the

equilibrium position). This means that (V) must also be greater than V. thereby forcing the average kinetic
energy to be negative. This is not possible. The kinetic energy operator for a quantum-mechanical particle
moving in the x-direction has the (unnormalized) eigenfunctions

| = explikx) (A1.1.60)

where

(Emct)-l
k== (A1.1.61)
i

and o are the corresponding eigenvalues. It can be seen that negative values of a give rise to real arguments
of the exponential and correspondingly divergent eigenfunctions. Zero and non-negative values are associated
with constant and oscillatory solutions in which the argument of the exponential vanishes or is imaginary,
respectively. Since divergence of the actual wavefunction is incompatible with its probabilistic interpretation,
no contribution from negative o eigenfunctions can appear when the wavefunction is expanded in terms of
kinetic energy eigenfunctions.
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It follows from the fifth postulate that the kinetic energy of each particle in the system (and therefore the total
kinetic energy) is restricted to non-negative values. Therefore, the expectation value of the kinetic energy
cannot be negative. The other possibility is that the wavefunction is non-vanishing only when V=V _. . For
the case of a smoothly varying, continuous potential, this corresponds to a state described by a Dirac delta
function at the equilibrium position, which is the quantum-mechanical equivalent of a particle at rest. In any
event, the fact that the wavefunction vanishes at all points for which V' V_. means that the expectation
value of the kinetic energy operator must also vanish if there is to be no zeropoint energy. Considering the
discussion above, this can occur only when the wavefunction is the same as the zero-kinetic-energy

eigenfunction (\ = constant). This contradicts the assumption used in this case, where the wavefunction is a



delta function. Following the general arguments used in both cases above, it is easily shown that £ can only be
larger than V. , which means that any measurement of £ for a particle in a stationary or non-stationary state
must give a result that satisfies the inequality £>V_. .

A1.1.3 QUANTUM MECHANICS OF MANY-PARTICLE SYSTEMS
A1.1.3.1 THE HYDROGEN ATOM

It is admittedly inconsistent to begin a section on many-particle quantum mechanics by discussing a problem
that can be treated as a single particle. However, the hydrogen atom and atomic ions in which only one
electron remains (He™, Li%* etc) are the only atoms for which exact analytic solutions to the Schrodinger
equation can be obtained. In no cases are exact solutions possible for molecules, even after the Born—
Oppenheimer approximation (see section B3.1.1.1) is made to allow for separate treatment of electrons and
nuclei. Despite the limited interest of hydrogen atoms and hydrogen-like ions to chemistry, the quantum
mechanics of these systems is both highly instructive and provides a basis for treatments of more complex
atoms and molecules. Comprehensive discussions of one-electron atoms can be found in many textbooks; the
emphasis here is on qualitative aspects of the solutions.

The Schrodinger equation for a one-electron atom with nuclear charge Z is

—n? o _ Z¢

2n ¥

W= Ey (A1.1.62)

where L is the reduced mass of the electron—nucleus system and the Laplacian is most conveniently expressed
in spherical polar coordinates. While not trivial, this differential equation can be solved analytically. Some of
the solutions are normalizable, and others are not. The former are those that describe the bound states of one-

electron atoms, and can be written in the form

Vautm = N Ru(r}Y; (6, ¢) (A1.1.63)

where N is a normalization constant, and R ;(r) and Y, m (0, ¢) are specific functions that depend on the
quantum numbers n, [ and m;. The first of these is called the principal quantum number, while / is known as
the angular momentum, or azimuthal, quantum number, and m, the magnetic quantum number. The quantum
numbers that allow for normalizable wavefunctions are limited to integers that run over the ranges
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n=1273,... (A1.1.64)
f==n+1,=n+2,....0.1.2,...n=1 (A1.1.65)
my=—1, —I+1,...,0—1,1. (A1.1.66)

The fact that there is no restriction on n apart from being a positive integer means that there are an infinite
number of bound-state solutions to the hydrogen atom, a peculiarity that is due to the form of the Coulomb
potential. Unlike most bound state problems, the range of the potential is infinite (it goes to zero at large r, but
diverges to negative infinity at » = 0). The eigenvalues of the Hamiltonian depend only on the principal



quantum number and are (in attojoules (10_18 1)

E, = —2.18% (A1.1.67)
n=

where it should be noted that the zero of energy corresponds to infinite separation of the particles. For each
value of n, the Schrodinger equation predicts that all states are degenerate, regardless of the choice of / and m,.
Hence, any linear combination of wavefunctions corresponding to some specific value of 7 is also an
eigenfunction of the Hamiltonian with eigenvalue E, . States of hydrogen are usually characterized as ns, np,
nd etc where 7 is the principal quantum number and s is associated with / =0, p with /=1 and so on. The
functions R, (r) describe the radial part of the wavefunctions and can all be written in the form

an’{r} = EXP[—PHE}PFLMIFJI (A1.1.68)

where p is proportional to the electron—nucleus separation r and the atomic number Z. L , is a polynomial of
order n — [ — 1 that has zeros (where the wavefunction, and therefore the probability of finding the electron,
vanishes—a radial node) only for positive values of p. The functions Y, m (0, ¢) are the spherical harmonics.
The first few members of this series are familiar to everyone who has studied physical chemistry: ¥, is a
constant, leading to a spherically symmetric wavefunction, while ¥ 1.0° and specific linear combinations of

Y 11 and Y, 1 vanish (have an angular node) in the xy, xz and yz planes, respectively. In general, these
functions exhibit / nodes, meaning that the number of overall nodes corresponding to a particular v, is
equal to n — 1. For example, the 4d state has two angular nodes (/= 2) and one radial node (L, (p) has one
zero for positive p). In passing, it should be noted that many of the ubiquitous qualitative features of quantum
mechanics are illustrated by the wavefunctions and energy levels of the hydrogen atom. First, the system has a
zero-point energy, meaning that the ground-state energy is larger than the lowest value of the potential (—0)
and the spacing between the energy levels decreases with increasing energy. Second, the ground state of the
system is nodeless (the electron may be found at any point in space), while the number of nodes exhibited by
the excited states increases with energy. Finally, there is a finite probability that the electron is found in a
classically forbidden region in all bound states. For the hydrogen atom ground state, this corresponds to all
electron—proton separations larger than 105.8 pm, where the electron is found 23.8% of the time. As usual,
this tunnelling phenomenon is less pronounced in excited states: the corresponding values for the 3s state are
1904 pm and 16.0%.

The Hamiltonian commutes with the angular momentum operator E-Z as well as that for the square of the

angular momentum { 2. The wavefunctions above are also eigenfunctions of these operators, with eigenvalues

mih (L:)and 10+ DA? (L2) 1t should be emphasized that the total angular momentum is L = /{(/ + 1A,
and not a simple
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integral multiple of ias assumed in the Bohr model. In particular, the ground state of hydrogen has zero
angular momentum, while the Bohr atom ground state has L = li. The meaning associated with the m; quantum

number is more difficult to grasp. The choice of z instead of x or y seems to be (and is) arbitrary and it is
illogical that a specific value of the angular momentum projection along one coordinate must be observed in
any experiment, while those associated with x and y are not similarly restricted. However, the states with a
given / are degenerate, and the wavefunction at any particular time will in general be some linear combination

of the m, eigenfunctions. The only way to isolate a specific y ;. (and therefore ensure the result of measuring
L)) is to apply a magnetic field that lifts the degeneracy and breaks the symmetry of the problem. The z axis



then corresponds to the magnetic field direction, and it is the projection of the angular momentum vector on
this axis that must be equal to m .

The quantum-mechanical treatment of hydrogen outlined above does not provide a completely satisfactory
description of the atomic spectrum, even in the absence of a magnetic field. Relativistic effects cause both a
scalar shifting in all energy levels as well as splittings caused by the magnetic fields associated with both
motion and intrinsic properties of the charges within the atom. The features of this fine structure in the energy
spectrum were successfully (and miraculously, given that it preceded modern quantum mechanics by a decade
and was based on a two-dimensional picture of the hydrogen atom) predicted by a formula developed by
Sommerfeld in 1915. These interactions, while small for hydrogen, become very large indeed for larger atoms
where very strong electron—nucleus attractive potentials cause electrons to move at velocities close to the
speed of light. In these cases, quantitative calculations are extremely difficult and even the separability of
orbital and intrinsic angular momenta breaks down.

A1.1.3.2 THE INDEPENDENT-PARTICLE APPROXIMATION

Applications of quantum mechanics to chemistry invariably deal with systems (atoms and molecules) that
contain more than one particle. Apart from the hydrogen atom, the stationary-state energies cannot be
calculated exactly, and compromises must be made in order to estimate them. Perhaps the most useful and
widely used approximation in chemistry is the independent-particle approximation, which can take several
forms. Common to all of these is the assumption that the Hamiltonian operator for a system consisting of n
particles is approximated by the sum

Hy=hy+hy 4. +h, (A1.1.69)

where the single-particle Hamiltonians i, consist of the kinetic energy operator plus a potential (

Ho = It, + fi2 + - - - + h,) that does not explicitly depend on the coordinates of the other 7 — 1 particles in the
system. Of course, the simplest realization of this model is to completely neglect forces due to the other
particles, but this is often too severe an approximation to be useful. In any event, the quantum mechanics of a
system described by a Hamiltonian of the form given by equation (A1.1.69) is worthy of discussion simply
because the independent-particle approximation is the foundation for molecular orbital theory, which is the
central paradigm of descriptive chemistry.

Let the orthonormal functions (1), Xj(2), cen X p(n) be selected eigenfunctions of the corresponding single-
particle Hamiltonians -"11, -"12, e -"In, with eigenvalues ., kj, e kp. It is easily verified that the product of

these single-particle wavefunctions (which are often called orbitals when the particles are electrons in atoms
and molecules)
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¢ = (L) y;(@)- - xpin) (A1.1.70)

satisfies the approximate Schrodinger equation for the system

Hyp = En (A1.1.71)

with the corresponding energy



Eo=di+hj+ +h, (A1.1.72)

Hence, if the Hamiltonian can be written as a sum of terms that individually depend only on the coordinates of
one of the particles in the system, then the wavefunction of the system can be written as a product of
functions, each of which is an eigenfunction of one of the single-particle Hamiltonians, /. The corresponding
eigenvalue is then given by the sum of eigenvalues associated with each single-particle wavefunction y
appearing in the product.

The approximation embodied by equation (A1.1.69), equation (A1.1.70), equation (A1.1.71) and equation
(A1.1.72) presents a conceptually appealing picture of many-particle systems. The behaviour and energetics
of each particle can be determined from a simple function of three coordinates and the eigenvalue of a
differential equation considerably simpler than the one that explicitly accounts for all interactions. It is
precisely this simplification that is invoked in qualitative interpretations of chemical phenomena such as the
inert nature of noble gases and the strongly reducing property of the alkali metals. The price paid is that the
model is only approximate, meaning that properties predicted from it (for example, absolute ionization
potentials rather than just trends within the periodic table) are not as accurate as one might like. However, as
will be demonstrated in the latter parts of this section, a carefully chosen independent-particle description of a
many-particle system provides a starting point for performing more accurate calculations. It should be
mentioned that even qualitative features might be predicted incorrectly by independent-particle models in
extreme cases. One should always be aware of this possibility and the oft-misunderstood fact that there really
is no such thing as an orbital. Fortunately, however, it turns out that qualitative errors are uncommon for
electronic properties of atoms and molecules when the best independent-particle models are used.

One important feature of many-particle systems has been neglected in the preceding discussion. Identical
particles in quantum mechanics must be indistinguishable, which implies that the exact wavefunctions y
which describe them must satisfy certain symmetry properties. In particular, interchanging the coordinates of
any two particles in the mathematical form of the wavefunction cannot lead to a different prediction of the
system properties. Since any rearrangement of particle coordinates can be achieved by successive pairwise
permutations, it is sufficient to consider the case of a single permutation in analysing the symmetry properties
that wavefunctions must obey. In the following, it will be assumed that the wavefunction is real. This is not
restrictive, as stationary state wavefunctions for isolated atoms and molecules can always be written in this
way. If the operator Pl.j is that which permutes the coordinates of particles i and j, then indistinguishability
requires that

(f -""mfﬁ) AP dt = f‘a’f"r‘:'ﬁdt (A1.1.73)
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for any operator fi(including the identity) and choice of i and j. Clearly, a wavefunction that is symmetric with
respect to the interchange of coordinates for any two particles

Py = (A1.1.74)

satisfies the indistinguishability criterion. However, equation (A1.1.73) is also satisfied if the permutation of
particle coordinates results in an overall sign change of the wavefunction, i.e.

P = =y, (A1.1.75)



Without further considerations, the only acceptable real quantum-mechanical wavefunctions for an n-particle
system would appear to be those for which

Pijr = £y (A1.1.76)

where i and j are any pair of identical particles. For example, if the system comprises two protons, a neutron
and two electrons, the relevant permutations are that which interchanges the proton coordinates and that
which interchanges the electron coordinates. The other possible pairs involve distinct particles and the action
of the corresponding Pz’j operators on the wavefunction will in general result in something quite different.
Since indistinguishability is a necessary property of exact wavefunctions, it is reasonable to impose the same
constraint on the approximate wavefunctions ¢ formed from products of single-particle solutions. However, if
two or more of the y; in the product are different, it is necessary to form linear combinations if the condition
P; GV = + y is to be met. An additional consequence of indistinguishability is that the &; operators
correspondlng to identical particles must also be identical and therefore have premsely the same
eigenfunctions. It should be noted that there is nothing mysterious about this perfectly reasonable restriction
placed on the mathematical form of wavefunctions.

For the sake of simplicity, consider a system of two electrons for which the corresponding single-particle
states are ;, L Lpp - - - Xy with eigenvalues 7‘1" A Kk, . kn. Clearly, the two-electron wavefunction ¢ = X
(Dyi(2) satlsf] 1es the indistinguishability criterion and describes a stationary state with energy £, = 2.
However, the state (l)x (2) is not satisfactory. While it is a solution to the Schrodinger equatlon it is neither
symmetric nor antlsymmetrlc with respect to particle interchange. However, two such states can be formed by
taking the linear combinations

_
s = 306 (Dx () + (D) (A1.1.77)

or = V3@ = 6@x,0) (A1.1.78)

which are symmetric and antisymmetric with respect to particle interchange, respectively. Because the
functions y are orthonormal, the energies calculated from ¢g and ¢, are the same as that corresponding to the
unsymmetrized product state xi(l)xj(2), as demonstrated explicitly for ¢g:
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. 1 . .
f@;h‘%dr E[fx.-{l}x,-{l}ﬁx.:(l}x;(iidr.dr:+fxr'(llxjﬂ]ﬁxr-{iu;il}drutla.';

+fx.-(21x;-11l!;‘xfll:x;tzmndr:+fxn:2u,{llf?x;{2uju}dr.dr;]

1

E{J.m.lx,}[fxdlufil}dnf_x,{?lxjﬂ}dr-_wfx;{l}x;(lhdr.fx,{i}x,ﬂldr;
+fx,-{lllx;{1]dr.fx;ll]xj{lldt;- +fx,-(nxj!])dr.fx.-:llx.-(l}drg}
=;{J.,+J.,}||+u+u+||=1._-+1,-. (A1.1.79)

It should be mentioned that the single-particle Hamiltonians in general have an infinite number of solutions,

so that an uncountable number of wavefunctions y can be generated from them. Very often, interest is
focused on the ground state of many-particle systems. Within the independent-particle approximation, this
state can be represented by simply assigning each particle to the lowest-lying energy level. If a calculation is



performed on the lithium atom in which interelectronic repulsion is ignored completely, the single-particle
Schrodinger equations are precisely the same as those for the hydrogen atom, apart from the difference in
nuclear charge. The following lithium atom wavefunction could then be constructed from single-particle
orbitals

¢ = Nxi(Dx1:(2)x16(3) (A1.1.80)

a form that is obviously symmetric with respect to interchange of particle coordinates. If this wavefunction is
used to calculate the expectation value of the energy using the exact Hamiltonian (which includes the explicit
electron—electron repulsion terms),

e:fgr*h‘g:dr (A1.1.81)

one obtains an energy lower than the actual result, which (see (A1.1.4.1)) suggests that there are serious
problems with this form of the wavefunction. Moreover, a relatively simple analysis shows that ionization
potentials of atoms would increase monotonically—approximately linearly for small atoms and quadratically
for large atoms—if the independent-particle picture discussed thus far has any validity. Using a relatively
simple model that assumes that the lowest lying orbital is a simple exponential, ionization potentials of 13.6,
23.1, 33.7 and 45.5 electron volts (eV) are predicted for hydrogen, helium, lithium and beryllium,
respectively. The value for hydrogen (a one-electron system) is exact and that for helium is in relatively good
agreement with the experimental value of 24.8 eV. However, the other values are well above the actual
ionization energies of Li and Be (5.4 and 9.3 eV, respectively), both of which are smaller than those of H and
He! All freshman chemistry students learn that ionization potentials do not increase monotonically with
atomic number, and that there are in fact many pronounced and more subtle decreases that appear when this
property is plotted as a function of atomic number.

There is evidently a grave problem here. The wavefunction proposed above for the lithium atom contains all
of the particle coordinates, adheres to the boundary conditions (it decays to zero when the particles are
removed to infinity) and obeys the restrictions P,¢ = P3¢ = P,;¢ = +¢ that govern the behaviour of the
exact wavefunctions. Therefore, if no other restrictions are placed on the wavefunctions of multiparticle
systems, the product wavefunction for lithium
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must lie in the space spanned by the exact wavefunctions. However, it clearly does not, because it is proven in
subsection (A1.1.4.1) that any function expressible as a linear combination of Hamiltonian eigenfunctions
cannot have an energy lower than that of the exact ground state. This means that there is at least one
additional symmetry obeyed by all of the exact wavefunctions that is not satisfied by the product form given
for lithium in equation (A1.1.80).

This missing symmetry provided a great puzzle to theorists in the early part days of quantum mechanics.
Taken together, ionization potentials of the first four elements in the periodic table indicate that
wavefunctions which assign two electrons to the same single-particle functions such as

¢ = Xa(1)xa(2) (A1.1.82)

(helium) and



¢' = 53.'«'[1))&4{2}}:»(3)%(4) (A1.1.83)

(beryllium, the operator < produces the labelled A XaXpXp Product that is symmetric with respect to

interchange of particle indices) are somehow acceptable but that those involving three or more electrons in
one state are not! The resolution of this zweideutigkeit (two-valuedness) puzzle was made possible only by the
discovery of electron spin, which is discussed below.

A1.1.3.3 SPIN AND THE PAULI PRINCIPLE

In the early 1920s, spectroscopic experiments on the hydrogen atom revealed a striking inconsistency with the
Bohr model, as adapted by Sommerfeld to account for relativistic effects. Studies of the fine structure
associated with the n = 4 — n = 3 transition revealed five distinct peaks, while six were expected from
arguments based on the theory of interaction between matter and radiation. The problem was ultimately
reconciled by Uhlenbeck and Goudsmit, who reinterpreted one of the quantum numbers appearing in
Sommerfeld’s fine structure formula based on a startling assertion that the electron has an intrinsic angular
momentum independent of that associated with its motion. This idea was also supported by previous
experiments of Stern and Gerlach, and is now known as electron spin. Spin is a mysterious phenomenon with
a rather unfortunate name. Electrons are fundamental particles, and it is no more appropriate to think of them
as charges that resemble extremely small billiard balls than as waves. Although they exhibit behaviour
characteristic of both, they are in fact neither. Elementary textbooks often depict spin in terms of spherical
electrons whirling about their axis (a compelling idea in many ways, since it reinforces the Bohr model by
introducing a spinning planet), but this is a purely classical perspective on electron spin that should not be
taken literally.

Electrons and most other fundamental particles have two distinct spin wavefunctions that are degenerate in the

absence of an external magnetic field. Associated with these are two abstract states which are eigenfunctions
of the intrinsic spin angular momentum operator .{;‘Z

S.0 = mho. (A1.1.84)
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The allowed quantum numbers m_ are %and f%, and the corresponding eigenfunctions are usually written as o

and [, respectively. The associated eigenvalues l-_iand i-_i give the projection of the intrinsic angular momentum
vector along the direction of a magnetic field that can be applied to resolve the degeneracy. The overall spin
angular momentum of the electron is given in terms of the quantum number s by +/s{s + 1Jfi. For an electron, s
= ; For a collection of particles, the overall spin and its projection are given in terms of the spin quantum
numbers S and M (Wthh are equal to the corresponding lower-case quantities for single particles) by

VE(E+ Dhand § = ,, respectively. S must be positive and can assume either integral or half-integral values,

and the M ¢ quantum numbers lie in the interval

Mg=—-5-8+1,-§+2....,0,....85—1,§ (A1.1.85)

where a correspondence to the properties of orbital angular momentum should be noted. The multiplicity of a
state is given by 25 + 1 (the number of possible M values) and it is customary to associate the terms singlet
with S = 0, doublet with § = .,, triplet with S =1 and SO on.

In the non-relativistic quantum mechanics discussed in this chapter, spin does not appear naturally. Although



Dirac showed in 1928 that a fourth quantum number associated with intrinsic angular momentum appears in a
relativistic treatment of the free electron, it is customary to treat spin heuristically. In general, the
wavefunction of an electron is written as the product of the usual spatial part (which corresponds to a solution
of the non-relativistic Schrodinger equation and involves only the Cartesian coordinates of the particle) and a
spin part ¢, where o is either o or . A common shorthand notation is often used, whereby

¥ = Ypaial (A1.1.86)

W = Yropanial B. (A1.1.87)

In the context of electronic structure theory, the composite functions above are often referred to as spin
orbitals. When spin is taken into account, one finds that the ground state of the hydrogen atom is actually
doubly degenerate. The spatial part of the wavefunction is the Schrédinger equation solution discussed in
section (A1.1.3.1), but the possibility of either spin o or f means that there are two distinct overall
wavefunctions. The same may be said for any of the excited states of hydrogen (all of which are, however,
already degenerate in the nonrelativistic theory), as the level of degeneracy is doubled by the introduction of
spin. Spin may be thought of as a fourth coordinate associated with each particle. Unlike Cartesian
coordinates, for which there is a continuous distribution of possible values, there are only two possible values
of the spin coordinate available to each particle. This has important consequences for our discussion of
indistinguishability and symmetry properties of the wavefunction, as the concept of coordinate permutation
must be amended to include the spin variable of the particles. As an example, the independent-particle ground
state of the helium atom based on hydrogenic wavefunctions

K (D x1.(2) (A1.1.88)

must be replaced by the four possibilities

x1s(1) x15(2) (A1.1.89)
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K1 (1) x1,(2) (A1.1.90)

x1s (1) x15(2) (A1.1.91)

(1) x1:(2). (A1.1.92)

While the first and fourth of these are symmetric with respect to particle interchange and thereby satisfy the
indistinguishability criterion, the other two are not and appropriate linear combinations must be formed.
Doing so, one finds the following four wavefunctions

ds1 = x1s(1)y1:(2) (A1.1.93)
P52 = w@[m;“]ﬁﬂil + x1:(2) 15 (1)) (A1.1.94)
bs3 = x1:(1)x1:(2) (A1.1.95)
Pa =ﬁ[m:(l}in(?)—XJ.c'ZEJiLxU}] (A1.1.96)

where the first three are symmetric with respect to particle interchange and the last is antisymmetric. This
suggests that under the influence of a magnetic field, the ground state of helium might be resolved into
components that differ in terms of overall spin, but this is not observed. For the lithium example, there are



eight possible ways of assigning the spin coordinates, only two of which

¢ = x1:(1) 0152 x15(3) (A1.1.97)
¢ = K11 01:(2) 315(3) (A1.1.98)

satisfy the criterion P, ¢ =+ ¢. The other six must be mixed in appropriate linear combinations. However,
there is an important ({ifference between lithium and helium. In the former case, all assignments of the spin
variable to the state given by equation (A1.1.88) produce a product function in which the same state (in terms
of both spatial and spin coordinates) appears at least twice. A little reflection shows that it is not possible to
generate a linear combination of such functions that is antisymmetric with respect to all possible interchanges;
only symmetric combinations such as

¢ = 10 D271 3) + X1 (D712 x153) + K (D31 ) x163)] (A1.1.99)

can be constructed. The fact that antisymmetric combinations appear for helium (where the independent-
particle ground state made up of hydrogen 1s functions is qualitatively consistent with experiment) and not for
lithium (where it is not) raises the interesting possibility that the exact wavefunction satisfies a condition more
restrictive than P,y = 4y, namely Pl.j\y = —y. For reasons that are not at all obvious, or even intuitive, nature
does indeed enforce this restriction, which is one statement of the Pauli exclusion principle. When this idea is
first met with, one usually learns an equivalent but less general statement that applies only within the
independent-particle approximation: no two electrons can have the same quantum numbers. What does this
mean? Within the independent-particle picture of an atom, each single-particle wavefunction, or orbital, is
described by the quantum numbers n, /, m; and (when spin is considered) m_.
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Since it is not possible to generate antisymmetric combinations of products if the same spin orbital appears
twice in each term, it follows that states which assign the same set of four quantum numbers twice cannot
possibly satisfy the requirement Pl.].\y = —y, so this statement of the exclusion principle is consistent with the
more general symmetry requirement. An even more general statement of the exclusion principle, which can be
regarded as an additional postulate of quantum mechanics, is

The wavefunction of a system must be antisymmetric with respect to interchange of the
coordinates of identical particles y and o if they are fermions, and symmetric with respect to
interchange of y and 9§ if they are bosons.

Electrons, protons and neutrons and all other particles that have s = %are known as fermions. Other particles
are restricted to s = 0 or 1 and are known as bosons. There are thus profound differences in the quantum-
mechanical properties of fermions and bosons, which have important implications in fields ranging from
statistical mechanics to spectroscopic selection rules. It can be shown that the spin quantum number S
associated with an even number of fermions must be integral, while that for an odd number of them must be
half-integral. The resulting composite particles behave collectively like bosons and fermions, respectively, so
the wavefunction symmetry properties associated with bosons can be relevant in chemical physics. One
prominent example is the treatment of nuclei, which are typically considered as composite particles rather
than interacting protons and neutrons. Nuclei with even atomic number therefore behave like individual
bosons and those with odd atomic number as fermions, a distinction that plays an important role in rotational
spectroscopy of polyatomic molecules.



A1.1.3.4 INDEPENDENT-PARTICLE MODELS IN ELECTRONIC STRUCTURE

At this point, it is appropriate to make some comments on the construction of approximate wavefunctions for
the many-electron problems associated with atoms and molecules. The Hamiltonian operator for a molecule is
given by the general form

i 2 2 2 2 2 3
H=—II7[ZE—:+ > %}+Zﬂ+ YEoY Y (A1.1.100)

muclei electrons nuclel Fap cecirgns T 1 elecimas nucled i@
ir i = fi [ 1 o

It should be noted that nuclei and electrons are treated equivalently in #, which is clearly inconsistent with the
way that we tend to think about them. Our understanding of chemical processes is strongly rooted in the
concept of a potential energy surface which determines the forces that act upon the nuclei. The potential
energy surface governs all behaviour associated with nuclear motion, such as vibrational frequencies, mean
and equilibrium internuclear separations and preferences for specific conformations in molecules as complex
as proteins and nucleic acids. In addition, the potential energy surface provides the transition state and
activation energy concepts that are at the heart of the theory of chemical reactions. Electronic motion,
however, is never discussed in these terms. All of the important and useful ideas discussed above derive from
the Born—Oppenheimer approximation, which is discussed in some detail in section B3.1. Within this model,
the electronic states are solutions to the equation
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2 . "
_2% > Vi- 2 > f_x“} > = |y =1y (A1.1.101)
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where the nuclei are assumed to be stationary. The electronic energies are given by the eigenvalues (usually
augmented by the wavefunction-independent internuclear repulsion energy) of ff. The functions obtained by
plotting the electronic energy as a function of nuclear position are the potential energy surfaces described
above. The latter are different for every electronic state; their shape gives the usual information about
molecular structure, barrier heights, isomerism and so on. The Born—Oppenheimer separation is also made in
the study of electronic structure in atoms. However, this is a rather subtle point and is not terribly important in
applications since the only assumption made is that the nucleus has infinite mass.

Although a separation of electronic and nuclear motion provides an important simplification and appealing
qualitative model for chemistry, the electronic Schrodinger equation is still formidable. Efforts to solve it
approximately and apply these solutions to the study of spectroscopy, structure and chemical reactions form
the subject of what is usually called electronic structure theory or quantum chemistry. The starting point for
most calculations and the foundation of molecular orbital theory is the independent-particle approximation.

For many-electron systems such as atoms and molecules, it is obviously important that approximate
wavefunctions obey the same boundary conditions and symmetry properties as the exact solutions. Therefore,
they should be antisymmetric with respect to interchange of each pair of electrons. Such states can always be
constructed as linear combinations of products such as

Xt x ;@) xe(3) ... xg(n). (A1.1.102)



The y are assumed to be spin orbitals (which include both the spatial and spin parts) and each term in the
product differs in the way that the electrons are assigned to them. Of course, it does not matter how the
electrons are distributed amongst the y in equation (A1.1.102), as the necessary subsequent
antisymmetrization makes all choices equivalent apart from an overall sign (which has no physical
significance). Hence, the product form is usually written without assigning electrons to the individual orbitals,
and the set of unlabelled y included in the product represents an electron configuration. It should be noted that
all of the single-particle orbitals y in the product are distinct. A very convenient method for constructing
antisymmetrized combinations corresponding to products of particular single-particle states is to form the
Slater determinant

x(ly xi@) () - xi(n)
iy x;i(2y x;(3) - x;n)
¢ =X} @ xe(3 - xe(n) /q’n_' (A1.1.103)
?I:;[” -x'.f{‘z} I;f(s) e I:_a{”}
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where the nominal electron configuration can be determined by simply scanning along the main diagonal of
the matrix. A fundamental result of linear algebra is that the determinant of a matrix changes sign when any
two rows or columns are interchanged. Inspection of equation (A1.1.103) shows that interchanging any two
columns of the Slater determinant corresponds to interchanging the labels of two electrons, so the Pauli
exclusion principle is automatically incorporated into this convenient representation. Whether all orbitals in a
given row are identical and all particle labels the same in each column (as above) or vice versa is not
important, as determinants are invariant with respect to transposition. In particular, it should be noted that the
Slater determinant necessarily vanishes when two of the spin orbitals are identical, reflecting the alternative
statement of the Pauli principle—no two electrons can have the same quantum number. One qualification

which should be stated here is that Slater determinants are not necessarily eigenfunctions of the 52 operator,
and it is often advantageous to form linear combinations of those corresponding to electron configurations that

differ only in the assignment of the spin variable to the spatial orbitals. The resulting functions ¢ are
sometimes known as spin-adapted configurations.

Within an independent-particle picture, there are a very large number of single-particle wavefunctions
available to each particle in the system. If the single-particle Schrodinger equations can be solved exactly,
then there are often an infinite number of solutions. Approximate solutions are, however, necessitated in most
applications, and some subtleties must be considered in this case. The description of electrons in atoms and
molecules is often based on the Hartree—Fock approximation, which is discussed in section B3.1 of this
encyclopedia. In the Hartree—Fock method, only briefly outlined here, the orbitals are chosen in such a way
that the total energy of a state described by the Slater determinant that comprises them is minimized. There
are cogent reasons for using an energy minimization strategy that are based on the variational principle
discussed later in this section. The Hartree—Fock method derives from an earlier treatment of Hartree, in
which indistinguishability and the Pauli principle were ignored and the wavefunction expressed as in equation
(A1.1.102). However, that approach is not satisfactory because it can lead to pathological solutions such as
that discussed earlier for lithium. In Hartree—Fock theory, the orbital optimization is achieved at the expense
of introducing a very complicated single-particle potential term v;. This potential depends on all of the other
orbitals in which electrons reside, requires the evaluation of difficult integrals and necessitates a self-
consistent (iterative) solution. The resulting one-electron Hamiltonian is known as the Fock operator, and it
has (in principle) an infinite number of eigenfunctions; a subset of these are exactly the same as the y that
correspond to the occupied orbitals upon which it is parametrized. The resulting equations cannot be solved
analytically; for atoms, exact solutions for the occupied orbitals can be determined by numerical methods, but



the infinite number of unoccupied functions are unknown apart from the fact that they must be orthogonal to
the occupied ones. In molecular calculations, it is customary to assume that the orbitals y can be written as
linear combinations of a fixed set of N basis functions, where N is typically of the order of tens to a few
hundred. Iterative solution of a set of matrix equations provides approximations for the orbitals describing the
n electrons of the molecule and N — n unoccupied orbitals.

The choice of basis functions is straightforward in atomic calculations. It can be demonstrated that all
solutions to an independent-particle Hamiltonian have the symmetry properties of the hydrogenic

wavefunctions. Each is, or can be written as, an eigenfunction of the f.z and [? operators and involves a radial

part multiplied by a spherical harmonic. Atomic calculations that use basis sets (not all of them do) typically
choose functions that are similar to those that solve the Schrodinger equation for hydrogen. If the complete set
of hydrogenic functions is used, the solution to the basis set equations are the exact Hartree—Fock solutions.
However, practical considerations require the use of finite basis sets; the corresponding solutions are therefore
only approximate. Although the distinction is rarely made, it is preferable to refer to these as self-consistent
field (SCF) solutions and energies in order to distinguish them from the exact Hartree—Fock results. As the
quality of a basis is improved, the energy approaches that of the Hartree—Fock solution from above.
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In molecules, things are a great deal more complicated. In principle, one can always choose a subset of all the
hydrogenic wavefunctions centred at some point in space. Since the resulting basis functions include all
possible electron coordinates and Slater determinants constructed from them vanish at infinity and satisfy the
Pauli principle, the corresponding approximate solutions must lie in the space spanned by the exact solutions
and be qualitatively acceptable. In particular, use of enough basis functions will result in convergence to the
exact Hartree—Fock solution. Because of the difficulties involved with evaluating integrals involving
exponential hydrogenic functions centred at more than one point in space, such single-centre expansions were
used in the early days of quantum chemistry. The main drawback is that convergence to the exact Hartree—
Fock result is extraordinarily slow. The states of the hydrogen molecule are reasonably well approximated by
linear combinations of hydrogenic functions centred on each of the two nuclei. Hence, a more practical
strategy is to construct a basis by choosing a set of hydrogenic functions for each atom in the molecule (the
same functions are usually used for identical atoms, whether or not they are equivalent by symmetry). Linear
combinations of a relatively small number of these functions are capable of describing the electronic
distribution in molecules much better than is possible with a corresponding number of functions in a single-
centre expansion. This approach is often called the linear combination of atomic orbitals (LCAO)
approximation, and is used in virtually all molecular SCF calculations performed today. The problems
associated with evaluation of multicentre integrals alluded to above was solved more than a quarter-century
ago by the introduction of Gaussian—rather than exponential—basis functions, which permit all of the
integrals appearing in the Fock operator to be calculated analytically. Although Gaussian functions are not
hydrogenic functions (and are inferior basis functions), the latter can certainly be approximated well by linear
combinations of the former. The ease of integral evaluation using Gaussian functions makes them the standard
choice for practical calculations. The importance of selecting an appropriate basis set is of great practical
importance in quantum chemistry and many other aspects of atomic and molecular quantum mechanics. An
illustrative example of basis set selection and its effect on calculated energies is given in subsection
(A1.1.4.2). While the problem studied there involves only the motion of a single particle in one dimension, an
analogy with the LCAO and single-centre expansion methods should be apparent, with the desirable features
of the former clearly illustrated.

Even Hartree—Fock calculations are difficult and expensive to apply to large molecules. As a result, further
simplifications are often made. Parts of the Fock operator are ignored or replaced by parameters chosen by
some sort of statistical procedure to account, in an average way, for the known properties of selected



compounds. While calculating properties that have already been measured experimentally is of limited
interest to anyone other than theorists trying to establish the accuracy of a method, the hope of these
approximate Hartree—Fock procedures (which include the well known Hiickel approximation and are
collectively known as semiempirical methods) is that the parametrization works just as well for both
unmeasured properties of known molecules (such as transition state structures) and the structure and
properties of transient or unknown species. No further discussion of these approaches is given here (more
details are given in section B3.1 and section B3.2); it should only be emphasized that all of these methods are
based on the independent-particle approximation.

Regardless of how many single-particle wavefunctions y are available, this number is overwhelmed by the
number of n-particle wavefunctions ¢ (Slater determinants) that can be constructed from them. For example,
if a two-electron system is treated within the Hartree—Fock approximation using 100 basis functions, both of
the electrons can be assigned to any of the y obtained in the calculation, resulting in 10,000 two-electron
wavefunctions. For water, which has ten electrons, the number of electronic wavefunctions with equal
numbers of o and J spin electrons that can be constructed from 100 single-particle wavefunctions is roughly
10131 The significance of these other solutions may be hard to grasp. If one is interested solely in the
electronic ground state and its associated potential energy surface (the focus of investigation in most quantum
chemistry studies), these solutions play no role whatsoever within the HF—SCF approximation. Moreover, one
might think (correctly) that solutions obtained by putting an electron in one of the
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unoccupied orbitals offers a poor treatment of excited states since only the occupied orbitals are optimized.
However, there is one very important feature of the extra solutions. If the HF solution has been obtained and
all (an infinite number) of virtual orbitals available, then the basic principles of quantum mechanics imply that
the exact wavefunction can be written as the sum of Slater determinants

Vexaa = 3 cre (A1.1.104)

k

where the ¢, correspond to all possible electron configurations. The individual Slater determinants are thus
seen to play a role in the representation of the exact wavefunction that is analogous to that played by the
hydrogenic (or LCAO) functions in the expansion of the Hartree—Fock orbitals. The Slater determinants are
sometimes said to form an n-electron basis, while the hydrogenic (LCAO) functions are the one-electron
basis.

A similar expansion can be made in practical finite-basis calculations, except that limitations of the basis set
preclude the possibility that the exact wavefunction lies in the space spanned by the available ¢. However, it
should be clear that the formation of linear combinations of the finite number of ¢, offers a way to better
approximate the exact solution. In fact, it is possible to obtain by this means a wavefunction that exactly
satisfies the electronic Schrodinger equation when the assumption is made that the solution must lie in the
space spanned by the n-electron basis functions ¢. However, even this is usually impossible, and only a select
number of the ¢, are used. The general principle of writing n-electron wavefunctions as linear combinations
of Slater determinants is known as configuration interaction, and the resultant improvement in the
wavefunction is said to account for electron correlation. The origin of this term is easily understood.
Returning to helium, an inspection of the Hartree—Fock wavefunction

W= ng[xh(l)fu{l} — 1523 X (D] (A1.1.105)



exhibits some rather unphysical behaviour: the probability of finding one electron at a particular point in
space is entirely independent of where the other electron is! In particular, the probability does not vanish
when the two particles are coincident, the associated singularity in the interelectronic repulsion potential
notwithstanding. Of course, electrons do not behave in this way, and do indeed tend to avoid each other.
Hence, their motion is correlated, and this qualitative feature is absent from the Hartree—Fock approximation
when the electrons have different spins. When they are of like spin, then the implicit incorporation of the
Pauli principle into the form of the Slater determinant allows for some measure of correlation (although these
like-spin effects are characteristically overestimated) since the wavefunction vanishes when the coordinates of
the two electrons coincide. Treatments of electron correlation and the related concept of correlation energy
(the difference between the Hartree—Fock and exact non-relativistic results) take a number of different forms
that differ in the strategies used to determine the expansion coefficients ¢, and the energy (which is not always
given by the expectation value of the Hamiltonian over a function of the form equation (A1.1.104)). The basic
theories underlying the most popular choices are the variational principle and perturbation theory, which are
discussed in a general way in the remainder of this section. Specific application of these tools in electronic
structure theory is dealt with in section B3.1. Before leaving this discussion, it should also be mentioned that a
concept very similar to the independent-particle approximation is used in the quantum-mechanical treatment
of molecular vibrations. In that case, it is always possible to solve the Schrodinger equation for nuclear
motion exactly if the potential energy function is assumed to be quadratic.
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The corresponding functions y;, % etc. then define what are known as the normal coordinates of vibration,
and the Hamiltonian can be written in terms of these in precisely the form given by equation (A1.1.69), with
the caveat that each term refers not to the coordinates of a single particle, but rather to independent
coordinates that involve the collective motion of many particles. An additional distinction is that treatment of
the vibrational problem does not involve the complications of antisymmetry associated with identical
fermions and the Pauli exclusion principle. Products of the normal coordinate functions nevertheless describe
all vibrational states of the molecule (both ground and excited) in very much the same way that the product
states of single-electron functions describe the electronic states, although it must be emphasized that one
model is based on independent motion and the other on collective motion, which are qualitatively very
different. Neither model faithfully represents reality, but each serves as an extremely useful conceptual model
and a basis for more accurate calculations.

A1.1.4 APPROXIMATING EIGENVALUES OF THE HAMILTONIAN

Since its eigenvalues correspond to the allowed energy states of a quantum-mechanical system, the time-
independent Schrodinger equation plays an important role in the theoretical foundation of atomic and
molecular spectroscopy. For cases of chemical interest, the equation is always easy to write down but
impossible to solve exactly. Approximation techniques are needed for the application of quantum mechanics
to atoms and molecules. The purpose of this subsection is to outline two distinct procedures—the variational
principle and perturbation theory—that form the theoretical basis for most methods used to approximate
solutions to the Schrédinger equation. Although some tangible connections are made with ideas of quantum
chemistry and the independent-particle approximation, the presentation in the next two sections (and example
problem) is intended to be entirely general so that the scope of applicability of these approaches is not
underestimated by the reader.

A1.1.4.1 THE VARIATIONAL PRINCIPLE

Although it may be impossible to solve the Schrodinger equation for a specific choice of the Hamiltonian, it is



always possible to guess! While randomly chosen functions are unlikely to be good approximations to the
exact quantum-mechanical wavefunction, an educated guess can usually be made. For example, if one is
interested in the ground state of a single particle subjected to some potential energy function, the qualitative
features discussed in subsection (A1.1.2.3) can be used as a guide in constructing a guess. Specifically, an
appropriate choice would be one that decays to zero at positive and negative infinity, has its largest values in
regions where the potential is deepest, and has no nodes. For more complicated problems—especially those
involving several identical particles—it is not so easy to intuit the form of the wavefunction. Nevertheless,
guesses can be based on solutions to a (perhaps grossly) simplified Schrodinger equation, such as the Slater
determinants associated with independent-particle models.

In general, approaches based on guessing the form of the wavefunction fall into two categories. In the first,
the ground-state wavefunction is approximated by a function that contains one or more nonlinear parameters.
For example, if exp(ax) is a solution to a simplified Schrodinger equation, then the function exp(bx) provides
a plausible guess for the actual problem. The parameter b can then be varied to obtain the most accurate
description of the exact ground state. However, there is an apparent contradiction here. If the exact ground-
state wavefunction and energy are not known (and indeed impossible to obtain analytically), then how is one
to determine the best choice for the parameter 5?
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The answer to the question that closes the preceding paragraph is the essence of the variational principle in
quantum mechanics. If a guessed or trial wavefunction ¢ is chosen, the energy € obtained by taking the
expectation value of the Hamiltonian (it must be emphasized that the actual Hamiltonian is used to evaluate
the expectation value, rather than the approximate Hamiltonian that may have been used to generate the form
of the trial function) over ¢ must be higher than the exact ground-state energy. It seems rather remarkable that
the mathematics seems to know precisely where the exact eigenvalue lies, even though the problem cannot be
solved exactly. However, it is not difficult to prove that this assertion is true. The property of mathematical
completeness tells us that our trial function can be written as a linear combination of the exact wavefunctions
(so long as our guess obeys the boundary conditions and fundamental symmetries of the problem), even when
the latter cannot be obtained. Therefore one can always write

¢ = Zf;.-nfq- (A1.1.106)
k

where y, is the exact Hamiltonian eigenfunction corresponding to eigenvalue A, and ordered so that A, <A,
<A, + - . Assuming normalization of both the exact wavefunctions and the trial function, the expectation
value of the Hamiltonian is

M
Il

fq-r*mp dr

f(gc;w;):‘f(;vﬂh)df = ;;fﬁ'&f‘i‘;}w’*‘ (A1.1.107)

Since the y, represent exact eigenfunctions of the Hamiltonian, equation (A1.1.107) simplifies to

. . " 2.
€= E E C,-Ckhx-f'#, Y = Ek Crephy = Es. x| A (A1.1.108)
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The assumption of normalization imposed on the trial function means that

2
Y lel =1 (A1.1.109)
;.

hence
lcol? = 1= le1]? = leal* = |esP — <. (A1.1.110)

Inserting equation (A1.1.110) into equation (A1.1.108) yields
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€ =g+ ler (k= ho) +lealP(he = Ao) + - - (A1.1.111)

The first term on the right-hand side of the equation for ¢ is the exact ground-state energy. All of the
remaining contributions involve norms of the expansion coefficients and the differences A, — 2, both of
which must be either positive or zero. Therefore, ¢ is equal to the ground-state energy plus a number that
cannot be negative. In the case where the trial function is precisely equal to the ground-state wavefunction,
then & = %;; otherwise &€ > A,. Hence, the expectation value of the Hamiltonian with respect to any arbitrarily
chosen trial function provides an upper bound to the exact ground-state energy. The dilemma raised earlier—
how to define the best value of the variational parameter »—has a rather straightforward answer, namely the
choice that minimizes the value of €, known as the variational energy.

A concrete example of the variational principle is provided by the Hartree—Fock approximation. This method
asserts that the electrons can be treated independently, and that the n-electron wavefunction of the atom or
molecule can be written as a Slater determinant made up of orbitals. These orbitals are defined to be those
which minimize the expectation value of the energy. Since the general mathematical form of these orbitals is
not known (especially in molecules), then the resulting problem is highly nonlinear and formidably difficult to
solve. However, as mentioned in subsection (A1.1.3.2), a common approach is to assume that the orbitals can
be written as linear combinations of one-electron basis functions. If the basis functions are fixed, then the
optimization problem reduces to that of finding the best set of coefficients for each orbital. This tremendous
simplification provided a revolutionary advance for the application of the Hartree-Fock method to molecules,
and was originally proposed by Roothaan in 1951. A similar form of the trial function occurs when it is
assumed that the exact (as opposed to Hartree—Fock) wavefunction can be written as a linear combination of
Slater determinants (see equation (A1.1.104)). In the conceptually simpler latter case, the objective is to
minimize an expression of the form

€ =f¢*f:’¢'dr (A1.1.112)
where ¢ is parametrized as
N

¢ = Z‘”* (A1.1.113)
k=)

and both the (fixed functions) y, and ¢ are assumed to be normalized.



The representation of trial functions as linear combinations of fixed basis functions is perhaps the most
common approach used in variational calculations; optimization of the coefficients ¢, is often said to be an
application of the linear variational principle. Although some very accurate work on small atoms (notably
helium and lithium) has been based on complicated trial functions with several nonlinear parameters, attempts
to extend these calculations to larger atoms and molecules quickly runs into formidable difficulties (not the
least of which is how to choose the form of the trial function). Basis set expansions like that given by equation
(A1.1.113) are much simpler to design, and the procedures required to obtain the coefficients that minimize €
are all easily carried out by computers.
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For the example discussed above, where exp(ax) is the solution to a simpler problem, a trial function using
five basis functions

¢. = £ eiu—?].! + €3 E{:!-l]: + €3 e + ¢y El:ﬂ"’]].t + € E!:H'E].t (A1.1.114)

could be used instead of exp(bx) if the exact function is not expected to deviate too much from exp(ax). What
is gained from replacing a trial function containing a single parameter by one that contains five? To see,
consider the problem of how coefficients can be chosen to minimize the variational energy e,

[¢*Hedr
W (A1.1.115)

The denominator is included in equation (A1.1.115) because it is impossible to ensure that the trial function is
normalized for arbitrarily chosen coefficients c;. In order to minimize the value of ¢ for the trial function

N
b= Z‘-'k.}{k (A1.1.116)

k=0

it is necessary (but not sufficient) that its first partial derivatives with respect to all expansion coefficients
vanish, viz

de _ de de

o = =...=0.
dey Hf-:r Hfj (A1.1.117)

It is worthwhile, albeit tedious, to work out the condition that must satisfied in order for equation (A1.1.117)
to hold true. Expanding the trial function according to equation (A1.1.113), assuming that the basis functions
and expansion coefficients are real and making use of the technique of implicit differentiation, one finds

N N N N
= [ZZ[r[IbU] +EE|:ZLJS;1.:| = EZL‘jHﬁ
Gk Lizo =0 =0
e [ o o =
E[ZZ""‘?S‘T} = EZ"f{Hﬁf —<Sis) (A1.1.118)



where shorthand notations for the overlap matrix elements

Sjx = fx_;xkdr (A1.1.119)
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and Hamiltonian matrix elements

have been introduced. Since the term multiplying the derivative of the expansion coefficient is simply the
norm of the wavefunction, the variational condition equation (A1.1.117) is satisfied if the term on the right-
hand side of equation (A1.1.118) vanishes for all values of k. Specifically, the set of homogeneous linear
equations corresponding to the matrix expression

oo — €5 Hy — el -+ How — €Sy 0
Hin —e5w Hiy—e5y Hiw — €515 0
ey €2 -+ en) : . . . =\ .
Hywn—eSwn Hyy =Sy -+ Hyw — 5y 0 (A1.1.121)

must be satisfied. It is a fundamental principle of linear algebra that systems of equations of this general type
are satisfied only for certain choices of &, namely those for which the determinant

Hrﬂn — fsm ffm — fsm LR Hn,\r o ES1,~J
flip—eSo Hu—eSn -~ Hiy—eSn
Hyg—€Swo Hwi—e€Sv1 -+ Hyy —€Swy (A1.1.122)

is identically equal to zero. There are precisely N values of ¢ that satisfy this condition, some of which might
be degenerate, and their determination constitutes what is known as the generalized eigenvalue problem.
While this is reasonably well suited to computation, a further simplification is usually made. When suited to
the problem under consideration, the basis functions are usually chosen to be members of an orthonormal set.
In other cases (for example, in the LCAO treatment of molecules) where this is not possible, the original basis
functions X I—corresponding to the overlap matrix S’ can be subjected to the orthonormalizing transformation

Xk =Z’:xfxf*' (A1.1.123)

where X is the reciprocal square root of the overlap matrix in the primed basis,

X=g"' (A1.1.124)

The simplest way to obtain X is to diagonalize S’, take the reciprocal square roots of the eigenvalues and then
transform the matrix back to its original representation, i.e.



-42-

X=C's"'’¢ct (A1.1.125)

where s is the diagonal matrix of reciprocal square roots of the eigenvalues, and C’ is the matrix of
eigenvectors for the original S’ matrix. Doing this, one finds that the transformed basis functions are
orthonormal. In terms of implementation, elements of the Hamiltonian are usually first evaluated in the
primed basis, and the resulting matrix representation of H is then transformed to the orthogonal basis (H =

xXTH'X).

In an orthonormal basis, S, ' 1 if k=, and vanishes otherwise. The problem of finding the variational energy
of the ground state then reduces to that of determining the smallest value of ¢ that satisfies

Ho—¢ Ha - How
Hoy Hy-—-¢ - Hn
. : ' A1.1.126
Hyo Hy oo Hyw — € ( :

a task that modern digital computers can perform very efficiently. Given an orthonormal basis, the variational
problem can be solved by diagonalizing the matrix representation of the Hamiltonian, H. Associated with
each eigenvalue ¢ is an eigenvector (¢, ¢, €5, - - -, €) that tells how the basis functions are combined in the
corresponding approximate wavefunction ¢ as parametrized by equation (A1.1.116). That the lowest
eigenvalue € of H provides an upper bound to the exact ground-state energy has already been proven; it is also
true (but will not be proved here) that the first excited state of the actual system must lie below the next
largest eigenvalue 2, and indeed all remaining eigenvalues provide upper bounds to the corresponding
excited states. That is,

€ = A, €1 = A, €3 = oLl ENn = AN (A1.1.127)

The equivalence between variational energies and the exact eigenvalues of the Hamiltonian is achieved only
in the case where the corresponding exact wavefunctions can be written as linear combinations of the basis
functions. Suppose that the Schrodinger equation for the problem of interest cannot be solved, but another
simpler problem that involves precisely the same set of coordinates lends itself to an analytic solution. In
practice, this can often be achieved by ignoring certain interaction terms in the Hamiltonian, as discussed
earlier. Since the eigenfunctions of the simplified Hamiltonian form a complete set, they provide a
conceptually useful basis since all of the eigenfunctions of the intractable Hamiltonian can be written as linear
combinations of them (for example, Slater determinants for electrons or products of normal mode
wavefunctions for vibrational states). In this case, diagonalization of H in this basis of functions provides an
exact solution to the Schrodinger equation. It is worth pausing for a moment to analyse what is meant by this
rather remarkable statement. One simply needs to ignore interaction terms in the Hamiltonian that preclude an
analytic determination of the stationary states and energies of the system. The corresponding Schrodinger
equation can then be solved to provide a set of orthonormal basis functions, and the integrals that represent the
matrix elements of H

H,-;=fx,-*ij dr (A1.1.128)
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computed. Diagonalization of the resulting matrix provides the sought-after solution to the quantum-
mechanical problem. Although this process replaces an intractable differential equation by a problem in linear
algebra, the latter offers its own insurmountable hurdle: the dimension of the matrix (equal to the number of
rows or columns) is equal to the number of functions included in the complete set of solutions to the
simplified Schrédinger equation. Regrettably, this number is usually infinite. At present, special algorithms
can be used with modern computers to obtain eigenvalues of matrices with dimensions of about 100 million
relatively routinely, but this still falls far short of infinity. Therefore, while it seems attractive (and much
simpler) to do away with the differential equation in favour of a matrix diagonalization, it is not a magic bullet
that makes exact quantum-mechanical calculations a possibility.

In order to apply the linear variational principle, it is necessary to work with a matrix sufficiently small that it
can be diagonalized by a computer; such calculations are said to employ a finite basis. Use of a finite basis
means that the eigenvalues of H are not exact unless the basis chosen for the problem has the miraculous (and
extraordinarily unlikely) property of being sufficiently flexible to allow one or more of the exact solutions to
be written as linear combinations of them. For example, if the intractable system Hamiltonian contains only
small interaction terms that are ignored in the simplified Hamiltonian used to obtain the basis functions, then
%o 1s probably a reasonably good approximation to the exact ground-state wavefunction. At the very least, one
can be relatively certain that it is closer to y,, than are those that correspond to the thousandth, millionth and
billionth excited states of the simplified system. Hence, if the objective of a variational calculation is to
determine the ground-state energy of the system, it is important to include y,, and other solutions to the
simplified problem with relatively low lying energies, while % (40 goo @1d other high lying solutions can be
excluded more safely.

A1.1.4.2 EXAMPLE PROBLEM: THE DOUBLE-WELL OSCILLATOR

To illustrate the use of the variational principle, results are presented here for calculations of the five lowest
energy states (the ground state and the first four excited states) of a particle subject to the potential

Vig) = 0.05¢" — 4* (A1.1.129)

which is shown in figure A1.1.3. The potential goes asymptotically to infinity (like that for the harmonic
oscillator), but exhibits two symmetrical minima at ¢ = ++/T0.and a maximum at the origin. This function is
known as a double well, and provides a qualitative description of the potential governing a variety of
quantum-mechanical processes, such as motion involved in the inversion mode of ammonia (where the
minima play the role of the two equivalent pyramidal structures and the maximum that of planar NH;). For
simplicity, the potential is written in terms of the dimensionless coordinate ¢ defined by

|
mk
g =ox = (ﬁ_z) x (A1.1.130)

where x is a Cartesian displacement and & is a constant with units of (mass)(time)_z. The corresponding
Schrodinger

-44-



equation can be written as

1 d
S— 4_ 2 -
[ 2dg? 0.05¢ q ]g{r = Ef (A1.1.131)

where the energy is given as a multiple of #*a? /s . This value corresponds to 4v where v is the frequency

corresponding to a quantum harmonic oscillator with force constant .
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Figure A1.1.3. Potential function used in the variational calculations. Note that the energies of all states lie
above the lowest point of the potential (V= - 5), which occurs at ¢ = +,/10.-

It is not possible to solve this equation analytically, and two different calculations based on the linear
variational principle are used here to obtain the approximate energy levels for this system. In the first,

eigenfunctions corresponding to the potential V' = 2q2 (this corresponds to the shape of the double-well
potential in the vicinity of its minima) are used as a basis. It should be noted at the outset that these functions
form a complete set, and it is therefore possible to write exact solutions to the double-well oscillator problem
in terms of them. However, since we expect the ground-state wavefunction to have maximum amplitude in the
regions around g = £+/10., it is unlikely that the first few harmonic oscillator functions (which have maxima
closer to the origin) are going to provide a good representation of the exact ground state. The first four

eigenvalues of the potential are given in the table below, where N indicates
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the size of the variational basis which includes the N lowest energy harmonic oscillator functions centred at

the origin.



N - Ay, A g Ay

2 025937 0.796 87 — —

4 -0.467 37 -0.35863 -1.98999 -3.24862
6 -1.41439 -1.05171 -0.68935 -1.43457
8 222597 -1.85067 -0.09707 -0.396 14
0 -2.89174 -258094 -0.35857 -0.33930
20 -4.02122 -4.01289 -2.16221 -2.12538
30 —4.02663 -4.02660 -2.204 11 -2.20079
40 -4.02663 -—-4.02660 -2.204 11 -2.20079
50 -4.02663 -4.02660 -2.20411 -2.20079

Note that the energies decrease with increasing size of the basis set, as expected from the variational principle.
With 30 or more functions, the energies of the four states are well converged (to about one part in 100,000). In
figure Al.1.4 the wavefunctions of the ground and first excited states of the system calculated with 40 basis
functions are shown. As expected, the probability density is localized near the symmetrically disposed minima
on the potential. The ground state has no nodes and the first excited state has a single node. The ground-state
wavefunction calculated with only eight basis functions (shown in figure A1.1.5 is clearly imperfect. The
rapid oscillations in the wavefunction are not real, but rather an artifact of the incomplete basis used in the
calculation. A larger number of functions is required to reduce the amplitude of the oscillations.
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Figure Al.1.4. Wavefunctions for the four lowest states of the double-well oscillator. The ground-state
wavefunction is at the bottom and the others are ordered from bottom to top in terms of increasing energy.
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Figure A1.1.5. Ground state wavefunction of the double-well oscillator, as obtained in a variational
calculation using eight basis functions centred at the origin. Note the spurious oscillatory behaviour near the
origin and the location of the peak maxima, both of which are well inside the potential minima.

The form of the approximate wavefunctions suggests another choice of basis for this problem, namely one
comprising some harmonic oscillator functions centred about one minimum and additional harmonic
oscillator functions centred about the other minimum. The only minor difficulty in this calculation is that the
basis set is not orthogonal (which should be clear simply by inspecting the overlap of the ground-state
harmonic oscillator wavefunctions centred at the two points) and an orthonormalization based on equation
(A1.1.123), equation (A1.1.124) and equation (A1.1.125) is necessary. Placing an equal number of }' = 2q2
harmonic oscillator functions at the position of each minimum (these correspond to solutions of the harmonic
oscillator problems with ¥ = 2(g — +/10)%and ¥ = 2(g + +/10)%, respectively) yields the eigenvalues given

below for the four lowest states (in each case, there are N/2 functions centred at each point).
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2 -3.990 62 -3.990 62 — —

4 —4.01787 —4.01787 -1.92588 -1.92588

6 —4.01851 —4.01851 —2.12522 —2.12521

8 —4.02523 —4.02523 —2.14247 —2.14245
10 —4.02632 —4.02632 —2.17690 -2.17680
20 —4.02663 —4.02660 —2.20290 —2.20064
30 —4.02663 —4.02660 —2.20411 —2.20079
40 —4.02663 —4.02660 —2.20411 —2.20079
50 —4.02663 —4.02660 —2.20411 —2.20079

These results may be compared to those obtained with the basis centred at ¢ = 0. The rate of convergence is
faster in the present case, which attests to the importance of a carefully chosen basis. It should be pointed out
that there is a clear correspondence between the two approaches used here and the single-centre and LCAO
expansions used in molecular orbital theory; the reader should appreciate the advantages of choosing an
appropriately designed multicentre basis set in achieving rapid convergence in some calculations. Finally, in
figure A1.1.6 the ground-state wavefunctions calculated with a mixed basis of eight functions (four centred
about each of the two minima) are displayed. Note that oscillations seen in the single-centre basis calculation
using the same number of functions are completely missing in the non-orthogonal basis calculation.
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Figure A1.1.6. Ground-state wavefunction of the double-well oscillator, as obtained in a variational
calculation using four basis functions centred at ¢ = +/ 1(}and four centred at ¢ = —+/10.Note the absence of a
node at the origin.

A1.1.4.3 PERTURBATION THEORY

Calculations that employ the linear variational principle can be viewed as those that obtain the exact solution
to an approximate problem. The problem is approximate because the basis necessarily chosen for practical
calculations is not sufficiently flexible to describe the exact states of the quantum-mechanical system.
Nevertheless, within this finite basis, the problem is indeed solved exactly: the variational principle provides a
recipe to obtain the best possible solution in the space spanned by the basis functions. In this section, a
somewhat different approach is taken for obtaining approximate solutions to the Schrodinger equation.
Instead of obtaining exact eigenvalues of H in a finite basis, a strategy is developed for determining
approximate eigenvalues of the exact matrix representation of #. It can also be used (and almost always is in
practical calculations) to obtain approximate eigenvalues to approximate (incomplete basis) Hamiltonian
matrices that are nevertheless much larger in dimension than those that can be diagonalized exactly. The
standard textbook presentation of this technique, which is known as perturbation theory, generally uses the
Schrodinger differential equation as the starting point. However, some of the generality and usefulness of the
technique can be lost in the treatment. Students may not come away with an appreciation for the role of linear
algebra in perturbation theory, nor do they usually grasp the (approximate problem, exact answer)/(right—or
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at least less approximate— problem/approximate answer) distinction between matrix diagonalization in the
linear variational principle and the use of perturbation theory.

In perturbation theory, the Hamiltonian is divided into two parts. One of these corresponds to a Schrodinger
equation that can be solved exactly

f;'uxf.m = limxém (A1.1.132)

while the remainder of the Hamiltonian is designated here as V. The orthonormal eigenfunctions yx ,L‘_”’of the
unperturbed, ot zeroth-order Hamiltonian H , form a convenient basis for a matrix representation of the

Hamiltonian #f. Diagonalization of H gives the exact quantum-mechanical energy levels if the complete set of
x:_”’is used, and approximate solutions if the basis is truncated. Instead of focusing on the exact eigenvalues of
H, however, the objective of perturbation theory is to approximate them. The starting point is the matrix

representation of H and V, which will be designated as h

fiqm 0 G vt 0
0 .’f” 0 4]

h= 0 0 ha o --- 0 (A1.1.133)
0 4] 0 *ue h,ﬂ;,\;

and v
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respectively, where the matrix elements /,; and v, are given by the integrals
hii = f 1 Hyx " dr = A" (A1.1.135)
and

vij = fx.-r'm*Vx;de- (A1.1.136)
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Note that h is simply the diagonal matrix of zeroth-order eigenvalues Ai‘". In the following, it will be assumed

that the zeroth-order eigenfunction xi‘b"""‘is a reasonably good approximation to the exact ground-state
wavefunction (meaning that J-.E:J] ~ hp}), and h and v will be written in the compact representations

« [y
A 0
h= ( . *""*:.am) (A1.1.137)
v
v= ("‘m ‘3“). (A1.1.138)
Vgl Vaq

It is important to realize that while the uppermost diagonal elements of these matrices are numbers, the other
diagonal element is a matrix of dimension N. Specifically, these are the matrix representations of H, and V' in

the basis q which consists of all x,"'in the original set, apart from x[i”", ie.
0 {0 i)
a=1x x5 Xy )- (A1.1.139)

The off-diagonal elements in this representation of h and v are the zero vector of length N (for h) and matrix

elements which couple the zeroth-order ground-state eigenfunction xti“"to members of the set q (for v):

Vo 2 tho = f V" (k # 0). (A1.1.140)

The exact ground-state eigenvalue A, and corresponding eigenvector

c= ("“) (A1.1.141)
Cy

clearly satisfy the coupled equations



Hygep + Hﬂqﬂq = cphp (A1.1.142)

Hoto + Hyyeq = ey, (A1.1.143)
The latter of these can be solved for ¢y
eq = [Ao1 — Hyg]"hyaco (A1.1.144)

(the N by N identity matrix is represented here and in the following by 1) and inserted into equation
(A1.1.142) to yield the implicit equation
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Ao = { Hoo + Hog[2o1 — Hye]™'Hyo). (A1.1.145)

Thus, one can solve for the eigenvalue iteratively, by guessing ), evaluating the right-hand side of equation
(A1.1.145), using the resulting value as the next guess and continuing in this manner until convergence is
achieved. However, this is not a satisfactory method for solving the Schrodinger equation, because the
problem of diagonalizing a matrix of dimension N + 1 is replaced by an iterative procedure in which a matrix
of dimension N must be inverted for each successive improvement in the guessed eigenvalue. This is an even
more computationally intensive problem than the straightforward diagonalization approach associated with
the linear variational principle.

Nevertheless, equation (A1.1.145) forms the basis for the approximate diagonalization procedure provided by
perturbation theory. To proceed, the exact ground-state eigenvalue and corresponding eigenvector are written
as the sums

e=cY4+eV+o 4. (A1.1.146)
and

\ . 2
ho = A0 + a0+ (A1.1.147)

where ¢®) and ;‘:’“are said to be kth-order contributions in the perturbation expansion. What is meant here by
order? Ultimately, the various contributions to ¢ and A, will be written as matrix products involving the
unperturbed Hamiltonian matrix h and the matrix representation of the perturbation v. The order of a
particular contribution is defined by the number of times v appears in the corresponding matrix product.
Roughly speaking, if 3" — j.,f;"is of order unity, and the matrix elements of v are an order of magnitude or

two smaller, then the third-order energy contribution should be in the range 103-107°. Therefore, one expects
the low order contributions to be most important and the expansions given by equation (A1.1.146) and

equation (A1.1.147) to converge rapidly, provided the zeroth-order description of the quantum-mechanical
system is reasonably accurate.

To derive equations for the order-by-order contributions to the eigenvalue A, the implicit equation for the
eigenvalue is first rewritten as



Ayt + AL = (MY + vop + Vg [AM AR — A — v 17 M)
= {2y + von +Vg[Rg 1 — AP+ A0 — vl V)

= {0+ von + Vigltay 1 = AT = ("1 = AP vy, = AANN e

A1.1.148
= (A" + v+ o1 = G = AP v, — AN = AP ') ( )
where A is a shorthand notation for the error in the zeroth-order eigenvalue A
Ah=hg = A0 =20 40D 3Oy (A1.1.149)
-53-

There are two matrix inverses that appear on the right-hand side of these equations. One of these is trivial; the
matrix J..:.mis diagonal. The other inverse

1= "1 = A N (vgg — AAD]! (A1.1.150)

is more involved because the matrix 7 is not diagonal, and direct inversion is therefore problematic.
However, if the zeroth-order ground-state energy is well separated from low lying excited states, the diagonal
matrix hereafter designated as R q

Ry = (hy 1— AN (A1.1.151)

that acts in equation (A1.1.150) to scale

(Vgq — AAT) (A1.1.152)

will consist of only small elements. Thus, the matrix to be inverted can be considered as
1-X (A1.1.153)

where X is, in the sense of matrices, small with respect to 1. It can be shown that the inverse of the matrix 1 —
X can be written as a series expansion

(1= " =1+X+XX+ XXX+ X000+ - - - (A1.1.154)

that converges if all eigenvalues of X lie within the unit circle in the complex plane (complex numbers a + bi
such that a® + b* < 1). Applications of perturbation theory in quantum mechanics are predicated on the
assumption that the series converges for the inverse given by equation (A1.1.150), but efforts are rarely made
to verify that this is indeed the case. Use of the series representation of the inverse in equation (A1.1.148)
gives the unwieldy formal equality

) U .
Ay + AL =2y" + vgy + VogRgVan + VogRy (Vg — AATRVg

] (A1.1.155)
+ Vou Ry (Vyg — AMR, (Vg — AATR V0 + - - -



from which the error in the zeroth-order energy AA is easily seen to be

2] (5

by +oee = Vg T VggRgVgn + VagRy (Ve — AAT)R, v,
+¥ygRy(Vgq — AAT)R (Ve — AAT)Rvy + - -
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(A1.1.156)
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Each term on the right-hand side of the equation involves matrix products that contain v a specific number of
times, either explicitly or implicitly (for the terms that involve AL). Recognizing that R is a zeroth-order
quantity, it is straightforward to make the associations

5 0
Ay’ = o (A1.1.157)
- (2
by = VogRqVgo (A1.1.158)
"‘L ' = VigRyVaqRgVg0 — Ay 'VagRgRgVe (A1.1.159)

)] W (20
Ay = VogRgVaaRgVgqReVgo — Ay VogRgRgVqo

s (1410

5 (1 R,R A _ A AR (A1.1.160)
= LAy Vg gVaaRaVan T4y Ay VogRgRgRyvg . ..

which provide recipes for calculating corrections to the energy to fourth order. Similar analysis of equation

(A1.1.146) provides successively ordered corrections to the zeroth-order eigenvector (¢} = c® = 0),
specifically
ch” = R,V (A1.1.161)

cﬂ]

(1
T RyVaqRyVao — Ay RgRyvan

(A1.1.162)

At this point, it is appropriate to make some general comments about perturbation theory that relate to its use
in qualitative aspects of chemical physics. Very often, our understanding of complex systems is based on
some specific zeroth-order approximation that is then modified to allow for the effect of a perturbation. For
example, chemical bonding is usually presented as a weak interaction between atoms in which the atomic
orbitals interact to form bonds. Hence, the free atoms represent the zeroth-order picture, and the perturbation
is the decrease in internuclear distance that accompanies bond formation. Many rationalizations for bonding
trends traditionally taught in descriptive chemistry are ultimately rooted in perturbation theory. As a specific
illustration, the decreasing bond strength of carbon—halogen bonds in the sequence C-F > C—Cl > C-Br > C-1
(a similar trend is found in the sequence CO, CS, CSe, CTe) can be attributed to a ‘mismatch’ of the np
halogen orbitals with the 2p orbitals of carbon as for larger values of n. From the point of perturbation theory,
it is easily understood that the interaction between the bonding electrons is maximized when the
corresponding energy levels are close (small denominators, large values of Rq) while large energy
mismatches (such as that between the valence orbitals of iodine and carbon) allow for less interaction and
correspondingly weaker bonds.

For qualitative insight based on perturbation theory, the two lowest order energy corrections and the first-
order wavefunction corrections are undoubtedly the most useful. The first-order energy corresponds to
averaging the effects of the perturbation over the approximate wavefunction y,,, and can usually be evaluated
without difficulty. The sum of }.# tand Y®is precisely equal to the expectation value of the Hamiltonian over

the zeroth-order description ¥, and is therefore the proper energy to associate with a simplified model. (It



should be pointed out that it is this energy and not the zeroth-order energy obtained by summing up orbital
eigenvalues that is used as the basis for orbital optimization in Hartree—Fock theory. It is often stated that the
first-order correction to the Hartree—Fock energy vanishes, but this is
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misleading; the first-order energy is defined instead to be part of the Hartree—Fock energy.) The second-order
correction allows for interaction between the zeroth-order wavefunction and all others, weighted by the

i
reciprocal of the corresponding energy differences and the magnitude of the matrix elements X4 . The same

interactions between cjr']and the x,‘;"’determine the extent to which the latter are mixed in to the first-order
perturbed wavefunction described by cjr']. This is essentially the idea invoked in the theory of orbital
hybridization. In the presence of four identical ligands approaching a carbon atom tetrahedrally, its valence s

and p orbitals are mixed (through the corresponding xf{“’elements, which vanish at infinite separation) and

their first-order correction in the presence of the perturbation (the ligands) can be written as four equivalent
linear combinations between the s and three p zeroth-order orbitals.

Some similarities and differences between perturbation theory and the linear variational principle need to be
emphasized. First, neither approach can be used in practice to obtain exact solutions to the Schrodinger
equation for intractable Hamiltonians. In either case, an infinite basis is required; neither the sums given by
perturbation theory nor the matrix diagonalization of a variational calculation can be carried out. Hence, the
strengths and weaknesses of the two approaches should be analysed from the point of view that the basis is
necessarily truncated. Within this constraint, diagonalization of H represents the best solution that is possible
in the space spanned by the basis set. In variational calculations, rather severe truncation of H is usually
required, with the effect that its eigenvalues might be poor approximations to the exact values. The problem,
of course, is that the basis is not sufficiently flexible to accurately represent the true quantum-mechanical
wavefunction. In perturbation theory, one can include significantly more functions in the calculation. It turns
out that the results of a low order perturbation calculation are often superior to a practical variational
treatment of the same problem. Unlike variational methods, perturbation theory does not provide an upper
bound to the energy (apart from a first-order treatment) and is not even guaranteed to converge. However, in
chemistry, it is virtually always energy differences—and not absolute energies—that are of interest, and
differences of energies obtained variationally are not themselves upper (or lower) bounds to the exact values.
For example, suppose a spectroscopic transition energy between the states y; and v, is calculated from the
difference A, — kj obtained by diagonalizing H in a truncated basis. There is no way of knowing whether this
value is above or below the exact answer, a situation no different than that associated with taking the
difference between two approximate eigenvalues obtained from two separate calculations based on
perturbation theory.

In the quantum mechanics of atoms and molecules, both perturbation theory and the variational principle are
widely used. For some problems, one of the two classes of approach is clearly best suited to the task, and is
thus an established choice. However, in many others, the situation is less clear cut, and calculations can be
done with either of the methods or a combination of both.
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A 1.2 Internal molecular motions

Michael E Kellman

A 1.2.1 INTRODUCTION

Ideas on internal molecular motions go back to the very beginnings of chemistry as a natural science, to the
days of Robert Boyle and Isaac Newton [1]. Much of Boyle’s interest in chemistry, apart from the
‘bewitchment’ he found in performing chemical experiments [2], arose from his desire to revive and
transform the corpuscular philosophy favoured by some of the ancient Greeks, such as Epicurus [3]. This had
lain dormant for centuries, overshadowed by the apparently better-founded Aristotelian cosmology [4],
including the theory of the four elements. With the revolution in celestial mechanics that was taking place in
modern Europe in the 17th century, Boyle was concerned to persuade natural philosophers that chemistry,
then barely emerging from alchemy, was potentially of great value for investigating the corpuscular view,
which was re-emerging as a result of the efforts of thinkers such as Francis Bacon and Descartes. This belief
of Boyle’s was based partly on the notion that the qualitative properties of real substances and their chemical
changes could be explained by the joining together of elementary corpuscles, and the ‘local motions’ within
these aggregates—what we now call the internal motions of molecules. Boyle influenced his younger
colleague in the Royal Society, Isaac Newton. Despite immense efforts in chemical experimentation, Newton
wrote only one paper in chemistry, in which he conjectured the existence of short-range forces in what we
now recognize as molecules. Thus, in a true sense, with Boyle and Newton was born the science of chemical
physics [1].

This was a child whose development was long delayed, however. Not until the time of John Dalton in the
early 19th century, after the long interlude in which the phlogiston theory triumphed and then was overthrown
in the chemistry of Lavoisier, did the nascent corpuscular view of Boyle and Newton really begin to grow into
a useful atomic and molecular theory [1, 5]. It became apparent that it was necessary to think of the compound
states of the elements of Lavoisier in terms of definite molecular formulae, to account for the facts that were
becoming known about the physical properties of gases and the reactions of the elements, their joining into
compounds and their separation again into elements.

However, it was still a long time even after Dalton before anything definite could be known about the internal
motions in molecules. The reason was that the microscopic nature of atoms and molecules was a bar to any
knowledge of their internal constituents. Furthermore, nothing at all was known about the physical laws that
applied at the microscopic level. The first hints came in the late 19th century, with the classical Maxwell—
Lorentz theory of the dynamics of charged particles interacting through the electromagnetic field. The
electron was discovered by Thomson, and a little later the nuclear structure of the atom by Rutherford. This
set the stage in the 20th century for a physical understanding in terms of quantum theory of the constituents of
molecules, and the motions of which they partake.

This section will concentrate on the motions of atoms within molecules—‘internal molecular motions’—as
comprehended by the revolutionary quantum ideas of the 20th century. Necessarily, limitations of space
prevent many topics from being treated in the detail they deserve. Some of these are treated in more detail in



other articles in this Encyclopedia, or in references in the Bibliography. The emphasis is on treating certain
key topics in sufficient depth to build a foundation for further exploration by the reader, and for branching off
into related topics that cannot be treated
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in depth at all. There will not be much focus on molecules undergoing chemical reactions, except for
unimolecular rearrangements, which are a rather extreme example of internal molecular motion. However, it
must be emphasized that the distinctions between the internal motions of molecules, the motions of atoms in a
molecule which is undergoing dissociation and the motion of atoms in two or more molecules undergoing
reaction are somewhat artificial. Even the motions which are most properly called ‘internal’ play a central role
in theories of reaction dynamics. In fact, their character in chemical reactions is one of the most important
unsolved mysteries in molecular motion. Although we will not have anything directly to say about general
theories of reaction [6], the internal motion of molecules undergoing isomerization and the importance of the
internal motions in efforts to control reactions with sophisticated laser sources will be two of the topics
considered.

A key theme of contemporary chemical physics and physical chemistry is ‘ultrafast’ molecular processes [7, 8
and 9], including both reaction dynamics and internal molecular motions that do not involve reaction. The
probing of ultrafast processes generally is thought of in terms of very short laser pulses, through the window
of the time domain. However, most of the emphasis of this section is on probing molecules through the
complementary window of the frequency domain, which usually is thought of as the realm of the time-
independent processes, which is to say, the ‘ultraslow’. One of the key themes of this section is that encrypted
within the totality of the information which can be gathered on a molecule in the frequency domain is a vast
store of information on ultrafast internal motions. The decoding of this information by new theoretical
techniques for analysis of experimental spectra is a leading theme of recent work.

A 1.2.2 QUANTUM THEORY OF ATOMIC AND MOLECULAR
STRUCTURE AND MOTION

The understanding of molecular motions is necessarily based on quantum mechanics, the theory of
microscopic physical behaviour worked out in the first quarter of the 20th century. This is because molecules
are microscopic systems in which it is impossible—or at least very dangerous!—to ignore the dual wave—
particle nature of matter first recognized in quantum theory by Einstein (in the case of classical waves) and de
Broglie (in the case of classical particles).

The understanding of the quantum mechanics of atoms was pioneered by Bohr, in his theory of the hydrogen
atom. This combined the classical ideas on planetary motion—applicable to the atom because of the formal
similarity of the gravitational potential to the Coulomb potential between an electron and nucleus—with the
quantum ideas that had recently been introduced by Planck and Einstein. This led eventually to the formal
theory of quantum mechanics, first discovered by Heisenberg, and most conveniently expressed by
Schrodinger in the wave equation that bears his name.

However, the hydrogen atom is relatively a very simple quantum mechanical system, because it contains only
two constituents, the electron and the nucleus. This situation is the quantum mechanical analogue of a single
planet orbiting a sun. It might be thought that an atom with more than one electron is much like a solar system
with more than one planet, in which the motion of each of the planets is more or less independent and regular.
However, this is not the case, because the relative strength of the interaction between the electrons is much
stronger than the attraction of the planets in our solar system. The problem of the internal dynamics of
atoms—the internal motion when there is more than one electron—is still very far from a complete
understanding. The electrons are not really independent, nor would their motion, if it were described by



classical rather than quantum mechanics, be regular, unlike the annual orbits of the
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planets. Instead, in general, it would be chaotic. The corresponding complexity of the quantum mechanical
atom with more than one electron, or even one electron in a field, is to this day a challenge [10, 11 and 12].
(In fact, even in the solar system, despite the relative strengths of planetary attraction, there are constituents,
the asteroids, with very irregular, chaotic behaviour. The issue of chaotic motion in molecules is an issue that
will appear later with great salience.)

As we shall see, in molecules as well as atoms, the interplay between the quantum description of the internal
motions and the corresponding classical analogue is a constant theme. However, when referring to the internal
motions of molecules, we will be speaking, loosely, of the motion of the atoms in the molecule, rather than of
the fundamental constituents, the electrons and nuclei. This is an extremely fundamental point to which we
now turn.

A 1.2.3 THE MOLECULAR POTENTIAL ENERGY SURFACE

One of the most salient facts about the structure of molecules is that the electrons are far lighter than the
nuclei, by three orders of magnitude and more. This is extremely fortunate for our ability to attain a rational
understanding of the internal motion of the electrons and nuclei. In fact, without this it might well be that not
much progress would have been made at all! Soon after the discovery of quantum mechanics it was realized
that the vast difference in the mass scales of the electrons and nuclei means that it is possible, in the main, to
separate the problem into two parts, an electronic and a nuclear part. This is known as the Born—Oppenheimer
separability or approximation [13]. The underlying physical idea is that the electrons move much faster than
the nuclei, so they adjust rapidly to the relatively much slower nuclear motion. Therefore, the electrons are
described by a quantum mechanical ‘cloud’ obtained by solving the Schrédinger wave equation. The nuclei
then move slowly within this cloud, which in turn adjusts rapidly as the nuclei move.

The result is that, to a very good approximation, as treated elsewhere in this Encyclopedia, the nuclei move in
a mechanical potential created by the much more rapid motion of the electrons. The electron cloud itself is
described by the quantum mechanical theory of electronic structure. Since the electronic and nuclear motion
are approximately separable, the electron cloud can be described mathematically by the quantum mechanical
theory of electronic structure, in a framework where the nuclei are fixed. The resulting Born—Oppenheimer
potential energy surface (PES) created by the electrons is the mechanical potential in which the nuclei move.
When we speak of the internal motion of molecules, we therefore mean essentially the motion of the nuclei,
which contain most of the mass, on the molecular potential energy surface, with the electron cloud rapidly
adjusting to the relatively slow nuclear motion.

We will now treat the internal motion on the PES in cases of progressively increasing molecular complexity.
We start with the simplest case of all, the diatomic molecule, where the notions of the Born—Oppenheimer
PES and internal motion are particularly simple.

The potential energy surface for a diatomic molecule can be represented as in figure A1.2.1. The x -axis gives
the internuclear separation R and the y -axis the potential function V(R). At a given value of R, the potential
(R) is determined by solving the quantum mechanical electronic structure problem in a framework with the
nuclei fixed at the given value of R. (To reiterate the discussion above, it is only possible to regard the nuclei
as fixed in this calculation because of the Born—Oppenheimer separability, and it is important to keep in mind
that this is only an approximation.
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There can be subtle but important non-adiabatic effects [14, 15], due to the non-exactness of the separability
of the nuclei and electrons. These are treated elsewhere in this Encyclopedia.) The potential function V(R) is
determined by repeatedly solving the quantum mechanical electronic problem at different values of R.
Physically, the variation of V(R) is due to the fact that the electronic cloud adjusts to different values of the
internuclear separation R in a subtle interplay of mutual particle attractions and repulsions: electron—electron
repulsions, nuclear—nuclear repulsions and electron—nuclear attractions.

Energy

| V(R

Ro

Figure A1.2.1. Potential V(R) of a diatomic molecule as a function of the internuclear separation R. The
equilibrium distance R, is at the potential minimum.

The potential function in figure A1.2.1 has several crucial characteristics. It has a minimum at a certain value
R of the internuclear separation. This is the equilibrium internuclear distance. Near Ry, the function V(R)
rises as R increases or decreases. This means that there is an attractive mechanical force tending to restore the
nuclei to R,,. At large values of R, V(R) flattens out and asymptotically approaches a value which in figure
A1.2.1 is arbitrarily chosen to be zero. This means that the molecule dissociates into separated atoms at large
R. The difference between the equilibrium potential V(R ) and the asymptotic energy is the dissociation, or
binding, energy. At values of R less than R, the potential V(R) again rises, but now without limit. This
represents the repulsion between nuclei as the molecule is compressed.

Classically, the nuclei vibrate in the potential V(R), much like two steel balls connected by a spring which is
stretched or compressed and then allowed to vibrate freely. This vibration along the nuclear coordinate R is
our first example of internal molecular motion. Most of the rest of this section is concerned with different
aspects of molecular vibrations in increasingly complicated situations.

Near the bottom of the potential well, ¥(R) can be approximated by a parabola, so the function V(R) is
approximated as

V(R) = kR*. (A 1.2.1)

This is the form of the potential for a harmonic oscillator, so near the bottom of the well, the nuclei undergo
nearly
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harmonic vibrations. For a harmonic oscillator with potential as in (A1.2.1), the classical frequency of



oscillation is independent of energy and is given by [16, 17 and 18]

wy = 2mug = Vit (A1.2.2)

where p is the reduced mass. Quantum mechanically, the oscillator has a series of discrete energy levels,
characterized by the number of quanta n in the oscillator. This is the quantum mechanical analogue for the
oscillator of the quantized energy levels of the electron in a hydrogen atom. The energy levels of the harmonic
oscillator are given by

E, = wn(n+ 1) (A123)

where I, i.e. Planck’s constant 4 divided by 2w, has been omitted as a factor on the right-hand side, as is
appropriate when the customary wavenumber (cm™") units are used [18].

A 1.2.4 ANHARMONICITY

If the potential were exactly harmonic for all values of R, the vibrational motion would be extremely simple,
consisting of vibrations with frequency , for any given amount of vibrational energy. The fact that this is a
drastic oversimplification for a real molecule can be seen from the fact that such a molecule would never
dissociate, lacking the flatness in the potential at large R that we saw in figure A1.2.1. As the internuclear
separation departs from the bottom of the well at R, the harmonic approximation (A1.2.1) progressively
becomes less accurate as a description of the potential. This is known as anharmonicity or nonlinearity.
Anharmonicity introduces complications into the description of the vibrational motion. The frequency is no
longer given by the simple harmonic formula (A1.2.2). Instead, it varies with the amount of energy in the
oscillator. This variation of frequency with the number of quanta is the essence of the nonlinearity.

The variation of the frequency can be approximated by a series in the number of quanta, so the energy levels
are given by

Ex=wpm+ ) +p@m+P+pm+iP+.... (A1.2.4)

Often, it is a fair approximation to truncate the series at the quadratic term with y,. The energy levels are then
approximated as

E, = wp(n+ %} +yln+ %)2. (A 1.2.5)

The first term is known as the harmonic contribution and the second term as the quadratic anharmonic
correction.

Even with these complications due to anharmonicity, the vibrating diatomic molecule is a relatively simple
mechanical system. In polyatomics, the problem is fundamentally more complicated with the presence of
more than two atoms. The anharmonicity leads to many extremely interesting effects in the internal molecular
motion, including the possibility of chaotic dynamics.



It must be pointed out that another type of internal motion is the overall rotation of the molecule. The
vibration and rotation of the molecule are shown schematically in figure A1.2.2.
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Figure A1.2.2. Internal nuclear motions of a diatomic molecule. Top: the molecule in its equilibrium
configuration. Middle: vibration of the molecule. Bottom: rotation of the molecule.

A 1.2.5 POLYATOMIC MOLECULES

In polyatomic molecules there are many more degrees of freedom, or independent ways in which the atoms of
the molecule can move. With n atoms, there are a total of 3n degrees of freedom. Three of these are the
motion of the centre of mass, leaving (3n—3) internal degrees of freedom [18]. Of these, except in linear
polyatomics, three are rotational degrees of freedom, leaving (3n—6) vibrational degrees of freedom. (In linear
molecules, there are only two rotational degrees of freedom, corresponding to the two individual orthogonal
axes of rotation about the molecular axis, leaving (3n—5) vibrational degrees of freedom. For example, the
diatomic has only one vibrational degree of freedom, the vibration along the coordinate R which we
encountered above.)

Because of limitations of space, this section concentrates very little on rotational motion and its interaction
with the vibrations of a molecule. However, this is an extremely important aspect of molecular dynamics of
long-standing interest, and with development of new methods it is the focus of intense investigation [18, 19,
20, 21, 22 and 23]. One very interesting aspect of rotation—vibration dynamics involving geometric phases is
addressed in section A1.2.20.

The (3n—6) degrees of vibrational motion again take place on a PES. This implies that the PES itself must be a
function in a (3n—6) dimensional space, 1.¢. it is a function of (3n—6) internal coordinates r . . .ry, where N =
(3n—6), which depend on the positions of all the nuclei. The definition of the coordinates r,. . .r\ has a great
deal of flexibility. To be concrete, for H,O one choice is the set of internal coordinates illustrated in figure
A1.2.3. These are a bending coordinate, i.e. the angular bending displacement from the equilibrium geometry,
and two bond displacement coordinates, i.e. the stretching displacement of each O—H bond from its
equilibrium length.



Figure A1.2.3. The internal coordinates of the H,O molecule. There are two bond stretching coordinates and
a bend coordinate.

An equilibrium configuration for the molecule is any configuration (7. . .r, o) where the PES has a minimum,
analogous to the minimum in the diatomic potential at R, in figure A1.2.1. In general, there can be a number
of local equilibrium configurations in addition to the lowest equilibrium configuration, which is called the
global equilibrium or minimum. We will refer to an equilibrium configuration in speaking of any of the local
equilibria, and the equilibrium configuration when referring to the global minimum. In the very close vicinity
of the equilibrium configuration, the molecule will execute harmonic vibrations. Since there are (3n—0)
vibrational degrees of freedom, there must be (3n—6) harmonic modes, or independent vibrational motions.
This means that on the multi-dimensional PES, there must be (3n—6) independent coordinates, along any of
which the potential is harmonic, near the equilibrium configuration. We will denote these independent degrees
of freedom as the normal modes coordinates R. . .R,. Each of the R; in general is some combination of the
internal coordinates r,. . .r; in terms of which the nuclear positions and PES were defined earlier. These are
illustrated for the case of water in figure A1.2.4. One of the normal modes is a bend, very much like the
internal bending coordinate in figure A1.2.3 . The other two modes are a symmetric and antisymmetric
stretch. Near the equilibrium configuration, given knowledge of the molecular potential, it is possible by the
procedure of normal mode analysis [24] to calculate the frequencies of each of the normal modes and their
exact expression in terms of the original internal coordinates 7. . .r.

Figure A1.2.4. The normal vibrational coordinates of H,O. Left: symmetric stretch. Middle: antisymmetric
stretch. Right: bend.

It is often very useful to describe classical vibrations in terms of a trajectory in the space of coordinates . .
.- If the motion follows one of the normal modes, the trajectory is one in which the motion repeats itself



along a closed curve. An example is shown in figure A1.2.5 for the symmetric and antisymmetric stretch
modes. The x and y coordinates r|, r, are the displacements of the two O—H bonds. (For each mode i there is a

family of curves, one for each value of the energy, with the amplitude of vibration along the normal modes in
figure A1.2.5 increasing with energy; the figure shows the trajectory of each mode for one value of the

energy.)

a

- r1

Figure A1.2.5. Harmonic stretch normal modes of a symmetric triatomic. The symmetric stretch s and
antisymmetric stretch a are plotted as a function of the bond displacements 7, r,.

In general, each normal mode in a molecule has its own frequency, which is determined in the normal mode
analysis [24]. However, this is subject to the constraints imposed by molecular symmetry [18, 25, 26]. For
example, in the methane molecule CH,, four of the normal modes can essentially be designated as normal
stretch modes, i.e. consisting primarily of collective motions built from the four C—H bond displacements. The
molecule has tetrahedral symmetry, and this constrains the stretch normal mode frequencies. One mode is the
totally symmetric stretch, with its own characteristic frequency. The other three stretch normal modes are all
constrained by symmetry to have the same frequency, and are referred to as being triply-degenerate.
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The (3n—6) normal modes with coordinates R,. . .R, are often designated v,. . .v,. (Not to be confused with
the common usage of v to denote a frequency, as in equation (A1.2.2), the last such usage in this section.)
Quantum mechanically, each normal mode v, is characterized by the number of vibrational quanta v; in the
mode. Then the vibrational state of the molecule is designated or assigned by the number of quanta v; in each
of the modes, i.e. (n;. . .ny). In the harmonic approximation in which each mode i is characterized by a

frequency o, the vibrational energy of a state assigned as (n;. . .ny) is given by

Einy---nun)=101;+ %}m] +{ny + =_';]|fug +.oot(ny + E'}r:u,a,.' (A 1.2.6)

A 1.2.6 ANHARMONIC NORMAL MODES

In the polyatomic molecule, just as in the diatomic, the PES must again be highly anharmonic away from the
vicinity of the potential minimum, as seen from the fact that the polyatomic can dissociate; in fact in a
multiplicity of ways, because in general there can be several dissociation products. In addition, the molecule
can have complicated internal rearrangements in which it isomerizes. This means that motion takes place from
one minimum in the PES, over a saddle, or ‘pass’, and into another minimum. We will have something to say
about these internal rearrangements later. However, the fact of anharmonicity raises important questions about
the normal modes even in the near vicinity of an equilibrium configuration. We saw above that anharmonicity
in a diatomic means that the frequency of the vibrational motion varies with the amount of vibrational energy.



An analogous variation of frequency of the normal modes occurs in polyatomics.

However, there is a much more profound prior issue concerning anharmonic normal modes. The existence of
the normal vibrational modes, involving the collective motion of all the atoms in the molecule as illustrated
for H,O in figure A1.2.4 was predicated on the basis of the existence of a harmonic potential. But if the
potential is not exactly harmonic, as is the case everywhere except right at the equilibrium configuration, are
there still collective normal modes? And if so, since they cannot be harmonic, what is their nature and their
relation to the harmonic modes?

The beginning of an answer comes from a theorem of Moser and Weinstein in mathematical nonlinear
dynamics [27, 28]. This theorem states that in the vicinity of a potential minimum, a system with (3n—6)
vibrational degrees of freedom has (3n—6) anharmonic normal modes. What is the difference between the
harmonic normal modes and the anharmonic normal modes proven to exist by Moser and Weinstein? Figure
A1.2.6 shows anharmonic stretch normal modes. The symmetric stretch looks the same as its harmonic
counterpart in Figure A1.2.5; this is necessarily so because of the symmetry of the problem. The
antisymmetric stretch, however, is distinctly different, having a curvilinear appearance in the zero-order bond
modes. The significance of the Moser—Weinstein theorem is that it guarantees that in the vicinity of a
minimum in the PES, there must be a set of (3n—6) of these anharmonic modes.
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Figure A1.2.6. Anharmonic stretch normal modes of a symmetric triatomic. The plot is similar to figure
A1.2.5, except the normal modes are now anharmonic and can be curvilinear in the bond displacement
coordinates r |, ,. The antisymmetric stretch is curved, but the symmetric stretch is linear because of
symmetry.

It is sometimes very useful to look at a trajectory such as the symmetric or antisymmetric stretch of figure
A1.2.5 and figure A1.2.6 not in the physical spatial coordinates (r,. . .ry), but in the phase space of
Hamiltonian mechanics [16, 29], which in addition to the coordinates (7. . .r) also has as additional
coordinates the set of conjugate momenta (p,. . .p,). In phase space, a one-dimensional trajectory such as the
antisymmetric stretch again appears as a one-dimensional curve, but now the curve closes on itself. Such a
trajectory is referred to in nonlinear dynamics as a periodic orbit [29]. One says that the anharmonic normal
modes of Moser and Weinstein are stable periodic orbits.

What does it mean to say the modes are stable? Suppose that one fixes the initial conditions—the initial
values of the coordinates and momenta, for a given fixed value of the energy—so the trajectory does not lie
entirely on one of the anharmonic modes. At any given time the position and momentum is some combination
of each of the normal motions. An example of the kind of trajectory that can result is shown in figure A1.2.7.
The trajectory lies in a box with extensions in each of the anharmonic normal modes, filling the box in a very
regular, ‘woven’ pattern. In phase space, a regular trajectory in a box is no longer a one-dimensional closed
curve, or periodic orbit. Instead, in phase space a box-filling trajectory lies on a surface which has the



qualitative form, or topology, of a torus—the surface of a doughnut. The confinement of the trajectory to such
a box indicates that the normal modes are stable. (Unstable modes do exist and will be of importance later.)
Another quality of the trajectory in the box is its ‘woven’ pattern. Such a trajectory is called regular. We will
consider other, chaotic types of trajectories later; the chaos and instability of modes are closely related. The
issues of periodic orbits, stable modes and regular and chaotic motion have been studied in great depth in the
theory of Hamiltonian or energy-preserving dynamical systems [29, 30]. We will return repeatedly to
concepts of classical dynamical systems.
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I

Figure A1.2.7. Trajectory of two coupled stretches, obtained by integrating Hamilton’s equations for motion
on a PES for the two modes. The system has stable anharmonic symmetric and antisymmetric stretch modes,
like those illustrated in figure A1.2.6. In this trajectory, semiclassically there is one quantum of energy in each
mode, so the trajectory corresponds to a combination state with quantum numbers [, n ] = [1, 1]. The
‘woven’ pattern shows that the trajectory is regular rather than chaotic, corresponding to motion in phase
space on an invariant torus.

However, the reader may be wondering, what is the connection of all of these classical notions—stable
normal modes, regular motion on an invariant torus—to the quantum spectrum of a molecule observed in a
spectroscopic experiment? Recall that in the harmonic normal modes approximation, the quantum levels are
defined by the set of quantum numbers (n,. . .n,) giving the number of quanta in each of the normal modes.

Does it make sense to associate a definite quantum number 7, to each mode 7 in an anharmonic system? In
general, this is an extremely difficult question! But remember that so far, we are speaking of the situation in
some small vicinity of a minimum on the PES, where the Moser—Weinstein theorem guarantees the existence
of the anharmonic normal modes. This essentially guarantees that quantum levels with low enough v, values
correspond to trajectories that lie on invariant tori. Since the levels are quantized, these must be special tori,
each characterized by quantized values of the classical actions 1, = (n; + %)IJ, which are constants of the motion
on the invariant torus. As we shall see, the possibility of assigning a set of N quantum numbers 7, to a level,
one for each mode, is a very special situation that holds only near the potential minimum, where the motion is
described by the N anharmonic normal modes. However, let us continue for now with the region of the
spectrum where this special situation applies.

If there are n; quanta in mode i and zero quanta in all the other modes, the state is called an overtone of the
normal mode i. What does such a state correspond to in terms of a classical trajectory? Consider the overtone
of the antisymmetric stretch, again neglecting the bend. If all the energy in the overtone were in mode 7, the
trajectory would look like the anharmonic mode itself in figure A1.2.6. However, because of the unavoidable



quantum mechanical zero-point energy associated with the action fi/2 in each mode, an overtone state actually
has a certain amount of energy in all of the normal modes. Therefore, classically, the overtone of the
antisymmetric stretch corresponds to a box-like trajectory, with most of the extension along the antisymmetric
stretch, but with some extension along the symmetric stretch, and corresponding to the irreducible zero-point
energy.
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The other kind of quantum level we considered above is one with quanta in more than one mode, i.e. (n,. .
.ny,) with more than one of the n; not equal to zero. Such a state is called a combination level. This
corresponds, classically, to a box-like trajectory with extension in each mode corresponding to the number of
quanta; an example was seen in figure A1.2.7.

What does one actually observe in the experimental spectrum, when the levels are characterized by the set of
quantum numbers (n,. . .ny) for the normal modes? The most obvious spectral observation is simply the set of
energies of the levels; another important observable quantity is the intensities. The latter depend very
sensitively on the type of probe of the molecule used to obtain the spectrum; for example, the intensities in
absorption spectroscopy are in general far different from those in Raman spectroscopy. From now on we will
focus on the energy levels of the spectrum, although the intensities most certainly carry much additional
information about the molecule, and are extremely interesting from the point of view of theoretical dynamics.

If the molecule really had harmonic normal modes, the energy formula (A1.2.6) would apply and the
spectrum would be extremely simple. It is common to speak of a progression in a mode i; a progression
consists of the series of levels containing the fundamental, with n, = 1, along with the overtone levels 7, > 1.
Each progression of a harmonic system would consist of equally spaced levels, with the level spacing given
by the frequency ®.. It is also common to speak of sequences, in which the sum of the number of quanta in
two modes is fixed. In a harmonic spectrum, the progressions and sequences would be immediately evident to
the eye in a plot of the energy levels.

In a system with anharmonic normal modes, the spectral pattern is not so simple. Instead of the simple energy
level formula (A1.2.6), in addition to the harmonic terms there are anharmonic terms, similar to the terms y,
(n+ %)2, Y, (n+ %)3 , .- in (Al.2.4). For each mode i, there is a set of such terms y, (1, + %)2, Vit %)3, etc,
where now by common convention the i ’s in the subscript refer to mode i and the order of the subscript and
superscript match, for example y;; with the quadratic power (n; + %)2. However, there are also cross terms Vi

(n;+ %)(nl. +3), yiij(ni + %)z(nj +13), etc. As an example, the anharmonic energy level formula for just a

symmetric and antisymmetric stretch is given to the second order in the quantum numbers by

E(n,,n,) = o.0n, +3)+ oy, + 3) +an(np + 3) + yo(n, + 1)
 Yoa M + 37+ p(tp + 302 + pea(ng + 30, + 1) (A1.2.7)

+ Yan s+ 3)p + 3) + VYap(ng + 3y + 3).

An energy expression for a polyatomic in powers of the quantum numbers like (A1.2.7)) is an example of an
anharmonic expansion [18]. In the anharmonic spectrum, within a progression or sequence there will not be
equal spacings between levels; rather, the spacings will depend on the quantum numbers of the adjacent
levels. Nonetheless, the spectrum will appear very regular to the eye. Spectra that follow closely a formula
such as (A1.2.7), perhaps including higher powers in the quantum numbers, are very common in the
spectroscopy of polyatomic molecules at relatively low energy near the minimum of the PES. This regularity
is not too surprising, when one recalls that it is associated with the existence of the good quantum numbers
(n,. . .ny), which themselves correspond classically to regular motion of the kind shown in figure A1.2.7.
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A 1.2.7 SPECTRA THAT ARE NOT SO REGULAR

If this was all there is to molecular spectra they would be essentially well understood by now and their power
to give information on molecules nearly exhausted. However, this cannot be the case: consider that molecules
dissociate—a very irregular type of motion!—while a molecule whose spectrum strictly followed a formula
such as (A1.2.7) would have quantum levels all corresponding semiclassically to motion on invariant tori that
are described by the N anharmonic normal modes. Motion as simple as this is expected only near a potential
minimum, where the Weinstein—Moser theorem applies. How is the greater complexity of real molecules
manifested in a spectrum? The spectrum is a reflection of the physical PES, since the vibrational spectrum is
determined quantum mechanically by the PES. Since the PES contains the possibility of much less regular
motion than that reflected in a Dunham formula such as (A1.2.7), how can a Dunham formula be modified so
as to represent a real spectrum, including portions corresponding to less regular motion? We will consider first
what these modifications must look like, then pose the following question: suppose we have a generalized
spectral Hamiltonian and use this to represent experimental observations, how can we use this representation
to decode the dynamical information on the internal molecular motions that is contained in the spectrum?

A 1.2.8 RESONANCE COUPLINGS

The fact that terms in addition to those present in the energy level formula (A1.2.7) might arise in molecular
spectra is already strongly suggested by one of the features already discussed; the cross-anharmonic terms
such as yl.j(nl. + %)(nj + %). These terms show that the anharmonicity arises not only from the normal modes

themselves—the ‘self-anharmonicity” terms like v, (n, + %)z—but also from couplings between the normal

modes. The cross-anharmonic terms depend only on the vibrational quantum numbers—the Hamiltonian so
far is diagonal in the normal mode quantum numbers. However, there are also terms in the generalized
Hamiltonian that are not diagonal in the quantum numbers. It is these that are responsible for profoundly
greater complexity of the internal motion of a polyatomic, as compared to a diatomic.

Consider how these non-diagonal terms would arise in the analysis of an experimental spectrum. Given a set
of spectral data, one would try to fit the data to a Hamiltonian of the form of (A1.2.7). The Hamiltonian then
is to be regarded as a ‘phenomenological’ or ‘effective’ spectroscopic Hamiltonian, to be used to describe the
results of experimental observations. The fitting consists of adjusting the parameters of the Hamiltonian, for
example ®’s, the y’s, etc, until the best match possible is obtained between the spectroscopic Hamiltonian and
the data. If a good fit is not obtained with a given number of terms in the Dunham expansion, one could
simply add terms of higher order in the quantum numbers. However, it is found in fitting the spectrum of the
stretch modes of a molecule like H,O that this does not work at all well. Instead, a large resonance coupling
term which exchanges quanta between the modes is found to be necessary to obtain a good fit to the data, as
was first discovered long ago by Darling and Dennison [31]. Specifically, the Darling—Dennison coupling
takes two quanta out of the symmetric stretch, and places two into the antisymmetric stretch. There is also a
coupling which does the reverse, taking two quanta from the antisymmetric stretch and placing them into the
symmetric stretch. It is convenient to represent this coupling in terms of the raising and lowering operators
[32] af, a;. These, respectively, have the action of placing a quantum into or removing a quantum from an

oscillator which originally has n quanta:
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alny = |n+1) aln) =|n—1) (A1.2.8)

The raising and lowering operators originated in the algebraic theory of the quantum mechanical oscillator,
essentially by the path followed by Heisenberg in formulating quantum mechanics [33]. In terms of raising
and lowering operators, the Darling—Dennison coupling operator is

kppla’ala.a, +aaa.a) (A 1.2.9)

LU

where k5 is a parameter which defines the strength of the coupling; kyp, is optimized to obtain the best
possible fit between the data and the spectroscopic Hamiltonian.

Physically, why does a term like the Darling—Dennison coupling arise? We have said that the spectroscopic
Hamiltonian is an abstract representation of the more concrete, physical Hamiltonian formed by letting the
nuclei in the molecule move with specified initial conditions of displacement and momentum on the PES,
with a given total kinetic plus potential energy. This is the sense in which the spectroscopic Hamiltonian is an
‘effective’ Hamiltonian, in the nomenclature used above. The concrete Hamiltonian that it mimics is
expressed in terms of particle momenta and displacements, in the representation given by the normal
coordinates. Then, in general, it may contain terms proportional to all the powers of the products of the
normal coordinates R,"* R ?. (It will also contain terms containing the momenta that arise from the kinetic
energy; however, these lather kinetic energy terms are more restricted in form than the terms from the
potential.) In the spectroscopic Hamiltonian, these will partly translate into expressions with terms
proportional to the powers of the quantum numbers, as in (A1.2.7). However, there will also be resonance
couplings, such as the Darling—Dennison coupling (A1.2.9). These arise directly from the fact that the
oscillator raising and lowering operators (A1.2.8) have a close connection to the position and momentum
operators of the oscillator [32], so the resonance couplings are implicit in the terms of the physical

Hamiltonian such as RI.T‘l Rjﬂ(P_

Since all powers of the coordinates appear in the physical PES, and these give rise to resonance couplings,
one might expect a large, in fact infinite, number of resonance couplings in the spectroscopic Hamiltonian.
However, in practice, a small number of resonance couplings—and often none, especially at low energy—is
sufficient to give a good fit to an experimental spectrum, so effectively the Hamiltonian has a rather simple

form. To understand why a small number of resonance couplings is usually sufficient we will focus again on
H,O.
2

In fitting the H,O stretch spectrum, it is found that the Darling-Dennison coupling is necessary to obtain a
good fit, but only the Darling—Dennison and no other. (It turns out that a second coupling, between the
symmetric stretch and bend, is necessary to obtain a good fit when significant numbers of bending quanta are
involved; we will return to this point later.) If all resonance terms in principle are involved in the Hamiltonian,
why it is that, empirically, only the Darling—Dennison coupling is important? To understand this, a very
important notion, the polyad quantum number, is necessary.
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A 1.2.9 POLYAD NUMBER

The characteristic of the Darling—Dennison coupling is that it exchanges two quanta between the symmetric
and antisymmetric stretches. This means that the individual quantum numbers 7, n , are no longer good
quantum numbers of the Hamiltonian containing V. However, the fotal number of stretch quanta



Hg = (ne + 1) (A 1.2.10)

is left unchanged by V. Thus, while it might appear that V', has destroyed two quantum numbers,
corresponding to two constants of motion, it has in fact preserved ny as a good quantum number, often
referred to as a polyad quantum number. So, the Darling—Dennison term V', couples together a set of zero-
order states with common values of the polyad number n , . For example, the set with n, = 4 contains zero-
order states [n, n_1=[4, 0], [3, 1], [2, 2], [1, 3], [0, 4]. These five, zero-order states are referred to as the zero-
order polyad with n, = 4.

If only zero-order states from the same polyad are coupled together, this constitutes a fantastic simplification
in the Hamiltonian. Enormous computational economies result in fitting spectra, because the spectroscopic
Hamiltonian is block diagonal in the polyad number. That is, only zero-order states within blocks with the
same polyad number are coupled; the resulting small matrix diagonalization problem is vastly simpler than
diagonalizing a matrix with all the zero-order states coupled to each other.

However, why should such a simplification be a realistic approximation? For example, why should not a
coupling of the form

(a,a,a,a, +a,a,a.a,) (A 1.2.11)

which would break the polyad number n , , be just as important as V',,? There is no reason a priori why it
might not have just as large a contribution as V', when the coordinate representation of the PES is expressed
in terms of the raising and lowering operators a;, a,. To see why it nonetheless is found empirically to be

unimportant in the fit, and therefore is essentially negligible, consider again the molecule H,O. A coupling
like (A1.2.11), which removes three quanta from one mode but puts only one quantum in the other mode, is
going to couple zero-order states with vastly different zero-order energy. For example, [n, n ]=[3, 0] will be
coupled to [0, 1], but these zero-order states are nowhere near each other in energy. By general quantum
mechanical arguments of perturbation theory [32], the coupling of states which differ greatly in energy will
have a correspondingly small effect on the wavefunctions and energies. In a molecule like H,O, such a
coupling can essentially be ignored in the fitting Hamiltonian.

This is why the coupling V' is often called a Darling—Dennison resonance coupling: it is significant
precisely when it couples zero-order states that differ by a small number of quanta which are approximately
degenerate with each other, which classically is to say that they are in resonance. The Darling—Dennison
coupling, because it involves taking two quanta from one mode and placing two in another, is also called a 2:2
coupling. Other orders of coupling n:m also arise in different situations (such as the stretch—bend coupling in
H,0), and these will be considered later.
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However, if only the Darling—Dennison coupling is important for the coupled stretches, what is its importance
telling us about the internal molecular motion? It turns out that the right kind of analysis of the spectroscopic
fitting Hamiltonian reveals a vast amount about the dynamics of the molecule: it allows us to decipher the
story encoded in the spectrum of what the molecule is ‘really doing’ in its internal motion. We will approach
this ‘spectral cryptology’ from two complementary directions:

the spectral pattern of the Darling—Dennison spectroscopic Hamiltonian; and, less directly, the analysis of a
classical Hamiltonian corresponding to the spectroscopic quantum Hamiltonian. We will see that the Darling—



Dennison coupling produces a pattern in the spectrum that is very distinctly different from the pattern of a
‘pure normal modes Hamiltonian’, without coupling, such as (A1.2.7). Then, when we look at the classical
Hamiltonian corresponding to the Darling—Dennison quantum fitting Hamiltonian, we will subject it to the
mathematical tool of bifurcation analysis [34]. From this, we will infer a dramatic birth in bifurcations of new
‘natural motions’ of the molecule, i.e. local modes. This will be directly connected with the distinctive
quantum spectral pattern of the polyads. Some aspects of the pattern can be accounted for by the classical
bifurcation analysis; while others give evidence of intrinsically non-classical effects in the quantum dynamics.

It should be emphasized here that while the discussion of contemporary techniques for decoding spectra for
information on the internal molecular motions will largely concentrate on spectroscopic Hamiltonians and
bifurcation analysis, there are distinct, but related, contemporary developments that show great promise for
the future. For example approaches using advanced ‘algebraic’ techniques [35, 36] for alternative ways to
build the spectroscopic Hamiltonian, and ‘hierarchical analysis’ using techniques related to general
classification methods [37].

A 1.2.10 SPECTRAL PATTERN OF THE DARLING-DENNISON
HAMILTONIAN

Consider the polyad n = 6 of the Hamiltonian (A1.2.7). This polyad contains the set of levels conventionally
assigned as [6, 0, ], [5, 1], .. ., [0, 6]. If a Hamiltonian such as (A1.2.7) described the spectrum, the polyad
would have a pattern of levels with monotonically varying spacing, like that shown in figure A1.2.8.
However, suppose the fit of the experimental spectrum requires the addition of a strong Darling—Dennison
term V', as empirically is found to be the case for the stretch spectrum of a molecule like H,O. In general,
because of symmetry, only certain levels may be spectroscopically allowed; for example, in absorption
spectra, only levels with odd number of quanta 7  in the antisymmetric stretch. However, diagonalization of
the polyad Hamiltonian gives all the levels of the polyad. When these are plotted for the Darling—Dennison
Hamiltonian, including the spectroscopically unobserved levels with even n , a striking pattern, shown in
figure A1.2.9, is immediately evident. At the top of the polyad the level spacing pattern is like that of the
anharmonic normal modes, as in figure A1.2.8, but at the bottom of the polyad the levels come in near-
degenerate doublets. What is this pattern telling us about the change in the internal molecular motion resulting
from inclusion of the Darling—Dennison coupling?
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Figure A1.2.8. Typical energy level pattern of a sequence of levels with quantum numbers [n, n_] for the
number of quanta in the symmetric and antisymmetric stretch. The bend quantum number is neglected and
may be taken as fixed for the sequence. The total number of quanta (n_+ n_= 6) is the polyad number, which



is the same for all levels. [6, 0] and [0, 6] are the overtones of the symmetric and antisymmetric stretch; the
other levels are combination levels. The levels have a monotonic sequence of energy spacings from bottom to
top.

Figure A1.2.9. Energy level pattern of polyad 6 of a spectroscopic Hamiltonian for coupled stretches with
strong Darling—Dennison coupling. Within the polyad the transition from normal to local modes is evident. At
the bottom of the polyad are two nearly degenerate pairs of levels. Semiclassically, the bottom pair derive
from local mode overtone states. The levels are symmetrized mixtures of the individual local mode overtones.
Semiclassically, they are exactly degenerate; quantum mechanically, a small splitting is present, due to
tunnelling. The next highest pair are symmetrized local mode combination states. The tunnelling splitting is
larger than in the bottom pair; above this pair, the levels have normal mode character, as evidenced by the
energy level pattern.
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This has been the subject of a great deal of work by many people over more than 20 years. Breakthroughs in
the theoretical understanding of the basic physics began to accumulate in the early 1980s [38, 39, 40 and 41].
One approach that has a particularly close relation between experiment and theory uses bifurcation analysis of
a classical analogue of the spectroscopic fitting Hamiltonian. The mathematical details are presented
elsewhere [42, 43, 44 and 45]; the qualitative physical meaning is easily described.

A classical Hamiltonian is obtained from the spectroscopic fitting Hamiltonian by a method that has come to
be known as the ‘Heisenberg correspondence’ [46], because it is closely related to the techniques used by
Heisenberg in fabricating the form of quantum mechanics known as matrix mechanics.

Once the classical Hamiltonian has been obtained, it is subjected to bifurcation analysis. In a bifurcation,
typically, a stable motion of the molecule—say, one of the Weinstein—Moser normal modes—suddenly
becomes unstable; and new stable, anharmonic modes suddenly branch out from the normal mode. An
illuminating example is presented in figure A1.2.10 which illustrates the results of the bifurcation analysis of
the classical version of the Darling—Dennison Hamiltonian. One of the normal modes—it can be either the
symmetric or antisymmetric stretch depending on the specific parameters found empirically in the fitting
Hamiltonian—remains stable. Suppose it is the antisymmetric stretch that remains stable. At the bifurcation,
the symmetric stretch suddenly becomes unstable. This happens at some critical value of the mathematical
‘control parameters’ [34], which we may take to be some critical combination of the energy and polyad
number. From the unstable symmetric stretch, there immediately emerge two new stable periodic orbits, or
anharmonic modes. As the control parameter is increased, the new stable modes creep out from the symmetric



stretch—which remains in ‘fossilized’ form as an unstable periodic orbit. Eventually, the new modes point
more or less along the direction of the zero-order bond displacements, but as curvilinear trajectories. We can
say that in this bifurcation, anharmonic local modes have been born.

It is the ‘skeleton’ of stable and unstable modes in figure A1.2.10(c) that explains the spectral pattern seen in
figure A1.2.9. Some of the levels in the polyad, those in the upper part, have wavefunctions that are quantized
in patterns that shadow the normal modes—the still-stable antisymmetric stretch and the now-unstable
symmetric stretch. Other states, the lower ones in the polyad, are quantized along the local modes. These latter
states, described by local mode quantum numbers, account for the pattern of near-degenerate doublets. First,
why is the degeneracy there at all? The two classical local modes have exactly the same energy and
frequency, by symmetry. In the simplest semiclassical [29] picture, there are two exactly degenerate local
mode overtones, each pointed along one or the other of the local modes. There are also combination states
possible with quanta in each of the local modes and, again, semiclassically these must come in exactly
degenerate pairs.
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Figure A1.2.10. Birth of local modes in a bifurcation. In (a), before the bifurcation there are stable
anharmonic symmetric and antisymmetric stretch modes, as in figure A1.2.6. At a critical value of the energy
and polyad number, one of the modes, in this example the symmetric stretch, becomes unstable and new
stable local modes are born in a bifurcation; the system is shown shortly after the bifurcation in (b), where the
new modes have moved away from the unstable symmetric stretch. In (c), the new modes clearly have taken
the character of the anharmonic local modes.

The classical bifurcation analysis has succeeded in decoding the spectrum to reveal the existence of local and
normal modes, and the local modes have accounted for the changeover from a normal mode spectral pattern to
the pattern of degenerate doublets. But why the splitting of the near-degenerate doublets? Here, non-classical
effects unique to quantum mechanics come into play. A trajectory in the box for one of the local modes is
confined in phase space to an invariant torus, and classically will never leave its box. However, quantum
mechanically, there is some probability for classically forbidden processes to take place in which the
trajectory jumps from one box to the other! This may strike the reader as akin to the quantum mechanical
phenomenon of tunnelling. In fact, this is more than an analogy. The effect has been called ‘dynamical
tunnelling’ [41, 47], and it can be formulated rigorously as a mathematical tunnelling problem [40, 48]. The
effect of the dynamical tunnelling on the energy levels comes through in another unique manifestation of
quantum mechanics. The quantum eigenfunctions—the wavefunctions for the energy levels of the true
quantum spectrum—are symmetrized combinations of the two semiclassical wavefunctions corresponding to
the two classical boxes [38]. These wavefunctions come in pairs of + and — symmetry; the two levels of a
near-degenerate pair are split into a +state and a —state. The amount of the splitting is directly related to the



rate of the non-classical tunnelling process [49].

A 1.2.11 FERMI RESONANCES

In the example of H,O, we saw that the Darling—Dennison coupling between the stretches led to a profound
change in the internal dynamics; the birth of local modes in a bifurcation from one of the original low-energy
normal modes. The question arises of the possibility of other types of couplings, if not between two identical
stretch modes, then between other kinds of modes. We have seen that, effectively, only a very small subset of
possible resonance couplings between
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the stretches is actually important; in the case of the H,O stretches, only the 2:2 Darling—Dennison coupling.
This great simplification came about because of the necessity to satisfy a condition of frequency resonance
between the zero-order modes for the 2:2 Darling—Dennison coupling to be important. In H,O, there is also an
approximate 2:1 resonance condition satisfied between the stretch and bend frequencies. Not surprisingly, in
fitting the H,O spectrum, in particular when several bending quanta are present, it is necessary to consider a
2:1 coupling term between the symmetric stretch (s) and bend (b), of the form

Kb (@) apay + a.ayay). (A 1.2.12)

(The analogous coupling between the antisymmetric stretch and bend is forbidden in the H,O Hamiltonian
because of symmetry.) The 2:1 resonance is known as a ‘Fermi resonance’ after its introduction [50] in
molecular spectroscopy. The 2:1 resonance is often very prominent in spectra, especially between stretch and
bend modes, which often have approximate 2:1 frequency ratios. The 2:1 coupling leaves unchanged as a
polyad number the sum:

Hyy = (0 +0y/2). (A1.2.13)

Other resonances, of order n:m , are possible in various systems. Another type of resonance is a ‘multimode’
resonance. For example, in C,H, the coupling

x23.|5|{a;n'2mﬂ5 +aga5a‘;a§} (A1.2.14)

that transfers one quantum from the antisymmetric stretch v to the C-C stretch v, and each of the bends v,
and Vs is important [51, 52 and 53]. Situations where couplings such as the n:m resonance and the 2345
multimode resonance need to be invoked are often referred to as ‘Fermi resonances’, though some authors
restrict this term to the 2:1 resonance and use the term ‘anharmonic resonance’ to describe the more general
n:m or multimode cases. Here, we will use the terms ‘Fermi’ and ‘anharmonic’ resonances interchangeably.

It turns out that the language of ‘normal and local modes’ that emerged from the bifurcation analysis of the
Darling—Dennison Hamiltonian is not sufficient to describe the general Fermi resonance case, because the
bifurcations are qualitatively different from the normal-to-local bifurcation in figure A1.2.10. For example, in
2:1 Fermi systems, one type of bifurcation is that in which ‘resonant collective modes’ are born [54]. The
resonant collective modes are illustrated in figure A1.2.11 their difference from the local modes of the
Darling—Dennison system is evident. Other types of bifurcations are also possible in Fermi resonance systems;
a detailed treatment of the 2:1 resonance can be found in [44].
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Figure A1.2.11. Resonant collective modes of the 2:1 Fermi resonance system of a coupled stretch and bend
with an approximate 2:1 frequency ratio. Shown is one end of a symmetric triatomic such as H,O. The normal
stretch and bend modes are superseded by the horseshoe-shaped modes shown in (a) and (b). These two
modes have different frequency, as further illustrated in figure A1.2.12.

A 1.2.12 MORE SUBTLE ENERGY LEVEL PATTERNS

The Darling—Dennison Hamiltonian displayed a striking energy level pattern associated with the bifurcation to
local modes: approximately degenerate local mode doublets, split by dynamical tunnelling. In general Fermi
resonance systems, the spectral hallmarks of bifurcations are not nearly as obvious. However, subtle, but
clearly observable spectral markers of bifurcations do exist. For example, associated with the formation of
resonant collective modes in the 2:1 Fermi system there is a pattern of a minimum in the spacing of adjacent
energy levels within a polyad [55], as illustrated in figure A1.2.12. This pattern has been invoked [56, 57] in
the analysis of ‘isomerization spectra’ of the molecule HCP, which will be discussed later. Other types of
bifurcations have their own distinct, characteristic spectral patterns; for example, in 2:1 Fermi systems a
second type of bifurcation has a pattern of alternating level spacings, of a ‘fan’ or a ‘zigzag’, which was
predicted in [55] and subsequently s [57].
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Figure A1.2.12. Energy level pattern of a polyad with resonant collective modes. The top and bottom energy
levels correspond to overtone motion along the two modes shown in figure A1.2.11, which have a different
frequency. The spacing between adjacent levels decreases until it reaches a minimum between the third and
fourth levels from the top. This minimum is the hallmark of a separatrix [29, 45] in phase space.



A 1.2.13 MULTIPLE RESONANCES IN POLYATOMICS

Implicit in the discussion of the Darling—Dennison and Fermi resonances has been the assumption that we can
isolate each individual resonance, and consider its bifurcations and associated spectral patterns separately
from other resonances in the system. However, strictly speaking, this cannot be the case. Consider again H,O.
The Darling—Dennison resonance couples the symmetric and antisymmetric stretches; the Fermi resonance
couples the symmetric stretch and bend. Indirectly, all three modes are coupled, and the two resonances are
linked. It is no longer true that the stretch polyad number (n_ + n ) is conserved, because it is broken by the
2:1 Fermi coupling; nor is the Fermi polyad number (n_ + n,/2) preserved, because it is broken by the
Darling—Dennison coupling. However, there is still a generalized ‘total’ polyad number

Mot = (s 1 +1pf2) (A 1.2.15)

that is conserved by both couplings, as may readily be verified. All told, the Hamiltonian with both couplings
has two constants of motion, the energy and the polyad number (A1.2.15). A system with fewer constants than
the number of degrees of freedom, in this case two constants and three degrees of freedom, is ‘non-
integrable’, in the language of classical mechanics [29]. This means that, in general, trajectories do not lie on
higher-dimensional invariant tori; instead, they may be chaotic, and in fact this is often observed to be the

case [58, 59] in trajectories of the semiclassical Hamiltonian for H,O.
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Nonetheless, it is still possible to perform the bifurcation analysis on the multiresonance Hamiltonian. In fact,
the existence of the polyad number makes this almost as easy, despite the presence of chaos, as in the case of
an isolated single Fermi or Darling—Dennison resonance. It is found [60] that most often (though not always),
the same qualitative bifurcation behaviour is seen as in the single resonance case, explaining why the
simplified individual resonance analysis very often is justified. The bifurcation analysis has now been
performed for triatomics with two resonances [60] and for C,H, with a number of resonances [61].

A 1.2.14 POTENTIAL AND EXPERIMENT: CLOSING THE CIRCLE

We have alluded to the connection between the molecular PES and the spectroscopic Hamiltonian. These are
two very different representations of the molecular Hamiltonian, yet both are supposed to describe the same
molecular dynamics. Furthermore, the PES often is obtained via ab initio quantum mechanical calculations;
while the spectroscopic Hamiltonian is most often obtained by an empirical fit to an experimental spectrum. Is
there a direct link between these two seemingly very different ways of apprehending the molecular
Hamiltonian and dynamics? And if so, how consistent are these two distinct ways of viewing the molecule?

There has been a great deal of work [62, 63] investigating how one can use perturbation theory to obtain an
effective Hamiltonian like the spectroscopic Hamiltonian, starting from a given PES. It is found that one can
readily obtain an effective Hamiltonian in terms of normal mode quantum numbers and coupling.
Furthermore, the actual Hamiltonians obtained very closely match those obtained via the empirical fitting of
spectra! This consistency lends great confidence that both approaches are complementary, mutually consistent
ways of apprehending real information on molecules and their internal dynamics.

Is it possible to approach this problem the other way, from experiment to the molecular PES? This is difficult



to answer in general, because ‘inversion’ of spectra is not a very well-posed question mathematically.
Nonetheless, using spectra to gain information on potentials has been pursued with great vigor. Even for
diatomics, surprising new, mathematically powerful methods are being developed [64]. For polyatomics, it
has been shown [65] how the effective spectroscopic Hamiltonian is a very useful way-station on the road
from experiment back to the PES. This closes the circle, because it shows that one can go from an assumed
PES to the effective Hamiltonian derived via perturbation theory; or take the opposite path from the
experimentally obtained effective spectroscopic Hamiltonian to the PES.

A 1.2.15 POLYAD QUANTUM NUMBERS IN LARGER SYSTEMS

We have seen that resonance couplings destroy quantum numbers as constants of the spectroscopic
Hamiltonian. With both the Darling-Dennison stretch coupling and the Fermi stretch-bend coupling in H,O,
the individual quantum numbers 7, n, and n, were destroyed, leaving the total polyad number (n, +n  +
n,/2) as the only remaining quantum number. We can ask: (1) Is there also a good polyad number in larger
molecules? (2) If so, how robust is this quantum number? For example, how high in energy does it persist as
the molecule approaches dissociation or a barrier to isomerization? (3) Is the total polyad number the only
good vibrational quantum number left over after the resonances have been taken into account, or can there be
others?

-24-

It may be best to start with question (3). Given the set of resonance coupling operators found to be necessary
to obtain a good fit of an experimental spectrum, it can be shown that the resonance couplings may be
represented as vectors, which are not necessarily orthogonal. This leads to a simple but very powerful
‘resonance vector analysis’ [62, 66, 67]. The original vector space of the normal mode coordinates has N
dimensions. The subspace spanned by the resonance vectors is the space of the vibrational quantum numbers
that was destroyed; the complement of this space gives the quantities that remain as good quantum numbers.
In general, there can be more than one such quantum number; we will encounter an example of this in C,H,,
and see that it has important implications for the internal molecular dynamics. The set of good quantum
numbers may contain one or more of the original individual normal mode quantum numbers; but in general,
the good constants are combinations of the original quantum numbers. Examples of this are the polyad
numbers that we have already encountered.

The resonance vector analysis has been used to explore all of the questions raised above on the fate of the
polyad numbers in larger molecules, the most thoroughly investigated case so far probably being C,H,. This
molecule has been very extensively probed by absorption as well as stimulated emission pumping and

great detail and the fits to data have been carefully refined with each new experiment. A large number of
resonance coupling operators has been found to be important, a good many more than the number of
vibrational modes, which are seven in number: a symmetric C—H stretch Vi, antisymmetric C—H stretch Vs,
C—C stretch v, and two bends v, and vy, each doubly degenerate. Despite the plethora of couplings, the
resonance vector analysis shows that the total polyad number

Now = (5n) +3n: + 5n3 +ng +ns) (A1.2.16)

is a good quantum number up to at least about 15, 000 cm™ . This is at or near the barrier to the formation of
the isomer vinylidene! (The coefficients 5, 3, 5, 1 and 1 in (A1.2.16) are close to the frequency ratios of the
zero-order normal modes, which is to say, the polyad number satisfies a resonance condition, as in the earlier
examples for H,O.) The polyad number N, ., has been used with great effect to identify remarkable order

otal



[66, 67, 68, 69 and 70] in the spectrum: groups of levels can clearly be identified that belong to distinct
polyads. Furthermore, there are additional ‘polyad’ constants—that is, quantum numbers that are
combinations of the original quantum numbers—in addition to the total polyad number (A1.2.16). These
additional constants have great significance for the molecular dynamics. They imply the existence of energy
transfer pathways [67]. For example, in dispersed fluorescence spectra in which pure bending motion is
excited, it has been found that with as many as 22 quanta of bend, all of the vibrational excitation remains in
the bends on the time scale associated with dispersed fluorescence spectroscopy, with no energy transfer to
the stretches [72].

A 1.2.16 ISOMERIZATION SPECTRA

We have spoken of the simplicity of the bifurcation analysis when the spectroscopic Hamiltonian possesses a
good polyad number, and also of the persistence of the polyad number in C,H, as the molecule approaches
the barrier to isomerization to the species vinylidene. This suggests that it might be possible to use detailed
spectra to probe the dynamics of a system undergoing an internal rearrangement. Several groups [56, 57] have
been investigating the rearrangement of HCP to the configuration CPH, through analysis of the ‘isomerization
spectrum’. Many of the tools described in this section, including decoding the dynamics through analysis of
bifurcations and associated spectral
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patterns, have come into play. The various approaches all implicate an ‘isomerization mode’ in the
rearrangement process, quite distinct from any of the low-energy normal modes of the system. An explanation
has been provided [57] in terms of the abrupt birth of the isomerization mode. This occurs at a bifurcation, in
which the HCP molecule suddenly acquires a stable motion that takes it along the isomerization pathway,
thereby altering the geometry and with it the rotational constant.

It should be emphasized that isomerization is by no means the only process involving chemical reactions in
which spectroscopy plays a key role as an experimental probe. A very exciting topic of recent interest is the
observation and computation [73, 74] of the spectral properties of the transition state [6]—catching a
molecule ‘in the act’ as it passes the point of no return from reactants to products. Furthermore, it has been
discovered from spectroscopic observation [75] that molecules can have motions that are stable for long times
even above the barrier to reaction.

A 1.2.17 BREAKDOWN OF THE POLYAD NUMBERS

The polyad concept is evidently a very simple but powerful tool in the analysis and description of the internal
dynamics of molecules. This is especially fortunate in larger molecules, where the intrinsic spectral
complexity grows explosively with the number of atoms and degrees of freedom. Does the polyad number
ever break down? Strictly speaking, it must: the polyad number is only an approximate property of a
molecule’s dynamics and spectrum. The actual molecular Hamiltonian contains resonance couplings of all
forms, and these must destroy the polyad numbers at some level. This will show up by looking at high enough
resolution at a spectrum which at lower resolution has a good polyad number. Levels will be observed of
small intensity, which would be rigorously zero if the polyad numbers were exact. The fine detail in the
spectrum corresponds to long-time dynamics, according to the time—energy uncertainty relation [49].

One reason the polyad-breaking couplings are of interest is because they govern the long-time intramolecular
energy flow, which is important for theories on reaction dynamics. These are considered elsewhere in this
Encyclopedia and in monographs [6] and will not be considered further here. The long-time energy flow may



also be important for efforts of coherent control and for problems of energy flow from a molecule to a bath,
such as a surrounding liquid. Both of these will be considered later.

Several questions arise on the internal dynamics associated with the breakdown of the polyad number. We can
only speculate in what follows, awaiting the illumination of future research.

When the polyad number breaks down, as evidenced by the inclusion of polyad-breaking terms in the
spectroscopic Hamiltonian, what is the residue left in the spectrum of the polyads as approximately conserved
entities? There is already some indication [76] that the polyad organization of the spectrum will still be
evident even with the inclusion of weak polyad-breaking terms. The identification of these polyad-breaking
resonances will be a challenge, because each such resonance probably only couples a given polyad to a very
small subset of ‘dark’ states of the molecule that lie outside those levels visible in the polyad spectrum. There
will be a large number of such resonances, each of them coupling a polyad level to a small subset of dark
levels.

Another question is the nature of the changes in the classical dynamics that occur with the breakdown of the
polyad number. In all likelihood there are further bifurcations. Apart from the identification of the individual
polyad-breaking resonances, the bifurcation analysis itself presents new challenges. This is partly because
with the breakdown
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of the polyad number, the great computational simplicity afforded by the block-diagonalization of the
Hamiltonian is lost. Another problem is that the bifurcation analysis is exactly solvable only when a polyad
number is present [45], so approximate methods will be needed.

When the polyad number breaks down, the bifurcation analysis takes on a new kind of interest. The
approximate polyad number can be thought of as a type of ‘bottleneck’ to energy flow, which is restricted to
the phase space of the individual polyad; the polyad breakdown leads to energy flow in the full phase space.
We can think of the goal as the search for the ‘energy transfer modes’ of long-time energy flow processes in
the molecule, another step beyond the current use of bifurcation analysis to find the natural anharmonic modes
that emerge within the polyad approximation.

The existence of the polyad number as a bottleneck to energy flow on short time scales is potentially
important for efforts to control molecular reactivity using advanced laser techniques, discussed below in
section A1.2.20. Efforts at control seek to intervene in the molecular dynamics to prevent the effects of
widespread vibrational energy flow, the presence of which is one of the key assumptions of Rice—
Ramsperger—Kassel-Marcus (RRKM) and other theories of reaction dynamics [6].

In connection with the energy transfer modes, an important question, to which we now turn, is the
significance of classical chaos in the long-time energy flow process, in particular the relative importance of
chaotic classical dynamics, versus classically forbidden processes involving ‘dynamical tunnelling’.

A 1.2.18 CLASSICAL VERSUS NON-CLASSICAL EFFECTS

To understand the internal molecular motions, we have placed great store in classical mechanics to obtain a
picture of the dynamics of the molecule and to predict associated patterns that can be observed in quantum
spectra. Of course, the classical picture is at best an imprecise image, because the molecular dynamics are
intrinsically quantum mechanical. Nonetheless, the classical metaphor must surely possess a large kernel of
truth. The classical structure brought out by the bifurcation analysis has accounted for real patterns seen in
wavefunctions and also for patterns observed in spectra, such as the existence of local mode doublets, and the



more subtle level-spacing patterns seen in connection with Fermi resonance spectra.

However, we have also seen that some of the properties of quantum spectra are intrinsically non-classical,
apart from the discreteness of quantum states and energy levels implied by the very existence of quanta. An
example is the splitting of the local mode doublets, which was ascribed to dynamical tunnelling, i.e. processes
which classically are forbidden. We can ask if non-classical effects are ubiquitous in spectra and, if so, are
there manifestations accessible to observation other than those we have encountered so far? If there are such
manifestations, it seems likely that they will constitute subtle peculiarities in spectral patterns, whose
discernment and interpretation will be an important challenge.

The question of non-classical manifestations is particularly important in view of the chaos that we have seen
is present in the classical dynamics of a multimode system, such as a polyatomic molecule, with more than
one resonance coupling. Chaotic classical dynamics is expected to introduce its own peculiarities into
quantum spectra [29, 77]. In H,O, we noted that chaotic regions of phase space are readily seen in the
classical dynamics corresponding to the spectroscopic Hamiltonian. How important are the effects of chaos in
the observed spectrum, and in the wavefunctions of the molecule? In HZO’ there were some states whose
wavefunctions appeared very disordered, in the region of the
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phase space where the two resonances should both be manifesting their effects strongly. This is precisely
where chaos should be most pronounced, and indeed this was observed to be the case [58]. However, close
examination of the states in question by Keshavamurthy and Ezra [78] showed that the disorder in the
quantum wavefunction was due not primarily to chaos, but to dynamical tunnelling, the non-classical effect
invoked earlier to explain the splitting of local mode doublets.

This demonstrated importance of the non-classical processes in systems with intact polyad numbers prompts
us to consider again the breakdown of the polyad number. Will it be associated mainly with chaotic classical
diffusion, or non-classical effects? It has been suggested [47] that high-resolution structure in spectra, which
we have said is one of the manifestations of the polyad breakdown, may be predominantly due to non-
classical, dynamical tunnelling processes, rather than chaotic diffusion. Independent, indirect support comes
from the observation that energy flow from vibrationally excited diatomic molecules in a liquid bath is
predominantly due to non-classical effects, to the extent of several orders of magnitude [79]. Whether
dynamical tunnelling is a far more important energy transfer mechanism within molecules than is classical
chaos is an important question for the future exploration of the interface of quantum and classical dynamics.

It should be emphasized that the existence of ‘energy transfer modes’ hypothesized earlier with the polyad
breakdown is completely consistent with the energy transfer being due to non-classical, dynamical tunnelling
processes. This is evident from the observation above that the disorder in the H,O spectrum is attributable to
non-classical effects which nonetheless are accompaniments of classical bifurcations.

The general question of the spectral manifestations of classical chaos and of non-classical processes, and their
interplay in complex quantum systems, is a profound subject worthy of great current and future interest.
Molecular spectra can provide an immensely important laboratory for the exploration of these questions.
Molecules provide all the necessary elements: a mixture of regular and chaotic classical motion, with ample
complexity for the salient phenomena to make their presence known and yet sufficient simplicity and control
in the number of degrees of freedom to yield intelligible answers. In particular, the fantastic simplification
afforded by the polyad constants, together with their gradual breakdown, may well make the spectroscopic
study of internal molecular motions an ideal arena for a fundamental investigation of the quantum—classical
correspondence.




A 1.2.19 MOLECULES IN CONDENSED PHASE

So far we have considered internal motions mostly of isolated molecules, not interacting with an environment.
This condition will be approximately met in a dilute gas. However, many of the issues raised may be of
relevance in processes where the molecule is not isolated at all. An example already briefly noted is the
transfer of vibrational energy from a molecule to a surrounding bath, for example a liquid. It has been found
[79] that when a diatomic molecule such as O, is vibrationally excited in a bath of liquid oxygen, the transfer
of vibrational energy is extremely slow. This is due to the extreme mismatch between the energy of an O,
vibrational quantum, and the far lower energy of the bath’s phonon modes—vibrations involving large
numbers of the bath molecules oscillating together. Classically, the energy transfer is practically non-existent;
semiclassical approximations, however, show that quantum effects increase the rate by orders of magnitude.
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The investigation of energy transfer in polyatomic molecules immersed in a bath is just beginning. One issue
has to do with energy flow from the molecule to the bath. Another issue is the effect of the bath on energy
flow processes within the molecule. Recent experimental work [80] using ultrafast laser probes of ClO,
immersed in solvents points to the importance of bifurcations within the solute triatomic for the understanding
of energy flow both within and from the molecule.

For a polyatomic, there are many questions on the role of the polyad number in energy flow from the
molecule to the bath. Does polyad number conservation in the isolated molecule inhibit energy flow to the
bath? Is polyad number breaking a facilitator or even a prerequisite for energy flow? Finally, does the energy
flow to the bath increase the polyad number breaking in the molecule? One can only speculate until these
questions become accessible to future research.

A 1.2.20 LASER CONTROL OF MOLECULES

So far, we have talked about the internal motions of molecules which are exhibiting their ‘natural’ behaviour,
either isolated in the gas phase or surrounded by a bath in a condensed phase. These natural motions are
inferred from carefully designed spectroscopic experiments that are sufficiently mild that they simply probe
what the molecule does when left to ‘follow its own lights’. However, there is also a great deal of effort
toward using high-intensity, carefully sculpted laser pulses which are anything but mild, in order to control
the dynamics of molecules. In this quest, what role will be played by knowledge of their natural motions?

Surprisingly, a possible answer may be ‘not much of a role at all’. One promising approach [81] using
coherent light sources seeks to have the apparatus ‘learn’ how to control the molecule without knowing much
at all about its internal properties in advance. Instead, a ‘target’ outcome is selected, and a large number of
automated experiments performed, in which the control apparatus learns how to achieve the desired goal by
rationally programmed trial and error in tailoring coherent light sources. It might not be necessary to learn
much at all about the molecule’s dynamics before, during or after, to make the control process work, even
though the control apparatus might seem to all appearances to be following a cunning path to achieve its ends.

It can very well be objected that such a hit-or-miss approach, no matter how cleverly designed, is not likely to
get very far in controlling polyatomic molecules with more than a very small number of atoms—in fact one
will do much better by harnessing knowledge of the natural internal motions of molecules in tandem with the
process of external control. The counter-argument can be made that in the trial and error approach, one will
hit on the ‘natural’ way of controlling the molecule, even if one starts out with a method which at first tries
nothing but brute force, even if one remains resolutely ignorant of why the molecule is responding to the
evolving control procedure. Of course, if a good way is found to control the molecule, a retrospective
explanation of how and why it worked almost certainly must invoke the natural motions of the molecule,



about which much will perhaps have been learned along the way in implementing the process of control.

The view of this author is that knowledge of the internal molecular motions, perhaps as outlined in this
chapter, is likely to be important in achieving successful control, in approaches that make use of coherent light
sources and quantum mechanical coherence. However, at this point, opinions on these issues may not be much
more than speculation.
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There are also approaches [82, 83 and 84] to control that have had marked success and which do not rely on
quantum mechanical coherence. These approaches typically rely explicitly on a knowledge of the internal
molecular dynamics, both in the design of the experiment and in the achievement of control. So far, these
approaches have exploited only implicitly the very simplest types of bifurcation phenomena, such as the
transition from local to normal stretch modes. If further success is achieved along these lines in larger
molecules, it seems likely that deliberate knowledge and exploitation of more complicated bifurcation
phenomena will be a matter of necessity.

As discussed in section A1.2.17, the existence of the approximate polyad numbers, corresponding to short-
time bottlenecks to energy flow, could be very important in efforts for laser control, apart from the separate
question of bifurcation phenomena.

Another aspect of laser control of molecular dynamics is the use of control techniques to probe the internal
motions of molecules. A full account of this topic is far beyond the scope of this section, but one very
interesting case in point has important relations to other branches of physics and mathematics. This is the
phenomenon of ‘geometric phases’, which are closely related to gauge theories. The latter were originally
introduced into quantum physics from the classical theory of electromagnetism by Weyl and others (see [85]).
Quantum field theories with generalizations of the electromagnetic gauge invariance were developed in the
1950s and have since come to play a paramount role in the theory of elementary particles [86, 87]. Geometric
phases were shown to have directly observable effects in quantum phenomena such as the Aharanov—Bohm
effect [88]. It was later recognized that these phases are a general phenomenon in quantum systems [89]. One
of the first concrete examples was pointed out [90] in molecular systems involving the coupling of rotation
and vibration. A very systematic exposition of geometric phases and gauge ideas in molecular systems was
presented in [91]. The possibility of the direct optical observation of the effects of the geometric phases in the
time domain through coherent laser excitations has recently been explored [92].

A 1.2.21 LARGER MOLECULES

This section has focused mainly on the internal dynamics of small molecules, where a coherent picture of the
detailed internal motion has been emerging from intense efforts of many theoretical and experimental
workers. A natural question is whether these kinds of issues will be important in the dynamics of larger
molecules, and whether their investigation at the same level of detail will be profitable or tractable.

There will probably be some similarities, but also some fundamental differences. We have mainly considered
small molecules with relatively rigid structures, in which the vibrational motions, although much different
from the low-energy, near-harmonic normal modes, are nonetheless of relatively small amplitude and close to
an equilibrium structure. (An important exception is the isomerization spectroscopy considered earlier, to
which we shall return shortly.)

Molecules larger than those considered so far are formed by linking together several smaller components. A
new kind of dynamics typical of these systems is already seen in a molecule such as C,H, in which there is
hindered rotation of the two methyl groups. Systems with hindered internal rotation have been studied in great



depth [93], but there are still many unanswered questions. It seems likely that semiclassical techniques, using
bifurcation analysis, could be brought to bear on these systems with great benefit.

The dynamics begin to take on a qualitatively different nature as the number of components, capable of
mutual
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hindered rotation, starts to become only a little larger than in C,H,. The reason is that large-amplitude, very
flexible twisting motions, such as those that start to be seen in a small polymer chain, become very important.
These large scale ‘wiggly motions’ define a new class of dynamics and associated frequency scale as a
characteristic internal motion of the system.

A hint that bifurcation techniques should be a powerful aid to the understanding of these problems comes
from the example already considered in HCP isomerization [57]. Here the bifurcation techniques have given
dramatic insights into the motions that stray very far from the equilibrium structure, in fact approaching the
top of a barrier to the rearrangement to a different molecular isomer. It seems likely that similar approaches
will be invaluable for molecules with internal rotors, including flexible polymer systems, but with an increase
in complexity corresponding to the larger size of the systems. Probably, techniques to separate out the
characteristic large-amplitude flexible motions from faster high-frequency vibrations, such as those of the
individual bonds, will be necessary to unlock, along with the tools of the bifurcation analysis, the knowledge
of the detailed anharmonic motions encrypted in the spectrum. This separation of time scales would be similar
in some ways to the Born—Oppenheimer separability of nuclear and electronic motion.

Another class of problems in larger systems, also related to isomerization, is the question of large-amplitude
motions in clusters of atoms and molecules. The phenomena of internal rearrangements, including processes
akin to ‘melting’ and the seeking of minima on potential surfaces of very high dimensionality (due to the
number of particles), have been extensively investigated [94]. The question of the usefulness of bifurcation
techniques and the dynamical nature of large-amplitude natural motions in these systems has yet to be
explored. These problems of large-amplitude motions and the seeking of potential minima in large clusters are
conceptually related to the problem of protein folding, to which we now turn.

A 1.2.22 PROTEIN FOLDING

An example of a kind of extreme challenge in the complexity of internal molecular dynamics comes with very
complicated biological macromolecules. One of the major classes of these is proteins, very long biopolymers
consisting of large numbers of amino acid residues [95]. They are very important in biological systems
because they are the output of the translation of the genetic code: the DNA codes for the sequences of amino
acid residues for each individual protein produced by the organism. A good sequence, i.c. one which forms a
biologically useful protein, is one which folds to a more-or-less unique ‘native’ three-dimensional tertiary
structure. (The sequence itself is the primary structure; subunits within the tertiary structure, consisting of
chains of residues, fold to well defined secondary structures, which themselves are folded into the tertiary
structure.) An outstanding problem, still very far from a complete understanding, is the connection between
the sequence and the specific native structure, and even the prior question whether a given sequence has a
reliable native structure at all. For sequences which do fold up into a unique structure, it is not yet possible to
reliably predict what the structure will be, or what it is about the sequence that makes it a good folder. A
solution of the sequence—structure problem would be very important, because it would make it possible to
design sequences in the laboratory to fold to a definite, predictable structure, which then could be tailored for
biological activity. A related question is the kinetic mechanism by which a good protein folds to its native
structure.
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Both the structural and kinetic aspects of the protein-folding problem are complicated by the fact that folding
takes place within a bath of water molecules. In fact, hydrophobic interactions are almost certainly crucial for
both the relation of the sequence and the native structure, and the process by which a good sequence folds to
its native structure.

It is presently unknown whether the kind of detailed dynamical analysis of the natural motions of molecules
outlined in this section will be useful for a problem as complicated as that of protein folding. The likely
applicability of such methods to systems with several internal rotors strung together, and the incipient interest
in bifurcation phenomena of small molecules immersed in a bath [80], suggests that dynamical analysis might
also be useful for the much larger structures in proteins. In a protein, most of the molecular motion may be
essentially irrelevant, i.e. the high-frequency, small-amplitude vibrations of the backbone of the amino acid
sequence, and, also, probably much of the localized large-amplitude ‘wiggly’ motion. It is likely that there is a
far smaller number of relevant large-amplitude, low-frequency motions that are crucial to the folding process.
It will be of great interest to discover if techniques of dynamical systems such as bifurcation analysis can be
used to reveal the ‘folding modes’ of proteins. For this to work, account must be taken of the complication of
the bath of water molecules in which the folding process takes place. This introduces effects such as friction,
for which there is little or no experience at present in applying bifurcation techniques in molecular systems.
Proteins themselves interact with other proteins and with nucleic acids in biological processes of every
conceivable kind considered at the molecular level.

A 1.2.23 OUTLOOK

Knowledge of internal molecular motions became a serious quest with Boyle and Newton, at the very dawn of
modern natural science. However, real progress only became possible with the advent of quantum theory in
the 20th century. The study of internal molecular motion for most of the century was concerned primarily
with molecules near their equilibrium configuration on the PES. This gave an enormous amount of immensely
valuable information, especially on the structural properties of molecules.

In recent years, especially the past two decades, the focus has changed dramatically to the study of highly-
excited states. This came about because of a conjunction of powerful influences, often in mutually productive
interaction with molecular science. Perhaps the first was the advent of lasers as revolutionary light sources for
the probing of molecules. Coherent light of unprecedented intensities and spectral purity became available for
studies in the traditional frequency domain of spectroscopy. This allowed previously inaccessible states of
molecules to be reached, with new levels of resolution and detail. Later, the development of ultrafast laser
pulses opened up the window of the ultrafast time domain as a spectroscopic complement to the new richness
in the frequency domain. At the same time, revolutionary information technology made it possible to apply
highly-sophisticated analytical methods, including new pattern recognition techniques, to process the wealth
of new experimental information. The computational revolution also made possible the accurate investigation
of highly-excited regions of molecular potential surfaces by means of quantum chemistry calculations.
Finally, new mathematical developments in the study of nonlinear classical dynamics came to be appreciated
by molecular scientists, with applications such as the bifurcation approaches stressed in this section.

With these radical advances in experimental technology, computational ability to handle complex systems,
and new theoretical ideas, the kind of information being sought about molecules has undergone an equally
profound change. Formerly, spectroscopic investigation, even of vibrations and rotations, had focused
primarily on structural information. Now there is a marked drive toward dynamical information, including
problems of energy flow, and
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internal molecular rearrangement. As emphasized in this section, a tremendous impetus to this was the
recognition that other kinds of motion, such as local modes, could be just as important as the low-energy
normal modes, in the understanding of the internal dynamics of highly-excited states. Ultrafast pulsed lasers
have played a major role in these dynamical investigations. There is also a growing awareness of the immense
potential for frequency domain spectroscopy to yield information on ultrafast processes in the time domain.
This involves sophisticated measurements and data analysis of the very complex spectra of excited states; and
equally sophisticated theoretical analysis to unlock the dynamical information encoded in the spectra. One of
the primary tools is the bifurcation analysis of phenomenological Hamiltonians used directly to model
experimental spectra. This gives information on the birth of new anharmonic motions in bifurcations of the
low-energy normal modes. This kind of analysis is yielding information of startling detail about the internal
molecular dynamics of high-energy molecules, including molecules undergoing isomerization. The
ramifications are beginning to be explored for molecules in condensed phase. Here, ultrafast time-domain
laser spectroscopy is usually necessary; but the requisite knowledge of internal molecular dynamics at the
level of bifurcation analysis must be obtained from frequency-domain, gas phase experiments. Thus, a fruitful
interplay is starting between gas and condensed phase experiments, and probes using sophisticated time- and
frequency-domain techniques. Extension to much larger systems such as proteins is an exciting, largely
unexplored future prospect. The interplay of research on internal molecular dynamics at the levels of small
molecules, intermediate-size molecules, such as small polymer chains, and the hyper-complex scale of
biological macromolecules is a frontier area of chemistry which surely will yield fascinating insights and
discoveries for a long time to come.
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A1.3 Quantum mechanics of condensed phases

James R Chelikowsky

A1.3.1 INTRODUCTION

Traditionally one categorizes matter by phases such as gases, liquids and solids. Chemistry is usually
concerned with matter in the gas and liquid phases, whereas physics is concerned with the solid phase.
However, this distinction is not well defined: often chemists are concerned with the solid state and reactions
between solid-state phases, and physicists often study atoms and molecular systems in the gas phase. The term
condensed phases usually encompasses both the liquid state and the solid state, but not the gas state. In this
section, the emphasis will be placed on the solid state with a brief discussion of liquids.

The solid phase of matter offers a very different environment to examine the chemical bond than does a gas or
liquid [1, 2, 3, 4 and 5]. The obvious difference involves describing the atomic positions. In a solid state, one
can often describe atomic positions by a static configuration, whereas for liquid and gas phases this is not
possible. The properties of the liquids and gases can be characterized only by considering some time-averaged
ensemble. This difference between phases offers advantages in describing the solid phase, especially for
crystalline matter. Crystals are characterized by a periodic symmetry that results in a system occupying all
space [6]. Periodic, or translational, symmetry of crystalline phases greatly simplifies discussions of the solid
state since knowledge of the atomic structure within a fundamental ‘subunit’ of the crystal, called the unit cell,
is sufficient to describe the entire system encompassing all space. For example, if one is interested in the
spatial distribution of electrons in a crystal, it is sufficient to know what this distribution is within a unit cell.

A related advantage of studying crystalline matter is that one can have symmetry-related operations that
greatly expedite the discussion of a chemical bond. For example, in an elemental crystal of diamond, all the
chemical bonds are equivalent. There are no terminating bonds and the characterization of one bond is
sufficient to understand the entire system. If one were to know the binding energy or polarizability associated
with one bond, then properties of the diamond crystal associated with all the bonds could be extracted. In
contrast, molecular systems often contain different bonds and always have atoms at the boundary between the
molecule and the vacuum.

Since solids do not exist as truly infinite systems, there are issues related to their termination (i.e. surfaces).
However, in most cases, the existence of a surface does not strongly affect the properties of the crystal as a
whole. The number of atoms in the interior of a cluster scale as the cube of the size of the specimen while the
number of surface atoms scale as the square of the size of the specimen. For a sample of macroscopic size, the
number of interior atoms vastly exceeds the number of atoms at the surface. On the other hand, there are
interesting properties of the surface of condensed matter systems that have no analogue in atomic or
molecular systems. For example, electronic states can exist that ‘trap’ electrons at the interface between a
solid and the vacuum [1].

Issues associated with order occupy a large area of study for crystalline matter [1, 7, 8]. For nearly perfect
crystals, one can have systems with defects such as point defects and extended defects such as dislocations and
grain
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boundaries. These defects occur in the growth process or can be mechanically induced. In contrast to
molecular systems that can be characterized by ‘perfect’ molecular systems, solids always have defects.
Individuals atoms that are missing from the ideal crystal structure, or extra atoms unneeded to characterize the
ideal crystal are called point defects. The missing atoms correspond to vacancies; additional atoms are called



interstitials. Extended defects are entire planes of atoms or interfaces that do not correspond to those of the
ideal crystal. For example, edge dislocations occur when an extra half-plane of atoms is inserted in a perfect
crystal and grain boundaries occur when a solid possesses regions of crystalline matter that have different
structural orientations. In general, if a solid has no long-range order then one considers the phase to be an
amorphous solid. The idea of atomic order and ‘order parameters’ is not usually considered for molecular
systems, although for certain systems such as long molecular chains of atoms one might invoke a similar
concept.

Another issue that distinguishes solids from atomic or molecular systems is the role of controlled defects or
impurities. Often a pure, elemental crystal is not of great interest for technological applications; however,
crystals with controlled additions of impurities are of great interest. The alteration of electronic properties
with defects can be dramatic, involving changes in electrical conductivity by orders of magnitude. As an
example, the addition of one boron atom for every 10° silicon atoms increases the conductivity of pure silicon

by factor of 103 at room temperature [1]. Much of the electronic materials revolution is based on capitalizing
on the dramatic changes in electronic properties via the controlled addition of electronically active dopants.

Of course, condensed phases also exhibit interesting physical properties such as electronic, magnetic, and
mechanical phenomena that are not observed in the gas or liquid phase. Conductivity issues are generally not
studied in isolated molecular species, but are actively examined in solids. Recent work in solids has focused
on dramatic conductivity changes in superconducting solids. Superconducting solids have resistivities that are
identically zero below some transition temperature [1, 9, 10]. These systems cannot be characterized by
interactions over a few atomic species. Rather, the phenomenon involves a collective mode characterized by a
phase representative of the entire solid.

A1.3.2 MANY-BODY WAVEFUNCTIONS IN CONDENSED PHASES

One of the most significant achievements of the twentieth century is the description of the quantum
mechanical laws that govern the properties of matter. It is relatively easy to write down the Hamiltonian for
interacting fermions. Obtaining a solution to the problem that is sufficient to make predictions is another
matter.

Let us consider N nucleons of charge Z at positions {R } forn=1,..., N and M electrons at positions {r;} for
i=1,..., M. This is shown schematically in figure A1.3.1. The Hamiltonian for this system in its simplest
form can be written as
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J'vin is the mass of the nucleon, fiis Planck’s constant divided by 27, m is the mass of the electron. This

expression omits some terms such as those involving relativistic interactions, but captures the essential
features for most condensed matter phases.
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Figure A1.3.1. Atomic and electronic coordinates. The electrons are illustrated by filled circles; the nuclei by
open circles.

Using the Hamiltonian in equation A1.3.1, the quantum mechanical equation known as the Schrédinger
equation for the electronic structure of the system can be written as

HIRL Ry Rae.oirprnry JYRL R Rye e imr e = EWIRL R Rae oo i Fpa P Fy . ) (A1.3.2)

where F is the total electronic energy of the system, and ¥ is the many-body wavefunction. In the early part
of the twentieth century, it was recognized that this equation provided the means of solving for the electronic
and nuclear degrees of freedom. Using the variational principle, which states that an approximate
wavefunction will always have a less favourable energy than the true ground-state energy, one had an
equation and a method to test the solution. One can estimate the energy from
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Solving equation A1.3.2 for anything more complex than a few particles becomes problematic even with the
most modern computers. Obtaining an approximate solution for condensed matter systems is difficult, but
considerable progress has been made since the advent of digital computers. Several highly successful
approximations have been made to solve for the ground-state energy. The nature of the approximations used is
to remove as many degrees of freedom from the system as possible.

One common approximation is to separate the nuclear and electronic degrees of freedom. Since the nuclei are
considerably more massive than the electrons, it can be assumed that the electrons will respond
‘instantaneously’ to the nuclear coordinates. This approximation is called the Born—Oppenheimer or adiabatic
approximation. It allows one to treat the nuclear coordinates as classical parameters. For most condensed
matter systems, this assumption is highly accurate [11, 12].

A1.3.2.1 THE HARTREE APPROXIMATION

Another common approximation is to construct a specific form for the many-body wavefunction. If one can
obtain an accurate estimate for the wavefunction, then, via the variational principle, a more accurate estimate
for the energy will emerge. The most difficult part of this exercise is to use physical intuition to define a trial
wavefunction.

One can utilize some very simple cases to illustrate this approach. Suppose one considers a solution for non-
interacting electrons: i.e. in equation A1.3.1 the last term in the Hamiltonian is ignored. In this limit, it is



possible to write the many-body wavefunction as a sum of independent Hamiltonians. Using the adiabatic
approximation, the electronic part of the Hamiltonian becomes

M 2 N .
Ha(r) k2. 13...) = Z ikl - Z Z L (A1.3.4)

Let us define a nuclear potential, Ve which the ith electron sees as

Nl
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One can now rewrite a simplified Schrédinger equation as
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where the Hamiltonian is now defined for the ith electron as
~i  —RV?
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For this simple Hamiltonian, let us write the many-body wavefunction as
Wir.ra.ry. ) = g (rodgeiradga(rs) ... (A1.3.8)
The ¢,(r) orbitals can be determined from a ‘one-electron” Hamiltonian
. _ Zvl
H'gi(r) = ( o + Vh-[r])qb{r} = F;g;(r). (A1.3.9)

The index i for the orbital ¢,(r) can be taken to include the spin of the electron plus any other relevant
quantum numbers. The index 7 runs over the number of electrons, each electron being assigned a unique set of
quantum
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numbers. This type of Schrédinger equation can be easily solved for fairly complex condensed matter
systems. The many-body wavefunction in equation A1.3.8 is known as the Hartree wavefunction. If one uses
this form of the wavefunction as an approximation to solve the Hamiltonian including the electron—electron
interactions, this is known as the Hartree approximation. By ignoring the electron—electron terms, the Hartree
approximation simply reflects the electrons independently moving in the nuclear potential. The total energy of
the system in this case is simply the sum of the eigenvalues, E..

To obtain a realistic Hamiltonian, the electron—electron interactions must be reinstated in equation A1.3.6:
. Mo M o2
Halr rrs Qg (r .. )= (H’ =1 —) W(r.r, rs...). (A1.3.10)

i 2 ;57 7 =l



In this case, the individual orbitals, ¢,(r), can be determined by minimizing the total energy as per equation
A1.3.3, with the constraint that the wavefunction be normalized. This minimization procedure results in the
following Hartree equation:

2
+ Va(r) + Z f{’ 19;(r) T a )qb.tr Eig:(x). (A1.3.11)

Hip:(r) = (
j=1. = - [.II

2m

Using the orbitals, ¢(r), from a solution of equation A1.3.11, the Hartree many-body wavefunction can be
constructed and the total energy determined from equation A1.3.3.

The Hartree approximation is useful as an illustrative tool, but it is not a very accurate approximation. A
significant deficiency of the Hartree wavefunction is that it does not reflect the anti-symmetric nature of the
electrons as required by the Pauli principle [7]. Moreover, the Hartree equation is difficult to solve. The
Hamiltonian is orbitally dependent because the summation in equation A1.3.11 does not include the ith
orbital. This means that if there are M electrons, then M Hamiltonians must be considered and equation
A1.3.11 solved for each orbital.

A1.3.2.2 THE HARTREE-FOCK APPROXIMATION

It is possible to write down a many-body wavefunction that will reflect the antisymmetric nature of the
wavefunction. In this discussion, the spin coordinate of each electron needs to be explicitly treated. The
coordinates of an electron may be specified by r s, where s; represents the spin coordinate. Starting with one-

electron orbitals, ¢ (r s), the following form can be invoked:

di(ris))  dilras2) ... ... ilrysy)
da(ri51)  ghirs:)

du(rys) o coveee Puylrysy)

Il

ll"(l!'|.!n'|. rS, M¥, .. :l

(A1.3.12)

This form of the wavefunction is called a Slater determinant. It reflects the proper symmetry of the
wavefunction and
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the Pauli principle. If two electrons occupy the same orbit, two rows of the determinant will be identical and
the many-body wavefunction will have zero amplitude. Likewise, the determinant will vanish if two electrons
occupy the same point in generalized space (i.e. r;s; = rjsj) as two columns of the determinant will be
identical. If two particles are exchanged, this corresponds to a sign change in the determinant. The Slater
determinant is a convenient representation. It is probably the simplest form that incorporates the required
symmetry properties for fermions, or particles with non-integer spins.

If one uses a Slater determinant to evaluate the total electronic energy and maintains the orbital normalization,
then the orbitals can be obtained from the following Hartree—Fock equations:

(A1.3.13)



. —II:?: - Il‘.ﬁ',!r‘]l L
i p— 4= 3 4= "
Hmn_( s VD) Ef d*r' )i (r)
= Ligi(r).
¢. ()b () d'r' 8,y b, (r)
Ir — !
It is customary to simplify this expression by defining an electronic charge density, p

M
p(ry = lp;(r)) (A1.3.14)
=

and an orbitally dependent exchange-charge density, Pr'HF for the ith orbital:

_ Mo ()b (¥ )ep? (X )ep;
;:-,-”*fr.r“lzng’" i (X )p] (v)ep; (1)

@/ (r)g; (r) Ouvy- (A1.3.15)

i=1

This ‘density’ involves a spin-dependent factor which couples only states (i, j) with the same spin coordinates
(s;» Sj)' It is not a true density in that it is dependent on r, r'; it has meaning only as defined below.

With these charge densities defined, it is possible to define corresponding potentials. The Coulomb or Hartree
potential, V., is defined by

Vi(r) =fp{]"} & (A1.3.16)
Ir—r|

and an exchange potential can be defined by

2
Vi = -fpﬁ*’{n ry—— d&r. (A1.3.17)
r—r|
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This combination results in the following Hartree—Fock equation:

el .
( 2 Y V) + V() + V;{r}):,ﬁ,-[r} = Ei¢i(r). (A1.3.18)
I

Once the Hartree—Fock orbitals have been obtained, the total Hartree—Fock electronic energy of the system,

EHF’ can be obtained from

M M
Eyr = E E; — %fﬂ[r}l Vi(r) d*r — % chf::{r}q‘n,-{r} Vi dir. (A1.3.19)

Ey 1s not a sum of the Hartree—Fock orbital energies, £;. The factor of 1in the electron—electron terms arises
because the electron—electron interactions have been double-counted in the Coulomb and exchange potentials.
The Hartree—Fock Schrédinger equation is only slightly more complex than the Hartree equation. Again, the
equations are difficult to solve because the exchange potential is orbitally dependent.



There is one notable difference between the Hartree—Fock summation and the Hartree summation. The
Hartree—Fock sums include the i = terms in equation A1.3.13. This difference arises because the exchange
term corresponding to i = cancels an equivalent term in the Coulomb summation. The i = term in both the
Coulomb and exchange term is interpreted as a ‘self-screening’ of the electron. Without a cancellation
between Coulomb and exchange terms a ‘self-energy’ contribution to the total energy would occur.
Approximate forms of the exchange potential often do not have this property. The total energy then contains a
self-energy contribution which one needs to remove to obtain a correct Hartree—Fock energy.

The Hartree—Fock wavefunctions are approximations to the true ground-state many-body wavefunctions.
Terms not included in the Hartree—Fock energy are referred to as correlation contributions. One definition for
the correlation energy, £ is to write it as the difference between the correct total energy of the system and
the Hartree-Fock energies: E | = E_ . — Eyp. Correlation energies are sometimes included by considering
Slater determinants composed of orbitals which represent excited-state contributions. This method of
including unoccupied orbitals in the many-body wavefunction is referred to as configuration interaction or

‘CI.

Applying Hartree—Fock wavefunctions to condensed matter systems is not routine. The resulting Hartree—
Fock equations are usually too complex to be solved for extended systems. It has been argued that many-body
wavefunction approaches to the condensed matter or large molecular systems do not represent a reasonable
approach to the electronic structure problem of extended systems.

A1.3.3 DENSITY FUNCTIONAL APPROACHES TO QUANTUM
DESCRIPTIONS OF CONDENSED PHASES

Alternative descriptions of quantum states based on a knowledge of the electronic charge density equation
A1.3.14 have existed since the 1920s. For example, the Thomas—Fermi description of atoms based on a
knowledge of p (r)

was reasonably successful [13, 14 and 15]. The starting point for most discussions of condensed matter begins
by considering a limiting case that may be appropriate for condensed matter systems, but not for small
molecules. One often considers a free electron gas of uniform charge density. The justification for this
approach comes from the observation that simple metals like aluminium and sodium have properties which
appear to resemble those of a free electron gas. This model cannot be applied to systems with localized
electrons such as highly covalent materials like carbon or highly ionic materials like sodium chloride. It is
also not appropriate for very open structures. In these systems large variations of the electron distribution can
occur.

A1.3.3.1 FREE ELECTRON GAS

Perhaps the simplest description of a condensed matter system is to imagine non-interacting electrons

contained within a box of volume, Q. The Schrodinger equation for this system is similar to equation A1.3.9
with the potential set to zero:

_ sz
Tqﬁ(” = E¢(r). (A1.3.20)



Ignoring spin for the moment, the solution of equation A1.3.20 is

Pir) = Lexp{ik . T). (A1.3.21)

NG

The energy is given by E(k) = 12k2/2m and the charge density by p = 1/Q. k is called a wavevector.

A key issue in describing condensed matter systems is to account properly for the number of states. Unlike a
molecular system, the eigenvalues of condensed matter systems are closely spaced and essentially ‘infinite’ in

number. For example, if one has 1023 electrons, then one can expect to have 1023 occupied states. In
condensed matter systems, the number of states per energy unit is a more natural measure to describe the
energy distribution of states.

It is easy to do this with periodic boundary conditions. Suppose one considers a one-dimensional specimen of

length L. In this case the wavefunctions obey the rule ¢p(x + L) = ¢(x) as x + L corresponds in all physical
properties to x. For a free electron wavefunction, this requirement can be expressed as exp(ik(x + L) = exp(ikx)
or as exp(ikL) = 1 or k = 2nn/L where n is an integer.

Periodic boundary conditions force & to be a discrete variable with allowed values occurring at intervals of

2n/L. For very large systems, one can describe the system as continuous in the limit of L — . Electron states
can be defined by a density of states defined as follows:

, . N(E+AE)— N(E)
DE) = Jimg =7

B dN

T dE

(A1.3.22)
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where N(F) is the number of states whose energy resides below E. For the one-dimensional case, N(k) = 24/

(2m/L) (the factor of two coming from spin) and dN/dE = (dN/dk) - (dk/dE). Using E(k) = 12k*/2m, we have
k = /ImE mand dk/dE = 3/ Im]E/h. This results in the one-dimensional density of states as

D(E) = %szﬂz‘. (A1.3.23)

The density of states for a one-dimensional system diverges as £ — 0. This divergence of D(F) is not a
serious issue as the integral of the density of states remains finite. In three dimensions, it is straightforward to
show that

Q f2my\?
DEE}:F(F) VE. (A1.3.24)

The singularity is removed, although a discontinuity in the derivative exists as £ — 0.

One can determine the total number of electrons in the system by integrating the density of states up to the
highest occupied energy level. The energy of the highest occupied state is called the Fermi level or Fermi
energy, Ev:



W2 E
N= i(ﬂ) VEJE (A1.3.25)
]

2\ I
and
2
Ep = TE_(?‘T N) _ (A1.3.26)
2 Q2

By defining a Fermi wavevector as ki = (3n2n el)l/ 3 where n o1 18 the electron density, n; = N/€, of the system,
one can write

2p.2
Ep = u. (A1.3.27)

2m

It should be noted that typical values for £}, for simple metals like sodium or potassium are of the order of
several electronvolts. If one defines a temperature, T, where T, = Ep/ky and kg is the Boltzmann constant,

typical values for 7, might be 103-10* K. Thus, at ambient temperatures one can often neglect the role of
temperature in determining the Fermi energy.

A1.3.3.2 HARTREE-FOCK EXCHANGE IN A FREE ELECTRON GAS

For a free electron gas, it is possible to evaluate the Hartree—Fock exchange energy directly [3, 16]. The Slater
determinant is constructed using free electron orbitals. Each orbital is labelled by a k and a spin index. The
Coulomb
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potential for an infinite free electron gas diverges, but this divergence can be removed by imposing a
compensating uniform positive charge. The resulting Hartree—Fock eigenvalues can be written as

Bkl 4*1'1?'
E; = - E A
f=5- e (A1.3.28)

where the summation is over occupied k-states. It is possible to evaluate the summation by transposing the
summation to an integration. This transposition is often done for solid-state systems as the state density is so
high that the system can be treated as a continuum:

A et 1 direl
s k. A1.3.29
g; k—KP ~ Q1) fuf Ik — kP’ ( !

This integral can be solved analytically. The resulting eigenvalues are given by

Rk etk 1 — (k/ke)? . |k +ke
A el 74 D L
2(k/ ke) k — kyp

2m w

). (A1.3.30)

Using the above expression and equation A1.3.19, the total electron energy, gFfEG, for a free electron gas

within the Hartree—Fock approximation is given by



2.3
H & 2m T 2(k / ky) k — kg

). (A1.3.31)

The factor of 2 in the first term comes from spin. In the exchange term, there is no extra factor of 2 because
one can subtract off a ‘double-counting term’ (see equation A1.3.19). The summations can be executed as per
equation A1.3.29 to yield

3 3et
EfC/N = sEr— -

kr. (A1.3.32)

The first term corresponds to the average energy per electron in a free electron gas. The second term
corresponds to the exchange energy per electron. The exchange energy is attractive and scales with the cube
root of the average density. This form provides a clue as to what form the exchange energy might take in an
interacting electron gas or non-uniform electron gas.

Slater was one of the first to propose that one replace V/in equation A1.3.18 by a term that depends only on

the cube root of the charge density [17, 18 and 19]. In analogy to equation A1.3.32, he suggested that V”X be
replaced by
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22
thmr[m”] — _-ZL{ERP('_”],G' (A1.3.33)

4

This expression is not orbitally dependent. As such, a solution of the Hartree—Fock equation (equation
(A1.3.18) is much easier to implement. Although Slater exchange was not rigorously justified for non-uniform
electron gases, it was quite successful in replicating the essential features of atomic and molecular systems as
determined by Hartree—Fock calculations.

A1.3.3.3 THE LOCAL DENSITY APPROXIMATION

In a number of classic papers Hohenberg, Kohn and Sham established a theoretical framework for justifying
the replacement of the many-body wavefunction by one-electron orbitals [15, 20, 21]. In particular, they
proposed that the charge density plays a central role in describing the electronic structure of matter. A key
aspect of their work was the local density approximation (LDA). Within this approximation, one can express
the exchange energy as

E[p(r)] = f p(DE[p(r)] dr (A1.3.34)

where &_[p] is the exchange energy per particle of uniform gas at a density of p. Within this framework, the
exchange potential in equation A1.3.18 is replaced by a potential determined from the functional derivative of

E [p]:

Vilp] = SEdp) (A1.3.35)

op

One serious issue is the determination of the exchange energy per particle, €, or the corresponding exchange
potential, V. The exact expression for either of these quantities is unknown, save for special cases. If one



assumes the exchange energy is given by equation A1.3.32, i.e. the Hartree—Fock expression for the exchange
energy of the free electron gas, then one can write

3e? . ;
E\[p] = ———(3n")'" f[p{r}]ﬂ d*r (A1.3.36)
47
and taking the functional derivative, one obtains
(-Jz ] 1 i,
Vilpl = ——Q@a p(r)' . (A1.3.37)
T

Comparing this to the form chosen by Slater, we note that this form, known as Kohn—Sham exchange, differs
by a factor of %: Le. v, = 2v3kers3. For a number of years, some controversy existed as to whether the

Kohn—Sham or Slater exchange was more accurate for realistic systems [15]. Slater suggested that a
parameter be introduced that would allow one to vary the exchange between the Slater and Kohn—Sham
values [19]. The parameter, o, was often
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placed in front of the Slater exchange: V,, = «V>** o was often chosen to replicate some known feature of an

exact Hartree—Fock calculation such as the total energy of an atom or ion. Acceptable values of a were
viewed to range from o = ‘_%to a = 1. Slater’s so-called “X ’~ method was very successful in describing

molecular systems [19]. Notable drawbacks of the X, method centre on its ad hoc nature through the a
parameter and the omission of an explicit treatment of correlation energies.

. . 2 . . . . . .
In contemporary theories, o is taken to be £, and correlation energies are explicitly included in the energy

functionals [15]. Sophisticated numerical studies have been performed on uniform electron gases resulting in
local density expressions of the form V. [p(r)] =V, [p(r)] + V [p(r)] where V_ represents contributions to the
total energy beyond the Hartree—Fock limit [22]. It is also possible to describe the role of spin explicitly by
considering the charge density for up and down spins: p = p + p| . This approximation is called the local spin
density approximation [15].

The Kohn—Sham equation [21] for the electronic structure of matter is given by

—R?v?
( : + Vy(r) + Vu(r) + ch[p(r}])dﬂr} = Eighi(r). (A1.3.38)

2m

This equation is usually solved ‘self-consistently’. An approximate charge is assumed to estimate the
exchange-correlation potential and to determine the Hartree potential from equation A1.3.16. These
approximate potentials are inserted in the Kohn—Sham equation and the total charge density is obtained from
equation A1.3.14. The ‘output’ charge density is used to construct new exchange-correlation and Hartree
potentials. The process is repeated until the input and output charge densities or potentials are identical to
within some prescribed tolerance.

Once a solution of the Kohn—Sham equation is obtained, the total energy can be computed from

(A1.3.39)



M 1 4
Exs=) Ei— 3 fP{rJ Vi(r) d*r ""fﬂ'l.'l'}{éfx-;[.ﬂ{l'}] = Vie[p(r)])d-r.

The electronic energy, as determined from Ey g, must be added to the ion—ion interactions to obtain the
structural energies. This is a straightforward calculation for confined systems. For extended systems such as
crystals, the calculations can be done using Madelung summation techniques [2].

Owing to its ease of implementation and overall accuracy, the local density approximation is the current
method of choice for describing the electronic structure of condensed matter. It is relatively easy to implement
and surprisingly accurate. Moreover, recent developments have included so-called gradient corrections to the
local density approximation. In this approach, the exchange-correlation energy depends on the local density
the gradient of the density. This approach is called the generalized gradient approximation or GGA [23].

When first proposed, density functional theory was not widely accepted in the chemistry community. The
theory is not ‘rigorous’ in the sense that it is not clear how to improve the estimates for the ground-state
energies. For wavefunction-based methods, one can include more Slater determinants as in a configuration
interaction approach. As the wavefunctions improve via the variational theorem, the energy is lowered. In
density functional theory, there is no
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analogous procedure. The Kohn—Sham equations are also variational, but need not approach the true ground-
state energy. This is not a problem provided that one is interested in relative energies and any inherent density
functional errors cancel in the difference.

In some sense, density functional theory is an a posteriori theory. Given the transference of the exchange-
correlation energies from an electron gas, it is not surprising that errors would arise in its implementation to
highly non-uniform electron gas systems as found in realistic systems. However, the degree of error
cancellations is rarely known a priori. The reliability of density functional theory has only been established by
numerous calculations for a wide variety of condensed matter systems. For example, the cohesive energies,
compressibility, structural parameters and vibrational spectra of elemental solids have been calculated within
the density functional theory [24]. The accuracy of the method is best for systems in which the cancellation of
errors is expected to be complete. Since cohesive energies involve the difference in energies between atoms in
solids and atoms in free space, error cancellations are expected to be significant. This is reflected in the fact
that historically cohesive energies have presented greater challenges for density functional theory: the errors
between theory and experiment are typically ~5-10%, depending on the nature of the density functional. In
contrast, vibrational frequencies which involve small structural changes within a given crystalline
environment are easily reproduced to within 1-2%.

A1.3.4 ELECTRONIC STATES IN PERIODIC POTENTIALS: BLOCH’S
THEOREM

Crystalline matter serves as the testing ground for electronic structure methods applied to extended systems.
Owing to the translational periodicity of the system, a knowledge of the charge density in part of the crystal is
sufficient to understand the charge density throughout the crystal. This greatly simplifies quantum
descriptions of condensed matter.

A1.3.4.1 THE STRUCTURE OF CRYSTALLINE MATTER

A key aspect in defining a crystal is the existence of a building block which, when translated by a precise



prescription an infinite number of times, replicates the structure of interest. This building block is call a unit
cell. The numbers of atoms required to define a unit cell can vary greatly from one solid to another. For
simple metals such as sodium only one atom may be needed in defining the unit cell. Complex organic
crystals can require thousands of atoms to define the building block.

The unit cell can be defined in terms of three lattice vectors: (a, b, ¢). In a periodic system, the point x is
equivalent to any point x', provided the two points are related as follows:

x=x +ma+nb+n;e (A1.3.40)

where n,, n,, n, are arbitrary integers. This requirement can be used to define the translation vectors.
Equation A1.3.40 can also be written as

x=x"+R, .. (A1.3.41)
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where R, . =n;a+n,b+nyciscalled a translation vector. The set of points located by R, |
formed by all possible combinations of (n,, n,, n3) is called a lattice.

,n2,n3

Knowing the lattice is usually not sufficient to reconstruct the crystal structure. A knowledge of the vectors (a,
b, ¢) does not specify the positions of the atoms within the unit cell. The positions of the atoms within the unit
cell is given by a set of vectors: Ty 0= 1, 2, 3... n where n is the number of atoms in the unit cell. The set of
vectors, T, is called the basis. For simple elemental structures, the unit cell may contain only one atom. The
lattice sites in this case can be chosen to correspond to the atomic sites, and no basis exists.

The position of the ith atom in a crystal, r;, is given by

1"‘- = T_,I' + Z l{n_,:r:.n_-. (A1.3.42)

LEA e

where the index j refers to the jth atom in the cell and the indices n|, n,, ny refer to the cell. The construction
of the unit cell, 1.e. the lattice vectors R, L2 m3 and the basis vector 1, is not unique. The choice of unit cell is
usually dictated by convenience. The smallest possible unit cell which properly describes a crystal is called
the primitive unit cell.

(A) FACE-CENTRED CUBIC (FCC) STRUCTURE

The FCC structure is illustrated in figure A1.3.2. Metallic elements such as calcium, nickel, and copper form
in the FCC structure, as well as some of the inert gases. The conventional unit cell of the FCC structure is
cubic with the length of the edge given by the lattice parameter, a. There are four atoms in the conventional
cell. In the primitive unit cell, there is only one atom. This atom coincides with the lattice points. The lattice
vectors for the primitive cell are given by

a=aly+z)/2 b=ua(x+2)/2 c=alX+y)/2. (A1.3.43)

This structure is called ‘close packed’ because the number of atoms per unit volume is quite large compared
with other simple crystal structures.
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Figure A1.3.2. Structure of a FCC crystal.
(B) BODY-CENTRED CUBIC (BCC) STRUCTURE

The BCC structure is illustrated in figure A1.3.3. Elements such as sodium, tungsten and iron form in the
BCC structure. The conventional unit cell of the BCC structure is cubic, like FCC, with the length of the edge
given by the lattice parameter, a. There are two atoms in the conventional cell. In the primitive unit cell, there
is only one atom and the lattice vectors are given by

a=a(—X+y+2)/2 b=ua(X—y+2)/2 c=alX+y—2)/2. (A1.3.44)
(C) DIAMOND STRUCTURE

The diamond structure is illustrated in figure A1.3.4. Elements such as carbon, silicon and germanium form in
the diamond structure. The conventional unit cell of the diamond structure is cubic with the length of the edge
given by the lattice parameter, a. There are eight atoms in the conventional cell. The diamond structure can
be constructed by considering two interpenetrating FCC crystals displaced one-fourth of the body diagonal.
For the primitive unit cell, the lattice vectors are the same as for the FCC crystal; however, each lattice point
has a basis associated with it. The basis can be chosen as

n=—-a(l,1,1)/8 p=al(l, 1, 1)/8. (A1.3.45)
(D) ROCKSALT STRUCTURE

The rocksalt structure is illustrated in figure A1.3.5. This structure represents one of the simplest compound
structures. Numerous ionic crystals form in the rocksalt structure, such as sodium chloride (NaCl). The
conventional unit cell of the rocksalt structure is cubic. There are eight atoms in the conventional cell. For the
primitive unit cell, the lattice vectors are the same as FCC. The basis consists of two atoms: one at the origin
and one displaced by one-half the body diagonal of the conventional cell.
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Figure A1.3.3. Structure of a BCC crystal.

Figure A1.3.4. Structure of a diamond crystal.

Figure A1.3.5. Structure of a rocksalt crystal.
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A1.3.4.2 BLOCH’S THEOREM

The periodic nature of crystalline matter can be utilized to construct wavefunctions which reflect the
translational symmetry. Wavefunctions so constructed are called Bloch functions [1]. These functions greatly
simplify the electronic structure problem and are applicable to any periodic system.

For example, consider a simple crystal with one atom per lattice point: the total ionic potential can be written
as



Vill(r) = HE Vi (r =R =), (A1.3.46)
T

This ionic potential is periodic. A translation of r to r + R can be accommodated by simply reordering the
summation. Since the valence charge density is also periodic, the total potential is periodic as the Hartree and
exchange-correlation potentials are functions of the charge density. In this situation, it can be shown that the
wavefunctions for crystalline matter can be written as

¢ (r) = explik - rug(r) (A1.3.47)

where k is a wavevector and u,(r) is a periodic function, u, (r + R)=u, (r). This is known as Bloch’s
theorem. In the limit of a free electron, k can be identified with the momentum of the electron and U, = 1.

The wavevector is a good quantum number: e.g., the orbitals of the Kohn—Sham equations [21] can be
rigorously labelled by k and spin. In three dimensions, four quantum numbers are required to characterize an
eigenstate. In spherically symmetric atoms, the numbers correspond to 7, /, m, s, the principal, angular
momentum, azimuthal and spin quantum numbers, respectively. Bloch’s theorem states that the equivalent
quantum numbers in a crystal are k_, ky, k_ and spin. The spin index is usually dropped for non-magnetic
materials.

By taking the ¢, orbitals to be of the Bloch form, the Kohn—Sham equations can be written as

({p +7ik)?

2m

+ Wa(r) + Vy(r) + vlc[p{r}])un{r} = E(k)ug(r). (A1.3.48)

Knowing the energy distributions of electrons, £(k), and the spatial distribution of electrons, p(r), is important
in obtaining the structural and electronic properties of condensed matter systems.

A1.3.5 ENERGY BANDS FOR CRYSTALLINE SOLIDS
A1.3.5.1 KRONIG-PENNEY MODEL

One of the first models to describe electronic states in a periodic potential was the Kronig—Penney model [1].
This model is commonly used to illustrate the fundamental features of Bloch’s theorem and solutions of the
Schrodinger
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equation for a periodic system.

This model considers the solution of wavefunctions for a one-dimensional Schrodinger equation:

g2
|: :3 v + V[I}]l,.’f(x} = Fir{x). (A1.3.49)
1]

This Schrddinger equation has a particularly simple solution for a finite energy well: V(x) =— ¥ for0 <x <a
(region I) and V(x) = 0 elsewhere (region II) as indicated in figure A1.3.6. This is a standard problem in



elementary quantum mechanics. For a bound state (£ < 0) the wavefunctions have solutions in region I: y(x)
= B exp(iKx) + C exp(-iKx) and in region II: y;(x) = 4 exp(—Q |x]). The wavefunctions are required to be
continuous: y,(0) = y;(0) and y(a) = y;(a) and have continuous first derivatives: y;'(0) = y,'(0) and y;'(a)
= yy;'(@). With these conditions imposed at x = 0

B/C =—=(1+iK/QY/(1+K?>/0QD) (A1.3.50)
and at x = a
B/C = —(1 —iK/Q)’ exp(=2iKa)/(1 + K*/ Q). (A1.3.51)
A nontrivial solution will exist only if
(1+iK /0 = (1 —iK/0) exp(=2iK a) (A1.3.52)
or
Q> — 20K cot(Ka) — K* = 0. (A1.3.53)
This results in two solutions:
(=—KcotiKa/2) and Q=Ktan(Ka/2). (A1.3.54)

If y; and y; are inserted into the one-dimensional Schrédinger equation, one finds £ = W2K22m — V,or
K = Im(E+Vo)/h"and E = —J’J2Q2/2m. In the limit ¥y — oo, or K — oo, equation A1.3.53 can result in a finite

value for Q only if tan(Ka/2) — 0, or cot(Ka/2) — 0 (i.e. Ka = nw where n is an integer). The energy levels in
this limit correspond to the standard ‘particle in a box’ eigenvalues:

IrI{Zn:r,m}]

E, =
" 2m
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In the Kronig—Penney model, a periodic array of such potentials is considered as illustrated in figure A1.3.6.
The width of the wells is @ and the wells are separated by a distance b. Space can be divided to distinct
regions: region [ (—b < x < 0), region II (0 <x < a) and region Il (a <x < a + b). In region I, the wavefunction
can be taken as

wi(x) = Cexp(Qx)+ Dexp(—Qx). (A1.3.55)
In region II, the wavefunction is
yplx) = Aexp(iKx) + Bexp(—iKx). (A1.3.56)

Unlike an isolated well, there is no restriction on the sign on the exponentials, i.e. both exp(+ Ox) and exp(—
Ox) are allowed. For an isolated well, the sign was restricted so that the exponential vanished as |x| — oo.
Either sign is allowed for the periodic array as the extent of the wavefunction within each region is finite.
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Figure A1.3.6. An isolated square well (top). A periodic array of square wells (bottom). This model is used in
the Kronig—Penney description of energy bands in solids.

Because our system is periodic, one need only consider the wavefunctions in I and II and apply the periodic
boundary conditions for other regions of space. Bloch’s theorem can be used in this case: y (x + a) = exp(ika)
W(x) or y(x + (a + b)) = exp(ik(a + b)) y(x). This relates vy, and y:

Y (x) = explik{a + b))y (x) (A1.3.57)

or

Y (x) = explik(a + DN Cexp(Q(x —a — DN+ Dexp(—Q(x —a — b)). (A1.3.58)
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k now serves to label the states in the same sense # serves to label states for a square well.

As in the case of the isolated well, one can impose continuity of the wavefunctions and the first derivatives of
the wavefunctions atx=0and x=a. Atx=0,

A+B=C+D IK(A-—RB)y=0(C -1 (A1.3.59)

and atx=a
Acxp(iKa)+ Bexp(—iKa) = explikia + bYW C exp(— Qb)) + Dexp(Oh) (A1.3.60)
iIKa(Aexp(iKa) — Bexp(—iKa)) = Qexplikla + b))C exp(—Qb) + Dexp(Qb)). (A1.3.61)

This results in four equations and four unknowns. Since the equations are homogeneous, a nontrivial solution
exists only if the determinant formed by the coefficients of 4, B, C and D vanishes. The solution to this
equation is

bl 4

(Q°—K~)

50K sinh( Q&) sin(Ka) +cosh( Qb)) cos(Ka) = cos{kia + b)). (A1.3.62)



Equation A1.3.62 provides a relationship between the wavevector, &, and the energy, £, which is implicit in Q
and K.

Before this result is explored in more detail, consider the limit where b — oo. In this limit, the wells become
isolated and & has no meaning. As b — oo, sinh(Qb) — exp(0b)/2 and cosh(Qb) — exp(Qb)/2. One can
rewrite equation A1.3.62 as

5

(Q* — K%

50K sin(Ka) + L'us{.‘(a}) = cos(k(a + b)). (A1.3.63)

{cxp(Q-’J}IZJ(

As exp(Qb)/2 — o, this equation can be valid if

< Erz
% sin(Ka) +cos(Ka) — 0 (A1.3.64)

otherwise the rhs of equation A1.3.63 would diverge. In this limit, equation A1.3.64 reduces to the isolated
well solution (equation A1.3.53):

0 — 20K cot(Ka) — K* =0. (A1.3.65)

Since k does not appear in equation A1.3.65 in this limit, it is undefined.
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One can illustrate how the energy states evolve from discrete levels in an isolated well to states appropriate
for periodic systems by varying the separation between wells. In figure A1.3.7 solutions for £ versus k are
shown for isolated wells and for strongly interacting wells. It is important to note that & is not defined except
within a factor of 2mtm/(a + b) where m is an integer as cos((k + 2nm/(a + b)) (a + b)) = cos(k(a + b)). The E
versus k plot need be displayed only for £ between 0 and w/(a + b) as larger values of k can be mapped into
this interval by subtracting off values of 21t/(a + b).

(a) (b}
= = [
2 pa
3 3|
| 5
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wave vector Wave vector
() (d)
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Figure A1.3.7. Evolution of energy bands in the Kronig—Penney model as the separation between wells, b
(figure A1.3.6) is decreased from (a) to (d). In (a) the wells are separated by a large distance (large value of b)
and the energy bands resemble discrete levels of an isolated well. In (d) the wells are quite close together
(small value of ) and the energy bands are free-electron-like.

In the case where the wells are far apart, the resulting energy levels are close to the isolated well. However, an
interesting phenomenon occurs as the atoms are brought closer together. The energy levels cease being
constant as a function of the wavevector, k. There are regions of allowed solutions and regions where no
energy state occurs. The region of allowed energy values is called an energy band. The range of energies
within the band is called the band width. As the width of the band increases, it is said that the band has greater
dispersion.

The Kronig—Penney solution illustrates that, for periodic systems, gaps can exist between bands of energy
states. As for the case of a free electron gas, each band can hold 2N electrons where A is the number of wells
present. In one dimension, this implies that if a well contains an odd number, one will have partially occupied
bands. If one has an even number of electrons per well, one will have fully occupied energy bands. This
distinction between odd and even numbers of electrons per cell is of fundamental importance. The Kronig—
Penney model implies that crystals with an odd number of electrons per unit cell are always metallic whereas
an even number of electrons per unit cell implies an
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insulating state. This simple rule is valid for more realistic potentials and need be only slightly modified in
three dimensions. In three dimensions, an even number of electrons per unit cells is a necessary condition for
an insulating state, but not a sufficient condition.

One of the major successes of energy band theory is that it can be used to predict whether a crystal exists as a
metal or insulator. If a band is filled, the Pauli principle prevents electrons from changing their momentum in
response to the electric field as all possible momentum states are occupied. In a metal this constraint is not
present as an electron can change its momentum state by moving from a filled to an occupied state within a
given band. The distinct types of energy bands for insulators, metals, semiconductors and semimetals are
schematically illustrated in figure A1.3.8. In an insulator, energy bands are either completely empty or
completely filled. The band gap between the highest occupied band and lowest empty band is large, e.g. above
5 eV. In a semiconductor, the bands are also completely filled or empty, but the gap is smaller, e.g. below 3
eV. In metals bands are not completely occupied and no gap between filled and empty states occurs.
Semimetals are a special case. No gap exists, but one band is almost completely occupied; it overlaps with a
band that is almost completely empty.
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Figure A1.3.8. Schematic energy bands illustrating an insulator (large band gap), a semiconductor (small
band gap), a metal (no gap) and a semimetal. In a semimetal, one band is almost filled and another band is
almost empty.

A1.3.5.2 RECIPROCAL SPACE

Expressing E(k) is complicated by the fact that k is not unique. In the Kronig—Penney model, if one replaced &
by k + 2n/(a + b), the energy remained unchanged. In three dimensions k is known only to within a reciprocal
lattice vector, G. One can define a set of reciprocal vectors, given by

G=mA+mB+m;C (A1.3.66)

where the set (A, B, C) define a lattice in reciprocal space. These vectors can be defined by
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2 2 2
A=Thxe B=""cxb C=Taxb (A1.3.67)
Q2 LY €2

where Q is defined as the unit cell volume. Note that QO = |a - b % ¢| from elementary vector analysis. It is easy
to show that

A-a=2rm A-b=0 Ac=0
B-a=0 B-b=2r B.c=0 (A1.3.68)
C-a=20 C-b=0 C.c=2m.
It is apparent that
G-R=2n(nm, +naym; +nzm;3). (A1.3.69)

Reciprocal lattice vectors are useful in defining periodic functions. For example, the valence charge density, p
(r), can be expressed as



p(r) = p(G)exp(iG - r). (A1.3.70)
G

It is clear that p(r + R) = p(r) from equation A1.3.69. The Fourier coefficients, p(G), can be determined from
1 ) 3
plG) = o plryexp(—iG-ryd'r. (A1.3.71)

Because E(k) = E(k + G), a knowledge of E(k) within a given volume called the Brillouin zone is sufficient to
determine E(k) for all k. In one dimension, G = 27n/d where d is the lattice spacing between atoms. In this
case, E(k) is known once £ is determined for —n/d < k < w/d. (For example, in the Kronig—Penney model
(figure A1.3.6), d = a + b and k was defined only to within a vector 2nt/(a + b).) In three dimensions, this
subspace can result in complex polyhedrons for the Brillouin zone.
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In figure A1.3.9 the Brillouin zone for a FCC and a BCC crystal are illustrated. It is a common practice to
label high-symmetry point and directions by letters or symbols. For example, the k = 0 point is called the I
point. For cubic crystals, there exist 48 symmetry operations and this symmetry is maintained in the energy
bands: e.g., E(kx, k., k) is invariant under sign permutations of (x, y, z). As such, one need only have
knowledge of E(k) in ﬁof the zone to determine the energy band throughout the zone. The part of the zone

which cannot be reduced by symmetry is called the irreducible Brillouin zone.

FCC Brillouin Zone BCC Brillouin Zone

Figure A1.3.9. Brillouin zones for the FCC and BCC crystal structures.

A1.3.5.3 REALISTIC ENERGY BANDS

Since the electronic structure of a solid can be determined from a knowledge of the spatial and energetic
distribution of electrons (i.e. from the charge density, p(r), and the electronic density of states, D(F)), it is
highly desirable to have the ability to determine the quantum states of crystal. The first successful electronic
structure calculations for energy bands of crystalline matter were not performed from ‘first principles’.
Although elements of density functional theory were understood by the mid-1960s, it was not clear how
reliable these methods were. Often, two seemingly identical calculations would yield very different results for
simple issues such as whether a solid was a metal or an insulator. Consequently, some of the first reliable
energy bands were constructed using empirical pseudopotentials [25]. These potentials were extracted from
experimental data and not determined from first principles.



A1.3.5.4 EMPIRICAL PSEUDOPOTENTIALS

The first reliable energy band theories were based on a powerful approximation, call the pseudopotential
approximation. Within this approximation, the all-electron potential corresponding to interaction of a valence
electron with the inner, core electrons and the nucleus is replaced by a pseudopotential. The pseudopotential
reproduces only the properties of the outer electrons. There are rigorous theorems such as the Phillips—
Kleinman cancellation theorem that can be used to justify the pseudopotential model [2, 3, 26]. The Phillips—
Kleinman cancellation theorem states that the orthogonality requirement of the valence states to the core
states can be described by an effective repulsive
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potential. This repulsive potential cancels the strong Coulombic potential within the core region. The
cancellation theorem explains, in part, why valence electrons feel a less attractive potential than would be
expected on the basis of the Coulombic part of the potential. For example, in alkali metals an ‘empty’ core
pseudopotential approximation is often made. In this model pseudopotential, the valence electrons experience
no Coulomb potential within the core region.

Since the pseudopotential does not bind the core states, it is a very weak potential. Simple basis functions can
be used to describe the pseudo-wavefunctions. For example, a simple grid or plane wave basis will yield a
converged solution [25]. The simplicity of the basis is important as it results in an unbiased, flexible
description of the charge density. Also, since the nodal structure of the pseudo-wavefunctions has been
removed, the charge density varies slowly in the core region. A schematic model of the pseudopotential model
is illustrated in figure A1.3.10. The pseudopotential model describes a solid as a sea of valence electrons
moving in a periodic background of cores (composed of nuclei and inert core electrons). In this model many
of the complexities of all-electron calculations, calculations that include the core and valence electrons on an
equal footing, are avoided. A group IV solid such as C with 6 electrons per atom is treated in a similar fashion
to Sn with 50 electrons per atom since both have 4 valence electrons per atom. In addition, the focus of the
calculation is only on the accuracy of the valence electron wavefunction in the spatial region away from the
chemically inert core.

L Nucleus
Core electrons
Valence electrons

Figure A1.3.10. Pseudopotential model. The outer electrons (valence electrons) move in a fixed arrangement
of chemically inert ion cores. The ion cores are composed of the nucleus and core electrons.



One can quantify the pseudopotential by writing the total crystalline potential for an elemental solid as

Vo(r) = ) SIG)V(G) expliG - 1). (A1.3.72)
G
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S(G) is the structure factor given by

1
S(G)=— ) expliG T 3.
) N, Zf: P ) (A1.3.73)
where N, is the number of atoms in the unit call and t is a basis vector. 3?;"(G) is the form factor given by
H 1 a : 3
VF (G) = Eﬂ Vp (ryexp(iG - ryd’r (A1.3.74)

where Q is the volume per atom and 3?:"(r) is a pseudopotential associated with an atom. Often this potential
is assumed to be spherically symmetry. In this case, the form factor depends only on the magnitude of G: EFN

(G) = #(|G)). A schematic pseudopotential is illustrated in figure A1.3.11. Outside the core region the
o
pseudopotential is commensurate with the all-electron potential. When this potential is transformed into
Fourier space, it is often sufficient to keep just a few unique form factors to characterize the potential. These
form factors are then treated as adjustable parameters which can be fitted to experimental data. This is
illustrated in figure A1.3.12.
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Figure A1.3.11. Schematic pseudopotential in real space.
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Figure A1.3.12. Schematic pseudopotential in reciprocal space.

The empirical pseudopotential method can be illustrated by considering a specific semiconductor such as
silicon. The crystal structure of Si is diamond. The structure is shown in figure A1.3.4. The lattice vectors and
basis for a primitive cell have been defined in the section on crystal structures (A1.3.4.1). In Cartesian
coordinates, one can write G for the diamond structure as

2
(= —H{u, I om) (A1.3.75)
I

where the indices (n, /, m) must be either all odd or all even: e.g., G = {Tﬁ (1, 0, 0) is not allowed, but G = {Tﬂ?

(2, 0, 0) is permitted. It is convenient to organize G-vectors by their magnitude squared in units of (2n/a)2. In
this scheme: G = 0,3,4,8,11, 12, .... The structure factor for the diamond structure is S(G) = cos(G - 1) .
For some values of G, this structure factor vanishes: e.g., if G = (2n/a) (2, 0, 0), then G - T = /2 and S(G) = 0.
If the structure factor vanishes, the corresponding form factor is irrelevant as it is multiplied by a zero
structure factor. In the case of diamond structure, this eliminates the G2 = 4, 12 form factors. Also, the G*=0
factor is not important for spectroscopy as it corresponds to the average potential and serves to shift the
energy bands by a constant. The rapid convergence of the pseudopotential in Fourier space coupled with the
vanishing of the structure factor for certain G means that only three form factors are required to fix the energy

bands for diamond semiconductors like Si and Ge: 2(G? = 3), 22(G? = 8) and 22(G? = 11). These form
factors can be fixed by comparisons to reflectivity measurements or photoemission [25].

A1.3.5.5 DENSITY FUNCTIONAL PSEUDOPOTENTIALS

Another realistic approach is to construct pseudopotentials using density functional theory. The
implementation of the Kohn—Sham equations to condensed matter phases without the pseudopotential
approximation is not easy owing to the dramatic span in length scales of the wavefunction and the energy
range of the eigenvalues. The pseudopotential eliminates this problem by removing the core electrons from
the problem and results in a much simpler problem [27].
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In the pseudopotential construction, the atomic wavefunctions for the valence electrons are taken to be
nodeless. The pseudo-wavefunction is taken to be identical to the appropriate all-electron wavefunction in the
regions of interest for solid-state effects. For the core region, the wavefunction is extrapolated back to the



origin in a manner consistent with the normalization condition. This type of construction was first introduced
by Fermi to account for the shift in the wavefunctions of high-lying states of alkali atoms subject to

perturbations from foreign atoms. In this remarkable paper, Fermi introduced the conceptual basis for both the
pseudopotential and the scattering length [28].

With the density functional theory, the first step in the construction of a pseudopotential is to consider the
solution for an isolated atom [27]. If the atomic wavefunctions are known, the pseudo-wavefunction can be
constructed by removing the nodal structure of the wavefunction. For example, if one considers a valence

wavefunction for the isolated atom, y_(r), then a pseudo-wavefunction, ¢ p(r), might have the properties

do(r) = r' exp(—ar® — Br’ — yr? = 3) Fo<r A13.76)
=, (r) ro=re. -

The pseudo-wavefunction within this frame work is guaranteed to be nodeless. The parameters (a., f3, v, d) are

fixed so that (1) ¢, and ¢ b have the same eigenvalue, SV, and the same norm:

fthfn-{rlllzrzdr = f o ()1 dr. (A1.3.77)
0 0

This ensures that ¢ _(r) =y, (r) for r > r_ after the wavefunctions have been normalized. (2) The pseudo-
wavefunction should be continuous and have continuous first and second derivatives at r.. An example of a
pseudo-wavefunction is given in figure A1.3.13.
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Figure A1.3.13. All-electron and pseudopotential wavefunction for the 3s state in silicon. The all-electron 3s
state has nodes which arise because of an orthogonality requirement to the 1s and 2s core states.

Once the eigenvalue and pseudo-wavefunction are known for the atom, the Kohn—Sham equation can be
inverted to yield the ionic pseudopotential:



TT
Viea(F) = =& — Vu(r) — Vie(r) + 12— (A1.3.78)

Since Vi and V, - depend only on the valence charge densities, they can be determined once the valence
pseudo- wavefunctions are known. Because the pseudo-wavefunctions are nodeless, the resulting
pseudopotential is well defined despite the last term in equation A1.3.78. Once the pseudopotential has been
constructed from the atom, it can be transferred to the condensed matter system of interest. For example, the
ionic pseudopotential defined by equation A1.3.78 from an atomistic calculation can be transferred to
condensed matter phases without any significant loss of accuracy.

There are complicating issues in defining pseudopotentials, e.g. the pseudopotential in equation A1.3.78 is
state dependent, orbitally dependent and the energy and spatial separations between valence and core
electrons are sometimes not transparent. These are not insurmountable issues. The state dependence is usually
weak and can be ignored. The orbital dependence requires different potentials for different angular
momentum components. This can be incorporated via non-local operators. The distinction between valence
and core states can be addressed by incorporating the core level in question as part of the valence shell. For
example, in Zn one can treat the 3d'0 shell as a valence shell. In this case, the valency of Zn is 12, not 2.
There are also very reliable approximate methods for treating the outer core states without explicitly
incorporating them in the valence shell.
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A1.3.5.6 OTHER APPROACHES

There are a variety of other approaches to understanding the electronic structure of crystals. Most of them rely
on a density functional approach, with or without the pseudopotential, and use different bases. For example,
instead of a plane wave basis, one might write a basis composed of atomic-like orbitals:

= Zm(k} exp(ik - R)¢;(r — R) (A1.3.79)

where the exp(ik - R) is explicitly written to illustrate the Bloch form of this wavefunction: i.e. y, (r + R) =
exp(ik - R) vy, (r). The orbitals ¢; can be taken from atomic structure solutions where 7 is a general index such
as Imns, or ¢, can be taken to be a some localized function such as an exponential, called a Slater-type orbital,
or a Gaussian orbital. Provided the basis functions are appropriately chosen, this approach works quite well
for a wide variety of solids. This approach is called the tight binding method 2, 7].

An approach closely related to the pseudopotential is the orthogonalized plane wave method [29]. In this
method, the basis is taken to be as follows:

OPW (r) = exp(ik - r) — Zﬁe Xik(r) (A1.3.80)

and

Xix(r) = E exp(ik - R)a;(r — R) (A1.3.81)
R

where Xix is a tight binding wavefunction composed of atomic core functions, a,. As an example, one would
take (al o 32 ¢ & p) atomic orbitals for the core states of silicon. The form for ¢, (r) is motivated by several
factors. In the interstitial regions of a crystal, the potential should be weak and slowly varying. The



wavefunction should look like a plane wave in this region. Near the nucleus, the wavefunction should look
atomic-like. The basis reflects these different regimes by combining plane waves with atomic orbitals.
Another important attribute of the wavefunction is an orthogonality condition. This condition arises from the
form of the Schrodinger equation; higher-energy eigenvalues must have wavefunctions which are orthogonal
to more tightly bound states of the same symmetry: e.g., the 2s wavefunction of an atom must be orthogonal
to the 1s state. It is possible to choose f3; so that

fq;;{r}x,-,k(r} d*r =0. (A1.3.82)

The orthogonality condition assures one that the lowest energy state will not converge to core-like states, but
valence states. The wavefunction for the solid can be written as

Yk(r) = Y alk, G (r). (A1.3.83)
[
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As with any basis method the ok, G) coefficients are determined by solving a secular equation.

Other methods for determining the energy band structure include cellular methods, Green function approaches
and augmented plane waves [2, 3]. The choice of which method to use is often dictated by the particular
system of interest. Details in applying these methods to condensed matter phases can be found elsewhere (see
section B3.2).

A1.3.6 EXAMPLES FOR THE ELECTRONIC STRUCTURE AND
ENERGY BANDS OF CRYSTALS

Many phenomena in solid-state physics can be understood by resort to energy band calculations. Conductivity
trends, photoemission spectra, and optical properties can all be understood by examining the quantum states
or energy bands of solids. In addition, electronic structure methods can be used to extract a wide variety of
properties such as structural energies, mechanical properties and thermodynamic properties.

A1.3.6.1 SEMICONDUCTORS

A prototypical semiconducting crystal is silicon. Historically, silicon has been the testing ground for quantum
theories of condensed matter. This is not surprising given the importance of silicon for technological
applications. The energy bands for Si are shown in figure A1.3.14. Each band can hold two electrons per unit
cell. There are four electrons per silicon atom and two atoms in the unit cell. This would lead to four filled
bands. It is customary to show the filled bands and the lowest few empty bands. In the case of silicon the
bands are separated by a gap of approximately 1 eV. Semiconductors have band gaps that are less than a few
electronvolts. Displaying the energy bands is not a routine matter as £(k) is often a complex function. The
bands are typically displayed only along high-symmetry directions in the Brillouin zone (see figure A1.3.9).
For example, one might plot the energy bands along the (100) direction (the A direction).
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Figure A1.3.14. Band structure for silicon as calculated from empirical pseudopotentials [25].

The occupied bands are called valence bands; the empty bands are called conduction bands. The top of the
valence band is usually taken as energy zero. The lowest conduction band has a minimum along the A
direction; the highest occupied valence band has a maximum at I'. Semiconductors which have the highest
occupied k-state and lowest empty state k at different points are called indirect gap semiconductors. If k , =
k., the semiconductor is call direct gap semiconductor. Germanium is also an indirect gap semiconductor
whereas GaAs has a direct gap. It is not easy to predict whether a given semiconductor will have a direct gap
or not.

Electronic and optical excitations usually occur between the upper valence bands and lowest conduction band.
In optical excitations, electrons are transferred from the valence band to the conduction band. This process
leaves an empty state in the valence band. These empty states are called soles. Conservation of wavevectors
must be obeyed in these trapsmon.s:. l'(photon +k, =k, where kphotpn is the wavevector of the photop, k, is the
wavevector of the electron in the initial valence band state and k , is the wavevector of the electron in the final

conduction band state. For optical excitations, k ; . ~ 0. This implies that the excitation must be direct: k, »
k.. Because of this conservation rule, direct optical excitations are stronger than indirect excitations.

Semiconductors are poor conductors of electricity at low temperatures. Since the valence band is completely
occupied, an applied electric field cannot change the total momentum of the valence electrons. This is a
reflection of the Pauli principle. This would not be true for an electron that is excited into the conduction
band. However, for a band gap of 1 eV or more, few electrons can be thermally excited into the conduction
band at ambient temperatures. Conversely, the electronic properties of semiconductors at ambient
temperatures can be profoundly altered by the
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addition of impurities. In silicon, each atom has four covalent bonds, one to each neighbouring atom. All the
valence electrons are consumed in saturating these bonds. If a silicon atom is removed and replaced by an
atom with a different number of valence electrons, there will be a mismatch between the number of electrons
and the number of covalent bonds. For example, if one replaces a silicon atom by a phosphorous atom, then



there will an extra electron that cannot be accommodated as phosphorous possesses five instead of four
valence electrons. This extra electron is only loosely bound to the phosphorous atom and can be easily excited
into the conduction band. Impurities with an ‘extra’ electron are called donors. Under the influence of an
electric field, this donor electron can contribute to the electrical conductivity of silicon. If one were to replace
a silicon atom by a boron atom, the opposite situation would occur. Boron has only three valence electrons
and does not possess a sufficient number of electrons to saturate the bonds. In this case, an electron in the
valence band can readily move into the unsaturated bond. Under the influence of an electric field, this
unsaturated bond can propagate and contribute to the electrical conductivity as if it were a positively charged
particle. The unsaturated bond corresponds to a hole excitation. Impurity atoms that have less than the number
of valence electrons to saturate all the covalent bonds are called acceptors.

Several factors determine how efficient impurity atoms will be in altering the electronic properties of a
semiconductor. For example, the size of the band gap, the shape of the energy bands near the gap and the
ability of the valence electrons to screen the impurity atom are all important. The process of adding controlled
impurity atoms to semiconductors is called doping. The ability to produce well defined doping levels in
semiconductors is one reason for the revolutionary developments in the construction of solid-state electronic
devices.

Another useful quantity is defining the electronic structure of a solid is the electronic density of states. In
general the density of states can be defined as

o .
D(E) = S(E = E, (k) d'k. 3.
(E) (23”3;'[& { (k) d'k (A1.3.84)

Unlike the density of states defined in equation A1.3.24, which was specific for the free electron gas, equation
A1.3.84 is a general expression. The sum in equation A1.3.84 is over all energy bands and the integral is over
all k-points in the Brillouin zone. The density of states is an extensive function that scales with the size of the
sample. It is usually normalized to the number of electronic states per atom. In the case of silicon, the number
of states contained by integrating D(E) up to the highest occupied states is four states per atom. Since each
state can hold two electrons with different spin coordinates, eight electrons can be accommodated within the
valence bands. This corresponds to the number of electrons within the unit cell with the resulting valence
bands being fully occupied.

The density of states for crystalline silicon is shown in figure A1.3.15. The density of states is a more general
representation of the energetic distribution of electrons than the energy band structure. The distribution of
states can be given without regard to the k wavevector. It is possible to compare the density of states from the
energy band structure directly to experimental probes such as those obtained in photoemission. Photoemission
measurements can be used to measure the distribution of binding electrons within a solid. In these
measurements, a photon with a well defined energy impinges on the sample. If the photon carries sufficient
energy, an electron can be excited from the valence state to a free electron state. By knowing the energy of the
absorbed photon and the emitted electron, it is possible to determine the energy of the electron in the valence
state. The number of electrons emitted is proportional to the number of electrons in the initial valence states;
the density of states gives a measure of the number of photoemitted electrons for a given binding energy. In
realistic calculations of the photoemission spectra, the probability of making a transition from the valence
band to the vacuum must be included, but often the transition probabilities are
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similar over the entire valence band. This is illustrated in figure A1.3.15 . Empty states cannot be measured
using photoemission so these contributions are not observed.
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Figure A1.3.15. Density of states for silicon (bottom panel) as calculated from empirical pseudopotential
[25]. The top panel represents the photoemission spectra as measured by x-ray photoemission spectroscopy
[30]. The density of states is a measure of the photoemission spectra.

By examining the spatial character of the wavefunctions, it is possible to attribute atomic characteristics to the
density of states spectrum. For example, the lowest states, 8 to 12 eV below the top of the valence band, are s-
like and arise from the atomic 3s states. From 4 to 6 eV below the top of the valence band are states that are
also s-like, but change character very rapidly toward the valence band maximum. The states residing within 4
eV of the top of the valence band are p and arise from the 3p states.

A major achievement of the quantum theory of matter has been to explain the interaction of light and matter.
For example, the first application of quantum theory, the Bohr model of the atom, accurately predicted the
electronic excitations in the hydrogen atom. In atomic systems, the absorption and emission of light is
characterized by sharp lines. Predicting the exact frequencies for atomic absorption and emission lines
provides a great challenge and testing ground for any theory. This is in apparent contrast to the spectra of
solids. The continuum of states in solids, i.e.
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energy bands, allows many possible transitions. A photon with energy well above the band gap can excite a
number of different states corresponding to different bands and k-points. The resulting spectra correspond to
broad excitation spectra without the sharp structures present in atomic transitions. This is illustrated in figure
A1.3.16. The spectrum consists of three broad peaks with the central peak at about 4.5 eV.
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Figure A1.3.16. Reflectivity of silicon. The theoretical curve is from an empirical pseudopotential method
calculation [25]. The experimental curve is from [31].

The interpretation of solid-state spectra as featureless and lacking the information content of atomic spectra is
misleading. If one modulates the reflectivity spectra of solids, the spectra are quite rich in structure. This is
especially the case at low temperatures where vibrational motions of the atoms are reduced. In figure A1.3.17
the spectra of silicon is differentiated. The process of measuring a differentiated spectra is called modulation
spectroscopy. In modulated reflectivity spectra, broad undulating features are suppressed and sharp features
are enhanced. It is possible to modulate the reflectivity spectrum in a variety of ways. For example, one can
mechanically vibrate the crystal, apply an alternating electric field or modulate the temperature of the sample.
One of the most popular methods is to measure the reflectivity directly and then numerically differentiate the
reflectivity data. This procedure has the advantage of being easily interpreted[25].
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Figure A1.3.17. Modulated reflectivity spectrum of silicon. The theoretical curve is obtained from an
empirical pseudopotential calculation [25]. The experimental curve is from a wavelength modulation
experiment from [32].

The structure in the reflectivity can be understood in terms of band structure features: i.e. from the quantum
states of the crystal. The normal incident reflectivity from matter is given by

e (] PN -1

AL/ N+

where [ is the incident intensity of the light and / is the reflected intensity. N is the complex index of
refraction. The complex index of refraction, N, can be related to the dielectric function of matter by

2
(A1.3.85)

N? = ¢ +ie (A1.3.86)

where € is the real part of the dielectric function and €, is the imaginary part of the dielectric function.

It is possible to make a connection between the quantum states of a solid and the resulting optical properties
of a solid.
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In contrast to metals, most studies have concentrated on insulators and semiconductors where the optical
structure readily lends itself to a straightforward interpretation. Within certain approximations, the imaginary
part of the dielectric function for semiconducting or insulating crystals is given by
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The matrix elements are given by
M (k) = fu;ﬁ{rj?uk_.;{r} d*r (A1.3.88)

where u,_, is the periodic part of the Bloch wavefunction. The summation in equation A1.3.87 is over all
occupied to empty state transitions from valence (v) to conduction bands (c¢). The energy difference between
occupied and empty states is given by E (k) — £, (k) which can be defined as a frequency; o (k) = (E (k) —

E (k))/li. The delta function term, 3(», . (k) — ®), ensures conservation of energy. The matrix elements, M,

control the oscillator strength. As an example, suppose that the v — ¢ transition couples states which have
similar parity. The matrix elements will be small because the momentum operator is odd. Although angular
momentum is not a good quantum number in condensed matter phases, atomic selection rules remain
approximately true.

This expression for €, neglects the spatial variation of the perturbing electric field. The wavelength of light
for optical excitations is between 40007000 A and greatly exceeds a typical bond length of 1-2 A. Thus, the
assumption of a uniform field is usually a good approximation. Other effects ignored include many-body
contributions such as correlation and electron—hole interactions.

Once the imaginary part of the dielectric function is known, the real part can be obtained from the Kramers—
Kronig relation:

. 2 * a'ea(en) ,
eflw)=1+—-P — dew'. (A1.3.89)
T noow't —

The principal part of the integral is taken and the integration must be done over all frequencies. In practice,
the integration is often terminated outside of the frequency range of interest. Once the full dielectric function
is known, the reflectivity of the solid can be computed.

It is possible to understand the fine structure in the reflectivity spectrum by examining the contributions to the
imaginary part of the dielectric function. If one considers transitions from two bands (v — c), equation
A1.3.87 can be written as

dme’h 2

2(whe = Imie? (27)° E

u-lf 8wy (k) — @) d*k. (A1.3.90)
BZ
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Under the assumption that the matrix elements can be treated as constants, they can be factored out of the
integral. This is a good approximation for most crystals. By comparison with equation A1.3.84, it is possible
to define a function similar to the density of states. In this case, since both valence and conduction band states
are included, the function is called the joint density of states:

2
Joelw) = —3f (e (k) — w) d*k. (A1.3.91)
(27)" Sz



With this definition, one can write

4 e
Fz{{{}}yc = mlel.fw({u}. (A1.3.92)
I

Within this approximation, the structure in €, (®),,, can be related to structure in the joint density of states.
The joint density of states can be written as a surface integral [1]:

Jelw) = : f ds A1.3.93
vel®) = [2“‘1-}3 By =00 |vk”"\-r{k”l (1399

ds is a surface element defined by @ (k) = ©. The sharp structure in the joint density of states arises from
zeros in the dominator. This occurs at critical points where

Viine (K) =0 (A1.3.94)
or
ViE (K) = Vi E (K) (A1.3.95)
when the slopes of the valence band and conduction band are equal. The group velocity of an electron or hole

is defined as v o V| E(K). Thus, the critical points occur when the hole and electrons have the same group
velocity.

The band energy difference or o, (k) can be expanded around a critical point k p 3

3
(k) = @ye(kep) + Z (k= Kep)l + oo (A1.3.96)

n=|

The expansion is done around the principal axes so only three terms occur in the summation. The nature of the
critical point is determined by the signs of the a . If o > 0 for all n, then the critical point corresponds to a
local minimum. If oo, <0 for all 7, then the critical point corresponds to a local maximum. Otherwise, the
critical points correspond to saddle points.
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The types of critical points can be labelled by the number of ., less than zero. Specifically, the critical points
are labelled by M. where i is the number of o, which are negative: i.e. a local minimum critical point would
be labelled by My, a local maximum by M, and the saddle points by (M|, M,). Each critical point has a
characteristic line shape. For example, the M|, critical point has a joint density of state which behaves as J, . =

constant X 4/ — wpfor ® > @, and zero otherwise, where o, corresponds to the M, critical point energy. At

® = 0, J,, has a discontinuity in the first derivative. In figure A1.3.18 the characteristic structure of the joint
density of states is presented for each type of critical point.
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Figure A1.3.18. Typical critical point structure in the joint density of states.

For a given pair of valence and conduction bands, there must be at least one M, and one Mj critical points and
at least three M, and three M, critical points. However, it is possible for the saddle critical points to be

degenerate. In the simplest possible configuration of critical points, the joint density of states appears as in
figure A1.3.19.
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Figure A1.3.19. Simplest possible critical point structure in the joint density of states for a given energy band.

It is possible to identify particular spectral features in the modulated reflectivity spectra to band structure
features. For example, in a direct band gap the joint density of states must resemble that of a M|, critical point.
One of the first applications of the empirical pseudopotential method was to calculate reflectivity spectra for a
given energy band. Differences between the calculated and measured reflectivity spectra could be assigned to
errors in the energy band
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structure. Such errors usually involve the incorrect placement or energy of a critical point feature. By making
small adjustments in the pseudopotential, it is almost always possible to extract an energy band structure
consistent with the measure reflectivity.

The critical point analysis performed for the joint density of states can also be applied to the density of states.
By examining the photoemission spectrum compared with the calculated density of states, it is also possible to
assess the quality of the energy band structure. Photoemission spectra are superior to reflectivity spectra in the
sense of giving the band structure energies relative to a fixed energy reference, such as the vacuum level.
Reflectivity measurements only give relative energy differences between energy bands.

In figure A1.3.20 and figure A1.3.21 the real and imaginary parts of the dielectric function are illustrated for



silicon. There are some noticeable differences in the line shapes between theory and experiment. These
differences can be attributed to issues outside of elementary band theory such as the interactions of electrons
and holes. This issue will be discussed further in the following section on insulators. Qualitatively, the real
part of the dielectric function appears as a simple harmonic oscillator with a resonance at about 4.5 eV. This

energy corresponds approximately to the cohesive energy per atom of silicon.
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Figure A1.3.20. Real part of the dielectric function for silicon. The experimental work is from [31]. The
theoretical work is from an empirical pseudopotential calculation [25].
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Figure A1.3.21. Imaginary part of the dielectric function for silicon. The experimental work is from [31]. The
theoretical work is from an empirical pseudopotential calculation [25].

It is possible to determine the spatial distributions, or charge densities, of electrons from a knowledge of the
wavefunctions. The arrangement of the charge density is very useful in characterizing the bond in the solid.
For example, if the charge is highly localized between neighbouring atoms, then the bond corresponds to a
covalent bond. The classical picture of the covalent bond is the sharing of electrons between two atoms. This
picture is supported by quantum calculations. In figure A1.3.22 the electronic distribution charge is illustrated
for crystalline carbon and silicon in the diamond structure. In carbon the midpoint between neighbouring
atoms is a saddle point: this is typical of the covalent bond in organics, but not in silicon where the midpoint
corresponds to a maximum of the charge of the density. X-ray measurements also support the existence of the
covalent bonding charge as determined from quantum calculations [33].
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Figure A1.3.22. Spatial distributions or charge densities for carbon and silicon crystals in the diamond
structure. The density is only for the valence electrons; the core electrons are omitted. This charge density is
from an ab initio pseudopotential calculation [27].

Although empirical pseudopotentials present a reliable picture of the electronic structure of semiconductors,
these potentials are not applicable for understanding structural properties. However, density-functional-
derived pseudopotentials can be used for examining the structural properties of matter. Once a self-consistent
field solution of the Kohn—Sham equations has been achieved, the total electronic energy of the system can be
determined from equation A1.3.39. One of the first applications of this method was to forms of crystalline
silicon. Various structural forms of silicon were considered: diamond, hexagonal diamond, B-Sn, simple
cubic, FCC, BCC and so on. For a given volume, the lattice parameters and any internal parameters can be
optimized to achieve a ground-state energy. In figure A1.3.23 the total structural energy of the system is
plotted for eight different forms of silicon. The lowest energy form of silicon is correctly predicted to be the
diamond structure. By examining the change in the structural energy with respect to volume, it is possible to
determine the equation of state for each form. It is possible to determine which phase is lowest in energy for a
specified volume and to determine transition pressures between different phases. As an example, one can
predict from this phase diagram the transition pressure to transform silicon in the diamond structure to the
white tin (B-Sn) structure. This pressure is predicted to be approximately 90 MPa; the measured pressure is
about 120 MPa [34]. The role of temperature has been neglected in the calculation of the structural energies.
For most applications, this is not a serious issue as the role of temperature is often less than the inherent errors




within density functional theory.
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Figure A1.3.23. Phase diagram of silicon in various polymorphs from an ab initio pseudopotential calculation
[34]. The volume is normalized to the experimental volume. The binding energy is the total electronic energy
of the valence electrons. The slope of the dashed curve gives the pressure to transform silicon in the diamond
structure to the 3-Sn structure. Other polymorphs listed include face-centred cubic (fcc), body-centred cubic
(bce), simple hexagonal (sh), simple cubic (sc) and hexagonal close-packed (hcp) structures.

One notable consequence of the phase diagram in figure A1.3.23 was the prediction that high-pressure forms
of silicon might be superconducting [35, 36]. This prediction was based on the observation that some high-
pressure forms of silicon are metallic, but retain strong covalent-like bonds. It was later verified by high-
pressure measurements that the predicted phase was a superconductor [36]. This success of the structural
phase diagram of silicon helped verify the utility of the pseudopotential density functional method and has
resulted in its widespread applicability to condensed phases.

A1.3.6.2 INSULATORS

Insulating solids have band gaps which are notably larger than semiconductors. It is not unusual for an alkali
halide to have a band gap of ~10 eV or more. Electronic states in insulators are often highly localized around
the atomic sites in insulating materials In most cases, this arises from a large transfer of electrons from one
site to another. Exceptions are insulating materials like sulfur and carbon where the covalent bonds are so
strong as to strongly localize charge between neighbouring atoms.

As an example of the energy band structures for an insulator, the energy bands for lithium fluoride are
presented in figure A1.3.24. LiF is a highly ionic material which forms in the rocksalt structure (figure
A1.3.25)). The bonding in this crystal can be understood by transferring an electron from the highly
electropositive Li to the electronegative F atoms: i.e. one can view crystalline LiF as consisting of Li"F~
constituents. The highly localized nature of the electronic charge density results in very narrow, almost
atomic-like, energy bands.
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Figure A1.3.24. Band structure of LiF from ab initio pseudopotentials [39].

One challenge of modern electronic structure calculations has been to reproduce excited-state properties.
Density functional theory is a ground-state theory. The eigenvalues for empty states do not have physical
meaning in terms of giving excitation energies. If one were to estimate the band gap from density functional
theory by taking the eigenvalue differences between the highest occupied and lowest empty states, the energy
difference would badly underestimate the band gap. Contemporary approaches [37, 38] have resolved this
issue by correctly including spatial variations in the electron—electron interactions and including self-energy
terms (see section A1.3.2.2).

Because of the highly localized nature of electronic and hole states in insulators, it is difficult to describe the
optical excitations. The excited electron is strongly affected by the presence of the hole state. One failure of
the energy band picture concerns the interaction between the electron and hole. The excited electron and the
hole can form a hydrogen atomic-like interaction resulting in the formation of an excifon, or a bound electron—
hole pair. The exciton binding energy reduces the energy for an excitation below that of the conduction band
and results in strong, discrete optical lines. This is illustrated in figure A1.3.25.
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Figure A1.3.25. Schematic illustration of exciton binding energies in an insulator or semiconductor.

A simple model for the exciton is to assume a screened interaction between the electron and hole using a static
dielectric function. In addition, it is common to treat the many-body interactions in a crystal by replacing the
true mass of the electron and hole by a dynamical or effective mass. Unlike a hydrogen atom, where the proton
mass exceeds that of the electron by three orders of magnitude, the masses of the interacting electron and hole
are almost equivalent. Using the reduced mass for this system, we have 1/u = 1/m_+ 1/m,. Within this model,
the binding energy of the exciton can be found from

[ AT

. E_J W (r) = Epr(r) (A1.3.97)

where € is the static dielectric function for the insulator of interest. The binding energy from this hydrogenic
Schrodinger equation is given by

(A1.3.98)

where n =1, 2, 3,.... Typical values for a semiconductor are p and € are u = 0.1 m and € = 10. This results in
a binding energy of about 0.01 eV for the ground state, » = 1. For an insulator, the binding energy is much
larger. For a material like silicon dioxide, one might have p = 0.5 m and € = 3 or a binding energy of roughly
1 eV. This estimate suggests that reflectivity spectra in insulators might be strongly altered by exciton
interactions.
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Even in semiconductors, where it might appear that the exciton binding energies would be of interest only for
low temperature regimes, excitonic effects can strongly alter the line shape of excitations away from the band

gap.

The size of the electron—hole pair can be estimated from the Bohr radius for this system:



(A1.3.99)

The size of the exciton is approximately 50 A in a material like silicon, whereas for an insulator the size
would be much smaller: for example, using our numbers above for silicon dioxide, one would obtain a radius
of only ~3 A or less. For excitons of this size, it becomes problematic to incorporate a static dielectric
constant based on macroscopic crystalline values.

The reflectivity of LiF is illustrated in figure A1.3.26. The first large peak corresponds to an excitonic
transition.
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Figure A1.3.26. Reflectivity of LiF from ab initio pseudopotentials. (Courtesy of E L Shirley, see [39] and
references therein.

A1.3.6.3 METALS

Metals are fundamentally different from insulators as they possess no gap in the excitation spectra. Under the
influence of an external field, electrons can respond by readily changing from one k state to another. The ease
by which the ground-state configuration is changed accounts for the high conductivity of metals.

Arguments based on a free electron model can be made to explain the conductivity of a metal. It can be shown
that the k will evolve following a Newtonian law [1]:
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i— = —e£. (A1.3.100)

This can be integrated to yield

(k — ko) = —eE(t — tg)/Fi. (A1.3.101)



After some typical time, 1, the electron will scatter off a lattice imperfection. This imperfection might be a
lattice vibration or an impurity atom. If one assumes that no memory of the event resides after the scattering

event, then on average one has A k = —e&1/h. In this picture, the conductivity of the metal, o, can be extracted

from Ohm’s law: o = J/E where J is the current density. The current density is given by

J=—neAv = —ne(—e€1/m) = ﬂf'z'rffui— (A1.3.102)
or
a = net/m. (A1.3.103)

This expression for the conductivity is consistent with experimental trends.

Another important accomplishment of the free electron model concerns the heat capacity of a metal. At low
temperatures, the heat capacity of a metal goes linearly with the temperature and vanishes at absolute zero.
This behaviour is in contrast with classical statistical mechanics. According to classical theories, the

3
equipartition theory predicts that a free particle should have a heat capacity of 2k where & is the Boltzmann
constant. An ideal gas has a heat capacity consistent with this value. The electrical conductivity of a metal
3
suggests that the conduction electrons behave like ‘free particles’ and might also have a heat capacity of 2k,

which would be strongly at variance with the observed behaviour and in violation of the third law of
thermodynamics.

The resolution of this issue is based on the application of the Pauli exclusion principle and Fermi—Dirac
statistics. From the free electron model, the total electronic energy, U, can be written as

%]
Ur) =f ef(e, T)D(e) de (A1.3.104)
]

where f{ e, T) is the Fermi—Dirac distribution function and D(€) is the density of states. The Fermi—Dirac
function gives the probability that a given orbital will be occupied:

|
exp((e — Ep)/kT)+ 1

fle,T)= (A1.3.105)
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The value of E; at zero temperature can be estimated from the electron density (equation A1.3.26). Typical
values of the Fermi energy range from about 1.6 eV for Cs to 14.1 eV for Be. In terms of temperature (7}, =
E/k), the range is approximately 2000-16,000 K. As a consequence, the Fermi energy is a very weak
function of temperature under ambient conditions. The electronic contribution to the heat capacity, C, can be
determined from

du/ x dfie, T)
= — = De)——de. 3.
C 1T fu e€D(¢) T € (A1.3.106)

The integral can be approximated by noting that the derivative of the Fermi function is highly localized
around E}.. To a very good approximation, the heat capacity is



C = %D(s.;}ﬁ;zr (A1.3.107)

The linear dependence of C with temperature agrees well with experiment, but the pre-factor can differ by a
factor of two or more from the free electron value. The origin of the difference is thought to arise from several
factors: the electrons are not truly free, they interact with each other and with the crystal lattice, and the
dynamical behaviour the electrons interacting with the lattice results in an effective mass which differs from
the free electron mass. For example, as the electron moves through the lattice, the lattice can distort and exert
a dragging force.

Simple metals like alkalis, or ones with only s and p valence electrons, can often be described by a free
electron gas model, whereas transition metals and rare earth metals which have d and f valence electrons
cannot. Transition metal and rare earth metals do not have energy band structures which resemble free
electron models. The formed bonds from d and f states often have some strong covalent character. This
character strongly modulates the free-electron-like bands.

An example of metal with significant d-bonding is copper. The atomic configuration of copper is

1s22s22p63s23p63d104sl. If the 3d states were truly core states, then one might expect copper to resemble

potassium as its atomic configuration is 1s22s22p63523p64s1. The strong differences between copper and
potassium in terms of their chemical properties suggest that the 3d states interact strongly with the valence

electrons. This is reflected in the energy band structure of copper (figure A1.3.27).
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Figure A1.3.27. Energy bands of copper from ab initio pseudopotential calculations [40].

Copper has a FCC structure with one atom in the primitive unit cell. From simple orbital counting, one might

1
expect the ten d electrons to occupy five d-like bands and the one s electron to Zoccupy one s-like band. This
is apparent in the figure, although the interpretation is not straightforward. The lowest band (L, to ', to X)) is



s-like, but it mixes strongly with the d-like bands (at I',5 and I' ,), these bands are triply and doubly
degenerate at I'. Were it not for the d-mixing, the s-like band would be continuous from I'; to X,,. The d-
mixing ‘splits’ the s bands. The Fermi level cuts the s-like band along the A direction, reflecting the partial
occupation of the s levels.

A1.3.7 NON-CRYSTALLINE MATTER

A1.3.7.1 AMORPHOUS SOLIDS

Crystalline matter can be characterized by long-range order. For a perfect crystal, a prescription can be used
to generate the positions of atoms arbitrarily far away from a specified origin. However, ‘real crystals’ always
contain imperfections. They contain defects which can be characterized as point defects localized to an atomic
site or extended defects spread over a number of sites. Vacancies on the lattice site or atoms of impurities are
examples of point defects. Grain boundaries or dislocations are examples of extended defects. One might
imagine starting from an ideal
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crystal and gradually introducing defects such as vacancies. At some point the number of defects will be so
large as to ruin the long-range order of the crystal. Solid materials that lack long-range order are called
amorphous solids or glasses. The precise definition of an amorphous material is somewhat problematic.
Usually, any material which does not display a sharp x-ray pattern is considered to be ‘amorphous’. Some text
books [1] define amorphous solids as ‘not crystalline on any significant scale’.

Glassy materials are usually characterized by an additional criterion. It is often possible to cool a liquid below
the thermodynamic melting point (i.e. to supercool the liquid). In glasses, as one cools the liquid state
significantly below the melting point, it is observed that at a temperature well below the melting point of the
solid the viscosity of the supercooled liquid increases dramatically. This temperature is called the glass
transition temperature, and labelled as T o This increase of viscosity delineates the supercooled liquid state
from the glass state. Unlike thermodynamic transitions between the liquid and solid state, the liquid — glass
transition is not well defined. Most amorphous materials such as tetrahedrally coordinated semiconductors
like silicon and germanium do not exhibit a glass transformation.

Defining order in an amorphous solid is problematic at best. There are several ‘qualitative concepts’ that can
be used to describe disorder [7]. In figure A1.3.28 a perfect crystal is illustrated. A simple form of disorder
involves crystals containing more than one type of atom. Suppose one considers an alloy consisting of two
different atoms (A and B). In an ordered crystal one might consider each A surrounded by B and vice versa.
In a random alloy, one might consider the lattice sites to remain unaltered but randomly place A and B atoms.
This type of disorder is called compositional disorder. Other forms of disorder may involve minor distortions
of the lattice that destroy the long-range order of the solid, but retain the chemical ordering and short-range
order of the solid. For example, in short-range ordered solids, the coordination number of each atom might be
preserved. In a highly disordered solid, no short-range order is retained: the chemical ordering is random with
a number of over- and under-coordinated species.



Figure A1.3.28. Examples of disorder: (a) perfect crystal, (b) compositional disorder, (c) positional disorder
which retains the short-range order and (d) no long-range or short-range order.
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In general, it is difficult to quantify structural properties of disordered matter via experimental probes as with
x-ray or neutron scattering. Such probes measure statistically averaged properties like the pair-correlation
function, also called the radial distribution function. The pair-correlation function measures the average
distribution of atoms from a particular site.

Several models have been proposed to describe amorphous solids, in particular glasses. The structure of
glasses often focus on two archetypes [1]: the continuous random network and microcrystallite models. In the
continuous random network model, short-range order is preserved. For example, in forms of crystalline silica
each silicon atom is surrounded by four oxygen atoms. The SiO,, tetrahedra are linked together in a regular
way which establishes the crystal structure. In a continuous random network each SiO, tetrahedral unit is
preserved, but the relative arrangement between tetrahedral units is random. In another model, the so-called
microcrystallite model, small ‘crystallites’ of the perfect structure exist, but these crystallites are randomly
arranged. The difference between the random network model and the crystallite model cannot be
experimentally determined unless the crystallites are sufficiently large to be detected; this is usually not the
situation.

Amorphous materials exhibit special quantum properties with respect to their electronic states. The loss of
periodicity renders Bloch’s theorem invalid; k is no longer a good quantum number. In crystals, structural
features in the reflectivity can be associated with critical points in the joint density of states. Since amorphous
materials cannot be described by k-states, selection rules associated with k are no longer appropriate.
Reflectivity spectra and associated spectra are often featureless, or they may correspond to highly smoothed
versions of the crystalline spectra.

One might suppose that optical gaps would not exist in amorphous solids, as the structural disorder would
result in allowed energy states throughout the solid. However, this is not the case, as disordered insulating
solids such as silica are quite transparent. This situation reflects the importance of local order in determining
gaps in the excitation spectra. It is still possible to have gaps in the joint density of states without resort to a
description of energy versus wavevector. For example, in silica the large energy gap arises from the existence
of SiO, units. Disordering these units can cause states near the top of the occupied states and near the bottom
of the empty states to tail into the gap region, but not remove the gap itself.



Disorder plays an important role in determining the extent of electronic states. In crystalline matter one can
view states as existing throughout the crystal. For disordered matter, this is not the case: electronic states
become localized near band edges. The effect of localization has profound effects on transport properties.
Electrons and holes can still carry current in amorphous semiconductors, but the carriers can be strongly
scattered by the disordered structure. For the localized states near the band edges, electrons can be propagated
only by a thermally activated hopping process.

A1.3.7.2 LIQUIDS

Unlike the solid state, the liquid state cannot be characterized by a static description. In a liquid, bonds break
and reform continuously as a function of time. The quantum states in the liquid are similar to those in
amorphous solids in the sense that the system is also disordered. The liquid state can be quantified only by
considering some ensemble averaging and using statistical measures. For example, consider an elemental
liquid. Just as for amorphous solids, one can ask what is the distribution of atoms at a given distance from a
reference atom on average, i.e. the radial distribution function or the pair correlation function can also be
defined for a liquid. In scattering experiments on liquids, a structure factor is measured. The radial
distribution function, g(r), is related to the structure factor, S(g), by
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Slg)=1+ H}f[,ﬂrl — 1expliq - r)d°r (A1.3.108)

where p,, is the average concentration density of the liquid. By taking the Fourier transform of the structure, it
is possible to determine the radial distribution function of the liquid.

Typical results for a semiconducting liquid are illustrated in figure A1.3.29 where the experimental pair
correlation and structure factors for silicon are presented. The radial distribution function shows a sharp first
peak followed by oscillations. The structure in the radial distribution function reflects some local ordering.
The nature and degree of this order depends on the chemical nature of the liquid state. For example,
semiconductor liquids are especially interesting in this sense as they are believed to retain covalent bonding
characteristics even in the melt.
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Figure A1.3.29. Pair correlation and structure factor for liquid silicon from experiment [41].

One simple measure of the liquid structure is the average coordination number of an atom. For example, the
average coordination of a silicon atom is four in the solid phase at ambient pressure and increases to six in
high pressure forms of silicon. In the /iguid state, the average coordination of silicon is six. The average
coordination of the liquid can be determined from the radial distribution function. One common prescription
is to integrate the area under the first peak of the radial distribution function. The integration is terminated at
the first local minimum after the first peak. For a crystalline case, this procedure gives the exact number of
nearest neighbours. In general, coordination numbers greater than four correspond to metallic states of silicon.
As such, the radial distribution function suggests that silicon is a metal in the liquid state. This is consistent
with experimental values of the conductivity. Most tetrahedrally coordinated
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semiconductors, e.g. Ge, GaAs, InP and so on, become metallic upon melting.

It is possible to use the quantum states to predict the electronic properties of the melt. A typical procedure is
to implement molecular dynamics simulations for the liquid, which permit the wavefunctions to be
determined at each time step of the simulation. As an example, one can use the eigenpairs for a given atomic
configuration to calculate the optical conductivity. The real part of the conductivity can be expressed as

27¢? a
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=N, T

where E; and y; are eigenvalues and eigenfunctions, and Q is the volume of the supercell. The dipole
transition elements, (y, |p |y, ), reflect the spatial resolution of the initial and final wavefunctions. If the
initial and final states were to have an even parity, then the electromagnetic field would not couple to these

states.



The conductivity can be calculated for each time step in a simulation and averaged over a long simulation
time. This procedure can be used to distinguish the metallic and semiconducting behaviour of the liquid state.
As an example, the calculated frequency dependence of the electrical conductivity of gallium arsenide and
cadmium telluride are illustrated in figure A1.3.30. In the melt, gallium arsenide is a metal. As the
temperature of the liquid is increased, its DC conductivity decreases. For cadmium telluride, the situation is
reversed. As the temperature of the liquid is increased, the DC conductivity increases. This is similar to the
behaviour of a semiconducting solid. As the temperature of the solid is increased, more carriers are thermally
excited into the conduction bands and the conductivity increases. The relative conductivity of GaAs versus
CdTe as determined via theoretical calculations agrees well with experiment.
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Figure A1.3.30. Theoretical frequency-dependent conductivity for GaAs and CdTe liquids from ab initio
molecular dynamics simulations [42].
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A1.4 The symmetry of molecules

Per Jensen and P R Bunker

A1.4.1 INTRODUCTION

Unlike most words in a glossary of terms associated with the theoretical description of molecules, the word
‘symmetry’ has a meaning in every-day life. Many objects look exactly like their mirror image, and we say
that they are symmetrical or, more precisely, that they have reflection symmetry. In addition to having
reflection symmetry, a pencil (for example) is such that if we rotate it through any angle about its long axis it



will look the same. We say it has rotational symmetry. The concepts of rotation and reflection symmetry are
familiar to us all.

The ball-and-stick models used in elementary chemistry education to visualize molecular structure are
frequently symmetrical in the sense discussed above. Reflections in certain planes, rotations by certain angles
about certain axes, or more complicated symmetry operations involving both reflection and rotation, will
leave them looking the same. One might initially think that this is ‘the symmetry of molecules’ discussed in
the present chapter, but it is not. Ball-and-stick models represent molecules fixed at their equilibrium
configuration, that is, at the minimum (or at one of the minima) of the potential energy function for the
electronic state under consideration. A real molecule is not static and generally it does not possess the
rotation—reflection symmetry of its equilibrium configuration. Anyway, the use we make of molecular
symmetry in understanding molecules, their spectra and their dynamics, has its basis in considerations other
than the appearance of the molecule at equilibrium.

The true basis for understanding molecular symmetry involves studying the operations that leave the energy
of a molecule unchanged, rather than studying the rotations or reflections that leave a molecule in its
equilibrium configuration looking the same. Symmetry is a general concept. Not only does it apply to
molecules, but it also applies, for example, to atoms, to atomic nuclei and to the particles that make up atomic
nuclei. Also, the concept of symmetry applies to nonrigid molecules such as ammonia NH;, ethane C,Hy, the
hydrogen dimer (H,),, the water trimer (H,0); and so on, that easily contort through structures that differ in
the nature of their rotational and reflection symmetry. For a hydrogen molecule that is translating, rotating and
vibrating in space, with the electrons orbiting, it is clear that the total energy of the molecule is unchanged if
we interchange the coordinates and momenta of the two protons; the total kinetic energy is unchanged (since
the two protons have the same mass), and the total electrostatic potential energy is unchanged (since the two
protons have the same charge). However, the interchange of an electron and a proton will almost certainly not
leave the molecular energy unchanged. Thus the permutation of identical particles is a symmetry operation
and we will introduce others. In quantum mechanics the possible molecular energies are the eigenvalues of the
molecular Hamiltonian and if the Hamiltonian is invariant to a particular operation (or, equivalently, if the
Hamiltonian commutes with a particular operation) then that operation is a symmetry operation.

We collect symmetry operations into various ‘symmetry groups’, and this chapter is about the definition and
use of such symmetry operations and symmetry groups. Symmetry groups are used to label molecular states
and this labelling makes the states, and their possible interactions, much easier to understand. One important
symmetry group that we describe is called the molecular symmetry group and the symmetry operations it
contains are permutations of identical nuclei with and without the inversion of the molecule at its centre of
mass. One fascinating outcome is that indeed for

rigid molecules (i.e., molecules that do not undergo large amplitude contortions to become nonrigid as
discussed above) we can obtain a group of rotation and reflection operations that describes the rotation and
reflection symmetry of the equilibrium molecular structure from the molecular symmetry group. However, by
following the energy-invariance route we can understand the generality of the concept of symmetry and can
readily deduce the symmetry groups that are appropriate for nonrigid molecules as well.

This introductory section continues with a subsection that presents the general motivation for using symmetry
and ends with a short subsection that lists the various types of molecular symmetry.

A1.4.1.1 MOTIVATION: ROTATIONAL SYMMETRY AS AN EXAMPLE

Rotational symmetry is used here as an example to explain the motivation for using symmetry in molecular
physics; it will be discussed in more detail in section A1.4.3.2.




We consider an isolated molecule in field-free space with Hamiltonian /. We let Fbe the total angular
momentum operator of the molecule, that is

F=N+8§+T (A1.4.1)

where Nis the operator for the rovibronic angular momentum that results from the rotational motion of the

nuclei and the orbital motion of the electrons, %is the total electron spin angular momentum operator and Fis
the total nuclear spin angular momentum operator. We introduce a Cartesian axis system (X, Y,Z). The
orientation of the (X, Y, Z) axis system is fixed in space (i.e., it is independent of the orientation in space of the
molecule), but the origin is tied to the molecular centre of mass. It is well known that the molecular
Hamiltonian ffcommutes with the operators

] e e
F*=F;+F, +F, (A1.4.2)

and F -, Where this is the component of Falong the Z axis, i.c.,

o

[F?,Hl=FH-HF =0 (A1.4.3)

and
[F7. H] =0. (A1.4.4)

It is also well known that F% and F -, have simultaneous eigenfunctions |F,m ) and that

F2|F,mp) = F(F + Di? S (A1.4.5)
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and
Fz |Fomp) =mph|F, mg) (A1.4.6)

where, for a given molecule, F' assumes non-negative values that are either integral (=0,1,2,3,...) or half-
integral (=1/2,3/2,5/2,...) and, for a given F value, mr has the 2F+1 values —F,—F+1,...,F-1,F.

We can solve the molecular Schrodinger equation
HY; = E;v, (A14.7)

by representing the unknown Wavefunctlon lI’ (where j is an index labelling the solutions) as a linear
combination of known basis functions Ll’

W= Cply (A1.4.8)



where the C; are expansion coefficients and n is an index labelling the basis functions. As described, for
example, in section 6.6 of Bunker and Jensen [1], the eigenvalues Ej and expansion coefficients C]n can be
determined from the ‘Hamiltonian matrix’ by solving the secular equation

| Hn = Spn E| =0 (A1.4.9)

where the Kronecker delta 6 n has the value 1 for m = n and the value 0 for m # n, and the Hamiltonian
matrix elements /, are given by

Hypp = f v *Hw dr (A1.4.10)

with integration carried out over the configuration space of the molecule. This process is said to involve
‘diagonalizing the Hamiltonian matrix’.

We now show what happens if we set up the Hamiltonian matrix using basis functions l«l’fthat are
eigenfunctions of Fand F , with eigenvalues given by (equation A1.4.5) and (equation A1.4.6). We denote

this particular choice of basis functions as l]J'“' . From (equation A1.4.3), (equation A1.4.5) and the fact

g
that 2 is a Hermitian operator, we derive
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{er:.F’.m}.l[ ]lan ", m :I' {F-u‘]m F'om, |HII‘DE.F".m;}
= { M. .I‘"'Jrr IHl fr F" oy } (A1.4.11)
= (F'(F'+1)— F'(F"+ )R} (W Frm, |H|~L|J::f mp) =0

from which it follows that the matrix element {\p“ | H | q.r“' - }must vanish if F' # F". From

Ly

' "
(equation A1.4.4) it follows in a similar manner that the matrix element must also vanish if mpg % g
q‘f[l

That is, in the basis ™ #.F.mrthe Hamiltonian matrix is block diagonal in F and m, and we can rewrite

(equation A1.4.8) as

-:an (Fog ) o, 0
EC” Vo, £, (A1.4.12)

the eigenfunctions of Hare also eigenfunctions of F2and F - We can further show that since m, quantizes the

molecular angular momentum along the arbitrarily chosen, space-fixed Z axis, the energy (i.e., the eigenvalue

-~ . . . (Fmp), . .
of fassociated with the function ¥; " is independent of m . That is, the 2F" + ] states with common values of

Jand Fand mp = —F, —F + 1,...,F, are degenerate.

In order to solve (equation A1.4.7) we do not have to choose the basis functions to be eigenfunctions of F?
and F , but there are obvious advantages in doing so:

e The Hamiltonian matrix factorizes into blocks for basis functions having common values of /" and
mp. This reduces the numerical work involved in diagonalizing the matrix.



o  The solutions can be labelled by their values of /" and m . We say that F and m, are good quantum
numbers. With this labelling, it is easier to keep track of the solutions and we can use the good
quantum numbers to express selection rules for molecular interactions and transitions. In field-free
space only states having the same values of /" and m can interact, and an electric dipole transition
between states with /' = F'and F" will take place if and only if

|F'=F'|<land F"+ F" = 1. (A1.4.13)

At this point the reader may feel that we have done little in the way of explaining molecular symmetry. All we
have done is to state basic results, normally treated in introductory courses on quantum mechanics, connected
with the fact that it is possible to find a complete set of simultaneous eigenfunctions for two or more
commuting operators. However, as we shall see in section A1.4.3.2, the fact that the molecular Hamiltonian

ficommutes with F2 and F 1s intimately connected to the fact that H commutes with (or, equivalently, is

invariant to) any rotation of the molecule about a space-fixed axis passing through the centre of mass of the
molecule. As stated above, an operation that leaves the Hamiltonian invariant is a symmetry operation of the
Hamiltonian. The infinite set of all possible rotations of the

molecule about all possible axes that pass through the molecular centre of mass can be collected together to
form a group (see below). Following the notation of Bunker and Jensen [1] we call this group K (spatial).
Since all elements of K (spatial) are symmetry operations of ff, we say that K (spatial) is a symmetry group of
fi. Any group has a set of irreducible representations and they define the way coordinates, wavefunctions and
operators have to transform under the operations in the group; it so happens that the irreducible

representations of K (spatial), D@ _are labelled by the angular momentum quantum number F. The 2F + 1

I ] [y ]
w.’..F..’.‘Ir " qu_.

functions |F,m,) (or ) with a common value of F(and norj) and m, =—-F—F+1,..., F

transform according to the irreducible representation DT of K (spatial). As a result, we can reformulate our
procedure for solving the Schrodinger equation of a molecule as follows:

e For the Hamiltonian fwe identify a symmetry group, and this is a group of symmetry operations of
fia symmetry operation being defined as an operation that leaves Hinvariant (i.e., that commutes with
). In our example, the symmetry group is K (spatial).

¢ Having done this we solve the Schrodinger equation for the molecule by diagonalizing the
Hamiltonian matrix in a complete set of known basis functions. We choose the basis functions so that
they transform according to the irreducible representations of the symmetry group.

e  The Hamiltonian matrix will be block diagonal in this basis set. There will be one block for each
irreducible representation of the symmetry group.

e Asaresult the eigenstates of ffcan be labelled by the irreducible representations of the symmetry
group and these irreducible representations can be used as ‘good quantum numbers’ for understanding
interactions and transitions.

We have described here one particular type of molecular symmetry, rotational symmetry. On one hand, this
example is complicated because the appropriate symmetry group, K (spatial), has infinitely many elements.
On the other hand, it is simple because each irreducible representation of K (spatial) corresponds to a
particular value of the quantum number F which is associated with a physically observable quantity, the
angular momentum. Below we describe other types of molecular symmetry, some of which give rise to finite
symmetry groups.



A1.4.1.2 A LIST OF THE VARIOUS TYPES OF MOLECULAR SYMMETRY

The possible types of symmetry for the Hamiltonian of an isolated molecule in field-free space (all of them
are discussed in more detail later on in the article) can be listed as follows:

(i) Translational symmetry. A translational symmetry operation displaces all nuclei and electrons in the
molecule uniformly in space (i.e., all particles are moved in the same direction and by the same
distance). This symmetry is a consequence of the uniformity of space.

(i) Rotational symmetry. A rotational symmetry operation rotates all nuclei and electrons by the same
angle about a space-fixed axis that passes through the molecular centre of mass. This symmetry is a
consequence of the isotropy of space.

(iii) Inversion symmetry. The Hamiltonian that we customarily use to describe a molecule involves
only the electromagnetic forces between the particles (nuclei and electrons) and these forces are
invariant to the ‘inversion operation’ E* which inverts all particle positions through the centre
of mass of the molecule. Thus such a Hamiltonian commutes with £*; the use of this operation
leads (as we see in section A1.4.2.5) to the concept of parity, and parity can be + or —. This
symmetry results from the fact that the electromagnetic force is invariant to inversion. It is not a
property of space.

(iv) Identical particle permutation symmetry. The corresponding symmetry operations permute
identical particles in a molecule. These particles can be electrons, or they can be identical
nuclei. This symmetry results from the indistinguishability of identical particles.

(v) Time reversal symmetry. The time reversal symmetry operation T or #reverses the direction of
motion in a molecule by reversing the sign of all linear and angular momenta. This symmetry
results from the properties of the Schrodinger equation of a system of particles moving under
the influence of electromagnetic forces. It is not a property of space—time.

We hope that by now the reader has it firmly in mind that the way molecular symmetry is defined and
used is based on energy invariance and not on considerations of the geometry of molecular equilibrium
structures. Symmetry defined in this way leads to the idea of conservation. For example, the total
angular momentum of an isolated molecule in field-free space is a conserved quantity (like the total
energy) since there are no terms in the Hamiltonian that can mix states having different values of F. This
point is discussed further in section A1.4.3.1 and section A1.4.3.2.

A1.4.2 GROUP THEORY

The use of symmetry involves the mathematical apparatus of group theory, and in this section we
summarize the basics. We first define the concept of a group by considering the permutations of the
protons in the phosphine molecule PH; (figure A1.4.1) as an example. This leads to the definition of the
nuclear permutation group for PH;. We briefly discuss point groups and then introduce representations
of a group; in particular we define irreducible representations. We then go on to show how
wavefunctions are transformed by symmetry operations, and how this enables molecular states to be
labelled according to the irreducible representations of the applicable symmetry group. The final
subsection explains the vanishing integral rule which is of major use in applying molecular symmetry in
order to determine which transitions and interactions can and cannot occur.



Figure A1.4.1. A PH; molecule at equilibrium. The protons are labelled 1, 2 and 3, respectively, and the
phosphorus nucleus is labelled 4.

A1.4.2.1 NUCLEAR PERMUTATION GROUPS

The three protons in PH, are identical and indistinguishable. Therefore the molecular Hamiltonian will
commute with any operation that permutes them, where such a permutation interchanges the space and spin
coordinates of the protons. Although this is a rather obvious symmetry, and a proof is hardly necessary, it
can be proved by formal algebra as done in chapter 6 of [1].

How many distinct ways of permuting the three protons are there? For example, we can interchange
protons 1 and 2. The corresponding symmetry operation is denoted (12) (pronounced ‘one—two’) and it is
to be understood quite literally: protons 1 and 2 interchange their positions in space. There are obviously
two further distinct operations of this type: (23) and (3 l)l. A permutation operation that interchanges just
two nuclei is called a transposition. A more complicated symmetry operation is (123). Here, nucleus 1 is
replaced by nucleus 2, nucleus 2 by nucleus 3 and nucleus 3 by nucleus 1. Thus, after (123) nucleus 2 ends
up at the position in space initially occupied by nucleus 1, nucleus 3 ends up at the position in space
initially occupied by nucleus 2 and nucleus 1 ends up at the position in space initially occupied by nucleus
3. Such an operation, which involves more than two nuclei, is called a cycle. A moment’s thought will
show that in the present case, there exists one other distinct cycle, namely (132). We could write further
cycles like (231), (321) etc, but we discover that each of them has the same effect as (123) or (132). There
are thus five distinct ways of permuting three protons: (123), (132), (12), (23) and (31).

We can apply permutations successively. For example, we can first apply (12), and then (123); the net
effect of doing this is to interchange protons 1 and 3. Thus we have

(123)(12) = (31). (A1.4.14)

When we apply permutations (or other symmetry operations) successively (this is commonly referred to as
multiplying the operations so that (31) is the product of (123) and (12)), we write the operation to be
applied first to the right in the manner done for general quantum mechanical operators. Permutations do not
necessarily commute. For example,

(12)(123) = (23). (A1.4.15)

If we apply the operation (12) twice, or the operation (123) three times, we obviously get back to the
starting point. We write this as

(A1.4.16)



(12)(12) = (123)(123)(123) = E

where the identity operation E leaves the molecule unchanged by definition. Having defined E, we define

the reciprocal (or inverse) R lofa symmetry operation R (which, in our present example, could be (123),
(132), (12), (23) or (31)) by the equation

RR'=R'R=E. (A1.4.17)
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It is easy to verify that for example
(12)~" =12y and (123)7! = (132). (A1.4.18)
The six operations
S5 = (£, (123),(132), (12), (23), (31)} (A1.4.19)

are said to form a group because they satisfy the following group axioms:
(i) We can multiply (i.e., successively apply) the operations together in pairs and the result is a
member of the group.
(i) One of the operations in the group is the identity operation E.
(iii) The reciprocal of each operation is a member of the group.

(iv) Multiplication of the operations is associative; that is, in a multiple product the answer is
independent of how the operations are associated in pairs, e.g.,

(12)(123)(23) = (12) [(123)(23)] = [(12)(123)](23) = E.

(1 (23}

(A1.4.20)

The fact that the group axioms (i), (ii), (iii) and (iv) are satisfied by the set in (equation A1.4.19) can be
verified by inspecting the multiplication table of the group S given in table A1.4.1; this table lists all
products R, R, where R and R, are members of ;. The group S} is the permutation group (or
symmetric group) of degree 3, and it consists of all permutations of three objects. There are six elements
in §; and the group is said to have order six. In general, the permutation group S, (all permutations of n
objects) has order n!.

Table A1.4.1 The multiplication table of the S5 group.

E (123)(132) (12) (23) (31)




E E (123)  (132)  (12) (23) (31)
(123)  (123) (132) E (31) (12) (23)
(132) (132) E (123)  (23) (31) (12)
(12) (12) (23) (31) E (123)  (132)
(23) (23) (31) (12) (132) E (123)
(31) (31) (12) (23) (123) (132) E

Each entry is the product of first applying the permutation at the top of
the column and then applying the permutation at the left end of the
row.

There is another way of developing the algebra of permutation multiplication, and we briefly explain it. In this
approach for PH, three positions in space are introduced and labelled 1, 2 and 3; the three protons are labelled

H,, H, and H;. The permutation (12)S (where S denotes space-fixed position labels) is defined in this
approach as permuting the nuclei that are in positions 1 and 2, and the permutation (123)S as replacing the
proton in position 1 by the proton in position 2 etc. With this definition the effect of first doing (12)S and then
doing (123)S can be drawn as

123 (12)° 913 (123 43,
123 123 123
23" ]
and we see that
(123)%(12)° = (23)°. (A1.4.21)

This is not the same as (equation A1.4.14). In fact, in this convention, which we can call the S-convention, the
multiplication table is the transpose of that given in table A1.4.1. The convention we use and which leads to
the multiplication table given in table A1.4.1, will be called the N-convention (where N denotes nuclear-fixed
labels).

A1.4.2.2 POINT GROUPS

Having defined the concept of a group in section A1.4.2.1, we discuss in the present section a particular type
of group that most readers will have heard about: the point group. We do this with some reluctance since
point group operations do not commute with the complete molecular Hamiltonian and thus they are not true
symmetry operations of the kind discussed in section A1.4.1.2. Also the actual effect that the operations have
on molecular coordinates is not straightforward to explain. From a pedagogical and logical point of view it
would be better to bring them into the discussion of molecular symmetry only after groups consisting of the
true symmetry operations enumerated in section A1.4.1.2 have been thoroughly explained. However, because
of their historical importance we have decided to introduce them early on. As explained in section A1.4.4 the
operations of a molecular point group involve the rotation and/or reflection of vibrational displacement
coordinates and electronic coordinates, within the molecular-fixed coordinate system which itself remains
fixed in space. Thus the rotational variables (called Euler angles) that define the orientation of a molecule in
space are not transformed and in particular the molecule is not subjected to an overall rotation by the
operations that are called ‘rotations’ in the molecular point group. It turns out that the molecular point group is
a symmetry group of use in the understanding of the vibrational and electronic states of molecules. However,




because of centrifugal and Coriolis forces the vibrational and electronic motion is not completely separable
from the rotational motion and, as we explain in section A1.4.5, the molecular point group is only a near
symmetry group of the complete molecular Hamiltonian appropriate for the hypothetical, non-rotating
molecule.

In general, a point group symmetry operation is defined as a rotation or reflection of a macroscopic object
such that, after the operation has been carried out, the object looks the same as it did originally. The
macroscopic objects we consider here are models of molecules in their equilibrium configuration; we could
also consider idealized objects such as cubes, pyramids, spheres, cones, tetrahedra etc. in order to define the
various possible point groups.
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As an example, we again consider the PH; molecule. In its pyramidal equilibrium configuration PH; has all

three P—H distances equal and all three bond angles Z(HPH) equal. This object has the point group symmetry
C;,, where the operations of the group are

Cy = E, (3. C3, 01. 02, 03). (A1.4.22)

The operations in the group can be understood by referring to figure A1.4.2 In this figure the right-handed
Cartesian (p, g, r) axis system has origin at the molecular centre of mass, the P nucleus is above the pg plane

(the plane of the page), and the three H nuclei are below the pg planez. The operations C; and C _;?in (equation
A1.4.22) are right-handed rotations of 120° and 240°, respectively, about the  axis. In general, we use the

notation C, for a rotation of 27/n radians about an axis3. Somewhat unfortunately, it is customary to use the
symbol C, 'to denote not only the rotation operation, but also the rotation axis. That is, we say that the r axis in
figure A1.4.2 is a C; axis. The operation o, is a reflection in the pr plane (which, with the same unfortunate
lack of distinction used in the case of the C; operation and the C; axis, we call the o, plane), and 6, and 4
are reflections in the 6, and o, planes; these planes are obtained by rotating by 120° and 240°, respectively,
about the r axis from the pr plane. As shown in figure A1.4.2, each of the H nuclei in the PH; molecule lies
in a o, plane (k= 1, 2, 3) and the P nucleus lies on the C; axis. It is clear that the operations of C; as defined
here leave the PH; molecule in its static equilibrium configuration looking unchanged. It is important to
realize that when we apply the point group operations we do not move the (p,q,7) axes (we call this the ‘space-
fixed’ axis convention) and we will now show how this aspect of the way point group operations are defined
affects the construction of the group multiplication table.

o

2
.8

o

Figure A1.4.2. The PH; molecule at equilibrium. The symbol (+ r) indicates that the r axis points up, out of
the plane of the page.



Formally, we can say that the operations in C5, act on points in space. For example, we show in figure A1.4.2
how a point P in the pg plane is transformed into another point 7' by the operation ,; we can say that P' =
6, P. The reader can now show by geometrical considerations that if we first reflect a point P in the 6, plane

to obtain P'= GIP, and we then reflect P' in the c, plane to obtain P " = GZP' = 3,8, P, then P" can be
obtained directly from P by a 240° anticlockwise rotation about the » axis. Thus P" = _%P or generally
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C; = o0 (A1.4.23)
We can also show that
Cy = 0309 (A1.4.24)
The complete multiplication table of the C;, point group, worked out using arguments similar to those leading

to (equation A1.4.23) and (equation A1.4.24), is given in table A1.4.2. It is left as an exercise for the reader to
use this table to show that the elements of C;, satisfy the group axioms given in section A1.4.2.1.

Table A1.4.2 The multiplication table of the C;, point group using the space-fixed axis convention (see text).

E 2
C3C301 o, 04

E E C3 C % o, o, O
Cs Cs & E 3 1 2
C % C % E C, o, G, o,
o, o, o, Oy E C3 C %
o, o, o4 o, [ % E C3
o4 Oy o, o, C3 C % E

Each entry is the product of first applying the operation at the top of the column and then applying
the operation at the left end of the row.

If we were to define the operations of the point group as also rotating and reflecting the
(p,q,7r) axis system (in which case the axes would be ‘tied’ to the positions of the nuclei), we
would obtain a different multiplication table. We could call this the ‘nuclear-fixed axis
convention.” To implement this the protons in the ,, o, and o4 planes in figure A1.4.2
would be numbered H, H, and H; respectively. With this convention the C; operation
would move the o, plane to the position in space originally occupied by the o, plane. If we
follow such a C; operation by the o, reflection (in the plane containing H,) we find that, in
the nuclear-fixed axis convention:

o Cy = oy, (A1.4.25)



Similarly, with the nuclear-fixed axis convention, we determine that
Cy =003 (A1.4.26)

and this result also follows by multiplying (equation A1.4.25) on the left by o,. The
multiplication table obtained using the nuclear-fixed axis convention is the transpose of the
multiplication table obtained using the space-fixed axis convention (compare (equation
A1.4.24) and (equation A1.4.26)). In dealing with point groups we will use the space-fixed
axis convention. For defining the effect of permutation operations the S-convention (see
(equation A1.4.21))
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is related to the N-convention (see (equation A1.4.14)) in the same way that the space-fixed and nuclear-fixed
axis conventions for point groups are related.

The operations in a point group are associated with so-called symmetry elements. Symmetry elements can be
rotation axes (such as the C; axis that gives rise to the C; and operations in C5 ) or reflection planes (such as

the planes 6, 6,, 65; each of which gives rise to a reflection operation in Cj ). A third type of symmetry
element not present in Cy, is the rotation—reflection axis or improper axis. For example, an allene molecule
H,CCCH, in its equilibrium configuration will be unchanged in appearance by a rotation of 90° about the
CCC axis combined with a reflection in a plane perpendicular to this axis and containing the ‘middle’ C
nucleus. This operation (a rotation—reflection or an improper rotation) is called S,; it is an element of the
point group of allene, D, ;. Allene is said to have as a symmetry element the rotation-reflection axis or
improper axis S. It should be noted that neither the rotation of 90° about the CCC axis nor the reflection in
the plane perpendicular to it are themselves in D, ;. For an arbitrary point group, all symmetry elements will
intersect at the centre of mass of the object; this point is left unchanged by the group operations and hence the
name point group. In order to determine the appropriate point group for a given static arrangement of nuclei,
one first identifies the symmetry elements present. Cotton [2] gives in his section 3.14 a systematic procedure
to select the appropriate point group from the symmetry elements found. The labels customarily used for point
groups (such as C5, and D, ,) are named Schonflies symbols after their inventor. The most important point
groups (defined by their symmetry elements) are

C, one n-fold rotation axis,

c,. one n-fold rotation axis and » reflection planes containing this axis,

Cnh

one n-fold rotation axis and one reflection plane perpendicular to this axis,
D, one n-fold rotation axis and »n twofold rotation axes perpendicular to it,

D, those of D, plus n reflection planes containing the n-fold rotation axis and bisecting the angles

between the n twofold rotation axes,

D . those of D_plus a reflection plane perpendicular to the n-fold rotation axis,
nh n

§  one alternating axis of symmetry (about which rotation by 2n/n radians followed by reflection in a
plane perpendicular to the axis is a symmetry operation).

The point groups T4, O, and I, consist of all rotation, reflection and rotation—reflection symmetry operations
of a regular tetrahedron, cube and icosahedron, respectively.

Point groups are discussed briefly in sections 4.3 and 4.4 of [1] and very extensively in chapter 3 of Cotton



[2]. We refer the reader to these literature sources for more details.

A1.4.2.3 IRREDUCIBLE REPRESENTATIONS AND CHARACTER TABLES

If we have two groups 4 and B, of the same order #:

(A1.4.27)
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B = {8, B, By,..., 8) (A1.4.28)

where 4, = B, = E, the identity operation and if there is a one-to-one correspondence between the elements of
A and B, Ak<—> Bk, k=1,2,3,...,h, so that if

AiA; = A, (A1.4.29)
it can be inferred that
B;8B; =8, (A1.4.30)

for all i < 4 and j < A, then the two groups 4 and B are said to be isomorphic.

As an example we consider the group S5 introduced in (equation A1.4.19) and the point group C, given in
(equation A1.4.22). Inspection shows that the multiplication table of C, in table A1.4.2 can be obtained from
the multiplication table of the group S, (table A1.4.1) by the following mapping:

Sy E O (123) (132) (12) (23) (31)

Cy: E G C3 oy o o (A1.4.31)

Thus, C,, and S5 are isomorphic.

Homomorphism is analogous to isomorphism. Where an isomorphism is a one-to-one correspondence
between elements of groups of the same order, homomorphism is a many-to-one correspondence between
elements of groups having different orders. The larger group is said to be homomorphic onto the smaller
group. For example, the point group C, is homomorphic onto S, = {E, (12)} with the following
correspondences:

Ch B Oy {.'; o g2 a3

- - g (A1.4.32)
85 E (12)

The multiplication table of S, has the entries EE = E, E(12) = (12)E = (12) and (12)(12) = E. If, in the
2
multiplication table of C5, (table A1.4.2), the elements £, C; and C.‘:are each replaced by £ (of §,) and 6, 5,

and o5 each by (12), we obtain the multiplication table of S, nine times over.

We are particularly concerned with isomorphisms and homomorphisms, in which one of the groups involved
is a matrix group. In this circumstance the matrix group is said to be a representation of the other group. The
elements of a matrix group are square matrices, all of the same dimension. The ‘successive application’ of two



matrix group elements (in the sense of group axiom (i) in section A1.4.2.1) is matrix multiplication. Thus, the
identity operation E of a matrix group is the unit matrix of the appropriate dimension, and the inverse element
of a matrix is its inverse matrix. Matrices and matrix groups are discussed in more detail in section 5.1 of [1].
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For the group A4 in (equation A1.4.27) to be isomorphic to, or homomorphic onto, a
matrix group containing matrices of dimension £, say, each element A cofAis

mapped onto an £x €matrix M, k= 1,2,3,4,...,h, and (equation A1.4.29) and

(equation A1.4.30) can be rewritten in the form

if AjA; = A, then M;M; = M, (A1.4.33)

for all i < h and j < h. The latter part of this equation says that the £x £matrix M, is
the product of the two £x matrices M and Mj'

If we have found one representation of £-dimensional matrices M, M,, M;,... of

the group A4, then, at least for £> 1, we can define infinitely many other equivalent
representations consisting of the matrices

M, =V 'MV k=123 h (A1.4.34)

where V is an €x £matrix. The determinant of V must be nonvanishing, so that V!
exists, but otherwise V is arbitrary. We say that Mjis obtained from M Lbya

similarity transformation. It is straightforward to show that the matrices M, k=
1,2,3,...,h form a representation of A since they satisfy an equation analogous to
(equation A1.4.33).

It is well known that the frace of a square matrix (i.e., the sum of its diagonal
elements) is unchanged by a similarity transformation. If we define the traces

F F
Xi= Y (M), and yp = > (Mg} (A1.4.35)
p=1 =1

we have

Xi = Xk- (A1.4.36)



The traces of the representation matrices are called the characters of the
representation, and (equation A1.4.36) shows that all equivalent representations
have the same characters. Thus, the characters serve to distinguish inequivalent
representations.

If we select an element of A4, Aj say, and determine the set of elements .S given by
forming all products

S=RA;R (A1.4.37)

-15-

where R runs over all elements of 4, then the set of distinct elements obtained,

which will include A4, (since for R = R~! = E we have S = 4.), is said to form a class
of A. For any group the identity operation £ is always in a class of its own since for

all R we have S= R 'ER = R"!R = E. The reader can use the multiplication table
(table Al.4.1) to determine the classes of the group S (equation (A1.4.19)); there
are three classes [E], [(123),(132)] and [(12),(23),(31)]. Since the groups S5 and C5,,
((equation A1.4.22)) are isomorphic, the class structure of €5, can be immediately
inferred from the class structure of S5 together with (equation A1.4.31). C;, has the

classes [£], [C, Ci] and [5,,6,,0,].

If two elements of A, Ai and Aj say, are in the same class, then there exists a third
element of A, R, such that

Ai =R 'A;R. (A1.4.38)

Then by (equation A1.4.33)

M, =M, MM, (A1.4.39)

where M, M; and M R are the representation matrices associated with Al., A.and R,
respectively. That is, M, is obtained from M, in a similarity transformation, and



these two matrices thus have the same trace or character. Consequently, all the
elements in a given class of a group are represented by matrices with the same
character.

If we start with an £-dimensional representation of A consisting of the matrices M,,

M,, M, ..., it may be that we can find a matrix V such that when it is used with
(equation A1.4.34) it produces an equivalent representation M';, M',, M';, ... each
of whose matrices is in the same block diagonal form. For example, the
nonvanishing elements of each of the matrices Micould form an upper-left-corner £ |

x £, block and a lower-right-corner £, x £, block, where £, + £, = £. In this

situation, a few moments’ consideration of the rules of matrix multiplication shows
that all the upper-left-corner £, x £, blocks, taken on their own, form an £, -

dimensional representation of 4 and all the lower-right-corner £, x £, blocks, taken
on their own, form an £,-dimensional representation. In these circumstances the

original representation I" consisting of My, M,, M, ... is reducible and we have
reduced it to the sum of the two representations, I'; and I, say, of dimensions El

and t'z, respectively. We write this reduction as
Fr=r;®r;. (A1.4.40)

Clearly, a one-dimensional representation (also called a non-degenerate
representation) is of necessity irreducible in that it cannot be reduced to
representations of lower dimensions. Degenerate representations (i.e., groups of
matrices with dimension higher than 1) can also be irreducible, which means that
there is no matrix that by a similarity transformation will bring all the matrices of
the representation into the same block diagonal form. It can be shown that the
number of irreducible representations of a given group is equal to the number of
classes in the group. We have seen that the group S5 has three classes [E], [(123),
(132)] and [(23),(31),(12)] and therefore it has three irreducible representations. For
a general group with » irreducible representations with dimensions E1,£2,£3,. . .,t'n, it
can also be shown that
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D tl=h (A1.4.41)

where £ is the order of the group. For S this equation yields

B++8=6 (A1.4.42)



and, since the t'. have to be positive integers, we obtain £, =€, = 1 and tf = 2. When developing general
formulae we label the 1rreduc1ble representations of a group as I';,I',,...,I', and denote the characters

associated with I'; as x' ‘[R], where R is an element of the group under study However, the irreducible

representations of symmetry groups are denoted by various other special symbols such as 4,, X~ and D@,
The characters of the irreducible representations of a symmetry group are collected together into a

character table and the character table of the group S is given in table A1.4.3. The construction of
character tables for finite groups is treated in section 4.4 of [2] and section 3-4 of [3].

Table A1.4.3 The character table of the S5 group.

E (123) (12)
S, 1 2 3

One representative element in each class is given, and the number written below each element is the number of
elements in the class.

For any I'; we have x i [E] = ¢, the dimension of T';. This is because the identity operation E is always

represented by an £, x £, unit matrix whose trace obviously is £.. For any group there will be one irreducible
. . I

representation (called the totally symmetric representation F(S)) which has all X TR]=1. Such a

representation exists because any group is homomorphic onto the one-member matrix group {1} (where the

‘1’ is interpreted as a 1 x 1 matrix). The irreducible characters Xr '[R] satisfy several equations (see, for
example, section 4.3 of [2] and section 3-3 of [3]), for example

z x[RY k"I [R] = hé; (A1.4.43)
R

where the sum runs over all elements R of the group.

In applications of group theory we often obtain a reducible representation, and we then need to reduce it to its
irreducible components. The way that a given representation of a group is reduced to its irreducible
components depends only on the characters of the matrices in the representation and on the characters of the
matrices in the irreducible representations of the group. Suppose that the reducible representation is I" and that
the group involved
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has irreducible representations that we label I'},I',,I'5,.... What we mean by ‘reducing’ I is finding the
integral coefficients a; in the expression

(A1.4.44)



where
(A1.4.45)
with the sum running over all the irreducible representations of the group. Multiplying (equation A1.4.45) on

the right by [R]* and summing over R it follows from the character orthogonality relation (equation
(A1.4.43)) that the required a; are given by

(A1.4.46)

where £ is the order of the group and R runs over all the elements of the group.
A1.4.2.4 THE EFFECTS OF SYMMETRY OPERATIONS

For the PH, molecule, which we continue using as an example, we consider that proton i (= 1, 2 or 3) initially
has the coordinates (X, Y,Z,) in the (X, ¥, Z) axis system, and the phosphorus nucleus has the coordinates
(X4, Y4,Z,4). After applying the permutation operation (12) to the PH; molecule, nucleus 1 is where nucleus 2
was before. Consequently, nucleus 1 now has the coordinates (X,,Y,,Z,). Nucleus 2 is where nucleus 1 was
before and has the coordinates (X,,Y|,Z,). Thus we can write

(A1.4.47)

where , and are the X, Y and Z coordinates of nucleus 7 after applying the permutation (12). By convention we
always give first the (X, Y, Z) coordinates of nucleus 1, then those of nucleus 2, then those of nucleus 3 etc.

Similarly, after applying the operation (123) to the PH; molecule, nucleus 2 is where nucleus 1 was before
and has the coordinates (X;,Y|,Z,). Nucleus 3 is where nucleus 2 was before and has the coordinates
(X,,Y,,Z,) and, finally, nucleus 1 is where nucleus 3 was before and has the coordinates (X;,Y;,Z,). So
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(123) [X1, Y1, Z1. X2, Y2, Za, X Ya, Z3, X, Ya, Z4)
=[X\. Y, Z), X5, Y3, 23, X3, ¥y, Z3, X4, Yy, Z3) (A1.4.48)
= [X3. Y3, 43, X\, Y0 2, X, Yo, 2, Xy Ve, Z4)

where here X :, Y;and Z;are the X, Y and Z coordinates of nucleus i after applying the permutation (123).

The procedure exemplified by (equation A1.4.47) and (equation A1.4.48) can be trivially generalized to
define the effect of any symmetry operation, R say, on the coordinates (X, Y, Z)) of any nucleus or electron i in
any molecule by writing

R[Xi. Yi. Z;] = [RXi, RY,, RZ] = [X.. Y], Z}]. (A1.4.49)
We can also write
R'X,Y.ZN=[R'X,R"Y,R'Z1=[X;, Y. Z;]. (A1.4.50)

We use the nuclear permutation operations (123) and (12) to show what happens when we apply two
operations in succession. We write the successive effect of these two permutations as (remember that we are
using the N-convention; see (equation A1.4.14))




(123)(12) [Xy, ¥y, Z4, X3, Vs, Z5, X3, Ya, 25, X4, ¥y, Z4]

= (123) [X|, ¥}, Z, X3, Y3, Z), X3, Y3, Z5, X4, ¥y, Z4]
=[X, Y. 23 X\ Y. Z X5, Vs, 75, X4, Y. 7] (A1.4.51)

= [X3, Y3. Z3, X2. V2, Z2, X\, V1, 21, X4, Ya. Z4]

=3 [X, Y. 21, X2. Y2, Z2, X3, Y3, Z3. Xu, ¥y, Z4]

where X;, ¥, Z:are the coordinates of the nuclei after applying the operation (12). The result in (equation
A1.4.51) is in accord with (equation A1.4.14).

Molecular wavefunctions are functions of the coordinates of the nuclei and electrons in a molecule, and we
are now going to consider how such functions can be transformed by the general symmetry operation R as
defined in (equation A1.4.49). To do this we introduce three functions of the coordinates, (X, Y,Z), f;;

(X, Y,Z;) and fSR(Xi, Y, Z)). The functions f;‘fand fgﬁare such that their values at any point in configuration

space are each related to the value of the function f'at another point in configuration space, where the
coordinates of this ‘other’ point are defined by the effect of R as follows:

WXL Y, Z) = FIXL YL ZD (A1.4.52)
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and

[ Y. Z) = f(Xi, Y, Z) (A1.4.53)
or equivalently,

f (X, Yi, Zi) = f(RX;. RY;, RZ)) (A1.4.54)

and
fEXi Y, Z) = fF(RT'Xi, R7'Yi, R™' Z)). (A1.4.55)

This means that f £is such that its value at any point (X, Y, Z) is the same as the value of fat the point
(RX,RY,RZ), and that f‘ Ris such that its value at any point (X, Y, Z) is the same as the value of fat the point

(R_le.,R_ Yl.,R 1Zl.). Alternatively, for the latter we can say that quIS such that its value at (RXI.,R Yi’RZi) is
the same as the value of fat the point (Xi’ Yi’Zi)' ]

We define the effect of a symmetry operation on a wavefunction in two different ways depending on whether
the symmetry operation concerned uses a moving or fixed ‘reference frame’ (see [4]). Either we define its
effect using the equation

Rf(X;. Y, Z)) = f;,"’{x,-. Yi.Zi) = f(RX,,RY,, RZ;). (A1.4.56)



or we define its effect using
RFX,. Y. Z) = fRX. Y. Z) = FIR'X,.R'Y, R'Z)). (A1.4.57)

Nuclear permutations in the N-convention (which convention we always use for nuclear permutations) and
rotation operations relative to a nuclear-fixed or molecule-fixed reference frame, are defined to transform
wavefunctions according to (equation A1.4.56). These symmetry operations involve a moving reference
frame. Nuclear permutations in the S-convention, point group operations in the space-fixed axis convention
(which is the convention that is always used for point group operations; see section A1.4.2.2 and rotation
operations relative to a space-fixed frame are defined to transform wavefunctions according to (equation
A1.4.57). These operations involve a fixed reference frame.

Another distinction we make concerning symmetry operations involves the active and passive pictures. Below
we consider translational and rotational symmetry operations. We describe these operations in a space-fixed
axis system (X,Y,Z) with axes parallel to the (X, Y, Z) axes, but with the origin fixed in space. In the active
picture, which we adopt here, a translational symmetry operation displaces all nuclei and electrons in the
molecule along a vector A, say,
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and leaves the (X,Y,Z) axis system unaffected. In the passive picture, the molecule is left unaffected but the
(X,Y,Z) axis system is displaced by —A4. Similarly, in the active picture a rotational symmetry operation
physically rotates the molecule, leaving the axis system unaffected, whereas in the passive picture the axis
system is rotated and the molecule is unaffected. If we think about symmetry operations in the passive picture,
it is immediately obvious that they must leave the Hamiltonian invariant (i.e., commute with it). The energy of
an isolated molecule in field-free space is obviously unaffected if we translate or rotate the (X,Y,Z) axis
system.

A1.4.2.5 THE LABELLING OF MOLECULAR ENERGY LEVELS

The irreducible representations of a symmetry group of a molecule are used to label its energy levels. The way
we label the energy levels follows from an examination of the effect of a symmetry operation on the
molecular Schrédinger equation.

E‘l’n{f’f;, Yi. Zi) = E, W, (X, Y, Z;) (A1.4.58)

where ¥, (X, Y,Z,) is a molecular eigenfunction having eigenvalue £, .

By definition, a symmetry operation R commutes with the molecular Hamiltonian ffand so we can write the
operator equation:

-~ -~

HR = RH. (A1.4.59)
If we act with each side of this equation on an eigenfunction ¥, (X, Y, Z)) from (equation A1.4.58) we derive

HRU, (X;.Y,, Z) = RHW,(X;, Y,, Z}) = RE,W,(X,, ¥, Zi)
(A1.4.60)
= f'::infJ{XJ'* Y, ?i]



The second equality follows from (equation Al .4.58)5, and the third equality from the fact that £, is a number
and numbers are not affected by symmetry operations. We can rewrite the result of (equation A1.4.60) as

E[HW,,I{X;. Yy, Zr';'] = E:J[R"I’rr(-xr'- Y;, Z;}]. (A1.4.61)
Thus
RU(X:, Y, Z;) = W (X, Y, Z)) (A1.4.62)

is an eigenfunction having the same eigenvalue as ¥, (X, Y, Z). If E, is a nondegenerate eigenvalue then
R . . .
W, cannot be linearly independent of ¥, , which means that we can only have
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RW, (X, Y, Z) =W, (X, Y, £) (A1.4.63)

where c is a constant. An arbitrary symmetry operation R is such that R” = E the identity, where m is an
integer. From (equation A1.4.63) we deduce that

R, (X, Y, Z:) = "W, (X, Vi, Z)). (A1.4.64)

Since R™ = E we must have ¢ = 1 in (equation A1.4.64), which gives
c= V1. (A1.4.65)

Thus, for example, for the PH, molecule any nondegenerate eigenfunction can only be multiplied by +1, ® =
exp(2m 1/3), or w? = exp(4r i/3) by the symmetry operation (123) since (123)3 = F (so that m = 3 in (equation
A1.4.65)). In addition, such a function can only be multiplied by +1 or —1 by the symmetry operations (12),
(23) or (31) since each of these operations is self-reciprocal (so that m = 2 in (equation A1.4.65)).

We will apply this result to the H, molecule as a way of introducing the fact that nondegenerate molecular
energy levels can be labelled according to the one-dimensional irreducible representations of a symmetry
group of the molecular Hamiltonian. The Hamiltonian for the H, molecule commutes with £* and with the
operation (12) that permutes the protons. Thus, the eigenfunction of any nondegenerate molecular energy
level is either invariant, or changed in sign, by the inversion operation £* since (£ *)2 =E(ie,m=2forR =
E* in (equation A1.4.65)); invariant states are said to have positive parity (+) and states that are changed in
sign by E* to have negative parity (-). Similarly, any nondegenerate energy level will be invariant or changed
in sign by the proton permutation operation (12); states that are invariant are said to be symmetric (s) with
respect to (12) and states that are changed in sign are said to be antisymmetric («). This enables us to label
nondegenerate energy levels of the H, molecule as being (+s), (—s), (+a) or (—a) according to the effect of the
operations £* and (12). For the H, molecule we can form a symmetry group using these elements: {E, (12),
E*, (12)*}, where

(12)* = (12)E" = E*(12) (A1.4.66)

and the character table of the group is given in table A1.4.4. The effect of the operation (12)* on a
wavefunction is simply the product of the effects of (12) and £*. The labelling of the states as (+s), (—s), (+a)



or (—a) is thus according to the irreducible representations of the symmetry group and the nondegenerate
energy levels of the H, molecule are of four different symmetry types in this group.
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Table A1.4.4 The character table of a symmetry group for the H, molecule.

E (12) E* (12)*
+s 1 1 1 1
-S 1 1 -1 -1
+a 1 -1 1 -1
-a 1 -1 —1 1

The energy level of an an /-fold degenerate eigenstate can be labelled according to an /-
fold degenerate irreducible representation of the symmetry group, as we now show.

Suppose the / orthonormal® eigenfunctions ¥, ,'¥, ,,...,'¥, all have the same eigenvalue
E, of the molecular Hamiltonian. If we apply a symmetry operatlon R to one of these

functlons the resulting function will also be an eigenfunction of the Hamiltonian with
eigenvalue E, (see (equation A1.4.61) and the sentence after it) and the most general

function of this type is a linear combination of the / functions ‘¥, ; given above. Thus,
using matrix notation, we can write the effect of R as®

)
RW,; = ) D[R]\, (A1.4.67)

i=l
where i = 1,2,...,/. For example, choosing i = 1, we have the effect of R on ‘Pnl as:
RY¥, = D[R + DIR) W2 +- -+ DR W (A1.4.68)
The D[R]ij are numbers and D[R] is a matrix of these numbers; the matrix D[R] is
generated by the effect of R on the / functions ¥, .. We can visualize (equation A1.4.67)

as the effect of R acting on a column matrix ¥, being equal to the product of a square
matrix D[R] and a column matrix ¥, , i.e

R[W,] = [DIR]][¥.]. (A1.4.69)

Each operation in a symmetry group of the Hamiltonian will generate such an / x /
matrix, and it can be shown (see, for example, appendix 6-1 of [1]) that if three
operations of the group P,, P, and P, are related by

PP =P (A1.4.70)

then the matrices generated by application of them to the ¥, . (as described by (equation
A1.4.67)) will satisfy



D[P,1D[P:] = D[P:]. (A1.4.71)

Thus, the matrices will have a multiplication table with the same structure as the
multiplication table of the symmetry group and hence will form an /-dimensional
representation of the group.
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A given /-fold degenerate state can generate a reducible or an irreducible /-dimensional representation of the sy
group considered. If the representation is irreducible then the degeneracy is said to be necessary, i.e., imposed
symmetry of the Hamiltonian. However, if the representation is reducible then the degeneracy between the dift
states is said to be accidental and it is not imposed by the symmetry of the Hamiltonian. The occurrence of acc
degeneracy can indicate that some other symmetry operation has been forgotten, or paradoxically it can indicat
many symmetry operations (called unfeasible symmetry operations in section A1.4.4) have been introduced.

These considerations mean that, for example, using the symmetry group S for the PH; molecule (see table Al
energy levels are determined to be of symmetry type 4, A, or E. In molecular physics the labelling of molecul
levels according to the irreducible representations of a symmetry group is mainly what we use symmetry for. C
have labelled the energy levels of a molecule, we can use the labels to determine which of the levels can infera
each other as the result of adding a term J#i'to the molecular Hamiltonian. This term could be the result of apply:
external perturbation such as an electric or magnetic field, it could be the result of including a previously uncor
term from the Hamiltonian, or this term could result from the effect of shining electromagnetic radiation throuy
of the molecules. In this latter case the symmetry labels enable us to determine the selection rules for allowed t
in the spectrum of the molecule. All this becomes possible by making use of the vanishing integral rule.

A1.4.2.6 THE VANISHING INTEGRAL RULE

To explain the vanishing integral rule we first have to explain how we determine the symmetry of a product. G
fold degenerate state of energy £, and symmetry I, , with eigenfunctions @, |, ® ,,...,®, , and an r-fold degen
state of energy £, and symmetry I , with eigenfunctions @, ®, ,,...,®, , we wish to determine the symmef
the set of functions ‘Ir’l.. = d)m.(ij, wherei=1, 2,...,s and j =1, 2,...,r. There will be s x r functions of the type

matrices 2" "and P"~in the representations [ and I, , respectively, are obtained from (see (equation A1.4.67))

g
R{D,” = Z '”‘[ ! [R]f.ﬂ mnk
k=1
and

R{bauj = z 'rer [R]jf¢}rrlf
=1

where R is an operation of the symmetry group. To obtain the matrices in the representation I’ we write
nm

Rl Py q}mj] . Z z D' [R]ix Dl [R]_,r':q)nﬁ; -

k=1 I=I1
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and we can write this as

Ry =3 % D™ [R]ju W
k=1 f=I

From this we see that the s x r dimensional representation I, = generated by the s x r functions ‘I’ij has matrice
elements given by

D" [R);jur = D" [R)u D™ [R];

where each element of £2"*=is indexed by a row label ij and a column label &/, each of which runs over s x r va
ij,ij diagonal element is given by

D[R], = DT [R); D[R],

and the character of the matrix is given by
L3 &

x' " [R] = Z ; D" [RY;ji = Z E D"*[R)i D' [R]

k=1 k=1
= x"[R1x""[R).

We can therefore calculate the character, under a symmetry operation R, in the representation generated by the
of two sets of functions, by multiplying together the characters under R in the representations generated by eac
sets of functions. We write I', = symbolically as

rnm = l",, @ 1",,.,

where the characters satisfy (equation A1.4.78) in which usual algebraic multiplication is used. Knowing the c|
in", from (equation A1.4.78) we can then reduce the representation to its irreducible components using (equ
A1.4.47). Suppose I', = can be reduced to irreducible representations I'}, I'; and I'; according to

Ny@l, =3 el d 2.
In this circumstance we say that I contains I',,[ ', and I';; since [’ ® I contains [",, for example, we write
nm 12 3 n m 1

rar @ rﬂl 2 lql-
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Suppose that we can write the total Hamiltonian as ff= i0+ fi', where fi' is a perturbation. Let us further

0 0
suppose that the Hamiltonian #f 0 (#' having been neglected) has normalized eigenfunctions l'Ul'n'and lpn, with

Eﬂ

0 -
mand £ n, respectively, and that /19 commutes with the group of symmetry operations G =

" Ogpo -
{R.R,,...R,}. 19 will transform as the totally symmetric representation I'® of G, and we let '-lfm’q.n" and '

eigenvalues



generate the representations I’ , I', and I'" of G, respectively. The complete set of eigenfunctions of i1 forms

a basis set for determining the eigenfunctions and eigenvalues of the Hamiltonian ff= % + i and the
Hamiltonian matrix H in this basis set is a matrix with elements //, given by the integrals

[hE

H,, = f e H + HYyW dr = 8, E'+ H! (A1.4.82)
where

H,, = f Wl H W dr. (A1.4.83)

The eigenvalues E of ffcan be determined from the Hamiltonian matrix by solving the secular equation
IHarm - ‘Smﬂ El =0. (A1.4.84)

In solving the secular equation it is important to know which of the off-diagonal matrix elements Homyvanish

since this will enable us to simplify the equation.

L]

We can use the symmetry labels I', and I', on the levels E® and E”, together with the symmetry I of ', to

determine which H,,elements must vanish. The function ul.r:: * ﬁ*wﬂgenerates the product representation

Mw*@T'@T, =T, (W2 * has symmetry T, *). We can now state the vanishing integral rule’: the matrix
element

nr

f\b” *Hw'dr =0 (A1.4.85)

if

(A1.4.86)

rp,*@r'er, pr#
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where I'®) is the totally symmetric representation. If ff' is totally symmetric in G then H,,,will vanish if

Fp*®l, 21" (A1.4.87)
Le., if
P (A1.4.88)

It would be an accident if H,,,vanished even thoughT', =~ D ['*) but if this were the case it might well
indicate that there is some extra unconsidered symmetry present.

The value of the vanishing integral rule is that it allows the matrix H to be block diagonalized. This occurs if



we order the eigenfunctions l]J:E'according to their symmetry when we set up H. Let us initially consider the

case when I'" = I'®)_ In this case all off-diagonal matrix elements between l]ifbasis functions of different
symmetry will vanish, and the Hamiltonian matrix will block diagonalize with there being one block for each
symmetry type of Ll’ﬂ'function. Each eigenfunction of #will only be a linear combination of Ll"?functions

having the same symmetry in G (G being the symmetry group of #1°. Thus the symmetry of each
eigenfunction ‘Pj of #in the group G will be the same as the symmetry of the l«l’fbasis functions that make it

up (G is a symmetry group of fwhen I'" = F(S)) and each block of a block diagonal matrix can be diagonalized
separately, which is a great simplification. The symmetry of the ‘Pj functions can be obtained from the
symmetry of the ll’ffunctions without worrying about the details of #' and this is frequently very useful.

When I'" = T'®) all off-diagonal matrix elements between P functions of symmetry [ and ' will vanish if
(equation A1.4.87) is satisfied, and there will also be a block diagonalization of H (it will be necessary to
rearrange the rows or columns of H, i.e., to rearrange the order of the I-]-'E'functions, to obtain H in block

diagonal form). However, now nonvanishing matrix elements occur in H that connect L]J:;’functions of
different symmetry in G and as a result the eigenfunctions of #fmay not contain only functions of one
symmetry type of G; when I = r'®) the group G is not a symmetry group of #and its eigenfunctions ‘Pj
cannot be classified in G. However, the classification of the basis functions L]!::’in G will still allow a
simplification of the Hamiltonian matrix.

The vanishing integral rule is not only useful in determining the nonvanishing elements of the Hamiltonian

matrix H. Another important application is the derivation of selection rules for transitions between molecular

states. For example, the intensity of an electric dipole transition from a state with wavefunction gy tf'™¥)}o a
i

state with wavefunction y* ,’.""-‘" #X(see (equation A1.4.12)) is proportional to the quantity
i

2
(F e F*.m
IT|* = | f RTINS (A1.4.89)
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where p , 4 =X, Y, Z, is the component of the molecular dipole moment operator along the 4 axis. If

g'F medand  'F " belong to the irreducible representations ' ™eland ! F"ame), respectively and p , has
i /" 7 i

the symmetry I'(u ), then | T

2, and thus the intensity of the transition, vanishes unless
H"".m;-}

r " @ Py @ 't ™ 51w, (A1.4.90)

In the rotational symmetry group K (spatial) discussed in section A1.4.1.1, we have l—-‘_f = pU),
J

pFme)= DY) and T'p )= DW. n this case the application of the vanishing integral rule leads to the
i

selection rule given in (equation A1.4.13) (see section 7.3.2, in particular equation (7-47), of [1]).

A1.4.3 SYMMETRY OPERATIONS AND SYMMETRY GROUPS

The various types of symmetry enumerated in section A1.4.1.2 are discussed in detail here and the symmetry
groups containing such symmetry operations are presented.




A1.4.3.1 TRANSLATIONAL SYMMETRY

In the active picture adopted here the (X,Y,Z) axis system remains fixed in space and a translational symmetry
operation changes the (X,Y,Z) coordinates of all nuclei and electrons in the molecule by constant amounts, (A
X,AY,AZ)say,

(X,—.‘r’;.?ﬂ,-} — [X,-+ﬂ.}(.‘|"f*&"|’.?:,-+&ﬁj. (A1.4.91)

We obtain a coordinate set more suitable for describing translational symmetry by introducing the centre of
mass coordinates

1 I « 1 o
(Xg, Yo, Zp) = (E ; mi Xi. o ;rn, vl g Y ) (A1.4.92)
together with

(X;. Y., Z)=(X; — Xp. Y; —Yo.Z&; — Zg) (A1.4.93)

for each particle i, where there are / particles in the molecule (V nuclei and / — N electrons), m; is the mass of
particle i and M = z mIIS the total mass of the molecule. In this manner we have 1ntroduced a new axis

system (X, Y, Z)
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with axes parallel to the (X,Y,Z) axes but with origin at the molecular centre of mass. The molecule is
described by the 3/ coordinates

Xo. Yo, L0, X2, Yo, 22, X3, Y5, 25,000 b C fAV AR

The coordinates (X|,Y,,Z,) are redundant since they can be determined from the condition that the (X, Y, Z)
axis system has origin at the molecular centre of mass. Obviously, the translational symmetry operation
discussed above has the effect of changing the centre of mass coordinates

(Xp. Yo. Zg) = (XpH AX, Yo+ AY, 2y + AZ) (A1.4.94)
whereas the coordinates X,, Y,, Z,, X3, Y3, Z3,...,X},Y}, Z; are unchanged by this operation.

We now define the effect of a translational symmetry operation on a function. Figure A1.4.3 shows how a
PH, molecule is displaced a distance A X along the X axis by the translational symmetry operation that
changes X, to X X T A X. Together with the molecule, we have drawn a sine wave symbolizing the
molecular wavefunction, ‘Pj say. We have marked one wavecrest to better keep track of the way the function
is displaced by the symmetry operation. For the physical situation to be unchanged by the symmetry

operation, the marked wavecrest and thus the entire wavefunction, is displaced by A X along the X axis as
shown in Figure A1.4.3 . Thus, an operator R['i"x AY.AZ) . which describes the effect of the translational

symmetry operation on a wavefunction, is deﬁned according to the S-convention (see (equation A1.4.57))

(A1.4.95)



Rl;ﬁ.‘(.ﬂ‘f.ddrmj{xu‘ ?U.Zﬂ. Xo Vo, 2o, X Vs Zsy 0 X Y 2D
= W;(Xo — AX. Yo — AY, Zg — AZ, X. Yo, Z2, X3, V3. Z3, . ... X0, Vi Z0).

This definition causes the wavefunction to ‘move with the molecule’ as shown for the X direction in figure
A1.4.3. The set of all translation symmetry operations R_[r‘i"x' AY.A%)constitutes a group which we call the
trans?atior.lal group G B'ecause of the uniformit}{ of space, G is a symmetry group of the molecular
Hamiltonian #in that all its elements commute with #:

[REXAYAD) F) _ g (A1.4.96)

We could stop here in the discussion of the translational group. However, for the purpose of understanding the
relation between translational symmetry and the conservation of linear momentum, we now show how the

operator R_[r‘i"x' AY.82)can be expressed in terms of the quantum mechanical operators representing the

translational linear momentum of the molecule; these operators are defined as

- - - 3 i d
Py, Py, Py = | —if . —1F] , —17 . A1.4.97
(Px, Py, Pz) ( ”:’D{ﬂ ”E}Yn “E}Zn.) ( )
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The translational linear momentum is conserved for an isolated molecule in field free space and, as we see
below, this is closely related to the fact that the molecular Hamiltonian commutes with R'[rﬁx' AY.AZ)for all

values of (A X, AY, A Z). The conservation of linear momentum and translational symmetry are directly
related.

1 - N
X
] -[:—1-
AX
-7'\.
L - x

K |‘;|

Figure A1.4.3. A PH; molecule and its wavefunction, symbolized by a sine wave, before (top) and after
(bottom) a translational symmetry operation.

In order to determine the relationship between R_[r‘j'x' AY.5%)and the (F X,F Y,F ) operators, we consider a

translation R,‘r‘f‘x'n"}’where A X is infinitesimally small. In this case we can approximate the right hand side of
(equation A1.4.95) by a first-order Taylor expansion:




R#'i.x.'].u:l wJ‘{X“" Ylh ZU" X:‘I YE, 22‘ PR Xju Yf1 zI}
= W;(Xo — 8X, Yo, Zy, X2, Yo, Za, ..., X0, Y1, Z1)
i ;

=¥ (Xp. Yo. Zo, X2. Y2, Zg, ..., X0 Y1, Z)) — 28X,
dXi

(A1.4.98)

From the definition of the translational linear momentum operator P x (in (equation A1.4.97)) we see that

W, i~
i _Pow, A1.4.99
aXg R ( )

and by introducing this identity in (equation A1.4.98) we obtain

R_iax_ﬂ.m W=, — ;_5;.{ Fx‘l’; (A1.4.100)
I
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where we have omitted the coordinate arguments for brevity. Since the function ‘P in (equation A1.4.100) is
arbitrary, it follows that we can write the symmetry operation as

e %axﬁx. (A1.4.101)

The operation R.ir‘jx'n'm, for which A X is an arbitrary finite length, obviously has the same effect on a

wavefunction as the operation R%_‘ix-”-'}’

translation by A X into AX/8X steps, each step of length X. This remains true in the limit of X — 0. Thus

applied to the wavefunction AX/6X times. We simply divide the

RIAX00) _ Ilm {R:Hnm] M _ J!,E'“ (I B ILEXF){)h — exp (—;—TQKFX) (A1.4.102)
1

where we have used the general identity

1Einbl[] +ax)'"™ = explay). (A1.4.103)
We can derive expressions analogous to (equation A1.4.102) for R,‘rﬂ'“v'“'and R.‘r”'”' A%)and we can resolve a
general translation R['J'"x AY.AZ)3g
R[ﬂ.x LAY, .'l.ﬁ!l %&X.ﬂ.ﬂlﬁ%‘ﬂ LAY ﬂ!IR_Ifrl'J LIS ﬁ&l (A1.4.104)

Consequently,

(A1.4.105)



R_(rﬂ.x,a‘f.ﬂ.zﬁ = exp [_Il{ﬂ}{f?x + ﬂYF‘;‘, ¥ ,&.Eﬁ,;)] .
i

We deal with the exponentials in (equation A1.4.102) and (equation A1.4.105) whose arguments are operators
by using their Taylor expansion

- o~ 1 -
cxpi) =1+10+ al{i()}* +.s (A1.4.1086)

o
where (Jis a Hermitian operator.
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It follows from (equation A1.4.105) that (equation A1.4.96) is satisfied for arbitrary A X, A'Y, A Z if and only
if

[ff. Fx] = [f—?, Fv] = [ﬁ. F{;] = 0. (A1.4.107)

From the fact that ffcommutes with the operators (F X,F Y,F ) it is possible to show that the linear

momentum of a molecule in free space must be conserved. First we note that the time-dependent
wavefunction W(¢) of a molecule fulfills the time-dependent Schrédinger equation

mdll-’{!:l

= Hu(). (A1.4.108)

o

For 4 =X, Y, or Z, we use this identity to derive an expression for

i

)y = -
= |P,‘|!P(r}) I (tli{r}‘m{m\ll(r]])

W) = ~ W)
=(‘ : |P,¢|w(r})-{wm|m|’ : }
ar HE;

i _~
(A1.4.109)

where, in the last equality, we have used the fact that P 4 does not depend explicitly on 7. We obtain 0¥(¢)/0 ¢
from (equation A1.4.108) and insert the resulting expression in (equation A1.4.109); this yields

H | - i o - - -
= ()| Py W)} = .,_luﬁwmlmm-m} — (W) Py | W)Y
! (A1.4.110)
i -
= i{‘l‘h]‘l[h’- Pyllwie)) =0

where we have used (equation A1.4.107) in conjunction with the fact that ffis Hermitian. (Equation A1.4.110)
shows that the expectation value of each linear momentum operator is conserved in time and thus the
conservation of linear momentum directly follows from the translational invariance of the molecular
Hamiltonian ((equation A1.4.96)).




Because of (equation A1.4.107) and because of the fact that P x> P y and P , commute with each other, we
know that there exists a complete set of simultaneous eigenfunctions of P X P v P 7 and H. An eigenfunction
of FX’ FY and FZ has the form

Wr(Xo, Yo. Zo) = explitkxXo + kv Yo + kzZ0)] (A1.4.111)
32-
where
PaWr(Xo, Yo, Zo) = hkaWr(Xo, Yo. Zo) (A14.112)

with A =X, Y or Z, so that ((equation A1.4.105))

Hl.-i!'{..i'."'. ALY

P X, Yy, Z) = exp[—ifAXEy + AYEy + ALk (X, Y ). (A1.4.113)

That is, the effect of a translational operation is determined solely by the vector with components (ky.k.k,)
which defines the linear momentum.

For a molecular wavefunction ¥ (X, Y, Zy, X,, ¥,, Z,, ..., X}, ¥}, Z)) to be a simultaneous eigenfunction of
Py, Py, P, and Hit must have the form

W, (Xo. Yo. fou Koo Vo 2z X W Z) = WX, Yo ZoWin (X2 Vo 0 X B 2D (A1.4.114)

where ¥,  describes the infernal motion of the molecule (see also section 7.3.1 of [1]).

We can describe the conservation of linear momentum by noting the analogy between the time-dependent
Schrodinger equation, (equation A1.4.108), and (equation A1.4.99). For an isolated molecule, #does not
depend explicitly on ¢ and we can repeat the arguments expressed in (equation A1.4.98), (equation A1.4.99),
(equation A1.4.100), (equation A1.4.101) and (equation A1.4.102) with X replaced by ¢ and P  replaced by —

Fi to show that

W (f) = exp (%rﬁ) W =0). (A1.4.115)

If the wavefunction at £ = 0, (¢ = 0), is an eigenfunction of P x> P v P 7 and Hso that it can be expressed as

given in (equation A1.4.114), it follows from (equation A1.4.115) that at any other time ¢,
i
) =exp(F—rE) Vit =0) (A1.4.116)
i

where E is the energy (i.e., the eigenvalue of Hassociated with the eigenfunction (¢ = 0)). It is
straightforward to show that this function is an eigenfunction of Py, P, P, and Hwith the same eigenvalues

as W(¢ = 0). This is another way of proving that linear momentum and energy are conserved in time.

A1.4.3.2 ROTATIONAL SYMMETRY



In order to discuss rotational symmetry, we must first introduce the rotational and vibrational coordinates
customarily used in molecular theory. We define a set of (x, y, z) axes with an orientation relative to the (X, Y,
Z) axes discussed
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above that is defined by the positions of the nuclei. These axes are called ‘molecule fixed’ axes; their
orientation is determined by the coordinates of the nuclei only and the coordinates of the electrons are not
involved. The (x, y, z) and (X, Y, Z) axis systems are always chosen to be right handed. For any placement of
the N nuclei in space (i.e., any set of values for the 3N — 3 independent coordinates X, Y; and Z; of the nuclei)
there is an unambiguous way of specifying the orientation of the (x, y, z) axes with respect to the (X, Y, Z)
axes. Three equations are required to define the three Euler angles (0, ¢, y) (see figure A1.4.4 that specify this
orientation and the equations used are the Eckart (equation A1.4.5). The Eckart equations minimize the
angular momentum in the (x, y, z) axis system and so they optimize the separation of the rotational and
vibrational degrees of freedom in the rotation—vibration Schrédinger equation. It is described in detail in
chapter 10 of [1]} how, by introducing the Eckart equations, we can define the (x, y, z) axis system and thus
the Euler angles (0, ¢, x). Suffice it to say that we describe the internal motion of a nonlinear molecule 8 by 3/
— 3 coordinates, where the first three are the Euler angles (0, ¢, y) describing rotation, the next 3N — 6 are
normal coordinates Q,, Q,, O3, ..., O35 _ describing the vibration of the nuclei and the remaining 3(/— N)
are electronic coordinates XN 1o VN1 ZNa1e SN Yo Ensase s Xp V1 Zp simply chosen as the Cartesian
coordinates of the electrons in the (x, y, z) axis system.

) \ﬁ"/——' P

Figure A1.4.4. The definition of the Euler angles (0, ¢, y) that relate the orientation of the molecule fixed (x,
y, z) axes to the (X, ¥, Z) axes. The origin of both axis systems is at the nuclear centre of mass O, and the node
line ON is directed so that a right handed screw is driven along ON in its positive direction by twisting it from
Z to z through 6 where 0 < 0 < 7. ¢ and y have the ranges 0 to 2.  is measured from the node line.

We consider rotations of the molecule about space-fixed axes in the active picture. Such a rotation causes the
(x, y, z) axis system to rotate so that the Euler angles change

(B, ¢, x)— (B+ A0, 0+ AD, x +Ax). (A1.4.117)

The normal coordinates Qr, r=1,2,...,3N -6, and the electronic coordinates Xp Y2 0= N+1,N+2,...,1
all describe motion relative to the (x, y, z) axis system and are invariant to rotations.
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Initially, we neglect terms depending on the electron spin and the nuclear spin Fin the molecular

Hamiltonian #f. In this approximation, we can take the total angular momentum to be N (see (equation
A1.4.1)) which results from the rotational motion of the nuclei and the orbital motion of the electrons. The

components of IWin the (X, Y, Z) axis system are given by:

o~ d i d
Ny =—ift| —singp— +cosecH cosgp— — mtﬁms-:ﬁv,—) (A1.4.118)

af? iy deh
Ny = —if [cosd—= + cosec 0 sin @~ — cot0 sind—. A1.4.119
¥y = 1 L{Jb-q.')m} cosec i 51 ¢'ax cot (¢ 51 qu' (A1.4.119)

and
e . ﬂ

Ny = _ma_' (A1.4.120)

By analogy with our treatment of translation symmetry, we aim to derive an operator R:{M -A.Ak)which,
when applied to a wavefunction, describes the effect of a general symmetry operation that causes the change
in the Euler angles given in (equation A1.4.117). Because of the analogy between (equation A1.4.120) and the
definition of Py in (equation A1.4.97), we can repeat the arguments expressed in (equation A1.4.98),

(equation A1.4.99), (equation A1.4.100), (equation A1.4.101) and (equation A1.4.102) with X replaced by ¢
to show that

Ry A" = exp (—;—r.ﬁghﬁz). (A1.4.121)
A more involved derivation (see, for example, section 3.2 of Zare [6]) shows that for a general rotation
R2A%A1) — oxp (— F—: ﬁéﬁ'}) exp (— ;—r&fﬂﬁr) exp (— %r_‘.xﬁg) . (A1.4.122)
The operators N yand N - 1n (equation A1.4.122) do not commute and we have (see equation (10-90) of [1])

[Ny. N2] = inNy. (A1.4.123)

The commutators [ﬁ' X,f"'} yl and [f"'} Z,f"'} ] are obtained by replacing X' Y Zby Z X Y and Y Z X, respectively, in

(equation A1.4.123). It is, therefore, important in using (equation A1.4.122) that the exponential factors be
applied in the correct order.
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The set of all rotation operations g *"#¢-***orms a group which we call the rotational group K (spatial).

Since space is isotropic, K (spatial) is a symmetry group of the molecular Hamiltonian fin that all its
elements commute with i:



[R:{M‘M‘aﬂﬁ] — 0. (A1.4.124)

It follows from (equation A1.4.122) that (equation A1.4.124) is satisfied for arbitrary (A6,A¢,Ay) if and only
if fcommutes with W yand N . But then Halso commutes with W v because of (equation A1.4.123). That is

[H,Ny]=[H Ny]=[H N,1=0 (A1.4.125)

this equation is analogous to (equation A1.4.107). We discussed above (in connection with (equation
A1.4.108), (equation A1.4.109) and (equation A1.4.110)) how the invariance of the molecular Hamiltonian to
translation is related to the conservation of linear momentum. We now see that, in a completely analogous
manner, the invariance of the molecular Hamiltonian to rotation is related to the conservation of angular
momentum.

The (X, Y, Z) components of 1‘? do not commute and so we cannot find simultaneous eigenfunctions of all the
four operators occurring in (equation A1.4.125). It is straightforwardly shown from the commutation relations
in (equation A1.4.123) that the operator

N? = NL+N}+ N2 (A1.4.126)

commutes with W, W, and IV ,. Because of (equation A1.4.125), this operator also commutes with . Asa

consequence, we can find simultaneous eigenfunctions of i, N2 and one component of N, customarily
chosen as IN,. We can use this result to simplify the diagonalization of the matrix representation of the

molecular Hamiltonian. We choose the basis functions as g,*"##-*). They are eigenfunctions of N2 (with
eigenvalues N(N + l)FJZ, N=0,1,2,3,4,...)and P?Z (with eigenvalues mh, m=—N,-N+1, ..., N— 1, N).

The functions ll-'f: N
of K (spatial) (see section A1.4.1.1). With these basis functions, the matrix representation of the molecular
Hamiltonian will be block diagonal in N and m in the manner described for the quantum numbers F and m , in

section Al1.4.1.1.

m=—N,-N+1,..., N— 1, N, transform according to the irreducible representation pW

If we allow for the terms in the molecular Hamiltonian depending on the electron spin 3(see chapter 7 of [1]),

the resulting Hamiltonian no longer commutes with the components of IWas given in (equation A1.4.125), but
with the components of

J=N+85. (A1.4.127)
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In this case, we choose the basis functions t]:r:i' oy that is, the eigenfunctions of J? (with eigenvalues J(J+1)
o MM g

W, =|N-S|, IN-S|+1,...N+5-1,N+5)and N, (with eigenvalues m i, m ;= — J, ~J + 1,....J-1, ).

: . ot 0 0 : 0
These functions are linear combinations of products W', W' Sumg where the function W'

2

is an
eigenfunction of 'W Zand N , as described above, and l]:f" P mis an eigenfunction of & 2 (with eigenvalues S(S

+ 1)."12, §=0,1/2,1,3/2,2,5/2,3,...)and SZ (with eigenvalues mgh, mg=—S,-S+1,...,5-1, S). In this



basis, the matrix representation of the molecular Hamiltonian is block diagonal in J and m . The functions

"]"':[‘. Sme =S, =S+ 1,...,.5-1, S, transform according to the irreducible representation DO of K (spatial) and
the functions t]:r:i' imy —J,-J+1,....J-1,J, have DY symmetry in K (spatial). Singlet states have S = 0 and

.

forthern..?=N,J=Nande=m.

Finally, we consider the complete molecular Hamiltonian which contains not only terms depending on the
electron spin, but also terms depending on the nuclear spin ¥ (see chapter 7 of [1]). This Hamiltonian
commutes with the components of Fgiven in (equation Al1.4.1). The diagonalization of the matrix
representation of the complete molecular Hamiltonian proceeds as described in section Al.4.1.1. The theory
of rotational symmetry is an extensive subject and we have only scratched the surface here. A relatively new
book, which is concerned with molecules, is by Zare [6] (see [7] for the solutions to all the problems in [6]
and a list of the errors). This book describes, for example, the method for obtaining the functions t]:r:i Lm}from

o and ¢ 5.m> and for obtaining the functions WO F.mg(section A1.4.1.1) from the 1113“ 4.m,combined with

eigenfunctions of ¥ Zand 7 7

A1.4.3.3 INVERSION SYMMETRY

We have already discussed inversion symmetry and how it leads to the parity label in section A1.4.1.2 and
section A1.4.2.5. For any molecule in field-free space, if we neglect terms arising from the weak interaction
force (see the next paragraph), the molecular Hamiltonian commutes with the inversion operation £* and thus
for such a Hamiltonian the inversion group £€= {E,E*} is a symmetry group. The character table of the
inversion group is given in table A1.4.5 and the irreducible representations are labelled + and — to give the
parity.

Table A1.4.5 The character table of the inversion group £

Often molecular energy levels occur in closely spaced doublets having opposite parity. This is of particular
interest when there are symmetrically equivalent minima, separated by a barrier, in the potential energy
function of the electronic state under investigation. This happens in the PH, molecule and such pairs of levels
are called ‘inversion doublets’; the splitting between such parity doublet levels depends on the extent of the
quantum mechanical tunnelling through the barrier that separates the two minima. This is discussed further in
section Al.4.4.
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The Hamiltonian considered above, which commutes with £*, involves the electromagnetic forces between
the nuclei and electrons. However, there is another force between particles, the weak interaction force, that is
not invariant to inversion. The weak charged current interaction force is responsible for the beta decay of
nuclei, and the related weak neutral current interaction force has an effect in atomic and molecular systems. If
we include this force between the nuclei and electrons in the molecular Hamiltonian (as we should because of
electroweak unification) then the Hamiltonian will not commute with £*, and states of opposite parity will be
mixed. However, the effect of the weak neutral current interaction force is incredibly small (and it is a very
short range force), although its effect has been detected in extremely precise experiments on atoms (see, for



example, Wood et al [8], who detect that a small part (~10_”) of a P state of caesium is mixed into an S state
by this force). Its effect has not been detected in a molecule and, thus, for practical purposes we can neglect it

and consider £* to be a symmetry operation. Note that inversion symmetry is not a universal symmetry like
translational or rotational symmetry and it does not derive from a general property of space. In the theoretical
physics community, when dealing with particle symmetry, the inversion operation is called the ‘parity
operator’ P.

An optically active molecule is a particular type of molecule in which there are two equivalent minima
separated by an insuperable barrier in the potential energy surface and for which the molecular structures at
these two minima are not identical (as they are in PH,) but are mirror images of one another. The two forms
of the molecule are called the dextrorotatory (D) and laevorotatory (L) forms and they can be separated. The
D and L wavefunctions are not eigenfunctions of £* and E* interconverts them. In the general case
eigenstates of the Hamiltonian are eigenstates of £* and they have a definite parity. In the laboratory, when
one makes an optically active molecule one obtains a racemic 50/50 mixture of the D and L forms, but in
living organisms use is made of only one isomer; natural proteins, for example, are composed exclusively of
L-amino acids, whereas nucleic acids contain only D-sugars. This fact is unexplained but it has been pointed
out (see [9] and references therein) that in the molecular Hamiltonian the weak neutral current interaction
term ﬁ‘Wl would give rise to a small energy difference between the energy levels of the D and L forms, and

this small energy difference could have acted to select one isomer over the long time of prebiotic evolution.
The experimental determination of the energy difference between the D and L forms of any optically active
molecule has yet to be achieved. However, see Daussy C, Marrel T, Amy-Klein A, Nguyen C T, Bordé C J
and Chardonnet C 1999 Phys. Rev. Lett. 83 1554 for a recent determination of an upper bound of 13 Hz on the
energy difference between CHFCIBr enantiomers.

A very recent paper concerning the search for a parity-violating energy difference between enantiomers of a
chiral molecule is by Lahamer A S, Mahurin S M, Compton R N, House D, Laerdahl J K, Lein M and
Schwerdtfeger P 2000 Phys. Rev. Lett. 85 4470. The importance of the parity-violating energy difference in
leading to prebiotic asymmetric synthesis is discussed in Frank P, Bonner W A and Zare R N 2000 On one
hand but not the other: the challenge of the origin and survival of homochirality in prebiotic chemistry
Chemistry for the 21st Century ed E Keinan and I Schechter (Weinheim: Wiley-VCH) pp 175-208.

A1.4.3.4 IDENTICAL PARTICLE PERMUTATION SYMMETRY

If there are n electrons in a molecule there are n! ways of permuting them and we can form the permutation
group (or symmetric group) S'“’of degree n and order n! that contains all the electron permutations. The
molecular Hamiltonian is invariant to the elements of this group. Similarly, there can be sets of identical
nuclei in a molecule and the Hamiltonian is invariant to the relevant identical-nucleus permutation groups. For
example, the ethanol molecule
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CH,;CH,OH consists of 26 electrons, a set of six identical hydrogen nuclei, a set of two identical carbon
nuclei and a lone oxygen nucleus. The molecular Hamiltonian of ethanol is therefore invariant to the 26! (~4 X

10%6) elements of the electron permutation group Si;’, the 6! = 720 possible permutations of the hydrogen

nuclei in the group g/H*

6
5‘5‘: ). The group of all possible permutations of identical nuclei in a molecule is called the complete nuclear

and the two possible permutations of the C nuclei (£ and their exchange) in the group

permutation (CNP) group of the molecule GNP For ethanol GNP consists of all 6! elements of S{"”’and of

all these elements taken in combination with the exchange of the two C nuclei; 2 x 6! elements in all. This
CNP group is called the direct product of the groups Sé” 'and §!“'and is written

(A1.4.128)



H C
GV =8" 08"

The CNP group of a molecule containing / identical nuclei of one type, m of another, »n of another and so on is
the direct product group

GN=8525,25,... (A1.4.129)

and the order of the group is /! x m! x n!.... It would seem that we have a very rich set of irreducible
representation labels with which we can label the molecular energy levels of a molecule using the electron
permutation group and the CNP group. But this is not the case for internal states described by W, (see
(equation A1.4.114)) because there is fundamentally no observable difference between states that differ
merely in the permutation of identical particles. The environment of a molecule (e.g. an external electric or
magnetic field, or the effect of a neighbouring molecule) affects whether the Hamiltonian of that molecule is
invariant to a rotation operation or the inversion operation; states having different symmetry labels from the
rotation or inversion groups can be mixed and transitions can occur between such differently labelled states.
However, the Hamiltonian of a molecule regardless of the environment of the molecule is invariant to any
identical particle permutation. Two ‘¥, . states that differ only in the permutation of identical particles are
observationally indistinguishable and there is only one state. Since there is only one state it can only transform
as one set of irreducible representations of the various identical particle permutation groups that apply for the
particular molecule under investigation. It is an experimental fact that particles with half integral spin (called
fermions), such as electrons and protons, transform as that one-dimensional irreducible representation of their

permutation group that has character +1 for all even permutations® and character —1 for all odd permutations.

Nuclei that have integral spin (called bosons), such as 12¢ nuclei and deuterons, transform as the totally
symmetric representation of their permutation group (having character +1 for all permutations). Thus fermion

wavefunctions are changed in sign by an odd permutation but boson wavefunctions are invariant. This simple
experimental observation has defied simple theoretical proof but there is a complicated proof [10] that we
cannot recommend any reader of the present article to look at.

The fact that allowed fermion states have to be antisymmetric, i.e., changed in sign by any odd permutation of

the fermions, leads to an interesting result concerning the allowed states. Let us write a state wavefunction for
a system of »n noninteracting fermions as

| X} = lar}Ba}les) . . lgn) (A1.4.130)
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where this indicates that particle 1 is in state a, particle 2 in state b and so on. Clearly this does not correspond
to an allowed (i.e., antisymmetric) state since making an odd permutation of the indices, such as (12), does not
give —1 times |X) But we can get an antisymmetric function by making all permutations of the indices in |X)
and adding the results with the coefficient —1 for those functions obtained by making an odd permutation, i.e.,

|Fy =) +Plar}lbablcs) - . qn) (A1.4.131)
P

where the sum over all permutations involves a + or — sign as the permutation P is even or odd respectively.
We can write (equation A1.4.131) as the determinant



ey} by ler) .. lgu)
laz} B2} ) .. lg2)

(A1.4.132)

laa) 1B} len) oo lga)

The state | F) is such that the particle states a, b, c,..., g are occupied and each particle is equally likely to be
in any one of the particle states. However, if two of the particle states a, b, c,...,q are the same then | F)
vanishes; it does not correspond to an allowed state of the assembly. This is a characteristic of antisymmetric
states and it is called ‘the Pauli exclusion principle’: no two identical fermions can be in the same particle
state. The general function for an assembly of bosons is

|B) = Z Pla}iadles) ... lgn) (A1.4.133)
j]‘

where the sum over all permutations involves just ‘+’ signs. In such a state it is possible for two or more of
the particles to be in the same particle state.

It would appear that identical particle permutation groups are not of help in providing distinguishing
symmetry labels on molecular energy levels as are the other groups we have considered. However, they do
provide very useful restrictions on the way we can build up the complete molecular wavefunction from basis
functions. Molecular wavefunctions are usually built up from basis functions that are products of electronic
and nuclear parts. Each of these parts is further built up from products of separate ‘uncoupled’ coordinate (or
orbital) and spin basis functions. When we combine these separate functions, the final overall product states
must conform to the permutation symmetry rules that we stated above. This leads to restrictions in the way
that we can combine the uncoupled basis functions.

We explain this by considering the H, molecule. For the H, molecule we label the electrons a and b, and the
hydrogen nuclei 1 and 2. The electron permutation group is 5_‘,*‘ '= {E,(ab)}, and the CNP group GNP = {E,

(12)}. The character tables of these groups are given in table A1.4.6 and table A1.4.7}. If there were no
restriction on permutation symmetry we might think that the energy levels of the H, molecule could be of any
one of the following four symmetry
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types using these two groups: ([":“', ]"‘ECNP'), ([":“', ), (ple), r'ﬁCNP') and ('), 7). However, both
electrons and protons are fermions (having a spin of 1/2) and so, from the above rules, the wavefunctions of
the H, molecule must be multiplied by —1 by both (ab) and (12). Thus the energy levels of the H, molecule

can only be of symmetry (["!), " LCKP])‘

(eh
Table A1.4.6 The character table of the group Sy

E</b< (ab)




These limitations lead to electron spin multiplicity restrictions and to differing
nuclear spin statistical weights for the rotational levels. Writing the electronic

wavefunction as the product of an orbital function ¥ and a spin function ¥,
there are restrictions on how these functions can be combined. The restrictions are

imposed by the fact that the complete function ¥ ¥ has to be of symmetry
["{'in the group g'¢). The orbital function ‘¥ can be of symmetry [":“'or [i'and,

for example, ¥ for the ground electronic state of H, has symmetry I":"'. For a two

electron system there are four possible electron spin functions!?: aa, of3, po and

BP, where o is a ‘spin-up’ function having m¢=+1/2 and f is a ‘spin-down’
function having m¢=—1/2. The functions LIJ:: )= oo and 111531: BB are invariant to

the operation (ab) and therefore have symmetry l"':"". The functions aff and Bo are
interchanged by (ab) and do not transform irreducibly, but it is easy to see that
their sum and difference, Wii'= («f + Ba)/+/2 and W'¥'= (af — Par)/ 2, transform
as [‘:"'and ["!“'respectively. The three functions llf'[ 1, p!2and W, each of

z e :

symmetry 1":"', form a triplet electron spin state (with mg=1, -1 and 0, for §=1)
and the function .4,-{ 1), having symmetry ["¢)is a singlet state (with S = 0). The
s =

ground electronic state cannot be a triplet state since if it were then the symmetry
of both ¥ and ¥ would be [‘:"'and the product would therefore be of symmetry

I":“'which is not allowed. Hence the ground electronic state of H, has to be a

singlet electronic state.

The way we combine the nuclear spin basis functions ¥ . with the rotation—
vibration—electronic basis functions ¥, in H, follows the same type of argument
using the nuclear permutation group GNP Rovibronic states of symmetry

]"'EC Pican only be combined with W ¢ of species [ C¥F)(of which there is one with

2
(CNF)

I=0), and rovibronic states of symmetry [*,~"" 'can only be combined with ¥ of

species riCNP'(of which there are three with /= 1). Thus rovibronic states of

symmetry ]"':CNP'have a nuclear spin statistical weight of 1, and rovibronic states
of symmetry [‘;ﬂ:p
of these considerations follows for the '*0Q,molecule by using the GENP group.

Labelling the O nuclei 1 and 2 this group is as in table A1.4.7. The spin of 160
nuclei is 0 and so the nuclear spin wavefunction is of species ]"‘ECNP'. There is no

(CNPYipy 180, Since 190 nuclei are bosons

'have a nuclear spin statistical weight of 3. An interesting result

nuclear spin wavefunction of species [
the complete wavefunction must be of symmetry and thus
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rovibronic states of species [‘,ECKP](WhiCh can only be combined with a nuclear spin wavefunction of species
(CNP) B
> ) have no nuclear spin partner with which to combine. Thus these states cannot occur and are ‘missing.’

This means that half the rotational levels of every vibronic state are missing in this molecule. Missing levels

arise in other molecules and can also involve nuclei with nonzero spin; they arise for the ammonia molecule
NH,.

Table A1.4.7 The character table of the group GNP for H,.

E (12)



(CNPY 1 1
rl .
iChP] 1 -1

The Pauli exclusion principle follows from the indistinguishability of electrons and the rules of fermion
permutation. It prevents the occurrence of states that have two or more electrons in the same particle state. As
a result of the indistinguishability of nuclei, and the rules of fermion and boson permutation, there are missing
levels. Both of these results can be tested experimentally. A negative result from trying to put an electron into
the 1S state of Cu (this state already having two electrons of opposite spin in it) was reported by Ramberg and
Snow [11] and by analysing their results they determined an upper limit for the violation of the Pauli
exclusion principle of 1.7 x 102%; this means that at this level the electrons are indistinguishable. Attempts to
observe spectral lines that would arise from transitions between ‘missing’ levels have been made in order to
see whether the levels are truly missing. Such missing levels would arise if the nuclei involved are not
completely identical. Such a situation is conceivable. Three negative attempts at a sensitivity level of only

about 10~ have been reported [12, 13, 14].

A1.4.3.5 TIME REVERSAL SYMMETRY

The time reversal symmetry operation # (or 7) is the operation of reversing the direction of motion; it reverses
all momenta, including spin angular momenta, but not the coordinates (see [15] for a good general account of
this symmetry operation). As with the inversion operation £* the weak interaction force is not invariant to
time reversal and we discuss this further in the next subsection. However, for all practical purposes in
molecular physics we can take this to be a symmetry operation. This symmetry operation has the property,
unlike the other symmetry operations discussed here, of being antiunitary. Also, time reversal invariance does
not lead to any conservation law and molecular states are not eigenstates of #. However, this symmetry
operator constrains the form of the Hamiltonian, an example being that no term in the Hamiltonian can
contain the product of an odd number of momenta. Also, it is sometimes a useful tool in determining whether
certain matrix elements vanish (see, for example, [16]) and it can be responsible for extra degeneracies. In
particular, if a symmetry group has a pair of irreducible representations, I" and ['* say, whose characters are
the complex conjugates of each other, then energy levels of symmetry I' and I'* will always coincide in pairs
and be degenerate because of time reversal symmetry. Such a pair of irreducible representations of a
symmetry group are called ‘separably degenerate’. The irreducible representations £, and £ of the point
group Cj (see table A1.4.8) are separably degenerate. Such a character table can be condensed by adding the
characters of the separably degenerate irreducible representations and this is done for the C; group in table
A1.4.9. In the condensed character table the separably degenerate representations are marked ‘sep’.
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Table A1.4.8 The character table of the point group Cj.

E ¢ 3

1 1 1
A1
E+ 1 [0} u)2
E 1 2 o



® = exp(2x i/3).

Table A1.4.9 The condensed character table of the C; group.

E c,,

A 1 1
E 2 -1 sep

Apart from the degeneracy of separably degenerate states, time reversal symmetry leads to Kramers’
degeneracy or Kramers’ theorem: all energy levels of a system containing an odd number of particles with
half-integral spin (i.e., fermions) must be at least doubly degenerate. One generally only considers systems
having an odd number of electrons, but if nuclei with half integral spin cause the degeneracy then one must
resolve the nuclear hyperfine structure for the degeneracy to be revealed.

A1.4.3.6 CONCLUDING REMARKS ABOUT SYMMETRIES

In the above we have discussed several different symmetry groups: the translation group G-, the rotation
group K (spatial), the inversion group , the electron permutation group and the complete nuclear permutation

group GNP We have also discussed the time reversal symmetry operation . The translational states ., can
be classified according to their linear momentum using Gy, but we rarely worry about the translational state of
a molecule. The internal states @, . can be labelled with their angular momentum (¥,m ) using K (spatial),
and their parity (+) using . The symmetry in the group leads to restrictions on the electron spin multiplicities
(the Pauli exclusion principle) and the symmetry in GNP Jeads to nuclear spin statistical weights. One might
think that we should form a “full” symmetry group of the molecular Hamiltonian, Gy | say, describing all
symmetry types simultaneously and symmetry classify our basis functions and eigenfunctions in this group. If
we neglect time reversal symmetry (which requires special consideration because the operator is antiunitary),
we have

(A1.4.134)

that is, the full symmetry group for an isolated molecule in field-free space is the direct product of the groups
describing the individual symmetry types. However, it can be shown that it is completely equivalent and
easier, to treat each type of symmetry and each symmetry group, separately. In order to transform irreducibly

in Gy s
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a wavefunction must transform irreducibly in each of the groups G, K (spatial), £, Ssand GNP This is

discussed in section 7.3 of [1]. Watson [17] has shown that for a molecule in an external electric field the full
symmetry group cannot be factorized in the simple manner of (equation A1.4.134). In this case, instead of the

three separate groups K (spatial), £and GNP itis necessary to consider a more complicated group containing
selected elements of their direct product group. In the following section we show how the direct product of the
groups &and GNP called the complete nuclear permutation—inversion (CNPI) group GNPL s used in
molecular physics; it leads to the definition of the molecular symmetry (MS) group. In the final section we
show how the molecular point group emerges from the molecular symmetry group as a near symmetry group



of the molecular Hamiltonian.

As a postscript to this section we consider the operation of charge conjugation symmetry. This operation is
not used in molecular physics but it is an important symmetry in nature, and it does lead to an important
implication about the probable breakdown of time reversal symmetry. Classical electrodynamic forces are
invariant if we change the signs of the charges. In elementary particle physics the ‘charge conjugation
operation’ C is introduced as a generalization of this changing-the-sign-of-the-charge operation: it is the
operation of changing every particle (including uncharged particles like the neutron) into its antiparticle.
Weak interactions are not invariant to the operation C just as they are not invariant to the inversion operation
P. One might hope to preserve the exact ‘mirror symmetry’ of nature if invariance to the product CP were a
fact. Unfortunately, CP symmetry is not universal [18], although its violation is a small effect that has never
been observed outside the neutral K meson (kaon) system and the extent of its violation cannot be calculated
(unlike the situation with parity violation, which by comparison is a big effect). CP violation permits unequal
treatment of particles and antiparticles and it may be responsible for the domination of matter over antimatter
in the universe [19]. Very recent considerations concerning CP violation are summarized in [20]; in particular,
this reference points out that the study of CP violation in neutral B mesons will probe the physics behind the
‘standard model’, which does not predict sufficient CP violation to account, by itself, for the predominance of
matter over antimatter in the universe. In the light of the fact that C was introduced as a generalization of the
changing-the-sign-of-the-charge operation, it is appropriate that CP violation provides an unambiguous
‘convention-free’ definition of positive charge: it is the charge carried by the lepton preferentially produced
in the decay of the long-lived neutral K meson[21]. Although CP violation is a fact there is one invariance in
nature involving C that is believed to be universal (based on quantum field theory) and that is invariance
under the triple operation 7 C P, which also involves the time reversal operation 7. T C P symmetry implies
that every particle has the same mass and lifetime as its antiparticle. However, now, if 7 C P symmetry is true
the observation of CP violation in experiments on neutral K mesons must mean that there is a compensating
violation of time reversal symmetry at the same time. A direct experimental measure of the violation of time
reversal symmetry has not been made, mainly because the degree of violation is very small.

A1.4.4 THE MOLECULAR SYMMETRY GROUP

The complete nuclear permutation inversion (CNPI) group of the PH; molecule is the direct product of the
complete nuclear permutation (CNP) group S5 (see (equation A1.4.19)) and the inversion group E={E, E*}.

This is a group of 12 elements that we call G, ,:

Gz = {E, (123), (132),(12).(23). (31}, E*, (123)". (132)*, (12)*, (23)*, (31)*}. (A1.4.135)
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The rotation—vibration—electronic energy levels of the PH; molecule (neglecting nuclear spin) can be labelled
with the irreducible representation labels of the group G,. The character table of this group is given in table
A1.4.10.

Table A1.4.10 The character table of the CNPI group G,.




Ar 1 1 11 1
A 11 1 -1 - -1
A1 -1 1 1 -1
Am 1 T 1
e 2 - 0 2 - 0
e 2 - 0o -2 1 0

Before we consider the results of this symmetry labelling, we should consider the effect of the inversion
motion in PH,. In figure A1.4.5 we depict the two versions (see [22] for a discussion of this term) of the
numbered equilibrium structure of the molecule and call them a and b. The inversion coordinate p is also
indicated in this figure. In figure A1.4.6 we schematically indicate the cross-section in the potential energy
surface of the PH; molecule that contains the two minima and the barrier between them. In this figure we also
indicate several vibrational energy levels of the molecule. The barrier to inversion is so high (=11 300 cm_;
see [23]) that there is no observable inversion tunnelling splitting. Thus, the energy levels can be calculated by
just considering the motion in one of the two minima and we do not need to consider both minima. The

‘single minimum’ calculation is represented in figure A1.4.7 each minimum has a duplicate set of energy
levels.
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Figure A1.4.5. PH, inversion.
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Figure A1.4.6. A cross-section of the potential energy surface of PH;. The coordinate p is defined in figure
Al.4.5.
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Figure A1.4.7. A cross-section of the potential energy surface of PH; obtained by ignoring the version b (see
figure A1.4.6). The coordinate p is defined in figure A1.4.5.

If we were to calculate the vibrational energy levels using the double minimum potential energy surface, we
would find that well below the barrier, every energy level would be doubly degenerate to within measurement
accuracy for PH;. If we symmetry classified the levels using the group G|, we would find that there were
three types of energy level: Aj + Ay A7 + Ay or E* + £7 This double degeneracy would be resolved by
inversion tunnelling and it is an accidental degeneracy not forced by the symmetry group G,. If the inversion
tunnelling is not resolved we have actually done too much work here. There are only three distinct types of
level and yet we have used a symmetry group with six irreducible representations. However, Longuet-Higgins
[24] showed how to obtain the appropriate subgroup of G, that avoids the unnecessary double labels. This is
achieved by just using the elements of G, that are appropriate for a single minimum; we delete elements such
as £* and (12) that interconvert the a and b forms. Longuet-Higgins termed the deleted elements ‘unfeasible.’
The group obtained is ‘the molecular symmetry (MS) group’. In the case of PH;, we obtain the particular MS

group

Ci (M) = [E, (123), (132), (12)*,(23)", (31)" ) (A1.4.136)



its character table (with the class structure indicated) is given in table A1.4.11. Using this group, we achieve a
sufficient symmetry labelling of the levels as being either 4,, 4, or E. All possible interactions can be
understood using this group (apart from the effect of inversion tunnelling).
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Table A1.4.11 The character table of the molecular symmetry group C (M).

132) (23)*
1)

A1 1

A1 1 -1

For PH; the labour saved by using the MS group rather than the CNPI group is not very great, but for larger
molecules, such as the water trimer for example, a great saving is achieved if all unfeasible elements of the
CNPI group are eliminated from consideration. An unfeasible element of the CNPI group is one that takes the
molecule between versions that are separated by an insuperable energy barrier in the potential energy
function. For the water trimer the CNPI group has 6! x 3! x 2 = 8640 elements. The MS group that is used to
interpret the spectrum has 48 elements [25].

Ammonia (NH;) is pyramidal like PH; and in its electronic ground state there are two versions of the
numbered equilibrium structure exactly as shown for PH; in figure A1.4.5. The potential barrier between the
two versions, however, is around 2000 cm™! for ammonia [26] and thus much lower than in PH;. This barrier
is so low that the molecule will tunnel through it on the time scale of a typical spectroscopic experiment, and
the tunnelling motion gives rise to energy level splittings that can be resolved experimentally (see, for
example, figure 15-3 of [1]). Thus, for NH} ,, all elements of the group G, are feasible, and the molecular
symmetry group of NHj in its electronic ground state is G'|,. This group is isomorphic to the point group D5,
and in the literature it is customarily called D, (M).

A1.4.5 THE MOLECULAR POINT GROUP

The MS group is introduced by deleting unfeasible elements from the CNPI group. It can be applied to
symmetry label the rotational, vibrational, electronic and spin wavefunctions of a molecule, regardless of
whether the molecule is rigid or nonrigid. It is a true symmetry group and no terms in the Hamiltonian can
violate the symmetry labels obtained (with the exception of the as yet undetected effect of the weak neutral
current interaction). The MS group can be used to determine nuclear spin statistical weights, to determine
which states can and cannot interact as a result of considering previously neglected higher order terms in the
Hamiltonian, or the effect of externally applied magnetic or electric fields and it can be used to determine the
selection rules for allowed electric and magnetic dipole transitions. What then of the molecular point group?

For a molecule that has no observable tunnelling between minima on the potential energy surface (i.e., for a

rigid molecule) and for which the equilibrium structure is nonlinear!), it turns out that the MS group is
isomorphic to the point group of the equilibrium structure. For example, PH, has the molecular symmetry



group C5 (M) given in (equation A1.4.136) and its equilibrium structure has the point group C;, given in
(equation A1.4.22). It is easy to show from (equation A1.4.31) (using the fact that E*E£* = E) that these two
groups are isomorphic with the following mapping:
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(A1.4.137)

Obviously, we have chosen the name C; (M) for the molecular symmetry group of PH; because this group is
isomorphic to C5. .

Quite remarkably, if we neglect the effect of the MS group elements on the rotational variables (the Euler
angles 0, ¢ and y) then each element of the MS group rotates and/or reflects the vibrational displacements and
electronic coordinates in the manner described by its partner in the point group. In fact, for the purpose of
classifying vibrational and electronic wavefunctions this defines what the elements of the molecular point
group actually do to the molecular coordinates for a rigid nonlinear molecule. By starting with the
fundamental definition of symmetry in terms of energy invariance, by considering the operations of inversion
and identical nuclei permutation and, finally, by deleting unfeasible elements of the CNPI group, we recover
the simple description of molecular symmetry in terms of rotations and reflections, but the rotations and
reflections are of the vibrational displacements and the electronic coordinates—not of the entire molecule at
its equilibrium configuration. Such operations are not symmetry operations of the full Hamiltonian (unlike the
elements of the MS group) since the transformation of the rotational variables is neglected. This means that
such effects as Coriolis coupling for example, which involve a coupling of rotation and vibration, will mix
vibrational states of different point group symmetry. The molecular point group is a near symmetry group of
the full Hamiltonian. However, the molecular point group is a symmetry group of the vibration—electronic
Hamiltonian of a rigid molecule and in practice it is always used for labelling the vibration—electronic states
of such molecules. Its use enables one, for example, to classify the normal vibration coordinates and to study
the transformation properties of the electronic wavefunction without having to bother about molecular
rotation. This is a useful simplification, but the reader must be aware that the rotation and/or reflection
operations of the molecular point group do not rotate and/or reflect the molecule in space; they rotate and/or
reflect the vibrational displacements and electronic coordinates!2. To study the effect of molecular rotation (as
one needs to do if one is interested in understanding high resolution rotationally resolved molecular spectra),
or to study nonrigid molecules such as the water trimer, the point group is of no use and one must employ the
appropriate MS group.
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! Clearly, the operation (21) has the same effect as (12), (13) has the same effect as (31) etc.

2 The axis labels (p,q,r) are chosen in order not to confuse this axis system with other systems, such as the
molecule fixed axes (x,y,z) discussed below, used to describe molecular motion.

3 For an observer viewing the pq plane from a point that has a positive r coordinate (figure A1.4.2), the positive
right-handed direction of the C, and rotations is anticlockwise.
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4 Equivalently, it follows if we apply R to both sides of (equation A1.4.58) and then use (equation A1.4.59) on the
left hand side.

5 Two functions Y, and ‘Pnj are orthogonal if the product ‘Pni*\Pnj, integrated over all configuration space, vanishes.

A function ¥ is normalized if the product W*¥ integrated over all configuration space is unity. An orthonormal set
contains functions that are normalized and orthogonal to each other.

6 Note the order of the subscripts on D[R] which follows from the fact that we use the N-convention of (equation
A1.4.56) to define the effect of a permutation on a function.

7 Proved, for example, in section 6.5 of [1]}

8 That is, a molecule for which the minimum of the Born—Oppenheimer potential energy function corresponds to a
nonlinear geometry. The theory of linear molecules is explained in chapter 17 of [1].

9 An even (odd) permutation is one that when expressed as the product of pair exchanges involves an even (odd)
number of such exchanges. Thus (123)=(12)(23) and (12345)=(12)(23)(34)(45) are even permutations, whereas
(12), (1234)=(12)(23)(34) and (123456)=(12)(23)(34)(45)(56) are odd permutations.

10 we give the spin of electron a first and of electron b second.

" Rigid linear molecules are a special case in which an extended MS group, rather than the MS group, is
isomorphic to the point group of the equilibrium structure; see chapter 17 of [1].

12 A detailed discussion of the relation between MS group operations and point group operations is given in section
4.5 of [1].}.
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A 1.5 Intermolecular interactions

Ajit J Thakkar

A1.5.1 INTRODUCTION



The existence of intermolecular interactions is apparent from elementary experimental observations. There
must be attractive forces because otherwise condensed phases would not form, gases would not liquefy, and
liquids would not solidify. There must be short-range repulsive interactions because otherwise solids and
liquids could be compressed to much smaller volumes with ease. The kernel of these notions was formulated

in the late eighteenth century, and Clausius made a clear statement along the lines of this paragraph as early as
1857 [1].

Since the interaction energy V between a pair of molecules must have an attractive region at large

intermolecular separations » and a steeply repulsive region at short distances, it is evident that V(7) must have
the schematic form illustrated in figure A1.5.1. It is conventional to denote the distance at which the

interaction energy is a minimum by either  or r_ and to refer to this distance as the equilibrium distance.

Similarly it is common to denote the shorter distance at which the interaction energy is zero by ¢ and refer to
it as the slow collision diameter. The net potential energy of attraction at the minimum is V(r, ) =—¢, and ¢ is
called the well depth.
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Figure A1.5.1 Potential energy curve for NeF~ based on ab initio calculations of Archibong et al [88].

-2-

In 1873, van der Waals [2] first used these ideas to account for the deviation of real gases from the ideal gas
law P V= RT in which P, Vand T are the pressure, molar volume and temperature of the gas and R is the gas
constant. He argued that the incompressible molecules occupied a volume b leaving only the volume V- b free
for the molecules to move in. He further argued that the attractive forces between the molecules reduced the

pressure they exerted on the container by a/V%; thus the pressure appropriate for the gas law is P + a/V? rather
than P. These ideas led him to the van der Waals equation of state:

(P+a/V WV — b) = RT. (A1.5.1)

The importance of the van der Waals equation is that, unlike the ideal gas equation, it predicts a gas—liquid
transition and a critical point for a pure substance. Even though this simple equation has been superseded, its



remarkable success led to the custom of referring to the attractive and repulsive forces between molecules as
van der Waals forces.

The feature that distinguishes intermolecular interaction potentials from intramolecular ones is their relative

strength. Most typical single bonds have a dissociation energy in the 150-500 kJ mol ™! range but the strength
of the interactions between small molecules, as characterized by the well depth, is in the 1-25 kJ mol ™! range.

A1.5.1.1 MANY-BODY EXPANSION

The total energy of an assembly of molecules can be written as

E=ZE;+ZE;+ZE;A-+-“ (A1.5.2)

i=j B ET

in which £ is the energy of isolated molecule 4, Vij is the energy of interaction between molecules i and j in
the absence of any others, Vijk is the non-additive energy of interaction among the three molecules i, j and k in
the absence of any others, and so on. The interaction energy is then

'|-"=H—ZE,'=EV;';+ZUr',.«k""“* (A 15.3)
r

i Pk

For example, if there are three molecules A, B and C, then equation (A1.5.3) can be written as
V = Vap + Vac + Vea + Vage. (A1.5.4)

V (p 1s the interaction energy of molecules A and B in the absence of molecule C. The interaction between
molecules A and B will be different in the presence of molecule C, and so on. The non-additive, three-body
term V- is the total correction for these errors in the three pair interactions. When there are four molecules,
a three-body correction is included for each distinct triplet of molecules and the remaining error is corrected
by the non-additive four-body term.
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In many cases, it is reasonable to expect that the sum of two-body interactions will be much greater than the
sum of the three-body terms which in turn will be greater than the sum of the four-body terms and so on.
Retaining only the two-body terms in equation (A1.5.3) is called the pairwise additivity approximation. This
approximation is quite good so the bulk of our attention can be focused on describing the two-body
interactions. However, it is now known that the many-body terms cannot be neglected altogether, and they are
considered briefly in section A1.5.2.6 and section A1.5.3.5.

A1.5.1.2 TYPES OF INTERMOLECULAR INTERACTIONS

It is useful to classify various contributions to intermolecular forces on the basis of the physical phenomena
that give rise to them. The first level of classification is into long-range forces that vary as inverse powers of

the distance ", and short-range forces that decrease exponentially with distance as in exp(—or).

There are three important varieties of long-range forces: electrostatic, induction and dispersion. Electrostatic
forces are due to classical Coulombic interactions between the static charge distributions of the two
molecules. They are strictly pairwise additive, highly anisotropic, and can be either repulsive or attractive.



The distortions of a molecule’s charge distribution induced by the electric field of all the other molecules
leads to induction forces that are always attractive and highly non-additive. Dispersion forces are always
present, always attractive, nearly pairwise additive, and arise from the instantaneous fluctuations of the
electron distributions of the interacting molecules. If the molecules are in closed-shell ground states, then
there are no other important long-range interactions. However, if one or more of the molecules are in
degenerate states, then non-additive, resonance interactions of either sign can arise. Long-range forces are
discussed in greater detail in section A1.5.2.

The most important short-range forces are exchange and repulsion; they are very often taken together and
referred to simply as exchange—repulsion. They are both non-additive and of opposing sign, but the repulsion
dominates at short distances. The overlap between the electron densities of molecules when they are close to
one another leads to modifications of the long-range terms and thence to short-range penetration, charge
transfer and damping effects. All these effects are discussed in greater detail in section A1.5.3.

A1.5.1.3 POTENTIAL ENERGY SURFACES

Only the interactions between a pair of atoms can be described as a simple function V() of the distance
between them. For nonlinear molecules, several coordinates are required to describe the relative orientation of
the interacting species. Thus it is necessary to think of the interaction energy as a ‘potential energy

surface’ (PES) that depends on many variables. There are usually several points of minimum energy on this
surface; many of these will be ‘local minima’ and at least one will be the ‘global minimum’. The interaction
energy at a local minimum is lower than at any point in its neighbourhood but there can be lower energy
minima further away. If there is more than one global minimum, then these are located at symmetry
equivalent points on the surface, corresponding to the same minimum energy.

For the interaction between a nonlinear molecule and an atom, one can place the coordinate system at the
centre of mass of the molecule so that the PES is a function of the three spherical polar coordinates 7,6,
needed to specify the location of the atom. If the molecule is linear, V" does not depend on ¢ and the PES is a
function of only two variables. In the general case of two nonlinear molecules, the interaction energy depends
on the distance between the centres of mass, and five of the six Euler angles needed to specify the relative
orientation of the molecular axes with respect to the global or ‘space-fixed’ coordinate axes.

A1.5.2 LONG-RANGE FORCES
A1.5.2.1 LONG-RANGE PERTURBATION THEORY

Perturbation theory is a natural tool for the description of intermolecular forces because they are relatively
weak. If the interacting molecules (A and B) are far enough apart, then the theory becomes relatively simple
because the overlap between the wavefunctions of the two molecules can be neglected. This is called the
polarization approximation. Such a theory was first formulated by London [3, 4], and then reformulated by
several others [5, 6 and 7].

Each electron in the system is assigned to either molecule A or B, and Hamiltonian operators HA and HB for
each molecule defined in terms of its assigned electrons. The unperturbed Hamiltonian for the system is then

HO =HA + HB and the perturbation LM’ consists of the Coulomb interactions between the nuclei and
electrons of A and those of B. The unperturbed states, eigenfunctions of HO, are simple product functions
q_-;:: q,rE. For closed-shell molecules, non-degenerate, Rayleigh—Schrodinger, perturbation theory gives the

energy of the ground state of the interacting system. The first-order interaction energy is the electrostatic



energy, and the second-order energy is partitioned into induction and dispersion energies. The induction
energy consists of all terms that involve excited states of only one molecule at a time, whereas the dispersion
energy includes all the remaining terms that involve excited states of both molecules simultaneously.

Long-range forces are most conveniently expressed as a power series in 1/7, the reciprocal of the
intermolecular distance. This series is called the multipole expansion. It is so common to use the multipole
expansion that the electrostatic, induction and dispersion energies are referred to as ‘non-expanded’ if the
expansion is not used. In early work it was noted that the multipole expansion did not converge in a
conventional way and doubt was cast upon its use in the description of long-range electrostatic, induction and

Poincaré’s sense. The interaction energy can be written as

N
Vir) =) Va/r"+0(1/r") (A15.5)

=0y

with the assurance that the remainder left upon truncation after some chosen term in #N tends to zero in the
limit as » — oo. In other words, the multipole expansion can be made as accurate as one desires for large
enough intermolecular separations, even though it cannot be demonstrated to converge at any given value of »
and, in some cases, diverges for all 7!

Some electric properties of molecules are described in section A1.5.2.2 because the coefficients of the powers
of 1/r turn out to be related to them. The electrostatic, induction and dispersion energies are considered in turn
in section A1.5.2.3, section A1.5.2.4 and section A1.5.2.5, respectively.

A1.5.2.2 MULTIPOLE MOMENTS AND POLARIZABILITIES

The long-range interactions between a pair of molecules are determined by electric multipole moments and
polarizabilities of the individual molecules. Multipole moments are measures that describe the non-sphericity
of the charge distribution of a molecule. The zeroth-order moment is the total charge of the molecule: Q =
2.,4; Where g, is the charge of particle 7 and the sum is over all electrons and nuclei in the molecule. The first-
order moment is the dipole moment vector with Cartesian components given by

Ho = fp{rjrﬂ, dr a € {x, vz} (A 1.5.6)

in which p(r) is the total (electronic plus nuclear) charge density of the molecule. The direction of the dipole
moment is from negative to positive. Dipole moments have been measured for a vast variety of molecules [14,
15 and 16].

Next in order is the quadrupole moment tensor ® with components:

Byp = %fﬂ(r)ﬂmrﬁ —rigp)dr @ felx vz (A1.5.7)

where the ‘Kronecker delta’ 8_, =1 for ao=f3 and 6_, = 0 for o # . The quadrupole moment is a symmetric



(®0tﬁ = ®Ba) second-rank tensor. Moreover, it is traceless:

By T8y + O, =0, (A 1.5.8)

Therefore, it has at most five independent components, and fewer if the molecule has some symmetry.
Symmetric top molecules have only one independent component of ®, and, in such cases, the axial
component is often referred to as the quadrupole moment. A quadrupolar distribution can be created from four
charges of the same magnitude, two positive and two negative, by arranging them in the form of two dipole
moments parallel to each other but pointing in opposite directions. Centro-symmetric molecules, like CO,,
have a zero dipole moment but a non-zero quadrupole moment.

The multipole moment of rank 7 is sometimes called the 2"-pole moment. The first non-zero multipole
moment of a molecule is origin independent but the higher-order ones depend on the choice of origin.

Quadrupole moments are difficult to measure and experimental data are scarce [17, 18 and 19]. The octopole
and hexadecapole moments have been measured only for a few highly symmetric molecules whose lower
multipole moments vanish. 4b initio calculations are probably the most reliable way to obtain quadrupole and
higher multipole moments [20, 21 and 22].

The charge redistribution that occurs when a molecule is exposed to an electric field is characterized by a set
of constants called polarizabilities. In a uniform electric field F, a component of the dipole moment is

| 1
Ha = 10 +ogpFy + > Bty FsFy * 5 Tapys Fa Fy Fs b - (A1.5.9)

in whicha g, B o and g s, respectively, are components of the dipole polarizability, hyperpolarizability
and second hyperpolarizability tensors, and a summation is implied over repeated subscripts.

The dipole polarizability tensor characterizes the lowest-order dipole moment induced by a uniform field. The
o tensor is symmetric and has no more than six independent components, less if the molecule has some
symmetry. The scalar or mean dipole polarizability

_ 1 |
o= ET“E = EZ:&-; (A 1.5.10)

is invariant to the choice of coordinate system and is often referred to simply as ‘the polarizability’. It is
related to many important bulk properties of an ensemble of molecules including the dielectric constant, the
refractive index, the extinction coefficient, and the electric susceptibility. The polarizability is a measure of
the softness of the molecule’s electron density, and correlates directly with molecular size, and inversely with
the ionization potential and HOMO-LUMO gap. Another scalar polarizability invariant commonly
encountered is the polarizability anisotropy:

(Ae)’ = 3[3Tra’ — (Tra)’). (A15.11)



In linear, spherical and symmetric tops the components of a along and perpendicular to the principal axis of
symmetry are often denoted by o and o |, respectively. In such cases, the anisotropy is simply Ao = oy =0y
If the applied field is oscillating at a frequency , then the dipole polarizability is frequency dependent as well
o(m). The zero frequency limit of the ‘dynamic’ polarizability o) is the static polarizability described
above.

There are higher multipole polarizabilities that describe higher-order multipole moments induced by non-
uniform fields. For example, the quadrupole polarizability is a fourth-rank tensor C that characterizes the
lowest-order quadrupole moment induced by an applied field gradient. There are also mixed polarizabilities
such as the third-rank dipole—quadrupole polarizability tensor A that describes the lowest-order response of
the dipole moment to a field gradient and of the quadrupole moment to a dipolar field. All polarizabilities of
order higher than dipole depend on the choice of origin. Experimental values are basically restricted to the
dipole polarizability and hyperpolarizability [23, 24 and 25]. Ab initio calculations are an important source of
both dipole and higher polarizabilities [20]; some recent examples include [26, 27].

A1.5.2.3 ELECTROSTATIC INTERACTIONS

The electrostatic potential generated by a molecule A at a distant point B can be expanded in inverse powers
of the distance r between B and the centre of mass (CM) of A. This series is called the multipole expansion
because the coefficients can be expressed in terms of the multipole moments of the molecule. With this
expansion in hand, it is
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straightforward to write the electrostatic interaction between molecule A and another molecule with its CM at
B as a multipole expansion. The formal expression [7, 28] for this electrostatic interaction, in terms of ‘T
tensors’, is intimidating to all but the experts. However, explicit expressions for individual terms in this
expansion are easily understood.

Consider the case of two neutral, linear, dipolar molecules, such as HCN and KCl, in a coordinate system with
its origin at the CM of molecule A and the z-axis aligned with the intermolecular vector r pointing from the
CM of A to the CM of B. The relative orientation of the two molecules is uniquely specified by their spherical
polar angles 6,05 and the difference ¢ = ¢, - b between their azimuthal angles. The leading term in the
multipole expansion of the electrostatic interaction energy is the dipole—dipole term

Halln

Viaalr, B, g, = — —
aa(r, Ba, O, ) y—.

(2 cos B4 cosfy — sin fy sinfy cos ¢) (A 1.5.12)

in which g is the vacuum permittivity, and u, and py are the magnitudes of the dipole moments of A and B.
This expression is also applicable to the dipole—dipole interaction between any pair of neutral molecules
provided that the angles are taken to specify the relative orientation of the dipole moment vectors of the
molecules.

The leading term in the electrostatic interaction between a pair of linear, quadrupolar molecules, such as
HCCH and CO, is

3, By 5 ; - )
= 5 [1 = Seos™ s — Scos” iy — 15co8 Hy, cos™ iy + 2(4 cosdls cosbip

T G ey (A 1.5.13)

sin iy, sin fig cos r;rf]

in which 6, and 6 are the axial quadrupole moments of A and B. This expression is also applicable to the
quadrupole—quadrupole interaction between any pair of spherical or symmetric top molecules provided that



the angles are taken to specify the relative orientation of the axial component of the quadrupole moment
tensors of the molecules.

The leading term in the electrostatic interaction between the dipole moment of molecule A and the axial
quadrupole moment of a linear, spherical or symmetric top B is

3puaBg

7[cos 04 (3 cos® Oy — 1) — sind, sin 205 cos ). (A 1.5.14)

d =
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Note the » dependence of these three terms: the dipole—dipole interaction varies as 3, the dipole—quadrupole
as 7% and the quadrupole—quadrupole as ¥ In general, the interaction between a 2t -pole moment and a 2L
pole moment varies as pErL+D) Thus, the dipole—octopole interaction also varies as LAt large enough r,
only the term involving the lowest-rank, non-vanishing, multipole moment is important. Higher terms begin to
play a role as r decreases. The angular variation of the electrostatic interaction is much greater than that of the
induction and dispersion. Hence, electrostatic forces often determine the geometry of a van der Waals
complex even when they do not constitute the dominant contribution to the overall interaction.
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At a fixed distance 7, the angular factor in equation (A1.5.12) leads to the greatest attraction when the dipoles
are lined up in a linear head-to-tail arrangement, 6, = 85 = 0, whereas the linear tail-to-tail geometry, 6, =
n,BB = 0, is the most repulsive. A head-to-tail, parallel arrangement, 0 A= GB =1/2,$ = m, is attractive but less
so than the linear head-to-tail geometry. Nevertheless, if the molecules are linear, the head-to-tail, parallel

geometry may be more stable because it allows the molecules to get closer and thus increases the 3 factor.
For example, the HCN dimer takes the linear head-to-tail geometry in the gas phase [29], but the crystal

structure shows a parallel, head-to-tail packing [30].

For interactions between two quadrupolar molecules which have ® , and © of the same sign, at a fixed
separation r, the angular factor in equation (A1.5.13) leads to a planar, T-shaped structure, 6, =0, 05 =1/2, ¢
= 0, being preferred. This geometry is often seen for nearly spherical quadrupolar molecules. There are other
planar (¢ = 0) configurations with 6, = 7/2-6 that are also attractive. A planar, ‘slipped parallel” structure,
0, =0y ~ /4, ¢ = 0 is often preferred by planar molecules, and long and narrow molecules because it allows
them to approach closer thereby increasing the radial factor. For example, benzene, naphthalene and many
other planar quadrupolar molecules have crystal structures consisting of stacks of tilted parallel molecules.

For interactions between two quadrupolar molecules which have 8, and 65 of the opposite sign, at a fixed
separation r, the angular factor in equation (A1.5.13) leads to a linear structure, 8, = 6 = 0, being the most
attractive. Linear molecules may also prefer a C, rectangular or non-planar ‘cross’ arrangement with 6, = 0
= 1t/2, which allows them to approach closer and increase the radial factor.

Although such structural arguments based purely on electrostatic arguments are greatly appealing, they are
also grossly over-simplified because all other interactions, such as exchange—repulsion and dispersion, are
neglected, and there are serious shortcomings of the multipole expansion at smaller intermolecular
separations.

A1.5.2.4 INDUCTION INTERACTIONS

If the long-range interaction between a pair of molecules is treated by quantum mechanical perturbation
theory, then the electrostatic interactions considered in section A1.5.2.3 arise in first order, whereas induction
and dispersion effects appear in second order. The multipole expansion of the induction energy in its full
generality [7, 28] is quite complex. Here we consider only explicit expressions for individual terms in the




multipole expansion that can be understood readily.

Consider the interaction of a neutral, dipolar molecule A with a neutral, S-state atom B. There are no
electrostatic interactions because all the multipole moments of the atom are zero. However, the electric field
of A distorts the charge distribution of B and induces multipole moments in B. The leading induction term is
the interaction between the permanent dipole moment of A and the dipole moment induced in B. The latter
can be expressed in terms of the polarizability of B, see equation (A1.5.9), and the dipole—induced-dipole
interaction is given by

2
0B

A" (3cost O+ 1 A15.15
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in which 6, is the angle between the dipole moment vector of A and the intermolecular vector, and oy is the
mean dipole polarizability of B. Since B is a spherical atom, its polarizability tensor is diagonal with the three
diagonal

components equal to one another and to the mean.

If molecule A is a linear, spherical or symmetric top that has a zero dipole moment like benzene, then the
leading induction term is the quadrupole—induced-dipole interaction

9(:1'1 o

_ 4 4 A15.16
R@meg)r (4 cos” da +sin” 6y) ( )

gid =

in which 6, is the angle between the axial component of the quadrupole moment tensor of A and the
intermolecular vector.

If the molecule is an ion bearing a charge Q,, then the leading induction term is the isotropic, charge—
induced-dipole interaction

Qlﬁ,ﬂ'u

——eeee | A1.5.17
2(4mep)rd ( )
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For example, this is the dominant long-range interaction between a neon atom and a fluoride anion F~.

Note the » dependence of these terms: the charge—induced-dipole interaction varies as 72, the dipole—induced-
dipole as % and the quadrupole—induced-dipole as ¥ 8. In general, the interaction between a permanent 2 -
pole moment and an induced 2L-pole moment varies as #2¢ TL+ 1D At large enough 7, only the leading term
is important, with higher terms increasing in importance as » decreases. The induction forces are clearly non-
additive because a third molecule will induce another set of multipole moments in the first two, and these will
then interact. Induction forces are almost never dominant since dispersion is usually more important.

A1.5.2.5 DISPERSION INTERACTIONS

The most important second-order forces are dispersion forces. London [3, 31, 32] showed that they are caused
by a correlation of the electron distribution in one molecule with that in the other, and pointed out that the



electrons contributing most strongly to these forces are the same as those responsible for the dispersion of
light. Since then, these forces have been called London or dispersion forces. Dispersion interactions are
always present, even between S-state atoms such as neon and krypton, although there are no electrostatic or
induction interaction terms since all the multipole moments of both species are zero.

Dispersion forces cannot be explained classically but a semiclassical description is possible. Consider the
electronic charge cloud of an atom to be the time average of the motion of its electrons around the nucleus.
The average cloud is spherically symmetric with respect to the nucleus, but at any instant of time there may be
a polarization of charge giving rise to an instantaneous dipole moment. This instantaneous dipole induces a
corresponding instantaneous dipole in the other atom and there is an interaction between the instantaneous
dipoles. The dipole of either atom averages to zero over time, but the interaction energy does not because the
instantaneous and induced dipoles are correlated and
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they stay in phase. The average interaction energy falls off as 76 just as the dipole—induced-dipole energy of
equation (A1.5.15). Higher-order instantaneous multipole moments are also involved, giving rise to higher-

order dispersion terms. This picture is visually appealing but it should not be taken too literally. The actual
effect is not time dependent in the sense of classical fluctuations taking place.

The multipole expansion of the dispersion interaction can be written as

V(r) = —Ce/r® — Ce/r® = Ciofr'* = - (A1.5.18)

where the dispersion coefficients Cy, Cg and C |, are positive, and depend on the electronic properties of the
interacting species. The first term is the interaction between the induced-dipole moments on the atoms, the
second is the induced-dipole—induced-quadrupole term and the third consists of the induced-dipole—induced-
octopole term as well as the interaction between induced quadrupoles. In general, the interaction between an
induced 2¢ -pole moment and an induced 2L-pole moment varies as 7 2t + L+ D, The dispersion coefficients
are constants for atoms but, for non-spherical molecules, they depend upon the five angles describing the
relative orientation of the molecules. For example, the dispersion coefficients for the interactions between an
S-state atom and a £ -state diatomic molecule can be expressed as

n—2

Co(0) = ) C3¥ Pyy(cos ) (A 1.5.19)
L=0

where the C -ﬂ'are dispersion constants, the P, (cos ) are Legendre polynomials, and 6 is the angle between
the symmetry axis of the diatomic and the intermolecular vector. Note that C%,is the spherical average of Gy

(0) and is the appropriate quantity to use in equation (A1.5.18) if the orientation dependence is being
neglected. Purely anisotropic dispersion terms varying as r~/,/,. .
species lacks inversion symmetry.

. arise if at least one of the interacting

Perturbation theory yields a sum-over-states formula for each of the dispersion coefficients. For example, the
isotropic C*¥coefficient for the interaction between molecules A and B is given by

3e'nt Sam S5
AB — Z i1 J B

A152
6 = Imi@ney)? AFrn A Fgy(AFam + MEgn) (A1.5.20)
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in which his the Planck—Dirac constant, AE,  =E, —E, is the excitation energy from the ground state m

-
= 0 to state m for molecule A and f, , is the corresponding dipole oscillator strength averaged over
degenerate final states. Similarly, the sum-over-states formula for the mean, frequency-dependent,

polarizability can be written as
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where o, = AE, /I is the mth excitation frequency. An important advance consisted in the realization [33,
34 and 35] that use of the Feynman identity

o du
-1 = A1.5.22
[abla + b)) (2/m) @) fora = 0,b=0 ( )

together with equation (A1.5.20) and equation (A1.5.21) leads to

y 3n Sl

where &, (iw)is the analytic continuation of the dynamic dipole polarizability to the imaginary axis. The

significance of equation (A1.5.23) is that it expresses an interaction coefficient in terms of properties of the
individual, interacting molecules. The anisotropic components of C, can be written as similar integrals
involving Aa(im), and the higher dispersion coefficients as integrals involving components of the higher-
order, dynamic polarizability tensors at imaginary frequency.

Many methods for the evaluation of C; from equation (A1.5.20) use moments of the dipole oscillator strength
distribution (DOSD) defined, for molecule A, by

Sa(k) = (/) Y famAES,  fork=2,1,0,—-1,-2,.... (A 1.5.24)

m#l

These moments are related to many physical properties. The Thomas—Kuhn—Reiche sum rule says that S(0)
equals the number of electrons in the molecule. Other sum rules [36] relate S(2), S(1) and S(—1) to ground
state expectation values. The mean static dipole polarizability is @(0) = ¢*5(—2)/m..The Cauchy expansion

of the refractive index n at low frequencies ® is given by
n®—1= Ko[$(—=2) +w’ K1 5(—4) + o' K18(—6) + -] (A 1.5.25)

where the K are known constants. One approach is to use experimental photoabsorption, refractive index and
Verdet constant data, together with known sum rules to construct a constrained DOSD from which dipole
properties including C, can be calculated. This approach was pioneered by Margenau [5, 37], extended by
Dalgarno and
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coworkers [38, 39], and refined and exploited by Meath and coworkers [40, 41 and 42] who also generalized
it to anisotropic properties [43, 44]. Many methods for bounding C in terms of a few DOSD moments have
been explored, and the best of these have been identified by an extensive comparative study [45]. Ab initio
calculations are the only route to the higher-order dispersion coefficients, and Wormer and his colleagues [46,
47, 48, 49 and 50] have led the field in this area. The dimensionless ratio C;,Cs/Cis predicted to be a
constant for all interactions by simple models [51], and this ratio still serves as a useful check on ab initio
computations [48]. Dispersion coefficients of even higher order can be estimated from simple models as well
[52, 53].

The dispersion coefficient for interactions C'#between molecules A and B can be estimated to an average

accuracy of 0.5% [45] from those of the A—A and B-B interactions using the Moelwyn-Hughes [54]
combining rule:

*AA BB
Cﬁﬂ— 2(,,:} (’b i
€ T AA 2 L BB D
Ciag + Cghay

(A 1.5.26)
where o, and o are the static dipole polarizabilities of A and B, respectively. This rule has a sound
theoretical basis [55, 56].

A1.5.2.6 MANY-BODY LONG-RANGE FORCES

The induction energy is inherently non-additive. In fact, the non-additivity is displayed elegantly in a
distributed polarizability approach [28]. Non-additive induction energies have been found to stabilize what
appear to be highly improbable crystal structures of the alkaline earth halides [57].

In the third order of long-range perturbation theory for a system of three atoms A, B and C, the leading non-
additive dispersion term is the Axilrod—Teller—Muti triple—dipole interaction [58, 59]

. (14 3cosdy cos O cos )
Vg = Gy

3 (A 1.5.27)
(raprecrca)

where r ABTBC and Teop are the sides of the triangle formed by the atoms, and 6 A’eB and GC are its internal
angles, and the C, coefficient can be written [60] in terms of the dynamic polarizabilities of the monomers as

3h
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0

Hence, the same techniques used to calculate C are also used for C,,. Note that equation (A1.5.28) has a
geometrical factor whose sign depends upon the geometry, and that, unlike the case of the two-body
dispersion interaction, the triple—dipole dispersion energy has no minus sign in front of the positive coefficient
Cy. For example, for an equilateral triangle configuration the triple—dipole dispersion is repulsive and varies

as+ (11/ S)Cnr_9. There are strongly
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anisotropic, non-additive dispersion interactions arising from higher-order polarizabilities as well [61], and
the relevant coefficients for rare gas atoms have been calculated ab initio [48].

A1.5.3 SHORT- AND INTERMEDIATE-RANGE FORCES
A1.5.3.1 EXCHANGE PERTURBATION THEORIES

The perturbation theory described in section A1.5.2.1 fails completely at short range. One reason for the
failure is that the multipole expansion breaks down, but this is not a fundamental limitation because it is
feasible to construct a ‘non-expanded’, long-range, perturbation theory which does not use the multipole
expansion [6]. A more profound reason for the failure is that the polarization approximation of zero overlap is
no longer valid at short range.

When the overlap between the wavefunctions of the interacting molecules cannot be neglected, the zeroth-
order wavefunction must be anti-symmetrized with respect to all the electrons. The requirement of anti-
symmetrization brings with it some difficult problems. If electrons have been assigned to individual molecules

in order to partition the Hamiltonian into an unperturbed part H%and a perturbation AH’, as described in
section A1.5.2.1, then these parts do not commute with the antisymmetrization operator 44Efor the full

system

[AM H 20, [AM N #£0. (A 1.5.29)

On the other hand, the system Hamiltonian HAB =10+ )M is symmetric with respect to all the electrons and
commutes with A

LA HY + AH'] = 0. (A 1.5.30)

Combining these commutation relations, we find
[AME 1] = —[AM LK #£0 (A 1.5.31)

which indicates that a zeroth-order quantity is equal to a non-zero, first-order quantity. Unfortunately, this
means that there will be no unique definition of the order of a term in our perturbation expansion. Moreover,
antisymmetrized products of the wavefunctions of A and B will be non-orthogonal, and therefore they will not
be eigenfunctions of any Hermitian, zeroth-order Hamiltonian.

Given these difficulties, it is natural to ask whether we really need to antisymmetrize the zeroth-order
wavefunction. If we start with the product function, can we reasonably expect that the system wavefunction
obtained by perturbation theory will converge to a properly antisymmetric one? Unfortunately, in that case,
the series barely converges [62, 63]. Moreover, there are an infinite number of non-physical states with
bosonic character that lie below the physical ground state [64] for most systems of interest—all those
containing at least one atom with atomic number greater than two
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[13]. Claverie [64] has argued that if perturbation theory converges at all, it will converge to one of these



unphysical states.

Clearly, standard Rayleigh—Schrédinger perturbation theory is not applicable and other perturbation methods
have to be devised. Excellent surveys of the large and confusing variety of methods, usually called ‘exchange
perturbation theories’, that have been developed are available [28, 65]. Here it is sufficient to note that the
methods can be classified as either ‘symmetric’ or ‘symmetry-adapted’. Symmetric methods start with
antisymmetrized product functions in zeroth order and deal with the non-orthogonality problem in various
ways. Symmetry-adapted methods start with non-antisymmetrized product functions and deal with the
antisymmetry problem in some other way, such as antisymmetrization at each order of perturbation theory.

A further difficulty arises because the exact wavefunctions of the isolated molecules are not known, except for
one-electron systems. A common starting point is the Hartree—Fock wavefunctions of the individual
molecules. It is then necessary to include the effects of intramolecular electron correlation by considering
them as additional perturbations. Jeziorski and coworkers [66] have developed and computationally
implemented a triple perturbation theory of the symmetry-adapted type. They have applied their method,
dubbed SAPT, to many interactions with more success than might have been expected given the fundamental
doubts [67] raised about the method. SAPT is currently both useful and practical. A recent application [68] to
the CO, dimer is illustrative of what can be achieved with SAPT, and a rich source of references to previous
SAPT work.

A1.5.3.2 FIRST-ORDER INTERACTIONS

In all methods, the first-order interaction energy is just the difference between the expectation value of the
system Hamiltonian for the antisymmetrized product function and the zeroth-order energy

(AR W HAD W3 )
{AABY AP WA WD)

—(EM+ ED (A 1.5.32)
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in which g*and EPare the ground-state energies of isolated molecules A and B. An electrostatic part is usually

separated out from the first-order energy, also called the Heitler—London energy, and the remainder is called
the exchange—repulsion part:

1 1y 4 i)
EV =ED+ EL (A 1.5.33)

The ‘non-expanded’ form of the electrostatic or ‘Coulomb’ energy is

E“’ ff A{‘i‘lllﬁrsli?‘-;]d_;rl &y (A1.5.34)
[y — 4
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where p, and py are the total (nuclear plus electronic) charge densities of A and B, respectively. A multipole
expansion of equation (A1.5.34) leads to the long-range electrostatic energy discussed in section A1.5.2.3.

. . . . 1. .
The difference between the converged multipole expansion of the electrostatic energy and E:is sometimes
called the first-order penetration energy. The exchange—repulsion is often simply called the exchange energy.
For Hartree—Fock monomer wavefunctions, g{!'can be divided cleanly [69] into attractive exchange and



dominant repulsion parts. The exchange part arises because the electrons of one molecule can extend over the
entire system, whereas the repulsion arises because the Pauli principle does not allow electrons of the same
spin to be in the same place.

Figure A1.5.2 shows gfltand g!{!"for the He-He interaction computed from accurate monomer wavefunctions

[70]. Figure A1.5.3 shows that, as in interactions between other species, the first-order energy ED for He-He
decays exponentially with interatomic distance. It can be fitted [70] within 0.6% by a function of the form

_ P
EM = (AJrye (A 1.5.35)
where A4,b,c are fitted parameters.
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Figure A1.5.2 First-order Coulomb ({0}) and exchange-repulsion (O) energies for He—He. Based on data from
Komasa and Thakkar [70].
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Figure A1.5.3 First-order interaction energy for He—He. Based on data from Komasa and Thakkar [70].

The exchange-repulsion energy is approximately proportional to the overlap of the charge densities of the
interacting molecules [71, 72 and 73]

H
E\ i[[ palr)pp(r) d"r'] (A 1.5.36)

where n = 1.

A1.5.3.3 SECOND-ORDER INTERACTIONS

The details of the second-order energy depend on the form of exchange perturbation theory used. Most known
results are numerical. However, there are some common features that can be described qualitatively. The
short-range induction and dispersion energies appear in a non-expanded form and the differences between
these and their multipole expansion counterparts are called penetration terms.
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The non-expanded dispersion energy can be written as

Vaisp(r) = — fo(r)Co/r® — fx(r)Cs/r® = frolr)Crofr!’ —--- (A 1.5.37)

where the f,(r),fg(r),. . . are ‘damping’ functions. The damping functions tend to unity as » — oo so that the
long-range form of equation (A1.5.18) is recovered. As »— 0, the damping functions tend to zero as 7" so that



they suppress the spurious # ™ singularity of the undamped dispersion, equation (A1.5.18). Meath and

interactions between small species. The general form is shown in figure A1.5.4. Observe that the distance at
which the damping functions begin to decrease significantly below unity increases with n. The orientation
dependence of the damping functions is not known. Similar damping functions also arise for the induction
energy [74, 76, 79].
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Figure A1.5.4 Dispersion damping functions, f:——, fg: ...... and f}:---- for H-H based on data from [74].

A ‘charge transfer’ contribution is often identified in perturbative descriptions of intermolecular forces. This,
however, is not a new effect but a part of the short-range induction energy. It is possible to separate the charge
transfer part from the rest of the induction energy [80]. It turns out to be relatively small and often negligible.
Stone [28] has explained clearly how charge transfer has often been a source of confusion and error.
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A1.5.3.4 SUPERMOLECULE CALCULATIONS

The conceptually simplest way to calculate potential energy surfaces for weakly interacting species is to treat
the interacting system AB as a ‘supermolecule’, use the Schrodinger equation to compute its energy as a
function of the relative coordinates of the interacting molecules, and subtract off similarly computed energies
of the isolated molecules. This scheme permits one to use any available method for solving the Schrodinger
equation.

Unfortunately, the supermolecule approach [81, 82] is full of technical difficulties, which stem chiefly from
the very small magnitude of the interaction energy relative to the energy of the supermolecule. Even today, a
novice would be ill-advised to attempt such a computation using one of the ‘black-box’ computer programs
available for performing ab initio calculations.

That said, the remarkable advances in computer hardware have made ab initio calculations feasible for small
systems, provided that various technical details are carefully treated. A few examples of recent computations



include potential energy surfaces for He—He [83], Ne-Ne and Ar—Ar [84], Ar-H,, Ar—HF and Ar-NH; [85],

N,—He [86, 87], He—F and Ne—F [88]. Density-functional theory [89] is currently unsuitable for the
ca2[culati0n of van der Waals interactions [90], but the situation could change.

A1.5.3.5 MANY-BODY SHORT-RANGE FORCES

A few ab initio calculations are the main source of our current, very meagre knowledge of non-additive
contributions to the short-range energy [91]. It is unclear whether the short-range non-additivity is more or
less important than the long-range, dispersion non-additivity in the rare-gas solids [28, 92].

A1.5.4 EXPERIMENTAL INFORMATION

Despite the recent successes of ab initio calculations, many of the most accurate potential energy surfaces for
van der Waals interactions have been obtained by fitting to a combination of experimental and theoretical
data. The future is likely to see many more potential energy surfaces obtained by starting with an ab initio
surface, fitting it to a functional form and then allowing it to vary by small amounts so as to obtain a good fit
to many experimental properties simultaneously; see, for example, a recent study on ‘morphing’ an ab initio
potential energy surface for Ne—HF [93].

This section discusses how spectroscopy, molecular beam scattering, pressure virial coefficients,
measurements on transport phenomena and even condensed phase data can help determine a potential energy
surface.

A1.5.4.1 SPECTROSCOPY

Spectroscopy is the most important experimental source of information on intermolecular interactions. A wide
range of spectroscopic techniques is being brought to bear on the problem of weakly bound or ‘van der
Waals’ complexes [94, 95]. Molecular beam microwave spectroscopy, pioneered by Klemperer and refined by
Flygare, has been used to determine the microwave spectra of a large number of weakly bound complexes and
obtain structural information
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averaged over the vibrational ground state. With the development of tunable far-infrared lasers and
sophisticated detectors, far-infrared ‘vibration—rotation—tunnelling’ spectroscopy has enabled Saykally and
others to measure data that probes portions of the potential energy surface further from the minimum. Other
techniques including vacuum ultraviolet spectroscopy and conventional gas-phase absorption spectroscopy
with very long path lengths have also been used.

Spectroscopic data for a complex formed from two atoms can be inverted by the Rydberg—Klein—Rees
procedure to determine the interatomic potential in the region probed by the data. The classical turning points
rp and ry, corresponding to a specific energy level E(v,J) with vibrational and rotational quantum numbers v
and J can be determined from a knowledge of all the vibrational and rotational energy level spacings between
the bottom of the well and the given energy level. The standard equations are [96]

(A 1.5.38)
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where B(v,J) = (2J+ 1Y (0 E/o J),, 1s a generalized rotational constant. If the rotational structure has not been
resolved, then the vibrational spacings alone can be used to determine the well-width function f{v,0). Similar
methods have been developed which enable a spherically averaged potential function to be obtained by
inversion of rotational levels, measured precisely enough to yield information on centrifugal distortion, for a
single vibrational state. However, most van der Waals complexes are too floppy for a radial potential energy
function to be a useful representation of the full PES.

Determination of a PES from spectroscopic data generally requires fitting a parameterized surface to the
observed energy levels together with theoretical and other experimental data. This is a difficult process
because it is not easy to devise realistic functional representations of a PES with parameters that are not
strongly correlated, and because calculation of the vibrational and rotational energy levels from a PES is not
straightforward and is an area of current research. The former issue will be discussed further in section
A1.5.5.3. The approaches available for the latter currently include numerical integration of a truncated set of
‘close-coupled’ equations, methods based on the discrete variable representation and diffusion Monte Carlo
techniques [28]. Some early and fine examples of potential energy surfaces determined in this manner include
the H,—rare gas surfaces of LeRoy and coworkers [97, 98 and 99], and the hydrogen halide-rare gas potential
energy surfaces of Hutson [100, 101 and 102]. More recent work is reviewed by van der Avoird ef al [103].
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A1.5.4.2 MOLECULAR BEAM SCATTERING

One direct way to study molecular interactions is to cross two molecular beams, one for each of the
interacting species, and to study how the molecules scatter after elastic collisions at the crossing point of the
two beams. A collision of two atoms depends upon the relative kinetic energy £ of collision and the impact
parameter b, which is the distance by which the centres of mass would miss each other in the absence of
interatomic interaction. Collimated beams with well defined initial velocities can be used, and the scattering
measured as a function of deflection angle . However, it is not possible to restrict the collisions to a single
impact parameter, and results are therefore reported in the form of differential cross sections o(y, £) which
are measures of the observed scattering intensity. The integral cross section

(L) =frr{x.£}d£2 (A 1.5.40)

is simply the integral of the differential cross section over all solid angles.

The situation is much the same as with spectroscopic measurements. In the case of interactions between



monatomic species, if all the oscillations in the measured differential cross sections are fully resolved, then an
inversion procedure can be applied to obtain the interatomic potential [104, 105]. No formal inversion
procedures exist for the determination of a PES from measured cross sections for polyatomic molecules, and it
is necessary to fit a parametrized surface to the observed cross sections.

A1.5.4.3 GAS IMPERFECTIONS

The virial equation of state, first advocated by Kamerlingh Onnes in 1901, expresses the compressibility
factor of a gas as a power series in the number density:

PV/RT =1+ B(TY/V+C(T)/V:+... (A 1.5.41)

in which B(T),C(T),. . . are called the second, third, . . . virial coefficients. The importance of this equation in
the study of intermolecular forces stems from the statistical mechanical proof that the second virial coefficient
depends only on the pair potential, even if the total interaction contains significant many-body contributions.
For spherically symmetric interactions the relationship between B(T) and V(r) was well established by 1908,
and first Keesom in 1912, and then Jones (later known as Lennard-Jones) in the 1920s exploited it as a tool
for the determination of intermolecular potentials from experiment [ 106, 107]. The relationship is simply
[108]:

-
B(T) = —Exﬁgf [exp(—V (r)/kT) — 1] dr. (A 1.5.42)
0
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In the repulsive region (r < o) there is a one-to-one correspondence between the interaction energy and the
intermolecular distance. Hence it is possible, in principle at least, to obtain V(r) for » < ¢ by inverting B(7).
However, in the region of the potential well ( > &), both the inner and outer turning points of the classical
motion correspond to the same J and hence it is impossible to obtain V() uniquely by inverting B(7). In fact
[109, 110], inversion of B(7) can only yield the width of the well as a function of its depth. For light species,
equation (A1.5.42) is the first term in a semi-classical expansion, and the following terms are called the
quantum corrections [106, 107, 111]. For nonlinear molecules, the classical relationship is analogous to
equation (A1.5.42) except that the integral is six dimensional since five angles are required to specify the
relative orientation of the molecules. In such cases, inversion of B(7) is a hopeless task. Nevertheless, virial
coefficient data provide an important test of a proposed potential function.

The third virial coefficient C(7T) depends upon three-body interactions, both additive and non-additive. The
relationship is well understood [106, 107, 111]. If the pair potential is known precisely, then C(7) ought to
serve as a good probe of the non-additive, three-body interaction energy. The importance of the non-additive
contribution has been confirmed by C(7) measurements. Unfortunately, large experimental uncertainties in C
(7) have precluded unequivocal tests of details of the non-additive, three-body interaction.

A1.5.4.4 TRANSPORT PROPERTIES

The viscosity, thermal conductivity and diffusion coefficient of a monatomic gas at low pressure depend only
on the pair potential but through a more involved sequence of integrations than the second virial coefficient.
The transport properties can be expressed in terms of ‘collision integrals’ defined [111] by
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QUNT) = [(s + DIET) ]! f Q“NE)e FMTETAE (A1.5.43)

where £ is the Boltzmann constant and £ is the relative kinetic energy of the collision. The collision integral is
a thermal average of the transport cross section

o 1+ (=17 o .
Q'"ME) = 2:{1 - —} f (1 —cos" x)bdb (A 1.5.44)
2(1 + £) 0

in which b is the impact parameter of the collision, and y is the deflection angle given by

dr
ri(l — b2 r —V(r)/E)\2

¥(E.b)y=m — Ebf (A 1.5.45)

where r, the distance of closest approach in the collision, is the outermost classical turning point of the
effective potential. The latter is the sum of the true potential and the centrifugal potential so that V_(L,r) =V

n+ L2/(2 urz) =Wr)+ Eb2/r? in which L is the angular momentum and p the reduced mass. Hence r, is the
outermost solution of £=V_c(L, r,).
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The Chapman—Enskog solution of the Boltzmann equation [112] leads to the following expressions for the
transport coefficients. The viscosity of a pure, monatomic gas can be written as

" — S(mmkT)\?

)= mﬁ; (A 1.5.46)
and the thermal conductivity as
75 (kAT
AMT)= — ——f; (A 1.5.47)
64\ m QE2(T)

where m is the molecular mass. fn and f, are higher-order correction factors that differ from unity by only 1 or
2% over a wide temperature range, and can be expressed in terms of collision integrals with different values
of fand s. Expression (A1.5.46) and Expression (A1.5.47) imply that

AT _ 15&f;
n(T) - dmf,

(A 1.5.48)

and this is borne out experimentally [111] with the ratio of correction factors being a gentle function of
temperature: £, /f. ~ 1 +0.0042(1-¢%33-T") for 1 < T* < 90 with T = kT/c. The self-diffusion coefficient



can be written in a similar fashion:

3 /akTHVE
T) = — _ A 1.5.49
D(T) ™ ( — ) ST fn ( )

where 7 is the number density. The higher-order correction factor f;, differs from unity by only a few per cent
and can also be expressed in terms of other collision integrals.

Despite the complexity of these expressions, it is possible to invert transport coefficients to obtain information
about the intermolecular potential by an iterative procedure [111] that converges rapidly, provided that the
initial guess for V(r) has the right well depth.

The theory connecting transport coefficients with the intermolecular potential is much more complicated for
polyatomic molecules because the internal states of the molecules must be accounted for. Both quantum
mechanical and semi-classical theories have been developed. McCourt and his coworkers [113, 114] have
brought these theories to computational fruition and transport properties now constitute a valuable test of
proposed potential energy surfaces that
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can be performed routinely. Electric and magnetic field effects on transport properties [113, 114] depend
primarily on the non-spherical part of the interaction, and serve as stringent checks on the anisotropy of
potential energy surfaces.

A1.5.5 MODEL INTERACTION POTENTIALS

There are many large molecules whose interactions we have little hope of determining in detail. In these cases
we turn to models based on simple mathematical representations of the interaction potential with empirically
determined parameters. Even for smaller molecules where a detailed interaction potential has been obtained
by an ab initio calculation or by a numerical inversion of experimental data, it is useful to fit the calculated
points to a functional form which then serves as a computationally inexpensive interpolation and extrapolation
tool for use in further work such as molecular simulation studies or predictive scattering computations. There
are a very large number of such models in use, and only a small sample is considered here. The most
frequently used simple spherical models are described in section A1.5.5.1 and some of the more common
elaborate models are discussed in section A1.5.5.2, section A1.5.5.3 and section A1.5.5.4.

A1.5.5.1 SIMPLE SPHERICAL MODELS

The hard sphere model considers each molecule to be an impenetrable sphere of diameter ¢ so that

o0 F =T
Yy = - A 1.5.50
vir) {{] P o=, ( )

This simple model is adequate for some properties of rare gas fluids. When it is combined with an accurate
description of the electrostatic interactions, it can rationalize the structures of a large variety of van der Waals



complexes [115, 116 and 117].

The venerable bireciprocal potential consists of a repulsive term A/ and an attractive term -B/"™ with n > m.
This potential function was introduced by Mie [118] but is usually named after Lennard-Jones who used it

extensively. Almost invariably, m = 6 is chosen so that the attractive term represents the leading dispersion
term. Many different choices of n have been used, but the most common is n = 12 because of its
computational convenience. The ‘Lennard-Jones (12,6)’ potential can be written in terms of the well depth (g)
and either the minimum position (r, ) or the zero potential location () as

Vr) = 4e[(o/r}'? — (o/r)] = e[rm/r)"? — 2(rm/r)°] (A 1.5.51)

in which the relationship c = 27V 6rm is a consequence of having only two parameters. Fitted values of the

coefficient 4ec® of the 7 © term are often twice as large as the true C, value because the attractive term has to
compensate for the absence of the higher-order dispersion terms. It is remarkable that this simple model

continues to be used almost a century after its introduction.
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Morse [119] introduced a potential energy model for the vibrations of bound molecules

Vr) = E[E—EI{'IH'EI']IF—F,.] -2 E—L'c'.-"ﬂ][!'—rml] (A 1.5.52)

where ¢ is a dimensionless parameter related to the curvature of the potential at its minimum. This function
has a more realistic repulsion than the Lennard-Jones potential, but has incorrect long-range behaviour. It has
the merit that its vibrational and rotational energy levels are known analytically [119, 120].

The ‘exp-6’ potential replaces the inverse power repulsion in the Lennard-Jones (12, 6) function by a more
realistic exponential form:

_ et =6/a)7'[(6fa) ™= — (ry /1)1 F > Frax

P = Poaxe

Vir) (A 1.5.53)

The potential has a spurious maximum at r,_ where the #~© term again starts to dominate. The dimensionless
parameter a is a measure of the steepness of the repulsion and is often assigned a value of 14 or 15. The ideas
of an exponential repulsion and of its combination with an 9 attraction were introduced by Slater and

Kirkwood [121], and the cut-off at . by Buckingham [122]. An exponential repulsion, 4 e P s commonly
referred to as a Born—-Mayer form, pef)haps because their work [123] is better known than that of Slater and

Kirkwood.
The parameters in simple potential models for interactions between unlike molecules A and B are often

deduced from the corresponding parameters for the A—A and B—B interactions using ‘combination rules’. For
example, the ¢ and € parameters are often estimated from the ‘Lorentz—Berthelot’ rules:

oap = (oa o) /2 (A 1.5.54)



e = (eatp)'?, (A 1.5.55)
The former is useful but the latter tends to overestimate the well depth. A harmonic mean rule
Eap = 2eA£R,(EA T Ep) (A 1.5.56)

proposed by Fender and Halsey [124] is generally better than the geometric mean of equation (A1.5.55).
Combination rules for the steepness parameter in the exp-6 model include the arithmetic mean

ang = (an +ap)/2 (A 1.5.57)
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and the somewhat more accurate harmonic mean

dap = Eﬂ_qﬁnffﬂ,a +agp). (A 1.5.58)

Many other rules, some of which are rather more elaborate, have been proposed [111], but these rules have
insubstantial theoretical underpinnings and they continue to be used only because there is often no better way
to proceed.

A1.5.5.2 ELABORATE SPHERICAL MODELS

The potential functions for the interactions between pairs of rare-gas atoms are known to a high degree of
accuracy [125]. However, many of them use ad hoc functional forms parametrized to give the best possible fit
to a wide range of experimental data. They will not be considered because it is more instructive to consider
representations that are more firmly rooted in theory and could be used for a wide range of interactions with
confidence.

Slater and Kirkwood’s idea [121] of an exponential repulsion plus dispersion needs only one concept,
damping functions, see section A1.5.3.3, to lead to a working template for contemporary work. Buckingham
and Corner [126] suggested such a potential with an empirical damping function more than 50 years ago:

V(r) = Ae™ — (Ce/r®+Cy/r®) f(r) (A 1.5.59)

where the damping function is

fr) = [exp[4(1 =r/rm)’] 1 <rm (A 1.5.60)

1 re .

Modern versions of this approach use a more elaborate exponential function for the repulsion, more dispersion
terms, induction terms if necessary, and individual damping functions for each of the dispersion, and
sometimes induction, terms as in equation (A1.5.37).




Functional forms used for the repulsion include the simple exponential multiplied by a linear combination of
powers (possibly non-integer) of r, a generalized exponential function exp(—b(r)), where b(r) is typically a
polynomial in 7, and a combination of these two ideas.

Parametrized representations of individual damping dispersion functions were first obtained [127] by fitting
ab initio damping functions [74] for H-H interactions. The one-parameter damping functions of Douketis et
al are [127]:

f.(r) =[1 —exp(=2.15/n — 0.1095% / /1) )" (A 1.5.61)
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where s = pr, and p is a scale parameter (defined to be p=1/a, for H-H) that enables the damping functions to
be used for any interaction. Meath and coworkers [78, 128] prefer the more elaborate form

Fulr) =1 — expl—ans — bps® — dus®)]" (A 1.5.62)

in which the a ,b,,d, (n= . .,20) are parameters obtained by fitting to ab initio damping functions for H—

H. A one-parameter damplng function of the incomplete gamma form, based on asymptotic arguments and the
H—H interaction, is advocated by Tang and Toennies [129]:

Ju(ry =1 —exp(—br) Z{b}']",’k! (A 1.5.63)
k=M

where b is a scale parameter which is often set equal to the corresponding steepness parameter in the Born—
Mayer repulsion.

Functional forms based on the above ideas are used in the HFD [127] and Tang—Toennies models [129],
where the repulsion term is obtained by fitting to Hartree—Fock calculations, and in the XC model [92] where
the repulsion is modelled by an ab initio Coulomb term g!!'and a semi-empirical exchange-repulsion term

g1 Current versions of all these models employ an individually damped dispersion series for the attractive

term.

An example of a potential energy function based on all these ideas is provided by the 10-parameter function
used [88] as a representation of ab initio potential energy curves for He—F~ and Ne-F~

V(r) = Aexp[—b(r)] — Z Fon(r)Canfr?" (A 1.5.64)

n=2

where b(r) = (b +biz+ bzz ) with z = (r —r )/(r + r), the damping functions f, (r) are those of equation

(A1.5.61), the 7 * term is a pure induction term and the higher » ~2 terms contain both dispersion and
induction. Note that this representation 1mp1101t1y assumes that the dispersion damping functions are

applicable to induction without change.

A1.5.5.3 MODEL NON-SPHERICAL INTERMOLECULAR POTENTIALS



The complete intermolecular potential energy surface depends upon the intermolecular distance and up to five
angles, as discussed in section A1.5.1.3.

The interaction energy can be written as an expansion employing Wigner rotation matrices and spherical
harmonics of the angles [28, 130]. As a simple example, the interaction between an atom and a diatomic
molecule can be expanded in Legendre polynomials as
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N
Vir, ) = z Ve(r) Pricosd). (A 1.5.65)
L=l

This Legendre expansion converges rapidly only for weakly anisotropic potentials. Nonetheless, truncated
expansions of this sort are used more often than justified because of their computational advantages.

A more natural way to account for the anisotropy is to treat the parameters in an interatomic potential, such as
equation (A1.5.64), as functions of the relative orientation of the interacting molecules. Corner [131] was

perhaps the first to use such an approach. Pack [132] pointed out that Legendre expansions of the well depth €
and equilibrium location r_ of the interaction potential converge more rapidly than Legendre expansions of

the potential itself.

As an illustration, consider the function used to fit an ab initio surface for N,—He [86, 87]. It includes a
repulsive term of the form

Viep(r. 8) = exp[A(@) — H(O)R +y(#) Inr] (A 1.5.66)

in which
A(f) = Ay + A2 PalcosB) + Ay Pylcos ) (A 1.5.67)

and similar three-term Legendre expansions are used for 5(0) and y(0). The same surface includes an
anisotropic attractive term consisting of damped dispersion and induction terms:

1

Vie(r, 0) = =3 fanlr, 0)C2 (0)/r™" (A 1.5.68)

n=1

in which the combined dispersion and induction coefficients C, (8) are given by Legendre series as in
equation (A1.5.19), and the damping functions are given by a version of equation (A1.5.61) modified so that
the scale factor has a weak angle dependence

pe) = py + p2 Pa(cos d). (A 1.5.69)

To improve the description of the short-range anisotropy, the surface also includes a repulsive ‘site—site’ term



Vir = o e” 75 + frge” 5 (A 1.5.70)
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where r, and ry are distances between the nitrogen atoms and the helium atom.
A1.5.5.4 SITE-SITE INTERMOLECULAR POTENTIALS

The approach described in section A1.5.5.3 is best suited for accurate representations of the PES for
interactions between small molecules. Interactions between large molecules are usually handled with an
atom—atom or site—site approach. For example, an atom—atom, exp-6 potential for the interaction between
molecules A and B can be written as

Vo = Z Z[J"‘lnh expl(—bapran) — thff':h (A1.5.71)

acA heh

where the sums are over the atoms of each molecule, and there are three parameters 4, b, and C g"for each

distinct type of atom pair. A set of parameters was developed by Filippini and Gavezzotti [133, 134] for
describing crystal structures and another set for hydrogen bonding.

A more accurate approach is to begin with a model of the charge distribution for each of the molecules.
Various prescriptions for obtaining point charge models, such as fitting to the electrostatic potential of the
molecule [135, 136], are currently in use. Unfortunately, these point charge models are insufficiently accurate
if only atom-centred charges are used [137]. Hence, additional charges are sometimes placed at off-atom sites.
This increases the accuracy of the point charge model at the expense of arbitrariness in the choice of off-atom
sites and an added computational burden. A less popular but sounder procedure is to use a distributed
multipole model [28, 138, 139] instead of a point charge model.

Once the models for the charge distributions are in hand, the electrostatic interaction is computed as the
interaction between the sets of point charges or distributed multipoles, and added to an atom—atom, exp-6
form that represents the repulsion and dispersion interactions. Different exp-6 parameters, often from [140,
141 and 142], are used in this case. The induction interaction is frequently omitted because it is small, or it is
modelled by a single site polarizability on each molecule interacting with the point charges or distributed
multipoles on the other.

A further refinement [143, 144] is to treat the atoms as being non-spherical by rewriting the repulsive part of
the atom—atom exp-6 model, equation (A1.5.71), as

Ii"’mpn = Ver E Z Exp[_hnb(ﬂnb}(rnh - .Gu.l'?[ﬂnh}]] (A 1.5.72)

acA el

where Q , is used as a generic designation for all the angles required to specify the relative orientation of the

molecules, and V¢ is an energy unit. The p , (€ ;) functions describe the shape of the contour on which the
repulsion energy between atoms a and b equals V. The spherical harmonic expansions used to represent the

angular variation of the steepness b _,(€2 ;) and shape p_,(€2 ;) functions are quite rapidly convergent.
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A1.6 Interaction of light with matter: a coherent
perspective

David J Tannor

A1.6.1 THE BASIC MATTER-FIELD INTERACTION

There has been phenomenal expansion in the range of experiments connected with light—molecule
interactions. If one thinks of light as an electromagnetic (EM) wave, like any wave it has an amplitude, a
frequency and a phase. The advent of the laser in 1960 completely revolutionized the control over all three of
hese factors. The amplitude of the EM wave is related to its intensity; current laser capabilities allow
intensities up to about 1020 W cm 2, fifteen orders of magnitude larger than prelaser technology allowed.
Laser beams can be made extremely monochromatic. Finally, it is increasingly possible to control the absolute
phase of the laser light. There have also been remarkable advances in the ability to construct ultrashort pulses.
Currently it is possible to construct pulses of the order of 10713 s (several femtoseconds), a time scale short
compared with typical vibrational periods of molecules. These short pulses consist of a coherent superposition
of many frequencies of the light; the word coherent implies a precise phase relationship between the different
frequency components. When these coherent ultrashort pulse interact with a molecule they excite coherently
many frequency components in the molecule. Such coherent excitation, whether it is with short pulses or with
monochromatic light, introduces new concepts in thinking about the light-matter interaction. These new
concepts can be used passively, to learn about molecular properties via new coherent spectroscopies, or
actively, to control chemical reactions using light, or to use light to cool atoms and molecules to temperatures
orders of magnitude lower than 1 K.

A theme which will run through this section is the complementarity of light and the molecule with which it
interacts. The simplest example is energy: when a photon of energy £ = hiw is absorbed by a molecule it
disappears, transferring the identical quantity of energy £ = I(®,— ;) to the molecule. But this is only one of

a complete set of such complementary relations: the amplitude of the EM field determines the amplitude of
the excitation; the phase of the EM phase determines the phase of the excitation; and the time of the
interaction with the photon determines the time of excitation of the molecule. Moreover, both the magnitude
and direction of the momentum of the photon are imparted to the molecules, an observation which plays a
crucial role in translational cooling. Finally, because of the conservation or increase in entropy in the universe,
any entropy change in the system has to be compensated for by an entropy change in the light; specifically,
coherent light has zero or low entropy while incoherent light has high entropy. Entropy exchange between the
system and the light plays a fundamental role in laser cooling, where entropy from the system is carried off by
the light via incoherent, spontaneous emission, as well in lasing itself where entropy from incoherent light



must be transferred to the system.

This section begins with a brief description of the basic light-molecule interaction. As already indicated,
coherent light pulses excite coherent superpositions of molecular eigenstates, known as ‘wavepackets’, and
we will give a description of their motion, their coherence properties, and their interplay with the light. Then
we will turn to linear and nonlinear spectroscopy, and, finally, to a brief account of coherent control of
molecular motion.

A1.6.1.1 ELECTROMAGNETIC FIELDS

The material in this section can be found in many textbooks and monographs. Our treatment follows that in
[1,2 and 3].

(A) MAXWELL’S EQUATIONS AND ELECTROMAGNETIC POTENTIALS

The central equations of electromagnetic theory are elegantly written in the form of four coupled equations for
the electric and magnetic fields. These are known as Maxwell’s equations. In free space, these equations take
the form:

?xE:—lE (A1.6.1)
c dt

(A1.6.2)

V. E=dnp (A1.6.3)

V:B=10 (A1.6.4)

where E is the electric field vector, B is the magnetic field vector, J is the current density, p is the charge
density and c is the speed of light. It is convenient to define two potentials, a scalar potential ¢ and a vector
potential A, such that the electric and magnetic fields are defined in terms of derivatives of these potentials.
The four Maxwell equations are then replaced by two equations which define the fields in terms of the
potentials,

1dA
E=_V$_ —— (A1.6.5)
¢ c dr
B=VxA (A1.6.6)

together with two equations for the vector and scalar fields themselves. Note that there is a certain amount of

flexibility in the choice of A and ¢, such that the same values for E and B are obtained (called gauge
invariance). We will adopt below the Coulomb gauge, in which ¥+ 4 = 0.

In free space (p =0, J =0, ¢ = constant), the equations for the potentials decouple and take the following
simple form:

V=0 (A1.6.7)



(A1.6.8)

Equation (A1.6.8), along with the definitions (A1.6.5) and (A1.6.6) constitute the central equation for the
propagation of electromagnetic waves in free space. The form of section A1.6.4 admits harmonic solutions of
the form

A= Agcos(k:r—wt) (A1.6.9)

from which it follows that
E= —%’A., sin(k - r — wr) = Egesin(kr — ) (A1.6.10)
B=—-A)kxe)sink-r—wt) (A1.6.11)

(e is a unit vector in the direction of E and o = |k|c).

(B) ENERGY AND PHOTON NUMBER DENSITY

In what follows it will be convenient to convert between field strength and numbers of photons in the field.
According to classical electromagnetism, the energy £ in the field is given by

.*::=f d?‘ru. (A1.6.12)

B

If we assume a single angular frequency of the field, », and a constant magnitude of the vector potential, 4y,
in the volume ¥, we obtain, using equation (A1.6.10) and equation (A1.6.11), and noting that the average

value of sin?(x) = 1/2,

2
E= -'EE (A1.6.13)
Bar

But by the Einstein relation we know that the energy of a single photon on frequency  is given by fiw, and
hence the total energy in the field is

E = Nhw (A1.6.14)

where N is the number of photons. Combining equation (A1.6.13) and equation (A1.6.14) we find that

. R NTrew \'*
Eg = — ) - (A1.6.15)

Equation (A1.6.15) provides the desired relationship between field strength and the number of photons.



A1.6.1.2 INTERACTION BETWEEN FIELD AND MATTER
(A) CLASSICAL THEORY

To this point, we have considered only the radiation field. We now turn to the interaction between the matter
and the field. According to classical electromagnetic theory, the force on a particle with charge e due to the
electric and magnetic fields is

#wx B
F=e¢|FE+ - . (A1.6.16)

This interaction can also be expressed in terms of a Hamiltonian:
l e
H(p. A) =—(p——A) (A16.17)

where A = A(x) and where p and x are the conjugate variables that obey the canonical Hamilton equations.
(Verifying that equation (A1.6.17) reduces to equation (A1.6.16) is non-trivial (cf [3])). Throughout the
remainder of this section the radiation field will be treated using classical electromagnetic theory, while the
matter will be treated quantum mechanically, that is, a ‘semiclassical’ treatment. The Hamiltonian form for
the interaction, equation (A1.6.17), provides a convenient starting point for this semiclassical treatment.

(B) QUANTUM HAMILTONIAN FOR A PARTICLE IN AN ELECTROMAGNETIC FIELD

To convert the Hamiltonian for the material from a classical to a quantum form, we simply replace p with -if
V. This gives:

1 2 6.
H=_— [_iw . f,q} +V, (A16.18)
2m ¢
2yl e 2
_ _I: Vv FV+ e (V.A+A.-V)+ € A.-A (A1.6.19)
2m LEHH" 2me
= Hy + Vv (A1.6.20)
-5-

where H is the Hamiltonian of the bare system and V'is the part of the Hamiltonian that comes from the
radlatlon field and the radiation-matter interaction. Note that an additional term, V', has been included in the
system Hamiltonian, to allow for internal potential energy of the system. V contalns all the interesting
features that make different atoms and molecules distinct from one another and will play a significant role in
later sections.

We now make the following observations.

(i) For many charged particles



ifie e
V= V-A+A-V)+—A-A
Zf: Emc{ ) 2

(if) In the Coulomb gauge V-4 = 0. This implies that ¥-(4y) = A-Vy for any v, and hence the terms
linear in A can be combined:

V A+tA-V=2A-V.

(iii) The quadratic term in A4,

e 4
—A-A
:‘lm‘c

can be neglected except for very strong fields, on the order of 101> W cm™2 [4].

(iv) For isolated molecules, it is generally the case that the wavelength of light is much larger than the

molecular dimensions. In this case it is a good approximation to make the replacement %7 ~ 1, which
allows the replacement [3]

V- A.p=—E-eb.

me

For many electrons and nuclei, V takes the following form:
V=-E. Z?Jmﬁ- =-E-u (A1.6.21)
i

where we have defined the dipole operator, ;; = 3. Z;ev; The dipole moment is seen to be a product

of charge and distance, and has the physical interpretation of the degree of charge separation in the
atom or molecule. Note that for not-too-intense fields, equation (A1.6.21) is the dominant term in the
radiation—matter interaction; this is the dipole approximation.

A1.6.1.3 ABSORPTION, STIMULATED EMISSION AND SPONTANEOUS EMISSION OF LIGHT

Consider a quantum system with two levels, a and b, with energy levels £ and E;. Furthermore, let the
perturbation

-6-

between these levels be of the form equation (A1.6.21), with monochromatic light, that is, E = Eocos(cot)
resonant to the transition frequency between the levels, so ® = (£, — E )/l = E} /h. The perturbation matrix

element between a and b is then given by

= E . ; -
Via = Eycos(awt) « (b|fila) = 5 (e +e )« fipg (A1.6.22)
where

flap = (blf1la) = jing

is the dipole matrix element. There are three fundamental possible kinds of transitions connected by the dipole
interaction: absorption (@ — b), corresponding to the second term in equation (A1.6.22); stimulated emission
(b — a) governed by the first term in equation (A1.6.22); and spontaneous emission (also » — a), for which
there is no term in the classical radiation field. For a microscopic description of the latter, a quantum



mechanical treatment of the radiation field is required. Nevertheless, there is a simple prescription for taking
spontaneous emission into account, which was derived by Einstein during the period of the old quantum
theory on the basis of considerations of thermal equilibrium between the matter and the radiation. Although
for most of the remainder of this section the assumption of thermal equilibrium will not be satisfied, it is
convenient to invoke it here to quantify spontaneous emission.

Fermi’s Golden Rule expresses the rate of transitions between b and « as

2
W = —1Vial*p(Epa) (A1.6.23)

where p(E, ) is the density of final states for both the system and the light. As described above, we will
consider the special case of both the matter and light at thermal equilibrium. The system final state is by
assumption non-degenerate, but there is a frequency dependent degeneracy factor for thermal light, p(£) d E,
where

Vv tr.i'll
ME) = l?‘“:}‘?dﬂ (A1.6.24)

and V is the volume of the ‘box’ and € is an element of solid angle.

The thermal light induces transitions from a — b and from b — a in proportion to the number of photons
present. The number of transitions per second induced by absorption is

2 )
Woplat = b) = I—}T|H;;,|‘;3[E,, — Trew) (A1.6.25)
i
-7-
2ME;, . 5, V&
= e i P ——— —d2. A1.6.26
T 4 e+ Han] (2me) N ( )

Integrating over all solid angles and using equation (A1.6.15) and equation (A1.6.10) we find

3
ey 2
- | tan”. (A1.6.27)

Wa'; =T
pslad — B) 33’:”(

For thermal light, the number of transitions per second induced by stimulated emission integrated over solid
angles, W ime is equal to Wb The total emission, which is the sum of the stimulated and spontaneous

emission, may be obtained by letting N — N + 1 in the expression for stimulated emission, giving
4 (!Jj 2
Wem(b = a) = — (N + 1)—|panl|”. (A1.6.28)
3N o3

Einstein’s original treatment [5] used a somewhat different notation, which is still in common use:
Wiim (b = @) = Bl — a)p = Waela — 8)

where



_ 2hNhw 2Nw'h
p="—p(E) = "—

v o
is the energy in the field per unit volume between frequencies v and v + dv (the ‘radiation density”’) (the factor
of 2 comes from the two polarizations of the light and the factor /4 from the scaling between energy and
frequency). Comparing with equation (A1.6.27) leads to the identification

Blbh — a)=Bla — b) = %Lﬂrrnﬁ-

Moreover, in Einstein’s treatment

4 (e 3 B
IVHFHJILI{{, —a)=Ab— a) = E (:) |.Hr:b|

leading to the following ratio of the Einstein 4 and B coefficients:

Albh = a) _ E (E)‘J

= A1.6.2
Bb > a)  n (A1.6.29)

o

8-

The argument is sometimes given that equation (A1.6.29) implies that the ratio of spontaneous to stimulated
emission goes as the cube of the emitted photon frequency. This argument must be used with some care: recall
that for light at thermal equilibrium, W, = goes as Bp, and hence the rate of stimulated emission has a factor

tim
of (w/c)’ coming from &. The ratio of the spontaneous to the stimulated emission rates is therefore frequency
independent! However, for non-thermal light sources (e.g. lasers), only a small number of energetically
accessible states of the field are occupied, and the gfactor is on the order of unity. The rate of spontaneous

emission still goes as @3, but the rate of stimulated emission goes as o, and hence the ratio of spontaneous to

stimulated emission goes as ®?. Thus, for typical light sources, spontaneous emission dominates at
frequencies in the UV region and above, while stimulated emission dominates at frequencies in the far-IR

region and below, with both processes participating at intermediate frequencies.

A1.6.1.4 INTERACTION BETWEEN MATTER AND FIELD

In the previous sections we have described the interaction of the electromagnetic field with matter, that is, the
way the material is affected by the presence of the field. But there is a second, reciprocal perspective: the
excitation of the material by the electromagnetic field generates a dipole (polarization) where none existed
previously. Over a sample of finite size this dipole is macroscopic, and serves as a new source term in
Maxwell’s equations. For weak fields, the source term, P, is linear in the field strength. Thus,

P=yE (A1.6.30)

where the proportionality constant y, called the (linear) susceptibility, is generally frequency dependent and
complex. As we shall see below, the imaginary part of the linear susceptibility determines the absorption
spectrum while the real part determines the dispersion, or refractive index of the material. There is a universal
relationship between the real part and the imaginary part of the linear susceptibility, known as the Kramers—
Kronig relation, which establishes a relationship between the absorption spectrum and the frequency-
dependent refractive index. With the addition of the source term P, Maxwell’s equations still have wavelike



solutions, but the relation between frequency and wavevector in equation (A1.6.10) must be generalized as

follows:
)] i)

The quantity 1 + y is known as the dielectric constant, €; it is constant only in the sense of being independent
of E, but is generally dependent on the frequency of E. Since y is generally complex so is the wavevector k. It
is customary to write

ke .
A

where 1 and « are the refractive index and extinction coefficient, respectively. The travelling wave solutions
to Maxwell’s equations, propagating in the z-direction now take the form

) . Nz wKZ
expl(ilkz — wit)) = exp |:1r:u(— - r) - (—)} (A1.6.33)
[ [

In this form it is clear that k leads to an attenuation of the electric field amplitude with distance (i.e.
absorption).

For stronger fields the relationship between the macroscopic polarization and the incident field is non-linear.
The general relation between P and E is written as

P=yVE+y@ B 4y 4. . =2pVapDyepdy (A1.6.34)

The microscopic origin of  and hence of P is the non-uniformity of the charge distribution in the medium. To
lowest order this is given by the dipole moment, which in turn can be related to the dipole moments of the
component molecules in the sample. Thus, on a microscopic quantum mechanical level we have the relation

P = (||, (A1.6.35)

Assuming that the material has no permanent dipole moment, P originates from changes in the wavefunction
y that are induced by the field; this will be our starting point in section A1.6.4.

A1.6.2 COHERENCE PROPERTIES OF LIGHT AND MATTER

In the previous section we discussed light and matter at equilibrium in a two-level quantum system. For the
remainder of this section we will be interested in light and matter which are not at equilibrium. In particular,
laser light is completely different from the thermal radiation described at the end of the previous section. In
the first place, only one, or a small number of states of the field are occupied, in contrast with the Planck
distribution of occupation numbers in thermal radiation. Second, the field state can have a precise phase; in
thermal radiation this phase is assumed to be random. If multiple field states are occupied in a laser they can
have a precise phase relationship, something which is achieved in lasers by a technique called ‘mode-locking’.
Multiple frequencies with a precise phase relation give rise to laser pulses in time. Nanosecond experiments



have been very useful in probing, for example, radiationless transitions, intramolecular dynamics and
radiative lifetimes of single vibronic levels in molecules. Picosecond experiments have been useful in
probing, for example, collisional relaxation times and rotational reorientation times in solutions. Femtosecond
experiments have been useful in observing the real time breaking and formation of chemical bonds; such
experiments will be described in the next section. Any time that the phase is precisely correlated in time over
the duration of an experiment, or there is a superposition of frequencies with well-defined relative phases, the
process is called coherent. Single frequency coherent processes will be the major subject of section A1.6.2,
while multifrequency coherent processes will be the focus for the remainder of the section.
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A1.6.2.1 WAVEPACKETS: SOLUTIONS OF THE TIME-DEPENDENT SCHRODINGER EQUATION

The central equation of (non-relativistic) quantum mechanics, governing an isolated atom or molecule, is the
time-dependent Schrédinger equation (TDSE):

b, t
a D peen. (A1.6.36)
ot

In this equation H is the Hamiltonian (developed in the previous section) which consists of the bare system
Hamiltonian and a term coming from the interaction between the system and the light. That is,

-
H = —,—v“:‘ﬂ{i‘}—f(”,ﬂ- (A1.6.37)

2m

Since we are now interested in the possibility of coherent light, we have taken the interaction between the
radiation and matter to be some general time-dependent interaction, V' = —E(f)u, which could in principle
contain many frequency components. At the same time, for simplicity, we neglect the vector character of the
electric field in what follows. The vector character will be reintroduced in section A1.6.4, in the context of
nonlinear spectroscopy.

Real molecules in general have many quantum levels, and the TDSE can exhibit complicated behaviour even
in the absence of a field. To simplify matters, it is worthwhile discussing some properties of the solutions of
the TDSE in the absence of a field and then reintroducing the field. First let us consider

a

H = _ﬁ;vz bV (x). (A1.6.38)
2m

Since in this case the Hamiltonian is time independent, the general solution can be written as

s u}

Wix, 1) = E Y ()t (A1.6.39)

n=lI

(This expression assumes a system with a discrete level structure; for systems with both a discrete and a
continuous portion to their spectrum the expression consists of a sum over the discrete states and an integral
over the continuous states.) Here, y, (x) is a solution of the time-independent Schrodinger equation,

Hlllr'r"(-:-] — Eﬂlﬂt{{.xl!

2=

with eigenvalue E_. The coefficients, a_, satisfy the normalization condition X_ |a. 1, and are time



independent in this case. Equation (A1.6.39) describes a moving wavepacket, that is, a state whose average
values in coordinate and momentum change with time. To see this, note that according to quantum mechanics

\'j (x,t)|2 dx is the probability to find the particle between x and x + dx at time ¢. Using equation (A1.6.39) we
see that
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s
IW(x, I]II = E ﬂ":'ﬂ” wa::{x}lﬁu{x}e_“m"E"_E"'"

m =l

in other words, the probability density has a non-vanishing time dependence so long as there are components
of two or more different energy eigenstates.

One of the remarkable features of time evolution of wavepackets is the close connection they exhibit with the
motion of a classical particle. Specifically, Ehrenfest’s theorem indicates that for potentials up to quadratic,
the average value of position and momentum of the quantum wavepacket as a function of time is exactly the
same as that of a classical particle on the same potential that begins with the corresponding initial conditions
in position and momentum. This classical-like behaviour is illustrated in figure A1.6.1 for a displaced
Gaussian wavepacket in a harmonic potential. For the case shown, the initial width is the same as the ground-
state width, a ‘coherent state’, and hence the Gaussian moves without spreading. By way of contrast, if the
initial Gaussian has a different width parameter, the centre of the Gaussian still satisfies the classical
equations of motion; however, the width will spread and contract periodically in time, twice per period.

i + ¥ (x 0P
. 0 .
—t
0 m——
' 3 :
0 N\,
&
e
0 =X

Figure A1.6.1. Gaussian wavepacket in a harmonic oscillator. Note that the average position and momentum
change according to the classical equations of motion (adapted from [6]).
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A1.6.2.2 COHERENCE IN A TWO-LEVEL SYSTEM: THE RABI SOLUTION

We now add the field back into the Hamiltonian, and examine the simplest case of a two-level system coupled

11]). The system is described by a Hamiltonian H, having only two eigenstates, y and y,, with energies £ |
=ho_ and £, = ho,. Define ©, = o, — o _. The most general wavefunction for this system may be written as

(1) = alt)e " yr, + bi(r) e ™ yry,. (A1.6.40)

The coefficients a(f) and b(¢) are subject to the constraint that |a(z‘)\2 + |b(t)|2 = 1. If we couple this system to a
light field, represented as V'=— _, E cos(o?), then we may write the TDSE in matrix form as

4 a(ne e E, —ptap E costent )\ a(rye o
dr i = : - - . A1.6.41
it dr ( JJ"{I }e—ltw.r — b E ‘305{&3?} Eh b (1 }I'-‘.'-'_W"’I (A1.6.41)

To continue we define a detuning parameter, A = ® — 0. If A €, then exp(—i(® — ®)?) is slowly varying

while exp(—i(® + w)?) is rapidly varying and cannot transfer much population from state A to state B. We
therefore ignore the latter term; this is known as the ‘rotating wave approximation’. If we choose as initial

conditions |ar(0)|2 =1 and |b(O)|2 = 0 then the solution of equation (A1.6.41) is

a[r]-e'*‘“"(cos(lﬁr) i&sin(lﬂr)) (A1.6.42)
N 2 Q 2 -
- At HE s I
= IAM[ —— in | = ) A1.6.43
bty =e (2?}9)(2”11‘ (Em)) ( )

where the Rabi frequency, 2, is defined as

2
o= ‘l‘fﬂg 4 (E) _ (A1.6.44)
h

The populations as functions of time are then

AY ENY L1
la(t)]® = (ﬁ) + (%) cos’ (Enr) (A1.6.45)
1

o 2
2 (PEY g2 () A1.6.46
|B(r)| _(ng‘g) sin (EQI). (A1.6.46)
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The population in the upper state as a function of time is shown in figure A1.6.2. There are several important
things to note. At early times, resonant and non-resonant excitation produce the same population in the upper
state because, for short times, the population in the upper state is independent of the Rabi frequency:



1b()]° = LE 2sin2 Lo ) aman (1E 2r2 (A1.6.47)
T \aQ 2 20 ' o

One should also notice that resonant excitation completely cycles the population between the lower and upper
state with a period of 27/CQ2. Non-resonant excitation also cycles population between the states but never
completely depopulates the lower state. Finally, one should notice that non-resonant excitation cycles
population between the two states at a faster rate than resonant excitation.

1
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0 L% 2y p

0 2 4 6 8 10 12

Figure A1.6.2. The population in the upper state as a function of time for resonant excitation (full curve) and
for non-resonant excitation (dashed curve).

A1.6.2.3 GEOMETRICAL REPRESENTATION OF THE EVOLUTION OF A TWO-LEVEL SYSTEM

A more intuitive, and more general, approach to the study of two-level systems is provided by the Feynman—
Vernon—Hellwarth geometrical picture. To understand this approach we need to first introduce the density
matrix.

In the Rabi solution of the previous section we considered a wavefunction () of the form

W(r) = at)e "'y, +b(t)e " i, (A1.6.48)
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We saw that the time-dependent populations in each of the two levels is given by P_ = |a(t)|2 and P, = |b(t)|2.
So long as the field is on, these populations continue to change; however, once the external field is turned off,

these populations remain constant (discounting relaxation processes, which will be introduced below). Yet the
amplitudes in the states vy and y, do continue to change with time, due to the accumulation of time-
dependent phase factors during the field-free evolution. We can obtain a convenient separation of the time-
dependent and the time-independent quantities by defining a density matrix, p. For the case of the
wavefunction |y), p is given as the ‘outer product’ of |y) with itself,

p= W) (A1.6.49)

This outer product gives four terms, which may be arranged in matrix form as



Iull a*h u—i{ml,—:..«,_.rr
P = ypr cttim—oonsn b . (A1.6.50)

Note that the diagonal elements of the matrix, |a|2 and |b|2, correspond to the populations in the energy levels,
a and b, and contain no time dependence, while the off-diagonal elements, called the coherences, contain all

the time dependence.
A differential equation for the time evolution of the density operator may be derived by taking the time

derivative of equation (A1.6.49) and using the TDSE to replace the time derivative of the wavefunction with
the Hamiltonian operating on the wavefunction. The result is called the Liouville equation, that is,

ih-= = [H, p. (A1.6.51)

The strategy for representing this differential equation geometrically is to expand both A and p in terms of the
three Pauli spin matrices, 6, 6, and 65 and then view the coefficients of these matrices as time-dependent
vectors in three-dimensional space. We begin by writing the the two-level system Hamiltonian in the
following general form,

Vrrll'r I

i

H= ( Ep “"‘) (A1.6.52)

where we take the radiation—matter interaction to be of the dipole form, but allow for arbitrary time-dependent
electric fields:

Ve = —ppa EN1). (A1.6.53)

Moreover, we will write the density matrix for the system as
(BT ath (A.6.54)
P=\ab* aa* o
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where a and b now contain the bare system evolution phase factors. We proceed to express both the
Hamiltonian and the density matrix in terms of the standard Pauli spin matrices:

£ £ £y
o L i . -
H = [Vuh + UF«:;' o+ I“'J-'J:r = vuhj oy + (Ep — ha;l 3

p=(ab” +a"b)yey vila"b —ab™yo, + (bb" — aa™) os.
— — " i
r s r

We now define the three-dimensional vectors, Fand 2, consisting of the coefficients of the Pauli matrices in
the expansion of p and H, respectively:

F=A{r.r.r (A1.6.55)



- L
Q= F[h:.hz.h;]. (A1.6.56)
1
Using these vectors, we can rewrite the Liouville equation for the two-level system as

d -
—r=8 xF. (A1.6.57)
dr

Note that 5 is the population difference between the upper and lower states: having all the population in the

lower state corresponds to 73 =—1 while having a completely inverted population (i.e. no population in the
lower state) corresponds to ry = +1.

This representation is slightly inconvenient since £, and £, in equation (A1.6.56) are explicitly time-
dependent. For a monochromatic light field of frequency w, we can transform to a frame of reference rotating
at the frequency of the light field so that the vector §2is a constant. To completely remove the time dependence
we make the rotating wave approximation (RWA) as before: £ cos(w?) = 3(E ¢ 197 + E ¢!®7) — 1E ¢ 19T In
the rotating frame, the Liouville equation for the system is

(A1.6.58)

where £ is now time independent. The geometrical interpretation of this equation is that the pseudospin
vector, ', precesses around the field vector, ', in exactly the same way that the angular momentum vector
precesses around a body fixed axis of a rigid object in classical mechanics. This representation of the two-
level system is called the Feynman—Vernon—Hellwarth, or FVH representation; it gives a unified, pictorial
view with which one can understand the effect of a wide variety of optical pulse effects in two-level systems.
For example, the geometrical picture of Rabi
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cycling within the FVH picture is shown in figure A1.6.3. Assuming that at = 0 all the population is in the
ground-state then the initial position of the ¥’ vector is (0,0,—1), and so ¥’ points along the negative z-axis. For
a resonant field, ®, — ® = 0 and so the ' vector points along the x-axis. Equation (A1.6.58) then says that the

population vector simply precesses about the x-axis. It then periodically points along the positive z-axis,
which corresponds to having all the population in the upper state. If the field is non-resonant, then £’ no
longer points along the x-axis but along some other direction in the xz-plane. The population vector still

precesses about the field vector, but now at some angle to the z-axis. Thus, the projection onto the z-axis of r
never equals one and so there is never a complete population inversion.

3

A




Figure A1.6.3. FVH diagram, exploiting the isomorphism between the two-level system and a pseudospin
vector precessing on the unit sphere. The pseudospin vector, F', precesses around the field vector, 2
according to the equation d#'/d ¢ = §2x F. The z-component of the F'vector is the population difference
between the two levels, while the x- and y-components refer to the polarization, that is, the real and imaginary
parts of the coherence between the amplitude in the two levels. In the frame of reference rotating at the carrier
frequency, the z-component of the Qvector is the detuning of the field from resonance, while the x- and y-
components indicate the field amplitude. In the rotating frame, the y-component of §2may be set equal to zero
(since the overall phase of the field is irrelevant, assuming no coherence of the levels at = 0), unless there is
non-uniform change in phase in the field during the process.

The FVH representation allows us to visualize the results of more complicated laser pulse sequences. A laser
pulse which takes ' from (0,0,-1) to (0,0,1) is called a n-pulse since the ¥’ vector precesses n radians about
the field vector. Similarly, a pulse which takes ¥’ from (0,0,—1) to (+1,0,0) is called a w/2-pulse. The state
represented by the vector (+1,0,0) is a coherent superposition of the upper and lower states of the system.

One interesting experiment is to apply a n/2-pulse followed by a n/2 phase shift of the field. This phase shift
will bring §' parallel to #*'. Since now £’ x #*" = 0, the population is fixed in time in a coherent superposition
between the ground and excited states. This is called photon locking.

A second interesting experiment is to begin with a pulse which is far below resonance and slowly and
continuously sweep the frequency until the pulse is far above resonance. At ¢ = —oo the field vector is pointing
nearly along the —z-axis, and is therefore almost parallel to the state vector. As the field vector slowly moves
fromz=-1toz=+1
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the state vector adiabatically follows it, precessing about the instantaneous direction of the field vector (figure
A1.6.4). When, at t —> +oo, the field vector is directed nearly along the +z-axis, the state vector is directed
there as well, signifying complete population inversion. The remarkable feature of ‘adiabatic following’, as
this effect is known, is its robustness—there is almost no sensitivity to either the field strength or the exact
schedule of changing the frequency, provided the conditions for adiabaticity are met.

Figure A1.6.4. FVH diagram, showing the concept of adiabatic following. The Bloch vector, r ', precesses in
a narrow cone about the rotating frame torque vector, £2'. As the detuning, A, changes from negative to
positive, the field vector, £, becomes inverted. If the change in §2' is adiabatic the Bloch vector follows the



field vector in this inversion process, corresponding to complete population transfer to the excited state.

A1.6.2.4 RELAXATION OF THE DENSITY OPERATOR TO EQUILIBRIUM

In real physical systems, the populations \a(t)|2 and |b(t)\2 are not truly constant in time, even in the absence of
a field, because of relaxation processes. These relaxation processes lead, at sufficiently long times, to thermal

equilibrium, characterized by the populations fa = € PEyQ. Py = ety @, where Q is the canonical partition
function which serves as a normalization factor and 3 = 1/kT, where k is the Boltzmann’s constant and 7 is the
temperature. The thermal equilibrium state for a two-level system, written as a density matrix, takes the
following form:

(e PO 0
p= ( 0 e‘“'*jg)' (A 1.6.59)

The populations, ¢=#£ /@, appear on the diagonal as expected, but note that there are no off-diagonal
elements—no coherences; this is reasonable since we expect the equilibrium state to be time-independent, and
we have associated the coherences with time.
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It follows that there are two kinds of processes required for an arbitrary initial state to relax to an equilibrium
state: the diagonal elements must redistribute to a Boltzmann distribution and the off-diagonal elements must
decay to zero. The first of these processes is called population decay; in two-level systems this time scale is
called T}. The second of these processes is called dephasing, or coherence decay; in two-level systems there is
a single time scale for this process called 7,. There is a well-known relationship in two level systems, valid
for weak system—bath coupling, that

1—1+] A 1.6.60
T, 2T, T (1.6:60)

where 7,,” is the time scale for so-called pure dephasing. Equation (A1.6.60) has the following significance:
even Wiﬁlout pure dephasing there is still a minimal dephasing rate that accompanies population relaxation.

In the presence of some form of relaxation the equations of motion must be supplemented by a term involving
a relaxation superoperator—superoperator because it maps one operator into another operator. The literature
on the correct form of such a superoperator is large, contradictory and incomplete. In brief, the extant theories
can be divided into two kinds, those without memory relaxation (Markovian) I'p and those with memory

relaxation (non-Markovian) f:c«: Fir = 12" The Markovian theories can be further subdivided into
those that preserve positivity of the density matrix (all p, > 0 in equation (A1.6.66) for all admissible p) and
those that do not. For example, the following widely used Markovian equation of motion is guaranteed to
preserve positivity of the density operator for any choice of {V}:

ap H H .1 . .
—=|.p|tlp=|F.0]| VipV, — = Vi ViptpV V] 6.
Y [ ﬁ} I'p [iﬁ p:| Z eV, ZZ[ L Vip+ pV V] (A 1.6.61)

As an example, consider the two-level system, with relaxation that arises from spontaneous emission. In this
case there is just a single V:



2 {0 1 2f0 0
F = ¥ o Iy
V=y (U ﬂ) Vvi=y (1 U)' (A 1.6.62)

It is easy to verify that the dissipative contribution is given by

— 22 —pi2f2
Mp=y ( —on/2  —pm ) ) (A 1.6.63)

We now make two connections with topics discussed earlier. First, at the beginning of this section we defined
1/T as the rate constant for population decay and 1/7), as the rate constant for coherence decay. Equation

(A1.6.63) shows that for spontaneous emission 1/7 =y, while 1/T, = y/2; comparing with equation (A1.6.60)

we see that for spontaneous emission, 1/7. * = 0. Second, note that v is the rate constant for population transfer
due to spontaneous emission; it is identical to the Einstein A4 coefficient which we defined in equation

(A1.6.3).
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For the two-level system, the evolution equation for p may also be expressed, as before, in terms of the three-
vector I

d _ ;
—F=QxF-T-F (A 1.6.64)
dr
where
_ 1 1 1 1 1
Fe=yf-=1)l=(=.—. — 1. A 1.6.65
Y(z 2 ) (Tz Tz TI) ( )

Equation (A1.6.64) describes the relaxation to equilibrium of a two-level system in terms of a vector equation.
It is the analogue of the Bloch equation, originally developed for magnetic resonance, in the optical regime
and hence is called the optical Bloch equation.

In the above discussion of relaxation to equilibrium, the density matrix was implicitly cast in the energy
representation. However, the density operator can be cast in a variety of representations other than the energy
representation. Two of the most commonly used are the coordinate representation and the Wigner phase space
representation. In addition, there is the diagonal representation of the density operator; in this representation,
the most general form of p takes the form

p= Z el (W] (A 1.6.66)

where the p; are real numbers, 0 > p; > 1 and Zp, = 1. This equation expresses p as an incoherent
superposition of fundamental density operators, [y;) (y |, where [y;) is a wavefunction but not necessarily an
eigenstate. In equation (A1.6.66), the p; are the probabilities (not amplitudes) of finding the system in state
lw,). Note that in addition to the usual probabilistic interpretation for finding the particle described by a
particular wavefunction at a specified location, there is now a probability distribution for being in different
eigenstates! If one of the p; = 1 and all the others are zero, the density operator takes the form equation
(A1.6.49) and corresponds to a single wavefunction; we say the system is in a pure state. If more than one of
the p. > 0 we say the system is in a mixed state.



A measure of the purity or coherence of a system is given by X, pl.zt z. pi2 =1 for a pure state and X p 2<
for a mixed state; the greater the degree of mixture the lower will be the purity. A general expression for the
purity, which reduces to the above definition but is representation free, is given by Tr(p?): Tr(p?) < 1 for a
mixed state and Tr(pz) =1 for a pure state. Note that in the absence of dissipation, the purity of the system, as

measured by Tr(pz), is conserved in time. To see this, take the equation of motion for p to be purely
Hamiltonian, that is,

p = —~[H, pl. (A 1.6.67)
I
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Then:
d 3 ) 2 2
ETr{,n'] = 2Trpp = TTr{p[H. ph = ?Tr{p[Hﬂ —pH)Y =0 (A 1.6.68)
1f 11

where in the last step we have used the cyclic invariance of the trace. This invariance of the purity to
Hamiltonian manipulations is essentially equivalent to the invariance of phase space density, or entropy, to
Hamiltonian manipulations. Including the dissipative part to the equations of motion gives

; d i
p= —;—I[H. pl+1p and mTr[p‘} = 2Tr(pl'p). (A 1.6.69)

In concluding this section, we note the complementarity of the light and matter, this time in terms of
coherence properties (i.e. phase relations). The FVH geometrical picture shows explicitly how the phase of
the field is inseparably intertwined with the phase change in the matter; in the next section, in the context of
short pulses, we shall see how the time of interaction with the pulse is similarly intertwined with the time of
the response of the molecule, although in general an integration over all such times must be performed. But
both these forms of complementarity are on the level of the Hamiltonian portion of the evolution only. The
complementarity of the dissipation will appear at the end of this section, in the context of laser cooling.

A1.6.3 THE FIELD TRANSFERS ITS COHERENCE TO THE MATTER

Much of the previous section dealt with two-level systems. Real molecules, however, are not two-level
systems: for many purposes there are only two electronic states that participate, but each of these electronic
states has many states corresponding to different quantum levels for vibration and rotation. A coherent
femtosecond pulse has a bandwidth which may span many vibrational levels; when the pulse impinges on the
molecule it excites a coherent superposition of all these vibrational states—a vibrational wavepacket. In this
section we deal with excitation by one or two femtosecond optical pulses, as well as continuous wave
excitation; in section A1.6.4 we will use the concepts developed here to understand nonlinear molecular
electronic spectroscopy.

The pioneering use of wavepackets for describing absorption, photodissociation and resonance Raman spectra
is due to Heller [12, 13, 14, 15 and 16]. The application to pulsed excitation, coherent control and nonlinear

spectroscopy was initiated by Tannor and Rice ([17] and references therein).

A1.6.3.1 FIRST-ORDER AMPLITUDE: WAVEPACKET INTERFEROMETRY

Consider a system governed by Hamiltonian H = H, + H,, where H,, is the bare molecular Hamiltonian and



H, is the perturbation, taken to be the —u £(7) as we have seen earlier. Adopting the Born—Oppenheimer (BO)
approximation and specializing to two BO states, H,, can be written as
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H, 0
fo = ( 0 Hn) (A 1.6.70)
and H1 as
0 _“.-H’JE““}
B = ~ A1.6.71
! (—Hhuffﬂ 0 ) ( )
The TDSE in matrix form reads:
o9 () H —u ,,E*{:})(;{; {;})
h— o = i a a . ..
”E?lr (r,fr;,(r}) (—‘uh,,E[;) Hy, (1) (A1.6.72)

Note the structural similarity between equation (A1.6.72) and equation (A1.6.41), with £ and E, being
replaced by H  and H,, the BO Hamiltonians governing the quantum mechanical evolution in electronic states
a and b, respectively. These Hamiltonians consist of a nuclear kinetic energy part and a potential energy part
which derives from nuclear—electron attraction and nuclear—nuclear repulsion, which differs in the two
electronic states.

If H| is small compared with /,, we may treat H, by perturbation theory. The first-order perturbation theory
formula takes the form [18, 19, 20 and 21]:
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where we have assumed that all the amplitude starts on the ground electronic state. This formula has a very
appealing physical interpretation. At ¢ = 0 the wavefunction is in, say, v = 0 of the ground electronic state. The
wavefunction evolves from ¢ = 0 until time ¢ under the ground electronic state, Hamiltonian, # . If we assume
that the initial state is a vibrational eigenstate of H , (H y, = E v ), there is no spatial evolution, just the
accumulation of an overall phase factor; that is the action of e~‘/##uf"yy (+ ())can be replaced by

e~ WREL 4 (x,0)dr'. For concreteness, in what follows we will take v = 0, which is the most common case of
interest. At ¢ =¢' the electric field, of amplitude E(t”), interacts with the transition dipole moment, promoting
amplitude to the excited electronic state. This amplitude evolves under the influence of A, from time # until
time ¢. The integral d ¢ indicates that one must take into account all instants in time # at which the interaction
with the field could have taken place. In general, if the field has some envelope of finite duration in time, the
promotion to the excited state can take place at any instant under this envelope, and there will be interference
from portions of the amplitude that are excited at one instant and portions that are excited at another. The
various steps in the process may be visualized schematically with the use of Feynman diagrams. The Feynman
diagram for the process just described is shown in figure A1.6.5.
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Figure A1.6.5 Feynman diagram for the first-order process described in the text.

We will now proceed to work through some applications of this formula to different pulse sequences. Perhaps
the simplest is to consider the case of a d-function excitation by light. That is,

E(t'y=68(t" —n). (A 1.6.74)

In this case, the first-order amplitude reduces to
| . P
v M, = Ee‘“f”””ﬁ“"' M= g eV E g (x, 0). (A 1.6.75)

Within the Condon approximation (p, , independent of x), the first-order amplitude is simply a constant times
the initial vibrational state, propagated on the excited-state potential energy surface! This process can be
visualized by drawing the ground-state vibrational wavefunction displaced vertically to the excited-state
potential. The region of the excited-state potential which is accessed by the vertical transition is called the
Franck—Condon region, and the vertical displacement is the Franck—Condon energy. Although the initial
vibrational state was an eigenstate of H , in general it is not an eigenstate of /,, and starts to evolve as a
coherent wavepacket. For example, if the excited-state potential energy surface is repulsive, the wavepacket
will evolve away from the Franck—Condon region toward the asymptotic region of the potential,
corresponding to separated atomic or molecular fragments (see figure A1.6.6). If the excited-state potential is
bound, the wavepacket will leave the Franck—Condon region, but after half a period reach a classical turning
point and return to the Franck—Condon region for a complete or partial revival.
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Figure A1.6.6 The wavepacket picture corresponding to the first-order process described in the text. The
wavepacket propagates on the ground-state surface until time #,, but since it is an eigenstate of this surface it
only develops a phase factor. At time ¢, a photon impinges and promotes the initial vibrational state to an
excited electronic state, for which it is not an eigenstate. The state is now a wavepacket and begins to move
according to the TDSE. Often the ensuing motion is very classical-like, the initial motion being along the
gradient of the excited-state potential, with recurrences at multiples of the excited-state vibrational period
(adapted from [32]).

An alternative perspective is as follows. A d-function pulse in time has an infinitely broad frequency range.
Thus, the pulse promotes transitions to all the excited-state vibrational eigenstates having good overlap
(Franck—Condon factors) with the initial vibrational state. The pulse, by virtue of its coherence, in fact
prepares a coherent superposition of all these excited-state vibrational eigenstates. From the earlier sections,
we know that each of these eigenstates evolves with a different time-dependent phase factor, leading to
coherent spatial translation of the wavepacket.

The d-function excitation is not only the simplest case to consider; it is the fundamental building block, in the
sense thatv the more complicated pulse sequences can be interpreted as superpositions of 5-functions, giving
rise to superpositions of wavepackets which can in principle interfere.

The simplest case of this interference is the case of two d-function pulses [22, 23 and 24]:
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We will explore the effect of three parameters: 7, - £;, ®; and ¢, that is, the time delay between the pulses, the
tuning or detuning of the carrier frequency from resonance with an excited-state vibrational transition and the
relative phase of the two pulses. We follow closely the development of [22]. Using equation (A1.6.73),
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To simplify the notation, we define H, = H, — E, — E,, @, = 0, + 0, — E /I — Eq /i, where E, is the
vertical displacement between the minimum of the ground electronic state and the minimum of the excited
electronic state, £ is the Z_ero point energy on the excited-state surface and ©, = E/h. Specializing to the
harmonic oscillator, e="/*e k(v 0) = 4 (x, 0), where T = 21/ is the excited-state vibrational period, that

is, any wavefunction in the harmonic oscillator returns exactly to its original spatial distribution after one
period. To highlight the effect of detuning we write ®; = nw + A, where A is the detuning from an excited-
state vibrational eigenstate, and we examine time delays equal to the vibrational period 7, —t; = 7. We obtain:
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To illustrate the dependence on detuning, A, time delay, t, and phase difference, ¢, we consider some special
cases. (i) If A = ¢ = 0 then the term in parentheses gives 1 + 1 = 2. In this case, the two pulses create two
wavepackets which add constructively, giving two units of amplitude or four units of excited-state population.
(i1) If A = 0 and ¢ = £x then the term in parentheses gives -1 + 1 = 0. In this case, the two pulses create two
wavepackets which add destructively, giving no excited-state population! Viewed from the point of view of
the light, this is stimulated emission. Emission against absorption is therefore controlled by the relative phase
of the second pulse relative to the first. (iii) If A = 0 and ¢ = £(r/2) then the term in parentheses gives +i + 1.
In this case, the excited-state population, (\V(l)|\|/(1)), is governed by the factor (-1 + 1)(i + 1) =2. The
amplitude created by the two pulses overlap, but have no net interference contribution. This result is related to
the phenomenon of ‘photon locking’, which was be discussed in section A1.6.2. (iv) If A= ©/2 and ¢ = 0 then
the term in parentheses gives —1 + 1 = 0. This is the ultrashort excitation counterpart of tuning the excitation
frequency between vibrational resonances in a single frequency excitation: no net excited-state population is
produced. As in the case above, of the two pulses « out of phase, the two wavepackets destructively interfere.
In this case, the destructive interference comes from the offset of the carrier frequency from resonance,
leading to a phase factor of (w/2)t = w. For time delays that are significantly different from 7 the first
wavepacket is not in the Franck—Condon region when the second packet is promoted to the excited state, and
the packets do not interfere; two units of population are prepared on the excited state, as in the case of a (n/2)
phase shift. These different cases are summarized in figure A1.6.7.
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Figure A1.6.7. Schematic diagram illustrating the different possibilities of interference between a pair of
wavepackets, as described in the text. The diagram illustrates the role of phase ((a) and (c)), as well as the role
of time delay (b). These cases provide the interpretation for the experimental results shown in figure A1.6.8.
Reprinted from [22].

Figure A1.6.8 shows the experimental results of Scherer ef al of excitation of 7, using pairs of phase locked
pulses. By the use of heterodyne detection, those authors were able to measure just the interference
contribution to the total excited-state fluorescence (i.e. the difference in excited-state population from the two
units of population which would be prepared if there were no interference). The basic qualitative dependence
on time delay and phase is the same as that predicted by the harmonic model: significant interference is
observed only at multiples of the excited-state vibrational frequency, and the relative phase of the two pulses
determines whether that interference is constructive or destructive.

There is a good analogy between the effects of pulse pairs and pulse shapes, and Fresnel and Fraunhofer
diffraction in optics. Fresnel diffraction refers to the interference pattern obtained by light passing through
two slits; interference from the wavefronts passing through the two slits is the spatial analogue of the
interference from the two pulses in time discussed above. Fraunhofer diffraction refers to interference arising
from the finite width of a single slit. The different subportions of a single slit can be thought of as independent
slits that happen to adjoin; wavefronts passing through each of these subslits will interfere. This is the
analogue of a single pulse with finite duration: there is interference from excitation coming from different
subportions of the pulse, which may be insignificant if the pulse is short but can be important for longer pulse
durations.
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Figure A1.6.8. Wavepacket interferometry. The interference contribution to the excited-state fluorescence of
I, as a function of the time delay between a pair of ultrashort pulses. The interference contribution is isolated
by heterodyne detection. Note that the structure in the interferogram occurs only at multiples of 300 fs, the
excited-state vibrational period of /,: it is only at these times that the wavepacket promoted by the first pulse
is back in the Franck—Condon region. For a phase shift of 0 between the pulses the returning wavepacket and
the newly promoted wavepacket are in phase, leading to constructive interference (upper trace), while for a
phase shift of w the two wavepackets are out of phase, and interfere destructively (lower trace). Reprinted
from Scherer N F et al 1991 J. Chem. Phys. 95 1487.

There is an alternative, and equally instructive, way of viewing the effect of different pulse sequences, by
Fourier transforming the pulse train to the frequency domain. In the time domain, the wavefunction produced
is the convolution of the pulse sequence with the excited-state dynamics; in frequency it is simply the product
of the frequency envelope with the Franck—Condon spectrum (the latter is simply the spectrum of overlap
factors between the initial vibrational state and each of the excited vibrational states). The Fourier transform
of d-function excitation is simply a constant excitation in frequency, which excites the entire Franck—Condon
spectrum. The Fourier transform of a sequence of two d-functions in time with spacing 1 is a spectrum having
peaks with a spacing of 27t/t. If the carrier frequency of the pulses is resonant and the relative phase between
the pulses is zero, the frequency spectrum of the pulses will lie on top of the Franck—Condon spectrum and the
product will be non-zero; if, on the other hand, the carrier frequency is between resonances, or the relative
phase is m, the frequency spectrum of the pulses will lie in between the features of the Franck—Condon
spectrum, signifying zero net absorption. Similarly, a single pulse of finite duration may have a frequency
envelope which is smaller than that of the entire Franck—Condon spectrum. The absorption process will
depend on the overlap of the frequency spectrum with the Franck—Condon spectrum, and hence on both pulse
shape and carrier frequency.
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A1.6.3.2 SECOND-ORDER AMPLITUDE: CLOCKING CHEMICAL REACTIONS

We now turn to the second-order amplitude. This quantity is given by [18, 19, 20 and 21]
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This expression may be interpreted in a very similar spirit to that given above for one-photon processes. Now
there is a second interaction with the electric field and the subsequent evolution is taken to be on a third
surface, with Hamiltonian /. In general, there is also a second-order interaction with the electric field
through p , which returns a portion of the excited-state amplitude to surface a, with subsequent evolution on
surface a. The Feynman diagram for this second-order interaction is shown in figure A1.6.9.
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Figure A1.6.9. Feynman diagram for the second-order process described in the text.

Second-order effects include experiments designed to ‘clock’ chemical reactions, pioneered by Zewail and co-
workers [25]. The experiments are shown schematically in figure A1.6.10. An initial 100-150 fs pulse moves
population from the bound ground state to the dissociative first excited state in ICN. A second pulse, time
delayed from the first then moves population from the first excited state to the second excited state, which is
also dissociative. By noting the frequency of light absorbed from the second pulse, Zewail can estimate the
distance between the two excited-state surfaces and thus infer the motion of the initially prepared wavepacket
on the first excited state (figure A1.6.10).
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Figure A1.6.10. (a) Schematic representation of the three potential energy surfaces of ICN in the Zewail
experiments. (b) Theoretical quantum mechanical simulations for the reaction ICN — ICN* — [[— — —

CN]T*— 1+ CN. Wavepacket moves and spreads in time, with its centre evolving about 5 A in 200 fs.
Wavepacket dynamics refers to motion on the intermediate potential energy surface B. Reprinted from

Williams S O and Imre D G 1988 J. Phys. Chem. 92 6648. (c) Calculated FTS signal (total fluorescence from
state C) as a function of the time delay between the first excitation pulse (A— B) and the second excitation
pulse (B — C). Reprinted from Williams S O and Imre D G, as above.
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A dramatic set of experiments by Zewail involves the use of femtosecond pulse pairs to probe the wavepacket
dynamics at the crossing between covalent and ionic states of Nal [25]. A first pulse promotes wavepacket
amplitude from the ionic to the covalent potential curve. The packet begins to move out, but most of the
amplitude is reflected back from the crossing between the covalent and ionic curves, that is, the adiabatic
potential changes character to ionic at large distances, and this curve is bound, leading to wavepacket
reflection back to the FC region. The result is a long progression of wavepacket revivals, with a slow overall
decay coming from amplitude which dissociates on the diabatic curve every period.



Femtosecond pump—probe experiments have burgeoned in the last ten years, and this field is now commonly
referred to as ‘laser femtochemistry’ [26, 27, 28 and 29].

A1.6.3.3 SPECTROSCOPY AS THE RATE OF ABSORPTION OF MONOCHROMATIC RADIATION

In this section we will discuss more conventional spectroscopies: absorption, emission and resonance Raman
scattering. These spectroscopies are generally measured under single frequency conditions, and therefore our
formulation will be tailored accordingly: we will insert monochromatic perturbations of the form el into the
perturbation theory formulae used earlier in the section. We will then define the spectrum as the time rate of
change of the population in the final level. The same formulae apply with only minor modifications to
electronic absorption, emission, photoionization and photodetachment/transition state spectroscopy. If the CW
perturbation is inserted into the second-order perturbation theory one obtains the formulae for resonance
Raman scattering, two-photon absorption and dispersed fluorescence spectroscopy. The spectroscopies of this
section are to be contrasted with coherent nonlinear spectroscopies, such as coherent anti-Stokes Raman
spectroscopy (CARS) or photon echoes, in which the signal is directional, which will be described in section
Al.6.4.

(A) ELECTRONIC ABSORPTION AND EMISSION SPECTROSCOPY

Consider the radiation—matter Hamiltonian, equation (A1.6.73), with the interaction term of the form:

=i -Enc—l.u?‘_'f Elhs{j tiuI‘I
Hi(1) = —pE@ = | _ i

- . or A 1.6.82
[S-E‘uchme:i CIMISS1I0n ( )

where the incident (scattered) light has frequency o (wg) and p is the (possibly coordinate-dependent)
transition dipole moment for going from the lower state to the upper state. This form for the matter—radiation
interaction Hamiltonian represents a light field that is ‘on’ all the time from —o to . This interaction will
continuously move population from the lower state to the upper state. The propagating packets on the upper
states will interfere with one another: constructively, if the incident light is resonant with a transition from an
eigenstate of the lower surface to an eigenstate of the upper surface, destructively if not. Since for a one-
photon process we have two potential energy surfaces we have, in effect, two different /,’s: one for before
excitation (call it /) and one for after (call it /). With this in mind, we can use the results of section A1.6.2
to write down the first-order correction to the unperturbed wavefunction. If [y;(-e0)) is an eigenstate of the
ground-state Hamiltonian, H, then
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Defining = E/h+ o, replacing y(-0) by y(0), since the difference is only a phase factor, which exactly

cancels in the bra and ket, and assuming that the electric field vector is time independent, we find
d (1) (1 1 > — (1T Myt leest
— (DY (1)) = — (W (0)) e Ege ™" By pa |y (0) )™ dr. (A 1.6.84)
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The absorption spectrum, c(), is the ratio of transition probability per unit time/incident photon flux. The
incident photon flux is the number of photons per unit area per unit time passing a particular location, and is



given by
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where we have used equation (A1.6.15). Finally, we obtain [12, 13]:
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Rotational averaging yields

o(@) = 37— (@i (0)|g; (1) }e'™ dt (A 1.6.87)
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where in the last equation we have defined |g; (0)) = ge]y; (00} and | (1)) = e~ ™|, (0)) -

Since the absorption spectrum is a ratio it is amenable to other interpretations. One such interpretation is that
the absorption spectrum is the ratio of energy absorbed to energy incident. From this perspective, the quantity

hw(d/dt)(w(l)(t)hu(l)(t)) is interpreted as the rate of energy absorption (per unit volume), since d £/d ¢ = ho(d
N/d f) while the quantity Eozc/ lo is interpreted as the incident energy flux, which depends only on the field

intensity and is independent of frequency.
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Equation A1.6.87 expresses the absorption spectrum as the Fourier transform of a wavepacket correlation
function. This is a result of central importance. The Fourier transform relationship between the wavepacket
autocorrelation function and the absorption spectrum provides a powerful tool for interpreting absorption
spectra in terms of the underlying nuclear wavepacket dynamics that follows the optically induced transition.
The relevant correlation function is that of the moving wavepacket on the excited-state potential energy
surface (or more generally, on the potential energy surface accessed by interaction with the light) with the
stationary wavepacket on the ground-state surface (more generally, the initial wavepacket on the potential
surface of origin), and thus the spectrum is a probe of excited-state dynamics, particularly in the Franck—
Condon region (i.e. the region accessed by the packet undergoing a vertical transition at ¢ = 0). Since often
only short or intermediate dynamics enter in the spectrum (e.g. because of photodissociation or radiationless
transitions to other electronic states) computation of the time correlation function can be much simpler than
evaluation of the spectrum in terms of Franck—Condon overlaps, which formally can involve millions of
eigenstates for an intermediate sized molecule.

We now proceed to some examples of this Fourier transform view of optical spectroscopy. Consider, for
example, the UV absorption spectrum of CO,, shown in figure A1.6.11. The spectrum is seen to have a long
progression of vibrational features, each with fairly uniform shape and width. What is the physical
interpretation of this vibrational progression and what is the origin of the width of the features? The goal is to
come up with a dynamical model that leads to a wavepacket autocorrelation function whose Fourier transform



agrees with the spectrum in figure A1.6.11 . figure A1.6.12 gives a plausible dynamical model leading to such
an autocorrelation function. In (a), equipotential contours of the excited-state potential energy surface of CO,
are shown, as a function of the two bond lengths, R, and R,, or, equivalently, as a function of the symmetric
and antisymmetric stretch coordinates, v and u (the latter are linear combinations of the former). Along the
axis u = 0 the potential has a minimum; along the axis v = 0 (the local ‘reaction path”) the potential has a
maximum. Thus, the potential in the region u = 0, v =0 has a ‘saddle-point’. There are two symmetrically
related exit channels, for large values of R, and R,, respectively, corresponding to the formation of OC + O
versus O + CO. figure A1.6.12 (a) also shows the initial wavepacket, which is approximately a two-
dimensional Gaussian. Its centre is displaced from the minimum in the symmetric stretch coordinate. figure
A1.6.12(b)—(f) show the subsequent dynamics of the wavepacket. It moves downhill along the v coordinate,
while at the same time spreading. After one vibrational period in the v coordinate the centre of the wavepacket
comes back to its starting point in v, but has spread in u (figure A1.6.12(¢))). The resulting wavepacket
autocorrelation function is shown in figure A1.6.12(right) (a) . At # = 0 the autocorrelation function is 1. On a
time scale 7, the correlation function has decayed to nearly 0, reflecting the fact that the wavepacket has
moved away from its initial Franck—Condon location (figure A1.6.12(b))). At time t, the wavepacket has
come back to the Franck—Condon region in the v coordinate, and the autocorrelation function has a
recurrence. However, the magnitude of the recurrence is much smaller than the initial value, since there is
irreversible spreading of the wavepacket in the u coordinate. Note there are further, smaller recurrences at
multiples of 7, .
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Figure A1.6.11. Idealized UV absorption spectrum of CO,. Note the regular progression of intermediate
resolution vibrational progression. In the frequency regime this structure is interpreted as a Franck—Condon



progression in the symmetric stretch, with broadening of each of the lines due to predissociation. Reprinted
from [31].

The spectrum obtained by Fourier transform of figure A1.6.12 (right) (a) is shown in figure A1.6.12 (right)
(b) . Qualitatively, it has all the features of the spectrum in figure A1.6.11 : a broad envelope with resolved
vibrational structure underneath, but with an ultimate, unresolvable linewidth. Note that the shortest time
decay, 0, determines the overall envelope in frequency, 1/9; the recurrence time, 7, determines the vibrational
frequency spacing, 2n/T; the overall decay time determines the width of the vibrational features. Moreover,
note that decays in time correspond to widths in frequency, while recurrences in time correspond to spacings
in frequency.
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Figure A1.6.12. Left: A qualitative diagram showing evolution of ¢(¢) on the upper potential surface. Note the
oscillation along the v (symmetric stretch) coordinate, and the spreading along the u (antisymmetric stretch)
coordinate. Reprinted from [32]. Right: (a) The absolute value of the correlation function, [($|d(?))| versus ¢ for
the dynamical situation shown in figure A1.6.12. (b) The Fourier transform of {(¢|¢(¢)), giving the absorption
spectrum. Note that the central lobe in the correlation function, with decay constant 8, gives rise to the overall
width of the absorption spectrum, on the order of 21/3. Furthermore, the recurrences in the correlation on the
time scale 7 give rise to the oscillations in the spectrum on the time scale 2n/7. Reprinted from [32].

Perhaps the more conventional approach to electronic absorption spectroscopy is cast in the energy, rather
than in the time domain. It is straightforward to show that equation (A1.6.87) can be rewritten as

driw
Ich

o) = —=— 3 [l ¥ P8 (@ — ). (A 16.88)

Note that if we identify the sum over 3-functions with the density of states, then equation (A1.6.88) is just
Fermi’s Golden Rule, which we employed in section A1.6.1. This is consistent with the interpretation of the
absorption spectrum as the transition rate from state i to state n.
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The coefficients of the 5-function in the sum are called Franck—Condon factors, and reflect the overlap of the
initial state with the excited-state y, at energy £, = ho, (see figure A1.6.13). Formally, equation (A1.6.88)

gives a ‘stick’ spectrum of the type shown in figure A1.6.13(b); generally, however, the experimental
absorption spectrum is diffuse, as in figure A1.6.11. This highlights one of the advantages of the time domain
approach: that the broadening of the stick spectrum need not be introduced artificially, but arises naturally
from the decay of the wavepacket correlation function, as we have seen in figure A1.6.11.

Intensity

X hw
(a) i(b)

Figure A1.6.13. (a) Potential energy curves for two electronic states. The vibrational wavefunctions of the
excited electronic state and for the lowest level of the ground electronic state are shown superimposed. (b)
Stick spectrum representing the Franck—Condon factors (the square of overlap integral) between the
vibrational wavefunction of the ground electronic state and the vibrational wavefunctions of the excited
electronic state (adapted from [3]).

The above formulae for the absorption spectrum can be applied, with minor modifications, to other one-
photon spectroscopies, for example, emission spectroscopy, photoionization spectroscopy and
photodetachment spectroscopy (photoionization of a negative ion). For stimulated emission spectroscopy, the
factor of ; is simply replaced by g, the stimulated light frequency; however, for spontaneous emission

spectroscopy, the prefactor o, is replaced by the prefactor 0383 . The extra factor of (osz is due to the density of
states of vacuum field states which induce the spontaneous emission, which increase quadratically with

frequency. Note that in emission spectroscopy the roles of the ground- and excited-state potential energy
surfaces are reversed: the initial wavepacket starts from the vibrational ground state of the excited electronic
state and its spectrum has information on the vibrational eigenstates and potential energy surface of the
ground electronic state.

(B) RESONANCE RAMAN SPECTROSCOPY

We will now look at two-photon processes. We will concentrate on Raman scattering although two-photon
absorption can be handled using the same approach. In Raman scattering, absorption of an incident photon of
frequency o, carries
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the initial wavefunction, y,, from the lower potential to the upper. The emission of a photon of frequency wg
returns the system to the lower potential, to state y - If wg = o, then the scattering is elastic and the process is
called Rayleigh scattering. Raman scattering occurs when wg # @y and in that case y,# vy, . The measured
quantity is the Raman intensity, /(®;;0g). The amplitudes of the incident and emitted fields are taken as £}
and Eg; for simplicity, we begin with the case of stimulated Raman scattering, and then discuss the

modifications for spontaneous Raman scattering at the end.

We start from the expression for the second-order wavefunction:

| r r “ . . L ) o
M,IE]{”} — _ﬁ_zf d!rf dr' c—u,ﬁrh’,j:—n pESchm.r ]'_,-wmmu -}
-0 -
c_‘f“ =t ]E”{,L."_“""'r ]X |P,IEI’¢(—DCJ}:|- + NRT

(A 1.6.89)

where H (H,) is the Hamiltonian for the lower (upper) potential energy surface and, as before, @ = o, + o, .

In words, equation (A1.6.89) is saying that the second-order wavefunction is obtained by propagating the
initial wavefunction on the ground-state surface until time ¢, at which time it is excited up to the excited
state, upon which it evolves until it is returned to the ground state at time ¢, where it propagates until time ¢.
NRT stands for non-resonant term: it is obtained by E| <> Eq and ©; <> -0, and its physical interpretation is
the physically counterintuitive possibility that the emitted photon precedes the incident photon. v is the
spontaneous emission rate.

If we define éag = wg - @y, then we can follow the same approach as in the one-photon case. We now take the

time derivative of the norm of |\y(2)(t)>, with the result:

d . i 1 | _ _
wnaos (0 O T OV IEF = anwsz Dl atwn Pty +ws — (@1 +an). (A 1.6.90)
J
where
2 ., ¥ .-
o i) = f {u’q|_uc_"-‘mH“";1|l,.frr-}lc_J’C'“"’dr + NRT. (A 1.6.91)
4]

Again, NRT is obtained from the first term by the replacement ©; — —wq. If we define |¢ f> = uly f> and
(1 = a—tli/AM :
19:(r)) = ™Rl }, then we see that the frequency-dependent polarizability, ocﬁ(col), can be written in the

following compact form [14]:
.
o pilen) = f {epr |¢,-{I}}c"1‘:'c“"" dr +NRT. (A 1.6.92)
4]

The only modification of equation (A1.6.90) for spontaneous Raman scattering is the multiplication by the

density of states of the cavity, equation (A1.6.24), leading to a prefactor of the form mlms3.
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Equation (A1.6.92) has a simple physical interpretation. At 7= 0 the initial state, y; is multiplied by p (which
may be thought of as approximately constant in many cases, the Condon approximation). This product,
denoted ¢;, constitutes an initial wavepacket which begins to propagate on the excited-state potential energy
surface (figure A1.6.14). Initially, the wavepacket will have overlap only with y;, and will be orthogonal to all
other y .on the ground-state surface. As the wavepacket begins to move on the excited state, however, it will
develop overlap with ground vibrational states of ever-increasing quantum number. Eventually, the
wavepacket will reach a turning point and begin moving back towards the Franck—Condon region of the
excited-state surface, now overlapping ground vibrational states in decreasing order of their quantum number.
These time-dependent overlaps determine the Raman intensities via equation (A1.6.92) and equation
(A1.6.90). If the excited state is dissociative, then the wavepacket never returns to the Franck—Condon region
and the Raman spectrum has a monotonically decaying envelope. If the wavepacket bifurcates on the excited
state due to a bistable potential, then it will only have non-zero overlaps with ground vibrational states which
are of even parity; the Raman spectrum will then have ‘missing’ lines. In multidimensional systems, there are
ground vibrational states corresponding to each mode of vibration. The Raman intensities then
containinformation about the extent to which different coordinates participate in the wavepacket motion, to
what extent, and even in what sequence [15, 33]. Clearly, resonance Raman intensities can be a sensitive
probe of wavepacket dynamics on the excited-state potential.

M —

o kg i

-

Figure A1.6.14. Schematic diagram showing the promotion of the initial wavepacket to the excited electronic
state, followed by free evolution. Cross-correlation functions with the excited vibrational states of the ground-
state surface (shown in the inset) determine the resonance Raman amplitude to those final states (adapted
from [14].
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One of the most interesting features of the Raman spectrum is its dependence on the incident light frequency,
©;. When o is on resonance with the excited electronic state, the scattering process closely resembles a
process of absorption followed by emission. However, as ®, is detuned from resonance there are no longer



any nearby eigenstates, and thus no absorption: the transition from the initial state i to the final state f'is a
‘scattering’ process. In the older literature the non-existent intermediate state was called a ‘virtual’ state.

There can be no completely rigorous separation between absorption—emission and Raman scattering. This is
clear from the time-domain expression, equation (A1.6.92), in which the physical meaning of the variable ¢ is
the time interval between incident and emitted photons. If the second photon is emitted long after the first
photon was incident the process is called absorption/emission. If the second photon is emitted almost
immediately after the first photon is incident the process is called scattering. The limits on the integral in
(A1.6.92) imply that the Raman amplitude hasc contributions from all values of this interval ranging from 0
(scattering) to oo (absorption/emission). However, the regions that contribute most depend on the incident
light frequency. In particular, as the incident frequency is detuned from resonance there can be no absorption
and the transition becomes dominated by scattering. This implies that as the detuning is increased, the relative
contribution to the integral from small values of ¢ is greater.

Mathematically, the above observation suggests a time—energy uncertainty principle [15]. If the incident
frequency is detuned by an amount A® from resonance with the excited electronic state, the wavepacket can
‘live’ on the excited state only for a time t = 1/A® (see figure A1.6.15 . This follows from inspection of the
integral in equation (A1.6.92): if the incident light frequency is mismatched from the intrinsic frequencies of
the evolution operator, there will be a rapidly oscillating phase to the integrand. Normally, such a rapidly
oscillating phase would kill the integral completely, but there is a special effect that comes into play here,
since the lower bound of the integral is 0 and not —o. The absence of contributions from negative ¢ leads to an
incomplete cancellation of the portions of the integral around ¢ = 0. The size of the region around 7= 0 is
inversely proportional to the mismatch in frequencies, Aw. Since the physical significance of ¢ is time delay
between incident and scattered photons, and this time delay is the effective wavepacket lifetime in the excited
state, we are led to conclude that the effective lifetime decreases as the incident frequency is detuned from
resonance.

Because of the two frequencies, ®; and g, that enter into the Raman spectrum, Raman spectroscopy may be
thought of as a ‘two-dimensional” form of spectroscopy. Normally, one fixes o, and looks at the intensity as a
function of ®g; however, one may vary ®; and probe the intensity as a function of ®; - ®g. This is called a
Raman excitation profile.

-38-

EFFECTIVE LIFETIME ON UPPER SURFACE
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Figure A1.6.15. Schematic diagram, showing the time—energy uncertainty principle operative in resonance
Raman scattering. If the incident light is detuned from resonance by an amount Ao, the effective lifetime on
the excited-state is T ~ 1/Aw (adapted from [15]).

The more conventional, energy domain formula for resonance Raman scattering is the expression by

Kramers—Heisenberg—Dirac (KHD). The differential cross section for Raman scattering into a solid angle dQ2
can be written in the form

dogi{an) fﬂjfﬂh
aQ

“[ﬁfrjlru. [(J'J‘[}l } (A 1693)

where
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and the angular brackets indicate orientational averaging. The labels ¢; ¢ refer to the direction of polarization

of the incident and scattered light, respectively, while the subscripts p and L refer to x, y and z components of
the vector #. Integrated over all directions and polarizations one obtains [33, 34]:

S?rwjm
opileon) = ——= 3 lapl. (A 1.6.95)
A
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Equation (A1.6.94) is called the KHD expression for the polarizability, a. Inspection of the denominators
indicates that the first term is the resonant term and the second term is the non-resonant term. Note the
product of Franck—Condon factors in the numerator: one corresponding to the amplitude for excitation and the
other to the amplitude for emission. The KHD formula is sometimes called the ‘sum-over-states’ formula,
since formally it requires a sum over all intermediate states j, each intermediate state participating according
to how far it is from resonance and the size of the matrix elements that connect it to the states y; and vy, The
KHD formula is fully equivalent to the time domain formula, equation (A1.6.92), and can be derived from the
latter in a straightforward way. However, the time domain formula can be much more convenient, particularly
as one detunes from resonance, since one can exploit the fact that the effective dynamic becomes shorter and
shorter as the detuning is increased.

A1.6.4 COHERENT NONLINEAR SPECTROSCOPY

As described at the end of section A1.6.1, in nonlinear spectroscopy a polarization is created in the material
which depends in a nonlinear way on the strength of the electric field. As we shall now see, the microscopic
description of this nonlinear polarization involves multiple interactions of the material with the electric field.
The multiple interactions in principle contain information on both the ground electronic state and excited
electronic state dynamics, and for a molecule in the presence of solvent, information on the molecule—solvent
interactions. Excellent general introductions to nonlinear spectroscopy may be found in [35, 36 and 37].
Raman spectroscopy, described at the end of the previous section, is also a nonlinear spectroscopy, in the
sense that it involves more than one interaction of light with the material, but it is a pathological example
since the second interaction is through spontaneous emission and therefore not proportional to a driving field



and not directional; at the end of this section we will connect the present formulation with Raman
spectroscopy [38].

What information is contained in nonlinear spectroscopy? For gas-phase experiments, that is, experiments in
which the state of the system undergoes little or no dissipation, the goal of nonlinear spectroscopy is generally
as in linear spectroscopy, that is, revealing the quantum energy level structure of the molecule, both in the
ground and the excited electronic state(s). For example, two-photon spectroscopy allows transitions that are
forbidden due to symmetry with one photon; thus the two-photon spectrum allows the spectroscopic study of
many systems that are otherwise dark. Moreover, nonlinear spectroscopy allows one to access highly excited
vibrational levels that cannot be accessed by ordinary spectroscopies, as in the example of time-dependent
CARS spectroscopy below. Moreover, nonlinear spectroscopy has emerged as a powerful probe of molecules

in anisotropic environments, for example, molecules at interfaces, where there is a P) signal which is absent
for molecules in an isotropic environment.

A feature of nonlinear spectroscopy which is perhaps unique is the ability to probe not only energy levels and
their populations, but to probe directly coherences, be they electronic or vibrational, via specially designed
pulse sequences. For an isolated molecule this is generally uninteresting, since in the absence of relaxation the
coherences are completely determined by the populations; however, for a molecule in solution the decay of
the coherence is an indicator of molecule—solvent interactions. One normally distinguishes two sources of
decay of the coherence: inhomogeneous decay, which represents static differences in the environment of
different molecules; and homogeneous decay, which represents the dynamics interaction with the
surroundings and is the same for all molecules. Both these sources of decay contribute to the /inewidth of
spectral lines; in many cases the inhomogenous decay is faster than the homogeneous decay, masking the

latter. In echo spectroscopies, which are related to a particular subset of diagrams in PP, one can at least
partially discriminate between homogeneous and inhomogeneous decay.
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From the experimental point of view, nonlinear spectroscopy has the attractive feature of giving a directional
signal (in a direction other than that of any of the incident beams), and hence a background free signal (figure
A1.6.16). A significant amount of attention is given in the literature on nonlinear spectroscopy to the
directionality of the signals that are emitted in different directions, and their dynamical interpretation. As we
shall see, many dynamical pathways can contribute to the signal in each direction, and the dynamical
interpretation of the signal depends on sorting out these contributions or designing an experiment which
selects for just a single dynamical pathway.

Figure A1.6.16. Diagram showing the directionality of the signal in coherent spectroscopy. Associated with
the carrier frequency of each interaction with the light is a wavevector, k. The output signal in coherent
spectroscopies is determined from the direction of each of the input signals via momentum conservation (after
[48a]).



A1.6.4.1 GENERAL DEVELOPMENT

As discussed in section A1.6.1, on a microscopic quantum mechanical level, within the dipole approximation,
the polarization, P(¢), is given by

P(r) = (yrpe|yr). (A 1.6.96)
Assuming that the system has no permanent dipole moment, the existence of P(f) depends on a non-stationary

y induced by an external electric field. For weak fields, we may expand the polarization in orders of the
perturbation,

Pty = (Wlplv) = PO+ P+ PP+ PPy +-- -, (A 1.6.97)

We can then identify each term in the expansion with one or more terms in the perturbative expansion of

POy = (')l P 0)) (A 1.6.98)
PU() = (¢ Ol V(@) + cc (A1.6.99)
Py = el @0 oo+ e e v Mo (A 1.6.100)
and
PRy = (w0 e () + o+ (il ) + e (A 1.6.101)
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etc. Note that for an isotropic medium, terms of the form P(zn)(t) (P(O)(t), P(2)(t), etc) do not survive

orientational averaging. For example, the first term, (\V(O)| u|\|/(0)), is the permanent dipole moment, which
gives zero when averaged over an isotropic medium. At an interface, however (e.g. between air and water),

these even orders of P(f) do not vanish, and in fact are sensitive probes of interface structure and dynamics.

The central dynamical object that enters into the polarization are the coherences of the form <\|/(O)(t)|p |\|/(1)(t)>

and (qf(l)(t)|u|\|/(2)(t)), etc. These quantities are overlaps between wavepackets moving on different potential
energy surfaces [40, 41 and 42, 52]: the instantaneous overlap of the wavepackets creates a non-vanishing

transition dipole moment which interacts with the light. This view is appropriate both in the regime of weak
fields, where perturbation theory is valid, and for strong fields, where perturbation theory is no longer valid.
Note that in the previous sections we saw that the absorption and Raman spectra were related to
SO0, PO ) i . -
i and dr . The coherences that appear in equation (A1.6.99) and equation
A1.6.101) are precisely equivalent to these derivatives: the rate of change of a population is proportional to
the instantaneous coherence, a relationship which can be observed already in the vector precession model of
the two-level system (section A1.6.2.3).

The coherences can be written compactly using the language of density matrices. The total polarization is
given by

P=Trpu)= PO+ Py + PP+ PPy 4. (A 1.6.102)

where the different terms in the perturbative expansion of P are accordingly as follows:



PI:I:I = rl‘[‘{p[l I#} IJ{EI — r[-r(‘ptz]lu} P:..!] — -['l'{pl'uj.i;l ote. (A 16103)

In the absence of dissipation and pure state initial conditions, equation (A1.6.102) and equation (A1.6.103)
are equivalent to equation (A1.6.97), (A1.6.98), (A1.6.99), (A1.6.100) and (A1.6.101). But equation
(A1.6.102) and equation (A1.6.103) are more general, allowing for the possibility of dissipation, and hence
for describing nonlinear spectroscopy in the presence of an environment. There is an important caveat
however. In the presence of an environment, it is customary to define a reduced density matrix which
describes the system, in which the environment degrees of freedom have been traced out. The tracing out of
the environment should be performed only at the end, after all the interactions of the system environment with
the field, otherwise important parts of the nonlinear spectrum (e.g. phonon sidebands) will be missing. The
tracing of the environment at the end can be done analytically if the system is a two-level system and the
environment is harmonic, the so-called spin-boson or Brownian oscillator model. However, in general the
dynamics in the full system-environment degrees of freedom must be calculated, which essentially entails a
return to a wavefunction description, equation (A1.6.97), equation (A1.6.98), equation (A1.6.99), equation
(A1.6.100) and equation (A1.6.101), but in a larger space.

The total of three interactions of the material with the field can be distributed in several different ways
between the ket and the bra (or more generally, between left and right interactions of the field with the density
operator). For example, the first term in equation (A1.6.101) corresponds to all three interactions being with
the ket, while the second term corresponds to two interactions with the ket and one with the bra. The second
term can be further subdivided into three possibilities: that the single interaction with the bra is before,
between or after the two interactions with the ket (or correspondingly, left/right interactions of the field with

the density operator) [37]. These different contributions to PR (or, equivalently, to p(3)) are represented
conveniently using double-sided Feynman diagrams, a generalization of the single-sided Feynman diagrams

introduced in section A1.6.3, as shown in figure A1.6.17.
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Figure A1.6.17. Double-sided Feynman diagrams, showing the interaction time with the ket (left) and the bra
(right). Time moves forward from down to up (adapted from [36]).

The subdivision of the second term into three possibilities has an interesting physical interpretation. The
ordering of the interactions determines whether diagonal vs off-diagonal elements of the density matrix are
produced: populations versus coherences. In the presence of relaxation processes (dephasing and population
relaxation) the order of the interactions and the duration between them determines the duration for which
population versus coherence relaxation mechanisms are in effect. This can be shown schematically using a
Liouville space diagram, figure A1.6.18 [37]. The different pathways in Liouville space are drawn on a lattice,
where ket interactions are horizontal steps and bra interactions are vertical. The diagonal vertices represent
populations and the off-diagonal vertices are coherences. The three different time orderings for contributions

to Iw(2)> <\|1(1)| correspond to the three Liouville pathways shown in figure A1.6.18 . From such a diagram one



sees at a glance which pathways pass through intermediate populations (i.e. diagonal vertices) and hence are
governed by population decay processes, and which pathways do not.

(a)

Figure A1.6.18. Liouville space lattice representation in one-to-one correspondence with the diagrams in
figure A1.6.17. Interactions of the density matrix with the field from the left (right) is signified by a vertical
(horizontal) step. The advantage to the Liouville lattice representation is that populations are clearly identified
as diagonal lattice points, while coherences are off-diagonal points. This allows immediate identification of
the processes subject to population decay processes (adapted from [37]).
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As a first application of the lattice representation of Liouville pathways, it is interesting to re-examine the
process of electromagnetic spontaneous light emission, discussed in the previous section. Note that formally,
diagrams A1.6.18 (all contribute to the Kramers—Heisenberg—Dirac formula for resonance Raman scattering.
However, diagrams (b) and (c¢) produce an excited electronic state population (both the bra and ket are excited
in the first two interactions) and hence are subject to excited-state vibrational population relaxation processes,
while diagram (d) does not. Typically, in the condensed phase, the fluorescence spectrum consists of sharp
lines against a broad background. Qualitatively speaking, the sharp lines are associated with diagram (d), and
are called the resonance Raman spectrum, while the broad background is associated with diagrams (a) and
(b), and is called the resonance fluorescence spectrum [38]. Indeed, the emission frequency of the sharp lines
changes with the excitation frequency, indicating no excited electronic state population relaxation, while the
broad background is independent of excitation frequency, indicating vibrationally relaxed fluorescence.

There is an aspect of nonlinear spectroscopy which we have so far neglected, namely the spatial dependence
of the signal. In general, three incident beams, described by k-vectors k|, k, and k; will produce an outgoing

beam at each of the directions:

ko = £k £ ks £+ k. (A 1.6.104)

Figure A1.6.19 shows eight out of the 48 Feynman diagrams that contribute to an outgoing k-vector at —k, +
k, + ky. The spatial dependence is represented by the wavevector k on each of the arrows in figure A1.6.19.
Absorption (emission) by the ket corresponds to a plus (minus) sign of k; absorption (emission) by the bra
corresponds to a minus (plus) sign of k. The eight diagrams shown dominate under conditions of electronic
resonance; the other 40 diagrams correspond to non-resonant contributions, involving emission before
absorption. The reason there are eight resonant diagrams now, instead of the four in figure A1.6.17 , is a result
of the fact that the introduction of the k-dependence makes the order of the interactions distinguishable. At the
same time, the k-dependence of the detection eliminates many additional processes that might otherwise



contribute; for example, detection at —k + k, + k; eliminates processes in which k; and k, are interchanged,
as well as processes representing two or more interactions with a single beam. Under conditions in which the
interactions have a well-defined temporal sequence, just two diagrams dominate, while two of the diagrams in
figure A1.6.17 are eliminated since they emit to k| — k, + k5. Below we will see that in resonant CARS,
where in addition to the electronic resonance there is a vibrational resonance after the second interaction, there
is only a single resonant diagram. All else being equal, the existence of multiple diagrams complicates the
interpretation of the signal, and experiments that can isolate the contribution of individual diagrams have a
better chance for complete interpretation and should be applauded.
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Figure A1.6.19. Eight double-sided Feynman diagrams corresponding to electronic resonance and emission at
-k, + k, + k5. Absorption is shown by an incoming arrow, while emission is indicated by an outgoing arrow.
Note that if an arrow is moved from (to) the ket to (from) the bra while changing from (to) absorption to
(from) emission, the slope of the arrow and therefore its k-vector will be unchanged. The eight diagrams are
for arbitrary time ordering of the interactions; with a fixed time ordering of the interactions, as in the case of
non-overlapping pulses, only two of the diagrams survive (adapted from [48]).

A1.6.4.2 LINEAR RESPONSE

We now proceed to the spectrum, or frequency-dependent response [41, 42]. The power, or rate of energy
absorption, is given by

_dE _ diglHIY) _
Todr dr -

¥

=2Rel{Palpal ) £4in)). (A 1.6.105)
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(In the second step we have used equation (A1.6.72) and noted that the terms involving owy/0 ¢ cancel.) To
lowest order, this gives

= —2Re( P}, E*}. (A 1.6.106)

The total energy absorbed, AE, is the integral of the power over time. Keeping just the lowest order terms we
find

AF = f Pdr = —zkcf PUE (D dr = ?]m! wf i) E* (6) do (A 1.6.107)
W =00 — -
where
Al = |
Py () Ef Py (ne dr (A 1.6.108)
-
and
E(w) Ef E(re ' dr. (A 1.6.109)
-

The last relation in equation (A1.6.107) follows from the Fourier convolution theorem and the property of the
Fourier transform of a derivative; we have also assumed that £(®) = E(—®). The absorption spectrum is
defined as the total energy absorbed at frequency o, normalized by the energy of the incident field at that
frequency. Identifying the integrand on the right-hand side of equation (A1.6.107) with the total energy
absorbed at frequency w, we have

|E"@) _ 4mw Im(By) (w) E* (w))

— (A 1.6.110)
|E(w)?  3ch | E(w)|?

o (w) =

Note the presence of the @ prefactor in the absorption spectrum, as in equation (A1.6.87); again its origin is
essentially the faster rate of the change of the phase of higher frequency light, which in turn is related to a
higher rate of energy absorption. The equivalence between the other factors in equation (A1.6.110) and
equation (A1.6.87) under linear response will now be established.

In the perturbative regime one may decompose these coherences into the contribution from the field and a part
which is intrinsic to the matter, the response function. For example, note that the expression P (1)(t) (\|/(0)
(t)|u|\|/(1)(t)) is not simply an intrinsic function of the molecule: it depends on the functional forrn of the field,
since w(1(7) does. However, since the dependence on the field is linear it is possible to write POl( )asa
convolution of the field with a response function which depends on the material. Using the definition of \|/(1),

| I ) i P
u}l,lb Ef E—IHJ.I:I'—I P{_HE(rf}}e—linf .r'ﬁ.ln}df’ (A 16111)
-0
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we find that
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where S (?) is the half or causal form of the autocorrelation function:

| Cotry =0 (A 1.6.115)
Son(r) = |D t <0 (A 1.6.116)

and ® signifies convolution. We have defined the wavepacket autocorrelation function
Coo(1) = ('O e 1A 10y (A 1.6.117)

where Cy(7) is just the wavepacket autocorrelation function we encountered in section A1.6.3.3. There we
saw that the Fourier transform of C(¢) is proportional to the linear absorption spectrum. The same result
appears here but with a different interpretation. There, the correlation function governed the rate of excited-
state population change. Here, the expectation value of the dipole moment operator with the correlation
function is viewed as the response function of the molecule.

By the Fourier convolution theorem
o . 1 - -
Poy (@) = f Pyt ()™ dt = { —E (@)oo ) I . (A16.118)
— 1

Using the definition of the susceptibility, y (equation (A1.6.30)) we see that

| -
xV(w) = [El‘?nnfm]l}. (A 1.6.119)

Substituting POI(I)(O)) into equation (A1.6.110) we find that the linear absorption spectrum is given by

4: N
i) = 2 Rel Soalen)} (A 1.6.120)
3ch
2o ™ -
= f Con()e™ dr (A 1.6.121)
3¢h J_
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in agreement with equation (A1.6.87). We also find that




alm) = %—wln‘l [x "M ()} (A 1.6.122)
Jch

establishing the result in section A1.6.1.4 that the absorption spectrum is related to the imaginary part of the
susceptibility x at frequency .

A1.6.4.3 NONLINEAR RESPONSE: ISOLATED SYSTEMS

As discussed above, the nonlinear material response, Pe )(t) is the most commonly encountered nonlinear term
since P vanishes in an isotropic medium. Because of the special importance of P we will discuss it in

some detail. We will now focus on a few examples of P3 spectroscopy where just one or two of the 48
double-sided Feynman diagrams are important, and will stress the dynamical interpretation of the signal. A

pictorial interpretation of all the different resonant diagrams in terms of wavepacket dynamics is given in [41].

COHERENT ANTI-STOKES RAMAN SPECTROSCOPY (CARS)

Our first example of a PA) signal is coherent anti-Stokes Raman spectroscopy, or CARS. Formally, the
emission signal into direction k = k| — k, + k5 has 48 Feynman diagrams that contribute. However, if the

frequency o, is resonant with the electronic transition from the ground to the excited electronic state, and the
mismatch between frequencies ®, and ®, is resonant with a ground-state vibrational transition or transitions,
only one diagram is resonant, namely, the one corresponding to R in figure A1.6.19 (with the interchange of
labels k| and k).

To arrive at a dynamical interpretation of this diagram it is instructive to write the formula for the dominant
term in P3) explicitly:

{_]3 iy ty Iy N

= {|Ir)3'-_’ dhf ﬂf:f i.'il'l':i,f"ru:'l']"l]|{,Ll]'2_"‘f”':r_“:'m (A 1.6.123)
- (L Ex (e Hets
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where in the second line we have substituted explicitly for the third-order wavefunction, y(®)(t). This formula,
although slightly longer than the formulae for the first- and second-order amplitude discussed in the previous

section, has the same type of simple dynamical interpretation. The initial wavepacket, \4/(0) interacts with the
field at time 7, and propagates on surface b for time ¢, —; at time ¢, it interacts a second time with the field
and propagates on the ground surface a for time 75 — #,; at time /5 it interacts a third time with the field and
propagates on surface b until variable time ¢. The third-order wavepacket on surface b is projected onto the
initial wavepacket on the ground state; this overlap
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is a measure of the coherence which determines both the magnitude and phase of the CARS signal. Formally,
the expression involves an integral over three time variables, reflecting the coherent contribution of all
possible instants at which the interaction with the light took place, for each of the three interactions. However,
if the interaction is with pulses that are short compared with a vibrational period, as we saw in equation
(A1.6.76), one can approximate the pulses by d-functions in time, eliminate the three integrals and the simple
dynamical interpretation above becomes precise.



Qualitatively, the delay between interaction 1 and 2 is a probe of excited-state dynamics, while the delay
between interaction 2 and 3 reflects ground-state dynamics. If pulses 1 and 2 are coincident, the combination
of the first two pulses prepares a vibrationally excited wavepacket on the ground-state potential energy
surface; the time delay between pulses 2 and 3 then determines the time interval for which the wavepacket
evolves on the ground-state potential, and is thus a probe of ground-state dynamics [43, 45, 52]. If a second
delay, the delay between pulses 1 and 2, is introduced this allows large wavepacket excursions on the excited
state before coming back to the ground state. The delay between pulses 1 and 2 can be used in a very precise
way to tune the level of ground-state vibrational excitation, and can prepare ground vibrational wavepackets
with extremely high energy content [44]. The sequence of pulses involving one against two time delays is
shown in figure A1.6.20 (a) and figure A1.6.20(b) . The control over the vibrational energy content in the
ground electronic state via the delay between pulses 1 and 2 is illustrated in figure A1.6.20 (right).

a b

;

15000 -

.

Energy [cm ']

.0 2.5 30 15 a.0 45

Bond Length [A]

Figure A1.6.20. (Left) Level scheme and nomenclature used in (a) single time-delay CARS. (b) Two-time
delay CARS ((TD)?CARS). The wavepacket is excited by o .» then transferred back to the ground state by
o, with Raman shift wp. Its evolution is then monitored by o __(after [44]). (Right) Relevant potential energy
surfaces for the iodine molecule. The creation of the WavepacIEet in the excited state is done by @ . The
transfer to the final state is shown by the dashed arrows according to the state one wants to populate (after

[44]).
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Stimulated Emission

Excited State Absorption

Figure A1.6.21. Bra and ket wavepacket dynamics which determine the coherence overlap, (¢(1)|(|)(2)).
Vertical arrows mark the transitions between electronic states and horizontal arrows indicate free propagation

on the potential surface. Full curves are used for the ket wavepacket, while dashed curves indicate the bra
wavepacket. (a) Stimulated emission. (b) Excited state (transient) absorption (from [41]).
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Figure A1.6.22 (a) Sequence of pulses in the canonical echo experiment. (b) Polarization versus time for the
pulse sequence in (a), showing an echo at a time delay equal to the delay between the excitation pulses.

(B) STIMULATED RAMAN AND DYNAMIC ABSORPTION SPECTROSCOPY

In CARS spectroscopy, o, = 05, and o, is generally different and of lower frequency. If ®, = ©, = @, the
process is called degenerate four-wave mixing (DFWM). Now, instead of a single diagram dominating, two
diagrams participate if the pulses are non-overlapping, four dominate if two pulses overlap and all eight
resonant diagrams contribute if all three pulses overlap (e.g., in continuous wave excitation) [43, 46]. The
additional diagrams correspond to terms of the form (\V(l)(t)|u|\y(2)(t)) discussed above; this is the overlap of a
second-order wavepacket on the ground-state surface with a first-order wavepacket on the excited-state
surface. These new diagrams come in for two reasons. First, even if the pulses are non-overlapping, the
degeneracy of the first two interactions allows the second interaction to produce an absorption, not just
emission. If the pulses are overlapping there is the additional flexibility of interchanging the order of pulses 1
and 2 (at the same time exchanging their role in producing absorption versus emission). The contribution of
these additional diagrams to the PR signal is not simply additive, but there are interference terms among all
the contributions, considerably complicating the interpretation of the signal. Diagrams R,—R, are commonly
referred to as stimulated Raman scattering: the first two interactions produce an excited-state population while
the last interaction produces stimulated emission back to the ground electronic state.

A process which is related diagrammatically to stimulated Raman scattering is transient absorption
spectroscopy. In an ordinary absorption spectrum, the initial state is typically the ground vibrational eigenstate
of the ground electronic state. Dynamic absorption spectroscopy refers to the excitation of a vibrational
wavepacket to an electronic state b via a first pulse, and then the measurement of the spectrum of that moving
wavepacket on a third electronic state ¢ as function of time delay between the pump and the probe. The time
delay controls the instantaneous wavepacket on state b whose spectrum is being measured with the second
pulse; in an ideal situation, one may obtain ‘snapshots’ of the wavepacket on electronic b as a function of
time, by observing its shadow onto surface c. This form of spectroscopy is very similar in spirit to the pump—
probe experiments of Zewalil et al [25], described in section A1.6.3.2, but there are two differences. First, the
signal in a dynamic absorption spectrum is a coherent signal in the direction of the probe
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pulse (pulse 3), as opposed to measuring fluorescence from state ¢, which is non-directional. Second, field
intensity in the direction of the probe pulse can be frequency resolved to give simultaneous time and



frequency resolution of the transient absorption. Although in principle the fluorescence from state ¢ can also
be frequency resolved, this fluorescence takes place over a time which is orders of magnitude longer than the
vibrational dynamics of interest and the signal contains a complicated combination of all excited- and ground-
state frequency differences.

The dynamic absorption signal, P3), can be written in a form which looks analogous to the linear absorption
signal PD (see equation (A1.6.113)),

e
P = %f (Y e O DY Y E() drY (A 1.6.125)

oo

However, because of the # dependence in \V(l)(t') one cannot write that PG) = E(t) ® S,,(9). For the latter to
hold, it is necessary to go to the limit of a probe pulse which is short compared with the dynamics on surface
1. In this case, w(l)(t') is essentially frozen and we can write q/(l) ~ \ut(l), where we have indicated explicitly
the parametric dependence on the pump—probe delay time, t. In this case, equation (A1.6.125) is isomorphic
with equation (A1.6.113), indicating that under conditions of impulsive excitation, dynamic absorption

spectroscopy is just first-order spectroscopy on the frozen state, d)r(l), on surface c. Note the residual
dependence of the frozen state on t, the pump—probe delay, and thus variation of the variables (o, ) generates
a two-dimensional dynamic absorption spectrum. Note that the pair of variables (®, t) are not limited by some
form of time—energy uncertainty principle. This is because, although the absorption is finished when the probe
pulse is finished, the spectral analysis of which frequency components were absorbed depends on the full time
evolution of the system, beyond its interaction with the probe pulse. Thus, the dynamic absorption signal can
give high resolution both in time (i.e. time delay between pump and probe pulses) and frequency,
simultaneously.

A1.6.4.4 NONLINEAR RESPONSE: SYSTEMS COUPLED TO AN ENVIRONMENT
(A) ECHO SPECTROSCOPY

In discussing spectroscopy in condensed phase environments, one normally distinguishes two sources of
decay of the coherence: inhomogeneous decay, which represents static differences in the environment of
different molecules, and homogeneous decay, which represents the dynamics interaction with the

surroundings and is the same for all molecules. Both these sources of decay contribute to the linewidth of
spectral lines; in many cases the inhomogenous decay is faster than the homogeneous decay, masking the

latter. In echo spectroscopies, which are related to a particular subset of diagrams in P3), one can at least
partially discriminate between homogeneous and inhomogeneous decay.

Historically, photon echoes grew up as optical analogues of spin echoes in NMR. Thus, the earliest photon
echo experiments were based on a sequence of two excitation pulses, a /2 pulse followed by a & pulse,
analogous to the pulse sequence used in NMR. Conceptually, the ©/2 pulse prepares an optical coherence,
which will proceed to dephase due to both homogeneous and inhomogeneous mechanisms. After a delay time
T, the 1 pulse reverses the role of the excited and ground electronic states, which causes the inhomogeneous
contribution to the dephasing to reverse itself but does not affect the homogeneous decay. The reversal of

phases generated by the n-pulse has been described in many colourful ways over the years (see figure
A1.6.23).
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Figure A1.6.23. Schematic representation of dephasing and reversal on a race track, leading to coherent
rephasing and an “echo' of the starting configuration. From Phys. Today, (Nov. 1953), front cover.

Fundamentally, the above description of photon echoes is based on a two-level description of the system. As
we have seen throughout this article, much of molecular electronic spectroscopy is described using two
electronic states, albeit with a vibrational manifold in each of these electronic states. This suggests that photon
echoes can be generalized to include these vibrational manifolds, provided that the echo signal is now defined
in terms of a wavepacket overlap (or density matrix coherence) involving the coherent superposition of all the
participating vibrational levels. This is shown schematically in figure A1.6.24. The ©/2 pulse transfers 50% of
the wavepacket amplitude to the excited electronic state. This creates a non-stationary vibrational wavepacket
in the excited electronic state (and generally, the remaining amplitude in the ground electronic state is non-
stationary as well). After a time delay t a 7 pulse comes in, exchanging the wavepackets on the ground and
excited electronic states. The wavepackets continue to evolve on their new respective surfaces. At some later
time, when the wavepackets overlap, an echo will be observed. This sequence is shown in figure A1.6.24 .
Note that this description refers only to the isolated molecule; if there are dephasing mechanisms due to the
environment as well, the echo requires the rephasing in both the intramolecular and the environmental degrees
of freedom.
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Figure A1.6.24. Schematic representation of a photon echo in an isolated, multilevel molecule. (a) The initial
pulse prepares a superposition of ground- and excited-state amplitude. (b) The subsequent motion on the
ground and excited electronic states. The ground-state amplitude is shown as stationary (which in general it
will not be for strong pulses), while the excited-state amplitude is non-stationary. (c) The second pulse
exchanges ground- and excited-state amplitude. (d) Subsequent evolution of the wavepackets on the ground
and excited electronic states. When they overlap, an echo occurs (after [40]).

Although the early photon echo experiments were cast in terms of 7/2 and & pulses, these precise inversions
of the population are by no means necessary [36]. In fact echoes can be observed using sequences of weak

pulses, and can be described within the perturbative P3) formalism which we have used throughout section
A1.6.4. Specifically, the diagrams R, R4, Ry and Ry in figure A1.6.19 correspond to echo diagrams, while the

diagrams R,, R;, R and R, do not. In the widely used Brownian oscillator model for the relaxation of the
system [37, 48], the central dynamical object is the electronic frequency correlation,

{ﬂ.m{ﬂ] Menir)}
{(Aw?)

M) = (A 1.6.126)

where Aw(f) = (@) — o(?). Here (0, is the average transition frequency, o(?) is the transition frequency at
time ¢, and the brac%(ets denote an ensemble average. It can be shown that as long as M(¢) is a monotonically

decaying function, the diagrams R, R,, R5 and Rq can cause rephasing of P3) while the diagrams R,, R;, R
and R, cannot (see figure A1.6.25).
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Figure A1.6.25. Modulus squared of the rephasing, |R1|2, (a), and non-rephasing, |R2|2, (b), response
functions versus final time ¢ for a near-critically overdamped Brownian oscillator model M(#). The time delay

between the second and third pulse, 7, is varied as follows: (a) from top to bottom, 7= 0, 20, 40, 60, 80, 100,

o fs; (b) from bottom to top, 7= 0, 20, 40, 60, 80, 100, o fs. Note that |R1|2 and |R2|2 are identical at 7= oo,
After [48].

It is instructive to contrast echo spectroscopy with single time-delayed CARS spectroscopy, discussed above.
Schematically, TD-CARS spectroscopy involves the interaction between pulses 1 and 2 being close in time,
creating a ground-state coherence, and then varying the delay before interaction 3 to study ground-state
dynamics. In contrast, echo spectroscopy involves an isolated interaction 1 creating an electronic coherence
between the ground and the excited electronic state, followed by a pair of interactions 2 and 3, one of which
operates on the bra and the other on the ket. The pair of interactions 2,3 essentially reverses the role of the
ground and the excited electronic states. If there is any inhomogeneous broadening, or more generally any
bath motions that are slow compared with the time intervals between the pulses, these modes will show up as
echo signal after the third pulse is turned off [47].

We close with three comments. First, there is preliminary work on retrieving not only the amplitude but also
the phase of photon echoes [49]. This appears to be a promising avenue to acquire complete 2-dimensional
time and frequency information on the dynamics, analogous to methods that have been used in NMR. Second,
we note that there is a growing literature on non-perturbative, numerical simulation of nonlinear
spectroscopies. In these methods, the consistency of the order of interaction with the field and the appropriate
relaxation process is achieved automatically,
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and thus these methods may become a useful alternative to the perturbative formalism [50, 51]. Third, there is



a growing field of single molecule spectroscopy. If the optical response from individual molecules in a
condensed phase environment is detected, then one has a more direct approach than echo spectroscopy for
removing the effect of environmental inhomogeneity. Moreover, the spectral change of individual molecules
can be followed in time, giving data that are masked in even the best echo spectrum.

A1.6.5 COHERENT CONTROL OF MOLECULAR DYNAMICS

Not only has there been great progress in making femtosecond pulses in recent years, but also progress has
been made in the shaping of these pulses, that is, giving each component frequency any desired amplitude and
phase. Given the great experimental progress in shaping and sequencing femtosecond pulses, the inexorable
question is: How is it possible to take advantage of this wide possible range of coherent excitations to bring
about selective and energetically efficient photochemical reactions? Many intuitive approaches to laser
selective chemistry have been tried since 1980. Most of these approaches have focused on depositing energy
in a sustained manner, using monochromatic radiation, into a particular state or mode of the molecule.
Virtually all such schemes have failed, due to rapid intramolecular energy redistribution.

The design of pulse sequences to selectively control chemical bond breaking is naturally formulated as a
problem in the calculus of variations [17, 52]. This is the mathematical apparatus for finding the best shape,
subject to certain constraints. For example, the shape which encloses the maximum area for a given perimeter;
the minimum distance between two points on a sphere subject to the constraint that the connecting path be on
the sphere; the shape of a cable of fixed length and fixed endpoints which minimizes the potential energy; the
trajectory of least time; the path of least action; all these are searches for the best shape, and are problems in
the classical calculus of variations. In our case, we are searching for the best shape of laser pulse intensity
against time. If we admit complex pulses this involves an optimization over the real and imaginary parts of the
pulse shape. We may be interested in the optimal pulse subject to some constraints, for example for a fixed
total energy in the pulse.

It turns out that there is another branch of mathematics, closely related to the calculus of variations, although
historically the two fields grew up somewhat separately, known as optimal control theory (OCT). Although
the boundary between these two fields is somewhat blurred, in practice one may view optimal control theory
as the application of the calculus of variations to problems with differential equation constraints. OCT is used
in chemical, electrical, and aeronautical engineering; where the differential equation constraints may be
chemical kinetic equations, electrical circuit equations, the Navier—Stokes equations for air flow, or Newton’s
equations. In our case, the differential equation constraint is the TDSE in the presence of the control, which is
the electric field interacting with the dipole (permanent or transition dipole moment) of the molecule [53, 54,
55 and 56]. From the point of view of control theory, this application presents many new features relative to
conventional applications; perhaps most interesting mathematically is the admission of a complex state
variable and a complex control; conceptually, the application of control techniques to steer the microscopic
equations of motion is both a novel and potentially very important new direction.
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A very exciting approach adopted more recently involves letting the laser learn to design its own optimal
pulse shape in the laboratory [59, 60, 61, 62 and 63]. This is achieved by having a feedback loop, such that the
increase or decrease in yield from making a change in the pulse is fed back to the pulse shaper, guiding the
design of the next trial pulse. A particular implementation of this approach is the ‘genetic algorithm’, in which
large set of initial pulses are generated; those giving the highest yield are used as ‘parents’ to produce a new
‘generation’ of pulses, by allowing segments of the parent pulses to combine in random new combinations.



The various approaches to laser control of chemical reactions have been discussed in detail in several recent
reviews [64, 65].

A1.6.5.1 INTUITIVE CONTROL CONCEPTS

Consider the ground electronic state potential energy surface in figure A1.6.26. This potential energy surface,
corresponding to collinear ABC, has a region of stable ABC and two exit channels, one corresponding to A +
BC and one to AB + C. This system is the simplest paradigm for control of chemical product formation: a two
degree of freedom system is the minimum that can display two distinct chemical products. The objective is,
starting out in a well-defined initial state (v = 0 for the ABC molecule) to design an electric field as a function
of time which will steer the wavepacket out of channel 1, with no amplitude going out of channel 2, and vice
versa [19, 52].

Figure A1.6.26. Stereoscopic view of ground- and excited-state potential energy surfaces for a model
collinear ABC system with the masses of HHD. The ground-state surface has a minimum, corresponding to
the stable ABC molecule. This minimum is separated by saddle points from two distinct exit channels, one
leading to AB + C the other to A + BC. The object is to use optical excitation and stimulated emission
between the two surfaces to ‘steer’ the wavepacket selectively out of one of the exit channels (reprinted from

[54]).
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We introduce a single excited electronic state surface at this point. The motivation is severalfold. (i)
Transition dipole moments are generally much stronger than permanent dipole moments. (ii) The difference in
functional form of the excited and ground potential energy surface will be our dynamical kernel; with a single
surface one must make use of the (generally weak) coordinate dependence of the dipole. Moreover, the use of
excited electronic states facilitates large changes in force on the molecule, effectively instantaneously, without
necessarily using strong fields. (iii) The technology for amplitude and phase control of optical pulses is
significantly ahead of the corresponding technology in the infrared.

The object now will be to steer the wavefunction out of a specific exit channel on the ground electronic state,
using the excited electronic state as an intermediate. Insofar as the control is achieved by transferring
amplitude between two electronic states, all the concepts regarding the central quantity Heg introduced above
will now come into play.

(A) PUMP-DUMP SCHEME



Consider the following intuitive scheme, in which the timing between a pair of pulses is used to control the
identity of products [52]. The scheme is based on the close correspondence between the centre of a
wavepacket in time and that of a classical trajectory (Ehrenfest’s theorem). The first pulse produces an excited
electronic state wavepacket. The time delay between the pulses controls the time that the wavepacket evolves
on the excited electronic state. The second pulse stimulates emission. By the Franck—Condon principle, the
second step prepares a wavepacket on the ground electronic state with the same position and momentum,
instantaneously, as the excited-state wavepacket. By controlling the position and momentum of the
wavepacket produced on the ground state through the second step, one can gain some measure of control over
product formation on the ground state. This ‘pump—dump’ scheme is illustrated classically in figure A1.6.27.
The trajectory originates at the ground-state surface minimum (the equilibrium geometry). At =0 it is
promoted to the excited-state potential surface (a two-dimensional harmonic oscillator in this model) where it
originates at the Condon point, that is, vertically above the ground-state minimum. Since this position is
displaced from equilibrium on the excited state, the trajectory begins to evolve, executing a two-dimensional
Lissajous motion. After some time delay, the trajectory is brought down vertically to the ground state
(keeping both the instantaneous position and momentum it had on the excited state) and allowed to continue
to evolve on the ground-state. figure A1.6.27 shows that for one choice of time delay it will exit into channel
1, for a second choice of time delay it will exit into channel 2. Note how the position and momentum of the
trajectory on the ground state, immediately after it comes down from the excited state, are both consistent
with the values it had when it left the excited state, and at the same time are ideally suited for exiting out their
respective channels.
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(b)

Figure A1.6.27. Equipotential contour plots of (a) the excited- and (b), (c) ground-state potential energy
surfaces. (Here a harmonic excited state is used because that is the way the first calculations were performed.)
(a) The classical trajectory that originates from rest on the ground-state surface makes a vertical transition to
the excited state, and subsequently undergoes Lissajous motion, which is shown superimposed. (b) Assuming
a vertical transition down at time ¢, (position and momentum conserved) the trajectory continues to evolve on
the ground-state surface and exits from channel 1. (¢) If the transition down is at time ¢, the classical
trajectory exits from channel 2 (reprinted from [52]).



A full quantum mechanical calculation based on these classical ideas is shown in figure A1.6.28 and figure
A1.6.29 [19]. The dynamics of the two-electronic-state model was solved, starting in the lowest vibrational
eigenstate of the ground electronic state, in the presence of a pair of femtosecond pulses that couple the states.
Because the pulses were taken to be much shorter than a vibrational period, the effect of the pulses is to
prepare a wavepacket on the excited/ground state which is almost an exact replica of the instantaneous
wavefunction on the other surface. Thus, the first pulse prepares an initial wavepacket which is almost a
perfect Gaussian, and which begins to evolve on the excited-state surface. The second pulse transfers the
instantaneous wavepacket at the arrival time of the pulse back to the ground state, where it continues to evolve
on the ground-state surface, given its position and momentum at the time of arrival from the excited state. For
one choice of time delay the exit out of channel 1 is almost completely selective (figure A1.6.28), while for a
second choice of time delay the exit out of channel 2 is almost completely selective (A1.6.29. Note the close
correspondence with the classical model: the wavepacket on the excited state is executing a Lissajous motion
almost identical with that of the classical trajectory (the wavepacket is a nearly Gaussian wavepacket on a
two-dimensional harmonic oscillator). On the groundstate, the wavepacket becomes spatially extended but its
exit channel, as well as the partitioning of energy into translation and vibration (i.e. parallel and perpendicular
to the exit direction) are seen to be in close agreement with the corresponding classical trajectory.
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Figure A1.6.28. Magnitude of the excited-state wavefunction for a pulse sequence of two Gaussians with
time delay of 610 a.u. = 15 fs. (a) £ =200 a.u., (b) £ =400 a.u., (¢) t = 600 a.u. Note the close correspondence
with the results obtained for the classical trajectory (figure A1.6.27(a) and (b)). Magnitude of the ground-state
wavefunction for the same pulse sequence, at (a) £ =0, (b) =800 a.u., (c) t = 1000 a.u. Note the close
correspondence with the classical trajectory of figure A1.6.27(c)). Although some of the amplitude remains in
the bound region, that which does exit does so exclusively from channel 1 (reprinted from [52]).
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Figure A1.6.29. Magnitude of the ground- and excited-state wavefunctions for a sequence of two Gaussian
pulses with time delay of 810 a.u. (upper diagram) excited-state wavefunction at 800 a.u., before the second
pulse. (a) Ground-state wavefunction at 0 a.u. (b) Ground-state wavefunction at 1000 a.u. (¢) Ground-state
wavefunction at 1200 a.u. That amplitude which does exit does so exclusively from channel 2. Note the close
correspondence with the classical trajectory of figure A1.6.27(c) (reprinted from [52]).

This scheme is significant for three reasons: (i) it shows that control is possible, (ii) it gives a starting point for
the design of optimal pulse shapes, and (iii) it gives a framework for interpreting the action of two pulse and
more complicated pulse sequences. Nevertheless, the approach is limited: in general with the best choice of
time delay and central frequency of the pulses one may achieve only partial selectivity. Perhaps most
importantly, this scheme does not exploit the phase of the light. Intuition breaks down for more complicated
processes and classical pictures cannot adequately describe the role of the phase of the light and the
wavefunction. Hence, attempts were made to develop a systematic procedure for improving an initial pulse
sequence.
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Before turning to these more systematic procedures for designing shaped pulses, we point out an interesting
alternative perspective on pump—dump control. A central tenet of Feynman’s approach to quantum mechanics
was to think of quantum interference as arising from multiple dynamical paths that lead to the same final state.
The simple example of this interference involves an initial state, two intermediate states and a single final
state, although if the objective is to control some branching ratio at the final energy then at least two final
states are necessary. By controlling the phase with which each of the two intermediate states contributes to the
final state, one may control constructive versus destructive interference in the final states. This is the basis of
the Brumer—Shapiro approach to coherent control [57, 58]. It is interesting to note that pump—dump control



can be viewed entirely from this perspective. Now, however, instead of two intermediate states there are
many, corresponding to the vibrational levels of the excited electronic state (see figure A1.6.31). The control
of the phase which determines how each of these intermediate levels contributes to the final state is achieved
via the time delay between the excitation and the stimulated emission pulse. This ‘interfering pathways’
interpretation of pump—dump control is shown in figure A1.6.30.
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Figure A1.6.30. (a) Two pulse sequence used in the Tannor—Rice pump—dump scheme. (b) The Husimi time—
frequency distribution corresponding to the two pump sequence in (a), constructed by taking the overlap of
the pulse sequence with a two-parameter family of Gaussians, characterized by different centres in time and
carrier frequency, and plotting the overlap as a function of these two parameters. Note that the Husimi
distribution allows one to visualize both the time delay and the frequency offset of pump and dump
simultaneously (after [52a]).
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Figure A1.6.31. Multiple pathway interference interpretation of pump—dump control. Since each of the pair
of pulses contains many frequency components, there are an infinite number of combination frequencies
which lead to the same final energy state, which generally interfere. The time delay between the pump and



dump pulses controls the relative phase among these pathways, and hence determines whether the interference
is constructive or destructive. The frequency domain interpretation highlights two important features of
coherent control. First, if final products are to be controlled there must be degeneracy in the dissociative
continuum. Second, a single interaction with the light, no matter how it is shaped, cannot produce control of
final products: at least two interactions with the field are needed to obtain interfering pathways.

A1.6.5.2 VARIATIONAL FORMULATION OF CONTROL OF PRODUCT FORMATION

The next step, therefore, is to address the question: how is it possible to take advantage of the many additional
available parameters: pulse shaping, multiple pulse sequences, etc—in general an E(f) with arbitrary
complexity—to maximize and perhaps obtain perfect selectivity? Posing the problem mathematically, one
seeks to maximize

J = lim (§ (T)| Py |9 (T)) (A 1.6.127)

where P_ is a projection operator for chemical channel o (here, o takes on two values, referring to
arrangement channels A + BC and AB + C; in general, in a triatomic molecule ABC, a takes on three values,
1,2,3, referring to arrangement channels A + BC, AB + C and AC + B). The time 7 is understood to be longer
than the duration of the pulse sequence, £(¢); the yield, J, is defined as T — oo, that is, after the wavepacket
amplitude has time to reach its asymptotic arrangement. The key observation is that the quantity Jis a
functional of E(f), that is, J is a function of a function, because y(7) depends on the whole history of E(?). To
make this dependence on E(7) explicit we may write
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J[E()] = j,li__ﬁ]w{!ﬂ{ﬂﬂ]i?'ll-’hIlﬁf[aff(!}]{l")} (A 1.6.128)

where square brackets are used to indicate functional dependence. The problem of maximizing a function of a
function has a rich history in mathematical physics, and falls into the class of problems belonging to the
calculus of variations.

In the OCT formulation, the TDSE written as a 2 x 2 matrix in a BO basis set, equation (A1.6.72), is

introduced into the objective functional with a Lagrange multiplier, y(x, ¢) [54]. The modified objective
functional may now be written as

J = lim (Y (T)| P | (T)) +2Ref dr(x (1) -[— - E Yie)) —
T—o0 (o in

.
f dr|E(t)?
0

where a constraint (or penalty) on the time integral of the energy in the electric field has also been added. It is
clear that as long as  satisfies the TDSE the new term in Jwill vanish for any ¥ (x, £). The function of the new
term is to make the variations of Jwith respect to £ and with respect to y independent, to first-order in 8E (i.e.
to ‘deconstrain’ y and E).

(A 1.6.129)

The requirement that 8J/8y = 0 leads to the following equations:



. 0
ih—==H (A 1.6.130)
a1 X
X, T)= Powr(x, T) (A 1.6.131)

that is, the Lagrange multiplier must obey the TDSE, subject to the boundary condition at the final time T that
. be equal to the projection operator operating on the Schrodinger wavefunction. These conditions ‘conspire’,
so that a change in E, which would ordinarily change Jthrough the dependence of y(7) on E, does not do so
to first-order in the field. For a physically meaningful solution it is required that

L difr
i T = Hr (A 1.6.132)
i
¥(x,0) = dolx). (A 1.6.133)

Finally, the optimal E(¢) is given by the condition that 8J/8 E = 0 which leads to the equation

E(n = —[ XaltlWn) — (g lpe | xa)]. (A 1.6.134)

The interested reader is referred to [54] for the details of the derivation.
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Equation (A1.6.129), equation (A1.6.130), equation (A1.6.131), equation (A1.6.132) and equation (A1.6.133)
form the basis for a double-ended boundary value problem. y is known at ¢t = 0, while y is known at ¢ = T.
Taking a guess for £(f) one can propagate y forward in time to obtain y(#); at time 7 the projection operator
P may be applied to obtain (), which may be propagated backwards in time to obtain y (7). Note, however,
that the above description is not self-consistent: the guess of E(¢) used to propagate y(¢) forward in time and
to propagate y(f) backwards in time is not, in general, equal to the value of E(¢) given by equation (A1.6.133).
Thus, in general, one has to solve these equations iteratively until self-consistency is achieved. Optimal
control theory has become a widely used tool for designing laser pulses with specific objectives. The
interested reader can consult the review in [65] for further examples.

A1.6.5.3 OPTIMAL CONTROL AND LASER COOLING OF MOLECULES

The use of lasers to cool atomic translational motion has been one of the most exciting developments in
atomic physics in the last 15 years. For excellent reviews, see [66, 67]. Here we give a non-orthodox
presentation, based on [68].

(A) CALIBRATION OF COOLING: THE ZEROTH LAW

Consider, figure A1.6.32 in which a system is initially populated with an incoherent distribution of
populations with Boltzmann probabilities, P, £, P, = 1. The simple-minded definition of cooling is to
manipulate all the population into the lowest energy quantum state, i.e. to make P, =1 and all the other P =
0. Cooling can then be measured by the quantity = P, 2. for the initial, mcoherent distribution X P <1

while for the final distribution X P 2=1. However adoptlon of this definition of cooling 1mp11es that if all
the population is put into any smgle quantum state, not necessarily the lowest energy state, the degree of

cooling is identical. Although this seems surprising at first, it is in fact quite an appealing definition of
cooling. It highlights the fact that the essence of cooling is the creation of a pure state starting from a mixed
state; once the state is pure then coherent manipulations, which are relatively straightforward, can transfer this



population to the ground state. As described in section A1.6.2.4, the conventional measure of the degree of

purity of a system in quantum mechanics is Tr (pz), where p is the system’s density matrix, and thus we have
here defined cooling as the process of bringing Tr(p?) from its initial value less than 1 to unity. The definition
of cooling in terms of Tr(p?) leads to an additional surprise, namely, that the single quantum state need not
even be an eigenstate: it can, in principle, be a superposition consisting of a coherent superposition of many
eigenstates. So long as the state is pure (i.e. can be described by a single Schrodinger wavefunction) it can
manipulated into the lowest energy state by a unitary transformation, and in a very real sense is already cold!
figure A1.6.32 gives a geometrical interpretation of cooling. The density matrix is represented as a point on a
generalized Bloch sphere of radius R = Tr(pz). For an initially thermal state the radius R < 1, while for a pure
state R = 1. Thus, the object of cooling, that is, increasing the purity of the density matrix, corresponds to
manipulating the density matrix onto spheres of increasingly larger radius.
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Figure A1.6.32. (a) Initial and (b) final population distributions corresponding to cooling. (c) Geometrical
interpretation of cooling. The density matrix is represented as a point on generalized Bloch sphere of radius R

= Tr(p?). For an initially thermal state the radius R < 1, while for a pure state R = 1. The object of cooling is to
manipulate the density matrix onto spheres of increasingly larger radius.

We have seen in section A1.6.2.4 that external fields alone cannot change the value of Tr(p%)! Changes in the
purity can arise only from the spontaneous emission, which is inherently uncontrollable. Where then is the
control?

A first glimmer of the resolution to the paradox of how control fields can control purity content is obtained by

noting that the second derivative, Tr(#), does depend on the external field. Loosely speaking, the
independence of the first derivative and the dependence of the second derivative on the control field indicates
that the control of cooling is achieved only in two-stages: preparation of the initial state by the control field,
followed by spontaneous emission into that recipient state. This two-stage interpretation will now be
quantified.

To find the boundary between heating and cooling we set Tr(ﬂ ) 0. Figure A1.6.33 shows isocontours of Tr(
p* ) as a function of the parameters p,, (z) and |p1 5| (x). The dark region corresponds to FTro%) 0; that is,
cooling, while the light region corresponds to T 0, (i.e. heating). Note that the cooling region fills part,

but not all of the lower hemisphere. For fixed z, the maximum occurs along the line x = 0, with the global
maximum at z = 1/4, x = 0.
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Figure A1.6.33. (a) Contour map of #Trr')as a function of the parameters p,, (z) and [p,,| (x). The dark

region corresponds to ETeN< 0, fe. cooling while the light region corresponds to ETre')> 0, fe. heating. For
fixed z, the maximum occurs along the line x = 0. (b) Isopurity, or isocoherence contours (contours of fixed Tr
(p2)) as a function of p,, (z) and |p,,| (x) for the two-level system. The contour takes its maximum value of 1,
corresponding to a pure state, along the outermost circle, while the function takes its minimum value of 1/2,
representing the most impure state, at the centre.

To gain a qualitative understanding for the heating and cooling regions we consider three representative points
(top to bottom, figure A1.6.33(a) . (i) Spontaneous emission will lead from 1:99 to 0:100 and hence purity
increase. (ii) Spontaneous emission will lead from 100:0 to 99:1 and hence purity decrease. (iii) Spontaneous
emission will lead from 40:60 to 30:70 which suggests a purity increase; however, if there is purity stored in
the coherences p,, spontaneous emission will force these to decay at a rate I', = 1/2I"; this leads to a
decrease in purity which is greater than the increase in purity brought about by the population transfer.

The manipulations allowed by the external field are those that move the system along a contour of constant
value of Tr(pz), an isocoherence contour; it is clear from figure A1.6.33 that the location on this contour has a
profound affect on Tr(Pz). This gives a second perspective on how the external field cannot directly change Tr
(Pz), but can still affect the rate of change of Tr(pz). If we imagine that at every instant in time the external
field moves the system along the instantaneous isocoherence contour until it intersects the curve of maximum
Tr(PZ), that would provide an optimal cooling strategy. This last observation is the crux of our cooling theory
and puts into sharp perspective the role played by the external field: while the external field cannot itself
change the purity of the system it can perform purity-preserving transformations which subsequently affect
the rate of change of purity.

To summarize, we have the following chain of dependence: (p,,.|p;,)) = Tr(p?) —> (.522,|.512|) - Tr(ﬂ;z). This

chain of dependence gives Tr(ﬂ;z) as a function of Tr(pz), which is a differential equation for the optimal

trajectory Tr(pz)(t). By studying the rate of approach of the optimal trajectory to absolute zero (i.e. to a pure
state) we will have found an inviolable limitation on cooling rate with the status of a third law of

thermodynamics.
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Note that the differential equation obtained from this approach will never agree perfectly with the results of a
simulation. The above formulation is essentially an adiabatic formulation of the process: the spontaneous
emission is considered to be slow compared with the time scale for the purity-preserving transformations
generated by the external field, which is what allows us to assume in the theory that the external field



manipulation along the isocoherence contour is instantaneous. If the external field is sufficiently intense, the
population transfer may become nearly instantaneous relative to the spontaneous emission, and the adiabatic
approximation will be excellent.

(B) COOLING AND LASING AS COMPLEMENTARY PROCESSES

It is interesting to consider the regions of heating, that is, regions where Tr(ﬁz) < 0. We conjecture that these
regions correspond to regions where lasing can occur. The conjecture is based on the following
considerations:

()  Note that for the two-level system with no coherence (p,, = 0), the region where Tr(ﬂ;z) <0

1
corresponds to p,, > 2. This corresponds to the conventional population inversion criterion for lasing:

that population in the excited state be larger than in the ground state.

(i1)) The fact that in this region the system coherence is decreasing, leaves open the possibility that
coherence elsewhere can increase. In particular, excitation with incoherent light can lead to emission
of coherent light. This is precisely the reverse situation as with laser cooling, where coherent light is
transformed to incoherent light (spontaneous emission), increasing the level of coherence of the
system.

(iii) The regions with Tr(ﬂz) <0Oand d< %necessarily imply v > 0, that is, coherences between the ground
and excited state. This may correspond to lasing without population inversion, an effect which has
attracted a great deal of attention in recent years, and is made possible by coherences between the
ground and excited states. Indeed, in the three-level A system the boundary between heating and
cooling is in exact agreement with the boundary between lasing and non-lasing.

Fundamentally, the conditions for lasing are determined unambiguously once the populations and coherences
of the system density matrix are known. Yet, we have been unable to find in the literature any simple criterion
for lasing in multilevel systems in terms of the system density matrix alone. Our conjecture is that entropy, as
expressed by the purity content Tr(pz), is the unifying condition; the fact that such a simple criterion could
have escaped previous observation may be understood, given the absence of thermodynamic considerations in
conventional descriptions of lasing.
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A1.7 Surfaces and interfaces

J A Yarmoff

A1.7.1 INTRODUCTION

Some of the most interesting and important chemical and physical interactions occur when dissimilar
materials meet, i.e. at an interface. The understanding of the physics and chemistry at interfaces is one of the
most challenging and important endeavors in modern science.

Perhaps the most intensely studied interface is that between a solid and vacuum, i.e. a surface. There are a
number of reasons for this. For one, it is more experimentally accessible than other interfaces. In addition, it is



conceptually simple, as compared to interfaces between two solids or between a solid and a liquid, so that the
vacuum-solid interface is more accessible to fundamental theoretical investigation. Finally, it is the interface
most easily accessible for modification, for example by photons or charged particle beams that must be
propagated in vacuum.

Studies of surfaces and surface properties can be traced to the early 1800s [1]. Processes that involved
surfaces and surface chemistry, such as heterogeneous catalysis and Daguerre photography, were first
discovered at that time. Since then, there has been a continual interest in catalysis, corrosion and other
chemical reactions that involve surfaces. The modern era of surface science began in the late 1950s, when
instrumentation that could be used to investigate surface processes on the molecular level started to become
available.

Since the modern era began, the study of solid surfaces has been one of the fastest growing areas in solid-state
research. The geometric, electronic and chemical structure at the surface of a solid is generally quite different
from that of the bulk material. It is now possible to measure the properties of a surface on the atomic scale
and, in fact, to image individual atoms on a surface. The theoretical understanding of the chemistry and
physics at surfaces is also improving dramatically. Much of the theoretical work has been motivated by the
experimental results, as well as by the vast improvements in computer technology that are required to carry
out complex numerical calculations.

Surface studies address important issues in basic physics and chemistry, but are also relevant to a variety of
applications. One of the most important uses of a surface, for example, is in heterogeneous catalysis. Catalysis
occurs via adsorption, diffusion and reaction on a solid surface, so that delineation of surface chemical
mechanisms is critical to the understanding of catalysis. Microelectronic devices are manufactured by
processing of single-crystal semiconductor surfaces. Most dry processes that occur during device manufacture
involve surface etching or deposition. Thus, understanding how molecules adsorb and react on surfaces and
how electron and ion beams modify surfaces is crucial to the development of manufacturing techniques for
semiconductor and, more recently, micro-electromechanical (MEMS), devices. Surfaces are also the active
component in tribology, i.e. solid lubrication. In order to design lubricants that will stick to one surface, yet
have minimal contact with another, one must understand the fundamental surface interactions involved. In
addition, the movement of pollutants through the environment is controlled by the interactions of chemicals
with the surfaces encountered in the soil. Thus, a fundamental understanding of the surface chemistry of metal
oxide materials is needed in order to properly evaluate and solve environmental problems.
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Surfaces are found to exhibit properties that are different from those of the bulk material. In the bulk, each
atom is bonded to other atoms in all three dimensions. In fact, it is this infinite periodicity in three dimensions
that gives rise to the power of condensed matter physics. At a surface, however, the three-dimensional
periodicity is broken. This causes the surface atoms to respond to this change in their local environment by
adjusting their geometric and electronic structures. The physics and chemistry of clean surfaces is discussed in
section A1.7.2.

The importance of surface science is most often exhibited in studies of adsorption on surfaces, especially in
regards to technological applications. Adsorption is the first step in any surface chemical reaction or film-
growth process. The mechanisms of adsorption and the properties of adsorbate-covered surfaces are discussed
in section A1.7.3.

Most fundamental surface science investigations employ single-crystal samples cut along a low-index plane.
The single-crystal surface is prepared to be nearly atomically flat. The surface may also be modified in
vacuum. For example, it may be exposed to a gas that adsorbs (sticks) to the surface, or a film can be grown
onto a sample by evaporation of material. In addition to single-crystal surfaces, many researchers have
investigated vicinal, i.e. stepped, surfaces as well as the surfaces of polycrystalline and disordered materials.



In section A1.7.4, methods for the preparation of surfaces are discussed.

Surfaces are investigated with surface-sensitive techniques in order to elucidate fundamental information. The
approach most often used is to employ a variety of techniques to investigate a particular materials system. As
each technique provides only a limited amount of information, results from many techniques must be
correlated in order to obtain a comprehensive understanding of surface properties. In section A1.7.5, methods
for the experimental analysis of surfaces in vacuum are outlined. Note that the interactions of various kinds of
particles with surfaces are a critical component of these techniques. In addition, one of the more interesting
aspects of surface science is to use the tools available, such as electron, ion or laser beams, or even the tip of a
scanning probe instrument, to modify a surface at the atomic scale. The physics of the interactions of particles
with surfaces and the kinds of modifications that can be made to surfaces are an integral part of this section.

The liquid—solid interface, which is the interface that is involved in many chemical and environmental
applications, is described in section A1.7.6. This interface is more complex than the solid—vacuum interface,
and can only be probed by a limited number of experimental techniques. Thus, obtaining a fundamental
understanding of its properties represents a challenging frontier for surface science.

A1.7.2 CLEAN SURFACES

The study of clean surfaces encompassed a lot of interest in the early days of surface science. From this, we
now have a reasonable idea of the geometric and electronic structure of many clean surfaces, and the tools are
readily available for obtaining this information from other systems, as needed.

When discussing geometric structure, the macroscopic morphology must be distinguished from the
microscopic atomic structure. The morphology is the macroscopic shape of the material, which is a collective
property of groups of atoms determined largely by surface and interfacial tension. The following discussion,
however, will concentrate on the structure at the atomic level. Note that the atomic structure often plays a role
in determining the ultimate morphology of the surface. What is most important about the atomic structure,
however, is that it affects the manner in which chemistry occurs on a surface at the molecular level.

A1.7.2.1 SURFACE CRYSTALLOGRAPHY

To first approximation, a single-crystal surface is atomically flat and uniform, and is composed of a regular
array of atoms positioned at well defined lattice sites. Materials generally have of the order of 1013 atoms
positioned at the outermost atomic layer of each square centimetre of exposed surface. A bulk crystalline
material has virtually infinite periodicity in three dimensions, but infinite periodicity remains in only two
dimensions when a solid is cut to expose a surface. In the third dimension, i.e. normal to the surface, the
periodicity abruptly ends. Thus, the surface crystal structure is described in terms of a two-dimensional unit
cell parallel to the surface.

In describing a particular surface, the first important parameter is the Miller index that corresponds to the
orientation of the sample. Miller indices are used to describe directions with respect to the three-dimensional
bulk unit cell [2]. The Miller index indicating a particular surface orientation is the one that points in the
direction of the surface normal. For example, a Ni crystal cut perpendicular to the [100] direction would be
labelled Ni(100).

The second important parameter to consider is the size of the surface unit cell. A surface unit cell cannot be
smaller than the projection of the bulk cell onto the surface. However, the surface unit cell is often bigger than



it would be if the bulk unit cell were simply truncated at the surface. The symmetry of the surface unit cell is
easily determined by visual inspection of a low-energy electron diffraction (LEED) pattern (LEED is
discussed in section A1.7.5.1 and section B1.21).

There is a well defined nomenclature employed to describe the symmetry of any particular surface [1]. The
standard notation for describing surface symmetry is in the form

MRk -(p = g)-A

where M is the chemical symbol of the substrate material, 4, k, and / are the Miller indices that indicate the
surface orientation, p and ¢ relate the size of the surface unit cell to that of the substrate unit cell and A is the
chemical symbol for an adsorbate (if applicable). For example, atomically clean Ni cut perpendicular to the
[100] direction would be notated as Ni(100)-(1 x 1), since this surface has a bulk-terminated structure. If the
unit cell were bigger than that of the substrate in one direction or the other, then p and/or ¢ would be larger
than one. For example, if a Si single crystal is cleaved perpendicular to the direction, a Si(111)-(2 x 1) surface
is produced. Note that p and ¢ are often, but
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are not necessarily, integers. If an adsorbate is involved in forming the reconstruction, then it is explicitly part
of the nomenclature. For example, when silver is adsorbed on Si(111) under the proper conditions, the Si
(111)-(\3 x V3)-Ag structure is formed.

In addition, the surface unit cell may be rotated with respect to the bulk cell. Such a rotated unit cell is notated
as

M(hkI}-(p x g)RFrE-A

where r is the angle in degrees between the surface and bulk unit cells. For example, when iodine is adsorbed
onto the (111) face of silver, the Ag(111)-(\3 x V3)R30°—I structure can be produced.

Finally, there is an abbreviation ‘c’, which stands for ‘centred’, that is used to indicate certain common
symmetries. In a centred structure, although the primitive unit cell is rotated from the substrate unit cell, the
structure can also be considered as a non-rotated unit cell with an additional atom placed in the centre. For
example, a common adsorbate structure involves placing an atom at every other surface site of a square
lattice. This has the effect of rotating the primitive unit cell by 45°, so that such a structure would ordinarily
be notated as (V2 x V2)R45°. However, the unit cell can also be thought of as a (2 x 2) in registry with the
substrate with an additional atom placed in the centre of the cell. Thus, in order to simplify the nomenclature,
this structure is equivalently called a ¢(2 x 2). Note that the abbreviation ‘p’, which stands for ‘primitive’, is
sometimes used for a unit cell that is in registry with the substrate in order to distinguish it from a centred
symmetry. Thus, p(2 x 2) is just an unambiguous way of representing a (2 x 2) unit cell.

A1.7.2.2 TERRACES AND STEPS

For many studies of single-crystal surfaces, it is sufficient to consider the surface as consisting of a single
domain of a uniform, well ordered atomic structure based on a particular low-Miller-index orientation.
However, real materials are not so flawless. It is therefore useful to consider how real surfaces differ from the
ideal case, so that the behaviour that is intrinsic to a single domain of the well ordered orientation can be
distinguished from that caused by defects.



Real, clean, single-crystal surfaces are composed of terraces, steps and defects, as illustrated in figure A1.7.1.
This arrangement is called the TLK, or terrace-ledge-kink, model. A terrace is a large region in which the
surface has a well-defined orientation and is atomically flat. Note that a singular surface is defined as one that
is composed solely of one such terrace. It is impossible to orient an actual single-crystal surface to precise
atomic flatness, however, and steps provide the means to reconcile the macroscopic surface plane with the
microscopic orientation. A step separates singular terraces, or domains, from each other. Most steps are single
atomic height steps, although for certain surfaces a double-height step is required in order that each terrace is
equivalent. Figure A1.7.1(a) illustrates two perfect terraces separated by a perfect monoatomic step. The
overall number and arrangement of the steps on any actual surface is determined by the misorientation, which
is the angle between the nominal crystal axis direction and the actual surface normal. If the misorientation is
not along a low-index direction, then there will be kinks in the steps to adjust for this, as illustrated in figure

Al.7.1(b).

(b)

Figure A1.7.1. Schematic diagram illustrating terraces, steps, and defects. (a) Perfect flat terraces separated
by a straight, monoatomic step. (b) A surface containing various defects.

A surface that differs from a singular orientation by a finite amount is called vicinal. Vicinal surfaces are
composed of well oriented singular domains separated by steps. Figure A1.7.2 shows a large-scale scanning
tunnel microscope (STM) image of a stepped Si(111) surface (STM instruments are described in section
A1.7.5.3 and section B1.20). In this image, flat terraces separated by well defined steps are easily visible. It
can be seen that the steps are all pointing along the same general direction.




Figure A1.7.2. Large-scale (5000 Atimes 5000 A) scanning tunnelling microscope image of a stepped Si
(111)-(7 x 7) surface showing flat terraces separated by step edges (courtesy of Alison Baski).

Although all real surfaces have steps, they are not usually labelled as vicinal unless they are purposely
misoriented in order to create a regular array of steps. Vicinal surfaces have unique properties, which make
them useful for many types of experiments. For example, steps are often more chemically reactive than
terraces, so that vicinal surfaces provide a means for investigating reactions at step edges. Also, it is possible
to grow ‘nanowires’ by deposition of a metal onto a surface of another metal in such a way that the deposited
metal diffuses to and attaches at the step edges [3].

Many surfaces have additional defects other than steps, however, some of which are illustrated in figure
A1.7.1(b). For example, steps are usually not flat, i.e. they do not lie along a single low-index direction, but
instead have kinks. Terraces are also not always perfectly flat, and often contain defects such as adatoms or
vacancies. An adatom is an isolated atom adsorbed on top of a terrace, while a vacancy is an atom or group of
atoms missing from an otherwise perfect terrace. In addition, a group of atoms called an island may form on a
terrace, as illustrated.

Much surface work is concerned with the local atomic structure associated with a single domain. Some
surfaces are essentially bulk-terminated, i.e. the atomic positions are basically unchanged from those of the
bulk as if the atomic bonds in the crystal were simply cut. More common, however, are deviations from the
bulk atomic structure. These structural adjustments can be classified as either relaxations or reconstructions.
To illustrate the various classifications of surface structures, figure A1.7.3(a) shows a side-view of a bulk-
terminated surface, figure A1.7.3(b) shows an oscillatory relaxation and figure A1.7.3(c) shows a
reconstructed surface.
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Figure A1.7.3. Schematic illustration showing side views of (a) a bulk-terminated surface, (b) a relaxed
surface with oscillatory behaviour, and (c) a reconstructed surface.

A1.7.2.3 RELAXATION

Most metal surfaces have the same atomic structure as in the bulk, except that the interlayer spacings of the
outermost few atomic layers differ from the bulk values. In other words, entire atomic layers are shifted as a
whole in a direction perpendicular to the surface. This is called relaxation, and it can be either inward or
outward. Relaxation is usually reported as a percentage of the value of the bulk interlayer spacing. Relaxation
does not affect the two-dimensional surface unit cell symmetry, so surfaces that are purely relaxed have (1 x
1) symmetry.

The reason that relaxation occurs can be understood in terms of the free electron character of a metal. Because
the electrons are free, they are relatively unperturbed by the periodic ion cores. Thus, the electron density is
homogeneous
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parallel to the surface. At the surface of a metal the solid abruptly stops, so that there is a net dipole
perpendicular to the surface. This dipole field acts to attract electrons to the surface and is, in fact, responsible
for the surface work function. The dipole field also interacts with the ion cores of the outermost atomic layer,
however, causing them to move perpendicular to the surface. Note that some metals are also reconstructed
since the assumption of perfectly free electrons unperturbed by the ion cores is not completely valid.



In many materials, the relaxations between the layers oscillate. For example, if the first-to-second layer
spacing is reduced by a few percent, the second-to-third layer spacing would be increased, but by a smaller
amount, as illustrated in figure A1.7.3(b). These oscillatory relaxations have been measured with LEED [4, 5]
and ion scattering [6, 7] to extend to at least the fifth atomic layer into the material. The oscillatory nature of
the relaxations results from oscillations in the electron density perpendicular to the surface, which are called
Friedel oscillations [8]. The Friedel oscillations arise from Fermi—Dirac statistics and impart oscillatory forces
to the ion cores.

A1.7.2.4 RECONSTRUCTION

The three-dimensional symmetry that is present in the bulk of a crystalline solid is abruptly lost at the surface.
In order to minimize the surface energy, the thermodynamically stable surface atomic structures of many
materials differ considerably from the structure of the bulk. These materials are still crystalline at the surface,
in that one can define a two-dimensional surface unit cell parallel to the surface, but the atomic positions in
the unit cell differ from those of the bulk structure. Such a change in the local structure at the surface is called
a reconstruction.

For covalently bonded semiconductors, the largest driving force behind reconstructions is the need to pair up
electrons. For example, as shown in figure A1.7.4(a) if a Si(100) surface were to be bulk-terminated, each
surface atom would have two lone electrons pointing away from the surface (assuming that each atom remains
in a tetrahedral configuration). Lone electrons protruding into the vacuum are referred to as dangling bonds.
Instead of maintaining two dangling bonds at each surface atom, however, dimers can form in which electrons
are shared by two neighbouring atoms. Figure A1.7.4(b) shows two symmetrically dimerized Si atoms, in
which two dangling bonds have been eliminated, although the atoms still have one dangling bond each. Figure
A1.7.4(c) shows the asymmetric arrangement that further lowers the energy by pairing up two lone electrons
onto one atom. In this arrangement, the electrons at any instant are associated with one Si atom, while the

other has an empty orbital. This distorts the crystal structure, as the upper atom is essentially sp3 hybridized,
i.e. tetrahedral, while the other is spz, i.e. flat.




(a)

(c)

Figure A1.7.4. Schematic illustration of two Si atoms as they would be oriented on the (100) surface. (a)
Bulk-terminated structure showing two dangling bonds (lone electrons) per atom. (b) Symmetric dimer, in
which two electrons are shared and each atom has one remaining dangling bond. (¢) Asymmetric dimer in
which two electrons pair up on one atom and the other has an empty orbital.

Figure A1.7.5(a) shows a larger scale schematic of the Si(100) surface if it were to be bulk-terminated, while
figure A1.7.5(b) shows the arrangement after the dimers have been formed. The dashed boxes outline the two-
dimensional surface unit cells. The reconstructed Si(100) surface has a unit cell that is two times larger than
the bulk unit cell in one direction and the same in the other. Thus, it has a (2 x 1) symmetry and the surface is
labelled as Si(100)-(2 x 1). Note that in actuality, however, any real Si(100) surface is composed of a mixture
of (2 x 1) and (1 x 2) domains. This is because the dimer direction rotates by 90° at each step edge.

-10-



oo O eCe
L NN NON NON

_ NoH Nel NoM
00 O 000

L NN NoN NoN
o O eCo

L ol NoN NoN

{a) (k)

First layer 50 atom
Second layer 51 atom
Third layer 51 atom

Fouwrth layer 51 atoem

00000 @®O

Q0000000
@00 00900
@000 @0@®0
@00 0000
Q0000000
0000000

coeo

Figure A1.7.5. Schematic illustration showing the top view of the Si(100) surface. (a) Bulk-terminated
structure. (b)Dimerized Si(100)-(2 x 1) structure. The dashed boxes show the two-dimensional surface unit
cells.

The surface unit cell of a reconstructed surface is usually, but not necessarily, larger than the corresponding
bulk-terminated two-dimensional unit cell would be. The LEED pattern is therefore usually the first indication
that a reconstruction exists. However, certain surfaces, such as GaAs(110), have a reconstruction with a
surface unit cell that is still (1 x 1). At the GaAs(110) surface, Ga atoms are moved inward perpendicular to
the surface, while As atoms are moved outward.

The most celebrated surface reconstruction is probably that of Si(111)-(7 x 7). The fact that this surface has
such a large unit cell had been known for some time from LEED, but the detailed atomic structure took many
person-years of work to elucidate. Photoelectron spectroscopy [9], STM [10] and many other techniques were
applied to the determination of this structure. It was transmission electron diffraction (TED), however, that
provided the final information enabling the structure to be determined [11]. The structure now accepted is the
so-called DAS, or dimer adatom stacking-fault, model, as shown in figure A1.7.6. In this structure, there are a
total of 19 dangling bonds per unit cell, which can be compared to the 49 dangling bonds that the bulk-
terminated surface would have. Figure A1.7.7 shows an atomic resolution STM image of the Si(111)-(7 x 7)
surface. The bright spots in the image represent individual Si adatoms.
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Figure A1.7.6. Schematic diagrams of the DAS model of the Si(111)-(7 x 7) surface structure. There are 12
‘adatoms’ per unit cell in the outermost layer, which each have one dangling bond perpendicular to the
surface. The second layer, called the rest layer, also has six ‘rest’ atoms per unit cell, each with a
perpendicular dangling bond. The ‘corner holes’ at the edges of the unit cells also contain one atom with a
dangling bond.

Figure A1.7.7. Atomic-resolution, empty-state STM image (100 A x 100 A) of the reconstructed Si(111)-7 x
7 surface. The bright spots correspond to a top layer of adatoms, with 12 adatoms per unit cell (courtesy of
Alison Baski).

Although most metal surfaces exhibit only relaxation, some do have reconstructions. For example, the fcc
metals, Pt(110), Au(110) and Ir(110), each have a (1 x 2) surface unit cell. The accepted structure of these
surfaces is a
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missing row model, in which every other surface row is missing. Also, as discussed below, when an adsorbate
attaches to a metal surface, a reconstruction of the underlying substrate may be induced.

Reliable tables that list many known surface structures can be found in [1]. Also, the National Institute of
Standards and Technology (NIST) maintains databases of surface structures and other surface-related
information, which can be found at Attp./www.nist.gov/srd/surface.htm.

A1.7.2.5 SELF-DIFFUSION

The atoms on the outermost surface of a solid are not necessarily static, particularly as the surface temperature
is raised. There has been much theoretical [12, 13] and experimental work (described below) undertaken to
investigate surface self-diffusion. These studies have shown that surfaces actually have dynamic, changing
structures. For example, atoms can diffuse along a terrace to or from step edges. When atoms diffuse across a
surface, they may move by hopping from one surface site to the next, or by exchanging places with second
layer atoms.

The field ion microscope (FIM) has been used to monitor surface self-diffusion in real time. In the FIM, a
sharp, crystalline tip is placed in a large electric field in a chamber filled with He gas [14]. At the tip, He ions
are formed, and then accelerated away from the tip. The angular distribution of the He ions provides a picture
of the atoms at the tip with atomic resolution. In these images, it has been possible to monitor the diffusion of
a single adatom on a surface in real time [15]. The limitations of FIM, however, include its applicability only
to metals, and the fact that the surfaces are limited to those that exist on a sharp tip, i.e. diffusion along a large



terrace cannot be observed.

More recently, studies employing STM have been able to address surface self-diffusion across a terrace [16,
17, 18 and 19]. It is possible to image the same area on a surface as a function of time, and ‘watch’ the
movement of individual atoms. These studies are limited only by the speed of the instrument. Note that the
performance of STM instruments is constantly improving, and has now surpassed the 1 ps time resolution
mark [20]. Not only has self-diffusion of surface atoms been studied, but the diffusion of vacancy defects on
surfaces has also been observed with STM [18].

It has also been shown that sufficient surface self-diffusion can occur so that entire step edges move in a
concerted manner. Although it does not achieve atomic resolution, the low-energy electron microscopy
(LEEM) technique allows for the observation of the movement of step edges in real time [21]. LEEM has also
been useful for studies of epitaxial growth and surface modifications due to chemical reactions.

A1.7.2.6 SURFACE ELECTRONIC STRUCTURE

At a surface, not only can the atomic structure differ from the bulk, but electronic energy levels are present
that do not exist in the bulk band structure. These are referred to as ‘surface states’. If the states are occupied,
they can easily be measured with photoelectron spectroscopy (described in section A1.7.5.1 and section
B1.25.2). If the states are unoccupied, a technique such as inverse photoemission or x-ray absorption is
required [22, 23]. Also, note that STM has been used to measure surface states by monitoring the tunnelling
current as a function of the bias voltage [24] (see section B1.20). This is sometimes called scanning tunnelling
spectroscopy (STS).
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Surface states can be divided into those that are intrinsic to a well ordered crystal surface with two-
dimensional periodicity, and those that are extrinsic [25]. Intrinsic states include those that are associated with
relaxation and reconstruction. Note, however, that even in a bulk-terminated surface, the outermost atoms are
in a different electronic environment than the substrate atoms, which can also lead to intrinsic surface states.
Extrinsic surface states are associated with imperfections in the perfect order of the surface region. Extrinsic
states can also be formed by an adsorbate, as discussed below.

Note that in core-level photoelectron spectroscopy, it is often found that the surface atoms have a different
binding energy than the bulk atoms. These are called surface core-level shifts (SCLS), and should not be
confused with intrinsic surface states. An SCLS is observed because the atom is in a chemically different
environment than the bulk atoms, but the core-level state that is being monitored is one that is present in all of
the atoms in the material. A surface state, on the other hand, exists only at the particular surface.

A1.7.3 ADSORPTION

When a surface is exposed to a gas, the molecules can adsorb, or stick, to the surface. Adsorption is an
extremely important process, as it is the first step in any surface chemical reaction. Some of the aspects of
adsorption that surface science is concerned with include the mechanisms and kinetics of adsorption, the
atomic bonding sites of adsorbates and the chemical reactions that occur with adsorbed molecules.

The coverage of adsorbates on a given substrate is usually reported in monolayers (ML). Most often, 1 ML is
defined as the number of atoms in the outermost atomic layer of the unreconstructed, i.e. bulk-terminated,
substrate. Sometimes, however, 1 ML is defined as the maximum number of adsorbate atoms that can stick to
a particular surface, which is termed the saturation coverage. The saturation coverage can be much smaller



than the number of surface atoms, particularly with large adsorbates. Thus, in reading the literature, care must
be taken to understand how a particular author defines 1 ML.

Molecular adsorbates usually cover a substrate with a single layer, after which the surface becomes passive
with respect to further adsorption. The actual saturation coverage varies from system to system, and is often
determined by the strength of the repulsive interactions between neighbouring adsorbates. Some molecules
will remain intact upon adsorption, while others will adsorb dissociatively. This is often a function of the
surface temperature and composition. There are also often multiple adsorption states, in which the stronger,
more tightly bound states fill first, and the more weakly bound states fill last. The factors that control
adsorbate behaviour depend on the complex interactions between adsorbates and the substrate, and between
the adsorbates themselves.

The probability for sticking is known as the sticking coefficient, S. Usually, S decreases with coverage. Thus,
the sticking coefficient at zero coverage, the so-called initial sticking coefficient, S, reflects the interaction of
a molecule with the bare surface.

In order to calibrate the sticking coefficient, one needs to determine the exposure, i.e. how many molecules

have initially impacted a surface. The Langmuir (L) is a unit of exposure that is defined as 107 Torr s. An
exposure of 1 L is approximately the number of incident molecules such that each outermost surface atom is

impacted once. Thus, a
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1 L exposure would produce 1 ML of adsorbates if the sticking coefficient were unity. Note that a quantitative
calculation of the exposure per surface atom depends on the molecular weight of the gas molecules and on the
actual density of surface atoms, but the approximations inherent in the definition of the Langmuir are often
inconsequential.

A1.7.3.1 PHYSISORPTION

Adsorbates can physisorb onto a surface into a shallow potential well, typically 0.25 eV or less [25]. In
physisorption, or physical adsorption, the electronic structure of the system is barely perturbed by the
interaction, and the physisorbed species are held onto a surface by weak van der Waals forces. This attractive
force is due to charge fluctuations in the surface and adsorbed molecules, such as mutually induced dipole
moments. Because of the weak nature of this interaction, the equilibrium distance at which physisorbed
molecules reside above a surface is relatively large, of the order of 3 A or so. Physisorbed species can be
induced to remain adsorbed for a long period of time if the sample temperature is held sufficiently low. Thus,
most studies of physisorption are carried out with the sample cooled by liquid nitrogen or helium.

Note that the van der Waals forces that hold a physisorbed molecule to a surface exist for all atoms and
molecules interacting with a surface. The physisorption energy is usually insignificant if the particle is
attached to the surface by a much stronger chemisorption bond, as discussed below. Often, however, just
before a molecule forms a strong chemical bond to a surface, it exists in a physisorbed precursor state for a
short period of time, as discussed below in section A1.7.3.3.

A1.7.3.2 CHEMISORPTION

Chemisorption occurs when the attractive potential well is large so that upon adsorption a strong chemical
bond to a surface is formed. Chemisorption involves changes to both the molecule and surface electronic
states. For example, when oxygen adsorbs onto a metal surface, a partially ionic bond is created as charge
transfers from the substrate to the oxygen atom. Other chemisorbed species interact in a more covalent
manner by sharing electrons, but this still involves perturbations to the electronic system.



Chemisorption is always an exothermic process. By convention, the heat of adsorption, AH,;, has a positive
sign, which is opposite to the normal thermodynamic convention [1]. Although the heat of adsorption has
been directly measured with the use of a very sensitive microcalorimeter [26], it is more commonly measured
via adsorption isotherms [1]. An isotherm is generated by measuring the coverage of adsorbates obtained by
reaction at a fixed temperature as a function of the flux of incoming gas molecules. The flux is adjusted by
regulating the pressure used during exposure. An analysis of the data then allows H; and other parameters to
be determined. Heats of adsorption can also be determined from temperature programmed desorption (TPD) if
the adsorption is reversible (TPD is discussed in section A1.7.5.4 and section B1.25).

When a molecule adsorbs to a surface, it can remain intact or it may dissociate. Dissociative chemisorption is
common for many types of molecules, particularly if all of the electrons in the molecule are tied up so that
there are no electrons available for bonding to the surface without dissociation. Often, a molecule will
dissociate upon adsorption, and then recombine and desorb intact when the sample is heated. In this case,
dissociative chemisorption can be detected with TPD by employing isotopically labelled molecules. If mixing
occurs during the adsorption/desorption sequence, it indicates that the initial adsorption was dissociative.
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Atom abstraction occurs when a dissociation reaction occurs on a surface in which one of the dissociation
products sticks to the surface, while another is emitted. If the chemisorption reaction is particularly
exothermic, the excess energy generated by chemical bond formation can be channelled into the kinetic
energy of the desorbed dissociation fragment. An example of atom abstraction involves the reaction of
molecular halogens with Si surfaces [27, 28]. In this case, one halogen atom chemisorbs while the other atom
is ejected from the surface.

A1.7.3.3 ADSORPTION KINETICS

When an atom or molecule approaches a surface, it feels an attractive force. The interaction potential between
the atom or molecule and the surface, which depends on the distance between the molecule and the surface
and on the lateral position above the surface, determines the strength of this force. The incoming molecule
feels this potential, and upon adsorption becomes trapped near the minimum in the well. Often the molecule
has to overcome an activation barrier, £ ” before adsorption can occur.

It is the relationship between the bound potential energy surface of an adsorbate and the vibrational states of
the molecule that determine whether an adsorbate remains on the surface, or whether it desorbs after a period
of time. The lifetime of the adsorbed state, T, depends on the size of the well relative to the vibrational energy
inherent in the system, and can be written as

T = toexp(AHu/kT). (A1.7.1)

Such lifetimes vary from less than a picosecond to times greater than the age of the universe [29]. Thus,
adsorbed states with short lifetimes can occur during a surface chemical reaction, or long-lived adsorbed
states exist in which atoms or molecules remain attached to a surface indefinitely.

In this manner, it can also be seen that molecules will desorb as the surface temperature is raised. This is the
phenomenon employed for TPD spectroscopy (see section A1.7.5.4 and section B1.25). Note that some
adsorbates may adsorb and desorb reversibly, i.e. the heats of adsorption and desorption are equal. Other
adsorbates, however, will adsorb and desorb via different pathways.

Note that chemisorption often begins with physisorption into a weakly bound precursor state. While in this



state, the molecule can diffuse along the surface to find a likely site for chemisorption. This is particularly
important in the case of dissociative chemisorption, as the precursor state can involve physisorption of the
intact molecule. If a precursor state is involved in adsorption, a negative temperature dependence to the
adsorption probability will be found. A higher surface temperature reduces the lifetime of the physisorbed
precursor state, since a weakly bound species will not remain on the surface in the presence of thermal
excitation. Thus, the sticking probability will be reduced at higher surface temperatures.

The kinetics of the adsorption process are important in determining the value and behaviour of S for any given
system. There are several factors that come into play in determining S [25].
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(a) The activation barrier must be overcome in order for a molecule to adsorb. Thus, only the fraction of the
incident particles whose energy exceeds E, , will actually stick.

(b) The electronic orbitals of the incoming molecule must have the correct orientation with respect to the
orbitals of the surface. Thus, only a fraction of the incoming molecules will immediately stick to the
surface. Some of the incoming molecules may, however, diffuse across the surface while in a precursor
state until they achieve the proper orientation. Thus, the details of how the potential energy varies across
the surface are critical in determining the adsorption kinetics.

(¢) Upon adsorption, a molecule must effectively lose the remaining part of its kinetic energy, and possibly
the excess energy liberated by an exothermic reaction, in a time period smaller than one vibrational
period. Thus, excitations of the surface that can carry away this excess energy, such as plasmons or
phonons, play a role in the adsorption kinetics.

(d) Adsorption sites must be available for reaction. Thus, the kinetics may depend critically on the coverage
of adsorbates already present on the surface, as these adsorbates may block or modify the remaining
adsorption sites.

A1.7.3.4 ADSORPTION MODELS

The most basic model for chemisorption is that developed by Langmuir. In the Langmuir model, it is assumed
that there is a finite number of adsorption sites available on a surface, and each has an equal probability for
reaction. Once a particular site is occupied, however, the adsorption probability at that site goes to zero.
Furthermore, it is assumed that the adsorbates do not diffuse, so that once a site is occupied it remains
unreactive until the adsorbate desorbs from the surface. Thus, the sticking probability S goes to zero when the
coverage, 0, reaches the saturation coverage, 6,. These assumptions lead to the following relationship
between the sticking coefficient and the surface coverage,

S = So(l — 8/6). (A1.7.2)

The straight line in figure A1.7.8 shows the relationships between S and 6 expected for various models, with
the straight line indicating Langmuir adsorption.
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Figure A1.7.8. Sticking probability as a function of surface coverage for three different adsorption models.

Adsorbate atoms have a finite lifetime, t, for remaining on a surface. Thus, there will always be a flux of
molecules leaving the surface even as additional molecules are being adsorbed. If the desorption rate is equal
to the rate of adsorption, then an isotherm can be collected by measuring the equilibrium coverage at a fixed
temperature as a function of pressure, p. From the assumptions of the Langmuir model, one can derive the
following expression relating the equilibrium coverage to pressure [29].

__XP
=T+ xp (A1.7.3)
where y is a constant that depends on the adsorbate lifetime and surface temperature, 7, as
x T2, (A1.7.4)

If Langmuir adsorption occurs, then a plot of 0 versus p for a particular isotherm will display the form of
equation (A1.7.3). Measurements of isotherms are routinely employed in this manner in order to determine
adsorption kinetics.

Langmuir adsorption adequately describes the behaviour of many systems in which strong chemisorption
takes place, but it has limitations. For one, the sticking at surface sites actually does depend on the occupancy
of neighbouring sites. Thus, sticking probability usually changes with coverage. A common observation, for
example, is that the sticking probability is reduced exponentially with coverage, i.e.
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S o exp(—afl/kT) (A1.7.5)

which is called the Elovich equation [25]. This is compared to the Langmuir model in figure A1.7.8.



If adsorption occurs via a physisorbed precursor, then the sticking probability at low coverages will be
enhanced due to the ability of the precursor to diffuse and find a lattice site [30]. The details depend on
parameters such as strength of the lateral interactions between the adsorbates and the relative rates of
desorption and reaction of the precursor. In figure A1.7.8 an example of a plot of S versus 0 for precursor
mediated adsorption is presented.

Another limitation of the Langmuir model is that it does not account for multilayer adsorption. The
Braunauer, Emmett and Teller (BET) model is a refinement of Langmuir adsorption in which multiple layers
of adsorbates are allowed [29, 31]. In the BET model, the particles in each layer act as the adsorption sites for
the subsequent layers. There are many refinements to this approach, in which parameters such as sticking
coefficient, activation energy, etc, are considered to be different for each layer.

A1.7.3.5 ADSORPTION SITES

When atoms, molecules, or molecular fragments adsorb onto a single-crystal surface, they often arrange
themselves into an ordered pattern. Generally, the size of the adsorbate-induced two-dimensional surface unit
cell is larger than that of the clean surface. The same nomenclature is used to describe the surface unit cell of
an adsorbate system as is used to describe a reconstructed surface, i.e. the symmetry is given with respect to
the bulk terminated (unreconstructed) two-dimensional surface unit cell.

When chemisorption takes place, there is a strong interaction between the adsorbate and the substrate. The
details of this interaction determine the local bonding site, particularly at the lowest coverages. At higher
coverages, adsorbate—adsorbate interactions begin to also play a role. Most non-metallic atoms will adsorb
above the surface at specific lattice sites. Some systems have multiple bonding sites. In this case, one site will
usually dominate at low coverage, but a second, less stable site will be filled at higher coverages. Some
adsorbates will interact with only one surface atom, i.e. be singly coordinated, while others prefer multiple
coordinated adsorption sites. Other systems may form alloys or intermix during adsorption.

Local adsorption sites can be roughly classified either as on-top, bridge or hollow, as illustrated for a four-fold
symmetric surface in figure A1.7.9. In the on-top configuration, a singly coordinated adsorbate is attached
directly on top of a substrate atom. A bridge site is the two-fold site between two neighbouring surface atoms.
A hollow site is positioned between three or four surface atoms, for surfaces with three- or four-fold
symmetry, respectively.
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Figure A1.7.9. Schematic diagram illustrating three types of adsorption sites.

There are interactions between the adsorbates themselves, which greatly affect the structure of the adsorbates
[32]. If surface diffusion is sufficiently facile during or following the adsorption step, attractive interactions
can induce the adsorbates to form islands in which the local adsorbate concentration is quite high. Other
adsorbates may repel each other at low coverages forming structures in which the distance between adsorbates



is maximized. Certain co-adsorption systems form complex ordered overlayer structures. The driving force in
forming ordered overlayers are these adsorbate—adsorbate interactions. These interactions dominate the long-
range structure of the surface in the same way that long-range interactions cause the formation of three-
dimensional solid crystals.

Adsorbed atoms and molecules can also diffuse across terraces from one adsorption site to another [33]. On a
perfect terrace, adatom diffusion could be considered as a ‘random walk’ between adsorption sites, with a
diffusivity that depends on the barrier height between neighbouring sites and the surface temperature [29].
The diffusion of adsorbates has been studied with FIM [14], STM [34, 35] and laser-induced thermal
desorption [36].

A1.7.3.6 ADSORPTION-INDUCED RECONSTRUCTION

When an adsorbate attaches to a surface, the substrate itself may respond to the perturbation by either losing
its relaxation or reconstruction, or by forming a new reconstruction. This is not surprising, considering the
strength of a chemisorption bond. Chemisorption bonds can provide electrons to satisfy the requirements for
charge neutrality or electron pairing that may otherwise be missing at a surface.

For a reconstructed surface, the effect of an adsorbate can be to provide a more bulk-like environment for the
outermost layer of substrate atoms, thereby lifting the reconstruction. An example of this is As adsorbed onto
Si(111)-(7 x 7) [37]. Arsenic atoms have one less valence electron than Si. Thus, if an As atom were to
replace each outermost Si atom in the bulk-terminated structure, a smooth surface with no unpaired electrons
would be produced, with a second layer consisting of Si atoms in their bulk positions. Arsenic adsorption has,
in fact, been found to remove the reconstruction and form a Si(111)-(1 x 1)—As structure. This surface has a
particularly high stability due to the absence of dangling bonds.

An example of the formation of a new reconstruction is given by certain fcc (110) metal surfaces. The clean
surfaces have (1 x 1) symmetry, but become (2 x 1) upon adsorption of oxygen [16, 38]. The (2 x 1)
symmetry is not just due to oxygen being adsorbed into a (2 x 1) surface unit cell, but also because the
substrate atoms rearrange themselves

-20-

into a new configuration. The reconstruction that occurs is sometimes called the ‘missing-row’ structure
because every other row of surface atoms along the 2x direction is missing. A more correct terminology,
however, is the ‘added-row’ structure, as STM studies have shown that it is formed by metal atoms diffusing
away from a step edge and onto a terrace to create a new first layer, rather than by atoms being removed [16].
In this case, the (2 x 1) symmetry results not just from the long-range structure of the adsorbed layer, but also
from a rearrangement of the substrate atoms.

A more dramatic type of restructuring occurs with the adsorption of alkali metals onto certain fcc metal
surfaces [39]. In this case, multilayer composite surfaces are formed in which the alkali and metal atoms are
intermixed in an ordered structure. These structures involve the substitution of alkali atoms into substrate
sites, and the details of the structures are found to be coverage-dependent. The structures are influenced by the
repulsion between the dipoles formed by neighbouring alkali adsorbates and by the interactions of the alkalis
with the substrate itself [40].

There is also an interesting phenomenon that has been observed following the deposition of the order of 1 ML
of a metal onto another metallic substrate. For certain systems, this small coverage is sufficient to alter the
surface energy so that a large-scale faceting of the surface occurs [41]. The morphology of such a faceted



surface can be seen in the STM image of figure A1.7.10 which was collected from an annealed W(111)
surface onto which a small amount of Pd had been deposited.

Figure A1.7.10. STM image (1000 A x 1000 A) of the (111) surface of a tungsten single crystal, after it had
been coated with a very thin film of palladium and heated to about 800 K (courtesy of Ted Madey).
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A1.7.3.7 WORK FUNCTION CHANGES INDUCED BY ADSORBATES

The surface work function is formally defined as the minimum energy needed in order to remove an electron
from a solid. It is often described as being the difference in energy between the Fermi level and the vacuum
level of a solid. The work function is a sensitive measure of the surface electronic structure, and can be
measured in a number of ways, as described in section B1.26.4. Many processes, such as catalytic surface
reactions or resonant charge transfer between ions and surfaces, are critically dependent on the work function.

When an electropositive or electronegative adsorbate attaches itself to a surface, there is usually a change in
the surface dipole, which, in turn, affects the surface work function. Thus, very small coverages of adsorbates
can be used to modify the surface work function in order to ascertain the role that the work function plays in a
given process. Conversely, work function measurements can be used to accurately determine the coverage of
these adsorbates.

For example, alkali ions adsorbed onto surfaces donate some or all of their valence electron to the solid,
thereby producing dipoles pointing away from the surface [40, 42]. This has the effect of substantially
lowering the work function for coverages as small as 0.01 ML. When the alkali coverage is increased to the
point at which the alkali adsorbates can interact with each other, they tend to depolarize. Thus, the work
function initially decreases as alkali atoms are adsorbed until a minimum in the work function is attained. At
higher alkali coverages, the work function may increase slightly due to the adsorbate—adsorbate interactions.
Note that it is very common to use alkali adsorption as a means of modifying the surface work function.



A1.7.3.8 SURFACE CHEMICAL REACTIONS

Surface chemical reactions can be classified into three major categories [29]:

(a) corrosion reactions,
(b) crystal growth reactions,
(c) catalytic reactions.

All three types of reactions begin with adsorption of species onto a surface from the gas phase.

In corrosion, adsorbates react directly with the substrate atoms to form new chemical species. The products
may desorb from the surface (volatilization reaction) or may remain adsorbed in forming a corrosion layer.
Corrosion reactions have many industrial applications, such as dry etching of semiconductor surfaces. An
example of a volatilization reaction is the etching of Si by fluorine [43]. In this case, fluorine reacts with the
Si surface to form SiF, gas. Note that the crystallinity of the remaining surface is also severely disrupted by
this reaction. An example of corrosion layer formation is the oxidation of Fe metal to form rust. In this case,
none of the products are volatile, but the crystallinity of the surface is disrupted as the bulk oxide forms.
Corrosion and etching reactions are discussed in more detail in section A3.10 and section C2.9.

The growth of solid films onto solid substrates allows for the production of artificial structures that can be
used for many purposes. For example, film growth is used to create pn junctions and metal-semiconductor
contacts during semiconductor manufacture, and to produce catalytic surfaces with properties that are not
found in any single material. Lubrication can be applied to solid surfaces by the appropriate growth of a solid
lubricating film. Film growth is also
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used to fabricate quantum-wells and other types of layered structures that have unique electronic properties.
These reactions may involve dissociative or non-dissociative adsorption as the first step. The three basic types
of film growth reactions are physical vapour deposition (PVD), chemical vapour deposition (CVD) and
molecular beam epitaxy (MBE). In PVD, an atomic gas is condensed onto a surface forming a solid. In CVD,
a molecular gas dissociates upon adsorption. Some of the dissociation fragments solidify to form the material,
while other dissociation fragments are evolved back into the gas phase. In MBE, carefully controlled atomic
and/or molecular beams are condensed onto a surface in the proper stoichiometry in order to grow a desired
material [44]. MBE is particularly important in the growth of III-V semiconductor materials.

In crystal growth reactions, material is deposited onto a surface in order to extend the surface crystal structure,
or to grow a new material, without disruption of the underlying substrate. Growth mechanisms can be roughly
divided into three categories. If the film grows one atomic layer at a time such that a smooth, uniform film is
created, it is called Frank von der Merwe growth. Such layer-by-layer growth will occur if the surface energy
of the overlayer is lower than that of the substrate. If the film grows in a von der Merwe growth mode such
that it forms a single crystal in registry with the substrate, it is referred to as epitaxial. The smaller the lattice
mismatch between the overlayer and the substrate, the more likely it is that epitaxial growth can be achieved.
If the first ML is deposited uniformly, but subsequent layers agglomerate into islands, it is called Stranski—
Krastanov growth. In this case, the surface energy of the first layer is lower than that of the substrate, but the
surface energy of the bulk overlayer material is higher. If the adsorbate agglomerates into islands
immediately, without even wetting the surface, it is referred to as Vollmer—Weber growth. In this case, the
surface energy of the substrate is lower than that of the overlayer. Growth reactions are discussed in more
detail in section A3.10.



The desire to understand catalytic chemistry was one of the motivating forces underlying the development of
surface science. In a catalytic reaction, the reactants first adsorb onto the surface and then react with each
other to form volatile product(s). The substrate itself is not affected by the reaction, but the reaction would not
occur without its presence. Types of catalytic reactions include exchange, recombination, unimolecular
decomposition, and bimolecular reactions. A reaction would be considered to be of the Langmuir—
Hinshelwood type if both reactants first adsorbed onto the surface, and then reacted to form the products. If
one reactant first adsorbs, and the other then reacts with it directly from the gas phase, the reaction is of the
Eley—Ridel type. Catalytic reactions are discussed in more detail in section A3.10 and section C2.8.

A tremendous amount of work has been done to delineate the detailed reaction mechanisms for many catalytic
reactions on well characterized surfaces [1, 45]. Many of these studies involved impinging molecules onto
surfaces at relatively low pressures, and then interrogating the surfaces in vacuum with surface science
techniques. For example, a useful technique for catalytic studies is TPD, as the reactants can be adsorbed onto
the sample in one step, and the products formed in a second step when the sample is heated. Note that
catalytic surface studies have also been performed by reacting samples in a high-pressure cell, and then
returning them to vacuum for measurement.

Recently, in situ studies of catalytic surface chemical reactions at high pressures have been undertaken [46,
47]. These studies employed sum frequency generation (SFG) and STM in order to probe the surfaces as the
reactions are occurring under conditions similar to those employed for industrial catalysis (SFG is a laser-
based technique that is described in section A1.7.5.5 and section B1.22). These studies have shown that the
highly stable adsorbate sites that are probed under vacuum conditions are not necessarily the same sites that
are active in high-pressure catalysis. Instead, less stable sites that are only occupied at high pressures are often
responsible for catalysis. Because the active
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adsorption sites are not populated at low pressures, they are not seen in vacuum surface science experiments.
Despite this, however, the low-pressure experiments are necessary in order to calibrate the spectroscopy so
that the high-pressure results can be properly interpreted.

A1.7.4 PREPARATION OF CLEAN SURFACES

The exact methods employed to prepare any particular surface for study vary from material to material, and
are usually determined empirically. In some respects, sample preparation is more of an art than a science.
Thus, it is always best to consult the literature to look for preparation methods before starting with a new
material.

Most samples require some initial ex sifu preparation before insertion into a vacuum chamber [45]. A bulk
single crystal must first be oriented [48], which is usually done with back-reflection Laue x-ray diffraction,
and then cut to expose the desired crystal plane. Samples are routinely prepared to be within +1° of the
desired orientation, but an accuracy of £1/4° or better can be routinely obtained. Cutting is often done using
an electric discharge machine (spark cutter) for metals or a diamond saw or slurry drill for semiconductors.
The surface must then be polished. Most polishing is done mechanically, with alumina or diamond paste, by
polishing with finer and finer grits until the finest available grit is employed, which is usually of the order of
0.5 pum. Often, as a final step, the surface is electrochemically or chemi-mechanically polished. In addition,
some samples are chemically reacted in solution in order to remove a large portion of the oxide layer that is
present due to reaction with the atmosphere. Note that this layer is referred to as the native oxide.



In order to maintain the cleanliness of a surface at the atomic level, investigations must be carried out in ultra-
high vacuum (UHV). UHV is usually considered to be a pressure of the order of 1 x 10719 Torr or below.
Surface science techniques are often sensitive to adsorbate levels as small as 1% of ML or less, so that great
care must be taken to keep the surface contamination to a minimum. Even at moderate pressures, many
contaminants will easily adsorb onto a surface. For example, at 1 x 1076 Torr, which is a typical pressure
realized by many diffusion-pumped systems, a 1 L exposure to the background gases will occur in 1 s. Thus,
any molecule that is present in the background and has a high sticking probability, such as water or oxygen,
will cover the surface within seconds. It is for this reason that extremely low pressures are necessary in order
to keep surfaces contaminant-free at the atomic level.

Once a sample is properly oriented and polished, it is placed into a UHV chamber for the final preparation
steps. Samples are processed in situ by a variety of methods in order to produce an atomically clean and flat
surface. lon bombardment and annealing (IBA) is the most common method used. Other methods include
cleaving and film growth.

In IBA, the samples are first irradiated for a period of time with noble gas ions, such as Ar" or Ne*, that have
kinetic energies in the range of 0.5-2.0 keV. This removes the outermost layers of adsorbed contaminants and

oxides by the process of sputtering. In sputtering, ions directly collide with the atoms at the surface of the
sample, physically knocking out material. Usually the sample is at room temperature during sputtering and the
ion beam is incident normal to the surface. Certain materials, however, are better prepared by sputtering at
elevated temperature or with different incidence directions.
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Because keV ions penetrate several layers deep into a solid, a side effect of sputtering is that it destroys the
crystallinity of the surface region. In the preparation of a single-crystal surface, the damage is removed by
annealing (heating) the surface in UHV in order to re-crystallize it. Care must be taken to not overheat the
sample for (at least) two reasons. First, surfaces will melt and/or sublime well below the melting point of the
bulk material. Second, contaminants sometimes diffuse to the surface from the bulk at high temperatures. If
the annealing temperature is not high enough, however, the material will not be sufficiently well ordered.
Thus, care must be taken to determine the optimal annealing temperature for any given material.

After a sample has been sputtered to remove the contaminants and then annealed at the proper temperature to
re-crystallize the surface region, a clean, atomically smooth and homogeneous surface can be produced. Note,
however, that it usually takes many cycles of IBA to produce a good surface. This is because a side effect of
annealing is that the chamber pressure is raised as adsorbed gases are emitted from the sample holder, which
causes additional contaminants to be deposited on the surface. Also, contaminants may have diffused to the
surface from the bulk during annealing. Another round of sputtering is then needed to remove these additional
contaminants. After a sufficient number of cycles, the contaminants in either the sample holder or the bulk
solid are depleted to the point that annealing does not significantly contaminate the surface.

For some materials, the most notable being silicon, heating alone suffices to clean the surface. Commercial Si
wafers are produced with a thin layer of silicon dioxide covering the surface. This native oxide is inert to
reaction with the atmosphere, and therefore keeps the underlying Si material clean. The native oxide layer is
desorbed, i.e. removed into the gas phase, by heating the wafer in UHV to a temperature above approximately
1100 °C. This procedure directly forms a clean, well ordered Si surface.

At times, in situ chemical treatments are used to remove particular contaminants. This is done by introducing

a low pressure (~106 Torr) of gas to the vacuum chamber, which causes it to adsorb (stick) to the sample
surface, followed by heating the sample to remove the adsorbates. The purpose is to induce a chemical



reaction between the contaminants and the adsorbed gas to form a volatile product. For example, carbon can
be removed by exposing a surface to hydrogen gas and then heating it. This procedure produces methane gas,
which desorbs from the surface into the vacuum. Similarly, hydrogen adsorption can be used to remove
oxygen by forming gaseous water molecules.

Certain materials, most notably semiconductors, can be mechanically cleaved along a low-index crystal plane
in situ in a UHV chamber to produce an ordered surface without contamination. This is done using a sharp
blade to slice the sample along its preferred cleavage direction. For example, Si cleaves along the (111) plane,
while III-V semiconductors cleave along the (110) plane. Note that the atomic structure of a cleaved surface
is not necessarily the same as that of the same crystal face following treatment by IBA.

In addition, ultra-pure films are often grown in situ by evaporation of material from a filament or crucible, by
molecular beam epitaxy (MBE), or with the use of chemical methods. Since the films are grown in UHV, the
surfaces as grown will be atomically clean. Film growth has the advantage of producing a much cleaner
and/or more highly ordered surface than could be obtained with IBA. In addition, certain structures can be
formed with MBE that cannot be produced by any other preparation method. Film growth is discussed more
explicitly above in section A1.7.3.8 and in section A3.10.
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A1.7.5 TECHNIQUES FOR THE INVESTIGATION OF SURFACES

Because surface science employs a multitude of techniques, it is necessary that any worker in the field be
acquainted with at least the basic principles underlying the most popular ones. These will be briefly described
here. For a more detailed discussion of the physics underlying the major surface analysis techniques, see the
appropriate chapter in this encyclopedia, or [49].

With the exception of the scanning probe microscopies, most surface analysis techniques involve scattering of
one type or another, as illustrated in figure A1.7.11. A particle is incident onto a surface, and its interaction
with the surface either causes a change to the particles’ energy and/or trajectory, or the interaction induces the
emission of a secondary particle(s). The particles that interact with the surface can be electrons, ions, photons
or even heat. An analysis of the mass, energy and/or trajectory of the emitted particles, or the dependence of
the emitted particle yield on a property of the incident particles, is used to infer information about the surface.
Although these probes are indirect, they do provide reliable information about the surface composition and
structure.
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Figure A1.7.11. Schematic diagram of a generic surface science experiment. Particles, such as photons,
electrons, or ions, are incident onto a solid surface, while the particles emitted from the surface are collected
and measured by the detector.



Energetic particles interacting can also modify the structure and/or stimulate chemical processes on a surface.
Absorbed particles excite electronic and/or vibrational (phonon) states in the near-surface region. Some
surface scientists investigate the fundamental details of particle—surface interactions, while others are
concerned about monitoring the changes to the surface induced by such interactions. Because of the
importance of these interactions, the physics involved in both surface analysis and surface modification are
discussed in this section.

The instrumentation employed for these studies is almost always housed inside a stainless-steel UHV
chamber. One UHV chamber usually contains equipment for performing many individual techniques, each
mounted on a different port, so that they can all be applied to the same sample. The sample is mounted onto a
manipulator that allows for movement of the sample from one port to another, as well as for in situ heating
and often cooling with liquid nitrogen (or helium). The chamber contains facilities for sample preparation,
such as sputtering and annealing, as well as the possibility for gaseous exposures and/or film growth. Many
instruments also contain facilities for the transfer of the
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sample from one chamber to another while maintaining UHV. This allows for the incorporation of even more
techniques, as well as the easy introduction of new samples into the chamber via a load-lock mechanism.
Sample transfer into a reaction chamber also allows for the exposure of samples at high pressures or with
corrosive gases or liquids that could not otherwise be introduced into a UHV chamber.

Below are brief descriptions of some of the particle—surface interactions important in surface science. The
descriptions are intended to provide a basic understanding of how surfaces are probed, as most of the
information that we have about surfaces was obtained through the use of techniques that are based on such
interactions. The section is divided into some general categories, and the important physics of the interactions
used for analysis are emphasized. All of these techniques are described in greater detail in subsequent sections
of the encyclopaedia. Also, note that there are many more techniques than just those discussed here. These
particular techniques were chosen not to be comprehensive, but instead to illustrate the kind of information
that can be obtained from surfaces and interfaces.

A1.7.5.1 ELECTRON SPECTROSCOPY

Electrons are extremely useful as surface probes because the distances that they travel within a solid before
scattering are rather short. This implies that any electrons that are created deep within a sample do not escape
into vacuum. Any technique that relies on measurements of low-energy electrons emitted from a solid
therefore provides information from just the outermost few atomic layers. Because of this inherent surface
sensitivity, the various electron spectroscopies are probably the most useful and popular techniques in surface
science.

Electrons interact with solid surfaces by elastic and inelastic scattering, and these interactions are employed in
electron spectroscopy. For example, electrons that elastically scatter will diffract from a single-crystal lattice.
The diffraction pattern can be used as a means of structural determination, as in LEED. Electrons scatter
inelastically by inducing electronic and vibrational excitations in the surface region. These losses form the
basis of electron energy loss spectroscopy (EELS). An incident electron can also knock out an inner-shell, or
core, electron from an atom in the solid that will, in turn, initiate an Auger process. Electrons can also be used
to induce stimulated desorption, as described in section A1.7.5.6.

Figure A1.7.12 shows the scattered electron kinetic energy distribution produced when a monoenergetic
electron beam is incident on an Al surface. Some of the electrons are elastically backscattered with essentially



no energy loss, as evidenced by the elastic peak. Others lose energy inelastically, however, by inducing
particular excitations in the solid, but are then emitted from the surface by elastic backscattering. The plasmon
loss features seen in figure A1.7.12 represent scattered electrons that have lost energy inelastically by
excitation of surface plasmons. A plasmon is a collective excitation of substrate electrons, and a single
plasmon excitation typically has an energy in the range of 5-25 eV. A small feature due to the emission of
Auger electrons is also seen in the figure. Finally, the largest feature in the spectrum is the inelastic tail. The
result of all of the electronic excitations is the production of a cascade of secondary electrons that are ejected
from the surface. The intensity of the secondary electron ‘tail” increases as the kinetic energy is reduced, until
the cutoff energy is reached. The exact position of the cutoff is determined by the surface work function, and,
in fact, is often used to measure the work function changes as the surface composition is modified.
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Figure A1.7.12. Secondary electron kinetic energy distribution, obtained by measuring the scattered electrons
produced by bombardment of Al(100) with a 170 eV electron beam. The spectrum shows the elastic peak, loss
features due to the excitation of plasmons, a signal due to the emission of Al LMM Auger electrons and the
inelastic tail. The exact position of the cutoff at 0 eV depends on the surface work function.

The inelastic mean free path (IMFP) is often used to quantify the surface sensitivity of electron spectroscopy.
The IMFP is the average distance that an electron travels through a solid before it is annihilated by inelastic
scattering. The minimum in the IMFP for electrons travelling in a solid occurs just above the plasmon energy,
as these electrons have the highest probability for excitation. Thus, for most materials, the electrons with the
smallest mean free path are those with approximately 25-50 eV of kinetic energy [50]. When performing
electron spectroscopy for quantitative analysis, it is necessary to define the mean escape depth (MED), rather
then just use the IMFP [51]. The MED is the average depth below the surface from which electrons have
originated, and includes losses by all possible elastic and inelastic mechanisms. Typical values of the MED
for 10-1000 eV electrons are in the range of 4-10 A, which is of the order of the interlayer spacings of a solid
[52, 53]. Electron attenuation is modelled by assuming that the yield of electrons originating from a particular
depth within the sample decreases exponentially with increasing depth, i.e.,

Number of electrons = exp (—d /4). (A1.7.6)

Where A is the MED for the particular material and d is the distance below the surface from which the



electron originated. This consideration allows measurements of depth distributions by changing either the
electron kinetic energy or the emission angle in order to vary A.

A popular electron-based technique is Auger electron spectroscopy (AES), which is described in section
B1.25.2.2. In AES, a 3-5 keV electron beam is used to knock out inner-shell, or core, electrons from atoms in
the near-surface region of the material. Core holes are unstable, and are soon filled by either fluorescence or
Auger decay. In the Auger
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process, one valence, or lower-lying core, electron fills the hole while another is emitted from the sample, in
order to satisfy conservation of energy. The emitted Auger electrons have kinetic energies that are
characteristic of a particular element. The Perkin—Elmer Auger handbook contains sample spectra of each
element, along with information on the relative sensitivity of each Auger line [54]. AES is most useful as a
quantitative measure of the surface atomic composition, and is a standard technique employed to determine
sample cleanliness. The ratio of the AES signal from an adsorbate to that of the substrate is also commonly
used to quantify the coverage of an adsorbate.

LEED is used primarily to ascertain the crystallinity and symmetry of a single-crystal surface, but can also be
used to obtain detailed structural information [55, 56]. LEED is described in detail in section B1.21. In LEED,
a 20-200 eV electron beam is incident upon a single-crystal surface along the sample normal. The angular
distribution of the elastically scattered electrons is then measured, usually by viewing a phosphorescent
screen. At certain angles, there are spots that result from the diffraction of electrons. The symmetry of the
pattern of spots is representative of the two-dimensional unit cell of the surface. Note, however, that the
spacings between LEED spots provide distances in inverse space, i.e. more densely packed LEED spots
correspond to larger surface unit cells. The sharpness of the spots is an indication of the average size of the
ordered domains on the surface. In order to extract detailed atomic positions from LEED, the intensity of the
spots as a function of the electron energy, or intensity—voltage (/-V) curves, are collected and then compared
to theoretical predictions for various surface structures [55, 56]. LEED /-V analysis is capable of providing
structural details to an accuracy of 0.01 A. LEED is probably the most accurate structural technique available,
but it will only work for structures that are not overly complex.

The excitation of surface quanta can be monitored directly with EELS, as discussed in section B1.7 and
section B1.25.5. In EELS, a monoenergetic electron beam is incident onto a surface and the kinetic energy
distribution of the scattered electrons is collected. The kinetic energy distribution will display peaks
corresponding to electrons that have lost energy by exciting transitions in the near-surface region, such as the
plasmon loss peaks shown in figure A1.7.12. EELS can be used to probe electronic transitions, in which case
incident electron energies in the range of 10—100 eV are used. More commonly, however, EELS is used to
probe low-energy excitations, such as molecular vibrations or phonon modes [57]. In this case, very low
incident electron energies (<10 eV) are employed and a very high-energy resolution is required. When EELS
is performed in this manner, the technique is known as high-resolution electron energy loss spectroscopy
(HREELS).

Photoelectron spectroscopy provides a direct measure of the filled density of states of a solid. The kinetic
energy distribution of the electrons that are emitted via the photoelectric effect when a sample is exposed to a
monochromatic ultraviolet (UV) or x-ray beam yields a photoelectron spectrum. Photoelectron spectroscopy
not only provides the atomic composition, but also information concerning the chemical environment of the
atoms in the near-surface region. Thus, it is probably the most popular and useful surface analysis technique.
There are a number of forms of photoelectron spectroscopy in common use.



X-ray photoelectron spectroscopy (XPS), also called electron spectroscopy for chemical analysis (ESCA), is
described in section B1.25.2.1. The most commonly employed x-rays are the Mg Ko (1253.6 eV) and the Al
Ka (1486.6 eV) lines, which are produced from a standard x-ray tube. Peaks are seen in XPS spectra that
correspond to the bound core-level electrons in the material. The intensity of each peak is proportional to the
abundance of the emitting atoms in the near-surface region, while the precise binding energy of each peak
depends on the chemical oxidation state and local environment of the emitting atoms. The Perkin—Elmer XPS
handbook contains sample spectra of each element and binding energies for certain compounds [58].
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XPS is also often performed employing synchrotron radiation as the excitation source [59]. This technique is
sometimes called soft x-ray photoelectron spectroscopy (SXPS) to distinguish it from laboratory XPS. The
use of synchrotron radiation has two major advantages: (1) a much higher spectral resolution can be achieved
and (2) the photon energy of the excitation can be adjusted which, in turn, allows for a particular electron
kinetic energy to be selected.

One of the more recent advances in XPS is the development of photoelectron microscopy [60]. By either
focusing the incident x-ray beam, or by using electrostatic lenses to image a small spot on the sample,
spatially-resolved XPS has become feasible. The limits to the spatial resolution are currently of the order of 1
um, but are expected to improve. This technique has many technological applications. For example, the
chemical makeup of micromechanical and microelectronic devices can be monitored on the scale of the
device dimensions.

Ultraviolet photoelectron spectroscopy (UPS) is a variety of photoelectron spectroscopy that is aimed at
measuring the valence band, as described in section B1.25.2.3. Valence band spectroscopy is best performed
with photon energies in the range of 20-50 eV. A He discharge lamp, which can produce 21.2 or 40.8 eV
photons, is commonly used as the excitation source in the laboratory, or UPS can be performed with
synchrotron radiation. Note that UPS is sometimes just referred to as photoelectron spectroscopy (PES), or
simply valence band photoemission.

A particularly useful variety of UPS is angle-resolved photoelectron spectroscopy (ARPES), also called
angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) [61, 62]. In this technique, measurements are
made of the valence band photoelectrons emitted into a small angle as the electron emission angle or photon
energy is varied. This allows for the simultaneous determination of the kinetic energy and momentum of the
photoelectrons with respect to the two-dimensional surface Brillouin zone. From this information, the
electronic band structure of a single-crystal material can be experimentally determined.

The diffraction of photoelectrons (or Auger electrons) is also used as a structural tool [63, 64]. When electrons
of a well defined energy are created at a particular atomic site, such as in XPS or AES, then the emitted
electrons interact with other atoms in the crystal structure prior to leaving the surface. The largest effect is
‘forward scattering’, in which the intensity of an electron wave emitted from one atom is enhanced when it
passes through another atom. Thus, the angular distribution of the emitted electron intensity provides a ‘map’
of the surface crystal structure. More generally, however, there is a complex multiple scattering behaviour,
which produces variations of the emitted electron intensity with respect to both angle and energy such that the
intensity modulations do not necessarily relate to the atomic bond directions. In order to determine a surface
structure from such diffraction data, the measured angular and/or energy distributions of the Auger or
photoelectrons is compared to a theoretical prediction for a given structure.Similar to LEED analysis, the
structure employed for the calculation is varied until the best fit to the data is found.

A1.7.5.2 ION SPECTROSCOPY



Ions scattered from solid surfaces are useful probes for elemental identification of surface species and for
measurements of the three-dimensional atomic structure of a single-crystal surface. lons used for surface
studies can be roughly divided into low (0.5-10 keV), medium (10-100 keV) and high (100 keV-1 MeV)
energy regimes. In each regime, ions have distinct interactions with solid material and each regime is used for
different types of measurements. The use of particle scattering for surface structure determination is described
in detail in section B1.23.
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The fundamental interactions between ions and surfaces can be separated into elastic and inelastic processes.
When an ion undergoes a direct collision with a single atom in a solid, it loses energy elastically by
transferring momentum to the target atom. As an ion travels through a material, it also loses energy
inelastically by initiating various electronic and vibrational excitations. The elastic and inelastic energy losses
can usually be treated independently from each other.

Elastic losses result from binary collisions between the ions and unbound target atoms positioned at the lattice
sites. For keV and higher energy ions, the cross sections for collisions are small enough that the ions
essentially ‘see’ each atom in the solid individually, i.e. the trajectory can be considered as a sequence of
events in which the ion interacts with one target atom at a time. This is the so-called binary collision
approximation (BCA). The energy of a scattered particle is determined by conservation of energy and
momentum during the single collision (the binding energy of the target atom to the surface can be neglected
since it is considerably smaller than the energy of the ions). The smaller the mass of the target atom relative to
the projectile, the more the energy that is lost during an elastic collision and the lower the scattered energy.
Peaks are seen in scattered ion energy spectra, called single scattering peaks (SSP), or quasi-single (QS)
scattering peaks, that result from these binary collisions. In this manner, ion scattering produces a mass
spectrum of the surface region, as the position of each SSP indicates the mass of the target atom.

Ions in the low-energy range have reasonably short penetration depths, and therefore provide a surface-
sensitive means for probing a material. Low-energy ion scattering (LEIS), often called ion scattering
spectroscopy (ISS), is generally used as a measure of the surface composition. The surface sensitivity when
using noble gas ions for standard ISS results from the high probability for neutralization for any ions that have
penetrated past the first atomic layer. The intensity of an SSP is related to the surface concentration of the
particular element, but care must be taken in performing quantitative analysis to properly account for ion
neutralization. Energy losses due to inelastic excitations further modify the ion energies and charge states of
scattered particles. In the low-energy regime, these effects are often neglected, as they only slightly alter the
shapes of the SSP and shift it to a lower energy. In the high-energy regime, however, inelastic excitations are
dominant in determining the shape of the scattered ion energy spectrum, as in Rutherford backscattering
spectroscopy (RBS) [65, 66], which is discussed in section B1.24.

Measurements of the angular distributions of scattered ions are often used as a structural tool, as they depend
strongly on the relative positions of the atoms in the near-surface region. lon scattering is used for structure
determination by consideration of the shadow cones and blocking cones. These ‘cones’ are the regions behind
each atom from which incoming ions are excluded because of scattering. A shadow cone is formed when an
ion is incident onto the surface, while a blocking cone is formed when an ion that has scattered from a deeply-
lying atom interacts with a surface atom along the outgoing trajectory. The ion flux is increased at the edges
of the cones. Thus, rotating the ion beam or detector relative to the sample alters the flux of ions that scatter
from any particular atom. The angular distributions are usually analysed by comparing the measured
distributions to those obtained by computer simulation for a given geometry. Shadow/blocking cone analysis
is used in both low- and medium-energy ion scattering to provide the atomic structure, and is accurate to
about 0.1 A [67, 68].



In the high-energy ion regime, ion channelling is used for surface structure determination [65, 66]. In this
technique, the incident ion beam is aligned along a low-index direction in the crystal. Thus, most of the ions
will penetrate into ‘channels’ created by the crystal structure. Those few ions that do backscatter from a
surface atom are collected. The number of these scattering events is dependent on the detailed atomic
structure. For performing a structure determination, the data is usually collected as ‘rocking curves’ in which
the backscattered ion yield is collected as the crystal is precisely rotated about the channelling direction. The
measured rocking curves are then compared to the
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results of computer simulations performed for particular model surface structures. As in LEED /-} analysis,
the structure employed for the simulation that most closely matches the experimental data is deemed to be
correct.

lons are also used to initiate secondary ion mass spectrometry (SIMS) [69], as described in section B1.25.3. In
SIMS, the ions sputtered from the surface are measured with a mass spectrometer. SIMS provides an accurate
measure of the surface composition with extremely good sensitivity. SIMS can be collected in the ‘static’
mode in which the surface is only minimally disrupted, or in the ‘dynamic’ mode in which material is
removed so that the composition can be determined as a function of depth below the surface. SIMS has also
been used along with a shadow and blocking cone analysis as a probe of surface structure [70].

A1.7.5.3 SCANNING PROBE METHODS

Scanning probe microscopies have become the most conspicuous surface analysis techniques since their
invention in the mid-1980s and the awarding of the 1986 Nobel Prize in Physics [71, 72]. The basic idea
behind these techniques is to move an extremely fine tip close to a surface and to monitor a signal as a
function of the tip’s position above the surface. The tip is moved with the use of piezoelectric materials,
which can control the position of a tip to a sub-Angstrem accuracy, while a signal is measured that is
indicative of the surface topography. These techniques are described in detail in section B1.20.

The most popular of the scanning probe techniques are STM and atomic force microscopy (AFM). STM and
AFM provide images of the outermost layer of a surface with atomic resolution. STM measures the spatial
distribution of the surface electronic density by monitoring the tunnelling of electrons either from the sample
to the tip or from the tip to the sample. This provides a map of the density of filled or empty electronic states,
respectively. The variations in surface electron density are generally correlated with the atomic positions.
AFM measures the spatial distribution of the forces between an ultrafine tip and the sample. This distribution
of these forces is also highly correlated with the atomic structure. STM is able to image many semiconductor
and metal surfaces with atomic resolution. AFM is necessary for insulating materials, however, as electron
conduction is required for STM in order to achieve tunnelling. Note that there are many modes of operation
for these instruments, and many variations in use. In addition, there are other types of scanning probe
microscopies under development.

Scanning probe microscopies have afforded incredible insight into surface processes. They have provided
visual images of surfaces on the atomic scale, from which the atomic structure can be observed in real time.
All of the other surface techniques discussed above involve averaging over a macroscopic region of the
surface. From STM images, it is seen that many surfaces are actually not composed of an ideal single domain,
but rather contain a mixture of domains. STM has been able to provide direct information on the structure of
atoms in each domain, and at steps and defects on surfaces. Furthermore, STM has been used to monitor the
movement of single atoms on a surface. Refinements to the instruments now allow images to be collected
over temperatures ranging from 4 to 1200 K, so that dynamical processes can be directly investigated. An



STM has also been adapted for performing single-atom vibrational spectroscopy [73].

One of the more interesting new areas of surface science involves manipulation of adsorbates with the tip of
an STM. This allows for the formation of artificial structures on a surface at the atomic level. In fact, STM
tips are being investigated for possible use in lithography as part of the production of very small features on
microcomputer chips [74].
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Some of the most interesting work in this area has involved physisorbed molecules at temperatures as low as 4
K [75]. Note that it takes a specialized instrument to be able to operate at these low temperatures. An STM tip
is brought into contact with the physisorbed species by lightly pushing down on it. Then, the STM tip is
translated parallel to the surface while pressure is maintained on the adsorbate. In this manner, the adsorbates
can be moved to any location on the surface. Manipulation of this type has led to the writing of ‘IBM’ with
single atoms [76], as well as to the formation of structures such as the ‘quantum corral’ [77]. The quantum
corral is so named, as it is an oval-shaped enclosure made from adsorbate atoms that provides a barrier for the
free electrons of the metal substrate. Inside the corral, standing wave patterns are set up that can be imaged
with the STM.

There are many other experiments in which surface atoms have been purposely moved, removed or
chemically modified with a scanning probe tip. For example, atoms on a surface have been induced to move
via interaction with the large electric field associated with an STM tip [78]. A scanning force microscope has
been used to create three-dimensional nanostructures by ‘pushing’ adsorbed particles with the tip [79]. In
addition, the electrons that are tunnelling from an STM tip to the sample can be used as sources of electrons
for stimulated desorption [80]. The tunnelling electrons have also been used to promote dissociation of
adsorbed O, molecules on metal or semiconductor surfaces [81, 82].

A1.7.5.4 THERMAL DESORPTION

Temperature programmed desorption (TPD), also called thermal desorption spectroscopy (TDS), provides
information about the surface chemistry such as surface coverage and the activation energy for desorption
[49]. TPD is discussed in detail in section B1.25. In TPD, a clean surface is first exposed to a gaseous
molecule that adsorbs. The surface is then quickly heated (on the order of 10 K s’l), while the desorbed
molecules are measured with a mass spectrometer. An analysis of TPD spectra basically provides three types
of information: (1) The identities of the desorbed product(s) are obtained directly from the mass spectrometer.
(2) The area of a TPD peak provides a good measure of the surface coverage. In cases where there are
multiple species desorbed, the ratios of the TPD peaks provide the stoichiometry. (3) The shapes of the peaks,
and how they change with surface coverage, provide detailed information on the kinetics of desorption. For
example, the shapes of TPD curves differ for zeroth-, first- or second-order processes.

A1.7.5.5 LASER-SURFACE INTERACTIONS

Lasers have been used to both modify and probe surfaces. When operated at low fluxes, lasers can excite
electronic and vibrational states, which can lead to photochemical modification of surfaces. At higher fluxes,
the laser can heat the surface to extremely high temperatures in a region localized at the very surface. A high-
power laser beam produces a very non-equilibrium situation in the near-surface region, during which the
effective electron temperature can be extremely high. Thus, lasers can also be used to initiate thermal
desorption. Laser-induced thermal desorption (LITD) has some advantages over TPD as an analytical
technique [36]. When a laser is used to heat the surface, the heat is localized in the surface region and the
temperature rise is extremely fast. It is also possible to produce excitations that involve multiple photons



because of the high flux available with lasers. Furthermore, there are nonlinear effects that occur with laser
irradiation of surfaces that allow for surface sensitive probes that do not require UHV, such as second
harmonic generation (SHG) and sum frequency generation (SFG) [83, 84]. Optical techniques in surface
science are discussed in section B1.22.
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Surface photochemistry can drive a surface chemical reaction in the presence of laser irradiation that would
not otherwise occur. The types of excitations that initiate surface photochemistry can be roughly divided into
those that occur due to direct excitations of the adsorbates and those that are mediated by the substrate. In a
direct excitation, the adsorbed molecules are excited by the laser light, and will directly convert into products,
much as they would in the gas phase. In substrate-mediated processes, however, the laser light acts to excite
electrons from the substrate, which are often referred to as ‘hot electrons’. These hot electrons then interact
with the adsorbates to initiate a chemical reaction.

Femtosecond lasers represent the state-of-the-art in laser technology. These lasers can have pulse widths of
the order of 100 fm s. This is the same time scale as many processes that occur on surfaces, such as desorption
or diffusion. Thus, femtosecond lasers can be used to directly measure surface dynamics through techniques
such as two-photon photoemission [85]. Femtochemistry occurs when the laser imparts energy over an
extremely short time period so as to directly induce a surface chemical reaction [86].

A1.7.5.6 STIMULATED DESORPTION

An electron or photon incident on a surface can induce an electronic excitation. When the electronic excitation
decays, an ion or neutral particle can be emitted from the surface as a result of the excitation. Such processes
are known as desorption induced by electronic transitions (DIET) [87]. The specific techniques are known as
electron-stimulated desorption (ESD) and photon-stimulated desorption (PSD), depending on the method of
excitation.

A DIET process involves three steps: (1) an initial electronic excitation, (2) an electronic rearrangement to
form a repulsive state and (3) emission of a particle from the surface. The first step can be a direct excitation
to an antibonding state, but more frequently it is simply the removal of a bound electron. In the second step,
the surface electronic structure rearranges itself to form a repulsive state. This rearrangement could be, for
example, the decay of a valence band electron to fill a hole created in step (1). The repulsive state must have a
sufficiently long lifetime that the products can desorb from the surface before the state decays. Finally, during
the emission step, the particle can interact with the surface in ways that perturb its trajectory.

There are two main theoretical descriptions applied to stimulated desorption. The Menzel-Gomer—Redhead
(MGR) model is used to describe low-energy valence excitations, while the Knotek—Feibelman mechanism is
used to describe a type of desorption that occurs with ionically-bound species. In the MGR model, it is
assumed that the initial excitation occurs by absorption of a photon or electron to directly create an excited,
repulsive state. This excited state can be neutral or ionic. It simply needs to have a sufficient lifetime so that
desorption can occur before the system relaxes to the ground state. Thus, the MGR mechanism can be applied
to positive or negative ion emission, or to the emission of a neutral atom. The Knotek—Feibelman mechanism
applies when there is an ionic bond at the surface. In this case, the incident electron kicks out an inner-shell
electron, and an Auger process then fills the resulting core hole. In the Auger process, one electron drops
down to fill the hole, while another electron is emitted from the surface in order to satisfy conservation of
energy. Thus, the system has lost at least two electrons, which is sufficient to turn the negatively charged
anion into a positive ion. Finally, Coulomb repulsion between this positive ion and the cation leads to the
emission of a positive ion from the surface. Although this mechanism was originally proposed for maximally



valent bonding, it has since been observed to occur in a variety of systems providing that there is at least a
moderate amount of charge transfer involved in the bonding. Note that this mechanism is often referred to as
Auger-stimulated desorption (ASD).
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Electron stimulated desorption angular distributions (ESDIAD) [88] provide a quick measure of the bond
angles for a lightly bound adsorbate. ESDIAD patterns are recorded by impinging an electron beam onto a
surface and then measuring the angular distributions of the desorbed ions with an imaging analyser. The
measured ion emission angles are related to the original surface bond angles. The initial excitation responsible
for ESD is normally directly along the bond axis. As an ion is exiting from a surface, however, there are two
effects that act to alter the ion’s trajectory. First, the ion is attracted to its image charge, which tends to spread
out the ESDIAD pattern. Second, however, is that there is inhomogeneous neutralization of the emitted ions,
in that the ions emitted at more grazing angles are preferentially neutralized. This acts to compress the
observed pattern. Thus, a balance between these competing effects produces the measured angular
distribution, and it is therefore difficult, although not impossible, to quantitatively determine the bond angle.

The ESDIAD pattern does, however, provide very useful information on the nature and symmetry of an

adsorbate. As an example, figure A1.7.13(a) shows the ESDIAD pattern of desorbed F' collected from a 0.25
ML coverage of PF; on Ru(0001) [89]. The F* pattern displays a ring of emission, which indicates that the
molecule adsorbs intact and is bonded through the P end. It freely rotates about the P-Ru bond so that the F*
emission occurs at all azimuthal angles, regardless of the substrate structure. In figure A1.7.13(b) , the
ESDIAD pattern is shown following sufficient e -beam damage to remove much of the fluorine and produce

adsorbed PF,, and PF. Now, the F* emission shows six lobes along particular azimuths and one lobe along the
surface normal. The off-normal lobes arise from PF,, and indicate that PF, adsorbs in registry with the

substrate, with the F atoms pointing away from the surface at an off-normal angle. The centre lobe arises from
PF and indicates that the PF moiety is bonded through the P end, with F pointing normal to the surface.

Figure A1.7.13. ESDIAD patterns showing the angular distributions of F* emitted from PF; adsorbed on Ru
(0001) under electron bombardment. (a) 0.25 ML coverage, (b) the same surface following electron beam

damage.

Some recent advances in stimulated desorption were made with the use of femtosecond lasers. For example, it
was shown by using a femtosecond laser to initiate the desorption of CO from Cu while probing the surface
with SHG, that the entire process is completed in less than 325 fs [90]. The mechanism for this kind of laser-
induced desorption has been termed desorption induced by multiple electronic transitions (DIMET) [91]. Note
that the mechanism must involve a multiphoton process, as a single photon at the laser frequency has
insufficient energy to directly induce desorption. DIMET is a modification of the MGR mechanism in which
each photon excites the adsorbate to a higher vibrational level, until a sufficient amount of vibrational energy
has been amassed so that the particle can escape the surface.
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A1.7.6 LIQUID-SOLID INTERFACE

One of the less explored frontiers in atomic-scale surface science is the study of the liquid—solid interface.
This interface is critically important in many applications, as well as in biological systems. For example, the
movement of pollutants through the environment involves a series of chemical reactions of aqueous
groundwater solutions with mineral surfaces. Although the liquid—solid interface has been studied for many
years, it is only recently that the tools have been developed for interrogating this interface at the atomic level.
This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are
affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical
double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist
under solution, while others do not.

The electrical double layer basically acts as a capacitor by storing charge at the surface that is balanced by
ions in solution [92]. The capacitance of the double layer is a function of the electrochemical potential of the
solution, and has a maximum at the potential of zero-charge (pzc). The pzc in solution is essentially
equivalent to the work function of that surface in vacuum. In solution, however, the electrode potential can be
used to vary the surface charge in much the same way that alkali adsorbates are used to vary the work
function of a surface in vacuum. The difference is that in solution the surface charge can be varied, while the
surface composition is unchanged. The surface energy, which effects the atomic structure and reactivity, is
directly related to the surface charge. It has been shown, for example, that by adjusting the electrode potential
the reconstructions of certain surfaces in solution can be altered in a reversible manner. Electrochemistry can
also be used to deposit and remove adsorbates from solution in a manner that is controlled by the electrode
potential.

Studies of the liquid—solid interface can be divided into those that are performed ex sifu and those performed
in situ. In an ex situ experiment, a surface is first reacted in solution, and then removed from the solution and
transferred into a UHV spectrometer for measurement. There has recently been, however, much work aimed
at interrogating the liquid—solid interface in situ, i.e. while chemistry is occurring rather than after the fact.

In performing ex situ surface analysis, the transfer from solution to the spectrometer sometimes occurs either
through the air or within a glove bag filled with an inert atmosphere. Many ex situ studies of chemical
reactions at the liquid—solid interface, however, have been carried out using special wet cells that are directly
attached to a UHV chamber [93, 94]. With this apparatus, the samples can be reacted and then immediately
transferred to UHV without encountering air. Note that some designs enable complete immersion of the
sample into solution, while others only allow the sample surface to interact with a meniscus. Although these
investigations do not probe the liquid—solid interface directly, they can provide much information on the
surface chemistry that has taken place.
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One of the main uses of these wet cells is to investigate surface electrochemistry [94, 95]. In these
experiments, a single-crystal surface is prepared by UHV techniques and then transferred into an
electrochemical cell. An electrochemical reaction is then run and characterized using cyclic voltammetry, with
the sample itself being one of the electrodes. In order to be sure that the electrochemical measurements all
involved the same crystal face, for some experiments a single-crystal cube was actually oriented and polished
on all six sides! Following surface modification by electrochemistry, the sample is returned to UHV for



measurement with standard techniques, such as AES and LEED. It has been found that the chemisorbed layers
that are deposited by electrochemical reactions are stable and remain adsorbed after removal from solution.
These studies have enabled the determination of the role that surface structure plays in electrochemistry.

The force between two adjacent surfaces can be measured directly with the surface force apparatus (SFA), as
described in section B1.20 [96]. The SFA can be employed in solution to provide an in situ determination of
the forces. Although this instrument does not directly involve an atomically resolved measurement, it has
provided considerable insight into the microscopic origins of surface friction and the effects of electrolytes
and lubricants [97].

Scanning probe microscopies are atomically resolved techniques that have been successfully applied to
measurements of the liquid—solid interface in situ [98, 99, 100, 101 and 102]. The STM has provided
atomically resolved images of surface reconstructions and adsorption geometry under controlled conditions in
solution, and the dependence of these structures on solution composition and electrode potential. Note that in
order to perform STM under solution, a special tip coated with a dielectric must be used in order to reduce the
Faradaic current that would otherwise transmit through the solution. As an example, figure A1.7.14 shows an
STM image collected in solution from docosanol physisorbed on a graphite surface. The graphite lattice and
the individual atoms in the adsorbed molecules can be imaged with atomic resolution. In addition, scanning
probe microscopies have been used to image the surfaces of biological molecules and even living cells in
solution [103].

Figure A1.7.14. 3.4 nm x 3.4 nm STM images of 1-docosanol physisorbed onto a graphite surface in
solution. This image reveals the hydrogen-bonding alcohol molecules assembled in lamellar fashion at the
liquid—solid interface. Each ‘bright’ circular region is attributed to the location of an individual hydrogen



atom protruding upward out of the plane of the all-trans hydrocarbon backbone, which is lying flat on the
surface. (a) Top view, and (b) a perspective image (courtesy of Leanna Giancarlo and George Flynn).

Since water is transparent to visible light, optical techniques can be used to interrogate the liquid—solid
interface in situ [104]. For example, SFG has been used to perform IR spectroscopy directly at the liquid—
solid interface [105, 106]. The surface sensitivity of SFG arises from the breaking of centrosymmetry at the
interface, rather than from electron attenuation as in more traditional surface techniques, so that the
information obtained is relevant to atomic-scale processes at the solid—liquid interface. This allows for the
identification of the adsorbed species while a reaction is occurring. Note that these techniques can be extended
to the liquid-liquid interface, as well [107]. In addition, x-ray scattering employing synchrotron radiation is
being developed for use at the liquid—solid interface. For example, an in situ electrochemical cell for x-ray
scattering has been designed [108].

-38-

REFERENCES

[11 Somorjai G A 1994 Introduction to Surface Chemistry and Catalysis (New York: Wiley)

[2] Kittel C 1996 Introduction to Solid State Physics 7th edn (New York: Wiley)

[8] Himpsel F J, Jung T and Ortega J E 1997 Nanowires on stepped metal surfaces Surf. Rev. Lett. 4 371

[4] Noonan J R and Davis H L 1984 Truncation-induced multilayer relaxation of the Al(110) surface Phys. Rev. B 29 4349

[5] Adams DL, Jensen V, Sun X F and Vollesen J H 1988 Multilayer relaxation of the Al(210) surface Phys. Rev. B 38
7913

[6] Holub-Krappe E, Horn K, Frenken J W M, Krans R L and van der Veen J F 1987 Multilayer relaxation at the Ag(110)
surface Surf. Sci. 188 335

[71 Busch B W and Gustafsson T 1998 Oscillatory relaxation of Al(110) reinvestigated by using medium-energy ion
scattering Surf. Sci. 415 L1074

[8] Cho J-H, Ismail, Zhang Z and Plummer E W 1999 Oscillatory lattice relaxation at metal surfaces Phys. Rev. B 59
1677

[91 Himpsel F J, McFeely F R, Morar J F, Taleb-Ibrahimi A and Yarmoff J A 1990 Core level spectroscopy at silicon
surfaces and interfaces Proc. Enrico Fermi School on ‘Photoemission and Adsorption Spectroscopy and Interfaces
with Synchrotron Radiation’ vol course CVIII, eds M Campagna and R Rosei (Amsterdam: Elsevier) p 203

[10] Hamers R J, Tromp R M and Demuth J M 1986 Surface electronic structure of Si(111)-7 x 7 resolved in real space
Phys. Rev. Lett. 56 1972

[11] Takayanagi K, Tanishiro Y, Takahashi M and Takahashi S 1985 Structural analysis of Si(111)-7 x 7 by UHV-
transmission electron diffraction and microscopy J. Vac. Sci. Technol. A 3 1502

[12] LiuCL, CohenJ M, Adams J B and Voter A F 1991 EAM study of surface self-diffusion of single adatoms of fcc
metals Ni, Cu, Al, Ag, Au, Pd, and Pt Surf. Sci. 253 334

[13] Bonig L, Liu S and Metiu H 1996 An effective medium theory study of Au islands on the Au(100) surface:
reconstruction, adatom diffusion, and island formation Surf. Sci. 365 87

[14] Tsong T T 1988 Experimental studies of the behaviour of single adsorbed atoms on solid surfaces Rep. Prog. Phys.
51 759

[156] Chen C-L and Tsong T T 1991 Self-diffusion on the reconstructed and nonreconstructed Ir(110) surfaces Phys. Rev.
Lett. 66 1610



(el

71

Jensen F, Besenbacher F, Laesgaard E and Stensgaard | 1990 Surface reconstruction of Cu (110) induced by oxygen
chemisorption Phys. Rev. B 41 10 233

Besenbacher F, Jensen F, Laegsgaard E, Mortensen K and Stensgaard | 1991 Visualization of the dynamics in
surface reconstructions J. Vac. Sci. Technol. B 9 874

(18]

[19]

[20]

[21]
[22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]
[30]
[31]
[32]
[33]
[34]

(35]

(36]

[37]

-30-

Kitamura N, Lagally M G and Webb M B 1993 Real-time observations of vacancy diffusion on Si(100)-(2 x 1) by
scanning tunneling microscopy Phys. Rev. Lett. 71 2082

Linderoth T R, Horsch S, Laesgaard E, Stensgaard | and Besenbacher F 1997 Surface diffusion of Pt on Pt(110):
Arrhenius behavior of long jumps Phys. Rev. Lett. 78 4978

Botkin D, Glass J, Chemla D S, Ogletree D F, Salmeron M and Weiss S 1996 Advances in ultrafast scanning tunneling
microscopy Appl. Phys. Lett. 69 1321

Bauer E 1994 Low energy electron microscopy Rep. Prog. Phys. 57 895
Himpsel F J 1990 Inverse photoemission from semiconductors Surf. Sci. Rep. 12 1

Himpsel F J 1991 Unoccupied electronic states at surfaces Surface Physics and Related Topics. Festschrift for Xide
Xie ed F-J Yang, G-J Ni, X Wang, K-M Zhang and D Lu (Singapore: World Scientific) p 179

Avouris P and Wolkow R 1989 Atom-resolved chemistry studied by scanning tunneling microscopy and spectroscopy
Phys. Rev. B 39 5091

Lith H 1995 Surfaces and Interfaces of Solid Materials 3rd edn (Berlin: Springer)

Borroni-Bird C E, Al-Sarraf N, Andersson S and King D A 1991 Single crystal adsorption microcalorimetry Chem.
Phys. Lett. 183 516

Li Y L et al 1995 Experimental verification of a new mechanism for dissociative chemisorption: atom abstraction Phys.
Rev. Lett. 74 2603

Jensen J A, Yan C and Kummel A C 1996 Direct chemisorption site selectivity for molecular halogens on the Si(111)-
(7 x 7) surface Phys. Rev. Lett. 76 1388

Hudson J B 1992 Surface Science: An Introduction (Boston: Butterworth-Heinemann)

Kang H C and Weinberg W H 1994 Kinetic modeling of surface rate processes Surf. Sci. 299-300 755
Adamson A W and Gast A P 1997 Physical Chemistry of Surfaces 6th edn (New York: Wiley-Interscience)
Over H 1998 Crystallographic study of interaction between adspecies on metal surfaces Prog. Surf. Sci. 58 249
Gomer R 1990 Diffusion of adsorbates on metal surfaces Rep. Prog. Phys. 53 917

Lagally M G 1993 Atom motion on surfaces Physics Today 46 24

Dunphy J C, Sautet P, Ogletree D F, Dabbousi O and Salmeron M B 1993 Scanning-tunneling-microscopy study of the
surface diffusion of sulfur on Re(0001) Phys. Rev. B 47 2320

George S M, DeSantolo A M and Hall R B 1985 Surface diffusion of hydrogen on Ni(100) studied using laser-induced
thermal desorption Surf. Sci. 159 L425

Olmstead M A, Bringans R D, Uhrberg R | G and Bachrach R Z 1986 Arsenic overlayer on Si(111): removal of surface
reconstruction Phys. Rev. B 34 6041

-40-



[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[59]

[56]

[57]

[58]

Yarmoff J A, Cyr D M, Huang J H, Kim S and Williams R S 1986 Impact-collision ion-scattering spectroscopy of Cu
(110) and Cu(110)-(2 % 1)-O using 5-keV 6 j* Phys. Rev. B 33 3856

Tochihara H and Mizuno S 1998 Composite surface structures formed by restructuring-type adsorption of alkali-metals
on FCC metals Prog. Surf. Sci. 58 1

Diehl R D and McGrath R 1996 Structural studies of alkali metal adsorption and coadsorption on metal surfaces Surf.
Sci. Rep. 23 43

Madey T E, Guan J, Nien C-H, Dong C-Z, Tao H-S and Campbell R A 1996 Faceting induced by ultrathin metal films
on W(111) and Mo(111): structure, reactivity, and electronic properties Surf. Rev. Lett. 3 1315

Bonzel H P, Bradshaw A M and Ertl G 1989 Physics and Chemistry of Alkali Metal Adsorption (Amsterdam: Elsevier)
Winters H F and Coburn J W 1992 Surface science aspects of etching reactions Surf. Sci. Rep. 14 161

Herman M A and Sitter H 1996 Molecular Beam Epitaxy: Fundamentals and Current Status (Berlin: Springer)
Somorjai G A 1981 Chemistry in Two Dimensions: Surfaces (Ithaca: Cornell University Press)

Somorjai G A 1996 Surface science at high pressures Z. Phys. Chem. 197 1

Somorjai G A 1998 Molecular concepts of heterogeneous catalysis J. Mol. Struct. (Theochem) 424 101

Wood E A 1963 Crystal Orientation Manual (New York: Columbia University Press)

Woodruff D P and Delchar T A 1994 Modern Techniques of Surface Science 2nd edn (Cambridge: Cambridge
University Press)

Seah M P and Dench W A 1979 Quantitative electron spectroscopy of surfaces: a standard data base for electron
inelastic mean free paths in solids Surf. Interface Anal. 1 2

Powell C J, Jablonski A, Tilinin | S, Tanuma S and Penn D R 1999 Surface sensitivity of Auger-electron spectroscopy
and x-ray photoelectron spectroscopy J. Electron Spec. Relat. Phenom. 98-9 1

Duke C B 1994 Interaction of electrons and positrons with solids: from bulk to surface in thirty years Surf. Sci. 299-300
24

Powell C J 1994 Inelastic interactions of electrons with surfaces: applications to Auger-electron spectroscopy and x-
ray photoelectron spectroscopy Surf. Sci. 299-300 34

Davis L E, MacDonald N C, Palmberg P W, Riach G E and Weber R E 1976 Handbook of Auger Electron
Spectroscopy 2nd edn (Eden Prairie, MN: Perkin-Elmer Corporation)

Pendry J B 1974 Low Energy Electron Diffraction: The Theory and its Application to Determination of Surface
Structure (London: Academic)

van Hove M A, Weinberg W H and Chan C-M 1986 Low-Energy Electron Diffraction: Experiment, Theory, and Surface
Structure Determination (Berlin: Springer)

Ibach H and Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations (New York: Academic)

Wagner C D, Riggs W M, Davis L E, Moulder J F and Muilenberg G E (eds) 1979 Handbook of X-ray Photoelectron
Spectroscopy (Eden Prairie, MN: Perkin-Elmer Corporation)

[59]

[60]

-41-

Margaritondo G 1988 Introduction to Synchrotron Radiation (New York: Oxford University Press)

Tonner B P, Dunham D, Droubay T, Kikuma J, Denlinger J, Rotenberg E and Warwick A 1995 The development of
electron spectromicroscopy J. Electron Spectrosc. 75 309



[61]

(62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

(71]

[72]

[73]

[74]

(78]

[76]

[77]

(78]

[79]

Smith N V and Himpsel F J 1983 Photoelectron spectroscopy Handbook on Synchrotron Radiation ed E E Koch
(Amsterdam: North-Holland)

Plummer E W and Eberhardt W 1982 Angle-resolved photoemission as a tool for the study of surfaces Adv. Chem.
Phys. 49 533

Egelhoff W F Jr 1990 X-ray photoelectron and Auger electron forward scattering: a new tool for surface crystallography
CRC Crit. Rev. Solid State Mater. Sci. 16 213

Fadley C S 1993 Diffraction and holography with photoelectrons and Auger electrons: some new directions Surf. Sci.
Rep. 19 231

Chu W-K, Mayer J W and Nicolet M-A 1978 Backscattering Spectrometry (New York: Academic)

Feldman L C, Mayer J W and Picraux S T 1982 Materials Analysis by lon Channeling: Submicron Crystallography
(New York: Academic)

Niehus H, Heiland W and Taglauer E 1993 Low-energy ion scattering at surfaces Surf. Sci. Rep. 17 213
Fauster T 1988 Surface geometry determination by large-angle ion scattering Vacuum 38 129

Benninghoven A, Riildenauer F G and Werner H W 1987 Secondary lon Mass Spectrometry: Basic Concepts,
Instrumental Aspects, Applications, and Trends (New York: Wiley)

Chang C-C and Winograd N 1989 Shadow-cone-enhanced secondary-ion mass-spectrometry studies of Ag(110)
Phys. Rev. B 39 3467

Binnig G and Rohrer H 1987 Scanning tunneling microscopy—from birth to adolescence Rev. Mod. Phys. 59 615

Wiesendanger R 1994 Scanning Probe Microscopy and Spectroscopy: Methods and Applications (New York:
Cambridge University Press)

Stipe B C, Rezaei M A and Ho W 1998 Single-molecule vibrational spectroscopy and microscopy Science 280 1732

Marrian C R K, Perkins F K, Brandow S L, Koloski T S, Dobisz E A and Calvert J M 1994 Low voltage electron beam
lithography in self-assembled ultrathin films with the scanning tunneling microscope Appl. Phys. Lett. 64 390

Stroscio J A and Eigler D M 1991 Atomic and molecular manipulation with the scanning tunneling microscope Science
254 319

Eigler D M and Schweizer E K 1990 Positioning single atoms with a scanning tunneling microscope Nature 344 524

Crommie M F, Lutz C P and Eigler D M 1993 Confinement of electrons to quantum corrals on a metal surface Science
262 218

Boland J J 1993 Manipulating chlorine atom bonding on the Si(100)-(2 x 1) surface with the STM Science 262 1703

Resch R, Baur C, Bugacov A, Koel B E, Madhukar A, Requicha A A G and Will P 1998 Building and manipulating
three-dimensional and linked two-dimensional structures of nanoparticles using scanning force microscopy Langmuir
14 6613

(80]

(81]

(82]

(83]

-42-

Shen T-C, Wang C, Abeln G C, Tucker J R, Lyding J W, Avouris P and Walkup R E 1995 Atomic-scale desorption
through electronic and vibrational excitation mechanisms Science 268 1590

Martel R, Avouris Ph and Lyo I-W 1996 Molecularly adsorbed oxygen species on Si(111)-(7 x 7): STM-induced
dissociative attachment studies Science 272 385

Stipe B C, Rezaei M A, Ho W, Gao S, Persson M and Lundqvist B | 1997 Single-molecule dissociation by tunneling
electrons Phys. Rev. Lett. 78 4410

Shen Y R 1994 Nonlinear optical studies of surfaces Appl. Phys. A 59 541



[84] ShenY R 1994 Surfaces probed by nonlinear optics Surf. Sci. 299-300 551

[85] Petek H and Ogawa S 1997 Femtosecond time-resolved two-photon photoemission studies of electron dynamics in
metals Prog. Surf. Sci. 56 239

[86] Her T-H, Finlay R J, Wu C and Mazur E 1998 Surface femtochemistry of CO/O2/Pt(111): the importance of
nonthermalized substrate electrons J. Chem. Phys. 108 8595

[871 Ramsier RD and Yates J T Jr 1991 Electron-stimulated desorption: principles and applications Surf. Sci. Rep. 12 243

[88] Madey T E 1986 Electron- and photon-stimulated desorption: probes of structure and bonding at surfaces Science 234
316

(89] Madey T E et al 1993 Structure and kinetics of electron beam damage in a chemisorbed monolayer: PF4 on Ru(0001)

Desorption Induced by Electronic Transitions DIET V vol 31, ed A R Burns, E B Stechel and D R Jennison (Berlin:
Springer)

[90] PrybylaJ A, Tom HW K and Aumiller G D 1992 Femtosecond time-resolved surface reaction: desorption of Co from
Cu(111) in <325 .fsec Phys. Rev. Lett. 68 503

[91] Misewich J A, Heinz T F and Newns D M 1992 Desorption induced by multiple electronic transitions Phys. Rev. Lett.
68 3737

[92] Kolb D M 1996 Reconstruction phenomena at metal—electrolyte interfaces Prog. Surf. Sci. 51 109

[93] Chusuei C C, Murrell T S, Corneille J S, Nooney M G, Vesecky S M, Hossner L R and Goodman D W 1999 Liquid
reaction apparatus for surface analysis Rev. Sci. Instrum. 70 2462

[94] Soriaga M P 1992 Ultra-high vacuum techniques in the study of single-crystal electrode surfaces Prog. Surf. Sci. 39
325

[95] Hubbard A T 1990 Surface electrochemistry Langmuir 6 97

[96] Craig V S J 1997 An historical review of surface force measurement techniques Colloids Surf. A: Physicochem. Eng.
Aspects 129-30 75

[97] Kumacheva E 1998 Interfacial friction measurements in surface force apparatus Prog. Surf. Sci. 58 75
[98] Itaya K 1998 In situ scanning tunneling microscopy in electrolyte solutions Prog. Surf. Sci. 58 121

[99] Cyr D M, Venkataraman B and Flynn G W 1996 STM investigations of organic molecules physisorbed at the liquid—
solid interface Chem. Mater. 8 1600

-43-

[100] Drake B, Sonnenfeld R, Schneir J and Hansma P K 1987 Scanning tunneling microscopy of process at liquid—solid
interfaces Surf. Sci. 181 92

[101] Giancarlo L C and Flynn G W 1988 Scanning tunneling and atomic force microscopy probes of self-assembled,
physisorbed monolayers Ann. Rev. Phys. Chem. 49 297

[102] Schneir J, Harary H H, Dagata J A, Hansma P K and Sonnenfeld R 1989 Scanning tunneling microscopy and
fabrication of nanometer scale structure at the liquid—gold interface Scanning Microsc. 3 719

[103] Vansteenkiste S O, Davies M C, Roberts C J, Tendler S J B and Williams P M 1998 Scanning probe microscopy of
biomedical interfaces Prog. Surf. Sci. 57 95

[104] Iwasita T and Nart F C 1997 In situ infrared spectroscopy at electrochemical interfaces Prog. Surf. Sci. 55 271

[105] Raduge C, Pflumio V and Shen Y R 1997 Surface vibrational spectroscopy of sulfuric acid—water mixtures at the
liquid—vapor interface Chem. Phys. Lett. 274 140

[106] ShenY R 1998 Sum frequency generation for vibrational spectroscopy: applications to water interfaces and films of
water and ice Solid State Commun. 108 399



[107] Gragson D E and Richmond G | 1998 Investigations of the structure and hydrogen bonding of water molecules at
liquid surfaces by vibrational sum frequency spectroscopy J. Phys. Chem. 102 3847

[108] Koop T, Schindler W, Kazimirov A, Scherb G, Zegenhagen J, Schulz T, Feidenhans’l R and Kirschner J 1998
Electrochemical cell for in situ x-ray diffraction under ultrapure conditions Rev. Sci. Instrum. 69 1840




-
A2.1 Classical thermodynamics

Robert L Scott

A2.1.1 INTRODUCTION

Thermodynamics is a powerful tool in physics, chemistry and engineering and, by extension, to substantially
all other sciences. However, its power is narrow, since it says nothing whatsoever about time-dependent
phenomena. It can demonstrate that certain processes are impossible, but it cannot predict whether
thermodynamically allowed processes will actually take place.

It is important to recognize that thermodynamic laws are generalizations of experimental observations on
systems of macroscopic size; for such bulk systems the equations are exact (at least within the limits of the
best experimental precision). The validity and applicability of the relations are independent of the correctness
of any model of molecular behaviour adduced to explain them. Moreover, the usefulness of thermodynamic
relations depends crucially on measurability; unless an experimenter can keep the constraints on a system and
its surroundings under control, the measurements may be worthless.

The approach that will be outlined here is due to Carathéodory [1] and Born [2] and should present fresh
insights to those familiar only with the usual development in many chemistry, physics or engineering
textbooks. However, while the formulations differ somewhat, the equations that finally result are, of course,
identical.

A2.1.2 THE ZEROTH LAW
A2.1.2.1 THE STATE OF A SYSTEM

First, a few definitions: a system is any region of space, any amount of material for which the boundaries are
clearly specified. At least for thermodynamic purposes it must be of macroscopic size and have a topological
integrity. It may not be only part of the matter in a given region, e.g. all the sucrose in an aqueous solution. A
system could consist of two non-contiguous parts, but such a specification would rarely be useful.

To define the thermodynamic state of a system one must specify the values of a minimum number of
variables, enough to reproduce the system with all its macroscopic properties. If special forces (surface
effects, external fields—electric, magnetic, gravitational, etc) are absent, or if the bulk properties are
insensitive to these forces, e.g. the weak terrestrial magnetic field, it ordinarily suffices—for a one-component
system—to specify three variables, e.g. the temperature 7, the pressure p and the number of moles », or an
equivalent set. For example, if the volume of a surface layer is negligible in comparison with the total volume,
surface effects usually contribute negligibly to bulk thermodynamic properties.

-2

In order to specify the size of the system, at least one of these variables ought to be extensive (one that is
proportional to the size of the system, like n or the total volume V). In the special case of several phases in
equilibrium several extensive properties, e.g. n and V' for two phases, may be required to determine the
relative amounts of the two phases. The rest of the variables can be intensive (independent of the size of the
system) like 7, p, the molar volume ¥ = V/n, or the density p. For multicomponent systems, additional

variables, e.g. several ns, are needed to specify composition.



For example, the definition of a system as 10.0 g H,O at 10.0°C at an applied pressure p = 1.00 atm is
sufficient to specify that the water is liquid and that its other properties (energy, density, refractive index, even
non-thermodynamic properties like the coefficients of viscosity and thermal conductivity) are uniquely fixed.

Although classical thermodynamics says nothing about time effects, one must recognize that nearly all
thermodynamic systems are metastable in the sense that over long periods of time—much longer than the
time to perform experiments—they may change their properties, e.g. perhaps by a very slow chemical
reaction. Moreover, the time scale is merely relative; if a thermodynamic measurement can be carried out fast
enough that it is finished before some other reaction can perturb the system, but slow enough for the system to
come to internal equilibrium, it will be valid.

A2.1.2.2 WALLS AND EQUATIONS OF STATE

Of special importance is the nature of the boundary of a system, i.e. the wall or walls enclosing it and
separating it from its surroundings. The concept of ‘surroundings’ can be somewhat ambiguous, and its
thermodynamic usefulness needs to be clarified. It is not the rest of the universe, but only the external
neighbourhood with which the system may interact. Moreover, unless this neighbourhood is substantially at
internal equilibrium, its thermodynamic properties cannot be exactly specified. Examples of ‘surroundings’
are a thermostatic bath or the external atmosphere.

If neither matter nor energy can cross the boundary, the system is described as isolated; if only energy (but
not matter) can cross the boundary, the system is closed; if both matter and energy can cross the boundary, the
system is open.

(Sometimes, when defining a system, one must be careful to clarify whether the walls are part of the system or
part of the surroundings. Usually the contribution of the wall to the thermodynamic properties is trivial by
comparison with the bulk of the system and hence can be ignored.)

Consider two distinct closed thermodynamic systems each consisting of » moles of a specific substance in a
volume V and at a pressure p. These two distinct systems are separated by an idealized wall that may be either
adiabatic (heat-impermeable) or diathermic (heat-conducting). However, because the concept of heat has not
yet been introduced, the definitions of adiabatic and diathermic need to be considered carefully. Both kinds of
walls are impermeable to matter; a permeable wall will be introduced later.

If a system at equilibrium is enclosed by an adiabatic wall, the only way the system can be disturbed is by
moving part of the wall; i.e. the only coupling between the system and its surroundings is by work, normally
mechanical. (The adiabatic wall is an idealized concept; no real wall can prevent any conduction of heat over
a long time. However, heat transfer must be negligible over the time period of an experiment.)

The diathermic wall is defined by the fact that two systems separated by such a wall cannot be at equilibrium

at arbitrary values of their variables of state, p%, V%, pB and VP, (The superscripts are not exponents; they
symbolize different systems, subsystems or phases; numerical subscripts are reserved for components in a

mixture.) Instead there must be a relation between the four variables, which can be called an equation of state:

E(p”, v*, pf, V/)=0. (A2.1.1)

Equation (A2.1.1) is essentially an expression of the concept of thermal equilibrium. Note, however, that, in
this formulation, this concept precedes the notion of temperature.



To make the differences between the two kinds of walls clearer, consider the situation where both are ideal
gases, each satisfying the ideal-gas law p}' = nRT. If the two were separated by a diathermic wall, one would

observe experimentally that p®V*/pPIP = C where the constant C would be n%/nP. If the wall were adiabatic,
the two pV products could be varied independently.

A2.1.2.3 TEMPERATURE AND THE ZEROTH LAW

The concept of temperature derives from a fact of common experience, sometimes called the ‘zeroth law of
thermodynamics’, namely, if two systems are each in thermal equilibrium with a third, they are in thermal
equilibrium with each other. To clarify this point, consider the three systems shown schematically in figure
A2.1.1, in which there are diathermic walls between systems o and y and between systems 3 and vy, but an
adiabatic wall between systems o and .

Figure A2.1.1. [llustration of the zeroth law. Three systems with two diathermic walls (solid) and one
adiabatic wall (open).
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Equation (A2.1.1) governs the diathermic walls, so one may write

Fa(pe, Ve, p¥,V¥)=0 (A2.1.2a)
Fe(p?, VF, p¥ V7)) =0, (A2.1.2b)

It is a universal experimental observation, i.e. a ‘law of nature’, that the equations of state of systems 1 and 2
are then coupled as if the wall separating them were diathermic rather than adiabatic. In other words, there is a
relation

Fe(p®. v, pP. vh)=0. (A2.1.2¢)

It may seem that equation (A2.1.2¢) is just a mathematical consequence of equation (2.1.2a) and equation
(2.1.2b), but it is not; it conveys new physical information. If one rewrites equation (2.1.2a) and equation
(2.1.2b) in the form

P’ = da(p”, V., VYY) = gu(ph, VP, V)



it is evident that this does not reduce to equation (A2.1.2¢) unless one can separate ¥ out of the equation.
This is not possible unless ¢, = f,(p*, V¥)g(V¥}+ h(V")and ¢, = fu(p®. VF)g(VY) + h(VF). If equation

(A2.1.2¢) is a statement of a general experimental result, then £, (p*, V¥) = fg( pﬁ' , Vfjand the symmetry of
equation (2.1.2a), equation (2.1.2b) and equation (A2.1.2c) extends the equality to f,(p¥, V¥}:

fulp™. VTy = fo(pf, V) = f(p*. V") = 0. (A2.1.3)

The three systems share a common property 0, the numerical value of the three functions f, f, and £, which
- : ; /Py
can be called the empirical temperature. The equations (A2.1.3) are equations of state for the various systems,

but the choice of 0 is entirely arbitrary, since any function of f'(e.g. fz, log f, cos? f- 3]3 , etc) will satisfy
equation (A2.1.3) and could serve as ‘temperature’.

Redlich [3] has criticized the ‘so-called zeroth law’ on the grounds that the argument applies equally well for
the introduction of any generalized force, mechanical (pressure), electrical (voltage), or otherwise. The
difference seems to be that the physical nature of these other forces has already been clearly defined or
postulated (at least in the conventional development of physics) while in classical thermodynamics, especially
in the Born—Carathéodory approach, the existence of temperature has to be inferred from experiment.

For convenience, one of the systems will be taken as an ideal gas whose equation of state follows Boyle’s law,

pV = nf () = nCt, (A2.1.4)

and which defines an ideal-gas temperature 0, , proportional to p¥/n. Later this will be identified with the

thermodynamic temperature 7. It is now possi%le to use the pair of variables V" and 0 instead of p and V' to
define the state of the system (for fixed 7). [The pair p and 0 would also do unless there is more than one

phase present, in which case some variable or variables (in addition to #) must be extensive.]

A2.1.3 THE FIRST LAW
A2.1.3.1 WORK

There are several different forms of work, all ultimately reducible to the basic definition of the infinitesimal
work Dw = f'd/ where fis the force acting to produce movement along the distance d/. Strictly speaking, both f
and d!/ are vectors, so Dw is positive when the extension d/ of the system is in the same direction as the

applied force; if they are in opposite directions Dw is negative. Moreover, this definition assumes (as do all

the equations that follow in this section) that there is a substantially equal and opposite force resisting the
movement. Otherwise the actual work done on the system or by the system on the surroundings will be less or
even zero. As will be shown later, the maximum work is obtained when the process is essentially ‘reversible’.

The work depends on the detailed path, so Dw is an ‘inexact differential’ as symbolized by the capitalization.
(There is no established convention about this symbolism; some books—and all mathematicians—use the
same symbol for all differentials; some use & for an inexact differential; others use a bar through the d; still
others—as in this article—use D.) The difference between an exact and an inexact differential is crucial in
thermodynamics. In general, the integral of a differential depends on the path taken from the initial to the final
state. However, for some special but important cases, the integral is independent of the path; then and only
then can one write



f
f dF:Fr—Fi=ﬂF.
i

One then speaks of F as a ‘state function’ because it is a function only of those variables that define the state
of the system, and not of the path by which the state was reached. An especially important feature of such
functions is that if one writes DF as a function of several variables, say x, y, z,

DF = X{x, y,z)dx + Y(x, y, 2)dy + Z(x, y, z)dz

then, for exact differentials only, X = (3F fdx)y ., Y = (#F /dy), .and Z = (3F fdz), ,.Since these exact

differentials are path-independent, the order of differentiation is immaterial and one can then write

(9 F faxdy). = (0X/dyhz = @Y/0x)y.  etc.
One way of verifying the exactness of a differential is to check the validity of expressions like that above.
(A) GRAVITATIONAL WORK

What is probably the simplest form of work to understand occurs when a force is used to raise the system in a
gravitational field:

Duwgray = mg dh

where m is the mass of the system, g is the acceleration of gravity, and d/ is the infinitesimal increase in
height. Gravitational work is rarely significant in most thermodynamic applications except when a falling
weight outside the system drives a paddle wheel inside the system, as in one of the famous experiments in
which Joule (1849) compared the work done with the increase in temperature of the system, and determined
the ‘mechanical equivalent of heat’. Note that, in this example, positive work is done on the system as the
potential energy of the falling weight decreases. Note also that, in free fall, the potential energy of the weight
decreases, but no work is done.

(B) ONE-DIMENSIONAL WORK

When a spring is stretched or compressed, work is done. If the spring is the system, then the work done on it
is simply

Duy = fdl.
Note that a displacement from the initial equilibrium, either by compression or by stretching, produces

positive work on the system. A situation analogous to the stretching of a spring is the stretching of a chain
polymer.

(C) TWO-DIMENSIONAL (SURFACE) WORK

When a surface is compressed by a force /= nL, the ‘surface pressure’ © = f/L is the force per unit width L
producing a decrease in length d/. (Note that L and / are not the same; indeed they are orthogonal.) The work
is then



Duy, = —wdA

where d4 = L d/ is the change in the surface area. This kind of work and the related thermodynamic functions
for surfaces are important in dealing with monolayers in a Langmuir trough, and with membranes and other
materials that are quasi-two-dimensional.

(D) THREE-DIMENSIONAL (PRESSURE-VOLUME) WORK

When a piston of area A4, driven by a force f = pA, moves a distance d/ =—d}/A, it produces a compression of
the system by a volume dV. The work is then

Duy = —pdV. (A2.1.5)

It is this type of work that is ubiquitous in chemical thermodynamics, principally because of changes of the
volume of the system under the external pressure of the atmosphere. The negative sign of the work done on
the system is, of course, because the application of excess pressure produces a decrease in volume. (The
negative sign in the two-dimensional case is analogous.)

(E) OTHER MECHANICAL WORK

One can also do work by stirring, e.g. by driving a paddle wheel as in the Joule experiment above. If the
paddle is taken as part of the system, the energy input (as work) is determined by appropriate measurements
on the electric motor, falling weights or whatever drives the paddle.

(F) ELECTRICAL WORK

When a battery (or a generator or other power supply) outside the system drives current, i.e. a flow of electric
charge, through a wire that passes through the system, work is done on the system:

Ditaler = £dQ

where dQ is the infinitesimal charge that crosses the boundary of the system and € is the electric potential
(voltage) across the system, i.e. between the point where the wire enters and the point where it leaves.
Converting to current = dQ/df where dt is an infinitesimal time interval and to resistance #= &/ one can
rewrite this equation in the form

Dy = ETdt = (£2/R)db.

Such a resistance device is usually called an ‘electrical heater’ but, since there is no means of measurement at
the boundary between the resistance and the material in contact with it, it is easier to regard the resistance as
being inside the system, i.e. a part of it. Energy enters the system in the form of work where the wire breaches
the wall, i.e. enters the container.

(G) ELECTROCHEMICAL WORK

A special example of electrical work occurs when work is done on an electrochemical cell or by such a cell on
the surroundings (—w in the convention of this article). Thermodynamics applies to such a cell when it is at
equilibrium with its surroundings, i.e. when the electrical potential (electromotive force emf) of the cell is



balanced by an external potential.

(H) ELECTROMAGNETIC WORK

This poses a special problem because the source of the electromagnetic field may lie outside the defined
boundaries of the system. A detailed discussion of this is outside the scope of this section, but the basic
features can be briefly summarized.

When a specimen is moved in or out of an electric field or when the field is increased or decreased, the total
work done on the whole system (charged condenser + field + specimen) in an infinitesimal change is

Drirzeg :[dV{EdD},

where F is the electric field vector, D = ¢F is the electric displacement vector, and ¢ is the electric
susceptibility tensor. The integration is over the whole volume encompassed by the total system, which must
in principle extend as far as measurable fields exist.

Similarly, when a specimen is moved in or out of a magnetic field or when the magnetic field is increased or
decreased, the total work done on the whole system (coil + field + specimen) in an infinitesimal change is

Dttty :f dV(H - d)

where H is the magnetic field vector, B = pH is the magnetic induction vector and is the magnetic
permeability tensor. (Some modern discussions of magnetism regard B as the fundamental magnetic field
vector, but usually fail to give a new name to H.) As before the integration is over the whole volume.

For the special but familiar case of an isotropic specimen in a uniform external field £, or B, it can be shown
[4] that

Dug = f dViegly - dEy — P« dFEy) (A2.1.6)

Dittpan = f dvi(By - dBy/py + By - dM) (A2.1.7)

where P is the polarization vector and M the magnetization vector; €, and p, are the susceptibility and
permeability of the vacuum in the absence of the specimen. The vector notation could now be dropped since
the external field and the induced field are parallel and the scalar product of two vectors oriented identically is
simply the product of their scalar magnitudes; this will not be done in this article to avoid confusion with
other thermodynamic quantities. (Note that equation (A2.1.7) is not the analogue of equation (A2.1.6).)

The work done increases the energy of the total system and one must now decide how to divide this energy
between the field and the specimen. This separation is not measurably significant, so the division can be made
arbitrarily; several self-consistent systems exist. The first term on the right-hand side of equation (A2.1.6) is
obviously the work of creating the electric field, e.g. charging the plates of a condenser in the absence of the
specimen, so it appears logical to consider the second term as the work done on the specimen.



By analogy, one is tempted to make the same division in equation (A2.1.7), regarding the first term as the
work of creating the magnetic field in the absence of the specimen and the second, {* dV(By - d M), as the

work done on the specimen. This is the way most books on thermodynamics present the problem and it is an
acceptable convention, except that it is inconsistent with the measured spectroscopic energy levels and with
one’s intuitive idea of work. For example, equation (A2.1.7) says that the work done in moving a permanent
magnet (constant magnetization M) into or out of an electromagnet of constant B, is exactly zero! This is
actually correct if one considers the extra electrochemical work done on the battery driving the current
through the electromagnet while the permanent magnet is moving; this exactly balances the mechanical work.
A careful analysis [5, 6] shows that, if one writes equation (A2.1.7) in the following form:

-9-

Dttty = fdv|13n+ ABy/ s — M dBy+d(By - M)]

A B C

then term A is the work of creating the field in the absence of the specimen; term B is the work done on the
specimen by ‘ponderable forces’, e.g. by a spring or by a physical push or pull; this is directly reflected in a
change of the kinetic energy of the electrons; and term C is the work done by the electromotive force in the
coil in creating the interaction field between B, and M. We elect to consider term B as the only work done on
the specimen and write for the electromagnetic work

ch]nﬂmmag = f dV(—FP . dE, — M . dBy).

If in addition the specimen is assumed to be spherical as well as isotropic, so that P and M are uniform
throughout the volume V, one can then write for the electromagnetic work

Dteteetromag = V(=P « dEy — M - dBy). (A2.1.8)

Equation (A2.1.8) turns out to be consistent with the changes of the energy levels measured spectroscopically,
so the energy produced by work defined this way is frequently called the ‘spectroscopic energy’. Note that the
electric and magnetic parts of the equations are now symmetrical.

A2.1.3.2 ADIABATIC WORK

One may now consider how changes can be made in a system across an adiabatic wall. The first law of
thermodynamics can now be stated as another generalization of experimental observation, but in an unfamiliar
form: the work required to transform an adiabatic (thermally insulated) system from a completely specified
initial state to a completely specified final state is independent of the source of the work (mechanical,
electrical, etc.) and independent of the nature of the adiabatic path. This is exactly what Joule observed; the
same amount of work, mechanical or electrical, was always required to bring an adiabatically enclosed
volume of water from one temperature 8, to another 6,.

This can be illustrated by showing the net work involved in various adiabatic paths by which one mole of
helium gas (4.00 g) is brought from an initial state in which p = 1.000 atm, }'=24.621[T=300.0K],to a
final state in which p = 1.200 atm, V'=30.779 1 [T = 450.0 K]. Ideal-gas behaviour is assumed (actual
experimental measurements on a slightly non-ideal real gas would be slightly different). Information shown in
brackets could be measured or calculated, but is not essential to the experimental verification of the first law.
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Path | (a) Do electrical work on the system at constant V = 24.62 | until the
pressure has risen to 1.500 atm. [AT = 150.0 K, w = (3/2)RAT]
(b) Expand the gas into a vacuum (i.e. against zero external pressure)
until the total volume V'is 30.77 | and p = 1.200 atm. [AT = 0]

Path Il (a) Compress the gas reversibly and adiabatically from 1.000 atm to
1.200 atm. [At the end of the compression T =322.7 K, V=22.07 |, w =
(3/2)RAT]

(b) Do electrical work on the system, holding the pressure constant at 1.200
atm, until the volume V has increased to 30.77 |; under these
circumstances the system also does expansion work against the external
pressure.

[Electrical work = (5/2)RAT]
[Expansion work = —pAV = —-10.45 | atm]

Path Il (a) Do electrical work on the system, holding the pressure constant at 1.000
atm, until the volume V has increased to 34.33 I; under these
circumstances, the system also does expansion work against the external
pressure.

[Final T=418.4 K]
[Electrical work = (5/2)RT]
[Expansion work = —pAV = -9.71 | atm]
(b) Compress the gas reversibly and adiabatically from 1.000 atm to
1.200 atm. [At the end of the compression T=450.0 K, V=30.77 |, AT =
31.65 K, w = (3/2)RT]

For all of these adiabatic processes, the total (net) work is exactly the same.

w =1871J
elec
w__=0J
exp
Wit = 1871 J
w =283J
comp
w =2646 J
elec
Weyp =—1058 J
Wit = 1871 J
w =2460J
elec
Wesp = 984 J
w =395J
comp
Wi = 1871 J
ot

(As we shall see, because of the limitations that the second law of thermodynamics imposes, it may be
impossible to find any adiabatic paths from a particular state A to another state B because S, — Sy <0. In this

situation, however, there will be several adiabatic paths from state B to state A.)

If the adiabatic work is independent of the path, it is the integral of an exact differential and suffices to define
a change in a function of the state of the system, the energy U. (Some thermodynamicists call this the ‘internal

energy’, so as to exclude any kinetic energy of the motion of the system as a whole.)
dU = dwgizhatic

or

AU =Up(Ve ) — UV, ) = f dWadiabatic = Wadiahatic -

(A2.1.9)

Here the subscripts 7 and frefer to the initial and final states of the system and the work w is defined as the
work performed on the system (the opposite sign convention—with w as work done by the system on the
surroundings—is also in common use). Note that a cyclic process (one in which the system is returned to its
initial state) is not introduced; as will be seen later, a cyclic adiabatic process is possible only if every step is
reversible. Equation (A2.1.9), i.e. the introduction of U as a state function, is an expression of the law of

conservation of energy.
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A2.1.3.3 NON-ADIABATIC PROCESSES. HEAT

Not all processes are adiabatic, so when a system is coupled to its environment by diathermic walls, the heat ¢
absorbed by the system is defined as the difference between the actual work performed and that which would
have been required had the change occurred adiabatically.

Dy = divagiabatic = Dw = dU = Dhe
or
] = Wadiabatic — ¥ = AU — . (A2.1.10)
Note that, since Dw is inexact, so also must be Dg.

This definition may appear eccentric because many people have an intuitive feeling for ‘heat’ as a certain kind
of energy flow. However, thoughtful reconsideration supports a suspicion that the intuitive feeling is for the
heat absorbed in a particular kind of process, e.g. constant pressure, for which, as we shall see, the heat ¢ b is
equal to the change in a state function, the enthalpy change AH. For another example, the ‘heats’ measured in
modern calorimeters are usually determined either by a measurement of electrical or mechanical work or by
comparing one process with another so calibrated (as in an ice calorimeter). Indeed one can argue that one
never measures ¢ directly, that all ‘measurements’ require equation (A2.1.10); one always infers g from other
measurements.

A2.1.4 THE SECOND LAW

In this and nearly all subsequent sections, the work Dw will be restricted to pressure—volume work, —p dV, and
the fact that the ‘heat” Dg may in some cases be electrical work will be ignored.

A2.1.4.1 REVERSIBLE PROCESSES

A particular path from a given initial state to a given final state is the reversible process, one in which after
each infinitesimal step the system is in equilibrium with its surroundings, and one in which an infinitesimal
change in the conditions (constraints) would reverse the direction of the change.

A simple example (figure A2.1.2) consists of a gas confined by a movable piston supporting a pile of sand
whose weight produces a downward force per unit area equal to the pressure of the gas. Removal of a grain of
sand decreases the downward pressure by an amount dp and the piston rises with an increase of volume 8/
sufficient to decrease the gas pressure by the same Op; the system is now again at equilibrium. Restoration of
the grain of sand will drive the piston and the gas back to their initial states. Conversely, the successive
removal of additional grains of sand will produce additional small decreases in pressure and small increases in
volume; the sum of a very large number of such small steps can produce substantial changes in the
thermodynamic properties of the system. Strictly speaking, such experimental processes are never quite
reversible because one can never make the small changes in pressure and volume infinitesimally small (in
such a case there would be no tendency for change and the process would take place only at an infinitely slow
rate). The true reversible process is an idealized concept; however, one can usually devise processes
sufficiently close to reversibility that no measurable differences will be observed.
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Figure A2.1.2. Reversible expansion of a gas with the removal one-by-one of grains of sand atop a piston.

The mere fact that a substantial change can be broken down into a very large number of small steps, with
equilibrium (with respect to any applied constraints) at the end of each step, does not guarantee that the
process is reversible. One can modify the gas expansion discussed above by restraining the piston, not by a
pile of sand, but by the series of stops (pins that one can withdraw one-by-one) shown in figure A2.1.3. Each
successive state is indeed an equilibrium one, but the pressures on opposite sides of the piston are not equal,
and pushing the pins back in one-by-one will not drive the piston back down to its initial position. The two
processes are, in fact, quite different even in the infinitesimal limit of their small steps; in the first case work
is done by the gas to raise the sand pile, while in the second case there is no such work. Both the processes
may be called ‘quasi-static’ but only the first is anywhere near reversible. (Some thermodynamics texts
restrict the term ‘quasi-static’ to a more restrictive meaning equivalent to ‘reversible’, but this then leaves no
term for the slow irreversible process.)

aoa

i)

gas —

P,V

Figure A2.1.3. Irreversible expansion of a gas as stops are removed.
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If a system is coupled with its environment through an adiabatic wall free to move without constraints (such
as the stops of the second example above), mechanical equilibrium, as discussed above, requires equality of
the pressure p on opposite sides of the wall. With a diathermic wall, thermal equilibrium requires that the
temperature 0 of the system equal that of its surroundings. Moreover, it will be shown later that, if the wall is
permeable and permits exchange of matter, material equilibrium (no tendency for mass flow) requires equality
of a chemical potential p.



Obviously the first law is not all there is to the structure of thermodynamics, since some adiabatic changes
occur spontaneously while the reverse process never occurs. An aspect of the second law is that a state
function, the entropy S, is found that increases in a spontaneous adiabatic process and remains unchanged in a
reversible adiabatic process; it cannot decrease in any adiabatic process.

The next few sections deal with the way these experimental results can be developed into a mathematical
system. A reader prepared to accept the second law on faith, and who is interested primarily in applications,
may skip section A2.1.4.2 and section A2.1.4.6 and perhaps even A2.1.4.7, and go to the final statement in
section A2.1.4.8.

A2.1.4.2 ADIABATIC REVERSIBLE PROCESSES AND INTEGRABILITY

In the example of the previous section, the release of the stop always leads to the motion of the piston in one
direction, to a final state in which the pressures are equal, never in the other direction. This obvious
experimental observation turns out to be related to a mathematical problem, the integrability of differentials in
thermodynamics. The differential Dg, even Dg_, is inexact, but in mathematics many such expressions can
be converted into exact differentials with the aid of an integrating factor.

In the example of pressure—volume work in the previous section, the adiabatic reversible process consisted
simply of the sufficiently slow motion of an adiabatic wall as a result of an infinitesimal pressure difference.
The work done on the system during an infinitesimal reversible change in volume is then —p d/ and one can
write equation (A2.1.11) in the form

Dy = dU + pdV =0. (A2.1.11)

If U is expressed as a function of two variables of state, e.g. V" and 6, one can write dU = (0U/0V)q dV +
(0U/08), dB and transform equation (A2.1.11) into the following:

D = [(Uf3V) + p]dV + (0U/30)y d9 = YAV + ZdP = 0. (A2.1.12)

The coefficients Y and Z are, of course, functions of V" and 6 and therefore state functions. However, since in
general (Op/00y;) is not zero, 0Y/08 is not equal to 6Z/0V, so Dgq, ., is not the differential of a state function but
rather an inexact differential.

For a system composed of two subsystems o and P separated from each other by a diathermic wall and from
the surroundings by adiabatic walls, the equation corresponding to equation (A2.1.12) is
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Dy = Dg*” + Dg?
= A faV @y + po1dVE + [(8LP /aVP i + pP 1AV + [ [0y
+ (AU 136y e | di
=XdVe+¥dvFf+ Zdo = 0.

(A2.1.13)

One must now examine the integrability of the differentials in equation (A2.1.12) and equation (A2.1.13),
which are examples of what mathematicians call Pfaff differential equations. If the equation is integrable, one
can find an integrating denominator A, a function of the variables of state, such that Dg . /A = d¢ where d¢ is
the exact differential of a function ¢ that defines a surface (line in the case of equation (A2.1.12)) in which the
reversible adiabatic path must lie.




All equations of two variables, such as equation (A2.1.12), are necessarily integrable because they can be
written in the form dy/dx = f{x, y), which determines a unique value of the slope of the line through any point
(x, v). Figure A2.1.4 shows a set of non-intersecting lines in /-0 space representing solutions of equation

(A2.1.12).

v

Figure A2.1.4. Adiabatic reversible (isentropic) paths that do not intersect. (The curves have been calculated
for the isentropic expansion of a monatomic ideal gas.)

For equations such as (A2.1.13) involving more than two variables the problem is no longer trivial. Most such
equations are not integrable.

(Born [2] cites as an example of a simple expression for which no integrating factor exists

DF =dy+ xdz:?,l.{x, i, z) deb.
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If an integrating factor exists i fitx = 0, d¢h/dy = 1/dand dgpfilz = x/i. From the first of these relations one

concludes that ¢ depends only on y and z. Using this result in the second relation one concludes that A depends
only on y and z. Given that ¢ and A are both functions only of y and z, the third relation is a contradiction, so
no factor A can exist.)

There are now various adiabatic reversible paths because one can choose to vary dV or d in any
combination of steps. The paths can cross and interconnect. The question of integrability is tied to the question

of whether all regions of V%, 4N space are accessible by a series of connected adiabatic reversible paths or
whether all such paths lie in a series of non-crossing surfaces. To distinguish, one must use a theorem of
Carathéodory (the proof can be found in [1] and [2] and in books on differential equations):

If a Pfaff differential expression DF = X dx + Y dy + Z dz has the property that every arbitrary neighbourhood
of a point P(x, y, z) contains points that are inaccessible along a path corresponding to a solution of the
equation DF = 0, then an integrating denominator exists. Physically this means that there are two mutually
exclusive possibilities: either (@) a hierarchy of non-intersecting surfaces ¢(x, y, z) = C, each with a different
value of the constant C, represents the solutions DF = 0, in which case a point on one surface is inaccessible



by a path that is confined to another, or (b) any two points can be connected by a path, each infinitesimal
segment of which satisfies the condition DF' = 0. One must perform some experiments to determine which
situation prevails in the physical world.

It suffices to carry out one such experiment, such as the expansion or compression of a gas, to establish that
there are states inaccessible by adiabatic reversible paths, indeed even by any adiabatic irreversible path. For
example, if one takes one mole of N, gas in a volume of 24 litres at a pressure of 1.00 atm (i.e. at 25 °C),
there is no combination of adiabatic reversible paths that can bring the system to a final state with the same
volume and a different temperature. A higher temperature (on the ideal-gas scale 0, ) can be reached by an
adiabatic irreversible path, e.g. by doing electrical work on the system, but a state with the same volume and a
lower temperature 6, o is inaccessible by any adiabatic path.

A2.1.4.3 ENTROPY AND TEMPERATURE

One concludes, therefore, that equation (A2.1.13) is integrable and there exists an integrating factor A. For the
general case Dg_. = A d¢ it can be shown [l, 2] that

rev

Ini = fg{ﬂjdfl‘-l-lﬂf(ﬁf'}

where 1(¢) is a constant of integration. It then follows that one may define two new quantities by the relations:

I(T/C) = f;;{ﬂjdﬂ § = {I;’C}fﬂd}}dq{).
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and one can now write

Ddgrey = Adep = T dS. (A2.1.14)

There are an infinite number of other integrating factors A with corresponding functions ¢; the new quantities
T and S are chosen for convenience. S is, of course, the entropy and T, a function of 0 only, is the ‘absolute
temperature’, which will turn out to be the ideal-gas temperature, 0, . The constant C is just a scale factor
determining the size of the degree.

The surfaces in which the paths satisfying the condition Dg, ., = 0 must lie are, thus, surfaces of constant
entropy; they do not intersect and can be arranged in an order of increasing or decreasing numerical value of
the constant S. One half of the second law of thermodynamics, namely that for reversible changes, is now
established.

Since Dw, ., =-pdV, one can utilize the relation dU = Dg, ., + Dw_ and write

dU = Tds - pdV. (A2.1.15)

Equation (A2.1.15) involves only state functions, so it applies to any infinitesimal change in state whether the
actual process is reversible or not (although, as equation (A2.1.14) suggests, dS is not experimentally
accessible unless some reversible path exists).



A2.1.4.4 THERMODYNAMIC TEMPERATURE AND THE IDEAL-GAS THERMOMETER
So far, the thermodynamic temperature 7 has appeared only as an integrating denominator, a function of the

empirical temperature 0. One now can show that 7 is, except for an arbitrary proportionality factor, the same
as the empirical ideal-gas temperature 6, o introduced earlier. Equation (A2.1.15) can be rewritten in the form

TdS =dU + pdV = (@U/a8)y do + [(al/3V)e + p]dV. (A2.1.16)

One assumes the existence of a fluid that obeys Boyle’s law (equation (A2.1.4)) and that, on adiabatic
expansion into a vacuum, shows no change in temperature, i.e. for which pV = f(0) and (al/aV),; = 0. (All

real gases satisfy this condition in the limit of zero pressure.) Equation (A2.1.16) then simplifies to

T dS = (dU/de)dé + [F(0)/ VIdV = fF@)[du/da)/f@)]de +dV/ V).

The factor in wavy brackets is obviously an exact differential because the coefficient of dO is a function only
of 0 and the coefficient of dV is a function only of V. (The cross-derivatives vanish.) Manifestly then

T =Cf(#)=C(pV)

_dudyde 4 1 — i d i
ds = Wdf1+ﬁdb"_ T+

ideal gas only.
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If the arbitrary constant C is set equal to (nR)_1 where 7 is the number of moles in the system and R is the gas
constant per mole, then the thermodynamic temperature 7'= 6, , where 6, o is the temperature measured by the
ideal-gas thermometer depending on the equation of state

pV = nR#y, = nRT. (A2.1.17)

Now that the identity has been proved 6, o need not be used again.

A2.1.4.5 IRREVERSIBLE CHANGES AND THE SECOND LAW

It is still necessary to consider the role of entropy in irreversible changes. To do this we return to the system
considered earlier in section A2.1.4.2, the one composed of two subsystems in thermal contact, each coupled
with the outside through movable adiabatic walls. Earlier this system was described as a function of three

independent variables, V%, VB and 0 (or 7). Now, instead of the temperature, the entropy S = S* + SP will be
used as the third variable. A final state V', ¥#, §'can always be reached from an initial state VO‘O, VBO, S0 by a
two-step process.

(1) The volumes are changed adiabatically and reversibly from 70 and 10 to yw'and v, during which
change the entropy remains constant at S0,

(2) At constant volumes y='and y#, the state is changed by the adiabatic performance of work (stirring,

rubbing, electrical ‘heating’) until the entropy is changed from s t0 5.

If the entropy change in step (2) could be at times greater than zero and at other times less than zero, every
neighbouring state y«', 1##, §'would be accessible, for there is no restriction on the adjustment of volumes in



step (1). This contradicts the experimental fact that allowed the integration of equation (A2.1.13) and
established the entropy S as a state function. It must, therefore, be true that either 5> 50 always or that §'< 50
always. One experiment demonstrates that the former is the correct alternative; if one takes the absolute
temperature as a positive number, one finds that the entropy cannot decrease in an adiabatic process. This
completes the specification of temperature, entropy and part of the second law of thermodynamics. One
statement of the second law of thermodynamics is therefore:

for any adiabatic process (Og = 0} dS = 0. (A2.1.18)

(This is frequently stated for an isolated system, but the same statement about an adiabatic system is broader.)
A2.1.4.6 IRREVERSIBLE CHANGES AND THE MEASUREMENT OF ENTROPY

Thermodynamic measurements are possible only when both the initial state and the final state are essentially
at equilibrium, i.e. internally and with respect to the surroundings. Consequently, for a spontaneous
thermodynamic change to take place, some constraint—internal or external—must be changed or released.
For example, the expansion of a gas requires the release of a pin holding a piston in place or the opening of a
stopcock, while a chemical reaction can be initiated by mixing the reactants or by adding a catalyst. One often
finds statements that ‘at equilibrium in an isolated system (constant U, V, n), the entropy is maximized’. What
does this mean?
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Consider two ideal-gas subsystems o and 3 coupled by a movable diathermic wall (piston) as shown in figure
A2.1.5. The wall is held in place at a fixed position / by a stop (pin) that can be removed; then the wall is free

to move to a new position /. The total system (o + B) is adiabatically enclosed, indeed isolated (¢ = w = 0), so
the total energy, volume and number of moles are fixed.

T
top

PV T BT

Figure A2.1.5. Irreversible changes. Two gases at different pressures separated by a diathermic wall, a piston
that can be released by removing a stop (pin).

When the pin is released, the wall will either (@) move to the right, or () move to the left, or (¢) remain at the

original position /. It is evident that these three cases correspond to initial situations in which p®* > pB, p*< pB

and p%* = pB, respectively; if there are no other stops, the piston will come to rest in a final state where
p* = p? . For the two spontaneous adiabatic changes («) and (b), the second law requires that AS > 0, but one

does not yet know the magnitude. (Nothing happens in case (c), so AS=0.)

The change of case (a) can be carried out in a series of small steps by having a large number of stops
separated by successive distances A/l. For any intermediate step, p'-f' - pﬂ" - pﬂ" = pﬂ', but since the steps,

no matter how small, are never reversible, one still has no information about AS.



The only way to determine the entropy change is to drive the system back from the final state to the initial
state along a reversible path. One reimposes a constraint, not with simple stops, but with a gear system that
permits one to do mechanical work driving the piston back to its original position /, along a reversible path;
this work can be measured in various conventional ways. During this reverse change the system is no longer
isolated; the total /" and the total » remain unchanged, but the work done on the system adds energy. To keep
the total energy constant, an equal amount of energy must leave the system in the form of heat:

dlU = Dgrey + Dittgey =0

or

Doy Dy
—ASiorward = ASreverse = f % — _f Tn.'. )
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For an ideal gas and a diathermic piston, the condition of constant energy means constant temperature. The
reverse change can then be carried out simply by relaxing the adiabatic constraint on the external walls and
immersing the system in a thermostatic bath. More generally the initial state and the final state may be at
different temperatures so that one may have to have a series of temperature baths to ensure that the entire
series of steps is reversible.

Note that although the change in state has been reversed, the system has not returned along the same detailed
path. The forward spontaneous process was adiabatic, unlike the driven process and, since it was not
reversible, surely involved some transient temperature and pressure gradients in the system. Even for a series
of small steps (‘quasi-static’ changes), the infinitesimal forward and reverse paths must be different in detail.
Moreover, because g and w are different, there are changes in the surroundings; although the system has
returned to its initial state, the surroundings have not.

One can, in fact, drive the piston in both directions from the equilibrium value /=17, %= pB) and construct a
curve of entropy S (with an arbitrary zero) as a function of the piston position / (figure A2.1.6). If there is a

series of stops, releasing the piston will cause / to change in the direction of increasing entropy until the piston
is constrained by another stop or until / reaches /. It follows that at /=1, dS/d/ = 0 and d2S/dI? < 0;i.e. Sis
maximized when / is free to seek its own value. Were this not so, one could find spontaneous processes to
jump from the final state to one of still higher entropy.




Figure A2.1.6. Entropy as a function of piston position / (the piston held by stops). The horizontal lines mark
possible positions of stops, whose release produces an increase in entropy, the amount of which can be
measured by driving the piston back reversibly.

Thus, the spontaneous process involves the release of a constraint while the driven reverse process involves
the imposition of a constraint. The details of the reverse process are irrelevant; any series of reversible steps
by which one can go from the final state back to the initial state will do to measure AS.
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A2.1.4.7 IRREVERSIBLE PROCESSES: WORK, HEAT AND ENTROPY CREATION

One has seen that thermodynamic measurements can yield information about the change AS in an irreversible
process (and thereby the changes in other state functions as well). What does thermodynamics tell one about
work and heat in irreversible processes? Not much, in spite of the assertion in many thermodynamics books
that

Dt = = P AV = Py dVers (A2.1.19)

and
Dy = =T dSe = —dle — D (A2.1.20)

where p  and T, are the external pressure and temperature, i.e. those of the surroundings in which the

changes dV  =—dV and dS_, occur.

Consider the situation illustrated in figure A2.1.5, with the modification that the piston is now an adiabatic
wall, so the two temperatures need not be equal. Energy is transmitted from subsystem o to subsystem 3 only
in the form of work; obviously d7* =—d¥® so, in applying equation (A2.1.20), is dU* = P equal to —p* dI/P =
p* dV® or equal to pB dV%, or is it something else entirely? One can measure the changes in temperature,

T« _ 7wand T# — TFand thus determine AU® ~ P after the fact, but could it have been predicted in
advance, at least for ideal gases? If the piston were a diathermic wall so the final temperatures are equal, the

energy transfer AU* B would be calculable, but even in this case it is unclear how this transfer should be
divided between heat and work.

In general, the answers to these questions are ambiguous. When the pin in figure A2.1.5 is released, the
potential energy inherent in the pressure difference imparts a kinetic energy to the piston. Unless there is a
mechanism for the dissipation of this kinetic energy, the piston will oscillate like a spring; frictional forces, of
course, dissipate this energy, but the extent to which the dissipation takes place in subsystem a or subsystem
B depends on details of the experimental design not uniquely fixed by specifying the initial thermodynamic
state. (For example, one can introduce braking mechanisms that dissipate the energy largely in subsystem o
or, conversely, largely in subsystem [.) Only in one special case is there a clear prediction: if one subsystem
(B) is empty no work can be done by o on [3; for expansion into a vacuum necessarily w = 0. A more detailed
discussion of the work involved in irreversible expansion has been given by Kivelson and Oppenheim [7].

The paradox involved here can be made more understandable by introducing the concept of entropy creation.
Unlike the energy, the volume or the number of moles, the entropy is not conserved. The entropy of a system
(in the example, subsystems o or ) may change in two ways: first, by the transport of entropy across the

boundary (in this case, from o to B or vice versa) when energy is transferred in the form of heat, and second,



by the creation of entropy within the subsystem during an irreversible process. Thus one can write for the
change in the entropy of subsystem o in which some process is occurring

ds" = d;8" +d;5"
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where d Sa =—d, P is the change in entropy due to heat transfer to subsystem o and dlSo‘ is the irreversible
entropy creation inside subsystem a. (In the adiabatic example the dissipation of the kinetic energy of the

piston by friction creates entropy, but no entropy is transferred because the piston is an adiabatic wall.)

The total change dS can be determined, as has been seen, by driving the subsystem o back to its initial state,
but the separation into d, S%* and d S% is sometimes ambiguous. Any statistical mechanical interpretation of the
second law requires that at least for any volume element of macroscopic size, d.S > 0. However, the total
entropy change dS% can be either positive or negative since the second law places no limitation on either the

sign or the magnitude of dtS“. (In the example above, the piston’s adiabatic wall requires that dtSO‘ = dtS[3 =
0.)

In an irreversible process the temperature and pressure of the system (and other properties such as the
chemical potentials p  to be defined later) are not necessarily definable at some intermediate time between the
equilibrium initial state and the equilibrium final state; they may vary greatly from one point to another. One
can usually define 7 and p for each small volume element. (These volume elements must not be too small; e.g.
for gases, it is impossible to define 7, p, S, etc for volume elements smaller than the cube of the mean free

path.) Then, for each such sub-subsystem, d.S (but not the total dS) must not be negative. It follows that d, Se,
the sum of all the d.Ss for the small volume elements, is zero or positive. A detailed analysis of such

irreversible processes is beyond the scope of classical thermodynamics, but is the basis for the important field
of ‘irreversible thermodynamics’.

The assumption (frequently unstated) underlying equations (A2.1.19) and equation (A2.1.20) for the
measurement of irreversible work and heat is this: in the surroundings, which will be called subsystem 3,

internal equilibrium (uniform 8, p[3 and p fthroughout the subsystem; i.e. no temperature, pressure or
concentration gradients) is maintained throughout the period of time in which the irreversible changes are
taking place in subsystem a. If this condition is satisfied d.SP = 0 and all the entropy creation takes place
entirely in o.. In any thermodynamic measurement that purports to yield values of ¢ or w for an irreversible
change, one must ensure that this condition is very nearly met. (Obviously, in the expansion depicted in figure

A2.1.5 neither subsystem o nor subsystem J satisfied this requirement.)

Essentially this requirement means that, during the irreversible process, immediately inside the boundary, i.e.
on the system side, the pressure and/or the temperature are only infinitesimally different from that outside,
although substantial pressure or temperature gradients may be found outside the vicinity of the boundary.
Thus an infinitesimal change in p_  or 7  would instantly 