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This text presents a rigorous mathematical account of the principles of
quantum mechanics, in particular as applied to chemistry and chemical
physics. Applications are used as illustrations of the basic theory.

The first two chapters serve as an introduction to quantum theory, although it
is assumed that the reader has been exposed to elementary quantum mechanics
as part of an undergraduate physical chemistry or atomic physics course.
Following a discussion of wave motion leading to Schrodinger’s wave mech-
anics, the postulates of quantum mechanics are presented along with the
essential mathematical concepts and techniques. The postulates are rigorously
applied to the harmonic oscillator, angular momentum, the hydrogen atom, the
variation method, perturbation theory, and nuclear motion. Modern theoretical
concepts such as hermitian operators, Hilbert space, Dirac notation, and ladder
operators are introduced and used throughout.

This advanced text is appropriate for beginning graduate students in chem-
istry, chemical physics, molecular physics, and materials science.
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Preface

This book is intended as a text for a first-year physical-chemistry or chemical-
physics graduate course in quantum mechanics. Emphasis is placed on a
rigorous mathematical presentation of the principles of quantum mechanics
with applications serving as illustrations of the basic theory. The material is
normally covered in the first semester of a two-term sequence and is based on
the graduate course that I have taught from time to time at the University of
Pennsylvania. The book may also be used for independent study and as a
reference throughout and beyond the student’s academic program.

The first two chapters serve as an introduction to quantum theory. It is
assumed that the student has already been exposed to elementary quantum
mechanics and to the historical events that led to its development in an
undergraduate physical chemistry course or in a course on atomic physics.
Accordingly, the historical development of quantum theory is not covered. To
serve as a rationale for the postulates of quantum theory, Chapter 1 discusses
wave motion and wave packets and then relates particle motion to wave motion.
In Chapter 2 the time-dependent and time-independent Schrédinger equations
are introduced along with a discussion of wave functions for particles in a
potential field. Some instructors may wish to omit the first or both of these
chapters or to present abbreviated versions.

Chapter 3 is the heart of the book. It presents the postulates of quantum
mechanics and the mathematics required for understanding and applying the
postulates. This chapter stands on its own and does not require the student to
have read Chapters 1 and 2, although some previous knowledge of quantum
mechanics from an undergraduate course is highly desirable.

Chapters 4, 5, and 6 discuss basic applications of importance to chemists. In
all cases the eigenfunctions and eigenvalues are obtained by means of raising
and lowering operators. There are several advantages to using this ladder
operator technique over the older procedure of solving a second-order differ-

viii



Preface ix

ential equation by the series solution method. Ladder operators provide practice
for the student in operations that are used in more advanced quantum theory
and in advanced statistical mechanics. Moreover, they yield the eigenvalues
and eigenfunctions more simply and more directly without the need to
introduce generating functions and recursion relations and to consider asymp-
totic behavior and convergence. Although there is no need to invoke Hermite,
Legendre, and Laguerre polynomials when using ladder operators, these func-
tions are nevertheless introduced in the body of the chapters and their proper-
ties are discussed in the appendices. For traditionalists, the series-solution
method is presented in an appendix.

Chapters 7 and 8 discuss spin and identical particles, respectively, and each
chapter introduces an additional postulate. The treatment in Chapter 7 is
limited to spin one-half particles, since these are the particles of interest to
chemists. Chapter 8 provides the link between quantum mechanics and
statistical mechanics. To emphasize that link, the free-electron gas and Bose—
Einstein condensation are discussed. Chapter 9 presents two approximation
procedures, the variation method and perturbation theory, while Chapter 10
treats molecular structure and nuclear motion.

The first-year graduate course in quantum mechanics is used in many
chemistry graduate programs as a vehicle for teaching mathematical analysis.
For this reason, this book treats mathematical topics in considerable detail,
both in the main text and especially in the appendices. The appendices on
Fourier series and the Fourier integral, the Dirac delta function, and matrices
discuss these topics independently of their application to quantum mechanics.
Moreover, the discussions of Hermite, Legendre, associated Legendre, La-
guerre, and associated Laguerre polynomials in Appendices D, E, and F are
more comprehensive than the minimum needed for understanding the main
text. The intent is to make the book useful as a reference as well as a text.

I should like to thank Corpus Christi College, Cambridge for a Visiting
Fellowship, during which part of this book was written. I also thank Simon
Capelin, Jo Clegg, Miranda Fyfe, and Peter Waterhouse of the Cambridge
University Press for their efforts in producing this book.

Donald D. Fitts



1

The wave function

Quantum mechanics is a theory to explain and predict the behavior of particles
such as electrons, protons, neutrons, atomic nuclei, atoms, and molecules, as
well as the photon—the particle associated with electromagnetic radiation or
light. From quantum theory we obtain the laws of chemistry as well as
explanations for the properties of materials, such as crystals, semiconductors,
superconductors, and superfluids. Applications of quantum behavior give us
transistors, computer chips, lasers, and masers. The relatively new field of
molecular biology, which leads to our better understanding of biological
structures and life processes, derives from quantum considerations. Thus,
quantum behavior encompasses a large fraction of modern science and tech-
nology.

Quantum theory was developed during the first half of the twentieth century
through the efforts of many scientists. In 1926, E. Schrédinger interjected wave
mechanics into the array of ideas, equations, explanations, and theories that
were prevalent at the time to explain the growing accumulation of observations
of quantum phenomena. His theory introduced the wave function and the
differential wave equation that it obeys. Schrodinger’s wave mechanics is now
the backbone of our current conceptional understanding and our mathematical
procedures for the study of quantum phenomena.

Our presentation of the basic principles of quantum mechanics is contained
in the first three chapters. Chapter 1 begins with a treatment of plane waves
and wave packets, which serves as background material for the subsequent
discussion of the wave function for a free particle. Several experiments, which
lead to a physical interpretation of the wave function, are also described. In
Chapter 2, the Schrodinger differential wave equation is introduced and the
wave function concept is extended to include particles in an external potential
field. The formal mathematical postulates of quantum theory are presented in
Chapter 3.



2 The wave function

1.1 Wave motion

Plane wave
A simple stationary harmonic wave can be represented by the equation

27x

Y(x) = cos e

and is illustrated by the solid curve in Figure 1.1. The distance 1 between peaks
(or between troughs) is called the wavelength of the harmonic wave. The value
of 1(x) for any given value of x is called the amplitude of the wave at that
point. In this case the amplitude ranges from +1 to —1. If the harmonic wave is
A cos(2mx /1), where A is a constant, then the amplitude ranges from +4 to
—A. The values of x where the wave crosses the x-axis, i.e., where 1(x) equals
zero, are the nodes of Y (x).

If the wave moves without distortion in the positive x-direction by an amount
Xo, it becomes the dashed curve in Figure 1.1. Since the value of ¥(x) at any
point x on the new (dashed) curve corresponds to the value of y(x) at point
X — xp on the original (solid) curve, the equation for the new curve is

27

Y(x) = cos —=(x = xo)

If the harmonic wave moves in time at a constant velocity v, then we have the
relation xo = vt, where  is the elapsed time (in seconds), and 1(x) becomes

Y(x, t) = cos 2Tﬂ(x —v1)

Suppose that in one second, v cycles of the harmonic wave pass a fixed point
on the x-axis. The quantity v is called the frequency of the wave. The velocity

Y(x)

Figure 1.1 A stationary harmonic wave. The dashed curve shows the displacement of
the harmonic wave by xg.
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v of the wave is then the product of v cycles per second and A, the length of
each cycle
v=vi

and y(x, ) may be written as
Y(x, t) =cos2m (% — vt)

It is convenient to introduce the wave number k, defined as
27
= T (1.1)
and the angular frequency w, defined as
w =27y (1.2)
Thus, the velocity v becomes v = w/k and the wave ¥(x, t) takes the form
PY(x, t) = cos(kx — wt)
The harmonic wave may also be described by the sine function
Y(x, t) = sin(kx — wt)
The representation of ¥ (x, 7) by the sine function is completely equivalent to
the cosine-function representation; the only difference is a shift by 4/4 in the
value of x when ¢ = 0. Moreover, any linear combination of sine and cosine
representations is also an equivalent description of the simple harmonic wave.
The most general representation of the harmonic wave is the complex function

Y(x, 1) = cos(kx — wt) + isin(kx — wf) = k=) (1.3)
where i equals v/—1 and equation (A.31) from Appendix A has been intro-

duced. The real part, cos(kx — wt), and the imaginary part, sin(kx — wt), of the
complex wave, (1.3), may be readily obtained by the relations

Re[e®2D] = cos(kx — wf) = %[w(x, N+ v*(x, 1]

Imwwwﬂ:th—wﬂzéwwﬂ—wﬁnm

where 1™ (x, t) is the complex conjugate of y(x, ?)

Y*(x, 1) = cos(kx — wt) — isin(kx — wt) = e =)
The function 1™ (x, ¢) also represents a harmonic wave moving in the positive
x-direction.

The functions exp[i(kx + w?)] and exp[—i(kx + w?)] represent harmonic
waves moving in the negative x-direction. The quantity (kx 4+ wt) is equal to
k(x +vt) or k(x+ xp). After an elapsed time ¢, the value of the shifted
harmonic wave at any point x corresponds to the value at the point x + x; at
time ¢ = 0. Thus, the harmonic wave has moved in the negative x-direction.



4 The wave function

The moving harmonic wave (x, ) in equation (1.3) is also known as a
plane wave. The quantity (kx — wt) is called the phase. The velocity w/k is

known as the phase velocity and henceforth is designated by vy, so that

w
Uph = ; (14)

Composite wave
A composite wave is obtained by the addition or superposition of any number
of plane waves

W(x, 1) = djelhrmesd (1.5)
J=1

where A4; are constants. Equation (1.5) is a Fourier series representation of
W(x, t). Fourier series are discussed in Appendix B. The composite wave
W(x, t) is not a moving harmonic wave, but rather a superposition of »n plane
waves with different wavelengths and frequencies and with different ampli-
tudes A4;. Each plane wave travels with its own phase velocity vy, ;, such that
_9j
Uph,j = 7]
As a consequence, the profile of this composite wave changes with time. The
wave numbers k; may be positive or negative, but we will restrict the angular
frequencies w; to positive values. A plane wave with a negative value of & has
a negative value for its phase velocity and corresponds to a harmonic wave
moving in the negative x-direction. In general, the angular frequency
depends on the wave number k. The dependence of w(k) is known as the law
of dispersion for the composite wave.
In the special case where the ratio w(k)/k is the same for each of the
component plane waves, so that
Wy Wy _ Wy
ok
then each plane wave moves with the same velocity. Thus, the profile of the
composite wave does not change with time even though the angular frequencies
and the wave numbers differ. For this undispersed wave motion, the angular
frequency w(k) is proportional to |k|
w(k) = clk| (1.6)
where c is a constant and, according to equation (1.4), is the phase velocity of
each plane wave in the composite wave. Examples of undispersed wave motion
are a beam of light of mixed frequencies traveling in a vacuum and the
undamped vibrations of a stretched string.
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For dispersive wave motion, the angular frequency w(k) is not proportional
to | k|, so that the phase velocity vy, varies from one component plane wave to
another. Since the phase velocity in this situation depends on £, the shape of
the composite wave changes with time. An example of dispersive wave motion
is a beam of light of mixed frequencies traveling in a dense medium such as
glass. Because the phase velocity of each monochromatic plane wave depends
on its wavelength, the beam of light is dispersed, or separated onto its
component waves, when passed through a glass prism. The wave on the surface
of water caused by dropping a stone into the water is another example of
dispersive wave motion.

Addition of two plane waves
As a specific and yet simple example of composite-wave construction and
behavior, we now consider in detail the properties of the composite wave
W(x, t) obtained by the addition or superposition of the two plane waves
exp[i(k1x — w;?)] and exp[i(krx — w, )]

W(x, 1) = elhiv-on 4 gitkr-0) (1.7)
We define the average values k and @ and the differences Ak and Aw for the
two plane waves in equation (1.7) by the relations

%_k1+k2 5 VLt o
2 n 2
Ak:kl—kz Aa)za)l—a)z
so that
- Ak — Ak
kl_k+7’ kz—k—T
» __+Aa) Ao
1 =w 2, Wy = w 2

Using equation (A.32) from Appendix A, we may now write equation (1.7) in
the form

W(x, 1) = ei(%xfwt)[ei(Akfowt)ﬂ i efi(Akfowt)/2]

Akx — Awt\ 7z
= 2cos (%) glthx=o0 (1.8)

Equation (1.8) represents a plane wave exp[i(kx — @¢)] with wave number £,
angular frequency @, and phase velocity @/ k, but with its amplitude modulated
by the function 2 cos[(Akx — Awt)/2]. The real part of the wave (1.8) at some
fixed time ¢, is shown in Figure 1.2(a). The solid curve is the plane wave with
wavelength A = 27t/k and the dashed curve shows the profile of the amplitude
of the plane wave. The profile is also a harmonic wave with wavelength
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| 47/ Ak |

Re W(x, 1) / ‘W\ﬂ\ , ﬂq\ /H\n\

(@)

Re W(x, 7) N -~ / —~~
\ p \ \
/ /ﬂ \ /A p\ ]\ N / /[\ \
\ \ \
/ \ /
/ \ / \
L ALLIAL
y A .
\/N\ N A \
/N \ AR
/ \ ! \ /
\ , / \ /
\ /
M /U // N \VJ/ 4 \ //
)

Figure 1.2 (a) The real part of the superposition of two plane waves is shown by the
solid curve. The profile of the amplitude is shown by the dashed curve. (b) The
positions of the curves in Figure 1.2(a) after a short time interval.

47 /Ak. At the points of maximum amplitude, the two original plane waves
interfere constructively. At the nodes in Figure 1.2(a), the two original plane
waves interfere destructively and cancel each other out.

As time increases, the plane wave exp[i(kx — @)] moves with velocity @/ k.
If we consider a fixed point x; and watch the plane wave as it passes that point,
we observe not only the periodic rise and fall of the amplitude of the
unmodified plane wave exp[i(kx — @1)], but also the overlapping rise and fall
of the amplitude due to the modulating function 2 cos[(Akx — Awt)/2]. With-
out the modulating function, the plane wave would reach the same maximum
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and the same minimum amplitude with the passage of each cycle. The
modulating function causes the maximum (or minimum) amplitude for each
cycle of the plane wave to oscillate with frequency Aw /2.

The pattern in Figure 1.2(a) propagates along the x-axis as time progresses.
After a short period of time At, the wave (1.8) moves to a position shown in
Figure 1.2(b). Thus, the position of maximum amplitude has moved in the
positive x-direction by an amount v,At, where v, is the group velocity of the
composite wave, and is given by

Aw
=— 1.
Ak (1.9)

The expression (1.9) for the group velocity of a composite of two plane waves
is exact.

In the special case when k, equals —k; and w, equals w; in equation (1.7),
the superposition of the two plane waves becomes

W(x, f) = k0 4 ilbrton (1.10)

Ug

where
k=k =—-k

w=w; =wy

The two component plane waves in equation (1.10) travel with equal phase
velocities w/ k, but in opposite directions. Using equations (A.31) and (A.32),
we can express equation (1.10) in the form

W(x, 1) = (™ 4 e F)e !
= 2 cos kxe 1!

= 2cos kx(coswt —isinwt)

We see that for this special case the composite wave is the product of two
functions: one only of the distance x and the other only of the time 7. The
composite wave W(x, f) vanishes whenever cos kx is zero, i.e., when kx = 77/2,
37/2, 57/2, ..., regardless of the value of ¢. Therefore, the nodes of W(x, #)
are independent of time. However, the amplitude or profile of the composite
wave changes with time. The real part of W(x, ) is shown in Figure 1.3. The
solid curve represents the wave when cosw? is a maximum, the dotted curve
when coswt is a minimum, and the dashed curve when coswt? has an
intermediate value. Thus, the wave does not travel, but pulsates, increasing and
decreasing in amplitude with frequency w. The imaginary part of W(x, )
behaves in the same way. A composite wave with this behavior is known as a
standing wave.
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Re W(x, )

Figure 1.3 A standing harmonic wave at various times.

1.2 Wave packet

We now consider the formation of a composite wave as the superposition of a
continuous spectrum of plane waves with wave numbers k confined to a narrow
band of values. Such a composite wave W(x, ¢) is known as a wave packet and
may be expressed as

W(x, 1) = \/%r A(k)e'F=e0dk (1.11)

The weighting factor A(k) for each plane wave of wave number £ is negligible
except when k lies within a small interval Ak. For mathematical convenience
we have included a factor (277)"/2 on the right-hand side of equation (1.11).
This factor merely changes the value of A(k) and has no other effect.

We note that the wave packet W(x, ¢) is the inverse Fourier transform of
A(k). The mathematical development and properties of Fourier transforms are
presented in Appendix B. Equation (1.11) has the form of equation (B.19).
According to equation (B.20), the Fourier transform A(k) is related to W(x, ¢)

by

—00

A(k) = \/% r W(x, e =00 dx (1.12)

It is because of the Fourier relationships between W(x, ¢) and A(k) that the
factor (277)~'/2 is included in equation (1.11). Although the time ¢ appears in
the integral on the right-hand side of (1.12), the function A(k) does not depend
on £; the time dependence of W(x, f) cancels the factor e/, We consider below

—0o0
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two specific examples for the functional form of A(k). However, in order to
evaluate the integral over k£ in equation (1.11), we also need to know the
dependence of the angular frequency w on the wave number £.

In general, the angular frequency w(k) is a function of £, so that the angular
frequencies in the composite wave W(x, ¢), as well as the wave numbers, vary
from one plane wave to another. If w(k) is a slowly varying function of & and
the values of & are confined to a small range A%, then w(k) may be expanded
in a Taylor series in k about some point &y within the interval Ak

2
w(k) = wo + (j—i)o(k — ko) +% (2%)0(/( — ko)> + -+ (1.13)

where wy is the value of w(k) at k( and the derivatives are also evaluated at k.
We may neglect the quadratic and higher-order terms in the Taylor expansion
(1.13) because the interval Ak and, consequently, £ — ky are small. Substitu-
tion of equation (1.13) into the phase for each plane wave in (1.11) then gives

d
Jx — ot ~ (k — ko + ko)x — wot — (—‘”> (k — ko)t
dk /,
dw
= kox — wot + |x — <—> t|(k— ko)
dk /
so that equation (1.11) becomes
W(x, f) = B(x, t)ekox=woD) (1.14)
where
1 (=™ .
B(x, t) = — A(k)er—de/dRotk=ko) q ¢ 1.15
== (1.15)

Thus, the wave packet W(x, ¢) represents a plane wave of wave number &, and
angular frequency w, with its amplitude modulated by the factor B(x, ¢). This
modulating function B(x, ) depends on x and ¢ through the relationship
[x — (dw/dk)ot]. This situation is analogous to the case of two plane waves as
expressed in equations (1.7) and (1.8). The modulating function B(x, ¢) moves
in the positive x-direction with group velocity v, given by

dw
Vg = <@>0 (1.16)

In contrast to the group velocity for the two-wave case, as expressed in
equation (1.9), the group velocity in (1.16) for the wave packet is not uniquely
defined. The point kg is chosen arbitrarily and, therefore, the value at & of the
derivative dw/dk varies according to that choice. However, the range of £ is
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narrow and w(k) changes slowly with k, so that the variation in v, is small.
Combining equations (1.15) and (1.16), we have

1 (> ,
B(x, z):EJ A(k)el—veDk=ko) g (1.17)

Since the function A(k) is the Fourier transform of W(x, ¢), the two functions
obey Parseval’s theorem as given by equation (B.28) in Appendix B

—00

JOO |W(x, £)*dx = JOC |B(x, £)|* dx = JOC |A(k)|* dk (1.18)

—00 —00 —

Gaussian wave number distribution
In order to obtain a specific mathematical expression for the wave packet, we
need to select some form for the function A(k). In our first example we choose
A(k) to be the gaussian function
b ke
A(k) Joma e (1.19)
This function A(k) is a maximum at wave number k, which is also the average

value for k for this distribution of wave numbers. Substitution of equation
(1.19) into (1.17) gives

1 2 2
W(x, )] = B(x, f) = ——e * (0:/2 (1.20)
V2n

where equation (A.8) has been used. The resulting modulating factor B(x, 7) is
also a gaussian function—following the general result that the Fourier transform
of a gaussian function is itself gaussian. We have also noted in equation (1.20)
that B(x, f) is always positive and is therefore equal to the absolute value
|W(x, 7)| of the wave packet. The functions A(k) and |W(x, #)| are shown in
Figure 1.4.

A(k) _ [W(x, 1)l
--1"\2ra

(@ ky—V2a ky ky+V2a

(b) ugz—\/—z

Figure 1.4 (@) A gaussian wave number distribution. (») The modulating function
corresponding to the wave number distribution in Figure 1.4(a).
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Figure 1.5 shows the real part of the plane wave exp[i(kox — w¢?)] with its
amplitude modulated by B(x, ?) of equation (1.20). The plane wave moves in
the positive x-direction with phase velocity vy, equal to wo/ ky. The maximum
amplitude occurs at x = v,¢ and propagates in the positive x-direction with
group velocity v, equal to (dw/dk)o.

The value of the function 4(k) falls from its maximum value of (v/27a)~! at
ko to 1/e of its maximum value when |k — ko| equals v/2a. Most of the area
under the curve (actually 84.3%) comes from the range

—V2a< (k- k0)<\/§a

Thus, the distance v/2a may be regarded as a measure of the width of the
distribution A(k) and is called the half width. The half width may be defined
using 1/2 or some other fraction instead of 1/e. The reason for using 1/e is
that the value of £ at that point is easily obtained without consulting a table of
numerical values. These various possible definitions give different numerical
values for the half width, but all these values are of the same order of
magnitude. Since the value of |W(x, 7)| falls from its maximum value of
(271)""/% to 1/e of that value when |x — vyt| equals v/2/a, the distance v/2/a
may be considered the half width of the wave packet.

When the parameter o is small, the maximum of the function A(k) is high
and the function drops off in value rapidly on each side of &, giving a small
value for the half width. The half width of the wave packet, however, is large
because it is proportional to 1/a. On the other hand, when the parameter a is
large, the maximum of A(k) is low and the function drops off slowly, giving a
large half width. In this case, the half width of the wave packet becomes small.

If we regard the uncertainty Ak in the value of & as the half width of the
distribution 4(k) and the uncertainty Ax in the position of the wave packet as
its half width, then the product of these two uncertainties is

AxAk =2

Al
VVV vvv

Figure 1.5 The real part of a wave packet for a gaussian wave number distribution.
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Thus, the product of these two uncertainties Ax and Ak is a constant of order
unity, independent of the parameter a.

Square pulse wave number distribution
As a second example, we choose A(k) to have a constant value of unity for k&
between &y and %, and to vanish elsewhere, so that

A(k) =1, hh<k=<k
=0, k<ki, k>k

as illustrated in Figure 1.6(a). With this choice for A(k), the modulating
function B(x, t) in equation (1.17) becomes

(1.21)

1"
B(x, t) = —J el vek=ho) g

V27 )k,

_ ! eile—vuka ko) _ ite-0, 001~ ko
V27i(x — vg1)
_ 1 Q0 DAK/2 _ o i(r—0,0AK[2)
V2Ti(x — vgt)
_ \ﬁ sin[(x — vg)Ak/2] 1.22)
T X — Vgt '

where kj is chosen to be (k; + k3)/2, Ak is defined as (k; — k), and equation
(A.33) has been used. The function B(x, ¢) is shown in Figure 1.6(b).

The real part of the wave packet W(x, f) obtained from combining equations
(1.14) and (1.22) is shown in Figure 1.7. The amplitude of the plane wave
exp[i(kox — wo?)] is modulated by the function B(x, f) of equation (1.22),
which has a maximum when (x — v,f) equals zero, i.e., when x = vyt. The
nodes of B(x, ) nearest to the maximum occur when (x — vg#)Ak/2 equals
+m, i.e., when x is +(271/Ak) from the point of maximum amplitude. If we
consider the half width of the wave packet between these two nodes as a
measure of the uncertainty Ax in the location of the wave packet and the width
(k2 — k1) of the square pulse A(k) as a measure of the uncertainty Ak in the
value of £, then the product of these two uncertainties is

AxAk = 2w

Uncertainty relation

We have shown in the two examples above that the uncertainty Ax in the
position of a wave packet is inversely related to the uncertainty Ak in the wave
numbers of the constituent plane waves. This relationship is generally valid and
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Figure 1.6 (a) A square pulse wave number distribution. (b) The modulating function
corresponding to the wave number distribution in Figure 1.6(a).
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Figure 1.7 The real part of a wave packet for a square pulse wave number distribution.
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is a property of Fourier transforms. In order to localize a wave packet so that
the uncertainty Ax is very small, it is necessary to employ a broad spectrum of
plane waves in equations (1.11) or (1.17). The function A(k) must have a wide
distribution of wave numbers, giving a large uncertainty Ak. If the distribution
A(k) is very narrow, so that the uncertainty Ak is small, then the wave packet
becomes broad and the uncertainty Ax is large.

Thus, for all wave packets the product of the two uncertainties has a lower
bound of order unity

AxAk = 1 (1.23)

The lower bound applies when the narrowest possible range Ak of values for k&
is used in the construction of the wave packet, so that the quadratic and higher-
order terms in equation (1.13) can be neglected. If a broader range of & is
allowed, then the product AxAk can be made arbitrarily large, making the
right-hand side of equation (1.23) a lower bound. The actual value of the lower
bound depends on how the uncertainties are defined. Equation (1.23) is known
as the uncertainty relation.

A similar uncertainty relation applies to the variables ¢ and w. To show this
relation, we write the wave packet (1.11) in the form of equation (B.21)

W(x, 1) = \/% ro G(w)e ™D de (1.24)

where the weighting factor G(w) has the form of equation (B.22)

—0o0

| .

Glw) = — W(x, f)e =0 gy

@ == W

In the evaluation of the integral in equation (1.24), the wave number k is
regarded as a function of the angular frequency w, so that in place of (1.13) we
have

—0o0

dk

k(w) = ko + <£>O(w —wp) + -

If we neglect the quadratic and higher-order terms in this expansion, then
equation (1.24) becomes

W, 1) = C, et
where
1 (® _
Clx, t) = — A(w)e il—@k/dw)xl@-wo) 4,
0 \/%J (@)

As before, the wave packet is a plane wave of wave number k( and angular
frequency wq with its amplitude modulated by a factor that moves in the
positive x-direction with group velocity v, given by equation (1.16). Following

—0o0
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the previous analysis, if we select a specific form for the modulating function
G(w) such as a gaussian or a square pulse distribution, we can show that the
product of the uncertainty Af in the time variable and the uncertainty Aw in
the angular frequency of the wave packet has a lower bound of order unity, i.e.

Athw = 1 (1.25)

This uncertainty relation is also a property of Fourier transforms and is valid
for all wave packets.

1.3 Dispersion of a wave packet

In this section we investigate the change in contour of a wave packet as it
propagates with time.

The general expression for a wave packet W(x, ¢) is given by equation
(1.11). The weighting factor A(k) in (1.11) is the inverse Fourier transform of
W(x, t) and is given by (1.12). Since the function A(k) is independent of time,
we may set ¢ equal to any arbitrary value in the integral on the right-hand side
of equation (1.12). If we let ¢ equal zero in (1.12), then that equation becomes

A(k) = \/%[J W(E, 0)e kS dE (1.26)

where we have also replaced the dummy variable of integration by &. Substitu-
tion of equation (1.26) into (1.11) yields

—00

1| |
W(x, ) = > ” W(E, 0)ellF—9-o0 qr dg (1.27)

Since the limits of integration do not depend on the variables & and £, the order
of integration over these variables may be interchanged.

Equation (1.27) relates the wave packet W(x, ) at time ¢ to the wave packet
W(x, 0) at time ¢ = 0. However, the angular frequency w(k) is dependent on £
and the functional form must be known before we can evaluate the integral
over k.

If w(k) is proportional to | k| as expressed in equation (1.6), then (1.27) gives

1| .
W, 1) =5~ ” W(E, 0)ef—c=5 qf dE

The integral over & may be expressed in terms of the Dirac delta function
through equation (C.6) in Appendix C, so that we have
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o0

W(x, t) = J W, 0)0(x — ct — &) dE = WP(x — ct, 0)

—00
Thus, the wave packet W(x, 7) has the same value at point x and time ¢ that it
had at point x — ct at time ¢t = 0. The wave packet has traveled with velocity ¢
without a change in its contour, i.e., it has traveled without dispersion. Since
the phase velocity vy, is given by wg/ ko = c and the group velocity v, is given
by (dw/dk)y = ¢, the two velocities are the same for an undispersed wave
packet.

We next consider the more general situation where the angular frequency
w(k) is not proportional to |k|, but is instead expanded in the Taylor series
(1.13) about (k — k¢). Now, however, we retain the quadratic term, but still
neglect the terms higher than quadratic, so that

w(k) = wg + va(k — ko) + y(k — ko)

where equation (1.16) has been substituted for the first-order derivative and y
is an abbreviation for the second-order derivative

:1<d2_w>
r=3\az/,

The phase in equation (1.27) then becomes
k(x = &) —wt = (k — ko)(x — &) + ko(x — §) — wot
— vgt(k — ko) — yt(k — ko)

= kox — wot — ko& + (x — vgt — E)(k — ko) — yt(k — ko)
so that the wave packet (1.27) takes the form

. 00
i(kox—awot)

Wy 0= ” W(E, 0)ehokeite—re =~k iy k—k? Gt 4

The subscript y has been included in the notation W,(x, f) in order to
distinguish that wave packet from the one in equations (1.14) and (1.15), where
the quadratic term in w(k) is omitted. The integral over & may be evaluated
using equation (A.8), giving the result

) 00
i(kox—awot)

T | wiE 0)e-ikEe—(-ver—£7 /4yt g 1.28
o ” (& 0)e ihée & amw

—00
Equation (1.28) relates the wave packet at time ¢ to the wave packet at time
t = 0 if the k-dependence of the angular frequency includes terms up to k.
The profile of the wave packet W, (x, 7) changes as time progresses because of

W, (x, 1) =
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the factor /2 before the integral and the ¢ in the exponent within the integral.
If we select a specific form for the wave packet at time ¢ = 0, the nature of this
time dependence becomes more evident.

Gaussian wave packet
Let us suppose that W(x, 0) has the gaussian distribution (1.20) as its profile, so
that equation (1.14) at time # = 0 is

. 1.
W(E 0) = e BE ) = e (1.29)

Substitution of equation (1.29) into (1.28) gives
ei(k())C*(,Uo 1) J’OO

27/ 21yt
The integral may be evaluated using equation (A.8) accompanied with some

tedious, but straightforward algebraic manipulations, yielding
ei(kox—a)ol)

W, (x, )=
/(1) V271 + 2ia2y 1)

The wave packet, then, consists of the plane wave expi[kox — wo?] with its
amplitude modulated by

Wy(x, t) _ e—azéz/Ze—(x—Ugt—§)2/4iyt dg

—0o0

o=@ (r—0g1P /2(142icy 1) (1.30)

1 efaz(vag 2 /2(142ia%y £)
V27(1 + 2ia?yt)
which is a complex function that depends on the time 7. When y equals zero so
that the quadratic term in w(k) is neglected, this complex modulating function
reduces to B(x, t) in equation (1.20). The absolute value |W,(x, )| of the wave
packet (1.30) is given by

|IP}’(X9 t)l =

1

(275)1/2(1 + 40(4)/2 t2)1/4 ©

We now contrast the behavior of the wave packet in equation (1.31) with that
of the wave packet in (1.20). At any time ¢, the maximum amplitudes of both
occur at x = v,t and travel in the positive x-direction with the same group
velocity v,. However, at that time f, the value of |W,(x, )| is 1/e of its
maximum value when the exponent in equation (1.31) is unity, so that the half
width or uncertainty Ax for W, (x, #)| is given by

—aX(x—vg 1) /2(14+4aty? 1) (1.31)

p
Ax = |x — vgt] = % 1+ daiy2p2

Moreover, the maximum amplitude for ¥, (x, #)| at time ¢ is given by
(27_[)—1/2(1 + 4a4'}/2t2)_1/4
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As time increases from —oo to 0, the half width of the wave packet |, (x, ?)|
continuously decreases and the maximum amplitude continuously increases. At
t = 0 the half width attains its lowest value of \/5/ a and the maximum
amplitude attains its highest value of 1/+/27, and both values are in agreement
with the wave packet in equation (1.20). As time increases from 0 to oo, the
half width continuously increases and the maximum amplitude continuously
decreases. Thus, as #> increases, the wave packet |W, (x, )| remains gaussian
in shape, but broadens and flattens out in such a way that the area under the
square |W,(x, 7)|* of the wave packet remains constant over time at a value of
(2v/ma)~!, in agreement with Parseval’s theorem (1.18).
The product AxAk for this spreading wave packet W, (x, ) is

AxAk = 2+/1 + 4a*y?t?
and increases as |#| increases. Thus, the value of the right-hand side when ¢ = 0

is the lower bound for the product AxAk and is in agreement with the
uncertainty relation (1.23).

1.4 Particles and waves

To explain the photoelectric effect, Einstein (1905) postulated that light, or
electromagnetic radiation, consists of a beam of particles, each of which travels
at the same velocity c (the speed of light), where ¢ has the value

c=2.99792 % 10* ms™!

Each particle, later named a photon, has a characteristic frequency v and an
energy hv, where /4 is Planck’s constant with the value

h=6.62608 X 10734 Js

The constant / and the hypothesis that energy is quantized in integral multiples
of hv had previously been introduced by M. Planck (1900) in his study of
blackbody radiation.! In terms of the angular frequency w defined in equation
(1.2), the energy E of a photon is

E=%hw (1.32)
where 7 is defined by

h
fi=—=1.05457 X107 Jsg
27

Because the photon travels with velocity ¢, its motion is governed by relativity

! The history of the development of quantum concepts to explain observed physical phenomena, which
occurred mainly in the first three decades of the twentieth century, is discussed in introductory texts on
physical chemistry and on atomic physics. A much more detailed account is given in M. Jammer (1966)
The Conceptual Development of Quantum Mechanics (McGraw-Hill, New York).
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theory, which requires that its rest mass be zero. The magnitude of the
momentum p for a particle with zero rest mass is related to the relativistic
energy E by p = E/c, so that

E_w_to

p:—_
C c C

Since the velocity ¢ equals w/k, the momentum is related to the wave number
k for a photon by

p=hk (1.33)

Einstein’s postulate was later confirmed experimentally by A. Compton (1924).

Noting that it had been fruitful to regard light as having a corpuscular nature,
L. de Broglie (1924) suggested that it might be useful to associate wave-like
behavior with the motion of a particle. He postulated that a particle with linear
momentum p be associated with a wave whose wavelength A is given by

A= 27 = h (1.34)
kp

and that expressions (1.32) and (1.33) also apply to particles. The hypothesis of
wave properties for particles and the de Broglie relation (equation (1.34)) have
been confirmed experimentally for electrons by G. P. Thomson (1927) and by
Davisson and Germer (1927), for neutrons by E. Fermi and L. Marshall (1947),
and by W. H. Zinn (1947), and for helium atoms and hydrogen molecules by I.
Estermann, R. Frisch, and O. Stern (1931).

The classical, non-relativistic energy E for a free particle, i.e., a particle in
the absence of an external force, is expressed as the sum of the kinetic and
potential energies and is given by

1, p2
E=—mv+V=—+4+V (1.35)
2 2m

where m is the mass and v the velocity of the particle, the linear momentum p
is

p=mv
and V'is a constant potential energy. The force F acting on the particle is given
by

F=——=0
dx

and vanishes because V is constant. In classical mechanics the choice of the
zero-level of the potential energy is arbitrary. Since the potential energy for the
free particle is a constant, we may, without loss of generality, take that constant
value to be zero, so that equation (1.35) becomes
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2
E=2 (1.36)

2m
Following the theoretical scheme of Schrodinger, we associate a wave packet
W(x, ) with the motion in the x-direction of this free particle. This wave
packet is readily constructed from equation (1.11) by substituting (1.32) and

(1.33) for w and £, respectively

1 (™ :
W(x, z):ﬁj A(p)e P =B/t qp (1.37)

where, for the sake of symmetry between W(x, 1) and 4(p), a factor #~'/? has
been absorbed into A(p). The function A(k) in equation (1.12) is now
712 A(p), so that

1™ .
A(p):—znﬁj W(x, f)e (P—E/R gy (1.38)

The law of dispersion for this wave packet may be obtained by combining
equations (1.32), (1.33), and (1.36) to give
E p* hi?
O = = 2k~ 2m
This dispersion law with @ proportional to k* is different from that for
undispersed light waves, where w is proportional to k.

If w(k) in equation (1.39) is expressed as a power series in k — kg, we obtain
W o
2m m
This expansion is exact; there are no terms of higher order than quadratic.
From equation (1.40) we see that the phase velocity vy, of the wave packet is
given by

(1.39)

w(k) = (k — ko) + %(k — ko)? (1.40)

wo ﬁk()
=—=— 1.41
Uph k() 2m ( )
and the group velocity v, is
dw ﬁko
=|—) =— 1.42
Ve <dk> o m (142)
while the parameter y of equations (1.28), (1.30), and (1.31) is
1 d2a)> h
——_ = == 1.4
=3 <dk2 0 2m (143)

If we take the derivative of w(k) in equation (1.39) with respect to k and use
equation (1.33), we obtain

do _#k_p_,
dk  m m
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Thus, the velocity v of the particle is associated with the group velocity v, of
the wave packet
V=0,
If the constant potential energy V in equation (1.35) is set at some arbitrary
value other then zero, then equation (1.39) takes the form

k> vV
a)(k) = ﬁ + %
and the phase velocity vy, becomes
ko V.
Uph a 2m + ﬁko

Thus, both the angular frequency w(k) and the phase velocity vy, are
dependent on the choice of the zero-level of the potential energy and are
therefore arbitrary; neither has a physical meaning for a wave packet represent-
ing a particle.

Since the parameter y is non-vanishing, the wave packet will disperse with
time as indicated by equation (1.28). For a gaussian profile, the absolute value
of the wave packet is given by equation (1.31) with y given by (1.43). We note
that v is proportional to m~!, so that as m becomes larger, ¥ becomes smaller.
Thus, for heavy particles the wave packet spreads slowly with time.

As an example, the value of y for an electron, which has a mass of
9.11 X 103" kg, is 5.78 X 107> m?s~!. For a macroscopic particle whose
mass is approximately a microgram, say 9.11 X 10~'° kg in order to make the
calculation easier, the value of y is 5.78 X 10726 m?s~!. The ratio of the
macroscopic particle to the electron is 10?!. The time dependence in the
dispersion terms in equations (1.31) occurs as the product y¢. Thus, for the
same extent of spreading, the macroscopic particle requires a factor of 10!
longer than the electron.

1.5 Heisenberg uncertainty principle

Since a free particle is represented by the wave packet W(x, 7), we may regard
the uncertainty Ax in the position of the wave packet as the uncertainty in the
position of the particle. Likewise, the uncertainty Ak in the wave number is
related to the uncertainty A p in the momentum of the particle by Ak = Ap/h.
The uncertainty relation (1.23) for the particle is, then
AxAp = h (1.44)
This relationship is known as the Heisenberg uncertainty principle.
The consequence of this principle is that at any instant of time the position
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of the particle is defined only as a range Ax and the momentum of the particle
is defined only as a range A p. The product of these two ranges or ‘uncertain-
ties’ is of order 7 or larger. The exact value of the lower bound is dependent on
how the uncertainties are defined. A precise definition of the uncertainties in
position and momentum is given in Sections 2.3 and 3.10.

The Heisenberg uncertainty principle is a consequence of the stipulation that
a quantum particle is a wave packet. The mathematical construction of a wave
packet from plane waves of varying wave numbers dictates the relation (1.44).
It is not the situation that while the position and the momentum of the particle
are well-defined, they cannot be measured simultaneously to any desired degree
of accuracy. The position and momentum are, in fact, not simultaneously
precisely defined. The more precisely one is defined, the less precisely is the
other, in accordance with equation (1.44). This situation is in contrast to
classical-mechanical behavior, where both the position and the momentum can,
in principle, be specified simultaneously as precisely as one wishes.

In quantum mechanics, if the momentum of a particle is precisely specified
so that p = py and A p = 0, then the function A(p) is

A(p) = o(p — po)
The wave packet (1.37) then becomes

S P Y PRI ¢ o)
W)= | o= po Iy =
which is a plane wave with wave number py/f and angular frequency E/%.
Such a plane wave has an infinite value for the uncertainty Ax. Likewise, if the
position of a particle is precisely specified, the uncertainty in its momentum is
infinite.

Another Heisenberg uncertainty relation exists for the energy E of a particle
and the time ¢ at which the particle has that value for the energy. The
uncertainty Aw in the angular frequency of the wave packet is related to the
uncertainty AE in the energy of the particle by Aw = AE/f, so that the
relation (1.25) when applied to a free particle becomes

AEAt =t (1.45)

Again, this relation arises from the representation of a particle by a wave
packet and is a property of Fourier transforms.

The relation (1.45) may also be obtained from (1.44) as follows. The
uncertainty AFE is the spread of the kinetic energies in a wave packet. If Ap is
small, then AE is related to A p by

—00

2
AE:A(p—) —PAp (1.46)
m

2m
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The time At for a wave packet to pass a given point equals the uncertainty in
its position x divided by the group velocity v,
A A
Ar=" 0 A (1.47)
Ug v p
Combining equations (1.46) and (1.47), we see that AEAt = AxAp. Thus, the
relation (1.45) follows from (1.44). The Heisenberg uncertainty relation (1.45)

is treated more thoroughly in Section 3.10.

1.6 Young’s double-slit experiment

The essential features of the particle—wave duality are clearly illustrated by
Young’s double-slit experiment. In order to explain all of the observations of
this experiment, light must be regarded as having both wave-like and particle-
like properties. Similar experiments on electrons indicate that they too possess
both particle-like and wave-like characteristics. The consideration of the
experimental results leads directly to a physical interpretation of Schrodinger’s
wave function, which is presented in Section 1.8.

The experimental apparatus is illustrated schematically in Figure 1.8. Mono-
chromatic light emitted from the point source S is focused by a lens L onto a
detection or observation screen D. Between L and D is an opaque screen with
two closely spaced slits A and B, each of which may be independently opened
or closed.

A monochromatic light beam from S passing through the opaque screen with
slit A open and slit B closed gives a diffraction pattern on D with an intensity
distribution /4 as shown in Figure 1.9(a). In that figure the points A and B are
directly in line with slits A and B, respectively. If slit A is closed and slit B
open, the intensity distribution of the diffraction pattern is given by the curve
labeled /g in Figure 1.9(a). For an experiment in which slit A is open and slit
B is closed half of the time, while slit A is closed and slit B is open the other
half of the time, the resulting intensity distribution is the sum of /5 and /g, as
shown in Figure 1.9(b). However, when both slits are open throughout an

D
Lpla

Figure 1.8 Diagram of Young’s double-slit experiment.
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Figure 1.9 (@) Intensity distributions /5 from slit A alone and /g from slit B alone. (b)
The sum of the intensity distributions /5 and /. (c) The intensity interference pattern
when slits A and B are open simultaneously.

experiment, an interference pattern as shown in Figure 1.9(c) is observed. The
intensity pattern in this case is not the sum /4 + /g, but rather an alternating
series of bright and dark interference fringes with a bright maximum midway
between points A and B. The spacing of the fringes depends on the distance
between the two slits.

The wave theory for light provides a satisfactory explanation for these
observations. It was, indeed, this very experiment conducted by T. Young
(1802) that, in the nineteenth century, led to the replacement of Newton’s
particle theory of light by a wave theory.

The wave interpretation of the interference pattern observed in Young’s
experiment is inconsistent with the particle or photon concept of light as
required by Einstein’s explanation of the photoelectric effect. If the monochro-
matic beam of light consists of a stream of individual photons, then each
photon presumably must pass through either slit A or slit B. To test this
assertion, detectors are placed directly behind slits A and B and both slits are
opened. The light beam used is of such low intensity that only one photon at a
time is emitted by S. In this situation each photon is recorded by either one
detector or the other, never by both at once. Half of the photons are observed to
pass through slit A, half through slit B in random order. This result is consistent
with particle behavior.

How then is a photon passing through only one slit influenced by the other
slit to produce an interference pattern? A possible explanation is that somehow
photons passing through slit A interact with other photons passing through slit
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B and vice versa. To answer this question, Young’s experiment is repeated with
both slits open and with only one photon at a time emitted by S. The elapsed
time between each emission is long enough to rule out any interactions among
the photons. While it might be expected that, under these circumstances, the
pattern in Figure 1.9(b) would be obtained, in fact the interference fringes of
Figure 1.9(c) are observed. Thus, the same result is obtained regardless of the
intensity of the light beam, even in the limit of diminishing intensity.

If the detection screen D is constructed so that the locations of individual
photon impacts can be observed (with an array of scintillation counters, for
example), then two features become apparent. The first is that only whole
photons are detected; each photon strikes the screen D at only one location.
The second is that the interference pattern is slowly built up as the cumulative
effect of very many individual photon impacts. The behavior of any particular
photon is unpredictable; it strikes the screen at a random location. The density
of the impacts at each point on the screen D gives the interference fringes.
Looking at it the other way around, the interference pattern is the probability
distribution of the location of the photon impacts.

If only slit A is open half of the time and only slit B the other half of the
time, then the interference fringes are not observed and the diffraction pattern
of Figure 1.9(d) is obtained. The photons passing through slit A one at a time
form in a statistical manner the pattern labeled /7, in Figure 1.9(a), while those
passing through slit B yield the pattern /. If both slits A and B are left open,
but a detector is placed at slit A so that we know for certain whether each given
photon passes through slit A or through slit B, then the interference pattern is
again not observed; only the pattern of Figure 1.9(b) is obtained. The act of
ascertaining through which slit the photon passes has the same effect as closing
the other slit.

The several variations on Young’s experiment cannot be explained exclu-
sively by a wave concept of light nor by a particle concept. Both wave and
particle behavior are needed for a complete description. When the photon is
allowed to pass undetected through the slits, it displays wave behavior and an
interference pattern is observed. Typical of particle behavior, each photon
strikes the detection screen D at a specific location. However, the location is
different for each photon and the resulting pattern for many photons is in
accord with a probability distribution. When the photon is observed or
constrained to pass through a specific slit, whether the other slit is open or
closed, the behavior is more like that of a particle and the interference fringes
are not observed. It should be noted, however, that the curve /5 in Figure
1.9(a) is the diffraction pattern for a wave passing through a slit of width
comparable to the wavelength of the wave. Thus, even with only one slit open
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and with the photons passing through the slit one at a time, wave behavior is
observed.

Analogous experiments using electrons instead of photons have been carried
out with the same results. Electrons passing through a system with double slits
produce an interference pattern. If a detector determines through which slit
each electron passes, then the interference pattern is not observed. As with the
photon, the electron exhibits both wave-like and particle-like behavior and its
location on a detection screen is randomly determined by a probability
distribution.

1.7 Stern—Gerlach experiment

Another experiment that relates to the physical interpretation of the wave
function was performed by O. Stern and W. Gerlach (1922). Their experiment
is a dramatic illustration of a quantum-mechanical effect which is in direct
conflict with the concepts of classical theory. It was the first experiment of a
non-optical nature to show quantum behavior directly.

In the Stern—Gerlach experiment, a beam of silver atoms is produced by
evaporating silver in a high-temperature oven and allowing the atoms to escape
through a small hole. The beam is further collimated by passage through a
series of slits. As shown in Figure 1.10, the beam of silver atoms then passes
through a highly inhomogeneous magnetic field and condenses on a detection
plate. The cross-section of the magnet is shown in Figure 1.11. One pole has a
very sharp edge in order to produce a large gradient in the magnetic field. The
atomic beam is directed along this edge (the z-axis) so that the silver atoms
experience a gradient in magnetic field in the vertical or x-direction, but not in
the horizontal or y-direction.

Silver atoms, being paramagnetic, have a magnetic moment M. In a
magnetic field B, the potential energy V of each atom is

V=—M-B

Between the poles of the magnet, the magnetic field B varies rapidly in the x-

X

III —1 ) )

Oven Collimating y
slits Magnet Detection
plate

Figure 1.10 Diagram of the Stern—Gerlach experiment.
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X
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Figure 1.11 A cross-section of the magnet in Figure 1.10.

direction, resulting in a force F\ in the x-direction acting on each silver atom.
This force is given by
F, = —%—Z:Mcoseg—f

where M and B are the magnitudes of the vectors M and B and 6 is the angle
between the direction of the magnetic moment and the positive x-axis. Thus,
the inhomogeneous magnetic field deflects the path of a silver atom by an
amount dependent on the orientation angle 6 of its magnetic moment. If the
angle 6 is between 0° and 90°, then the force is positive and the atom moves in
the positive x-direction. For an angle 6 between 90° and 180°, the force is
negative and the atom moves in the negative x-direction.

As the silver atoms escape from the oven, their magnetic moments are
randomly oriented so that all possible values of the angle 0 occur. According to
classical mechanics, we should expect the beam of silver atoms to form, on the
detection plate, a continuous vertical line, corresponding to a gaussian distribu-
tion of impacts with a maximum intensity at the center (x = 0). The outer
limits of this line would correspond to the magnetic moment of a silver atom
parallel (6 = 0°) and antiparallel (6 = 180°) to the magnetic field gradient
(0B/0x). What is actually observed on the detection plate are two spots,
located at each of the outer limits predicted by the classical theory. Thus, the
beam of silver atoms splits into two distinct components, one corresponding to
0 = 0°, the other to € = 180°. There are no trajectories corresponding to
intermediate values of 6. There is nothing unique or special about the vertical
direction. If the magnet is rotated so that the magnetic field gradient is along
the y-axis, then again only two spots are observed on the detection plate, but
are now located on the horizontal axis.

The Stern—Gerlach experiment shows that the magnetic moment of each
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silver atom is found only in one of two orientations, either parallel or
antiparallel to the magnetic field gradient, even though the magnetic moments
of the atoms are randomly oriented when they emerge from the oven. Thus, the
possible orientations of the atomic magnetic moment are quantized, i.e., only
certain discrete values are observed. Since the direction of the quantization is
determined by the direction of the magnetic field gradient, the experimental
process itself influences the result of the measurement. This feature occurs in
other experiments as well and is characteristic of quantum behavior.

If the beam of silver atoms is allowed to pass sequentially between the poles
of two or three magnets, additional interesting phenomena are observed. We
describe here three such related experimental arrangements. In the first
arrangement the collimated beam passes through a magnetic field gradient
pointing in the positive x-direction. One of the two exiting beams is blocked
(say the one with antiparallel orientation), while the other (with parallel
orientation) passes through a second magnetic field gradient which is parallel
to the first. The atoms exiting the second magnet are deposited on a detection
plate. In this case only one spot is observed, because the magnetic moments of
the atoms entering the second magnetic field are all oriented parallel to the
gradient and remain parallel until they strike the detection plate.

The second arrangement is the same as the first except that the gradient of
the second magnetic field is along the positive y-axis, i.e., it is perpendicular to
the gradient of the first magnetic field. For this arrangement, two spots of silver
atoms appear on the detection plate, one to the left and one to the right of the
vertical x-axis. The beam leaving the first magnet with all the atomic magnetic
moments oriented in the positive x-direction is now split into two equal beams
with the magnetic moments oriented parallel and antiparallel to the second
magnetic field gradient.

The third arrangement adds yet another vertical inhomogeneous magnetic
field to the setup of the second arrangement. In this new arrangement the
collimated beam of silver atoms coming from the oven first encounters a
magnetic field gradient in the positive x-direction, which splits the beam
vertically into two parts. The lower beam is blocked and the upper beam passes
through a magnetic field gradient in the positive y-direction. This beam is split
horizontally into two parts. The left beam is blocked and the right beam is now
directed through a magnetic field gradient parallel to the first one, i.e., oriented
in the positive x-direction. The resulting pattern on the detection plate might be
expected to be a single spot, corresponding to the magnetic moments of all
atoms being aligned in the positive x-direction. What is observed in this case,
however, are two spots situated on a vertical axis and corresponding to atomic
magnetic moments aligned in equal numbers in both the positive and negative
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x-directions. The passage of the atoms through the second magnet apparently
realigned their magnetic moments parallel and antiparallel to the positive y-
axis and thereby destroyed the previous information regarding their alignment
by the first magnet.

The original Stern—Gerlach experiment has also been carried out with the
same results using sodium, potassium, copper, gold, thallium, and hydrogen
atoms in place of silver atoms. Each of these atoms, including silver, has a
single unpaired electron among the valence electrons surrounding its nucleus
and core electrons. In hydrogen, of course, there is only one electron about the
nucleus. The magnetic moment of such an atom is due to the intrinsic angular
momentum, called spin, of this odd electron. The quantization of the magnetic
moment by the inhomogeneous magnetic field is then the quantization of this
electron spin angular momentum. The spin of the electron and of other
particles is discussed in Chapter 7.

Since the splitting of the atomic beam in the Stern—Gerlach experiment is
due to the spin of an unpaired electron, one might wonder why a beam of
electrons is not used directly rather than having the electrons attached to atoms.
In order for a particle to pass between the poles of a magnet and be deflected
by a distance proportional to the force acting on it, the trajectory of the particle
must be essentially a classical path. As discussed in Section 1.4, such a particle
is described by a wave packet and wave packets disperse with time—the lighter
the particle, the faster the dispersion and the greater the uncertainty in the
position of the particle. The application of Heisenberg’s uncertainty principle
to an electron beam shows that, because of the small mass of the electron, it is
meaningless to assign a magnetic moment to a free electron. As a result, the
pattern on the detection plate from an electron beam would be sufficiently
diffuse from interference effects that no conclusions could be drawn.> How-
ever, when the electron is bound unpaired in an atom, then the atom, having a
sufficiently larger mass, has a magnetic moment and an essentially classical
path through the Stern—Gerlach apparatus.

1.8 Physical interpretation of the wave function

Young’s double-slit experiment and the Stern—Gerlach experiment, as de-
scribed in the two previous sections, lead to a physical interpretation of the
wave function associated with the motion of a particle. Basic to the concept of
the wave function is the postulate that the wave function contains all the

2 This point is discussed in more detail in N. F. Mott and H. S. W. Massey (1965) The Theory of Atomic
Collisions, 3rd edition, p. 21516, (Oxford University Press, Oxford).
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information that can be known about the particle that it represents. The wave
function is a complete description of the quantum behavior of the particle. For
this reason, the wave function is often also called the state of the system.

In the double-slit experiment, the patterns observed on the detection screen
are slowly built up from many individual particle impacts, whether these
particles are photons or electrons. The position of the impact of any single
particle cannot be predicted; only the cumulative effect of many impacts is
predetermined. Accordingly, a theoretical interpretation of the experiment must
involve probability distributions rather than specific particle trajectories. The
probability that a particle will strike the detection screen between some point x
and a neighboring point x + dx is P(x) dx and is proportional to the range dx.
The larger the range dx, the greater the probability for a given particle to strike
the detection screen in that range. The proportionality factor P(x) is called the
probability density and is a function of the position x. For example, the
probability density P(x) for the curve /5 in Figure 1.9(a) has a maximum at
the point A and decreases symmetrically on each side of A.

If the motion of a particle in the double-slit experiment is to be represented
by a wave function, then that wave function must determine the probability
density P(x). For mechanical waves in matter and for electromagnetic waves,
the intensity of a wave is proportional to the square of its amplitude. By
analogy, the probability density P(x) is postulated to be the square of the
absolute value of the wave function W(x)

P(x) = [P0 = ¥ (0)P(x)

On the basis of this postulate, the interference pattern observed in the double-
slit experiment can be explained in terms of quantum particle behavior.

A particle, photon or electron, passing through slit A and striking the
detection screen at point x has wave function W (x), while a similar particle
passing through slit B has wave function Wg(x). Since a particle is observed to
retain its identity and not divide into smaller units, its wave function W(x) is
postulated to be the sum of the two possibilities

W(x) = Wa(x) + WPp(x) (1.48)

When only slit A is open, the particle emitted by the source S passes through
slit A, thereby causing the wave function W(x) in equation (1.48) to change or
collapse suddenly to Wx(x). The probability density Pa(x) that the particle
strikes point x on the detection screen is, then

PA(x) = |Wa(x)|?

and the intensity distribution /5 in Figure 1.9(a) is obtained. When only slit B
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is open, the particle passes through slit B and the wave function W(x) collapses
to Wg(x). The probability density Pg(x) is then given by

Pp(x) = |Wp(x)

and curve /g in Figure 1.9(a) is observed. If slit A is open and slit B closed
half of the time, and slit A is closed and slit B open the other half of the time,
then the resulting probability density on the detection screen is just

PA(x) + Pa(x) = [Wa(x)|* + [Ws(x)|?

giving the curve in Figure 1.9(5).
When both slits A and B are open at the same time, the interpretation
changes. In this case, the probability density Pag(x) is

Pap(x) = |Wa(x) + Wp(x)
= [WA@)]® + W ()] + W () Ps(x) + W5 (x)Pa(x)
= Pa(x) + Pp(x) +.7aB(%) (1.49)
where
Tap(x) = WA (x)Pp(x) + Wi (x)PA(x)

The probability density Pap(x) has an interference term .7xg(x) in addition to
the terms Pa(x) and Pg(x). This interference term is real and is positive for
some values of x, but negative for others. Thus, the term .75g(x) modifies the
sum P, (x) + Pg(x) to give an intensity distribution with interference fringes as
shown in Figure 1.9(¢).

For the experiment with both slits open and a detector placed at slit A, the
interaction between the wave function and the detector must be taken into
account. Any interaction between a particle and observing apparatus modifies
the wave function of the particle. In this case, the wave function has the form
of a wave packet which, according to equation (1.37), oscillates with time as
e £/% During the time period At that the particle and the detector are
interacting, the energy of the interacting system is uncertain by an amount AE,
which, according to the Heisenberg energy—time uncertainty principle, equa-
tion (1.45), is related to Az by AE = #i/At. Thus, there is an uncertainty in the
phase Et/# of the wave function and W (x) is replaced by e'*W,(x), where ¢
is real. The value of ¢ varies with each particle—detector interaction and is
totally unpredictable. Therefore, the wave function W(x) for a particle in this
experiment is

W(x) = e Wa(x) + Pg(x) (1.50)
and the resulting probability density P, (x) is
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Py(x) = [Wa@)]” + [Wp()]” + e P WE(x) Wi (x) + e W5 (0)Wa(x)
= PA(X) + Pa(x) + 7,(x) (1.51)
where .7, (x) is defined by
Tp(x) = e WK (x)Wp(x) + e Wi (x)WA(x)

The interaction with the detector at slit A has changed the interference term
from .7xg(x) to .7,(x).

For any particular particle leaving the source S and ultimately striking the
detection screen D, the value of ¢ is determined by the interaction with the
detector at slit A. However, this value is not known and cannot be controlled;
for all practical purposes it is a randomly determined and unverifiable number.
The value of ¢ does, however, influence the point x where the particle strikes
the detection screen. The pattern observed on the screen is the result of a large
number of impacts of particles, each with wave function W(x) in equation
(1.50), but with random values for ¢. In establishing this pattern, the term
Z,(x) in equation (1.51) averages to zero. Thus, in this experiment the
probability density P,(x) is just the sum of Ps(x) and Pg(x), giving the
intensity distribution shown in Figure 1.9(b).

In comparing the two experiments with both slits open, we see that interact-
ing with the system by placing a detector at slit A changes the wave function of
the system and the experimental outcome. This feature is an essential char-
acteristic of quantum theory. We also note that without a detector at slit A,
there are two indistinguishable ways for the particle to reach the detection
screen D and the two wave functions W (x) and Wg(x) are added together.
With a detector at slit A, the two paths are distinguishable and it is the
probability densities P5(x) and Pg(x) that are added.

An analysis of the Stern—Gerlach experiment also contributes to the
interpretation of the wave function. When an atom escapes from the high-
temperature oven, its magnetic moment is randomly oriented. Before this atom
interacts with the magnetic field, its wave function W is the weighted sum of
two possible states o and 3

W = cqa + cpfp (1.52)
where ¢, and cg are constants and are related by
leal® + legl* =1

In the presence of the inhomogeneous magnetic field, the wave function W
collapses to either a or 8 with probabilities |c,|* and |cg|%, respectively. The
state a corresponds to the atomic magnetic moment being parallel to the
magnetic field gradient, the state [ being antiparallel. Regardless of the
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orientation of the magnetic field gradient, vertical (up or down), horizontal (left
or right), or any angle in between, the wave function of the atom is always
given by equation (1.52) with a parallel and f antiparallel to the magnetic field
gradient. Since the atomic magnetic moments are initially randomly oriented,
half of the wave functions collapse to a and half'to 3.

In the Stern—Gerlach experiment with two magnets having parallel magnetic
field gradients—the ‘first arrangement’ described in Section 1.7-all the atoms
entering the second magnet are in state a and therefore are all deflected in the
same direction by the second magnetic field gradient. Thus, it is clear that the
wave function W before any interaction is permanently changed by the inter-
action with the first magnet.

In the ‘second arrangement’ of the Stern—Gerlach experiment, the atoms
emerging from the first magnet and entering the second magnet are all in the
same state, say a. (Recall that the other beam of atoms in state 3 is blocked.)
The wave function a may be regarded as the weighted sum of two states a’
and '

a = cqa’ + cpf’
where o’ and ' refer to states with atomic magnetic moments parallel and
antiparallel, respectively, to the second magnetic field gradient and where ¢,
and cp are constants related by

cul + Icp =1
In the ‘second arrangement’, the second magnetic field gradient is perpendicu-
lar to the first, so that
lcal? = lep? =3
and
(£ )
—(a
V2
The interaction of the atoms in state a with the second magnet collapses the
wave function «a to either o’ or B’ with equal probabilities.

In the ‘third arrangement’, the right beam of atoms emerging from the
second magnet (all atoms being in state @), passes through a third magnetic
field gradient parallel to the first. In this case, the wave function a’ may be
expressed as the sum of states a and /8

1

ﬂ(aiﬁ)

The interaction between the third magnetic field gradient and each atom
collapses the wave function o’ to either a or S with equal probabilities.
The interpretation of the various arrangements in the Stern—Gerlach experi-

o =

a' =
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ment reinforces the postulate that the wave function for a particle is the sum of
indistinguishable paths and is modified when the paths become distinguishable
by means of a measurement. The nature of the modification is the collapse of
the wave function to one of its components in the sum. Moreover, this new
collapsed wave function may be expressed as the sum of subsequent indis-
tinguishable paths, but remains unchanged if no further interactions with
measuring devices occur.

This statistical interpretation of the significance of the wave function was
postulated by M. Born (1926), although his ideas were based on some
experiments other than the double-slit and Stern—Gerlach experiments. The
concepts that the wave function contains all the information known about the
system it represents and that it collapses to a different state in an experimental
observation were originated by W. Heisenberg (1927). These postulates regard-
ing the meaning of the wave function are part of what has become known as
the Copenhagen interpretation of quantum mechanics. While the Copenhagen
interpretation is disputed by some scientists and philosophers, it is accepted by
the majority of scientists and it provides a consistent theory which agrees with
all experimental observations to date. We adopt the Copenhagen interpretation
of quantum mechanics in this book.3

Problems

1.1 The law of dispersion for surface waves on a sheet of water of uniform depth d is*
w(k) = (gk tanh dk)'/?

where g is the acceleration due to gravity. What is the group velocity of the
resultant composite wave? What is the limit for deep water (dk = 4)?

1.2 The phase velocity for a particular wave is vy, = A/A, where 4 is a constant. What
is the dispersion relation? What is the group velocity?

1.3 Show that

Joo A(k)dk = 1

—00

for the gaussian function A4(k) in equation (1.19).

3 The historical and philosophical aspects of the Copenhagen interpretation are more extensively discussed
in J. Baggott (1992) The Meaning of Quantum Theory (Oxford University Press, Oxford).

4 For a derivation, see H. Lamb (1932) Hydrodynamics, pp. 363—81 (Cambridge University Press, Cam-
bridge).
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1.4 Show that the average value of k is k( for the gaussian function A(k) in equation
(1.19).

1.5 Show that the gaussian functions A(k) and W(x, t) obey Parseval’s theorem (1.18).

1.6 Show that the square pulse A(k) in equation (1.21) and the corresponding function
W(x, t) obey Parseval’s theorem.
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Schrodinger wave mechanics

2.1 The Schrodinger equation

In the previous chapter we introduced the wave function to represent the
motion of a particle moving in the absence of an external force. In this chapter
we extend the concept of a wave function to make it apply to a particle acted
upon by a non-vanishing force, i.e., a particle moving under the influence of a
potential which depends on position. The force F acting on the particle is
related to the potential or potential energy V(x) by

F = ™ (2.1)
As in Chapter 1, we initially consider only motion in the x-direction. In Section
2.7, however, we extend the formalism to include three-dimensional motion.

In Chapter 1 we associated the wave packet

W(x, 1) = ﬁj A(p) P E g 22)

with the motion in the x-direction of a free particle, where the weighting factor
A(p) is given by

1 [® .
A(p):\/z_ﬁj W(x, fe (PE/ gx (2.3)

This wave packet satisfies a partial differential equation, which will be used as
the basis for the further development of a quantum theory. To find this
differential equation, we first differentiate equation (2.2) twice with respect to
the distance variable x to obtain

ok I JOO

X2 \2mh3

Differentiation of (2.2) with respect to the time ¢ gives

PrA(p)e P ENR 4 p (2.4)

—00
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The total energy E for a free particle (i.e., for a particle moving in a region of

constant potential energy V) is given by

p2

E=f£ 4y
2m
which may be combined with equations (2.4) and (2.5) to give
ow h? W
h—=————+V¥
Y 2m Ox?2 +

Schrodinger (1926) postulated that this differential equation is also valid
when the potential energy is not constant, but is a function of position. In that
case the partial differential equation becomes
OW(x, 1)  h* PW(x, 1)

ot 2m  0Ox?
which is known as the time-dependent Schridinger equation. The solutions
W(x, t) of equation (2.6) are the time-dependent wave functions. An important
goal in wave mechanics is solving equation (2.6) for W(x, ¢) using various
expressions for V(x) that relate to specific physical systems.

When V(x) is not constant, the solutions W(x, ¢) to equation (2.6) may still
be expanded in the form of a wave packet,

ifi T V(x)W(x, 1) (2.6)

1 R .
W, 1) = \/ﬁj A(p, D PEA 4 2.7)

The Fourier transform A(p, ?) is then, in general, a function of both p and time
t, and is given by

A(p, 1) = \/ﬁj W(x, f)e (P—E0/h 4y (2.8)

By way of contrast, recall that in treating the free particle as a wave packet in
Chapter 1, we required that the weighting factor 4(p) be independent of time
and we needed to specify a functional form for A(p) in order to study some of
the properties of the wave packet.

2.2 The wave function

Interpretation

Before discussing the methods for solving the Schrédinger equation for specific
choices of V(x), we consider the meaning of the wave function. Since the wave
function W(x, ¢) is identified with a particle, we need to establish the connec-
tion between W(x, ¢) and the observable properties of the particle. As in the
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case of the free particle discussed in Chapter 1, we follow the formulation of
Born (1926).

The fundamental postulate relating the wave function W(x, ¢) to the proper-
ties of the associated particle is that the quantity [W(x, 7)]> = W*(x, HW(x, )
gives the probability density for finding the particle at point x at time z. Thus,
the probability of finding the particle between x and x + dx at time ¢ is
|W(x, £)|* dx. The location of a particle, at least within an arbitrarily small
interval, can be determined through a physical measurement. If a series of
measurements are made on a number of particles, each of which has the exact
same wave function, then these particles will be found in many different
locations. Thus, the wave function does not indicate the actual location at
which the particle will be found, but rather provides the probability for finding
the particle in any given interval. More generally, quantum theory provides the
probabilities for the various possible results of an observation rather than a
precise prediction of the result. This feature of quantum theory is in sharp
contrast to the predictive character of classical mechanics.

According to Born’s statistical interpretation, the wave function completely
describes the physical system it represents. There is no information about the
system that is not contained in W(x, 7). Thus, the state of the system is
determined by its wave function. For this reason the wave function is also
called the state function and is sometimes referred to as the state W(x, ¢).

The product of a function and its complex conjugate is always real and is
positive everywhere. Accordingly, the wave function itself may be a real or a
complex function. At any point x or at any time ¢, the wave function may be
positive or negative. In order that |W(x, #)|> represents a unique probability
density for every point in space and at all times, the wave function must be
continuous, single-valued, and finite. Since W(x, #) satisfies a differential
equation that is second-order in Xx, its first derivative is also continuous. The
wave function may be multiplied by a phase factor e, where « is real, without
changing its physical significance since

[e“W(x, N [e“W(x, )] = P (x, HWP(x, 1) = |[P(x, 1)

Normalization

The particle that is represented by the wave function must be found with
probability equal to unity somewhere in the range —oo < x < oo, so that
W(x, ¢) must obey the relation

ro W(x, ) dx =1 (2.9)
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A function that obeys this equation is said to be normalized. If a function
®(x, 1) is not normalized, but satisfies the relation

JOO O*(x, HP(x, Hdx =N

then the function W(x, ) defined by
1

W(x, t) = N

D(x, 1)
is normalized.

In order for W(x, ) to satisfy equation (2.9), the wave function must be
square-integrable (also called quadratically integrable). Therefore, W(x, 7)
must go to zero faster than 1/4/|x| as x approaches (£) infinity. Likewise, the
derivative OW /0x must also go to zero as x approaches (+£) infinity.

Once a wave function W(x, ¢) has been normalized, it remains normalized as
time progresses. To prove this assertion, we consider the integral

N = J WY dx

and show that N is independent of time for every function W that obeys the
Schrodinger equation (2.6). The time derivative of N is

dN ([~

— = =|¥ Hfdx 2.10

o= | o (2.10)
where the order of differentiation and integration has been interchanged on the
right-hand side. The derivative of the probability density may be expanded as
follows

—00

*
%\‘I’(x, 1> = %(w*ql) =y aa—lf + 11!83;
Equation (2.6) and its complex conjugate may be written in the form
ov  ih o
ot 2mox® h
o™ ih PP i
o 2m o |k
so that 9|W(x, 1)|?/0t becomes

e
2.11)

i <lp* P 82‘I’*>

P RS \ | e

d >
ot ¥, " = Ox? Ox?

where the terms containing / cancel. We next note that
d (lp* oW aw*) _ v Pw

Ox Ox Ox Ox? Ox?
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so that
d ifi 0 v ow*
— W tzz——<1P*—— —)
8t’ (. ) 2m Ox Ox Ox
Substitution of equation (2.12) into (2.10) and evaluation of the integral give
AN ih [® O (. 0P aw*) it [ L OW alp*]""
— = — (P —-v =— ¥ — -
dt  2m J_Oo Ox < dx Ox Ox

(2.12)

Ox Ox 2m

Since W(x, ¢) goes to zero as x goes to (4) infinity, the right-most term
vanishes and we have

—00

dN
ar = °
Thus, the integral N is time-independent and the normalization of W(x, ¢) does
not change with time.
Not all wave functions can be normalized. In such cases the quantity
|W(x, £)|* may be regarded as the relative probability density, so that the ratio

rzyqf(x, * dx

 EE—
j W, 1) dx
by

represents the probability that the particle will be found between a; and a,
relative to the probability that it will be found between b; and b,. As an
example, the plane wave

W(x, t) _ ei(prEt)/fL

does not approach zero as x approaches (+) infinity and consequently cannot
be normalized. The probability density [W(x, £)|* is unity everywhere, so that
the particle is equally likely to be found in any region of a specified width.

Momentum-space wave function

The wave function W(x, ) may be represented as a Fourier integral, as shown
in equation (2.7), with its Fourier transform A(p, f) given by equation (2.8).
The transform A(p, t) is uniquely determined by W(x, ¢) and the wave function
W(x, ¢) is uniquely determined by A(p, 7). Thus, knowledge of one of these
functions is equivalent to knowledge of the other. Since the wave function
W(x, ¢) completely describes the physical system that it represents, its Fourier
transform A(p, t) also possesses that property. Either function may serve as a
complete description of the state of the system. As a consequence, we may
interpret the quantity |4(p, £)|* as the probability density for the momentum at
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time ¢. By Parseval’s theorem (equation (B.28)), if W(x, ¢) is normalized, then
its Fourier transform A(p, t) is normalized,

o o
| rweorar = 14 opap =1
—00 —0Q0

The transform A(p, ?) is called the momentum-space wave function, while
W(x, t) is more accurately known as the coordinate-space wave function.
When there is no confusion, however, W(x, ¢) is usually simply referred to as

the wave function.

2.3 Expectation values of dynamical quantities

Suppose we wish to measure the position of a particle whose wave function is
W(x, ). The Born interpretation of |W(x, £)|*> as the probability density for
finding the associated particle at position x at time ¢ implies that such a
measurement will not yield a unique result. If we have a large number of
particles, each of which is in state W(x, ¢) and we measure the position of each
of these particles in separate experiments all at some time 7, then we will obtain
a multitude of different results. We may then calculate the average or mean
value (x) of these measurements. In quantum mechanics, average values of
dynamical quantities are called expectation values. This name is somewhat
misleading, because in an experimental measurement one does not expect to
obtain the expectation value.

By definition, the average or expectation value of x is just the sum over all
possible values of x of the product of x and the probability of obtaining that
value. Since x is a continuous variable, we replace the probability by the
probability density and the sum by an integral to obtain

(x>:J x|W(x, 1)* dx (2.13)
More generally, the expectation value (f(x)) of any function f(x) of the
variable x is given by

) = | reee. of a (.14

Since W(x, ) depends on the time 7, the expectation values (x) and (f(x)) in
equations (2.13) and (2.14) are functions of z.

The expectation value (p) of the momentum p may be obtained using the
momentum-space wave function A(p, f) in the same way that (x) was obtained
from W(x, ¢). The appropriate expression is
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<p>=J plAp, t)\zdpzj pA*(p, DA(p, dp (215

The expectation value (f(p)) of any function f(p) of p is given by an

expression analogous to equation (2.14)

f(p)) = j SN, DP dp (2.16)

In general, A(p, ) depends on the time, so that the expectation values (p) and
(f(p)) are also functions of time.

Both W(x, ¢) and A(p, ) contain the same information about the system,
making it possible to find (p) using the coordinate-space wave function
W(x, ¢) in place of A(p, t). The result of establishing such a procedure will
prove useful when determining expectation values for functions of both
position and momentum. We begin by taking the complex conjugate of A(p, t)
in equation (2.8)

1 o0 ~
e I A

Substitution of A*(p, ) into the integral on the right-hand side of equation
(2.15) gives

27th

- JOO “P*(x, t)[

—00

T .
(p) = ” W (x, 1)pA(p, HEPE drdp

1™ :
\/ﬁj pA(p, NP dpldx  (2.17)

In order to evaluate the integral over p, we observe that the derivative of
W(x, ¢) in equation (2.7), with respect to the position variable x, is
oP(x,t)y 1 [* i

Substitution of this observation into equation (2.21) gives the final result

R h O
(p) :J W (x, 1) <T§> W(x, t)dx (2.18)

—00

pA(p, e P Eqp

Thus, the expectation value of the momentum can be obtained by an integration
in coordinate space.

The expectation value of p? is given by equation (2.16) with f(p) = p?. The
expression analogous to (2.17) is

00 1 . '
<p2> = J IP*(X, 1) [—MJ pzA(p, ) el(prEt)/h dp dx

From equation (2.7) it can be seen that the quantity in square brackets equals
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(ﬁ) 20PW(x, 1)

i Ox?

so that

00 * ﬁ 282
(p*) :J W (x, t)(i> W111(x, f)dx (2.19)

—00

Similarly, the expectation value of p” is given by

(r") :J W (x, 1) <T§> W(x, £)dx (2.20)

Each of the integrands in equations (2.18), (2.19), and (2.20) is the complex
conjugate of the wave function multiplied by an operator acting on the wave
function. Thus, in the coordinate-space calculation of the expectation value of
the momentum p or the nth power of the momentum, we associate with p the
operator (%/1)(0/0x). We generalize this association to apply to the expectation
value of any function f(p) of the momentum, so that

> h 0
U =] wenr (; a) W, 1) dx 221)
Equation (2.21) is equivalent to the momentum-space equation (2.16).

We may combine equations (2.14) and (2.21) to find the expectation value of
a function f(x, p) of the position and momentum

. ho
(f(x, p)) :J WH(x, t)f<x,—i—>‘l’(x, 1) dx (2.22)

o Ox

Ehrenfest’s theorems
According to the correspondence principle as stated by N. Bohr (1928), the
average behavior of a well-defined wave packet should agree with the classical-
mechanical laws of motion for the particle that it represents. Thus, the
expectation values of dynamical variables such as position, velocity, momen-
tum, kinetic energy, potential energy, and force as calculated in quantum
mechanics should obey the same relationships that the dynamical variables
obey in classical theory. This feature of wave mechanics is illustrated by the
derivation of two relationships known as Ehrenfest’s theorems.

The first relationship is obtained by considering the time dependence of the
expectation value of the position coordinate x. The time derivative of (x) in
equation (2.13) is
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dix) _d [ 2 [T .0 2

P —dtJoox\‘I’(x, 1) dx—J xat\‘I’(x, H|” dx
ik 0 (5 OW aw*)
=l e (e

where equation (2.12) has been used. Integration by parts of the last integral
gives

dx) ik { L OW alp*r it °<>< L OW aw*)
Y e Vs _m_ﬁjm Yooy Voo &

The integrated part vanishes because W(x, f) goes to zero as x approaches (%)
infinity. Another integration by parts of the last term on the right-hand side

yields
dix) 1 (ﬁ 6)
dr m Joolp i0x P

According to equation (2.18), the integral on the right-hand side of this
equation is the expectation value of the momentum, so that we have

d(x)
(p)=m-
Equation (2.23) is the quantum-mechanical analog of the classical definition of
momentum, p = mv = m(dx/dz). This derivation also shows that the associa-
tion in quantum mechanics of the operator (%/1)(0/0x) with the momentum is
consistent with the correspondence principle.

The second relationship is obtained from the time derivative of the expecta-
tion value of the momentum (p) in equation (2.18),

o0 *
d(p) dJ g 0¥ ﬁj <alp oW waam)(ix

(2.23)

dt — dr i Ox i 9t ox T ox ot

We next substitute equations (2.11) for the time derivatives of W and W™ and
obtain

M:r@ [(—_fﬁa%p* Vm*) 81P+1p*£<ﬁ2 Pw V‘P)] N

dt 2m Ox? Ox Ox \2m Ox2
—h2 [* PYWF oW K2 < OPW X dV
_ﬁjx ox2 Ox dr+ 2mJ Oclp Ox3 dv = JOCIP IIId)c dr
(2.24)

where the terms in V cancel. The first integral on the right-hand side of
equation (2.24) may be integrated by parts twice to give
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The integrated part vanishes because W and OW /Jx vanish at (+) infinity. The
remaining integral cancels the second integral on the right-hand side of
equation (2.24), leaving the final result

¥:_<%>:<F> (2.25)

where equation (2.1) has been used. Equation (2.25) is the quantum analog of
Newton’s second law of motion, F = ma, and is in agreement with the
correspondence principle.

Heisenberg uncertainty principle

Using expectation values, we can derive the Heisenberg uncertainty principle
introduced in Section 1.5. If we define the uncertainties Ax and Ap as the
standard deviations of x and p, as used in statistics, then we have

Ax = ((x — (x)})"/?

Ap={(p— (P
The expectation values of x and of p at a time ¢ are given by equations (2.13)
and (2.18), respectively. For the sake of simplicity in this derivation, we select
the origins of the position and momentum coordinates at time ¢ to be the
centers of the wave packet and its Fourier transform, so that (x) =0 and
(p) = 0. The squares of the uncertainties Ax and Ap are then given by
oo
(Ax)* = J WY dx

—00

N2 L W N ow|
2 _ (I x & T _ w *Z 7
= () (IR [(1) ¥ ax] )

00 —# *
)
s\ 1 Ox 1 Ox
where the integrated term for (Ap)* vanishes because W goes to zero as x

approaches (&) infinity.
The product (AxA p)? is

2 oo *
(yp
i) ). Ox Ox
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o0 © (_hOW*\ (hOW
(AxAp)* = J P (W) de (T e ) (TE) dx

Applying Schwarz’s inequality (A.56), we obtain
1| %[> oW ow*

(AxAp)* = - *J (xlp* —+ x‘P—) dx
411 ) _ Ox Ox

2 2
hz

4

J xg(lp*‘li)dx
o Ox

2 2

4

The integrated part vanishes because W goes to zero faster than 1/ \/m ,as X
approaches (&£) infinity and the remaining integral is unity by equation (2.9).
Taking the square root, we obtain an explicit form of the Heisenberg uncer-
tainty principle

[x‘P*‘P} — J WY dx

—o0

AxAp = % (2.26)

This expression is consistent with the earlier form, equation (1.44), but relation
(2.26) is based on a precise definition of the uncertainties, whereas relation
(1.44) is not.

2.4 Time-independent Schrodinger equation

The first step in the solution of the partial differential equation (2.6) is to
express the wave function W(x, ¢) as the product of two functions

W(x, 1) = p(x)x(1) (2.27)
where ¥(x) is a function of only the distance x and y(t) is a function of only
the time ¢. Substitution of equation (2.27) into (2.6) and division by the product
Py(1) give

7 1 dy(y A 1 dyx)
0 At 2my(xn) e
The left-hand side of equation (2.28) is a function only of #, while the right-
hand side is a function only of x. Since x and ¢ are independent variables, each
side of equation (2.28) must equal a constant. If this were not true, then the
left-hand side could be changed by varying ¢ while the right-hand side
remained fixed and so the equality would no longer apply. For reasons that will
soon be apparent, we designate this separation constant by E and assume that
it is a real number.
Equation (2.28) is now separable into two independent differential equations,
one for each of the two independent variables x and ¢. The time-dependent
equation is

+ V(x) (2.28)
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d
mﬁ?_E(g
which has the solution
x(f) = e /R (2.29)

The integration constant in equation (2.29) has arbitrarily been set equal to
unity. The spatial-dependent equation is
2 g2

_§;d§§)+V@m09:Ew@) (2.30)
and is called the time-independent Schrodinger equation. The solution of this
differential equation depends on the specification of the potential energy V(x).
Note that the separation of equation (2.6) into spatial and temporal parts is
contingent on the potential /'(x) being time-independent.

The wave function W(x, f) is then

W(x, f) = p(x)e F/h (2.31)
and the probability density |[¥(x, #)|? is now given by
W, 0 = W@, nW(x, 1) =  We P e H0 = [y
Thus, the probability density depends only on the position variable x and does
not change with time. For this reason the wave function W(x, ) in equation

(2.31) is called a stationary state. If W(x, f) is normalized, then ¥(x) is also
normalized

wafwzl (2.32)

which is the reason why we set the integration constant in equation (2.29) equal
to unity.

The total energy, when expressed in terms of position and momentum, is
called the Hamiltonian, H, and is given by

2
H(x, p) =2+ V()

The expectation value (H) of the Hamlltonlan may be obtained by applying
equation (2.22)

<H>=Joo ) P V()| W, 1) d

0o | 2mox?
For the stationary state (2.31), this expression becomes
00 . [ 52 9?2 1
H) =
) = | v @[+ V0w s

If we substitute equation (2.30) into the integrand, we obtain
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o]

(H) = EJ P dx = E

—00
where we have also applied equation (2.32). We have just shown that the
separation constant E is the expectation value of the Hamiltonian, or the total
energy for the stationary state, so that ‘£’ is a desirable designation. Since the
energy is a real physical quantity, the assumption that £ is real is justified.

In the application of Schrodinger’s equation (2.30) to specific physical
examples, the requirements that 1(x) be continuous, single-valued, and square-
integrable restrict the acceptable solutions to an infinite set of specific functions
Yu(x), n=1,2,3,..., each with a corresponding energy value E,. Thus, the
energy is quantized, being restricted to certain values. This feature is illustrated
in Section 2.5 with the example of a particle in a one-dimensional box.

Since the partial differential equation (2.6) is linear, any linear superposition
of solutions is also a solution. Therefore, the most general solution of equation
(2.6) for a time-independent potential energy V(x) is

W(x, 1) = capulx)e Hr (2.33)

n
where the coefficients ¢, are arbitrary complex constants. The wave function
W(x, t) in equation (2.33) is not a stationary state, but rather a sum of
stationary states, each with a different energy E,.

2.5 Particle in a one-dimensional box

As an illustration of the application of the time-independent Schrodinger
equation to a system with a specific form for V(x), we consider a particle
confined to a box with infinitely high sides. The potential energy for such a
particle is given by
V(x)=0, 0=x=a
= 00, x<0, x>a

and is illustrated in Figure 2.1.
Outside the potential well, the Schrédinger equation (2.30) is given by
h? d*y
for which the solution is simply ¥ (x) = 0; the probability is zero for finding
the particle outside the box where the potential is infinite. Inside the box, the
Schrdédinger equation is
h? d>y

Tomde Y
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V(x)

X
0 a

Figure 2.1 The potential energy V' (x) for a particle in a one-dimensional box of length a.

or
d?y 4r?
P 2.34)
where A is the de Broglie wavelength,
27h h
p= _2 (2.35)
2mE p

We have implicitly assumed here that £ is not negative. If £ were negative,
then the wave function 1 and its second derivative would have the same sign.
As |x| increases, the wave function 1(x) and its curvature d*y/dx? would
become larger and larger in magnitude and (x) would approach (%) infinity
as x — 00.

The solutions to equation (2.34) are functions that are proportional to their
second derivatives, namely sin(2zzx/A1) and cos(27x/A). The functions
exp[2smix/A] and exp[—2mix/A], which as equation (A.31) shows are equivalent
to the trigonometric functions, are also solutions, but are more difficult to use
for this system. Thus, the general solution to equation (2.34) is

P(x) = Asin sz + Bcos ZTC (2.36)
where 4 and B are arbitrary constants of integration.

The constants 4 and B are determined by the boundary conditions placed on
the solution ¥(x). Since ¥ (x) must be continuous, the boundary conditions
require that 1(x) vanish at each end of the box so as to match the value of 1(x)
outside the box, i.e., ¥(0) = (a) = 0. At x = 0, the function y(0) from (2.36)
is

Y(0) = 4sin0+ Bcos0 = B

so that B = 0 and (x) is now
2
W(x) = Asin —;” (2.37)

Atx = a, yY(a)is
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’t/)(a) = ASIHT: 0

The constant 4 cannot be zero, for then 1 (x) would vanish everywhere and
there would be no particle. Consequently, we have sin(2zwa/1) = 0 or

27
Ta:m, n=1,23,...

where n is any positive integer greater than zero. The solution n = 0 would
cause (x) to vanish everywhere and is therefore not acceptable. Negative
values of n give redundant solutions because sin(—6) equals —sin 6.

We have found that only distinct values for the de Broglie wavelength satisfy
the requirement that the wave function represents the motion of the particle.
These distinct values are denoted as 4, and are given by

ﬂ.n:%, n=1,2,3... (2.38)
Consequently, from equation (2.35) only distinct values E, of the energy are
allowed

nm*h? o’ h?

2ma®>  8ma®’

E, = n=1,273,... (2.39)

so that the energy for a particle in a box is quantized.

The lowest allowed energy level is called the zero-point energy and is given
by E| = h?/8ma?. This zero-point energy is always greater than the zero value
of the constant potential energy of the system and increases as the length a of
the box decreases. The non-zero value for the lowest energy level is related to
the Heisenberg uncertainty principle. For the particle in a box, the uncertainty
Ax in position is equal to the length a since the particle is somewhere within
the box. The uncertainty Ap in momentum is equal to 2|p| since the
momentum ranges from —|p| to | p|. The momentum and energy are related by

h
|l = VamE = 2=

so that
AxAp = nh

is in agreement with the Heisenberg uncertainty principle (2.26). If the lowest
allowed energy level were zero, then the Heisenberg uncertainty principle
would be violated.

The allowed wave functions 1 ,(x) for the particle in a box are obtained by
substituting equation (2.38) into (2.37),

N
=
N
<

W) = Asin 250
a
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The remaining constant of integration A is determined by the normalization
condition (2.32),

{o.0] a -
J () dx = |A\2J sin? 2% 4x = |A’2fJ sinn@ do — ‘A‘zf 1
- 0 a T Jo 2

where equation (A.15) was used. Therefore, we have
2
AP ==
a
or
A=¢e% /=
a

Setting the phase a equal to zero since it has no physical significance, we
obtain for the normalized wave functions

w(x)—\/zsinn—m 0=sx=a
nH =AY a2’ == (2.40)
=0, x<0, x>a

The time-dependent Schrodinger equation (2.30) for the particle in a box has
an infinite set of solutions ,(x) given by equation (2.40). The first four wave
functions v ,(x) for n =1, 2, 3, and 4 and their corresponding probability
densities |,(x)|*> are shown in Figure 2.2. The wave function ;(x) corre-
sponding to the lowest energy level E; is called the ground state. The other
wave functions are called excited states.

If we integrate the product of two different wave functions 1 ;(x) and v ,(x),
we find that

J Y)Y u(x)dx = %J sin<@> sin(n—m> dx = EJ sin [0 sin n6d@ = 0
0

a)o a a I )o
(2.41)

where equation (A.15) has been introduced. This result may be combined with
the normalization relation to give

J P(x)P(x) dx = Oy (2.42)
0
where &, is the Kronecker delta,
CS[,, = 1, l=n
=0, l#n

Functions that obey equation (2.41) are called orthogonal functions. If the
orthogonal functions are also normalized, as in equation (2.42), then they are

(2.43)
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Figure 2.2 Wave functions ; and probability densities |i;|* for a particle in a one-
dimensional box of length a.

said to be orthonormal. The orthogonal property of wave functions in quantum
mechanics is discussed in a more general context in Section 3.3.

The stationary states W(x, 7) for the particle in a one-dimensional box are
given by substitution of equations (2.39) and (2.40) into (2.31),

D) ‘
W(x, 1) = \ﬂ sin <”7m> e iR/ 2ma) (2.44)
a

The most general solution (2.33) is, then,

B .
WY(x, 1) = \/; Z C, Sin (?) e (T 2ma) (2.45)



2.6 Tunneling 53

2.6 Tunneling

As a second example of the application of the Schrodinger equation, we
consider the behavior of a particle in the presence of a potential barrier. The
specific form that we choose for the potential energy V' (x) is given by

V(x)= Vo, 0<x<a
=0, x<0, x>a

and is shown in Figure 2.3. The region where x <0 is labeled I, where
0 < x < a islabeled II, and where x > a is labeled III.

Suppose a particle of mass m and energy E coming from the left approaches
the potential barrier. According to classical mechanics, if £ is less than the
barrier height Vy, the particle will be reflected by the barrier; it cannot pass
through the barrier and appear in region III. In quantum theory, as we shall see,
the particle can penetrate the barrier and appear on the other side. This effect is
called tunneling.

In regions I and III, where V'(x) is zero, the Schrodinger equation (2.30) is

2
d dq;(zx) _ 2 ZZE W(x) (2.46)

The general solutions to equation (2.46) for these regions are
Y1 = Ae'™* 4+ Be ¥ (2.47 a)
Ym = Fe'™ + Ge™'™ (2.47b)

where A, B, F, and G are arbitrary constants of integration and a is the
abbreviation
2mE
h

In region II, where V' (x) = Vy > E, the Schrodinger equation (2.30) becomes

o= (2.48)

V(x)

Vo

X
0 a

Figure 2.3 Potential energy barrier of height /4 and width a.
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d?yY(x) 2m
P22 5y — By (2.49)
for which the general solution is
Y = CeP* + De P (2.50)

where C and D are integration constants and /3 is the abbreviation

The term exp[iax] in equations (2.47) indicates travel in the positive x-
direction, while exp[—iax] refers to travel in the opposite direction. The
coefficient 4 is, then, the amplitude of the incident wave, B is the amplitude of
the reflected wave, and F is the amplitude of the transmitted wave. In region
I11, the particle moves in the positive x-direction, so that G is zero. The relative
probability of tunneling is given by the transmission coefficient T

|F|?
=—= 2.52
AP (2.52)
and the relative probability of reflection is given by the reflection coefficient R
|BJ?
S 2.53
AP (2.53)

The wave function for the particle is obtained by joining the three parts vy,
11, and Py such that the resulting wave function 1 (x) and its first derivative
y'(x) are continuous. Thus, the following boundary conditions apply

¥1(0) = vu(0), Y1(0) = ¥u(0) (2.54)
Yu(a) = Ym(a), Yi(a) = Ym(a) (2.55)

These four relations are sufficient to determine any four of the constants 4, B,
C, D, F in terms of the fifth. If the particle were confined to a finite region of
space, then its wave function could be normalized, thereby determining the fifth
and final constant. However, in this example, the position of the particle may
range from —oo to co. Accordingly, the wave function cannot be normalized,
the remaining constant cannot be evaluated, and only relative probabilities such
as the transmission and reflection coefficients can be determined.

We first evaluate the transmission coefficient 7 in equation (2.52). Applying
equations (2.55) to (2.47b) and (2.50), we obtain

Cel? + De P4 = Fel*
B(CeP* — De™P?) = jaFel*®

from which it follows that
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F a
€= ( 2

(2.56)
D= F(ﬁ ) (ia+p)a
2p
Application of equation (2.54) to (2.47 a) and (2.50) gives
A+B=C+D
(2.57)

ia(4 — B) = B(C — D)

Elimination of B from the pair of equations (2.57) and substitution of equations
(2.56) for C and for D yield

U)’—i—la)C (B —ia)D]

iaa
€

=F
4iaf
At this point it is easier to form |A|* before any further algebraic simplifica-
tions

|A|? = A% 4

[(B+ ia)ze’ﬁ“ - - ia)zeﬂ“]

= |F] > 2/32 [(B% + a®)Pe P 1 (B + a®)?e®* — (B —ia)* — (B + ia)*]

1
— 52 2 | p22(aBa _ —Pay2 202
(@ + B
4a2p?
where equation (A.46) has been used. Combining this result with equations
(2.48), (2.51), and (2.52), we obtain

= |F]*|1+

sinh? ﬂa]

-1

V2 .
T = +WO—E) sinh®(\/2m(Vy — E) a/h) (2.58)

To find the reflection coefficient R, we eliminate 4 from the pair of
equations (2.57) and substitute equations (2.56) for C and for D to obtain

1 eiaa

T T (R _; : _ 2 2\.Pa (2 2\a—Pa
= 5l B—0C+ (B iD= F {4 ) — (@ 4 fe ]

iaa
_ F;a 7 (@ + f?)sinh Ba
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where again equation (A.46) has been used. Combining this result with
equations (2.52) and (2.53), we find that

B2 _ (@ + )
|F|? 402 3?
Substitution of equations (2.48), (2.51), and (2.58) yields

V )
1E(e —B) s1nh (\/2m(Vy — E)a/h)
0 s 120/
1 +m sinh ( 2m(V0 — E)a/ﬁ)

The transmission coefficient 7 in equation (2.58) is the relative probability
that a particle impinging on the potential barrier tunnels through the barrier.
The reflection coefficient R in equation (2.59) is the relative probability that
the particle bounces off the barrier and moves in the negative x-direction. Since
the particle must do one or the other of these two possibilities, the sum of T
and R should equal unity

R=T sinh? Ba

R= (2.59)

T'+R=1

which we observe from equations (2.58) and (2.59) to be the case.

We also note that the (relative) probability for the particle being in the region
0 < x < a is not zero. In this region, the potential energy is greater than the
total particle energy, making the kinetic energy of the particle negative. This
concept is contrary to classical theory and does not have a physical signifi-
cance. For this reason we cannot observe the particle experimentally within the
potential barrier. Further, we note that because the particle is not confined to a
finite region, the boundary conditions on the wave function have not imposed
any restrictions on the energy E. Thus, the energy in this example is not
quantized.

In this analysis we considered the relative probabilities for tunneling and
reflection for a single particle. The conclusions apply equally well to a beam of
particles, each of mass m and total energy FE, traveling initially in the positive
x-direction. In that case, the transmission coefficient 7 in equation (2.58) gives
the fraction of incoming particles that tunnel through the barrier, and the
reflection coefficient R in equation (2.59) gives the fraction that are reflected
by the barrier.

If the potential barrier is thick (a is large), the potential barrier is high
compared with the particle energy E (Vo > E), the mass m of the particle is
large, or any combination of these characteristics, then we have

fBa

1 e
i — (P e Py~
sinh fSa 2(eﬂ e P9 5
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so that 7and R become

T ~ 16E(I;02_ E) e 2ay /2m(Vo—E)/h
0

Rl 16E(V02— E) -2a/2m(Vo-B)/h
Vo
In the limit as @ — oo, as Vy — oo, as m — oo, or any combination, the
transmission coefficient 7 approaches zero and the reflection coefficient R
approaches unity, which are the classical-mechanical values. We also note that
in the limit # — 0, the classical values for Tand R are obtained.

Examples of tunneling in physical phenomena occur in the spontaneous
emission of an alpha particle by a nucleus, oxidation—reduction reactions,
electrode reactions, and the umbrella inversion of the ammonia molecule. For
these cases, the potential is not as simple as the one used here, but must be
selected to approximate as closely as possible the actual potential. However,
the basic qualitative results of the treatment here serve to explain the general
concept of tunneling.

2.7 Particles in three dimensions

Up to this point we have considered particle motion only in the x-direction.
The generalization of Schrédinger wave mechanics to three dimensions is
straightforward. In this section we summarize the basic ideas and equations of
wave mechanics as expressed in their three-dimensional form.

The position of any point in three-dimensional cartesian space is denoted by
the vector r with components x, y, z, so that

r=ix+jy+kz (2.60)
where i, j, k are, respectively, the unit vectors along the x, ), z cartesian
coordinate axes. The linear momentum p of a particle of mass m is given by

dr dt
The x-component, p,, of the momentum now needs to carry a subscript,
whereas before it was denoted simply as p. The scalar or dot product of r and
pis

dr dx .d d
pzm—-m(ia—&-jd—f—l—k—Z) =ipc+jpy +Kkp: (2.61)

Fep=p-:r=xp+ypy+2zp:
and the magnitude p of the vector p is
p=@-p" =+ p,+p)"

The classical Hamiltonian H(p, r) takes the form
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2
Ho.n =L v =3 (Rt AtV )
m 2m
When expressed in three dimensions, the de Broglie relation is
p =fk (2.63)
where k is the vector wave number with components k,, k,, k.. The de Broglie
wavelength A is still given by

where now & and p are the magnitudes of the corresponding vectors. The wave
packet representing a particle in three dimensions is

WY(r, 1) = JA(p, 1)e®T=EN/h qp (2.64)

1
(2mh)3/2
As shown by equations (B.19), (B.20), and (B.27), the momentum-space wave
function A(p, ?) is a generalized Fourier transform of W(r, ©),

1 Cior
A(p, z):mjwa, 1)e PTEN/A g (2.65)

The volume elements dr and dp are defined as
dr =dxdydz
dp = dp.dp,dp:
and the integrations extend over the complete range of each variable.
For a particle moving in three-dimensional space, the quantity
W¥(r, HW(r, £)dr = W¥(x, y, z, HW(x, y, z, H)dxdydz
is the probability at time ¢ of finding the particle with its x-coordinate between
x and x 4+ dx, its y-coordinate between y and y + dy, and its z-coordinate
between z and z + dz. The product W*(r, £)¥(r, 7) is, then, the probability

density at the point r at time ¢. If the particle is under the influence of an
external potential field V' (r), the wave function W(r, ) may be normalized

J‘I‘*(r, HW(r, f)dr =1 (2.66)

The quantum-mechanical operators corresponding to the components of p
are

. _ho . h0 . _ho
=00 PPT ey PP ez
or, in vector notation

)
p==-V (2.67)
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where the gradient operator V is defined as
0 0

0
V=i—+j—+k—
18x+J8y+ 0z

Using these relations, we may express the Hamiltonian operator in three
dimensions as

N —f2
H=—V>+V(r)
2m

where the laplacian operator V? is defined by

0?0 D
V=V.V=—_— 4+
o2 92 T oz
The time-dependent Schrodinger equation is
" oP(r, t)

TR HY(r, 1)

— __ﬁzvzlp(r, N+ V(r)¥(r, f) (2.68)
2m

The stationary-state solutions to this differential equation are
Wor, 1) = pa(r)e i/t (2.69)

where the spatial functions 1,(r) are solutions of the time-independent
Schrodinger equation

—A2
5,7 V() + VOPu(r) = Eypu(r) (2.70)

The most general solution to equation (2.68) is

W(r, )= cappu(r)e B0 .71
n
where ¢, are arbitrary complex constants.
The expectation value of a function f(r, p) of position and momentum is
given by

% h
(f(r,p)) = J‘P (r, ) f <r, TV> W(r, t)dr (2.72)

Equivalently, expectation values of three-dimensional dynamical quantities
may be evaluated for each dimension and then combined, if appropriate, into
vector notation. For example, the two Ehrenfest theorems in three dimensions
are
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o) = m

d(p) _
4 = V) =(F)

where F is the vector force acting on the particle. The Heisenberg uncertainty
principle becomes
h h h
AxAp, = > AyAp, ==, AzAp. = >

\9}

Multi-particle system
For a system of N distinguishable particles in three-dimensional space, the
classical Hamiltonian is
2 2 2
H(pla p2ﬂ "'9pN7 rl: r23 9rN):A+ﬁ++ﬂ
2m;  2my 2my

+ V(l'], I, ..., I'N)

where r; and p; are the position and momentum vectors of particle k. Thus,
the quantum-mechanical Hamiltonian operator is

2 \m
where Vi is the laplacian with respect to the position of particle £.

The wave function for this system is a function of the N position vectors:
W(ry, ry, ..., ry, t). Thus, although the N particles are moving in three-
dimensional space, the wave function is 3 N-dimensional. The physical inter-
pretation of the wave function is analogous to that for the three-dimensional
case. The quantity

lp*(l‘l, r, ..., Iy, t)‘l’(rl, ry, ..., Iy, l)dl‘l drp ...dry

N A 1 1
H:—( V§+—V§+-.-+—V§V)+V(r1,r2,...,rN) (2.73)
nmoy nmy

= lP*(xl, Vis Z1s X2, -« - Zn)W (X1, V1, 21, X2, .., zy)dx dy;dzy dxp ... dzy

is the probability at time ¢ that, simultaneously, particle 1 is between xi, y1, z1
and x; + dx;, y1 + dy1, z1 + dzy, particle 2 is between x;, y», zo and x; + dxy,
v +dys, zo +dzy, ..., and particle N is between xy, yy, zv and xy + dxy,
wv + dyy, zy + dzy. The normalization condition is

J‘P*(rl, r, ..., ry, OP(r, 1), ..., ry, dridr, ... dry =1 (2.74)

This discussion applies only to systems with distinguishable particles; for
example, systems where each particle has a different mass. The treatment of
wave functions for systems with indistinguishable particles is more compli-
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cated and is discussed in Chapter 8. Such systems include atoms or molecules
with more than one electron, and molecules with two or more identical nuclei.

2.8 Particle in a three-dimensional box

A simple example of a three-dimensional system is a particle confined to a
rectangular container with sides of lengths a, b, and c¢. Within the box there is
no force acting on the particle, so that the potential V' (r) is given by

V(r)=0, 0sx<gag 0=sys)h O0s:z=c
= 00, x<0, x>a;, y<0, y>b;, z<0, z>c
The wave function ¥(r) outside the box vanishes because the potential is
infinite there. Inside the box, the wave function obeys the Schrodinger equation
(2.70) with the potential energy set equal to zero

2 (Py@) | Pyw) | Py _
2m ( a2 T 5y? T )—Ew(r) (2.75)

The standard procedure for solving a partial differential equation of this type is
to assume that the function 1(r) may be written as the product of three
functions, one for each of the three variables

Y(r) = yY(x, y, z) = X(0) Y (1) Z(2) (2.76)
Thus, X (x) is a function only of the variable x, Y () only of y, and Z(z) only of
z. Substitution of equation (2.76) into (2.75) and division by the product XYZ
give

—h* d?x  -w*d’Y —h*dZ

2mX dx? + 2mY dy? + 2mZ dz?

The first term on the left-hand side of equation (2.77) depends only on the

variable x, the second only on y, and the third only on z. No matter what the

values of x, or y, or z, the sum of these three terms is always equal to the same

constant £. The only way that this condition can be met is for each of the three

terms to equal some constant, say E,, E,, and E., respectively. The partial

differential equation (2.77) can then be separated into three equations, one for
each variable

—E (2.77)

d’X 2m d*’Y 2m d*Z 2m
(2.78)
where

Ec+E,+E =E (2.79)
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Thus, the three-dimensional problem has been reduced to three one-dimen-
sional problems.

The differential equations (2.78) are identical in form to equation (2.34) and
the boundary conditions are the same as before. Consequently, the solutions
inside the box are given by equation (2.40) as

2 . ong
X(X):\/:Sinnﬂx, nle,z, 3’
a

a
2 . nymy
Y(y) = Zsm by n,=12,3,... (2.80)

2
Z(zF\[Sm"Z”Z, n=1,2,3 ...
C C

and the constants E,, E,, E. are given by equation (2.39)

2h2
E=git,  m=123...
ma
n* h?
=gl m=L23 (2.81)
2h2
Z:gzz, n.=1,2,3, ...
mc

The quantum numbers n,, n,, n. take on positive integer values independently
of each other. Combining equations (2.76) and (2.80) gives the wave functions
inside the three-dimensional box

8 T T _JT
Ynmon (1) = \ﬂ sin 2 i WY gy 12T (2.82)
it v a b c

where v = abc is the volume of the box. The energy levels for the particle are

obtained by substitution of equations (2.81) into (2.79)
2

n? <n2 n n2>
Epnn = (D oy 12 2.83
Tty sz 8m a2 + b2 + c2 ( )

Degeneracy of energy levels

If the box is cubic, we have a = b = ¢ and the energy levels become
2

h 2 2 2
Enx,ny,nz = W(I’lx + n, + I’lz) (284)

The lowest or zero-point energy is Ej 1.1 = 34?/8ma®, which is three times the
zero-point energy for a particle in a one-dimensional box of the same length.
The second or next-highest value for the energy is obtained by setting one of



2.8 Particle in a three-dimensional box 63

Table 2.1. Energy levels for a particle in a three-
dimensional box witha =b = ¢

Energy Degeneracy Values of n,, n,, n.

3(h*/8ma?)
6(h*/8ma’)
9(h*/8ma?)
11(h*/8ma?)
12(h*/8ma?)
14(h*/8ma?)

bt

k) 9%y

1,2
2,1,
1,3

>

1,1,2
12,2
1,1,3

>

bt

1L1,1
2,1,1
22,1
31,1
222
32,1

—_— N =

>

bt}

[« NN OS TRUS IS B

3,12 23,1 2,1,3 1,32 1,23

bt

Table 2.2. Energy levels for a particle in a three-
dimensional box with b = a/2, ¢ = a/3

Energy Degeneracy Values of ny, n,, n,

14(h%/8ma?)
17(h%/8ma?)
22(h*/8ma?)
26(h*/8ma?)
29(h%/8ma?)
34(h?/8ma?)
38(h*/8ma?)

11,1

2,1,1

3,1,1

1,2,1

22,1 41,1

3,2,1

51,1
41(h2/8ma?) 1,1,2

|G J I NG SN

4,2,1

the integers n,, n,, n. equal to 2 and the remaining ones equal to unity. Thus,
there are three ways of obtaining the value 64?/8ma?, namely, Ey11, Ei2.1,
and Ej;,. Each of these three possibilities corresponds to a different wave
function, respectively, ¥211(r), Y12.1(r), and ¥ 12(r). An energy level that
corresponds to more than one wave function is said to be degenerate. The
second energy level in this case is threefold or triply degenerate. The zero-
point energy level is non-degenerate. The energies and degeneracies for the
first six energy levels are listed in Table 2.1.

The degeneracies of the energy levels in this example are the result of
symmetry in the lengths of the sides of the box. If, instead of the box being
cubic, the lengths of b and ¢ in terms of a were b = a/2, ¢ = a/3, then the
values of the energy levels and their degeneracies are different, as shown in
Table 2.2 for the lowest eight levels.

Degeneracy is discussed in more detail in Chapter 3.
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2.1

2.2

2.3

24

2.5

Schrodinger wave mechanics

Problems

Consider a particle in a one-dimensional box of length ¢ and in quantum state 7.
What is the probability that the particle is in the left quarter of the box
(0 < x < a/4)? For which state n is the probability a maximum? What is the
probability that the particle is in the left half of the box (0 < x < a/2)?

Consider a particle of mass m in a one-dimensional potential such that
V(x)=0, —a/2<x<a/2
= 00, x<-—-a/2, x>a/2

Solve the time-independent Schrédinger equation for this particle to obtain the
energy levels and the normalized wave functions. (Note that the boundary
conditions are different from those in Section 2.5.)

Consider a particle of mass m confined to move on a circle of radius a. Express
the Hamiltonian operator in plane polar coordinates and then determine the energy
levels and wave functions.

Consider a particle of mass m and energy E approaching from the left a potential
barrier of height V), as shown in Figure 2.3 and discussed in Section 2.6. However,
suppose now that E is greater than Vy (E > V,). Obtain expressions for the
reflection and transmission coefficients for this case. Show that T equals unity
when E — Vy = n*7?h? /2ma® for n = 1, 2, ... Show that between these periodic
maxima 7 has minima which lie progressively closer to unity as E increases.

Find the expression for the transmission coefficient 7' for Problem 2.4 when the
energy E of the particle is equal to the potential barrier height V.
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General principles of quantum theory

3.1 Linear operators

The wave mechanics discussed in Chapter 2 is a linear theory. In order to
develop the theory in a more formal manner, we need to discuss the properties
of linear operators. An operator A is a mathematical entity that transforms a
function ¥ into another function ¢

¢ = Ay (3.1)

Throughout this book a circumflex is used to denote operators. For example,
multiplying the function 3(x) by the variable x to give a new function ¢(x)
may be regarded as operating on the function 1 (x) with the operator X, where
means multiply by x: ¢(x) = xp(x) = xy(x). Generally, when the operation is
simple multiplication, the circumflex on the operator is omitted. The operator
D,, defined as d/dx, acting on (x) gives the first derivative of 1 (x) with
respect to x, so that in this case
. dy

¢ - wa - a
The operator A may involve a more complex procedure, such as taking the
integral of 1 with respect to x either implicitly or between a pair of limits.

The operator/i is linear if it satisfies two criteria

A1 + ) = Ay + Ay, (3.2a)
A(cy) = cAy (3.2b)

where ¢ is any complex constant. In the three examples given above, the
operators are linear. Some nonlinear operators are ‘exp’ (take the exponential
of) and [ ] (take the square of), since

65
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eV =e'e’ £e' +e
eCX 7é Cex
[x+ P =x*+2xp+ 2 #x* + y
[e(x + 0 # clx + y)
The operator C is the sum of the operators A and B if
= (A + By = Ay + By
The operator C is the product of the operators A and B if
Cy = ABy = ABy)
where first B operates on 1 and then A operates on the resulting function.
Operators obey the associative law of multiplication, namely

A(BC) = (4B)C
Operators may be combined. Thus, the square A? of an operator 4 is just the
product A4

2

Ay = Ady = A(Ay)
Similar definitions apply to higher powers of A. As another example, the
differential equation
&y
F + k y = 0
may be written as (D? + k2)y = 0, where the operator (D + k?) is the sum of
the two product operators D)ZC and sz. X
In multiplication, the order of 4 and B is important because 4By is not
necessarily equal to BAwy. For example, if 4 = x and B = D, then we have
ABy = xDyp = x(dy/dx) while, on the other hand, BA1/) = Dy(xp) =
Y + x(dy/dx). The commutator of A and B, written as [A B], is an operator
defined as
[4, B] = AB — BA (3.3)
from which it follows that [/i B] = —[B, A] If ABI/) BAI/J, then we have
AB = BA and [4, B] = 0; in this case we say that A and B commute. By
expansion of each side of the following expressions, we can readily prove the
relationships

[4, BC] = [4, BIC + B[A, C] (3.4a)

[4B, C] = [4, C]B + A[B, C] (3.4b)

The operator A is the reciprocal of B if AB = BA =1, where 1 may be
regarded as the unit operator, i.e., ‘multiply by unity’. We may write A=
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and B = A" If the operator A possesses a reciprocal, it is non—singular in
which case the expression ¢ = At/) may be solved for 1, giving Y= A lp. If
A possesses no reciprocal, it is singular and the expression ¢ = Az/; may not be
inverted.

3.2 Eigenfunctions and eigenvalues

Consider a finite set of functions f; and the relationship
afiteafs+-+efn=0

where ¢y, ¢3, . .. are complex constants. If an equation of this form exists, then
the functions are linearly dependent. However, if no such relationship exists,
except for the trivial one with ¢; = ¢; = - -- = ¢, = 0, then the functions are
linearly independent. This definition can be extended to include an infinite set
of functions.

In general, the function ¢ obtained by the application of the operator A on
an arbitrary function v, as expressed in equation (3.1), is linearly independent
of 1. However, for some particular function v, it is possible that

Ay = a1y,
where o is a complex number. In such a case 3 is said to be an ezgenfunctzon
of 4 and «a; is the corresponding eigenvalue. For a given operator A, many
eigenfunctions may exist, so that

Ay = anp; (3.5)
where 1; are the eigenfunctions, which may even be infinite in number, and «;
are the corresponding eigenvalues. Each eigenfunction of A is unique, that is to
say, is linearly independent of the other eigenfunctions.

Sometimes two or more eigenfunctions have the same eigenvalue. In that
situation the eigenvalue is said to be degenerate. When two, three, ..., n
eigenfunctions have the same eigenvalue, the eigenvalue is doubly, triply, . ..,
n-fold degenerate. When an eigenvalue corresponds only to a single eigenfunc-
tion, the eigenvalue is non-degenerate.

A simple example of an eigenvalue equation involves the operator Dy
mentioned in Section 3.1. When D, operates on e, the result is

N d okt

D.e dx
Thus, the exponentials e are eigenfunctions of D, with corresponding
eigenvalues k. Since both the real part and the imaginary part of k& can have
any values from —oo to +o00, there are an infinite number of eigenfunctions
and these eigenfunctions form a continuum of functions.

= ke
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Another example is the operator ch acting on either sin nx or cos nx, where
n is a positive integer (n = 1), for which we obtain

2

D?sin nx = —n* sin nx

D? cos nx = —n? cos nx

The functions sin nx and cos nx are eigenfunctions of ch with eigenvalues
—n?. Although there are an infinite number of eigenfunctions in this example,
these eigenfunctions form a discrete, rather than a continuous, set.

In order that the eigenfunctions 1; have physical significance in their
application to quantum theory, they are chosen from a special class of func-
tions, namely, those which are continuous, have continuous derivatives, are
single-valued, and are square integrable. We refer to functions with these
properties as well-behaved functions. Throughout this book we implicitly
assume that all functions are well-behaved.

Scalar product and orthogonality
The scalar product of two functions 1(x) and ¢(x) is defined as

J ¢ (P dr

For functions of the three cartesian coordinates x, y, z, the scalar product of
Y(x, y, z) and P(x, y, 2) 18

Joo 65 (x. 3, DP(x, v, ) drdydz

For the functions y(r, 6, @) and ¢(r, 6, @) of the spherical coordinates r, 6,
¢, the scalar product is

27 (7T OO
J J J ¢ (r, 0, @)y(r, 0, @)r?sinOdrdode

0 JoJo

In order to express equations in general terms, we adopt the notation [ dt to
indicate integration over the full range of all the coordinates of the system
being considered and write the scalar product in the form

Jsb*w de

For further convenience we also introduce a notation devised by Dirac and
write the scalar product of 1 and ¢ as (¢ | 9), so that

@ v) = J¢*w dr

The significance of this notation is discussed in Section 3.6. From the definition
of the scalar product and of the notation (¢ | 1), we note that
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(Blyp)" = (w|p)
(@p|cy) =c(@|y)
(cpp|w) =c"(p|y)

where ¢ is an arbitrary complex constant. Since the integral (y|4)* equals
(¥ | y), the scalar product (y | ) is real.

If the scalar product of 1 and ¢ vanishes, i.e., if (¢ |9) = 0, then 3 and ¢
are said to be orthogonal. If the eigenfunctions ; of an operator A obey the
expressions

(i i) =0 alli, jwith i # )
the functions ; form an orthogonal set. Furthermore, if the scalar product of
y; with itself is unity, the function v; is said to be normalized. A set of
functions which are both orthogonal to one another and normalized are said to
be orthonormal

(Wjlwi) =0y (3.6)
where 0;; is the Kronecker delta function,
0;=1, i=j
7 = 3.7)

3.3 Hermitian operators

The linear operator A is hermitian with respect to the set of functions 1; of the
variables ¢1, ¢», . . . if it possesses the property that

Jw;k/iwi dr = Jwi(/iw,»)* de (3.8)

The integration is over the entire range of all the variables. The differential dz
has the form

dt = w(q1, ¢2, --.)dg1dgs ...
where w(q1, g2, -..) is a weighting function that depends on the choice of the
coordinates g¢i, ¢», ... For cartesian coordinates the weighting function
w(x, v, z) equals unity; for spherical coordinates, w(r, 0, ¢) equals 72 sin 6.
Special variables introduced to simplify specific problems have their own
weighting functions, which may differ from unity (see for example Section
6.3). Equation (3.8) may also be expressed in Dirac notation

(j | Awi) = (Ay; | ya) (3.9)
in which the brackets indicate integration over all the variables using their
weighting function.
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For illustration, we consider some examples involving only one variable,
namely, the cartesian coordinate x, for which w(x) = 1. An operator that results
in multiplying by a real function f(x) is hermitian, since in this case
f(x)* = f(x) and equation (3.8) is an identity. Likewise, the momentum
operator p = (f/i)(d/dx), which was introduced in Section 2.3, is hermitian
since
o hdy,; h

* i _ *
OOVJJ- Tdx dx —T%%
The integrated part is zero if the functions ; vanish at infinity, which they
must in order to be well-behaved. The remaining integral is [ ; j)*lp;‘ dx, so
that we have

00 R 00 B[ dw*
J w}‘pw,-dxzj J /

—0o0

J W pyidx =J Pi(py)" dx
[e e} [e e}

The imaginary unit i contained in the operator p is essential for the
hermitian character of that operator. The operator D, = d/dx is not hermitian

because

Y

< e dyy; > dlp;ﬁ
J i dx = —J mwiﬁ dx (3.10)
where again the integrated part vanishes. The negative sign on the right-hand
side of equation (3.10) indicates that the operator is not hermitian. The operator
Dﬁ, however, is hermitian.

The hermitian character of an operator depends not only on the operator
itself, but also on the functions on which it acts and on the range of integration.
An operator may be hermitian with respect to one set of functions, but not with
respect to another set. It may be hermitian with respect to a set of functions
defined over one range of variables, but not with respect to the same set over a
different range. For example, the hermiticity of the momentum operator p is
dependent on the vanishing of the functions v; at infinity.

The product of two hermitian operators may or may not be hermitian.
Consider the product AB where A and B are separately hermitian with respect
to a set of functions 1;, so that

(Wj[ABy:) = (Ay; | Byi) = (BAY;[vi) (3.11)
where we have assumed that the functions AAl/),- and B, also lie in the hermitian
domain of 4 and B. The product AB is hermitian if, and only if, A and B
commute. Using the same procedure, one can easily demonstrate that if A and
B do not commute, then the operators (AAl? + l?AA) and i[/I , B] are hermitian.

By setting B equal to 4 in the product 4B in equation (3.11), we see that the
square of a hermitian operator is hermitian. This result can be generalized to
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any integral power of 4. Since |Ay|? is always positive, the integral (A | A1)
is positive and consequently

(| 4p) =0 (3.12)

Eigenvalues
The eigenvalues of a hermitian operator are real. To prove this statement, we
consider the eigenvalue equation

Ay = ay (3.13)
where A is hermitian, 1 is an eigenfunction of A, and a is the corresponding
eigenvalue. Multiplying by 1™ and integrating give

(| dy) = aly|y) (3.14)
Multiplication of the complex conjugate of equation (3.13) by 1 and integrat-
ing give

(dy|y) = |y) (3.15)

Because A is hermitian, the left-hand sides of equations (3.14) and (3.15) are
equal, so that

(a—a"){y|y) =0 (3.16)
Since the integral in equation (3.16) is not equal to zero, we conclude that
a = o and thus « is real.

Orthogonality theorem

If Y1 and vy, are eigenfunctions of a hermitian operator A with different
eigenvalues o and a,, then Y and v, are orthogonal. To prove this theorem,
we begin with the integral

(2 | A1) = oy (2| 1) (3.17)

Since A is hermitian and ay is real, the left-hand side may be written as

(2 | Ap1) = (A2 | 1) = ax (v | y1)

Thus, equation (3.17) becomes

(02 — an)(y2|y1) =0
Since a; # a,, the functions y; and 1, are orthogonal.
Since the Dirac notation suppresses the variables involved in the integration,
we re-express the orthogonality relation in integral notation

Jw;‘(ql, q2, - 1(q1, q2, .- IW(q1, g2, -..)dg1dqy ... =0

This expression serves as a reminder that, in general, the eigenfunctions of a
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hermitian operator involve several variables and that the weighting function
must be used. The functions are, therefore, orthogonal with respect to the
weighting function w(q1, qa, - . .).

If the weighting function is real and positive, then we can define ¢; and ¢,
as

b1 = VWY, ¢ = VW

The functions ¢; and ¢, are then mutually orthogonal with respect to a
weighting function of unity. Moreover, if the operator A is hermitian with
respect to ¥, and 1, with a weighting function w, then A is hermitian with
respect to ¢p; and ¢, with a weighting function equal to unity.

If two or more linearly independent eigenfunctions have the same eigen-
value, so that the eigenvalue is degenerate, the orthogonality theorem does not
apply. However, it is possible to construct eigenfunctions that are mutually
orthogonal. Suppose there are two independent eigenfunctions v; and 1, of
the operator A with the same eigenvalue a. Any linear combination
c1Y1 + ¢y, where ¢ and ¢, are any pair of complex numbers, is also an
eigenfunction of 4 with the same eigenvalue, so that

A(cryr + capn) = 1Ay + Ay, = a(ci ) + cry))

From any pair 1, ¥, which initially are not orthogonal, we can construct by
selecting appropriate values for ¢; and ¢, a new pair which are orthogonal. By
selecting different sets of values for ¢, ¢,, we may obtain infinitely many new
pairs of eigenfunctions which are mutually orthogonal.

As an illustration, suppose the members of a set of functions 1, ¥, ..., ¥,
are not orthogonal. We define a new set of functions ¢, ¢,, ..., ¢, by the
relations

P11 =Y
2 = apr + 2

@3 = b1y + brpy + Y3

If we require that ¢, be orthogonal to ¢ by setting (¢ | ¢,) = 0, then the
constant a is given by

a=—1 )/ (W1|y1) = —(@1|p2) /(D1 ] P1)

and ¢, is determined. We next require ¢3 to be orthogonal to ¢; and to ¢,
which gives
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by = —(¢1[y3)/{p1] 1)
by = —(p2[¥3)/{Pp2] P2)

In general, we have
s—1
¢s =Ys+ Z ksi¢i
i=1

ki = —(pi|ys)/{(pi| bi)

This construction is known as the Schmidt orthogonalization procedure. Since
the initial selection for ¢»; can be any of the original functions ; or any linear
combination of them, an infinite number of orthogonal sets ¢; can be obtained
by the Schmidt procedure.

We conclude that all eigenfunctions of a hermitian operator are either
mutually orthogonal or, if belonging to a degenerate eigenvalue, can be chosen
to be mutually orthogonal. Throughout the remainder of this book, we treat all
the eigenfunctions of a hermitian operator as an orthogonal set.

Extended orthogonality theorem

The orthogonality theorem can also be extended to cover a somewhat more
general form of the eigenvalue equation. For the sake of convenience, we
present in detail the case of a single variable, although the treatment can be
generalized to any number of variables. Suppose that instead of the eigenvalue
equation (3.5), we have for a hermitian operator A of one variable

Api(x) = aw@)pi(x) (3.18)
where the function w(x) is real, positive, and the same for all values of i.
Therefore, equation (3.18) can also be written as

A" (@) = afwy] () (3.19)
Multiplication of equation (3.18) by 1/)3< (x) and integration over x give
[ = a [y eommme (3.20)

Now, the operator A is hermitian with respect to the functions v; with a
weighting function equaling unity, so that the integral on the left-hand side of
equation (3.20) becomes

ij-‘(xyiw,-(x) dx = ij)fi*w;'f(x) dx = af ij%x)w,-(x)w(x) dx

where equation (3.19) has been used as well. Accordingly, equation (3.20)
becomes
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(i — a) Jw;‘-‘(x)wi(x)w(x)dx =0 (3.21)

When j =i, the integral in equation (3.21) cannot vanish because the
product 17 1; and the function w(x) are always positive. Therefore, we have
a; = a and the eigenvalues a; are real. For the situation where i # j and
a; # a;"‘, the integral in equation (3.21) must vanish,

Jw;‘ W) dx = 0 (3.22)

Thus, the set of functions 1;(x) for non-degenerate eigenvalues are mutually
orthogonal when integrated with a weighting function w(x). Eigenfunctions
corresponding to degenerate eigenvalues can be made orthogonal as discussed
earlier.
The discussion above may be generalized to more than one variable. In the
general case, equation (3.18) is replaced by
AYdqr, @2, -- ) = aiwlqr, 92, - IYiq1, 2, - - ) (3.23)

and equation (3.22) by

[ g anowtan ae - dardes =0 324

Equation (3.18) can also be transformed into the more usual form, equation
(3.5). We first define a set of functions ¢;(x) as

Pi(x) = [w)]2Pi(x) = Pi(x)/u(x) (3.25)
where
u(x) = [w(x)] ™/ (3.26)

The function u(x) is real because w(x) is always positive and u(x) is positive
because we take the positive square root. If w(x) approaches infinity at any
point within the range of hermiticity of A (as x approaches infinity, for
example), then 1;(x) must approach zero such that the ratio ¢;(x) approaches
zero. Equation (3.18) is now multiplied by u(x) and w;(x) is replaced by

u(x)i(x)
u(x)Au(x)pi(x) = aw(x)[u(x)*pi(x)

If we define an operator B by the relation B= u(x)/iu(x) and apply equation
(3.26), we obtain

B¢i(x) = a;pi(x)
which has the form of equation (3.5). We observe that
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[ ax = [oudups ax = [0 89,0

[y opian = [Cuups ax = [ B9, 100

Since A is hermitian with respect to the 1;s, the two integrals on the left of
each equation equal each other, from which it follows that

780,00 = B0 100

and B is therefore hermitian with respect to the ¢;s.

3.4 Eigenfunction expansions

Consider a set of orthonormal eigenfunctions 1; of a hermitian operator. Any
arbitrary function f of the same variables as 1; defined over the same range of
these variables may be expanded in terms of the members of set y;

f=) awi (3:27)

where the a;s are constants. The summation in equation (3.27) converges to the
function f if the set of eigenfunctions is complete. By complete we mean that
no other function g exists with the property that (g | y;) = 0 for any value of i,
where g and v; are functions of the same variables and are defined over the
same variable range. As a general rule, the eigenfunctions of a hermitian
operator are not only orthogonal, but are also complete. A mathematical
criterion for completeness is presented at the end of this section.

The coefficients a; are evaluated by multiplying (3.27) by the complex
conjugate w;‘f of one of the eigenfunctions, integrating over the range of the
variables, and noting that the ;s are orthonormal

(Wil /)= <1/)j Zaﬂ/)i> = aily;|vi) =a;

i

Replacing the dummy index j by i, we have

ai = (il f) (3.28)
Substitution of equation (3.28) back into (3.27) gives

f=2 il (3.29)
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Completeness
We now evaluate (f | f) in which f and /™ are expanded as in equation (3.27),
with the two independent summations given different dummy indices

(1) = <Za,-w,- Zaiw,-> =D daiy;lw) =) laf’

J 1

Without loss of generality we may assume that the function f is normalized, so
that (/| /) = 1 and

Z la;> =1 (3.30)

Equation (3.30) may be used as a criterion for completeness. If an eigenfunc-
tion 1, with a non-vanishing coefficient a, were missing from the summation
in equation (3.27), then the series would still converge, but it would be
incomplete and would therefore not converge to f. The corresponding coeffi-
cient a, would be missing from the left-hand side of equation (3.30). Since
each term in the summation in equation (3.30) is positive, the sum without «,,
would be less than unity. Only if the expansion set 3; in equation (3.27) is
complete will (3.30) be satisfied.

The completeness criterion can also be expressed in another form. For this
purpose we need to introduce the variables explicitly. For simplicity we assume
first that /" is a function of only one variable x. In this case, equation (3.29) is

f=> Uw;"(x'>f<x'> dx'} Pi(x)

1

where x’ is the dummy variable of integration. Interchanging the order of
summation and integration gives

0= [Z w?‘(x’)z/)i(x)] )’
Thus, the summation is equal to the Dirac delta function (see Appendix C)
DY) = 0 — x') (3.31)

This expression, known as the completeness relation and sometimes as the
closure relation, is valid only if the set of eigenfunctions is complete, and may
be used as a mathematical test for completeness. Notice that the completeness
relation (3.31) is not related to the choice of the arbitrary function f, whereas
the criterion (3.30) is related.

The completeness relation for the multi-variable case is slightly more
complex. When expressed explicitly in terms of its variables, equation (3.29) is
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a1, g2, ) ZZUwf(qi, @, - (G g5y - I, g5, -+ ) dgh, dgs, }

i
X Yiq1, g2, --.)

Interchanging the order of summation and integration gives

flan gz =] [Z VI @b - i, a2, )]

X f(qi, q2, - IMq1, g5, - )dqi1dga ...
so that the completeness relation takes the form

w(qi, g3, - .) wa(qi, g2, .- Wi(q1, q2, ...) = 0(q1 — q1)0(q2 — q3) ...

(3.32)

3.5 Simultaneous eigenfunctions

Suppose the members of a complete set of functions v; are simultaneously
eigenfunctions of two hermitian operators A and B with eigenvalues a; and 3,
respectively

Ay, = anp;
ng = ﬁiwi

If we operate on the first eigenvalue equation with B and on the second with A,
we obtain

BAy; = a;By; = aipip;

ABy; = Bidy; = aifip;
from which it follows that

(4B — BA)y; = [4, Blyp; =0

Thus, the functions v; are eigenfunctions of the commutator [4, B] with
eigenvalues equal to zero. An operator that gives zero when applied to any
member of a complete set of functions is itself zero, so that A and B commute.
We have just shown that if the operators A and B have a complete set of
simultaneous eigenfunctions, then A and B commute.

We now prove the converse, namely, that eigenfunctions of commuting
operators can always be constructed to be simultaneous eigenfunctions.
Suppose that Afi/),- = a;p; and that [4, B] = 0. Since 4 and B commute, we
have
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ABY; = BAY; = B(ay:) = a;By;
Therefore, the function By; is an eigenfunction of 4 with eigenvalue ;.

There are now two possibilities; the eigenvalue a; of A4 is either non-
degenerate or degenerate. If a; is non-degenerate, then it corresponds to only
one independent eigenfunction 1;, so that the function B; is proportional to
Yi

By; = B,
where f3; is the proportionality constant and therefore the eigenvalue of B
corresponding to ;. Thus, the function 1; is a simultaneous eigenfunction of
both 4 and B.

On the other hand, suppose the eigenvalue a; is degenerate. For simplicity,
we consider the case of a doubly degenerate eigenvalue «;; the extension to n-
fold degeneracy is straightforward. The function %; is then any linear combina-

tion of two linearly independent, orthonormal eigenfunctions v;; and » of A
corresponding to the eigenvalue «;

Yi=caya+ ayin
We need to determine the coefficients ¢;, ¢, such that By; = S;1;, that is

c1Byi + 2Byn = Bi(ciyin + i)
If we take the scalar product of this equation first with 1;; and then with ¥,
we obtain
ci(Bii — i)+ 2B, =0
c1By +ca(Byn — i) =0

where we have introduced the simplified notation

B = (i | Byir)
These simultaneous linear homogeneous equations determine ¢; and ¢, and

have a non-trivial solution if the determinant of the coefficients of ¢;, ¢
vanishes

By — Bi B,

=0
By By — Bi

or

B* — (B11 + By)Bi + Bi1By — BiyByy =0

This quadratic equation has two roots ﬁgl) and /3;.2), which lead to two
corresponding sets of constants c(ll), c(zl) and c(]z)’ czz). Thus, there are two

distinct functions wﬁ” and 1/;5.2)
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1 1 1
( ) = C(l )1/)1'1 + C( )1/)12

2 2 2
( )= C(l )1/)1'1 + C( )1/)12

i
and are, therefore, simultaneous eigenfunctions of the commuting operators A
and B.

This analysis can be extended to three or more operators. If three operators
A, B, and C have a complete set of simultaneous eigenfunctions, then the
argument above shows that A and B commute, B and C commute, and 4 and C
commute. Furthermore, the converse is also true. If A commutes with both B
and C, and B commutes with C, then the three operators possess simultaneous
eigenfunctions. To show this, suppose that the three operators commute with
one another. We know that since 4 and B commute, they possess simultaneous
eigenfunctions 1; such that

Ay; = anp;
By; = piy;
We next operate on each of these expressions with C, giving
CAy; = A(Cy) = Clapi) = ai(Cp)
C‘fh/)l- = E(él/),-) = CA'(ﬁﬂ/)z') = ﬂi(é%)

Thus, the function él/) ; 1s an eigenfunction of both A and B with eigenvalues a;
and f;, respectively. If «; and f3; are non-degenerate, then there is only one
eigenfunction v; corresponding to them and the function él/},- is proportional
o y;
Cyi = yipi

and, consequently, AA, B, and C possess simultaneous eigenfunctions. For
degenerate eigenvalues a; and/or f3;, simultaneous eigenfunctions may be
constructed using a procedure parallel to the one described above for the
doubly degenerate two-operator case.

We note here that if 4 commutes with B and B commutes with C, but 4 does
not commute with C, then 4 and B possess simultaneous e1genfunct10ns B and
C possess simultaneous elgenfunctlons but 4 and C do not. The set of
simultaneous eigenfunctions of A and B will differ from the set for B and C.
An example of this situation is discussed in Chapter 5.
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In some of the derivations presented in this section, operators need not be
hermitian. However, we are only interested in the properties of hermitian
operators because quantum mechanics requires them. Therefore, we have
implicitly assumed that all the operators are hermitian and we have not
bothered to comment on the parts where hermiticity is not required.

3.6 Hilbert space and Dirac notation

This section introduces the basic mathematics of linear vector spaces as an
alternative conceptual scheme for quantum-mechanical wave functions. The
concept of vector spaces was developed before quantum mechanics, but Dirac
applied it to wave functions and introduced a particularly useful and widely
accepted notation. Much of the literature on quantum mechanics uses Dirac’s
ideas and notation.

A set of complete orthonormal functions ;(x) of a single variable x may be
regarded as the basis vectors of a linear vector space of either finite or infinite
dimensions, depending on whether the complete set contains a finite or infinite
number of members. The situation is analogous to three-dimensional cartesian
space formed by three orthogonal unit vectors. In quantum mechanics we
usually (see Section 7.2 for an exception) encounter complete sets with an
infinite number of members and, therefore, are usually concerned with linear
vector spaces of infinite dimensionality. Such a linear vector space is called a
Hilbert space. The functions 1;(x) used as the basis vectors may constitute a
discrete set or a continuous set. While a vector space composed of a discrete
set of basis vectors is easier to visualize (even if the space is of infinite
dimensionality) than one composed of a continuous set, there is no mathema-
tical reason to exclude continuous basis vectors from the concept of Hilbert
space. In Dirac notation, the basis vectors in Hilbert space are called ket
vectors or just kets and are represented by the symbol |y;) or sometimes
simply by |7). These ket vectors determine a ket space.

When a ket |y;) is multiplied by a constant ¢, the result ¢ |¢;) = |cy;) is a
ket in the same direction as [y;); only the magnitude of the ket vector is
changed. However, when an operator 4 acts on a ket |1;), the result is another

ket |¢;)

@i) = Alyi) = |Ayi)
In general, the ket |¢;) is not in the same direction as |y;) nor in the same
direction as any other ket |1;), but rather has projections along several or all
basis kets. If an operator 4 acts on all kets |;) of the basis set, and the
resulting set of kets |¢;) = |4y;) are orthonormal, then the net result of the
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operation is a rotation of the basis set |1;) about the origin to a new basis set
|¢;). In the situation where 4 acting on |1;) gives a constant times |1;) (cf.
equation (3.5))
Alyi) = |Avi) = ailyi)

the ket |4yp;) is along the direction of |1;) and the kets |1p;) are said to be
eigenkets of the operator A.

Although the expressions A|y;) and |4y;) are completely equivalent, there
is a subtle distinction between them. The first, A|1;), indicates the operator A

being applied to the ket |1;). The quantity [41;) is the ket which results from
that application.

Bra vectors

The functions ;(x) are, in general, complex functions. As a consequence, ket
space is a complex vector space, making it mathematically necessary to
introduce a corresponding set of vectors which are the adjoints of the ket
vectors. The adjoint (sometimes also called the complex conjugate transpose)
of a complex vector is the generalization of the complex conjugate of a
complex number. In Dirac notation these adjoint vectors are called bra vectors
or bras and are denoted by (1p;| or (i|. Thus, the bra (1;| is the adjoint |1;)" of
the ket |1;) and, conversely, the ket |1;) is the adjoint (1;|" of the bra (1,

|1/)i>T = (il
(il = |y)

These bra vectors determine a bra space, just as the kets determine ket space.

The scalar product or inner product of a bra (¢| and a ket |yp) is written in
Dirac notation as (¢|y) and is defined as

(@ly) = Jcb*(x)w(x)dx

The bracket (bra-c-ket) in (¢|y) provides the names for the component
vectors. This notation was introduced in Section 3.2 as a shorthand for the
scalar product integral. The scalar product of a ket |y) with its corresponding
bra (| gives a real, positive number and is the analog of multiplying a
complex number by its complex conjugate. The scalar product of a bra (|
and the ket |4y,) is expressed in Dirac notation as (1/)]-|Af|1/1,»> or as (jl|i).
These scalar products are also known as the matrix elements of A and are
sometimes denoted by 4;;.

To every ket in ket space, there corresponds a bra in bra space. For the ket



82 General principles of quantum theory

c|y;), the corresponding bra is c*(;|. We can also write c|y;) as |cy;), in
which case the corresponding bra is (c;|, so that

{epil = ¢ (wil
For every linear operator A that transforms |1;) in ket space into |¢;) = |4y;),
there is a correspondmg linear operator At in bra space which transforms (1]
into (¢;| = (Ay,|. This operator A" is called the adjoint of A. In bra space the
transformation is expressed as

(dyi| = (|4
Thus, for bras the operator acts on the vector to its left, whereas for kets the
operator acts on the vector to its right.

To find the relationship between A and its adjoint At, we take the scalar
product of (47| and |y;)

(Ap;lpi) = (w;|AT ) (3.33a)

or in integral notation
[ty pyiax= [yrapa (3.33b)

A comparison with equation (3.8) shows that if A is hermitian, then we have
At = 4 and 4 is said to be self-adjoint. The two terms, hermitian and self-
adjoint, are synonymous. To find the adjoint of a non-hermitian operator, we
apply equations (3.33). For example, we see from equation (3.10) that the
adjoint of the operator d/dx is —d/dx.

Since the scalar product (1|¢) is equal to (¢|y)™, we see that

(yjlys) = (wildlw,)" (3.34)
Combining equations (3.33a) and (3.34) gives
(ild ) = (wildly,)” (3.35)
If we replace Ain equation (3.35) by the operator A', we obtain
WA i) = (wild ) (3.36)

where (4N is the adjoint of the operator Al Equation (3.35) may be rewritten
as

Wild'ly,)" = (,ldlp:)
and when compared with (3.36), we see that
(AN i) = (wldp;)
We conclude that
Ahf =4 (3.37)

From equation (3.35) we can also show that
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(cA)t = c* A (3.38)
where ¢ is any complex constant, and that
(A+B) =A"+ B (3.39)

To obtain the adjoint of the product AB of two operators, we apply equation
(3.33a), first to AB, then to 4, and finally to B
(W|AB) [wi) = (AByj|wi) = Byl i) = (y;B'A )
Thus, we have the relation
(AB)' = B'A! (3.40)
If A and B are hermitian (self-adjoint), then we have (AAJEA?)T — BA and further, if
A and B commute, then the product AB is hermitian or self-adjoint.

The outer product of a bra (¢| and a ket |y) is |)(¢| and behaves as an
operator. If we let this outer product operate on another ket |y), we obtain the
expression |1)(¢|y), which can be regarded in two ways. The scalar product
(p|yx) is a complex number multiplying the ket |1), so that the complete
expression is a ket parallel to |). Alternatively, the operator |y)(¢| acts on the
ket |x) and transfroms |y) into a ket proportional to |).

To find the adjoint of the outer product |y)(¢| of the ket |y) and the bra (¢|,
we let 4 in equation (3.35) be equal to |y)(¢| and obtain

Wil @D Ty = Wil @Dl )™ = (wiln) ™ (@l )™
= () (wile) = (wile) xlyi) = Wilde) Dlya)

Setting equal the operators in the left-most and right-most integrals, we find
that

() (@)D" = |#) (x| (3.41)

Projection operator
We define the operator P; as the outer product of [;) and its corresponding bra

Py = |y (yil = 1i) (il (3.42)
and apply P; to an arbitrary ket |¢)

Plg) = li)il)
Thus, the result of P; acting on |¢) is a ket proportional to |i), the proportion-
ality constant being the scalar product (y;|¢). The operator P;, then, projects
|¢) onto |yp;) and for that reason is known as the projection operator. The
operator P? is given by
Plz = ZDi]Di = [)(ili){i| = [)){i| = Pz’

where we have noted that the kets |i) are normalized. Likewise, the operator f’f’
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for n>2 also equals P;. This property is consistent with the interpretation of
P; as a projection operator since the result of projecting |¢) onto |i) should be
the same whether the projection is carried out once, twice, or multiple times.
The operator P; is hermitian, so that the projection of |¢) on [y;) is equal to
the projection of |;) on |¢). To show that P; is hermitian, we let |y) =
|¢) = |i) in equation (3.41) and obtain P, = P,.

The expansion of a function f(x) in terms of the orthonormal set 1;(x), as
shown in equation (3.27), may be expressed in terms of kets as

)= ailwn) = aili)
where |f) is regarded as a vector in ket space. The constants a; are the
projections of | /) on the ‘unit ket vectors’ |i) and are given by equation (3.28)

a; = <l’f>

Combining these two equations gives equation (3.29), which when expressed

in Dirac notation is
= > _1i{lf)
i

Since f(x) is an arbitrary function of x, the operator » ;|i)(i| must equal the
identity operator, so that
> il =1 (3.43)

From the definition of P; in equation (3.42), we see that
LR

Since the operator ) _;|i)(i| equals unity, it may be inserted at any point in an
equation. Accordingly, we insert it between the bra and the ket in the scalar
product of |f) with itself

)

where we have assumed | /') is normalized. This expression may be written as

11y = (i Z| i) zw—l

i

Thus, the expression (3.43) is related to the completeness criterion (3.30) and
is called, therefore, the completeness relation.
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3.7 Postulates of quantum mechanics

In this section we state the postulates of quantum mechanics in terms of the
properties of linear operators. By way of an introduction to quantum theory, the
basic principles have already been presented in Chapters 1 and 2. The purpose
of that introduction is to provide a rationale for the quantum concepts by
showing how the particle—wave duality leads to the postulate of a wave
function based on the properties of a wave packet. Although this approach,
based in part on historical development, helps to explain why certain quantum
concepts were proposed, the basic principles of quantum mechanics cannot be
obtained by any process of deduction. They must be stated as postulates to be
accepted because the conclusions drawn from them agree with experiment
without exception.

We first state the postulates succinctly and then elaborate on each of them
with particular regard to the mathematical properties of linear operators. The
postulates are as follows.

1. The state of a physical system is defined by a normalized function W of the spatial
coordinates and the time. This function contains all the information that exists on
the state of the system.

2. Every physical observable A is represented by a linear hermitian operator A

3. Every individual measurement of a physical observable 4 yields an eigenvalue of
the corresponding operator A. The average value or expectation value (4) from a
series of measurements of A for systems, each of which is in the exact same state
W, is given by (4) = (W|4|P).

4. If a measurement of a physical observable 4 for a system in state W gives the
eigenvalue 4, of A, then the state of the system immediately after the measurement
is the eigenfunction (if 4, is non-degenerate) or a linear combination of eigenfunc-
tions (if 4, is degenerate) corresponding to 4,,.

5. The time dependence of the state function W is determined by the time-dependent
Schrodinger differential equation

ov .
ih— = HY
! ot

where H is the Hamiltonian operator for the system.

This list of postulates is not complete in that two quantum concepts are not
covered, spin and identical particles. In Section 1.7 we mentioned in passing
that an electron has an intrinsic angular momentum called spin. Other particles
also possess spin. The quantum-mechanical treatment of spin is postponed until
Chapter 7. Moreover, the state function for a system of two or more identical
and therefore indistinguishable particles requires special consideration and is
discussed in Chapter 8.



86 General principles of quantum theory

State function

According to the first postulate, the state of a physical system is completely
described by a state function W(q, #) or ket |¥), which depends on spatial
coordinates q and the time ¢. This function is sometimes also called a state
vector or a wave function. The coordinate vector q has components ¢, ¢2, - . .,
so that the state function may also be written as W(q1, ¢q», ..., f). For a particle
or system that moves in only one dimension (say along the x-axis), the vector q
has only one component and the state vector W is a function of x and
t: W(x, f). For a particle or system in three dimensions, the components of q
are x, y, z and W is a function of the position vector r and #: W(r, t). The state
function is single-valued, a continuous function of each of its variables, and
square or quadratically integrable.

For a one-dimensional system, the quantity W*(x, /)W(x, ?) is the probabil-
ity density for finding the system at position x at time ¢. In three dimensions,
the quantity W*(r, £)¥(r, f) is the probability density for finding the system at
point r at time ¢ For a multi-variable system, the product W*(q,, g2,
..., Hh¥(q1, q2, - .., 1) is the probability density that the system has coordi-
nates ¢i, ¢, ... at time 7. We show below that this interpretation of py
follows from postulate 3. We usually assume that the state function is normal-
ized

J‘I’*(ql, 92, ---» D¥(q1, q2, ..., OW(q1, q2, .. .)dq1dgy ... =1

or in Dirac notation
(WW) =1

where the limits of integration are over all allowed values of ¢y, ¢», ...

Physical quantities or observables
The second postulate states that a physical quantity or observable is represented
in quantum mechanics by a hermitian operator. To every classically defined
function A(r, p) of position and momentum there corresponds a quantum-
mechanical linear hermitian operator A(r, (A/1)V). Thus, to obtain the quan-
tum-mechanical operator, the momentum p in the classical function is replaced
by the operator p
p= ?V (3.44)

or, in terms of components

. ho . h0 . ho

PTee PRy P
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For multi-particle systems with cartesian coordinates ry, rp, ..., the classical
function A(ry, ra2, ..., p1, P2, ---) possesses the corresponding operator
AA(rl, r, ..., (R/)Vy, (A/1)V,, ...) where V; is the gradient with respect to
r;. For non-cartesian coordinates, the construction of the quantum-mechanical
operator A is more complex and is not presented here.

The classical function A4 is an observable, meaning that it is a physically
measurable property of the system. For example, for a one-particle system the
Hamiltonian operator H corresponding to the classical Hamiltonian function

pZ
H(r, p) = 24 V(1)

where p> =p - p = pi + p}, + pl.is
. A2
H=——V>+7V(r)
2m

The linear operator H is easily shown to be hermitian.

Measurement of observable properties
The third postulate relates to the measurement of observable properties. Every
individual measurement of a physical observable A yields an eigenvalue A; of
the operator A. The eigenvalues are given by
Ali)y = A4i) (3.45)

where |i) are the orthonormal eigenkets of A. Since A is hermitian, the
eigenvalues are all real. It is essential for the theory that A is hermitian because
any measured quantity must, of course, be a real number. If the spectrum of A
is discrete, then the eigenvalues A; are discrete and the measurements of 4 are
quantized. If, on the other hand, the eigenfunctions |i/) form a continuous,
infinite set, then the eigenvalues A; are continuous and the measured values of
A are not quantized. The set of eigenkets |i) of the dynamical operator 4 are
assumed to be complete. In some cases it is possible to show explicitly that |i)
forms a complete set, but in other cases we must assume that property.

The expectation value or mean value (A) of the physical observable A4 at
time ¢ for a system in a normalized state W is given by

(4) = (W]|4]|W) (3.46)
If W is not normalized, then the appropriate expression is
W4 |W
(a) = A0
(W|w)

Some examples of expectation values are as follows
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() = (W)
h 0
(px) = <‘P T ‘I’>
(r) = (W[r)
(p) = <‘P ﬁV\W>

E=(H <1P‘——V2+ V(r) >
The expectation value (A4) is not the result of a single measurement of the
property A, but rather the average of a large number (in the limit, an infinite
number) of measurements of 4 on systems, each of which is in the same state
Y. Each individual measurement yields one of the eigenvalues 4;, and (4) is
then the average of the observed array of eigenvalues. For example, if the
eigenvalue A; is observed four times, the eigenvalue A, three times, the
eigenvalue 13 once, and no other eigenvalues are observed, then the expectation
value (4) is given by
(4) = 40, + 38/12 + 43
In practice, many more than eight observations would be required to obtain a
reliable value for (A4).
In general, the expectation value (A4) of the observable 4 may be written for
a discrete set of eigenfunctions as

=> Pk (3.47)

where P; is the probability of obtaining the value A;. If the state function W for
a system happens to coincide with one of the eigenstates |i), then only the
eigenvalue 4; would be observed each time a measurement of A is made and
therefore the expectation value (4) would equal 4,

(d) = (ildli) = (ilAili) = A
It is important not to confuse the expectation value (A4) with the time average
of A for a single system.

For an arbitrary state W at a fixed time ¢, the ket |¥) may be expanded in
terms of the complete set of eigenkets of 4. In order to make the following
discussion clearer, we now introduce a slightly more complicated notation.
Each eigenvalue A; will now be distinct, so that A; # 4; for i # j. We let g; be
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the degeneracy of the eigenvalue A; and let |ia), a=1,2,..., g;, be the
orthonormal eigenkets of A. We assume that the subset of kets corresponding
to each eigenvalue A; has been made orthogonal by the Schmidt procedure
outlined in Section 3.3.

If the eigenkets |ia) constitute a discrete set, we may expand the state vector
|W) as

&i
W) =" ciglia) (3.48)
i a=l1

where the expansion coefficients c;, are
Ciq = (ia|P) (3.49)

The expansion of the bra vector (W| is, therefore, given by

&
(W= bl (3.50)

7 B
where the dummy indices i and a have been replaced by j and f3.

The expectation value of A is obtained by substituting equations (3.48) and
(3.50) into (3.46)

g 8i . &gj gi
() =3 clpealildlia) =YD "N cheiniBlia)
J p=1 i a=l j p=1 i a=l
= Z i ‘Cia|2}w (3.51)
i a=l1

where we have noted that the kets |ia) are orthonormal, so that

A comparison of equations (3.47) and (3.51) relates the probability P; to the
expansion coefficients c;,

gi 8i
P = Zl lci|* = Zl |(ice|W)|? (3.52)

where equation (3.49) has also been introduced. For the case where 4; is non-
degenerate, the index «a is not needed and equation (3.52) reduces to

2 W |2
P = leil” = [GP)]
For a continuous spectrum of eigenkets with non-degenerate eigenvalues, it
is more convenient to write the eigenvalue equation (3.45) in the form
Al2) = 212)
where 1 is now a continuous variable and |4) is the eigenfunction whose
eigenvalue is 4. The expansion of the state vector W becomes
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Wy = chw a2

where
c(d) = (A|W)
and the expectation value of A4 takes the form
(4) = J\c(ﬂ.)\zi di (3.53)

If dP) is the probability of obtaining a value of A4 between A4 and 4 + d4, then
equation (3.47) is replaced by

(4) = J/l dp,

and we see that
dP; = e di = [(A[W)]* dA

The probability d P; is often written in the form

dP, = p(4)da
where p(1) is the probability density of obtaining the result 4 and is given by

pA) = e = [(21W)P

In terms of the probability density, equation (3.53) becomes

(4) = sz(,l)dzl (3.54)

In some applications to physical systems, the eigenkets of A possess a
partially discrete and a partially continuous spectrum, in which case equations
(3.51) and (3.53) must be combined.

The scalar product (W|W) may be evaluated from equations (3.48) and
(3.50) as

LIRS 9 0 SETSTLIERD o ot
_ZZ|za|‘P ZP

Since the state vector W is normalized, this expression gives
-
i

Thus, the sum of the probabilities P; equals unity as it must from the definition
of probability. For a continuous set of eigenkets, this relationship is replaced by
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JdP,l = Jp(ﬂ.)dﬂ. =1

As an example, we consider a particle in a one-dimensional box as discussed
in Section 2.5. Suppose that the state function W(x) for this particle is time-
independent and is given by

W(x) = Csin5<@>, 0<x<a
a

where C is a constant which normalizes W(x). The eigenfunctions |n) and
eigenvalues £, of the Hamiltonian operator H are

2 nirx n*h?
=4/—sin[ — E,=——, =12,...
|n) \/;sm( , >, rym DL

Obviously, the state function W(x) is not an eigenfunction of H. Following the
general procedure described above, we expand W(x) in terms of the eigenfunc-
tions |n). This expansion is the same as an expansion in a Fourier series, as
described in Appendix B. As a shortcut we may use equations (A.39) and
(A.40) to obtain the identity

1
sin’6 = E(lO sin@ — 5sin 360 + sin 50)

so that the expansion of W(x) is

W = & [10 sin <@> _ 5sin <3ﬂ> + sin <Sﬂ>]
16 a a a

C Ja
= E\[5(10|1> —5[3) +15)

A measurement of the energy of a particle in state W(x) yields one of three
values and no other value. The values and their probabilities are

> 102 100
E—-" p-__ " (79
VT 8ma2 T T 102+ 52+ 12 126
912 52
Ey=— Pi=——=0.1
gm0 018
25h? 12
Es =20 — _—_ —0.008
ST 8ma?’ T 126

The sum of the probabilities is unity,
P+ P;+ Ps =0.794 4-0.198 + 0.008 = 1

The interpretation that the quantity W*(q1, q2, ..., O¥(q1, ¢, ..., 1) is
the probability density that the coordinates of the system at time ¢ are
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q1, 42, - - . may be shown by comparing equations (3.46) and (3.54) for 4 equal
to the coordinate vector q

(@) = (W]q|W) = J‘P*m)wq)q do

(@) = Jp(q)q dr

For these two expressions to be mutually consistent, we must have

p(q) = ¥*(@Q¥(q)

Thus, this interpretation of W*W follows from postulate 3 and for this reason
is not included in the statement of postulate 1.

Collapse of the state function

The measurement of a physical observable A gives one of the eigenvalues 4,, of
the operator A. As stated by the fourth postulate, a consequence of this
measurement is the sudden change in the state function of the system from its
original form W to an eigenfunction or linear combination of eigenfunctions of
A corresponding to 4,,.

At a fixed time 7 just before the measurement takes place, the ket |¥) may
be expanded in terms of the eigenkets |ia) of A, as shown in equation (3.48). If
the measurement gives a non-degenerate eigenvalue 4,, then immediately after
the measurement the system is in state |n). The state function W is said to
collapse to the function |n). A second measurement of A4 on this same system,
if taken immediately after the first, always yields the same result 1,. If the
eigenvalue 4, is degenerate, then right after the measurement the state function
is some linear combination of the eigenkets |na), a =1, 2, ..., g,. A second,
immediate measurement of A still yields 4, as the result.

From postulates 4 and 5, we see that the state function W can change with
time for two different reasons. A discontinuous change in W occurs when some
property of the system is measured. The state of the system changes suddenly
from W to an eigenfunction or linear combination of eigenfunctions associated
with the observed eigenvalue. An isolated system, on the other hand, undergoes
a continuous change with time in accordance with the time-dependent Schro-
dinger equation.

Time evolution of the state function
The fifth postulate stipulates that the time evolution of the state function W is
determined by the time-dependent Schrédinger equation
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oL

1ﬁ§ = HW¥Y (3.55)
where H is the Hamiltonian operator of the system and, in general, changes
with time. However, in this book we only consider systems for which the
Hamiltonian operator is time-independent. To solve the time-dependent Schro-
dinger equation, we express the state function W(q, #) as the product of two

functions

W(q, 1) = Y(Qx(?) (3.56)

where 1(q) depends only on the spatial variables and y(¢) depends only on the
time. In Section 2.4 we discuss the procedure for separating the partial
differential equation (3.55) into two differential equations, one involving only
the spatial variables and the other only the time. The state function W(q, ?) is
then shown to be

W(g, 1) = y(gqre " (3.57)
where FE is the separation constant. Since it follows from equation (3.57) that

W(q, DI* = [v(q)]

the probability density is independent of the time ¢ and W(q, ¢) is a stationary
state.

The spatial differential equation, known as the time-independent Schrédin-
ger equation, is

Hy(q) = Ey(q)

Thus, the spatial function 1(q) is actually a set of eigenfunctions ¥,,(q) of the
Hamiltonian operator H with eigenvalues E,. The time-independent Schrédin-
ger equation takes the form

H (@) = Extpu(q) (3.58)
and the general solution of the time-dependent Schrodinger equation is
W(g, )= capulqreEr/ (3.59)

n

where ¢, are arbitrary complex constants.

The appearance of the Hamiltonian operator in equation (3.55) as stipulated
by postulate 5 gives that operator a special status in quantum mechanics.
Knowledge of the eigenfunctions and eigenvalues of the Hamiltonian operator
for a given system is sufficient to determine the stationary states of the system
and the expectation values of any other dynamical variables.

We next address the question as to whether equation (3.59) is actually the
most general solution of the time-dependent Schrodinger equation. Are there
other solutions that are not expressible in the form of equation (3.59)? To
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answer that question, we assume that W(q, 7) is any arbitrary solution of the
parital differential equation (3.55). We suppose further that the set of functions
¥ ,(q) which satisfy the eigenvalue equation (3.58) is complete. Then we can,
in general, expand W(q, 7) in terms of the complete set 1,(q) and obtain

W(g, )= andyu(Q) (3.60)

n

The coefficients a,(#) in the expansion are given by

an(t) = (¥a(@)|¥(q, 1) (3.61)

and are functions of the time ¢, but not of the coordinates q. We substitute the
expansion (3.60) into the differential equation (3.55) to obtain

hOa,(t) . B hOa,(t)
;E 9 +an(f)H]1/Jn(Q)—;L 5, T Enan()|¥n(@) =0 (3.62)

where we have also noted that the functions 1,(q) are eigenfunctions of H in
accordance with equation (3.58). We next multiply equation (3.62) by ¥ (q),
the complex conjugate of one of the eigenfunctions of the orthogonal set, and
integrate over the spatial variables

hoa,
Z [1 aa(t) +E an(t)] (Vi @|ya(q)

B fi Oa,(1) _ N dai(1) _
- ;[T g T Enanl) Om = o o =0

Replacing the dummy index k by n, we obtain the result

an(t) = cye B/t (3.63)
where ¢, is a constant independent of both q and ¢. Substitution of equation
(3.63) into (3.60) gives equation (3.59), showing that equation (3.59) is indeed

the most general form for a solution of the time-dependent Schrodinger
equation. All solutions may be expressed as the sum over stationary states.

3.8 Parity operator
The parity operator IT is defined by the relation

y(q) = ¥(—q) (3.64)
Thus, the parity operator reverses the sign of each cartesian coordinate. This
operator is equivalent to an inversion of the coordinate system through the
origin. In one and three dimensions, equation (3.64) takes the form

My(x) = p(—x), ) =y, p, 2) = Ty(—x, —y, —2) = P(-1)

The operator 12 is equal to unity since



3.8 Parity operator 95
I y(q) = M(ITy(q)) = y(—q) = y(q)

Further, we see that

I1"y(q) = y(q), 7 even

=y(—q), nodd
or

I1" =1, ~neven
=1II, nodd

The operator IT is linear and hermitian. In the one-dimensional case, the
hermiticity of IT is demonstrated as follows

<¢|f1|w>=J ¢*(x>w<—x>dx:—J * (—x () d

o0

—0o0

= | wenrgt@rar = (rel)

where x in the second integral is replaced by x" = —x to obtain the third
integral. By applying the same procedure to each coordinate, we can show that
IT is hermitian with respect to multi-dimensional functions.

The eigenvalues A of the parity operator IT are given by

y(q) = 4i(q) (3.65)

where 10,(q) are the corresponding eigenfunctions. If we apply IT to both sides
of equation (3.65), we obtain

[Py;(q) = Allya(q) = Ai(q)
Since IT2 = 1, we see that A2 = 1 and that the eigenvalues A, which must be
real because II is hermitian, are equal to either +1 or —1. To find the
eigenfunctions 1,(q), we note that equation (3.65) now becomes

V(=) = £ya(q)

For A = 1, the eigenfunctions of IT are even functions of q, while for 1 = —1,
they are odd functions of q. An even function of q is said to be of even parity,
while odd parity refers to an odd function of q. Thus, the eigenfunctions of I
are any well-behaved functions that are either of even or odd parity in their
cartesian variables.

We show next that the parity operator IT commutes with the Hamiltonian
operator H if the potential energy ¥(q) is an even function of q. The kinetic
energy term in the Hamiltonian operator is given by

P (&
2m - 2m\90g¢ O3
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and is an even function of each gy. If the potential energy V'(q) is also an even
function of each ¢, then we have H(q) = H(—q) and

(A, M]f(q) = H@ILf(q) — ITH(q)f(@) = H(Qf(—=q) — H(=q)f(-q) =0
Since the function f(q) is arbitrary, the commutator of A and IT vanishes.
Thus, these operators have simultaneous eigenfunctions for systems with
V(g) =V(—q).

If the potential energy of a system is an even function of the coordinates and
if 1(q) is a solution of the time-independent Schrodinger equation, then the
function (—q) is also a solution. When the eigenvalues of the Hamiltonian
operator are non-degenerate, these two solutions are not independent of each
other, but are proportional

Y(=q) = cy(q)
These eigenfunctions are also eigenfunctions of the parity operator, leading to
the conclusion that ¢ = +1. Consequently, some eigenfunctions will be of even
parity while all the others will be of odd parity.

For a degenerate energy eigenvalue, the several corresponding eigenfunc-
tions of H may not initially have a definite parity. However, each eigenfunction
may be written as the sum of an even part ¥.(q) and an odd part 1,(q)

Y(Q) = Ye(q) + Po(q)

where
Ye(@) = HY(Q) + P(—q)] = Ye(—q)
Po(q) = 3[Y(@) — Y(—q)] = —Po(—q)

Since any linear combination of 1(q) and 1(—q) satisfies Schrédinger’s equa-
tion, the functions 1.(q) and 1,(q) are eigenfunctions of H. Furthermore, the
functions 1.(q) and 1,(q) are also eigenfunctions of the parity operator IL, the
first with eigenvalue +1 and the second with eigenvalue —1.

3.9 Hellmann-Feynman theorem

A useful expression for evaluating expectation values is known as the Hell-
mann—Feynman theorem. This theorem is based on the observation that the
Hamiltonian operator for a system depends on at least one parameter A, which
can be considered for mathematical purposes to be a continuous variable. For
example, depending on the particular system, this parameter A may be the mass
of an electron or a nucleus, the electronic charge, the nuclear charge parameter
Z, a constant in the potential energy, a quantum number, or even Planck’s
constant. The eigenfunctions and eigenvalues of H() also depend on this
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parameter, so that the time-independent Schrodinger equation (3.58) may be
written as

HApu(D) = Ex(Ays(A) (3.66)
The expectation value of H(A) is, then
En(2) = (Y u HD)|1 (D)) (3.67)
where we assume that v, (1) is normalized
(WaD)yn() =1 (3.68)

To obtain the Hellmann—Feynman theorem, we differentiate equation (3.67)
with respect to 4

d d -
S Enh) = <wn(z>' = H(z>’wna>>

d - - d
+ <awn(i)‘H(l)‘wn(i)> + <wn(l)‘H(/l)’ awn(;t)> (3.69)
Applying the hermitian property of H(A) to the third integral on the right-hand

side of equation (3.69) and then applying (3.66) to the second and third terms,
we obtain

d d

+ E,(4)

d d
<awna> wn<z)> n <wn(ﬂ)‘ awn(z)>] 6.10)

The derivative of equation (3.68) with respect to 4 is

d d

showing that the last term on the right-hand side of (3.70) vanishes. We thereby
obtain the Hellmann—Feynman theorem

d d .
S Eah) = <wna>]aH@>‘wnw> (3.71)

3.10 Time dependence of the expectation value

The expectation value (4) of the dynamical quantity or observable 4 is, in
general, a function of the time #. To determine how (A4) changes with time, we
take the time derivative of equation (3.46)



98 General principles of quantum theory

¥:%<W|/i|w>:<%—ﬂé‘m>+<w'/i %—T> < ‘ ’11’>

Equation (3.55) may be substituted for the time derivatives of the wave function
to give

where the hermiticity of A and the definition (equation (3.3)) of the commu-
tator have been used. If the operator A is not an explicit function of time, then
the last term on the right-hand side vanishes and we have
d4) 1, . -
TR ([H, A]) (3.72)
If we set A equal to unity, then the commutator [ 7, A] vanishes and equation
(3.72) becomes

or
d - d
(WA = L (W]W) = 0
We thereby obtain the result in Section 2.2 that if W is normalized, it remains
normalized as time progresses.
If the operator A in equation (3.72) is set equal to H, then again the
commutator vanishes and we have
d(4) d(H) dE
dr o dr dr
Thus, the energy E of the system, which is equal to the expectation value of the
Hamiltonian, is conserved if the Hamiltonian does not depend explicitly on
time.
By setting the operator A in equation (3.72) equal first to the position
variable x, then the variable y, and finally the variable z, we can show that
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d{x) d(y) d{z)
m dt - <px>: m dt - <py>» m? - <pz>
or, in vector notation
d(r)
mv = (p)

which is one of the Ehrenfest theorems discussed in Section 2.3. The other
Ehrenfest theorem,

d{p)

dt

may be obtained from equation (3.72) by setting 4 successively equal to p,,
Dy, and p..

= —(VV ()

3.11 Heisenberg uncertainty principle

We have shown in Section 3.5 that commuting hermitian operators have
simultaneous eigenfunctions and, therefore, that the physical quantities asso-
ciated with those operators can be observed simultaneously. On the other hand,
if the hermitian operators A and B do not commute, then the physical
observables 4 and B cannot both be precisely determined at the same time. We
begin by demonstrating this conclusion.

Suppose that A and B do not commute. Let a; and B be the eigenvalues of A
and B, respectively, with corresponding eigenstates |a;) and |3;)

Ala;) = ay|a;) (3.73a)
B‘ﬁi> = BilB:) (3.73b)

Some or all of the eigenvalues may be degenerate, but each eigenfunction has a
unique index i. Suppose further that the system is in state |a;), one of the
eigenstates of A. If we measure the physical observable A, we obtain the result
a ;. What happens if we simultaneously measure the physical observable B? To
answer this question we need to calculate the expectation value (B) for this
system

(B) = (a,|B|a,) (3.74)

If we expand the state function |a;) in terms of the complete, orthonormal set

1B:)
|a;) = Zci\ Bi)

1

where c¢; are the expansion coefficients, and substitute the expansion into
equation (3.74), we obtain
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= ZZ creilBilBIB:) = ZZ crciBidy = Z lcil* Bi
ik ik i

where (3.73b) has been used. Thus, a measurement of B yields one of the many
values 3; with a probability |c;|>. There is no way to predict which of the values
B will be obtained and, therefore, the observables 4 and B cannot both be
determined concurrently.

For a system in an arbitrary state W, neither of the physical observables 4
and B can be precisely determined simultaneously if A and B do not commute.
Let A4 and AB represent the width of the spread of values for 4 and B,
respectively. We define the variance (AA)? by the relation

(A = ((d — (4))) (3.75)
that is, as the expectation value of the square of the deviation of A from its
mean value. The positive square root A4 is the standard deviation and is called
the uncertainty in A. Noting that (4) is a real number, we can obtain an
alternative expression for (AA4)? as follows:

(A4’ = (A — (A)) = (42 = 2(4)d + (4)?)

= (4%) = 2(4)(4) + (4)* = (4%) — (4)? (3.76)
Express1ons analogous to equations (3.75) and (3.76) apply for (AB)?.
Since 4 and B do not commute, we define the operator C by the relation
[A, Bl = AB — BA = iC (3.77)
The operator C is hermitian as discussed in Section 3.3, so that its expectation

value (C) is real. The commutator of 4 — (4) and B — (B) may be expanded
as follows

[ = (4), B = (B)] = (4 — (4))(B — (B)) — (B — (B))A — (4))
= AB — B4 =iC (3.78)
where the cross terms cancel since (4) and (B) are numbers and commute with

the operators A and B. We use equation (3.78) later in this section.
We now introduce the operator

A — (4) +iAB — (B))
where 4 is a real constant, and let this operator act on the state function ¥
[A4 — (4) +iMB — (B)]¥
The scalar product of the resulting function with itself is, of course, always
positive, so that
([A — (4) +iA(B — (B)]W|[A — (4) +iA(B — (B)]W) = 0 (3.79)

Expansion of this expression gives
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(A = (ADWIA — (4)W) + 22((B — (B)WP|(B — (B)Y)
+ i — (A)W|(B — (B)W) —A((B — (B)W|(A — (4)¥) =0
or, since A and B are hermitian
(WA — (4)?|W) + 2*(W[(B — (B))*|W)
+iA(W|[4 — (4), B— (B)]|¥) =0
Applying equations (3.75) and (3.78), we have
(AA)* + A*(AB)* — A(C) =0

If we complete the square of the terms involving A, we obtain

(AA)2+(AB)2</1 () )2 ey

" 2(AB?)  4AByR
Since 4 is arbitrary, we select its value so as to eliminate the second term
(C)
A= 3.80
2(AB)? (3.80)
thereby giving

(A)*(ABY* = }(C)?
or, upon taking the positive square root,
AAAB = 3|(C)|
Substituting equation (3.77) into this result yields
AAAB = Y([4, B)| (3.81)
This general expression relates the uncertainties in the simultaneous measure-

ments of 4 and B to the commutator of the corresponding operators A and B
and is a general statement of the Heisenberg uncertainty principle.

Position—momentum uncertainty principle

We now consider the special case for which A4 is the variable x (/f =x)and B
is the momentum p, (B = —ifi d/dx). The commutator [4, B] may be evaluated
by letting it operate on W

A ) d¥ dxW .
[A, B]III = —ih (.X'a — K) = iAW

so that |([4, B])| = % and equation (3.81) gives
h
AxAp, =3 (3.82)

The Heisenberg position—momentum uncertainty principle (3.82) agrees
with equation (2.26), which was derived by a different, but mathematically
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equivalent procedure. The relation (3.82) is consistent with (1.44), which is
based on the Fourier transform properties of wave packets. The difference
between the right-hand sides of (1.44) and (3.82) is due to the precise definition
(3.75) of the uncertainties in equation (3.82).

Similar applications of equation (3.81) using the position—momentum pairs
¥, pyand z, p. yield

h h
AyAp, = 3 AzAp, = 3

Since x commutes with the operators p, and p., y commutes with p, and p.,
and z commutes with p, and p,, the relation (3.81) gives

AqiAp; =0, i#]
where q1 =X, g2 = y, ¢3 =z, p1 = px, P2 = Py, p3 = p-. Thus, the position
coordinate ¢; and the momentum component p; for i # j may be precisely
determined simultaneously.

Minimum uncertainty wave packet
The minimum value of the product A4AAB occurs for a particular state W for
which the relation (3.81) becomes an equality, i.e., when

AAAB = 1|([4, B))| (3.83)
According to equation (3.79), this equality applies when
[A — (A) +id(B — (B)]¥ =0 (3.84)

where 4 is given by (3.80). For the position—momentum example where 4 = x
and B = —ifid/dx, equation (3.84) takes the form

(cintp Jw = e
for which the solution is
P — e (0240 i pe)x/h (3.85)

where c is a constant of integration and may be used to normalize W. The real
constant 4 may be shown from equation (3.80) to be

h 2(Ax)?
2Apy  h
where the relation AxA p, = /2 has been used, and is observed to be positive.
Thus, the state function W in equation (3.85) for a particle with minimum
position—momentum uncertainty is a wave packet in the form of a plane wave

expli{py)x/h] with wave number ko = (p,)/h multiplied by a gaussian
modulating function centered at (x). Wave packets are discussed in Section

ﬂ,:
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1.2. Only the spatial dependence of W has been derived in equation (3.85). The
state function W may also depend on the time through the possible time
dependence of the parameters c, 4, (x), and (py).

Energy—time uncertainty principle

We now wish to derive the energy—time uncertainty principle, which is
discussed in Section 1.5 and expressed in equation (1.45). We show in Section
1.5 that for a wave packet associated with a free particle moving in the x-
direction the product AEA¢? is equal to the product AxAp, if AE and At are
defined appropriately. However, this derivation does not apply to a particle in a
potential field.

The position, momentum, and energy are all dynamical quantities and
consequently possess quantum-mechanical operators from which expectation
values at any given time may be determined. Time, on the other hand, has a
unique role in non-relativistic quantum theory as an independent variable;
dynamical quantities are functions of time. Thus, the ‘uncertainty’ in time
cannot be related to a range of expectation values.

To obtain the energy-time uncertalnty pr1n01ple for a particle in a time-
independent potential field, we set A equal to H in equation (3.81)

(AE)AB) = 3[([H, B])|

where AFE is the uncertainty in the energy as defined by (3.75) with A=H.
Substitution of equation (3.72) into this expression gives

ﬁ d(B)
2| dt

In a short period of time A¢, the change in the expectation value of B is given
by

(AE)AB) =

(3.86)

d(B)
dt
When this expression is combined with equation (3.86), we obtain the desired

result

AB = At

(AE)(A?) = g (3.87)

We see that the energy and time obey an uncertainty relation when At is
defined as the period of time required for the expectation value of B to change
by one standard deviation. This definition depends on the choice of the
dynamical variable B so that At is relatively larger or smaller depending on
that choice. If d(B)/d¢ is small so that B changes slowly with time, then the
period At will be long and the uncertainty in the energy will be small.
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Conversely, if B changes rapidly with time, then the period At for B to change
by one standard deviation will be short and the uncertainty in the energy of the
system will be large.

3.1

3.2
3.3

34
35

3.6
3.7

3.8

3.9

3.10

3.11
3.12

3.13

3.14

3.15

Problems

Which of the following operators are linear?
@ v () sin () xDy  (d) Dix
Demonstrate the validity of the relationships (3.4a) and (3.4b).
Show that

[4, [B, CIl +[B, [C, AN + [C, [4, BI] = 0
where 4, B, and C are arbitrary linear operators.
Show that (D, + x)(Dy — x) = D* — x> — 1.
Show that xe™" is an eigenfunction of the linear operator (lA))ZC — 4x?%). What is
the eigenvalue?
Show that the operator D? is hermitian. Is the operator iD? hermitian?
Show that if the linear operators A and B do not commute, the operators
(/ﬂ? + l?/f) and i[AA, E] are hermitian.
If the real normalized functions f(r) and g(r) are not orthogonal, show that their
sum f(r) + g(r) and their difference f(r) — g(r) are orthogonal.
Consider the set of functions ¥, = e /2, y, = xe /2, 3 = x2e /2, Y, =
x3e™*/2, defined over the range 0 < x < oo. Use the Schmidt orthogonalization
procedure to construct from the set i, an orthogonal set of functions with
w(x) = 1.
Evaluate the following commutators:
@ [x pd O P (© [k H () [pe H]
Evaluate [x, 3] and [x2, p?] using equations (3.4).
Using equation (3.4b), show by iteration that

[x", py] = ifinx""!

where 7 is a positive integer greater than zero.
Show that

. L, df(x)

/(). px] = i = o
Calculate the expectation values of x, x%, p, and p? for a particle in a one-
dimensional box in state 1, (see Section 2.5).
Calculate the expectation value of p* for a particle in a one-dimensional box in
state 1.
A hermitian operator A has only three normalized eigenfunctions 1, ¥, ¥3,
with corresponding eigenvalues a; = 1, a; =2, a3 = 3, respectively. For a
particular state ¢ of the system, there is a 50% chance that a measure of A4
produces a; and equal chances for either a;, or as.
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3.19
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(a) Calculate (A4).

(b) Express the normalized wave function ¢ of the system in terms of the
eigenfunctions of A.

The wave function W(x) for a particle in a one-dimensional box of length a is

lP’(x)—Cs.in7<E>; 0=s=x=a
a

where C is a constant. What are the possible observed values for the energy and
their respective probabilities?

If |3) is an eigenfunction of H with eigenvalue F, show that for any operator A
the expectation value of [f[ , AA] vanishes, i.e.,

(w|[H, Allp) =0
Derive both of the Ehrenfest theorems using equation (3.72).
Show that

f
AHAX>7 7
2 <pX>
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Harmonic oscillator

In this chapter we treat in detail the quantum behavior of the harmonic
oscillator. This physical system serves as an excellent example for illustrating
the basic principles of quantum mechanics that are presented in Chapter 3. The
Schrédinger equation for the harmonic oscillator can be solved rigorously and
exactly for the energy eigenvalues and eigenstates. The mathematical process
for the solution is neither trivial, as is the case for the particle in a box, nor
excessively complicated. Moreover, we have the opportunity to introduce the
ladder operator technique for solving the eigenvalue problem.

The harmonic oscillator is an important system in the study of physical
phenomena in both classical and quantum mechanics. Classically, the harmonic
oscillator describes the mechanical behavior of a spring and, by analogy, other
phenomena such as the oscillations of charge flow in an electric circuit, the
vibrations of sound-wave and light-wave generators, and oscillatory chemical
reactions. The quantum-mechanical treatment of the harmonic oscillator may
be applied to the vibrations of molecular bonds and has many other applica-
tions in quantum physics and field theory.

4.1 Classical treatment

The harmonic oscillator is an idealized one-dimensional physical system in
which a single particle of mass m is attracted to the origin by a force F
proportional to the displacement of the particle from the origin

F=—kx 4.1
The proportionality constant & is known as the force constant. The minus sign
in equation (4.1) indicates that the force is in the opposite direction to the
direction of the displacement. The typical experimental representation of the
oscillator consists of a spring with one end stationary and with a mass m

106
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attached to the other end. The spring is assumed to obey Hooke's law, that is to
say, equation (4.1). The constant £ is then often called the spring constant.
In classical mechanics the particle obeys Newton’s second law of motion
d?x
F = ma= mdt2 (4.2)
where a is the acceleration of the particle and ¢ is the time. The combination of
equations (4.1) and (4.2) gives the differential equation

d?x _k
a2~ m
for which the solution is
x = Asin2avt 4+ b) = Asin(wt + b) 4.3)
where the amplitude A of the vibration and the phase b are the two constants
of integration and where the frequency v and the angular frequency w of

vibration are related to £ and m by

w =2V = \/E (4.4)
m

According to equation (4.3), the particle oscillates sinusoidally about the origin
with frequency v and maximum displacement +4.
The potential energy V of a particle is related to the force F acting on it by
the expression
F= dx
Thus, from equations (4.1) and (4.4), we see that for a harmonic oscillator the
potential energy is given by

V =1k =1imo’x? (4.5)
The total energy E of the particle undergoing harmonic motion is given by
E= %mv2 + V= %mv2 + %ma)zx2 (4.6)

where v is the instantaneous velocity. If the oscillator is undisturbed by outside
forces, the energy E remains fixed at a constant value. When the particle is at
maximum displacement from the origin so that x = +4, the velocity v is zero
and the potential energy is a maximum. As |x| decreases, the potential
decreases and the velocity increases keeping F constant. As the particle crosses
the origin (x = 0), the velocity attains its maximum value v = /2E/m.

To relate the maximum displacement 4 to the constant energy £, we note
that when x = +4, equation (4.6) becomes

E=1lmo* 4

so that
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Thus, equation (4.3) takes the form

1 2E
x =—4/— sin(wt + b) 4.7)
o\ m

By defining a reduced distance y as

yzw%gx (4.8)

so that the particle oscillates between y = —1 and y = 1, we may express the
equation of motion (4.7) in a universal form that is independent of the total
energy E

y(t) = sin(wt + b) 4.9)

As the particle oscillates back and forth between y = —1 and y =1, the
probability that it will be observed between some value y and y +dy is
P(y)dy, where P(y) is the probability density. Since the probability of finding
the particle within the range —1 < y < 1 is unity (the particle must be some-
where in that range), the probability density is normalized

1
| Porav=1

The probability of finding the particle within the interval dy at a given distance
v is proportional to the time d# spent in that interval

dt
P(y)dy=cdt =c— dy
dy

so that

dt

P(J’):Ca

where c is the proportionality constant. To find P(y), we solve equation (4.9)
for ¢

|
H(y) = —[sin"'(y) — b]
1)
and then take the derivative to give
c 1
P(y)=—(1— )12 ==(1— > 12 4.10
) =—1=5y) —(1=y% (4.10)

where ¢ was determined by the normalization requirement. The probability
density P(y) for the oscillating particle is shown in Figure 4.1.
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P(y)

-1 y 1

Figure 4.1 Classical probability density for an oscillating particle.

4.2 Quantum treatment

The classical Hamiltonian H(x, p) for the harmonic oscillator is

Vs P’
H(x, p) = ot V(x) = —+2mw2x2 4.11)

The Hamiltonian operator H(x, p) is obtained by replacing the momentum p
in equation (4.11) with the momentum operator p = —ifid/dx

') 2 g2
; p 2.2 h” d 2.2
H:%—i—%mwx ﬁ@—i_ Imw*x (4.12)
The Schrdédinger equation is, then
h? dp(x)
A2 +1 2m maw*x*p(x) = Eyp(x) (4.13)
It is convenient to introduce the dimensionless variable & by the definition
mo\ V2
§= <—> X (4.14)
h
so that the Hamiltonian operator becomes
. ko, &
=— - 4.15
5 (E ) 52) (4.15)

Since the Hamiltonian operator is written in terms of the variable & rather than
x, we should express the eigenstates in terms of & as well. Accordingly, we
define the functions ¢ (&) by the relation

NG
»(&) = <%> P(x) (4.16)

If the functions 1(x) are normalized with respect to integration over x
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j PP dx = 1

then from equations (4.14) and (4.16) we see that the functions ¢(&) are
normalized with respect to integration over &

| w@ra =

The Schrodinger equation (4.13) then takes the form

d? 2F
A CEE=VE @17)

Since the Hamiltonian operator is hermitian, the energy eigenvalues E are real.

There are two procedures available for solving this differential equation. The
older procedure is the Frobenius or series solution method. The solution of
equation (4.17) by this method is presented in Appendix G. In this chapter we
use the more modern ladder operator procedure. Both methods give exactly the
same results.

Ladder operators

We now solve the Schrodinger eigenvalue equation for the harmonic oscillator
by the so-called factoring method using ladder operators. We introduce the
two ladder operators @ and &' by the definitions

1/2 ..
4= <’;’—Z> (x—l—%) :%@er%) (4.182)

1/2 A
i (Mo AN 1 _i
a = <—2ﬁ> (x —ma)) = —\/5 <§ d§> (4.18b)

Application of equation (3.33) reveals that the operator &' is the adjoint of a,
which explains the notation. Since the operator & is not equal to its adjoint &',
neither & nor &' is hermitian. (We follow here the common practice of using a
lower case letter for the harmonic-oscillator ladder operators rather than our
usual convention of using capital letters for operators.) We readily observe that

1 d? H 1
adl = | -1 ) =—— 4= 4.1
) <5 ae " ) o T2 (4.192)
1 d H 1
da=-8—-——-1)=——= 4.19b
473 (5 de2 > ho 2 (4.19)
from which it follows that the commutator of & and &' is unity
[a,a'1=aa' —ala=1 (4.20)

We next define the number operator N as the product a'a
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~

N=ala (4.21)
The adjoint of N may be obtained as follows
N =(@'a)l =a'@h =ala=N
where the relations (3.40) and (3.37) have been used. We note that N is self-
adjoint, making it hermitian and therefore having real eigenvalues. Equation
(4.19b) may now be written in the form
H=tfo(N +1) (4.22)

Since H and N differ only by the factor %w and an additive constant, they
commute and, therefore, have the same eigenfunctions.

If the eigenvalues of N are represented by the parameter A and the
corresponding orthonormal eigenfunctions by ¢;;(§) or, using Dirac notation,
by |Ai), then we have

N|Ai) = A|Ai) (4.23)
and
H|Ai) = fio(N + D|Ai) = fio(d + D|Ai) = E;|Ai) (4.24)
Thus, the energy eigenvalues E; are related to the eigenvalues of N by
E) = (A+ Do (4.25)

The index i in |Ai) takes on integer values from 1 to g;, where g, is the
degeneracy of the eigenvalue A. We shall find shortly that each eigenvalue of N
is non-degenerate, but in arriving at a general solution of the eigenvalue
equation, we must initially allow for degeneracy.

From equations (4.20) and (4.21), we note that the product of N and either a
or a' may be expressed as follows

Na=a'aa = (aa' — Ha=a@'a—1) = a(N — 1) (4.262)
Nat =a'aa' =al@a+ 1) =a' W+ 1) (4.26b)
These identities are useful in the following discussion.
If we let the operator N act on the function a|Ai), we obtain
Na|li) = a(N — D)|Ai) = a(A — D)|Ai) = (4 — Dalii) (4.27)
where equations (4.23) and (4.26a) have been introduced. Thus, we see that
a|Ai) is an eigenfunction of N with eigenvalue 4 — 1. The operator a alters the
eigenstate |Ai) to an eigenstate of N corresponding to a lower value for the
eigenvalue, namely 4 — 1. The energy of the oscillator is thereby reduced,
according to (4.25), by hw. As a consequence, the operator a is called a
lowering operator or a destruction operator.
Letting N operate on the function a'|1i) gives



112 Harmonic oscillator

Na'|aiy = al(N + D)|4i) = a'(A + D|Ai) = (A + D)a'|Ai) (4.28)
where equations (4.23) and (4.26b) have been used. In this case we see that
at|Ai) is an eigenfunction of N with eigenvalue A + 1. The operator &' changes
the eigenstate |Ai) to an eigenstate of N with a higher value, 1 + 1, of the
eigenvalue. The energy of the oscillator is increased by Aw. Thus, the operator
a' is called a raising operator or a creation operator.

Quantization of the energy

In the determination of the energy eigenvalues, we first show that the
eigenvalues A of N are positive (4 = 0). Since the expectation value of the
operator N for an oscillator in state |1i) is A, we have

| N|Ad) = AQAilAd) = A

The integral (Ai|N|Ai) may also be transformed in the following manner
(Ai|N|Ai)y = (Ailata|Ai) = J(aqu[)(am,-) dr = J|&¢M\2 dr

The integral on the right must be positive, so that A is positive and the
eigenvalues of N and H cannot be negative.
For the condition A = 0, we have

J|&¢,1,-\2dr: 0

which requires that
alA=0)i)=0 (4.29)
For eigenvalues 4 greater than zero, the quantity a|Ai) is non-vanishing.
To find further restrictions on the values of 4, we select a suitably large, but
otherwise arbitrary value of A, say #, and continually apply the lowering
operator a to the eigenstate |i), thereby forming a succession of eigenvectors

ai), ami), @i, ...

with respective eigenvalues # — 1, # — 2, 7 — 3, ... We have already shown
that if |57i) is an eigenfunction of N, then &|»i) is also an eigenfunction. By
iteration, if a|ni) is an eigenfunction of N, then &?|5i) is an eigenfunction, and
so forth, so that the members of the sequence are all eigenfunctions. Eventually
this procedure gives an eigenfunction a¥|ni) with eigenvalue (7 — k), k being a
positive integer, such that 0 < (7 — k) <1. The next step in the sequence
would yield the eigenfunction a**!|5i) with eigenvalue 1 = (n — k — 1) <0,
which is not allowed. Thus, the sequence must terminate by the condition

a*niy = ala*|ni)] = 0
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The only circumstance in which a operating on an eigenvector yields the
value zero is when the eigenvector corresponds to the eigenvalue A = 0, as
shown in equation (4.29). Since the eigenvalue of a*|ni) is # — k and this
eigenvalue equals zero, we have # — k = 0 and # must be an integer. The
minimum value of A = n — £ is, then, zero.

Beginning with 2 = 0, we can apply the operator a' successively to |0i) to
form a series of eigenvectors

a'loi), a'?0i), at|oi), ...
with respective eigenvalues 0, 1, 2, ... Thus, the eigenvalues of the operator N
are the set of positive integers, so that A =0, 1, 2, ... Since the value 1 was
chosen arbitrarily and was shown to be an integer, this sequence generates all
the eigenfunctions of N. There are no eigenfunctions corresponding to non-
integral values of 4. Since A is now known to be an integer n, we replace A by n
in the remainder of this discussion of the harmonic oscillator.

The energy eigenvalues as related to A in equation (4.25) are now expressed
in terms of n by

E,=(n+Hho, n=0,1,2,... (4.30)
so that the energy is quantized in units of Zw. The lowest value of the energy or

zero-point energy is #fiw/2. Classically, the lowest energy for an oscillator is
zero.

Non-degeneracy of the energy levels
To determine the degeneracy of the energy levels or, equivalently, of the
eigenvalues of the number operator N, we must first obtain the eigenvectors
|07) for the ground state. These eigenvectors are determined by equation (4.29).
When equation (4.18a) is substituted for a, equation (4.29) takes the form

(d% + S) |0) = (d% + 5) P0i(§) =0
or

dgpoi
boi sd

This differential equation may be integrated to give

Ppui(E) = ce /2 = et te S 2
where the constant of integration ¢ is determined by the requirement that the
functions ¢ ,;,(§) be normalized and e'* is a phase factor. We have used the

standard integral (A.5) to evaluate c. We observe that all the solutions for the
ground-state eigenfunction are proportional to one another. Thus, there exists
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only one independent solution and the ground state is non-degenerate. If we
arbitrarily set o equal to zero so that ¢o(&) is real, then the ground-state
eigenvector is

0) = /4 E/2 (4.31)
We next show that if the eigenvalue n of the number operator N is non-

degenerate, then the eigenvalue n + 1 is also non-degenerate. We begin with
the assumption that there is only one eigenvector with the property that
Nin) = n|n)
and consider the eigenvector |(n + 1)i), which satisfies
N|(n + 1)i) = (n+ D)|(n + 1)i)
If we operate on |(n + 1)i) with the lowering operator a, we obtain to within a
multiplicative constant ¢ the unique eigenfunction |n),
al(n+ 1)i) = c|n)
We next operate on this expression with the adjoint of a to give
alal(n+ i) = N|(n+ 1)i) = (n+ D|(n + 1)i) = ca'|n)
from which it follows that
c

|(n + 1)i) =
Thus, all the eigenvectors |(n + 1)i) corresponding to the eigenvalue n + 1 are
proportional to a'|n) and are, therefore, not independent since they are
proportional to each other. We conclude then that if the eigenvalue » is non-
degenerate, then the eigenvalue n + 1 is non-degenerate.

Since we have shown that the ground state is non-degenerate, we see that the
next higher eigenvalue n = 1 is also non-degenerate. But if the eigenvalue n = 1
is non-degenerate, then the eigenvalue n = 2 is non-degenerate. By iteration, all
of the eigenvalues n of N are non-degenerate. From equation (4.30) we observe
that all the energy levels £, of the harmonic oscillator are non-degenerate.

a'ln)

4.3 Eigenfunctions

Lowering and raising operations
From equations (4.27) and (4.28) and the conclusions that the eigenvalues of N
are non-degenerate and are positive integers, we see that &|n) and a'|n) are
eigenfunctions of N with eigenvalues n — 1 and n + 1, respectively. Accor-
dingly, we may write

aln) = c,ln—1) (4.32a)
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and

alln) = cpln+1) (4.32b)
where ¢, and ¢}, are proportionality constants, dependent on the value of n, and
to be determined by the requirement that |n — 1), |n), and |n + 1) are normal-

ized. To evaluate the numerical constants ¢, and ¢, we square both sides of
equations (4.32a) and (4.32b) and integrate with respect to & to obtain

J |&¢n\2d§=|cn|2J PF (Ppn1dE (4.33a)
and
(IR R T (4.33b)

The integral on the left-hand side of equation (4.33a) may be evaluated as
follows

| tagapae= | @i,z = talalaln) = aln) = n
Similarly, the integral on the left-hand side of equation (4.33b) becomes
J a'paf* dE = J (@' @)@ p) dE = (nlaa'|n) = (n|N +1|n) = n+1

Since the eigenfunctions are normalized, we obtain
2 2
lca|” = n, len|"=n+1

Without loss of generality, we may let ¢, and ¢}, be real and positive, so that
equations (4.32a) and (4.32b) become

aln) = /nln —1) (4.34a)
allny = vVn+1|n+1) (4.34b)

If the normalized eigenvector |n) is known, these relations may be used to
obtain the eigenvectors |n — 1) and |n 4 1), both of which will be normalized.

Excited-state eigenfunctions

We are now ready to obtain the set of simultaneous eigenfunctions for the
commuting operators N and H. The ground-state eigenfunction |0) has already
been determined and is given by equation (4.31). The series of eigenfunctions
[1), |2), ... are obtained from equations (4.34b) and (4.18b), which give

In+1) =[2(n+ D]'/? (E—%)W (4.35)

Thus, the eigenvector |1) is obtained from |0)
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|1> — 2—1/2 <§ o %) (n,—l/4e_é:2/2) — 21/2n—1/4§e_52/2
d

the eigenvector |2) from |1)
2) = %<5 - %) (12 ige 1) = 2712 1282 — e €2

the eigenvector |3) from |2)
3) =612 (&- g5 )@ g - e

_ 371/2‘7.[71/4(253 o 35)6752/2

and so forth, indefinitely. Each of the eigenfunctions obtained by this procedure
is normalized.
When equation (4.18a) is combined with (4.34a), we have

In—1) =@2n)" '/ <§+d%_>\n> (4.36)

Just as equation (4.35) allows one to go ‘up the ladder’ to obtain |n + 1) from
|n), equation (4.36) allows one to go ‘down the ladder’ to obtain |n — 1) from
|n). This lowering procedure maintains the normalization of each of the
eigenvectors.

Another, but completely equivalent, way of determining the series of eigen-
functions may be obtained by first noting that equation (4.34b) may be written
for the series n = 0, 1, 2, ... as follows

1) = a'l0)
[2) =271 1) = 27'2@"y|0)

3) = 371241 |2) = (31)~/2(a)*|0)

Obviously, the expression for |n) is
|n) = (a)~"2(@")"|0)

Substitution of equation (4.18b) for a' and (4.31) for the ground-state eigen-
vector |0) gives

n) = 2"nl) 2V (5 - d%) G (4.37)

This equation may be somewhat simplified if we note that
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(g _ i) /2 _ (5 _ i) B2 _ o812 _ gt 2e8 _ 2 4 e

d€ dg dg
__pd e
e d&e
so that
d " 2 2 dl’l 2
I N AN B 4
<§ dS) e (=" d§”e (4.38)
Substitution of equation (4.38) into (4.37) gives
In) = (—1)”(2”n!)l/znl/“egz/z%e&z (4.39)

which may be used to obtain the entire set of eigenfunctions of N and H.

Eigenfunctions in terms of Hermite polynomials
It is customary to express the eigenfunctions for the stationary states of the
harmonic oscillator in terms of the Hermite polynomials. The infinite set of
Hermite polynomials H,(&) is defined in Appendix D, which also derives many
of the properties of those polynomials. In particular, equation (D.3) relates the
Hermite polynomial of order » to the nth-order derivative which appears in
equation (4.39)
n

<HAE):(—1Veg£2néfz
Therefore, we may express the eigenvector |n) in terms of the Hermite
polynomial H,(§) by the relation

) = (&) = @"n)) V2 VA H,(E)e 52 (4.40)

The eigenstates 1 ,(x) are related to the functions ¢ ,(&) by equation (4.16),
so that we have

1/4
) = @y 2 (22) e

1/2
()"

For reference, the Hermite polynomials for » = 0 to n = 10 are listed in Table

4.1. When needed, higher-order Hermite polynomials are most easily obtained

from the recurrence relation (D.5). If only a single Hermite polynomial is

wanted and the neighboring polynomials are not available, then equation (D.4)
may be used.

(4.41)
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Table 4.1. Hermite polynomials

n Hn(g)

01

1 2&

2 482 -2

3 8&3 —12¢&

4 16E* —48E% + 12

5 328 — 160&3 + 120&

6 64E° — 480&* + 720&% — 120

7 128&7 — 134483 + 3360&° — 1680&

8 256E% — 3584E° + 13440&* — 13440E2 + 1680

9 51287 — 9216&7 + 483845 — 80640&° + 30240&
10 1024&'0 — 2304058 + 161280E° — 403200&* + 302400£% — 30240

The functions ¢,(§) in equation (4.40) are identical to those defined by
equation (D.15) and, therefore, form a complete set as shown in equation
(D.19). Substituting equation (4.16) into (D.19) and applying the relation
(C.5b), we see that the functions ,(x) in equation (4.41) form a complete set,
so that

> Pa@yalx’) = 0(x — x) (4.42)
n=0

Physical interpretation

The first four eigenfunctions ,(x) for n = 0, 1, 2, 3 are plotted in Figure 4.2
and the corresponding functions [t,(x)]* in Figure 4.3. These figures also
show the outline of the potential energy V' (x) from equation (4.5) and the four
corresponding energy levels from equation (4.30). The function [1,(x)]? is the
probability density as a function of x for the particle in the nth quantum state.
The quantity [1,(x)]*> dx at any point x gives the probability for finding the
particle between x and x + dx.

We wish to compare the quantum probability distributions with those
obtained from the classical treatment of the harmonic oscillator at the same
energies. The classical probability density P(y) as a function of the reduced
distance y (—1 < y < 1) is given by equation (4.10) and is shown in Figure
4.1. When equations (4.8), (4.14), and (4.30) are combined, we see that the
maximum displacement in terms of & for a classical oscillator with energy

(n—l—%)ha) is vV2n+1. For §<—+/2n+1 and £>+/2n+ 1, the classical
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Figure 4.2 Wave functions and energy levels for a particle in a harmonic potential well.
The outline of the potential energy is indicated by shading.

probability for finding the particle is equal to zero. These regions are shaded in
Figures 4.2 and 4.3.

Each of the quantum probability distributions differs from the corresponding
classical distribution in one very significant respect. In the quantum solution
there is a non-vanishing probability of finding the particle outside the classi-
cally allowed region, i.e., in a region where the total energy is less than the
potential energy. Since the Hermite polynomial H,(&) is of degree n, the wave
function ,(x) has n nodes, a node being a point where a function touches or
crosses the x-axis. The quantum probability density [1,(x)]? is zero at a node.
Within the classically allowed region, the wave function and the probability
density oscillate with n nodes; outside that region the wave function and
probability density rapidly approach zero with no nodes.
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Figure 4.3 Probability densities and energy levels for a particle in a harmonic potential
well. The outline of the potential energy is indicated by shading.

While the classical particle is most likely to be found near its maximum
displacement, the probability density for the quantum particle in the ground
state is largest at the origin. However, as the value of » increases, the quantum
probability distribution begins to look more and more like the classical
probability distribution. In Figure 4.4 the function [130(x)]* is plotted along
with the classical result for an energy 30.5 Aw. The average behavior of the
rapidly oscillating quantum curve agrees well with the classical curve. This
observation is an example of the Bohr correspondence principle, mentioned in
Section 2.3. According to the correspondence principle, classical mechanics
and quantum theory must give the same results in the limit of large quantum
numbers.
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[p30(x)

Figure 4.4 The probability density [130(x)|* for an oscillating particle in state n = 30.
The dotted curve is the classical probability density for a particle with the same
energy.

4.4 Matrix elements

In the application to an oscillator of some quantum-mechanical procedures, the
matrix elements of x" and p” for a harmonic oscillator are needed. In this
section we derive the matrix elements (n'|x|n), (n'|x?|n), (n’|p|n), and
(n’| p?|n), and show how other matrix elements may be determined.

The ladder operators & and ' defined in equation (4.18) may be solved for x
and for p to give

5o\ 12

x= (M) (@ + a) (4.43a)
1/2

b= i(m§w> @ — a) (4.43b)

From equations (4.34) and the orthonormality of the harmonic oscillator
eigenfunctions |n), we find that the matrix elements of & and &' are

(n'laln) = V/n(n'|n = 1) = V/ndw (4.44a)

(n'la'|n) = vVn+1{n'|n4+1) =vVn+ 10, 41 (4.44b)

The set of equations (4.43) and (4.44) may be used to evaluate the matrix
elements of any integral power of x and p.

To find the matrix element (n’|x|n), we apply equations (4.43a) and (4.44) to
obtain
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12
(n'|xln) = (i) (') ) + (n'|a]n))

2mw
N
= (m) (V410 i1 + V10w 1)
so that
+ DA
(n + 1|x|n) = (”2mw) (4.452)
nh
(n—1|x|n) = T (4.45b)
(n'|x|n) =0 for n"#n+1,n—-1 (4.45¢)
If we replace n by n — 1 in equation (4.45a), we obtain
h
(n|x|n—1) = 22160

From equation (4.45b) we see that

(n—1lx|n) = (n|x|n — 1)
Likewise, we can show that

(n+ 1lx[n) = (n|x|n +1)
In general, then, we have

(n'[x|n) = (n|x|n)
To find the matrix element (n'|p|n), we use equations (4.43b) and (4.44) to

give

1/2
(o1t = 1("22) ol — alm

1/2
N 1(@) (V4 10uns1 = V1w 1)

(n+1|p|n) = i,/w (4.462)
(n—1|p|n) = —i,/”mzﬁ‘“ (4.46b)

(n'|pln)y =0 for n'#n+1,n—1 (4.46¢)

We can easily show that

so that
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(n'|pln) = —(n|p|n")

The matrix element (n'|x?|n) is

(n'|(@"y* + a'a + aa’ + a*|n)

h
1.2 — reat ~\2 —
(W) = (@l + ) =

From equation (4.34) we have
(zﬂ Pln)y = v+ 1al|n+1) = /(n+ D(n + 2)|n +2)
fa|n) = v/nal|n = 1) = nln)
zﬂ\ y=Vn+laln+1) = (n+ 1)|n)
&|n) = v/naln — 1) = \/n(n — )|n - 2)

(4.47)

Q>
S

so that

(W 1) = 2 [ D D0 i+ @0+ D,
+/n(n—1)0, ,2]

We conclude that

— % (n+1)(n+2)  (448a)

(n +2|x2|n> = (n|x2|n +2)

h
(n|x*|n) = —(n +9) (4.48b)
(n = 2|x%|n) = (n|x*|n —2) :%\/n(n— 1) (4.48¢)
(n'|x*|n) =0, n#n+2,nn-—2 (4.484)

The matrix element (n’| p?|n) is obtained from equations (4.43b) and (4.47)
h h .
(n'|17|n) = = (’"Tw) (n'|(@" — ap|m) = - (’"T“’) (n'l(@)? - ala
— aa' + &|n)
mhw
( > (I’l—|— 1)(}’l+2 6n ,n+2 (2n+ 1)6n’n
+ V I’l(l’l - 1)5n'7n—2]

so that
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(n+2|p*n) = (n|p*ln +2) = _<mTﬁw> V(n+1)(n+2) (4.492)

(n|p?|n) = mhao(n —I—%) (4.49b)
(n=2|p*|n) = (n|p*|n - 2) = _<me,)) Vn(n—1) (4.49¢)
(n'|p?|n) =0, n'#n+2,nn-—2 (4.49d)

Following this same procedure using the operators (a' & @)%, we can find the
matrix elements of x* and of p* for any positive integral power k. In Chapters
9 and 10, we need the matrix elements of x> and x*. The matrix elements
(n’|x?|n) are as follows:

3/2
(n+3|x*|n) = (n|x}|n+3) = <L> Vn+1D(n+2)(n+3)  (4.50a)

2mw
(4 1) = (n |+ 1) = 3<(”2+m;)h>3/2 (4.50b)
(n—1|x*|n) = (n|x*|n — 1) :3(%)3/2 (4.50c)
(n = 3|x*|n) = (n|x}|n —3) = <%>3/2\/n(n —)(n—2) (4.50d)

(n'|x’|n) =0, n#n+l,n+3 (4.50e)

The matrix elements (n’|x*|n) are as follows

2
(n+4|x*n) = (n|x*|n+4) = <L> V(n+ D(n+2)(n+3)(n+4)

2mw

(4.51a)

2
(n+2|x*|n) = (n|x*|n +2) :%<%> @Cn+3)/(n+1)(n+2) (451b)

i 3 AN, | 4.51

() =3 (= (7 +n+1) @.51¢)

2
(n—2|x*n) = (n|x*|n —2) = %(%) 2n—1)y/n(n—1) (4.51d)

5 \2
(n —4|x*|n) = (n|x*|n —4) = <%) Va(n—1)(n—2)(n—3) (4.5le)
(n'|x*|n) =0, n#nnt2 nt4 (4.51fF)
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4.5 Heisenberg uncertainty relation

Using the results of Section 4.4, we may easily verify for the harmonic
oscillator the Heisenberg uncertainty relation as discussed in Section 3.11.
Specifically, we wish to show for the harmonic oscillator that

AxAp = 1
where
(Ax)? = {(x — (x))?)
(Ap)* = ((p — (P))*)

The expectation values of x and of p for a harmonic oscillator in eigenstate
|n) are just the matrix elements (n|x|n) and (n|p|n), respectively. These matrix
elements are given in equations (4.45¢) and (4.46¢c). We see that both vanish,
so that (Ax)? reduces to the expectation value of x* or (n|x*|n) and (Ap)?

reduces to the expectation value of p? or (n|p?|n). These matrix elements are
given in equations (4.48b) and (4.49b). Therefore, we have

£\ 12
Ax = (—) (n+ %)1/2
mw

Ap = (mhiw)'*(n+H)'/?
and the product AxAp is
AxAp = (n+Ph

For the ground state (n = 0), we see that the product AxAp equals the
minimum allowed value #/2. This result is consistent with the form (equation
(3.85)) of the state function for minimum uncertainty. When the ground-state
harmonic-oscillator values of (x), (p), and A are substituted into equation
(3.85), the ground-state eigenvector |0) in equation (4.31) is obtained. For
excited states of the harmonic oscillator, the product AxAp is greater than the
minimum allowed value.

4.6 Three-dimensional harmonic oscillator

The harmonic oscillator may be generalized to three dimensions, in which case
the particle is displaced from the origin in a general direction in cartesian
space. The force constant is not necessarily the same in each of the three
dimensions, so that the potential energy is

V= %kxx2 + %kyy2 + %kzz2 = %m(a)fcx2 + a)zyy2 + w?z?)
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where k., k,, k. are the respective force constants and w,, w,, w. are the
respective classical angular frequencies of vibration.
The Schrédinger equation for this three-dimensional harmonic oscillator is
ﬁz 821/) 821/) 821/)

1 2.2 2.2 2.2 _
“2m <axz ot azz> Him(@d + 0Ly + ol = By

where y(x, y, z) is the wave function. To solve this partial differential equation
of three variables, we separate variables by making the substitution

Y(x, y, 2) = X()Y(y) Z(2) (4.52)

where X(x) is a function only of the variable x, Y(y) only of y, and Z(z) only
of z. After division by —y(x, y, z), the Schrodinger equation takes the form

(hz ex > 2) X n &y W22
———— —Imwix ——1im
2mX dx2 2 2mY dy? 2 Y

A
+ (M@ - %mwﬁzz> =E

The first term on the left-hand side is a function only of the variable x and
remains constant when y and z change but x does not. Similarly, the second
term is a function only of y and does not change in value when x and z change
but y does not. The third term depends only on z and keeps a constant value
when only x and y change. However, the sum of these three terms is always
equal to the constant energy E for all choices of x, y, z. Thus, each of the three
independent terms must be equal to a constant

h? X
T i lma))zcx2 =F,

2mX dx? 2
h &Y 1, 2.2
2mY dy? ymwy,y” = E,
&z 5,
amz M =k
where the three separation constants E,, E, E. satisfy the relation
Ex+E, +E.=E (4.53)

The differential equation for X(x) is exactly of the form given by (4.13) for a
one-dimensional harmonic oscillator. Thus, the eigenvalues E, are given by
equation (4.30)

E,, = (n, + Hho,, n=20,1,2,...

and the eigenfunctions are given by (4.41)
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ah

g _ <m2)x> l/2x

Similarly, the eigenvalues for the differential equations for Y(y) and Z(z) are,
respectively

1/4 )
4am=mwwm@ﬂ)fw&f”

E,, = (ny+Phoy,,  n,=0,1,2, ...
E,, = (n: + Dho., n,=0,1,2,...

and the corresponding eigenfunctions are

Y, (») = 2" n )7 /? ("g) . Hny(;y)efnz/z
n= (m;)y> 1/Zy

Z,.(z) = (2" n.N)"/? (%) v H, (5 ¢/
-(7)"

The energy levels for the three-dimensional harmonic oscillator are, then,
given by the sum (equation (4.53))

Epnyn, = (ne + %)ﬁa)x +(ny, + %)ha)y +(n, + %)ﬁa)z (4.54)

The total wave functions are given by equation (4.52)

3/4
_ m
wwmm%ﬂzewwwwwmﬂﬂGﬁ (@0,

X Hy () Hyy (1) H, (§)e™E T +ED/2 (4.55)

An isotropic oscillator is one for which the restoring force is independent of
the direction of the displacement and depends only on its magnitude. For such
an oscillator, the directional force constants are equal to one another

ky=ky,=k.=k
and, as a result, the angular frequencies are all the same
Wy =W, =0; =0

In this case, the total energies are
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Epenyn. = (e + 1y + 0z +Hho = (n +Hho (4.56)

where 7 is called the total quantum number. All the energy levels for the
isotropic three-dimensional harmonic oscillator, except for the lowest level, are
degenerate. The degeneracy of the energy level E,, is (n + 1)(n + 2)/2.

4.1

4.2
4.3
4.4
4.5
4.6

4.7

4.8

4.9

4.10

Problems

Consider a classical particle of mass m in a parabolic potential well. At time ¢ the
displacement x of the particle from the origin is given by

x = asin(wt + b)
where a is a constant and w is the angular frequency of the vibration. From this
expression find the kinetic and potential energies as functions of time and show
that the total energy remains constant throughout the motion.
Evaluate the constant ¢ in equation (4.10). (To evaluate the integral, let y =
cos 6.)
Show that & and a' in equations (4.18) are not hermitian and that &' is the adjoint
of a.
The operator N = a'a is hermitian. Is the operator aa' hermitian?
Evaluate the commutators [/, &] and [H, a'].
Calculate the expectation value of x® for the harmonic oscillator in the n = 1
state.
Consider a particle of mass m in a parabolic potential well. Calculate the
probability of finding the particle in the classically allowed region when the
particle is in its ground state.
Consider a particle of mass m in a one-dimensional potential well such that

V(x) = imw’x?, x=0
= 00, x<<0
What are the eigenfunctions and eigenvalues?
What is the probability density as a function of the momentum p of an oscillating
particle in its ground state in a parabolic potential well? (First find the
momentum-space wave function.)

Show that the wave functions 4,(y) in momentum space corresponding to
¢.(&) in equation (4.40) for a linear harmonic oscillator are

An(y) = <2n)—‘/2j (B 7

— ifn(znn!ﬂl/2)71/2ef y2/2Hn(,y)

where & = (mw /h)'/?x and y = (mhw) /% p. (Use the generating function (D.1)
to evaluate the Fourier integral.)
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4.11 Using only equation (4.43b) and the fact that &' is the adjoint of &, prove that
(n'|pln) = —(n|p|n")
4.12 Derive the relations (4.50) for the matrix elements (n'|x*|n).
4.13 Derive the relations (4.51) for the matrix elements (n'|x*|n).
4.14 Derive the result that the degeneracy of the energy level E, for an isotropic
three-dimensional harmonic oscillator is (rn + 1)(n 4 2)/2.
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Angular momentum

Angular momentum plays an important role in both classical and quantum
mechanics. In isolated classical systems the total angular momentum is a
constant of motion. In quantum systems the angular momentum is important in
studies of atomic, molecular, and nuclear structure and spectra and in studies
of spin in elementary particles and in magnetism.

5.1 Orbital angular momentum

We first consider a particle of mass m moving according to the laws of classical
mechanics. The angular momentum L of the particle with respect to the origin
of the coordinate system is defined by the relation

L=rXp (5.1
where r is the position vector given by equation (2.60) and p is the linear
momentum given by equation (2.61). When expressed as a determinant, the
angular momentum L is

i j k
L=|x y z
Px Dy P:
The components Ly, L,, L. of the vector L are
Ly = yp: — zp,
L, = zp, — xp: (5.2)
Lz = XPy — VDx

The square of the magnitude of the vector L is given in terms of these
components by

2 2 2 2
P=L-L=L2+1+1 (5.3)

130
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If a force F acts on the particle, then the torque T on the particle is defined as

dp
T=rXF=rX— 5.4
r r i 5.4)
where Newton’s second law that the force equals the rate of change of linear
momentum, F = dp/d¢, has been introduced. If we take the time derivative of

equation (5.1), we obtain
dL dr dp dp
— ==X X—)=rX— .
d¢ <dt p) + (r dz) r dt (5-3)

ﬁ Xp= g X mg =
dt dt dt
Combining equations (5.4) and (5.5), we find that
_dL
T dr
If there is no force acting on the particle, the torque is zero. Consequently, the
rate of change of the angular momentum is zero and the angular momentum is
conserved.
The quantum-mechanical operators for the components of the orbital angular
momentum are obtained by replacing p,, p,, p. in the classical expressions
(5.2) by their corresponding quantum operators,

since

0

(5.6)

5 . . h( O 0
szypz—ZPyZT<yE—Za—y> (5.7a)
5 . . h( O 0
Ly:sz—po:T<za—x§> (5.7b)
5 . . h({ O 0
Lzzxpy—ypx=;<xa—y—ya> (5.7¢)

Since y commutes with p. and z commutes with p,, there is no ambiguity
regarding the order of y and p. and of z and p, in constructing L,. Similar
remarks apply to L, and L.. The quantum-mechanical operator for L is

L=il, +jL, + kL, (5.8)
and for L? is
527 F 52, 52, 52
L"=L-L=L+L,+L; (5.9
The operators L., iy, L. can easily be shown to be hermitian with respect to a

set of functions of x, y, z that vanish at +o0o. As a consequence, L and 12 are
also hermitian.
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Commutation relations
The commutator [L,, L,] may be evaluated as follows

[Z*xa zfy] =[yp: — Zi?ya Zpx — XP:]
= [ypz’ pr] + [Z]A?y, xj)Z] - [yﬁza po] - [Zi?y, Zi)X]

The last two terms vanish because yp. commutes with xp. and because zp,
commutes with z p,. If we expand the remaining terms, we obtain

[Les Ly] = ybapez = ybazp: + xpyzpz — xpypez = (xpy — ypo)lz, Pl
Introducing equations (3.44) and (5.7¢), we have
[L., L,] =ihL. (5.10a)

By a cyclic permutation of x, y, and z in equation (5.10a), we obtain the
commutation relations for the other two pairs of operators

[L,, L.] =ihL, (5.10b)
[L., L] =ihL, (5.10¢)

Equations (5.10) may be written in an equivalent form as
L X L = ifAL (5.11)

which may be demonstrated by expansion of the left-hand side.

5.2 Generalized angular momentum

In quantum mechanics we need to consider not only orbital angular momen-
tum, but spin angular momentum as well. Whereas orbital angular momentum
is expressed in terms of the x, ), z coordinates and their conjugate angular
momenta, spin angular momentum is intrinsic to the particle and is not
expressible in terms of a coordinate system. However, in quantum mechanics
both types of angular momenta have common mathematical properties that are
not dependent on a coordinate representation. For this reason we introduce
generalized angular momentum and develop its mathematical properties
according to the procedures of quantum theory.

Based on an analogy with orbital angular momentum, we define a general-
ized angular-momentum operator J with components Jo J s J.

J=iJ,+jJ, +kJ,
The operator J is any hermitian operator which obeys the relation
IXJ=ihd (5.12)

or equivalently
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[Js, J)] =ik (5.13a)
[Jy, J2] = ihJ, (5.13b)
[J., J.] =ihd, (5.13¢)
The square of the angular-momentum operator is defined by
JP=Jd=Ji+ )+ ] (5.14)

and is hermitian since J, J v, and J, are hermitian. The operator J /2 commutes
with each of the three operators I J s J.. We first evaluate the commutator
[J2 J2]
[jza 'jZ] = ['jia jz] + ['jza L]AZ] + [JE, L]AZ]
=J T JA+ U S+ Ty JA+ [y, I,
= —ihJJ, —ihJ I, + il I, + il T,
=0 (5.15a)

where the fact that J. commutes with itself and equations (3.4b) and (5.13)
have been used. By similar expansions, we may also show that

[J2, J]=0 (5.15b)
[J%, J,1=0 (5.15¢)

Since the operator J? commutes with each of the components JoJ s J. of
J, but the three components do not commute with each other, we can obtain
simultaneous eigenfunctions of J2 and one, but only one, of the three compo-
nents of J. Following the usual convention, we arbitrarily select J, and seek the
simultaneous eigenfunctions of J2 and J,. Since angular momentum has the
same dimensions as 7, we represent the eigenvalues of J2 by A%? and the
eigenvalues of J, by m#, where A and m are dimensionless and are real
because J2 and J. are hermitian. If the corresponding orthonormal eigenfunc-
tions are denoted in Dirac notation by |Am), then we have

J2|Am) = Ah*|Am) (5.16a)
J|Am) = mh*|Am) (5.16b)

We implicitly assume that these eigenfunctions are uniquely determined by
only the two parameters A and m.
The expectation values of J? and J? are, according to (3.46), and (5.16)

(J2) = (Am|J?|Am) = It
(J2) = (Am|2|Am) = m*H?
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since the eigenfunctions |Am) are normalized. Using equation (5.14) we may
also write

(J2) = (T2 + (J3) +(J2)
Since J, and J , are hermitian, the expectation values of J )ZC and J zy are real
and positive, so that
(J2) = (J2)
from which it follows that
A=m?=0 (5.17)

Ladder operators

We have already introduced the use of ladder operators in Chapter 4 to find the
eigenvalues for the harmonic oscillator. We employ the same technique here to
obtain the eigenvalues of J2 and J. The requisite ladder operators J and J _
are defined by the relations

Ji=J, —|—1J (5.18a)
J_=J, —1J (5.18b)
Neither J, nor J_ is hermitian. Application of equation (3.33) shows that they
are adjoints of each other. Using the definitions (5.18) and (5.14) and the

commutation relations (5.13) and (5.15), we can readily prove the following
relationships

[J., J.]="hJ, (5.19a)
[J., J_1=—hJ_ (5.19b)
[J2,J.]1=0 (5.19¢)
[J2,J_1=0 (5.19d)
[Jo, J_]1=2hJ. (5.19%)

JoJ =J*—J2+ 1. (5.191)

J J.=J—J*—hJ. (5.19g)

If we let the operator J? act on the function J,|Am) and observe that,
according to equation (5.19¢), J2 and J, commute, we obtain
J2J|Am) = J L JHAm) = AR |Am)
where (5.16a) was also used. We note that J_|Am) is an eigenfunction of J?
with eigenvalue AA2. Thus, the operator J + has no effect on the eigenvalues of
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J? because J? and J + commute. However, if the operator J. acts on the
function J |Am), we have

JoJAm)y = J  J.|Am) 4+ hJ | Am) = mhJ | Am) + hJ ,|Am)

= (m+ DhJ 4 |Am) (5.20)
where equations (5.19a) and (5.16b) were used. Thus, the function J +|Am) is
an eigenfunction of J, with eigenvalue (m + 1)%. Writing equation (5.16b) as

JAy m+1) = (m+ DA, m+1)
we see from equation (5.20) that J | Am) is proportional to |4, m + 1)
Jo|Am) = ci|A, m+1) (5.21)

where ¢, is the proportionality constant. The operator J. is, therefore, a
raising operator, which alters the eigenfunction |[Am) for the eigenvalue m# to
the eigenfunction for (m + 1)A.

The proportionality constant ¢, in equation (5.21) may be evaluated by
squaring both sides of equation (5.21) to give

Am|J_J  |Am) = |cs P (A, m+ 1|4, m + 1)
since the bra (Am|J_ is the adjoint of the ket J, |Am). Using equations (5.16)
and (5.19g) and the normality of the eigenfunctions, we have
e |* = (Am|J? = J* — hJ |Am) = (L — m® — m)h?

and equation (5.21) becomes

J o |Am) = /A — m(m+ 1) KA, m+1) (5.22)

In equation (5.22) we have arbitrarily taken ¢, to be real and positive.
We next let the operators J? and J, act on the function J _|Am) to give

J2J_Am) = J_JAm) = A>T _|Am)

JJ_|Am)y = J_J_ |Am) —hJ _|Am) = (m — D)hJ _|Am)
where we have used equations (5.16), (5.19b), and (5.19d). The function
J_|Am) is a simultaneous eigenfunction of J2 and J, with eigenvalues AA2 and
(m — 1)h, respectively. Accordingly, the function J_|Am) is proportional to
|4, m —1)

J_|Am) =c_|A, m—1) (5.23)
where c_ is the proportionality constant. The operator J_ changes the eigen-
function |[Am) to the eigenfunction |4, m — 1) for a lower value of the eigen-
value of J, and is, therefore, a lowering operator.

To evaluate the proportionality constant ¢_ in equation (5.23), we square
both sides of (5.23) and note that the bra (Am|J, is the adjoint of the ket
J_|Am), giving
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le_|* = (Am|J o J _|Am) = (Am|J? — T2 + hJ |Am) = (A — m* + m)h?
where equation (5.19f) was also used. Equation (5.23) then becomes

J_|Am) = /A —m(m—1) h|A, m—1) (5.24)

where we have taken c¢_ to be real and positive. This choice is consistent with
the selection above of ¢ as real and positive.

Determination of the eigenvalues

We now apply the raising and lowering operators to find the eigenvalues of J>
and J .. Equation (5.17) tells us that for a given value of A, the parameter m has
a maximum and a minimum value, the maximum value being positive and the
minimum value being negative. For the special case in which 4 equals zero, the
parameter m must, of course, be zero as well.

We select arbitrary values for A, say &, and for m, say 5, where 0 < > < &
so that (5.17) is satisfied. Application of the raising operator J, to the
corresponding ket |&) gives the ket |&, 17 4 1). Successive applications of J ,
give |&, 7+ 2), |&, n+ 3), etc. After k such applications, we obtain the ket
|Ej), where j =1 + k and /> < & The value of j is such that an additional
application of J. produces the ket |, j + 1) with (j + 1)?> > & (that is to say, it
produces a ket |[Am) with m?> A1), which is not possible. Accordingly, the
sequence must terminate by the condition J +|&j) = 0. From equation (5.22),
this condition is given by

JEN) =VE-JjG+DRE j+1)=0

which is valid only if the coefficient of |&, j + 1) vanishes, so that we have
&= jG+D. A

We now apply the lowering operator J_ to the ket |&j) successively to
construct the series of kets |&, j— 1), |& j—2), etc. After a total of n
applications of J_, we obtain the ket |&j"), where j' = j — n is the minimum
value of m allowed by equation (5.17). Therefore, this lowering sequence must
terminate by the condition

J_IE) =VE-J(G —DRE T —1)=0

where equation (5.24) has been introduced. This condition is valid only if the
coefficient of |&, j — 1) vanishes, giving & = j'(j' — 1).
The parameter & has two conditions imposed upon it

&= jG+1)
E=7G = 1)

giving the relation
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JG+D=/70G"-1D

The solution to this quadratic equation gives j' = —j. The other solution,
j'=j+1, is not physically meaningful because ;/ must be less than j. We
have shown, therefore, that the parameter m ranges from —j to j

—j=s=msj

If we combine the conclusion that ;' = —; with the relation ;' = j — n, we see
that j = n/2, where n =0, 1, 2, ... Thus, the allowed values of j are the
integers 0, 1, 2, ... (if n is even) and the half-integers 1, 3, 3, ... (if n is odd)
and the allowed values of mare —j, —j+1,..., j—1,].

We began this analysis with an arbitrary value for A, namely 4 = & and an
arbitrary value for m, namely m = #. We showed that, in order to satisfy
requirement (5.17), the parameter & must satisfy &= j(j + 1), where j is
restricted to integral or half-integral values. Since the value & was chosen

arbitrarily, we conclude that the only allowed values for A are
A=jG+1) (5.25)

The parameter # is related to j by j=1#n+ k, where k is the number of
successive applications of J until |Ey) is transformed into |£/). Since & must
be a positive integer, the parameter # must be restricted to integral or half-
integral values. However, the value # was chosen arbitrarily, leading to the
conclusion that the only allowed values of mare m = —j, —j+ 1, ..., j—1,
Jj. Thus, we have found all of the allowed values for A and for m and, therefore,
all of the eigenvalues of J2? and J ..

In view of equation (5.25), we now denote the eigenkets [Am) by |jm).
Equations (5.16) may now be written as

J2jm)y = j(j + DRE*|jm),  j=0,11,3,2, ... (5.26a)
J.|jm) = mh|jm), m=—j,—j+1,...,j—1,j  (5.26b)

Each eigenvalue of J? is (2j + 1)-fold degenerate, because there are (27 + 1)
values of m for a given value of j. Equations (5.22) and (5.24) become

Jiljm) = G+ 1) = m(m + 1) &lj, m+1)

= VG=mG+m+ )k, m+1) (5.27a)
J-|jm) =G+ 1) = m(m = 1) &lj, m 1)

= VG +mG—m+ 1) hlj, m—1) (5.27b)
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5.3 Application to orbital angular momentum

We now apply the results of the quantum-mechanical treatment of generalized
angular momentum to the case of orbital angular momentum. The orbital
angular momentum operator L, defined in Section 5.1, is identified with the
operator J of Section 5.2. Likewise, the operators 12, L., Ly, and L, are
identified with J2, J,, J y, and J ., respectively. The pararneter j of Section 5.2
is denoted by / when applied to orbital angular momentum. The simultaneous
eigenfunctions of L? and L. are denoted by |/m), so that we have

L*Im) = I(1 + D)A?|Im) (5.282)
L.|lm) = mh|Im), m=—I,—1+1,...,1—1,1  (528b)

Our next objective is to find the analytical forms for these simultaneous
elgenfunctmns For that purpose, it is more convenient to express the operators
Lx, L s L.,and L2 in spherical polar coordinates r, 6, ¢ rather than in cartesian
coordinates x, y, z. The relationships between r, 0, ¢ and x, y, z are shown in
Figure 5.1. The transformation equations are

x = rsinfcos @ (5.29a)
y =rsin@sin@ (5.29b)
z=rcosf (5.29¢)
r=2+y*+ 292 (5.29d)
0 = cos™(z/(x* + y* + 2%)/?) (5.29)
¢ = tan"!(y/x) (5.29¢)
z
7 |
|
0 |
|
|
7~ I y
N

Figure 5.1 Spherical polar coordinate system.
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These coordinates are defined over the following intervals

—o=xyzs0, 0sr<oo, 0sfOsxa 0s¢p=<27
The volume element dr = dx dy dz becomes dr = r?sin @ drd 6 de in spheri-
cal polar coordinates.

To transform the partial derivatives 9/9x, 9/dy, 0/0z, which appear in the
operators L,, Ly, L. of equations (5.7), we use the expressions

Do) 2a(2) 2a(2) 2
ox  \ox),.0r \ox),.06 Ox),.0p

L 0 cosfcosp O sing O
—SlnHCOS(pE—FfaG rsinH% (5.30a)
9 _(0r\ 0 (0\ 0 (9g\ O
oy \Oy O dy),.00 0y )...0¢
o . 0 cosfOsinp O cosp O
= s1n6s1ngoar 96 rsin00g (5.30b)
22,02 5o (3).
0z \0z vy Or 0z),,00 0z xya(p
0 sinf 0
= cos 05 E— (5.30c)
Substitution of these three expressions into equations (5.7) gives
L, :?<—sin¢%—cot6’cos<p%> (5.31a)
. h 0 . 0
L, = (cosq)ae cot@sm(p%> (5.31b)
;R0
L, = 90 (5.31¢)

By squaring each of the operators Ly, zy, L. and adding, we find that 12 is
given in spherical polar coordinates by

o ol 1 a< a) 1>
Lr=-n [sm@é)@ Sme(‘?@ +sin208(p2 (5-32)

Since the variable » does not appear in any of these operators, their eigen-
functions are independent of » and are functions only of the variables 6 and ¢.
The simultaneous eigenfunctions |/m) of L? and L. will now be denoted by the
function Y;,(0, @) so as to acknowledge explicitly their dependence on the
angles 6 and ¢.
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The eigenvalue equation for L. is
. h 0
L:Yi(0, @) = 100 Yin(0, ) = mhY,(6, @) (5.33)
where equations (5.28b) and (5.31¢) have been combined. Equation (5.33) may
be written in the form

dY/m(ea (/’)
Yi(6, @)
the solution of which is

=1imd¢ (0 held constant)

Yin(0, @) = O (0)e™ (5.34)
where ©,,(0) is the ‘constant of integration’ and is a function only of the
variable 6. Thus, we have shown that Y;,(6, ¢) is the product of two functions,
one a function only of 6, the other a function only of ¢

Yim(0, @) = O ()P () (5.35)
We have also shown that the function ®,,(¢) involves only the parameter m
and not the parameter /.

The function ®,,(¢) must be single-valued and continuous at all points in
space in order for Y;,(0, ¢) to be an eigenfunction of [*and L.. If ®,,(¢) and
hence Y;,(0, @) are not single-valued and continuous at some point ¢g, then
the derivative of Y;,,(6, ¢) with respect to ¢ would produce a delta function at
the point ¢y and equation (5.33) would not be satisfied. Accordingly, we
require that

D () = Pl + 27)

or

elme — elm((p+27t)

so that

eZlmJ‘E =1

This equation is valid only if m is an integer, positive or negative
m=0,+1, +£2, ...

We showed in Section 5.2 that the parameter m for generalized angular
momentum can equal either an integer or a half-integer. However, in the case
of orbital angular momentum, the parameter m can only be an integer; the half-
integer values for m are not allowed. Since the permitted values of m are —I,
—I+1,..., I =1, [ the parameter / can have only integer values in the case
of orbital angular momentum; half-integer values for / are also not allowed.

Ladder operators
The ladder operators for orbital angular momentum are
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L. =1,+il
Y (5.36)
L _=L,—iL,

and are identified with the ladder operators J, and J_ of Section 5.2. Substi-
tution of (5.31a) and (5.31b) into (5.36) yields

. (0 . 0
L+ = he'? <% + 1cot 0@) (5373)
. : 0 0
—paie Y il
L_=he ( 20 +icotf 8<P> (5.37b)

where equation (A.31) has been used. When applied to orbital angular
momentum, equations (5.27) take the form

L Yim(®, ) = /(I = m)(I + m+ 1) £Y . 11(6, @) (5.38a)
L Yin(0, ¢) = /(I + m)(I = m+ 1) £iY;,,1(0, @) (5.38b)
For the case where m is equal to its minimum value, m = —I, equation

(5.38b) becomes
LY, (6.0)=0

or

o . 9
(—% + 1C0t9%> Y]’,[(e, (p) =0

when equation (5.37b) is introduced. Substitution of Y; _;(6, ¢) from equation
(5.34) gives

0 . 0 —ilq 0 —ilg
<—%+100t9 %>®1,_1(9)e lo — <—%~I— Zcot0)®l,—l(9)e =0

Dividing by e ~'/?, we obtain the differential equation

din©, (0) = lcot0dd = 46— ' dsin6 = 1dInsin6
’ sin 0 sin 0
which has the solution
©;_(0) = A;sin’ 6 (5.39)

where 4; is the constant of integration.

Normalization of Y;_ (0, ¢)
Following the usual custom, we require that the eigenfunctions Y;,(6, ¢) be
normalized, so that
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27 (7T
J J Y50, ©)Yi(0, ¢)sin6dO do
0 Jo

27T

= J:@)j‘m(e)(a m(0) sin@d@L DF (@)D, (p)dop = 1

where the 6- and ¢-dependent parts of the volume element dz are included in
the integration. For convenience, we require that each of the two factors @, (0)
and @ ,,(¢) be normalized. Writing @ ,,,(¢) as

®,,(p) = Ae'™

we find that

27T ) ) 27T

(] [§] == prnd
J (A 1m(p)*(A 1m(p)d¢ ‘AIZJ ng 1
0 0
A=¢e"/\2m
giving
1.
D,(p) =—=¢"" (5.40)

V27

where we have arbitrarily set a equal to zero in the phase factor e associated
with the normalization constant.

The function ©;_;(0) is given by equation (5.39) and the value of the
constant of integration A; is determined by the normalization condition

JT T
J [O,_1(0)]*O;_(0)sinOdO = \A;\ZJ sin?’*1'6do = 1 (5.41)
0 0
We need to evaluate the integral /;

7T —1 1
I = J sin?'*19do = —J (1 —u®)du = J (1 —u®du
0 1 -1

where we have defined the variable u by the relation
u=-cosf (5.42)
so that
1 — u? = sin6, du = —sin6do

The integral /; may be transformed as follows

1 1 1
=] a1+ | 2 a0 -y

1 211
(1—u) 1
=11 - ———du=1,_1 ——1
-1 Jl 2] u -1 211

where we have integrated by parts and noted that the integrated term vanishes.
Solving for [;, we obtain a recurrence relation for the integral
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21
I = I 4
1=l (5.43)
Since [y is given by
1
-1

we can obtain /; by repeated application of equation (5.43) starting with /
QHRI—-2)21—4)---2 I 221 (y?
YR

T RITDRI-DE2I=-3) -3

where we have noted that
QnRl-2)---2=21
I+ DHR2I-1)21-3)---3

CRI+DHERH2I-DR2I-2)21—-3) ---3X2X 1T 21+ 1)
N QnQRI—-2)---2 20
Substituting this result into equation (5.41), we find that

1 el
i} = 20 2

It is customary to let a equal zero in the phase factor €' for ©;_;(6), so that

1 /2I+1)! .
@[,_](0) = ﬁ %Slnle (544)

Combining equations (5.35), (5.40) and (5.44), we obtain the normalized

eigenfunction
L el
Y[,,[(e, (p) = 21—1' T sin‘ O e (545)

Spherical harmonics
The functions Y;,(0, ¢) are known as spherical harmonics and may be
obtained from Y;_;(6, ¢) by repeated application of the raising operator L,
according to (5.38a). By this procedure, the spherical harmonics Y;_;+1(0, ¢),
Y1120, @), ..., Yi-1(0, @), Yio(0, @), Yn(0, @), ..., Yu(0, ¢) may be
determined. Since the starting function Y;_,(0, @) is normalized, each of the
spherical harmonics generated from equation (5.38a) will also be normalized.
We may readily derive a general expression for the spherical harmonic
Yim(6, @) which results from the repeated application of L, to Y 1—1(0, ¢). We
begin with equation (5.38a) with m set equal to —/

1 "
Yi ip1=—=>Ly Y (5.46)
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For m equal to —/ + 1, equation (5.38a) gives
1 72

1 )
T Sy S P2y,
A=y s M T Lenei—y we !

where equation (5.46) has been introduced in the last term. If we continue in
the same pattern, we find
1 . 1

Viopps=—F———7 LiYi-112= Zin,—z
V32I—2)h V232021 — D2l —2) #

Ql—k'1 .,
T =7 Ty wr b

where k is the number of steps in this sequence. We now set £ = [ + m in the
last expression to obtain

o a=-m
T =\ G mi@piarn s =t (5-47)

If the number of steps & is less than the value of [, then the integer m is
negative; if &k equals /, then m is zero; if k is greater than /, then m is positive;
and finally if k£ equals 2/, then m equals its largest value of /.

The next step in this derivation is the evaluation of L”m Y, _; using equation
(5.37a). If the operator L+ in (5.37a) acts on Y; (0, (p) as given in (5.45), we
have

Lr Y= c el <886 + 1cot0%> sin‘@e i1

= ¢hie”i=De (dde + [ cot 9> sin’@

sin2@
sin‘@

= ¢he”-De ( dde + I cot 9>

. 1 d
_ —i(I-1)q 21 | s
= cjhe ”[ 1640 sin“'@ — Isin'" "6 cos@ + [sin"" OcosO

1 d
sin’=10 d(cos 0)
where for brevity we have defined ¢; as

= —chie Do sin®'@

Q21+ 1)!

4
211' 4 (5:48)

Cr =
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We then operate on this result with L, to obtain

. ) (9 a —i(/I-1)p d
Li Y= —cih%e'? <— + icot0—> (e sin’’@

00 O¢ /) \ sin’=10 d(cos 0)

) d 1 d
— _ ﬁZ —i(/-2)p) <_ 1 —1 te) : 210
cane dé - )co sin/~16 d(cos 6) S

1 d? )
sin’~26 d(cos 6)2 .
After k such applications of ]:+ to the function Y;_ (0, ¢), we have

1 dk
sin’=%0 d(cos 0)*
If we set k = / + m in this expression, we obtain the desired result

— ClﬁZe—l(l—Z)(p 11219

sin®'0

z_]:_ Y[’_[ = (—ﬁ)kcle_i(l_k)“’

dl+m
R
d(cos B)/+m

The general expression for Y;,(0, @) is obtained by substituting equation
(5.49) into (5.47) with ¢; given by equation (5.48)

(—1)Hm \/(21+ (I — m)! ditm

L™y, = (—h) ey sin™ sin?/6 (5.49)

Yin(6, @) = *— 75 €™ sin"0—— sin?'Q

dz (I + m)! d(cos 6)+m
(5.50)

When Y;,(8, @) is decomposed into its two normalized factors according to
equations (5.35) and (5.40), we have

B (=D eI+ (I -m)! ., d+m . a7
O,.(0) = o 5 (H_m)!sm 0 d(cos0)F ™ sin“'0  (5.51)
1.

The spherical harmonics for / =0, 1, 2, 3 are listed in Table 5.1. We note
that the function ©;_ ,(0) is related to ©,(0) by

O1-m(0) = (=1)"O;,(0) (5.53)
and that the complex conjugate Y7 (0, ¢) is related to Y;,,(6, @) by
Y56, ) = (=1)"Y; (5.54)

Because both 12 and L, are hermitian, the spherical harmonics Y;,,(0, @)
form an orthogonal set, so that

I'm

27T (T
J j Y% (0, 9)Vim(6, ¢)sin0d0dp = 8,0, (5.55)
0 0
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Table 5.1. Spherical harmonics Y;,,(0, @) for [ =0,1,2,3

NG 7\ 12
Yoo = | — Y30 = | — 0 —
00 (4%) 30 <16n> (5co0s’0 — 3 cos 0)
3 1/2 21 1/2
Yio = <E) cos 6 Yii1 = F (64—n> sin O(5 cos® 6 — 1)e*?
3\ 12 105\ /2
Yie1=F (—) sin 0 e*i? Vi = <—> sin?6 cos O e*2i¢
: 8 ’ 32r
Yoo = S l/2(3 cos?0 — 1) Y343 =F £l v sin®@ e*3ie
167 ’ 647

1/2
Yos1 =F (§> sin 0 cos O e*i?

12
15 )
Yoir = (n) sin? O e*2i?

If we introduce equation (5.35) into (5.55), we have

27

| €500 (@sin 06| 07 (0120 (0)d0 = 010,
0 0

The integral over the angle ¢ is
g (> ... 1 (* D
O CI)m do = — TImQLIme 4 — i(m=m"o 4
JO (@) Pm(@)dp = —— L e e dp = o JO e ¢

where equation (5.52) has been introduced. Since m and m' are integers, this
integral vanishes unless m = m’, so that

27T
JO D7 (@)D () dp = O (5.56)
from which it follows that
TT
JO 07}, (0)0,,(0)sin0do = oy (5.57)

Note that in equation (5.57) the same value for m appears in both @}k,m(H) and
© ,,(0). Thus, the functions ©,,(0) and O ,,(0) for [ # I' are orthogonal, but
the functions ©,,(0) and O, () are not orthogonal. However, for m # m’,
the spherical harmonics Y;,(6, ¢) and Y, (0, @) are orthogonal because of

equation (5.56).
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Relationship of spherical harmonics to associated Legendre polynomials

The functions ©,(0) and consequently the spherical harmonics Y, (0, ¢) are
related to the associated Legendre polynomials, whose definition and properties
are presented in Appendix E. To show this relationship, we make the substitu-
tion of equation (5.42) for cos 6 in equation (5.51) and obtain

(=D @l DA =m)t o, d
Om = 2 Uyl T g

2! (5.58)

Equation (E.13) relates the associated Legendre polynomial Pj'(u) to the
(I + m)th-order derivative in equation (5.58)

m 1 2\m/2 dr 2 /
Pl(/"):ﬁ(l_ﬂ) W(ﬂ -1

where [ and m are positive integers (/, m = 0) such that m < /. Thus, for
positive m we have the relation

204 1) (1 — m)
@,,,,(0):(—1)’"\/( ;)EI+Z;!P71(COSG), m=0

For negative m, we may write m = —|m| and note that equation (5.53) states
®l,—\m\(9) = (_1)m®l,|m|(9)

so that we have

2 (I+|m)!

These two results may be combined as

_ QI+ (- |m])! |m|
O.(0) = e\/ SRR |m\)!Pl (cos )

where ¢ = (—1)" for m>0 and € = 1 for m < 0. Accordingly, the spherical
harmonics Y;,(6, @) are related to the associated Legendre polynomials by

Yim(6, @) = 8\/(21 DU = ’ml)!PW(cos )e'"?

O _|m(0) = \/(21 D= |m|)!P|lm|(cos 0)

4 (14 |m]|)!
e=(—D", m>0 (5.59)
=1, m=<0

The eigenvalues and eigenfunctions of the orbital angular momentum
operator L? may also be obtained by solving the differential equation
%1 = Ah?1 using the Frobenius or series solution method. The application of
this method is presented in Appendix G and, of course, gives the same results
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as the procedure using ladder operators. However, the Frobenius method may
not be used to obtain the eigenvalues and eigenfunctions of the generalized
angular momentum operators J> and J. because their eigenfunctions do not
have a spatial representation.

5.4 The rigid rotor

The motion of a rigid diatomic molecule serves as an application of the
quantum-mechanical treatment of angular momentum to a chemical system. A
rigid diatomic molecule consists of two particles of masses m; and m, which
rotate about their center of mass while keeping the distance between them fixed
at a value R. Although a diatomic molecule also undergoes vibrational motion
in which the interparticle distance oscillates about some equilibrium value, that
type of motion is neglected in the model being considered here; the interparti-
cle distance is frozen at its equilibrium value R. Such a rotating system is
called a rigid rotor.

We begin with a consideration of a classical particle i with mass m; rotating
in a plane at a constant distance 7; from a fixed center as shown in Figure 5.2.
The time 7 for the particle to make a complete revolution on its circular path is
equal to the distance traveled divided by its linear velocity v;

27[7"1'

T =
Ui

The reciprocal of 7 gives the number of cycles per unit time, which is the
frequency v of the rotation. The velocity v; may then be expressed as

v; = 2’7" — 2vr; = wry (5.61)
where w = 2xv is the angular velocity. According to equation (5.1), the
angular momentum L; of particle i is

Li =1 X p; = mi(r; X v;) (5.62)
Since the linear velocity vector v; is perpendicular to the radius vector r;, the
magnitude L; of the angular momentum is

(5.60)

Vi

m;

Figure 5.2 Motion of a rotating particle.
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L; = mrv;8in (1/2) = mriv; = wmir% (5.63)
where equation (5.61) has been introduced.

We next apply these classical relationships to the rigid diatomic molecule.
Since the molecule is rotating freely about its center of mass, the potential
energy is zero and the classical-mechanical Hamiltonian function H is just the
kinetic energy of the two particles,

2 2
o

_ 1 2 1 2
2m1 2m2 = 51’”1U1 +§I’I’LzU2 (564)

If we substitute equation (5.61) for each particle into (5.64) while noting that
the angular velocity w must be the same for both particles, we obtain
H =1o*(mir} + myr3) = Lo? (5.65)
where we have defined the moment of inertia I by
I = mlr% + mgrg (5.66)

In general, moments of inertia are determined relative to an axis of rotation.
In this case the axis is perpendicular to the interparticle distance R and passes
through the center of mass. Thus, we have

r—+mn=R
and
myry = mynr

or, upon inversion

my
rnn—-=———
my + my
(5.67)
mi
rp=——
my + myp
Substitution of equations (5.67) into (5.66) gives
I =uRr? (5.68)
where the reduced mass u is defined by
mimy
=—— 5.69
b= T (5.69)

The total angular momentum L for the two-particle system is given by
L=1L+ L, =ao(mr+mr)=Ilo (5.70)
where equations (5.63) and (5.66) are used. A comparison of equations (5.65)
and (5.70) shows that
LZ

H==
21

(5.71)
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Accordingly, the quantum-mechanical Hamiltonian operator H for this system
is proportional to the square of the angular momentum operator L?

H= ﬁLZ (5.72)

Thus, the operators H and L? have the same eigenfunctions, namely, the
spherical harmonics Y,,,(6, @) as given in equation (5.50). It is customary in
discussions of the rigid rotor to replace the quantum number / by the index J in
the eigenfunctions and eigenvalues.

The eigenvalues of H are obtained by noting that

. 1 . J(J + DR?
HY;,(0, @) = ZLZYJm(ea Q) = %

where [ is replaced by J in equation (5.28a). Thus, the energy levels E; for the
rigid rotor are given by

Yim(0, @) (5.73)

hz
Ey=JU + )37 =J( + DB, J=0,1,2,... (5.74)

where B = #%2/21 is the rotational constant for the diatomic molecule. The
energy levels E; are shown in Figure 5.3. We observe that as J increases, the
difference between successive levels also increases.

Energy

J=4,g,4=9

208 £4
J=3,g,=7

128 &3
J=2,g,=5

6B 82
J=1,g,=3

2B &1
J =0, =1

0 g0

Figure 5.3 Energy levels of a rigid rotor.
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To find the degeneracy of the eigenvalue E;, we note that for a given value
of J, the quantum number m has values m = 0, +1, +2, ..., £J. Accordingly,
there are (2J + 1) spherical harmonics for each value of J and the energy level
E; is (2J + 1)-fold degenerate. The ground-state energy level E, is non-
degenerate.

5.5 Magnetic moment

Atoms are observed to have magnetic moments. To understand how an electron
circulating about a nuclear core can give rise to a magnetic moment, we may
apply classical theory. We consider an electron of mass m. and charge —e
bound to a fixed nucleus of charge Ze by a central coulombic force F(r) with
potential V(r)

dvry —2ze?
F(r)=— = .
" dr 47reyr? (5.75)
—Ze?
V(r)= pP—- (5.76)

Equation (5.75) is Coulomb’s law for the force between two charged particles
separated by a distance ». In SI units, the charge e is expressed in coulombs
(C), while ¢ is the permittivity of free space with the value

g =18.85419x 10721 'C*m™!
According to classical mechanics, a stable circular orbit of radius » and angular
velocity  is established for the electron if the centrifugal force m.rw?
balances the attractive coulombic force

2 Ze?
Mmer@*” =

47580 r2
This assumption is the basis of the Bohr model for the hydrogen-like atom.
When solved for w, this balancing equation is

1/2
w = <L> (5.77)

degmer3

An electron in a circular orbit with an angular velocity w passes each point
in the orbit w/2m times per second. This electronic motion constitutes an
electric current /, defined as the amount of charge passing a given point per

second, so that
ew
T 2w
From the definition of the magnetic moment in electrodynamics, a circulat-

(5.78)
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ing current / enclosing a small area 4 gives rise to a magnetic moment M of
magnitude M given by

M= 14 (5.79)

The area 4 enclosed by the circular electronic orbit of radius 7 is 7z#2. From
equation (5.63) we have the relation L = m.wr?. Thus, the magnitude of the
magnetic moment is related to the magnitude L of the angular momentum by

L
M=2 (5.80)
2me

The direction of the vector L is determined by equation (5.62). By convention,
the direction of the current / is opposite to the direction of rotation of the
negatively charged electron, i.e., opposite to the direction of the vector v.
Consequently, the vector M points in the opposite direction from L (see Figure
5.4) and equation (5.80) in vector form is
L=

2me h
Since the units of L are those of 7, we have defined in equation (5.81) the Bohr
magneton Ug as

M =

L (5.81)

a
g = ;m —9.27402 X 10724 JT! (5.82)
(S

The relationship (equation (5.81)) between M and L depends only on
fundamental constants, the electronic mass and charge, and does not depend on
any of the variables used in the derivation. Although this equation was obtained
by applying classical theory to a circular orbit, it is more generally valid. It
applies to elliptical orbits as well as to classical motion with attractive forces
other than 72 dependence. For any orbit in any central force field, the angular

M

Figure 5.4 The magnetic moment M and the orbital angular momentum L of an
electron in a circular orbit.
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momentum is conserved and, since equation (5.81) applies, the magnetic
moment is constant in both magnitude and direction. Moreover, equation (5.81)
is also valid for orbital motion in quantum mechanics.

Interaction with a magnetic field
The potential energy V of an atom with a magnetic moment M in a magnetic
field B is

V=—-M:-B=—-MBcosf (5.83)
where 6 is the angle between M and B. The force F acting on the atom due to
the magnetic field is

F=-VV
or
F.=-M a—B:—Mcosea—
Ox X
OB 0B
F,=-M- a_y = —Mcos Ga—y (5.84)
F,.=-M 8—B:—Mcost98—B
z 0z

If the magnetic field is uniform, then the partial derivatives of B vanish and the
force on the atom is zero.

According to electrodynamics, the force F for a non-uniform magnetic field
produces on the atom a torque T given by

T:MXB:—%LXB (5.85)

where equation (5.81) has been introduced as well. From the relation T =
dL/d¢? in equation (5.6), we have

dL UB

a——?LXB (5.86)
Thus, the torque changes the direction of the angular momentum vector L and
the vector dL./d¢ is perpendicular to both L and B, as shown in Figure 5.5. As
a result of this torque, the vector L precesses around the direction of the
magnetic field B with a constant angular velocity wy. This motion is known as
Larmor precession and the angular velocity wy is called the Larmor frequency.
Since the magnetic moment M is antiparallel to the angular moment L, it also
precesses about the magnetic field vector B.

From equation (5.61), the Larmor angular frequency or velocity wy is equal

to the velocity of the end of the vector L divided by the radius of the circular
path shown in Figure 5.5
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B

Figure 5.5 The motion in a magnetic field B of the orbital angular momentum vector L.

_|dL/d¢|
LT Lsin®
The magnitude of the vector dL./d¢ is obtained from equation (5.86) as
dL
rrik /;i_B LBsin 6
so that
B
oL = ’“‘% (5.87)

If we take the z-axis of the coordinate system parallel to the magnetic field
vector B, then the projection of L on B is L, and cos 6 in equation (5.83) is

cosf =—=
L

In quantum mechanics, the only allowed values of L are \//(/+ 1) & with
/=0, 1, ... and the only allowed values of L, are mh with m =0, +1, ...,

+1. Accordingly, the angle 6 is quantized, being restricted to values for which

cosO=——" [ =0,1,2,..., m=0,+1,...,+]  (5.88)

VIA+1)
The possible orientations of L with respect to B for the case /=3 are
illustrated in Figure 5.6. Classically, all values between 0 and 7 are allowed for
the angle . When equations (5.81) and (5.88) are substituted into (5.83), we
find that the potential energy Vis also quantized

V=mugB, m=0,=%l,..., =%l (5.89)
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B
m=3
m=2
m=1
m=0
m=—1
m= -2
m=—3

Figure 5.6 Possible orientations in a magnetic field B of the orbital angular momentum
vector L for the case / = 3

51
5.2

5.3
54
5.5
5.6
5.7
5.8

5.9

5.10

5.11

Problems

Show that each of the operators L., L s L. is hermitian.

Evaluate the following commutators:

(@) [Lx, x] () [Ly, il (©) [Lx, ¥] (d) [Ly, Dyl R

Using the commutation relation (5.10b), find the expectation value of L, for a
system in state |Im).

Apply the uncertainty principle to the operators L, and L y to obtain an expres-
sion for AL AL y. Evaluate the expression for a system in state |/m,).

Show that the operator J2 commutes with J and with J e

Show that J and J_ as defined by equations (5.18) are adjoints of each other.
Prove the relationships (5.19a)—(5.19g).

Show that the choice for ¢_ in equation (5.24) is consistent with ¢, in equation
(5.22).

Using the raising and lowering operators J . and J_, show that

(m|J | jm) = (m|J ,|jm) = 0
Show that
(m|J3 jm) = (jm|J5|jm) =306+ 1) — m* 1
Show that |j, m) are eigenfunctions of [J,, J,] and of [J,, J.]. Find the
eigenvalues of each of these commutators.



6
The hydrogen atom

A theoretical understanding of the structure and behavior of the hydrogen atom
is essential to the fields of physics and chemistry. As the simplest atomic
system, hydrogen must be understood before one can proceed to the treatment
of more complex atoms, molecules, and atomic and molecular aggregates. The
hydrogen atom is one of the few examples for which the Schrédinger equation
can be solved exactly to obtain its wave functions and energy levels. The
resulting agreement between theoretically derived and experimental quantities
serves as confirmation of the applicability of quantum mechanics to a real
chemical system. Further, the results of the quantum-mechanical treatment of
atomic hydrogen are often used as the basis for approximate treatments of more
complex atoms and molecules, for which the Schrédinger equation cannot be
solved.

The study of the hydrogen atom also played an important role in the
development of quantum theory. The Lyman, Balmer, and Paschen series of
spectral lines observed in incandescent atomic hydrogen were found to obey
the empirical equation

v:Rc<i2—L2>, ny > nj

noon

where v is the frequency of a spectral line, ¢ is the speed of light, n; =1, 2, 3
for the Lyman, Balmer, and Paschen series, respectively, n, is an integer
determining the various lines in a given series, and R is the so-called Rydberg
constant, which has the same value for each of the series. Neither the existence
of these spectral lines nor the formula which describes them could be explained
by classical theory. In 1913, N. Bohr postulated that the electron in a hydrogen
atom revolves about the nucleus in a circular orbit with an angular momentum
that is quantized. He then applied Newtonian mechanics to the electronic
motion and obtained quantized energy levels and quantized orbital radii. From

156
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the Planck relation AE = E,, — E,, = hv, Bohr was able to reproduce the
experimental spectral lines and obtain a theoretical value for the Rydberg
constant that agrees exactly with the experimentally determined value. Further
investigations, however, showed that the Bohr model is not an accurate
representation of the hydrogen-atom structure, even though it gives the correct
formula for the energy levels, and led eventually to Schrodinger’s wave mech-
anics. Schrodinger also used the hydrogen atom to illustrate his new theory.

6.1 Two-particle problem

In order to apply quantum-mechanical theory to the hydrogen atom, we first
need to find the appropriate Hamiltonian operator and Schrédinger equation.
As preparation for establishing the Hamiltonian operator, we consider a
classical system of two interacting point particles with masses m; and m, and
instantaneous positions r; and r, as shown in Figure 6.1. In terms of their
cartesian components, these position vectors are

r; = ix; +jy + kz

r; =ix +j» + ko
The vector distance between the particles is designated by r
r=r,—r =ix+jy+kz (6.1)
where
X =X — X1, y=»2=J z=1z3— 121
The center of mass of the two-particle system is located by the vector R with
cartesian components, X, ¥, Z

CM

X

Figure 6.1 The center of mass (CM) of a two-particle system.
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R=iX+jY+kZ

By definition, the center of mass is related to r| and r, by
miry + mpr;

R =" (6.2)

where M = m; + m, is the total mass of the system. We may express r; and r,
in terms of R and r using equations (6.1) and (6.2)

r = R—%r
(6.3)
m
) = R—f—ﬁr

If we restrict our interest to systems for which the potential energy V is a
function only of the relative position vector r, then the classical Hamiltonian
function H is given by

2 2
H = " Ip2 +V(r) (6.4)
27’}’11 2}712

where the momenta p; and p, for the two particles are
dl‘] dl‘2
pl:mlaa P2 = my——
These momenta may be expressed in terms of the time derivatives of R and r

by substitution of equation (6.3)

<dR my dl‘)
pr=m|————

dt M dt
(6.5)
- (d_R N ﬂé)
P2=mar " M dr
Substitution of equation (6.5) into (6.4) yields
dr | dr|?
H=IM|—| +lu|— v 6.6

where the cross terms have canceled out and we have defined the reduced mass
by

mymy  mpm
#= m +m M
The momenta p and p,, corresponding to the center of mass position R and
the relative position variable r, respectively, may be defined as
dR _dr
E > Pr=u a
In terms of these momenta, the classical Hamiltonian becomes

(6.7)

PrR=M
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_ ez Ipf?
2M 2u

We see that the kinetic energy contribution to the Hamiltonian is the sum of
two parts, the kinetic energy due to the translational motion of the center of
mass of the system as a whole and the kinetic energy due to the relative motion
of the two particles. Since the potential energy V' (r) is assumed to be a function
only of the relative position coordinate r, the motion of the center of mass of
the system is unaffected by the potential energy.

The quantum-mechanical Hamiltonian operator H is obtained by replacing
Ipz|* and |p,|? in equation (6.8) by the operators —42V% and —#2V2, respec-
tively, where

H

+ V(r) (6.8)

> 0
2 _
Vizaxztar T az (6.92)
* 9 0P
Ve 4+ — 6.9b
A R SR (6.9)
The resulting Schrodinger equation is, then,
U V2 i V24 V()| PR, r)= EP(R, r) (6.10)
2M R 2u T T ’ '

This partial differential equation may be readily separated by writing the
wave function W(R, r) as the product of two functions, one a function only of
the center of mass variables X, ¥, Z and the other a function only of the relative
coordinates x, y, z

YR, r) =X, Y, Z)y(x, y, z) = x(R)y(r)
With this substitution, equation (6.10) separates into two independent partial
differential equations

h2
~ 537 Vit(R) = Exy(R) (6.11)
hz
— @V%w(r> + V(@Oy(r) = Ep(r) (6.12)
where
E=Er+E,

Equation (6.11) is the Schrédinger equation for the translational motion of a
free particle of mass M, while equation (6.12) is the Schrédinger equation for a
hypothetical particle of mass 4 moving in a potential field V(r). Since the
energy Ep of the translational motion is a positive constant (Eg = 0), the
solutions of equation (6.11) are not relevant to the structure of the two-particle
system and we do not consider this equation any further.
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6.2 The hydrogen-like atom

The Schrodinger equation (6.12) for the relative motion of a two-particle
system is applicable to the hydrogen-like atom, which consists of a nucleus of
charge + Ze and an electron of charge —e. The differential equation applies to
H for Z = 1, He* for Z = 2, Li** for Z = 3, and so forth. The potential energy
V(r) of the interaction between the nucleus and the electron is a function of
their separation distance » = |r| = (x*> + y* + z%)1/2 and is given by Coulomb’s
law (equation (5.76)), which in SI units is
Ze?
4.7'[807‘

V(ir)=—

where meter is the unit of length, joule is the unit of energy, coulomb is the
unit of charge, and ¢ is the permittivity of free space. Another system of units,
used often in the older literature and occasionally in recent literature, is the
CGS gaussian system, in which Coulomb’s law is written as

2
V(ir)=— ze
r
In this system, centimeter is the unit of length, erg is the unit of energy, and
statcoulomb (also called the electrostatic unit or esu) is the unit of charge. In
this book we accommodate both systems of units and write Coulomb’s law in
the form

Ze'?

Vir)=— (6.13)

where e’ = e for CGS units or e’ = e/(47e)'/? for SI units.

Equation (6.12) cannot be solved analytically when expressed in the
cartesian coordinates x, y, z, but can be solved when expressed in spherical
polar coordinates 7, 8, ¢, by means of the transformation equations (5.29). The
laplacian operator Vi in spherical polar coordinates is given by equation (A.61)
and may be obtained by substituting equations (5.30) into (6.9b) to yield

- 1a<za>+1 1 a<5inea>+ 1 &
= —— VT — _— | — _— —_—
" r2or or r? |sin O 06 00 sin? 6 0p?

If this expression is compared with equation (5.32), we see that

2_i2< zﬁ) L
V= r2Or d or ﬁzrzL

where I? is the square of the orbital angular momentum operator. With the
laplacian operator Vf expressed in spherical polar coordinates, the Schrodinger
equation (6.12) becomes



6.3 The radial equation 161

Hy(r, 0, ) = Ey(r, 0, ¢)
with

R #* 0 za) 1 .,
H_—2W25<r o +2W2L + V(r) (6.14)

The operator I%in equation (5.32) commutes with the Hamiltonian operator
H in (6.14) because L commutes with itself and does not involve the variable
r. Likewise, the operator L. in equation (5.31c) commutes with A because it
commutes with 22 as shown in (5.15a) and also does not involve the variable r.
Thus, we have

[H, [*]=0, [H, L.]=0, [L%, L.]=0
and the operators H, 12, and L, have simultaneous eigenfunctions,
Hy(r, 6, @) = Ey(r, 0, ¢) (6.15a)
L2y(r, 6, ) = I(I + DA*y(r, 6, ¢), 1=0,1,2,... (6.15b)

Ly(r, 0, @) = mhy(r, 6, ¢), m=—1,—1+1,...,1—1,1 (6.15¢c)

The simultaneous eigenfunctions of 2 and L. are the spherical harmonics
Yim(, @) given by equations (5.50) and (5.59). Since neither L2 nor L, involve
the variable 7, any specific spherical harmonic may be multiplied by an
arbitrary function of » and the result is still an eigenfunction. Thus, we may
write Y(r, 6, @) as

Y(r, 0, @) = R(r)Yim(0, @) (6.16)
Substitution of equations (6.13), (6.14), (6.15b), and (6.16) into (6.15a) gives
HR(r) = ER(r) (6.17)
where
& ﬁZ d 2 d) :| Ze/Z
1‘11——2/”2 [5 <r ar —(I+ 1D — " (6.18)

and where the common factor Y},,(6, ¢) has been divided out.

6.3 The radial equation

Our next task is to solve the radial equation (6.17) to obtain the radial function
R(7) and the energy E. The many solutions of the differential equation (6.17)
depend not only on the value of /, but also on the value of E. Therefore, the
solutions are designated as Rg(r). Since the potential energy —Ze'?/r is
always negative, we are interested in solutions with negative total energy, i.e.,
where £ < 0. It is customary to require that the functions Rg;(7) be normal-
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ized. Since the radial part of the volume element in spherical coordinates is
r? dr, the normalization criterion is

JOO[REZ(”)]27’2 dr=1 (6.19)
0

Through an explicit integration by parts, we can show that

J Res(P)LH R ()] dr = J Re (AL Ra(P]F7 dr
0 0

Thus, the operator H, is hermitian and the radial functions Rg(7) constitute an
orthonormal set with a weighting function w(r) equal to 72

J Rei(P)Re (P)r? dr = S (6.20)
0

where 0 gg' is the Kronecker delta and equation (6.19) has been included.
We next make the following conventional change of variables

/,{ZQIZ
A=——"— 6.21
A(—2uE)!/2 ©6.21)
2(—2uE)\?r  2uze?r 2Zr
— = = 6.22
h AR? Aay (6.22)
where a,, = #i? /ue'?. We also make the substitution
27 3/2
Ra)= (o) S (623)
Au
Equations (6.17) and (6.18) now take the form
d? d 0>
P4 2p—+Ap = |Su =+ DS 6.24
(pdp2+pdp+p 7 |Su =11+ DS, (6.24)

where the first term has been expanded and the entire expression has been
multiplied by p?.

To be a suitable wave function, Sy;(p) must be well-behaved, i.e., it must be
continuous, single-valued, and quadratically integrable. Thus, pS;; vanishes
when p — oo because §j; must vanish sufficiently fast. Since S;; is finite
everywhere, pS;; also vanishes at p = 0. Substitution of equations (6.22) and
(6.23) into (6.19) shows that Sy;(p) is normalized with a weighting function
w(p) equal to p?

JO [Su(e)Pp*dp = 1 (6.25)

Equation (6.24) may be solved by the Frobenius or series solution method as
presented in Appendix G. However, in this chapter we employ the newer
procedure using ladder operators.
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Ladder operators

We now solve equation (6.24) by means of ladder operators, analogous to the
method used in Chapter 4 for the harmonic oscillator and in Chapter 5 for the
angular momentum.! We define the operators A , and B; as

A d p

Aj=—p——=+1-1 6.26

A P4 >t (6.262)
. d p

Bi=p——=+41 6.26b
1=, >t ( )

We now show that the operator A; is the adjoint of B; and vice versa. Thus,
neither A, nor B, is hermitian. For any arbitrary well-behaved functions f(p)
and g(p), we consider the integral

00 R 00 dg 0
A dp = — 2 d 41 -1)ed
L f(p)[4,g(p)ldp JO fpdp p+Lf< >t )g p

where (6.26a) has been used. Integration by parts of the first term on the right-
hand side with the realization that the integrated part vanishes yields

T ddo— | W4 P
JO fAzgdp—J gdp(pf)dp+J f( 2+/1 1>gdp

0 0

[P, 4
[l
Substitution of (6.26b) gives
L fP42g(p)]dp = JO g(p)[B1f(p)]dp (6.27)

showing that, according to equation (3.33)

o]

o0

A= Bi=d;
We readily observe from (6.26a) and (6.26b) that
IS d? d p?

Bid; = —p*—— —2p——Ap +

14 p dp? dp P+ 1

. s d? d p?
A)B)=—p*——-2p——(A—1 —
W= a2y, ( »+

+AA—1) (6.282)

+AA—1) (6.28b)

Equation (6.24) can then be written in the form
BiA; S = [MA — 1) = I(1+ D] (6.29)

showing that the functions S;,(p) are also eigenfunctions of B;A;. From
equation (6.28b) we obtain

! We follow here the treatment by D. D. Fitts (1995) J. Chem. Educ. 72, 1066. However, the definitions of the
lowering operator and the constants a;; and b;; have been changed.
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A1 BiSi 1y =AM — 1) = I(1+ 1)]S; 1, (6.30)
when 4 is replaced by 4 — 1 in equation (6.24).

If we operate on both sides of equation (6.29) with the operator A;, we
obtain

A;BiA;S;; = [AMA — 1) — I(1 4 1)]4,8;, (6.31)
Comparison of this result with equation (6.30) leads to the conclusion that
A3S,; and S;_;; are, except for a multiplicative constant, the same function.

We implicitly assume here that S;; is uniquely determined by only two
parameters, A and /. Accordingly, we may write
A3Si = auSi-1. (6.32)

where a;; is a numerical constant, dependent in general on the values of 4 and
[, to be determined by the requirement that §;; and §;_;; be normalized.
Without loss of generality, we can take a;; to be real. The function A 285, 1s an
eigenfunction of the operator in equation (6.24) with eigenvalue decreased by
one. Thus, the operator A ; transforms the eigenfunction S;; determined by A, /
into the eigenfunction S;_;; determined by A — 1, . For this reason the
operator A; is a lowering ladder operator.

Following an analogous procedure, we now operate on both sides of equation
(6.30) with the operator B; to obtain

BiA;BiS;_1, = [MA — 1) = I(1 + D]B;Si-1, (6.33)

Comparing equations (6.29) and (6.33) shows that BASA,L ; and Sy; are
proportional to each other
B;3S3 1,0 = b11Su (6.34)

where by, is the proportionality constant, assumed real, to be determined by the
requirement that S;_; ; and §;; be normalized. The operator B,l transforms the
eigenfunction S,_, ; into the eigenfunction S;; with eigenvalue 4 increased by
one. Accordingly, the operator B; is a raising ladder operator.

The next step is to evaluate the numerical constants a;; and b,;. In order to
accomplish these evaluations, we must first investigate some mathematical
properties of the eigenfunctions S;,(p).

Orthonormal properties of S, (p)

Although the functions R,;(7) according to equation (6.20) form an orthogonal
set with w(r) = r?, the orthogonal relationships do not apply to the set of
functions S;;(p) with w(p) = p?. Since the variable p introduced in equation
(6.22) depends not only on 7, but also on the eigenvalue E, or equivalently on
A, the situation is more complex. To determine the proper orthogonal relation-
ships for Sy ;(p), we express equation (6.24) in the form
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H'S; = —ASy, (6.35)
where H is defined by
d? d (141
dp do 4 o
By means of integration by parts, we can readily show that this operator H/ is
hermitian for a weighting function w(p) equal to p, thereby implying the
orthogonal relationships

L SuP)Sii(pdp =0 for A+ (6.37)

H) = (6.36)

In order to complete the characterization of integrals of S),;(p), we need to
consider the case where 4 = A’ for w(p) = p. Recall that the functions Sj,;(p)
are normalized for w(p) = p? as expressed in equation (6.25). The same result
does not apply for w(p) = p. We begin by expressing the desired integral in a
slightly different form

|, tsutopdp =3 Tsusto)F o)
Integration of the right-hand side by parts gives

J [SA/(P)]zdeZ%{PZ[SM(P)F} —J
0 0

0

o d
Y [d_ Su] dp

0
If S3/(p) is well-behaved, the integrated term vanishes. From equation (6.26a)
we may write

d ;P
— = A, -S4+ A-1
'Odp 2 2+

so that
d - |
P@Sm = =481 —3pSu + (A = DSy

= —a;Si-1, — 3pSu+ (A — 1)Sy

where equation (6.32) has been introduced. The integral then takes the form

J:O[Su(p)]zp dp = GMJO

oo

Sa18-1,pdp + %J [Su1Pp* dp
0

. 1)L [Su o dp

Since the first integral on the right-hand side vanishes according to equation
(6.37) and the second integral equals unity according to (6.25), the result is



166 The hydrogen atom

& 1
S 2pdp = — 6.38
|, tsutoroar =5 (638)
Combining equation (6.38) with (6.37), we obtain
o 1
| Suto1siitomwdo = 5; 00 (639)
0

Evaluation of the constants a;; and b,

To evaluate the numerical constant a;;, which is defined in equation (6.32), we
square both sides of (6.32), multiply through by p, and integrate with respect to
p to obtain

J p(/hsu)(ﬁismdpzazj (S0 dp (6.40)
0 0

Application of equation (6.27) with f = pA;S;; and g = Sy, to the left-hand
side and substitution of equation (6.38) on the right-hand side give

JO SuBipAiSi) dp = 2,/20 — 1) 6.41)

The expression B;(pA;S;,) may be simplified as follows

R . d . p A
Bi(pA,5;1) = P%(PA/IS/U) + (— 3 + /1) pA; S5

. d . P -
= pA; S+ p* a(AASM) +p <— 5T 1>AASM

= pA; 81+ pBi4; S

= pauSi—11+[AA = 1) — (14 1)]pSu
where equations (6.26b), (6.32), and (6.29) have been used. When this result is
substituted back into (6.41), we have

auJ SMSA1,,pdp+w—1>—za+1>lj Sypdp = a3, /2(2 — 1) (6.42)
0 0

According to equation (6.39), the first integral vanishes and the second integral
equals (24)~!, giving the result

A—
i) = (Tl> [0 — 1) — 11+ 1]

= <’1%> A+DA—1-1) (6.43)

Substitution into (6.32) gives
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) 11 1/2
A8 = [(T) A+DA—-1- 1)} Si—1,1 (6.44)

where we have arbitrarily taken the positive square root.

The numerical constant b;;, defined in equation (6.34), may be determined
by an analogous procedure, beginning with the square of both sides of equation
(6.34) and using equations (6.27), (6.26a), (6.34), (6.30), and (6.39). We obtain

bi, = (%) [AA—1)—I(I+1)]= </1’%1)(,1+ DA —1—1) (6.45)

so that equation (6.34) becomes

A 1 1/2
BS; 1, = [(/ﬁ) A+ DA —1— 1)] Sii (6.46)

Taking the positive square root here will turn out to be consistent with the
choice in equation (6.44).

Quantization of the energy
The parameter A is positive, since otherwise the radial variable p, which is
inversely proportional to A, would be negative. Furthermore, the parameter 4
cannot be zero if the transformations in equations (6.21), (6.22), and (6.23) are
to remain valid. To find further restrictions on 4 we must consider separately
the cases where / = 0 and where / = 1.

For [ = 0, equation (6.44) takes the form

;3850 = (A — DSi-1,0 (6.47)

Suppose we begin with a suitably large value of A, say &, and continually apply
the lowering operator to both sides of equation (6.47) with A = &

Ar 1AsSz0 = (& — 1)(E — 2)Sz 20
Ag 2Ae 1AeSz0 = (€ — 1)(E — 2)(E — 3)Se_30

Eventually this procedure produces an eigenfunction Sg_, & being a positive
integer, such that 0 <(§ — k) < 1. The next step in the sequence would give a
function Sg_;_1 9 or Syo with A = (§ — k£ — 1) < 0, which is not allowed. Thus,
the sequence must terminate with the condition

A iSe-k0 = (E — k= DSe_j-10 =0
which can only occur if (§ — k) = 1. Thus, & must be an integer and the

minimum value of A for / =0is 1 = 1.
For the situations in which / = 1, we note that the quantities aﬁ ; in equation
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(6.43) and b/zU in equation (6.45), being squares of real numbers, must be
positive. Consequently, the factor (1 — 17— 1) must be positive, so that
A=(1+1).

We now select some appropriately large value & of the parameter 4 in
equation (6.44) and continually apply the lowering operator to both sides of the
equation in the same manner as in the / = 0 case. Eventually we obtain Sg_; ;
such that (/+ 1) < (& — k) < (I 4+ 2). The next step in the sequence would
give Sg_j_1; or S3; with A = (§ — k — 1)< (/ + 1), which is not allowed, so
that the sequence must be terminated according to

Ag kSe—k1 = agk1Se—k—1,1

1/2
(G LRt R CET S| Ry
E—k
=0

for some value of k. Thus, & must be an integer for ag_;; to vanish. As k
increases during the sequence, the constant az_;; vanishes when
k=(E—-1—1)or (& — k)= (l+ 1). The minimum value of 4 is then / + 1.

Combining the conclusions of both cases, we see that the minimum value of
Aisl+1for/=0,1,2,...Beginning with the value A = [ 4 1, we can apply
equation (6.46) to yield an infinite progression of eigenfunctions S,;(p) for each
value of [ (/=0, 1, 2, ...), where 1 can take on only integral values,
A=n=1+1,142, 143, ... Since & in both cases was chosen arbitrarily
and was shown to be an integer, equation (6.46) generates all of the eigenfunc-
tions S;;(p) for each value of /. There are no eigenfunctions corresponding to
non-integral values of A. Since A is now shown to be an integer n, in the
remainder of this presentation we replace 4 by n.

Solving equation (6.21) for the energy E and replacing 4 by n, we obtain the
quantized energy levels for the hydrogen-like atom

/1226’4 226’2
E,=— T __Zaﬂnz’ n=1,2,3,... (6.48)

These energy levels agree with the values obtained in the earlier Bohr theory.

Electronic energies are often expressed in the unit electron volt (eV). An
electron volt is defined as the kinetic energy of an electron accelerated through
a potential difference of 1 volt. Thus, we have

1 eV =(1.602177 X 107 C) X (1.000000 V) = 1.602177 X 1071 J

The ground-state energy E; of a hydrogen atom (Z = 1) as given by equation
(6.48) is

E;=-217868 X 10718 J = —13.598 eV
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This is the energy required to remove the electron from the ground state of a
hydrogen atom to a state of zero kinetic energy at infinity and is also known as
the ionization potential of the hydrogen atom.

Determination of the eigenfunctions
Equation (6.47) may be used to obtain the ground state (n = 1, / = 0) eigen-
function Sjo(p). Introducing the definition of 4, in equation (6.26a), we have

- d
A1S10 = —<P—+B>Slo =0

do 2

or
S0 _ _Sio
do 2

from which it follows that

Sio = ce P2 —=1/26=p/2
where the constant ¢ of integration was evaluated by applying equations (6.25),
(A.26), and (A.28).

The series of eigenfunctions Sy, S30, - . . are readily obtained from equations
(6.46) and (6.26b) withA = n, [ =0

. d
B,Su—10 = <,0$ —g+ ”) Su—10 = nSn
Thus, Sz() is
1 d p —-1/2 ,—
Sy==(p——S+2)2712er?
20 =3 (pdp 5T )
= L(z — p)e_”/z
2V2
and S 1s

d »p 1 _
— P33 —@2—p)e
<pdp 2 >2\/§( )
1

6 — 6p + p2le /?
6\/5( p+p°)

and so forth ad infinitum. Each eigenfunction is normalized.

The eigenfunctions for /> 0 are determined in a similar manner. A general
formula for the eigenfunction S, ;, which is the starting function for evaluat-
ing the series S,; with fixed /, is obtained from equations (6.44) and (6.26a)
withl=n=17+1



170 The hydrogen atom

A d
Ar1Si = —<P—+B+ 1) Sir1:=0

do 2
or
ds
P% = (1 - g) Sit1,1
Integration gives
Sy =[Q1+2)1Pple (6.49)

where the integration constant was evaluated using equations (6.25), (A.26),
and (A.28).
The eigenfunction S;; from equation (6.49) is

So1 = ¢/

1
——=pe
2v6"
and equations (6.46) and (6.26b) for / = 1 give

1 d P 1 _
Sy =—(p——5+3)—=pe />
31 <,0 > \/gp

1
— (4 _ —p/2
0 (4 — p)pe

d »p 1
Si=1/—=(p——S+4)—=@—ppe "
. 40<pdp 2" >12( plpe

1
= ———(20 — 10p 4 p*)pe*/?
8\/%( p+p)p

The functions S3;, S4, ... are automatically normalized as specified by
equation (6.25). The normalized eigenfunctions S,;(p) for [ = 2, 3, 4, ... with
n = (I + 1) are obtained by the same procedure.

A general formula for S,; involves the repeated application of By for
k=1+2,143,..., n—1,nto S;;1in equation (6.49). The raising operator
must be applied (n — [ — 1) times. The result is

Sut = (bu)) " Bpr))™" o (Bry2) " BuBuot .. BryaSiiiy

_ (I4+ DRI+ 1) 2 g,
: [”(” + Dl (n— 1= DlQI+ 2)!} (P— -5+ n)

d P d P | —
X(pZ_ P, ). (2 _Pijin p/2 6.50
(pdp 2" > (pdp 2 )pe (©:30)

Just as equation (6.46) can be used to go ‘up the ladder’ to obtain S, ; from
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Sy—1.1, equation (6.44) allows one to go ‘down the ladder’ and obtain S,_;
from §,;. Taking the positive square root in going from equation (6.43) to
(6.44) is consistent with taking the positive square root in going from equation
(6.45) to (6.46); the signs of the functions S,; are maintained in the raising and
lowering operations. In all cases the ladder operators yield normalized eigen-
functions if the starting eigenfunction is normalized.

The radial factors of the hydrogen-like atom total wave functions (7, 6, @)
are related to the functions S,;(p) by equation (6.23). Thus, we have

1 7 3/2
Ry — = p/2
21 ) 6(0,4) pe
1 7 3/2
Ry=——= (=) 4- p/2
31 9 6(0,4) ( p)pe
1 7 3/2
=— (=) 20—10p+ p*pe*/?
Ry ™ Ts(a) ( p+pIp

and so forth.
A more extensive listing appears in Table 6.1.

Radial functions in terms of associated Laguerre polynomials

The radial functions S, (p) and R, (r) may be expressed in terms of the
associated Laguerre polynomials LJ,'C(p), whose definition and mathematical
properties are discussed in Appendix F. One method for establishing the
relationship between S,;(p) and L’,;(p) is to relate S,;(p) in equation (6.50) to
the polynomial L{((p) in equation (F.15). That process, however, is long and
tedious. Instead, we show that both quantities are solutions of the same
differential equation.
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Table 6.1. Radial functions R, for the hydrogen-like atom for
n =1 to 6. The variable p is given by p = 2Zr/na,

Ry = 2(Z/aﬂ)3/ze_”/2

(Z]a)*
2\f

R _(Z/aﬂ)3/2
30——9\/—
Z/a,)?
Ry = (g\/z 4—p)pe
(Z/\f;/i/ R
9

(Z/aﬂ)3/2
96
(Z/an)*"
32¢/15
(Z/“ﬂ)3/
96v/5
(Z/ay )2 e o P2

96\/§§

o _ (Z/a)"
7730005
o (Z/a)?
> 150430
(Z/aﬂ)3 2
1500/70
Z/a 3/2
(30/0\/)—( 8—p)pe
(Z/”ﬂ)/ 4 op/2
Rt = 500v/70

(Z/Otu)3 2
2160v/6

Ry = L2 (2 — p)e?

Ry =

(6 — 6p + pPe*/?

—p/2

Ry = (24 —36p + 12p> — pP)e /2

Ry = (20 — 10p + pP)pe*/?
Rp = (6—p)p*e

Ryz = —L#7_

(120 — 240p + 120p* — 20p° 4 p*)e*/?
(120 — 90p + 18p* — p*)pe"/?

(42 — 14p + pP)pe /2

(720 — 1800p + 1200p> — 300p> + 30p* — p)e /2
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Table 6.1. (cont.)

(Z/aﬂ)3/2
Re =~
4324/210
(Z/aﬂ)3/2
R62 -
864+/10
(Z/aﬂ)3 2
25924/35
(Z]a,)*? ,
e (10— pypt e 7
3/2
Res = (Z/ay) 2o o P2
1296077

(840 — 840p + 252p% — 28p° + pH)pe /2
(336 — 168p + 24p> — pHp*e /2
(72— 18p + p*)p’ e "/

Req =

We observe that the solutions S,;(p) of the differential equation (6.24)
contain the factor p’e#/2. Therefore, we define the function F,;(p) by

Snl(p) = F'nl(p)ioleip/2

and substitute this expression into equation (6.24) with A = n to obtain

sz dF,,;
d 5 " @l+2—

where we have also divided the equation by the common factor p.
The differential equation satisfied by the associated Laguerre polynomials is
given by equation (F.16) as

— 1= 1)Fy =0 (6.51)

2 ] j
P ap Er(+1 —p)—p+(k N =0
Ifwelet k = n+ /and j = 2/ 4+ 1, then this equation takes the form
2 21+11 2141
d;; +QI+2—p) ';j +(n—1-DL2 =0 (6.52)

We have already found that the set of functions S,;(p) contains all the
solutions to (6.24). Therefore, a comparison of equations (6.51) and (6.52)
shows that F; is proportional to Liljll Thus, the function S,;(p) is related to
the polynomial L2'*!(p) by

n+l
Su(p) = cup'e L2 (p) (6.53)

The proportionality constants ¢,; in equation (6.53) are determined by the
normalization condition (6.25). When equation (6.53) is substituted into (6.25),
we have
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A W O L

The value of the integral is given by equation (F.25) with o = n+ / and
j =21+ 1, so that

2 2n[(n+ D' _

"n—1-1)!
and S,;(p) in equation (6.53) becomes

(n—1-1)! 12 1,—p/272l

Su(p) = —| ——= P22 6.54

Taking the negative square root maintains the sign of S,;(p).

Equations (6.39) and (F.22), with S,(p) and L{C(p) related by (6.54), are
identical. From equations (F.23) and (F.24), we find

(n—=Dn+1+1)
n(n+1)

L&mmﬂmw@:%¢

J&wwwwﬁwzm nhmontl
0

The normalized radial functions R, (7) may be expressed in terms of the
associated Laguerre polynomials by combining equations (6.22), (6.23), and
(6.54)

dn—1-02127r\!
R,,;(r):—\/ (n ) <—r> e Z/na [24N(2 Zr / nay,) (6.55)

nl(n+ D!Pa;, \ na, ntl

Solution for positive energies

There are also solutions to the radial differential equation (6.17) for positive

values of the energy E, which correspond to the ionization of the hydrogen-like
atom. In the limit » — oo, equations (6.17) and (6.18) for positive £ become

d’R(r) 2uE

dr? + 2

R(r)=0

for which the solution is
R(r) = ce*ieud)r/h

where c is a constant of integration. This solution has oscillatory behavior at
infinity and leads to an acceptable, well-behaved eigenfunction of equation
(6.17) for all positive eigenvalues E. Thus, the radial equation (6.17) has a
continuous range of positive eigenvalues as well as the discrete set (equation
(6.48)) of negative eigenvalues. The corresponding eigenfunctions represent
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unbound or scattering states and are useful in the study of electron—ion
collisions and scattering phenomena. In view of the complexity of the analysis
for obtaining the eigenfunctions and eigenvalues of equation (6.17) for positive
E and the unimportance of these quantities in most problems of chemical
interest, we do not consider this case any further.

Infinite nuclear mass
The energy levels E, and the radial functions R, (7) depend on the reduced
mass u of the two-particle system

myme Me

my + me Mme
1+

my

where my is the nuclear mass and m, is the electronic mass. The value of m, is
9.10939 X 103! kg. For hydrogen, the nuclear mass is the protonic mass,
1.67262 X 10727 kg, so that u is 9.1044 X 1073! kg. For heavier hydrogen-like
atoms, the nuclear mass is, of course, greater than the protonic mass. In the
limit my — oo, the reduced mass and the electronic mass are the same. In the
classical two-particle problem of Section 6.1, this limit corresponds to the
nucleus remaining at a fixed point in space.

In most applications, the reduced mass is sufficiently close in value to the
electronic mass m, that it is customary to replace u in the expressions for the
energy levels and wave functions by m.. The parameter a, = #i*/ue'? is
thereby replaced by ay = #%/m.e’% The quantity ay is, according to the earlier
Bohr theory, the radius of the circular orbit of the electron in the ground state
of the hydrogen atom (Z = 1) with a stationary nucleus. Except in Section 6.5,
where this substitution is not appropriate, we replace u by m. and a, by ag in
the remainder of this book.

6.4 Atomic orbitals

We have shown that the simultaneous eigenfunctions (7, 0, ¢) of the opera-
tors H, L2, and L, have the form

Yuim(r, 0, @) = [nlm) = Ru(r)Yin(0, ¢) (6.56)
where for convenience we have introduced the Dirac notation. The radial
functions R,;(7) and the spherical harmonics Y}, (0, ¢) are listed in Tables 6.1
and 5.1, respectively. These eigenfunctions depend on the three quantum
numbers n, /, and m. The integer n is called the principal or total quantum
number and determines the energy of the atom. The azimuthal quantum
number | determines the total angular momentum of the electron, while the
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magnetic quantum number m determines the z-component of the angular
momentum. We have found that the allowed values of #n, [, and m are

m=0,£1, £2, ...
l=|m|, |m|+1, |m|+2,...
n=I14+1,1+2,1+3, ...
This set of relationships may be inverted to give
n=1,2,3,...
[1=0,1,2,...,n—1
m=-—I,—-1I+1,...,-1,0,1,...,/—1,1
These eigenfunctions form an orthonormal set, so that
(n"I'm'|nlm) = 6,110
The energy levels of the hydrogen-like atom depend only on the principal
quantum number » and are given by equation (6.48), with a, replaced by ao, as
7202

—Tonz, nzl, 2, 3, (657)

=
To find the degeneracy g, of E,, we note that for a specific value of » there are
n different values of /. For each value of /, there are (2/ + 1) different values of
m, giving (2/ + 1) eigenfunctions. Thus, the number of wave functions corre-
sponding to » is given by

n—1 n—1 n—1
gn=> QI+1)=2)"1+)"1
1=0 =0 1=0
The first summation on the right-hand side is the sum of integers from 0 to
(n — 1) and is equal to n(n — 1)/2 (n terms multiplied by the average value of
each term). The second summation on the right-hand side has » terms, each
equal to unity. Thus, we obtain

gy =n(n—1)+n=n?

showing that each energy level is n*-fold degenerate. The ground-state energy
level E is non-degenerate.

The wave functions |n/m) for the hydrogen-like atom are often called atomic
orbitals. It is customary to indicate the values 0, 1, 2, 3, 4,5, 6, 7, ... of the
azimuthal quantum number / by the letters s, p, d, f, g, h, i, k, ..., respectively.
Thus, the ground-state wave function [100) is called the Is atomic orbital,
|200) is called the 2s orbital, |210), |211), and |21 —1) are called 2p orbitals,
and so forth. The first four letters, standing for sharp, principal, diffuse, and
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fundamental, originate from an outdated description of spectral lines. The
letters which follow are in alphabetical order with j omitted.

s orbitals
The 1s atomic orbital |1s) is

1 (2N 4
|1s) = |100) = Rio(r)Yo0(0, @) = SYG) <a_0> e 0 (6.58)
where Rio(r) and Yy(0, @) are obtained from Tables 6.1 and 5.1. Likewise, the
orbital |2s) is

. . (Z/a0)3/2 Zr —Zr/2ay
25) = [200) =2 (2 - a—0> e (6.59)

and so forth for higher values of the quantum number n. The expressions for
|ns) for n = 1,2, and 3 are listed in Table 6.2.

All the s orbitals have the spherical harmonic Yyo(6, ¢) as a factor. This
spherical harmonic is independent of the angles 6 and ¢, having a value
(2y/m)~!. Thus, the s orbitals depend only on the radial variable r and are
spherically symmetric about the origin. Likewise, the electronic probability
density |y|? is spherically symmetric for s orbitals.

p orbitals
The wave functions for » =2, [/ =1 obtained from equation (6.56) are as
follows:

/
_(Z/app zre

2po) = [210) ~ 42 ¢os 6 (6.60a)
42
1 [z\°? .

‘2p1> = |211> = W (a—()) l”eizr/zao SineelqJ (660b)

2p-1) =21 —1) = -y (a—0> re”Z/20gin g e~i¢ (6.60c)
The 2s and 2p, orbitals are real, but the 2p; and 2p_; orbitals are complex.
Since the four orbitals have the same eigenvalue E,, any linear combination of
them also satisfies the Schrédinger equation (6.12) with eigenvalue E5. Thus,
we may replace the two complex orbitals by the following linear combinations
to obtain two new real orbitals
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Table 6.2. Real wave functions for the hydrogen-like atom. The parameter a,,

has been replaced by ay
State Wave function
Spherical coordinates Cartesian coordinates
s (Z/a0)3/2 e Zr/ag
N
2
2 (Z/ag)¥ 5 Zr o Zr/2a
4V2n do
5/2 5/2
2pz (Z/Clo) / re—Zr/Zao cos @ (Z/GO) / Zefzr/zao
421 4427
7 5/2 7 5/2 ]
2py (Z/a ™ re” 212 sin 6 cos ¢ (/dio)xe, Zr[2ay
421 4427
Z/ap)’/? 7/ aoy’/?
2py ( /Clo) reer/Zao sin@sinq) ( /(10) yeer/Zao
4/ 27 427
7 3/2 7 Z2 2
3s Zla)™ (7 182715 " )emzr/a
81v3m ao ag
5/2 5/2
3p: M <6 — ﬁ) re” 43w cos 0 72(2/610) / <6 — ﬁ) ze 73w
812w ap 81v2m ao
5/2 5/2
3p. M <6 _ Zr> re= 234 gin 9 cos ® M (6 _ Zr> xe—Zr/3a
81v2m aop 81v2m ay
2 Z/ag)’’? 7 27 an)’/? 7
3p, (/7‘10) <6 _ r> re= 2340 gin O sin ® ( /aO) (6 _ r> ye—Zr/3ao
81v2m ao 8127 ag
A 7/2 7 7/2
3d,. —( /a0) rze*Z’/3“°(3 cos?6 — 1) 7( /) (322 — rz)efzr/h‘“
81V6m 81v6m
27 7/2 227 7/2
3d,, AZ/a) ™ r?e” 239 sin @ cos O cos ¢ (/7“0))( e~ Z/3a
81v2m 81v2m
27 7/2 27 7/2
3d,. (/7610)?‘2672’/3% sin 0 cos @'sin ¢ 2Z/a) " e
81v2m 81v2m
7 7/2 7 7/2
3dy2 (Z/a) r2e” Z3% sin’g cos 2¢ (/aio)(ﬁ — yHe Z/3a
81V2x 81v2x
7 7/2 N7 7/2
3dy, (Z/a)” e 73 ginPsin 2¢ 2(Z/ag)'’" xye~ /3w
8127 81v2m
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1 AN .
12py) = 2’1/2(|2p1> +2p_1)) = TEEp (élo> re”%/2% sin@cos ¢ (6.61a)
h—1/2 1 Z 2 —Zr/2ay ; :
12py) = —127/%(12p1) — [2p-1) = W 2 re sin 6 sin ¢
(6.61b)

where equations (A.32) and (A.33) have been used. These new orbitals |2p,)
and |2p,) are orthogonal to each other and to all the other eigenfunctions
|nlm). The factor 2~'/2 ensures that they are normalized as well. Although
these new orbitals are simultaneous eigenfunctions of the Hamiltonian operator
H and of the operator 12, they are not eigenfunctions of the operator L..

If we now substitute equations (5.29a), (5.29b), and (5.29¢) into (6.61a),
(6.61b), and (6.60a), respectively, we obtain for the set of three real 2p orbitals

) = (2 " e 6.62
| px> _4(27[)1/2 a_O Xxe ( . a)
1 7\ 52 ,
_ “ —Zr/[2aq
1 Z 32 —Z7Zr/2a
2p.) = —n <2—ao> ze~ 4124 (6.62¢)

The subscript x, y, or z on a 2p orbital indicates that the angular part of the
orbital has its maximum value along that axis. Graphs of the square of the
angular part of these three functions are presented in Figure 6.2. The mathema-
tical expressions for the real 2p and 3p atomic orbitals are given in Table 6.2.

d orbitals
The five wave functions for » = 3, [ = 2 are
1 [z\"?
13dy) = [320) = N (a—o) rre (Z30)(3 cos? 9 — 1) (6.63a)
|3d4) =32+1) = WFL’ (—) r2e(Zr/30) gin 6 cos O e (6.63b)
ao
13ds0) =32 £2) = N <a—) rPe (43 gin2g g *i2e (6.63¢)
0

The orbital |3dy) is real. Substitution of equation (5.29¢) into (6.63a) and a
change in notation for the subscript give
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Figure 6.2 Polar graphs of the hydrogen 2p atomic orbitals. Regions of positive and
negative values of the orbitals are indicated by + and — signs, respectively. The
distance of the curve from the origin is proportional to the square of the angular part
of the atomic orbital.

1 7 7/2
13d,2) = e (a—0> (322 — pH)e (# /3@ (6.64a)

From the four complex orbitals |3d;), |3d_), |3d,), and |3d_,), we construct
four equivalent real orbitals by the relations

—n—1/2 _ 21/2 £ 72 —(Zr/3ay)
[3d.z) = 2775(13dn) + 3d-1)) = oo o) e (6.64b)

VA

ap

7/2
=<7 > yze (ZB3@)(6.64c)

) 21/2
3d,.) = —i2712(]3d,) — 3d_1)) (
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1 Z\""?
— H—1/2 _ 22 —(Zr/3ag)
13d,2_y2) =27 /%(|3dy) + [3d_2)) 812072 <a0> (x*—y)e

(6.64d)

2
_  in—1)2 _ _ 21/2 E K —(Zr/3ap)
3d,,) = —i273(|3d,) — [3d_2)) = S \a) P° (6.64e)

In forming [3d,>_,2) and |3d,,), equations (A.37) and (A.38) were used. Graphs
of the square of the angular part of these five real functions are shown in Figure
6.3 and the mathematical expressions are listed in Table 6.2.

Radial functions and expectation values
The radial functions R,;(r) for the 1s, 2s, 2p, 3s, 3p, and 3d atomic orbitals are
shown in Figure 6.4. For states with / # 0, the radial functions vanish at the
origin. For states with no angular momentum (/ = 0), however, the radial
function R,o(7) has a non-zero value at the origin. The function R,;(r) has
(n—1—1) nodes between 0 and oo, i.e., the function crosses the r-axis
(n — [ — 1) times, not counting the origin.

The probability of finding the electron in the hydrogen-like atom, with the
distance 7 from the nucleus between r and » + dr, with angle 6 between 6 and
0 + d6, and with the angle ¢ between ¢ and ¢ + do is

|1/)nlm’2 dr = [Rnl(r)]2|Ylm(9: @)‘2},2 sinfdrdo d(/)

To find the probability D,;(r)dr that the electron is between » and » + dr
regardless of the direction, we integrate over the angles 6 and ¢ to obtain

TT 27T
Du(r)dr = r*[Ru(r)? drj j | Y10, @) sin 0d0 dp = r*[R,(r)]* dr
0J0

(6.65)

Since the spherical harmonics are normalized, the value of the double integral
is unity.

The radial distribution function D,(r) is the probability density for the
electron being in a spherical shell with inner radius » and outer radius » + dr.
For the 1s, 2s, and 2p states, these functions are
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Figure 6.3 Polar graphs of the hydrogen 3d atomic orbitals. Regions of positive and
negative values of the orbitals are indicated by + and — signs, respectively. The
distance of the curve from the origin is proportional to the square of the angular part
of the atomic orbital.
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7 3
Dlo(l") =4 (—) rze—ZZr/aQ

ao
1/2\° Zr\*
Dyo(r) = = <—> r? <2 — —r> e~ #rla (6.66)
8 ap ap
Dyi(r) = Lz 5r4e’Z’/“°
24 ap

Higher-order functions are readily determined from Table 6.1. The radial
distribution functions for the 1s, 2s, 2p, 3s, 3p, and 3d states are shown in
Figure 6.5.

The most probable value 7y, of  for the Is state is found by setting the
derivative of Dj((r) equal to zero

3
dDo(r) _ 8<£> r(l _ ﬁ) o27r/a _ g

dr ag ay

which gives
Fmp = @0/ Z (6.67)

Thus, for the hydrogen atom (Z = 1) the most probable distance of the electron
from the nucleus is equal to the radius of the first Bohr orbit.

The radial distribution functions may be used to calculate expectation values
of functions of the radial variable r. For example, the average distance of the
electron from the nucleus for the 1s state is given by

00 7 3 o0
(s = JO rDyo(r)dr = 4<a—0> L PRe 24 g = % (6.68)

where equations (A.26) and (A.28) were used to evaluate the integral. By the
same method, we find
5 ag
=z =7
The expectation values of powers and inverse powers of  for any arbitrary
state of the hydrogen-like atom are defined by
o0 o0
(Y= J r*Du(r)dr = J P [Ru(r)*r* dr (6.69)
0 0
In Appendix H we show that these expectation values obey the recurrence
relation

k+1
2

1-— kz] a%

4 | 2 (r 2 =0

(6.70)

. (rFy = Qk + 1)“—Z°<rk—1>n, + k[Z(H— 1)+
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Figure 6.5 The radial distribution functions D,;(r) for the hydrogen-like atom.
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For k£ = 0, equation (6.70) gives

_ VA
<I” 1>nl = nz—ao (671)
For k = 1, equation (6.70) gives
2 3a
S =+ 1+ D S (1) =0
or
(F)u = 2"—;[3;42 — i1+ 1)] (6.72)

For k = 2, equation (6.70) gives

3 5 2
5 = T2 w200+ 1) = 3155 = 0
or
2
(1) = ’;Zz[s2 301+ 1)+ 1] (6.73)

For higher values of k, equation (6.70) leads to (7)., (¥*) ., . ..
For k = —1, equation (6.70) relates (r’3>n1 to (r*2>n,

V4
-3 2
W=—-—-— n 6.74
For k = —2, —3, ..., equation (6.70) gives successively (™), (r™>)u, ...

expressed in terms of (r~2) .

Although the expectation value (r~2),; cannot be obtained from equation
(6.70), it can be evaluated by regarding the azimuthal quantum number / as the
parameter in the Hellmann—Feynman theorem (equation (3.71)). Thus, we

have
OE, 8H,>
ol <W (6.75)

where the Hamiltonian operator H; is given by equation (6.18) and the energy
levels E, by equation (6.57). The derivative 0 H,;/0! is just
OH, #?
—=——2/+1 6.76
ol 2ur 271+ 1) (6.76)
In the derivation of (6.57), the quantum number # is shown to be the value of /
plus a positive integer. Accordingly, we have On/0/ = 1 and

0E, 72" 0 42 Z*e%on o ., ZHh
= — = — —_—n = n
ol ay a1 2ay Ol On uaz
where a, = fi*/ue’? has been replaced by ay = #i*/mce’. Substitution of
equations (6.76) and (6.77) into (6.75) gives the desired result

(6.77)
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Z2
n3(l + Ya}

(r ) (6.78)

Expression (6.71) for the expectation value of »~! may be used to calculate
the average potential energy of the electron in the state |n/m). The potential
energy V(7) is given by equation (6.13). Its expectation value is

228’2

Vn:_Z/Z 71n:
(V)ni e (r ) u aon?

(6.79)

The result depends only on the principal quantum number 7, so we may drop
the subscript /. A comparison with equation (6.57) shows that the total energy
is equal to one-half of the average potential energy

E,=3(V)n (6.80)

Since the total energy is the sum of the kinetic energy 7T and the potential
energy ¥, we also have the expression

ZZeIZ
T,=—-E, = 6.81
n n 2(10 n2 ( )
The relationship E, = —T, = (V,,/2) is an example of the quantum-mechani-
cal virial theorem.
6.5 Spectra

The theoretical results for the hydrogen-like atom may be related to experimen-
tally measured spectra. Observed spectral lines arise from transitions of the
atom from one electronic energy level to another. The frequency v of any given
spectral line is given by the Planck relation

V= (E2 —El)/h

where E; is the lower energy level and E, the higher one. In an absorption
spectrum, the atom absorbs a photon of frequency v and undergoes a transition
from a lower to a higher energy level (E| — E5). In an emission spectrum, the
process is reversed; the transition is from a higher to a lower energy level
(E; — E)) and a photon is emitted. A spectral line is usually expressed as a
wave number 7, defined as the reciprocal of the wavelength 4

1_V_|E2—E1|

A ¢ he
The hydrogen-like atomic energy levels are given in equation (6.48). If n; and
n, are the principal quantum numbers of the energy levels E; and E,
respectively, then the wave number of the spectral line is

v

(6.82)
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Table 6.3. Rydberg constant for
hydrogen-like atoms

Atom R(cm™)
'H 109 677.58
2H (D) 109 707.42
“He* 109722.26
TLi?+ 109 728.72
‘Bedt 109 730.62
00 109737.31
- 21 1
v=RZ S "3 np, > ng (683)
nyo n
where the Rydberg constant R is given by
14
ue
= 6.84
4rh3c (6.84)

The value of the Rydberg constant varies from one hydrogen-like atom to
another because the reduced mass u is a factor. It is not appropriate here to
replace the reduced mass u by the electronic mass m. because the errors
caused by this substitution are larger than the uncertainties in the experimental
data. The measured values of the Rydberg constants for the atoms 'H, He™,
"Li?*, and °Be3* are listed in Table 6.3. Following the custom of the field of
spectroscopy, we express the wave numbers in the unit cm™! rather than the SI
unit m~!. Also listed in Table 6.3 is the extrapolated value of R for infinite
nuclear mass. The calculated values from equation (6.84) are in agreement
with the experimental values within the known number of significant figures
for the fundamental constants m,., e’, and £ and the nuclear masses my. The
measured values of R have more significant figures than any of the quantities
in equation (6.84) except the speed of light c.

The spectrum of hydrogen (Z = 1) is divided into a number of series of
spectral lines, each series having a particular value for »n;. As many as six
different series have been observed:

n; =1, Lyman series ultraviolet
ny =2, Balmer series  visible

ny =3, Paschen series infrared
ny =4, Brackett series infrared
ny =5, Pfundseries far infrared

n; =6, Humphreys series  very far infrared



6.5 Spectra 189

Continuum
0 T n =
i n=9
VViy Pfund nZ3
l Brackett o o> n=3
1 Paschen series
series
n=2
Balmer
—4T series
o) _6 T
>
L
>
o0
o
=
m
78 4
—_ 10 4
—_ 12 4
n=1
—144 Lyman

series

Figure 6.6 Energy levels for the hydrogen atom.

Thus, transitions from the lowest energy level n; = 1 to the higher energy
levels n, =2, 3, 4, ... give the Lyman series, transitions from »n; =2 to
ny =3,4,5, ... give the Balmer series, and so forth. An energy level diagram
for the hydrogen atom is shown in Figure 6.6. The transitions corresponding to
the spectral lines in the various series are shown as vertical lines between the
energy levels.
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v 00

Figure 6.7 A typical series of spectral lines for a hydrogen-like atom shown in terms of
the wave number v.

A typical series of spectral lines is shown schematically in Figure 6.7. The
line at the lowest value of the wave number v corresponds to the transition
ny — (np = n; + 1), the next line to n; — (ny = n; + 2), and so forth. These
spectral lines are situated closer and closer together as n, increases and
converge to the series limit, corresponding to n, = co. According to equation
(6.83), the series limit is given by

v =R/n} (6.85)

Beyond the series limit is a continuous spectrum corresponding to transitions
from the energy level n; to the continuous range of positive energies for the
atom.

The reduced mass of the hydrogen isotope >H, known as deuterium, slightly
differs from that of ordinary hydrogen 'H. Accordingly, the Rydberg constants
for hydrogen and for deuterium differ slightly as well. Since naturally occurring
hydrogen contains about 0.02% deuterium, each observed spectral line in
hydrogen is actually a doublet of closely spaced lines, the one for deuterium
much weaker in intensity than the other. This effect of nuclear mass on spectral
lines was used by Urey (1932) to prove the existence of deuterium.

Pseudo-Zeeman effect

The influence of an external magnetic field on the spectrum of an atom is
known as the Zeeman effect. The magnetic field interacts with the magnetic
moments within the atom and causes the atomic spectral lines to split into a
number of closely spaced lines. In addition to a magnetic moment due to its
orbital motion, an electron also possesses a magnetic moment due to an
intrinsic angular momentum called spin. The concept of spin is discussed in
Chapter 7. In the discussion here, we consider only the interaction of the
external magnetic field with the magnetic moment due to the electronic orbital
motion and neglect the effects of electron spin. Thus, the following analysis
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does not give results that correspond to actual observations. For this reason, we
refer to this treatment as the pseudo-Zeeman effect.

When a magnetic field B is applied to a hydrogen-like atom with magnetic
moment M, the resulting potential energy V is given by the classical expression

V:—M.B:%BL-B (6.86)

where equation (5.81) has been introduced. If the z-axis is selected to be
parallel to the vector B, then we have

V = ugBL./h (6.87)

If we replace the z-component of the classical angular momentum in equation
(6.87) by its quantum-mechanical operator, then the Hamiltonian operator Hp
for the hydrogen-like atom in a magnetic field B becomes

B
Hy = H+%L (6.88)

where H is the Hamiltonian operator (6.14) for the atom in the absence of the
magnetic field. Since the atomic orbltals Y 10 equation (6.56) are simultan-
eous eigenfunctions of H, I?, and L., they are also eigenfunctions of the
operator H g. Accordingly, we have

HBV)nlm = <H + %L )Wnlm = (En + mﬂBB)wnlm (689)

where E, is given by (6.48) and equation (6.15¢) has been used. Thus, the
energy levels of a hydrogen-like atom in an external magnetic field depend on
the quantum numbers » and m and are given by

ZZ 12

Enm =
2, 2
2aﬂn

+ mugB, n=12,...; m=0,%1,...,£(n—-1)

(6.90)

This dependence on m is the reason why m is called the magnetic quantum
number.

The degenerate energy levels for the hydrogen atom in the absence of an
external magnetic field are split by the magnetic field into a series of closely
spaced levels, some of which are non-degenerate while others are still
degenerate. For example, the energy level E5 for n = 3 is nine-fold degenerate
in the absence of a magnetic field. In the magnetic field, this energy level is
split into five levels: Ej (triply degenerate), E3 + ugB (doubly degenerate),
E3 — ug B (doubly degenerate), 3 4+ 2ugB (non-degenerate), and E3 — 2ugB
(non-degenerate). Energy levels for s orbitals (/ = 0) are not affected by the
application of the magnetic field. Energies for p orbitals (/ = 1) are split by the
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magnetic field into three levels. For d orbitals (/ = 2), the energies are split into
five levels.

This splitting of the energy levels by the magnetic field leads to the splitting
of the lines in the atomic spectrum. The wave number v of the spectral line
corresponding to a transition between the state |n;/ym;) and the state |nyl,m;)
is

5 = 1A Rz2(l——> LB . msn (691)
he n  n hc

Transitions between states are subject to certain restrictions called selection
rules. The conservation of angular momentum and the parity of the spherical
harmonics limit transitions for hydrogen-like atoms to those for which
Al = +1 and for which Am = 0, 1. Thus, an observed spectral line 7, in the
absence of the magnetic field, given by equation (6.83), is split into three lines

with wave numbers v + (ug B/ hc), vy, and vy — (up B/ hc).

Problems

6.1 Obtain equations (6.28) from equat10ns (6.26).

6.2 Evaluate the commutator [A,l, B,l] where the operators A,l and B, are those in
equations (6.26).

6.3 Show explicitly by means of integration by parts that the operator H; in equation
(6.18) is hermitian for a weighting function equal to 7.

6.4 Demonstrate by means of integration by parts that the operator Hj in equation
(6.36) is hermitian for a weighting function w(p) =

6.5 Show that (4; 4+ 1)) 1 = az.1.S;; and that (B, + 1)Sz; = by 1.1Si41.1-

6.6 Derive equation (6.45) from equation (6.34).

6.7 Derive the relationship

00

(o 0]
anlJ SuSn—1,1p>dp — bn+1,lJ SuSui1p>dp =1
0 0

6.8 Evaluate (r~!),; for the hydrogen-like atom using the properties of associated
Laguerre polynomials. First substitute equations (6.22) and (6.55) into (6.69) for
k = —1. Then apply equations (F.22) to obtain (6.71).
6.9 From equation (F.19) with v = 2, show that
o0 2[3n — I(I+ D][(n + D'T?
JO PP L2 ()P dp = [ (n(‘f‘l )]{g! + D]
Then show that (r),,; is given by equation (6.72).
6.10 Show that (r),s = 6a¢/Z using the appropriate radial distribution function in
equations (6.66).
6.11 Set 1 = ¢’ in the Hellmann—Feynman theorem (3.71) to obtain (r~!), for the
hydrogen-like atom. Note that ay depends on e’.
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Show explicitly for a hydrogen atom in the 1s state that the total energy E; is
equal to one-half the expectation value of the potential energy of interaction
between the electron and the nucleus. This result is an example of the quantum-
mechanical virial theorem.

Calculate the frequency, wavelength, and wave number for the series limit of the
Balmer series of the hydrogen-atom spectral lines.

The atomic spectrum of singly ionized helium He' with n; =4, n, = 5,6, ... is
known as the Pickering series. Calculate the energy differences, wave numbers,
and wavelengths for the first three lines in this spectrum and for the series limit.
Calculate the frequency, wavelength, and wave number of the radiation emitted
from an electronic transition from the third to the first electronic level of Li**.
Calculate the ionization potential of Li>* in electron volts.

Derive an expression in terms of R, for the difference in wavelength,
AL = Ay — Ap, between the first line of the Balmer series (n; =2) for a
hydrogen atom and the corresponding line for a deuterium atom? Assume that
the masses of the proton and the neutron are the same.



Spin

7.1 Electron spin

In our development of quantum mechanics to this point, the behavior of a
particle, usually an electron, is governed by a wave function that is dependent
only on the cartesian coordinates x, y, z or, equivalently, on the spherical
coordinates r, 8, ¢. There are, however, experimental observations that cannot
be explained by a wave function which depends on cartesian coordinates alone.

In a quantum-mechanical treatment of an alkali metal atom, the lone valence
electron may be considered as moving in the combined field of the nucleus and
the core electrons. In contrast to the hydrogen-like atom, the energy levels of
this valence electron are found to depend on both the principal and the
azimuthal quantum numbers. The experimental spectral line pattern corre-
sponding to transitions between these energy levels, although more complex
than the pattern for the hydrogen-like atom, is readily explained. However, in a
highly resolved spectrum, an additional complexity is observed; most of the
spectral lines are actually composed of two lines with nearly identical wave
numbers. In an alkaline-earth metal atom, which has two valence electrons,
many of the lines in a highly resolved spectrum are split into three closely
spaced lines. The spectral lines for the hydrogen atom, as discussed in Section
6.5, are again observed to be composed of several very closely spaced lines,
with equation (6.83) giving the average wave number of each grouping. The
splitting of the spectral lines in the alkali and alkaline-earth metal atoms and in
hydrogen cannot be explained in terms of the quantum-mechanical postulates
that are presented in Section 3.7, i.e., they cannot be explained in terms of a
wave function that is dependent only on cartesian coordinates.

G. E. Uhlenbeck and S. Goudsmit (1925) explained the splitting of atomic
spectral lines by postulating that the electron possesses an intrinsic angular
momentum, which is called spin. The component of the spin angular momen-

194
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tum in any direction has only the value %/2 or —#/2. This spin angular
momentum is in addition to the orbital angular momentum of the electronic
motion about the nucleus. They further assumed that the spin imparts to the
electron a magnetic moment of magnitude efi/2m., where —e and m,. are the
electronic charge and mass. The interaction of an electron’s magnetic moment
with its orbital motion accounts for the splitting of the spectral lines in the
alkali and alkaline-earth metal atoms. A combination of spin and relativistic
effects is needed to explain the fine structure of the hydrogen-atom spectrum.

The concept of spin as introduced by Uhlenbeck and Goudsmit may also be
applied to the Stern—Gerlach experiment, which is described in detail in
Section 1.7. The explanation for the splitting of the beam of silver atoms into
two separate beams by the external inhomogeneous magnetic field requires the
introduction of an additional parameter to describe the behavior of the odd
electron. Thus, the magnetic moment of the silver atom is attributed to the odd
electron possessing an intrinsic angular momentum which can have one of only
two distinct values.

Following the hypothesis of electron spin by Uhlenbeck and Goudsmit, P. A.
M. Dirac (1928) developed a quantum mechanics based on the theory of
relativity rather than on Newtonian mechanics and applied it to the electron.
He found that the spin angular momentum and the spin magnetic moment of
the electron are obtained automatically from the solution of his relativistic
wave equation without any further postulates. Thus, spin angular momentum is
an intrinsic property of an electron (and of other elementary particles as well)
just as are the charge and rest mass.

In classical mechanics, a sphere moving under the influence of a central
force has two types of angular momentum, orbital and spin. Orbital angular
momentum is associated with the motion of the center of mass of the sphere
about the origin of the central force. Spin angular momentum refers to the
motion of the sphere about an axis through its center of mass. It is tempting to
apply the same interpretation to the motion of an electron and regard the spin
as the angular momentum associated with the electron revolving on its axis.
However, as Dirac’s relativistic quantum theory shows, the spin angular
momentum is an intrinsic property of the electron, not a property arising from
any kind of motion. The electron is a structureless point particle, incapable of
‘spinning’ on an axis. In this regard, the term ‘spin’ in quantum mechanics can
be misleading, but its use is well-established and universal.

Prior to Dirac’s relativistic quantum theory, W. Pauli (1927) showed how spin
could be incorporated into non-relativistic quantum mechanics. Since the
subject of relativistic quantum mechanics is beyond the scope of this book, we
present in this chapter Pauli’s modification of the wave-function description so
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as to include spin. His treatment is equivalent to Dirac’s relativistic theory in
the limit of small electron velocities (v/c — 0).

7.2 Spin angular momentum

The postulates of quantum mechanics discussed in Section 3.7 are incomplete.
In order to explain certain experimental observations, Uhlenbeck and Goudsmit
introduced the concept of spin angular momentum for the electron. This
concept is not contained in our previous set of postulates; an additional
postulate is needed. Further, there is no reason why the property of spin should
be confined to the electron. As it turns out, other particles possess an intrinsic
angular momentum as well. Accordingly, we now add a sixth postulate to the
previous list of quantum principles.

6. A particle possesses an intrinsic angular momentum S and an associated magnetic
moment M;. This spin angular momentum is represented by a hermitian operator S
which obeys the relation S X S = i#S. Each type of particle has a fixed spin
quantum number or spin s from the set of values s = 0,1, 1,3, 2, ... The spin s for
the electron, the proton, or the neutron has a value % The spin magnetic moment for
the electron is given by My = —eS/m..

As noted in the previous section, spin is a purely quantum-mechanical concept;
there is no classical-mechanical analog.
The spin magnetic moment M; of an electron is proportional to the spin
angular momentum S,
8s€ gsUB

M, = — S = — S 7.1
2me fi (7-1)

where g is the electron spin gyromagnetic ratio and the Bohr magneton ug is
defined in equation (5.82). The experimental value of gs is 2.002319 304 and
the value predicted by Dirac’s relativistic quantum theory is exactly 2. The
discrepancy is removed when the theory of quantum electrodynamics is
applied. We adopt the value g; = 2 here. A comparison of equations (5.81) and
(7.1) shows that the proportionality constant between magnetic moment and
angular momentum is twice as large in the case of spin. Thus, the spin
gyromagnetic ratio for the electron is twice the orbital gyromagnetic ratio. The
spin gyromagnetic ratios for the proton and the neutron differ from that of the
electron.

The hermitian spin operator S associated with the spin angular momentum S
has components Sx, S s SZ, so that
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S =iS, +jS, + kS,
F=8+8+5
These components obey the commutation relations
[S., S,1 =ikS.,  [S,, S.1=ihS,,  [S. S,)=ihS, (7.2
or, equivalently
S X S =iAS (7.3)
Thus, the quantum-mechanical treatment of generalized angular momentum
presented in Section 5.2 may be applied to spin angular momentum. The spin

operator S is identified with the operator J and its components S., S s S, with
Je J s J.. Equations (5.26) when applied to spin angular momentum are

Sz|sms> =s(s + 1)ﬁ2|sms), s=0, ;, 1, 3, 2, (7.4)
S'Z]sms> = mgh|sms), mi=—-s—s+1,...,s—1,s (7.5)

where the quantum numbers j and m are now denoted by s and mg. The
simultaneous eigenfunctions |smg) of the hermitian operators S? and S. are
orthonormal

(8" mg|sms) = 05O mom', (7.6)

The raising and lowering operators for spin angular momentum as defined by
equations (5.18) are

S, =8, +iS, (7.72)
S =8, -iS, (7.7b)
and equations (5.27) take the form
S |smg) = \/(s — my)(s + ms + 1) h|s, mg + 1) (7.8a)
S_|smy) = V(s + m)(s — mg + 1) fi|s, mg — 1) (7.8b)

In general, the spin quantum numbers s and mg can have integer and half-
integer values. Although the corresponding orbital angular-momentum quan-
tum numbers / and m are restricted to integer values, there is no reason for
such a restriction on s and m.

Every type of particle has a specific unique value of s, which is called the
spin of that particle. The particle may be elementary, such as an electron, or
composite but behaving as an elementary particle, such as an atomic nucleus.
All *He nuclei, for example, have spin 0; all electrons, protons, and neutrons
have spin 1; all photons and deuterons (*H nuclei) have spin 1; etc. Particles
with spins 0, 1, 2, ... are called bosons and those with spins 1, 3, ... are
fermions. A many particle system of bosons behaves differently from a many
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particle system of fermions. This quantum phenomenon is discussed in Chap-
ter 8.

The state of a particle with zero spin (s = 0) may be represented by a state
function W(r, ¢) of the spatial coordinates r and the time ¢#. However, the state
of a particle having spin s (s # 0) must also depend on some spin variable. We
select for this spin variable the component of the spin angular momentum
along the z-axis and use the quantum number mg to designate the state. Thus,
for a particle in a specific spin state, the state function is denoted by
W(r, ms, t), where mg has only the (25 + 1) possible values —sh, (—s + 1)A,
..., (s = 1h, sh. While the variables r and 7 have a continuous range of
values, the spin variable m; has a finite number of discrete values.

For a particle that is not in a specific spin state, we denote the spin variable
by 0. A general state function W(r, o, f) for a particle with spin s may be
expanded in terms of the spin eigenfunctions |sm),

Y(r, 0, t) = 2 W(r, mg, t)|sms) (7.9)

mg=—s

If W(r, o, ) is normalized, then we have

s
(ww)=>" J|‘P(r, mg, H?dr =1
ms=—s
where the orthonormal relations (7.6) have been used. The quantity
|W(r, ms, t)]? is the probability density for finding the particle at r at time ¢
with the z-component of its spin equal to mgh. The integral [ |W(r, ms, 1)|? dr
is the probability that at time ¢ the particle has the value mghi for the z-
component of its spin angular momentum.

7.3 Spin one-half

Since electrons, protons, and neutrons are the fundamental constituents of
atoms and molecules and all three elementary particles have spin one-half, the
case s = % is the most important for studying chemical systems. For s = % there
are only two eigenfunctions, |}, 1) and |}, —1). For convenience, the state s = J,
mg = 1 is often called spin up and the ket |4, 1) is written as [1) or as |a).
Likewise, the state s =4, mg = —3 is called spin down with the ket |1, —1)
often expressed as ||) or |3). Equation (7.6) gives

(alo) = (BIB) =1, (alf) =0 (7.10)
The most general spin state [y) for a particle with s =1 is a linear com-
bination of |a) and |f)
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x) = cala) + cplB) (7.11)

where ¢, and cg are complex constants. If the ket |y) is normalized, then
equation (7.10) gives

lcal® +legl = 1

The ket |y) may also be expressed as a column matrix, known as a spinor

|x>=(2;>=ca((1))+cﬁ<?) (7.12)

where the eigenfunctions |«) and |3) in spinor notation are

a) = (é) 1B) = (?) (7.13)

Equations (7.4), (7.5), and (7.8) for the s = % case are

$la) =34*a),  §*B) =3#(B) (7.14)
S.la) =la),  S:B) = —3hIB) (7.15)
Si|a) =0, S_|g) =0 (7.16a)
S.1B) =fila),  S_|ay =4|B) (7.16b)

Equations (7.16) illustrate the behavior of S‘+ and S_ as ladder operators. The
operator S, ‘raises’ the state |3) to state |a), but cannot raise |c) any further,
while S_ ‘lowers’ |a) to |), but cannot lower |). From equations (7.7) and
(7.16), we obtain the additional relations

Silay =34I),  S.|B) = 3hla) (7.17a)
Sla)=3l8),  5,I8) = —lhla) (7.17b)

We next introduce three operators o, 0 ,, 0, which satisfy the relations
= 1oy, S'y = 1o, S, = ho. (7.18)

From equations (7.15) and (7.17), we find that the only eigenvalue for each of
the operators 63, 03, 02 is 1. Thus, each squared operator is just the identity
operator

or=0,=0l=1 (7.19)

According to equations (7.2) and (7.18), the commutation rules for o, 0, 0.
are

[0k, 0,] = 2i0., [0,, 0:] =2ioy, [0:, 0] =2i0, (7.20)

The set of operators oy, 0,, 0. anticommute, a property which we demon-
strate for the pair 0, 0, as follows
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2100, +0,0,) = (2i0,)0, + 0 ,(2i0)
=(0,0.-0:0,)0,+0,(0,0.—0.0,)
= —Uzozy + Ozyoz
=0

where the second of equations (7.20) and equation (7.19) have been used. The
same procedure may be applied to the pairs o ,, 0. and 0, 0, giving

(00,+0,0,)=(0,0.+0.0,)=(0.0,+0,0;)=0 (7.21)
Combining equations (7.20) and (7.21), we also have
0,0, =10, 0,0; =10y, 0.0, =10, (7.22)

Pauli spin matrices

An explicit set of operators 0., 0,, 0. with the foregoing properties can be
formed using 2 X 2 matrices. The properties of matrices are discussed in
Appendix [. In matrix notation, equation (7.19) is

222 (10
ax_oy_oz_<0 1 (7.23)
We let o, be represented by the simplest 2 X 2 matrix with eigenvalues 1 and
-1
1 0
o, = <0 _1> (7.24)

To find 0, and o ,, we note that
a b 1 0\ [(a -b
c d 0 —1) \c¢ —d
1 O a b\ [ a b
0 —1 c d) \—c —d

Since 0, and 0, anticommute with o, as represented in (7.24), we must have

(e )= 7)

so that a = d = 0 and both 0 and o, have the form

0 b
c 0
Further, we have from (7.23)

g2 (0 BY(0 B _ (b O\ _ (1 0
x 7y T \e 0 c 0/ V0 bc) \NO 1

and
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giving the relation bc = 1. If we select b = ¢ = 1 for o, then we have

s (01
=10

The third of equations (7.22) determines that o, must be

0 —i
TP=\i o0

In summary, the three matrices are

ox:<(1) é) ay:<? Bi), oZ:<(1) _01> (7.25)

and are known as the Pauli spin matrices.
The traces of the Pauli spin matrices vanish

Troy=Tro, =Tro. =0
and their determinants equal —1
deto, = deto, = deto, = —1

()

and the three Pauli spin matrices in equation (7.25) form a complete set of
2 X 2 matrices. Any arbitrary 2 X 2 matrix M can always be expressed as the
linear combination

The unit matrix |

M=cil+ 0.+ c30, + c40.

where c1, ¢3, ¢3, c4 are complex constants.

7.4 Spin—orbit interaction

The spin magnetic moment M; of an electron interacts with its orbital magnetic
moment to produce an additional term in the Hamiltonian operator and,
therefore, in the energy. In this section, we derive the mathematical expression
for this spin—orbit interaction and apply it to the hydrogen atom.

With respect to a coordinate system with the nucleus as the origin, the
electron revolves about the fixed nucleus with angular momentum L. However,
with respect to a coordinate system with the electron as the origin, the nucleus
revolves around the fixed electron. Since the revolving nucleus has an electric
charge, it produces at the position of the electron a magnetic field B parallel to
L. The interaction of the spin magnetic moment My of the electron with this
magnetic field B gives rise to the spin—orbit coupling with energy —M; - B.
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According to the Biot and Savart law of electromagnetic theory,! the
magnetic field B at the ‘fixed’ electron due to the revolving positively charged
nucleus is given in SI units to first order in v/c by

B:%@Xv@ (7.26)
C

where E is the electric field due to the revolving nucleus, v, is the velocity of
the nucleus relative to the electron, and ¢ is the speed of light. The electric
force F is related to E and the potential energy V(r) of interaction between the
nucleus and the electron by

F=—-cE=-VV
Thus, the electric field at the electron is

E_Mn dv(r)
er dr

(7.27)

where r, is the vector distance of the nucleus from the electron. The vector r
from nucleus to electron is —r, and the velocity v of the electron relative to the
nucleus is —v,. Accordingly, the angular momentum L of the electron is

L=rXp=mrXv)=mr, Xvy,) (7.28)
Combining equations (7.26), (7.27), and (7.28), we have
1 dV
B——— Oy, (7.29)
emec’r dr

The spin—orbit energy —M; - B may be related to the spin and orbital
angular momenta through equations (7.1) and (7.29)
1 dV(r)
M. -B=——""71,.8§
) micr dr
This expression is not quite correct, however, because of a relativistic effect in
changing from the perspective of the electron to the perspective of the nucleus.
The correction,? known as the Thomas precession, introduces the factor % on
the right-hand side to give
1 dr(n)
C2mictr dr
The corresponding spin—orbit Hamiltonian operator ﬁ]so is, then,
. 1 dV(»)
Hy=——
O 2micr dr

—M; - B L-S

L-S (7.30)

I R. P. Feyman, R. B. Leighton, and M. Sands (1964) The Feynman Lectures on Physics, Vol. II (Addison-
Wesley, Reading, MA) section 14-7.
2 ]. D. Jackson (1975) Classical Electrodynamics, 2nd edition (John Wiley & Sons, New York) pp. 541-2.
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For a hydrogen atom, the potential energy V(r) is given by equation (6.13)
with Z = 1 and H,, becomes

Hy =&)L - S (7.31)
where
o2
= 7.32
s 8regm2c?r3 (7:32)

Thus, the total Hamiltonian operator A for a hydrogen atom including spin—
orbit coupling is

H=Hy+ Ho= Hy+ &L - S (7.33)

where H, is the Hamiltonian operator for the hydrogen atom without the
inclusion of spin, as given in equation (6.14).

The effect of the spin—orbit interaction term on the total energy is easily
shown to be small. The angular momenta |L| and |S| are each on the order of %
and the distance r is of the order of the radius aq of the first Bohr orbit. If we
also neglect the small difference between the electronic mass m. and the
reduced mass u, the spin—orbit energy is of the order of

222
e~ g
megmictay
where |E|| is the ground-state energy for the hydrogen atom with Hamiltonian
operator F, as given by equation (6.57) and « is the fine structure constant,
defined by

e? A1
4reotic  mecap  137.036
Thus, the spin—orbit interaction energy is about 5 X 107> times smaller than
| E4.

While the Hamiltonian operator H, for the hydrogen atom in the absence of
the spin—orbit couphng term commutes with L and with S, the total Hamilto-
nian operator H in equation (7.33) does not commute with either L or S
because of the presence of the scalar product L - S. To illustrate this feature,
we consider the commutators [L,, L - S] and [S‘Z, L - S],

[zfz: t : S] = [ZZ, (zfox + zlySy + zJzSz)] = [Zz, z,x]S'x + [Z‘Za zfy]S’y +0

a

— iA(L,S, — L,S,) # 0 (7.34)
[Sz> L- S] = [SZa Sx]zx + [Sz, Sy]zy = 1ﬁ(zx3y - ]:ny) #0 (7.35)

where equations (5.10) and (7.2) bave been used. Similar expressions apply to
the other components of L and S. Thus, the vectors L and S are no longer
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constants of motion. However, the operators 12 and 82 do commute with L - §,
which follows from equations (5.15), so that the quantities L? and S? are still
constants of motion.

We now introduce the total angular momentum J, which is the sum of L
and S

J=L+S (7.36)

The operators J and J? commute with H,. The addition of equations (7.34)
and (7.35) gives

[J.,L-S]=[L,L-S]+[S,L-S1=0
The addition of similar relations for the x- and y-components of these angular
momentum vectors leads to the result that [J, L - S] —0,sothat Jand L - S
commute. Furthermore, we may easily show that J2 commutes with L - S
because each term in J2 = [2 + §% + 2L - S commutes with L - S. Thus, J
and J? commute with A in equation (7.33) and J and J? are constants of
motion.

That the quantities L2, S?, J2, and J are constants of motion, but L and S are
not, is illustrated in Figure 7.1. The spin magnetic moment Mg, which is
antiparallel to S, exerts a torque on the orbital magnetic moment M, which is
antiparallel to L, and alters its direction, but not its magnitude. Thus, the orbital
angular momentum vector L precesses about J and L is not a constant of
motion. However, since the magnitude of L does not change, the quantity L? is
a constant of motion. Likewise, the orbital magnetic moment M exerts a torque
on Mg, causing S to precess about J. The vector S is, then, not a constant of

Figure 7.1 Precession of the orbital angular momentum vector L and the spin angular
momentum vector S about their vector sum J.
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motion, but S? is. Since J is fixed in direction and magnitude, both J and J?
are constants of motion.

If we form the cross product J X J and substitute equations (7.36), (5.11),
and (7.3), we obtain

IXxJ=@L+SX@L+S) =@ xL)+ S x8) =itL +iaS = ihJ

where the cross terms (L X S) and (S X L) cancel each other. Thus, the
operator J obeys equation (5.12) and the quantum-mechanical treatment of
Section 5.2 applies to the total angular momentum. Since J,, J,, and J; each
commute with J2 but do not commute with one another, we select J. and seek

the simultaneous elgenfunctlons |nlsjm;) of the set of mutually commuting
operators H, L2, %, J?, and J.

H|nlsjm;) = E,|nlsjm;) (7.37a)
L?|nlsjm;) = I(1 + V)h?|nlsjm;) (7.37b)
82| nisjm;) = s(s + 1)h%|nlsjm;) (7.37¢)
J2]n15]m,> = j(j + DA*| nisjm;) (7.37d)
Jz|nlsjmj> = mjh|nlsjm;), mp=—j,—j+1,....j—=1,j  (7.37e)

From the expression
J.|nlsjm;) = (L. = SZ)|nlsjmj) = (m + mg)h|nlsjm;)
obtained from (7.36), (5.28b), and (7.5), we see that
m; = m + mg (7.38)
The quantum number j takes on the values
I+s,l+s—1,1+s—-2,...,|l—5|
The argument leading to this conclusion is somewhat complicated and may be

found elsewhere.? In the application being considered here, the spin s equals %
and the quantum number j can have only two values

j=1+3 (7.39)

The resulting vectors J are shown in Figure 7.2.
The scalar product L - S in equation (7.33) may be expressed in terms of
operators that commute with 4 by
L-S=lL+S) L+9—-IL - L-1S-S=1J?-1*-5% (7.40)

3 B. H. Brandsen and C. J. Joachain (1989) Introduction to Quantum Mechanics (Addison Wesley Longman,
Harlow, Essex), pp. 299, 301; R. N. Zare (1988) Angular Momentum (John Wiley & Sons, New York), pp.
45-8.



206 Spin

S
S
J
L
L J
=L =L
]—l+2 j=1 3

Figure 7.2 The total angular momentum vectors J obtained from the sum of L and S
fors =fand s = —1.

so that A becomes
H = Hy+1&(r)J? - 1* - §%) (7.41)
Equation (7.37a) then takes the form
{Ho +R2EMG + 1) — I+ 1) — s(s + DI} |nlsjm;) = E,|nlsjm;)  (7.42)
or

Ih? )
[H0+—§(r)]|n I} 3 l+2, m;) = Ey|n, [, 2 l—l—%, m;) if j = l+%
(7.43a)

. #2
[Ho =0 a)h LI m) = Eyn, L 1L m))

if j= l—% (7.43b)
where equations (7.37b), (7.37¢), (7.37d), and (7.39) have also been intro-
duced.

Since the spin—orbit interaction energy is small, the solution of equations
(7.43) to obtain E, is most easily accomplished by means of perturbation
theory, a technique which is presented in Chapter 9. The evaluation of £, is
left as a problem at the end of Chapter 9.

Problems
7.1 Determine the angle between the spin vector S and the z-axis for an electron in
spin state |a).
7.2 Prove equation (7.19) from equations (7.15) and (7.17).
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7.3 Show that the pair of operators ¢ ,, 0. anticommute.

7.4 Using the Pauli spin matrices in equation (7.25) and the spinors in (7.13),
(a) construct the operators o and o_ corresponding to $’+ and S_
(b) operate on |a) and on |B) with 62, 0., 04, 0_, 0., and o, and compare the
results with equations (7.14), (7.15), (7.16), and (7.17).

7.5 Using the Pauli spin matrices in equation (7.25), verify the relationships in (7.19)
and (7.22).
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Systems of identical particles

The postulates 1 to 6 of quantum mechanics as stated in Sections 3.7 and 7.2
apply to multi-particle systems provided that each of the particles is distin-
guishable from the others. For example, the nucleus and the electron in a
hydrogen-like atom are readily distinguishable by their differing masses and
charges. When a system contains two or more identical particles, however,
postulates 1 to 6 are not sufficient to predict the properties of the system. These
postulates must be augmented by an additional postulate. This chapter intro-
duces this new postulate and discusses its consequences.

8.1 Permutations of identical particles

Particles are identical if they cannot be distinguished one from another by any
intrinsic property, such as mass, charge, or spin. There does not exist, in fact
and in principle, any experimental procedure which can identify any one of the
particles. In classical mechanics, even though all particles in the system may
have the same intrinsic properties, each may be identified, at least in principle,
by its precise trajectory as governed by Newton’s laws of motion. This
identification is not possible in quantum theory because each particle does not
possess a trajectory; instead, the wave function gives the probability density for
finding the particle at each point in space. When a particle is found to be in
some small region, there is no way of determining either theoretically or
experimentally which particle it is. Thus, all electrons are identical and there-
fore indistinguishable, as are all protons, all neutrons, all hydrogen atoms with
'H nuclei, all hydrogen atoms with *H nuclei, all helium atoms with “He
nuclei, all helium atoms with *He nuclei, etc.

Two-particle systems
For simplicity, we first consider a system composed of two identical particles

208
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of mass m. If we label one of the particles as particle 1 and the other as particle
2, then the Hamiltonian operator H(1, 2) for the system is
VIS
H(1,2) = 2L+ 22 4 V(q, @) (8.1)
2m  2m

where q; (i =1, 2) represents the three-dimensional (continuous) spatial
coordinates r; and the (discrete) spin coordinate og; of particle i. In order for
these two identical particles to be indistinguishable from each other, the
Hamiltonian operator must be symmetric with respect to particle interchange,
i.e., if the coordinates (both spatial and spin) of the particles are interchanged,
H(1, 2) must remain invariant

H(Q,2)= H(2, 1)

If H(l,2) and H(2, 1) were to differ, then the corresponding Schrodinger
equations and their solutions would also differ and this difference could be
used to distinguish between the two particles.

The time-independent Schrodinger equation for the two-particle system is

H(1, 2)W,(1, 2) = E,W,(1, 2) (8.2)

where v delineates the various states. The notation W, (1, 2) indicates that the
first particle has coordinates q; and the second particle has coordinates q. If
we exchange the two particles so that particles 1 and 2 now have coordinates
q: and q, respectively, then the Schrédinger equation (8.2) becomes

HQ2, DW,(2, 1) = H(1, )W, (2, 1) = E,¥,(2, 1) (8.3)

where we have noted that H(1, 2) is symmetric. Equation (8.3) shows that
W,(2, 1) is also an eigenfunction of H(1, 2) belonging to the same eigenvalue
E,. Thus, any linear combination of W,(1, 2) and W,(2, 1) is also an eigen-
function of H(1,2) with eigenvalue E,. For simplicity of notation in the
following presentation, we omit the index v when it is clear that we are
referring to a single quantum state.

The eigenfunction W(1, 2) has the form of a wave in six-dimensional space.
The quantity W*(1, 2)W(1, 2) dr; dr, is the probability that particle 1 with
spin function ¥ is in the volume element dr; centered at r; and simultaneously
particle 2 with spin function y, is in the volume element dr; at r,. The product
W¥(1, 2)¥(1, 2) is, then, the probability density. The eigenfunction W(2, 1)
also has the form of a six-dimensional wave. The quantity ¥*(2, DW(2, 1) is
the probability density for particle 2 being at r; with spin function y; and
simultaneously particle 1 being at r, with spin function y;. In general, the two
eigenfunctions W(1, 2) and W(2, 1) are not identical. As an example, if
W(l, 2)is
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W(l,2)=e e 2(br, — 1)
where 7| = |r;| and r, = |ry|, then W(2, 1) would be

W, 1)=e e (bry — 1) # W(1, 2)

Thus, the probability density of the pair of particles depends on how we label
the two particles. Since the two particles are indistinguishable, we conclude
that neither W(1, 2) nor W(2, 1) are desirable wave functions. We seek a wave
function that does not make a distinction between the two particles and,
therefore, does not designate which particle is at r; and which is at r».

To that end, we now introduce the linear hermitian exchange operator P,
which has the property

Pr(1,2)=f(2, 1) (8:4)
vyhere f(1,2) is an arbitrary function of q; and qu. If P operates on
H(1, 2)®(1, 2), we have
P[H(1, 2)¥(1, 2)] = HQ2, D¥(2, 1) = H(1, 2)¥(2, 1) = H(1, 2)P¥(l, 2)

(8.5)

where we have used the fact that H(1, 2) is symmetric. From equation (8.5) we
see that P and H(1, 2) commute

[P, H(1,2)] =0, (8.6)
Consequently, the operators P and H(1, 2) have simultaneous eigenfunctions.
If ®(1, 2) is an eigenfunction of P, the corresponding eigenvalue 4 is given
by
Pd(1,2) = Ad(1, 2) (8.7)
We then have
P2®(1, 2) = P[PD(1, 2)] = P[AD(1, 2)] = APD(1, 2) = A>d(1,2) (8.8)
Moreover, operating on ®(1, 2) twice in succession by P returns the two
particles to their original order, so that
P2D(1,2) = POQ2, 1) = d(1, 2) (8.9)
From equations (8.8) and (8.9), we see that P2 = 1 and that A2 = 1. Since P is
hermitian, the eigenvalue A is real and we obtain A = +1.
There are only two functions which are simultaneous eigenfunctions of

H(1, 2) and P with respective eigenvalues E and +1. These functions are the
combinations

W =2712[W(1, 2) + W(2, 1)] (8.10a)
W, =2"12[W(1, 2) - (2, 1)] (8.10b)

which satisfy the relations



8.1 Permutations of identical particles 211
PWy = Wy (8.11a)

PY, = -W, (8.11b)

The factor 2-'/2 in equations (8.10) normalizes W and W, if W(1, 2) is
normalized. The combination Wy is symmetric with respect to particle
interchange because it remains unchanged when the two particles are ex-
changed. The function W 4, on the other hand, is antisymmetric with respect to
particle interchange because it changes sign, but is otherwise unchanged, when
the particles are exchanged.

The functions W4 and Wy are orthogonal. To demonstrate this property, we
note that the integral over all space of a function of two or more variables must
be independent of the labeling of those variables

[ e man = [ fron i s12)

In particular, we have
[ [0 220000 = [ [ 1 dar da

or
(W(1, W2, 1) = (W2, DY, 2)) (8.13)

where f(1, 2) = W*(1, 2)¥(2, 1). Application of equation (8.13) to (Ws|W¥ ,)
gives

(Ws|W ) = (PWs|PW ) (8.14)
Applying equations (8.11) to the right-hand side of (8.14), we obtain

(Ws|Wy) = —(Ps|Wy)
Thus, the scalar product (Wg|W ) must vanish, showing that ¥4 and W are
orthogonal.

If the wave function for the system is initially symmetric (antisymmetric),
then it remains symmetric (antisymmetric) as time progresses. This property
follows from the time-dependent Schrédinger equation
owv(l1, 2)

ot
Since H(1, 2) is symmetric, the time derivative 9% /Ot has the same symmetry
as W. During a small time interval A¢, therefore, the symmetry of ¥ does not
change. By repetition of this argument, the symmetry remains the same over a
succession of small time intervals, and by extension over all time.

Since Wy does not change and only the sign of W 4 changes if particles 1 and
2 are interchanged, the respective probability densities ‘P?‘PS and II‘j‘P 4 are
independent of how the particles are labeled. Neither specifies which particle

ifi = H(1, 2)¥(1, 2) (8.15)
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has coordinates q; and which q,. Thus, only the linear combinations Wy and
W, are suitable wave functions for the two-identical-particle system. We note
in passing that the two probability densities are not equal, even though Wy and
W, correspond to the same energy value E. We conclude that in order to
incorporate into quantum theory the indistinguishability of the two identical
particles, we must restrict the allowable wave functions to those that are
symmetric and antisymmetric, i.e., to those that are simultaneous eigenfunc-
tions of H(1, 2) and P.

Three-particle systems
The treatment of a three-particle system introduces a new feature not present in
a two-particle system. Whereas there are only two possible permutations and
therefore only one exchange or permutation operator for two particles, the
three-particle system requires several permutation operators.

We first label the particle with coordinates q; as particle 1, the one with
coordinates q as particle 2, and the one with coordinates q3 as particle 3. The
Hamiltonian operator H(1, 2, 3) is dependent on the positions, momentum
operators, and perhaps spin coordinates of each of the three particles. For
identical particles, this operator must be symmetric with respect to particle
interchange
H(1,2,3)=H(,3,2)= H2,3,1)= H2, 1,3)= HQ3,1,2) = H@3, 2, 1)
IfW(1, 2, 3) is a solution of the time-independent Schrodinger equation

H(1, 2, 3)¥(1, 2, 3) = E¥(1, 2, 3) (8.16)
then W(1, 3, 2), W(2, 3, 1), etc., and any linear combinations of these wave
functions are also solutions with the same eigenvalue E. The notation
W(i, j, k) indicates that particle i has coordinates q, particle j has coordinates
q2, and particle k has coordinates q3. As in the two-particle case, we seek
eigenfunctions of H(1, 2, 3) that do not specify which particle has coordinates
qi, = 1, 2, 3.

We define the six permutation operators 130‘[;,, fora #p #v =1, 2,3 by the
relations

]:DIZSIP(ia Js k) = W(, Js k)
PiW(i, j, k) =W, k, j)
{)231111(1.’ js k) = W(]’ ka Z)
Py, j, k) =W(), i, k)
5)31211[(1.’ j, k) = lp(k’ i7 ])
P3211p(i’ j: k) = lp(k’ j’ l) J

The operator Paﬂy replaces the particle with coordinates q; (the first position)

itjAk=1,273 (8.17)
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by the particle with coordinates q, the particle with coordinates ¢, (the second
position) by that with qg, and the particle with coordinates q; (the third
position) by that with q,. For example, we have

P3¥(1, 2, 3) =¥(2, 1, 3) (8.18a)
Ps®(2, 1, 3) = ¥(, 2, 3) (8.18b)
Ps¥(3,2, 1) =¥(2,3,1) (8.18c¢)
Py W(1,2,3)=W(Q2,3,1) (8.18d)
PyW(2,3,1)=¥(@3, 1,2) (8.18¢)

The permutation operator 15123 is an identity operator because it leaves the
function W(i, j, k) unchanged. From (8.18a) and (8.18b), we obtain

P W(1,2,3)=(1,2,3)
so that P2 13 equals unity. The same relationship can be demonstrated to apply
to the operators Py, and Pjy, as well as to the identity operator Pis, giving
Py =Pl = P}, = Py = Pis = 1 (8.19)
Any permutation corresponding to one of the operators Paﬁy other than Pj»;
is equivalent to one or two pairwise exchanges. Accordingly, we introduce the
linear hermitian exchange operators Pj,, P»3, and P3; with the properties
Plzlp(l J> k) =Y, i, k)
PW(i, j, k) =W(, k, j) i#j#k=1,2,3 (8.20)
P3llp(i: ja k) = W(ka ja l)
The exchange operator P «p interchanges the particles with coordinates q, and
qp- It is obvious that the order of the subscrlpts in Paﬁ is immaterial, so that

Paﬂ = Pﬂa The permutatlons from P13, Pj30, and Psy; are the same as those
from Plz, P23, and P31, respectively, giving

Py = Py, Piy = Py, Py = Py
The permutation from P»3; may also be obtained by first applying the exchange
operator P, and then the operator P,3;. Alternatively, the same result may be

obtained by first applying P followed by Py or by first applying Py, followed
by P,. This observation leads to the identities

Py = Py3Piy = Py Py = Pio Py (8.21)
A similar argument yields
P31y = Py Py = P3Py = Py Pas (8.22)

These permutations of the three particles are expressed in terms of the
minimum number of pairwise exchange operators. Less efficient routes can
also be visualized. For example, the permutation operators P35, and Ps3y may
also be expressed as
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P13 = P51 Pi3Pia = PiaPy3 Py

Pr31 = P Py3 P31 Pio = P31 Pia P P
However, the number of pairwise exchanges for a given permutation is always
either odd or even, so that Pj»3, P»31, P31z are even permutations and Pi3;,
P»13, P31 are odd permutations.

Applying the same arguments regarding the exchange operator P for the
two-particle system, we find that

P%zzp%:j%l:l
giving real eigenvalues &1 for each operator. We also find that each exchange
operator commutes with the Hamiltonian operator H
[Pra, H] = [Py, H] =[Py, H] =0 (8.23)
so that Py, and H possess simultaneous elgenfunctlons Py; and H possess
simultaneous eigenfunctions, and P31 and H possess simultaneous eigenfunc-
tions. However, the operators Plz, P23, P31 do not commute with each other.
For example, if we operate on the wave function W(1, 2, 3) first with the
product P3; P;, and then with the product P, P31, we obtain
i)31p121p(15 2: 3) = p311p(27 1> 3) = III(S’ 17 2)
PPy (1, 2,3)= Pp¥3,2, ) =W(2,3, 1)
The wave function W(3, 1, 2) is not the same as W(2,3,1), leading to the
conclusion that
Py Py # PPy

Thus, a set of simultaneous eigenfunctions of H (1, 2, 3) and Py, and a set of
simultaneous eigenfunctions of H(1, 2, 3) and P5; are not, in general, the same
set. Likewise, neither set are simultaneous eigenfunctions of H(1, 2, 3) and
Pss. X

There are, however, two eigenfunctions of H(1, 2, 3) which are also simul-
taneous eigenfunctions of all three pair exchange operators Pj,, P»3, and P3;.
These eigenfunctions are W¢ and W 4, which have the property

PypWs = Ws, a#p=12 (8.24a)
PypW 4= -V, a#p=12 (8.24b)

To demonstrate this feature, we assume that W(1, 2, 3) is a simultaneous
eigenfunction not only of H(1, 2, 3), but also of Py, P»3, and P;;. Therefore,
we have

PLW(1, 2,3) = 2,W(1, 2, 3)

PrW¥(1, 2, 3) = LW¥(, 2, 3) (8.25)
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Py W(1,2,3) = ¥(1, 2, 3)

where 1 = £1, 4, = £1, 43 = +1 are the respective eigenvalues. From equa-
tions (8.21) and (8.25), we obtain

P3iW(1, 2, 3) = P PW(1, 2, 3) = Py PW(1, 2, 3) = PPy (1, 2, 3)
=W(Z,3,1)
or
AoaW(1, 2, 3) = AW, 2, 3) = A AsW(l, 2, 3)
from which it follows that

A=k =143
Thus, the simultaneous eigenfunctions W(1, 2 3) are either symmetric
(A1 = 4, = A3 = 1) or antisymmetric (1; = 4, =43 = —1).

The symmetric Wy or antisymmetric W 4 elgenfunctlons may be constructed
from W(1, 2, 3) by the relations

W =6"12[W(1,2,3)+W(,3,2) + W23, 1)+ P02, 1,3)+¥3, 1, 2)

+W(3, 2, D] (8.26a)
W, =6"2[W(1,2,3)—W(1,3,2)+¥(2,3,1)-¥Q2,1,3)+¥3,1,2)
—¥(@3, 2, 1] (8.26b)

where the factor 6~1/2 normalizes W and W, if W(1, 2, 3) is normalized. As
in the two-particle case, the functions Wy and W 4 are orthogonal. Moreover, a
wave function which is initially symmetric (antisymmetric) remains symmetric
(antisymmetric) over time. The probability densities ‘P?‘I’S and ‘Pj‘P 4 are
independent of how the three particles are labeled. The two functions Wy and
W , are, therefore, the eigenfunctions of H (1, 2, 3) that we are seeking.

Equations (8.26) may be expressed in another, equivalent way. If we let P be
any one of the permutation operators f’aﬂy in equation (8.17), then we may
write

Wy =673 0pP¥(1,2,3) (8.27)
P

where the summation is taken over the six different operators i’aﬁy, and Op is
either +1 or —1. For the symmetric wave function Wg, 0 p is always +1, but for
the antisymmetric wave function Wy, 0p is +1 (—1) if the permutation
operator P involves the exchange of an even (odd) number of pairs of particles.
Thus 6}) is —1 for P132, P213 and P321

N-particle systems
The treatment of a three-particle system may be generalized to an N-particle
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system. We begin by labeling the N particles, with each particle i having
coordinates q;. For identical particles, the Hamiltonian operator must be
symmetric with respect to particle permutations

HQ,2,...,N)=HQ2,1,...,Ny=H(N,2, ..., )= ---

There are N! possible permutations of the N particles. If W(1,2, ..., N) isa
solution of the time-independent Schrédinger equation

H(1,2, ..., N)¥(,2,..., N)= E¥(,2,..., N) (8.28)

then W(2, 1, ..., N), W(N, 2, ..., 1), etc., and any linear combination of
these wave functions are also solutions with eigenvalue E.

We next introduce the set of linear hermitian exchange operators Paﬂ
(a#p=1,2,..., N). The exchange operator f’aﬂ interchanges the pair of
particles in positions a (with coordinates q,) and 8 (with coordinates qg)

Paﬁlp(i,...,j,...,g,...,l)zlp(i,...,g,...,g,...,z) (8.29)
a

As in the three-particle case, the order of the subscripts on i’aﬁ 1s immaterial.
Since there are N choices for the first particle and (N — 1) choices for the
second particle (a # B) and since each pair is to be counted only once
(Paﬂ = f’ga), there are N(N — 1)/2 members of the set Paﬁ.

Applying the same arguments regarding the exchange operator P for the
two-partigle system, we find that Pflﬂ = 1, giving real eigenvalues +1. We also
find that P,3 and H commute

[P, H] =0, a#p=1,2...,N (8.30)

so that they possess simultaneous eigenfunctions. However, the members of the
set Paﬂ do not commute with each other. There are E)nly two functions, W and
W,, which are simultaneous eigenfunctions of A and all of the pairwise
exchange operators Paﬁ. These two functions have the property

PpWs = Ws, a#B=1,2,....,N (8.31a)
PypWy =W, a#p=1,2,...,N (8.31b)
and may be constructed from W(1, 2, ..., N) by the relation
Wsa=(N)2> 0pPW(,2, ..., N) (8.32)
P

In equation (8.32) the operator P is any one of the N! operators, including the
identity operator, that permute a given order of particles to another order. The
summation is taken over all N! permutation operators. The quantity Op is
always +1 for the symmetric wave function W, but for the antisymmetric
wave function W4, dp is +1 (—1) if the permutation operator P involves the
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exchange of an even (odd) number of particle pairs. The factor (N!)~'/2

normalizes Wg and W4 if W(1, 2, ..., N) is normalized.

Using the same arguments as before, we can show that Wy and W, in
equation (8.32) are orthogonal and that, over time, W remains symmetric and
W, remains antisymmetric. Since the probability densities ‘Pi’; Ws and Tj‘l‘ 4
are independent of how the N particles are labeled, the two functions Wy and
W, are the only suitable eigenfunctions of I:I(l, 2,..., N) to represent a
system of N indistinguishable particles.

8.2 Bosons and fermions

In quantum theory, identical particles must be indistinguishable in order for the
theory to predict results that agree with experimental observations. Conse-
quently, as shown in Section 8.1, the wave functions for a multi-particle system
must be symmetric or antisymmetric with respect to the interchange of any pair
of particles. If the wave functions are not either symmetric or antisymmetric,
then the probability densities for the distribution of the particles over space are
dependent on how the particles are labeled, a property that is inconsistent with
indistinguishability. It turns out that these wave functions must be further
restricted to be either symmetric or antisymmetric, but not both, depending on
the identity of the particles.

In order to accommodate this feature into quantum mechanics, we must add
a seventh postulate to the six postulates stated in Sections 3.7 and 7.2.

7. The wave function for a system of N identical particles is either symmetric or
antisymmetric with respect to the interchange of any pair of the N particles.
Elementary or composite particles with integral spins (s =0, 1, 2, ...) possess
symmetric wave functions, while those with half-integral spins (s =1,3,..))
possess antisymmetric wave functions.

The relationship between spin and the symmetry character of the wave function
can be established in relativistic quantum theory. In non-relativistic quantum
mechanics, however, this relationship must be regarded as a postulate.

As pointed out in Section 7.2, electrons, protons, and neutrons have spin %
Therefore, a system of N electrons, or N protons, or N neutrons possesses an
antisymmetric wave function. A symmetric wave function is not allowed.
Nuclei of “He and atoms of “He have spin 0, while photons and 2H nuclei have
spin 1. Accordingly, these particles possess symmetric wave functions, never
antisymmetric wave functions. If a system is composed of several kinds of
particles, then its wave function must be separately symmetric or antisym-
metric with respect to each type of particle. For example, the wave function for
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the hydrogen molecule must be antisymmetric with respect to the interchange
of the two nuclei (protons) and also antisymmetric with respect to the
interchange of the two electrons. As another example, the wave function for the
oxygen molecule with '®O nuclei (each with spin 0) must be symmetric with
respect to the interchange of the two nuclei and antisymmetric with respect to
the interchange of any pair of the eight electrons.

The behavior of a multi-particle system with a symmetric wave function
differs markedly from the behavior of a system with an antisymmetric wave
function. Particles with integral spin and therefore symmetric wave functions
satisfy Bose—FEinstein statistics and are called bosons, while particles with
antisymmetric wave functions satisfy Fermi—Dirac statistics and are called
fermions. Systems of “He atoms (helium-4) and of *He atoms (helium-3)
provide an excellent illustration. The “He atom is a boson with spin 0 because
the spins of the two protons and the two neutrons in the nucleus and of the two
electrons are paired. The *He atom is a fermion with spin % because the single
neutron in the nucleus is unpaired. Because these two atoms obey different
statistics, the thermodynamic and other macroscopic properties of liquid
helium-4 and liquid helium-3 are dramatically different.

8.3 Completeness relation

The completeness relation for a multi-dimensional wave function is given by
equation (3.32). However, this expression does not apply to the wave functions
W, s 4 for a system of identical particles because W, s 4 are either symmetric or
antisymmetric, whereas the right-hand side of equation (3.32) is neither.
Accordingly, we derive here! the appropriate expression for the completeness
relation or, as it is often called, the closure property for W, 4.

For compactness of notation, we introduce the 4 N-dimensional vector Q
with components q; for i =1, 2, ..., N. The permutation operators P are
allowed to operate on Q directly rather than on the wave functions. Thus, the
expression PW(1, 2, ..., N) is identical to W(PQ). In this notation, equation
(8.32) takes the form

Wosa=MND'2D"6,W,(PQ) (8.33)
P

We begin by considering an arbitrary function f(Q) of the 4 N-dimensional
vector Q. Following equation (8.33), we can construct from f(Q) a function
F(Q) which is either symmetric or antisymmetric by the relation

I We follow the derivation of D. D. Fitts (1968) Nuovo Cimento 55B, 557.
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FQ) =(NY"2> " 0pf(PQ) (8.34)
P

Since F(Q) is symmetric (antisymmetric), it may be expanded in terms of a
complete set of symmetric (antisymmetric) wave functions W, (Q) (we omit the
subscript S, 4)

FQ =) &¥.(Q (8.35)
The coefficients ¢, are given by
o = [wiQr@) (8.36)

because the wave functions W,(Q) are orthonormal. We use the integral
notation to include summation over the spin coordinates as well as integration
over the spatial coordinates. Substitution of equation (8.36) into (8.35) yields

FQ = [F@) ZW?(Q)%(Q)] aQ’ (8.37)

where the order of summation and the integration over Q' have been inter-
changed. We next substitute equation (8.34) for F(Q’) into (8.37) to obtain

F(Q) =(N)'? Zépjf@Q') Z‘Pf(Q’)‘Pv(Q)] dQ’ (8.38)
P v

We now introduce the reciprocal or inverse operator P! to the permutation
operator P (see Section 3.1) such that
Pl'P=pPP =1
We observe that
W, (P1Q) = 0,1 W,(Q) = 0rW,(Q) (8.39)
The quantity 0 p-1 equals 0 because both P~ and P involve the interchange
of the same number of particle pairs. We also note that

> op=N! (8.40)
P

because there are N! terms in the summation and each term equals unity.

We next operate on each term on the right-hand side of equation (8.38) by
P~!. Since P in equation (8.38) operates only on the variable Q’ and since the
order of integration over Q' is immaterial, we obtain

FQ =) ") 6pJf(Q’) [Z WHPT'QHIWL(Q)| dQ'  (8.41)
P v
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Application of equations (8.39) and (8.40) to (8.41) gives
FQ) = (N!)l/zjf(Q’) [Z ‘I’f(Q’)‘I’v(Q)] dQ’ (8.42)

Since f(Q') is a completely arbitrary function of Q’, we may compare
equations (8.34) and (8.42) and obtain

D WHQHIPUQ) = (N) ' ,0(PQ - Q) (8.43)
v P
where 6(Q — Q') is the Dirac delta function

N
0(Q — Q") =[] o(ri — r)ds 0, (8.44)
i=1
Equation (8.43) is the completeness relation for a complete set of symmetric
(antisymmetric) multi-particle wave functions.

8.4 Non-interacting particles

In this section we consider a many-particle system in which the particles act
independently of each other. For such a system of N identical particles, the
Hamiltonian operator H(1, 2, ..., N) may be written as the sum of one-
particle Hamiltonian operators H (Hfori=1,2,..., N

H(1,2,...,Ny=H(1)+ HQ2) +--- 4+ H(N) (8.45)
In this case, the operator H (1,2, ..., N) is obviously symmetric with respect
to particle interchanges. For the N particles to be identical, the operators H (i)

must all have the same form, the same set of orthonormal eigenfunctions 1 ,(7),
and the same set of eigenvalues E,, where

H(iyp (i) = Enpa(i); i=1,2,...,N (8.46)
As a consequence of equation (8.45), the eigenfunctions W, (1, 2, ..., N) of
H(1,2, ..., N)are products of the one-particle eigenfunctions
W,(1,2,..., N) =y (D)yp2) ... p,(N) (8.47)
and the eigenvalues E, of H (1, 2, ..., N) are sums of one-particle energies
E,=E,+Ey+- -+ E, (8.48)
In equations (8.47) and (8.48), the index v represents the set of one-particle
states a, b, ..., p and indicates the state of the N-particle system.
The N-particle eigenfunctions W,(1, 2, ..., N) in equation (8.47) are not
properly symmetrized. For bosons, the wave function W, (1, 2, ..., N) must be

symmetric with respect to particle interchange and for fermions it must be
antisymmetric. Properly symmetrized wave functions may be readily con-
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structed by applying equation (8.32). For example, for a system of two identical
particles, one particle in state v, the other in state 15, the symmetrized two-
particle wave functions are

W s(1, 2) = 272 [u(DY5(2) + Ya2ys(1)] (8.49a)
Wapa(1,2) = 27 [ u(Dys(2) — pa@)ips(1)] (8.49b)
The expression (8.49a) for two bosons is not quite right, however, if states v,

and v, are the same state (a = b), for then the normalization constant is %
rather than 2~'/2, so that

Waas(1, 2) = Ya(1)9a(2)
From equation (8.49b), we see that the wavefunction vanishes for two identical
fermions in the same single-particle state
lPaa,A(la 2) =0

In other words, two identical fermions cannot simultaneously be in the same
quantum state. This statement is known as the Pauli exclusion principle
because it was first postulated by W. Pauli (1925) in order to explain the
periodic table of the elements.

For N identical non-interacting bosons, equation (8.32) needs to be modified
in order for Wg to be normalized when some particles are in identical single-
particle states. The modified expression is

NNy - - 1/2 A
W = (T”,> S PpaDYs2) . pp(N)  (8.50)
’ p

where N, indicates the number of times the state #n occurs in the product of the
single-particle wave functions. Permutations which give the same product are
included only once in the summation on the right-hand side of equation (8.50).
For example, for three particles, with two in state ¢ and one in state b, the
products 1 ,(1)y,(2)y,(3) and y,(2)y.(1)ys(3) are identical and only one is
included in the summation.

For N identical non-interacting fermions, equation (8.32) may also be
expressed as a Slater determinant

7/)11(1) 1/14(2) e wa(N)
W=y Y e R @s
WP(I) wp(z) e wp(N)

The expansion of this determinant is identical to equation (8.32) with
W(l, 2, ..., N) given by (8.47). The properties of determinants are discussed
in Appendix I. The wave function W, in equation (8.51) is clearly antisym-
metric because interchanging any pair of particles is equivalent to interchan-
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ging two columns and hence changes the sign of the determinant. Moreover, if
any pair of particles are in the same single-particle state, then two rows of the
Slater determinant are identical and the determinant vanishes, in agreement
with the Pauli exclusion principle.

Although the concept of non-interacting particles is an idealization, the
model may be applied to real systems as an approximation when the inter-
actions between particles are small. Such an approximation is often useful as a
starting point for more extensive calculations, such as those discussed in
Chapter 9.

Probability densities

The difference in behavior between bosons and fermions is clearly demon-
strated by their probability densities |Wg|> and |W4|*>. For a pair of non-
interacting bosons, we have from equation (8.49a)

(Ws|* = Hya(DPP s + )P [ws(D” + Re[y (D) (2ya2)ys(1)]
(8.52)

For a pair of non-interacting fermions, equation (8.49b) gives

(W 41> = (D[ + Hwa@Plws(DP — Re[yh (Dyy 2y u(ys(1)]
(8.53)

The probability density for a pair of distinguishable particles with particle 1 in
state @ and particle 2 in state b is [p,(1)|*|ys(2)|%. If the distinguishable
particles are interchanged, the probability density is [14(2)*|s(1)|*>. The
probability density for one distinguishable particle (either one) being in state a
and the other in state b is, then

HpaDP ) + Hpa) [ps(DI?

which appears in both |[Wg|? and [W 4|?. The last term on the right-hand sides
of equations (8.52) and (8.53) arises because the particles are indistinguishable
and this term is known as the exchange density or overlap density. Since the
exchange density is added in [Wg|? and subtracted in [W 4|2, it is responsible
for the different behavior of bosons and fermions.

The values of |Ws|> and |W4[> when the two particles have the same
coordinate value, say qq, so that q; = q» = qq, are
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(s[5 = walan)Plws@)I + Hva(@o) [ws(ao)
+ Re[y; (90)¥, (40)%a(d00%5(qo)]
= 2|1a(q0) *[5(q0)|”
W alo = 3wa(@o) P [96(q0)|* + 31a(q0)*[95(q0)]

— Re[y;(q0)5 (90)Ya(00)¥5(qo)]
=0

Thus, the two bosons have an increased probability density of being at the same
point in space, while the two fermions have a vanishing probability density of
being at the same point. This conclusion also applies to systems with N
identical particles. Identical bosons (fermions) behave as though they are under
the influence of mutually attractive (repulsive) forces. These apparent forces
are called exchange forces, although they are not forces in the mechanical
sense, but rather statistical results.

The exchange density in equations (8.52) and (8.53) is important only when
the single-particle wave functions ¥,(q) and ¥,(q) overlap substantially.
Suppose that the probability density |1.(q)|* is negligibly small except in a
region A and that |,(q)|? is negligibly small except in a region B, which does
not overlap with region A. The quantities ¥ (1)y,(1) and 15 (2)14(2) are then
negligibly small and the exchange density essentially vanishes. For q; in region
A and q, in region B, only the first term [y,(1)|?|y5(2)]> on the right-hand
sides of equations (8.52) and (8.53) is important. This expression is just the
probability density for particle 1 confined to region 4 and particle 2 confined
to region B. The two particles become distinguishable by means of their
locations and their joint wave function does not need to be made symmetric or
antisymmetric. Thus, only particles whose probability densities overlap to a
non-negligible extent need to be included in the symmetrization process. For
example, electrons in a non-bonded atom and electrons within a molecule
possess antisymmetric wave functions; electrons in neighboring atoms and
molecules are too remote to be included.

Electron spin and the helium atom

We may express the single-particle wave function ,(q;) as the product of a
spatial wave function ¢ ,(r;) and a spin function y(i). For a fermion with spin 1,
such as an electron, there are just two spin states, which we designate by a(i)
for mq :% and S(i) for mg = —%. Therefore, for two particles there are three
symmetric spin wave functions
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a(Da(2)
BMB(2)
27 P la(1DBR) + a)B(1)]
and one antisymmetric spin wave function
27 Pla(DBR) — a@B(1)]
where the factors 27"/~ are normalization constants. When the spatial and spin

wave functions are combined, there are four antisymmetric combinations: a
singlet state (S = 0)

3[Pa(1)P6(2) + Pu(2)ps(DI[(1)B2) — a(2)B(1)]
and three triplet states (S = 1)

1/2

a(l)a(2)
271 2[pu(Dgs(2) — pa(pp(D]] ABR)
27 P [a(1)B(2) + a2)B(1)]
These four antisymmetric wave functions are normalized if the single-particle

spatial wave functions ¢,(r;) are normalized. If the two fermions are in the
same state ¢,(r;), then only the singlet state occurs

27 2pu(Dga@[a(DB2) — a()B(1)]
The helium atom serves as a simple example for the application of this
construction. If the nucleus (for which Z = 2) is considered to be fixed in
space, the Hamiltonian operator H for the two electrons is
2 12 12 2
h (V%—i—V%)—Ze _ Ze +e
2me r r 712

H=— (8.54)
where r; and r, are the distances of electrons 1 and 2 from the nucleus, 7, is
the distance between the two electrons, and e’ = e for CGS units or
e’ = e/(4mep)'/? for SI units. Spin—orbit and spin—spin interactions of the
electrons are small and have been neglected. The electron—electron interaction
is relatively small in comparison with the interaction between an electron and a
nucleus, so that as a crude first-order approximation the last term on the right-
hand side of equation (8.54) may be neglected. The operator H then becomes
the sum of two hydrogen-atom Hamiltonian operators with Z = 2. The
corresponding single-particle states are the hydrogen-like atomic orbitals 4,
discussed in Section 6.4. The energy of the helium atom depends on the
principal quantum numbers n; and n, of the two electrons and is the sum of
two hydrogen-like atomic energies with Z = 2

meZ%*e'* (1 1 1 1
Epn,=— —+— ] =-544eV(—+—
o e (;ﬁ i Y\ Te
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In the ground state of helium, according to this model, the two electrons are
in the 1s orbital with opposing spins. The ground-state wave function is

Wo(l, 2) = 272 1s(D)1s2)[a(1B2) — a(2)B(1)]

and the ground-state energy is —108.8 eV. The energy of the ground state of
the helium ion He™, for which n; =1 and n, = oo, is —54.4 eV. In Section
9.6, we consider the contribution of the electron—electron repulsion term to the
ground-state energy of helium and obtain more realistic values.

Although the orbital energies for a hydrogen-like atom depend only on the
principal quantum number #, for a multi-electron atom these orbital energies
increase as the azimuthal quantum number / increases. The reason is that the
electron probability density near the nucleus decreases as / increases, as shown
in Figure 6.5. Therefore, on average, an electron with a larger / value is
screened from the attractive force of the nucleus by the inner electrons more
than an electron with a smaller / value, thereby increasing its energy. Thus, the
2s orbital has a lower energy than the 2p orbitals.

Following this argument, in the first- and second-excited states, the electrons
are placed in the 1s and 2s orbitals. The antisymmetric spatial wave function
has the lower energy, so that the first-excited state W(1, 2) is a triplet state,

a(Da(2)
(1, 2) =27 2[1s(1)2s(2) — 1s(2)2s(1)]{ A(1B(2)
272 [a(DB2) + aR)B(1)]

and the second-excited state W,(1, 2) is a singlet state
Wy(1, 2) = 5[1s(1)2s(2) + 1s(2)2s(D)][a(1B2) — a(2)B(1)]

Similar constructions apply to higher excited states. The triplet states are called
orthohelium, while the singlet states are called parahelium. For a given pair of
atomic orbitals, the orthohelium has the lower energy. In constructing these
excited states, we place one of the electrons in the 1s atomic orbital and the
other in an excited atomic orbital. If both electrons were placed in excited
orbitals (n; = 2, ny = 2), the resulting energy would be equal to or greater
than —27.2 eV, which is greater than the energy of He™, and the atom would
ionize.

This same procedure may be used to explain, in a qualitative way, the
chemical behavior of the elements in the periodic table. The application of the
Pauli exclusion principle to the ground states of multi-electron atoms is
discussed in great detail in most elementary textbooks on the principles of
chemistry and, therefore, is not repeated here.
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8.5 The free-electron gas

The concept of non-interacting fermions may be applied to electrons in a metal.
A metal consists of an ordered three-dimensional array of atoms in which some
of the valence electrons are so weakly bound to their parent atoms that they
form an ‘electron gas’. These mobile electrons then move in the Coulombic
field produced by the array of ionized atoms. In addition, the mobile electrons
repel each other according to Coulomb’s law. For a given mobile electron, its
Coulombic interactions with the ions and the other mobile electrons are long-
ranged and are relatively constant over the range of the electron’s position.
Consequently, as a first-order approximation, the mobile electrons may be
treated as a gas of identical non-interacting fermions in a constant potential
energy field.

The free-electron gas was first applied to a metal by A. Sommerfeld (1928)
and this application is also known as the Sommerfeld model. Although the
model does not give results that are in quantitative agreement with experi-
ments, it does predict the qualitative behavior of the electronic contribution to
the heat capacity, electrical and thermal conductivity, and thermionic emission.
The reason for the success of this model is that the quantum effects due to the
antisymmetric character of the electronic wave function are very large and
dominate the effects of the Coulombic interactions.

Each of the electrons in the free-electron gas may be regarded as a particle
in a three-dimensional box, as discussed in Section 2.8. Energies may be
defined relative to the constant potential energy field due to the electron—ion
and electron—electron interactions in the metallic crystal, so that we may
arbitrarily set this potential energy equal to zero without loss of generality.
Since the mobile electrons are not allowed to leave the metal, the potential
energy outside the metal is infinite. For simplicity, we assume that the metallic
crystal is a cube of volume v with sides of length a, so that v = a*. As given
by equations (2.82) and (2.83), the single-particle wave functions and energy
levels are

8 1, JTX nyTy n,wz
. . Y . z!
Ynnyn, = 5 Sin sin sin (8.55)
a a a
’ 2., 2 2
nyny,nz = S (ny + ny + n7) (8.56)

where m, is the electronic mass and the quantum numbers n,, n,, n. have
values ny, ny, n. =1,2,3, ...

We next consider a three-dimensional cartesian space with axes ny, ny, n..
Each point in this n-space with positive (but non-zero) integer values of n,, n,,
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and n, corresponds to a single-particle state ¥, , ... These points all lie in the
positive octant of this space. If we divide the octant into unit cubic cells, every
point representing a single-particle state lies at the corner of one of these unit
cells. Accordingly, we may associate a volume of unit size with each single-
particle state. Equation (8.56) may be rewritten in the form
8mea’E
72
which we recognize as the equation in n-space of a sphere with radius R equal
to \/8mea*E/h*. The number ./ (E) of single-particle states with energy less
than or equal to £ is then the volume of the octant of a sphere of radius R
3/2
147 7 (8med’E 4o
./[/.E :—_R3:—< i ) =
(E) 83 6 h? 3n3

The number of single-particle states with energies between E and E + dE is
w(E)dE, where w(E) is the density of single-particle states and is related to
A (E) by

2 2 2 _
ny+n,t+n;=

(2m.E)*/? (8.57)

o(E) dJ(E) _ 2w
dE h3

According to the Pauli exclusion principle, no more than two electrons, one
spin up, the other spin down, can have the same set of quantum numbers n,, n,,
n,. At a temperature of absolute zero, two electrons can be in the ground state
with energy 34?/8mca?, two in each of the three states with energy 642 /8m.a?,
two in each of the three states with energy 9/4*/8m.a? etc. The states with the
lowest energies are filled, each with two electrons, until the spherical octant in
n-space is filled up to a value Eg, which is called the Fermi energy. If there are
N electrons in the free-electron gas, then we have

(2me)}?E'/? (8.58)

8
N = 20 (Ep) = 3lh'3’(2me151;)3/2 (8.59)
or
R 3N\

where equation (8.57) has been used. The Fermi energy is dependent on the
density N /v of the free-electron gas, but not on the size of the metallic crystal.
The total energy F of the N particles is given by
Ef
Eiot = 2J Ew(E)dE (8.61)

0
where the factor 2 in front of the integral arises because each single-particle
state is doubly occupied. Substitution of equation (8.58) into (8.61) gives
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8mv
B =55 2me) 2 Ee*?

which may be simplified to

3
EtOt — g NEF (862)
The average energy E per electron is, then
—_ Ewor 3
E = =_FE 8.63
= Er (8.63)

Equations (8.57) and (8.58) are valid only for values of E sufficiently large
and for energy levels sufficiently close together that £ can be treated as a
continuous variable. For a metallic crystal of volume 1 cm?, the lowest energy
level is about 10~'* eV and the spacing between levels is likewise of the order
of 10~!* eV. Since metals typically possess about 10%? to 10** free electrons
per cm?, the Fermi energy Ef is about 1.5 to 8 eV and the average energy E per
electron is about 1 to 5 eV. Thus, for all practical purposes, the energy of the
lowest level may be taken as zero and the energy values may be treated as
continuous.

The smooth surface of the spherical octant in n-space which defines the
Fermi energy cuts through some of the unit cubic cells that represent single-
particle states. The replacement of what should be a ragged surface by a
smooth surface results in a negligible difference because the density of single-
particle states near the Fermi energy FEf is so large that £ is essentially
continuous. At the Fermi energy Ef, the density of single-particle states is

1/3
2nvme (3N
o(Ep) =—3 (H) (8.64)

which typically is about 10?? to 10?3 states per eV. Thus, near the Fermi energy
EF, a differential energy range dE of 107" eV contains about 10!' to 102
doubly occupied single-particle states.

Since the potential energy of the electrons in the free-electron gas is assumed
to be zero, all the energy of the mobile electrons is kinetic. The electron
velocity up at the Fermi level Ef is given by

Imeut = Ep (8.65)
and the average electron velocity % is given by
%me# = E =3Ey (8.66)

For electrons in a metal, these velocities are on the order of 10% cms™'.

The Fermi temperature 7F is defined by the relation
Er = kg Tr (8.67)
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where kg is Boltzmann’s constant, and typically ranges from 18000 K to
90000 K for metals. At temperatures up to the melting temperature, we have
the relationship

kT < Ef

Thus, even at temperatures well above absolute zero, the electrons are
essentially all in the lowest possible energy states. As a result, the electronic
heat capacity at constant volume, which equals dEi/d7T, is small at ordinary
temperatures and approaches zero at low temperatures.

The free-electron gas exerts a pressure on the walls of the infinite potential
well in which it is contained. If the volume v of the gas is increased slightly by
an amount dv, then the energy levels E, ,, .. in equation (8.56) decrease
slightly and consequently the Fermi energy Ey in equation (8.60) and the total
energy FEi in (8.62) also decrease. The change in total energy of the gas is
equal to the work — P dv done on the gas by the surroundings, where P is the
pressure of the gas. Thus, we have

dEww ~ 3NdEr 2NEr 2Eq
Cdv 5 dv 50 3p
where equations (8.60) and (8.62) have been used. For a typical metal, the
pressure P is of the order of 10° atm.

(8.68)

8.6 Bose—Einstein condensation

The behavior of a system of identical bosons is in sharp contrast to that for
fermions. At low temperatures, non-interacting fermions of spin s fill the
single-particle states with the lowest energies, 25 4+ 1 particles in each state.
Non-interacting bosons, on the other hand, have no restrictions on the number
of particles that can occupy any given single-particle state. Therefore, at
extremely low temperatures, all of the bosons drop into the ground single-
particle state. This phenomenon is known as Bose—Einstein condensation.
Although A. Einstein predicted this type of behavior in 1924, only recently
has Bose—Einstein condensation for weakly interacting bosons been observed
experimentally. In one study,” a cloud of rubidium-87 atoms was cooled to a
temperature of 170 X 10~° K (170 nK), at which some of the atoms began to
condense into the single-particle ground state. The condensation continued as
the temperature was lowered to 20 nK, finally giving about 2000 atoms in the
ground state. In other studies, small gaseous samples of sodium atoms® and of

2 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell (1995) Science 269, 198.
3 K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle
(1995) Phys. Rev. Lett. 75, 3969.
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lithium-7 atoms*> have also been cooled sufficiently to undergo Bose—Einstein
condensation.

Although we have explained Bose—Einstein condensation as a characteristic
of an ideal or nearly ideal gas, i.e., a system of non-interacting or weakly
interacting particles, systems of strongly interacting bosons also undergo
similar transitions. Liquid helium-4, as an example, has a phase transition at
2.18 K and below that temperature exhibits very unusual behavior. The proper-
ties of helium-4 at and near this phase transition correlate with those of an ideal
Bose—Einstein gas at and near its condensation temperature. Although the
actual behavior of helium-4 is due to a combination of the effects of quantum
statistics and interparticle forces, its qualitative behavior is related to Bose—
Einstein condensation.

Problems

8.1 Show that the exchange operators P in equation (8.4) and ]A)a,g in (8.20) are
hermitian.

8.2 Noting from equation (8.10) that

W(1,2)=2""2(Ws + W)
w2, 1) =2""2W, -,
show that W(1, 2) and W(2, 1) are orthogonal if W¢ and W, are normalized.

8.3 Verify the validity of the relationships in equation (8.19).

8.4 Verify the validity of the relationships in equation (8.22).

8.5 Apply equation (8.12) to show that W¢ and W 4 in (8.26) are normalized.

8.6 Consider two identical non-interacting particles, each of mass m, in a one-
dimensional box of length a. Suppose that they are in the same spin state so that
spin may be ignored.

(a) What are the four lowest energy levels, their degeneracies, and their corre-
sponding wave functions if the two particles are distinguishable?

(b) What are the four lowest energy levels, their degeneracies, and their corre-
sponding wave functions if the two particles are identical fermions?

(c) What are the four lowest energy levels, their degeneracies, and their corre-
sponding wave functions if the two particles are identical bosons?

8.7 Consider a crude approximation to the ground state of the lithium atom in which
the electron—electron repulsions are neglected. Construct the ground-state wave
function in terms of the hydrogen-like atomic orbitals.

4 C.C.Bradley, C. A. Sackett, I. I. Tollett, and R. G. Hulet (1995) Phys. Rev. Lett. 75, 1687.
> C.C.Bradley, C. A. Sackett, and R. G. Hulet (1997) Phys. Rev. Lett. 78, 985.
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8.8 The atomic weight of silver is 107.9 gmol~! and its density is 10.49 gecm™>.
Assuming that each silver atom has one conduction electron, calculate
(a) the Fermi energy and the average electronic energy (in joules and in eV),
(b) the average electronic velocity,
(c) the Fermi temperature,
(d) the pressure of the electron gas.
8.9 The bulk modulus or modulus of compression B is defined by

OP
b= ‘”<%>T

Show that B for a free-electron gas is given by B = 5P/3.
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Approximation methods

In the preceding chapters we solved the time-independent Schrédinger equation
for a few one-particle and pseudo-one-particle systems: the particle in a box,
the harmonic oscillator, the particle with orbital angular momentum, and the
hydrogen-like atom. There are other one-particle systems, however, for which
the Schrodinger equation cannot be solved exactly. Moreover, exact solutions
of the Schrodinger equation cannot be obtained for any system consisting of
two or more particles if there is a potential energy of interaction between the
particles. Such systems include all atoms except hydrogen, all molecules, non-
ideal gases, liquids, and solids. For this reason we need to develop approxima-
tion methods to solve the Schrodinger equation with sufficient accuracy to
explain and predict the properties of these more complicated systems. Two of
these approximation methods are the variation method and perturbation
theory. These two methods are developed and illustrated in this chapter.

9.1 Variation method

Variation theorem
The variation method gives an approximation to the ground-state energy E
(the lowest eigenvalue of the Hamiltonian operator H) for a system whose
time-independent Schrodinger equation is

Hy, = Epa, n=0,12,... 9.1)
In many applications of quantum mechanics to chemical systems, a knowledge
of the ground-state energy is sufficient. The method is based on the variation
theorem: if ¢ is any normalized, well-behaved function of the same variables
as 1, and satisfies the same boundary conditions as ,, then the quantity
& = (¢p| H|¢p) is always greater than or equal to the ground-state energy Ej

£ = (g|H|p) = Eo (9.2)

232
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Except for the restrictions stated above, the function ¢, called the #rial
function, is completely arbitrary. If ¢ is identical with the ground-state eigen-
function 1, then of course the quantity < equals Ej. If ¢ is one of the
excited-state eigenfunctions, then # is equal to the corresponding excited-state
energy and is obviously greater than Ej. However, no matter what trial function
¢ is selected, the quantity # is never less than Ej.

To prove the variation theorem, we assume that the eigenfunctions v, form
a complete, orthonormal set and expand the trial function ¢ in terms of that set

¢ = ay, 9.3)

where, according to equation (3.28)

an = (Ynl®) (9-4)

Since the trial function ¢ is normalized, we have

(B1) = <zakwk S 0 >=zza7:an<wkrwn>
k n
=D Y dfadm =Y laf =1
k n n

We next substitute equation (9.3) into the integral for £ in (9.2) and subtract
the ground-state energy E, giving

& — Eo = (| H — Eolp) =D afan(yi| H — Eoly,)
k n

= Zzakan(E Eo){¥rlyn) Z lan*(E, — Eo)  (9.5)

where equation (9.1) has been used. Since £, is greater than or equal to £y and
|a,|? is always positive or zero, we have & — Ey =0 and the theorem is
proved.

In the event that ¢ is not normalized, then ¢ in equation (9.2) is replaced by
A¢, where A is the normalization constant, and this equation becomes

= [4P(¢|H|p) = E
The normalization relation is
(Ag|dp) = |4 (plg) =1
giving
(plHlg) _
{plg)

In practice, the trial function ¢ is chosen with a number of parameters 4,
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A2, ..., which can be varied. The quantity # is then a function of these
parameters: & (41, 4, ...). For each set of parameter values, the corresponding
value of # (41, 45, ...) is always greater than or equal to the true ground-state
energy Ej. The value of # (41, A;, ...) closest to Ej is obtained, therefore, by
minimizing & with respect to each of these parameters. Selecting a sufficiently
large number of parameters in a well-chosen analytical form for the trial
function ¢ yields an approximation very close to £.

Ground-state eigenfunction

If the quantity ¢ is identical to the ground-state energy E\, which is usually
non-degenerate, then the trial function ¢ is identical to the ground-state
eigenfunction 1. This identity follows from equation (9.5), which becomes

Z ‘an‘z(En - EO) =0

n(#0)
where the term for n = 0 vanishes because E,, — E, vanishes. This relationship
is valid only if each coefficient a, equals zero for n # 0. From equation (9.3),
the normalized trial function ¢ is then equal to y. Should the ground-state
energy be degenerate, then the function ¢ is identical to one of the ground-state
eigenfunctions.

When the quantity ¢ is not identical to Ej, we assume that the trial function

¢ which minimizes # is an approximation to the ground-state eigenfunction
1. However, in general, ¢ is a closer approximation to Ey than ¢ is to ¥.

Example: particle in a box

As a simple application of the variation method to determine the ground-state
energy, we consider a particle in a one-dimensional box. The Schrédinger
equation for this system and its exact solution are presented in Section 2.5. The
ground-state eigenfunction is shown in Figure 2.2 and is observed to have no
nodes and to vanish at x = 0 and x = a. As a trial function ¢ we select

¢ = x(a — x), 0=x=<a
=0, x<0,x>a

which has these same properties. Since we have
5

‘) 2 a
= _ dx = —
9lo) = | a—wrar =
the normalized trial function is
¢:%x(d—x)’ ngsa
a
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The quantity ¢ is, then

s 30 o [ —H? d2) )
s =g =2t (G ey
2 ra 2
:30ﬁ J(ax—xz)dx:i
ma’ | ma?

The exact ground-state energy E; is shown in equation (2.39) to be
7*h? /2ma®. Thus, we have
10
&= — £ =1.013E, > E,
T

giving a 1.3% error.

Example: harmonic oscillator
We next consider an example with a variable parameter. For the harmonic

oscillator, discussed in Chapter 4, we select
2

¢ — e*CX
as the trial function, where ¢ is a parameter to be varied so as to minimize
¢ (c). This function has no nodes and approaches zero in the limits x — +o0.
Since the integral (¢|¢) is

00 . 1/2
i) = | e a= (5)

where equation (A.5) is used, the normalized trial function is

1/4
26‘ —ex2
»= (5) ¢

The Hamiltonian operator A for the harmonic oscillator is given in equation
(4.12). The quantity #(¢) is then determined as follows

1/2 22 oo 2 1/2 2 oo
2 fi d 2
£(c)=— (;C> —J e e dy + <_nc> me- J x2e 72 4y

2m ) _ dx? 2
/255 poo 1/2 00
2 h
= <_C> —CJ (1 —2¢x?) e 2 dy + <i> ma)ZJ x2e 2 dx
T m J)_ 27 oo
_ (20)1/2ﬁzc a\ /2 )\ 2 n e\ ma? [ 7 \?
“\7/) m|\2c A8 ) T2 \8&
e mw?

:ﬁ 8c
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where equations (A.5) and (A.7) have been used.
To find the minimum value of #(c), we set the derivative d /dc equal to
zero and obtain

dz  #  mo?
de ~ 2m 82
so that
_ mw
T

We have taken the positive square root because the parameter ¢ must be
positive for ¢ to be well-behaved. The best estimate of the ground-state energy

is then
;(/_h_z m_a) +mw2<%)—h_w
T T 2m\ 2k 8 \mw) 2

which is the exact result.

The reason why we obtain the exact ground-state energy in this simple
example is that the trial function ¢ has the same mathematical form as the
exact ground-state eigenfunction, given by equation (4.39). When the para-
meter c is evaluated to give a minimum value for #, the function ¢ becomes
identical to the exact eigenfunction.

Excited-state energies

The variation theorem may be extended in some cases to estimate the energies
of excited states. Under special circumstances it may be possible to select a
trial function ¢ for which the first few coefficients in the expansion (9.3)

vanish: ag = a; = --- = a;_1 = 0, in which case we have
¢ = E anPn
n(=k)
and

Z |an|2 =1

n(=k)
We assume here that the eigenfunctions 1, in equation (9.1) are labeled in
order of increasing energy, so that
Ey=sE =sE =
Following the same procedure used to prove the variation theorem, we
obtain
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£ —Ei=) |anl*(Es— Ep)

n(=k)
from which it follows that

& = Ey (9.7)
Thus, the quantity # is an upper bound to the energy Ej corresponding to the
state 1. For situations in which ¢ can be made orthogonal to each exact
eigenfunction vg, 91, ..., ¥i_1, the coefficients ag, a;, ..., ar_; vanish
according to equation (9.4) and the inequality (9.7) applies.

An example is a one-dimensional system for which the potential energy V(x)
is an even function of the position variable x. The eigenfunction 1y with the
lowest eigenvalue £, has no nodes and therefore must be an even function of x.
The eigenfunction 1; has one node, located at the origin, and therefore must
be an odd function of x. If we select for ¢p any odd function of x, then ¢ is
orthogonal to any even function of x, including ¢, and the coefficient a,
vanishes. Thus, the integral & = (¢|H|¢p) gives an upper bound to E; even
though the ground-state eigenfunction 1y may not be known.

When the exact eigenfunctions g, 31, ..., Y¥;_1 are not known, they may
be approximated by trial functions ¢q, ¢1, ..., ¢,_; which successively give
upper bounds for Ey, Ey, ..., E;_1, respectively. In this case, the function ¢

is constructed to be orthogonal to ¢, ¢, constructed orthogonal to both ¢ and
¢1, and so forth. In general, this method is difficult to apply and gives
increasingly less accurate results with increasing 7.

9.2 Linear variation functions

A convenient and widely used form for the trial function ¢ is the linear
variation function

N
¢ = Z CiXi (9.8)

=1
where y1, x2, ..., ¥n are an incomplete set of linearly independent functions

which have the same variables and which satisfy the same boundary conditions
as the exact eigenfunctions v, of equation (9.1). The functions y; are selected
to be real and are not necessarily orthogonal to one another. Thus, the overlap
integral Sj;, defined as

Si = (il 9.9)
is not generally equal to ;;. The coefficients ¢; are also restricted to real values

and are variation parameters to be determined by the minimization of the
variation integral & .
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If we substitute equation (9.8) into (9.6) and define Hj; by

Hy = (yi H|y) (9.10)
we obtain
N N
ZZCICJHU
o=l j=1
L= ]N
ZZcich,]
i=1 j=1
or
N N N
gzzclcj‘gy chichij (9.11)
i=1 j=1 i=1 j=1

To find the values of the parameters ¢; in equation (9.8) which minimize &,
we differentiate equation (9.11) with respect to each coefficient ¢; (k =1, 2,

N

N

N N 9 N N P
Ckzzcicjsiﬂ”ga—ck ZZCinSU = e ZZCiCjHU

i=1 j=1 i=1 j=1 i=1 j=1

and set (07 /Ocy) = 0 for each value of k. The first term on the left-hand side
vanishes. The remaining two terms may be combined to give

de; de
chlc](ﬂy 7 Sy) ZZ(C ¢+ >(HU )

i=1 j=

N
Z( ikCj + ciOp)(Hyj — &£ Sj)

1 j=1

[
Mz

i

Il
Mz

ci(Hyy — /Sk,)+§jc,(Hlk # Sir)

1 i=1

J

0

where we have noted that (Oc;/0cy) = 0 because the coefficients ¢; in equa-
tion (9.8) are independent of each other. If we replace the dummy index j by i
and note that Hy = Hy; and Sj; = Sj; because the functions y; are real, we
obtain a set of NV linear homogeneous simultaneous equations

N
> e Hy — £ Si) =0, k=1,2,...,N (9.12)

i=1
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Equation (9.12) has the form
N
> awxi =0, k=1,2,...,N 9.13)
i=1
for which a trivial solution is x; = 0 for all i. A non-trivial solution exists if,
and only if, the determinant of the coefficients ay; vanishes

ap  dip o AN
da; dyp -+ AN | 0
ayi dan2 -+ Aapnn

This determinant or its equivalent algebraic expansion is known as the secular
equation. In equation (9.12) the parameters ¢; correspond to the unknown
quantities x; in equation (9.13) and the terms (Hy; — & Si;) correspond to the
coefficients ay;. Thus, a non-trivial solution for the N parameters ¢; exists only
if the determinant with elements (Hy; — £'Sy;) vanishes

Hy—-28Sn Hp—282 -+ Hiv—2S8w
Hy — &85 Hy — &Sy -+ Hoy— &Sy o ©.14)
Hyi —#Svi Hyo—&Sna -+ Hyy — &Sww

The secular equation (9.14) is satisfied only for certain values of <. Since
this equation is of degree N in ¢, there are N real roots
Cosciséys- sy

According to the variation theorem, the lowest root # ¢ is an upper bound to the

ground-state energy Eo: Ey < &. The other roots may be shown' to be upper
bounds for the excited-state energy levels

E = %/], E, < &5, ... ,Envog = ((Z{)N_l

9.3 Non-degenerate perturbation theory

Perturbation theory provides a procedure for finding approximate solutions to
the Schrodinger equation for a system which differs only slightly from a system
for which the solutions are known. The Hamiltonian operator H for the system
of interest is given by

= 5 _V[+V(rlsr25"'ar/v)
2 mi

1 J. K. L. MacDonald (1933) Phys. Rev. 43, 830.
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where N is the number of particles in the system. We suppose that the
Schrédinger equation for this Hamiltonian operator

Hy, = Ep, (9.15)
cannot be solved exactly by known mathematical techniques.

In perturbation theory we assume that 7/ may be expanded in terms of a
small parameter 4

H=HO 410D L 25 +... = O 4 f (9.16)
where
H = 2HO £ 2H® 4 ... (9.17)

The quantity H© is the unperturbed Hamiltonian operator whose orthonormal
eigenfunctions (¥ and eigenvalues E(no) are known exactly, so that

Oy = By (9.18)
The operator H’ is called the perturbation and is small. Thus, the operator H
differs only slightly from H® and the eigenfunctions and eigenvalues of 4 do
not differ greatly from those of the unperturbed Hamiltonian operator H©.
The parameter A is introduced to facilitate the comparison of the orders of
magnitude of various terms. In the limit A — 0, the perturbed system reduces
to the unperturbed system. For many systems there are no terms in the
perturbed Hamiltonian operator higher than H® and for convenience the
parameter A in equations (9.16) and (9.17) may then be set equal to unity.

The mathematical procedure that we present here for solving equation (9.15)
is known as Rayleigh—Schrédinger perturbation theory. There are other
procedures, but they are seldom used. In the Rayleigh—Schrodinger method,
the eigenfunctions 1, and the eigenvalues E, are expanded as power series
ini

Yo =) A H YD - (9.19)

E,=EY +2ED + 2ED + ... (9.20)
The quantities 1/)(”‘) and E(nl) are the first-order corrections to ¥, and E,, the
quantities 12 and E'?) are the second-order corrections, and so forth. If the
perturbation ' is small, then equations (9.19) and (9.20) converge rapidly for
all values of A where 0 < 4 < 1.

We next substitute the expansions (9.16), (9.19), and (9.20) into equation
(9.15) and collect coefficients of like powers of A to obtain

r7(0 0 rr(1 0 r7(0 1 20172 0 rr(1 1 r7(0 2

HOPO 4 2(HOpO 1 FOpD) L 22Oy 4 fr0yD 4 fOy@y 4 .

= DY AEDD + EOYD) + BEDYD B + B0y +
(9.21)
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This equation has the form

fe)=> b =0
k

e ()
7 \oek ) .

Since f(¢) is identically zero, the coefficients by all vanish. Thus, the coeffi-
cients of A% on the left-hand side of equation (9.21) are equal to the coefficients
of A¥ on the right-hand side. The coefficients of A° give equation (9.18) for the
unperturbed system. The coefficients of 4 yield

where

(HO — EOypD) = —(FO — gy ® (9.22)
while the coefficients of A2 give
(HO — B + (0~ BV = (i~ ED®  (023)

and so forth.

First-order corrections
To find the first-order correction E) to the eigenvalue E,, we multiply
equation (9.22) by the complex conjugate of ¥ and integrate over all space to
obtain
WO D) = ED O ) =~ O ) + B
where we have noted that (© is normalized. Since H® is hermitian, the first
integral on the left-hand side takes the form
<¢(0)|H(O)|¢(l)> - (H(O)W(O)W(l)> — E(O)W(O)W(l))
n n n n n n n
and therefore cancels the second integral on the left-hand side. The first-order
correction E(nl) is, then, the expectation value of the perturbation AV in the
unperturbed state
1 0)| 77D [0\ — £r(1
ED = (yPHV D) = H) (9.24)
The first-order correction (1 to the eigenfunction is obtained by multi-
plying equation (9.22) by the complex conjugate of w(,?) for k# n and
integrating over all space to give
07 0 07 0
WTHOW) = EDWL ) = — @ HO W) + ED @ [y)
(9.25)

Noting that the unperturbed eigenfunctions are orthogonal
@ Y) = O (9.26)
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applying the hermitian property of H© to the first term on the left-hand side,
and writing H') for ('] HO|yp©), we may express equation (9.25) as

(EY = EDY 1) = —HY,) (9:27)

The orthonormal eigenfunctions ]) for the unperturbed system are as-

sumed to form a complete set. Thus, the perturbation corrections () may be
expanded i f ©
panded in terms of the set Y

0 0 0
1/)(”1) = Z anﬂ/)( ) = annw( ) + Z anﬂ/)( )
J J(Fn)

where a,; are complex constants given by
= W ly) (9.28)

If the complete set of eigenfunctions for the unperturbed system includes a
continuous range of functions, then the expansion of 1/)(,!1) must include these
functions. The inclusion of this continuous range is implied in the summation
notation. The total eigenfunction 1, for the perturbed system to first order in 4
is, then

Y=+ P + 2> ayyt) (9.29)
J(F#n)
Since the function w(no) is already included in zero order in the expansion of
Y, we may, without loss of generality, set a,, equal to zero, so that

Y =" ay (9.30)
JF#n)
This choice affects the normalization constant of 1,, but has no other
consequence. Furthermore, equation (9.28) for j = n becomes

(WS 1) =0 (9:31)
showing that with a,, = 0, the first-order correction w(nl) is orthogonal to the
unperturbed eigenfunction y(?.

With the choice a,, = 0, the total eigenfunction ,, to first order is normal-
ized. To show this, we form the scalar product (v, ,) using equation (9.29)
and retain only zero-order and first-order terms to obtain

(Walen) = QW) + 4 (@@ ?) + @l Py
J(Fn)

=1+ (ay+ap)d, =1
J(#n)
where equation (9.26) has been used.
Substitution of equation (9.30) into (9.27) gives
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0 0)),,(0 0 £r(1
(E( ) E(O)) Z ( ) ( )> _ (E(k) _ E(nO))ank — _H(kn)
J(F#n)
where again equation (9.26) is utilized. If the eigenvalue E” is non-degen-
erate, then E'’ cannot equal E for all k and n and we can divide by
(E(O) E(,?)) to solve for a,,;

(1)
_Hkn
EY — EO
The situation where E(no) is degenerate requires a more complex treatment,

which is presented in Section 9.5. The first-order correction {1 is obtained by
combining equations (9.30) and (9.32)

~r(1
w(l) - _ Z H(kn) w(O) (9.33)
t @B -

Ak = (932)

Second-order corrections
The second-order correction E(z) to the eigenvalue E, is obtained by multi-
plying equation (9.23) by w(o) and integrating over all space

WO — EQW D) + P H O[S — EP @D ly'))
=~ (WP HDWY) + B
where the normalization of ¥’ has been noted. Application of the hermitian
property of H® cancels the first term on the left-hand side. The third term on

the left-hand side vanishes according to equation (9.31). Writing H(nzn) for
(WO H® |0 and substituting equation (9.33) then give

EQ = HE+ (| HOY)

) O EHOP
— H(Z) . Z nk*" kn — H(2) . Z kn (934)
(0) 0 nn (0) 0
k(#n) Ek - E(n) k(#n) Ek - E(n)

A ~ * ~
where we have also noted that H (nllz equals H (k]n) because HV is hermitian.

In many applications there is no second-order term in the perturbed
Hamiltonian operator so that [:I(Z) is zero. In such cases each unperturbed
eigenvalue E(O) is raised by the terms in the summation corresponding to
eigenvalues E( ) less than E(O) and lowered by the terms with eigenvalues E( )
greater than E(no). The elgenvalue E is perturbed to the greatest extent by the
terms with eigenvalues £¢” close to £, The contribution to the second-order
correction E(Z) of terms w1th elgenvalues far removed from E(O) is small. For
the lowest elgenvalue EE) ), all of the terms are negative so that E( ) is negative.
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We also see that, in these cases, the first-order correction (! to the eigenfunc-
tion determines the second-order correction E(z) to the eigenvalue.

To obtain the second-order perturbation correction 1@ to the eigenfunction,
we multiply equation (9.23) by w(o) for k£ # n and integrate over all space

0 0 0
W = EPWD) + W H ) = D@ y)
(O @O (2) {2y [(®)
(W [HZ1wy") + E (i [wy,)
As before, we apply the hermitian property of H©, introduce the abbreviation
H (,(2,1), and use the orthogonality relation (9.26) to obtain

(EY = EDW D) + @ HO D) — EDw[y)) = —HE) (935

We next expand the function ¥? in terms of the complete set of unperturbed
eigenfunctions 1/)(0)

P = Z b, 1/}0) (9.36)
J(Fn)

where, without loss of generality, the term j = n may be omitted for the same
reason that 1/1(,10) is omitted in equation (9.30). The coefficients b,; are complex
constants given by

= ) 1v) (9:37)
Substitution of equations (9.24), (9.28), (9.30), and (9.37) into (9.35) gives
(EY = EMbuc+ Y ayHy) — auH') = —H)
J(F#n)
or
B2+ S ay i) — ay i)

by = — sl (9.38)

(EY — ED)
Combining equations (9.32), (9.36), and (9.38), we obtain the final result

P = Z — i) n Z H(/;)HEL) B Y H) .
"G B - EY G (B — EONED — EO) (B - EOp |
(9.39)
Summary

The non-degenerate eigenvalue E, for the perturbed system to second order is
obtained by substituting equations (9.24) and (9.34) into (9.20) to give
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~ 0 () 21 @ _
E,~ EQ +AH) + 22| HY) = > FONT (9.40)
k(#n) =~k n
The corresponding eigenfunction 1, to second order is obtained by combining
equations (9.19), (9.33), and (9.39)

o)

~ o0 kn 0

Y~ Y k(;) 0 gk

@ (D) gD a
—1—122 A—FE: ng'Hjn B Han(l) y
0 0 0 o p
(T | EX — B (B — EVYEY — ED) (B — EQY
(9.41)

While the eigenvalue E(O) for the unperturbed system must be non-degen-
erate for these expansions to be valid, some or all of the other eigenvalues E(O)
for k # n may be degenerate. The summations in equations (9.40) and (9.41)
are to be taken over all states of the unperturbed system other than the state
YO, If an eigenvalue EEO) is g;-fold degenerate, then it is included g; times in
the summations. If the unperturbed eigenfunctions have a continuous range,
then the summations in equations (9.40) and (9.41) must include an integration
over those states as well.

Relation to variation method

If we use the wave function w(o) for the unperturbed ground state as a trial
function ¢ in the variation method of Section 9.1 and set H equal to
HO® + AHD, then we have from equations (9.2), (9.18), and (9.24)

= (9l H10) = (g H + A H W) = £ + 2E(

and # is equal to the first-order energy as determined by perturbation theory. If
we instead use a trial function ¢ which contains some parameters and which
equals wo % for some set of parameter values, then the corresponding energy &
from equation (9.2) is at least as good an approximation as E(O) + lE(l) to the
true ground-state energy.

Moreover, if the wave function 1/)(0) + /11/)(1) is used as a trial function ¢, then
the quantity # from equation (9.2) is equal to the second-order energy
determined by perturbation theory. Any trial function ¢ with parameters which
reduces to 1/J(0) + /11/1(1) for some set of parameter values yields an approximate
energy < from equation (9.2) which is no less accurate than the second-order
perturbation value.
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9.4 Perturbed harmonic oscillator

As illustrations of the application of perturbation theory we consider two
examples of a perturbed harmonic oscillator. In the first example, we suppose
that the potential energy V' of the oscillator is
V= %kx2 +oxt = %mwzx2 + ex?
where ¢ is a small quantity. The units of V are those of Zw (energy), while the
units of x are shown in equation (4.14) to be those of (%/ mw)'/?. Accordingly,
the units of ¢ are those of m*w3 /A and we may express c as
m*w?

h

c=41

where A is dimensionless. The potential energy then takes the form

m*w’x*

h

V= %mcuzx2 +A

(9.42)

The Hamiltonian operator H® for the unperturbed harmonic oscillator is
given by equation (4.12) and its eigenvalues £ and eigenfunctions (¥ are
shown in equations (4.30) and (4.41). The perturbation H' is

3.4

2

(9.43)

Higher-order terms H®, H® . in the perturbed Hamiltonian operator do
not appear in this example.

To find the perturbation corrections to the eigenvalues and eigenfunctions,
we require the matrix elements (n'|x*|n) for the unperturbed harmonic
oscillator. These matrix elements are given by equations (4.51). The first-order
correction E! to the eigenvalue E, is evaluated using equations (9.24), (9.43),
and (4.51c¢)

Am*w?

1 rr(1
B = i =

(n|x*|n) =3(n* + n +Hitw (9.44)

The second-order correction £?) is obtained from equations (9.34), (9.43), and
(4.51) as follows
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2r(1 ~r(1
Bz D & S P L 2 45 PO N £

B~ 0 B, - B0 B0 50 5~ 5D

’ 2

_/'tzm4w6 (n—4x*|n)?  (n—2x*n)? (n+2|x*n)? N (n + 4|x*|n)?
h? (—4hw) (—2hw) 2hw 4hw

—1(34n’ + 51n* + 59n + 21)A*hw (9.45)
The perturbed energy E, to second order is, then
o (0 1 2
E,~EY +E) + EQ

= (n+ Do +3(n* + n+ Hikio — {34n* + 51n* + 59n + 2D)A*
(9.46)

In the expression (9.45) for the second-order correction E(nz), the summation
on the right-hand side includes all states k other than the state n, but only for
the states (n —4), (n —2), (n+2), and (n + 4) are the contributions to the
summation non-vanishing. For the two lowest values of 7, giving Egz) and E(lz),
only the two terms k& = (n + 2) and k£ = (n + 4) should be included in the
summation. However, the terms for the meaningless values &k = (n — 2) and
k = (n — 4) vanish identically, so that their inclusion in equation (9.45) is
valid. A similar argument applies to Egz) and Egz), wherein the term for the
meaningless value k = (n —4) is identically zero. Thus, equation (9.46)
applies to all values of n and the perturbed ground-state energy FE,, for
example, is

Ey ~ (5434 — Yo

The evaluation of the first- and second-order corrections to the eigenfunc-
tions is straightforward, but tedious. Consequently, we evaluate here only the
first-order correction 1/)5)1) for the ground state. According to equations (9.33),

(9.43), and (4.51), this correction term is given by

£(1) £(1)
o Hy YO — Hyp e
TEO_ (O EO _ (O

_ Ao’ [(21x*40) ) <4|x |0> PO
h b ?

A (0) )
— 9.47
4\/» +\/_1/) ( )

If the unperturbed eigenfunctions 1/)(0) and w(o) as given by equation (4.41) are
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explicitly introduced, then the perturbed ground-state eigenfunction 1, to first
order is
maw

7h

As a second example, we suppose that the potential energy V for the
perturbed harmonic oscillator is

1/4
o~ P + i) = ( ) {1 - %(454 + 1282 — 9)] e ¥2 (9.48)

3.5 1/2
V =Li? + ox® = lmowix® + /1(’" - > s (9.49)

where ¢ = A(m*w/ #)!/? is again a small quantity and A is dimensionless. The
perturbation H' for this example is

) A oS\ 2
H =HY = ,1( - > x? (9.50)

The matrix elements (n'|x*|n) for the unperturbed harmonic oscillator are
given by equations (4.50). The first-order correction term E{ is obtained by

substituting equations (9.50) and (4.50e) into (9.24), giving the result

" BEPENTE .
E) =4 5 (n|x’|n) =0 (9.51)

Thus, the first-order perturbation to the eigenvalue is zero. The second-order
term E(nz) is evaluated using equations (9.34), (9.50), and (4.50), giving the
result

E, ~ E%
rr(1 (1 rr(1 rr(1
|I—I(nl3,n|2 |H(nzl,n|2 |H(nJ)rl,n|2 |I—I(ni3,n|2

TO) 0 0 0 0 O] 0
E)s—EY  E) —EY EN -EY E), - ED

_/12m3a)5 (n=3|x3|n)?  (n—13|n)?  (n+1]x%|n)? . (n+3|x3|n)?
h (—3%hw) (—hw) hw 3w

= —1(30n* 4+ 30n + 1 HA*hw (9.52)

9.5 Degenerate perturbation theory

The perturbation method presented in Section 9.3 applies only to non-degen-
erate eigenvalues £ of the unperturbed system. When £ is degenerate, the
denominators vanish for those terms in equations (9.40) and (9.41) in which
E(ko) is equal to E(no), making the perturbations to £, and v, indeterminate. In
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this section we modify the perturbation method to allow for degenerate
eigenvalues. In view of the complexity of this new procedure, we consider only
the first-order perturbation corrections to the eigenvalues and eigenfunctions.
The eigenvalues and eigenfunctions for the unperturbed system are given by
equation (9.18), but now the eigenvalue E is g,-fold degenerate. Accord-
ingly, there are g, eigenfunctions with the same eigenvalue E. For greater
clarity, we change the notation here and denote the eigenfunctions correspond-

ing to £ as 9 o =1,2,..., g, Equation (9.18) is then replaced by the
equivalent expression
HOpO = gOry© a=1,2,..., g (9.53)

Each of the eigenfunctions 1(?) is orthogonal to all the other unperturbed
eigenfunctions 1/)(,(0; for k # n, but is not necessarily orthogonal to the other
eigenfunctions for E(,?). Any linear combination ¢ ,, of the members of the set

Voo
&En ©
Pra= cap¥ly  a=12,....g, (9.54)
A=1

is also a solution of equation (9.53) with the same eigenvalue E(no). As
discussed in Section 3.3, the members of the set 1(®) may be constructed to be
orthonormal and we assume that this construction has been carried out, so that

YOO =0up. @ B=12,.... g, (9.55)

By suitable choices for the coefficients c,g in equation (9.54), the functions
¢ nq May also be constructed as an orthonormal set

<¢nﬁ|¢na> = 6(1[3, a, ﬂ = 1, 2, ooy & (956)
Substitution of equation (9.54) into (9.56) and application of (9.55) give

g
Z c;)fyca,, = Oup> a,f=1,2,...,g (9.57)
y=l1

The Schrdodinger equation for the perturbed system is

Hppa = Enanas a=1,2,..., g (9.58)

where the Hamiltonian operator H is given by equation (9.16), E,, are the
eigenvalues for the perturbed system, and ,, are the corresponding eigen-
functions. While the unperturbed eigenvalue E(no) is g,-fold degenerate, the
perturbation A’ in the Hamiltonian operator often splits the eigenvalue E(no)
into g, different values. For this reason, the perturbed eigenvalues E,, require
the additional index a. The perturbation expansions of E,, and 1, in powers
of 4 are
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Eny = EO +2ED 4 22ED 4 ... a=1,2,..., g (9.59)
Voo = PO + 200 4+ 2292 4. a=1,2,..., g, (9.60)

Note that in equation (9.59) the zero-order term is the same for all values of a.

In the limit A — 0, the Hamiltonian operator H approaches the unperturbed
operator H®O and the perturbed eigenvalue E,, approaches the degenerate
unperturbed eigenvalue E(no). The perturbed eigenfunction v,, approaches a
function which satisfies equation (9.53), but this limiting eigenfunction may
not be any one of the initial functions (). In general, this limiting function is
some linear combination of the initial unperturbed eigenfunctions y'%, as
expressed in equation (9.54). Thus, along with the determination of the first-
order correction terms E{) and (), we must find the set of unperturbed
eigenfunctions ¢ to which the perturbed eigenfunctions reduce in the limit
A — 0. In other words, we need to evaluate the coefficients c,g in the linear
combinations (9.54) which transform the initial set of unperturbed eigenfunc-
tions 1/)(0) into the ‘correct’ set gb(o) Equation (9.60) is then replaced by

Yoo = P+ 2P0 + 2P0+, a=1,2,..., g (9.61)
The first-order equations (9.22) and (9.24) apply here provided the additional

index a and the ‘correct’ unperturbed eigenfunctions are used

(I:I(O) _ E(nO))w(nl(z _ _(f_[(l) _ E(l))¢(0) (9.62)

EY = (0| 7V |p') (9.63)

However, equation (9.63) for the first-order corrections to the eigenvalues
cannot be used directly at this point because the functions qb(o) are not known.

To find E(nlg we multiply equation (9.62) by 1/)(,1(2 , the complex conjugate of
one of the initial unperturbed eigenfunctions belonging to the degenerate
eigenvalue E(no), and integrate over all space to obtain

01 01
W = EOI) = YO - B

Applying the hermitian property of H®, we see that the left-hand side
vanishes. Substitution of the expansion (9.54) for ¢?) using y as the dummy
expansion index gives

8n

o
> cay (W HD — EQ)lp0) = aB=1,2 ..., g
y=1

If we introduce the abbreviation
1 _ 0
H(ngny (p ()|H(1)|¢(O)>a B,y=1,2,..., g,

and apply the orthonormality condition (9.55), this equation takes the form
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g"
£r(1 1

> ca(H),, — ENop) =0,  a,f=1,2,..., g (9.64)

y=1
Note that the integrals I:I(,IIC)L’W are evaluated with the known initial set of
unperturbed eigenfunctions, in contrast to the integrals in equation (9.63),
which require the unknown functions ¢%). For a given eigenvalue E), the
expression (9.64) is a set of g, linear homogeneous simultaneous equations,

one for each value of S (B =1,2, ..., g,)

- = » -
B=1:ca(H\) 1 — B+ car )y + cas H'Y 5 + -+ + cag, HYY Ly =0
", » o o
B =2t car ) 1+ car(H'Y 1y — ED) 4 cas HY 5 + - + cag, H' . =0
rr(l ~(1 ~ (1 A
B=gn CalH(ng)n,nl + CazH(ng)n,HZ + ca3H(ng),,,n3 4+ 4 cagn(H(nlg),,,ngn _ E(nlo)t)
=0

Equation (9.64) has the form of (9.13) with the coefficients ¢, correspond-
ing to the unknown quantities x; and the terms (H (nlﬁ) wy E%éﬁy) correspond-
ing to the coefficients ay;. Thus, a non-trivial solution for the g, coefficients

cay (v =1,2,..., g,) exists only if the determinant with elements (H (nl[; —
E(S4,) vanishes
(1 1 (1) 1
Hnl,nl - E(no)z Hnl,n2 T Hnl,ng,,
(1) (1) 1 (1)
Hp i Hp o — E(no)z e Hip ng, =0 (9.65)
1) 1) 1 1
Hng,,,nl Hngn,nZ T H(ng),,,ng,, - E(nc)l

Only for some values of the first-order correction term E) is the secular
equation (9.65) satisfied. This secular equation is of degree g, in E(nlg[, giving
g, roots

ENEY, . ED

nl» ngn
all of which are real because H) is hermitian. The perturbed eigenvalues to
first order are, then

En = EY 4 2EW

0 1
Eup, = B0+ B8
If the g, roots are all different, then in first order the g,-fold degenerate

unperturbed eigenvalue £ is split into g, different perturbed eigenvalues. In
this case, the degeneracy is removed in first order by the perturbation. We
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assume in the continuing presentation that all the roots are indeed different
from each other.

‘Correct’ zero-order eigenfunctions
The determination of the coefficients ¢, is not necessary for finding the first-
order perturbation corrections to the eigenvalues, but is required to obtain the
‘correct’ zero-order eigenfunctions and their first-order corrections. The coeffi-
cients ¢, for each value of a (a =1, 2, ..., g,) are obtained by substituting
the value found for E(nlO)L from the secular equation (9.65) into the set of
simultaneous equations (9.64) and solving for the coefficients ¢y, ..., cqg, in
terms of ¢,;. The normalization condition (9.57) is then used to determine c;.
This procedure uniquely determines the complete set of coefficients ¢, (a,
y=1,2,..., g») because we have assumed that all the roots E(nl(z are different.
If by accident or by clever choice, the initial set of unperturbed eigenfunc-
tions % is actually the ‘correct’ set, i.e., if in the limit A — 0 the perturbed
eigenfunction ,,, reduces to %) for all values of a, then the coefficients cq,
are given by c,;, = 0, and the secular determinant is diagonal

1) 1
Hnl,nl - E(n(g 0 e 0
(D) 1
0 Hyp o = E oo 0 —0
1 1
0 O B

The first-order corrections to the eigenvalues are then given by
ES = H') a=12...,g (9.66)

na,na’

It is obviously a great advantage to select the ‘correct’ set of unperturbed
eigenfunctions as the initial set, so that the simpler equation (9.66) may be
used. A general procedure for achieving this goal is to find a hermitian operator
A that commutes with both 7©® and A and has eigenfunctions y, with non-
degenerate eigenvalues u,, so that

[4, HO]=1[4, HV]1=0 (9.67)
and
IZIX(X = UaXa
Since 4 and H© commute, they have simultaneous eigenfunctions. Therefore,
we may select x1, x2, ..., Xg, as the initial set of unperturbed eigenfunctions
(,,OO)L:Xa, a=1,2,..., g,

We next form the integral (y5|[4, H"]|y.) (B # a), which of course vanishes
according to equation (9.67),
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(pllAd, H™Mxa) = Gpl A HV o) — (gl O Ala)
= (Al HOra) — s tpl HO )
= (up — )W HO 10
- (//tﬁ - Aua)H(n[; na
=0
Since ug # Uq, the off-diagonal elements HY nfonat equal zero and the set of
functions (¥ =y, is the ‘correct’ set. The parity operator IT discussed in

Section 3.8 can often be used in this context for selecting ‘correct’ unperturbed
eigenfunctions.

First-order corrections to the eigenfunctions
To obtain the first- order corrections 1/)(1) to the eigenfunctions v ,,,, we multiply
equation (9.62) by w(o) for k # n and integrate over all space

<w(°)\H(°)—E(°)\w“)> —(WSgl HO90) + Ey (°)|¢(°)>

Applying the hermitian property of H® and noting that 1/) ) is orthogonal to
all eigenfunctions belonging to the eigenvalue £, © we have

(E(O) E(O))W(O)W(l)) <(0)|H(1)|¢(0)> (9.68)

We next expand the first-order correction ¢! in terms of the complete set of
unperturbed eigenfunctions

ph =3 Z iy (9.69)

JEn) y=

where the terms with j = n are omitted for the same reason that they are
omitted in equation (9.30). Substitution of equations (9.54) and (9.69) into
(9.68) gives

gn
() 0 (0) (0) (0]
(Ek ( )) Z Z Ana, jy 1/) > Z CGVHkﬂ,ny

JGFn) y= r=1
In view of the orthonormality relations, the summation on the left-hand side
may be simpliﬁed as follows

Z Z Ana, jy w(o) (0) Z Z Ana,jyOkiOpy = Ana,kp

JGEn) y=1 JGEn) v=

Therefore, we have
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Ao,k = (9.70)

The eigenfunctions 1, for the perturbed system to first order are obtained by
combining equations (9.61), (9.69), and (9.70)

=1 Q)
Ve = ¢(noO)L _2 14 Y, (9.71)
k;) = Y —ED) Y

Example: hydrogen atom in an electric field

As an illustration of the application of degenerate perturbation theory, we
consider the influence, known as the Stark effect, of an externally applied
electric field # on the energy levels of a hydrogen atom. The unperturbed
Hamiltonian operator H® for the hydrogen atom is given by equation (6.14),
and its eigenfunctions and eigenvalues are given by equations (6.56) and
(6.57), respectively. In this example, we label the eigenfunctions and eigenva-
lues of H©® with an index starting at 1 rather than at 0 to correspond to the
principal quantum number n. The perturbation H' is the potential energy for
the interaction between the atomic electron with charge —e and an electric field
¢ directed along the positive z-axis

H = HY = ¢z = eXrcosh (9.72)

If spin effects are neglected, the ground-state unperturbed energy level E(lo)
is non-degenerate and its first-order perturbation correction E(ll) is given by
equation (9.24) as

EV = e (1sz|1s) = 0

This integral vanishes because the unperturbed ground state of the hydrogen
atom, the 1s state, has even parity and z has odd parity.

The next lowest unperturbed energy level E(20), however, is four-fold degen-
erate and, consequently, degenerate perturbation theory must be used to
determine its perturbation corrections. For simplicity of notation, in the
quantities 9, ¢ and I:I(nl(i qp We drop the index n, which has the value
n = 2 throughout. As the initial set of eigenfunctions for the unperturbed
system, we select the 2s, 2pg, 2p;, and 2p_; atomic orbitals as given by
equations (6.59) and (6.60), so that
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v =ps v = o)
(9.73)
Wi =12p), vy =[2p-)
The ‘correct’ set of unperturbed eigenfunction gbg?) are, then
4
PV =" cap’ = car|25) + caa|2p0) + casl2p1) + casl2p 1),
p=1
a=1,2,3,4 (9.74)
The matrix elements H (lﬂ) in this example are
Hyy = e (yQ1zly’) = e (wQ|rcos O]y
27 T OO N
- e/J J J Y i r cos 017 sin 0 dr d6 de (9.75)
0 JolJo

These matrix elements vanish unless Am =0 and Al =1. Thus, only the
matrix element /1) 12 » which equals HS) [ » 1s non-zero.
To evaluate the matrix element / (1 5, we substitute the 2s wave function from
equation (6.59) and the 2p, wave function from equation (6.60a) into (9.75)
27T

(o'e} JT
HY) = HY) = eéf[ﬂ(zao)“]‘J r4<1 - L>e’/ao er cos?0 sinOdQJ dg

= —3efay

where equations (A.26) and (A.28) are used.
The secular determinant (9.65) is

—E" —3efa; 0 0

—3efay —EY 0 0 | _,
0 0 -EP 0 |
0 0 0o —£Y

which expands to
[(E)? — BeZ ap))(EP)? =0

The four roots are E(l) —3ef ay, 3e£ag, 0, 0, so that to first order the
perturbed energy levels are

—e —e
Ey = —3e? Ey =
21 8aq ec dy, 23 8aq
(9.76)
12 ) _eIZ
Ezz == + 365610, E24 =
8ag 8ay

The four linear homogeneous simultaneous equations (9.64) are
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rr(l
—cal ED - cnHY) =0

rr(1
CalH(lz) — CazEg) =0

(9.77)
—czEV =0
—Ca4Eg) =0
To find the ‘correct’ set of unperturbed eigenfunctions ¢”), we substitute first
E(zl) = —3e® ay, then successively Egl) = 3eZ ay, 0, 0 into the set of equations
(9.77). The results are as follows
for E(l) H(llz) = —3efap: cr=cync3=c4=0
for E(zl) = —I:I(llz) = 3eZ ay: c1=—cpc3=c4=0
for E(zl) =0: c1 = ¢ = 0; ¢35 and ¢4 undetermined
Thus, the ‘correct’ unperturbed eigenfunctions are
0 _
1" =27"2(2s) + |2po))
) _ H—1/2
Py =27"7%(|2s) — 2po))
o (9.78)
¢ =|2p1)
Y =12p1)

The factor 2~'/2 is needed to normalize the ‘correct’ eigenfunctions.

9.6 Ground state of the helium atom

In this section we examine the ground-state energy of the helium atom by
means of both perturbation theory and the variation method. We may then
compare the accuracy of the two procedures.

The potential energy V for a system consisting of two electrons, each with
mass m. and charge —e, and a nucleus with atomic number Z and charge + Ze
is

r r r12
where r; and r, are the distances of electrons 1 and 2 from the nucleus, 7, is
the distance between the two electrons, and ¢’ = e for CGS units or
e'=e/ (47weg)'/? for SI units. If we assume that the nucleus is fixed in space,
then the Hamiltonian operator for the two electrons is

A h Ze'*  Ze'* e
iH=- (V2+v2)—i—i+e— (9.79)
r 1Y) r2
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The operator H applies to He for Z = 2, Lit for Z = 3, Be?t for Z = 4, and
so forth.

Perturbation theory treatment
We regard the term e'? /r12 in the Hamiltonian operator as a perturbation, so

that
A~ N e’2
H =HY=— (9.80)
r2

In reality, this term is not small in comparison with the other terms so we
should not expect the perturbation technique to give accurate results. With this
choice for the perturbation, the Schrodinger equation for the unperturbed
Hamiltonian operator may be solved exactly.

The unperturbed Hamiltonian operator is the sum of two hydrogen-like
Hamiltonian operators, one for each electron

7O = 7O 4 FO

where
[A_](O) ﬁ 2 i Ze’z
1 - 2 1
e ry
. h? Ze'?
C
2me 12}

If the unperturbed wave function y(? is written as the product

0 0

YO, 1) = )Yy ()

and the unperturbed energy E£© is written as the sum
EO = B + EY
then the Schrodinger equation for the two-electron unperturbed system
HOO(ry, 1) = EpO(ry, 1)

separates into two independent equations,

©,,0) _ 1(0),,(0) -

H7 vy, =E;"y, ", i=1,2

which are identical except that one refers to electron 1 and the other to electron
2. The solutions are those of the hydrogen-like atom, as discussed in Chapter 6.
The ground-state energy for the unperturbed two-electron system is, then, twice
the ground-state energy of a hydrogen-like atom

Z2 12 22 12
EO _2< ¢ ) __zc¢ (9.81)
2610 ap

The ground-state wave function for the unperturbed two-electron system is the
product of two 1s hydrogen-like atomic orbitals



258 Approximation methods

Table 9.1. Ground-state energy of the helium

atom
Method Energy (eV) % error
Exact -79.0
Perturbation theory:
E© —108.8 -37.7
E® + ED ~74.8 +53
Variation theorem (&) —717.5 +1.9

172\ AN
w(o)(rh l‘z) —— <_> eerl/aoeerz/ao - _ <_> ef(p1+p2)/2 (982)
T \ o T\ 4o

where we have defined
27r i

pi = , i=1,2 (9.83)
ao

The first-order perturbation correction EV) to the ground-state energy is
obtained by evaluating equation (9.24) with (9.80) as the perturbation and
(9.82) as the unperturbed eigenfunction

2 27
€ 1,0\ _22 /[ o
v > 2 <w

where p1, = |p2 — pi1| and where

e'?
P12

Ze'?
1/)(0)> -z PRACED

e—(P1+p2)
I = J T J P p%p% sin 0 sin 6, dp1 do, d(pl dp2 dé, d(/J2 (985)
12

This six-fold integral / is evaluated in Appendix J and is equal to 20s7%. Thus,
we have

5Ze'"? 5
ED =" = = FO 9.86
8610 87 ( )
The ground-state energy of the perturbed system to first order is, then
57\ e
E=E9+ED = <22 - —> ° (9.87)
8 ao

Numerical values of £© and E® + EM for the helium atom (Z = 2) are
given in Table 9.1 along with the exact value. The unperturbed energy value
E© has a 37.7% error when compared with the exact value. This large
inaccuracy is expected because the perturbation H' in equation (9.80) is not
small. When the first-order perturbation correction is included, the calculated
energy has a 5.3% error, which is still large.
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Variation method treatment
As a normalized trial function ¢ for the determination of the ground-state
energy by the variation method, we select the unperturbed eigenfunction
Y O(ry, ) of the perturbation treatment, except that we replace the atomic
number Z by a parameter Z’

b =192

1 Zy 3/2 3 ,r
b1 zm<_> e~ 2@ (9.88)

ap

1 /z\"*
¢2 —_ _ e—Z }’z/a()
.7'[1/2 ag

The parameter Z' is an effective atomic number whose value is determined by
the minimization of £ in equation (9.2). Since the hydrogen-like wave func-
tions ¢; and ¢, are normalized, we have

(P1]91) = (P2lgp2) = 1 (9.89)
The quantity # is obtained by combining equations (9.2), (9.79), (9.88), and

(9.89) to give
¢1> + <¢2 ¢2>

~(#]-;
<¢1¢2 ¢1¢2> (9.90)

Note that while the trial function ¢ = ¢;¢, depends on the parameter Z’, the
Hamiltonian operator contains the true atomic number Z. Therefore, we rewrite
equation (9.90) in the form

K2 Ze’2

e

hZ 5 Ze/Z

2me 2 12}

VZ

r2

2 r 12 r_ 12
<¢1 h Vl—Ze ¢1>+<¢1 %‘P»
W, Z'e? — Z)e"
+<¢2 —2—meV§— ¢ ¢2>+<¢2 T)e ¢2>
,2
<¢1¢2 ¢1¢2> (9.91)

The first term on the right-hand side is just the energy of a hydrogen-like atom
with nuclear charge Z', namely, —Z'?¢’?/2a,. The third term has the same
value as the first. The second term is evaluated as follows
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7' — Z)e'? 1 /2N ,
<¢1‘—( - )e ¢1> :(Z’—Z)e’2—<—> J rile 24 r‘/"°4mf%dr1

T\ 4o 0

ZI
= (Z' — Z)e'* =
ao

where equations (A.26) and (A.28) have been used. The fourth term equals the
second. The fifth term is identical to E() of the perturbation treatment given by
equation (9.86) except that Z is replaced by Z’ and therefore this term equals
5Z'e'?/8ay. Thus, the quantity ¢ in equation (9.91) is

Z/Z 12 Z/ Zr -7 12 SZ’ 2 12
P N CITE D
2610 ap 8610 ag

(9.92)

We next minimize ¢ with respect to the parameter Z’

d& , e'?
=27~ (Z -1 =0
ap

dz’'
so that
7'=7Z-3%
Substituting this result into equation (9.92) gives
12
£ =—(Z- 15—6)22 = E, (9.93)
0

as an upper bound for the ground-state energy E.
When applied to the helium atom (Z = 2), this upper bound is

2

| 27\ %e"? 2

% = —(—) ¢ _ 285 (9.94)
16 ap ao

The numerical value of # is listed in Table 9.1. The simple variation function
(9.88) gives an upper bound to the energy with a 1.9% error in comparison
with the exact value. Thus, the variation theorem leads to a more accurate
result than the perturbation treatment. Moreover, a more complex trial function
with more parameters should be expected to give an even more accurate
estimate.

Problems

9.1 The Hamiltonian operator for a hydrogen atom in a uniform external electric
field E along the z-coordinate axis is

[:1:__ﬁzv2_e,2

—eE
2 -~ ekEz
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Use the variation trial function ¢ = s (1 +Az), where A is the variation
parameter, to estimate the ground-state energy for this system.
9.2 Apply the gaussian function

¢ _ e—lrz/a(z)

where A is a parameter, as the variation trial function to estimate the energy of
the ground state of the hydrogen atom. What is the percent error?

9.3 Apply the variation trial function ¢(x) = x(a — x)(a — 2x) to estimate the energy
of a particle in a box with V(x) =0 for 0 =< x < a, V(x) = oo for x <0, x> a.
To which energy level does this estimate apply?

9.4 Consider a particle in a one-dimensional potential well such that

V(x) = (bh? ) ma*)x(x — a), 0<x<ua
= 00, x<0,x>a

where b is a dimensionless parameter. Using the particle in a box with V(x) =0
for 0 < x < a, V(x) = oo for x <0, x> a as the unperturbed system, calculate
the first-order perturbation correction to the energy levels. (See Appendix A for
the evaluation of the resulting integrals.)

9.5 Consider a particle in a one-dimensional potential well such that

V(x) = (bh? ) ma’)x, 0<x<a
= 00, x<0,x>a

where b is a dimensionless parameter. Using the particle in a box with V' (x) =0
for 0 < x < a, V(x) = oo for x <0, x> a as the unperturbed system, calculate
the first-order perturbation correction to the energy levels. (See Appendix A for
the evaluation of the resulting integral.)

9.6 Calculate the second-order perturbation correction to the ground-state energy for
the system in problem 9.5. (Use integration by parts and see Appendix A for the
evaluation of the resulting integral.)

9.7 Apply the linear variation function

¢ = c1(2/a)? sin(x/a) + ¢2(2/a)'/? sin(2x/ a)
for 0 = x < a to the system in problem 9.5. Set the parameter b in the potential
equal to 712 /8. Solve the secular equation to obtain estimates for the energies £
and E, of the ground state and first-excited state. Compare this estimate for E)

with the ground-state energies obtained by first-order and second-order perturba-
tion theory. Then determine the variation functions ¢, and ¢, that correspond to

E, and E.
9.8 Consider a particle in a one-dimensional champagne bottle? for which
V(x) = (7*h*/8ma?) sin(wx/a), 0<x<ua
= x<0,x>a

2 G.R. Miller (1979) J. Chem. Educ. 56, 709.
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9.9

9.10

Approximation methods

Calculate the first-order perturbation correction to the ground-state energy level
using the particle in a box with V(x) =0 for 0 < x < a, V(x) = oo for x <0,
x>a as the unperturbed system. Then calculate the first-order perturbation
correction to the ground-state wave function, terminating the expansion after the
term k = 5. (See Appendix A for trigonometric identities and integrals.)

Using first-order perturbation theory, determine the ground-state energy of a
hydrogen atom in which the nucleus is not regarded as a point charge. Instead,
regard the nucleus as a sphere of radius b throughout which the charge +e is
evenly distributed. The potential of interaction between the nucleus and the
electron is

_6'2 1’2
V(r) = 55 (3_ﬁ>’ 0sr<b»b

= r>b

The unperturbed system is, of course, the hydrogen atom with a point nucleus.
(Inside the nuclear sphere, the exponential

e 20 = 1 —2r/ag)+ 2r*[ag) — ---
may be approximated by unity because r is very small in that region.)

Using first-order perturbation theory, show that the spin—orbit interaction energy
for a hydrogen atom is given by

1

30| B | ———
n(l+)(1+1)

for j=1+4,1#0

Ak

1 for j=1-14,1#0

nl(l +1)
The Hamiltonian operator is given in equation (7.33), where H, represents the
unperturbed system and Hy, is the perturbation. Use equations (6.74) and (6.78)
to evaluate the expectation value of §(7).
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Molecular structure

A molecule is composed of positively charged nuclei surrounded by electrons.
The stability of a molecule is due to a balance among the mutual repulsions of
nuclear pairs, attractions of nuclear—electron pairs, and repulsions of electron
pairs as modified by the interactions of their spins. Both the nuclei and the
electrons are in constant motion relative to the center of mass of the molecule.
However, the nuclear masses are much greater than the electronic mass and, as
a result, the nuclei move much more slowly than the electrons. Thus, the basic
molecular structure is a stable framework of nuclei undergoing rotational and
vibrational motions surrounded by a cloud of electrons described by the
electronic probability density.

In this chapter we present in detail the separation of the nuclear and
electronic motions, the nuclear motion within a molecule, and the coupling
between nuclear and electronic motion.

10.1 Nuclear structure and motion

We consider a molecule with €2 nuclei, each with atomic number Z, and mass
My(a=1,2,...,Q), and N electrons, each of mass m.. We denote by Q the
set of all nuclear coordinates and by r the set of all electronic coordinates. The
positions of the nuclei and electrons are specified relative to an external set of
coordinate axes which are fixed in space.

The Hamiltonian operator H for this system of Q + N particles may be
written in the form

H=To+Vo+ i, (10.1)

where T, o 1s the kinetic energy operator for the nuclei

263
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X Q yv2

To=—#? ;ﬁ (10.2)
Vo is the potential energy of interaction between nuclear pairs

Q 2
ZyZ
Vo= E Lalpe (10.3)
v,
a<p=1 af

and H., is the electronic Hamiltonian operator

R ﬁ2 N 5 Q N 7 e

a=1 i=1

12

N e,z
+ — 10.4

i;j—l Fij 109
The symbols Vi and Vlz. are, respectively, the laplacian operators for a single
nucleus and a single electron. The variable 7,4 is the distance between nuclei a
and f3, r,; the distance between nucleus a and electron i, and r; the distance
between electrons i and j. The summations are taken over each pair of
particles. The quantity e’ is equal to the magnitude of the electronic charge e in
CGS units and to e/(47eg)'/? in SI units, where & is the permittivity of free
space.

The Schrodinger equation for the molecule is

HY¥(r, Q) = E¥(r, Q) (10.5)

where W(r, Q) is an eigenfunction and E the corresponding eigenvalue. The
differential equation (10.5) cannot be solved as it stands because there are too
many variables. However, approximate, but very accurate, solutions may be
found if the equation is simplified by recognizing that the nuclei and the
electrons differ greatly in mass and, as a result, differ greatly in their relative
speeds of motion.

Born—Oppenheimer approximation
The simplest approximate method for solving the Schrodinger equation (10.5)
uses the so-called Born—Oppenheimer approximation. This method is a two-
step process. The first step is to recognize that the nuclei are much heavier than
an electron and, consequently, move very slowly in comparison with the
electronic motion. Thus, the electronic part of the Schrodinger equation may
be solved under the condition that the nuclei are motionless. The resulting
electronic energy may then be determined for many different fixed nuclear
configurations. In the second step, the nuclear part of the Schrodinger equation
is solved by regarding the motion of the nuclei as taking place in the average
potential field created by the fast-moving electrons.

In the first step of the Born—Oppenheimer approximation, the nuclei are all
held at fixed equilibrium positions. Thus, the coordinates Q do not change with
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time and the kinetic energy operator 7, o in equation (10.2) vanishes. The
Schrédinger equation (10.5) under this condition becomes

(He + Vo)i(r, Q) = £(Q)yi(r, Q) (10.6)

where the coordinates Q are no longer variables, but rather are constant
parameters. For each electronic state k, the electronic energy &,(Q) of the
molecule and the eigenfunction ¥ ,(r, Q) depend parametrically on the fixed
values of the coordinates Q. The nuclear—nuclear interaction potential Vy is
now a constant and its value is included in &,(Q).

We assume in this section and in Section 10.2 that equation (10.6) has been
solved and that the eigenfunctions y,(r, Q) and eigenvalues ¢,(Q) are known
for any arbitrary set of values for the parameters Q. Further, we assume that the
eigenfunctions form a complete orthonormal set, so that

Jwi‘(r, Qui(r, Q)dr = b, (10.7)

In the second step of the Born—Oppenheimer approximation, the energy
£:(Q) is used as a potential energy function to treat the nuclear motion. In this
case, equation (10.5) becomes

[To + e Qr(Q) = Enin(Q) (10.8)

where the nuclear wave function y,,(Q) depends on the nuclear coordinates Q
and on the electronic state x. Each electronic state x gives rise to a series of
nuclear states, indexed by v. Thus, for each electronic state x, the eigenfunc-
tions of [T o + &:(Q)] are y,,(Q) with eigenvalues E,. In practice, the nuclear
states are differentiated by several quantum numbers; the index v represents,
then, a set of these quantum numbers. In the solution of the differential
equation (10.8), the nuclear coordinates Q in &,.(Q) are treated as variables.
The nuclear energy E,,, of course, does not depend on any parameters. Most
applications of equation (10.8) are to molecules in their electronic ground
states (k = 0).

In the original mathematical treatment! of nuclear and electronic motion, M.
Born and J. R. Oppenheimer (1927) applied perturbation theory to equation
(10.5) using the kinetic energy operator T o for the nuclei as the perturbation.
The proper choice for the expansion parameter is A = (m./M)'/*, where M is
the mean nuclear mass

M==>" M,
Q a=1
When terms up to A% are retained, the exact total energy of the molecule is

I M. Born and J. R. Oppenheimer (1927) Ann. Physik 84, 457.
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approximated by the energy FE,, of equation (10.8) and the eigenfunction
W(Q, r) is approximated by the product

Y(Q, r) = 1 (QYi(Q, 1) (10.9)

Perturbation terms in the Hamiltonian operator up to A* still lead to the
uncoupling of the nuclear and electronic motions, but change the form of the
electronic potential energy function in the equation for the nuclear motion.
Rather than present the details of the Born—Oppenheimer perturbation expan-
sion, we follow instead the equivalent, but more elegant procedure? of M. Born
and K. Huang (1954).

Born—Huang treatment

Under the assumption that the Schrodinger equation (10.6) has been solved for
the complete set of orthonormal eigenfunctions ¥,(r, Q), we may expand the
eigenfunction W(r, Q) of equation (10.5) in terms of y,(r, Q)

W(r, Q) = > 7 (Quar, Q) (10.10)
A

where y,(Q) are the expansion coefficients. Substitution of equation (10.10)
into (10.5) using (10.1) gives

> (To+ Vo+ He — E)pu(Qys(r, Q) =0 (10.11)
A

where the operators have been placed inside the summation. Since the operator
H, commutes with the function x,(Q), we may substitute equation (10.6) into
(10.11) to obtain

> [To+ex(Q) — ENa(Q)ya(r, Q) = 0 (10.12)

A

We next multiply equation (10.12) by ¥ (r, Q) and integrate over the set of
electronic coordinates r, giving

3 Jw,’s(r, Qo (Qya(r, Qldr + [£(Q) — Elf(@ =0 (10.13)
2

where we have used the orthonormal property (equation (10.7)). The operator
To acts on both functions in the product y;(Q)y;(r, Q) and involves the

second derivative with respect to the nuclear coordinates Q. To expand the

expression T ol (Q)y;(r, Q)], we note that

2 M. Born and K. Huang (1954) Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford),
pp. 406-7.
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Vxy = Vo +xVay
Vaxy = Vo + (Ve + 2Vay - Vay

Therefore, we obtain

Q
. 1
Tolu(Quya(r, Q1 = =4 > 537 Vel (Qya(r, Q)]
a=1 a
= y(r, Q) Tx2(Q) + 22(Q) Toy(r, Q)
Q
1
2
—h ; 1. Vo Q- Vayu(r. Q (10.14)
Substitution of equation (10.14) into (10.13) yields
[To + &d(Q) — El(Q) + Y _(cra + A)xa(Q) = 0 (10.15)
A
where the coefficients c¢,;(Q) and the operators /A\,c,l are defined by
6(Q) = Jw,f(r, Q) Toy(r, Q) dr (10.16)
A 2 < 1 *
Ay = ;ﬁjw (r, QVapu(r, Qdr-V,  (10.17)

and equation (10.7) has been used. Since we have assumed that the electronic
eigenfunctions ¥, (r, Q) are known for all values of the parameters Q, the
coefficients ¢,1(Q) and the operators lA\,d may be determined. The set of
coupled equations (10.15) for the functions x,(Q) is exact.

The integral I contained in the operator /A\,m is

I= Jw,’:(r, QV.yu(r, Q)dr

For stationary states, the eigenfunctions 3, (r, Q) may be chosen to be real
functions, so that this integral can also be written as

I =1Vt QF ar

According to equation (10.7), the integral / vanishes and, therefore, we have
Ay = 0.
We now write equation (10.15) as

[To+ UdQ) — E}e(Q) + Y _ (¢ + A)a(Q) = 0 (10.18)
A(x)
where U,(Q) is defined by
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UQ) = &(Q) + cu(Q) (10.19)

The first term on the left-hand side of equation (10.18) has the form of a
Schrédinger equation for nuclear motion, so that we may identify the expansion
coefficient y,.(Q) as a nuclear wave function for the electronic state k. The
second term couples the influence of all the other electronic states to the
nuclear motion for a molecule in the electronic state .

If the coefficients ¢,(Q) and c¢,;(Q) and the operators A,d are sufficiently
small, the summation on the left-hand side of equation (10.18) and ¢,(Q) in
(10.19) may be neglected, giving a zeroth-order equation for the nuclear
motion

[To+ Q) — EQILN(Q) = 0 (10.20)

where ¥(9(Q) and E'© are the zeroth-order approximations to the nuclear wave
functions and energy levels. The index v represents a set of quantum numbers
which determine the nuclear state. The neglect of these coefficients and
operators is the Born—Oppenheimer approximation and equation (10.20) is
identical to (10.8). Furthermore, the molecular wave function W(r, Q) in
equation (10.10) reduces to the product of a nuclear and an electronic wave
function as shown in equation (10.9).

When the coupling coefficients c,; for k¥ # A and the coupling operators A

are neglected, but the coefficient c,,(Q) is retained, equation (10.18) becomes
[To + UdQ) = B0/ (Q) = 0 (10.21)

where x()(Q) and E'!) are the first-order approximations to the nuclear wave
functions and energy levels. Since the term c¢,,(Q) is added to &.(Q) in this
approximation, equation (10.21) is different from (10.20) and, therefore,
%D(Q) and EU) differ from »9(Q) and E?. In this first-order approximation,
the molecular wave function W(r, Q) in equation (10.10) also takes the form of
(10.9). The factor y))(Q) describes the nuclear motion, which takes place in a
potential field U,(Q) determined by the electrons moving as though the nuclei
were fixed in their instantaneous positions. Thus, the electronic state of the
molecule changes in a continuous manner as the nuclei move slowly in
comparison with the electronic motion. In this situation, the electrons are said
to follow the nuclei adiabatically and this first-order approximation is known
as the adiabatic approximation. This adiabatic feature does not occur in
higher-order approximations, in which coupling terms appear.

An analysis using perturbation theory shows that the influence of the
coupling terms with ¢,;;(Q) and A, is small when the electronic energy levels
£.(Q) and £;(Q) are not closely spaced. Since the ground-state electronic
energy of a molecule is usually widely separated from the first-excited
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electronic energy level, the Born—Oppenheimer approximation and especially
the adiabatic approximation are quite accurate for the electronic ground state.
The influence of the coupling terms for the first few excited electronic energy
levels may then be calculated using perturbation theory.

10.2 Nuclear motion in diatomic molecules

The application of the Born—Oppenheimer and the adiabatic approximations to
separate nuclear and electronic motions is best illustrated by treating the
simplest example, a diatomic molecule in its electronic ground state. The
diatomic molecule is sufficiently simple that we can also introduce center-of-
mass coordinates and show explicitly how the translational motion of the
molecule as a whole is separated from the internal motion of the nuclei and
electrons.

Center-of-mass coordinates

The total number of spatial coordinates for a molecule with € nuclei and N
electrons is 3(Q2 + N), because each particle requires three cartesian coordi-
nates to specify its location. However, if the motion of each particle is referred
to the center of mass of the molecule rather than to the external spaced-fixed
coordinate axes, then the three translational coordinates that specify the
location of the center of mass relative to the external axes may be separated out
and eliminated from consideration. For a diatomic molecule (2 = 2) we are
left with only three relative nuclear coordinates and with 3N relative electronic
coordinates. For mathematical convenience, we select the center of mass of the
nuclei as the reference point rather than the center of mass of the nuclei and
electrons together. The difference is negligibly small. We designate the two
nuclei as 4 and B, and introduce a new set of nuclear coordinates defined by

Mg

M,
X=— — 10.22
MQA+MQB (10.22a)

R=0Q;—Qy (10.22b)

where X locates the center of mass of the nuclei in the external coordinate
system, R is the vector distance between the two nuclei, and M is the sum of
the nuclear masses

M=M,+ Mg

The kinetic energy operator 7' o for the two nuclei, as given by equation
(10.2), is
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N A
To= - (EJFVB (10.23)

The laplacian operators in equation (10.23) refer to the spaced-fixed coordi-
nates Q, with components QOyq, Oy, O-«, 0 that
0? 0? 0?
Vie—Qt—+t—,
00y, 00y, 090

ya za

a=A4, B

However, these operators change their form when the reference coordinate
system is transformed from space fixed to center of mass.

To transform these laplacian operators to the coordinates X and R, with
components X, X, X; and R,, R, R., respectively, we note that

8_8Xx8+8Rx8_%8 0
00w 000X, 004 OR. M 0X, OR,
8_8Xx8+8Rx8_%8+8
00 000X, 00pOR M 90X, OR,
from which it follows that
»” <MA>2 ¢ P oMy P
002, M) 0X? OR: M 0X.OR:
” <MB>2 P, 0P oMy
00%°, \M) 0x2 OR* M 0X.0R:
Analogous expressions apply for Q,4, Oy, O-4, and Q.. Therefore, in terms of
the coordinates X and R, the operators V2 and V7 are

2
M 2M
= (ﬁ‘) Vi + Vi — WAVX -V (10.24a)
2
M 2M
V2 = (ﬁ) Vi +Vi+ VBVX Vi (10.24b)

where Vﬁ( =Vy-Vyx and Vé = V-V are the laplacian operators for the
vectors X and R and where Vy and V3 are the gradient operators. When the
transformations (10.24) are substituted into (10.23), the operator Tp becomes

TQ:_—hZ<iV2 +1V2> (10.25)
2 \M XTI R
where u is the reduced mass of the two nuclei

11 1

WMy My

or
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MM
Y u 4+ Mp
The cross terms in Vy - V cancel each other.

For the diatomic molecule, equations (10.1), (10.3), (10.5), and (10.25)
combine to give

hz
oM

(10.26)

h2
2u
where R = ryp is the magnitude of the vector R and where now the laplacian
operator V? in H, of equation (10.4) refers to the position of electron i relative
to the center of mass. The interparticle distances r4g = R, r4;, 7p;, and r; are
independent of the choice of reference coordinate system and do not change as
a result of the transformation from external to internal coordinates. If we write
Wi as the product

ZAZBE,Z
R

Vi \ARE + He — Et|Wiop = 0 (10.27)

Wit = PX)P(R, 1)
and E, as the sum
Ewt=Em+E
then the differential equation (10.27) separates into two independent differen-

tial equations
2

i VA ®(X) = Ecn®(X) (10.28a)
and
hZ 2 ZAZBe’z ~
—EVR 2t He— E|PR,1) =0 (10.28b)

Equation (10.28b) describes the internal motions of the two nuclei and the
electrons relative to the center of mass. Our next goal is to solve this equation
using the method described in Section 10.1. Equation (10.28a), on the other
hand, describes the translational motion of the center of mass of the molecule
and is not considered any further here.

Electronic motion and the nuclear potential function

The first step in the solution of equation (10.28b) is to hold the two nuclei fixed
in space, so that the operator V% drops out. Equation (10.28b) then takes the
form of (10.6). Since the diatomic molecule has axial symmetry, the eigenfunc-
tions and eigenvalues of H, in equation (10.6) depend only on the fixed value
R of the internuclear distance, so that we may write them as v, (r, R) and
£:(R). If equation (10.6) is solved repeatedly to obtain the ground-state energy
go(R) for many values of the parameter R, then a curve of the general form
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shown in Figure 10.1 is obtained. The value of R for which &y(R) is a minimum
represents the equilibrium or most stable nuclear configuration for the mole-
cule. As the parameter R increases or decreases, the molecular energy &y(R)
increases. As R becomes small, the nuclear repulsion term ¥ becomes very
large and é&yp(R) rapidly approaches infinity. As R becomes very large
(R — 00), the molecule dissociates into its two constituent atoms. We assume
that equation (10.6) has been solved for the ground-state wave function
Yo(r, R) and ground-state energy &y(R) for all values of the parameter R from
zero to infinity.

The potential energy function Uy(R) for the ground electronic state is given
by equations (10.19) and (10.16) with Tp = (—#%/2u)V5 as

#2
Ua(R) = ea(R) -+ cun(R) = eo(R) — 5. [ R, Ry

Within the adiabatic approximation, the term coo(R) evaluates the coupling
between the ground-state motion of the electrons and the motion of the nuclei.
The magnitude of this term at distances R near the minimum of gy(R) is not
negligible® for the lightweight hydrogen molecule (all isotopes), the hydrogen-
molecule ion (all isotopes), and the system He,. However, the general shape of
the function Uy(R) for these systems does not differ appreciably from the
schematic shape of £y(R) shown in Figure 10.1. For heavier nuclei, the term
coo(R) is small and may be neglected. For these molecules the Born—

eo(R)

R, R

Figure 10.1 The internuclear potential energy for the ground state of a diatomic
molecule.

3 See J. O. Hirschfelder and W. J. Meath (1967) Advances in Chemical Physics, Vol. XII (John Wiley and
Sons, New York), p. 23 and references cited therein.
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Oppenheimer and the adiabatic approximations are essentially identical. Since
we are interested here in only the ground electronic state, we drop the subscript
on Uy(R) from this point on for the sake of simplicity.

The functional form of U(R) differs from one diatomic molecule to another.
Accordingly, we wish to find a general form which can be used for all
molecules. Under the assumption that the internuclear distance R does not
fluctuate very much from its equilibrium value R. so that U(R) does not
deviate greatly from its minimum value, we may expand the potential U(R) in
a Taylor’s series about the equilibrium distance R.

U = UR) + UD(RR — Re) + 5 UP(R)R ~ R.Y
+ % U(3)(Re)(R _ Re)3 —|—%U(4)(Re)(R _ Re)4 4.

where

d'U(R)
dR!

UD(R,) = I=1,2,...

R=R.
The first derivative UV(R.) vanishes because the potential U(R) is a minimum
at the distance R.. The second derivative U®(R,) is called the force constant
for the diatomic molecule (see Section 4.1) and is given the symbol k. We also
introduce the relative distance variable ¢, defined as

g=R-Re (10.29)
With these substitutions, the potential takes the form
U(g) = U(0) + 1kg* + LU (0)g® + LUD(0)g* + - -- (10.30)

Nuclear motion
The nuclear equation (10.21) when applied to the ground electronic state of a
diatomic molecule is

[To + URR) = Eyy(R) (10.31)

where the superscript and one subscript on Xf)IV)(R) and on Egﬁj) are omitted for

simplicity. In solving this differential equation, the relative coordinate vector R
is best expressed in spherical polar coordinates R, 6, ¢. The coordinate R is the
magnitude of the vector R and is the scalar distance between the two nuclei.
The angles 6 and ¢ give the orientation of the internuclear axis relative to the
external coordinate axes. The laplacian operator V%e is then given by (A.61) as
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1 0 0 1 1 0 0 1 &
2 _ - Y 2 ¥ i : i I
V= R or <R aze) TR [sin 006 <Sm 0 ae) sin26 8(/)2]

where [? is the square of the orbital angular momentum operator given by
equation (5.32). With V%e expressed in spherical polar coordinates, equation
(10.31) becomes

[— R IR <R 38) Tl T U®

XV(Rs 0, (P) = EVXV(Rs 0, 90)

(10.33)

The operator in square brackets on the left-hand side of equation (10.33)
commutes with the operator 2 and with the operator L. in (5.31c), because L?
commutes with itself as well as with L. and neither 12 nor L, contain the
variable R. Consequently, the three operators have simultaneous eigenfunc-
tions. From the argument presented in Section 6.2, the nuclear wave function
1v(R, 0, @) has the form

Xv(R, 0, ¢) = F(R)Y (6, ) (10.34)
where F(R) is a function of only the internuclear distance R, and Y, (0, @) are
the spherical harmonics, which satisfy the eigenvalue equation

LYm(6, @) = J(J + DI Y56, 9)
J=0,1,2,...; m=—J,—=J+1,..,0,..,J—1,J

It is customary to use the index J for the rotational quantum number. Equation
(10.33) then becomes

[ 7 d (R2i>+J(J+l)ﬁ2

L. U(R) — E,
2uR*dR dR 2uR? + UR)

F(R)=0  (10.35)

where we have divided through by Y,,(6, ¢).

We next replace the independent variable R in equation (10.35) by ¢ as
defined in equation (10.29). Equation (10.35) has a more useful form if we also
make the substitution S(q) = RF(R). Since dg/dR = 1, we have

dF(R) 1dS(g) 1 d ( 5 dF(R)) d’S(q)
=— ——5 — (R*—2) =R
iR R dg  ROD 3R dR dq?
and equation (10.35) becomes

e I+ DR
4+ L U(g)-E
20d 2u(Re+ qp T U@ Er

S(q) =0 (10.36)
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after multiplication by the variable R.

The potential function U(g) in equation (10.36) may be expanded according
to (10.30). The factor (R, + ¢)~? in the second term on the left-hand side may
also be expanded in terms of the variable ¢ as follows

1 1 1 29 3¢ )

_ — (1= 21 (10.37)
R 2 2 2<

(e"‘Q) Rg(l—k%) Re

€

where the expansion (A.3) is used. For small values of the ratio ¢/ R, equation
(10.37) gives the approximation R ~ R..

If we retain only the first two terms in the expansion (10.30) and let R be
approximated by R., equation (10.36) becomes

—# d2S(q)

2 dg? + (kg* — W)S(q) =0 (10.38)

where
W =E,— U(®)—J(J + 1)B. (10.39)
B. =2 2uR? = )21 (10.40)

The quantity / (= uR?) is the moment of inertia for the diatomic molecule
with the internuclear distance fixed at R, and B. is known as the rotational
constant (see Section 5.4).

Equation (10.38) is recognized as the Schrodinger equation (4.13) for the
one-dimensional harmonic oscillator. In order for equation (10.38) to have the
same eigenfunctions and eigenvalues as equation (4.13), the function S(q) must
have the same asymptotic behavior as (x) in (4.13). As the internuclear
distance R approaches infinity, the relative distance variable ¢ also approaches
infinity and the functions F(R) and S(g) = RF(R) must approach zero in order
for the nuclear wave functions to be well-behaved. As R — 0, which is
equivalent to ¢ — —R., the potential U(q) becomes infinitely large, so that
F(R) and S(g) rapidly approach zero. Thus, the function S(g) approaches zero
as ¢ — —R. and as R — oco. The harmonic-oscillator eigenfunctions (x)
decrease rapidly in value as |x| increases from x = 0 and approach zero as
x — Fo00. They have essentially vanished at the value of x corresponding to
g = —R.. Consequently, the functions S(g) in equation (10.38) and 3(x) in
(4.13) have the same asymptotic behavior and the eigenfunctions and eigenva-
lues of (10.38) are those of the harmonic oscillator. The eigenfunctions S,(g)
are the harmonic-oscillator eigenfunctions given by equation (4.41) with x
replaced by ¢ and the mass m replaced by the reduced mass u. The
eigenvalues, according to equation (4.30), are
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Wn:(n—k%)ﬁa), n=0,1,2,...

where

w=/k/u

In this approximation, the nuclear energy levels are

Ey =UQ©)+ (n+Hho + J(J + 1)B. (10.41)
and the nuclear wave functions are
1
Anm(R, 0, @) = ESn(R — Re)Ym(0, @) (10.42)

Higher-order approximation for nuclear motion

The next higher-order approximation to the energy levels of the diatomic
molecule is obtained by retaining in equation (10.36) terms up to ¢* in the
expansion (10.30) of U(g) and terms up to ¢ in the expansion (10.37) of
(R. + g)~2. Equation (10.36) then becomes

12 d*S(q) ., » ,
Su dp TRk EBJI D) F VIS = B~ UOIS() - (1043)
where
2BJ(J+1) 3BJ(J+1) 5 1 5 5 1
V'=— ~U%0 U0\
R TR TG 0)¢” + 5, U™(0)q
= big+ byq” + b3q’ + baq’ (10.44)

For simplicity in subsequent evaluations, we have introduced in equation
(10.44) the following definitions

by = — % (10.45a)
e

by = w (10.45b)

by = é U®0) (10.45c¢)

by = % U™(0) (10.454)

Since equation (10.43) with V' = 0 is already solved, we may treat V' as a
perturbation and solve equation (10.43) using perturbation theory. The unper-
turbed eigenfunctions S(no)(q) are the eigenkets |n) for the harmonic oscillator.
The first-order perturbation correction E(nl} to the energy E,; as given by
equation (9.24) is
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E) = (n|V'|n) = bi(n|q|n) + ba(nlg*|n) + b3(n|q’|n) + ba(n|q*|n)
(10.46)

The matrix elements (n|q|n) are evaluated in Section 4.4. According to
equations (4.45¢) and (4.50e), the first and third terms on the right-hand side of
(10.46) vanish. The matrix elements in the second and fourth terms are given
by equations (4.48b) and (4.51c), respectively. Thus, the first-order correction
in equation (10.46) is

7 3/ h\?
E) =ty (n+3) + b5 () (2 1)
. z/m(n+2)+ 42<#w> n*+n+1

A (L 2U<4>o[ 21 (1047
=2 (n+3)J(J + )+1_6<ﬁ> O)|(n+3)"+3] (1047
where equations (10.40), (10.45b), and (10.45d) have been substituted.

Since the perturbation corrections due to b;q and b3g> vanish in first order,
we must evaluate the second-order corrections E(nzj) in order to find the
influence of these perturbation terms on the nuclear energy levels. According
to equation (9.34), this second-order correction is

EY =% (k|b1g + b3g’|n)?
" k(#n) E(]?) - E(nO)

(k|g|n) (k|g|n)(k|q®|n) p2 (klg?n)*
=0 ——2b by Y Z)
& (k= mho & (k= nho & (k= nho

(10.48)

where the unperturbed energy levels are given by equation (4.30). The matrix
elements in equation (10.48) are given by (4.45) and (4.50), so that E(,,ZJ)
becomes

E(z) (n—i—l)h nh
o ﬁa) 2uw 2uw
2biby | ((n+ DA 1/23 (n+ DR\ (b 1/23 nhi Y2
hw 2uw 2uw 2uw 2uw

+9(n+ 1)

p: [k’ [(n + 1) (n+2)(n+3)
 ho <2ua)> 3

—953 —

n(n—1)n— 2)]
3

This equation simplifies to
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B 3bibsh P22
= . 1 1 3 2
T 2ue? e’ (n+3) - 8100 (30n* 4+ 30n 4+ 11)
Substitution of equations (10.40), (10.45a), and (10.45¢) leads to
2)
B = = gage U A 0 = ()0 + D)
ﬁZ[U(3)(O)]2 N2 |, 7
288wt 00+ +4 (10.49)

The nuclear energy levels in this higher-order approximation are given to
second order in the perturbation by combining equations (10.41), (10.47), and
(10.49) to give

En ~ Ey) + E\) + EY)

= 72(0) + ﬁa)(n + %) — ﬁwxe(n + %)2+BeJ(J +1)

—DJ*(J+ 1) —ac(n+1)J(J+1) (10.50)
where we have defined
fi 5[URP0)F @
e = — 10.51
% = {g 00 < 02 U™(0) (10.51a)
4B2
=23 (10.51b)
—6B? R.UP(0)
c=—2 | 1+ ——= 10.51
a 7 <+ 3 (10.51c)
2 (3) 2
7£(0) = U(0)+i L3 U“%O)—w (10.51d)
64 \ uw Quw?

The approximate expression (10.50) for the nuclear energy levels E,; is
observed to contain the initial terms of a power series expansion in (7 + %) and
J(J +1). Only terms up to (n —}—%)2 and [J(J + 1)]? and the cross term in
(n —l—%)J (J + 1) are included. Higher-order terms in the expansion may be
found from higher-order perturbation corrections.

The second term on the right-hand side of equation (10.50) is the energy of a
harmonic oscillator. Since the factor x, in equation (10.51a) depends on the
third and fourth derivatives of the internuclear potential at R., the third term in
equation (10.50) gives the change in energy due to the anharmonicity of that
potential. The fourth term is the energy of a rigid rotor with moment of inertia
1. The fifth term is the correction to the energy due to centrifugal distortion in
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this non-rigid rotor. As the rotational energy increases, the internuclear
distance increases, resulting in an increased moment of inertia and conse-
quently a lower energy. Thus, this term is negative and increases as J increases.
The magnitude of the centrifugal distortion is influenced by the value of the
force constant k as reflected by the factor w2 in D. The last term contains both
quantum numbers # and J and represents a direct coupling between the
vibrational and rotational motions. This term contains two contributions: a
change in vibrational energy due to the centrifugal stretching of the molecule
and a change in rotational energy due to changes in the internuclear distance
from anharmonic vibrations. The constant term #7(0) merely shifts the zero-
point energy of the nuclear energy levels and is usually omitted completely.

The molecular constants w, B, x., D, and a, for any diatomic molecule may
be determined with great accuracy from an analysis of the molecule’s vibra-
tional and rotational spectra.* Thus, it is not necessary in practice to solve the
electronic Schrodinger equation (10.28b) to obtain the ground-state energy
SO(R).

Problems

10.1 Derive equation (10.47) as outlined in the text.
10.2 Derive equation (10.49) as outlined in the text.
10.3 Derive equation (10.50) as outlined in the text.
10.4 An approximation to the potential U(R) for a diatomic molecule is the Morse
potential
U(R) = —De(2e” “R~R) _ g=2a(R=R)y — _ D (2e7 — ¢7244)
where a is a parameter characteristic of the molecule. The Morse potential has
the general form of Figure 10.2.
(a) Show that U(R,) = —D.,, that U(co) = 0, and that U(0) is very large.
(b) If the Morse potential is expanded according to equation (10.30), relate the
parameter @ to u, w, and D,
(c) Relate the quantities x., o, and 7 (0) in equation (10.50) to «, w, and D,
for the Morse potential.
10.5 Another approximate potential U(R) for a diatomic molecule is the Rydberg
potential

U(R) = —De[1 + b(R — Re)]e "F~ %) = —D,(1 + bg)e "
where b is a parameter characteristic of the molecule.
(a) Show that U(R.) = — D, that U(co) = 0, and that U(0) is very large.

4 Comprehensive tables of molecular constants for diatomic molecules may be found in K. P. Huber and G.
Herzberg (1979) Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules (Van
Nostrand Reinhold, New York).
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U(R)

0 Re

DL -

Figure 10.2 The Morse potential for the ground state of a diatomic molecule.

(b) If the Rydberg potential is expanded according to equation (10.30), relate the
parameter b to u, w, and D.,.
(c) Relate the quantities x,, ., and 77 (0) in equation (10.50) to u, w, and D,
for the Rydberg potential.
10.6 Consider a diatomic molecule in its ground electronic and rotational states. Its
energy levels are given by equation (10.50) with J = 0. The value of U(R) at
R=R.is —D..

(a) If the anharmonic factor x. is positive, show that the spacing of the energy
levels decreases as the vibrational quantum number 7 increases.

(b) When the vibrational quantum number » becomes sufficiently large that the
difference in energies between adjacent levels becomes zero, the molecule
dissociates into its constituent atoms. By setting equal to zero the derivative
of E,y with respect to n, find the value of n in terms of x. at which
dissociation takes place.

(c) Relate the well depth D, to the anharmonic factor x, and compare with the
corresponding expressions in problems 10.4 and 10.5.
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Mathematical formulas

Useful power series expansions
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Jez sin’6do = 16° — 1(6* — L)sin 26 — 16 cos 260

Jsin30d0 =1cos’0 — cos 6 = —3cos 6 + L cos 30

Jsm 60do = ——cosO + 08360 — g5c0s 56

Jsin70 do = —= cos 0+ 4 4 cos 30 — 320 cos 50 + = 448 cos 760
. . sm(k —n)f sin(k+ n)0 5 2
kO 0do = — k
Jsm sin nf d 2k =) 2t (k° # n°)
Integration by parts
Judv =uv — Judu
du(x)

Ju(x) d‘:iix) dx = u(x)v(x) — Ju(x)

Gamma function

(o.¢]

I'(n) = [ 2" le 7 dz

I'(n+ 10) = nl'(n)
I'(n)=(mn-1), n = integer

(A.11)

(A.12)
(A.13)

(A.14)
(A.15)
(A.16)
(A.17)
(A.18)
(A.19)
(A.20)
(A.21)
(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)
(A.28)
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Mathematical formulas
rg =a"?

T T RS
0

—00

Trigonometric functions
¢ = cos +isin@
cosf = %(eig +e71%)
sinf = L(e? —e'?)
sin?6 + cos?0 = 1
cos(0 + @) = cos O cos ¢ — sin O sin ¢
sin(6 + ¢) = sin 6 cos @ + cos O sin @
c0s 26 = cos’6 — sin’6
sin 26 = 2sin 0 cos 6
sin360 = 3sin 6 — 4sin*0
sin 50 = 5sin 6 — 20 sin®6 + 16sin’@
sin 760 = 7sin 6 — 56sin’6 + 112sin°60 — 64sin’ 6

@cosﬁz—sm@

d

@sinO:cosﬁ
d ., _d S 2N—1/2
dzsm z—dzarcsmz—(l z%)

Hyperbolic functions

cosh = 1(e? +¢7%)

sinh 6 = (e — e7%)
coshif = cos 6
sinhif = isin 6

cosh?6 — sinh?6 = 1

sinh 0
tanh 0 =
an cosh 6
sinh 26 = 2sinh 6 cosh 6
dcosh 6
cz; = sinh @
dsinh
0 - cosh 6
dtanh 6 1

d6  cosh26

283
(A.29)

(A.30)

(A.31)
(A.32)
(A.33)

(A.34)
(A.35)
(A.36)

(A.37)
(A.38)

(A.39)
(A.40)
(A.41)

(A.42)
(A.43)

(A.44)

(A.45)
(A.46)
(A.47)
(A.48)
(A.49)

(A.50)
(A.51)

(A.52)
(A.53)

(A.54)
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Schwarz’s inequality

2

J]a(x)|2dxj|b(x)|2dx = Ja*(x)b(x)dx

Forz =x+1iy, |z]> = [Imz[*; since Imz = z — 2% /2i, |z]* = }[z — 2

Jla(X)l2 dJC'JV?(JC)IZ dx = J[a*(X)b(X) — a(x)b* (x)] dx

>k|2
2

Vector relations

A-B = A4Bcosf
|A X B| = ABsin 6
0 is the angle between A and B

Spherical coordinates (r, 0, @)
x = rsinfcos @, y = rsinfsin ¢, z=rcosf
dr = r*sinfdrdfde

2 _i2(28_¢> ;3( 3_1”) L Py
VY =225, \"ar) T rsmeoe 8" %% ) t risin20 02

Plane polar coordinates (r, )
X = rcos @, y=rsing

2 _12<5_¢> 12y
Vw_rﬁr " or +r28q)2

(A.55)

(A.56)

(A.57)
(A.58)

(A.59)
(A.60)

(A.61)

(A.62)
(A.63)



Appendix B

Fourier series and Fourier integral

Fourier series

An arbitrary function f(0) which satisfies the Dirichlet conditions can be expanded as

f(0) =

ao

2 + ;(an cos nf + b, sin n0) (B.1)

where 6 is a real variable, n is a positive integer, and the coefficients @, and b, are
constants. The Dirichlet conditions specify that f(6) is single-valued, is continuous
except for a finite number of finite discontinuities, and has a finite number of maxima
and minima. The series expansion (B.1) of the function f(6) is known as a Fourier
series.

We note that

cos n(6 + 2m) = cos nf
sin n(6 + 2m) = sin nf

so that each term in equation (B.1) repeats itself in intervals of 2st. Thus, the function
f(0) on the left-hand side of equation (B.1) has the property

SO +2m) = f(6)
which is to say, f(6) is periodic with period 27t. For convenience, we select the range
—n < 0 < 7 for the period, although any other range of width 2 is acceptable. If a
function F(¢) has period p, then it may be converted into a function f(8) with period
27 by introducing the new variable 6 defined by 6 = 27¢/ p, so that
f(0) = FQmp/ p). If a non-periodic function F(6) is expanded in a Fourier series, the
function f(0) obtained from equation (B.1) is identical with F(8) over the range
—z < 6 < 7, but outside that range the two functions do not agree.

To find the coefficients @, and b, in the Fourier series, we first multiply both sides
of equation (B.1) by cos m6 and integrate from — to ;. The resulting integrals are
evaluated in equations (A.12), (A.14), and (A.16). For n = 0, all the integrals on the
right-hand side vanish except the first, so that

J f(e)dez%x 2 = 7ag

For m > 0, all the integrals on the right-hand side vanish except for the one in which
n = m, giving

285
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T

f(B)cos mOdb = ma,,

—J
If we multiply both sides of equation (B.1) by sin m6, integrate from —u to 7, and
apply equations (A.13), (A.15), and (A.16), we find

T

£(6)sin m0 d6 = xb,,

Thus, the coefficients in the Fourier series are given by

1 TT
a, = EJ f(B)cos n6do, n=0,1,2,... (B.2a)
—JT

1 7T
b, = EJ f(O)sinn0dd, n=1,2,... (B.2b)
-

In deriving these expressions for a, and b,,, we assumed that f(6) is continuous. If
£(0) has a finite discontinuity at some angle 6y where —m < 6y <, then the expres-
sion for a, in equation (B.2a) becomes

1 (% ("
a, = —J f(6)cos nh do + —J f(O)cos nOdo
T —J T 9()

A similar expression applies for b,. The generalization for a function f(6) with a finite
number of finite discontinuities is straightforward. At an angle 6, of discontinuity, the
Fourier series converges to a value of f(6) mid-way between the left and right values
of f(0) at y; i.e., it converges to

lim 2 1/ (B — &) + /(6 + o)

The Fourier expansion (B.1) may also be expressed as a cosine series or as a sine
series by the introduction of phase angles a,,

_ a0 N
J0) ==+ ; ¢y cos(nf + a,) (B.3a)
= chsin(nb + a}) (B.3b)
n=0

where ¢,, ¢;,, @, @, are constants. Using equation (A.35), we may write
cpcos(nf + a,) = ¢, cos nfcosa, — c,sinnfsina,
If we let
a, = ¢, cosda,
b, = —c,sina,

then equations (B.1) and (B.3a) are seen to be equivalent. Using equation (A.36), we
have

¢y sin(nf + a)) = ¢}, sin nf cos a), + ¢}, cos nfsina),
Letting
ag = 2c¢( sin a
a, =cysina),, n>0

b, =c)cosa),, n>0
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we see that equations (B.1) and (B.3b) are identical.

Other variables

The Fourier series (B.1) and (B.3) are expressed in terms of an angle 6. However, in
many applications the variable may be a distance x or the time ¢. If the Fourier series is
to represent a function f(x) of the distance x in a range —/ < x < /, we make the
substitution

X
0=—
/
in equation (B.1) to give
fx) = 70 + ; <an cos —— + b, sin H—J;x) (B.4)
with a, and b, given by
1
ay :7J f(x)cosn—ylrxdx, n=0,1,2, ... (B.52)
—1
1(! . nmX
b, = 7 f(x)sin e dx, n=1,2,... (B.5b)
—1
If time is the variable, then we may make either of the substitutions
2t
=" =owt
p

where p is the period of the function f(#) and w is the angular frequency, so that
equation (B.1) becomes

- 27nt . 2mnt - .
f(n = % + Z (an cos Tn + b, sin pn > = % + Z(an cos nwt + b, sin nwt)
n=1 n=1

(B.6)
The constants @, and b, in equations (B.2) for the variable 7 are
2 p/2 2 Z 7'[/(1)
a, = —J S(t)cos ™t = QJ J(t)cos nwrde (B.7a)
p 7p/2 p T 77[/0)
5 /2 2nt T/ w
by = —J F(oysin T qr = 9J f(n)sin nwtdt (B.7b)
P —p/2 p T /o

Complex form
The Fourier series (B.1) can also be written in complex form by the substitution of
equations (A.32) and (A.33) for cos nf and sin n8, respectively, to yield
o0
fO)=>" e (B.8)
n=—oo

where
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n_.bn
Cn:a 21 . n>0
ib
c_, _% n>0 (B.9)
ap
C(]E?

The coefficients ¢, in equation (B.8) may be obtained from (B.9) with a, and b, given
by (B.2). The result is
1 (" ~
=— 0)e "% do B.10
o == | fioe (B.10)
which applies to all values of #n, positive and negative, including n = 0. We note in
passing that c_, is the complex conjugate ¢ of ¢,.
In terms of the distance variable x, equations (B.8) and (B.10) become
0

[ =Y ey (B.11)

n=-—oo

I .
Cn — 2_ZJ f(x)e—lnﬂx/l dx (Blz)
-1

while in terms of the time ¢, they take the form
f(="Y" cpe™ (B.13)

n=—oo
= e "l B.14
L (B.14)

Parseval’s theorem

We now investigate the relation between the average of the square of f(6) and the
coefficients in the Fourier series for f(6). For this purpose we select the Fourier series
(B.8), although any of the other expansions would serve as well. In this case the
average of | f(0)|* over the interval — < 0 < 7 is

1 (7 5
2| rep

-

The square of the absolute value of f (0) in equation (B.8) is

Z Z ¢t cpeini=mo (B.15)

m=—00 n=—0o0

where the two independent summations have been assigned different dummy indices.
Integration of both sides of equation (B.15) over 8 from —z to 7 gives

[ rora= 3 el doma

m=—00 n=—00
Since m and n are integers, the integral on the right-hand side vanishes except when
m = n, so that we have

o0

Z mH

n=—0o0

f(O))* =
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TT
J "m0 40 = 270
—JT

The final result is

1 T 9 o0 )
57) OPaO= 3 e ®.16)
which is one form of Parseval’s theorem. Other forms of Parseval’s theorem are
obtained using the various alternative Fourier expansions.

Parseval’s theorem is also known as the completeness relation and may be used to
verify that the set of functions ¢’ for —oo < n < oo are complete, as discussed in
Section 3.4. If some of the terms in the Fourier series are missing, so that the set of
basis functions in the expansion is incomplete, then the corresponding coefficients on
the right-hand side of equation (B.16) will also be missing and the equality will not
hold.

Fourier integral

The Fourier series expansions of a function f'(x) of the variable x over the range

—I < x = I may be generalized to the case where the range is infinite, i.e., where
—00 < x < 0. By a suitable limiting process in which / — oo, equations (B.11) and
(B.12) may be extended to the form

1 (> ,

f(x)—mj_ g(k)e'™ dk (B.17)
1 [® :

g(k):\/T_nJ | f(x)e " dx (B.18)

Equation (B.17) is the Fourier integral representation of f(x). The function g(k) is the
Fourier transform of f(x), which in turn is the inverse Fourier transform of g(k).

For any function f(x) which satisfies the Dirichlet conditions over the range

—00 < x < oo and for which the integral

| reopas

converges, the Fourier integral in equation (B.17) converges to f(x) wherever f(x) is
continuous and to the mean value of f(x) at any point of discontinuity.

In some applications a function f(x, ), where x is a distance variable and ¢ is the
time, is represented as a Fourier integral of the form

1
S, f):EJ

where the frequency w(k) depends on the variable £. In this case the Fourier transform
g(k) takes the form

G(k)e'le—etd gk (B.19)

—00

g(k) = Gk
and equation (B.18) may be written as

G(k) = \/% r f(x, e T—o®l gy (B.20)

The functions f(x, #) and G(k) are, then, a generalized form of Fourier transforms.

—00
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Another generalized form may be obtained by exchanging the roles of x and ¢ in
equations (B.19) and (B.20), so that

f(x, ) = \/—_r G(w)ellH@x=o1 44, (B.21)

G(w) = J f(x, e th@x=ol q; (B.22)

ir

Fourier integral in three dimensions

The Fourier integral may be readily extended to functions of more than one variable.

We now derive the result for a function f(x, y, z) of the three spatial variables x, y, z.
If we consider f(x, y, z) as a function only of x, with y and z as parameters, then we

have

1 o0 .
X, ), 2) = — ke, v, )6 dk, B.23a
£ 7. 2) ﬂ_nj_ocgl( v 2) (B.23a)
1> ‘
ke, ¥, 2) = —— x, v, z)e T dy B.23b
aiken == fx02 (B.23b)

We next regard g)(ky, v, z) as a function only of y with k, and z as parameters and
express g1(ky, v, z) as a Fourier integral

o0

giky, y, 2) = \/%T 70Cg2(k,n 1» 2)efy dk, (B.24a)
ga(ks, ky, 2) = V% :gl(kx, v, 2)e” 7 dy (B.24b)
Considering g»(k,, k,, z) as a function only of z, we have
2a(ky, ky, 2) = \/%—n Dooog(kx, ky, k)e' dk. (B.25a)
gk, ky, k) = \/% 2 g2(ky, ky, 2)e F7dz (B.25b)
Combining equations (B.23a), (B.24a), and (B.25a), we obtain
f(x, y,2) = @ )3 p—s m g(ky, ky, kp)e B TRtk q dk, dk, (B.26a)
Combining equations (B.23b;,ozB.24b), and (B.25b), we have
glky, ky, ki) = (27r1)3/2J”f(x’ y, 2)e iksxthu kD) 4y 4y dz (B.26b)

If we define the vector r with components x, y, z and the vector k with components
ky, ky, k. and write the volume elements as

dr = dxdydz

dk = dk, dk, dk.
then equations (B.26) become
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f(r) = J g(k)e*T dk (B.27a)

1
e

2(k) = J f(r)e T dr (B.27b)

(2 )3/2

Parseval’s theorem
To obtain Parseval’s theorem for the function f(x) in equation (B.17), we first take the
complex conjugate of f(x)

1 loe]
* -
4 (")mj_m

where we have used a different dummy variable of integration. The integral of the

square of the absolute value of f(x) is then given by

- > 1 kg i(k—k")x '
| repa=| rrwrmar =5 [ e tgmet 0 dkar g

—00
The order of integration on the right-hand side may be interchanged. If we integrate
over x while noting that according to equation (C.6)

J e~k dx = 210(k — k')

g*(k/)e—ik'x dk’

we obtain
o0

Jiolf(x)p dx = “ 200k — Ky dk dE

—00
Finally, integration over the variable £ yields Parseval’s theorem for the Fourier
integral,

IR ECIRT (B.28)
Parseval’s theorem for the functions f(r) and g(k) in equations (B.27) is
[rcer ar = [1g007 ak (8.29)

This relation may be obtained by the same derivation as that leading to equation
(B.28), using the integral representation (C.7) for the three-dimensional Dirac delta
function.
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Dirac delta function

The Dirac delta function d(x) is defined by the conditions
o(x) =0, for x # 0

=00, forx=0

(C.1)

such that

J ox)dx =1 (C.2)
As a consequence of this definition, if f(x) is an arbitrary function which is well-
defined at x = 0, then integration of f(x) with the delta function selects out the value
of f(x) at the origin

Jf(X)é(X) dx = £(0) (C3)

The integration is taken over the range of x for which f(x) is defined, provided that the
range includes the origin. It also follows that

jf(x)é(x ~x)dr = f(x) (C.4)

since 0(x — x9) = 0 except when x = x,. The range of integration in equation (C.4)
must include the point x = xy.

The following properties of the Dirac delta function can be demonstrated by
multiplying both sides of each expression by f(x) and observing that, on integration,
each side gives the same result

O(—x) = O(x) (C.5a)

O(cx) = |17|5(x), ¢ real (C.5b)
x0(x — xp) = x00(x — xp) (C.5¢)
x0(x) =0 (C.5d)

J(¥)0x = x0) = f(x0)O(x — x0) (C.5e)

As defined above, the delta function by itself lacks mathematical rigor and has no
meaning. Only when it appears in an integral does it have an operational meaning.
That two integrals are equal does not imply that the integrands are equal. However, for
the sake of convenience we often write mathematical expressions involving d(x) such

292



Dirac delta function 293

as those in equations (C.5a—e). Thus, the expressions (C.5a—e) and similar ones
involving d(x) are not to be taken as mathematical identities, but rather as operational
identities. One side can replace the other within an integral that includes the origin, for
0(0), or the point xq for d(x — xp).

The concept of the Dirac delta function can be made more mathematically rigorous
by regarding 6(x) as the limit of a function which becomes successively more peaked
at the origin when a parameter approaches zero. One such function is

1 2 /.2
R T o
=i
since
1 0 —x2/g? .
nl/zeJ_me dx=1
and
1
Ee”‘z/gz —o00 as x—0,e—0

—0 as x— +oo

Equation (C.3) then becomes
1 0 2/02
1 —_— - /S =
l-l_r,% 7l /2¢ J _ocf(x)e dr=70)

Other expressions which can be used to define d(x) include
1 ¢

sl—r»r(l) Exz + 82
and

lim i e~ ll/e

e—0 2¢

The delta function is the derivative of the Heaviside unit step function H(x), defined
as the limit as ¢ — 0 of H(x, ¢) (see Figure C.1)
H(x,e)=0  for x<_78

x 1 —&
=—+4+- for —=sx=<
e 2

N ™

€
=1 f >—
or x 2

Thus, in the limit we have
H(x)=0 for x<O0

for x=0

Bo—

=1 for x>0

and d H /dx, which equals d(x), satisfies equation (C.1). The differential d H(x, €)
equals dx/¢ for x between —e/2 and €/2 and is zero otherwise. If we take the integral
of d(x) from —oo to co, we have

0 o0 00 /2
J 6(x)dx=J dH:Iir%J dH(x,g):J ldx:l(£+£>:1

—00 —00 —00 —&/2 € e \2 2
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H(x, ¢)

/

|
|
|
|

—&/2 0 &2 X

H(x)

0 x

Figure C.1 The Heaviside unit step function H(x), defined as the limit as ¢ — 0 of
H(x, ¢).

and condition (C.2) is satisfied.

We next assume that the derivative 0'(x) of 6(x) with respect to x exists. If we
integrate the product ' (x)d’(x) by parts and note that the integrated part vanishes, we
obtain

| rowmar=-| rwoma=-ro

where f'(x) is the derivative of f(x). From equations (C.5a) and (C.5d), it follows that
0'(—x) =0'(x)

x0'(x) = —d(x)

We may also evaluate the Fourier transform 5(k) of the Dirac delta function

O(x — xo)

— 1 (™ _ 1 .
S(k :—J O(x — xp)e M dx = —e 0
(k) ) (x — xo) o
The inverse Fourier transform then gives an integral representation of the delta
function

_ 1 < ikx _ 1 ‘[00 ik(x—xp)

O(x — xp) \/2_71,[ O(k)e'™dk o ﬂoe dk (C.6)
The Dirac delta function may be readily generalized to three-dimensional space. If r

represents the position vector with components x, y, and z, then the three-dimensional

delta function is

—00

O(r — o) = 8(x — x0)0(y — ¥0)0(z — z0)
and possesses the property that
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Jf(r)é(r ~ro)dr = f(ro)
or, equivalently
J”ﬂx, 3. 20 — 10)0( — 30)0(z — 20) drdydz = f(o, 0, 20)

where the range of integration includes the points xy, yy, and zy. The integral
representation is

O(r —rg) J e!krTo) gk (C.7)

~ @y
where k is a vector with components k,, k,, and k. and where
dk = dk, dk, dk.
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Hermite polynomials

The Hermite polynomials H,(§) are defined by means of an infinite series
expansion of the generating function g(&, s),

_ (s— - s"
gl 5) = =0 =N T HE) (D.1)
n=0 )

where —oo < & < oo and where |s| <1 in order for the Taylor series expansion to
converge. The coefficients H,(§) of the Taylor expansion are given by

8”g(§ s) o o"
s=0 Os" s=0

For a function f(x + y) of the sum of two variables x and y, we note that

(5.~ (),

Applying this property with x = s and y = —& to the nth-order partial derivative in
equation (D.2), we obtain

~ (e —(S—E)z)

Hy(8) = (D2)

8” }’l 2 n 2
P —p e oy e
Os 5—0 0§ s—0 dé
and equation (D.2) becomes
2 d” 2
— (—1)"ef &
H,(&) =(—1)" & e (D.3)

Another expression for the Hermite polynomials may be obtained by expanding
g(&, s) using equation (A.1)

g(&, 5 = 0t = 3!

k!
k=0
Applying the binomial expansion (A. 2) to the factor (2& — s)*, we obtain
( l)a k—a s¢
(28 - Z it —an®®

and g(&, s) takes the form
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( 1)a2k (xgk a k+(x
g ) = ZZ i

k=0 a=
We next collect all the coefficients of s” for an arbltrary n, so that k + a = n, and
replace the summation over £ by a summation over n. When k& = n, the index a equals
zero; when k = n — 1, the index a equals one; when k£ = n — 2, the index a equals
two; and so on until we have k = n — M and a = M. Since the index o runs from 0 to
k so that o < k, this final term gives M < n — M or M < n/2. Thus, for k + o = n,
the summation over a terminates at o = M with M = n/2 for n evenand M =
(n — 1)/2 for n odd. The result of this resummation is

o M n—2a g n—20

(=De2meg "
8(& ) = ZO Z al(n—2a)
n=0 a=0
Since the Hermite polynomial H,(&) divided by n! is the coefficient of s” in the

expansion (D.1) of g(&, s), we have

PRCIREYITY gt i (D.4)
" " 222\ (n — 20)! '

We note that H,(§) is an odd or even polynomial in & according to whether # is odd or
even and that the coefficient of the highest power of € in H,,(§) is 2".

Expression (D.4) is useful for obtaining the series of Hermite polynomials, the first
few of which are

Ho(§) =1 H;(&) = 88 — 12¢
Hy(§) =28 Hy(§) = 165" — 4887 + 12
Hy(&) =48> —2  Hs(&) = 328° — 160&> + 120&

Recurrence relations
We next derive some recurrence relations for the Hermite polynomials. If we
differentiate equation (D.1) with respect to s, we obtain

00 n—1
2(&— . S)ezgsfsz _ Z Hn(g)h
n=1 :

The first term (n = 0) in the summation on the right-hand side vanishes because it is
the derivative of a constant. The exponential on the left-hand side is the generating
function g(&, s), for which equation (D.1) may be used to give

o0 Sn o0 n 1
26-9)) Hi®) = Z n@( ol
n=0 : n=1
Since this equation is valid for all values of s with |s| < 1, we may collect terms
corresponding to the same power of s, for example s”, and obtain

2EHNE) 2H, (&) Huoi(©)

n! (n—1)! n!

or

Hy1(8) — 25 Hy(8) + 2nH,—1(§) = 0 (D.5)

This recurrence relation may be used to obtain a Hermite polynomial when the two
preceding polynomials are known.
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Another recurrence relation may be obtained by differentiating equation (D.1) with
respect to & to obtain

25285 = i_dHnﬁ
‘— d& n!

Replacing the exponential on the left-hand side using equation (D.1) gives

o dH, s"
ZS; Hn(S) Z & nl

If we then equate the coefficients of 5", we obtaln the desired result

dH
dgn =2nH, (&) (D.6)

The relations (D.5) and (D.6) may be combined to give a third recurrence relation.
Addition of the two equations gives

Hy1(8) = (25 - —5) Hy(8) (D.7)

With this recurrence relation, a Hermite polynomial may be obtained from the
preceding polynomial. By applying the relation (D.7) to H,(§) k times, we have

Hooa8) = (25— d

k
d_g) Hy(8) (D-8)

Differential equation

To find the differential equation that is satisfied by the Hermite polynomials, we first
differentiate the second recurrence relation (D.6) and then substitute (D.6) with n
replaced by n — 1 to eliminate the first derivative of H,_;(&)

d’H, dH,
=2n
dé? dé
Replacing n by n — 1 in the first recurrence relation (D.5), we have
Hy(§) —28H,1(§) +2(n — 1)H,2(§) =0
which may be used to eliminate H,_,(£) in equation (D.9), giving
d2
dé&?
Application of equation (D.6) again to eliminate H,_;(§) yields
dH, dH,
— 25— +2nH,(§) =0 D.10
S £ E + 2nH,(8) (D.10)

which is the Hermite differential equation.

=4n(n—1)H, (&) (D.9)

" 2nH(E) — 4nEH,1(E) = 0

Integral relations

To obtain the orthogonality and normalization relations for the Hermite polynomials,
we multiply together the generatlng functions g(&, s) and g(&, ¢), both obtained from
equation (D.1), and the factor e ~¢"and then integrate over &

IEJiO ECRECEL ZZS - JOO e E H(EH,(§)dE  (D.11)

n=0 m=
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For convenience, we have abbreviated the integral with the symbol /. To evaluate the
left integral, we substitute the analytical forms for the generating functions from
equation (D.1) to give

I = JOO e 5l eXs s k-1 dé = emro e s dé—-s—1= /22t
—o0 —00

2st

where equation (A.5) has been used. We next expand e~ in the power series (A.1) to

obtain
00
2 nsnln
_ 12
I=xn Z o
n=0
Substitution of this expression for / into equation (D.11) gives

Wﬁ?ﬁm Zifﬂrkﬁm@m@@ (D.12)
n=0 : —00

Im!
=0 = n:m:

On the left-hand side, we see that there are no terms for which the power of s is not
equal to the power of ¢. Therefore, terms on the right-hand side with n # m must
vanish, giving

| e¥mom@E=o  nzn (D.13)
The Hermite polynomials H,(&) form an orthogonal set over the range —oco < § < oo

with a weighting factor e & Ifwe equate coefficients of (sf)” on each 51de of equation
(D.12), we obtain

r e[ H,(E)) dE = 2"l

—00

which may be combined with equation (D.13) to give

| e mem@de=2nars,, (D.14)
Completeness
If we define the set of functions ¢ ,(&) as

P(E) = ") P e E 2 H, (8 (D.15)

then equation (D.14) shows that the members of this set are orthonormal with
weighting factor unity. We can also demonstrate! that this set is complete.

We begin with the integral formula (A.8) which, with suitable definitions for the
parameters, may be written as

ro e (/MHEs g5 — l/2eE (D.16)

If we replace e & in equation (D.3) by the integral in (D. 16) we obtain for H,(&)

(=D" 2 0" ¥ _(easies ;. D" 2T 2/4‘9 s
H,(&) = 1/ze PG 7008 ds_ZJrl/2 RED ds

;nll)/z J 67(52/4)+i5ssn ds

1 See D. Park (1992) Introduction to the Quantum Theory, 3rd edition (McGraw-Hill, New York), p. 565.



300 Appendix D

The function ¢ ,(&) as defined by equation (D.15) then becomes

(_i)n E2/2 —(s2 4)+l§s n
DO = S | s (17
We now evaluate the summation
> 9uEpu&)
n=0

by substituting equation (D.17) twice, once with the dummy variable of integration s
and once with s replaced by ¢. Since the functions ¢ ,(&) are real, they equal their
complex conjugates. These substitutions give

Z¢ (e = e[ [ ey O oy agar
47 o p

o — 2"n!

since (—i)?" = (—1)". The summation on the right-hand side is easily evaluated using

equation (A.1)
(_l)n S_t n_ e,S[/Z
— ! 2)

00
n=0

Noting that
sTH 12 st (s+ 1)

4 2 4

we have

Z¢ ©)¢n(€) = ¢ &+ 2)/2J J e [OT0HEED 44;  (D.18)

The double integral may be evaluated by introducing the new variables u and v
s+t st
“ 2 T
dsdt =2dudv
The double integral is thereby factored into

) JOC et HEE d“J SEEW dy — 9 ¢ 12~/ 5 oo — EY)

or s=u-+v, t=u—U0v

where the first integral is evaluated by equation (A.8) and the second by (C.6).
Equation (D.18) now becomes

i Pu(E)Pn(E) = elEHENAMERET Ay £ _ 1) = E-EV/A5(E — &)
n=0
Applying equation (C.5e), we obtain the completeness relation for the functions ¢ (&)
> puEpuE) =0(E - &) (D.19)
n=0

demonstrating, according to equation (3.31), that the set ¢ ,(§) is a complete set.



Appendix E

Legendre and associated Legendre polynomials

Legendre polynomials

The Legendre polynomials P;(«) may be defined as the coefficients of s/ in an
infinite series expansion of a generating function g(u, s)

g, 5) = (1 =2us +57)712 =3 P(u)s’ (E.1)
=0

where —1 < u < 1 and |s| <1 in order for the infinite series to converge.
We may also expand g(u, s) by applying the standard formula

f(Z)E(l—z)l/z_ii(dnf) _O_iil‘3'5""'(zn—1)

n! \ dz" n! n
n=0

n=0
= (2n)!
zzzzn(n!)zz

n=0

If we set z = s(2u — ), then g(u, s) becomes
= (2n)! "
glu, s) = ZOWS @u = s)

With the use of the binomial expansion (A.2), the factor (2u — s)” can be further
expanded as

no__ . (_l)an‘ n—a .o
Qu—s)" = ;W —a s

so that

o0

gu, s) = Z i (=D*@2n)lu"* e

+anlal(n — o)
n:Oa:Ozn “nlal(n — a)!

We next collect all the coefficients of s’ for some arbitrary / and replace the summation
over n with a summation over /. Since n + o = [, when n = [, we have a = 0; when
n=1[1—1,wehavea =1l;andsoonuntiln =/7/— M,a = M,where M < [— M or
M < /2. The summation over a terminates at « = M, with M = [/2 for ] even and
M = (I — 1)/2 for [ odd, because a cannot be greater than n. The result is

301
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(D@1 = 2"
g(u, s) = ; ; 2lal(l — a)l(I - 2a)! st

Since the Legendre polynomials are the coefficients of s’ in the expansion (E.1) of
g(u, s), we have

M
B (=D*Q2I-2a)! .,
Py = ;2’(1!(1 — )l —2a) " (E-2)

We see from equation (E.2) that P;(u) for even / is a polynomial with only even powers
of u, while for odd / only odd powers of u are present.

The first few Legendre polynomials may be readily obtained from equation (E.2)
and are

Py(u) = 1 Py(u) = 45 — 3p0)
Pi(u) = Py(p) = 435u* — 3047 +3)

Pa(p) = 2(3u 1) Ps(u) = §(63u° — 704 + 150)
We observe that P;(1) = 1, which can be shown rigorously by setting # = 1 in
equation (E.1) and noting that

g9 =(1-5" == iﬁ(l)s
=0

Since Py(u) is either even or odd in u, it follows that P;(— 1) = (—1)" and that
P;(0) = 0 for / odd.

Recurrence relations
We next derive some recurrence relations for the Legendre polynomials. Differentia-
tion of the generating function g(u, s) with respect tos gives

0 a-s I-1
s = IP E.
9s (I —2uts) 1 - 2ﬂ + % Z (s (E.3)

The term with / = 0 in the summation vanishes, so that the summatlon now begins
with the / = 1 term. We may write equation (E.3) as

(=)D Pilwys' = (1= 2us +5%) Y IP(u)s"!
=0 =1

If we equate coefficients of s/~! on each side of the equation, we obtain
uPy (@) — Pro(u) = IP(u) — 2(1 — DuP_1(u) + (1 = 2)Pr(u)

or
IP(w) — 21 = DuPra(u) + (I = D Py(u) = 0 (E.4)
The recurrence relation (E.4) is useful for evaluating P;(x) when the two preceding
polynomials are known.
Differentiation of the generating function g(u, s) in equation (E.1) with respect to u
yields
g _ sg
ou 1 —2us+ s?
which may be combined with equation (E.3) to give
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s% u—s 98

as T ou
a3 > dp
IP(p)s' = (u—9) ) —s
; ; du

Equating coefficients of s’ on each side of this equation yields a second recurrence
relation

so that

WS =0 (E5)
u  du
A third recurrence relation may be obtained by differentiating equation (E.4) to give
dP/ g
i =

and then eliminating dP;_, /du by the substitution of equation (E.5) with [ replaced by
[ — 1. The result is

ar_ 4P,
du # du

— P () =0 (E-6)

Differential equation
To find the differential equation satisfied by the polynomials P;(u), we first multiply
equation (E.5) by —u and add the result to equation (E.6) to give

dP,
U—Mﬁj+mmm—mmwrw
We then differentiate to obtain
d?p dPl dp dp;
1 — ) —— —2u—+1 =0

The third and last terms on the left-hand side may be eliminated by means of equation
(E.5) to give Legendre’s differential equation

(- ﬂﬁ—m%Hﬂwnmm:o (E7)

Rodrigues’ formula
Rodrigues’ formula for the Legendre polynomials may be derived as follows. Consider
the expression

v=( -1
The derivative of v is

dv _ _
— =2lu(* — 1) = 20uv’ — 1)

du
which is just the differential equation
d
(1= 2000 =0
du

If we differentiate this equation, we obtain
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dv
1 —u? 20l — Du—+2lv=0
( ) +( )ﬂdﬂ‘l' v

We now differentiate  times more and obtain
d’+2p r+1 r

d*'v d’v
(l—y) r+2+2(1—r—l)ﬂW+(V+1)(Zl—r)dﬂ =

0 (E.8)
Ifwelet r =/ and deﬁne was

_dlv _d o,

W=-—-= d_/ﬂ (u”—1)

then equation (E.8) reduces to

d>w dw

1 —u?)——2u—+ I+ 1Hw=0
( ”)d;ﬂ ﬂdﬂ-i'(-i- w

which is just Legendre’s differential equation (E.7). Since the polynomials P;(u)

represent all of the solutions of equation (E.7), these polynomials must be multiples of
W, so that

d i
Pi(u) = Cld_u’(‘u -1

The proportionality constants ¢; may be evaluated by setting the term in ', namely

d" o en
d 1;“ Cl I
equal to the term in 4/ in equation (E.2), i.e.,
@,
202"
Thus, we have
1
=50
and
PO = 57 Lo~y (E9)

This expression (equation (E.9)) is Rodrigues’ formula.

Associated Legendre polynomials

The associated Legendre polynomials Pj'(u) are defined in terms of the Legendre
polynomials P;(u) by

d™ Py(u)

— (1 — 2ym2 M

PPGo = (1 =@y =0 (E.10)
where m is a positive integer, m = 0, 1, 2, ..., [ If m = 0, then the corresponding

associated Legendre polynomial is just the Legendre polynomial of degree I. If m > [,
then the corresponding associated Legendre polynomial vanishes.

The generating functions g”(u, s) for the associated Legendre polynomials may
be found from equation (E.1) by letting
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) o 47 g, )
g, 5) = (1 — utym2 LD

du™
Since
% =3.5 - (2m— 1)s"(1 — 2us + %)~ "D
= (22":2: ™1 —2us + sz)_(”“’%)
we have
Ww)Zwmh(Mm”Ww E11)

2mml(1 — 2us + s?)"

We can also write an explicit series for Pj'(u) by differentiating equation (E.2) m
times

2)m/2 i (—=DH*21 - 2(1)![1,{[7’"*201
:02la!(l —a)l(l — m—2a)!

where M’ = (I — m)/2 or (I — m — 1)/2, whichever is an integer. Furthermore,
combining equation (E.10) with Rodrigues’ formula (E.9), we see that
I+m

m m d
Py(u) = yﬂa W g @ =1 (E.13)
The first few associated Legendre polynomials are
Po(u) = Po(u) = 1

Pi(u) =
Pi(u) = (1 — i)'/
PY(u) = Po(p) = 33u> — 1)
Py() = 3u(1 — p)'V?
Pi(u) = 3(1 — i)

Pl =(1—pu (E.12)

Differential equation
The differential equation satisfied by the polynomials P}'(«) may be obtained as
follows. Let r = [ + m in equation (E.8) and define w,, as

dl+m 5 d P

_ I _
W = T W -1l = d — (E.14)
so that
W = 21111 = >~ P () (E.15)
Equation (E.8) then becomes
(1 —u? l)ud—+[l(l+1)— m(m + 1)]w (E.16)
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We then substitute equation (E.15) for w,, and take the first and second derivatives as
indicated to obtain

2

&pr o dpr
Lou=Lty 1+ 1) -
1 —u

du? du

Equation (E.17) is the associated Legendre differential equation.

(1 — ) +

PPw)=0  (E17)

Orthogonality
Equation (E.17) as satisfied by P}"(«) and by P}'(x#) may be written as

d dpP7y m?
G [0 =G|+ 1 =2 | Pran =0

and

m?
I +1) T Pp(u)=0

d dpPy
— |1 = u>H—L
du{( M)du}Jr

If we multiply the first by Pj’(«) and the second by Pj"(x) and then subtract, we have

d dP7? d dP7
m (1 —uH)—=L| —P"— | - )L =[I'(I' + 1) = I(I+ 1)]P"P™"
We then add to and subtract from the left-hand side the term
P AP
(l_lu2)d_ld_l
du du
So as to obtain
d dP7? dP7
— =) Pr=L—pr—L)| =[I'(I' + 1) = I(l+ 1)]P"P"
i (0= (Prgh = Pr D) = v+ e

We next integrate with respect to 4 from —1 to 41 and note that

dpr dp™ 1!
1 — u? (P”,’—’—P’” ’)} =0
|:( s ) ! dﬂ / d//l .

giving
1
'+ 10—+ 1)]J PPl du=0
-1
If I' # [, then the integral must vanish

1
JIP?"(u)P?’(M) du=0 (E.18)

so that the associated Legendre polynomials Pj'(u) with fixed m form an orthogonal
set of functions. Since equation (E.18) is valid for m = 0, the Legendre polynomials
Pi(u) are also an orthogonal set.

Normalization
We next wish to evaluate the integral 1,

1
= [ (PPGOF d

As a first step, we evaluate /g
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1
Lo = JI[PM)F du

We solve the recurrence relation (E.4) for P;(«), multiply both sides by P;(u), integrate
with respect to 4 from —1 to +1, and note that one of the integrals vanishes according
to the orthogonality relation (E.18), so that

1

1 20— 1
L (PP =2 J_luPz(u)Pl_l(m du

Replacing / by / + 1 in equation (E.4), we can substitute for 4 P;(u) on the right-hand
side. Again applying equation (E.18), we find that

[ tror =220 psgor
e ey IR ] B
This relationship can then be applied successively to obtain

Jl (PP du = ZL=DRI=3) r
-1

2
O ES [Pr2(w)]” du

-1

_ . @=-Dei=-3)---1 ! ,
T Q@I+ DHRI-DRI-3)---3 Jl[Po(ﬂ)] du

L
_21+1J_1[ ()T du

Since Py(1) = 1, the desired result is
! 5 I 2
| o an =5 | an=5 (E19)
We are now ready to evaluate /;,,. From equation (E.10) we have

! d" P\’ ! d"p d (d"'p,
[m — 1 — 2ym | = 1 d :J 1 — 2\m e d
I Jl( M) <dﬂm> u 71( u) du du \ durt | 9

Integration by parts gives
" de] dmflpl 1 Jl d"171P] d
d#m d‘um—l | . dlum—l dﬂ

The integrated part vanishes because (1 — u?) = 0 at u = +1.
To evaluate the integral on the right-hand side of equation (E.20), we replace m by
m — 1 in (E.16) and multiply by (1 — #?)”~! to obtain

dw,,_ m—
(U =) =5 = = 2muu(l —41%)

-yt an @20

1 L AWy

du
+ LI+ 1) = m(m = D] = )" wy =0

which can be rewritten as
d m dWm,1
- [(1 — ) —}
Iz du

From equation (E.14) we see that

=—(I+mI-—m+DA - 'wp_1=0
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mflp
Wy = 2014 K
dum=
and
dwn—1 = w, = 211!@
du du™
so that
d d"p, d"'p,
— (=) == == [—m+ 1)1 — u?)"!
dﬂ[( ) dﬂm} (= m 4+ D = )"
Thus, equation (E.20) takes the form
2
1 m—1
A" P
lin = =m0 =y (G2

Using equation (E.10) to introduce PJ"~!(x), we have
1
I =t =m0 (PP d
1

= (l + m)(l —m+ 1)[l,m—l
which relates 1, to I;,,_;. This process can be repeated until / is obtained
m = [(I+m)(l+m—DI(—m+ D —m+2)m

=[I+mI+m—1)- U+ DI —m+1)I—m+2) - I
Um0

1
N (l—mn'"
so that
1
2(1+ m)!
Pl du = —————"——
JJ;WM Q1+ 1) — m)!

Completeness
The set of associated Legendre polynomials P'"(/r) with m fixed and [/ = m,
m+1, ..., form a complete orthogonal set! in the range —1 < u < 1. Thus, an

arbitrary functron f(u) can be expanded in the series
o0
S =" amP](w)
I=m

with the expansion coefficients given by

!' The proof of completeness may be found in W. Kaplan (1991) Advanced Calculus, 4th edition (Addison-
Wesley, Reading, MA) p. 537 and in G. Birkhoff and G.-C. Rota (1989) Ordinary Differential Equations,
4th edition (John Wiley & Sons, New York), pp. 350—4.
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2041 =ml (N,

The completeness relation for the polynomials P}*(u) is

214+ 1(1 — m)!
LU= oy Py = oG — )

Aim

2 (I+ m)

I=m
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Laguerre and associated Laguerre polynomials

Laguerre polynomials

The Laguerre polynomials L;(p) are defined by means of the generating
function g(p, s)
eps/(—s) 20

= Lk(m (F.1)

k=0

where 0 < p < oo and where |s| <1 in order to ensure convergence of the infinite
series. Since the right-hand term is a Taylor series expansion of g(p, s), the Laguerre

polynomials are given by
81{ efps/(lfs)
2500 (e
s=0 s -5 s=0

To evaluate L;(p) from equatlon (F.2), we first factor out e” in the generating
function and expand the remaining exponential function in a Taylor series

¢ - e/ SA(—1)* (— 1)a . B
e = CL () e o S g
a=0 :

We then take k successive derivatives of g(p, s) with respect to s

080:3) _ o 5 CE" 4 11— gy
a=0 :

glp, s) =

o g(p, s) (F.2)

g(p, s) =

Os
2 X 1\a 0
TEL o0y T a1yt 21—
a=0 :

5‘kg(p, s) — e Z( D% (a + k)! = a- s)’(‘”kﬂ)

Osk
a=0
When the kth derivative is evaluated at s = 0, we have
(—D*a+ k! ,
p
Li(p) = Z @ (F.3)

310
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Using equation (A.1) we note that
d* - (= 1)“ (=D*a+ k)!
w(pke )= Z Z g E4)

Combining equations (F.3) and (F.4), we obtain the formula for the Laguerre
polynomials

dk
Li(p) = e”w(pke_”) (F.5)

Another relationship for the polynomials L;(p) can be obtained by expanding the
generating function g(p, s) in equation (F. 1) using (A1)
e —ps/(1 s) ( 1)a a 5§

I—s 2 a (1-sed

The factor (1 — s)~**! may be expanded in an infinite series using equation (A.3) to
obtain

gp, s) =

|
(1 — )@ = EZWZf)

so that g(p, s) becomes

(=D%a + B)lp*
g(p, s) = ;/; (@2

We next collect all the coefficients of s* for an arbitrary £, so that o + 3 = k, and
replace the summation over o by a summation over £. When a = £, the index j equals
zero; when a = k — 1, the index [ equals one; and so on until we have a = 0 and

B = k. Thus, the result of the summation is

D Pt
—
&) ;;;;uk pTE

Since the Laguerre polynomial L(p) divided by ! is the coefficient of s* in the
expansion (F.1) of the generating function, we have

Li(p) = (K1Y’ i—(_l)k_ﬂ p*r
2 [k — ATl

If we let kK — f = v and replace the summation over 3 by a summation over 7y, we
obtain the desired result

R N G Vi
Li(p) = (k! Zmp

A third relationship for the polynomials L;(p) can be obtained by expanding the
derivative in equation (F.5), using (A.4), to give

Zk: K depkditer I (=D)F*kld%pk

— al(k —a)! dp* dpk-« N “—al(k —a)! dp*

We now observe that the operator [(d/dp) — 1]¥ may be expanded according to the
binomial theorem (A.2) as

(F.6)

Li(p) =
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(1% d°

k
k_ ¢ 1vkpp k k
[(d/dp) — 11 = (=1)*[1 — (d/dp)]* = (~1) j{j(l(k__a),dpa

a=0
so that
Li(p) = [(d/dp) — 1]%p* (F.7)
where we have noted that (—1)* = (—1)7%

From equation (F.2), (F.5), (F.6), or (F.7), we observe that the polynomial L;(p) is of
degree k and we may readily obtain the first few polynomials of the set

Lo(p) =1
Li(p)=1-p
Lyp)=2—4p+p’

Ly(p) = 6 — 18p +9p* — p’
We also note that L;(0) = k!

Differential equation
Equation (F.5) can be used to find the differential equation satisfied by the polynomials
Li(p). We note that the function f(p) defined as
flp)=pre”
satisfies the relation

v Lrw-nr=0
0

If we differentiate this expression k + 1 times, we obtain

d2 (k) (k)
$4a+mf

where (¥ is the kth derivative of f(p). Since from equation (F.5) we have
[P =e"Lip)
the Laguerre polynomials L;(p) satisfy the differential equation
d>L;
P apr

p +(k+1Df® =0

d
va£+mw=o (F.8)

Associated Laguerre polynomials

The associated Laguerre polynomials L (p) are defined in terms of the Laguerre
polynomials by

J dj
Lip) = 35 Lu(p) (F.9)

Since L;(p) is a polynomial of degree k, L k(p) is a constant and L/ (p) =0 for j>k.
The generating function g(p, s; j) for the associated Laguerre polynomlals with fixed
Jj is readily obtained by differentiation of equation (F.1)
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d/ [e—rs/(-9) =0
s =g (7o) = e =Y Hen o

The summation in the right-hand term begins with k£ = j, since j cannot exceed k.
We can write an expllclt series for L} (p) by substltutlng equation (F.6) into (F.9)

) —1y d/ —1 .
Li(p) = (k) 27@‘ D) = (k! z =17 o7
y=0

.)2(k—y)!dpf « Yk =y — )

The summation over y now begins with the term y = j because the earlier terms
vanish in the differentiation. If we let y — j = a and replace the summation over y by
a summation over a, we have

k—j +a ,a
j _ 2 (=1)/"p
Lilp) = (kY ; ak—j— )+ a)

For the purpose of deriving some useful relationships involving the polynomials
L’ (p), we define the polynomial A{(p) as

Alp) =

(F.11)

i .
If we replace the dummy index of summation k in equation (F.10) by i, where
i = k — j, then (F.10) takes the form

l+](p) 1+j A](p)
gp, s; ) =
Thus, A{ (p) are just the coefficients in a Taylor series expansion of the function
s~/ g(p, s; j) and are, therefore, given by

Alp) = —s “g(p, 53 ))

s=0
Substituting for g(p, s; j) using equation (F.10), we obtain

61 e—PS/(l—S)

J |
Ao =055 G _S)‘,.H]
5 [ pPa—p/(1—s)

:(_1yi e 7

ds' | (1 — syt

S=

(=p)*
=(- 1)j Osi e’ Za'(l _ s)a+]+l]

s=0

_ (“1ye pZ(sz;]:];? (—p)" (F.13)

We next note that
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d (=D i =D*(a+j+d) ,
ap e =0, Z +]+_Z a @iy P

(o +j+1)! o
E:a«a+ﬁv“ﬂ) (F.14)

Comparison of equations (F.13) and (F.14) yields the result that
: R U .
Al(p) = (=1Yp~le’ —(p"e?)
dp’
From equation (F.12) we obtain
1+]( ) ( 1)/ (pl+j 7/))
Finally, replacing i by the original index k (= i+ ]), we have
; A 1 Y L
J —(—1V —JeP ka—p
Ly(p) = (=1) Gt © dpk,j(p e’) (F.15)

Equation (F.15) for the associated Laguerre polynomials is the analog of (F.5) for the
Laguerre polynomials and, in fact, when j = 0, equation (F.15) reduces to (E.5).

(l+]) o p

Differential equation
The differential equation satisfied by the associated Laguerre polynomials may be
obtained by repeatedly differentiating equations (F.8) j times

d3L d?L, dL
i TN +(k—1)—"_o
d
d*L d3Lk AL,
— LB -p)—4+hk-2)—==0
p o +3B—p) i +( )dp2
df+2L df“L de

When the polynomlals L, (p) are 1ntr0duced with equation (F. 9) the differential
equation is
L
Pd2+(1+1—/0) +(k NLi(p) =0 (F.16)

Integral relations

In order to obtain the orthogonality and normalization relations of the associate
Laguerre polynomials, we make use of the generating function (F.10). We multiply
together g(p, s; j), g(p, t; j), and the factor p/"”e~* and then integrate over p to give
an integral that we abbreviate with the symbol 1

[EJ /+Ve pg(,O, S5 ])g(p9 IS ])dp = Zza'ﬁ'
0 a=j p=j

wawy@L@@

(F.17)
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To evaluate the left-hand integral, we substitute the analytical forms of the generating
functions from equation (F.10) to give

(st .
ED R pj “dp (F.18)
where
14 r 1 — st
4= 1— i T a—s9a-»
The integral in equation (F.18) is just the gamma function (A.26), so that
< I'G+v+1) @G+ .
“+v ap _ —
JO p/ e dp = vl gl j+v=0

where we have restricted v to integer values. Thus, 7 in equation (F.18) is

+ (st (1 — s)"(1 — t
G+ —9)"d -0

(1 — st)/v+l
Applying the expansion formula (A.3), we have
L +V+0
| _ Gt N U
( S ) Z (] + 'V)'l' )

If we replace the dummy index i by a, Where a = i+ j, then this expression becomes

U N~ (a0 a-j
(h—ay= _(;»(Hv)!(a—j)!(m ’

[ =

and [ takes the form
(a+v
J)'

I=(1-s5"1=1" Z (s0)*

Combining this result with equation (F.17), we have

, atv

S e oo an = a - - Z( (s (.19)

a=j p=j

We now equate coefficients of like powers of s and ¢ on each s1de of this equation.
Since the integer v appears as an exponent of both s and ¢ on the right-hand side, the
effect of equating coefficients depends on the value of v. Accordingly, we shall first
have to select a value for v.

For v = 0, equation (F.19) becomes

B
ZZZ,;,j et L ()L} (p)dp—z G
a=j f=j

Since the exponent of s on the right-hand side is always the same as the exponent of z,
the coefficients of s*## for a # f on the left-hand side must vanish, i.e.

J:Opf e LL(PLYp)dp =0;  a#p (F.20)

Thus, the associated Laguerre polynomials form an orthogonal set over the range

0 < p = oo with a weighting factor p/e . For the case where s and ¢ on the left-hand
side have the same exponent, we pick out the term 5 = a in the summation over f3,
giving
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ZES’,);J pe LI dp = Z( 60

Equating coefficients of (s¢)“ on each side yields

o0 ) | 3
| prertzionpap = (F21)
0 (a—))!
Equations (F.20) and (F.21) may be combined into a single expression
00 "3
VL) = by (F.22)
(a—))!

For v = 1, equation (F. 19) becomes

JO p/ e P L (p)Li(p) dp

1)!
Z(a + ( B 4 (s)* — s+ g0 g gt

Equating coefficients of like powers of s and ¢ on both sides of this equation, we see
that

| ety -0 praaz (F.23)
0
and that
! )72
| e e = - (F.24)
LTk @ ] Qa4 @)
[, e e =@ [+ o] = S s

The term in which § = a — 1 is equivalent to the term in which § = a + 1 after the
dummy indices a and j are interchanged. Equations (F.23), (F.24), and (F.25) are
pertinent to the wave functions for the hydrogen atom.

Completeness
We define the set of functions y;(p) by the relation
k=t )"
150 = [ P | L) (F.26)

Accordlng to equation (F 22), the functions ) 4(p) constitute an orthonormal set. We
now show' that this set is complete.
Substitution of equation (F.15) into (F.26) gives

=yl 1T (F27)
rtp Wiyl 4

If we apply equation (A.11), we may express the derivative in (F.27) as

! D. Park, personal communication. This method parallels the procedure used to demonstrate the complete-
ness of the set of functions in equation (D.15).
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dk= k! dk=7 (> elrs ik k! (> elrs
(e = kf‘J J Ry
dpk=J 2 dph—i oo (1 +15)
so that y;(p) in integral form is
(_ 1)jik7j k!pfjep 1/2 oo eips
27 [(k —j)!] Joo (1 +is)k+!
To demonstrate that the set y1;(p) is complete, we need to evaluate the sum

> xPrp)
k=j

s/ ds

- ds =
oo (1 Fis)ktl 27

s*J ds (F.28)

xi(p) =

Expressing (F.28) in terms of the dummy variable of integration s for p and in terms of
t for p’, we obtain for the summation

> xuo(p")
k=j
1 . , o0 oo ) (71)k7jk! (Sl‘)kij
— _— (pp" ) I/2elptp)/2 i(ps+p'1) dsds
e J_J_Of“ Z k=) [1+iGs+0) —sfi 1| &
k=j

By letting a = k — j, we may express the sum on the right-hand side as
(= D)*a +))! . ; - '
Z()fli.j) 1+ iCs + 1) — st (st = L1 +i(s + 0] U
a=0 ’

where we have applied equation (A.3) to evaluate the sum over a. We now have

- J! J/2a(p+p"/2 R elsted dsd 29
. (p) = L _ "~ e - - sdt F.
DKy = 50 | | i (F.29)
To evaluate the double integral, we introduce the variables u and v
u*S+t U*S_t or s=u+v, t=u-—0
2 T2 B T

dsdt =2dudv
The double integral then factors into
00 ei(pﬂ)')u oo - 20T p 4 p/ J B , )
2[06 W duJDoe'(p P dv = 7 <T [§ (ptp )/2[2.7T6(p —pP )]

where the first integral is evaluated by equation (A.11) and the second by (C.6).
Equation (F.29) becomes

00 ’ j
Zxkj(p)xkj(p’) = [ pEp } p —p')
k=]

2(pp")'/?
By applying equation (C.5¢), we obtain the completeness relation

> 2P’ = 0(p — p") (F.30)
k=j

demonstrating according to equation (3.31) that the set y;(p) is complete.
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Series solutions of differential equations

General procedure

The application of the time-independent Schrédinger equation to a system of chemical
interest requires the solution of a linear second-order homogeneous differential equa-
tion of the general form

dzu( ) )

p(x) + g(x)—— ( + r(x)u(x) =0 (G.1)

where p(x), g(x), and r(x) are polynomlals in x and where p(x) does not vanish in
some interval which contains the point x = 0. Equation (G.1) is linear because each
term contains u or a derivative of u to the first power only. The order of the highest
derivative determines that equation (G.1) is second-order. In a homogeneous differ-
ential equation, every term contains « or one of its derivatives.

The Frobenius or series solution method for solving equation (G.1) assumes that the
solution may be expressed as a power series in x

u= Z apx* s = apx® + ajx* T+ - - (G.2)

where a; (k =0, 1,2, ...)and s are constants to be determined. The constant s is
chosen such that a is not equal to zero. The first and second derivatives of u are then
given by

= Zak(k+ S)XF = qosxS™ 4+ ay(s + Dx* 4 - (G.3)
=0

d? =
alzl =u" = Z ar(k + s)(k + s — Dx 72 = gps(s — Dx* 2+ ay(s + Dsx* 1 + -+
=0

(G4)
A second-order differential equation has two solutions of the form of equation (G.2),
each with a different set of values for the constant s and the coefficients ay.
Not all differential equations of the general form (G.1) possess solutions which can
be expressed as a power series (equation (G.2)).! However, the differential equations
encountered in quantum mechanics can be treated in this manner. Moreover, the power

! For a thorough treatment see F. B. Hildebrand (1949) Advanced Calculus for Engineers (Prentice-Hall,
New York).

318
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series expansion of u is valid for many differential equations in which p(x), ¢(x), and/
or r(x) are functions other than polynomials,? but such differential equations do not
occur in quantum-mechanical applications.

The Frobenius procedure consists of the following steps.

. Equations (G.2), (G.3), and (G.4) are substituted into the differential equation (G.1)
to obtain a series of the form

00
> al(k + )k + s — Dp)x* ™2 + (k + $)g(ox " + r(x)x 1 =0
k=0

. The terms are arranged in order of ascending powers of x to obtain

o0

D et =0 (G.5)
k=a
where the coefficients ¢, are combinations of the constant s, the coefficients a;, and
the coefficients in the polynomials p(x), g(x), and »(x). The lower limit a of the
summation is selected such that the coefficients ¢; for k£ < a are identically zero,
but ¢, is not.

. Since the right-hand side of equation (G.5) is zero, the left-hand side must also
equal zero for all values of x in an interval that includes x = 0. The only way to
meet this condition is to set each of the coefficients ¢; equal to zero, i.e., ¢, = 0 for
k=a,a+1,...

. The coefficient ¢, of the lowest power of x in equation (G.5) always has the form
cq = aof(s), where f(s) is quadratic in s because the differential equation is
second-order. The expression ¢, = af(s) = 0 is called the indicial equation and
has two roots, s; and s,, assuming that @y # 0.

. For each of the two values of s, the remaining expressions ¢y =0 for k = a + 1,
a+ 2, ... determine successively a;, az, ... in terms of ay. Each value of s yields
a different set of values for a;; one set is denoted here as ay, the other as a.

. The two mathematical solutions of the differential equation are u; and u,

up = apx*'[1 + (a1 /ao)x + (az/ao)x* + - -]
up = apx“[1 + (ai/ab)x + (ab/ab)x* + -]

where ag and ag are arbitrary constants. Physical solutions are obtained by applying
boundary and normalization conditions to #; and u;.

. For some differential equations, the two roots s; and s, of the indicial equation
differ by an integer. Under this circumstance, there are two possible outcomes: (a)
steps 1 to 6 lead to two independent solutions, or (b) for the larger root sy, steps 1
to 6 give a solution u;, but for the root s, the recursion relation gives infinite values
for the coefficients a; beyond some specific value of k and therefore these steps fail
to provide a second solution. For some other differential equations, the two roots of

2 See for example E. T. Whittaker and G. N. Watson (1927) A Course of Modern Analysis, 4th edition
(Cambridge University Press, Cambridge), pp. 194-8; see also the reference in footnote 1 of this
Appendix.
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the indicial equation are the same (s; = s,) and therefore only one solution u; is
obtained. In those cases where steps 1 to 6 give only one solution u;, a second
solution u, may be obtained® by a slightly more complex procedure. This second
solution has the form

00
u, = cuplnx + ¢ Z bx s

k=0
where c is an arbitrary constant and the coefficients b; are related to the coefficients
ar. However, a solution containing Inx is not well-behaved and the arbitrary
constant c is set equal to zero in quantum-mechanical applications.

8. The interval of convergence for each of the series solutions u#; and u; may be

determined by applying the ratio test. For convergence, the condition

At

ag

lim

k—o00

lx| <1

must be satisfied. Thus, a series converges for values of x in the range
1 1
——<<x<—=
R R
where R is defined by
Af+1
ag

R = lim
k—o0

For R equal to zero, the corresponding series converges for —oco <x <<oo. If R
equals unity, the corresponding series converges for —1 <x <1.

Applications

In Chapters 4, 5, and 6 the Schrédinger equation is applied to three systems: the
harmonic oscillator, the orbital angular momentum, and the hydrogen atom, respec-
tively. The ladder operator technique is used in each case to solve the resulting
differential equation. We present here the solutions of these differential equations
using the Frobenius method.

Harmonic oscillator
The Schrodinger equation for the linear harmonic oscillator leads to the differential
equation (4.17)

Eo) | . 2E
~Tia FENO = o) (G.6)
If we define A by the relation
2F
241 = (G.7)
and introduce this expression into equation (G.6), we obtain
¢"+2A+1-EHp=0 (G.8)

3 See footnote 1 of this Appendix.
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We first investigate the asymptotic behavior of ¢(&). For large values of &, the
constant 21 + 1 may be neglected in comparison with £2 and equation (G.8) becomes

9" =&
The approximate solutions of this differential equation are
¢ = ce*E?
because we have
¢"=(E>+1)p ~ E*¢p for large &
The function ¢5”/2 is not a satisfactory solution because it becomes infinite as

£ — 00, but the function e 4"/2 is well-behaved. This asymptotic behavior of ¢(§)
suggests that a satisfactory solution of equation (G.8) has the form

P& = ue </ (G.9)
where u(&) is a function to be determined.
Substitution of equation (G.9) into (G.8) gives
u" =28 +2Au=0 (G.10)
We solve this differential equation by the series solution method. Applying equations
(G.2), (G.3), and (G.4), we obtain

D aw(k + )k + s = DETT 4 " [-2(k + 5) + 221EF =0 (G.11)
k=0 k=0
The coefficient of £*~2 gives the indicial equation
aps(s—1)=0 (G.12)
with two solutions, s = 0 and s = 1. The coefficient of £~ gives
a(s+1)s=0 (G.13)

For the case s = 0, the coefficient a; has an arbitrary value; for s = 1, we have a; = 0.
If we omit the first two terms (they vanish according to equations (G.12) and
(G.13)) in the first summation on the left-hand side of (G.11) and replace the dummy

index k by k£ + 2 in that summation, we obtain
o0

D Hawa(k + s+ 2)(k+ s+ 1)+ ax[-2(k + ) + 24} = 0 (G.14)
k=0
Setting the coefficient of each power of & equal to zero gives the recursion formula

2(k+s— A1)
a
(k+s+2)(k+s+1) "
For the case s = 0, the constants a( and «a; are arbitrary and we have the following

two sets of expansion constants
ap aj

Ajs2 = (G.15)

2(1 = 2)
ay = *la() azy = ai
3!
22-4)  2%A2-4) 2B3-4)  22(1-AEB -2
TR BTy BT 5! @
2(4-2) 212 -4 - 1) 2(5-2) 220 -)B -5 -2)
ae = ag = — ap a; = as = ai

6-5 6! 0Tl 7!

Thus, the two solutions of the second-order differential equation (G.10) are
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2 3
_ 201 — _ 3(1 _ _ _
w0 = a [§+ 2(13! A) £ 25(1 i—.?(3 A) £ +2 (1 /1)(37! NG =) n
(G.16b)

The solution #; is an even function of the variable & and u, is an odd function of &.
Accordingly, #; and u, are independent solutions. For the case s = 1, we again obtain
the solution u,.

The ratio of consecutive terms in either series solution u; or u, is given by the
recursion formula with s = 0 as

ak+2§k+2 _ 2(k — /1)
ap&k (k+2)(k+1)
In the limit as & — oo, this ratio approaches zero
. ap&R? 2 .,
M g A 0

so that the series u; and u, converge for all finite values of 5 To see what happens to
uy and up as § — +o00, we consider the Taylor series expansion of e

2n 6
Zg 71+§z+5 +‘E + -

The coefficient a, is given by a, = 1/(n/2)! for n even and a, = 0 for n odd, so that

uay
an26™?  \2 £ 1
a,&" N (n + 2) (n >
—+1
2 2
Thus, u; and u, behave like e as & — 4o0. For large |&|, the function ¢(&) behaves
like

52

22
&~ E as n — oo

(&) = u(&)eféz/2 ~efe ¥ =62 o as £ — +o0
which is not satisfactory behavior for a wave function.
In order to obtain well-behaved solutions for the differential equation (G.8), we need
to terminate the infinite power series u; and u, in (G.16) to a finite polynomial. If we
let A equal an integer n (n =0, 1,2, 3, ...), then we obtain well-behaved solutions

P(&)

n=20, ¢y = aoe_‘gz/z, a =0

n=1, b1 :alge_fz/z, ap=20

n=2  ¢r=ay(l -2 a4 =0
n=3  ¢3=aif(1 -2 4 =0
n=4,  ¢i=a(l —4E +4He 2 a1 =0

n=>5, ¢s = aE(1 =382 +{EDe 572, a9 =0



Series solutions of differential equations 323

Since the parameter 4 is equal to a positive integer n, the energy E of the harmonic
oscillator in equation (G.7) is

E,,z(n—i—%)ﬁw, n=0,1,2,...
in agreement with equation (4.30). Setting 4 in equation (G.10) equal to the integer n
gives

u"—2&u' +2nu =20 (G.17)
A comparison of equation (G.17) with (D.10) shows that the solutions u(&) are the
Hermite polynomials, whose properties are discussed in Appendix D. Thus, the
functions ¢ ,(&) for the harmonic oscillator are
dn(8) = aan(E)eigz/z

where a, are the constants which normalize ¢ ,(&). Application of equation (D.14)
yields the final result

$u() = @"n) P P H, (e
which agrees with equation (4.40).

Orbital angular momentum
We wish to solve the differential equation

Ly(0, ¢) = M0, ¢) (G.18)
where L2 is given by equation (5.32) as
R 1 9 B 1 &
> = —#? —(sin6 o) 1
Lin 000 <sm 0 ae> t 26 8(p2] (G-19)

We write the function ¥(6, ¢) as the product of two functions, one depending only on
the angle 0, the other only on ¢

Y(0, @) = B(6)D(¢) (G.20)
When equations (G.19) and (G.20) are substituted into (G.18), we obtain after a little
rearrangement
sinf d de 1 d*®
— |sing — Asin?0 = — ——— 21
) d0<s1n d0)+ sin ® dg? (G.21)

The left-hand side of equation (G.21) depends only on the variable 8, while the right-
hand side depends only on ¢. Following the same argument used in the solution of
equation (2.28), each side of equation (G.21) must be equal to a constant, which we
write as m?. Thus, equation (G.21) separates into two differential equations

sin0 d . d@ .2 2
il - = 22
6 de(sm@ d0>+ism0 m (G.22)
and
o )
The solution of equation (G.23) is
d = '™ (G.24)

where A is an arbitrary constant. In order for ® to be single-valued, we require that
D(p) = P(¢ + 27)
or
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eme =1

so that m is an integer, m = 0, £1, +2, . ..
To solve the differential equation (G.22), we introduce a change of variable
u=cosf (G.25)

The function ®(0) then becomes a new function F(u) of the variable u, @(0) = F(u),
so that

%—j—’;j—g— —smei—’;— —(1 —pﬁ)l/zi—z (G.26)
Substitution of equations (G.25) and (G.26) into (G.22) gives
2
% {(1 —,u2)i—Z] + (&—1'_"—#2>F—0
or
m2
(1 — u>)F" —2uF' + (/1 T )F 0 (G.27)

A power series solution of equation (G.27) yields a recursion formula relating a4,
ak+2, and ag, which is too complicated to be practical. Accordingly, we make the
further definition

F(u) = (1= )" Gu) (G.28)
from which it follows that
F' =1 —@)"PIG" = [mlu(1 — )" G] (G.29)
F' =1 —)"PG" = 2|mlu(l — u?) ' G — |m|(1 —u?) "' G

+ |m|(|m| = 2p*(1 — )2 G] (G.30)
Substitution of (G.28), (G.29), and (G.30) into (G.27) with division by (1 — x?)"1/2
gives
(1 — u»)G" = 2(|m| + DuG' +[A — |m|(|m| + 1)]G =0 (G.31)

To solve this differential equation, we substitute equations (G.2), (G.3), and (G.4)
for G, G’, and G”" to obtain

> aw(k+ )k + s — D2 4> " a[d — (k+ s+ [m)(k + s + |m| + D]EFT
k=0 k=0

=0 (G.32)
Equating the coefficient of u*~2 to zero, we obtain the indicial equation
aps(s —1)=0 (G.33)
with solutions s = 0 and s = 1. Equating the coefficient of x#*~! to zero gives
ai;s(s+1)=0 (G.34)

For the case s = 0, the coefficient a; has an arbitrary value, while for s = 1, the
coefficient a; must vanish.

If we replace the dummy index k by & + 2 in the first summation on the left-hand
side of equation (G.32), that equation becomes
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o0

D Hapealk +s+2)(k + 5+ 1)+ ax[A — (k+ 5+ [m|)(k + s + |m| + D]}u*"* =0
k=0

(G.3%5)
The recursion formula is obtained by setting the coefficient of each power of u equal
to zero
(k+s+|m))(k+s+|m+1)—21
(k+s+2)k+s+1)

Thus, we obtain a result analogous to the harmonic oscillator solution. The two
independent solutions are infinite series, one in odd powers of u and the other in even

powers of u. The case s = 0 gives both solutions, while the case s = 1 merely
reproduces the odd series. These solutions are

Gl:m{l+MMWW+D—1M+me+2mmk+$—immMMM%D—Mﬂ4

Apt+2 =

(G.36)

2! .
L (G.37a)
NEES R B LR EE LS oo

The ratio of consecutive terms in G and in G; is given by equation (G.36) as
apop"? (kA |mp(k+|m + 1) — 4 ,
apu* (k+1D(k+2)
In the limit as £ — oo, this ratio becomes

k+2 2
A2 k* — A
- e e

lim :

k—o0 aigu
As long as |u| <1, this ratio is less than unity and the series G; and G, converge.
However, for 4 = 1 and 4 = —1, this ratio equals unity and neither of the infinite
power series converges. For the solutions to equation (G.31) to be well-behaved, we
must terminate the series G| and G, to polynomials by setting

A= (k+|m)(k+|m|+1)=II+1) (G.38)
where /is an integer defined as / = |m| + k, so that [ = |m|, |m| + 1, |m| + 2, ... We
observe that |m| < I, so that m takes on the values -1, —/+1,..., —1,0, 1, ...,

R WA
Substitution of equation (G.38) into the differential equation (G.27) gives

2
(1 — u¥)F" —2uF' + <l(l +1)— ; Zﬂ) F=0 (G.39)

which is identical to the associated Legendre differential equation (E.17). Thus, the
well- behaved solutions to (G.27) are proportional to the associated Legendre poly-
nomials P‘ (u) introduced in Appendix E

F(u) = eP|"(n)
Since we have ©(0) = F(u), where u = cos 6, the functions ©(0) are
O (0) = cP|"(cos )
and the eigenfunctions (0, ¢) of L2 are
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im0, @) = ¢ P\ (cos ) ¢ (G.40)

where ¢;,, are the normalization constants. A comparison of equation (G.40) with
(5.59) shows that the functions v, (0, @) are the spherical harmonics Y;,(6, ¢).

Radial equation for the hydrogen-like atom
The radial differential equation for the hydrogen-like atom is given by equation (6.24)
as

d2S+2dS 1 A I+

dp*  pdp 4 p p?
where / is a positive integer. If a power series solution is applied directly to equation
(G.41), the resulting recursion relation involves ay, a1, and ay. Since such a three-
term recursion relation is difficult to handle, we first examine the asymptotic behavior

of S(p). For large values of p, the terms in p~! and p~2 become negligible and
equation (G.41) reduces to

S=0 (G.41)

2 s
dp? 4

or
S = ce*r/?

where c is the integration constant. Since p, as defined in equation (6.22), is always
real and positive for £ < 0, the function /2 is not well-behaved, but e #/2 is.
Therefore, we let S(p) take the form

S(p) = F(p)e ** (G.42)
Substitution of equation (G.42) into (G.41) yields
PPF"+p2—p)F' +[A—Dp—II+1D]F=0 (G.43)

where we have multiplied through by p2e?/2. To solve this differential equation by the
series solution method, we substitute equations (G.2), (G.3), and (G.4) for F, F', and
F" to obtain

00 o0
S al(k+s)(k+s+1) = 1+ D + > ah =1 -k —s)p* =0
k=0 k=0
(G.44)
The indicial equation is given by the coefficient of p° as
als(s+ 1) —I(l+1D]=0 (G.45)
with solutions s = /and s = —(/ 4 1). For the case s = —(/ 4 1), we have
F(p)=app "V +app™ + ap™ ™ + - (G.46)

which diverges at the origin.* Thus, the case s = [ is the only acceptable solution.
Omitting the vanishing first term in the first summation on the left-hand side of
(G.44) and replacing k by k£ + 1 in that summation, we have

4 The reason for rejecting the solution s = —(/ + 1) is actually more complicated for states with / = 0.
I. N. Levine (1991) Quantum Chemistry, 4th edition (Prentice-Hall, Englewood Cliffs, NJ), p. 124,
summarizes the arguments with references to more detailed discussions. The complications here strengthen
the reasons for preferring the ladder operator technique used in the main text.
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S {apalCk+ D0k + 21+ 2)] + ah — 1= 1 = k)}p*+ =0 (G.47)
k=0

Since the coefficient of each power of p must vanish, we have for the recursion
formula

k+14+1—2
(k+ D(k+20+2) "

Thus, we obtain the following set of expansion constants

Afs1 = (G43)

ap

[+1-4
W=y @

I+2-4  (+2-M)(I+1-2)
i) T 22l 3)2ir2

[43—4  (4+3-)I+2-)I+1-2)
az = = ao

T30+ 4 2T 312l 821+ 32+ 2)

so that the solution of (G.43) is

F_aop,<l+§:(l+k—,1)(1+k— 1 —/1)~--(l+1—/1)pk> (G.49)
k=1

KQI+k+ )21+ k) - 21 +2)

We have already discarded the second solution, equation (G.46).
The ratio of consecutive terms in the power series expansion F is given by equation
(G.48) as

ak+l,0k+l+1_ k—ﬂ—l—‘rl—/l
ap T G+ Okt2i+2)"

In the limit as £ — oo, this ratio becomes p/k, which approaches zero for finite p.
Thus, the series converges for all finite values of p. To test the behavior of the power
series as p — 00, we consider the Taylor series expansion of e”

<k
o3P

k!
=0

and note that the ratio of consecutive terms is also p/k. Since the behavior of F as

p — oo is determined by the expansion terms with large values of k (k — o0), we see
that F behaves like e” as p — oo. This behavior is not acceptable because S(p) in
equation (G.42) would take the form

S(p) — plere? = pler? — o as p — oo

and could not be normalized.

The only way to avoid this convergence problem is to terminate the infinite series
(equation (G.49)) after a finite number of terms. If we let A take on the successive
values / + 1, [ + 2, ..., then we obtain a series of acceptable solutions of the
differential equation (G.43)



328 Appendix G

I+1,  Fo=app'
I+2 Fi =aop'( (1 b
) 1 = 0,0 2l+2p
1+3 Fy=aop'(1———p + : 2
’ 2= Gop 1 T2+ 2’
Since [/ is an integer with values 0, 1, 2, ..., the parameter A takes on integer values 7,
n=1,2,3,...,sothat n = [+ 1, [+ 2, ... When the quantum number n equals 1,

the value of /is 1; when n = 2, we have [ = 0, 1; when n = 3, we have [ = 0, 1, 2;
etc.

The energy E of the hydrogen-like atom is related to 1 by equation (6.21). If we
solve this equation for E and set A equal to n, we obtain

lu22el4

2h2n2 °
in agreement with equation (6.48).

To identify the polynomial solutions for F(p), we make the substitution

E, = n=1,2,3,...

F(p) = p'u(p) (G.50)
in the differential equation (G.43) and set A equal to # to obtain
pu"+ 21+ 1) —plu' +(n—1—Du=0 (G.51)

Since n and [/ are integers, equation (G.51) is identical to the associated Laguerre
differential equation (F.16) with k = n + / and j = 2/ + 1. Thus, the solutions u(p)

are proportional to the associated Laguerre polynomials Lifll (p), whose properties are
discussed in Appendix F
u(p) = L2 (p) (G.52)
Combining equations (G.42), (G.50), and (G.52), we obtain
Su(p) = cup'e ™2 L2 (p) (G.53)

where ¢,; are the normalizing constants. Equation (G.53) agrees with equation (6.53).
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Recurrence relation for hydrogen-atom expectation
values

The expectation values (r*),; of various powers of the radial variable r for a hydrogen-
like atom with quantum numbers » and / are given by equation (6.69)

(o.¢]
(Y = J P [Ru(r)*r* dr (H.1)
0
where R,;(7) are the solutions of the radial differential equation (6.17). In this
appendix, we show that these expectation values are related by the recurrence relation

k+1 ay , ,_ 1 -k a2, ,_

— (Y — Qk + 1)70 (r=N o+ k[l(l + 1)+ 1 } 702 (r¥2),,=0 (H2)

To simplify the notation, we define the real function u(r) by u = rR,;(r) and denote
the first and second derivatives of u(7) by u' and u". Equation (H.1) then takes the
form

(rky = J rhu? dr (H.3)
0
Since we have

dr —r 2 dr dr

equation (6.17) becomes

dR(r) u' u d ( 2dR(r)) Y
= r =ru

"

2

H.4
r? apr  n*ag (H4)

K+1y 2z 72
R

where equation (6.57) for the energy E, has also been introduced.
Before beginning the direct derivation of equation (H.2), we first derive a useful
relationship. Consider the integral
o}
J r'uu' dr

0
and integrate by parts

o'} e} o) d
J Pun' dr = ru?| — J u— (r'u)dr
0 0 o dr

The integrated part vanishes because R(7) — 0 exponentially as » — oo and u(7) — 0
as r — 0. Expanding the derivative within the integral on the right-hand side, we have

329
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J rruu’ dr = —VJ 't dr — J ruu’ dr
0 0 0
Combining the integral on the left-hand side with the last one on the right-hand side,

we obtain the desired result

0 v
J Fun' dr = —— (r'" (H.5)
0 2

To obtain the recurrence relation (H.2), we multiply equation (H.4) by »**1’ and
integrate over r

00 00 27 ™ Z2 00
J kel "dr—l(1+1)J uu’dr——J rkuu’dr+—2 2J P dr

0 aop Jo n=as Jo
I+1)(k=1), 4, kZ , 4 (k+ l)Z2 k
== w+— P T e . H.
2 (r >l+a0<r )l 2 (r")Ym  (H.6)

where equation (H.5) was applied to the right-hand side. The integral on the left-hand
side of (H.6) may be integrated by parts twice to give

J k+1 / "dr—fJ urd( k+1 r)dr
0 0 dr
:—(k+1)J ruu’dr—J -y dr
0

[o¢]

:(k+1)J ui(r"u')dr—J -y dr
o dr 0

= k(k+ I)J rkiluu'dr—i—(k—}— I)J rkuu”dr_J k+l "u" dr
0 0 0

The integral on the left-hand side and the last integral on the right-hand side may be
combined to give

J k+1 u'u” dr (k - 1)5:(]( + 1) <rk72>nl +
0

where equation (H.5) has been used for the first integral on the right-hand side.
Substitution of equation (H.4) for " in the last integral on the right-hand side of (H.7)
yields

(k —2i_ I)J P uu” dr (H.7)
0

(k+ DI+ 1)

e k—Dk(k+1
J rk+lu/u//dr — _ ( ) ( + )<rk72>nl + <rk72>nl
0 4 2
(k+1DZ, (k+1)Z7*
A e Tk H.8
@ () + 2 () m (H.8)

Combining equations (H.6) and (H.8), we obtain the recurrence relation (H.2).
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Matrices
An m X n matrix A is an ordered set of mn elements a;; (i = 1,2, ..., m; j =1, 2,
.., n) arranged in a rectangular array of m rows and » columns,
ay ap v dig
a a e a
Aml Am2 " Amn

If m equals n, the array is a square matrix of order n. If we have m = 1, then the
matrix has only one row and is known as a row matrix. On the other hand, if we have
n = 1, then the matrix consists of one column and is called a column matrix.

Matrix algebra

Two m X n matrices A and B are equal if and only if their corresponding elements are
equal, i.e., a; = bj; for all values of i and j. Some of the rules of matrix algebra are
defined by the following relations

where k is a constant. Clearly, the matrices A, B, and C in equations (I.2) must have
the same dimensions m X n.
Multiplication of an m X n matrix A and an n X p matrix B is defined by

AB = C, Cik = Z aubjk (13)
=1
The matrix C has dimensions m X p. Two matrices may be multiplied only if they are
conformable, i.e., only if the number of columns of the first equals the number of rows
of the second. As an example, suppose A and B are

air  an  ai b b
A=|a an ay |; B=| bu bn
as; azp as bs1 b3

Then the product AB is
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anbi +anby +aizby  anbia + anbxn + aizby
AB = | aybi1 + anby +axnbsy  axbiy + anby + anbs
as1biy + as by + aszbsr  asibin + asbyn + aszby
Continued products, such as ABC, may be defined and evaluated if the matrices are
conformable. In such cases, multiplication is associative, for example

ABC = A(BC) = (AB)C = D; dy =Y aghycu (1.4)
&
For the null matrix 0, all the matrix elements are zero

O 0 --- 0
o—| " " 0 15)

0O 0 --- 0

and we have

0+A=A+0=A (1.6)

The product of an arbitrary m X n matrix A with a conformable n X p null matrix is
the m X p null matrix

A0=0 1.7)
In matrix algebra it is possible for the product of two conformable matrices, neither of
which is a null matrix, to be a null matrix. For example, if A and B are

110 1 -1
A=|-2 2 2);, B=[-1 1
3031 0 0

then the product AB is the 3 X 2 null matrix.
The transpose matrix AT of a matrix A is obtained by interchanging the rows and
columns of A. If the matrix A is given by equation (I.1), then its transpose is

ap azy aAml
a a PR a

AT — 12 22 m2 (IS)
Aip dap - dmn

Thus, the elements a;; of AT are given by a;; = a;i
Let the matrix C be the product of matrices A and B as in equation (I1.3). The
elements ¢, of the transpose of C are then given by

cle =D ayby = Z Z byaj (1.9)

j=1 =1
where we have noted that aZﬁ = ag, and baﬁ = bgq. Thus, we see that
CcT — BTAT
or
(AB)" = BTAT (1.10)
This result may be generalized to give
(AB---Q)"=Q"...B'AT (L11)

as long as the matrices are conformable.
If each element ij in a matrix A is replaced by its complex conjugate a , then the
resulting matrix A™ is called the conjugate of A. The transposed conjugate of Ais



Matrices 333

called the adjomtl of A and is denoted by A'. The elements a of Al are obviously

given by a = aj

Square matrices
Square matrices are of particular interest because they apply to many physical
situations.

A square matrix of order # is symmetric if a;; = aﬂ, (i,j=1,2,..., n),so that
A = AT, and is antisymmetric if a; = —a, (i, j = 1,2, ..., n) sothat A = —AT.
The dlagonal elements of an antisymmetric matrix must all be zero. Any arbitrary
square matrix A may be written as the sum of a symmetric matrix A® and an
antisymmetric matrix A®

A=A®  A® (1.12)
where
EJS) = z(az/ + a]z) agja) = z(at] aji) (113)
A square matrix A is diagonal if a; = 0 for i # j. Thus, a diagonal matrix has the
form

aq 0 0
A=| " “ 0 (1.14)
0 0 a,
A diagonal matrix is scalar if all the diagonal elements are equal, ¢y = a; = --- =
a, = a, so that
a 0 0
S L15)
0 0 a
A special case of a scalar matrix is the unit matrix |, for which a equals unity
1 0 --- 0
B 1.16)
o 0 --- 1

The elements of the unit matrix are 0;;, the Kronecker delta function.
For square matrices in general, the product AB is not equal to the product BA. For

example, if
0 1 2 0
SIS )

0 3). (0 2
AB_<2 0), BA_<3 0)7&AB

If the product AB equals the product BA, then A and B commute. Any square matrix
A commutes with the unit matrix of the same order

then we have

! Mathematics texts use the term transpose conjugate for this matrix and apply the term adjoint to the
adjugate matrix defined in equation (1.28).
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Al=1A 1.17)
Moreover, two diagonal matrices of the same order commute
aj 0 0 bl 0 0 a1b1 0 0
ap= | 0o DD e e
0 0 - a, 0o 0 - by 0 0 - awby,
= BA (I.18)
Determinants

For a square matrix A, there exists a number called the determinant of the matrix. This
determinant is denoted by

ainn an vt dig
= | o (1.19)
Ayl Ap2 - Ay
and is defined as the summation
4| =" dpariar; -+ g (1.20)
P
where 0 p = 1. The summation is taken over all possible permutations i, j, ..., g of
the sequence 1, 2, ..., n. The value of dp is +1 (—1) if the order 4, j, ..., g is
obtained by an even (odd) number of pair interchanges from the order 1, 2, ..., n.
There are n! terms in the summation, half with 0 p = 1 and half with 6 p = —1. Thus,
for a second-order determinant, we have
a a
4] =" " = a1apn — apay (L.21)
as)

and for a third-order determinant, we have
apip ap ap

4| =|an axn ax
asy  dsz  asj

= ananas; + anaxpaz + aizaziaxn — (anaxsas + anazass + aizanas) (1.22)
If the determinant | 4| of the matrix A vanishes, then the matrix A is said to be
singular. Otherwise, the matrix A is non-singular.

The determinant | A| has the following properties, which are easily derived from the
definition (1.20).

1. The interchange of any two rows or any two columns changes the sign of the
determinant.

2. Multiplication of all the elements in any row or in any column by a constant & gives
a new determinant of value k|A|. (Note that if B = kA, then |B| = k"|A|.)

3. The value of the determinant is zero if any two rows or any two columns are
identical, or if each element in any row or in any column is zero. As a special case
of properties 2 and 3, a determinant vanishes if any two rows or any two columns
are proportional.
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4. The value of a determinant is unchanged if the rows are written as columns. Thus,
the determinants of a matrix A and its transpose matrix AT are equal.

5. The value of a determinant is unchanged if, to each element of one row (column) is
added a constant k times the corresponding element of another row (column). Thus,
we have, for example

an ap a3 ai + kaiy ap  anp ay + kazt  ap + kasx,  aiz + kass
ay an ap|=|ay+kayn apn az|= as an a
az axn  as az| + kax, axn  as asi az ass

Each element g;; of the determinant |4| in equation (I.19) has a cofactor Cy;, which
is an (n — 1)-order determinant. This cofactor C;; is constructed by deleting the ith
row and the jth column of | 4| and then multiplying by (—1)"*/. For example, the
cofactor of the element a,; in equation (1.22) is

ar  a

Cp=—
az;  as

= da3ds] — dz1ds33

The summation on the right-hand side of equation (I.20) may be expressed in terms
of the cofactors of the first row of | 4], so that (1.20) becomes

|4| = a11C11 + a12C1p + -+ + alnclnzzalkclk (I.23)
P

Alternatively, the expression of | 4| in equation (1.20) may be expanded in terms of any
row i

n
4] =" auCu, i=1,2,...,n (1.24)
k=1
or in terms of any column j
n
4] => agCy,  j=1,2,....n (1.25)
k=1

Equations (1.20), (I.24), and (1.25) are identical; they are just expressed in different
notations.

Now suppose that row 1 and row i of the determinant | 4| are identical. Equation
(1.23) then becomes

n
4] = anCii + anCiy + -+ + ainCip = Zaikclk =0
k=1

where the determinant | 4| vanishes according to property 3. This argument applies to
any identical pair of rows or any identical pair of columns, so that equations (1.24) and
(I1.25) may be generalized

> awCi =Y anCy= 14105 i j=1,2,...,n (1.26)
k=1 k=1

It can be shown? that the determinant of the product of two square matrices of the
same order is equal to the product of the two determinants, i.e., if C = AB, then

|Cl = 4] -|B| (1.27)

2 See G. D. Arfken and H. J. Weber (1995) Mathematical Methods for Physicists, 4th edition (Academic
Press, San Diego), p. 169.
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It follows from equation (I1.27) that the product of two non-singular matrices is also
non-singular.

Special square matrices
The adjugate matrix A of the square matrix A is defined as

Cu Cuy -+ Cp
L (1.28)
Cln C2n Cnn

where Cj; are the cofactors of the elements a;; of the determinant | 4| of A. Note that
the element ay; of A is the cofactor Cy. The matrix product AA is a matrix B whose
elements b;; are given by

bij = Zaik&kj = Zaiijk = |A|(3,j (1.29)
=1 =1
where equation (1.26) was introduced. Thus, we have
AA =B = 4|l = AA (1.30)

where | is the unit matrix in equation (I.16), and we see that the matrices A and A
commute.
Any non-singular square matrix A possesses an inverse matrix A~! defined as

A =A/|4 (1.31)
From equation (I.30) we observe that
AA'=AT'A=I (1.32)
Consider three square matrices A, B, C such that AB = C. Then we have
A'AB=A"'C
or
B=A'C (I1.33)

Thus, the inverse matrix plays the role of division in matrix algebra. Multiplication of
equation (1.33) from the left by B~! and from the right by C~! yields

071 — B71A71
or
(AB)"' =B !A™! (I1.34)
This result may easily be generalized to show that
(AB--.Q)'=Q"'...B'A"! (1.35)

A square matrix A is hermitian or self-adjoint if it is equal to its adjoint, i.e., if
A=A'or a; = a;‘i. Thus, the diagonal elements of a hermitian matrix are real.
A square matrix A is orthogonal if it satisfies the relation

AAT =ATA =1
If we multiply AAT = I from the left by A~1, then we have the equivalent definition
AT — A71

Since the determinants |4| and |47 | are equal, we have from equation (1.27)
A =1 or |4] =+l
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The product of two orthogonal matrices is an orthogonal matrix as shown by the
following sequence
(AB)' =B'A"=B'A"' =(AB)"'
where equations (1.10) and (I.34) were used. The inverse of an orthogonal matrix is
also an orthogonal matrix as shown by taking the transpose of A~! and noting that the
order of transposition and inversion may be reversed
(A—I)T — (AT)—l — (A—l)—l

A square matrix A is unitary if its inverse is equal to its adjoint, i.e., if A~' = Al or

if AA" = ATA = I. For a real matrix, with all elements real so that a; = a;;, there is

n(% distinction between an orthogonal and a unitary matrix. In that case, we have
Al=AT=A""1

Linear vector space
A vector x in three-dimensional cartesian space may be represented as a column
matrix

x=|xn (1.36)
X3

where x1, x;, x3 are the components of x. The adjoint of the column matrix X is a row
matrix

X' =@ X x) (1.37)
The scalar product of the vectors x and y when expressed in matrix notation is
* * * N % * *
Xy=07 5 )| | =xntan g (1.38)
3
Consequently, the magnitude of the vector x is
%) = (Ia]? + o + 6" (1.39)

If the vectors X and Y are orthogonal, then we have X'y = 0. The unit vectors i, j, k in
matrix notation are

1 0 0
i={o]; j=111]; k=]{o (1.40)
0 0 1

A linear operator A in three-dimensional cartesian space may be represented as a
3 X 3 matrix A with elements a;;. The expression y = 4x in matrix notation becomes

»n ailr ap ap X anxi + anx; + aizxs
y=|»n|=AX=|a an ax Xy | = | axxy + axnxy + a;x;
» as1 asx as X3 az1x) + azx; + aszxs
(1.41)
If A is non-singular, then in matrix notation the vector X is related to the vector y by
x=Aly (1.42)

The vector concept may be extended to n-dimensional cartesian space, where we
have n mutually orthogonal axes. Each vector x then has n components (xq, x,, . . .,
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X,) and may be represented as a column matrix X with # rows. The scalar product of
the n-dimensional vectors x and y in matrix notation is
xTy:xTyl—i-x;kyz +~--+x:y,, (1.43)
and the magnitude of x is
XX)2 = (0 2+ o+ ]2 (1.44)
If we have X'y = 0, then the vectors x and y are orthogonal. The unit vectors i,
(a=1,2,..., n) when expressed in matrix notation are

1 0 0

: 0 : 1 : 0

h=1.[ Rk=].p 5 =], (L45)
0 0 1

If a vector y is related to a vector X by the relation y = AX and if the magnitude of
y is to remain the same as the magnitude of X, then we have
x'x = yly = (Ax)!Ax = x’ATAx (1.46)
where equation (I.10) was used. It follows from equation (I.46) that A'A = I so that A
must be unitary.

Eigenvalues
The eigenvalues A of a square matrix A with elements a;; are defined by the equation
Ax = Ax = AIx (1.47)
where the eigenvector X is the column matrix corresponding to an n-dimensional
vector and 4 is a scalar quantity. Equation (1.47) may also be written as
(A—Ahx =0 (1.48)
If the matrix (A — Al) were to possess an inverse, we could multiply both sides of
equation (1.48) by (A — Al)~! and obtain X = 0. Since X is not a null matrix, the matrix
(A — Al) is singular and its determinant vanishes

ay — A ag T ain
a apy —A - a
anl an2 e Qg — A

The expansion of this determinant is a polynomial of degree #» in 4, giving the
characteristic or secular equation

At A"V A4 =0 (1.50)
where ¢; (i =0, 1, ..., n— 1) are constants. Equation (I.50) has 7 roots or eigenvalues
Ao (@ =1,2, ..., n).Itis possible that some of these eigenvalues are degenerate.

The elgenvalues of a hermitian matrix are real. To prove this statement, we take the
adjoint of each side of equation (1.47), apply equation (I.10), and note that A = Al

(Ax)' = xTAT = xTA = 2*xT (1.51)
Multiplying equation (1.47) from the left by X' and equation (1.51) from the right by X,
we have

x'Ax = Ax'x
x'Ax = 1" x"x
Since the magnitude of the vector X is not zero, we see that 1 = 1™ and 4 is real.
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The eigenvectors of a hermitian matrix with different eigenvalues are orthogonal. To
prove this statement, we consider two distinct eigenvalues A; and 4, and their
corresponding eigenvectors X! and x®, so that

Ax?) = 1, xP (1.52a)

Ax? = J,x? (I1.52b)
If we multiply equation (I.52a) from the left by X' and the adjoint of (I.52b) from the
right by x(, we obtain

x2TAXD = 7,x@TxO (I1.53a)

(Ax?)IxD = x®TATxD — x@TAxD — 1, x®Tx® (153b)

where we have used equation (I.10) and noted that 4, is real. Subtracting equation
(I.53b) from (I1.53a), we find

(ﬂv] — lz)x(z)TX(l) =0

Since 4, is not equal to 4,, we see that X and x®) are orthogonal.

The eigenvector X(*) corresponding to the eigenvalue A, may be determined by
substituting the value for 4,, into equation (1. 47 and then solvmg the resulting
simultaneous equatlons for the components x5, x(3 ) X% of X in terms of the
first component x( . The value of the first component is arbltrary, but it may be
specified by requiring that the vector X() be normalized, i.e.,

x(a)Tx(a) |X(a)| + |X(a)|2 + -4 |x(na)| =1 (154)

The determination of the eigenvectors for degenerate eigenvalues is somewhat more
complicated and is not discussed here.

We may construct an n X n matrix X using the n orthogonal eigenvectors X(*) as
columns

RN

X105
(1) (2) (n)
X=|% %X -~ % (1.55)
A O

and a diagonal matrix A using the n eigenvalues

A0 - 0
e .56
0 0 An
Equation (1.47) may then be written in the form
AX = XA (1.57)

The matrix X is easily seen to be unitary. Since the n eigenvectors are linearly
independent, the matrix X is non-singular and its inverse X! exists. If we multiply
equation (1.57) from the left by X~!, we obtain

X 'AX =A (1.58)

This transformation of the matrix A to a diagonal matrix is an example of a similarity
transform.
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Trace
The trace Tr A of a square matrix A is defined as the sum of the diagonal elements
TrA=ai+an + -+ am (L.59)
The operator Tr is a linear operator because
Tr(A + B) = (a11 + b11) + (a2 + b)) + -+ + (aw + b)) = TrA+TrB  (1.60)
and
Tr(cA) = cay; + caxny + -+ + cap, = cTrA (1.61)

The trace of a product of two matrices, which may or may not commute, is
independent of the order of multiplication

Tr(AB) = Z Z ajb; = Z Z bsia; = Tr(BA) (1.62)
i=1 j=
Thus, the trace of the commutator [A, B] = AB - BA is equal to zero. Furthermore,
the trace of a continued product of matrices is invariant under a cyclic permutation of
the matrices

Tr(ABC --- Q) =Tr(BC --- QA) =Tr(C --- QAB) = - - - (1.63)
For a hermitian matrix, the trace is the sum of its eigenvalues
TrA=> (1.64)
a=1

To demonstrate the validity of equation (1.64), we first take the trace of (I.58) to obtain

Tr(X'AX) = TrA =) A, (1.65)
a=1
We then note that

TI‘(X 1AX) = Z(X 1Ax)aa - Z Z ZX(ZZ alj Ja

a=1 i=1 j=

_ZZaUZXjaX;} ZZaUU Za,,_TrA (1.66)

i=1 j= =1
where X, (= xt ; ) are the elements of X. Comblnlng equations (1.65) and (1.66), we
obtain equation (1.64).
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Evaluation of the two-electron interaction integral

In the application of quantum mechanics to the helium atom, the following integral /
arises and needs to be evaluated

e~ (P1+p2)
I'= JJ dpidp2
P12

e—(P1+p2)
:JJ P p1p3sin 0 sin 6, dp; d6, de; dp, d6, de, Jd.n
12

where the position vectors p; (i = 1, 2) have components p;, 6;, ¢; in spherical polar
coordinates and where

p12 = [p2 — pi|
The distance p;, is related to p; and p, by the law of cosines
Pl = P+ p5 —2pipacosy (J.2)

where y is the angle between p; and p, as shown in Figure J.1. The integration is
taken over all space for each position vector.

The integral [ may be evaluated more easily if we orient the coordinate axes so that
the vector p; lies along the positive z-axis as shown in Figure J.2. In that case, the
angle y between p; and p; is equal to the angle 6,. If we define p- as the larger and
p< as the smaller of p; and p, and define s by the ratio

_ P<
S =
P>
so that s < 1, then equation (J.2) may be expressed in the form
1 1
— = —(1+s>—2scos0,)"/? (J1.3)
P12 P>

At this point, we may proceed in one of two ways, which are mathematically
equivalent. In the first procedure, we note that from the generating function (E.1) for
Legendre polynomials P;, equation (J.3) may be written as

1 1 &
—=— Z Pi(cos 0,)s’

P2 P> =0

The integral / in equation (J.1) then becomes
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Figure J.1 Distance between two particles 1 and 2 and their respective distances from
the origin.

14

X

Figure J.2 Rotation of the coordinate axes in Figure J.1 so that the z-axis lies along p;.

T

27 2
sin 6, d01J d(plj do,

0 [ e (P1+p2) n
1= Z J J p—slpfp% dp; dpzj Pi(cos 6) sin 6, d92J
> 0 0

=0 0 0

The integrals over 6}, ¢, and ¢, are readily evaluated. Since Py(x) = 1, we may write
the integral over 6, as
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1

JT
j Pi(cos 62) sin 6 d6; — J i) Poue) die = 2010
0 —1

where equations (E.18) and (E.19) have been introduced. Thus, only the term with
[ = 0 in the summation does not vanish and we have

—(p1+p2)
[
1:16n2” . p1p3 dpy dp; (J.4)

In the second procedure, we substitute equation (J.3) directly into (J.1) and evaluate
the integral over 6,

T Sil’lez 1 *
d6, = —(1 + s> — 2scos 6)'/?
JO (1452 —2scos0y)1/2 2 s( ts scos02) 0

1
= —[(1+5>+29)2 — (1 + 5> =297
S

=049 - (-9 =2

The integrals over 6y, @1, and ¢, are the same as before and equation (J.4) is obtained.
Since p- is the larger of p; and p,, the integral / in equation (J.4) may be written in
the form

0@
I= 16Jr2J
0

dp,

1 01 (o9}
e*/llp% l_J e*png dp2 + J e*Pzpz dp2
P1Jo o1

= 16n2J e " pi{[2 = (p} +2p1 +2)e” "1+ pi(p1 + De " }dpy = 167°G + )
0
Accordingly, the final result is

e~ (p1+p2)
I= ” dp; dp, = 207? (J.5)
P12
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Physical constants

Speed of light c 2.997924 58 X 10% ms~!
(exact value by definition)
Elementary charge e 1.602177 X 1071°C
Planck’s constant h 6.62608 X 1073 Js
h 1.05457 X 10734 Js
Boltzmann’s constant kg 1.38066 X 1072 JK!
Avogadro’s number Na 6.022 14 X 10% mol~!
Mass of electron me 9.10939 X 103! kg
Mass of proton my 1.67262 X 10727 kg
Mass of neutron my 1.67493 X 10727 kg
Permittivity of vacuum £ 8.85419 X 10712 J='C?*m™!
Ame, 111265 X 1010 J-1C2m-!
Electron spin gyromagnetic ratio g 2.002319304
Bohr magneton ug = ehi/2m, 9.27402 X 10724 JT~!
Fine structure constant a = é*/dmeohic W13599 =7.29735x 1073
Hydrogen atom
Bohr radius ay = dmegh? /mee? 529177 X 107" ' m
Rydberg constant Ry 109 677.32 cm™!
R = mee*/8e¢*Pc 109737.31 cm™!
Ground state energy —13.598 eV

—2.17864 X 10718 J

Energy conversion

leV =1.602177 X 10719 ] = 8065.54 cm™!
1] = 6.241506 X 10'8 eV =5.03411 X 102 ¢cm™!
lem™'  =1.239842 X 10~ % eV =1.986447 X 1073 ]



