


Preface 

The concept of distance is one of the basic ones in the whole of human experience. In 
everyday life it usually means some degree of closeness between two physical objects or 
ideas, i.e., length, time interval, gap, rank difference, coolness or remoteness, while the 
term metric is often used as a standard for a measurement. But here we consider, except in 
the last two chapters, the mathematical meaning of these terms. The mathematical notions 
of distance metric (i.e., a function d (x, y) from X x X to the set of real numbers satisfying 
d(x, y) ~ 0 with equality only for x = y, d(x, y) = d(y, x), and d(x, y) <, d(x, z) + 
d(z, y)) and of metric space (X, d) were originated a century ago by M. Frdchet (1906) 
and F. Hausdorff (1914) as a special case of an infinite topological space. The triangle 
inequality above appears already in Euclid. The infinite metric spaces are seen usually 
as a generalization of the metric Ix - Y l on the real numbers. Their main classes are the 
measurable spaces (add measure) and Banach spaces (add norm and completeness). 

However, starting from K. Menger (1928) and, especially, L.M. Blumenthal (1953), an 
explosion of interest in finite metric spaces occurred. Another trend: many mathematical 
theories, in the process of their generalization, settled on the level of metric space. 

Now finite distance metrics have become an essential tool in many areas of Mathemat- 
ics and its applications include Geometry, Probability, Statistics, Coding/Graph Theory, 
Clustering, Data Analysis, Pattern Recognition, Networks, Engineering, Computer Graph- 
ics/Vision, Astronomy, Cosmology, Molecular Biology, and many other areas of science. 
Devising the most suitable distance metrics has become a standard task for many re- 
searchers. Especially intense ongoing searches for such distances occur, for example, in 
Genetics, Image Analysis, Speech Recognition, Information Retrieval. Often the same dis- 
tance metric appears independently in several different areas; for example, the edit distance 
between words, the evolutionary distance in Biology, the Levenstein distance in Coding 
Theory, and the Hamming+Gap or shuffle-Hamming distance. 

This body of knowledge has become too large and disparate to operate within. The 
number of worldwide web entries offered by Google on the topics "distance", "metric 
space" and "distance metric" approach 300 million (i.e., about 4% of all), 12 million and 
6 million, respectively, not to mention all the printed information outside the Web, or the 
vast "invisible Web" of searchable databases. However, this huge amount of information 
on distances is too scattered: the works evaluating distance from some list usually treat 
very specific areas and are hardly accessible for non-experts. 

Therefore, many researchers, including us, keep and cherish a collection of distances for 
use in their own areas of science. In view of the growing general need for an accessible 
interdisciplinary source for a vast multitude of researchers, we have expanded our private 
collection into this Dictionary. Some additional material was reworked from various en- 
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cyclopedia, especially, Encyclopedia of Mathematics ([EM98]), MathWorld ([Weis99]), 
PlanetMath ([PM]), and Wikipedia ([WFE]). However, the majority of distances should be 
extracted directly from specialist literature. 

The vast reservoir of concepts defined in this Dictionary, aims to be a thought-provoking 
archive and a valuable resource. Besides distances themselves, we have collected here 
many distance-related notions (especially in Chapter 1) and paradigms, enabling people 
from applications to get those, arcane for non-specialists, research tools, in ready-to-use 
fashion. This and the appearance of some distances in different contexts can be a source of 
new research. 

At a time when over-specialization and terminology barriers isolate researchers, this 
Dictionary tries to be "centripetal" and "ecumenical", providing some access and altitude 
of vision but without taking the route of scientific vulgarization. This attempted balance 
defined the structure and style of the Dictionary. 

The Dictionary is divided into 28 chapters grouped into 7 Parts of about the same length. 
The titles of parts are purposely approximative: they just allow a reader to figure out her/his 
area of interest and competence. For example, Parts II, III and IV, V require some culture 
in, respectively, pure and applied Mathematics. Part VII can be read by a layman. 

The chapters are thematic lists, by areas of Mathematics or applications which can be 
read independently. When necessary, a chapter or a section starts with a short introduction: 
a field trip with the main concepts. Besides those introductions, the main properties and 
uses of distances are given, within items, only exceptionally. We also tried, when it was 
easy, to trace distances to their originator(s), but the proposed extensive bibliography has a 
less general ambition: it is just to provide convenient sources for a quick search. 

Each chapter consists of items ordered in a way that hints of connections between them. 
All item titles and selected key terms can be traced in the large Subject Index (about 1400 
entries); they are boldfaced unless the meaning is clear from the context. So, the definitions 
are easy to locate, by subject, in chapters and/or, by alphabetic order, in the index. The 
introductions and definitions are reader-friendly and as far as possible independent of each 
other; still they are interconnected, in the 3-dimensional HTML manner, by hyperlink-like 
boldfaced references to similar definitions. 

Many nice curiosities appear in this "Who is Who" of distances. Examples of such 
sundry terms are: ubiquitous Euclidean distance ("as-the-crow-flies"), flower-shop met- 
ric (shortest way between two points, visiting a "flower-shop" point first), knight-move 
metric on a chessboard, Gordian distance of knots, Earth Mover distance, biotope distance, 
Procrustes distance, lift metric, post-office metric, Internet hop metric, WWW hyperlink 
quasi-metric, Moscow metric, dogkeeper distance. Besides abstract distances, the distances 
having physical meaning appear also (especially in Part VI); they range from 1.6 x 10 -35 m 
(Planck length) to 7.4 x 10 26 m (the estimated size of observable Universe, about 46 x 106o 
Planck lengths). 

The number of distance metrics is infinite and therefore, our Dictionary cannot enu- 
merate all of them. But we were inspired by several successful thematic dictionaries on 
other infinite lists; for example, on Integer Sequences, Inequalities, Numbers, Random 
Processes, and by atlases of Functions, Groups, Fullerenes, etc. On the other hand, the 
largeness of the scope forced us often to switch into a laconic tutorial style. 
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The target audience consists of all researchers working on some measuring schemes and, 
to a certain degree, of students and a part of the general public interested in science. 

We have tried to address, even if incompletely, all scientific uses of the notion of dis- 
tance. However some distances did not made it into this Dictionary due to space limitations 
(being too specific and/or complex) or our oversight. In general, the size/interdisciplinarity 
cut-off, i.e., decision where to stop, was our main headache. We would be grateful to the 
readers who send us their favorite distances missed here. Four pages at the end are reserved 
for such personal additions. 

We are grateful to many people for their help with this book, especially, to Jacques 
Beigbeder, Mathieu Dutour, Emmanuel Guerre, Jack Koolen, Jin Ho Kwak, Hiroshi Mae- 
hara, Sergey Shpectorov, Alexei Sossinsky, and Jiancang Zhuang. 



Chapter 1 

General Definitions 

1.1. BASIC DEFINITIONS 

Distance 

Let X be a set. A function d : X x X + R is called distance (or dissimilarity) on X if, 
for all x, y E X, it holds: 

1.  d(x, y) 0 (non-negativity); 
2. d(x, y) = d(y, x) (symmetry); 
3. d(x, x) = 0. 

In Topology, it is also called symmetric. The vector from x to y having the length 
d(x, y) is called displacement. A distance which is a squared metric, is called quad- 
rance. 

For any distance d, the function, defined for x # y by D(x, y) = d(x, y) + c, where 
c = maxx,v,,Ex(d(x, y) - d(x, z )  - d(y, z)), and D(x, x) = 0, is a metric. 

Distance space 

A distance space (X, d) is a set X equipped with a distance d. 

Similarity 

Let X be a set. A function s : X x X + R is called similarity (or proximity) on X if s is 
non-negative, symmetric, and if s(x, y) < s(x, x) holds for all x ,  y E X, with equality 
if and only if x = y. 

Main transforms used to obtain a distance (dissimilarity) d from a similarity s are: d = 

I - s , d = ~ , d = . \ / l - S , d = ~ 2 ( 1 - s 2 ) , d = - l n s , d = a r c c o s s .  

Semi-metric 

Let X be a set. A function d : X x X + R is called semi-metric (or Ccart, pseudo- 
metric) on X if d is non-negative, symmetric, if d(x, x)  = 0 holds for all x E X, and 
if 

holds for all x ,  y, z E X (triangle inequality). 

For any distance d, the equality d(x, x) = 0 and the strong triangle inequality 
d(x, y) < d(x, z) + d(y, z) imply that d is a semi-metric. 
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0 Metric 

Let X be a set. A function d : X x X + R is called metric on X if, for all x ,  y ,  z E X ,  
it holds: 

1. d ( x ,  y )  2 0 (non-negativity); 
2. d ( x ,  y )  = 0 if and only if x = y (separation or self-identity axiom); 
3. d ( x ,  y )  = d ( y ,  x )  (symmetry); 
4. d ( x ,  y )  < d ( x ,  z )  + d ( z ,  y )  (triangle inequality). 

0 Metric space 

A metric space ( X ,  d )  is a set X equipped with a metric d .  

A metric scheme is a metric space with an integral valued metric. 

0 Extended metric 

An extended metric is a generalization of the notion of metric: the value oo is allowed 
for a metric d .  

0 Near-metric 

Let X be a set. A distance d on X is called near-metric if 

holds for all different x ,  y ,  zl , . . . , zn E X and a constant C 3 1.  

0 Coarse-path metric 

Let X be a set. A metric d on X is called coarse-path metric if, for a fixed C 3 0 and 
for every pair of points x ,  y E X ,  there exists a sequence x = xo, x l ,  . . . , xt = y for 
which d(xi-1, x i )  < C for i = 1, . . . , t ,  and 

i.e., the weakened triangle inequality d ( x ,  y )  < d(xi-  1, x i )  becomes an equality 
up to a bounded error. 

0 Resemblance 

Let X be a set. A function d : X x X + R is called resemblance on X if d is symmetric 
and if, for all x ,  y E X ,  either d ( x ,  x )  < d ( x ,  y )  holds (in which case d is called 
forward resemblance), or d ( x ,  x )  2 d ( x ,  y )  holds (in which case d is called backward 
resemblance). 

Every resemblance d induces a strict partial order < on the set of all unordered pairs of 
elements of X by defining { x ,  y }  < { u ,  v }  if and only if d ( x ,  y )  < d ( u ,  v ) .  

For any backward resemblance d ,  the forward resemblance -d induces the same partial 
order. 
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0 Quasi-distance 

Let X be a set. A function d : X x X + R is called quasi-distance on X if d is non- 
negative, and if d ( x ,  x )  = 0 holds for all x E X .  

0 Quasi-semi-metric 

Let X be a set. A function d : X x X + R is called quasi-semi-metric (or weak metric) 
on X if d is non-negative, if d ( x ,  x )  = 0 holds for all x E X ,  and if 

holds for all x ,  y ,  z E X (oriented triangle inequality). 

0 Albert quasi-metric 

An Albert quasi-metric d is a quasi-semi-metric on X with weak dejniteness, i.e., for 
all x ,  y E X the equality d ( x ,  y )  = d ( y ,  x )  implies x = y. 

0 Weak quasi-metric 

A weak quasi-metric d is a quasi-semi-metric on X with weak symmetry, i.e., for all 
x ,  y E X ,  d ( x ,  y) = 0 if and only if d ( y ,  x )  = 0. 

0 Quasi-metric 

Let X be a set. A function d : X x X + R is called quasi-metric on X if d ( x ,  y )  3 0 
holds for all x ,  y E X with equality if and only if x = y, and if 

holds for all x ,  y, z E X (oriented triangle inequality). A quasi-metric space ( X ,  d )  is 
a set X equipped with a quasi-metric d .  

For any quasi-metric d ,  the function D ( x ,  y )  = d ( x ,  y )  + d ( y ,  x )  is a metric. 

2k-gonal distance 

An 2k-gonal distance d is a distance on X which satisfies the 2k-gonal inequality 

for all b E Z" with EL1 bi = 0 and EL, Ibi 1 = 2k, and for all distinct elements 
X I  , . . . ,  X , , E X .  

0 Distance o f  negative type 

A distance o f  negative type d is a distance on X which is 2k-gonal for any k 3 1,  i.e., 
satisfies the negative type inequality 
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for all b E Z" with b; = 0, and for all distinct elements XI, . . . , xn E X. 

A distance can be of negative type without being a semi-metric. Cayley proved that a 
metric d is an L2-metric if and only if d2 is a distance of negative type. 

(2k + 1)-gonal distance 

An (2k + 1)-gonal distance d is a distance on X  which satisfies the (2k + 1)-gonal 
inequality 

for all b E Z" with )-El b; = 1 and EL1 Ib;] = 2k + 1 ,  and for all distinct elements 
XI  ,..., X,,EX. 

The (2k + 1)-gonal inequality with k = 1 is the usual triangle inequality. The (2k + 1)- 
gonal inequality implies the 2k-gonal inequality. 

Hypermetric 

A hypermetric d is a distance on X  which is (2k + 1)-gonal for any k 3 1 ,  i.e., satisfies 
the hypermetric inequality 

for all b E Z" with )-:I bi = 1 ,  and for all distinct elements X I ,  . . . , x,, E X. Any 
hypermetric is a semi-metric and a distance of negative type. Any L1 -metric is a hy- 
permetric. 

Ptolemaic metric 

A Ptolemaic metric d is a metric on X  which satisfies the Ptolemaic inequality 

(shown by Ptolemy to hold in the Euclidean space) for all x,  y ,  u ,  z E X. 

A metric space (V, Ilx - y  11) (where (V, 11.11) is a normed vector space) is Ptolemaic if 
and only if it is an inner product space. 

Assouad pseudo-distance 

An Assouad pseudo-distance (or weak ultrametric) d is a distance on X  such that for 
a constant C 3 1 the inequality 

holdsforallx, y , z  E X , x  # y .  

The term pseudo-distance is also used, in some applications, for a pseudo-metric (i.e., 
a semi-metric), for a quasi-distance, for a near-metric, for a distance which can be 
infinite, for a distance with an error, etc. 
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0 Ultrametric 

An ultrametric (or non-Archimedean metric) d is a metric on X which satisfies the 
following strengthened version of the triangle inequality: 

for all x ,  y ,  z E X .  So, at least two of d ( x ,  y ) ,  d ( z ,  y )  and d ( x ,  z )  are the same. 

A metric d is ultrametric if and only if d f f  is a metric for any real positive number a.  
Any ultrametric satisfies the four-point inequality. 

0 Four-point inequality metric 

A metric d on X satisfies the four-point inequality if the following strengthened version 
of the triangle inequality holds: for all x ,  y ,  z ,  u E X 

d ( x ,  y )  + d ( z ,  u )  6 max{d(x, z )  + d ( y ,  u ) ,  d ( x ,  u )  + d ( y ,  2 ) )  

Equivalently, among the three sums d ( x ,  y)+d(z,  u ) ,  d ( x ,  z )+d(y ,  u ) ,  d ( x ,  u)+d(y ,  z )  
the two largest sums are equal. 

A metric satisfies the four-point inequality if and only if it is a tree-like metric. 

Any metric, satisfying the four-point inequality, is a Ptolemaic metric. 

A bush metric is a metric for which all four-point inequalities are equalities, i.e., 
d ( x ,  y )  + d ( u ,  z )  = d ( x ,  u )  + d ( y ,  z )  holds for any u ,  x ,  y ,  z E X .  

0 Relaxed four-point inequality metric 

A metric d on X satisfies the relaxed four-point inequality if, for all x ,  y ,  z ,  u E X ,  
among the three sums 

at least two (not necessarily two largest) are equal. 

A metric satisfies the relaxed four-point inequality if and only if it is a relaxed tree-like 
metric. 

0 &hyperbolic metric 

Given a number 6 3 0, a metric d on a set X is called 6-hyperbolic if it satisfies the 
Gromov 6-hyperbolic inequality (another weakening of the four-point inequality): 
for all x ,  y, z ,  u E X it holds 

A metric space ( X ,  d )  is 6-hyperbolic if and only if it holds 
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forallx,  y, z E X andforany xo E X, where (x.y),,, = i(d(xo,x)+d(xo, y)-d(x, y)) 
is the Gromov product of the points x and y of X with respect of base-point xo E X. 

A metric space (X, d )  is 0-hyperbolic exactly when d satisfies the four-point inequal- 
ity. Every bounded metric space of diameter D is D-hyperbolic. The n-dimensional 
hyperbolic space is In 3-hyperbolic. 

Gromov product similarity 

Given a metric space (X, d )  with a fixed point xo E X, the Gromov product similarity 
(or Gromov product, covariance) (.),,, is a similarity on X, defined by 

If X is a measure space with d(x ,  y) = p(xAy),  then ( ~ . y ) ~  = p(x  n y). If d is a 
distance of negative type, i.e., d(x,  y) = d i ( x ,  y) for a subset X of an Euclidean space 
E", then (x.y)o is the usual innerproduct on E". The function dXO(x, y) = C - (x.y),,, 
(called Farris transform in Phylogenetics) with C 2 max,,,,,x d(u ,  v )  is a metric. It is 
an ultrametric if and only if d satisfies the four-point inequality. 

1.2. MAIN DISTANCE-RELATED NOTIONS 

Metric ball 

Given a metric space (X, d), the metric ball (or closed metric ball) with center xo E X 
and radius r > 0 is defined by B(xo, r )  = {x E X : d(xo, x )  < r}, and the open metric 
ball with center xo E X and radius r > 0 is defined by B(x0, r )  = {x E X :  d(xo, x )  < 
TI. 
The metric sphere with center xo E X and radius r > 0 is defined by S(x0, r )  = {x E 
X :  d(xo, x) = r}. 

For the norm metric on an n-dimensional normed vector space (V, 1 1 .  I]), the closed 
metric ball 3'' = {x E V : llxll < 1) is called unit ball, and the set snp' = {x E V : 
Ilx 1 1  = 1) is called unit sphere (or unit hypersphere). In a two-dimensional vector space, 
a metric ball (closed or open) is called metric disk (closed or open, respectively). 

Metric topology 

A metric topology is a topology on X induced by a metric d on X. 

More exactly, given a metric space (X, d), define the open set in X as an arbitrary union 
of (finitely or infinitely many) open metric balls B(x, r )  = {y E X :  d(x,  y) < r}, 
x E X, r E Kt, r > 0. A closed set is defined now as the complement of an open set. 
The metric topology on (X, d )  is defined as the set of all open sets of X. A topological 
space which can arise in this way from a metric space is called metrizable space. 

Metrization theorems 

Metrization theorems are theorems which give sufficient conditions for a topological 
space to be metrizable, i.e., with topology which is a metric topology. 
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Metric interval 

Given two different points x ,  y E X of a metric space ( X ,  d ) ,  the metric interval be- 
tween x and y is the set 

A metric space ( X ,  d )  is called antipodal metric space (or diametrical metric space) if, 
for any x E X ,  there exists the antipode, i.e., an unique x1 E X such that I ( x ,  x l )  = X. 

A metric space ( X ,  d )  is called distance monotone metric space if, for any interval 
I ( x ,  x l )  and y E X\I(x, XI) ,  there exists xl' E I ( x ,  x ' )  with d ( y ,  x'l) > d ( x ,  X I ) .  

Metric triangle 

Three different points x ,  y, z E X of a metric space ( X ,  d )  form a metric triangle if the 
metric intervals I ( x ,  y ) ,  I ( y ,  z )  and I ( z ,  x )  intersect only in the common end points. 

A metric tree is a metric space all of whose metric triangles are degenerated. 

Modular metric space 

A metric space ( X ,  d )  is called modular if for any three different points x ,  y, z E X 
there exist u E I ( x ,  y )  n I ( y ,  z )  n I ( z ,  x ) .  

This should not be confused with modular distance and modulus metric. 

Metric quadrangle 

Four different points x ,  y ,  z ,  u E X of a metric space ( X ,  d )  form a metric quadrangle 
if x ,  z E I ( y ,  u )  and y, u E I ( x ,  z ) .  It holds d ( x ,  y) = d ( z ,  u )  and d ( x ,  u )  = d ( y ,  z )  in 
such a metric quadrangle. 

A metric space ( X ,  d )  is called weakly spherical if, for any three different points 
x ,  y ,  z E X with y E I ( x ,  z ) ,  there exists u E X such that x ,  y, z ,  u form a metric 
quadrangle. 

Metric curve 

A metric curve (or, simply, curve) y in a metric space ( X ,  d )  is a continuous mapping 
y : I + X from an interval I of R into X. A curve is called simple if it is injective. 
A curve y : [a ,  b]  + X is called Jordan curve (or simple closed curve) if it does not 
cross itself, and y ( a )  = y(b) .  The length l ( y )  of a curve y : [a ,  b ]  + X is defined 
by l ( y )  = s u p { C I G i G n d ( y ( t i ) ,   ti-^)): n E N , a  = to < t~ < .. .  < tn = bJ. 
A rectijiable curve is a curve with the finite length. 

Geodesic 

A geodesic segment (or shortest path) in a metric space is a locally shortest curve be- 
tween two points. In other words, a geodesic segment [ x ,  y] from x to y is an isometric 
embedding y : [a ,  b ]  + X with y ( a )  = x and y ( b )  = y. A geodesic is a locally iso- 
metric embedding of the whole R in X. A metric straight line (or minimizing geodesic) 
is a geodesic which is minimal between any two of its points. 
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A geodesic metric space is a metric space in which any two points are joined by a 
geodesic segment. Given a metric space ( X ,  d ) ,  the total convexity of  a set M c X 
means that for any two points o f  M any geodesic segment connecting them lies entirely 
in M. 

Metric convexity 

Given a metric space ( X ,  d ) ,  the metric convexity o f  a set M c X means that, for 
any different points x ,  y E M and any 0 < h < 1,  there exists z E M such that 
d ( x ,  z )  = hd(x ,  y) ,  and d ( z ,  y )  = (1 - h)d(x ,  y). 

Proximity graph o f  metric space 

The proximity graph (or underlying graph) of  a metric space ( X ,  d )  is a graph with the 
vertex-set X and xy being an edge i f  I ( x ,  y) = { x ,  y} ,  i.e., no third point z E X,  for 
which d ( x ,  y) = d ( x ,  z )  + d( z ,  y),  exists. 

Menger convexity 

A metric space ( X ,  d )  is called Menger-convex (or M-convex) i f ,  for any different x ,  y E 

X,  we have I I ( x ,  y)l > 2, i.e., there exists a third point z E X for which d ( x ,  y) = 
d ( x ,  z )  + d( z ,  y). The Menger-convexity o f  a set M c X means that, moreover, z E M 
i f  x ,  y E M. There exist discrete Menger-convex metric spaces. 

Hyperconvexity 

A metric space ( X ,  d )  is called hyperconvex (or injective) i f  it is Menger-convex and 
its closed metric balls have the injnite Helly property, i.e., any family of  closed balls 
- 
B(xi ,  r i )  with centers xi and radii ri, i E I ,  satisfying d (x i ,  x i )  < ri +r j  for all i, j E I ,  
has non-empty intersection (cf .  injective metric space). 

Metric entropy 

Given E > 0, the metric entropy (or &-entropy, relative &-entropy) H,(M, X )  o f  a set 
M,  lying in a metric space ( X ,  d ) ,  is defined by 

where N, ( M ,  X )  is the smallest number o f  points in an &-net for the metric space ( M ,  d ) ,  
i.e., a set o f  points such that the union o f  s-balls, centered at those points, covers M. 

The absolute s-entropy o f  a set M is the number H,(M) = inf H,(M, X) ,  where the 
infimum is taken over all metric spaces ( X ,  d )  such that M c X. 

Metric dimension 

For a metric space ( X ,  d )  and any real number q > 0, let Nx(q)  be the minimal 
number o f  sets with diameter at most q which are needed in order to cover X (cf .  
metric entropy). The number lim,,o a ( i f  it exists) is called metric dimension 
(or Minkowski-Bouligand dimension, Minkowski dimension, packing dimension, box- 
counting dimension) of  X. 

I f  the limit above does not exist, then the following notions o f  dimension are considered: 
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I .  The number %+0# is called lower metric dimension (or lower box dimen- 
sion, ~ontry~in-~chnirelmann - dimension, lower Minkowski dimension); 

2. The number In N ( q )  is called upper metric dimension (or entropy dimension, 
Kolmogorov-Tihomirov dimension, upper box dimension). 

In the mathematical literature other, less prominent, notions of metric dimension also 
occur. For example, 

1.  For any c > 1, the metric dimension dim,(X) of a finite metric space (X, d) is the 
least dimension of a real normed space (V, II.II) such that there is an embedding 
f : x + v with d(x, y) 3 I l f  (x) - f (y)ll 3 $f(x, y); 

2. The dimension of a finite metric space (X, d) is the least dimension n of an Euclidean 
space El1 such that (X, f (d)) is its metric subspace, where the minimum is taken over 
all continuous monotone increasing functions f (t) of t  3 0; 

3. The metric dimension of a metric space is the minimum size of its metric basis, i.e., 
of its smallest subset S such that no two points have the same distances to all points 
of S. 

4. The equilateral dimension of a metric space is the maximum cardinality of its equi- 
lateral (or equidistant) subset, i.e., such that any two its distinct points are at the 
same distance. For a normed space, this dimension is equal to the maximum number 
of translates of its unit ball that pairwise touch. 

0 Hausdorff dimension 

For a metric space (X, d) and any real p ,  q > 0, let M ~ ( x )  = inf ~ :=y (d i am(~~) ) / ) ,  
where the infimum is taken over all countable coverings {Aili of X with the diame- 
ter of Ai less than q.  The Hausdorff dimension (or Hausdorff-Besicovitch dimension, 
capacity dimension, fractal dimension) dim~,,,~(X, d )  of X is defined by 

inflp : lim M ~ ( x )  = 01. 
q-0 

Any countable metric space have Hausdorff dimension 0; Hausdorff dimension of the 
Euclidean space E'' is equal to n. 

For each totally bounded metric space, its Hausdorff dimension is bounded from above 
by its metric dimension and from below by its topological dimension. 

Topological dimension 

For any compact metric space (X, d )  its topological dimension (or Lebesgue covering 
dimension) is defined by 

where d' is any metric on X topologically equivalent to d, and dimHa,, is the Hausdorff 
dimension. 

In general, the topological dimension of a topological space X is the smallest integer 
n such that, for any finite open covering of X, there exists a (finite open) sub-covering 
(i.e., a refinement of it) with no point of X belonging to more than n + 1 elements. 
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0 Assouad-Nagata dimension 

The Assouad-Nagata dimension of a metric space (X, d )  is the smallest integer n for 
which there exists a constant C > 0 such that, for all s > 0, there exists a covering of X 
by its subsets of diameter at most Cs  with no point of X belonging to more than n + 1 
elements. 

For a metric space, its topological dimension does not exceed its Assouad-Nagata di- 
mension. A metric space (X, d )  has finite Assouad-Nagata dimension if and only if it 
has finite doubling dimension, i.e., the smallest integer N such that every metric ball 
can be covered by a family of at most N metric balls of half the radius. 

The asymptotic dimension of a metric space (X, d )  was introduced by Gromov; it is 
the smallest integer n such that, for all s > 0, there exist a constant D = D(s) and a 
covering of X by its subsets of diameter at most D with no point of X belonging to more 
than n + 1 elements. 

We say that a metric space (X, d )  has Godsil-McKay dimension n 3 0 if there ex- 
ist an element xo E X and two positive constants c and C such that ckn < I{x E 
X : d(x,  xo) < k}I < Ckn holds for every integer k 3 0. This notion was introduced in 
[GoMc80] for the path metric of a countable locally finite graph. It was proved there 
that if the group Zn acts faithfully and with a finite number of orbits on the vertices of 
the graph, then this dimension is equal to n. 

0 Fractal 

For a metric space, its topological dimension does not exceed its Hausdorff dimension. 
A fractal is a metric space for which this inequality is strict. (Originally, Mandelbrot 
defined a fractal as a point set with non-integer Hausdorff dimension.) For example, the 
Cantor set, which is an 0-dimensional topological space, has the Hausdorff dimension 
In 2 
l n 3 '  

The term fractal is used also, more generally, for self-similar (i.e., roughly, looking 
similar at any scale) object (usually, a subset of Rn). 

0 Length of metric space 

Fremlin's length of metric space (X, d )  is one-dimensional Hausdorff outer measure 
on X. 

Hejcman's length lng(Y) of a subset Y of metric space (X, d )  is 

Here lng(0) = 0 and, for a finite subset A of X, lng(A) = min Cy=l  d (x iP l ,  x i )  over 
all sequences xo, . . . , x,, such that {xi : i = 0, 1, . . . , n} = A. 

Schechtman's length of finite metric space (X, d )  is inf J)-y=l a .  over all sequences 
a ] ,  . . . , an of positive numbers such that there exists a sequence Xo, . . . , X,, of partitions 
of X with following properties: 

1. Xo = {X} and Xn = {{x} : x E X}, 
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2. Xi refines Xipl for i = 1,  . . . , n, 
3. For i = 1 , .  . . , n and B, C c A E XiPl  with B, C E Xi, there exists a one-to-one 

map f from B onto C such that d(x,  f (x)) < ai for all x E B. 

0 D-chromatic number 

Given a metric space (X, d )  and a set D of positive real numbers, the D-chromatic 
number of (X, d )  is the standard chromatic number of the D-distance graph of (X, d),  
i.e., the graph with the vertex-set X and the edge-set {xy : d(x,  y) E D } .  Usually, (X, d )  
is an I,,-space and D = { I }  (Benda-Perles chromatic number) or D = [1 - F ,  1 + F ]  

(the chromatic number of the &-unit distance graph). 

0 Polychromatic number 

For a metric space (X, d) ,  it is the minimum number of colors needed to color all the 
points x E X so that for each color class Ci, there is a distance di such that no two points 
of Ci are at distance di. 

For any integer t > 0, the t-distance chromatic number of (X, d )  is the minimum 
number of colors needed to color all the points x E X so that any two points whose 
distance apart is < t have distinct colors. 

For any integer t > 0, the t- th Babai number of (X, d )  is the minimum number of 
colors needed to color all the points x E X so that, for any set D of positive distances 
with ID] < t ,  any two points whose distance belongs to D have distinct colors. 

0 Rendez-vous number 

Given a metric space (X, d),  its rendez-vous number (or Gross number; magic number) 
is a positive real number r(X, d )  (if it exists), defined by the property that for each 
integer n and all (not necessarily distinct) X I ,  . . . , x,, E X there exists x E X such that 

If for a metric space (X, d )  the rendez-vous number r (X,  d )  exists, then it is said 
that (X, d )  has the average distance property and its magic constant is defined by 

r(X.d) dja,n(X,d), where diam(X, d )  = max,,?,,~ d(x,  y) is the diameter of (X, d) .  

Every compact connected metric space has the average distance property. The unit ball 
{x E V : llx 11 < I }  of a Banach space (V, 11.11) has the average distance property with 
the rendez-vous number 1. 

0 Metric radius 

The metric radius of a set M c X in a metric space (X, d )  is the infimum of radii of 
metric balls which contain M.  

The covering radius of a set M c X is max, ,~  minYEM d(x,  y) (directed Hausdorff 
distance from X to M), i.e., the smallest number R s k h  that the balls of radius R with 
centers at the elements of M cover X. The packing radius of M is the largest r such 
that the balls of radius r with centers at the elements of M are pairwise disjoint. 
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A m-subset M o f  a metric space ( X ,  d )  is called minimax distance design o f  size m 
i f  maxx,x minVEM d ( x ,  y )  = m i n { r n a ~ , , ~  minVEs d ( x ,  y )  : S c X,  IS] = m }  holds, 
and it is called'maximum distance design o f  size m i f  minXEM rninyEM\(y] d ( x ,  y) = 
max{minXEs min,,s\(,l d ( x ,  y )  : S c X,  IS1 = m }  holds. 

0 Metric diameter 

The diameter diam(M) o f  a set M c X in a metric space ( X ,  d )  is defined by 

The diameter graph o f  M has, as vertices, all points x E M with d ( x ,  y )  = diam(M) 
for some y E M ;  it has, as edges, all pairs o f  its vertices at distance diam(M) in ( X ,  d ) .  

The value 

diam(X,d)  = sup d ( x ,  y )  
,.?.EX 

is called diameter o f  the metric space ( X ,  d ) .  The numbers 

1 1 
and x d ( x . ~ )  

x .v~M, x f  v I M ' ( I M I  - I )  x,v~M. X+Y 

are called, respectively, energy and average distance o f  the set M.  

In Chemistry, the number Cx,y,M,x<y d ( x ,  y )  is called Wiener number o f  M .  

0 Eccentricity 

Given a finite metric space ( X ,  d ) ,  the eccentricity o f  a point x E X is the number 
e ( x )  = m a x , , ~  d ( x ,  y).  The numbers m a x , , ~  e ( x )  and minXEx e ( x )  are the diameter 
and the radius o f  ( X ,  d ) ,  respectively. Some authors call radius the half o f  diameter. 

The sets { x  E X :  max,,xd(x, y )  < max,,xd(z, y) for any z E X }  and { x  E X :  
CYEx d ( x ,  y )  < C,,, d ( z ,  y )  for any z E X }  are, respectively, the metric center (or 
eccentricity center) and the metric median (or distance center) o f  ( X ,  d ) .  

0 Steiner ratio 

Given a metric space ( X ,  d )  and a finite subset V o f  X ,  consider the complete weighted 
graph G = ( V ,  E )  with the vertex-set V and edge-weights d ( x ,  y )  for all x ,  y E V .  

A spanning tree T in G is a subset o f  I V I - 1 edges forming a tree on V with the weight 
d ( T )  equal to the sum o f  weights o f  its edges. Let MSTv be a minimal spanning tree in 
G ,  i.e., a spanning tree in G with the minimal weight d(MSTv) .  

A minimal Steiner tree on V is a tree SMTv such that its vertex-set is a subset o f  X 
containing V ,  and d (SMTv)  = infMcx: V C M  d (MSTM) .  

The Steiner ratio St ( X ,  d )  o f  the metric space ( X ,  d )  is defined by 

inf 
d (SMTv 

vcx d (MSTv)  
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For any metric space ( X ,  d )  we have 6 S t ( X ,  d )  6 1. For the 12-metric (i.e., the 

Euclidean metric) on 1 2 ,  it is equal to 9, while for the 1,-metric on Kt2 it is equal to $. 

Order of congruence 

A metric space ( X ,  d )  has the order of congruence n if every finite metric space which 
is not isometrically embeddable in ( X ,  d )  has a subspace with at most n points which is 
not isometrically embeddable in ( X ,  d ) .  

Midset 

Given a metric space ( X ,  d )  and distinct points y ,  z E X ,  the midset (or bisector) of X 
is the set { x  E X :  d ( x ,  y )  = d ( x ,  z ) }  of midpoints x .  

A metric space is said to have n-points midsetproperty if, for every pair of its points, the 
midset has exactly n points. 

Metric basis 

Given a metric space ( X ,  d ) ,  a set M c X is called metric basis of X if the following 
condition holds: d ( x ,  s) = d ( y ,  s )  for all s E M implies x = y.  For x E X ,  the numbers 
d ( x ,  s ) ,  s E M ,  are called metric coordinates of x .  

Every largest affine independent subset of an afine space (i.e., a translation of a vector 
space), taken with the Euclidean metric, is a minimal metric basis. 

Element of best approximation 

Given a metric space ( X ,  d )  and a subset M c X ,  an element uo E M is called element 
of best approximation to a given element x E X if d ( x ,  uo) = infUEM d ( x ,  u ) ,  i.e., if 
d ( x ,  uo)  is the point-set distance d ( x ,  M ) .  

A Chebyshev set (or gated set) in a metric space ( X ,  d )  is a subset of X containing an 
unique element of best approximation for every x E X .  

Metric projection 

Given a metric space ( X ,  d )  and a subset M c X ,  the metric projection is a multi- 
valued mapping associating to each element x E X the set of elements of best approx- 
imation from the set M (cf. distance map). 

The set M is a Chebyshev set if and only if the corresponding metric projection is a 
single-valued mapping. 

Chebyshev center 

Given a metric space ( X ,  d )  and a bounded subset M c X ,  the Chebyshev radius of the 
set M is infxEx supyEM d ( x ,  y ) ,  and a Chebyshev center of M is an element xo E X 
realizing this infimum. 

Distance map 

Given a metric space ( X ,  d )  and a subset M c X ,  the distance map is a function 
fm  : X + I > o ,  where f ~ ( x )  = infLLEM d ( x ,  u )  is the point-set distance d ( x ,  M )  (cf. 
metric projection). 
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I f  the boundary B (M)  o f  the set M is defined, then the signed distance function g~ is 
definedon X by g M ( x )  = - i n f , , , ~ ( ~ ) d ( x ,  u )  forx E M andg(x) = infu,B(M) d ( x ,  u ) ,  
otherwise. I f  M is a (closed and orientable) manifold in RT2, then g~ is the solution of  
the eikonal equation lVgl = 1 for its gradient V. 

Distance maps are used in Robot Motion (M being the set o f  obstacle points) and, espe- 
cially, in Image Processing (M being the set o f  all or only boundary pixels o f  the image). 
For X = R2,  the graph { ( x ,  fM ( x ) )  : x E X }  o f  d ( x ,  M )  is called Voronoi sugace o f  M. 

0 Metric transform 

A metric transform is a distance obtained as a function o f  a given metric (cf .  Chapter 4). 

0 Discrete dynamic system 

A discrete dynamic system is a pair consisting o f  a non-empty metric space ( X ,  d ) ,  
calledphase space, and a continuous mapping f : X + X,  called evolution law. For any 
x E X,  its orbit is the sequence { f l '(x)}, ,;  here f T 2 ( x )  = f ( f  lZ- ' (x))  with f ' ( x )  = x .  
The orbit o f  x E X is called periodic i f  f " ( x )  = x for some n > 0. 

Usually, the discrete dynamic systems are studied (for example, in Control Theory) in 
the context of  stability o f  systems; Chaos Theory concerns itself with the systems with 
maximal possible instability. 

An attractor is a closed subset A o f  X such that there exists an open neighborhood U 
o f  A with the property that lim,,,, d (  fT2(b) ,  A )  = 0 for every b E U .  Here d ( x ,  A )  = 

infYEA d ( x ,  y )  is the point-set distance. 

A dynamic system is called (topologically or Devaney) chaotic i f  it is regular (i.e., X 
has a dense subset o f  elements having periodic orbits) and transitive (i.e., for any two 
non-empty open subsets A, B o f  X ,  there exists a number n such that f T 2 ( A )  n B # 0).  

0 Metric cone 

The metric cone is a collection o f  all semi-metrics on the set V,, = { I ,  . . . , n} .  

0 Distance matrix 

Given a finite metric space (X = { x l ,  . . . , x,,}, d ) ,  its distance matrix is the symmetric 
n x n matrix ( (d i i ) ) ,  where dii = d(x i ,  x,;) for any 1 6 i, j n. 

Let s denote the number o f  different non-zero values o f  di,;. The metric space ( X ,  d )  is 
said to have strength t i f ,  for any integers p, q 3 0 with p+q < t ,  there is a polynomial 
f,],(s) o f  degree at most min{p, q }  such that ((d:))((d:)) = ( ( f , l , ( d~ j ) ) ) .  

0 Cayley-Menger matrix 

Given a finite metric space (X = { x l , .  . . , x,}, d ) ,  its Cayley-Menger matrix is the 
symmetric (n + 1 )  x (n  + I )  matrix 
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where D = ((di,j)) is the distance matrix of (X, d), and e is the n-vector all components 
of which are 1. The determinant of CM(X, d )  is called Cayley-Menger determinant. 

0 Gram matrix 

Given elements vl, . . . , vk of an Euclidean space, their Gram matrix is the symmetric 
k x k matrix 

of pairwise inner products of vl , . . . , vk. 

An k x k matrix is positive-semi-definite if and only if it is a Gram matrix. An k x k 
matrix is positive-definite if and only if it is a Gram matrix with linearly independent 
defining vectors. 

1 2  2 We have G(vl ,  . . . vk) = Z((dE(vO, vi) + dg(vo, vj) - dE(ui, uj))), i.e., the inner 
product (, ) is the Gromov product similarity of the squared Euclidean distance d i .  
A k x k matrix ((dg(vi, vj))) is a distance of negative type; all such k x k matrices 
form the (non-polyhedral) closed convex cone of all such distances on a k-set. 

The determinant of a Gram matrix is called Gram determinant; it is equal to the square 
of the k-dimensional volume of the parallelotope constructed on vl , . . . vk. 

0 Isometry 

Given metric spaces (X, dx) and (Y, dy),  a function f : X + Y is called an iso- 
metric embedding of X into Y if it is injective, and, for all x ,  y E X, the equality 
d r ( f (x ) ,  f (y))  = dx(x,  y) holds. 
An isometry is a bijective isometric embedding. Two metric spaces are called isometric 
(or isometrically isomorphic) if there exists an isometry between them. An isometry of 
a metric space (X, d )  onto itself is called motion. 

A property of metric spaces which is invariant with respect to isometries (completeness, 
boundedness, etc.) is called metric property (or metric invariant). 

A path isometry (or arcwise isometry) is a mapping from X into Y (not necessarily 
bijective) preserving the lengths of curves. 

0 Symmetric metric space 

A metric space (X, d )  is called symmetric if, for any point p E X, there exists a symme- 
try relative to that point, i.e., a motion fl) of this metric space such that f,( f,](x)) = x 
for all x E X, and p is an isolated fixed point of fl). 

0 Homogeneous metric space 

A metric space (X, d )  is called homogeneous (or highly transitive) if, for each two 
finite isometric subsets Y = {yl ,  . . . , ynz} and Z = {zl ,  . . . , z,,} of X, there exists a 
motion of X mapping Y to Z. A metric space is called point-homogeneous if, for any 
two points of it, there exists a motion mapping one of the points to the other. In general, 
a homogeneous space is a set together with a given transitive group of symmetries. 

A metric space (X, d )  is called (Griinbaum-Kelly) metrically homogeneous metric 
spaceif {d(x,z) :  z E X} = {d(y,z) :  z E X} foranyx, y E X. 
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c-uniformly perfect metric space 

Every proper closed metric ball of radius r in a metric space has diameter at most 2r. 
A metric space is called c-uniformly perfect, 0 < c < 1,  if this diameter is at least 2cr. 

Homeomorphic metric spaces 

Two metric spaces ( X ,  d x )  and (Y, d y )  are called homeomorphic (or topologically 
isomorphic) if there exists a homeomorphism from X to Y, i.e., a bijective function 
f : X + Y such that f and f P' are continuous (the preimage of every open set in Y is 
open in X). 

Two metric spaces ( X ,  d x )  and ( Y ,  d y )  are called uniformly isomorphic if there exists a 
bijective function f : X + Y such that f and f -' are uniformly continuous functions. 
The function f is uniformly continuous if, for any E > 0, there exists 6 > 0 such that, 
for any x ,  y E X ,  inequality d x ( x ,  y )  < 6 implies inequality d y  ( f  ( x ) ,  f ( y ) )  < E .  

A continuous function f is uniformly continuous if X is compact. 

C-quasi-conformal metrical mapping 

Given metric spaces ( X ,  d x )  and (Y ,  d y ) ,  a homeomorphism f : X' + Y' (where X' c 
X and Y' c Y are open sets) is called C-quasi-conformal metrical mapping if there 
exists a constant C 3 1 such that 

lim sup 
max{dv( f  (x). f 0)):  d(x.  y)  < r i  < 

r+o min{dy ( f  ( x ) ,  f ( Y ) )  : d ( x ,  y )  3 rl 

holds for each x E XI. 

Lipschitz mapping 

Let c be a positive constant. Given metric spaces ( X ,  d x )  and ( Y ,  d y ) ,  a function 
f : X + Y is called Lipschitz mapping (or, more exactly, c-Lipschitz mapping) if 
the inequality 

dr  ( f  ( x ) ,  f 04) < cdx(x ,  Y )  

holds for all x ,  y E X.  The minimal such c ,  i.e., 

is called dilatation of f .  

An c-Lipschitz mapping is called short mapping if c = 1,  and is called contraction if 
c < 1. Every contraction from a complete metric space into itself has an unique fixed 
point. 

Bi-Lipschitz mapping 

Let c > 1 be a positive constant. Given metric spaces ( X ,  d x )  and (Y, d y ) ,  a function 
f : X + Y is called bi-Lipschitz mapping (or c-bi-Lipschitz mapping, c-embedding) 
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if there exists a positive real number r such that, for any x ,  y E X ,  we have the following 
inequalities: 

The smallest c for which f is an c-bi-Lipschitz mapping is called distortion o f f .  Bour- 
gain proved that every k-point metric space c-embeds into an Euclidean space with dis- 
tortion 0 (In k). 

Two metrics dl  and d2 on X are called bi-Lipschitz equivalent metrics if there are 
positive constants c and C such that c d l ( x ,  y )  < d2(x ,  y )  < C d l ( x ,  y )  holds for all 
x ,  y E X. In other words, the identity mapping is a hi-Lipschitz mapping from ( X ,  d l )  
into ( X ,  d2).  

Dilation 

Given a metric space ( X ,  d )  and a positive real number r ,  a function f  : X + X is 
called dilation if d ( f  ( x ) ,  f  ( y ) )  = r d ( x ,  y )  holds for any x ,  y E X. 

Metric Ramsey number 

For a given class M of metric spaces (usually, Ill-spaces), an integer n 3 1,  and a real 
number c 3 1, the metric Ramsey number (or c-metric Ramsey number) RM (c, n )  is 
the largest integer m such that every n-point metric space has a subspace of size m that 
c-embeds into a member of M (see [BLMNOS]). 

c-isomorphism of metric spaces 

Given two metric spaces ( X ,  d x )  and (Y ,  d y ) ,  the Lipschitz norm 1 1 .  l l L i l J  on the set of all 
injective mappings f  : X + Y is defined by 

Two metric spaces X and Y are called c-isomorphic if there exists an injective mapping 
f : X + Y such that 1 1  f I I L ~ ~ J I I ~  I I L ~ I J  < c. 

Given metric spaces ( X ,  d x )  and (Y ,  d y ) ,  a function f  : X + Y is called quasi-isom- 
etry if there exist real numbers C > 0 and c such that 

and Y = U X E x  Bd,(f ( x ) ,  c), i.e., for every point y E Y ,  there exists a point x E X 
such that d y  ( y ,  f ( x ) )  6 c. 

A quasi-isometry with C = 1 is called coarse isometry. 



Clzuptev I :  Geneml Dejinitions [ Coarse embedding] 19 

0 Coarse embedding 

Given metric spaces ( X ,  d x )  and (Y ,  d y ) ,  a function f : X + Y is called coarse em- 
bedding i f  there exist non-decreasing functions pl, p2 : [ 0 ,  oo) + [0, oo) such that 
Pl(dx(x,  y ) )  < d y ( f  ( x ) ,  f ( Y ) )  < p2@x(x, y ) )  for all x ,  y E X,  and limt+oo ~ l ( t )  = 
+oo. 

Metrics d l  and d2 on X are called coarsely equivalent metrics i f  there exist non- 
decreasing functions f ,  g : [O, oo) + [O, oo) such that dl < f (d2)  and d2 < g(d l ) .  

0 Short mapping 

Given metric spaces ( X ,  d x )  and (Y,  d y ) ,  a function f : X + Y is called short map- 
ping (or non-expansive mapping, semi-contraction) i f  

holds for all x, y E X. The function f is called strictly short i f  the inequality is strict for 
all x # y. A submetry is a short mapping such that image o f  any metric ball is a metric 
ball of  the same radius. Any surjective short mapping f : X + X is an isometry i f  and 
only i f  ( X ,  d x )  is a compact metric space. 

Two subsets A and B o f  a metric space ( X ,  d )  are called (W.T. Cowers) similar i f  there 
exist short mappings f : A + X,  g : B + X and a small E > O such that every point 
o f  A is within E o f  some point of  B, every point o f  B is within E o f  some point of  A, and 
Id(x, g ( f  ( x ) ) )  - d ( y ,  f (g(y))) l  < E for every x E A and y E B. 

0 Category of metric spaces 

A category P consists o f  a class Ob P, whose elements are called objects of the cate- 
gory, and a class Mor P, elements o f  which are called morphisms of the category. These 
classes have to satisfy the following conditions: 

1. To each ordered pair o f  objects A, B is associated a set H ( A ,  B )  o f  morphisms; 
2. Each morphism belongs to only one set H ( A ,  B) ;  
3. The composition f . g o f  two morphisms f : A + B, g : C + D is defined i f  

B = C in which case it belongs to H ( A ,  D);  
4. The composition of  morphisms is associative; 
5. Each set H ( A ,  A )  contains, as an identity, a morphism idA such that f . idA = a and 

idA .g = g for any morphisms f : X + A and g : A + Y .  

The category of metric spaces, denoted by Met (see [Isbe64]), is a category which has 
metric spaces as objects and short mappings as morphisms. An unique injective hull 
exists in this category for every one o f  its objects; it can be identified with its tight 
span. In Met, the monomorphisms are injective short mappings, and isomorphisms are 
isometries. 

0 Injective metric space 

A metric space ( X ,  d )  is called injective (or hyperconvex) i f ,  for every isometric em- 
bedding f : X + X' o f  ( X ,  d )  into another metric space (XI, dl),  there exists a short 
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mapping f '  from X' into X with f '  . f  = idx, i.e., X is a retract of X'. Equivalently, X 
is an absolute retract, i.e., a retract of every metric space into which it embeds isometri- 
cally. 

Injective hull 

The notion of injective hull is a generalization of the notion of Cauchy completion. 
Given a metric space (X, d),  it can be embedded isometrically into an injective metric 
space ( 2 , i ) ;  given any such - isometric - embedding f  : X + 2 ,  there exists an unique 
smallest injective subspace (X, d )  of ( 2 , i )  containing f  (X) which is called injective 
hull of X. It is isometrically identified with the tight span of (X, d).  

The metric space coincides with its injective hull if and only if it is an injective metric 
space. 

Tight extension 

An extension (X', dl) of a metric space (X, d )  is called tight extension if, for every 
semi-metric dl' on X' satisfying the conditions dl'(xl, x2) = d ( x l ,  x2) for all X I ,  x2 E X, 
and dl'(yl, y2) < dl(yl ,  y2) for any yl ,  y2 E XI, one has dl'(yl, y2) = dl(yl ,  y2) for all 
y1,y2 E X'. 
The tight span is the universal tight extension of X, i.e., it contains, up to canonical 
isometries, every tight extension of X, and it has no proper tight extension itself. 

Tight span 

Given a metric space (X, d )  of finite diameter, consider the set RX = { f  : X + R}. 
The tight span T(X, d )  of (X, d )  is defined as the set T(X, d )  = { f  E RX : f  (x) = 

~up , . ,~ (d (x ,  y) - f  (y)) for all x E X}, endowed with the metric induced on T (X, d )  
by the sup norm l l  f l l  = suPx€x I f  (x) I. 

The set X can be identified with the set {h, E T(X, d ) :  hx(y) = d(y,  x)} or, equiva- - - 
lently, with the set T'(x, d )  = { f  E T(X, d ) :  0 E f  (X)}. The injective hull (X, d )  
of X can be isometrically identified with the tight span T(X, d )  by 

For example, if X = {xl ,  x2}, then T(X, d )  is the interval of length d (x l ,  x2). A metric 
space coincides with its tight span if and only if it is an injective metric space. 

The tight span of a metric space (X, d )  of finite diameter can be considered as a polytopal 
complex. The dimension of this complex is called Dress dimension (or combinatorial 
dimension) of (X, d).  

Real tree 

A complete metric space (X, d )  is called real tree (or R-tree) if, for all x ,  y E X, there 
exists an unique metric curve from x to y, and this curve is a geodesic segment. The 
real trees are exactly tree-like metric spaces which are geodesic. 

If X is the set of all bounded subsets of R containing their infima with the metric on 
X defined by d(A,  B) = 2max{supxAy, infx, inf y} - (infx + inf y), then the metric 
space (X, d )  is a real tree. 
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The tree-like metric spaces are by definition the metric subspaces of the real trees; real 
trees are exactly the injective metric spaces among tree-like spaces. If ( X ,  d )  is a finite 
metric space, then the tight span T ( X ,  d )  is a real tree and can be viewed as an edge- 
weighted graph-theoretical tree. A metric space ( X ,  d )  is a real tree if and only if it is 
complete, arc-wise connected, and satisfies the four-point inequality. 

1.3. GENERAL DISTANCES 

Discrete metric 

Given a set X ,  the discrete metric (or trivial metric) d is a metric on X ,  defined by 
d ( x ,  y )  = 1 for all distinct x ,  y E X (and d ( x ,  x )  = 0). The metric space ( X ,  d )  is 
called discrete metric space. 

Indiscrete semi-metric 

Given a set X ,  the indiscrete semi-metric d is a semi-metric on X ,  defined by d ( x ,  y) = 
0 for all x ,  y E X .  

Equidistant metric 

Given a set X and a positive real number t ,  the equidistant metric d is a metric on X ,  
defined by d ( x ,  y )  = t for all distinct x ,  y E X (and d ( x ,  x )  = 0).  

(1,2)-B-metric 

Given a set X ,  the (1,2)-B-metric d is a metric on X such that, for any x E X ,  the 
number of points y E X with d ( x ,  y )  = 1 is at most B,  and all other distances are 
equal to 2. The (1,2)-B-metric is the truncated metric of a graph with maximal vertex 
degree B. 

Induced metric 

An induced metric (or relative metric) is a restriction d' of a metric d on a set X to a 
subset X' of X. 

A metric space (XI ,  d l )  is called metric subspace of the metric space ( X ,  d ) ,  and the 
metric space ( X ,  d )  is called metric extension of ( X ' ,  d') .  

Dominating metric 

Given metrics d and dl  on a set X ,  dl dominates d if dl  ( x ,  y )  d ( x ,  y )  for all x ,  y E 
X .  

Equivalent metrics 

Two metrics dl and d2 on a set X are called equivalent if they define the same topology 
on X,  i.e., if, for every point xo E X ,  every open metric ball with center at xo defined 
with respect to d l ,  contains an open metric ball with the same center but defined with 
respect to d2, and conversely. 
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Two metrics dl  and d2 are equivalent i f  and only i f ,  for every E > 0 and every x E 
X ,  there exists S > 0 such that d l ( x ,  y) < 6 implies d2(x, y) < F and, conversely, 
d2(x ,  y )  < 6 implies dl  ( x ,  y )  < F .  

0 Complete metric 

Given a metric space ( X ,  d ) ,  a sequence {x,},,, x, E X ,  is said to have convergence to 
x* E X i f  limn,, d(x,,, x* )  = 0, i.e., for any F > 0, there exists no E W such that 
d(x,,, x* )  < F for any n > no. 

A sequence {x,,},, x,, E X,  is called Cauchy sequence i f ,  for any F > 0, there exists 
no E W such that d(x,,, x,,) < F for any m ,  n > no. 

A metric space ( X ,  d )  is called complete metric space i f  every its Cauchy sequence 
converges. In this case the metric d is called complete metric. 

0 Cauchy completion 

Given a metric space ( X ,  d ) ,  its Cauchy completion is a metric space ( X * ,  d * )  on the 
set X* o f  all equivalence classes o f  Cauchy sequences, where the sequence {x,}, is 
called equivalent to {y,,},, i f  lim ,,,, d(x,,, y,,) = 0. The metric d* on X* is defined by 

d*(x*,  y*) = lim d(x,,, yn) 
1 / ~ ,  

for any x*, y* E X*, where {x,,},, (respectively, {y,,},,) is any element in the equivalence 
class x* (respectively, y *). 

The Cauchy completion ( X * ,  d*)  is unique, up to isometry, complete metric space, into 
which the metric space ( X ,  d )  embeds as a dense metric subspace. 

The Cauchy completion o f  the metric space (Q, Ix - y I )  o f  rational numbers is the real 
line (R, Ix - y1). A Banach space is the Cauchy completion o f  a normed vector space 
( V ,  II.II) with the norm metric Ilx - y 11. A Hilbert space correspond to the case an inner 
product norm Ilx 1 1  = m. 

0 Bounded metric 

A metric (distance) d on a set X is called bounded i f  there exists a constant C > 0 such 
thatd(x ,  y )  < C foranyx,  y E X .  

For example, given a metric d on X ,  the metric D on X ,  defined by D ( x ,  y )  = AAYL 
I f d ( x , y ) '  

is bounded with C = 1. 

A metric space ( X ,  d )  with a bounded metric d is called bounded metric space. 

0 Totally bounded metric space 

A metric space ( X ,  d )  is called totally bounded i f ,  for every positive real number r ,  
there exist finitely many open metric balls o f  radius r whose union is equal to X .  Every 
totally bounded metric space is bounded and separable. 

0 Separable metric space 

A metric space is called separable i f  it contains a countable dense subset, i.e., some 
countable subset with which all its elements can be approached. 



Clzupter I :  General Dejkitions [ Metric compactum] 23 

A metric space is separable if and only if it is second-countable, and if and only if it is 
Lindelof. Every totally bounded metric space is separable. 

0 Metric compactum 

A metric compactum (or compact metric space) is a metric space in which every se- 
quence has Cauchy subsequence, and those subsequences are convergent. A metric space 
is compact if and only if it is totally bounded and complete. A subset of the Euclidean 
space E" is compact if and only if it is bounded and closed. 

0 Proper metric space 

A metric space is called proper if every closed metric ball in this space is compact. 
Every proper metric space is complete. 

0 UC metric space 

A metric space is called UC metric space (or Atsuji space) if any continuous function 
from it into an arbitrary metric space is uniformly continuous. 

Every metric compactum is an UC metric space. Every UC metric space is complete. 

0 Polish space 

A Polish space is a complete separable metric space. A metric space is called Souslin 
space if it is a continuous image of a Polish space. 

A metric triple (or mm-space) is a Polish space (X, d )  with a Borel probability measure 
p, i.e., a non-negative real function p on the Borel sigma-algebra 3 of X with the 
following properties: p(0) = 0, p(X) = 1, and p(U,, A,,) = C,, p(A,,) for any finite 
or countable collection of pairwise disjoint sets A, E 3. 

Given a topological space (X, t), a sigma-algebra on X is a collection 3 of subsets 
of X with the following properties: 0 E 3, X\U E 3 for U E 3, and U, A,, E 3 
for a finite or countable collection {A,,},,, A,, E 3. The sigma-algebra on X which is 
related to the topology of X, i.e., consists of all open and closed sets of X, is called Borel 
sigma-algebra of X .  Any metric space is a Borel space, i.e., a set, equipped with a Borel 
sigma-algebra. 

0 Norm metric 

Given a normed vector space (V, 1 1 .  II), the norm metric on V is defined by 

The metric space (V, Ilx - y 11) is called Banach space if it is complete. Examples of 
norm metrics are Ill- and Lll-metrics, in particular, the Euclidean metric. On R all 
Ill-metrics coincide with the natural metric Ix - y 1 (cf. Chapter 5). 

0 Path metric 

Given a connected graph G = (V, E), its path metric is a metric on V, defined as 
the length (i.e., the number of edges) of a shortest path connecting two given vertices x 
and y from V (cf. Chapter 15). 
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Editing metric 

Given a finite set X and a finite set 0 of (unary) editing operations on X, the editing 
metric on X is the path metric of the graph with the vertex-set X and xy being an edge 
if y can be obtained from x by one of the operations from 0. 

Gallery metric 

A chamber system is a set X (whose elements are referred to as chambers) equipped with 
n equivalence relations --;, 1 < i < n. A gallery is a sequence of chambers x l ,  . . . , x,, 
such that x; - j  x;+l for every i and some j depending on i .  The gallery metric is 
an extended metric on X which is the length of the shortest gallery connecting x and 
y E X (and is equal to cc if there is no connecting gallery). The gallery metric is the 
path metric of the graph with the vertex-set X and xy being an edge if x --i y for some 
l < i < n .  

Riemannian metric 

Given a connected n-dimensional smooth manifold Mn,  its Riemannian metric is a 
collection of positive-definite symmetric bilinear forms ( ( g i i ) )  on the tangent spaces 
of MIz which varies smoothly from point to point. The length of a curve y on M" is 

expressed as /, d m ,  and the intrinsic metric on M", sometimes called 

also Riemannian distance (between points of M"), is defined as the infimum of lengths 
of curves, connecting any two given points x ,  y E M" (cf. Chapter 7). 

Projective metric 

A projective metric d is a continuous metric on Rn which satisfies the condition 

for any collinear points x ,  y, z lying in that order on a common line. The Hilbert 4th 
problem asked in 1900 to classify such metrics; it is done only for dimension n = 2 
([Amba76]); cf. Chapter 6. 

Every norm metric on RT2 is prqjective. Every projective metric on R2 is a hypermetric. 

Convex distance function 

Given a convex region B c RT2 that contains the origin in its interior, the convex dis- 
tance function dB(x, y) is defined by 

If B is centrally-symmetric with respect to the origin, then dB is a Minkowskian metric 
whose unit ball is B. 

Product metric 

Given n metric spaces (XI ,  d l ) ,  (X2, d2), . . ., (Xn, dn), the product metric is a metric 
on the Cartesian product XI  x X2 x . . .  x XI, = {x = (XI ,  x2,. . . , x,,): xl E X I ,  
. . . , x,, E X,,}, defined as a function of d l ,  . . . , dl, (cf. Chapter 4). 
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0 Hamming metric 

The Hamming metric d H  is a metric on Rn ,  defined by 

On binary vectors x ,  y E (0 ,  1 In the Hamming metric and the l l  -metric coincide. 

0 Lee metric 

Given m,  n E N, m 2 2, the Lee metric dLee is a metric on Z:z = (0 ,  1, . . . , m - 1In, 
defined by 

The metric space (Zik, dLee) is a discrete analog of the elliptic space. 

0 Symmetric difference metric 

Given a measure space ( 8 ,  A, p ) ,  the symmetric difference semi-metric (or measure 
semi-metric) dA is a semi-metric on the set A,, = { A  E A: p ( A )  < cm}, defined by 
p ( A A B ) ,  were AAB = ( A  U B)\(A n B )  is the symmetric difference of the sets A and 
B E A,,. 

The value da (A ,  B )  = 0 if and only if p ( A A B )  = 0 ,  i.e., if A and B are equal almost 
everywhere. Identifying two sets A ,  B E A,, if p ( A A B )  = 0,  we obtain the symmetric 
difference metric (or FrCchet-Nikodym-Aronszayn distance, measure metric). 

If p is the counting measure, i.e., p ( A )  = ]A1 is the number of elements in A, then 
dn (A ,  B )  = IAABl. In this case IAABl = 0 if and only if A = B. The Johnson 
distance between k-sets A and B is = k - IA n BI. 

0 Enomoto-Katona metric 

Given a finite set X and an integer k, 2k < 1x1, the Enomoto-Katona metric is the 
distance between unordered pairs ( X I ,  X2)  and Y 1 ,  Y2 of disjoint k-subsets of X,  defined 

by 

m i n ( I ~ 1  \ YII + 1x2 \ Y21, 1x1 \ Y21 + 1x2 \ ~ 1 1 ) .  

0 Steinhaus distance 

Given a measure space ( 8 ,  A ,  p ) ,  the Steinhaus distance dst is a semi-metric on the 
set A,, = { A  E A: p (A)  < cm}, defined by 

if p ( A  U B )  > 0 (and is equal to 0 if p ( A )  = p ( B )  = 0).  It becomes a metric on the 
set of equivalence classes of elements from A,,; here A,  B E A,, are called equivalent 
if p ( A A B )  = 0. 
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If dn is the symmetric difference metric, then dst = 2d2, where, for a given metric d 
on a set X and a given point p E X,  the transform metric d" on X is defined by 

The biotope distance (or Tanimoto distance) is the special case of Steinhaus 
distance, obtained for the counting measure p ( A )  = I A 1 .  

0 Point-set distance 

Given a metric space ( X ,  d ) ,  the point-set distance d ( x ,  A )  between a point x E X and 
a subset A of X is defined as 

inf d ( x ,  y).  
~ E A  

For any x ,  y E X and for any non-empty subset A of X ,  we have the following version 
of the triangle inequality: d ( x ,  A )  6 d ( x ,  y )  + d ( y ,  A )  (cf. distance map). 

0 Set-set distance 

Given a metric space ( X ,  d ) ,  the set-set distance between two subsets A and B of X is 
defined by 

inf d ( x ,  y) .  
xtA. y t B  

In Data Analysis, the set-set distance between clusters is called single linkage, while 
SUPxt~, ?,tB d ( x ,  y )  is called complete linkage. 

0 Hausdorff metric 

Given a metric space ( X ,  d ) ,  the Hausdorff metric (or two-sided Hausdorff distance) 
dHuus is a metric on the family F of all compact subsets of X ,  defined by 

where ddHuLIS(A, B )  = maxXEA minyEB d ( x ,  y )  is the directed Hausdorff distance (or 
one-sided Hausdorffdistance) f r o m ~  to B. In other words, dHu,,s(A, B )  is the minimal 
number E (called also Blaschke distance) such that closed &-neighborhood of A contains 
B and closed &-neighborhood of B contains A. It holds also that L ~ ~ , , , ~ ( A ,  B )  is equal to 

where d ( x ,  A )  = min,),A d ( x ,  y)  is the point-set distance. The Hausdorff metric is not 
a norm metric. 

If the above definition is extended for non-compact closed subsets A and B of X ,  then 
dHu,,s(A, B )  can be infinite, i.e., it becomes an extended metric. For not necessarily 
closed subsets A and B of X ,  the Hausdorff semi-metric between them is defined as 
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the Hausdorff metric between their closures. If X is finite, dHU,, is a metric on the class 
of all subsets of X. 

M.D. Wills proved that the Hausdorff distance between two non-empty bounded closed 
convex subsets of a metric space with a norm metric is equal to the Hausdorff distance 
between their boundaries. 

Lp-Hausdorff distance 

Given a finite metric space ( X ,  d ) ,  the L,-Hausdorff distance ([Badd92]) between two 
subsets A and B of X is defined by 

where d ( x ,  A )  is the point-set distance. The usual Hausdorff metric corresponds to 
the case p = co. 

Generalized G-Hausdorff metric 

Given a group ( G ,  ., e )  acting on a metric space ( X ,  d ) ,  the generalized G-Hausdorff 
metric between two closed bounded subsets A and B of X is defined by 

where dHuUS is the Hausdorff metric. If d ( g ( x ) ,  g ( y ) )  = d ( x ,  y )  for any g E G 
(i.e., if the metric d is left-invariant with respect of G ) ,  then above metric is equal to 
mingtc ~HU, ,S(A ,  g ( B ) ) .  

Gromov-Hausdorff metric 

The Gromov-Hausdorff metric is a metric on the set of all isometry classes of compact 
metric spaces, defined by 

for any two classes X* and Y* with the representatives X and Y, respectively, where 
dHuUS is the Hausdorff metric, and the minimum is taken over all metric spaces M and 
all isometric embeddings f : X + M ,  g : Y + M. The corresponding metric space is 
called Gromov-Hausdorff space. 

FrCchet metric 

Let ( X ,  d )  be a metric space. Consider a set 3 of all continuous mappings f : A + X ,  
g : B + X ,  . . . , where A ,  B, . . . are subsets of Rn, homeomorphic to [0, 1ln for a fixed 
dimension n E W. 
The FrCchet semi-metric dF is a semi-metric on 3, defined by 
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where the infimum is taken over all orientation preserving homeomorphisms o : A + 
B. It becomes the FrCchet metric on the set of equivalence classes f * = {g : dF(g,  f )  = 

01. 

0 Banach-Mazur distance 

The Banach-Mazur distance dBM between two n-dimensional normed spaces V and 
W is defined by 

where the infimum is taken over all isomorphisms T : V + W. It can be written also 
as lnd(V, W), where the number d(V, W) is the smallest positive d 3 1 such that 
-n 
B w  c T(%) c d z k  for some linear invertible transformation T : V + W. Here 
-n 
B v  = {X E V: IIxIlv < 1 ) a n d x i  = {X E W: llxllw < 1)are theuni tbal lsof the  
normed spaces (V, Il.llv) and (W, I ] . ] ]  w), respectively. 

dBM(V, W) = 0 if and only if V and W are isometric, and it becomes a metric on the 
set X" of all equivalence classes of n-dimensional normed spaces, where V - W if they 
are isometric. The pair (Xi', dBM) is a compact metric space which is called Banach- 
Mazur compactum. 

Gluskin-Khrabrov distance (or modiJied Banach-Mazur distance) is defined by 

0 Lipschitz distance 

Given two metric spaces (X, dx) and (Y, dy) ,  the Lipschitz norm 
injective functions f : X + Y is defined by 

11. IILil, on the set of all 

The Lipschitz distance between metric spaces (X, dx) and (Y, d y )  is defined by 

where the infimum is taken over all bijective functions f : X + Y. Equivalently, it 
is infimum of numbers l n a  such that there exists a bijective bi-Lipschitz mapping 
between (X, dx) and (Y, dy )  with constants exp(-a), exp(a). It becomes a metric on 
the set of all isometry classes of compact metric spaces. 

This distance is an analog to the Banach-Mazur distance and, in the case of finite- 
dimensional real Banach spaces, coincides with it. It coincides also with the Hilbert 
projective metric on non-negative projective spaces, obtained by starting with Kt? and 
identifying any point x with cx, c > 0. 
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Lipschitz distance between measures 

Given a compact metric space (X, d),  the Lipschitz semi-norm 11. IILil, on the set of all 
functions f : X + R is defined by 

The Lipschitz distance between measures p and v on X is defined by 

If p and v are probability measures, then it is Kantorovich-Mallows-Monge- 
Wasserstein metric. 

An analog of the Lipschitz distance between measures for the state space of unital C*- 
algebra is the Connes metric. 

Compact quantum metric space 

Let V be a normed space (or, more generally, a locally convex topological vector space), 
and let V' be its continuous dual, i.e., the set of all continuous linear functionals f on 
V .  The weak* topology (or Gelfand topology) on V' is defined as the weakest (i.e., with 
the fewest open sets) topology on V' such that, for every x E V ,  the map F, : V' + R 
defined by F,( f )  = f (x) for all f E V' ,  remains continuous. 

An order-unit space is a partially ordered real (complex) vector space (A, 5 )  with a 
distinguished element e, called order unit, which satisfies the following properties: 

1. For any a E A, there exists r E R with a 5 re;  
2. If a E A and a 5 r e  for all positive r E R, then a 5 0 (Archimedean property). 

The main example of an order-unit space is the vector space of all self-adjoint elements 
in an unital C*-algebra with the identity element being order unit. Here an C*-algebra 
is a Banach algebra over @ equipped with a special involution. It is called unital if it 
has an unit (multiplicative identity element); such C*-algebras are also called, roughly, 
compact non-commutative topological spaces. The typical example of an unital C*- 
algebra is a complex algebra of linear operators on a complex Hilbert space which is 
topologically closed in the norm topology of operators, and is closed under the operation 
of taking adjoints of operators. 

The state space of an order-unit space (A, 5 ,  e) is the set S(A) = { f E A; : I ]  f  I ]  = 1)  
of states, i.e., continuous linear functionals f with 1 1  f 1 1  = f (e) = 1 .  

Rieffel's compact quantum metric space is a pair (A, 11. IILiI,), where (A, 5, e) is an 
order-unit space, and 1 1 .  llLi,, is a semi-norm on A (with values in [0, +cm]), called Lip- 
schitz semi-norm, which satisfies the following conditions: 

1. For a E A, it holds Ila llLi l ,  = 0 if and only if a E Re; 
2. the metric dLil,( f ,  g )  = SUP,,€A: llallL,,,~l If (a) - g(a)l generates on the state space 

S(A) its weak* topology. 
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So, one has an usual metric space (S(A), dLi,,). If the order-unit space (A, 5 ,  e) is an 
C*-algebra, then dLil, is the Connes metric, and if, moreover, the C*-algebra is non- 
commutative, the metric space (S(A), dLiI,) is called non-commutative metric space. 

The expression quantum metric space comes from the belief, by many experts in Quan- 
tum Gravity and String Theory, that the Planck-scale geometry of space-time is similar to 
one coming from such non-commutative C*-algebras. For example, Non-commutative 
Field Theory supposes that on sufficiently small (quantum) distances, the spatial coordi- 
nates do not commute, i.e., it is impossible to measure exactly the position of a particle 
with respect to more than one axis. 

0 Universal metric space 

A metric space (U, d )  is called universal for a collection M of metric spaces if any 
metric space (M, dM) from M is isometrically embeddable in (U, d), i.e., there exists a 
mapping f : M + U which satisfies to dM (x, y) = d (  f (x), f (y)) for any x ,  y E M. 

The Urysohn space is a homogeneous complete separable metric space which is the 
universal metric space for all Polish (i.e., complete separable) metric spaces. 

The Hilbert cube is the universal metric space for the class of metric spaces with a 
countable base. 

The graphic metric space of the random graph (which can be defined as the set of all 
prime numbers p = 1 (mod 4) with pq being an edge if p is a quadratic residue modulo 
q )  is the universal metric space for any finite or countable metric space with distances 0, 
1 and 2 only. It is a discrete analog of the Urysohn space. 

0 Constructive metric space 

A constructive metric space is a pair (X, d), where X is some set of constructive ob- 
jects (usually, words over an alphabet), and d is an algorithm converting any pair of ele- 
ments of X into a constructive real number d(x ,  y) such that d becomes a metric on X. 

0 Effective metric space 

Let {x,,},,,~ be a sequence of elements from a given complete metric space (X, d )  such 
that the set {x, : n E W} is dense in (X, d). Let N ( m ,  n, k) be the Cantor number of a 
triple (n, m, k) E FV3, and let {qkJkEw be a fixed total standard numbering of the set Q 
of rational numbers. 

The triple (X, d ,  {x,,}nEN) is called effective metric space ([Hemm02]) if the set 
{N(n ,  m,  k) : d(xn, , x,) < qk} is recursively enumerable. 



Chapter 2 

Topological Spaces 

A topological space (X, r)  is a set X with a topology r ,  i.e., a collection of subsets of X 
with the following properties: 

1. X e r ,  O e r ;  
2. I fA ,  B � 9  t h e n A M B  � 9  
3. For any collection {A~ }~, if all A~ �9 r ,  then U~ A~ �9 r.  

The sets in r are called open sets, and their complements are called closed sets. A base 
of the topology r is a collection of open sets such that every open set is an union of sets 
in the base. The coarsest topology has two open sets, the empty set and X, and is called 
trivial topology (or indiscrete topology). The finest topology contains all subsets as open 
sets, and is called discrete topology. 

In a metric space (X, d) define the open ball as the set B(x, r) = {y �9 X: d(x,  y) < r}, 
where x �9 X (the center of the ball), and r �9 R, r > 0 (the radius of the ball). A subset 
of X which is the union of (finitely or infinitely many) open balls, is called open set. 
Equivalently, a subset U of X is called open if, given any point x �9 U, there exists a real 
number ~ > 0 such that, for any point y �9 X with d(x, y) < ~, y �9 U. Any metric space 
is a topological space, the topology (metric  topology, topology induced by the metric 
d) being the set of all open sets. The metric topology is always T4 (see below a list of 
topological spaces). A topological space which can arise in this way from a metric space, 
is called metr izable  space. A semi-metric topology is a topology on X induced similarly 
by a semi-metric d on X. In general, this topology is not even To. 

Given a topological space (X, r) ,  a neighborhood of a point x �9 X is a set containing 
an open set which in turn contains x. The closure of a subset of a topological space is the 
smallest closed set, which contains it. An open cover of X is a collection s of open sets, the 
union of which is X; its subcover is a cover/C such that every member of/C is a member of 

s  its refinement is a cover/C, where every member of/C is a subset of some member of s  
A collection of subsets of X is called locally finite if every point of X has a neighborhood 
which meets only finitely many of these subsets. A subset A C X is called dense if it has 
non-empty intersection with every non-empty open set, or, equivalently, if the only closed 
set containing it is X. In a metric space (X, d), a dense set is a subset A C X such that, 
for any x �9 X and any ~ > 0, there exists y �9 A, satisfies to d(x, y) < ~. A local base of 
a point x �9 X is a collection H of neighborhoods of x such that every neighborhood of x 
contains some member of H. 

A function from one topological space to another is called continuous if the preimage 
of every open set is open. Roughly, given x �9 X, all points close to x map to points close 
to f ( x ) .  A function f from one metric space (X, dx) to another metric space (Y, dr') is 
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continuous at the point c �9 X if, for any positive real number  e, there exists a positive real 

number  8 such that all x �9 X satisfying dx(x, c) < 8 will also satisfy dy( f (x ) ,  f ( y ) )  < e; 
the function is continuous on an interval I if it is continuous at any point of I.  

The following classes of topological spaces (up to T4) include any metric space. 

�9 To-space 

An To-space (or Kolmogorov space) is a topological space (X, r )  fulfilling the To- 
separation axiom: for every two points x, y �9 X there exists an open set U such that 

x �9 U and y r U, or y �9 U and x r U (every two points are topologically distinguish- 
able). 

�9 Tl-space 

An Tl-space (or FMchet space) is a topological space (X, r )  fulfilling the Tl-separation 
axiom: for every two points x, y �9 X there exist two open sets U and V such that x �9 U, 

y r U, and y �9 V, x r V (every two points are separated). Tl-spaces are always To. 

�9 Tz-space 

An T2-space (or Hausdorff  space, separated space) is a topological space (X, r )  ful- 

filling the Tz-axiom: every two points x, y �9 X have disjoint neighborhoods.  Tz-spaces 
are always 7"1. 

�9 Regular space 

A regular space is a topological space in which every neighborhood of a point contains 

a closed neighborhood of the same point. 

�9 T3-space 

An T3-space (or Vietoris space, regular Hausdorff space) is a topological space which 
is 7"1 and regular. 

�9 Completely regular space 

A completely regular space (or Tychonoffspace) is a Hausdorff  space (X, r )  in which 
any closed set A and any x ~ A are functionally separated. 

Two subsets A and B of X are functionally separated if there exists a continuous func- 

tion f : X --> [0, 1] such that f ( x )  = 0 for any x �9 A, and f ( y )  = 1 for any y �9 B. 

�9 Moore space 

A Moore space is a regular space with a development. 

A development is a sequence {Hn }n of open covers such that, for every x �9 X and every 

open set A containing x, there exists n such that St(x, Hn) = U{ u �9 Hn : x �9 U } c A, 
i.e., {St(x, Hn)}n is a neighborhood base at x. 

�9 Normal space 

A normal space is a topological space in which, for any two disjoint closed sets A 
and B, there exist two disjoint open sets U and V such that A C U, and B C V. 
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�9 T4-space 

An T4-space (or Tietze space, normal Hausdorff space) is a topological space which is 
T1 and normal .  Any metric space (X, d) is an T4-space. 

�9 Complete ly  no rma l  space 

A completely no rma l  space is a topological space in which any two separated sets have 
disjoint neighborhoods. 

Sets A and B are separated in X if each is disjoint from the other's closure. 

�9 Ts-space 

An Ts-spaee (or completely normal Hausdorff space) is a topological space which is 
completely no rma l  and T1. Ts-spaces are always T4. 

�9 Separable  space 

A separable  space is a topological space which has a countable dense subset. 

�9 Lindeliif  space 

A Lindeliif  space is a topological space in which every open cover has a countable 
subcover. 

�9 Firs t -countable  space 

A topological space is called f i rs t-countable if every point has a countable local base. 
Any metric space is first-countable. 

�9 Second-countab le  space 

A topological space is called second-countable  if its topology has a countable base. 
Second-countable spaces are always separable,  f irst-countable,  and Lindeliif. 

For metric spaces the properties of being second-countable, separable ,  and Lindeliif  are 
all equivalent. 

The Euclidean space E n with its usual topology is second-countable. 

�9 Baire space 

A Baire space is a topological space in which every intersection of countably many 
dense open sets is dense. 

�9 Connec ted  space 

A topological space (X, T) is called connected if it is not the union of a pair of disjoint 
non-empty open sets. In this case the set X is called connected set. 

A topological space (X, T) is called locally connected if every point x c X has a local 
base consisting of connected sets. 

A topological space (X, T) is called pa th-connec ted  (or O-connected) if for every points 
x, y c X there is a path V from x to y, i.e., a continuous function V : [0, 1] --+ X with 
y ( x )  = 0, y ( y )  = 1. 
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A topological space (X, r)  is called simply connected (or 1-connected) if it consists 
of one piece, and has no circle-shaped "holes" or "handles" or, equivalently, if every 
continuous curve of X is contractible, i.e., can be reduced to one of its points by a 
continuous deformation. 

�9 Paracompact  space 

A topological space is called pa r acompac t  if every its open cover has an open locally 
finite refinement. Any metric space (X, d) is paracompact. 

�9 Locally compact space 

A topological space is called locally compact if every point has a local base consisting 
of compact neighborhoods. Roughly speaking, every small portion of the space looks 
like a small portion of a compact space. The Euclidean spaces E n are locally compact. 
The spaces Qp of p-adic numbers are locally compact. 

�9 Totally bounded space 

A topological space is called totally bounded if it can be covered by finitely many 
subsets of any fixed size. A metric space is totally bounded if for every positive real 
number r there exist finitely many open balls of radius r, whose union is equal to X. 
Every totally bounded metric space is bounded. 

�9 Compact  space 

A topological space (X, r)  is called compact  if every open cover of X has a finite 
subcover. In this case the set X is called compact set. 

Compact spaces are always Lindel6f, totally bounded, and paracompact.  A metric 
space is compact if and only if it is complete and totally bounded. A subset of an 
Euclidean space E n is compact if and only if it is closed and bounded. 

There exists a number of topological properties which are equivalent to compactness in 
metric spaces, but are inequivalent in general topological spaces. Thus, a metric space 
is compact if and only if it is a sequentially compact space (every sequence has a con- 
vergent subsequence), or a countably compact space (every countable open cover has a 
finite subcover), or a pseudo-compact space (every real-valued continuous function on 
the space is bounded), or a weakly countably compact space (every infinite subset has 
an accumulation point). 

�9 Locally convex space 

A topological vector space is a real (complex) vector space V which is a Hausdorff  
space with continuous vector addition and scalar multiplication. It is called locally con- 
vex if its topology has a base, where each member is a convex set. 

A subset A of V is called convex if, for a l l x ,  y c A and a l l t  c [0,1], the point 
tx + (1 - t)y c A, i.e., every point on the line segment connecting x and y belongs 
to A. 

Any metric space (V, IIx - y II) on a real (complex) vector space v with a norm metric 
IIx - y II is a locally convex space; each point of V has a local base consisting of convex 
sets. 
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�9 Countably-normed space 

A countably-normed space is a locally convex space (V, r) whose topology is defined 

using a countable set of compatible norms II.ll~ . . . . .  II.ll~ . . . . .  It means, that if a se- 
quence {xn }n of elements of V that is fundamental in the norms II. IIi and II. II s converges 
to zero in one of these norms, then it also converges in the other. A countably-normed 
space is a metrizable space, and its metric can be defined by 

~ 1 I I x -  y 

n=l 2n 1 + IIx - y 

�9 Hyperspace 

A hyperspace of a topological space (X, r)  is a topological space on the set CL(X) 
of all non-empty closed (or, moreover, compact) subsets of X. The topology of a hy- 
perspace of X is called hypertopology. Examples of such hit-and-miss topology are the 
Vietoris topology, and the Fell topology. Examples of such weak hyperspace topology 
are the Hausdorff metric topology, and the Wijsman topology. 

�9 Discrete space 

A discrete space is a topological space (X, r)  with the discrete topology. It can be 
considered as the metric space (X, d) with the discrete metric: d(x, x) - 0, and 
d(x, y) = 1 for x ~= y. 

�9 Indiscrete space 

An indiscrete space is a topological space (X, r)  with the indiscrete topology. It can be 
considered as the semi-metric space (X, d) with the indiscrete semi-metric: d(x, y) = 
0 for any x, y c X. 

�9 Metrizable space 

A topological space is called metr izable  if it is homeomorphic to a metric space. Metriz- 
able spaces are always T2 and paracompact (and, hence, normal and completely reg- 
ular), and first-countable. 

A topological space is called locally metrizable if every its point has a metrizable neigh- 
borhood. 



Chapter 3 

Generalizations of Metric Spaces 

Some immediate generalizations of the notion of metric, namely quasi -metr ic ,  near-  
metr ic ,  extended metric, were defined in Chapter 1. Here were give some generalizations 
in the direction of Topology, Probability, Algebra, etc. 

3.1. m - M E T R I C S  

�9 m-hemi-metric 

Let X be a set. A function d : X m + 1 _+ R is called m-hemi -met r i c  if d is non-negative, 
i.e., d(x l  . . . . .  Xn+l) ~ 0 for all Xl . . . . .  Xn+l c X, if d is totally symmetric, i.e., sat- 

isfies d(x l  . . . . .  Xm+l) = d(xjr(1) . . . . .  X j r ( m + l ) )  for all Xl . . . . .  X m +  1 c X and for any 
permutation Jr of {1 . . . . .  m + 1}, if d is zero conditioned, i.e., d(x l  . . . . .  Xm+l) = 0 if 
and only if Xl . . . . .  Xm+l are not pairwise distinct, and if, for all Xl . . . . .  Xm+ 2 c X,  d 
satisfies to the m-simplex inequality: 

m+l 

d ( x l  . . . . .  Xm+l) ~< Z d ( x l  . . . . .  x i - 1 ,  X i + l  . . . . .  Xm+2). 
i=1 

�9 2-metric 

Let X be a set. A function d �9 X 3 --+ R is called 2-metr ic  if d is non-negative, totally 
symmetric, zero conditioned, and satisfies the t e t r a h e d r o n  inequal i ty  

d (xl, X2, X3) ~ d (X4, X2, X3) -+- d (x 1, x4, x3) -+- d (xl, X2, X4). 

It is the most important case m - 2 of the m-hemi-metrie. 

�9 (m, s)-super-metric 

Let X be a set, and let s be a positive real number. A function d �9 X m + l  ~ R is called 
(m, s)-super-metrie ([DeDu03]) if d is non-negative, totally symmetric, zero condi- 
tioned, and satisfies to the (m, s) -s implex inequality: 

m+l 

sd (x l  . . . . .  Xm+l) ~< Z d(x l  . . . . .  x i-1,  X i + l  . . . . .  Xm+2). 
i:1 

An (m, s)-super-metric is an m-hemi-metric if s ~> 1. 
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3.2. I N D E F I N I T E  M E T R I C S  

�9 Indefinite metric 

An indefinite metric (or G-metric) on a real (complex) vector space V is a bilinear (in 

complex case, sesqui l inear) form G on V, i.e., a function G �9 V x V --+ R (C), such 

that, for any x, y, z c V and for any scalars ~, fi, we have the following properties: 

G ( ~ x  + fly, z) - ~ G ( x ,  z) + f iG(y ,  z), and G(x,  ~y  + fiz) - 8 G ( x ,  z) + f iG(y ,  z), 
where -ff - a + bi - a - bi denotes the complex conjugation. 

If G is a positive-definite symmetric form, then it is an inner product on V, and one can 

use it to canonically introduce a norm and the corresponding norm metric on V. In the 

case of a general form G, there is neither a norm, nor a metric canonically related to G, 

and the term indefinite metric only recalls the close relation of positive-definite bilinear 

forms with certain metrics in vector spaces (cf. Chapters 7 and 26). 

The pair (V, G) is called space with an indefinite metric. A finite-dimensional space 

with an indefinite metric is called bilinear metric space. A Hilbert space H, endowed 

with a continuous G-metric, is called Hilbert space with an indefinite metric. The most 

important example of such space is an J-space. 

A subspace L in a space (V, G) with an indefinite metric is called positive subspace, 

negative subspace, or neutral subspace, depending on whether G(x,  x)  > O, G(x ,  x)  < 

0, or G (x, x) - 0 for all x c L. 

�9 Hermit ian G-metric 

A Hermit ian G-metric is an indefinite metric G ~/on  a complex vector space V such 

that, for all x, y c V, we have the equality 

G H (x, y) - G H (y, x) ,  

where -ff - a + bi - a - bi denotes the complex conjugation. 

�9 Regular G-metric 

A regular G-metric is a continuous indefinite metric G on a Hilbert space H over C, 

generated by an invertible Hermitian operator T by the formula 

G(x,  y) - - ( T ( x ) ,  y), 

where (,) is the inner product on H.  

A Hermitian operator on a Hilbert space H is a linear operator T on H,  defined on 

a dense domain D ( T )  of H such that (T (x ) ,  y) = (x, T (y ) )  for any x, y c D ( T ) .  

A bounded Hermitian operator is either defined on the whole of H,  or can be so extended 

by continuity, and then T = T*. On a finite-dimensional space a Hermitian operator can 

be described by a Hermitian matrix ((aij))  = ( ( - a j i ) ) .  
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�9 J -metr ic  

An J - m e t r i c  is a continuous indefinite metric G on a Hilbert space H over C, defined 
by a certain Hermitian involution J on H by the formula 

CCx, y) -(JCx), y), 

where (,) is the inner product on H. 

An involution is a mapping H onto H whose square is the identity mapping. The in- 
volution J may be represented as J = P+ - P_,  where P+ and P_ are orthogonal 

projections in H,  and P+ + P_ = H.  The rank of indefiniteness of the J -metr ic  is 
defined as min{dim P+, dim P_ }. 

The space (H, G) is called J-space. An J-space  with the finite rank of indefiniteness is 
called Pontryagin space. 

3.3. T O P O L O G I C A L  G E N E R A L I Z A T I O N S  

�9 Partial metric space 

A partial metric space is a pair (X, d), where X is a set, and d is a non-negative 

symmetric f u n c t i o n d :  X x X -+ R s u c h t h a t d ( x , x )  ~ d ( x , y )  for a l l x ,  y c X 

(axiom of small self-distances), and 

d(x,  y) <~ d(x,  z) + d(z, y) - d(z, z) 

for all x, y, z c X ( sharp triangle inequality).  Any partial metric d satisfies the fol- 

lowing local triangle axiom: limn-+oo(d(x, Yn) - d(x,  x)) = O, limn-+oo(d(yn, zn) - 
d(yn, Yn)) = 0 imply limn-+oo(d(x, zn) - d(x,  x)) = 0 for any x c X and any two 
sequences {Yn }n and {zn }n of elements of X. 

�9 r-distance space 

An z-distance space is a pair (X, f ) ,  where X is a topological space, and f is an Aamri- 
Moutawakil ' s  z-distance on X, i.e., a non-negative function f : X x X --+ R such that, 
for any x c X and any neighborhood U of x, there exists e > 0 with {y c X : f (x, y) < 

e } C U .  

Any distance space (X, d) is an z-distance space for the topology 75f defined as follows: 

A c 75f if, for any x c X, there exists ~ > 0 with {y c X:  f (x, y) < ~} C A. However, 
there exist non-metrizable z-distance spaces. An z-distance f ( x ,  y) neither need be 
symmetric,  nor vanish for x - y; for example, e Ix-yl is an z-distance on X - R with 

usual topology. 

�9 Proximity space 

A proximity space is a set X with a binary relation 8 on the power set P (X) of all its 
subsets which satisfies the following axioms: 



Chapter 3: Generalizations of Metric Spaces [ �9 Uniform space] 39 

1. A8 B if and only if B SA (symmetry); 
2. AS(B U C) if and only if ASB or ASC (additivity); 
3. ASA if and only if A ~= {3 (reflexivity). 

The relation 8 defines a proximity structure (a proximity) on X. If A8 B fails, the sets A 
and B are called remote sets. 

Every metric space (X, d) is a proximity space: define ASB if and only if d(A,  B) = 
infxca,ycB d(x,  y) = O. 

�9 Uniform space 

Those topological spaces provide a generalization of metric spaces, based on set-set 
distances instead of point-point distances. 

An uniform space is a set X with an uniform structure L / -  a non-empty collection of 

subsets of X x X, called entourages, with the following properties: 

1. Every subset of X x X which contains a set of g/, belongs to g/; 

2. Every finite intersection of sets of L/belongs to g/; 
3. Every set of L/contains the set { (x, x) : x �9 X} C X x X; 
4. If V belongs to g/, then the set {(y, x):  (x, y) �9 V} belongs to g/; 
5. If V belongs to g/, then there exists V' �9 L/ such that (x, z) �9 V, whenever 

(x, y), (y, z) �9 V'. 

Every metric space (X, d) is an uniform space. An entourage in (X, d) is a subset of 
X x X which contains the set V~ = {(x, y) �9 X x X: d(x,  y) < ~} for some positive 
real number ~. 

Every uniform space is a proximity space: define that set A is near to the set B if A x B 
has non-empty intersection with any entourage. 

Every uniform space is a completely regular topological space, and, conversely, on 
every completely regular space can be defined an uniform structure. 

�9 Approach space 

Those topological spaces provide a generalization of metric spaces, based on point-set 
distances instead of point-point distances. 

An approach space is a pair (X, D), where X is a set, and D is a point-set distance, 
i.e., a function X x P (X) --+ [0, cx~] (here P (X) is the set of all subsets of X) satisfying, 

for all x �9 X and all A, B �9 P (X), to the following conditions: 

1. D(x,  {x}) -- 0; 

2. D(x,  {{3}) = cx~; 
3. D(x,  A U B) = min{D(x, A), D(x,  B)}; 
4. D(x,  A) <~ D(x,  A ~) + ~ for any ~ �9 [0, cx~], where A ~ = {x: D(x,  A) ~< ~} is the 

"~-ball" with the center x. 

Every metric space (X, d) (moreover, any extended quasi-semi-metric space) is an ap- 
proach space: define D(x,  A) = d(x,  A) = infyca d(x,  y). 
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Given a locally compact separable metric space (X, d) and the family 5 of its non- 
empty closed subsets, the Baddeley-Molchanov distance function gives a tool for an- 
other generalization. It is a function D : X x 5 --~ R which is lower semi-continuous 
with respect to its first argument, measurable with respect to the second, and satis- 
fies the following two conditions: F = {x c X: D(x, F) <~ 0} for F c 5 ,  and 
D(x, F1) >~ D(x, F2) for x c X whenever F1, F2 c 5 and F1 C F2. 

Additional conditions D(x, {y}) = D(y, {x}), and D(x, F) <~ D(x, {y}) + D(y, F) for 
all x, y c X and for every F c 5 ,  provide analogs of symmetry and triangle inequality. 
The case D(x, F) = infycF d(x, y) corresponds to the usual point-set distance. 

�9 Metric bornology 

Given a topological space X, a bornology of X is any family A of proper subsets A of 
X such that the following conditions hold: 

1. UAcA A = X; 
2 . . A  is an ideal, i.e., contains all subsets and finite unions of its members. 

The family .A is a metric bornology ([Beer99]) if, moreover, it holds: 
3. A contains a countable base; 
4. For any A c .A there exists A' c .A such that the closure of A coincides with the 

interior of A '. 

The metric bornology is called trivial if .A is the power set (i.e., the set of all sub- 
sets) P(X) of X; such metric bornology corresponds to the family of bounded sets of 
some bounded metric. For any non-compact metrizable topological space X, there ex- 
ists an unbounded metric compatible with this topology. A non-trivial metric bornology 
on such space X corresponds to the family of bounded subsets with respect to some such 
unbounded metric. A non-compact metrizable topological space X admits uncountably 
many distinct such non-trivial metric bornologies. 

3.4. BEYOND NUMBERS 

�9 Probabilistic metric space 

A notion of probabilistic metric space is a generalization of the notion of metric space 
(see, for example, [ScSk83]) in two ways: distances become a probability distributions, 
and the sum in the triangle inequality becomes a triangle operation. 

Formally, let A be the set of all probability distribution functions, whose support lies in 
[0, oc]. For any a c [0, oc] define ea c A by ea(X) = 1 if x > a or x = oc, and ea = O, 
otherwise. Functions in A are ordered by defining F ~< G to mean F (x) <~ G(x) for all 
x ~> 0. A commutative and associative operation r on A is called triangle operation if 
it satisfy to r(F, eo) = F for any F c A and r(E, F) <~ r(G, H) whenever E ~< G, 
F<~H. 

A probabilistic metric space is a triple (X, d, v), where X is a set, d is a function 
X x X --+ A, and v is a triangle operation such that, for any p, q, r c X, it holds: 

1. d(p ,  q) = e0 if and only if p = q; 
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2. d(p, q) - d(q, p);  
3. d(p, r) <~ T(d(p, q), d(q, r)). 

The inequality 3. becomes the triangle inequality if • is the usual addition on R. 

For any x ~> 0, the value d(p, q) at x can be interpreted as "the probability that the 
distance between p and q is less than x"; it was approach of K. Menger,  who proposed 
in 1942 the original version, statistical metric space, of this notion. Several notions of 
fuzzy metric space were proposed within this framework. 

�9 General ized metric 

Let X be a set. Let (G, + ,  ~<) be an ordered semi-group (not necessarily commutative) 
having a least element 0. A function d �9 X x X -+ G is called general ized metric if 
the following conditions hold: 

1. d(x ,  y) - 0 if and only if x - y; 
2. d(x, y) <<, d(x, z) + d(z, y) for all x, y c X; 
3. d(x, y) - d(y, x), where ~ is a fixed order-preserving involution of G. 

The pair (X, d) is called general ized metric space. 

If the condition 2. and "only if" in 1. above are dropped, we obtain a general ized dis- 
tance d, and a general ized distance space (X, d). 

�9 Distance on building 

A Coxetergroup is a group (W, . ,  1) generated by the elements {wl . . . . .  wn" (toitoj) mij 
= 1, 1 ~< i, j ~< n}. Here M - ( ( m i j ) )  is a Coxeter matrix, i.e., an arbitrary symmetric 
n x n matrix with mii  - -  1 ,  and other values are positive integers or cx~. The length l(x) 
of x c W is the smallest number  of generators wl . . . . .  wn needed to represent x. 

Let X be a set, and let (W, . ,  1) be a Coxeter group. The pair (X, d) is called building 
over (W, . ,  1) if the function d �9 X x X --+ W, called distance on building, has the 
following properties" 

1. d(x ,  y) - 1 if and only if x - y; 
2. d (y , x )  - (d(x, y ) ) - l ;  
3. the relation ~ i ,  defined by x ~ i  Y if d(x, y) - 1 or wi, is an equivalence relation; 
4. given x c X and an equivalence class C of ~ i ,  there exists an unique y c C such 

that d(x, y) is shortest (i.e., of smallest length), and d(x, y~) - d(x, y)wi for any 

y ~ E C ,  y ~ : y .  

The gallery distance on building d ~ is an usual metric on X, defined by l(d(x, y)). The 
distance d '  is the path metric in the graph with the vertex-set X and xy being an edge 
if d(x, y) - wi for some 1 ~< i ~< n. The gallery distance on building is a special case 
of gallery metric (of chamber system X). 

�9 Boolean metric space 

A Boolean algebra (or Boolean lattice) is a distributive lattice (B, v ,  A) admitting least 
element 0 and greatest element 1 such that every x E B has a complement 2- with x v 2-= 1 
and x / x  2- - 0. 
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Let X be a set, and let (B, v ,  A) be a Boolean algebra. The pair (X, d) is called Boolean 
metric space over B if the function d �9 X x X --+ B has the following properties: 

1. d(x,  y) = 0 if and only i fx  = y; 

2. d(x,  y) <~ d(x,  z) v d(z, y) for all x, y, z c X. 

�9 Space over algebra 

A space over algebra is a metric space with a differential-geometric structure, whose 

points can be provided with coordinates from some algebra, as the rule, associative with 

identity. 

A module over an algebra is a generalization of a vector space over a field, its defini- 

tion can be obtained from the definition of a vector space by replacing the field by the 

associative algebra with identity. An affine space over an algebra is a similar general- 

ization of an affine space over a field. In affine spaces over algebras one can specify a 

Hermitian metric, while in the case of commutative algebras even a quadratic metric can 

be given. To do this one defines in an unital module a scalar product (x, y), in the first 

case with the property (x, y) = J ((y, x)),  where J is an involution of the algebra, and 

in the second case with the property (y, x) = (x, y). 

The n-dimensional projective space over an algebra is defined as the variety of one- 

dimensional submodules of an (n + 1)-dimensional unital module over this algebra. The 

introduction of a scalar product (x, y) in an unital module makes it possible to define 

in a projective space constructed by means of this module Hermitian, or, in the case of 

commutative algebra, quadratic elliptic and hyperbolic metrics. The metric invariant of 

the points of these spaces is the cross-ratio W = (x, x ) -  1 (x, y) (y, y ) -  1 (y, x ). If W is a 

real number, then the invariant w, for which W = cos 2 w, is called dis tance between x 

and y in the space over algebra. 

�9 Partially ordered distance 

Let X be a set. Let (G, ~<) be a partially ordered set with a least element go such that 

G ~ = G\{go} is non-empty and, for any gl ,  g2 c G ~, there exist g3 c G ~ such that 

g3 ~< g l and g3 ~< g2. 

A partially ordered distance is a function d : X x X --+ G such that, for any x, y c X, 

d(x ,  y) = go if and only if x = y. 

Consider the following possible properties: 

1. For any gl c G ~, there exists g2 c G ~ such that, for any x, y c X, from d(x,  y) <~ g2 
it follows d (y, x) ~< g 1; 

2. For any gl c G ~, there exist g2, g3 c G ~ such that, for any x, y, z c X, from 

d(x,  y) <~ g2 and d(y,  z) <~ g3 it follows d(x,  z) <~ gl; 
3. For any gl c G ~, there exists g2 c G ~ such that, for any x, y, z c X, from d(x,  y) <~ 

g2 and d(y,  z) <~ g2 it follows d(y,  x) <~ gl ; 
4. G ~ has no first element; 

5. d(x,  y) = d(y,  x) for any x, y c X; 
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6. For any gl �9 G ~, there exists g2 �9 G ~ such that, for any x, y, z �9 X, from d(x, y) <* 
g2 and d(y, z) <* g2 it follows d(x, z) <* gl; here p <* q means that either p < q, 
or p is not comparable to q; 

7. The order relation < is a total ordering of G. 

In terms of above properties, d is called: the Apper t  part ial ly o rdered  distance if 1. and 
2. hold; the Golmez part ial ly ordered  distance of first type if 4., 5., and 6. hold; the 
Golmez part ial ly o rdered  distance of second type if 3., 4., and 5. hold; the K u r e p a -  
Fr6chet  distance if 3., 4., 5., and 7. hold. 



Chapter 4 

Metric Transforms 

There are many ways to obtain new distances (metrics) from given distances (metrics). 
Metric transforms give new distances as a functions of given metrics (or given distances) 
on the same set X. If one obtains the metric, it is called transform metric. We give some 
important examples of transform metrics in the first section. 

Given a metric on a set X, one can construct a new metric on an extension of X; simi- 

larly, given a collection of metrics on sets X1 . . . . .  Xn, one can obtain a new metric on an 
extension of X1 . . . . .  Xn. Examples of such operations are given in the second section. 

Given a metric on X, there are many distances on other structures, connected with X, 
for example, on the set of all subsets of X. Main distances of such kind are considered in 
the third section. 

4.1. M E T R I C S  ON THE SAME SET 

�9 Metric transform 

A metric transform is a distance on a set X, obtained as a function of given metrics (or 
given distances) on X. 

In particular, given a continuous monotone increasing function f ( x )  of x ~ 0, called 

scale, and a distance space (X, d), one obtains other distance space (X, df), called scale 
metric transform of X, defining df(x,  y) = f (d(x ,  y)). For every finite distance space 
(X, d), there exists a scale f ,  such that (X, df) is a metric subspace of an Euclidean 
space E n. 

If (X, d) is a metric space and f is a continuous differentiable strictly increasing scale 

with f ( 0 )  = 0 and non-increasing f~, then (X, df) is a metric space (cf. functional 
transform metric). 

�9 Transform metric 

A transform metric is a metric on a set X which is a metric transform, i.e., is obtained 
as a function of a given metric (or given metrics) on X. In particular, transform metrics 
can be obtained from a given metric d (or given metrics dl and d2) on X by any of the 
following operations: 

1. ~d(x, y), ~ > 0 (u-scaled metric, or dilated metric); 
2. rain{t, d(x, y)} (t-truncated metric); 
3. d ( x , y ) + ~ , ~  ~ 0, fo rx  ~: y; 
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4. d(x , y )  . 
l + d ( x , y )  ' 

~/(x,y) , where p is an fixed element of X" 5. d p (x, y) = d(x,p)+d(y,e)+d(x,y) 
6. max{d1 (x, y), d2(x, y)}; 

7. oedl (x, y) + fidz(x, y), where oe, fi > 0 (cf. metric cone). 

�9 Funct ional  transform metric 

Let f : R --+ R be a twice differentiable real function, defined for x ~> 0 such that 

f ( 0 )  = 0, f ' ( x )  > 0 for all x ~> 0, and f " ( x )  ~< 0 for all x ~> 0. In fact, f is concave 
on [0, oo); in particular, f (x + y) <~ f (x) + f (y). 

Given a metric space (X, d), the functional  transform metric df  is a transform metric 
on X, defined by 

f (s(x, y)). 

Metrics df  and d are equivalent. If d is a metric on X, then, for example, old (oe > 0), 

d a (0 < oe < 1), ln(1 + d) arcsinh d, arccosh d, and , ~ are functional transform 

metrics on X. 

�9 Power transform metric 

Let 0 < ol ~< 1. Given a metric space (X, d), the power transform metric is a func- 
tional transform metric on X, defined by 

(s(x, y)) 

For a given metric d on X and any oe > 1, the function d ~ is a distance on X. It is a 

metric if and only if d is an u l t ramet r i c .  

�9 Schoenberg  transform metric 

Let )v > O. Given a metric space (X, d), the Schoenberg  transform metric is a func- 
tional transform metric on X, defined by 

1 - e -)~d(x'y). 

�9 g - transform metric 

Given a metric space (X, d), let g �9 X --+ X be an injective function on X. The g- t rans-  

fo rm met r ic  is a transform metric on X, defined by 

d(g(x) ,  g(y)). 

�9 Internal metric 

Given a metric space (X, d) in which every pair of points x, y is joined by a rectifiable 
curve, the internal metric (or interior metric,  induced intrinsic metric)  D is a trans- 
form metric on X, obtained from d as the infimum of the lengths of all rectifiable curves 

connecting two given points x and y c X. 
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The metric d on X is called intrinsic metric  (or length metric) if it coincides with its 
internal metric. In this case, the metric space (X, d) is called length space. 

4.2. M E T R I C S  ON SET E X T E N S I O N S  

�9 Extens ion  distances 

If d is a distance on Vn = { 1 . . . . .  n}, and ~ c R, ~ > 0, then the following extension 
distances (see, for example, [DeLa97]) are used. 

The gate extension distance g a t  - gat~ is a distance on Vn+ 1 - { 1 . . . . .  n + 1 }, defined 
by the following conditions: 

1. gat(1, n + 1) = ~; 
2. gat(i, n + l) = ~ + d(1, i) i f  2 ~< i ~<n; 
3. g a t ( i , j ) = d ( i , j ) i f l  ~<i < j ~<n. 

The distance gaff  o is called gate 0-extension or, simply, 0-extension of d. 

If ~ ~> max2~<i ~<n d(1, i), then the ant ipodal  extension distance ant - ant~ is a dis- 
tance on Vn+l, defined by the following conditions: 

1. ant( l ,  n + 1) = ~; 
2. ant(i, n + l) = ~ - d(1, i) i f  2 ~< i ~<n; 
3. a n t ( i , j ) = d ( i , j ) i f l  ~<i < j ~<n. 

If ~ ~> maxl~<i,j~<n d(i, j ) ,  then the full ant ipodal  extension distance Ant - A n ~  is a 
distance on V2n = { 1 . . . . .  2n }, defined by the following conditions: 

1. Ant(i ,  n + i) = ~ if l ~<i ~<n; 
2. A n t ( i , n + j ) = ~ - d ( i , j ) i f l  ~<i ~=j ~<n; 
3. Ant(i ,  j )  = d(i,  j )  if 1 ~< i ~= j ~< n; 
4. A n t ( n + i , n + j ) = d ( i , j ) i f l  ~<i ~=j ~<n. 

It is obtained by apply the antipodal extension operation iteratively n times, starting 
from d. 

The spherical  extension distance sph - sph~ is a distance on Vn+l, defined by the 
following conditions: 

1. sph( i ,n  + 1) = ~ i f l  ~< i ~< n; 
2. sph(i, j )  = d ( i ,  j )  if  l ~<i < j ~<n. 

�9 1-sum distance 

Let dl be a distance on a set X1, let d2 be a distance on a set X2, and suppose that 
X1 A X2 = {xo}. The 1-sum distance of dl and d2 is the distance d on X1 U X2, defined 
by the following conditions: 

dl(x,  y), 

d(x ,  y) - d2(x, y), 

d (x ,  xo) + d(xo, y), 

i fx ,  y c X 1 ,  

i fx ,  y cX2, 

i fx  c X1, y c X 2 .  
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In Graph Theory, the 1-sum distance is a pa th  metr ic ,  corresponding to the clique 1-sum 
operation for graphs. 

�9 Product metric 

Given n metric spaces (X1, dl) ,  (X2, d2) . . . . .  (Xn, dn), the product metric is a metric 
on the Cartesian product 

X1 x X 2  •  • X n  --  {x --  (Xl ,X2 . . . . .  Xn)" Xl C X1 . . . . .  xn C X n } ,  

defined as a function of dl . . . . .  dn. The simplest product metrics are defined by 

1. n ~ i = 1  d i ( x i ,  Yi);  
1 

2. n (~=1 dP(x~, y~))7,  1 < p < oc; 

3. maxl~<i~<n d i ( x i ,  Yi);  
4. n 1 di(xi,yi) . 

Z i = I  2--7 l+di (xi,yi) ' 
5. m i n l < i < n { d i ( x i ,  Yi) ,  1}. 

Last two metrics are bounded and can be extended to the product of countably many 
metric spaces. 

If X1 . . . . .  Xn - R, a n d d l  . . . . .  dn - d, w h e r e d ( x , y )  - x - y l  is the 
n a t u r a l  me t r i c  on R, all product metrics above induce the Euclidean topology on the 
n-dimensional  space R n. They do not coincide with the Euclidean metric on R n, but they 
are equivalent to it. In particular, the set R n with the Euclidean metric can be considered 
as the Cartesian product R x . . .  x R of n copies of the real line (R, d) with the product 

by ~ / ~ n  d 2 ( x i  Yi ). 
i 

metric, defined i=1 

�9 Fr6chet product metric 

Let (X, d) be a metric space with a b o u n d e d  metric d. Let X ~ = X x . . .  x X . . . .  

{x = (xl . . . . .  xn . . . .  ) : xl c X1 . . . . .  xn c Xn . . . .  } be the product space of X. 

The Fr6chet product metric is a product metric on X ~ defined by 

oo 

Z And (xn, Yn), 
n=l  

where ~n~ An is any convergent series of positive terms. Usually, An -- ~ is used. 

A metric (sometimes called Frdchet metric) on the set of all sequences {xn}n of real 
(complex) numbers,  defined by 

oo 
xn - yn I 

1 +  xn-Yn l '  n=l  

where oc ~ n = l  An is any convergent series of positive terms, is a Frdchet product metric 
1 of countably many copies of R (C). Usually, An -- N or An -- ~ are used. 



48 [ �9 Hilbert cube metric] Part I: Mathematics of Distances 

�9 Hilbert cube metric 

The Hilbert cube I ~~ is the Cartesian product of countable many copies of the interval 
[0, 1], equipped with the metric 

o o  

Z 2 - i  Xi -- Yil 
i=1 

(cf. Fr6chet product metric). It also can be identified up to homeomorphisms with 
compact  metric space formed by all sequences {xn}n of real numbers such that 0 ~< 

xn ~< ~, where the metric is defined as n=l (xn - yn) 2 

�9 Warped product metric 

Let (X, dx)  and (Y, dy) be two complete length spaces, and let f : X -+ R be a 
positive continuous function. Given a curve V : [a, b] --+ X • Y, consider its projections 
)/1 : [a, b] --+ X and )/2 : [a, b] --+ Y to X and Y, and define the length of g by the 

fa b ~ / V ~ 1 2 ( t ) + / 2 ( y l  (t))ly~ formula 2(t)dt.  

The warped product metric is a metric on X • Y, defined as the infimum of lengths of 
all rectifiable curves, connected two given points in X • Y (see [BuIv01]). 

4.3. METRICS ON OTHER SETS 

Given a metric space (X, d), one can construct several distances between some subsets of 
X. The main such distances are: the point-set distance d(x ,  A) = infyca d(x ,  y) between 
a point x e X and a subset A C X, the set-set distance infxea, yeB d(x ,  y) between two 
subsets A and B of X, and the Hausdorff metric between compact subsets of X, which 
are considered in chapter 1. In this section we list some other distances of such kind. 

�9 Line-line distance 

The line-line distance is the set-set distance in IE 3 between two skew lines, i.e., two 
straight lines that do not lie in a plane. It is the length of the segment of their common 
perpendicular whose end points lie on the lines. For 11 and 12 with equations 11: x = 
p + qt, t e R, and/2: x = r + st, t e R, the distance is given by 

I(r - p,  q • s)l 

IIq x sl12 

where • is the cross product on E3, (,)  is the inner product on E3, and ll.ll2 is the 

Euclidean norm. For x = (xl, x2, x3), y = (Yl, Y2, Y3), one has x • y = (x2y3 - 

x 3 Y 2 ,  x 3 Y l  -- x l Y 3 ,  x l Y 2  -- x2Yl) .  

Vertical  distance between lines 11 and 12 is the length of the vertical segment with one 

endpoint on 11 and one endpoint on 12, provided a unique such segment exists. 
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�9 Point-line distance 

The point-line distance is the point-set distance between a point and a line. 

In E 2, the distance between a point z = (Zl, z2) and a line 1: axl  + bx2 + c = 0 is given 
by 

lazl + bz2 + cl 
~/a 2 + b 2 

In E 3, the distance between a point z and a line l: x = p + qt,  t c R, is given by 

IIq x (p - z)112 

IIqll: 

where x is the cross product  on E 3, and II. ll2 is the Euclidean norm. 

�9 Point-plane distance 

The point-line distance is the point-set distance in E 3 between a point and a plane. 

The distance between a point z = (zl, z2, z3) and a plane ~: axl  + bx2 + cx3 + d = 0 

is given by 

lazl + bz2 -+- cz3 -+- dl 

~/a 2 + b 2 + c 2 

�9 Prime number  distance 

The prime number  distance is the point-set distance in (IN, I n - m l )  between a number  
n c IN and the set of prime numbers P C IN. It is the absolute difference between n and 
the nearest prime number. 

�9 Distance up to nearest integer 

The distance up to nearest integer is the point-set distance in (R, Ix - Yl) between a 
number  x c R and the set of integers Z C R, i.e., minncz Ix - n I. 

�9 Busemann  metric of sets 

Given a metric space (X, d), the Busemann  metric of sets (see [Buse55]) is a metric on 
the set of all non-empty closed subsets of X, defined by 

sup Id(x, A) - d (x ,  B) le  -d(p'x) 
x c X  

where p is a fixed point of X, and d(x ,  A) = minycA d(x ,  y) is the point-set distance�9 

Instead of weighting factor e -d(p'x) , one can take any distance transform function which 
decrease fast enough (cf. also L p - H a u s d o r f f  dis tance,  and the list of variations of the 
Hausdorf f  metric in Chapter 21). 



Chapter 5 

M e t r i c s  on N o r m e d  Structures  

In this chapter  we consider  a special class of metrics,  defined on some n o r m e d  structures,  

as the norm of difference be tween  two given elements .  This structure can be a group (with 

a group norm) ,  a vector  space (with a vec tor  n o r m  or, simply, a norm),  a vector  lattice (with 

a Riesz  norm) ,  a field (with a valuat ion) ,  etc. 

�9 Group norm metric  

A group n o r m  metric  is a metr ic  on a group (G, + ,  0), defined by 

IIx § ( - y ) l l  = IIx - yl l ,  

where  II. II is a group norm on G, i.e., a function II. II : G ---> R such that, for all x, y �9 G, 

we have the fol lowing propert ies:  

1. IIx II ~> 0, with x II = 0 if and only if x = 0; 

2. I l x l l = l l - x l l ;  

3. IIx + Yll ~< Ilxl + IlYll (triangle inequali ty).  

Any group norm metric  d is r i g h t - i n v a r i a n t ,  i.e., d ( x ,  y)  = d ( x  + z, y + z) for any 

x, y, z �9 G. On the other hand, any r ight-invariant  (as well  as any left- invariant,  and, in 

particular, any bi- invariant)  metric  d on G is a group norm metric,  since one can define 

a group norm on G by IIx II = d ( x ,  0). 

�9 F - n o r m  metric  

A vec tor  space  (or l inear  space)  over a f i e ld  ~ is a set V equipped with operat ions of  

vec tor  addi t ion  + : V x V ---> V and sca lar  m u l t i p l i c a t i o n .  : F x V ---> V such that 

(V, + ,  0) forms an A b e l i a n  group (where 0 �9 V is the zero vector) ,  and, for all vectors  

x, y �9 V and any scalars  a, b �9 ~, we have the fol lowing propert ies:  1 �9 x - x (where 

1 is the mult ipl icat ive unit  of ~), (ab)  �9 x = a �9 ( b .  x),  (a + b) �9 x = a �9 x + b . x ,  and 

a �9 (x + y) = a �9 x + a �9 y. A vector space over the field R of real numbers  is cal led 

real vec tor  space.  A vector  space over the field C of complex  numbers  is cal led complex  

vec tor  space.  

An F - n o r m  metric  is a metr ic  on a real (complex)  vector  space V, defined by 

IIx - YlIF,  

where  II. II F is an F - n o r m  on V, i.e., a function II. II F : V ~ R such that, for all x, y �9 V 
and for any scalar a with lal = 1, we have the fol lowing propert ies:  

50 
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1. I I  II F ~ 0, with Ilx II F = 0 if and only if x = 0; 

2. IlaxllF = IIXIIF; 
3. IIx + YlIF <<. IIXIIF + IlYlIF ( t r i ang le  inequa l i ty ) .  

An F-norm is called p-homogeneous if IlaxllF = lalPlIxIIF. 

Any F-norm metric d is a trans lat ion  invariant  metric ,  i.e., d(x,  y) = d(x + z, y + z) 
for all x, y, z �9 V. Conversely, if d is a translation invariant metric on V, then IIx IIF = 
d(x,  0) is an F -norm on V. 

�9 F * - m e t r i c  

An F*-me t r i c  is an F - n o r m  metr ic  x - Y lIF on a real (complex) vector space v 
such that the operations of scalar multiplication and vector addition are continuous 

with respect to II. IIF. It means, that II. IIF is a function II. IIF : V --~ R such  that, for 
all x, y, xn �9 V and for all scalars a, an, we have the following properties: 

1. IIx II F ~> 0, with IIx II F = 0 if and only if x = 0; 
2. IlaxllF = IIXIIF for  all a with lal = 1; 

3. IIx + Y l I F  <<, IIXIIF + IlYlIF; 
4. Ila~xlIF --~ 0 i f  an ~ 0; 
5. Ilax~IIF --~ 0 i f x n  ~ 0; 
6. Ila~x~IIF --~ 0 if an --~ 0, xn --~ 0. 

The metric space (V, IIx - YlIF) with an F*-metr ic  is called F*-space. Equivalently, an 
F*-space is a metric space (V, d) with a trans lat ion  invariant  metr i c  d such that the 
operation of scalar multiplication and vector addition are continuous with respect to this 
metric. 

A modular space is an F*-space (V, II. IIF) in which the F -no rm II. II F is defined by 

I l x l l F - i n f { ) ~ > 0 "  p ( ~ ) < ) ~ ] ,  

and p is a metrizing modular on V, i.e., a function p : V --~ [0, ~ ]  such that, for all 
x, y, xn �9 V and for all scalars a, an, we have the following properties: 

1. p (x) = 0 if and only if x = 0; 
2. p(ax)  = p(x)  implies lal = 1; 
3. p(ax + by) <. p(x)  + p(y)  implies a, b ~> 0, a + b = 1; 
4. p(anx) --+ 0 if an --+ 0 and p(x)  < oo; 
5. p(axn) --+ 0 if p(xn) --+ 0 (metrizing property); 
6. For any x �9 V, there exists k > 0 such that p (kx) < oo. 

A comple te  F*-space is called F-space. A locally convex F-space  is known as Frdchet 
space in Functional Analysis. 

�9 N o r m  metr ic  

A n o r m  metr ic  is a metric on a real (complex) vector space V, defined by 

IIx - yll, 
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where II. II is a norm on V, i.e., a function II. II : v ~ R such that, for all x, y r V and 
for any scalar a, we have the following properties: 

1. IIx II ~ 0, with IIx II : 0 if and only if x = 0; 

2. Ilax II - lal l lxll ;  
3. IIx + yll ~< IIxll + Ilyll (triangle inequality). 

Therefore, a norm II.ll is an 1-homogeneous  F-norm.  The vector space (V, II.ll) is called 
normed  vector  space or, simply, normed  space. 

On any given finite-dimensional vector space all norms are equivalent. Every finite- 
dimensional normed space is complete. Any metric space can be embedded isometri- 

cally in some normed vector space as a closed linearly independent subset. 

The norm-angu lar  distance between x and y is defined by 

d ( x ,  y)  = 
x y 

IIxll Ilyll 

L. Maligranda remarked the following sharpening of the triangle inequality in normed 

spaces: for any x, y c V, it holds 

( 2 - d ( x , - y ) ) m i n (  x .  y ) <~ x + y - x + y <~ ( 2 - d ( x , - y ) ) m a x (  x .  y ). 

�9 S e m i - n o r m  s e m i - m e t r i c  

A s e m i - n o r m  s e m i - m e t r i c  is a semi-metric on a real (complex) vector space V, defined 

by 

IIx - y II, 

w h e r e  II. II is a semi -norm (or pre-norm) on V, i.e., a f u n c t i o n  II. II : v ~ R such  that, 
for all x, y c V and for any scalar a, we have the following properties: 

1. IIxll ~> 0, with II011 - 0 ;  
2. Ilax II - lalllxll;  
3. IIx + yll ~< IIxll + Ilyll (triangle inequality). 

The vector space (V, II.ll) is called semi -normed  vector  space. Many normed  vector  

spaces,  in particular, B a n a c h  spaces ,  are defined as the quotient space by the subspace 
of elements of semi-norm zero. 

A quas i -normed  space is a vector space V, on which a quas i -norm is given. A quasi- 

norm on V is a non-negative function II.ll : V --+ R which satisfies the same axioms 
as a norm, except for the triangle inequality which is replaced by the weaker require- 
ment: there exists a constant C > 0 such that, for all x, y c V, we have the following 

inequality: 

I I x + y  ~<C( x + y )  
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(cf. near-metric). An example of a quasi-normed space, that is not normed, is the 

Lebesgue space L p (S2) with 0 < p < 1 in which a quasi-norm is defined by 

f [ [ -  [ f (x) [P dx f c Lp(U2). 

�9 Banach space 

A Banach space (or B-space) is a complete metric space (V, I I x -  yll) on a vector space 

V with a norm metric IIx - yll. Equivalently, it is the complete normed space (V, II.ll). 
In this case, the norm II. II on V is called Banach norm. Some examples of Banach spaces 
are: 

1. lpn-spaces, lp~ 1 <~ p <~ oc, n r N; 

2. The space C of convergent numerical  sequences with the norm IIx II = sup~ Ix~ I; 
3. The space Co of numerical  sequences which converge to zero with the norm IIx II = 

maxn Ixn l; 
4. The space C p 1 <~ p <~ oc, of continuous functions on [a, b] with the Lp-norm [a,bl' 

1 
Ilf p - ( fb  i f ( t ) l  p d t ) 7 ;  

5. The space C K of continuous functions on a compactum K with the norm Ilf II = 

maxtcK I f ( t ) l ;  
6. The space (C[a,bl) n of functions on [a, b] with continuous derivatives up to and in- 

cluding the order n with the norm flln - ~ = 0  maxa~<t~<b If(~)(t)l;  
7. The space Cn[I m] of all functions defined in an m-dimensional  cube that are con- 

tinuously differentiable up to and including the order n with the norm of uniform 

boundedness in all derivatives of order at most  n; 

8. The space M[a,bl of bounded measurable functions on [a, b] with the norm 

f - e s s s u p l f ( t ) ] -  inf sup ]f(t)]; 
a<~t<~b e , # ( e ) = 0  te[a,b]\e 

9. The space A(A)  of functions analytic in the open unit disk A = {z r C:  Izl < 1} 

and continuous in the closed disk A with the norm Ilfll = maxze5  I f (z) l ;  
10. The Lebesgue  spaces  Lp (S-2), 1 ~< p ~< oc; 
11. The Sobolev spaces wk'P(S2), S-2 C R n, 1 <~ p <~ oc, of functions f on S-2 such 

that f and its derivatives, up to some order k, have a finite Lp-norm, with the norm 
k 

[If •,p - -  ~ i = 0  [ [ f ( i )  " p ,  

12. The Bohr space A P  of almost-periodic functions with the norm 

fll  - sup I f ( t ) l .  
- o c < t < + o c  

A finite-dimensional real Banach space is called Minkowskian space. A norm metric of 

a Minkowskian space is called M i n k o w s k i a n  metr ic .  In particular, a n y / p - m e t r i c  is a 

Minkowskian metric. 
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All n -d imens iona l  Banach  spaces are pairwise isomorphic;  their set becomes  com- 

pact  if one introduces the Banach-Mazur  distance by daM(V, W) = ln infT IITII �9 

II T - 1  II, where  the inf imum is taken over all operators which real ize an i somorph i sm 

T : V - - + W .  

�9 /p-metric 

T h e / p - m e t r i c  dip, 1 <~ p <~ oc, is a norm metric  on R n (or on Cn), d e f n e d  by 

IIx - yllp, 

where  the lp-norm II. II p is defined by 

Ilxllp 

1 

Xi P) 

For p -- oc, we obtain IIx I1~ - l imp~oo  Z i = I  Xi I p -- maxl<~i<~n Ixi I. The metr ic  

n and is cal led n-space. space (R n , dip ) is abbreviated as lp lp 

T h e / p - m e t r i c ,  1 ~< p ~< oc, on the set of all sequences  x - {xn }n~__l of real (complex)  
oc p _ oc  numbers ,  for which the sum ~ i = 1  xi (for p oc, the sum ~ i = 1  xi ) is finite, is 

defined by 

1 

IXi - -  Yi I p �9 

i = 1  

oc and is For  p -- oc, we obtain max/~> 1 xi - Yi I. This metr ic  space is abbreviated as l p 
cal led l p - space .  

Most  important  are 11-, 12- and lot-metr ics;  the /2 -met r i c  on R n is also cal led Euclidean 
metric. T h e / z - m e t r i c  on the set of all sequences  {xn }n of real (complex)  numbers ,  for 
which oc 2 ~ i=1  Ixil < oc, is also known as H i l b e r t  metric. 

�9 Euclidean metric 

The Euclidean metric (or Pythagorean distance, as-crow-flies distance) dE is a metr ic  
on R n, defined by 

/ 

x -- y 2 - -  ~ / ( X l  - -  yl )  2 + ' "  + (xn -- yn) 2. 

It is the o r d i n a r y / z - m e t r i c  on R n. The metr ic  space (R n, dE) is abbreviated as It~ n and is 

cal led Euclidean space (or real Euclidean space). Somet imes ,  the express ion "Euclid-  

ean space" stands for the case n = 3, as opposed  to the Euclidean plane for the case 

n = 2. The Euclidean line (or real line) is obtained for n = 1, i.e., it is the metr ic  space 

(R, Ix - yl)  with the natural metric Ix - yl. 

In fact, E n is an inner product space (and even H i l b e r t  space) ,  i.e., dE (x, y) = IIx - 

YlI2 = ~/(x - y, x - y), where  (x, y) is an inner product on R n which is given in a 
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suitably chosen (Cartesian) coordinate system by the formula (x, y) - ~in__=l xiYi.  In 
standard coordinate system one has (x, y) = ~ i , j  g i j x iY j ,  w h e r e  gij = (ei, ej), and 
the metric t ensor  ((gi j ) )  is a positive-definite symmetric n x n matrix. 

In general, an Euclidean space is defined as a space, the properties of which are described 
by the axioms of Euclidean Geometry. 

�9 Unitary metric 

The unitary metric (or complex Euclidean metric) is the 12-metric on C n, defined by 

IIx - y 2 - -  ~ / X l  - -  Yl 2 _ j r . . .  _jr Xn - -  Yn 12. 

The metric space (C n, IIx - y ll2) is called unitary space (or complex Euclidean space). 
For n = 1, we obtain the complex plane (or Argandplane), i.e., the metric space (C, Iz - 

ul) with the complex modulus metric z - ul; here Izl - zl + iz2l - ~z~  § z~ is the 

complex modulus (cf. also quaternion metric). 

�9 Lp-metric 

An Lp-metric dLp, 1 <, p <, oc, is a norm metric o n  Lp(~"2, A ,  IZ), defined by 

IIf -- gllp 

for any f ,  g c Lp(U2, A, IZ) . The metric space (Lp(U2, A, IZ), dLp) is called Lp-space  
(or Lebesgue space). 

Here s is a set, and A is an a-algebra of subsets of s i.e., a collection of subsets of s 
satisfying the following properties: 

1. X-2 c A; 
2. If A c A, then X-2 \ A  c A; 
3. If A -- U ~ A i with A i c A, then A c A. i=1 

A funct ion/z  : A --+ R~>0 is called measure on A if it is additive, i . e . , / z (U  i~>1 Ai)  = 
~ i ) l  Iz(Ai)  for all pairwise disjoint sets A i C A ,  and satisfies/z(0) = 0. A measure 
space is a triple (s A, #) .  

Given a function f : X-2 --+ R(C) ,  its Lp-norm is defined by 

1 

Let Lp (X-2, A , / z )  = Lp (X-2) denotes the set of all functions f : X-2 --+ R (C) which 
satisfy the condition Ilfllp < oc. Strictly speaking, Lp(U2, A, I z) consists of equiva- 
lence classes of functions, where two functions are equivalent if they are equal almost 
everywhere, i.e., the set on which they differ has measure zero. The set Loc (s A, #)  is 
the set of equivalence classes of measurable functions f : X-2 --+ R (C) whose absolute 
values are bounded almost everywhere. 
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The most  classical example of an Lp-metr ic  is dLp on the s e t  Lp(S2, A, IZ), where s is 
the open interval (0, 1), r is the Borel sigma-algebra on (0, 1), and /z  is the Lebesgue 
measure. This metric space is abbreviated by L p (0, 1) and is called L p (0, 1)-space. 

In the same way, one can define the Lp-metr ic  on the set C[a,bl of all real (complex) 
1 

continuous functions on [a,b]" dLp( f ,  g) -- ( f b  a I f ( x )  - g(x ) lPdx)  -f. For p -- oc, 
P and dL~ (f ,  g) -- maxa~<x~<b I f ( x )  - g(x)l .  This metric space is abbreviated by C[a,b l 

P is called C[a,b]-space. 

If S-2 - N, r - 2 s? is the collection of all subsets of S-2, and/z  is the cardinality measure 
( i .e . , /z(A) -- IAI if A is a finite subset of S-2, and/z(A)  -- oc, otherwise), then the metric 
space (Lp(S-2, 2 s?, I.I), dLp) c o i n c i d e s  with the space l p .  

If s - V, is a set of cardinality n, r - 2vn, and /z  is the cardinality measure,  then the 
n metric space (Lp(Vn, 2 Vn , I.I),  dLp) coincides with the s p a c e  lp. 

�9 Dual  metrics  

T h e / p - m e t r i c  and the /q -met r i c ,  1 < p,  q < oc, are called dual if 1 /p  + 1/q - 1. 

In general, when dealing with a normed vector space (V, . v) ,  one is interested in the 
continuous linear functionals from V into the base field (R or C). These functionals 
form a Banaeh space (V ~, . v ') ,  called continuous dual of V. The norm ll.llv' on V ~ 

is defined by T v' -- suPllxllv~<] ]T(x)]. 

The continuous dual for the metric space lp ( l p )  is lq ( l q ,  respectively). The continuous 
dual of l~ ( l ~ )  is l ~  ( l ~ ,  respectively). The continuous duals of the Banach spaces C 
(consisting of all convergent sequences, with lo t -metr ic)  and Co (consisting of the 
sequences converging to zero, with lo t -metr ic)  are both naturally identified with 1 ~ 

1 �9 

�9 Inner product  space 

An inner product  space (or pre-Hilbert space) is a metric space (V, x - y ) on a real 
(complex) vector space V with an inner product (x, y) such that the norm metric IIx - y 
is constructed using the inner product norm IIx II - ~ /<x ,  x). 
An inner product (,)  on a real (complex) vector space V is a symmetric bilinear (in 
complex case, sesquilinear) form on V, i.e., a function (,)  �9 V x V > R (C) such 
that, for all x, y, z c V and for all scalars oe,/3, we have the following properties" 

1. (x, x) ~> 0, with (x, x) - 0 if and only if x - 0; 
2. (x, y) - (y, x), where -ff - a + bi - a - bi denotes the complex conjugation; 
3. (~x + /~y ,  z) -- ~(x ,  z) + / ~ ( y ,  z). 

For a complex vector space, an inner product is called also Hermitian inner product, and 
the corresponding metric space is called Hermitian inner product space. 

A norm . in a normed space (V, II. II) is generated by an inner product if and only if, 
for all x, y c V, we have" x + y 2 + X --  yll 2 - 2( x 2 _jr_ ilyl12). 

�9 Hi lbert  space 

A Hilbert  space is an inner product  space which, as a metric space, is complete .  More 
precisely, a Hilbert space is a complete metric space (H, x - y ) on a real (complex) 
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vector space H with an inner product  (,) such that the norm metric ix - y is con- 

structed using the inner product  norm x - ~/(x,  x).  Any Hilbert space is a B a n a c h  

space .  

An example of a Hilbert space is the set of all sequences x - {xn }n of real (complex) 

numbers such that oc 2 ~ i - 1  Ixil converges, with the H i l b e r t  metr i c ,  defined by 

1 

Ixi - Yi 12 �9 
i--1 

Other examples of Hilbert spaces are any L2-space, and any finite-dimensional inner 

product space. In particular, any Euclidean space is a Hilbert space. 

A direct product of two H i l b e r t  s p a c e s  is called Liouville space (or line space, extended 

Hilbert  space). 

�9 R ie sz  n o r m  m e t r i c  

A Riesz space (or vector lattice) is a partially ordered vector space (VRi, -<) in which the 

following conditions hold: 

1. The vector space structure and the partial order structure are compatible, i.e., from 

x • y follows that x + z • y + z, and from x >- 0, a c E, a > 0 follows that ax >- 0; 

2. For any two elements x,  y c Vei, there exist jo in  x v y c VRi and meet x / ~  y c VRi 

(cf. Chapter 10). 

The Riesz  n o r m  m e t r i c  is a norm metric o n  VRi, defined by 

I l x -  y Ri, 

where �9 Ri is a Riesz norm o n  VRi, i.e., a norm such that, for any x,  y c VRi, the 

inequality Ix l • Y I, where x l - ( - x )  v (x), implies x Ri ~ ]]Yl Ri. 

The space (VRi, �9 Ri) is called normed Riesz space. In the case of completeness, it is 

called Banach lattice. 

�9 B a n a c h - M a z u r  c o m p a c t u m  

The B a n a c h - M a z u r  d i s t a n c e  d,M between two n-dimensional normed spaces ( V, II. II v) 
and (W, II. II w) is defined by 

ln inf  T �9 II T-1 , 
T 

where the infimum is taken over all isomorphisms T : V --> W. It is a metric on the 

set X n of all equivalence classes of n-dimensional normed spaces, where V ~ W if and 

only if they are isometric. Then pair (X  n, d ,M)  is a compact metric space which is called 

B a n a c h - M a z u r  c o m p a c t u m .  
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�9 Quot i en t  metr ic  

Given a normed space (V, II. II v)  with a norm II. IIw and a closed subspace W of V, let 
(w/w,  II.llw/w) be the normed space ofcose ts  x + W : {x + w: w �9 W}, x �9 V, with 

the quotient norm IIx + w II v~ w = infwcw IIx + w II w. 

The quot ient  metr ic  is a norm metric on V~ W, defined by 

(x + W ) - ( y  + W) v/w" 

�9 Tensor n o r m  metr ic  

Given normed spaces (V, II.lIv) and (W, II.lIw), a norm II.ll| on the tensor product V | 
W is called tensor norm (or cross norm) if IIx | y II| - IIx II v Ily II w for all decomposable 
tensors x | y. 

The tensor  product  metr ic  is a norm metric on V | W, defined by 

I I z -  t l lo .  

For any z �9 V | W, z -- Z j  xj  @ y j ,  Xj �9 V, y j  �9 W ,  its projective norm (or Jr- 
norm) is defined by Ilzl pr --  i n f ~ j  xj  v Yj w, where the inf imum is taken over all 
representation of z as a sum of decomposable  vectors. It is the largest tensor norm on 

V O W .  

�9 Valuat ion  metr ic  

A valuat ion  metr ic  is a metric on afield F, defined by 

IIx - y II, 

where II. II is a valuation on F, i.e., a function II. II : F -+ R such that, for all x, y �9 F, 
we have the following properties: 

1. Ilxll ~> 0, with Ilxll = 0 if and only i f x  = 0; 

2. Ilxyll = Ilxll Ilyll, 
3. IIx + yll ~< Ilxll + Ilyll (triangle inequality). 

If IIx + yll ~ max{llxll ,  Ilyll}, the valuation I1.11 is called non-Archimedean. In this case, 
the valuation metric is an ultrametr ic .  The simplest example of a valuation is the trivial 

valuation II.lltr: II011tr = 0, and Ilxlltr = 1 for x �9 F\{0}. It is non-Archimedean.  

There are different definitions of valuation in Mathematics.  Thus, the function v : F --+ 
R U {oc} is called valuation if v(x)  >~ O, v(O) - oc, v (xy )  - v(x)  + v(y) ,  and 

v(x + y) >~ min{v(x) ,  v(y)} for all x, y �9 F. The valuation I1.11 can be obtained 
from the function v by the formula Ilxll = oe v(x) for some fixed 0 < oe < 1 (cf. 
p - ad ic  metr ic) .  The Kiirschiik valuation I.IKrs is defined as a function I.IKrs : F --+ A 

such that IXlKrs >~ O, IXlKrs = 0 if and only if x = 0, IxylKrs = IXlKrslylKrs, and 
Ix + YlKrs <~ C max{IxlKrs, lYlKrs} for all x, y �9 F and for some positive constant C, 
called constant o f  valuation. If C ~< 2, one obtains the ordinary definition of the val- 

uation II. II which is non-Archimedean  if C ~< 1. In general, any I.IKrs is equivalent to 
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some . , i.e., [.[Prs -- . for some p > 0. At last, given an ordered  group ( G , . ,  e, <<.) 

equipped with zero, the Krul l  va luat ion  is defined as a function I.I �9 ? --+ G such that 

x [ -  0 i f a n d  only i f x  - 0 ,  I x y l -  IxllYl, a n d l x + y l  <<. max{ x[, lYl} for any x, y c F. 
It is a general izat ion of  the definition of  non-Arch imedean  valuat ion II. II (cf. general ized 
metric) .  

�9 Power  series metric  

Let F be an arbitrary algebraic field, and let F (x  -1 ) be the field of  power  series of  the 

form w - -  Ot_m x m  -+- . . .  -+- ot 0 -+- Otl x - 1  -+- . . . ,  ot i c ~ .  Given 1 > 1, a n o n - A r c h i m e d e a n  

valuat ion  II. II on F ( x - 1  ) is defined by 

1 m, i f w  r  

Ilwll - 0, if w - 0. 

The power  series metric  is the valuat ion metric  II w - v on F<x-I>.  



Chapter 6 

Distances in Geometry 

Geometry arose as the field of knowledge dealing with spatial relationships. It was one 
of the two fields of pre-modern Mathematics,  the other being the study of numbers. In 
modern times, geometric concepts have been generalized to a high level of abstraction and 
complexity. 

6 . 1 .  G E O D E S I C  G E O M E T R Y  

In Mathematics,  the notion of "geodesic" is a generalization of the notion of "straight line" 
to curved spaces. This term is taken from Geodesy, the science of measuring the size and 
the shape of the Earth. 

Given a metric space (X, d), a me t r i c  curve  y is a continuous function y : I --+ X, 
where I is an interval (i.e., non-empty connected subset) of R. If y is r times continuously 
differentiable, it is called regular curve of class c r ;  if r = oc, Y is called smooth curve. 

In general, a curve may cross itself. A curve is called simple curve (or arc, path) if it 
does not cross itself, i.e., if it is injective. A curve Y : [a, b] --+ X is called Jordan curve 
(or simple closed curve) if it does not cross itself, and y (a) = y (b). 

The length (which may be equal to oc) l ( y )  of a curve y : [a, b] --+ X is defined by 
~i=1 d (y ( t i -1 ) ,  y( t i)) ,  where the supremum is taken over all finite decompositions sup " 

a = to < tl < . . .  < t,  = b , n  �9 N, of [a, b]. A curve with finite length is called 
rectifiable. For each regular curve y : [a, b] -+ X define the natural parameter s of y by 
s - s(t)  - l(yl[a,tl), where l(yl[a,tl) is the length of the part of y, corresponding to the 
interval [a, t]. The parametrization y = y (s) is called natural. In this parametrization, for 

any tl, t2 �9 I ,  one has l(yl[tl,t21) - It2 - t l l ,  and l ( y )  = Ib - al. 
The length of any curve y : [a, b] -+ X is at least the distance between its end points: 

l (y )  ~> d ( y ( a ) ,  y(b)) .  The curve y, for which l (y )  = d ( y ( a ) ,  y(b)) ,  is called geodesic 
segment (or shortest path) from x = y (a )  to y = y(b) ,  and denoted by [x, y]. Thus, a 
geodesic segment is a shortest join of its endpoints; it is an isometric embedding of [a, b] 
in X. In general, geodesic segments need not exist, except for a trivial case when segment 
consists of one point only. Moreover, a geodesic segment joining two points need not be 
unique. 

A geodesic is a curve which extends indefinitely in both directions and behaves locally 
like a segment, i.e., is everywhere locally a distance minimizer. More exactly, a curve 

Y : R --+ X, given in the naturalparametrization, is called geodesic if, for any t �9 R, there 
exists a neighborhood U of t such that, for any tl, t2 �9 U, we have d(y ( t l ) ,  y (t2)) = it1 - 

62 
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t2 I. Thus, any geodesic is a locally isometric embedding of the whole R in X. A geodesic 
is called metric straight line (or minimizing geodesic) if the equality d(y(tl),  y(t2)) = 
Itl - tz] holds for all tl, t2 c R. Such geodesic is an isometric embedding of the whole real 
line R in X. A geodesic is called metric great circle if it is an isometric embedding of a 
circle S 1 (0, r) in X. In general, geodesics need not exists. 

�9 Geodesic metric space 

A metric space (X, d) is called geodesic if any two points in X can be joined by a 
geodesic segment, i.e., for any two points x, y c X, there is an isometry  from the 
segment [0, d(x, y)] into X. 

Any complete Riemannian space is a geodesic metric space. 

�9 Geodesic distance 

The geodesic distance (or shortest path distance) is the length of a geodesic segment 
(i.e., a shortest path) between two points. 

�9 Intrinsic metric 

The metric d on X is called intrinsic metric (or length metric) if the distance d(x, y) 
between any pair x, y of points in X is equal to the infimum of lengths of curves con- 
necting these points. A metric space (X, d) with the intrinsic metric d is called length 
space (or path metric space, inner metric space). 

If, moreover, any pair x, y of points can be joined by a curve of length d(x, y), then 
the metric d is called strictly intrinsic, and the length space (X, d) is a geodesic metric 
space. 

Given a metric space (X, d) in which every pair of points is joined by a rectifiable 
curve, the induced intrinsic metric (or internal metric, interior metric) D on X is 
defined as the infimum of the lengths of all rectifiable curves, connecting two given 
points x, y c X. 

�9 Space of geodesics 

A space of geodesics (or G-space) is a metric space (X, d) with the geometry character- 
ized by the fact that extensions of geodesics, defined as locally shortest lines, are unique. 
Such geometry is a generalization of Hilbert Geometry (see [Buse55]). 

More exactly, an G-space (X, d) is defined by the following conditions: 

1. It is finitely compact, i.e., a bounded infinite set in X has at least one accumulation 
point; 

2. It is Menger-convex,  i.e., for any different x, y c X, there exists a third point z c X, 
z r x, y, such that d(x,  z) + d(z, y) = d(x,  y); 

3. It is locally extendable, i.e., for any a c X, there exists r > 0 such that, for any 
distinct points x, y in the ball B (a, r), there exists z distinct from x and y such that 
d(x, y) + d(y, z) = d(x, z); 

4. It is uniquely extendable, i.e., if in 3. above two points zm and z2 were found, so that 

d(y, zm) = d(y, z2), then zm = z2. 
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The existence of geodesic segments is ensured by finite compactness and Menger- 
convexity: any two points of a finitely compact Menger-convex set X can be joined 
by a geodesic segment in X. The existence of geodesics is ensured by the axiom of local 
prolongation: if a finitely compact Menger-convex set X is locally extendable, then there 
exists a geodesic contains a given segment. Finally, the uniqueness of prolongation en- 
sures the assumption of Differential Geometry that a line element determines a geodesic 
in one way only. 

All Riemannian and Finsler spaces are G-spaces. An one-dimensional G-space is a met- 
ric straight line or a metric great circle. Any two-dimensional G-space is a topological 
manifold. 

Every G-space is a chord space, i.e., a metric space with distinguished geodesics (see 
[BuPh87]). 

�9 Desarguesian space 

A Desarguesian space is a space of geodesics (X, d) in which the role of geodesics is 
played by ordinary straight lines. Thus, X may be topologically mapped into a projective 

space R P  n so that each geodesic of X is mapped into a straight line of RP  n. Any X 
mapped into RP  n must either cover all of RP  n, and, in such a case, the geodesics of X 
are all metric great circles of the same length, or X may be considered as an open convex 

subset of an affine space A n. 

A space (X, d) of geodesics is a Desarguesian space if and only if the following condi- 
tions hold: 

1. The geodesic passing through two different points is unique; 
2. For dimension n : 2, both the direct and the converse Desargues theorems are valid, 

and, for dimension n > 2, any three points in X lie in one plane. 

Among Riemannian spaces, the only Desarguesian spaces are Euclidean, hyperbolic, 

and elliptic spaces. An example of the non-Riemannian Desarguesian space is the 
Minkowskian space which can be regarded as the prototype of all non-Riemannian 
spaces, including Finsler spaces. 

�9 Space of elliptic type 

A space of elliptic type is a space of geodesics in which the geodesic through two 
points is unique, and all geodesics are the metric great circles of the same length. 

�9 Straight space 

A straight space is a space of geodesics in which extension of a geodesic is possible 
in the large. Any geodesic in a straight space is a metric straight line, and is uniquely 
determined by any two of its points. Straight spaces are simply connected spaces without 
conjugate points. Any two-dimensional straight space is homeomorphic to the plane. 

Minkowskian spaces and all simply-connected Riemannian spaces of non-positive cur- 
vature (including Euclidean and hyperbolic spaces) are straight spaces. 
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�9 Gromov-hyperbolic metric space 

A metric space (X, d) is called Gromov-hyperbo l ic  if it is geodesic and f-hyperbolic 
for some 8 ~ O. 

Any complete simply connected Riemannian space of sectional curvature k <~ - a  2 is 
Gromov-hyperbolic metric space with 8 - ln___23. Any Euclidean space E n with n > 1 

a 

is not Gromov-hyperbolic. An important class of Gromov-hyperbolic metric spaces are 
hyperbolic groups, i.e., finitely generated groups whose word metric is f-hyperbolic for 
some 8 ~ 0. A metric space is a real tree exactly when it is Gromov-hyperbolic metric 
space with 8 = 0. 

A geodesic metric space (X, d) is f-hyperbolic if and only if it is Rips 48-hyperbolic, i.e., 
each of its geodesic triangles (the union of three geodesic segments [x, y], [x, z], [y, z]) 
is 48-thin (or 48-slim): every side of the triangle is contained in the 48-neighborhood 
of the other two sides (a 48-neighborhood of a subset A C X is the set {b c X: 
infacA d(b, a) < 45}). 

�9 CAT(k) space 

Let (X, d) be a complete geodesic metric space. Let M 2 be a simply connected two- 
dimensional Riemannian manifold of constant curvature k <~ 0 (for k = 0 and - 1 ,  it is 
the Euclidean plane E 2 and the real hyperbolic plane H 2, respectively). 

A triangle T in X consists of three points in X together with three geodesic segments 
joining them pairwise; the segments are called the sides of the triangle. For a triangle 
T C X, a comparison triangle for T in M 2 is a triangle T ~ C M 2 together with a map 

f r  which sends each side of T isometrically onto a side of T ~. A triangle T is said to 
satisfy the Gromov's  CAT(k) inequality (for Cartan, Alexandrov and Toponogov) if, for 
every x, y c T, we have 

d (x, y ~ <<. dM2 ( fr  (x ~, f r  (y ~), 

where f r  is the map associated to a comparison triangle for T in M 2. So, the geodesic 
triangle T is at least as "thin" as its comparison triangle in M 2. 

A CAT(k) space is a p rope r  (i.e., all closed metric balls are compact) geodesic metric 
space in which every triangle satisfies the CAT(k) inequality. 

Gromov hyperbolic metric spaces are CAT(0) spaces and a generalization of C A T ( -  1) 
spaces. 

CAT(0) spaces are called also Hadamard spaces, because they are generalizations of 
Hadamard manifolds which are simply connected, complete Riemannian manifolds such 
that the sectional curvature is non-positive. A CAT(0) space is not a manifold, in general; 
it can be a tree, for example. 

An Alexandrov space with non-positive curvature (or non-positively curved space) is a 
metric space (X, d) in which, for any x c X, there exists r > 0 such that the closed 
metric ball B(x, r) = {y c X: d(x, y) <, r} is a CAT(0) space with respect to d. 
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�9 Tits metric 

Let (X, d) be a CAT(0) space. An unit speed geodesic ray in X is a curve 01 : [0, +cx~) --+ 
X which realizes the distance between any two of its points, i.e., 01 is an isometric em- 
bedding of [0, cx~) C R into X. Two unit speed geodesic rays 011,012 in X are called 
asymptotic if there is a constant C ~> 0 such that l imt~d(011( t ) ,  012(t)) ~< C; the cor- 

1 2 responding equivalence class is denoted by 01~ (=  01~). The set O~X of all equivalence 
classes of asymptotic geodesic rays of X is called boundary of X at infinity. 

The Tits metric (or asymptotic angle of divergence) is a metric on O~X, defined by 

2 arcsin 1 2 1  

1 2 1 (011(t)  0l 2 for all 01~, 01~ c O~X, where p - l i m t ~ + ~  7 d , (t)). The set O~X equipped 
with the Tits metric is called Tits boundary of X. 

�9 Projectively flat space 

A metric space is called projectively flat if it locally admits a geodesic mapping (i.e., a 
mapping preserving geodesics) into an Euclidean space. 

6.2. P R O J E C T I V E  G E O M E T R Y  

Projective Geometry is a branch of Geometry  dealing with the properties and invariants of 
geometric figures under projection. Affine Geometry  and Euclidean Geometry are subsets 
of Projective Geometry. 

An n-dimensional  projective space E P n is the space of one-dimensional  vector sub- 
spaces of a given (n + 1)-dimensional vector space V over a field E. The basic construc- 
tion is to form the set of equivalence classes of non-zero vectors in V under the relation 
of scalar proportionality. This idea goes back to mathematical  descriptions of perspective. 
The use of a basis of V allows the introduction of homogeneous coordinates of a point in 
K P  n which are usually written as (xl : x2 : . . .  : xn : xn+l)  - a vector of length n + 1, 
other than (0 : 0 : 0 : . . .  : 0). Two sets of coordinates that are proportional denote the 
same point of the projective space. Any point of projective space which can be represented 
as (xl : x2 : . . .  : xn : 0) is called point at infinity. The part of a projective space K P  n 
not "at infinity", i.e., the set of points of the projective space which can be represented as 

(xl : x2 : . . .  : xn : 1), is an n-dimensional  affine space A n. 
The notation R P  n denotes the real projective space of dimension n, i.e., the space of 

one-dimensional  vector subspaces of R n+l. The notation C P n denotes the complex pro- 
jective space of complex dimension n. The projective space R P  n carries a natural structure 
of a compact  smooth n-dimensional  manifold. It can be viewed as the space of lines through 
the zero element 0 of R n+ 1 (i.e., as a ray space). It can be viewed as the set R n, considered 

as an affine space, together with its points at infinity. It can be viewed also as the set of 
points of an n-dimensional  sphere in R n+l with identified diametrically-opposite points. 

The projective points, projective straight lines, projective planes . . . . .  projective 
hyperplanes of K P  n are one-dimensional,  two-dimensional,  three-dimensional  . . . . .  
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n-dimensional subspaces of V, respectively. Any two projective straight lines in a pro- 
jective plane have one and only one common point. A projective transformation (or 
collineation, projectivity) is a bijection of a projective space onto itself, preserving 
collinearity (the property of points to be on one line) in both directions. Any projective 
transformation is a composition of a pair of perspective projections. Projective trans- 
formations do not preserve sizes or angles but do preserve type (that is, points remain 
points, and lines remain lines), incidence (that is, whether a point lies on a line), and 
cross-ratio. Here, given four collinear points x, y, z, t c ~pn ,  their cross-ratio is de- 

f (x)- f(z)  for some affine fined by (x, y, z, t) - (y-z)(x-t) where X-Zx_t denotes the ratio f (x)- f (t) 
bijection f from the straight line lx,y through the points x and y onto K. Given four 
projective straight lines lx, ly, lz, lt, containing points x, y, z, t, respectively, and passing 

through a given point, their cross-ratio, defined by (lx, ly, lt, l t )  - -  sin(/ySin(lx'lz)sin(ly'lt),lz) sin(/x,lt)' co- 

incides with (x, y, z, t). The cross-ratio of four complex numbers x, y, z, t is given by 

(x-z)(y-t) It is real if and only if the four numbers are either collinear or (x, y, z, t) - (y-z)(x-t)" 
cocyclic. 

�9 Projective metric 

Given a subset D of a projective space R P  n, the projective metric d is a metric on 
D such that shortest paths with respect to this metric are parts of or entire projective 
straight lines. It is assumed that the following conditions hold: 

1. D does not belong to a hyperplane; 
2. For any three non-collinear points x, y, z c D, the triangle inequality holds in the 

strict sense: d(x,  y) < d(x,  z) + d(z, y); 
3. If x, y are different points in D, then the intersection of the straight line lx,y through 

x and y with D is either all of lx,y, and forms a metric great circle (i.e., is isometric to 
a circle), or is obtained from lx,y by discarding some segment (which can be reduced 
to a point), and forms a metric straight line (i.e., is isometric to the whole R). 

The metric space (D, d) is called projective metric space. The problem to determine 
all projective metrics is the so-called fourth problem of  Hilbert; it is decided only for 
dimension n = 2. In fact, given a smooth measure on the space of hyperplanes in R P  n, 
define the distance between any two points x, y c R P  n as one-half the measure of all 
hyperplanes intersecting the line segment joining x and y. The obtained metric is projec- 
tive. It is the Busemann's construction of projective metrics. For n = 2, Ambartzumian 
([Amba76]) proved that all projective metrics can be obtained from the Busemann's 
construction. 

In a projective metric space there are no, simultaneously, both types of straight lines: 
they are either all metric straight lines, or they are all metric great circles of the same 
length (Hamel's theorem). Spaces of the first kind are called open. They coincide with 
subspaces of an affine space; the geometry of open projective metric spaces is a Hilbert 
Geometry. Hyperbolic Geometry is a Hilbert Geometry in which there exist reflections 
at all straight lines. Thus, the set D has Hyperbolic Geometry if and only if it is the 
interior of an ellipsoid. The geometry of open projective metric spaces whose subsets 
coincide with all of affine space, is a Minkowski Geometry. Euclidean Geometry is a 
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Hilbert Geometry and a Minkowski Geometry, simultaneously. Spaces of the second 
kind are called closed; they coincide with the whole of RP n. Elliptic Geometry is the 
geometry of a projective metric space of the second kind. 

�9 Strip projective metric 

The strip projective metric ([BuKe53]) is a projective metric on the strip St - { x  c 

R2: - : r /2 < X2 < :r/2}, defined by 

/ ( x l  - y l )  2 + (x2 - y2)  2 + I tanx2 - tan Y21. 

Note, that St with the ordinary Euclidean metric v/(Xl - y l )  2 + (x2 - y2 )  2 is not apro- 
jective metric space. 

�9 Half-plane projective metric 

The half-plane projective metric ([BuKe53]) is a projective metric on R 2 - {x c 

R 2 : x 2  > 0}, defined by 

/ ( X l  - -  y l )  2 + (x2 - -  y2)  2 + 11 1 I 
x2 Y2 

�9 Hilbert projective metric 

Given a set H, the Hilbert projective metric h is a complete projective metric on H. 
It means, that H contains, together with two arbitrary distinct points x and y also the 
points z and t for which h(x, z) § h(z, y) = h(x, y), h(x, y) § h(y, t) = h(x, t), and is 
homeomorphic to a convex set in an n-dimensional affine space A n, the geodesics in H 
being mapped to straight lines of A n. The metric space (H, h) is called Hilbertprojective 
space, and the geometry of a Hilbert projective space is called Hilbert Geometry. 

Formally, let D be a non-empty convex open set in A n with the boundary 0 D not con- 
taining two proper coplanar but non-collinear segments (ordinary the boundary of D is a 
strictly convex closed curve, and D is its interior). Let x, y c D be located on a straight 
line which intersects 0 D at z and t, z is on the side of y, and t is on the side of x. Then 
the Hilbert metric h on D is defined by 

r 
- In(x, y, z, t), 
2 

where (x, y, z, t) is the cross-ratio of x, y, z, t, and r is a fixed positive constant. 

The metric space (D, h) is a straight space. If D is an ellipsoid, then h is the hyperbolic 
metric, and defines Hyperbolic Geometry on D. On the unit disk A = {z c C: Izl < 1 } 
the metric h coincides with the Cay ley-Kle in -Hi lbe r t  metric.  If n = 1, the metric h 
makes D isometric to the Euclidean line. 

If 0D contains coplanar but non-collinear segments, a projective metric on D can be 
given by h(x, y )+  d(x, y), where d is any Minkowskian metr ic  (usually, the Euclidean 
metric). 
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�9 Minkowskian metric 

The Minkowskian metric (or Minkowski -Hi i lder  distance) is the norm metric of a 

finite-dimensional real Banach space. 

Formally, let R n be an n-dimensional  real vector space, let K be a symmetric convex 
body in R n, i.e., an open neighborhood of the origin which is bounded, convex, and 

symmetric (x c K if and only i f - x  c K). Then the Minkowski funct ional  II.lIK : Rn --> 

[0, oc), defined by 

x K - - i n f  o e > O "  -- C OK , 
oe 

is a norm on R n, and the Minkowskian metric m on R n is defined by 

IIx - YlIK. 

The metric space (R n, m) is called Minkowskian space. It can be considered as an n- 

dimensional  affine space A n with a metric m in which the role of the unit ball is played 

by a given central ly-symmetr ic  convex body. The geometry  of a Minkowskian space is 

called Minkowski  Geometry. For a strictly convex symmetric body Minkowskian metric 

is a projective metric,  and (R n, m) is a straight space. A Minkowski  Geometry  is 

Euclidean if and only if its unit sphere is an ellipsoid. 

The Minkowskian metric m is proportional  to the Euclidean metric dE on every given 

line l, i.e., re(x, y) = ~(1)dE(x ,  y). Thus, the Minkowskian metric can be considered as 

a metric which is defined in the whole affine space A n and has the property that the affine 
ratio ~ac of any three collinear points a, b, c (cf. Section 3) is equal to their distance ratio 
m(a,c) 
m(a,b) " 

�9 Busemann metric 

The Busemann metric ([Buse55]) is a metric on the real n-dimensional  projective space 
R P  n, defined by 

mi.{  
i----1 

xi Yi 

I lxl l  y i = 1  

xi Yi 

/X-"n+l 2 
for a n y x  - (Xl " . . .  �9 Xn+l), y - (Yl " . . . "  Yn+l) c R P  n, where [[x[[ - VZ_,i= 1 x 1 . 

�9 Flag metric 

Given an n-dimensional  projective space F P n, the flag me t r i c  d is a metric on F P n, 

defined by an flag, i.e., an absolute consisting of a collection of m-planes am, m = 

0 . . . . .  n - 1, with ~i-1  belonging to Ot i for all i c { 1 . . . . .  n - 1 }. The metric space 

(FPn ,  d) is abbreviated by F n and is called f lag space. 

If one chooses an affine coordinate system (xi)i in a space F n, so that the vectors of 

the lines passing through the (n - m - 1)-plane ~n-m-1  are defined by the condition 

xl . . . . .  Xm = 0, then the flag metric d(x ,  y) between the points x = (xl . . . . .  xn) 
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and y = (Yl . . . . .  Yn) is def ined by 

d(x ,  y) = Ix1 - yll ,  

d (x ,  y) = Ix2 - Y21, 

d ( x ,  y) = IXlc - Y~I, 

i f x l  r Yl, 

i f x l  = y l , x 2  5~ Y2 . . . . .  

if X l  = Yl . . . . .  Xk-1 = Yk-1, Xk 5~ Yk . . . . .  

�9 Projective determinat ion of a metric 

The  projective determination of a metric is an in t roduct ion,  in subsets  of  a projec t ive  

space,  of  a metr ic  such that  these  subsets  b e c o m e  i somorph ic  to an Eucl idean ,  hyper- 
bolic, or elliptic space. 

To obtain  an Euclidean determination of  a metric in R P  n, one should  d is t inguish  in this 

space  an (n - 1 ) -d imens iona l  hype rp l ane  Jr, ca l led  hyperplane at infinity, and define IE n 

as the subset  of  the projec t ive  space  ob ta ined  by r e m o v i n g  f rom it this hype rp lane  Jr. 

In te rms of  h o m o g e n e o u s  coordina tes ,  Jr consis ts  of  all points  (xl  : . . .  : xn : 0), and 

IE n consis ts  of  all points  (xl : . . .  : xn : xn) with  xn # 0. Hence ,  it can be wri t ten  as 

E n = {x c R P  n : x = (xl  : . . .  : xn : 1)}. The  Euc l idean  metr ic  d e  on E n is def ined by 

v/(X - y, x - y),  

where ,  for a n y x  = (xl  : . . .  : xn : 1 ) , y  = (Yl : . . .  : Yn : 1) c E n, one  has 

<x, y> - ~ ~  x~y~. 

To obtain a hyperbolic determination o f  a metric in R P  n, a set D of inter ior  points  of  

a real  oval hypersur face  s of  order  two in R P  n is cons idered .  The  hyperbolic metric 
dhyp on D is def ined by 

r ]ln(x, y, z, t)] ,  

where  z and t are the points  of  in tersec t ion  of the s traight  l ine lx,y th rough  the points  

x and y with s (x, y, z, t) is the cross-ratio of the points  x,  y, z, t, and r is a fixed 

posi t ive  constant .  If, for any x = (xl  : . . .  : x n + l ) ,  y = (yl  : . . .  : yn+ l )  c R P  n, the 
g , i + l  scalar product  (x, y) - - x l y l  + z_-i=2 xiYi is defined,  the hyperbo l i c  metr ic  on the set 

D = {x c R P  n : (x, x) < 0} can be wri t ten  as 

r a rccosh  
I(x, y)l 

~ / (x ,  x ) ( y ,  y) 

where  r is a fixed posi t ive  constant ,  and a rccosh  denotes  the non-nega t ive  values  of  the 

inverse  hyperbo l i c  cosine.  

To obtain an elliptic determination o f  a metric in R P  n, one should  consider ,  for any x = 
. . . .  g , n + l  

(xl  . . .  " x n + l ) ,  y -- (Yl . . .  Yn+l) c R P  n, the inner product  (x, y) z_,i=l x iY i .  

The  elliptic metric dell on R P  n is def ined now by 

r arccos  
I(x, y)l 

~ / (x ,  x ) ( y ,  y) 
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where r is a fixed positive constant, and arccos is the inverse cosine in [0, Jr ]. 

In all the considered cases, some hypersurfaces of the second order remain invariant 

under given mot ions ,  i.e., projective transformations preserving a given metric. These 

hypersurfaces are called absolutes. In the case of an Euclidean determination of a metric, 

the absolute is an imaginary (n - 2)-dimensional  oval surface of order two, in fact, 
2 _ 0 ,  - -  0. In the case of a hyperbolic the degenerate absolute x 2 + . . .  + x n Xn+l 

determination of a metric, the absolute is a real (n - 1)-dimensional oval hypersurface 
2 - -  0. In the case of of order two, in the simplest  case, the absolute - x  2 + x 2 + . . .  + Xn+ 1 

an elliptic determination of a metric, the absolute is an imaginary (n - 1)-dimensional 
2 - - 0 .  oval hypersurface of order two, in fact, the absolute x 2 + . . .  + Xn+ 1 

6.3. AFFINE G E O M E T R Y  

An n-dimensional  affine space over a field F is a set A n (the elements of which are called 

points of the affine space) to which corresponds an n-dimensional  vector space V over F 

(called space associated to A n) such that, for any a c A n, A = a + V = {a + v: v c V}. 
__+ 

In the other words, if a = (al . . . . .  an), b = (bl . . . . .  bn) c A n, then the vector ab = 
(bl - al  . . . . .  bn - an) belongs to V. In an affine space, one can add a vector to a point 
to get another point, and subtract points to get vectors, but one cannot add points, since 

_____> _____> 
there is no origin. Given points a, b, c, d c A n such that c ~: d, and the vectors ab and cd 

_____> _____> 
are collinear, the scalar )~, defined by ab = 2cd, is called affine ratio of ab and cd, and is 
denoted by ab cd" 

An affine transformation (or affinity) is a bijection of A n onto itself which preserves 
collinearity (i.e., all points lying on a line initially, still lie on a line after transformation) 

and ratios of distances (for example,  the midpoint  of a line segment  remains the midpoint  

after transformation). In this sense, affine indicates a special class of projective transfor- 
mations that do not move any objects from the affine space to the plane at infinity or 

conversely. Any affine transformation is a composi t ion of rotations, translations, dilations, 
and shears. The set of all affine transformations of A n forms a group Aft(An), called gen- 
eral affine group of A n. Each element  f c Aft(A) can be given by a formula f ( a )  = b, 

n 
bi - -  ~ j = l  P i j a j  -+- c j ,  w h e r e  ( ( P i j ) )  is a n  i n v e r t i b l e  m a t r i x .  

The subgroup of Aft(An), consisting of affine transformations with det((Pij)) = 1, is 

called equi-affine group of A n. An equi-affine space is an affine space with the equi-affine 
group of transformations. The fundamental  invariants of an equi-affine space are volumes 

of parallelepipeds. In an equi-affine plane A 2, any two vectors vl, v2 have an invariant 

iv1 x vzl (the modulus of their cross p r o d u c t ) -  the surface area of the paral le logram 

constructed on vl and v2. Given a non-recti l inear curve g = g (t), its affine parameter (or 

equi-affine arc length) is an invariant parameter, defined by s - f/0 IV' x ?,"]l/3dt. The 

invariant k -  ~-~-s2 dzy X ~d3y is called equi-affine curvature of g. Passing to the general affine 

group, two more invariants of the curve are considered: the affine arc length ~ = f kl/Zds, 
1 dk 

and the affine curvature k - ~3/2 ds" 
For A n, n > 2, the affine parameter (or equi-affine arch length) of a curve g = ?'(t) 

2 
is defined by s - f/0 I(g' ,  g "  . . . . .  g ( n ) ) l ~  dt, where the invariant (vl . . . . .  Vn) is the 
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(oriented) volume spanned by the vectors Vl . . . . .  vn, which is equal to the determinant of 

the n • n matrix whose i-th column is the vector vi. 

�9 Affine distance 

Given an affine plane A 2, a line element  (a, la) of A 2 consists of a point a c A 2 together 

with a straight line la C A2 passing through a. 

The affine distance is a distance on the set of all line elements of A2, defined by 

2 f l / 3 ,  

where, for a given line elements (a, la) and (b, lb), f is the surface area of the triangle 

abc if c is the point of intersection of the straight lines la and lb. The affine distance 

between (a, la) and (b, lb) can be interpreted as the affine length of the arc ab of a 
parabola such that la and lb are tangent to the parabola at the point a and b, respectively. 

�9 Affine pseudo-distance  

Let A 2 be an equi-affine plane,  and let 7" - 7"(s) be a curve in A 2, defined as a function 
of the affine parameter  s. The affine pseudo-distance  dpaff for A2 is defined by 

@~ (a, b) - 

dT" 

ds  

___+ 
i.e., is equal to the surface area of the parallelogram constructed on the vectors ab and 

dy dYds ' where b is an arbitrary point in A2, a is a point on 7', and -37 is the tangent vector to 
the curve 7' at the point a. 

The affine pseudo-distance  for an equi-affine space A 3 can be defined in a similar 
manner as 

--+ d T" d27")  
ab, d s ,  ds 2 

where 7' - 7"(s) is a curve in A 3, defined as a function of the affine parameter  s, b c A 3, 
dy d2y 

a is a point of 7', and the vectors -37, -3-Us 2 are obtained at the point a. 

---+ dn- l y 
For A n n > 3 we h a v e d p a f f ( a , b ) - [ ( a b  ely , , , ds . . . . .  ~s,~-T )[. For an arbitrary parame- 

t ( n - l )  t 1-n 
trization 7, -- 7" (t), one obtains dpa~.(a, b) - [ ( a b ,  7" . . . . .  7" )[[(7' . . . . .  7'(n-I))[ i ~  

�9 Affine metric 

The atfine metric is a metric on a non-developable surface r - r (u l ,  U2) in an equi- 
affine space A 3, given by its metric t ensor  ((gij))" 

ai j  

gij = [det((aij))[1/4' 

where aij - (01r, 02r, Oijr), i, j c {1, 2}. 
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6.4. NON-EUCLIDEAN GEOMETRY 

The term n o n - E u c l i d e a n  G e o m e t r y  describes both Hyperbolic Geometry (or Lobachevsky 
Geometry, Lobachevsky-Bolyai-Gauss Geometry) and Elliptic Geometry (sometimes 
called also Riemannian Geometry) which are contrasted with Euclidean Geometry (or Par- 
abolic Geometry). The essential difference between Euclidean and non-Euclidean Geom- 
etry is the nature of parallel lines. In Euclidean Geometry, if we start with a line 1 and a 
point a, which is not on l, then we can only draw one line through a that is parallel to 1. 
In Hyperbolic Geometry  there are infinitely many lines through a parallel to 1. In Elliptic 
Geometry, parallel lines do not exist. 

The Spherical Geometry is also "non-Euclidean",  but it fails the axiom that any two 
points determine exactly one line. 

�9 Spherical metric 

Let Sn(0, r)  -- {x E R n+l"  X-"n+l /--~i=1 x2 -- r2} be a sphere in R n+l with the center 0 and 

the radius r > 0. 

The spherical metric (or great circle metric) dsph is a metric on S n (0, r),  defined by 

X--'n + 1 ) 
I z_~i-1 xiYil 

r arccos r2 , 

where arccos is the inverse cosine in [0, rc ]. It is the length of the great circle arc, passing 
_ _  X - - , n +  1 Rn+l  through x and y. In terms of the standard inner product (x, y) A..~i--1 Xi Yi on , 

the spherical metric can be written as r arccos I(x,y)l ~/(x,x)(y,y) " 
The metric space (S n (0, r), dsph) is called n-dimensional spherical space. It is a space of 
curvature 1 / r 2, and r is the radius of curvature. It is a model  of n-dimensional  Spherical 
Geometry. The great circles of the sphere are its geodesics, all geodesics are closed and 
of the same length. (See, for example, [Blum70].) 

�9 Elliptic metric 

Let R P  n be the real n-dimensional  projective space. The elliptic metric dell is a metric 
on R P  n, defined by 

r arccos 
I(x, y)l 

~/(x,x)(y, y)' 
where, for any x - (xl �9 . . .  �9 xn+l) ,  y - (Yl " . . .  " Yn+l) E R P  n, one has {x, y) - 

E n+l i=1 xi Yi, r is a fixed positive constant, and arccos is the inverse cosine in [0, re]. 

The metric space (RP  n, dell) is called n-dimensional elliptic space. It is a model  of 
n-dimensional  Elliptic Geometry. It is the space of curvature 1 / r  2, and r is the radius 
of curvature. As r --+ cx~, the metric formulas of Elliptic Geometry  yield formulas of 
Euclidean Geometry (or become meaningless).  

If R P  n is viewed as the set En(O, r), obtained from the sphere Sn(O, r) - {x E R n+l : 
i=1 x2 - r2} in with the center 0 and the radius r by identifying diametrically- 

opposite points, then the elliptic metric on En(O,r)  can be written as dsph(X, y) if 
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Jr @ h  (x y) if @ h  (x, y) > -S r, where @ h  is the spherical dsph(X, y) <~ -fir, and as rcr - , Jr 
metric on Sn(0, r).  Thus, no two points of En(0,  r) have distance exceeding gr.Jr The 

elliptic space (E2(0,  r), dell) is called Poincard sphere�9 

If R P  n is viewed as the set E n of lines through the zero element 0 in R n+l, then the 

elliptic metric on E n is defined as the angle between the corresponding subspaces. 

An n-dimensional  elliptic space is a Riemannian space of constant positive curvature�9 It 
is the only such space which is topologically equivalent to a projective space. (See, for 

example, [Blum70], [Buse55].) 

�9 Hermitian elliptic metric 

Let C pn  be the n-dimensional  complex projective space. The Hermitian elliptic metric 
delH1 (see, for example, [Buse55]) is a metric on C P  n, defined by 

r arccos 
I(x, Y)l 

~/(x, x ) (y ,  y) 

where, for any x - (Xl �9 . . .  �9 Xn+l), y - (yl " . . .  " yn+l) c C P  n, one has (x, y) - 

z n + l  - -  
i = 1  xiYi, r is a fixed positive constant, and arccos is the inverse cosine in [0, re]. 

The metric space ( C P  n, dell) is called n-dimensional  Hermitian elliptic space (cf. 
Fubini-Study metric). 

�9 Elliptic plane metric 

The elliptic plane metric is the elliptic metric on the elliptic plane R P  2. If R P  2 is 

viewed as the Poincard sphere (i.e., a sphere in R 3 with identified diametrically-opposite 

points) of diameter 1 tangent to the extended complex plane C - C U {cx~} at the point 

z - 0, then, under the stereographic projection from the "north pole" (0, 0, 1), C with 
1 is a model  of the elliptic plane, and the elliptic plane metric identified points z and - ~  

dell on it is defined by its line element ds 2 = Idzl2 
( l + l z l 2 )  2-  

�9 Pseudo-elliptic distance 

The pseudo-elliptic distance (or elliptic pseudo-distance) dpell is a distance on the 
--  1 defined by extended complex plane C - C U { oc} with identified points z and - z '  

Z m U  

1 +-~u 

In fact, dpell(Z, u) -- tan dell(Z, u), where dell is the elliptic plane metric. 

�9 Hyperbolic metric 

Let R P  n be the n-dimensional  real projective space. Let, for any x -- (Xl �9 . . .  �9 
�9 . v , n + l  Xn+l), y -- (Yl . . .  Yn+l) c R P  n, the scalar product (x, y) - - X l Y l  + z_,i=2 xiYi  

be considered. 
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The hyperbolic metric dhyp is a metric on the set H n -- {x c R P  n" (x, x) < 0}, 

defined by 

I(x, y)l 
r arccosh 

~/ (x ,x ) (y ,  y) 

where r is a fixed positive constant, and arccosh denotes the non-negative values of 
the inverse hyperbolic cosine�9 In this construction, the points of H n can be viewed as 
the one-spaces of the pseudo-Euclidean space R n'l inside the cone C - {x c Rn ' I :  

(x, x) - 0}. 

The metric space (H  n, dhyp) is called n-dimensional hyperbolic space�9 It is a model  of 
n-dimensional  Hyperbolic Geometry. It is the space of curvature - 1 / r  2, and r is the 
radius of curvature�9 Replacement  of r by i r transforms all metric formulas of Hyper- 
bolic Geometry  into the corresponding formulas of Elliptic Geometry�9 As r --+ cx~, both 
systems yield formulas of Euclidean Geometry  (or become meaningless).  

If H n is viewed as the set {x c R n" Ein_l X/2 < K}, where K > 1 is an arbitrary fixed 

constant, the hyperbolic metric can be written as 

r 1 + ~/1 - y (x ,  y) (K -- ~ i n l  x 2 ) ( K  -- ~ i n l  y2) 
- I n  , w h e r e y ( x , y ) -  
2 1 - -  x /1  - -  y ( X ,  y) (K  -- ~in=l xiYi)  2 

1 1 and r is a positive number  with tanh 7 - CK" 

If H n is viewed as a submanifold of the (n + 1)-dimensional pseudo-Euclidean space 
x-~n+l  R n,1 with the scalar product (x, y) - - x l y l  + /--~i=2 xiYi (in fact, as the top sheet 

{x c R n'l" (x ,x )  - - 1 , x l  > 0} of the two-sheeted hyperboloid of revolution), then 
the hyperbolic metric on H n is induced from the pseudo-Riemannian metric on R n'l 

(cf. Lorentz metric). 

An n-dimensional  hyperbolic space is a Riemannian space of constant negative curva- 
ture. It is the only such space which is comple te  and topologically equivalent to an 
Euclidean space�9 (See, for example, [Blum70], [Buse55].) 

�9 Hermitian hyperbolic metric 

Let C P n be the n-dimensional  complex projective space. Let, for any x -- (xl �9 �9 
�9 . - -  x - ~ n + l  - -  xn+l), y -- (Yl . . .  Yn+I) c C P  n, the scalar product (x, y) - - x l y l  + z_,i=2 xiYi 

be considered. 

The Hermitian hyperbolic metric dhHyp (see, for example, [Buse55]) is a metric on the 
s e t C H  n - { x  c C P  n" (x ,x )  < 0 } , d e f i n e d b y  

r arccosh 
I(x, y)l 

~/ (x ,x ) (y ,  y) 

where r is a fixed positive constant, and arccosh denotes the non-negative values of the 
inverse hyperbolic cosine�9 

H The metric space ( C H  n, dhyp) is called n-dimensional  Hermitian hyperbolic space�9 
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�9 P o i n c a r 6  m e t r i c  

The P o i n c a r 6  m e t r i c  dp is the h y p e r b o l i c  m e t r i c  for the Poincard disk model (or con- 

formal  disk model) of Hyperbolic Geometry. In this model every point of the unit disk 

za = {z ~ C :  Izl < 1 } is called hyperbolic point,  the disk A itself is called hyper- 

bolic plane, circular arcs (and diameters) in A which are orthogonal to the absolute 

s? = {z ~ C :  Izl = 1 } are called hyperbolic straight lines. Every point of S-2 is called 
ideal point. The angular measurements in this model are the same as in Hyperbolic 
Geometry. The Poincard metric on A is defined by its line element 

d s  2 = dzl 2 _ - dz  2 -+- dz  2 

(1 - I z 1 2 )  2 (1 - z 2 - z2) 2" 

The distance between two points z and u of A can be written as 

1 I I - z ~  -+- z - u l  z - u l  
- In = arctanh 
2 I I - z ~  - z - u l  I I - z ~  

In terms of cross-ratio, it is equal to 

1 1 ( z * - z ) ( u *  - u )  
- In(z ,  u,  z* ,  u*)  - -  - In 
2 2 (z* - u)(u* - z) '  

where z* and u* are the points of intersection of the hyperbolic straight line passing 
through z and u with S2, z* on the side of u, and u* on the side of z. 

In the Poincard half-plane model of Hyperbolic Geometry the hyperbolic plane is the 
upper half-plane H 2 = {z c C: z2 > 0}, and the hyperbolic lines are semi-circles 
and half-lines which are orthogonal to the real axis. The absolute (i.e., the set of ideal 

points) is the real axis together with the point at infinity. The angular measurements in 
the model are the same as in Hyperbolic Geometry. The line element of the P o i n c a r ~  

m e t r i c  on H 2 is given by 

d s  2 = dzl 2 _ - dz  2 -q- dz  2 

(~z~ 2 z~ 

The distance between two points z, u can be written as 

1 z - ~  + z - u l  
- In = arctanh 
2 z - ~ -  z - u l  

Iz - ul 

I z - ~  

In terms of cross-ratio, it is equal to 

1 1 ( z * - z ) ( u * - u )  
- In(z ,  u,  z* ,  u*)  - -  - In 
2 2 (z* - u)(u* - z) '  

where z* is the ideal point of the half-line emanating from z and passing through u, and 
u* is the ideal point of the half-line emanating from u and passing through z. 
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In general, the hyperbolic metric in any domain D C C with at least three boundary 
points is defined as the preimage of the Poincar6 metric in A under a conformal mapping 
f : D --+ A. Its line element has the form 

ds2= I f ' (z) l  2 dzl 2 
(1 - I f ( z ) 1 2 )  2" 

The distance between two points z and u in D can be written as 

1 
- In 
2 

I1 - f ( z ) f ( u ) l - + - I f ( z ) -  f ( u ) l  

I1 - f ( z ) f ( u ) l -  I f ( z ) -  f ( u ) l  

�9 Pseudo-hyperbolic distance 

The pseudo-hyperbolic distance (or Gleason distance, hyperbolic pseudo-distance) 
dphyp is a metric on the unit disk A = {z c C: Izl < 1 }, defined by 

Z m U  

1 - 2u 

In fact, dphyp(Z, u) = tanh dp (z, u), where dp is the Poincar6 metric on A. 

�9 Cayley-Klein-Hilbert  metric 

The Cayley-Klein-Hilbert  metric dcKI4 is the hyperbolic metric for the Klein model 
(or projective disk model, Beltrami-Klein model) for Hyperbolic Geometry. In this 
model the hyperbolic plane is realized as the unit disk A = {z c C: Izl < 1 }, and 
the hyperbolic straight lines are realized as the chords of A. Every point of the absolute 
S-2 = {z c C: Izl = 1 } is called ideal point. The angular measurements  in this model 
are distorted. The Cayley-Klein-Hilbert  metric on A is given by its metric tensor 
((gij)), i, j = 1, 2: 

 2(1 _ z2)  2z z2  2(1 _ z2) 

g 1 1 -  ( 1 - z  2 - z 2 )  2' g 1 2 -  ( 1 - z  2 - z 2 )  2' g 2 2 -  ( 1 - z  2 - z 2 )  2' 

where r is an arbitrary positive constant. The distance between points z and u in A can 
be written as 

1 --ZlUl  --Z2U2 ) 
r arccosh 

v / ,  _ _ _ . 2  _ . 2  

where arccosh denotes the non-negative values of the inverse hyperbolic cosine. 

�9 Weierstrass metric 

Given a real n-dimensional inner product space (R n, ( , )) ,  n ) 2, the Weierstrass 
metric dw is a metric on R n, defined by 
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where arccosh denotes the non-negative values of the inverse hyperbolic cosine. 

Here, (x, ~/1 + (x, x))  c R n • R  are the Weierstrass coordinates o fx  c R n, and the met- 

ric space (R n , dw)  can be identified with the Weierstrass model of Hyperbolic Geometry. 

The C a y l e y - K l e i n - H i l b e r t  metr i c  

dCKH(X, y) = arccosh 
1 - ( x , y )  

~/1 - (x, x )~ /1  - (y, y) 

on the s e t B  n = {x c Rn:  (x ,x )  < 1} can be obtained from dw bydGKH(X,y)  = 
X d w ( # ( x ) ,  # ( y ) ) ,  where # �9 R n --+ B n is the Weierstrass mapping: # ( x )  - ~/1-<x,x>" 

�9 Q u a s i - h y p e r b o l i c  metr i c  

Given a domain D C R n, n ~> 2, the q u a s i - h y p e r b o l i c  metr i c  is a metric on D, defined 

by 

inf fy  Idzl 
x ~ r  p ( z )  ' 

where the infimum is taken over the set F of all rectifiable curves connecting x and y in 

D, p ( z )  = infueaD IIz - ul12 is the distance between z and the boundary OD of D, and 

II. 112 is the Euclidean norm on R n. 

For n = 2, one can define the h y p e r b o l i c  metr ic  on D by 

21f ' (z) l  
inf dzl 

x c r  1 - I / ( z ) l  2 ' 

where f : D -+ A is any conformal mapping of D onto the unit disk A = {z c C:  
Izl < 1 }. For n ~> 3, this metric is defined only for the half-hyperplane H n and for the 

21dzl 
open unit ball B n as the infimum over all g c F of the integrals f y  Idz___! and fy 1_11z112 

Zrt 

respectively. 

�9 A p o l l o n i a n  metr i c  

Let D C R n, D ~: R n, be a domain such that the complement  of D is not contained in 

a hyperplane or a sphere. 

The A p o l l o n i a n  metr i c  (or B a r b i l i a n  metr ic ,  [Barb35]) is a metric on D, defined by 

Ila - x 112 lib - y 112 
sup In 

a,bcOD a - - y  2 b - x  2 

where O D is the boundary of D, and II. ]]2 is the Euclidean norm on R n. 

�9 H a l f - A p o l l o n i a n  metr ic  

Given a domain D C R n, D ~: R n, the h a l f - A p o l l o n i a n  metr i c  is a metric on D, 

defined by 
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sup 
acOD 

In 
Ila - y 112 

Ila - x l l 2  

where 0 D is the boundary of D, and II. ll2 is the Euclidean norm on R n. 

�9 Gehring metric 

Given a domain D C R n, D # R n, the Gehring metric (or jo-metric) is a metric on 
D, defined by 

l l n  1 + - -  1 +  
2 p(x) p(y) 

where ll.ll2 is the Euclidean norm on R n, and p(x) = infuc0O Ilx - ul[2 is the distance 
between x and the boundary 0 D of D. 

�9 Vuorinen metric 

Given a domain D C R n, D ~ R n, the Vuorinen metric (or jD-metric) is a metric on 
D, defined by 

In 1 + m i n { p ~ ) ; p ? y ) }  ' 

where 11o112 is the Euclidean norm on R n, and p(x) = infuc0O Ilx - ull2 is the distance 
between x and the boundary 0 D of D. 

�9 Ferrand metric 

Given a domain D C R n, D ~= R n, the Ferrand metric is a metric on D, defined by 

fy a - b 2  inf sup dzl, 
x~r  a,b~Oo IIz--  all2 z -  b 2 

where the infimum is taken over the set F of all rectifiable curves connecting x and y in 
D, 0 D is the boundary of D, and II. 112 is the Euclidean norm on R n. 

�9 Seittenranta metric 

Given a domain D C R n, D ~= R n, the Seittenranta metric (or distance ratio metric, 
cross-ratio metric) is a metric on D, defined by 

/ 
In [ 1 + sup  

a,bcOD \ 
a - x 2 b - y 2 )  
a - b  2 [ [ x - y  2 ' 

where O D is the boundary of D, and II. 112 is the Euclidean norm on R n. 

�9 Modulus  metric 

Let D C R n, D r R n, be a domain, whose boundary 0 D has positive capacity. 

The modulus  metric (or conformal metric) is a metric on D, defined by 

inf M(A(Cxy, OD, D)), 
Cxy 
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where  M ( F )  is the conformal modulus of the curve family F ,  and Cxy is a con t inuum 

such that for some g : [0, 1] ---> D we have the fol lowing propert ies:  Cxy = g([O, 1]), 

g (0) = x, and g (1) = y (cf. extremal metric). 

�9 Ferrand second metric 

Let  D C R",  D # R",  be a domain such that IRn\{D}I ~ 2. The Ferrand second 
metric is a metr ic  on D, defined by 

1 

inf C,, 
Cx, Cy 

where  M ( F )  is the conformal modulus of the curve family F ,  and Cz, z = x, y, is 

a con t inuum such that for some Fz : [0, 1] --+ D we have the fol lowing propert ies:  

Cz = F([0,  1)), z 6 IFzl, and Fz(t) --+ OD as t --+ 1 (cf. extremal metric). 

�9 Parabolic distance 

The parabolic distance is a metr ic  on R n+l ,  cons idered as R n • R, defined by 

/(Xl - y l )  2 + . . .  + (xn - yn) 2 + Itx - tyl 1/m, m 6 H, 

for any x = (xl . . . . .  xn, tx), y = (Yl . . . . .  Yn, ty) 6 R n • R. 

The space R n • R can be interpreted as mul t id imens iona l  space-time. 

Usually, the value m = 2 is applied. There  exist some variants of the parabol ic  distance, 

for example,  the parabol ic  distance 

sup{Ix1 - Nil, x2 - -  Y211/2 } 

o n  R 2, or the half-space parabolic distance on R3+ - {x 6 R 3" xl  ~> 0}, defined by 

Ix1 - Y l I +  Ix2 - Y21 

+ ~ + ~/Ix2 - 721 
+ v/Ix3 - Y31. 
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Riemannian and Hermitian Metrics 

Riemannian Geometry is a multi-dimensional generalization of the intrinsic geometry 
of two-dimensional surfaces in the Euclidean space E 3. It studies real smooth mani- 
folds equipped with Riemannian metrics, i.e., collections of positive-definite symmet- 
ric bilinear forms ((gij)) o n  their tangent spaces which varies smoothly from point 
to point. The geometry of such (Riemannian) manifolds is based on the line element 
ds2 - -  Z i , j  gijdxidxj. This gives in particular local notions of angle, length of curves, 
and volume. From those some other global quantities can be derived, by integrating local 
contributions. Thus, the value ds is interpreted as the length of the vector (dxl . . . . .  dxn); 

the arc length of a curve Y is expressed by fz v/~i,J gijdxidxj; then the intrinsic met- 

rie on a Riemannian manifold is defined as the infimum of lengths of curves joining two 
given points of the manifold. Therefore, a Riemannian metric is not an ordinary metric, but 
it induced an ordinary metric, in fact, the intrinsic metric, sometimes called Riemannian 
distance, on any connected Riemannian manifold; a Riemannian metric is an infinitesimal 
form of the corresponded Riemannian distance. 

As particular special cases of Riemannian Geometry, there occur two standard types, El- 
liptic Geometry and Hyperbolic Geometry, of Non-Euclidean Geometry, as well as Euclid- 
ean Geometry itself. 

If the bilinear forms ((gij)) are non-degenerate but indefinite, one obtains the Pseudo- 
Riemannian Geometry. In the case of dimension four (and signature (1, 3)) it is the main 
object of the General Theory of Relativity. If ds = F (xl . . . . .  x , ,  dxl . . . . .  dxn), where 
F is a real positive-definite convex function which can not be given as the square root of 
a symmetric bilinear form (as in the Riemannian case), one obtains the Finsler Geometry 
generalizing Riemannian Geometry. 

Hermitian Geometry studies complex manifolds equipped with Hermitian metrics, i.e., 
collections of positive-definite symmetric sesquilinear forms on their tangent spaces, which 
varies smoothly from point to point. It is a complex analog of Riemannian Geometry. 
A special class of Hermitian metrics form K~ihler metrics which have closed fundamental 
form w. A generalization of Hermitian metrics give complex Finsler metrics which can 
not be written in terms of a bilinear symmetric positive-definite sesqulinear form. 

7.1. RIEMANNIAN METRICS AND GENERALIZATIONS 

A real n-dimensional manifold with boundary M" is a Hausdorff  space in which every 
point has an open neighborhood homeomorphic to either an open subset of E ' ,  or an open 
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subset of the closed half of IE n. The set of points which have an open neighborhood homeo- 

morphic to IE n is called interior (of the manifold); it is always non-empty. The complement  

of the interior is called boundary (of the manifold); it is an (n - 1)-dimensional manifold. If 

the boundary of M n is empty, one obtains a real n-dimensional manifold without boundary. 
A manifold without boundary is called closed if it is compact, and open, otherwise. 

An open set of M n together with a homeomorphism between the open set and an open 

set of IE n is called coordinate chart. A collection of charts which cover M n is called atlas 
on M n. The homeomorphisms of two overlapping charts provide a transition mapping 

from a subset of IE n to some other subset of IE n. If all these mappings are continuously 

differentiable, then M n is called differentiable manifold. If all the connecting mappings 

are k times continuously differentiable, then the manifold is called C k manifold; if they 

are infinitely often differentiable, then the manifold is called smooth manifold (or C ~ 

manifold). 
An atlas of a manifold is called oriented if the coordinate transformations between charts 

are all positive, i.e., the Jacobians of the coordinate transformations between any two charts 

are positive at every point. An orientable manifold is a manifold admitting an oriented atlas. 

Manifolds inherit many local properties of the Euclidean space. In particular, they are 

locally path-connected, locally compact, and locally metrizable. 

Associated with every point on a differentiable manifold is a tangent space and its dual, 
a cotangent space. Formally, let M n be an C k manifold, k /> 1, and p is a point of M n. 

Fix a chart q0" U ~ IE n, where U is an open subset of M n containing p. Suppose two 
curves F 1 . ( _  1, 1) --+ M n and y2 . ( _  1, 1) --+ M n with F 1 (0) -- y2 (0) -- p are given 

such that 99 �9 F 1 and 99 �9 F 2 are both differentiable at 0. Then F 1 and F 2 are called tangent 
at 0 if the ordinary derivatives of 99 �9 F 1 and 99. F 2 coincide at 0" (99. F1)~(0) - (99 �9 
F2)~(0). If the functions qg. ?,i. ( - 1 ,  1) --+ E n, i - 1, 2, are given by n real-valued 

component  functions (99 �9 Fi)l (t) . . . . .  (99 �9 Fi)n(t), the condition above means, that their 

Jacobians ( d(~oy~)~ (t) d(~o.y~)~(t) . . . . .  dt ) coincide at 0. This is an equivalence relation, and 
the equivalence class y~ (0) of the curve y is called tangent vector of M n at p. The tangent 
space Tp(M n) of M n at p is defined as the set of all tangent vectors at p. The function 

(dcp)p �9 Tp(M n) --+ E n, defined by (dqg)p(y~(0)) - (qg. y)~(0) is bijective, and can be 

used to transfer the vector space operations from ]E n over to Tp(Mn). 
All the tangent spaces Tp(Mn), p c M n, "glued together", form the tangent bundle 

T ( M  n) of M n. Any element of T ( M  n) is a pair (p, v), where v c Tp(Mn). If for an open 

neighborhood U of p the function q9 �9 U --+ R n is a coordinate chart, then preimage V of 

U in T ( M  n) admits a mapping ~ �9 V --+ R n x R n, defined by g/(p, v) - (r dcp(p)). 

It defines structure of smooth 2n-dimensional manifold on T(Mn) .  The cotangent bundle 
T* (M n) of M n is obtained in similar manner using cotangent spaces Tp (Mn), p c M n. 

A vector field on a manifold M n is a section of its tangent bundle T(Mn) ,  i.e., a smooth 

function f �9 M n ---> T ( M  n) which assigns to every point p c M n a vector v c Tp(Mn). 
A connection (or covariant derivative) is a way of specifying a derivative of a vector 

field along another vector field on a manifold. Formally, the covariant derivative yz of a 

vector u (defined at a point p c M n) in the direction of the vector v (defined at the same 

point p)  is a rule that defines a third vector at p, called Vvu, which has the properties 

of a derivative. A Riemannian metric uniquely defines a special covariant derivative called 
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Levi-Civita connection. It is the torsion-free connection V of the tangent bundle, preserving 
the given Riemannian metric. 

The Riemann curvature tensor R is the standard way to express the curvature of Rie- 
mannian manifolds. The Riemann curvature tensor can be given in terms of the Levi-Civita 
connection V by the following formula: 

R(u, v)w = VuVvw - VvVuw - V[u,vlw, 

where R (u, v) is a linear transformation of the tangent space of the manifold Mn; it is linear 
0 0 in each argument. If u - ~ ,  v - ~ are coordinate vector fields, then [u, v] - 0, and the 

formula simplifies to R(u, v)w = V,  Vvw - VvV,  w, i.e., the curvature tensor measures 
anti-commutativity of the covariant derivative. The linear transformation w -+ R(u, v)w 
is also called curvature transformation. 

The Ricci curvature tensor (or Ricci curvature) Ric is obtained as the trace of the full 
curvature tensor R. It can be thought of as a Laplacian of the Riemannian metric tensor in 
the case of Riemannian manifolds. Ricci curvature tensor is a linear operator on the tangent 
space at a point. Given an orthonormal basis (ei)i in the tangent space Tp (Mn), we have 

Ric(u) -- Z R(u, ei)ei. 
i 

The result does not depend on the choice of an orthonormal basis. Starting with dimension 
four, the Ricci curvature does not describe the curvature tensor completely. 

Ricci scalar (or scalar curvature) Sc of a Riemannian manifold M n is the full trace of 

the curvature tensor; given an orthonormal basis (ei)i at p c M n, we have 

S c -  ~ ( R ( e i ,  e j )e j ,  e i ) -  ~ ( R i c ( e i ) ,  ei). 
i,j i 

Sectional curvature K (a)  of a Riemannian manifold M n is defined as the Gauss cur- 
vature of an a-section at a point p c M n. Here, given an 2-plane a in the tangent space 
Tp(Mn), an a-section is a locally-defined piece of surface which has the plane a as a tan- 
gent plane at p, obtained from geodesics which start at p in the directions of the image of 
a under the exponential mapping. 

�9 M e t r i c  t e n s o r  

The m e t r i c  t e n s o r  (or basic tensor, fundamental tensor) is a symmetric tensor of rank 
2, that is used to measure distances and angles in a real n-dimensional differentiable 
manifold M n. Once a local coordinate system (xi)i is chosen, the metric tensor appears 
as a real symmetric n x n matrix ((gij)). 

The assignment of a metric tensor on an n-dimensional differentiable manifold M n in- 
troduces a scalar product (i.e., symmetric bilinear but, in general, not positive-definite 
form) ( , )p on the tangent space Tp(M n) at any point p c M n, defined by 

(x, y)p -- gp(X, y) -- Z gi j (p)xiYj ,  
i,j 
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where gij(P) is a value of the metric tensor at the point p c M n, and x - (xl . . . . .  xn), 
Y - (Yl . . . . .  Yn) c Tp(Mn).  The collection of all these scalar products is called metric 
g with the metric t e n s o r  ((gi j)) .  The length ds of the vector (dxl . . . . .  dxn) is expressed 
by the quadratic differential form 

ds2 - Z gij dxi  d x j ,  
i,j 

which is called line element (or first fundamental  form) of the metric g. The length of a 

curve F is expressed by the formula fy  V / ~ i , j  g i jdx idx j .  In general case it may be real, 

purely imaginary, or zero (an isotropic curve). 

The signature of a metric tensor is the pair (p, q) of positive (p) and negative (q) eigen- 
values of the matrix ((gi j)) .  The signature is said to be indefinite if both p and q are 
non-zero, and positive-definite if q = 0. A Riemannian metric is a metric g with a 
positive-definite signature (p, 0), and a pseudo-Riemannian metric is a metric g with an 
indefinite signature (p, q). 

�9 Non-degenerate metric 

A non-degenerate metric is a metric g with the metric t e n s o r  ((gi j)) ,  for which the 
metric discriminant det((gij)) :/: O. All Riemannian and pseudo-Riemannian metrics 
are non-degenerate. 

A degenerate metric is a metric g with the metric tensor ((gij)) for which the metric dis- 
criminant det((gij)) = 0 (cf. semi-Riemannian metric and semi-pseudo-Riemannian 
metric). A manifold with a degenerate metric is called isotropic manifold. 

�9 Diagonal metric 

A diagonal metric is a metric g with a metric t e n s o r  ((gi j ))  which is zero for i ~: j .  The 
Euclidean metric is a diagonal metric, as its metric tensor has the form gii = 1, gij = 0 
for i ~: j .  

�9 Riemannian metric 

Consider a real n-dimensional differentiable manifold M n in which each tangent space is 
equipped with an inner product (i.e., a symmetric positive-definite bilinear form) which 
varies smoothly from point to point. 

A Riemannian metric on M n is a collection of inner products (,) p on the tangent spaces 
Tp (Mn), one for each p c M n. 

Every inner product ( ,)p is completely defined by inner products (ei, ej)p - gij(P) 
of elements el . . . . .  en of standard basis in E n, i.e., by real symmetric and positive- 
definite n • n matrix ((gi j ))  -- ( (g i j (P) ) ) ,  called metric tensor. In fact, (x, y)p = 
Z i , j  g i j ( p ) x i Y j ,  where x - (xl . . . . .  xn), y - (Yl . . . . .  Yn) c Tp(Mn).  The smooth 
function g completely determines the Riemannian metric. 

A Riemannian metric on M n is not an ordinary metric on M n . However, for a connected 
manifold M n, every Riemannian metric on M n induces an ordinary metric on M n, in 
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fact, the intrinsic metric  of Mn; for any points p, q c M n the Riemannian  distance 

between them is defined as 

l (dy dy)  /0 dxidx  inf d t - inf gij d t, 
Y do d t '  dt y . .  dt dt 

where the infimum is taken over all rectifiable curves F : [0, 1] --+ M n, connecting p 
and q. 

A Riemannian manifold (or Riemannian space) is a real n-dimensional differentiable 
manifold M n equipped with a Riemannian metric. The theory of Riemannian spaces is 
called Riemannian Geometry. The simplest examples of Riemannian spaces are Euclid- 
ean spaces, hyperbolic spaces, and elliptic spaces. A Riemannian space is called com- 
plete if it is a complete  metric space. 

�9 Conformal  structure 

A conformal  structure on a vector space V is a class of pairwise-homothetic Euclidean 
metrics on V. Any Euclidean metric dE on V defines a conformal structure {)~dE : )~ > 
0}. 

A conformal  structure on a manifold is a field of conformal structures on the tangent 

spaces or, equivalently, a class of conformally equivalent Riemannian metrics. Two Rie- 
mannian metrics g and h on a smooth manifold M n are called conformally equivalent if 
g : f �9 h for some positive function f on M n, called conformalfactor. 

�9 Conformal  space 

The conformal  space (or inversive space) is the Euclidean space E n extended by an ideal 
point (at infinity). Under conformal transformations, i.e., continuous transformations 
preserving local angles, the ideal point can be taken to an ordinary point. Therefore, in a 
conformal space a sphere is indistinguishable from a plane: a plane is a sphere passing 
through the ideal point. 

Conformal spaces are considered in Conformal Geometry (or Angle-Preserving Geom- 
etry, MO'bius geometry, Inversive Geometry) in which properties of figures are studied 
that are invariant under conformal transformations. It is the set of transformations that 
map spheres into spheres, i.e., generated by the Euclidean transformations together with 

inversions which in coordinate form are conjugate to X i ~ r2xi  ~ j  x}, where r is the radius 

of the inversion. An inversion in a sphere becomes an everywhere well-defined automor- 
phism of period two. Any angle inverts into an equal angle. 

The two-dimensional conformal space is the Riemann sphere, on which the conformal 
az+b transformations are given by the MO'bius transformations z --+ c-2T-d' ad - bc ~= O. 

In general, a conformal mapping between two Riemannian manifolds is a diffeomor- 
phism between them such that the pulled back metric is conformally equivalent to the 
original one. A conformal  Eucl idean space is a Riemannian space admitting a confor- 
mal mapping onto an Euclidean space. 
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In the General Theory of Relativity, conformal transformations are considered on the 
Minkowski space R1'3 extended by two ideal points. 

�9 Space of constant  curvature 

A space of constant  curvature is a Riemannian space M n for which the sectional cur- 
vature K (~) is constant in all two-dimensional directions ~. 

A space form is a connected complete space of constant curvature. A flat space is a 
space form of zero curvature. 

The Euclidean space and the flat toms are space forms of zero curvature (i.e., flat spaces), 
the sphere is a space form of positive curvature, the hyperbolic space is a space form of 
negative curvature. 

�9 General ized Riemannian  spaces 

A general ized Riemannian  space is a metric space with the intrinsic metric,  subject to 
certain restrictions on the curvature. Such spaces include spaces of  bounded curvature, 

Riemannian spaces, etc. Generalized Riemannian spaces differ from Riemannian spaces 
not only by greater generality, but also by the fact that they are defined and investigated 
on the basis of their metric alone, without coordinates. 

A space ofbounded curvature (<~ k and ~> U) is a generalized Riemannian space, defined 
by the condition" for any sequence of geodesic triangles Tn contracting to a point we 
have 

- -  ~(r~) ~(r~) k', k ~> lim ~> lim ~> ~(ro> (to> 

where a geodesic triangle T -- x y z  is the triplet of geodesic segments [x, y], [y, z], 
[z, x] (the sides of T) connecting in pairs three different points x, y, z, 8(T) -- oe +/~ + 
y - :r is the excess of the geodesic triangle T, and ~ (T ~ is the area of an Euclidean 
triangle T o with the sides of the same lengths. The intrinsic metric on the space of 
bounded curvature is called metric of bounded curvature.  Such a space turns out to be 
Riemannian under two additional conditions: local compactness of the space (this en- 
sures the condition of local existence of geodesics), and local extendibility of geodesics. 
If in this case k - U, it is a Riemannian space of constant curvature k (cf. space of 
geodesics).  

A space of curvature ~< k is defined by the condition lim s!rn) ~< k. In such space any 
(7 t i n ]  

point has a neighborhood in which the sum oe +/~ + y of the angles of a geodesic triangle 
T does not exceed the sum oe~ + / ~  + y~ of the angles of a triangle T ~ with sides of 
the same lengths in a space of constant curvature k. The intrinsic metric of such space is 
called k-concave metric. 

A space of curvature ~> k is defined by the condition lim s!rn) ~> k. In such space any 
(7 t i n )  

point has a neighborhood in which oe +/~  + y ~> oe~ + / ~  + y~ for triangles T and T ~. 
The intrinsic metric of such space is called K-concave  metric. 

An Alexandrov space is a generalized Riemannian space with upper, lower or integral 
curvature bounds. 
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�9 C o m p l e t e  R i e m a n n i a n  metr ic  

A Riemannian metric g on a manifold M n is called comple te  if M n forms a c o m p l e t e  

metric space with respect to g. Any Riemannian metric on a compact  manifold is com- 

plete. 

�9 Ricci-f lat  metr i c  

A Ricci-f lat  metr i c  is a Riemannian metric with vanished Ricci curvature tensor. 

A Ricci-flat manifold is a Riemannian manifold equipped with a Ricci-flat metric. Ricci- 

flat manifolds represent vacuum solutions to the Einstein field equation, and are spe- 
cial cases of Kdhler-Einstein manifolds. Important  Ricci-flat manifolds are Calabi-Yau 
manifolds, and hyper-Kdhler manifolds. 

�9 O s s e r m a n  metr ic  

An O s s e r m a n  metr ic  is a Riemannian metric for which the Riemannian curvature ten- 

sor R is Osserman. It means, that the eigenvalues of the Jacobi operator , f ( x )  : y --+ 
R(y,  x)x  are constant on the unit sphere S n-1 in E n, i.e., they are independent  of the 

unit vectors x. 

�9 G- invar iant  metr ic  

An G-invar iant  metr i c  is a Riemannian metric g on a differentiable manifold M n, that 

does not change under any of the transformations of a given Lie group (G,. ,  id) of 

transformations. The group (G, ., id) is called group of motions (or group of isometries) 
of the Riemannian space (M n, g). 

�9 I v a n o v - P e t r o v a  metr ic  

Let R be the Riemannian curvature tensor of a Riemannian manifold M n, let {x, y} be 

an orthogonal basis for an oriented 2-plane :r in the tangent space Tp(M n) at a point p 
of M n. 

The I v a n o v - P e t r o v a  metr ic  is a Riemannian metric on M n, for which the eigenvalues 

of the antisymmetric curvature operator g(zc)  = R (x, y) ([IvSt95]) depend only on the 
point p of a Riemannian manifold M n, but not upon the plane zc. 

�9 Zoll  metr ic  

A Zoll  me t r i c  is a Riemannian metric on a smooth manifold M n whose geodesics are 

all simple closed curves of an equal length. A two-dimensional  sphere S 2 admits many 

such metrics, besides the obvious metrics of constant curvature. In terms of cylindrical 

coordinates (z, 0) (z c [ - 1 ,  1], 0 c [0, 27r]), the line element 

d s 2 =  (1 -+- f ( z ) )  2 
1 - z 2 

dz 2 -+- (1 - z2)dO 2 

defines a Zoll metric o n  S 2 for any smooth odd function f : [ - 1 ,  1] ---> ( - 1 ,  1) which 

vanishes at the end points of the interval. 
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�9 Cycloidal  metric  

The cycloidal  metric  is a Riemannian metric on the half-plane R2+ - {x c R 2" x l 
0}, defined by this line element 

d s  2 = 
+ 

2Xl 

It is called cycloidal because its geodesics are cycloid curves. The corresponding dis- 
tance d(x ,  y) between two points x, y c R 2 is equivalent to the distance 

p(x, y) -- 
Xl - yll + X2 - -  y21 

v/~i- + ~&-~ + ~ /x2  - y21 

in the sense that d <<, Cp, and p <<, Cd for some positive constant C. 

�9 Berger  metric  

The Berger  metric  is a Riemannian metric on the Berger sphere (i.e., the three-sphere 
S 3 squashed in one direction), defined by the line element 

ds 2 - dO 2 + sin 2 0 dq52 + cos 2 o t (d~ + cos 0 dqS) 2, 

where ol is a constant, and 0, ~b, ~ are Euler angles. 

�9 C a r n o t - C a r a t h 6 o d o r y  metric  

A distribution (or polarization) on a manifold M n is a subbundle of the tangent bundle 
T ( M  n) of M n. Given a distribution H(Mn),  a vector field in H ( M  n) is called horizon- 
tal. A curve Y on M n is called horizontal (or distinguished, admissible) with respect 
to H ( M  n) if y~(t) c Hy(t)(M n) for any t. A distribution H ( M  n) is called completely 
non-integrable if the Lie brackets [ . . .  , [H(Mn) ,  H(Mn) ] ]  of H ( M  n) span the tangent 
bundle T(Mn), i.e., for all p c M n any tangent vector v from Tp(M n) can be pre- 
sented as a linear combination of vectors of the following types: u, [u, w], [u, [w, t]], 
[u, [w, It, s]]] . . . .  c Tp (Mn), where all vector fields u, w, t, s . . . .  are horizontal. 

The C a r n o t - C a r a t h 6 o d o r y  metric  (or C-C metric) is a metric on a manifold M n with 
a completely non-integrable horizontal distribution H(Mn),  defined as the section gc of 
positive-definite scalar products on H(Mn).  The distance de(p,  q) between any points 
p, q c M n is defined as the infimum of the gc- lengths  of the horizontal curves, joining 
the points p and q. 

A sub-Riemannian manifold (or polarized manifold) is a manifold M n equipped with a 
Carnot-Carath6odory metric. It is a generalization of a Riemannian manifold. Roughly, 
in order to measure distances in a sub-Riemannian manifold, one is allowed to go only 
along curves tangent to horizontal spaces. 

�9 P s e u d o - R i e m a n n i a n  metric  

Consider a real n-dimensional  differentiable manifold M n in which every tangent space 
Tp (Mn),  p c M n, is equipped with a scalar product which varies smoothly from point 
to point and is non-degenerate,  but indefinite. 
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A pseudo-Riemannian metric on M n is a collection of scalar products ( ,)p on the 

tangent spaces Tp (M n), p c M n, one for each p c M n. 

Every scalar product ( , )p is completely defined by scalar products (ei ,  e j ) p  - -  g i j ( P )  

of elements el . . . . .  en of standard basis in E n, i.e., by real symmetric indefinite n • n 

matrix ( ( g i j ) )  - -  ( ( g i j  ( P ) ) ) ,  called metric tensor (cf. Riemannian metric in which case 
the metric tensor is a real symmetric positive-definite n • n matrix). In fact, (x, y)p = 

~ i , j  gij(p)xiYj,  where x - (Xl . . . . .  xn) and y - (Yl . . . . .  Yn) c Tp(Mn). The smooth 
function g completely determines the pseudo-Riemannian metric. 

The length ds of the vector (dxl . . . . .  dxn) is expressed by the quadratic differential 

form 

ds2 - Z gi jdxidxj .  
i , j  

The length of a curve F " [0, 1] --+ M n is expressed by the formula 

gij dxi dxj - Z giJ dt dt dt. 
�9 . 

1 , J  

In general case it may be real, purely imaginary or zero (an isotropic curve). 

A pseudo-Riemannian metric on M n is a metric with a fixed, but indefinite signature 

(p, q), p + q = n. A pseudo-Riemannian metric is non-degenerate, i.e., its metric dis- 
criminant det((gij)) :/: O. Therefore, it is a non-degenerate indefinite metric. 

A pseudo-Riemannian manifold (or pseudo-Riemannian space) is a real n-dimensional 
differentiable manifold M n equipped with a pseudo-Riemannian metric. The theory of 

pseudo-Riemannian spaces is called Pseudo-Riemannian Geometry. 

The model space of a pseudo-Riemannian space of signature (p, q) is the pseudo- 
Euclidean space R p 'q ,  p + q = n, which is a real n-dimensional vector space R n 

equipped with the metric t en so r  ( ( g i j ) )  of signature (p, q), defined by gl l  . . . . .  

gpp  = 1, g p + l , p + l  . . . . .  gnn = - -1 ,  g i j  = 0 for  i r j .  T h e  l ine  e l e m e n t  of  the  

corresponding metric is given by 

d s  2 --  d x  2 - } - . . . - } -  d x  2 -- d x  2 -- __ d x  2 p + l  " " " 

�9 Lorentzian metric 

A Lorentzian metric (or Lorentz metric) is a pseudo-Riemannian metric of signature 

(1, p). 

A Lorentzian manifold is a manifold equipped with a Lorentzian metric. A principal 

assumption of the General Theory of Relativity is that space-time can be modeled 
as a Lorentzian manifold of signature (1, 3). The Minkowski space R 1'3 with the flat 

Minkowski  metr ic  is a model of Lorentzian manifold. 
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�9 Osserman Lorentzian metric 

An Osserman Lorentzian metric is a Lorentzian metric for which the Riemannian 

curvature tensor R is Osserman. It means, that the eigenvalues of the Jacobi operator 
J ( x )  �9 y --> R (y, x)x are independent of the unit vectors x. 

A Lorentzian manifold is Osserman if and only if it is a manifold of constant curvature. 

�9 Blaschke metric 

The Blaschke metric on a non-degenerated hypersurface is a pseudo-Riemannian met- 
ric, associated to the affine normal of the immersion ~b �9 M n --+ R n+l, where M n is an 

n-dimensional manifold, and R n+l is considered as an affine space. 

�9 Semi-Riemannian  metric 

A semi-Riemannian metric on a real n-dimensional differentiable manifold M n is a 

degenerate Riemannian metric, i.e., a collection of positive-semi-definite scalar prod- 
ucts (x, y}p = E i , j  gi j (p)x iYj  on the tangent spaces Tp(Mn), p 6 Mn; the metric 
discriminant det((gij )) = O. 

A semi-Riemannian manifold (or semi-Riemannian space) is a real n-dimensional dif- 
ferentiable manifold M n equipped with a semi-Riemannian metric. 

n The model space of a semi-Riemannian manifold is the semi-Euclidean space R d, d >~ 1 
(sometimes denoted also by R~_d), i.e., a real n-dimensional vector space R n equipped 

with a semi-Riemannian metric. It means, that there exists a scalar product of vectors 

such that, relative to a suitably chosen basis, the scalar product (x, x) of any vector with 
itself has the form (x x) n-d , -- ~ i = 1  x2" The number d ~> 1 is called defect (or deficiency) 
of the space. 

�9 Semi-pseudo-Riemannian  metric 

A semi-pseudo-Riemannian metric on a real n-dimensional differentiable manifold 

M n is a degenerate pseudo-Riemannian metric, i.e., a collection of degenerate indefinite 

scalar products (x, y)p - -  ~ i , j  gi j (p)x iYj  on the tangent spaces Tp(Mn), p 6 Mn; 
the metric discriminant det ( ( g i j ) )  = 0. In fact, a semi-pseudo-Riemannian metric is a 

degenerate indefinite metric. 

A semi-pseudo-Riemannian manifold (or semi-pseudo-Riemannian space) is a real n- 
dimensional differentiable manifold M n equipped with a semi-pseudo-Riemannian met- 

ric. 

The model space of a semi-pseudo-Riemannian manifold is the semi-pseudo-Euclidean 
space R n i.e. a real n-dimensional vector space R n equipped with a semi- 

11 ..... lr ' ' 
m 1 ..... m r _  1 

pseudo-Riemannian metric. It means, that there exist r scalar products (x, Y}a = 

6iaxiaYia,  where a - 1 . . . . .  r, 0 -  m0 < ml < . . .  < mr - n, ia - -  ma-1 -+- 1, 

. . . .  m a ,  6 ia  - -  •  and - 1  o c c u r s  la times among the numbers ei,. The product (x, Y}a 

is defined for those vectors for which all coordinates xi, i <, ma-1 or i > ma -+- 1, 
are zero. The first scalar square of an arbitrary vector x is a degenerate quadratic form 

11 n -  2 The number 11 ~> 0 is called index, and the num- - - Ei=  + Ej=I +  %. 
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ber d - n - ml is called defect of the space. If 11 . . . . .  lr - 0, we obtain a 
semi-Euclidean space. The spaces R n and R~n,1 are called quasi-Euclidean spaces. 

m 
m 

The semi-pseudo-non-Euclidean space S~'~ ..... ~r can be defined as a hypersphere in 
m 1 ..... m r _  1 

R n+l with identified antipodal points. If 11 . . . . .  lr - O, the space ~;n is 
11 ..... lr m l  ..... m r _ l  
m 1 ..... m r _  1 

called semi-elliptic space (or semi-non-Euclidean space). If there exist l i r  O, the space 
S~ is called semi-hyperbolic space , . . . , l y  

m 1 ..... mr_ 1 

�9 F ins l er  m e t r i c  

Consider a real n-dimensional differentiable manifold M n in which every tangent space 
Tp(Mn),  p c M n, is equipped with a Banach norm . such that the Banach norm as a 

function of position is smooth, and the matrix ((gij)), 

1 0 2 x  2 

g i j  - -  g i j ( p , x )  - -  2 0 x i O x  j ' 

is positive-definite for any p c M n and any x c Tp(Mn).  

A Fins l er  m e t r i c  on M n is a collection of Banach norms I1.11 on the tangent spaces 
Tp(Mn),  one for each p c M n. The line element of this metric has the form 

ds2 - Z gij dxi dx j .  
i , j  

The Finsler metric can be given by a real positive-definite convex function F (p, x) of 
coordinates of p c M n and components of vectors x c Tp(M n) acting at the point p. 

F (p, x) is positively homogeneous of degree one in x: F (p,)~x) = )~F (p, x) for every 
)~ > 0. The value of F ( p ,  x) is interpreted as the length of the vector x. The Finsler 
metric tensor has the form 

1 oZFZ(p, x) 

11 
length of a curve V " [0, 1] --+ M n is given by fd  F (p, -~t ) dt. For each fixed p The the 

Finsler metric tensor is Riemannian in the variables x. 

The Finsler metric is a generalization of the Riemannian metric, where the general defi- 
nition of the length IIx II of a vector x c Tp (M n) is not necessarily given in the form of 
the square root of a symmetric bilinear form as in the Riemannian case. 

A Finsler manifold (or Finsler space) is a real n-dimensional differentiable manifold 
M n equipped with a Finsler metric. The theory of Finsler spaces is called Finsler Geom- 
etry. The difference between a Riemannian space and a Finsler space is that the former 
behaves locally like an Euclidean, and the latter locally like a Minkowskian space, or, 
analytically, that to an ellipsoid in the Riemannian case there corresponds an arbitrary 
convex surface which has the origin as the center. 
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A generalized Finsler space is a space with the intrinsic metric, subject to certain re- 

strictions on the behavior of shortest curves, i.e., the curves with length equal to the 

distance between their ends. Such spaces include spaces of geodesics, Finsler spaces, 

etc. General ized Finsler spaces differ from Finsler spaces not only in their greater gen- 

erality, but also in the fact that they are defined and investigated starting from a metric, 

without coordinates. 

�9 Kropina metric 

The Kropina metric is a Finsler metric FKr on a real n-dimensional  manifold M n, 

defined by 

~i,j gijxixj 
~ i  bi (p) yi 

for any p c M n and x c Tp(Mn), where ((gij)) is a Riemannian metric tensor, and 

b(p) = (bi(p)) is a vector field. 

�9 Randers metric 

The Randers metric is a Finsler metric FRa on a real n-dimensional  manifold M n, 

defined by 

~~i,j gijxixj-+-Zbi(p)yii 

for any p c M n and x c Tp(Mn), where ((gij)) is a Riemannian metric tensor, and 

b(p) = (bi(p)) is a vector field. 

�9 Funk metric 

The Funk metric is a Finsler metric FFu on the open unit ball B n = {x c Rn:  IIx 112 < 

1 } in R n, defined by 

V / y 2 _ (llxll 2 y 2 _ <x, y)2) + (x, y) 

1 -  x 2 
2 

for any x c B n and u c Tx(Bn), where 11.112 is the Euclidean norm on R n, and (,)  is the 

ordinary inner product on R n. It is a projective metric. 

�9 Shen metric 

Given a vector a c R n, Ila 112 < 1, the Shen metric is a Finsler metric Fsh on the open 
unit ball B n : {x c Rn:  IIx 112 < l} in R n, defined by 

N/llyll 2 - ( x 211y112 - (x,  y)2) + (x, y) (a, y) 
+ 

1 - 1 x l l  2 l + ( a  x) 2 
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for any x c B n and y c Tx(Bn),  where  11.112 is the Eucl idean norm on R n, and ( , )  is the 

ordinary inner product on R n. It is a projective metric. For a -- 1 it becomes  the F u n k  

metric. 

�9 Berwald metric 

The Berwald metric is a Finsler  metr ic  f Be o n  the open unit ball B n : {x c Rn: 
IIx 112 < 1 } in R n, defined by 

 ll ll - + 2 

( 1 -  iIxII2)av/ y 2 -  ( x  2 y 2 _  <x, y)2) 

for any x c B n and u c Tx(Bn),  where  11.112 is the Eucl idean norm on R n, and ( , )  is the 

ordinary inner product on R n. It is a projective metric. 

�9 Bryant metric 

Let, for any x y c R n A -- Ilyll 4s in  22~  + Let  a is an angle with lal < -y. , , 

(llyll 2 c o s 2 ~  + x 211yll2 - ( x ,  y)2)2, B - Ilyll 2 c o s 2 ~  + x 211yll2 - ( x ,  y)2, C - 

(x, y) sin 2a ,  D - x 4 + 211xll 2 cos 2a  + 1. Then one obtains a (p ro jec t ive)  Finsler  

metr ic  F by 

2D  + q - D "  

On the two-d imens iona l  unit sphere S 2, it is the Bryant metric. 

�9 Kawaguchi metric 

The Kawaguchi metric is a metr ic  on a smooth  n-d imens iona l  mani fo ld  M n, given by 

the arc e lement  ds of a regular  curve x = x( t ) ,  t c [to, tl],  expressed by the formula  

dx d ~ x )  dt,  
d s -  F x, dt  . . . . .  dt  ~ 

where  the metric function F satisfies Ze rme lo ' s  conditions" ~s~_l  s x ( S ) F ( s ) i  - -  F,  
k ( s - r §  (s)i  dSx  i Z s = r  s __ OF ( k ) X  F( s ) i  - -  O, X dt s F(s)i -- and r - 2, k. These  - -  , 3x(s)i , �9 . . ,  

condit ions ensure that the arc e lement  ds is independent  of  the parametr iza t ion  of the 

curve x = x( t ) .  

A Kawaguchi manifold (or Kawaguchi space) is a smooth  manifo ld  equipped with a 

Kawaguchi  metric.  It is a general izat ion of  a Finsler manifold. 

�9 DeWitt supermetric 

The DeWitt supermetric (or Wheeler-DeWitt  supermetric) G = ( ( G i j k l ) )  is a gener- 

alization of  a Riemannian  (or pseudo-Riemannian)  metr ic  g = ( ( g i j ) )  used to calculate 
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distances between points of a given manifold, to the case of distances between metrics 
on this manifold. 

More exactly, for a given connected smooth 3-dimensional manifold M 3, consider the 
space M ( M  3) of all Riemannian (or pseudo-Riemannian) metrics on M 3. Identifying 
points of M ( M  3) that are related by a diffeomorphism of M 3, one obtains the space 
Geom(M 3) of 3-geometries (of fixed topology), points of which are the classes of dif- 
feomorphically equivalent metrics. The space Geom(M 3) is called superspace. It plays 
an important role in several formulations of Quantum Gravity. 

A supermetrie,  i.e., a "metric of metrics", is a metric on M ( M  3) (or on Geom(M3)) 
which is used for measuring distances between metrics on M 3 (or between their equiv- 
alence classes). Given a metric g = ((gij)) c M(M3) ,  we obtain 

ling 2 _ fM 3 d3xGijkl (x)~gij(x)~gkl(X), 

where G ijkl is the inverse of the DeWitt supermetrie 

1 

G i j k l -  2v/det((gij)) (gikgjl + gilgjk -- Zgijgkl). 

The value )~ parameterizes the distance between metrics in M(M3) ,  and may take any 
real value except )~ - 2, for which the supermetric is singular. 

�9 Lund-Regge supermetric 

The Lund-Regge supermetric (or simplicial supermetric) is an analog of the DeWitt 
supermetrie, used to measure the distances between simplicial 3-geometries in a sim- 
plicial configuration space. 
More exactly, given a closed simplicial 3-dimensional manifold M 3 consisting of several 
tetrahedra (i.e., 3-simplices), an simplicial geometry on M 3 is fixed by an assignment of 
values to the squared edge lengths of M 3, and a flat Riemannian Geometry to the inte- 
rior of each tetrahedron consistent with those values. The squared edge lengths should be 
positive and constrained by the triangle inequalities and their analogs for the tetrahedra, 
i.e., all squared measures (lengths, areas, volumes) must be non-negative (cf. tetrahe- 
dron inequality). The set 7-(M 3) of all simplicial geometries on M 3 is called simplicial 
configuration space. 
The Lund-Regge supermetrie ((Gmn)) o n  7-(M 3) is induced from the DeWitt super- 
metric on M (M3), using for representations ofpoints in T ( M  3) such metrics in M ( M  3) 
which are piecewise flat in the tetrahedra. 

7.2. RIEMANNIAN METRICS IN INFORMATION THEORY 

Some special Riemannian metrics are commonly used in Information Theory. A list of 
such metrics is given below. 
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�9 Fisher information metric 

In Statistic, Probability, and Information Geometry, the Fisher information metric (or 
Fisher metric,  Rao metric)  is a Riemannian metric for a statistical differential manifold 
(see, for example, [Amar85], [Frie98]). It addresses the differential geometry properties 
of families of classical probability densities. 

Formally, let Po = p ( x ,  O) be a family of densities, indexed by n parameters 0 = 
(01 . . . . .  0n) which form the parameter  manifold P. The Fisher information met- 
tic g = go on P is a Riemannian metric, defined by the Fisher information matrix 

( ( I (O)i j ) ) ,  where 

I O ln po O ln po ] f O ln p (x, O ) O ln p (x, O ) 
I (O)i j -- E 0 �9 - -  -- p ( x ,  O)dx. 

O0 i OOj O0 i OOj 

It is a symmetric bilinear form which gives a classical measure (Rao measure) for the 
statistical distinguishability of distribution parameters. Putting i (x ,  0) = - I n  p ( x ,  0), 
one obtains an equivalent formula 

I 02i(x, O) ] _ f a2i(x, o) 
I (O)ij -- EO OOi obj OOi OOj - - p ( x ,  O)dx. 

In a coordinate free language, we get 

I (O)(u ,  v) - E o [ u ( l n p o ) .  v(ln Po)], 

where u and v are vectors tangent to the parameter manifold P, and u(ln Po) = 
In Po+tult=O is the derivative of In Po along the direction u dt 

A manifold of  densities M is the image of the parameter manifold P under the mapping 
0 --+ Po with certain regularity conditions. A vector u tangent to this manifold is of the 
form u - J-{Po+tult=O, and the Fisher metric g - gp on M, obtained from the metric go 
on P, can be written as 

�9 F i sher -Rao  metric 

Eu l gp(u,  v) - Ep p . p . 

Let 72n -- {p �9 R n" Zi%l  Pi -- 1, Pi > 0} be the simplex of strictly positive probabil- 
ity vectors. An element p �9 72n is a density of the n-point set { 1 . . . . .  n } with p( i )  = Pi. 

- -  Z i = l  Ui - -0}  at a point p �9 72n An element u of the tangent space Tp (~n) {u �9 R n" n 

is a function on { 1 . . . . .  n} with u(i)  = ui. 

The Fisher -Rao  metric g p on 79n is a Riemannian metric, defined by 

uiui 
gp(U, V) -- ~_~ 

i=1  Pi 
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for any u, v c Tp(~n), i.e., it is the Fisher information metric on 79n. The Fisher- 
Rao metric is the unique (up to a constant factor) Riemannian metric on 7~n, contracting 
under stochastic maps ([Chen72]). 

The Fisher-Rao metric is isometric, by p --+ 2(~/-p~ . . . . .  ~/~n), with the standard met- 
ric on an open subset of the sphere of radius two in R n. This identification of 7~n allows to 
obtain on 7~n the geodesic distance, called Fisher distance (or Bhattacharya distance 
1), by 

2 arccos ( Z  p~/2q]/2).  

i 

The Fisher-Rao metric can be extended to the set A/In - {p c R n, Pi > 0} of all finite 
strictly positive measures on the set { 1 . . . . .  n}. In this case, the geodesic distance on 

A/In can be written as 

for any p, q c A/In (cf. Hellinger metric). 

�9 Monotone metric 

Let Mn be the set of all complex n x n matrices. Let AA c Mn be the manifold of all 
complex positive-definite n x n matrices. Let 79 C AA, 79 - {p c AA: Tr p - 1 }, be 
the manifold of all density matrices. The tangent space of AA at p c AA is Tp(AA) = 
{x c Mn: x = x* }, i.e., the set of all n x n Hermitian matrices. The tangent space 
Tp (79) at p c 79 is the subspace of traceless (i.e., with trace 0) matrices in Tp (AA). 

A Riemannian metric k on AA is called monotone metric if the inequality 

kh(p)(h(.), h( . ) )  <<. kp( . ,  . )  

holds for any p c 34, any u c Tp(Ad), and any completely positive trace preserving 
mapping h, called stochastic mapping. In fact ([Petz96]), k is monotone if and only if it 
can be written as 

kp(u, v) - rruJp(v) ,  

1 Here Lp and Rp a r e  the left where Jp is an operator of the form Jp - f ( L p / R p ) R p "  

and the right multiplication operators, and f : (0, oc) -+ R is an operator monotone 

function which is symmetric, i.e., f ( t )  - t f ( t - 1 ) ,  and normalized, i.e., f ( 1 )  - 1. 
Jp(v) - p - i v  if v and p are commute, i.e., any monotone metric is equal to the Fisher 
information metric on commutative submanifolds. Therefore, monotone metrics gen- 
eralize the Fisher information metric on the class of probability densities (classical or 
commutative case) to the class of density matrices (quantum or non-commutative case) 
which are used in Quantum Statistics and Information Theory. In fact, 79 is the space of 
faithful states of an n-level quantum system. 
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1 (v) can be rewritten as kp(U v) - A monotone metric kp(U, v) - Tru f(Lp/Rp)Rp 

1 is the Morozova-Chentsov Truc (Lp ,  Rp)(V), where the function c(x,  y) - f(x/y)y 
function, related to k. 

The Bures metric is the smallest monotone metric, obtained for f ( t )  - l+t (for 2 
c(x,  y) - -  2 x-+U ). In this case Jp(v)  - g, pg + gp - 2v, is the symmetric logarith- 
mic derivative. 

The right logarithmic derivative metric is the greatest monotone metric, correspond- 
ing to the function f ( t )  - 2t ( to  the function c(x,  y) - x+y Yg-7 2-~)" In this case Jp (v) - 

1 - 1  1 (p v + v p -  ) is the right logarithmic derivative. 

The Bogolubov-Kubo-Mori metric is obtained for f ( x )  - x-1 (for c(x y) - 

- -  l n x  
in x - l n  x O 2 7 - ~  )" It can be written as kp(U, v) - ~ Tr(p + su) ln(p + tV)[s,t=o. 

01 The Wigner-Yanase-Dyson metrics k p are monotone  for ol c [ - 3 ,  3]. For ol -- -+-1, we 
obtain the Bogo lu b o v -Ku b o -Mo r i  metric; for o~ = -+-3 we obtain the right logarithmic 
derivative metric. The smallest in the family is the Wigner-Yanase metric, obtained for 
o r = 0 .  

�9 Bures metric 

The Bures metric (or statistical metric) is a monotone metric on the manifold A / / o f  
all complex positive-definite n • n matrices, defined by 

Zp(u, v) = TruJp(v), 

where Jp(v)  = g, pg + gp = 2v, is the symmetric logarithmic derivative. It is the 
smallest monotone metric. 

For any Pl,  P2 c .k// the Bnres distance, i.e., the geodesic distance, defined by the 
Bures metric, can be written as 

V/ ,~, ~ 1/2 1 / 2  1/2 
2 T r p 1 + T r p 2 - 2 1 r k P 1  P2Pl ) �9 

On the submanifold 7) = {p c A//: Tr p = 1 } of density matrices it has the form 

1 1/2 
2 a r c c o s T r ( p ~ / 2 p 2 P l / 2 )  . 

�9 Right logarithmic derivative metric 

The right logarithmic derivative metric (or RLD-metric) is a monotone metric on the 
manifold A4 of all complex positive-definite n • n matrices, defined by 

Zp(u, v) = TruJp(v), 

wh~r~ Jp (~) - �89 ( p -  
monotone metric. 

v + vp -1)  is the right logarithmic derivative. It is the greatest 



98 [ �9 Bogolubov-Kubo-Mori metric] Part H: Geometry and Distances 

�9 Bogolubov-Kubo-Mori metric 

The Bogolubov-Kubo-Mori metric (or BKM-metric) is a monotone metric on the 
manifold AA of all complex positive-definite n • n matrices, defined by 

k p  (u, v) = 
02 

OsOt 
- -  Tr(p + su) ln(p + tv)ls,t=o. 

�9 Wigner-Yanase-Dyson metrics 

The Wigner-Yanase-Dyson metrics (or WYD-metrics) form a family of metrics on the 
manifold A4 of all complex positive-definite n x n matrices, defined by 

(u, v) - kp 
02 

OtOs 
- -  Tr f ~ ( p  + tu) f _ ~ ( p  + sv)l~,,=0, 

where f~ (x) - ~ x 1@, if oe r 1, and is In x, if oe - 1 . These metrics are monotone for 
oe c [ - 3 ,  3]. For oe = 4-1 one obtains the Bogolubov-Kubo-Mori metric; for oe = 4-3 
one obtains the right logarithmic derivative metric. 

0 The Wigner-Yanase metric (or WY-metric) kp is the Wigner -Yanase -Dyson  metric kp, 
obtained for oe = 0. It can be written as 

kp (U, v) - 4 Tr u (x/~p -+- ~~p-p)2(t~), 
and is the smallest metric in the family. For any Pl,  P2 c .A/[ the geodesic distance, 
defined by the W Y-metric, has the form 

~/ 1/2 1 
2 Tr Pl + Tr P2 -- 2 Tr(p 1 p2/2).  

On the submanifold D = {p c A4 : Tr p = 1 } of density matrices it is equal to 

2 arccos Tr(p:/2'',l P2 }" 

�9 Connes metric 

Roughly, the Connes metric is a generalization (from the space of all probability mea- 
sures of a set X, to the state space of any unital C*-algebra) of the Kantorovich- 
Mallows-Monge-Wasserstein metric defined as the Lipschitz distance between mea- 
sures. 

Let M n be a smooth n-dimensional  manifold. Let A = C ~ ( M  n) be the (commuta- 
tive) algebra of smooth complex-valued functions on M n, represented as multiplication 
operators on the Hilbert space H = L2(M n, S) of square integrable sections of the 

spinor bundle on M n by ( f~ ) (p)  = f (p )~ (p )  for all f c A and for all ~ c H.  
Let D be the Dirac operator. Let the commutator  [D, f ]  for f c A be the Clif- 
ford multiplication by the gradient V f  so that its operator norm II.ll in H is given by 

I I [ D , / ] l l -  SUppcMn IIV/ll. 
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The C o n n e s  m e t r i c  is the in tr ins ic  m e t r i c  on M n, defined by 

sup 
fcA, II[O,flll ~ 1 

I f ( P ) -  f ( q ) l .  

This definition can also be applied to discrete spaces, and even generalized to "non- 

commutative spaces" (unital C*-algebras). In particular, for a labeled connected locally 
finite graph G = (V, E) with the vertex-set V = {vl . . . . .  vn . . . .  }, the Connes metric 
on V is defined by 

sup Ifv~ - fvjl 
II[D,flll=lldfll<~ l 

for any Vi, Vj C V, where { f  -- ~ fvi Vi" ~ If~ 2 < OC} is the set of formal sums f 

forms a Hilbert space, and [D, f ]  II can be obtained by [D, f ]  II - supi (~deg~) (f~ _ 

f~,)2)�89 

7.3.  H E R M I T I A N  M E T R I C S  A N D  G E N E R A L I Z A T I O N S  

A vector bundle is a geometrical construct where to every point of a topological space 
M we attach a vector space so that all those vector spaces "glued together" form another 

topological space E. A continuous mapping Jr �9 E --+ M is called projection E on M. 

For every p c M, the vector space Jr-1 (p) is called fiber of the vector bundle. A real 
(complex) vector bundle is a vector bundle Jr �9 E --+ M whose fibers Jr-1 (p), p c M, are 

real (complex) vector spaces. 

In a real vector bundle, for every p c M, the fiber Jr-1 (p) locally looks like the vector 
space R n, i.e., there is an open neighborhood U of p, a natural number n, and a homeomor-  
phism ~p �9 U x R n --+ Jr-1 (U) such that, for all x c U, v c R n, one has Jr(~p(x, v)) - v, 

and the mapping v --+ ~p(x, v) yields an isomorphism between R n and Jr-1 (x). The set U, 

together with ~p, is called local trivialization of the bundle. If there exists a "global trivial- 
ization", then a real vector bundle Jr �9 M x R n --+ M is called trivial. Similarly, in a com- 

plex vector bundle, for every p c M, the fiber Jr-1 (p) locally looks like the vector space 

C n. The basic example of a complex vector bundle is the trivial bundle Jr �9 U x C n --+ U, 
where U is an open subset of R ~. 

Important special cases of a real vector bundle are the tangent bundle T (M n) and the 
cotangent bundle T* (M n) of a real n-dimensional manifold M~ -- M n. Important special 

cases of a complex vector bundle is the tangent bundle and the cotangent bundle of a 

complex n-dimensional manifold. 
Namely, a complex n-dimensional manifold M~ is a topological space in which every 

point has an open neighborhood homeomorphic  to an open set of the n-dimensional com- 
plex vector space C n, and there is an atlas of charts such that the change of coordinates 

between charts are analytic. The (complex) tangent bundle Tc(M~) of a complex manifold 

M~ is a vector bundle of all (complex) tangent spaces of M~ at every point p c M~. It can 
be obtained as a complexification TR (M~)|  - T (M n) |  of the corresponding real tan- 

gent bundle, and is called complexified tangent bundle of M~. The complexified cotangent 
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bundle of M~ is obtained in similar manner as T* (M n) | C. Any complex n-dimensional  

manifold M~ -- M n can be regarded as a special case of a real 2n-dimensional manifold 

equipped with a complex structure on each tangent space. A complex structure on a real 

vector space V is the structure of a complex vector space on V that is compatible with the 

original real structure. It is completely determined by the operator of multiplication by the 

number i, the role of which can be taken by an arbitrary linear transformation J : V --+ V, 

j 2  _ _ id, where id is the identity mapping. 

A connection (or covariant derivative) is a way of specifying a derivative of a vector 

field along another vector field in a vector bundle. A m e t r i c  c o n n e c t i o n  is a linear con- 

nection in a vector bundle rc : E --+ M, equipped with a bilinear form in the fibers, for 

which parallel displacement along an arbitrary piecewise-smooth curve in M preserves the 

form, that is, the scalar product of two vectors remains constant under parallel displace- 

ment. In the case of non-degenerative symmetric bilinear form, the metric connection is 

called Euclidean connection. In the case of non-degenerate antisymmetric bilinear form, 

the metric connection is called symplectic connection. 

�9 B u n d l e  m e t r i c  

A b u n d l e  m e t r i c  is a metric on a vector bundle. 

�9 H e r m i t i a n  m e t r i c  

A H e r m i t i a n  m e t r i c  on a complex vector bundle 7r �9 E --> M is a collection of Her- 

mitian inner products (i.e., positive-definite symmetric sesquilinear forms) on every fiber 

Ep : rc -1 (p), p c M, that varies smoothly with the point p in M. Any complex vector 

bundle has a Hermitian metric. 

The basic example of a vector bundle is the trivial bundle rc : U • C n --+ U, where U is 

an open set in R ~. In this case a Hermitian inner product on C n, and hence, a Hermitian 

metric on the bundle rc : U • C n --+ U, is defined by 

(u, v) -- u T H-6, 

where H is a positive-definite Hermitian matrix, i.e., a complex n x n matrix such that 

H* -- ~ T  _ H,  and -6 T H v  > 0 for all v c cn\{0}.  In the simplest case, one has 

(U, t~) - -  z i n  l Ui-~i. 

An important special case is a Hermitian metric h on a complex manifold M n, i.e., on 

the complexified tangent bundle T ( M  n) | C of M n. This is the Hermitian analog of 

a Riemannian metric. In this case h - g + i w, its real part g is a Riemannian met- 

ric, and its imaginary part w is a non-degenerate antisymmetric bilinear form, called 

fundamental form. Here g ( J ( x ) ,  J ( y ) )  -- g(x,  y), w ( J ( x ) ,  J ( y ) )  -- w(x,  y), and 

w(x,  y) - g(x,  J (y ) ) ,  where the operator J is an operator of complex structure on 

M n, as the rule, J (x) - ix. Any of the forms g, w determines h uniquely. The term 

"Hermitian metric" can also refer to the corresponding Riemannian metric g, which 

gives M n a Hermitian structure. 
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On a complex manifold a Hermitian metric h can be expressed in local coordinates by a 

Hermitian symmetric tensor ( (h ij )): 

h - Z h i jd z i  • d-zj, 
i,j 

where ((hi j ) )  is a positive-definite Hermitian matrix. The associated fundamental form 

i h i j d z i  A d-zj w is then written as w - ~ Z i , j  

A Hermitian manifold (or Hermitian space) is a complex manifold equipped with a 
Hermitian metric. 

�9 K~ihler metric 

A K~ihler metric (or Kdhlerian metric) is a Hermitian metric h - g + i w on a complex 
manifold M n, whose fundamental form w is closed, i.e., satisfies the condition dw = O. 

A Kdhler manifold is a complex manifold equipped with a K~ihler metric. 

If h is expressed in local coordinates, i.e., h -- ~ i , j  hijdzi @ d-zj, then the associated 

i h i j d z i  A d-zj where A is the wedge fundamental form w can be written as w - ~ Z i , j  
product which is antisymmetric, i.e., dx A dy = - d y  A dx (hence, dx A dx = 0). In 
fact, w is a differential 2-form on M n, i.e., a tensor of rank 2 that is antisymmetric under 

exchange of any pair of indices" w - Z i , j  f i j  dx i  A d x  j , where f i j  is a function on M n. 

The exterior derivative dw of w is defined by dw -- Z i , j  Z k  ofij dxk A dxi A dxk If - ~  

dw = 0, then w is a symplectic (i.e., closed non-degenerate) differential 2-form. Such 
differential 2-forms are called Kdhlerforms. 

The term K~ihler metric can also refer to the corresponding Riemannian metric g, which 
gives M n a K~ihler structure. Then a K~ihler manifold is defined as a complex manifold 

which carries a Riemannian metric and a K~ihler form on the underlying real manifold. 

�9 Calabi -Yau metric 

The Calabi -Yau metric is a K~ihler metric which is Ricci-flat. 

A Calabi-Yau manifold (or Calabi-Yau space) is a simply-connected complex mani- 
fold equipped with a Calabi-Yau metric. It can be considered as 2n-dimensional (six- 
dimensional case being particularly interesting) smooth manifold with holonomy group 
(i.e., the set of linear transformations of tangent vectors arising from parallel transport 
along closed loops) in the special unitary group. 

�9 K~ihler-Einstein metric 

A K~ihler-Einstein metric (or Einstein metric) is a Kdhler metric on a complex man- 
ifold M n whose Ricci curvature tensor is proportional to the metric tensor. This propor- 
tionality is an analog of the Einstein field equation in the General Theory of Relativity. 

A Kdhler-Einstein manifold (or Einstein manifold) is a complex manifold equipped 
with a K~ihler-Einstein metric. In this case the Ricci curvature tensor, considered as an 
operator on the tangent space, is just multiplication by a constant. 
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Such a metric exists on any domain D C C n that is bounded and pseudo-convex. It can 
be given by the line element 

O2U(Z) 

dsZ -- Z. . Ozi O-zj 
1,J 

- - d z i d - z j  , 

where u is a solution to the boundary value problem: det( 02u e 2u OziO-s ) -- on D, and 
u = o c o n  OD. 

The K~ihler-Einstein metric is a comple te  metric. On the unit disk A = {z c C: Izl < 
1 } it is coincides with the Poincar~ metric. 

�9 Hodge metric 

The Hodge metric is a Kiihler  me t r i c  whose fundamental  f o rm w defines an integral 
cohomology class or, equivalently, has integral periods. 

A Hodge manifold (or Hodge variety) is a complex manifold equipped with a Hodge 
metric. A compact complex manifold is a Hodge manifold if and only if it is isomorphic 
to a smooth algebraic subvariety of some complex projective space. 

�9 Fubini-Study metric 

The Fubini-Study metric is a Kiihler  met r i c  on a complex projective space C P n, 
defined by a Hermitian inner product  ( ,)  in C n+ 1. It is given by the line element 

ds 2 _ (x, x) (dx,  dx  ) - (x, d-~) (-Y, dx  ) 
(X, X) 2 

The distance between two points (xl : . . .  : x n + l ) ,  (yl : . . .  : yn+l) c C P  n, where 
x = (xl . . . . .  xn+l) ,  y = (Yl . . . . .  Yn+l) c C n+l\{0}, is equal to 

arccos 
I(x, Y)l 

~/(x, x)(y,  y) 

The Fubini-Study metric is a Hodge metric. The space CPn  endowed with the Fubini-  
Study metric is called Hermitian elliptic space (cf. Hermitian elliptic metric). 

�9 Bergman metric 

The Bergman metric is a Kiihler  me t r i c  on a bounded domain D C C n, defined by the 
line element 

~-a 0 2 In K (z, z) 
ds 2 dzid-~j  , Z_., 

i,j OZi O-Zj 

where K(z ,  u) is the Bergman kernel function. The Bergman metric is invariant under 
all automorphisms of D; it is comple te  if D is homogeneous.  For the unit disk A = {z c 
C" z l < 1 } the Bergman metric coincides with the Poincar~ metric (cf. also Bergman 
p-metric). 
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The Bergman kernel function is defined as follow. Consider a domain D C C n in which 
there exists analytic functions f ~: 0 of class Lz(D) with respect to the Lebesgue mea- 
sure. The set of these functions forms the Hilbert space L2,a (D) C L2 (D) with an 
orthonormal basis (@)i. The Bergman kernel function in the domain D • D C C 2n is 
defined by KD(Z, u) -- K(z ,  u) -- ~ i ~ l  @(z)@(u) .  

�9 Hyper-Kiihler metric 

A hyper-Kiihler metric is a Riemannian metric g on an 4n-dimensional Riemannian 
manifold which is compatible with a quaternionic structure on the tangent bundle of 
the manifold. Thus, the metric g is K~ihlerian with respect to three K~ihler structures 
(I, w i, g), (J, w j ,  g), and (K,  W K, g), corresponding to the complex structures, as en- 
domorphisms of the tangent bundle which satisfy the quaternionic relationship 

1 2 _  j 2 _  K 2 _  I J K  _ _ J I K  _ _ I .  

A hyper-Ktihler manifold is a Riemannian manifold equipped with a hyper-K~ihler met- 
ric. It is a special case of a Ktihler manifold. All hyper-K~ihler manifolds are Ricci- 
flat. Compact four-dimensional hyper-K~ihler manifolds are called K3-surfaces, they are 
studied in Algebraic Geometry. 

�9 Calabi metric 

The Calabi metric is a hyper-Kfihler metric on the cotangent bundle T* (CP n+l) of a 
complex projective space C P n+l . For n -- 4k + 4, this metric can be given by the line 
element 

d s  2 = d r2  + lr2(1 _ r - 4 ) ~  2 + r  2 
1 - r  -4 4 (2v §  

1 1 
§ ~( r  2 -  1) ((~12~ § (~22~)§ ~ ( r  2 § 1) (r12~ § r22~), 

where ()~, vl, 1)2, Olc~, O2c~, rlc~, r2c~), with oe running over k values, are left-invariant 
one-forms (i.e., linear real-valued functions) on the coset SU(k + 2) / U (k). Here U (k) is 
the unitary group consisting of complex k x k unitary matrices, and SU(k)  is the special 
unitary group consisting of complex k x k unitary matrices with determinant 1. 

For k = 0, the Calabi metric coincides with the Egueh i -Hanson  metric. 

�9 Stenzel metric 

The Stenzel metric is a hyper-Kfihler metric on the cotangent bundle T*(S n+l) of a 
sphere S n+l. 

�9 SO (3) -invariant metric 

An SO(3)-invariant metric is an 4-dimensional hyper-K~ihler metric with the line ele- 
ment, given, in the B ianchi-IX formalism, by 

ds 2 - f 2 ( t ) d t 2  + a2(t)o -2 + b2(t)o -2 + c2(t)o -2, 
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where the invariant one- forms a l ,  a2, a3 of SO(3) are expressed in terms of Eler  angles  

0, l/t, ~b a s a l  - l ( s in  ~/dO - s i n 0  cos 1/td~b), a2 - - l ( c o s  ~/dO + s i n 0  sin 1/td~b), a3 - 

!(dl/ t  4- cos 0dqS), and the normalization has been chosen so that cr i A crj - 16ijkdcr k 2 
The coordinate t of the metric can always be chosen so that f ( t )  - �89 using a 
suitable reparametrization. 

�9 At iyah-Hi tch in  metric 

The At iyah-Hi tch in  metric is a complete  regular SO(3)- invariant  metric with the 
line e lement  

1 2b2c2(  d k  ) 2  
ds  2 -- -4a k(1 -- k2)K 2 

+ a 2 ( k )a  2 + b 2 ( k )a  2 + c 2 ( k )a  2, 

where a, b, c are functions ofk ,  ab = - K ( k ) ( E ( k )  - K ( k ) ) ,  bc = - K ( k ) ( E ( k )  - (1 - 
k Z ) K ( k ) ) ,  ac - - K ( k ) E ( k ) ,  and K ( k ) ,  E ( k )  are the complete elliptic integrals of the 
first and second kind, respectively, with 0 < k < 1. The coordinate t is given by the 

change of variables t - - 2 K ( 1 - k 2 )  u p  t o  an additive constant. :r K (k) 

�9 T a u b - N U T  metric 

The T a u b - N U T  met r ic  is a complete  regular SO(3)- invariant  metric with the line 

e lement  

ds  2 l r 4- m dr  2 4- (r 2 m2 ) (r~2 4- r~2)4- 4m2 r - m  .2 = _ _ _  _ 03,  
4 r - - m  r + m  

where m is the relevant moduli  parameter, and the coordinate r is related to t by r = 
1 

m 4- 2mt" 

�9 E g u c h i - H a n s o n  metric 

The E g u c h i - H a n s o n  metric is a complete  regular SO(3)- invariant  metric with the 
line e lement  

d ' 2  : + + + , 

where a is the moduli  parameter, and the coordinate r is related to t by r 2 = 
a 2 coth(aZt). 

The Eguchi -Hanson  metric coincides with the four-dimensional Calab i  metric. 

�9 Complex  Finsler metric 

A complex  Finsler metric is an upper semi-continuous function F : T ( M  n) --> R+ on 
a complex manifold M n with the analytic tangent bundle T ( M  n) satisfying the following 
conditions: 

1. F 2 is smooth on A1 n, where A1 n is the complement  in T (M n) of the zero section; 
2. F ( p , x )  > 0 f o r a l l p c M  n a n d x  c M ~ ;  
3. F ( p ,  ~x) = I~lF(p ,  x) for all p c M n, x c Tp ( Mn) ,  and ~. c C. 
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The function G = F 2 can be locally expressed in terms of the coordinates (Pl . . . . .  pn, 

x l . . . . .  xn); the Finsler metric tensor of the complex Finsler metric is given by the 
02F 2 

matrix((Gij)) - ((�89 OxiO~j)), called Levi matrix. If the matrix ((Gij)) is positive- 

definite, the complex Finsler metric F is called strongly pseudo-convex. 

�9 Distance-decreasing semi-metric 

Let d be a semi-metric which can be defined on some class A4 of complex manifolds 

containing the unit disk A = {z E C:  Izl < 1 }. It is called d i s t ance -dec reas ing  for 
all analytic mappings if, for any analytic mapping f : M1 --+ M2, M1, M2 c .A/I, the 
inequality d ( f ( p ) ,  f (q ) )  <~ d(p, q) holds for all p,  q c M 1 (cf. Kobayashi metric, 
Carath~odory metric, Wu metric). 

�9 Kobayashi metric 

Let D be a domain in C n. Let O(A,  D) be the set of all analytic mappings f : A --+ D, 
where A = {z c C:  Izl < 1} is the unit disk. 

The Kobayashi metric (or Kobayashi-Royden metric) FK is a complex  Finsler met- 
ric, defined by 

Fg(z,  u) -- inf{ol > 0 "  3 f  C O(A,  D), f (O) -- Z, oef'(O) -- u} 

for all z c D and u c C n. It is a generalization of the Poincar~ metric to higher- 

dimensional  domains. FK(Z, u) >~ Fc(z, u), where Fc is the Carath~odory metric. If 
u )~}, then d ( u )  D is convex, and d(z, u) - inf{)~" z + ~ c D if loll > ~' ~< FK (z, u) -- 

Fc(z, u) <~ d(z, u). 

Given a complex manifold M n, the Kobayashi semi-metric FK is defined by 

FK(p, u) --inf{ol > O" 3 f  C O ( A ,  Mn),  f (O) -- p,  olf'(O) -- u} 

for all p c M n and u c Tp(Mn). FK(p, u) is a semi-norm of the  tangent vector u, called 
Kobayashi semi-norm. FK is a metric if M n is taut, i.e., O(A,  M n) is a normal family. 

The Kobayashi semi-metric is an infinitesimal form of the Kobayashi semi-distance 
KMn on M n, defined as follow. Given p,  q c M n, a chain of disks oe from p to q is a 
collection of points p = p0, p l  . . . . .  p~ = q of M n, pairs of points a 1, bl;  . . .  ; a ~, b ~ 

of the unit disk A, and analytic mappings f l  . . . .  f~ from A into M n, such that f j  (a j )  = 

p j -1  and f j ( b  j) - pJ for all j .  The length l(oe) of a chain oe is the sum dp(a 1, b 1) + 
�9 .. + dp (a ~, b~), where dp is the Poincard metric. The Kobayashi semi-distance (or 
Kobayashi pseudo-distance) K M, on M n is a semi-metric on M n, defined by 

KMn(p, q) = infl(oe), 
cg 

where the infimum is taken over all lengths 1 (oe) of chains of disks oe from p to q. 

The Kobayashi semi-distance is d i s t ance -dec reas ing  for all analytic mappings.  It is the 
greatest semi-metric among all semi-metrics on M n, that are distance-decreasing for all 
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analytic mappings from A into M n, where distances on A are measured in the Poincard 

metric. K A coincides with the Poincard metric, and Kc~ = 0. 

A manifold is called Kobayashi hyperbolic if the Kobayashi semi-distance is a metric 
on it. In fact, a manifold is Kobayashi hyperbolic if and only if it is biholomorphic to a 
bounded homogeneous  domain. 

�9 Kobayashi-Busemann metric 

Given a complex manifold M n, the Kobayashi-Busemann semi-metric on M n is the 
double dual of the Kobayashi semi-metric on M n. It is a metric if M n is taut. 

�9 Carath6odory metric 

Let D be a domain in C n. Let O(D, A) be the set of all analytic mappings f : D --+ A, 

where A = {z E C:  Izl < 1} is the unit disk. 

The Carath6odory metric Fc is a complex Finsler metric, defined by 

No(z, u) -- suP{I/ ' (z)u  I �9 f ~ O(O,  zX)} 

for any z c D and u c C n. It is a generalization of the Poincar~ metric to higher- 

dimensional  domains. Fc(z, u) <~ FI((Z, u), where FK is the Kobayashi metric. If D 
�9 u )~}, then d(z2'u) <~ Fc(z u) -- is convex and d(z, u) - inf{)~ z + 7 c D if loll > 

FK(Z, u) <~ d(z, u). 

Given a complex manifold M n, the Carath~odory semi-metric Fc is defined by 

f c ( p ,  u) -- s u p { I f ' ( p ) u  I �9 f ~ (O(M n, zX)} 

for all p c M n and u c Tp (M n). Fc is a metric if M n is taut�9 

The Carath6odory semi-distance (or Carathdodory pseudo-distance) CM~ is a semi- 
metric on a complex manifold M n, defined by 

CMn(p, q) -- sup{dt ,( f  (p), f (q)) " f c O(M n, A)}, 

where dp is the Poincard metric. In general, the integrated semi-metric of the infinitesi- 
mal Carathdodory semi-metric is internal for the Carathdodory semi-distance, but does 
not coincides with it. 

The Carathdodory semi-distance is d i s t ance -dec reas ing  for all analytic mappings.  It is 
the smallest distance-decreasing semi-metric. CA coincides with the Poincard metric, 

and Ccn = O. 

�9 Azukawa metric 

Let D be a domain in C n. Let gD(z, u) = sup{f (u )  : f c KD(Z)}, where KD(Z) is the 
set of all logarithmically plurisubharmonic functions f : D --> [0, 1) such that there 

exist M, r > 0 with f (u )  <~ M l l u  - zll2 fo r  all u c B(z, r) C D; here 11.112 is the 
l:-norm on C n, and B(z, r)  = {x c Cn: IIz - xl l2  < r}.  
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The Azukawa metric (in general, a semi-metric) FA is a complex Finsler metric, de- 
fined by 

1 
FA (Z, U) -- )~---,olim sup -~l gD (Z, Z + )~u) 

for all z c D and u c C n. It "lies between" the Carath~odory metric Fc and the 

Kobayashi metric FK: Fc(z, u) <~ FA(Z, u) <~ FK(Z, u) for all z c D and u c C n. If 
D is convex, then all these metrics coincide. 

The Azukawa metric is an infinitesimal form of the Azukawa semi-distance. 

�9 Sibony metric 

Let D be a domain in C n. Let KD(Z) be the set of all logarithmically plurisubharmonic 
functions f : D --+ [0, 1) such that there exist M, r > 0 with f (u )  <~ Mllu - zll2 for all 
u c B(z, r) C D; here 11.112 is the 12-norm on C n, and B(z, r) : {x c Cn: IIz - xll2 < 
r }. Let Cl2oc (z) be the set of all functions of class C 2 on some open neighborhood of z. 

The Sibony metric (in general, a semi-metric) Fs is a complex Finsler metric, defined 
by 

Fs(z, u) -- sup ~ ~ - -  02 f (Z)uiu-j 
feKD(z)AC2oc(Z) . .  OZiO-Zj 

for all z c D and u c C n. It "lies between" the Carath6odory metric Fc and the 

Kobayashi metric FK: Fc(z,u) <~ Fs(z,u) <~ Fa(z,u) <~ FK(Z,U) for all z c D 
and u c C n, where FA is the Azukawa metric. If D is convex, then all these metrics 
coincide. 

The Sibony metric is an infinitesimal form of the Sibony semi-distance. 

�9 Wu metric 

The Wu metric WMn is an upper-semi-continuous Hermitian metric on a complex 
manifold M n, that is dis tance-decreasing for all analytic mappings. In fact, for two 

n-dimensional complex manifolds M~ and M~, the inequality WM~(f(p), f (q ) )  <~ 
H ~/-nWM~ (p, q) holds for all p, q c M 1 . 

The invariant metrics including the Carathdodory, Kobayashi, Bergman, and K~ihler- 
Einstein metrics play an important role in the Complex Function Theory and Convex 
Geometry. The Carathdodory and Kobayashi metrics are used mostly because of the 
distance-decreasing property. But they are almost never Hermitian. On the other hand, 
the Bergman metric and the K~ihler-Einstein metric are Hermitian (in fact, K~ihlerian), 
but the distance-decreasing property, in general, fails for them. 

�9 Teichmiiller metric 

A Riemann surface R is an one-dimensional complex manifold. Two Riemann surfaces 
R1 and R2 are called conformally equivalent if there exists a bijective analytic function 
(i.e., a conformal homeomorphism) from R1 into R2. More precisely, consider a fixed 
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closed Riemann surface R0 of a given genus g ~> 2. For a closed Riemann surface R 

of genus g, construct a pair (R, f ) ,  where f "  R0 --+ R is a homeomorphism. Two 
pairs (R, f )  and (R1, f l )  are called conformally equivalent if there exists a conformal 
homeomorphism h �9 R --+ R1 such that the mapping ( f l ) -1  . h �9 f �9 R0 --+ R0 is 
homotopic to the identity. An abstract Riemann surface R* -- (R, f )*  is the equivalence 
class of all Riemann surfaces, conformally equivalent to R. The set of all equivalence 

classes is called Teichmiiller space T (Ro) of the surface R0. For closed surfaces R0 of 
given genus g the spaces T (R0) are isometrically isomorphic, and one can speak of the 
Teichmiiller space rig ofsurfaces ofgenus g. rig is a complex manifold. If R0 is obtained 
from a compact surface of genus g ~> 2 by removing n points, then the dimension of Tg 
i s 3 g - 3 + n .  

The Teichmiiller metric is a metric on Tg, defined by 

1 
- In inf K (h) 
2 h 

for any R 1 , R 2 �9 Tg, where h �9 R1 --+ R2 is a quasi-conformal homeomorphism, ho- 
motopic to the identity, and K (h) is the maximal dilatation of h. 

In fact, there exists an unique extremal mapping, called Teichm~iller mapping, which 
minimizes the maximal dilatation of all such h, and the distance between R~ and R~ is 

equal to �89 In K, where the constant K is the dilatation of the Teichmtiller mapping. 

In terms of the extremal length extR,(g), the distance between R 1 and R 2 can be written 
a s  

1 extR~(g) 
- In sup 
2 y extR~(g) 

where the supremum is taken over all simple closed curves on R0. 

The moduli space Rg of conformal classes of Riemann surfaces of genus g is obtained 
by factorization of Tg by some countable group of automorphisms of it, called mod- 
ular group. Examples of metrics related to moduli and Teichmtiller spaces are Teich- 
miiller metric, Carath~odory metric, Kobayashi metric, Cheng-Yau-Mok's-Kdhler- 
Einstein metric, Mc-Mullen metric, Bergman metric, asymptotic Poincard metric, Ricci 
metric, perturbed Ricci metric, Weyl-Petersson metric, VHS-metric, Quillen metric, 
etc. 

�9 Weyl-Petersson metric 

The Weyl-Peterson metric is a K~ihler metr ic  on the Teichmtiller space Tg,n of abstract 
Riemann surfaces of genus g with n punctures and negative Euler characteristic. 

�9 Gibbons-Manton metric 

The Gibbons-Manton metric is an 4n-dimensional hyper-K~ihler metric on the mod- 
uli space of n-monopoles, admitted an isometric action of the n-dimensional torus T n. 
It can be described also as a hyper-K~ihler quotient of a flat quaternionic vector space. 
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�9 Metrics  on de terminant  lines 

Let M n be an n-dimensional compact smooth manifold, and let F be a fiat vector bun- 
dle over M n. Let H ' ( M  n, F) -- n H i ~ i = 0  (M n, F)  be the de Rham cohomology of 
M n with coefficients in F. Given an n-dimensional vector space V, the determinant 
line det V of V is defined as the top exterior power of V, i.e., det V - -  A n V. Given 
a finite-dimensional graded vector space V - n @i--0 V/, the determinant line of V is 

defined as the tensor product det V - @i%o(det ~ )  (-1)i . Thus, the determinant line 
det H ' ( M  n, F) of the cohomology H ' ( M  n, F) can be written as det H ' ( M  n, F) -- 

@ L o ( d e t  H i ( M  n , F ) ) ( - 1 )  i , 

The Reidemeis ter  metric  is a metric on det H ~  n, F), defined by a given smooth 
triangulation of M n, and the classical Reidemeister-Franz torsion. 

Let gF and g T(Mn) be smooth metrics on the vector bundle F and tangent bundle T(Mn) ,  
respectively. These metrics induce a canonical L2-metrie h H~ on H ~  n, F). 
The Ray-Single r  metr ic  on det H ~ (M n, F) is defined as the product of the metric in- 
duced on det H ~ (M n, F) by h H ~  with the Ray-Singler analytic torsion. The Mil- 

nor  metric  on det H ~ (M n , F) ca be defined in similar manner using the Milnor analytic 
torsion. If gF is fiat, the above two metrics coincide with the Reidemeister metric. Using 
a co-Euler structure, one can define a modified Ray-Singler metric on det H ~ (M n , F). 

The Poincar~ -Re ideme i s t er  metric  is a metric on the cohomological determinant 
line det H ~ (M n, F) of a closed connected oriented odd-dimensional manifold M n. It 

can be constructed using a combination of the Reidemeister torsion with the Poincar6 

duality. Equivalently, one can define the Poincar~-Reidemeister scalar product on 
d e t H ~  n, F) which completely determines the Poincar6-Reidemeister metric but 

contains an additional sign or phase information. 

The Qnil len metric  is a metric on the inverse of the cohomological determinant line of a 

compact Hermitian one-dimensional complex manifold. It can be defined as the product 
of the L2-metric with the Ray-Singler analytic torsion. 

�9 K/ihler snpermetr ic  

The K/ihler supermetr ic  is a generalization of the K/ihler metr ic  on the case of a 

supermanifold. A supermanifold is a generalization of an usual manifold withfermionic 
as well as bosonic coordinates. The bosonic coordinates are ordinary numbers, whereas 
the fermionic coordinates are Grassmann numbers. 

�9 Hofer  metric  

A symplectic manifold (M n, w), n -- 2k, is a smooth even-dimensional manifold M n 

equipped with a symplectic form, i.e, a closed non-degenerate 2-form, w. 

A Lagrangian manifold is an k-dimensional smooth submanifold L k of a symplectic 
manifold (M n , w), n -- 2k, such that the form w vanishes identically on L k, i.e., for any 
p c L k and any x, y c Tp(Lk), one has w(x,  y) - O. 

Let L ( M  n , A) be the set of all Lagrangian submanifolds of a closed symplectic manifold 

(M n, w), diffeomorphic to a given Lagrangian submanifold A. A smooth family ~ - 

{Lt}t, t c [0, 1], of Lagrangian submanifolds Lt c L ( M  n, A) is called exact path, 
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connecting L0 and L 1, if there exists a smooth mapping ~P : A • [0, 1] --+ M n such 
that, for every t 6 [0, 1], one has ~P(A • {t}) = Lt, and ~P �9 w = dHt A dt for some 
smooth function H : A • [0, 1] --+ R. The Hofer length l(a) of an exact path a is 

defined by l(~) - fo{maxpcA H(p, t) - minpcA H(p, t)}dt. 

The Hofer  metric  on the set L(M n, A) is defined by 

infl(c~) 

for any L0, L1 6 L(M n, A), where the infimum is taken over all exact paths on 
L(M n, A), that connect L0 and L 1. 

The Hofer metric can be defined in similar way on the group Ham(M n, w) of Hamil- 
tonian diffeomorphisms of a closed symplectic manifold (M n, w), whose elements are 
time one mappings of Hamiltonian flows ~ "  it is inf~ 1 (~), where the infimum is taken 
over all smooth paths ~ - {qS~ }, t 6 [0, 1], connecting q5 and 1/r. 

�9 Sasakian metric  

A Sasakian metric  is a metric of positive scalar curvature on a contact manifold, nat- 
urally adapted to the contact structure. A contact manifold equipped with a Sasakian 
metric is called Sasakian space, and is an odd-dimensional analog of K~ihler manifolds. 

�9 Cartan metric  

A Killing form (or Cartan-Killing form) on a finite-dimensional Lie algebra S-2 over a 
field F is a symmetric bilinear form 

B ( x ,  y)  = Tr (adx .  ady) ,  

where Tr denotes the trace of a linear operator, and adx is the image of x under the 
adjoint representation of 12, i.e., the linear operator on the vector space 12 defined by 
the rule z --+ [x, z], where [, ] is the Lie bracket. 

Let el . . . .  en be a basis for the Lie algebra 12, and [ei, ej] - Z ~ = I  y/~e~, where y/~ are 
corresponding structure constants. Then the Killing form is given by 

F/ 

B(xi  x j )  -- gij -- Z yky! , il ik" 
k,l=l 

The metric  t ensor  ( (g i j ) )  is called, especially in the Theoretical Physics, Cartan met-  

ric. 



Chapter 8 

Distances  on Surfaces  and Knots  

8.1. G E N E R A L  SURFACE METRICS 

A surface is a real two-dimensional  manifold M 2, i.e., a H a u s d o r f f  space,  each point of 
which has a neighborhood which is homeomorphic  to a plane E 2, or a closed half-plane 
(cf. Chapter 7). 

A compact  orientable surface is called closed if it has no boundary, and it is called sur- 
face with boundary, otherwise. There are compact  non-orientable surfaces (closed or with 
boundary); the simplest such surface is the MObius strip. Non-compact  surfaces without 
boundary are called open. 

Any closed connected surface is homeomorphic  to either a sphere with, say, g (cylindric) 
handles, or a sphere with, say, g cross-caps (i.e., caps with a twist like M6bius strip in 
them). In both cases the number  g is called genus of the surface. In the case of handles, the 
surface is orientable; it is called torus (doughnut), double torus, and triple torus for g = 
1, 2 and 3, respectively. In the case of cross-caps, the surface is non-orientable; it is called 
real projective plane, Klein bottle, and Dyck's surface for g - 1, 2 and 3, respectively. 
The genus is the maximal  number  of disjoint simple closed curves which can be cut from 
a surface without disconnecting it (the Jordan curve theorem for surfaces). 

The Euler-Poincard characteristic of a surface is (the same for all polyhedral  decompo- 
sitions of a given surface) the number  X - v - e + f ,  where v, e and f are, respectively, 
the number  of vertices, edges and faces of the decomposit ion.  It holds X - 2 - 2g if the 
surface is orientable, and X - 2 - g if not. Every surface with boundary is homeomorphic  
to a sphere with appropriated number  of (disjoint) holes (i.e., what remains if an open disk 
is removed) and handles or cross-caps. If h is the number  of holes, then X - 2 - 2g - h 
holds if the surface is orientable, and X - 2 - g - h if not. 

The connectivity number of a surface is the largest number  of closed cuts that can be 
made on the surface without separating it into two or more parts. This number  is equal 
to 3 - X for closed surfaces, and 2 - X for surfaces with boundaries. A surface with 
connectivity number  1, 2 and 3 is called, respectively, simply, doubly and triply connected. 
A sphere is simply connected, while a torus is triply connected. 

A surface can be considered as a metric space with its own in t r ins ic  metr ic ,  or as a 
figure in space. A surface in E 3 is called complete if it is a comple te  metric space with 
respect to its intrinsic metric. 

A surface is called differentiable, regular, or analytic, respectively, if in a neighborhood 
of each of its points it can be given by an expression 

r --  r ( u ,  1)) --  r ( x l  (u,  1)), x 2 ( u ,  1)), x 3 ( u ,  1))), 
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where the position vector r = r(u,  v) is a differentiable, regular (i.e., a sufficient number  of 
times differentiable), or real analytic, respectively, vector function satisfying the condition 

ru x rv ~: O. 
Any regular surface has the intrinsic metric with the line element (or f irst fundamental  

form)  

ds 2 = dr 2 = E(u ,  v) du 2 + 2 F ( u ,  v) du dv  + G(u,  v) dv  2, 

where E(u,  v) = (ru, ru), F(u ,  v) = (ru, rv), G(u,  v) = (rv, rv). The length of a curve, 
defined on the surface by the equations u = u(t) ,  v = v(t) ,  t c [0, 1], is computed by 

1 
v / E u  ~2 + 2Fury ~ + Gv ~2 dt,  

and the distance between any points p,  q c M 2 is defined as the infimum of the lengths 
of all curves on M 2, connecting p and q. A Riemannian metric is a generalization of the 

first fundamental  form of a surface. 

For surfaces, two kinds of curvature are considered: Gaussian curvature, and mean cur- 
vature. To compute those curvatures at a given point of the surface, consider the intersec- 
tion of the surface with a plane, containing a fixed normal vector, i.e., a vector which is 
perpendicular to the surface at this point. This intersection is a plane curve. The curvature 

k of this plane curve is called normal curvature of the surface at the given point. If we 
vary the plane, the normal curvature k will change, and there are two extremal values - 

the maximal curvature kl ,  and the minimal curvature k2, called principal curvatures of 
the surface. A curvature is taken to be positive if the curve turns in the same direction as 

the surface's chosen normal, otherwise it is taken to be negative. The Gaussian curvature 
is K = klk2 (it can be given entirely in terms of the first fundamental  form). The mean 

curvature is H -- �89 + k2). 
A minimal surface is a surface with mean curvature zero, or, equivalently, a surface of 

min imum area subject to constraints on the location of its boundary. 

A Riemann surface is an one-dimensional  complex manifold, or a two-dimensional  real 
manifold with a complex structure, i.e., in which the local coordinates in neighborhoods of 
points are related by complex analytic functions. It can be thought as a deformed version 

of the complex plane. All Riemann surfaces are orientable. Closed Riemann surfaces are 
geometrical  models of complex algebraic curves. Every connected Riemann surface can 

be turned into a complete two-dimensional  Riemannian manifold with constant curvature 
- 1 ,  0, or 1. The Riemann surfaces with the curvature - 1  are called hyperbolic, the unit 

disk A = {z E C:  Izl < 1} is the canonical example. The Riemann surfaces with the 
curvature 0 are called parabolic, C is a typical example. The Riemann surfaces with the 
curvature 1 are called elliptic, the Riemann sphere C U { cx~ } is a typical example. 

�9 Regular metric 

The intrinsic metric of a surface is called r e g u l a r  if it can be specified using the line 

element 

ds 2 = E du 2 + 2F du dv  + G dv  2, 
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where the coefficients of the form ds 2 are regular functions. 

Any regular surface, given by an expression r = r(u,  v), has a regular metric with the 
line element ds 2 where E(u ,  v) -- (ru, ru) F(u  v) -- (ru, rv) G(u  v) -- (rv, rv) , , , , , �9 

�9 Analytic metric 

The intrinsic metric on a surface is called analytic if it can be specified using the line 
element 

ds 2 -- E du 2 + 2 F  du dv  + G dv  2, 

where the coefficients of the form ds 2 are real analytic functions. 

Any analytic surface, given by an expression r = r(u,  v), has an analytic metric with 
the line element ds 2, where E(u ,  v) -- (ru, ru), F(u ,  v) -- (ru, rv), G(u,  v) -- (rv, rv). 

�9 Metric  of positive curvature 

A metric of positive curvature is the intrinsic metric on a surface ofposi t ive curvature. 

A surface ofposi t ive curvature is a surface in E 3 that has positive Gaussian curvature at 
every point. 

�9 Metric  of negative curvature 

A metric of negative curvature is the intrinsic metric on a surface of  negative curva- 
ture. 

A surface o f  negative curvature is a surface in E 3 that has negative Gaussian curva- 
ture at every point. A surface of negative curvature locally have a saddle-like structure. 
The intrinsic geometry of a surface of constant negative curvature (in particular, of a 
pseudo-sphere) locally coincides with the geometry of Lobachevsky plane. There exists 
no surface in E 3, whose intrinsic geometry coincides completely with the geometry of 
Lobachevsky plane (i.e., a complete regular surface of constant negative curvature). 

�9 Metric  of non-positive curvature 

A metric of non-positive curvature is the intrinsic metric on a saddle-like surface. 

A saddle-like surface is a generalization of a surface of negative curvature: a twice 
continuously-differentiable surface is a saddle-like surface if and only if at each point 
of the surface its Gaussian curvature is non-positive. These surfaces can be seen as an- 
tipodes of convex surfaces, but they do not form such a natural class of surfaces as do 
convex surfaces. 

�9 Metric  of non-negative curvature 

A metric of non-negative curvature is the intrinsic metric on a convex surface. 

A convex surface is a domain (i.e., a connected open set) on the boundary of a convex 
body in E 3 (in some sense, it is an antipode of saddle-like surface). The entire boundary 
of a convex body is called complete convex surface. If the body is finite (bounded), 
the complete convex surface is called closed. Otherwise, it is called infinite (an infinite 
convex surface is homeomorphic to a plane or to a circular cylinder). 
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Any convex surface M 2 in E 3 is a surface of bounded curvature. The total Gaussian 
curvature w(A) -- f f a  K(x)  d~(x)  of a set A C M 2 is always non-negative (here ~( .)  

is the area, and K (x) is the Gaussian curvature of M 2 at a point x), i.e., a convex surface 

can be seen as a surface of non-negative curvature. 

The intrinsic metric of a convex surface is a convex metric  in the sense of surface theory, 

i.e., it displays the convexity condition" the sum of the angles of any triangle whose sides 

are shortest curves is not less that re. 

�9 Metric  with alternating curvature 

A metric  with alternating curvature is the intrinsic metric on a surface with alternating 

(positive or negative) Gaussian curvature. 

�9 Flat  metric  

A fiat met r ic  is the intrinsic metric on a developable surface, i.e., a surface, on which 

the Gaussian curvature is everywhere zero. 

�9 Metric  of bounded  curvature 

A metric  of bounded  curvature is the intrinsic metric p on a surface of bounded cur- 
vature. 

A surface M 2 with an intrinsic metric p is called surface of bounded curvature if there 

exists a sequence of Riemannian  metrics  Pn, defined on M 2, such that for any compact 

set A C M 2 one has Pn --+ P uniformly, and the sequence Iwnl(A) is bounded, where 

Iwln(A) : f f a  IK(x)l d~(x)  is total absolute curvature of the metric Pn (here K(x) is 

the Gaussian curvature of M 2 at a point x, and ~ (.) is the area). 

�9 A-metr ic  

A A-metr ic  (or metric of type A) is a complete  metric on a surface with curvature 

bounded from above by a negative constant. 

An A-metric does not have embeddings into E 3. It is a generalization of the classi- 

cal result of Hilbert (1901): no complete regular surface of constant negative curva- 

ture (i.e., a surface whose intrinsic geometry coincides completely with the geometry of 
Lobachevsky plane) exists in E 3. 

�9 (h,  A) -metr ic  

An (h, A) -met r i c  is a metric on a surface with a slowly-changing negative curvature. 

A complete  (h, A)-metric does not permit a regular isometric embedding in three- 

dimensional Euclidean space (cf. A-metric) .  

�9 G-dis tance  

A connected set G of points on a surface M 2 is called geodesic region if, for each point 

x c G, there exists a disk B(x, r) with center at x, such that BG -- G A B(x, r) has 

one of the following forms: BG -- B(x, r) (x is a regular interior point of G); BG is 

a semi-disk of B(x, r) (x is a regular boundary point of G); BG is a sector of B(x, r) 
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other than a semi-disk (x is an angular point of G); BG consists of a finite number  of 
sectors of B(x, r) with no common points except x (x is a nodal point of G). 

The G-distance between any x and y c G is defined as the greatest lower bound of the 
lengths of all rectifiable curves connecting x and y c G, and completely contained in 

G. 

�9 Conformally invariant metric 

Let R be a Riemann surface. A local parameter (or local uniformizing parameter, local 
uniformizer) is a complex variable z considered as a continuous function Zp0 : ~bp0 (P) 
of a point p c R which is defined everywhere in some neighborhood (parametric neigh- 
borhood) V (Po) of a point P0 c R and which realizes a homeomorphic  mapping (para- 
metric mapping) of V(po) onto the disk (parametric disk) A(p0)  : {z E C:  Izl < 
r(p0)}, where ~bp0 (p0) : 0. Under a parametric mapping, any point function g (p ) ,  de- 
fined in the parametric neighborhood V(p0),  goes into a function of the local parameter  

z: g(p) - g ( ~ ( z ) )  - G(z). 

A conformally invariant metric is a differential p(z) ldzl  on the Riemann surface R 
which is invariant with respect to the choice of the local parameter  z. Thus, to each local 

parameter  z (z : U ---> C) a function Pz : z(U) ~ [0, cx~] is associated such that, for any 

local parameters Z l and z2, we have: 

Pzz(Z2(P)) 
Pzl(Zl(P)) 

_ d z l ( p )  

dz2(p) 
for any p c UI A U2. 

Every linear differential )~(z)dz and every quadratic differential Q(z)dz 2 induce con- 
formally invariant metrics I)~(z) dzl and I Q(z)lm/211dzl, respectively (cf. Q-metric). 

�9 Q-metric 

An Q-me t r i c  is a conformally invariant metric p(z) dzl - IQ(z)l 1/2 dzl on a Rie- 
mann surface R, defined by a quadratic differential Q(z)dz 2. 

A quadratic differential Q(z)dz 2 is a non-linear differential on a Riemann surface R 
which is invariant with respect to the choice of the local parameter  z. Thus, to each local 

parameter  z (z" U ---> C) a function Qz " z(U) ---> C is associated such that, for any 

local parameters Z l and z2, we have: 

Qz2(Z2(P)) _ ( d z l ( P ) )  2 

Qzl (Zl (p))  dz2(p) 
for any p E U1 M U2. 

�9 Extremal metric 

An extremal metric is a conformally invariant metric in the modulus problem for 
a family F of locally rectifiable curves on a Riemann surface R which realizes the 
infimum in the definition of the modulus M (F). 

Formally, let F be a family of locally rectifiable curves on a Riemann surface R, let P 

be a non-empty class of conformally invariant metrics p(z)ldzl on R such that p(z) is 
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square-integrable in the z-plane for every local parameter z, and the integrals 

Ap(R) -- f fl~ p 2 ( z )  d x  dy and 
f 

Lp(F) -- inf I p(z) dzl 
y c F  O 

are not simultaneously equal to 0 or oc (each of the above integrals is understood as a 
Lebesgue integral). The modulus of the family of curves F is defined by 

M ( F ) -  inf Ap(R) 
pep (Lp (F) )  2" 

The extremal length of the family of curves F is equal to SUppcp 

reciprocal of M(F). 

(Lp(F))2 i.e. is the Ap(R) , , 

The modulus problem for F is defined as follows: let PL be the subclass of P such that, 
for any p(z) dzl c PL and any g c F ,  one has fy p(z) dzl ~> 1. If PL ~= 0, then the 
modulus M(F) ofthe  family F can be written as M(F) = infpceL Ap(R). Every metric 
from PL is called admissible metric for the modulus problem on F .  If there exists p* 
for which 

M(F) = inf Ap(R) = Ap,(R), 
pCPL 

the metric p*ldzl is called extremal metric for the modulus problem on F .  

�9 Fr6chet surface metric 

Let (X, d) be a metric space, M 2 be a compact two-dimensional manifold, f be a con- 
tinuous mapping f : M 2 --+ X, called parameterized surface, and cr : M 2 --+ M 2 be 
a homeomorphism of M 2 onto itself. Two parameterized surfaces f l  and f2 are called 
equivalent if inf~ maXpcM2 d(f l  (p), f2(cr (p))) = 0, where the infimum is taken over 
all possible homeomorphisms or. A class f *  of parameterized surfaces, equivalent to f ,  
is called Frdchet surface. It is a generalization of the notion of a surface in an Euclidean 
space to the case of an arbitrary metric space (X, d). 

The Fr6chet surface metric is a metric on the set of all Frdchet surfaces, defined by 

inf max d(f l  (p), f2 (~(P) ) )  
cr p c M  2 

for any Frdchet surfaces fl* and f2*, where the infimum is taken over all possible home- 
omorphisms ~ (cf. Fr~chet metric). 

8.2. INTRINSIC METRICS ON SURFACES 

In this section we list intrinsic metrics, given by their line elements (which, in fact, are 
two-dimensional Riemannian metrics), for some selected surfaces. 
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�9 Quadric metric 

A quadric (or quadratic surface, surface of  second order) is a set of points in IE 3, whose 
coordinates in a Cartesian coordinate system satisfy an algebraic equation of degree two. 

There are 17 classes of such surfaces, among them are: ellipsoids, one-sheet and two- 

sheet hyperboloids, elliptic paraboloids, hyperbolic paraboloids, elliptic, hyperbolic and 

parabolic cylinders, and conical surfaces. 

For example, a cylinder can be given by the following parametric equations: 

x l(u,  v) = a cos v, x2(u, v) = a sin v, x3(u, v) = u. 

The intrinsic metric on it is given by the line element 

ds 2 = du 2 + a 2dr  2. 

An elliptic cone (i.e., a cone with elliptical cross-section) has the following parametric 
equations: 

h - u  h - u  
X l (U, V) = a - -  COS V, X2(U, v) = b - -  sin v, x3(u, v) = u, 

h h 

where h is the height, a is the semi-major axis, and b is the semi-minor axis of the cone. 

The intrinsic metric on it is given by the line element 

h 2 a 2 b 2 (a 2 - b2)(h - u) cos v sin v ds 2 = + cos 2 v + sin 2 v du 2 + 2 
h 2 h 2 

(h - u )2 (a  2 sin 2 v -+- b 2 cos 2 v) 
+ h 2 dv2. 

d u d v  

�9 Sphere metric 

A sphere is a quadric, given by the Cartesian equation (xl - - a )  2-+- ( x 2 - b )  2-+- (x3 - -c)  2 = 

r 2, where the point (a, b, c) is the center of the sphere, and r > 0 is the radius of the 

sphere. The sphere of radius r, centered at the origin, can be given by the following 

parametric equations: 

xl (0, qS) = r sin 0 cos qS, X2 (0, qS) = r sin 0 sin qS, x3 (0, qS) = r cos 0, 

where the azimuthal angle ~ c [0, 2jr), and the polar angle 0 c [0, Jr]. The intrinsic 

metric on it (in fact, the two-dimensional  spherical metric) is given by the line element 

ds 2 - r 2 dO 2 -+- r 2 sin 2 0 dq5 2. 

A sphere of radius r has constant positive Gaussian curvature equal to r. 
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�9 El l ipsoid  metr ic  

An ellipsoid is a quadric given by the Cartesian equation j + ~ + 7  x2 x2 x2 - 1, or by the 

following parametric equations: 

xl(O, qS) = a cos qS sin 0, x2(O, qS) = b sin qS sin 0, x3(O, qS) = c c o s 0 ,  

where the azimuthal angle ~ r [0, 2Jr), and the polar angle 0 r [0, Jr]. The intrinsic 
metric on it is given by the line element 

d s  2 - (b 2 cos 2 ~b -+- a 2 sin 2 qS) sin 2 0 d~b 2 -+- (b 2 - a 2) cos ~b sin q5 cos 0 sin 0 dO d~ 

-+- ( (a  2 cos 2 ~b -+- b 2 sin 2 ~b)COS 2 0 -+- C 2 sin 2 0)dO 2. 

�9 Sphero id  metr i c  

A spheroid is an ellipsoid having two axes of equal length. It is also a rotation surface, 
given by the following parametric equations: 

x l (u, v) = a sin v cos u, X2(U, v) = a sin v sin u, x3 (u, v) = c cos v, 

where 0 ~< u < 2jr, and 0 ~< v ~< Jr. The intrinsic metric on it is given by the line 
element 

1 c2 d s  2 - -  a 2 s in2v  d u  2 -+- ~ ( a  2 -+- -+- (a 2 -  c 2) cos(Zv))dv  2. 

�9 H y p e r b o l o i d  metr i c  

A hyperboloid is a quadric which may be one- or two-sheeted. The one-sheeted hyper- 
boloid is a surface of revolution obtained by rotating a hyperbola about the perpendic- 
ular bisector to the line between the foci, while the two-sheeted hyperboloid is a sur- 
face of revolution obtained by rotating a hyperbola about the line joining the foci. The 
one-sheeted circular hyperboloid, oriented along the x3-axis, is given by the Cartesian 

equation 7:x2 + x 2a 2 Y2c2 - -  1, or by the following parametric equations: 

xl (u, v) - av/1 -+- u 2 cos t~, X2(U, V) -- av/1 -+- u 2 sin v, x3(u, v) -- cu, 

where v c [0, 2jr). The intrinsic metric on it is given by the line element 

a2u2 ) 
d s 2  - -  c2 -Jr- u 2 -Jr- 1 d u 2  -+- a z ( u 2  -+- 1 ) d v  2. 

�9 Rotat ion  surface  metr i c  

A rotation surface (or surface of revolution) is a surface generated by rotating a two- 
dimensional curve about an axis. It is given by the following parametric equations: 

Xl (U, V) = ~b(v) cos U, X2(U, V) = qS(V) sin u, x3(u, V) = gz(V). 
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The intrinsic metric on it is given by the line element 

d s  2 _ ~2 du 2 + (~,2 + ~ , 2 ) d r 2 .  

�9 P s e u d o - s p h e r e  m e t r i c  

A pseudo-sphere is a half of the rotation surface, generated by rotating a tractrix about 
its asymptote.  It is given by the following parametric equations: 

xl (u, v) = sech u cos v, X2(U, v) = sech u sin v, x3(u,  v) = u - tanh u, 

where u ~ 0, and 0 ~< v < 27r. The intrinsic metric on it is given by the line element 

ds 2 = tanh 2 u du 2 + sech 2 u dv  2. 

The pseudo-sphere has constant negative Gaussian curvature equal to - l ,  and in this 

sense is an analog of the sphere which has constant positive Gaussian curvature. 

�9 Torus  m e t r i c  

A torus is a surface having genus one. A torus azimuthally symmetric about the x3-axis 

is given by the Cartesian equation (c - v/X 2 + x2) 2 + x 2 - a 2, or by the following 

parametric equations: 

X l (U, V) = (C if- a COS V) COS U, X2(U, v) = (c + a cos v) sin u, x3 (u, v) = a sin v, 

where c > a, and u, v c [0, 27r). The intrinsic metric on it is given by the line element 

d s  2 - (c -}- a cos v) 2 d u  2 -}- a 2 d v  2. 

�9 He l i ca l  sur face  m e t r i c  

A helical surface (or surface o f  screw motion) is a surface described by a plane curve V 

which, while rotating around an axis at a uniform rate, also advances along that axis at 

a uniform rate. If }, is located in the plane of the axis of rotation x3 and is defined by the 

equation x3 = f (u), the position vector of the helical surface is 

r = (u cos v, u sin v, f ( u )  = hv) ,  h = const, 

and the intrinsic metric on it is given by the line element 

d s  2 - (1 + f ,2)  du 2 + 2 h f '  d u  d v  + (u 2 + h 2) d v  2. 

If f = const, one has a helicoid; if h = 0, one has a rotation surface. 
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�9 Cata lan  surface  metr i c  

The Catalan surface is a minimal surface, given by the following parametric equations: 

xl (u, v) = u - sin u cosh v, X2(U, v) = 1 - cos u cosh v, 

x3(u, v ) - - 4  s i n ( 2  ) s i n h ( 2  ) . 

The intrinsic metric on it is given by the line element 

ds 2 - 2 c o s h  2 ~ ( c o s h v - c o s u )  du 2 + 2 c o s h  2 ~ c o s h v - c o s u  dv 2. 

�9 M o n k e y  saddle  metr ic  

The monkey saddle is a surface, given by the Cartesian equation x3 - X l (x 2 - 3x2), or 
by the following parametric equations: 

Xl(U, u) - -  U ,  X2(U, V) -- V, X3(U, V) -- U 3 -- 3UV 2. 

This is a surface which a monkey can straddle with both legs and his tail. The intrinsic 
metric on it is given by the line element 

ds 2 - (1 + (su 2 -  3v2) 2) du 2 -  2(18uv(u  2 -  v 2 ) ) d u d v  + (1 + 36u2v 2) dv 2. 

8.3. DISTANCES ON KNOTS 

A knot is a closed, non-self-intersecting curve that is embedded in S 3. The trivial knot (or 
unknot) 0 is a closed loop that is not knotted. A knot can be generalized to a link which 
is a set of disjoint knots. Every link has its Seifert surface, i.e., a compact oriented surface 
with given link as boundary. Two knots (links) are called equivalent if one can be smoothly 
deformed into another. Formally, a link is defined as a smooth one-dimensional submani- 
fo ld  of the 3-sphere $3; a knot is a link consisting of one component; links L 1 and L2 are 
called equivalent if there exists an orientation-preserving homeomorphism f �9 S 3 --+ S 3 

such that f (L 1) = L2. 
All the information about a knot can be described using a knot diagram. It is a projection 

of a knot onto a plane such that no more than two points of the knot are projected to the 
same point on the plane, and at each such point it is indicated which strand is closest to the 
plane, usually by erasing part of the lower strand. Two different knot diagrams may both 
represent the same knot. Much of knot theory is devoted to telling when two knot diagrams 
represent the same knot. 

An unknotting operation is an operation which changes the overcrossing and the under- 
crossing at a double point of a given knot diagram. The unknotting number of a knot K 
is the minimum number of unknotting operations needed to deform a diagram of K into 
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that of the trivial knot, where the minimum is taken over all diagrams of K. Roughly, un- 
knotting number is the smallest number of times a knot K must be passed through itself to 
untie it. 

An ~-unknotting operation in a diagram of a knot K is an analog of the unknotting 
operation for a ~-part of the diagram consisting of two pairs of parallel strands with one 
of the pair overcrossing another. Thus, an ~-unknotting operation changes the overcrossing 
and the undercrossing at each vertex of obtained quadrangle. 

�9 Gordian distance 

The Gordian distance is a metric on the set of all knots, defined, for given knots K and 
K z, as the minimum number of unknotting operations needed to deform a diagram of K 
into that of K ~, where the minimum is taken over all diagrams of K from which one can 
obtain diagrams of K ~. The unknotting number of K is equal to the Gordian distance 
between K and the trivial knot O. 

Let r K be the knot obtained from K by taking its mirror image, and let - K  be the knot 
with the reversed orientation. The positive reflection distance Ref+ (K) is the Gordian 
distance between K and r K. The negative reflection distance Ref_ (K) is the Gordian 
distance between K and - rK.  The inversion distance Inv(K) is the Gordian distance 
between K and - K. 

The Gordian distance is the case k = 1 of the C~-distance which is the minimum 
number of Ck-moves needed to transform K into K~; Habiro and Goussarov proved that, 
for k > 1, it is finite if and only if both knots have the same Vassiliev invariants of 
order less than k. A Cl-move is a single crossing change, a C2-move (or delta-move) 
is simultaneous crossing change for 3 arcs forming triangle. C2- and C3-distances are 
called delta distance and clasp-pass distance, respectively. 

�9 ~-Gordian distance 

The ~-Gordian distance (see, for example, [Mura85]) is a metric on the set of all knots, 
defined, for given knots K and K ~, as the minimum number of ~-unknotting operations 
needed to deform a diagram of K into that of K ~, where the minimum is taken over all 
diagrams of K from which one can obtain diagrams of K'.  

Let r K be the knot obtained from K by taking its mirror image, and let - K  be the 

knot with the reversed orientation. The positive ~-reflection distance Ref~+ (K) is the 

~-Gordian distance between K and r K. The negative ~-reflection distance Ref~ (K) is 
the ~-Gordian distance between K and - rK .  The ~-inversion distance Inv'(K) is the 
~-Gordian distance between K and - K .  



Chapter 9 

Distances on Convex Bodies, Cones, and Simplicial 
Complexes 

9.1. D I S T A N C E S  ON C O N V E X  BODIES  

A convex body in the n-dimensional Euclidean space E n is a compact convex subset of E n. 
It is called proper if it has non-empty interior. Let K denote the space of all convex bodies 
in E n, and let Kp be the subspace of all proper convex bodies. 

Any metric space (K, d) on K is called metric space of convex bodies. Metric spaces of 
convex bodies, in particular the metrization by the Hausdorf f  metric, or by the symmetric  
difference metric, play a basic role in the foundations of analysis in Convex Geometry 
(see, for example, [Grub93]). 

For C, D c K\{0} the Minkowski addition and the Minkowski non-negative scalar mul- 
tiplication are defined b y C + D  = { x + y :  x c C , y  c D } , a n d a C  = {ax: x c C}, 

~ 0, respectively. The Abelian semi-group (K, +)  equipped with non-negative scalar 
multiplication operators can be considered as a convex cone. 

The support function hc : S n-1 --+ R of C c K is defined by hc(u)  = sup{ (u, x) : x c 
C} for any u c S n- 1, where S n-1 is the (n - 1)-dimensional unit sphere in E n, and (,) is 
the inner product in E n. 

Given a set X C E n, its convex hull, conv(X), is defined as the minimal convex set 
containing X. 

�9 Area deviation 

The area deviation (or template metric) is a metric on the set Kp in E 2 (i.e., on the set 
of plane convex disks), defined by 

A ( C A D ) ,  

where A(.) is the area, and A is the symmetric difference. If C C D, then it is equal to 
A ( D ) - A ( C ) .  

�9 Perimeter deviation 

The perimeter deviation is a metric on Kp in E 2, defined by 

2p(conv(C U D)) - p(C) - p(D) ,  

where p(.) is the perimeter. In the case C C D, it is equal to p(D)  - p(C).  

122 
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�9 Mean  width metric 

The mean width metric is a metric on Kp in E 2, defined by 

2W(conv(C U D ) ) -  W ( C ) -  W(D), 

where W(.) is the mean width: W(C) = p(C)/rc, and p( . )  is the perimeter. 

�9 P o m p e i u - H a u s d o r f f - B l a s c h k e  metric 

The P o m p e i u - H a u s d o r f f - B l a s c h k e  metric (or Hausdorf f  metric) is a metric on K, 
defined by 

m a x ] s u p  inf x - y 2, sup inf x - y 2],  
[ xcC YC D ycD xCC I 

where II. ll2 is the Euclidean norm on E n. 

In terms of support functions, respectively, using Minkowski addition, it is 

sup h c ( u ) - h D ( u )  l -  hc - hD oc 
ucsn-1 

= i n f { ) ~ > O "  C C D + ) ~ n ,  D C C + ) ~ n } ,  

where ~n  is the unit ball of E n. 

This metric can be defined using any norm on R n instead of the Euclidean norm. More 

generally, it can be defined for the space of bounded closed subsets of an arbitrary metric 

space. 

�9 Pompe iu-Egg les ton  metric 

The Pompeiu-Egg les ton  metric is a metric on K, defined by 

sup inf x - yll2 -+- sup inf Ilx - y 2, 
xcC YC D ycD xCC 

where II. 112 is the Euclidean norm on E n. 

In terms of support functions, respectively, using Minkowski addition, it is 

max{0,  sup ( h e ( u ) -  hD(u)) } + max{0, sup (hD(u) - he(u))} 
ucSn-1 ucSn-1 

= inf{~ ~> 0" c c D + ~ " }  + inf{~ ~> 0" D C C + ~ "  }, 

where ~n  is the unit ball of IE n. 

This metric can be defined using any norm on R n instead of the Euclidean norm. More 
generally, it can be defined for the space of bounded closed subsets of an arbitrary metric 

space. 
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�9 McClure-Vitale  metric 

Given 1 ~< p ~< cx~, the McClure-Vitale  metric is a metric on K, defined by 

1 

[he(u)  - hD(u)  p d~r(u) -- hc  - hD p. 
n-1 

�9 Florian metric 

The Florian metric is a metric on K, defined by 

f s  h e ( u )  - hD(u)l  dcr(u) -- hc  - hD 1. 
n-1 

It can be expressed in the form 2S(conv (CU D))  - S (C)  - S ( D )  for n = 2 (cf. perimeter 
deviation); it can be expressed also in the form nkn (2 W (conv( C U D ) ) - W ( C) - W ( D ) ) 
for n ) 2 (cf. mean width metric). Here S(.) is the surface area, kn is the volume 

1 (hc(u)  + of the unit ball -~n of E n, and W(.) is the mean width" W ( C )  - ~ f s ,  1 

h c ( - u ) ) d a ( u ) .  

�9 Sobolev distance 

The Sobolev distance is a metric on K, defined by 

Ilhc - -hDII~,  

where [[. [[w is the Sobolev 1-norm on the set C sn-1 of all continuous functions on the 
unit sphere S n-  1 of E n. 

1/2 
The Sobolev 1-norm is defined by [If w - (f,  f )w  , where (,)w is an inner product  on 
Cs~- 1, given by 

f s  1 ( f ,  g)w - ( f  g + Vs ( f ,  g)) dwo, wo -- 
n-1 n �9 kn 

- - t / ) ,  

Vs ( f ,  g) = (grad s f ,  grad s g), (,) is the inner product  in E n, and grads is the gradient 
on S n-1 (see [ArWe92]). 

�9 Shephard metric 

The Shephard metric is a metric on Kp, defined by 

l n ( l + 2 i n f { k ~ > O "  C C D + k ( D - D ) , D C C + k ( C - C ) } ) .  

�9 Nikodym metric 

The Nikodym metric (or symmetric difference metric) is a metric on Kp, defined by 

V ( C A D ) ,  
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where V (.) is the volume (i.e., the Lebesgue n-dimensional measure), and & is the sym- 
metric difference. For n = 2, one obtains the area deviation. 

�9 Steinhaus metric 

The Steinhaus metric (or homogeneous symmetric difference metric, Steinhaus dis- 
tance) is a metric on Kp, defined by 

V(CAD)  

V ( C U D ) '  

dA(C,D) 
where V(.) is the volume. So, it is V(CUD)' where dA is the Nikodym metric. This 
metric is bounded; it is affine invariant, while the Nikodym metric is invariant only 
under volume-preserving affine transformations. 

�9 Eggleston distance 

The Eggleston distance (or symmetric surface area deviation) is a distance on Kp, 
defined by 

S ( C U D ) - S ( C A D ) ,  

where S(.) is the surface area. The measure of surface deviation is not a metric. 

�9 Asplund metric 

The Asplund metric is a metric on the space K p / ~  of affine-equivalence classes in Kp, 
defined by 

lninf{)~> 1" 3 T ' E  n - + E  naffine, x e E  n, C C T ( D )  C ) ~ C + x }  

for any equivalence classes C* and D* with the representatives C and D, respectively. 

�9 Macbeath metric 

The Macbeath metric is a metric on the space K p / ~  of affine-equivalence classes in 
Kp, defined by 

ln inf{ lde tT.  PI" 3T ,P"  E n --+ E n regular affine, C C T(D), D C P(C)} 

for any equivalence classes C* and D* with the representatives C and D, respectively. 

Equivalently, it can be written as 

In 31 (C, D) + In 31 (D, C), 

V(T(D)). C C T(D)}, and T is a regular affine mapping o fE  n where 31 (C, D) -- infT{ V(C) 
onto itself. 
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�9 Banach-Mazur  metric 

The Banach-Mazur  metric is a metric on the space Kpo/~  of the equivalence classes 
of proper 0-symmetric convex bodies with respect to linear transformations, defined by 

lninf{)~ ~ 1" 3T"  ]E n --~ ]E n linear, C C T(D)  C )~C} 

for any equivalence classes C* and D* with the representatives C and D, respectively. 

It is a special case of the Banach-Mazur  distance between n-dimensional normed 
spaces. 

�9 Separation distance 

The separation distance is the minimum Euclidean distance between two disjoint con- 
vex bodies C and D in E n (in general, the set-set distance between any two disjoint 
subsets of En): inf{llx - YlI2: x c C, y c D}, while sup{llx - YlI2: x c C, y c D} is 
called the spanning distance. 

�9 Penetration depth distance 

The penetration depth distance between two inter-penetrating convex bodies C and 
D in E n (in general, between any two inter-penetrating subsets of E n) is defined as the 

minimum translation distance that one body undergoes to make the interiors of C and 
D disjoint: 

min{ IItll2" interior(C + t) A O - 0}. 

This distance is a natural extension of the Euclidean separation distance for disjoint 
objects to overlapping objects. This distance can be defined by inf{d(C, D + x):  x c 
En}, or by infs d (C, s (D)), where the infimum is taken over all similarities s : E n -+ E n, 
or . . . .  where d is one of the metrics above. 

�9 Growth distance 

For convex polyhedra, the growth distance (see [GiOn96] for details) is defined as the 
amount objects must be grown from their internal seed points until their surfaces touch. 

�9 Minkowski difference 

The Minkowski difference on the set of all compact subsets, in particular, on the set of 
all sculptured objects (or free form objects), of R 3 is defined by 

A - B = { x - y :  x e A ,  y e B } .  

If we consider object B to be free to move with fixed orientation, the Minkowski differ- 
ence is a set containing all the translations that bring B to intersect with A. The closest 
point from the Minkowski difference boundary, O(A - B), to the origin gives the sep- 
aration distance between A and B. If both objects intersect, the origin is inside the 
Minkowski difference, and the obtained distance can be interpreted as a penetration 
distance. 
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�9 M a x i m u m  polygon distance 

The m a x i m u m  polygon distance is a distance between two convex polygons P = 

(Pl . . . . .  Pn) and Q - (ql . . . . .  qm), defined by 

max I I p i - q j  2, i c {1 . . . . .  n}, j c {1 . . . . .  m}, 
i , j  

where . 2 is the Euclidean norm. 

�9 Grenander  distance 

Let P -- (Pl . . . . .  Pn) and Q - (ql . . . . .  qm) be two disjoint convex polygons, and 

l (pi ,  qj) ,  l(pm, ql) be two intersecting critical support lines for P and Q. Then the 

Grenander  distance between P and Q is defined by 

Pi - - q j l l 2  -+- Pm - - q l  2 -- r ( p i ,  Pro) -- r ( g j ,  ql), 

where 11.112 is the Euclidean norm, and r ( p i ,  Pro) is the sum of the edges lengths of the 

p o l y n o m i a l  chain  Pi . . . . .  Pro. 

Here P = (Pl . . . . .  Pn) is a convex polygon with the vertices in standard form, i.e., the 

vertices are specified according to Cartesian coordinates in a clockwise order, and no 

three consecutive vertices are collinear. A line 1 is a line of  support of P if the interior 

of P lies completely to one side of 1. Given two disjoint polygons P and Q, the line 

l (pi ,  q j)  is a critical support line if it is a line of support for P at pi, a line of support 

for Q at qj,  and P and Q lie on opposite sides of l (pi ,  qj) .  

9.2. D I S T A N C E S  ON C O N E S  

A convex cone C in a real vector space V is a subset C of V such that C + C C C, )~C C C 

for any )~ ~> 0, and C A ( - C )  - {0}. A cone C induces a partial order on V by 

x _ y  if and only if y - x  c C .  

The order _ respects the vector structure of V, i.e., if x _ y and z _ u, then x + z _ y + u, 

and if x _ y, then )~x _ )~y, )~ c R, )~ ~> 0. Elements x, y c V are called comparable and 

denoted by x ~ y if there exist positive real numbers oe and fl such that oey <_ x <_ fly. 
Comparability is an equivalence relation; its equivalence classes (which belong to C or to 

- C )  are called parts (or components, constituents). 
Given a convex cone C, a subset S - {x c C" T (x )  -- 1 }, where T �9 V ---> R is some 

positive linear functional, is called cross-section of C. 

A convex cone C is called almost Archimedean if the closure of its restriction to any 

two-dimensional subspace is also a cone. 
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�9 Thompson part metric 

Given a convex cone C in a real vector  space V, the Thompson part metric on a par t  

K C C\{O} is defined by 

l n m a x { m ( x ,  y),  re(y,  x)} 

for any x, y c K,  where  m ( x ,  y) = inf{)~ c R :  y • )~x}. 

If C is almost  Archimedean,  then K equipped with the Thompson  part  metr ic  is a com- 
plete metric  space. If C is f ini te-dimensional ,  then one obtains a chord space, i.e., a 

metr ic  space in which there is a dis t inguished set of  geodesics,  satisfying certain ax- 

ioms. The posi t ive cone R ~  - { (xl  . . . . .  xn)" xi >~ 0 for 1 ~< i ~< n} equipped with the 

Thompson  part  metr ic  is isometr ic  to a normed  space which one may  think as being flat. 

If  C is a c losed cone in R n with non-empty  interior, then int C can be considered as 

an n-d imens iona l  mani fo ld  M n. If for any tangent  vector v c T p ( M n ) ,  p c M n, we 

v _ inf{oe > 0" - oep -< v -< oep}, then the length of any piecewise  define a norm v lip _ _ 

differentiable curve g �9 [0 1] -+  M n can be writ ten as l ( g )  -- fo  I ly ' ( t )  r d t  and 
' y ( t )  ' 

the distance be tween  x and y is equal  to infy 1 (y) ,  where  the inf imum is taken over all 

such curves y with y(O) = x and y (1 )  = y. 

�9 Hilbert projective semi-metric 

Given a convex cone C in a real vector  space V, the Hilbert projective semi-metric is 

a semi-metr ic  on C\{0},  defined by 

ln (m(x ,  y) . re(y,  x ) )  

for any x, y c C\{0}, where  m ( x ,  y)  - inf{)~ c R" y _ )~x}. It is equal  to 0 if and only 

if x - )~y for some )~ > 0, and becomes  a metr ic  on the space of  rays of  the cone. 

If C is fn i t e -d imens iona l ,  and S is a cross-section of C (in particular, S - {x c C" 

IIx II - 1 }, where  II. II is a norm on g ) ,  then, for any distinct points x, y c S, the distance 

be tween  them is equal  to I ln(x,  y, z, t)l,  where  z, t is the points of the intersect ion of  

the line lx,y with the boundary  of  S, and (x, y, z, t) is the cross-ratio of x, y, z, t. 

If  C is almost  Arch imedean  and f ini te-dimensional ,  then each part  of  C is a chord 

space under  the Hilbert  project ive metric.  The Lorentz  cone {(t, xl  . . . . .  xn) c R n+l : 
2 t 2 > x 2 + . . .  + x n } equipped with the Hilbert  project ive metr ic  is isometr ic  to the n- 

d imensional  hyperbolic  space. The posi t ive cone R ~  - { (xl  . . . . .  xn) " xi >~ 0 for 1 ~< 

i ~< n } with the Hilbert  project ive metr ic  is isometr ic  to a normed  space which one may  

think as being flat. 

If  C is a c losed cone in R n with non-empty  interior, then int C can be considered as an 

n-d imens iona l  mani fo ld  M n. If for any tangent  vector  v c Tp (Mn) ,  p c M n, we define 

H _ m ( p  v) - m ( v ,  p) ,  then the length of any piecewise  differentiable a semi-norm v lip 

curve g �9 [0, 1] -+  M n can be writ ten as l ( g )  - f o  F ~(t)llH dt ,  and the distance y(t) 
be tween  x and y is equal  to infy 1 (F) ,  where  the inf imum is taken over all such curves F 

with g (0 )  - x and g (1 )  - y. 
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�9 Bushell  metric 

Given a convex cone C in a real vector space V, the Bushell  metric on the set S = {x c 
C "  zin_=l xil - 1 } (in general, on any cross-section of C) is defined by 

1 - re(x, y ) .  re(y, x) 

1 + re(x, y ) .  re(y, x) 

for a n y x ,  y c S, where m ( x , y )  = inf{k c R:  y ___ kx}. In fact, it is equal to 
tanh (�89 h (x, y)), where h is the Hilbert projective semi-metric.  

�9 k-oriented distance 

A simplicial cone C in R n is defined as the intersection of n (open or closed) half-spaces, 
each of whose supporting planes contain the origin 0. For any set X of n points on the 
unit sphere, there is a unique simplicial cone C that contains these points. The axes of 
the cone C can be constructed as the set of the n rays, where each ray originates at the 
origin, and contains one of the points from X. 

Given a partition {C1 . . . . .  C~} of R n into a set of simplicial cones C1 . . . . .  C~, the 
k-oriented distance is a metric on R n, defined by 

d~(x - y) 

for all x, y c R n, where, for any x c C i , the value d~ (x) is the length of the shortest 
path from the origin 0 to x traveling only in directions parallel to the axes of Ci. 

�9 Cone metric 

A cone Con(X)  over a metric space (X, d) is the quotient of the product X x [0, oc) 
obtained by identifying all points in the fiber X x {0}. This point is called apex of the 
cone. 

The cone metric is a metric on Con(X) ,  defined, for any (x, t), (y, s) c Con(X) ,  by 

/t -+- S 2 - -  2ts cos(min{d(x,  y), Jr}). 

�9 Suspension metric 

A spherical cone (or suspension) r (X)  over a metric space (X, d) is the quotient of the 
product X x [0, a] obtained by identifying all points in the fibers X x {0} and X x {a}. 

If (X, d) is a length space with diameter diam(X)  <~ Jr, and a = Jr, the suspension 
metric is a metric on I7 (X), defined, for any (x, t), (y, s) c I7 (X), by 

arccos(cos t c o s s +  s int  s ins cos d(x,  y)).  

9.3. DISTANCES ON S I M P L I C I A L  C O M P L E X E S  

An r-dimensional  simplex (or geometrical simplex, hypertetrahedron) is the convex hull 
of r + 1 points of E n which do not lie in any (r - 1)-plane. The simplex is so-named 
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because it represents the simplest possible polytope in any given space. The boundary of 
an r-simplex has r + 1 O-faces (polytope vertices), r(r+l) 1-faces (polytope edges), and 

(r+l~ i-faces, where (~) is a binomial coefficient. The content (i.e. the hypervolume) of a 
i + l )  

simplex can be computed using the Cayley-Menger determinant. The regular simplex in r 
dimensions with is denoted by oer. 

Roughly, a geometrical simplicial complex is a space with a triangulation, i.e., a decom- 
position of it into closed simplices such that any two simplices either do not intersect or 
intersect along a common face. 

An abstract simplicial complex S is a set, whose elements are called vertices, in which a 
family of finite non-empty subsets, called simplices, is distinguished, such that every non- 
empty subset of a simplex s is a simplex, called face of s, and every one-element subset is 
a simplex. A simplex is called/-dimensional if it consists of i + 1 vertices. The dimension 
of S is the maximal dimension of its simplices. For every simplicial complex S there exists 
a triangulation of a polyhedron, whose simplicial complex is S. This geometric simplicial 
complex, denoted by G S, is called geometric realization of S. 

�9 Simplicial metric 

Let S be an abstract simplicial complex, and G S be a geometric simplicial complex 
which is a geometric realization of S. The points of G S can be identified with the func- 
t ionsoe:  S --+ [0,1] for which the set {x c S: oe(x) ~= 0} is a s i m p l e x i n  S, and 
~ x c S  oe(x) = 1. The number oe(x) is called x-th barycentric coordinate of oe. 

The simplicial metric is a metric on G S, defined by 

~s(OI(X) -- fl(X)) 2. 

�9 Polyhedral metric 

A polyhedral metric is the intrinsic metric of a connected geometric simplicial com- 
plex in E n in which identified boundaries are isometric. In fact, it is defined as the infi- 
mum of the lengths of the polygonal lines joining the points x and y such that each link 
is within one of the simplices. 

An example of a polyhedral metric is the intrinsic metric on the surface of a convex 
polyhedron in E 3. A polyhedral metric can be considered on a complex of simplices in a 
space of constant curvature. In general, polyhedral metrics are considered for complexes 
which are manifolds or manifolds with boundary. 

�9 Polyhedral chain metric 

An r-dimensional polyhedral chain A in E n is a linear expression 

m 

Z r dit i , 
i=1 
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where, for any i, the value t ir is an r-dimensional  simplex of E n. The boundary of a chain 
is the linear combination of boundaries of the simplices in the chain. The boundary of 
an r-dimensional  chain is an (r - 1)-dimensional chain. 

A polyhedral  chain metric is a norm metric 

I IA-  BII 

on the set Cr (E n) of all r -dimensional  polyhedral chains. As a norm 11.11 on Cr (E n) one 
can take: 

1. The mass of a polyhedral chain, i.e., IAI - ~ i m = l  dilltr[, where [tr[ is  the volume of 
F .  the cell t i , 

2. Theflat norm of a polyhedral chain, i.e., [A[ b -- info{[A -- OO[ + [O[}, where [O[ is 
the mass of D, 0 D is the boundary of D, and the infimum is taken over all (r + 1)- 
dimensional polyhedral chains; the completion of the metric space (Cr(En), I.I ~) by 

the flat norm is a separable  Banach space, denoted by Cr ~ (En), its elements are 
known as r-dimensional  fiat chains; 

3. The sharp norm of a polyhedral chain, i.e., 

IAI ~ - i n f ( ~ i m = l  dilltrllvil 

\ r + l  
+ 

m 

~ d i r v i t ;  

i=1  

where IAI b is the flat norm of A, and the infimum is taken over all shifts v (here Tvt r 
is the sell obtained by shifting t r by a vector v of length Ivl); the completion of the 
metric space (Cr(En), I.I ~) by the sharp norm is a separable Banach space, denoted 

by Cr ~ (En), its elements are called r-dimensional sharp chains. A flat chain of finite 
mass is a sharp chain. If r = 0, than IAI D - I / I  ~. 

The metric space of polyhedral co-chains (i.e., linear functions of polyhedral chains) 
can be defined in similar way. As a norm of a polyhedral co-chain X one can take: 

1. The co-mass of a polyhedral co-chain, i.e., IxI = supi/ l=l  I x ( / ) l ,  where X(A)  is 
the value of the co-chain X on a chain A; 

2. Theflat co-norm of a polyhedral co-chain, i.e., X ~ - suPlAl~=l X ( / ) I ;  

3. The sharp co-norm of a polyhedral co-chain, i.e., IxI ~ - supi/iz=l I x ( / ) l .  
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Distances in Algebra 

10.1. G R O U P  M E T R I C S  

A group  ( G , . ,  e) is a set G of e lements  with a binary opera t ion . ,  cal led group  opera t ion ,  

that together  satisfy the four fundamenta l  propert ies  of  closure  ( x . y  c G for any x, y c G), 

assoc ia t i v i t y  ( x . ( y . z )  = (x .  y ) . z  for any x, y, z c G),  the i d e n t i t y p r o p e r t y  ( x . e  = e . x  = x 

for any x c G),  and the inverse  p r o p e r t y  (for any x c G, there exists x -1 c G such 

that x �9 x -1 - x -1 �9 x - e). In additive notation, a group (G, + ,  0) is a set G with a 

binary operat ion + such that the fol lowing propert ies  hold: x + y c G for any x, y c G, 

x + ( y + z ) = ( x + y ) + z f o r a n y x ,  y, z c G ,  x + 0 = 0 + x = x f o r a n y x c G ,  and, for 

any x c G, there exists - x  c G such that x + ( - x )  = ( - x )  + x = 0. A group ( G , . ,  e) 

is cal led f in i t e  if the set G is finite. A group ( G , . ,  e) is cal led A b e l i a n  if it is c o m m u t a t i v e ,  

i.e., x �9 y = y �9 x holds for any x, y c G. 

Mos t  of  metrics,  considered in this section, are group norm metrics  on a group ( G , . ,  e), 

defined by 

x . y  -1  

(or, somet imes,  by y -1  . x ), where  . is a group  norm,  i.e., a funct ion II. �9 G --+ R 

such that, for any x, y c G, we have the fol lowing propert ies:  

1. IIx II ~ 0, with IIx II = 0 if and only if x = e; 

2. I x l l -  IIx-1 ; 
3. IIx. yll ~< Ilxll + Ilyll ( t r iangle  inequal i ty ) .  

In additive notation, a group norm metr ic  on a group (G, + ,  0) is defined by IIx + 

( - y )  II - IIx - y ll, or, some t imes ,  by II ( - y )  + x ll. 
The s implest  example  of  a group norm metric  is the bi-invariant ultrametric  (some- 

t imes cal led H a m m i n g  metr ic )  x �9 y - 1  I-1, where  x /4 - 1 for x ~ e, and e /4 - 0. 

�9 Bi- invariant metric 

A metric  (in general ,  a semi-metr ic)  d on a group ( G , . ,  e) is cal led bi-invariant if 

d ( x ,  y )  = d ( x  �9 z, y �9 z) = d ( z  . x ,  z �9 y )  

holds for any x, y, z c G (cf. translation invariant metric).  Any group norm metric 
on an Abel ian  group is bi-invariant. 

A metr ic  (in general ,  a semi-metr ic)  d on a group ( G , . ,  e) is cal led right-invariant 
metric if d ( x ,  y )  = d ( x  �9 z, y �9 z)  holds for any x, y, z c G, i.e., the operat ion of  r ight  

134 
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multiplication by an element z is a motion of the metric space (G, d). Any group norm 

metric, defined by IIx �9 y-111, is right-invariant. 

A metric (in general, a semi-metric) d on a group (G , . ,  e) is called left- invariant metric 
if d ( x ,  y )  = d ( z  �9 x ,  z �9 y)  holds for any x, y, z c G, i.e., the operation of left multipli- 
cation by an element z is a motion of the metric space (G, d). Any group norm metric, 

defined by Ily -1 �9 x II, is left-invariant. 

Any right-invariant, as well as any left-invariant, in particular, bi-invariant, metric d on 

G is a group norm metric, since one can define a group norm on G by IIxll = d ( x ,  0). 

�9 Positively homogeneous  metric 

A metric (in general, a distance) d on an Abelian group (G, + ,  0) is called positively 
homogeneous  if 

d ( m x ,  m y )  = rod (x ,  y )  

holds for all x, y c G and for all m c N, where m x  is the sum of m terms all equal to x. 

�9 Translation discrete metric 

A group norm metric (in general, a group norm semi-metric) on a group (G , . ,  e) is 
called translation discrete if the t rans la t ion  d i s tances  (or t rans la t ion  numbers )  

IIx~ll 
rG (x) = lim 

n---+ o c  n 

of the non- tors ion  e l emen t s  x (i.e., such that x n ~= e for any n c N) of the group with 
respect to that metric are bounded away from zero. 

If the numbers r e ( x )  are just non-zero, such group norm metric is called translation 
proper metric.  

�9 Word metric 

Let (G , . ,  e) be a finitely-generated group with a set A of generators�9 The w o r d  length 

w a (x) of an element x c G \{e } is defined by 

�9 8r w A ( x )  - inf{r" x -- a~ 1 . . a  r , ai c A ,  8 i C {-Jwl}}, 

and w n  (e) -- O. 

The word metric d a a s soc ia t ed  wi th  A is a group norm metric on G, defined by 

As the word length w a is a group  n o r m  on G, then d a is right-invariant.  Sometimes it 

is defined as w a ( y - 1 .  x),  and then it is lef t - invar iant .  In fact, d a is the maximal  metric 

on G that is right-invariant, and such that the distance of any element of A or A-1 to the 
identity element e is equal to one. 
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If A and B are two finite sets of generators of the group (G, . ,  e), then the identity 
mapping between the metric spaces (G, d A) and (G, d B) is a quasi- isometry,  i.e., the 
word metric is unique up to quasi-isometry. 

The word metric is the path metric of the Cayley graph F of (G, . ,  e), constructed with 
respect to A. Namely, F is a graph with the vertex-set G in which two vertices x and 
y �9 G are connected by an edge if and only if y = a ~x, e = -+-1, a �9 A. 

�9 Weighted word metric 

Let (G, . ,  e) be a finitely-generated group with a set A of generators. Given a bounded 
weight function w �9 A --+ (0, ~ ) ,  the weighted word length w ~ v ( x  ) of an element 
x �9 G \{e } is defined by 

w ~ v ( x  ) - - i n f { ~  w(ai),  t �9 N" x -- a~l . . . a t  t, ai �9 A, 6i �9 {-+-1}}, 
i : 1  

and A www(e ) - -0 .  
A The weighted word metric dww associated with A is a group norm metric on G, 

defined by 

A (X y 1 
//3WW �9 - ) .  

A As the weighted word length w~w is a group norm on G, then dww is right-invariant. 
Sometimes it is defined as w ~ v ( y  -1 �9 x), and then it is left-invariant. 

A The metric dww is the supremum of semi-metrics d on G with the property that 
d(e, a) <~ w(a) for any a �9 A. 

A The metric dww is a coarse-path metric, and every right-invariant coarse path metric is 
a weighted word metric up to coarse isometry. 

a 
The metric dww is the path metric of the weighted Cayley graph Fw of (G, . ,  e) con- 
structed with respect to A. Namely, Fw is a weighted graph with the vertex-set G in 
which two vertices x and y �9 G are connected by an edge with the weight w(a) if and 
only if y = aex, ~ = -+-1, a �9 A. 

�9 Interval norm metric 

An interval norm metric is a group norm metric on a finite group (G, . ,  e), defined 
by 

x .  y-1  int' 

where II.llint is an interval norm on G, i.e., a group norm such that the values of II.llint 
form a set of consecutive integers starting with 0. 

To each interval norm II. Ilint corresponds an ordered partition { Bo . . . . .  B m } of G with 
Bi : {x C G :  II x Ilint : i} (c f .  S h a r m a - K a u s h i k  distance). The Hamming norm and 
the Lee norm are special cases of interval norms. A generalized Lee norm is an interval 
norm for which each class has a form Bi : {a, a -1 }. 
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�9 C - m e t r i c  

A C - m e t r i c  d is a metric on a group (G, . ,  e), satisfying the following conditions: 

1. The values of d form a set of consecutive integers starting with 0; 
2. The cardinality of the sphere S(x ,  r) = {y c G: d (x ,  y) = r} is independent of the 

particular choice of x c G. 

The w o r d  metr ic ,  the H a m m i n g  metr ic ,  and the Lee metr i c  are C-metrics. Any inter- 

val  n o r m  metr i c  is a C-metric. 

�9 O r d e r  n o r m  metr i c  

Let (G , . ,  e) be a finite Abelian group. Let o r d ( x )  is the order of an element x c G, 

i.e., the smallest positive integer n such that x n = e. Then the function II. Ilord : G --+ E, 
defined by Ilx IIorcl = In ord(x) ,  is a group norm on G, called order norm. 

The order  n o r m  metr i c  is a group  n o r m  metr i c  on G, defined by 

x"  y -1  ord" 

�9 M o n o m o r p h i s m  n o r m  metr i c  

Let (G, + ,  0) be a group. Let ( H , . ,  e) be a group with a group norm II.IIH. Let f : G ---> 
H be a monomorphism of groups G and H,  i.e., an injective function such that f (x + 

y) - f ( x ) .  f ( y )  for any x, y c G. Then the function . ~ "  G ---> R, defined by 

Ilxll~ - IIf(x)llH, is a group norm on G, called monomorphism norm. 

The m o n o m o r p h i s m  n o r m  metr ic  is a group  n o r m  metr ic  on G, defined by 

x - y l l  s G" 

�9 P r o d u c t  n o r m  metr i c  

Let (G, + ,  0) be a group with a group norm II.llc. Let ( H , . ,  e) be a group with a group 
norm II.lIH. Let G x H = {~ = (x, y):  x c G, y c H} be the Cartesian product of G 
and H,  and (x, y ) .  (z, t) = (x § z, y .  t). Then the function II . l lc•  : G x H --> R, 

defined by I I~ l lc•  - II(x, Y) l l c •  - IIxllc + IlylIH, is a group norm on G x H,  called 
product  norm. 

The p r o d u c t  n o r m  metr i c  is a group  n o r m  metr ic  on G x H,  defined by 

. f l - 1  G x F "  

On the Cartesian product G x H of two finite groups with the interval norms . ~t and 

I1.11 int int - -  II(x y) ll H -- H an interval norm . G xH can be defined. In fact, ~ ~ H  , ~ -- 

Ilxllc + (m + 1) y H, where m - -  m a x a e G  all~ t. 

�9 Q u o t i e n t  n o r m  metr ic  

Let (G, . ,  e) be a group with a group norm II.llc. Let ( N , . ,  e) be a normal subgroup of 
(G, . ,  e), i.e., x N  : N x  for any x c G. Let ( G / N , . ,  e N )  be the quotient group of G, 
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i . e . , G / N = { x N :  x �9 G} with x N  = {x . a : a �9 N} ,  and x N  . y N  = x y N .  Then the 

function II.llc/N : G / N  --+ E,  defined by IlxNllG/N = minacN Ilxallx, is a group norm 
on G / N ,  called quotient norm. 

A quot ient  n o r m  metric  is a group norm metric  on G / N ,  defined by 

x N .  ( y N )  -1 -- 1 
G / N  x y -  N G/N" 

If G = Z with the norm being the absolute value, and N = mZ, m �9 N, then the 

quotient norm on Z / m Z  = Zm coincides with the Lee norm. 

If a metric d on a group (G , . ,  e) is right-invariant,  then for any normal subgroup 

( N , . ,  e) of (G , . ,  e) the metric d induced a right-invariant metric (in fact, the Hausdor f f  
metric)  d* on G / N  by 

[ / 

d * ( x N ,  y N ) -  m a x { m a x  min d(a,  b), max min d(a,  b)}. 
[ bcyN  a c x N  a c x N  bcyN  I 

�9 C o m m u t a t i o n  distance 

Let (G , . ,  e) be a finite non-Abelian group. Let Z ( G )  = {c �9 G : x .c = c . x  for any x �9 

G} be the center of G. The commutat ion graph of G is defined as a graph with the 

vertex-set G in which distinct elements x, y �9 G are connected by an edge whenever  

they commute,  i.e., x �9 y = y �9 x. Obviously, any two distinct elements x, y �9 G that 

are not commute,  are connected in this graph by the path x, c, y, where c is any element  
of Z ( G )  (for example,  e). A path x = x 1, x 2 . . . . .  x ~ = y in the commutat ion graph 

is called (x - y) N-path  if x i ~ Z ( G )  for any i �9 { 1 . . . . .  k}. In this case elements 

x,  y �9 G \ Z ( G )  are called N-connected.  

The c o m m u t a t i o n  distance (see [DeHu98]) d is an extended distance on G, defined by 

the following conditions: 

1. d(x, x )  = 0;  

2. d (x ,  y) = l i f x 7 6 y ,  a n d x . y = y . x ;  

3. d (x ,  y) is the min imum length of an (x - y) N-path  for any N-connec ted  elements 

x and y �9 G \ Z ( G ) ;  

4. d (x ,  y) = oc if x, y �9 G \ Z ( G )  are not connected by any N-path.  

�9 M o d u l a r  distance 

Let (Zm, +,  0), m ~ 2, be a finite cyclic group. Let r �9 N, r ~ 2. The modular  r-weight  

Wr(X) o f a n  element  x �9 Zm = {0, 1 . . . . .  m} is defined as Wr(X) = min{wr (x ) ,  w r ( m -  

x)}, where Wr(X) is the arithmetic r-weight  of the integer x. The value Wr(X) can be 

obtained as the number  of non-zero coefficients in the generalized non-adjacent  f o r m  

x = enr n + . . . e l r  + eo with ei �9 Z, leil < r, lei + ei+ll < r, and leil < lei+ll if 
ei ei + 1 < 0 (cf. ari thmetic  r -norm metric).  

The modular  distance is a distance on Zm, defined by 

Wr(X - -  y ) .  
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The modular  distance is a metric for wr(m) = 1, Wr(m) = 2, and for several special 

cases with wr(m) = 3 or 4. In particular, it is a metric for m = r n or m = r n - 1; if 

r = 2, it is a metric also for m = 2 n + 1 (see, for example,  [Ernv85]). 

The most  popular  metric on Zm is the Lee metric,  defined by I lx-y  Ilcee, where Ilx Ilcee = 
min{x, m - x } is the Lee norm of an element  x c Zm. 

�9 G - n o r m  metric  

Consider a finite field F pn for a prime p and a natural number  n. Given a compact  

convex central ly-symmetr ic  body G in R n, define the G-norm of an element  x c Fpn by 

Ilxllc = inf{# ~> 0: x c p Z  n + #G}.  

The G - n o r m  metric  is a group n o r m  metric  on Fp~, defined by 

x ' Y - 1  G" 

�9 Permutat ion  n o r m  metric  

Given a finite metric space (X, d),  the permutat ion  n o r m  metric  is a group n o r m  

metric  on the group (Sym x, ., id) of all permutations of X (id is the identity mapping), 
defined by 

f . g-1 Sym ' 

where the group norm II.llaym on Symx is given by Ilfllaym = maxxcx d(x, f ( x ) ) .  

�9 Metric  of  mot ions  

Let (X, d) be a metric space, and let p c X be a fixed element  of X. 

The metric  of  mot ions  (see [Buse55]) is a metric on the group (S2,.,  id) of all motions  

of X (id is the identity mapping), defined by 

sup d ( f  (x), g(x))  . e -d(p'x) 
x c X  

for any f ,  g c S-2 (cf. B u s e m a n n  metric  of sets). If the space (X, d) is bounded, the 

similar metric on S2 can be defined as 

sup d ( f  (x), g(x)). 
x c X  

Given a semi-metric space (X, d),  the semi-metr ic  of  mot ions  on (S-2,., id) is defined 

by 

d ( f ( p ) , g ( p ) ) .  

�9 General  l inear group semi-metr ic  

Let F be a locally compact  non-discrete topological field. Let (F n, II.IIF~), n ~> 2, be a 

normed vector space over F. Let II. II be the operator norm associated with the normed 

vector space (F n, II.IIF~). Let GL(n, F) be the general linear group over F. Then the 
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function I.Io~ �9 GL(n, F) ---> R, defined by g op - sup{I In g I, I ln g- i l l  I}, is a semi- 
norm on GL(n, F). 

The general linear group semi-metric is a semi-metric on the group GL(n, F), defined 

by 

Ig . h - l  lop. 

It is a right-invariant semi-metric which is unique, up to coarse isometry, since any 
two norms on F n are bi-Lipschitz equivalent. 

�9 Generalized torus semi-metric 

Let (T , . ,  e) be a generalized torus, i.e., a topological group which is isomorphic to a 

direct product of n multiplicative groups F* of locally compact non-discrete topolog- 
ical fields Fi; then there is a proper continuous homomorphism v : T --+ R n, namely, 

V(Xl . . . . .  Xn) -- (Vl (Xl) . . . . .  Vn(Xn)) ,  where Vi " F 7 ---> R are proper continuous homo- 
morphisms from the F~ to the additive group R, given by the logarithm of the valuation. 
Every other proper continuous homomorphism v ~ : T --+ R n is of the form v ~ = ~ �9 v 

with ~ c GL(n, R). If II. II is a norm on R n, one obtains the corresponding semi-norm 

Ilxllr = IIv(x)ll on T. 

The generalized torus semi-metric is a semi-metric on the group (T , . ,  e), defined by 

x y - 1  _ 1) 

�9 Heisenberg metric 

Let ( H , . ,  e) be the first Heisenberg group, i.e., a group on the set H : C | R with the 

group law x .  y = (z, t ) .  (u, s) = (z + u, t + s + 2~(z~)) ,  and the identity e = (0, 0). Let 

I.IHeis be the Heisenberg norm on H,  defined by IXlHeis : I(z, t)lHeis = (Izl 4 + t2) 1/4. 

The Heisenberg metric (or gauge metric, Korfinyi metric) dHeis is a group norm 
metric on H,  defined by 

X-1 "YlH" 

The second natural metric on ( H , . ,  e) is the Carnot-Carath~odory metric (or C-C 
metric, control metric) de, defined as the intrinsic metric using horizontal vector fields 

1 dHeis(X, ) on H. The metrics dHeis and dc are bi-Lipschitz equivalent; in fact, ~ y 

dc(x ,  y) <~ dHeis(X, y). 

The Heisenberg metric can be defined, in a similar manner, on any Heisenberg group 
(H n, ., e) with H n = C n | R. 

�9 Metric between intervals 

Let G be the set of all intervals [a, b] of R. The set G forms semi-groups (G, + )  and 

(G, .) under addition I + J = {x + y: x c I, y c J} and under multiplication I �9 J = 

{x �9 y: x c I, y c J}, respectively. 
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The metric between intervals is a metric on G, defined by 

max{ III, IJI} 

for all I, J c G, where, for I - [a, b], one has III - la - bl. 

�9 Ring semi-metric 

Let (A, + ,  .) be a factorial ring, i.e., a ring with unique factorization. 

The ring semi-metric is a semi-metric on the set A\{0}, defined by 

In 
1.c.m.(x, y) 

g.c.d.(x,  y) '  

where 1.c.m.(x, y) is the least common multiple, and g.c.d.(x,  y) is the greatest common 
divisor of elements x, y c A\{0}. 

10.2. METRICS ON BINARY RELATIONS 

A binary relation R on a set X is a subset of X x X; it is the arc-set of the directed graph 
(X, R) with the vertex-set X. 

A binary relation R which is symmetric ((x, y) c R implies (y, x) c R), reflexive (all 
(x, x) c R), and transitive ((x, y), (y, z) c R imply (x, z) c R) is called equivalence rela- 
tion or a partition (of X into equivalence classes). Any q-ary sequence x - (xl . . . . .  xn), 
q ~ 2 (i.e., with 0 ~< xi ~< q - 1 for 1 ~< i ~< n), corresponds to the partition 
{B0 . . . . .  B q _ l } o f  Vn -- {1 . . . . .  n}, where Bj -- {1 <~ i <~ n" xi -- j}  are the equivalence 
classes. 

A binary relation R which is antisymmetric ((x, y), (y, x) c R imply x -- y), reflexive, 
and transitive is called partial order, and the pair (X, R) is called poset (partially ordered 
set). A partial order R on X is denoted also by • with x • y if and only if (x, y) c R. The 
order • is called linear if any two elements x, y c X are compatible, i.e., x • y or y • x. 

A poset (L, •  is called lattice if every two elements x, y c L have the join x v y and 
the meet x A y. All partitions of X form a lattice by refinement; it is a sublattice of the 
lattice (by set-inclusion) of all binary relations. 

�9 Kemeny distance 

The Kemeny distance between binary relations R1 and R2 on a set X is the Hamming 
metric IR1AR21. The Kemeny distance is twice the minimal number of inversions of 
pairs of adjacent elements of X which is necessary to obtain R2 from R1. 

If R1, R2 are partitions, then the Kemeny distance coincides with the Mirkin-Tcherny 
distance, and 

IR1AR21 
1 -  

n ( n -  1) 

is the Rand index. 
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The D r a p a l - K e p k a  dis tance  between distinct quasigroups (X, +)  and (X, .) is defined 
by l{ (x ,y ) :  x + y ~ : x . y } l .  

If binary relations R1, R2 are linear orders (or rankings, permutations) on the set X, 
then the Kemeny distance coincides with the invers ion metr ic  on permutations. 

�9 Metr ics  be tween  part i t ions  

Let X be a finite set of cardinality n = IX I, and let A, B be non-empty subsets of X. 
Let Px be the set of partitions of X, and P, Q c Px. Let B1 . . . . .  Bq are blocks in the 
partition P, i.e., the pairwise disjoint sets such that X = B1 U . . .  U Bq, q ~> 2. Let 
P ~/Q be the join of P and Q, and P/~ Q be the meet of P and Q in the lattice JEx of 
partitions of X. 

Consider the following editing operations on partitions: 

- An augmentation transforms a partition P of A\{B } into a partition of A by either 
including the objects of B in a block, or including B itself as a new block; 

- An removal transforms a partition P of A into a partition of A\{ B } by deleting the 
objects in B from each block that contains them; 

- A division transforms one partition P into another by the simultaneous removal of B 
from Bi (where B C Bi, B ~: Bi), and augmentation of B as a new block; 

- A merging transforms one partition P into another by the simultaneous removal of B 
from Bi (where B = Bi) ,  and augmentation of B to  B j  (where j ~: i); 

- A transfer transforms one partition P into another by the simultaneous removal of B 
from Bi (where B C Bi) ,  and augmentation of B to  B j (where j ~: i). 

Define (see, for example, [Day81]), in terms of above operations, the following edit ing 

metr ics  on Px" 

1. The minimum number of augmentations and removals of single objects needed to 
transform P into Q; 

2. The minimum number of divisions, mergings, and transfers of single objects needed 
to transform P into Q; 

3. The minimum number of divisions, mergings, and transfers needed to transform P 
into Q; 

4. The minimum number of divisions and mergings needed to transform P into Q; in 
fact, it is equal to i Pi + i Qi - 2iP v Q i; 

5. ~ ( P ) +  ~ ( Q ) -  2~(P /~  Q), where ~ (P )  - ~PicP IPiI( P i e -  1); 
]Pi ] l o g  2 ]Pi ] 6. e(P) + e(Q) - 2e(P /~ Q), where e(P) - log 2 n + Z p i e  P n n �9 

The Reignier  d is tance  is the minimum number of elements that must be moved between 
the blocks of partition P in order to transform it into Q. (Cf. Earth  M o v e r  d is tance  and 
above metric 2.) 
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10.3. L A T T I C E  M E T R I C S  

Consider a poset (L, •  The meet (or infimum) x A y (if it exists) of two elements x and 

y is the unique element satisfying x A y • x, y, and z • x A y if Z • x, y; similarly, the 

join (or supremum) x w y (if it exists) is the unique element such that x, y • x w y, and 

x w  y ~_ z i f x ,  y ~_ z. 
A poset (L, •  is called lattice if every two elements x, y c L have the join x w y and 

the meet x A y. A poset (L, •  is called meet semi-lattice (or lower semi-lattice) if only 

meet-operation is defined. A poset (L, •  is called join semi-lattice (or upper semi-lattice) 

if only join-operation is defined. 

A lattice L - (L, •  v ,  A) is called semi-modular lattice (or semi-Dedekind lattice) 

if the modularity relation x M y  is symmetric" x M y  implies y M x  for any x, y c L. The 

modularity relation here is defined as follows" two elements x and y are said to constitute 

a modular pair, in symbols x M y ,  if x A (y V Z) -- (x A y) V Z for any Z ___ x. A lattice L 

in which every pair of elements is modular, is called modular lattice (or Dedekind lattice). 

A lattice is modular if and only if the modular law is valid: if z ___ x, then x A (y V Z) -- 

(x A y) V Z for any y. A lattice is called distributive if x A (y V Z) -- (x A y) V (x A Z) 

holds for any x, y, z c L. 

Given a lattice L, a function v �9 L -+ R~>0, satisfying v(x v y) + v(x A y) <<, v(x)  + v(y)  

for all x, y c L, is called subvaluation on L. A subvaluation v is called isotone if v(x)  <~ 

v(y)  whenever x ___ y, and it is called positive if v(x)  < v(y)  whenever x ___ y, x ~= y. 

A subvaluation v is called valuation if it is isotone and v(x v y) + v(x A y) -- v(x)  + v(y)  

holds for all x, y c L. Integer-valued valuation is called height (or length) of L. 

�9 La t t i c e  v a l u a t i o n  m e t r i c  

Let L -- (L, __, v ,  A) be a lattice, and let v be an isotone subvaluation on L. The lattice 

subvaluation semi-metric dv on L is defined by 

2v(x  v y) - v ( x ) -  v(y) .  

(It can be defined also on some semi-lattices.) If v is a positive subvaluation on L, one 

obtains a metric, called la t t ice  s u b v a l u a t i o n  metr ic .  If v is a valuation, dv can be written 

a s  

v(x v y) - v(x A y) -- v(x)  + v(y)  -- 2v(x  A y), 

and is called valuation semi-metric. If v is a positive valuation on L, one obtains a metric, 

called la t t ice  v a l u a t i o n  metr i c .  

If L = N (the set of positive integers), x v y = 1.c.m.(x, y) (least common multiple), 

x A y = g.c .d . (x ,  y) (greatest common divisor), and the positive valuation v(x)  = In x, 

then dv(x y) - In 1.c.m.(x,y) This metric can be generalized on any factorial ring (i.e., a 
' g . c . d ( x , y )  " 

ring with unique factorization) equipped with a positive valuation v such that v(x)  ~ 0 

with equality only for the multiplicative unit of the ring, and v(xy)  = v(x)  + v(y) .  
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�9 Finite subgroup metric 

Let  ( G , . ,  e) be a group. Let  L = (L,  C, A) be the mee t  semi-lat t ice of all finite sub- 

groups of  the group ( G , . ,  e) with the mee t  X A Y and the valuat ion v ( X )  = In IxI.  

The finite subgroup metric is a valuation metric on L, defined by 

v ( X )  + v (Y )  - 2 v ( X  m Y) -- In 
IXIIYI 

( I X n  YI) 2" 

�9 Scalar and vectorial metrics 

Let  L - (L,  ~<, max,  min) be a lattice with the jo in  max{x,  y}, and the mee t  min{x, y} 

on a set L C [0, oc) which has a fixed number  a as the greatest  e lement  and is c losed 

under  negation, i.e., for any x c L, one has 2 - a - x c L. 

The scalar metric d on L is defined, for x ~ y, by 

d(x ,  y) - max{min{x,  y}, min{2, y}}. 

The scalar metric d* on L* -- L U {,}, �9 r L, is defined, for x r y, by 

d(x, y), 
d* (x, y) - max{x,  2-}, 

max{y,  y}, 

i f x ,  y c L ,  

i f y  -- , , x  ~ , ,  

i f x - - , , y  ~ , .  

Given a norm . on R n, n ~> 2, the vectorial metric on L n is defined by 

( d ( x l ,  Yl) . . . . .  d(xn ,  Yn))11, 

and the vectorial metric on (L*) n is defined by 

(d*(x~, s~) . . . . .  d*(x. ,  s . ) )  . 

" - { 0 ,  1 } "  The vectorial  metr ic  on L 2 with l 1-norm on R" is the F r 6 c h e t - N i k o d y m -  
1 m - 2  1}n with Aronszyan distance. The vectorial  metr ic  on L~  -- {0, m-1 . . . . .  m - l '  

l l -norm on R n is the Sgarro m-valued metric. The vectorial  metr ic  on [0, 1] n 

with l 1-norm on R n is the Sgarro fuzzy metric. If L is Lm or [0, 1], and x = 

(Xl . . . . .  xn, Xn+l . . . . .  xn+r) ,  y - (Yl . . . . .  Yn, * . . . . .  , ) ,  where  �9 stands in r places,  
then the vectorial  metr ic  be tween  x and y is the Sgarro metric (see, for example,  

[CSY01]).  

�9 Metrics on Riesz space 

A Riesz space (or vector lattice) is a part ial ly ordered vector space (VRi, •  in which the 

fol lowing condit ions hold: 

1. The vector  space structure and the partial  order structure are compatible" f rom x _ y 

fol lows that x + z _ y + z, and f rom x ~- 0, )~ c R, )~ > 0 fol lows that )~x ~- 0; 
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2. For any two elements x,  y c VRi there exists join x v y c VRi (in particular, the join 
and the meet of any finite set exist). 

The Riesz norm metric is a norm metric o n  VRi, defined by 

I l x -  y Ri, 

where �9 Ri is a Riesz  norm, i.e., a norm o n  VRi such that, for any x,  y c VRi, the 

inequality xl ~< lye, where xl - ( - x )  v (x), implies x Ri ~ Y Ri. The space 
(VRi, el.eRR/) is called normed  Riesz  space. In the case of completeness it is called Banach  

lattice. All Riesz norms on a Banach lattice are equivalent. 

An element e c V + -- {x c VRi" x >- 0} is called strong unit of VRi if for each x c VRi 
there exists )~ c R such that x l _ )~e. If a Riesz space VRi has a strong unit e, then 

mixeR - inf{)~ c R.  xl _ )~e} is a Riesz norm, and one obtains o n  VRi a Riesz norm 
metric 

i n f { ~ c R "  x - y l _ ) ~ e ] .  

A weak  unit of VRi is an element e of V + such that e/~ ix] - 0 implies x - 0. A Riesz 

space VRi is called Arch imedean  if, for any two x, y c V + ,  there exists a natural number 
n, such that nx  -< y. The uniform metric on an Archimedean Riesz space with a weak 

unit e is defined by 

inf{)~cR" I x - y l A e •  

�9 Gallery distance of flags 

Let L be a lattice. A chain C in L is a subset of L which is l inearly ordered, i.e., any 

two elements of C are compatible. A f lag is a chain in L which is maximal with respect 
to inclusion. If L is a semi-modular lattice, containing a finite flag, then L has an unique 
minimal and an unique maximal element, and any two flags C, D in L have the same 

cardinality, n + 1. Then n is the height of the lattice L. Two flags C, D in L are called 
adjacent  if they are equal or D contains exactly one element not in C. A gallery from C 

to D of length m is a sequence of flags C - Co, C1 . . . . .  Cm - D such that Ci-1  and 

Ci are adjacent for i - 1 . . . . .  m. 

A gallery distance of flags (see [Abel91 ]) is a distance on the set of all flags of a semi- 

modular lattice L with finite height, defined as the minimum of lengths of galleries from 

C to D. It can be written as 

ICvD l - IC I - -  CvD I - ID I ,  

where C v D -- {c v d" c c C, d c D} is the upper sub-semi-lattice generated by C 

and D. 

The gallery distance of flags is a special case of the gallery metric (of the chamber  

sys tem consisting of flags). 



Chapter 11 

Distances on Strings and Permutations 

An alphabet is a finite set A, IAI ~> 2, elements of which are called characters (or sym- 
bols). A string (or word) is a sequence of characters over a given finite alphabet A. The set 
of all finite strings over the alphabet ,4 is denoted by W (A). The strings below are finite 
except for Baire,  Duncan ,  and Fr~ehet permutation metrics. 

A substring (or factor, chain, block) of the string x = X l . . .  x ,  is any its contiguous 
subsequence x ix i+l . . .  X k with 1 ~< i ~< k ~< n. A prefix of a string X l . . .  x ,  is any its 
substring starting with Xl; a suffix is any its substring finishing with x , .  If a string is a part 
of a text, then the delimiters (a space, a dot, a comma, etc.) are added to the alphabet A. 

A vector is any finite sequence consisting of real numbers, i.e., a finite string over infinite 
alphabet R. A frequency vector (or discrete probability distribution) is any string x 1 �9 �9 �9 x ,  
with all Xi ~ 0 a n d  z in__=l  x i  - 1. A permutation (or ranking) is any string Xl . . .  x ,  with 
all xi being different numbers from { 1 . . . . .  n }. 

An editing operation is an operation on strings, i.e., a symmetric binary relation on the 
set of all considered strings. Given a set of editing operations 69 = { O1 . . . . .  Ore}, the 
corresponding uni t  cost edit distance between strings x and y is the minimum number 
of editing operations from 69 needed to obtain y from x. It is a metric; moreover, it is the 
pa th  me t r i c  of a graph with the vertex-set W (A) and xy being an edge if y can be obtained 
from x by one of the operations from 69. In some applications, a cost function is assigned 
to each type of editing operation; then the distance is the minimal total cost of transforming 
x into y. 

Main editing operations on strings are: 

�9 Character indel, i.e., insertion or deletion of a character; 

�9 Character replacement; 

�9 Substring move, i.e., transforming, say, the string x = X l . . . x ,  into the string 

X l  �9 �9 �9 X i - I X j . . .  X k _ l X i  . . .  X j - l X k  �9 �9 �9 X n ;  

�9 Substring copy, i.e., transforming, say, x = X l . . . x ,  into X l . . .  X i _ l X j . . . X k - l X i . . . x , ;  

�9 Substring uncopy, i.e., the removal of a substring provided that a copy of it remains in 
the string. 

We list below main distances on strings. However, some string distances will appear in 
Chapters 15, 21 and 23, where they fit better, with respect to the needed level of general- 
ization or specification. 

146 



Chapter 11: Distances on Strings and Permutations [ �9 Levenstein metric] 147 

11.1. DISTANCES ON G E N E R A L  STRINGS 

�9 Levenstein metric 

The Levenstein metric (or shuf f le -Hamming distance, H a m m i n g + G a p  metric,  the edit- 

ing metric) is an editing metric on W (A), obtained for (_9 consisting of only character 
replacements and indels. 

The Levenstein metric between strings x = x l . . .  Xm and y = yl . . .  Yn is equal to 

min{dH (x*, y*)}, 

where x*, y* are strings of length k, k ~> max{m, n}, over alphabet A* = A u {,}, so 
that after deleting all new characters , ,  strings x* and y* shrink to x and y, respectively. 
Here, the gap is the new symbol , ,  and x*, y* are shuffles of strings x and y with strings 
consisting of only , .  

�9 Editing metric with moves 

The editing metric with moves is an editing metric on W(A) ([Corm03]), obtained for 
(_9 consisting of only substring moves and indels. 

�9 Editing compression metric 

The editing compression metric is an editing metric on W(A) ([Corm03]), obtained 
for (_9 consisting of only indels, copy and uncopy operations. 

�9 Indel metric 

The indel metric is an editing metric on W (A), obtained for (_9 consisting of only indels. 

It is an analog of the H a m m i n g  metric I XA Y I between sets X and Y. For strings x -- 
X l . . . X m  and y = Y l . . .  Yn it is equal to m + n - 2 L C S ( x ,  y) ,  where the similarity 
L C S ( x ,  y)  is the length of the longest common subsequence of x and y. 

The factor distance on W(A) is defined by m + n - 2 L C F ( x ,  y) ,  where the similarity 
L C F ( x ,  y)  is the length of the longest common substring (factor) of x and y. 

�9 Multiset  metric 

The multiset metric is a metric on W (A), defined by 

max{IX - YI, IY - XI} 

for any strings x and y, where X, Y are bags o f  symbols  (multisets of characters) in 
strings x, y, respectively. 

�9 Normal ized information distance 

The normalized information distance d is a symmetric function on W({0, 1}) 
([LCLM04]), defined by 

m a x { K ( x l y * ) ,  K ( y l x * ) }  

max{K (x), K(y)} 
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for every two binary strings x and y. Here, for binary strings u and v, u* is a shortest 
binary program to compute u on an appropriated universal computer, the Kolmogorov 
complexity (or algorithmic entropy) K (u) is the length of u* (the ultimate compressed 
version of u), and K(ulv) is the length of the shortest program to compute u if v is 
provided as an auxiliary input. 

The function d(x, y) is a metric up to small error term: d(x , x )  = O( (K(x ) ) - l ) ,  and 

d(x, z) - d(x, y) - d(y, z) = O((max{K(x),  K(y),  K(z)}) - I ) .  (Cf. d(x, y) with the 

following information metric (or entropy metric) H ( X I Y ) +  H(YIX)  between stochas- 
tic sources X and Y.) 

The normalized compression distance is a distance on W({0, 1}) ([LCLM04], 
[BGLVZ98]), defined by 

C(xy) - min{C(x),  C(y)} 

max{C(x),  C(y)} 

for any binary strings x and y, where C(x), C(y), and C(xy) denote the size of com- 
pressed (by fixed compressor C, such as gzip, bzip2, or PPMZ) of strings x, y, and their 
concatenation xy. This distance is not a metric. It is an approximation of the normalized 

information distance. A similar distance is defined by C(xy) 1 
C ( x ) + C ( y )  2" 

�9 Marking metric 

The marking metric is a metric on W (,,4) ([EhHa88]), defined by 

ln2 ((cliff(x, y) + 1) (cliff(y, x) + 1)) 

for any strings x = Xl . . .Xm and y = y l . . .  Yn, where diff(x, y) is the minimal size 
IMI of a subset M C {1 . . . . .  m} such that any substring o fx ,  not containing any xi with 
i c M, is a substring of y. 

Another metric, defined in [EhHa88], is lnz(diff(x, y) + diff(y, x) + 1). 

�9 Jaro similarity 

Given strings x = Xl . . .Xm and y = y l . . .  Yn, call a character xi common with y if 
Xi - -  y j  where i - j l ~< min{m,n} Let x ~ ~ x ~ be the all characters of x, which ' 2 " - -  X l  " " " m I 

are common with y (in the same order as they appear in x), and let Y~ - Yl~ �9 �9 �9 Yn'~ be the 
analogous string for y. 

The Jaro similarity Jaro(x, y) between strings x and y is defined by 

3 + n  
+ 

I{1 ~<i ~< min{m', n'}: x [ -  Y[}I'~ 
) 

This and following two similarities are used in Record Linkage. 



Chapter 11: Distances on Strings and Permutations [ �9 J a r o - W i n k l e r  s i m i l a r i t y ]  149 

�9 Jaro-Winkler similarity 

The J a ro -Wink l e r  similarity between strings x and y is defined by 

Jaro(x, y) + max{4, LCP(x, y)} (1 - J a r o ( x ,  y)) 
10 

where Jaro(x, y) is the Ja ro  similarity, and LCP(x, y) is the length of the longest com- 
mon prefix of x and y. 

�9 q-gram similarity 

The q -gram similarity between strings x and y is defined by 

q(x, y) + q(y, x) 

where q(x, y) is the number of substrings of length q in the string y, which occur also 
as substrings in x, divided by the number of all substrings of length q in y. 

This similarity is an example of token-based similarities, i.e., ones defined in terms of 
tokens (selected substrings or words). Here tokens are q-grams, i.e., substrings of length 
q. Examples of other token-based similarities on strings, used in Record Linkage, are 
Jaccard similarity of communi ty  and TF-IDF (a version of cosine similarity). 

�9 Prefix-Hamming metric 

The prefix-Hamming metric between strings x = Xl . . .  X m  and y = Yl . . .  Yn is defined 
by 

(max  , - min  , + i min  , yi }1" 

�9 Weighted Hamming metric 

If (A, d) is a metric space, the weighted Hamming metric dwH(X, y) between strings 
x -- X l . . .Xm, y -- Yl . . .  Ym c W(A) is defined by 

m 

Z d(xi,  Yi). 
i - -1  

�9 Needleman-Wunsch-Sel lers  metric 

If (,A, d) is a metric space, the Needleman-Wunsch-Sel lers  metric (or Levenstein 
metric with costs, global alignment metric) is an editing metric with costs on W(A)  
([NeWu70]), obtained for 69 consisting of only indels, each of fixed cost q > 0, and 
character replacements, where the cost of replacement of i by j is d(i, j) .  This metric is 
the minimal total cost of transforming x into y by those operations. 

Equivalently, it is equal to 

min{dwH(X*, y*) }, 
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where x*, y* are strings of length k, k ~> max{m, n}, over alphabet A* = A tO {,}, 
so that after deleting all new characters �9 strings x* and y* shrink to x and y, respec- 
tively. Here dwH(X*, y*) is the weighted  H a m m i n g  m e t r i c  between x* and y* with 

- * * is �9 and weight d(x* ,  y*) q (i.e., the editing operation is an indel) if one of X i , Yi ' 
g< 

d(x* ,  Yi ) - d( i ,  j ) ,  otherwise. 

The G o t o h - S m i t h - W a t e r m a n  d i s t a n c e  (or string distance with affine gaps) is a more 
specialized editing metric with costs (see [Coto82]). It discounts mismatching parts in 
the beginning and in the end of the strings x, y, and introduces two indel costs: one for 
starting an affine gap (contiguous block of indels), and another one (lower) for extending 
a gap. 

�9 M a r t i n  m e t r i c  

The M a r t i n  m e t r i c  d a between strings x = x l  . . .  Xm and y = yl . . .  Yn is defined by 

max{m,n} 

2-m -- 2- '1 + Z 
t = l  

a t  
IA ' suplk(z,~ x) - k(z, Y)I, 

where z is any string of the length t, k (z ,  x )  is the Mart in  kernel  ([MaSt99]) of a Markov  

--  " ~ t = l  at < oc} is a chain M -- {Mr }~--o, and the sequence a c {a {at }~--o at > O, ~c 
parameter. 

�9 B a i r e  m e t r i c  

The B a i r e  m e t r i c  is an ultrametric between finite or infinite strings x - x l . . .  X m . . .  

and y = Yl . . .  Yn . . . .  defined, for x ~= y, by 

1 + L C P ( x ,  y ) '  

where L C P ( x ,  y) is the length of the longest common prefix of x and y. 

Moreover, the function a LCP(x'y) is an ultrametric, for any a with 0 < a < 1, on the set 
of all infinite strings. 

�9 D u n c a n  m e t r i c  

Consider the set X of all strictly increasing infinite sequences x = {xn}n of positive 
integers. Define N ( n ,  x )  as the number of elements in x = {xn}n which are less than 

N(n,x) Let Y be the subset of X n, and 3(x) as the density of x, i.e., 3(x) - limn-+oc n �9 
consisting of all sequences x = {xn}n for which 3(x) < oc. 

The D u n c a n  m e t r i c  is a metric on Y, defined, for x r y, by 

1 + L C P ( x ,  y)  
+ I~(x) - ~(y)l,  

where L C P ( x ,  y)  is the length of the longest common prefix of x and y. The metric 
space (Y, d) is called Duncan  space. 
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11.2. D I S T A N C E S  ON P E R M U T A T I O N S  

A permutation (or ranking) is any string xl . . .  Xn with all X i being different numbers from 

{ 1 . . . . .  n}; a signed permutation is any string xl . . .  Xn with all Ixi I being different numbers 

from { 1 . . . . .  n }. Denote by (Sym n, ., id) the group of all permutations of the set { 1 . . . . .  n }, 

where id is the identity mapping. 

The restriction, on the set Sym n of all n-permutat ion vectors, of any metric on R n is a 
1 

; (Zi----1 Xi -- Yil 7, p ~ 1. metric on Sym n main example is t h e / p - m e t r i c  n p) 

Main editing operations on permutations are: 

�9 Block transposition, i.e., a substring move; 

�9 Character move, i.e., a transposition of a block consisting of only one character; 

�9 Character swap, i.e., a move of character only on one position to the right or the left (it 

interchanges adjacent characters); 

�9 Character exchange, i.e., interchanging of any two characters (in Group Theory, it is 

called transposition); 

�9 One-level character exchange, i.e., exchange of characters Xi and X j ,  i < j ,  such that, 

for any k with i < k < j ,  it holds either min{xi, xj  } > x~, or x~ > max{x/, xj  }; 

�9 Block reversal, i.e., transforming, say, the permutat ion x = xl �9 �9 �9 Xn into the permutat ion 

Xl . . .  Xi--IXjXj--1 . . .  X i + I X i X j + I  . . .  Xn (SO, a swap is a reversal of a block consisting only 
of two characters); 

�9 Signed reversal, i.e., a reversal in signed permutation, followed by multiplication on - 1  

all characters of reversed block. 

Below we list most  used editing and other metrics on Sym n. 

�9 Hamming metric on permutations 

The Hamming metric on permutations d// is an editing metric on Sym n, obtained 

for O consisting of only character replacements.  It is a bi-invariant metric. Also, n - 
di i (x ,  y) is the number  of fixed points of xy  -1. 

�9 Spearman p distance 

The Spearman p distance is the Euclidean metric on Symn: 

l n 

~ ( X i  -- 

i : 1  

yi) 2 

(Cf. Spearman p rank correlation similarity in Statistics.) 
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�9 Spearman footrule distance 

The Spearman footrule distance is the l l -metr ic  on Sym n" 

~ 
Xi  - -  Yil. 

i--1 

(Cf. Spearman footrule similarity in Statistics.) 

Both Spearman distances are bi-invariant. 

�9 Kendall r distance 

The Kendall z distance (or inversion metric, swap metric) I is an editing metric on 
Sym n, obtained for O consisting of only character swaps. 

In terms of Group Theory, I (x, y) is the number of adjacent transpositions needed to 
obtain x from y. Also, I (x, y) is the number of relative inversions of x and y, i.e., pairs 
(i, j ) ,  1 ~ i < j ~ n, with (X i  - -  X j ) ( Y i  - -  yj)  < 0. (Cf.  Kendall z rank correlation 
similarity in Statistics.) 

In [BCFS97] were also given the following metrics, associated with metric I (x, y)" 

1. minzcsym,(I(x,  z) + I ( z  -1, y - l ) ) ;  
2. maxzcSym, I (zx, zy); 
3. minzcSym, I (zx, zy) -- T (x, y), where T is the Cayley metric; 
4. Editing metric, obtained for (_9 consisting of only one-level character exchanges. 

�9 Daniels-Gui lbaud semi-metric 

The Daniels-Gui lbaud semi-metric is a semi-metric on Sym n, defined, for any x, y c 
Sym n, as the number of triples (i, j ,  k), 1 ~< i < j < k ~< n, such that (xi, x j ,  x~) is 
not a cyclic shift of (Yi, Y j, Yk); so, it is 0 if and only if x is a cyclical shift of y (see 
[Monj98]). 

�9 Cayley metric 

The Cayley metric T is an editing metric on Sym n, obtained for (_9 consisting of only 
character exchanges. 

In terms of Group Theory, T (x, y) is the minimum number of transpositions needed to 
obtain x from y. Also, n - T(x ,  y) is the number of cycles in xy  -1. The metric T is 
bi-invariant. 

�9 Ulam metric 

The Ulam metric (or permutation editing metric) U is an editing metric on Sym n, 
obtained for O consisting of only character moves. 

Equivalently, it is an editing metric, obtained for O consisting of only indels. Also, 
n - U(x,  y) = LCS(x,  y) = LIS(xy-1) ,  where LCS(x,  y) is the length of longest 
common subsequence (not necessarily a substring) of x and y, while LIS(z) is the length 
of longest increasing subsequence of z c Sym n. 

This and above six metrics are right-invariant. 
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�9 Reversal metric 

The reversal metric is an editing metric on S y m  n, obtained for 0 consisting of only 
block reversals. 

�9 Signed reversal metric 

The signed reversal metric is an editing metric on the set of all 2nn! signed permuta- 
tions of the set { 1 . . . . .  n }, obtained for (_9 consisting of only signed reversals. 

This metric is used in Biology, where a signed permutation represents a single- 
chromosome genome, seen as a permutation of genes (along the chromosome) having 
each a direction (so, a sign + or - ) .  

�9 Chain metric 

The chain metric (or r e a r r a n g e m e n t  metr ic )  is a metric on S y m  n ([Page65]), defined, for 
! ! 

any x ,  y c S y m n ,  as the minimum number, minus 1, of chains (substrings) Yl . . . . .  Yt of 
! ! 

y, so that x can be p a r s e d  (concatenated) into, i.e., x - Yl " "  Yt. 

�9 Lexicographic metric 

The lexicographic metric is a metric on S y m  n, defined by 

IN(x)-N(y)I, 

where N ( x )  is the ordinal number of the position (among 1 . . . . .  n!) occupied by the 
permutation x in the l ex icographic  order ing  of the set S y m  n. 

In the l ex icographic  order ing  of S y m  n, x = x l . . .  Xn -< y = Y l . . .  Yn if there exists 
1 ~< i ~< n such that x l  = x l  . . . . .  x i - 1  = y i - 1 ,  but xi < Yi. 

�9 Fr6chet permutation metric 

The Fr6chet permutation metric is the Fr6chet product metric on the set S y m ~  of 
permutations of positive integers, defined by 

1 Ixi - Yil 

Z 2 i 1 + X i  - -  Yil 
i-1 



Chapter 12 

Distances on Numbers, Polynomials, and Matrices 

12.1. M E T R I C S  ON N U M B E R S  

Here we consider some most  important metrics on the classical number  systems: the semi- 

ring H of natural numbers,  the ring Z of integers, and the fields Q, R, and C of rational, 
real, and complex numbers,  respectively�9 We consider also the algebra Q of quaternions. 

�9 Metrics  on natural numbers  

There are several well-known metrics on the set H of natural numbers: 

1. In - ml; the restriction of the natural metric (from R) on H; 
2. p - a ,  where ~ is the highest power of a given prime number  p dividing m - n, for 

m ~= n (and equal to 0 for m = n); the restriction of the p-adic metric (from Q) on 

H; 
3 In 1.c.m.(m,n). �9 g.c.d.-(--mln)' an example of the lattice valuation metric; 
4. wr (n - m), where wr (n) is the arithmetic r-weight of n; the restriction of the arith- 

metic r -norm metric (from Z) on H; 
5 .  I n - m l  (cf. M-relative metric); 

m n  

1 for m r n (and equal to 0 for m - n); the Sierpinski metric. 6. 1 + ~-+T 

Most  of these metrics on H can be extended on Z. Moreover,  any above metric can be 
used in the case of an arbitrary countable set X. For example, the Sierpinski metric is 

�9 1 for allxm xn 6 X  defined, in general, on a countable set X - {xn n 6 H} by 1 + ~ 
with m r n (and is equal to 0, otherwise). 

�9 Arithmetic  r -norm metric 

Let r 6 H, r ~> 2. The modified r-ary form of an integer x is a representation 

x = e n r  n + . . . + e l r + e o ,  

where ei 6 Z, and leil < r for all i = 0 . . . . .  n. An r-ary form is called minimal 
if the number  of non-zero coefficients is minimal�9 The minimal form is not unique, in 

general�9 But if the coefficients ei, 0 ~ i ~< n - 1, satisfy the conditions lei -+- ei+ll < 
r, and leil < lei+ll if eiei+l < 0, then the above form is unique and minimal;  it is 
called generalized non-adjacent form. The arithmetic r-weight Wr(X) of an integer x is 
the number  of non-zero coefficients in a minimal r-ary form of x, in particular, in the 
generalized non-adjacent form. 

154 
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The ar i thmet ic  r - n o r m  metr ic  (see, for example, [Ernv85]) is a metric on Z, defined 
by 

Wr(X -- y ) .  

�9 p-adic  metric 

Let p be a prime number. Any non-zero rational number x can be represented as x = 
p~Cj, where c and d are integers not divisible by p, and oe is an unique integer. The 
p-adic norm of x is defined by Ix lp = p - a .  Moreover, 101p = 0 holds. 

The p-adic  metric is a norm metric on the set Q of rational numbers, defined by 

Ix - ylp. 

This metric forms the basis for the algebra of p-adic numbers. In fact, the Cauchy 
complet ion of the metric space (Q, Ix - ylp) gives the field Qp of p-adic numbers, as 
well as the Cauchy completion of the metric space (Q, Ix - yl) with the natural  metric 
Ix - Y l gives the field A of real numbers. 

�9 Natural  metric 

The natural  metric (or absolute value metric)  is a metric on R, defined by 

+ 
i f x - y  < 0 ,  

i f x -  y >~0. 

On R al l /p-metr ics  coincide with it. The metric space (R, Ix - yl) is called real line (or 
Euclidean line). 

There exist many other useful metrics on R. In particular, for a given 0 < oe < 1, the 
general ized absolute value metric on R is defined by Ix - y I a. 

�9 Zero bias metric 

The zero bias metric is a metric on R, defined by 

l + l x - y l  

if one and only one of x and y is strictly positive, and by 

Ix - Yl, 

otherwise, where Ix - yl is the natural  metric (see, for example, [Gile87]). 

�9 Extended real line metric 

An extended real line metric is a metric on R U {+cx~} U {-cx~}. Main example (see, 
for example, [Cops68]) of such metric is given by 

I f ( x ) -  f ( y ) l ,  
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x f o r x  �9 R f ( + o c )  -- 1 and f ( - o c )  - - 1 .  Another metric, where f ( x )  - l+lxl ' ' 
commonly used on R U {+oc} U { - o c  }, is defined by 

I arctan x - arctan Y I, 

w h e r e - � 8 9  < arctanx < ire f o r - o c  < x < oc, and arctan(-+-oc)--+-�89 

�9 Complex modulus metric 

The complex modulus metric is a metric on the set C of complex numbers, defined by 

Is - u l ,  

where, for any z c C, the real number Izl - Iza + z2i] -- N/z 2 -+- z 2 is the complex 

modulus. The metric space (C, Iz - ul) is called complex plane (or Argand plane). 

Examples of other useful metrics on C are: the Bri t ish Rail  metr ic ,  defined by 

I z l+ lu l  

for z r u (and is equal to 0, otherwise); the p-relative metric, 1 ~< p ~< oc (cf. (p, q)- 
relat ive metric), defined by 

I z -  ul 
1 

(IzlP + lul p) 7 

for Izl + lul r 0 (and is equal to 0, otherwise); for p = oc one obtains the relative 
metric, written for zl + lul r 0 as 

Iz - ul 
max{Izl, lull" 

�9 Chordal metric 
m 

The chordal metric (or spherical metric) d x is a metric on the set C - C U { oc }, defined 
by 

for all z, u c C, and by 

dx (z, u) = 2 1 z - u l  

v/1 + Izl2v/1 + lu 2 

2 
dx (z, oc) = 

v/1 + Izl 2 

for all z c C (cf. M-re la t ive  metr ic) .  The metric space (C, d x) is called extended 
complex plane. It is homeomorphic  and conformally equivalent to the Riemann sphere. 

In fact, a Riemann sphere is a sphere in the Euclidean space E 3, considered as a metric 
subspace of E 3, onto which the extended complex plane is one-to-one mapped under 
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stereographic projection. The unit sphere S 2 -- {(x l, x2, x3) c E 3" x 2 + x 2 + x 2 -- 1} 

can be taken as the Riemann sphere, and the plane C can be identified with the plane 
x3 = 0 such the real axis coincides with the x 1-axis, and the imaginary axis with the 
x2-axis. Under stereographic projection, each point z c C corresponds to the point 
(Xl, X2, X3) C S 2 obtained as the point of intersection of the ray drawn from the "north 

pole" (0, 0, 1) of the sphere to the point z with the sphere $2; the "north pole" corre- 
sponds to the point at infinity oc. The chordal (spherical) distance between two points 
p, q c S 2 is taken to be the distance between their preimages z, u c C. 

The chordal metric can be defined equivalently on ~n = Rn U {o c}. Thus, for any 
x, y c R n, one has 

d x (x, y) - 
2 x - - y 2  

,/ ,/ 2 l + l l x l l  2 1-+- y 2 

and for any x c R n, one has 

d x (x ,  oc)  - 
~/ 2 

1 + Ilxl12 

where II. 112 is the ordinary Euclidean norm on R n. The metric space (R n, d x) is called 
MO'bius space. It is a Ptolemaic metric space (cf. Ptolemaic metric). 

Given oe > 0, fi ~> 0, p ~> 1, the generalized chordal metric is a metric on C (in 

general, on (R n, 11.112) and even on any Ptolemaic space (g ,  I1.11)), defined by 

z - u ]  
1 1 " 

(c~ + f i l z  p ) 7  . (c~ + f i l u l p ) ~  

It can be easy generalized on C (on ~n).  

�9 Quaternion metric 

Quaternions are members  of a non-commutative division algebra Q over the field R, 
geometrically realizable in a four-dimensional space ([Hami66]). The quaternions can 

be written in the form q = q l + q2i + q3 j + q4k, qi c R, where the quaternions i, 
j ,  and k, called basic units, satisfy the following identities, known as Hamilton's rules: 
i 2 = j2 = k 2 = - 1 ,  and ij = - j i  = k. 

The quaternion norm Ilqll of q = ql + qzi + q3j + q4k c (2 is defined by 

q - - V ~ - - ~ q 2 + q 2 + q 2 + q 2 ,  - q - q l - q 2 i - q 3 j - q 4 k .  

The quaternion metric is a norm metric on the set Q of all quaternions, defined by 

IIx - y �9 
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12.2. M E T R I C S  ON P O L Y N O M I A L S  

A polynomial is an expression involving a sum of powers in one or more variables multi- 

plied by coefficients. A polynomial in one variable (or univariate polynomial) with con- 

stant real (complex) coefficients is given by P - P(z) - ~ = o a ~ z  ~, a~ c R (a~ c C). 
The set 7 ) of all real (complex) polynomials forms a ring (7 ~, + , . ,  0). It is also a vector 
space over R (over C). 

�9 Polynomial norm metric 

A polynomial norm metric (or polynomial bar metric) is a norm metric on the set 7 9 
of all real (complex) polynomials,  defined by 

l i P -  Qll, 

where II. II is a polynomial norm, i.e., a function II. II : ~ -~ R such that, for all P,  Q c 7 ~ 
and for any scalar k, we have the following properties: 

1. II P II ~ 0, with II P II = 0 if and only if P = O; 

2. I I k P l l -  IkllIPll; 
3 II P + OII ~< IIP II + II OII (triangle inequality). 

For the set 7 ) several classes of norms are commonly used. The lp-norm, 1 <~ p <~ oc, 
of a polynomial P(z) - ~ = o a ~ z  ~ is defined by 

IIPIIp - la~lp 

1/p 

n 
giving the special cases PIll  - ~ : 0  la~l, Pll2 - ~ : 0  la~ 2, and lIP oo = 

max0~<~<, la~l. The value IIPlloo is called polynomial height. The Lp-norm, 1 <~ p <~ 
oo, of a polynomial  P (z) - ~ = 0  a~ z~ is defined by 

1 

(fo - Iv  )1 

giving the special cases II P IlL1 

IIPIIL~ = s u p l ~ l = ~  IP(z)l. 
- f 0  2~ ip(eiO)l dO v/ f2Jr dO U~-' IIPI L2 -- IP(ei~ and 

�9 Bombieri  metric 

The Bombieri  metric (or polynomial bracket metric) is a polynomial norm metric 
on the set 7 ~ of all real (complex) polynomials,  defined by 

[ P - Q ] p ,  
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where [.]p, 0 ~< p ~< cx~, is the Bombieri p-norm. For a polynomial P(z)  - ~ = o a k Z  k 
it is defined by 

1 ( z )  n p 

[ P l p -  (~ ) l -p  a~ P , 

\ k = 0  

where (~) is a binomial coefficient. 

12.3. M E T R I C S  O N  M A T R I C E S  

An m x n matrix A = ((aij)) over a field ~' is a table consisting of m rows and n columns 

with the entries aij from ~. The set of all m x n matrices with real (complex) entries is 

denoted by Mm,n. It forms a group (Mm,n, -Jr-, Ore,n), where ((aij))-+-((bij)) = ((aij -+-bij)), 
and the matrix Om,n =~ O, i.e., all its entries are equal to 0. It is also an ran-dimensional 

vector space over R (over C). The transpose of a matrix A = ((aij))  c mm,n is the matrix 

A T = ((aji)) E Mn,m. The conjugate transpose (or adjoint) of a matrix A = ((aij)) E 
Mm,n is the matrix A* = ((~ji))  C Mn,m. 

A matrix is called square matrix if m = n. The set of all square n x n matrices with 

real (complex) entries is denoted by Mn. It forms a ring (Mn, + , . ,  On), where + and On 

are defined as above, and ((aij)) �9 ((bij)) - ( ( ~ = 1  aikbkj)). It is also an nZ-dimensional 
vector space over R (over C). A matrix A = ((aij))  c m n is called symmetric if aij = aji 
for all i, j �9 { 1 . . . . .  n }, i.e., if A = AT. Special types of square n x n matrices include 

the identity matrix In = ( ( c i j ) )  with Cii = 1 ,  and cij = O, i ~: j .  An unitary matrix 
U = ( ( U i j ) )  is a square matrix, defined by U -1 = U*, where U -1 is the inverse matrix for 

U, i.e., U �9 U -1 = I n .  An orthonormal matrix is a matrix A �9 Mm,n s u c h  that A*A = In. 
If for a matrix A �9 Mn there is a vector x such that Ax = kx for some scalar k, then 

k is called eigenvalue of A with corresponding eigenvector x. Given a complex matrix 

A �9 Mm,n, its singular values s i (A)  a r e  defined as the square roots of the eigenvalues 
of the matrix A* A, where A* is the conjugate transpose of A. They are non-negative real 

n u m b e r s s l ( A )  ~ s z ( A )  ~ . . . .  

�9 M a t r i x  n o r m  m e t r i c  

A m a t r i x  n o r m  m e t r i c  is a n o r m  m e t r i c  on the set Mm,n of all real (complex) m x n 

matrices, defined by 

I I A -  Bll, 

where II. II is a matrix norm, i.e., a function II. II : M~,~ ~ R such that, for all A, B �9 
Mm,n, and for any scalar k, we have the following properties: 

1. II A II ~ 0, with II AII - 0 if and only if A = Om,n ; 
2. I I ~ A l l -  I~lllAll; 
3. IIA + Bll ~< IIAll + IIBll (triangle inequality). 

All matrix norm metrics on Mm,n are equivalent. A matrix norm II. II on the set Mn of all 
real (complex) square n x n matrices is called sub-multiplicative if it is compatible with 
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matrix mult ipl icat ion,  i.e., IIAB II ~ IIA I1" II B II for all A, B 6 Mn. The set Mn with a 

sub-mult ipl icat ive norm is a Banach algebra�9 

The simplest  example  of a matr ix norm metr ic  is the H a m m i n g  metric  on Mm,n (in 

general ,  on the set Mm,n (F) of  all m x n matr ices  with entries f rom a field F), defined 

by IIA - BIIH, where  IIAIIH is the Hamming norm of A 6 Mm,n, i.e., the number  of  
non-zero  entries in A. 

�9 Natural  norm metric  

A natural  n o r m  metric  (or induced  n o r m  metric,  subordinate  n o r m  metric)  is a 

matr ix  n o r m  metric  on the set Mn of all real (complex)  square n x n matrices,  defined 

by 

I I A -  B ll.~t. 

where  II. II.~t is a natural norm on Mn. The natural norm II. II.~t on M . .  induced by the 

vector  norm IIx II. x ~ m (x ~ C ' ) .  is a sub-multiplicative matrix norm, defined by 

IIAxll 
A n a t -  sup = sup Axll -  sup IlAx. 

Ilxll:/:O x Ilxll=l Ilxll~< 1 

The natural  norm metric  can be defined in similar  way on the set Mm,n of all m x n real 

(complex)  matrices:  given vector  norms II. IIRm on R m and II. IIRn on R n, the natural norm 

II A IInat of a matr ix A 6 Mm,n, induced by II. IIR" and II. IIR m, is a matr ix norm, defined by 

IIallnat = supllxllR~=l IIaxlIRm. 

�9 Matr ix  p - n o r m  metric  

A matr ix  p - n o r m  metric  is a natural  n o r m  metric  on Mn, defined by 

A _ B  p nat, 

where  . natP is the matrix p-norm, i.e., a natural norm, induced by the vector lp-norm, 

l ~ < p ~ < o c :  

A p nat -- max Ax  lip, 
Ilxllp=l 

where  x p - x i I p 

i=1 

The m a x i m u m  absolute  co lumn metric  (more exactly, m a x i m u m  absolute  co lumn 

sum n o r m  metric)  is the matrix  1-norm metric  A - B 1 n a t  o n  g n .  The matrix 1-norm 
II II a induced by the vector  l 1-norm, is cal led also maximum absolute column sum �9 n a t ,  

norm. For a matr ix  A = ((aij))  6 Mn it can be writ ten as 

n 

A lat -- l<<.j<<.nmax/El ]aij]. 
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The m a x i m u m  a b s o l u t e  r o w  m e t r i c  (more exactly, m a x i m u m  a b s o l u t e  r o w  s u m  

n o r m  m e t r i c )  is the m a t r i x  cx~-norm m e t r i c  II A - B ~ nat on Mn. The matr ix  cx~-norm 

II II ~ induced by the vector l ~ - n o r m ,  is called also m a x i m u m  absolu te  row sum norm.  �9 nat, 
For a matrix A = ((aij))  C Mn it can be written as 

n 

A ~ -- max Z aijl.  
nat l ~ j ~ n j = l  

The s p e c t r a l  n o r m  m e t r i c  is the m a t r i x  2 - n o r m  m e t r i c  A - B 2at on Mn. The matrix 
2-norm . 2at , induced by the vector 12-norm, is called also spectral  n o r m  and denoted 

by II.llsp. For a matrix A -- ( (a i j ) )  E Mn,  it can be written as 

1 
IIA lisp - (maximum eigenvalue of A* A)~, 

where A* - -  ( C d j i ) )  c m n is the conjugate transpose of A (cf. Ky-Fan  n o r m  m e t r i c ) .  

�9 F r o b e n i u s  n o r m  m e t r i c  

The F r o b e n i u s  n o r m  m e t r i c  is a m a t r i x  n o r m  m e t r i c  on Mm,n, defined by 

A - B IIFr, 

where II.llFr is the Frobenius  norm�9 For a matrix A - ( (ai j ) )  c Mm,n, it is defined by 

A F r -  aij 2. 

i----1 j----1 

It is also equal to the square root of the matrix trace of A ' A ,  where A* - ( C d j i ) )  is the 
conjugate transpose of A, or, equivalently, to the square root of the sum of e igenvalues  

/ z m i n { m ,  n} 
~i  of A ' A "  A Fr -- ~ / T r ( A * A )  -- V i=1 )~i (cf. S c h a t t e n  n o r m  m e t r i c ) .  This 
norm comes from an inner  p r oduc t  on the space mm,n, but it is not sub-mul t ip l ica t ive  

f o r m  - -  ///. 

�9 (c ,  p ) - n o r m  m e t r i c  

Let k E N, k ~< min{m, n}, c E R k, Cl ~ C2 ~ "'" ~ Ck > 0,  and 1 ~ p < ~ .  

The (c, p ) - n o r m  m e t r i c  is a m a t r i x  n o r m  m e t r i c  on Mm,n, defined by 

I I A -  BII ~ (c,p), 

where II II k is the (c, p ) - n o r m  on Mm n For a matrix A E Mm n it is defined by �9 (c,p) , �9 , , 

1 

A 1r _ cis  p (A)  (c,p) 
i----1 
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where  Sl (A) ~> $2 (A)  ~> . . .  ~> Sk (A) are the first k singular values of A. If p -- 1, one 

obtains  the c-norm. If, moreover ,  Cl . . . . .  Ck -- 1, one obtains  the Ky-Fan k-norm. 

�9 K y - F a n  n o r m  m e t r i c  

Given  k E N, k ~< min{m,  n }, the K y - F a n  n o r m  m e t r i c  is a m a t r i x  n o r m  m e t r i c  on 

Mm,n, def ined by 

A - B  ~F, 

where  lB. i l k  is the Ky-Fan k-norm on Mm,n. For  a mat r ix  A c Mm,n, it is def ined as the 

sum of  its first k singular values: 

k 

A kKF-- Z s i ( A ) .  
i=1  

For  k - 1, one obtains  the spectral norm. For  k - min{m,  n}, one obtains  the trace 
n o r m .  

�9 S c h a t t e n  n o r m  m e t r i c  

Given  1 ~ p < cx~, the S c h a t t e n  n o r m  m e t r i c  is a m a t r i x  n o r m  m e t r i c  on Mm,n, 
def ined by 

I I A - B  p Sch' 

where  P �9 Sch is the Schatten p-norm on Mm,n. For  a mat r ix  A E Mm,n, it is def ined as 

the p - th  root  of  the sum of  the p - th  powers  of  all its s ingular  values  �9 

1 A (mi  
- s P ( A )  . 

\ i=1  

For  p -- 2, one obtains  the Frobenius norm, and, for p - 1, one  obtains  the trace norm. 

�9 T r a c e  n o r m  m e t r i c  

The  t r a c e  n o r m  m e t r i c  is a m a t r i x  n o r m  m e t r i c  on Mm,n, def ined by 

IIA - B II,r, 

where  II. Iltr is the trace norm on Mm,n. For  a mat r ix  A E Mm,n, it is def ined as the sum 

of  all its singular values: 

min{m,n} 

tr - -  Z Si (A). A 
i=1  

�9 R o s e n b l o o m - T s f a s m a n  m e t r i c  

Let  Mm,n(~q) be the set of  all m x n mat r ices  wi th  entr ies  f rom a finite field Fq.  The  

Rosenbloom-Tsfasman norm II.IIRT on Mm,n(~q) is def ined as fol low: if m = 1 and 
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a = (~1,  ~2 . . . . .  ~n) C Ml ,n ( •q ) ,  then II01,.IIRT = O, and IlalIRT = max{il~i  ~= O} for 
a ~= 01,n ; if A -- (al . . . . .  am) r c Mm,n (Fq), aj c Ml,n (Fq), 1 ~< j ~< m, then 

m 

A RT--  Z aj RT. 
j = l  

The Rosenbloom-Tsfasman metric ([RoTs96]) is a matrix norm metric (in fact, an 
ultrametric) on Mm,n (Fq), defined by 

I I A -  BIIRT. 

�9 Angle distances between subspaces 

Consider the Grassmannian space G (m, n) of all n-dimensional subspaces of Euclidean 
space Era; it is a compact Riemannian manifold of dimension n(m - n). 

7( Given two subspaces A, B c G(m, n), the principal angles ~ >~ 01 >~ . . .  >~ On >~ 0 
between them are defined, for k = 1 . . . . .  n, inductively by 

cos 0h - max max x v y _ (x ~) v Y 
xcA ycB 

subject  to the condi t ions  Ilx 112 = I lyl l2 = 1, x Tx  i = O, y T y i  = 0,  f o r  1 ~< i ~< k - 1, 
where II. ll2 is the Euclidean norm. The principal angles can also be defined in terms of 
orthonormal matrices QA and Q~ spanning subspaces A and B, respectively: in fact, 
n ordered singular values of the matrix Q A Q~ c Mn can be expressed as cosines 
cos 01 . . . . .  cos 0,. 

The geodesic distance between subspaces A and B is (Wong, 1967) defined by 

2 02 . 

i=1  

The Martin distance between subspaces A and B is defined by 

In - - .  
i=1  COS20i  

In the case, when subspaces represent autoregressive models, the Martin distance can 
be expressed in terms of cepstrum of the autocorrelation functions of the models (cf. 
Martin cepstrum distance). 

The Asimov distance between subspaces A and B is defined by 

01. 

It can be expressed also in terms of the Finsler metric on the manifold G(m, n). 
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The gap distance between subspaces A and B is defined by 

sin01. 

It can be expressed also in terms of orthogonalprojectors as the 12-norm of the difference 
of the projectors onto A and B, respectively. Many versions of this distance are used in 
Control Theory (cf. gap metric). 

The Frobenius distance between subspaces A and B is defined by 

2 sin 20i. 
i----1 

It can be expressed also in terms of orthogonal projectors as the Frobenius norm of the 

difference of the projectors onto A and B, respectively. A similar distance x/~ ' i=  1 sin20i 
/ 

v 

is called chordal distance. 

�9 S e m i - m e t r i c s  o n  resemblances 

The following two semi-metrics are defined for any two resemblances dl and d2 on a 
given finite set X (moreover, for any two real symmetric matrices). 

The Lerman semi-metric (cf. Kendall r distance on permutations) is defined by 

I{({x, y}, {U, V}): (d l (x ,y)  - d l ( u ,  v ) ) ( d 2 ( x , y ) - d 2 ( u ,  v)) < 0}l 
(IXl+l~ 2 

2 ] 

where ({x, y}, {u, v}) is any pair of unordered pairs {x, y}, {u, v} of elements x, y, u, v 
from X. 

The Kaufman semi-metric is defined by 

I{({x, y}, {u, v}): ( d l ( x , y ) - d l ( u ,  v ) ) ( d 2 ( x , y ) - d 2 ( u ,  v)) < 0}1 

I{({x,y},{U, V}): ( d l ( x , y ) - d l ( u ,  v ) ) (d2(x ,  y)  - d2(u,  v)) 7 & 0}1 



Chapter 13 

Distances in Functional Analysis 

Functional Analysis is the branch of Mathematics, concerned with the study of spaces of 
functions. This usage of the word functional goes back to the calculus of variations, imply- 
ing a function whose argument is a function. In the modern view, Functional Analysis is 
seen as the study of complete normed vector spaces, i.e., Banach spaces. For any real num- 
ber p ~ 1, an example of a Banach space is given by Lp-space of all Lebesgue-measurable 
functions whose absolute value's p-th power has finite integral. A Hilbert space is a Ba- 
nach space in which the norm arises from an inner product. Also, in Functional Analysis 
are considered the continuous linear operators defined on Banach and Hilbert spaces. 

13.1. M E T R I C S  ON F U N C T I O N  SPACES 

Let I C R be an open interval (i.e., a non-empty connected open set) in R. A real func- 
tion f : I --+ R is called real analytic on I if it agrees with its Taylor series in an open 
neighborhood Uxo of every point x0 c I: 

co  

f (x) -- Z f(n) (xo) (x xo) n for any x c Uxo 
n! 

n = O  

Let D C C be a domain (i.e., a convex open set) in C. A complex function f : D --+ C is 
called complex analytic (or, simply, analytic) on D if it agrees with its Taylor series in an 
open neighborhood of every point z0 c D. A complex function f is analytic on D if and 
only if it is holomorphic on D, i.e., if it has a complex derivative 

f (z) - f (zo) 
f ' (zo)  = lim 

z--~zo Z - -  ZO 

at every point z0 c D. 

�9 Integral metric 

The integral metric is the L 1-metric on the set C[a,b] of all continuous real (complex) 
functions on a given segment [a, b], defined by 

  b l f ( x )  - g ( x ) l d x .  

165 
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The corresponding metric space is abbreviated by C 1 It is a Banach space�9 [a,b]" 

In general, for any compact  (or countably compact) topological space X the inte- 
gral metric can be defined on the set of all continuous functions f : X --+ R (C) by 

f x  I f ( x )  -- g(x)ldx. 

�9 Uniform metric 

The uniform metric (or sup metric) is the L ~ - m e t r i c  on the set C[a,b] of all real 
(complex) continuous functions on a given segment [a, b], defined by 

sup I f ( x ) -  g(x) l .  
xe[a ,b l  

o o  The corresponding metric space is abbreviated by C[a,b I. It is a Banach space�9 

A generalization of C[a~b I is the space of continuous functions C(X), i.e., a metric space 
on the set of all continuous (more generally, bounded) functions f : X --+ C of a topo- 

logical space X with the Lot-metr ic  SUPxcx I f ( x )  - g(x)l .  

In the case of the metric space C (X, Y) of continuous (more generally, bounded) func- 

tions f : X -+ Y from one metric compactum (X, dx) to another (Y, dr), the sup 

metric between two functions f,  g c C(X, Y) is defined by SUpxcx dr ( f ( x ) ,  g(x)). 
o o  The metric space C[a,b I as well as the metric space C 1 ' [a,bl' are two of the most  important 

p 
cases of the metric space C[a,b l, 1 <~ p <~ oc, on the set C[a,bl with the Lp-metr ic  

1 

(fa b I f ( x )  - g(x)lPdx) 7 The space C p is an example of Lp-space.  
�9 [ a , b ]  

�9 Dogkeeper  distance 

Given a metric space (X, d), the dogkeeper distance is a metric on the set of all func- 

tions f ' [ O ,  1] --~ X, defined by 

inf sup d(f (t), g(~(t))), 
o- t e [ 0 , 1 ]  

where ~ "  [0, 1] --+ [0, 1] is a continuous, monotone  increasing function such that 
(0) - 0, ~ (1) - 1. This metric is a special case of the Fr6chet metric. It is used 

for measuring the distances between curves�9 

�9 Bohr metric 

Let R be a metric space with a metric p. A continuous function f : R --+ R is called 
almost-periodic if, for every e > 0, there exists 1 = l(e) > 0 such that every interval 

[to, to + l(e)] contains at least one number  r for which p( f ( t ) ,  f ( t  + r ) )  < e for 
- o c  < t < + o c .  

The Bohr metric is the norm metric Ilf - g II on the set AP of all almost-periodic 
functions, defined by the norm 

- c x ~ < t  <+cx~ 
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It makes AP a Banach space. Some generalizations of almost-periodic functions were 
obtained using other norms by Besicovitch, Stepanov, Weyl, von Neumann, Turing, 
Bochner, and others (cf. Stepanov distance, Weyl distance, and Besicovitch distance). 

�9 Stepanov distance 

The Stepanov distance is a distance on the set of all measurable functions f : R --+ C 
with summable p-th power on each bounded integral, defined by 

( i f  x+, ) l / p  
sup If(x)-g(x)lPdx 
xcR l- x 

The Weyl distance is a distance on the same set, defined by 

lira s u p ( / L  x+! 
1--+~ xc R 

If (x) - g(x)lPdx) 
lip 

Corresponding to these distances one has the generalized Stepanov and Weyl almost- 
periodic functions. 

�9 Besicovitch distance 

The Besicovitch distance is a distance on the set of all measurable functions f : R --+ C 
with summable p-th power on each bounded integral, defined by 

( 1 LT )l/p 
l i m T ~ ~ - ~  TIf(x) -- g(x) Pdx 

Corresponding to this distance one has the generalized Besicovitch almost-periodic func- 
tions. 

�9 Bergman p-metric 

Given 1 ~< p < cx~, let Lp(A) be the Lp-space of Lebesgue measurable functions f on 
the unit d i s k A = { z E C :  Izl < 1}with 

1 

flip - If(z)l  p#(dz)  < ~ .  

The Bergman space Lp(A) is the subspace of Lp(A) consisting of analytic functions, 
and the Bergman p-metric is the Lp-metr ic  on Lp(A) (cf. Bergman metric). Any 
Bergman space is a Banach space. 

�9 Bloch metric 

The Bloch space B on the unit disk A = {z E C: Izl < 1 } is the set of all analytic 
functions f on A such that f ~ - supzc~(1 - I z l 2 ) l f ' ( z ) l  < ~ .  Using complete 
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semi-norm II. II ~, a norm on B is defined by 

f l l -  If(o l + IIf ~. 

The Bloch metric is the norm metric f - g on B. It makes B a Banach space. 

�9 Besov metric 

Given 1 < p < cx~, the Besov space Bp on the unit disk A = {z E C:  Izl < 1 } is the 
set of all analytic functions f in A such that 

1 

fll~p - (1 - z 2)pl f ' ( z ) lP d~.(z) < oc, where d)~(z) - (1 - I z12 )  2 

is the M6bius invariant measure on A. Using complete semi-norm II.llBp, a norm on Bp 
is defined by 

i l l -  l/(0)l + II/  Bp. 

The Besov metric is the norm metric f - g on Bp. It makes Bp a Banach space. 

The set B2 is the classical Dirichlet space of analytic on A functions with square inte- 
grable derivative, equipped with the Dirichlet metric. The Bloch space B can be con- 
sidered as B ~ .  

�9 Hardy metric 

Given 1 ~< p < cx~, the Hardy space H P (A) is the class of functions, analytic on the 

unit disk A = {z E C:  Izl < 1 }, and satisfying the following growth condition for the 

Hardy norm II.IIH~ : 

1 

(lf0 IIf HP(B)  - sup I f ( r e  iO p 
0 < r < l  ~ )l d o  

< O G .  

The Hardy metric is the norm metric IIf - gllHp(a) on HP(A) .  It makes HP(A)  a 
Banach space. 

In Complex Analysis, the Hardy spaces are analogs of the Lp-spaces of Functional 
Analysis. Such spaces are applied in Mathematical  Analysis itself, and also to Scattering 
Theory and Control Theory (cf. Chapter 17). 

�9 Part metric 

The part metric is a metric on a domain D of R 2, defined by 

sup l n ( f ( x ) )  
fcH+ f ( Y )  

for any x, y E R 2, where H + is the set of all positive harmonic functions on the do- 
main D. 
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A twice-differentiable real function f : D --+ R is called harmonic on D if its Laplacian 
A f -- 02 f 02 f vanishes on D. 

�9 Orlicz metric  

Let M(u) be an even convex function of a real variable which is increasing for u positive, 
and l imu~0 u- lM(u)  = l i m u ~  u(M(u)) -1 = 0. In this case the function p(v) = 
M'(v) does not decrease on [0, cx~), p(0)  = l imv~0 p(v) = 0, and p(v) > 0 when 

v > 0. Writing M(u) -- f~ul p(v)dv, and defining N(u) -- f~ul p - l ( v )dv ,  one obtains 
a pair (M(u), N(u)) of complementary functions. 

Let (M(u), N(u)) be a pair of complementary functions, and let G be a bounded closed 
set in R n. The Orlicz space L*M(G ) is the set of Lebesgue-measurable  functions f on G 

satisfying the following growth condition for the Orlicz norm ]]fllM: 

f 
The Orlicz metric  is the norm metric Ilf - gllM on L*M(G ). It makes L*M(G ) a Banach 
space ([Orli32]). 

-- , * (G) coincides with the space Lp(G), and, up to W h e n M ( u )  u p , 1 < p < cx~ L M 
scalar factor, the Lp-norm Ilfllp coincides with IlfllM. Orlicz norm is equivalent to the 

Luxemburg norm Ilf (M) -- inf{)~ > 0" fG M()~- l f  ( t))dt  <~ 1}; in fact, fll(M) ~< 

]]/]]M ~ 2]]/]](M). 

�9 Or l i cz -Lorentz  metric  

Let w : (0, cx~) --+ (0, cx~) be a non-increasing function. Let M : [0, cx~) --+ [0, cx~) be 

a non-decreasing and convex function with M(0)  = 0. Let G be a bounded closed set 
in R n. 

The Orlicz-Lorentz space Lw,M(G) is the set of all Lebesgue-measurable  functions f 
on G satisfying the following growth condition for the Orlicz-Lorentz norm II f II w,M: 

f w ,M-- in f  ) ~ > 0 "  w(x)M dx <~ 1 <cx~ )~ 

where f*(x)  = sup{t: # ( I f ]  ~> t) ~> x} is the non-increasing rearrangement of f .  

The Orl i cz -Lorentz  metric  is the norm metric  ]If - gllw,M on Lw,M(G). It makes 
Lw,M(G) a Banach space. 

The Orl icz-Lorentz  space is a generalization of the Orlicz space L*M(G ) (cf. Orlicz 
metric) ,  and the Lorentz space Lw,q(G), 1 ~< q < cx~, of all Lebesgue-measurable  func- 

tions f on G satisfying the following growth condition for the Lorentz n o r m  Il f l lw,q: 

1 

(fo f w , q -  w(x)( f*(x))  q < cx~. 
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�9 Hi i lder  m e t r i c  

Let L c~ (G) be the set of all bounded continuous functions f ,  defined on a subset G of 

R n, and satisfying the HO'lder condition on G. Here, a function f satisfies the HO'lder 
condition at a point y c G with index (or order) oe, 0 < oe ~< 1, and with coefficient 

A(y),  if I f (x )  - f(Y)l  ~< A(y) lx  - yl ~ for all x c G sufficiently close to y. If A = 
SUpycc (A(y)) < oc, the H61der condition is called uniform on G, and A is called HO'lder 

l/(x)-f(s)l 0 ~< oe ~< 1, is called HO'lder coefficient of G. The quantity I f  c~ -- SUPx,scc Ix-s_ ' 
oe-semi-norm of f ,  and the HO'lder norm of f is defined by 

IIf L~(C) --  s u p l f ( x ) l  + Ifl~.  
xcG 

The Hii lder  m e t r i c  is the n o r m  m e t r i c  IIf - g L~(C) on L~(G). It makes L~(G) a 
Banach space. 

�9 S o b o l e v  m e t r i c  

The Sobolev space W k'p is a subset of an Lp-space such that f and its derivatives up to 

order k have a finite L p-norm. Formally, given a subset G of R n, define 

W k ' p -  w k ' P ( G ) - -  { f  c Lp(G)" f(i) c L p ( G ) , l  <~i <~k}, 

w h e r e  f ( i )  _ Ox%l . . .  0 2  f ,  Oel + . . .  + oen -- i, and the derivatives are taken in a weak 
sense. The Sobolev norm on W k'p is defined by 

fllk,p 

k 

p 
i=0 

In fact, it is enough to take only the first and last in the sequence, i.e., the norm defined 

by Ilfllk,p = Ilfllp + Ilf(k)llp is equivalent to the norm above. For p = oc, the Sobolev 

norm is equal to the essential supremum of l / l :  Ilfllk,oc - ess SUpxcc I f (x) l ,  i.e., it is 
the infimum of all numbers a c R for which I f (x)l > a holds on a set of measure zero. 

The S o b o l e v  m e t r i c  is the n o r m  m e t r i c  Ilf - gllk,p on W k'p. It makes W k'p a Banach 

space. 

The Sobolev space W k'2 is denoted by H k. It is a Hilbert space for the inner product 
k (i) k )# 

(f,  g)k -- ~ i = 1  (f(i), g )L2 --  ~ i = 1  fG  f( i)-~(i  (do)) .  

Sobolev spaces are the modern replacement for the space C 1 (of functions having con- 

tinuous derivatives) for solutions of partial differential equations. 

�9 V a r i a b l e  e x p o n e n t  s p a c e  m e t r i c s  

Let G be a non-empty open subset of R n, and let p : G --> [1, ~ )  be a measurable 

bounded function, called variable exponent. The variable exponent Lebesgue space 
Lp(.)(G) is the set of all measurable functions f :  G --> R for which the modular 
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Op( . ) ( f )  -- fG I f (x )  p(x) dx  is finite. The Luxemburg norm on this space is defined by 

IIf p(.) - - inf{X > O" Op(.) ( f /X)  ~ 1}. 

The variable exponent Lebesgue space metric is the norm metric f - g p(.) on 
Lp(.)(G).  

A variable exponent Sobolev space W I ' p ( ) ( G )  is a subspace of Lp(. ) (G) consisting 
of functions f whose distributional gradient exists almost everywhere and satisfies the 
condition IVf l  c Lp(.)(G).  The norm 

II f 1,p(.) -- II f p(.) 4- I lVf  p(.) 

makes W I'p() (G) a Banach space. The variable exponent Sobolev space metric is the 
norm metric f - g 1,p(.) on WI'P() .  

�9 Schwartz metric 

The Schwartz space (or space o f  rapidly decreasing funct ions)  S(R n) is the class of all 
Schwartz functions,  i.e., infinitely-differentiable functions f �9 R n --+ C that decrease at 
infinity, as do all their derivatives, faster than any inverse power of x. More precisely, f 
is a Schwartz function if we have the following growth condition: 

f c~/~ -- sup x~ 1 .. x~ n Oc~l+'''+c~ f (Xl . . . . .  xn) 
~ R ~  " a x ~  ~ . . .  a x ~  ~ 

< O G  

for any non-negative integer vectors oe and ft. The family of semi-norms II. I1~ defines 
a locally convex topology of S(R n) which is metrizable and complete. The Schwartz 
metric is a metric on S(R n) which can be obtained using this topology (cf. countably 
normed space). 

The corresponding metric space on S(R n) is a Frdchet space in the sense of Functional 
Analysis, i.e., a locally convex F-space.  

�9 Bregman quasi-distance 

Let G C R n be a closed set with the non-empty interior G ~ Let f be a Bregmanfunct ion 

with zone G. 

The Bregman quasi-distance D f "  G x G o ---> R~>0 is defined by 

D f (x, y) -- f (x) - f (y) - ( V f ( y ) ,  x - y), 

of of where V f - ( axl . . . .  axn ). D f (x , y) -- 0 i f and  only i f x  - y, D f (x , y) + D f (y, z) - 
D f ( x ,  z) -- ( V f ( z )  - V f ( y ) ,  x - y), but, in general, DU does not satisfy the triangle 
inequality, and is not symmetric. 

A real-valued function f whose effective domain contains G is called Bregman funct ion 

with zone G if the following conditions hold: 
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1. f is continuously differentiable on Go; 

2. f is strictly convex and continuous on G; 

3. For all 6 c R the partial level sets F(x ,  6) -- {y c G o. DU(X, y) <~ 6} are bounded 

for all x c G; 

4. If {Yn}n C G O converges to y*, then Df(y* ,  Yn) converges to 0; 

5. If {xn }n C G and {Yn }n C G o are sequences such that {xn }n is bounded, l imn~oc = 

y*, and l imn~oc D f ( x n ,  Yn) -- O, then l imn~oc xn - y*. 

When G - R n, a sufficient condition for a strictly convex function to be a Bregman 
f (x) function has the form: limllxll~oc Ilxll = oc. 

13.2. M E T R I C S  O N  L I N E A R  O P E R A T O R S  

A linear operator is a function T : V --+ W between two vector spaces V, W over a field 

I3, that is compatible with their linear structures, i.e., for any x, y c V and any scalar k c 13, 

we have the following properties: T(x + y) = T(x)  + T(y),  and T(kx)  = kT(x) .  

�9 Operator  n o r m  metric  

Consider the set of all linear operators from a normed space (V, ]]. ]iv) into a normed 

space (W, me.mew). The operator norm miTeR of a linear operator T : V --+ W is defined 
as the largest value by which T stretches an element of V, i.e., 

r ( v )  w 
l i T -  sup = sup I IT(v) l lw--  sup T(v) w. 

Ilvllvr v v Ilvllv-1 Ilvllv~<l 

A linear operator T : V --+ W from a normed space V into a normed space W is called 

bounded if its operator norm is finite. For normed spaces, a linear operator is bounded if 

and only if it is continuous. 

The operator  norm metric  is a norm metric  on the set B(V, W) of all bounded linear 

operators from V into W, defined by 

n i T -  P �9 

The space (B(V, W), ]].]]) is called space ofbounded linear operators. This metric space 

is comple te  if W is. If V = W is complete,  the space B(V, V) is a Banach algebra, as 

the operator norm is a sub-multiplicative norm. 

A linear operator T :  V --+ W from a Banach space V into another Banach space 

W is called compact if the image of any bounded subset of V is a relatively compact  

subset of W. Any compact  operator is bounded (and, hence, continuous). The space 

(K (V, W), ]] .]]) on the set K (V, W) of all compact  operators from V into W with the 

operator norm ]]. ]] is called space of compact operators. 
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�9 N u c l e a r  n o r m  m e t r i c  

Let B(V, W) be the space of all bounded linear operators mapping a Banach space 

(g ,  II.lIg) into another Banach space (W, II. IIw). Let the Banach dual of g be denoted by 
V ~, and the value of a functional x ~ c V ~ at a vector x c V by (x, x~). A linear operator 
T c B(V, W) is called nuclear operator if it can be represented in the form x 
T(x) oc , ,  , - -  ~ i = 1  (x xi)Y i where {x~}i and {Yi}i are sequences in V' and W, respectively, 
such t h a t  Zi~ x~ v '  Yi W < OC. This representation is called nuclear, and can be 
regarded as an expansion of T as a sum of operators of rank 1 (i.e., with one-dimensional  
range). The nuclear norm of T is defined as 

(x) 

T n,c -- inf Z IIx~llg'llYi w, 
i=1 

where the infimum is taken over all possible nuclear representations of T. 

The n u c l e a r  n o r m  m e t r i c  is the n o r m  m e t r i c  liT - ell~,c on the set N(V,  W) of 

all nuclear operators mapping V into W. The space (N(V, W), II.ll~,c), called space of 
nuclear operators, is a Banach space. 

A nuclear space is defined as a locally convex space for which all continuous linear 
functions into an arbitrary Banach space are nuclear operators. A nuclear space is con- 
structed as a projective limit of Hilbert spaces Ha with the property that, for each oe c I ,  

one can find fl c I such that H# C Ha, and the embedding operator H# ~ x -+ x c Ha 
is a Hilbert-Schmidt operator. A normed space is nuclear if and only if it is finite- 
dimensional.  

�9 F i n i t e  n u c l e a r  n o r m  m e t r i c  

Let F(V, W) be the space of all linear operators of finite rank (i.e., with finite- 
dimensional  range) mapping a Banach space (V, II.lIv) into another Banach space 
(W, II.lIw). A linear operator T c F(V, W) can be represented in the f o r m x  ~ T(x) = 

n f {Xf}i and }i a r e  Z i = I  (x ,  x i )Yi, where {Yi sequences in V ~ (Banach dual of V) and W, 
respectively, and (x, x') is the value of a functional x '  c V' at a vector x c V. The finite 
nuclear norm of T is defined as 

T N,c -- i n f ~  x~llg'llYillw, 
i=1 

where the infimum is taken over all possible finite representations of T. 

The f in i te  n u c l e a r  n o r m  m e t r i c  is the n o r m  m e t r i c  IIr - e IIf~,c on F ( V ,  W).  The 

space (F(V, W), II.ll/~,c) is called space of operators offinite rank. It is a dense linear 
subspace of the space of nuclear operators N (V, W). 

�9 H i l b e r t - S c h m i d t  n o r m  m e t r i c  

Consider the set of all linear operators from a Hilbert space (H1, II. lira) into a Hilbert 

space (H2, II.lIH2). The Hilbert-Schmidtnorm IITlIHs of a linear operator T : H1 -+ H2 
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is defined by 

1 IITIHs - r (e . ) l l  2 H2 ' 

where (ec~)c~ci is an orthonormal basis in H1. A linear operator T : H1 ---> H2 is called 
Hilbert-Schmidt operator if II T I 2 HS < OG. 

The H i l b e r t - S c h m i d t  n o r m  m e t r i c  is the n o r m  m e t r i c  ]] T -  P ]]HS on the set S(H1, H2) 
of all Hi lber t -Schmidt  operators from H1 into H2. 

For H1 = H2 = H,  the algebra S(H, H) = S(H) with the Hi lber t -Schmidt  norm is a 
Banach algebra. It contains operators of finite rank as a dense subset, and is contained 
in the space K(H)  of compact  operators. An inner product (,)us on S(H) is defined 

by (T, P ) H S  - -  ~ c i ( T ( e ~ )  P(e~)) and T I I H S  - -  (T, T)1/2 Therefore, S(H) is a ' ' H S "  

Hilbert space (independent on the choice basis (ec~)c~cI). 

�9 Trace -c la s s  n o r m  m e t r i c  

Given a Hilbert space H,  the trace-class norm of a linear operator T : H --+ H is 
defined by 

ea), 

o~EI 

where [T[ is the absolute value of T in the Banach algebra B(H) of all bounded op- 
erators from H into itself, and (e~)~ci is an orthonormal basis of H.  An operator 
T : H -+ H is called trace-class operator if [[T[[tc < oo. Any such operator is a 
product of two Hilbert-Schmidt operators. 

The t race -c la s s  n o r m  m e t r i c  is the n o r m  m e t r i c  11 T -  P [[tc on the set L(H) of all trace- 
class operators from H into itself. The set L(H)  with the norm [[.[[tc forms a Banach 
algebra which is contained in the algebra K(H)  (of all compact  operators from H into 
itself), and contains the algebra S(H) (of all Hi lber t -Schmidt  operators from H into 
itself). 

�9 S c h a t t e n  p - c l a s s  n o r m  m e t r i c  

Let 1 ~< p < cx~. Given a separable Hilbert space H,  the Schatten p-class norm of a 
compact  linear operator T : H -+ H is defined by 

1 

n 

where {sn }n is the sequence of singular values of T. A compact  operator T : H --+ H 
is called Schatten p-class operator, if II T ~ch < oc. 

The S c h a t t e n  p - c l a s s  n o r m  m e t r i c  is the norm metric T - P ~ch on the set Sp(H) of 

all Schatten p-class operators from H onto itself. The set Sp(H) with the norm . ~ch 
forms a Banach space. $1 (H)  is the trace-class of H,  and S2(H) is the Hilbert-Schmidt 
class of H (cf. also S c h a t t e n  n o r m  metr ic ) .  
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�9 Cont inuous  dual space 

Let (V, I1.11) be a normed vector space. Let V' be the set of all continuous linear func- 
tionals T from V into the base field (R or C). Let I1.11 ~ be the operator norm on V ', 
defined by 

Z ' - -  sup I r (x) l .  
IIx II ~< 1 

The space (W, [[.[[') is a Banach space which is called cont inuous dual (or Banach 

dual) of (V, II. II). 

In fact, the continuous dual of the metric  space lp ( lp )  is lq ( lq ,  respectively). The 
continuous dual of 1~ (1~) is 1L (1~, respectively). The continuous duals of the Banach 
spaces C (consisting of all convergent sequences, with the lot-metric) and Co (consist- 
ing of all sequences converging to zero, with the lot-metric) are both naturally identified 
with 1~. 

�9 Distance constant  of operator  algebra 

Let A be an operator algebra contained in B(H),  the set of all bounded operators on a 
Hilbert space H. For any operator T c B(H)  let g(T,  A) = sup{llP• P is a 
projection, and P •  = (0)}. Let dist(T, A) be the distance of T from the algebra A, 
i.e., the smallest norm of an operator T - A, where A runs over A. The smallest positive 
constant C (if it exists) such that, for any operator T c B(H),  

dist(T, A) ~< Cfi (T, A) 

holds, is called distance constant  for the algebra A. 



Chapter 14 

Distances in Probability Theory 

A probability space is a measurable space (s A, P) ,  where A is the set of all measurable 
subsets of s and P is a measure on A with P (s = 1. The set s is called sample space. 
An element a c A is called an event, in particular, an elementary event is a subset of s that 
contains only one element; P (a) is called probability of the event a. The measure P on 
A is called probability measure, or (probability) distribution law, or simply (probability) 
distribution. 

A random variable X is a measurable function from a probability space (s A, P )  into 
a measurable space, called a state space of possible values of the variable; it is usually 
taken to be the real numbers with the Borel ~-algebra, so X : s --+ R. The range A" of 
random variable X is called support of distribution P;  an element x c A" is called a state. 

A distribution law can be uniquely described via a cumulative distribution function 
(CDF, distribution function, cumulative density function) F(x) which describes the proba- 
bility that a random value X takes on a value at most  x: F(x) = P(X  <<, x) = P(co c s 
x (co) ~< x). 

So, any random variable X gives rise to a probability distribution which assigns to the 
interval [a ,b]  the probability P(a <~ X <~ b ) =  P(co c s a <~ X(co) <~ b), i.e., the 
probability that the variable X will take a value in the interval [a, b]. 

A distribution is called discrete if F(x) consists of a sequence of finite jumps at xi; a dis- 
tribution is called continuous if F(x) is continuous. We consider (as in majority of applica- 
tions) only discrete or absolutely continuous distributions, i.e., CDF function F : IR -+ IR 
is absolutely continuous. It means that, for every number  ~ > 0, there is a number  8 > 0 
such that, for any sequence of pairwise disjoint intervals [xk, yk], 1 ~< k ~< n, the inequality 

1 ~<~ ~<, (Y~ - x~) < ~ implies the inequality X] 1 ~<~ ~<, I F (y~) - F (x~)l < ~. 
A distribution law also can be uniquely defined via a probability density function (PDF, 

density function, probability function) p(x) of the underlying random variable. For an ab- 
solutely continuous distribution, CDF is almost everywhere differentiable, and PDF is de- 

fined as the derivative p(x) - F ' ( x )  of the CDF; so, F(x) -- P (X  <~ x) -- fxoo p(t) dt, 

and f~ p ( t ) d t  - P(a <~ X <~ b). In the discrete case, PDF (the density of the random 

variable X) is defined by its values p(xi) - P (X  - x); so F(x) -- ~xi<<.x p(xi). In 
contrast, each elementary events has probability zero in any continuous case. 

The random variable X is used to "push-forward" the measure P on s to a measure 
d F on R. The underlying probability space is a technical device used to guarantee the 
existence of random variables and sometimes to construct them. 

Probability metrics between distributions are called simple metrics, while metrics be- 
tween random variables are called compound metrics; see [Rach91]. For simplicity, we 
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usually present the discrete version of probability metrics, but many of them are defined 

on any measurable space. For probability metrics d, the condition P (X = Y) = 1 implies 

(and characterizes) d(X,  Y) = 0. In many cases, some ground distance d is given on the 

state space A" and presented distance is a lifting of it to a distance on distributions. 

In Statistics, many of distances below, between distributions P1 and P2, are used as 

measures of goodness offit between estimated, P2, and theoretical, P1, distributions. 
Below we use notation E[X] for the expected value (or mean) of the random variable X: 

in discrete case E[X] = ~ x  xp (x), in continuous case E[X] = f xp (x) dx. The variance 
of X is E[(X - E[X])2]. Also we denote px  = p(x)  = P ( X  = x), Fx = F(x)  = P ( X  <~ 
x), p(x ,  y) = P ( X  = x, Y = y). 

14.1. DISTANCES ON R A N D O M  VARIABLES 

All distances in this section are defined on the set Z of all random variables with the same 

support A'; here X, Y E Z. 

�9 L p-metric between variables 

The Lp-metric between variables is a metric on Z with X C R and E[IZI p] < ~ for 
all Z E Z, defined by 

) l / p  
( E [ i x -  r l . ] )  '/" - y) 

(x ,y ) e%•  

For p = 1, 2 and cx~, it is called, respectively, engineer metric, mean-square distance 
and essential supremum distance between variables. 

�9 Indicator metric 

The indicator metric is a metric on Z, defined by 

E [ l x c y ] -  Z lxCyp(x, y) -- Z p(x, y). 
(x, y ) c X  • iV (x, y ) c X  • iV, x ~y  

(Cf. Hamming metric.) 

�9 Ky-Fan metric K 

The Ky-Fan metric K is a metric K on Z, defined by 

inf{e > 0 :  P ( I X - Y I  > e )  < e } .  

It is the case d(x,  y) = IX - YI of the probability distance below. 
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�9 Ky-Fan metric K* 

The Ky-Fan metric K* is a metric K* on Z, defined by 

I X - E l  1 -  ~ x - y l  
E 1 + IX-  YI 1 + x - yl 

(x,y)e%• 
p(x, y). 

�9 Probability distance 

Given a metric space (X,  d), the probability distance on Z is defined by 

inf{e" P(d(X, Y) > e) < e}. 

14.2. D I S T A N C E S  ON D I S T R I B U T I O N  LAWS 

All distances in this section are defined on the set 7 ~ of all distribution laws such that 
corresponding random variables have the same range A'; here P1, P2 c 7 ~. 

�9 L p-metric between densities 

The L p-metric between densities is a metric on 7 ~ (for a countable X),  defined, for any 
p > 0, by 

1 

I x ~ ) min(l')5) 
pl(x)--p2(x) l  p 

For p = 1, its half is called total variation metric (or distance in variation, trace- 
distance). The point metric SUPx IPl (x) - pz(x)l  corresponds to p = cx~. 

�9 Mahalanobis semi-metric 

The Mahalanobis semi-metric (or quadratic distance, quadratic metric) is a semi- 
metric on 7 ~ (for A" C R"), defined by 

//(gp, [X] -- gP2[X]) T A - I ( E P ,  [X] - gp2 [X]) 

for a given positive-definite matrix A. 

�9 Engineer semi-metric 

The engineer semi-metric is a semi-metric on 7 ~ (for A" C R), defined by 

IEP, [X] - EP2 [X] l - 

�9 Stop-loss metric of order m 

Z x ( p l ( x ) - p z ( x ) )  
x 

The stop-loss metric of order m is a metric on 7 ~ (for A" C R), defined by 

sup ~ (x - t) m 

teR ~/>t m! 
- - ( p l ( x ) - p z ( x ) ) .  



Chapter 14: Distances in Probability Theory [ �9 Kolmogorov-Smirnov metric] 179 

�9 Kolmogorov-Smirnov  metric 

The Kolmogorov-Smirnov metric (or Kolmogorov metric, uniform metric) is a metric 
on 72 (for A" C R), defined by 

sup]Pl(X <~ x ) -  P2(X <~ x)]. 
x 6 R  

The Kuiper distance on 7 ~ is defined by 

sup(Pl(X <~ x ) -  P2(X <~ x)) + sup(P2(X ~< x) - PI(X ~< x)) .  
x c R  x c R  

(Cf. Pompeiu-Eggles ton  metric on convex bodies.) 

The Anderson-Darl ing distance on 7 ~ is defined by 

I(PI(X ~ x) - P2(X ~ x)l 
s u p  
xcR In ~/(PI(X ~< x)(1 - PI(X ~< x)) 

The Crnkovic -Drachma distance is defined by 

sup(P1 (X <~ x) - P2(X <~ x))  In 
x 6 R  ~/(p~ (x  ~< x)(1 - P~ (x  ~< x)) 

+ sup(P2(X ~< x ) -  PI(X ~< x))In 
x 6 R  ~/(p~ (x  ~< x)(1 - P~ (x  ~< x)) 

Above three distances are used in Statistics as measures of goodness offit ,  especially, 
for VaR (Value at Risk) measurements in Finance. 

�9 Cramer-von  Mises distance 

The Cramer -von  Mises distance is a distance on 7 ~ (for A" C R), defined by 

f §  <~ x ) -  P2(X <~ X)) 2 
oo 

dx.  

This is the squared L2-metric between cumulative density functions. 

�9 Levy metric 

The Levy metric is a metric on 7 ~ (for A" C R only), defined by 

i n f { ~ > 0 "  P l ( X  <~ x - ~) - ~ <~ P2(X <~ x) <~ P l ( X  <~ x + ~) + ~ for any x 6 R } .  

It is a special case of the Prokhorov metric for (X, d) = (R, Ix - yl). 
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�9 Prokhorov metric 

Given a metric space (X, d), the Prokhorov metric on 7 ~ is defined by 

i n f { a > O "  PI(X �9 B) <~ P2(X �9 B ~) + a and P2(X �9 B) <~ PI(X �9 B ~) + ~}, 

where B is any Borel subset of X, and B e = {x: d(x, y) < ~, y �9 B}. 

It is the smallest (over all joint distributions of pairs (X, Y) of random variables X, Y 
such that marginal distributions of X and Y are P1 and P2, respect ively)probabi l i ty  
distance between random variables X and Y. 

�9 Dudley metric 

Given a metric space (X, d), the Dudley metric on 7 9 is defined by 

suplEp,[f(x) ] - E p 2 [ f ( x ) ] l  - sup Z f ( x ) ( p l ( x )  - p2(x)) 
f eF f eF x e X  

where 

F -  {f"  X --> R, IIf ~ -+-Lipcl(f) <~ 1}, and L i p c l ( f ) -  sup 
x ,ycX ,  x r  

I f ( x ) -  f(Y)l 

d(x, y) 

�9 Szulga metric 

Given a metric space (X, d), the Szulga metr ic  on 7 9 is defined by 

sup 
f c F  

I f ( x ) l P p ~ ( x )  - I f ( x ) l P p 2 ( x )  
1/p 

where F = { f :  X --+ R, Lipcl(f) <~ 1}, and LiPcl(f) = SUPx,ycX, xCy 

�9 Zolotarev semi-metric 

The Zolotarev semi-metric is a semi-metric on 7 ~, defined by 

I f ( x ) - f ( y ) l  
cl (x, y) 

sup x ~  f (x)(pl  (x) - p2(x)) 
f c F  

where F is any set of functions f : A" -+ R (in the continuous case, F is any set of such 
bounded continuous functions); cf. Szulga metric, Dudley metric. 

�9 Convolution metric 

Let G be a separable locally compact Abelian group, and let C(G) be the set of all real 
bounded continuous function on G vanishing at infinity. Fix a function g c C(G) such 
that Igl is integrable with respect to Haar measure on G, and {/5 c G* : ~'(/5) = 0} has 
empty interior; here G* is the dual group of G, and ~" is the Fourier transform of g. 
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Yukich's convolution metric (or smoothing metric) is defined, for any two finite signed 
Baire measures, P1 and P2, on G, by 

sup 
xcG 

fv g(xy-1)(dPl - dP2)(Y) 
cG 

This metric can also be seen as the difference Tel (g) - TP2 (g) of convolution operators 
on C(G), where, for any f c C(G), the operator Te f (x) is fyc6 f (xy-1) dP(y)" 

�9 Discrepancy metric 

Given a metric space (X, d), the discrepancy metric on 7 9 is defined by 

sup{IP~(X ~ B ) -  P2(X ~ B>l �9 B is any closed ball}. 

�9 Bi-discrepancy semi-metric 

The bi-discrepancy semi-metric is a semi-metric, evaluating the proximity of distribu- 
tions P1, P2 defined over different collections .A1, A2 of measurable sets in the following 
way: 

D(P1, P2) + D(P2, P1), 

where D(P1, P2) = sup{inf{P2(C) : B C C c A2} - P I (B) :  B c A1} (discrepancy). 

�9 Le Cam distance 

The Le Cam distance is a semi-metric, evaluating the proximity of probability distrib- 
utions P1, P2 defined on different spaces A'I, A'2 in the following way: 

max{3(P1, P2), a(P2, P1)}, 

where 3(P1, P2) - infB ZX2CX2 ]BPI(X2 --  x2) - B P 2 ( X 2  --  x2)l  is the Le Cam 
deficiency. Here BPI(X2 -- x2) -- ~xlc,v1 pl(Xl)b(x2 Xl), where B is a probability 
distribution over ,V1 • X2, and 

b(x2lxl) = 
B(X1 = Xl, X2 = x2) 

B(X1 = X l )  

B(X1 = Xl, X2 = x2) 

~ x c , V 2  B ( X 1  --  X l ,  X 2  --  x )  

So, B P 2 ( X 2  - -  x2) is a probability distribution over X2, since Zx2cX2 b ( x 2  Xl) - -  1. 

Le Cam distance is not a probability distance, since P1 and P2 are defined over different 
spaces; it is a distance between statistical experiments (models). 

�9 Skorokhod-Bill ingsley metric 

The Skorokhod-Bill ingsley metric is a metric on 7 9, defined by 

[ 
i n f m a x { s u p l P l ( X  ~ x) - P2(X ~ f(x)) l ,  suplf(x) - xl, sup  
f I x xCy 

In 
f (y) - f (x) 

y - x  
, 

where f : R --+ R is any strictly increasing continuous function. 
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�9 Skorokhod metric  

The Skorokhod metric  is a metric on 7 ~, defined by 

inf{8 > 0" max{suplP~(X < x ) -  P2(X <~ f(x))l, suplf(x)- xl/< ~/, 
x x 

where f �9 R ---> R is a strictly increasing continuous function. 

�9 B i r n b a u m - O r l i c z  distance 

The B i r n b a u m - O r l i c z  distance is a distance on 7 ~, defined by 

sup f (IP, (X x ) -  Pe(X x)l), 
x E R  

where f : R+ --+ R+ is any non-decreasing continuous function with f ( 0 )  = 0, and 
f ( 2 t )  ~< Kf(t) for any t > 0 and some fixed K. It is a near-metric ,  since it holds 
d(P1, P2) ~< X(d(P1, P3) + d(P3, P2)). 

B i rnbaum-Orl icz  distance is also used, in Functional Analysis, on the set of all inte- 

grable functions on the segment [0, 1], where it is defined by fo H(Jf(x) - g(x) )dx, 
where H is a non-decreasing continuous function from [0, oo) onto [0, oo) which van- 

H(2t )  ishes at the origin and satisfies the Orlicz condition" s u P t > 0  ~ < CX~. 

�9 Kruglov  distance 

The Kruglov  distance is a distance on 7 ~, defined by 

f f (Pl(X <~ x ) -  P2(X <~ x))dx, 

where f "  R+ --+ R+ is any even strictly increasing function with f ( 0 )  - 0, and 
f (s  + t) <~ K(f(s) + f(t)) for any s, t ) 0 and some fixed K ) 1. It is a near-metric ,  
since it holds d(P1, P2) ~< K(d(P1, P3) + d(P3, P2)). 

�9 B u r b e a - R a o  distance 

Consider a continuous convex function ~b(t) �9 (0, cx~) --+ R and put ~b(0) - l imt~0 ~b(t) 
E (-cx~, cx~]. The convexity of ~b implies non-negativity of the function ~ �9 [0, 112 __+ 

(-cx~ cx~] defined by ~ ( x  y ) -  ~(x)+~(y) x+y ' ' ' 2 -- ~b (---y-) if (x, y) r (0, 0), and ~ (0, 0) 
= 0 .  

The corresponding B n r b e a - R a o  distance on 7 ~ is defined by 

x 

�9 Bregman  distance 

Consider a differentiable convex function ~b(t)" (0, cx~) --+ R, and put ~b(0) = 
l imt~0 ~b(t) E (-cx~, cx~]. The convexity of ~b implies that the function ~ �9 [0, 1] 2 --+ 



Chapter 14: Distances in Probability Theory [ �9 f - d i v e r g e n c e  o f  Cs izar ]  183 

( - o c ,  oc] defined by continuous extension of 3~(u, v) - ~(u)  - ~(v)  - ~ ' (v) (u  - v), 
0 < u, v ~< 1, on [0, 112 is non-negative. 

The corresponding B r e g m a n  d i s t a n c e  on 7 9 is defined by 

m 

Z ~ (pi, qi). 
1 

(Cf. B r e g m a n  q u a s i - d i s t a n c e . )  

�9 f - d i v e r g e n c e  of  Csizar  

The f - d i v e r g e n c e  of  Csizar  is a function on 7 9 • 7 9, defined by 

Z p2(x) f ( pl  (x) ) 
x pz(x) ' 

where f is a convex function f : R+ --+ R. 

The cases f ( t )  = t lnt  and f ( t )  = (t - 1)2/2 correspond to the Kul lback-Le ib le r  
d i s t a n c e  and to the X Z-distance below, respectively. The case f (t) = I t -  11 corresponds 
to the L 1-metric b e t w e e n  dens i t i e s ,  and the case f (t) = 4(1 - v/t) (as well as f (t) = 
2(t + 1) - 4v/t) corresponds to the squared Hellinger metric.  

Semi-metrics can also be obtained, as the square root of the f-divergence of Csizar, in 
the cases f ( t )  = (t - 1)2/(t + 1) (the Va jda -Kus  semi-metric),  f (t) = [t a - 111/a 
with 0 < a ~< 1 (the Matus i ta  semi-metric),  and 

f ( t )  -- 
(t a + 1) 1/a - 2 ( 1 - a ) / a ( t  + 1) 

1 -  1/~ 

(the Oster re icher  semi-metric).  

�9 F ide l i ty  similari ty 

The fidelity similari ty (or Bhattacharya coefficient, Hellinger affinity) on 7 ~ is defined 
by 

p(P~, P2) - ~_. v/p~ (x)p2(x). 
y 

�9 H e l l i n g e r  m e t r i c  

In terms of fidelity similarity, the Hellinger metr ic  (or Hellinger-Kakutani metric) on 
7 ~ is defined by 

1 

- --  2(1  - P(P1, P2)) ~ �9 
y 

This is the L2-metric between the square roots of density functions. 
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�9 Harmonic mean similarity 

The harmonic mean similarity is a similarity on 7 ~, defined by 

pl(x)p2(x) 
2 Z Pl (x) + pz(x) 

y 

�9 B h a t t a c h a r y a  d i s t a n c e  1 

In terms of fidelity similarity, the Bhattacharya distance 1 on 7 ~ is defined by 

(arccos P(P1, P2)) 2. 

Twice this distance is used also in Statistics and Machine Learning, where it is called 
Fisher distance. 

�9 B h a t t a c h a r y a  d i s t a n c e  2 

In terms of fidelity similarity, the Bhattacharya distance 2 on 7 ~ is defined by 

- In P(P1, P2).  

�9 )f 2-distance 

The )f 2-distance (or Neyman )f 2-distance) is a quasi-distance on 7 ~, defined by 

Z (pl (x) - p2(x)) 2 
p2(x) 

The P e a r s o n  )f 2-distance is 

Z (Pl (x) -- p2(x)) 2 
pl(x) 

Probabilistic symmetric X 2-measure is a distance on 7 ~, defined by 

2 Z (Pl (x) - p2(x)) 2 
Pl (x) -+- p2(x) y 

�9 S e p a r a t i o n  d i s t a n c e  

The separation distance is a quasi-distance on 7 ~ (for any countable X), defined by 

max(1 pl (x) ) .  
x p2(x) 

(Not to be confused with separation distance between convex bodies.) 
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�9 Kullback-Leibler distance 

The Kullback-Leibler distance (or relative entropy, information deviation, KL-dis- 
tance) is a quasi-distance on 7 9, defined by 

KL(P1, P2) -- EP1 [ln L] -- ~ Pl (X) In Pl (x___~) 
p2 (x ) '  

x 

where L -- pl (x) is the likelihood ratio. Therefore, p2(x) 

KL(P1, P2) -- - ~ ( p l ( x ) l n p 2 ( x ) )  + ~ ( p l ( x ) l n p l ( x ) )  -- S(Pl ,  P 2 ) -  S(Pl ) ,  
x x 

where H (P1) is the entropy of P1, and H (P1, P2) is the cross-entropy of P1 and P2. 

If P2 is the product of marginals of P1, the KL-distance KL(P1, P2) is called S h a n n o n  

pl(x,y) (cf. S h a n n o n  information quantity and is equal to ~(x,y)cX• pl (x, y)In pl(x)pl(y) 
distance). 

�9 Skew divergence 

The skew divergence is a quasi-distance on 79, defined by 

KL(P1, aP2 + (1 -- a)P1),  

where a c [0, 1] is a constant, and KL is the Kullback-Leibler distance. So, the 
case a - 1 corresponds to KL(P1, P2). The skew divergence with a - 1 is called 
K-divergence. 

�9 Jeffrey divergence 

The Jeffrey divergence (or J-divergence) is a symmetric version of the Kullback- 
Leibler distance, defined by 

KL(P1, P2) + KL(P2, Pl) -- ~ (Pl  (x)In 
x 

Pl (x) + p2(x) In p2(x) ~. 
p2(x) p l ( x )  ! 

For P1 --> P2, the Jeffrey divergence behaves like the X 

�9 Jensen-Shannon divergence 

The J e n s e n - S h a n n o n  d ivergence  is defined by 

2.distance. 

aKL(P1, P3) + (1 - a)KL(P2, P3), 

where P3 = a P1 + (1 - a)P2, and a c [0, 1] is a constant (cf. clarity similarity). 

In terms of entropy H(P) = ~ x  p(x) In p(x) ,  the Jensen-Shannon divergence is equal 

to H(aP1 + (1 - a)P2) - all(P1) - (1 - a)H(P2). 
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The Tops0e distance is a symmetric version of the Kul lback-Le ib le r  distance on 7 ~, 
defined by 

KL(P1, P 3 ) +  KL(P2, P3) - -  Z ( p l ( x ) I n  p l ( X ) + p 2 ( x ) I n  p 2 ( x ) )  
p3(x) p3(x) ' 

where P3 - �89 (P1 + P2). The Tops0e distance is twice the Jensen-Shannon divergence 

with a - �89 Some authors use term "Jensen-Shannon divergence" only for this value of 
a. It is not a metric, but its square root is a metric. 

�9 Resistor-average distance 

Johnson-Simanovi6's resistor-average distance is a symmetric version of the Kul lback-  
Leibler  distance on 7 ~ which is defined by the harmonic sum 

1 1 ) - 1  

KL(P1, P2) + KL(P2, P1 ) 

(Cf. resistance metric for graphs.) 

�9 Ali-Silvey distance 

The Ali-Silvey distance is a quasi-distance on 7 ~, defined by the functional 

f(EPl[g(L)]), 

where L -- pl(x) is the likelihood ratio f is a non-decreasing function, and g is a p2(x) 
continuous convex function (cf. f -divergence  of Csizar). 

The case f (x) = x, g(x) = x In x corresponds to the Kul lback-Le ib le r  distance; the 
case f (x) = - In x, g (x) = x t corresponds to the Chernoff distance. 

�9 Chernoff distance 

The Chernoff distance (or Rdnyi cross-entropy) is a distance on 7 ~, defined by 

max Dt(P1, P2), 
tc[0,1] 

where Dt(P1, P2) -- - I n  ~x(Pl(X))t(p2(x))  l-t,  which is proportional to the R6nyi 
distance. 

The case t -- z { corresponds to the Bhattacharya distance 2. 

�9 R6nyi distance 

The R6nyi distance (or order t Rdnyi entropy) is a quasi-distance on 7 ~, defined by 

1 l n Z p 2 ( x ) ( p l ( x ) )  t 
t -  1 pz(x) 

X 

w h e r e t ~ > 0 ,  t r  
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The limit of the Rdnyi distance, for t --+ 1, is the Ku l lback -Le ib l e r  distance. For 
t -- �89 the half of the Rdnyi distance is the Bhattacharya distance 2 (cf. f -divergence 
of Csizar and Chernoff distance). 

�9 Clarity similarity 

The clarity similarity is a similarity on 7 9, defined by 

(KL(P1, P3) + KL(P2, P3)) -- (KL(P1, P2) + KL(P2, P1)) 

- - ~ x  ( p l ( x ) l n P 2 ( X ) + p 2 ( x ) l n  p l ( x ) )  
p3(x)  p3(x)  ' 

where KL is the Ku l lback -Le ib l e r  distance, and P3 is a fixed referential probability 
law. It was introduced in [CCL01] with P3 being the probability distribution of General 
English. 

�9 Shannon distance 

Given a measure space (X2, A, P), where the set s is finite, and P is a probability 
measure, the entropy of a function f : s --+ X, where X is a finite set, is defined by 

H ( f )  -- Z P ( f  -- x ) l n ( P ( f  -- x)); 
xcX  

so, f can be seen as a partition of the measure space. For any two such partitions 
f :  s -+ X and g :  s -+ Y, denote by H ( f , g )  the entropy of the partition 
(f,  g ) :  s -+ X x Y (joint entropy), and by H ( f l g )  the conditional entropy; then 
the Shannon distance between f and g is defined by 

2 H ( f ,  g ) -  H ( f ) -  H(g) = H ( f l g )  + H(g l f ) .  

It is a metric. The Shannon information quantity is defined by 

H( f ,  g) - H ( f )  - H(g) -- Z p ( f  -- x, g -- y) In 

(x,y) 

p ( f  = x, g = y) 

p ( f  = x)p(g = y) 

If P is uniform probability law, then V. Goppa showed that the Shannon distance can be 
obtained as a limit case of the finite subgroup  metric. 

In general, the information metric (or entropy metric) between two random variables 
(information sources) X and Y is defined by 

H(XIY)  + H(YIX) ,  

where the conditional entropy H(XIY)  is defined by ~ x c X  ~ y c Y  p(x, y)In p(xly),  
and p(xly)  = P(X  = xlY = y) is the conditional probability. 
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The normalized information metric is defined by 

H(XIY)  + H(YIX)  

H (X, Y) 

It is equal to 1 if X and Y are independent. (Cf. a different one, normalized information 
distance). 

�9 Kantorovich-Mallows-Monge-Wasserstein metric 

Given a metric space (X, d), the Kantorovich-Mallows-Monge-Wasserstein metric 
is defined by 

inf Es[d(X,  Y)], 

where the infimum is taken over all joint distributions S of pairs (X, Y) of random 
variables X, Y such that marginal distributions of X and Y are P1 and P2. 

For any separable metric space (X, d), this is equivalent to the Lipschitz distance 
between measures supf f fd(P1 - P2), where the supremum is taken over all functions 
f with I f (x)  - f(Y)l ~< d(x, y) for any x, y c A'. 

More generally, the Lp-Wasserstein distance for A" = R n is defined by 

(infEs[dP(X, y ) ] ) l i p  

and, for p - 1, it is called also -d-distance. For (A', d) - (R, Ix - y I), it is called also 
Lp-metric between distribution functions (CDF), and can be written as 

( infE[IX - Y I P ] ) l i p  -- I F I ( x ) -  F2(x)I p dx 

(fo I - IF11 ( X )  - -  /72-1 ( X )  dx 
1/p 

with F i- 1 (x) -- supu (Pi (X <~ x) < u). 

The case p -- 1 of this metric is called Monge-Kantorovich metric (or Hutchinson 
metric in Fractal theory), Wasserstein metric (or Fortet-Mourier metric). 

�9 Ornstein d-metric 

The Ornstein d-metric is a metric on 7 2 (for A' - R n), defined by 

n ,Y i=1 

where the infimum is taken over all joint distributions S of pairs (X, Y) of random 
variables X, Y such that marginal distributions of X and Y are P1 and P2. 

This metric is used in Stationary Stochastic Processes, Dynamic Systems, and Coding 
Theory. 



Chapter 15 

Distances in Graph Theory 

A graph is a pair G = (V, E), where V is a set, called set of vertices of the graph G, and 

E is a set of unordered pairs of vertices, called edges of the graph G. A directed graph (or 
digraph) is a pair D = (V, E), where V is a set, called set of vertices of the digraph D, 

and E is a set of ordered pairs of vertices, called arcs of the digraph D. 

A graph in which at most one edge may connect any two vertices, is called simple graph. 
If multiple edges are allowed between vertices, the graph is called multi-graph. The graph 

is called finite (infinite) if the set V of its vertices is finite (infinite, respectively). The order 
of a finite graph is the number of its vertices; the size of a finite graph is the number of its 

edges. 
A graph or directed graph, together with a function which assigns a positive weight to 

each edge, is called weighted graph or network. A network also called f r a m e w o r k  if the 

weights are interpreted as edge-lengths of a putative embedding into an Euclidean space. 

In terms of Rigidity Theory, the edges of a framework are graph bars (usually, of equal 

length); a tensegri ty is a framework in which graph bars are either cables (i.e., cannot get 

further apart), or struts (i.e., cannot get closer together). 

A subgraph of a graph G is a graph G ~ whose vertices and edges form subsets of the 
vertices and edges of G. If G ~ is a subgraph of G, then G is called supergraph of G ~. An 

induced subgraph is a subset of the vertices of a graph G together with all edges whose 

endpoints are both in this subset. 

A graph G = (V, E) is called connected if, for any vertices u, v c V, there exists an 

(u - v) path, i.e., a sequence of edges UWl = WOWl, Wl w2 . . . . .  wn-1 wn = wn-1 v from E 
such that wi ~= wj for i ~= j ,  i, j c {0, 1 . . . . .  n}. A digraph D = (V, E) is called strongly 
connected if, for any vertices u, v c V, both, the directed (u - v) path and the directed 
(v - u) path, exist. A maximal connected subgraph of a graph G is called its connected 

component. 
Vertices connected by an edge are called adjacent. The degree deg(v) of a vertex v c V 

of a graph G = (V, E) is the number of its vertices adjacent to v. 

A complete graph is a graph in which each pair of vertices is connected by an edge. 

A bipartite graph is a graph in which the set V of vertices is decomposed into two disjoint 

subsets so that no two vertices within the same subset are adjacent. A path is a simple 
connected graph in which two vertices have degree one, and other vertices (if they exist) 

have the degree two; the length of a path is the number of its edges. A cycle is a closed 
path, i.e., a simple connected graph in which every vertex has degree two. A tree is a simple 

connected graph without cycles. 

190 
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Two graphs which contain the same number of vertices connected in the same way called 
isomorphic. Formally, two graphs G = (V(G), E(G)) and H = (V(H), E(H)) are called 
isomorphic if there is a bijection f : V(G) --+ V(H) such that, for any u, v �9 V(G), 
uv �9 E(G) if and only if f ( u ) f ( v )  �9 E(H). 

We will consider only simple finite graphs and digraphs, more exactly, the equivalence 
classes of such isomorphic graphs. 

15.1. DISTANCES ON VERTICES OF A GRAPH 

�9 Path metric 

The path metric (or graphic metric, shortest path metric) dpath is a metric on the 
vertex-set V of a connected graph G = (V, E),  defined, for any u, v �9 V, as the 
length of a shortest (u - v) path in G. A shortest (u - v) path is called geodesic. The 
corresponding metric space is called graphic metric space, associated with the graph G. 

The path metric of the Cayley graph F of a finitely-generated group (G, . ,  e) is called 
word metric. The path metric of a graph G = (V, E),  such that V can be cyclically 
ordered in a Hamiltonian cycle, is called Hamiltonian metric. The hypercube metric 
is the path metric of a hypercube graph H(m, 2) with the vertex-set V = {0, 1 }m, and 
whose edges are the pairs of vectors x, y �9 {0, 1} m such that I{i �9 {1 . . . . .  n}: xi (: 
Yi}l = 1; it is equal to I{i �9 {1 . . . . .  n}: xi = 1}A{i �9 {1 . . . . .  n}: Yi = 1}l. 
The graphic metric space associated with a hypercube graph is called hypercube met- 
ric space. It coincides with the metric space ({0, 1 }m, dll ). 

�9 Weighted path metric 

The weighted path metric dwpath is a metric on the vertex-set V of a connected weighted 
graph G = (V, E) with positive edge-weights (w(e))ecE, defined by 

n~n Z w(e), 
eeP 

where the minimum is taken over all (u - v) paths P in G. 

�9 Detour distance 

The detour distance is a distance on the vertex-set V of a connected graph G = (V, E),  
defined as the length of a longest induced path (i.e., a path, that is an induced subgraph 
of G) from u to v �9 V. 

In general, it is not a metric. A graph is called detour graph if its detour distance coin- 
cides with its path metric (see, for example, [CJT93]). 

�9 Path quasi-metric in digraphs 

The path quasi-metric in digraphs ddpath is a quasi-metric on the vertex-set V of a 
strongly connected directed graph D = (V, E),  defined, for any u, v �9 V, as the length 
of a shortest directed (u - v) path in D. 
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�9 Circular metric in digraphs 

The circular metric in digraphs is a metric on the vertex-set V of a strongly connected 
directed graph D -- (V, E), defined by 

ddp.~h ( u . v ) + ddp.~h ( v. u ). 

where ddpath is the path quasi-metric in digraphs. 

�9 Y-metric 

Given a class Y of connected graphs, the metric d of a metric space (X, d) is called 
Y-metric if (X, d) is isometric to a subspace of a metric space (V, dwpath), where G -- 
(V, E) c Y, and dwpath is the weighted path metric on the vertex-set V of G with 
positive edge-weight function w (see tree-like metric). 

�9 Tree-like metric 

A tree-like metric (or weighted tree metric) d on a set X is an Y-metr ic  for the class 
Y of all trees, i.e., the metric space (X, d) is isometric to a subspace of a metric space 
(V, dwpath), where T -- (V, E) is a tree, and dwpath is the weighted path metric on the 
vertex-set V of T with a positive weight function w. A metric is a tree-like metric if and 
only if it satisfied the four-point inequality. 

A metric d on a set X is called relaxed tree-like metric if the set X can be embedding in 
some (not necessary positively) edge-weighted tree such that, for any x, y c X, d(x, y) 
is equal to the sum of all edge's weights along the (unique) path between corresponding 
vertices x and y in the tree. A metric is a relaxed tree-like metric if and only if it satisfied 
the relaxed four-point inequality. 

�9 Resistance metric 

Given a connected graph G - (V, E) with positive edge-weight function w = 
( w ( e ) ) e c E ,  let us interpret the edge-weights as resistances. For any two different ver- 
tices u and v, suppose that a battery is connected across them, so that one unit of a 
current flows in at u and out in v. The voltage (potential) difference, required for this, 
is, by Ohm's law, the effective resistance between u and v in an electrical network; it 
is called resistance metric X-2 (u, v) between them ([K1Ra93], cf. resistor-average dis- 

1 tance). The number s?(u,v) can be seen, like electrical conductance, as a measure of 

1 , w h e r e P i s  connectivity between u and v. In fact, it holds X-2 (u, v) ~< minp ~ e c p  w(e) 
any (u - v) path, with equality if and only if such path P is unique; so, if w(e) - 1 
for all edges, the equality means that G is a tree. The resistance metric is applied (in 
Physics, Chemistry, and Networks) when the number of paths between any two vertices 
should be taken into account. 

If w(e) - 1 for all edges, then 

X-2(u, v) - (guu + gvv) - (guy + gvu), 

where ((gij)) is the generalized inverse of the Laplacian matrix ((lij)) of the graph 
G" here lii is the degree of vertex i, while, for i ~ j ,  lij - -  1 if the vertices i and 
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j are adjacent, and lij : O, otherwise. A probabilistic interpretation is: S2(u, v) = 

(deg(u)Pr(u --+ v)) -1, where deg(u) is the degree of the vertex u, and Pr(u --+ v) is 

the probability for a random walk leaving u to arrive to v before returning to u. 

�9 Truncated metric 

The truncated metric is a metric on the vertex-set of a graph, which is equal to 1 for 

any two adjacent vertices, and is equal to 2 for any non-adjacent different vertices. It is 

the 2-truncated metric for the path metric of the graph. It is the (1, 2 ) -B-me t r i c  if the 

degree of any vertex is at most  B. 

�9 Multiply-sure distance 

The multiply-sure distance is a distance on the vertex-set V of an m-connected 
weighted graph G : (V, E),  defined, for any u, v c V, as the min imum weighted 

sum of lengths of m disjoint (u - v) paths. It is a generalization of the concept of dis- 

tance to situations in which one wishes to find several disjoint paths between two points, 

for example, in a communicat ion networks, where m - 1 of (u - v) paths are used to 

code the message sent by the remaining (u - v) path (see [McCa97]). 

A graph G is called m-connected if there is no set of m - 1 edges whose removal 

disconnects the graph. A connected graph is 1-connected. 

A cut is a partition of a set into two parts. Given a subset S of Vn : { 1 . . . . .  n }, we obtain 

the partition { S, Vn \S} of Vn. The cut-semi-metric on Vn, defined by this partition, can be 

seen as a special semi-metric on the vertex-set of the complete bipartite graph Ks, vn\s, 
where the distance between vertices is equal to 1 if they belong to different parts of this 

graph, and is equal to 0, otherwise. 

�9 Cut semi-metric 

Given a subset S of Vn : { 1 . . . . .  n}, the cut semi-metric (or split semi-metric) 3s is a 

semi-metric on Vn, defined by 

1, 
3s(i, j)  - 0, 

i f /  r j ,  IS A {i, j}l = 1, 

otherwise. 

Usually, it is considered as a vector in R IEnl, E(n) = {{i, j}:  1 ~< i < j ~< n}. 

A circular cut of Vn is defined by a subset S[~+l,ll = {k + 1 . . . . .  1}(modn) C Vn: if 

we consider the points { 1 . . . . .  n } as being ordered along a circle in that circular order, 

then S[~+l,1] is the set of its consecutive vertices from k + 1 to 1. For a circular cut, the 

corresponding cut-semi-metric is called circular cut semi-metric. 

An even cut semi-metric is 3s on Vn with even I SI. An odd cut semi-metric is 3s on 

Vn with odd I SI. An k-uniform cut semi-metric is 3s on Vn with I SI ~ {k, n - k}. An 

equicut semi-metric is 3s on Vn with I SI ~ { L~A, F~l }. An inequicut semi-metric is 

3s on Vn with ISI r {L~A, F~l} (see, for example, [DeLa97]). 
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�9 Decomposable semi-metric 

A decomposable semi-metric is a semi-metric on Vn = { 1 . . . . .  n } which can be repre- 
sented as a non-negative linear combination of cut semi-metrics. The set of all decom- 

posable semi-metrics on Vn is a convex cone, called cut cone CUTn. 

A semi-metric on Vn is decomposable  if and only if it is a finite l l-semi-metric.  

A circular decomposable semi-metric is a semi-metric on Vn = { 1 . . . . .  n } which can 
be represented as a non-negative linear combination of circular cut semi-metrics. 

A semi-metric on Vn is circular decomposable  if and only if it is a Kalmanson semi- 
metric with respect to the same ordering (see [ChFi98]). 

�9 Finite /p-semi-metric  

Given a finite set X, the f inite/p-semi-metric is a semi-metric d on X such that the 
m-space (R m dip) for some m c N. metric space (X, d) is a semi-metric subspace of the lp 

n-cube. The n If X - {0, 1 }n, the metric space (X, d) is called lp 11 -cube is called Hamming 
cube. 

�9 Kalmanson semi-metric 

A Kalmanson semi-metric d is a semi-metric on Vn - { 1 . . . . .  n } which satisfies the 
condition 

max{d( / ,  j )  4- d(r, s), d(i, s) 4- d( j ,  r)} ~< d(i, r) 4- d( j ,  s) 

for all 1 ~< i ~< j ~< r ~< s ~< n. In this definition the ordering of the elements is 
important; so, d is a Kalmanson semi-metric with respect to the ordering 1 . . . . .  n. 

Equivalently, if we consider the points { 1 . . . . .  n } as being ordered along a circle Cn in 
that circular order, then the distance d on Vn is a Kalmanson semi-metric if the inequality 

d(i, r) 4- d( j ,  s) <~ d(i, j )  4- d(r, s) 

holds for all i, j ,  r, s c Vn such that the segments [i, j ]  and [r, s] are crossing chords 

of Cn. 

A tree-like metric is a Kalmanson metric for some ordering of the vertices of the tree. 
The Euclidean metric, restricted to the points that form a convex polygon in the plane, 
is a Kalmanson metric. 

�9 Multi-cut semi-metric 

Let {$1 . . . . .  Sq }, q ~ 2, be a partition of the set Vn = { 1 . . . . .  n}, i.e., a collection 
$1 . . . . .  Sq of pairwise disjoint subsets of Vn such that $1 U . . .  U Sq : Vn. 

The multi-cut semi-metric 3sl ..... sq is a semi-metric on Vn, defined by 

[ 0, 
~$1 ,Sq (i j )  - 

'"" ' [ 1 ,  

i f i ,  j c Sh for some h, 1 ~<h ~<q, 

otherwise. 
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�9 Oriented cut quasi-semi-metric 
! 

Given a subset S of Vn - { 1 . . . . .  n }, the oriented cut quasi-semi-metric 3s is a quasi- 
semi-metric on Vn, defined by 

, {1, i f /  c S ,  j r  
~ s ( i , J ) - -  O, otherwise. 

Usually, it is considered as the vector o f R  IInl, I (n)  = {(i, j ) :  1 ~< i ~: j ~< n}. The cut 
semi-metric 3s is ~ + 3vn\s" 

�9 Oriented multi-cut quasi-semi-metric 

Given a partition { $1 . . . . .  Sq }, q ~> 2, of Vn, the oriented multi-cut quasi-semi-metric 
~ is a quasi-semi-metric on Vn defined by S1 ..... Sq 

' (i j )  - { 1, 
~s~ ..... s~ , O, 

i f /  e Sh, j e Sm, h < m ,  
otherwise. 

15.2. DISTANCE-DEFINED GRAPHS 

�9 Geodetic graph 

A connected graph is called geodetic if there exists exactly one shortest path between 
any two its vertices. Every tree is a geodetic graph. 

�9 Isometric subgraph 

A subgraph H of a graph G = (V, E) is called isometric subgraph if the pa th  metr ic  
between any two points of H is the same as their path metric in G. 

�9 Retract subgraph 

A subgraph H of a graph G = (V, E) is called re t rac t  subgraph  if it is induced 
by an idempotent short mapping of G into itself, i.e., f 2  = f :  V --+ V with 
dpath(f(u),  f ( v ) )  <~ dpath(u, v) for all u, v c V. Any retract subgraph is isometric. 

�9 Distance-regular graph 

A connected graph G = (V, E) of diameter T is called dis tance-regular  if, for any 
its vertices u, v and any integers 0 ~< i, j ~< T, the number of vertices w, such that 
dpath(u, w) : i and dpath(v, w) : j ,  depends only on i, j and k : dpath(u, v), but not 
on the choice of vertices u and v. 

A special case of it is a distance-transitive graph, i.e., such that its group of au- 
tomorphisms is transitive, for any 0 ~< i ~< T, on the pairs of vertices (u, v) with 
dpath(u, v) = i. 

For any 2 ~< i ~< T, denote by G i the graph with the same vertex-set as G, and with 
edges u v such that dpath (u, v) = i. The graph G is called distance-polynomial graph if 
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the adjacency matrix of any G i, 2 <<, i <<, T, can be expressed as a polynomial in terms 
of the adjacency matrix of G. Any distance-regular graph is distance-polynomial. 

Any distance regular-graph is also distance-balanced graph, i.e., ]{x c V: d(x, u) < 
d(x, v)}] = ]{x c V: d(x, v) < d(x, u)}] for any its edge uv, and distance degree 
regular graph, i.e., ]{x c V: d(x, u) = i}] depends only on i but not on u c V. 

Another name for a distance-regular graph is a P-polynomial association scheme. A fi- 
nite polynomial metric space is a P- and Q-polynomial association scheme. The term 
infinite polynomial metric spaces is used for compact connected two-point homoge- 
neous spaces; Wang classified them as the Euclidean unit spheres, the real, complex, 
and quaternionic projective spaces or the Cayley projective plane. 

�9 Distance-hereditary graph 

A connected graph is called dis tance-heredi tary if each of its connected induced sub- 
graphs is isometric. A graph is distance-hereditary if each of its induced paths is iso- 
metric. Any co-graph, i.e., a graph containing no induced path of four vertices, is 
distance-hereditary. A graph is distance-hereditary if and only if its path metric satisfy 
the relaxed four-point inequality. A graph is: distance-hereditary, bipartite distance- 
hereditary, block graph, or tree if and only if its path metric is a relaxed tree-like 
metric for edge-weights being, respectively, non-zero half-integers, non-zero integers, 
positive half-integers, or positive integers. 

�9 Block graph 

A graph is called block graph  if each its block, i.e., a maximal 2-connected induced 
subgraph, is a complete graph. Any tree is a block graph. A graph is a block graph if 
and only if its path metric is a tree-like metric or, equivalently, satisfies the four-point 
inequality. 

�9 Ptolemaic graph 

A graph is called Ptolemaic if its path metric satisfies the Ptolemaic inequality 

d(x, y)d(u, z) <~ d(x, u)d(y, z) + d(x, z)d(y, u). 

A graph is Ptolemaic if and only if it is distance-hereditary and chordal, i.e., every cycle 
of length greater than 3 has a chord. In particular, any block graph  is Ptolemaic. 

�9 D-distance graph 

Given a set D of positive numbers containing 1 and a metric space (X, d), the D- 
distance graph D(X, d) is a graph with the vertex-set X and the edge-set {uv : d(u, v) c 
D } (cf. D-chromatic number). 

An D-distance graph is called unit-distance graph if D = { 1 }, ~-unit graph if D = [ 1 - 
~, 1 -+- ~], unit-neighborhood graph if D = (0, 1], integral-distance graph if D = Z+, 
rational-distance graph if D = Q+, prime-distance graph if D is the set of prime 
numbers (with 1). 

Usually, the metric space (X, d) is a subspace of an Euclidean space E n. Moreover, 
every finite graph G = (V, E) can be represented by an D-distance graph in some E n. 
The minimum dimension of such Euclidean space is called D-dimension of G. 
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�9 t - spanner  

A subgraph H = (V, E(H)) of a connected graph G = (V, E) is called t - spanner  of 
G if, for every u, v c V, the inequality H G , /dpath V dpath(U v) (u, ) <~ t holds. The value t is 
called stretch factor of H. 

A graph is d is tance-heredi ta ry  if and only if every its induced subgraph is 1-spanner. 

A spanning tree of a connected graph G = (V, E) is a subset of IVI - 1 edges that form 
a tree on the vertex-set V. 

�9 Steiner distance of a set 

The Steiner distance of  a set S C V of vertices in a connected graph G - (V, E) 
is the minimum number of edges of a connected subgraph of G, containing S. Such a 
subgraph is, obviously, a tree, and is called Steiner tree for S. The vertices of Steiner 
tree, that are not in S, are called Steiner points. 

�9 Distance labell ing scheme 

A graph family A is said (D. Peleg, 2000) to have an 1 (n) distance labell ing scheme if 
there is a function L labelling the vertices of each n-vertex graph in A with distinct labels 
of up to 1 (n) bits, and there exists an algorithm, called distance decoder,  that decides 
the distance between any two vertices u, v in a graph from A in time polynomial in the 
length of their labels L(u), L(v). 

15.3. D I S T A N C E S  ON G R A P H S  

�9 Subgraph-supergraph  distances 

A common subgraph of graphs G and H is a graph which is isomorphic to induced 
subgraphs of both G and H. A common supergraph of graphs G and H is a graph which 
contains induced subgraphs isomorphic to G and H. 

The Zel inka distance dz on the set G of all graphs (more exactly, on the set of all 
equivalence classes of isomorphic graphs) is defined by 

max{n(G1),  n ( G 2 ) }  - n ( G 1 ,  G2)  

for any G1, G2 c G, where n(Gi) is the number of vertices in Gi, i = 1,2, and 
n(G1, G2) is the maximum number of vertices of a common subgraph of G1 and G2. 

Given an arbitrary set M of graphs, the c o m m o n  subgraph distance dM on M is defined 
by 

max{n(G1),  n(G2) } - n(G1, G2), 

and the c o m m o n  supergraph distance d ~  on M is defined by 

N(G1, G2) - min{n(G1),  n(G2)} 

for any G1, G2 c M, where n(Gi) is the number of vertices in Gi, i = 1, 2, n(G1, G2) 
is the maximum number of vertices of a common subgraph G c M of G1 and G2, and 



198 [ �9 Edge distance] Part IV." Distances in Applied Mathematics 

N(G1, G2) is the minimum number of vertices of a common supergraph H r M of G1 

and G2. 

dM is a metric on M if the following condition (i) holds: if H c M is a common su- 
pergraph of G1, G2 c M, then there exists a common subgraph G c M of G1 and G2 
with n(G) >~ n(G1) + n(G2) - n(H). dry I is a metric on M if the following condition 
(ii) holds: if G c M is a common subgraph of G1, G2 c M, then there exists a com- 
mon supergraph H c M of G1 and G2 with n(H) <~ n(G1) + n(G2) - n(G). One has 
dM <~ d~ if the condition (i) holds, and dM >~ d~ if the condition (ii) holds. 

The distance dM is a metric on the set G of all graphs, the set of all cycle-free graphs, 
the set of all bipartite graphs, and the set of all trees. The distance dry / is a metric on 
the set G of all graphs, the set of all connected graphs, the set of all connected bipartite 
graphs, and the set of all trees. The Zelinka distance dz coincides with dM and d ~  on 
the set G of all graphs. On the set T of all trees the distances dM and dry / are identical, 
but different from the Zelinka distance restricted to T. 

The Zelinka distance de is a metric on the set G(n) of all graphs with n vertices, and is 
equal to n - k or to K - n for all G1, G2 c G(n), where k is the maximum number of 
vertices of a common subgraph of G1 and G2, and K is the minimum number of vertices 
of a common supergraph of G1 and G2. On the set T(n) of all trees with n vertices the 
distance de is called Zel inka tree distance (see, for example, [Zeli75]). 

�9 Edge distance 

The edge distance is a distance on the set G of all graphs, defined by 

IEa l -+- IE2I-  21E121-+-IlWll- IW21l 

for any graphs G1 = (V1, El)  and G2 : (V2, E2), where G12 : (V12, El2) is a com- 
mon subgraph of G1 and G2 with maximal number of edges. This distance has many 
applications in Organic and Medical Chemistry. 

�9 Contract ion distance 

The contract ion distance is a distance on the set G(n) of all graphs with n vertices, 
defined by 

n - k  

for any G1, G2 c G(n), where k is the maximum number of vertices of a graph which is 
isomorphic simultaneously to a graph, obtained from each of graphs G1, G2 by a finite 
number of edge contractions. 

To perform the contraction of the edge uv c E of a graph G = (V, E) means to replace 
u and v by one vertex that is adjacent to all vertices of V\{u, v } which were adjacent to 
u or to v. 

�9 Edge move  distance 

The edge move  distance is a metric on the set G(n, m) of all graphs with n vertices and 
m edges, defined, for any G1, G2 c G(m, n), as the minimum number of edge moves 
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necessary for transforming the graph G 1 into the graph G2. It is equal to m - k, where 
k is the maximum number of edges in a common subgraph of G 1 and G2. 

An edge move is one of the edges transformations,  defined as follow: H can be obtained 
from G by an edge move if there exist (not necessarily distinct) vertices u, v, w, and x 
in G such that uv E E ( G ) ,  w x  ~t E ( G ) ,  and H = G - uv + wx .  

�9 Edge jump distance 

The edge jump distance is an extended metric (which in general can take value cx~) on 

the set G(n, m) of all graphs with n vertices and m edges, defined, for any G1, G2 c 
G(m, n), as the minimum number of edge j umps  necessary for transforming the graph 

G 1 into the graph G2. 

A n  edge j ump  is one of the edges transformations,  defined as follow: H can be obtained 
from G by an edge jump if there exist four distinct vertices u, v, w, and x in G, such 
that uv E E ( G ) ,  w x  ~t E ( G ) ,  and H = G - uv + wx .  

�9 Edge rotation distance 

The edge rotation distance is a metric on the set G(n, m) of all graphs with n vertices 

and m edges, defined, for any G1, G2 E G(m, n), as the minimum number of edge 

rotations necessary for transforming the graph G1 into the graph G2. 

An edge rotation is one of the edges transformations,  defined as follow: H can be ob- 
tained from G by an edge rotation if there exist distinct vertices u, v, and w in G, such 

that uv E E(G),  uw ~ E(G),  and H : G - uv + uw.  

�9 Tree rotation distance 

The tree rotation distance is a metric on the set T(n) of all trees with n vertices, defined, 
for all 7'1, T2 E T(n), as the minimum number of tree edge rotations necessary for 

transforming 7'1 into T2. For T(n) the tree rotation distance and the edge rotation distance 
may differ. 

A tree edge rotation is an edge rotation performed on a tree, and resulting in a tree. 

�9 Edge shift distance 

The edge shift distance (or edge slide distance) is a metric on the set Gc(n, m) of all 

connected graphs with n vertices and m edges, defined, for any G1, G2 c Gc(m, n), as 
the minimum number of edge shifts necessary for transforming the graph G1 into the 

graph G2. 

A n  edge shift is one of the edges transformations, defined as follow: H can be ob- 
tained from G by an edge shift if there exist distinct vertices u, v, and w in G such that 
uv, vw  E E ( G ) ,  uw ~t E(G),  and H : G - uv + uw.  Edge shift is a special kind of 
the edge rotation in the case when the vertices v, w are adjacent in G. 

The edge shift distance can be defined between any graphs G and H with components 

Gi (1 ~< i ~< k) and Hi (1 ~< i ~< k), respectively, such that Gi and Hi have the same 
order and same size. 
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�9 F-rotation distance 

The F-rotation distance is a distance on the set GF(n ,  m) of all graphs with n vertices 
and m edges, containing a subgraph isomorphic to a given graph F of order at least 2, 
defined, for all G1, G2 c GF(m,  n), as the minimum number of F-rotations necessary 
for transforming the graph G 1 into the graph G2. 

An F-rotation is one of the edges transformations, defined as follow: let F z be a sub- 
graph of a graph G, isomorphic to F,  let u, v, w be three distinct vertices of the graph G 
such that u ~ V(F~), v, w c V(F~), uv c E(G) ,  and uw ~ E(G) ;  H can be obtained 
from G by the F-rotation of the edge u v into the position u w if H -- G - u v + u w. 

�9 Binary relation distance 

Let R be a non-reflexive binary relation between graphs, i.e., R C G x G, and there 
exists G c G such that (G, G) ~ R. 

The binary relation distance is an extended metric (which in general can take value oc) 
on the set G of all graphs, defined, for any graphs G1 and G2, as the minimum number 
of R-transformations necessary for transforming the graph G 1 into the graph G2. 

We say, that a graph H can be obtained from a graph G by an R-transformation if 
(H,G) c R .  

An example is the distance between two triangular embeddings of a complete graph 
(i.e., its cellular embeddings in a surface with only 3-gonal faces) defined as the minimal 
number t such that, up to replacing t faces, the embeddings are isomorphic. 

�9 Crossing-free transformation metrics 

Given a set S of n points in R 2, a non-crossing spanning tree of S is a tree whose vertices 
are points of S, and whose edges are pairwise non-crossing straight line segments. 

The crossing-free edge move metric (see [AAH00]) is a metric on the set Ts of all non- 
crossing spanning trees of a set S, defined, for any T1, T2 c Ts,  as the minimum number 
of crossing-free edge moves necessary for transforming T1 into T2. A crossing-free edge 
move is a edges transformation which consists of adding some edge e in T c Ts and 
removing some edge f from the induced cycle so that e and f do not cross. 

The crossing-free edge slide metric is a metric on the set Ts of all non-crossing span- 
ning trees of a set S, defined, for any T1, T2 c Ts,  as the minimum number of crossing- 
free edge slides necessary for transforming T1 into T2. A crossing-free edge slide is one 
of the edges transformations which consists of taking some edge e in T c Ts and mov- 
ing one of its endpoints along some edge adjacent to e in T, without introducing edge 
crossings and without sweeping across points in S (that gives a new edge f instead of 
e). The edge slide is a special kind of crossing-free edge move: the new tree is obtained 
by closing with f a cycle C of length three in T, and removing e from C, in a way such 
that f avoids the interior of the triangle C. 

�9 Traveling salesman tours distances 

The traveling salesman problem is the problem of finding the shortest tour that visits a 
set of cities. We shall consider only traveling salesman problem with undirected links. 



Chapter 15: Distances in Graph Theory [ �9 Subgraphs distances] 201 

For an N-city traveling salesman problem, the space 7-N of tours is the set of (N-l)! 2 
cyclic permutations of the cities 1, 2 . . . . .  N. 

The metric D on 7-N is defined in terms of the difference in form: if tours T, T ~ c 7-N 

differ in m links, then D ( T ,  T ~) = m. 

A k - O P T  transformat ion of a tour T is obtained by deleting k links from T, and recon- 
necting. A tour T ~, obtained from T by an k-OPT transformation, is called k - O P T  of T. 
The distance d on the set 7-N is defined in terms of the 2-OPT transformations: d ( T ,  T ~) 

is the minimal i, for which there exists a sequence of i 2 - O P T  transformat ions  which 
transforms T to T ~. 

In fact, d ( T ,  T ~) <~ D ( T ,  T ~) for any T, T ~ E 7-N (see, for example, [MaMo95]). 

�9 Subgraphs distances 

The standard distance on the set of all subgraphs of a connected graph G = (V, E) is 
defined by 

min{dpath(u, v): u E V(F) ,  v E V(H)} 

for any subgraphs F, H of G. For any subgraphs F, H of a strongly connected digraph 
D = (V, E), the standard quasi-distance is defined by 

min{ddpath(u,  v): u E V ( F ) ,  v E V(H)}. 

The edge rotation distance on the set S k (G) of all edge-induced subgraphs with k edges 
in a connected graph G is defined as the minimum number of edge rotations required 
to transform F E Sk(G) into H E Sk(G). We say, that H can be obtained from F by 
an edge rotation if there exist distinct vertices u, v, and w in G such that u v E E (F) ,  

u w  E E ( G ) \ E ( F ) ,  and H = F - uv  + uw.  

The edge shift distance on the set Sk(G) of all edge-induced subgraphs with k edges 
in a connected graph G is defined as the minimum number of edge shifts required to 
transform F E Sk(G) into H E Sk(G). We say, that H can be obtained from F by 
an edge shift  if there exist distinct vertices u, v and w in G such that uv,  v w  c E ( F ) ,  

u w  E E ( G ) \ E ( F ) ,  and H = F - uv  + uw.  

The edge move distance on the set S k (G) of all edge-induced subgraphs with k edges of 
a graph G (not necessary connected) is defined as the minimum number of edge moves  

required to transform F c S k (G) into H c S k (G). We say, that H can be obtained from 
F by an edge move if there exist (not necessarily distinct) vertices u, v, w, and x in G 
such that uv E E ( F ) ,  w x  E E ( G ) \ E ( F ) ,  and H = F - uv  + w x .  The edge move 
distance is a metric on Sk(G). If F and H have s edges in common, then it is equal to 
k - s .  

The edge j u m p  distance (which in general can take value cx~) on the set Sk(G) of 
all edge-induced subgraphs with k edges of a graph G (not necessary connected) is 
defined as the minimum number of edge j u m p s  required to transform F E Sk(G) into 
H E Sk(G). We say, that H can be obtained from F by an edge j u m p  if there exist 
four distinct vertices u, v, w, and x in G such that uv E E ( F ) ,  w x  E E ( G ) \ E ( F ) ,  and 
H = F - u v +  wx .  
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15.4. D I S T A N C E S  ON T R E E S  

Let T be a rooted tree, i.e., a tree with one of its vertices being chosen as the root. The depth 
of a vertex v, depth(v), is the number  of edges on the path from v to the root. A vertex v is 
called parent of a vertex u, v = par(u),  if they are adjacent, and depth(u) = depth(v) + 1; 

in this case u is called child of v. Two vertices are siblings if they have the same parent. 
The in-degree of a vertex is the number  of its children. T(v)  is the subtree of T, rooted at 
a node v c V(T) .  If w c V (T (v ) ) ,  then v is an ancestor of w, and w is a descendant of v; 
nca(u, v) is the nearest common ancestor of the vertices u and v. T is called labeled tree 

if a symbol from a fixed finite alphabet r is assigned to each node. T is called ordered tree 
if a left-to-right order among siblings in T is given. 

On the set qFrlo of all rooted labeled ordered trees there are three editing operations: 

�9 Re labe l -  change the label of a vertex v; 

�9 De le t ion-  delete a non-rooted vertex v with parent v ~, making the children of v become 

the children of v~; the children are inserted in the place of v as a subsequence in the 
left-to-right order of the children of v~; 

�9 Insertion - the complement  of deletion; insert a vertex v as a child of a v ~ making v the 
parent of a consecutive subsequence of the children of v ~. 

For unordered trees the editing operations can be defined similarly, but insert and delete 

operations work on a subset instead of a subsequence. 
We assume that there is a cost function defined on each editing operation, and the cost 

of a sequence of editing operations is the sum of costs of these operations. 
The ordered edit distance mapping is a representation of the editing operations. For- 

mally, define the triple (M, T1, T2) to be an ordered edit distance mapping from T1 to T2, 

T1, T2 c Trlo, if M C V(T1) • V(T2) and, for any (Vl, Wl), (v2, w2) c M, the following 
conditions hold: Vl = v2 if and only if Wl = w2 (one-to-one condition), Vl is an ancestor 
of v2 if and only if Wl is an ancestor of w2 (ancestor condition), Vl is to the left of v2 if 
and only if Wl is to the left of w2 (sibling condition). 

We say that a vertex v in T1 and T2 is touched by a line in M if v occurs in some pair 
in M. Let N1 and N2 be the set of vertices in T1 and T2, respectively, not touched by any 

line in M. The cost of M is given by y ( M )  -- Z ( v , w ) c M  y(l) ---> 113) -+- Z v C U l  y(U 
)~) + ~wcN2 Y0~ --+ W), where g(a --+ b) - g(a,  b) is the cost of an editing operation 
a --+ b which is a relabel if a, b c A, a deletion if b = )~, and an insertion if a = )~. Here 
)~ r r is a special blank symbol, and g is a metric on the set r U )~ (excepting the value 
y(~, ~)). 

�9 Tree edit distance 

The tree edit distance (see [Tai79]) is a distance on the set qFrlo of all rooted labeled 

ordered trees, defined, for any T1, T2 c qF~lo, as the min imum cost of a sequence of 
editing operations (relabels, insertions, and deletions) turning T1 into T2. 

In terms of ordered edit distance mappings,  it is equal to min(M, T1,T2) y ( M ) ,  where the 
min imum is taken over all ordered edit distance mappings (M, T1, T2). 
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The edit tree distance can be defined in similar way on the set of all rooted labeled 
unordered trees. 

�9 Selkow distance 

The Selkow distance (or top-down edit distance, 1-degree edit distance) is a distance 
on the set Trlo of all rooted labeled ordered trees, defined, for any T1, T2 c Trlo, as the 
minimum cost of a sequence of editing operations (relabels, insertions, and deletions) 
turning T1 into T2 if insertions and deletions are restricted to leaves of the trees (see 
[Selk77]). The root of T1 must be mapped to the root of T2, and if a node v is to be 
deleted (inserted) in M, then subtree rooted at v, if any, is to be deleted (inserted). 

In terms of ordered edit distance mappings, it is equal to min(M, T1,T2) F(M), where 
the minimum is taken over all ordered edit distance mappings (M, T1, T2) satisfy- 
ing the following condition: if (v, w) c M, where neither v, nor w is the root, then 
(par(v), par(w)) c M. 

�9 Constrained edit distance 

The constrained edit distance (or restricted edit distance) is a distance on the set Trlo 
of all rooted labeled ordered trees, defined, for any T1, T2 c •rlo, as the minimum cost 
of a sequence of editing operations (relabels, insertions, and deletions) turning T1 into 
T2 with the restriction that disjoint subtrees should be mapped to disjoint subtrees. 

In terms of ordered edit distance mappings, it is equal to min(M, Vl,v2) F (M), where the 
minimum is taken over all ordered edit distance mappings (M, T1, T2) satisfying the 
following condition: for all (Vl, Wl), (tJ2, W2), (t)3, W3) C M, nca(vl, tJ2) is a proper 
ancestor of v3 if and only if nca(wl, w2) is a proper ancestor of w3. 

This distance is equivalent to the structure respecting edit distance, defined by 
min(M, Vl,v2) F(M), where the minimum is taken over all ordered edit distance mappings 
(M, T1, T2), satisfying the following condition: for all (Vl, Wl), (v2, w2), (v3, w3) c M, 
such that none of Vl, v2, and v3 is an ancestor of the others, nca(vl, v2) = nca(vl, v3) if 
and only if nca(wl, w2) : nca(wl, w3). 

�9 Unit cost edit distance 

The unit cost edit distance is a distance on the set ~2rlo of all rooted labeled ordered 
trees, defined, for any T1, T2 c ~2rlo, as the minimum number of editing operations 
(relabels, insertions, and deletions) turning T1 into T2. 

�9 Alignment distance 

The alignment distance (see [JWZ94]) is a distance on the set 72rlo of all rooted labeled 
ordered trees, defined, for any T1, T2 c ~2rlo, as the minimum cost of an alignment 
of T1 and T2. It corresponds to a restricted edit distance, where all insertions must be 
performed before any deletions. 

Thus, one inserts spaces, i.e., vertices labeled with a blank symbol )~, into T1 and T2 so 
they become isomorphic when labels are ignored; the resulting trees are overlayed on 
top of each other giving the alignment T A which is a tree, where each vertex is labeled 
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by a pair of labels. The cost of T A is the sum of costs of all pairs of opposite labels 
in TA. 

�9 Splitting-merging distance 

The splitting-merging distance (see [ChLu85]) is a distance on the set Trio of all rooted 
labeled ordered trees, defined, for any T1, T2 c Trlo, as the minimum number of vertex 
splittings and mergings needed to transform T1 into T2. 

�9 Degree-2 distance 

The degree-2 distance is a metric on the set ~'l of all labeled trees (labeled free trees), 
defined, for any T1, T2 c •l, as the minimum weighted number of editing operations (re- 
labels, insertions, and deletions) turning T1 into T2 if any vertex to be inserted (deleted) 
has no more than two neighbors. This metric is a natural extension of the tree edit dis- 
tance, and the Selkow distance. 

A phylogenetic X-tree is an unordered, unrooted tree with the labeled leaf set X and no 
vertices of degree two. If every interior vertex has degree three, the tree is called binary (or 
fully resolved). 

A cut A IB of X is a partition of X into two subsets A and B (see cut semi-metric). 
Removing an edge e from a phylogenetic X-tree induces a cut of the leaf set X which is 
called cut associated with e. 

�9 Robinson-Foulds metric 

The Robinson-Foulds metric (or closest partition metric, cut distance) is a metric on 
the set ~'(X) of all phylogenetic X-trees, defined by 

1 1 1 
 IZ<T  AZ<T2 I - - Z<T2 I +  IZ<T2 - Z<T  I 

for all T1, T2 c ~'(X), where r ( T )  is the collection of all cuts of X associated with 
edges of T. 

�9 Robinson-Foulds weighted metric. 

The Robinson-Foulds weighted metric is a metric on the set T(X) of all phylogenetic 
X-trees, defined by 

Iwl (AIB) - w2(AIB) I 
AIBcr(T1)Ur(T2)  

for all T1, T2 c ~'(X), where wi = (w(e))ecE(~) is the collection of positive weights, 
associated with the edges of the X-tree 7), r (7)) is the collection of all cuts of X, 
associated with edges of 7), and wi(AIB) is the weight of the edge, corresponding to the 
cut A IB of X, i = 1, 2. 

�9 Nearest neighbor interchange metric 

The nearest neighbor interchange metric (or crossover metric) is a metric on the 
set T(X) of all phylogenetic X-trees, defined, for all T1, T2 c ~'(X), as the minimum 
number of nearest neighbor interchanges required to transform T1 into T2. 
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A nearest neighbor interchange consists of swapping two subtrees in a tree that are 
adjacent to the same internal edge; the remainder of the tree is unchanged. 

�9 Subtree prune and regraft distance 

The subtree prune and regraft distance is a metric on the set T(X) of all phylogenetic 
X-trees, defined, for all T1, T2 c T(X),  as the minimum number of subtree prune and 
regraft transformations required to transform T1 into T2. 

A subtree prune and regraft transformation proceeds in three steps: one selects and 
removes an edge u v of the tree, thereby dividing the tree into two subtrees Tu (containing 
u) and Tv (containing v); then one selects and subdivides an edge of Tv, giving a new 
vertex w; finally, one connects u and w by an edge, and removes all vertices of degree 
two. 

�9 Tree bisection-reconnection metric 

The tree bisection-reconnection metric is a metric on the set T(X) of all phylogenetic 
X-trees, defined, for all T1, T2 c T(X),  as the minimum number of tree bisection and 
reconnection transformations required to transform T1 into T2. 

A tree bisection and reconnection transformation proceeds in three steps: one selects and 
removes an edge u v of the tree, thereby dividing the tree into two subtrees Tu (containing 
u) and Tv (containing v); then one selects and subdivides an edge of Tv, giving a new 
vertex w, and an edge of Tu, giving a new vertex z; finally one connects w and z by an 
edge, and removes all vertices of degree two. 

�9 Quartet distance 

The quartet distance (see [EMM85]) is a distance of the set Tb(X) of all binary phy- 
logenetic X-trees, defined, for all T1, T2 c Tb(X), as the number mismatched quartets 
(from the total number (~) possible quartets) for T1 and T2. 

This distance is based on the fact that given four leaves { 1, 2, 3, 4} of a tree, they can 
only be combined in a binary subtree in 3 different ways: (12134), (13124), or (14123): a 
notation (12134) refers to the binary tree with the leaf set {1, 2, 3, 4} in which removing 
the inner edge yields the trees with the leave sets { 1, 2} and {3, 4}. 

�9 Triples distance 

The triples distance (see [CPQ96]) is a distance of the set Tb(X) of all binary phylo- 
genetic X-trees, defined, for all T1, T2 c Tb(X), as the number of triples (from the total 
number (~) possible triples) that differ (for example, by which leaf is the outlier) for T1 
and T2. 

�9 Perfect matching distance 

The perfect matching distance is a distance on the set Tbr(X) of all rooted binary phy- 
logenetic X-trees with the set X of n labeled leaves, defined, for any T1, T2 c Tbr(X), 
as the minimum number of interchanges necessary to bring the perfect matching of T1 
to the perfect matching of T2. 
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Given set A = { 1 . . . . .  2k} of 2k points, a perfect matching of A is a partition A into 
k pairs. A rooted binary phylogenetic tree with n labeled leaves has a root and n - 2 
internal vertices distinct from the root. It can be identified with a perfect matching on 
2n - 2, different from the root, vertices by following construction: label the internal 
vertices with numbers n 4- 1 . . . . .  2n - 2 by putting the smallest available label as the 
parent of the pair of labeled children of which one has the smallest label among pairs of 
labeled children; now a matching is formed by peeling off the children, or sibling pairs, 

two by two. 

�9 Attributed tree metrics 

An attributed tree is a triple (V, E,  ol), where T = (V, E) is the underlying tree, and ol 
is a function which assigns an attribute vector o~(v) to every vertex v c V. Given two 

attributed trees (V1, El ,  ol) and (V2, E2, fl), consider the set of all subtree isomorphisms 
between them, i.e., the set of all isomorphisms f : HI --+ H2, HI C V1, H2 C V2, be- 
tween their induced subtrees. Given a similarity s on the set of attributes, the similarity 

between isomorphic induced subtrees is defined as W s ( f )  - ~vcH1 s(ol(v), ~ ( f ( v ) ) ) .  
The isomorphism q5 with maximal  similarity Ws(qS) = W(qS) is called maximum simi- 
larity subtree isomorphism. 

The following semi-metrics on the set Tatt of all attributed trees are used: 

1. max{IVll, IV21}- W(~) ;  

2. IV~l + IV21- 2W(q~); 
3. 1 -  w(~) 

max{IVil,Iv21} ; 
4. 1 -  w(~) 

I Va l+l V21- w (4)) ~ 

They become metrics on the set of equivalences classes of attributed trees: two attributed 
trees (V1, E l ,  ol) and (V2, E2,/3) are called equivalent if they are attribute-isomorphic, 
i.e., if there exists an isomorphism g : V] --+ V2 between the trees T] and T2, such that, 
for any v c V1, we have ol(v) = f l(g(v)).  In this case I V l l  = IV21 = W(g). 

�9 Greatest agreement subtree distance 

The greatest agreement subtree distance is a distance of the set T of all trees, defined, 
for all T1, T2 c T, as the min imum number  of leaves removed to obtain a (greatest) 
agreement subtree. 

An agreement subtree (or common pruned tree) of two trees is an identical subtree that 
can be obtained from both trees by pruning leaves with the same label. 



Chapter 16 

Distances in Coding Theory 

Coding Theory deals with the design and the properties of error-correcting codes for the 

reliable transmission of information across noisy channels in transmission lines and storage 

devices. The aim of Coding Theory is to find codes which transmit and decode fast, contain 

many valid code words, and can correct, or at least detect, many errors. These aims are 

mutually exclusive, however; so, each application has its own good code. 

In communications, a code is a rule for converting a piece of information (for example, a 

letter, word, or phrase) into another form or representation, not necessarily of the same sort. 

Encoding is the process by which a source (object) performs this conversion of information 

into data, which is then sent to a receiver (observer), such as a data processing system. 

Decoding is the reverse process of converting data, which has been sent by a source, into 

information understandable by a receiver. 

An error-correcting code is a code in which every data signal conforms to specific rules 

of construction so that departures from this construction in the received signal can generally 

be automatically detected and corrected. It is used in computer data storage, for example 

in dynamic RAM, and in data transmission. Error detection is much simpler than error 

correction, and one or more "check" digits are commonly embedded in credit card numbers 

in order to detect mistakes. The two main classes of error-correcting codes are block codes, 
and convolutional codes. 

A block code (or uniform code) of length n over an alphabet A, usually, over a finite field 

~q = {0 . . . . .  q - 1 }, is a subset C C An; every vector x c C is called codeword, M = ICI 
is called size of the code; given metric d on ~q (usually, the H a m m i n g  metr ic  dH), the 

value d* = d* (C) = minx,ycC,xCy d(x, y) is called m i n i m u m  distance of the code C. 

The weight w(x) of a codeword x c C is defined as w(x) = d(x, 0). An (n, M, d*)-code 
is an q-ary block code of length n, size M, and minimum distance d*. A binary code is a 

code over ~2. 

When codewords are chosen such that the distance between them is maximized, the code 

is called error-correcting, since slightly garbled vectors can be recovered by choosing the 

nearest codeword. A code C is an t-error-correcting code (and an 2t-error-detecting code) 
i fd*(C)  ~> 2t+l. InthiscaseeachneighborhoodUt(x) = {y c C: d(x, y) <~ t } o f x  c C 

is disjoint with Ut (y) for any y c C, y ~= x. A perfect code is an q-ary (n, M, 2t + 1)-code 

for which the M spheres Ut (x) or radius t centered on the codewords fill the whole space 

~q completely, without overlapping. 
n An [n, k]-code A block code C C ~qn is called linear if C is a vector subspace of ~q 

n (with the minimum distance d*); it has size q~, is an k-dimensional linear code C C ~q 

207 
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i.e., is an (n, qk, d*)-code. The Hamming code is the linear perfect one-error correcting 
qr_ l qr_ l 

( q-1 ' q-1 r, 3)-code. 

An k x n matrix G with rows that are basis vectors for a linear [n, k]-code C is called 

generator matrix of C. In standard fo rm  it can be written as ( lklA),  where lk is the k x k 

identity matrix. Each message (or information symbol, source symbol) u = (ul . . . . .  Uk) C 
k F q can be encoded by multiplying it (on the right) with the generator matrix: u G c C. 

The matrix H -- ( - A  T l ln_k) is called parity-check matrix of C. The number  r - n - k 

corresponds to the number  of parity check digits in the code, and is called redundancy of 

the code C. The information rate (or code rate) of a code C is the number  R - -  I~ For 
n 

k log 2 . for a binary [n, k]-code R -- k an q-ary [n, k]-code R -- ~ q, -'n 
A convolutional code is a type of error-correction code in which each k-bit information 

symbol to be encoded is t ransformed into an n-bit codeword, where R -- k__ is the code 
n 

rate (n ~> k), and the transformation is a function of the last m information symbols, where 

m is the constraint length of the code. Convolutional codes are often used to improve the 

performance of radio and satellite links. A variable length code is a code with codewords 

of different lengths. 

In contrast to error-correcting codes which are designed only to increase the reliability of 

data communicat ions,  cryptographic codes are designed to increase their security. In Cryp- 

tography, the sender uses a key to encrypt a message before it is sent through a insecure 

channel, and an authorized receiver at the other end then uses a key to decrypt the received 

data to a message.  Often, data compression algorithms and error-correcting codes are used 

in tandem with cryptographic codes to yield communicat ions that are both efficient, robust 

to data transmission errors, and secure to eavesdropping and tampering. Encrypted mes- 

sages which are, moreover,  hidden in text, image, etc., are called stenographic messages. 

16.1. M I N I M U M  D I S T A N C E  A N D  R E L A T I V E S  

�9 M i n i m u m  distance 

Given a code C C V, where V is an n-dimensional  vector space equipped with a metric 

d, the min imum distance d* - d* (C) of the code C is defined by 

min d(x ,  y).  
x,yeC, xCy 

The metric d depends on the nature of the errors for the correction of which the code is 

intended. For a prescribed correcting capacity it is necessary to use codes with max imum 

number  of codewords. The most  widely investigated such codes are the q-ary block 

codes in the Hamming  metric dH(x ,  y) -- {i " X i r Yi, i -- 1 . . . . .  n}l. 

For a linear code C the min imum distance d*(C)  - w(C) ,  where w (C )  = 

min{w(x)" x c C} is a minimum weight of the code C. As there are rank(H)  <, n - k 

independent  columns in the parity check matrix H of an [n, k]-code C, then d* (C) ~< 

n - k + 1 (Singleton upper bound). 
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�9 Dual distance 

n is the minimum distance of the The dual distance d • of a linear [n, k]-code C C Fq 

dual code C • of C. 

n that are orthogonal to The dual code C • of C is defined as the set of all vectors of IEq, 
n .  e v e r y c o d e w o r d o f C ' C  • - {v c IEq (v ,u)  - 0 f o r a n y u  c C } . T h e c o d e C  •  

linear [n, n - k]-code. The (n - k) x n generator matrix of C • is the parity-check matrix 
of C. 

�9 Bar product distance 

Given linear codes C1 and C2 of length n with C2 C C1,  their bar product  CLIC2 is a 
linear code o f leng th  2n, defined by CLIC2 = {xlx + y: x c C1, y c C2}. 

The bar product distance is the min imum distance d* (Cll C2) of the bar product C ll C2. 

�9 Design distance 

A linear code is called cyclic code if all cyclic shifts of a codeword also belong to C, 

i.e., if for any (ao . . . . .  a n - l )  c C the vector (an- l ,  ao . . . . .  an-2)  c C. It is conve- 
nient to identify a codeword (ao . . . . .  a n - l )  with the polynomial  c(x)  = ao + a l x  + 

�9 .. + an_ lxn -1 ;  then every cyclic [n, k]-code can be represented as the principal ideal 
(g(x))  = { r ( x ) g ( x ) :  r (x )  c Rn} of the ring Rn = Fq(X) / ( x  n - 1), generated by the 
polynomial  g(x )  = go + g l x  + . . .  + x n-~, called genera torpolynomial  of the code C. 

Given an element oe of order n in a finite field Fq,, a Bose -Chaudhur i -Hocquenghem 

[n, k]-code of design distance d is a cyclic code of length n, generated by a polynomial  
g (x) in Fq (x) of degree n - k, that has roots at oe, oL 2 . . . . .  oL d - 1  . The min imum distance 

d* of a Bose -Chaudhur i -Hocquenghem code of odd design distance d is at least d. 

A Reed-So lomon  code is a Bose -Chaudhur i -Hocquenghem code with s = 1. The gener- 
ator polynomial  of a Reed -So lomon  code of design distance d is g(x )  = (x - o e ) . . .  (x - 

old-1) with degree n - k = d - 1; that is, for a Reed -So lomon  code the design distance 
d = n - k + 1, and the min imum distance d* ~> d. Since for a linear [n, k]-code the 
min imum distance d* ~< n - k + 1 (Singleton upper bound), a Reed -So lomon  code has 
the min imum distance d* = n - k + 1 and achieves the Singleton upper bound. Compact  
disk players use a double-error correcting (255, 251, 5) Reed-So lomon  code o v e r  ~256.  

�9 Goppa designed minimum distance 

Goppa designed minimum distance ([Gopp71]) is a lower bound d*(m) for the mini- 
mum distance of one-point geometric Goppa codes (or algebraic geometry codes) G(m) .  

For G(m) ,  associated to the divisors D and raP,  m c N, of a smooth projective ab- 
solutely irreducible algebraic curve of genus g > 0 over a finite field Fq, one has 
d*(m) = m + 2 - 2g i f  2g - 2 < m < n .  

In fact, for a Goppa code C (m) the structure of the gap sequence at P may allow one to 
give a better lower bound of the min imum distance (cf. Feng-Rao distance). 

�9 Feng-Rao distance 

The Feng-Rao distance 8FR(m) is a lower bound for the min imum distance of one- 

point  geometric Goppa codes G(m)  which is better than the Goppa designed minimum 
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distance. The method of Feng and Rao for encoding the code C (m) decodes errors up to 
half the Feng-Rao distance ~FR(m), and gives an improvement of the number of errors 
that one can correct for one-point geometric Goppa codes. 

Formally, the Feng-Rao distance is defined as follow. Let S be a numerical semi-group, 

i.e., a sub-semi-group S of N U {0} such that the genus g = iN u {0}\SI of S is fi- 
nite, and 0 �9 S. The F e n g - R a o  distance on S is a function ~FR : S ~ ~ U {0} 

such that ~FR(m) = min{v(r):  r ~ m , r  �9 S}, where v(r) = I{(a,b) �9 $2: a + 
b - r}l. The generalized r - th  F e n g - R a o  distance on S is defined by 3~R(m) - 

min{v[ml . . . . .  mr]: m <~ ml < . . .  < mr, mi �9 S}, where v[ml . . . . .  mr] = I{a �9 
S" mi - a �9 S for some i - 1 . . . . .  r}l. Then ~FR(m) -- ~IFR(m). (See, for example, 
[FaMu03].) 

�9 Free distance 

The free distance is the minimum non-zero Hamming weight of any codeword in a 
convolutional code or a variable length code. 

Formally, the k-th minimum distance d~ of a convolutional code or a variable length 
code is the smallest Hamming distance between any two initial codeword segments k 
frame long that disagree in the initial frame. The sequence d~, d~, df . . . .  (d~ ~< d~ ~< 

df ~< . . .  ) is called distance profile of the code. The free distance of a convolutional 

code or a variable length code is maxl d l*= l i m l ~  d l*= d~ .  

�9 Effective free distance 

A turbo code is a long block code in which there are L input bits, and each of these bits is 
encoded q times. In the j - th  encoding, the L bits are sent through a permutation box Pj, 

and then encoded via an [Nj, L] block encoder (code fragment encoder) which can be 
thought of as an L x Nj matrix. The overall turbo code is then a linear [N1 + . . . + N q ,  L]- 

code (see, for example, [BGT93]). 

The weight-i input minimum distance d i (C) of a turbo-code C is the minimum weight 
among codewords corresponding to input words of weight i. The effective free distance 
of C is its weight-2 input minimum distance d2(C), i.e., the minimum weight among 
codewords corresponding to input words of weight 2. 

�9 Distance distribution 

Given a code C over a finite metric space (X, d) with the diameter diam(X, d) - D, 

the distance distribution of C is an (D + 1)-vector (A0 . . . . .  AD), where Ai  = 
1 C 2 c ~ IcI I{(c, c') �9 �9 d(c, ) - i}l. That is, one considers Ai(c) as the number of 

code words at distance i from the codeword c, and takes Ai as the average of Ai (c) 
over all c �9 C. A0 -- 1, and if d* - d* (C) is the minimum distance of C, then 

A ] . . . . .  Ad , -]  -- O. 

The distance distribution of a code with given parameters is important, in particular, for 
bounding the probability of decoding error under different decoding procedures from 
maximum likelihood decoding to error detection. Apart from this, it can be helpful in 
revealing structural properties of codes and establish nonexistence of some codes. 
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�9 Unic i ty  dis tance  

The unicity  dis tance  of a cryptosystem is the minimal length of cyphertext that is re- 
quired in order to expect that there exists only one meaningful decryption for it. For 
classic cryptosystems with fixed key space, the unicity distance is approximated by the 
formula H ( K ) / D ,  where H ( K )  is the key space entropy (roughly log 2 N, where N is 
the number of keys), and D measures the redundancy of the plain text source language 
in bits per letter. 

A cryptosystem offers perfect secrecy if its unicity distance is infinite. For example, the 
one-time pads offer perfect secrecy; they were used for the "red telephone" between 
Kremlin and White House. 

16.2. M A I N  C O D I N G  D I S T A N C E S  

�9 Ar i thmet ic  codes  dis tance  

An arithmetic code (or code with correction of  arithmetic errors) C is a finite subset 
of the set Z of integers (usually, non-negative integers). It is intended for the control 
of the functioning of an adder (a module performing addition). When adding numbers 
represented in the binary number system, a single slip in the functioning of the adder 
leads to a change in the result by some power of 2, thus, to a single arithmetic error. 
Formally, a single arithmetic error on Z is defined as a transformation of a number 
n c Z to a number n ~ = n 4- 2 i, i = 1, 2 . . . . .  

The ari thmet ic  codes  dis tance  is a metric on Z, defined, for any nl ,  n2 c Z, as the 
minimum number of arithmetic errors taking nl to n2. It can be written as w2(nl - n2), 
where w2 (n) is the arithmetic 2-weight of n, i.e., the smallest possible number of non- 

k 2 i zero coefficients in representations n - Z i : 0  ei , where ei -- 0,-+-1, and k is some 
non-negative integer. In fact, for each n there is an unique such representation with 

e~ ~: O, ei ei + 1 : 0 for all i = 0 . . . . .  k - 1, which has the smallest number of non-zero 
coefficients (cf. ar i thmet ic  r - n o r m  metric) .  

�9 S h a r m a - K a u s h i k  dis tance  

Let q ~> 2, m ~> 2. A partition {B0, B1 . . . .  Bq-1 } of Z m is called Sharma-Kaushik  
partition if the following conditions hold: 

1. Bo = {o}; 
2. For any i  c Zm, i c Bs if  and only if  m - i C Bs, s = l, 2 . . . . .  q - l ;  
3. I f i  c Bs, j c Bt, a n d s  > t, then min{i, m - i} > min{j,  m - j}; 
4. If s ~ t, s, t = 0, 1 . . . . .  q - l, I Bsl ~ I Btl except for s = q - 1 in which case 

IBq-l l  ~ �89 

Given a Sharma-Kaushik  partition of Zm, the Sharma-Kaushik  weight WSK(X) of any 
element x c Zm is defined by WSK(X) = i if x C Bi, i c {0, 1 . . . . .  q -- 1 }. 

The S h a r m a - K a u s h i k  dis tance  (see, for example, [ShKa97]) is a metric on Zm, defined 

by 

WSK(X -- y).  
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The Sharma-Kaushik  distance on Z~ is defined by W~K(X -- y) ,  where, for x -- 
(xl xn) c Z ~ , o n e h a s  n ( x ) -  n . . . .  tOSK Z i = I  tOSK (Xi ) .  

The H a m m i n g  metric  and the Lee metric  arise from two specific partitions of the above 

type: PH = {B0, B1}, where B1 = {1, 2 . . . . .  q - 1}, and PL = {B0, B1 . . . . .  BLq/2j}, 

where Bi -- { i, m - i }, i -- 1 . . . . .  L ~ J . 

�9 Absolute  s u m m a t i o n  distance 

The absolute  s u m m a t i o n  distance (or Lee  d is tance)  is the Lee metric  on the set Zfn, 

defined by 

tVLee (X --  y ) ,  

where tVLee (X ) - -  n ~ i = 1  min{xi, m - x i}  is the Lee  we igh t  of x - (Xl . . . . .  xn) c Z ~ .  

If Zfn is equipped with the absolute summation distance, then a subset C of Zfn is called 
Lee  d is tance  code. Lee distance codes are used for phase-modulated and multilevel 

quantized-pulse-modulated channels, and have several applications to the toroidal in- 

terconnection networks. Most important Lee distance codes are negacyc l ic  codes.  

�9 M a n n h e i m  distance 

L e t Z [ i ]  = {a + b i :  a , b  c Z} be the set of Gaussian integers.  Let Jr = a + b i  

(a > b > 0) be a Gauss ian  pr ime .  It means, that (a + b i ) ( a  - b i )  = a 2 + b 2 = p, where 

p = 1 (mod 4) is a prime number, or that Jr = p + 0 .  i = p, where p = 3 (mod 4) is a 
prime number. 

The M a n n h e i m  distance is a distance on Z[i], defined, for any two Gaussian integers 
x and y, as the sum of the absolute values of real and imaginary part of the difference 

x - y (mod Jr). The modulo reduction, before summing the absolute values of real and 

imaginary part, is the difference between the Manhat tan  metric  and the Mannheim 
distance. 

The elements of the finite fieldIEp = {0,1 . . . . .  p -  1} for p = 1 (mod4) ,  p = 
a 2 + b 2, and the elements of the finite field ~p2 for p = 3 (mod 4), p -- a, can 

be mapped on a subset of the Gaussian integers using the complex modulo function 
Iz(k)  - k - [k(a-~bi)](a + bi ) ,  k - 0 . . . . .  p - 1, where [.] denotes rounding to the clos- 

est Gaussian integer. The set of the selected Gaussian integers with the minimal Galois 
J [  

norms is called conste l la t ion.  This representation gives a new way to construct codes 

for two-dimensional signals. Mannheim distance was introduced to make Q A M - l i k e  sig- 
nals more susceptible for algebraic decoding methods. For codes over hexagonal signal 

constellations a similar metric can be introduced over the set of the E i s e n s t e i n - J a c o b i  

integers.  It is useful for block codes over tori. (See, for example, [Hube93], [Hube94].) 

�9 Poset  distance 

Let (Vn, •  be a p o s e t  on Vn = { 1 . . . . .  n}. A subset I of Vn is called ideal  if x c I 

and y • x imply that y c I. If J C Vn, then (J)  denotes the smallest ideal of Vn 
n which contains J .  Consider the vector space IEq over a finite field IEq. The P - w e i g h t  of 

n is defined as the cardinality of the smallest ideal of an element x - (xl . . . . .  xn) c IEq 

Vn containing the suppor t  of x: w p ( x )  = I ( supp(x) ) l ,  where s u p p ( x )  = {i: xi # 0}. 
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n defined by The poset distance (see [BGL95]) is a metric on ~q, 

w e ( x  - y ) .  

n is called pose t  code. If Vn n is equipped with a poset distance, then a subset C of ~q If ~q 
forms the chain 1 ~< 2 ~< . . .  ~< n, then the linear code C of dimension k consisting of 

n is a perfect poset code with the minimum all vectors (0 . . . . .  0, an-~+l  . . . . .  an) E ~q 
(poset) distance d~o (C) - n - k + 1. If Vn forms an antichain, then the poset distance 
coincides with the Hamming metric. 

�9 Rank distance 

Let Fq be a finite field, K = Fqm be an extension of degree m of Fq, and E = K n be 

a vector space of dimension n over K. For any a = (al . . . .  an) c E define its rank, 
r a n k ( a ) ,  as the dimension of the vector space over ~q, generated by {al . . . . .  an}. 

The rank distance is a metric on E, defined by 

rank(a - b). 

Since the rank distance between two codewords is at most the Hamming distance be- 

tween them, for any code C C E its minimum (rank) distance d[~K(C ) <. min{m, n -- 
1Ogqm ICI + 1 }. A code C with d~K(C ) = n -- 1Ogqm ICI + 1, n < m, is called Gabidulin 
code (see [Gabi85]). A code C with d~K(C ) = m, m <~ n, is called fu l l  rank distance 
code. Such code has at most qn elements. A maximal  fu l l  rank distance code is a full 
rank distance code with qn elements; it exists if and only if m divides n. 

�9 Gabidulin-Simonis  metrics 

n (over a finite field Fq) and a finite family F -- { Fi" i c I } Consider the vector space F q 
n Without loss of generality, F can be an antichain of of its subsets such that Uic I F i - -  ~q. 

n is defined n The F - w e i g h t w F o f a v e c t o r x - -  (xl .. ,xn) C F q  linear subspaces of F q. , . 

as the cardinality of the smallest subset J of I such that x c Uic J F i . 

n defined A Gabidulin-Simonis  metric (or F-distance, see [GaSi98]) is a metric on Fq, 

by 

11)F(X -- y) .  

The Hamming metric corresponds to the case of Fi, i c I, forming the standard basis. 
The Vandermonde metric is F-distance with Fi, i c I,  being the columns of a general- 
ized Vandermonde matrix. Amongst  other coding Gabidulin-Simonis  metrics are: rank 
distance, b-burst distance, Gabidulin's combinatorial  metrics (cf. poset distance), etc. 

�9 Rosenbloom-Tsfasman distance 

Let m m , n ( ~ q )  be the set of all m x n matrices with entries from a finite field ~q (in 
general, from any finite alphabet r = {al . . . . .  aq }). The Rosenb loom-Ts fasman  norm 

II. IIRT on mm,n (~q) is defined as follow: if m = 1 and a = (~1, ~2 . . . . .  ~n) c ml ,n  (~q),  
then II01,nllRr = 0, and IIaIIRT = max{il~i r 0} for a ~= 01,n; if A = (al . . . . .  am) T c 

m 
M m , n ( ~ q ) ,  aj c M l , n ( ~ q ) ,  1 <~ j <~ m, then IIA RT -- ~ j = l  aj  RT. 
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The Rosenbloom-Tsfasman distance ([RoTs96]) is a metric (in fact, an ultrametric) 
on Mm,n (Fq), defined by 

IIA - B I IRT.  

For every matrix code C C Mm,n(Fq) with q~ elements the min imum (Rosenb loom-  

Tsfasman) distance d ~ r (C  ) ~< r a n - k +  1. Codes meeting this bound are called maximum 

distance separable codes. 

The most  used distance between codewords of a matrix code C C Mm,n (Fq) is the 

Hamming  metric on Mm,n (Fq), defined by II A - B II H, where II AII H is the Hamming  

weight  of a matrix A c Mm,n (F v), i.e., the number  of non-zero entries of A. 

�9 Interchange distance 

The interchange distance is a metric on the code C C ,A n over an alphabet A, de- 
fined, for any x, y c C, as the min imum number  of transpositions, i.e., interchanges of 
adjacent pairs of symbols, converting x into y. 

�9 ACME distance 

The ACME distance is a metric on a code C C A n over an alphabet A, defined by 

m i n { d H ( x ,  y),  di(x, y)}, 

where dH is the Hamming  metric, and d1 is the interchange distance. 

�9 Indel distance 

Let W be the set of all words over an alphabet A. A deletion of a letter in a word fl = 

bl . . . bn of the length n is a transformation of fl into a word fl' = bl . .. b i -  1 bi+l �9 �9 �9 bn 

of the length n - 1. An insertion of a letter in a word fl = bl . . .  bn of the length n is a 

transformation of fl into a word fl" = bl . . .  bibbi+l . . .  bn, of the length n + 1. 

The indel distance (or distance of codes with correction of deletions and insertions) 
is a metric on W, defined, for any ~, fl c W, as the min imum number  of deletions and 

insertions of letters converting oe into ft. 

A code C with correction o f  deletions and insertions is an arbitrary finite subset of W. 
An example of such code is the set of words fl = bl . . .  bn of length n over the alphabet 
A - {0, 1 } for which ~ i ~ 1  i bi = 0 (rood n + 1). The number  of words in this code is 

1 equal to 2(n+1) ~ k  ~ ( k )  2(n+l)/k where the sum is taken over all odd divisors k o f n  + 1, 
and ~b is the Euler funct ion.  

�9 Interval distance 

The interval distance (see, for example, [Bata95]) is a metric on a finite group 
(G, + ,  0), defined by 

tUint(X --  y ) ,  

where wint (x) is an interval weight  on G, i.e., a group norm which values are consecu- 
tive non-negative integers 0 . . . . .  m. This distance is used for group codes C C G. 



Chapter 16: Distances in Coding Theory [ �9 Fano metric] 215 

�9 Fano metric 

The Fano metr ic  is a decoding metric with the goal to find the best sequence estimate 
used for the Fano algorithm of sequential decoding of convolutional codes. 

A convolutional code is a type of error-correction code in which each k-bit information 
symbol to be encoded is transformed into an n-bit codeword, where R = ~ is the code 

n 

rate (n ~> k), and the transformation is a function of the last m information symbols. The 

linear time-invariant decoder (fixed convolutional decoder) maps an information symbol 

ui c {Ul . . . . .  Uu}, ui = (Uil . . . .  ui~), uij C F2, into a codeword xi c {Xl . . . . .  Xu}, 
Xi = (Xil . . . . .  Xin), Xij C ~2, SO one has a code {Xl . . . . .  xu} with N codewords which 
occur with probabilities {p(xl) . . . . .  p(xN)}. A sequence of 1 codewords form a stream 
(or path) x = x[1,1l = {Xl . . . . .  xl } which is transmitted through a discrete memoryless 
channel, resulting in the received sequence y = Y[1,1l. The task of a decoder which 
minimizes the sequence error probability is to find a sequence which maximizes the joint 
probability of input and output channel sequences p(y, x) = p(ylx) ,  p(x). Usually it is 
sufficient to find a procedure that maximizes p(ylx), and a decoder that always chooses 
as its estimate one of the sequences that maximizes it or, equivalently, the Fano metric, 
is called max-likelihood decoder. 

Roughly, we consider each code as a tree, where each branch represents one codeword. 
The decoder begins at the first vertex in the tree, and computes the branch metric for 
each possible branch, determined the best branch to be the one corresponding to the 
codeword xj resulting in the largest branch metric, # F ( X j ) .  This branch is added to the 
path, and the algorithm continues from the new node which represents the sum of the 
previous node and the number of bits in the current best codeword. Through iterating 
until a terminal node of the tree is reached, the algorithm traces the most likely path. In 
this construction, the bit Fano metr ic  is defined by 

P(yi]xi) 
log 2 -- R, 

P(Yi) 

the b ranch  Fano metric is defined by 

n( 
#F(Xj) -- Z log2  

i=1 

P(YilXji) 

P(Yi) 
-R), 

and the path Fano metric is defined by 

1 

#F(X[1,1]) -- Z #F(Xj), 
j = l  

where P(Yi IXji) are the channel transition probabilities, 

p (y~) - ~ p (Xm)p (y~ Xm) 
Xrn 
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is the probability distribution of the output given the input symbols averaged over all 
k is the code rate. input symbols, and R -- 

For a hard-decision decoder p ( y j  - 0 x j  - 1) - p ( y j  - 1 x j  - O) - p,  0 < p < �89 
the Fano metric for a path x[1,1] can be written as 

ILF(X[1,1]) : --C~dH(Y[1,1], X[1,/]) -+- fl " 1.  n,  

where c~ - - log 2 @ > 0, fl - 1 - R + log2(1 - p), and dH is the Hamming metric. 

The general ized Fano metr ic  for sequential decoding is defined by 

w p ( Y j l x j  
#F(X[1,1]) --  Z l o g 2  

j = l  p ( y j ) l - w  
-- wR), 

0 ~< w ~< 1. When w = 1/2, the generalized Fano metric reduces to the Fano metric 
with a multiplicative constant 1/2. 

�9 Metric recursion of a MAP decoding 

Maximum a posteriori  sequence estimation, or M A P  decoding for variable length codes, 
used the Viterbi algorithm, is based on the metric recursion 

A~ m) - A~ m) + Z " (m)~k,n l~ 

n : l  

. ( m )  
p(y~,~ I~,~ - + 1) 

. (m) - 1 )  P(Yk,nl~k,n -- 

where A~ m) is the branch metric of branch m at time (level) k, Xk,n is the n-th bit of the 

codeword having 1(m) bits labeled at each branch, Yk,n is the respective received soft-bit, ~k 
m is the source symbol of branch m at time k, and assuming statistical independence of u k 

the source symbols, the probability p(u~ m)) is equivalent to the probability of the source 
symbol labeled at branch m, that may be known or estimated. The metric increment 
is computed for each branch, and the largest value, when using log-likelihood-values, 
of each state is used for further recursion. The decoder first computes the metric of all 
branches, and then the branch sequence with largest metric starting from the final state 
backward is selected. 



Chapter 17 

Distances and Similarities in Data Analysis 

A data set is a finite set comprised of m sequences (x . . . . .  x~), j c { 1 . . . . .  m }, of length 

n. The values x/1 . . . . .  x m represent attribute Si. It can be numerical, including contin- 
uous (real numbers) and binary (presence/absence expressed by 1/0), ordinal (numbers 
expressing rank only), or nominal (which are not ordered). 

Cluster Analysis (or Classification, Taxonomy, Pattern Recognition) consists mainly of 
partition of data A into relatively small number of clusters, i.e., such sets of objects, that 
(with respect of selected measure of distance) the objects, at best possible degree, are 
"close" if they belong to the same cluster, "far" if they belong to different clusters, and 
further subdivision into clusters will impair above two conditions. 

We give three typical examples. In Information Retrieval applications, nodes of peer- 
to-peer database network export a data (collection of text documents); each document is 
characterized by a vector from R ' .  An user query consists of a vector x c R ' ,  and user 
needs all documents in database which are relevant to it, i.e., belong to the ball in R ' ,  
centered in x, of fixed radius and with convenient distance function. In Record Linkage, 
each document (database record) is represented by a term-frequency vector x c R" or a 
string, and one wants to measure semantic relevancy of syntactically different records. In 
Ecology, let x, y be species abundance distributions, obtained by two sample methods (i.e., 
x j, yj are the numbers of individuals of species j ,  observed in corresponding sample); one 
needs a measure of distance between x and y, in order to compare two methods. 

Once a distance d between objects is selected, the linkage metric, i.e., a distance be- 
tween clusters A = {al . . . . .  am} and B = {bl . . . . .  b,} is usually one of the following: 

average linkage: the average of the distances between the all members of those clusters, 
i.e., ~ ~ j  d(a i ,b j ) .  

m r /  

single linkage: the distance between the nearest members of those clusters, i.e., 
mini,j d(ai, bj); 

complete linkage: the distance between the furthest members of those clusters, i.e., 
m a x i , j  d(ai, bj); 

eentroid linkage: the distance between the centroids of those clusters, i.e, Ila -/~ll2, 

where a - ~i  ai and/~ - ~ j  bj. 
m ' n ' 

Ward linkage" the distance v/ mn ~4-77 a - b  2. 

Multi-dimensional Scaling is a technique developed in the behavioral and social sciences 
for studying the structure of objects or people. Together with Cluster Analysis, it is based 
on distance methods. But in Multi-dimensional Scaling, as opposite to Cluster Analysis, 
one starts only with some m • m matrix D of distances of the objects and (iteratively) looks 
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for a representation of objects in R n with low n, so that their Euclidean distance matrix has 
minimal square deviation from the original matrix D. 

There are many similarities used in Data Analysis; the choice depends on the nature of 
data and is not an exact science. We list below main such similarities and distances. 

Given two objects, represented by non-zero vectors x = (xl . . . . .  xn) and y = (yl . . . . .  
Yn) from R n, the following notation are used in this chapter. 

E Xi means E i % l  Xi. 
1F is the characteristic function of event F:  1F : 1 if F happens, and 1F : 0, other- 

wise. 

X 2 -- V / ~  x2 is the ordinary Euclidean norm on R n. 

By 2- is denoted Exi i.e., the mean value of components of x So, 2- - ! if x is a 
H ' " H 

frequency vector (discrete probability distribution), i.e., all xi ~ 0, and ~ xi = 1, and 
x - - ~ -  n+l if x is a ranking (permutation), i.e., all xi are different numbers from { 1 , . . . ,  n }. 

In the binary case x 6 {0, 1 }n (i.e., when x is a binary n-sequence), let X = { 1 ~< i ~< 

n: xi = 1} and X = {1 <~ i <~ n: xi = 0}. Let IXAYI ,  IXUYI, IX\YI and IXAY I denote 
the cardinality of intersection, union, difference and symmetric difference ( X \  Y) U ( Y \ X )  
of the sets X and Y, respectively. 

17.1. S I M I L A R I T I E S  AND D I S T A N C E S  F O R  N U M E R I C A L  DATA 

�9 Ruzicka similarity 

The Ruzicka similarity is a similarity on R n, defined by 

min{xi, Yi } 

max{x/, Yi } 

�9 Roberts similarity 

The Roberts similarity is a similarity on R n, defined by 

min{xi,Yi} 
~(xi  + yi) m~• 

~(Xi  Jr- Yi) 

�9 Ellenberg similarity 

The Ellenberg similarity is a similarity on R n, defined by 

E ( x i  Jr- yi)lxi.yir 

E ( x i  Jr-yi)(1 + lxiyi=O) 

Binary cases of Ellenberg and Ruzicka similarities coincide; it is called Tanimoto sim- 
ilarity (or Jaeeard similarity of community): 

IXnYI 
IXUYI 
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The Tanimoto distance (or biotope distance) is a distance on {0, 1 }n, defined by 

m 

IxnYI IxAYI 
IXUYI IXUYI 

�9 Gleason similarity 

The Gleason similarity is a similarity on R n, defined by 

~ ( x i  + yi)lxi.yir 

~ (Xi -+- Yi ) 

Binary cases of Cleason, Motyka and Bray-Curtis similarities coincide; it is called 
Dice similarity (or Sorensen similarity, Czekanowsky similarity): 

2lxnYI 2 l x n Y  
I x u Y I +  xnYI  IxI+IYI 

The Czekanowsky-Dice distance (or Bray-Curtis non-metric coefficient, normalized 
symmetric difference distance) is a near-metric on {0, 1 }n, defined by 

21xnYI IXzXYI 
IxI+IYI IxI+IYI 

�9 Intersection distance 

The intersection distance is a distance on R n, defined by 

m 

min{xi, Yi } 

m i n { ~  Xi, ~ Yi }" 

�9 Motyka similarity 

The Motyka similarity is a similarity on R n, defined by 

min{xi, Yi} ~ min{xi, Yi} 
z n  

(xi + Yi) -x + Y 

�9 Bray-Curtis similarity 

The Bray-Curtis similarity is a similarity on R n, defined by 

2 
min{xi, }. 

n(y + y) Z_~ Yj 

It is called Renkonen %similarity (or percentage similarity) if x, y are frequency vectors. 
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�9 Bray-Curt i s  distance 

The Bray-Curt is  distance is a distance on R n, defined by 

Ixi - Yi l 

~ ( X i  + Yi) 

�9 Canberra  distance 

The Canberra  distance is a distance on R n, defined by 

Xi -- Yil K-" 

xil + lyil 

�9 Kulczynski  similarity 1 

The Kulczynski similarity 1 is a similarity on R n, defined by 

min{xi, Yi } 

Ixi - Yi l 

The corresponding distance is 

Ixi -- Yi l 

min{xi, Yi } 

�9 Kulczynski similarity 2 

The Kulczynski similarity 2 is a similarity on R n, defined by 

+ y Z m i n { x i '  Yi}. 

In binary case it takes form 

I X n r l . ( I X l + l r l )  
21xI. Irl 

�9 B a r o n i - U r b a n i - B u s e r  similarity 

The B a r o n i - U r b a n i - B u s e r  similarity is a similarity on R n, defined by 

min{xi, Yi} + v / ~  min{xi, Yi} ~ ( m a x l  <~j<~n x j  - max{x/, Yi }) 

max{x/, Yi} + v / ~  min{xi, Yi} ~ ( m a x l  <~j<~n x j  - max{x/, Yi }) 

In binary case it takes form 

IXn rl +v/IXn r l .  IXUrl 
IXU rl +v/IXn r l .  IXUrl 
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17.2. R E L A T I V E S  O F  E U C L I D E A N  D I S T A N C E  

�9 Power (p,  r)-distance 

The power (p, r)-distance is a distance on R n, defined by 

1 

(Z(Xi--Yi)P)7" 

For p = r ~ 1, it is t he / p - m e t r i c ,  including Euclidean, Manhattan (or magni tude)  
and Chebyshev  (or max imum-va lue )  metrics for n = 2, 1 and cx~, respectively. 

The case 0 < p = r < 1 is called fractional distance (not a metric); it is used for 
"dimensionali ty-coursed" data, i.e., when there are few observations and the number n 
of variables is large. 

1 

The weighted versions ( ~  wi (xi - Yi)P) 7 (with non-negative weights wi) are also used, 
for p = 1, 2, in applications. 

�9 Penrose size distance 

The Penrose size distance is a distance on R n, defined by 

~/-n Z Xi -- Yil. 

It is proportional to the Manhattan metric. The Czekanowsky  mean  character  differ- 

ence is defined by ~2 Ix~-y~l. 
n 

�9 Penrose shape distance 

The Penrose shape distance is a distance on R n, defined by 

~ / Z  ((xi - -x) - (Yi - Y))2 

The sum of squares of two above Penrose distances is the squared Euclidean distance. 

�9 Lorentzian distance 

The Lorentzian distance is a distance on R n, defined by 

ln(1 + X i - -  Yi ). 

�9 Binary Euclidean distance 

The binary Euclidean distance is a distance on R n, defined by 

~ Z ( l x i > 0 -  lyi>0) 2. 
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�9 Mean  censored Eucl idean distance 

The mean censored Eucl idean distance is a distance on R n, defined by 

~ ~(Xi -- yi)2 
Z 

�9 N o r m a l i z e d / p - d i s t a n c e  

The normal ized /p-d i s tance ,  1 ~ p ~< cx~, is a distance on R n, defined by 

IIx - y II p 

Ilxllp + Ilyllp 

The only integer value p, for which normal ized/p-dis tance is a metric, is p = 2. More- 

over, in [Yian91] it is shown that, for any a b > 0, the distance IIx-yll2 is a ' a§ 
metric. 

�9 C l a r k  distance 

The C l a r k  d is tance  is a distance on R n, defined by 

Z xil + lyil 

�9 Meehl  distance 

The Meehl  distance (or Meehl index) is a distance on R n, defined by 

Z 
l~i~n-1 

(xi -- Yi --Xi+l -+- Yi+l) 2 

�9 Hel l inger distance 

The Hel l inger  d is tance  is a distance on R~_, defined by 

(Cf. Hel l inger  met r ic  in Probability Theory.) 
xi Yi The Whittaker index of association is defined by �89 ~1-2- - 71. 

�9 Symmetr ic  ){ 2-measure 

The symmetr ic  ){ 2 -measure  is a distance on R n, defined by 

2 ( x i y -  yi-x) 2 
- . 

Z - ~  y xi -+-Yi 
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�9 Symmetric  x2-distance 

The symmetric  )f 2-distance (or chi-distance) is a distance on R n, defined by 

~ ~ - X - k - Y  IXi y i l 2 _  ~ ~ - X - k - Y  . ( x i - Y - - y i - x )  2 

n(xi -~- Yi) -x Y n(-x. ~)2 Xi + Yi 

�9 Mahalanobis  distance 

The Mahalanobis  distance (or statistical distance) is a distance on R n, defined by 

V/ 1 (det A)~ (x - y)A-l(x - y)T 

where A is a positive-definite matrix (usually, the covariance matrix of a finite subset of 
R n, consisting of observation vectors); cf. Mahalanobis  semi-metric.  

17.3. S I M I L A R I T I E S  AND DISTANCES F O R  BINARY DATA 

Usually, such similarities s range from 0 to 1 or from - 1  to 1; the corresponding distances 
are usually 1 - s or 1@, respectively�9 

�9 H a m a n n  similarity 

The H a m a n n  similarity is a similarity on {0, 1 }n, defined by 

2 XAYI n - 2IXAYI 

n n 

�9 Rand similarity 

The Rand similarity (or Sokal-Michener similarity, simple matching) is a similarity on 
{0, 1 }n, defined by 

IXLXYI 
n 

Corresponding metric IxAYI is called variance (it is the binary case of Czekanowsky 
n 

mean character difference), and 1 Ixz~YI is called Gower similarity. 
n 

�9 Sokal -Sneath  similarity 1 

The Sokal -Sneath  similarity 1 is a similarity on {0, 1 }n, defined by 

21XAYI 

n+IXAYI  
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�9 Sokal-Sneath similarity 2 

The Sokal -Sneath  similarity 2 is a similarity on {0, 1 }n, defined by 

IXnYI 
IXUYl+lXmYI 

�9 Sokal-Sneath similarity 3 

The Sokal -Sneath  similarity 3 is a similarity on {0, 1 }n, defined by 

IxAYI 

IxAYI 

�9 Russel-Rao similarity 

The Russel -Rao similarity is a similarity on {0, 1 }n, defined by 

IXnYI 
t/ 

�9 Simpson similarity 

The Simpson similarity (overlap similarity) is a similarity on {0, 1 }n, defined by 

IXnYI 
min{IXl, IYI} 

�9 Braun-Blanquet similarity 

The Braun-Blanque t  similarity is a similarity on {0, 1 }n, defined by 

IXnYI 
max(IXl, IYI} 

�9 Roger-Tanimoto similarity 

The Roger-Tanimoto similarity is a similarity on {0, 1 }n defined by 

IXAYI 
n+IXAYI 

�9 Faith similarity 

The Faith similarity is a similarity on {0, 1 }n, defined by 

IXnYI+IXAYI  
2n 
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�9 Tversky  similarity 

The Tversky similarity is a similarity on {0, 1 }n, defined by 

IXNYI 
a l X A Y I + b l X N Y I  

It becomes Tanimoto,  Dice  and (the binary case of) Kulczynsky 1 similarities for 
(a, b) - (1, 1), (�89 1) and (1, 0), respectively. 

�9 G o w e r - L e g e n d r e  similarity 

The Gower -Legendre  similarity is a similarity on {0, 1 }n, defined by 

IXAYI IXAYI 

a l X A Y I + I X A Y I  n + (a - 1)IXAYI 

�9 A n d e r b e r g  similarity 

The Anderberg  similarity (or Sokal-Sneath 4 similarity) is a similarity on {0, 1 }n, de- 
fined by 

. J r  _ _  . 

4 T ~  + T~  + 4 IXl IYI 

�9 Yule Q similarity 

The Yule Q similarity is a similarity on {0, 1 }n, defined by 

IX N YI IX U YI - IX\YI IY\XI 

IX N YI IX U YI + IX\YI IY\XI 

�9 Yule Y s imi lar i ty  of  colligation 

The Yule Y similarity of colligation is a similarity on {0, 1 }n, defined by 

~/IX n rl  X U rl - ~ / IX \ r l  I r \X l  

~/IX n rl  X U rl + ~ / IX \ r l  I r \X l  

�9 Di spers ion  similarity 

The dispersion similarity is a similarity on {0, 1 }n, defined by 

IX N YI IX U YI - IX\YI IY\XI 
n 2 
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�9 Pearson r similarity 

The Pearson r similarity is a similarity on {0, 1 }n, defined by 

IX n YI. IX u YI-  Ix\YI. IY\XI 

v/IXl. I X l . l r l . l r l  

�9 Gower similarity 2 

The G o w e r  similarity 2 (or Sokal-Sneath 5 similarity) is a similarity on {0, 1 }n, defined 
by 

IXnYl. IXUYI 

v/IXl. I X l . l r l . l r l  

�9 Pattern difference 

The pattern difference is a distance on {0, 1 }n, defined by 

4 x \ Y I .  IY\XI 
n 2 

�9 Q0-difference 

The Q0-dif ference is a distance on {0, 1 }n, defined by 

IX\YI . IY\XI 

IXnYl. IXUYI 

17.4. C O R R E L A T I O N  S I M I L A R I T I E S  AND D I S T A N C E S  

�9 Covariance similarity 

The covariance similarity is a similarity on R n, defined by 

~ ( x / -  ~)(y/- y) ~ x/yi 
n n 

X " y .  

�9 Correlation similarity 

The correlation similarity (or Pearson correlation, or, by its full name, Pearson 

product-moment  correlation linear coefficient) s is a similarity on R n, defined by 

~ ( x / -  ~)(y/-  y) 

/ ( ~ ( x j  -- ~ ) 2 ) ( ~ ( y j  _ y)2) 
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The dissimilarities 1 - s  and 1 - S  2 are called correlation distance (or Pearson distance) 
and squared Pearson distance, respectively. Moreover,  

v/2(1 - s) - 

is a normalization of the Euclidean distance (cf. a different one, n o r m a l i z e d  12-dis- 

tance).  

In the case 2- - y - 0, the correlation similarity becomes (x,y) Ilxllz.llyl12 " 

�9 Cosine similarity 

The cosine similarity (or Orchini similarity, angular similarity, normalized dot product) 
is a similarity on R n, defined by 

(x, y) 

x 2 " Y 2  
: COS ~ ,  

where r is the angle between vectors x and y. In binary case, it becomes 

IXnYl 
~/Xl .  IYI 

and called Ochiai-Otsuka similarity. 

In Record Linkage, cosine similarity is called T F - I D F  (for term Frequency - Inverse 
Document Frequency). 

The cosine distance is defined by 1 - cos r 

�9 Angular semi-metric 

The angular semi-metric on R n is the angle (measured in radians) between vectors x 
and y: 

(x, y) 
arccos 

Ilxl12" Ilyl12 
(Not to be confused with geodesic distance in Probability Theory.) 

�9 Orloci distance 

The Orloci distance (or chord distance) is a distance on R n, defined by 

2 1 -  x 2 Ilyl12 " 

(Cf. normalized Euclidean distance.) 
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�9 Similari ty  ratio 

The similari ty ratio (or Kohonen similarity) is a similarity on R n, defined by 

(x, y) 

(x y ) +  x - Y l l  2" ' 2 

Its binary case is the Tanimoto similarity. 

�9 M o r i s i t a - H o r n  similari ty 

The Mor i s i t a -Horn  similari ty is a similarity on R n, defined by 

2(x, y) 
m m 

ilxll 2 .  y + y 2 x 2 " y  

�9 S p e a r m a n  r a n k  correlat ion 

In the case, when x, y c R n are rankings (or permutat ions) ,  i.e., the components of each 
of them are different numbers 1 . . . . .  n, one has ~ - y - n+_____[1. For such ordinal data, 
the correlat ion similari ty becomes 

m 

6 )2 
n ( n  2 -  1) ~ ( x i -  Yi �9 

It is the Spea rman  p r a n k  correlation, called also Spearman rho metric, but it is not a 
distance. Spea rman  p distance is the Euclidean metric on permutations. 

The S p e a r m a n  footrule is defined by 

3 
1 ~ x i - - Y i [ .  

n 2 - - 1  

It is ll-version of the Spea rman  r a n k  correlation. Spea rman  footrule distance is the 
l 1-metric on permutations. 

Another correlation similarity for rankings is Kendal l  T r a n k  correlation, called also 
Kendall  T metric (but it is not a distance), which is defined by 

2 Zl<~i<j<~n sign(xi  - x j ) s ign (y i  - y j )  

n(n  - 1) 

Kendal l  T distance on permutations is defined by 

]{( i , j )"  1 ~ i < j <~ n, (xi - x j ) ( y i  - Yj)  < 0 } ] .  

�9 Cook distance 

The Cook distance is a distance on R n, giving a statistical measure of deciding if some 
i-th observation alone affects much regression estimates. It is a normalized squared 
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Eucl idean distance between estimated parameters from regression models constructed 
from all data and from data without i-th observation. 

Main similar distances, used in Regression Analysis for detecting influential observa- 
tions, are DFITS distance, Welsch distance, and Hadi distance. 

�9 Distance-based machine  learning 

The following setting is used for many real-world applications (neural networks, etc.), 
where data are incomplete and have both, continuous and nominal, attributes. Given 
an m x (n + 1) matrix ( (X i j ) )  , its row (xio, xi l  . . . . .  xin) means instance input vector 
Xi : (Xil . . . . .  Xin) with output class xio; the set of m instances represents a training 
set during learning. For any new input vector y = (Yl . . . . .  Yn), the closest (in terms of 
selected distance d) instance xi is sought, in order to classify y, i.e., predict its output 
class as xio. 

The distance ([WiMa97]) d(x i ,  y)  is defined by 

d j  (x i j  , y j )  

j = l  

with dj (Xij ,  y j )  - - - -  1 if Xij or yj  is unknown. If the attribute j (i.e., the range of values 
Xij for 1 ~< i ~< m) is nominal, then d j ( x i j  , y j )  is defined, for example, as lxijCyj, or as 

Z 
a 

I{1 ~ t ~ m :  xto = a,  x i j  = x i j  }l 

I{1 ~ t ~ m :  x t j  = x i j } l  

I{1 <~ t <~ m: xto = a, xij = Yj}I 

I{1 <~ t <~ m: xtj = Yj}I 

for q = 1 or 2; the sum is taken by all output classes, i.e., values a from {xt0: 1 ~< 
t ~< m}. For continuous attributes j ,  the number dj is taken to be IXij -- Yjl divided by 

maxt xtj - mint xtj ,  or by �88 of the standard deviation of values xtj ,  1 <~ t <~ m. 



Chapter 18 

Distances in Mathematical Engineering 

In this chapter we group main distances used in Robot Motion, Cellular Automata, Feed- 
back Systems and Multi-objective Optimization. 

18.1. M O T I O N  P L A N N I N G  DISTANCES 

Automatic motion planning methods are applied in Robotics, Virtual Reality Systems and 

Computer Aided Design. A mot ion p lanning  metr ic  is a metric used in automatic motion 
planning methods. 

Let a robot be a finite collection of rigid links organized in a kinematic hierarchy. If 

the robot has n degrees of freedom, this leads to an n-dimensional manifold C, called 

configuration space (or C-space) of the robot. The workspace W of the robot is the space 
in which the robot moves. Usually, it is modeled as the Euclidean space E 3. The obstacle 
region C B is the set of all configurations q c C, that either cause the robot to collide 
with obstacles B, or cause different links of the robot to collide among them. The closure 

cl(Cfree) of Cfree = C\{CB} is called space of collision-free configurations. A motion 
planning algorithm must find a collision-free path from an initial configuration to a goal 

configuration. 
A configurat ion metr ic  is a motion planning metric on the configuration space C of a 

robot. 

Usually, the configuration space C consists of six-tuples (x, y, z, oe, fi, g), where the 
first three coordinates define the position, and the last three the orientation. The orien- 

tation coordinates are the degrees in radians. Intuitively, a good measure of the distance 

between two configurations is a measure of the workspace region swept by the robot as it 
moves between them (the swept  volume). However, the computation of such a metric is 

prohibitively expensive. 

The simplest approach has been to consider C-space as a Cartesian space and to use 
Euclidean distance or its generalizations. For such configuration metrics, one normalizes 

the orientation coordinates so that they get the same magnitude as the position coordinates. 

Roughly, one multiplies the orientation coordinates by the maximum x, y or z range of the 

workspace bounding box. Examples of such configuration metrics are given below. 
More generally, the configuration space of three-dimensional rigid body can be identified 

with the Lie group IS0(3)" C ~ R 3 x R P  3. The general form of a matrix in IS0(3) is given 

230 
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by 

R X  (ol) 
where R �9 SO(3) ~ R P  3, and X �9 R 3. If Xq and Rq represent the translation and 
rotation components of the configuration q = (Xq, Rq) �9 ISO(3), then a configuration 
metric between configurations q and r is given by wtrlIXq - Xrll + Wrotf(Rq, Rr), where 
the translation distance IIXq - Xrll is obtained using some norm II.ll on R 3, and the 
rotation distance f (Rq, Rr) is a positive scalar function which gives the distance between 
the rotations Rq, Rr �9 SO(3). The rotation distance is scaled relative to the translation 
distance via the weights Wtr and Wrot. 

A workspace metric is a motion planning metric in the workspace R 3. 
There are many other types of metrics used in motion planning methods, in particular, 

the Riemannian metrics, the Hausdorff metric, the growth distance, etc. 

�9 Weighted Euclidean distance 

The weighted Euclidean distance is a configuration metric on R 6, defined by 

1 

X i - - Y i l 2 + ~ ( ~ i  X i -  Yil )2  

i =1 i=4  

for any x , y  �9 R 6, where x = (xl . . . . .  x6), x l , x 2 ,  x3 are the position coordi- 
nates, x4, xs, x6 are the orientation coordinates, and wi is the normalization factor. The 
weighted Euclidean distance in R 6 gives to position and orientation the same impor- 
tance. 

�9 Scaled Euclidean distance 

The scaled Euclidean distance is a configuration metric on R 6, defined by 

1 (3  6 
S ~  xi--Yi 2 + ( 1 - - S ) ~ ( ~ i x i - - Y i )  2 

i=1 i=4  

for any x, y �9 R 6. The scaled Euclidean distance changes the relative importance of the 
position and orientation components through the scale parameter s. 

�9 Weighted Minkowskian distance 

The weighted Minkowskian distance is a configuration metric on R 6, defined by 

1 

x i - - Y i l P + ~ ( W i  xi--Yil) p 
i=1 i=4  

for any x, y �9 R 6. It uses a parameter p ~> l; as with Euclidean, both position and 
orientation have the same importance. 
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�9 Modified Minkowskian distance 

The modified Minkowskian distance is a configuration metric on R 6, defined by 

1 

x i - - y i [ P l + ~ ( W i x i - - Y i [ )  p2 
i=1 i=4 

for all x, y c R 6. It distinguishes between position and orientation coordinates using the 
parameters Pl ~ 1 (for the position) and P2/~ 1 (for the orientation). 

�9 Weighted Manhattan distance 

The weighted Manhattan distance is a configuration metric on R 6, defined by 

3 6 

Z xi-yil+Zwi xi-yil 
i : l  i : 4  

for any x, y c R 6. It coincides, up to normalization factor, with the usual /1-metr ic  on 
R 6" 

�9 Robot displacement metric 

The robot displacement metric is a configuration metric on a configuration space C 
of a robot, defined by 

max a(q) - a(p) 
acA 

for any configurations q, r c C, where a(q) is the position of the point a in the 
workspace R 3, when the robot is at configuration q, and . is one of the norms on 
R 3, usually the Euclidean norm. Intuitively, the metric yields the maximum amount in 
workspace that any part of the robot is displaced when moving from one configuration 
to another (cf. bounded box metric). 

�9 Euler angle metric 

The Euler angle metric is a rotation metric on the group SO(3) (for the case of using 
roll-pitch-yaw Euler angles for rotation), defined by 

WrotV/zA(O1,02) 2 + zA(~bl, ~b2) 2 + zA(r/1, r/2) 2 

for all R1, R2 C SO(3), given by Euler angles (01, ~bl, r/l), (02, ~b2, r/2), respectively, 
where A(OI, 02) = min{10l - 021, 2zc - 101 - 021}, Oi c [0, 2zc], is the metric between 
angles, and Wrot is a scaling factor. 

�9 Unit quaternions metric 

The unit quaternions metric is a rotation metric on the unit quaternion representation 
of SO(3), i.e., a representation of SO(3) as the set of points (unit quaternions) on the unit 
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sphere S 3 in R 4 with identified antipodal points (q ~ - q ) .  This representation of SO(3) 
suggests a number of possible metrics on it, for example, the following ones: 

1. II ln(q-mr)ll, 

2. Wrot(1 --I1~11), ~ - ~ i 4 1  qiri, 
3. min{llq - rll, IIq + rll}, 
4. arccos /L, /L - -  ~ i L 1  qi ri, 

4 where q - ql +q2i  + q 3 j  +q4k,  Z i : I  qi - -  1, . is a norm on R 4, and Wrot is a scaling 
factor. 

�9 Center of mass metric 

The center of mass metric is a workspace metric, defined as the Euclidean distance 
between the center o f  mass of the robot in the two configurations. The center of mass is 
approximated by averaging all object vertices. 

�9 Bounded box metric 

The bounded box metric is a workspace metric, defined as the maximum Euclidean 
distance between any vertex of the bounding box of the robot in one configuration and 
its corresponding vertex in the other configuration. 

�9 Pose distance 

The pose distance provides a measure of dissimilarity between actions of agents (in- 
cluding robots and humans) for Learning by Imitation in Robotics. 

In this context, agents are considered as kinematic chains, and are represented in the 
form of a kinematic tree, such that every link in the kinematic chain is represented by an 
unique edge in the corresponding tree. The configuration of the chain is represented by 
pose of the corresponding tree which is obtained by an assignment of the pair (ni, li) to 
every edge ei. Here ni is the unit normal, representing the orientation of the correspond- 
ing link in the chain, and li is the length of the link. The pose class consists of all poses 
of a given kinematic tree. 

The pose distance is a distance on a given pose class which is the sum of measures of 
dissimilarity for every pair of compatible segments in the given two poses. 

�9 Mill ibot metrics 

Millibot is a team of heterogeneous, resource-limited robots. Robot teams can collec- 
tively share information. They are able to fuse range information from a variety of dif- 
ferent platforms to build a global occupancy map that represent a single collective view 
of the environment. In the motion planning of the millibots for the construction of a mo- 
tion planning metric, one casts a series of random points about a robot and pose each 
point as a candidate position for movement. The point with the highest overall utility is 
then selected, and the robot is directed to that point. Thus, the free space metric, deter- 
mined by free space contour, only allows candidate points that do not drive robot through 
obstructions; obstacle avoidance metric penalizes for moves that get too close to obsta- 
cles; frontier metric rewards for moves that take robot towards open space; formation 
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metric rewards for moves that maintain formation; localization metric, based on sep- 
aration angle between one or more localization pairs, rewards for moves that maximize 
localization (see [GKC04]); cf. collision avoidance distance, piano movers distance. 

18.2. C E L L U L A R  AUTOMATA DISTANCES 

Let S, 2 ~< ISI < ~ ,  denote a finite set (alphabet), and let S ~ denote the set of bi-infinite 
sequences {xi }~=_~ (configurations) of elements (letters) of S. An (one-dimensional) cel- 
lular automaton is a continuous mapping f �9 S ~ --+ S ~ that commutes with the transla- 
tion map g �9 S ~ --+ S ~ ,  defined by g(xi )  - Xi+l. Once a metric on S ~ is defined, the 
resulting metric space together with the self-mapping f form a discrete dynamic system. 
Cellular automata (generally, bi-infinite arrays instead of sequences) are used in Symbolic 
Dynamics, Computer Science and, as models, in Physics and Biology. The main distances 
between configurations {xi }i and {Yi }i from S ~ (see [BFK99]) follow. 

�9 Cantor metric 

The Cantor metric is a metric on S ~ ,  defined by 

2 -  min{i ~0: I x i - y i l§  

The corresponding metric space is compact. 

�9 Besicovitch semi-metric 

The Besicovitch semi-metric is a semi-metric on S ~ ,  defined by 

liml__+~ 
I - 1  ~ i  ~ 1  X i r Yil 

2 l + 1  

The corresponding semi-metric space is complete.  (Cf. Besicovitch distance on mea- 
surable functions.) 

�9 Weyl semi-metric 

The Weyl semi-metr ic  is a semi-metric on S ~ ,  defined by 

l i m l ~  max 
kcZ 1 

k + l  <~ i <~ k + l" xi ~= Yil 

This and above semi-metric are translation invariant, but neither separable, nor locally 
compact. (Cf. Weyl distance on measurable functions.) 

18.3. DISTANCES IN C O N T R O L  T H E O R Y  

Control Theory consider feedback loop of a plant  P (a function representing the object to 
be controlled, a system) and a controller C (a function to design). The output y, measured 
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by a sensor, is fed back to the reference value r. Then controller takes the error e = r - y 
to make inputs u = C e. Subject to zero initial conditions, the input and output signals to 
the plant are related by y = P u, where r, u, v and P, C are functions of the frequency 

PC (i.e., one controls the output by simply setting the variables.  So, y - l + p c r  a n d y  ~ r 
reference) if P C is large for any value of s. If the system is modeled by a system of linear 

PC is a rational function. The plant P is differential equations, then its transfer function 1 +PC 
stable if it has no poles in the closed right half-plane C+={s �9 C: 9ts ~> 0}. 

The robust stabilization problem is: given a nominal plant (a model) Po and some metric 
d on plants, find the centered in Po open ball of maximal radius, such that some controller 
(rational function) C stabilizes every element of this ball. 

The graph G(P) of the plant P is the set of all bounded input-output pairs (u, y = Pu). 
Both, u and y, belong to the Hardy space H2(C+)  of the right half-plane; the graph is a 
closed subspace of H2(C+)  + H2(C+).  In fact, G(P) = f ( p ) H 2 ( C  2) for some function 
f ( P ) ,  called graph symbol, and G(P) is a closed subspace of H2(C2). 

All metrics below are gap-like metrics; they are topologically equivalent, and the stabi- 
lization is a robust property with respect of each of them. 

�9 Gap metric 

The gap metric between plants P1 and P2 (introduced in Control Theory by Zames and 
E1-Sakkary) is defined by 

gap(P1, P2) -- H(P1)  - H(P2)  2 '  

where 17(Pi), i = 1, 2, is the orthogonal projection of the graph G(Pi) of Pi seen as a 
closed subspace of H 2 (C2). 

We have 

gap(P1, P2) = max{61(P1, P2), 61(P2, P1)}, 

where 61(P1, P2) = infQcH~ [If(P1) - f(P2)QllH~, and f ( P )  is a graph symbol. 

If A is an m • n matrix with m < n, then its n columns span an n-dimensional sub- 
space, and the matrix B of the orthogonal projection onto the column space of A is 
A ( A T A ) - I A  T. If the basis is orthonormal, then B = AA T. In general, the gap met- 
tic between two subspaces of the same dimension is 12-norm of the difference of their 
orthogonal projections; see also the definition of this distance as an angle distance be- 
tween subspaces. 

In some applications (for example, when subspaces correspond to autoregressive mod- 
els) the Frobenius norm is used instead of 12-norm; cf. Frobenius distance. 

�9 Vidyasagar metric 

The u metric (or graph metric) between plants P1 and P2 is defined by 

max{62(P1, P2), 62(P2, P1)}, 

where 62 (P1, P2) = infll Q II ~< 1 II f (P1) - f (P2) Q II H ~. 
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The behavioral distance is the gap between extended graphs of P1 and P2; a term is 
added to the graph G(P), in order to reflect all possible initial conditions (instead of 
usual setup with the initial conditions being zero). 

�9 Vinnicombe metric 

The Vinnicombe metric (v-gap metric) between plants P1 and P2 is defined by 

3v(P1, P 2 ) -  (1 + P 2 P ~ ) - � 8 9  2 - P1)(1 + P~P1)-�89 
if wno(f*(P2)f(P1)) = 0, and it is equal to 1, otherwise. Here f (P)  is graph symbol 
function of plant P. See [Youn98] for the definition of the winding number WhO(f) of a 
rational function f and for good introduction in Feedback Stabilization. 

18.4. M O E A  DISTANCES 

Most optimization problems have several objectives, but, for simplicity, only one of them 
is optimized, and others are handled as constraints. Multi-objective optimization consider 
(besides some inequality constraints) an objective vector function f : X C R n -+ R k 
from the search (or genotype, decision variables) space X to the objective (or phenotype, 
decision vectors) space f (X)  = {f (x )  : x c X} C R k. A point x* c X is Pareto optimal 
if, for every other x c X, the decision vector f (x) does not Pareto dominate f (x*), i.e., 
f (x) <~ f (x*). Pareto optimal front is the set PF* = {f  (x): x c X* }, where X* is the 
set of all Pareto optimal points. 

Multi-objective evolutionary algorithms (MOEA, for short) produce, at each generation, 
an approximation set (found Pareto front PFknown approximating wished Pareto front PF*) 
in objective space in which no element Pareto dominates another element. Examples of 
M O E A  metrics,  i.e., measures evaluating how close PFknown is to PF*, follow. 

�9 Generational distance 

The generational distance is defined by 

(zjm= 1 d2) 1 

m 

where m = IPFknown I, and dj is the Euclidean distance (in the objective space) between 
fJ  (x)  (i.e., j - th  member of PFknown) and the nearest member of PF*. This distance is 
zero if and only if PFknown = PF*. 

The term generational distance (or rate of turnover) is used also for the minimal num- 
ber of branches between two positions in any system of ranked descent represented by 
an hierarchical tree. Examples are: phylogenetic distance on a phylogenetic tree, the 
number of generations separating a photocopy from original block print, the number of 
generations separating audience of a memorial from the commemorated event. 
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�9 Spac ing  

The spacing is defined by 

( ~ j m = l  ( ~  _ dj)2 ) 1 

m - 1  

where m - PFknownl, dj is the ll-distance (in the objective space) b e t w e e n  f J  (x) (i.e., 

j - th member of PFknown) and the nearest other member of PFknown, while d is the mean 
of all dj .  

�9 Overal l  n o n - d o m i n a t e d  vector  ratio 
IPFknown I The overal l  n o n - d o m i n a t e d  vector  ratio is defined by IPF*l " 
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Distances on Real and Digital Planes 

19.1. M E T R I C S  ON R E A L  P L A N E  

In the plane R 2 we  can use many various metrics. In particular, a n y / p - m e t r i c  (as well 

as any norm metric for a given norm II. II on R 2) can be used on the plane, and the most 

natural is the/z-metr ic ,  i.e., the Euclidean metric dE(x ,  y) = v/(Xl  - yl) 2 + (x2 - y2) 2 
which gives the length of the straight line segment [x, y], and is the intrinsic metric of 
the plane. However, there are other, often "exotic", metrics on R 2. Many of them are used 
for the construction of general ized Voronoi d iagrams on R 2 (see, for example, Moscow 
metric, network metric, nice metric). Some of them are used in Digital Geometry. 

E rd6s - type  distance problems (given, usually, for Euclidean metric on R 2) are of in- 
terest for R a and for other metrics on R 2. Examples of such problems are to find out the 
following: 

- the fewest number of different distances (or largest occurence of given distance) in an 
n-subset of R2; the largest size of a subset of R 2 determining at most  m distances; 

- the minimum diameter of an n-subset of R 2 with only integral distances (or, say, without 

a pair (dl, d2) of distances with 0 < Idl - d21 < 1); 

- existence of an n-subset of R 2 with, for each 1 ~< i ~< n, a distance occuring exactly i 
times (examples are known for n ~< 8); 

- f o rb idden  dis tances of a partition of R 2, i.e., distances not occuring within each part. 

�9 City-block metric 

The city-block metric is the l l -me t r i c  on R 2, defined by 

IIx - y 1 - I x 1  - yll + X 2  - -  Y21. 

This metric has many different names, for example, it is called taxicab metric, Man-  
h a t t a n  metric, rectilinear metric, right-angle metric; on Z 2 it is called greed metric, 
and 4-metric. 

�9 Chebyshev metric 

The Chebyshev metric is the l~ -metr ic  on R 2, defined by 

IIx - y ~ - max{ Xl - yll,  x2 - y21}. 

240 
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This metric is called also uniform metric, sup metric, and box metric; on Z 2 it is called 

lattice metric, chessboard metric, king-move metric, and 8-metric. 

�9 (p, q)-relative metric 

< g ~ 1, p ~> m a x { 1 - q , ~ - ~ } , a n d l e t  . 2 be the Euclidean norm on R 2 ( in  Let 0 
general, on R n). 

The (p, q)-relative metric is a metric on R 2 (in general, on Rn), defined by 

IIx - yl12 

for x or y r 0 (and is equal to 0, otherwise). In the case of p = oc it has the form 

Ilx - y ll2 

(max{llx ll2, ]]yl12}) q 

For q = 1 and any 1 ~< p < oc one obtains the p-relative metric; for q = 1 and p = oc 

one obtains the relative metric. 

The construction above can be used for any Ptolemaic  space (V, II.ll). 

�9 M-relative metric 

Let f �9 [0, oc) --+ (0 oc) be a convex increasing function such that f(x) is decreasing 
' X 

for x > 0. Let ll.ll2 be the Euclidean norm on R 2 (in general, on Rn). 

The M-relative metric is a metric on R 2 (in general, on R n) defined by 

Ilx - y ll2 

f ( l lx l ]2) ,  f(l lyl]2) 

In particular, the distance 

Ilx - y l l2  

l + l l x l l ~  1 +  y 2 

is a metric on R 2 (on R n) if and only if p ~> 1. A similar metric on R2\{0} (on Rn\{0}) 

can be defined by 

IIx - y 112 

Ilxl12" Ilyl12 

The constructions above can be used for any Ptolemaic  space (V, II. II). 

�9 French Metro metric 

Given a norm II. II o n  R 2, the French metro metric is a metric on R 2, defined by 

IIx - yll 
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if x : cy for some c c R, and by 

Ilxll + Ilyll, 

otherwise. For the Euclidean norm II. 112, it is called hedgehog metric, Paris metric, or 
radial metric. In this case it can be defined as the minimum Euclidean length of all 
admissible connecting curves between two given points x and y, where a curve is called 
admissible if it consists of only segments of straight lines passing through the origin. 

In graph terms, this metric is similar to the path metric of the tree consisting of a point 
from which radiate several disjoint paths. 

�9 Moscow metric 

The Moscow metric (or Karlsruhe metric) is a metric on R 2, defined as the min imum 
Euclidean length of all admissible connecting curves between x and y c R 2, where a 
curve is called admissible if it consists of only segments of straight lines passing through 
the origin, and of segments of circles centered at the origin (see, for example, [Klei88]). 

If the polar coordinates for points x, y c R 2 are (rx, Ox), (ry, Oy), respectively, then the 
distance between them is equal to min{rx, r y } A ( O x - O y ) + l r x - r y l  i f0  ~< A(Ox, Oy) < 2, 
and is equal to rx + ry if 2 ~< A(Ox, 0y) < Jr, where A(Ox, 0y) = min{10x -- 0yl, 2Jr -- 
IOx -- 0yl}, Ox, Oy c [0, 2Jr), is the metric between angles. 

�9 Lift metric 

The lift metric (or raspberry picker metric) is a metric on R 2, defined by 

Ixa - y l l  

if x 2  = Y2, and by 

I X l l - + - I x 2  - y z l - + - l y l l  

if x2 7 ~ Y2 (see, for example, [Brya85]). It can be defined as the minimum Euclidean 
length of all admissible connecting curves between two given points x and y, where 
a curve is called admissible if it consists of only segments of straight lines parallel to 
xl-axis,  and of segments of x2-axis. 

�9 British Rail metric 

Given a norm II.ll on  R 2 (in general, on Rn), the British Rail metric is a metric on R a 
(in general, on Rn), defined by 

Ilxll + Ilyll 

for x ~= y (and it is equal to 0, otherwise). 

It is also called caterpillar metric, and shuttle metric. For the Euclidean norm II. 112 it 
is called post-office metric. 

�9 Radar screen metric 

Given a norm II. II on  R 2 (in general, on Rn), the radar screen metric is a metric on R 2 
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(in general, on Rn), defined by 

min{1, x - y  }. 

�9 Burago-Ivanov metric 

The Burago-Ivanov metric ([BuIv01 ]) is a metric on R 2, defined by 

lllxll2- y 21 + min{ xll2, Ilyll2}" v//(x, Y), 

where / (x ,  y) is the angle between vectors x and y, and II. 112 is the Euclidean norm on 
R 2. The corresponding internal metric on R 2 is equal to I IIxll2 - Ilyll21 i f / ( x ,  y) = 0, 

and is equal to IIxll2 + Ilyll2, otherwise. 

�9 Flower-shop metric 

Let d be a metric on R 2, and let f be a fixed point (aflower-shop) in the plane. 

The flower-shop metric is a metric on R 2, defined by 

d(x, f )  -+- d( f ,  y) 

for x ~: y (and is equal to 0, otherwise). So, a person living at point x, who wants to 
visit someone else living at point y, first goes to f ,  to buy some flowers. In the case 
d(x, y) = Ilx - yll and f = (0, 0), it is the British rail metric. 

If k > 1 flower-shops f l  . . . . .  fk are available, one buys the flowers, where the 
detour is a minimum, i.e., the distance between distinct points x, y is equal to 

minl<<i<<k(d(x, j~) + d( f i ,  y)). 

�9 2n-gon metric 

Given a centrally symmetric regular 2n-gon K on the plane, the 2n-gon met r i c  is a 
metric on R 2, defined, for any x, y c R 2, as the shortest Euclidean length of a polygonal 
line from x to y with each of its sides parallel to some edge of K. The plane R 2 equipped 
with the 2n-gon metric is called 2n-gonal plane. 

If K is a square with the vertices { (-+-1, -+-1)}, one obtains the Manhattan metric. 

�9 Central Park metric 

The Central Park metric is a metric on R 2, defined as the length of a shortest l 1- 
path (Manhattan path) between two points x, y c R 2 at the presence of a given set of 
areas which are traversed by a shortest Euclidean path (for example, Central Park in 
Manhattan). 

�9 Collision avoidance distance 

Let O = { O1 . . . . .  Om} be a collection of pairwise disjoint polygons on the Euclidean 
plane, represents a set of obstacles which are neither transparent, nor traversable. 

The collision avoidance distance (or piano movers distance, shortest path metric 
with obstacles) is a metric on the set R2\{O}, defined, for any x, y c R2\{O}, as the 
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length of the shortest path among all possible continuous paths, connecting x and y, that 
do not intersect obstacles Oi \O Oi (a path can pass through points on the boundary O Oi 
o f O i ) , i  = 1 . . . .  m. 

�9 Rectilinear distance with barriers 

Let (_9 -- { O1 . . . . .  Om } be a set of pairwise disjoint open polygonal barriers o n  ~ 2 .  

An rectilinear path (or Manhattan path) Pxy from x to y is a collection of horizontal 
and vertical segments on the plane, joining x and y. The path Pxy is called feasible if 

Pxy A (U i%l  Bi) -- (3. 

The rectilinear distance with barriers (or rectilinear distance in the presence of barri- 
ers) is a metric on R2\{(Q}, defined, for any x, y 6 R2\{(Q}, as the length of the shortest 
feasible rectilinear path from x to y. 

The rectilinear distance in the presence of barriers is a restriction of the Manhattan 
metric, and usually it is considered on the set {ql . . . . .  qn } C R 2 of n origin-destination 
points: the problem to find a path of such kind arises, for example, in Urban Transporta- 
tion, or in Plant and Facility Layout (see, for example, [LaLi81 ]). 

�9 Link distance 

Let P C R 2 be a polygonal domain (on n vertices and h holes), i.e., a closed multiply- 
connected region whose boundary is a union of n line segments, forming h + 1 closed 
polygonal cycles. The link distance is a metric on P, defined, for any x, y 6 P,  as 
the minimum number of edges in a polygonal path from x to y within the polynomial 
domain P. 

If the path is restricted to be rectilinear, one obtains the rectilinear link distance. If the 
path is C-oriented (i.e., each its edge is parallel to one of a set C fixed orientation), one 
obtains the C-oriented link distance. 

�9 Facility layout distances 

A layout is a partition of a rectangular plane region into smaller rectangles, called 
departments, by lines parallel to the sides of original rectangle. All interior vertices 
should be three-valent, and some of them, at least one on the boundary of each depart- 
ment, are doors, i.e., input-output locations. The problem is to design convenient notion 
of distance d(x, y) between departments x and y which minimizes the cost function 
~x ,y  F(x, y)d(x, y), where F(x, y) is some materialflow between x and y. Main dis- 
tances used are: 

The centroid distance, i.e., the shortest Euclidean or Manhattan distance between cen- 
troids (the intersections of the diagonals) of x and y; 

The perimeter distance, i.e., the shortest rectilinear distance between doors of x and y, 
but going only along the walls, i.e., department perimeters. 

�9 Quickest path metric 

A quickest path metric (or network metric) is a metric on R:  (or on a subset of R:) 
in the presence of a given network, i.e., a planar weighted graph G = (V, E). For any 
x, y 6 R 2, it is the time needed for a quickest path between x and y in the presence of 
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the network G, i.e., a path minimizing the travel time between x and y. After having 
accessed to G one can travel at some speed v > 1 along its edges. Movement off the 
network take place with unit speed with respect to a given metric d on the plane (for 
example, the Euclidean metric, or the M a n h a t t a n  metric).  

The air l i f t  m e t r i c  is a quickest path metric o n  R 2 in the presence of an airports network, 
i.e., a planar graph G = (V, E) on n vertices (airports) with positive edge weights 
(UOe)e6E (flight durations). The graph may be entered and exited only at the airports. 
Movement off the network takes place with unit speed with respect to the Euclidean 
metric. We assume that going by car takes time equal to the Euclidean distance dE, 
whereas the flight along an edge e = u v of G takes time We < dE (u, v). In the simplest 
case, when there is an airlift between two points a, b 6 R 2, the distance between x and 
y is equal to 

min{dE(x, y), dE(x, a) + w + dE(b, y), dE(x, b) + w + dE(a, y) }, 

where w < d2 (a, b) is the flight duration from a to b. 

The city metr ic  is a quickest path metric o n  R 2 in the presence of a city public trans- 
portation network, i.e., a planar straight line graph G with horizontal or vertical edges. 
G may be composed of many connected components, and may contain cycles. One is 
free to enter G at any point, be it at a vertex or on a edge (it is possible to postulate fixed 
entry points, too). Once having accessed G, one travels at fixed speed v > 1 in one of the 
available directions. Movement off the network takes place with unit speed with respect 
to the M a n h a t t a n  metr ic  (we imagine a large modern-style city with streets arranged 
in north-south and east-west directions). 

The subway metr ic  is a quickest path metric o n  R 2 which is a variant of the city metric" 
a subway (in the form of a line in the plane) is used to alter walking distance within a 
city grid. 

�9 P e r i o d i c  m e t r i c  

A metric d o n  R 2 is called periodic,  if there exists two linearly independent vectors 
v and u such that the translation by any vector w = my + nu, m, n 6 Z, preserves 
distances, i.e., d(x, y) - d(x + w, y + w) for any x, y 6 R 2 (cf.  t rans la t ion  invar iant  
metric).  

�9 N ice  m e t r i c  

A metric d o n  R 2 is called nice if it enjoys the following properties: 

1. d induces the Euclidean topology; 
2. The d-circles are bounded with respect to the Euclidean metric; 
3. If x, y 6 R 2 and x r y, then there exists a point z, z r x, z r y, such that d(x,  y) - 

d(x, z) + d(z, y) holds; 
4. If x, y 6 R 2, x -< y (where -< is a fixed order on R 2, the lexicographic order, for 

example), C(x, y) - {z 6 R 2" d(x, z) <, d(y, z)}, D(x, y) -- {z 6 R 2" d(x, z) < 
d(y, z), and D(x, y) is the closure of D(x, y), then J(x,  y) = C(x, y) A D(x, y) 
is a curve homeomorphic to (0, 1). The intersection of two such curves consists of 
finitely many connected components. 
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Every n o r m  metr ic  fulfills 1., 2., and 3. Property 2. means that the metric d is contin- 
uous at infinity with respect to the Euclidean metric. Property 4. is to ensure that the 
boundaries of the correspondent  Voronoi d iagrams  are curves, and that not too many 
intersections exist in a neighborhood of a point, or at infinity. A nice metric d has a nice 
Voronoi diagram: in the Voronoi diagram V ( P ,  d,  R 2) (where P - {pl  . . . . .  p ~ } , k  ~ 2, 

is the set of genera tor  po in ts )  each Voronoi region V (Pi)  is a path-connected set with a 
non-empty interior, and the system { V (Pl)  . . . .  V (p~)} forms a par t i t ion  of the plane. 

�9 Radar  d i scr iminat ion  dis tance  

The radar  d i scr iminat ion  dis tance  is a distance on R 2, defined by 

if x, y c R2\{0}, and by 

Px - Py -q- Oxy l 

Ipx - pyl 

if x - 0 or y - 0, where, for each "location" x c R2, Px denote the radial distance of x 
from the origin, and, for any x, y c R2\{0}, Oxy denote the radian angle between them. 

�9 E h r e n f e u c h t - H a u s s l e r  semi-metr ic  

Let S be a subset of R 2 such that Xl ) x2 - 1 ) 0 for any x c S. 

The E h r e n f e u c h t - H a u s s l e r  semi -met r i c  (see [EhHa88]) on S is defined by 

�9 Circle metr ic  

The circle metr ic  is the intrinsic  metr ic  on the unit  circle S 1 in the plane. As S 1 = 
{ (x,  y)" x 2 -Jr- y 2  _ 1 } - -  {e iO" 0 ~ 0 < 27r }, it is the length of the shorter of two arcs, 
joining the points e iO, e io c S 1, and can be written by 

o - 0 l  27r - I O  - 0 l }  - / 1 0  - o ,  i f  0 ~< 10 - 0 l  ~< Jr, min{ 
' [27r - IO - Ol, if IO - Ol > Jr. 

(Cf. metr ic  be tween  angles.)  

�9 Toroidal  metric  

T h e t o r u s T C R  2 is the set [0,1)  • [0,1)  - {x c R  2" 0 ~ < X l , X 2 <  1}. 

The toro ida l  me t r i c  is a metric on T defined by 

for any x, y c R 2, where ti - min{ xi - Yi I, xi - Yi + l I} for i - 1, 2. (Cf. to rus  
metric . )  
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�9 Angular distance 

The angular distance traveled around a circle is the number of radians the path sub- 
tends, i.e., 

1 
~ - - ,  

r 

where 1 is the length of the path, and r is the radius of the circle. 

�9 Metric between angles 

The metric between angles A is a metric on the set of all angles in the plane, defined 
by 

min{ 0 - 01 2jr - l 0  - 01} - {10 - 0 ,  i f 0  ~< I0 - 0 1  ~< Jr, 
' 2 J r - l t ~ - 0 1 ,  i f l t ~ - 0 1  > J r  

for any 0, 0 c [0, 2Jr) (cf. circle metric). 

�9 Metric between directions 

On R 2, the direction l" is the class of all straight lines which are parallel to a given strait 
line 1 C A 2. The metric between directions is a metric on the set 12 of all directions on 
the plane, defined, for any directions l', rh c 12, as the angle between any two represen- 
tatives. 

�9 Circular-railroad quasi-metric 

The circular-railroad quasi-metric is a quasi-metric on the unit circle S ] C R 2, de- 
fined, for any x, y c S ], as the length of counterclockwise circular arc from x to y in 
S 1" 

�9 Inversive distance 

The inversive distance between two non-intersecting circles in the plane is defined as 
the natural logarithm of the ratio of the radii (the larger to the smaller) of two concentric 
circles into which the given circles can be inverted. 

Let c be the distance between the centers of two non-intersecting circles of radii a and 
b < a. Then their inversive distance is given by 

cosh - ]  
a 2 n u b  2 _ c 2 

2ab 

The circumcircle and incircle of a triangle with circumradius R and inradius r are at the 

inversive distance 2 s inh-  1 (1 ~/~) .  

Given three non-collinear points, construct three tangent circles such that one is centered 
at each point and the circles are pairwise tangent to one another. Then there exist exactly 
two non-intersecting circles that are tangent to all three circles. These are called the inner 
and outer Soddy circles. The inversive distance between the Soddy circles is 2 cosh - ]  2. 
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19.2. D I G I T A L  M E T R I C S  

Here we list special metrics which are used in Computer Vision (or Pattern Recognition, 
Robot Vision, Digital Geometry). 

A computer picture (or computer image) is a subset of Z n which is called digital nD 
space. Usually, pictures are represented in the digital plane (or image plane) Z 2, or in the 
digital space (or image space) Z 3. The points of Z n are called pixels. An n D m-quantized 

1 Zn space is a scaling m �9 
A digital metric (see, for example, [RoPf68]) is any metric on a digital n D space. 

Usually, it should take integer values. 

The metrics on Z n that are mainly used are the 11- and lot-metr ics ,  as well as the 12- 
me t r i c  after rounding to the nearest upper (or lower) integer. In general, given a list of 
neighbors of a pixel, it can be seen as a list of permitted one-step moves on Z 2. Let associate 
a prime distance, i.e., a positive weight, to each type of such move. Many digital metrics 
can be obtained now as the minimum, over all admissible paths (i.e., sequences of permitted 
moves), of the sum of corresponding prime distances. 

In practice, the subset (Zm) n = {0, 1 . . . . .  m - 1 }n is considered instead of the full 
space Z n. (Zm) 2 and (Zm) 3 are called m-grill and m-framework, respectively. The most  

used metrics on (Zm)n are the Hamming metric, and the Lee metric. 

�9 Grid metric 

The grid metric is the l 1-metric on Z n. The l 1-metric on Z n can be seen as the path 
metric of an infinite graph: two points of Z n are adjacent if their /1-dis tance is equal 
to one. For Z 2 this graph is the usual grid. Since each point has exactly four closest 
neighbors in Z 2 for the l l-metric,  it is called also 4-metric. 

For n = 2, this metric is the restriction on Z 2 of the c i ty-block me t r i c  which is called 
also taxicab metric, rectilinear metric, or Manhattan metric. 

�9 Lattice metric 

The lattice metric is the /oo-met r ic  on Z n . The/oo-metric  on Z n can be seen as the path 
metric of an infinite graph: two points of Z n are adjacent if their/oo-distance is equal to 
one. For Z 2, the adjacency corresponds to the king move in chessboard terms, and this 
graph is called loo-grid, while this metric is called also chessboard metric, king-move 
metric, or king metric. Since each point has exactly eight closest neighbors in Z 2 for 

the/oo-metric,  it is called also 8-metric. 

This metric is the restriction on Z n of the C h e b y s h e v  me t r i c  which is called also sup 
metric, or uniform metric. 

�9 Hexagonal metric 

The hexagonal metric is a metric on Z 2 with an unit sphere S 1 (x) (centered at x c Z2), 

defined by Sl(x)  - S/l(x ) tO {(xl - 1,x2 - 1), (xl - 1, x2 + 1)} for x even (i.e., with 

even x2), and by S 1 (x) - S~1 (x) tO {(xl + 1, x2 - 1), (xl + 1, x2 + 1)} for x odd (i.e., with 

odd x2). Since any unit sphere S 1 (x) contains exactly six integral points, the hexagonal  
metric is called also 6-met r ic  (see [LuRo76]). 
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For any x, y c Z 2, it can be written as 

max luzl, ~(luzl  + u2) + - 2 - Ul, 

~ ( ] u z ] - u 2 ) -  + 2 + U l  , 

where Ul = X l - Yl, and u2 = x2 - Y2. 

The hexagonal  metric can be defined as the pa th  me t r i c  on the hexagonal grid of the 

plane. In hexagonal coordinates (hi ,  h2) (in which h i -  and hz-axes are parallel to the 

grid's edges) hexagonal  distance between points (hi ,  h2) and (il, i2) can be written as 

]hl  - i l ]  + ]h2 - i2] if ( h l  - i l ) ( h 2  - i2) /> 0, and as max{]hl - i l ] ,  ]h2 - i2]} if 
( h l  - i l ) ( h 2  - i2) ~< 0. H e r e  hexagonal  coordinates (hi ,  h2)  o f  a point x a re  r e l a t e d  

to its Cartesian coordinates (Xl, x2) by hi  - Xl - L~J ,  h2 - x2 for x even, and by 

h 1 --  Xl -- [_ X2~ ------~1 ] ,  h 2 --  X2 for x odd. 

The hexagonal  metric is a better approximation to the Euclidean metric than either l 1- 

metr ic ,  or lot-metric. 

�9 Neighborhood sequence metric 

On the digital plane Z 2, consider two types of motions" the city-block motion, restricting 

movements  only to the horizontal or vertical directions, and the chessboard motion, 
also allowing diagonal movements .  The use of both these motions is determined by a 

neighborhood sequence B : {b(1), b(2) . . . . .  b(l)}, where b(i) c {1, 2} is a particular 
type of neighborhood,  with b(i) - 1 signifying unit change in 1 coordinate (city-block 
neighborhood), and b(i) : 2 meaning unit change also in 2 coordinates (chessboard 
neighborhood). The sequence B defines the type of motion to be used at every step (see 

[Das90]). 

The neighborhood sequence metric is a metric on Z 2, defined as the length of a shortest 

path between x and y c Z 2, determined by a given neighborhood sequence B. It can be 

written as 

m a x { d l ( u ) , d 2 ( u ) } ,  

where Ul = Xl - Yl, u2 = x2 - Y2, 

1 
d l ( u ) -  m a x { l u l l ,  ]u2]},  d 2 ( u  ) _ Z ~ ] U l ] - + - ] u 2 ] - + -  g ( j ) ]  

j--I f (1) ' 

i f (O) -- O, f (i) -- ~ j = l  b( j ) ,  1 <~ i <~ l, g ( j )  -- f (1) - f (j  - 1) - 1, 1 ~< j ~< 1. 

For B = { 1 } one obtains the city-block metric, for B = {2} one obtains the chess- 
board metric. The case B = { 1, 2}, i.e., the alternative use of these motions, results in 

octagonal metric, introduced in [RoPf68]. 
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A proper selection of the B-sequence can make the corresponding metric very close to 
the Euclidean metric. It is always greater than the chessboard distance, but smaller than 
the city-block distance. 

�9 nD-ne ighborhood sequence metric 

The n D - n e i g h b o r h o o d  sequence metric is a metric on Z n, defined as the length of a 
shortest path between x and y c Z n, determined by a given n D-neighborhood sequence 
B (see [Faze99]). 

Formally, two points x, y c Z n are called m-neighbors, 0 <~ m <~ n, if 0 ~< I x i -  Yil <~ 1, 
1 ~< i ~< n and n . _ . . . .  , ~ i = 1  xi - Yil ~< m A finite sequence B {b(1) . b(/)}, b(i) c 
{1, 2 . . . . .  n}, is called n D-neighborhood sequence with period 1. For any x, y c Z n 
the point sequence x = x ~ x I . . . . .  x ~ = y, where x i and x i+1, 0 ~< i ~< k - 1, are 

r-neighbors,  r = b((i rood l) + 1), is called path from x to y determined by B with 
length k. The distance between x and y can be written as 

1 

l<~i<~nmaX di(u) with di(x,  y) - Z [  ai § g i ( j )  ' 
j = l  

where u = (lull ,  lU21 . . . . .  lUnl) is the non-increasing ordering of lUml,  U m =  Xm --  Ym,  
, . .  - -  v , n - i + l  m -- 1 ., n, that is luil <~ lujl if i < j ;  ai z_,j=l uj; b i ( j )  - b ( j )  if b( j )  < 

n - i + 2, and is n - i + 1, otherwise; f / ( j )  - ~ = 1  bi(k) if 1 ~< j ~< l, and is 0 if 

j = 0 ; g i ( j ) = f i ( 1 ) - f i ( j - 1 ) - l ,  1 ~<j ~<l. 

The set of 3 D-neighborhood sequence metrics forms a complete distributive lattice un- 
der the natural comparison relation. This lattice has an important role in the approxima- 
tion of the Euclidean metric by digital metrics. 

�9 Path-generated metric 

Consider lot-grid, i.e., the graph with the vertex-set Z 2, and two vertices being neighbors 
if their lot-distance is equal to one. Let 79 be a collection of paths in lot-grid such that, 
for any x, y c Z 2, there exists at least one path from 79 between x and y, and if 79 

contains a path Q, then it also contains every path contained in Q. Let dT,(x, y) be the 
length of the shortest path from 79 between x and y c Z 2. If dT~ is a metric on Z 2, then 

it is called path-generated metric (see, for example, [Melt91 ]). 

Let G be one of the sets: G1 = {1", ~ } ,  G2A = { ' ~ , / } ,  G2~ = {'~, \ } ,  G2c = 
{ / 7 ,  ~",, } , G 2 D = {--+, ~",, }, G 3 A = {--+, "~ , / ~  } , G 3 B { --+, "~ , ~",, }, G 4 A = { - - + , / 7 ,  ~",, }, 

G 4 B { ' ~ , / ,  ~',,, }, G5 = {--+, 1 " , / ,  ~',,}. Let 7~(G) be the set ofpa ths  which are obtained 
by concatenation of paths in G and the corresponding paths in the opposite directions. 
Any path-generated metric coincides with one of the metrics dT~(c). Moreover,  one can 
obtain the following formulas: 

1. dT~(cl)(x, y) = lual + lu2l; 
2. dT~(G2A)(X, y) -- max{12Ul -- u2l, lu21}; 
3. dT~(G2B)(x, y) -- max{12Ul + u2l, lu21}; 
4. dT~(G2c)(x, y) -- max{12u2 + Ull, lull}; 
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5. d'p(G2D)(X , y )  = max{12u2 - u]l, lull}; 
6. d?(G3A)(X, y) = max{lull ,  U2], ]Ul -- U2]}; 
7. d?(c3B)(x, y) = max{lull ,  lu2l, lu] + u2l}; 
8. d?(G4A)(X, y) = m a x { 2 r ( l u l l -  lu2l) /27,0} + lu2l; 
9. d?(c4B)(x, y) = m a x { 2 r ( l u 2 l -  lu l l ) /21 ,0}  + lull; 
10. d?(cs)(x, y) = max{lull ,  lu2l}, 

where u] = x] - y], u2 = x2 - y2, and r.1 is the ceiling function: for any real x the 
number rxl is the least integer greater than or equal to x. 

The metric spaces obtained from G-sets which have the same numerical index are iso- 
metric, d?(c~) is the city-block metric, and d?(cs)  is the chessboard metric. 

�9 Knight metric 

The knight metric is a metric on Z 2, defined as the minimum number of moves a chess 
knight would take to travel from x to y c Z 2. Its unit sphere Slight , centered at the 
origin, contains exactly 8 integral points {(-+-2, +1) ,  (+1 ,  +2)}, and can be written as 
sklnight ---- $3 1 f"l S 21oc, where S~ denotes the /1-sphere  of radius 3, and S 21oc denotes the 
lot-sphere of radius 2, centered at the origin (see [DaCh88]). 

The distance between x and y is equal to 3 if (M, m) = (1, 0), is equal to 4 if (M, m) = 
FM+m (2, 2), and is equal to max{ F ~ l ,  ,----7-1 } + (M + m) - max{ F ~ l ,  FM+m3 1 } (mod 2), 

otherwise, where M = max{lull ,  luzl}, m = min{lull ,  luzl}, Ul = x l - y l , u 2  = xz -y2 .  

�9 Super-knight metric 

Let p,  q E 1N such that p + q is odd, and (p, q) = 1. 

An (p, q)-super-knight (or (p, q)-leaper) is a (variant) chess piece a move of which 
consists of a leap p squares in one orthogonal direction followed by a 90 degree direction 
change, and q squares leap to the destination square. Chess-variant terms exist for an 
(p, 1)-leaper with p = 0, 1, 2, 3, 4 (Wazir, Ferz, usual Knight, Camel, Giraffe), and for 
an (p, 2)-leaper with p = 0, 1, 2, 3 (Dabbaba, usual Knight, Alfil, Zebra). 
An (p, q)-super-knight metric (or (p, q)-leaper metric) is a metric on Z 2, defined as 
the min imum number of moves a chess (p, q)-super-knight would take to travel from x 

1 , centered at the origin, contains exactly 8 integral to y c Z 2. Thus, its unit sphere Sp,q 
points { (+p ,  + q ) ,  (+q ,  +p)} .  (See [DaMu90].) 

The knight metric is the (1, 2)-super-knight metric. The city-block metric can be con- 
sidered as the Wazir metric, i.e., (0, 1)-super-knight metric. 

�9 Rook metric 

The rook metric is a metric on Z 2, defined as the min imum number of moves a chess 
rook would take to travel from x to y c Z 2. This metric can take only the values {0, 1, 2}, 
and coincides with the Hamming metric on Z 2. 

�9 Chamfer metric 

Given two positive numbers oe, fi with oe ~< fi < 2oe, consider (oe, fi)-weighted lot-grid, 
i.e., the infinite graph with the vertex-set Z 2, two vertices being adjacent if their loc- 
distance is one, while horizontal/vertical and diagonal edges having weights oe and fi, 
respectively. 
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A chamfer metric (or (ol, ~)-chamfer metric, [Borg86]) is the weighted path metric in 
this graph. For any x, y c Z 2 it can be written as 

/Sin + ol(M -- m), 

where M = max{lull, lu21} ,  m : min{lull, l u21} ,  U l  : X l  - y l ,  u 2  : x 2  - 7 2 .  

If the weights ol and/5 are equal to the Euclidean lengths 1, v/2 of horizontal/vertical 
and diagonal edges, respectively, then one obtains the Euclidean length of the shortest 
chessboard path between x and y. If ol = /5 = 1, one obtains the chessboard metric. 
The (3, 4)-chamfer metric is the most used one for digital images; it is called simply 
(3, 4)-metric. 

An 3 D-chamfer metric is the weighted path metric of the graph with the vertex-set Z 3 
of voxels, two voxels being adjacent if their lot-distance is one, while weights ol,/5, and 
F are associated, respectively, to the distance from 6 face neighbors, 12 edge neighbors, 
and 8 corner neighbors. 

�9 Weighted cut metric 

Consider weighted lot-grid, i.e., the graph with the v e r t e x - s e t  Z 2, two vertices being 
adjacent if their lot-distance is one, and each edge having some positive weight (or cost). 
Usual weighted path metric between two pixels is the minimal cost of a path connecting 
them. The weighted cut metric between two pixels is the minimal cost (defined now as 
the sum of costs of crossed edges) of a cut, i.e., a plane curve connecting them while 
avoiding pixels. 

�9 Digital volume metric 

The digital volume metric is a metric on the set K of all bounded subsets (pictures, or 
images) of Z 2 (in general, of Z n), defined by 

vol(A&B), 

where vol(A) = IAI, i.e., the number ofpixels contained in A, and A&B is the symmetric 
difference between sets A and B. 

This metric is a digital analog of the Nikodym metric. 

�9 Hexagonal Hausdorff metric 

The hexagonal Hausdorff metric is a metric on the set of all bounded subsets (pictures, 
or images) of the hexagonal greed on the plane, defined by 

in f{p ,q :  A C B + q H ,  B C A + p H }  

for any pictures A and B, where p H is the regular hexagon ofsize p (i.e., with p + 1 pix- 
els on each edge), centered at the origin and including its interior, and + is the Minkowski 
addition: A + B = {x + y : x c A, y c B } (cf. Pompeiu-Hausdorff-Blaschke metric). 
If A is a pixel x, then the distance between x and B is equal to supycB d6(x, y), where 
d6 is the hexagonal metric, i.e., the path metric on the hexagonal grid. 



Chapter 20 

Voronoi Diagram Distances 

Given a finite set A of objects Ai in a space S, computing Voronoi diagram of A means 
partitioning the space S into Voronoi regions V (Ai) in such a way that V(Ai) contains all 
points of S that are "closer" to Ai than to any other object Aj in A. 

Given a generator set P = {Pl . . . .  p~ }, k ~> 2, of distinct points (generators) from R n, 
n ~> 2, the ordinary Voronoi polygon V (Pi) associated with a generator Pi is defined by 

V(pi) - {x 6 R n" dE(x, pi) <~ dE(x, pj) forany j r  

where dE is the ordinary Euclidean distance on R n. The set 

v ( v ,  R ' )  - . . . . .  

is called n-dimensional ordinary Voronoi diagram, generated by P. The boundaries of (n- 
dimensional) Voronoi polygons are called ( ( n -  1)-dimensional) Voronoifacets, the bound- 
aries of Voronoi facets are called (n - 2)-dimensional Voronoifaces . . . . .  the boundaries of 
two-dimensional Voronoi faces are called Voronoi edges, the boundaries of Voronoi edges 
are called Voronoi vertices. 

A generalization of the ordinary Voronoi diagram is possible in three following ways: 

1. The generalization with respect to the generator set A = {A 1 . . . . .  A~ } which can be a 
set of lines, a set of areas, etc.; 

2. The generalization with respect to the space S which can be a sphere (spherical Voronoi 
diagram), a cylinder (cylindrical Voronoi diagram), a cone (conic Voronoi diagram), a 
polyhedral surface (polyhedral Voronoi diagram), etc.; 

3. The generalization with respect to the function d, where d(x, Ai) m e a s u r e s  the "dis- 
tance" from a point x 6 S to a generator Ai 6 A. 

This generalized distance function d is called Voronoi generation distance (or Voronoi 
distance, V-distance), and allows many more functions than an ordinary metric on S. If 
F is a strictly increasing function of an V-distance d, i.e., F(d(x, Ai)) ~ F(d(x, A j)) if 
and only if d(x, Ai) ~ d(x, Aj), then the generalized Voronoi diagrams V(A, F(d), S) 
and V(A, d, S) coincide, and one says that the V-distance F(d) is transformable to the 
V-distance d, and that the generalized Voronoi diagram V(A, F (d), S) is a trivial gener- 
alization of the generalized Voronoi diagram V (A, d, S). In applications, one often uses for 
trivial generalization of ordinary Voronoi diagram V (P,  d, R n) the exponent ia l  distance, 
the logarithmic distance, and the power  distance. There are generalized Voronoi dia- 
grams V (P,  D, Rn), defined by V-distances, that are not transformable to the Euclidean 
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distance dE: the multiplicatively weighted Voronoi distance, the additively weighted 
Voronoi distance, etc. 

For an additional information see, for example, [OBS92], [Klei89]. 

20.1. CLASSICAL VORONOI GENERATION DISTANCES 

�9 Exponential distance 

The exponential distance is the Voronoi generation distance 

Dexp(X, Pi)  -- ede(x'pi) 

for the trivial generalization V (P, Dexp, R n) of the ordinary Voronoi diagram V (P, dE, R n), 
where dE is the Euclidean distance. 

�9 Logarithmic distance 

The logarithmic distance is the Voronoi generation distance 

Dln (x,  Pi ) = In dE (x, Pi ) 

for the trivial generalization V (P, Dln, R n) of the ordinary Voronoi diagram V (P, dE, Rn), 
where dE is the Euclidean distance. 

�9 Power distance 

The power distance is the Voronoi generation distance 

Dc~ (x, Pi) = dE (x, Pi)C~, oe > O, 

for the trivial generalization V (P, Dc~, R n) of the ordinary Voronoi diagram V (P, dE, R n), 
where dE is the Euclidean distance. 

�9 Multiplicatively weighted distance 

The multiplicatively weighted distance dMw is the Voronoi generation distance of the 
generalized Voronoi diagram V(P,  dMw, R n) (multiplicatively weighted Voronoi dia- 
gram), defined by 

1 
dMw(x, Pi ) = - - d E  (x, Pi ) 

tt)i 

for any point x c R n and any generator point Pi c P = {Pl . . . . .  Pk}, k ~> 2, where 
wi c w = {wi . . . . .  Wk} is a given positive multiplicative weight of the generator Pi, 
and dE is the ordinary Euclidean distance. 

For R 2, the multiplicatively weighted Voronoi diagram is called circular Dirichlet tes- 
sellation. An edge in this diagram is a circular arc or a straight line. 

In the plane R 2, there exists a generalization of the multiplicatively weighted Voronoi 
diagram, the crystal Voronoi diagram, with the same definition of the distance (where 
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t0 i is the speed of growth of the crystal Pi), but a different partition of the plane, as the 
crystals can grow only in an empty area. 

�9 Additively weighted distance 

The additively weighted distance dAW is the Voronoi generation distance of the gener- 
alized Voronoi diagram V(P, daw, R n) (additively weighted Voronoi diagram), defined 
by 

dAW(X,  P i )  = dE (x ,  P i )  -- wi  

for any point x c R n and any generator point Pi c P - {pl . . . . .  Pk}, k ~> 2, where 
wi c w = {wi . . . . .  Wk} is a given additive weight of the generator Pi, and dE is the 
ordinary Euclidean distance. 

For R 2, the additively weighted Voronoi diagram is called hyperbolic Dirichlet tessella- 
tion. An edge in this Voronoi diagram is a hyperbolic arc or a straight line segment. 

�9 Additively weighted power distance 

The additively weighted power distance dpw is the Voronoi generation distance of 
the generalized Voronoi diagram V(P, dpw, R n) (additively weighted power Voronoi 
diagram), defined by 

d P w ( X ,  P i )  --  d2E( x ,  P i )  -- ~ i  

for any point x c R n and any generator point Pi c P = {Pl . . . . .  Pk}, k ~> 2, where 
wi c w = {wi . . . . .  Wk} is a given additive weight of the generator Pi, and dE is the 
ordinary Euclidean distance. 

This diagram can be regarded as a Voronoi diagram of circles or as a Voronoi diagram 
with the Laguerre geometry. 

1 d 2 (x  Pi )  toi > O, T h e  multiplicatively weighted power distance d M P w ( x ,  Pi ) - -  w---i, , , 

is transformable to the multiplicatively weighted distance, and gives a trivial extension 
of the multiplicatively weighted Voronoi diagram. 

�9 Compoundly weighted distance 

The compoundly weighted distance dew is the Voronoi generation distance of the gen- 
eralized Voronoi diagram V (P, dew, R n) (compoundly weighted Voronoi diagram), de- 
fined by 

1 
d c w ( x ,  P i )  = - - d E ( x ,  P i )  -- ui 

11) i 

for any point x c R n and any generator point Pi c P = {Pl . . . . .  Pk}, k ~> 2, where 
wi c w = {wi . . . . .  Wk} is a given positive multiplicative weight of the generator Pi, 
vi c v = {Vl . . . . .  Vk} is a given additive weight of the generator Pi, and dE is the 
ordinary Euclidean distance. 

An edge in the two-dimensional compoundly weighted Voronoi diagram is a part of a 
fourth-order polynomial curve, a hyperbolic arc, a circular arc, or a straight line. 
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20.2. PLANE VORONOI GENERATION DISTANCES 

�9 Shortest path distance with obstacles 

Let O = { O1 . . . . .  Om } be a collection of pairwise disjoint polygons on the Euclidean 
plane, representing a set of obstacles which are neither transparent nor traversable. 

The shortest path distance with obstacles dsp is the Voronoi generation distance of the 
generalized Voronoi diagram V(P, dsp, R2\{O}) (shortest path Voronoi diagram with 
obstacles), defined, for any x, y �9 R2\{O}, as the length of the shortest path among all 
possible continuous paths, connecting x and y, that do not intersect obstacles Oi \ 0 0 i  
(a path can pass through points on the boundary 00 i  of Oi), i = 1 . . . .  m. 

The shortest path is constructed with the aid of the visibility polygon and the visibility 
graph of V(P, dsp, R2\{O}).  

�9 Visibility shortest path distance 

Let O = { O1 . . . . .  Om} be a collection of pairwise disjoint line segments O1 = [al, bl] 
in the Euclidean plane, P = {Pl . . . . .  Pk }, k ~ 2, is the set of generator points, 

VlS(pi) - {x �9 R 2" [x, Pi] A ]at, bl[ -- r for al l /  -- 1 . . . . .  m} 

is the visibility polygon of the generator Pi, and dE is the ordinary Euclidean distance. 

The visibility shortest path distance dvsp is the Voronoi generation distance of the gen- 
eralized Voronoi diagram V(P, dvsp, R2\{O}) (visibility shortest path Voronoi diagram 
with line obstacles), defined by 

dvsp(X, Pi) - {dE(x,cx~, Pi), if x �9 VIS(pi), 

otherwise. 

�9 Network distances 

A network on R 2 is a connected planar geometrical graph G = (V, E) with the set V of 
vertices and the set E of edges (links). 

Let the generator set P = {pl . . . . .  Pk} be a subset of the set V = {pl . . . . .  Pl} of 
vertices of G, and the set L be given by points of links of G. 

The network distance dnetv on the set V is the Voronoi generation distance of the net- 
work Voronoi node diagram V (P, dnetv, V), defined as the shortest path along the links 
of G from Pi c V to pj c V. It is the weighted path metric of the graph G, where We 
is the Euclidean length of the link e �9 E. 

The network distance dnetl on the set L is the Voronoi generation distance of the net- 
work Voronoi link diagram V(P, dnetl, L), defined as the shortest path along the links 
f romx  � 9 1 4 9  

The access network distance daccnet on R 2 is the Voronoi generation distance of the 
network Voronoi area diagram V (P, daccnet, R2), defined by 

daccnet(X, Y) -- dnetl(l(x), l(y)) + dacc(x) + dacc(Y), 
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where dacc(X) = min/cL d(x, 1) = dE(x, l(x)) is the access distance of a point x. In 
fact, dacc(X) is the Euclidean distance from x to the access point l(x) 6 L of x which is 
the nearest to x point on the links of G. 

�9 Air l i f t  d i s tance  

An airports network is an arbitrary planar graph G on n vertices (airports) with posi- 
tive edge weights (flight durations). This graph may be entered and exited only at the 
airports. Once having accessed G, one travels at fixed speed v > 1 within the network. 
Movement off the network takes place with the unit speed with respect to the ordinary 
Euclidean distance. 

The airl i ft  d i s tance  dal is the Voronoi generation distance of the airlift Voronoi diagram 
V(P, dal, R2), defined as the time needed for a quickest path between x and y in the 
presence of the airports network G, i.e., a path minimizing the travel time between x 
and y. 

�9 City  d i s tance  

A city public transportation network, like a subway or a bus transportation system, is 
a planar straight line graph G with horizontal or vertical edges. G may be composed 
of many connected components, and may contain cycles. One is free to enter G at any 
point, be it at a vertex or on an edge (it is possible to postulate fixed entry points, too). 
Once having accessed G, one travels at a fixed speed v > 1 in one of the available 
directions. Movement off the network takes place with the unit speed with respect to 
the M a n h a t t a n  m e t r i c  (we imagine a large modern-style city with streets arranged in 
north-south and east-west directions). 

The city d i s tance  dcity is the Voronoi generation distance of the city Voronoi diagram 
V (P, dcity, R2), defined as the time needed for the quickest path between x and y in the 
presence of the network G, i.e., a path minimizing the travel time between x and y. 

The set P = {Pl . . . . .  Pk}, k ~> 2, can be seen as a set of some city facilities (for 
example, post offices or hospitals): for some people several facilities of the same kind 
are equally attractive, and they want to find out which facility is reachable first. 

�9 D i s t a n c e  in a r iver  

The di s tance  in a r iver  driv is the Voronoi generation distance of the generalized Voronoi 
diagram V (P, driv, R 2) (Voronoi diagram in a river), defined by 

- ~ ( x l  - Yl) + v/(xl - Yl) 2 + (1 - t y 2 ) ( x 2  - y 2 )  2 

driv(X, y) -- v(1 - -  tY 2) ' 

where v is the speed of the boat on the still water, w > 0 is the speed of constant flow in 
w (0 < ~ < 1) is the relative flow speed. the positive direction of the xl-axis, and ~ - -s 

�9 Boat - sa i l  d i s tance  

Let ~ C R 2 be a domain in the plane (water surface), let f "  ~ --+ R 2 be a con- 
tinuous vector field on ~ ,  representing the velocity of the water flow (flow field); let 
P = {pl . . . . .  Pk } C ~ ,  k ~> 2, be a set of k points in ~ (harbors). 
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The boat-sai l  distance ([NiSu03]) dbs is the Voronoi generation distance of the gener- 
alized Voronoi diagram V ( P, dbs, ~ ) (boat-sail Voronoi diagram), defined by 

dbs(X, y) = in f3 (v ,  x, y) 
y 

for all x, y c s where 

3(?', x, y) - -  s  y'(s) 
F + f (F(s))  

ly'(s)l 

-1  

ds 

is the time necessary for the boat with the maximum speed F on the still water to move 
from x to y along the curve V : [0, 1] --+ s V (0) = x, V (1) = y, and the infimum is 
taken over all possible curves V. 

�9 Peeper  distance 

L e t S  = {(Xl, X2) C R 2 :  Xl > 0} be the half-plane in R2, let P = {pl . . . . .  p~},k >~ 2, 
be a set of points contained in the half-plane {(Xl, x2) c R2: Xl < 0}, and let the 
window be the open line segment ]a, b[ with a = (0, 1) and b = (0, - 1 ) .  

The peeper  distance dpee is the Voronoi generation distance of the generalized Voronoi 
diagram V ( P, dpee, S) (peeper's Voronoi diagram), defined by 

dpee(X, Pi) - {dE(x,cx~, Pi), if [x, p] A ]a, b[ r 0, 

otherwise, 

where dE is the ordinary Euclidean distance. 

�9 Snowmobi l e  distance 

Let s C R 2 be a domain in the X lX2-plane of the space R 3 (a two-dimensional map- 
ping), and s = {(q, h(q)) :  q = (xl(q),  xz(q)) E s h(q) E R} be the three- 
dimensional land surface, associated with the mapping s Let P = {Pl . . . . .  p~ } C s 
k ~> 2, be a set of k points in s (snowmobile stations). 

The snowmobi l e  distance dsm is the Voronoi generation distance of the generalized 
Voronoi diagram V (P, dsm, ~ )  (snowmobile Voronoi diagram), defined by 

1 
dsm(q, r) - inf dh~6!s)) 

Y F(1  - ~ ) 
ds 

for any q, r c s and calculating the minimum time necessary for the snowmobile with 
the speed F on a flat land to move from (q, h(q)) to (r, h(r)) along the land path V*: 
?'*(s) = (?'(s), h(?'(s))), associated with the domain path V : [0, 1] --+ s V(0) = q, 
V (1) = r (the infimum is taken over all possible paths V, and ~ is a positive constant). 

A snowmobile goes uphill more slowly than goes downhill. The situation is opposite for 
a forest fire: the frontier of the fire goes uphill faster than goes downhill. This situation 
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can be modeled using a negative value of ol. The resulting distance is called forest-fire 
distance, and the resulting Voronoi diagram is called forest-fire Voronoi diagram. 

�9 Skew distance 

Let T be a tilted plane in R 3, obtained by rotation the x ix2-plane around the x i-axis 
Jr with the coordinate system obtained by taking the through the angle o~, 0 < o~ < -y, 

coordinate system of the x ix2-plane, accordingly rotated. For a point q c T, q = 
(x ] (q), x2 (q)), define height h (q) as its x3-coordinate in R 3 . Thus, h (q) = x2 (q).  sin ol. 
L e t P = { p ]  . . . . .  p ~ } C T ,  k~>2.  

The skew distance ([AACL98]) ds~ew is the Voronoi generation distance of the general- 
ized Voronoi diagram V (P, ds~ew, T) (skew Voronoi diagram), defined by 

dskew(q, r)  = dE(q, r)  4- (h(r )  - h(q) )  = dE(q, r)  4- s i n ~ ( x 2 ( r )  -- x2 (q ) )  

or, more generally, by 

dskew(q, r) = dE(q, r) 4- k(x2(r) - x2(q)) 

for all q, r c T, where dE is the ordinary Euclidean distance, and k ~> 0 is a constant. 

20.3. O T H E R  V O R O N O I  G E N E R A T I O N  D I S T A N C E S  

�9 Voronoi distance for line segments 

The Voronoi distance for (a set of) line segments dsl is the Voronoi generation distance 
of the generalized Voronoi diagram V (A, dis, R 2) (line Voronoi diagram, generated by 
straight line segments), defined by 

dsl(X, Ai) = inf dE(x, y), 
ycAi 

where the generator set A = {A 1 . . . . .  Ak }, k ~> 2, is a set of pairwise disjoint straight 
line segments Ai = [ai, bi ], and dE is the ordinary Euclidean distance. In fact, 

dE(X,  ai ), 

dls(X, Ai )  -- dE(x, bi),  ( (~-~)~(b~-~) ) 
dE  x --  a i ,  ~ , ~ G  (b i  - a i )  , 

i fx  c Rai, 

i fx  C Rbi, 

if x C R2\{Rai U Rbi }, 

whereRai = {x c R2: (bi--ai)T(x--ai) < O},Rbi = {x c R2: ( a i -b i )T (x -b i )  < 0}. 

�9 Voronoi distance for arcs 

The Voronoi distance for (a set of circle) arcs dca is the Voronoi generation distance 
of the generalized Voronoi diagram V (A, dca, R 2) (line Voronoi diagram, generated by 
circle arcs), defined by 

dca(X, Ai) = inf dE(x, y), 
ycAi 
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where the generator set A = {A1 . . . . .  A~}, k ~> 2, is a set of pairwise disjoint circle 
arcs Ai (less than or equal to a semicircles) with radius ri centered at Xcz, and dE is the 
ordinary Euclidean distance. In fact, 

dca(X, Ai) -- min{dE(x,  a i ) ,dE(x ,  bi), Id (x, xc,  - rill ,  

where ai and bi a r e  end points of Ai. 

�9 Voronoi  d is tance  for circles 

The Voronoi  d is tance  for (a set of) circles dca is the Voronoi generation distance of 
a generalized Voronoi diagram V(A,  dcl, R 2) (line Voronoi diagram, generated by cir- 
cles), defined by 

dcl(X, Ai) = inf dE(x, y), 
ycAi 

where the generator set A = {A1 . . . . .  A~ }, k ~> 2, is a set of pairwise disjoint circles 
Ai with radius ri centered at Xcz, and dE is the ordinary Euclidean distance. In fact, 

dca(X, A i )  -- I d E ( x , x ~ )  - ril.  

There exist different distances for the line Voronoi diagram, generated by circles. For 
example, dc*l(x, ai)  -- dE(x, Xci) -- ri, or dc*l(x, ai)  -- d2(x,  Xci) - r 2 (the Laguerre 
Voronoi diagram). 

�9 Voronoi  d is tance  for areas 

The Voronoi  d is tance  for areas dar is the Voronoi generation distance of the generalized 
Voronoi diagram V (A, dar, R 2) (area Voronoi diagram), defined by 

dar(X, Ai) = inf dE(x, y), 
ycAi 

where A = {A1 . . . . .  A~}, k ~> 2, is a collection of pairwise disjoint connected closed 
sets (areas), and dE is the ordinary Euclidean distance. 

Note, that for any generalized generator set A = {A1 . . . . .  A~}, k ~> 2, one can use 
as the Voronoi generation distance the Hausdor f f  distance from a point x to a set Ai: 
dHaus(X, Ai) = SUpyca i dE(X, y), where dE is the ordinary Euclidean distance. 

�9 Cyl indrica l  d is tance  

The cyl indrical  d is tance  dcyl is the intrinsic  metr ic  on the surface of a cylinder S 
which is used as the Voronoi generation distance in the cylindrical Voronoi diagram 
V (P, dcyl, S). If the axis of a cylinder with unit radius is placed at the x3-axis in R 3, 
the cylindrical distance between any points x, y c S with the cylindrical coordinates 
(1, Ox, Zx) and (1, Oy, Zy) is given by 

v/(Ox - Oy) 2 -Jr- (Zx - Zy) 2, if Oy -- Ox <~ re, 
dcyl(X, y) -- 

v/(Ox -+- - -Oy)  2 -+- (Zx - -  Zy)  2, Oy --Ox > yr. 2re if 
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�9 C o n e  d i s t a n c e  

The cone  d i s t a n c e  dcon is the in tr ins ic  m e t r i c  on the surface of a cone S which is used 
as the Voronoi generation distance in the conic Voronoi diagram V (P, dcon, S). If the 
axis of the cone S is placed at the x3-axis in R 3, and the radius of the circle made by 
the intersection of the cone S with the XlX2-plane is equal to one, then the cone distance 
between any points x, y c S is given by 

dcon(X, y) = 

v/r 2 + r 2 - 2rxry cos(@ - 0 x' ), 

l l if Oy ~< 0 x + Jr sin(oe/2), 

x//r 2 + r ] - 2rxry cos(O x' + 2rr s i n ( o e / 2 ) -  0;) ,  
! ! 

if Oy > 0 x + :r sin(oe/2), 

where (Xl, X2, X3) are the Cartesian coordinates of a point x on S, oe is the top angle of 
the cone, Ox is the counterclockwise angle from the x 1-axis to the ray from the origin 

to the point (Xl, x2, 0), 0x ~ - Ox sin(oe/2), rx - v/X 2 + x 2 + (x3 - coth(oe/2)) 2 is the 

straight line distance from the top of the cone to the point (Xl, x2, x3). 

�9 V o r o n o i  d i s tances  o f  o r d e r  m 

Given a finite set A of objects in a metric space (S, d), and an integer m ~> 1, consider 

the set of all m-subsets Mi of A (i.e., Mi C A, and ]Mi ] = m). The Voronoi diagram of  
order m of A is a partition of S into Voronoi regions V(Mi)  of  m-subsets of A in such 
a way that V(Mi)  contains all points s c S which are "closer" to Mi than to any other 
m-set Mj : d(s, x) < d(s, y) for any x c Mi and y c S \Mi .  This diagram provides first, 
second . . . . .  m-th closest neighbors of a point in S. 

Such diagrams can be defined in terms of some "distance function" D(s, Mi), in par- 

ticular, some m - h e m i - m e t r i c  on S. For Mi = {ai, bi }, there were considered the func- 
tions ]d(s, ai) - d(s,  bi)], d(s, ai) + d(s,  bi), d(s, ai) �9 d(s,  bi), as well as 2 - m e t r i c s  

d (s, ai) -+- d (s, bi) -+- d (ai, bi) and the area of triangle (s, ai, bi). 
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Image and Audio Distances 

21.1. IMAGE DISTANCES 

Image Processing treat signals such as photographs, video, or tomographic output. In par- 
ticular, Computer Graphics consists of image synthesis from some abstract models, while 
Computer Vision extracts some abstract information: say, the 3D (i.e., 3-dimensional) de- 
scription of a scene from video footage of it. From about 2000, the analog image process- 
ing (by optical devices) gave way to the digital processing, and, in particular, digital image 
editing (for example, processing of images taken by popular digital cameras). 

Computer graphics (and our brains) deals with vector graphics images, i.e., those repre- 
sented geometrically by curves, polygons, etc. A raster graphics image (or digital image, 
bitmap) in 2D is a representation of 2D image as a finite set of digital values, called pixels 
(short for picture elements) placed on square grid Z 2 or hexagonal grid. Typically, the im- 
age raster is a square 2 k x 2 k grid with k = 8, 9 or 10. Video images and tomographic (i.e., 
obtained by sections) images are 3D (2D plus time); their digital values are called voxels 
(volume elements). 

A digital binary image corresponds to only two values 0,1 with 1 being interpreted as 
logical "true" and displayed as black; so, such image is identified with the set of black 
pixels. The elements of binary 2D image can be seen as complex numbers x + iy, where 
(x, y) are coordinates of a point on the real plane R 2. A continuous binary image is a 
(usually, compact) subset of a locally compact metric space (usually, Euclidean space E n 
with n = 2, 3). 

The gray-scale images can be seen as point-weighted binary images. In general, a fuzzy 
set is a point-weighted set with weights (membership values). For the gray-scale images, 
xyi-representation is used, where plane coordinates (x, y) indicate shape, while the weight 
i (short for intensity, i.e., brightness) indicate texture (intensity pattern). Sometimes, the 
matrix ((ixy)) of gray-levels is used. Brightness histogram of a gray-scale image provides 
the frequency of each brightness value found in that image. If image has m brightness levels 
(bins of gray-scale), then there are 2 m different possible intensities. Usually, m = 8 and 
numbers 0, 1 . . . . .  255 represent intensity range from black to white; other typical values 
are m = 10, 12, 14, 16. Humans can differ between around 350000 different colors but 
between only 30 different gray-levels; so, color has much higher discriminatory power. 

For color images, (RGB)-representation is most known, where space coordinates R, 
G, B indicate red, green and blue level; 3D histogram provides brightness at each point. 
Among many other 3D color models (spaces) are: (CMY) cube (Cyan, Magenta, Yellow 
colors), (HSL) cone (Hue-color type given as angle, Saturation in %, Luminosity in %), 

262 
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and (YUV), (YIQ) used, respectively, in PAL, NTSC television. CIE-approved conversion 
of (RGB) into luminance (luminosity) of gray-level is 0.299R + 0.587G + 0.114B. Color 
histogram is a feature vector of length n (usually, n = 64,256) with components repre- 
senting ether the total number of pixels, or the percentage of pixels of given color in the 
image. 

Images are often represented by feature vectors, including color histograms, color mo- 
ments, textures, shape descriptors, etc. Examples of feature spaces are: raw intensity (pixel 
values), edges (boundaries, contours, surfaces), salient features (corners, line intersections, 
points of high curvature), and statistical features (moment invariants, centroids). Typical 
video features are in terms of overlapping frames and motions. Image Retrieval (similarity 
search) consists of (as for other data: audio recordings, DNA sequences, text documents, 
time-series, etc.) finding images whose features have values ether similar between them, 
or similar to given query or in given range. 

There are two methods to compare images directly: intensity-based (color and texture 
histograms), and geometry-based (shape representations by medial axis, skeletons, etc.). 
Unprecise term shape is used for the extent (silhouette) of the object, for its local geome- 
try or geometrical pattern (conspicuous geometric details, points, curves, etc.), or for that 
pattern modulo a similarity transformation group (translations, rotations, and scalings). 
Unprecise term texture means all what is left after color and shape have been considered, 
or it is defined via structure and randomness. 

The similarity between vector representations of images is measured by usual practical 
distances: /p-metrics, weighted editing metrics, Tanimoto distance, cosine distance, 
Mahalanobis distance and its extension, Earth Mover distance. Among probability dis- 
tances, the following ones are most used: Bhattacharya 2, Hellinger, Kullback-Leibler ,  
Jeffrey and (especially, for histograms) X 2., Kolmogorov-Smirnov, Kuiper distances. 

The main distances applied for compact subsets X and Y of R n (usually, n = 2, 3) 
or their digital versions are: Asplund metric, Shephard metric, symmetric difference 
semi-metric Vol(XAY) (see Nikodym metric, area deviation, digital volume metric 
and their normalizations) and variations of the Hausdorff  distance (see below). 

For Image Processing, the distances below are between "true" and approximated digital 
images, in order to assess the performance of algorithms. For Image Retrieval, distances 
are between feature vectors of a query and reference. 

�9 Color distances 

A color space is a 3-parameter description of colors. The need for exactly 3 parameters 
comes from the existence of 3 kinds of receptors in the human eye: for short, middle and 
long wavelengths, corresponding to blue, green, and red. 

The CIE (International Commission on Illumination) derived (XYZ) color space in 1931 
from (RGB)-model and measurements of the human eye. In the CIE (XYZ) color space, 
the values X, Y and Z are also roughly red, green and blue, respectively. 

The basic assumption of Colorimetry, supported experimentally (Indow, 1991), is that 
the perceptual color space admits a metric, the true color distance. This metric is ex- 
pected to be locally Euclidean, i.e., a Riemannian metric. Another assumption is that 
there is a continuous mapping from the metric space of photic (light) stimuli to this 
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metric space. Cf. probability-distance hypothesis in Psychophysics that the probabil- 
ity with which one stimulus is discriminated from another is a (continuously increasing) 
function of some subjective quasi-metric between these stimuli. 

Such uniform color scale, where equal distances in the color space correspond to equal 
differences in color, is not obtained yet and existing color distances are various approx- 
imations of it. First step in this direction was given by MacAdam ellipses, i.e., regions on 
a chromaticity (x, y) diagram which contains all colors looking indistinguishable to the 
average human eye. Those 25 ellipses define a metric in a color space. Here x = x X+Y+Z 
and y - x+r+zr are projective coordinates, and the colors of the chromaticity diagram 
occupy a region of the real projective plane. The CIE (L*a*b*) (CIELAB) is an adap- 
tation of CIE 1931 (XYZ) color space; it gives a partial linearization of the metric indi- 
cated by MacAdam ellipses. The parameters L*, a*, b* of the most complete model are 
derived from L, a, b which are: the luminance L of the color from black L = 0 to white 
L = 100, its position a between green a < 0 and red a > 0, and its position b between 
green b < 0 and yellow b > 0. 

�9 Average color distance 

For a given 3D color space and a list of n colors, let (Cil, Ci2, Ci3) be the representation 
of the i-th color of the list in this space. For a color histogram x = (Xl . . . . .  xn), its 

_ n (for example, the average color is the vector (x(1), x(2), x(3)), where x(j) ~i=1XiCij  
average red, blue and green values in (RGB)) of the pixels in the image. 

The average color distance between two color histograms ([HSEFN95]) is the Euclid- 
ean distance of their average colors. 

�9 Color component distances 

Given an image (as a subset o f  R2), let Pi denote the area percentage of this image 
occupied by the color ci. A color component of the image is a pair (ci, Pi). 

The Ma-Deng-Manjunath distance between color components (ci, Pi) and (c j ,  p j)  
is defined by 

IPi - PjI " d(ci ,  Cj), 

where d(ci ,  Cj) is the distance between colors C i and Cj in a given color space. Mo- 
jsilovi6 et al. developed Earth Mover distance-like modification of this distance. 

�9 Histogram intersection quasi-distance 

Given two color histograms x = (Xl . . . . .  Xn) and y = (Yl . . . . .  Yn) (with Xi, Yi rep- 
resenting number of pixels in the bin i), the Swain-Ballard's histogram intersection 
quasi-distance between them (cf. intersection distance) is defined by 

1 --  ~in--=l m i n { x i ,  Yi} 
n 

Z i = I  xi 
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For normalized histograms (total sum is 1) above quasi-distance became the usual l 1- 
metr ic  n ~ i = 1  Ixi - Yi I. The Rosenfeld-Kak's normalized cross correlation between x 

and y is a similarity, defined by ~%~ x~,y~ 

�9 Histogram quadratic distance 

Given two color histograms x = (x l . . . . .  xn) and y = (yl . . . . .  Yn) (usually, n = 256 or 
n = 64) representing the color percentages of two images, their histogram quadratic 
distance (used in IBM's Query By Image Content system) is Mahalanobis distance, 
defined by 

/(X - y ) r A ( x  - y),  

where A = ((aij)) is a symmetric positive-definite matrix, and weight a i j  is some, per- 
ceptually justified, similarity between colors i and j .  For example (see [HSEFN95]), 

~ij where d i j  is the Euclidean distance between 3-vectors rep- ai j  - -  1 --  maxl<<p,q<<n dpq ' 

resenting i and j in some color space. Another definition is given by a i j  = 1 - 
1 , f~((vi -- v j )  2 -+- (si coshi - sj cosh j )  2 -Jr- (si sinhi - sj sinhj)2)�89 where (h i , s i ,  vi) 

and (h j ,  s j ,  v j )  are the representations of the colors i and j in the color space (HSV). 

�9 Gray-scale image distances 

Let f ( x )  and g(x)  denote brightness values of two digital gray-scale images f and g 
at the pixel x c X, where X is a raster of pixels. Any distance between point-weighted 
sets (X, f )  and (X, g) (for example, the Earth Mover distance) can be applied for 
measuring distances between f and g. However, the main used distances (called also 
errors) between images f and g are: 

1 

1. The root mean-square error R M S ( f ,  g) -- (l@l ~ x e S  ( f  (x) - g(x))2) : (a variant is 
to use l l -norm I f (x)  - g(x)l instead of l:-norm); 

E x E x g ( x ) 2  1 
2. The signal-to-noise ratio S N R ( f  , g) - ( ~ x E x ( f  (x)_g(x))  2 ) ; 

1 3. Thepixe l  misclassification error rate T~71{x c X" f (x) vk g(x)}l (normalized Ham- 
ming distance); 

1 
1 4. The frequency root mean-square error ( ~  ~ u e u ( F ( u )  - a(u) )  2) 2 where F and 

G are the discrete Fourier transforms of f and g, respectively, and U is the frequency 
domain; 

1 
5. The Sobolev norm oforder  ~ error (g@ ~ u e g  (1 + It1" 1 2 ) a ( f ( u ) -  a (u) )2)  ~' where 

0 < a < 1 is fixed (usually, �89 and r/u is the 2D frequency vector associated with 
position u in the frequency domain U. 

�9 Image compression Lp-metric 

Given a number r, 0 ~< r < 1, the image compression L p-metric is the usual L p- 

metric  on R~_ 2 (the set of gray-scale images seen as n • n matrices) with p being a 
p - 1  solution of the equation r - 2p-1 " e 2p-1. So, p - 1, 2, or cx~ for, respectively, r - 0, 
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r - ~e 2 ~ 0.65, or r ~> -U~/7 ~ 0.82. Here r estimates informative (i.e., filled with non- 
zeros) part of the image. According to [KKN02], it is the best quality metric to select a 
lossy compression scheme. 

�9 Chamfering distances 

The chamfering distances are distances approximating Euclidean distance by a 
weighted path distance on the graph G = (Z 2, E),  where two pixels are neighbors 
if one can be obtained from another by an one-step move on Z 2. The list of permitted 
moves is given, and a prime distance, i.e., a positive weight, is associated to each type 
of such move. 

An (~, fi)-ehamfer metric corresponds to two permitted m o v e s -  with l 1-distance 1 
and with l~-dis tance  1 (diagonal moves only) - weighted ~ and fi, respectively. The 
main applied cases are (~, fi) = (1, 0) (the ci ty-block metr ic ,  or 4-metr ic) ,  (1,1) (the 
chessboard metric, or 8-metric) ,  (1, v/2) (the Montanari metric), (3, 4) (the (3, 4)- 
metr ic) ,  (2, 3) (the Hilditeh-Rutovitz metric), (5, 7) (the Verwer metric). 

The Borgefors metric corresponds to three permitted m o v e s -  with l 1-distance 1, with 
l~-dis tance  1 (diagonal moves only), and knight moves - weighted 5, 7 and 11, respec- 
tively. 

An 3D-chamfer metric (or (~, fi, ?')-chamfer metric) is the weighted path metric of 
the infinite graph with the vertex-set Z 3 of voxels, two vertices being adjacent if their l ~ -  
distance is one, while weights ~, fi and ?' are associated to 6 face, 12 edge and 8 corner 
neighbors, respectively. If ~ = fi = ?' = 1, we obtain the l~-metr ic .  The (3, 4, 5)- and 
(1, 2, 3)-chamfer metrics are the most  used ones for digital 3D images. 

�9 Earth Mover distance 

The Earth Mover distance is a discrete form of the Monge-Kantorovieh distance. 
Roughly, it is minimal amount  of work needed to transform earth or mass from one po- 
sition (properly spread in space) to the other (a collection of holes). For any two finite se- 
quences (xl . . . . .  Xm) and (Yl . . . . .  Yn) over a metric space (X, d), consider signatures, 
i.e., point-weighted sets P1 = (Pl(Xl) . . . . .  Pl(Xm)) and P2 = (Pz(Yl) . . . . .  PZ(Yn)). 
For example ([RTG00]), signatures can represent clustered color or texture content of 
images: elements of X are centroids of clusters, and Pl (xi), P2(Yj) are sizes of corre- 
sponding clusters. The ground distance d is a color  dis tance,  say, the Euclidean distance 
in 3D CIE (L*a*b*) color space. 

Let W1 -- Z i  Pl (xi)  and W2 - ~ j  Pz(Yj) are the total weights of P1 and P2, respec- 
tively. Then the Earth Mover distance (or transport distance) between signatures P1 
and P2 is defined as the function 

Zi,j fijd(xi, YJ) 
Z i , j  fij  ' 

where the m x n matrix S* - ( ( f / j ) )  is an optimal, i.e., minimizing ~i,j fijd(xi, yj), 
flow. A flow (of the weight of the earth) is an m x n matrix S = ((fij)) with following 
constraints: 
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1. All fij ~ 0; 

2. ~ i , j  f i j  : min{W1, W2}; 

3. ~ i  f i j  ~ Pz(Yj), and ~ j  fij <~ Pl (xi). 

So, this distance is the average ground distance d that weights travel during an optimal 
flow. 

In the case W1 = W2, above two inequalities 3. became equalities. Normalizing sig- 
natures to W1 = W2 = 1 (which not changes the distance) allow us to see P1 and P2 
as probability distributions of random variables, say, X and Y. Then ~i,j  fijd(xi, yj) 
is just Es[d(X, Y)], i.e., the Earth Mover distance coincides, in this case, with the 
Kantorovich-Mallows-Monge-Wasserste in  metric. For, say, W1 < W2, it is not a 
metric in general. However, replacing, in above definition, the inequalities 3. by equali- 
ties: 

3'. ~ i  fij - pz(yj) and ~ j  f/j  = pl(xi)W1 ' W2 ' 

produces Giannopoulos-Veltkamp's  proportional transport semi-metric. 

�9 Parameterized curves distance 

The shape can be represented by a parameterized curve on the plane. Usually, such curve 
is simple, i.e., it has no self-intersections. Let X = X(x(t)) and Y = Y(y(t)) be two 
parameterized curves, where (continuous) parametrization functions x(t) and y(t) on 
[0, 1 ] satisfy x (0) - y (0) - 0 and x (1) - y (1) - 1. 

The most used parameterized curves distance is the minimum, over all monotone in- 
creasing parameterizations x(t) and y(t), of the maximal Euclidean distance 
dE(X(x(t)), Y(y(t))). It is Euclidean special case of the dogkeeper distance which 
is, in turn, the Fr~chet metric for the case of curves. Among variations of this distance 
are dropping the monotonicity condition of the parametrization, or finding the part of 
one curve to which the other has the smallest such distance ([VeHa01 ]). 

�9 Non-linear elastic matching distances 

Consider a digital representation of curves. Let r ~ 1 be a constant, and let A = 
{al . . . . .  am}, B = {bl . . . . .  bn} be finite ordered sets of consecutive points on two 
closed curves. For any order-preserving correspondence f between all points of A and 

all points of B, the stretch s(ai, bj) of (ai, f (ai) : bj) is r if either f (ai-1) : bj or 
f (ai) : bj-1, or zero, otherwise. 

The relaxed non-linear elastic matching distance is the minimum, over all such f ,  of 
~(s(ai ,  bj) + d(ai, bj)), where d(ai, bj) is the difference between the tangent angles 
of ai and bj. It is a near-metric for some r. For r = 1, it is called non-linear elastic 
matching distance. 

�9 Turning function distance 

For a plane polygon P,  its turning function Tp (s) is the angle between the counterclock- 
wise tangent and the x-axis as the function of the arc length s. This function increases 
with each left hand turn and decreases with right hand turns. 
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Given two polygons of equal perimeters, their turning function distance is the L p- 
metr ic  between their turning functions. 

�9 Size function distance 

For a plane graph G = (V, E) and a measuring function f on its vertex-set V (for 
example, the distance from v e V to the center of mass of V), the size function SG (x, y) 
is defined, on the points (x, y) e R 2, as the number of connected components of the 
restriction of G on vertices {v e V: f ( v )  <~ y} which contain a point v' with f (v ' )  <~ x. 

Given two plane graphs with vertex-sets belonging to a raster R C Z 2, their Uras-Verri 's 
size function distance is the normalized l 1-distance between their size functions over 
raster pixels. 

�9 Reflection distance 

For a finite union A of plane curves and each point x e R 2, let V~ denote the union of 
open line segments ]x, a[, a e A, which are visible from x, i.e., ]x, a[ A A = 0. Denote 

x by PA the area of the set {x + v e V~" x - v e V~}. 

The Hagedoorn-Veltkamp's reflection distance between finite unions A and B of plane 
curves is the normalized l 1-distance between the corresponding functions p~ and p~, 
defined by 

f R =  - 

fR2 max{p~, pX }dx" 

�9 Distance transform 

Given a metric space (X - Z 2, d) and a binary digital image M C X, the distance 

transform is a function fM : X ---> R~0, where fM(X) = infucM d(x, u) is the point- 
set distance d (x, M). Therefore, a distance transform can be seen as a gray-scale digital 
image where each pixel is given a label (a gray-level) which corresponds to the dis- 
tance to the nearest pixel of the background. Distance transforms, in Image Processing, 
are also called distance fields and, especially, distance maps; but we reserve the last 
term only for this notion in any metric space. A distance transform of a shape is the 
distance transform with M being the boundary of the image. For X -- R 2, the graph 
{(x, f (x)): x e X} of d(x,  M) is called Voronoi surface of M. 

�9 Medial  axis and skeleton 

Let (X, d) be a metric space, and let M be a subset of X. The medial  axis of X is the set 
MA(X) = {x e X: I{m e M:  d(x, m) = d(x, M)}l ~ 2}, i.e., all points of X which 
have in M at least two elements of best approximation.  MA(X)  consists of all points 
of boundaries of Voronoi regions of points of M. The skeleton Skel(X) of X is the set of 
the centers of all balls, in terms of the distance d which are inscribed in X and maximal, 
i.e., not belong to any other such ball. The cut locus of X is the closure MA(X) of the 
medial axis. In general, MA(X) C Skel(X) C MA(X). The medial axis, skeleton and cut 
locus transforms are point-weighted sets MA(X), Skel(X) and MA(X) (the restriction of 
the distance transform on those sets) with d(x, M) being the weight of x e X. 
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Usually, X C E n, and M is the boundary of X. The medial axis with M being contin- 
uous boundary can be considered as a limit of Voronoi diagram as the number of the 
generating points becomes infinite. For 2D binary images X, the skeleton is a curve, a 
single-pixel thin one, in digital case. The exoskeleton of X is the skeleton of the com- 
plement of X, i.e., of the background of the image for which X is the foreground. 

�9 Procrustes  distance 

The shape of a form (configuration of points in R2), seen as expression of translation-, 
rotation- and scale-invariant properties of form, can be represented by a sequence of 
landmarks, i.e., specific points on the form, selected accordingly to some rule. Each 
landmark point a can be seen as an element (a ~, a ' )  c R 2 or an element a ~ + a ' i  C C. 

Consider two shapes x and y, represented by theirs landmark vectors (xl . . . . .  xn) and 
(yl . . . . .  Yn) from C n. Suppose that x and y are corrected for translation by setting 
~ t  xt = ~ t  Yt = 0. Then their Procrustes  distance is defined by 

~ ~ Ixt - Yt 12 
t = l  

where two forms are, first, optimally (by least squares criterion) aligned to correct for 
scale, and their Kendall  shape distance is defined by 

~/ ( ~ t  x tY t ) ( ~ t  yt-xt) 
arccos ( ~ t  xt-~t)(~t YtYt)' 

where -ff = a ~ - a ' i  is the complex conjugate of oe = a ~ + a' i .  

�9 Tangent distance 

For any x c R n and a family of transformations t(x, oe), where oe c R ~ is the 
vector of k parameters (for example, the scaling factor and rotation angle), the set 
Mx = {t(x, oe): oe c R ~} C R n is a manifold of dimension at most k. It is a curve 
if k = 1. The minimum Euclidean distance between manifolds Mx and M v would be 
useful distance since it is invariant with respect to transformations t (x, oe). However, the 
computation of such distance is too difficult in general; so, Mx is approximated by its 
tangent subspace at point x" {x + zik=l Otk xi " Ot C R k} C Rn, where tangent vectors 
x i, 1 <~ i <~ k, spanning it, are partial derivatives of t (x, oe) with respect of oe. The one- 
sided (or directed) tangent  distance between elements x and y of R n is a quasi-distance 
d, defined by 

i m2n 
k 

X -Jr- Z ~ -- 
i--1 

2 

y 

The Simard-Le Cun-Denker ' s  tangent  distance is defined by min{d(x, y), d(y, x)}. 
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In general, the tangent set of a metric space X at a point x is defined (by Gromov) as 
any limit point of the family of its dilations, for the dilation parameter going to infinity, 
taken in the pointed Gromov-Hausdorff  topology (cf. Gromov-Hausdorf f  distance). 

�9 Figure of merit quasi-distance 

Given two binary images, seen as non-empty finite subsets A and B of a finite metric 
space (X, d), their Pratt's figure of merit quasi-distance is defined by 

( Z )1 
max{ IAI, IBI} 1 + oed(x A) 2 

x c B  

where oe is a scaling constant (usually, 1), and d(x, A) -- minycA d(x, y) is the point-set 
distance. 

1 d(x A) and Similar quasi-distances are Peli-Malah's mean error distance -N7 ~ x c B  , , 

1 d(x A) 2 mean square error distance -(N ~xcB  , �9 

�9 p-th order mean Hausdorff  distance 

Given two binary images, seen as non-empty subsets A and B of a finite metric space 
(say, a raster of pixels) (X, d), their p- th  order mean Hausdorff  distance is ([Badd92]) 
a normalized L p-Hausdor f f  distance, defined by 

1 

x c X  

where d(x, A) = minycA d(x, y) is the point-set distance. Usual Hausdorff metric is 
proportional to oc order mean Hausdorff distance. 

Venkatasubraminian's r - H a u s d o r f f  distance ddHaus (A, B) + ddHaus (B, A) is equal to 
~xcau~  Id(x, A) - d(x, B)I, i.e., it is a version of L1-Hausdorff distance. 

Another version of 1-st order mean Hausdorff distance is Lindstrom-Turk's mean geo- 
metric error between two images, seen as surfaces A and B. It is defined by 

1 ( f x  d ( x ' B ) d S + f x  d ( x , A ) d S ) ,  
Area(A) -+- Area(B) c a  c B  

where Area(A) denotes the area of surface A. If the images are seen as finite sets A 
and B, their mean geometric error is defined by 

IAI + IBI Z d(x' B) + Z d(x' A) . 
x c A  x c B  
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�9 Modified Hausdorff  distance 

Given two binary images, seen as non-empty finite subsets A and B of a finite metric 
space (X, d), their Dubuisson-Jain's modified Hausdorff  distance is defined as the 
maximum of point-set distances averaged over A and B: 

{1 1 } 
max ~-~ Z d(x, B), -~[ Z d(x, A) . 

xcA xcB 

�9 Partial Hausdorff  quasi-distance 

Given two binary images, seen as non-empty subsets A, B of a finite metric space (X, d), 
and integers k, 1 with 1 ~< k ~< I A I, 1 ~< 1 ~< I B I, their Huttenlocher-Rucklidge's partial 
(k, l ) -Hausdorf f  quasi-distance is defined by 

max{kthAd(X, B), lthad(x, A)}, 

th (x B) means k-th (rather than the largest IAI-th ranked one) among IAI where kxcAd , 

distances d (x, B) ranked in increasing order. The case k - / ~ !  j, 1 - / - ~  J corresponds 
to the modified median Hausdorff quasi-distance. 

�9 Bottleneck distance 

Given two binary images, seen as non-empty subsets A, B with I AI : I BI : m, of a 
metric space (X, d), their bottleneck distance is defined by 

minmaxd(x,f(x)), 
f xcA 

where f is any bijective mapping between A and B. 

Variations of above distance are: 

1. The minimum weight matching: minf  Z x c A  d(x, f ( x ) ) ;  
2. The uniform matching: minf(maxxcA d(x, f(x)) - minxcA d(x, f (x ) ) ;  

3. The m i n i m u m  devia t ionmatching:  min f (maxxcA d(x, f (x))-i-~l ~xcA d(x, f (x)). 

Given an integer t with 1 ~< t ~< I AI, the t-bottleneck distance between A and B 
([InVe00]) is above minimum but with f being any mapping from A to B such that 
I{x c A: f(x) = Y}l ~< t. The cases t = 1 and t = IAI correspond, respec- 
tively, to the bottleneck distance, and the directed Hausdorff  distance ddHaus(A, B) = 
maxxcA minycB d(x, y). 

�9 Hausdorff  distance up to G 

Given a group (G, . ,  i d) acting on the Euclidean space E n, the Hausdorff  distance up to 
G between two compact subsets A and B (used in Image Processing) is their generalized 
G-Hausdorff  distance, i.e., the minimum of dHaus(A, g(B)) over all g c G. Usually, 
G is the group of all isometries or all translations of E n. 
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�9 Hyperbol ic  Hausdorf f  distance 

For any compact subset A of R n, denote by MAT(A) its Blum's medial axis transform, 
i.e., the subset of X = R n x R~0, whose elements are all pairs x = (x !, rx) of the centers 
x ! and the radii rx of the maximal inscribed balls, in terms of the Euclidean distance dE 
in R n. (Cf. medial  axis and skeleton transforms for the general case.) 

The hyperbol ic  Hausdorf f  distance ([ChSe00]) is the Hausdorf f  metric on non-empty 
compact subsets MAT(A) of the metric space (X, d), where the hyperbolic distance d 
on X is defined, for its elements x = (x !, rx) and y = (y!, ry), by 

max { O, dE (x', y') - (ry - -  r x  ) } .  

�9 Non- l inear  Hausdorf f  metric 

Given two compact subsets A and B of a metric space (X, d), their non-l inear Haus-  
dorff  metr ic  (or Szatmdri-Rekeczky-Roska wave distance) is the Hausdorf f  distance 

dH.us(AOB, (A U B)*), where (A U B)* is the subset of A U B which forms a closed con- 
tiguous region with A 0 B, and the distances between points are allowed to be measured 
only along paths wholly in A U B. 

�9 Video quality metrics  

Those metrics are between test and reference color video sequences, usually aimed at 
optimization of encoding/compression/decoding algorithms. Each of them is based on 
some perceptual model of human vision system, the simplest one being RMSE (root- 
mean-square error) and PSNR (peak signal-to-noise ratio) error measures. Among oth- 
ers, threshold metrics estimate the probability of detecting in video an artifact (i.e., a 
visible distortion that get added to a video signal during digital encoding). Examples 
are: Sarnoff's JND 0ust-noticeable differences) metric, Winkler's PDM (perceptual dis- 
tortion metric), and Watson's DVQ (digital video quality) metric. DVQ is /p-met r ic  be- 
tween feature vectors representing two video sequences. Some metrics measure special 
artifacts in the video: the appearance of block structure, blurriness, added "mosquito" 
noise (ambiguity in the edge direction), texture distortion, etc. 

�9 Time series video distances 

The time series video distances are objective wavelet-based spatial-temporal video 
quality metrics.  A video stream x is processed into time series x(t)  (seen as a curve on 
coordinate plane) which then (piecewise linearly) approximated by a set of n contiguous 
line segments that can be defined by n + 1 endpoints (xi, x~), 0 ~< i ~< n, on coordinate 
plane. In [WoPi99] are given following (cf. Meehl distance) distances between video 
streams x and y: 

"-~ ' - x ~ ) - ( y i + ~  1. Shape(x, y) - -  Z i - 0  I(Xi+l ! 
~-1 ~;+~ +~; y;+~ +y; 

2. Offset(x, y) -- ~ i = 0  I 2 2 I. 

! 

- Yi)I; 
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21.2. AUDIO DISTANCES 

Audio (speech, music, etc.) Signal Processing is the processing of analog (continuous) or, 
mainly, digital representation of the air pressure waveform of the sound. A sound spectro- 
gram (or sonogram) is a visual three-dimensional representation of an acoustic signal. It is 
obtained either by series of ban@ass filters (an analog processing), or by application of the 
short-time Fourier transform to the electronic analog of an acoustic wave. Three axes rep- 
resent time, frequency and intensity (acoustic energy). Often this three-dimensional curve 
is reduced to two dimensions by indicating the intensity with more thick lines or more 
intense gray or color values. 

Sound is called tone if it is periodic (the lowest fundamental frequency plus its multiples, 
harmonics or overtones) and noise, otherwise. The frequency is measured in cps (the num- 
ber of complete cycles per second) or Hz (hertz). The range of audible sound frequencies 
to humans is typically 20 H z -  20 kHz. 

Signal's power P ( f )  is energy per unit of time; it is proportional to the square of signal's 
amplitude A ( f ) .  Decibel d B is the unit used to express relative strength of two signals. 
One tenth of 1 dB is bel, the original outdated unit. Audio signal's amplitude in d B is 

a ( f )  __ 10log 1 P ( f )  where f~ 20 lOgl0 ~ - 0 ~ ,  ia a reference signal selected to correspond 0 dB 
(usually, the threshold of human hearing). The threshold of pain is about 120-140 dB. 

Pitch and loudness are auditory subjective terms for frequency and amplitude. 
Mel scale is a perceptual frequency scale, corresponding to the auditory sensation of 

tone height and based on mel, a unit of perceived frequency (pitch). It is connected to the 
acoustic frequency f hertz scale by Mel ( f )  - 11271n(1 + ~f00) (or, simply, Mel ( f )  -- 

1000 log 2 (1 + ~ ) )  so that 1000 Hz correspond to 1000 mels. 
Bark scale (named after Barkhausen) is a psycho-acoustic scale of perceived intensity 

(loudness): it range from 1 to 24 corresponding to the first 24 critical bands of hearing 
(0, 100, 200 . . . . .  1270, 1480, 1720 . . . . .  950, 12000, 15500 Hz). Those bands correspond 
to spatial regions of the basilar membrane (of the inner ear), where oscillations, produced 
by the sound of given frequency, activate the hair cells and neurons. Bark scale is con- 
nected to the acoustic frequency f kilohertz scale by Bark( f )  = 13 arctan(0.76f) + 
3.5 arctan(0mf75 )2. 

The main way humans control their phonation (speech, song, laughter) is by control over 
the vocal tract (the throat and mouth) shape. This shape, i.e., the cross-sectional profile of 
the tube from the closure in the glottis (the space between the vocal cords) to the opening 
(lips), is represented by the cross-sectional area function Area(x), where x is the distance 
to glottis. The vocal tract acts as a resonator during vowel phonation, because it is kept 
relatively open. Those resonances reinforce the source sound (ongoing flow of lung air) 
at particular resonant frequencies (or formants) of the vocal tract, producing peaks in the 
spectrum of the sound. Each vowel has two characteristic formants, depending of the ver- 
tical and horizontal position of the tongue in the mouth. Source sound function is modified 
by frequency response function for a given area function. If the vocal tract is approximated 
as a sequence of concatenated tubes of constant cross-sectional area (of equal length, or 

Area(xi+ l ) epilarynx-pharynx-oral cavity, etc.), then area ratio coefficients are the ratios ~ ~  for 
consecutive tubes; those coefficients can be computed by LPC (see below). 
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The spectrum of a sound is the distribution of magnitude (dB) (and sometimes the 
phases) in frequency (kHz) of the components of the wave. The spectral envelope is a 
smooth contour that connects the spectral peaks. The estimation of the spectral envelopes 
is based on either LPC (linear predictive coding), or FTT (fast Fourier transform using real 
cepstrum, i.e., the log amplitude spectrum of the sound). 

FT (Fourier transform) maps time-domain functions into frequency-domain represen- 
tations. The cepstrum of the signal f ( t )  is FT(ln(FT(f(t) + 2rrmi))), where m is the 
integer needed to unwrap the angle or imaginary part of the complex logarithm function. 
The complex and real cepstrum use, respectively, complex and real log function. The real 
cepstrum uses only the magnitude of the original signal f (t), while the complex cepstrum 
uses also phase of f(t) .  FFT method is based on linear spectral analysis. FFT performs 
Fourier transform on the signal and sample the discrete transform output at the desired 
frequencies usually in the mel scale. 

Parameter-based distances used in recognition and processing of speech data are usually 
derived by LPC, modeling speech spectrum as a linear combination of the previous sam- 
ples (as in autoregressive process). Roughly, LPC process each word of the speech signal 
in the following 6 steps: filtering, energy normalization, partition into frames, windowing 
(to minimize discontinuities at the borders of frames), obtaining LPC parameters by the 
autocorrelation method and conversion to the LPC-derived cepstral coefficients. LPC as- 
sumes that speech is produced by a buzzer at the glottis (with occasionally added hissing 
and popping sounds), and it removes the formants by filtering. 

Majority of distortion measures between sonograms are variations of squared Euclid- 
ean distance (including covariance-weighted one, i.e., Mahalanobis, distance) and proba- 
bilistic distances belonging to following general types: generalized total variation metric, 
f-divergence of Csizar and Chernoff distance. 

The distances for sound processing below are between vectors x and y representing 
two signals to compare. For recognition, they are a template reference and input signal, 
while for noise reduction, they are original (reference) and distorted signal (see, for ex- 
ample, [OASM03]). Often distances are calculated for small segments, between vectors 
representing short-time spectra, and then averaged. 

�9 Segmented signal-to-noise ratio 

The segmented signal-to-noise ratio SNRseg(X, y) between signals x = (xi) and y = 
(Yi) is defined by 

10 l~ Z ( x i  - -  y i )  2 ' 
m m=0 i = n m +  1 

where n is the number of frames, and M is the number of segments. 

Usual signal-to-noise ratio SNR(x, y) between x and y is given by 

10 lOgl0 ~ i ~ l  (xi - y i )  2"  
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Another measure, used to compare two waveforms x and y in time-domain, is their 
Czekanovsk i -Dice  distance, defined by 

_ 1 ~ (  1 _ 2min{x i ,Y i} )_  . 

n i=1 xi -+-Yi 

�9 Spectral magnitude-phase distortion 

The spectral magnitude-phase distortion between signals x - x(co) and y - y(co) is 
defined by 

l (n 
ly( )l) 

n i=1  

n ) 
+ (1 - )~) Z ( / x ( w )  - / y (w ) )  2 , 

i=1  

where Ix(w)l, my(w) are magnitude spectra, a n d / x ( w ) ,  / y ( w )  are phase spectra of x 
and y, respectively, while parameter )~, 0 ~< )~ ~< 1, is chosen in order to attach commen- 
surate weights to the magnitude and phase terms. The case )~ = 0 corresponds to the 
spectral phase distance. 

a 
Given a signal f ( t )  - ae -b tu ( t ) ,  a, b > 0, which has Fourier transform x ( w )  -- b+iw, 
its magnitude (or amplitude) spectrum is Ix l - ~ /b2~~ '_  and its phase spectrum (in 

radians) is oe(x) - tan -1 w i.e. x ( w )  - Ixle i~ - xl(cosoe -+- i sinoe) 
' b - ,  , 

�9 RMS log spectral distance 

The RMS log spectral distance (or root-mean-square distance) LSD(x ,  y) between dis- 
crete spectra x - (xi) and y - (Yi) is the following Euclidean distance" 

- (In Xi - -  In y i ) 2 .  

n i=1  

The square of RMS log spectral distance, via cepstrum representation ln x(co) = 
0(3 ~ j = - o c  Cj e- i jc~ (where x(co) is the power spectrum, i.e., magnitude-squared Fourier 

transform) became, in complex cepstral space, the cepstral distance. 

The log area ratio distance LAR(x ,  y) between x and y is defined by 

n 

1 Z lO(l~ l~  2 
n i=l 

where Area(zi )  means cross-sectional area of the segment of the vocal tract tube corre- 

sponding to zi. 
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�9 Bark spectral distance 

The Bark spectral distance is a perceptual distance, defined by 

F/ 

BSD(x, y) - -  Z ( x i  - yi) 2, 
i = 1  

i.e., is the squared Euclidean distance between Bark spectra (Xi) and (Yi) of x and y, 
where i-th component corresponds to i-th auditory critical band in Bark scale. 

A modification of Bark spectral distance excludes critical bands i on which the loudness 
distortion ]xi - Yi] is less than the noise masking threshold. 

�9 Itakura-Saito quasi-distance 

The I takura-Sai to  quasi-distance (or maximum likelihood distance) IS(x, y) between 
LPC-derived spectral envelopes x = x (co) and y = y(co) is defined by 

1 f ~ r ( x ( w )  Y ( w ) )  In + 1 dw. 
2re Jr y(w) x(w) 

The cosh distance is defined by IS(x, y) + IS(y, x), i.e., is equal to 

1 
x(w) 4 2 d w -  2cosh In 1 dw, 

2re Jr y(w) x(w) 2re Jr y(w) 

et+e-t is the hyperbolic cosine function. where cosh (t) - 2 

�9 Log likelihood ratio quasi-distance 

The log likelihood ratio quasi-distance (or Kullback-Leibler distance) KL(x, y) be- 
tween LPC-derived spectral envelopes x : x (co) and y : y(co) is defined by 

1 f~ x(w) x(w) In dw. 
2re Jr y(w) 

The Jeffrey divergence KL(x, y) + KL(y, x) is also used. 

The weighted likelihood ratio distance between spectral envelopes x : x(co) and 
y = y(co) is defined by 

f( 
1 Jr (ln(y-Z-~) + ~ 

27r jr Px 
+ 

(ln(Y(W)x__~) _+_ y_~x(w) _ 1) y ( to))  
dw, 

Py 

where P(x) and P(y) denote the power of the spectra x(w) and y(w), respectively. 

�9 Cepstral distance 

The cepstral distance (or squared Euclidean cepstrum metric) CEP(x, y) between 
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LPC-derived spectral envelopes x = x(co) and y = y(co) is defined by 

) 1 In X(W) 2 1 dw (lnx(w) - In y(w))Zd - 

- 

2re y ( w ) 2re Jr Jr j = - o c  

1 Jr wj In Z(w)I dw is j-th cepstral (real) coefficient of z derived where cj (z) - ~-y f_  Jr e i 
by Fourier transform or LPC. 

�9 Quefrency-weighted cepstral distance 

The quefrency-weighted cepstral distance (or weighted slope distance) between x and 
y is defined by 

oo 

Z i2(ci(x) - ci(y)) 2" 
i - - - o c  

"Quefrency" and "cepstrum" are anagrams of"frequency" and "spectrum", respectively. 

The Mart in cepstrum distance between two AR (autoregressive) models is defined, in 
terms of their cepstrums, by 

Z i(ci(x) - ci(y)) 2. 
i - 0  

(Cf. general Martin distance, defined as an angle distance between subspaces, and 
Martin metric between strings which is an lot-analog of it.) 

The Klatt slope metric between discrete spectra x = (xi) and y = (Yi) with n channel 
filters is defined by 

Z ( ( X i + l  - xi) - (yi+l - yi))2. 
i--1 

�9 Phone distances 

A phone is a sound segment that possess distinct acoustic properties, the basis sound 
unit. Cf. phoneme, i.e., a family of phones that speakers usually hear as a single sound; 
the number of phonemes range, among about 6000 languages spoken now, from 11 in 
Rotokas to 112 in !X66 (languages spoken by about 4000 people in Papua New Guinea 
and Botswana, respectively). 

Two main classes of phone distance (distances between two phones x and y) are: 

1. Spectrogram-based distances which are physical-acoustic distortion measures be- 
tween the sound spectrograms of x and y; 

2. Feature-based phone distances which are usually Manhattan distance Z i  IXi -- Yi l 
between vectors (xi) and (Yi) representing phones x and y with respect to given in- 
ventory of phonetic features (for example, nasality, stricture, palatalization, rounding, 
sillability). 
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�9 Phonetic word distance 

The phonetic word distance between two words x and y is the following cost-based 
editing metric (i.e., the minimal cost of transforming x into y by substitution, deletion 
and insertion of phones). A word is seen as a string of phones. Given a phone distance 
function r(u, v) on the International Phonetic Alphabet with additional phone 0 (the 
silence), the cost of substitution of phone u by v is r(u, v), while r(u, 0) is the cost of 
insertion or deletion of u. (Cf. distances for protein data based on Dayhoff  distance on 
the set of 20 amino acids.) 

�9 Linguistic distance 

In Computational Linguistics, the linguistic distance (or dialectology distance) be- 
tween language varieties X and Y is the mean, for fixed sample S of notions, phonetic 
word distance between cognate (i.e., having the same meaning) words sx and s t ,  rep- 
resenting the same notion s c S in X and Y, respectively. 

Stover distance (see http://sakla.net/concordances/index.html) between phrases with 
the same key word is the sum ~ - n  <<. i <<. +n a i x i ,  where 0 < ai < 1 and xi is the propor- 
tion of non-mathched words between the phrases within a moving window. Phrases are 
first aligned, by the common key word, to compare the uses of it in context; also, the 
rarest words are replaced with a common pseudo-token. 

�9 Acoustics distances 

The wavelength is the distance the sound wave travels to complete one cycle. This dis- 
tance is measured perpendicular to the wavefront in the direction of propagation between 
one peak of a sine wave and the next corresponding peak. The wavelength of any fre- 
quency may be found by dividing the speed of sound (331.4 m/s  at sea level) in the 
medium by the fundamental frequency. 

The far field is the part of a sound field in which sound waves can be considered planar 
and sound pressure decreases inversely with distance from the source. It corresponds to 
a reduction of about 6 dB in sound level for each doubling of distance. 

The near field is the part of a sound field (usually within about two wavelengths from 
the source) where there is no simple relationship between sound level and distance. 

The proximity effect is the anomaly of low frequencies being enhanced when a direc- 
tional microphone is very close to the source. 

The critical distance is the distance from the sound source at which the direct sound 
(produced by the sound source) and reverberant sound (produced by the direct sound 
bouncing off the walls, floor, etc.) are equal in intensity level. 

The blanking distance is the minimum sensing range of an ultrasonic proximity sen- 
sor. 

The acoustic metric is the term used occasionally for some distances between vowels; 
for example, Euclidean distance between vectors of formant frequencies of pronounced 
and intended vowel. (Not to be confused with acoustic metrics in General Relativity 
and Quantum Gravity.) 



Chapter 22 

Distances in Internet and Similar Networks 

22.1. SCALE-FREE NETWORKS 

A network is a graph, directed or undirected, with a positive number (weight) assigned to 
each of its arcs or edges. Real-world complex networks usually have a gigantic number N 
of vertices and are sparse, i.e., with relatively few edges. 

They tend to be small-world ([Watt99]), i.e., interpolate between regular geometric lat- 
tices and random graphs in the following sense: they have large clustering coefficient (as 
lattices in local neighborhood), while average path distance between two vertices is small, 
about In N, as in a random graph. 

The main subcase of a small-world network is a scale-free network ( [Bara01 ]) in which 
the probability for a vertex to have degree k is similar to k -y  for some positive constant F 
which usually belongs to the segment [2, 3]. This power law implies that very few vertices, 
called hubs (connectors, super-spreaders), are far more connected than other vertices. The 
power law (or long range dependent, heavy-tail) distributions, in space or time, were 
observed in many natural phenomena (both, physical and sociological). 

�9 Collaboration distance 

The collaboration distance is the path metric (see http://www.ams.org/msnmain/cgd/) 
of the Collaboration graph, having about 0.4 million vertices (authors in Mathematical 
Reviews database) with xy being an edge if authors x and y have a joint publication 
among about 2 million papers itemized in this database. The vertex of largest degree, 
1416, corresponds to Paul Erd6s; the Erd(Ys number of a mathematician is his collabora- 
tion distance to Paul Erd6s. 

The Barr's collaboration metric (http://www.oakland.edu/enp/barr.pdf) is the resis- 
tance distance in the following extension of the Collaboration graph. First, put 1-ohm 
resistor between any two authors for every joint 2-authors paper. Then, for each n- 

v/ authors paper, n > 2, add new vertex and connect it by q-ohm resistor to each of its 
co-authors. 

�9 Co-starring distance 

The co-starring distance is the path metric of the Hollywood graph, having about 
250000 vertices (actors in the Internet Movie database) with xy being an edge if the 
actors x and y appeared in a feature film together. The vertices of largest degree are 
Christofer Lee and Kevin Bacon; the trivia game Six degrees of Kevin Bacon uses the 
Bacon number, i.e., the co-starring distance to this actor. 

279 
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Similar popular examples of such social scale-free networks are graphs of musicians 
(who played in the same rock band), baseball players (as team-mates), scientific publica- 
tions (who cite each other), chess-players (who played each other), acquaintances among 
classmates in a college, business board membership, sexual contacts among members of 
a given group. The path metric of the last network is called sexual distance. Among 
other studied scale-free networks are air travel connections, word co-occurrences in hu- 
man language, power grid of Western US, network of neurons of a worm, protein in- 
teraction networks and metabolic networks (with two substrates forming an edge if a 
reaction occurs between them via enzymes). 

�9 Forward quasi-distance 

In a directed network, where edge-weights correspond to a point in time, the forward 
quasi-distance (backward quasi-distance) is the length of shortest directed path, but 
only among paths on which consecutive edge-weights are increasing (decreasing, re- 
spectively). The forward quasi-distance is useful in epidemiological networks (disease 
spreading by contact, or, say, heresy spreading within a church), while backward quasi- 
distance is appropriated in peer-to-peer file-sharing networks. 

�9 Betweenness centrality 

For a geodesic metric space (X, d) (in particular, for the path metric of a graph), the 
betweenness centrality of a point x c X is defined by 

Number of shortest (y - z) paths through x X--' 
g(x)  

Z_~ Number of shortest (y - z) paths 
y , zcX 

and the distance-mass function is a function M : R+ ~ Q, defined by 

M(a)  = 
I{y c X: d(x ,  y) + d(y ,  z) = a for some x, y c X}I 

I{(x, z) c s x x :  d(x, z) : a}l 

It was conjectured in [GOJKK02] that many scale-flee networks satisfy to power law 
g-Y (for the probability, for a vertex, to have betweenness centrality g), where g is 
either 2, or ~ 2.2 with distance-mass function M(a)  being either linear, or non-linear, 
respectively. In the linear case, for example, M(a) ~ 4.5 for the Internet AS metric, 

a 

and ~ 1 for the Web hyperlink quasi-metric. 

�9 Drift distance 

The drift distance is the absolute value of the difference between observed and actual 
coordinates of a node in a NVE (Networked Virtual Environment). In models of such 
large-scale peer-to-peer NVE (for example, Massively Multiplayer Online Games), the 
users are represented as coordinate points on the plane (nodes) which can move at dis- 
crete time-steps, and each have a visibility range called Area of  Interest. NVE creates a 
synthetic 3D world where each user assumes avatar (a virtual identity) to interact with 
other users or computer AI. 
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The term drift distance is also used for the current going through a material, in tire 
production, etc. 

�9 Semantic proximity 

For the words in a document, there are short range syntactic relations and long range 
semantic correlations. The main document networks are Web and bibliographic data- 
bases (digital libraries, scientific databases, etc.); the documents in them are related by, 
respectively, hyperlinks and citation or collaboration. 

Also, some semantic tags (keywords) can be attached to the documents in order to index 
(classify) them: terms selected by author, title words, journal titles, etc. 

The semantic proximity between two keywords x and y is their Tanimoto similarity 
IXnYI where X and Y are the sets of documents indexed by x and y, respectively. Their IxuYI' 

Ix,aYII keyword distance is defined by Ixnr ; it is not a metric. 

22.2. NETWORK-BASED SEMANTIC DISTANCES 

Among main lexical networks (such as WordNet, Medical Search Headings, Roget's 
Thesaurus, Longman's Dictionary of Contemporary English) WordNet is the most pop- 
ular lexical resource used in Natural Language Processing and Computational Linguis- 
tics. WordNet (see http://wordnet.princeton.edu) is an on-line lexical database in which 
English nouns, verbs, adjectives and adverbs are organized into synsets (synonym sets), 
each representing one underlying lexical concept. Two synsets can be linked semanti- 
cally by one of following links: upwards x (hyponym) IS-A y (hypernym) link, downwards 
x (meronym) CONTAINS y (holonym) link, or a horizontal link expressing frequent co- 
occurrence (antonymy, etc.). IS-A links induce a partial order, called IS-A taxonomy. The 
version 2.0 of WordNet has 80000 noun concepts and 13500 verb concepts, organized in 
9 and 554 separate IS-A hierarchies, respectively. In the resulting directed acyclic graph 
of concepts, for any two synsets (or concepts) x and y, let l(x, y) denotes the length of 
shortest path between them, using only IS-A links, and let L P S(x, y) denotes their least 
common subsumer (ancestor) by IS-A taxonomy. Let d(x) denote the depth of x (i.e., its 
distance from the root in IS-A taxonomy) and let D = maxx d (x). The list of main related 
semantic similarities and distances follows. 

�9 Path similarity 

The path similarity between synsets x and y is defined by 

path(x, y) - (l(x, y) ) - l .  

�9 Leacock-Chodorow similarity 

The Leacock-Chodorow similarity between synsets x and y is defined by 

lch(x, y) = - In - -  
l(x, y) 

2D 
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l(x,y) and the conceptual distance between them is defined by 
D " 

�9 Wu-Palmer  similarity 

The Wu-Palmer  similarity between synsets x and y is defined by 

wup(x, y) = 
2d(LPS(x, y)) 

d ( x ) + d ( y )  

�9 Resnik similarity 

The Resnik similarity between synsets x and y is defined by 

res(x, y) -- - In p(LPS(x, y)), 

where p(z) is the probability of encountering an instance of concept z in a large corpus, 
and - In p(z) is called information content of z. 

�9 Lin similarity 

The Lin similarity between synsets x and y is defined by 

lin(x, y) = 
2 In p(LPS(x, y)) 

In p(x) + In p(y) 

�9 Jiang-Conrath distance 

The Jiang-Conrath distance between synsets x and y is defined by 

jcn(x, y) -- 2 In p(LPS(x, y)) - (ln p(x) + In p(y)). 

�9 Lesk similarities 

A gloss of a synonym set z is the member of this set giving a definition or explanation 
of underlying concept. The Lesk similarities are those defined by a function of overlap 
of glosses of corresponding concepts; for example, the gloss overlap is 

2t(x, y) 

t(x) + t(y)' 

where t(z) is the number of words in the synset z, and t(x, y) is the number of common 
words in x and y. 

�9 Hirst-St-Onge similarity 

The Hirst-St-Onge similarity between synsets x and y is defined by 

hso(x, y) = C - L(x, y) - c k ,  

where L(x, y) is the length of a shortest path between x and y using all links, k is the 
number of changes of direction in that path, and C, c are constants. 
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The Hirst-St-Onge distance is defined by L(x,y) k 

22.3. DISTANCES IN INTERNET AND WEB 

Let us consider in detail the graphs of Web and of its hardware substrate, Internet, which 
are small-world and scale-free. 

The Internet is a publicly available worldwide computer network which came from 
ARPANET (started in 1969 by US Department of Defense), NSFNet, Usenet, Bitnet, and 
other networks. In 1995, the National Science Foundation in the US gave up the steward- 
ship of the Internet. 

Its nodes are touters, i.e., devices that forward packets of data along networks from one 
computer to another, using IP (Internet Protocol relating names and numbers), TCP and 
UDP (for sending data), and (build on top of them) HTTR Telnet, FTP and many other 
protocols (i.e., technical specifications of data transfer). Routers are located at gateways, 
i.e., at the places where at least two networks connect. The links that join the nodes to- 
gether are various physical connectors, such as telephone wires, optical cables and satellite 
networks. Internet use packet switching, i.e., data (fragmented if needed) are forwarded not 
along a previously established path, but so as to optimize the use of available bandwidth 
(bit rate, in million bits per second) and minimize the latency (the time, in milliseconds, 
needed for a request to arrive). 

Each computer linked to the Internet is given usually an unique "address", called its IP 
address. The number of possible IP addresses is 232 ~ 4.3 billion only. The most popular 
applications supported by the Internet are e-mail, file transfer, Web, and some multimedia. 

The Internet IP graph has, as the vertex-set, the IP addresses of all computers linked 
to Internet; two vertices are adjacent if a router connects them directly, i.e., the passing 
datagram makes only one hop. 

Internet also can be partitioned into ASs (administratively Autonomous Systems or do- 
mains). Within each AS the intra-domain routing is done by IGP (Interior Gateway Proto- 
col), while inter-domain routing is done by BGP (Border Gateway Protocol) which assigns 
an ASN (16-bit number) to each AS. The Internet AS graph has ASs as vertices and edges 
represent the existence of a BGP peer connection between corresponding ASs. 

The World Wide Web (WWW or Web, for short) is a major part of Internet content consist- 
ing of interconnected documents (resources). It corresponds to HTTP (Hyper Text Transfer 
Protocol) between browser and server, HTML (Hyper Text Markup Language) of encod- 
ing information for a display, and URLs (Uniform Resource Locators), giving unique "ad- 
dress" to web pages. The Web was started in 1989 in CERN which gave it for public use 
in 1993. 

The Web digraph is a virtual network, the nodes of which are documents (i.e., static 
HTML pages or their URLs) which are connected by incoming or outcoming hyperlinks, 
i.e., hypertext links. 

The number of nodes in the Web digraph was about 10 billion at 2005, and new pages 
are created at the rate of 7.3 million per day. Moreover, besides it lies the Deep or Invisible 
Web, i.e., searchable databases with number of pages (if not actual content) being about 
500 times more than on static web pages. Those pages are not indexed by search engines; 
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they have dynamic URL and so, can be retrieved only by a direct query in real time. About 
56%, 8%, 6% and 5% of web pages are in English, German, French and Japanese, respec- 
tively. In 2005, about 0.82 billion, i.e., 13% of the global population, were online. On the 
other hand, in the first 6 months of 2005 spam accounted for 61% of all e-mail traffic and 
10.866 new Windows viruses and worms were detected. 

There are several hundred thousand cyber-communities, i.e., clusters of nodes of the Web 
digraph, where link density is greater among members than between members and the rest. 
The cyber-communities (a customer group, a social network, a concept in a technical paper, 
etc.) are usually focused around a definite topic and contain a bipartite hubs-authorities 
subgraph, where all hubs (guides and resource lists) point to all authorities (useful and 
relevant pages on the topic). Examples of new media, created by Web: (we)blogs (digital 
diaries posted on Web), Wikipedia (the collaborative encyclopedia) and (in the project 
Semantic Web by WWW Consortium) linking to metadata. 

In the average, nodes of the Web digraph are of size 10 Kilobytes, out-degree 7.2, and 
probability k -2 to have out-degree or in-degree k. A study in [BKMR00] of over 200 
million web pages gave, approximatively, the largest connected component "core" of 56 
million pages, with other 44 million of pages, connected to the core (newcomers?), 44 
million to which the giant core is connected (corporations?) and 44 million connected to 
the core only by directed path. For randomly chosen nodes x and y, the probability of 
existence of directed path from x to y was 0.25 and the average length of such shortest 
path (if it exists) was 16, while maximal length of shortest path was over 28 in the core and 
over 500 in the whole digraph. 

Distances below are examples of host-to-host routing metrics, i.e., values used by rout- 
ing algorithms in the Internet, in order to compare possible routes. Examples of other 
such measures are: bandwidth consumption, communication cost, reliability (probability 
of packet loss). 

�9 Internet IP metric 

The Internet IP metric (or hop count, RIP metric, IP path length) is the path metric 
in the Internet IP graph, i.e., the minimal number of hops (or, equivalently, routers, 
represented by their IP addresses) needed to forward a packet of data. RIP imposes a 
maximum distance of 15 and advertises by 16 non-reachable routes. 

�9 Internet AS metric 

The Internet AS metric (or BGP-metric) is the path metric in the Internet AS graph, 
i.e., the minimal number of ISPs (Independent Service Providers), represented by their 
ASs, needed to forward a packet of data. 

�9 Geographic distance 

The geographic distance is the great circle distance on the Earth from client x (des- 
tination) to the server y (source). However, for economical reasons, the data often do 
not follow such geodesics; for example, most data from Japan to Europe transit via 
US. 
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�9 RTT-distance 

The RTT-distance is the RTT (Round Trip Time) of transmission between x and y, 
measured (in milliseconds) during the previous day; see [HFPMC02] for variations of 
this metric and connections with above three metrics. 

�9 Administrative cost distance 

The administrative cost distance is the nominal number (rating the trustworthiness of 
a routing information), assigned by the network to the route between x and y. For exam- 
ple, Cisco assigns values 0, 1 . . . . .  200, 255 for Connected Interface, Static Route . . . . .  
Internal BGP, Unknown, respectively. 

�9 DRP-metrics 

DD (Distributed Director) system of Cisco use (with priorities and weights) the admin- 
istrative cost distance, the random metric (selecting a random number for each IP 
address) and the DRP (Direct Response Protocol) metrics. DRP-metrics ask from all 
DRP-associated routers one of the following distances: 

1. The DRP-external metric, i.e., the number of BGP (Border Gateway Protocol) hops 
between the client requesting service and the DRP server agent; 

2. The DRP-internal metric, i.e., the number of IGP hops between the DRP server 
agent and the closest border router at the edge of the autonomous system; 

3. The DRP-server metric, i.e., the number of IGP hops between the DRP server agent 
and the associated server. 

�9 Web hyperlink quasi-metric 

The Web hyperlink quasi-metric (or click count)  is the length of the shortest directed 
path (if it exists) between two web pages (vertices in the Web digraph), i.e., the minimal 
number of needed mouse-clicks in this digraph. 

�9 Average-clicks Web quasi-distance 

The average-clicks Web quasi-distance between two web pages x and y in the Web 

digraph ([YOI03]) is the minimum Zi--lm In p-g-z~- over all directed paths x - z0, Z1, 
. . . .  Zm -- Y connecting x and y, where z + is the out-degree of the page zi. The parame- 
ter oe is 1 or 0.85, while p (the average out-degree) is 7 or 6. 

�9 Dodge-Shiode WebX quasi-distance 

The Dodge-Shiode WebX quasi-distance between two web pages x and y of the Web 
1 , where h (x, y) is the number of shortest directed paths digraph is the number h(x,y) 

connecting x and y. 

�9 Web similarity metrics 

Web similarity metrics form a family of indicators used to quantify the extent of relat- 
edness (in content, links or/and usage) between two web pages x and y. For example: 
topical resemblance in overlap terms, co-ci ta t ion (the number of pages, where both are 
given as hyperlinks), bib l iographica l  coupl ing  (the number of hyperlinks in common) 
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and co-occurrence frequency min { P (xly), P (y Ix) }, where P (xly) is the probability that 
a visitor of the page y will visit the page x. 

In particular, search-centric change metrics are metrics used by search engines on 
Web, in order to measure the degree of change between two versions x and y of a 
web page. If X and Y are the set of all words (excluding HTML markup) in x and y, 
respectively, then the word page distance is the Dice distance 

XZxYI 2 X u YI 

I x I + I Y I  x I + I Y I  

If Vx and Vy are TF-IDF (Frequency-  Inverse Document Frequency) weighted vector 
representations of x and y, then their cosine page distance is given by 

m 

(Ux, Uy ) 

vx 112" II Vy 2 

�9 Network tomography metrics 

Consider a network with fixed routing protocol, i.e., a strongly connected digraph 
D = (V, E) with unique directed path T(u, v) selected for any pair (u, v) of vertices. 
The routing protocol is described by binary routing matrix A = ((aij)), where aij = 1 if 
the arc e c E, indexed i, belongs to the directed path T (u, v), indexed j .  The Hamming 
distance between two rows (columns) of A is called distance between corresponding 
arcs (directed paths) of the network. 

Consider two networks with the same digraph, but different routing protocols with rout- 
ing matrices A and A ~, respectively. Then a routing protocol semi-metric ([Var04]) 
is the smallest Hamming distance between A and a matrix B, obtained from A ~ by 
permutations of rows and columns (both matrices are seen as strings). 



Chapter 23 

Distances in Biology 

The distances are mainly used in Biology in order to reconstruct the evolutionary history of 

organisms in the form of phylogenetic trees. In the classical approach those distances were 

based on the comparative morphology and physiology. The modern Molecular Biology 
compares DNA/protein sequences between organisms. 

DNA is a sequence of nucleotides (or nuclei acids) A, T, G and C, and it can be seen as 

a word over this alphabet of 4 letters. The nucleotides A, G (short for adenine a guanine) 

are called purines, while T, C (short for thymine and cytosine) are called pyrimidines (in 

RNA, it is uracil U instead of T). Two strands of DNA are held together (in the form of a 

double helix) by weak hydrogen bonds between corresponding nucleotides (necessarily, a 

purine and a pyrimidine) in the strands alignment. Those pairs are called base pairs. 
A transition mutation is a substitution of a base pair, so that a purine/pyrimidine is re- 

placed by another purine/pyrimidine; for example, GC is replaced by AT. A transversion 
mutation is a substitution of a base pair, so that a purine/pyrimidine is replaced by a pyrim- 

idine/purine base pair, or vice versa; for example, GC is replaced by TA. 

DNA molecules occur (in the nuclei of eukaryote cells) in the form of long strings, called 

chromosomes. Most human cells contain 23 pairs of chromosomes, one set of 23 from 

each parent; human gamete (sperm or egg) is a haploid, i.e., contains only one set of 23 

chromosomes. The (normal) males and females differ only in 23rd pair of chromosomes: 

X Y for males, and XX for female. 

A gene is a contiguous stretch of DNA which encodes (via transcription to RNA and 

then, translation) a protein or an RNA molecule. The location of a gene on its specific 

chromosome is called gene locus. Different versions (states) of a gene are called its alleles. 
Only less than 2% of human DNA are in genes; the functions, if any, of the remainder are 

unknown. 

A protein is a large molecule which is a chain of amino acids; among them are hormones, 

catalysts (enzymes), antibodies, etc. There are twenty amino acids; the three-dimensional 

shape of a protein is defined by the (linear) sequence of amino acids, i.e., by a word in this 

alphabet in 20 letters. 

The genetic code is universal to (almost) all organisms correspondence between some 

codons (i.e., ordered triples of nucleotides) and 20 amino acids. It express the genotype 
(information contained in genes, i.e., in DNA) as the phenotype (proteins). Three stop 
codons (UAA, UAG, and UGA) signify the end of a protein; any two, among 61 remaining 

codons, are called synonymous if they correspond to the same amino acids. 

288 
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A genome is entire genetic constitution of a species or of a living organism. For example, 
the human genome is the set of 23 chromosomes consisting of about 3000 million base 
pairs of DNA and organized into about 20000-25000 genes. 

IAM (for infinite-alleles model of evolution) assumes that an allele can change from any 
given state into any other given state. It corresponds to primary role for genetic drift (i.e., 
random variation in gene frequencies from one generation to another); especially, in small 
populations over natural selection (stepwise mutations). IAM is convenient for allozyme 
data (allozyme is a form of a protein which is encoded by one allele at a specific gene locus). 
SMM (for step-wise mutation model of evolution) is more convenient for (recently, most 
popular) micro-satellite data. Micro-satellites are highly variable repeating short sequences 
of DNA; their mutation rate is 1 per 1000-10000 replication events, while it is 1/1000000 
for allozymes. It turns out that micro-satellites alone contain enough information to plot 
the lineage tree of a organism. Micro-satellite data (for example, for DNA fingerprinting) 
consists of numbers of repeats of micro-satellites for each allele. 

Evolutionary distance between two populations (or taxa) is a measure of genetic diver- 
gence estimating the divergence time, i.e., the time that has past since those populations 
existed as a single population. 

Phylogenetic distance (or genealogical distance) between two taxa is the branch 
length, i.e., a minimum number of edges, separating them on a phylogenetic tree. 

Immunological distance between two populations is a measure of the strength of 
antigen-antibody reactions, indicating the evolutionary distance separating them. 

23.1. GENETIC DISTANCES FOR GENE-FREQUENCY DATA 

In this section, a genetic distance between populations is a way of measuring the amount 
of evolutionary divergence by counting the number of allelic substitutions by loci. 

n A population is represented by a double-indexed vector x - -  ( x i j )  with ~ j - 1  rrlj  com- 

ponents, where xij is the frequency of i-th allele (the label for a state of a gene) at the j-th 
gene locus (the position of a gene on a chromosome), m j is the number of alleles at the 
j-th locus, and n is the number of considered loci. 

Denote by ~ summation over all i and j .  Since xij is the frequency, it holds Xij ~ O, 
m j  

and ~ i=1  xij - 1. 

�9 Stephens et al. shared allele distance 

The Stephens et al. shared allele distance between populations is defined by 

m 
SA(x, y) 

SA(x) + SACy) 

where, for two individuals a and b, SA(a, b) denotes the number of shared alleles 
summed over all n loci and divided by 2n, while SA(x), SA(y), and SA(x, y) are SA(a, b) 
averaged over all pairs (a, b) with individuals a, b being in populations, represented by 
x, by y and, respectively, between them. 
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�9 D p s  distance 

The Dps distance between populations is defined by 

- -  I n  
min{xij , Yij } 

�9 Prevosti-Ocana-Alonso distance 

The Prevosti-Ocana-Alonso distance between populations is defined (cf. L ]-metric) 
by 

Ixij - Yij l 
2n 

�9 Roger distance 

The Roger distance is a metric between populations, defined by 

1 ~ ( x i j  - -  Y i j ) 2  

~/2f/ j = l  i=1 

�9 Cavalli-Sforza-Edvards chord distance 

The Cavalli-Sforza-Edvards chord distance between populations is defined by 

2v/-2 1 -- Z x/Xij Yij. 
Jr j--1 i--1 

It is a metric. (Cf. Hellinger distance.) 

�9 Cavalli-Sforza arc distance 

The Cavalli-Sforza arc distance between populations is defined by 

Jr arccos ~ ~/xij Yij �9 

(Cf. Fisher distance in Probability.) 

�9 Nei-Tajima-Tateno distance 

The Nei-Tajima-Tateno distance between populations is defined by 

1 Z x/xiJYiJ" 
fl 
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�9 N e i  m i n i m u m  g e n e t i c  d i s t a n c e  

The N e i  m i n i m u m  g e n e t i c  distance between populations is defined by 

1 )2 
2n Z (xij -- Yij �9 

(Cf. squared Euclidean distance.) 

�9 N e i  s t a n d a r d  g e n e t i c  d i s t a n c e  

The Nei standard genetic distance between populations is defined by 

- I n / ,  

(x,y) (cf. Bhattacharya where I is Nei normalized identity of genes, defined by IIxH2:llyll2 

distances in Probability and angular semi-metric). 

�9 S a n g v i  X 2 d i s t a n c e  

The Sangvi )f 2 distance between populations is defined by 

2 Z (Xij -- Yij)  2 

n x i j  -+- Yij 

�9 F-statistics distance 

The F-statistics distance between populations is defined by 

(Xij -- Yij )2 

2(n - ~ xij Yij) 

�9 F u z z y  set  d i s t a n c e  

The Dubois-Prade's fuzzy set distance between populations is defined by 

Z lxij•Yij 
~ =  " lmj  

�9 K i n s h i p  d i s t a n c e  

The kinship distance between populations is defined by 

- In(x,  y) ,  

and (x, y) is called kinship coefficient. 

�9 Reynolds-Weir-Cockerham distance 

The Reynolds-Weir-Cockerham distance (or co-ancestry distance) between popula- 
tions is defined by 

- ln(1  - 0 ) ,  
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where co-ancestry coefficient 0 of two individuals (or two populations) is the proba- 
bility that a randomly picked allele from one individual (or from genetic pool of one 
population) is identical by descent (i.e., corresponding genes are physical copies of the 
same ancestral gene) to a randomly picked allele in another. Two genes can be identical 
by state (i.e., with the same allele label), but not identical by descent. The co-ancestry 
coefficient 0 of two individuals is the inbreeding coefficient of their following genera- 
tion. 

�9 Goldstein and al. distance 

The Goldstein and al. distance between populations is defined by 

1 Z ( i x i j  __ iyij)2" 
n 

�9 Average square distance 

The average square distance between populations is defined by 

--nl ~ I ~ (i -- j)2xikYjk ) .  
k = l  l~i<j~mj 

�9 Shriver-Boerwinkle stepwise distance 

The Shriver-Boerwinkle stepwise distance between populations is defined by 

n 
k = l  l~i,j~mk 

li - jl(2XikYjk -- XikXjk -- YikYjk). 

23.2. DISTANCES FOR DNA DATA 

Distances between DNA or protein sequences are usually measured in terms of sub- 
stitutions, i.e., mutations, between them. A DNA sequence will be seen as a sequence 
x - (xl, . . . ,  Xn) over 4-letter alphabet of four nucleotides A, T, C, G; ~ d e n o t e s  Z i - - l n  . 

�9 No. of differences 

The No. of DNA differences is just the Hamming metric between DNA sequences: 

Z lxicYi" 

�9 p-distance 

The p-distance dp between DNA sequences is defined by 

n 
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�9 Jukes-Cantor nucleotide distance 

The Jukes-Cantor nucleotide distance between DNA sequences is defined by 

4 ) 
- - 4  - g d p ( x ,  y )  , 

where dp is the p-distance. If the rate of substitution varies with the gamma distribution, 
and a is the parameter describing the shape of this distribution, then the gamma distance 
for the Jukes-Cantor model is defined by 

3a ( ( 1  _ 4 )-l/a ) 
4 5 dp(x' y) - 1 . 

�9 Tajima-Nei distance 

The Tajima-Nei distance between DNA sequences is defined by 

- b  ln(1 - dp(x' Y) ) 
b 

where 

( z ( ) 2  z ( ) 2 )  lxi=Yi= j 1 lxiCy i 1 1-  + -  , 
b - z: n c n 

j=A,T,C,G 

( Z  l(xi,Yi)=(j,k)) 2 

C -- -~ i,k6{A,T,G,C}, j r  

and 

1 Let P -- n1[{1 <~ i <~ n" { x i , Y i } -  {A, G} or {T, C}}l, and Q -  n[{1 ~< i ~< n" 
{xi, Yi } = {A, T} or {G, C}}I, i.e., P and Q are the frequencies of, respectively, transition 
and transversion mutations between x and y. The following four distances are given in 
terms of P and Q. 

�9 Jin-Nei gamma distance 

The Jin-Nei gamma distance between DNA sequences is defined by 

(1 - 2 P -  Q)-l/a + ~(1 - 2 Q ) -  - ~ , 

where the rate of substitution varies with the gamma distribution, and a is the parameter 
describing the shape of this distribution. 

�9 Kimura 2-parameter distance 

The Kimura  2-parameter distance between DNA sequences is defined by 

1 1 
l n ( 1 - 2 P -  Q ) - ~ l n v / 1 - 2 Q .  
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�9 Tamura 3-parameter  distance 

The Tamura 3-parameter  distance between DNA sequences is defined by 

- b l n  1 b Q - ~ ( 1 - b ) l n ( 1 - 2 Q ) ,  

1 1 where f x  - ~l{1 ~ i <~ n" X i - -  G or C}l, f y  - ~l{1 ~ i <~ n" yi - G or C}l, and 

b= f~+ fy -2 f~ fy .  
In the case f x  - f y  - �89 (so, b - -{), it is the Kimura  2-parameter  distance. 

�9 T a m u r a - N e i  distance 

The T a m u r a - N e i  distance between DNA sequences is defined by 

2 f A f G  ln 1 fR  P A G - - - - P R Y  In 1 
fR 2fAfc 2fR fr 2fr fc  

_ 2 ( f R f y _ f A f G f y f r f c f R ) l n ( 1  1 ) 
f R - f Y 2 f R----~r PRY , 

- -  PTC 2 f y 

1 where f j  - N7 ~ (1 xi =j + 1 yi =j ) for j - A, G, T, C, and fR  -- fA  + fG,  fY  -- f r  + f c ,  
1 while PRY -- ~l{1 <~ i <~ n" I{xi, Yi} A {A, G} -- I{xi, Yi} A {T, C}l - 1}1 (the 

1 proportion oftransversion differences), PAG -- ~l{1 <~ i <~ n" {xi, Yi} -- {A, G}}l (the 
1 proportion oftransitions within purines), and Prc - ~l{1 <~ i <~ n" {xi, Yi} - {T, C}}l 

(the proportion of transitions within pyrimidines). 

�9 Garson et al. hybridizat ion metric 

H-measure between two DNA n-sequences x and y is defined by 

H ( x ,  y) -- min Z lxigyL~'  
-n<.k<.n  

where indexes i + k are modulo n, and y* is the reversal of y followed by Watson-Crick  
complementation,  i.e., interchange of all A, T, G, C by T, A, C, G, respectively. 

An DNA cube is any maximal set of DNA n-sequences, such that H (x, y) = 0 for any 
two of them. The Garson at al. hybridizat ion metric between DNA cubes A and B is 
defined by 

min H(x,  y). 
x c A , y c B  

23.3. DISTANCES FOR PROTEIN DATA 

A protein sequence will be seen as a sequence x = (xl . . . . .  Xn) over 20-letter alphabet of 
20 amino acids; }~ denotes }~i~1. 
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There are several notions of similarity/distance on the set of 20 amino acids, based, for 
example, on their hydrophilicity, polarity, charge, shape, etc. Most important are 20 x 20 
DayhoffPAM250 matrix which express relative mutability of 20 amino acids�9 

�9 PAM distance 

The PAM distance (or Dayhoff -Eck distance, PAM value) between protein sequences 
is defined as the minimal number of accepted (i.e., fixed) point mutations per 100 amino 
acids needed to transform one protein into another. 1 PAM is an unit of evolution: it 
corresponds to 1 point mutation per 100 amino acids. PAM values 80, 100, 200, 250 
correspond to the distance (in %) 50, 60, 75, 92 between proteins. 

�9 No. of protein differences 

The No. of protein differences is just the Hamming metric between protein sequences: 

Z lxir 

�9 Amino p-distance 

The amino p-distance (or uncorrected distance) dp between protein sequences is de- 
fined by 

Z lxi~Yi 
n 

�9 Amino Poisson correction distance 

The amino Poisson correction distance between protein sequences is defined, via 
amino p-distance dp, by 

- l n ( 1  - dp(x, y)). 

�9 Amino gamma distance 

The amino gamma distance (or Poisson correction gamma distance) between protein 
sequences is defined, via amino p-distance dp, by 

a((1 - dp(x, y))- l /a _ 1), 

where the substitution rate varies with i = 1 . . . . .  n according to gamma distribution, 
and a is the parameter describing the shape of the distribution�9 For a = 2�9 and a = 
0�9 it estimates Dayhoff and Grishin distances, respectively�9 In some applications, 
this distance with a = 2�9 is called simply Dayhoff  distance. 

�9 Jukes-Cantor protein distance 

The Jukes-Cantor  protein distance between protein sequences is defined, via amino 
p-distance dp, by 

20191n( 1-20,~ ) -:-=dp(x, y) . 



296 [ �9 R N A  s t r u c t u r a l  d i s t a n c e ]  Part VI: Distances in Natural Sciences 

�9 Kimura protein distance 

The Kimura protein distance between protein sequences is defined, via amino p- 
distance dp, by 

- l n  1 - d p ( x  y) - dP , 
' 5 " 

�9 Grishin distance 

The Grishin distance d between protein sequences can be obtained, via amino p- 
distance dp, from the formula 

ln(1 + 2d(x, y)) 

2d(x, y) 
: 1 - dp(x, y). 

�9 Edgar k-mer distance 

The Edgar k-mer distance between sequences x - (xl . . . . .  X m) and y - (Yl . . . . .  Yn) 
over a compressed amino acid alphabet is defined by 

1 
In 

~ a  min{x(a), y(a)} 

m i n { m , n } - k ~ l  J' 

where a is any k-mer (a word of length k over the alphabet), while x(a) and y(a) are the 
number of times a occurs in x and y, respectively, as a block (contiguous subsequence). 
(Cf. q-gram similarity.) 

23.4. O T H E R  B I O L O G I C A L  DISTANCES 

�9 RNA structural distance 

An RNA (sequence) is a string over the alphabet {A, C, G, T} of nucleotides (bases). 
Inside a cell, such string folds in 3D space, because of pairing of nucleotide bases (usu- 
ally, by bonds A-U,  G-C and G-U). The secondary structure of an RNA is, roughly, 
the set of helices (or the list of paired bases) making up the RNA. This structure can 
be represented as planar graph and further, as rooted tree. The tertiary structure is the 
geometric form the RNA takes in space. 

An RNA structural distance between two RNA sequences is a distance between their 
secondary structures. Examples of such RNA distances are: tree edit distance (and other 
distances on rooted trees given in Chapter 15), and the base-pair distance, i.e., the 
symmetric difference metric between secondary structures seen as sets of paired bases. 

In in silico (i.e., computer-simulated) RNA evolution, the fitness of an RNA sequence x 
is the metric transform f ( d ( x ,  XT)), where f : R~>0 --+ R~>0 is a scaling function, and 
d(x,  XT) is an RNA structural distance between the sequence x and the selected fixed 
target RNA sequence XT. 
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�9 Distances for genome permutat ions 

The genomes of two related species, given by the order of genes along chromosomes, 
for large (i.e., happening on large portion of the chromosome) mutations, can be seen 
as genome rearrangements and, so, as permutations (or rankings) of homologous genes. 
Therefore, many chromosomal rearrangements can be presented then as indels (inser- 
tions or deletions), inversions, transpositions, reversals and other editing operations. 
Some of those operations have biological meaning for DNA/protein sequences as well. 

A distance for genome permutat ions is the edit distance with respect of given set 
of editing operations, i.e., the minimal number of those editing operations needed to 
transform one permutation into another. If one attach a positive number (cost or weight) 
to each permitted editing operation, then the distance is minimal sum of weights in 
a sequence of operations transforming one permutation into another. If one takes into 
account the directionality of the genes, a chromosome is described by a signed permu- 
tation, i.e., by a vector x = (xl . . . . .  xn), where Ixil are different numbers 1 . . . . .  n, and 
any Xi can be positive or negative. 

An example of distance measures between genomes (or species), seen as collections of 
sets of genes, is Ferret t i -Nadeau-Sankoff  syntenic distance. It is the minimal number 
of mutation moves - translocations (exchanges of genes between two chromosomes), 
fusions (of two chromosomes in one) and fissions (of one chromosome in two) - needed 
to transfer one genome into another. 

�9 Genome distance 

The genome distance between two loci on a chromosome is the number of base pairs 
separating them on the chromosome. 

�9 Map distance 

The map distance between two loci on a genetic map is the recombination frequency 
expressed as a percentage; it is measured in centimorgans cM (or map units), where 1 
cM corresponds to their statistically corrected recombination frequency 1%. 

Typically, a linkage map distance of 1 cM (genetic scale) corresponds to a genome 
distance (physical scale) of about one megabase (million base pairs). 

�9 Metabolic  distance 

The metabolic  distance (or pathway distance) between enzymes is the minimum num- 
ber of metabolic steps separating two enzymes in the metabolic pathways. 

�9 Gendron et al. distance 

The Gendron et al. distance between two base-base interactions, represented by 4 • 4 
homogeneous transformation matrices X and Y, is defined by 

s ( x Y  -~) + s ( x  -~ Y) 

2 

where S(M) -- v/12 + (0/ol) 2, 1 is the length of translation, 0 is the angle of rotation, 
and o~ represents a scaling factor between the translation and rotation contributions. 
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�9 Biotope distance 

The biotopes here are represented as binary sequences x = (x] . . . . .  Xn), where Xi = 

1 means the presence of the species i. The biotope distance (or Tanimoto distance) 
between biotopes x and y is defined by 

I{1 ~ i ~ n: X i r Yi}l 

I{1 ~ i ~ n: X i -~- Yi > 0}1 

�9 Taxonomic distance 

Given a finite metric space (X, d) (usually, an Euclidean space) and a selected, as typical 
by some criterion, vertex x0 c X, called prototype (or centroid), the taxonomic distance 
of every x c X is the number d(x, xo). Usually, the elements of X represent phenotypes 
or morphological traits. The average of d(x, xo) by x c X estimates corresponding 
variability. 

The term taxonomic distance is also used in Phylogenetic Taxonomy for every dissim- 
ilarity between two taxa, i.e., entities or groups which are arranged into an hierarchy. 

�9 Victor-Purpura distance 

A spike train x is a time sequence (x] . . . . .  Xn) of n events (for example, neuronal spikes, 
or hearth beats). The time sequence lists either absolute spike times, or inter-spike time 
intervals. A human brain has about 100 billion of neurons (nerve cells). A neuron reacts 
on a stimulus by producing a spike train which is a sequence of short electrical pulses 
called spikes. 

The Victor-Purpura distance between two spike trains x and y is a cost-based editing 
metric (i.e., the minimal cost of transforming x into y) by the following operations with 
their associated costs: insert a spike (cost 1), delete a spike (cost 1), shift a spike by an 
amount of time t (cost qt, where q > 0 is a parameter). 

In order to compare reactions of a population of neurons on two different stimuli, the 
Chernoff distance between corresponding distributions of spike counts is used. 

�9 Oliva et al. perception distance 

Let {s] . . . . .  Sn} be the set of stimuli, and let qij be the conditional probability that a 
subject will perceive stimulus S j ,  when the stimulus S i was shown; so, qij ~/ O, and 

1 qij - -  1. Let qi is the probability of presenting stimulus si 

The Oliva at al. perception distance ([OSLM04]) between stimuli si and sj is defined 
by 

1 ~ qik q j k .  

qi + qj k=l qi qj 

�9 Probability-distance hypothesis 

In Psychophysics, the probability-distance hypothesis is a hypothesis that the probabil- 
ity with which one stimulus is discriminated from another is a (continuously increasing) 
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function of some subjective quasi-metric between these stimuli (see [Dzha01]). Under 
this hypothesis, such subjective metric is a Finsler metric if and only if it coincides in 
the small with the intrinsic metric (i.e., the infimum of the lengths of all paths connect- 
ing two stimuli). 

�9 Marital  distance 

The marital distance is a distance between birthplaces of spouses (or zygotes). 

�9 Isolation-by-distance 

Isolation-by-distance is a biological model predicting that the genetic distance be- 
tween populations increases exponentially with respect to geographic distance. There- 
fore, emergence of regional differences (races) and new species is explained by restricted 
gene flow and adaptive variations. Isolation-by-distance was studied, for example, via 
surname structure (cf. Lasker distance). 

�9 Malecot's  distance model  

The Malecot's  distance model  is a migratory model of isolation by distance, expressed 
by the following Malecot 's  equation for dependency of alleles at two loci (allelic asso- 
ciation, or linkage disequilibrium) Pet: 

Pet - (1 - L ) M e  eel + L,  

where d is distance between two loci (either genome distance in base pairs, or map 
distance in centimorgans), ~ is a constant for a specified region, L = lim~/~0 p~/, and 
M ~< 1 is a parameter expressing mutation rate. 

�9 Lasker distance 

The Lasker distance (Rodrigues-Larralde et al., 1989) between two human popula- 
tions x and y, characterized by surname frequency vectors (xi) and (Yi), is the number 

1 - In 2Rx,y, where Rx,y = ~ ~ i  xi Yi is Lasker's coefficient o f  relationship by isonymy. 
Surname structure is related to inbreeding and (in patrilinear societies) to random ge- 
netic drift, mutation and migration. Surnames can be considered as alleles of one locus, 
and their distribution can be analyzed by the theory of neutral mutations; an isonymy 
points to a common ancestry. 

�9 Surname distance model  

A surname distance model  was used in [COR05], in order to estimate the preference 
transmission from parents to children by comparing, for 47 provinces of mainland Spain, 
the 47 • 47 distance matrices for surname distance with those of consumption dis- 
tanee and cultural distance. The distances were/1-distances Z i  Ixi -- Yil between the 
frequency vectors (xi), (Yi) of provinces x, y, where Zi is, for the province z, either the 
frequency of i-th surname (surname distance, or the budget share of i-th good con- 
sumption distance, or cultural distance the population rate for i-th cultural issue (rate 
of weddings, newspaper readership, etc.), respectively. 

Other considered there (matrices of) distances are: 
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- the geographical distance (in kilometers, between the capitals of two provinces); 
- the income distance Ira(x) - m(y)l, where re(z) is mean income in the province z; 
- the climatic distance ~1<~i<~12 X i  - -  Yi I, where Zi is the average temperature in the 

province z during i-th month; 
- the migration distance ~ 1 <~i ~<47 I x i  - -  Yi I, where Zi is the percentage of people (living 

in the province z) born in the province i. 

Strong vertical preference transmission, i.e., correlation between surname and consump- 
tion distances, was detected only for food items. 

�9 Distance model  of altruism 

In Evolutionary Ecology, altruism is explained by kin selection and group selection, 
and it supposed to be a driving force of the transition from unicellular organisms to 
multicellularity. The distance model  of altruism (see [Koel00]) suggests that altruists 
spread locally, i.e., with small interaction distance and offspring dispersal distance, while 
the evolutionary response of egoists is to invest in increasing of those distances. The 
intermediate behaviors are not maintained, and evolution will lead to a stable bimodal 
spatial pattern. 

�9 Distance running model  

The distance running model  is a model of antropogenesis proposed in [BrLi04]. 
B ipedality is a key derived behavior of hominids which appeared 4.5-6 million years 
ago. However, australopithecines were still animals. The genus Homo which emerged 
about 2 million years ago already could produce rudimentary tools. Bramble-Lieberman 
model attributes this transition to a suite of adaptations specific to running long distances 
in the savanna. They specify how endurance running, a derived capability of Homo, de- 
fined the human body form, producing balanced head, low/wide shoulders, narrow chest, 
short forearms, large hip, etc. 



Chapter 24 

Distances in Physics and Chemistry 

24.1. DISTANCES IN PHYSICS 

Physics  studies the behavior and properties of matter in a wide variety of contexts, rang- 
ing from the sub-microscopic particles from which all ordinary matter is made (Particle 

Physics)  to the behavior of the material Universe as a whole (Cosmology) .  Physics forces 
which act at a distance (i.e., a push or pull which acts without "physical contact") are nu- 
clear and molecular attraction, and, beyond atomic level, gravity (completed, perhaps, by 
anti-gravity), static electricity, and magnetism. Last two forces can be both, push and pull. 
Distances on small scale are treated in this chapter, while large distances (in Astronomy 
and Cosmology) are object of chapters 25 and 26. In fact, the distances having physical 
meaning range from 1.6 x 10 -35 m (Planck length) to 7.4 x 1026 m (the estimated size 
of observable Universe). At present, Theory of Relativity, Quantum Theory and Newton's 
laws permit to describe and predict the behavior of physical systems in range 10 -15 - 1025 
m .  

�9 M e c h a n i c  d i s t a n c e  

The m e c h a n i c  d i s t a n c e  is the position of a particle as a function of time t. For a particle 
with initial position x0 and initial speed v0, which acted upon by a constant acceleration 
a, it is given by 

1 2 
x ( t )  - xo + rot + - a t  . 

2 

The distance fallen under uniform acceleration a, in order to reach a speed v, is given 
v 2 

byx  - 2 a "  

A free  fa l l ing body is a body which is falling subject only to acceleration by gravity g. 
The distance fallen by it, after a time t, is �89 gt2; it is called the free fall dis tance .  

�9 T e r m i n a l  d i s t a n c e  

The t e r m i n a l  d i s t a n c e  is a distance of an object, moving in a resistive medium, from an 
initial position to a stop. 

Given an object of mass m moving in a resistive medium (where the drag per unit mass 
is proportional to speed with constant of proportionality/~, and there is no other force 
acting on a body), the position x ( t )  of a body with initial position x0 and initial velocity 

v0 v0 is given by x ( t )  - xo + 7 ( 1  - e-#t).  The speed of the body v( t )  - x~(t) - roe -# t  

301 
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decreases to zero over time, and the body reaches a m a x i m u m  t ermina l  d is tance  

Xterminal - -  lim x (t) -- xo + - -  t--+oo 
V0 

For a projectile, moving with initial position (x0, Y0) and initial velocity (Vx0, vy0), the 

position ( x ( t ) ,  y ( t ) )  is given by x ( t )  - xo + 5~(1 - e - ~ t ) ,  y ( t )  - (Yo + vy~ g fl f12) .2f_ 
vY~ -g e -/~t . The horizontal motion gets stopped to reach a maximum terminal distance 

X t e r m i n a l  - -  XO -~- - -  
Ux 0 

�9 Bal l ist ics  d is tances  

Bal l i s t ics  is the study of the motion of projec t i les ,  i.e., bodies which are propelled (or 
thrown) with some initial velocity, and then allowed to be acted upon by the forces of 
gravity and possible drag. 

The horizontal distance traveled by a projectile is called range, the maximum upward 
distance reached by it is called height, and the path of the object is called t rajectory.  

For a projectile launched with a velocity v0 at an angle 0 to the horizontal, the range is 
given by 

x ( t )  - rot  cos 0, 

where t is the time of motion. On a level plane, where the projectile lands at the same 
altitude as it was launched, the full range is 

v 2 sin 20 
X m a x  = - - ,  

which is maximized when 0 - Jr/4. If the altitude of the landing point is A h  higher that 
of the launch point, then 

X m a x  = 
v2sin201 I 2 A h g  11//21 l +  1 -  

2g v 2 sin 2 0 

The height  is given by 

v0 sin 2 0 

2g 

and is maximized when 0 = re/2. 

The arc length of the t ra jec tory  is given by 

v2 (sin 0 + cos 20gd  -1 (0)), 
g 
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where gd(x )  - f o  at is the Gudermannian function. The arch length is maximized 

when g d -  1 (0) sin 0 - (f0 ~ ~/t c--0-~) sin 0 - 1, and approximate solution is given by 0 
0.9855. 

�9 Acoustic metric 

In Acoustics, the acoustic metric (or sonic metric) is a characteristic of sound-carrying 
properties of a given medium: air, water, etc. 

In General Relativity and Quantum Gravity, it is a characteristic of signal-carrying prop- 
erties in a given analog model (with respect to Condense Matter Physics), where, for 
example, the propagation of scalar fields in curved space-time is modeled (see, for ex- 
ample, a survey [BLV05]) as the propagation of sound in a moving fluid, or slow light in 
moving fluid dielectric, or superfluid (quasi-particles in quantum fluid), etc. The passage 
of a signal through an acoustic metric itself modifies the metric; for example, the motion 
of sound in air moves air and modifies the local speed of the sound. Such "effective" 
(i.e., recognized by its "effects") Lorentzian metric governs, instead of the background 
metric, the propagation of fluctuations: the particles associated to the perturbations fol- 
low geodesics of that metric. 

In fact, if a fluid is barotropic and inviscid, and the flow is irrotational, then the propa- 
gation of sound is described by an acoustic metric which depends on the density p of 
flow, velocity v of flow and local speed s of sound in the fluid. It can be given by the 
acoustic tensor 

g - g ( t , x ) -  p - ( s Z - v Z ) ' - v ~ r  

s "-v �9 "1"3" ' 

where 13 is the 3 • 3 identity matrix, and v = IIvll. The acoustic line element can be 
written as 

ds 2 - P ( - ( s  2 - vZ)d t  2 - 2 v d x d t  + (dx) 2) - P ( - s Z d t  2 + ( d x -  vdt)2) .  
S S 

The signature of this metric is (3, 1), i.e., it is a Lorentzian metric. If the speed of the 
fluid becomes supersonic, then the sound waves will be unable to come back, i.e., there 
exists a mute hole, the acoustic analog of a black hole. 

�9 Healing length 

For a superfluid, the healing length is a length over which the wave function can vary 
while still minimizing energy. 

For Bose-Einstein condensates, the healing length is the width of the bounding region 
over which the probability density of the condensate drops to zero. 

�9 Optical distance 

In Optics and Telecommunications, the optical distance (or optical path length) is a 
distance traveled by light: the physical distance in a medium multiplied by the index of 
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refraction of the medium. By Fermat's principle light always follows the shortest optical 
path. 

For a series of continuous layers with index of refraction n(s) as a function of distance 
s, it is given by 

c n(s) ds. 

For a series of discrete layers with indices of refraction ni and thicknesses si, it is equal 
t o  

N 

Z __ - -  
nis i  ko 

i=1 

where ~ is the phase shift, and ko is the vacuum wave number. 

�9 Spatial coherence length 

The spatial coherence length is the propagation distance from a coherent source to 
a point where an electromagnetic wave maintains a specific degree of coherence. This 
notion is used in Telecommunication Engineering (usually, for optical regime) and in 
synchrotron X-ray Optics (the advanced characteristics of synchrotron sources provide 
highly coherent X-rays). The spatial coherence length is about 20 cm, 100 m, and 100 km 
for helium-neon, semiconductor and fiber lasers, respectively. Cf. temporal coherence 
length which describes the correlation between signals observed at different moments of 
time. 

For vortex-loop phase transitions (superconductors, superfluid, etc.), coherence length 
is the diameter of the largest loop which is thermally exited. 

�9 Inverse-square distance laws 

Any law stating that some physical quantity is inversely proportional to the square of the 
distance from the source that quantity. 

Law of universal gravitation (Newton-Bullialdus): the gravitational attraction between 
two massive point-like objects is directly proportional to the product of their masses and 
inversely proportional to the square of the distance between them. The existence of extra 
dimensions, thought by M-theory, will be experimentally checked in 2007 (the opening 
at CERN, near Geneva, of LHC, i.e., large hadron collider), basing on the inverse pro- 
portionality of the gravitational attraction in n-dimensional space to the (n - 1)-degree 
of the distance between objects; if the Universe have 4-th dimension, LHC will find out 
the inverse proportionality to the cube of the small inter-particle distance. 

Coulomb's law: the force of attraction or repulsion between two (stationary) charged 
point particles is directly proportional to the product of charges and inversely propor- 
tional to the square of the distance between them. 

The intensity (power per unit area in the direction of propagation) of a spherical wave- 
front (light, sound, etc.) radiating from a point source decreases (assuming that there are 

2 no losses caused by absorption or scattering) is inversely proportional to the square r 
of the distance from the source. However, for a radio wave, it decrease like ~. 
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�9 Range of fundamental forces 

The fundamental forces (or interactions) are gravity and electromagnetic, weak and 
strong forces. The range of a force is considered short if it decays (approach 0) ex- 
ponentially as d increases. Both, electromagnetic force and gravity, are forces of infinite 
range which obey inverse-square distance laws. Both, weak and strong forces, are very 
short range (about 10 - i s  m and 10 -15 m) which is limited by the uncertainty principle. 

�9 Long range order 

A physical system has long range order if remote portions of the same sample ex- 
hibit correlated behavior. For example, in crystals and some liquids, the positions of an 
atom and its neighbors define positions of all other atoms. Examples of long range order 
in solids are: magnetism, charge density waves, superconductivity. Short range is the 
first- or second-nearest neighbors of an atom. More precisely, the system has long range 
order, quasi-long range order or is disordered if corresponding correlation function de- 
cays, for large distances, to a constant, to zero as a polynomial, or to zero exponentially 
(cf. long range dependency). 

�9 Action at a distance (in Physics) 

An action at a distance is the interaction, without known mediator, of two objects sep- 
arated in space. Einstein used term spooky action at a distance for quantum mechanical 
interaction (like entanglement and quantum non-locality) which is instantaneous, regard- 
less of distance. Main conceptions of interaction at a distance are Newton instantaneous 
long range interaction and Faraday-Maxwell short range interaction. Already controver- 
sial (since speed of light is maximal) long range interaction reach status of marginality 
for "mental action at a distance": telepathy, clairvoyance, precognition, psychokinesis, 
etc. 

The term short range interaction is also used for the transmission of action on distance 
by a material medium from a point to a point with certain velocity dependent on proper- 
ties of this medium. Also, in Information Storage, the term near-field interaction is used 
for very short distance interaction using scanning probe techniques. 

�9 Interaction distance 

The interaction distance between two particles is the farthest distance of their approach 
at which it is discernible that they will not pass at the impact parameter, i.e. their distance 
of closest approach if they had continued to move in their original direction at their 
original speed. 

�9 Hopping distance 

The hopping is atomic-scale long range dynamics that control diffusivity and conduc- 
tivity. For example, oxidation of DNA (loss of an electron) generates a radical cation 
which can migrate long (more that 20 nanometers) distance, called hopping distance, 
from site to site (to "hop" from one aggregate to another) before it is trapped by reaction 
with water. 
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�9 Skin depth 

The skin depth of a substance is the distance to which incident electromagnetic radiation 
penetrates. The skin depth is given by 

~/2rro- #co ' 

where c is the speed of light, ~ is the electrical conductivity, # is the permeability, and 
co is the angular frequency. (Not to be confused with source-skin medical distance). 

�9 Gyroradius 

The gyroradius (or cyclotron radius) is the radius of the circular orbit of a charged 
particle (for example, energetic electron that is ejected from Sun) gyrating around its 
gliding center. 

24.2. DISTANCES IN CHEMISTRY 

Main chemical substances are ionic (held together by ionic bonds), metallic (giant close 
packed structures held together by metallic bonds), giant covalent (as diamond and 
graphite), or molecular small covalent). Molecules are made of fixed number of atoms 
joined together by covalent bonds; they range from small (single-atom molecules in the 
noble gases) to very large ones (as in polymers, proteins or DNA). The interatomic dis- 
tance of two atoms is the distance (in angstroms or picometers) between their nuclei. 

�9 Atomic radius 

Quantum Mechanics implies that an atom is not a ball having exactly defined boundary. 
Hence, atomic radius is defined as the distance from the atomic nucleus to the outmost 
stable electron orbital in a atom that is at equilibrium. Atomic radii represent the sizes 
of isolated, electrically neutral atoms, unaffected by bonding. 

Atomic radii are estimated from bond distances if the atoms of the element form bonds; 
otherwise (like the noble gases), only Van-der-Waals radii are used. 

The atomic radii of elements increase as one moves dawn the column (or to the left the 
row) in the Periodic Table of Elements. 

�9 Bond distance 

The bond distance (or bond length) is the distance between the nuclei of two bonded 
atoms. For example, typical bond distances for carbon-carbon bonds in an organic mole- 
cule are 1.53, 1.34 and 1.20 angstroms for single, double and triple bonds, respectively. 

Depending on the type of bonding of the element, its atomic radius is called covalent or 
metallic. The metallic radius is one half of the metallic distance, i.e., closest internu- 
clear distance in a metallic crystal (a closely packed crystal lattice of metallic element). 

Covalent radii of atoms (of elements that form covalent bonds) are inferred from bond 
distances between pairs of covalently-bonded atoms: they are equal to the sum of the 
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covalent radii of two atoms. If the two atoms are of the same kind, then their covalent 
radius is one half of their bond distance. Covalent radii for elements whose atoms cannot 
bond to each another is inferred by combining, in various molecules, radii of those that 
bond with bond distances between pairs of atoms of different kind. 

�9 Van-der-Waals contact distance 

Intermolecular distance data are interpreted by viewing atoms as hard spheres. The 
spheres of two neighboring non-bonded atoms (in touching molecules or atoms) are sup- 
posed just touch. So, their interatomic distance, called Van-der-Waals contact distance, 
is the sum of radii, called Van-der-Waals radii, of their hard spheres. Van-der-Waals 
radius of carbon is 1.7 angstroms, while its covalent radius is 0.76. Van-der-Waals con- 
tact distance corresponds to a "weak bond", when repulsion forces of electronic shells 
exceed London (attractive electrostatic) forces. 

�9 Interionic distance 

An ion is an atom that has an positive or negative electrical charge. The interionic 
distance is the distance between the centers of two adjacent (bonded) ions. Ionic radii 
are inferred from ionic bond distances in real molecules and crystals. 

The ion radii of cations (positive ions, for example, sodium Na +) are smaller than the 
atomic radii of the atoms they come from, while anions (negative ions, for example, 
chlorine C1-) are larger than their atoms. 

�9 Hydrodynamic  radius 

The hydrodynamic  radius of a molecule, undergoing diffusion in a solution, is the 
hypothetical radius of a hard sphere which diffuses with the same speed. 

�9 Range of molecular forces 

Molecular forces (or interactions) are the following electromagnetic forces: ionic bonds 
(charges), hydrogen bonds (dipolar), dipole-dipole interactions, London forces (the at- 
traction part of Van-der-Waals forces) and steric repulsion (the repulsion part of Van-der- 
Waals forces). If the distance (between two molecules or atoms) is d, then (experimental 
observation) potential energy function P inversely relate to d n with n = 1, 3, 3, 6, 12 
for five above forces, respectively. The range (or the radius) of an interaction is consid- 
ered short if P approach 0 rapidly as d increases. It also called short if it is at most 3 
angstroms; so, only the range of steric repulsion is short. (Cf. inverse-square distance 
laws.) 

�9 Chemical  distance 

Various chemical systems (single molecules, their fragments, crystals, polymers, clus- 
ters) are well represented by graphs where vertices (say, atoms, molecules acting as 
monomers, molecular fragments) are linked by, say, chemical bonding, Van-der-Waals 
interactions, hydrogen bonding, reactions path. In Organic Chemistry, a molecular graph 
G (x) = (V (x), E (x)) is a graph representing a molecule x, so that the vertices v c V (x) 
are atoms and the edges e c E (x) correspond to electron pair bonds. The Wiener num- 
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bet  of a molecule is one half of the sum of all pairwise distances between vertices of its 
molecular graph. 

The (bonds and electrons) BE-matrix of a molecule x is the IV(x)l x IV(x)l matrix 
((eij(x))), where eii(x) is the number of free unshared valence electrons of the atom Ai, 
and, for i # j, eij(x) -- eji(x) - -  1 if there is a bond between atoms Ai and Aj,  and 
= 0, otherwise. 

Given two stoichiometric (i.e., with the same number of atoms) molecules x and y, their 
Dugundj i -Ugi  chemical  distance is the H a m m i n g  metric 

~_~ leij(x) - eij(Y)l, 
l~i,j~lV[ 

and their Pospichal -Kvasni f ika  chemical  distance is 

man 
P 

l~i, j~lVI 
leij(x) - ep(i)P(j)(Y)l, 

where P is any permutation of atoms. 

Above distance is equal to IE(x)l + IE(y)l - 21E(x, Y)l, where E(x, y) is the edge-set 
of the maximum common subgraph (not induced, in general) of the molecular graphs 
G(x) and G(y). (Cf. Zel inka distance and Mahalanobis  distance.)  

The Pospichal -Kvasni f ika  reaction distance, assigned to a molecular transformation 
x --+ y, is the minimum number of elementary transformations needed to transform 
G(x) onto G(y). 

�9 Molecular  rms radius 

The molecular  rms radius (or radius of gyration) is the root-mean-square distance of 
atoms in a molecule from their common center of gravity; it is defined by 

~ ~ l ~ i ~ n  d2i _ ~ ~ i  ~ j  d2 

n + 1 (n + 1) 2 ' 

where n is the number of atoms, doi is the Euclidean distance of i-th atom from the 
center of gravity of the molecule (in a specified conformation), and dij is the Euclidean 
distance between i-th and j- th atoms. 

�9 Mean  molecular  radius 
ri The mean molecular  radius is the number n '  where n is the number of atoms in the 

molecule, and ri is the Euclidean distance of i-th atom from the geometric center ~2j xij 
n 

of the molecule (here Xij is i-th Cartesian coordinate of the j- th atom). 



Chapter 25 

Distances in Geography, Geophysics, and Astronomy 

25.1. DISTANCES IN G E O G R A P H Y  AND G E O P H Y S I C S  

�9 Great circle distance 

The great circle distance (or spherical distance, orthodromic distance) is the shortest 
distance between points x and y on the surface of the Earth measured along a path on 
the Earth's surface. It is the length of the grea t  circle arc, passing through x and y, in 
the spherical model of the planet. 

Let 61 and ~bl be, respectively, the latitude and the longitude of x, and 62 and ~b2 those of 
y; let r be the Earth's radius. Then the great circle distance is equal to 

r arccos(sin 61 sin 62 -+- COS 61 COS 62 cos(~bl  - ~b2)). 

In the spherical coordinates (0, qS), where q5 is the azimuthal angle, and 0 is the colati- 
tude, the great circle distance between x = (01, qS1) and y = (02, q52) is equal to 

r arccos(cos 01 cos 02 + sin 01 sin 02 cos(qS1 - q52)). 

For 051 = ~b2, the formula above reduces to riO1 - 021. 

The spheroidal distance is the distance between two points on the Earth's surface in 
the spheroidal model of the planet. The shape of the Earth more closely resembles a 
flattened spheroid with extreme values for the radius of curvature of 6336 km at the 
equator and 6399 km at the poles. 

�9 Loxodromic  distance 

The loxodromic distance is a distance between two points on the Earth's surface on a 
path with a constant direction on the compass. It is never shorter than the great circle 
distance. 

�9 Nautical  distance 

The nautical distance is the length in nautical miles of the r h u m b  line (a curve that 
crosses each meridian at the same angle) joining any two places on the Earth's surface. 
One nautical mile is equal to 1852 m. 

�9 Horizon distance 

In Television, the horizon distance is the distance of the farthest point on the Earth's 
surface visible from a transmitting antenna. 
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In Radio, the horizon distance is the distance on the Earth's surface reached by a direct 
wave; due to atmospheric refraction, it is sometimes greater than the distance to the 
visible horizon. 

�9 Skip distance 

The skip distance is the shortest distance that permits a radio signal (of given frequency) 
to travel from the transmitter to the receiver by reflection (hop) in the ionosphere. 

�9 Tolerance distance 

In GIS (computer-based Geographic Information System), the tolerance distance is the 
maximal distance between points which must be established so that gaps and overshoots 
can be corrected (lines snapped together) as long as they fall within tolerance distance. 

For a sensor, the tolerance distance is a range distance within which a localization 
error is acceptable to the application. 

�9 Map's distance 

The map's distance is the distance between two points on the map; cf. map distance 
between two loci on a genetic map. 

The horizontal distance is determined by multiplying the map's distance by the numer- 
ical scale of the map. 

�9 Horizontal distance 

The horizontal distance (or ground distance) is the distance on a true level plane be- 
tween two points, as scaled off of the map (it does not take into account the relief be- 
tween two points). There are two types of horizontal distance: straight-line distance 
(the length of the straight-line segment between two points as scaled off of the map), 
and distance of travel (the length of the shortest path between two points as scaled off 
of the map, in the presence of roads, rivers, etc.). 

�9 Slope distance 

The slope distance (or slant distance) is the inclined distance (as opposed to true hori- 
zontal or vertical distance) between two points. 

�9 Road travel distance 

The road travel distance (or actual distance, wheel distance, road distance) between 
any two points (for example, two cities) of a region is the length of the shortest road 
connecting them. Since it is often not feasible to measure the actual distances for all 
pairs of points, it is a common practice to use distance est imators.  

Empirical observation shows that road travel distances are often simply a linear function 
of great circle distances; in Swedish towns one can let road distance : 1.21 .d, where d 
is the great circle distance. In USA the multiplier is about 1.15 in an east-west direction, 
and about 1.21 in the north-south direction. 

Cf. official distance: the driving distance used for payment of travel. 
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�9 Moho distance 

The Moho distance is the distance from a point on the Earth's surface to the Moho 
interface (or Mohorovicic seismic discontinuity) beneath it. The Moho interface is the 
boundary between the Earth's brittle outer crust and the hotter softer mantle; Moho 
distance ranges between 5-10 km beneath the ocean floor to 35-65 km beneath the con- 
tinents. Cf. the world deepest cave (Krubera, Caucasus: 2.1 km), deepest mine (Western 
Deep Levels gold mine, South Africa: about 4 km) and deepest drill (Kola Superdeep 
Borehole: 12.3 km). The temperature rises usually by 1 ~ every 33 m. Japanese research 
vessel Chikyu is scheduled to drill (from September 2007, 200 km off Nagoya cost) till 
Moho interface. 

The Earth's mantle extends from the Moho discontinuity to the mantle-core boundary 
at a depth of approximately 2890 km. The mantle is divided into the upper and the 
lower mantle by a discontinuity at about 660 km. Other seismic discontinuities are at 
about 60-90 km (Hales discontinuity), 50-150 km (Gutenberg discontinuity), 220 km 
(Lehmann discontinuity), 410 km, 520 km, and 710 km. 

�9 Distances in Seismology 

The Earth's crust is broken into tectonic plates that move around (at some centimeters 
per year) driven by the thermal convection of the deeper mantle and by gravity. At their 
boundaries, plates stick most of the time and slip suddenly. An earthquake, i.e., a sudden 
(several seconds) motion or trembling in the Earth, caused by abrupt release of slowly 
accumulated strain, was, from 1906, seen mainly as a rupture (sudden appearance, nu- 
cleation and propagation of new crack or fault) due to elastic rebound. However, from 
1966, it is seen within the framework of slippage along pre-existing fault or plate in- 
terface, as the result of stick-slip frictional instability. So, an earthquake happens when 
dynamic friction becomes less than static friction. The advancing boundary of the slip 
region is called rupture front. The standard approach assumes that the fault is a definite 
surface of tangential displacement discontinuity, embedded in a liner elastic crust. 

90% of earthquakes are of tectonic origin, but they can be caused also by volcanic erup- 
tion, nuclear explosion and work in a large dam, well or mine. Earthquake can be mea- 
sured by focal depth, speed of slip, intensity (modified Mercali scale of earthquake 
effects), magnitude, acceleration (main destruction factor), etc. The Richter logarithmic 
scale of magnitude is computed from the amplitude and frequency of shock waves re- 
ceived by seismograph, adjusted to account for epicentral distance. An increase of 0.1 
of the Richter magnitude corresponds to an increase of 10 times in amplitude of the 
waves; the largest recorded value is 9.5 (Chile, 1960). 

Distance attenuation models, used in earthquake engineering for buildings and bridges, 
derive usually acceleration decay with increase of some site-source distance, i.e., the 
distance between seismological stations and the crucial (for the given model) "central" 
point of the earthquake. 

The simplest model is the hypocenter (or focus), i.e., the point inside the Earth from 
which an earthquake originates (the waves first emanate, the seismic rupture or slip be- 
gins). The epicenter is the point of the Earth's surface directly above the hypocenter. 
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The terminology below is also used for other catastrophes, such as an impact or explo- 
sion of a nuclear weapon, meteorite or comet, but for an explosion in the air, the term 
hypocenter refers to the point on the Earth surface directly below the burst. The list of 
main Seismology distances follows. 

The focal depth: the distance between hypocenter and epicenter; the average focal depth 
is 100-300 km. 

The hypoeentral distance: the distance from the station to the hypocenter. 

The epieentral distance (or ear thquake distance): the great circle distance from the 
station to epicenter. 

The Joyner-Boore distance: the distance from the station to the closest point of the 
Earth's surface, located over the rupture surface, i.e., the rupturing portion of the fault 
plane. 

The rupture  distance: the distance from the station to the closest point on the rupture 
surface. 

The seismogenie depth distance: the distance from the station to the closest point of the 
rupture surface within the seismogenic zone, i.e., the depth range where the earthquake 
may occur; usually, at depth 8-12 km. 

Also used are the distances from the station to: 

- the center of static energy release and the center of static deformation of the fault 
plane; 

- the surface point of maximal macroseismic intensity, i.e., of maximal ground acceler- 
ation (it can be different from epicenter); 

- the epicenter such that the reflection of body waves from the Moho interface (the 
crust-mantle boundary) contribute more to ground motion than directly arriving shear 
waves (it called critical Moho distance); 

- sources of noise and disturbances: oceans, lakes, rivers, railroads, buildings. 

The space-time link distance between two earthquakes x and y is defined by 

/d (x, y) + C ltx - tyl 2, 

where d(x,  y) is the distance between their epicenters or hypocenters, I tx - tyl is the 
time lag, and C is a scaling constant needed to connect distance d(x,  y) and time. 

2 5 . 2 .  D I S T A N C E S  I N  A S T R O N O M Y  

A celestial object (or celestial body) is a term describing astronomical objects such as stars 
and planets. The celestial sphere is the projection of celestial objects into their apparent 
positions in the sky as viewed from the Earth. The celestial equator is the projection of 
the Earth's equator onto the celestial sphere. The celestial poles are the projections of 
Earth's North and South poles onto the celestial sphere. The hour circle of a celestial 
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object is the great circle of the celestial sphere, passing through the object and the celestial 
poles. The ecliptic is the intersection of the plane that contains the orbit of the Earth with 
the celestial sphere: seen from the Earth, it is the path that the Sun appears to follow 
across the sky over the course of a year. The vernal equinox point (or the First point in 
Aries) is one of the two points on the celestial sphere, where the celestial equator intersects 
the ecliptic: it is the position of the Sun on the celestial sphere at the time of the vernal 
equinox. 

The horizon is the line that separates Earth from sky. It divides the sky into the upper 
hemisphere that the observer can see, and the lower hemisphere that he can not. The pole 
of the upper hemisphere (the point of the sky directly overhead) is called zenith, the pole 
of the lower hemisphere is called nadir. 

In general, an astronomical distance is a distance from one celestial body to another 
(measured in light-years, parsecs, or Astronomical Units). The average distance between 
stars (in a galaxy like our own) is several light-years. The average distance between galax- 
ies (in a cluster) is only about 20 times their diameter, i.e., several megaparsecs. 

�9 Latitude 

In spherical coordinates (r, 0, qS), the latitude is the angular distance 3 from the xy- 
plane ~undamental plane) to a point, measured from the origin; 3 = 90 ~ - 0, where 0 
is the colatitude. 

In geographic coordinate system (or earth-mapping coordinate system), the latitude is 
the angular distance from the Earth's equator to an object, measured from the center 
of the Earth. Latitude is measured in degrees, from - 9 0  ~ (South pole) to +90 ~ (North 
pole). Parallels are the lines of constant latitude. 

In Astronomy, the celestial latitude is the latitude of a celestial object on the celestial 
sphere from the intersection of the fundamental plane with the celestial sphere in given 
celestial coordinate system. In the equatorial coordinate system the fundamental plane 
is the plane of the Earth's equator; in the ecliptic coordinate system the fundamental 
plane is the plane of ecliptic; in the galactic coordinate system the fundamental plane is 
the plane of Milky Way; in the horizontal coordinate system the fundamental plane is 
the observer's horizon. Celestial latitude is measured in degrees. 

�9 Longitude 

In spherical coordinates (r, O, ~b), the longitude is the angular distance ~b in the xy- 
plane from x-axis to the intersection of a great circle, that passes through a point, with 
xy-plane. 

In geographic coordinate system (or earth-mapping coordinate system), the longitude 
is the angular distance measured eastward along the Earth's equator from the Greenwich 
meridian (or Prime meridian) to the intersection of the meridian that passes through the 
object. Longitude is measured in degrees, from 0 ~ to 360 ~ A meridian is a great circle, 
passing through Earth's North and South poles; the meridians are the lines of constant 
longitude. 

In Astronomy, the celestial longitude is the longitude of a celestial object on the ce- 
lestial sphere measured eastward, along the intersection of the fundamental plane with 
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the celestial sphere in given celestial coordinate system, from the chosen point. In the 
equatorial coordinate system the fundamental plane is the plane of the Earth's equator; 
in the ecliptic coordinate system - the plane of ecliptic; in the galactic coordinate system 
- the plane of Milky Way; in the horizontal coordinate system- the observer's horizon. 
Celestial longitude is measured in units of time. 

�9 Colatitude 

In spherical coordinates (r, 0, ~b), the colatitude is the angular distance 0 from the 
z-axis to a point, measured from the origin; 0 = 90 ~ - 3, where 3 is the latitude. 

In geographic coordinate system (or earth-mapping coordinate system), the colatitude 
is the angular distance from the Earth's North pole to an object, measured from the 
center of the Earth. Colatitude is measured in degrees. 

�9 Declination 

In the equatorial coordinate system (or geocentric coordinate system), the declination 
3 is the celestial latitude of a celestial object on the celestial sphere, measured from the 
celestial equator. Declination is measured in degrees, from - 9 0  ~ to +90  ~ . 

�9 Right ascension 

In the equatorial coordinate system (or geocentric coordinate system), fixed to the stars, 
the right ascension RA is the celestial longitude of a celestial object on the celestial 
sphere, measured eastward along the celestial equator from the First point in Aries to 
the intersection of the hour circle of the celestial object. Right ascension is measured in 
units of time (hours, minutes and seconds) with one hour of time approximately equal to 
15 ~ . The time needed for one complete cycle of the precession of the equinoxes is called 
Platonic year (or Great year); it is about 257 centures and slightly decreases. This cycle 
is important in Astrology and Maya calendar. 

�9 Hour angle 

In the equatorial coordinate system (or geocentric coordinate system), fixed to the Earth, 
the hour angle is the celestial longitude of a celestial object on the celestial sphere, 
measured along the celestial equator from the observer's meridian to the intersection 
of the circle of the celestial object. Hour angle is measured in units of time (hours, 
minutes and seconds). It gives the time elapsed since the celestial object's last transit at 
the observer's meridian (for a positive hour angle), or the time unit the next transit (for 
a negative hour angle). 

�9 Polar distance 

In the equatorial coordinate system (or geocentric coordinate system), the polar dis- 
tance (or codeclination) PD is the colatitude of a celestial object, i.e., the angular 
distance from the celestial pole to a celestial object on the celestial sphere, similar as 
declination 3 is measured from the celestial equator: PD = 90 ~ -+- 3. Polar distance is 
expressed in degrees, and cannot exceed 90 ~ in magnitude. An object on the celestial 
equator has PD : 90 ~ 
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�9 Ecliptic latitude 

In the ecliptic coordinate system, the ecliptic latitude is the celestial latitude of a ce- 
lestial object on the celestial sphere from the ecliptic. Ecliptic latitude is measured in 
degrees. 

�9 Ecliptic longitude 

In ecliptic coordinate system, the ecliptic longitude is the celestial longitude of a ce- 
lestial object on the celestial sphere measured eastward along the ecliptic from the First 
point in Aries. Ecliptic longitude is measure in units of time. 

�9 Altitude 

In the horizontal coordinate system (or AIt/Az coordinate system), the altitude ALT is 
the celestial latitude of an object from the horizon. It is the complement  of the zenith 
angle ZA: ALT = 90 ~ - ZA. Altitude is measured in degrees. 

�9 Azimuth 

In the horizontal coordinate system (or AIt/Az coordinate system), the azimuth is the 
celestial longitude of an object, measured eastward along the horizon from the North 
point. Azimuth is measured in degrees, from 0 to 360 ~ 

�9 Zenith angle 

In the horizontal coordinate system (or AIt/Az coordinate system), the zenith angle ZA 
is the colatitude of an object, measured from the zenith. 

�9 Lunar distance 

The lunar distance is the angular distance between the Moon and another celestial 
object. 

�9 Elliptic orbit distance 

The elliptic orbit distance is a distance from a mass M which a body has in an elliptic 
orbit about the mass M at the focus. This distance is given by 

a(1 - e 2) 

1 + e cos 0 '  

where a is the semi-major axis, e is the eccentricity, and 0 is the orbital angle. 

The semi-major axis a of an ellipse (or an elliptic orbit) is half of its major axis; it is the 
average (over the eccentric anomaly) elliptic orbit distance. Such average distance over 
the true anomaly is the semi-minor axis, i.e., the half of its minor axis. 

The eccentricity e of an ellipse (or an elliptic orbit) is the ratio of half the distance 
c r +  - - r _  between the foci c and the semi-major axis a" e - a" For an elliptic orbit, e - r++r_'  

where r+ is the apoapsis distance, and r_ is the periapsis distance. 

�9 Periapsis distance 

The periapsis distance is the closest distance r_  a body reaches in an elliptic orbit about 
a mass M. r_  = a(1 - e), where a is the semi-major axis, and e is the eccentricity. 
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The perigee is the periapsis of an elliptical orbit around the Earth. The perihelion is 
the periapsis of an elliptical orbit around the Sun. The per ias t ron is the point of closest 
approach of two stars which are in orbit around each other. 

�9 Apoapsis distance 

The apoapsis distance is the farthest distance r+ a body reaches in an elliptic orbit about 
a mass M. r+ = a (1 + e), where a is the semi-major axis, and e is the eccentricity. 
The apogee is the apoapsis of an elliptical orbit around the Earth. The aphelion is the 
apoapsis of an elliptical orbit around the Sun. The apas t ron  is the point of greatest 
separation between two stars which are in orbit around each other. 

�9 True anomaly 

The true anomaly is the angular distance of a point in an orbit past the point of peri- 
apsis measured in degrees. 

�9 Tit ius-Bode law 

Tit ius-Bode law is an empirical (not explained well yet) law approximating the mean 
planetary distance from Sun (i.e. its orbital semi-major axis) by 3}@ AU. Here 1 AU 
denotes such mean distance for Earth (i.e., about 1.5 x 108 km ~ 8.3 light-minutes) and 
k - 0, 20, 21 , 22, 23 , 24, 25 , 26, 27 for Mercury, Venus, Earth, Mars, Ceres (the largest 

one in Asteroid Belt), Jupiter, Saturn, Uranus, Pluto. However, Neptune not fits in the 
law while Pluto fits Neptune's spot k - 27. 

�9 Primary-satellite distances 

Consider two celestial bodies: a primary M and a smaller one m (a satellite, orbiting 
around M, or a secondary star, or a comet passing by). 

The mean distance is the arithmetic mean of the maximum and minimum distances of 
a body m from its primary M. 

Let PM, Pm and RM, Rm denote densities and radii of M and m. Then the Roche limit 
of the pair (M, m) is the maximal distance between them within which m will disin- 
tegrate due to tidal forces of M exceeding the gravitational self-attraction of m. This 

distance is RM~/~p--cMpm ~ l'26RM)/PMu if m is a rigid spherical body, and it is about 

2.423RM3/P__M_M if body m is fluid. The Roche limit is relevant only if it exceeds RM. It 
V Pm 

is 0.80RM, 1.49RM and 2.80RM for pairs (the Sun, the Earth), (the Earth, the Moon) 
and (the Earth, a comet), respectively. A possible origin of the rings of Saturn is a moon 
which came closer to Saturn than its Roche limit. 

Let d(m, M) denote the distance between m and M; let Sm and SM denote masses of 
m and M. Then the Hill sphere of m in presence of M is an approximation of the 
gravitational sphere of influence of m in the face of perturbation from M. Its radius is 

about d(m, M) 3/ Sm u For example, the radius of Hill sphere of the Earth is 0 .01AU;  

the Moon, at distance 0.0025 A U, is well within the Hill sphere of the Earth. 
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The pair (M, m) can be characterized by five Lagrange points L i, 1 ~< i ~< 5, where 
a third, much smaller body (say, a spacecraft), will be relatively stable because its cen- 
trifugal force is equal to combined gravitational attraction of M and m. Those points 
are: 

L1, L2, L3 lying on the line trough centers of M and m so that d(L3, m) = 2d(M, m), 
d(M, L2) = d(M, L1) + d(L1, m) + d(m, L2), and d(L1, m) = d(m, L2); 

L4 and L5 lying on the orbit of m around M and forming equilateral triangles with the 
centers of M and m. Those two points are more stable; each of them form with M and 
m a partial solution of (unsolved) gravitational three-body problem. 



Chapter 26 

Distances in Cosmology and Theory of Relativity 

26.1. DISTANCES IN COSMOLOGY 

The Universe is defined as the whole space-time continuum in which we exist, together 
with all the energy and matter within it. 

Cosmology is the study of the large-scale structure of the Universe. Specific cosmolog- 
ical questions of interest include the isotropy of the Universe (on the largest scales, the 
Universe looks the same in all directions, i.e., is invariant to rotations), the homogeneous- 
ness of the Universe (any measurable property of the Universe is the same everywhere, 
i.e., it is invariant to translations), the density of the Universe, the equality of matter and 
anti-matter, and the origin of density fluctuations in galaxies. 

In the 1929, E. Hubble discovered that all galaxies have a positive redshift, i.e., all galax- 
ies, except for a few nearby galaxies like Andromeda, are receding from the Milky Way. 
By the Copernican principle (that we are not at a special place in the Universe), we de- 
duce that all galaxies are receding from each other, i.e., we live in a dynamic, expanding 
Universe, and the further a galaxy is away from us, the faster it is moving away (this is 
now called Hubble law). The Hubble flow is the general outward movement of galaxies 
and clusters of galaxies resulting from the expansion of the Universe. It occurs radially 
away from the observer, and obeys the Hubble law. Galaxies can overcome this expansion 
on scales smaller than that of clusters of galaxies; the clusters, however, are being forever 
driven apart by the Hubble flow. 

In Cosmology, the prevailing scientific theory about the early development and shape of 
the Universe is the Big Bang Theory. The observation that galaxies appear to be receding 
from each other can be combined with the General Theory of Relativity to extrapolate the 
condition of the Universe back in time. This leads to the construction that as one goes back 
in time, the Universe becomes increasingly hot and dense, then leads to a gravitational 
singularity, at which all distances become zero, and temperatures and pressures become 
infinite. The term Big Bang is used to refer to a hypothesized point in time when the 
observed expansion of the Universe began. Based on measurements of the expansion of the 
Universe, it is currently believed that the Universe has an age of 13.7 -+- 0.2 billion years. It 
should be longer if the expansion accelerates, as was supposed recently. N. Dauphas, basing 
on the abundance ratio of uranium/thorium chondritic meteorites, estimated ([Dau05]) this 
age as 14.5 -+- 2 billion years. 

In Cosmology (or, more exactly, Cosmography, the measurement of the Universe) there 
are many ways to specify the distance between two points, because in the expanding Uni- 
verse, the distances between comoving objects are constantly changing, and Earth-bound 
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observers look back in time as they look out in distance. The unifying aspect is that all 
distance measures somehow measure the separation between events on radial null trajec- 
tories, i.e., trajectories of photons with terminate at the observer. In general, the cosmolog- 
ical distance is a distance far beyond the boundaries of our Galaxy. 

The geometry of the Universe is determined by several cosmological parameters: the 
expansion parameter (or the scale factor) a, the Hubble constant H, the density p and 
the critical density IOcrit (the density required for the Universe to stop expansion and, 
eventually, collapse back onto itself), the cosmological constant A,  the curvature of  the 
Universe k. Many of these quantities are related under the assumptions of a given cosmo- 
logical model. The most common cosmological models are closed and open Friedmann- 
Lema~tre cosmological models and Einstein-de Sitter cosmological model (cf. also Ein- 
stein cosmological model, de Sitter cosmological model, Eddington-Lema~tre cosmologi- 
cal model). The Einstein-de Sitter cosmological model assumes a homogeneous, isotropic, 
constant curvature Universe with zero cosmological constant A and pressure P. For con- 
stant mass M of the Universe, H 2 -- ~rcGp, t -- 2 H - l ,  a -- R-R~(9-~)I/3t 2/3, where 

1 
G -- 6.67 x 10 -11 m 3 kg -1 s -2 is the gravitational constant, Rc  -- k [ - :  is the absolute 

value of the radius of  curvature, and t is the age of the Universe. 
Expansion parameter a = a(t)  is a scale factor, related the size of the Universe R = 

R(t)  at time t to the size of the Universe R0 = R(to) at time to by R = aRo. Most 
commonly in modern usage it is chosen to be dimensionless, with a(tobser) = 1, where 
tobser is the present age of the Universe. 

The Hubble constant H is the constant of proportionality between the speed of expan- 
sion v and the size of the Universe R, i.e., v = HR.  This equality is just the Hubble law 

a'(t) with the Hubble constant H -- a(t) "The current value of the Hubble constant, as estimated 

recently, H0 -- 71 + 4 km s -1 Mpc -1, where the subscript 0 refers to the present epoch 
because, in general, H changes with time. The Hubble time and the Hubble  distance are 

1 c (here c is the speed of light), respectively. defined by tH -- -~o and DH -- -~o 
The mass density p = P0 in the present epoch and the value of the cosmological constant 

A are dynamical properties of the Universe. They can be made into dimensionless density 
8re Gpo A parameters S-2M and S-2A by S-2M -- ~ , S-2A -- 3H~" A third density parameter S-2R 

measures the "curvature of space", and can be defined by the relation 12M + 12A + 12R = 1. 
These parameters totally determine the geometry of the Universe if it is homogeneous, 

isotropic, and matter-dominated. 
The velocity of a galaxy is measured by the Doppler effect, i.e., the fact that light emitted 

from a source is shifted in wavelength by the motion of the source. A relativistic form of 

the Doppler shift exists for objects traveling very fast, and is given by hob . . . .  ~/c+v 
)~emit - -  C-- V ~ 

where ~emit is the emitted wavelength, and )~obser is the shifted (observed) wavelength. The 
change in wavelength with respect to the source at rest is called redshift (if moving away), 

Z~Lobser __ and is denoted by the letter z. Relativistic redshift z for a particle is given by z - Zemi, -- 

~obser 1 -- / c + v  __ 1 
)~emit V c - v  �9 

The cosmological redshift is directly related to the scale factor a - a(t)" z + 1 - a(tobs~r) 
a(temit) " 

Here a(tobser) is the value of the scale factor at the time the light from the object is observed, 
and a (remit) is the value of the scale factor at the time it was emitted. 
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�9 Hubble distance 

The Hubble distance is a constant 

C 
D H - -  

Ho 
= 4220 Mpc ~ 1.3 x 1026 m ~ 1.377 x 101~ light-years, 

where c is the speed of light, and H0 -- 71 + 4 km s -1 Mpc -1 is the Hubble constant. 

It is the distance from us to the cosmic light horizon which marks the edge of the visible 
Universe, i.e., the radius of a sphere, centered upon the Earth which is approximately 
13.7 billion light-years. It is often referred as lookback distance because astronomers, 
who view distant objects, are "looking back" into the history of the Universe. 

For small v/c or small distance d in the expanding Universe the velocity is proportional 
to the distance, and all distance measures, for example, angular diameter distance, 
luminosity distance, etc., converge. Taking the linear approximation, this reduces to 
d ~ zDH, where z is the redshift. But this is true only for small redshifts. 

�9 Comoving distance 

In the standard Big Bang model are used comoving coordinates, where the spatial refer- 
ence frame is attached to the average positions of galaxies. With this set of coordinates, 
both time and expansion of the Universe can be ignored and the shape of space is seen 
as a spatial hypersurface at constant cosmological time. 

The comoving distance (or coordinate distance, cosmological distance, X) is a distance 
in comoving coordinates between two points in space at a single cosmological time, i.e., 
the distance between two nearby objects in the Universe which remains constant with 
epoch if the two objects are moving with the Hubble flow. It is the distance between them 
which would be measured with rulers at the time they are being observed (the p roper  
distance) divided by the ratio of the scale factor of the Universe then to now. In other 
words, it is the proper distance multiplied by (1 + z), where z is the redshift: 

dcomov(X, y) - dproper(X, Y) " 
a(tobser) 

a(temit) 
= dproper(X, y)" (1 + z). 

At the time tobser, i.e., in the present epoch, a = a(tobser) = 1, and dcomov = dproper, 
i.e., the comoving distance between two nearby events (close in redshift or distance) 
is the proper distance between them. In general, for a cosmological time t, it holds 
dcomov- dproper a(t) �9 
The total line-of sight comoving distance Dc from us to a distant object is computed 
by integrating the infinitesimal dcomov(X, Y) contributions between nearby events along 
the time ray from the time remit , when the light from the object was emitted, to the time 
tobser, when the object is observed: 

f tobser C d t 
DC- -  

dtemit a(t) 
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In terms of redshift, Dc  from us to a distant object is computed by integrating the in- 

finitesimal dcomov(X, y) contributions between nearby events along the radial ray from 

z -- 0 to the object: Dc -- DH f~ e-~z~, where DH is the Hubble distance, and 
1 

E(z) --  (S-2M(1 + Z) 3 + S-2R (1 + Z) 2 + S2A) ~ . 

In a sense, the comoving distance is the fundamental distance measure in Cosmology 
since all other distances can simply derived in terms of it. 

�9 Proper distance 

The proper distance (or physical distance, ordinary distance) is a distance between 
two nearby events in the frame in which they happen at the same time. It is the distance 
measured by a ruler at the time of observation. So, for a cosmological time t, it holds 

dproper(X, y )  - -  dcomov " a ( t ) ,  

where dcomov is the comoving distance, and a(t) is the scale factor. 

In the present epoch (i.e., at the time tobser) it holds a - a(tobser) -- 1, and dproper = 
dcomov. So, the proper distance between two nearby events (i.e., close in redshift or dis- 
tance) is the distance which we would measure locally between the events today if those 
two points were locked into the Hubble flow. 

�9 Proper motion distance 

The proper motion distance (or transverse comoving distance, contemporary angular 
diameter distance) DM is a distance from us to a distant object, defined as the ratio of 
the actual transverse velocity (in distance over time) of the object to its proper motion 
(in radians per unit time). It is given by 

1 D t t - ~ R  s lnh(~ / -~  Dc /DH),  

DM -- Dc , 
l " - -  DH ~ sln(~/ ~R D c / D H ) ,  

for.QR > O, 

for .QR - -0 ,  

for.QR < O, 

where DH is the Hubble distance, and Dc is the line-of-sight comoving distance. For 
X-2A -- 0, there is an analytic solution (z is the redshift): 

DM -- DH 
2 ( 2 -  s -- Z) -- ( 2 -  s + s 

s? (1 + z) 

The proper motion distance DM coincides with the line-of-sight comoving distance Dc 
if and only if the curvature of the Universe is equal to zero. The comoving distance 
between two events at the same redshift or distance but separated on the sky by some 

angle 50 is equal to DM30. 

DL and to the The distance DM is related to the luminosity distance DL by DM -- l+z' 
angular diameter distance DA by D M  = (1 + Z)DA. 
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�9 Luminosity distance 

The luminosity distance DL is a distance from us to a distant object, defined by the 
relationship between observed flux S and emitted luminosity L: 

L 
D L - -  4~S" 

This distance is related to the proper motion distance DM by DL : (1 + Z)DM, and 
to the angular diameter distance DA by DL -- (1 + z) 2 DA, where z is the redshift. 

The luminosity distance does take into account the fact that the observed luminosity is 
attenuated by two factors, the relativistic redshift and the Doppler shift of emission, each 

Lemiss of which contributes an (1 + z) attenuation: Lobser -- (l+z)2. 

f f DL The corrected luminosity distance D L is defined by D L = l+z" 

�9 Distance modulus 

The distance modulus D M  is defined by D M  -- 5 l n ( - - ~ ) ,  where DL is the luminos- 10t,~ 
ity distance. The distance modulus is the difference between the absolute magnitude 
and apparent magnitude of an astronomical object. Distance moduli are most commonly 
used when expressing the distances to other galaxies. For example, the Large Magellanic 
Cloud is at a distance modulus 18.5, the Andromeda Galaxy's distance modulus is 24.5, 
and the Virgo Cluster has the DM equal to 31.7. 

�9 Angular diameter distance 

The angular diameter distance (or angular size distance) DA is a distance from us to 
a distant object, defined as the ratio of an object's physical transverse size to its angular 
size (in radians). It is used to convert angular separations in telescope images into proper 
separations at the source. It is special for not increasing indefinitely as z --+ oc; it turns 
over at z ~ 1, and thereafter more distant objects actually appear larger in angular size. 

DM Angular diameter distance is related to the proper motion distance DM by D A  - -  l + z '  

oL where z is the redshift. and to the luminosity distance DL by D A  - -  (l+z)2, 

�9 Light-travel distance 

The light-travel distance (or light-travel time distance) D# is a distance from us to a 
distant object, defined by Dlt = C(tobser - r e m i t ) ,  where tobser is the time, when the object 
was observed, and remit is the time, when the light from the object was emitted. 

It is not a very useful distance, because it is very hard to determine remit, the age of the 
Universe at the time of emission of the light which we see. 

�9 Parallax distance 

The parallax distance Dp is a distance from us to a distant object, defined from measur- 
ing of parallaxes, i.e., its apparent changes of position in the sky caused by the motion 
of the observer on the Earth around the Sun. 

The cosmological parallax is measured as the difference in the angles of line of sight to 
the object from two endpoints of the diameter of the orbit of the Earth which is used as 
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a baseline. Given a baseline, the parallax a - / ~  depends on the distance, and knowing 
this and the length of the baseline (two astronomical units A U, where AU ~ 150 million 
kilometers is the distance from the Earth to the Sun) one can compute the distance to the 
star by the formula 

2 
D p :  

where D p is in parsecs, a and/~ are in arc-seconds. 

In Astronomy, "parallax" usually means the annual paral lax p which is the difference 
in the angles of a star seen from the Earth and from the Sun. Therefore the distance of a 

1 star (in parsecs) is given by Dp -- p" 

�9 Radar  distance 

The radar distance DR is a distance from us to a distant object, measured by a radar. 

Radar typically consists of a high frequency radio pulse sent out for a short interval 
of time. When it encounters a conducting object, sufficient energy is reflected back to 
allow the radar system to detect it. Since radio waves travel in air at close to their speed 
in vacuum, one can calculate the distance DR of the detected object from the round-trip 
time t between the transmitted and received pulses as 

1 
DR -- -~ ct , 

where c is the speed of light. 

�9 Cosmologica l  distance ladder  

For measuring distances to astronomical objects, one uses a kind of "ladder" of different 
methods; each method goes only to a limited distance, and each method which goes to a 
larger distance builds on the data of the preceding methods. 

The starting point is knowing the distance from the Earth to the Sun; this distance is 
called one astronomical unit (AU), and is roughly 150 million kilometers. Copernicus 
made the first, roughly accurate, solar system model, using data taken in ancient times, 
in his famous De Revolutionibus (1543). Distances in inner solar system are measured 
by bouncing radar signals off planets or asteroids, and measuring the time until the echo 
is received. Modern models are very accurate. 

The next step in the ladder consists of simple geometrical methods; with them, one 
can go to a few hundred light-years. The distance to nearby stars can be determined by 
their parallaxes: using Earth's orbit as a baseline, the distances to stars are measured by 
triangulation. This is accurate to about 1% at 50 light-years, 10% at 500 light-years. 

Using data acquired by the geometrical methods, and adding photometry  (i.e., measure- 
ments of the brightness) and spectroscopy, one gets the next step in the ladder for stars 
so far away that their parallaxes are not measurable yet. As the brightness decreases 
proportionally to the square of the distance, if we know the absolute brightness of a star 
(i.e., its in the standard reference distance 10 parsecs), and its apparent brightness (i.e., 
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the actual brightness which we observe on the Earth) we can say how far away the star 
is. To define the absolute brightness, one can use a Hertzsprung-Russel diagram: stars 
of similar type have similar brightnesses; thus, if we know a star's type (from its color 
and/or spectrum), we can find its distance by comparing its apparent with its absolute 
magnitude; the latter derived from geometric parallaxes to nearby stars. 

For even larger distances in the Universe, one need an additional element: standard 
candles, i.e., several types of cosmological objects, for which one can determine their 
absolute brightness without knowing their distances. Primary standard candles are 
Cepheids variable stars. They periodically change their size and temperature. There is 
a relationship between the brightness of these pulsating stars and the period of their 
oscillations, and this relationship can be used to determine their absolute brightness. 
Cepheids can be identified as far as in the Virgo Cluster (60 million light-years). Another 
type of standard candle (secondary standard candles) which is brighter than Cepheids 
and, hence, can be used to determine the distances to galaxies even hundreds of millions 
of light-years away, are supernovae and entire galaxies. 

For really large distances (several hundreds of millions of light-years or even several 
billions of light-years), the cosmological redshift and the Hubble law are used. A com- 
plication is that it is not clear what is meant by "distance" here, and there are several 
types of distances used in Cosmology (luminosity distance, proper motion distance, 
angular diameter distance, etc.). 

Depending of situation, there is a large variety of special techniques to measure distances 
in Cosmology, such as secular parallax distance, statistical parallax distance, Bondi 
radar distance, kinematic distance, expansion parallax distance, light echo distance, 
spectroscopic parallax distance, RR Lyrae distance, etc. 

26.2. DISTANCES IN THEORY OF RELATIVITY 

The Minkowski space-time (or Minkowski space, Lorentz space-time, flat space-time) is 
the usual geometric setting for the Einstein Special Theory of Relativity. In this setting the 
three ordinary dimensions of space are combined with a single dimension of time to form 
a four-dimensional space-time R1'3 in the absence of gravity. 

Vectors in R1'3 are called four-vectors (or events). They can be written as (ct, x, y, z), 
where the first component is called time-like component (c is the speed of light, and t is 
the time) while the other three components are called spatial components. In spherical 
coordinates, they can be written as (ct, r, O, ~). In the Theory of Relativity, the spherical 
coordinates are a system of curvilinear coordinates (ct, r, O, ~), where c is the speed of 
light, t is the time, r is the radius from a point to the origin with 0 ~< r < cx~, q5 is 
the azimuthal angle in the xy-plane from x-axis with 0 ~< q5 < 2re (longitude), and 0 is 
the polar angle from the z-axis with 0 ~< 0 ~< rc (colatitude). Four-vectors are classified 
according to the sign of their squared norm: 

II v 2 _ (v, v) - c 2t 2 - x 2 - y2 _ z2. 
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They are said to be time-like, space-like, and light-like (isotropic) if their squared norms 
are positive, negative, or equal to zero, respectively. 

The set of all light-like vectors forms the light cone. If the coordinate origin is singled 
out, the space can be broken up into three domains: domains of absolute future and absolute 
past, falling into the light cone, whose points are joined to the origin by time-like vectors 
with positive or negative value of time coordinate, respectively, and domain of absolute 
elsewhere, falling out of the light cone, whose points are joined to the origin by space-like 
vectors. 

A world line of an object is the sequence of events, that marks the time history of the 
object. A world line traces out the path of a single point in the Minkowski space. It is 
an one-dimensional curve, represented by the coordinates as a function of one parameter. 
World line is a time-like curve in space-time, i.e., at any point its tangent vector is a time- 
like four-vector. All world lines fall within the light cone, formed by light-like curves, i.e., 
the curves which tangent vectors are light-like four-vectors, corresponded to the motion of 
light and other particles of zero rest mass. 

World lines of particles at constant speed (equivalently, of free falling particles) are 
called geodesics. In Minkowski space they are straight lines. 

A geodesic in the Minkowski space, which joins two given events x and y, is the longest 
curve among all world lines which join these two events. This follows from the inverse 
triangle inequality 

IIx + Yll ~ Ilxll + IlYlI, 

according to which a time-like broken line joining two events is shorter than the single 
time-like geodesic joining them, i.e., the proper time of the particle moving freely from 
x to y is greater than the proper time of any other particle whose world line joins these 
events. This fact is usually called twin paradox. 

The space-time is a four-dimensional manifold which is the usual mathematical setting 
for the Einstein General Theory of Relativity. Here the three spatial components with a 
single time-like component form a four-dimensional space-time in the presence of gravity. 
Gravity is equivalent to the geometric properties of space-time, and in the presence of 
gravity the geometry of space-time is curved. Thus, the space-time is a four-dimensional 
curved manifold for which the tangent space to any point is the Minkowski space, i.e., it is 
a pseudo-Riemannian manifold of signature (1, 3). 

In the General Theory of Relativity, gravity is described by the properties of the local 
geometry of space-time. In particular, the gravitational field can be built out of a metric 
tensor, a quantity describing geometrical properties space-time such as distance, area, and 
angle. Matter is described by its stress-energy tensor, a quantity which contains the density 
and pressure of matter. The strength of coupling between matter and gravity is determined 
by the gravitational constant. 

The Einstein field equation is an equation in the General Theory of Relativity, that de- 
scribes how matter creates gravity and, conversely, how gravity affects matter. A solution 
of the Einstein field equation is a certain Einstein metric appropriate for the given mass 
and pressure distribution of the matter. 

Black hole is a massive astrophysical object that is theorized to be created from the 
collapse of a neutron star. The gravitational forces are so strong in a black hole that they 
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overcome neutron degeneracy pressure and, roughly speaking, collapse to a point (known 
as a s ingular i ty) .  Even light cannot escape the gravitational pull of a black hole within 
the black hole's so-called S c h w a r z s c h i l d  radius  (or grav i ta t iona l  radius) .  Uncharged, zero 
angular momentum black holes are called S c h w a r z s c h i l d  b lack  holes.  Uncharged non-zero 
angular momentum black holes are called Kerr  b lack  holes.  Non-spinning charged black 
holes are called R e i s s n e r - N o r d s t r S m  b lack  holes.  Charged, spinning black holes are called 
K e r r - N e w m a n  b lack  holes.  Corresponding metrics describe how space-time is curved by 
matter in the presence of these black holes. 

For an additional information see, for example, [Wein72]. 

�9 Minkowski metric 

The Minkowski metric is a pseudo-Riemannian metric, defined on the M i n k o w s k i  

space  R1'3, i.e., a four-dimensional real vector space which is considered as the p s e u d o -  

E u c l i d e a n  space  of signature (1, 3). It is defined by its metric tensor 

1 01 0 0 ! 00 
( (g i j ) )  -- 0 -- 

0 0 1 

The line e l emen t  d s  2, and the space - t ime  in terval  e l emen t  d s  of this metric are given by 

ds  2 - c 2 d t  2 _ d x  2 _ d y  2 _ d z  2. 

In spher ica l  coord ina tes  (ct ,  r, 0, ~b), one has d s  2 - c 2 d t  2 - d r  2 - r 2 dO 2 - 

r 2 sin 2 0 dq52. 

The pseudo-Euclidean space R 3'1 of signature (3, 1) with the line e l emen t  

d s  2 - _ c  2 d t  2 -+- d x  2 -+- d y  2 -+- d z  2 

can also be used as a space-time model of the Einstein Special Theory of Relativity. 
The metric of signature (1, 3) is commonly used by people from a Particle Physics 
background, whereas the metric of signature (3, 1) is typically used by people from 
a Relativity background. 

�9 Lorentz metric 

A Lorentz metric (or Lorentzian metric) is a pseudo-Riemannian metric of signature 
(1, p). 

A Loren t z ian  m a n i f o l d  is a manifold equipped with the Lorentz metric. The curved 
space-time of the General Theory of Relativity can be modeled as a Lorentzian man- 
ifold M of signature (1, 3). The M i n k o w s k i  space  R 1'3 with the flat Minkowski metric 
is a model of a flat Lorentzian manifold. 

In the Loren t z ian  G e o m e t r y  the following definition of distance is commonly used. 
Given a rectifiable non-space-like curve V: [0, 1] --+ M in the space-time M, the 
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length of the  curve is defined as l (y )  - ~ljo/'~/-I cly--dT,--d-~dy) dt" For a space-like curve we set 

1 (y)  = O. Then the Lorentz  d is tance  between two points p,  q �9 M is defined as 

sup l ( y )  
y e F  

if p -< q, i.e., if the set F of future directed non-space-like curves from p to q is non- 

empty. Otherwise, the Lorentz distance is equal to 0. 

�9 L o r e n t z - M i n k o w s k i  d is tance  

The L o r e n t z - M i n k o w s k i  d is tance  is a distance on R n (or on Cn), defined by 

n 

Xl - Yl 2 _ Z Xi -- Yi ]2 

i=2 

�9 Gal i l ean  dis tance  

The Gal i l ean  dis tance  is a distance on R n, defined by 

Ix1 - yll 

if X l ~= Yl, and by 

/ (x2  - y2)  2 - + - . . . - + -  (Xn - yn) 2 

if X l = Yl. The space R n equipped with the Galilean distance is called Galilean space. 
For n = 4, it is a mathematical setting for the space-time of classical mechanics ac- 

cording to Gali lei-Newton in which the distance between two events taking place at the 

points p and q at the moments  of time tl and t2 is defined as the time interval It1 - t21, 

while if these events take place at the same time, it is defined as the distance between 

the points p and q. 

�9 Einste in  metr ic  

In the General Theory of Relativity, described how space-time is curved by matter, the 

Einste in  metr ic  is a solution to the Einstein field equation 

Rij  gij  R 87r G Ti j 
2 + A g i j  -- c------ f -  , 

i.e., a metr ic  t ensor  ( (g i j ) )  of signature (1, 3), appropriate for the given mass and pres- 

sure distribution of the matter. Here Ei j  -- Ri j __ giJ2R _+_ A g i j  is the Einstein curvature 
tensor, Rij  is the Ricci curvature tensor, R is the Ricci scalar, A is the cosmological 
constant, G is the gravitational constant, and ]r)j is a stress-energy tensor. Empty space 
(vacuum) corresponds to the case of vanished Ricci t e n s o r :  Rij  = O. 
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The static Einstein metric for a homogeneous and isotropic Universe is given by the line 

e lement  

dr  2 
ds  2 - - d t  2 + + r 2 (dO 2 + sin 2 0 dq52), 

(1 kr  2) 1 

where k is the curvature of the space-time, and the scale f ac to r  is equal to 1. 

�9 de Sitter metr ic  

The de Sitter metr ic  is a maximally symmetric vacuum solution to the Einstein f ie ld  

equation with a positive cosmological constant A, given by the line e lement  

ds  2 -- d t  2 -}- e 2 ~ t  (dr 2 -}- r 2 dO 2 -}- r 2 sin 2 0 d~b2). 

Without a cosmological constant (i.e., with A = 0), the most symmetric solution to the 
Einstein field equation in the vacuum is the flat M i n k o w s k i  metric .  

The anti -de  Sitter metr ic  corresponds to the negative value of A. 

�9 Schwarz sc h i ld  metr ic  

The Schwarz sc h i ld  metr ic  is a solution to the Einstein f ie ld  equation for empty space 
(vacuum) around a spherically symmetric mass distribution; this metric gives a repre- 
sentation of an Universe around a black hole of a given mass, from which no energy 
can be extracted. It was found by K. Schwarzschild in 1916, only a few months after 
the publication of the Einstein field equation, and was the first exact solution of this 
equation. 

The line e lement  of this metric is given by 

d s 2 ( l _ r _ _ _ q _ g ) c 2 d t 2 _  _ 1 
r (1 ~ )  

- - d r  2 -- r 2 (dO 2 + sin 2 0 dq52), 

2Gm is the Schwarzschi ld  radius, m is the mass of the black hole, and G is where rg : c2 

the gravi tat ional  constant.  

This solution is only valid for radii larger than rg, as at r = rg there is a coordinate sin- 
gularity. This problem can be removed by a transformation to a different choice of space- 
time coordinates, called Kruska l -Szekeres  coordinates.  As r --+ +cx~, the Schwarzschild 
metric approaches the M i n k o w s k i  metric .  

�9 K r u s k a l - S z e k e r e s  metr ic  

The K r u s k a l - S z e k e r e s  metr ic  is a solution to the Einstein f ie ld  equation for empty 
space (vacuum) around a static spherically symmetric mass distribution, given by the 
line e lement  

ds  2 - 4 - -  e - ~  (c 2 dt  ,2 - dr  ,2) - r 2(dO 2 + sin 2 0 dq52), 
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2Gm is the Schwarzschild radius, m is the mass of the black hole, G is the where rg  = c2 

gravitational constant, R is a constant, and Kruskal-Szekeres coordinates (t ~, r ~, O, ~) 
are obtained from the spherical coordinates (ct, r, O, ~) by Kruskal-Szekeres transfor- 

mationr , 2 - c t  , 2 -  R2(~r _ 1 )e~ ,  7ct' _ t a n h  ,~ .(~--7-~)ct 

In fact, the Kruskal-Szekeres metric is the Schwarzschi ld  metric,  written in Kruskal- 
Szekeres coordinates. It shows, that the singularity of the space-time in the Schwarz- 
schild metric at the Schwarzschild radius rg is not a real physical singularity. 

�9 Kottler metric 

The Kottler metric is the unique spherically symmetric vacuum solution to the Einstein 
field equation with a cosmological constant A. It is given by the line element 

i dt: + 1 + +  in: 0 d , : ) .  
r 3 

It is called also Schwarzsch i ld -de  Sitter metric for A > O, and Schwarzschi ld-ant i -  
de Sitter metric for A < O. 

�9 Re issner-Nordstr i im metric 

The Reissner-Nordstr i im metric is a solution to the Einstein field equation for empty 
space (vacuum) around a spherically symmetric mass distribution in the presence of a 
charge; this metric gives a representation of an Universe around a charged black hole. 

The line element of this metric is given by 

ds 2 (1 2m e21 ( 2m e2 )  -1 -- - ~- dt 2 1 - ~- dr 2 2(d02 + sin 20 dq52), 

where m is the mass of the hole, e is the charge (e < m), and we have used units with 
the speed of light c and the gravitational constant G equal to one. 

�9 Kerr metric 

The Kerr metric (or Kerr-Schi ld  metric)  is an exact solution to the Einstein field equa- 
tion for empty space (vacuum) around an axial symmetric, rotating mass distribution; 
this metric gives a representation of an Universe around a rotating black hole. 

Its line element is given (in Boyer-Lindquistform) by 

ds2 - p 2 (  dr2 ) a2 2 2mr (a sin2 0 d~ _ dt)2 +dO 2 + (r 2 +  ) s i n 2 0 d q 5 2 - d t  + 7 -  

where/92 - r 2 + a 2 cos 20, and A - r 2 - 2mr + a 2. Here m is the mass of the black 
hole, and a is the angular velocity as measured by a distant observer. 

The generalization of the Kerr metric for charged black hole is known as the K err -  
N e w m a n  metric.  When a = 0, the Kerr metric becomes the Schwarzschi ld  metric. 
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�9 Kerr-Newman metric 

The Kerr-Newman metric is an exact, unique, and complete solution to the Einstein 
field equation for empty space (vacuum) around an axial symmetric, rotating mass dis- 
tribution in the presence of a charge; this metric gives a representation of an Universe 
around a rotating charged black hole. 

The line element of the exterior metric is given by 

sin 2 0 a2 dt) 2 102 ds2 -- p2A (dt - a sin 20dqg) 2 +  p2 (( r2 + ) d ,  - a + --A dr2 + p2 dO 2, 

w h e r e p 2 - -  r 2 + a  2cos 2 0 , a n d A _  r 2 - 2 m r + a  2 + e  2. Here m is the mass of the 
black hole, e is the charge, and a is the angular velocity. When e = 0, the Kerr-Newman 
metric becomes the Kerr metric. 

�9 Static isotropic metric 

The static isotropic metric is a most general solution to the Einstein field equation for 
empty space (vacuum); this metric can represent a static isotropic gravitational field. The 
line element of this metric is given by 

ds: - B(r) dt:  - A(r) dr: - r:(dO: § sin: 0 d~b:), 

where B(r) and A(r) are arbitrary functions. 

�9 Eddington-Robertson metric 

The Eddington-Robertson metric is a generalization of the Schwarzschild metric 
to assume that mass m, the gravitational constant G, and the density p are altered by 
unknown dimensionless parameters oe, fl, and g (all equal to 1 in the Einstein field equa- 
tion). 

The line element of this metric is given by 

- - + 2 ( f l - o e V )  + . . .  dt 2 -  1 + 2 3 / I + . . .  dr 2 
F F 

-- r 2 (dO 2 + sin 2 0 dq52). 

�9 Janis -Newman-Wincour  metric 

The Janis -Newman-Wincour  metric is the most general spherically symmetric static 
and asymptotically flat solution to the Einstein field equation coupled to a massless 
scalar field. It is given by the line element 

( ( ( ds 2 - -  1 -  dt 2+ 1 ?'r dr2 + 1 -  - ~  r2(dO 2 + s i n  20dq52), 

where m and V are constants. For V = 1 one obtains the Schwarzschild metric. In this 
case the scalar field vanishes. 
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�9 Robertson-Walker metric 

The Robertson-Walker metric (or Friedmann-Lemaitre-Robertson-Walker met- 
ric) is a solution to the Einstein f ie ld  equation for an isotropic and homogeneous  Uni- 
verse filled with a constant density and negligible pressure; this metric gives a represen- 
tation of an Universe filled with a pressureless dust. The line e lement  of this metric is 
usually written in the spherical  coordinates  (ct, r, O, ~b): 

dr  2 
ds2 - -  c 2  dt2 - a(t)2 1 - kr  2 + r2(dO 2 + sin 2 0 dq52)), 

where a( t )  is the scale factor ,  and k is the curvature of the space-time. 

There exists other form for the line element: 

ds  2 - c 2 d t  2 - a ( t ) 2 ( d r  '2 + T2(dO 2 + sin 2 0 d~b2)), 

where r ~ gives the comoving distance from the observer, and Y gives the proper mo- 
tion distance,  i.e., T = R c  s inh ( r~ /Rc ) ,  or r ~, or R c  s in ( r~ /Rc )  for negative, zero or 
positive curvature, respectively, where R c  = 1/~/Ikl  is the absolute value of the radius 

o f  curvature. 

�9 G C S S  metric 

A G C S S  (i.e., general cylindrically symmetric stationary) metric is a solution to the 
Einstein f ie ld  equation, given by the line e lement  

ds  2 - - f d t  2 + 2k d t  d ~  + e u (dr 2 + dz 2) + ldq52, 

where the space-time is divided into two regions: the interior, with 0 ~< r ~< R, to a 
cylindrical surface of radius R centered along z, and the exterior, with R ~< r < oc. 
Here f ,  k, # and 1 are functions only of r, and - o c  < t, z < oc, 0 ~< ~p ~< 27r, the 
hypersurfaces q5 = 0 and q5 = 27r are identical. 

�9 Lewis metric 

The Lewis metric is a cylindrically symmetric stationary metric which is a solution 
to the Einstein f ie ld  equation for empty space (vacuum) in the exterior of a cylindrical 
surface. The line e lement  of this metric has the form 

d s  2 - -- f d t  2 + 2k d t  d ~  - e ~ (dr 2 + dz 2) -+- 1 d~b 2, 

where f - ar  -n+l  n2 ac2 r n+l, k - - A f  , 1 -- rzf A2 f , e # -- r �89 (n2-1) with A -- 

crn+ 1 
nay -+- b. The constants n, a, b, and c can be either real, or complex, the corresponding 

solutions belong to the Weyl class or Lewis  class, respectively. In the last case, the metric 
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coefficients become 

f -- r (a  2 - b 2) cos(m lnr )  + 2 r a l b l  sin(m lnr ) ,  

k = - r ( a l a 2  - bl b2) cos(m In r) - r (a l  b2 + a2bl) sin(m In r), 

1 -- - r ( a  2 - b 2) cos(m ln r) - 2ra2b2 sin(m ln r), 

e # - -  r - l ( m 2 + l )  

where m, al ,  a2, bl, and b2 are real constants with alb2 - a2bl = 1. Such metrics form 
a subclass of Kasner  type metrics. 

�9 Van Stoekum metric 

The van Stoekum metric is a stationary cylindrically symmetric solution to the Einstein 

f ie ld  equation for empty space (vacuum) with a rigidly rotating infinitely long dust cylin- 
der. The line e lement  of this metric for the interior of the cylinder is given (in comoving, 
i.e., corotating coordinates) by 

_ rZ(dr2 dz ~) 2 ( 1 - a 2 r  ~ ds  2 - d t  2 + 2ar  2 dt  d ~  + e -a2 + + r ) d ~  2, 

where 0 ~< r ~< R, R is the radius of the cylinder, and a is the angular velocity of 
the dust particles. There are three vacuum exterior solutions (i.e., Lewis metrics) that 
can be matched to the interior solution, depending on the mass per unit length of the 
interior (the low mass case, the null case, and the ultrarelativistic case). Under some 
conditions (for example, if ar  > 1), the existence of closed time-like curves (and, hence, 
time-travel) is allowed. 

�9 Levi-Civita metric 

The Levi-Civita metric is a static cylindrically symmetric vacuum solution to the Ein- 

stein f ie ld  equation, with the line element,  given (in the Weyl form) by 

ds  2 -- - r  4~ d t  2 + r 4~(2~-1) (dr 2 + dz  2) + C - 2 r  2-4~ dq~, 

where the constant C refers to the deficit angle, and the parameter ~ is mostly understood 
in accordance with the Newtonian analogy of the Levi-Civita solution - the gravitational 
field of an infinite uniform line-mass (infinite wire) with the linear mass density ~. In 
the case ~ - - �89  C - 1 this metric can be transformed either into the Taub's p lane  

symmetr ic  metric, or into the Rob inson -Trau tman  metric. 

�9 Weyl-Papapetrou metric 

The Weyl-Papapetrou metric is a stationary axially symmetric solution to the Einstein 

f ie ld  equation, given by the line e lement  

ds  2 -- F d t  2 - e u (dz 2 + dr  2) - L d ~  2 - 2 K  d ~  dt ,  

where F, K, L and # are functions only of r and z, L F + K 2 -- r 2, cx~ < t, z < cx~, 
0 ~< r < cx~, and 0 ~< q~ ~< 27c, the hypersurfaces q~ = 0 and q~ - 27c are identical. 
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�9 Bonnor dust metric 

The Bonnor dust metric is a solution to the Einstein field equation, which is an axially 
symmetric metric, describing a cloud of rigidly rotating dust particles moving along 

circular geodesics about the z-axis in hypersurfaces of z = constant. The line element 
of this metric is given by 

ds  2 -- d t  2 + (r  2 -- n2)d~b 2 + 2n d t  dO + e"  (dr  2 + d z 2 ) ,  

2hr 2 h2r2(r2-8z 2) 
where, in Bonnor 's  comoving (i.e., corotating) coordinates, n - ---yy-, # - 2 R  s , 

R 2 -- r 2 + z 2, and h is a rotation parameter. As R --+ oc, the metric coefficients tend to 

Minkowski values. 

�9 Weyl metric 

The Weyl met r ic  is a general static axially symmetric vacuum solution to the Einstein 
field equation, given, in Weyl canonical coordinates, by the line element 

ds  2 -- e2X d t  2 -- e-2X (e2# (dr  2 + dz  2) + r 2 d~b2), 

02)~ 1 0)~ 02)~ 0/z _ 
where )~ and # are functions only of r and z such that 5-72 + r " 57 + 572 - 0, Or - 

0)~2 0)~2), and au a~ a~ 
r(  Or az -b7 -- 2r Or az" 

�9 Zipoy-Voorhees metric 

The Zipoy-Voorhees metric (or F-metric) is a Weyl metr ic ,  obtained for 

e2)~ ( R l -k- R2 - 2m ) / 
R1 + R2 + 2m 

2 / 
' e2/Z-  ( (RI+R2+2m)(RI+R2-2m))-4-RiR2 ' 

where R 2 -- r 2 + (z - m) 2, R 2 -- r 2 + (z + m) 2. Here )~ corresponds to the Newtonian 

potential of a line segment of mass density F / 2  and length 2m, symmetrically distributed 

along the z-axis. The case F = 1 corresponds to the Schwarzschild metric, the cases 

F > 1 (F < 1) correspond to an oblate (prolate) spheroid, and for F = 0 one obtains 
the flat Minkowski space-time. 

�9 Straight spinning string metric 

The straight spinning string metric is given by the line element 

ds 2 - - ( d t  - a dqS) 2 + dz 2 + dr 2 + k2r 2 d~ 2, 

where a and k > 0 are constants. It describes the space-time around a straight spinning 

string. The constant k is related to the string's mass-per-length # by k = 1 - 4#,  and 

the constant a is a measure for the string's spin. For a = 0 and k = 1, one obtains the 

Minkowski metric in cylindrical coordinates. 
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�9 T o m i m a t s u - S a t o  m e t r i c  

A T o m i m a t s u - S a t o  m e t r i c  ([ToSa73]) is one of the metrics from an infinite family 
of spinning mass solutions to the Eins te in  f i e ld  equat ion ,  each of which has the form 

- U~ W ,  where U and W are some polynomials. The simplest solution has U - 
p2(x4 - 1) + q2(y4 _ 1) - 2 i p q x y ( x  2 - y2), W - 2 p x ( x  2 - 1) - 2 i q y ( 1  - y2), where 

p2 + q2 _ 1. The line e l emen t  for this solution is given by 

ds  2 - r -1 ((od d t  + fi dqg) 2 m r r (dz2 + dr2 )  ' 2 ( y  d t  + 3 dqg) 2) - p4 (x 2 _ y2)4 

, 2q where ~ - p2(x2--  1 ) 2 + q 2 ( 1 - - y 2 )  2 fi -- - - ~ - W ( p 2 ( x  2 -  1 ) ( x 2 - y 2 ) + 2 ( p x  + 1)W), 

y -- - 2 p q ( x Z - y 2 ) ,  3 -- ol + 4 ( ( x  2 - 1 ) + ( x 2 +  1)(px + 1)), r -- o l 3 - f i y  -- IU + wJ 2. 

�9 G 6 d e l  m e t r i c  

The G 6 d e l  m e t r i c  is an exact solution to the Eins te in  f i e ld  equat ion  with cosmological 
constant for a rotating Universe, given by the line e l emen t  

d s  2 - - ( d t  2 + C ( r )  dqS) 2 + D2(r)dq52 + d r  2 + d z  2, 

where (t, r, ~b, z) are the usual cy l indr ica l  coordinates .  The GOdel Universe  is homoge- 
neous if C ( r )  - 4~2 sinh2(~__~) D ( r )  -- 1 sinh(mr)  where m and ~ are constants. The 77 , m ' 
G6del Universe allows the possibility of c losed  t ime- l ike  curves,  and hence, time-travel. 
The condition required to avoid such curves is m 2 > 4f22. 

�9 P l a n e  w a v e  m e t r i c  

The p l a n e  w a v e  m e t r i c  is a vacuum solution to the Eins te in  f i e ld  equat ion ,  given by the 
line e l emen t  

d s  2 - 2 d w  d u  + 2 f (u) (x 2 + y2) d u  2 _ d x  2 - d y  2. 

It is conformally fiat, and describes a pure radiation field. The space-time with this metric 
is called p l a n e  grav i ta t iona l  wave .  

�9 Wi l s  m e t r i c  

The Wils  m e t r i c  is a solution to the Eins te in  f i e ld  equat ion ,  given by the line e l emen t  

d s  2 - 2x  d w  d u  - 2 w  d u  d x  + (2 f ( u ) x ( x  2 + y2) _ to2)du 2 _ d x  2 - d y  2. 

It is conformally fiat, and describes a pure radiation field which is not a p l a n e  wave .  

�9 K o u t r a s - M c I n t o s h  m e t r i c  

The K o u t r a s - M c I n t o s h  m e t r i c  is a solution to the Eins te in  f i e ld  equat ion ,  given by the 
line e l emen t  

d s  2 - 2(ax + b) d w  du - 2aw  du dx  + (2 f (u)(ax + b ) ( x  2 + y2) _ a2to2) du 2 

_ d x  2 _ d y  2. 
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It is conformally flat and describes a pure radiation field which, in general, is not a plane 

wave. It gives the plane wave metric for a - 0, b - 1, and the Wils me t r i c  for a - 1, 

b - 0 .  

�9 Edgar-Ludwig  metric 

The Edgar-Ludwig  metric is a solution to the Einstein f ield equation, given by the line 

element 

ds 2 - 2(ax + b) dw  du - 2aw du dx  

+ ( 2 f ( u ) ( a x  + b ) ( g ( u ) y  + h(u)  + x 2 + y2) _ a2w2)du 2 _ dx  2 - dy  2. 

This metric is a generalization of the Koutras-McIntosh metric. It is the most general 

metric, describing a conformally flat pure radiation (or null fluid) field which, in general, 
is not a plane wave. If plane waves are excluded, it has the form 

ds 2 - 2x dw du - 2w du dx  + (2 f ( u ) x ( g ( u ) y  + h(u)  + x 2 + y2) _ w2)du 2 

_ d x  2 _ dy 2. 

�9 Bondi radiating metric 

The Bondi radiating metric describes the asymptotic form of a radiating solution to the 

Einstein f ield equation, given by the line element 

ds2 - . . . . .  ( Ve2#r U 2 r 2 e 2 y ) d u  2 2e 2/~ du dr 2Ur2e 2y du dO 

+ rZ(e 2y dO 2 + e -2y sin 2 0 dqS2), 

where u is the retarded time, r is the luminosity distance, 0 ~< 0 ~< Jr, 0 ~< q5 ~< 2Jr, and 
U, V,/~, y are functions of u, r, and 0. This metric is used in the theory of gravitation 

w a v e s .  

�9 Taub-NUT de Sitter metric 

The Taub-NUT de Sitter metric is a positive-definite (i.e., Riemannian) solution to the 

Einstein f ield equation with a cosmological constant A, given by the line element 

ds 2 r2 _ L 2 L2A  r 2 _ L 2 
= dr 2 + (dfz + cos0  dqS) 2 + - - ( d O  2 + sin 2 0 dq52) 

4A r 2 - L 2 4 ' 

where A -- r 2 -- 2 M r  + L 2 + ~ ( L  4 -+- 2L2r 2 - }r4),  L and M are parameters, and 0, ~b, 

fz are Euler angles. If A -- 0, one obtains the Taub-NUT metric, using some regularity 

conditions. 
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�9 Eguchi -Hanson de Sitter metric 

The Eguchi -Hanson de Sitter metric is a positive-definite (i.e., Riemannian) solution 
to the Einstein f ie ld  equation with a cosmological constant A, given by the line e lement  

( a4 A r 2 )  -1 r 2 (  
ds  2 -- 1 r4 6 dr2 § -4  1 

r 2 
+ -~ (dO 2 + sin 2 0 dq52), 

a 4 A r  2 ) 
r 4 6 (d7: + cos 0 dqg) 2 

where a is a parameter, and 0, ~b, 7: are Euler  angles. If A = 0, one obtains the Eguchi -  
Hanson metric. 

�9 Barriola-Vilenkin monopole metric 

The Barrio la-u  monopole metric is given by the line e lement  

ds  2 - - d t  2 + dr  2 + k2r 2 (dO 2 + sin 2 0 dq52), 

with a constant k < 1. There is a deficit solid angle and a singularity at r = 0; the plane 
Jr has the geometry of a cone. This metric is an example of a conical t - constant,  0 - 

singularity; it can be used as a model for monopoles  that might exist in the Universe (cf. 
monopole metric). 

A magnet ic  monopole  is a hypothetical isolated magnetic pole, "a magnet with only one 
pole". It has been theorized that such things might exist in the form of tiny particles 
similar to electrons or protons, forming from topological defects in a similar manner to 
cosmic strings, but no such particle has ever been found. 

�9 Bertott i -Robinson metric 

The Bertott i -Robinson metric is a solution to the Einstein f ie ld  equation in an Universe 
with an uniform magnetic field. The line e lement  of this metric is given by 

ds  2 _ Q2 ( _ d t  2 + sin 2 t d w  2 + dO 2 + sin 2 0 dq52), 

where Q is a constant, t �9 [0, Jr], w �9 ( - o c ,  +oc) ,  0 �9 [0, Jr], and ~b �9 [0, 2Jr]. 

�9 Morris -Thorne  metric 

The Morris -Thorne  metric is a wormhole  solution to the Einstein f ie ld  equation with 
the line e lement  

24~ (w) 
ds 2 -- e c2 c 2 d t  2 - d w  2 - r (w) 2 (dO 2 + sin 2 0 dq92), 

where w �9 [ - o c ,  +oc] ,  r is a function of w, that reaches some minimal value above 
zero at some finite value of w, and qS(w) is a gravitational potential allowed by the 
space-time geometry. 
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A wormhole is a hypothetical "tube" in space connecting widely separated positions 
in an Universe. All wormholes require exotic material with negative energy density, in 
order to hold them open. 

�9 M i s n e r  m e t r i c  

The M i s n e r  m e t r i c  is a metric, representing two black holes. Misner (1960) provided 
a prescription for writing a metric connecting a pair of black holes, instantaneously at 
rest, whose throats are connected by a wormhole. The line element of this metric has the 
form 

ds  2 _ _ d t  2 + ~ 4 ( d x  2 + dy2 + dz2) ,  

where the conformalfactor ~/is given by 

N 

n=-N  

1 1 

sinh(#on) v/x 2 + y2 + (z + coth(#on))  2 

The parameter #0 is a measure of the ratio of mass to separation of the throats (equiva- 
lently, a measure of the distance of a loop in the surface, passing through one throat and 
out the other). The summation limit N tends to infinity. 

The topology of the Minsler space-time is that of a pair of asymptotically flat sheets 
connected by a number of Einstein-Rosen bridges. In the simplest case, the Misner 
space can be considered as a two-dimensional space with topology R x S 1 in which 
light progressively tilt as one moves forward in time, and has closed time-like curves 
after certain point. 

�9 A l c u b i e r r e  m e t r i c  

The A l c u b i e r r e  m e t r i c  is a solution to the Einstein field equation, representing warp 
drive space-time in which the existence of closed time-like curves is allowed. What is 
violated in this case is only the relativistic principle that a space-going traveler may move 
with any velocity up to, but not including or overcoming, the speed of light. Alcubierre's 
construction corresponds to a wrap drive in that it causes space-time to contract in front 
of spaceship bubble and expand behind, thus providing the spaceship with a velocity 
that can be much greater than the speed of light relative to distant objects, while the 
spaceship never locally travels faster than light. 

The line element of this metric has the form 

ds  2 - - d t  2 -+- (dx - v f  (r) dt)  2 -+-dy 2 + dz  2, 

with v - ~x,(t) the apparent velocity of the warp drive spaceship, Xs(t) the trajectory dt 
of the spaceship along coordinate x, the radial coordinate being defined by r = ((x - 

Xs (t)) 2 -+- y2 _+_ z 2) �89 and f (r) an arbitrary function subjected to the boundary conditions 
that f = 1 at r = 0 (the location of the spaceship), and f = 0 at infinity. 
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�9 Rotating C-metric 

The rotating C-metric is a solution to the Einstein-Maxwell equations, describing two 
oppositely charged black holes, uniformly accelerating in opposite directions. The line 
element of this metric has the form 

ds 2 _ A - 2 ( x  + y ) - 2 (  dY 2 dx2 
F(y) + G(x) 

+ k -2G(X)  d~ 2 _ k2A2F(y) d t2) ,  

where F(y) -- - 1  -q- y 2  _ 2mAy3 + e 2 A 2 y 4 ,  G ( x )  - -  1 - x 2 - 2mAx 3 - e 2 A 2 x  4, m ,  

e, and A are parameters related to the mass, charge and acceleration of the black holes, 
and k is a constant fixed by regularity conditions. 

�9 Kaluza-Klein metric 

The Kaluza-Klein metric is a metric in the Kaluza-Klein model of 5-dimensional (in 
general, multi-dimensional) space-time which sought to unify classical gravity and elec- 
tromagnetism. 

T. Kaluza (1919) obtained that if the Einstein theory of pure gravitation is extended 
to a five-dimensional space-time, the Einstein field equations can be split into ordinary 
four-dimensional gravitation tensor field, plus an extra vector field which is equivalent 
to Maxwell's equation for the electromagnetic field, plus an extra scalar field (known as 
the "dilation") which is equivalent to the massless Klein-Gordon equation. 

O.Klein (1926) assumed the fifth dimension to have circular topology, so that the fifth 
coordinate is periodic, and extra dimension is curled up to an unobservable size. An 
alternative proposal is that the extra dimension is (extra dimensions are) extended, and 
the matter is trapped in four-dimensional submanifold. This approach has properties 
similar to four-dimensional - all dimensions are extended and equal at the beginning, 
and the signature has the form (p, 1). 

In a model of large extra dimension, the fifth-dimensional metric of an Universe can be 
written in Gaussian normal coordinates in the form 

ds 2 _ _(dx5)2 + ~2(x5) Z r/c~/~ dxc~ dx~, 
c~,~ 

where r/c~/~ is the four-dimensional metric tensor, and  ~2(X5) is the arbitrary function of 
the fifth coordinate. 

�9 Quantum metrics 

A quantum metric is a general term used for a metric expected to describe the space- 
time at quantum scales (of order Planck-length 1p). Extrapolating the predictions of 
both, Quantum Mechanics and General Relativity, the metric structure of this space-time 
is determined by vacuum fluctuations of very high energy (1019 GeV corresponding to 
the Planck-mass m p) creating black holes with radii of order 1p. The space-time became 
"quantum foam": violent warping and turbulence. It looses smooth continuous structure 
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(apparent macroscopically) of a Riemannian manifold, to become discrete, fractal, non- 
differentiable: breakdown at 1p of the functional integral in the classical field equations. 

Examples of quantum metric spaces are given by: Rieffel's compact quantum metric 
space, Fubini-Study metric on quantum states, statistical geometry of fuzzy lumps 
([ReRo01]) and quantization of the metric cone in [IsKuPe90]. 



Chapter 27 

Length Measures and Scales 

Here we give selected information on most important length units and present, in length 
terms, a list of interesting objects. 

27.1. LENGTH SCALES 

The main length measure systems are: Metric, Imperial (British and American), Japanese, 
Thai, Chinese Imperial, Old Russian, Ancient Roman, Ancient Greek, Biblical, Astronom- 
ical, Nautical, and Typographical. 

There are many other specialized length scales; for example, to measure cloth, shoe size, 
gauges (as interior diameters of shotguns, wires, jewelry rings), sizes for abrasive grit, sheet 
metal thickness, etc. Also, many units express relative or reciprocal distances. 

�9 International Metric  System 

The International Metric  System (or SI, short for Systbme International) is a mod- 
ernized version of the metric system of units, established by an international treaty (the 
Treaty of the Meter from 20 May 1875), which provides a logical and interconnected 
framework for all measurements in science, industry and commerce. The system is built 
on a foundation consisting of following seven SI base units, assumed to be mutually 
independent: 

1. length: meter (m); it is equal to the distance traveled by light in a vacuum in 
1/299792458 of a second; 2. time: second (s); 3. mass: kilogram (kg); 4. temperature: 
kelvin (K); 5. electric current: ampere (A); 6. luminous intensity: candela (cd); 7. amount 
of substance: mole (mol). 

1 of Originally, on 26 March 1791, the mbtre (French for meter) was defined as 10000000 
the distance from the North pole to the equator along the meridian that passes through 
Paris. In 1799 the standard of mbtre became a meter-long platinum-iridium bar kept in 
S~vres, a town outside Paris, for people to come and compare their rulers with. (The 
metric system, introduced in 1793, was so unpopular that Napoleon was forced to aban- 
don it and France returned to the mbtre only in 1837.) In 1960, the meter was officially 
defined in terms of wavelength. 

�9 Metrication 

The metrication is ongoing (especially, in US and UK) process of conversion to Inter- 
national Metric  System SI. Officially, only US, Liberia and Muanmar do not switched 
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to SI. For example, US uses only miles for road distance signs (milestones). The alti- 
tudes in aviation are usually described in feet; in shipping, nautical miles and knots are 
used. 

Hard  metric  means designing in the metric measures from the start and conformation, 
where appropriate, to internationally recognized sizes and designs. 

Soft metr ic  means multiplying an inch-pound number by a metric conversion factor and 
rounding it to an appropriate level of precision; so, the soft converted products do not 
change size. American Metric System consists of converting traditional units to embrace 
the uniform base 10 method that the Metric System uses. Such SI-Imperial hybrid units, 
used in soft metrication, are, for example, kyloyard (914.4 m), kylofoot (304.8 m), rail 
(24.5 micron), and microinch (or rain, 25.4 nm). 

�9 Meter-re lated terms 

We present this large family of terms by following typical examples. 

Meter: besides the unit of length, this term is used in poetry, music and for any of various 
measuring instruments. 

Metrometer: in Medicine, an instrument measuring the size of the womb; the same term 
is used for a computer tool analyzing French Verse. 

Metering: an equivalent term for a measuring. 

Metrology: scientific study of measurement. 

Metrosophy: a Cosmology based on strict number correspondences. 

Metronomy: measurement of time by an instrument. 

Allometry: the study of the change of proportions of various parts of an organism as a 
consequence of growth; archeometry: science of exact measuring referring remote past, 
and so on. 

�9 Metric  length measures  

kilometer (km) - 1000 meters - 103 m; 

meter (m) - 10 decimeters - 10 ~ m; 

decimeter (dm) - 10 centimeters - 10-1 m; 

centimeter (cm) - 10 millimeters - 10 -2 m; 

millimeter (mm) - 1000 micrometers - 10 -3 m; 

micrometer (micron) - 1000 nanometers - 10 -6 m; 

nanometer (nm) - 10 angstr6ms - 10 -9 m. 

The lengths 103t m, t - - 8 ,  - 7  . . . . .  - 1 ,  1 . . . . .  7, 8, are given by prefixes" yocto-, 
zepto-, atto-, fempto-, pico-, nano-, micro-, milli-, kilo-, mega-, giga-, tera-, peta-, exa-, 
zetta-, yotta-, respectively. 

�9 Imperia l  length measures  

The Imperia l  length measures  (as slightly adjusted by international agreement of July 
1, 1959) are: 
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league -- 3 miles; 

(US survey) mile = 5280 feet ~ 1609.347 m; 

international mile = 1609.344 m; 

yard = 3 feet = 0.9144 m; 

foot  = 12 inches = 0.3048 m; 

inch = 2.54 cm (for firearms, caliber); 

l i n e -  ~ inch; 

m i c k e y -  ~ inch; 

rail (British thou) - ~ inch (rail is also an angle measure ~ ~ 0.001 radian). 

The following are old measures" barleycorn - �89 inch; digit - ~ inches; palm - 3 
inches; hand = 4 inches; shaftment = 6 inches; span = 9 inches; cubit = 18 inches. 

In addition, Surveyor's Chain measures are" furlong - 10 chains - �89 mile; chain - 
100 links = 66 feet; rope = 20 feet; rod (or pole) = 16.5 feet; link = 7.92 inches. 
Mile, furlong and fathom (6 feet) come from the slightly shorter Greco-Roman milos 
(milliare), stadion and orguia, mentioned in the New Testament. 

Prototypical Biblical measures were" cubit and its multiples by 4, �89 ~ and U4 called 
fathom, span, palm and digit, respectively. But the basic length of the Biblical cubit is 
unknown; it is estimated now as about 17.6 inches for the common (used in commerce)  
cubit and 20-22  inches for the sacred one (used for building). The Talmudic cubit is 
56.02 cm, i.e., slightly longer than 22 inches. 

Accordingly to ht tp: / /en.wikipedia.org/wiki/List_of_Strange_units_of_measurement,  
an old unit, called distance and equal to = 221763 inches (about 5633 m) has the 
following strange definition: it is equal to 3 miles + 3 furlongs + 9 chains + 3 rods + 9 
feet + 9 shaftements + 9 hands + 9 barleycorns. 

3 For measuring cloth, old measures are used: b o l t -  40 yards; ell - ~ yard; goad - 

yard; quarter (or span) - �88 yard; f inger - �89 yard; nail - ~ yard. 

�9 Nautical  length units 

The nautical length units (also used in aerial navigation) are: 

sea league = 3 sea (nautical) miles; 

nautical mile : 1852 m; 

geographical mile ~ 1855 m (the average distance on the Earth's surface, represented 
by one minute of latitude); 

cable = 120 fathoms = 720 feet = 219.456 m; 

short cable - ~o nautical mile ~ 608 feet; 

fa thom = 6 feet. 

�9 ISO paper sizes 

In the widely used ISO paper size system, the height-to-width ratio of all pages is the 
Lichtenberg ratio, i.e., ~/-2. The system consists of formats An, Bn and (used for en- 
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n n 1 n 
velopes) Cn with 0 ~< n ~< 10, having widths 2-~--~,  2-~  and 2 8 ~, respectively. 
Above measures are in meters; so, the area of An is 2 -n square meter. They are rounded 
and expressed usually in millimeters; for example, format A4 is 210 x 297 and format 
B7 (used also for EU and US passports) is 88 x 125. 

�9 Typographical length units 

The ATA system (British and American) uses: 

line -- ~ inch ~ 2.117 x 10 -3 m; 

agate l i n e -  ~ inch; 

p i c a [ P o s t S c r i p t ] -  2 lines; 

point[PostScript] (or agate[Adobe]) - ~ line - 100 gutenbergs; 

pica - 12 points ~ 1.99925 lines ~ 4.218 x 10 -3 m; 

point7~- ~ i n c h -  20 twips ~ 3.515 x 10 -4 m; 

pixel  - 15 twips; 

kyu (or Q) 2.5 x 10 -3 m ~ 14.173 twips; 

twip (short for twentieth of a points) ~ 1.764 x 10 -s  m. 

The Didot system (European) uses: 

cicero -- 12 Didot points ~ 1.07 pica; 

Dido tpo in t  ~ 21.397 twips ~ 3.761 x 10 -4 m. 

�9 Very small length units 

AngstrOm (A) -- 10 - l ~  m; 

angstrom star (or Bearden unit)" A* ~ 1.0000148 angstr6m (used, from 1965, to mea- 
sure wavelengths of X-rays and distances between atoms in crystals); 

X unit (or Siegbahn unit) ~ 1.0021 x 10 -13 m (used formerly to measure wavelength of 
X-rays and gamma-rays); 

bohr (the atomic unit of length): d0, the mean radius, ~ 5.291772 x 10 -11 m, of orbit 
of the electron of an hydrogen atom (in the Bohr model); 

reduced Compton wavelength (i.e. h , ~--~) for electron mass me"/LC -- ototO~ 3.862x 10 -13 

m, where h is the reduced Planck's  constant (or Dirac's  constant), c is the speed of light, 

and a ~ 1@7 is the fine-structure constant; 

classical electron radius: re - ~-Xc - ~2~0 ~ 2.81794 x 10 - i s  m; 

V/~O 10-35 Planck length (the smallest physical length): 1p - ~ ~ 1.6162x m, where G is 

the Newton universal gravitational constant. It is the reduced Compton wavelength and 

hc  also half of the Schwarzschild radius, for the Plank mass m p -  ~ ~ 2.176 x 10 -8 

kg. Planck time is tp - clp ~ 5.4 x 10 -44 s. 

In fact, 1035/p ~ 1 US mile, 1043Tp ~ 54 s and 109mp ~ 21.76 kg ~ 1 (classical) 

talent. L. Cottrell (http://planck.com/humanscale.htm) proposed a "postmetric" human- 



346 [ �9 A s t r o n o m i c a l  l e n g t h  uni ts]  Part VII: Real-World Distances 

scale adaptation of Planck units system based on above three units, calling them (Planck) 
mile, minute, and talent. 

�9 Astronomica l  length units  

The Hubble distance (the edge of the cosmic light horizon) is DH -- ~ ~ 4.22 giga- 

parsec ~ 13.7 light-Gyr (used to measure, as percents of DH, distances d > �89 mega- 

parsec in terms of redshift z" d - ZDH if z ~< 1 and d - (z+1)2-1DH otherwise); 
, ( z + l ) 2 + l  , 

gigaparsec = 103 megaparsec; 

hubble (or light-gigayear, light-Gyr, light-Ga) = 109 (billion) light-years ~ 306.595 
megaparsec; 

megaparsec = 103 kiloparsec ~ 3.262 MLY; 

M L Y  = 106 (million) light-years; 

kiloparsec = 103 parsecs; 

parsec - 648ooo AU ~ 3.261634 light-years - 3.08568 x 1016 m (the distance from 
Jr 

an imaginary star, when lines drawn from it to both, the Earth and the Sun, form the 
maximum angle, i.e., parallax, of one second); 

light-year ,~ 9.46073 x 1015 m ~ 5.2595 x 105 light-minutes ~ Jr x 107 light-seconds 
(the distance light travels in vacuum in a year; used to measure interstellar distances); 

spat (used formerly) = 1012 m ~ 6.6846 AU; 

astronomical unit (AU) = 1.49597871 x 1011 m ~ 8.32 light-minutes (the average 
distance between the Earth and the Sun; used to measure distances within the solar 
system); 

l ight-second ,~ 2.998 x 108 m; 

picoparsec ,~ 30.86 km (cf. other funny units such as microcentury ,~ 52.5 minutes, 
usual length of lectures, and nanocentury ,~ Jr seconds). 

27.2. O R D E R S  OF M A G N I T U D E  F O R  L E N G T H  

In this section we present a selection of orders of length magnitudes, expressed in meters. 
1.616 x 10 .35 Planck length (smallest possible physical length): probably, the "quantum 

foam" (violent warping and turbulence of space-time, no smooth spatial geometry); the 
dominant structures are little (multiply-connected) wormholes  and bubbles popping into 
existence and back out of it; 

10 -34. length of a putative string: M-Theory suppose that all forces and all 25 elemen- 
tary particles come by vibration of such strings (which smooth quantum foam on sub- 
Planck distances) and hope to unify Quantum Mechanics and General Relativity; 

10 .24 - 1 yoctometer;  

10 -21 -- 1 zeptometer;  

10-18 _ 1 a t tometer :  weak nuclear force range, size of a quark; 
10-15 _ 1 f emtomete r  (formerly, fermi); 
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1.3 x 10-15: strong nuclear force range, medium-sized nucleus; 
10 -12 = 1 pieometer (formerly, bicron or stigma): distance between atomic nuclei in a 

White Dwarf star; 
10-11: wavelength of hardest (shortest) X-rays and largest wavelength of gamma rays; 
5 x 10-11: diameter of the smallest (hydrogen H) atom; 1.5 x 10-1~ diameter of the 

smallest (hydrogen H2) molecule; 
10 - l~  = 1 angstrO'm: diameter of a typical atom, limit of resolution of the electron 

microscope; 
1.54 x 10-1~ length of a typical covalent bond (C-C); 
10 .9 = 1 nanometer:  diameter of typical molecule; 
2 x 10-9: diameter of the DNA helix; 
10-8: wavelengths of softest X-rays and most extreme ultraviolet; 
1.1 x 10-8: diameter of prion (smallest self-replicating biological entity); 
9 x 10-8: the smallest feature of computer chip in 2005, human immunodeficiency 

virus, HIV; in general, known viruses range from 2 x 10 .8 (parvovirus B-19) to 8 x 10 .7 
(Mimivirus); 

10-7: size of chromosomes, maximum size of a particle that can fit through a surgical 
mask; 

2 x 10-7: limit of resolution of the light microscope; 
3.8 - 7.4 x 10-7: wavelength of visible (to humans) light, i.e., the color range of violet 

through red; 
10 .6 = 1 mierometer  (formerly, micron); 
10 .6 - 10-5: diameter of a typical bacterium; in general, known (in non-dormant state) 

bacteria range from 1.5 x 10 -7 (Micoplasma genitalium: "minimal cell") to 7 x 10 -4 
(Thiomargarita of Namibia); 

7 x 10-6: diameter of the nucleus of a typical eukaryotic cell; 
8 x 10-6: mean width of human hair (ranges from 1.8 x 10 .6 to 18 x 10-6); 
10-5: typical size of (a fog, mist, or cloud) water droplet; 
10 -5, 1.5 x 10 -5, and 2 x 10-5: widths of cotton, silk, and wool fibers; 
5 x 10-4: diameter of a human ovum, MEMS micro-engine; 
10 -3 = 1 millimeter: farthest infrared wavelength; 
5 x 10-3: length of average red ant; in general, insects range from 1.7 x 10 -4 

(Megaphragma caribea) to 3.6 x 10 -1 (Pharnacia kirbyi); 
2Gm . 8.9 x 10 -3. Schwarzschild radius ( - 7 -  the one below which mass m collapses into a 

black hole) of the Earth; 
10 -2 = 1 eentimeter; 
10 -1 = 1 deeimeter: wavelengths of lowest microwave and highest UHF radio fre- 

quency, 3 GHz; 
1 meter: wavelength of lowest UHF and highest VHF radio frequency, 300 MHz; 
1.435: standard gauge of a railway track; 
2.77-3.44: wavelength of the broadcast radio FM band, 108-87 MHz; 
5.5 and 30.1: height of the tallest animal, the giraffe, and length of a blue whale, the 

largest animal; 
10 = 1 deeameter: wavelength of the lowest VHF and highest shortwave radio fre- 

quency, 30 MHz; 
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26: highest measured ocean wave; 
100 = 1 heetometer: wavelength of the lowest shortwave radio frequency and highest 

medium wave radio frequency, 3 MHz; 
112.8: height of the world's tallest tree, a Coast Redwood; 
137, 300, 508, and 541: heights of the Great Pyramid of Giza, of the Eiffel Tower, of 

Taipei 101 Tower (tallest in 2005), and of the planned Freedom Tower at the World Trade 
Center site; 

187-555: wavelength of the broadcast radio AM band, 1600-540 kHz; 
340: distance which sound travels in air in one second; 
10 3 - -  1 k i l o m e t e r ;  

2.95 x 103: Schwarzschild radius of the Sun; 
3.79 x 103: mean depth of oceans; 
4 x 103: the radius of the asteroid that may have killed off the dinosaurs; 
104: wavelength of the lowest medium wave radio frequency, 300 kHz; 
8.8 x 103 and 10.9 x 103: height of the highest mountain, Mount Everest and depth of 

the Mindanao Trench; 
5 • 104 = 50 kin: the maximal distance on which the light of a match can be seen (at 

least 10 photons arrive on the retina during 0.1 s); 
1.11 x 105 = 111 km: one degree of latitude on the Earth; 
105-106: range of voice frequency; 
1.69 x 105: length of Delaware Water Supply Tunnel (New York), the world's longest 

tunnel; 
2 x 105: wavelength of tsunami; 
106 = 1 m e g a m e t e r ;  

3.48 x 106: diameter of the Moon; 
5 • 106: diameter of LHS 4033, the smallest known White Dwarf star; 
6.4 x 106 and 6.65 x 106: length of the Great Wall of China and length of Nile river; 
1.28 x 107 and 4.01 x 107: equatorial diameter of the Earth and length of the Earth's 

equator; 
3.84 x 108: Moon's orbital distance from the Earth; 
109 - 1 g i g a m e t e r ;  

1.39 x 109: diameter of the Sun; 
5.8 x 101~ orbital distance of Mercury; 
1.496 x 1011 (1 astronomical unit, AU): mean distance between the Earth and the Sun 

(orbital distance of the Earth); 
5.7 x 1011: length of longest observed comet tail (Hyakutake, 1996); 
1012 = 1 terameter  (formerly, spat); 
2.1 x 1012 ~ 7 AU: diameter of the largest known supergiant star, KY Cygni; 
4.5 • 1012 ~ 30 AU: orbital distance of Neptune; 
30-50 AU: distance from the Sun to Kuiper asteroid belt; the diameter of NGC 4061, 

the largest known black hole, is within 30-270 AU; 
1015 = 1 p e t a m e t e r ;  

50000-100000 AU: distance from the Sun to Oort cloud (supposed spherical cloud of 
comets); 
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3.99 x 1016 = 266715 AU = 4.22 light-years = 1.3 parsec: distance to Proxima 
Centauri, the nearest star; 

1018 = 1 e x a m e t e r ;  

1.57 x 1018 ~ 50.9 parsec: distance to supernova 1987A; 
9.46 x 1018 ~ 306.6 parsec ~ 105 light-years: diameter of the galactic disk of our Milky 

Way galaxy; 
2.62 x 102o ~ 8.5 kiloparsec (2.77 x 104 light-years): the distance from the Sun to the 

Galactic Center (in Sagittarius A*); 
3.98 x 1020 ~ 12.9 kiloparsec: distance to Canis Major Dwarf, the nearest galaxy; 
1021 = 1 z e t t a m e t e r ;  

2.23 x 1022  = 725 kiloparsec: distance to Andromeda Nebula, the closest large galaxy; 
5 • 1022  = 1.6 megaparsec: diameter of Local Group of galaxies; 
5.7 • 1023 = 60 MLY: distance to Virgo cluster, the nearest major cluster (which dom- 

inates the Local Supercluster and where was found the first dark matter galaxy and first 
extragalactic stars); 

1024 = 1 y o t t a m e t e r ;  

2 • 1024 = 60 megaparsec: diameter of the Local (or Virgo) Supercluster; 
2.36 • 1024 = 2 5 0  MLY: distance to the Great Attractor (a gravitational anomaly in the 

Local Supercluster); 
200 MLY: width of the Great Wall and Lyman alpha blobs, largest observed superstruc- 

tures in the Universe (the space looks uniform on larger scales); 
12080 MLY = 3704 megaparsec: distance to the farthest known quasar SDSS Jl148+ 

5251 (redshift 6.43, while 6.5 is supposed to be the "wall of invisibility" for visible light); 
13230 MLY: distance to the farthest known galaxy Abell 1835 IR1916 (redshift 10); 
1.3 • 1026 = 13.7 light-Gyr = 4.22 gigaparsec: the distance (estimated by the Wilkinson 

Microwave Anisotropy Probe) that cosmic background radiation has traveled since the Big 
Bang (Hubble radius DH -- ~ ,  the cosmic light horizon, age of Universe); 

7.4 • 1026 = 78000 MLY: the present (comoving) distance to the edge of the observable 
Universe (the size of observable Universe is larger than Hubble radius, since Universe is 
expanding); 

The hypothesis of parallel universes estimate that one can find another identical copy of 

our Universe within the distance 101~ m. 



Chapter 28 

Non-Mathematical and Figurative Meaning of 
Distance 

In this chapter we present selected practical distances, used in daily life and work outside 
of science, as well as examples of distances used as a metaphor for remoteness (the fact of 
being apart, being unknown, coldness of manner, etc.). 

28.1. REMOTENESS-RELATED DISTANCES 

�9 Approximative human-scale distances 

The arm's length is a distance (about 0.7 m, i.e., within personal distance) discour- 
aging familiarity or conflict (analogs: Italian braccio, Turkish pik, and Old Russian 
sazhen). The reach distance is the difference between maximum reach and arm's length 
distance. 

The shouting distance is short, easily reachable distance. The spitting distance is a 
very close distance. 

The striking distance is the distance through which an object can be reached by striking. 

The stone's throw is a distance about 25 fathoms (46 m). 

The hailing distance is the distance within which the human voice can be heard. 

The walking distance is the distance normally (depending on the context) reachable by 
walking. For example, some UK high schools define 2 and 3 miles as statutory walking 
distance for children before and after 11 years. 

�9 Distances between people 

In [Hall69], four interpersonal bodily distances were introduced: the intimate distance 
for embracing or whispering (15-45 cm), the personal-casual distance for conversa- 
tions among good friends (45-120 cm), the social-consultive distance for conversations 
among acquaintances (1.2-3.6 m), and the public distance used for public speaking (over 
3.6 m). What distance is appropriate for a given social situation depends on culture and 
personal preference. For example, under Islamic law, proximity (being in the same room 
or secluded place) between a man and a woman is permitted only in the presence of their 
mahram (a spouse or anybody from the same sex or pre-puberty one from the opposite 
sex). For an average westerner, personal space is about 70 cm in front, 40 cm behind and 
60 cm on either side. 

350 
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Distancing behavior of people can be measured, for example, by stop distance (when 
the subject stops approach since she/he begins to feel uncomfortable), or by quotient of 
approach, i.e., the percentage of moves made that reduce the interpersonal distance to 
all moves made. 

The people angular distance in a posture is the spatial orientation, measured in de- 
grees, of an individual's shoulders relative to those of another; the position of a speaker's 
upper body in relation to a listener's (for example, facing or angled away); the degree of 
body alignment between a speaker and a listener as measured in the coronal (vertical) 
plane which divides the body into front and back. This distance reveals how one feels 
about people nearby: the upper body unwittingly angles away from disliked persons and 
during disagreement. 

�9 Emotional distance 

The emotional distance (or psychic distance) is the degree of emotional detachment 
toward a person, group of people or events; indifference by personal withdrawal, reserve. 

Bogardus Social Distance Scale measures, in fact, not social but this distance; it offers 
following eight response items: would marry, would have as a guest in household, would 
have as next door neighbor, would have in neighborhood, would keep in the same town, 
would keep out of my town, would exile, would kill. Dodd and Nehnevasja attached, in 
1954, increasing distances l 0  t meters, 0 ~< t ~< 7, to 8 levels of Bogardus scale. 

The propinquity effect is the tendency for people to get emotionally involved, as to 
form friendships or romantic relationships, with those who have higher propinquity 
(physical/psychological proximity) with them, i.e., whom they encounter often. Walm- 

1 
sley proposed that emotional involvement decreases as d - :  with increasing subjective 
distance d. 

�9 Social distance 

In Sociology, the social distance is the extent to which individuals or groups are re- 
moved from or excluded from participating in one another's lives; a degree of under- 
standing and intimacy which characterize personal and social relations generally. This 
notion was originated by G. Simmel in 1903; in his view, forms are the stable outcomes 
of distances interposed between subject and object (which in turn is a division of self). 

Bogardus Social Distance Scale (cf. emotional distance above) is scored so that the 
responses for each ethnic/racial group are averaged across all respondents which yields 
a RDQ (racial distance quotient) ranging from 1.00 to 8.00. 

An example of relevant models: [Aker97] defines an agent x as a pair (Xl, X2) of num- 
bers, where X l represents the initial, i.e., inherited, social position, and the position ex- 
pected to be acquired, x2. The agent x chooses the value x2 so as to maximize 

e 

f ( x l )  + ~ (h + IXl - Yll)(g + x2 --  Y l l ) '  
yCx 
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where e, h, g are parameters, f (x l) represents the intrinsic value of x, and Ix l - Yl l, 
Ix2 - Yll are inherited and acquired social distances of x from any agent y (with the 
social position Yl) of the given society. 

�9 R u m m e l  sociocultural  distances 

R.J. Rummel defined ([Rumm76]) the main sociocultural distances between two persons 
as follows. 

1. Personal  distance: one at which people begin to encroach on each other's territory 
of personal space. 

2. Psychological  distance: perceived difference in motivation, temperaments, abilities, 
moods, and states (subsuming intellectual distance). 

3. Interests-distance: perceived difference in wants, means, and goals (including ideo- 
logical distance on socio-political programs). 

4. Affine distance: degree of sympathy, liking or affection between two. 
5. Social attributes distance: differences in income, education, race, sex, occupation, 

etc. 
6. Status-distance: differences in wealth, power, and prestige (including power dis- 

tance). 
7. Class-distance: degree to which one person is in general authoritatively superordi- 

nate to the other. 
8. Cultural  distance: differences in meanings, values and norms reflected in differences 

in philosophy-religion, science, ethics-law, language, and fine arts. 

�9 Cultural  distance 

In [KoSi88], the cultural distance between countries  x = (xl . . . . .  xs) and y = (yl, 
. . . .  Ys) (usually, US) is derived as the following composite index 

5 2 
( x i  - -  Yi ) 

Z_., 5Vi ' 
i--1 

where ~ is the variance of the index i, and indexes are ([Hofs80]): 
1. Power distance; 
2. Uncertainty avoidance (the extent to which the members of a culture feel threatened 

by uncertain or unknown situations); 
3. Individualism versus collectivism; 
4. Masculinity versus femininity; 
5. Confucian dynamism (ranges from long-term to short-term orientation). 

The power distance above, measures the extent to which the less powerful members of 
institutions and organizations within a country expect and accept that power is distrib- 
uted unequally, i.e., how much a culture has respect for authority. For example, Latin 
Europe and Japan fall in the middle range. 

�9 Effective trade distance 

The effective trade distance between countries x and y with populations x l . . . . .  xm 
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and Yl . . . . .  Yn of their main agglomerations is defined in [HeMa02] as 

1 ( )r 
X i ~ yj di J , 

Z ~ 1  <~t <~m Xt ~ 1  <~t <~n Yt l~i~m l~ j~n  

where dij is bilateral distance (in kilometers) of corresponding agglomerations, and r 
measures the sensitivity of trade flows to dij. 

As an internal distance of a country, measuring the average distance between produc- 
/ 

ers and consumers, [HeMa02] proposes .67,/area 
7 (  " v 

�9 Technology distances 

The technological distance between two firms is a distance (usually, X 2- or cosine 
distance) between their patent portfolio, i.e., vectors of the number of patents granted 
in (usually, 36) technological sub-categories. Another measures are based on the number 
of patent citations, co-authorship networks etc. 

Granstrand's cognitive distance between two firms is the Steinhaus distance a(AAB) _ /~(AUB) -- 
~(AnB) 1 iz(AUB) between their technological profiles (sets of ideas) A and B seen as subsets 

of a measure space (~ ,  A, #). 

Economic model of O.Olsson defines the metric space (I, d) of all ideas (as in human 
thinking), I C R~_, with some intellectual distance d. The closed, bounded and con- 
nected knowledge set At C I extends with time t. New elements are, normally, convex 
combinations of previous ones: innovations within gradual technological progress. Ex- 
ceptionally, breakthroughs (Kuhn's paradigm shifts) occur. 

Patel's economic distance between two countries is the time (in years) for a lagging 
country to catch up to the same per capita income level as the present one of an advanced 
country. Fukuchi-Satoh's  technology distance between countries is the time (in years) 
when a lagging country realizes a similar technical structure as advanced one has now. 
The basic assumption of the popular Convergence Hypothesis is that the technology 
distance between two countries is smaller than the economic one. 

In Production Economics, a technology is modeled as a set of pairs (x, y), where x c R~ 
is an input vector, y c R~ is an output vector, and x can produce y. Such set T should 
satisfy standard economical regularity conditions. The technology directional distance 
function of input/output x, y toward (projected and evaluated) direction ( -dx,  dy) c 
R m_ x R~ is sup{k >~ O" ((x - kdx), (y + kdy)) c T }. The Shephard output distance 
function is sup{k >~ O" (x, ~) c T}. The frontier fs(x) is the maximum feasible output 
given input x in a given system or year s. The distance to frontier of a production point 

(y - gs(x) x) is gs(x) The Malmquist index measuring TFP (total factor productivity) , ~ - ~ - ~  �9 

change between periods s s ~ (or comparing to another unit in the same period) is g~ (x) ' fs(x)" 
The term distance to frontier is also used for the inverse of TFP in a given industry (or 
of GDP per worker in a given country) relative to the existing maximum (the frontier, 
usually, US). 
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�9 Death of  Distance 

Death of Distance is the title of the influential book [CairO 1] arguing that the telecom- 
munication revolution (the Internet, mobile telephones, digital television, etc.) initiated 
the "death of distance" implying fundamental changes: three-shift work, lower taxes, 
prominence of English, outsourcing, new ways of government control and citizens com- 
munication, etc. The proportion of long-distance relationships in foreign relations in- 
creased. But the "death of distance" allows also both, management-at-a-distance and 
concentration of elites within the "latte belt". 

Similarly (see [Ferg03]), the steam-powered ships and the telegraph (as railroads before 
and cars later) led, via falling transportation costs, to the "annihilation of distance" in 
the 19th and 20th centuries. Further in the past, archaeological evidence points out the 
appearance of systematic long-distance object exchange (~140000 years ago), and the 
innovation of projectile weapons (40000 years ago) which allowed humans to kill large 
game (and other humans) from safe distance. 

However, modern technology eclipsed distance only in that the time to reach a destina- 
tion has shrunk. In fact, the distance (cultural, political, geographic, and economic) "still 
matters" for, say, a company's strategy on the emerging markets, for political legitimacy, 
etc. 

�9 Moral  distance 

The moral  distance is a measure of moral indifference or empathy, toward a person, 
group of people, or events. 

The distancing is a separation in time or space that reduces the empathy that a person 
may have for the suffering of others, i.e., that increases moral distance. The term distanc- 
ing is also used (in books by M.D. Kantor) for APD (Avoidant Personality Disorder): 
fear of intimacy and commitment (confirmed bachelors, 'femmesfatales", etc.) 

�9 Technology-related distancing 

The Moral Distancing Hypothesis postulates that technology increases the propensity 
for unethical conduct by creating a moral  distance between an act and the moral re- 
sponsibility for it. 

Print technologies divided people into separate communication systems and distanced 
them from face-to-face response, sound and touch. Television involved audile-tactile 
senses and made the distance less inhibiting, but it exacerbated the cognitive distancing: 
story and image are biased against space/place and time/memory. This distancing has 
not diminished with computers; only interactivity increased. In terms of M. Hunter: 
technology only re-articulates communication distance, because it also must be regarded 
as the space between understanding and not. The collapsing of spatial barriers diminish 
economic but not social and cognitive distance. 

On the other hand, the Psychological Distancing Model in [Well86] relates the imme- 
diacy of communication to the number of information channels: sensory modalities de- 
crease progressively as one moves from face-to-face to telephone, videophone, and e- 
mail. On-line settings tend to filter out social and relation cues. Also, the lack of instant 
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feedback, because of e-mail communication, is asynchronous and can be isolating. For 
example, moral and cognitive effects of distancing in on-line education are not known 
at present. 

�9 Transactional  distance 

The transactional  distance is a perceived degree of separation during interaction be- 
tween students and teachers, and within each group. This distance decreases with dialog 

(a purposeful positive interaction meant to improve the understanding of the student), 
with larger autonomy of the learner, and with lesser predetermined structure of instruc- 
tional program. This notion was introduced by M.G. Moore in 1993 as a paradigm for 
distance education. 

�9 Ant inomy of distance 

The ant inomy of distance, as introduced in [Bulll2] for aesthetic experiences by be- 
holder and artist, is that both should find the right amount of emotional  distance (nei- 
ther too involved, nor too detached), in order to create or appreciate art. The fine line 
between objectivity and subjectivity can be crossed easily, and the amount of distance 
can fluctuate in time. 

The aesthetic distance is a degree of emotional involvement of the individual, who 
undergoes experiences and objective reality of the art, in a work of art. Some examples 
are: the perspective of a member of the audience in relation to the performance, the 
psychological and the emotional distance between the text and the reader, the actor- 
character  distance in Stanislavsky system of acting. 

A variation of antinomy of distance appears in critical thinking: need to put some emo- 
tional and intellectual distance between oneself and ideas, in order to better evaluate their 
validity. Another variation is detailed in Paradox of  Dominance: Distance and Connec- 

tion (http://www.leatherpage.com/rscurrent.htm/) 

The historical  distance, in terms of [Tail04], is the position the historian adopts vis-a-vis 

his objects - whether far-removed, up-close, or somewhere in between; it is the fantasy 
through which the living mind of the historian, encountering the inert and unrecoverable, 
positions itself to make the material look alive. The antinomy of distance appears again 
because historians engage the past not just intellectually but morally and emotionally. 
The formal properties of historical accounts are influenced by their affective, ideological 
and cognitive commitments. 

Related problem is how much distance people must put between themselves and their 
pasts in order to remain psychologically viable; S.Freud showed that often there is no 
such distance with childhoods. 

�9 Kristeva non-metric  space 

J. Kristeva's (1980) basic psychoanalytic distinction is between pre-Oedipal and Oedi- 
pal aspects of personality development. Narcissistic identification and maternal depen- 
dency, anarchic component drives, polymorphic erotogenicism, and primary processes 
characterize the pre-Oedipal. Paternal competition and identification, specific drives, 
phallic erotogenicism, and secondary processes characterize Oedipal aspects. Kristeva 
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describes the pre-Oedipal feminine phase by an enveloping, amorphous, non-metric  
space (Plato's chora) that both nourishes and threatens; it also defines and limits self- 
identity. She characterizes the Oedipal male phase by a metric space (Aristotle's topos); 
the self and the self-to-space are more precise and well defined in topos. Kristeva posits 
also that the semiotic process is rooted in feminine libidinal, pre-Oedipal energy which 
needs channeling for social cohesion. 

J. Deleuze and F. Guattari (1980) divided their multiplicities (networks, manifolds, 
spaces) into striated (metric, hierarchical, centered and numerical) and smooth ("non- 
metric, rhizomic and acentered, that occupy space without counting it and can be ex- 
plored only by legwork"). 

Above French poststructuralists use metaphor non-metric in line with systematic use 
of topological terms by psychoanalyst J. Lacan. In particular, he sought space J (of 
Jouissance, i.e., sexual relations) as a bounded metric space. 

Back to Mathematics, the non-metricity tensor is the covariant derivative of a met- 
ric tensor. It can be non-zero for pseudo-Riemannian  metrics and vanishes for Rie- 
mannian metrics. 

�9 Simone Weil distance 

"The Distance" is the title of a philosophico-theological essay by Simone Weft from her 
Waiting for God, Putnam, New York, 1951. She connects God love to the distance; so, 
his absence can be interpreted as a presence: "every separation is a link". Therefore, she 
posits, the crucifixion of Christ (the greatest love/distance) was necessary "in order that 
we should realize the distance between ourselves and God ... for we do not realize dis- 
tance except in the downward direction". Cf. Lurian kabbalistic notions of tzimzum (God 
contraction, "withdrawal"), and shattering of the vessels (evil as the force of separation 
which lost its distancing function and become husks). 

Also, a song "From a Distance", written by Julie Gold, is about how God is watching 
us and how, despite the distance (physical and emotional) distorting perceptions, there 
is still a little peace and love in this world. 

�9 Swedenborg  heaven distances 

Famous scientist and visionary E. Swedenborg, in Section 22 (Nos. 191-199, Space in 
Heaven) of his main work Heaven and Hell (1952, first edition in Latin, London, 1758), 
posits: "distances and so, space, depend completely on interior state of angels". A move 
in heaven is just a change of such state, the length of a way corresponds to the will of a 
walker, approaching reflects similarity of states. In the spiritual realm and afterlife, for 
him, "instead of distances and space, exist only states and their changes". 

�9 Far Near Distance 

Far Near Distance is the name of the program of the House of World Cultures in Berlin 
which present a panorama of contemporary positions of all artists of Iranian origin. 
Examples of similar use of distance terms in modern popular culture are: "Some near 
distance" is the title of art exhibition of Mark Lewis (Bilbao, 2003), "A Near Distance" 
is a paper collage by Perle Fine (New York, 1961), "Quiet Distance" is a fine art print by 
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Ed Mell, "Distance" is a Japanese movie by Hirokazu Koreeda (2001), "The Distance" 
is an album by American rock "The Silver Bullet Band", "Near Distance" is a musical 
composition by Chen Yi (New York, 1988), "Near Distance" is a lyrics by Manchester 
quartet "Puressence". 

The terms near distance and far  distance are also used in Ophthalmology and for settings 
in some sensor devices. 

�9 Quotes  on "near-far" distances 

"Better is a nearby neighbor, than a far off brother." (Bible) 

"It is when suffering seems near to them that men have pity; as for disasters that are ten 
thousand years off in the past or the future, men cannot anticipate them, and either feel 
no pity for them, or at all events feel it in no comparable measure." (Aristotle) 

"The path of duty lies in what is near, and man seeks for it in what is remote." (Mencius) 

"Sight not what is near through aiming at what is far." (Euripides) 

"Good government occurs when those who are near are made happy, and those who are 
far off are attracted." (Confucius) 

"By what road", I asked a little boy, sitting at a cross-road, "do we go to the t o w n ? " -  
"This one", he replied, "is short but long and that one is long but short". I proceeded 
along the "short but long road". When I approached the town, I discovered that it was 
hedged in by gardens and orchards. Turning back I said to him, "My son, did you not tell 
me that this road was s h o r t ? " - " A n d " ,  he replied, "Did I not also tell you: "But long?" 
I kissed him upon his head and said to him, "Happy are you, O Israel, all of you are 
wise, both young and old". (Erubin, Talmud) 

"The Prophet Muhammad was heard saying: "The smallest reward for the people of 
paradise is an abode where there are 80000 servants and 72 wives, over which stands 
a dome decorated with pearls, aquamarine, and ruby, as wide as the distance from A1- 
Jabiyyah [a Damascus suburb] to Sana'a [Yemen]". (Hadith, Islamic Tradition) 

"There is no object so large . . .  that at great distance from the eye it does not appear 
smaller than a smaller object near." (Leonardo da Vinci) 

"Nothing makes Earth seems so spacious as to have friends at a distance; they make the 
latitudes and longitudes." (Henri David Thoreau) 

Tobler's first law of Geography: everything is related to everything else, but near things 
are more related than distant things. Nearness  principle (or least effort principle): given 
a distribution of equally desirable locations, the closest destination is most frequently 
chosen. 

28.2. V I S I O N - R E L A T E D  D I S T A N C E S  

�9 Vision distances 

The inter-pupil lary distance (or inter-ocular distance): in Ophthalmology, the distance 
between the centers of the pupils of the two eyes when the visual axes are parallel. 
Typically, it is 2.5 inches (6.35 cm). 
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The near acuity is the eye's ability to distinguish an object's shape and details at a near 
distance such as 40 cm; the distance acuity is the eye's ability to do it at a far distance 
such as 6 m. 

The optical near devices are designed for magnifying close objects and print; the op- 
tical distance devices are for magnifying things in the distance (from about 3 m to far 
away). 

The near distance: in Ophthalmology, the distance between the object plane and the 
spectacle (eyeglasses) plane. 

The infinite distance: in Ophthalmology, the distance of 20 feet (6.1 m) or more; so 
called because rays entering the eye from an object at that distance are practically as 
parallel as if they came from a point at an infinite distance. 

Distance vision is a vision for objects that at least 20 feets from the viewer. 

The angular eye distance is the aperture of the angle made at the eye by lines drawn 
from the eye to two objects. 

The RPV-distance (or resting point ofvergence) is the distance at which the eyes are set 
to converge (turn inward toward the nose) when there is no close object to converge on. It 
averages about 45 inches (1.14 m) when looking straight ahead and comes in to about 35 
inches (0.89 m) with 30-degree downward gaze angle. Ergonomists recommend RPV- 
distance as eye-screen distance in sustained viewing, in order to minimize eyestrain. 

The default accommodation distance (or resting point of accommodation, RPA- 
distance) is the distance at which the eyes focus when there is nothing to focus on. 

�9 Size-distance paradox 

Emmert's law states that a retinal image is proportional in perceived size (apparent 
height) to the perceived distance of the surface it is projected upon. This law is based 
on the fact that the perceived size of an object doubles every time its perceived distance 
from the observer is cut in half and vice versa. Emmert 's  law accounts for constancy 
scaling, i.e., the fact that the size of an object is perceived to remain constant despite 
the changes in the retinal image (as objects become more distant they begin, because of 
visual perspective, appear smaller). 

The size-distance invariance hypothesis posits that the ratio of perceived size and per- 
ceived distance is the tangent of the physical visual angle. In particular, the objects 
which appear closer should also appear smaller. But with moon illusion it comes to 
size-distance paradox. The Moon (and, similarly, the Sun) illusion is that, despite of 
constancy of its visual angle (roughly, 0.52 degree), the horizon moon may appear to be 
about twice the diameter of the zenith moon. This illusion is still not understood com- 
pletely; it is supposed to be cognitive: the size of the zenith moon is underestimated 
since it is perceived as approaching. 

The most common optical illusions distort size or length; for example, Mueller-Lyer, 
Sander, and Ponzo illusions. 
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�9 Symbolic  distance effect 

In Psychology, the brain compares two concepts (or objects) with higher accuracy and 
faster reaction time if they differ more on the relevant dimension. 

�9 Subjective distance 

The subjective distance (or cognit ive distance) is a mental representation of actual dis- 
tance molded by an individual's social, cultural and general life experiences. Cognitive 
distance errors occur either because information about two points is not coded/stored in 
the same branch of memory, or because of errors in retrieval of this information. For 
example, the length of a route with many turns and landmarks is usually overestimated. 

�9 Egocentric distance 

In Psychophysiology, the egocentric distance is the perceived absolute distance from 
the self (observer or listener) to an object or a stimulus (such as a sound source). Usually, 
visual egocentric distance underestimates actual physical distance to far objects, and 
overestimates it for near objects. In Visual Perception, the action space of a subject 
is 1-30 m; the smaller and larger spaces are called persona l  space, and vista space, 

respectively. 

The exocentric distance is perceived relative distance between objects. 

�9 Distance cues 

The distance cues are cues used to estimate the egocentric distance. 

For a listener from a fixed location, main auditory distance cues include: intensity (in 
open space it decreases of 5 dB for each doubling of the distance), direct- to-reverberant  

energy ratio (in the presence of sound reflecting surfaces), spectrum,  and binaural  dif- 

ferences .  

For an observer, main visual distance cues include: 
- relative size, relative brightness,  light and shade; 

- height  in the visual f ie ld  (in the case of flat surfaces lying below the level of the eye, 
the more distant parts appear higher); 

- interposit ion (when one object partially occludes another from view); 

- b inocular  disparities,  convergence (depending on the angle of the optical axes of the 
eyes), accommodat ion  (the state of focus of the eyes); 

- aerial  perspect ive  (the objects in the distance became bluer and paler), distance haz- 

ing (the objects in the distance became decreased in contrast, more fuzzy); 

- mot ion perspect ive  (the stationary objects appear, to moving observer, to glide past). 

Examples of the techniques, using above distance cues to create an optical illusion for 
the viewer, are: 
- dis tance fog: an 3D computer graphics technique so that objects further from the 

camera are progressively more blurred (obscured by haze); 

- f o r c e d  perspective:  a film-making technique to make objects appear either far away, 
or vice versa depending on their positions to the camera and each other. 
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�9 Distance-related shots 

A film sho t  is what is recorded between the time the camera starts (the director's call for 
"action"), and the time it stops (the call to "cut"). 

Main distance-related shots (camera set-ups) are: 
- es tab l i sh ing  shot: a shot, at the beginning of a sequence which establish the location 

of the action and/or the time of day; 

- long shot: a shot taken from at least 50 yards (45.72 m) from the action; 

- m e d i u m  shot: a shot from 5-15 yards (4.57-13.72 m) including a small group entirely, 
shows group/objects in relation to surroundings; 

- c lose-up: a shot taking the actor from the neck upwards, or an object from a similarly 
close position; 

- two-shot:  a shot that features two persons in the foreground; 

- insert: an inserted shot (usually a close up) used to reveal greater detail. 

28.3. EQUIPMENT DISTANCES 

�9 Focus distances 

The working distance: the distance from the front lens of a microscope to the object 
when the instrument is correctly focused. 

The object distance: the distance from the lens of camera to the object being pho- 
tographed, i.e., being focused on. 

The image distance: the distance from the lens to the image (picture on the screen); 
when a converging lens is placed between the object and the screen, the sum of inverse 
object and image distances is equal to inverse focal distance. 

The focal distance ~ o c a l  length): the distance from the optical center of a lens (or a 
curved mirror) to the focus (to the image). 

The depth of field: the distance in front of and behind the subject which appear to be in 
focus, i.e., the region where the blurring is tolerated. 

The hyperfocal distance: the distance from the lens to the nearest point (hyper foca l  

po in t )  that is in focus when the lens is focused at infinity; beyond this point all objects 
are well defined and clear. It is the nearest distance at which the far end of the depth of 
field stretches to infinity. (Cf. infinite distance). 

�9 Distances in Stereoscopy 

A way of 3D imaging is creating a pair of 2D images by a two-camera system. 

The inter-camera distance (or base  line length,  in ter -ocu lar  lens spac ing)  is the dis- 
tance between the two cameras from which the left and right eye images are rendered. 

The convergence distance is the distance between the center of camera base  line to 
the convergence  p o i n t  where the two lenses should converge for good stereoscopy. This 
distance should be 15-30 times inter-camera distance. 
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The picture plane distance is the distance at which the object will appear on (but not 
behind or in front) the picture plane (the apparent surface of the image). The window is 
a masking border of the screen frame such that objects, appearing at (but not behind or 
outside) it, appear to be at the same distance from the viewer as this frame. In human 
viewing, the picture plane distance is about 30 times inter-ocular distance. 

�9 Miss distance 

The miss distance is the distance between the lines of sight representing two estimates 
from two sensor sites to the target. (Cf. line-line distance.) 

�9 Offset distance 

In nuclear warfare, the offset distance is the distance the desired (or actual) ground zero 
is offset from the center of the area (or point) target. 

In Computation, offset is the distance from the beginning of a string to the end of the 
segment on that string. For a vehicle, offset of a wheel is the distance from its hub 
mounting surface to the centerline of the wheel. 

�9 Standoff  distance 

The standoff  distance is the distance of object from the source of the explosion (in 
warfare), or from the laser beam delivery point (in laser material processing). Also, in 
mechanics and electronics, it is the distance separating two parts from one another (for 
example, for insulating: cf. clearance distance). 

�9 Proximity fuse 

The proximity fuse is a fuse that is designed to detonate an explosive automatically 
when close enough to the target. 

�9 Proximity sensors 

Proximity sensors are variety of ultrasonic, laser, photoelectric and fiber optic sensors 
designed to measure distance from itself to a target. 

Compare with following simple distance estimation (for prey recognition) by some in- 
sects: the velocity of the mantid's head movement is kept constant during peering, and 
so, the distance to the target is inversely proportional to the velocity of the retinal image. 

�9 Precise distance measurement  

The resolution of TEM (transmission electronic microscope) is about 0.2 nm (2 x 10 -1~ 
m), i.e., the typical separation between two atoms in a solid. This resolution is 1000 times 
greater than a light microscope and about 500000 times greater than that of a human eye. 
However, only nanoparticles can fit in the vision field of an electronic microscope. 

The methods, based on measuring the wavelength of laser light, are used to measure 
macroscopic distances non-treatable by electronic microscope. However, the uncertainty 
of such methods is at least the wavelength of light, say, 633 nm. 

The recent adaptation of Fabry-Perot metrology (measuring the frequency of light stored 
between two highly reflective mirrors) to laser light permit to measure relatively long (up 
to 5 cm) distances with uncertainty only 0.01 nm. 
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�9 Radio distance measurement 

Distance measuring equipment (DME) is an air navigation technology that measures 
distances by timing the propagation delay of UHF signals to a transponder (receiver- 
transmitter that will generate a reply signal upon proper interrogation) and back. DME 
is expected to be phased out by global satellite-based systems: GPS and, planned for 
2010, Galileo (EU) and GLOSNASS (Russia/India). 

The GPS (Global Positioning System) is a radio navigation system which permits one to 
get her/his exact position on the globe (anywhere, anytime). It consists of 24 satellites 
and a monitoring system operated by the US Department of Defense. Non-military part 
of GPS can be used just by the purchase of an adequate receiver and the accuracy is 10 
m .  

The GPS pseudo-distance (or pseudo-range) from a receiver to a satellite is the travel 
time of a satellite time signal to a receiver multiplied by propagation time of radio signal 
(about the speed of light). It is called pseudo-distance because of the error: the receiver 
clock is not so perfect as ultra-precise clock of satellite. The GPS receiver calculates its 
position (in latitude, longitude, altitude, etc.) by solving a system of equations using its 
pseudo-distances from at least four satellites and the knowledge of their positions. 

�9 Radio distances 

Line-of-sight distance is the distance which radio signal travel, from one antenna to 
another, by a path where both antennas are visible to one another, and there are no 
obstructions. In fact, waves can travel below the horizon, since the signal can interact 
with the ground and/or the ionosphere. 

If two frequencies of radio are used (for instance, 12,5 kHz and 25 kHz in maritime com- 
munication), the interoperability distance and adjacent channel separation distance 
are the range within which all receivers work with all transmitters, and, respectively, the 
minimal distance which should separate adjacently tunes narrow-band transmitter and 
wide-band receiver, in order to avoid interference. 

DX is amateur radio slang (and Morse code) for distance; DXing is a distant radio ex- 
change (amplifiers required). 

�9 Transmission distance 

The transmission distance is a range distance: for a given signal transmission system 
(fiber optic cable, wireless, etc.), it is the maximal distance the system can support within 
acceptable path loss level. 

For a given network of contact that can transmit an infection (or, say, an idea with the be- 
lief system considered as the immune system), the transmission distance is the graphic 
metric (edges correspond to events of infection) via the most recent common ancestor, 
between (infectious agents isolated from) infected individuals. 

�9 Instrument distances 

The load distance: the distance (on a lever) from the fulcrum to the load. The effort 
distance (or resistance distance): the distance (on a lever) from the fulcrum to the effort. 
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The K-distance: the distance from the outside fiber of a rolled steel beam to the web toe 
of the fillet of a rolled shape. 

The end distance: the distance from a bolt, screw, or nail to the end of a (wood) struc- 
tural member. The edge distance: the distance from a bolt, screw, or nail to the edge of 
a (wood) structural member. 

�9 Creepage distance 

The creepage distance is the shortest path along the surface of the insulation mater- 
ial between two conductive parts. The clearance distance is the shortest (straight-line) 
distance between two conductive parts. 

�9 Solvent migration distance 

In Chromatography, the solvent migration distance is the distance traveled by the front 
line of the liquid or gas entering chromatographic bed for elut ion (the process of using 
a solvent to extract an absorbed substance from a solid medium). 

�9 Spray distance 

The spray distance is the distance maintained between the thermal spraying gun nozzle 
tip and the surface of the workpiece during spraying. 

�9 Vertical separation distance 

The vertical separation distance is the distance between the bottom of a sewage sep- 
tic system's drain field and the underlying water table. This separation distance allows 
pathogens (disease-causing bacteria, viruses, or protozoa) in the effluent to be removed 
by the soil before it comes in contact with the groundwater. 

�9 Protective action distance 

The protective action distance is the distance downwind from the incident (a spill in- 
volving dangerous goods which are considered toxic by inhalation) in which persons 
may become incapacitated. 

�9 Sight distances 

Sight distance (or clear  s ight  d is tance)  is the length of highway visible to a driver. 
A safe sight distance is the necessary sight distance needed by the driver in order to 
accomplish fixed task; the main safe distances, used in road design, are: 

stopping sight distance - to stop the vehicle before reaching an unexpected obstacle, 

m a n e u v e r  s ight  d is tance  - to drive around an unexpected small obstacle, 

pass ing  s ight  d is tance  - to overtake safely, 

road v iew s ight  d is tance  - to anticipate on the alignment (eventually curved and hori- 
zontal/vertical) of the road (for instance, choosing a speed). 

Also, adequate sight distances are required locally: at intersections and in order to 
process information on traffic signs. 



364 [ �9 Vehicle distances] Part VII: Real-WorM Distances 

�9 Vehicle distances 

The braking distance: the distance a motor vehicle travels from the moment the brakes 
are applied until the vehicle completely stops. 

The reaction distance: the distance a motor vehicle travels from the moment the driver 
sees a hazard until he applies the brakes (corresponding to human perception time plus 
human reaction time). (Not to be confused with reaction animal distance.) 

The stopping distance: the distance a motor vehicle travels from where the driver per- 
ceives the need to stop to the actual stopping point (corresponding to vehicle reaction 
time plus vehicle braking capability). 

The official distance: the DoD (US Department of Defense) recognized driving dis- 
tance between two locations that will be used for travel or payment of billing (not to be 
confused with administrative cost distance in Internet.) 

The distance-based exit number: a number assigned to a road junction, usually an exit 
from a freeway, expressing in miles (or kilometers) the distance from the beginning of 
the highway to the exit. A milestone (or kilometer sign) is one of a series of numbered 
markers placed along a road at regular intervals. Zero Milestone in Washington, DC is 
attended as the reference point for all road distances in US. 

The accelerate-stop distance: the runway plus stop-way length declared available and 
suitable for the acceleration and deceleration of an airplane aborting a takeoff. 

The endurance distance: total distance that a ground vehicle or ship can be self- 
propelled at any specified endurance speed. 

The distance made good is a nautical term: the distance traveled after correction for 
current, leeway (the sideways movement of the boat away from the wind) and other 
errors that may not have been included in the original distance measurement. Log is a 
device to measure the distance traveled through the water which further corrected to a 
distance made good. 

The distance line: in Diving, a temporary marker (typically, 50 meters of thin polypro- 
pylene line) of shortest route between two points. It is used to navigate back to the start 
in poor visibility. 

28.4. MISCELLANY 

�9 Range distances 

The range distances are practical distances emphasizing a maximum distance for effec- 
tive operation such as vehicle travel without refueling, a bullet reach, visibility, move- 
ment limit, home range of an animal, etc. 

For example, the dispersal distance in Biology can refer to seed dispersal by pollination, 
to natal dispersal, to breeding dispersal, to migration dispersal, etc. 

The range of a risk factor (toxicity, blast etc.) indicates minimal safe distancing. The 
range of a device (for example, a remote control), which is specified by the manufacturer 
and used as a reference, is called operating distance (or nominal sensing distance). The 
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maximal distance allowed for activation of a sensor-operated switch is called activation 
distance. 

�9 Spacing distances 

The following examples illustrate this large family of practical distances emphasizing 
a minimum distance (cf. minimum distance in Coding, nearest-neighbor animal dis- 
tance and first-neighbor distance for atoms in a solid). 

The miles in trail: a specified minimum distance, in nautical miles, required to be main- 
tained between airplanes. 

The isolation distance: a specified minimum distance required (because of pollination) 
to be maintained between variations of the same species of crop for the purpose to keep 
seed pure (for example, 10 feet ~ 3 m for rice). 

The stop-spacing distance: the interval between stops of a bus; the mean stop-spacing 
distance in the US (for light rail systems) ranges from 500 m (Philadelphia) to 1742 m 
(Los Angeles). 

The character spacing: the interval between characters in a given computer font. 

The music distance: the interval between notes. 

The just noticeable difference (JND)" the smallest percent change in a dimension (for 
distance/position, etc.) that can be reliably perceived. 

�9 Quality metrics 

This vast family of measures (or standards of measure) concern different attributes of 
objects (usually, equipment). In such terms, our distances and similarities are "similar- 
ity metrics", i.e., metrics (measures) quantifying the extent of relatedness between two 
objects. Examples of more abstract quality metrics are given below. 

The software metric is a measure of software quality which indicate the complexity, 
understandability, description, testability and intricacy of code. 

The trust metric is: in Computer Security, a measure to evaluate a set of peer certificates 
resulting in a set of accounts accepted, and, in Sociology, a measure of how a member 
of the group is trusted by the others in the group. For example, UNIX access metric is 
a combination of only read, write and execute kinds of access to a resource. Much finer 
Advogato trust metric (used in the community of open source developers to rank them) 
is based on bonds of trust formed when a person issues a certificate about someone else. 

The risk metric is used in Insurance and (to evaluate a portfolio) in Finance. 

�9 Action at a distance (in Computing) 

The action at a distance (in Computing) is a class of programming problems in which 
the state in one part of a program's data structure varies wildly because of difficult-to- 
identify operations in another part of the program. The Law of Demeter is a guideline 
for developing software: "only talk to your immediate friends" (units closely related to 
it), and each unit should have only limited knowledge about other units. 
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�9 Act ion distance 

The action distance is the distance between the set of information generated by the Ac- 
tive Business Intelligence system and the set of actions appropriate to a specific business 
situation. Action distance is the measure of the effort required to understand information 
and to affect action based on that information. It could be the physical distance between 
information displayed and action controlled. 

�9 Distance decay 

The distance decay (or distance lapse rate) is the attenuation of a pattern or process 
with distance. In spatial interaction, it is the mathematical representation of inverse ratio 
between quantity of obtained substance and the distance from its source. This decay 
measures the effect of distance on accessibility" it can reflect a reduction in demand due 
to the increasing travel cost. Examples of distance-decay curves" Pareto model In Iij : 

a - b In dij ,  and the model In Iij  --  a - bd p with p - �89 1, or 2 (here Iij  and dij  a r e  

interaction and distance between points i, j ,  while a and b are parameters). 

�9 Distance curve 

A distance curve is a plot (or a graph) of a given parameter against corresponding 
distance. Examples of distance curves, in terms of a process under consideration, are: 
t ime-distance  curve (for travel time of wave-train, seismic signals, etc.), drawdown- 

distance curve, melting-distance curve and wear volume versus distance curve. 

Force-distance curve is, in SPM (Scanning Probe Microscopy), a plot of the ver- 
tical force that the tip of the probe applies to the sample surface, while a contact- 
AFM (Atomic Force Microscopy) image is being taken. Also, frequency-distance and 
amplitude-distance curves are used in SPM. 

The term distance curve is also used for charting growth, for instance, a child's height 
or weight at each birthday. A plot of the rate of growth against age is called velocity- 
distance curve. The last term is also used for speed of aircraft. 

�9 Mass-dis tance  function 

xy . It also called gravi tyfunc-  A mass-dis tance  function is a function proportional to ~/(x,y) 
tion because it express the gravitational attraction between masses x and y at (Euclidean) 
distance d(x ,  y); cf. inverse-square  laws. Such functions are often used in social sci- 
ences; for example, it can express the communication with x and y being the population 
of the sender and the receiver location, where d(x ,  y) is the physical distance between 
them. 

A mass-dis tance  decay curve is a plot of "mass" decay when the distance to the center 
of "gravity" increases. Such curves are used to find out offender's heaven (the point of 
origin; cf. distances in Criminology) ,  the galactic mass within a given radius from its 
center (using rotation-distance curves), etc. 

�9 Long range dependence  

A (second order stationary) stochastic process X~, k c Z, is called long range depen-  
dent  (or long memory)  if there exist numbers oe, 0 < oe < 1, and c p > 0 such that 
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l i m k ~  cpkapk = 1 holds, where p(k) is the autocorrelation function. So, correlations 
decay very slowly (asymptotically hyperbolic) to zero implying that ZkEZ IPkl -- cx~, 
and that events that far apart are correlated (long memory). If above sum is finite and 
decay is exponential, then process is short range. Examples of such processes are the ex- 
ponential, normal and Poisson processes, which are memoryless, and, in physical terms, 
the systems in thermodynamic equilibrium. Above power law decay for correlations as a 
function of time, translates into a power law decay of the Fourier spectrum as a function 
of frequency f and called ~ noise. 

A process has self-similarity exponent (or Hustparameter) H if Xk and t -H Xtk have the 
same finite-dimensional distributions for any positive t. The cases H -- �89 and H -- 1 
correspond, respectively, to purely random process and to exact self-similarity (or scale- 
invariance): the same behavior on all scales (cf. fractal and scale-free network). The 
processes with 1 < H < 1 are long range dependent with ~ - 2(1 - H).  

Long range dependence corresponds to heavy-tailed (or power low) distributions. The 
distribution function and tail of a non-negative random variable X is F(x)  = P ( X  ~ x) 
and F(x)  = P ( X  > x). A distribution F ( X )  is heavy-tailed if there exist a number 
~, 0 < ~ < 1, such that l i m x ~  x a F ( x )  : 1. Many such distributions occur in real 
world (for example, in Physics, Economics, Internet) in both, space (distances) and time 
(durations). A standard example is the Pareto distribution F(x)  = x -a ,  x ~> 1, where 

> 0 is a parameter. (Cf. distance decay above.) 

�9 Distances in Medicine 

The inter-occlusal distance: in Dentistry, the distance between the occluding surfaces 
of the maxillary and mandibular teeth when the mandible is in physiologic rest position. 

The inter-arch distance: in Dentistry, the vertical distance between the maxillary and 
mandibular arches. The inter-ridge distance: the vertical distance between the maxil- 
lary and mandibular ridges. 

The inter-proximal distance: the spacing distance between adjacent teeth; mesial drift 
is the movement of the teeth slowly toward the front of the mouth with decreasing of the 
inter-proximal distance by wear. 

The inter-pediculate distance: the distance between the vertebral pedicles as measured 
on the radiograph. 

The source-skin distance: the distance from the focal spot on the target of the x-ray 
tube to the skin of the subject as measured along the central ray. 

The inter-aural distance: the distance between the ears. The inter-ocular distance: the 
distance between the eyes. 

The anogenital distance: the length of the perineum, i.e., the region between anus and 
genital area (the anterior base of the penis for a male). For a male it is normally twice 
what it is for a female; so, this distance is a measure of physical masculinity. Other such 
measures are second-to-forth digit (index to ring finger) ratio which is lower for men in 
the same population, and mental rotation ability, higher for men. 
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The sedimentation distance (or ESR, erythrocyte sedimentation rate): the distance red 
blood cells travel in one hour in a sample of blood as they settle to the bottom of a test 
tube. ESR indicates inflammation and increases in many diseases. 

Examples of distances considered, in brain MRI imaging, for cortical maps (i.e., outer 
layer regions of cerebral hemispheres representing sensory inputs or motor outputs) are: 
MRI distance map from gray/white matter interface, cortical distance (say, between 
activation locations of spatially adjacent stimuli), cortical thickness and lateralization 
metrics. 

�9 Distances in Criminology 

The geographic profiling (or geoforensic analysis) aims to identify the spatial behav- 
ior (target selection and, especially, likely point of  origin, i.e., the residence or work- 
place) of a serial criminal offender as it relates to the spatial distribution of linked crime 
sites. 

The offender ' s  buffer  zone (or coal-sack effect) is an area surrounding offender's 
heaven (point of origin) from which little or no criminal activity will be observed; 
usually, such zone occurs for premeditated personal offenses. The primary streets and 
network arterials, that lead into the buffer zone, tend to intersect near the estimated of- 
fender's heaven. An 1 km buffer zone was found for UK serial rapists. Most personal 
offenses occur within about 2 km from offender's heaven, while property theft occur 
further away. 

The journey-to-crime decay function is a graphical distance curve used to rep- 
resent how the number of offenses committed by an offender decreases as the 
distance from his/her residence increases. Such functions are variations of cen- 
ter of gravity functions based on Newton's law of attraction between two bod- 
ies. 

Given n crime sites (xi, Yi), 1 ~< i ~< n (where xi and Yi are latitude and longitude of 
i-th site), the Newton-Swoope Model predicts offender's heaven to be within the circle 

around the point ( ~ x i ,  ~ y i )  with search radius being 

~ max Ixil - xi2 l �9 max lYil - Yi2 l 
7 r ( n -  1) 2 

where maxima are by (il, i2), 1 ~< il < i2 ~ n. The Ganter-Gregory Circle Model pre- 
dicts offender's heaven to be within a circle around first offense crime site with diameter 
being the maximum distance between crime sites. 

The centrographic models estimate offender's haven as a center, i.e., a point from which 
a given function of travel distances to all crime sites is minimized; the distances are the 
Euclidean distance, the Manhattan distance, the wheel distance (i.e., the actual travel 
path), perceived travel time, etc. Many of those models are reverse of Location Theory 
models aiming to maximize the placement of distribution facilities in order to minimize 
travel costs. Those models (Voronoi polygons, etc.) are based on the nearness principle 
(least effort principle). 
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�9 Animal  distances 

The individual  distance: the distance which an animal attempts to maintain between 
itself and other animals. 

The group distance: the distance which a group of animals attempts to maintain be- 
tween it and other groups. 

The reaction distance: the distance on which the animal reacts to the appear- 
ance of prey; catching distance: the distance on which the predator can strike a 
prey. 

The escape distance: the distance on which the animal reacts on the appearance of 
a predator or dominating animal of the same species. This flight initiation distance is 
related to (shorter) corresponding alert distance. 

The nearest-neighbor distance: more or less constant distance which an animal main- 
tain, in directional movement of large groups (such as schools of fish or flocks of birds), 
from its immediate neighbors. The mechanism of allelomimesis ("do what your neigh- 
bor does") prevents the structural breakdown of a group and can generate seemingly 
intelligent evasive maneuvers in the presence of predators. 

The distance-to-shore: the distance to the coastline used, for example, to study clus- 
tering of whale strandings by distorted echolocations, anomalies of magnetic field 
etc. 

A distance pheromone  is a soluble (for example, in the urine) substance emitted by an 
animal, as an olfactory chemosensory cue, in order to obtain mates. In contrast, a con- 
tact pheromone is such unsoluble substance; it coats the animal's body and is a contact 
cue. 

�9 Horse-racing distances 

The horse-racing distances are measured in the approximate length of a horse, i.e., 
about 8 feet (2.44 m). Winning margins are measured in lengths, ranging from half 
the length to the distance, i.e., more than 20 lengths. Smaller margins are: short-head, 
head, or neck. Also, the hand, i.e., 4 inches (10.2 cm), is used for measuring the height 
of horses. 

�9 Triathlon race distances 

The Ironman distance (started in Hawaii, 1978): 3.5 km swim followed by 180 km 
bike followed by 42.2 km (marathon distance) run. 

The international Olympic  distance (started in Sydney, 2000) is 1.5 km (metric mile), 
40 km and 10 km of swim, bike and run, respectively. 

Also used: the sprint distance (0.75 km, 20 kin, 5 kin), and the long distance (2 km, 80 
kin, 20 km). 

�9 Sabbath distance 

The Sabbath distance (or rabbinical mile) is a range distance: 2000 Talmudic cubits 
(1120.4 m) which an observant Jew should not exceed in a public thoroughfare from 
any given private place on the Sabbath day. 
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Other Talmudic length units are: day's march, parsa, stadium (40, 4, ~- of rabbinical 
1 mile, respectively), and span, hasit, hand-breath, thumb, middle finger, little finger (7, 

1 1 1 1 1 ofTalmudic cuhlt,u.~ res,-ectlvO,,~v ~- -:J 
3 '  6 '  24 '  3 0 '  36 

�9 Galactocentric  distance 

The star's Galactocentric  distance is its distance from the Galactic Center. The Sun's 
Galactocentric distance is about 8.5 kiloparsec, i.e., 27700 light-years. 

�9 Cosmic  light horizon 

The cosmic light horizon (or Hubble distance, age of Universe) is an increasing range 
distance: the maximum distance that a light signal could have traveled since Big Bang, 
the beginning of the Universe. At present, 13-14 x 10 9 light-years, i.e., about 46 x 10 60 

Planck lengths. 
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