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There are two distinct methods by which the X-rays may be made to help

to a determination of crystal structure. The first is based on the Laue

photograph and implies the reference of each spot on the photograph to its

proper reflecting plane within the crystal. It then yields information as

to the positions of these planes and the relative numbers of atoms which

they contain. The X-rays used are the heterogeneous rays which issue from

certain bulbs, for example, from the commonly used bulb which contains a

platinum anticathode.

The second method is based on the fact that homogeneous X-rays of

wave-length X are reflected from a set of parallel and similar crystal planes

at an angle 8 (and no other angle) when the relation nX = 2d sin 9 is

fulfilled. Here d is the distance between the successive planes, 8 is the

glancing angle which the incident and reflected rays make with the planes,

and n is a whole number which in practice so far ranges from one to five.

In this method the X-rays used are those homogeneous beams which issue in

considerable intensity from some X-ray bulbs, and are characteristic radiations

of the metal of the anticathode. Platinum, for example, emits several such

beams in addition to the heterogeneous radiation already mentioned, A bulb

having a rhodium anticathode, which was constructed in order to obtain a

radiation having about half the wave-length of the platinum characteristic
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rays, has been found to give a very strong homogeneous radiation consisting

of one main beam of wave-length 0*607 x 10~ 8 cm.*, and a much less intense

beam of wave-length 0*533 x 10~ 8 em. It gives relatively little hetero-

geneous radiation. Its spectrum, as given by the (100) planes of rock-salt,

is shown in fig. 1. It is very convenient for the application of the second

method. Bulbs having nickel, tungsten, or iridium anticathodes have not so

far been found convenient; the former two because their homogeneous

radiations are relatively weak, the last because it is of much the same
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Fig. 1.—Spectra of rhodium rays
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100 planes of rock-salt.

wave-length as the heterogeneous rays which the bulb emits, while it is well

to have the two sets of rays quite distinct. The platinum homogeneous rays

are of lengths somewhat greater than the average wave-length of the general

heterogeneous radiation; the series of homogeneous iridium rays are very

like the series of platinum rays raised one octave higher. For convenience,

the two methods may be called the method of the Laue photograph, or,

briefly, the photographic method, and the reflection method. The former

requires heterogeneous rays, the latter homogeneous. The two methods

throw light upon the subject from very different points and are mutually

helpful.

The present paper is confined almost entirely to an account of the

application of the two methods to an analysis of the structure of the diamond.

The diamond is a crystal which attracts investigation by the two new

methods, because in the first place it contains only one kind of atom, and in

the second its crystallographic properties indicate a fairly simple structure.

We will consider, in the first place, the evidence given by the reflection

method.

The diagram of fig. 2 shows the spectrum of the rhodium rays thrown by

the (111) face, the natural cleavage face of the diamond. The method of

obtaining such diagrams, and their interpretation, are given in a preceding

* This value is deduced from the positions of the spectra of the rhodium rays in the

(100) planes of rock-salt on the assumption that the structure of rock-salt is as recently

described (see preceding paper).
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paper.* The two peaks marked Ei, r\ constitute the first order spectrum of

the rhodium rays, and the angles at which they occur are of importance in

what follows. It is also a material point that there is no second order

spectrum. The third is shown at E3, r3 ; the strong line of the fourth order

is at E4, and of the fifth at E5 .

The first deduction to be made is to be derived from the quantitative

measurements of the angle of reflection. The sines of the glancing angles
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Fig. 2.—Spectra of rhodium rays: 111 planes of diamond.
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for Ei, E3 , E4 , E5 are (after very slight correction for errors of setting) 0*1456,

0-4425, 0*5941, 0*7449. Dividing these by 1, 3, 4, 5 respectively, we obtain

0*1456, 0*1475, 0*1485, 0*1490. These are not exactly equal, as they might

be expected to be, but increase for the larger angles and tend to a maximum.

The effect is due to reasons of geometry arising from the relatively high

transparency of the diamond for X-rays, and the consequent indefiniteness of

the point at which reflection takes place. The true value is the maximum
to which the series tends, and may with sufficient accuracy be taken as

0*1495. In order to keep the main argument clear, the consideration of this

point is omitted.

We can now find the distance between successive (111) planes,

have

X = 2d Bin 0, 0*607 xlO~ 8 = 2^x0*1495, rf = 2*03 x 10~ 8
.

The structure of the cubic crystals which have so far been investigated by

* ' Eoy. Soc. Proc.,' vol. 88, p. 428.
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these methods may be considered as derived from the face-centred lattice

(fig. 3): that is to say, the centres which are effective in causing the

reflection of the X-rays are placed one at each corner and one in the middle

of each face of the cubical element of volume. This amounts to assigning

- - 'J&B

Fig. 3.

four molecules to each such cube, for in general one atom in each molecule is

so much more effective than the rest that its placing determines the structure

from our point of view. There are four, because the eight atoms at the

corners of the cube only count as one, each of them belonging equally to

eight cubes, and the six atoms in the centres of the faces only count as three,

each of them belonging equally to two cubes. The characteristics of the

reflection are then as follows :

—

Let ABCDEFGH be the cubical element. There are effective centres at

all the corners and at L, M, N, P, Q, K, the middle points of the faces. The

edge of the cube being denoted by 2a, the reflecting planes which are parallel

to a cube face, called generally the (100) planes, are spaced regularly, the

distance from plane to plane being a. All the planes contain equal numbers

of centres.

The (110) planes, of which the plane through ACGE is a type, are

regularly spaced at a distance a/^2
P
and also are all equally strewn with

effective centres.

The (111) planes, of which the planes through EDB, HCF are types, are

regularly spaced at a distance 2^/^/3, and again are all similar to each other.

In what may for the present be called the normal case, any one of these

sets of planes gives a series of spectra which diminish rapidly in intensity as

we proceed from lower to higher orders, as, for example, the spectra of the

rhodium rays given by the (100) planes of rock-salt. (Fig. 1 shows the

spectra of the first two orders.)
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The relative spaeings of the spectra given by these three sets of planes are

shown in fig. 4. Spectra of the (100) planes being supposed to occur at

values of sin 6 proportional to 1, 2, 3, ..., it follows from the above argument

that the (110) planes will give spectra at 1*414, 2*828, 4*242, ..., and the

(111) planes at 0*866, 1*732, 2*598 ...

.

The position of the first spectrum of the (111) planes (fig. 4) is a peculiarity

of the face-centred lattice. If the effective centres were at the corners only
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Fig. 4.—Spectra of face-centred lattice.

of a cube whose length of side was a, the spaeings of the three sets of planes

would be a, a/^/2, and a/^3, and the three sets of spectra would occur

at 1, A, o *, ^/ A, A\j A
y
o\j A *. \/ o } A*/ Oj uv/o.

The cubical crystals which we have so far examined give results which

resemble the diagram of fig. 4 more or less closely. Individual cases depart

so little from the type of the diagram that the face-centred lattice may be

taken as the basis of their structure and the departures considered to reveal

their separate divergencies from the standard. For convenience of descrip-

tion we will speak of the first, second, third spectra of the (100) or (111)

planes and so on, with reference to fig. 4. We may then, for example,

describe the peculiarity of the rock-salt (111) spectrum* by saying that the

first order spectrum is weak and the second strong. The interpretation

(Iog. cit.) is that the sodium atoms are to be put at the centres of the edges

of the cubic element • of volume, and the chlorine atoms at the corners and

in the middle of each face or vice versd : for then the face-centred lattice

(cube edge 2a) is brought half way to being the simple cubic lattice (edge a)

having an effective centre at every corner. The first (111) spectrum tends

to disappear, the second to increase in importance. In the case of potassium

chloride, the atoms are all of equal weight and the change is complete : the

first order spectrum of the (111) planes disappears entirely. In zincblende

or iron pyrites one atom is so much more effective than the other that the

diagram of spectra is much more nearly characteristic of the face-centred

* See preceding paper.
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lattice : at least so far as regards the spectra of the lower orders. We hope

to deal with these cases later.

Let us now consider the case of the diamond. The spectrum given by

the (111) planes is shown in some detail in fig. 2. It should be stated that

the ordinates represent the gross currents observed ; nothing has been

subtracted for natural leak, scattered radiation, and so forth.

We first use the angular measurements to enable us to determine the

number of carbon atoms in the elementary cube of side 2a. Let us assume

provisionally that there are four carbon atoms to each cube, making the

face-centred lattice. The density of the diamond is 3*51, and the weight of

each atom is 12 times the weight of each hydrogen atom or 12 x 1*64 x 10~ 24
.

The volume of the cube is therefore

4xl2"x 1-64x10-* _ 09 ,

1
„ 24

The length of each edge (i.e. 2a) will then be

v/(22-4 x 10~ 24
) = 2-82 x 10" 8

.

The distance between consecutive (111) planes

= 2a/v/3 = 1-63 xl0~ 8
.

Now we have found experimentally that the right value is 2*03 x 10-8 .

These two numbers are very nearly in the ratio of 1 : ^/2. It is clear that

we must put eight, not four, carbon atoms in the elementary cube ; we then

obtain 2a/\/o = 2*05 x 10~ 8
, and this close agreement with the experimental

value suggests that we are proceeding in the right way. The value of 2 a

is 3-55 x 10" 8
.

We have therefore four carbon atoms which we are to assign to the

elementary cube in such a way that we do not interfere with the characteristics

of the face-centred lattice.

It is here that the absence of the second order spectrum gives us help.

The interpretation of this phenomenon is that in addition to the planes

spaced at a distance apart 2*03 x 10~ 8 there are other like planes dividing

the distances between the first set in the ratio 1:3. In

fact there must be parallel and similar planes as in

fig. 5, so spaced that AA' = A'B/3, and so on. For if

waves fall at a glancing angle 8 on the system ABC, and

are reflected in a second order spectrum we have

2 X = 2 AB sin 6. The planes A'B'C reflect an exactly similar radiation

which is just out of step with the first, for the difference of phase of waves

reflected from A and B is 2 X, and therefore the difference of phase of waves

reflected from A and A' is X/2. Consequently the four atoms which we have

Fig. 5.
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at our disposal are to make new (111) planes parallel to the old and related

to them as A'B'C are to ABC. When we consider where they are to go we

are helped by the fact that being four in number they should go to places

which are to be found in the cubes in multiples of four. The simplest plan

is to put them in the centres of four of the eight smaller cubes into which

the main cube can be divided. We then find that this gives the right spacing

because the perpendicular from each such centre on the two (111) planes

which lie on either side of it are respectively a/ 2,^/3 and \{a </3), where a is

the length of the side of one of the eight smaller cubes. For symmetry it is

necessary to place them at four centres of smaller cubes which touch each

other along edges only : e.g. of cubes which lie in the A, C, H and F corners

of the large cube. If this is done in the same way for all cubes like the

one taken as unit it may be seen on examination that we arrive at a

disposition of atoms which has the following characteristics :

—

(1) They are arranged similarly in parallel planes spaced alternately at

distances <x/2v/3 and a^/3/2, or in the case of the diamond 0*508 x 10" 8 and

1*522 x 10~ 8 cm. : the sum of these being the distance 2*03 x 10~ 8 which we

have already arrived at.

(2) The density has the right value.

(3) There is no second order spectrum in the reflection from (111) planes.

It is not very easy to picture these dispositions in space. But we have

come to a point where we may readjust our methods of defining the positions

of the atoms as we have now placed them, and arrive at a very simple result

indeed. Every carbon atom, as may be seen from fig. 5, has four neighbours

at distances from it equal to a^/3/2 = 1*522 x 10~ 8 cm., oriented with

respect to it in directions which are parallel to the four diagonals of the

cube. For instance, the atom at the centre of the small cube Abcdefgh,

fig. 6, is related in this way to the four atoms which lie at corners of that

cube (A, c,/, h), the atom at the centre of the face ABFE is related in the

same way to the atoms at the centres (P, Q, E, S) of four small cubes, and

so on for every other atom. We may take away all the structure of cubes

and rectangular axes, and leave only a design into which no elements enter

but one length and four directions equally inclined to each other. The

characteristics of the design may be realised from a consideration of the

accompanying photographs (figs. 7 and 8) of a model, taken from different

points of view. The very simplicity of the result suggests that we have come

to a right conclusion.

The appearance of the model when viewed at right angles to a cube

diagonal is shown in fig. 7. The (111) planes are seen on edge, and the
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Fig. 6.
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Fig. 7.—View perpendicular to a (111) axis.

*

Fig. 8.—The (110) planes are vertical and

horizontal.
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1 : 3 spacing is obvious. The union of every carbon atom to four neighbours

in a perfectly symmetrical way might be expected in view of the persistent

tetravalency of carbon. The linking of six carbon atoms into a ring is also

an obvious feature of the structure. But it would not be right to lay much

stress on these facts at present, since other crystals which do not contain

carbon atoms possess, apparently, a similar structure.

"We may now proceed to test the result which we have reached by

examining the spectra reflected by the other sets of planes. One of the

diamonds which we used consisted of a slip which had cleavage planes as

surfaces ; its surface was about 5 mm. each way and its thickness 0*8 mm.
By means of a Laue photograph, to be described later, it was possible to

determine the orientation of its axes and so to mount it in the X-ray

spectrometer as to give reflection from the (110) or the (100) planes as

desired.

As regards the former there should be no special features, for the four

carbon atoms which we placed at the centres of four of the eight smaller

cubes all now lie in (110) planes. The latter are equally spaced and all

alike, the space distance being a/^2 or 1*25 x 10~ 8
. The first glancing angle

0*607 x 10~ 8

at which reflection occurs is, therefore, sin"" 1 —jrz—1fv_ 8
•= 14*1 5°. The

experimental value was 14*35°. The spectra of higher orders occurred at

29-3° and 47-2°. The sines of these three angles are 0*2478, 0*4894, and

0*7325, or nearly as 1:2:3. Great precision was not attempted ; to attain

it would have been needlessly troublesome. The intensity of the different

orders fell off in the usual way.

On the other hand, the (100) spectrum might be expected to show certain

peculiarities. By placing four atoms at the centres of the four small cubes

we have, in fact, interleaved the 100 planes, as it were: and these now

consist of similar planes regularly spaced at a distance a/2 or 0*885 x 10~ 8
.

0*607 x 10~ 8

The first spectrum should therefore occur at an angle sin" 1
-tjt^—TTwT

= sin" 1 0*343 = 20*0. Using the language already explained, we may say

that the first (100) spectrum has disappeared, and, indeed, all the spectra of

odd order. Spectra were actually found at 20*3° and 43*8° : the sines of these

angles being 0*3469 and 0*6921, the latter being naturally much less

intense than the former. A careful search in the neighbourhood of 10°

showed that there was no reflection at all at that angle.

The results for all three spectra are shown diagrammatically in fig. 9,

which should be compared with fig. 4.

It is instructive to compare the reflection effects of the diamond with those
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of zincblende. Our results seem to show that it is built up in exactly the

same way, except that the (111) planes contain alternately zinc atoms only

and sulphur atoms only. If the zinc atoms are placed at each corner of the

cube and at the centre of each face, the sulphur atoms lie at four of the eight

centres of the smaller cubes. The (100) planes, like the (111) planes, contain
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Fig. 9.—Spectra of diamond.

alternately zinc and sulphur atoms. These alternations of constitution

modify the forms of the various spectra, so that they lie between the forms

of the space-centred lattice (fig. 4) and the forms of the diamond (fig. 9).

The first (100) spectrum is not entirely absent but is much smaller than the

second, and in the same way the second (111) spectrum, though it is to be

seen, is smaller even than the third. The scheme of the zincblende spectra

is shown in fig. 10. Their actual positions agree perfectly with those which
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Fig. 10.—Spectra of zincblende.

can be calculated from a knowledge of the density of the crystal, the weight

of the ZnS molecule, and the wave-lengths employed. In consequence of the

alternation of zinc and sulphur planes at unequal spacings along the (111)

axis, the crystal ceases to be symmetrical about a plane perpendicular to that

axis. It becomes hemihedral, and acquires polarity.

We now go on to consider the Laue photograph of the diamond. A
photograph taken with a section of diamond cut parallel to the cleavage

plane (111) is shown in fig. 11. The experimental arrangement was similar



The Structure of the Diamond. 287

to the original arrangement of Lane, the distance from diamond to photo-

graphic plate being 1*80 cm., and the time of exposnre four hours. A test

photograph was taken first, which made it possible to calculate the exact

orientation to be given to the diamond in order that the incident X-rays

might be truly parallel to a trigonal axis. The symmetry of fig. 11 shows

JL JLv3r» JL JL#

that a close approximation to this orientation has been obtained. The X-ray
bulb had a platinum anticathode.

In fig. 12 is given the stereographic projection of this pattern.* The spots

of the photograph are represented in the diagram by dots of corresponding

magnitude, and several circles, each passing through the spots reflected by
the planes of one zone, are drawn. The indices placed next the spots are the

Millerian indices of the planes which reflect these spots, the planes beino*

referred to three equal axes making 60° with each other as in the case of the

examples zincblende and fluorspar given in the above paper. Imagining a

* See preceding paper.
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cube with one corner at the diamond and the. long diagonal of the cube

parallel to the incident X-rays, the three cube edges would meet the photo-

graphic plate at the points marked X, Y, Z. The spot (110) is thus reflected

in the cube face, meeting the plate along XY, (110) being the indices of

a cube face referred to the axes employed.

It will now be shown that on analysis the photograph appears to be in

accordance with the structure which we have assigned to the diamond on the

O
z

Fig. 12.

result of the reflection experiments. In the first place, of the three cubic

space lattices it is evidently that which has points at cube corners and at the

centres of the cube faces which is most characteristic of the diffracting system.

For our purpose this space lattice is most conveniently referred to three axes

which are diagonals of the cube faces meeting in a corner. The co-ordinates

of any point of the system may then be written

jqc, qc, re,

where p, q, r are any integers, positive or negative, and c is half the diagonal

of the square of edge 2a.
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The indices of the reflecting plane are given for each spot of the photo-

graph, and it will be seen that they could not possibly have a more simple

form. If referred to the cubic axes they become much more complex. Along

the axes chosen, the interval between successive points of the lattice is the

smallest possible, and these axes are very important point-rows of the

system. The remarkable series of spots lying on the three circles in the

diagram which culminate at the points (110), (101), (Oil), are due to planes

which pass through these point-rows, and this alone is good evidence of the

paramount importance of the cube face diagonals as axes.

It is thus clear that a simple analysis of the pattern can be made if the

planes are referred to axes of the face-centred cubic lattice. It is also

evident, however, that the pattern is more complex than it should be if due

to a set of identical points arranged in this lattice, of which examples have

been given in a former paper. For instance, there are spots reflected by the

planes (ill), (131), (141), and (22l), (021), and yet none by the plane (121)

(see diagram, fig. 12). In the case of zincblende and fluorspar no complications

of this kind occur, although in these cases the presence of the lighter atoms

of sulphur and fluorine must affect somewhat the diffraction pattern given by

the lattice arrangement of heavy atoms of zinc and calcium. Yet here, where

carbon atoms alone are present, the pattern is not as straightforward as those

given by zincblende and fluorspar. We thus come to the conclusion that the

carbon atoms are not arranged on a single space lattice.

If the structure assigned to diamond in the former part of this paper is

correct, a simple explanation of the diffraction pattern can be arrived at.

According to this structure the carbon atoms are not arranged on a space

lattice, but they may be regarded as situated at the points of two inter-

penetrating face-centred space lattices. These lattices are so situated in

relation to each other that, calling them A and B, each point of lattice B is

surrounded symmetrically by four points of lattice A, arranged tetrahedron-/

wise and vice versd. This can be seen by reference to the diagram of fig. 6.

It is now clear why the pattern must be referred to the axes of the face-

centred lattice, for if the structure is to be regarded as built up of points

arranged on the simple cubic lattice, with three equal axes at right angles,

no fewer than eight interpenetrating lattices must be used to give all the

points.

Consider lattice A referred to the cube face diagonals as axes. Then all

the points of that lattice have indices

pe, qc, re,

p, q, r being any integers. The relative position of lattice B is arrived at if

we imagine lattice A to suffer a translation along the trigonal axis which is
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the long diagonal both of the elementary parallelepiped and of the cube, the

amount of this translation being one-fourth of the long diagonal. Eeference

to one of the diagrams will make this more clear than any explanation which

could be given here. The points of lattice B then have co-ordinates

The planes of lattice A which have Millerian indices (Imri) are given by

Ix+ my+ nz = Pc,

where P is any integer. The corresponding planes of lattice B are given by

l(x— \c)+ m(y-~\c)+ z(n-- \c) = Qc,

or ix 4- my+ nz = ( U -f
+m+ n

) c.Ix+ my+ w£ =
(
Q+

When the (torn) planes of both lattices are considered together, three

cases present themselves :

—

(1) When l +m+ n is a multiple of four, the planes of lattice B are

coincident with those of lattice A, both being given by

Ix+ my+ nz = (integer x c).

An example of this is found in the plane (110) or (130).

(2) When l+m+ n is a multiple of two but not of four, the planes of

lattice A are given by
Ix+my+ nz — Pc.

Those of lattice B are given by

Ix+my+ nz = (P+ §)c,

and are thus half-way between the planes of lattice A.

Examples.—Planes such as (110) and (121).

(3) When l+m+ nis odd, the equations of the two sets of planes are

lx-\-my-\-nz = Pc,

and lx+my+ nz = (P+ |e)
?

or lx+ my-\-nz = (P— \)c,

and the planes occur in pairs, in such a way that the two planes of a pair are

separated by one-fourth of the distance between the successive pairs.

Examples.—Octahedron faces (100), (010), (001), and (111).__

It is now clear wherein lies the difference between planes (111) and (131), on

the one hand, and (12l) on the other. The (121) planes of the one lattice alone

would probably give a strong reflection of a part of the X-ray spectrum in
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which there was a large amount of energy, but the presence half-way between

them of the planes of the other lattice (1 + 2— 1 = 2) annuls their effect.

On the other hand, though the (131) and (111) planes now occur in pairs, the

wave-length reflected from them is the same as that for a single lattice. On
looking over the indices of the reflecting planes, it will be seen how large a

proportion of them have I +m + n either odd or a multiple of four ; in fact,

the departure of the pattern from simplicity is just that which would be

expected from the nature of the point system, which differentiates the planes

into these three sets.

A more complete analysis of the pattern would be of little interest here

because the positions of the reflection peaks afford a much simpler method of

analysing the structure. In comparison with the examples given in the

former paper, this is a case where the diffraction is caused by a point system

as against a space lattice, both a translation and a rotation being necessary

to bring the system into self-coincidence. This gives special interest to the

photograph.

We have to thank both Prof. S. P. Thompson, F.E.S., and Dr. Hutchinson,

of the Mineralogical Laboratory, Cambridge, for their kindness in lending us

diamonds which were used in these experiments.



Fig. 7.—View perpendicular to a (111) axis.



Fig. 8.—The (110) planes are vertical and

horizontal.




