

# 2016 Minerals Yearbook

**GEMSTONES [ADVANCE RELEASE]** 

# **GEMSTONES**

# By Donald W. Olson

Domestic survey data and tables were prepared by Chanda C. Williams, statistical assistant, and the author.

In 2016, the estimated value of natural gemstones produced in the United States was \$11.7 million (table 1), and the estimated value of U.S. production of synthetic gemstones was \$54.9 million. The total estimated value of U.S. gemstone production was \$66.6 million. The value of U.S. gemstone imports was \$25.2 billion (table 8), and the value of combined U.S. gemstone exports and reexports was estimated to be \$22.7 billion. In 2016, world production of natural diamond totaled 134 million carats, of which an estimated 73.2 million carats were gem quality (table 11). The value of diamond imported into the United States in 2016 exceeded \$23.2 billion. This value was the combination of \$20.1 billion of cut but unset diamonds more than 0.5 carat, \$2.24 billion of cut but unset diamonds less than 0.5 carat, and \$860 million of rough or uncut natural diamonds (table 5).

In this chapter, the terms "gem" and "gemstone" mean any mineral or organic material (such as amber, pearl, petrified wood, and shell) used for personal adornment, display, or object of art because it possesses beauty, durability, and rarity. Of more than 4,000 mineral species, only about 100 possess all these attributes and are considered to be gemstones. Silicates other than quartz are the largest group of gemstones in terms of chemical composition; oxides and quartz are the second largest (table 9). Gemstones are subdivided into diamond and colored gemstones, which in this chapter designates all natural nondiamond gems. In addition, synthetic gemstones and gemstone simulants (also known as imitation gemstones) are discussed but are treated separately from natural gemstones (tables 1, 7, 8, 10). Synthetic gemstones have the same chemical, optical, and physical properties as their natural gemstone counterparts. Cultured and laboratory-created are terms also used to refer to synthetic gemstones. Gemstone simulants have appearances like those of natural gemstone materials, but they have different chemical, optical, and physical properties. Trade data in this chapter are from the U.S. Census Bureau. All percentages in the chapter were calculated using unrounded data. Revisions were made to 2015 trade data, which caused some of the 2015 data to be revised from those in the 2015 Gemstones chapter of the U.S. Geological Survey (USGS) Minerals Yearbook, volume I, Metals and Minerals. Information on industrial-grade diamond and industrial-grade garnet can be found in the USGS Minerals Yearbook, volume I, Metals and Minerals, chapters on industrial diamond and industrial garnet, respectively.

Gemstones have captured the attention of humans since prehistoric times. They have been valued as treasured objects throughout history by all societies in all parts of the world. Amber, amethyst, coral, diamond, emerald, garnet, jade, jasper, lapis lazuli, pearl, rock crystal, ruby, serpentine, and turquoise are some of the first stones known to have been used for making jewelry. In addition to jewelry, gemstones are used for collections, decorative art objects, and exhibits.

#### **Production**

U.S. gemstone production data were based on a survey of more than 250 domestic gemstone producers conducted by the USGS. The survey provided a foundation for projecting the scope and level of domestic gemstone production during the year. However, the USGS survey did not represent all gemstone activity in the United States, which includes thousands of professional and amateur collectors. Consequently, the USGS supplemented its survey with estimates of domestic gemstone production from related published data, contacts with gemstone dealers and collectors, and information gathered at gem and mineral shows.

Commercial mining of gemstones has never been extensive in the United States. More than 60 varieties of gemstones have been produced commercially from domestic mines, but most of the deposits are small compared with those of other mining operations. In the United States, much of the current gemstone mining is conducted by individual collectors, gem clubs, and hobbyists rather than by commercial operations.

The commercial gemstone industry in the United States consists of individuals and companies that mine gemstones or harvest shell and pearl, firms that manufacture synthetic gemstones, and individuals and companies that cut and polish natural and synthetic gemstones. The domestic gemstone industry is focused on the production of colored gemstones and on the cutting and polishing of large diamond stones. Industry employment is estimated to be between 1,200 and 1,500 individuals.

Most natural gemstone producers in the United States are small businesses that are widely dispersed and operate independently. The small producers probably have an average of three employees, including those who only work part time. The number of gemstone mines operating from year to year fluctuates because the uncertainty associated with the discovery and marketing of gem-quality minerals makes it difficult to obtain financing for developing and sustaining economically viable operations.

The total value of natural gemstones produced in the United States was estimated to be \$11.7 million during 2016 (table 1). This production value was a 37% increase from that of 2015.

Natural gemstone materials indigenous to the United States are collected or produced in every State. During 2016, each of the 50 States produced at least \$1,530 worth of gemstone materials. The leading 11 States accounted for 92% of the total value, as reported by survey respondents. These States were, in descending order of production value, Oregon, Arizona, Idaho, Colorado, California, Montana, North Carolina, Nevada, Utah, Arkansas, and Maine. Some States were known to produce a single gemstone material—Hawaii produced coral and Tennessee produced freshwater pearls, for example.

Other States produced a variety of gemstones; for example, Arizona's gemstone deposits included agate, amethyst, azurite, chrysocolla, garnet, jade, jasper, malachite, obsidian, onyx, opal, peridot, petrified wood, smithsonite, and turquoise. A wide variety of gemstones also was found and produced in California, Idaho, Montana, and North Carolina.

In 2016, the United States had only one active operation in a known diamond-bearing area, Crater of Diamonds State Park near Murfreesboro, AR. The State of Arkansas maintains a digfor-fee operation for tourists and amateur collectors at the park; Crater of Diamonds is the only diamond mine in the world that is open to the public for collecting diamonds. The diamonds occur in a lamproite breccia tuff associated with a volcanic pipe and in the soil developed from the lamproite breccia tuff. The largest diamond found during the year was a 2.1-carat white diamond (Easterling, 2017). During 2016, 501 diamond stones with an average weight of 0.193 carat were recovered at Crater of Diamonds. Of the 501 diamond stones recovered, 17 weighed more than 1 carat. Since the diamond-bearing pipe and the adjoining area became a State park in 1972, 32,444 diamond stones with a total weight of 6,490.0 carats have been recovered (Waymon Cox, Park Interpreter, Crater of Diamonds State Park, written commun., August 27, 2018). Exploration has demonstrated that this diamond deposit contains about 78.5 million metric tons of diamond-bearing rock (Howard, 1999, p. 62). An Arkansas law prohibits commercial diamond mining in the park.

In addition to natural gemstones, synthetic gemstones and gemstone simulants were produced in the United States in 2016. Synthetic gemstones that have been produced in the United States include alexandrite, cubic zirconia, diamond, emerald, garnet, moissanite, ruby, sapphire, spinel, and turquoise. However, during 2016, only cubic zirconia, diamond, moissanite, and turquoise were produced commercially. Gemstone simulants of amber, chrysocolla, coral, lapis lazuli, malachite, travertine, and turquoise also were manufactured in the United States. In addition, certain colors of synthetic sapphire and spinel, used to represent other gemstones, are classified as gemstone simulants.

Synthetic gemstone production in the United States was valued at \$54.9 million in 2016, which was a slight decrease compared with that of 2015 (table 1). Five companies in five States, representing virtually the entire U.S. synthetic gemstone industry, reported production to the USGS. The States with reported synthetic gemstone production were, in descending order of production value, North Carolina, New York, California, South Carolina, and Arizona. The value of U.S. gemstone simulant output was estimated to be more than \$100 million.

Since the 1950s, when scientists manufactured the first synthetic bits of diamond grit using a high-pressure, high-temperature (HPHT) method, this method of growing diamonds has become relatively commonplace in the world as a technology for synthetic diamonds, so much so that thousands of small plants throughout China were using the HPHT method and producing synthetic diamonds suitable for cutting as gemstones. Gem-quality diamonds of 1 carat or more are harder to manufacture because, at that size, it is difficult

to consistently produce diamonds of high quality, even in the controlled environment of a laboratory using the HPHT method. After more than 50 years of development, several synthetic diamond companies were able to produce relatively large high-quality diamonds that equaled those produced from mines. The chemical vapor deposition (CVD) method of producing synthetic diamond was also developed and used during the 1950s. The CVD method was only capable of producing diamond films and small polycrystalline diamonds, which were unsuitable for jewelry. CVD has been used for more than a decade to cover large surfaces with microscopic diamond crystals and thereby add hardness to the surface.

In the early 2000s, Apollo Diamond Inc. (Boston, MA) further developed CVD technology as a method for growing single, extremely pure, gem-quality diamond crystals that were large and suitable for use in jewelry. The CVD technique uses high-energy microwaves in a chamber to energize a methane gas into plasma, which then precipitates carbon atoms onto flat diamond wafer seeds as diamond. In developing this process, synthetic diamond producers discovered the temperature, gas composition, and pressure combination that resulted in the growth of a single diamond crystal and were able to produce synthetic stones that ranged from 1 to 2 carats. The size of the diamonds produced was limited only by the size of the diamond seeds and the growing chamber (table 10).

In 2011, Scio Diamond Technology Corp. (Greenville, SC) acquired the diamond growing process patents and equipment from Apollo Diamond (Sim, 2016). During 2015, the average size of synthetic diamond crystals grown by Scio Diamond more than doubled (Scio Diamond Technology Corp., 2015). In 2016, Scio Diamond Technology Corp. increased its capacity to produce colorless single-crystal diamonds at a higher quality and volume than the previous year. In 2016, Scio Diamond used CVD technology to produce synthetic single-crystal diamond stones for finished sizes that averaged from 0.75 to 2 carats for jewelry. These CVD diamonds were also appropriate for industrial uses (Bailey, 2016; Sim, 2016).

Charles & Colvard, Ltd. in North Carolina was the only U.S. manufacturer of moissanite, a gem-quality synthetic silicon carbide and an excellent diamond simulant. The company used a proprietary patented technology. Moissanite was marketed for its own gem qualities; it exhibits a higher refractive index (brilliance) and higher luster than diamond. Its hardness is between that of corundum (ruby and sapphire) and that of diamond, which gives it durability. Charles & Colvard reported that moissanite sales increased by 12% to \$29.2 million in 2016 compared with \$25.7 million in 2015 (Charles & Colvard, Ltd., 2017, p. 27).

U.S. mussel shells are used as a source of mother-of-pearl and as seed material for culturing pearls. The value of U.S. shell production increased 36% to \$340,000 in 2016 compared with \$250,000 in 2015 (table 1). This mussel shell data includes only freshwater mussel shells. In some regions of the United States, shell from mussels was being used more as a gemstone based on its own merit rather than as seed material for pearls. This shell material was being processed into mother-of-pearl and used in beads, jewelry, and watch faces.

### Consumption

Although the United States accounted for only a small portion of total global gemstone production, it was the world's leading diamond and nondiamond gemstone market, accounting for more than 35% of world gemstone consumption in 2016. In the United States, the majority of domestic consumers designated diamond as their favorite gemstone. This popularity of diamonds is evidenced by the diamond market accounting for 94% of the total value of the U.S. gemstone apparent consumption. The U.S. apparent consumption for unset gem-quality diamond during the year was estimated to be \$20.7 billion, a slight increase compared with \$20.6 billion in 2015. Domestic markets for natural, unset nondiamond gemstones totaled \$1.23 billion in 2016, which was a 9% increase from \$1.12 billion in 2015.

U.S. specialty jewelry store retail sales increased to \$31.4 billion for the year in 2016, a 3.8% increase compared with retail sales in 2015. There was a sharp increase in sales at the end of the year, with December 2016 sales increasing 6.9% to \$6.21 billion compared with sales of December 2015 (Rapaport, 2017).

### **Prices**

Gemstone prices are governed by many factors and qualitative characteristics, including beauty, clarity, defects, demand, durability, and rarity. Diamond pricing, in particular, is complex; values can vary significantly depending on time, place, and the subjective valuations of buyers and sellers. More than 14,000 categories are used to assess rough diamond, and more than 100,000 different combinations of carat, clarity, color, and cut values can be used to assess polished diamond.

Colored gemstone prices are generally influenced by market supply and demand considerations, and diamond prices are supported by producer controls on the quantity and quality of supply. Value of production and prices of gemstones produced and (or) sold in the United States are listed in tables 1, 2, and 3. In addition, customs values for diamonds and other gemstones imported, exported, or reexported are listed in tables 4 through 8.

De Beers Group companies remained a significant force, influencing the price of gem-quality diamond sales worldwide during 2016. De Beers companies produced about 18% of total global quantity and 30% of total global value (De Beers Group UK Ltd., 2017, p. 7).

Since 2000, De Beers' control of world diamond pricing has gradually decreased. Instead, flexible pricing mechanisms have set the stage for new methods of rough diamond sales in addition to rough diamonds being sold through a limited number of sightholder sales, the method used for years by De Beers. Rough diamonds were also sold by auctions, placed sales, tender sales, and term contracts (De Beers Group UK Ltd., 2014, p. 39).

# **Foreign Trade**

During 2016, total U.S. natural gemstone trade with all countries and localities was valued at about \$47.9 billion, which was a slight decrease from that of 2015. Total U.S. natural gemstone trade with all countries and localities, excluding reexports, was valued at about \$28.6 billion. Diamond accounted for about 89% of the 2016 gemstone trade total value.

In 2016, U.S. exports and reexports of diamond were shipped to 93 countries and localities, and imports of all gemstones were received from 79 countries and localities (tables 4–8). In 2016, U.S. import quantities of cut diamond decreased slightly compared with those of 2015, and the value decreased by 3%. U.S. import quantities of rough and unworked diamond in 2016 increased 47% compared with the previous year, and the value increased by 182% compared with that of 2015 (table 8). The United States remained the world's leading diamond importer and was a significant international diamond transit center as well as the world's leading gem-quality diamond market. In 2016, U.S. export and reexport quantities of gem-grade diamond decreased by 5% compared with those of 2015, and the value increased by 5%. The large quantity of reexports revealed the significance of the United States in the world's diamond supply network (table 4).

Import values of natural gemstones increased slightly to \$25.2 billion for the United States in 2016 compared with \$25.0 billion in 2015. Import values of synthetic gemstone more than doubled to \$74.2 million in 2016 compared with \$31.6 million 2015 (tables 7–8). This increase was due to large increases in synthetic gemstone imports from China and India. Synthetic gemstone imports from India, China, Russia, Germany, Hong Kong, Belgium, and Austria had a value of about \$66.6 million and accounted for about 94% (by value) of total domestic imports of synthetic gemstones during 2016 (table 7). The marketing of imported synthetic gemstones and enhanced gemstones as natural gemstones and the mixing of synthetic materials with natural stones in imported parcels continued to be an issue for some domestic jewelers and sales companies in 2016. In addition, some simulants were marketed as natural or synthetic gemstones during the year, as in previous years.

## World Review

The worldwide gemstone industry has two distinct sectors—diamond mining and marketing and colored gemstone production and sales. Most diamond supplies are controlled by a few major mining companies; prices are influenced by consumer demand and supply availability and, to a lesser extent, by managing the quality and quantity of the gemstones relative to demand, a function that has been performed by De Beers sightholder sales. Unlike diamond, colored gemstones are primarily produced at relatively small, low-cost operations with few dominant producers; prices are influenced only by consumer demand and supply availability.

In 2016, world natural rough diamond production increased by 5% to 134 million carats from 127 million carats in 2015. The 134 million carats of rough diamond produced included 73.2 million carats (55% of total diamond production) of gem-quality and 60.8 million carats (45% of total diamond production) of industrial-grade diamond (table 11). Most production was concentrated in a few regions—Africa [Angola, Botswana, Congo (Kinshasa), Namibia, and South Africa], Asia (northeastern Siberia and Yakutia in Russia), Australia, North America (Northwest Territories in Canada), and South America (Brazil). The world's rough diamond producers were as follows: Russia, producing 40.3 million carats or 30% of total world production; Congo (Kinshasa), with 23.2 million carats

(17%); Botswana, with 20.5 million carats (15%); Australia, with 14.0 million carats (10%); Canada, with 13.0 million carats (9.7%); Angola, with 9.02 million carats (6.7%); South Africa, with 8.31 million carats (6.2%); and other countries, with 5.7 million carats (4.3%). During 2016, the value of worldwide rough diamond production decreased by 12% to \$15.4 billion from the 2015 value of \$17.5 billion (De Beers Group UK Ltd., 2017, p. 7). In 2016, Russia also was the world's leading gemstone diamond producer with 31%; followed by Botswana, 20%; Canada, 18%; Angola, 11%; South Africa, 9%; Congo (Kinshasa), 6%; and Namibia, 2%. These seven countries produced 97% (by quantity) of the world's gemstone diamond output in 2016 (table 11).

During 2016, OJSC ALROSA and De Beers Group remained the two leading diamond producers by quantity and value. ALROSA's production was about 26% of total global quantity and 25% of total global value; De Beers' production was about 18% of total global quantity and 30% of total global value. The third-ranked company was Rio Tinto Ltd., which produced about 12% of total global production quantity and approximately 4% of global production value (De Beers Group UK Ltd., 2017, p. 7).

In 2002, the international rough diamond certification system, the Kimberley Process Certification Scheme (KPCS), was agreed upon by United Nations (UN) member nations, the diamond industry, and involved nongovernmental organizations to prevent the shipment and sale of conflict diamonds. Conflict diamonds are diamonds that originate from areas controlled by forces or factions opposed to legitimate and internationally recognized governments and are used to fund military action in opposition to those governments or in contravention of the objectives of the UN Security Council. The KPCS monitors rough diamond trade in both gemstone and industrial diamond. The KPCS includes the following key elements: the use of forgery-resistant certificates and tamper-proof containers for shipments of rough diamonds; internal controls and procedures that provide credible assurance that conflict diamonds do not enter the legitimate diamond market; a certification process for all exports of rough diamonds; the gathering, organizing, and sharing of import and export data on rough diamonds with other participants of relevant production; credible monitoring and oversight of the international certification scheme for rough diamonds; effective enforcement of the provisions of the certification scheme through dissuasive and proportional penalties for violations; self-regulation by the diamond industry that fulfills minimum requirements; and sharing information with all other participants on relevant rules, procedures, and legislation as well as examples of national certificates used to accompany shipments of rough diamonds. The United Arab Emirates assumed the chair of KPCS from January 1 through December 31, 2016. As of December 31, 2016, the 54 participants represented 81 nations (including the 28 member nations of the European Union counted as a single participant) plus the rough diamond trading entity of Taipei (Taiwan). The participating nations in the KPCS account for approximately 99.8% of the global production and trade of rough diamonds (Kimberley Process, 2018).

Globally, the value of production of natural gemstones other than diamond was estimated to be more than \$2.5 billion in 2016. Most nondiamond gemstone mines are small, low-cost, and widely dispersed operations that are often in remote regions. Foreign countries with major gemstone deposits other than diamond are Afghanistan (aquamarine, beryl, emerald, kunzite, lapis lazuli, ruby, and tourmaline), Australia (beryl, opal, and sapphire), Brazil (agate, amethyst, beryl, ruby, sapphire, topaz, and tourmaline), Burma (beryl, jade, ruby, sapphire, and topaz), Colombia (beryl, emerald, and sapphire), Kenya (beryl, garnet, and sapphire), Madagascar (beryl, rose quartz, sapphire, and tourmaline), Mexico (agate, opal, and topaz), Sri Lanka (beryl, ruby, sapphire, and topaz), Tanzania (garnet, ruby, sapphire, tanzanite, and tourmaline), and Zambia (amethyst and beryl). In addition, pearls are cultured throughout the South Pacific and in other equatorial waters; Australia, China, French Polynesia, and Japan were key producers in 2016.

Worldwide diamond exploration spending decreased by 21% in 2016 with 45 companies allocating \$290 million, compared with 52 companies allocating \$367 million during 2015. The diamond share of overall worldwide mineral exploration spending remained at 4.2% (SNL Metals & Mining, 2016, p. 1, 12–13).

**Botswana.**—Diamond production in Botswana was 20.5 million carats during 2016, a slight decrease compared with that of 2015, accounting for 15% of total global production.

The Jwaneng diamond mine in the Kalahari Desert of south-central Botswana was wholly owned by Debswana Diamond Co. (Pty.) Ltd. The company began the Cut-8 project during 2016, and production from the project was expected to begin in 2017 (De Beers Group UK Ltd., 2017, p. 7).

*Canada.*—Diamond production in Canada was 13.0 million carats during 2016, a 12% increase compared with that of 2015, accounting for 9.7% of total global production.

The Diavik Diamond Mine in the Northwest Territories began an extension project of the A21 kimberlite pipe pit during 2016. Diavik is jointly owned by Rio Tinto Group (60%) and Dominion Diamond Corp. (40%). Production from this project was expected to begin in 2018 (De Beers Group UK Ltd., 2017, p. 7).

The Gahcho Kué Mine in the Northwest Territories began production in 2016. The mine is jointly owned by De Beers Canada, Inc. (51%) and Mountain Province Diamonds Inc. (49%). The mine owners anticipated average annual diamond production of 4.5 million carats (De Beers Group UK Ltd., 2017, p. 7).

The Renard Mine in Quebec began production in 2016. The mine is wholly owned by Stornoway Diamond Corp. Stornoway anticipated average annual diamond production of 1.6 million carats (De Beers Group UK Ltd., 2017, p. 7).

*Lesotho.*—Diamond production in Lesotho was 342,000 carats during 2016, a 13% increase compared with that of 2015, accounting for 0.3% of total global production.

The Liqhobong Diamond Mine in the Maluti Mountains of northern Lesotho began production in 2016. The mine is owned by Firestone Diamonds plc (75%) and the Government of Lesotho (25%). The mine owners anticipated average annual diamond production of 1.0 million carats (De Beers Group UK Ltd., 2017, p. 7).

*Russia.*—Diamond production in Russia was 40.3 million carats during 2016, a 4% decrease compared with that of 2015, accounting for 30% of total global production. The Verkhne-Munskoe Mine project in Yakutia, Russia, was started during 2016. The mine is owned by OJSC ALROSA. The project completion and mine startup were expected during 2018 (De Beers Group UK Ltd., 2017, p. 7).

### Outlook

As domestic and global luxury spending increase, sales of gemstones and jewelry are expected to increase also. As the gemstone and jewelry industries and their consumers become more comfortable with the internet and other forms of e-commerce, sales of diamonds, gemstones, and jewelry over the internet are expected to continue to increase. Internet sales are expected to add to and partially replace "brick-and-mortar" store sales.

Global diamond production is expected to increase during the next few years as a result of new projects coming onstream. By 2020, about 25% of diamond production will come from projects that are currently being developed, but additional increases in output will come from expected expansions at currently operating mines (De Beers Group UK Ltd., 2016, p. 29).

More synthetic gemstones, simulants, and treated gemstones are likely to enter the marketplace and necessitate more transparent industry trade standards to maintain customer confidence.

#### **References Cited**

- Bailey, Bradley, 2016, The value of lab-grown CVD diamond in industrial applications: Finer Points, spring, p. 17–19.
- Charles & Colvard, Ltd., 2017, 2016 year in review: Morrisville, NC, Charles & Colvard, Ltd., 84 p. (Accessed April 14, 2017, via http://ir.charlesandcolvard.com/reports/.)
- De Beers Group UK Ltd., 2014, The diamond insight report—2014: London, United Kingdom, De Beers Group UK Ltd., 85 p. (Accessed August 17, 2017, at http://insightreport.debeersgroup.com/\_downloads/pdfs/de-beers-insight-report-2014.pdf.)
- De Beers Group UK Ltd., 2016, The diamond insight report—2016: London, United Kingdom, De Beers Group UK Ltd., March, 46 p. (Accessed August 17, 2017, at https://cdgwebsites.com/debeers/impact\_2016/stable/downloads/De Beers Insight Report 2016 web-ready.pdf.)
- De Beers Group UK Ltd., 2017, The diamond insight report in brief—2017: London, United Kingdom, De Beers Group UK Ltd., March, 28 p. (Accessed August 8, 2018, at https://www.debeersgroup.com/content/dam/de-beers/corporate/documents/Reports/Insight/InsightReport2017/Diamond-Insight-Report-2017\_ONLINE.pdf.downloadasset.pdf.)

- Easterling, Jeff, 2017, Over 500 gems found at Crater of Diamonds State Park in 2016: Texarkanafyi.com, January 17. (Accessed September 7, 2017, at https://texarkanafyi.com/500-gems-found-crater-diamonds-state-park-2016/.)
- Howard, J.M., 1999, Summary of the 1990's exploration and testing of the Prairie Creek diamond-bearing lamproite complex, Pike County, Arkansas, with a field guide, *in* Howard, J.M., ed., Contributions to the geology of Arkansas: Little Rock, AR, Arkansas Geological Commission Miscellaneous Publication 18D, v. IV, p. 57–73.
- Kimberley Process, 2018, The Kimberley Process: New York, NY, Kimberley Process. (Accessed August 1, 2018, via http://www.kimberleyprocess.com/.) Rapaport, 2017, U.S. jewelry sales up: Rapaport Magazine, March, p. 90.
- Scio Diamond Technology Corp., 2015, Scio Diamond doubles diamond growing capacity: Greenville, SC, Scio Diamond Technology Corp. news release, April 27. (Accessed August 15, 2017, at http://investors.sciodiamond.com/investors/news-archive/press-release-details/2015/Scio-Diamond-Doubles-Diamond-Growing-Capacity/default.aspx.)
- Sim, Shaun, 2016, The technology of lab-grown diamonds: Rapaport Magazine, April, p. 44–48.
- SNL Metals & Mining, 2016, Corporate exploration strategies 2016—Trends in exploration budgets by target: S&P Global Market Intelligence Report, December, 44 p.

#### GENERAL SOURCES OF INFORMATION

### **U.S. Geological Survey Publications**

Diamond, Industrial. Ch. in Minerals Yearbook, annual. Garnet, Industrial. Ch. in Minerals Yearbook, annual. Gem Stones. Ch. in United States Mineral Resources, Professional Paper 820, 1973.

Gemstones. Ch. in Mineral Commodity Summaries, annual. Historical Statistics for Mineral and Material Commodities in the United States. Data Series 140.

#### Other

An Overview of Production of Specific U.S. Gemstones. U.S. Bureau of Mines Special Publication 95–14, 1995. Antwerp Confidential.

Colored Stone Magazine.

De Beers Consolidated Mines Ltd. annual reports, 1998–2001. Directory of Principal U.S. Gemstone Producers in 1995. U.S. Bureau of Mines Mineral Industry Surveys, 1995.

Gem Stones. Ch. in Mineral Facts and Problems, U.S. Bureau of Mines Bulletin 675, 1985.

Gems & Gemology.

Gemstone Forecaster.

Lapidary Journal.

# TABLE 1 ESTIMATED VALUE OF U.S. GEMSTONE PRODUCTION, BY GEM $\mathsf{TYPE}^1$

### (Thousand dollars)

|                                | Natura | ıl gems | Syntheti | ic gems |
|--------------------------------|--------|---------|----------|---------|
| Gem materials                  | 2015   | 2016    | 2015     | 2016    |
| Beryl                          | 177    | 360     |          |         |
| Coral, all types               | 101    | 68      |          |         |
| Cubic zirconia                 | XX     | XX      | 12,000   | 12,000  |
| Diamond                        | 72     | 70      | 2,250    | 13,600  |
| Garnet                         | 66     | 53      | 10,000   |         |
| Gem feldspar                   | 730    | 1,730   |          |         |
| Geodes and nodules             | 51     | 69      |          |         |
| Moissanite                     | XX     | XX      | 30,800   | 29,200  |
| Opal                           | 143    | 138     |          |         |
| Quartz:                        |        |         |          |         |
| Macrocrystalline <sup>2</sup>  | 251    | 496     |          |         |
| Cryptocrystalline <sup>3</sup> | 59     | 604     |          |         |
| Sapphire and ruby              | 313    | 331     |          |         |
| Shell                          | 250    | 340     |          |         |
| Topaz                          | 3      | 13      |          |         |
| Tourmaline                     | 177    | 43      |          |         |
| Turquoise                      | 1,330  | 2,280   | 75       | 75      |
| Other                          | 4,820  | 5,140   |          |         |
| Total                          | 8,540  | 11,700  | 55,100   | 54,900  |

XX Not applicable. -- Zero.

<sup>&</sup>lt;sup>1</sup>Table includes data available through September 21, 2018. Data are rounded to no more than three significant digits; may not add to totals shown.

<sup>&</sup>lt;sup>2</sup>Macrocrystalline quartz (crystals recognizable with the naked eye) includes amethyst, aventurine, blue quartz, citrine, hawk's eye, prasiolite, prase, quartz, cat's eye, rock crystal, rose quartz, smoky quartz, and tiger's eye.

<sup>&</sup>lt;sup>3</sup>Cryptocrystalline quartz (microscopically small crystals) includes agate, carnelian, chalcedony, chrysoprase, fossilized wood, heliotrope, jasper, moss agate, onyx, and sard.

 ${\it TABLE~2}$  PRICES PER CARAT OF U.S. CUT ROUND DIAMONDS, BY SIZE AND QUALITY IN 2016

| Carat  |                    |                      | Repr                 | esentative price  | es                    |
|--------|--------------------|----------------------|----------------------|-------------------|-----------------------|
| weight | Color <sup>1</sup> | Clarity <sup>2</sup> | January <sup>3</sup> | June <sup>4</sup> | December <sup>5</sup> |
| 0.25   | G                  | VS1                  | \$1,650              | \$1,650           | \$1,650               |
| Do.    | do.                | VS2                  | 1,575                | 1,575             | 1,575                 |
| Do.    | do.                | SI1                  | 1,250                | 1,250             | 1,250                 |
| Do.    | Н                  | VS1                  | 1,600                | 1,600             | 1,600                 |
| Do.    | do.                | VS2                  | 1,500                | 1,500             | 1,500                 |
| Do.    | do.                | SI1                  | 1,200                | 1,200             | 1,200                 |
| 0.50   | G                  | VS1                  | 2,600                | 2,600             | 2,600                 |
| Do.    | do.                | VS2                  | 2,400                | 2,400             | 2,400                 |
| Do.    | do.                | SI1                  | 2,080                | 2,080             | 2,080                 |
| Do.    | Н                  | VS1                  | 2,390                | 2,390             | 2,390                 |
| Do.    | do.                | VS2                  | 2,320                | 2,320             | 2,320                 |
| Do.    | do.                | SI1                  | 1,910                | 1,910             | 1,910                 |
| 1.00   | G                  | VS1                  | 7,060                | 7,060             | 7,060                 |
| Do.    | do.                | VS2                  | 6,600                | 6,600             | 6,600                 |
| Do.    | do.                | SI1                  | 6,000                | 6,000             | 6,000                 |
| Do.    | Н                  | VS1                  | 6,450                | 6,450             | 6,450                 |
| Do.    | do.                | VS2                  | 6,000                | 6,000             | 6,000                 |
| Do.    | do.                | SI1                  | 5,425                | 5,200             | 5,200                 |
| 2.00   | G                  | VS1                  | 13,690               | 13,690            | 13,690                |
| Do.    | do.                | VS2                  | 12,250               | 12,250            | 12,250                |
| Do.    | do.                | SI1                  | 10,660               | 10,660            | 10,660                |
| Do.    | Н                  | VS1                  | 11,620               | 11,620            | 11,620                |
| Do.    | do.                | VS2                  | 10,450               | 10,450            | 10,450                |
| Do.    | do.                | SI1                  | 9,950                | 9,950             | 9,950                 |

Do., do. Ditto.

<sup>&</sup>lt;sup>1</sup>Gemological Institute of America (GIA) color grades: D—colorless; E—rare white; G, H, I—traces of color.

<sup>&</sup>lt;sup>2</sup>GIA clarity terms: IF—no blemishes; VVS1—very, very slightly included; VS1—very slightly included;

VS2—very slightly included, but not visible; SI1—slightly included.

<sup>&</sup>lt;sup>3</sup>Source: The Gem Guide, v. 35, no. 1, January/February 2016, p. 24–26.

<sup>&</sup>lt;sup>4</sup>Source: The Gem Guide, v. 35, no. 4, July/August 2016, p. 22–24.

<sup>&</sup>lt;sup>5</sup>Source: The Gem Guide, v. 35, no. 6, November/December 2016, p. 24–26.

TABLE 3
PRICES PER CARAT OF U.S. CUT COLORED GEMSTONES IN 2016

|                                        | Price range          | per carat             |
|----------------------------------------|----------------------|-----------------------|
| Gemstone                               | January <sup>1</sup> | December <sup>2</sup> |
| Amethyst                               | \$30–35              | \$30–35               |
| Aquamarine                             | 275–365              | 325-375               |
| Citrine                                | 13–22                | 13-22                 |
| Emerald                                | 3,250–4,500          | 3,250-4,500           |
| Opal, fire                             | 375-500              | 375-500               |
| Opal, white (also jelly opal)          | 120-180              | 65-80                 |
| Pearl, cultured saltwater <sup>3</sup> | 5                    | 5                     |
| Peridot                                | 150–200              | 165-200               |
| Rhodolite garnet                       | 55-80                | 55-80                 |
| Ruby                                   | 2,640-3,600          | 2,640-3,600           |
| Sapphire, blue                         | 1,200–1,900          | 1,200-1,900           |
| Tanzanite                              | 375–395              | 375–395               |
| Topaz, blue                            | 7–10                 | 7–10                  |
| Topaz, yellow                          | 175–250              | 175-250               |
| Tourmaline, green                      | 135–200              | 135-200               |
| Tourmaline, pink                       | 175–200              | 175-200               |

<sup>&</sup>lt;sup>1</sup>Source: The Gem Guide, v. 35, no. 1, January/February 2016, p. 53–54, 57, 61, 66–68, 70, 72–75, and 82. These figures are approximate wholesale purchase prices paid by retail jewelers on a per stone basis for 1 to less than 1 carat, fine-quality stones.

<sup>&</sup>lt;sup>2</sup>Source: The Gem Guide, v. 35, no. 6, November/December 2016, p. 53–54, 57, 61, 66–68, 70, 72–75, and 82. These figures are approximate wholesale purchase prices paid by retail jewelers on a per stone basis for 1 to less than 1 carat, fine-quality stones.

<sup>&</sup>lt;sup>3</sup>Prices are per 4.5–5-millimeter pearl.

TABLE 4 U.S. EXPORTS AND REEXPORTS OF DIAMOND (EXCLUSIVE OF INDUSTRIAL DIAMOND), BY COUNTRY OR LOCALITY  $^1$ 

|                       | 201                |                     | 20              |                    |
|-----------------------|--------------------|---------------------|-----------------|--------------------|
|                       | Quantity           | Value <sup>2</sup>  | Quantity        | Value <sup>2</sup> |
| Country or locality   | (carats)           | (thousands)         | (carats)        | (thousands)        |
| Exports: Aruba        | 1,050              | \$4,320             | 1,220           | ¢2.250             |
| Australia             | 30,600             | 32,900              | 19,000          | \$2,350<br>20,700  |
| Belgium               | 187,000            | 304,000             | 564,000         | 407,000            |
| Brazil                | 10,600             | 3,080               | 15,500          | 5,110              |
| Canada                | 38,600             | 70,600              | 38,300          | 66,600             |
| China                 | 1,370              | 4,900               | 1,290           | 2,770              |
| Costa Rica            | 3,530              | 304                 | 12              | 1                  |
| Dominican Republic    | 30,800             | 12,200              | 7,180           | 3,540              |
| El Salvador           | 529                | 215                 | 427             | 24                 |
| France                | 67,100             | 24,600              | 9,410           | 26,200             |
| Germany               | 9,790              | 9,760               | 1,590           | 6,350              |
| Hong Kong             | 1,660,000          | 671,000             | 1,170,000       | 597,000            |
| India                 | 672,000            | 238,000             | 669,000         | 293,000            |
| Ireland               | 16,900             | 90,300              | 7,950           | 37,200             |
| Israel                | 243,000            | 608,000             | 184,000         | 601,000            |
| Italy                 | 75,200             | 10,000              | 24,900          | 14,700             |
| Japan                 | 9,320              | 8,970               | 2,610           | 13,500             |
| Lebanon               | 1,580              | 1,230               | 1,560           | 1,620              |
| Macau                 | 838                | 4,240               | 1,710           | 8,570              |
| Malaysia              | 10,000             | 242                 | 54              | 184                |
| Mauritius             | 2,400              | 765                 | 557             | 18:                |
| Mexico<br>New Zealand | 316,000            | 71,600              | 331,000         | 71,300             |
|                       | 2,560<br>883       | 2,300<br>822        | 603<br>17,600   | 1,160<br>2,800     |
| Panama<br>Poland      |                    | 23                  | 2,290           | 154                |
| Singapore             | 6,780              | 9,960               | 5,050           | 14,100             |
| Sint Maarten          | 7,320              | 26,000              | 12,700          | 17,400             |
| Sri Lanka             | 1,540              | 301                 | 22              | 8′                 |
| Switzerland           | 12,300 r           | 97,800 <sup>r</sup> | 44,200          | 58,500             |
| Taiwan                | 10,500             | 4,800               | 5,310           | 3,110              |
| Thailand              | 146,000            | 24,000              | 148,000         | 11,300             |
| United Arab Emirates  | 391,000            | 153,000             | 408,000         | 113,000            |
| United Kingdom        | 6,670              | 41,500              | 49,700          | 19,900             |
| Vietnam               | 43,900             | 33,500              | 36,900          | 45,600             |
| Other                 | 6,160 <sup>r</sup> | 19,100 <sup>r</sup> | 6,260           | 17,800             |
| Total                 | 4,020,000          | 2,590,000           | 3,790,000       | 2,480,000          |
| Reexports:            |                    |                     |                 |                    |
| Armenia               | 17,200             | 4,890               | 27,500          | 4,860              |
| Aruba                 | 3,240              | 6,490               | 2,530           | 5,380              |
| Australia             | 2,950              | 49,300              | 7,560           | 41,900             |
| Belgium               | 635,000            | 2,590,000           | 664,000         | 2,740,000          |
| Brazil                | 2,940              | 1,050               | 1,190           | 100                |
| Canada                | 105,000 r          | 141,000             | 99,700          | 142,000            |
| China                 | 28,100             | 36,700              | 45,200          | 42,100             |
| Costa Rica            | 12,600             | 279                 | 776             | 284                |
| Dominican Republic    |                    |                     | 17,200          | 6,830              |
| Ecuador               |                    | 111<br>163,000      | 2,680           | 217,000            |
| France                | 3,550<br>3,070     | 5,470               | 3,910<br>30,800 | 2,190              |
| Germany<br>Hong Kong  | 2,470,000          | 2,310,000           | 2,300,000       | 2,190              |
| India                 | 2,760,000          | 3,510,000           | 2,640,000       | 4,510,000          |
| Israel                | 990,000            | 4,710,000           | 1,050,000       | 4,370,000          |
| Italy                 | 72,000             | 35,100              | 1,030,000       | 34,40              |
| Japan                 | 33,800             | 61,300              | 27,700          | 63,600             |
| Jordan                | 297                | 55                  | 1,640           | 742                |
| Laos                  | 7,970              | 4,810               | 8,640           | 4,780              |
| Lebanon               | 4,180              | 9,080               | 1,180           | 2,870              |
| Malaysia              | 85,300             | 1,510               | 426             | 795                |

See footnotes at end of table.

# $\label{thm:continued} \mbox{U.s. EXPORTS AND REEXPORTS OF DIAMOND (EXCLUSIVE OF INDUSTRIAL DIAMOND), BY COUNTRY OR LOCALITY^1$

|                      | 201                | .5                  | 201        | 16                 |
|----------------------|--------------------|---------------------|------------|--------------------|
|                      | Quantity           | Value <sup>2</sup>  | Quantity   | Value <sup>2</sup> |
| Country or locality  | (carats)           | (thousands)         | (carats)   | (thousands)        |
| Reexports:—Continued |                    |                     |            |                    |
| Mauritius            | 778                | 564                 | 1,650      | 930                |
| Mexico               | 3,590              | 8,050               | 10,000     | 10,700             |
| Namibia              | 12,200             | 7,820               | 20,600     | 10,400             |
| Panama               | 30,900             | 12,200              | 1,350      | 2,120              |
| Singapore            | 9,140              | 44,400              | 6,780      | 41,400             |
| Sint Maarten         | 14,800             | 41,800              | 20,600     | 41,600             |
| South Africa         | 13,100             | 141,000             | 7,740      | 94,500             |
| Sri Lanka            | 311                | 710                 | 1,930      | 659                |
| Switzerland          | 158,000            | 1,180,000           | 96,300     | 1,030,000          |
| Taiwan               | 26,100             | 6,020               | 704        | 4,800              |
| Thailand             | 172,000            | 59,300              | 130,000    | 88,000             |
| Trinidad and Tobago  | 251                | 103                 | 1,300      | 3                  |
| United Arab Emirates | 402,000            | 398,000             | 432,000    | 539,000            |
| United Kingdom       | 54,500             | 363,000             | 53,700     | 454,000            |
| Vietnam              | 3,910              | 4,840               | 7,130      | 7,530              |
| Other                | 3,460 <sup>r</sup> | 23,900 <sup>r</sup> | 13,400     | 9,230              |
| Total                | 8,140,000 r        | 15,900,000          | 7,750,000  | 17,000,000         |
| Grand total          | 12,200,000         | 18,500,000          | 11,500,000 | 19,400,000         |

<sup>&</sup>lt;sup>r</sup>Revised. -- Zero.

<sup>&</sup>lt;sup>1</sup>Table includes data available through September 21, 2018. Data are rounded to no more than three significant digits; may not add to totals shown. Export and reexport data are for Harmonized Tariff Schedule of the United States codes 7102.31.0000, 7102.39.0010, and 7102.39.0050.

<sup>&</sup>lt;sup>2</sup>Values are free alongside ship.

 ${\it TABLE~5} \\ {\it U.s.~imports~for~consumption~of~diamond,~by~kind,~weight,~and~country~or~locality}^1$ 

|                                                      | 201                |                    | 201              |                    |
|------------------------------------------------------|--------------------|--------------------|------------------|--------------------|
|                                                      | Quantity           | Value <sup>2</sup> | Quantity         | Value <sup>2</sup> |
| Kind, weight, and country or locality                | (carats)           | (thousands)        | (carats)         | (thousands)        |
| Rough or uncut, natural: <sup>3</sup>                |                    | 070.500            | 24.000           | #222 00 <i>0</i>   |
| Angola                                               | 23,400             | \$70,500           | 34,000           | \$232,000          |
| Australia Botswana                                   | 2,710<br>55,100    | 1,120<br>61,300    | 18,500<br>63,700 | 1,540<br>318,000   |
| Brazil                                               | 4,170              | 3,970              | 5,830            | 20,600             |
| Canada                                               | 105,000            | 7,380              | 112,000          | 26,400             |
| Congo (Brazzaville)                                  | 947                | 413                | 2,210            | 25,400             |
| Congo (Kinshasa)                                     | 11,900             | 456                | 1,340            | 6,390              |
| Guyana                                               | 969                | 433                | 7,510            | 1,950              |
| India                                                | 1,520              | 484                | 4,470            | 3,260              |
| Lesotho                                              | 1,760              | 27,900             | 407              | 13,400             |
| Namibia                                              | 2,810              | 5,040              | 18,300           | 23,100             |
| Russia                                               | 64,200             | 23,100             | 173,000          | 21,800             |
| South Africa                                         | 141,000            | 97,000             | 173,000          | 139,000            |
| Tanzania                                             | 1,060              | 403                | 147              | 50,200             |
| Other                                                | 1,300 <sup>r</sup> | 5,120 <sup>r</sup> | 1,080            | 2,740              |
| Total                                                | 418,000            | 305,000            | 616,000          | 860,000            |
| Cut but unset, not more than 0.5 carat: <sup>4</sup> |                    |                    |                  |                    |
| Armenia                                              | 3,400              | 2,380              | 6,850            | 3,390              |
| Australia                                            | 1,240              | 1,100              | 1,300            | 1,860              |
| Belgium                                              | 190,000            | 101,000            | 154,000          | 99,800             |
| Botswana                                             | 6,600              | 22,900             | 5,610            | 14,400             |
| Brazil                                               | 940                | 611                | 1,050            | 860                |
| Cambodia                                             | 7,030              | 6,280              | 22,200           | 17,300             |
| Canada                                               | 12,600             | 10,600             | 20,200           | 12,600             |
| China                                                | 37,100             | 44,600             | 34,500           | 29,300             |
| Dominican Republic                                   | 3,680              | 436                | 1,090            | 170                |
| France                                               | 2,370              | 803<br>981         | 533              | 1,030              |
| Germany<br>Hong Kong                                 | 3,720<br>121,000   | 35,500             | 5,110<br>164,000 | 1,640<br>28,800    |
| India Cong                                           | 5,240,000          | 1,600,000          | 5,070,000        | 1,560,000          |
| Israel                                               | 641,000            | 260,000            | 761,000          | 285,000            |
| Italy                                                | 7,290              | 2,080              | 19,600           | 4,170              |
| Japan                                                | 1,840              | 888                | 1,290            | 579                |
| Laos                                                 | 2,230              | 2,610              | 8,030            | 9,290              |
| Mauritius                                            | 15,800             | 49,100             | 16,100           | 30,400             |
| Mexico                                               | 83,400             | 20,500             | 70,600           | 15,400             |
| Namibia                                              | 4,200              | 14,100             | 2,120            | 6,060              |
| Panama                                               | 1,140              | 409                |                  | -                  |
| Singapore                                            | 2,610              | 1,600              | 4,000            | 3,600              |
| South Africa                                         | 20,500             | 90,300             | 28,100           | 40,600             |
| Spain                                                | 2,050              | 441                | 531              | 189                |
| Sri Lanka                                            | 3,830              | 3,710              | 3,480            | 3,660              |
| Switzerland                                          | 1,310              | 5,900              | 572              | 335                |
| Thailand                                             | 40,200             | 12,100             | 44,600           | 11,300             |
| United Arab Emirates                                 | 5,700              | 2,710              | 16,100           | 3,670              |
| United Kingdom                                       | 22,400             | 4,450              | 24,300           | 2,960              |
| Vietnam                                              | 58,800             | 68,700             | 49,500           | 44,500             |
| Other                                                | 1,880              | 2,610 <sup>r</sup> | 7,950            | 2,930              |
| Total                                                | 6,540,000          | 2,370,000          | 6,540,000        | 2,240,000          |
| Cut but unset, more than 0.5 carat:                  |                    | 2                  | 2 2 4 2          |                    |
| Armenia                                              | 3,870              | 2,630              | 2,210            | 1,600              |
| Australia                                            |                    | 59,300             | 3,570            | 95,800             |
| Belgium                                              | 591,000            | 3,600,000          | 479,000          | 3,180,000          |
| Botswana                                             |                    | 118,000            | 24,900           | 94,800             |
| Brazil                                               | 726<br>40.700      | 6,670              | 658              | 3,70               |
| Canada<br>China                                      | 40,700             | 114,000            | 34,000           | 129,000            |
|                                                      | 50,800             | 233,000            | 25,100           | 181,000            |
| France See footnotes at end of table.                | 1,910              | 79,300             | 1,520            | 58,200             |

See footnotes at end of table.

TABLE 5—Continued U.S. IMPORTS FOR CONSUMPTION OF DIAMOND, BY KIND, WEIGHT, AND COUNTRY OR LOCALITY  $^{\rm 1}$ 

|                                                | 201                | 5                   | 201       | 16                 |
|------------------------------------------------|--------------------|---------------------|-----------|--------------------|
|                                                | Quantity           | Value <sup>2</sup>  | Quantity  | Value <sup>2</sup> |
| Kind, weight, and country or locality          | (carats)           | (thousands)         | (carats)  | (thousands)        |
| Cut but unset, more than 0.5 carat: —Continued |                    |                     |           |                    |
| Germany                                        | 2,440              | 5,730               | 1,480     | 3,580              |
| Hong Kong                                      | 62,900             | 262,000             | 29,100    | 149,000            |
| India                                          | 2,200,000          | 6,180,000           | 2,430,000 | 7,510,000          |
| Israel                                         | 1,530,000          | 8,410,000           | 1,350,000 | 7,150,000          |
| Italy                                          | 1,480              | 11,700              | 815       | 14,100             |
| Japan                                          | 2,000              | 5,820               | 3,430     | 6,760              |
| Lebanon                                        | 1,280              | 6,900               | 57        | 401                |
| Mauritius                                      | 9,140              | 53,900              | 7,450     | 28,200             |
| Mexico                                         | 6,880              | 2,480               | 735       | 769                |
| Namibia                                        | 12,000             | 47,000              | 10,300    | 31,700             |
| Russia                                         | 10,100             | 90,500              | 14,600    | 61,500             |
| Singapore                                      | 11,400             | 24,700              | 11,000    | 20,300             |
| South Africa                                   | 37,000             | 583,000             | 27,500    | 692,000            |
| Spain                                          | 1,270              | 2,540               | 696       | 2,500              |
| Switzerland                                    | 8,100              | 403,000             | 9,050     | 409,000            |
| Thailand                                       | 24,200             | 34,300              | 8,730     | 39,100             |
| United Arab Emirates                           | 8,880              | 56,700              | 7,720     | 62,400             |
| United Kingdom                                 | 4,260              | 145,000             | 6,730     | 78,700             |
| Vietnam                                        | 531                | 2,790               | 2,410     | 7,270              |
| Other                                          | 2,960 <sup>r</sup> | 15,300 <sup>r</sup> | 8,250     | 93,300             |
| Total                                          | 4,650,000          | 20,600,000          | 4,500,000 | 20,100,000         |

<sup>&</sup>lt;sup>r</sup>Revised. -- Zero.

<sup>1</sup>Table includes data available through September 21, 2018. Data are rounded to no more than three significant digits; may not add to totals shown.

<sup>&</sup>lt;sup>2</sup>Customs value.

 $<sup>^3 \</sup>mbox{Harmonized Tariff Schedule}$  of the United States (HTS) code 7102.31.0000.

<sup>&</sup>lt;sup>4</sup>HTS code 7102.39.0010.

<sup>&</sup>lt;sup>5</sup>HTS code 7102.39.0050.

# $\label{thm:consumption} TABLE~6\\ U.S.~IMPORTS~FOR~CONSUMPTION~OF~GEMSTONES,~OTHER~THAN~DIAMOND,~BY~KIND~AND~COUNTRY~OR~LOCALITY^1$

|                               | 201                         | 5                  | 201             | 16                 |
|-------------------------------|-----------------------------|--------------------|-----------------|--------------------|
|                               | Quantity                    | Value <sup>2</sup> | Quantity        | Value <sup>2</sup> |
| Kind and country or locality  | (carats)                    | (thousands)        | (carats)        | (thousands)        |
| Emerald: <sup>3</sup>         |                             | 02.400             | 1.000           | <b># 4 520</b>     |
| Belgium                       | 825                         | \$3,490            | 1,220           | \$4,530            |
| Brazil                        | 234,000                     | 16,800             | 113,000         | 17,000             |
| Canada China                  | 2,210<br>9,570              | 198<br>906         | 1,140<br>22,100 | 414<br>464         |
| Colombia                      | 393,000                     | 248,000            | 285,000         | 233,000            |
| France                        | 2,180                       | 16,900             | 4,480           | 33,800             |
| Germany                       | 4,290                       | 1,710              | 14,000          | 1,300              |
| Hong Kong                     | 92,300                      | 30,200             | 217,000         | 29,700             |
| India                         | 1,910,000                   | 137,000            | 1,090,000       | 134,000            |
| Israel                        | 188,000                     | 56,300             | 180,000         | 60,000             |
| Italy                         | 815                         | 3,710              | 5,790           | 13,000             |
| Japan                         | 1,180                       | 31                 | 1,070           | 117                |
| Lebanon                       | 59                          | 9                  | 1,450           | 235                |
| Malaysia                      | 5,170                       | 198                | 6,500           | 27                 |
| Mozambique                    | 661                         | 347                | 4,320           | 1,150              |
| South Africa                  | 9,670                       | 1,790              | 8,830           | 1,790              |
| Sri Lanka                     | 2,410                       | 1,150              | 7,500           | 3,270              |
| Switzerland                   | 5,030                       | 20,500             | 8,550           | 30,100             |
| Thailand                      | 406,000                     | 15,300             | 525,000         | 17,500             |
| United Arab Emirates          | 13,100                      | 13,200             | 12,200          | 1,650              |
| United Kingdom                | 794                         | 4,490              | 2,170           | 7,510              |
| Zambia                        | 361,000                     | 43,800             | 291,000         | 35,700             |
| Zimbabwe                      |                             |                    | 3,400           | 300                |
| Other                         | 6,930 <sup>r</sup>          | 1,110 <sup>r</sup> | 1,590           | 3,180              |
| Total                         | 3,650,000                   | 617,000            | 2,810,000       | 630,000            |
| Ruby: <sup>4</sup>            |                             |                    |                 |                    |
| Afghanistan                   | 3,180                       | 250                | 1,280           | 1,730              |
| Belgium                       | 89                          | 1,450              | 348             | 1,320              |
| Brazil                        | 6,930                       | 24                 | 1,960           | 14                 |
| Burma                         |                             |                    | 1,750           | 6,630              |
| Canada                        | 113                         | 45                 | 1,790           | 61                 |
| China                         | 7,070                       | 91                 | 8,950           | 118                |
| France                        | 857                         | 3,470              | 1,010           | 2,990              |
| Germany                       | 14,900                      | 1,640              | 6,260           | 357                |
| Hong Kong                     | 16,800                      | 11,400             | 357,000         | 11,000             |
| India                         | 1,310,000                   | 14,800             | 1,570,000       | 21,000             |
| Israel                        | 3,660                       | 5,180              | 1,190           | 4,070              |
| Italy                         | 317                         | 1,520              | 1,770           | 1,690              |
| Kenya                         | 7,840                       | 53                 | 7,860           | 81                 |
| Madagascar                    | 174,000                     | 6,510              | 127,000         | 6,470              |
| Malaysia                      | 1,230                       | 15                 | 11,500          | 12                 |
| Mozambique                    | 70,100                      | 25,400             | 95,000          | 36,700             |
| South Africa                  | 13,000                      | 4,450              | 11,300          | 1,450              |
| Sri Lanka                     | 2,200                       | 1,290              | 2,680           | 1,810              |
| Switzerland                   | 678                         | 1,310              | 6,320           | 4,320              |
| Tanzania                      | 30,800                      | 290                | 954             | 5,510              |
| Thailand                      | 2,000,000                   | 63,900             | 1,980,000       | 70,300             |
| United Kingdom Vietnam        | 2,020                       | 1,670              | 200             | 897<br>152         |
| Zambia                        | 1,400                       | 1,490<br>284       | 85<br>737       | 152<br>362         |
| Other                         | 1,150<br>3,610 <sup>r</sup> | 2,500 <sup>r</sup> | 628             | 1,330              |
| Total                         | 3,680,000                   | 149,000            | 4,200,000       | 1,330              |
|                               | 3,080,000                   | 149,000            | 4,200,000       | 100,000            |
| Sapphire:5                    | 4.500                       | 501                | 1.570           | 107                |
| Australia                     | 4,520                       | 591                | 1,570<br>716    | 186                |
| Belgium Brazil                | 2,610<br>35,100             | 3,090<br>63        | 16,600          | 5,050<br>463       |
| Burma                         | 64                          | 1,120              | 20,400          | 6,730              |
| See footnotes at and of table | 04                          | 1,120              | 20,400          | 0,730              |

See footnotes at end of table.

# TABLE 6—Continued U.S. IMPORTS FOR CONSUMPTION OF GEMSTONES, OTHER THAN DIAMOND, BY KIND AND COUNTRY OR LOCALITY<sup>1</sup>

|                                                                    | 201                      | 5                    | 201         | 16                 |
|--------------------------------------------------------------------|--------------------------|----------------------|-------------|--------------------|
|                                                                    | Quantity                 | Value <sup>2</sup>   | Quantity    | Value <sup>2</sup> |
| Kind and country or locality                                       | (carats)                 | (thousands)          | (carats)    | (thousands)        |
| Sapphire:5—Continued                                               |                          |                      |             |                    |
| Canada                                                             | 881                      | 370                  | 1,520       | 224                |
| China                                                              | 16,800                   | 968                  | 120,000     | 1,400              |
| France                                                             | 3,100                    | 19,900               | 5,080       | 37,300             |
| Germany                                                            | 39,100                   | 3,140                | 42,400      | 1,440              |
| Hong Kong                                                          | 251,000                  | 77,800               | 173,000     | 42,400             |
| India                                                              | 1,880,000                | 49,800               | 1,550,000   | 38,300             |
| Israel                                                             | 15,500                   | 7,880                | 13,500      | 8,640              |
| Italy                                                              | 3,930                    | 5,370                | 5,870       | 8,370              |
| Japan                                                              | 1,380                    | 209                  | 2,060       | 160                |
| Kenya                                                              | 3                        | 2                    | 3,690       | 102                |
| Madagascar                                                         | 288,000                  | 6,730                | 220,000     | 6,080              |
| Mozambique                                                         | 7,600                    | 1,260                | 11,800      | 663                |
| Pakistan                                                           | 316                      | 37                   | 4,100       | 988                |
| South Africa                                                       | 7,940                    | 281                  | 10,400      | 1,820              |
| Sri Lanka                                                          | 361,000                  | 89,800               | 1,080,000   | 96,300             |
| Switzerland                                                        | 16,000                   | 78,900               | 7,920       | 52,900             |
| Thailand                                                           | 3,690,000                | 104,000              | 4,060,000   | 111,000            |
| Turkey                                                             | 4,410                    | 76                   | 928         | 95                 |
| United Arab Emirates                                               | 3,880                    | 275                  | 270         | 705                |
| United Kingdom                                                     | 3,470                    | 11,000               | 995         | 11,900             |
| Zambia                                                             | 1,720                    | 126                  | 220         | 88                 |
| Other                                                              | 1,620 <sup>r</sup>       | 1,080 <sup>r</sup>   | 2,450       | 1,470              |
| Total                                                              | 6,640,000                | 464,000              | 7,360,000   | 435,000            |
| Other:                                                             | _                        |                      |             |                    |
| Rough, uncut, all countries and (or) localities <sup>6</sup>       | 137,000,000 <sup>r</sup> | 1,350 <sup>r</sup>   | 224,000,000 | 2,180              |
| Cut, set and unset, all countries and (or) localities <sup>7</sup> | NA                       | 472,000 <sup>r</sup> | NA          | 516,000            |

<sup>&</sup>lt;sup>r</sup>Revised. NA Not available. -- Zero.

<sup>&</sup>lt;sup>1</sup>Table includes data available through September 21, 2018. Data are rounded to no more than three significant digits; may not add to totals shown.

<sup>&</sup>lt;sup>2</sup>Customs value.

<sup>&</sup>lt;sup>3</sup>Harmonized Tariff Schedule of the United States (HTS) code 7103.91.0030.

<sup>&</sup>lt;sup>4</sup>HTS code 7103.91.0010.

<sup>&</sup>lt;sup>5</sup>HTS code 7103.91.0020.

<sup>&</sup>lt;sup>6</sup>HTS code 7103.10.4080.

<sup>&</sup>lt;sup>7</sup>HTS code 7103.99.1080.

# TABLE 7 ${\it VALUE~OF~U.S.~IMPORTS~OF~SYNTHETIC} \\ {\it AND~IMITATION~GEMSTONES,~BY~COUNTRY~OR~LOCALITY}^{1,2}$

# (Thousand dollars)

| Country or locality                    | 2015             | 2016   |
|----------------------------------------|------------------|--------|
| Synthetic, cut but unset: <sup>3</sup> |                  |        |
| Austria                                | 1,410            | 1,370  |
| Belgium                                | 281              | 1,780  |
| Brazil                                 | 131 <sup>r</sup> | 12     |
| China                                  | 5,190            | 15,600 |
| Czechia                                | 115              | 51     |
| France                                 | 423              | 403    |
| Germany                                | 9,080            | 8,180  |
| Hong Kong                              | 281              | 2,850  |
| India                                  | 6,650            | 24,900 |
| Israel                                 | 64               | 950    |
| Mexico                                 | 63               | 240    |
| Netherlands                            | 106              | 330    |
| Russia                                 | 892              | 11,800 |
| Singapore                              | 1,580            | 489    |
| South Africa                           | 243              |        |
| Sri Lanka                              | 308              | 431    |
| Switzerland                            | 146              | 68     |
| Taiwan                                 | 54               | 41     |
| Thailand                               | 882              | 735    |
| United Arab Emirates                   | 4                | 423    |
| Other                                  | 475 <sup>r</sup> | 452    |
| Total                                  | 28,400 r         | 71,200 |
| Gemstone simulants: <sup>4</sup>       |                  |        |
| Brazil                                 | 1                | 25     |
| Canada                                 | 83               | 26     |
| China                                  | 20,000           | 18,500 |
| Germany                                | 33               | 4      |
| Hong Kong                              | 90               | 34     |
| India                                  | 44               | 7      |
| Italy                                  | 40               | 1      |
| Japan                                  |                  | 47     |
| Korea, Republic of                     | 232              | 199    |
| Netherlands                            |                  | 19     |
| Pakistan                               | 97               | 106    |
| Spain                                  | 30               | 2      |
| Taiwan                                 | 1,290            | 1,040  |
| Thailand                               | 194              | 122    |
| United Kingdom                         | 57               | 10     |
| Other                                  | 18               | 80     |
| Total                                  | 22,200           | 20,200 |
| Pavised Zero                           | 22,200           | 20,200 |

Revised. -- Zero.

<sup>&</sup>lt;sup>1</sup>Table includes data available through September 21, 2018. Data are rounded to no more than three significant digits; may not add to totals shown.

<sup>&</sup>lt;sup>2</sup>Customs value.

<sup>&</sup>lt;sup>3</sup>Harmonized Tariff Schedule of the United States (HTS) code 7104.90.1000.

<sup>&</sup>lt;sup>4</sup>Does not include pearls; HTS code 3926.90.4000.

# ${\bf TABLE~8}$ U.S. IMPORTS FOR CONSUMPTION OF GEMSTONES $^1$

## (Thousand carats and thousand dollars)

|                                                    | 201:      | 5                    | 2010      | 5                  |
|----------------------------------------------------|-----------|----------------------|-----------|--------------------|
| Stones                                             | Quantity  | Value <sup>2</sup>   | Quantity  | Value <sup>2</sup> |
| Coral and similar materials, unworked <sup>3</sup> | 8,190     | 16,500               | 7,480     | 15,100             |
| Diamonds:                                          | <u></u>   |                      |           |                    |
| Cut but unset <sup>4</sup>                         | 11,200    | 22,900,000           | 11,000    | 22,300,000         |
| Rough or uncut <sup>5</sup>                        | 418       | 305,000              | 616       | 860,000            |
| Emeralds, cut but unset <sup>6</sup>               | 3,650     | 617,000              | 2,810     | 630,000            |
| Pearls:                                            | <u></u>   |                      |           |                    |
| Cultured <sup>7</sup>                              | NA        | 22,100               | NA        | 23,500             |
| Simulant <sup>8</sup>                              | NA        | 43,200               | NA        | 39,500             |
| Natural                                            | NA        | 23,700               | NA        | 41,400             |
| Rubies, cut but unset <sup>9</sup>                 | 3,680     | 149,000              | 4,200     | 180,000            |
| Sapphires, cut but unset <sup>10</sup>             | 6,640     | 464,000              | 7,360     | 435,000            |
| Other precious and semiprecious stones:            |           |                      |           |                    |
| Rough, uncut <sup>11</sup>                         | 2,520,000 | 38,600               | 1,820,000 | 49,300             |
| Cut, set and unset <sup>12</sup>                   | NA        | 472,000 <sup>r</sup> | NA        | 516,000            |
| Other <sup>13</sup>                                | NA        | 11,300 <sup>r</sup>  | NA        | 15,600             |
| Synthetic:                                         | <u></u>   |                      |           |                    |
| Cut but unset <sup>14</sup>                        | 50,400    | 28,400 °             | 41,000    | 71,200             |
| Other <sup>15</sup>                                | NA        | 3,270 <sup>r</sup>   | NA        | 2,960              |
| Gemstone simulants <sup>16</sup>                   | NA        | 22,200               | NA        | 20,200             |
| Total                                              | 2,600,000 | 25,100,000           | 1,890,000 | 25,200,000         |

<sup>&</sup>lt;sup>r</sup>Revised. NA Not available.

<sup>&</sup>lt;sup>1</sup>Table includes data available through September 21, 2018. Data are rounded to no more than three significant digits; may not add to totals shown.

<sup>&</sup>lt;sup>2</sup>Customs value.

<sup>&</sup>lt;sup>3</sup>Harmonized Tariff Schedule of the United States (HTS) code 0508.00.0000.

<sup>&</sup>lt;sup>4</sup>HTS codes 7102.39.0010 and 7102.39.0050.

<sup>&</sup>lt;sup>5</sup>HTS code 7102.31.0000.

<sup>&</sup>lt;sup>6</sup>HTS code 7103.91.0030.

<sup>&</sup>lt;sup>7</sup>HTS code 7101.21.0000.

 $<sup>^8</sup> HTS\ codes\ 7018.10.1000\ and\ 7018.10.2000.$ 

<sup>&</sup>lt;sup>9</sup>HTS code 7103.91.0010.

<sup>&</sup>lt;sup>10</sup>HTS code 7103.91.0020.

 $<sup>^{11} \</sup>rm HTS \ codes \ 7103.10.2020 \ and \ 7103.10.2080.$ 

<sup>&</sup>lt;sup>12</sup>HTS code 7103.99.1080.

<sup>&</sup>lt;sup>13</sup>HTS code 7103.99.5080.

<sup>&</sup>lt;sup>14</sup>HTS code 7104.90.1000.

<sup>&</sup>lt;sup>15</sup>HTS code 7104.90.5000.

 $<sup>^{16}\</sup>mbox{Does}$  not include simulant pearls; HTS code 3926.90.4000.

 ${\tt TABLE\,9} \\ {\tt GUIDE\,TO\,SELECTED\,GEMSTONES\,AND\,GEM\,MATERIALS\,USED\,IN\,JEWELRY} \\$ 

| ;                           | :                                                      |                                                                                                        | Practical          | c                 | ,       | Specific  | •               | Refractive | May be                                                                             | Kecognition                                                       |
|-----------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------|-------------------|---------|-----------|-----------------|------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Name                        | Composition                                            | Color                                                                                                  | size               | Cost              | Mohs    | gravity   | Refraction      | ındex      | confused with                                                                      | characteristics                                                   |
| Amber                       | Hydrocarbon                                            | Yellow, red, green, blue                                                                               | Any                | Low to<br>medium  | 2.5-2.0 | 1.1–1.0   | Single          | 1.54       | Synthetic or pressed plastics, kauri gum                                           | Fossil resin, color, low density, soft, insects.                  |
| Apatite                     | Chlorocalcium<br>phosphate                             | Colorless, pink, yellow,<br>green, blue, violet                                                        | Small              | Low               | 5.0     | 3.23–3.16 | Double          | 1.65–1.63  | Amblygonite, andalusite, brazilianite, precious beryl, titanite, topaz, tourmaline | Crystal habit, color,<br>hardness, appearance.                    |
| Azurite                     | Copper carbonate<br>hydroxide                          | Azure, dark blue, pale<br>blue                                                                         | Small to<br>medium | do.               | 4.0–3.5 | 3.9–3.7   | do.             | 1.85–1.72  | Dumortierite, hauynite,<br>lapis lazuli, lazulite,<br>sodalite                     | Color, softness, crystal habits, associated minerals.             |
| Benitoite                   | Barium<br>titanium silicate                            | Blue, purple, pink,<br>colorless                                                                       | do.                | High              | 6.5–6.0 | 3.68–3.64 | do.             | 1.80–1.76  | Sapphire, tanzanite,<br>blue diamond, blue<br>tourmaline, cordierite               | Strong blue in ultraviolet light.                                 |
| Beryl:<br>Aquamarine        | Beryllium<br>aluminum<br>silicate                      | Blue-green to light blue                                                                               | Any                | Medium to<br>high | 8.0–7.5 | 2.80–2.63 | do.             | 1.58       | Synthetic spinel, blue topaz                                                       | Double refraction,<br>refractive index.                           |
| Bixbite                     | do.                                                    | Red                                                                                                    | Small              | Very high         | 8.0–7.5 | 2.80–2.63 | do.             | 1.58       | Pressed plastics, tourmaline                                                       | Refractive index.                                                 |
| Emerald, natural            | do.                                                    | Green                                                                                                  | Medium             | do.               | 7.5     | 2.80–2.63 | do.             | 1.58       | Fused emerald, glass, tourmaline, peridot, green garnet doublets                   | Emerald filter, dichroism, refractive index.                      |
| Emerald, synthetic          | do.                                                    | do.                                                                                                    | Small              | High              | 8.0–7.5 | 2.80–2.63 | do.             | 1.58       | Genuine emerald                                                                    | Lack of flaws, brilliant<br>fluorescence in<br>ultraviolet light. |
| Golden (heliodor)           | do.                                                    | Yellow to golden                                                                                       | Any                | Low to medium     | 8.0–7.5 | 2.80-2.63 | do.             | 1.58       | Citrine, topaz, glass, doublets                                                    | Weak-colored.                                                     |
| Goshenite                   | do.                                                    | Colorless                                                                                              | do.                | Low               | 8.0–7.5 | 2.80-2.63 | do.             | 1.58       | Quartz, glass, white sapphire, white topaz                                         | Refractive index.                                                 |
| Morganite                   | do.                                                    | Pink to rose                                                                                           | do.                | do.               | 8.0–7.5 | 2.80–2.63 | do.             | 1.58       | Kunzite, tourmaline,<br>pink sapphire                                              | Do.                                                               |
| Marble                      | Calcium carbonate                                      | White, pink, red, blue, green, brown                                                                   | do.                | do.               | 3.0     | 2.72      | Double (strong) | 1.66–1.49  | Silicates, banded agate, alabaster gypsum                                          | Translucent.                                                      |
| Mexican onyx                | do.                                                    | do.                                                                                                    | do.                | do.               | 3.0     | 2.72      | do.             | 1.60       | do.                                                                                | Banded, translucent.                                              |
|                             | Hydrated sodium<br>calcium hydroxi-<br>fluoro-silicate | Lilac, violet, white                                                                                   | Small to<br>medium | do.               | 6.0–5.0 | 2.78–2.54 | XX              | 1.56–1.55  | Purple marble                                                                      | Color, locality.                                                  |
| Chrysoberyl:<br>Alexandrite | Beryllium aluminate                                    | Green by direct sunlight or<br>incandescent light, red by<br>indirect sunlight or<br>fluorescent light | do.                | High              | 8.5     | 3.84–3.50 | Double          | 1.75       | Synthetic                                                                          | Strong dichroism, color<br>varies from red to<br>green, hardness. |
| Cat's eye                   | do.                                                    | Greenish to brownish                                                                                   | Small to<br>large  | do.               | 8.5     | 3.84–3.50 | do.             | 1.75       | Synthetic, shell                                                                   | Density, translucence, chatoyance.                                |
| Chrysolite                  | do.                                                    | Yellow, green, brown                                                                                   | Medium             | Medium            | 8.5     | 3.84-3.50 | do.             | 1.75       | Tourmaline, peridot                                                                | Refractive index, silky.                                          |

TABLE 9—Continued GUIDE TO SELECTED GEMSTONES AND GEM MATERIALS USED IN JEWELRY

| Name   Composition   Single Cook   Single   Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Single Cook   Singl   |                             |                              |                                                                       | Practical            |             |          | Specific    |                    | Refractive | May be                                                                    | Recognition                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|-----------------------------------------------------------------------|----------------------|-------------|----------|-------------|--------------------|------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|
| Colores   Creen, blue   Any   Low   40-2.0   C 4-2.0   XX   List-1.46   Abulchide, dyed   Abulchide,   | Name                        | Composition                  | Color                                                                 | size <sup>1</sup>    | $Cost^2$    | Mohs     | gravity     | Refraction         | index      | confused with                                                             | characteristics                                                    |
| Purple, green rot, white, black, Branching, do.   40-3.5   2.7-2.6   Double   1.66-1.49   False coral   Dumple, green   Dump   | Chrysocolla                 | Hydrated copper silicate     | Green, blue                                                           | Any                  | Low         | 4.0–2.0  | 2.4–2.0     | XX                 | 1.57–1.46  | Azurite, dyed chalcedony, malachite, turquoise, variscite                 | Lack of crystals, color, fracture, low density, softness.          |
| Blue   Rose to deep purplish red   Small   Very high   9.0   4.10-3.95   do.   1.78   Synthetics, including   In   | Coral                       | Calcium carbonate            | Orange, red, white, black, purple, green                              | Branching,<br>medium | do.         | 4.0–3.5  | 2.7–2.6     | Double             | 1.66–1.49  | False coral                                                               | Dull translucent.                                                  |
| Shube   Blue   Medium   High   9.0   4.10-3.95   do.   1.78   Synthetics, glass and   Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Corundum:<br>Ruby           | Aluminum oxide               | Rose to deep purplish red                                             | Small                | Very high   | 0.6      | 4.10–3.95   | do.                | 1.78       | Synthetics, including spinel, garnet                                      | Inclusions, fluorescence.                                          |
| Yellow, pink, colorless, Medium to Medium to Medium   9.0   4.10-3.95   do.   1.78   Synthetics, glass and a range, green, violet, blue,   do.   High to low   9.0   4.10-3.95   do.   1.78   Shar quartz, synthetic   Star duartz, synthetic   Star   | Sapphire, blue              | do.                          | Blue                                                                  | Medium               | High        | 0.6      | 4.10–3.95   | do.                | 1.78       | do.                                                                       | Inclusions, double refraction, dichroism.                          |
| Red, pink, violet, blue, do. High to low 9.0 4.10-3.95 do. 1.78 Star quartz, synthetic 5 gray stars orange, violet, blue, caratis ium and colorless, pink, blue, caratis ium and colorless, pink, blue, blue, blue, blue, caratis ium and colorless, pink, blue, caratis ium and colorless, pink, blue, deciding to caratis ium and colorless, pink, blue, deciding to caratis ium and colorless, pink, blue, deciding to caratis ium and colorless, pink, blue and caratis ium and colorless, pink, blue and caratis ium and caratis ium and colorless, pink, blue and caratis ium and caratis ium and caratis ium and caratis ium and colorless, pink, blue and do. do. 6.5-6.0 2.56 XX 1.55 Iade, turquoise Caratis ium and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sapphire, fancy             | do.                          | Yellow, pink, colorless,<br>orange, green, violet                     | Medium to<br>large   | Medium      | 0.6      | 4.10–3.95   | do.                | 1.78       | Synthetics, glass and doublets, morganite                                 | Inclusions, double refraction, refractive index.                   |
| Yellow, pink, blue, green, orange, violed, tred         Colorless, pink, blue, green, caratis         Low         9.0         4.10-3.95         do.         1.78         Synthetic spinel, glass         Colorless, pink, blue, green, colorless, pink, blue, spink, blue, spink, blue, spink, blue, spink, blue         Myhite, blue-white, spink, blue, spink, blue         Any         Very high         10.0         3.525-3.516         do.         2.42         Zircon, titania, cubic moissanite         Impoissanite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sapphire or ruby, stars     | do.                          | Red, pink, violet, blue, gray                                         | do.                  | High to low | 0.6      | 4.10–3.95   | do.                | 1.78       | Star quartz, synthetic stars                                              | Shows asterism, color side view.                                   |
| ium and colorless, pink, blue, moxides         Small downer, yellow         Any very high         8.5–8.25         5.8 Single         2.17 Diamond, zircon, titania, Hossanite         Impossanite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sapphire or ruby, synthetic | do.                          | Yellow, pink, blue, green, orange, violet, red                        | Up to 20 carats      | Low         | 0.6      | 4.10–3.95   | do.                | 1.78       | Synthetic spinel, glass                                                   | Curved striae, bubble inclusions.                                  |
| white, blue-white, very blue, very high red, pilow, brown, green, yellow, brown, green, ted, pilow, bronze sheller to Gray with blue and do. do. 6.5-6.0 2.56 XX 1.54 1.52 Jade, turquoise to Gray with blue and do. do. 6.5-6.0 2.77 XX 1.54-1.52 Glass, chalcedony, opal yellow with white, blue, or bronze schiller to Grange, red brown, and with white, blue, or bronze schiller to Grange, red brown, and the gittery schiller to Grange, red brown, black, yellow, do. Low to high 7.5-6.5 4.30-3.15 Single 1.98-1.79 Synthetics, spinel, green, red, orange green, red, o                        | Subic zirconia              | Zirconium and yttrium oxides | Colorless, pink, blue,<br>lavender, yellow                            | Small                | do.         | 8.5-8.25 | 5.8         | Single             | 2.17       | Diamond, zircon, titania,<br>moissanite                                   | Hardness, density, lack of flaws and inclusions, refractive index. |
| aluminum Green-blue Large Low 6.5–6.0 2.56 XX 1.52 Jade, turquoise  Gray with blue and do. do. do. 6.5–6.0 2.56 XX 1.54 1.56 do.  Schiller)  Colorless, white gray, yellow, or bronze schiller  Orange, red brown, black, yellow, activate Brown, black, yellow, activate Black, black-gray, brown-red  Low to high 7.5–6.5 5.28–5.12 XX 3.22–2.94 Davidite, cassiterite, pyrolusite, wolframite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Diamond                     | Carbon                       | White, blue-white, yellow, brown, green, red, pink, blue              | Any                  | Very high   | 10.0     | 3.525–3.516 | do.                | 2.42       | Zircon, titania, cubic<br>zirconia, moissanite                            | High index, dispersion, hardness, luster.                          |
| Gray with blue and do. do. do. 6.5–6.0 2.56 XX 1.56 do. bronze sheen color play (schiller)  Colorless, white, gray, do. do. do. 6.5–6.0 2.77 XX 1.54–1.52 Glass, chalcedony, opal P. Dange, red brown, and the colorless with gold or medium red glittery schiller  Ex silicate Brown, black, yellow, do. Low to high 7.5–6.5 4.30–3.15 Single 1.98–1.79 Synthetics, spinel, strained glass, black, blackegray, Medium to Low 6.5–5.5 5.28–5.12 XX 3.22–2.94 Davidite, cassiterite, reprunite, provon-red large proving the color of the colo | eldspar:<br>Amazonite       | Alkali aluminum<br>silicate  | Green-blue                                                            | Large                | Low         | 6.5–6.0  | 2.56        | XX                 | 1.52       | Jade, turquoise                                                           | Cleavage, sheen, vitreous to pearly. opaque, grid.                 |
| Colorless, white, gray, do. do. do. 6.5–6.0 2.77 XX 1.54–1.52 Glass, chalcedony, opal yellow with white, blue, or bronze schiller  Orange, red brown, and glittery schiller  ex silicate Brown, black, yellow, do. Low to high 7.5–6.5 4.30–3.15 Single 1.98–1.79 Synthetics, spinel, glass green, red, orange green, red, orange hrown-red large brown-red large green, red, provided brown-red large green, red, provided green, red, provi | Labradorite                 | do.                          | Gray with blue and bronze sheen color play (schiller)                 | do.                  | do.         | 6.5-6.0  | 2.56        | XX                 | 1.56       | do.                                                                       | Do.                                                                |
| Orange, red brown, Small to do. 6.5–6.0 2.77 XX 1.55–1.53 Aventurine, glass colorless with gold or medium red glittery schiller ex silicate Brown, black, yellow, do. Low to high 7.5–6.5 4.30–3.15 Single 1.98–1.79 Synthetics, spinel, green, red, orange strenge Black, black-gray, Medium to Low 6.5–5.5 5.28–5.12 XX 3.22–2.94 Davidite, cassiterite, magnetite, neptunite, prown-red large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Moonstone                   | do.                          | Colorless, white, gray, yellow with white, blue, or bronze schiller   | do.                  | do.         | 6.5–6.0  | 2.77        | X                  | 1.54–1.52  | Glass, chalcedony, opal                                                   | Pale sheen, opalescent.                                            |
| ex silicate Brown, black, yellow, do. Low to high 7.5–6.5 4.30–3.15 Single 1.98–1.79 Synthetics, spinel, glass strained glass strained glass stide Black, black-gray, Medium to Low 6.5–5.5 5.28–5.12 XX 3.22–2.94 Davidite, cassiterite, magnetite, neptunite, provn-red large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sunstone                    | do.                          | Orange, red brown,<br>colorless with gold or<br>red glittery schiller | Small to<br>medium   | do.         | 6.5–6.0  | 2.77        | X                  | 1.55-1.53  | Aventurine, glass                                                         | Red glittery schiller.                                             |
| ide Black, black-gray, Medium to Low 6.5–5.5 5.28–5.12 XX 3.22–2.94 Davidite, cassiterite, brown-red large large pyrolusite, magnetite, neptunite, pyrolusite, wolframite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | jarnet                      | Complex silicate             | Brown, black, yellow,<br>green, red, orange                           | do.                  | Low to high | 7.5–6.5  | 4.30–3.15   | Single<br>strained | 1.98–1.79  | Synthetics, spinel, glass                                                 | Single refraction,<br>anomalous strain.                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lematite                    | Iron oxide                   | Black, black-gray,<br>brown-red                                       | Medium to<br>large   | Low         | 6.5–5.5  | 5.28–5.12   | XX                 | 3.22–2.94  | Davidite, cassiterite,<br>magnetite, neptunite,<br>pyrolusite, wolframite | Crystal habit, streak,<br>hardness.                                |

29.18 [ADVANCE RELEASE]

U.S. GEOLOGICAL SURVEY MINERALS YEARBOOK—2016

TABLE 9—Continued GUIDE TO SELECTED GEMSTONES AND GEM MATERIALS USED IN JEWELRY

| Jade:<br>Jadeite | Composition                                | Color                                                                   | Practical<br>size <sup>1</sup> | Cost <sup>2</sup>   | Mohs    | Specific<br>gravity | Refraction             | Refractive index | May be<br>confused with                                                        | Recognition<br>characteristics                                                      |
|------------------|--------------------------------------------|-------------------------------------------------------------------------|--------------------------------|---------------------|---------|---------------------|------------------------|------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                  | Complex silicate                           | Green, yellow, black,<br>white, mauve                                   | Large                          | Low to very<br>high | 7.0–6.5 | 3.5-3.3             | Crypto-<br>crystalline | 1.68–1.65        | Nephrite, chalcedony, onyx, bowenite, vesuvianite, grossularite                | Luster, spectrum,<br>translucent to opaque.                                         |
| Nephrite         | Complex hydrous silicate                   | do.                                                                     | do.                            | do.                 | 6.5-6.0 | 3.10–2.96           | do.                    | 1.63–1.61        | Jadeite, chalcedony,<br>onyx, bowenite,<br>vesuvianite,<br>grossularite        | Do.                                                                                 |
| Jet (gagate)     | Lignite                                    | Deep black, dark brown                                                  | do.                            | Low                 | 4.0-2.5 | 1.35–1.19           | XX                     | 1.68–1.64        | Anthracite, asphalt, cannel coal, onyx, schorl, glass, rubber                  | Luster, color.                                                                      |
| Lapis lazuli     | Sodium calcium<br>aluminum silicate        | Dark azure-blue to<br>bright indigo blue or<br>even a pale sky blue     | do.                            | do.                 | 6.0–5.0 | 3.0–2.50            | XX                     | 1.50             | Azurite, dumortierite,<br>dyed howlite, lazulite,<br>sodalite, glass           | Color, crystal habit, associated minerals, luster, localities.                      |
| Malachite        | Hydrated copper<br>carbonate               | Light to black-green<br>banded                                          | do.                            | do.                 | 4.0–3.5 | 4.10–3.25           | XX                     | 1.91–1.66        | Brochantite, chrysoprase, opaque green gemstones                               | Color banding, softness, associated minerals.                                       |
| Moissanite       | Silicon carbide                            | Colorless and pale shades of green, blue, yellow                        | Small                          | Low to<br>medium    | 9.25    | 3.21                | Double                 | 2.69–2.65        | Diamond, zircon, titania, cubic zirconia                                       | Hardness, dispersion, lack of flaws and inclusions, refractive index.               |
| Obsidian         | Amorphous,<br>variable (usually<br>felsic) | Black, gray, brown,<br>dark green, white,<br>transparent                | Large                          | Low                 | 5.5–5.0 | 2.60–2.35           | XX                     | 1.55–1.45        | Aegirine-augite,<br>gadolinite, gagate,<br>hematite, pyrolusite,<br>wolframite | Color, conchoidal<br>fracture, flow bubbles,<br>softness, lack of<br>crystal faces. |
| Opal             | Hydrated silica                            | Reddish orange, colors flash in white gray, black, red, yellow          | do.                            | Low to high         | 6.5–5.5 | 2.3–1.9             | Single                 | 1.45             | Glass, synthetics,<br>triplets, chalcedony                                     | Color play (opalescence).                                                           |
| Peridot          | Iron magnesium<br>silicate                 | Yellow, green                                                           | Any                            | Medium              | 7.0–6.5 | 3.37–3.27           | Double (strong)        | 1.69–1.65        | Tourmaline, chrysoberyl                                                        | Strong double refraction, low dichroism.                                            |
| Quartz:<br>Agate | Silicon dioxide                            | Any                                                                     | Large                          | Low                 | 7.0     | 2.64–2.58           | XX                     | XX               | Glass, plastic, Mexican<br>onyx                                                | Cryptocrystalline,<br>irregularly banded,<br>dendritic inclusions.                  |
| Amethyst         | do.                                        | Purple                                                                  | do.                            | Medium              | 7.0     | 2.66–2.65           | Double                 | 1.55             | Glass, plastic, fluorite                                                       | Macrocrystalline, color, refractive index, transparent, hardness.                   |
| Aventurine       | do.                                        | Green, red-brown,<br>gold-brown, with metallic<br>iridescent reflection | do.                            | Low                 | 7.0     | 2.69–2.64           | do.                    | 1.55–1.54        | Iridescent analcime,<br>aventurine feldspar,<br>emerald, aventurine<br>glass   | Macrocrystalline, color,<br>metallic iridescent flake<br>reflections, hardness.     |
| Caimgorm do.     | do.                                        | Smoky orange, yellow                                                    | do.                            | do.                 | 7.0     | 2.66–2.65           | do.                    | 1.55             | do.                                                                            | Macrocrystalline, color, refractive index, transparent, hardness.                   |

TABLE 9—Continued GUIDE TO SELECTED GEMSTONES AND GEM MATERIALS USED IN JEWELRY

| ;                              | :                                  |                                                                               | Practical          | ·                 | :       | Specific  |            | Refractive | May be                                                                                                       | Recognition                                                            |
|--------------------------------|------------------------------------|-------------------------------------------------------------------------------|--------------------|-------------------|---------|-----------|------------|------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Name                           | Composition                        | Color                                                                         | size               | Cost <sup>2</sup> | Mohs    | gravity   | Refraction | index      | confused with                                                                                                | characteristics                                                        |
| Quartz:—Continued<br>Carnelian | d<br>Silicon dioxide               | Flesh red to brown red                                                        | Large              | Low               | 7.0–6.5 | 2.64–2.58 | Double     | 1.54–1.53  | Jasper                                                                                                       | Cryptocrystalline, color,                                              |
| -                              | -                                  |                                                                               | -                  | -                 |         | 03.0      | _          |            | <br>E                                                                                                        | hardness.                                                              |
| Chalcedony                     | do.                                | Bluish, white, gray                                                           | do.                | do.               | 0.0-0.7 | 7.04-2.38 | do.        | 1.54-1.55  | Lanzanite                                                                                                    | Do.                                                                    |
| Chrysoprase                    | op<br>O                            | Green, apple-green                                                            | qo.                | O                 | 7.0–6.5 | 2.64–2.58 | op         | 1.54–1.53  | Chrome chalcedony, jade, prase opal, prehnite, smithsonite, variscite, artificially colored green chalcedony | Š                                                                      |
| Citrine                        | do.                                | Yellow                                                                        | do.                | do.               | 7.0     | 2.66–2.65 | do.        | 1.55       | do.                                                                                                          | Macrocrystalline, color, refractive index, transparent, hardness.      |
| Jasper                         | do.                                | Any, striped, spotted, sometimes uniform                                      | do.                | do.               | 7.0     | 2.66–2.58 | X          | X          | do.                                                                                                          | Cryptocrystalline, opaque, vitreous luster, hardness.                  |
| Onyx                           | do.                                | Many colors                                                                   | do.                | do.               | 7.0     | 2.64–2.58 | XX         | XX         | do.                                                                                                          | Cryptocrystalline,<br>uniformly banded,<br>hardness.                   |
| Petrified wood                 | do.                                | Brown, gray, red, yellow                                                      | do.                | do.               | 7.0–6.5 | 2.91–2.58 | Double     | 1.54       | Agate, jasper                                                                                                | Color, hardness, wood grain.                                           |
| Rock crystal                   | do.                                | Colorless                                                                     | do.                | do.               | 7.0     | 2.66–2.65 | do.        | 1.55       | Topaz, colorless sapphire                                                                                    | Do.                                                                    |
| Rose                           | do.                                | Pink, rose red                                                                | do.                | do.               | 7.0     | 2.66–2.65 | do.        | 1.55       | do.                                                                                                          | Macrocrystalline, color, refractive index, transparent, hardness.      |
| Tiger's eye                    | do.                                | Golden yellow, brown,<br>red, blue-black                                      | do.                | do.               | 7.0–6.5 | 2.64–2.58 | XX         | 1.54-1.53  | XX                                                                                                           | Macrocrystalline, color, hardness, chatoyancy.                         |
| Rhodochrosite                  | Manganese carbonate                | Rose-red to yellowish, striped                                                | do.                | Low               | 4.0     | 3.7–3.45  | Double     | 1.82–1.6   | Fire opal, rhodonite,<br>tugtupite, tourmaline                                                               | Color, crystal habit, reaction to acid, perfect rhombohedral cleavage. |
| Rhodonite                      | Manganese iron<br>calcium silicate | Dark red, flesh red, with<br>dendritic inclusions of<br>black manganese oxide | do.                | do.               | 6.5–5.5 | 3.74–3.40 | do.        | 1.75–1.72  | Rhodochrosite, thulite, hessonite, spinel, pyroxmangite, spessartine, tourmaline                             | Color, black inclusions,<br>lack of reaction to acid,<br>hardness.     |
| Shell:<br>Mother-of-pearl      | Calcium carbonate                  | White, cream, green,<br>blue-green, with<br>iridescent play of color          | Small              | do.               | 3.5     | 2.85–2.6  | X          | X          | Glass and plastic<br>imitation                                                                               | Luster, iridescent play of color.                                      |
| Pearl                          | do.                                | White, cream to black, sometimes with hint of pink, green, purple             | do.                | Low to high       | 4.5–2.5 | 2.85–2.6  | ×          | X          | Cultured and glass or plastic imitation                                                                      | Luster, iridescence,<br>x-ray of internal structure.                   |
| Spinel, natural                | Magnesium<br>aluminum oxide        | Any                                                                           | Small to<br>medium | Medium            | 8.0     | 3.7–3.5   | Single     | 1.72       | Synthetic, garnet                                                                                            | Refractive index, single refraction, inclusions.                       |
| See footnotes at end of table. | d of table.                        |                                                                               |                    |                   |         |           |            |            |                                                                                                              |                                                                        |

TABLE 9—Continued GUIDE TO SELECTED GEMSTONES AND GEM MATERIALS USED IN JEWELRY

|                   |                    |                           | Practical                      |          |         | Specific     |            | Refractive | May be                     | Recognition               |
|-------------------|--------------------|---------------------------|--------------------------------|----------|---------|--------------|------------|------------|----------------------------|---------------------------|
| Name              | Composition        | Color                     | size                           | $Cost^2$ | Mohs    | gravity      | Refraction | index      | confused with              | characteristics           |
| Spinel, synthetic | Magnesium          | Any                       | $\mathrm{Up}\ \mathrm{to}\ 40$ | Low      | 8.0     | 3.7–3.5      | Double     | 1.73       | Spinel, corundum, beryl,   | Weak double refraction,   |
|                   | aluminum oxide     |                           | carats                         |          |         |              |            |            | topaz, alexandrite         | curved striae, bubbles.   |
| Spodumene:        |                    |                           |                                |          |         |              |            |            |                            |                           |
| Hiddenite         | Lithium aluminum   | Yellow to green           | Medium                         | Medium   | 7.0-6.5 | 3.20-3.13    | do.        | 1.66       | 1.66 Synthetic spinel      | Refractive index, color,  |
|                   | silicate           |                           |                                |          |         |              |            |            |                            | pleochroism.              |
| Kunzite           | do.                | Pink to lilac             | do.                            | do.      | 7.0–6.5 | 3.20–3.13    | do.        | 1.66       | 1.66 Amethyst, morganite   | Do.                       |
| Tanzanite         | Complex silicate   | Blue to lavender          | Small                          | High     | 7.0–6.0 | 3.30         | do.        | 1.69       | 1.69 Sapphire, synthetics  | Strong trichroism, color. |
| Topaz             | do.                | White, blue, green, pink, | Medium                         | Low to   | 8.0     | 3.6–3.4      | do.        | 1.62       | 1.62 Beryl, quartz         | Color, density, hardness, |
|                   |                    | yellow, gold              |                                | medium   |         |              |            |            |                            | refractive index, perfect |
|                   |                    |                           |                                |          |         |              |            |            |                            | in basal cleavage.        |
| Tourmaline        | do.                | Any, including mixed      | do.                            | do.      | 7.5–7.0 | 3.20-2.98    | do.        | 1.63       | 1.63 Peridot, beryl, gamet | Double refraction, color, |
|                   |                    |                           |                                |          |         |              |            |            | corundum, glass            | refractive index.         |
| Turquoise         | Copper aluminum    | Blue to green with black, | Large                          | Low      | 6.0     | 2.83-2.60    | do.        | 1.63       | Chrysocolla, dyed          | Difficult if matrix not   |
|                   | phosphate          | brown-red inclusions      |                                |          |         |              |            |            | howlite, dumortierite,     | present, matrix usually   |
|                   |                    |                           |                                |          |         |              |            |            | glass, plastics, variscite | limonitic.                |
| Unakite           | Granitic rock,     | Olive green, pink,        | do.                            | do.      | 7.0-6.0 | 3.20-2.60 XX | XX         | XX         | XX                         | Olive green, pink, gray-  |
|                   | feldspar, epidote, | blue-gray                 |                                |          |         |              |            |            |                            | blue colors.              |

 ${\bf TABLE~10} \\ {\bf SYNTHETIC~GEMSTONE~PRODUCTION~METHODS}^1 \\$ 

| Gemstone       | Production method  | Company or producer         | Date of first production |
|----------------|--------------------|-----------------------------|--------------------------|
| Alexandrite    | Flux               | Creative Crystals Inc.      | 1970s.                   |
| Do.            | Melt pulling       | J.O. Crystal Co., Inc.      | 1990s.                   |
| Do.            | do.                | Kyocera Corp.               | 1980s.                   |
| Do.            | Zone melt          | Seiko Corp.                 | Do.                      |
| Cubic zirconia | Skull melt         | Various producers           | 1970s.                   |
| Diamond        | HPHT <sup>2</sup>  | General Electric Co.        | 1950s.                   |
| Do.            | CVD <sup>3</sup>   | Apollo Diamond Inc.         | 2000s.                   |
| Do.            | MPCVD <sup>4</sup> | CIW & UA <sup>5</sup>       | 2000s.                   |
| Emerald        | Flux               | Chatham Created Gems, Inc.  | 1930s.                   |
| Do.            | do.                | Gilson                      | 1960s.                   |
| Do.            | do.                | Kyocera Corp.               | 1970s.                   |
| Do.            | do.                | Lennix                      | 1980s.                   |
| Do.            | do.                | Russia                      | Do.                      |
| Do.            | do.                | Seiko Corp.                 | Do.                      |
| Do.            | Hydrothermal       | Biron Corp.                 | Do.                      |
| Do.            | do.                | Lechleitner                 | 1960s.                   |
| Do.            | do.                | Regency                     | 1980s.                   |
| Do.            | do.                | Russia                      | Do.                      |
| Moissanite     | Sublimation        | Cree Research               | 1980s.                   |
| Ruby           | Flux               | Chatham Created Gems, Inc.  | 1950s.                   |
| Do.            | do.                | Douras                      | 1990s.                   |
| Do.            | do.                | J.O. Crystal Co., Inc.      | 1980s.                   |
| Do.            | do.                | Kashan Created Ruby         | 1960s.                   |
| Do.            | Melt pulling       | Kyocera Corp.               | 1970s.                   |
| Do.            | Verneuil           | Various producers           | 1900s.                   |
| Do.            | Zone melt          | Seiko Corp.                 | 1980s.                   |
| Sapphire       | Flux               | Chatham Created Gems, Inc.  | 1970s.                   |
| Do.            | Melt pulling       | Kyocera Corp.               | 1980s.                   |
| Do.            | Verneuil           | Various producers           | 1900s.                   |
| Do.            | Zone melt          | Seiko Corp.                 | 1980s.                   |
| Star ruby      | Melt pulling       | Kyocera Corp.               | Do.                      |
| Do.            | do.                | Nakazumi Earth Crystals Co. | Do.                      |
| Do.            | Verneuil           | Linde Air Products Co.      | 1940s.                   |
| Star sapphire  | do.                | do.                         | Do.                      |
| D 1 D          |                    |                             |                          |

Do., do. Ditto.

<sup>&</sup>lt;sup>1</sup>Gemstones that are also synthesized, but for which the production methods are proprietary, include gems such as garnet, opal, and turquoise. Gemstone amethyst, citrine, and other quartz minerals are produced by the hydrothermal method.

<sup>&</sup>lt;sup>2</sup>High-pressure, high-temperature (HPHT).

<sup>&</sup>lt;sup>3</sup>Chemical vapor deposition (CVD).

<sup>&</sup>lt;sup>4</sup>Microwave plasma chemical vapor deposition (MPCVD).

<sup>&</sup>lt;sup>5</sup>The Carnegie Institution of Washington Geophysical Laboratory and the University of Alabama.

 ${\it TABLE~11}\\ {\it NATURAL~DIAMOND:~WORLD~PRODUCTION,~BY~TYPE~AND~COUNTRY~OR~LOCALITY}^1$ 

#### (Thousand carats)

| Type and country or locality <sup>2</sup> | 2012                | 2013                 | 2014                 | 2015                 | 2016    |
|-------------------------------------------|---------------------|----------------------|----------------------|----------------------|---------|
| Gemstones:                                |                     |                      |                      |                      |         |
| Angola <sup>e, 3</sup>                    | 7,500               | 7,740                | 7,910                | 8,120                | 8,120   |
| Australia <sup>e, 4</sup>                 | 184                 | 235                  | 186                  | 271                  | 279     |
| Botswana <sup>e, 5</sup>                  | 14,400              | 16,200               | 17,300               | 14,500               | 14,400  |
| Brazil, gem, unspecified <sup>6</sup>     | 46 <sup>r</sup>     | 49                   | 57                   | 32                   | 184     |
| Cameroon, gem, unspecified <sup>7</sup>   | 1                   | 3                    | 4                    | 2                    |         |
| Canada, gem, unspecified                  | 10,451              | 10,600               | 12,012               | 11,677               | 13,036  |
| Central African Republic <sup>e, 8</sup>  | 293                 | 65 <sup>9</sup>      | 9                    | 9                    | 9 9     |
| China, gem, unspecified                   | 2                   | 1                    |                      |                      | (10)    |
| Congo (Brazzaville), gem, unspecified     | 52                  | 56                   | 53                   | 40                   | 12      |
| Congo (Kinshasa) <sup>e, 11</sup>         | 4,310 <sup>r</sup>  | 3,140                | 3,130                | 3,200                | 4,640   |
| Côte d'Ivoire, gem, unspecified           | 12                  | 12                   | 1                    | 15                   | 20      |
| Ghana, gem, unspecified                   | 233                 | 169                  | 242                  | 174                  | 142     |
| Guinea, gemstones <sup>e, 8</sup>         | 213                 | 162                  | 131                  | 134                  | 90      |
| Guyana, gem, unspecified                  | 44                  | 60                   | 100                  | 118                  | 140     |
| India <sup>e, 13</sup>                    | 7                   | 10                   | 10                   | 9                    | 9       |
| Lesotho, gem, unspecified                 | 479                 | 414                  | 346                  | 304                  | 342     |
| Liberia <sup>e, 14</sup>                  | 25                  | 32                   | 39                   | 41                   | 63      |
| Namibia, gem, unspecified                 | 1,629               | 1,689                | 1,918                | 2,053                | 1,718   |
| Russia <sup>e, 15</sup>                   | 19,600              | 21,200               | 21,500               | 23,500               | 22,600  |
| Sierra Leone <sup>e, 8</sup>              | 433                 | 487                  | 496                  | 400                  | 439     |
| South Africa <sup>e, 8</sup>              | 5,660               | 6,520                | 5,950                | 5,780                | 6,650   |
| Tanzania <sup>e, 16</sup>                 | 108                 | 153                  | 215                  | 184                  | 205     |
| Togo, gem, unspecified                    | (10)                | (10)                 | (10)                 | (10)                 | (10)    |
| Zimbabwe <sup>e, 17</sup>                 | 1,210               | 1,040                | 477                  | 349                  | 210     |
| Total <sup>e</sup>                        | 66,800              | 70,100               | 72,000               | 70,900               | 73,200  |
| Industrial: <sup>e</sup>                  |                     |                      |                      |                      |         |
| Angola <sup>3</sup>                       | 833                 | 860                  | 879                  | 902                  | 902     |
| Australia <sup>4</sup>                    | 9,000               | 11,500               | 9,100                | 13,300               | 13,700  |
| Botswana <sup>5</sup>                     | 6,170               | 6,960                | 7,400                | 6,230                | 6,150   |
| Central African Republic <sup>8</sup>     | 73                  | 16 9                 | 9                    | 9                    | 2 5     |
| Congo (Kinshasa) <sup>11</sup>            | 17,200              | 12,500               | 12,500               | 12,800               | 18,600  |
| Guinea <sup>8</sup>                       | 53                  | 40                   | 33                   | 33                   | 23      |
| India <sup>13</sup>                       | 20                  | 27                   | 27                   | 24                   | 24      |
| Liberia <sup>14</sup>                     | 17                  | 21                   | 26                   | 27                   | 42      |
| Russia <sup>15</sup>                      | 15,400              | 16,700               | 16,900               | 18,400               | 17,700  |
| Sierra Leone <sup>8</sup>                 | 108                 | 122                  | 124                  | 100                  | 110     |
| South Africa <sup>8</sup>                 | 1,420               | 1,630                | 1,490                | 1,440                | 1,660   |
| Tanzania <sup>16</sup>                    | 19                  | 27                   | 38                   | 33                   | 37      |
| Zimbabwe <sup>17</sup>                    | 10,900              | 9,370                | 4,290                | 3,140                | 2,000   |
| Total                                     | 61,200 <sup>r</sup> | 59,800               | 52,800               | 56,500               | 60,800  |
| Grand total                               | 128,000 r           | 130,000 <sup>r</sup> | 125,000 <sup>r</sup> | 127,000 <sup>r</sup> | 134,000 |

<sup>&</sup>lt;sup>e</sup>Estimated. <sup>r</sup>Revised. -- Zero.

<sup>&</sup>lt;sup>1</sup>Table includes data available through November 22, 2017. All data are reported unless otherwise noted. Totals, U.S. data, and estimated data are rounded to no more than three significant digits; may not add to totals shown. Estimated gem and industrial diamond quantities are calculated from reported country or locality totals using percentages noted.

<sup>&</sup>lt;sup>2</sup>In addition to the countries and (or) localities listed, Nigeria produced natural diamond, but information was inadequate to make reliable estimates of output levels.

<sup>&</sup>lt;sup>3</sup>About 90% gem quality and 10% industrial quality.

<sup>&</sup>lt;sup>4</sup>About 2% gem quality and 98% industrial quality.

<sup>&</sup>lt;sup>5</sup>About 70% gem and near-gem quality and 30% industrial quality.

<sup>&</sup>lt;sup>6</sup>Private sector and artisanal mining. Includes near-gem and cheap-gem qualities.

<sup>&</sup>lt;sup>7</sup>From artisanal mining.

<sup>&</sup>lt;sup>8</sup>About 80% gem quality and 20% industrial quality.

<sup>&</sup>lt;sup>9</sup>From May 2013–15, the Central African Republic was under a temporary suspension from the Kimberley Process Certification Scheme and was not trading in rough diamond.

<sup>&</sup>lt;sup>10</sup>Less than ½ unit.

<sup>&</sup>lt;sup>11</sup>About 20% gem quality and 80% industrial quality; the majority of production was from artisanal mining.

## TABLE 11—Continued NATURAL DIAMOND: WORLD PRODUCTION, BY TYPE AND COUNTRY OR LOCALITY<sup>1</sup>

### (Thousand carats)

<sup>12</sup>From 2011–13, Côte d'Ivoire was under United Nations sanctions and was not trading in rough diamond.

Source: Kimberley Process Certification Scheme.

<sup>&</sup>lt;sup>13</sup>About 27% gem quality and 73% industrial quality. <sup>14</sup>About 60% gem quality and 40% industrial quality. <sup>15</sup>About 56% gem quality and 44% industrial quality. <sup>16</sup>About 85% gem quality and 15% industrial quality. <sup>17</sup>About 10% gem quality and 90% industrial quality.