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PREFACE.

Ix the Preface to the last edition of this Treatise, the classification of
Minerals then adopted was announced as only a temporary expedient. The
system of Mous, valuable in its day, had subserved its end; and in throw-
ing off its shackles for the more consistent principles flowing from recent
views in Chemistry, the many difficulties in the way of perfecting a new
classification led the author to an arrangement which should “serve the
convenience of the student without pretending to strict science.”

A classification on chemieal principles was however proposed in the latter
part of the volume, in which the Berzelian method was coupled with crys-
tallography, in a manner calculated to display the relations of species in com-
position as well as form, and prominently * exhibit the various cases of
isomorphism and pleomorphism among Minerals.” The progress of Science
has afforded the means of giving greater precision and simplicity to this
arrangement, until now it seems entitled to become the authorized method of
a System of Mineralogy. Whether regarded from a physical or chemical
point of view, the groupings appear in general to be a faithful exhibition of
the true affinities of the species.

The mind uneducated in Science may revolt at seeing a metallic mineral,
as galena, side by side with one of unmetallic lustre, as blende; and some
systems, in accordance with this prejudice, place these species in separate
orders. Like the jeweller, without as good reason, the same works have the
diamond and sapphire in a common group. But it is one of the sublime
lessons taught in the very portals of Chemistry, that nature rests no
grand distinctions on lustre, hardness, or color, which are mere externals,
and this truth should be ackuowledged by the Mineralogist rather than
defied. Others, while recognizing the close relations of the carbonates of lime,’
iron, zine and manganese, (calcite, spathic iron, smithsonite and diallogite,)
or of the silieates of lime, iron, manganese, (wollastonite, augite, rhodonite,)
are somewhat startled by finding silicate of zine, or silicate of copper, among
the silicates of the earths or of other oxyds. But the distinction of “useful”
and “useless,” or “ores” and “stones,” although bearing on *economy,”
is not Science.

The advantages which the arrangement of the last edition afforded those
interested in mining and metallurgy, is secured in the present volumes by an
index to the useful ores, in which their distinctive characters and their rela-
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tive importance in the Arts are mentioned, and references are given to the
pages where the full descriptions are to be found.

During the four years since the appearance of the last edition, the Science
of Mineralogy has increased in species from 625 to 660 ; and this notwith-
standing the bankruptey of some 45 of the number. The important work
of RammersBera on Chemical Mineralogy, has been continued in a fifth
Supplement, issued in 1853. A similar review of the Progress of the Seci-
ence by Dr. Gusrav Aporru Kenncorr, conducted with like thoroughness,
though with less criticism, has appeared in Vienna, and already two large
volumes have been issued, one reviewing the Science for the years 1844 to
1849, the other, for 1850 and 1851. During this period also, Professor
Gusrav Rose has published his Krystallo-chemische Mineral-System (1853) ;
Professor Vox KogrLrL, a work on Mineralogical Nomenclature (1853), and
a new edition of his excellent Tables for the Determination of Minerals,
(1853); Dr. Franz Leyporr and Professor Aporr MacuarscHEK, of Vienna,
their elements of Mineralogy based on the system of Mohs (1853); Dr.
Kewneorr of Vienna, “Das Mohs’sche Mineralsystem” (1853), and also a
portfolio of plates of figures for the construction of Models of crystals
(1854); Professor Quenstepr of Tubingen, the first part of a Treatise on
Mineralogy (1854); Dr. C. F. NaAuMANN, a revised edition of his invaluable
Elements of Crystallography (1854); Dr. Frieperica Prarr of Erlangen,
Elements of the Mathematical Relations of Crystals (1853) ; F. H. Scrro-
pEr of Clausthal, Dr. RammeLsseRG of Berlin, and Jos. Prcirka of Prague,
smaller Manuals on the same subject, (1852, 1853); Dr. J. ZiMmMeRMANN of
Stuttgart, a small “Tashenbuch der Mineralogic” (1852); Nicorat voN
Koxrscmarov, the able Crystallographer of St. Petersburg, the first numbers
of his “ Mineralogie Russlands,” in quarto, (1858, 1854); H. J. Brooxz
and W. H. MiLLER, a new and original Treatise under the title of Phillips’s
Mineralogy (1852); C. F. Prarrxer, an enlarged edition of his extended
Treatise on the Blowpipe (1858): besides the great work of Dr. Gusrav
Biscror, on Chemical and Physical Geology, begun in 1846, now number-
ing 2950 pages, (the last issue in 1853), and yet wanting another part to be
complete ; also G. H. Orro Voreer’s Essays on the Development of Minerals,
(Studien zur Entwicklungsgeschichte der Mineralien,) as the basis of Sci-
entific Geology and a rational Mineral Chemistry, (Ziirich, 1854); and von
WarrersaaUsEN's Treatise on the Volcanic Rocks of Sicily and Ieeland.
Moreover, various valuable papers have been issued in Scientific Journals and
Transactions abroad, by HamiNeer, RAMMELSBERG, BREITHAUPT, SOHEERER,
voN KosrrL, Rose, Bunser, HerMany, von Rara, HAUSMANN, SANDBERGER,
WonLER, Bagr, Kenncorr, Scuasus, KoxscmArov, Scaccr1, MENEGHINT,
Deresse, Damouk, DEVILLE, DescrozeAux, SpnarMont, CHAPMAN, MALLET,
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Scourr, Perey, and other able investigators, In this country have appeared
Fosrer & Warrsey’s Report on the Geology and Mineralogy of the Lake
Superior Region, (1851 and 1853); and J. D. Wairsey’s Mineral Wealth
of the United States (1854). Moreover, Dr. J. LawrzNcs Smira and G. J.
Brusn, have labored with important results in American Mineralogy, clear-
ing away many doubtful species; and other researches have been pub-
lished by T. 8. Hunr, F. A. Genxrm, J. C. Boorn, J. D. Warrnzy, C.
U. Sueparp, J. W. Marrer, W. P. Buaxe, M. H. Boyz and T. H. Garrerr.

Of all these Publications, Biscmor’s “ Lehrbuch” stands first in importance.
Mineralogy was well nigh a lifeless Science, having only powers of increase
by accretion, like the objects of which it treats,—the addition of a new Min-
eral now and then being the great event of interest in its progress. Biscn-
or, by his elaborate researches and profound views, has given it a new im-
pulse. He makes every analysis of a Mineral an important element in the
study of Mineral history, showing the mnecessity of their multiplication, and
well exposing the leanness of Chemical formulas when given. as a substitute
for analyses. The associations and collocations of Minerals, their changes
from exposure to atmospheric and other agencies, and even the infinitesimal
ingredients in their constitution, are all made to bear on the question of the
origin and progress of Mineral and Rock Formations. A Mineral species is
shown to have a history of its own,—its perfect state, its liabilities to altera-
tion and decay, its successive changes, and again its renovation or its meta-
morphosis into a new species. These views taken in their wide extent, con-
stitute the proper basis of the Science of Geology, and should have their full
exposition in a work on that Science. But the elements of the subject are
with propriety indicated in a Mineralogical Treatise. While dwelling with
deserved emphasis on the researches of Biscror, we should not forget that
others have labored in the same department, prominent among whom, are
Hamineer, Voreer, BrErrHAUPT, BruM, Bunsex and DeLEssE.

The work next in importance, more especially in its bearing on the erys-
tallization of Minerals, is the “ Elementary Introduction to Mineralogy,” by
Brooxe & MmLer. It stands predminent for its original measurements, and
its thorough revision of the angles of Crystals, and will remain a permanent
source of information on these points.

In the preparation of the present edition, the author takes pleasure in
making special acknowledgments to the work of Biscmor, for facts and prin-
ciples relating to the Chemistry of the alteration of Minerals; to RammeLs-
BERG’s Supplement to his Chemical Mineralogy, a work whose earlier parts
contributed largely to the preceding edition of this Treatise; to Kenngorr’s and
Koxscmarov's publications ; and to the critical observations in the * Miner-
alsystem” of G. RosE. Frequent use has also been wmade of the work of
Brooke & MiviEr, in the erystallography of the species, from which the
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angles and planes of crystals have often been cited. The various Scientific
Periodicals of Russia, Germany, Italy, France and Britain, some of them
down to June last, have been searched for their facts, and every effort has
been made to post the work up to the day of publication.

American Mineralogy owes much to the caveful revision it has received at
the hands of Messrs. Smitn & Brusm} and the author would express
his special personal obligations to each of these Chemists. From Dr. F. A.
GexrtH, of Philadelphia, he has derived generous aid both in suggestions
and results of researches. Mr. T. S. Hunt has kindly contributed several
new analyses throwing much light on the minerals of Canada ; and valua-
ble observations and analyses have been regeived from J. D. WarrNey and
Professor Boorn. Many and various have been the favors, in the way of new
facts, opinions and recent discoveries, whichthe author owes to Mr. Louis
Smmany of Paris. He is also largely indebted to Roserr P. GrEa, Jr., of
Manchester, England, for information respecting the Mineralogy of Great
Britain, liberally furnished from a work by him and W. G. Lerrsom, now
in the press.

The author would also express his gratitude to Messrs. T. 8. Huxr, C. M.
Wraeartey, B. Smumax Jr, L. Wiwprr, T. F. S8gar, W. T. Vaux, L.
SraprMuLLER, and G. J. Brusm, for the privilege of figuring Crystals of
American Species in their possession. Similar favors were received from
the lamented J. E. Trscuemacuer of Boston, who ever rejoiced to devote
himself and his cabinet to the progress of the Science, and continued his
communications with the autlior, until the day before his death in Novem-
ber last.

In the preparation of this edition, the subject of Crystallography has
been revised and simplified. A system of notation for the figures of Crys-
tals, both brief and simple, has been adopted ; and many new and original
figures have been introduced. The homeeomorphous relations of mineral
species have been worked out with considerable care, in order to arrive at
their true fundamental forms, and trace the bearing of the subject on their
composition and classification. The Table of atomic weights has been cor-
rected according to the most recent results, and the percentages of the for-
mulas have been recalculated to correspond with it. The subject of pseu-
domorphs is treated at some length, and along with the deseriptions of the
species, a paragraph is devoted to the altered forms which each presents.
These changes, together with the remodeling of the classification, and the
large additions throughout, render the Treatise more properly a new work,
than a revised edition.

New Haven, Sept. 1, 1854.
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INTRODUCTION.

Tar productions of our globe naturally distribute themselves
into three grand divisions, the Animal, the Vegetable, and the
Mineral or Inorganic; and our knowledge of the various kinds of
objects in these departments constitutes the natural sciences,
Zoology, Botany, and Mineralogy.

The first two divisions include all beings possessed of vitality :
beings which increase by an assimilation of nutritive substances
taken internally ; which arrive at maturity by a series of successive
developments; whose parts are mutually dependent, and cannot
be separated without destroying the perfection of the individual
which, after a certain period, lose the capability of continuing
the nsual functions of life, and consequently die. The powers of
vitality being no longer present to counteract decomposition,
death is soon followed by a complete destruction of the original
living being.

The third division, on the contrary, contains those natural
objects that are not possessed of life ; objects which increase by
accretion merely, or an external addition of particles unaltered by
any powers of assimilation in the object; which are equally per-
fect in the embryo state or at the earliest commencement of their
formation, and in the enlarged individual; whose individuality
is not destroyed by a separation of parts; whose formation is
originally the result of chemical attraction, and, consequently,
they are not, from their nature, necessarily liable to decomposition.

There is thus a strong line of demarkation in nature between

(2]
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those bodies which live, grow, and die, and those which exist only
by virtue of chemical and cohesive forces.

The whole range of inorganic substances, whether made by art
or existing in the earth’s crust, fall into the last division, for they
are produced by the same laws, and by like modes of aggregation.
They constitute the Inorganic Kingdom. Minerals, as the term
is used, are those species of this vast kingdom, that occur ready-
made in the earth’s crust. They exist by no different forces from
the compound that proceeds from the laboratory; for it matters
not whether sulphuric acid and lime come together in the work-
shop of art or nature; whether the hand of man bring the mate-
rials into juxtaposition, a running brook, a mineral spring, or a
voleanic fumarole : the result in both cases is gypsum, identical in
chemical, physical, and ecrystallographic characters. In many
cases art has not yet found out the methods of imitating nature,
and some of the requisites, as indefinite time, unlimited mass, weak
and prolonged electric forces, and peculiar juxtaposition of ele-
ments and compounds, are not readily commanded by the chemist.
Still the forces are the same in kind, and in this respect the inor-
ganic kingdom is single and undivided. The Science of Miner-
alogy hence treats of only a small part of the third kingdom of
nature. It includes here and there a species from the system—
that is, those species that happen to have been formed by out-
door processes. The limits of the department are not based on
any grand points of difference between these and other inorganic
compounds ; they are assumed, in order to present together a col-
lection of facts, which the student conveniently considers in one
connection—facts relating to the natural productions of our globe.

It is important, at the outset, that the distinctions here laid
down Dbe fully appreciated ; for very partial views of nature are
received, when minerals are supposed to constitute a complete
system in themselves. The explorer of some contracted territory
might as well claim the species he finds to constitute exclusively a
kingdom, as one who takes a wider portion or the whole of the
earth’s surface.

The scope of the word mineral is conventional. It is convenient
to include under it, all snorganic natural objects which are proper
chemical compounds, whether soZed, liguid, or gaseous; and this
convenience is a sufficient ground for the course. Moreover the
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physical conditions of solidity, liquidity, gaseity, are not even
specific distinetions in the wide inorganic kingdom, and hence
afford no reasonable or necessary limit to the mineral department.

Mineralogy is closely related to the Science of Geology. The
former considers minerals as independent bodies ; the latter, in
their dependent relations, constituting soils and various rocks. It
is the object of Mineralogy to describe the individual gualities of
the several mineral species, while Geology treats of them only as
associated in the structure of the earth.

To an intermediate department, Chemical Geology, belongs the
discussion of the origin and formation of minerals, both as simple
gpecies and as aggregated in rock masses.

MINERALOGY:
SUBDIVISIONS OF THE SUBJECT ADOPTED IN THE FOLLOWING TREATISE.

The aggregation of inorganic matter depends on a power
called crystallization, or crystallogenic attraction, by the action of
which minerals receive a regular structure and take on certain
forms called erystals. This power is universal, like vitality in the
animal and vegetable kingdoms, and hence an inorganic species
has as much its characteristic form as a plant or animal. Under
the head of CrysrArrorocy, or, the Science of the Structure of
Minerals, this subject occupies Part I. of the following treatise.
Crystallology includes two sections; 1. CRYSTALLOGRAPHY, or,
deseriptions of the crystalline forms of minerals; 2. Crysrar-
LOGENY, or, the origin of the forms and structure of crystals.

The properties of minerals come next under consideration :—

First, those depending on the transmission and reflection of
Light and Heat, on Electricity, Magnetism, Gravity, Cohesion,
and also their relations to the senses of fZaste and smell, or their
Taste and Odor. These, the Physical Properties of Minerals,
constitute the subject of Part 1L

Next follow :—

Part IIL. On the Chemical Characters and Relations of Minerals.

Part IV. On Tawonomy, or Classification.
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Part V. Determinative Mineralogy, or Tables for the determina-
tion of Species.

Part VL. Full descriptions of the species, under the head of
Descriptive Mineralogy.

In treating of the properties of minerals, a work on Mineralogy
is necessarily brief. A full discussion of the relations of crystals
to light, heat, and electricity, would lead us out of our proper
science into Physics; for it is by means of crystals that many of
the fundamental laws of light, heat, and electricity, are exhibited.
These subjects are considered, therefore, only so far as they afford
aid in diseriminating among minerals, and throw light on the char-
acters of species.
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PART L

CRYSTALLOLOGY,

OR, THE SCIENCE OF THE STRUCTURE OF MINERALS.

SECTION L
CRYSTALLOGRAPHY.

A crystal is an inorganic solid bounded by plane surfaces
symmetrically arranged, and resulting from the forces of the
constituent molecules.

In its original signification, this term was applied only to crystals
of quartz, which the arcient philosophers believed to be water
congealed by intense cold. Hence the term, from xpuerahios, ice.*
Tt now includes all those regular solids that owe their formation to
the attraction that produced the xpusrarres of the ancients, or
which, like that, possess a regular form, whatever may be the color
or the degree of transparency or opacity. ‘

In brilliancy of lustre and symmetry of form, crystals, as they
are found in nature, sometimes rival the most splendid gems from
the hands of the lapidary. They occur of all sizes, from the merest

* Diodorus IL p. 168, Wess.—rods yap kpvard\hovs Nbovs Exewv iy otorasty i tdaros
xafapo’ mayévros, ovy dmo Yuyovs, AN’ dmo Ociov wupos dvvapsws.

Seneca, Quest. Nat, IIL. 25: Unde autem flat ejusmodi lapis apud Gracos ex ipso
nomine apparet. Kpvoraldoy enim appellant @que hune perlueidum lapidem quam
illam glaciem ex qua fieri lapis creditur. Aqua enim ccelestis minimum in se terreni
habens, quum induruit longioris frigoris pertinacia spissatur magis ac magis donee
omni aére excluso in se tota compressa esf, et humor qui fuerat, lapis effectus est.

Plinius, Hist. Nat. XXXVIL 2: Murrhina—humorem putant sub terra calore
densari. Contraria huie eausa erystallum facit, gelu vehementiore concreto.
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microscopic point, to a yard or more diameter. A single crystal of
quartz now at Milan, is three and a quarter feet long, and fiwe and
@ half in circumference ; and its weight is estimated at eight hun-
dred and seventy pounds. One of the gigantic beryls from Aec-
worth, New Hampshire, measures fouwr feet in length, and two and
a half in circumference ; and another at Grafton, is over four feet
long, and thirty-two inches in one of its diameters; and does not
welgh less than two and a half tons. DBut the highest perfection
of form and transparency are found only in crystals of small size.

Variety and Constancy of Form.—Each mineral, as has been
remarked, has its own mode of crystallization, by which it may be
distinguished, just as we distinguish a plant by its characters and
mode of growth. Tor example, a crystal of cale spar is known at
once by 1ts angles, wherever it may have been found, and also by
a peculiarity of wnternal structure. The same is true for other
gpecies: consequently, measurement of angles and examination of
structure have become important means of distingnishing minerals.
The constancy of angle between similar planes in the same species,
is a fact of the highest importance in the science: it is not abso-
lately perfect, owing to some causes hereafter to be stated, yet
it admits of but little variation.

The variety of form presented by a single mineral, may be very
great. Cuale spar is found in double pyramids, in prisms, rhombo-
hedrons, and many other forms; pyrites, in cubes, octahedrons,
dodecahedrons; and so with other species. But however great the
number, all the forms in each case are referable to a single type,
and little skill is required to trace out extreme simplicity amid ap-
parent complexness: for all the various modifications take place
according to a simple unvarying law. Thus a multiplicity of crys-
talline shapes is produced for each species. It is the object of
Crystallography to point out the number and relations of these
forms, and theirinternal structure ; and thence to explain the man-
ner in which the study of them is available in science. All inor-
ganic compounds—those of art as well as minerals—may take on a
crystalline structure; and hence, this subject has the widest bear-
ing, for it is the science of structure in the whole inorganic world.
Even the shapeless mass has a regular internal structure in its
minute grains, of the same identical character with that of the
crystal of like composition and species.

In treating of the subject of Crystallography, we take up, first,
the normal forms and structure of sémple crystals, discussing (1) the
Systems of Crystallization ; (2) the ﬂ[od??catiwzs of form vn_Crys-
tals ; (8) Cleawage or internal structure ; (4) Distortions and Irregu-
larities; (5) the Modes of Measurement. We next pass to abnor-
mal forms—that is, (6) Zwinor Compound Orystals; then (7) to
Mineral Aggregates ; and (8) to Pseudomorphous Crystals.
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I. SYSTEMS OF CRYSTALLIZATION.

The internal structure of crystals—especially their cleavage—
led early crystallographers to the recognition of thirteen Primary
Forms. There are crystals, as those of galena, whose internal
structure is cubical, the mineral affording cubes on dissection; there
are others, as fluor spar, that afford the regular octahedron in a
similar manner; and there are others, as blende, whose cleavages

ield dodecahedrons. Inview of this fundamental character, which
18 one of the most unvarying and profoundly essential of a species,
all of these forms, the cube, octahedron and dodecahedron have
equal claims to be regarded as primary in the inorganic kingdom.
In the same manner we arrive at the otherso-called primary forms.

But viewed without reference to structure, several of these forms
are essentially identical ; and they may all be included under si
Systems of Crystallization. In many species no internal structure
is apparent; and in many others it is ambiguous, or affords two or
more distinet forms at the same time ; so that often a primary form
cannot be recognized. Whereas the system of crystallization is in
each case distinet and certain, being based on simple mathematical
relations of the planes. The subject of Crystallography is much
simplified by this classification of crystalline forms, and greater
precision is given to the description of species.

In treating of the subject of Crystallography, the parts of crys-
tals especially considered, are as follows:—

1. Faces or plames: which are of various forms, #riangulor,
square, rectangular, trapezoidal, polygonal. A series of three or
more planes, making with one another parallel intersections, is
called a zone.

9. Fdges : formed by the meeting of planes, and either rectan-
gular, obtuse, or acute. Edges are said to be similar, when the
planes, by the meeting of which they are formed, are respec-
tively equal, and equally inclined to one another, unlike or dis-
stmialar, when not thus equal.

8. Plane angles : the angles of the faces.

4. Interfacial angles: the mutual inclinations of two planes.

5. Solid angles : the meeting of three or more planes, and either
trihedral, tetrahedral, polyhedral. Solid angles are said to be
stmilar when included by the same number of plane angles, equal
each to each, and equally inclined to one another. '

6. Awes: lines connecting points diagonally opposite, asthe apices
of opposite solid angles, the centers of opposite edges, or of opposite
faces. In Crystallography there are three axes employed, (except-
ing for hexagonal forms), and these axes are either at right angles
with one another, producing orthometric forms, or oblique, produ-
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cing elinometric forms,* and they may be either all equal, or but
two equal, or all unequal.

In order to illustrate the relations of the six systems of crystalli-
zation, we may briefly mention, by way of introduction, the char-
acters of some of the simpler solids.

1. Prisms having a 4-sided base.—When the base is square and
the prism erect, as in f. 2, the form is a Réght Square Prism ;+
the four lateral planes are equal rectangles, either longer or shorter
than the breadth, according to the height of the prism, and the
basal edges are wnlike the lateral. If these lateral planes equal
the basa?, and like them are squares, the form is a cube, (f. 1),
bounded by six equal squares. When the base is a rectangle in-
stead of a square, the prism is a Right Rectangular Prism, (f. 3).
In each of the forms mentioned the solid angles are eight in

number, and are equal and rectangular. The edges, which- are
twelve in number, vary with the shape of the base and the height
of the prism. In the cube the twelve are equal; in the square
Frism the eight basal are equal, (four at each base), but they differ
rom the lateral ; in the rectangular prism, two at each base differ
in length from the other two, and hence there are three sets of
edges, four in each. '

Again, the base may be a 7homb, a form in which the sides are
equzﬁ ; an erect prism with such a base is a Right Rhombic Prism,
(f. 4). As two of the angles in the base are obtuse, and two acute,
the solid angles corresponding differ in like manner, two at each
base ; and so also the lateral edges are two obtuse and two acute.
But the four lateral faces, like the basal edges, will be equal.

If, instead of a rhomb, the base is a rhomboid, a figure in which

* Orthometrie, from vpbos, straight, and perpor, measure; elinometrie, from swow, to
incline, and perpov.
t The following figures represent the forms of bases allnded to':—

—- .. N
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Square. Rectangle. Rhomb. Rhomboid.

The square and rhomb have aqual sides: the rectangle and rhomboid have only

1

the opposites equal.
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two opposite sides are unequal to the other two, the four 1ate:;a1
faces will correspond to the basal edges, and only the opposites

ot

be equal. This form is the Right Rhomboidal Prism, (similar to
f. 4, or like f. 5, if placed on one of its lateral planes).

Again, the base may be a rhomb, but the prism stand obligue on
its base. Thus we have, as another form, an Obligue Rhombic
Prism, (f. 6, a front view, and 7, a side view). As in the right
rhombic prism, the basal edges are equal in length ; but from the
inclination of the prism, two of these edges at each base are obtuse,
and two acute. ,

Such a prism may be longer or shorter than its breadth. If
equal in length to its breadth, and the lateral planes just equal
the basal, the form is bounded by siz equal planes,like a cube, but
having oblique angles ; it is called a Rhombohedron.

Again, an oblique prism may have a rhomboidal instead of a
rhombic base, and is then an Oblique Rhomboidal Prism, (f. 8).
The edges of each base are of four kinds, for two opposite are
longer than the other two, and, of each pair, one is obtuse and the
other acute. So also with the solid angles; the fotr are different
at each base. In this solid, therefore, only diagonally opposite
edges are similar—that is, are equal in length and in the included
angles; and in the same manner, only opposite solid angles are
equal, or consist of equal plane angles equally inclined. These
particulars are readily understood from a model of the form.

2. Prisms howing a siz-sided base—~—When the prism is a regular
hexagon, and erect, it is calfed the Hexagonal Prism, (f. 9 or 10).

3. Octahedrons—Octahedrons are o
8-faced solids,—as the term implies,
derived from oxrous, 8-times, and e,
JSace. yThese faces are triangles, as in Ll
f 11,/12, 18, and the form is like two |7 T+,
4;,9;‘%3(1 pyramids united base to base. '

Holding an octahedron with a solid <
aplgle uppermost, the upper and lower solid angles are called its
vertical solid angles ; the other four, its lateral or basal solid an-
rles; and the horizontal plane in which the apices of the lateral
solid angles lie, is the base of the octahedron.

In the Regular Octahedron (f. 11) the base is square, and
the eight faces are equal equilateral triangles. The edges are
twelve and all equal; the faces incline upon one another at an
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angle of 109° 28’ 16", and have the plane angles all 60°. The
solid angles are six, and mutually equal. Like the cube the solid
is every way symmetrical.

‘When the base issquare, and the vertical height greater or less
than it is in the regular octahedron, (that is, the distance between
the apices of the vertical solid angles greater or less than that be-

11 13 14

tween the apices of the lateral), the form is a Right Square Octahe-
dron, (f. 12), having the faces usosceles triangles, but not equilateral.
The four basal edges are equal andsimilar, but they differ in length
from the eight equal pyramidal edges, and also in the angle of the
including planes. The vertical solid angles also differ in the plane
angles of which they consist from the lateral or basal.

'he base in other octahedrons is rAombic, and in this case the
form is called a Right Rhombic Octahedron, (f.13): the length may
be less or greater than the breadth. The basal edges are alike in
length and other respects; but as the plane angles of the base are
of two kinds, two obtuse and two acute, so the pyramidal edges
differ accordingly.

4. Dodecahedrons.—A dodecahedron is bounded lyy twelve faces ;
the name is from dwdexa, twelve, and idpa, face. Ina common kind
of dodecahedron, called the Zhombic Dodecahedron, these faces
are equal rhombs, as shown in f. 14. Like the octahedron and
cube, this solid is every way symmetrical. The interfacial angles
are 120°; and the plane angles of the faces are 109° 28’ 16" and
700 31 44”. The edges are twenty-four and similar. The solid
angles are fourteen in number, and of two kinds; eight obtuse,
formed by the meeting of three obtuse plane angles, and six acute,
enclosed each by four acute plane angles.

From these descriptions of the thirteen simplest forms among
erystals, we pass to the systems of crystallization. .

The Systems of Crystallization are based on certain relations
in the axes of these forms. In forms belonging to the same system,
the axes are alike in number, and in their mutual intersections ‘and
general relations as to length.

1. Monometric or Tesseral System.

In the Monometric system, the three axes are rectangular inj
their intersections and equal.

The cube, regular octahedron, and rhombic dodecahedron, which
are here included, are alike in their perfectsymmetry: the height,
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length, and breadth are equal, and their axes are equal and rectan-
gular. In the cube (f. 1) these axes connect the centres of oppo-
site faces ; in the octahedron, (f. 11), the apices of opposite solid
angles ; in the dodecahedron, (f. 14), the apices of opposite acute
solid angles. The relations of these forms, and the correspondence
in their axes, will be understood after a brief notice of the transi-
tions between the forms.

If the eight angles of a cube are sliced off evenly, keeping the
planes equally inclined to the enclosing faces, we first obtain the
form in f. 15, then that in f 16, and finally a regular octahe-
dron, and the last disappearing point of each face of the cube is

15 16 17

Ereo L

the apex of each solid angle of the octahedron. Hence, the.axes
of the former necessarily connect the apices of the solid angles of
the latter.

By cutting off as evenly the twelve edges of another cube, the
knife being equally inclined to the faces, we have the form in
f.17; then £ 18 ; and finally, the rhombic dodecahedron, (f. 14),
with the axes of the cube connecting the same points in each.

These forms are thus mutually derivable. Moreover, they are
often presented by the same mineral species, as is exemplified in
galena, pyrites, and the diamond. ‘

The process may be reversed, and the cube made from the octa-
hedron or dodecahedron, as will be readily understood from a com-
parison, in order, of f. 11, 16, 15, 1, and £. 14, 18, 17, 1.

The octahedron also is changed to a rhombic dodecahedron by
removing its twelve edges, (f. 19), and continuing the removal till
the original faces areobliterated, thus producing the dodecahedron.

The name Monometric alludes to the equality of the axes, and is
from poves, one, and werpov, tncasure. Tesseral is from the Latin tes-
?era, for cube or dice, and originally from the Greek word for

2. Dimetric System.
In the Dimetric System, the three axes are rectangular in their

intersections, and one, called the vertical, differs in length from
the two lateral, which are equal.

*Isometric system of Hausmann ; Tessular of Mohs and Haidinger; Zesseral of
Naumann ; Regular of Weiss and G. Rose; Cubic of Dufrenoy and Miller,
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The right square prism, (f. 2), and square octahedron, (f. 12), are
of this system. The axes of the prism connect the centres of oppo-
site faces, and cross at right angles. The octahedron has the same
relation to the prism as the regular octahedron to the cube ; the
axes connect the apices of opposite solid angles. A
replacement of the angles: of the prism, (f. 20), con-
tinued, leads to the octahedron. The vertical axis is
a varying axis, and may be longer or shorter than
the lateral. The name of the gystem alludes to the
two kinds of axes, and is from dis, fwo-fold, and perpov,
measure.’®

3. Trimetric Systemn.

In the Trimetric System, the three axes are rectangular in their
intersections, and unequal.

Ttincludes the right rectangular prism, (f. .), the right rhombie,
(f. 4), and the rhombic octahedron, (f. 18). The three axes inter-
sect at right angles, but are wnequal. In the rectangular prism,
‘the axes connect the centres of opposite faces; in the rhombic
prism, the vertical connects the centres of the basal faces, the late-
ral the centres of opposite lateral edges; in the octahedron, the
axes connect the apices of opposite solid angles.

By the transitions of these solids, it appears that these positions
of the axes correspond throughout. If the lateral edges of a rec-
tangular prism are removed parallel to a vertical diagonal plane,
the form becomes finally a rhombic prism, ag shown in f. 3, 91, 22,
45 and so if the lateral edges of a rhombic prism are in like man-
ner removed, (f. 22, 21, 8), the result is a rectangular prism. This
relation of these two forms is also shown by the rhombie prism
within, f. 21 ; the lateral faces of one prism are opposite the lateral
edges of the other; and the centre of the face of the rectangular

21 22 25 9%
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prism, where the axis terminates, is a point identical with the
termination of the corresponding axis in the rhombic prism. It is,
hence, apparent that the positions assigned to the axes are not ar-
bitrary, but depend on the actual relations of the forms. Both of
these prisms occur often in the same mineral. The rhombic octa-
hedron, (f. 13), moreover, is derived from the rectangular prism, by

#* Pyramidal of Mohs; Viergliedrige, ov zwei-und-einaxige of Weiss; Tetragonal
of Naumann ; Monodimetric of Hausmann ; Quadratic of von Kobell.
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removing the solid angles of the latter, a process begun in f. 23
and it comes from a rhombic prism by removing the basal edges of
the prism, as shown in f. 24. The axes are the same points pre-
cisely in the three forms. The longer lateral axis is called the
macrodiagonal, (from paxpes, long); and the other, the brachydiago-
naly (from Sporyvs, short). The name Zrimetric alludes to the exist-
ence of axes of ¢Aree kinds, (the three being unequal), and is from
rpis, three-fold, and perpov.*

4. Monoclinic System.

In the Monoclinic System, the three axes are unequal; one,
called the vertical, (@), is inclined to one of the lateral, and at right
angles with the other, (¢) ; and the two lateral (, ¢) are at right angles
with one another.

It includes the right rhomboidal and oblique rhombic prisms. In
the oblique rhombic prism, (f. 6), the vertical axis connects the
centres of the bases, and the lateral the centres of opposite lateral
edges; the lateral, b, ¢, intersect one another at right angles; the
vertical is at right angles with ¢, but inclined to 4. The axis ¢,
which is at right angles with the other two, is called the orthodiag-
onal, (from opbus, straight); and the axis b, which is inclined to the
vertical, is the clinodeagonal, (from xaww, to incline).

In the right rhomboidal prism the axes connect the centres of
opposite faces. But they have the same relations as just explained :
they are unequal, and there is one oblique intersection. To under-
stand the relations of these solids, the rhomboidal 25
prism must be placed on a rectangular plane for —
its base, as in f. 5, and then the vertical axes in
the forms correspond, as shown in f. 25, in which L

both forms are combined. The removal of the
lateral edges of one prism produces finally the other | |
prism, the relation being-the same as between the
right rectangular prism and right rhombic.

The name monoclinic is from poves, one, and xiwa, to tncline.t

5. Triclinge System.?

In the Triclinic System, the three axes are unequal, and all
the intersections (@ to b, @ to ¢, and b to ¢) are oblique.

It includes the obligue rhomboidal prism, (f. 8). The name of
the system is from rpis, Aree-times, and xhwew.

* Prismatic or Orthotype of Mohs; Fin-und-cinaxige of Weiss; Rhombic and
Anisometric of Naumann; Binary of Weiss; Trimetric and Orthorhombic of Haus-
mann,

1 Hemi-prismotic and Hemjorthotype of Mohs ; Zwei-und-eingliederige of Weiss ; Mo-
noclinohedral of Naumann; Klinorhombic of Kobell and Hausmann; Awgitic of
Haidinger; Obligue of Miller.

1 Tetarto-prismatic of Mohs; Hin-und-eingliederige of Weiss; Triclinohedral of
Naumann ; Klino-rhomboidel of Kobell; Anorthic of Haidinger and Miller.
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The Diclinic system has been indicated by Naumann, as occur-
ring in an artificial salt. It differs from the triclinic in having two
of the intersections (as @ to b, and b to ¢) oblique, and one (a to ¢)
rectangular. The prismatic form corresponding would be an ob-
lique rectamgular prism, resembling f. 8.

6. The Hexagonal System.*

In this system there are three equal lateral axes, intersecting at
angles of 60°, and a vertical axis of varying length at right angles
with the lateral.

It includes the hexagonal prism and rhombohedron. In the hex-
agonal prism the vertical axis connects the centres of the bases.

e lateral axes connect the centres of the opposite lateral faces or
olpposite lateral edges, (f. 9, 10); in each case (as is seen from the
e f}agacter of a regular hexagon) the intersections are at angles
0. OO. .

In the rhombohedron two of the angles, diagonally opposite, con-
sist of three equal plane angles; the line connecting t%le apices of
these two angles is the vertical axis () of the rhombohedron, and
the solid is said to be in position when this line is in a vertical po-
sition, (f. 26, 27, 28). The other six solid angles are similar,
and are called the lateral angles. Placing the rhombohedron

in position, the apices of the six lateral solid angles are at
equal distances around the vertical axes. There are also six
lateral edges, alike symmetrical in position, around this axis;
and there are three terminal edges meeting at each extremity
ofghe vertical axis. Lo'oking down from above on a rhombohedron
thi placed, the symmetry of arrangement in the lateral edges is at
once perceived ; and it'is readily understood that lines connecting
the centres of opposite lateral edges, will be three in number, like
those of the hexagonal prism, and will intersect at 60°. If the lat-
eral edges are replaced by planes parallel to the vertical axis, a
1’egularilexagonal prism, terminated by a three-sided pyramid, is

# Rhombohedral of Mohs; Sechsgliedridge or drei-und einaxige of Weiss; Hexago-
nal of Naumann ; Monotrimetric of Hausmann.
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formed, as shown in f. 29; and if the lateral angles are removed in
an analogous manner, another similar
form is produced, (f. 30). The two
differ in the form of the planes /2, at
their extremities. When at the same
time the vertical solid angle is re-
moved, the terminal plane of the
hexagonal prism is formed, (f. 31).

A%lexa onal prism is reduced to
a rhombohedron by removing alike
three alternate edges of one base, and three edges of the other base
alternate with these, (f. 81), and continuing the removal till the
original form is obliterated ; or again, by removing in a correspond-
ing manner the alternate solid angles.

he hexagonal prism and rhombohedron are consequently closely

related forms ; both are presented by cale spar and many otherspecies.

Rhombohedrons are obfuse when the angle at the terminal edges
is greater than 909, (f. 26, 27); and acufe when it is less, (f. 28). In
the former case, the terminal solid angles are made by the meeting
of three equal obtuse plane angles, and the lateral by the meeting
of one obtuse and two acute plane angles. In acute rhombohe-
drons the terminal edges are acute; the lateral obtuse; the termi-
nal solid angles are made by the meeting of three equal acute plane
angles, and the lateral by the meeting of one acute and two obtuse
plane angles. * The cube is the intermediate form, having angles of
90°; whenplaced with an octahedral axis vertical, it has a position
corresponding with that of the rhombohedron; the axis ¢ in a
rhombobedron of 90° (or cube) =v3=1-224745.

Under these systems of crystallization, and the forms described,

the variety of possible forms or dimensions is unlimited. The cube,
reigular octahedron, and rhombic dodecahedron, are of unvarying
relative dimensions. But the right square prism has one axis (the
vertical) unequal to the other two, and it may be longer or shorter
in any proportions. The right rhombic prisms may be indefinitely
various in the angles between the lateral faces; and the oblique
prisms may differ in otherangles also. Rhombohedrons may occur
of every angle ; and the hexagonal prism, like the right square
prism, may be indefinitely varied in the relation between the ver-
tical axis and the lateral.
By these modes, and also by differences of structure hereafter to
be explained, the actual fundamental forms of crystallization be-
come exceedingly numerous, although they belong to a few simple
types. However numerous the kinds of substances existing in the
inorganic kingdom, there is no limit, owing to this possible varia-
tion of dimensions, to the crystallographic distinctions which may
exist among them.

In each system there is a prism whose sides are parallel to the
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planes in which the axes lie, and whose edges equal the axes. Such
is the square prism, f. 2, in the dimetric gystem; the rectangular
prism, f. 3, in the trimetric; f. 5 in the monoclinic, etc.: such
prisms are the type-prisms of the several systems. Thereis also in
each system (excluding the monometric) another prism, like the
rhombic prism, (f. 4),in the trimetric, or f. 6 in the monoclinic
s%rstem, which has for its lateral faces vertical planes connecting
the extremities of the lateral axes: these are distinguished as the
axial or fundamental prisms. The #ype-prisms are diagonal to
these, and are called also the diagonal prisms.*

II. MODIFICATIONS OF CRYSTALS.

In explaining further the laws of crystallography, we might
adopt either the mathematical method of referring directly to the
axes of the forms, or theless abstract mode of basing the statements
of the laws and their explanations on the type-prisms. The latter
mode, as it affords the mind distinct solids for contemplation and
comparison, is much more simple to the learner, and is here
adopted.

Moreover, as the edges of such prisms have the same directions
and lengths as the axes, their relations to the derivative forms are
more readily apprehended, than those of an assumed octahedron, or
any other solid that might be taken as the type of the system.

As the number of forms among the crystals of a single species is
often quite large, there is at first much apparent difficulty in trac-
ing their connections, or distinguishing any symmetry of arrange-
ment. The law governing these modifications is, however, of the
utmost simplicity. In its application, it is necessary to have fully

* The relations of the several forms of crystals are elegantly exhibited by means
of models made of glass. They may be made from common window or plate glass,
by cutting the glass in the form of the faces of the solid to be made, and then unit-
ing them by means of glue. The author has generally found it convenient to have
a small cord between two adjacent pieces of glass, as the adhesion between the
glass and the cord, by means of the glue, is much stronger than between two pieces
of glass and glue alone. The forms thus far finished, may be rendered much firmer,
and, at the same_time, the glue and cord concealed, by covering the edges with nar-
row strips of paper, cut for the purpose; colored glazed paper is preferable, as it is
less easily soiled. The primaries, when completed, may be placed within a second-
ary, which afterwards can be closed up, and the edges papered. In this way, a
primary may be enclosed within any of its secondaries so as to exhibit clearly the
relations of the two solids. The plane angles of the faces in the monometric solids,
are given in the following pages; by laying them off, a plane figure may be drawn,
having the form of the desired face; by then placing the plate of glass over the
figure, it may be cut with a diamond and a rule. Good glue is necessary for uniting
the glass; gum arabic suffices for attaching the slips of paper. The axes may be
made of colored thread. Mica may be employed in place of glass.
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in mind what is understood by sémilar edges and angles, as ex-
}Jlained on page 23. In the cube the edges are all similar in
ength, being equal and rectangular. In the right square prism,
also, the edges are rectangular, yet the lateral are not equal to the
basal in length, and therefore the two are dissimilar. In the right
rhombic prism, the lateral edges are of the same length, but two
are obtuse and two acute, andghence they are dissimilar; the basal
edges are similar to one another, being all rectangular and of equal
length, and also being included by planes respectively equal. This
similarity of edges and angles is in each case a consequence of the
similar axial relations of the planes.

I. LAWS OF SYMMETRY AND RESULTING FORMS.

The modifications of erystals take place according to the follow-
in% simple laws :

. All the stmLAR parts of a crystal may be simultaneously and
stmalarly modified.

II. Half the saiLar parts of a crystal may be similarly modified
independently of the other half.

The forms resulting according to the first law are termed /holo-
hedral forms, from oxes, all, épe, fuce. All similar edges or similar
angles of the type prisms, accordingto this law, will be alike in the
number and positions of their planes.

The forms proceeding from the second law are termed hemile-
dral. According to it, half the similar parts are alike in their mod-
ifications, and unlike those of the other half; and the parts of
either half thus modified are alternate or symmetrically related, so
that the result is in general a symmetrical solid. The planes of one
half are distinguished by the sign -, and those of the other by the
sign —.

g’.[‘he examples under the law of hemihedrism may be classed as
follows, referring them to the type prisms of each system.

I Those forms in which half the similar angles or edges are modified independ-
ently of the other half, producing—

1. In the MoNoMErRIC and DIMETRIC systems, tetralkedral and sphenoidal forms, by
the independent replacement of the alternate angles; their opposite faces are not par-
allel, and they are hence called inclined hemihedrons ; as in Boracite, Copper pyrites.
The replacement in the dimetric system of two opposite basal edges at one base,
and the other two at the opposite base, is of the same kind; as in Edingtonite.

2. In the TriMETRIC system, monoclinic forms, by the replacement of half the
similar parts of one base and the diagonally opposite of the other, unlike the other
half; as in Datholite, Humite.

8. In the rrismrric and HEXAGONAL systems, hemimorphic forms, by independent
replacements at the opposite extremities of the erystal; as in Topaz, Calamine,
Tourmaline.,

4. In the rHoMBoHEDRAL system, by the replacements of the alternate basal edges or
angles of the rhombohedron—forms usually called tetartohedral or quarter forms, on
the ground that mathematically the rhombohedron is hemikedral to the hexagonal
prism, whichis the type of the hexagonal system,



34 CRYRTALLOGRAPHY,

. Those forms in which all the similar angles or edges are modified, but by half
the full or normal number of planes, producing—

1. In the MoNomETRIC system pyritohedral forms, by a replacement of the edges
or angles; as in Pyrites. Such forms have opposite faces parallel, and are often
called parallel hemihedrons.

9. In the pverric system, pyramidal and scalenoidal forms, by a replacement of
the eight solid angles, according to two methods.

3. In the HExAGONAL systeM, pyramidel and gyroidal forms, by a replacement of
the golid angles of the hexagonal prism, or the six lateral angles of the rhombohe-
dron, according to two methods; as in Quartz and Apatite.

Explanations of these kinds of hemihedrism are given in the re-
marks which follow on the forms of the several systems of crystal-
lization.

1. Monometric System.

1. Holohedral—In accordance with the first law of symmetry,
if a single edge of a cube, octahedron or dodecahedron, be trun-
cated, all will be simultaneounsly truncated, (f. 17, 19, 43), for all
are similar. If on an edge there is one plane inclined unequally
to the adjoining faces, there will be two such planes, one inclined
towards each face with like angles, as in £ 323 such edges are said
to be beveled ; moreover all the edges of these solids will be simi-
larly beveled.*

a. Tetrahezahedront—A bevelment of the edges of a cube is
represented in f. 32; and the result of a continuation of the process
inf. 83. This form is bounded by twenty-four triangular faces.

32 38 24 35
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Figure 84 is a similar solid, proceeding from a different angle of
bevelment. The above name indicates the general resemblance to
the cube or hexahedron, and at the same time expresses the num-
ber of its faces. It is derived from ssrponis, four times, ¢, siz, and
§0pa, face ; the 4x6-faced solid. . '
The planes ¢2 in £. 85, which are observed to replace the solid
angles of the octahedron inclining at the same time on its edges,
when extended to the obliteration of the primary faces, produce the
same form as above, (f. 33). The replacement of the six acute solid

# An edge is beveled, when replaced by two planes, which are vespectively in
elined at equal angles to the adjacent faces.
} Called Fluoroid, by Haidinger.
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angles of the dodecahedron by jfowr planes resting on its faces,
(f. 86),if continued, results in the same solid.*

By varying the angle of bevelment of the cube, tetrahexahe-
drons of different angles may be produced.

b. Trisoctahedron.—The angles of the cube are represented as
replaced by three planes in f. 37 and 47; in one, they incline on
the primary faces ; in the other, on the edges of the cube. The
completed forms obtained by these replacements are seen in f. 39
and 49. TFig. 38 is an intermediate form, between 37 and 39,
having also octahedral planes, (1? The vesulting solids, though con-
siderably unlike, have a general resemblance to octahedrons, with
a three-sided pyramid substituted for each octahedral face. Like
the octahedron, they are formed on the angles of the cube by a re-

39

placement by three planes instead of one, which accounts for their
general resemblance to this solid. The name, trisoctahedron, is de-
vived from s, threc-times, tnw, eight, and &pa, face, 3x8-faced
solid. The faces of one of these solidsare four-sided, or tetragonal,
those of the other, three-sided, or ¢réigonal ; they are, therefore, dis-
tinguished by the names tetragonal trisoctahedron and trigonal tris-
octahedron. The usual name of the former is érapezohedron.

The tetragonal trisoctahedron or trapezohedront (f. 39) may be de-

rived from the octahedron, by replacing its angles by four planes,
inclining on its faces, (f. 41 or 42); from the dodecahedron, by a trun-
cation of its twenty-four edges, (f. 43, 44), or by replacing the solid
angles, obtuse or acute, by planes inclined on the edges, (f. 45,

* The system of notation used in the figures is explained on a following page. It
may be observed here that the expressions, 22, 83, and the like, are to be read asif
written, 2-2, 8-3 ; that ¢ stands for infinity; and that there is thus a correspond-
ence between the mathematical symbols for the planes, and the lettering.

} Leucitoid of Haidinger, referring to its being the form of Leucite.
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which represents planes of the trapezohedron, 33.) * The planes 83,
on f.41 and 45, result in the trapezohedron of f. 40 ; and theplanes

99, of f. 42 and 43, in that of f. 839. The truncation of the shorter
edges of tetrahexahedrons produce trapezohedrons, (f. 46, 33
being the trapezohedral planes on the tetrahexahedron< §); and
others proceed from planes on the angles inclined on the same
edge. .

The trigonal Trisoctahedron (f. 49) has been observed to pro-
ceed from a cube by a replacement of the angles by three planes, as
in f. 47. Tt proceeds from an octahedron by beveling its twelve

edges, (f. 48), and from a dodecahedron by a replacement of its
eigﬁlt obtuse solid angles, by three planes inclining on the faces.

o. Hexoctahedron.*—Tigure 50 represents a cube, with six planes
on each angle, and consequently forty-eight in all. The resulting
solid is completed in f. 51. Here, for each face of the octahedron

is substituted a low six-sided pyramid. The name of this solid is
derived from the Greek, éfuug, six-times, dnra, eight, and tdpa, face,
the 6x8-faced solid.

A replacement of the angles of the octahedron by eight planes,
produces a similar solid. A bevelment of the twenty-four edges of

* _ddamantoid of Haidinger, alluding to its being a form of the diamond.



o

MODIFICATIONS OF CRYSTALS. 37

the dodecahedron, (f. 52), also necessarily produces a forty-eight-
faced solid. Others, differing in their angles, may result from a re-
placement of the siz acute solid angles of the dodecahedron by
eight planes, or the eight obtuse by siz planes.

2. Hemihedral. _

The exemplifications of the law of hemihedrism, are of frequent
occurrence.

Figure 53 is an example of the first kind of hemihedrism, in which
half the angles of the cube are modified, while the remaining half
are unmodified.

Figure 67 is an instance of the second kind. All the edges are
similarly replaced, but by one of the two beveling planes represent-
ed in f. 32. The plane ¢2 is enlarged in f. 68. Irom this last
figure, it will be observed, that the suppressed planes are those
which were alternate, and that two planes, 42, incline on each face,
0. The crystals have therefore a symmetrical character.

Another instance is observed in f. 73, in which each angle of the
cube is replaced by three out of the six intermediaries in f. 50 ;
that is, by half the number of planes which the first law would
require.

A. Tetrahedral hemihedrons.

a. Tetrahedron or Hemi-octahedron.—If half the angles of a cube
are replaced by a single plane, (f. 53, 54), the resulting form is a
tetrahedron or hemi-octahedron, (f. 55, 56, one (4) resulting from

the angles modified in f. 53, and the other (—) from a replacement
of the other set of angles.) The same form may proceed from an
octahedron by an extension of one half of its faces to the oblite-
ration of the other half, (f 57).

The plane angles of the tetrahedron are 60°; the interfacial
70° 31° 44/,

59 60

&7 58
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Figure 58 represents a combination of the faces of the tetrahe-
dron with the faces 7, (or those of a dodecahedron).
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b. Hemi-trisoctahedrons.—The planes 22 in f. 37, when occuring
on but half the angles, produce the solid in f. 59. The faces are
trigonal, and the solid is called a cuproid.

The planes 2 in f. 47, when occuring on but half the angles of
the cube and enlarged, form the solid in f. 60 ; its faces are tetrago-
nal. Tt is the deltohedron of Haidinger.

Figure 61 represents the cuproid combined with the tetrahe-
dron; f. 62, the same with planes of a tetrahexahedron, <3 ; f. 63,
with planes of a dodecahedron; f. 64, with planes of a deltohedron,
similar to £. 60. '

¢. Inclined ov tetrahedral 1e-
ni-hexoctahedron.—A solid of this
kind is represented in f. 65. Itis
formed by a replacement of half
the angles of the cube, by six
planes, similar to those in f. 50.
As the opposite faces are not par- /
allel, it is an <nclined hemi-hewoctahedron. Tigure 66 represents
the same, with the faces of the tetrahedron. '

B. Pyretohedral hemihedrons.

d. Hemi-tetrahexahedron, or Pentagonal Dodecahedron.—A
enbe is represented in f. 67, with but one of the two beveling
87 ' 68 69

0 ‘

2| O |0

lanes on each edge, given in f. 82. The same planes are enlarged
in f. 68; f 69represents the completed solid ; and f. 70 is the sup-
plementary or — form. The second of the above names is com-
monly applied to this solid. It is the pyritoid of Haidinger.
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Figures 71, 72, exhibit the planes on the octahedron, which, ex-
tended, give rise to f. 69.

b. Parallel or Pyritohedral Hema-hexoctahedron.—When all
the solid angles of the cube are replaced by three alternate planes
out of sw intermediaries, (f. 78), a form ‘like that in f. 74 is pro-

73

duced. Tt has parallel opposite faces. It is the diploid of Hai-
dinger. Figure 75 shows the same planes on an octahedron.

2. Dimetric System.

The modifications of the basal and lateral edges of a square
orism, take place independently, owing to their dissimilarity.
The lateral edges are included by equal planes, and, therefore, may
be truncated or beveled, (f. 76, 78). The basal edges are similarly
replaced ; but being the intersections of unequal planes, they are
never truncated or beveled. A plane on these edges, therefore,
inclines unequally on the adjacent faces, (f. 80, 83).

The similar intermediary planes on each angle can be but two
in number, (f. 88).

The production of a square octahedron from the replacement of
the angles of the square prism, is explained on page 28, (f. 20, 12).
By giving different inclinations to the plane on the angles, other
octahedrons are obtained of longer or shorter vertical axes.

A truncation of the lateral edges of the fypical square prism,
gives rise to another square prism, (f. 77), the axial prism.
Bevelment of the same lateral edges, (f. 78), affords eight-sided
‘ 9

0

prisms, (f. 79), of different angles, according to the angle of
bevelment. ‘

The fundamental octahedron (f. 12) proceeds trom the axial
prism, by a replacement of the basal edges, (f. 80, 81); the basal
edges of this square prism corresponding to the angles of the
other; (compare f. 80 and 20). Another series of octahedrons is
formed on the angles of the axial square prism, (f. 82), or the basal
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edges of the dia%onal square prism, f. 83; f. 84 represents the
octahedron 1¢ of f. 83, and also within this, that of §2. The octa-

hedrons of one series replace the pyramidal edges of the other,
(f. 85), or are situated on the angles basal or vertical, and incline
on these edges, (f 86), 1z or 2¢ being octahedral planes of one

84 85 86

series, and 1 of the other. Figure 87 represents the octahedron
1, combined with the lateral faces of the diagonal or type prism.
Two planes on each angle of a square prism, (as in f. 88), give
rise to a double eight-sided pyramid, (f. 89),which maybe of various
proportions, according to the inclination. The same planes on the
octahedron 1, either bevel the edges, (f. 90), or replace the angles

by two planes corresponding to each terminal edge. In this solid
the terminal edges are of two kinds, one, the axial, (X), terminating
in the poles of the lateral axes; the other, the diagonal, ("), inter-
mediate in position.

The hemihedral forms are as follows :—1. The sphenoidal, corres-
ponding to the tetrahedral of the monometric system, the alternate
angles being replaced alike. Half the planes 1, of f. 20, produce
the scalene pyramid represented in f. 91 ; and the other half, that
of f. 92 and two planes on half of the angles, afford the form in
f. 93. Figure 94 represents the sphenoid with the vertical planes
of the diagonal square prism ; and f. 95 shows the combination of
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f 93, with the octahedron 1é. 2. Pyramidal, produced by the
occurrence of one of the two planes on each angle, (see f. 88), the

9

occurring plane at each extremity, about the edge of the prism,

being on the same side of the edge, or in the same vertical line—as

in f.96. The resultant form is a square octahedron; occurs in

Tungsten. Another kind of hemihedrism may occur, which is

like the last, except that the plane at each extremity, about each
95 96 a7 08

7

\_/° . ,
edge of the prism, is on different sides of the edge, as in £ 97 ; the
resultant form is represented in f. 98. In 96, the plane is the lef?
of one base, and (the prism being inverted) the »ig/t¢ of the other,
(or the reverse); in f. 97, the plane is the 7ight of each base, (or the

lef?).
3. Lrimetric System.

The edges of the right rectangular prism are of three kinds,
(being different in length), and those of each kind are, according
to the law mentioned, independently modified, (f. 99, 103, 105).
Moreover, none of them can be truncated or beveled, in conse-
quence of the inequality of their including planes.

Planes on the angles incline unegually on the three adjacent,
unequal planes. The angles are similar, and therefore will he
‘modified simultaneously, (f. 23).

The lateral edges of the right rhombic prism admit of trunca-
tion and bevelment, because of the equality of the lateral planes.
The obtuse, however, are modified independently of the acute,
(f. 101, 102). The obtuse solid angles, and the acute, are also
independent in their modifications, (f. 107, 108). The replace-
ments of the basal edges are similar and simultaneous, (f. 24).

On page 28 it is shown that a replacement of the lateral edges
of the rectangular prism, (f. 21, 22), produces a right rhombic
prism. By varying the inclination of the replacing planes, differ-
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ent rhombic prism are obtained. In f. 99, 43, 7/, and 43, are planes -

of three such prisms, /, being the prism represented in f. 4, and in

the interior of f. 100, having the same axes as the rectangular

prism; 43 corresponding to the prism g 42, in f. 100,—(that is,
99 100 101 102

having the same angle between the planes, as <3 29, in f. 99); and
73 corresponding to the prism 43 43, in f. 100. Figure 101, rep-
resents the rhombic prism 7, with the same planes 43, and f. 102,
with the planes 73.

A replacement of the basal edges produces other rhombic,
prisms, which are horizontal in position, and are called domes,
(from dopa, or domus, house, or placed like the roof of a house).
Figure 104 represents the dome corresponding to the planes 17 in
f. 108 ; it is parallel to the longer lateral axis, and is called a
macrodome, (from paxpos, large and dome). TFigure 105 containg
planes (12, 27) of two domes parallel to the shorter lateral axis,

103 104 105 106
—  S—

1

i i

17

which are called brachydomes, (from €paxvs, short and dome). These
brachydomes are pregented completed in f. 106, the outer heing 2z,
and the inner 17. The former has the vertical axis twice that of
the latter. In f. 107, the planes 17 and 13, (f. 103, 105), are repre-
sented on a rhombic prism, the angles of which they replace.
The production of a rhombic octahedron, by replacing the angles
107 108 109

of a rectangular prism, or basal edges of a rhombic, is mentioned
on page 28; (compare f. 23, 24, with.13).  Other planes on the
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angles produce other octahedrons. The planes 13, in f. 108, cor-
respond to the octahedron of £. 109—(that is, have the same mutual
inclinations as the faces of the latter); the longer lateral axis is

111

o
twice that of f. 13, or that of the dotted figure in 109. The planes
23, in f. 110, in the same manner correspond to the octahedron in f.
111, in which, both the vertical axis and one of the lateral are
twice the same in f. 13. The planes 2i, in f. 110, belong to a
macrodome different from that in f. 103, 104.

Hemehedrism, in the trimetric system, produces two kinds of
forms. 1. Monoclinic, when the lower extremity of a crystal in
front, and the diagonally®opposite, differ in their modifications
from the upper extremity in {ront; the forms resemble those of
the monoclinic system, but differ in baving the angle between the
vertical and lateral axes 90°.  An example is shown under datho-
lite and humite. 2. Hemimorphic, when all the similar parts of
one bagse are modified alike, but nnlike the corresponding parts of
the other, as in calamine and topaz, (4. v.)

[n this system, the angle hetween O and the vertical prismatic
planes, is 90°, and 4i : 45=90°,

4. Monoctinze Systemn.

In the Monoclinic System the obliquity of the crystals (or of
the vertical axis towards the clinodiagonal) makes the upper and
lower parts in front different, one obtuse and the other acute, and
they are independently modified, as in f. 112, 113.  But the angle

112 113
N
-—->\~-—«~T:-=wm=./ | / ~o

1z i
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of the vertical axis with the orthodiagonal being right, and there-
fore alike on opposite sides, the planes on the four lateral angles
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of the oblique rhombic prism are alike, as in f. 114. The four

planes 13, in thé last mentioned figure, make a clinodiagonal
prism, or clinodome ; the plane 17, in f. 112, is a hemi-orthodome;

and the same with 12, £ 113.

The lateral edges are replaced as in the trimetric system. The
relation of the two forms, in f. 5 and 6, is shown in f. 25. Octahe-
drons may result in this system as in the trimetric; but they
consist of two sets of planes, or hemi-pyramids, as shown in f. 115,
in which 1, 1, are on the obtuse angles of the outer prism, or cor-
respond to the obtuse basal edges of” the inner, while —1 are on the
acute angles or edges. The completed oblique octahedron
corresponds to the planes 1, 1, -1, -1, as in f. 115, 116. The ver-
tical axis ¢ is oblique to b, the clinodiagonal, but at right angles

116 with ¢, the orthodiagonal. The angle of
obliquity is called the angle y or C.
Other octahedrons arise from planes of
different inclinations. '

In this system, the angle between the
plane O and 4, (f. 5), is 90°; O on other
prismatic planes is an oblique angle; %

' on the faces of different clinodomes is
oblique : ¢ on 7, and all hemi-orthodomes, ==90°. The particular
plane to be taken as O, or as /, may be a question for particular
species; the O will always be one of the planes in the clinodi-
agonal section; while any prismatic planes not parallel to either
diagonal, or any octahedral planes, may be taken as /. When
there is no very distinet cleavage to guide to a decision, (and even
when such cleavage exists,) it is common, though not always best,
to assume those planes as the fundamental form, which will render
the calculations and eymbols of the planes most simple.

5. Driclinic System.

As only diagonally opposite edges or angles (f. 8) are similar in
the Triclinic System, there can be in a triclinic crystal hut two
e 3 », PACTO cunle crysta)
planes of a kind, as in £ 117, 118. The inclination of O on /|

differs from O on /. The prism formed hy planes on the pris-
matic edges of 1. 8, parallel to the dingonals, has the same relation
to the form in f. 8, as that of £ 5 to £. 6, of the monoclinic system ;
but unlike the prisms of the monoclinic system, O does not make
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a right angle with any of the lateral planes; there are no right
angles in triclinic forms. The replacement of the basal edges of
the prism, in f. 8, by homologous planes, may produce an octa-
hedron; but it will be included by four sets of planes, two of a kind,
as represented in f. 119. These planes occur independently on
crystals, and, owing to their independence, actual octahedrons are
not met with in nature.

6. Hexagonol System.

1. Holohedral.

w. In the hewagonal prism, (f. 10), the basal edges are alike and
have similar modifications, and the same is true of the lateral edges,
and the solid angles. "When a similar plane occurs on each basal
edge, (f.120), or each basal angle, (. 121), the resulting solid is

120 121

a double six-sided pyramid, (f. 122), called an isosceles dodecahedron,
or a dihexagonal pyramid; it is the Quarteoid of Haidinger.
Figure 121 represents planes of three different Eymmids on the
angles, viz., 12, 42, 22, which differ in the length of the vertical

axis.
Each solid angle of the hexagonal prism, may be replaced by
two similar planes, (asin f. 123), 198 194

and the extension of such planes
produces a double twelve-sided
pyramid, (f. 124)—the berylloid.
The herylloid has two kinds of
terminal edges, one, &, the aa-
inl; the other, ¥, the déagonal.
The truncation of the lateral
edges of the hexagonal prism o :
leads to a secondary hexagonal prism, (f. 9), and (f. 121) diagonal
to the first; and bevelment leads to different twelve-sided prisms.
Tn the rhombohedron, the vertical solid angles, as they are formed
by the meeting of three equal planes and equal plane angles, may
be truncated, or veplaced by three or six similar planes.  The
edges, for a similar veason, may be cither truncated or bevcled.
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The terminal edges, however, are replaced independently of the
lateral.

The lateral angles, six in number, are replaced simultaneously.
Two like intermediary planes may occur on each.

The derivation of two six-sided prisms from a rhombohedron,
has been explained on page 30 ; one, by a truncation of the six
lateral edges, (f. 29); the other, by a replacement of the six lateral
angles, by planes parallel to the vertical axis, (f. 30). The remain-
ing parts of the primary faces on the first of the above prisms, are
rhombic; those on the second, are pentagonal.

A truncation of the terminal edges of the rhombohedron, is
observed in f. 125. Since these edges are six in number, three at
one end of the crystal, alternating with three at the other, the solid
formed by the extension of these planes, must be an oblique solid,
contained under six equal faces: or, in a word, a rhombohedron.
Moreover, hecause the lateral angles are six, and three alternate are
nearer the lower extremity of the axis, and the remaining three
near the upper extremity, the planes on these angles, if not parallel
to the vertical axis, incline alternately above and below, (f. 126);
and, therefore, by their extension, will give rise to rhombohedrons.
These rhombohedrons will differ in the lengths of their vertical
axes, as these planes vary their inclination. The nearer they
approach to parallelism to the vertical axis, the longer the axis of
the rhombohedron; and the six-sided prism formed on these
angles may be considered a rhombohedron, with an infinite axis.
Moreover, other rhombohedrons may be formed hy replacing the
terminal angles by three plaves inelined on the faces or terminal

125 126 127

s

edoes: and as the planes of such sccondury rhombohedrons ap-
b , . . ° v -
proach horizontality, they approximate to the terminal or trunca-
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ting plane, O, which plane may be viewed as a rhombohedron with
the axis=0.

In f. 127, the lateral edges of a rhombohedron are beveled; an
extension of these beveling planes produces the solid represented
in the dotted lines of this figure, which is called a scalenohedron.
It is a solid included by twelve scalene faces. The twelve edges
are of three kinds : 1, the longer terminal, ¥"; 2, the shorter ter-
minal, X; 3, the basal, Z. By other béveling planes, (f. 128),
other scalenohedrons are formed ; and as the vertical axis increases,
they pass into the diagonal hexagonal prism, 42, (f.9). This prism
may hence be considered a scalenohedron with an infinite axis.

Bevelments of the terminal edges (f. 129) give rise to other .
similar solids; and replacements of the lateral angles by -two
planes, (f. 130), afford still other scalenohedrons. Again, the
replacement of the terminal edges of scalenohedrons, or of the

1181 132 133 184

angles, by planes inclined on these edges, gives rise to different
rhombohedrons. In f. 131 there are planes of the rhombohedron,
4R ; in f. 182, planes of ~5./2 ; in f. 183, planes of /2 ; in f. 134,
planes of -2/, A bevelment of the terminal edges, or a replace-
ment of the angles by #wo planes inclined against each terminal
edge, produces other scalenohedrons, (. 133, 134).

When a rhombohedron has its lateral angles replaced, as in
f. 126, and the plane is inclined to the vertical axis at the samne
angle as £, a dihexagonal pyramid or quartzoid results. Such is
the origin of the pyramids of crystals of ¢uartz.

In crystallographic calculations, the rhombohedron, scaleno-
hedron, and related forms, are regarded as hemihedral modifica-
tions of the hexagonal prism, and we proceed now to speak of
them in this relation.

2. Llemihedral.

As the rhombohedron results from a hexagonal prism by a re-
placement of the alfernate basal edges (f. 81) or angles, it is in
this relation hemihedral; and since either set of alternate edges
of the prism may give rise to a series of rhombohedrons, it is usual
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to distinguish one set by the sign +-, and the other by the sign —.
In the double pyramid of quartz, as just explained, we have a
form in which both of these rhombohedrons, +/& and -Z£, are
combined, producing a symmetrical solid. .

The scalenohedrons have the same relation. To comprehend
this form and other hemihedrons more fully, the holohedral form,
in f. 123, may be again referred to. It is a hexagonal prism with
two planes on the angles at either base, inclined on each face, one
the 74ght, (r), at the right upper angle of each face, the other the
left,(1). Inhemihedral forms, half of these planes are suppressed.

1. If; as in f. 135, the suppressed planes are those below, for the
left face 7, (. 128), those above, for the middle Z, those below, for
the right, and so on, alternating around, the resulting forms are
scalenohedrons ; for each occurring pair, /, », corresponds, as is
seen, to a face (R) of the rhombohedron. This kind of hemihe-
drism is called the rhombohedral, by Naumann. :

If the faces that are suppressed inf. 185, shounld be the occurring

135

faces, and the others were suppressed, the same solid would result
in an inverse position. If the rhombohedral plane &, in f. 185, is
taken as -}-72, then the scalenohedron, in the same figure, will be
+, and the inverse one, —; for, inf. 135, the planes Z, &, », belong
to the same axial sector; while £ would not be in the same
sector with the planes of the inverse scalenohedron. Where vari-
ous scalenohedral planes occur together, there may be among them
both - and —, with 4 or — rhombohedral planes.

2. In another kind of hemihedron, the occurring planes of the
two, 7, {, in f. 123, may be the » on each angle at one base, and
the 7 on each at the other base, as in f. 136. This variety is exem-
]{%iﬁed in apatite. It is called the pyramidal hemihedrism by
Naumann, the resulting solid being a six-sided pyramid.

3. In another kind of hemihedron, the occurring planes may be
the 7 of both bases, as in f 137, or the / of both bases. This
occurs in quartz, (see under that species), and 1is called the &rape-
zohedral by Naumann, the resulting solid, made up of such planes
extended, being a trapezohedral double pyramid. It is also called
gyroidal hemihedrism, the planes gyrating to the right or left at
each base.
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A triangular prism, a hemihedral form of the hexagonal prism,
and also hemihedrons of twelve-sided prisms, arve of frequent
oceurrence in Tourmaline.

3. Tetartohedral Forms.

Tetartohedral forms are true hemihedral, if the rhombohedron
under which they occur, is taken as the type of the crystal; but
referred to the hexagonal system, as is conveniently done in calcn-
lations, they are tetartohedral forms, or contain only one-fourth the
number of planes occurring under complete symmetry.

1. In one kind of tetartohedrism, the occurring planes are the
alternate of those on the angles in f. 136—that is, only the alternate
#’s of one base, and the alternate I’s, at the other. A form of this
kind consists of six planes, and being oblique, is a kind of irregular
rhombohedron. It is found in Titanic Tron, and is called rhombo-
hedral tetartohedrism.

2. In a second kind—the trapezohedral tetartohedrism of Nau-
mann, (also gyroidal)—the occurring planes are the alternate »’s
at both bases, (f. 187), (or the alternate /’s). It is observed in
Quartz. (See under that species).’

3. There is also a third kind, in which the opposite extremities
of a rhombohedrally modified prism are unlike in their modifica-
tions, as seen in Tourmaline. It is an example of hemimorphic
tetartohedrism.

II. LAW OF NUMERICAIL PROPORTION, IN THYX MODIFICATIONS OF CRYSTALS.

This law gives a mathematical basis to the science, adding to
symmetry of arrangement a numerical relation in the position of
the planes. It is as follows:

The position of planes is related in some simple ratio to the
relative lengths of the awes of a crystal.

For example.—In a cube the axes are equal. A plane on an
edge, if extended to meet the axes, would cut two of these axes at
some distance from the centre of the crystal. Now this distance
for these axes will either be as 1: 1, (¢, £ 17), that is, a ratio of
equality—a truncating plane; or aratioof 1 : 2, (like 42, f. 32, 33),
1:3,(f 84), 2 : 3, or some other simple ratio. There is no hap-
hazard scattering of faces, but a complete subserviency to this sim-
ple law. If the axes are unequal, as in a trimetric form, then the
ratio is of the same character, except that the relative lengths of
the axes come into the consideration. Thus if «, b, are the axes,
the ratios will be 1a : 18, (13, 1. 103, or 17, {. 112), or 1a : 20,1 : 3b,
and so on.

To explain more precisely, let 4.4, BB, CC, f. 138, be
three axes crossing at right angles, as in the monometric,
dimetrie, and trimetric systems; @, 6, ¢, may stand for the
halves of these axes, or for A8, BS, U8, respectively. All planes
of a crystal meet (or will meet if extended) one, two, or

lyd
[
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three of these axes. A plane may pass through A4, and be paral-
lel to BB, UC, or through B, and be parallel to 44, CC; or

138 through ¢, and be parallel to 44, BB.
Such planes meet one axis, at a distance 1,
T and the others only at an infinite distance,
which is equivalent to being parallel to
them. Hence the expression 1:e : o
describes, in a general manner, the position

5 of such planes; and it becomes more spe-
6"-—-—704___0 cial by adding the letters marking the par-
B ticular axes that are meant in each case, as

1a & b : e, when parallel to b and ¢, wa:

b : 1¢, when parallel to @ and b, etc. The

faces of a cube, square prism, and rectan-

A gular prism, are of this kind. See also
5.

Again, a plane may pass through the points 5 and (} and be par-
allel to 4 A, or through A and O, and be parallel to BB, or through
A and B, and be parallel to CC'. Such planes meet two axes at a
distance 1, and are parallel to the third; and hence 1:1:00 is a
general expression for them , (that is, for the first case, when the
plane is parallel to 44, 16:1¢: wa, or what is the same, ooa:10:
l¢; and so for the others). Or the plane which is parallel to A4,

~and cuts BB’ and CC',may meet BB’ at a distance from the centre,
equal to 20 (=288) while it meets CC at the distance 1¢, (=108).
Then the expression cow:2b:1¢ indicates the plane. If the ratio
of b:cequals 8:1 instead of 2:1, the expression becomes coa : 35 :
lc¢.  In the same manner, 3a: b : 1¢, would imply that the plane
is parallel to BB, and meets A4 at a distance 3a, while (' is
met at a distance le.

Again, if the plane passes through the points 4, B, €, it
has t%le parameters 1¢:1b6:1¢; or if @, b, ¢, are equal, it becomes
1:1:1. Butif 4 be removed to twice its distance from S, then
the ratio would be 2¢:1b:1¢; orif B be removed to twice its
distance from 8] the ratio would be 1a:2b:1¢; or if both 4 and ¢
be so removed, it would be 2¢:16:2¢. Thus, in all cases, what-
ever the position of the plane, the ratio admits of being expressed
in simple numbers. The planes may not actually meet the axes,
but would meet them in each case, (when not parallel to them), if
the plane and the axes were extended ; and thus meeting them, the
ratios of the parameters would be as indicated; for these ratios, for
a plane of given inclination, are the same, whether the intersections
are nearer to, or farther from &, on the principle that a line paral-
lel to the base of a triangle cuts the sides proportionally.

ma:nb: reis a general expression for all planes,in which m, n,
7, may have any value, from unit to infinity.

Figure 106 shows the relations to the axes of the planes 17 and
2v of f. 105. Figure 109 is made up of the planes of f. 108, and
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has the axes 1¢:: 15 : 2¢, the octahedron within being the fundamen-
tal octahedron, with the ratio 1¢:15: le. Figure 111 corresponds
to the planes 23 of f. 110, and has the axes 2@ :1b:2¢. In f. 100,
the inner prism has the ratio o : 16:1c; 4343 is the form 72 of £
101, having the ratio oo@:18: 2¢ ; and¢323 is the form 3 of £. 102,
having the ratio wa:2b: e, as the drawing of the axes shows.

The annexed figure (f 139) will further aid in elucidating
the principle above stated. It repre-
sents a rhombic prism with three
planes on its basal edges; and for
further illustration there are four
planes on the angle to the right, be-
sides two vertical planes, (the corres-
ponding planes on the left side are not
mdicated). Within the rhombic prism
there are the three axes, a¢/, b0/, cc',
crossing at S, the halves of which axes
we call @, b, ¢, as above; b is the
shorter lateral axis, and ¢ the longer.

1. It is obvious that the vertical ¢
planes of the rhombic prismmeet two
of the lateral axes at the distance 19,
lc, and are parallel to the vertical
axis. Hence the expression for them
is @ :1b:1e.

2. The terminal plane is parallel to
the lateral axes, and meets only the
vertical ; or what is equivalent, it corresponds in position to the
plane of the lateral axes, in which the vertical axis is zero. Hence
it is designated 1 : b :oc; or Oc:1b: 1.

8. The plane 72 is parallel to «, the vertical axis, and also to b,
the shorter lateral axis, and meets the axis ¢. Hence the expres-
sion oo : o0b : 1c. The parallelism to b0’ is apparent in the fact that
the ub%per and lower edges of the plane are parallel to this same
axis 00",

4. Consider next, 4, 1, 2, which are planes of as many octahe-
drons. These planes are inclined towards the three axes; and
being on the edgesof the rhombic prism, they have the same ratio
for the lateral axes as that prism, that is, 15: 1¢, and they differ in
the length of the vertical axis, towards which they vary in inclina-
tion.

From b, ¢ (which are connected by a dotted line) lines are drawn
to points in the vertical axis; viz, to §a, 4, 2a ; §a bisects the axis a;
@ is the extremity of the axis ; and 2¢is at double the distance of @
from 8. Hence of these triangular planes, the plane abc=3%a:15b:
ley abe=a:b:c; 20bc=2a:b:c. These three planes correspond to
the three planes on the left basal edge of the prism, being parallel
to them. So, also, the three triangular planes having b¢’ at base,

4

T e s .
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and $a, ¢, 2a, respectively as the apices, correspond to the three
planes on the other basal edge. Hence the expressions for the
planes are,
For &, de: 10 : 1e

1, la: 1b: le

2, 2@ :1b: le
All those forms which have for the lateral axes the ratio of unity,
are described as belonging to the fundamental series. -

5. Take next the planes 47, 1z, 2i. These planes are all parallel
to the shorter lateral axis b, because their mutual intersections, as
well as the intersection of the last with 4z, are parallel to this axis,
for all are horizontal. The line nn is drawn through the extremity
of the axis oc’, parallel to ¥/; and parallel to nn or b6’ we draw
00, pp; ¢, through §a, ¢, 24 ; and from nn we run parallel lines to
00, PPy QI([. The planes nnoo, napp, nnqq, are parallel to the axis b,
and each consequently corresponds to a plane of the same series
with 47, 13, 22 ; moreover they are respectively parallel to 4z, 1%, 27,
and therefore represent these particular planes, 2i being parallel
to nngq, 14 to napp, §% to nmoo.  The expressions for the planes
(horizontal prisms or domes) are therefore,

For }i, Ya: ob: le
14, 1o : wb: le
2%, 2a: wb: le

The fact of parallelism to these particular planes, in an actual
crystal, would be shown, in this as in other cases, by a measure-
ment of the inclinations of these faces. Calculation, the axes being
given, would afford the inclination to the plane of the lateral axes
of the planes nnoo, nnpp, ete., and the correspondence with the ob-
served inclinations would prove the identity; or from the observed
inclination, the position of the plane nnoo could be determined,
or what is equivalent, the length of the vertical axis.

But this parallelism of the planes, in the figure, is obvious, from
the parallelism of certain lines. The planes nnpp and abe’, which
have the same vertical axis, meet in the line a¢’, and this line is
parallel to np. Moreover, a plane ab'c’ has the same intersection
with nnpp. Consequently, the mutual inclinations of the planes
abe', npp, ab'c’, will be parallel to one another. Now abe’ is the

lane 1; and ab'¢’ another-1 on the back side of the crystal, meet-
ing 13. Andif 1z corresponds to nnpp, it must make parallel inter-
sections with the two planes 1, which, in fact, it does. There is
the same evidence that 42 and 27, are planes corresponding to nnoo
and nngq, as above represented.

6. There remain the planes 23and 3. We extend the axis 5’
to, twice the distance &S, (to 26) ; then connect 26 with ¢/, and both
with 2¢. The plane thus outlined has the vertical axis 2a, one
lateral 20, the other 1¢; and consequently is expressed by 2a: 25 :
1c; and this is the plane 23.
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The triangular plane 2¢2b ¢’ intersects nngq, in the line ¢ 2 ;
and so also does the plane 2¢b¢. The same course of reasoning
as the above, shows that the intersections of nngq or 21 with 2ab ¢/
or 2, must be parallel. Consequently, if 23 corresponds to 2«
2b¢', it must make parallel intersections with 2 and 2z, which
it does. The same parallelism would happen, whatever the length
of the axis 6, and the above reasoning only determines the vertical
axis. That the lateral axis b 1is, in this case, 20, is shown by a
correspondence between calculation and measurement.

The plane 43, is parallel to the vertical axis, but not to either of
the lateral axes. By doubling S, extending it to 25, and connecting
20 with ¢/, we have the position of the plane, it corresponding to
e : 20 : le. The intersection of the plane 2a 20 ¢’ with a vertical

lane passing throngh 25 ¢, would be parallel to 26 ¢’, and therefore
Eorizontal, (in a right prism). Hence the intersection of 23 with
3, if 2% corresponds to 2¢2b ¢/, should be horizontal or parallel
to 20 ¢’; and as it is thus parallel and horizontal, 26 is correct for
that plane.

Zonus.—a. Oblique or Tramsverse ' Zones—In f. 140, AA'(«),
BB(b), OC(c), are the three axes of a crystal. By connectin
the extremities of these axes, the plane ABC is formed, whicﬁ
corresponds to a ratio of equality for the axes—that is, 1a : 16 : 1c.
Make CD, DE, each equal OC; and comnnect 4 and B with

140

i

/
D and £ Then the planes ABC, ABD, ABE, are alike in
the ratio of the axes @ and b, but differ in the axis ¢, they cor-



54 CRYSTALLOGRAPHY.

responding respectively to la:1b:1¢, la:1b: 2¢, la: 1b: 3c,
O D being equal to 200, and OF to 30C. So there may be any
number of planes, in which the axis ¢ shall increase until it reaches
infinity ; and, in this last case, the plane will be parallel to the
axis ¢, as ABUV. Referring all these planes to the octahedron
of the figure, the fundamental octahedron, they replace the edge
A B at different inclinations, and all are alike in having the inter-
section with the face ABC, parallel to the edge AB, or to the edge
of ‘the vertical section through the axis 6. Hence flows the
following law : ' :

L AW planes, whose intersections with an octahedral plane are
parallel to the edge AB, in that octahedron, have the same ratio of
atob; orif parallel to the edge AC, they have the same ratio of
@ to c.

If the octahedron, instead of being the fundamental octahedron,
is that expressed by the ratio 2e : 15 : 1¢, which differs from the
fundamental octahedron in having the vertical axis twice as long,
the ratio still holds; and the planes, if making parallel intersec-
tions to AB, would be 2¢:1b: 1le, 20 : 16 : 2¢, 2 : 1b : 3¢, and
80 on to 2@ : 16 : we, the last, the truncating plane, or that parallel
to axis ¢. Or if they make parallel intersections to A C, so that
the ratio « to ¢ is constant, they may be 2¢: 15 : le, 20 : 26 : 1¢,
2a : 3b : 1¢, and so on to 2¢ : b : 1e, in which the last is parallel
to the axis b.

Making O half of O, and connecting .4 and B with #, we have
the plane AZB corresponding to 1a: 15 : 4¢; or making OJ a
quarter of OC, we have A/B, corresponding to 1e : 10 : 3¢ ; and
so till ¢ becomes zero, when the plane is identical with the axial
plane A BA'B, or is a plane parallel to it, and its ratio is 1e : 15 :
Oc. This last plane is a lateral plane of a rectangular or square

rism.

There is thus a zone of planes indicated, lying between 1@ : 15 :

141 0Oc, on one side, and 1@ : 16 ¢ O¢, on the

, other—that is, in the trimetric system

for example, between a vertical plane
parallel to axis & and its opposite.
In like manner, there is another zone
parallel to the edge A, between 1a :
00 : 1¢, on one side, and 1a : 00 : 1e,
on the opposite, or between the other
vertical plane of a rectangular prism
and its opposite. And whatever the
length of the axes of the octahedron,
each edge may have its corresponding
zone of planes. Inthe annexed figure,
(f. 141), one of the zones of planes is
represented : it lies between 4, (the
smaller lateral plane of a rectangular
prism), and its opposite ; it is the same
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illustrated in the preceding figure, (f. 140), 13 being plane
ABE; 15, ABD; 1, plane Al%C’ ; 239, plane ABF'; 44,plane
A BI. liisthe horizontal prism at the middle of the zone.

The fraction in 1¢ : 15 : ¢, is avoided by doubling all the terms,
making 2¢ : 20 : 1¢, in which there is the same ratio for the axes.
The plane GCH, (f. 140), is drawn to correspond to the expres-
sion 2a : 26 : 1¢, 0@ bemng equal to 2a, (or 204), and OH to 2b,
(or 20B); and it is seen that GCH and AFB are parallel planes
in the figure, and therefore identical. So, in place of 1¢ : 16 : {c,
we may write 4a : 4 : le, this being equivalent to la: 16 : ¢,
the difference being that, while 4 is the unit axis in one, ¢ is so in
the other, and this difference is to be carefully observed. These
planes on the octahedron, in f. 140, replace the angle ¢, and have
the intersection with A (OB parallel to 4AB. THence the above
law extends not only to planes about the edge A7, with parallel
intersections, but to all planes making intersections parallel to the
edge; and the same as to edge A C.

'he expression 1w : 15 : Oc, is equivalent to e : b : 1e, (a re-
sult of dividing each term by 0); and this last is the one usually
employed for such vertical planes. ,

The zone (B) making intersections parallel to the edge 4B, or
the brachydvagonal section, in the octahedron 1 : 1b: le, will
hence be, beginning with 17 and passing to 44, (f. 141), 1:1: 0. .
1:1:8..1:1:2..1:1:1..1:1:4..1:1:4..1:1:0;
or the equivalent,1:1:00 .. 1:1:3..1:1:2..1:1:1..
2:2:1..4:4:1.. w:w:1. Thelatter is the form adopted.

In the same manner, there may be a zone for any octahedron,
ma:1b: 1c; and the series (the second of the above) becomes, under
this general expression, m : 1:o0. . .m:1:3 .. .m:1:2 ...
m:1:1..2m:2:1...4m:4:1...o:0:1. Any other
values may be substituted for 3, 2, 4.

A corresponding zone, ('), making parallel intersections with 4 €,
wilbel:w:1...1:83:1..1:2:1..1:1:1..2:1:2
...4:1:4 .. 0:1: ooy or for any octahedron ma : 15 : 1e, it
becomesm:oo:1l .. .m:3:1 . ..m:2:1..m:1:1..2m:
1:2..4m:1:4 .. w:1: o When m becomes infinite, the
two zones form a single series of vertical prisms, as for example,
wilimw..w:;1:8..w:1:2..0:1:1T..0:2:1..0:4:1

. w:o:1. When axis b is infinite, the zone B becomes a verti-
cal series of horizontal planes parallel to axis b ; and when axis ¢
is infinite, the zone € becomes a similar vertical series, parallel to
axis ¢. The basal plane falls into each of these series. These ver-
tical zones are two out of the many series that may exist in
crystals.

b. Vertical Zones—The planes $abc and abe,in f. 139, are parts
of a vertical series having intersections parallel to d¢, and varying in
the vertical axis. This series, as the vertical axis diminishes, ﬁnal}iy
terminates in the top plane Oz :1b : 1¢; and as it increases, ends
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in the vertical plane wa : 15 : 1¢, or the vertical plane <. This is
a zone of planes, having the general expression ma : 10 : 1c; it
includes the terminal plane, and the faces %, 1, 2, <.

The planes 23 and ¢3 are in another zone. The faet of a hori-
zontal intersection between them is proved as already explained,
and it follows that all planes having, in like manner, the ratio for
the lateral axes 26 : 1¢, will have horizontal intersections. This
series is the zone m :2: 1, (or ma : 20 : 1¢.)

It follows also, that whatever the ratio of 4 to ¢, all planes of like
ratio will have horizontal intersections, (the planes of the axesd -
¢ being assumed to be horizontal), and consequently ¢here will be
as many vertical zones as there may be values of b : ¢.

Again, the planes % 17, 2%, ¢4 (f. 139) are in a similar zone paral-
lel to axis 4, in which, therefore, b= ; the general expression is
m w1, (orma: wb:le). As the vertical axis increases, m in-
creases, and when m=oo, the plane is vertical. nnoo, napp, nngq,
nnyy, illustrates the series; the last corresponds to the plane 77, A
similar series, on the other edge and solid angle of the rhombic
prism, would have the general expression m :1:o0, (or ma:
1 : »e.)

Hence, the second law :—

IL. Planes which have their mutual intersections horizontal,
(the plane of the lateral axes being horizontal), ave identical in the
ratio between their lateral axes ; and the converse.

A tabular view of these vertical zones is here presented. The
0 stands for the basal plane, in which each zone terminates above.
The first column corresponds to a vertical zone parallel to axis ¢ ;
the second, to other zones with 1b : nc as the ratio of the lateral
axes, in which » has a different value for each possible zone; the
third, for the fundamental series, in which the ratio of the lateral
axes is 15 : 1¢; the fourth, for other zones having the ratio of the
lateral axes nb : 1¢; the fifth, for the zone parallel to axis b. We
have used / for any fraction less than a unit, 7 and » for numbers
greater than a unit.

0
Pl:lie | Uil 0:1:1 [ l:in:1 | Jiow:1
[1:1: 1:1:2) 1:1:1 1:n:1 1l:o: 1
m:1lio |[m:1:n|lm:1:1 | m:n:l m:oo:li
w:liow |wilin]w:l:1 A | oo:oo'l_;

Fiepressions for planes in the different Crystallographic Sys-
tems.—The several systems of crystallization, since they differ in
their axes, require each some peculiarity in the expressions nsed
for their planes.

In the Monometric system, as the axes are all equal, there is
correctly no vertical axis, and a=>b==c. Kither of the faces of a
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cube is hence expressed by w:1: oo; the truncation of an edge
(face of a dodecahedron) by «w: 1:1; the truncation of an angle
(face of an octahedron) by 1:1:1; andm:1: 1;m:m: 1, m:a
: 1, for other planes.

In the Dimetric system, the vertical is a varying axis; but b=c.
The vertical faces of the prism (f. 2) will be expressed by the same
symbol as the faces of the cube, oo:1: o ; the first term being
considered here and elsewhere as referring to the axis «. The ter-
minal plane is more conveniently considered as having the vertical
axis reduced to zero, (0), as above illustrated. A prism diagonal
with the prism just alluded to (or that truncating its edges, f. 77)
will have theratio o0:1:1. Planes parallel to either axis b or ¢,
(on the basal edges, as in f. 83), will have alike the general expres-
sion, m @ o : 1.

In the Zremetric system, the lateral axes differ from one another,

as well as from the vertical. Ilence one vertical face of the rect-
angular prism (f. 3) has the expression o : 1) @ ¢, and the other
w:oob : le. This expression is made more concise by using in
blace of the letters, the mark — for the longer lateral axis, and -
for the shorter. Thus, considering b shorter than ¢, the expression
w:1b: e becomes w:7:@; and w: «wb: le, becomes wo: & :
1, which last means simply that the plane is parallel to the shorter
lateral axis, this heing énfinite, (o). So in all other cases, the gen-
eral formula ma :nb : 7¢, becomes m : 7 : 7, signifying that the
plane has for its parameters, 7 times the vertical axis, » times the
shorter lateral, and » times the longer lateral, whatever in any case
may be the values of 2, 2, #. The lateral planes of the rhombic
prisin have the ratio o : 1: 1.

In the Monoclinic system, one of the lateral axes is inclined to
the vertical, and the other not. The expression e : nb : re, in
this system, is abbreviated by using an accent for the inclined axis ;
thus the ratio becomes m : % : . In the prism, f 5, the right
hand lateral plane has the expression oo :o5:1; and the front
plane, the expression w: 1 : w; while the planes on the edges, or
the lateral plane of 6, have the ratio «: 1 : 1, the same as for the
right thombic prism. Again, the planes on the angles of f. 114, as
they are parallel to the clinodiagonal, come under the general ex-
pression 2z : o5 1 1. Owing to the inclination of the vertical axis,
the planes in front, above the planc of the axes B0, OO, differ
from those below ; and the two are distinguished Dy the signs for
plus and minus, as in £ 112, 113.

The Zviclinic and Hexagonal systews will be the subject of
remarks on a following page.

System of Notation.—The ratios above given are inconveniently
long for use in the descriptions of crystals, and have been abbrevi-
ated by Naumann. In all cases, one of the last two terms in these
ratios may be a unit. Thus the ratio 6 : 3 : 2 isequal to 3 : §: 1.
We may therefore indicate the ratio of 4 to ¢ by simply a single

8



58 CRYSTALLOGRAPHY.

figure. Thus, 3, in this case, is as explicit as 3 : 1, when we wish
only the general expression. Ience, 3 : 3 would express accu-
rately the plane. Naumann writes the 3 (or number referring to
the vertical axis) before a £, and the other figure after, thus, 3.°%;
80 also o Powo 5 o0 P, (for o0 P1, the unit being implied) ; 3.7, (for 3.1,
as in the last) ; and generally m Pn, for any plane. In the mono-
metric system, the letter O, (initial of Octahedron), is adopted in
placeof 2. The letter has no special meaning, and the expression
is as explicit and more concise, when written without it, thus, 8-3,
istead of 3P3; 38 instead of 37°; oo-wo, instead of wlPw; mn,
instead of mPn. In some cases, however, the use of the letter is
convenient, and especially for hemihedral crystals.

- In the Trémetric system, the expressions become w: &, corres-
ponding tow : & : 13 3-3, corresponding to 8 : % : 1; m-n for m :
1: 5%, or m-n, for m:n:1. Naumann writes mpn, or mPn. It
is preferable to place the long or short mark over the figure refer-
ring to the longer or shorter, respectively, of the lateral axes, as
m P, or mPr.

In the Monoclinic system, m : 1 : n becomes m-n, (or mln);
and m : 2 : 1, becomes m-n(m.L’z).

The symbol for a plane is used for the whole form which the
planes of a kind constitute. Thus the general symbol for a plane
of the regular octahedron (O or 1) is used to designate the octahe-
dron ; the general symbol of a face of the cube, (0O, or w-w),
indicates the cube as a whole.

The Zones alluded to on a preceding page, are well exhibited
through these symbols. Thus, if we write £ for any number less
than a wnit, and 2 and » for any numbers greater, the series in
the dimetric and trimetric systems will be as follows :

Dimetric System. Trimetric System.
0 0
— - ~ ~
! l-n l-» l-» l-n { I-n l-%
1 l-n | 1-» 1-o 1-n 1 1-n 1-%
_ - ~ ~
m | m-n | M-o0 m-o | mn m | mn | m-o
N - - o -
w W= | -0 »-w DN [ -7t »-0

In the table for the démetric system, the column 1 is a series of
octahedrons ending below in a square prism; 2, different series of
8-sided pyramids, 7-n, one for each possible value of 7, and ending
below in corresponding 8-sided prisms; 3, series of octahedrons di-
agonal to those of column 1, and ending in the diagonal prism.
The basal plane 0 is the upper termination of each series or zone.

The table includes an eighth of an upper half of the crystal, the
same planes occurring in each of the eight sections.
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In the table for the #rimetric system, column 1 is the zone par-
allel to the macrodiagonal, consisting of macrodomes, and ending
below in the vertical plane; 3, the fundamental zone; 5, the bra-
chydiagonal zone ; 2 and 4, zones, 7m-n, either side of the fundamental
zone. The table includes a fowrth of an upper half of a crystal,
the same being repeated in each fourth around.

The monoclinic system is similarly presented in the following
table:

0
~ - -
l-o I-n l I-n I-%
~ ~
1-» 1-n 1 1-n 1-
Z
M- | M- m M | Moo
- -1 '] oc‘-n; CI.‘~50
~ ~
—M-o | ~me-n § —-m §-m-n | -
~ ~
~1- | =1-n -1 ~1-n | 1l-o
~ ~
o | -0 —~ —ln | %
=]

Column 1 is the orthodiagonal zone, or series parallel to the or-
thodiagonal ; 3, the fundamental series of octahedrons, the ratio of
the lateral axes being 15 : 1¢, and containing also the faundamental
rhombic prism; 5, the clinodiagonal series; 2 and 4, zones between
the fundamental zone and the orthodiagonal series on one side, and
the clinodiagonal on the other, each having its rthombic prism. The
middle horizonal line of planes, co-w,w-n, », &c.,is a series of
vertical prisms; the planes above it are +, those below are —, ex-
cepting 1n the 5th column, in which those above and below are
alike as they are clinodomes, (see page 43). The table comprises
a fourth of the crystal, including the parts below as well as those
above the middle section.

The various secondary planes of crystals often have a general re-
lation among themselves, which is worthy of more study than it
has yet received. Under Humite, figures are given, (taken, with a
change in the notation, from a paper by M. Scacchi), which show a
remarkable arithmetical progression in the series of planes. Thus
in one zone, there are the octahedral planes %5, %, % 2,%; in
another figure, the planes 2, £, 2, 2; in a third, the series, 4, 1%,
A A4 404 40 and other examples of similar character are seen
in the same figures. It is evident that the planes of each type be-
long together in one system and have a mutual dependence.

In other species similar series may be observed, although they
have not hitherto been as clearly made out. Among the concur-
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rent crystals of the same locality, many different forms often occur,
which are due to a simplification merely of a specific type, by a
dropping of one and another plane; and such forms, however va-
rious, constitute therefore but one system. At other localities there
is often a very different series of planes, many of which are pe-
culiar to the place, or occur only in the combination there ob-
served. The mutual dependence of the planes is such that they
essentially belong together as much as the different parts of a curve
of a given equation. It is customary to mention the known com-
binations of forms of a species, enumerating even those which are
mere simplifications of a given type, and giving the whole equal
importance. The distinction of the various forms of each species
into separate types of dependent series remains to be studied out.

The fact that the axes of crystals have specific dimensions, is at
the basis of the relation by multiples upon which the arrangement
of the planes depends. In the monometric system, as the axes arce
equal, the positions of the planes are independent of any given
length. Thus, if we find a plane on an edge of a cube inclined to
its face at an angle of 153° 26/, as [2) on ba, (f. 142), the ratio of
b to Pa(equivalent to the ratio of the axes

r o 12 ¢ of the plane ab) will be found to be 1 : 2, in-

- dicating that the plane has the ratio 1 : 2: .

In the triangle /°0a, the angle /’ab=153° 26’

[ —90°=63° 26"; and then the ratio /’¢ (=1)
2 2h i 2 tan 63°26'=1: 2.

4 But in the dimetric and other systems, the

inclinations of the planes afford the ratios not
simply of 7 : m, as in the monometric system,
but of ma : nd, (or ma : n, making d=1), etc.,
the lengths of one or more of the axes being
L included in the ratio. In deciding upon the
planes to be considered those of the fundamental series, in a
dimetric or trimetric crystal, and particularly upon the plane
that will give the length of the fundamental vertical axis, or
of the lateral axes, we may be, at times, guided by an octahe-
dral cleavage, in which case the cleavage plane will be the face
1:1:1,—or1:1:0. Inthetrimetric system, there is often a ver-
tical cleavage, parallel to the faces of a rhombic prism, which
rhombie prism would be therefore the fundamental prism %o : 1:1;
and when that is the case, the angle of the prism indicates at
once the ratio of the lateral axes. If this angle, for example, is
1009, we have this angle of a rhomb to determine the ratio of
the diagonals, (the lateral axes); the diagonals divide the rhomb
into four right angled triangles, each having angles of 50° and 40°;
and hence the ratio b (=1) : ¢:: 2:tan 50°, which gives the value
of e.

In the majority of cases, for one or more of the axes, some plane




MODIFICATIONS OF CRYSTALS 61

must be empirically assumed to be that based on the ratio of
unity ; and in deciding upon which, we may be guided often by
finding some plane more frequent than others in occurrence ; or by
detecting analogies with some other species; or by the desirable-
ness of having such a plane as will give the most simple expres-
sions for the ratios of the other planes, an arbitrary criterion often
convenient, rather than correct. We arrive in any case, at a ratio
for the axes, upon which the whole structure of the crystal is based.
If, for example, we obtain as the axial ratios of @ : 0, for a series of
planes, 24 : 1, 1-2 : 1, 06 : 1, it matters little which plane is as-
sumed as fundamental. If the first, then ¢=24, b=1; and then
the planes will be inorder, 1:1: o0, 11100, 4:1: 0. But if wetake
the second as the fundamental one, (as would probably be done),
then ¢=12, b=1, and the ratios for the planes will be 2 : 1 : »,
1:1:0, +:1: . DBoth indicate the same general relation
among the planes. The calculation of the axes in such a case, by
plane trigonometry, would be similar to that above. The inclina-
tion of the plane on the base of a crystal, subtracted from 180°, (or
diminished by 90°), gives the angles of the triangle /°ba, and then
working the triangle by the equation, e (=1) : L2b:: 2 : tan Pab,
we have, as the result, aratio like one of the above. Pursuingthe
same with another plane as @ ¢, another ratio will be obtained,
which is some multiple of the first.

In the trimetric and triclinic systems either of the three axes may
be called the wertical, and authors are not all agreed on this point
with regard to particular minerals. So also in the monoclinic sys-
tem, where there is no cleavage to determine the plane 0/°; or that
of the lateral axes, this plane must be assumed from analogy or ar-
bitrarily as the case may be. Still, in comparing the angles of
different species, it is necessary to ascertain, by some facts or analo-
gies, which are actually the Zomologous axes, as only such are prop-
erly related.

It is convenient to remember that when Z2/°¢) is a right angle,
the sum of the angles fca, Qlac, is 270°; or whatever the angle,
RPQ, ReatQue=180°4+LR Q. If £1°¢)is100°, then Lca+Qac
=280°.  Another elementary fact in geometry of frequent use in
crystallography is, that the sum of the two angles ¢/’¢ and cal’ of
the triangle ¢Pa, equals the external angle Z2ca. So that Roa
being known, Pac is found by subtracting /¢, the angle of the
edge, from Lca.

Plane and spherical trigonometry may be used also for deter-
mining the axes from any given planes, and for ascertaining the
angles from the axes. DBut the calculations by meauns of equations
derived from analytical geometry are the most complete, and most
general in their application ; and to these we now proceed, pre-
senting more in detail many points barely glanced at in the pre-
ceding pages.
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I. ORTHOMETRIC SYSTEMS.*

I. GENERAL FORMULAS.
1. Inclinations between planes of different forms, or unlike planes.

1. The parameters of any plane have been stated to be an ex-
pression of the position of this plane with reference to the axes.
Thus, in f. 40, the paramecters of a plane ABC, are A0, BO,
00, or ¢:b:c, AA', BB, CC being three rectangular axes,
each hisected at (2. The plane 4 B (" is similar in its parameters,
except that the axis "0 is on the opposite side of 0.  Hence the
ratio is @ : b1 —c.

For a like reason, the parameters of AC' B’ are @ :—b: —c.

«“ “ ABC % a:—b: c.
¢ “ A'BC “—a: b: o
¢ s A'BC “—a: b:i—c.
18 143 A/O/.BI 19 — ___._b [u——y
13 « _A/“B/O “o__q ~b : c.

In the employment of general formulas, and substituting the
values of the parameters in the equations, the signs should be
carefully regarded. In most cases that come up for calculation,
the planes are in the same octant and are then of the same signs.

2. Representing the parameters of any plane by ¢ : b : ¢, and
also of any other plane by & : ' : ¢/, and placing W for the supple-
ment of their mutual inclination,

Cos We=— aa’bb’-{-—cc’aa’-i—(‘)b’cc'
, v(a2b2+02a2+bﬁcﬂ)v(a/}bl2+clﬂalﬂ_’_blﬂc/?)

In using this equation, the actual values of the parameters are
to be substituted for the letters. For the planes m-n, m/-n/, in the
same octant, in which the parameters would be ma : b ¢ ne, and
m'a ;b n'e,

ana, by ne are substituted severally for @, b, c.
m'a, by n'c « «“ “oa, b d

2. Eguations for determining the Parameters of planes by their
Lntersections.

3. When in a zone of planes, a plane 2/ : 2" : 7/’ makes parallel
intersections between two planes ' : 2/ @ # and m : n : 7, the re-
lation of 22, n, », for either one of these planes may be ascertained,
if their values for the other two planes are known, by means of the
equation

1 1 1 1 1 1
+ at = + +1'm”n’ .

Y R Y A R Y N

# The following pages are a condensed abstract from Naumann’s very elaborate
treatise on Crystallography.
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In using the equation, the values of m and n, (or 72, n,7), in two
of the planes, are to be substituted for the letters, (not neglecting
to note the signs as above explained, when the planes belong to
different octants), and the equation then reduced. If »,9”, 7", each
equals 1, the equation becomes for the planes m-n, m'-n"', m/-n':—

1,1 ;1 1 11

- T
mn! Vam” e mm” | am | om

This equation is simplified for other forms in the following ta-
ble: the plane of which the relation for 7/ and »’ is required, is
supposed to make parallel intersections between a plane mentioned
on the margin of the table and another over the column of formulas.
For the first of the equations, the simplification consists in substi-
tuting 7' for the #/ in the general equation, since 7/-m/ is sub-
stituted for m'-n’ ; in the third, 1 is substituted for »/; in the
fourth o for 7/, and so on, the equation being reduced after the
substitution. Several of these equations are deducible from the
ex%%,anations on pages 53 to 56. ’

hen o enters into the equation, on reducing it, all the terms
not containing o as a coeflicient are expunged, a result that follows
necessarily, from dividing the whole equation by infinity; and if
»? occurs, all but the terms containing »? are for a like reason
dropped.

a. Form m-n.

m/-m!, (n'=m’) 1. m" (m—’) nd-n’" (m'—n) m—m''n’" (m—n)==0.
m/-2, (n'=2) © 2. mn!! (m'n—2m) 4-2m’ (m—m’) 40"’ (2—n) mm’==0.
m/, (n'=1) 3. mn! (m'n—m)Fm’” (m—n') ntn'" (n—1) mm'=0.
m/’- o 4. " (m—m') n4n'’ (m/—n’’) m=0.
wo-n!, (/=) 5. m!” ('—n') ntn'! (n'—n) m==0,
®-2 6. m/ (2—n") n—n' (2—n) m=0.
3 7. m’ (n'—1) n—n'’ (n—1) m==0.
1 8. m!! (m—1) n—n'" (n—1) m—m''n" (sn—n) ==0.

m!'’ m
®- ® 9 —=

n’ n

0 (bagal plane) 10, n//=n.

b. m-m, in which n=m.

m!, (n'=1) 1. m/'n” (m'—1) 4-m!" (m—m’) —a” (m—1) m’==0,
m’- 2. m!! (m—m’) mA-n!’ (m'—m’") m=0.
-/, (/== w) 8. m/ (n!’'—n') 40’ (n'—m) ==0.
® 4. m!" (n’—~1)—n"" (n—1) =0,
1 5. m==n'", m'" m.
0~ @ 6. m/=n'", m' >m.
¢. m-2, in which n=2.
m’ 1. ma!’ (m—2m’) 4-2m” (m—m) - nin'n’’==0.
m’- 2. 2m!’ (m—m’) -Fn" (m'—m’’) m==0.
c-n! 3. 2m” (n!'—n') —n'" (2—n') m==0.
@ 4. n’ (2m!!—an)—2m'’==0.
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. m, in which n=1.

m’-a 1w’ (m—m!) 4!’ (i —wmn!’ ym=0.
@-n' 2. m! (n'—n'y -n'" (n'—1) m==0,
»-2 8. 2m!'—an’” (m!4-m)=0.
@ 4. al=1, m'">m.
1 5. w'=1, m''<m.
m'’
P-® 6. =
¢. m~o, in which n==m,
w-n' 