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PREFACE TO THE THIRD EDITION

The first edition of this book appeared in 1877 and approximately twenty
years later (1898) the second and revised edition was published. Now,
again after more than twenty years, comes the third edition. The changes
involved in the present edition are chiefly those of addition, the general
character and form of the book having been retained unchanged. In the
section on Crystallography the important change consists in the introduction
of the methods employed in the use of the stereographic and gnomonic pro-
jections. A considerable portion of the section on the Optical Characters of
Minerals has been rewritten in the endeavor to make this portion of the book
simpler and more readily understood by the student. In the section on
Descriptive Mineralogy all species deseribed since the previous edition have
been briefly mentioned in their proper places. Numerous other changes and
corrections have, of course, been made in order to embody the results of
mineral investigation during the last two decades. Only minor changes have
been made in the order of classification of the mineral species. It was felt
that as this book is so closely related to the System of Mineralogy it was
unwise to attempt any revision of the chemical classification until a new
edition of that work should appear. The description of the methods of
Crystal Drawing given in Appendix A has been largely rewritten. A new
table has been added to Appendix B in which the minerals have been grouped
into lists according to their important basic elements. Throughout the book
the endeavor has been to present in a clear and concise way all the information
needed by the elementary and advanced student of the science.

The editor of this edition is indebted especially to the published and un-
published writings of the late Professor Samuel L. Penfield for much ma-
terial and many figures that have been used in the sections of Crystallog-
raphy and The Optical Character of Minerals. He also acknowledges the
cordial support and constant assistance given him by Professor Edward S.
Dana.

WirLiam E. Forp

Nrw Haven, Conn., Dec. 1, 1921,
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PREFACE TO THE SECOND EDITION

Tue remarkable advance in the Science of Mineralogy, during the years
that have elapsed since this Text-Book was first issued in 1877, has made it
necessary, in the preparation of a new edition, to rewrite the whole as well as
to add much new matter and many new illustrations.

The work being designed chiefly to meet the wants of class or private
instruction, this object has at once determined the choice of topies discussed,
the order and fullness of treatment and the method of presentation.

In the chapter on Crystallography, the different types of crystal forms are
described under the now accepted thirty-two groups classed according to their
symmetry. The names given to these groups are based, so far as possible,
upon the characteristic form of each, and are intended also to suggest the
terms formerly applied in accordance with the principles of hemihedrisni.
The order adopted 1s that which alone seems suited to the demands of the
elementary student, the special and mathematically simple groups of the
isometric system being described first. Especial prominence is given to the
“normal group’ under the successive systems, that is, to the group which 1s
relatively of most common occurrence and which shows the highest degree of
symmetry. The methods of Miller are followed as regards the indices of the
different forms and the mathematical calculations.

In the chapters on Physical and Chemical Mineralogy, the plan of the
former edition is retained of presenting somewhat fully the elementary prin-
ciples of the science upon which the mineral characters depend; this is par-
ticularly true in the department of Optics. The effort has been made to give
the student thie means of becoming practically familiar with all the modern
mcthods of investigation now commonly applied. Especial attention is,
therefore, given to the optical properties of crystals as revealed by the miecro-
scope. Further, frequent references are introduced to important papers on
the different subjects discussed, in order to direct the student’s attention to
the original literature.

The Descriptive part of the volume is essentially an abridgment of the
Sixth Edition of Dana’s System of Mineralogy, prepared by the author (1892).
To this work (and future Appendices) the student is, therefore, referred for
fuller deseriptions of the erystallographic and optical properties of species, for
analyses, lists of localities, ete.; also for the authorities for data here quoted.
In certain directions, however, the work has been expanded when the interests

v



vl PREFACE TO THE SECOND EDITION

of the student have seemed to demand it; for example, in the statement of
the characters of the various isomorphous groups. Attention is also called to
the paragraph headed “Diff.,” in the deseription of each common species, in
which are given the distinguishing characters, particularly those which serve
to separate it from other species with which it might be easily confounded.

The list of American localities of minerals, which appeared as an Appendix
m the earlier edition, has been omitted, since in its present expanded form
it requires more space than could well be given to it; further, its reproduc-
tion here is unnecessary since 1t is accessible to all interested not only in the
System of Mineralogy but also in separate form. A full topical Index has
been added, besides the usual Index of Species.

The obligations of the present volume to well-known works of other au-
thors — particularly to those of Groth and Rosenbusch — are too obvious to
require special mention. The author must, however, express his gratitude
to his colleague, Prof. L. V. Pirsson, who has given him material aid in the
part of the work dealing with the optical properties of minerals as examined
under the microscope. He is also indebted to Prof. S. L. Penfield of New
Haven and to Prof. H. A. Miers of Oxford, England, for various valuable
suggestions.

EpwARD SALISBURY DANA

New Haven, Conn., Aug. 1, 1898.
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INTRODUCTION

1. THE SciENCE OF MINERALOGY treats of those inorganic species called
minerals, which together in rock masses or in isolated form make up the
material of the crust of the earth, and of other bodies in the universe so far
as it is possible to study them in the form of meteorites.

2. Definition of a Mineral. — A Mineral is a body produced by the proc-
esses of tnorganic nature, having a definite chemical composition and, if formed
under favorable conditions, a certain characteristic molecular structure which
1s exhibited in its crystalline form and other physical properties.

This definition calls for some further explanation.

First of all, a mineral must be a homogeneous substance, even when
minutely examined by the microscope; further, it must have a definite
chemical composition, capable of being expressed by a chemical formula.
Thus, much basalt appears to be homogeneous to the eye, but when examined
under the microscope in thin sections it is seen to be made up of different
substances, each having characters of its own. Again, obsidian, or volcanic
glass, though it may be essentially homogeneous, has not a definite composition
corresponding to a specific chemical formula, and is hence classed as a rock,
not as a mineral species. Further, several substances, as tachylyte, hyalome-
lane, etc., which at one time passed as minerals, have been relegated to
petrology, because it has been shown that they are only local forms of basalt,
retaining an apparently homogeneous form due to rapid cooling.

Again, a mineral has in all cases a definite molecular structure, unless the
conditions of formation have been such as to prevent this, which is rarely true.
This molecular structure, as will be shown later, manifests itself in the physical
characters and especially in the external erystalline form.

It is customary, as a matter of convenience, to limit the name mineral to
those compounds which have been formed by the processes of nature alone,
while compounds made in the laboratory or the smelting-furnace are at most
called artificial minerals. Further, mineral substances which have been pro-
duced through the agency of organic life are not included among minerals,
as the pearl of an oyster, the opal-silica (tabasheer) secreted by the bamboo,
ete. Finally, mineral species are, as a rule, limited to solid substances; the
only liquids included being metallic mercury and water. Petroleum, or
mineral oil, is not properly a homogeneous substance, consisting rather of
several hydrocarbon compounds; it is hence not a mineral species.

It is obvious from the above that minerals, in the somewhat restricted
sense usually adopted, constitute only a part of what is often called the
Mineral Kingdom.

3. Scope of Mineralogy. — In the following pages, the general subject
of mineralogy is treated under the following heads:

(1) Crystallography. — This comprises a discussion of crystals in general
and especially of the crystalline forms of mineral species.

1



2 INTRODUCTION

(2) Physical Mineralogy. — This includes a discussion of the physical
characters of minerals, that is, those depending upon cohesion and elasticity,
density, light, heat, electricity, and so on.

(3) Chemical Mineralogy. — Under this head are presented briefly the
general prineiples of chemistry as applied to mineral species; their charac-
ters as chemical compounds are described, also the methods of investigating
them from the chemical side by the blowpipe and other means.

(4) Descriptive Mineralogy. — This includes the classification of minerals
and the description of each species with its varieties, especially in its relations
to closely allied species, as regards crystalline form, physical and chemical
characters, oceurrence in nature, and other points.

4. Literature. — Reference 1s made to the Introduction to the Sixth
Edition of Dana’s System of Mineralogy, pp. xlv-Ixi, for an extended list of
independent works on Mineralogy up to 1892 and to its Appendices I, 11
and IIT for works published up to 1915; the names are also given of the
many scientific periodicals which contain original memoirs on mineralogical
subjects. For the convenience of the student the titles of a few works,
mostly of a general character, are given here. Further references to the
literature of Mineralogy are introduced through the first half of this work,
particularly at the end of the sections dealing with special subjects.

Crystallography and Physical Mineralogy

EarLy Works * include those of Romé de UIsle, 1772; Hatiy, 1822; Neumann, Krys-
tallonomie, 1823, and Krystallographie, 1825; Kupffer, 1825; Grassmann, Krystallonomie,
1829; Naumann, 1829 and later; Quenstedt, 1846 (also 1873); Miller, 1839 and 1863;
Grailich, 1856; Kopp, 1862; von Lang, 1866; Bravais, Etudes Crist., Paris, 1866 (1849);
Schirauf, 1866-68; Rose-Sadebeck, 1873.

RecENT works include the following:

Bayley. FElementary Crystallography, 1910.

Beale. Introduction to Crystallography, 1915.

Beckenkamp. Statische und kinetische Kristalltheorien, 1913—.

Bruhns. Elemente der Krystallographie, 1902.

Goldschmidt. Index der Krystallformen der Mineralien; 3 vols, 1886-91. Also
Anwendung der Linearprojection zum Berechnen der Krystalle, 1887. Atlas der Krystall-
formen, 1913-.

Gossner. Kristallberechnung und Kristallzeichnung, 1914.

Groth. Physikalische Krystallographie und Einleitung in die krystallographische
Kenntniss der wichtigeren Substanzen, 1905.

Klein. Einleitung in die Krystallberechnung, 1876

Lewis. Crystallography, 1899.

. Liebisch. Geometrische Krystallographie, 1881. Physikalische Krystallographie,
891.
: i\’[allard. Traité de Cristallographie géométrique et physique; vol. 1, 1879; vol. 2,
884.

Moses. Characters of Crystals, 1899.

Reeks. Hints for Crystal Drawing, 1908,

Sadebeck. Angewandte Krystallographie (Rose’s Krystallographie, I1. Band), 1876.

Sohncke. Entwickelung einer Theorie der Krystallstruktur, 1879.

Sommerfeldt. Physikalische Kristallographie, 1907; Die Kristallgruppe, 1911.

Story-Maskelyne. Crystallography: the Morphology of Crystals, 1895.

Tutton. Crystalline Structure and Chemieal Constitution, 1910; Crystallography and
Practical Crystal Measurement, 1911.

Viola. Grundziige der IKristallographie, 1904.

Walker. Crystallography, 1914.

*The full titles of many of these are given in pp. li-Ixi of Dana's System of Miner-
alogy, 1892,
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Wallerant. Cristallographie, 1909.

Websky. Anwendung der Linearprojection zum Berechnen der Krystalle (Rose's
Krystallographie I11. Band), 1887.

Williams. Elements of Crystallography, 1890.

Wiilfing. Die 32 krystallographischen Symmetrieklassen und ihre einfachen Formen,
1914.

In Paysicar MINERALOGY the most important general works are those of Schrauf
(1868), Mallard (1884), Liebisch (1891), mentioned in the above list; also Rosenbusch,
Mikr. Physiographie, ete. (1892). Important later works include the following.

Davy-Farnham. Microscopic Examination of the Ore Minerals, 1920.

Duparc and Pearce. Traité de Technique Minéralogique et Pétrographique, 1907.

Groth. Physikalische Krystallographie, 1905.

Groth-Jackson. Optical Properties of Crystals, 1910.

ohannsen. Determination of Rock-Forming Minerals, 1908.  Manual of Petrographic
Methods, 1914.

Murdoch. Microscopical Determination of the Opaque Minerals, 1916.

Nikitin, translated into French by Duparc and de Dervies. La Methode Universelle
de Fedoroff, 1914.

Winchell. Elements of Optical Mineralogy, 1909.

Wright. The Methods of Petrographic-Microscopic Researeh, 1911.

General Mineralogy

Of the many works, a knowledge of which is needed by one who wishes a full acquaint-
ance with the historical development of Mineralogy, the following are particularly im-
portant. Very earty works melude those of Theophrastus, Pliny, Linneus, Wallerius,
Cronstedt, Werner, Bergmann, Klaproth.

Within the nineteenth eentury: Haiiy’s Treatise, 1801, 1822; Jameson, 1816, 1820;
Werner's Letztes Mineral-System, 1817; Cleaveland’s Mineralogy, 1816, 1822; Leonhard’s
Handbuch, 1821, 1826; Mohs’s Min., 1822; Haidinger’s translation of Mohs, 1824; Breit-
haupt's Charakteristik, 1820, 1823, 1832; Beudant’s Treatise, 1824, 1832; Phillips’s Min.,
1823, 1837; Shepard’s Min., 1832-35, and later editions; von Kobell's Grundziige, 1838;
Mohs's Min., 1839; Breithaupt’s Min., 1836-1847; Haidinger’s Handbuch, 1845; Nau-
mann's Min., 1846 and later; Hausmann’s Handbuch, 1847; Dufrénoy’s Min., 1844-1847
(also 1856-1859); Brooke & Miller, 1852; J. D. Dana’s System of 1837, 1844, 1850, 1854,
1868.

More REcENT WORKS are the following:

Bauer. Lehrbuch der Mineralogie, 1904.

Bauerman. Text-Book of Descriptive Mineralogy, 1884.

Baumhauer. Das Reich der Krystalle, 1889.

Bayley. Descriptive Mineralogy, 1917.

Blum. Lehrbuch der Mineralogie, 4th ed., 1873-1874.

Brauns. Das Mineralreich, 1903. English, translation by Spencer, 1912.

Clarke. The Data of Geochemistry, 1916.

Dana, E. S. Dana's System of Mineralogy, 6th ed., New York, 1892. Appendix I,
1899; 11, 1909; III, 1915. Also (elementary) Minerals and How to study them, New
York, 1895.

Dana-Ford. Manual of Mineralogy, 1912.

Des Cloizeaux. Manuel de Minéralogie; vol. 1, 1862; vol. 2, ler Fasc., 1874; 2me.
1893.

Groth. Tabellarische Uebersicht der Mineralien, 1898.

Hintze. Handbuch der Mineralogie, 1889-1915.

Iddings. Rock Minerals, 1906.

Kraus. Descriptive Mineralogy, 1911.

Lacroix. Minéralogie de la I'rance et de ses Colonies, 5 vols., 1893-1913.
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Ax. pl. Plane of the optic axes. H.
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Bx,. Obtuse bisectrix (p. 277). O.F.
B.B. Before the Blowpipe (p. 330). Pyr.
Comp. Composition.
Diff. Differences, or distinctive char- R.F.

acters. Var.
G. Specific Gravity.

Hardness.

Observations on oceurrence, ete.

Oxidizing Flame (p. 331).

Pyrognosties or blowpipe and
allied characters.

Reducing Flame (p. 331).

Varieties.

The sign A is used to indicate the angle between two faces of a crystal, as am (100 A 110)

= 44° 30'.






PART I. CRYSTALLOGRAPHY

GENERAL MORPHOLOGICAL RELATIONS OF
CRYSTALS

5. Crystallography. — The subject of Crystallography includes the
description of the characters of crystals in general; of the various forms of
crystals and their division into classes and systems; of the methods of study-
ing crystals, including the determination of the mathematical relations of
their faces, and the measurcment of the angles between them; finally, a de-
seription of compound or twin crystals, of irregularities in crystals, of crystal-
line aggregates, and of pseudomorphous crystals.

6. Definition of a Crystal.— A erystal * is the regular polyhedral form,
bounded by smooth surfaces, which is assumed by a chemical compound, under
the action of its intermolecular forces, when passing, under suitable eonditions,
from the state of a liquid or gas lo that of a solid.

As expressed in the foregoing definition, a crystal is characterized, first, by
its definite internal molecular structure, and, second, by its external form. A
crystal is the normal form of a mineral species, as of all solid chemical com-
pounds; but the conditions suitable for the formation of a crystal of ideal
perfection in symmetry of form and smoothness of surface are never fully
realized. Further, many species usually occur not in distinet crystals, but
in massive form, and in some exceptional cases the definite molecular struc-
ture is absent.

7. Molecular Structure in General.— By definite molecular structure
is meant the special arrangement which the physical units, called molecules,T
assume under the action of the forces exerted between them during the forma-
tion of the solid. Some remarks are given in a later article (p. 22 ¢t seq.) in
regard to the kinds of molecular arrangement theoretically possible, and their
relation to the symmetry of the different systems and classes of crystals.

The definite molecular structure is the essential character of a crystal, and
the external form is only one of the ways, although the most important, in
which this structure is manifested. Thus it is found that all similar direc-
tions in a crystal, or a fragment of a crystal, have like physical characters,]

* Tn its original signification the term crystal was applied only to crystals of quartz,
which the ancient philosophers believed to he water congealed by intense cold. Hence the
term, from xpioTalos, ice.

1 Recent studies, particularly those made by the use of the X-ray, would indicate that
the unit of crystalline structure is the atom rather than the molecule. The grouping of
the atoms to form a molecule is extended in the analogous grouping of the molecules to
form a crystal.

1 This subject is further elucidated in the chapter devoted to Physical Mineralogy,
where it is also shown that, with respeet to many, but not all, of the physical characters.
the converse of this proposition is true, viz., that unlike directions in a crystal have in
general unlike properties.

7
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as of elasticity, cohesion, action on light, ete. This is clearly shown by the
cleavage, or natural tendency to fracture in certain directions, yielding more
or less smooth surfaces; as the cubic eleavage of galena, or the rhombohedral
cleavage of calcite. It is evident, therefore, that a small erystal differs from
a large one only in size, and that a fragment of a crystal is itself essentially a
erystal in all its physical relations, though showing no erystalline faces.

Further, the external form without the corresponding molecular structure
does not make a crystal of a solid. A model of glass or wood is obviously
not a crystal, though having its external formm, because there is no relation
between form and structure. Also, an octahedron of malachite, having the
form of the crystal of cuprite from which it has been derived by chemical
alteration, is not a crystal of malachite, but what is known as a pseudomorph
(see Art. 478) of malachite after cuprite.

On the other hand, if the natural external faces are wanting, the solid is
not called a crystal. A cleavage octahedron of fluorite and a cleavage rhom-
bohedron of caleite are not properly crystals, because the surfaces have been
yielded by fracture and not by the natural molecular growth of the erystal.

8. Crystalline and Amorphous. — When a mineral shows no external
crystalline form, it is said to be massive. It may, however, have a definite
molecular structure, and then 1t is said to be crystalline. If this structure, as
shown by the cleavage, or by optical means, is the same in all parallel direc-
tions through the mass, it is deseribed as a single individual. If it varies from
grain to grain, or fiber to fiber, it is said to be a crystalline aggregate,* since it
is in fact made up of a multitude of individuals.

Thus in a granular mass of galena or caleite, it may be possible to separate
the fragments from one another, each with its characteristic cubic, or rhom-
bohedral, cleavage. Even if the individuals are so small that they cannot be
separated, yet the cleavage, and hence the crystalline structure, may be evi-
dent from the spangling of a freshly broken surface, as with fine-grained statu-
ary marble. Or, again, this aggregate structure may be so fine that the
crystalline structure can only be resolved by optical methods with the aid of
the microscope. In all these cases, the structure is said to be erystalline.

If optical means show a more or less distinct erystalline structure, which,
however, cannot be resolved into individuals, the mass is said to be crypto-
crystalline; this is true of some assive varieties of quartz.

If the definite molecular structure is entirely wanting, and all directions in
the mass are sensibly the same, the substance is said to be amorphous. This
is true of a piece of glass, and nearly so of opal. The amorphous state is rare
among minerals.

A piece of feldspar which has been fused and cooled suddenly may be in the glass-like
amorphous condition as regards absence of definite molecular structure. But even in such
cases there is a tendeney to go over into the crystalline condition by molecular rearrange-
ment. A transparent amorphous mass of arsenic trioxide (As)0;), formed by fusion,
becomes opaque and erystalline after a time. Similarly the steel beams of a railroad bridge
may gradually become erystalline and thus lose some of their original strength because of
the molecular rearrangement made possible by the vibrations caused by the frequent jar of
passing trains. The microscopic study of rocks reveals many cases in which an analogous
change in molecular structure has taken place in a solid mass, as caused, for example, by
great pressure.

* The eonsideration of the various forms of crystalline aggregates is postponed to the
end of the present chapter.
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9. External Form. — A crystal is bounded by smooth plane surfaces,
called faces or planes,* showing in their arrangement a certain characteristic
symmetry, and related to each other by definite mathematical laws.

Thus, without inquiring, at the moment, into the exact meaning of the
term symmetry as applied to crystals, and the kinds of symmetry possible,
which will be explained in detail later, it is apparent that the accompanying
figures, 1-3, show the external form spoken of. They represent, therefore,
certain definite types.

Galena Vesuvianite Chrysolite

10. Variation of Form and Surface. — Actual crystals deviate, within
certain limits, from the ideal forms.

First, there may be variation in the size of like faces, thus producing what
are defined later as distorted forms. In the second place, the faces are rarely
absolutely smooth and brilliant; commonly they lack perfect polish, and they
may even be rough or more or less covered with fine parallel lines (called
striations), or show minute elevations, depressions or other peculiarities.
Both the above subjects are discussed in detail in another place.

It may be noted in passing that the characters of natural faces, just
alluded to, in general make it easy to distinguish between them and a facc
artificially ground, on the one hand, like the facet of a cut gem;
or, on the other hand, the splintery uneven surface commonly
vielded by cleavage.

11. Constancy of the Interfacial Angles in the Same
Species. — The angles of inclination between like faces on
the crystals of any species are essentially constant, wherever
they are found, and whether products of nature or of the
laboratory. These angles, therefore, form one of the im-
portant distinguishing characters of a species.

Thus, in Fig. 4, of apatite, the angle between the adjacent
faces x and m (130° 18’) is the same for any two like faces,
similarly situated with reference to each other. Further, this Apatite
angle is constant for the species no matter what the size of
the erystal may be or from what locality it may come. Moreover, the angles
between all the faces on crystals of the same species (cf. Figs. 5-8 of zircon
below) are more or less closely connected together by certain definite
mathematical laws.

* This latter word is usually limited to cases where the direction, rather than the
definite surface itself, is designated.
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12. Diversity of Form, or Habit. — While in the crystals of a given
species there is constancy of angle between like faces, the forms of the erystals
may he exceedingly diverse. The accompanying figures (5-8) are examples
of a few of the forms of the species zircon. There is hardly any limit to the
number of faces which may occur, and as their relative size changes, the
habit, as it is called, may vary indefinitely.

b

§ .

"\v w

Zircon

13. Diversity of Size. — Crystals occur of all sizes, from the merest
microscopic point to a yard or more in diameter. It is important to under-
stand, however, that in a minute erystal the development is as complete as
with a large one. Indeed the highest perfection of form and transpareney is
found only in crystals of small size.

A single erystal of quartz, now at Milan, is three and a quarter feet long and five and a
half in eircumference, and its weight is estimated at eight hundred and seventy pounds.
A single cavity in a vein of quartz near the Tiefen Glacier, in Switzerland, diseovered in
1867, afforded sioky quartz erystals, a considerable number of which had a weight of 200
to 250 pounds. A gigantic beryl from Acworth, New Hampshire, measured four feet in
length and two and a half in circumference; another, from Grafton, was over four feet long,
and thirty-two inches in one of its diameters, and weighed about two and a half tons.

14. Symmetry in General. — The faces of a ecrystal are arranged
according to certain laws of symmetry, and this symmetry is the natural
basis of the division of erystals into systems and classes. The symmetry
may be defined in relation to (1) a plane of symmetry, (2) an axis of symimetry,
and (3) a center of symmetry.

These different kinds of symtmetry may, or may not, be combined in the
same crystal. It will be shown later that there is one class, the crystals of
which have neither center, axis, nor plane of symmetry; another where there
1s only a center of symmetry.  On the other hand, some classes have all these
elements of symmetry represented.

15. Planes of Symmetry. — A solid is said to be geometrically * sym-
metrical with reference to a plane of symmetry when for each face, edge, or
solid angle there is another similar face, edge, or angle which has a like posi-
tion with reference to this plane. Thus it is obvious that the crystal of am-
phibole, shown in Fig. 9, is symmetrical with reference to the central plane
of symmetry indicated by the shading.

* The relation between the ideal geometrical symmetry and the actual erystallographic
symmetry is discussed in Art. 18.
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In the ideal erystal this symmetry is right symmeiry in the geometrical
sense, where every point on the one side of the plane of symmetry has a eor-
responding point at equal distances on the other side,
measured on a line normal to it. In other words, in
the ideal geometrical symmetry, one half of the erystal
is the exaet mirror-image of the other half.

A erystal may have as many as nine planes of sym-
metry, three of one set and six of another, as is illustrated
by the eube * (Fig. 16). Here the planes of the first set
pass through the crystal parallel to the cubic faces; they
are shown m Ilig. 10. The planes of the second set join
the opposite eubic edges; they are shown in Fig. 11.

16. Axes of Symmetry. — If a solid can be revolved
through a eertain number of degrees about some line as
an axis, with the result that it agam oceupies preeisely
the same position in space as at first, that axis is said L]
to be an axis of symmetry. There are four different Amphibole
kinds of axes of symmetry among erystals; they are de-
fined aceording to the number of times which the erystal repeats itself in ap-

pearance during a complete revolution of 360°.

(a) A erystal is said to have an axis of binary, or twofold, symmetry when
a revolution of 180° produees the result named above; in other words, when it
repeats itself twiee in a eomplete revolution. This is true of the erystal shown
in Fig. 12 with respect to the vertieal axis (and indeed each of the horizontal
axes also).

(b) A erystal has an axis of trigonal, or threefold, symmetry when a revo-
lution of 120° is needed; that is, when it repeats itself three times in a eom-
plete revolution. The vertical axis of the erystal shown in Fig. 13 is an axis
of trigonal symmetry.

(¢) A erystal has an axis of fetragonal, or fourfold, symmetry when a
revolution of 90° is called for; in other words, when it repeats itself four
times in a eomplete revolution. The vertical axis in the erystal shown in
Fig. 14 1s sueh an axis.

(d) Finally, a erystal has an axis of hexagonal, or sizfold, symmetry when
a revolution of 60° is called for; in other words, when 1t repeats itself six
times in a eomplete revolution. This is illustrated by Fig. 15.

11

Symmetry Planes in the Cube

* This is the cube of the normal class of the isometric system.
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The different kinds of symmetry axes are sometimes known as diad, triad, tetrad and
herad axes.
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The cube * illustrates three of the four possible ki_n(_is.of symmetry with respect to axes
of symmetry. It has six axes of binary symmetry ]omm_g.t}_le middle points of opposite
edges (Fig. 16). It has four axes of trigonal symmetry, joining the opposite solid angles
(Fig. 17). 1t has, finally, three axes of tetragonal symmetry joining the middle points of

opposite faces (Fig. 18).
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Symmetry Axes in the Cube

17. Center of Symmetry. — Most crystals, besides planes and axes of
symmetry, have also a center of symmetry. On the other hand, a erystal,
though possessing neither plane nor axis of symmetry, may yet be sym-

21

Rhodonite Heulandite

metrical with reference to a point, its center. This last is true of the triclinic
erystal shown in Fig. 19, in which it follows that every face, edge, and solid
angle has a face, edge, and angle similar to it in the opposite half of the erystal.

* This is again the cube of the normal class of the isometric system.
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18. Relation of Geometrical to Crystallographic Symmetry. — Since
the symmetry in the arrangement of the faces of a crystal is an expression of
the internal molecular structure, which in general is alike in all parallel direc-
tions, the relative size of the faces and their distance from the plane or axis of
symmetry are of no moment, their angular position alone is essential. The
cerystal represented in Fig. 20, although its faces show an unequal develop-
ment, has in the crystallographic sense as truly a vertical plane of symmetry
(parallel to the face b) as the ideally developed crystal shown in Fig. 21.
The strict geometrical definition of symmetry would, however, apply only
to the second crystal.®

22 23 24
i

e

Cube Distorted Cubes

Also in a normal cube (Fig. 22) the three central planes parallel to each
pair of cubic faces are like planes of symietry, as stated in Art. 15. But a
crystal is still erystallographically a cube, though deviating widely from the
requirenients of the strict geometrical definition, as shown in Figs. 23, 24, if
only it can be proved, e.g., by cleavage, by the physical nature of the faces,
or by optical means, that the three pairs of faces are like faces, independently
of their size, or, in other words, that the molecular structure is the same in
the three directions normal to them.

N

A

i
|
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Cube and Octahedron

Further, in the case of a normal cube, a face of an octahedron on any solid
angle requires, as explained beyond, similar faces on the other angles. It is
not necessary, however, that these eight faces should be of equal size, for in
the erystallographic sense Fig. 25 is as truly symmetrical with reference to
the planes named as Fig. 26.

* 1t is to be noted that the perspective figures of crystals usually show the geometrically
ideal form, in which like faces, edges, and angles have the same shape, size, and position.
In other words, the ideal erystal is uniformly represented as having the symmetry called
for by the strict geometrical definition.
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19. On the other hand, the molecular and hence the crystallographic
symmetry is not always that which the geometrical form would suggest.
Thus, deferring for the moment the consideration of pseudo-symmetry, an
illustration of the fact stated is afforded by the cube. It has already been
implied and will be fully explained later that while the cube of the normal
class of the isometric systen: has the symmetry deseribed in Arts. 15, 16, a
cube of the same geometrical form but belonging molecularly, for example,
to the tetrahedral class, has no planes of symmetry parallel to the faces but
only the six diagonal planes; further, though the four axes shown in Fig. 17
are still axes of trigonal symmetry, the cubic axes (Fig. 18) are axes of binary
symmetry only, and there are no axes of symmetry corresponding to those
represented in Fig. 16.  Other more complex cases will be described later.

Further, a crystal having interfacial angles of 90° is not necessarily a cube:
in other words, the angular rclations of the faces do not show in this case
whether the figure is bounded by six like faces; or whether only four are
alike and the other pair unlike; or, finally, whether there are three pairs of
unlike faces. The question must be decided, in such cases, by the molecular
structure as indicated by the physical nature of the surfaces, by the cleavage,
or by other physical characters, as pyro-electricity, those connected with
light phenomena, ete.

Still, again, the student will learn later that the decision reached in regard
to the symmetry to which a erystal belongs, based upon the distribution of the
faces, 1s only preliminary and approximate, and before being finally accepted
it must be confirmed, first, by accurate measurements, and, second, by a
minute study of the other physical characters.

The method hased upon the physical characters, which gives most conclusive results
and admits of the widest application, is the skillful etching of the surface of the crystal by
some appropriate solvent. By this means there are, in general, produced upon it minute
depressions the shape of which conforms to the symmetry in the arrangement of the mole-
cules. This proeess, which is in part essentially one involving the dissection of the molecu-
lar structure, is more particularly discussed in the chapter on Physical Mineralogy.

20. Pseudo-symmetry. — The crystals of certain species approximate
closely in angle, and therefore in apparent symmetry, to the requirements
of a system higher in symmetry than that to which they actually belong:
they are then said to exhibit pseudo-symmetry. Numerous examples are
given under the different systems. Thus the micas have been shown to be
truly monoclinic in crystallization, though in angle they scem to be in some
cases rhombohedral, in others orthorhombic.

It will be shown later that compound, or twin, crystals may also simulate
by their regular grouping a higher grade of symmetry than that which belongs
to the single crystal. Such erystals also exhibit pseudo-symmetry and are
specifically called mimetic. Thus aragonite is an example of an orthorhombic
species, whose crystals often imitate by twinning those of the hexagonal
system.®*  Again, a highly complex twinned crystal of the monoclinic species,
phillipsite, may have nearly the form of a rhombic dodecahedron of the iso-
metric system. This kind of pseudo-symmetry also occurs among the
classes of a single system, since a erystal belonging to a class of low sym-
metry may by twinning gain the geometrical symmetry of the corresponding

* The terms pseudo-hexagonal, ete., used in this and similar cases explain themselves.
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form of the normal class. This is illustrated by a twinned crystal of scheelite
like that figured (Fig. 416) in the chapter on twin crystals.

Pseudo-symmetry of still another kind, where there is an imitation of the
symmetry of another system of lower grade, is particularly common in
crystals of the isometric system (e.g., gold, copper). The result is reached in
such cases by an abnormal development of “distortion” in the direction of
certain axes of symmetry. This subject is discussed and illustrated on a
later page.

21. Possible Classes of Symmetry. — The theoretical consideration of
the different kinds of symmetry possible among erystals built up of like mole-
cules, as explained in Arts. 30-32, has led to the conclusion that there are
thirty-two (32) types in all, differing with respect to the combination of the
different symetry elements just described. Of these thirty-two natural
classes among crystals based upon their symmetry, seven classes include by
far the larger number of crystallized minerals. Besides these, some thirteen
or fourteen others are distinctly represented, though several of these are of
rare occurrence. The remaining classes, with possibly one or two excep-
tions, are known among the crystallized salts made in the laboratory. The
characters of each of the thirty-two classes are given under the discussion of
the several crystalline systems.

22. Crystallographic Axes. — In the description of a crystal, especially
as regards the position of its faces, it is found convenient to assume, after
the methods of analytical geometry, certain lines passing through the center
of the 1deal crystal, as a basis of reference. (See further Art. 34 ef seq.)

These lines are called the crystallographic axes. Their direction is to a
greater or less extent fixed by the symmetry of the crystals, for an axis of
symmetry is in almost all cases * a possible crystallographic axis. Further,
the unit lengths assigned to thesc axes are fixed sometimes by the symmetry,
sometimes by the position of the faces assumed as fundamental, 7.e., the
unit forms in the sense defined later. The broken lines shown in Fig. 18 are
the crystallographic axes to which the cubic faces are referred.

23. Systems of Crystallization. — The thirty-two possible crystal classes
which are distinguished from one another by their symmetry, are classified
in this work under six systems, each characterized by the relative lengths
and inclinations of the assumed crystallographic axes. These are as follows:

I. IsomErrICc SystEM. Three equal axes at right angles to each other.

II. TETRAGONAL SYSTEM. Three axes at vight angles to each other, two
of them — the horizontal axes — equal, the third — the vertical axis —
longer or shorter.

III. HexaconaL SysteM. Four axes, three equal horizontal axes in one
plane intersecting at angles of 60°, and a vertical axis at right angles to this
plane and longer or shorter.

IV. OrraoruomBIC SystEM. Three axes at right angles to each other,
but all of different lengths.

V. MonocrLinic SystEM. Three axes unequal in length, and having
one of their intersections oblique, the two other intersections equal to 90°.

VI. TricLinic SystEM. Three unequal axes with mutually oblique
intersections.

* Exceptions are found in the isometric system, where the axes must necessarily be the
axes of tetragonal symmetry (Fig. 18), and cannot be those of binary or trigonal symmetry
(Figs. 16, 17).
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24, Iiach one of the six systems, as will be understood from Art. 21,
embraces several classes differing among themselves in their symmetry.
One of these classes is conveniently called the normal class, since it is in
general the common one, and since further it exhibits the highest degree of
symmetry possible for the given system, while the others are lower in grade
of symmetry.

It is important to note that the classes comprised within a given system
are at once essentially connected together by their common optical characters,
and in general separated * from those of the other systems in the same way.

Below is given a list of the six systems together with their subordinate
classes, thirty-two in all. The order and the names given first are those that
are used in this book while in the following parentheses are given other
equivalent names that are also in common use. Under nearly all of the
classes it 1s possible to give the name of a mineral or an artificial compound
whose crystals serve to illustrate the characters of that particular class.
There is some slight variation between different authors in the order in which
the crystal systems and classes are considered but in the main essentials all
modern discussions of crystallography are uniform.

ISOMETRIC SYSTEM
(Regular, Cubic System)

1. NormaL Crass. (Hexoctahedral. Holohedral.) Galena Type.

2. PyritoHEDRAL Crass. (Dyakisdodecahedral. Pentagonal Hemihe-
dral.) Pyrite Type.

3. TeTrRAHEDRAL Crass. (Hextetrahedral. Tetrahedral Hemihedral.)
Tetrahedrite Type. |

4. PracioHeEpRAL Crass. (Pentagonal Icositetrahedral. Plagiohedral
Hemihedral.) Cuprite Type.

5. TETARTOHEDRAL Crass. (Tetrahedral Pentagonal Dodecahedral.)
Sodium Chlorate Type.

TETRAGONAL SYSTEM

6. NormarL Crass. (Ditetragonal Bipyramidal. Holohedral.) Zircon
Type.

7. Hemmorpnic Crass. (Ditetragonal Pyramidal. Holohedral Hemi-
morphie.) Todosuccinimide Type.

8. TriryramipaL Crass. (Tetragonal Bipyramidal. Pyramidal Hemi-
hedral.) Scheelite Type.

9. Pyrammar-HemmorpHIc Crass. (Tetragonal Pyramidal. Hemnihe-
dral Hemimorphic.) Wulfenite Type.

10. SeueENomaL (C'rass. (Tetragonal Sphenoidal. Sphenoidal Hemihe-
dral. Scalenohedral.) Chaleopyrite Type.

11. TrarEzOHEDRAL Crass. (Tetragonal Trapezohedral. Trapezohe-
dral Hemihedral.) Nickel Sulphate Type.

12. TerartoHEDRAL  Crass. (Tetragonal  Bisphenoidal.)  Artif.
2 (*8.()A13()3Si03 ’I‘yp&’.

* Crystals of the tetragonal and hexagonal systems are alike in being optically unaxial;
but the crystals of all the other systems have distinguishing optical characters.
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HEXAGONAL SYSTEM
A. HEexacoNaL Division

13. NormaL Crass. (Dihexagonal Bipyramidal. Holohedral.) Beryl
Type.
yp14. HemimorpHIC CrLass.  (Dihexagonal Pyramidal. Holohedral Hemi-
morphic.) Zincite Type.

15. TripyrRaMiDAL Crass. (Hexagonal Bipyramidal. Pyramidal Hemi-
hedral.) Apatite Type.

16. Pyramipar-HEmnorpHICc Crass. (Hexagonal Pyramidal. Pyrami-
dal Hemibedral Hemimorphic.) Nephelite Type.

17. TrarezoHEDRAL Crass. (Hexagonal Trapezohedral. Trapezohedral
Hemihedral.) B-Quartz Type.

B. TRriGoNAL orR RHOMBOHEDRAL DIvision
(Trigonal System)

18. TriconaL Crass. (Ditrigonal Bipyramidal. Trigonal Hemihedral.)
Benitoite Type.

19. RHoMBOHEDRAL Crass. (Ditrigonal Scalenohedral. Rhombohedral
Hemihedral.) Caleite Type.

20. RuoMBOHEDRAL HEMIMORPHIC CLass. (Ditrigonal Pyramidal. Tri-
gonal Hemihedral Hemimorphie.) Tourmaline Type.

21. Tri-RuomBoHEDRAL Crass. (Rhombohedral. Rhonibohedral Te-
tartohedral.) Phenacite Type.

22. TraPEzZOHEDRAL Crass. (Trigonal Trapezohedral. Trapezohedral
Tetartohedral.) Quartz Type.

23. (Trigonal Bipyramidal. Trigonal Tetar-
tohedral.
24, (Trigonal Pyramidal. Trigonal Tetarto-

hedral Hemimorphic.) Sodium Periodate Type.

ORTHORHOMBIC SYSTEM
(Rhombic or Prismatic System)

25. NormarL Crass. (Orthorhombic Bipyramidal. Holohedral.) Barite
Type.

26. HemmvorrHic Crass.  (Orthorhombie Pyramidal.) Calamine Type.

27. SpHENOIDAL Crass. (Orthorhombie Bisphenoidal.) Epsomite Type.

MONOCLINIC SYSTEM

(Oblique System)

28. NorMaL Crass. (Prismatic. Holohedral.) Gypsum Type.
29. HemmvorrHIC Crass. (Sphenoidal.) Tartaric Acid Type.
30. CLiNoHEDRAL Crass. (Domatic. Hemihedral.) Clinohedrite Type.

TRICLINIC SYSTEM

(Anorthic System)

31. NorMmaL Crass. (Holohedral. Pinacoidal.) Axinite Type.
32. AsymMmETRIC Crass. (Hemihedral.) Clacium Thiosulphate Type.
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25. Symmetry of the Systems. —— In the paragraphs immediately fol-
lowing, a synopsis is given of the symmetry of the normal class of each of the
different systems, and also that of one subordinate class of the hexagonal
system, which is of so great importance that it is also often conveniently
treated as a sub-system even when, as in this work, the forms are referred to
the same axes as those of the strictly hexagonal type — a usage not adopted
by all authors.

I. IsomeTrIC SYsTEM. Three like axial * planes of symmetry (principal
planes) parallel to the cubic faces, and fixing by their intersection the crystal-
lographic axes; six like diagonal planes of symmetry, passing through each
opposite pair of cubic edges, and hence parallel to the faces of the rhombic
dodecahedron.

Further, three like axes of tetragonal symmetry, the crystallographic
axes normal to the faces of the cube; four like diagonal axes of trigonal sym-
metry, normal to the faces of the octahedron; and six like diagonal axes of
binary symmetry, normal to the faces of the dodecahedron. There is also
obviously a center of symmetry.f These relations are illustrated by Fig. 27
also by Fig. 35; further by Figs. 92 to 125.
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II. TeTraGONAL SYSTEM. Three axial planes of symmetry: of these, two
are like planes intersecting at 90° in a line which is the vertical crystallo-
graphic axis, and the third plane (a principal plane) is normal to them and
hence contains the horizontal axes. There are also two diagonal planes of
symmetry, interseeting in the vertical axis and meeting the two axial planes
at angles of 45°.

Further, there is one axis of tetragonal symmetry, a principal axis; this ig
the vertical crystallographic axis. There are also in a plane normal to thi
four axes of binary symmetry — like two and two — those of each pair at right
angles to each other. Fig. 28 shows a typical tetragonal crystal, and Fig. 29
a basal projection of it, that is, a projection on the principal plane of sym-
metry normal to the vertical axis. See also Fig. 36 and Figs. 170-192.

* Two planes of symmetry are said to be like when they divide the ideal erystal intc
halves which are identical to each other; otherwise, they are said to be unlike.” Axes of
symmetry are also like or unlike. If a plane of symmetry includes two of the erystallo;
graphie axes, it is called an axial plane of symmetry. If the plane includes two or more
like axes of symmetry, it is called a principal plane of symmetry; also an axis of symmetry
in which two or more like planes of symmetry meet is a principal axis of symmetry. ]

T In deseribing the symmetry of the different classes, here and later, the center o
symmetry is ordinarily not mentioned when its presence or absence is obvious.

i




GENERAL MORPHOLOGICAL RELATIONS OF CRYSTALS 19

III. HexacoNAL SysteEM.: In the Hexagonal Division there are four
axial planes of symmetry; of these three are like planes meeting at angles of
60°, their intersection-line being the vertical crystallographic axis; the fourth
plane (a principal plane) is at right angles to these. There are also three
other diagonal planes of symmetry meeting the three of the first setin the
vertical axis, and making with them angles of 30°.

Further, there is one principal axis of hexagonal symmetry; this is the
vertical crystallographic axis; at right angles to it there are also six binary
axes. The last are in two sets of three each. Fig. 30 shows a typical hex-
agonal crystal, with a basal projection of the same. See also Fig. 37 and
Figs. 220-227.
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In the Trigonal or Rhombohedral Division of this system there are three
like planes of symmetry intersecting at angles of 60° in the vertical axis.
Further, the forms belonging here have a vertical prinecipal axis of trigonal
symmetry, and three horizontal axes of binary symmetry, coinciding with
the horizontal crystallographic axes. Fig. 31 shows a typical rhombohedral
crystal, with its basal projection. See also Figs. 243-269.

IV. OrrHOorRHOMBIC SYsTEM. Three unlike planes of symmetry meeting
at 90° and fixing by their intersection-lines the position of the crystallo-
graphic axes. Further, three unlike axes of binary symmetry coinciding with
the last-named axes. Fig. 32 shows a typical orthorhombic crystal, with its
basal projection. See also Fig. 38 and Figs. 298-320.

V. MonocriNic SysteM. One plane of symmetry which contains two of
the crystallographic axes. Also one axis of binary symmetry, normal to this
plane and coinciding with the third erystallographic axis. See Fig. 33; also
Fig. 39 and Figs. 333-347.

VI. Tricuinic SystEM. No plane and no axis of symmetry, but sym-
metry solely with respect to the central point. Figs. 34 and 40 show typical
triclinic crystals. See also Figs. 359-366
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In certain classes of still lower symmetry a given crystal form may have
ut one-quarter of the faces belonging to the corresponding normal form, and,
after the same method, such a form is sometimes called tetartohedral.

The development of the various possible kinds of hemihedral (and tetarto-
hedral) forms under a given system has played a prominent part in the crystal-
lography of the past, but it leads to much complexity and is distinetly less
simple than the direct statement of the symmetry in each case. The latter
method is systematically followed in this work, and the subject of hemihe-
drism is dismissed with the brief (and incomplete) statements of this and the
following paragraphs.

29. Hemimorphic Forms. — In several of the systems, forms occur
under the classes of lower symmetry than that of the normal class which are
characterized by this: that the faces present are only those belonging to one

extremity of an axis of symmetry (and erystallographic

44 axis). Such forms are conveniently called hemimorphic

(half-form). A simple example under the hexagonal

system is given in Fig. 44. [t is obvicus that henu-
morphic forms have no center of symmetry.

30. Molecular Networks. — Much hght has re-

cently been thrown upon the relations existing between

L pi\2 the different types of erystals, on the one hand, and of

B +-\ these to the physical properties of erystals, on the other,
: . | “““ by the consideration of the various possible methods of
ST m|-m/ grouping of the molecules of which the crystals are
supposed to be built up. This subject, very early

Zincite treated by Haily and others (including J. D. Dana),

was discussed at length by Frankenheim and later by
Bravais. More recently it has been extended and elaborated by Sohncke,
Wulff, Schonflies, Fedorow, Barlow, and others.

All solid bodies, as stated in Art. 7, are believed to be made up of definite
physical units, called the physical, or erystal, molecules. Of the form of the
molecules nothing is definitely known, and though theory has something to say
about their size, 1t is enough here to understand that they are almost infinitely
small, so small that the surface of a solid — e.g., of a crystal — may appear to
the touch and to the eye, even when assisted by a powerful microscope, as
perfectly smooth.

The molecules are further believed to be not in contact but separated from
one another — if in contact, it would be impossible to explain the motion to
which the sensible heat of the body is due, or the transmission of radiation
(radiant heat and light) through the mass by the wave motion of the ether,
which 1s believed to penetrate the body.

When a body passes from the state of a liquid or a gas to that of a solid,
under such conditions as to allow perfectly free action to the forces acting
between the molecules, the result is a erystal of some definite type as regards
symmetry. The simplest hypothesis which can be made assumes that the.
form of the erystal is determined by the way in which the molecules group
themselves together in a position of equilibrium under the action of the inter-
molecular forces.

As, however, the forces hetween the molecules vary in magnitude and
direction from one type of crystal to another, the resultant grouping of the

molecules must also vary, partieularly as regards the distance between them
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and the angles between the planes in which they lie. This may be simply
represented by a series of geometrical diagrams, showing the hypothetical
groupings of points which are strictly to be regarded as the centers of gravity
of the molecules themselves. Such a grouping is named a network, or point-
system, and it is said to be regular when it is the same for all parallel lines
and planes, however they be taken. For the fundamental observed fact, true
in all simple erystals, that they have like physical properties in all parallel
directions, leads to the conclusion that the grouping of the molecules must be
the same about each one of them (or at least about each unit group of them),
and further the same in all parallel lines and planes. )
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Crystal Networks

The subject may be illustrated by Figs. 45, 46 for two typical cases, which
are easily understood. In Fig. 45 the most special case is represented where
the points are grouped at equal distances, in planes at right angles to each
other. The structure in this case obviously corresponds in symmetry to the
cube described in Arts. 15 and 16, or, in other words, to the normal class of
the isometric system. Again, in Fig. 46, the general case is shown where the
molecules are unequally grouped in the three directions, and further these
directions are oblique. The symmetry is here that of the normal class of the
triclinic system.

If, in each of these cases, the figure be bounded by the simplest possible
arrangement of eight points, the result is an elementary parallelopiped, which
obviously defines the molecular structure of the whole. In the grouping of
these parallelopipeds together, as described, it is obvious that in whatever
direction a line be drawn through them, the points (molecules) will be spaced
alike along it, and the grouping about any one of these points will be the same
as about any other.

31. Certain important conclusions can be deduced from a consideration
of such regular molecular networks as have been spoken of, which will be
enumerated here though it is impossible to attempt a full explanation.

(1) The prominent erystalline faces must be such as include the largest
number of points, that is, those in which the points are nearest together.

Thus in Fig. 47, which represents a section of a network conforming in
symmetry to the structure of a normal orthorhombic crystal, the common
erystalline faces would be expected to be those having the position bb, aa, mm,
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then I, nn, and so on. This is found to be true in the study of erystals, for
the common forms are, in nearly all cases, those whose position bears some
simple relation to the assumed axes; forms whose position is complex are
usually present only as small faces on the simple predominating forms, that
is, as modifications of them So-called vicinal forms, that is, forms taking
the place of the simple fundamental forms to which they approximate very
closely in angular position, are exceptional.
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Orthorhombic Pomt System

(2) When a variety of faces occur on the same crystal, the numerical rela-
tion existing between them (that which fixes their position) must be rational
and, as stated in (1), a simple numerical ratio 1s to be expected in the common
cases. Tlns. as explained later, 15 found by experience to be a fundamental
law of all erystals.  Thus, in Fig. 47, starting with a face meeting the section
i man, [ would be a common face, and for it the ratio is 1 : 2 in the dirvections
b and a; nn would be also common with the ratio 2 : 1.

(3) If a crystal shows the natural easy fracture, called cleavage, due to-a
minimum of cohesion, the cleavage surface must be a surface of relatively
great molecular crowding, that is, one of the common or fundamental faces.
This follows (and thus gives a partial, though not complete, explanation of
cleavage) since it adnits of easy proof that that plane in which the points
are closest together 1s farthest separated from the next molecular plane.
Thus in Fig 47 compare the distance separating two adjoiming planes parallel
to bb or aa, then two parallel to mm, Il, nn, ete  Illustrations of the above
will be found under the special discussion of the subject of cleavage.
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32. Kinds of Molecular Groupings. — The discussion on the basis just
described shows that there are fourteen possible types of arrangement of the
molecules. These agree as to their symmetry with the seven classes defined
in Art. 25 as representing respectively the normal classes of the six systems
with also that of the trigonal (or the
rhombohedral) division of the hex-

agonal system. Of the fourteen, ;:Z?J_:;“’Q

three groupings belong to the iso- | | |

metric system (these are shown, for | | |

sake of illustration, in Fig. 48 from & ée‘

Groth; a, cube lattice; b, cube- i "
centered lattice; ¢, face centered Tt batticnd

cube lattice); two to the tetragonal;
one each to the hexagonal and the rhombohedral; four to the orthorhombic
system; two to the monoclinic, and one to the triclinic.

In its simplest form, as above outlined, the theory fails to explain the ex-
istence of the classes under the several systems of a symmetry lower than that
of the normal class. It has been shown, however, by Sohncke and later by
Fedorow, Schonflies and Barlow, that the theory admits of extension. The
idea supposed by Sohncke is this: that, instead of the simple form shown, the
network may consist of a double system, one of which may be conceived of as
having a position relative to the other (1) as if pushed to one side, or (2) as if
rotated about an axis, or finally (3) as if both rotated as in (2) and displaced
asin (1) The complexity of the subject makes 1t impossible to develop it
here. It must suffice to say that with this extension Sohncke concludes that
there are 65 possible groups. This number has been further extended to 230
by the other authors named, but it still remains true that these fall into 32
distinet types as regards symmetry, and thus all the observed groups of forms
among crystals, desecribed under the several systems, have a theoretical
explanation.

Literature. — A complete understanding of this subject can only be gained
by a careful study of the many papers devoted to it. An excellent and very
clear summary of the whole subject is given by Groth i the fourth edition of
his Physikalische Krystallographie, 1905, and by Sommerfeldt, in his Physi-
kalische Kristallographie, 1907.

33. X-Rays and Crystal Structure. — In 1912, while attempting to
prove a similarity 1 character between X-rays and light, Dr. Laue, of the
University of Zurich conceived the idea of using the or(lered arrangement, of
the molecules or atoms of a crystal as a ““ diffraction grating”’ for their analysis
By placing a photographic plate behind a erystal section which in turn lay
in the path of a beam of X-rays he found that not only did the developed
plate show a dark spot in its center where the direct pencil of the X-rays had
hit it but it also showed a large number of smaller spots arranged around the
center in a regular geometrical pattern. This pattern was formed by the
interference of waves which had been diffracted in different directions by the
molecular structure of the erystal. In this way he succeeded in proving that
X-rays belong to the same class of phenomena as light but with a much
shorter wave length. The experiment showed indeed that the wave lengths
of the X-rays must be comparable to the distances between the layers of
molecular particles of erystals. Another, and, from the crystallographic point
of view, a very important, result of this mvestwatnon was the furnishing of a
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method for the study of the internal structure of crystals. The position of
the smaller dark spots in the Laue photographs corresponded to that of
various planes existing in the crystal network parallel to possible crystal
faces and their arrangement indicated the symmetry of the crystal.

Following these investigations of Laue and his colleagues another fruitful
method of investigation of crystal structure by means of X-rays was devised
by W. H. and W. L. Bragg. In this method the beam of X-rays meets the
crystal section with varying acute angles of incidence and the reflection of
the rays is studied. The X-rays are not reflected from the surface of the
section like light rays but because of their short wave lengths penetrate the
crystal section and are reflected from the successive layers of its molecular
structure. In studying the reflection phenomena we have to consider the
effect upon each other of these different wave trains originating from the
different layers of the crystal. In general these various reflected waves
would be in different phases of vibration and so would tend to interfere with
each other with the consequent cessation of all vibrations. But with a cer-
tain angle of incidence and reflection 1t would happen that the different re-
flected rays would possess on emergence from the erystal the same phase of
vibration and would therefore reinforce each other. This angle would vary
with the wave length of the X-ray used (for it has been found that the wave
length of X-rays varies with the metal that is used as the anticathode in the
X-ray bulb) and with the spacing between the molecular layers of the mineral
used. It is also obvious that there might be other angles of incidence at
which the successive wave trains would each differ in phase by two or even
more whole wave lengths from the preceding one and a similar strong re-
flected beam obtained. By the use of a special X-ray spectrometer the angles
at which these reflections take place can be accurately measured. If the
character of the X-ray used is therefore kept constant these angles of reflec-
tion give the data necessary for calculating the distance between the succes-
sive molecular layers in the particular mineral used and for the direction
perpendicular to the surface used for reflection. The spacing of the molec-
ular layers was found to vary with different substances and in different
directions in the same substance and by making a series of observations it
has been possible to arrive at some very interesting conclusions as to the
character of the molecular structure of certain minerals as well as to the
relationship existing between the structures of different but related com-
pounds. The possibilities lying in these methods of attack are very great
and unquestionably much new information concerning erystal structure will
soon be available. An excellent summary of the methods employed and the
results already obtained will be found in “ X-rays and Crystal Structure ”’
by W. H. and W. L. Bragg, 1915.

GENERAL MATHEMATICAL RELATIONS OF
CRYSTALS

34. Axial Ratio, Axial Plane. — The crystallographic axes have been
defined (Art. 22) as certain lines, usually determined by the symmetry, which
are used in the description of the faces of erystals, and in the determination of
their position and angular inclination. With these objects in view, certain
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lengths of these axes are assumed as units to which the occurring faces are
referred.

The axes are, in general, lettered a, b, ¢, to correspond to the scheme in
Fig. 49. If two of the axes are equal, they are designated a, a, ¢; if the three
are equal, a, a, . In one system, the hexagonal, there are
four axes, lettered a, a, a, c. 49

Further, in the systems other than the isometrie, one He
of the horizontal axes is taken as the unit to which the other
axes are referred; hence the lengths of the axes express
strictly the axial ratio. Thus for sulphur (orthorhombic,
see Fig. 49) the axial ratio is

a:b:c=08131:1:19034. B .
For rutile (tetragonal) it is 7
a:c=1:0064415, or, simply, ¢ = 064415.

The plane of any two of the axes is called an azial plane,
and the space included by the three axial planes is an octant,
since the total space about the center is thus divided by the o
three axes into eight parts. Inthe hexagonal system, how-  orhorhombic
ever, where there are three horizontal axes, the space about
the center is divided into 12 parts, or sectants.
35. Parameters, Indices, Symbol. — Parameters. The parameters of
a plane consist of a series of numbers which express the relative intercepts
50 of that plane upon the crys-
tallographic axes. They are
given in terms of the estab-
lished unit lengths of those
axes. For example, in Fig.
50 let the lines OX, OY, OZ
be taken as the directions of
the erystallographic axes, and
let OA, OB, OC represent
their unit lengths, designated
(always in the same order) by
the letters a, b, c. Then the
intercepts for the plane (1)
HKL are OH, OK, OL; for
the plane (2) ANM they are
OA, ON, OM. But in terms
of the unit lengths of the
axes these give the following
parameters,
(1) ia:3b:jc
and (2) 1la:4b:2c.

It is to be noted that since
the two planes HKL and
MNA are parallel to each other and hence crystallographically the same,
these two sets of parameters are considered to be identical. Obviously each
of them may be changed into the other by multiplying (or dividing) by 4.

Crystal Axes

Z
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Indices and Symbol. Simplified and abbreviated expressions whieh have
been derived from the parameters of a erystal form are commonly used to
give its relations to the erystallographic axes. These are known as indices.
A number of different methods of deriving indices have been devised and
several are in use at present. The so-called Miller indiees are most widely
employed and will be exelusively used in this work.* Below, a deseription
of the other important systems of indices is given together with the neces-
sary direetions for transforming one type into another.

The Miller indices may be derived from the parameters of any form by
taking their reciprocals and clearing of fractions if necessary. For instance
take the two sets of parameters as given above.

(1) %a:3b:3%¢, and (2) la:4b: 2

By inversion of these expressions we obtain
(1) 4a:3b:2¢,  and (2), la:3b: 3c.

In the ease of (2) it is necessary to elear of fractions, giving
(2) 4a:3b: 2.

The indices of this form then are 4a :3b :2c¢. The letters indicating the
different axes are commonly dropped and the indiees in this ease would be
written simply as 432, the intereepts on the different axes being indicated by
the order in which the numbers are given.

A general expression frequently used for the indices of a form belonging
to any erystal system whieh has three crystallographic axes is hkl. In the
hexagonal system, which has four axes, this becomes hkil. If the parameters
of a form be written so that they are fractions with the numerators always
unity then the denominators will become the same as the eorresponding in-
dices. The general expression in this case would therefore be ’l—l 11: lz

The symbol of a given form is the indices of the face of that form which
has the simplest relations to the erystallographic axes. The symbol is eom-
monly used to designate the whole form.

Various examples are given below illustrating the relations between param-
eters and indices.

Parameters Miller's Symbol
PRk st o
R E steipige- 22
iapi k) sweipie= om
ol Bime) =tecibrie= 210
la:wb:wec =1a:3b:3c = 100

If the axial intercepts are measured in behind on the a axis, or to the
left on the b axis, or below on the ¢ axis, they are ealled negative, and a minus
sign is placed over the corresponding number of the indices; as

Parameters Indices
—la:—3b:}c = 221
—la: Wi = 201

*In the hexagonal system the indices used are those adapted by Bravais after the
method of Miller.
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Different Systems of Indices. The Weiss indices are the same as the parameters
described above. The different axes are represented by the letters a, b and ¢, cach being
preceded by a number indicating the relative intercept of the face in question upon that
particular axis. For instance, a possible orthorhombie pyramid face might be represented
as la : 2b : Z¢. The Weiss indices may be converted into the Miller indices by inversion
and clearing of fractions, the above symbol becoming then 213. In the Naumann indices
the unit pyramidal form is indicated by O in the isometric system where the three crystal
axes all have the saine unit lengths or by P where the axes differ in their unit lengths.
For other forms the indices become mPr (or mOn) in which m gives the intercept upon the
vertical axis, ¢, and n the intercept upon one of the horizontal axes (a or b), the intercept
upon the other horizontal axis being always at unity. To which particular horlzonfal axis
this number refers may be indicated by a mark over it as 7 for the b axis, 7 or a’ for the
a axis. If the intercept m or n is unity it is omitted from the indices. The pyramid face
used as an example above would therefore in the Naumann notation he represented by
2P2. Other examples are given in the table below. J. D. Dana modified the Naumann
indices by substituting a hyphen for the letter P or O and ¢ for the infinity sign, . He
designated the fundamental pyramid form simply by 1. When the only parameter differ-
ing from unity was that one which referred to the intercept upon the vertical axis, it was
written alone; for example the pyramid face having the parameter relations of 1a : 15 : 2¢
would be indicated by 2. The Naumann and Dana indices are easily converted into the
Miller indices by arranging them in the proper order, inverting and then clearing of frac-
tions. Goldschmidi has proposed another method of deriving indices. This has the
advantage that the indices for any particular face can be derived directly from the position
of its pole on the gnomonic projection. The first number gives the linear position of the
pole in respect to the left to right medial line of the projection and in terms of the unit
pace distance of the projection (see Art. 84). The second figure similarly gives the
position of the pole in reference to the front to back medial line. These two figures con-
stitute the Goldschmidt indices of the face. If the two numbers should be the same the
second is omitted. The Goldschmidt indices are easily converted into the Miller indices
by adding 1 as the third figure and clearing of fractions and eliminating any % sign.

The relations between the Miller and the Miller-Bravais indices for the hexagonal
system are given in Art. 169.

EXAMPLES OF INDICES ACCORDING TO VARIOUS SYSTEMS OF

NOTATION
Weiss Naumann Dana Goldschmidt Miller
538 Mp 8 2o o soooqoeasaomsodo. o8 2P 2 2 221
182 25 10, cnamonnnnadiatennsisr | oP2 1% i 212
1@ 8 CAD 83X 00 0 b Ao b okl obb onndn ! 2P w0 2-i 20 201
@3 80 208 COE ¢ oo o okt o= =000 cabae 0 P2 i-2 2w 210
la:owb:we...................... 0 Px» i-1 ®0 100

36. Law of Rational Indices. — The study of crystals has established
the general law that the ratios between the intercepts on the axes for the
different faces on a crystal can always be expressed by rational numbers.
These ratios may be 1:2, 2:1, 2:3, 1: o, etc., but never 1: V2, ete.
Hence the values of Akl in the Miller symbols must always be either whole
numbers or zero.

If the form whose intercepts on the axes a, b, e determine their assumed
unit lengths — the unit form as it is called — is well chosen, these numerical
values of the indices are in most cases very simple. In the Miller symbols,
0 and the numbers from 1 to 6 are most common.

The above law, which has been established as the result of experience, in
fact follows from the consideration of the molecular structure as hinted at in
an earlier paragraph (Art. 31).
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37. Form. — A form in crystallography includes all the faces which
have a like position relative to the planes, or axes, of symmetry. The full
meaning of this will be appreciated after a study of the several systems. It
will be seen that in the most general case, that of a form having the symbol
(hkl), whose planes meet the assumed unit axes at unequal
el lengths, there must be forty-eight like faces in the isometric
system * (see Fig. 121), twenty-four in the hexagonal (Fig. 226),
sixteen in the tetragonal (Fig. 187), eight in the orthorhombic
(Fig. 51), four in the monoclinic, and two in the triclinic. In
the first four systems the faces named yield an enclosed solid,
g and hence the form is called a closed form; in the remaining
two systems this is not true, and such forms in these and
other cases are called open forms. Fig. 298 shows a crystal
bounded by three pairs of unlike faces; each pair is hence an

open form. Figs. 52-55 show open forms.

The unit or fundamental form is one where parameters cor-
respond to the assumed unit lengths of the axes. Fig. 51 shows the unit
pyramid of sulphur whose symbol is (111); it has eight similar faces, the
position of which determines the ratio of the axes given in Art. 34.

Prism
(110) (hkO)

(001)
54 56
e ———
70} e —
g% T
,’I .“ @ "1 “\
r \\ ! \
/ \ ,' \\
Y \

\ :\ \ “,, //
Dome Dome
(101), (kOD) (011), (OK1)

* The normal class is referred to in each case.
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The forms in the isometric system have speeial individual names, given later. In the
other systems certain general names are employed in this book which may be briefly men-
tioned here. A form whose faces are parallel to two of the axes * is called a pinacoid (from
rwaf, a board). It is shown in Fig. 52. One whose faces are parallel to the vertical axis
but meet both the horizontal axes is ealled a prism, as Fig. 53.  If the faces are parallel to
one horizontal axis only, it is a dome (Figs. 54, 55).  If the faces meet all the axes, the form
is a pyramid (Fig. 51); this name is given even if there is only one face belonging to the
form.

In Fig. 56, a(100), b(010) are pinacoids; m(110), s(120) are prisms; d(101) and £(021)
are domes; all these are open forms.  Finally, e(111) is a pyramid, this being a elosed form.
The relation existing in each of these cases between the symbol and the position of the
faces to the axes should be carefully studied.

As shown in the above cases, the symbol of a form is usually included in parentheses,
as (111), (100); or it may be in brackets [111] or {111}.

38. Zone. — A zone includes a series of faces on a crystal whose inter-
section-lines are mutually parallel to each other and to a common line drawn
through the center of the crystal, called the zone-axis. This
parallelisin means simply that the given faces are either all
parallel to one of the ecrystallographic axes or that their
parameters have a constant ratio for two of the axes. Some
simple numerical relation exists, in every case, between all
the faces in a zone, which is expressed by the zonal equation
(see Art. 45). The faces m, s, b (Fig. 56) are in a zone;
also, b and k.

If a face of a crystal falls simultaneously in two zones,
it follows that its symbol is fixed and can be determined
from the two zonal equations, without the measurement of
angles. Further, it can be proved that the face correspond-
ing to the intersection of two zones is always a possible
crystal face, that is, one having rational values for the indices
which define its position.

In many cases the zonal relation is obvious at sight, but
it can always be determined, as shown in Arts. 45, 46 by an
easy calculation.

Dlustrations will be given after the methods of representing a
crystal by the various projections have been explained. Chrysolite

39. Horizontal Projections. — In addition to the usual
perspective figures of crystals, projections on the basal plane (or more gener-
ally the plane normal t. the prismatic zone) are very conveniently used.
These give in fact a map of the crystal as viewed from above looking in the
direction of the axis of the prismatic zone. Figs. 30-33 give simple examples.
In these the successive faces may be indicated by accents, as in Fig. 56, passing
around in the direction of the axes a, b, a, that is, counter-clockwise. On
the construction of these projections see the Appendix A.

40. Spherical Projection. — The study of actual erystals, particularly
as regards the angular and zonal relations of their faces, is much facilitated
by the use of various projections. The simplest of these and the one from
which the others may be derived is known as the spherical projection.

In making a spherical projection of a erystal it is assumed that the crystal
lies within a sphere, the center of which coincides with the center of the

* In the tetragonal system the form (100) is, however, called a prism and (101) a
pyramid.
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crystal (i.e. the pont of intersection of its erystallographic axes). From this
common center normals are drawn to the successive faces of the crystal and
continued until they mneet the surface of the sphere. The points in which
these normals touch that surface locate the poles of the respective faces and
together form the spherical
projection of the erystal.
The method of formation
and the character of the
spherical projectionis shown
in Fig. 57.

It 1s to be noted that all
the poles of faces which lie
in the same zone on the
crystal, 7.e. faces whose in-
tersection lines are mutually
parallel, fall upon the same
great circle on the sphere.
This 1s illustrated in the
figure in the case of the
zone a-d-a and a-o-d. Con-
versely, of course, all faces
whose poles fall on the same
great circle of the spherical
projection must lie in the
same zone. A face whose
pole falls at the intersection
of two or more great circles
lies in two or more inde-
pendent zones, as for instance o(111), in Fig. 57. The angular relations
between the faces on the crystal are of course preserved in the angles exist-
ing between their respective poles on the spherical projection. The angles
between the poles, however, are the supplementary angles to those between
the faces on the ecrystal, as shown in Fig. 58. The
supplementary angles are those which are commonly .~
measured and recorded when studying a crystal, see ——
Art. 230.

The spherical projection is very useful in getting
a mental picture of the relations existing between the
various faces and zones upon a erystal but because of
its nature does not permit of the close study and ac-
curate measurements that may be made on the other
projections described below which are made on plane
surfaces. y )

41. The Stereographic Projection. — The stereo- C’gss'se“mn of portion of

X " . A ‘rystal and its Spherical
graphic projection may be best considered as derived  prgiection
from the spherical projection in the following man-
ner. The plane of the projection is commonly taken as the equatorial
plane of the sphere. Tmaginary lines are drawn from the poles of the spheri-
cal projection to the south pole of the sphere. The points in which these
lines pierce the plane of the equator locate the poles in the stereographic pro-
jection. The relation between the two projections is shown in Fig. 59.

Spherical Projection (after Penfield)

68
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Fig. 60 shows the same stereographie projection without the foreshortening
of Fig. 59. Commonly only the poles that lie in the northern hemisphere,
including those on the equator, are transferred to the stereographic projection.

Certain facts concerning the stereographic projection need to be noted.
Its most important charac-
ter is that all circles or cir-
cular ares on the spherical
projection are projected as
arcs of true circles on the
stereographic projection.*
The poles of all erystal
faces that are parallel to
the vertical crystallogra-
phie axis fall on the equa-
tor of the spherical pro-
jection and occupy the
same positions in the stere-
ographic projection. The
pole of a horizontal face
will fall on the center of
the stereographic projec-
tion. All north and south
meridians of the spherical
projection will appear as
straight radial lines in the
stereographic  projection
(i.e. as arcs of circles hav-
g lnﬁ.mte radii).  Other Relation between Spherical and Stereographic Projections
great circles on the spher-
ical projection, as already stated, will be transferred to the stereographic as
circular arcs. Examples of all these are shown in Fig. 60.

The angular relations between the poles of the various faces are preserved
in the stereographic projection but the linear distance corresponding to a
degree of arc naturally increases from the center of the projection toward its
circumference. This is illustrated in Fig. 61 where the circle represents a
vertical section through the spherical projection and the line A-B represents
the trace of the horizontal plane of the stereographic projection. A point
20° from N on the sphere is projected to the point a on the stereographic
projection, a point 45° from N is projected to b, ete. In this way a protractor
can be made by means of which angular distances from the center of the
stereographic projection can be readily determined. Fig. 62 represents such
a protractor which was devised by Penfield.f The mathematical relation
between the linear distance from the center of the projection and its angular
value is seen by study of Fig. 61. If the radius of the circle of the projection
is taken as unity the distance from its center to any desired point is equal to
the tangent of one half of the angle represented. For instance the distance

* For proof of this statement see Penfield, Am. Jour. Seci., 11, 10, 1901.

t This protractor and the other protractors and scales used by Penfield can be ob-
tained from the Mineralogical Laboratory of the Sheffield Scientific School of Yale Uni-
versity, New Haven, Ct.
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60
a 300
4110y % A 110
D d101
o111 o111
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a 100

Stereographic Projection of the Isometric Forms, Cube, Octahedron, and Dodecahedron

b

from the center to the point a is equivalent to the tangent of 10°, to point ¢
the tangent of 35° ete.

Fig. 63 represents a chart used by Penfield for making stereographic
projections. The circle has a diameter of 14 em. and is graduated to de-
grees. With it go certain scales that are very useful in locating the desired
points and zonal circles. These will be briefly described later.
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For detailed descriptions of the prineiples of the stereographic projection
and the methods of its use the reader is referred to the various books and
articles, the titles of which are given beyond. It is possible here to give ouly
a brief outline of the more important methods of construction used.

62
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Stereographic Protractor for plotting btereograph]c Projections (after Penfield;
reduced one-half)

(1). To locate the pole of a face lyzng on a known north and south great circle,
its angular distance from the center or a point on the circumference of the pro-
Jjection being given. The stereographic protractor, Fig. 62, or the tangent rela-
tion as stated above, gives the proper distance. The poles labeled o (iso-
metric octahedron), Fig. 60, may be located in this way.

(2) To locate the projection of the arc of a great circle which is not a north
and south meridian or the equator. The projections of three points on the
arc must be known. Then, since the projection of the circle will be still a
circular are, its position can be determined by the usual geometric construe-
tion for a circle with three points on its arc given. If, as is commonly the
case, the points where the great circle crosses the equator and the angle it
makes with the equator are known it is possible to get the radius of the pro-
jected are directly from Scale No. 1, Fig. 63. The location of such a desired
arc is shown in Fig. 64. The arcs shown in Fig. 60 were also located in this
way.

(8) To locate the position of the pole of a face lying on a known great circle,
which 1s not a north and south meridian, its angle from a point on the circum-
ference of th- projection being known. The projected arc of a small vertical
circle, whose radius is the known angle, is drawn about the point on the cir-
cumference of the projection and since all points on this are must have the
required angular distance from the given point the intersection of this circle
with the known great circle will give the desired point. The radius of the
projected arc of the small vertical circle can be determined by finding the
position of three points on the projection which have the required angular
distance from the point given on the circumference of the projection and
then obtaining the center of the required cirele in the usual way. Or by the
use of Scale No. 2, Fig. 63, the required radius is obtained directly. Tt is
to be noted that the known point on the circumference of the projection,
while the stereographic center of the small circle, is not the actual center of
the projected arc. The center will lie outside the circumference on a con-
tinuation of the radial line that joins the given point with the center of the
projection. Therefore, even if the radius of the required arc is taken from
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Scale No. 2, it will be necessary to establish at least one point on the re-
quired circle in order to find its center. These methods of construction are
llustrated in Fig. 65, in which the position is determined of the pole n (iso-

64

Distance =35"
See Fig. 62

Location of the arc of a great circle in the Stereographic Projection at a given angle
above the equator

65
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=355°

Pistance

Location of pole of trapezohedron, n(211), in Stereographic Projection

metric trapezohedron) which lies on the great circle passing through the

poles ¢ (isometric cube) and o (isometric octahedron), and makes a known
angle (35%°) with a.
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(4) To locate the position of the pole of a face given the angles between it and
two other faces whose poles lie within the divided cirele. Cirecumseribe about
the poles of the two known points small cireles with the proper radii and
the desired point will be loeated at their intersection. The two small eircles
may touch at only a single point or they may interseet in two points. In
the latter case both points will meet the required conditions. The positions
of the projected small eireles are readily found by drawing radii from the
center of the projection through the two known poles and then laying off on
these radii points on either side of the known poles with the required angular
distances. The center is then found between these two points in each case
and a circle drawn through them. This line of this circle will then be every-
where the required number of degrees away from the known pole. The re-
quired points may he found readily by means of the Stereographic Protrac-
tor, Fig. 62, remembering that the zero point on the protractor must always
lie at the eenter of the projection. This construetion is illustrated in Fig. 66,
in which the points s (isometrie hexoetahedron), are 22° 12’ and 19° 5’ from
the points o (isometrie oetahedron), and d (isometrie dodecahedron). It is
to be noted here, also, that while the points o and d are the stereographie
centers of the eireles about them, the actual centers are points which are
somewhat farther out from the center of the projection.

66
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Location of two poles of hexoctahedron, s, in Stereographic Projection

(5) To measure the angle between two given points on the stereographic
projection. If the two points lic on the circumference of the projection the
angle between them is read direetly from the divisions of the eirele. If they
lie on the same radial line in the projeetion, the angle is given by the use of
she Stereographie Protractor, Fig. 62. In other eases it is necessary first to
dnd the are of a great cirele upon whieh the two points lie.  This 1s most
easily accomplished by the use of a transparent celluloid protractor upon
which the arcs of great circles are given, Fig. 67. Place this protractor over
the projection with its center eoineciding with the center of the projection and
turn 1t about until the required great cirele is found. Note the points where
this circle interseets the circumnference of the projection. Then place a
second transparent protractor on which small vertical cireles are given,
Fig. 68, over the projection with its ends on the points of the circumference
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just determined. Now note the angular distance between the two given
points. The whole operation may also be done by use of a third trans-
parent protractor, on which the ares of both great and small circles are
given.

f=s

Stereographic Protractor, giving the great circles of every alternate degree (second, fourth,
ete.) (After Penfield, reduced one-half)

Stereographic Protractor, giving small eircles for every degree measured from a given point
on the circumference. (After Penfield, reduced one-half)

(6) To measure the angle between the arcs of lwo greal circles on the stereo-
graphic projection. This is most conveniently accomplished by construct-
ing the arc of a great circle which shall have a 90° radius about the point at
which the two ares in question cross each other and then measuring the
angular distance between the two points at which they intersect this great
circle. Fig. 69, after Penfield, will serve to illustrate the method. First, if
1t 1s wished to measure the angle between the divided circle and the arc of
the great circle that crosses 1t at C it is only necessary to draw a straight
line through the center of the projection, N, which shall intersect the divided
circle at points 90° distant from €. This line will be the projection of the
arc of a great circle about the sphere at 90° distant from €. The angle at C
1s then determined by measuring with the stereographic protractor the angle
between u and v.

In the case of the angle between two great circles that meet at some
point within the divided circle as at A, Fig. 69, it is necessary to construct
the projected arc of the great circle 90° distant from this point This is done
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by drawing the radial line through N and A and measuring with the stereo-
graphic protractor an angle of 90° from A to the point B. The required arc
will pass through this point and the points p and p’ which are each 90° away
from the points at which the line A-N-B crosses the divided cirele. The
angle between @ and y measured on this great cirele gives the value of the
required angle at A. This Is most
69 readily measured by the use of the
transparent protractor showing small
circles, Fig. 68.  This is placed across
the projection from p to p’ and the
angle between x and y read directly
from it.

Wiilfing has described a sterco-
graphic net, which gives both great
and small circles for every two de-
grees.  Over this is placed a sheet of
tracing paper upon which the stereo-
graphic projection 18 made. If the
paper is fastened at the center of the
drawing so that it can be turned into
various positions in respect to the
stereographie net below, the various
great and small eireles needed can be
sketched direetly upon the drawing.
Or the required points can be trans-
ferred from the net to a separate drawing by means of three point dividers.

Examples of the use of the stereographic projection will be given later
under each crystal system.
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Relation between Spherical and Gnomonic Projections

42. The Gnomonic Projection. — The characters of the gnomonie pro-
jection can best be understood by considering it to be derived from the
spherical projection (see Art. 40). In the case of the gnomonic projection
the plane of the projection is usually taken as the horizontal plane which
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lies tangent to the north pole of the sphere of the spherical projection. Im-
aginary lines are then taken from the center of the sphere through the poles
of the crystal faces that lie on its surface and extended until they touch the
plane of the projection. The points in which these lines touch that plane
constitute the gnomonic projection of the forms represented. Fig. 70 shows
the relations between the spherical and gnomonie projections, using the same
isometric crystal forms (cube, octahedron and dodecahedron) as were em-
ployed to illustrate the principles of the Stereographic Projection (Art. 41).
Fig. 71 shows the gnomonic projection of the same set of forms.
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110 110
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v

Gnomonic Projection of Cube, Octahedron and Dodecahedron

The following features of the gnomonic projection are important. All
great circles on the spherical projection become straight lines when trans-
ferred to the gnomonic. The poles of a series of erystal faces which belong
in the same zone will, therefore, on the gnomonic projection, lie on a straight
line. This primary distinction between the stereographic and gnomonic pro-
jections will be readily seen by a comparison of Figs. 60 and 71. The pole
of a horizontal crystal face (like the top face of the cube) will fall at the center
of the projection. The poles of vertical crystal faces will lie on the plane
of projection only at infinite distances from the center. This is shown by a
consideration of Fig. 70. Such faces are commonly indicated on the pro-
jection by the use of radial lines or arrows which indicate the directions in
which their poles lie. This is illustrated in the case of the vertical cube and
dodecahedron faces in Fig. 71.  Crystal faces having a steep inclination with
the horizontal plane must frequently he indicated in the same way.
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A simple relation exists between the linear distance from the center of
the projection to a given point and the angular distance represented. This
is shown in Fig. 72 where the circle is assumed to be a vertical cross-section
of the sphere of the spherical projection and the line A-B represents the
trace of the plane of the gnomonic projection. It is evident from this figure

that if the radius of the
72 circle is taken as unity
' the hnear distances
N-a’, N V', ete., are the
tangents of the angles
20°, 35°, ete. Conse-
quently in the gnomonie
projection the distance
of a given pole from the
center of the projection,
considering the funda-
mental distance O-N,
Fig. 72, to be unity, is
equal to the tangent of
the angle represented:
In the case of the stereo-
graphic projection this
distance is equal to the
tangent of one half the angle, see Art. 41. The stereographic scale, used
i the stereographic protractor, Fig. 62, can therefore be adapted for use
in the gnomonic projection by taking the point on it reading at twice the
desired angle. The simplest method of plotting, however, is to make a
direct use of the tangent relation. The distance O-N, Fig. 72. is taken at
some convenient length and then
by muultiplying this distance by the 73
natural tangent of the angle desired
the linear distance of the pole in
question from the center of the
projection is obtained. Frequently
the distance O-V is taken as 5 cm.
In making a gnomonic projection
a circle is commonly drawn about
the center of the projection, known
as the fundamental circle, with a
radius equal to this chosen dis-
tance. Points that have an angular
distance of 45° with the center
point of the projection will Lie on !
the circumference of this circle. neasurement of angle between any two poles
Commonly also the gnomonic pro- (A1, A;) on the Gnomonic Projection
jection is surrounded by a square
border of two parallel lines on which is indicated the directions in which Le
the poles that cannot appear on the projection because of the vertical or
?tm;)ly inclined position of their faces. These characters are shown in
Mg, 71.
To measure the angle between two poles on the gnomonie projection. In
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Fig. 73 let A; and A, be any two points the angle between which is desired.
First draw a straight line through them or, in other words, find the direction
of the zonal line upon which they lie. Next erect the line O-A perpendicular
to this zonal line and passing through the center O of the projection. On
this line establish the point V, the distance A N being equal to the hypo-
thenuse of the right triangle AOP or the distance A-P. The point N is
known as the angle-point of the zone A;-A,. The angle 4,NA; is equal to
the desired angle between the points 4, and A,. In the case of zonal lines
that pass through the center of the projection this angle-point will lie on
the circumference of the fundamental circle at the terminus of a radius
which is at right angles to the zonal line in question. In the case of vertical
crystal faces whose poles lie at an infinite distance the center of the projec-
tion is itself the angle-point.

The explanation of the above method may be given as follows. In Fig. 74 let the circle
represent a vertical section through the sphere of the spherical projection and the line
N-A the trace of the plane of the gnomonic projection. Let the line A—C represent the
intersection of a zonal plane lying at right angles to the plane of the drawing. The zonal
line representing the intersection of this zonal plane with the plane of the gnomonic pro-
jection would therefore be a straight
line through point A which would be 74
perpendicular to the plane of the draw-
ing. The angle between any two poles N
lying on this zonal line would be deter-
mined by the angle formed by the lines
drawn from these poles to the point C.
Ifd we consider this zonal line which
passes through A perpendicular to the
drawing as an axis around which we
may revolve its zonal plane, the point
C may be moved so that it will lie in
the plane of the gnomonic projection
and fall at N, the distance A-N being
equal to A-C. The character of the
point C has not been changed by this
transfer and the point N becomes the
angle-point of the zonal line running
through A4 and the angle between any two poles on this line may be determined by running
lines from them to this point and measuring the included angle. The point N lies on the
line running through O (center of the gnomonic projection) and the distance A-N is equal
to the hypothenuse, A-C, of the right triangle one side of which is equal to A-O and
the other to O—C (the radius of the fundamental circle).

S
N

To measure the angle between parallel zonal lines on the gnomonic projection.
In Fig. 75 let the two lines Zone ! and Zone 2 represent two parallel zonal
lines the angle between which is desired. Draw the radial line trom the
center of the projection, O, at right angles to these zonal lines intersecting
them at the points A, and 4,. Make O-P at right angles to O-A,4.. The
angle 4,PA, will give the angle between the two zones. The construction
will be readily understood if the figure is supposed to be turned on the line
0-A14, as on an axis until the point P becomes the center of the spherical
projection The broken arc now represents a vertical cross section of the
sphere of the spherical projection and the points a; and a, the points where
the two zonal lines cross it. The angle at P is obviously the angle between
the two zones.

The angle between Zone 2 and the prism zone, the line of which lies at
infinity on the gnomonie projection, is given in Fig. 75 by the angle 4,PN
which is the same as A,4,P.
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A gnomonic net, similar in character to the stereographic net described
in Art. 41, is useful in plotting the points of a projection or in making meas-
urements upon it. The straight lines upon it represent the projection of the

arcs of great circles of the spherical

7 projection, while the hyperbola curves

represent those of the small vertical
circles.

The gnomonic projection 1s most
commonly used in connection with
the measurement of crystal angles by
means of the two-circle goniometer.
This use will be explained later, see
Art. 232. For more detailed deserip-
tions of the principles and uses of
the gnomonic projection the reader is
referred to the literature listed below.

References on the Stereographic and
Gnomonic Projections.

In addition to the descriptions of these
Measurement of the angle between paratliel projections that are given in many general
zones on the Gnomonie Projection crystallographic texts the following books

and papers are of value.

Boecke, H. E. Die Anwendung der stereographischen Projektion bei kristallographi-
schen Untersuchungen, 1911. Die gnomonische Projektion in ihrer Anwendung auf kris-
tallographische Aufgaben, 1913.

Evans, J. W. Gnomonic Projections in two planes. Min. Mag., 14, 149, 1903.

Goldschmidt, V. Uber Projektion und graphische Kristallberechnung, 1887.

Gossner, B. Kristallberechnung und Kristallzeichnung, 1914.

Hilton, H. The Gnomonic Net, Min. Mag., 14, 18-20, 1904. The Construction of
Crystallographic Projections, Min. Mag., 14, 09— 103 1905. Some Applications of the
Gnomonic Projection to Crystallography, Min. Mag., 14 104108, 1905.

Hutchinson, A. On a protractor for use in constructlng stereogrqphxc and gnomonic
projections of the sphere, Min. Mag., 15, 94-112, 1908.

Palache, Charles. The Gnomonie Pro_]e(-tlon Amer. Min., 5, 67, 1920.

Penfield, S. L. The Stereographic Projection and Its Possibilities from a Graphieal
Standpoint, Am. J. Sei., 9, 1-24, 115-144, 1901. On the Solution of Problems in Crystal-
lography by Means of Graphlcal Methods based upon Spherical

and Plane Trigonometry. Am. J. Sei., 14, 249-284, 1902. On the 76
Drawing of Crystals from Stereographie and Gnomonie Projections, 5
Am. J. Sei., 21, 206-215, 1906. —<n
Smith, G H.H. On the Advantages of the Gnomonie Projec- ¢ a NG
tion and its use in the Drawing of Crystals, Min. Mag., 13, 309-321,
1903.
S|n a |m| s|d

43. Angles between Faces. — The angles most con- |
veniently used with the Miller symbols, and those given

in this work, are the normal angles, that is, the angles be- AT
tween the poles or normals to the faces, measured on ares
of great circles joining the poles as shown on the stereo Chrysolite

graphic projection. These normal angles are the supple-
ments of the actual interfacial angles, as has been explaned.

The relations between these normal angles, for example in a given zone, is much simpler
than those existing between the actual interfacial angles. fl)us it is always true that, for a
series of faces in the same zone, the normal angle between two end faces is equal to the
sum of the angles of faces falhmr between. Thus (Figs. 76, 77) the normal angle of
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ab(100 A 010) is the sum of am(100 A 110), ms(110 A 120), and sb(120 A 010). This

relation holds true in all the systems.

Furthermore, it will be seen that, supposing aca’ (Fig. 77) is a plane of symmetry as in

the orthorhombic system, the angle
100 A 110, or am (Fig. 76), is half
the angle 110 A 110(mm/”’). Similarly
010 A 120(bs) is half the angle 120 A
120(ss’); again, 100 A 111(ae) is the
complement, of half the angle 111 A
111(ee’) and 010 A 111(be) the comple-
ment of half the angle 111 A 111(ee’”’).

Here, as throughout this work, the
sign A 1s used to represent the angle
between two faces, usually designated
by letters.

44. Use of the Stereographic
Projection to Exhibit the Sym-
metry. — The symmetry of any
one of the erystalline classes may
be readily exhibited by the help
of the stereographic projection.

The axes of binary, trigonal,
tetragonal and hexagonal sym-
metry are represented respec-
tively by the following signs:

® A® @ [Turther, a plane of gyoreographic Projection of Faces on Chrysohte

symmetry is represented by a full
line (zone-eircle), while a dotted

Crystal, Fig. 76

line indicates that the plane of symmetry is wanting. The position of the
crystallographic axes is shown by arrows at the extremities of the lines. 'The

78

7

pole of a face in the upper half of
the erystal (above the plane of pro-
jection) is represented by a cross;
one below by a circle. If two like
faces fall in a vertical zone a double
sign is used, a cross within the
circle. Figs. 91, 128, 140, ete.,
give illustrations.

45. General Relations be-
tween Planes in the Same Zone.
— Certain important relations
exist between the indices of faces
that lie in the same zone. All
faces to belong to the same zone,
tautozonal faces as they are called,
must have their mutual intersec-
tions parallel to a given dircction,
see Art. 38. This direction is
known as the axis of the zone.
The position of this zonal axis can
be expressed by what is known as

the zonal symbol. Consider Fig. 78, where is represented two crystal faces,
ABC, and CDE, intersecting the crystallographic axes X, ¥ and Z. In the
illustration, for simplicity, both faces have been assumed to pass through
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the point C' on the axis Z. This, of course, is possible sinee any erystal
plane may be moved parallel to itself without altering its relative intereepts
on the erystal axes. These two planes intersect in the line C—W, which
then beecomes the direction of the zonal axis for the zone in which they
lie. Let the line O-P whiech has been drawn parallel to this direetion
represent that axis. In the parallelogram of which it is the diagonal the
length of the edge O-S and 1its parallel edges have been taken as equal to the
distanee O-C. The point P on the zonal axis and therefore the direetion
of the axis itself is fixed by the three eoordinates, O-M, O-R, and O-S. By
means of the consideration of similar triangles it is possible to prove that the
values of these coordinates may be expressed by,

O-M = (kr — lg)a; O-R = (Ip — hr)b; O-S = (hq — kp)e,

where a, b, ¢ represent the unit lengths of the three erystallographie axes,
X, Y, Z and (hkl) and (pgqr) represent the indices of the two faces ABC and
CDE. These expressions are usually simplified by substituting v = kr — lg,
v =1Ip — hr, w= hqg — kp, giving O-M = wa, O-R = vb and O-S = we.
The three figures [uvw] are said to be the symbol of the zone in question.
They represent the reeiproeals of the values of the three eoordinates, or in
other words are the indiees of a point, P, on the zonal axis. They may
most readily be obtamed by a system of eross-multiplication and subtraetion
aceording to the following scheme. Write the indices of one face twiee in
their proper order and direetly under them the corresponding indices of the
second face. Cross off the first and last number of each series. Then mul-
tiply the figures joined by the eross lines, see below, and substract the prod-
uet of the two joined by hight lines from that of those joined by heavy lines,
working from left to right. The three numbers obtained will in their order
correspond to u, » and w.

h h

k l k
SO
AN

rlqg 7 p qIr
u=kr—lgv=1Ip— hr,w= hq — kp.

Sinee the zonal symbol for a given zone may be obtained from the indices
of any two faces lying in that zone it follows that the indices of every pos-
sible face in that zone must have definite relations to the zonal symbol. For
a given face with indices (xyz), in a zone having the symbol [uvw] the follow-
ing equation, known as the zonal equation, must hold true.

uxr + vy + wz = 0.

In this way it ean be readily shown whether or not a given face can lie in a
eertain zone.

Further if [uow] be the symbol of one zone and [efg] that of another inter-
secting it, then the point of interseetion will always be the pole of a possible
crystal face. Its indiees (hkl) must satisfy the equations of both zones and
may be obtained by combining them or the same result may be had by tak-
ing the symbols of the two zones and subjecting them to the same sort of cross-
multiplieation by which they were themselves criginally derived.

R—
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46. — Examples of Zones and Zonal Relations. — The following are eases in which the
gonal equation is seen at once. In Figs. 76 and 77 the faces a(100), m(110), s(120), b(010)
form a vertical zone with mutually parallel interseetions, since they are all parallel to the
vertieal axis; that is, for all faces in this zone it must be true that I = 0.

Again, the faces a(100), d(101), ¢(001) are in a zone, all being parallel to the horizontal
axis b; hence for them and all others in this zone k¥ = 0. Also b(010), £(021), A(011), ¢(001)
are in a zone, all being parallel to the axis o, so that 2 = 0.

Also the faces f(121), e(111), d(101), ¢’ ’(111), f"*(121) are in a zone, since they have a
common ratio for the axes @ : c. With them, obviously, 2 = [.

The faces ¢(001), e(111), m(110) are also in a zone, and again ¢(001), f(121), s(120),
though interseetions do not happen to be made between ¢ and e in the one case, and ¢ and
fin the other. For each of these zones it is true that there is a common ratio of the hori-
zontal axes, that is, of & to & in the indices. TFor the first it may be shown that b = k; for
the second, that 2k = k.

All the relations named may be obtained at once from the
above scheme. For example, for the faces s(120) and f(121)
the secheme gives

112 0 1 2|0
XX
N\
|t NS G M T

u=2 v=1, w=0; .2k —k =0, 0r2h = k.

The symbol of a face lying at once in two zones, as stated
above, must satisfy the zonal equation of eaeh; these symbols
are hence easily obtained either by combining the equations
or by a scheme of multiplication like that given above.

For example, in Fig. 79, of sulphur, the face lettered z is in
the zone (1) with 5(010) and s(113), also in zone (2) with p(111)
and n(011). These zones give, respeetively:

Sulphur

(1) 01 0 4] 110 2 1|1 1 1 11
XXX XXX
il 3 1 1L 011 1 0 1|1
2 P 0 T 1
M= veEQ Sreik e=0 f=1, g¢g=1.

hHence for (1) the zonal equation is 3h =1I; for (2) & =[l. Combining these, we obtain
=1,k=231=3.
The symbol of the face z is, therefore, 133.

The same result is given by multiplying the zonal symbols 011, 301, together after the

same method, thus: .
1 0 1]1
XXX
1 3 011
3 3

0]1
310

1

This method of ealeulation helongs to all the different systems. In the hexagonal
system, in which there are four indices, one of the three referring to the horizontal axes
(usnally the third) is omitted when the zonal relations are applied. See Art. 166.

Hence, again, z = 133.

47. Methods of Calculation. — In general the angles between the poles
can be calculated by the methods of spherical trigonometry from the tri-
angles shown in the spherieal projection — which for the most part are right-
angled. Certain fundainental relations connect the axes with the elemental
angles of the projection; the most important of these are given under the
individual systems. Some general relations only are explained here.
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48. Relations between the Indices of a Plane and the Angle made by it
with the Axes. — In Fig. 80 let the three lines, X, Y, and Z represent three
o crystallographic axes making any angles with each

other and let a, b and ¢ represent their unit lengths.
z Assume any face KL cutting these axes with the
intercepts O-H, O-K and O-L. Let O-p-P be a

normal to the plane HKL intersecting the plane at

‘ p and the enveloping surface of the spherieal pro-
b L2 jection at P. Let Akl represent the indices of the

‘ X given form. Since the line O p is normal to the
‘ plane HKL the triangles HOp, KOp and LOp are
) / - roiiht angles and tg«; following relag;ns hold true.
i == = ) = = { e = i

" cos HOp; OK = ©08 KOp; oL = LOp

OH
The angles HOp, KOp, and LOp are equal, respectively, to the angles repre-
sented on the spherical projection by the ares PX, PY and PZ and OH = (}—f,
OK = }%, OL = g By substituting we have,
OP = %cos PX = %cos P = lgcos 1277,

This equation is fundamental, and several of the relations given beyond are
deduced from it.

81

100 ¥

The most useful applieation is that when the axial angles are 90°, as represented in Tig.
81; then X, Y, Z are the normals to 100, 010, 001, respectively. Also if the plane HKL is
taken as a face of the unit pyramid, that is, if its intercepts on the axes are taken as the
unit lengths
OH = g, OK = b, Ol = @,

Then the lines HK, HL, KL give also the intersections of the planes 110, 101, 011 on
the three axial planes, and their poles are hence at the points fixed by normals to these
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lines drawn from O. It will be obvious from this figure, then, that the following relations
hold true:

’

tan (100 A 110) =

tan (001 A 101) =

)

a
b
¢
a
tan (001 A 011) = l—”)

These values are often used later.

49. Cotangent and Tangent Relations. — In the case of four faces in a
zone concerning which we know, either the angles between all the faces and
the indices of three of them, or the angles between three faces and all the
indices, it is possible by either a simple graphical method of plotting or by
calculation to determine the missing angle or indices.

To illustrate the graphic method first let Fig. 82 represent a cross section
perpendicular to the prism zone of a rhodonite erystal. The traces upon the
plane of the drawing of the faces @(100) and b(010) provide the direction
of the lines of reference X and Y. It is assumed that the position of the third
face m(110) is known and a line drawn parallel to its trace upon the plane of
the drawing from the point X will give its relative intercepts upon the two
lines of reference. These intercepts do not correspond to the unit lengths
of the axcs a and b since, rhodonite being triclinic, these axes do not lie in
the plane of the drawing but they represent rather the unit lengths of these
axes as foreshortened by projection upon that plane. This makes no dif-
ference, however, since it will still be true that all faces lying in the prism
zone of rhodonite must intercept these two lines in distances which will have
rational relations to the lengths of the intercepts of m(110). It is now as-
sumed that a fourth face f has the mdices (130) and its angular position in
respect to the other faces in the zone is required. From its indices it must
intercept the two lines of reference X—X’ and Y-Y’ in the ratio of 1 to 1.
Let OX equal 1 on X=X’ and OZ equal § on Y-Y’. Then a line joining
these two points will give the direction of the trace of f upon the plane of
the drawing and so determine the angles 1t will make with the other faces in
the zone.

If, on the other hand, the angles between f and the other faces in the
zone were known, the position of the trace of f upon the plane of the drawing
could be found, and so its relative intercepts (and indices) upon
the two lines of reference be determined. 83

If the method of calculation is used let P, Q, S and R be the poles of
four faces in a zone (Fig. 83) taken in such an order * that PQ < PR and
let the indices of these faces be respectively

P Q R s b
hil pqr ) Yz 0
Then it may be proved that
cot PS — cot PR - P.Q) _ (S.R) P
cot PQ — cot PR (Q.R) © (P.S)

* In the application of this principle it is essential that the planes should be taken in
the proper order, as shown above; to accomplish this it is often necessary to use the in-

dices and corresponding angles, not of (hkl), but the face opposite (k£ 1), ete.
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where
123 1X2 2 X3 3X1
P, hkl
(PQ) | Q,pgr | _hg —kp _kr —lg _Ilp — hr
QR)[Q,pgr | pv—qu qw—r ru—pw

R, ww,
123 1 X2 2 X3 3 X1
S, xyz
SR)| R, ww [ av —yu _yw —2v _ zu — aw
(P.S) | P, hki hy —kr ke — ly Iz — hz
S, xyz

If one of these fractions reduces to an indeterminate form, %’ then one of the others

must be taken in its place.
This formula is chiefly used in the monoclinic and triclinic systems; and some special

eases are referred to under these systems.

The cotangent relation becomes much simplified for a rectangular zone,
that is, a zone between a pinacoid and a face lying in a zone at right angles
to it so that the angle PR becomes 90°. In Fig. 83 let P(hkl) and Q(pgr)
be two faces lying in the zone between a(100) and d(011) with the angle
a n d=90° Let Pa and Qa represent the angles between the two faces
and the pinacoid a. Then the following holds true.

h tanPa &k 1

p "tanQa ¢ 1’
or the faces P and Q lie in zones with the other pnacoids 6(010) or ¢(001)
the expression becomes

@zkxtanPb_g
P q tanQb_r’
E_l_c_l_xtanPc.
p q r tan Qe

If the zone in question lies between two pinacoids which are at right
angles to each other so that the indices of the faces P and Q become either
hk0 and pg0, ROl and pOr or 0kl and Ogr, we have

tan (100 A hkO) _k p,

tan (100 A pq0) =0 4 ¥
tan (001 A ROl)

tan (001 A pOr) z 5’
tan (001 A OKD) _k 1
tan (001 A Ogr) L q°

These equations are the ones ordinarily employed to determine the symbol of any pris-
matic plane or dome.
The most common and important application of this tangent principle is where the
positions of the unit faces 110, 101, 011 are known, then the relation becomes
tan (100 A RKO) _ K tan (010 A hk0) _ A
tan (100 A 110) ~ A’ tan (010 A 110) &
tan (001 A RO _ R tan (001 A OKl) _ &k
l l

Als L tan (001 A Okl) _
) tan (001 A 101) tan (001 A 011)

or
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Thus the tangents of angles between the base, 001, and 102, 203, 302, 201, etc., are
respeetively 4, 2, 3, 2 times the tangent of the angle between 001 and 101. Again, the

tangent of the angle 100 A 120 is twice the tangent of 100 A 110 (hero% = 2), and one-

half the tangent of 010 A 110.
These last relations are shown elearly in Fig.
S4 which represents a ecross-section of a barite
crystal showing the maerodome zone between
a(100) and ¢(001). It is assumed that the angles
between the faces a, u, d, I and ¢ have been
measured and the positions of their poles deter-
mined as indieated in the figure. The broken
lines drawn from a point z on the line represent-
ing the a erystallographic axis show the direetion
of the traces of these faces upon the plane of the
a and c axes. If the face u i1s assumed to be the
unit dome (101) it will intersect the two axes at
distances proportional to their unit lengths,
namely O-X and O-Y. The other faces d and [
are seen to interseet the ¢ axis at 3 and } the
distanee O-Y, giving them the indiees (102) and
(104). But the intereepts on O-Y for the three
faces u, d and [ are proportional to the tangents
of the angles between their poles and that of
¢(001) as shown below.
tan 58° 103’
tan 38° 51%°
tan 21° 563/

([T

1.6112
8056
4028

([

ol
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I. ISOMETRIC SYSTEM
(Regular or Cubic System)

50. Tue IsomeTrIC SYSTEM embraces all the forms whieh are referred to
three axes of equal lengths and at right angles to each other. Since these
axes are mutually interchangeable it is eustonmary to designate them all by

the letter a.  When properly orientated (z.e. placed in
85 P
the eommonly aeeepted position for study) one of
e these axes has a vertieal position and of the two
which lie 1n the horizontal plane, one is perpendicular
and the other parallel to the observer. The order in

- whieh the axes are referred to in giving the relations
+  of any face to them is indicated in Fig. 85 by lettering
a, ®  them a;, a» and a;. The positive and negative ends

of eaeh axis are also shown.
There are five classes here ineluded; of these the
£ normal class* whieh possesses the highest degree of
Tren A symmetry for the system and, indeed, for all erystals,
is by far the most important. Two of the other
classes, the pyritohearal and tetrahedral, also have numerous representatives
among minerals.

1. NORMAL CLASS (1). GALENA TYPE
(Hexoctahedral or Holohedral Class)

51. Symmetry. — The symmetry of each of the types of solids enumer-
ated in the following table, as belonging to this class, and of all their eom-
binations, is as follows. '

Axes of Symmetry. There are three principal axes of tetragonal sym-
metry which are eoincident with the erystallographic axes and are some-
times known as the cubic axes since they are perpendicular to the faeces of
the cube. There are four diagonal axes of trigonal symmetry which emerge
in the middle of the oetants formed by the cubic axes. These are known as
the octahedral axes sinee they are perpendiecular to the faces of the octahedron.
Lastly there are six diagonal axes of binary symmetry which biseet the plane
angles made by the cubic axes. These are perpendieular to the faeces of the
dodeeahedron and are known as the dodecahedral axes. These symmetry
axes are shown in the Figs. 86-88.

Planes of Symmetry. There are three prineipal planes of symmetry
which are at right angles to each other and whose intersections fix the posi-

* It is called normal, as before stated, sinee it is the most common and hence by far the
most important class under the system; also, more fundamentally, beeause the forms here
ineluded possess the highest grade of symmetry possible in the system. The eube is a pos-
sible form in each of the five classes of this system, but although these forms are alike geo-
metrically, it is only the cube of the nornal elass that has the full symmetry as regards
molecular structure which its geometrieal shape suggests. If a crystal is said to belong to
the isometrie system, without further qualification, it is to be understood that it is included
here. Similar remarks apply to the normal classes of the other systems.
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tion of the crystallographic axes, Fig. 89. In addition there are six diagonal

planes of symmetry which bisect the angles between the principal planes,
Fig. 90.

Axes of Tetragonal Symmetry Axes of Trigonal Symmetry Axes of Binary Symmetry
(Cubic Axes) (Octahedral Axes) (Dodecahedral Axes)
89 90

Principal Symmetry Planes Diagonal Symmetry Planes

The accompanying stereographic projection
(Fig. 91), constructed in accordance with the
principles explained in Art. 44, shows the dis-
tribution of the faces of the general form, hkl
(hexoctahedron) and hence represents ctearly
the symmetry of the class. Compare also the
projections given later.

52. Forms. — The various possible forms
belonging to this class, and possessing the
symmetry defined, may be grouped under seven
types of solids. These are enumerated in the
following table, commencing with the sim-
plest.

Symmetry of Normal Class,
Isometric System
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Indices
P@UDCYY. . . ... 90 T PR (100)
2. Octahedron............... (111)
3. Dodecahedron............. (110) .
4. Tetrahexahedron........... (hk0) as, (310); (210); (320), ete.
5. Trisoctahedron............ (hhD) as, (331); (221); (332), ete.
6. Trapezohedron............ (All) as, (311); (211); (322), ete.
7. Hexoctahedron............ (hEl) as, (421); (321), ete.

Attention is called to the letters uniformly used in this work and in Dana’s System of
Mineralogy (1892) to designate certain of the isometric forms.* They are:

Cube: a.

Octahedron: o.

Dodecahedron: d.

Tetrahexahedrons: ¢ = 210; S = 310; g = 320; h = 410.
Trisoctahedrons: p = 221; ¢ = 331; r = 332; p = 441.
Trapezohedrons: m = 311; n = 211; g = 322.
Hexoctahedrons: s = 321; ¢ = 421.

53. Cube. — The cube, whose general symbol is (100), is shown in
Fig. 92. Tt is bounded by six similar faces, cach parallel to two of the axes.
Each face is a square, and the interfacial angles are all 90°. The faces of
the cube are parallel to the principal or axial planes of symmetry.

92 94

1 001

i
100] -~ | 010 A
S '/
Cube Octahedron Dodecahedron

54. Octahedron. — The octahedron, shown in Fig. 93, has the general
symbol (111). It is bounded by eight similar faces, each meeting the three
axes at equal distances. Iaeh face is an equilateral triangle with plane
angles of 60°. The normal interfacial angle, (111 A 111), is 70° 31" 44"

55. Dodecahedron. — The rhombic dodecahedron,t shown in Fig. 94,
has the general symbol (110). It is bounded by twelve faces, each of which
meets two of the axes at equal distances and is parallel to the third axis.
Each face is a thomb with plane angles of 703° and 109}°. The normal in-
terfacial angle is 60°. The faces of the dodecahedron are parallel to the six
auxiliary, or diagonal, planes of symmetry.

(l%:Q;I‘hO usage followed here (as also in the other systems) is in most cases that of Miller
D). .

T The dodecahedron of the crystallographer is this form with rhombie shaped faces
commonly found on ecrystals of garnet. Geomctrivians recognize various solids bounded
by twelve siimlar faces; of these the regular (pentagonal) dodecabedron is the most im-
portant. In crystallography this solid is impossible though the pyritohedron approxi-
mates to it. (See Art. 68.)



ISOMETRIC SYSTEM 55

It will be remembered that, while the forms deseribed are designatea respectively by
the symbols (100), (111), and (110), each face of any one of the forms has its own indices.
Thus for the cube the six faces have the indices

100, 010, 001, 100, 010, OO1.

For the octahedron the indices of the eight faces are:
Above 111, TI11, 111, 111;

Bl oz SIS ST S

For the dodecahedron the indices of the twelve faces are:
110, 110, 110, 110,
101, 101, 101, 101,
011, 011, 011, o011

These should be carefully studied with reference to the figures (and to models), and also
to the projections (Figs. 125, 126). The student should become thoroughly familiar with
these individual indices and the relations to the axes which they express, so that he can
give at once the indices of any face required.

Cube and Octahedron Cube and Octahedron Octahedron and Cube
98 100
l 3

Dodecahedron and Cube Octahedron and Dodecahedron and
Dodecahedron Octahedron

56. Combinations of the Cube, Octahedron, and Dodecahedron. —
Figs. 95, 96, 97 represent combinations of the cube and octahedron; Figs.
98, 101 of the cube and dodecahedron; Figs. 99, 100 of the octahedron and
dodecahedron; finally, Figs. 102, 103 show combinations of the three forms.
The predominating form, as the cube in Fig. 95, the octahedron in Fig. 97,
ete., is usually said to be modified by the faces of the other forms. In Fig.
96 the cube and octahedron are sometimes said to be “in equilibrium,”
since the faces of the octahedron meet at the middle points of the edges of
the cube.
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It should be carefully noticed, further, that the octahedral faces replace
the solid angles of the cube, as regular triangles equally ineclined to the adja-
cent cubie faces, as shown in Fig. 95. Again, the square cubic faces replace
the six solid angles of the octahedron, heing equally inclined to the adjacent
octahedral faces (Fig. 97). The faces of the dodecahedron truncate * the
twelve similar edges of the cube, as shown-in Fig. 101. They also truncate
the twelve edges of the octahedron (Fig. 99). Further, in Fig. 98 the cubic
faces replace the six tetrahedral solid angles of the dodecahedron, while the
octahedral faces replace its eight trihedral solid angles (Fig. 100).

101 102 103
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Cube and Dodeca- Cube, Octahedron and Octahedron, Cube and
hedron Dodecahedron Dodecahedron

The normal interfacial angles for adjacent faces are as follows:

Cube on octahedron, ao. 100 A 111 = 54° 44’ 8",
Cube on dodecahedron, ad, 100 A 110 = 45° 0/ 0”.
Octahedron on dodecahedron, od, 111 A 110 = 35° 15" 52”.

57. As explained in Art. 18 actual erystals always deviate more or less widely from the
ideal solids figured, in consequenee of the unequal development of like faces. Such erystals,
therefore, do not satisfy the geometrical definition of right symmetry relatively to the three
principal and the six auxiliary planes mentioned on p. 53 but they do conform to the con-
ditions of ecrystallographic symmetry, requiring like angular position for similar faces.
Again, it will be noted that in a combination form many of the faces do not actually meet
the axes within the crystal, as, for example, the octahedral face o in Fig. 95. It is still true,
however, that this face would meet the axes at equal distances if produced; and since the
axrial ratio is the cssential point in the case of each form, and the actual lengths of the axes
arc of no importance, it is not necessary that the faces of the different forms in a crystal
should be referred to the same actual axial lengths. The above remarks will be seen to
apply also to all the other forins and combinations of forms deseribed in the pages following.

58. Tetrahexahedron. — The tefrahexahedron (IFigs. 104, 105, 106) is
bounded by twenty-four faces, each of which is an isosceles triangle. Four
of these faces together occupy the position of one face of the cube (hexahe-
dron) whence the name commonly applied to this form. The general symbol
1s (hk0), hence each face is parallel to one of the axes while it meets the other
two axes at unequal distances which are definite multiples of each other.
There are two kinds of edges, lettered A and C in Fig. 104; the interfacial
angle of either edge is sufficient to determine the symbol of a given form
(see below). The angles of some of the common forms are given on a later
page (p. 63).

* The words truncate, truncation, are used only when the modifying face makes equal
angles with the adjacent similar faces.
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There may be a large number of tetrahexahedrons, as the ratio of the
intercepts of the two axes, and hence of A to k varies; for example, (410),
(310), (210), (320), ete. The form (210) is shown in Fig. 104; (410) in
Fig. 105, and (530) in Fig. 106. All the tetrahexahedrons fall in a zone
with a cubie face and a dodecahedral face. As & increases relatively to & the
form approaches the cube (in which 2 : k = « :1or 1 :0), while as it dimin-
ishes and becomes more and more nearly equal to £ in value it approaches
the dodecahedron; for which A = k. Compare Fig. 105 and Fig. 106; also
Figs. 125, 126. The special symbols belonging to each face of the tetra-
hexahedron should be carefully noted.

104 106 106
021
201 ‘
5 |
210 210 ¢ 120
— A
el S
Tetrahexahedrons
107 108
«
e
o e (2]
Cube and Tetrahexa- Octahedron and Dodecahedron and
hedron Tetrahexahedron Tetrahexahedron

The faces of the tetrahexahedron bevel * the twelve similar edges of the
cube, as in Fig. 107; they replace the solid angles of the octahedron by four
faces inclined on the edges (Fig. 108; f = 310), and also the tetrahedral
solid angles of the dodecahedron by four faces inclined on the faces (Fig.
109; h = 410).

59. Trisoctahedron. — The trisoctahedron (Fig. 110) is bounded by
twenty-four similar faces; each of these is an isosceles triangle, and three
together occupy the position of an octahedral face, whence the common
name. Further, to distinguish it from the trapezohedron (or tetragonal
trisoctahedron), it is sometimes called the trigonal trisoctahedron. There are
two kinds of edges, lettered A and B in Fig. 110, and the interfacial angle
corresponding to either is sufficient for the determination of the special
symbol.

_* The word bevel is used when two like faces replace the edge of a form and hence are
inclined at equal angles to its adjacent similar faces.
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The general symbol is (hhl); common forms are (221), (331), ete. Each
face of the trisoctahedron meets two of the axes at a distance less than unity
and the third at the unit length, or (which is an identical expression *) it
meets two of the axes at the unit length and the third at a distance greater
than unity. The indices belonging to each face should be carefully noted.
The normal interfacial angles for some of the more common forms are given
on a later page.

110 111 112

& OO 6

> VNV

Trisoctahedron Cube and Trisoctahedron Octahedron and
Trisoetahedron

60. Trapezohedron. — The trapezohedron 1 (Figs. 113, 114) 1s bounded
by twenty-four similar faces, each of them a quadrilateral or trapezium. It
also bears In appearance a certain relation to the octahedron, whence the
name, sometimes employed, of tetragonal trisoctahedron. There are two
kinds of edges, lettered B and C, in Fig. 113. The general symbol is All;
common forms are (311), (211), (322), ete. Of the faces, each cuts an axis
at a distance less than unity, and the other two at the unit length, or (again,
an identical expression) one of them intersects an axis at the unit length and
the other two at equal distances greater than unity. The indices belonging
to each face should be carefully noted. The normal interfacial angles for
some of the common forms are given on a later page. Another name for this
form is icositetrahedron.

61. The combinations of these forms with the cube, octahedron, ete.,
should be carefully studied. It will be seen (Fig. 111) that the faces of the
trisoctahedron replace the solid angles of the cube as three faces equally
inclined on the edges; this is a combination which has not been observed on
crystals.  The faces of the trapezohedron appear as three equal triangles
equally inclined to the cubie faces (Fig. 115).

Again, the faces of the trisoctahedron bevel the edges of the octahedron,
Fig. 112, while those of the trapezohedron are triangles inclined to the faces
at the extremities of the cubic axes, Fig. 119; m(311). Still again, the faces
of the trapezohedron n(211) truncate the edges of the dodecahedron (110),
as shown in Fig. 118; this can be proved to follow at once from the zonal

* Since ja:ib: ic = la:1b :2c. The student should read again carefully the ex-
planations in Art. 36.

t It will be seen later that the name trapezohedron is also given to other solids whose
faces are trapeziums conspicuously to the tetragonal trapezohedron and the trigonal
trapezohedron.
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relations (Arts. 45, 46), cf. also Figs. 125, 126. The position of the faces of
the form m(311), in combination with o, is shown in Fig. 119; with d in
Fig. 120.

113

Trapezohedrons

It should be added that the trapezohedron n(211) is a common form both
alone and in combination; m(311) is common in combination. The trisoc-
tahedron alone is rarely met with, though in combination (Fig. 112) it is not
uncommon.

115

Analcite. Cube and Analcite. Trapezohedron Garnet. Trapezohedron and
Trapezohedron and Octahedron Dodecahedron
118 119 120

Garnet. Dodecahedron Spinel.  Octahedron Magnetite. Dodecahedron
and Trapezohedron and Trapezohedron and Trapezohedron

62. Hexoctahedron. — The hexoctahedron, Figs. 121, 122, is the gen-
eral form in this system; it is bounded by forty-eight similar faces, each of
which is a scalene triangle, and each intersects the three axes at unequal
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distances. The general symbol 1s (hk{); common forms are s(321), shown in
Fig. 121, and #(421), in Fig. 122 The mdices of the mdividual faces, as
shown in Fig. 121 and more fully in the projections (Figs. 125, 126), should
be carefully studied.

121 122

The hexoctahedron has three kinds of edges lettered 4, B, €' (longer,
middle, shorter) m Fig. 122; the angles of two of these edges are needed to
fix the symbol unless the zonal relation can be made use of In Fig. 124 the
faces of the hexoctahedron bevel the dodecahedral edges, and hence for this
form h = k + I; the form s has the spectal symbol (321). The hexocta-
hedron alone is a very rare form, but it is seen in combination with the cube
(Fig 123, fluorite) as six small faces replacing each solid angle. Fig. 124 is
common with garnet.

123

Fluorite Cube and Garnet  Dodecahedron
Hexoctahedron ancd Hexoctahedron

64. Pseudo-symmetry in the Isometric System. -- Isometric forms, by
development in the dirvection of one of the cubic axes, simulate tetragonal
forms. More common, and of greater interest, are forms simulating those of
rhomboliedral symmetry by extension, or by flattening, in the direction of an
octahedral axis. Both these cases are illustrated later. Conversely, certain
rhombohedral forms resemble an isometric octahedron m angle.

66. Stereographic and Gnomonic Projections. — The stereographic
projection, Fig 125, and gnomonic projection, Fig. 126, show the positions
of the poles of the faces of the cube (100), octahedron (111), and dodecahe-
dron (110); also the tetrahexahedron (210), the trisoctabedron (221), the
trapezohedron (211), and the hexoctahedron (321).
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The student should study this projection carefully, noting_ the symmetry marked by the
zones 100._001, 100, and 100, 010, 100; also by 110, 001, 110; 10, 001, 110; 010, 101,
010; 010, 101, 010. Note further that the faces of a given form are symmetrically distrib-
uted about a cubic face, as 001; a dodecahedral face, as 101; an octahedral face, as 111.

Note further the symbols that belong to the individual faces of each form, comparing
the projections with the figures which precede.

125

12

V 2 ' A 2
\123/ T o

3 | \IZZ/Q’

—

Stereographic Projection of Isometric Forms (Cube (100), Octahedron (111), Dodecanedron
(110), Tetrahexahedron (210), Trisoctahedron (221), Trapezohedron (211), Hexocta-
hedron (321))

Finally, note the prominent zones of planes; for example, the zone between two cubic
faces including a dodecahedral face and the faces of all possible tetrahexahedrons. Again,
the zones from a cubic face (as 001) through an octahedral face (as 111) passing through
the trisoctahedrons, as 113, 112, 223, and the trapezohedrons 332, 221, 331, ete. Also the
zone from one dodecahedral face, as 110, to another, as 101, passing through 321, 211, 312,
etc. At the same time compare these zones with the same zones shown on the figures
already described. A study of the relations illustrated in Fig. 127 will be found useful.
From it is seen that any erystal face falling in the zone between the cube and dodecahedron
must belong to a tetrahexahedron; any face falling in the zone between the cube and octa-
hedron must belong to a trapezohedron; and any face falling in the zone between the
octahedron and dodecahedron must belong to a trisoctahedron, further any face falling
outside these three zones must belong to a hexoctahedron.
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62
126
Too .4
3714q 210 210 321
1o ! /1 110
231 751 211 201 211 221 231
120 120
i 121
132 132
4 »
Noio 021 021 010"
132 132
121 N 121
120 AN 120
o 231 211 201 an 221 %1
110 110
3210 210 210 $321
100w

Gnomonie Projection of Isometric Forms (Cube (100), Octahedron (111), Dodecahedron

(110), Tetrahcexahedron (210), Trisoct

hedron (321))

Trapezohedron
(hIl)

Cube
{00)

127
Octahedron
111y &
9 %
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X
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ahedron (221), Trapezohedron (211), Hexocta-~

x
Hexoctahedron

Symmetry of Pyritohedral class
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66. Angles of Common Isometric Forms.*

TETRAHEXAHEDRONS.
Edge A Edge C Angle on Angle on
Cf. Fig. 104. 210 A 201, ete. 210 A 120, ete. a(100) o(111)
410 19° 45’ 61° 5 ”3’ 114 G 45° 333
310 25 501 53 17"’ 18 26 43 51
520 30 27 46 23% 21 48 41 22
210 36 521 36 52% 26 34 39 14
530 42 40 28 41 30 573 37 37
320 46 11% 22 37% 33 413 36 48%
430 50 121 16 15% 36 52% 36 4%
540 52 253 12 403 38 391 35 453
TRISOCTAHEDRONS.
Edge A Edge B Angle on Angle on
Cf. Fig. 110. 221 A 212 ete. 221 A 221, ete. a(100) o(111)
BE2 17 0“ 50° 28%’ 50° 141’ 10° 1%/
221 27 16 38 561 48 11 15 47%
552 33 33% Sl Sh 47 73 19 281
331 37 512 26 312 46 301 22 0
772 40 59 22 502 46 73 23 50%
441 43 20} 2022 45 52 25 143
TRAPEZOHEDRONS.
Edge B Edge C Angle on Angle on
Cf. Fig. 113. 211 A le ete 211 A 121, ete. a(100) o(111)
411 27° 16’ 60° 0 19° 281 35° 153"
722 30 43% 55 503 22 0 32 44
311 35 5% 50 283 25 141 29 293
522 40 45 43 201 29 29‘ 25 141
211 48 111 33 331 35 15” 19 281
322 58 2 19 45 43 lb” 11 251
HEXOCTAHEDRONS.
. Edge A Edge B Edge C Angle on  Angle on
Cf. Fig. 121. 321 A 312, ete. 321 A 3’1 etc 321 A 231, ete. a(100) o(111)
421 17° 4"' 25 12 35° &7’ 29° 121 285861
531 27 39‘ 19 273 27 39% 3200182 28 333
321 21 47% 31 0% 21 47% 36 42 22 121
432 15 51 43 362 15 51 42 13 i5 13%
431 32 121 22 371 15 563 331192 25 4

2. PYRITOHEDRAL CLASS (2). PYRITE TYPE
(Dyakisdodecahedral or Pentagonal Hemihedral Class)

67. Typical Forms and Symmetry. — The typical forms of the pyrito-
hedral class are the pyritohedron, or pentagonal dodecahedron, Figs. 129, 130,
and the diploid, or dyakisdodecahedron, Fig. 135. The symmetry of these
forms as of the class as a whole, is as follows: The three crystallographic
axes are axes of binary symmetry only; there are also four diagonal axes of
trigonal symmetry coinciding with the octahedral axes. There are but three
planes of symmetry; these coincide with the planes of the crystallographic
axes and are parallel to the faces of the cube.

The stereographic projection in Fig. 128 shows the distribution of the
faces of the general form (hkl), diploid, and thus exhibits the symmetry of
the class. This should be carefully compared with the conexpondlng pro-

* A fuller list is given in the Introduction to Dana’s System of l\llneralogy, 1892,
Pp. XxX—xxili.
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jection (Fig. 91) for the normal class, so that the lower grade of symmetry
here present be thoroughly understood. In studying the forms described
and illustrated in the following pages, this matter of symmetry, especially in
relation to that of the normal class, should be continually before the mind.

[t will be observed that the faces of both the pyritohedron (Fig. 129) and
the diploid (Fig. 135) are arranged in parallel pairs, and on this account
these forms have been sometimes called parallel hemihedrons. Further, those
authors who prefer to describe these forms as cases of hemihedrism call this
type parallel-faced hemihedrism or pentagonal hemihedrism.

68. Pyritohedron. — The pyritohedron (Fig. 129) is so named because
it 1s a typical form with the common species, pyrite. It is a solid bounded
by twelve faces, each of which is a pentagon, but with one edge (A, Fig. 129)
longer than the other four similar edges (C). It is often called a pentagonal
dodecahedron, and indeed it resembles closely the regular dodecahedron of
geometry, in which the faces are regular pentagons. This latter form is,
however, an impossible form in crystallography.

129 130
120
Pyritohedrons Showing Relation between
Pyritohedron and Tetra-
hexahedron

The general symbol is (hk0) or like that of the tetrahexahedron of the
normal class. Hence cach face is parallel to one of the axes and meets the
other two axes at unequal distances. Common forms are (410), (310), (210),
(320), ete. Besides the positive pyritohedron, as (210), there is also the com-
plementary negative form * shown in Fig. 130; the symbol is here (120).
Other common forms are (250), (230), (130), ete.

The positive and negative pyritohedrons together embrace twenty-four
faces, having the same position as the twenty-four like faces of the tetra-
hexahedron of the normal class. The relation between the tetrahexahedron
and the pyritohedron is shown in Fig. 131, where the alternate faces of the
tetrahexahedron (indicated by shading) are extended to form the faces of
the pyritohedron.

69. Combinations. — The faces of the pyritohedron replace the edges
of the cube as shown in Fig. 132; this resembles Fig. 101 but here the faces
make unequal angles with the two adjacent cubic faces. On the other
hand, when the pyritohedron is modified by the cube, the faces of the latter
truncate the longer edges of the pentagons.

* The negative forms in this and similar cases have sometimes distinct letters, some-
times the saine as the positive form, but are then distinguished by a subscript accent, as
€(210) and ¢, (120).
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Fig. 133 shows the combination of the pyritohedron and octahedron, and
in Fig. 134 these two forms are equally developed. The resulting combina-
tion bears a close similarity to the icosahedron, or regular twenty-faced solid,
of geometry. Here, however, of the twenty faces, the eight octahedral are
equilateral triangles, the twelve others belonging to the pyritohedron are
isosceles triangles.

132 133 134

2
a \ 7
€ e

el S

Loy
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Cube and Pyritohedron Octahedron and Octahedron and
Pyritohedron Pyritohedron

70. Diploid. — The diploid is bounded by twenty-four similar faces,
(hkl), and common forms are s(321), #(421), etc. The form (321) is shown
in Fig. 135; the symbols of its faces, as given, should
be carefully studied. As seen in the figure, the faces 136
are quadrilaterals or trapeziums; moreover, they are
grouped in pairs, hence the common name diploid. It

is also sometimes called a dyakisdodecahedron.

The complementary negative form bears to the a
negative to the positive pyritohedron. Its faces have -
the symbols 312, 231, 123, in the front octant, and
similarly with the proper negative signs in the others. W
The positive and negative forms together obviously
embrace all the faces of the hexoctahedron of the Diploid
normal class. The diploid can be considered to be
the latter and the omission of the remaining faces, exactly as in the case
of the pyritohedron and tetrahexahedron (Art. 68).

In Fig. 136 the positive diploid is shown in combination with the cube.
Here the three faces replace each of its solid angles. This combination form
resembles that of Fig. 111, but the three faces are here unequally inclined
upon two adjacent cubic faces. Other combinations of the diploid with the

71. Other Forms. — If the pyritohedral type of syminetry be applied to
planes each parallel to two of the axes, it is seen that this symmetry calls for
six of these, and the resulting form is obviously a cube. This cube cannot be
distinguished geometrically from the cube of the normal class, but it has its
own characteristic molecular symmetry. Corresponding to this it is com-
mon to find cubes of pyrite with fine lines (striations) parallel to the alter-

each meeting the axes at unequal distances; its general symbol is hence
positive form of Fig. 135 the same relation as the

A\
derived from the hexoctahedron by the extension of the alternate faces of
cube, octahedron, and pyritohedron are given in Figs. 137 and 138.
nate edges, as indicated in Fig. 139. These are due to the partial develop-
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ment of pyritohedral faces (210). On a normal cube similar striations, if
present, must be parallel to both sets of edges on each cubic face.

136 137 138

Cube and Diploid Cube, Octahedron and Cube, Diploid and
Diploid Pyritohedron

Similarly to the cube, the remaining forms of this
pyritohedral class, namely, (111), (110), (khl), (hil), have
the same geometrical form, respectively, as the octahedron,
dodecahedron, the trisoctahedrons and trapezohedrons of
the normal class. In molecular structure, however, these
forms are distinct, each having the symmetry described
in Art. 67.

72. Angles. — The following tables contain the angles
of some common forms.

Pyrite. Striated Cube

PYRITOHEDRONS.
Edge A Edge C Angle on Angle on
Cf. Fig. 129. 210 A 210, ete. 210 A 102, ete. a(100) o(111)
410 28° 43/ 76° 2317 14° 21 15° 338
310 36 521 72 321 18 26 43 53
520 43 361 69 493 21 48 41 22
210 53 2 66 25% 26 34 39 14
530 61 55% 63 49% 30 573 37 37
320 67 223 62 30% 33 411 36 4831
430 73 441 61 19 36 521 36 41
540 77 191 60 481 33 39% 35 453
650 79 363 60 321 39 481 35 353
DirLOIDS.
Edge A Edge B Edge C Angle on  Angle on
Cf. Fig. 135. 321 A 331, ete. 321 A 321, etc. 321 A 213, ete.  a(100) o(111)
421 51° 451/ 25° 124/ 48° 11%/ 29° 121/ 28° 61/
532 58 143 37 513 35 20 35 47% 20 302
531 60 563 19 273 19 272 32 183 28 333
851 63 363 12 1@ 505 Bl 32 303 31 34
321 64 371 31 0! 38 121 36 42 22 121
432 67 421 43 361 26 171 42 12 15 131
431 72 43 22 37 43 3 38 193 25 4

3. TETRAHEDRAL CLASS (3). TETRAHEDRITE TYPE
(Hextetrahedral, Tetrahedral Hemihedral Class)

73. Typical Forms and Symmetry. — The typical form of this class,
and that from which it derives its name, is the fetrahedron, shown in Figs.
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141, 142. There are also three other distinet forms, shown in Figs. 149,
150, 151.

The symmetry of this class is as follows. There are three axes of binary
symmetry which coincide with the crystallographic axes. There are also
four diagonal axes of trigonal symmetry which coincide with the octahedral

140

axes. There are six diagonal planes of sym-
metry. There is no center of symmetry.

The stereographic projection (Fig. 140)
shows the distribution of the faces of the
general form (Rkl), hextetrahedron, and thus
exhibits the symmetry of the class. It will be
seen at once that the like faces are all grouped
in the alternate octants, and this will be seen
to be characteristic of all the forms peculiar
to this class. The relation between the syi-
metry here deseribed and that of the normal
class must be carefully studied.

In distinction from the pyritohedral forms
whose faces were in parallel pairs, the faces of S
the tetrahedron and the analogous solids are  §ymmetry of Tetrahedral Class
inclined to each other, and hence they are
sometimes spoken of as inclined hemihedrons, and the type of so-called hemi-
hedrism here illustrated is then called inclined or tetrahedral hemihedrism.

74. Tetrahedron. — The tetrahedron,* as its name indicates, is a four-
faced solid, bounded by planes meeting the axes at equal distanoes Its
general symbol is (111), and the four faces of the positive form (Fig. 141)
have the symbols 111, 111, 111, T11. These correspond to four of tho faces
of the octahedron of the normal class (Fig. 93). The relation between the
two forms is shown in Fig. 143.

141 142 143

Positive Tetrahedron Negative Tetrahedron Showing Relation between
Octahedron and Tetrahedron

Each of the four faces of the tetrahedron is an equilateral triangle; the
(normal) interfacial angle is 109° 29" 16”. The tetrahedron is the regular
triangular pyramid of geometry, but crystallographically it must be so placed
that the axes join the middle points of opposite edges, and one axis is vertical.

* This is one of the five regular solids of geometry, which include also the cube, octa-
hedron, the regular pentagonal dodecahedron, and the icosahedron; the last two, as already
noted, are impossible forms among crystals.
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There are two possible tetrahedrons: the positive tetrahedron (111),
designated by the letter o, which has already been described, and the nega-
tive tetrahedron, having the same geometrical form and symmetry, but the
indices of its four faces are 111, 111, 111, 111. This second form is shown
in Fig. 142; it is usually designated by the letter o,. These two forms are,
as stated above, identical in geometrical shape, but they may be distinguished
in many cases by the tests which serve to reveal the molecular structure,
particularly the etching-figures; also in many cases by pyro-electricity (see
under boracite, p. 306), Art. 438. It is probable that the positive and
negative tetrahedrons of sphalerite (see that species) have a constant differ-
ence in this particular, which makes it possible to distinguish them on crystals
from different localities and of different habit.

A\ \N

Positive and Negative Cube and Tetrahedron Tetrahedron and Cube
Tetrahedrons

If both tetrahedrons are present together, the form in Fig. 144 results.
This is geometrically an octahedron when the two forms are equally de-
veloped, but crystallographically it is always only a combination of two
unlike forms, the positive and negative tetrahedrons, which can be distin-
guished as already noted.

147

K/ N\

N4

Tetrahedron and Boracite. Cube, Dodecahedron with
Dodecahedron Positive and Negative Tetrahedrons

The tetrahedron in combination with the cube replaces the alternate solid
angles as in Pig. 145. The cube modifying the tetrahedron truncates its
ecges as shown in Fig. 146. The normal angle between adjacent cubiec and
tetrahedral faces is 54° 44’.  In Fig. 147 the dodecahedron is shown modify-
mg the positive tetrahedron, while in Fig. 148 the cube is the predominating
form with the positive and negative tetrahedrons and dodecahedron.
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75. Other Typical Forms. — There are three other distinct types of
solids in this class, having the general symbols (hhl), (hll), and (hkl). The
first of these is shown in Fig. 149; here the symbolis (221). There are twelve
faces, each a quadrilateral, belonging to this form, distributed as determined
by the tetrahedral type of symmetry. They correspond to twelve of the
faces of the trisoctahedron, namely, all those falling in alternate oetants.
This type of solid is sometimes called a tetragonal tristetrahedron, or a deltoid
dodecahedron. It does not occur alone among crystals, but its faces are
observed modifying other forms

149 160 161

Tetragonal Tristetrahedron Trigonal Tristetrahedron Hextetrahedron

There is also a complementary negative form, corresponding to the posi-
tive form, related to it in precisely the same way as the negative to the posi-
tive tetrahedron. Its twelve faces are those of the trisoctahedron which
belong to the other set of alternate octants.

152 153

=
Tetrahedrite Sphalerite Boracite

Another form, shown in Fig. 150, has the general symbol (hil), here (211);
it is bounded by twelve like triangular faces, distributed after the type de-
manded by tetrahedral symmetry, and corresponding consequently to the
faces of the alternate octants of the form (hll) — the trapezohedron — of the
normal elass. This type of solid is sometimes called a trigonal iristetrahedron
or trigondodecahedron.* It is observed both alone and in combination,

* It is to be noted that the tetragonal tristetrahedron has faces which resemble those of
the trapezohedron (tetragonal trisoctahedron), although 1t 15 related not to this but to the
trisoctahedron (trigonal trisoctahedron).  On the other hand, the faces of the trigonal tris-
}tle‘gahedron resemble those of the trisoctahedron, though in fact related to the trapezo-

edron.
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especially with the species tetrahedrite; it is much more common than the
form (hhl). There is here again a complementary negative form. Fig. 152
shows the positive form n(211) with the positive tetrahedron, and Fig. 153
the form m(311) with a(100), o(111), and d(110). In Fig. 154, the negative
form n,(211) is present.

The fourth independent type of solids in this elass is shown in Fig. 151.
It has the general symbol (hkl), here (321), and is bounded by twenty-four
faces distributed aceording to tetrahedral symmetry, that is, embracing all
the faces of the alternate octants of the forty-eight-faced hexoctahedron.
This form is sometimes called a hextetrahedron or hexakistetrahedron. The
complementary negative form (hkl) embraces the remaining faces of the
hexoctahedron. The positive hextetrahedron, v(531), is shown in Fig. 154
with the cube, octahedron, and dodecahedron, also the negative trigonal
tristetrahedron n,(211).

76. 1f the tetrahedral symmetry be applied in the case of planes each
parallel to the two axes, it will be seen that there must be six such faces.
They form a cube similar geometrically to the cube both of the normal and
pyritohedral class but differing in its molecular structure, as can be readily
proved, for example, by pyro-electricity (Art. 438). Similarly in the case
of the planes having the symbol (110), there must be twelve faces forming a
rhombie dodecahedroa bearing the same relation to the like geometrical
form of the normal class. The same is true again of the planes having the
position expressed by the general symbol (hk0); there must be twenty-four
of them and they together form a tetrahexahedron.

In this class, therefore, there are also seven types of forms, but only four
of them are geometrieally distinet from the corresponding forms of the
normal class.

77. Angles. — The following tables eontain the angles of some com-
mon forms:

TETRAGONAL TRISTETRAHEDRONS.

Edge A Edge B Angle on Angle on
Cf. Fig. 149. 221 A 212, ete. 221NNt e a(100) o(111)
332 17° 203’ 97° 501" 50° 14}’ 10° 13
221 27 16 90 0 48 113 15 473
552 33MB57 84 41 47 73 19 281
331 37 51% 80 55 46 303 22 0
TRIGONAL TRISTETRAHEDRONS.
Edge B Edge C Angle on Angle on
Cf. Fig. 150 211 A 211, ete. 211 A 121, ete. a(100) o(111)
411 3821565 60° 0’ 19° 281/ 35° 153/
722 44 0} 55 50% 22 0 32 4
311 50 28% 50 283 25 14} 29 293
522 58 593 43 203 29 293 25 141
il 7 &S 33 332 S 19 281
322 86 373 19 45 43 18% 255
HEXTETRAHEDRONS.
Edge A Edge B Edge C Angle on  Angle on
Cf. Fig. 151. 321 A 312, ete. 321 A 312, ete. 321 A 231, ete.  a(100) o(111)
531 27° 393 57° 7% 27° 39% 32° 182"  28° 33%
321 21 473 69 41 21 471 Bli 4 22 121
432 155 82 41 115 ) 42 1% 115 118¥}

431 32 12} 67 227 15 563 38 19§ 25 4
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4. PLAGIOHEDRAL CLASS (4). CUPRITE TYPE.
(Pentagonal Icositetrahedral, Plogiohedral Hemihedral Class)

78. Typical Forms and Symmetry. — The fourth class under the iso-
metric system is called the plagiohedral or gyroidal class because the faces
of the general form (hkl) are arranged in spiral order. This is shown on the
stereographic projection, Fig. 155, and also in

Figs. 156, 157, which represent the single typ- 165

ical form of the class. These two complemen- “4 %\

tary solids together embrace all the faces of the A ST
hexoctahedron. They are distinguished from /‘\ o /N % )\
one another by being called respectively right- i K _’_‘9\ o\

handed and left-handed pentagonal icositetra- / D TR g \\

p - .
hedrons. The other forms of the class are }*’___“_ LRl \*«
geometrically like those of the normal class. LN X 10,7 TN\XTo -~ )

The symmetry characteristic of the class in e x| ol /
general is as follows: N O e et L

There are no planes of symmetry and no K A °
center of symmetry. There are, however, three S YA

axes of tetragonal symmetry normal to the n

cubic faces, four axes of trigonal symmetry gymmetry of Plagiohedral Class
normal to the octahedral faces, and six axes of

binary symmetry normal to the faces of the dodecahedron. In other words,
it has all the axes of symmetry of the normal class while without planes or
center of symmetry.

166

Right and Left-handed Pentagonai Icositetrahedrons Cuprite

79. It is to be noted that the two forms shown in Figs. 156, 157 are alike
geometrically, but are not superposable; in other words, they are related
to one another as is a right- to a left-hand glove. They are hence said to be
enantiomorphous, and, as explained elsewhere, the crystals belonging here
may be expected to show circular light polarization. It will be seen that
the complementary positive and negative forms of the preceding classes,
unlike those here, may be superposed by being rotated 90° about one of the
crystallographic axes. This distinetion between positive and negative
forms, and between right- and left-handed enantiomorphous forms, exists
also in the case of the classes of several of the other systems.

This class is rare among minerals; 1t is represented by cuprite, sal am-
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moniae, sylvite, and halite. It is usually shown by the distribution of the
small modifying faces, or by the form of the etching figures. Fig. 158 shows
a crystal of cuprite from Cornwall (Pratt) with the form 2(13°10°12).

5. TETARTOHEDRAL CLASS (5). ULLMANNITE TYPE.

(Tetrahedral Pentagonal Dodecahedral Class)

80. Symmetry and Typical Forms. — The fifth remaining possible class
under the isometric system is illustrated by Fig. 160, which represents the
twelve-faced solid corresponding to the general symbol (hkl). The distri-
bution of its faces is shown in the projection,

>3 Fig. 159. This form is sometimes called a

i tetrahedral-pentagonal  dodecahedron. It is
iR seen to have one-fourth as many faces as the
P, PN form (hkl) in the normal class, hence there are

2 TS A four similar solids which together embrace all
7 S R S \ the faces of the hexoctahedron. These four
v O SN 1 2 solids, which are distinguished as right-handed
SR /&\ o /,’% (positive and negative) and left-handed (posi-
\ \*\5_ _9:"/ ! tive and negative), are enantiomorphous, like
(A I 7 those of Figs. 156 and 157, and hence the salts
N AN VASY crystallizing here may be expected to also show
U S cireular polarization. The remaining forms of

? the class are (besides the cube and rhombic

dodecahedron) the tetrahedrons, the pyritohe-
drons, the tetragonal and trigonal tristetrahe-
drons; geometrieally they are like the solids of the same names already
described. This class has no plane of symmietry and no eenter of symmetry.
There are three axes of binary symmetry normal to the cubice faces, and four
axes of trigonal symmetry normal to the faces of the tetrahedron.

Symmetry of Tetartohedral Class

160 161

o
N

This group is illustrated by artificial erystals of barium nitrate, stron-
tium nitrate, sodium chlorate, ete. Further, the speecies ullmannite, which
shows sometimes pyritohedral and again tetrahedral forms, both having
the same composition, must be regarded as belonging here.

MATHEMATICAL RELATIONS OF THE ISOMETRIC SYSTEM
81. Most of the problems arising in the isometrie system can be solved at once by the
right-angled triangles in the sphere of projection (Fig. 125) without the use of any special
formulas.
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It will be remembered that the angles between a cubic face, as 100, and the adjacent
face of a tetrahexahedron, 310, 210, 320, etc., can be obtained at once, since the tangent of

this angle is equal to L %: g: or in general 7
tan (RO A 100) = %
162
c
ac=k=1 o
be=h=2
/£ ade = 90°
tan £ abc=@='lﬁ=1
be h 2 d

Z abe A 3 2

100) A @10 ] =207 o
100 hkO

This relation is illustrated in Fig. 162, which also shows the method of graphically
determining the indices of a tetrahexahedron, the angle between one of its faces and an
adjacent cube face being given.

Since all the forms of a given symbol under different species have the same angles, the
tables of angles already given are very useful.

These and similar angles may be caleulated immediately from the sphere, or often more
simply by the formulas given in the following article.

82. Formulas. — (1) The distance of the pole of any face P(kkl) from the cubic faces is
given by the following equations. Here Pa is the distance between (hkl) and (100); Pb is
the distance between (kkl) and (010); and Pe that between (kkl) and (001).

These equations admit of much simplification in the various special cases, for (hk0),
(hhl), ete.:
=L cos? Pb = ki ; 2 Pe = L
S xR YT Ereter

(2) The distance between the poles of any two faces P(hkl) and Q(pgr) is given by the
following equation, which in speecial cases may also be more or less simplified:

hp + kq+ Ir
T (¥ Ap B) (@2 < @P o 5

(3) The calculation of the supplement interfacial or normal angles for the several forms
may be accomplished as follows:

Trisoctahedron. — The angles A and B are, as before, the supplements of the interfacial
angles of the edges lettered as in Fig. 110.

cos? Pa =

cos PQ = \/(h2

_ k2 2m, P
Cos S oraEmga e S8 B e
12 — 21

For the tetragonal-tristetrahedron (Fig. 149), cos B = i5——-

2he 4+ I2
Trapezohedron (Fig. 113). B and C are the supplement angles of the edges as lettered in
the figure. ’ e
L o 2Rk
COSB_h2+2l2’ cosC—hz_'_zl2
For the trigonal-tristetrahedron (Fig. 150) B = s 2,
or the trigo 7 g 150), cos B =op
Tetrahexahedron (Fig. 104).
R _ 2hk
cosA—m, cosC—hZ,_*_k2
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For the pyritohedron (Fig. 129), cos A =

Hezxoctahedron (Fig. 122).

h2 + 2kl |
cos A = m‘i‘_F’

For the diploid (Fig. 135),

cos A =

For the hextelrahedron (Fig. 151),
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83. To determine the indices of any face (hkl) of an isometric form, given the posi-

tion of its pole on the stereographic projection.
the hexoctahedron (321) has been taken.

As an illustrative example of this problem
It 1s assumed that the angles 100 A 321 = 36° 42’
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and 111 A 321 = 22° 12/ are given. The methods by which the desired pole is located
from these measurements have been deseribed on page 38 and are illustrated in Fig. 163.
Having located the pole (hkl) a line is drawn through it from the center O of the projee-
tion. This ine O-P represents the intersection with the horizontal plane (which is the
plane of the horizontal crystal axes, @ and ) of a plane which is normal to the ervstal face
(hkl). Since two planes which are at right angles to each other will intersect a third plane
in lines that are at right angles to each other, it follows that the plane of the hexoctahedral
face will intersect the plane of the horizontal axes in a line at right angles to O-P. 1If,
therefore, the distance O-3M be taken as representing unity on the @ axis and the line
M-P-N be drawn at right angles to O—P the distance O-N will represent the intercept of
the face in question upon the b axis. O-N is found in this case to be § O-M in value.
The intercepts upon the two horizontal axes are, therefore 1a, 3b. The plotting of the
interecept upon the ¢ axis is shown in the upper left hand quadrant of the figure. The
angular distanee from O to the pole (hkl) is measured by the stereographic protractor as
74° 30’. This angle is then laid off from the line representing the ¢ axis and the line repre-
senting the pole (ki) is drawn. The distanee O-P is transferred from the lower part of
the figure. Then we can construct the right triangle, the vertical side of which is the
¢ axis, the horizontal side is this line O-P (the interseetion of the plane which is normal to
the crystal face with the horizontal plane) and the hypothenuse is a line lying in the face
and therefore at right angles to the pole of the face. This line would intersect the ¢ axis
at a distance equal to 30~} . The same relation may be shown by starting this last line
from a point on the ¢ axis which is at a distanee from the eenter of the figure equal to O-M.
In this ease the intercept on the horizontal line O-P would be at one third its total length.
By these constructions the parameters of the face in question are shown to be 1a, b, 3c,
giving (321) as its indices.

164

R 2 3 v
7 021 owo”*
122 132
1 121
s 31 \1}0
24201 211 221 231
321
3 30 110
100
v
M

84. To determine the indices of the faces of isometric forms, given the positions of
their poles on the gnomonic projection. — As an illustrative example of this problem the
lower right hand quadrant of the gnomonie projection of isometric forms, Fig. 126, has
been taken and reproduced in Fig. 164. The lines O-M and O-N are at right angles to
each other and may represent the horizontal crystallographic axes ai and 0. If from each
pole of the projection lines are drawn perpendicular to these two axial directions 1t will be
seen that the intercepts made upon these lines have rational relations to each other. And
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since we are dealing with the isometric system in which the erystallographic axes are all
alike and interchangeable with each other, it follows that the different intercepts upon
O-M and O-N are 1dentical. The distance O-R (z.e. the distance from the center to the
45° point of the projection) must equal the unit length of the axes. That this is true is
readily seen by the conside.ation of Fig. 165. The intercepts of the lines drawn from the
different poles to the lines O-M and O-N are found to be }, 3, 2 1, §, 2 and 3 times this
unit distance. To find the Miller indices of any face represented, it 1s only necessary to

166
Plane of Gnomonic Projection ,——N——v

take the intercepts of the two lines drawn from its pole upon the two axes a; and as, place
these numbers in their proper order and add a 1 as a third figure and then if necessary
clear of fractions. Take for example the hexoctahedron face with indices 312. The lines
drawn froni its pole intercept the axes at 3a; and 3as, which gives the expression § 1 1, which,
again, on clearing of fractions, yields 312, the indices of the face in question. In the case
of a face parallel to the vertical axis, the pole of which lies at infinity on the gnomonie
projection, the indices may be obtained by taking any point on the radial line that points
to the position of the pole and dropping perpendiculars to the lines representing the two
horizontal axes. The relative intercepts formed upon these axes will give the first two
numbers of the required indices while the third number will necessarily be 0.
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II. TETRAGONAL SYSTEM

85. Tur TrETRAGONAL SysTEM includes all the forms which are referred
to three axes at right angles to each other of which the two horizontal axes
are equal to each other in length and interchangeable and the third, the
vertical axis, is either shorter or longer. The horizontal axes are desig-
nated by the letter a; the vertical axis by ¢ (see Fig. 166). The length of
the vertical axis expresses properly the axial ratio of @ : ¢, a being uniformls
taken as equal to unity. The axes are orientated and their opposite ends
designated by plus and minus signs exactly as in the case of the Isometric
System.

Seven classes are embraced in this system. Of these the normal class is
common and immportant among minerals; two others have several represen-
tatives, and another a single one only. It may be noted that in four of the
classes the vertical axis is an axis of tetragonal symmetry; in the remaining
three it is an axis of binary symmetry only.

1. NORMAL CLASS (6). ZIRCON TYPE
(Ditetragonal Bipyramidal or Holohkedral Class)

86. Symmetry. — The forms belonging to the normal class of the
tetragonal system (cf. Figs. 170 to 192) have one principal axis of tetragonal
symmetry (whence name of the system) which coincides with the vertical
crystallographic axis, ¢. There are also four horizontal axes of binary sym-
metry, two of which coincide with the horizontal crystallographic axes
while the other two are diagonal axes bisecting the angles between the first
two.

166 167
+ c

7%‘:
@iy
Axes of Tetragonal Mineral, Symmetry of Normal Class
Octahedritea :c =1:1'78 Tetragonal System

Further they have one principal plane of symmetry, the plane of the
horizontal crystallographic axes. There are also four vertical planes of
symmetry which pass through the vertical erystallographic axis ¢ and make
angles of 45° with each other. Two of these latter planes include the hori-
zontal crystallographic axes and are known as axial planes of symmetry.
The other two are known as diagonal planes of symmetry.
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The axes and planes of symmetry are shown in Figs. 168 and 169.

The symmetry and the distribution of the faces of the general form, hkl,
is shown in the stereographic projection, Fig. 167.

87. Forms. — The various possible forms under the normal class of
this system are as follows:

Symbols
1. Base or basal pinacoid........ ~ (001)
2. Prism of the first order......... (110)
3. Prism of the second order....... (100)
4. Ditetragonal prism............. (RKO) as, (310); (210); (320), ete.
5. Pyramid of the first order..... .. (hRD) as, (223); (111); (221), ete.
6. Pyramid of the second order. . ... (hOl) as, (203); (101); (201), cte.
7. Ditetragonal pyramid. ......... (hkl) as, (421); (321); (122), ete.
168

Symmetry of Normal Class, Tetragonal System

88. Base or Basal Pinacoid. — The base is that form which includes
the two similar faces which are parallel to the plane of the horizontal axes.
These faces have the indices 001 and 001 respectively; it is an “open form,”
as they do not inclose a space, consequently this form ean oceur only in com-
bination with other forms. Cf. Figs. 170-173, ete. This form is always
lettered ¢ in this work.

170 171 172
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89. Prisms. — Prisms, in systems other than the isometric, have been
defined to be forms whose faces are parallel to the vertical axis (¢) of the
. erystal, while they meet the two horizontal axes; in this system the four-
faced form whose planes are parallel both to the vertical and one horizontal
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axis i1s also called a prism. There are hence three types of prisms here
ncluded.

90. Prism of First Order. — The prism of the first order includes the
four faces which, while parallel to the vertical axis, meet the horizontal
axes at equal distances; its general symbol is consequently (110). It is a
square prism, with interfacial angles of 90°. It 1s shown in combination with
the base in Fig. 170. It is uniformly designated by the letter m. The in-
dices of its faces, taken in order, are 110, 110, 110, 110.

91. Prism of Second Order. — The prism of the second order shown*
in combination with the base in Fig. 171 includes the four faces which are
parallel at once to the vertical and to a horizontal axis; it has, therefore, the
general symbol (100). It is a square prism with an angle between any two
adjacent faces of 90°. It is uniformly designated by the letter a, and its
faces, taken in order, have the indices 100, 010, 100, 010.

It will be seen that the combination of this form with the base is the
analogue of the cube of the isometric system.

The faces of the prism of the first order truncate the edges of the prism
of the second order and vice versa. When both are equally developed, as in
Fig. 172, the result is a regular eight-sided prism, which, however, it must
be remembered, is a combination of fwo distinet forms.

It is evident that the two prisms described do not differ geometrically
from one another, and furthermore, in a given case, the symmetry of this
class allows either to be made the first order, and the other the second order,
prism according to the position assumed for the horizontal axes. If on crys-
tals of a given species both forms occur together equally developed (or, on
the other hand, separately on different crystals) and without other faces
than the base, there is no means of telling them apart unless by minor char-
acteristics, such as striations or other markings on the 173
surface, etchings, ete. P

92. Ditetragonal Prism. — The ditetragonal prism is -
the form which is bounded by eight similar faces, each one |
of which is parallel to the vertical axis while meeting the
two horizontal axes at unequal distances. It has the general !
symbol (hkO). It isshown in Fig. 173, where (Rk0) = (210). |
The successive faces have here the indices 210, 120, 120,
210, 210, 120, 120, 210.

In Fig. 185 a combination is shown of this form (y = 310)
with the second order prism, the edges of which it bevels.
In Fig. 189 (A = 210) it bevels the edges of the first order
prism m. In Fig. 190 (I = 310) it is combined with both Ditetragonal Prism
orders of prisims.

93. Pyramids. — There are three types of pyramids in this class, cor-
responding, respectively, to the three prisms which have just been described.
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* In Figs. 170-173 the dimensions of the form are made to correspond to the assumed
length of the vertical axis (here ¢ = 1'78 as in octahedrite) used in Fig. 177. It must be
noted, however, that in the case of actual crystals of these forms, while the tetragonal
symmetry is usually indicated by the unlike physical character of the face ¢ as compared
with the faces a, m, etc., in the vertical prismatic zone, no inference can be drawn as to the
relative length of the vertical axis. This last can be determined only when a pyramid is
present; it is fixed for the species when a particular pyramid is chosen as fundamental or
unit form, as explained later.
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As already stated, the name pyramid is given (in systems other than the iso-
metrie) to a form whose planes meet all three of the axes; in this system
the form whose planes meet the axis ¢ and one horizontal axis while parallel
to the other is also ealled a pyramid. The pyramids of this class are strietly
double pyramids (bipyramids of some authors).

94. Pyramid of First Order. — A pyramid of the first order, is a form
whose eight similar faces interseet the two horizontal axes at equal distanees
and also interseet the vertieal axis. It has the general symbol (hhl). Tt is
a square pyramid with equal interfacial angles over the terminal edges, and
the faces replace the horizontal, or basal, edges of the first order prism and
the solid angles of the second order prism. If the ratio of the vertieal to the
horizontal axis for a given first order pyramid is the assumed axial ratio for
the species, the form is ealled the fundamental form, and it has the symbol
(111)_as in Fig. 174. The indiees of its faces me  oned in order are: Above
111, 111, 111, 111; below 111, 117, 111, 111

175 176 177

@

m m
m
First Order Zircon, First Order Zircon, First Order Apophyllite, Second
Pyramid Prism and Pryamid  Prismand Pyramids ~ Order Prism and

First Order Pyramid

Obviously the angles of the first order pyramid, and hence its geometrical
aspect, vary widely with the length of the vertieal axis. In Figs. 174 and
182 the pyramids shown have in both cases the symbol (111) but in the first
case (octahedrite) ¢ = 1.78, while in the second (vesuvianite), ¢ = 0.64.

For a given species there may be a number of seecond order pyramids,
varying in position aeeording to the ratio of the intercepts upon the vertieal
and horizontal axes. Their symbols, passing from the base (001) to the unit
prism (110), may thus be (115), (113), (223), (111), (332), (221), (441), etc.
In the general symbol of these forms (hhl), as ki diminishes, the form approx-
imates more and more nearly to the base (001), for which k& = 0; as h in-
creases, the form passes toward the first order prism. In Fig. 176 two pyra-
mids of this order are shown, p(111) and «(331).

95. Pyramid of Second Order. — The pyramid of the second order is
the form, g, 178, whose faces are parallel to one of the horizontal axes,
while meeting the other two axes. The general symbol is (h0l). These faces
replace the basal edges of the second order prism (Fig. 179), and the solid
angles of the first order prism (cf. Fig. 180). It is a square pyramid since its
basal section is a square, and the interfacial angles over the four terminal
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edges, above and below, are equal. The successive faces of the form (101)
are as follows: Above 101, 011, 101, 011; below 101, 011, 101, O11.

If the ratio of the intercepts on the horizontal and vertical axes is the
assumed axial ratio of the species, the symbol is (101), and the form is desig-
nated by the letter e. This ratio can be deduced from the measurement of
either one of the interfacial angles (y or 2, Fig. 178) over the terminal or basal
edges, as explained later. In the case of a given species, a number of second

178 180

Second Order Second Order Prism Rutile, First and Second
Pyramid and Pyramid Order Prisms and Pyra-
mids

order pyramids may occur, varying in the ratio of the axes @ and ¢. Hence
there is possible a large number of such forms whose symbols may be, for
example, (104), (103), (102), (101), (302), (201), (301), ete. Those men-
tioned first come nearest to the base (001), those last to the second order
prism (100); the base is therefore the limit of these pyramids (hOI) when
h = 0, and the second order prism (100) when A =1 and [ = 0. Fig. 186
shows the three second order pyramids «(105), e(101), ¢(201).

181 182 183

YN

=

e

Vesuvianite Vesuvianite Cassiterite
First Order Prism, First Order Pyramid and First and Second Order
Pyramid and Base First and Scond Order Pyramids

Prisms

A second order pyramid truncating the pyramidal edges of a given first
order pyramid as in Fig. 183 has the same ratio as it for h to I.  Thus (101)
truncates the terminal edge of (111); (201) of (221), ete. This is obvious
because each face has the same position as the corresponding edge of the
other form (see Fig. 183, when s = 111 and e = 101; also Figs. 186, 191,
where r = 115, u = 105). Again, if a first order pyramid truncates the
pyramidal edges of a given second order pyramid, its ratio for & to I is half
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that of the other form; that is, (112) truncates the pyramidal edges of (101);
(111) of (201), ete. This relation is exhibited by Fig. 186, where p(111)
truncates the edges of ¢(201). In both cases the zonal equations prove the
relations stated.

184 186

m m «
Vesuvianite Apophyllite Octahedrite
First and Sccond Order Second Order Prism, Dite- Two First Order Pyra-
Prisms, First Order Pyr- tragonal Prism, First mids, First Order Prism,
amid and Base Order Pyramid and Base Three Second Order

Pyramids and Base

96. Ditetragonal Pyramid. — The ditetragonal pyramid, or double eight-
sided pyramid, is the form each of whose sixteen similar faces meets the
three axes at unequal distances. This is the most general case of the symbol
(hkl), where h, k, [ are all unequal and no one is equal to 0. That there are
sixteen faces in a single form is evident. Thus, for example, for the form
(212) the face 212 is similar to 122, the two lateral axes being equal (not,
however, to 221). Hence there are two like faces in each octant. Similarly
the indices of all the faces in the successive octants are, therefore, as follows:

Above 212 122 122 212 212 132 132 212

Below 212 122 122 212 212 122 122 212

189 190

€

2\2

m| || m A

Ditetragonal Pyramid Zircon Cassiterite Rutile
First and Second Order
Prisms, First Order
Pyramid, Ditetrag-
onal Pyramid

~ This form is common with the species zircon, and is hence often called a
zirconoid. It is shown in Fig. 187. It is not observed alone, though some-
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times, as in Figs. 188 (z = 311) and 189 (z = 321), it is the predominating
form. In Fig. 190 two ditetragonal pyramids occur, namely, ¢(313) and

97. In addition to the perspective figures already
given, a basal projection (Fig. 191) 1s added of
the crystal of octahedrite already referred to (Fig.
186); also a stereographic (Fig. 192) and gnomonic
(Fig. 193) projections of the same with the faces of
the forms w(221) and #(313) added. These exhibit
well the general relations of this normal class of the
tetragonal system. The symmetry here is to be
noted, first, with respect to the similar zones 100,
001, 100 and 010, 001, 010; also, to the other pair of .
similar zones, 110, 001, 110, and 110, 001, 110. Octahedrite

T 100.
a

Stereographic Projection of Octahedrite
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Gnomonic Projection of Octahedrite

9. HEMIMORPHIC CLASS (7).
IODOSUCCINIMIDE TYPE

(Ditetragonal Pyramidal or Holohedral
Hemimorphic Class)

98. Symmetry. — This class differs from
the normal class only in having no horizontal
plane of symmetry; hence the forms are hemi-
morphic as defined in Art. 29. It is not known
to be represented among minerals, but is shown
SR on the crystals of iodosuccinimide. Its sym-
) ; g metry is illustrated by the stereographic pro-
SRR lemimorphic Class _j(‘('tig; (Fig. 194). Here the two basal planes
are distinct forms, 001 and 001; the prisms do not differ geometrically from
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those of the normal class, though distinguished by their moleeutar structure;
further, the pyramids are no longer double pyramids, but each form is rep-
resented by one half of Figs. 174, 178, 187 (ef. Ing. 44, p. 22). There are
hence six distinet pyramidal forms, corresponding to the upper and lower
halves of the first and second order pyramids and the ditetragonal pyramid.

3. TRIPYRAMIDAL CLASS (8). SCHEELITE TYPE.
(Tetragonal Bipyramidal or Pyramidal Hemihedral Class)

99. Typical Forms and Symmetry. — The forms here included have
one plane of symmetry only, that of the horizontal erystallographic axes,
and one axis of tetragonal symmetry (the vertical erystallographic axis)
normal to it. The distinetive forms are the tetragonal prism (hk0) and
pyramid (kkl) of the third order, shown m Figs. 196, 197.

The stercographic projeetion, Fig. 195, 19
exhibits the symmetry of the class and the \
distribution of the faces of the general form
(hkl). Comparing this, as well as the figures
immediately following, with those of the nor-
mal class, it is seen that this elass differs from
1t 1n the absence of the vertieal planes of sym-

metry and the horizontal axes of symmetry. = #)

®

i3
®
®

100. Prism and Pyramid of the Third
Order. — The typical forms of the elass,
as above stated, are a square prism and a
square pyramid, which are distinguished
respectively from the square prisms a(100)
and m(110), shown in Figs. 170 and 171, and
from the square pyramids (20l) and (hkl)
of Figs. 174 and 178 by the name “ third order.”

196 197 198

®

Symmetry of Tri-Pyramidal Class

UIU\\/

BRI U 100~

\‘/
Third Order Prism Third Order Pyramid

The third order prism and pyramid may be eonsidered as derived from
the ditetragonal forms of the normal elass by taking only one half the faces
of the latter and the omission of the remaining faces. There are therefore
two complementary forms in each ease, designated left and right, which
together nclude all the faces of the ditetragonal prism (Fig. 173) and dite-
tragonal pyramid (Fig. 187) of the normal class.
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The indices of the faces of the two complementary prisms, as (210), are:

Left: 210, 120, 210, 120.
Right: 120, 210, 120, 270.

The indices of the faces of the corresponding pyramids, as (212), are:

Left: above 212, 122, 212, 122; below 212, 122, 212, 122.
Right: above 122, 212, 122, 212; below 122, 212, 122, 212.

Fig. 198 gives a transverse section of the prisms a(100) and m(110), also
the prism of the third order (120). Figs. 196, 197 show the right prism (120)
and pyramid (122) of the third order.

101. Other Forms. — The other forms of this class, that is, the base
c(001); the other square prisms, a(100) and m(110); also the square pyra-
mids (200) and (hhl) are geometrically like the corresponding forms of the
normal class already deseribed. The class shows therefore three types of
square pyramids and hence is called the tripyramidal class.

102. To this class belongs the important species scheelite; also the
isomorphous species stolzite and powellite, unless it be that they are rather
to be classed with wulfenite (p. 87). Fig. 199 shows a typical crystal of

199 200 201

T

s

Scheelite Scheelite Meionite

scheelite, and Fig. 200 a basal section of one similar; these illustrate well the
characteristics of the class. Here the forms are ¢(101), p(111), and the
third-order pyramids ¢(212), s,(131). Fig. 201 represents a meionite erystal
with 7(111), and the third-order pyramid z(311). See also Figs. 203, 204, in
which the third-order prism is shown.

The forms of this class are sometimes described (see Art. 28) as showing
pyramidal hemihedrism.

4. PYRAMIDAL-HEMIMORPHIC CLASS (9). WULFENITE TYPE
(Tetragonal Pyramidal or Hemihedral Hemimorphic Class)

103. Symmetry. — The fourth class of the tetragonal system is closely
related to the class just deseribed. It has the same vertical axis of tetrag-
onal symmetry, but there is no horizontal plane of symmetry. The forms
are, therefore, hemimorphic in the distribution of the faces (ef. Fig. 202).
The species wulfenite of the Scheelite Group among mineral species prob-
ably belongs here, although the erystals do not always show the difference
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between the pyramidal faces, above and below, which would characterize

distinet complementary forms. Figs. 203, 204 could, therefore, serve as

illustrations of the preceding eclass, but in 202

Fig. 205 a characteristic distinction is exhib- gi

ited. In these figures the forms are u(102), e AR

e(101), n(111); also f(230), k(210). 2(432), Vi !

(311). ' S
[}

5. SPHENOIDAL CLASS (10). \
CHALCOPYRITE TYPE e S e

(Tetragonal Sphenoidal, Sphenoidal \ N
Hemzihedral or Scalenohedral Class) Y

1
’!
B
\
\

104. Typical Forms and Symmetry. —
The typical forms of this class are the Symmetey of Prramidal-Fetni
sphenoid (Fig. 207) and the tetragonal sca- YES rrio(iphi“cr:élals(s‘ o
lenohedron (Fig. 208). They and all the
combinations of this class “show the following symmetry. The three

203 20 206

\ \\
0

crystallographic axes are axes of binary symmetry and there are two
vertical diagonal planes of symmetry.

This symmetry is exhibited in the stereo-
graphic projection (Fig. 206), which shows
also the distribution of the faces of the gen-
eral form (AEl). Itis seen here that the faces
are present in the alternate octants only, and
it will be remembered that this same state-
ment was made of the tetrahedral class under
the isometric system. There is hence a close
analogy between these two classes. The sym-
metry of this class should be carefully compared
with that of the first and third classes of this
system already described.

105. Sphenoid. — The sphenoid, shown in

-

\\‘f" Fig. 207, is a four-faced solid, resembling
' a tetrahedron, but each face is an isosceles
(not an equilateral) triangle. It may be consid-

Symmetry of Sphenoidal Class
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ered as derived from the first order pyramid of the normal class by the
development of only the alternate faces of the latter. There are therefore
possible two complementary forms known as the positive and negative
sphenoids. The general symbol of the positive unit sphenoid s (111), and
its faces have the indices: 111, 111, 111, 111, while the negative sphenoid
has the symbol (111). When the complementary forms occur together, if
equally developed, the resulting solid, though having two unlike sets of faces,
cannot be distinguished geometrically from the first order pyramid (111).

207 208

Sphenoid Tetragonal Scalenohedron

In the species chalcopyrite, which belongs to this class, the deviation in
angle and in axial ratio from the isometric system is very small, and hence
the unit sphenoid cannot by the eye be distinguished from a tetrahedron
(compare Fig. 209 with Fig. 144, p. 68). For this species ¢ = 0985 (instead
of 1, as in the isometric system), and the normal sphenoidal angle is 108° 40/,
instead of 109° 28’, the angle of the tetrahedron. Hence a erystal of chal-
copyrite with both the positive and negative sphenoids equally developed
closely resembles a regular octahedron.

In Fig. 210 the second order pyramids e(101) and 2(201) and base ¢(001)
are also present.

35
) (3
\V \-/

Chalcopyrite

106. Tetragonal Scalenohedron. — The sphenoidal symmetry yields
another distinet type of form, that shown in Fig. 208. It is bounded by
eight sumilar sealene triangles, and hence is called a tetragonal scalenohedron;
the general symbol is (hkl). It may be considered as derived from the
ditetragonal pyramid of the normal eclass by taking the alternate pairs of
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faces of the latter form. The faces of the complementary positive and nega-
tive forms therefore embrace all the faces of the ditetragonal pyramid. This
form appears in combination in chalcopyrite, but is not observed inde-
pendently. In Fig. 211 the form s(531) 1s the positive tetragonal scaleno-
hedron.

107. Other Forms. — The other forms of the class, namely, the first and
second order prisms, the ditetragonal prism, and the first and second order
pyramids (hhl) and (hOl), are geometrically like those of the normal class.
The lower symmetry in the molecular structure is onlv revealed by special
investigation, as by etching.

6. TRAPEZOHEDRAL CLASS (11). NICKEL SULPHATE TYPE

(Tetragonal Trapezohedral or Trapezohedral Hemihedral Class)

108. The trapezohedral class is analogous to the plagiohedral class under
the isometric system; it is characterized by the absence of any plane or
center of symmetry; the vertical axis, however, is an axis of tetragonal sym-
metry, and perpendicular to this there are four axes of binary symmetry.
This symmetry and the distribution of the faces of the general form (hkl)

212 213

Symmetry of Trapezohedral Class Tetragonal Trapezohedron

are shown in the stereographic projection, Fig. 212, and Fig. 213 gives the
resulting solid, a tetragonal trapezohedron. 1t may be derived from the dite-
tragonal pyramid of the normal class by the extension of the alternate faces
of that form. There are two complementary forms called right- and left-
handed which embrace all the faces of the ditetragonal pyramid of the normal
class. These two forms are enantiomorphous, and the salts belonging to
this class show circular polarization.
Nickel sulphate and a few other artificial salts belong in this class.

7. TETARTOHEDRAL CLASS (12)

(Tetragonal Bisphenoidal or Sphenoidal Tetartohedral Class)

109. Symmetry. — The seventh and last possible class under this
system has no plane nor center of symmetry, but the vertical axis is an axis
of binary symmetry. The symmetry and the distribution of the faces of the
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general form (hkl) are shown in the stereographic projection (Fig. 214), and
the solid resulting is known as a sphenoid of the third order. It can be derived
214 from the ditetragonal pyramid of the normal
¥ class by taking only one quarter of the faces
P of that form. There are therefore four com-
e X plementary forms which are respectively
/ o \ distinguished as right (+ and — ) and left
A (+ and —). These four together embrace all
i | the sixteen faces of the ditetragonal pyramid.
= R 1 The other characteristic forms of this class
/ are the prism of the third order (hk0), the
\ o / positive and negative sphenoids of the first
AN / order (111), and also those of the second
S L order (101). It 1s said that an artificial
‘“g\" compound, 2Ca0.Al0;.8i0,, crystallizes in
Symmetry of Tetartohedral Class  this class.

MATHEMATICAL RELATIONS OF THE TETRAGONAL SYSTEM

110. Choice of Axes. — It appears from the discussion of the symmetry of the seven
classes of this system that with all of them the position of the vertical axis is fixed. In
classes 1, 2, however, where there are two sets of vertical planes of symmetry, cither set
may be made the axial planes and the other the diagonal planes. The choice between these
two possible positions of the horizontal axes is guided particularly by the habit of the
occurring crystals and the relations of the given species to others of similar form. With
a species W hoxe crystal characters have been deseribed it is customary to follow the orien-
tation given in the original description,

111, Determination of the Axial Ratio, etc. — The following relations serve to connect
the axial ratio, that is, the length of the vertical axis ¢, when a = 1, with the fundamental
angles (001 A 101) and (001 A 111):

tan (001 A 101) = ¢; tan (001 A 111) x 3V2 =c.
For faces in the same rectangular zone the tangent principle applies. The most im-
portant cases (cf. Fig. 214) are:
tan (001 A ROI) _ %
tan (001 A 101)
tan (001 A Okl)

T 7
ey
tan (001 A 011) I
UE
anl

tan (001 A hhl)

tan (001 A 111)
For the prisms

tan (010 A hk0) = % i tan (100 A hk0) = ;_i

112. Other Calculations. — It will be noted that in the stereographic projection (Fig.
214) all those spherieal triangles are right-angled which are formed by great cireles (diam-
eters) whieh meet the prismatic zone-circle 100, 010, 100, 010. Again, all those formed by
great cireles drawn between 100 and 100, or 010 and 010 and ecrossing respeetively the
zone-cireles 100, 001, 100, or 010, 001. 010. Also, all those formed by great eircles drawn
between 110 and 110 and crossing the zone-circle 110, 001, 170, or hetween 110 and 110
and erossing the zone-circle 110, 001, 110.

These spherical triangles may hence be readily used to ealculate any angles desired; for
example, the angles hetween the pole of any faee, as hkl (say 321), and the pinacoids 100,
010, 001. The terminal angles (x and z, Fig. 1\1) of the ditetragonal pyramid, 212 A 212
(or 31% A 313, ete.), and 212 A 122 (or 013 A 133, ete.), ean also be obtained in the same
way. The zonal relations give the symbols of the pr)lm on the zones 001, 100 and 001, 110
for the given case. For example, the zone-circle 110, 313, 133, 110 mects 110, 001, 110 at
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the pole 223, and the calculated angle 313 A 223 is half the angle 313 A 133. If a large
number of similar angles are to be calculated, it is more convenient to use a formula, as
that given below

113. Formulas. — It is sometimes convenient to have the normal interfacial angles
expressed directly in terms of the axis ¢ and the indices &, k, and I. Thus:

(1) The distances of the pole of any face P(hkl) from the pinacoids a(100) = Pa,
b(010) = Pb, ¢(001) = Pc are given by the following equations:

hc? k%c® 2

ey 2 = Ll ° 2 e e —
e RE TR cos? Pb ey e cos? Pe FE T E T P

cos? Pa =

These may also be expressed mn the form

k22 4 2,

202 2 202 202
ez’ figd -Ls tan? Pe Lghict -+ Bicy

2 SO Ay
tan? Pb T B

tan? Pa =

(2) For the distance between the poles of any two faces (kkl), (pgr), we have in general
hpet 4 kge® + Ir

o> PQ =T+ e £ B [ + O + 71

The above equations take a simpler form for special cases often occurring; for example,
for hkl and the angle of the edge y of Fig. 187.

114, Prismatic Angles. — The angles for the commonly occurring ditetragonal prisms
are as follows*

Angle on  Angle on Angle on Angle on
a(100) m(110) a(100) m(110)
410 TEE R BoF Hrey 530 30° 57%’ 12 95"
310 18 26 26 34 320 33 41% 11 183
210 26 34 18 26 430 36 52% 7R

115. To determine, by plotting, the axial ratio, a : ¢, of a tetragonal mineral from the
stereographic projection of its crystal forms. As an illustrative example it has been
assumed that the angles between the faces on the crystal of rutile, represented mn Tig 180,
have been measured and from these measurements the poles of the faces in one octant
located on the stereographic projection, see Fig. 215. TIn determining the axial ratio of a
tetragonal erystal (or what is the same thing, the length of the ¢ axis, since the length of
the @ axes are always taken as equal to 1) it is necessary to assume the indices of some
pyramidal form. It is customary to take a pyramid which is prominent upon the crystals
of the mineral and assume that it is the fundamental or unit pyramid of either the first or
second order and has as its symbol either (111) or (101). In the example chosen both a
first order and a second order pyramid are present and from their zonal relations it is evi-
dent that if the symbol assigned to the first order form be (111) that of the second order
form must be (101). In order to determine the relative length of the ¢ axis in respect to
the length of the a axis for rutile therefore, it is only necessary to plot the intercept of
either of these forms upon the axes. In the case of the second order pyramid it is only
necessary to construet a right angle triangle (see upper left hand quadrant of Fig. 215) in
which the horizontal side shall equal the length of the a axis, (1), the vertieal side shall
represent the ¢ axis and the hypothenuse shall show the proper angle of slope of the face.
The angle between the center of the projection and the pole e(101) is measured by the
stereographic protractor and a line drawn making that angle with the line representing the
¢ axis. The hypothenuse of the triangle must then be at right angles to this pole. Its
intercept upon the vertical side of the triangle, when expressed in relation to the distance
(O-}) which was chosen as representing unity on the a axis, will therefore give the length
of the ¢ axis. In rutile this is found to he 0.644.

The same value is obtained when the position of the pyramid of the first order s(111)
is used. In this case the line 3/-P-N is first drawn at right angles to the radial line O-P
drawn through the pole s(111). The triangle to be plotted in this case has the distance
O-P as the length of its horizontal side. Tts hypothenuse must he at right angles to the
line representing the pole to (111). The intercept on the ¢ axis is the same as in the first
case.
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116. To determine, by plotting, the indices of any face (hkl) of a tetragonal form from
the position of its pole on the stereographic projection. The solution of this problem is
like that given in a similar case under the Isometrie System, see p. 74, except that the
intercept of the face on the vertical axis must be referred to the established unit length of
that axis and not to the length of the a axis. The method is exaetly the reverse of the
one used in the problem discussed directly above.

117. To determine, by plotting, the axial ratio, a : ¢, of a tetragonal mineral from the
gnomonic projection of its crystal forms. As an iilustrative example eonsider the erystal
of rutile, Fig. 180, the poles to the faees of which, are shown plotted in gnomonic projec-
tion in Fig. 216. The pyramids of the first and second order present are taken as the
unit forms with the symbols, s(111) and ¢(101). The lines O-M and O-N represent the
two horizontal axes a; and a, and the distance from the center O to the circumference of
the fundamental ecircle is equal to unity on these axes. The intercepts on O-M and O-N
made by the poles of €(101) or the perpendiculars drawn from the poles of s(111) give the
unit length of the vertical axis, ¢. In this case this distance, when expressed in terms of
the assumed length of the horizontal axes (which in the tctragonal system always equals
1) is equal to 0.64.

That the above relation is true is obvious from a consideration of I'ig. 216. This rep-
resents a vertical seetion through the spherical and gnomonie projeetion including the
horizontal axis, a. The slope of the face ¢(011) is plotted with its intercepts on the a»
and ¢ axes and the position of its pole in both the spherical and gnomonie projections is
shown. It is seen through the two similar triangles in the figure that the distance from
the center to the pole ¢(011) in the gnomonie projection must be the same as the intercept
of the face ¢ upon the vertical axis .  And as eis a unit form this must represent unity on c.

118. To determine, by plotting, the indices of any face of a tetragonal form from the
position of its pole on the gnomonic projection. [t is assumed that in this ease a mineral
is being considered whose
axial ratio is known. Un- 217
der these conditions draw
perpendiculars from the
pole in question to the
lines representing the two
horizontal axes. Then
space off on these lines
distances equivalent to the
length of the c axis, remem-
bering that it must be
expressed In terms of the
length of the horizontal
axes whieh in turn is equal
to the distance from the
center of the projection
to the circumference of the
fundamental circle. Give
the intercepts of the lines
drawn from the pole of
the face to the axes a;
and @: in terms of the
lIength of the vertieal axis,
add a 1 as the third figure
and if necessary clear of
fractions and the required
indices are the result. This
is illustrated in Fig. 217, B —————— - —————— ®
which is the lower right 821
hand quadrant of the gno- S
monic projection of the 100
forms shown on the rutile
crystal, Fig. 190. Con-
sider first the ditetragonal pyramid z(321). Perpendiculars drawn from its pole intersect
the lincs representing the horizontal axes in distances which are equal to 3 and 2 times
the unit length of the ¢ axis, 0.64. The indices of the face will therefore
be 321. In the case of the ditetragonal pyramid ¢(313), the intercepts are
la, and la.. This gives the expression 1.3.1 which when cleared of the fraction yields 313,

———— o
2w

——————— e

=
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the indices of the face in question. The indices of a prism face like 7(310) can be readily
obtained in exactly the same manner as described under the Isometric System, Art. 84.
p- 75.

III. HEXAGONAL SYSTEM

119. The HexacoNaL SysteEM includes all the forms which are referred
to four axes, three equal horizontal axes in a common plane intersecting at
angles of 60°, and a fourth, vertieal axis, at right angles to them.

Two seetions are here ineluded, each embracing a number of distinet
classes related among themselves. They are called the Hexagonal Division
and the Trigonal (or Rhombohedral) Division. The symmetry of the former,
about the vertical axis, belongs to the hexagonal type, that of the latter to
the trigonal type.

Miller (1852) referred all the forms of the hexagonal system to three equal axes parallel
to the faces of the fundamental rhombohedron, and hence intersecting at equal angles, not
90°. This method (further explained in Art. 169) had the disadvantage of failing to bring
out the relationship between the normal hexagonal and tetragonal types, both characterized
by a prineipal axis of symmetry, which (on the system adopted in this hook) is the vertical
crystallographic axis. It further gave different symbols to faces which are crystallo-
graphically 1dentical. It is more natural to employ the three rhombohedral axes for tri-
gonal forms only, as done by Groth (1905), who includes these groups in a Trigonal System;
but this also has some disadvantages. The indices commonly used in describing hexagonal
forms are known as the Miller-Bravais indices, since they were adopted by Bravais for use
with the four axes from the scheme used by Miller in the other crystal systems.

120. Symmetry Classes. — There are five possible classes in the Hex-
agonal Division. Of these the normal elass is much the most important, and
two others are also of importance among erystallized minerals.

In the Trigonal Division there are seven classes; of these the rhombo-
hedral class or that of the Caleite Type, is by far the most common, and
three others are also of importance.

121. Axes and Symbols. — The position of the four axes taken is
shown in Fig. 218; the three horizontal axes are ealled a, since they are equal
and interchangeable, and the vertical axis is ¢, sinee it has a different length,
being either longer or shorter than the horizontal

218 S 3 i
& axes. The length of the vertical axis is expressed
in terms of that of the horizontal axes which in turn
(o

is always taken as unity. Further, when it is de-
sirable to distinguish between the horizontal axes
+ they may be designated a;, as, as.  When properly
-ﬁé orientated one of the horizontal axes (ap) is par-
a - : allel to the observer and the other two make angles
of 30° either side of the line perpendicular to him.
The axis to the left is taken as a,, the one to the
right as a;. The positive and negative ends
of the axesare shown in Fig. 218. The general
position of any plane may be expressed in a
manner analogous to that applicable in the other systems, viz.

Ly L
h l.k g.z.ll_';.lc.

Hexagor_lal Axes

The correspouding indices for a given plane are then h, k, 7, [; these always
refer to the axes named in the above scheme, Sinee it is found convenient
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to consider the axis a; as negative in front and positive behind, the general
symbol becomes hkil. Further, as following from the angular relation of
the three horizontal axes, it can be readily shown to be always true that the
algebraic sum of the indices &, %, 7, is equal to zero:

h+k+4+1i=0.
A. Hexagonal Division

1. NORMAL CLASS (13). BERYL TYPE

(Dihexagonal Bipyramidal or Holohedral Class)

122. Symmetry. — Crystals belonging to the normal class of the Hex-
agonal Division have one principal axis of hexagonal, or sixfold, symmetry,
which coincides with the vertical crystallographic axis; also six horizontal
axes of binary symmetry; three of these coincide with the horizontal crystal-
lographic axes, the others bisect the angles between them. There is one
principal plane of symmetry which is the plane of the horizontal crystallo-
graphic axes and six vertical planes of symmetry 219
which meet in the vertical erystallographic axis.
Three of these vertical planes include the hori-
zontal erystallographic axes and the other three
bisect the angles between the first set.

The symmetry of this class is exhibited in the
accompanying stereographic projection, Fig.
219, and by the following crystal figures.

The analogy between this class and the
normal class of the tetragonal system 1is
obvious at once and will be better appreciated
as greater familiarity is gained with the indi-
vidual forms and their combinations.

123. Forms. — The possible forms in this
class are as follows:

Symmetry of Normal Class

Miller-Bravais.

1SN o SO W Y S ) ST T (0001)

2. Prism of the first order............. (1010)

3. Prism of the second order........... (1120)

4. Dihexagonal prism................. (hki0) as, (2130)

5. Pyramid of the first order........... (hORD) as, (1011); (2021) ete.
6. Pyramid of the second order........ (h-h-2h-l) as, (1122)

7. Dihexagonal pyramid.............. (hkal) as, (2131)

In the above A > k, and b + k = —u.

124. Base. — The base, or basal pinacoid, includes the two faces, 0001
and 0001, parallel to the plane of the horizontal axes. It is uniformly desig-
nated by the letter ¢; see Fig. 220 et seq. i

125. Prism of the First Order. — There are three types of prisms, or
forms in which the faces are parallel to the vertical axis.
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The prism of the first order, Fig. 220, includes six faces, each one of which
is parallel to the vertical axis and meets two adjacent horizontal axes at
equal distances, while it is parallel to the third horizontal axis. It has hence
the general <ymb01 (1010) and is uniformly designated by the letter m; the
indices of its six faces taken in order (see Figs. 220 and 229, 230) are:

1070, o110, 1100, 1010, 0110. 1700.

220 221 222
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First Order Prism Second Order Prism Dihexagonal Prism

126. Prism of the Second Order. — The prism of the second order,
Fig. 221, has six faces, each one of which is parallel to the vertical axis, and
meets the three horizontal axes, two alternate axes at the unit distance, the
intermediate axis at one-half this distance; or, which is the same thing, it
meets the last-named axis at the unit dlstance, the others at double this
distance.* The general symbol is (1120) and it is uniformly designated by
the letter a; the indices of the six faces (see Figs. 221 and 229, 230) in order
are:

1120, 1210, 2110, 1120, 1210, 2110.

The first and second order prisms are not to be distinguished geometric-
ally from each other since each is a regular hexagonal prismm with normal
interfacial angles of 60°. They are related to cach other in the same way as
the two prisms m(110) and ¢(100) of the tetragonal system.

The relation in position between the first order
prismu (and pyramids) on the one hand and the
second order prism (and pyramids) on the other
will be understood better from Fig. 223, repre-
senting a cross section of the two prisms parallel
to the base c.

127. Dihexagonal Prism. — The dihexagonal
prism, Fig. 222, is a twelve-sided prism bounded
by twelve faces, each one of which is parallel
to the vertical axis, and also meets two adjacent
horizontal axes at unequal distances, the ratio of
which always lies between 1 : land 1:2. This
prism has two unlike edges, lettered z and y, as
shown in Fig. 222. The general symbol is (hk?0) and the indices of the
faces of a given form, as (21‘%0) are:

223

* Since 1a; : 1a; 1 —}a; @ ~c is equivalent to 2a, : 2a; : —las : =c.




"HEXAGONAL SYSTEM 97

2130, 1230, 1330, 2310, 3210, 3120,
2130, 1230, 1320, 2310, 3210, 3120.

128. Pyramids of the First Order. — Corresponding to the three types
of prisms just mentioned, there are three types of pyramids

A pyramid of the first order, Fig. 224, is a double six-sided pyramid (or
bipyramid) bounded by twelve similar triangular faces — six above and six
below — which have the same position relative to the horizontal axes as the
faces of the first order prism, while they also intersect the vertical axis above
and below. The general symbol is hence (hOhl). The faces of a given form,
as 1011), are:

Above 1011, 0111, 1101, 1Io1l, 0111, 1101
Below 1011, 0111, 1101, 1011, 0111, 1101.

On a given species there may be a number of pyramids of the first order,
differing in the ratio of the intercepts on the horizontal to the vertical axis,
and thus forming a zone between the base (0001) and the faces of the unit
prism (1010). Their symbols, passing from the base (0001) to the unit
prism (1010), would be, for example, 1014, 1012, 2023, 1011, 3032, 2021,
ete. In Fig. 228 the faces p and u are first order pyramids and they have
the symbols respectively (1011) and (2021), here ¢ = 0.4989. As shown in
these cases the faces of the first order pyramids replace the edges of the first
order prism. On the other hand, they replace the solid angles of the second
order prism a(1120).

224 2286 226

First Order Pyramid Second Order Pyramid Dihexagonal Pyramid

129. Pyramids of the Second Order. — The pyramid of the second order
(Fig. 225), is a double six-sided pyramid including the twelve similar faces
which have the same position relative to the horizontal axes as the faces
of the second order prism, and which also intersect the vertical axis.  They
have the general symbol (&« h « 2h +1). The indices of the faces of the form
(1122) are:

b avie BT 22N IRTD . B A1t 11220 91212, 12112

Below 1122, 1212, 2112, 1122, 1213, 2I12.

The faces of the second order pyramid replace the edges between the faces
of the second order prism and the base. Further, they replace the solid angles
of the first order prism m(1010). There may be on a single crystal a num-
ber of second order pyramids forming a zone between the base ¢(0001) and
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the faces of the second order prism a(1120), as, naming them in order: 1124,
1122, 2243, 1121, ete. In Fig. 227, s is the second order pyramid (1121).

130. Dihexagonal Pyramid. — The dihexagonal pyramad, Fig. 226, is a
double twelve-sided pyramid, having the twenty-four similar faces embraced
under the general symbol (kkil). It is bounded by twenty-four similar
faces, each meeting the vertical axis, and also meeting two adjacent hori-
zontal axes at unequal distances, the ratio of which always lies between
1:1and1:2. Thus the form (2131) includes the following twelve faces in
the upper half of the crystal:

2131, 1231, 1321, 2311, 3211, 3121,
5131, 1231 132100 31 E BT a1

And similarly below with I (here 1) negative, 2131, ete. The dihexagonal
pyramid is often called a berylloid because a common form with the species
beryl. The dihexagonal pyramid »(2131) is shown on Figs. 224, 225.

131. Combinations. — Fig. 227 of beryl shows a combination of the

227

Beryl

base_c¢(0001) and prism m(1010) with the_first order pyramids p(1011) and
u(2021); the second order pyramid s(1121) and the dihexagonal pyramid
v(2131). Both the last forms lie in a zone between m and s, for which it is
true that £ = I.  The basal projection of a similar erystal shown in Fig. 228
is very instructive as exhibiting the symmetry of the normal hexagonal
class. This i1s also true of the stereographic and gnomonic projections in
Figs. 229 and 230 of a like crystal with the added form o(1122).

2. HEMIMORPHIC CLASS (14). ZINCITE TYPE

(Dihexagonal Pyramidal or Holohedral Hemimorphic Class)

132. Symmetry. — This class differs from the normal class only in
having no horizontal plane of principal symmetry and no horizontal axes
of binary symmetry. It has, however, the same six vertical planes of sym-
metry meeting at angles of 30° in the vertical erystallographic axis which is
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an axis of hexagonal symmetry. There is no center of symmetry. The
231 symmetry 1s exhibited in the stereographic
- projection, Fig. 231.

133. Forms. — The forms belonging to
this class are the two basal planes, 0001
and 0001, here distinct forms, the positive
(upper) and negative (lower) pyramids of
each of the three types; also the three prisms,
which last do not differ geometrically from
the prisms of the normal class. An example
of this eclass is found in zincite, Fig. 44,
p. 22. lodyrite, greenockite and wurtzite are
also classed here.

- e
~Je,

S~

Symmetry of Homnnmphlc( lass

3. TRIPYRAMIDAL CLASS (15). APATITE TYPE
(Hexagonal Bipyramidal or Pyramidal Hemihedral Class)

134. Typical Forms and Symmetry. — This elass is important because
it includes the common species of the Apatite Group, apatite, pyromorphite,
mimetite, vanadinite. The typical form is the hexagonal prism (h%i0) and
the hexagonal pyramid (hkil), each designated as of the third order. These
forms which are shown in Figs. 233 and 234 may be considered as derived
from the corresponding dihexagonal forms of the normal class by the omis-
sion of one half of the faces of the latter. They and the other forms of the
class have only one plane of symmetry, the plane of the horizontal axes, and
also one axis of hexagonal symmetry (the vertical axis).

The symmetry 1s exhibited m the stereo-
graphic projection (Fig. 232). It is seen here,
as 1 the figures of crystals given, that, like
the tripyramidal class under the tetragonal
system, the faces of the general form (hk7)
present are half of the possible planes belong-
ing to each sectant, and further that those
above and below fall in the same vertical
zone.

135. Prism and Pyramid of the Third
Order. — The prism of the third order (Fig.
233) has six like faces embraced under the
general symbol (hk20), and the form is a regular
hexagonal prism with angles of 60°, not to be
distinguished geometrically, if alone, from the Symmetry of Tripyramidal Class
other hexagonal prisms; ef. Figs. 220, 221,

p- 96. The six faces of the ug.,ht-handed form (2130) have the indices

2130, 1330, 3210, 2130, 1320, 3210.

232

The faces of the complementary left-handed form have the indices:
1230, 2310, 3120, 1230, 2310, 3120

As already stated these two forms together embrace all the faces of the
dihexagonal prism (Fig. 222).
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The pyramid is also a regular double hexagonal pyramid of the third
order, and in its relations to the other hexagonal pyramids of the class (Figs.
224, 225) it is analogous to the square pyramid of the third order met with
in the corresponding class of the tetragonal system (see Art. 100). The
faces of the right-handed form (2131) are:

Above 2131, 1321, 3211, 3131, 1321, 3201
Below 2131, 1321, 3211, 2131, 1321, 3211.

There is also a complementary left-handed form, which with this embraces
all the faces of the dihexagonal pyramid. The cross section of Fig. 235 shows
in outline the position of the first order prism, and also that of the right-
handed prism of the third order.

The prism and pyramid just deseribed do not often appear on crystals as
predominating forms, though this is sometimes the case, but commonly these
faces are present modifying other fundamental forms.

136. Other Forms. — The remaining forms of the class are geometri-
cally like those of the normal class, viz., the base (0001); the first order prism
(1010); the second order prism (1120); the first order pyramids (hOAL);
and the second order pyramids ('h'2h'l). That their molecular strue-
ture, however, corresponds to the symmetry of this class is readily proved, for
example, by etching. In this way it was shown that
pyromorphite and mimetite belonged in the same
groupwith apatite (Baumhauer), though erystals with
the typical forms had not been observed. This class
is given its name of Tripyramidal because its forms
meclude three distinet types of pyramids.

137. A typical crystal of apatite is given in Fig.
236. It shows the third order prism /4(2130), and
the third order pyramids, w(2131), n(3141); also
the first order pyramids r(1012), x(1011), y(2021),
the second order pyramids »(1122), s(1121); —_—
finally, the prism m(1010), and the base ¢(0001). Apatite

236

4 PYRAMIDAL-HEMIMORPHIC CLASS (16). NEPHELITE TYPE
(Hexagonal Pyramidal or Pyramidal Hemihedral Hemimorphic Class)

138. Symmetry. — A fourth class under the hexagonal division, the
pyramidal-hemimorphic class, 1s like that just deseribed, except that the
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forms are hemimorphic. The single horizontal plane of symmetry is absent,
but the vertical axis is still an axis of hexagonal symmetry. This symmetry
1s shown in the stereographic projection of Fig. 237. The typical form would
be like the upper half of Fig. 234 of the pyramid of the third order. The
species nephelite is shown by the character of the etching-figures (Fig. 238,
Groth after Baumhauer) to belong here.
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5. TRAPEZOHEDRAL CLASS (17)

(Hexagonal Trapezohedral or Trapezohedral Hemihedral Class)

139. Symmetry. — The last class of this division is the trapezohedral
class. It has no plane of symmetry, but the vertical axis is an axis of hex-
agonal symmetry, and there are, further, six horizontal axes of binary sym-
metry. There 1s no center of symmetry. The symmetry and the distribu-
tion of the faces of the typical form (hkil) is shown in the stereographic pro-
jection (Fig. 239). The typical forms may be derived from the dihexagonal
pyramid by the omission of the alternate faces of the latter. There are two
possible types known as the right and left hexagonal trapezohedrons (see

239 240

Symmetry of Trapezohedral Class Hexagonal Trapezohedron

Fig. 240), which are enantiomorphous, and the few crystallized salts falling
in this class show circular polarization. A modification of quartz known as
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B-quartz is also described as belonging here. The indices of the right form
(2131) are as follows:

Above 2131, 1321, 3211, 2131, 1321, 32II.

Below 1231 2311 3121 1231 2311 3121.

B. Trigonal or Rhombohedral Division
(Trigonal System)

140. General Character. — As stated on p. 19, the classes of this division
are characterized by a vertical axis of trigonal, or threefold, symmetry.
There are seven classes here included of which the rhombohedral class of the
Caleite Type is by far the most important.

1. TRIGONAL CLASS (18). BENITOITE TYPE
(Ditrigonal Bipyramidal, Trigonal Hemihedral or Trigonotype Class)

141. Typical Forms and Symmetry. — This class has, besides the ver-
tical axis of trigonal symmetry, three horizontal axes of binary symmetry
which are diagonal to the crystallographic axes. There are four planes of
symimetry, one horizontal, and three vertical diagonal planes intersecting at
angles of 60° in the vertical axis. The symmetry and the distribution of the
faces of the positive ditrigonal pyramid is shown in Fig. 241. The char-
acteristic forms are as follows. Trigonal prism consisting of three faces
comprising one half the faces of the hexagonal prism of the first order. They
are of two types, called positive (1010) and negative (0110). 7'rigonal

241 242

Symmetry of Trigonal Class Benitoite (Palache)

pyramid, a double three-faced pyramid, consisting of six faces corresponding
to one half the faces of the hexagonal pyramid of the first order. The faces
of the upper and lower halves fall in vertical zones with each other. There
are two types, called positive (1011) and negative (0111). Ditrigonal prism
consists of six vertical faces arranged in three similar sets of two faces and
having therefore the alternate edges of differing character. It may be de-
rived from the dihexagonal prism by taking alternating pairs of faces. Ditri-
gonal pyramid consists of twelve faces, six above and six below. It, like the
prism, may be derived from the dihexagonal form by taking alternate pairs
of faces of the latter. The faces of the upper and lower halves fall in vertical
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zones. The only representative of this class known is the rare mineral
benitoite, a crystal of which is represented in Fig. 242. This crystal shows
the trlgonal prisms m(1010) and x(0110), the hexa"onal prisin of the second
order, a(1120), the trigonal pyramids, p(1011) and 7r(0111) ¢(0112) and the
hexagonal pyramid of the second order, x(2241)

2. RHOMBOHEDRAL CLASS (19). CALCITE TYPE

(Ditrigonal Scalenohedral or Rhombohedral Hemihedral Class)

142. Typical Forms and Symmetry. — The typical forms of the rhom-
bohedral class are the rhombohedron (Fig. 244) and the scalenohedron (Fig.
259). These forms, with the projections,

243 Figs. 243 and 269, illustrate the symmetry

T characteristic of the class. There are three

planes of symmetry only; these are diangoal
to the horizontal crystallographic axes and
intersect at angles of 60° in the vertical cerystal-
lographic axis. This axis is with these forms
an axis of trigonal symmetry; there are,
further, three horizontal axes diagonal to the

; > crystallographic axes of binary symmetry.
A Compare Fig. 244, also Fig. 245 et seq.

? - 4 By comparing Fig. 269 with Fig. 229, p

""""" 99, it will be seen that all the faces in half

Ragmoiny (Eflgill ombohedral = 4})\ Sectants are present. This group is hence

analogous to the tetrahedral class of the iso-
metric system, and the sphenoidal class of the tetragonal system.
143. Rhombohedron. — Geometrically deseribed, the rhombohedron is
a solid bounded by six like faces, each a rhomb. It has six like lateral edges
forming a zigzag line about the ecrystal, and six like terminal edges, three
above and three in alternate position helow. The vertical axis joins the two
trihedral solid angles, and the horizontal axes join the middle points of the
opposite sides, as shown in Fig. 244,
244 245 246

Positive Rhombohedron Caleite Negative Rhombohedron ~ Positive Rhombohedron
Hematite

The general symbol of the rhombohedron is (hOAI), and the successive
faces of the unit form (1011) have the indices:

Above, 1011, 1101, 0I11;  below, 0111, To1I, 1T0I.
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The geometrical shape of the rhombohedron varies widely as the angles
change, and consequently the relative length of the vertical axis ¢ (expressed
in terms of the horizontal axes, @ = 1). As the vertical axis diminishes, the
rhombohedrons become more and more obtuse or flattened; and as it increases
they beeome more and more acute. A cube placed with an octahedral axis
vertical is obviously the limiting case between the obtuse and acute forms
where the interfacial angle is 90°. In Fig. 244 of caleite the normal rhom-
bohedral angle is 74° 55" and ¢ = 0-854, while for Fig. 246 of hematite this
angle is 94° and ¢ = 1-:366. Further, Figs. 246-251 show other rhombohe-
leIlb of caleite, namely, l(0112) o (0351) f(02 ’1) M(4031), and p(16-0-16-1);
here the vertical axes are i the ratio of 3, 3, 2, 4 16, to that of the funda-
mental (cleavage) rhombohedron of Fig. 244, whose angle determines the
value of c.

247 249 250 251
L\
ALy
248 %
‘° I —_
252 253 254

Figs. 247-252, Calcite Figs. 253-254, Gmelinite

144. Positive and Negative Rhombohedrons. — To every positive
rhombohedron there may be an inverse and complementary form, identical
geometrically, but bounded by faces falling in the alternate sectants. Thus
the negative form of the unit rhombohedron (0111) shown in Fig. 245 has
the faces: ¥ . u

Above, 0111, 1011, 1101; below, 1101, 0111, 101T.

The position of these in the projections (Figs. 269, 270) should be care-
fully studied. Of the figures already referred to, F1g< 244, 246, 250 are
positive, and Figs. 245, 247, 248, 249 negative, 1h0mb0hed10ns Fig. 251
shows both forms.

It will be seen that the two complementary positive and negative rhom-
bohedrons of given axial length together embrace all the like faces of the

 double six-sided hexagonal pyramid of the first order. When these two
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rhombohedrons are equally developed the form is geometrically identical
with this pyramid. This is illustrated by Fig. 254 of gmelinite r(1011),
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p(0171) and by Figs. 284, 285, p. 113, of quartz, r(1011), 2(0111).* In each
case the form, which is geometrically a double hexagonal pyramid (in Fig.
254 with ¢ and m), is in fact a combination of the two unit rhombohedrons,
positive and negative. Commonly a difference in size between the two forms
may be observed, as in Figs. 253 and 286, where the form taken as the posi-
tive rhombohedron predominates. But even if this distinction cannot be
established, the two rhombohedrons can always be distinguished by etching,
or, as in the case of quartz, by pyro-electrical phenoi iena.

145. Of the two series, or zones, of rhombohedrons the faces of the posi-
tive rhombohedrons replace the edges between the base (0001) and the first
order prism (1010). Also the faces of the negative rhombohedrons replace the
alternate edges of the same forms, that is, the edges between (0001) and
(0170) (compare Figs. 253, 254, ete.). Fig. 255 shows the rhombohedron
in combination with the base. Fig. 256 the same with the prism «(1120).
When the angle between the two forms happens to approximate to 70° 32’
the crystal simulates the aspect of a regular octahedron. This is illustrated
by Fig. 257; here co = 69° 42’, also oo = 71° 22/, and the crystal resembles
closely an octahedron with truncated edges (cf. Fig. 99, p. 55).

266 267 . 268
\o e
266
wﬁ\
Figs. 255, 256, Hematite Coquimbite Eudialyte

146. There i1s a very simple relation between the positive and negative
rhombohedrons which it is important to remember. The form of one series
which truncates the terminal edges of a given form of the other will have one
half the intercept on the vertical erystallographic axis of the latter. This
ratio is expressed in the values of the indices of the two forms. Thus (0112),
truncates the terminal edges of the positive unit rhombohedron (1011);
(1014) truncates the terminal edges of (0112), (1015) of (2025). Again (1011)
truncates the edges of (0221), (40%1) of (0221), ete. This is illustrated by
Fig. 252 with the forms 7(1011) and f (0221). Also in Fig. 258, a basal pro-
jection, 2(1014) truncates the edges of e(0112); e(0112) of r(1011); r(1011)
of s(0221).

147. Scalenohedron. — The scalenohedron, shown in Fig. 259, is the
general form for this elass corresponding to the symbol Akil. It is a solid,
bounded by twelve faces, each a scalene triangle. It has roughly the shape
of a double six-sided pyramid, but there are two sets of terminal edges, one
more obtuse than the other, and the lateral edges form a zigzag edge around
the form like that of the rhombohedron. It may be considered as derived
from the dihexagonal pyramid by taking the alternating pairs of faces of

* Quartz serves as a convenient illustration in thiESA(‘asv, none the less so notwithstand-
ing the faet that it belongs to the trapezohedral elass of this division.
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that form. It is to be noted that the faces in the lower half of the form do
not fall in vertical zones with those of the upper half. Like the rhombohe-
drons, the scalenohedrons may be either positive or negative.
The positive forms correspond in position to the positive
rhombohedrons and conversely.
The positive scalenohedron (2131), Fig. 259, has the fol-
lowing indices for the several faces:
Above 2131, 2311, 3211, 1331, 1321, 31Z1
Below 1231, 1321, 3121, 2131, 2311, 3211.
For the complementary negative scalenohedron (1231) the
indices of the faces are:
Above 1231, 1321, 3121, 2131, 2311, 3201
Below 2311, 3211, 1231, 1321, 3121, 2131.
148. Relation of Scalenohedrons to Rhombohedrons. —It was
noted above that the scalenohedron in general has a series of
zigzag lateral edges like the rhombohedron. Tt is obvious, further,

that for every rhombohedron there will be a series or zone of scalenohedrons
having the same lateral edges. This is shown in Fig. 262, where the scalenohedron

Scalenohedron

D~
ING

Figs. 264, 265, Corundum Figs. 266, 267, Spangelite*

»(2131) bevels the lateral edges of the fundamental rhombohedron 7(1011); the same
would be true of the scalenohedron (3251), ete. Further, in Fig. 263, the negative scaleno-
hedron z(1331) bevels the lateral edges of the negative thombohedron f(0221). The rela-
tion of the indices which must exist in these cases may be shown to be, for example, for the
rhombohedron r(1011), h =k +1; again for f(0221), h + 2[ =k, etc. See also the pro-
jections, Figs. 269, 270. Further, the position of the scalenohedron may be defined with
reference to its parent rhombohedron. For example, in Fig. 262 the scalenohedron v(2131)
has three times the vertical axis of the unit rhombohedron »(1011). Again in Fig. 263
2(1341) has twice the vertical axis of f(0221).

* Spangolite belongs properly to the next (hemimorphic) group, but this fact does not
destroy the value of the illustration.
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149. Other Forms. — The remaining forms of the normal class of the
268

ni3

Calcite

rhombohedral division are geometrically like
those of the corresponding eclass of the hexa-
gonal division — viz., the base ¢(0001); the
prisms 7(1010), a(1120), (kk:0); also the second
order pyramids, as (1121). Some of these
forms are shown in the accompanying figures.
For further illustrations reference may be made
totypical rhombohedral species, as calcite, hema-
tite, ete.

With respect to the second order pyramid, it-
Is interesting to note that if it occurs alone
(as in Fig. 264, n = 2243) it is impossible to
say, on geometrical grounds, whether it has the
trigonal symmetry of the rhombohedral type

or the hexagonal symmetry of the hexagonal type. In the latter case,

J, 12021
0110 g 1100
Ny ma

269
g
1010

(1210
ay

n

Calcite

the form might be made a first order pyramid by exchanging the axial and
diagonal planes of symmetry. The true symmetry, however, 1s often indi-
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cated, as with corundum, by the occurrence on other erystals of rhombo-
hedral faces, as r(1011) in Fig. 265 (here z = 2211, w = 14-14-28-3). Even
if rhombohedral faces are absent (Fig. 266), the etching-figures (Fig. 267)
will often serve to_ reveal the true trigonal molecular symmetry; here
o = (1124), p = (1122).

150. A basal projection of a somewhat complex crystal of calcite is given
in Fig. 268, and stereographic and gnomonic projections of the same forms
in Figs. 269 and 270; both show well the symmetry in the distribution

\

3121
vs

Calmcite ). B
of the faces. Here the forms are: prisms, a(1120), m(1010); rhombohedrons,
positive, r(1011), negative, €(0112), f(0221); scalenohedrons, positive,

v(2131), £(2134).
3. RHOMBOHEDRAL-HEMIMORPHIC
CLASS (20). TOURMALINE TYPE

(Ditrigonal Pyramidal or Trigonal
Hemzhedral Hemimorphic Class)

151. Symmetry. — A number of prominent ar
rhombohedral species, as tourmaline, pyrar-
gyrite, proustite, belong to a hemimorphic class
under this division. For them the symmetry N \
in the grouping of the faces differs at the two 5( B
extremities of the vertical axis. The forms have o JLnE
the same three diagonal planes of symmetry Rhombo‘lﬁeﬁlnrl;‘.-Hgmimorphic
meeting at angles of 60° in the vertical axis, Class
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which is an axis of trigonal symmetry. There are, however, no hori-
zontal axes of symmetry, as in the rhombohedral class, and there is no
center of symmetry. Cf. Fig. 271. X

152. Typical Forms. — In this class the basal planes (0001) and (0001)
are distinet forms. The other characteristic forms are the two trigonal
prisms m(1010) and m,(0110) of the first order series; also the four trigonal
first order pyramids, eorresponding respectively to the three upper and
three lower faces of a positive rhombohedron, and the three upper and
three lower faces of the negative rhombohedron; also the hemimorphic
second order hexagonal pyramid; finally, the four ditrigonal pyramids,
corresponding to the upper and lower faces respectively of the positive
and negative scalenohedrons. Figs. 272-275 illustrate these forms. Fig.
274 is a basal section with 7,(0111) and ¢,(1012) below.

272 273 274 275

. h
Figs. 272-275, Tourmaline

4. TRI-RHOMBOHEDRAL CLASS (21). PHENACITE TYPE
(Rhombohedral or Rhombohedral Tetartohedral Class)

153. Symmetry. — This class, i‘llustrate(l_ by t}m speeies dioptase,
phenacite, willemite, dolomite, ilmenite, ete., is an important one. It is
characterized by the absence of all planes of
symmetry, but the vertical axis is still an axis
‘:;g/ﬁ‘/’—"‘\&"\ of trigonal symmetry, and there is a center of

SN / symmetry. Cf. Fig. 276.
¥ o J N 164. Typical Forms. — The distinctive forms
/’ N \ of the elass are the rhombohedron of the second
= _____>_<‘____“x’ ___________ lge order and the hexagonal prism and rhombo-
1 alme i hedron, each of the third order. The class is
]

of 3 thus characterized by three rhombohedrons of
\ iy / distinet types (each + and — ), and hence the
: name given to it.
The second order rhombohedron may be de-
oA S rived by taking one half the faces of the nor-
Tri-Ri)bmbohe(}]ral o mal hexagonal pyramid of the second order.
There will be two complementary forms known
- as positive and negative. For example, in a given case the indices of the
faces for the positive and negative forms are:

Positive  (above) 1122, 2112, 1212; (below) 1212, 1
Negative (above) 1212, 1122, 2112; (below) 2112, 1

2
)
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The rhombohedron of the third order has the general symbol (hk:il), and
may be derived from the normal dihexagonal pyramid, Fig. 226, by taking
one quarter of the faces of the latter.

There are therefore four complementary third order rhombohedrons, dis-
tinguished respectively as positive right-handed (2131), positive left-handed
(3121), negative right-handed (1321), and negative lefi-handed (1231). The
indices of the six like faces of the positive right-handed form (2131) are:

Above 2131, 3211, 1321; below 1321, 2131, 3211

The hexagonal prism of the third order may be derived from the normal
dihexagonal prism, Fig. 219, by taking one half the faces of the latter. There
are two complementary forms known as right- and left-handed. The faces
of these forms in a given case (2130) have the indices:

Rightsy ‘2130, » 1320, 3210, 2130, 1320, 3210,
Left 1230 2310 3120 1230 2310,  3120.

155. The remaining forms are geometrically like those of the rhombo-
hedral class, viz.: Base ¢(0001); first order prism m(1010);_ second order
prism a(1120); rhombohedrons of the first order, as (1011) and (0111),
ete.

156. The forms of this group are illustrated by Figs. 277-279. Fig. 277
is of dioptase and shows the hexagonal prism of the second order a(1120)
with a negative first order rhombohedron, $(0221) and the third order rhom-
bohedron x(1341). Figs. 278 and 279 show the horizontal and clinographic

278 279

Dioptase Phenacite

projections of a crystal of phenacite with the following forms: first order
prism, m(1010); second order prism, a(1120); third order rhomhohedrons,
2(1232) and s(2131); first order rhombohedrons, r(1011) and d(0112).

In order to make clearer the relation of the faces of the different types of
forms under this class, Fig. 280 is added. Here the zones of the positive and
negative rhombohedrons of the first order are indicated (+R and —R)
also the general positions of the four types of the third order rhombohedrons
(+Ty -, +l _l)

The following scheme may also be helpful in connection with Fig. 280. It
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1010

!
[
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= 5

~

280

1010

shows the distribution of the faces of the four rhombohedrons of the third order
(+r, +1, —r, =) relatively to the faces of the unit hexagonal prism (1010).

Prexacite TypE

+l  +r = = Arll A =t =
3121 2131 sl el || EEmb gl il 2kl
1010 0110 1100 1010

=l =i I A Flhy == apth Ak

3121 2131

5. TRAPEZOHEDRAL CLASS (22).

(Trigonal Trapezohedral or Trapezohedral Tetartohedral Class)
157. Symmetry. — This eclass includes, among minerals, the species

quartz and cinnabar.

QUARTZ TYPE

Al . A A
1231 1321 | 2311 3271
0110 1100
_:l_ :—7‘_ —_f—l +7'
1231 1321 | 2311 3211

The forms have no plane of symmetry and no center

of symmetry; the vertical axis is, however, an axis of trigonal symmetry,
and there are also three horizontal axes of binary symmetry, coinciding in
direction with the crystallographic axes; cf. Fig. 281

282
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Trigonal Trapezohedrons
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158. Typical Forms. — The characteristic form of the class is the
trigonal trapezohedron shown in Fig. 282. This 1s the general form corre-
sponding to the symbol (hkil), the faces being distributed as indieated in the
aceompanying stereographic projeetion (Fig. 281). The faees of this form
correspond to one quarter of the faces of the normal dihexagonal pyramid,
Fig. 226. There are therefore four such trapezohedrons, two positive, called
respectively right-handed (Fig. 282) and left-handed (Fig. 283), and two simi-
lar negative forms, also right- and left-handed (see the secheme given in
Art. 160). It 1s obvious that the two forms of Figs. 282, 283 are enantio-
morphous, and ecircular polarization is a striking character of the species
belonging to the class as elsewhere discussed.

The indiees of the six faces belonging to each of these will be evident on
consulting Figs. 281 and 229 and 230. The complementary positive form
(r and 1) of a given symbol include the twelve faces of a positive scalenohe-
dron, while the faces of all four as already stated include the twenty-four
faces of the dihexagonal pyramid.

Corresponding to these trapezohedrons there are two ditrigonal prisms,
respectively right- and left-handed, as (2130) and (3120).

The remaining characteristie forms are the right- and left-handed ¢rigonal
prism a(1120) and a(2110); also the right- and left-handed trigonal pyramid,
as (1122) and (2112). They may be derived by taking respectively one half
the faces of the hexagonal prism of the second order (1120) or of the corre-
sponding pyramid (1122); these are shown in Figs. 221 and 225.

159. Other Forms. — The other forms of the class are geometrically
like those of the normal eclass. They are the base ¢(0001), the hexagonal
first order prism m(1010), and the positive and negative rhombohedrons as
(1011) and (0111). These cannot be distinguished geometrically from the
normal forms.

160. Illustrations. — The forms of this elass are best shown in the
species quartz. As already remarked (p. 106), simple erystals often appear
to be of normal hexagonal syminetry, the rhombohedrons »(1011) and 2(0111)
being equally developed (Figs. 284, 285). In many cases, however, a differ-
ence in molecular character between them can be observed, and more com-

284 286 286 287 288

m |

| ull
' monly one rhombohedron, r(1011), predominates in size; the distinction can
always be made out by etching. Some crystals, like Fig. 286, show as
modifying faces the right trigonal pyramid s(1121), with a right positive
.trapezohedron, as z(5161). Such crystals are called right-handed and rotate
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the plane of polarization of light transmitted in the direction of the vertical
axis to the right. A crystal, like Fig. 287, with the left trigonal pyramid
s(2111) and one or more left trapezohedronb, as z(6151), is called left-handed,
and as regards light has the opposite character to the crystal of Fig. 286.
Fig. 288 shows a more complex right-handed crystal with several positive
and negative rhombohedrons, several positive right trapezohedrons and the
negative left trapezohedron, V.

The following scheme shows the distribution of the faces of the four
trapezohedrons (4r, 41, —r, —I) relatively to the faces of the unit hex-
agonal prism (1010); it is to be compared with the corresponding scheme,
given in Art. 156, of crystals of the phenacite type. In the case of the nega-
tive forms some authors prefer to make the faces 2131, 1231, ete., right, and
3121, 1321, ete., left.

Quartz TyrE

O T 5= | rgM| SEIE el Sy e S
3121 2131 1231 1321 2311 3211 3121 2131 1231 1321 2311 3211
1010 0110 1100 1010 0110 1100
—r =l +r —r =l +r 41 —-r =l +r -l

3121 2131 | 12317 1321 | 2311 3211 | 3121 2131 | 1231 1321 | 2311 32il

161. Other Classes. — The next class (23) is known as the Trigonal
Bipyramidal or Trigonal Tetartohedral class. It has one plane of sym-
metry — that of the horizontal axes, and one axis of trigonal symmetry —
the vertical axis. There is no center of symmetry. Its characteristic forms
are the three types of trigonal prisms and the three corresponding types of
trigonal pyramids. Cf. Fig. 289. This class has no known representation
among crystals.

The last class (24) of this division is known as the Trigonal Pyramidal
or Trigonal Tetartohedral Hemimorphie class. It has no plane of symmetry
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Symmetry of Trigonal Bipyramidal Class ~ Symmetry of the Trigonal Pyramidal Class

and no center of symmetry, but the vertical axis is an axis of trigonal sym-
metry. The forms are all hemimorphic, the prisms trigonal prisms, and the
pyramids hemimorphic trigonal pyramids. Cf. Fig. 290. The crystals of
sodium periodate belong to this class.
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MATHEMATICAL RELATIONS OF THE HEXAGONAL SYSTEM.

162. Choice of Axis.— The position of the vertical erystallographic axis is fixed in all
the classes of this system since it coincides with the axis of hexagonal symmetry in the
hexagonal division and that of trigonal symmetry in the rhombohedral division. The three
horizontal axes are also fixed in direction except in the normal class and the subordinate
hemimorphic class of the hexagonal division; in these there is a choice of two positions
according to which of the two sets of vertical planes of symmetry is taken as the axial set.

163. Axial and Angular Elements. — The axial element is the length of the vertieal
axis, ¢, in terms of a horizontal axis, a; in other words, the axial ratio of @ : ¢. A single
measured angle (in any zone but the prismatic) may be taken as the fundamental angle
from which the axial ratio can be obtained.

The angular element is usually taken as the angle between the base ¢(0001) and the
unit first order pyramid (1011), that is, 0001 A 1011.

The relation between this angle and the axis ¢ is given by the formula

tan (0001 A 10T1) X éx/E =c.

The vertical axis is also easily obtained from the unit second order pyramid, since
tan (0001 A 1122) = c.

These relations become general by writing them as follows:
tan (0001 A hORL) X %\/ﬁ - ’—; X ¢

tan (0001 A k'h2kl) = Zlﬁ pqc

In general it is easy to obtain any required angle between the poles of two faces on the
spherical projection etther by the use of the tangent (or cotangent) relation, or by the
solution of spherical triangles, or by the application of both methods. In practice most of
the triangles used in calculation are right-angled.

164. Tangent and Cotangent Relations. — The tangent relation holds good in any zone
from ¢(0001) to a face in the prismatic zone. For example:

tan (0001 A RORI) _ h_ tan (0001 A hh2R) _ 2R

tan (0001 A 1011) !’ tan (0001 A 1122) 1

In the prismatic zone, the cotangent formula takes a simplified form; for example, ior a
dihexagonal prism, kK70, as (2130):

cot (1010 A Rkz0) = 22t ’“\/%,

k

cot (1120 A hki0) = f%f V3.

The sum of the angles (1010 A kk:0) and (1120 A h%20) is equal to 30°.

Further, the last equations can be written in a more general form, applying to any
pyramid (kkzl) in a zone, first between 1010 and a face in the zone €001 to fl(), where the
angle between 1010 and this face is known; or_again, for the same pyramid, in a zone
between 1120 and a face in the zone 0001 to 1010, the angle between 1120 and this face
being given. For example (cf. Fig. 229, p. 99), if the first-mentioned zone is
1010'hk2l°0111 and the second is 1120'hkil'1011, then

cot (1010 A Kkil) = cot (1010 A 01T1). 21 ]j B
and

cot (1120 A hkil) = cot (1120 A 1011) ;—:-—_—‘:—%
Also similarly for other zones,

cot, (1070 A hkil) = cot (1010 A 0231) . 22 ]:L g
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cot (1120 A hkil) = cot (1130 A 2021) . + ’Z ete.

166. Other Angular Relations. — The following simple relations are of frequent use:
(1) For a hexagonal pyramid of the first order,
tan § (10I1 A 0171) = sin £v'1 where tan £ = c,
and in general
tan } (kORl A OhAl) = sin £+/1, where tan £= l@c.
(2) For a hexagonal pyramid of the second order, as (1122),

2sin L (1122 A 1212) = sin g  and  tan & =c.

see

(3) For a rhombohedron

sin & (1011 A T101) = sin « V2, where & = (0001 A 10T1);
in general ~ _ _
sin 3 (RORL A KhOL) = sin o, V'3, where a, = (0001 A kOAL).

166. Zonal Relations. — The zonal equations, described in Arts 45, 46, apply here as
in other systems, only that it is to be noted that one of the indices referrmg to the horizontal
axes, preferably the third, 7, is to be dropped in the calculations and only the other three
employed. Thus the indices (u, v, w) of the zone in which the faces (hkil), (pgrt) lie are

given by the scheme
SOCK
q t 14 q

where u =kt —lg, v=Ip— M, w = hq — kp.

For example (Fig. 226) the face n lies in the zone mv, 1010°2131 and also in the zone
au, 1120 - 2021. For the first zone the values obtained are: u = 0, v = T, w = 1; for the
second zone, ¢ = 1, f = 1, g = 2. Combining these zone symbols accordmg to the usual

scheme
1 1 0 1
XXX
1 2 1 1
3 1 1

The face n has, therefore, the indices 3141, since further ¢ = —(h + k).

167. Formulas. — The following formulas in which ¢ equals the unit length of the
vertical axis are sometimes useful:

(1) The distances (see Fig. 229) of the pole of any face (kk2l) from the poles of the faces
(1010), (0110), (1100), and (0001) are given by the following equations,

cos (hkil) (1010) = === i’;:;zf e
cos (kkil) (0110) = 7 T Zc(f(ﬁ; +hi_2 T k)
cos (hkil) (1100) = Vak 1 ;c(zh(h_“ _I;_) [Zn hk)
cos (hkil) (0001) = Varr 4621 (7; T A)

(2) The distance (PQ) between the poles of any two faces P(hkil) and Q(pgrt) is given
by the equation
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3it + 2¢ (hq + pk + 2hp + 2kq)

VB2 + 4ct (B + k2 + hk)] [38 + 1 (pF + ¢ + PQJ]
(3) For special cases the above formula becomes simplified; it serves to give the value
of the normal angles for the several forms in the system. They are as follows:

(@) Pyramid of First Order (hOhl), Fig. 224:
2 202
gﬁi—iﬁ;z, cos Z (basal) =

(&) Pyramid of Second Order (h'h'2k'l), Fig. 225:

é, I ic222 ; cos Z (basal) =

cos PQ =

| L i 4h2c? — 312
cos X (terminal) = 3E T aice:
. 2 At — 12

cos Y (terminal) P T ach?

(¢) Dihexagonal Pyramid (hkil):

s me ooy 3124 2e2 (B2 K2 4 4kk)

cos X (see Fig. 226) = 3 £ 42 (12 F k2 F hk)

32 + 2¢ (212 + 2hk — k?) |
302 + 4¢2 (k2 + k2 -+ hk)

4(‘2 (h? + k2 + hE) — 312
3+ 4 (W2 + K2 + hk)

cos Y (see Fig. 226) =

cos Z (basal)

(d) Dihexagonal Prism (hki0), Fig. 222:
h? 4+ k? + 4hk
2 (h2 + k? + hk)”
(¢) Rhombohedron (1011):
cos X (terminal)
(f) Scalenohedron (klal):
cos X (see Fig. 259) =

2h% 4 2hk — k2

cos X (axial) = 2 (bt k2 hk)

cos Y (diagonal) =

_ 32— 2k
T3+ e

3 + 2¢ (22 4 2hk — )

3 + 42 (B2 + K + k)
312 4 2¢% (2h* + 2hk — k?)

32 + dc (B2 + k2 + hk)
_ 2c®(h* - k% 4 4hk) — 3[”
St i+ R+ AR

168. Angles. — The angles for some commonly occurring dihexagonal prisms with the

first and second order prisms are given in the following table:

cos Y (see Fig. 259) =

cos Z (basal)

. m(1010) a(1130)
5160 8° 57’ A
4150 10 531 19 63
3130 13 54 16 6
5270 16 6 13 54
2130 19 6% 10 53%
3250 23 243 6 35%
5490 26 193 3 40‘
169. The Miller Axes and Indices. The forms of the hexagonal system were referred
291 by Miller to a set of three equal

oblique axes which were taken
parallel to the edges of the unit
positive rhombohedron of the
species.  Fig. 291 represents
such a rhombohedron with the
position of the Miller axes shown.
This choice of axes for hexa-
gonal forms hasthe grave objec-
tion that in several cases the
faces of the same form are rep-
resented by two sets of different
indices; for example the faces of
_ F the pyrannd of the first order
would have the indices, 100,221,010, 122, 001,212. This objection, however, disappears if the
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Miller axes and indices are used only for forms in the Rhombohedral Division, that is for forms
belonging to classes which are eharaeterized by a vertical axis of trigonal symmetry. It is
believed, however, that the mutual relations of all the classes of both divisions of the hex-~
agonal system among themselves (as also to the elasses of the tetragonal system), both
morphologieal and physical are best brought out by keeping throughout the same axes,
namely those of I'ig. 218, Art. 121. The Miller method has, however, been adopted by a
number of authors and eonsequently it is necessary to give the following brief deseription.

292
211
(1010)

(1120
101 3

(0710)
112

(1210) -
011

211
(1010)

Miller and Miller-Bravais Indices Compared

Fig. 292 shows in stereographic projection the common hexagonal-rhombohedral forms
with their Miller indices and in parentheses the corresponding indices when the faces are
referred to the four axial system. It will be noted that the faces of the unit positive rhom-
bohedron have the indices 100, 010, and 001 and those of the negative unit rhombohedron
have 221, 122, 212. These two forms together give the faces of the hexagonal pyramid of
the first order (see above). The hexagonal prism of the first order is represented by 211,
ete., while the seeond order prism has 101, ete. The dihexagonal pyramid has also two
sets of indices (kkl) and (efg); of these the symbol (hkl) belongs to the positive scaleno-
hedron and (e¢fg) to the negative form. In this as in other eases it is true that
e=2h4+2k -1, f=2h—k+2, g=—h+2k+2l. For example, the faces of the
form 201, etc., belong in the Rhombohedral Division of this system to the sealenohedron
(2131) while the complementary negative form would have the indices 524, ete.

The relation hetween the Miller-Bravais and the Miller indices for any form can be

RN,
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obtained from the following expression, where (hkil) represents the first and (pgr) the
seeond.

e e 1L
p—q¢ p—r Tr—p pta+tr

The relation between the Miller indices for hexagonal forms and those of isometric
forms should be noted. 1f we eonceive of the isometrie cube as a rhombohedron with
interfacial angles of 90° and change the orientation so that the normal to the octahedral
fage (111) becomes vertical we get a close eorrespondence between the two.  This will be
seen by a comparison of the two stereographie projeetions, Figs. 292 and 125.

170. To determine, by plotting, the length of the vertical axis of a hexagonal mineral,
given the position on the stereographic projection of the pole of a face with known indices.
To illustrate this problem it is assumed that the mineral in question is beryl and that the
position of the pole p(1011) is known, Fig. 293.  Let the three lines ai, as, a; represent the
horizontal axes with their unit lengths equalling the radius of the circle. Draw a line
from the center of the projec- 293
tion through the pole p. Draw
another line (which will be at
right angles to the first) joining
the ends of a@; and —a3. This
will be parallel to a, and will
represent the intercept of
p(1011) upon the plane of the
horizontal axes. In order to
plot the intereept of p upon the
vertieal axis construct in the
upper left-hand quadrant of
the figure a right-angle triangle
the base of whieh shall be equal
to O-P, the vertical side of
which shall represent the ¢ axis
and the hypothenuse shall show
the slope of the face and give
its intereept upon the c axis.
The direction of the hypothe-
nuse is determined by locating
the normal to p from the angle
measured from the ecenter of
the projection to its pole.
Since the face has been as-
sumed to have an unit intereept a%ﬁ Mau
on the vertical axis the dis- :
%?;lcfégngiéf‘?ﬁ]odfeggiflz fotfn«? Determination of um“c_éengtl} of((i (%xlxs, having given the
horizontal axes, which equals ROSHOSRO R )

1'00), gives the unit length of the ¢ axis for heryl.

171. To determine the indices of a face of a hexagonal form of a known mineral, given
the position of its pole on the stereographic projection. In Fig. 294 it is assumed that the
position of the pole » of a erystal face on caleite is known. To determine its indices, first draw
a radial line through the pole and then erect a perpendieular to it, starting the line from the
end of one of the horizontal axes. This line will represent the direction of the intersection of
the erystal face with the horizontal plane and its relative intercepts on the horizontal axes
will give the first three numbers of the parameters of the face, namely 1ay, 2a;, 5—as. To
determine the relative intereept on the ¢ axis transfer the distance O-P to the upper left-
hand quadrant of the figure, then having measured the angular distanece between the eenter
of the projection and » by means of the stereographic protractor draw the pole to the face
in the proper position. Draw then a line at right angles to this pole starting from the
point P’. This line gives the intereept of the face upon the line representing the vertical
axis. In this case the intercept has a value of 1'7 when the length of the horizontal axes
is taken as equal to 1'0. This distanee 17 is seen to be twice the unit length of the
¢ axis for caleite, 0'S5. Therefore the parameters of the face in question upon the four
axes are la,, 2a;, 3—as, 2¢, whieh give 2131 for the indices of the faee v.

—-1¢=0.49
M

Az
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Determination of the indices for » on caleite

172. To determine, by plotting, the indices of hexagonal forms, given the position of

295 their poles on the gno-
monic projection. To
ilustrate this problem

.:{ 2

one sectant of the gno-
monic projection of the
mmportant forms of beryl,
Fig. 228, is reproduced in
Fig. 295. The. directions
of the three horizontal
axes, @;, a; and az are in-
dicated by the heavy lines.
From the poles of the faces
perpendiculars are drawn
to these three axes. It
will be noted that the va-
rious  intercepts made
upon the axes by these
lines have simple rational
relations to cach other.
One of these intercepts is
chosen as having the
length of 1 (this length
will be equivalent to the
unit length of the ¢ erys-
tallographic  axis, see
below) and the others are
— then given in terms of it.
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The indices of each face are obtained direetly by taking these intercepts upon the three
horizontal axes in their proper order and by adding a 1 as the fourth figure. If necessary
clear of fractions, as in the case of the second order pyramid, 1122.

173. To determine the axial ratio of a hexagonal mineral from the gnomonic projection
of its forms. The gnomonic projection of the beryl forms, Fig. 295, may be used as an
illustrative example. The radius of the fundamental circle, a, is taken as equal to the
length of the horizontal axes and is given a value of 1. Then the length of the funda-
mewn.al intercept of the lines dropped perpendicularly from the poles, i.e. the distance c,
will equal the length of the ¢ axis when expressed in terms of the length of a. In the case
of beryl this ratio is a :¢ = 1°00 : 0°499. That this relationship is truc can be proved
in the same manner as in the case of the tetragonal system, see Art. 117, p. 93.

IV. ORTHORHOMBIC SYSTEM

(Rhombic or Prismatic System)

174. Crystallographic Axes. — The orthorhombic system includes all the
forms which are referred to three axes at right
angles to each other, all of different lengths. 296

Any one of the three axes may be taken as the +
vertical axis, ¢. Of the two horizontal axes the Y
longer is always taken as the b or macro-axis * and
when orientated is parallel to the observer. The
a or brachy-axis is the shorter of the two horizontal
axes and is perpendicular to the observer. The length
of the b axis is taken as unity and the lengths of by
the other axes are expressed in terms of it. The *a
axial ratio for barite, for instance, is « : b : ¢ = 0815
2100 : 1-31.  Fig. 296 shows the crystallographic
axes for barite.

1. NORMAL CLASS (25). BARITE TYPE

(Orthorhombic Bipyramidal or Holohedral Class) ' OrthO(rlgomtbi)c Axes
arite

175. Symmetry. — The formns of the normal class

of the orthorhombic system are characterized by three axes of binary sym-

297 metry, which directions are coincident with
the crystallographic axes. There are also
three unlike planes of symmetry at right
angles to each other in which lie the erystal-
lographic axes.

The symmetry of the class 1s exhibited in
the accompanying stereographic projection,
Fig. 297. 'This should be compared with Fig.
91 (p. 53) and Fig. 167 (p. 77), representing
the symmetry of the normal classes of the
isometric and tetragonal systems respec-
tively. It will be seen that while normal iso-
metric crystals are developed alike in the
. three axial directions, those of the tetragonal
Symmetry of Normal Class type have a like development only in the

Orthorhombic System direction of the two horizontal axes, and

* The prefixes brachy- and macro- used in this system (and also in the triclinic system)
are from the Greek words, Bpaxis, short, and paxpss, long.
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those of the orthorhombic type are unlike in the three even axial directions.
Compare also Figs. 92 (p. 54), 171 (p. 78) and 298 (p. 122).

176. Forms. s forms possible in this class are as follows:

Indices
1. Macropinacoid or a-pinacoid. .. .................. (100)
2. Brachypinacoid or b-pinacoid............ ... ... .. (010)
SIS CR ORGP IITECO IR A s (001)
AN SIS SRR S S S e (hKO)
5y Nearwdloniess goe $80ea s d ot o e dbabcdbo ssaaas aoa o (hOL)
BB C A CIINCS . S . (OkL)
U 1P eammitdls o 6 8ok 48 80186 6 6 63 6.0 6 4 866 EaE06 a0t oo (hkD)

In general, as defined on p. 31, a pinacoid is a form whose faces are parallel to two of
the axes, that is, to an axial plane, a prism is one whose faces are parallel to the vertical
axis, but intersect the two horizontal axes; ; a dome™® (or horizontal prism) is one whose
faces are parallel to one of the horizontal axes, but intersect the vertical axis. A pyramid
is a form whose faces meet all the three axes.

These terms are used in the above sense not only in the orthorhombic system, but also
in the monoclinic and triclinic systems; in the last each form consists of two planes only.

177. Pinacoids. — The macropinacoid includes two faces, each of which
is parallel both to the maecro-axis b and to the vertical axis ¢; their indices
are respectively 100 and 100. This form is uniformly designated by the
letter a, and is conveniently and briefly called the a-face or the a-pinacoid.

The brachypinacoid includes two faces, each of which is parallel both to
the brachy-axis a@ and to the vertical axis ¢; they have the indices 010 and
010. This form is designated by the letter b; it is called the b-face or the
b-pinacoid.

The base or basal pinacoid includes the two faces parallel to the plane of
the horizontal axes, and having the indices 001 and 001. This form is desig-
nated by the letter ¢; it is called the c-face or the c-pinacoid.

Each one of these three pinacoids is an open-form,f but together they
make the so-called diametral prism, shown in Fig. 298, a solid which is the
analogue of the cube of the isometric system. Geometrically it cannot be
distinguished from the cube, but it differs in having the symmetry unlike in

299 300

.“I-I—O__;%‘hfﬁ_" o 110 jafo| 100 {[210] 1{0 '
i n| m 'l @ 1 I
| -
et . ol e
3 | ji==L
Macro-, Brachy- and Prism and Basal
Basal Pinacoids Pinacoid

the three axial directions; this may be shown by the unlike physical char-
acter of the faces, a, b, ¢, for example as to luster, striations, etc.; or, again,
by the cleavage. Further, it is proved at once by optical properties. This

* IFrom the Latin domus, because resembling the roof of a house; cf. Figs. 301, 302.
t Sece p. 30.
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diametral prism, as just stated, has three pairs of unlike faces. It has three
kinds of edges, four in each set, parallel respectively to the axes «, b, and ¢;
it has, further, eight similar solid angles. In Fig. 298 the dimensions are
arbitrarily made to correspond to the relative lengths of the chosen axes,
but the student will understand that a erystal of this shape gives no informa-
tion as to these values.

178. Prisms. — The prisms proper include those forms whose faces are
parallel to the vertical axis, while they intersect both the horizontal axes;
their general symbol is, therefore, (hk0). These all belong to one type of
rhombic prism, in which the interfacial angles corresponding to the two un-
like vertical edges have different values.

The unit prism, (110), is that form whose faces interseet the horizontal
axes in lengths having a ratio corresponding to the accepted axial ratio of
a : b for the given species; in other words, the angle of this unit prism fixes
the unit lengths of the horizontal axes. This form is shown in combination
with the basal pinacoid in Fig. 209; it is uniformly designated by the letter
m. The four faces of the unit prism have the indices 110, 110, 110, 110.

There is, of course, a large number of other possible prisms whose inter-
cepts upon the horizontal axes are not proportionate to their unit lengths.
These may be divided into two classes as follows: macroprisms, whose faces
lie between those of the macropinacoid and the unit prism, brachyprisms
with faces between those of the brachypinacoid and the unit prism. A
macroprisin has the general symbol (2£0) in which A > k and is represented
by the form [(210), Fig. 300. A brachyprism has the general symbol (h£0)
with & < k and is represented by n(120), Fig. 300.

301

303

Macrodome and Brachydome Pyramid
Brachypinacoid and Macropinacoid

179. Macrodomes, Brachydomes. — The macrodomes are forms whose
faces are parallel to the macro-axis b, while they intersect the vertical axis
¢ and the horizontal axis a; hence the general symbol is (h0l). The angle
of the unit maecrodome, (101), fixes the ratio of the axes a : ¢. This form is
shown in Fig. 301 combined (since it is an open form) with the brachypinacoid.

In the macrodome zone between the base ¢(001) and the macropinacoid
a(100) there may be a large number of maecrodomes having the symbols,
taken in the order named, (103), (102), (203), (101), (302), (201), (301). ete.
Cf. Figs. 318 and 319 described later.

The brachydomes are forms whose faces are parallel to the brachy-axis, a,
while they intersect the other axes ¢ and b; their general symbol is (0kl).
The angle of the unit brachydome, (011), which is shown with a(100) in
Fig. 302, determines the ratio of the axes b : ¢.

The brachydome zone between ¢(001) and 6(010) includes the forms
(013), (012), (023), (011), (032), (021), (031), etc. Cf. Figs. 318 and 319.
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Both sets of domes are often spoken of as horizontal prisms. The pro-
priety of this expression is obvious, since they are in fact prisms in geo-
metrical form; further, the choice of position for the axes which makes
them domes, instead of prisms in the narrower sense, is more or less arbitrary,
as already explained elsewhere.

180. Pyramids. — The pyramids in this system all belong to one type,
the double rhombic pyramid, bounded by eight faces, each a scalene triangle.
This form has three kinds of edges, «, y, z (Fig. 303), each set with a different
interfacial angle; two of these angles suffice to determine the axial ratio.
The symbol for this, the general form for the system, is (hkl).

The pyramids may be divided into three groups corresponding respec-
tively to the three prisms just described, namely, unit pyramids, macro-
pyramids, and brachypyramids.

The unit pyramids are characterized by the fact that their intercepts on
the horizontal axes have the same ratio as those of the unit prism; that is,
the assumed axial ratio (a : b) for the given species. For them, therefore,
the general symbol becomes (hhl).

There may be different unit pyramids on crystals of the same species
with different intercepts upon the vertical axis, and these form a zone of faces
lying between the base ¢(001) and the unit prism m(110). This zone would
include the forms, (119), (117), (115), (114), (113), (112), (111). In the
symbol of all of the forms of this zone 4 = k, and thc lengths of the vertical
axes are hence, in the example given, 1, 1, 1 1 11 of the vertical axis ¢ of
the unit pyramid.

The macropyramids and brachypyramids are related to each other and to
the unit pyramids, as were the macroprisms and brachyprisms to themselves
and to the unit prism. Further, each vertical zone of macropyramids (or
brachypyramids), having a common ratio for the horizontal axes (or of h : K
in the symbol), belongs to a particular macroprism (or brachyprism) char-
acterized by the same ratio. Thus the macropyramids (214), (213), (212),
(421), ete., all belong in a common vertical zone between the base (001) and
the prism (210). Similarly the brachypyramids (123), (122), (121), (241),
ete., fall in a common vertical zone between (001) and (120).

181. Illustrations. — The following figures of barite (304—311) give

---

Barite Cr3 stals

excellent illustrations of crystals of a typical orthorhombic species, and show
also how the habit of one and the same species may vary. The axial ratio
for this species is @ :b:c = 0815 :1:1'314. Here d is the macrodome
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(102) and o the brachydome (011); m is, as always, the prism (110). Figs.
304307 and 309 are described as tabular || ¢; Fig. 308 is prismatic in habit
in the direction of the macro-axis (b), and 310, 311 prismatic in that of the
brachy-axis (a).

Figs. 312-314 of native sulphur show a series of crystals of pyramidal
habit with the dome n(011), and the pyramids p(111), s(113). Note n trun-
cates the terminal edges of the fundamental pyramid p. In general it should

314

312 4
LN A
n\-—/

‘ L/

Sulphur Crystals

315 316 3817
“ m |0 m| m
e || ﬂ
Staurolite Figs. 316-318, Topaz

be remembered that a macrodome truncating the edge of a pyramid must
have the same ratio of A :1; thus, (201) truncates the edge of (221), etec.
Similarly of the brachydomes: (021) truncates the edge of (221), ete. Ci.
Figs. 319-321.

Again, Fig. 315, of staurolite, shows the 319
pinacoids b(010), ¢(001), the prism m(110),
and the macrodome 7(101).

Figs. 316-318 are prismatic crystals of
topaz. Here m is the prism (110); land n
are the prisms (120), (140); d and p are the
macrodomes (201) and (401); fand y are the
brachydomes (021) and (041); 7, u, and o are
the pyramids (223), (111), (221).

182. Projections. — Basal, stercographic,
and gnomonic projections are given in Figs.
319-320a, on pp. 125, 126, 127 for a crystal of the
species topaz. Fig. 319 is the basal projection
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of the crystal shown in r1g. 318. Figs. 320 and 320a give the stereographic
and gnomonic projections of these forms present upon it.

320

Stereographic Projection Topaz Crystal

2. HEMIMORPHIC CLASS (26). CALAMINE TYPE
(Orthorhombic Pyramidal Class)

183. Class Symmetry and Typical Forms. — The forms of the ortho-
rhombic-hemimorphic class are characterized by two unlike planes of sym-
metry and one axis of binary symmetry, the line in which they intersect;
there is no center of symmetry. The forms are therefore hemimorphie, as
defined in Art. 29.  For example, if, as is usually the case, the vertical axis
is made the axis of symmetry, the two planes of symmetry are parallel to the
pinacoids a(100) and b(010). The prisms are then geometrically like those
of the normal class, as are also the macropinacoid and brachypinacoid;
but the two basal planes become independent forms, (001) and (001). _ There
are also two macrodomes, (101) and (101), or in general (h0l) and (k0l); and
similarly two sets, for a given symbol, of brachydomes and pyramids.

The general symmetry of the class is shown in the stereographie projec-
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tion, Fig. 321. Further, Figs. 322, of calamine, and 323, of struvite, represent
typical crystals of this class. In Fig. 322 the forms present are £(301), 7(031),
v(121); in Fig. 323 they are s(101), s:(101), ¢(011).

3. SPHENOIDAL CLASS (27). EPSOMITE TYPE.
(Orthorhombic Bisphenoidal Class)

184. Symmetry and Typical Forms. — The forms of the remaining
324 326 class of the system, the ortho-
2. rhombic-sphenoidal class, are char-
acterized by three unlike rec-
tangular axes of binary symme-
try which coincide with the crys-
tallographic axes, but they have
no plane and no center of sym-
metry (Fig. 324). The general
form Akl here has four faces only,
and the corresponding solid is a
rhombic sphenoid, analogous to
the sphenoid of the tetragonal
system. The complementary pos-
itive and negative sphenoids are
enantiomorphous. Fig. 325 represents a typical crystal, of epsomite, with
the positive sphenoid, 2(111). Other crystals of this species often show
both positive and negative complementary forms, but usually unequally
developed.
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MATHEMATICAL RELATIONS OF THE ORTHORHOMBIC SYSTEM

185. Choice of Axes. — As explained in Art. 175, the three crystallographic axes are
fixed as regards direction in all orthorhombic crystals, but any one of them may be made
the vertical axis, ¢; and of the two horizontal axes, which 1s the longer (b) and which the
shorter (a) cannot be determined until it is decided which faces to assume as the funda-
mental, or unit, pyramid, prism, or domes.

The choice is generally so made, in a given case, as to best bring out the relation of the
crystals of the species in hand to others allied to them in form or in chemical composition,
or in both respects; or, so as to make the cleavage parallel to the fundamental form; or, as
suggested by the common habit of the crystals, or other considerations.

186. Axial and Angular Elements. — The axial elements are given by the ratio of the
lengths of the three axes in terms of the macro-axis, b, as unity. For example, with barite
the axial ratio is

a:b:c=081520:1 :131359.

The angular elements are usually taken as the angles between the three pinacoids and
the unit faces in the three zones between them. Thus, again for barite, these elements are

100 A 110 = 39° 11’ 13", 001 A 101 = 58° 10’ 36", 001 A 011 = 52° 43’ 8",

Two of these angles obviously determine the third angle as well as the axial ratio. The
degree of accuracy to be attempted in the statement of the axial ratio depends upon the
character of the fundamental measurements from which this ratio has been deduced. There
is no good reason for giving the values of @ and ¢ to many decimal places if the probable
error of the measurements amounts to many minutes. In the above case the measurements
(by Helmhacker) are supposed to be aceurate within a few seconds. It is convenient, how-
ever, to have the angular elements correct, say, within 10", so that the calculated angles
obtained from them will not vary from those derived direct from the measured angles by
more than 30" to 1’.
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187. Calculation of the Axes. — The following simple relations (cf. Art. 48) connect the
axes with the angular elements:

326

Stibnite

tan (100 A 110) =a, tan (001 A 011) = ¢, tan (001 A 101) =§

These equations serve to give either the axes from the angular elements,
or the angular elements from the axes. It will be noted that the axes are not
needed for simple purposes of caleulation, but it is still important to have
them, for example to use in comparing the morphological relations of allied
species.

In practice it is easy to pass from the measured angles, assumed as the
basis of calculation (or deduced from the observations by the method of
least squares), to the angular elements, or from either to any other angles
by the application of the tangent prineiple (Art. 49) to the pinacoidal zones,
and by the solution of the right-angled spherical triangles given on the sphere
of projection.

Thus any face hkl lies in the three zones, 100 and 0kZ, 010 and A0l, 001
and hk0. For example, the position of the face 312 is fixed if the positions
of two of the poles, 302, 012, 310, are known. These last are given, respec-
tively, by the equations

tan (001 A 302) = 2 x tan (001 A 101),

tan (001 A 012) = § x tan (001 A 011) tan (100 A 310) =1 X tan (100 A 110).

327
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Stereographic Projection Stibnite Crystal
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188. Example. — Fig. 326 represents a crystal of stibnite from Japan and Tig. 327
the stereographic projection of its forms, p(111), 7(343), 9(353), ws(510°3), m(110) and
b(010). On this the following measured angles were taken as fundamental:

m (353 A 353) = 55° 1/0”,
m’" (353 A 353) = 99° 39’ 0.

Hence, the angles 353 A 010 = 40° 10}’ and 353 A 053 = 27° 303’ are known with-
out ecalculation. The right-angled spherical triangle * 010°053°353 yields the angle
(010 A 053) and hence (001 A 053); also the angle at 010, which is equal to (001 A 101).
But tan (001 A 011) =  x tan (001 A 053), and tan (001 A 011) = ¢. Also, since tan

(001 A 101) = -2, the axial ratio is thus known, and two of the angular elements.

The third angular element (001 A 110) can be caleulated independently, for the angle
at 001 in the triangle 001°053'353 is equal to (010 A 350) and tan (010 A 350) x § =
(010 A 110), the complement of (100 A 110).

Then since tan (100 A 110) = a, this ean be used to check the value of a already
obtained. The further use of the tangent prineiple with the occasional solution of a right-
angled triangle will serve to give any desired angle from either the fundamental angles
direct, or from the angular clements.

Again, the symbol of any unknown face ecan be readily caleulated if two measured
angles of tolerable accuracy are at hand. For example, for the face w, suppose the meas-

ured angles to be R
bo (010 A hkL) = 30° 15, we’ (hkl A Rkl) = 51° 32'.
The solution of the triangle b w0kl gives the angle (010 A 0kl) = 16° 25’ 20", and

tan (001 A Okl) _ tan 73° 34%
tan (001 A 011) "~ tan 45° 303’

= 3333+, = ;—

But the ratio of & : I must be rational and the number derived agrees most closely with
10 : 3.

Again, the angle (001 A h0l) may now be calculated from the same triangle and the
value 59° 38%’ obtained. From this the ratio of & to [ is derived since
tan (001 A hOl) _ tan 59° 383’ h

tan (001 A 101) — tan 45° 431 — 1005 =7"

This ratio is nearly equal to 5 : 3, and the two values thus obtained give the symbol 510°3.
If, however, from the triangle 001° Okl w, the angle at 001 is calculated, the value 26° 423
is obtained, which is also the angle (010 A Ak0). From this the ratio & : k is dedueed, since

tan (010 A 110) _ tan 45° 128" _ 00 &
tan (010 A kk0) ~ tan 26° 423 ~ “7° " h

The value of % is hence closely equal to 2; this combined with that first obtained (é— = %O)

gives the same symbol 510°3.

This symbol being more than usually complex ealls for fairly accurate measurements.
How accurate the symbol obtained is ean best be judged by comparing the measured angles
with those caleulated from the symbol. For example, in the given case the calculated
angles for w(510'3) are bw(010 A 510°3) = 30° 16/, ww’(510°3) = 51°35’. The correctness
of the value deduced is further established if it is found that the given face falls into
prominent zones.

It will be understood further that the zonal relations, explained on pp. 45-47, play an
important part in all calculations. For example, in Fig. 326, if the symbol of 7 were un-
known, it could be obtained from a single angle (as br), since for this zone h = L.

189. Formulas. — Although it is not often necessary to employ formulas in ealeulations,
a few are added here for sake of completeness. Here a and ¢ in the formulas are the lengths
of the two axes a and c.

* The student in this as in every similar ease should draw a projection, cf. Fig. 327
(not necessarily accurately constructed), to show, if only approximately, the relative posi-
tion of the faces present.
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(1) For the distance between the pole of any face P(hkl) and the pinacoids a, b, ¢, we
have in general:

h2c?

cos? Pa = cos? (hkl A 100) = Em;—fﬂ%ﬁ
k2a2c?

cos? Pb = cos? (hkl A 010) = m 8
Pa?

cos? Pc = cos? (hkl A 001) = mz 5

(2) For the distance (PQ) between the poles of any two faces (hkl) and (pgr)
PO = hpe? + kqa’ct 4 lra? )
cos PQ = VR + kKaicr + Pa?] [pie? + gaie® + ria?)

190. To determine, by plotting, the axial ratio of an orthorhombic crystal, having given
the stereographic projection of its forms. In order to solve this problem it is necessary
that the position of the pole of a pyramid face of known indices be given or the position
of the faces of a prism and one dome or of both a macro- and a brachydome. For illus-
tration it is assumed that a crystal of barite, such as represented in Fig. 305, has been
measured on the goniometer and the poles of 1ts faces plotted in the stereographic projec-
tion. The lower right-
hand quadrant of this 328
projection is shown in Fig.
328. The forms present
are common ones on bar-
ite crystals and have
been given the symbols,
m(110), d(102), o(011),
¢(001). The ratio of a : b
can be determined readily
from the position of the
pole m(110). A radial
line is drawn to the pole
of the face and then a
perpendicular erected to
1t from the end of the line
representing the b crys- 7~ o« \L
tallographic axis. The 7% T \\
intercept of this perpen- : A% el S

ite 5 )
dicular on the line repre- S —p=——=_
senting the a axis, when a Axis
expressed in terms of the
assumed unit length of

1c=1.31"

S

¢ Axis

« b Axis
1.00

of a. It 15 to be noted

that the fact that this

line in the present case

passes very nearly through

the pole 111 is wholly

accidental. The length 10=0.81
of the vertical axis can
be determined from the
position of the pole of
either d(102) or o(011j.
The construction used is
given in the upper left- Determination of the Axial Ratio for Barite

hand quadrant of the

figure. If the brachydome, 0(011), is used the sloping line that gives the inclina-
tion of the face is started from a distance on the horizontal line equivalent to the length
of the b axis, or 1, and its intercept on the ¢ axis will equal the unit length of that axis.
If, however, the position of d(102) is used the base line of the triangle must be made equal
to the unit length of the a axis as already established and the intercept on the ¢ axis will
equal } of the latter’s unit length.

a Axis
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The problem could have been wholly solved from the position of the pyramid face, 111,

if that form had been present on the crystal.

illustrated.

The construction in this case is also

191. To determine, by plotting, the indices of a face upon an orthorhombic crystal,

329

€ Axis

0.952 or 5

b Axis

1b

given the position of its
pole upon the stereographic
projection and the axial ratio
of the mineral. To illustrate
this problem it is assumed
that the position of the
pole in the stereographic
projection of the face o, Fig.
329, upon a topaz crystal iz
known. First draw a radial
line through the poleo. Next
erect a perpendicular to this
line, starting it from the
distance selected as repre-
senting 1 on the b crystallo-
graphic axis. The intercept
of this line upon the line
representing the a axis when
expressed In terms of the
unit length of the b axis is
053. This is equivalent to
the established unit length
of the a axis and therefore
the parameters of the face o
on the horizontal crystallo-
graphic axes are la, 1b. Next
the distance O-P is transfer-
red into the upper left-hand
quadrant of the figure. The

position of the normal to the face is determined by measuring with a protractor the angular
distance between O and o. The line giving the slope of the face is next drawn perpendicu-
lar to this normal and its intercept upon the line representing the vertical axis determined.

This distance when expressed in
terms of the length of the b axis is
0°95. This is twice the established
length of the ¢ axis (0'476) and
consequently the third parameter
of the face o 1s 2c.  This gives the
mndices 221 for the face.

192. To determine, by plotting,
the axial ratio of an orthorhombic
crystal having given the gnomonic
projection of its forms. To illus-
trate this problem the gnomonie
projection of the crystal of topaz
already given in Fig. 320a will be
used. In Fig. 330 one guadrant
of this projection is reproduced.
From each pole lines are drawn
perpendicular to the two lines
representing the a and b crystal-
lographic axes. It will be found
that the intercepts made in this
way upon the a axis have rational
relations to each other. Thesame
is true of the intercepts upon
the b axis. The intercepts upon
the two axes, however, are

irrational in respect to each other.

bAxis 4
xis 2041 om,

—

a Axis

140

330
2/3 2 021
N
223
201 221
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A convenient intercept upon each axis is chosen as 1

and the other intercepts upon that axis are then expressed in terms of this length. Of
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course with a known mineral, whose forms have already had indices assigned to them,
the intercept that shall be considered as 1 is fixed.
If we take r as equivalent to the radius of the fundamental circle of the projection,
g as equal to the chosen intercept upon the b crystallographic axis and p that upon the
@ axis, then the axial ratio can be derived from the following expressions:
Fo @ @

¢c g ¢ p
The proof of these relationships is similar to that already given under the Tetragonal
System, Art. 117, p. 93.

193. To determine, by plotting, the indices of a face upon an orthorhombic crystal,
given the position of its pole upon the gnomonic projection and the axial ratio of the min-
eral. The method of construction in this case is the reverse of that given in the problem
above and is essentially the same as given under the Isometric and Tetragonal Systems,
Arts. 84 and 118. In the case of an orthorhombic mineral the intercepts of the perpendicu-
lars drawn from the pole of the face to the a and b axes must be expressed in each case in
terms of the unit intercept on that axis. These values, p and ¢, can be determined from the
equations given in the preceding problem.

V. MONOCLINIC SYSTEM
(Oblique System)

194. Crystallographic Axes. — The monoclinic system includes all the
forms which are referred to three 331
unequal axes, having one of their
axial inclinations oblique.

The axes are designated as 8
follows: the inclined or clino-axis
is a; the ortho-axis is b, the ver-
tical axis is ¢. The acute angle &
between the axes @ and c¢ 1s rep-
resented by the letter B; the
angles between a and b and b and ¢

are right angles. See Fig. 331. a
When properly orientated the ) L
inclined axis, a, slopes down toward Crystal Axes of Orthoclase

the observer, the b axis is hori- atbrc'=0'66:‘1:0'55- B=64°
zontal and parallel to the observer and the ¢ axis vertical.

332 1. NORMAL CLASS (28). GYPSUM TYPE

(Prismatic or Holohedral Class)

195. Symmetry. — In the normal class of the
monoclinic system there is one plane of sym-
* metry and one axis of binary symmetry normal
to it. The plane of symmetry 1s always the
plane of the axes a and ¢, and the axis of sym-
metry comcides with the axis b, normal to this
plane. The position of one axis (b) and that of
the plane of the other two axes (a and ¢) is thus
fixed by the symmetry; but the latter axes may
occupy different positions in this plane. Fig. 332
shows the typical stereographic projection, pro-
jected on the plane of symmetry. Figs. 347, 348 are the projections of an actual

Symmetry of Normal Class
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crystal of epidote; here, as is usual, the plane of projection is normal to the
prismatic zone.

196. Forms. — The various forms * belonging to this class, with their
symbols, are given in the following table. As more particularly explained
later, an orthodome includes two faces only, and a pyramid four only.

Symbols

1. Orthopinacoid or a-pinacoid......................  (100)
2. Clinopinacoid or b-pinacoid....................... (010)
3 IBEe OIF GHOIRIEEkG - o0 oo b0 oo a0 00 daas obaaad oo o (001)
AMEE 1 ST SIS B & L R s e S Y (hk0)
. (hO)

5, O eI 0 A 0.0 6 6l 60 a6 6060 0066 ok s oo dearse s { (h00)
€ (ClooxoyiTERY BB 5t o g & 68208 a0 0 ka8 0 0000000050 (OkI)
(hkl)

7. Pyramids......... P L PR R { (hkl)

197. Pinacoids. — The pinacoids are the orthopinacoid, clinopinacoid,
and the basal plane.

The orthopinacoid, (100), includes the two faces parallel to the plane of
the ortho-axis b and the vertical axis c. They have the indices 100 and 100.
This form is designated by the letter a, since it is situated at the extremity of
the a axis; it is hence conveniently called the a-face or a-pinacoid.

The clinopinacoid, (010), includes the two faces parallel to the plane of
symmetry, that is, the plane of the clino-axis @ and the axis e¢. They
have the indices 010 and 010. The clinopinacoid 1s designated by the letter
b, and 1s called the b-face or b-pinacord.

The base or basal pinacoid, (001), ncludes the two terminal faces, above
and below, parallel to the plane of the axes a, b; they have the mdlces 001
and 001 The base is designated by the letter ¢, and is often called the
c-face or c-pinacord. It is obviously inchined to the orthopinacoid, and the
normal angle between the two faces (100 A 001) is the acute axial angle 8.

333 336
|
| 001 I
! Y |
' f0 |
Siren o Wi
100 ',, ;
4 \ 101
/// l
Ortho-, Clino - Prism and Orthodomes
and Basal Pimacoids Basal Pinacoid and Clinopinacoid

The diametral prism, formed by these three pinacoids, taken together,
Fig. 333, is the analogue of the cube in the isometric system. It is bounded
by three sets of unlike faces; it has four similar vertical edges; also
four similar edges parallel to the axis a, but the remaining edges, parallel
to the axis b, are of two sets. Of its eight solid angles there are two sets of

* On the general use of the terms pinacoid, prisms, domes, pyramids, see pp. 31, 122.
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four each; the two above in front are similar to those below behind, and
the two below In front to those above in behind.

198. Prisms. — The prisms are all of one type, the oblique rhombie
prism. They may be divided into three classes as follows: the wnit prism,
(110), designated by the letter m, shown in Fig. 334; the orthoprisms, (hk0),
where h > k, lying between a(100) and m(110), and the clinoprisms, (hk0)
where h < k, lying between m(110) and b(010). The orthoprisms and clino-
prisms correspond respectively to the macroprisms and brachyprisms of the
orthorhombie system, and the explanation on p. 123 will hence make their rela-
tion clear. Common cases of these prisms are shown in the figures given later.

199. Orthodomes. — The four faces parallel to the ortho-axis b, and
meeting the other two axes, fall into two sets of two each, having the general
sym wbols (hOl) and (RO). These forms are called orthodomes they are strictly
hemiorthodomes. For example, the unit orthodome (101) has the faces 101
and 10T; they would replace the two obtuse edges between a(100) and ¢(001)
in Fig. 333. The other unit orthodome (T01) has the faces 101 and 101, and
they “would replace the acute edges between a(100) and ¢(001). These two
independent forms are shown together, with 6(010), in Fig. 335.

Similarly the faces 201, 201 belong to the form (201), and 201, 201 to the
independent but complementmy form (201).

200. Clinodomes. — The clinodomes are the forms whose faces are
parallel to the inclined axis, a, while intersecting the other two axes. Their
general symbol is hence (0kl) and they lie between the base (001) and the
clinopinacoid (010). KEach form has four faces; thus for the unit clinodome
these have the symbols, 011, 011, 011, 011. The form n(021) in Fig. 342 is
a clinodome.

201. Pyramids. — The pyramids in the monoclinic system are all hemi-
pyramids, embracing four faces ounly in each form, corresponding to the
general symbol (kkl) This obviously follows from the symmetry; it is
shown, for example, in the fact already stated that the solid angles of the
diametral prism (Fig. 333, see above), which are replaced by these pyramids,
fall into two sets of four each. Thus any general symbol, as (321), includes
the two independent forms (321) and (321) with the faces

B 4 3ol 3T, and ¢ 398 | 1891, 5321, 301

The pyramids may also be divided into three classes as wunit pyramids,
(hhl); orthopyramids, (hkl), when h > k; or clinopyramids, (hkl), when h < k.
These correspond respec- 336 337 338 230
tively to the three prisms
already named. They are
analogous also to the unit
pryamids, macropyramids,
and brachypyramids of the
orthorhombie system, and
the explanation given on
p- 124, should serve to
make their relations clear.
But it must be remembered
that each general symbol
embraces two forms, (hhl)
and (hkl) with four faces each, as above explained.

Pyroxene
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202. Illustrations. — Figs. 336-339 of pyroxene (a :b :c = 1092 : 1 :
0°589, 8 = 74° = «(100) A ¢(001)) show typical monoclinic forms. Fig. 336
shows the diametral prism. Of the other forms, m is the unit prism (110);
p(101) is an orthodome; wu(111), »(221), s(111) are pyramids; for other
figures see p. 475. Again, Figs. 340-342 represent common ecrystals of
orthoclase (a :b:c = 0659 :1:0555, 8 = 064°). Here 2(130) 1s a prism;
x(101) and y(201) are orthodomes; 7(021) is a clinodome; o(111) a pyramid.
Since (Fig. 340) ¢ and  happen to make nearly equal angles with the vertical
edge of the prism m, the combination often simulates an orthorhombic
crystal.

340 341

i fi
&l

Orthoclase

a

Fig. 343 shows a monoclinic crystal, epidote, prismatic in the direction of
the ortho-axis; the forms are a(100), ¢(001), »(101) and n(111). Fig. 344
of gypsum is flattened || 5(010); it shows the unit pyramid [(111) with the
unit prism m(110).

343 344 346 346

Epidote Gypsum Epidote

203. Projections. — Fig. 345 shows a projection of a erystal of epidote
(cf. Fig. 897, p. 531) on a plane normal to the prismatic zone, and Fig. 346
one of a similar crystal on a plane parallel to 5(010); both should be care-
fully studied, as also the stereographic and gnomonic projections of the same
species, Figs. 347, 348. The symbols of the prominent faces are given in
the latter figures.




a
100

K u
210

oS

e

=8

T

a |
\ Y
\&

A\

100
Stereographic Projection of Epidote Crystal

:?48
- L by S
m1i0 u3io L0 %210 it
- » - 221
231 Yyl (73201 / U 211 q-

i / \‘
‘

"
] m110 = m110
l d’111 e|101 f111
| \°
i m, . 210
[ w 210 weil k| 201 w211

| a0
Gnomouie . Projection of Epidote Crystal (137)




138 CRYSTALLOGRAPHY

2. HEMIMORPHIC CLASS (l29). TARTARIC ACID TYPE
(Sphenoidal Class)

204. The monoclinic-hemimorphic class is characterized by a single axis
of binary symmetry, the
349 360 crystallographic axis b, but
¥ it has no plane of sym-
= metry. 1t is illustrated
4 . by the stereographic pro-
jection (Fig. 349) made
upon a plane parallel to
b(010). Fig. 350 shows a
n m common form of tartarie
acid; sugar crystals also
belong here. The hemi-
e == morphic character is dis-
Sl Agb B tinetly shown in the
N distribution of the clino-
Symmetry of Hemimorphic Class Tartaric Acid domes and pyramids; cor-
responding to this the
artificial salts belonging here often exhibit marked pyroelectrical pheno-
mena.

3. CLINOHEDRAL CLASS (30). CLINOHEDRITE TYPE
(Domatic or Hemihedral Class)

205. The monoclinic-clinohedral class is characterized by a single plane
of symmetry, parallel to the clinopinacoid, b(010), but it has no axis of sym-
metry. This symmetry is shown in the stereographic projection made upon
a plane parallel to 5(010), Fig. 351. In this class, therefore, the forms parallel
to the b axis, viz., ¢(001), a(100), and the orthodomes, are represented by a

361 362 363

Symmetry of Clinohedral Class Clinohedrite

single face only. The other forms have each two faces, but it 1s to be noted
that, with the single exception of the clinopinacoid b(010), the faces of a
given form are never parallel to each other. The name given to the class is
based on this fact.

Several artificial salts belong here in their crystallization, but the only
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known representative among minerals is the rare silicate, clinohedrite
(H,CaZnS10s),* a complex erystal of whieh is shown in two positions in Figs.
352, 353. As seen in these figures, the erystals of the group have a hemi-
morphic aspect with respect to their development in the direction of the
vertical axis, although they cannot properly be called hemimorphie since this
is not an axis of symmetry. The forms shown in Figs. 352 353 are as
follows: pinacoid, b(010); prisms, m(110), mi(110), h(320), n(120), 1(130);
orthodomes, e(101), (101); pyramids, p(111), p(111), q(111), »(331),
s(551), t(771), u(531), o(131), z(131), y(121).

It is to be noted that erystals of the common species pyroxene (also of
agirite and titanite) occasionally show this habit in the distribution of their
faces, but it is not certain that this may not be accidental.f

MATHEMATICAL RELATIONS OF THE MONOCLINIC SYSTEM

206. Choice of Axes. — It is repeated here (Art. 195) that the fixed position of the
plane of symmetry establishes the direction of the plane of the a and ¢ erystallographic
axes and also of the axis b which is the symmetry axis and lies at right angles to this plane.
The a and ¢ axes, however, may have varying positions in the symmetry plane according
to which faces are taken as the pinacoids a(100) and ¢(001), and which the unit pyramid,
prism, or domes.

207. Axial and Angular Elements. — The azial elemenis are the lengths of the axes
a and ¢ in terms of the unit axis b, that is, the axial ratio, with also the acute angle of
inclination of the axes @ and ¢, called 8. Thus for orthoclase the axial elements are:

a:b:c=06585:1:056554 B =063°56%¢.

The angular clements are usually taken as the angle (100 A 001) which is equal to the angle
B; also the angles between the three pinacoids 100, 010, 001, respectively, and the unit
prism 110, the unit orthodome (101 or 101) and the unit clinodome 011. Thus, again, for
orthoclase, the angular elements are:

001 A 100 = 63° 563’, 100 A 110 = 30° 363".

001 A 101 = 50° 164/, 001 A 011 = 26° 31".

208. The mathematical relations connecting axial and angular elements are given in
the following equations in which a, b, and ¢ represent the unit lengths of the respective
crystallographic axes.

o= tan (100 A 110)

s or tan (100 A 110) = a .sin 8; (1)
g = REAOOLAOID) o o (@OL A 011) = ¢, sin 6; )
sin 8
a . tan (001 A 101) csin B

or tan (001 A 101) =

oo sin B — cos 8. tan (001 A 101) a+c.cosB

a . tan (001 A 101) = ¢ sin B
= = t 001 A101) = —m-
E sin 8 + cos 8. tan (001 A 101) ol ) a—c.cosf

These relations may be made more general by writing in the several cases —

3

in (1) kKO for 110 and %a for a; in (2) Okl for 011 and %c for ¢;

in (3) ROl for 101 and ?c for c.

* Penfield and Foote, Am. J. Sc., §, 289, 1898.
t See G. H. Williams, Am. J. Sc., 34, 275, 1887, 38, 115, 1889.
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Also

[E3)

sin (001 A 101) _ sin (001 A T01)
a sin (100 A 101)  sin (T00 A 101)

and more generally g
_ sin (001 A ROl _ sin (001 A ROI)

c
I~ sin (100 A 0l)  sin (100 A £0l)

IS

Note also that
tan ¢ = a and tan ¢ = ¢,

where ¢ is the angle (Fig. 347) between the zone-cireles (001, 100) and (001, 110); also ¢ is
the angle between (100, 001) and (100, 011).

All the above relations are important and should be thoroughly understood.

209. The problems which usually arise have as their object either the deducing of the
axial elements, 7.e., the angle g and the values of a and ¢ in terms of b(= 1), from three
measured angles, or the finding of any required interfacial angles from these elements or
from the fundamental angles.

The simple relations of the preceding article connect the angular and axial elements,
and beyond this all ordinary problems can be solved * either by the solution of spherical
triangles on the sphere of projection, or by the aid of the cotangent (and tangent) relation.

It is to be noted, in the first place that all great circles on the sphere of projection (see
the stereographic pmjer'tlon, Tig. 347) from 010 eut the zone circle 100, 001, 100 at right
angles, but those from 100 cut the zone circles 010, 001, 010 obliquely, as also those from
001 cutting the zone circle 100, 010, T00.

210. Tangent and Cotangent Relations. — The simple tangent relation holds good for all
zones from 010 to any pole on the zone cirele 100, 001, T00; in other words, for the prisms,
clinodomes, and also zones of pyramids in which the ratio of & : [ is constant (from 001 to
hOl or to h()l) Thus it is still true, as in the orthorhombic system, that the tangents of the
angles of the prisms 210, 110, 120, 130 from 100 are in the ratio of 1 :1:2 : 3, or, more
generally, that

tan (100 A 2kO) & tan (010 A RkO) R

tan (100 A 110) k2 °*  tan (010 A 110) &

Also for the clinodomes the tangents of the angles of 012, 011, 021 from 001 are in the
ratio of £ : 1 : 2, ete. A similar relation holds for the tangents of the angles of pyramids in
the zoneq mentloned as 121, 111, 212, ete.

For zones other than those mentioned as from 100 to a clinodome, or from 001 to a
prism, the more general cotangent formula given in Art. 49 must be employed. This rela-
tion is simplified for certain common cases.

For any zone starting from 001, as the zone 001, 100, or 001, 110, or 001, 210, ete.; if
two angles are known, viz., the ‘mgleq between 001 "and those t\\ o faces in the given zone
which fall (1) in the zone 010 101, and (2) in the prismatic zone 010, 100; then the angle
between 001 and any other face in the given zone can be calculated.

Thus,
Let 001 A 101 = PQ and 001 A 100 = PR,
or ““ 001 A 111 = PQ “ 001 A 110 = PR,
or ¢ 001 A 212 = PQ o 001 A 210 = PR, ete.

Then for these, or any similar cases, the angle (PS) between 001 and any face in the given
zone (as 201, or 221, or 421, cte., or in general hOl, hhl, ete.) is given by the equation

cot PS — cot PR i

cot PQ — cot PR~ &

For the corresponding zones from 001 to 100, to 110, to 210, etc., the expression has the
same value; but here
PQ = 001 A 101, PR =001 A 100, PS = 001 A 0L
or 001 A 111, ete., 001 A 110, ete., 001 A hhl, ete.

* The general formulas, from which it 1s possible to calculate directly the angles between
any face and the pmacmds, or the angle between any two faces whatever, are so complex
as to be of little value.
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If, however, 100 is the starting-pomt, and

100 A 101 = PQ 100 A 001 = PR,
or 100 A 111 = PQ, 100 A 011 = PR etc.,

then the relation becomes
cot PS —cot PR _ &

cot PQ — cot PR~ [

211 To determine, by plotting, the axial elements of a monoclinic crystal, given the
stereographic projection of its forms. As an example of this problem it is assumed that
an orthoclase crystal similar to the one shown in Fig 341 has been measured and the poles
of its faces located on the stereographic projection, Iig. 354. The inclination of the a axis
or the angle 8 1s given directly by measuring, by means of the stereographic protractor, the
angular distance between the poles of @(100) and (001). In the present case the a(100)
form does not actually occur on the erystal. 3 is measured as 64°. If the base is not
present upon the erystal it will be usually possible to locate its position by means of some
zone cirele on which it must he In the present case the great circle of the zone of m "(110),
o(111), m""(170) will cross the front to back line (zone of the orthodomes) at the point of

- the pole to the base.

364
T

(=
z 130

Horizontal projection of « axis

P
Z'130 2130

n 110

a 100
Determination of Axial Elements of Orthoclase from Stereographic Projection

The ratio between the lengths of the a and b axes can be readily determined from the
position of the pole, m(110). Draw the radial line O-P from the center of the projection
to m(110). From the end of the b axis draw a line at right angles to O-P. This repre-
sents the intersection of the prism face with the horizontal plane and the distance O-R
gives the intercept of the prism upon the horizontal projection of the a aris. The distance
O-R therefore is not the unit length of the a axis but is that distance foreshortened some-
what because of the inclination of that axls The construction by which the true length
of the a axis is obtained is shown in Fig. 355. The line R-O-S-T represents the horizontal
projection of the a axis upon which the dxstance O-R is transferred from Fig. 354. As the
prism face is vertical its intercept upon the a axis can be found by dropping a perpendicu-
lar from R to intersect the line which represents the a axis. The inclination of this last

.
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line is found by use of the angle 8, which has been already determined. The length of the
a axis when expressed in terms of the b axis (1'00) was found to be 0'66. _

The length of the ¢ axis can be found best from the inclination of the 7(201) face. This
face will intersect the negative end of the @ axis and the upper end of the ¢ axis at either
ia, 1c or la, 2¢. The angle between the center of the projection, O, Fig. 354, and the
pole ¥ is measured by means of the stereographie protractor. From this angle the position
of the normal to ¥, as shown in Fig. 355, 1s determined. The line representing the slope of
the face is drawn at right angles to this normal, starting from the negative unit length of
the inclined @ axis. The intercept on the ¢ axis was found to be equal to 1°11, which, as
it is equal to 2¢, would give the unit length of the ¢ axis as, 0°55.

The length of the ¢ axis could also be determined from the inclination of the pyramid
face, o(111). The method of construction would be similar to that described in the prob-
lem below.

212. To determine the indices of a face upon a monoclinic crystal, having given the
position of its pole upon the stereographic projection and the axial elements of the min-
eral. The pyramid face o on orthoclase will be used to illustrate the problem. First, see
Fig. 354, a radial line is drawn through the pole o and a perpendicular S-T erected to it,
starting from the unit length of the b axis. It is to be noted that the point T is the inter-
section of the face o with the horizontal projection of the a axis Transfer the distance

Determination of Axial Elements, etc. of Orthoclase

O-S to the horizontal line in Fig. 355 and locate the position of the normal to o by the
angle, Fig. 354, between O and 0. The line giving the slope of the face can then bé drawn
from the point S (Fig. 355) perpendicular to the normal. This line intersects the line
representing the vertical axis at a distance equal to its unit length. Two points of inter-
section of the pyramid face with the plane of the @ and ¢ axes have now been determined,
namely 1c and T. A line joining these two points will give the intersection of the two
planes and the point where it crosses the line representing the a axis will therefore give
the intercept of the pyramid upon that axis. This is also found to be at the unit length
and thercfore the indices of 0 must he 111.

213. To determine, by plotting, the axial elements of a monoclinic crystal, having given
the gnomonic projection of its forms. The construction by which this problem is solved
is shown in Fig. 356. The poles of the unit forms (101), (011), (001) and (111) are located
(in this case for pyroxene) and the zonal lines drawn. The angle g is complementary to
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the angle from the center of the projection to 001. This can be measured dircetly by
Then construet the triangles CST and XYZ. The
angles p and , and v and » are measured. This ean most easily be done by means of the
divided circle and the fact that an angle at the circumference of a cirele is measured by one
half its subtended arc. The following relations will then yield the axial ratio.

b _sinp. __sinwv
sin p

a
= — y -
[ sin

[

_ For the proof of these relations see the explanation of the more general case under the
triclinie system, Art. 227, p. 152.

101

\#IM
~ N P

Determination of Axial Elements of Pyroxene from Gnomonic Projection

214, To determine, by plotting, the indices of a face on a monoclinic crystal, having
given the position of its pole upon the gnomonic projection. There is no essential differ-
ence between the orthorhombic and monoclinic systems in the determination of indices
from the gnomonic projection. The intercepts of perpendiculars from the poles of the
faces upon the front to back and left to right zonal lines running through the pole of ¢(001)
give directly the first two numbers of the indices. The gnomonic projection of the epi-
dote crystal already given (Fig. 348) will serve to illustrate this problem.

VI. TRICLINIC SYSTEM

(Anorthic System)

215. Crystallographic Axes. — The triclinic system includes all the forms
which are referred to three unequal axes with all their intersections oblique.
When orientated in the customary manner one axis has a vertical posi-



144 CRYSTALLOGRAPHY

tion and is called the ¢ axis (cf. Fig. 357), a second axis lies in the front-to-
“back plane, sloping down toward the observer, and is
called the a¢ axis. The remaining axis is designated as
% the b axis. Usually the a and b axes are so chosen that
the ¢ axis i1s the shorter and, like in the orthorhombie
A system, is sometimes called the brachy-axis. In that
case the b axis is longer and is known as the macro-
axis. But this 1s not invariably true; thus with rho-
donite the ratio of a:b = 1073 :1. The angle
between the axes b and ¢ is called «, that between «
and ¢ is B, and that between a and b is v (Fig. 357).
It is to be noted that there is no necessary relation between the values of
o, 8, and v, any one may be greater or less than 90°; this is determined by
the choice of the fundamental forms.

Triclinic Axes

1. NORMAL CLASS (31). AXINITE TYPE

(Holohedral or Pinacoidal Class)

216. Symmetry. — The normal class of the triclinic system is character-
ized by a center of symmetry, the point of intersection of the three axes,
but there is no plane and no axis of symmetry. This symmetry is shown in
the accompanying stereographic projection (Fig. 358).
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217. Forms. — Each form of the class includes two faces, parallel to
one another and symmetrical with reference to the center of symmetry.
This is true as well of the form with the general symbol (hkl) as of one of the
special forms, as, for example, the a-pinacoid (100).

Hence, as sh(m n in the following table, the four prismatie faces 110, 110,
110, 170 include two forms, namely, 110, 110, and 110, 110. The same is
true of the domes. Furthel _any eight Sor_rg:pondmtr pylamldal faces, as,
for example, 111, 111, 111, 1T S TR T LA belong to four distinet
forms, namely, 111 T gk 111 111, 11T; 111, 111, and similarly in
general.
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{ The various types of forms are given in the following table:

Indices

Magcropinacoid or a-pinacoid. ... ................... (100)
Brachypinacoid or b-pinacoid....................... (010)
Base or e-pinacoid. .. ... ... o (001)
JPBTI0: 6 00 60 00008000 c08060 0506000000 000000060%00 { g}i:],fgg
W (EEROROIENES: 00 0 000 6680060000 a00a60aE 080600 8000C { 8%88

| . (OkD)
Brachydomes. ...... ... ... . . .. [ (OF])

| (hkl)
Pyramids. ... ... ()

| yramids l(h/gl)

i (hkl)

] In the above table it is assumed that the axial ratio is such that @ < b. If the oppo-

li site were true the names brachy- and macro- would be interchanged.

218. The explanations given under the two preceding systems make it
unnecessary to discuss in detail the various forms individually, except as
illustrated in the case of crystals belonging to certain typical triclinie species.

It may be mentioned, however, that Fig. 359 shows the diametral prism,
which is bounded by three sets of unlike faces, the pinacoids a, b, and c.
This is the analogue of the cube of the isometric system, but here the like
faces, edges, and solid angles include only a given face, edge, and angle, and
that opposite to it.

219. Illustrations. — A typical triclinic crystal is shown in_Fig. 360 of
axinite. Here a(100) is the macropinacoid; m(110) and M (110) the two
unit prisms; $(201) a macrodome, and x(111) and r(111) two unit pyramids.
The axial ratio is as follows:

a:b:c=049:1:048, « = 82° 54, 3 = 91° 52/, v = 131° 32.

Figs. 361, 362 show two crystals of rhodonite, a species which is allied to

pyroxene, and which approximates to it in angle and habit. Here the faces

S e

CamrEe T

| 360 361 362
AN
|
! Q \
) \‘\aﬁ \Lr-'
1 | =
}‘ Axinite Rhodonite
i
are: Pinacoids a(100), b(010), ¢(001); prisms m(110), M(110); pyramids

| q(221), k(321), n(221), r(111).

1 Further illustrations are given by Fig. 363 of albite and Fig. 364 of anor-
1 thite. The symbols of the faces, besides the pinacoids and the unit prisms,
1
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are as follows: Fig. 363, 2(101); Fig. 364, prisms f(130), 2(130); domes
£(207), y(201), e(021), r(061), n(021); pyramids m(111), «(111), o(111),
363 365
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Stereographic Projection of an Axinite Crystal

p(211). In Fig. 364 of anorthite the similarity of the crystal to one of ortho-
clase is evident on slight examination (cf. Figs. 340, 341), and careful study
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with the measurement of angles shows that the correspondence is very close.
Hence in this case the choice of the fundamental planes is readily made.
Fig. 365 represents a crystal of axinite; Figs. 366 and 367 its stereo-

graphic and gnomonic projections.

367

b 010 <€

Gnomonic Projection of an Axinite Crystal
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2. ASYMMETRIC CLASS (32). CALCIUM THIOSULPHATE TYPE

(Hemihedral Class)

220. Besides the normal class of the triclinic system there is another
368

possible class, possessing symmetry neither
with respect to a plane, axis nor center; in it
a given form has one face only. This class finds
examples among a number of artificial salts.
One of these 1is calcium thiosulphate
(CaS,0;3.6H,0); as yet no mineral species is
known to be included here. This is the most
general of all the thirty-two types of forms
classified according to their symmetry and
comes first, therefore, if the classes are arranged
in order according to the degree of symmetry
characterizing them. This class is one of those
whose crystals may show cireular polarization.

.

This is true of eleven of the classes which have Symmetry of Asymmetrlc Class

been described in the preceding pages.
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MATHEMATICAL RELATIONS OF THE TRICLINIC SYSTEM

221. Choice of Axes. — It is obvious, from what has been said as to the symmetry of
this system, that any three faces of a trielinic crystal may be chosen as the pinacoids, or
the faces which fix the position of the axial planes and the directions of the axes; morcover,
there is a like liberty in the choice of the unit prisms, domes or pyramids which further fix
the lengths of the axes.

When the crystal in hand is allied in form or composition to other speeies, whether of
the same or different systems, this fact simplifies the problem and makes the choice of the
fundamental forms easy. This is well illustrated, as already noted, by the triclinic feldspars
(e.g., albite and anorthite, Figs. 363, 364) which are near in angle to the allied monoclinie
species orthoclase.  Rhodonite (Figs. 361, 362), the triclinic member of the pyroxene
group, is another good example.

In other eases, where no such relationship exists, and where varied habit makes different
orientations plausible, there is but little to guide the choice. This is illustrated in the ease
of axinite (Iig. 360), where at least ten distinet positions have been assumed by different
authors.

222. Axial and Angular Elements. — The axial elements of a triclinic erystal are:
(1) the axial ratio, which expresses the lengths of the axes ¢ and ¢ in terms of the third
axis, b; and (2) the angles between the axes «, 3, v (Fig. 357). There are here five quanti-
ties to be determined which obviously require the measurement of five independent angles
between the faces.

The angular elements are usually taken as the angles between the pinacoids and, in
addition, those between each pinacold and the unit face lying in the zone of the other pina-
coids; that is,

ab, 100 A 010, ac, 100 A 001, bc, 010 A 001;

also am 100 A 110, 001 A 101, 001 A 011;
or, instead, any one or all of these,
aM, 100 A 170, 001 A 101, 001 A OT1.

Of these six angles taken, one is determined when the others are known.

223. The mathematical relations existing between the axial angles and axial ratio, on the
one hand, and the angles between the faces on the other, admit of being drawn out with
great completeness, but they are necessarily complex and in general have little practical
value. In fact, most of the problems likely to arise can be solved by means of the triangles
of the spherieal projection, together with the cotangent formula connecting four planes in
the same zone (Art. 49, p. 49); this will often be laborious and may require some ingenuity,
but in general involves no serious difficulty. In connection with the use of the cotangent.
formula, it is to be noted that in certain commonly occurring cases its form is much simpli-
fied; some of these have already been explained under the monoclinic system (Art. 210).
The formulas given there are of eourse equally applicable here. 1

224. The first problem may be to find the axial elements from measured angles. Since
these elements include five unknown quantities, viz., the three axial angles o, 8, v and
the lengths of the axes a and ¢ in terms of b, five measured angles are required, as already
stated. ‘

Fig. 369 represents the crystallographic axes of the trielinic mineral rhodonite. The
positive ends of the three axes are joined by lines forming three triangles the angles of
which are very important. In the triangle, for instanee, which has the b and ¢ axes for

two of its sides since the length

369 370 of the b axis is taken as 1°0, it

15 only mnecessary to know

the angle « and either p or =

in order to determine the length

of the ¢ axis. In the triangle

that has the a and b axes for

two of its sides it 1s neeessary

= to know the wvalue of y and
either ¢ or 7 in order to deter-

mine the length of the a axis.

And lastly in  the triangle

formed between the a and ¢

axes, if the length of either of

) _ these axes is known, the length
of the other can be determined from the angle g8 and either u or ». It is assumed that a
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crystal of rhodonite showing the forms «(100), h(010), ¢(001) and p(111), see Fig.
370, has been measured and the poles of the faces plotted in the stereographic projection,

Fig. 371. The angles between the
great ecircles which conncet these
poles are the same as those shown
mm the triangles built upon the
crystallographie axes, Fig. 369. With
the angles between the different erys-
tal faces known by measurement, it
is easy, by the formulas of spherical
trigonometry, to calculate the value
of these other angles and from them
obtain the axial ratio.

That the angles shown on the stere-
ographic projection, Fig. 371, are
identical with those in Fig. 369 may
be proved as follows. Let Fig. 372
represent a vertical seection eut
through the spherical projection of
rhodonite in such a way as to
include the b and ¢ crystallographic
axes. The triangle, which has these
axes as two sides and the three
angles «, = and p, lies therefore in
the plane of the figure. The nor-
mals to all faces parallel to the

371
700

(100

c axis, z.e. the prism zone, would lie in a plane at right angles to that axis. This plane

372

would intersect the sphere of the spher-
ical projection in a great eircle which is
represented on the stereographic pro-
jection, Fig. 371, by the divided ecircle.
On Fig. 372 this great cirele would
appear 1 orthographie projection as the
line C-C’ lying at right angles to the ¢
axis. In the same way all faces lying
parallel to the b axis, .. the zone (100)—
(101)-(001), would have their normals
in a plane which would be foreshortened
to the line B-B’ in Fig. 372. Since
the lines C—C’ and B-B’ are at right
angles respectively to the ¢ and b axes
the angle between them must equal the
axial angle, «. This same angle will
appear therefore on the stereographic
projection, Fig. 371, between the great
cireles of the two zones, the faces of
which are parallel respectively to the ¢
and b axes. Further the normals to all
faces which intersect the b and ¢ axes at
their unit lengths would lic in a plane at
right angles to the line b-¢, Fig. 372.

This plane would appear in orthographic projection as the line P-P’.  On the stereographic

projection, I'ig. 371, this would be represented
as the zonal circle passing through (100), (111),
(011), (100). The angle between B-B’ and P-P’
will by construction equal = and that between C-C’
and P-P’ will equal p. These same angles will appear
therefore in the stereographie projection between the
corresponding zone circles. In the same way the
identity of the angles v, o, 7, 8, x and » in Figs. 369
and 371 can be proved.

With the necessary number of these angles given
the formulas required for the caleulation of the
axial lengths are given below.  The angles 7/, o, v/,
w’, m" and p’ are the corresponding angles to 7, o, ete..
in the adjacent quadrants, see Fig. 373.

373
e

’

-Q
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’

siny siny’ ¢ sinz _sinw

sinr _sinr’ _a
b’ sinyg sing’  a’sinp sin p’

&
sin ¢ sin o’ b’
If the angles given are between the three pinacoids and the pyramid hkl (not the unit form)
the relations are similar. That is, if for the face hkl the corresponding angles be represented
by 7o, o, ete., where 7o, ) are the angles between the zone circles 100, 001 and 100, 010
;espectlvely and the zone circle 001, k0, these relations may be expressed in the general
orm

sinto _sinr’ _ a _k a

sinoo  sinos h, Rk b’
]«cb

sinw _sinw' _ ¢ _h ¢

sixlyé_s—*i;yo'—r—['>’
E(l

sinm _sinm’ _ ¢ _k ¢

sinpo_sinpu’_E_Z'f)
k

Thus for the face 321 the formulas become
sintg _a _2a sinw 3¢ sinm _ 2
PR ICH _ <,

sino, 8b 3b sinu a sinp b
1t is also to be noted that
a = 180° — 4, B = 180° — B, vy = 180° — C,
where A, B, (' are the angles in the pinacoidal spherical triangle 100°010°001 at these
poles respectively. That is,
A=x4p=m+p = (180° — a);
B =v+p=w+ p= (180 —p);
C=7r+0=r+4+adg = (180° — 7).

800 WAL — i Sopince: i, et Wp el sy

Hence, having given, by measurement or calculation, the angles between the faces
ab(100 A 010), ac(100 A 001) and be(010 A 001), which are the sides of this triangle, the
angles A, B, C are calculated and their supplements are the axial angles a, 8, v respectively.

Still another series of equations are those below, which give the relations of the angles
u, v, p, ete., to the axes and axial angles. By means of them, with the sine formulas given
above, the angular elements (and other angles) can be calculated from the axial elements.

Also

a sin ¢ sin
tan p SR LN ; tany = —— —H»-,
¢ + acos B a -+ ¢ cos B

ey bsine | Ay ¢sin a

b = e T o= ="
& ¢+ bcosa’ b+ ¢ cos a

a sin b sin
tanr=f—~7—; o G, e BN Y
b+ acos vy a + b cos vy

These equations apply when u + », cte., is less than 90°; if their sum is greater than
90° the sign in the (‘]enommapor is negative.

207. The following equations are also often useful.
2 sin p sin p’ 2 sin 7 sin 7’

bl s i e e
¢ _ 2sinpsin g’ 2 sin v sin oy’
gk — sin (u —p’)  sin (v — ') °

2sin 7 sin 7/ 2 sin o sin ¢’
e oy R = e = =

sin (r — 7/)  sin (07—7'-)“'

at+r+p=B+tutr=v—+7+o=180°

The calculation, from the angular elements or from the assumed fundamental measured
angles, either (1) of the angular position of any face whose symbol is given, or (2) of the

Also,
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symbol of an unknown face for which measured angles are at hand, requires no further
explanation. The cotangent formula is all that is needed in a single zone, and the solution
of spherical triangles on the projection (with the use of the sine formulas) will suffice in
addition in all ordinary cases.

226. To determine, by plotting, the axial elements of a triclinic crystal, having given
the stereographic projection of its forms. In order to solve this problem it is necessary
to have given the position of the poles of
the unit forms (100), (010), (001), (111) or 374
to be able to locate them by means of
their zonal relations. Through these poles
the various zonal circles are drawn as
shown in the case of rhod onite, Fig. 371.
The angles o, 8, v, 7, p, etc., are then given
upon the projection. These angles can be
measured as described in Art. 41, p. 39.
Taking next a certain line as representing
the unit length of the b axis and knowing
the angles a, = and p the triangle that
includes the b and ¢ axes, see Fig. 369, can
be drawn to scale and the unit length of
the ¢ axis determined. In a similar way
the length of the a axis can be found.

226. To determine, by plotting, the indices
of a face upon a triclinic crystal, having
given the position of its pole in the stereo-
graphic projection and the axial elements «(100)
of the mineral. To illustrate this problem . :

a possible pyramid face on rhodonite will be used. Its pole is located in the stereograp-
hic projection at z, Fig. 374. The position of the poles of the faces a(100) and b(010)
must also be known. The directions of the intersections of the planes of the a—¢ and
b—c axes with the plane of the

375 projection can then be drawn.

These lines will represent the
horizontal projections of the a
and b erystallographic axes.
A radial line is then drawn from
the center of the projection, O,
through z. Another line,
A-P-B, is drawn perpendicular
to this line at any convenient
distance from the center, O.
The line A-P-B will represent
the direction of intersection of
the face z with the horizontal
plane of the projection. The
intercept that the face will
make upon the vertical axis can
be found by the construction of
a right triangle with O-P as its
base, a line representing the c
axis as its vertical side and the
angle between O-z as the angle
Intereeps,  P€tWeen the base and the hy-
s pothenuse, see Fig. 375. Under
the assumed eonditions the face

will intersect the ¢ axis at a dis-

tance of 1°93, the radius of the

circle in the figure being

1'0. The face will also pass

through the points A and B on the horizontal projections of the a and b axes.
With the known angles 8 and « it is possible to construct the a and b axes with their proper
angular relations to the ¢ axis. The intercepts of the face upon these two axes will be
given by the extension of the lines from the point 193 on the ¢ axis to the points A and B.
In this way the intercepts of the face upon the three axes were obtained as 1'11e, 1°55b,

Horizontal Projectionth (010)
of & Axis

Horizontal Projection [Q

Intercept upon a
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1'93c. By dividing these numbers by 1'55 we get the intercepts expressed in terms of the
length of the b axis, considering that as 1°0. The intercepts then become 0'71a, 1b, 1°24¢.
When these are compared with the axial ratio of rhodonite, @ : b :¢ = 1114 : 1 : 0986,
the parameters of the face are found to be %a, 1b, 2c. The indices of = are therefore 321.

227. To determine, by plotting, the axial elements of a triclinic crystal having given the
gnomonic projection of its forms. To illustrate this problem it is assumed that the posi-
tions of the poles of the faces, (100), (010), (001), (101), (011) and (111) on rhodonite are
known, see Fig. 376. If this figure is compared with the stereographic projection of the
same forms given in Fig. 371, it will be seen that the angle between the zones (100)-(101)-
(001) and (100)-(111)-(011) is equal to =, that between the zones (100)—(111)~(011) and
(100)-(110)-(010) is equal to p, between (010)—(011)-(001) and (010)-(111)-(101) is equal
to » and between (010)—(111)-(101) and (010)—(110)-(100) is equal to u. The method
by which the angles between these various zones may be measured was explained in Art.
42, p. 43, and is illustrated by the eonstruction of Fig. 376. From these angles triangles
can be readily constructed to give the lengths of the a and ¢ axes in terms of the b axis,
with its length taken as equal to 1°0.

376

100

228. To determine, by piotting, the indices of the forms of a triclinic crystal, having
given the position of other poles upon the gnomonic projection. The method for the solu-
tion of this problem is similar to that already deseribed under the previous systems. The
difference lies in the fact that the lines of reference upon which are plotted the intercepts
of the lines drawn to them from the poles of the faces make oblique angles with each other.
These reference lines are taken as the zonal lines (001)-(101) and (001)-(011) and the
intercepts from which the indices are determined are measured from the pole of (001). A
study of the gnomonic projeetion of axinite, Fig. 367, will illustrate this problem.

MEASUREMENT OF THE ANGLES OF CRYSTALS

229. Contact-Goniometers. — The interfacial angles of crystals are
measured by means of instruments which are called goniometers.
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The simplest form is the contact- or hand-goniometer one form of which is
represented in Fig. 377.

This contact-goniometer consists of a card on which is printed a semi-
circular are graduated to half degrees at the center of which is fastened a
celluloid arm which may be turned to any desired position. The method of
use of the goniometer is illustrated in Fig. 377. The bottom of the card and

=
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Penfield Contact Goniometer, Model B

the blackened end of the celluloid arm are brought in as accurate contact as
possible with the two crystal faces, the angle between which is desired. Care
must be taken to see that the plane of the goniometer is at right angles to the
edge of intersection between the two faces. Another model of the contact-
goniometer, Fig. 378, has two arms swiveled together and separate from the
graduated arc. The crystal angle is obtained by means of the arms and then
the angle between them measured by placing them upon the graduated arc.
This latter type is employed in cases where the crystal lies in such a position
as to prevent the use of the former.*

* These simple types of contact-goniometers were devised by S L. Penfield and can be
obtained by addressing the Mineralogical Laboratory of the Sheffield Scientific School of
Yale University, New Haven, Ct.
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The contact-goniometer is useful in the case of large crystals and those
whose faces are not well polished; the measurements with it, however, are

378

a0
10 100 5o 80 T1o
70

Penfield Contact Goniometer, Model A

seldom accurate within a quarter of a degree. In the finest specimens of
crystals, where the faces are smooth and lustrous, results far more accurate
o may be obtained by means of a different
instrument, called the reflecting goni-

m » ometer.

230. Reflecting Goniometer. — This
type of instrument was devised by
Wollaston in 1809. It has undergone exten-
sive modifications and improvements since
that time. Only the perfected forms that
are in common use to-day will be
deseribed.

The principle underlying the construction
of the reflecting goniometer will be
& a understood by reference to the figure (Fig.

379), which represents a section of a
crystal, whose angle, abe, between the faces ab, be, is required. Let the
eye be placed at P and the point M be a source of light. The eye at P,
looking at the face of the crystal, be, will observe a reflected image of m,
in the direction of Pn. The crystal may now be so changed in its position
that the same image is seen reflected by the next face and in the same direction,
Pn. To effect this, the crystal must be turned around, until abd has the
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present direction of be. The angle dbc measures, therefore, the number of
degrees through which the crystal must be turned; it may be measured by
attaching the crystal to a graduated circle, which turns with the crystal.
This angle is the supplement of the interior angle between the two faccs, or
in other words is the normal angle, or angle between the two poles (see Art.
43, p. 44). The reflecting goniometer hence gives directly the angle needed
on the system of Miller here followed.

231. Horizontal Goniometer. — A form of reflecting goniometer well
adapted for accurate measurements is shown in Fig. 380. The particular
form of instrument here figured * is made by Fuess.

380
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One-circle Reflection Goniometer

The instrument stands on a tripod with leveling screws. The central
axis, o, has within it a hollow axis, b, with which the plate, d, turns, carrying
the verniers and also the observing telescope, the upright support of which 1s
shown at B. Within b is a second hollow axis, e, which carries the graduated
circle, f, above, and which 1s turned by the screw-head, ¢; the tangent screw,
a, serves as a finc adjustment for the observing telescope, B, the screw, ¢, being
for this purpose raised so as to bind b and e together. The tangent screw, 3,
is a fine adjustment for the graduated circle. Again, within e is the third
axis, h, turned by the screw-head, 7, and within % is the central rod, which
carries the support for the crystal, with the adjusting and centering con-
trivances mentioned below. This rod can be raised or lowered by the screw, k,

* The figure here used is from the catalogue of Fuess.
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so as to bring the crystal to the proper height — that is, up to the axis of the
telescope; when this has been accomplished, the clamp at p, turned by a
set-key, binds s to the axis, h. The movement of & can take place independ-
ently of ¢, but after the crystal is ready for measurement these two axes are
bound together by the set-serew, . The signal telescope is supported at C,
firmly attached to one of the legs of the tripod. The erystal is mounted on
the plate, u, with wax, the plate is clamped by the screw, v. The centering
apparatus consists of two slides at right angles to each other (one of these is
shown in the figure) and the screw, a, which works it; the end of the other
corresponding screw is seen at a’. The adjusting arrangement consists of
two cylindrical sections, one of them, 7, shown in the figure, the other at »’;
the cylinders have a common center. The circle on f is graduated to degrees
and quarter degrees, and the vernier gives the readings to 30".

A brilliant source of light is placed hehind the collimator tube which is
at the top of the support C. Openings of various size and character are pro-
vided at the rear end of this tube in order to modify the size and shape of the
beam of light that is to be reflected from the erystal faces. The most com-
monly used opening is one made by placing two circular disks nearly in con-
tact with each other leaving between them an hour-glass shaped figure. The
telescope tube L is provided with several removable telescopes with lenses
which have different angular breadths and magnifying powers and hence are
suitable for observing faces varying in size and degree of polish. At the front
of the tube L there is a lens which is so pivoted that it may be thrown into or
out of the axis of the telescope. When this lens lies in the axis of the tube it
converts the telescope into a low-power microscope with which the crystal
may be observed. Without this lens the telescope has a long-distance focus
and only the beam of light reflected from the crystal face can be seen.

The method of use of the instrument is briefly as follows. The little plate » is removed
and upon it is fastened by means of some wax the crystal to be measured. The faces of
the zone that is to be measured should be placed as nearly as possible vertical to the sur-
face of this plate. It will usually facilitate the subsequent adjustment if a prominent face
in this zone be placed so that it is parallel to one of the edges of the plate u. This plate
with the attached crystal is then fastened in place by the serew ». During the preliminary
adjustments of the erystal the small lens in front of the tube L is placed in its axis and the
erystal observed through the microscope thus formed. It is usually better also to make
these first adjustments outside the dark room in daylight. By means of the screw-head k
the central post is raised or lowered until the center of the erystal lies in the plane of the
telescope. Next by means of the two sliding tables controlled by the serew-heads a and a’
the crystal is adjusted so that the edge over which the angle is to be measured coincides
with the axis of the instrument. This adjustment is most casily accomplished by turning
the central post of the instrument until one of these sliding plates lies at right angles to
the telescope and then by turning its serew-head bring the interscction in question to coin-
cide with the vertical eross-hair of the telescope tube. Then turn the post until the other
plate lies at right angles to the telescope and make a similar adjustment. Then in a similar
manner by means of the tipping screws r and y bring the intersection between the faces
to a position parallel with the vertical eross-hair of the telescope. By a combination of
these adjustments this edge should be made to coincide with the vertical cross-hair and to
remain stationary while the crystal is revolved upon the central post of the instrument.
Next the instrument is taken into the dark room and a light placed behind the collimator
tube, and the erystal turned until one of the faces is seen through the tube L to be brightly
illuminated. Then the little lens in the front of this tube is raised and the reflection of the
beam of light, or signal as it is ealled, should lie in the field. If the preliminary adjust-
ments were accurate the horizontal eross-hair will bisect this signal. In the majority of
cases, however, further slight adjustments will be neecessary. Before the angles between
the faces can be measured their various signals must all be bisected by the horizontal cross-
hair. When these conditions are fulfilled each signal in turn is brought into place so that
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it is bisected also by the vertical cross-hair and its angular position read by means of the
graduated scale and vernier. The difference between the angles for two faces gives the
normal angle between them. In making these readings care must be taken that the plate
on which the graduated circle is engraved is turned with the central post. In order to
do this only the screw-head g must be used unless, as is wise, the two screw-heads 7 and g
have been previously clamped together by means of I. For the accurate adjustment of the
signals on the vertical cross-hair the tangent screw g is used. In making a record of the
angles measured it is important to note accurately the face from which each signal is derived
and the character of the signal. It is frequently helpful to make a sketch of the outlines
of the different faces and number or letter them.

232. Theodolite-Goniometer. — A form of goniometer * having many
practical advantages and at present in wide use has two independent circles
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Two-circle Reflection Goniometer

and is commonly known as the two-circle goniometer. It is used in a manner
analagous to that of the ordinary theodolite. Instruments of this type were
devised independently by Fedorow, Czapski and Goldschmidt. Other
models have been deseribed since. In addition to the usual graduated hori-
zontal circle of Fig. 380, and the accompanying telescope and collimator, a
second graduated cirele is added which revolves in a plane at right angles to
the first. Fig. 381, after Goldsehmidt, gives a cross-sectional view of one of

* Yedorow, Universal or Theodolit-Goniometer, Zs. Kryst., 21, 574, 1893; 22, 229,
1893; Czapski, Zeitschr. f. Instrumentenkunde, 1, 1893; Goldschmidt, Zs. Kryst., 21, 210,
1892; 24, 610, 1895; 26, 321, 538, 1896; 29, 333, 589, 1898. On the method of Gold-
schmidt, see Palache, Am. J. Sc., 2, 279, 1896; Amer. Mineral, 5, No. 2, et seq., 1920. A
simplified form of the theodolite-goniometer is described by Stober, Zs. Kryst., 29, 25,
1897; 54, 442.
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the earlier machines devised by him. It will serve to illustrate the essential
features of the instrument.

The erystal to be measured is attaehed at the end of the axis () of the
vertieal eircle and so adjusted by means of suitable centering and tipping
deviees that a given plane, ealled the polar plane, 1s normal to this axis and
lies directly over the axis of the horizontal eircle. In using the instrument,
instead of directly measuring the interfacial angles of the erystal, the position
of each face 1s determined independently of the others by the measurement of
its angular co-ordinates, or what might be ealled its latitude and longitude.
These eo-ordinates are the angles (¢ and p of Goldsehmidt) measured, respec-
tively, in the vertieal and horizontal eireles from an assumed pole and merid-
1an, whieh are fixed, in most cases, by the symmetry of the crystal. In prac-
tiee the erystal is usually so mounted that its prismatic zone is perpendieular
to the vertical eircle. A plane at right angles to this zone, 7.e., the basal plane
in the first four systems, is known as the polar plane and its position when
reflecting the signal into the teleseope establishes the zero position for the
horizontal cirele. The position of a pinacoid, usually the 010 plane, in the
prism zone establishes the zero position for the vertieal eirele. For example,
with an orthorhombic erystal, for the pyranid 111, the angle ¢ (measured on
the vertieal eirele) is equal to 010 A 110 and p (measured on the horizontal
circle) is equal to 001 A 111.

Goldsehmidt has shown that this instrument is directly applieable to the

system of indices and methods of
382 caleulation and projection adopted
by him, whieh admit of the dedueing
of the elements and symbols of a
given crystal with a minimum of
labor and ealeulation.* Fedorow
has also shown that this in-
strument, with the addition of the
appliances devised by him, ean be
most eonveniently used in the erys-
tallographic and optieal study of
crystals.

The following hints as to the methods of
using this instrument may prove helpful.

The telescope and collimator tube
are placed at some convenient angle
to each other (usually about  70°)
and then eclamped in position. The
next step is to find the polar posi-
tion of the horizontal eirele, %.e., the position at which a erystal plane lying at right angles
to the axis of the vertical eircle will throw the refleeted beam of light on to the eross-hairs
of the telescope. Obviously the plane under these conditions must be normal to the
bisector of the angle between the axes of the collimator and telescope, the line B-P, Fig.
382. The method by which this polar position is found is as follows: Some reflecting sur-
face is mounted upon the end of the post &, Figs. 381, 382, making some small inclined
angle to the plane normal to that post. Then by turning the instrument in both the hori-

* See Goldschmidt’s Krystallographische Winkeltabellen (432 pp., Berlin, 1897).
This gives the angles required by his system for all known species. See also Zs. Kryst.,
29, 361, 189S. The same author’s atlas der Krystallformen, 1913 et seg., is a monumental
work giving all previously published erystal figures together with a discussion of the forms
observed upon them.
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zontal and vertical planes this surface is brought into the proper position to reflect the
signal into the telescope, see position I, Fig. 382. The horizontal angle of this position is
noted. Then the vertical crcle is turned through an angle of 180°. This brings the
reflecting surface into the position indicated by the dotted lines in the figure. In order
to again bring this surface back to its reflecting position the vertical circle with the post
h must be moved in the horizontal plane until the position II is reached. The horizontal
reading of this position 1s also noted. The angle midway between these two readings is
the polar position desired. That is, when the post h lies in the direction of the broken
line P-B a plane normal to its axis would reflect a beam of light from the collimator into
the telescope. This position constitutes the zero position of the horizontal circle from
which the p angles are measured.

The method used to adjust a erystal upon the instrument so that it will occupy the
proper position for measurement will vary with the character of the crystal. A few illus-
trations follow. 1. If the crystal has a basal plane at right angles to a prism zone. The
crystal is mounted upon the post k so that the faces of the prism zone lie as nearly as pos-
sible parallel to the axis of the post or the hasal plane as nearly as possible normal to it.
Then the instrument is moved until the reading of the horizontal circle agrees with the
polar position already determined. Then by means of the tipping screws the erystal is
moved until the reflection from the basal plane is center ed upon the cross-hairs of the tele-
scope. 1f the adjustments have been accurately made the signal will remain stationary
while the vertical circle is revolved. Next the horizontal circle is moved through an angle
of 90°. This will bring the reflections from the faces of the prism zone into the telescope.
1f the pinacoid 010 is present the vertical cirele is turned until the reflected signal from this
face falls on the horizontal cross-hair. The reading of the vertical circle under these con-
ditions establishes the position of the meridian from which the ¢ angles are measured.
If the pinacoid 010 is not present it is usually possible to determine its theoretical position
from the position of other faces in the prism zone or in the zone between 010 and 100.
2. If there is mo basal plane present wpon the crystal but a good prism zone. Under these cir-
cumstances the horizontal circle is turned until it is exactly 90° away from its determined
polar angle and then the crystal adjusted by means of the tipping scr ews until the signals
from the faces of the prism zone all fall on the vertical cross-hair as the vertical circle of
the goniometer is turned. 3. If neither basal plane or prism zone is avaiable but there are
two or more faces present which are equally inclined to a theoretical basal plane. First adjust
the crystal as nearly as possible in the proper position and then obtaining reflections from
these faces note the horizontal 283
circle reading in each case.
Take an average of these read-
ings and adding or subtracting
this angle from the polar angle

of the horizontal scale place ool Y 041 B
the instrument in this position. p=0° S ’ L
Then by tipping the crystal $=0; p=62"20 #=0;p=90

try to bring it into such a
position that all of these faces
will successively reflect the sig-
nal into the telescope as the
vertical circle is turned. The
operation may have to be re-
peated two or three times before
the final adjustment is made. O] M o
If the angle between the inclined $=62"9" p=63°54
faces and the theoretical base
is known the instrument can
be set in the proper position
at once and the crystal
broukglht in(t)ohadjustl}nlent very
quickly. ther problems will

arise in praectice but their\mﬁ?—r‘
solution will be along similar lines to those suggested above. 1t may frequently happen
that more than one method of adjustment may be used with a given crystal. In that case
the faces giving the best reflections should be used. It should be emphasized that the
preliminary adjustment of the crystal is of supreme importance since all measurements of
the co-ordinates of the different faces depend upon it. It is wise to check the adjustment
in all possible ways before making the measurements.

1120 .
$=43"24; p=90

<“m 110
¢ =62"9; p=90°
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After these adjustments have been completed the crystal is turned about both the
horizontal and vertical planes so that each face upon it successively reflects the signal
into the telescope. The horizontal and vertical readings are made in each case. The
forms present can then be readily plotted in either the stereographic or gnomonic projec-
tions. Fig. 383 shows how the forms of a simple crystal of topaz could be plotted in the
stereographic projection from the ¢ and p angles obtained from it — the two circle goni-
ometer measurements. For each face the vertical circle angle, ¢, is plotted on the divided
circle, the position of b(010) giving the zero point while the horizontal ecircle angle is plotted
on a radial line from the center of the projection, the position of ¢(001) giving its zero point.

COMPOUND OR TWIN CRYSTALS

233. Twin Crystals. — Twin crystals are those in which one or more
parts regularly arranged are in reverse position with reference to the other
part or parts. They often appear externally to consist of two or more crystals
symmetrically united, and sometimes have the form of a cross or star. They
also exhibit the composition in the reversed arrangement of part of the faces,

384 386 386

Thenardite Columbite Fluorite

in the striee of the surface, and in re-entering angles; in certain cases the
compound structure can only be surely detected by an examination in polar-
ized light. The above figures (Figs. 384-386) are examples of typical kinds of
twin crystals, and many others are given on the pages following.

To illustrate the relation of the parts in a twin erystal, Figs. 387, 388 are
given. Fig. 387 shows a regular octahedron divided into halves by a plane
parallel to an octahedral face. If now the lower half be supposed to be re-
volved 180° about an axis normal to this plane, the twinned octahedron of
Fig. 388 results. This is a common type of twin in the isometric system,
and the method here employed to deseribe the position of the parts of the
crystal to one another is applicable to nearly all twins.

234. Distinction between Twinning and Parallel Grouping. — It is
important to understand that crystals, or parts of crystals, so grouped as to
occeupy parallel positions with reference to each other — that is, those whose
similar faces are parallel — are not called twins; the term is applied only
where the crystals or parts of them are united in their reversed position in
accordance with some deducible mathematical law. Thus Fig. 389, which
represents a cluster of partial erystals of analcite, is a case of parallel
grouping simply (see Art. 262); but Fig. 407 illustrates twinning, and this is
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true of Fig. 416 also. Since though in these cases the axes remain parallel
the similar faces (and planes of symmetry) are reversed in position.

235. Twinning-Axis. — The relative position of the parts of a twinned
crystal can be best described as just explained, by reference to that line or
axis called the twinning-axis, a revolution of 180° about which would serve to

387 388 389

Twinned Octahedron Analfi'te.

bring the twinned part parallel to the other, or in other words, which would
cause one of the parallel parts to take a twinned position relatively to the other.

The twinning-axis is always a possible crystalline line — that is, either
a crystallographic axis or the normal to some possible face on the crystal,
usually one of the common fundamental forms.

Tt is not to be supposed that ordinary twins have actually been formed by
such a revolution of the parts of erystals, for all twins (exeept those of second-
ary origin, see Art 242) are the result of regular molecular growth or enlarge-
ment, like that of the simple erystal. This reference to a revolution, and an
axis of revolution, is only a convenient means of describing the forms.

In certain rare cases, particularly of certain pseudo-hexagonal species, a
revolution of 60° or 120° about a normal to the base has been assumed to
explain the complex group observed.

236. Twinning-Plane. — The plane normal to the axis of revolution is
called the twinning-plane. The axis and plane of twinning bear the same
relation to both individuals in their reversed position; consequently, in the
majority of cases, the twinned crystals are symmetrical with reference to the
twinning-plane.

The twinning-plane is, with rate exceptions, parallel to a possible occurring
face on the given species, and usually one of the more frequent or fundamental
forms. The exceptions occur only in the triclinic and monoclinic systems,
where the twinning-axis is sometimes one of the oblique erystallographic axes,
and then the plane of twinning normal to it is obviously not necessarily a
crystallographic plane; this is conspicuously true in albite.

237. Composition-Plane. — The plane by which the reversed crystals
are united is the composition-plane. 'This and the twinning-plane very com-
monly coineide; this is true of the simple example given above (Fig. 388),
where the plane about which the revolution may be conceived to take place
(normal to the twinning-axis) and the plane by which the semi-individuals are
united are identical. When not coinciding, the two planes are generally at
right angles to each other — that is, the composition-plane is parallel to the
axis of revolution. TFxamples of this are given below. Still again, where the
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crystals are not regularly developed, and where they interpenetrate, the con-
tact surface may be interrupted, or may be exceedingly irregular. In such
cases the axis and plane of twinning have, as always, a definite position, but
the composition-plane loses its significance.

Thus in quartz twins the interpenetrating parts have often no rectilinear
boundary, but mingle in the most irregular manner throughout the mass,
showing this composite irregularity by abrupt variations in the character of
the surfaces. This irregular internal strueture, found in many quartz crystals,
even the common kinds, is well brought out by means of polarized light; also
by etching with hydrofluoric acid.

The composition-plane has sometimes a more definite signification than the
twinning-plane. Thisis due to the fact that in many cases, whereas the former

is fixed, the twinning-axis (and twinning-plane) maybe exchanged
390 for another line (and plane) at right angles to each, respectively,
7 since a revolution about the second axis will also satisfy the
conditions of producing the required form. An example of this
is furnished by Fig. 390, of orthoclase; the composition-plane
is here fixed — namely, parallel to the ecrystal face, 5(010).
But the axis of revolution may be either (1) parallel to this
face and normal to «(100), which is then consequently the
twinning-plane, though the axis does not coincide with the
crystallographic axis; or (2) the twinming-axis may be taken as
coinciding with the vertical axis, and then the twinning-plane
Orthoclase normal to it is not a crystallographic face. In other simpler
cases, also, the same principle holds good, generally in con-
sequence of the possible mutual interchange of the planes of twinning and
composition. In most cases the true twinning-plane is evident, since it is
parallel to some face on the crystal of simple mathematical ratio.

238. An interesting example of the possible choice between two twinning-axes at right
angles to each other is furnished by the species staurolite. Fig. 439 shows a prismatic twin
from Fannin Co., Ga. The measured angle for bb was 70° 30’. The twinning-axis deduced
from this may be normal to the face (230), which would then be the twinning-plane. Or,
instead of this axis, its complementary axis at right angles to it may be taken, which would
equally well produce the observed form. Now in this species it happens that the faces, 130
and 230 (over 100), are almost exactly at right angles with each other, and, according to the
latter supposition, 130 becomes the twinning-plane, and the axis of revolution is normal to
it. Hence, either 230 or 130 may be the twinning-plane, either supposition agreeing closely
with the measured angle (which could not be obtained with great accuracy). The former
method of twinning (tw. pl. 230) conforms to the other twins observed on the species, and
hence it may be accepted. What is true in this case, however, is not always true, for it
will seldom happen that of the two complementary axes each is so nearly normal to a face
of the crystal. In most cases one of the two axes conforms to the law in being a normal
to a possible face, and the other does not, and hence there is no doubt as to which is the
true twinning-axis.

Another interesting case is that furnished by columbite. The common twins of the
species are similar to Fig. 385, p. 160, and have ¢(021) as the twinning-plane; but twins
also oceur like Fig. 434, p. 169, where the twinning-plane is ¢(023). The two faces, 021
and 023, are nearly at right angles to each other, but the measured angles are in this case
sufficiently exact to prove that the two kinds cannot be referred to one and the same law.

239. Contact- and Penetration-Twins. — In contact-twins, when nor-
mally formed, the two halves are simple connate, being united to each other
by the composition-plane; they are illustrated by Figs. 385, 388, etc. In
actual crystals the two parts are seldom symmetrical, as demanded by
theory, but one may preponderate to a greater or less extent over the other;
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in some cases only a small portion of the second individual in the reversed
position may exist. Very great irregularities are observed in nature in this
respect. Moreover, the re-entering angles are often obliterated by the abnor-
mal developments of one or other of the parts, and often only an indistinet line
on some of the faces marks the division between the two individuals.

Penetration-twins are those mm which two or more complete crystals inter-
penetrate, as it were crossing through each other. Normally, the crystals have
a comunon center, which is the center of the axial system for both; practically,
however, as in contact-twins, great irregularities occur.

Examples of twins of this second kind are given in the annexed figures,
Figs. 386 and 391 of fluorite, Fig. 392 of tetrahedrite, and Fig. 393 of chabazite.
Other examples occur in the pages following, as, for instance, of the species
staurolite (Figs. 438-441), the crystals of which sometimes occur in nature
with almost the perfect symmetry demanded by theory. It is obvious that
the distinction between contact- and penetration-twins 1s not of great import-
ance, and the line cannot always be clearly drawn between them.

Fluorite Tetrahedrite Chabazite

391 393

240. Paragenic and Metagenic Twins. — The distinction of paragenic and metagenic
twins belongs rather to crystallogeny than crystallography. Yet the forms are often so
obviously distinet that a brief notice of the distinction is important.

In ordinary twins, the compound structure had its beginning in a nucleal compound

molecule, or was compound in its very origin; and whatever

394 inequalities in the result, these are only irregularities in the devel-

opment from such a nucleus. But in others, the erystal was at
first simple; and afterwards, through some change in itself or in
the condition of the material supplied for its increase, received new
layers, or a continuation, in a reversed position. This mode of
/ twinning is melagenie, or a result subsequent to the origin of the
crystal; while the ordinary mode is paragenic. One form of it is

illustrated in Fig. 394. The middle portion had attained a length of
half an inch or more, and then became geniculated simultaneously

\ at either extremity. These geniculations are often repeated in
s rutile, and the ends of the crystal are thus bent into one another,

and occasionally produce nearly regular prismatic forms. )
/ This metagenic twinning is sometimes presented by the successive

) layers of deposition in a crystal, as in some quartz crystals, especially

Rutile amethyst, the inseparable layers, exceedingly thin, being of opposite

. kinds. In a similar manner, crystals of the triclinic feldspars,

albite, etc., are often made up of thin plates parallel to (010), by oscillatory composition,
and the face ¢(001), accordingly, is finely striated parallel to the edge ¢/b.

241. Repeated Twinning, Polysynthetic and Symmetrical. — In the
preceding paragraph one case of repeated twinning has been mentioned, that
of the feldspars; it is a case of parallel repetition or parallel grouping in re-
versed position of successive crystalline lamellze. This kind of twinning is

N
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often called polysynthetic twinning, the lamellee in many cases being extremely
thin, and giving rise to a series of parallel lines (striations) on a crystal faee or
a surface of cleavage. The triclinie feldspars show in many eases polysyn-
thetic twinning and not infrequently on both ¢(001) and 6(010), ef. p. 172.
1t 1s also observed with magnetite (Fig. 474), pyroxene, barite, ete.

Another kind of repeated twinning is illustrated by Figs. 395-400, where
the successively reversed individuals are not parallel. In these eases the axes
may, however, lie in a zone, as the prismatie twins of aragonite, or they may
be mechned to each other, as in Fig. 397 of staurolite Tn all such ecases the
repetitton of the twinning tends to produce cireular forms, when the angle
between the two axial systems is an aliquot part of 360° (approximately).
Thus six-rayed twinned crystals, consisting of three individuals (hence called
trillings), occur with chrysoberyl (Fig. 395), or eerussite (Fig. 396), or staurolite
(Fig. 397), since three times the angle of twinning in each case is not far from
360°. Again, five-fold twins, or fivelings, oceur in the oetahedrons of gold and

395 397

Spinel i Phillipsite

spinel (Fig 398), since 5 X 70° 32/ = 360° (approx.). Kight-fold twins, or
eightlings, of rutile (Figs. 399, 413) oceur, since the angle of the axes in twinned
position goes approximately eight times in 360°.

Repeated twinning of the symmetrieal type often serves to give the com-
pound erystal an apparent symmetry of higher grade than that of the simple
mdividual, and the result is often spoken of as a kind of pseudo-symmetry
(Art. 20), cf. Fig. 431 of aragonite, which represents a basal seetion of a
pseudo-hexagonal crystal.  Fig. 400 of phillipsite (ef. Figs. 452-454) 1s an inter-
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esting case, since it shows how a multiple twin of a monoclinic erystal may
stimulate an isometric crystal (dodecahedron).

Compound crystals in which twinning exists in accordance with two laws
at once are not of common occurrence; an excellent example is afforded by
staurolite, Fig. 441. They have also been observed with albite, orthoclase,
and in other cases.

242. Secondary Twinning. — When there is reason to believe that the
twinning has been produced subsequently to the original formation of the
crystal, or crystalline mass, as, for example, by pressure, it is said to be
secondary. Thus the calcite grains of a erystalline limestone often show such
secondary twinning lamellee. The same are occasionally observed (lle, 001)
in pyroxene crystals. Further, the polysynthetic twinning of the triclinic
- feldspars is often secondary in origin. This subject is further discussed on a
later page, where it is also explained that in certain cases twinning may be
produced artificially in a erystal individual — e.g., in calcite (see Art. 282).

EXAMPLES OF IMPORTANT METHODS OF TWINNING

243. Isometric System. — With few exceptions the twins of the normal
' class of this system are of one kind, the twinning-axis an octahedral axis, and
the twinning-plane consequently parallel to an octahedral face; in most cases,
also, the latter coincides with the composition-plane. Fig. 388, p. 161,*

401 402 403

Copper
405

Galena Hatiynite Sodalite

shows this kind as applied to the simple octahedron; it is especially common
with the spinel group of minerals, and is hence called in general a spinel-twin.

* It will be noted that here and elsewhere the letters used to desigﬂ;?te the faces on
the twinned parts of crystals are distinguished by a subscript line.
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Fig. 401 is a similar more complex form; Fig. 402 shows a cube twinned by this
method, and Fig. 403 represents the same form but shortened in the direction
of the octahedral axis, and hence having the anomalous aspect of a triangular
pyramid. All these cases are contact-twins.

Penetration-twins, following the sanie law, are also common. A simple
case of fluorite is shown in Fig. 391, p. 163; Fig. 404 shows one of galena;
Fig. 405 is a repeated octahedral twin of haiiynite, and
Fig. 406 a dodecahedral twin of sodalite.

244. In the pyritohedral cluss of the isometrie system
penetration-twins ot the type shown in Fig. 407 are
common (this form of pyrite is often called the dron
cross). Here the cubic axis is the twinning-axis, and
obviously such a twin is impossible in the normal
class.

Figs. 408 and 409 show analogous forms with par-
allel axes for erystals belonging to the tetrahedral
class. The peculiar development of Fig. 408 of
tetrahedrite is to be noted. Fig. 410 is a twin of the
ordinary spinel type of another tetrahedral species, sphalerite; with it,
complex forms with repeated twinning are not uncommon and sometimes
polysynthetic twin lamelle are noted.

Pyrite

408 409 410
a
o
Tetrahedrite Eulytite Sphalerite

245. Tetragonal System. — The most common method is that where
the twinning-plane is parallel to a face of the pyramid, ¢(101). It is especially
characteristic of the species of the rutile group — viz., rutile and cassiterite:

413

Zircon Rutile

also similarly the allied species zircon. This is illustrated in Fig. 411, and
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| twinning-axis may be the vertical axis, as in the
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again in Fig. 412. Fig. 413 shows a repeated twin of rutile, the twinning
according to this law; the vertical axes of the successive six individuals lie
in a plane, and an inclosed cirele is the result.  Another repeated twin of rutile
according to the same law is shown in Fig. 399; here the successive vertical
axes form a zigzag line; Fig. 414 shows an analogous twin of hausmannite.
Another kind of twinning with the twinning-plane parallel to a face of the
pyramid (301) is shown in Fig. 415.
246. In the pyramidal class of the same system twins of the type of Fig.
416 are not rare. Here the vertieal axis, ¢, is the twinning-axis; such a crystal
may simulate one of the normal class.

414

416

R,

I\ PAN

Hausmannite Rutile Scheelite

In chalcopyrite, of the sphenoidal class, twinning with a face of the unit

“pyramid, f(111), as the twinning-plane is common (Fig. 417). As the angles

differ but a small fraction of a degree from those of a

regular octahedron, such twins often resemble closely

spinel-twins. The face ¢(101) may also be a twinning-
plane and other rarer types have been noted.

S 247. Hexagonal System. — In the hexagonal divis-

ion of this system twins are rare. An example is

‘ furnished by pyrrhotite, Fig. 418, where the twinning-

plane is the pyramid (1011), the vertical axes of the

individual erystals being nearly at right angles to each

other (since 0001 A 1011 = 45°8’).

248. In the species belonging to the trigonal or

rhombohedral division, twins are common. Thus the 418

417

Chalcopyrite

contact-twins of Figs. 419 and 420, or the penetration-
twin of Fig. 393. Or the twinning-plane may be
the obtuse rhombohedron ¢(0112), as in Fig.
421, the vertical axes crossing at angles of 1273°
and _ 521°. Again, the twinning-plane may be
r(1011), as in Figs. 422425, the vertical axes
nearly at right angles (903°); or (0221), as in Fig. st
426, the axes inelined 533° and 1261°. :

In the trapezohedral class, the species quartz shows several methods of
twinning. In Fig. 427 the twinning-plane is the pyramid £(1122), the axes

crossing at angles of 841° and 951°. In Fig. 428 the twinning-axis is ¢, the
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axes hence parallel, the individuals both right- or both left-handed but un-
symmetrical, »(1011) then parallel to and coinciding with z(0111). The re-

419 420 421 422

ANg—

Figs. 419-426, Calcite

sulting forms, as in Fig. 428, are mostly penetration-twins, and the parts are
often very irregularly united, as shown by dull areas (z) on the plus rhombo-
hedral face (r); otherwise these twins are recognized by pyro-electrical
phenomena. In Fig. 429 the twinning-plane is a(1120) — the Brazil law —
the individuals respectively right- and left-handed and the twin symmetrical
with reference to an a-face; these are usually irregular penetration-twins; in
these twins r and r, also z and ¢z, coincide These twins often show, in con-

7
RN
N

Figs. 427-429, Quartz

verging polarized light, the phenomenon of Airy’s spirals. It may be added
that pseudo-twins of quartz are common — that is, groups of crystals which
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nearly conform to some more or less complex twinning law, but where the
grouping is nevertheless only accidental 430 431

249. Orthorhombic System. — In the
orthorhombic system the commonest
method of twinning is that where the
twinning-plane is a face of a prism of 60°,
or nearly 60°. This is well shown with the
species of the aragonite group. In accord-
ance with the principle stated in Art. 241,
the twinning after this law is often
repeated, and thus forms with pseudo-
hexagonal symmetry: result.  Fig. 430
shows a simple twin of aragonite; Fig. 431
shows a basal section of an aragonite triplet
which although it resembles a hexagonal
prism reveals its twinned character by the striations on the basal plane and
by irregularities on its composite prism faces due to the fact that the pris-
matic angle is not exactly 60°. With witherite (and bromlite), apparent
hexagonal pyramids are common, but the true complex twinning is revealed
in polarized light, as noted later.

Twinning of the same type, but where a dome of 60° is twinning-plane,
is common with arsenopyrite (tw. pl. ¢(101)), as shown in Figs. 432, 433; also
432 433 434

a 7] .

5

L2
b T
Arsenopyrite Columbite

Fig. 434 of columbite, but compare Fig. 385 and remarks in Art 238. Another
example is given in Fig. 395 of alexandrite (chrysoberyl). Chrysolite, man-

435 437

Aragonite

Marecasite Marecasite Arsenopyrite

ganite, humite, are other species with which this kind of twinning is common.
Another common method of twinning is that where the twinning is parallel
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to a face of a prism of about 701°, as shown in Fig. 435. With this method
symmetriecal fivelings not infrequently occur (Figs. 436, 437).

The species staurolite illustrates three kinds of twinning In Fig. 438 the
twinning-plane is (032), and since (001 A 032) = 45° 417, the crystals cross
nearly at right angles. In Fig. 439 the twinning-plane is the prism (230). In
Fig. 440 it is the pyramid (2‘32) the erystals then crossing at angles of about
60°, stellate trillings occur (see Fig. 397), and indeed more eomplex forms. In
Fig. 441 there is twinning according to both (032) and (232).

A
e

438

a a
Staurolite
441 442

/
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m

Staurolite Struvite

In the hemimorphic class, twins of the type shown in Fig. 442, with ¢(001)
as the twinning-plane, are to be noted.

250. Monoclinic System.— In the monoclinic system, twins with the ver-
tical axis as twinning-axis are common; this is illustrated by Fig. 443 of augite
(pyroxene), Fig 444 of gypsum, and Fig. 445 of orthoclase (see also Fig. 390,

ol 10

Augite Gypsum Orthoclase

p. 162).  With the latter species these twins are called Carlsbad twins (because
common in the trachyte of Carlsbad, Bohemia); they may be contact-twins :

|
1
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(Fig. 390), or irregular penetration-twins (Fig. 445). In Fig. 390 it is to be
noted that ¢ and z fall nearly in the same plane.

In Fig. 446, also of orthoclase, the twinning-plane is the clinodome (021),
and since (001 A 021) = 44° 563’, this method of twinning yields nearly
square prisms. These twins are called Baveno twins (from a prominent
locality at Baveno, Italy); they are often repeated (Fig. 447). In Fig. 448 a

446 447 448

Orthoclase

Manebach twin is shown; here the twinning-plane is ¢(001). Other rarer
types of twinning have been noted with orthoclase. Polysynthetic twinning
with ¢(001) as twinning-plane is common with pyroxene (cf. Fig. 461, p. 173).

Twins of the aragonite-chrysoberyl type are not uncommon with mono-
clinic species, having a prominent 60° prism (or dome), as in Fig. 449. Stellate
twins after this law are common with chondrodite and clinohumite. An
analogous twin of pyroxene is shown in Fig. 450; here the pyramid (122) is the
twinning-plane, and since (010 A 122) = 59° 21’ the crystals cross at angles
of nearly 60°; further, the orthopinacoids fall nearly in a comnon zone, since
(100 A 122) = 90° 9. In Fig. 451 the twinning-plane is the orthodome

450 451

Wolframite Pyroxene Pyroxene

(101). Phillipsite and harmotome exhibit multipie twinning, and the crystals
often show pseudo-symmetry. Fig. 452 shows a cruciform fourling with
¢(001) as twinning-plane, the twinning shown by the striations on the side face.
This is compounded in Fig. 453 with twinning-plane (011), making nearly
square prisms, and this further repeated with m(110) as twinning-plane
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yields the form in Fig. 454, or even Fig. 400, p. 164, resembling an isometric
dodecahedron, each face showing a fourfold striation.
453

Phillipsite

251. Triclinic System. — The most interesting twins of the triclinic
system are those shown by the feldspars. Twinning with 6(010) as the
twinning-plane is very common, especially polysynthetic twinning yielding
thin parallel lamelle, shown by the striations on the face ¢ (or the correspond-
ing cleavage-surface), and also clearly revealed in polarized light. This is
known as the albite law (Figs. 455, 456). Another important method (Fig.
457) is that of the pericline law; the twining-axis is the crystallographic
axis b. Here the twins are united by a section (rhombic section) shown in the
figure and further explained under the feldspars. Polysynthetic twinning after
this law is common, and hence a cleavage-mass may show two sets of striations,
one on the surface parallel to ¢(001) and the other on that parallel to 5(010).
The angle made by these last striations with the edge 001,010 is character-
istic of the particular triclinic species, as noted later.

455 466 457

r—\
==l

Albite
Twins of albite of other rarer types also oceur, and further twins similar
458 to the Carlsbad, Baveno, and Manebach twins of ortho-
clase. TIig. 458 shows twinning according to both the
albite and Carlsbad types.

REGULAR GROUPING OF CRYSTALS

252. Parallel Grouping. — Connected with the sub-
jeet of twin cerystals is that of the parallel position of
associated crystals of the same species, or of different
species.

Crystals of the same species occurring together are
Albite very commonly in parallel position. In this way large
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crystals, as of calcite, quartz, fluorite, are sometimes built up of smaller
individuals grouped together with corresponding faces parallel. This
parallel grouping is often seen in crystals as they lie on the supporting
rock. On glancing the eye over a surface covered with crystals a reflection
from one face will often be accompanied by reflections from the corres-
ponding face in each of the other crystals, showing that the crystals are
throughout similar in their positions.

With many species, complex crystalline forms result from the growth of
parallel partial crystals in the 459
direction of the crystallographic
axes, or axes of symmetry. Thus
dendritic forms, resembling branch-
ing vegetation, often of great del-
icacy, are seen with gold, copper,
argentite, and other species, espe-
cially those of the isometric sys-
tem. This is shown in Fig. 459
(ideal), and again in Fig. 460,
where the twinned and flattened
cubes (cf. Fig. 403, p. 165) are
grouped in directions corresponding
to the diagonals of an octahedral
face which is the twinning-plane.

253. Parallel Grouping of Unlike Species. — Crystals of different spe-
cies often show the same tendency to parallelism in mutual position. This is
true most frequently of species which are more or less closely similar in form
and composition. Crystals of albite, implanted on a surface of orthoclase,

are sometimes an example of

25 462 this; erystals of amphibole and

pyroxene (Fig. 461), of zircon

and xenotime (Fig. 462), of va-

rious kinds of mica, are also af

times observed associated in par-
allel position.

The same relation of position
also ocecasionally occurs where
there is 110 connection in composi-
tion, as the ecrystals of rutile
on tabular erystals of hematite,
the vertical axes of the former
coinciding with the horizontal
Amphibole enclosing Xenotime enclosing zircon gxes of the latter. Crystals of
pyroxene in parallel in parallel position caleite have been ol )SPI‘V?*.({ hose

POSIDY rhombohedral faces had a series
of quartz crystals upon them, all in parallel position; sometimes three
such quartz crystals, one on each rhombohedral face, entirely envelop
the caleite, and unite with re-entering angles to form pseudo-twins (rather
trillings) of quartz after caleite. Parallel growths of the sphenoidal chalcopyr-
ite upon the tetrahedral sphalerite are common, the similarity in erystal
structure of the two species controlling the position of the crystals of chal-
copyrite.

Copper
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IRREGULARITIES OF CRYSTALS

254. The laws of crystallization, when unmodified by extrinsic causes,
should produce forms of exact geometrical symmetry, the angles being not
only equal, but also the homologous faces of erystals and the dimensions in the
directions of like axes. This symmetry is, however, so uncommon that it ean
hardly be considered other than an ideal perfection. The various possible
kinds of symmetry, and the relation of this ideal geometrical symmetry to the
actual crystallographic symmetry, have been discussed in Arts. 14 and 18 et
seq. Crystals are very generally distorted, and often the fundamental forms
are so completely disguised that an intimate familiarity with the possible
irregularities is required in order to unravel their complexities. Even the
angles may occasionally vary rather widely.

The irregularities of crystals may be treated under several heads: 1,
Variations of form and dimensions; 2, Imperfections of surface; 3, Varia-
tions of angles; 4, Internal imperfections and impurities.

1. VARIATIONS IN THE FORMS AND DIMENSIONS
OF CRYSTALS

255. Distortion in General. — The variations in the forms of erystals,
or, in other words, their distortion, may be zrregular in character, certain faces
being larger and others smaller than in the ideal geometrical solid. On the
other hand, it may be symmetrical, giving to the distorted form the symmetry
of a group or system different from that to which it actually belongs. The
former case is the common rule, but the latter is the more interesting.

256. Irregular Distortion. — As stated above and on p. 13, all crystals
show to a greater or less extent an irregular or accidental variation from the
ideal geometrical form. This distortion, if not accompanied by change in
the interfacial angles, has no particular significance, and does not involve any
deviation from the laws of crystallographic symmetry. Figs. 463, 464 show
distorted crystals of quartz; they may be compared with the ideal form, Fig.
284, p. 113.  Fig. 465 is an ideal and Fig. 466 an actual crystal of lazulite.

463 464 466 466
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Quartz Lazulite

The correct identification of the forms on a crystal is rendered much more difficult
because of this prevailing distortion, especially when it results in the entire obliteration of
certain faces by the enlargement of others. In deciphering the distorted erystalline forms
1t must be remembered that while the appearance of the erystals may be entirely altered,
the interfacial angles remain the same; moreover, like faces are physically alike — that is,
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alike in degree of luster, in striations, and so on. Thus the prismatic faces of quartz show
almost always characteristic horizontal striations.

In addition to the variations in form which have just been desecribed, still
greater irregularities are due to the faet that, in many cases, erystals in nature
are attached cither to other crystals or to some rock surface, and in consequence
of this arc only partially developed. Thus quartz crystals are generally
attached by onc extremity of the prism, and hence have only one set of pyra-
midal faces; perfectly formed crystals, having the double pyramid complete,
are rare.

257. Symmetrical Distortion. — The most interesting examples of the
syminetrical distortion of erystalline forms are found among crystals of the
isometric system. An clongation in the direction of one cubic axis may give
the appearance of tetragonal symmetry, or that in the direction of two cubic
axes of orthorhombie symmetry; while in the direction of an octahedral axis
a lengthening or shortening gives rise to forms of apparent rhombohedral
symmetry. Such cases are common with native gold, silver, and copper.

A cube lengthened or shortened along one axis becomes a right square prism, and if
varied in the direction of two axes is changed to a rectangular prism. Cubes of pyrite,
galena, fluorite, ete., are often thus distorted. It is very unusual to find a cubic erystal
that is a true symmetrical cube. In some species the cube or octahedron (or other iso-
metric form) is lengthened into a capillary erystal or needle. as happens in cuprite and pyrite.

An octahedron flattened parallel to a face — that is, in the direction of a trigonal sym-
metry axis is reduced to a tabular crystal resembling a rhombohedral crystal with basal
plane (Fig. 467). If lengthened in the same direction (i.e. along line A-B, Fig. 468), to the
obliteration of the terminal octahedral faces, it becomes an acute rhombohedron.

When an octahedron is extended in the direction of a line between two opposite edges,

467 468 469

Distorted Oectahedrons
470 471 472 473
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Distorted Dodecahedrons

or that of a binary symmetry axis, it has the general form of a rectangular octahedron; and
still farther extended, as in Fig. 469, it resembles a combination of two orthorhombic domes
(spinel, fluorite, magnetite).
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The dodecahedron lengthened in the direction of a trigonal symmetry axis becomes a
six-sided prism with three-sided summits, as in Fig. 470. If shortened in the same direc-
tion, it becomes a short prism of the same kind (Fig. 471). Both resemble rhombohedral
forms and are common 1 garnet. When lengthened in the direction of one of the cubic
axes, the dodecahedron becomes a square prism with pyramidal summits (Fig. 472), and
shortened along the same axis it is reduced to a square octahedron, with truncated angles

Fig. 473).
¢ gI‘he trapezohedron elongated in the direction of an octahedral (trigonal) axis assumes
rhombohedral (trigonal) symmetry.

1f the elongation of the trapezohedron takes place along a cubie axis, it becomes a double
eight-sided pyramid with four-sided summits; or if these summit planes are obliterated
by a farther extension, it becomes a complete eight-sided double pyramid.

Similarly the trisoctahedron, tetrahexahedron and hexoctahedron may show distortion
of the same kind. Further examples are to be found in the other systems. :

2. IMPERFECTIONS OF THE SURFACES OF CRYSTALS

258. Striations Due to Oscillatory Combinations. — The parallel lines
or furrows on the surfaces of crystals are called strie or striations, and such
surfaces are said to be striated.

TFach little ridge on a striated surface is inclosed by two narrow planes
more or less regular. These planes often correspond in position to different
faces of the crystal, and these ridges have been formed by a continued
oscillation in the operation of the causes that give rise, when acting uninter-
ruptedl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>