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PREFACE TO THE THIRD EDITION

The first edition of this book appeared in 1877 and approximately twenty
vears later (1898) the second and revised edition was published. Now,
again after more than twenty years, comes the third edition. The changes
involved in the present edition are chiefly those of addition, the general
character and form of the book having been retained unchanged. In the
section on Crystallography the important change consists in the introduction
of the methods employed in the use of the stereographic and gnomonic pro-
jections. A considerable portion of the section on the Optical Characters of
Minerals has been rewritten in the endeavor to make this portion of the book
simpler and more readily understood by the student. In the section on
Descriptive Mineralogy all species described since the previous edition have
been briefly mentioned in their proper places. Numerous other changes and
corrections have, of course, been made in order to embody the results of
mineral investigation during the last two decades. Only minor changes have
been made in the order of classification of the mineral species. It was felt
that as this book is so closely related to the System of Mineralogy it was
unwise to attempt any revision of the chemical classification until a new
edition of that work should appear. The description of the methods of
Crystal Drawing given in Appendix A has been largely rewritten. A new
table has been added to Appendix B in which the minerals have been grouped
into lists according to their important basic elements. Throughout the book
the endeavor has been to present in a clear and concise way all the information
needed by the elementary and advanced student of the science.

The editor of this edition is indebted especially to the published and un-
published writings of the late Professor Samuel L. Penfield for much ma-
terial and many figures that have been used in the sections of Crystallog-
raphy and The Optical Character of Minerals. He also acknowledges the
cordial support and constant assistance given him by Professor Edward S.
Dana, :

: WiLLiam E. Forp
New Haven, Conn., Dec. 1, 1921,
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PREFACE TO THE SECOND EDITION

THE remarkable advance in the Science of Mineralogy, during the years
that have elapsed since this Text-Book was first issued in 1877, has made it
necessary, in the preparation of a new edition, to rewrite the whole as well as
to add much new matter and many new illustrations.

The work being designed chiefly to meet the wants of class or private
instruction, this object has at once determined the choice of topics discussed,
the order and fullness of treatment and the method of presentation.

In the chapter on Crystallography, the different types of crystal forms are
described under the now accepted thirty-two groups classed according to their
symmetry. The names given to these groups are based, so far as possible,
upon the characteristic form of each, and are intended also to suggest the
terms formerly applied in accordance with the principles of hemihedrism.
The order adopted is that which alone seems suited to the demands of the
elementary student, the special and mathematically simple groups of the
isometric system being described first. Especial prominence is given to the
“normal group” under the successive systems, that is, to the group which is
relatively of most common occurrence and which shows the highest degree of
symmetry. The methods of Miller are followed as regards the indices of the
different forms and the mathematical calculations.

In the chapters on Physical and Chemical Mineralogy, the plan of the
former edition is retained of presenting somewhat fully the elementary prin-
ciples of the science upon which the mineral characters depend; this is par-
ticularly true in the department of Optics. The effort has been made to give
the student the means of becoming practically familiar with all the modern
methods of investigation now commonly applied. Especial attention is,
therefore, given to the optical properties of crystals as revealed by the micro-
scope. Further, frequent references are introduced to important papers on
the different subjects discussed, in order to direct the student’s attention to
the original literature.

The Descriptive part of the volume is essentially an abridgment of the
Sixth Edition of Dana’s System of Mineralogy, prepared by the author (1892).
To this work (and future Appendices) the student is, therefore, referred for
fuller descriptions of the erystallographic and optical properties of species, for
analyses, lists of localities, etc.; also for the authorities for data here quoted.
In certain directions, however, the work has been expanded when the interests

v



vi j PREFACE TO THE SECOND EDITION

of the student have seemed to demand it; for example, in the statement of
the characters of the various isomorphous groups. Attention is also called to
the paragraph headed “Diff.,”” in the description of each common species, in
which are given the distinguishing characters, particularly those which serve
to separate it from other species with whick it might be easily confounded.

The list of American localities of minerals, which appeared as an Appendix
in the earlier edition, has been omitted, since in its present expanded form
it requires more space than could well be given to it; further, its reproduc-
tion here is unnecessary since it is accessible to all interested not only in the
System of Mineralogy but also in separate form. A full toplcal Index has
been added, besides the usual Index of Species.

The obligations of the present volume to well-known works of other au-
thors — particularly to those of Groth and Rosenbusch — are too obvious to
require special mention. The author must, however, express his gratitude
to his colleague, Prof. L. V. Pirsson, who has given him material aid in the
part of the work dealing with the optical properties of minerals as examined
under the microscope. He is also indebted to Prof. S. L. Penfield of New
Haven and to Prof. H. A. Miers of Oxford, England, for various valuable
suggestions,

Epwarp SALIsBURY Dana

New Haven, ConN., Aug, 1, 1898.
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INTRODUCTION

1. THE ScIENCE oF MINERALOGY treats of those inorganic species called
minerals, which together in rock masses or in isolated form make up the
material of the crust of the earth, and of other bodies in the universe so far
as it is possible to study them in the form of meteorites. ;

2. Definition of a Mineral. — A Mineral is a body produced by the proc-
esses of inorganic nature, having a definite chemical composition and, if formed
under favorable conditions, a certain characteristic molecular structure which
18 exhibited in its crystalline form and other physical properties.

This definition calls for some further explanation.

First of all, a mineral must be a homogeneous substance, even when
minutely examined by the microscope; further, it must have a definite
chemical composition, capable of being expressed by a chemical formula.
Thus, much basalt appears to be homogeneous to the eye, but when examined
under the microscope in thin sections it is seen to be made up of different
substances, each having characters of its own. Again, obsidian, or volcanic
glass, though it may be essentially homogeneous, has not a definite composition
corresponding to a specific chemical formula, and is hence classed as a rock,
not as a mineral species. Further, several substances, as tachylyte, hyalome-
lane, etc., which at one time passed as minerals, have been relegated to
petrology, because it has been shown that they are only local forms of basalt,
retaining an apparently homogeneous form due to rapid cooling.

Again, a mineral has in all cases a definite molecular structure, unless the
conditions of formation have been such as to prevent this, which is rarely true.
This molecular structure, as will be shown later, manifests itself in the physical
characters and especially in the external crystalline form.

It is customary, as a matter of convenience, to limit the name mineral to
those compounds which have been formed by the processes of nature alone,
while compounds made in the laboratory or the smelting-furnace are at most
called artificial minerals. Further, mineral substances which have been pro-
duced through the agency of organic life are not included among minerals,
as the pearl of an oyster, the opal-silica (tabasheer) secreted by the bamboo,
ete. Finally, mineral species are, as a rule, limited to solid substances; the
only liquids included being metallic mercury and water. Petroleum, or
mineral oil, is not properly a homogeneous substance, consisting rather of
several hydrocarbon compounds; it is hence not a mineral species. '

It is obvious from the above that minerals, in the somewhat restricted
sense usually adopted, constitute only a part of what is often called the
Mineral Kingdom.

3. Scope of Mineralogy. — In the following pages, the general subject
of mineralogy is treated under the following heads:

(1) Crystallography. — This comprises a discussion of crystals in general
and especially of the crystalline forms of mineral species.

1
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(2) Physical Mmemlogy —ThlS 1ncludes a discussion of the physical
characters of minerals, that is, those depending upon cohesion and elasticity,
density, light, heat, electricity, and so on.

(3) Chemical Mineralogy. — Under this head are presented briefly the
general principles of chemistry as applied to mineral species; their charac-
ters as chemical compounds are described, also the methods of investigating
them from the chemical side by the blowpipe and other means.

(4) Descriptive Mineralogy. — This includes the classification of minerals
and the description of each species with its varieties, especially in its relations
to closely allied species, as regards crystalline form, physical and chemical
characters, occurrence in nature, and other points.

4. Literature. — Reference is made to the Introduction to the Sixth
Edition of Dana’s System of Mineralogy, pp. xlv-Ixi, for an extended list of
independent works on Mineralogy up to 1892 and to its Appendices I, I
and III for works published up to 1915; the names are also given of 'the
many scientific periodicals which contain original memoirs on mineralogical
subjects. For the convenience of the student the titles of a few works,
mostly of a general character, are given here. Further references to the
literature of Mineralogy are introduced through the first half of this work,
particularly at the end of the sections dealing with special subjects.

Crystallography and Physical Mineralogy

EarLy Works * include those of Romé de I'Isle, 1772; Haiiy, 1822; Neumann, Krys-
tallonomie, 1823, and Krystallographie, 1825; Kupffer, 1825 Grassmann Krystallonomie,
1829; Naumann, 1829 and later; Quenstedt 1846 (also 1873), Mlller, 1839 and 1863;
Gralhch 1856; Kopp, 1862; von Lang, 1866; Bravais, Etudes Crist., Paris, 1866 (1849);
Schrauf, 1866—68 Rose-Sa.debeck 1873.

RECENT WoORKS include the following:

Bayley. Elementary Crystallography, 1910.

Beale. Introduction to Crystallography, 1915.

Beckenkamp. Statische und kinetische Krlsta.lltheorlen, 1913-.

Bruhns. Elemente der Krystallographie, 1902.

Goldschmidt. Index der Krystallformen der Mineralien; 3 vols., 1886-91. Also
Anwendung der Linearprojection zum Berechnen der Krystalle, 1887. Atlas der Krystall-
formen, 1913-.

Gossner. Kristallberechnung und Kristallzeichnung, 1914.

Groth. Physikalische Krystallographie und Emleltung in die krystallographische
Kenntniss der wichtigeren Substanzen, 1905.

Klein. Einleitung in die Krystallberechnung, 1876

Lewis. Crystallography, 1899.

Liebisch. Geometrische Krystallographie, 1881. Physikalische Krystallographie,

Mallard. Traité de Cristallographie géométrique et physique; vol. 1, 1879; vol. 2,
1884,

Moses. Characters of Crystals, 1899.

Reeks. Hints for Crystal Drawing, 1908.

Sadebeck. Angewandte Krystallographie (Rose’s Krystallographie, I1I. Band), 1876.

Sohncke, Entwickelung einer Theorie der Krystallstruktur, 1879.

Sommerfeldt. Physikalische Kristallographie, 1907; Die K’rlstallgruppe, 1911.

Story-Maskelyne. Crystallography: the Morphology of Crystals, 1895.

Tutton. Crystalline Structure and Chemical Constitution, 1910; Crystallography and
Practical Crystal Measurement, 1911.

Viola. Grundziige der Krista.llographie, 1904.

Walker. Crystallography, 1914.

*The full titles of many of these are given in pp. li-Ixi of Dana’s System of Miner-
alogy, 1892. :
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Wallerant. Cristallographie, 1909.

Websky. Anwendung der Linearprojection zum Berechnen der Krystalle (Rose’s
Krystallographie IT1. Band), 1887.

Williams. Elements of Crystallography, 1890.

Wiilfing. Die 32 krystallographischen Symmetrieklassen und ihre einfachen Formen,
1914.

In PavsicAL MINERALOGY the most-important general works are those of Schrauf
(1868), Mallard (1884), Liebisch (1891), mentioned in the above list; also Rosenbusch,
Mikr. Physiographie, etc. (1892). Important later works include the following.

Davy-Farnham. Microscopic Examination of the Ore Minerals, 1920.

Duparc and Pearce. Traité de Technique Minéralogique et Pétrographique, 1907.

Groth. Physikalische Krystallographie, 1905.

Groth-Jackson. Optical Properties of Crystals, 1910. :

Johannsen. Determination of Rock-Forming Minerals, 1908. Manual of Petrographic
Methods, 1914. : i F

Murdoch. Microscopical Determination of the Opaque Minerals, 1916. 1

Nikitin, translated into French by Duparc and de Dervies. La Methode Universelle
de Fedoroff, 1914.

Winchell. Elements of Optical Mineralogy, 1909.

Wright. The Methods of Petrographic-Microscopic Research, 1911.

General Mineralogy

Of the many works, a knowledge of which is needed by one who wishes a full acquaint-
ance with the historical development of Mineralogy, the following are particularly im-
portant. Very early works include those of Theophrastus, Pliny, Linnzus, Wallerius,
Cronstedt, Werner, Bergmann, Klaproth. ’ .

Within the nineteenth century: Haiiy’s Treatise, 1801, 1822; Jameson, 1816, 1820;
Werner's Letztes Mineral-System, 1817; Cleaveland’s Mineralogy, 1816, 1822; Leonhard’s
Handbuch, 1821, 1826; Mohs’s Min., 1822; Haidinger's translation of Mohs, 1824; Breit-
haupt’s Charakteristik, 1820, 1823, 1832; Beudant’s Treatise, 1824, 1832; Phillips’s Min.,
1823, 1837; Shepard’s Min., 1832-35, and later editions; von Kobell’s érundzﬁge, 1838;
Mohs’s Min., 1839; Breithaupt’s Min., 1836-1847; Haidinger’s Handbuch, 1845; Nau-
mann’s Min., 1846 and later; Hausmann’s Handbuch, 1847; Dufrénoy’s Min., 1844-1847
(also 1856-1859); Brooke & Miller, 1852; J. D. Dana’s System of 1837, 1844, 1850, 1854,
1868. :

More REcENT WORKS are the following:

Bauer. Lehrbuch der Mineralogie, 1904.

Bauerman. Text-Book of Descriptive Mineralogy, 1884.

Baumhauer. Das Reich der Krystalle, 1889.

Bayley. Descriptive Mineralogy, 1917.

Blum. Lehrbuch der Mineralogie, 4th ed., 1873-1874.

Brajuns. Das Mineralreich, 1903. Englisfx, translation by Spencer, 1912. "

Clarke. The Data of Geochemistry, 1916.

Dana, E. S. Dana’s System of Mineralogy, 6th ed., New York, 1892. Appendix I,
%{893}{; II, 1909; III, 1915. Also (elementary) Minerals and How to study them, New

ork, 1895.

Dana-Ford. Manual of Mineralogy, 1912.

i ?es Cloizeaux. Manuel de Minéralogie; vol. 1, 1862; vol. 2, ler Fasc., 1874; 2me.
893.

Groth. Tabellarische Uebersicht der Mineralien, 1898.

Hintze. Handbuch der Mineralogie, 1889-1915.

Iddings. Rock Minerals, 1906.

Kraus. Descriptive Mineralogy, 1911.

Lacroix. Minéralogie de la France et de ses Colonies, 5 vols., 1893-1913.

Miers. Mineralogy, 1902.

Moses and Parsons. Mineralogy, Crystallography and Blowpipe Analysis, 1916.

Merrill. The Non-metallic Minerals, 1904. :

Phillins. Mineralogy, 1912.

Rogers. Study of Minerals, 1912.

Schrauf. Atlas der Krystall-Formen des Mineralreiches, 4to, vol. 1, A-C, 1865-1877.

Tschermak. Lehrbuch der Mineralogie, 1884; 5th ed., 1897.
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Weisbach. Synopsis Mineralogica, systematische Uebersicht des Mineralreiches, 1875.

Zirkel. 13th edition of Naumann’s Mineralogy, Leipzig, 1897.

Wiilfing. Die Meteoriten in Sammlungen, etc., 1897 (earlier works on related subjects,
see Dana’s System, p. 32).
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PART I. CRYSTALLOGRAPHY

GENERAL MORPHOLOGICAL RELATIONS OF
CRYSTALS

5. Crystallography. — The subject of Crystallography includes the
description of the characters of crystals in general; of the various forms of
crystals and their division into classes and systems; of the methods of study-
ing crystals, including the determination of the mathematical relations of
their faces, and the measurement of the angles between them; finally, a de-
scription of compound or twin erystals, of irregularities in crystals, of crystal-
line aggregates, and of pseudomorphous crystals.

6. Definition of a Crystal.— A crystal * is the regular polyhedral form,
bounded by smooth surfaces, which is assumed by a chemical compound, under
the action of its intermolecular forces, when passing, under suitable conditions,
from the state of a liquid or gas to that of a solid.

As expressed in the foregoing definition, a erystal is characterized, first, by
its definite internal molecular structure, and, second, by its external form. A
crystal is the normal form of a mineral species, as of all solid chemical com-
pounds; but the conditions suitable for the formation of a crystal of ideal
perfection in symmetry of form and smoothness of surface are never fully
realized. Further, many species usually occur not in distinet crystals, but
in massive form, and in some exceptional cases the definite molecular struc-
ture is absent.

7. Molecular Structure in General.— By definite molecular structure
is meant the special arrangement which the physical units, called molecules,t
assume under the action of the forces exerted between them during the forma-
tion of the solid. Some remarks are given in a later article (p. 22 et seg.) in
regard to the kinds of molecular arrangement theoretically possible, and their
relation to the symmetry of the different systems and classes of erystals.

The definite molecular structure is the essential character of a crystal, and
the external form is only one of the ways, although the most important, in
which this structure is manifested. Thus it is found that all similar direc-
tions in a crystal, or a fragment of a crystal, have like physical characters,}

* In its original signification the term crystal was applied only to crystals of quartz,
which the ancient philosophers believed to be water congealed by intense cold. Hence the
term, from xpiorallos, ice.

1 Recent studies, particularly those made by the use of the X-ray, would indicate that
the unit of crystalline structure is the atom rather than the molecule. The grouping of
the atoms fo form a molecule is extended in the analogous grouping of the molecules to
form a crystal.

1 This subject is further elucidated in the chapter devoted to Physical Mineralogy,
where it is also shown that, with respect to many, but not all, of the physical characters,
the conversa of this nr'm'r tion is true, wz., that unlike dircetions in a crystal have in
general unlike properties.

5 i’



8 CRYSTALLOGRAPHY

as of elasticity, cohesion, action on light, ete. This is clearly shown by the
cleavage, or natural tendency to fracture in certain directions, yielding more
or less smooth surfaces; as the cubic cleavage of galena, or the rhombohedral
cleavage of calcite. It is evident, therefore, that a small crystal differs from
a large one only in size, and that a fragment of a crystal is itself essentially a
crystal in all its physical relations, though showing no crystalline faces.

Further, the external form without the corresponding molecular structure
does not make a crystal of a solid. A model of glass or wood is obviously
not a erystal, though having its external form, because there is no relation
between form and structure. Also, an octahedron of malachite, having the
form of the crystal of cuprite from which it has been derived by chemical
alteration, is not a crystal of malachite, but what is known as a pseudomorph
(see Art. 478) of malachite after cuprite.

On the other hand, if the natural external faces are wanting, the solid is
not called a crystal. A cleavage octahedron of fluorite and a cleavage rhom-
bohedron of calcite are not properly crystals, because the surfaces have been
yielded by fracture and not by the natural molecular growth of the crystal.

8. Crystalline and Amorphous. — When a mineral shows no external
crystalline form, it is said to be massive. It may, however, have a definite
molecular structure, and then it is said to be crystalline. If this structure, as
shown by the cleavage, or by optical means, is the same in all parallel direc-
tions through the mass, it is described as a single individual. If it varies from
grain to grain, or fiber to fiber, it is said to be a crystalline aggregate,* since it
is in fact made up of a multitude of individuals.

Thus in a granular mass of galena or calcite, it may be possible to separate

. the fragments from one another, each with its characteristic cubic, or rhom-
bohedral, cleavage. Even if the individuals are so small that they cannot be
separated, yet the cleavage, and hence the crystalline structure, may be evi-
dent from the spangling of a freshly broken surface, as with fine-grained statu-
ary marble. Or, again, this aggregate structure may be so fine that the
crystalline structure can only be resolved by optical methods with the aid of
the microscope. In all these cases, the structure is said to be crystalline.

If optical means show a more or less distinet crystalline structure, which,
however, cannot be resolved into individuals, the mass is said to be crypto-
crystalline; this is true of some massive varieties of quartz.

If the definite molecular structure is entirely wanting, and all directions in
the mass are sensibly the same, the substance is said to be amorphous. This
is true of a piece of glass, and nearly so of opal. The amorphous state is rare
among minerals.

A piece of feldspar which has been fused and cooled suddenly may be in the glass-like
amorphous condition as regards absence of definite molecular structure. But even in such
cases there is a tendency to go over into the crystalline condition by molecular rearrange-
ment. A transparent amorphous mass of arsenic trioxide (As;O;), forméd by fusion,
becomes opaque and crystalline after a time. Similarly the steel beams of a railroad bridge
may gradually become crystalline and thus lose some of their original strength because of
the molecular rearrangement made possible by the vibrations caused by the frequent jar of
passing trains. The microscopic study of rocks reveals many cases in which an analogous
change in molecular structure has taken place in a solid mass, as caused, for example, by
great pressure. i

* The consideration of the various forms of crystalline aggregates is postponed to the
end of the present chapter.
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9. External Form. — A crystal -is bounded by smooth plane surfaces,
called faces or planes,* showing in their arrangement a certain characteristic
symmetry, and related to each other by definite mathematical laws.

Thus, without inquiring, at the moment, into the exact meaning of the
term symmetry as applied to crystals, and the kinds of symmetry possible,
which will be explained in detail later, it is apparent that the accompanying
figures, 1-3, show the external form spoken of. They represent, therefore,
certain definite types. :

Galena, Vesuvianite Chrysolite

10. Variation of Form and Surface. — Actual crystals deviate, within
certain limits, from the ideal forms.

First, there may be variation in the size of like faces, thus producing what
are defined later as distorted forms. In the second place, the faces are rarely
absolutely smooth and brilliant; commonly they lack perfect polish, and they
may even be rough or more or less covered with fine parallel lines (called
striations), or show minute elevations, depressions or other peculiarities.
Both the above subjects are discussed in detail in another place.

It may be noted in passing that the characters of natural faces, just
alluded to, in general make it easy to distinguish between them and a face
artificially ground, on the one hand, like the facet of a cut gem;
or, on the other hand, the splintery uneven surface commonly
vielded by cleavage.

11. Constancy of the Interfacial Angles in the Same
Species. — The angles of inclination between like faces on
the crystals of any species are essentially constant, wherever
they are found, and whether products of nature or of the
laboratory. These angles, therefore, form one of the im-
portant distinguishing characters of a species.

Thus, in Fig. 4, of apatite, the angle between the adjacent
faces  and m (130° 18') is the same for any two like faces,
similarly situated with reference to each other. Further, this Apatite
angle is constant for the species no matter what the size of
the erystal may be or from what locality it may come. Moreover, the angles
between all the faces on crystals of the same species (cf. Figs. 5-8 of zircon
below) are more or less closely connected together by certain definite
mathematical laws.

* This latter word is usually limited to cases where the direction, rather than the
definite surface itself, is designated.
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12. Diversity of Form, or Habit. — While in the crystals of a given
species there is constancy of angle between like faces, the forms of the erystals
may be exceedingly diverse. The accompanying figures (5-8) are examples
of a few of the forms of the species zircon. There is hardly any limit to the
number of faces which may occur, and as their relative size changes, the
habit, as it is called, may vary indefinitely.

6 6 Y 7

13. Diversity of Size. — Crystals occur of all sizes, from the merest
microscopic point to a yard or more in diameter. It is important to under-
stand, however, that in a minute crystal the development is as complete as
with a large one. Indeed the highest perfection of form and transparency is
found only in crystals of small size.

A single crystal of quartz, now at Milan, is three and a quarter feet long and five and a
half in eircumference, and its weight is estimated at eight hundred and seventy pounds.
A single cavity in a vein of quartz near the Tiefen Glacier, in Switzerland, discovered in
1867, afforded smoky quartz crystals, a considerable number of which had a weight of 200
to 250 pounds. A gigantic beryl from Acworth, New Hampshire, measured four feet in
length and two and a half in circumference; another, from Grafton, was over four feet long,
and thirty-two inches in one of its diameters, and weighed about two and a half tons.

14, Symmetry in General. — The faces of a crystal are arranged
according to certain laws of symmetry, and this symmetry is the natural
basis of the division of crystals into systems and classes. The symmetry
may be defined in relation to (1) a plane of symmetry, (2) an axis of symmeiry,
and (3) a center of symmetry.

These different kinds of symmetry may, or may not, be combined in the
same crystal. It will be shown later that there is one class, the crystals of
which have neither center, axis, nor plane of symmetry; another where there
is only a center of symmetry. On the other hand, some classes have all these
elements of.symmetry represented. 1

15. Planes of Symmetry. — A solid is said to be geometrically * sym-
metrical with reference to a plane of symmetry when for each face, edge, or
solid angle there is another similar face, edge, or angle which has a like posi-
tion with reference to this plane. Thus it is obvious that the crystal of am-
phibole, shown in Fig. 9, is symmetrical with reference to the central plane
of symmetry indicated by the shading.

* The relation between the ideal geometrical symmetry and the actual crystallographic
symmetry is discussed in Art. 18.
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In the ideal crystal this symmetry is right symmeiry in the geometrical
sense, where every point on the one side of the plane of symmetry has a cor-
responding point at equal distances on the other side,
measured on a line normal to it. In other words, in
the ideal geometrical symmetry, one half of the crystal
is the exact mirror-image of the other half.

A crystal may have as many as nine planes of sym-
metry, three of one set and six of another, as is illustrated
by the cube * (Fig. 16). Here the planes of the first set
pass through the crystal parallel to the cubic faces; they
are shown in Fig. 10. The planes of the second set join
the opposite cubic edges; they are shown in Fig. 11.

16. Axes of Symmetry. — If a solid can be revolved
through a certain number of degrees about some line as
an axis, with the result that it again occupies precisely
the same position in space as at first, that axis is said L
to be an axis of symmetry. There are four different Amphibole
kinds of axes of symmetry among crystals; they are de-
fined according to the number of times which the crystal repeats itself in ap-
pearance during a complete revolution of 360°.

10

Symmetry Planes in the Cube

(@) A crystal is said to have an axis of binary, or twofold, symmetry when
a revolution of 180° produces the result named above; in other words, when it
repeats itself twice in a complete revolution. This is true of the crystal shown
in Fig. 12 with respect to the vertical axis (and indeed each of the horizontal
axes also).

(b) A crystal has an axis of trigonal, or threefold, symmetry when a revo-
lution of 120° is needed; that is, when it repeats itself three times in a com-
plete revolution. The vertical axis of the crystal shown in Fig. 13 is an axis
of trigonal symmetry.

(¢) A crystal has an axis of tetragonal, or fourfold, symmetry when a
revolution of 90° is called for; in other words, when it repeats itself four
times in a complete revolution. The vertical axis in the crystal shown in
Fig. 14 is such an axis,

(d) Finally, a crystal has an axis of hexagonal, or sizfold, symmetry when
a revolution of 60° is called for; in other words, when it repeats itself six
times in a complete revolution. This is illustrated by Fig. 15.

* This is the cube of the normal class of the isometric system.
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.

The different kinds of symmetry axes are sometimes known as diad, triad, tetrad and
hexad axes. f
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The cube * illustrates three of the four possible kinds of symmetry with respect to axes
of symmetry. It has six axes of binary symmetry joining the middle points of opposite
edges (Fig. 16). It has four axes of trigonal symmetry, joining the opposite solid angles
(Fig. 17). It has, finally, three axes of tetragonal symmetry joining the middle points of
opposite faces (Fig. 18).
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Symmetry Axes in the Cube

17. Center of Symmetry. — Most crystals, besides planes and axes of
symmetry, have also a center of symmetry. On the other hand, a crystal,
though possessing neither plane nor axis of symmetry, may yet be sym-
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metrical with reference to a point, its center. This last is true of the triclinic
crystal shown in Fig. 19, in which it follows that every face, edge, and solid
angle has a face, edge, and angle similar to it in the opposite half of the crystal.

* This is again the cube of the normal class of the isometric system.
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18. Relation of Geometrical to Crystallographic Symmetry. — Since
the symmetry in the arrangement of the faces of a crystal is an expression of
the internal molecular structure, which in general is alike in all parallel direc-
tions, the relative size of the faces and their distance from the plane or axis of
symmetry are of no moment, their angular position alone is essential. The
crystal represented in Fig. 20, although its faces show an unequal develop-
ment, has in the crystallographic sense as truly a vertical plane of symmetry
(parallel to the face b) as the ideally developed crystal shown in Fig. 21.
The strict geometrical definition of symmetry would, however, apply only
to the second crystal.* .

22 23 24

//’pj

Cube Distorted Cubes

Also in a normal cube (Fig. 22) the three central planes parallel to each
pair of cubic faces are like planes of symmetry, as stated in Art. 156. But a
crystal is still erystallographically a cube, though deviating widely from the
requirements of the strict geometrical definition, as shown in Figs. 23, 24, if
only it can be proved, e.g., by cleavage, by the physical nature of the faces,
or by optical means, that the three pairs of faces are like faces, independently -
of their size, or, in other words, that the molecular structure is the same in
the three directions normal to them.

Cube and Octahedron

Further, in the case of a normal cube, a face of an octahedron on any solid
angle requires, as explained beyond, similar faces on the other angles. It is
not necessary, however, that these eight faces should be of equal size, for in
the crystallographic sense Fig. 25 is as truly symmetrical with reference to
the planes named as Fig. 26.

* Tt is to be noted that the perspective figures of crystals usually show the geometrically
ideal form, in which like faces, edges, and angles have the same shape, size; and position.
In other words, the ideal erystal is uniformly represented as having the symmetry called
for by the strict geometrical definition.
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19. On the other hand, the molecular and hence the erystallographic
symmetry is not always that which the geometrical form would suggest.
Thus, deferring for the moment the consideration of pseudo-symmetry, an
illustration of the fact stated is afforded by the cube. It has already been
implied and will be fully explained later that while the cube of the normal
class of the isometrie system has the symmetry described in Arts. 15, 16, a
cube of the same geometrical form but belonging molecularly, for example,
to the tetrahedral class, has no planes of symmetry parallel to the faces but
only the six diagonal planes; further, though the four axes shown in Fig. 17
are still axes of trigonal symmetry, the cubic axes (Fig. 18) are axes of binary
symmetry only, and there are no axes of symmetry corresponding to those
represented in Fig. 16. Other more complex cases will be deseribed later.

Further, a erystal having interfacial angles of 90° is not necessarily a cube:
in other words, the angular relations of the faces do not show in this case
whether the figure is bounded by six like faces; or whether only four are
alike and the other pair unlike; or, finally, whether there are three pairs of
unlike faces. The question must be decided, in such cases, by the molecular .
structure as indicated by the physical nature of the surfaces, by the cleavage,
or by other physical characters, as pyro-electricity, those connected with
light phenomena, ete.

Still, again, the student will learn later that the decision reached in regard
to the symmetry to which a crystal belongs, based upon the distribution of the
faces, is only preliminary and approximate, and before being finally accepted
it must be confirmed, first, by accurate measurements, and, second, by a
minute study of the other physical characters.

The method based upon the physical characters, which gives most conclusive results
and admits of the widest application, is the skillful etching of the surface of the crystal by
some appropriate solvent. By this means there are, in general, produced upon it minute
depressions the shape of which conforms to the symmetry in the arrangement of the mole-
cules. This process, which is in part essentially one involving the dissection of the molecu-
lar structure, is more particularly diseussed in the chapter on Physical Mineralogy.

20. Pseudo-symmetry. — The crystals of certain species approximate
closely in angle, and therefore in apparent symmetry, to the requirements
of a system higher in symmetry than that to which they actually belong:
they are then said to exhibit pseudo-symmetry. Numerous examples are
given under the different systems. Thus the micas have been shown to be
truly monoclinic in crystallization, though in angle they seem to be in some
cases rhombohedral, in others orthorhombic.

1t will be shown later that compound, or twin, crystals may also simulate
by their regular grouping a higher grade of symmetry than that which belongs
to the single crystal. Such crystals also exhibit pseudo-symmetry and are
specifically called mimetic. Thus aragonite is an example of an orthorhombie
species, whose crystals often imitate by twinning those of the hexagonal
system.* Again, a highly complex twinned crystal of the monoclinic species,
phillipsite, may have nearly the form of a rhombic dodecahedron of the iso-
metric system. This kind of pseudo-symmetry also occurs among the
classes of a single system, since a crystal belonging to a class of low sym-
metry may by twinning gain the geometrical symmetry of the corresponding

* The terms pseudo-hexagonal, ete., used in this and similar cases explain themselves.
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form of the normal class. This is illustrated by a twinned crystal of scheelite
like that figured (Fig. 416) in the chapter on twin crystals.

Pseudo-symmetry of still another kind, where there is an imitation of the
symmetry of another system of lower grade, is particularly common in
crystals of the isometric system (e.g., gold, copper). The result is reached in
such cases by an abnormal development of “distortion” in the direction of
certain axes of symmetry. This subject is discussed and illustrated on a
later page.

21. Possible Classes of Symmetry. — The theoretical consideration of
the different kinds of symmetry possible among crystals built up of like mole-
cules, as explained in Arts. 30-32, has led to the conclusion that there are
thirty-two (32) types in all, differing with respect to the combination of the
different symmetry elements just described. Of these thirty-two natural
classes among crystals based upon their symmetry, seven classes include by
far the larger number of crystallized minerals. Besides these, some thirteen
or fourteen others are distinctly represented, though several of these are of
rare occurrence. The remaining classes, with possibly one or two excep-
tions, are known among the crystallized salts made in the laboratory. The
characters of each of the thirty-two classes are given under the discussion of
the several crystalline systems.

22. Crystallographic Axes. — In the description of a crystal, especially
as regards the position of its faces, it is found convenient to assume, after
the methods of analytical geometry, certain lines passing through the center
of the ideal crystal, as a basis of reference. (See further Art. 34 et seg.)

These lines are called the crystallographic axes. Their direction is to a
greater or less extent fixed by the symmetry of the crystals, for an axis of
symmetry is in almost all cases * a possible crystallographic axis. Further,
the unit lengths assigned to these axes are fixed sometimes by the symmetry,
sometimes by the position of the faces assumed as fundamental, i.e., the
unit forms in the sense defined later. The broken lines shown in Fig. 18 are
the crystallographic axes to which the cubic faces are referred.

23. Systems of Crystallization. — The thirty-two possible crystal classes
which are distinguished from one another by their symmetry, are classified
in this work under six systems, each characterized by the relative lengths
and inclinations of the assumed crystallographic axes. These are as follows:

I. Isomerric SysTEM. Three equal axes at right angles to each other.

II. TETrRAGONAL SysTEM. Three axes at right angles to each other, two
of them — the horizontal axes — equal, the third — the vertical axis —
longer or shorter. :

IIT. HexaconaL SystEM. Four axes, three equal horizontal axes in one
plane intersecting at angles of 60°, and a vertical axis at right angles to this
plane and longer or shorter.

IV. OrtaoruOoMBIC SysTEM. Three axes at right angles to each other,
but all of different lengths.

V. Monocruinic System. Three axes unequal in length, and having
one of their intersections oblique, the two other intersections equal to 90°.

VI. TricLinic SysTEM. Three unequal axes with mutually oblique
intersections.

* Exceptions are found in the isometric system, where the axes must necessarily be the
?f‘es of tetra%onal symmetry (Fig. 18), and cannot be those of binary or trigonal symmetry
igs. 16, 17).
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24. Each one of the six systems, as will be understood from Art. 21,
embraces several classes differing among themselves in their symmetry.
One of these classes is conveniently called the normal class, since it is in
general the common one, and since further it exhibits the highest degree of
symmetry possible for the given system, while the others are lower in grade
of symmetry. :

It is important to note that the classes comprised within a given system
are at once essentially connected together by their common optical characters,
and in general separated * from those of the other systems in the same way.

Below is given a list of the six systems together with their subordinate
classes, thirty-two in all. The order and the names given first are those that
are used in this book while in the following parentheses are given other
equivalent names that are also in common use. Under nearly all of the
classes it is possible to give the name of a mineral or an artificial compound
whose crystals serve to illustrate the characters of that particular class.
There is some slight variation between different authors in the order in which
the crystal systems and classes are considered but in the main essentials all
modern discussions of crystallography are uniform.

ISOMETRIC SYSTEM
(Regular, Cubic System)

1. NorMaL Crass. (Hexoctahedral. Holohedral.) Galena Type.

2. PyrrrouEDpRAL Crass. (Dyakisdodecahedral. Pentagonal Hemihe-
dral.) Pyrite Type.

3. TETRAHEDRAL Crass. (Hextetrahedral. Tetrahedral Hemihedral.)
Tetrahedrite Type.

4. PracioHEDRAL CrLass. (Pentagonal Icositetrahedral. Plagiohedral
Hemihedral.) Cuprite Type.

5. TETARTOHEDRAL Crass. (Tetrahedral Pentagonal Dodecahedral.)
Sodium Chlorate Type.

TETRAGONAL SYSTEM

5 6. NormaL Crass. (Ditetragonal Bipyramidal. Holohedral.) Zircon
ype.

7. HemimorpHIC Crass. (Ditetragonal Pyramidal. Holohedral Hemi-
morphie.) Iodosuccinimide Type.

8. TripYRAMIDAL Crass. (Tetragonal Bipyramidal. Pyramidal Hemi-
hedral.) Scheelite Type.

9. Pyramipar-HemimorpHIC Crass. (Tetragonal Pyramidal. Hemihe-
dral Hemimorphic.) Wulfenite Type.

10. SpuENOIDAL Crass. (Tetragonal Sphenoidal. Sphenoidal Hemihe-
dral. Scalenohedral.) Chalcopyrite Type.

11. TrapPezOoHEDRAL CrLass. (Tetragonal Trapezohedral. Trapezohe-
dral Hemihedral.) Nickel Sulphate Type. !

12. TeTaRTOHEDRAL  Crass. (Tetragonal  Bisphenoidal.) Artif.
24 C30A12038102 Type.

* Crystals of the tetragonal and hexagonal systems are alike in being optically unaxial;
but the crystals of all the other systems have distinguishing optical characters.
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HEXAGONAL SYSTEM
A. HexaconaL Division

13. NormaL Crass. (Dihexagonal Bipyramidal. Holohedral.) Beryl
Type.
yp14. HemmorpHIic Crass. (Dihexagonal Pyramidal. Holohedral Hemi-
morphic.) Zincite Type.

15. TripyramMIDAL Crass. (Hexagonal Bipyramidal. Pyramidal Hemi-
hedral.) Apatite Type.
- 16. Pyramipar-HeEmimorrHIC CLass. (Hexagonal Pyramidal. Pyrami-
dal Hemihedral Hemimorphic.) Nephelite Type.

17.  TrarEzoHEDRAL Crass. (Hexagonal Trapezohedral. Trapezohedral
Hemihedral.) B-Quartz Type.

B. TRIGONAL OR RHOMBOHEDRAL DIVISION'
(Trigonal System)

18. TricoNAL Crass. (Ditrigonal Bipyramidal. Trigonal Hemihedral.)
Benitoite Type. R

19. RuoMBOHEDRAL Crass. (Ditrigonal Scalenohedral. Rhombohedral
Hemihedral.) Calcite Type.

20. RuomBoHEDRAL HEMIMORPHIC CLass. (Ditrigonal Pyramidal. Tri-
gonal Hemihedral Hemimorphic.) Tourmaline Type.

21. Tri-RuomMBOHEDRAL Crass. (Rhombohedral. Rhombohedral Te-
tartohedral.) Phenacite Type.

22. TrapEzOHEDRAL Crass. (Trigonal Trapezohedral. Trapezohedral
Tetartohedral.) Quartz Type.

23. (Trigonal Bipyramidal. Trigonal Tetar-
tohedral.
24, (Trigonal Pyramidal. Trigonal Tetarto-

hedral Hemimorphic.) Sodium Periodate Type.

ORTHORHOMBIC SYSTEM
(Rhombic or Prismatic System)

25. NorMAL Crass. (Orthorhombic Bipyramidal. Holohedral.) Barite
Type.

26. HemimorpHIic Crass. (Orthorhombic Pyramidal.) Calamine Type.

27. SPHENOIDAL CrLass. (Orthorhombic Bisphenoidal.) Epsomite Type.

MONOCLINIC SYSTEM
" (Obliqgue System)

28. NorMaL Crass. (Prismatic. ' Holohedral.) Gypsum Type.
29. HemimorpHIiC Crass. (Sphenoidal.) Tartaric Acid Type.
30. CriNOHEDRAL Crass. (Domatic. Hemihedral.) Clinohedrite Type.

TRICLINIC SYSTEM

(Amnorthic System)

31. NorMaL Crass. (Holohedral. Pinacoidal.) Axinite Type.
32. AsymmEiTRIC Crass. (Hemihedral.) Clacium Thiosulphate Type.
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26. Symmetry of the Systems. — In the paragraphs immediately fol-
lowing, a synopsis is given of the symmetry of the normal class of each of the
different systems, and also that of one subordinate class of the hexagonal
system, which is of so great importance that it is also often conveniently
treated as a sub-system even when, as in this work, the forms are referred to
the same axes as those of the strictly hexagonal type — a usage not adopted
by all authors.

I. IsomETrIC SysTEM. Three like axial * planes of symmetry (principal
planes) parallel to the cubic faces, and fixing by their intersection the crystal-
lographic axes; six like diagonal planes of symmetry, passing through each
opposite pair of cubic edges, and hence parallel to the faces of the rhombic
dodecahedron.

Further, three like axes of tetragonal symmetry, the crystallographic
axes normal to the faces of the cube; four like diagonal axes of trigonal sym-
metry, normal to the faces of the octahedron; and six like diagonal axes of
binary 'symmetry, normal to the faces of the dodecahedron. There is also
obviously a center of symmetry.f These relations are illustrated by Fig. 27
also by Fig. 35; further by Figs. 92 to 125.
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II. TeTRAGONAL SysTEM. Three axial planes of symmetry: of these, two
are like planes intersecting at 90° in a line which is the vertical crystallo-
graphie axis, and the third plane (a principal plane) is normal to them and
hence contains the horizontal axes. There are also two diagonal planes of
symmetry, intersecting in the vertical axis and meeting the two axial planes
at angles of 45°.

Further, there is one axis of tetragonal symmetry, a principal axis; this is
the vertical crystallographic axis. There are also in a plane normal to this
four axes of binary symmetry — like two and two — those of each pair at right
angles to each other. Fig. 28 shows a typical tetragonal crystal, and Fig. 29
a basal projection of it, that is, a projection on the principal plane of sym-
metry normal to the vertical axis. See also Fig. 36 and Figs. 170-192.

* Two planes of symmetry are said to be like when they divide the ideal crystal into
halves which are identical to each other; otherwise, they are said to be unlike. Axes of
symmetry are also like or unlike. If a plane of symmetry includes two of the crystallo-
graphic axes, it is called an azial plane of symmetry. If the plane includes two or more
like axes of symmetry, it is called a principal plane of symmetry; also an axis of symmetry
in which two or more like planes of symmetry meet is a principal axis of symmetry. :

1 In describing the symmetry of the different classes, here and later, the center of
symmetry is ordinarily not mentioned when its presence or absence is obvious.
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ITI. Hexaconan SystEMm. In the Hezagonal Division there are four
axial planes of symmetry; of thesc three are like planes meeting at angles of
60°, their intersection-line being the vertical crystallographic axis; the fourth
plane (a principal plane) is at right angles to these. There are also three
other diagonal planes of symmetry meeting the three of the first set in the
vertical axis, and making with them angles of 30°.

Further, there is one principal axis of hexagonal symmetry; this is the
vertical crystallographic axis; at right angles to it there are also six binary
axes. The last are in two sets of three each. Fig. 30 shows a typical hex-
agonal crystal, with a basal projection of the same. See also Fig. 37 and
Figs. 220-227.
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In the Trigonal or Rhombohedral Division of this system there are three
like planes of symmetry intersecting at angles of 60° in the vertical axis.
Further, the forms belonging here have a vertical principal axis of trigonal
symmetry, and three horizontal axes of binary symmetry, coinciding with
the horizontal crystallographic axes. Fig. 31 shows a typical rhombohedral
crystal, with its basal projection. See also Figs. 243-269.

IV. OrrthHorHOMBIC SysTEM. Three unlike planes of symmetry meeting
at 90°, and fixing by their intersection-lines the position of the crystallo-
graphic axes. Further, three unlike axes of binary symmetry coinciding with
the last-named axes. Fig. 32 shows a typical orthorhombic crystal, with its
basal projection. See also Fig. 38 and Figs. 298-320.

V. MonocLiNic SYsTEM. - One plane of symmetry which contains two of
the crystallographic axes. Also one axis of binary symmetry, normal to this
plane and coinciding with the third erystallographic axis. See Fig. 33; also
Fig. 39 and Figs. 333-347.

VI. TricLinic SysteM. No plane and no axis of symmetry, but sym-
metry solely with respect to the central point. Figs. 34 and 40 show typical
triclinic erystals. See also Figs. 359-366
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26. The relations of the normal classes of the different systems are further
illustrated both as regards the crystallographic axes and symmetry by the
accompanying figures, 35-40. The exterior form is here that bounded by
faces each of which is parallel to a plane through two of the crystallographic
axes indicated by the central broken lines. Further, there is shown, within
this, the combination of faces each of which joins the extremities of the unit
lengths of the axes.

34

Pyroxene Axinite

The full understanding of the subject will not be gained until after a
study of the forms of each system in detail. Nevertheless the student will do
well to make himself familiar at the outset with the fundamental relations
here illustrated.

36
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Isometric Tetragonal Hexagonal

It will be shown later that the symmetry of the different classes can be
most clearly and easily exhibited by the use of the different projections ex-
plained in Art. 39 et seq.
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27. Models. — Glass (or transparent celluloid) models illustrating the different sys-
tems, having the forms shown in Figs. 3540, will be very useful to the student, especially
in learning the fundamental relations as regards symmetry. They should show within, the
crystallographic axes, and by colored threads or wires, the outlines of one or more simple
forms. odels of wood are also made in great variety and perfection of form; these are
indispensable to the student in mastering the principles of crystallography.

40
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28. So-called Holohedral and Hemihedral Forms. — It will appear
later that each crystal form * of the normal class in a given system embraces
all the faces which have a like geometrical position with reference to the
crystallographkic axes; such a form is sald to be holohedral (from gXos, com-
plete, and €3pa, face). On the other hand, under the classes of lower sym-
metry, a certain form, while necessarily having all the faces which the sym-
metry allows, may yet have but half as many as the corresponding form of
the normal class; these half-faced forms are sometimes called on this account
hemihedral. Furthermore, it will be seen that, in such cases, to the given
holohedral form there correspond two similar and complementary hemihedral
forms, called respectively positive and negative (or right and left), which
together embrace all of its faces.

Octahedron Positive Tetrahedron Negative Tetrahedron

A single example will help to make the above statement intelligible. In the normal
class of the isometric system, the octahedron (Fig. 41) is a “holohedral ” form with all
the possible faces — eight in number — which are alike in that they meet the axes at equal
distances. In the tetrahedral class of the same system, the forms are referred to the same
crystallographic axes, but the symmetry defined in Art. 19 (and more fully later) calls for
but four similar faces having the position described. These yield a four-faced, or ‘‘hemi-
hedral,” form, the tetrahedron. Figures 42 and 43 show the Fositive and negative tetra-
hedron, which together, it will be seen, embrace all the faces of the octahedron, Fig. 41.

* The use of the word form is defined in Art. 37
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In certain classes of still lower symmetry a given crystal form may have
ut one-quarter of the faces belonging to the corresponding normal form, and,
after the same method, such a form is sometimes called tetartohedral.

The development of the various possible kinds of hemihedral (and tetarto-
hedral) forms under a given system has played a prominent part in the erystal-
lography of the past, but it leads to much complexity and is distinctly less
simple than the direct statement of the symmetry in each case. The latter
method is systematically followed in this work, and the subject of hemihe-
drism is dismissed with the brief (and incomplete) statements of this and the
following paragraphs.

29. Hemimorphic Forms. — In several of the systems, forms oceur
under the classes of lower symmetry than that of the normal class which are
characterized by this: that the faces present are only those belonging to one

extremity of an axis of symmetry (and crystallographic

44 axis). Such forms are conveniently called hemimorphic

/ (half-form). A simple example under the hexagonal

A8 system is given in Fig. 44. It is obvious that hemi-
7 morphic forms have no center of symmetry.

\ 30. Molecular Networks. — Much light has re-

cently been thrown upon the relations existing between

; D the different types of crystals, on the one hand, and of

> these to the physical properties of crystals, on the other,

5 \ = by the consideration of the various possible methods of

{m | grouping of the molecules of which the crystals are

supposed to be built up. This subject, very early

Zincite treated by Haily and others (including J. D. Dana),

was discussed at length by Frankenheim and later by

Bravais. More recently it has been extended and elaborated by Sohncke,

Wulff, Schonflies, Fedorow, Barlow, and others.

All solid bodies, as stated in Art. 7, are believed to be made up of definite
physical units, called the physical, or crystal, molecules. Of the form of the
molecules nothing is definitely known, and though theory has something to say
about their size, it is enough here to understand that they are almost infinitely
' small, so small that the surface of a solid ~— e.g., of a crystal — may appear to
the touch and to the eye, even when assisted by a powerful mieroscope, as
perfectly smooth.

The molecules are further believed to be not in contact but separated from
one another — if in contact, it would be impossible to explain the motion to
which the sensible heat of the body is due, or the transmission of radiation
(radiant heat and light) through the mass by the wave motion of the ether,
which is believed to penetrate the body.

When a body passes from the state of a liquid or a gas to that of a solid,
under such conditions as to allow perfectly free action to the forces acting
between the molecules, the result is a crystal of some definite type as regards
symmetry. The simplest hypothesis which can be made assumes that the
form of the crystal is determined by the way in which the molecules group
themselves together in a position of equilibrium under the action of the inter-
molecular forces.

As, however, the forces between the molecules vary in magnitude and
direction from one type of crystal to another, the fesultant grouping of the
molecules must also vary, particularly as regards the distance between them
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and the angles between the planes in which they lie. This may be simply
represented by a series of geometrical diagrams, showing the hypothetical
groupings of points which are strictly to be regarded as the centers of gravity
of the molecules themselves. Such a grouping is named a network, or point-
system, and it is said to be regular when it is the same for all parallel lines
and planes, however they be taken. For the fundamental observed fact, true
in all simple crystals, that they have like physical properties in all parallel
directions, leads to the conclusion that the grouping of the molecules must be
the same about each ‘one of them (or at least about each unit group of them),

and further the same in all parallel lines and planes. : .
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nystal Networks

The subject may be illustrated by Figs. 45, 46 for two typical cases, which
are easily understood. :
the points are grouped at equal distances, in planes at right angles to each
other.
cube described in Arts. 16 and 16, or, in other words, to the normal class of
the isometric system. Again, in Fig. 46, the general case is shown where the

molecules are unequally grouped in the three directions, and further these &

directions are oblique.
triclinic system.

If, in each of these cases, the figure be bounded by the simplest possible
arrangement of eight points, the result is an elemeniary parallelopiped, which
obviously defines the molecular structure of the whole. In the grouping of
these parallelopipeds together, as described, it is obvious that in whatever
direction a line be drawn through them, the points (molecules) will be spaced
alike along it, and the grouping about any one of these points will be the same
as about any other.

31. Certain important conclusions ean be deduced from a consideration
of such regular molecular networks as have been spoken of, which will be
enumerated here though it is impossible to attempt a full explanation.

(1) The prominent crystalline faces must be such as include the largest
number of points, that is, those in which the points are nearest together:

Thus in Fig"47, which represents a section of a network conforming in
symmetry to the structure of a normal orthorhombic crystal, the common
crystalline faces would be expected to be those having the position bb, aa, mm,

t

The symmetry is here that of the normal class of the

In Fig. 45 the most special case is represented where

The structure in this case obviously corresponds in symmetry to the °

e
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then I, nn, and so on. This is found to be true in the study of erystals, for
the common forms are, in nearly all cases, those whose position bears some
simple relation to the assumed axes; forms whose position is complex are
usually present only as small faces on the simple predominating forms, that
is, as modifications of them. So-called vicinal forms, that is, forms taking
the place of the simple fundamental forms to which they approximate very

closely in angular position, are exceptional.  ° . fa
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Orthorhombic Point System

~ (2) When a variety of faces occur on the same crystal, the numerical rela-
tion existing between them (that which fixes their position) must be rational
and, as stated in (1), a simple numerical ratio 1s to be expected in the common
cases. This, as explained later; 1s found by experience to be a fundamental
law of all erystals. Thus, in Fig. 47, starting with a face meeting the section
in mm, Il would be a common face, and for 1t the ratiois 1 : 2 in the directions
b and a; nn would be also common with the ratio 2 ; 1.

] (3) If a crystal shows the natural easy fracture, called cleavage, due to a
minimum of cohesion, the cleavage surface must be a surface of relatively
great molecular crowding, that is, one of the common or fundamental faces.
This follows (and thus gives a partial, though not complete, explanation of
cleavage) since it admits of easy proof that that plane in which the points
are clp'sesjc together 1s farthest separated from the next molecular plane.
Thus in Fig 47 compare the distance separating two adjoining planes parallel
to bb or aa, then two parallel to mm, U, nn, etc. Illustrations of the above
will be found under the special discussion of the subject of cleavage.
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32. Kinds of Molecular Groupings. — The discussion on the basis just
described shows that there are fourteen possible types of arrangement of the
molecules. These agree as to their symmetry with the seven classes defined
in Art. 26 as representing respectively the normal classes of the six systems

with also that of the trigonal (or the

rhombohedral) division of the hex-

agonal system. Of the fourteen, e —5>0 c\%;“/b
three groupings belong to the iso- i ! { NOZ
metric system (these are shown, for | cL AN
sake of 1llustration, in Fig. 48 from &2

Groth; a, cube lattifce; b, cubee& A

centered lattice; ¢, face center . :
cube lattice); two to the tetragonal; s e
one each to the hexagonal and the rhombohedral; four to the orthorhombic
system; two to the monoclinic, and one to the triclinic.

" In its simplest form, as above outlined, the theory fails to explain the ex-
istence of the classes under the several systems of a symmetry lower than that
of the normal class. It has been shown, however, by Sohncke and later by
Fedorow, Schonflies and Barlow, that the theory admits of extension. The
idea supposed by Sohncke is this: that, instead of the simple form shown, the
network may consist of a double system, one of which may be conceived of as
having a position relative to the other (1) as if pushed to one side, or (2) as if
rotated about an axis, or finally (3) as if both rotated as in (2) and displaced
asin (1) The complexity of the subject makes it impossible to develop it
here. It must suffice to say that with this extension Sohncke concludes that
there are 65 possible groups. This number has been further extended to 230
by the other authors named, but it still remains true that these fall into 32
distinet types as regards symmetry, and thus all the observed groups of forms
among crystals, described under the several systems, have a theoretical
explanation.

Literature. — A complete understanding of this subject can only be gained
by a careful study of the many papers devoted to it. An excellent and very
clear summary of the whole subjeet is given by Groth in the fourth edition of
his Physikalische Krystallographie, 1905, and by Sommerfeldt, in his Physi-
kalische Kristallographie, 1907. ,

33. X-Rays and Crystal Structure. — In 1912, while attempting to
prove a similarity in character between X-rays and light, Dr. Laue, of the
University of Zurich conceived the idea of using the ordered arrangement of
the molecules or atoms of a crystal as a “diffraction grating” for their analysis.
By placing a photographic plate behind a crystal section which in turn lay
in the path of a beam of X-rays he found that not only did the developed
plate show a dark spot in its center where the direct pencil of the X-rays had
hit it but it also showed a large number of smaller spots arranged around the
center in a regular geometrical pattern. This pattern was formed by the
interference of waves which had been diffracted in different directions by the
molecular structure of the crystal. In this way he succeeded in proving that
X-rays belong to the same class of phenomena as light but with a much
shorter wave length. The experiment showed indeed that the wave lengths
of the X-rays must be comparable to the distances between the layers of
molecular particles of crystals. Another, and, from the crystallographic point
of view, a very important, result of this investigation was the furnishing of a

}
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method for the study of the internal structure of crystals. The position of'
the smaller dark spots in the Laue photographs corresponded to that of
various planes existing in the crystal network parallel to possible crystal
faces and their arrangement indicated the symmetry of the crystal.

Following these investigations of Laue and his colleagues another fruitful
method of investigation of crystal structure by means of X-rays was devised
by W. H. and W. L. Bragg In this method the beam of X-rays meets the
crystal section with varying acute angles of incidence and the reflection of
the rays is studied. The X-rays are not reflected from the surface of the
section like light rays but because of their short wave lengths penetrate the
crystal section and are reflected from the successive layers of its molecular
structure. In studying the reflection phenomena we have to consider the
effect upon each other of these different wave trains originating from the
different layers of the crystal. In general these various reflected waves
would be in different phases of vibration and so would tend to interfere with
each other with the consequent cessation of all vibrations. But with a cer--
tain angle of incidence and reflection it would happen that the different re-
flected rays would possess on emergence from the crystal the same phase of
vibration and would therefore reinforce each other. This angle would vary
with the wave length of the X-ray used (for it has been found that the wave
length of X-rays varies with the metal that is used as the anticathode in the
X-ray bulb) and with the spacing between the molecular layers of the mineral
used. It is also obvious that there might be other angles of incidence at
which the successive wave trains would each differ in phase by two or even
more whole wave lengths from the preceding one and a similar strong re-
flected beam obtained. By the use of a special X-ray spectrometer the angles
at which these reflections take place can be accurately measured. If the
character of the X-ray used is therefore kept constant these angles of reflec-
tion give the data necessary for calculating the distance between the succes- .
sive molecular layers in the particular mineral used and for the direction
perpendicular to the surface used for reflection. The spacing of the molec-
ular layers was found to vary with different substances and in different
directions in the same substance and by making a series of observations it
has been possible to arrive at some very interesting conclusions as to the
character of the molecular structure of certain minerals as well as to the
relationship existing between the structures of different but related com-
pounds. The possibilities lying in these methods of attack are very great
and unquestionably much new information concerning crystal structure will
soon be available. An excellent summary of the methods employed and the
results already obtained will be found in * X-rays and Crystal Structure ”
by W. H. and W. L. Bragg, 1915.

GENERAL MATHEMATICAL RELATIONS OF
CRYSTALS

34. Axial Ratio, Axial Plane. — The crystallographic axes have been
defined (Art. 22) as certain lines, usually determined by the symmetry, which
are used in the description of the faces of crystals, and in the determination of
their position and angular inclination. With these objects in view, certain



GENERAL 'MATHEMATICAL RELATIONS OF CRYSTALS 2

lengths of these axes are assumed as units to which the occurring faces are
referred.

The axes are, in general, lettered a, b, ¢, to correspond to the scheme in
Fig. 49. If two of the axes are equal, they are designated q, @, ¢; if the three
are equal, a, a, a. In one system, the hexagonal, there are
four axes, lettered a, @, a, c. 49

Further, in the systems other than the isometric, one +e
of the horizontal axes is taken as the unit to which the other
axes are referred; hence the lengths of the axes express
strictly the axial ratio. Thus for sulphur (orthorhombie,
see Fig. 49) the axial ratio is

a:b:c=08131:1 :19034. P FE
For rutile (tetragonal) it is 7 b
a:c=1:064415, or, simply, ¢ = 064415.

The plane of any two of the axes is called an azial plane,
and the space included by the three axial planes is an octant,
since the total space about the center is thus divided by the A
three axes into eight parts. In the hexagonal system, how-  .t10rhombic
ever, where there are three horizontal axes, the space about
the center is divided into 12 parts, or sectants. :
36. Parameters, Indices, Symbol. — Parameters. The parameters of
a plane consist of a series of numbers which express the relative intercepts
of that plane upon the crys-
tallographic axes. They are
given in terms of the estab-
lished unit lengths of those
axes. For example, in Fig.
50 let the lines OX, OY, 0Z
be taken as the directions of
the crystallographic axes, and
* let OA, OB, OC represent
their unit lengths, designated
(always in the same order) by
the letters a, b, . Then the
intercepts for the plane (1)
HKL are OH, OK, OL; for
the plane (2) ANM they are
OA, ON, OM. But in terms
of the unit lengths of the
axes these give the following
parameters,
RS (1) ia:3b:ic
and (2) la:#4b:2c

It is to be noted that since
the two planes HKL and
MNA are parallel to each other and hence crystallographically the same,
these two sets of parameters are considered to be identical. Obviously each
of them may be changed into the other by multiplying (or dividing) by 4.

Crystal Axes

60

Z
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Indices and Symbol. Simplified and abbreviated expressions which have
been derived from the parameters of a crystal form are commonly used to
give its relations to the crystallographic axes. These are known as indices.
A number of different methods of deriving indices have been devised and
several are in use at present. The so-called Miller indices are most widely
employed and will be exclusively used in this work.* Below, a description
of the other important systems of indices is given together with the neces-
sary directions for transforming one type into another.

The Miller indices may be derived from the parameters of any form by
taking their reciprocals and clearing of fractions if necessary. For instance
take the two sets of parameters as given above.

Q) %a:1b:%c, and (2) la: $b: 2

By inversion of these expressions we obtain
(1) 4a:3b:2¢, and (2) la:3b:ic

In the case of (2) it is necessary to clear of fractions, givihg
(2) 4a:3b: 2.

The indices of this form then are 4a :3b :2c. The letters indicating the
different axes are commonly dropped and the indices in this case would be
written simply as 432, the intercepts on the different axes being indicated by
the order in which the numbers are given.

A general expression frequently used for the indices of a form belonging
to any crystal system which has three crystallographic axes is hkl. In the
hexagonal system, which has four axes, this becomes hkil. If the parameters
of a form be written so that they are fractions with the numerators always
unity then the denominators will become the same as the corresponding in-

dices. The general expression in this case would therefore be % 112 1i

The symbol of a given form is the indices of the face of that form which
has the simplest relations to the crystallographic axes. The symbol is com-
monly used to designate the whole form.

Various examples are given below illustrating the relations between param-
eters and indices.

» Parameters Miller’s Symbol
Joi B Xl mtaidbide= /22
Ja:i db: dob _gaigbige= 212
§3§§2§'éﬁ}=%a:%b:}c= 201
ja: 101w} _gaigbige= il

la : 0b:wc =

g
)

:3b:de = 100

If the axial intercepts are measured in behind on the a axis, or to the
left on the b axis, or below on the ¢ axis, they are called negative, and a minus
sign is placed over the corresponding number of the indices; as

Parameters Indices
—3a: —%b:1ic = 221
—3a: 3b:ic= 201

*In the hexagonal system the indices used are those adapted by Bravais after the
method of Miller.
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Different Systems of ‘Indices. The Weiss indices are the same as the parameters
described above. The different axes are represented by the letters a, b and ¢, each being
preceded by a number indicating the relative intercept of the face in question upon that
particular axis. For instance, a possible orthorhombic pyramid face might be represented
as la : 2b : 2c. The Weiss indices may be converted into the Miller indices by inversion
and clearing of fractions, the above S{mbol becoming then 213. In the Naumann indices
the unit pyramidal form is indicated by O in the isometric system where the three crystal
axes all have the same unit lengths or by P where the axes differ in their unit lengths.
For other forms the indices become mPn (or mOn) in which m gives the intercept upon the
vertical axis, ¢, and n the intercept upon one of the horizontal axes (@ or b), the intercept
upon the other horizontal axis being always at unity. To which particular horizontal axis
this number, refers may be indicated by a mark over it as 7 for the b axis, 7 or »’ for the
@ axis. If the intercept m or n is unity it is omitted from the indices. The pyramid face
used as an example above would therefore in the Naumann notation be represented by
2P2. Other examples are given in the table below. J. D. Dana modified tge Naumann
indices by substituting a hyphen for the letter P or O and ¢ for the infinity sign, . He
designated the fundamental pyramid form simply by 1. When the only parameter differ-
ing from unity was that one which referred to the intercept upon the vertical axis, it was
written alone; for example the pyramid face having the parameter relations of 1a : 1b : 2¢
would be indicated by 2. The Naumann and Dana indices are easily converted into the
Miller indices by arranging them in the proper order, inverting and then clearing of frac-
tions. Goldschmidt has proposed another method of deriving indices. This has the
advantage that the indices for any particular face can be derived directly from the position
of its pole on the gnomonic projection. The first number gives the linear position of the
pole in respect to the left to right medial line of the projection and in terms of the unit
pace distance of the projection (see Art. 84). The second figure similarly gives the
position of the pole in reference to the front to back medial line. These two figures con-
stitute the Goldschmidt indices of the face. If the two numbers should be the same the
second is omitted. The Goldschmidt indices are easily converted into the Miller indices
by adding 1 as the third figure and clearing of fractions and eliminating any o sign.

The relations between the Miller and the Miller-Bravais indices for the hexagonal
system are given in Art. 169.

EXAMPLES OF INDICES ACCORDING TO VARIOUS SYSTEMS OF

NOTATION
Weiss Naumann Dana Goldschmidt Miller
TaxslhE2c a2 Lo SEE T e R 2P 2 2 221
Taye: ~2hp vl Sa LTRSS RRRE | e 0P2 1-2 11 212
Ta-"cobld 20 % | . . AR L. - 2P 2-1 20 201
1 TR2DE R0 Cr r et AN S e o P2 i-2 - 2w 210
1@, 2360b1 2 100C £ .15 S st A 0 e e 0P i-i 00 100

36. Law of Rational Indices. — The study of crystals has established
the general law that the ratios between the intercepts on the axes for the
different faces on a crystal can always be expressed by rational numbers.

These ratios may be 1:2, 2:1, 2:3, 1: o, etc.,, but never 1: V2, etc.
Hence the values of Akl in the Miller symbols must always be either whole
numbers or zero.

If the form whose intercepts on the axes @, b, ¢ determine their assumed
unit lengths — the unit form as it is called — is well chosen, these numerical
values of the indices are in most cases very simple. In the Miller symbols,
0 and the numbers from 1 to 6 are most common.

The above law, which has been established as the result of experience, in
fact follows from the consideration of the molecular structure as hinted at in
an earlier paragraph (Art. 31).
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37. Form. — A form in crystallography includes all the faces which.
have a like position relative to the planes, or axes, of symmetry. The full
meaning of this will be appreciated after a study of the several systems. It
will be seen that in the most general case, that of a form having the symbol

51 (hkl), whose planes meet the assumed unit axes at unequal
lengths, there must be forty-eight like faces in the isometric
system * (see Fig. 121), twenty-four in the hexagonal (Fig. 226),
. sixteen in the tetragonal (Fig. 187), eight in the orthorhombic
(Fig. 51), four in the monoclinic, and two in the triclinic. In
the first four systems the faces named yield an enclosed solid,
and hence the form is called a closed form; in the remaining
two systems this is not true, and such forms in these and
other cases are called open forms. Fig. 298 shows a crystal
bounded by three pairs of unlike faces; each pair is hence an
/ open form. Figs. 52-55 show open forms.

The unit or fundamental form is one where parameters cor-
respond to the assumed unit lengths of the axes. Fig. 51 shows the unit
pyramid of sulphur whose symbol is (111); it has eight similar faces, the
position of which determines the ratio of the axes given in Art. 34.

ot

52 63

a a
o s~ Sl e
Basal Pinacoid Prism
(001) (110) (hkO)
54
"l ““ TAY
e i /'/
\ 7 ———— d
\ / i /
N \ /
Dome : Dome
(101), (hOD) (011), (0KL)

* The normal class is referred to in each case.
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The forms in the isometric system have special individual names, given later. In the
other systems certain general names are employed in this book which may be briefly men-
tioned here. A form whose faces are parallel to two of the axes * is called a pinacoid (from
wivat, a board). It is shown in Fig. 52. One whose faces are parallel to the vertical axis
but meet both the horizontal axes is called a prism, as Fig. 53. If the faces are parallel to
one borizontal axis only, it is a dome (Figs. 54, 55).  If the faces meet all the axes, the form
is a pyramid (Fig. 51); this name is given even if there is only one face belonging to the
form.

In Fig. 56, a(100), b(010) are pinacoids; m(110), s(120) are prisms; d(101) and k(021)
are domes; all these are open forms. Finally, e(111) is a pyramid, this being a closed form.
The relation existing in each of these cases between the symbof and the position of the
faces to the axes should be carefully studied.

As shown in the above cases, the symbol of a form is usually included in parentheses,
as (111), (100); or it may be in brackets [111] or {111}.

38. Zone. — A zone includes a series of faces on a crystal whose inter-
section-lines are mutually parallel to each other and to a common line drawn-
through the center of the crystal, called the zone-axis. This
parallelism means simply that the given faces are either all
parallel to one of the crystallographic axes or that their
parameters have a constant ratio for two of the axes. Some
simple numerical relation exists, in every case, between all
the faces in a zone, which is expressed by the zonal equation
(see Art. 45). The faces m, s, b (Fig. 56) are in a zone;
also, b and k.

If a face of a crystal falls simultaneously in two zones,
it follows that its symbol is fixed and can be determined
from the two zonal equations, without the measurement of
angles. Further, it can be proved that the face correspond-
ing to the intersection of two zones is always a possible
crystal face, that is, one having rational values for the indices
which define its position.

In many cases the zonal relation is obvious at sight, but
it can always be determined, as shown in Arts. 45, 46 by an
easy calculation.

Illustrations will be given after the methods of representing a
crystal by the various projections have been explained. Chrysolite

39. Horizontal Projections. — In addition to the usual
perspective figures of crystals, projections on the basal plane (or more gener-
ally the plane normal to the prismatic zone) are very conveniently used.
These give in fact a map of the crystal as viewed from above looking in the
direction of the axis of the prismatic zone. Figs. 30-33 give simple examples.
In these the successive faces may be indicated by accents, as in Fig. 56, passing
around in the direction of the axes a, b, @, that is, counter-clockwise. On
the construction of these projections see the Appendix A.

40. Spherical Projection. — The study of actual crystals, particularly
as regards the angular and zonal relations of their faces, is much facilitated
by the use of various projections. The simplest of these and the one from
which the others may be derived is known as the spherical projection.

In making a spherical projection of a crystal it is assumed that the erystal
lies within a sphere, the center of which coincides with the center of the

* In the tetragonal system the form (100) is, however, called a prism and (101) a
pyramid.
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crystal (7.e. the point of intersection of its crystallographic axes). From this
common center normals are drawn to the successive faces of the crystal and
continued until they meet the surface of the sphere. The points in which
these normals touch that surface locate the poles of the respective faces and
&7 together form the spherical
e projection of the -crystal.
The method of formation
and the character of the
spherical projection is shown
in Fig. 57.

It is to be noted that all
the poles of faces which lie
in the same zone on the
crystal, 7.e. faces whose in-
tersection lines are mutually
parallel, fall upon the same
R0 great circle on the sphere.

%EIS is illustrated in the
figure in the case of the
zone a-d-a and a-o-d. Con-
versely, of course, all faces
whose poles fall on the same
great circle of the spherical
projection must lie in the
same zone. A face whose
pole falls at the intersection

Spherical Projection (after Penfield) of two or more great circles

lies in two or more inde-

pendent zones, as for instance o(111), in Fig. 57. The angular relations

between the faces on the crystal are of course preserved in the angles exist-

ing between their respective poles on the spherical projection. The angles

between the poles, however, are the supplementary angles to those between

the faces on the crystal, as shown in Fig. 58. The

supplementary angles are those which are commonly

measured and recorded when studying a crystal, see —
Art. 230.

The spherical projection is very useful in getting
a mental picture of the relations existing between the
various faces and zones upon a crystal but because of
its nature does not permit of the close study and ac-
curate measurements that may be made on the other
projections described below which are made on plane
surfaces. ) IR

41. The Stereographic Projection. — The stereo- “F2SS-Secuon of portion ol
graphic projection may be best considered as derived gﬁ;ﬁéﬁgd 2
from the spherical projection in the following man- d
ner. The plane of the projection is commonly taken as the equatorial
plane of the sphere. Imaginary lines are drawn from the poles of the spheri-
cal projection to the soﬁfil_pﬁé of the sphere. The points in which thése
lines pierce the planeof the equator locate the poles in the stereographic pro-
jection. The relation between the two projections is shown in Fig. 59.

68

010
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Fig. 60 shows the same stereographic projection without the foreshortening
of Fig. 59. Commonly only the poles that lie in the northern hemisphere,
including those on the equator, are transferred to the stereographic projection.

Certain facts concerning the stereographic projection need to be noted.
Its most important charac-

ter is that all circles or eir- 2

cular arcs on the spherical _ 0oL

projection are projected as B,

arcs of true circles on the . sl 2P TR
stereographic projection.* T AN

The poles of all crystal
faces that are parallel to
the vertical crystallogra-
phic axis fall on the equa-
tor of the spherical pro-
jection and occupy the
same positions in the stere-
ographic projection. The
pole of a horizontal face
will fall on the center of
the stereographic projec-
tion. All north and south
meridians of the spherical
projection will appear as
straight radial lines in the
stereographic  projection ;
(d.e. as ares of circles hav- N . .
ing infinite radii). Other Relation between Spherical and Stereographic Projections
great circles on the spher- :
ical projection, as already stated, will be transferred to the stereographic as
circular arcs. Examples of all these are shown in Fig. 60. '
The angular relations between the poles of the various faces are preserved
in the stereographic projection but the linear distance corresponding to a
degree of arc naturally increases from the center of the projection toward its
circumference. This is illustrated in Fig. 61 where the circle represents a
vertical section through the spherical projection and the line A-B represents
the trace of the horizontal plane of the stereographic projection. A point
20° from N on the sphere is projected to the point a on the stereographic
projection, a point 45° from N is projected to b, etc. In this way a protractor
can be made by means of which angular distances from the center of the
stereographic projection can be readily determined. Fig. 62 represents such
a protractor which was devised by Penfield.f{ The mathematical relation
between the linear distance from the center of the projection and its angular
value is seen by study of Fig. 61. If the radius of the circle of the projection
is taken as unity the distance from its center to any desired point is equal to
the tangent of one half of the angle represented. For instance the distance

T~ 7/ \\

* For proof of this statement see Penfield, Am. Jour. Sci., 11, 10, 1901. 3

t This protractor and the other protractors and scales used by Penfield ‘gan be ob-
tained from the Mineralogical Laboratory of the Sheffield Scientific School of Yale Uni-
versity, New Haven, Ct.
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60
a 100
|
d 110 47110
a d1o1
olll Q111
a ol d 011 @001 don @010
[]
0111 : o111
d101
a 110 d 110
100

Stereographic Projection of the Isometric Forms, Cube, Octahedron, and Dodecahedron

61
N

b;

from the center to the point a is equivalent to the tangent of 10°, to point ¢
the tangent of 35° ete. '

Fig. 63 represents a chart used by Penfield for making stereographic
projections: The circle has a diameter of 14 em. and is graduated to de-
grees. With it go certain scales that are very useful in locating the desired
points and zonal circles. These will be briefly described later.
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For detailed descriptions of the principles of the stereographie projection
and the methods of its use the reader is referred to the various books and
articles, the titles of which are given beyond. It is possible here to give only
a brief outline of the more important methods of construction used.

62

1) T,
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Stereographic Protractor for plotting Stereographic Projections (after Penﬁéld;
reduced one-half)

(1).  To locate the pole of a face lying on a known north and south great circle,
its angular distance from the center or a point on the circumference of the pro-
jection being given. The stereographic protractor, Fig. 62, or the tangent rela-
tion as stated above, gives the proper distance. The poles labeled o (iso-
metric octahedron), Fig. 60, may be located in this way.

(2) To locate the projection of the arc of a great circle which ts not a north
and south meridian or the equator. The projections of three points on the
arc must be known. Then, since the projection of the circle will be still a
circular are, its position can be determined by the usual geometric construc-
tion for a circle with three points on its arc given. If, as is commonly the
case, the points where the great circle crosses the equator and the angle it
makes with the equator are known it is possible to get the radius of the pro-
jected arc directly from Scale No. 1, Fig. 63. The location of such a desired
arc is shown in Fig. 64. The ares shown in Fig. 60 were also located in this
way.

(3) To locate the position of the pole of a face lying on a known great circle,
which vs not a north and south. meridian, its angle from a point on the circum-
ference of the projection being known. The projected arc of a small vertical
circle, whose radius is the known angle, is drawn about the point on the ecir-
cumference of the projection and since all points on this arc must have the
required angular distance from the given point the intersection of this circle
with the known great circle will give the desired point. The radius of the
projected arc of the small vertical circle can be determined by finding the
position of three points on the projection which have the required angular
distance from the point given on the circumference of the projection and
then obtaining the center of the required circle in the usual way. Or by the
use of Scale No. 2, Fig. 63, the required radius is obtained directly. It is
to be noted that the known point on the circumference of the projection,
while the stereographic center of the small circle, is not the actual center of
the projected arc. The center will lie outside the circumference on a con-
tinuation of the radial line that joins the given point with the center of the
projection. Therefore, even if the radius of the required arc is taken from
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Scale No. 2, it will be necessary to establish at least one point on the re-
quired circle in order to find its center. These methods of construction are
illustrated in Fig. 65, in which the position is determined of the pole n (iso-

64

iven by Protracfor

Distance =.35°
See KEig. 62

Location of the arc of a great circle in the Stereographic Projection at a given angle
above the equator

66

a001 \d 011 E @01l

d 101 o111

n211
d 110

Location of pole of trapezohedron, n(211), in Stereographic Projection

metric trapezohedron) which lies on the great circle passing through the
poles a (isometric cube) and o (isometric octahedron), and makes a known
angle (351°) with a.
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(4) To locate the position of the pole of a face given the angles between it and
two other faces whose poles lie within the divided circle. Circumscribe about
the poles of the two known points small circles ‘with the proper radii and
the desired point will be located at their intersection. The two small circles
may touch at only a single point or they may intersect in two points. In
the latter case both points will meet the required conditions. The positions
of the projected small circles are readily found by drawing radii from the
center of the projection through the two known poles and then laying off on
these radii points on ¢éither side of the known poles with the required angular
distances. The center is then found between these two points in each case
and a circle drawn through them. This line of this circle will then be every-
where the required number of degrees away from the known pole. The re-
quired points may be found readily by means of the Stereographic Protrac-
tor, Fig. 62, remembering that the zero point on the protractor must always
lie at the center of the projection. This construction is illustrated in Fig. 66,
in which the points s (isometric hexoctahedron), are 22° 12’ and 19° 5’ from
the points o (isometric octahedron), and d (isometric dodecahedron). It is
to be noted here, also, that while the points o and d are the stereographic
centers of the circles about them, the actual centers are points which are
somewhat farther out from the center of the projection.

66

i a 001 \ doil E o

8213,
e@_

331
d 110

@100
Location of two poles of hexoctahedron, s, in Stereographic Projection

(5) To measure the angle between two given poinis on the stereographic
projection. If the two points lie on the circumference of the projection the
angle between them is read directly from the divisions of the circle. If they
lie on the same radial line in the projection, the angle is given by the use of
the Stereographic Protractor, Fig. 62. 1In other cases it is necessary first to
find the arc of a great circle upon which the two points lie. This is most
easily accomplished by the use of a transparent celluloid protractor upon
which the arcs of great circles are given, Fig. 67. Place this protractor over .
the projection with iis center coinciding with the center of the projection and
turn it about until the required great circle is found. Note the points where °
this circle intersects the circumference of the projection. Then place a
second transparent protractor on which small vertical circles are given,
Fig. 68, over the projection with its ends on the points of the circumference
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just determined. Now note the angular distance between the two given
points. The whole operation may also be done by use of a third trans-
parent protractor, on which the ares of both great and small circles are

given.

67

Stereographic Protractor, giving the great circles of every alternate degree (second, fourth,
etc.) (After Penfield, reduced one-half)

Stereographic Protractor, giving small circles for ever{ degree measured from a given point
on the circumference. (After Penfield, reduced one-half)

(6) To measure the angle between the arcs of two great circles on the stereo-
graphic projection. This is most conveniently accomplished by construct-
ing the arc of a great circle which shall have a 90° radius about the point at
which the two ares in question cross each other and then measuring the
angular distance between the two points at which they intersect this great
circle. Fig. 69, after Penfield, will serve to illustrate the method. First, if
it is wished to measure the angle between the divided circle and the are of
the great circle that crosses it at C it is only necessary to draw a straight
line through the center of the projection, N, which shall intersect the divided
circle at points 90° distant from C. This line will be the projection of the

“arc of a great circle about the sphere at 90° distant from C. The angle at C
is then determined by measuring with the stereographic protractor the angle
between u and v.

: In the case of the angle between two great circles that meet at some

point within the divided circle as at A, Fig. 69, it is necessary to construct -
the projected arc of the great circle 90° distant from this point This is done
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by drawing the radial line through N and A and measuring with the stereo-
graphic protractor an angle of 90° from A to the point B. The required arc
will pass through this point and the points p and p’ which are each 90° away

from the points at which the line A- N-B crosses the divided ecircle.

The

angle between = and y measured on this great circle gives the value of the

required angle at A. This is most
readily measured by the use of the
transparent protractor showing small
circles, Fig. 68. This is placed across
the projection from p to p’ and the
angle between « and y read directly
from it. ,

Wiilfing has described a stereo-
graphic net, which gives both great
and small circles for every two de-
grees. Over this is placed a sheet of
tracing paper upon which the stereo-
graphic projection is made. If the
paper is fastened at the center of the
drawing so that it can be turned into
various positions in respect to the
stereographic net below, the various
great and small circles needed can be
sketched directly upon the drawing.
Or the required points can be trans-

ferred from the net to a separate drawing by means of three point dividers.
Examples of the use of the stereographic projection will be given later

under each crystal system.
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Relation between Spherical and Gnomonic Projections

42. The Gnomonic Projection. — The characters of the gnomonic pro-
jection can best be understood by considering it to be derived from the

spherical projection (see Art. 40). In

the case of the gnomonic projection

the plane of the projection is usually taken as the horizontal plane which

y
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lies tangent to the north pole of the sphere of the spherical projection. Im-
aginary lines are then taken from the center of the sphere through the poles
of the crystal faces that lie on its surface and extended until they touch the
plane of the projection. The points in which these lines touch that plane
constitute the gnomonic projection of the forms represented. Fig. 70 shows
the relations between the spherical and gnomonic projections, using the same
isometric crystal forms (cube, octahedron and dodecahedron) as were em-
ployed to illustrate the principles of the Stereographic Projection (Art. 41).
Fig. 71 shows the gnomonic projection of the same set of forms.
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Gnomonic Projection of Cube, Octahedron and Dodecahedron

The following features of the gnomonic projection are important. All
great circles on the spherical projection become straight lines when trans-
ferred to the gnomonic. The poles of a series of crystal faces which belong
in the same zone will, therefore, on the gnomonic projection, lie on a straight
line. This primary distinction between the stereographic and gnomonic pro-
jections will be readily seen by a comparison of Figs. 60 and 71. The pole
of a horizontal crystal face (like the top face of the cube) will fall at the center
of the projection. The poles of vertical crystal faces will lie on the plane
of projection only at infinite distances from the center. This is shown by a
consideration of Fig. 70. Such faces are commonly indicated on the pro-
jection by the use of radial lines or arrows which indicate the directions in
which their poles lie. This is illustrated in the case of the vertical cube and
dodecahedron faces in Fig. 71. Crystal faces having a steep inclination with
the horizontal plane must frequently be indicated in the same way.
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A simple relation exists between the linear distance from the center of
the projection to a given point and the angular distance represented. This
is shown in Fig. 72 where the circle is assumed to be a vertical cross-section
of the sphere of the spherical projection and the line A-B represents the
trace of the plane of the gnomonic projection. It is evident from this figure

: that if the radius of the

72 circle is taken as unity

A N aUebiI o . B the linear distances
. N-d/, NV, etc., are the
» tangents of the angles
¢ 20°, 35° ete. Conse-

' quently in the gnomonie
projection the distance
of a given pole from the
center of the projection,
Y considering the funda-
mental distance O-N,
Fig. 72, to be unity, is
equal to the tangent of
the angle represented.
In the case of the stereo-
graphic projection this
distance is equal to the
tan nt of one half the angle, see Art. 41. The stereographic scale, used

e stereographic protractor, Fig. 62, can therefore be adapted for use
1n the gnomonic projection by taking the point on.it reading at twice the
desired angle. The simplest method of plotting, however, is to make a
direct use of the tangent relation. The distance O-N, Fig. 72, is taken at
some convenient length and then E
by multiplying this distance by the 73
natural tangent of the angle desired
the linear distance of the pole in
question from the center of the
projection is obtained. Frequently
the distance O-N is taken as 5 cm.
In making a gnomonie projection
a circle is commonly drawn about
the center of the projection, known
as the fundamental circle, with a
radius equal to this chosen dis-
tance. Points that have an angular
distance of 45° with the center
point of the projection will lie on
the circumference of this circle. Measurement of angle between any two poles
Commonly also the gnomonic pro- (Ay, A2) on the Gnomonic Projection
jection is surrounded by a square
border of two parallel lines on which is indicated the directions in which lie
the poles that cannot appear on the projection because of the vertical or
steeply inclined position of their faces. These characters are shown in
Fig. 71.

To measure the angle between two poles on the gnomonic projection. In

N

?““Mmenta[ Cir,,
L,
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Fig. 73 let A, and A, be any two points the angle between which is desired.
First draw a straight line through them or, in other words, find the direction
of the zonal line upon which they lie. Next erect the line O-A perpendicular
to this zonal line and passing through the center O of the projection. On
this line establish the point N, the distance A-N being equal to the hypo-
thenuse of the right triangle AOP or the distance A—P. The point N is
known as the angle-point of the zone A;-A,. The angle A;NA, is equal to
the desired angle between the points A4, and 4,. In the case of zonal lines
that pass through the center of the projection this angle-point will lie on
the circumference of the fundamental circle at the terminus of a radius
which is at right angles to the zonal line in question. In the case of vertical
crystal faces whose poles lie at an infinite distance the center of the projec-
tion is itself the angle-point. :

The explanation of the above method may be given as follows. In Fig. 74 let the circle
represent a vertical section through the sphere of the spherical projection and the line
N-A the trace of the plane of the gnomonic projection. Let the line A-C represent the
intersection of a zonal plane lying at right angles to the plane of the drawing. The zonal
line representing the intersection of this zonal plane with the plane of the gnomonic pro-
{ection would therefore be a straight
ine through point A which would be
perpendicular to the plane of the draw-
ing. The angle between any two poles
lying on this zonal line would be deter-
mined by the angle formed by the lines
drawn from these poles to the point C.
IfA we consider this zonal line which
passes through A perpendicular to the
drawing as an axis around which we
may revolve its zonal plane, the point
C may be moved so that it will lie'in
the plane of the gnomonic projection
and fall at N, the distance A-N being
equal to A-C. The character of the
point C has not been changed by this
transfer and the point N becomes the
angle-point of the zonal line running
through A and the angle between any two poles on this line may be determined by running
lines from them to this point and measuring the included angle. The point N lies on the
line running through O (center of the gnomonic projection) and the distance A-N is equal
to the hypothenuse, A-C, of the right triangle one side of which is equal to A-O and
the other to O-C (the radius of the fundamental circle).

To measure the angle between parallel zonal lines on the gnomonic projection.
In Fig. 75 let the two lines Zone 1 and Zone 2 represent two parallel zonal
lines the angle between which is desired. Draw the radial line trom the
center of the projection, O, at right angles to these zonal lines intersecting
them at the points 4; and 4,. Make O—P at right angles to O-4:4,. The
angle 4,PA, will give the angle between the two zones. The construction
will be readily understood if the figure is supposed to be turned on the line
0-A,45 as on an axis until the point P becomes the center of the spherical
projection The broken arc now represents a vertical cross section of the
sphere of the spherical projection and the points a; and @, the points where
the two zonal lines cross it. The angle at P is obviously the angle between
the two zones.

The angle between Zone 2 and the prism zone, the line of which lies at
infinity on the gnomonic projection, is given in Fig. 75 by the angle A;PN
which is the same as A14,P.
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A gnomonic net, similar in character to the stereographic net described
in Art. 41, is useful in plotting the points of a projection or in making meas-
urements upon it. The straight lines upon it represent the projection of the

’ arcs of great circles of the spherical

75 projection, while the hyperbola curves

represent those of the small vertical
circles.

The gnomonic projection is most
commonly used in connection with
the measurement of crystal angles by
means of the two-circle goniometer.
This use will be explained later, see
Art. 232. For more detailed descrip-
tions of the principles and uses of
the gnomonic projection the reader is
referred to the literature listed below.

References on the Stereographic and
Gnomonic Projections.

In addition to the descriptions of these

Measurement of the angle between parailel projections that are given in many general

zones on the Gnomonic Projection crystallographic texts the following books
and papers are of value.

Boecke, H, E. Die Anwendung der stereographischen Projektion bei kristallographi-
schen Untersuchungen, 1911. Die gnomonische Projektion in ihrer Anwendung auf kris-
tallographische Aufgaben, 1913. )

Evans, J. W. Gnomonic Projections in two planes. Min. Mag., 14, 149, 1905.

Goldschmidt, V. Uber Projektion und graphische Kristallberechnung, 1887.

Gossner, B. Kiristallberechnung und Kristallzeichnung, 1914. :

Hilton, H. The Gnomonic Net, Min. Mag., 14, 18-20, 1904. The Construction of
Crystallographic Projections, Min. Mag., 14, 99-103, 1905. Some Applications of the
Gnomonic Projection to Crystallography, Min. Mag., 14, 104-108, 1905.

Hutchinson, A. On a protractor for use in constructing stereographic and gnomonic
projections of the sphere, Min. Mag., 15, 94112, 1908.

Palache, Charles. The Gnomonic Projection. Amer. Min., b, 67, 1920.

Penfield, S. L. The Stereographie Projection and Its Possibilities from a Graphical
Standpoint, Am. J. Sei., 9, 1-24, 115-144, 1901. On the Solution of Problems in Crystal-
lography by Means of Graphical Methods based upon Spherical

and Plane Trigonometry. Am. J. Sei., 14, 249-284, 1902. On the ' 76
Drawing of Crystals from Stereographic and Gnomonic Projections, —
Am, J. Sei., 21, 206-215, 1906. ; 7

Smith, G. H. H. On the Advantages of the Gnomonic Projec- of a [e[\E

1ii90(1)13and its use in the Drawing of Crystals, Min. Mag., 13, 309-321,

43. Angles between Faces. — The angles most con- |’ # i s @
veniently used with the Miller symbols, and those given ;
in this work, are the normal angles, that is, the angles be- Bt
tween the poles or normals to the faces, measured on arcs
of great circles joining the poles as shown on the stereo Chrysolite

graphic projection. These normal angles are the supple-
ments of the actual interfacial angles, as has been explamned.

The relations between these normal angles, for example in a given zone, is much simpler
than those existing between the actual interfacial angles. Thus it is always true that, for a
series of faces in the same zone, the normal angle between two end faces is equal to the
sum of the angles of faces falling between. Thus (Figs. 76, 77) the normal angle of
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ab(100 A 010) is the sum of am(100 A 110), ms(110 A 120), and sb(120 A 010). This
relation holds true in all the systems.
Furthermore, it will be seen that, supposing aca’ (Fig. 77) is a plane of symmetry as in
the orthorhombic system, the angle
100 A 110, or am (Fig. 76), is half 7
the angle 110 A 110(mm’”’). Similarly 4
010 A 120(bs) is half the angle 120 A 5 00 ;
120(ss’); again, 100 A 111(ae) is the 0 -
complement of half the angle 111 A
111(ee’) and 010 A 111(be) the comple- s
ment of half the angle 111 A 111(ee’”’).
Here, as throughout this work, the i lon
sign A 1s used to represent the angle BN 7 A
between two faces, usually designated G 7
by letters. .

44. Use of the Stereographic - 0z ol1 1l jem
Projection to Exhibit the Sym- K W |k
metry. — The symmetry of any
one of the crystalline classes may N o Vi
be readily exhibited by the help 12 2
of the stereographic projection.

The axes of binary, trigonal, 12 120
tetragonal and hexagonal sym- <
metry are represented respec- m” n
tively by the following signs: 'y
« A® o Further, a plane of gtereographic Projection of Faces on Chrysohte
symmetry is represented by a full Crystal, Fig. 76
line (zone-circle), while a dotted
line indicates that the plane of symmetry is wanting. The position of the
crystallographic axes is shown by arrows at the extremities of the lines. The

pole of a face in the upper half of

78 the crystal (above the plane of pro-

jection) is represented by a cross;

one below by a circle. If two like

faces fall in a vertical zone a double

sign is used, a cross within the

circle. Figs. 91, 128, 140, etc.,
give illustrations.

45. General Relations be-
tween Planes in the Same Zone.
— Certain important relations
exist between the indices of faces
that lie in the same zone. All
faces to belong to the same zone,
tautozonal faces as they are called,
must have their mutual intersec-
tions parallel to a given direction,
see Art. 38. This direction is
known as the axis of the zone.
The position of this zonal axis can
*  be expressed by what is known as
the zonal symbol. Consider Fig. 78, where is represented two crystal faces,
ABC, and CDE, intersecting the crystallographic axes X, Y and Z. In the
illustration, for simplicity, both faces have been assumed to pass through

I
010d

101 \J@ 121
1M |d 111
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the point C on the axis Z. This, of course, is possible since any crystal
plane may be moved parallel to itself without altering its relative intercepts
on the crystal axes. These two planes intersect in the line C-W, which
then becomes the direction of the zonal axis for the zone in which they
lie. Let the line O-P which has been drawn parallel to this direction
represent that axis. In the parallelogram of which it is the diagonal the
length of the edge O-S and its parallel edges have been taken as equal to the
distance O—C. The point P on the zonal axis and therefore the direction
of the axis itself is fixed by the three coérdinates, O-M, O-R, and O-S. By
means of the consideration of similar triangles it is possible to prove that the
values of these codrdinates may be expressed by,

O-M = (kr — lg)a; O-R = (Ip — hr)b; O-S = (hq — kp)c,

where a, b, ¢ represent the unit lengths of the three crystallographic axes,
X, Y, Z and (hkl) and (pgr) represent the indices of the two faces ABC and
CDE. These expressions are usually simplified by substituting v = kr — lg,
v=1Ip — hr, w= hq — kp, giving O-M = ua, O-R = vb and O-S = wc.
The three figures [uvw] are said to be the symbol of the zone in question.
They represent the reciprocals of the values of the three codrdinates, or in
other words are the indices of a point, P, on the zonal axis. They may
most readily be obtained by a system of cross-multiplication and subtraction
according to the following scheme. Write the indices of one face twice in
their proper order and directly under them the corresponding indices of the
second face. Cross off the first and last number of each series. Then mul-
tiply the figures joined by the cross lines, see below, and substract the prod-
uct of the two joined by light lines from that of those joined by heavy lines,
working from left to right. The three numbers obtained will in their order

correspond to u,.v and w.
foa st
Pl q =N D1, ||

u="Fkr—lgv=1Ip—hr,w=hq— kp.

Since the zonal symbol for a given zone may be obtained from the indices
of any two faces lying in that zone it follows that the indices of every pos-
sible face in that zone must have definite relations to the zonal symbol. For
a given face with indices (zyz), in a zone having the symbol [urw] the follow-
ing equation, known as the zonal equation, must hold true.

ux + vy + wz = 0.

In this way it can be readily shown whether or not a given face can lie in a
certain zone.

Further if [uvw] be the symbol of one zone and [efg] that of another inter-
secting it, then the point of intersection will always be the pole of a possible
crystal face. Its indices (hkl) must satisfy the equations of both zones and
may be obtained by combining them or the same result may be had by tak-
ing the symbols of the two zones and subjecting them to the same sort of cross-
multiplication by which they were themselves criginally derived.
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46. — Examples of Zones and Zonal Relations. — The following are cases in which the
zonal equation is seen at once. In Figs. 76 and 77 the faces a(100), m(110), s(120), b(010)
form a vertical zone with mutually parallel intersections, since they are all parallei to the
vertical axis; that is, for all faces in this zone it must be true that I = 0.

Again, the faces a(100), d(101), ¢(001) are in a zone, all being parallel to the horizontal
axis b; hence for them and all others in this zone k = 0. Also b(010), £(021), 2(011), ¢(001)
are in a zone, all being parallel to the axis a, so that » = 0.

Also the faces f(121), e(111), d(101), ¢’/(111), f"/(121) are in a zone, since they have a
common ratio for the axes @ : ¢. With them, obviously, A = I. .

The faces ¢(001), e(111), m(110) are also in a zone, and again c(001), f(121), s(120),
though intersections do not happen to be made between ¢ and ¢ in the one case, and ¢ and
fin the other. For each of these zones it is true that there is a common ratio of the hori-
zontal axes, that is, of & to k in the indices. For the first it may be shown that b = k; for
the second, that 2h = k.

All the relations named may be obtained at once from the 79
above scheme. For example, for the faces $(120) and f(121)
the scheme gives

151621 50 T 2a1 0
XXX
N\
1|42 1 .*l. 2
=N 2 v=1, w = 0; o.2h —k =0,0r 2h = k.

The symbol of a face lying at once in two zones, as stated
above, must satisfy the zonal equation of each; these symbols
are hence easily obtained either by combining the equations
or by a scheme of multiplication like that given above.

For example, in Fig. 79, of sulphur, the face lettered z is in
the zone (1) with 5(010) and s(113), also in zone (2) with p(111)
and 7(01T).” These zones give, respectively:

(C SO B (i v S [ [ R Lt i |

ool eod

TS 3 1

S ORm e ORI L T
u=38 v=0 w=1I. e=0 f=1, g¢g=1.
Hence 1;cor (1) the zonal equation is 3k =1I; for (2) k = 1. Combining these, we obtain
=1,k=231=3.

The symbol of the face z is, therefore, 133. A _
The same result is given by multiplying the zonal symbols 011, 301, together after the

same method, thus: = ¥
e
AT AW P R
1 3 3 Hence, again, z = 133.

This method of calculation belongs to all the different systems. In the hexagonal
system, in which there are four indices, one of the three referring to the horizontal axes
(usually the third) is omitted when the zonal relations are applied. See Art. 166.

47. Methods of Calculation. — In general the angles between the poles
can be calculated by the methods of spherical trigonometry from the tri-
angles shown in the spherical projection — which for the most part are right-
angled. Certain fundamental relations connect the axes with the elemental
angles of the projection; the most important of these are given under the
individual systems. Some general relations only are explained here.
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48. Relations between the Indices of a Plane and the Angle made by it
with the Axes. — In Fig. 80 let the three lines, X, Y, and Z represent three
crystallographic axes making any angles with each
other and let a, b and ¢ represent their unit lengths.
Assume any face HKL cutting these axes with the
intercepts O-H, O-K and O-L. Let O-p-P be a
normal to the plane HKL intersecting the plane at
p and the enveloping surface of the spherical pro-
jection at P. Let hkl represent the indices of the
given form. Since the line O-p is normal to the
plane HKL the triangles HOp, KOp and LOp are
right angles and the following relations hold true.

80

g% = cos HOp; (%12 = cos KOp; g% = cos LOp.
The angles HOp, KOp, and LOp are equal, respectively, to the angles repre-
sented on the spherical projection by the arcs PX, PY and PZ and OH = %,

OK = ’l—:;, OL = g By substituting we have,

OP = %cos RXE= %cos PYs= lgcos B

This equation is fundamental, and several of the relations given beyond are
deduced from it.

81 82

100 X

The most useful application is that when the axial angles are 90°, as represented in Fig.
81; then X, Y, Z are the normals to 100, 010, 001, respectively. Also if the plane HKL is
taken as a face of the unit pyramid, that is, if its intercepts on the axes are taken as the
unit lengths
OH = q, OK =b, OL = .

Then the lines HK, HL, KL give also the intersections of the planes 110, 101, 011 on
the three axial planes, and their poles are hence at the points fixed by normals to these
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linlej drawn from O. It will be obvious from this figure, then, that the following relations
hold true:

)

tan (100 A 110) =

b

tan (001 A 101) =

Tl QIla oNe

tan (001 A 011) =

These values are often used later.

49. Cotangent and Tangent Relations. — In the case of four faces in a
zone concerning which we know, either the angles between all the faces and
the indices of three of them, or the angles between three faces and all the
indices, it is possible by either a simple graphical method of plotting or by

/calculation to determine the missing angle or indices.

To illustrate the graphic method first let Fig. 82 represent a cross section

perpendicular to the prism zone of a rhodonite erystal. The traces upon the

" plane of the drawing of the faces a(100) and 5(010) provide the direction
of the lines of reference X and Y. It is assumed that the position of the third
face m(110) is known and a line drawn parallel to its trace upon the plane of
the drawing from the point X will give its relative intercepts upon the two
lines of reference. These intercepts do not correspond to the unit lengths
of the axes a and b since, rhodonite being triclinic, these axes do not lie in
the plane of the drawing but they represent rather the unit lengths of these
axes as foreshortened by projection upon that plane. This makes no dif-
ference, however, since it will still be true that all faces lying in the prism
zone of rhodonite must intercept these two lines in distances which will have
rational relations to the lengths of the intercepts of m(110). It is now as-
sumed that a fourth face f has the indices (130) and its angular position in
respeet to the other faces in the zone is required. From its indices it must
intercept the two lines of reference X—X’ and Y=Y’ in the ratio of 1 to 3.
Let OX equal 1 on X-X’ and OZ equal 3 on Y-Y’. Then a line joining.
these two points will give the direction of the trace of f upon the plane of
the drawing and so determine the angles it will make with the other faces in
the zone.

If, on the other hand, the angles between f and the other faces in the
zone were known, the position of the trace of f upon the plane of the drawing
could be found, and so its relative intercepts (and indices) upon
the two lines of reference be determined. 83

If the method of calculation is used let P, Q, S and R be the poles of
four faces in a zone (Fig. 83) taken in such an order * that PQ < PR and
let the indices of these faces be respectively

P Q R S
hkl par wuw Yz Q
Then it may be proved that

cot PS — cot PR _ (P.Q)
cot PQ — cot PR~ (Q.R)

(S.R)
®.8)

X

* In the application of this principle it is essential that the planes should be taken in
the proper order, as shown above; to accomplish this it is often necessary to use the in-

dices and corresponding angles, not of (hkl), but the face opposite (A kI, ete.
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where
123 1X2 2 X3 3X1
P, hkl
P Qpgr | _hg—kp_kr—1lg_Ip—hr
QR) | Q, par P—qu qw—T0  TU— pw

) UDW,
123 1X2 2X3 3 X1
S, zyz
SR)|Rww| v —yu_yw—2v 2u—aw
(PS) | P, kil |  hy —kx ke —ly lx — he
Sexyz

If one of these fractions reduces to an indeterminate form, g, then one of the others
must be taken in its place. ; !
This formula is chiefly used in the monoclinic and triclinic systems; and some special

cases are referred to under these systems.

The cotangent relation becomes much simplified for a rectangular zone,
that is, a zone between a pinacoid and a face lying in a zone at right angles
to it so that the angle PR becomes 90°. In Fig. 83 let P(hkl) and Q(pgr)
be two faces lying in the zone between a(100) and d(011) with the angle
a A d=90°. Let Pa and Qa represent the angles between the two faces
and the pinacoid a. Then the following holds true.

~ﬁxtanPa_L_£
p tanQa ¢ 71’
or the faces P and Q lie in zones with the other pinacoids 5(010) or ¢(001)
the expression becomes

ﬁ_lc_xtan]?b_g
p q tan Qb 1’
ﬁ k_ éxtanPc.
P q tan Q¢

If the zone in question lies between two pinacoids which are at right
angles to each other so that the indices of the faces P and Q become either
hk0 and pq0, kOl and pOr or 0kl and Ogr, we have :

tan (100 A RkO) _ &k p,

tan (100 A pg0) % ¢’ 5

tan (001 A hOl) Lw, 7 o

tan (001 A p0r) [ "p’

tan (001 A Okl) k&

tan (001 A Ogr) [~

These equations are the ones ordinarily employed to determine the symbol of any pris-
matic plane or dome.

The most common and important application of this tangent principle is where the
positions of the unit faces 110, 101, 011 are known, then the relation becomes

tan (100 A hk0) tan (010 A kk0) _

k
tan (100 A 110) ~ &’

_t

I

tan (010 A 110)
tan (001 A ROI)

tan (001 A OKl)
tan (001 A 101)

&
Also, ZE

tan (001 A O11)
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Thus the tangents of angles between the base, 001, and 102, 203, 302, 201, etc., are
respectively 3, 2, %, 2 times the tangent of the angle between 001 and 101. Again, the

tangent of the angle 100 A 120 is twice the tangent of 100 A 110 (here;;z = 2), and one-

half the tangent of 010 A 110.

These last relations are shown clearly in Fig.
84 which represents a cross-section of a barite
crystal showing the macrodome zone between
a(100) and ¢(001). Itisassumed that the angles
between the faces a, u, d, I and ¢ have been
measured and the positions of their poles deter-
mined as indicated in the figure. The broken
lines drawn from a point z on the line represent~
ing the a crystallographic axis show the direction
of the traces of these faces upon the plane of the
a and c axes. If the face u 1s assumed to be the
unit dome (101) it will intersect the two axes at
distances proportional to their unit lengths,
namely O-X and O-Y. The other faces d and [
are seen to intersect the ¢ axis at § and } the
distance O-Y, giving them the indices (102) and
(104). But the intercepts on O-Y for the three
faces u, d and I are proportional to the tangents
of the angles between their poles and that of
¢(001) as shown below.

tan 58° 103’ = 1.6112 = 1
tan 38° 511’ = .8056 = %
tan 21° 561’ = 4028 = %
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I. ISOMETRIC SYSTEM
(Regular or Cubic System)

50. THE IsoMETRIC SYSTEM embraces all the forms which are referred to
three axes of equal lengths and at right angles to each other. Since these
axes are mutually interchangeable it is customary to designate them all by

85 the letter a. When properly orientated (i.e. placed in
the commonly accepted position for study) one of
ag these axes has a vertical position and of the two

which lie in the horizontal plane, one is perpendicular
and the other parallel to the observer. The order in

- which the axes are referred to in giving the relations
v —+  of any face to them is indicated in Fig. 85 by lettering
a them a;, @ and a;. The positive and negative ends

of each axis are also shown.
There are five classes here included; of these the
I normal class,* which possesses the highest degree of
oo ric A Cs symmetry for the system and, indeed, for all crystals,
is by far the most important. Two of the other
classes, the pyritohearal and tetrahedral, also have numerous representatives
among minerals.

1. NORMAL CLASS (1). GALENA TYPE
(Hexoctahedral or Holohedral Class)

51. Symmetry. — The symmetry of each of the types of solids enumer-
ated in the following table, as belonging to this class, and of all their com-
binations, is as follows.

Azes of Symmetry. There are three principal axes of tetragonal sym-
metry which are coincident with the crystallographic axes and are some-
times known as the cubic axes since they are perpendicular to the faces of
the cube. There are three diagonal axes of trigonal symmetry which emerge
in the middle of the octants formed by the cubic axes. These are known as
the octahedral axes since they are perpendicular to the faces of the octahedron.
Lastly there are six diagonal axes of binary symmetry which bisect the plane
angles made by the cubic axes. These are perpendicular to the faces of the
dodecahedron and are known as the dodecahedral axes. These symmetry
axes are shown in the Figs. 86-88. :

Planes of Symmetry. There are three principal planes of symmetry
which are at right angles to each other and whose intersections fix the posi-

* It is called normal, as before stated, since it is the most common and hence by far the
most important class under the system; also, more fundamentally, because the forms here
included possess the highest grade of symmetry possible in the system. The cube is a pos-
sible form in each of the five classes of this system, but although these forms are alike geo-
metrically, it is only the cube of the normal class that has the full symmetry as regards
molecular structure which its geometrical shape suggests. If a crystal is said to belong to
the isometric system, without further qualification; it is to be understood that it is included
here. Similar remarks apply to the normal classes of the other systems.
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tion of the crystallographic axes, Fig. 89. In addition there are six diagonal

planes of symmetry which bisect the angles between the principal planes,
Fig. 90.
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The accompanying stereographic projection
(Fig. 91), constructed in accordance with the
principles explained in Art. 44, shows the dis-
tribution of the faces of the'general form, hkl
(hexoctahedron) and hence represents clearly
the symmetry of the class. Compare also the
projections given later.. = =

52. Forms. — The v_.p'fiousg‘,possible forms
belonging to this class, and possessing the
symmetry defined, may be grouped under seven
types of solids. Theseare enumerated in the
following table, con ecing with the sim-
plest. ) w

~ Symmetry of Normal Class,
Isometric System §
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Indices

155 CUbes . S8 Sbrssite bbbz (100)

2. Octahedron............... (111)

3. Dodecahedron............. 110

4. Tetrahexahedron........... (hkO) as, (310); (210); (320), etc.
5. Trisoctahedron............ (hh) as, (331); (221); (332), ete.
6. Trapezohedron............ (hll) as, (311); (211); (322), ete.
7. Hexoctahedron............ (RKT) as, (421); (321), etc.

Attention is called to the letters uniformly used in this work and in Dana’s System of
Mineralogy (1892) to designate certain of the isometric forms.* They are:

Cube: a.

Octahedron: o.

Dodecahedron: d.

Tetrahexahedrons: e = 210; f = 310; g = 320; h = 410.
Trisoctahedrons: p = 221; ¢ = 331; r = 332; p = 441.
Trapezohedrons: m = 311 = 211 8 = 322
Hexoctahedrons: s = 321; ¢ = 421.

53. Cube. — The cube, whose general symbol is (100), is shown in
Fig. 92. It is bounded by six similar faces, each parallel to two of the axes.
Each face is a square, and the interfacial angles are all 90°. The faces of
the cube are parallel to the principal or axial planes of symmetry.

92

1 001

00| | o010

Cube Octahedron Dodecahedron

b4. Octahedron. — The octahedron, shown in*Fig. 93, has the general
symbol (111). It is bounded by eight similar faces, each meetlng the three
axes at equal distances. Each face is an equilateral triangle with plane
angles of 60°. The normal interfacial angle, (111 A 111), is 70° 31’ 44",

56. Dodecahedron. — The rhombic dodecahedron,t shown in Fig. 94,
has the general symbol (110). It is bounded. by twelve faces, each of which
meets two of the axes at equal distances and is parallel to the third axis.
Each face is a rhomb with plane angles of 703° and 1093°. The normal in-
terfacial angle is 60°. The faces of the dodecahedron are parallel to the six
auxiliary, or diagonal, planes of symmetry. | t* {5

b ;I‘he usage followed here (as also in the other systemsj I8in r?ost cases that of Miller

(1852
1 The dodecahedron of the crystallographer is this form.
commonly found on crystals of garnet. Geomctricians ree
by twelve similar faces; of these the regular (pentﬁﬁ,onal)
portant. In crystallography this SOlld is impossible thou
_mates to it. (See Art. 68.) f o

i &% 9

xth rhombic shaped faces
various solids bounded
edron is the most im-
pyritohedron approxi-
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It will be remembered that, while the forms described are designatea respectively by
the symbols (100), (111), and (110), each face of any one of the forms has its own indices.
Thus for the cube the six faces have the indices

100, 010, 001, 100, 010, O001.

For the octahedron the indices of the eight faces are:
Above 111, 111, 111, 111;

Below 111, 7111, Ti1I, 11I.
For the dodecahedron the indices of the twelve faces are:
110, 110, 110, 17o,

101, 101, 10I, 10L,
011, o011, o011, o1l

These should be carefully studied with reference to the figures (and to models), and also
to the projections (Figs. 125, 126). The student should become thoroughly familiar with
these individual indices and the relations to the axes which they express, so that he can
give at once the indices of any face required.

96 97
a
’ %
Cube and Octahedron Cube and Octahedron Octahedron and Cube

LA NS e

A

Dodecahedron and Cube Octahedron and Dodecahedron and
Dodecahedron Octahedron

56. Combinations of the Cube, Octahedron, and Dodecahedron. —
Figs. 95, 96, 97 represent combinations of the cube and octahedron; Figs.
98, 101 of the cube and dodecahedron; Figs. 99, 100 of the octahedron and
dodecahedron; finally, Figs. 102, 103 show combinations of the three forms.
The predominating form, as the cube in Fig. 95, the octahedron in Fig. 97,
ete., is usually said to be modified by the faces of the other forms. In Fig.
96 the cube and octahedron are sometimes said to be “in equilibrium,”
silnce tll)le faces of the octahedron meet at the middle points ofsthe edges of
the cube. v i
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It should be carefully noticed, further, that the octahedral faces replace
the solid angles of the cube, as regular triangles equally inclined to the adja-
cent cubic faces, as shown in Fig. 95. Again, the square cubic faces replace
the six solid angles of the octahedron, being equally inclined to the adjacent
octahedral faces (Fig. 97). The faces of the dodecahedron truncate * the
twelve similar edges of the cube, as shown in Fig. 101. They also truncate
the twelve edges of the octahedron (Fig. 99). Further, in Fig. 98 the cubic
faces replace the six tetrahedral solid angles of the dodecahedron, while the
octahedral faces replace its eight trihedral solid angles (Fig. 100).

101

4-@

103

4

Cube and Dodeca- Cube, Octahedron and Octahedron, Cube and
hedron Dodecahedron Dodecahedron

The normal interfacial angles for adjacent faces are as follows:

Cube on octahedron, ao. 100 A 111 = 54° 44’ 8",
Cube on dodecahedron, ad, 100 A 110 = 45° O’ 0”.
Octahedron on dodecahedron, od, 111 A 110 = 35° 15’ 52",

57. As explained in Art. 18 actual crystals always deviate more or less widely from the
ideal solids figured, in consequence of the unequal development of like faces. Such crystals,
therefore, do not satisfy the geometrical definition of right symmetry relatively to the three
principal and the six auxiliary planes mentioned on p. 53 but they do conform to the con-
ditions of crystallographic symmetry, requiring like angular position for similar faces.
Again, it will be noted that in a combination form many of the faces do not actually meet
the axes within the crystal, as, for example, the octahedral face o in Fig. 95. It is still true,
however, that this face would meet the axes at equal distances if produced; and since the
azial ratio is the essential point in the case of each form, and the actual lengths of the axes
are of no importance, it is not necessary that the faces of the different forms in a crystal
should be referred to the same actual axial lengths. The above remarks will be seen to
apply also to all the other forms and combinations of forms deseribed in the pages following.

58. Tetrahexahedron. — The tetrahexahedron (Figs. 104, 105, 106) is
bounded by twenty-four faces, each of which is an isosceles triangle. Four
of these faces together occupy the position of one face of the cube (hexahe-
dron) whence the name commonly applied to this form. The general symbol
is (hk0), hence each face is parallel to one of the axes while it meets the other
two axes at unequal distances which are definite multiples of each other.
There are two kinds of edges, lettered A and C in Fig. 104; the interfacial
angle of either edge is sufficient to determine the symbol of a given form
(see below). The angles of some of the common forms are given on a later
page (p. 63).

* The words truncate, truncation, are used only when the modifying face makes equal
angles with the adjacent similar faces.
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There may be a large number of tetrahexahedrons, as the ratio of the
intercepts of the two axes, and hence of & to k varies; for example, (410),
(310), (210), (320), ete. The form (210) is shown in Fig. 104; (410) in
Fig. 105, and (530) in Fig. 106. All the tetrahexahedrons fall in a zone
with a cubic face and a dodecabedral face. As h increases relatively to k the
form approaches the cube (in which 2 : & = o : 1 or 1 : 0), while as it dimin-
ishes and becomes more and more nearly equal to k in value it approaches
the dodecahedron; for which h = k. Compare Fig. 105 and Fig. 106; also
Figs. 125, 126. The special symbols belonging to each face of the tetra-
hexahedron should be carefully noted.

104 106 106
021 ‘
201 _
210 210 ¢ 1207
£s A /
il e
Tetrahexahedrons
107 : 108
a
e
a e a
Cube and Tetrahexa- Octahedron and Dodecahedron and
hedron Tetrahexahedron ~ Tetrahexahedron

The faces of the tetrahexahedron bevel * the twelve similar edges of the
cube, as in Fig. 107; they replace the solid angles of the octahedron by four
faces inclined on the edges (Fig. 108; f = 310), and also the tetrahedral
solid angles of the dodecahedron by four faces inclined on the faces (Fig.
109; h = 410).

69. Trisoctahedron. — The trisoctahedron (Fig. 110) is bounded by
twenty-four similar faces; each of these is an isosceles triangle, and three
together occupy the position of an octahedral face, whence the common
name. Further, to distinguish it- from the trapezohedron (or tetragonal
trisoctahedron), it is sometimes called the trigonal trisoctahedron. There are
two kinds of edges, lettered A and B in Fig. 110, and the interfacial angle
corres;ionding to either is sufficient for the determination of the special
symbol. ’

_* The word bevel is nsed when two like faces replace the edge of .a form and hence are
inclined at equal angles to its adjacent similar faces.
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The general symbol is (hhl); common forms are (221), (331), ete. Kach
face of the trisoctahedron meets two of the axes at a distance less than unity
and the third at the unit length, or (which is an identical expression *) it
meets two of the axes at the unit length and the third at a distance greater
than unity. The indices belonging to each face should be carefully noted.
The normal interfacial angles for some of the more common forms are given
on a later page.

110 111 112

4

ST =Y

Trisoctahedron Cube and Trisoctahedron Octahedron and
Trisoctahedron

60. Trapezohedron. — The trapezohedron T (Figs. 113, 114) is bounded
by twenty-four similar faces, each of them a quadrilateral or trapezium. It
also bears in appearance a certain relation to the octahedron, whence the
name, sometimes employed, of tetragonal trisoctahedron. There are two
kinds of edges, lettered B and C, in Fig. 113. The general symbol is hll;
common forms are (311), (211), (322), ete. Of the faces, each cuts an axis
at a distance less than unity, and the other two at the unit length, or (again,
an identical expression) one of them intersects an axis at the unit length and
the other two at equal distances greater than unity. The indices belonging
to each face should be carefully noted. The normal interfacial angles. for
some of the common forms are given on a later page. Another name for this
form is icositetrahedron.

61. The combinations of these forms with the cube, octahedron, etec.,
should be carefully studied. It will be seen (Fig. 111) that the faces of the
trisoctahedron replace the solid angles of the cube as three faces equally
inclined on the edges; this is a combination which has not been observed on
crystals. The faces of the trapezohedron appear as three equal triangles
equally inclined to the cubic faces (Fig. 115).

Again, the faces of the trisoctahedron bevel the edges of the octahedron,
Fig. 112, while those of the trapezohedron are triangles inclined to the faces
at the extremities of the cubic axes, Fig. 119; m(311). Still again, the faces
of the trapezohedron n(211) truncate the edges of the dodecahedron (110),
as shown in Fig. 118; this can be proved to follow at once from the zonal

* Since %a :4b: ¢ = la : 1b : 2c. The student should read again carefully the ex-
planations in Art. 35.

1 It will be seen later that the name trapezohedron is also given to other solids whose
faces ‘are trapeziums conspicuously to the tetragonal trapezohedron and the trigonal
trapezohedron.
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relations (Arts. 45, 46), cf. also Figs. 125, 126. The position of the faces of
the form m(311), in combination with o, is shown in Fig. 119; with d in
Fig. 120.

7
AR e
8

It should be added that the trapezohedron n(211) is a common form both
alone and in combination; m(311) is common in combination. The trisoc-
tahedron alone is rarely met with, though in combination (Fig. 112) it is not
uncommon.

Trapezohedrons

Analcite. Cube and Analcite. Trapezohedron Garnet. Trapezohedron and
Trapezohedron and Octahedron Dodecahedron
118 ' 119

Garnet. Dodecahedron Spinel. Octahedron Magnetite. Dodecahedron
and Trapezohedron and Trapezohedron and Trapezohedron

62. Hexoctahedron, — The hezoctahedron, Figs. 121, 122, is the gen-
eral form in this system; it is bounded by forty-eight similar faces, each of
which is a scalene triangle, and each intersects the three axes at unequal
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distances. The general symbol is (hkl); common forms are s(321), shown in
Fig. 121, and #(421), m Fig. 122 The indices of the individual faces, as
shown in Fig. 121 and more fully in the projections (Figs. 125, 126), should
be carefully studied. . . :

122

The hexoctahedron has three kinds of edges lettered A, B, C (longer,
middle, shorter) in Fig. 122; the angles of two of these edges are needed to
fix the symbol unless the zonal relation can be made use of. In Fig. 124 the
faces of the hexoctahedron bevel the dodecahedral edges, and hence for this
form h = k + I; the form s has the special symbol (321). The hexocta-
hedron alone is a very rare form, but it is seen in combination with the cube
(Fig. 123, fluorite) as six small faces replacing each solid angle. Fig. 124 is
common with garnet.

123

Fluorite. Cube and Garnet. Dodecahedron
Hexoctahedron and Hexoctahedron

64. Pseudo-symmetry in the Isometric System. — Isometric forms, by
development in the direction of one of the cubic axes, simulate tetragonal
forms. More common, and of greater interest, are forms simulating those of
rhombohedral symmetry by extension, or by flattening, in the direction of an
octahedral axis. Both these cases are illustrated later. Conversely, certain
rhombohedral forms resemble an isometric octahedron in angle.

66. Stereographic and Gnomonic Projections. — The stercographic
projection, Fig. 125, and gnomonic projection, Fig. 126, show the positions
of the poles of the faces of the cube (100), octahedron (111), and dodecahe-
dron (110); also the tetrahexahedron (210), the trisoctahedron (221), the
trapezohedron (211), and the hexoctahedron (321). .
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The student should study this projection carefull noti
S I th
zones 100,_001, 100, and 100, 010, 100; also by 1{'(,)’ O&ﬂgfig;sﬁ?an%tﬂr{ r%la(g]'(%dl(l))ylié)hle
010; 010, 101, 010. Note further that the faces of a given form are sy'mme’tricafly distrib-
uted about a cubic face, as 001; a dodecahedral face, as 101; an octahedral face, as 111.

Note further the symbols that belong to the indivi i
the projections with the figures which prgce?ie. PIndividid Thles ot L, L

126

Stereographic Projection of Isometric Forms (Cube (100), Octahedron (111), Dodecanedron
}(11110), 'I;e3t2rit)h)exahedron (210), Trisoctahedron (2215, Trapezohedron (211), Hexocta~
edron

Finally, note the prominent zones of planes; for example, the zone between two cubic
faces including a dodecahedral face and the faces of all possible tetrahexahedrons. Again,
the zones from a cubic face (as 001) through an octahedral face (as 111) passing through
the trisoctahedrons, as 113, 112, 223, and the trapezohedrons 332, 221, 331, ete. Also the
zone from one dodecahedral face, as 110, to another, as 101, passing through 321, 211, 312,
ete. At the same time compare these zones with the same zones shown on the figures
already described. A study of the relations illustrated in Fig. 127 willsbe found useful.
From 1t is seen that any crystal face falling in the zone between the cube and dodecahedron
must belong to a tetrahexahedron; any face falling in the zone between the cube and octa-
hedron must belong to a trapezohedron; and any face falling in the zone between the
octahedron and dodecahedron must belong to a trisoctahedron, further any face falling
outside these three zones must belong to a hexoctahedron.
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126
Too
8214 pic) 210 p321
il 110
231 1551 711 01 391 231
) 312 312 .
120 120
B2\ N\Joi |12
®1 111 111 121
. 213|213 & /
‘ 5B2%35 TN 2 1s2
4 123 123\ ¥
< S »
“oio 021 0 012 i Joiz /ot 021 010
S > 4 23 122
132
132 % 5
0 111 11 122
b 21; Tl 12
120 312 312 120
a1 221 211 200 a1l 221 231
110 110
3214 210 210 321
100w

Gnomonic Projection of Isometric Forms (Cube (100), Octahedron (111), Dodecahedron
(110), Tetrahexahedron (210), Trisoctahedron (221), Trapezohedron (211), Hexocta-

hedron (321))

Symmetry of Pyritohedral class -
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66. Angles of Common Isometric Forms,*

TETRAHEXAHEDRONS.
y Edge A Edge C Angle on Angle on
Cf. Fig. 104. 210 A 201, ete. 210 A 120, ete. a(g1100) o(gllll)
410 19° 45’ 61° 553’ 14° 21 45° 33%
310 25 503 53 17 18 26 43 51
520 30 27 46 23 21 48 41 22
210 36 52% 36 521 26 34 39 14
530 42 40 28 41 30 573 37 37
320 46 11% 22 37 33 413 36 48
430 50 121 16 15 36 521 36 4
540 52 252 12 40 38 391 35 45
TRISOCTAHEDRONS.
- Edge A Edge B Angle on Angle on
Cf. Fig. 110. 221 A 212; ete. 221 A 221, etc. a(100) o(111)
332 17° 204/ 50° 285/ 50° 141/ 10° 14/
221 27 16 38 56 48 11 15 47
552 33 33% 31 35 47 73 19 28
331 37 513 26 31 46 30% 22870
772 40 59 22 50% 46 7% 23 503
441 43 20} 20 2 45 52 25 141
TRAPEZOHEDRONS.
Edge B Edge C Angle on Angle on
Ci. Fig. 113. 211 A 211, ete 211 A 121, ete. a(OIOO) o(111)
411 27° 16’ 60° o 19° 281 35° 15¥
722 30 43% 55 50% 22 0 32 44
311 35 53 50 283 25 143 29 29%
522 40 45 43 204 29 292 25 14}
211 48 113 33 333 35 152 19 28}
322 58 2 19 45 43 18% 11 253
HEexocraEEDRONS.
Edge A Edge B Edge C Angle on  Angle on
Cf. Fig. 121. 321 A 312, ete. 321 A 321, ete. 321 A 231, etc. a(IOO)’ o(olll) 5
421 17° 451/ 25° 12§/ 35° 57 29° 124 28° 64
531 27 391 19 273 27 393 32 183 28 333
321 21 471 31 0% 21 47% 36 42 22 12}
432 15 53 43 361 15 5% 42 13 15 133
431 32 (121 22 374 15 563 38 193 25 4

2. PYRITOHEDRAL CLASS (2). PYRITE TYPE
(Dyakisdodecahedral or Pentagonal Hemihedral Class)

67. Typical Forms and Symmetry. — The typical forms of the pyrito-
hedral clasysare the pyritohedron, or pentagonal dodecahedron, Figs. 129, 130,
and the diploid, or dyakisdodecahedron, Fig. 135. The symmetry of these
forms, as of the class as a whole, is as follows: The three crystallographic
axes are axes of binary symmetry only; there are also four diagonal axes of
trigonal symmetry coinciding with the octahedral axes. There are but three
planes of symmetry; these coincide with the planes of the crystallographic
axes and are parallel to the faces of the cube. S i

The stereographic projection in Fig. 128 shows the distribution o (z
faces of the general form (hkl), diploid, and thus exhibits the symmetry o
the class. This should be carefully compared with the corresponding pro-

* A fuller list is given in the Introduction to Dana’s System of Minel:alogy, 1892,
Pp. xx—xxiii.
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jection (Fig. 91) for the normal class, so that the lower grade of symmetry
here present be thoroughly understood. In studying the forms described
and illustrated in the following pages, this matter of symmetry, especially in
relation to that of the normal class, should be continually before the mind.

It will be observed that the faces of both the pyritohedron (Fig. 129) and
the diploid (Fig. 135) are arranged in parallel pairs, and on this account
these forms have been sometimes called parallel hemihedrons. Further, those
authors who prefer to describe these forms as cases of hemihedrism call this
type parallel-faced hemihedrism or pentagonal hemihedrism.

68. Pyritohedron. — The pyritohedron (Fig. 129) is so named because
it is a typical form with the common species, pyrite. It is a solid bounded
by twelve faces, each of which is a pentagon, but with one edge (A, Fig. 129)
longer than the other four simildr edges (C). It s often called a pentagonal
dodecahedron, and indeed it resembles closely the regular dodecahedron of
geometry, in which the faces are regular pentagons. This latter form is,
however, an impossible form in crystallography.

Pyritohedrons Showing Relation between
Pyritohedron and Tetra-
hexahedron

The general symbol is (hk0) or like that of the tetrahexahedron of the
normal class. Hence each face is parallel to one of the axes and meets the
other two axes at unequal distances. Common forms are (410), (310), (210),
(320), ete. Besides the positive pyritohedron, as (210), there is also the com-
plementary negative form * shown in Fig. 130; the symbol is here (120).
Other common forms are (250), (230), (130), ete.

The positive and negative pyritohedrons together embrace twenty-four
faces, having the same position as the twenty-four like faces of the tetra-
hexahedron of the normal class. The relation between the tetrahexahedron
and the pyritohedron is shown in Fig. 131, where the alternate faces of the
tetrahexahedron (indicated by shading) are extended to form the faces of
the pyritohedron.

69. .Combinations. — The faces of the pyritohedron replace the edges
of the cube as shown in Fig. 132; this resembles Fig. 101 but here the faces
make unequal angles with the two adjacent cubic faces. On the other
hand, when the pyritohedron is modified by the cube, the faces of the latter
truncate the longer edges of the pentagons.

i % 'a}:e negativeti;)rms 121 thifs and similar cﬁses élave sometimes distinct letters, some-
imes the same as the positive form, but are then distinguish i
£010) o a0y, , guished by a subscript accent, as
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_ Fig. 133 shows the combination of the pyritohedron and octahedron, and
in Fig. 134 these two forms are equally developed. The resulting combina-
tion bears a close similarity to the icosahedron, or regular twenty-faced solid
of geometry. Here, however, of the twenty faces, the eight octahedral aré
equilateral triangles, the twelve others belonging to the pyritohedron are
1sosceles triangles. .

132 133 134
;
€ e
de ] S '\
. k
Cube and Pyritohedron Octahedron and Octahedron and

Pyritohedron Pyritohedron

70. Diploid. — The diploid is bounded by twenty-four similar faces,
each meeting the axes at:unequal distances; its general symbol is hence
(hkl), and common forms are s(321), #(421), etc. The form (321) is shown
in Fig. 135; the symbols of its faces, as given, should
be carefully studied. As seen in the figure, the faces 136
are quadrilaterals or trapeziums; moreover, they are y
grouped in pairs, hence the common name diploid. It
is also sometimes called a dyakisdodecahedron.

The complementary negative form bears to the
positive form of Fig. 135 the same relation as the
negative to the positive pyritohedron. Its faces have
the symbols 312, 231, 123, in the front octant, and
similarly with the proper negative signs in the others.
The positive and negative forms together obviously
embrace all the faces of the hexoctahedron of the Diploid
normal class. The diploid can be considered to be
derived from the hexoctahedron by the extension of the alternate faces of
the latter and the omission of the remaining faces, exactly as in the case
of the pyritohedron and tetrahexahedron (Art. 68).

In Fig. 136 the positive diploid is shown in combination with the cube.
Here the three faces replace each of its solid angles. This combination form
resembles that of Fig. 111, but the three faces are here unequally inclined
upon two adjacent cubic faces. Other combinations of the diploid with the
cube, octahedron, and pyritohedron are given in Figs. 137 and 138. )

71. Other Forms. — If the pyritohedral type of symmetry be applied to
planes each parallel to two of the axes, it is seen that this symmetry calls for
six of these, and the resulting form is obviously a cube. This cube cannot be
distinguished geometrically from the cube of the normal class, but it has its
own characteristic molecular symmetry. Corresponding to this it is com-
mon to find cubes of pyrite with fine lines (striations) parallel to the alter-
nate edges, as indicated in Fig. 139. These are due to the partial develop-
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ment of pyritohedral faces (210). On a normal cube similar striations, if
present, must be parallel to both sets of edges on each cubic face.

136 137 138

S
e |a e A
Cube and Diploid Cube, Octahedron and Cube, Diploid and
Diploid Pyritohedron
139 Similarly to the cube, the remaining forms of this

=——A pyritohedral class, namely, (111), (110), (khl), (hil), have

ﬂ Tl‘_| TI the same geometrical form, respectively, as the octahedron,
r II ' Z dodecahedron, the trisoctahedrons and trapezohedrons of
| i || I h 2 the normal class. In molecular structure, however, these

| ‘/ forms are distinct, each having the symmetry described
IIAEZ  in Art. 6.

Pyrite. Striated Cube . 12 Angles. — The following tables contain the angles

of some common forms.

PYRITOEEDRONS.
Edge A Edge C Angle on Angle on
Cf. Fig. 129. 210 A 210, ete. 210 A 102, ete. a(100) o(111)
410 28° 41/ 76° 231/ 14° 2V 45° 33y
310 36 521 - 72 321 18 26 43 1
520 43 361 69 492 21 48 41 22
210 53 7% 66 251 26 34 39 14
530 61 553 63 491 30 57% 37 37
320 67 223 62 302 33 411 36 481
430 73 441 61 19 36 52% 36 1
540 77 19% 60 481 33 393 - 35 4531
650 79 362 60 323 39 481 35 352
DipLoIDs.
Edge A Edge B Edge C Angle on  Angle on
Cf. Fig. 135. 321 A 321, ete. 321 A 321, ete. 321 A 213, ete.  a(100) o(111)
421 51° 451/ 25° 121/ 48° 113/ 209° 121" © 28° 64’
532 58 141 37 513 35 20 35 47% 20 302
531 60 563 19 273 19 272 32 183 28 333
851 63 363 12 6 53 55% 32 30% 31 34
321 64 371 31 0% 38 121 36 42 22 1231
432 67 421 43 361 26 17% 42 13 15 13%
431 72 43 22 37% 43 3 38 192 25 4

3. TETRAHEDRAL CLASS (3). TETRAHEDRITE TYPE
(Hextetrahedral, Tetrahedral Hemihedral Class)
73. Typical Forms and Symmetry. — The typical form of this class,

and that from which it derives its name, is the tetrahedron, shown in Figs.
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%45(1), %g% There are also three other distinet forms, shown in Figs. 149,
The symmetry of this class is as follows. There are three axes of binary
symmetry which coincide with the erystallographic axes. There are also
four diagonal axes of trigonal symmetry which coincide with the octahedral
axes. There are six diagonal planes of sym-
metry. There is no center of symmetry.
The stereographic projection (Fig. 140)
shows the distribution of the faces of the
general form (hkl), hextetrahedron, and thus
exhibits the symmetry of the class. It will be
seen at once that the like faces are all grouped
in the alternate octants, and this will be seen
to be characteristic of all the forms peculiar
to this class. The relation between the sym-
metry here described and that of the normal
class must be carefully studied. -
In distinction from the pyritohedral forms %
whose faces were in pagallel pairs, the faces of A
the tetrahedron and the analogous solids are
inclined to each other, and hence they are Symmetey of Dyl
sometimes spoken of as inclined hemihedrons, and the type of so-called hemi-
hedrism here illustrated is then called inclined or tetrahedral hemihedrism.
74. Tetrahedron. — The tetrahedron,* as its name indicates, is a four-
faced solid, bounded by planes meeting the axes at equal distances. Its
general symbol is (111), and_the four faces of the positive form (Fig. 141)
have the symbols 111, 111, 111, 111. These correspond to four of the faces
of the octahedron of the normal class (Fig. 93). The relation between the:
two forms is shown in Fig. 143.

141 142 143

140

Positi Negative Tetrahedron Showing Relation between
Qeftia Sotrabodron & Octahedron and Tetrahedron

Each of the four faces of the tetrahedron is an equilateral triangle; the
(normal) interfacial angle is 109° 29’ 16”. The tetrahedron is the regular
triangular pyramid of geometry, but crystall'ographlcally it must be so placed
that the axes join the middle points of opposite edges, and one axis is vertical.

* This is one of the five regular solids of geometry, which include also the cube, octa-
hedron, the regular i)entagonal dodecahedron, and the icosahedron; the last two, as already

noted, are impossible forms among crystals.
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There are two possible tetrahedrons: the positive tetrahedron (111),
designated by the letter o, which has already been described, and the nega-
tive tetrahedron, having the same geometrical form and symmetry, but the
indices of its four faces are 111, 111, 111, I11. This second form is shown
in Fig. 142; it is usually designated by the letter o,. These two forms are,
as stated above, identical in geometrical shape, but they may be distinguished
in many cases by the tests whieh serve to reveal the molecular structure,
particularly the etching-figures; also in many cases by pyro-electricity (see
under boracite, p. 306), Art. 438. It is probable that the positive and
negative tetrahedrons of sphalerite (see that species) have a constant differ-
ence in this particular, which makes it possible to distinguish them on crystals
from different localities and of different habit.

144 145 146 3
hsiia? ol L 7
Positive and Negative Cube and Tetrahedron Tetrahedron and Cube

Tetrahedrons

If both tetrahedrons are present together, the form in Fig. 144 results.
This is geometrically an octahedron when the two forms are equally de-
veloped, but crystallographically it is always only a combination of two
unlike forms, the positive and negative tetrahedrons, which can be distin-
guished as already noted.

147

K/ N\

N

Tetrahedron and Boracite. Cube, Dodecahedron with
Dodecahedron Positive and Negative Tetrahedrons

The tetrahedron in combination with the cube replaces the alternate solid
angles as in Fig. 145. The cube modifying the tetrahedron truncates its
edges as shown in Fig. 146. The normal angle between adjacent cubic and
.tetrahedral.f?,ces is 54° 44’. In Fig. 147 the dodecahedron is shown modify-
ing the positive tetrahedron, while in Fig. 148 the cube is the predominating
form with the positive and negative tetrahedrons and dodecahedron.
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75. Other Typical Forms. — There are three other disti

solids in this class, having the general symbols (hhl), (hll),d :rtliimégzktl{pe%‘l?g
first of these is shown in Fig. 149; here the symbolis (221).  There are twelve
faces, each a quadrilateral, belonging to this form, distributed as determined
by the tetrahedral type of symmetry. They correspond to twelve of the
faces of the trl_soqtahedrop, namely, all those falling in alternate octants
This type of solid is sometimes called a tetragonal tristetrahedron, or a deltoid
dodecahedron. Tt does not occur alone among crystals, but its faces are
observed modifying other forms 3

149 160 151

112

Tetragonal Tristetrahedron Trigonal Tristetrahedron Hextetrahedron

There is also a complementary negative form, corresponding to the posi-
tive form, related to it in precisely the same way as the negative to the posi-
tive tetrahedron. Its twelve faces are those of the trisoctahedron which
belong to the other set of alternate octants.

152 153

Tetrahedrite 3 Sphalerite Boracite.

Another form, shown in Fig. 150, has the general symbol (kil), here (211);
it is bounded by twelve like triangular faces, distributed after the type de-
manded by tetrahedral symmetry, and corresponding consequently to the
faces of the alternate octants of the form (hll) — the trapezohedron — of the
normal class. This type of solid is sometimes called a trigonal tristetrahedron
or trigondodecahedron.* It is observed both alone and in eombination,

* Tt is to be noted that the tetragonal tristetrahedron has faces which resemble those of
the trapezohedron (tetragonal trisoctahedron), although it 1s related not to this but to the
trisoctahedron (trigonal trisoctahedron). On the other hand, the faces of the trigonal tris-
ﬁetrahedron resemble those of the trisoctahedron, though in fact related to the trapezo-

edron.
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especially with the species tetrahedrite; it is much more common than the
form (hhl). There is here again a complementary negative form. Fig. 152
shows the positive form n(211) with the positive tetrahedron, and Fig. 153
the form m(311) with a(100), o(111), and d(110). In Fig. 154, the negative
form n,(211) is present.

The fourth independent type of solids in this class is shown in Fig. 151.
It has the general symbol (hkl), here (321), and is bounded by twenty-four
faces distributed according to tetrahedral symmetry, that is, embracing all
the faces of the alternate octants of the forty-eight-faced hexoctahedron.
This form is sometimes called a hextetrahedron or hexakistetrahedron. The
complementary negative form (hkl) embraces the remaining faces of the
hexoctahedron. The positive hextetrahedron, »(531), is shown in Fig. 154
with the cube, octahedron, and dodecahedron, also the negative trigonal
tristetrahedron 7n,(211). ' :

76. If the tetrahedral symmetry be applied in the case of planes each
parallel to the two axes, it will be seen that there must be six such faces.
They form a cube similar geometrically to the cube both of the normal and
pyritohedral class but differing in its molecular structure, as can be readily
proved, for example, by pyro-electricity (Art. 438). Similarly in the case
of the planes having the symbol (110), there must be twelve faces forming a
rhombic dodecahedron bearing the same relation to the like geometrical
form of the normal class. The same is true again of the planes having the
position expressed by the general symbol (Ak0); there must be twenty-four
of them and they together form a tetrahexahedron.

In this class, therefore, there are also seven types of forms, but only four
of them are geometrically distinet from the corresponding forms of the
normal class.

77. Angles. — The following tables contain the angles of some com-
mon forms:

TETRAGONAL TRISTETRAHEDRONS.

¢ Edge A Edge B Angle on Angle on
Cf. Fig. 149. 221 A 212, ete. 221 A 212, ete. a(100) o(111)
332 17° 203’ 97° 501/ 50° 141 10° 1%
221 27 16 90 0 48 11} 15 47%
552 33 33% 84 41 47 71 19 281
331 37 51% 80 55 46 301 22 0
TR1GONAL TRISTETRAHEDRONS.
Edge B Edge C Angle on Angle on
Cf. Fig. 150 211 A 211, ete. 211 A 121, ete. a(%oo) 0(5111)
411 38° 563" 60° 0 19° 281/ 35° 153/
722 4 0% 55 50% 22 0 - 32 44
311. 50 283 50 283 25 143% 29 293
522 58 593 43 20% 29 293 25 141
211 70 31% 33 33% 35 153 19 28%
322 86 373 19 45 43 182 11 25%
HEXTETRAHEDRONS.
3 Edge A Edge B Edge C Angle on  Angle on
CE. Fig. 151. 321 A 312, ete. 321 A 312, ete. 321 A 231, ete.  a(100) o(%lll)
531 27° 393 57° 7V 27° 397 32°18%  28° 33
321 21 47% 69 41 21 47% 36 42 22 123

432 15 53 82 41 15 5} 2 12 15 13
431 32 121 67 221 15 561 38 108 25 7o
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4. PLAGIOHEDRAL CLASS (4). CUPRITE TYPE.
(Pentagonal Icositetrahedral, Plagiohedral Hemihedral Class)

78. Typical Forms and Symmetry. — The fourth class under the iso-
metric system is called the plagiohedral or gyroidal class because the faces
of the general form (hkl) are arranged in spiral order. This is shown on the
stereographic projection, Fig. 155, and also in

Figs. 156, 157, which represent the single typ- 165

ical form of the class. These two complemen-

tary solids together embrace all the faces of the ol il

hexoctahedron. They are distinguished from o/ I\
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one another by being called respectively right- // . *"_‘
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The symmetry characteristic of the class in >SSl o‘_* /
general is as follows: ;Oh?_x_ LN«
There are no planes of symmetry and no \'\x \ | /°
center of symmetry. There are, however, three SUSRNLZA
axes of tetragonal symmetry normal to the D 4
cubic faces, four axes of trigonal symmetry symmetry of Plagiohedral Class
normal to the octahedral faces, and six axes of
binary symmetry normal to the faces of the dodecahedron. In other words,
it has all the axes of symmetry of the normal class while without planes or
center of symmetry. :

-

1566

Right and Left-handed Pentagona: Icositetrahedrons Cuprite

79. It is to be noted that the two forms shown in Figs. 156, 157 are alike
geometrically, but are not superposable; in other words, they are related
to one another as is a right- to a left-hand glove. They are hence said to be
enantiomorphous, and, as explained elsewhere, the crystals belonging here
may be expected to show circular light polarization. It will be seen that
the complementary positive and negative forms of the preceding classes,
unlike those here, may be superposed by being rotated 90° about one of the
crystallographic axes. This distinction between positive and negative
forms, and between right- and left-handed enantiomorphous forms, exists
also in the case of the classes of several of the other systems.

This class is rare among minerals; it is represented by cuprite, sal am-
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moniac, sylvite, and halite. It is usually shown by the distribution of the
small modifying faces, or by the form of the etching figures. Fig. 158 shows
a crystal of cuprite from Cornwall (Pratt) with the form 2(13'10°12).

5. TETARTOHEDRAL CLASS (5). ULLMANNITE TYPE.

(Tetrahedral Pentagonal Dodecahedral Class)

80. Symmetry and Typical Forms. — The fifth remaining possible class
under ‘the isometric system is illustrated by Fig. 160, which represents the
twelve-faced solid corresponding to the general symbol (kkl). The distri-
bution of its faces is shown in the projection,

R Fig. 159. This form is sometimes called a

i tetrahedral-pentagonal dodecahedron. It is

AR i P 4 seen to have one-fourth as many faces as the

,< o 9PN 2 form (hkl) in the normal class, hence there are

AN, R four similar solids which together embrace all

'//, :E) . S the faces of the hexoctahedron. These four
’ \,

&/ “Vx ™1 solids, which are distinguished as right-handed
N *Q (positive and negative) and left-handed (posi-

1]
I
I
i
\
\
,\ NG those of Figs. 156 and 157, and hence the salts

X A | o -~ : S :
\ B RO - tive and negative), are enantiomorphous, like
Nis N
/ DLy . .
A LIS A o crystallizing here may be expected to also show
RN e circular polarization. The remaining forms of

? the class are (besides the cube and rhombic
dodecahedron) the tetrahedrons, the pyritohe-
drons, the tetragonal and trigonal tristetrahe-
-drons; geometrically they are like the solids of the same names already
described. This class has no plane of symmetry and no center of symmetry.
There are three axes of binary symmetry normal to the cubic faces, and four
axes of trigonal symmetry normal to the faces of the tetrahedron.

160 161

P it
312 h

This group is illustrated by artificial crystals of barium nitrate, stron-
tium nitrate, sodium chlorate, ete. Further, the species ullmannite, which
shows sometimes pyritohedral and again tetrahedral forms, both having
the same composition, must be regarded as belonging here.

Symmetry of Tetartohedral Class

MATHEMATICAL RELATIONS OF THE ISOMETRIC SYSTEM

. 81. Most of the problems arising in the isometric system can be solved at once by the
?ght‘-ﬁngled triangles in the sphere of projection (Fig. 125) without the use of any special
ormulas.
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It will be remembered that the angl i
gles between a cubic face 1 j
face of a tetrahexahedron, 310, 210, 320, etc., can be obtained (;tf c?lfce?gfnzg(ihtg ia.?)dg']:;te I(l)tf;

2 2 Ee 192 3
this angle is equal to 3’ 3’ 3’ of in general >

h
tan (hkO A 100) =;°7
162
ac =k = < b
be=h=2
£ ade = 90°
—a_k_1
tanéabc—bc—h—2 .
S }—26“34’
(100) A (210) g™ 210
100 hkO

This relation is illustrated in Fig. 162, which also shows the method of hi
de@ermining the indices of _a tetrahexahedron, the angle between one of itsofaég;:parigagg
adjacent cube face being given.

Since all the forms of a given symbol under different species have the same angles, the
tables of angles already given are very useful. ;

_ These and similar angles may be calculated immediately from the sphere, or often more
simply by the formulas given in the following article.

_ 82. Formulas. — (1) The distance of the pole of any face P(hkl) from the cubic faces is
given by the following equations. Here Pa is the distance between (hkl) and (100); Pb is
the distance between (hkl) and (010); and Pc that between (hkl) and (001).

(hhghetse equations admit of much simplification in the various special cases, for (hk0),
, ete.:
cos2Pa=——h—2——-' cos"Pb——~—’gz—' 2 Pe = g
RN B R i Ty Sy

(2) The distance between the poles of any two faces P(hkl) and Q(pgr) is given by the
following equation, which in special cases may also be more or less simplified:

cos PQ = AL RG i
CVEAR B @ ¢+

(3) The calculation of the supplement interfacial or normal angles for the several forms

may be accomplished as follows:
Trisoctahedron. — The angles A and B are, as before, the supplements of the interfacial

angles of the edges lettered as in Fig. 110.

k2, o —p
cos A = Tk cosB—2———hz_*_l2
For the tetragonal-trisieirahedron (Fig. 149), cos B = = —2M
or the tetragonal-tristetrahedron (Fig. y cosB =557
Trapezohedron (Fig. 113). B and C are the supplement angles of the edges as lettered in
the figure.
B M. co2nte
cos = m; Ccos 03 m

For the trigonal-tristetrahedron (Fig. 150),
Tetrahexahedron (Fig. 104).
i
cos A = my

hz — 202
cos B = m

2hk
cos C = m
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and 111 A 321 = 22° 12’ are given. The methods by which the desired pole is located
from these measurements have been described on page 38 and are illustrated in Fig. 163.
Having located the pole (hkl) a line is drawn through it from the center O of the projec-
tion. This line O-P represents the intersection with' the horizontal plane (which is the
plane of the horizontal erystal axes, a and b) of a plane which is norma? to the crystal face
(kkl). Since two planes which are at right angles to each other will intersect a third plane
in lines that are at right angles to each other, it follows that the plane of the hexoctahedral
face will intersect the plane of the horizontal axes in a line at right angles to O-P. If,
therefore, the distance O-M be taken as representing unity on the @ axis and the line
M-P-N be drawn at right angles to O-P the distance O-N will represent the intercept of
the face in question upon the b axis. O-N is found in this case to be 3 O-M in value.
The intercepts upon the two horizontal axes are, therefore la, 3b. The plotting of the
intercept upon the ¢ axis is shown in the upper left hand quadrant of the figure. The
angular distance from O to the pole (kkl) is measured by the stereographic protractor as
74° 30’. This angle is then laid off from the line representing the ¢ axis and tEe line repre-
senting the pole (kkl) is drawn. The distance O-P.is transferred from the lower part of
the figure. Then we can construct the right triangle, the vertical side of which is the
¢ axis, the horizontal side is this line O—P (the intersection of the plane which is normal to
the crystal face with the horizontal plane) and the hypothenuse is a line lying in the face
and therefore at right angles to the pole of the face. This line would intersect the ¢ axis
at a distance equal to 30-M. The same relation may be shown by starting this last line
from a point on the ¢ axis which is at a distance from the center of the figure equal to O-M.
In this case the intercept on the horizontal line O-P would be at one third its total length.
By these constructions the parameters of the face in question are shown to be 1a, 2b, 3c,
giving (321) as its indices.

164
‘R 2 3
oIt 021 oV
122 132
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Ya \130

24201 211 221 231
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84. To determine the indices of the faces of isometric forms, given the positions o
their poles on the gnomonic projection. — As an illustrative example of thlstroliléeén lt1he
lower right hand quadrant of the gnomonic projection of isometric forms, . Lg. " gs
been taken and reproduced in Fig. 164. The lines 0-M and O-N are at rlngtfang es ct01
each other and may represent the horizontal cx;ystallographlc axes a, a]néi_ ag.t_ l'.(t)xvr:'iflabe
pole of the projection lines are drawn per 9nd1cular to these two axial direc hlontsh i 35
seen that the intercepts made upon these lines have rational relations to each other.
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since we are dealing with the isometric system in which the crystallographic axes are all
alike and interchangeable with each other, it follows that the different intercepts upon
O-M and O-N are identical. The distance O-R (.e. the distance from the center to the
45° point of the projection) must equal the unit length of the axes. That this is true is
readily seen by the conside.ation of Fig. 165. The intercepts of the lines drawn from the
different poles to the lines O-M and O-N are found to be }, %, %, 1, 3, 2 and 3 times this
unit distance. To find the Miller indices of any face represented, it is only necessary to

166

Plane of G je P

ag axis

take the intercepts ot the two lines drawn from its pole upon the two axes a; and a,, place
these numbers in their proper order and add a 1 as a third figure and then if necessary
clear of fractions. Take for example the hexoctahedron face with indices 312. The lines
drawn froni its pole intercept the axes at $a; and }a,, which gives the expression § } 1, which,
again, on clearing of fractions, yields 812, the indices of the face in question. In the case
of a face parallel to the vertical axis, the pole of which lies at infinity on the gnomonic
projection, the indices may be obtained by taking any point on the radial line that points
to the position of the pole and dropping perpendiculars to the lines representing the two
horizontal axes. The relative intercepts formed upon these axes will give the first two
numbers of the required indices while the third number will necessarily be 0.
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II. TETRAGONAL SYSTEM

85. THE TETRAGONAL SYSTEM includes all the forms which are referred
to three axes at right angles to each other of which the two horizontal axes
are equal to each other in length and interchangeable and the third, the
vertical axis, is either shorter or longer. The horizontal axes are desig-
nated by the letter a; the vertical axis by ¢ (see Fig. 166). The length of
the vertical axis expresses properly the axial ratio of a : ¢, a being uniformley
taken as equal to unity. The axes are orientated and their opposite ends
(Siesignated by plus and minus signs exactly as in the case of the Isometric

ystem.

Seven classes are embraced in this system. Of these the normal class is
common and important among minerals; two others have several represen-
tatives, and another a single one only. It may be noted that in four of the
classes the vertical axis is an axis of tetragonal symmetry; in the remaining
three it is an axis of binary symmetry only.

1. NORMAL CLASS (6). ZIRCON TYPE
(Ditetragonal Bipyramidal or Holohedral Class)

86. Symmetry. — The forms belonging to the normal class of the
tetragonal system (cf. Figs. 170 to 192) have one principal axis of tetragonal
symmetry (whence name of the system) which coincides with the vertical
crystallographic axis, ¢. There are also four horizontal axes of binary sym-
metry, two of which coincide with the horizontal crystallographic axes
while the other two are diagonal axes bisecting the angles between the first
two. .

166 167
+He {

‘—7 ng
Lt
Axes of Tetragonal Mineral, Symmetry of Normal Class
Octahedritea :c =1:178 Tetragonal System

Further they have one principal plane of symmetry, the plane of the
horizontal crystallographic axes. There are also four vertical planes of
symmetry which pass through the vertical crystallographic axis ¢ and make
angles of 45° with each other. Two of these latter planes include the hori-
zontal crystallographic axes and are known as axial planes of symmetry.
The other two are known as diagonal planes of symmetry.
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The axes and planes of symmetry are shown in Figs. 168 and 169.

The symmetry and the distribution of the faces of the general form, hkl,
is shown in the stereographic projection, Fig. 167.

87. Forms. — The various possible forms under the normal class of
this system are as follows:

: Symbols

1. Base or basal pinacoid........ . (001)

2. Prism of the first order......... (110)

3. Prism of the second order....... (100) i

4. Ditetragonal prism............. (hk0) as, (310); (210);" (320), ete.
5. Pyramid of the first order....... (hhl) as, (223); (111); (221), ete.
6. Pyramid of the second order. ... . (h0l) as, (203); (101); (201), ete.
7. Ditetragonal pyramid.......... (hkl) as, (421); (321); (122), etc.

168

Symmetry of Normal Class, Tetragonal System

88. Base or Basal Pinacoid. — The base is that form which includes
the two similar faces which are parallel to the plane of the horizontal axes.
These faces have the indices 001 and 001 respectively; it is an “open form,”
as they do not inclose a space, consequently this form can oceur only in com-
bination with other forms. Cf. Figs. 170-173, ete. This form is always
lettered ¢ in this work.

170, 17 , 172
LU S i ] 001 %
ﬁ‘; :
B |
L '
| ! 100 0z
‘;‘:?,L-/-':‘-‘— i <1 m e |m|e
110 i 1;0 |
[ 1
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|
Nk 5
~1 ’/———l—-“/_
First Order Prism Second Order Prism First and Second

Order Prisms

89. Prisms. — Prisms, in systems other than the isometric, have been
defined to be forms whose faces are parallel to the vertical axis (c) of the
crystal, while they meet the two horizontal axes; in this system the four-
faced form whose planes are parallel both to the vertical and one horizontal
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axis is also called a prism. There are hence three types of prisms here
included.

90. Prism of First Order. — The prism of the first order includes the
four faces which, while parallel to the vertical axis, meet the horizontal
axes at equal distances; its general symbol is consequently (110). It is a
square prism, with interfacial angles of 90°. It is shown in combination with
the base in Fig. 170. It is uniformly designated by the letter m. The in-
dices of its faces, taken in order, are 110, 110, 110, 110.

91. Prism of Second Order. — The prism of the second order shown*
in combination with the base in Fig. 171 includes the four faces which are
parallel at once to the vertical and to a horizontal axis; it has, therefore, the
general symbol (100). It is a square prism with an angle between any two
adjacent faces of 90°. It is uniformly designated by the letter a, and its
faces, taken in order, have the indices 100, 010, 100, 010.

It will be seen that the combination of this form with the base is the
analogue of the cube of the isometric system.

The faces of the prism of the first order truncate the edges of the prism
of the second order and vice versa. When both are equally developed, as in
Fig. 172, the result is a regular eight-sided prism, which, however, it must
be remembered, is a combination of fwo distinct forms. '

It is evident that the two prisms described do not differ geometrically
from one another, and furthermore, in a given case, the symmetry of this
class allows either to be made the first order, and the other the second order,
prism according to the position assumed for the horizontal axes. If on crys-
tals of a given species both forms occur together equally developed (or, on
the other hand, separately on different erystals) and without other faces
than the base, there is no means of telling them apart unless by minor char-
acteristics, such as striations or other markings on the 173 '
surface, etchings, ete. ol

92. Ditetragonal Prism. — The ditetragonal prism is —1—,
the form which is bounded by eight similar faces, each one
of which is parallel to the vertical axis while meeting the
two horizontal axes at unequal distances. It has the general
symbol (hk0). It isshown in Fig. 173, where (hk0) = (210).
The successive faces have here the indices 210, 120, 120, | ; -
210, 210, 120, 120, 210. 210 | #10 p2oir-2t0

In Fig. 185 a combination is shown of this form (y = 310)
with the second order prism, the edges of which it bevels.
In Fig. 189 (h = 210) it bevels the edges of the first order L= B
prism m. In Fig. 190 (I = 310) it is combined with both Ditetragonal Prism
orders of prisms. e gl

93. Pyramids. — There are three types of pyramids in this class, cor-
responding, respectively, to the three prisms which have just been deseribed.

* In Figs. 170-173 the dimensions of the form are made to correspond to the assumed
length of the vertical axis (here ¢ = 178 as in octahedrite) used in Fig. 177. It must be
noted, however, that in the case of actual crystals of these forms, while the tetragonal
symmetry is usually indicated by the unlike physical character of the face ¢ as compared
with the faces a, m, ete., in the vertical prismatic zone, no inference can be drawn as to the
relative length of the vertical axis. This last can be determined only when a pyramid is
present; it is fixed for the species when a particular pyramid is chosen as fundamental or
unit form, as explained later.
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As already stated, the name pyramad is given (in systems other than the iso-
metric) to a form whose planes meet all three of the axes; in this system
the form whose planes meet the axis ¢ and one horizontal axis while parallel
to the other is also called a pyramid. The pyramids of this class are strictly
double pyramids (bipyramids of some authors). :

94. Pyramid of First Order. — A pyramid of the first order, is a form
whose eight similar faces intersect the two horizontal axes at equal dlstance;s
and also intersect the vertical axis. It has the general symbol (khl). Tt is
a square pyramid with equal interfacial angles over the terminal edges, and
the faces replace the horizontal, or basal, edges of the first order prism and
the solid angles of the second order prism. If the ratio of the vertical to the
horizontal axis for a given first order pyramid is the assumed axial ratio for
the species, the form is called the fundamental form, and it has the symbol
(111)_as in Fig. 174. The indices of its faces me oned in order are: Above
111, 111, 111, 171; below 111, 111, 111, 111.

1756 176 177
m m ;
m I
First Order Zircon, First Order Zircon, First Order Apophyllite, Second
Pyramid Prism and Pryamid ~ Prismand Pyramids ~ Order Prism and
First Order Pyramid

Obviously the angles of the first order pyramid, and hence its geometrical
aspect, vary widely with the length of the vertical axis. In Figs. 174 and
182 the pyramids shown have in both cases the symbol (111) but in the first
case (octahedrite) ¢ = 1.78, while in the second (vesuvianite), ¢ = 0.64.

For a given species there may be a number of second order pyramids,
varying in position according to the ratio of the intercepts upon the vertical
and horizontal axes. Their symbols, passing from the base (001) to the unit
prism (110), may thus be (115), (113), (223), (111), (332), (221), (441), etc.
In the general symbol of these forms (hhl), as k diminishes, the form approx-
imates more and more nearly to the base (001), for which h = 0; as & in-
creases, the form passes toward the first order prism. In Fig. 176 two pyra-
mids of this order are shown, p(111) and u(331).

95. Pyramid of Second Order. — The pyramid of the second order is
the form, Fig. 178, whose faces are parallel to one of the horizontal axes,
while meeting the other two axes. The general symbol is (h0l). These faces
replace the basal edges of the second order prism (Fig. 179), and the solid,
angles of the first order prism (cf. Fig. 180). It is a square pyramid since its
basal section is a square, and the interfacial angles over the four terminal
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edges, above and below, are equal. The successive faces of the form (101)
are as follows: Above 101, 011, 101, 011; below 10T, 011, 101, O11.

If the ratio of the intercepts on the horizontal and vertical axes is the
assumed axial ratio of the species, the symbol is (101), and the form is desig-
nated by the letter e. This ratio can be deduced from the measurement of
either one of the interfacial angles (y or 2, Fig. 178) over the terminal or basal
edges, as explained later. In the case of a given species, a number of second

178

180

Second Order Second Order Prism Rutile, First and Second
Pyramid and Pyramid Order Prisms and Pyra-
mids

order pyramids may occur, varying in the ratio of the axes a and ¢. Hence
there is possible a large number of such forms whose symbols may be, for
example, (104), (103), (102), (101), (302), (201), (301), etc. Those men-
tioned first come nearest to the base (001), those last to the second order
prism (100); the base is therefore the limit of these pyramids (hOl) when
h = 0, and the second order prism (100) when h = 1 and [ = 0. Fig. 186
shows the three second order pyramids w(105), e(101), ¢(201). ;

181 ) 182 183
. ‘4 DN
\ Cassiterit
V ianit Vesuvianite ) assiterite
First esl;(‘izg'nll’r?sm,\ First Order Pyramid and First and Second Order
Pyramid and Base First ang Scond Order Pyramids
risms

A second order pyramid truncating the pyramidal edges of a given first
order pyramid as in Fig. 183 has the same ratio as it for & to . Thus (101)
truncates the terminal edge of (111); (201) of (221), ete. This is obvious
because each face has the same position as the corresponding edge of the
other form (see Fig. 183, when s = 111 and e = 101; also Figs. 186, 191,
where r = 115, u = 105). Again, if a first order pyramid truncates the
pyramidal edges of a given second order pyramid, its ratio for k to I is half
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that of the other form; that is, (112) truncates the pyramidal edges of (101);
(111) of (201), etc. This relation is exhibited by Fig. 186, where p(111)
truncates the edges of ¢(201). In both cases the zonal equations prove the
relations stated.

184 186

Y
Vesuvianite Apophyllite Octahedrite
First and Second Order Second Order Prism, Dite- Two First Order Pyra-
Prisms, First Order Pyr- tragonal Prism, First mids, First Order Prism,

amid and Base Order Pyramid and Base Three Second Order
; Pyramids and Base

96. Ditetragonal Pyramid. — The ditetragonal pyramid, or double eight-
sided pyramid, is the form each of whose sixteen similar faces meets the
three axes at unequal distances. This is the most general case of the symbol
(hkl), where h, k, [ are all unequal and no one is equal to 0. That there are
sixteen faces in a single form is evident. Thus, for example, for the form
(212) the face 212 is similar to 122, the two lateral axes being equal (not,
however, to 221). Hence there are two like faces in each octant. Similarly
the indices of all the faces in the successive octants are, therefore, as follows:

Above 212 122 22 212 22 132 122 212
Below 212 122 122 212 212 122 122 212
189

187

m| k] m

Zircon Cassiterite Rutile
First and Second Order
Prisms, First Order
Pyramid, Ditetrag-
onal Pyramid

i Thi§ form is common with the species zircon, and is hence often called a
zirconord. It is shown in Fig. 187. It is not observed alone, though some-
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times, as in Figs. 188 (z = 311) and 189 (z = 321), it is the predominating
form. In Fig. 190 two ditetragonal pyramids occur, namely, ¢(313) and

2(321).

97. In addition to the perspective figures already
given, a basal projection (Fig. 191) i1s added of
the crystal of octahedrite already referred to (Fig.
186); also a stereographic (Fig. 192) and gnomonic
(Fig. 193) projections of the same with the faces of
the forms w(221) and ¢(313) added. These exhibit
well the general relations of this normal class of the
tetragonal system. The symmetry here is to be
noted, first, with respect to the similar zones 100,
001, 100 and 010, 001, 010; also, to the other pair of
similar zones, 110, 001, 110, and 110, 001, 110.

1o

021
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191

Octahedrite
192
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201
110
01 = So1
318 313
£ i
1 Ho5 15 133
011 021 a
015 601__g015
¢ e q 010
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1L e; 21
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201 2
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Steréographic Projection of Octahedrite
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Symmetry of Hemimorphie Class

q

100
wva

2. HEMIMORPHIC CLASS (7).

IODOSUCCINIMIDE TYPE

jection (Fig. 194).

110

021 010

110

(Ditetragonal Pyramidal or Holohedral
Hemimorphic Class)

98. Symmetry. — This class differs from
the normal class only in having no horizontal
plane of symmetry; hence the forms are hemi-
morphic as defined in Art. 29.
to be represented among minerals, but is shown
on the crystals of iodosuccinimide.

It is not known

Its sym-

metry is illustrated by the stereographic pro-
Here the two basal planes

are distinct forms, 001 and 001; the prisms do not differ geometrically from
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those of the normal class, though distinguished by their molecuar structure;
further, the pyramids are no longer double pyramids, but each form is rep-
resented by one half of Tigs. 174, 178, 187 (cf. Fig. 44, p. 22). There are
hence six distinct pyramidal forms, corresponding to the upper and lower
halves of the first and second order pyramids and the ditetragonal pyramid.

3. TRIPYRAMIDAL CLASS (8). SCHEELITE TYPE.
(Tetragonal Bipyramidal or Pyramidal Hemihedral Class)

99. Typical Forms and Symmetry. — The forms here included have
onc plane of symmetry only, that of the horizontal crvstallographic axes,
and one axis of tetragonal symmetry (the vertical crystallographic axis)
normal to it. The distinctive forms are the tetragonal prism (hk0) and
pyramid (hkl) of the third order, shown in Figs. 196, 197.

The stereographic projection, Fig. 195, .
exhibits the symmetry of the class and the v
distribution of the faces of the general form
(hkl). Comparing this, as well as the figures
immediately following, with those of the nor-
mal class, it is seen that this class differs from
it in the absence of the vertical planes of sym-

®
®
metry and the horizontal axes of symmetry. = &
®
kJ

100. Prism and Pyramid of the Third
Order. — The typical forms of the class,
as above stated, are a square prism and a
square pyramid, which are distinguished
respect{ively fflom the quuare prisms a(lOO(g /)
and m(110), shown in Figs. 170 and 171, and - : A
from the square pyramids (20l) and (hhl) Symmetry of Tri-Pyramidal Class
of Figs. 174 and 178 by the name “ third order.”

196 197 198

\\
010~/

Third Order Prism Third Order Pyramid

The third order prism and pyramid may be considered as derived from
the ditetragonal forms of the normal class by taking only one half the faces
of the latter and the omission of the remaining faces. There are therefore
two complementary forms in each case, designated left and right, which
together include all the faces of the ditetragonal prism (Fig. 173) and dite-
tragonal pyramid (Fig. 187) of the normal class.
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. The indices of the faces of the two complementary prisms, as (210), are:

Tefle - 20, 120, ~0940, 5126,
Right: 120, 210, 120, 210.

The indices of the faces of the corresponding pyramids, as (212), are:

Left: above 212, 122, 212, 122; below 212, 122, 212, 122.
Right: above 122, 212, 122, 212; below 122, 212, 122, 212.

Fig. 198 gives a transverse section of the prisms a(100) and m(110), also
the prism of the third order (120). Figs. 196, 197 show the right prism (120)
and pyramid (122) of the third order.

101. Other Forms. — The other forms of this class, that is, the base
¢(001); the other square prisms, a(100) and m(110); also the square pyra-
mids (k0l) and (hhl) are geometrically like the corresponding forms of the
normal class already described. The class shows therefore three types of
square pyramids and hence is called the tripyramidal .class.

102. To this class belongs the important species scheelite; also the
isomorphous species stolzite and powellite, unless it be that they are rather
to be classed with wulfenite (p. 87). Fig. 199 shows a typical crystal of

201

&

N

Scheelite Scheelite Meionite

199

scheelite, and Fig. 200 a basal section of one similar; these illustrate well the
characteristics of the class. Here the forms are ¢(101), p(111), and the
third-order pyramids ¢(212), s,(131). Fig. 201 represents a meionite crystal
with 7(111), and the third-order pyramid 2(311). See also Figs. 203, 204, in
which the third-order prism is shown. v

The forms of this class are sometimes described (see Art. 28) as showing
pyramidal hemihedrism. \

4. PYRAMIDAIL-HEMIMORPHIC CLASS (9). WULFENITE TYPE
(Tetragonal Pyramidal or Hemihedral Hemimorphic Class)

103. Symmetry. — The fourth class of the tetragonal system is ciosely
related to the class just described. It has the same vertical axis of tetrag-
onal symmetry, but there is no horizontal plane of symmetry. The forms
are, therefore, hemimorphic in the distribution of the faces (cf. Fig. 202).
The species wulfenite of the Scheelite Group among mineral species prob-
ably belongs here, although the crystals do not always show the difference
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between the pyramidal faces, above and below, which would characterize
distinet complementary forms. Figs. 203, 204 could, therefore, serve as
illustrations of the preceding class, but in 202

Fig. 205 a characteristic distinction is exhib-

ited. Inthese figures the forms are u(102), ,,——yé-\
e(101), n(111); also f(230), k(210). 2(432), A 3
z(311). / :
A S Rt Y
5. SPHENOIDAL CLASS (10). A \
CHALCOPYRITE TYPE . M- "“ """ =
(Tetragonal Sphenoidal, Sphenoidal ‘\\ = i " ,’I
Hemihedral or Scalenohedral Class) . 5 ,/’

104. Typical Forms and Symmetry. —
The typical forms of this class are the
sphenoid (Fig. 207) and the tetragonal sca-
lenohedron (Fig. 208). They and all the
combinations of this class show the following symmetry.

204,

Symmetry of Pyramidal-Hemi-
morphic Class

The three

206

¥

crystallographic axes are axes of binary symmetry and there are two
vertical diagonal planes of symmetry.
This symmetry is exhibited in the stereo-

203

Waulfenite

206 graphic projection (Fig. 206), which shows

& also the distribution of the faces of the gen-

= =g eral form (hkl). Itis seen here that the faces

< = are present in the alternate octants only, and

7/ ) o N\ it will be remembered that this same state-

\\\ ment was made of the tetrahedral class under
\ the isometric system. There is hence a close
< analogy between these two classes. The sym-

-

~— —
,*\

Symmetry of Sphenoidal Class |

metry of this class should be carefully compared
with that of the first and third classes of this
system already described.

105. Sphenoid. — The sphenoid, shown in
Fig. 207, is a four-faced solid, resembling
a tetrahedron, but each face is an isosceles
(not an equilateral) triangle. It may bé consid-
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ered as derived from the first order pyramid of the normal class by the
development of only the alternate faces of the latter. There are therefore
possible two complementary forms known as the positive and negative
sphenoids. The general symbol of the positive umt sphenoid is (111), and
its faces have the indices: 111, 111, 111, 111, while the negative sphenoid
bas the symbol (111). When the complementary forms occur together, if
equally developed, the resulting solid, though having two unlike sets of faces,
cannot be distinguished geometrically from the first order pyramid (111).

W W

Sphenoid Tetragonal Scalenohedron

In the species chalcopyrite, which belongs to this class, the deviation in
angle and in axial ratio from the isometric system is very small, and hence
the unit sphenoid cannot by the eye be distinguished from a tetrahedron
(compare Fig. 209 with Fig. 144, p. 68). For this species ¢ = 0°985 (instead
of 1, as in the isometric system), and the normal sphenoidal angle is 108° 40’,
instead of 109° 28, the angle of the tetrahedron. Hence a crystal of chal-
copyrite with both the positive and negative sphenoids equally developed
closely resembles a regular octahedron.

In Fig. 210 the second order pyramids e(101) and 2(201) and base ¢(001)
are also present.

209
106. Tetragonal Scalenohedron. — The sphenoidal symmetry yields
another distinet type of form, that shown in Fig. 208. It is bounded by
eight similar scalene triangles, and hence is called a tetragonal scalenohedron;

the general symbol is (hkl). It may be considered as derived from the
ditetragenal pyramid of the normal class by taking the alternate pairs of

Chalcopyrite
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faces of the latter form. The faces of the complementary positive and nega-
tive forms therefore embrace all the faces of the ditetragonal pyramid. This
form appears in combination in chalcopyrite, but is not observed inde-
Eegdently. In Fig. 211 the form s(531) 1s the positive tetragonal scaleno-
edron. '

107. Other Forms. — The other forms of the class, namely, the first and
second order prisms, the ditetragonal prism, and the first and second order
pyramids (khl) and (hOl), are geometrically like those of the normal class.

The lower symmetry in the molecular structure is onlv revealed by special
investigation, as by etching.

6. TRAPEZOHEDRAL CLASS (11). NICKEL SULPHATE TYPE
(Tetragonal Trapezohedral or Trapezohedral Hemihedral Class)

108. The trapezohedral class is analogous to the plagiohedral class under
the isometric system; it is characterized by the absence of any plane or
center of symmetry; the vertical axis, however, is an axis of tetragonal syr. -
metry, and perpendicular to this there are four axes of binary symmetry.
This symmetry and the distribution of the faces of the general form (hkl)

212 213

Symmetry of Trapezohedral Class Tetragonal Trapezohedron

are shown in the stereographic projection, Fig. 212, and Fig. 213 gives the
resulting solid, a tetragonal trapezohedron. It may be derived from the dite-
tragonal pyramid of the normal class by the extension of the alternate faces
of that form. There are two complementary forms called right- and left-
handed which embrace all the faces of the ditetragonal pyramid of the normal
class. These two forms are enantiomorphous, and the salts belonging to
this class show circular polarization. ) .
Nickel sulphate and a few other artificial salts belong in this class.

7. TETARTOHEDRAL CLASS (12)
(Tetragonal Bisphenoidal or Sphenoidal Tetartohedral Class)

109. Symmetry. — The seventh and last possible class under this
system has no plane nor center of symmetry, but the \_fertlcal axis is an axis
of binary symmetry. The symmetry and the distribution of the faces of the
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general form (hkl) are shown in the stereographic projection (Fig. 214), and
the solid resulting is known as a sphenoid of the third order. It can be derived
214 from the ditetragonal pyramid of the normal
class by taking only one quarter of the faces
SIS of that form. There are therefore four com-
bEs S plementary forms which are respectively
g o N distinguished as right (4 and — ) and left
/ (4 and —).. These four together embrace all
»{ \ the sixteen faces of the ditetragonal pyramid.
>t > T
\
\

] The other characteristic forms of this class
x are the prism of the third order [(hk0), the
o A positive and negative sphenoids of the first
\ 4 order (111), and also those of the second
ey o order (101). It is said that an artificial
5 compound, 2Ca0.AL;0;.8i0,, crystallizes in

Symmetry of Tetartohedral Class  this class.

MATHEMATICAL RELATIONS OF THE TETRAGONAL SYSTEM

110, Choice of Axes, — It appears from the discussion of the symmetry of the seven
classes of this system that with all of them the position of the vertical axis is fixed. In
classes 1, 2, however, where there are two sets of vertical planes of symmetry, either set
may be made the axial planes and the other the diagonal planes. The choice between these
two possible positions of the horizontal axes is guided particularly by the habit of the
occurring crystals and the relations of the given species to others of similar form. With
a species whose crystal characters have been deseribed it is customary to follow the orien-
tation given in the original description.

111, Determination of the Axial Ratio, etc. — The following relations serve to connect
the axial ratio, that is, the length of the vertical axis ¢, when @ = 1, with the fundamental
angles (001 A 101) and (001 A 111):

tan (001 A 101) =¢; tan (001 A 111) x V2 =c.

For faces in the same rectangular zone the tangent principle applies. The most 1m-
portant cases (cf. Fig. 214) are:

i
tan (001 A OKl) _ I_c
tan (001 A O11) 1I°
tan (001 A Rhl) h
tan (001 A 111) 1

For the prisms

tan (010 A RkO) = ;—z: or tan (100 A kkO) = %

112. Other Calculations. — It will be noted that in the stereographic projection (Fig.
214) all those spherical triangles are right-angled which are formed by great circles (diam- -
eters) which meet the prismatic zone-circle 100, 010, 100, 010. Again, all those formed by
great circles drawn between 100 and 100, or 010 and 010, and crossing respectively the
zone-circles 100, 001, 100, or 010, 001. 010. Also, all those formed by great circles drawn
between 110 and 110 and crossing the_zone-circle 110, 001, 110, or between 110 and 110
and crossing the zone-circle 110, 001, 110.

These spherical triangles may hence be readily used to calculate any angles desired; for
example, the angles between the pole of any face, as hkl (say 321), and the pinacoids 100,
010, 001. The terminal angles (r and 2z, Fig. 187) of the ditetragonal pyramid, 212 A 212
(or 313 A 313, etc.), and 212 A 122 (or 313 A 133, ete.), can also be obtained in the same
way. The zonal relations give the symbols of the poles on the zones 001, 100 and 001, 110
for the given case. For example, the zone-circle 110, 313, 133, 110 meets 110, 001, 110 at
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the pole 223, and the calculated angle 313 A 223 is half the
) a1 : 23 angle 313 A 133. If a large
:;lllllal.?bg(l?z eorf ggln(;‘l‘?r angles are to be calculated, it is more convenient to use a formula, as

113. Formulas. — It is sometimes convenient to have th i i
exp?la?se'lqhdlrspttly in tcrfm:hof thle axis ¢ and the indices ):e k, gnx(lio;'m a%ﬁﬁ?rfaclal ey
e distances o e pole of any face P(hki from’ the pi ids =
b(010) = Pb, c(001) = Pc are given by the followigg e)quations:e Fgpoolds B(109) i

h2c? k2c? 2

ANDy S GO T _ .
cos? Pa e T ke + B’ cos® Pb = It kit L 12’ cos? Pe = e+ e + B

These may also be expressed in the form

k2c® 4 12, h2e? <
tan® Pa = —i—;  tan? Pb = ——Ckzj,; l2; fant Bl HUe it -lt ke,

(2) For the distance between the poles of any two faces (hkl), (pgr), we have in general
aoa P hpe? + kge? + Ir y
VI + e + BT [(p* + ¢ + 7]

The above equations take a simpler form for special cases oft ing; I
for hkl and the angle of the edge y of Fig. 187. e =0 coruEing) S e
114. Prismatic Angles. — The angles for the commonly occurring ditetragonal prisms
are as follows*

Angle on  Angle on Angle on  Angle on
a(100) m(110) a(100) m%llO)
410 14° 2V 30° 573 530 30° 573/ 14° 2}’
310 18 26 26 34 320 33 411 11 183
210 26 34 18 26 430 36 521 8. 7%

115. To'deterr.ning, by plotting, the axial ratio, a : ¢, of a tetragonal mineral from the
stereographic projection of its crystal forms. As an illustrative example it has been
assumed that the angles between the faces on the crystal of rutile, represented m Fig 180,
have been measured and (rorn these measurements the poles of the faces in one octant
located on the stereographic projection, see Fig. 215. 1In determining the axial ratio of 2
tetragonal crystal (or what is the same thing, the length of the ¢ axis, since the length of
the a axes are always taken as equal to 1) it is necessary to assume the indices of some
p{ramldgl form. It is customary to take a pyramid which is prominent upon the erystals
of the mineral and assume that it is the fundamental or unit pyramid of either the first or
second order and has as its symbol either (111) or (101). In the example chosen both a
first order and a second order pyramid are present and from their zonal relations it is evi-
dent that if the symbol assigned to the first order form be (111) that of the second order
form must be (101), In order to determine the relative length of the ¢ axis in respeect to
the length of the a axis for rutile therefore, it is only necessary to plot the intercept of
either of these forms upon the axes. In the case of the second order pyramid it is only
necessary to construct a right angle triangle (see upper left hand quadrant of Fig. 215) in
which the horizontal side shall equal the length of the a axis, (1), the vertical side shall
represent the ¢ axis and the hypothenuse shall show the proper angle of slope of the face.
The angle between the center of the projection and the pole e(101) is measured by the
stereographic protractor and a line drawn making that angle with the line representing the
¢ axis. The hypothenuse of the triangle must then be at right angles to this pole. Its
intercept upon the vertical side of the triangle, when expressed in relation to the distance
(O-M) which was chosen as representing unity on the a axis, will therefore give the length
of the ¢ axis. In rutile this is found to be 0.644.

The same value is obtained when the position of the pgramid of the first order s(111)
is used. In this case the line M-P-N is first drawn at right angles to the radial line O-P
drawn through the pole s(111). The triangle to be plotted in this case has the distance
O-P as the length of its horizontal side. Its hypothenuse must be at right angles to the
line representing the pole to (111). The intercept on the ¢ axis is the same as in the first

case.
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116. :1‘0 determine, by plotting, the indices of any face (hkl) of a tetragonal form from
the position of its pole on the stereographic projection. The solution of this problem is
like that given in a similar case under the.Isometric System, see p. 74, except that the
intercept of the face on the vertical axis must be referred to the established unit length of
that axis and not to the length of the a axis. The method is exactly the reverse of the
one used in the problem discussed directly above.

117. s To dgte{mme, py plotting, the axial ratio, a : ¢, of a tetragonal mineral from the
gnomonic projection of its crystal forms. As an illustrative example consider the erystal
of rutile, Fig. 180, the poles to the faces of which, are shown plotted in gnomonic projec-
tion in Fig. 216. The pyramids of the first and second order present are taken as the
unit forms with the symbols, s(111) and e(101). The lines O-M and O-N represent the
two horizontal axes a; and a; and the distance from the center O to the circumference of
the fundamental circle is equal to unity on these axes. The intercepts on O-M and O-N
made by the poles of ¢(101) or the perpendiculars drawn from the poles of s(111) give the
unit length of the vertical axis, c. In this case this distance, when expressed in terms of
the assumed length of the horizontal axes (which in the tetragonal system always equals
1) is equal to 0.64.

That the above relation is true is ‘obvious from a consideration of Fig. 216. This rep-
resents a vertical section through the spherical and gnomonic projection including the
horizontal axis, a.. The s]ope.of the face e(011) is plotted with its intercepts on the a.
and c axes and the position of its pole in both the spherical and gnomonic projections is
shown. It is seen through the two similar triangles in the figure that the distance from
the center to the pole ¢(011) in the gnomonic projection must be the same as the intercept
of the face e upon the vertical axis c. And as eis a unit form this must represent unity on c.

118. To determine, by plotting, the indices of any face of a tetragonal form from the
position of its pole on the gnomonic projection. It is assumed that in this case a mineral
is being considered whose
axial ratio is known. Un- 217
der these conditions draw
perpendiculars from the
pole in question to the
lines representing the two
horizontal axes. Then
space off on these lines
distances equivalent to the
length of the ¢ axis, remem-
bering that it must be
expressed in terms of the
length of the horizontal
axes which in turn is equal
to the distance from the
center of the projection
to the circumference of the
fundamental circle. Give
the intercepts of the lines
drawn from the pole of
the face to the axes a
and @; in terms of the
length of the vertical axis, 4
add a 1 asthe third figure \
and if necessary clear of !
fractions and the required :
indices are the result. This )
is illustrated in Fig. 217, o e FOREAR 1 -
which is the lower right oo 24
hand quadrant of the gno- v 1
monic projection of the )
forms shown on the rutile
crystal, Fig. 190. Con- . . . ; !
sider first the ditetragonal pyramid z(321). Perpendiculars drawn from its pole intersect
the lines representing the horizontal axes in distances which are equal to 3 and 2 times
the unit length of the c¢. axis, 0.64. The indices of the face will therefore
be 321. In the case of the ditetragonal pyramid ’(313)f the intercepts are
la; and 3a.. This gives the expression 1.3.1 which when cleared of the fraction yields 313,

———————ee
2w

130
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the indices of the face in question. The indices of a prism face like /(310) can be readily
obtained in exactly the same manner as described under the Isometric System, Art. 84.
p. 75.

III. HEXAGONAL SYSTEM

119. The HexacoNAL SysTEM includes all the forms which are referred
to four axes, three equal horizontal axes in a common plane intersecting at
angles of 60°, and a fourth, vertical axis, at right angles to them.

Two sections are here included, each embracing a number of distinct
classes related among themselves. They are called the Hezagonal Division
and the Trigonal (or Rhombohedral) Division. The symmetry of the former,
about the vertical axis, belongs to the hexagonal type, that of the latter to
the trigonal type.

Miller (1852) referred all the forms of the hexagonal system to three equal axes parallel
to the faces of the fundamental rhombohedron, and hence intersecting at equal angles, not
90°. This method (further explained in Art. 169) had the disadvantage of failing to bring
out the relationship between the normal hexagonal and tetragonal types, both characterized
by a principal axis of symmetry, which (on the system adopted in this book) is the vertical
crystallographic axis. It further gave different symbols to faces which are exystallo~
graphically identical. It is more natural to employ the three rhombohedral axes for tri-
gonal forms only, as done by Groth (1905), who includes these groups in a Trigonal System;
but this also has some disadvantages. The indices commonly used in describing hexagonal
forms are known as the Miller-Bravais indices, since they were adopted by Bravais for use
with the four axes from the scheme used by Miller in the other crystal systems.

120. Symmetry Classes. — There are five possible classes in the Hex-
agonal Division. Of these the normal class is much the most important, and
two others are also of importance among crystallized minerals.

In the Trigonal Division there are seven classes; of these the rhombo-
hedral class or that of the Calcite Type, is by far the most common, and
three others are also of importance.

121. Axes and Symbols. — The position of the four axes taken is
shown in Fig. 218; the three horizontal axes are called q, since they are equal
and interchangeable, and the vertical axis is ¢, since it has a different length,

o being either longer or shorter than'the horizontal
axes. The length of the vertical axis is expressed
in terms of that of the horizontal axes which in turn
is always taken as unity. Further, when it is de-
sirable to distinguish between the horizontal axes

23 L they ma);l be desiggnzﬂ;edhal, as, ag.l Whe? I;roperly
‘?“ é: . orientated one of the horizontal axes (as) is par-
a - = allel to the observer and the other two make an%les
of 30° either side of the line perpendicular to him.
The axis to the left is taken as ai, the one to the
right as a;. The positive and negative ends
Satagonal sy of the axes are shown in Fig. 218. The general
position of any plane may be expressed in a

manner analogous to that applicable in the other systems, viz.-

L Rin A 7
s 1.ka2.iaa.zc.

The corresponding indices for a given plane are then &, k, 7, I; these always
refer to the axes named in the above scheme. Since it is found convenient
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to consider the axis a; as negative in front and positive behind, the general
symbol becomes hkil. Further, as following from the angular relation of
the three horizontal axes, it can be readily shown to be always true that the
algebraic sum of the indices h, k, 1, is equal to zero:

h+k+i=0.
A. Hexagonal Division

1. NORMAL CLASS (13). BERYL TYPE
(Dihexagonal Bipyramidal or Holohedral Class)

122. Symmetry. — Crystals belonging to the normal class of the Hex-
agonal Division have one principal axis of hexagonal, or sixfold, symmetry,
which coincides with the vertical crystallographic axis; also six horizontal
axes of binary symmetry; three of these coincide with the horizontal crystal-
lographic axes, the others bisect the angles between them. There is one
principal plane of symmetry which is the plane of the horizontal crystallo-
graphic axes and six vertical planes of symmetry 219
which meet in the vertical erystallographic axis.
Three of these vertical planes include the hori-
zontal crystallographic axes and the other three
bisect the angles between the first set.

The symmetry of this class is exhibited in the
accompanying stereographic projection, Fig.
219, and by the following crystal figures.

The analogy between this class and the
normal class of the tetragonal system is
obvious at once and will be better appreciated
as greater familiarity is gained with the indi-
vidual forms and their combinations.

123. Forms. — The possible forms in this
class are as follows:

Symmetry of Normal Class

Miller-Bravais.
1] R s i T S o Bl (0001)
2. Prism of the first order............. (1010)
3. Prism of the second order........... (1120)
4. Dihexagonal prism................. (hk30) as, (211_50) 1
5. Pyramid of the first order........... (hORI) as, (1011); (2021) ete.
6. Pyramid of the second order........ (h-h-2hel) as, (1122)
7. Dihexagonal pyramid.............. (hkal) as, (2131)

In the above h > k, and & + k = —1.

124. Base. — The base, or basal pinacoid, includes the two faces, 0001
and 0001, parallel to the plane of the horizontal axes. It is uniformly desig-
nated by the letter ¢; see Fig. 220 ef seq. i 1

125. Prism of the First Order. — There are three types of prisms, or
forms in which the faces are parallel to the vertical axis.
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The prism of the first order, Fig. 220, includes six faces, each one of which
is parallel to the vertical axis and meets two'adjacent horizontal axes at
equal distances, while it is parallel to the third horizontal axis. It has hence
the general symbel (1010) and is uniformly designated by the letter m; the
indices of its six faces taken in order (see Figs. 220 and 229, 230) are:

1010, o1io, 1100, 1010, 0110, 1100.

220 221 222
‘& c 4 .
NN & P /-_—_—7\
0001 ;> f 1 [R5 0001 ¢ D
. ! i : ,
E ; ! 1 o] Ele
o ' | i)k i
| | | AREInt
; S PRI S
~. — a . LS. H f Ly
— e % Ay =—pree | o b
iiod) 1010 ;| 0iTo /U0 | 1020 - | 1210 ! |8130) 130
- g j S At ]
3 = ’\__’_,_J/ - L~

First Order Prism Second Order Prism Dihexagonal Prism

126. Prism of the Second Order. — The prism of the second order,
Fig. 221, has six faces, each one of which is parallel to the vertical axis, and
meets the three horizontal axes, two alternate axes at the unit distance, the
intermediate axis at one-half this distance; or, which is the same thing, it
meets the last-named axis at the unit distance, the others at double this
distance.* The general symbol is (1120) and it is uniformly designated by
the letter a; the indices of the six faces (see Figs. 221 and 229, 230) in order
are:

1120, 1210, 2110, 1120, 1210, 2770.

The first and second order prisms are not to be distinguished geometric-
ally from each other since each is a regular hexagonal prism with normal
interfacial angles of 60°. They are related to each other in the same way as
the two prisms m(110) and a(100) of the tetragonal system.

The relation in position between the first order
prism (and pyramids) on the one hand and the
second order prism (and pyramids) on the other
will be understood better from Fig. 223, repre-
senting a cross section of the two prisms parallel
to the base c.

127. Dihexagonal Prism. — The dihexagonal
prism, Fig. 222, is a twelve-sided prism bounded
by twelve faces, each one of which is parallel
to the vertical axis, and also meets two adjacent
horizontal axes at unequal distances, the ratio of
which always lies between 1 :1 and 1 : 2. This
. prism has two unlike edges, lettered z and y, as
shown in Fig. 222. The general symbol is (hk20) and the indices of the
faces of a given form, as (2130), are:

* Since la; : la; : —}a; : «c is equivalent to 2a; : 2a, : —las : we.
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2130, 1230, 13%0, 2310, 3210, 3120
2130, 1230, 1320, 2310, 3210, 3120,

128. Pyramids of the First Order. — Correspondin
of prisms just mentioned, there are three types olf) pyrar%li(tiz iRe HEea iy

A pyramid of the first order, Fig. 224, is a double six-sided pyramid (or
bipyramid) ‘pounded by twelve similar triangular faces — six aboeve and six
below — which have the same position relative to the horizontal axes as the
faces of the first order prism, while they also intersect the vertical axis above
and below. The general symbol is hence (hORI). The faces of a given form
as 1011), are: i

Above 1011, 0111, 1101, 1011, 0111, 1101
Below 1011, 0111, 71101, 1011, 0111, 1701.

__On a given species there may be a number of pyramids of the first order
differing in the ratio of the intercepts on the horizontal to the vertical axis:
and thus forming a zone between the base (0001) and the faces of the unit
prism (1010). Their symbols, passing from the base (0001) to the unit
prism (1010), would be, for example, 1014, 1012, 2023, 1011, 3032, 2021,
etc. In Fig. 228 the faces p and u are first order pyramids and they have
the symbols respectively (1011) and (2021), here ¢ = 0.4989. As shown in
these cases the faces of the first order pyramids replace the edges of the first
order prism. On the other hand, they replace the solid angles of the second
order prism a(1120). '

224 ‘ 226

First Order Pyramid Second Order Pyramid Dihexagonal Pyramid

129. Pyramids of the Second Order. — The pyramid of the second order
(Fig. 225), is a double six-sided pyramid including the twelve similar faces
which have the same position relative to the horizontal axes as the faces
of the second order prism, and which also intersect the vertical axis. They
have the general symbol (k- A - 2k - 1). The indices of the faces of the form
(1122) are: ' ;

Above 1132, 122, 2112, Iiz, 1212, 2012
Below 1133, 1212, 2112, 1122, 1212, 2112

The faces of the second order pyramid replace the edges between the faces
of the second order prism and the base. Further, they replace the solid angles
of the first order prism m(1010). There may be on a single crystal a num-
ber of second order pyramids forming a zone between the base ¢(0001) and
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the faces of the second order prism a(1120), as, naming them in order: 1124,
1122, 2243, 1121, ete. In Fig. 227, s is the second order pyramid (1121).

130. Dihexagonal Pyramid. — The dihezagonal pyramid, Fig. 226, is a
double twelve-sided pyramid, having the twenty-four similar faces embraced
under the general symbol (kkil). It is bounded by twenty-four similar
faces, each meeting the vertical axis, and also meeting two adjacent hori-
zontal axes at unequal distances, the ratio of which always lies between
1:1and1:2. Thus the form (2131) includes the following twelve faces in
the upper half of the crystal:

2131, 1231, 1321, 2311, 3211, 3121,

2131, 1231, 1321, 2311, 3211, 3121.
And similarly below with I (here 1) negative, 2131, etc. The dihexagonal
pyramid is often called a berylloid because a common form with the species

beryl. The dihexagonal pyramid »(2131) is shown on Figs. 224, 225.
131. Combinations. — Fig. 227 of beryl shows a combination of the

227 228

Beryl

base ¢(0001) and prism m(1010) with the first order pyramids p(1011) and
u(2021); the second order pyramid s(1121) and the dihexagonal pyramid
v(2131). Both the last forms lie in a zone between m and s, for which it is
true that k = I. The basal projection of a similar crystal shown in Fig. 228
Is very Instructive as exhibiting the symmetry of the normal hexagonal
class. This is also true of the stereographic and gnomonic projections in
Figs. 229 and 230 of a like crystal with the added form o(1122).

2. HEMIMORPHIC CLASS (14). ZINCITE TYPE

(Dihexagonal Pyramidal or Holohedral Hemimorphic Class)

132. Symmetry. — This class differs from the normal eclass only in
having no horizontal plane of principal symmetry and no horizontal axes
of binary symmetry. It has, however, the same six vertical planes of sym-
metry meeting at angles of 30° in the vertical crystallographic axis which is
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an axis of hexagonal symmetry. There is no center of symmetry. The
231 symmetry is exhibited in the stereographic
projection, Fig. 231.

133. Forms. — The forms belonging to
this class are the two basal planes, 0001
and 0001, here distinct forms, the positive
(upper) and negative (lower) pyramids of
each of the three types; also the three prisms,
which last do not differ geometrically from
the prisms of the normal class. An example
of this class is found in zincite, Fig. 44,
p. 22. lodyrite, greenockite and wurtzite are
also classed. here.

Symmetry of Hemlmorphlc Class

3. TRIPYRAMIDAL CLASS (15). APATITE TYPE
(Hexagonal Bipyramidal or Pyramidal Hemihedral Class)

134. Typical Forms and Symmetry. — This class is important because
it includes the common species of the Apatite Group, apatite, pyromorphite,
mimetite, vanadinite. The typical form is the hexagonal prism (h%k20) and
the hexagonal pyramid (hkil), each designated as of the third order. These
forms which are shown in Figs. 233 and 234 may be considered as derived
from the corresponding dihexagonal forms of the normal class by the omis-
sion of one half of the faces of the latter. They and the other forms of the
class have only one plane of symmetry, the plane of the horizontal axes, and
also one axis of hexagonal symmetry (the vertical axis).

The symmetry is exhibited in the stereo-
graphic projection (Fig. 232). It is seen here,
as in the figures of crystals given, that, like
the tripyramidal class under the tetragonal
system, the faces of the general form (hk7)
present are half of the possible planes belong-
ing to each sectant, and further that those
above and below fall in the same vertical
zZone.

1356. Prism and Pyramid of the Third
Order. — The prism of the third order (Fig.
233) has six like faces embraced under the
general symbol (hk10), and the form is a regular
hexagonal prism with angles of 60°, not to be ; )
distinguished geometrically, if alone, from the Symmetry of Tripyramidal Class
other hexagonal prisms; cf. Figs. 220, 221,

p. 96. The six faces of the rlght-handed form (2130) have the indices

2130, 1320, 3210, 2130, 1320, 3270.

232

The faces of the complementary left-handed form have the indices:
1230, 2310, 3120, 1230, 2310, 3120.

As already stated these two forms together embrace all the faces of the
dihexagonal prism (Fig. 222). :
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233 234 235
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Third Order Prism Third Order Pyramid

The pyramid is also a regular double hexagonal pyramid of the third
order, and in its relations to the other hexagonal pyramids of the class (Figs.
224, 225) it is analogous to the square pyramid of the third order met with
in the corresponding class of the tetragonal system (see Art. 100). The
faces of the right-handed form (2131) are:

Above 2131, 1321, 3211, 2I31, 1321, 320L
Below 2131, 1321, 3211, 2131, 1321, 3211.

There is also a complementary left-handed form, which with this embraces
all the faces of the dihexagonal pyramid. The cross section of Fig. 235 shows
in outline the position of the first order prism, and also that of the right-
handed prism of the third order.

The prism and pyramid just described do not often appear on crystals as
predominating forms, though this is sometimes the case, but commonly these
faces are present modifying other fundamental forms.

136. Other Forms. — The remaining forms of the class are geometri-
cally like those of the normal class, viz., the base (0001); the first order prism
(1010); the second order prism (1120); the first order pyramids (hOhl);
and the second order pyramids (h'h'2h’l). That their molecular struc-
ture, however, corresponds to the symmetry of this class is readily proved, for
example, by etching. In this way it was shown that
pyromorphite and mimetite belonged in the same
groupwith apatite (Baumhauer), though crystals with
the typical forms had not been observed. This class
is given its name of Tripyramidal because its forms
include three distinct types of pyramids.

137. A typical crystal of apatite is given in Fig.
236. It shows the third order prism A(2130), and
the third order pyramids, w(2131), n(3141); also
the first order pyramids 7(1012), x(1011), y(2021),
the second order pyramids »(1122), s(1121); ¢
finally, the prism m(1010), and the base ¢(0001). Apatite

4 PYRAMIDAL-HEMIMORPHIC CLASS (16). NEPHELITE TYPE

(Hezagonal Pyramidal or Pyramidal Hemihedral Hemimorphic Class)

138. Symmetry. — A fourth class under the hgxagonal division, the
pyramidal-hemimorphic class, is like that just described, except. that the

236
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forms are hemimorphic. The single horizontal plane of symmetry is absent,
but the vertical axis is still an axis of hexagonal symmetry. This symmetry
is shown in the stereographic projection of Fig. 237. The typical form would
be like the upper half of Fig. 234 of the pyramid of the third order. The
species nephelite is shown by the character of the etching-figures (¥ig. 238,
Groth after Baumhauer) to belong here.

237 238
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Symmetfy of Pyramidal-Hemimorphic Class Nephelite

5. TRAPEZOHEDRAL CLASS (17)

(Hexagonal Trapezohedral or Trapezohedral Hemihedral Class)

139. Symmetry. — The last class of this division is the frapezohedral
class. It has no plane of symmetry, but the vertical axis is an axis of hex-
agonal symmetry, and there are, further, six horizontal axes of binary sym-
metry. There is no center of symmetry. The symmetry and the distribu-
tion of the faces of the typical form (hkzl) is shown in the stereographic pro-
jection (Fig. 239). The typical forms may be derived from the dihexagonal
pyramid by the omission of the alternate faces of the latter. There are two
possible types known as the right and left hexagonal trapezohedrons (see

239 240

Symmetry of Trapezohedral Class Hexagonal Trapezohedron

Fig. 240), which are enantiomorphous, and the few crystallized salts falling
. in this class show circular polarization. A modification of quartz known as
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B-quartz is also described as belonging here. The indices of the right form
(2131) are as follows: ;

Above 2131,

31, 132
Below 1231, 231

3211, 1“2781,* 13217 ‘20T
312

£ D81, 548
i 1, 1231, 2311, 37a1.

B. Trigonal or Rhombohedral Division
(Trigonal System)

140. General Character. — As stated on p. 19, the classes of this division
are characterized by a vertical axis of trigonal, or threefold, symmetry.
There are seven classes here included of which the thombohedral class of the
Calcite Type is by far the most important.

1. TRIGONAL CLASS (18). BENITOITE TYPE
(Ditrigonal Bipyramidal, Trigonal Hemzhedral or Trigonotype Class)

141. Typical Forms and Symmetry. — This class has, besides the ver-
tical axis of trigonal symmetry, three horizontal axes of binary symmetry
which are diagonal to the crystallographic axes. There are four planes of
symmetry, one horizontal, and three vertical diagonal planes intersecting at
angles of 60° in the vertical axis. The symmetry and the distribution of the
faces of the positive ditrigonal pyramid is shown in Fig. 241. The char-
acteristic forms are as follows. Trigonal prism consisting of three faces
comprising one half the faces of the hexagonal prism of the first order. They
are of two types, called positive (1010) and negative (0110). Trigonal

241 242

Symmetry of Trigonal Class Benitoite (Palache)

pyramid, a double three-faced pyramid, consisting of six faces corresponding
to one half the faces of the hexagonal pyramid of the first order. The faces
of the upper and lower halves fall in vertical zones with each other. There
are two types, called positive (1011) and negative (0111). Ditrigonal prism
consists of six vertical faces arranged in three similar sets of two faces and
having therefore the alternate edges of differing character. It may be de-
rived from the dihexagonal prism by taking alternating pairs of faces. Ditri-
gonal pyramid consists of twelve faces, six above and six below. It, like the
prism, may be derived from the dihexagonal form by taking alternate pairs
of faces of the latter. The faces of the upper and lower halves fall in vertical
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zones. The only representative of this class known is the rare mineral
benitoite, a crystal of which is represented in Fig. 242. This erystal shows
the trigonal prisms m(1010) and u(0110), the hexagonal prism of the second
order, a(1120), the trigonal pyramids, p(1011) and =(0111); €(0112) and the
hexagonal pyramid of the second order, x(2241)

2. RHOMBOHEDRAL CLASS (19). CALCITE TYPE

(Ditrigonal Scalenohedral or Rhombohedral Hemihedral Class)

142. Typical Forms and Symmetry. — The typical forms of the rhom-
bohedral class are the rhombohedron (Fig. 244) and the scalenohedron (Fig.
259). These forms, with the projections,
243 ' Figs. 243 and 269, illustrate the symmetry
- characteristic of the class. There are three
planes of symmetry only; these are diangoal
to the horizontal crystallographic axes and
intersect at angles of 60° in the vertical crystal-
lographic axis. This axis is with these forms
an axis of trigonal symmetry; there are,
further, three horizontal axes diagonal to the
crystallographic axes of binary symmetry.
Compare Fig. 244, also Fig. 245 et seq.

By comparing Fig. 269 with Fig. 229, p.
99, 1t will be seen that all the faces in half
the sectants are present. This group is hence
analogous to the tetrahedral class of the iso-
metric system, and the sphenoidal class of the tetragonal system.

143. Rhombohedron. — Geometrically described, the rhombohedron is
a solid bounded by six like faces, each a thomb. It has six like lateral edges
forming a zigzag line about the crystal, and six like terminal edges, three
above and three in alternate position below. The vertical axis joins the two
trihedral solid angles, and the horizontal axes join the middle points of the
opposite sides, as shown in Fig. 244. '

244 245 246

g
+ 1011
o -\\~

1101

Positive Rhombohedron Calcite Negative i%hombohedron Positive Rhombohedron
Hematite

The general symbol of the rhombohedron is (kOAl), and the successive
faces of the unit form (1011) have the indices:

Above, 1011, 1101, 0T11;  below, 0111, T01I, 1701
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The geometrical shape of the rhombohedron varies widely as the angles
change, and consequently the relative length of the vertical axis ¢ (expressed
in terms of the horizontal axes, @ = 1). As the vertical axis diminishes, the
rhombohedrons become more and more obtuse or flattened; and as it increases
they become more and more acute. A cube placed with an octahedral axis
vertical is obviously the limiting case between the obtuse and acute forms
where the interfacial angle is 90°. In Fig. 244 of calcite the normal rhom-
bohedral angle is 74° 55" and ¢ = 0-854, while for Fig. 246 of hematite this
angle is 94° and ¢ = 1-366. _ Further, Figs. 246-251 show other rhombohe-
drons of calcite, namely, [ (0112), ¢ (0554), (0221), M(4041), and p(16-0-16-1);
here the vertical axes are in the ratio of %, §, 2, 4, 16, to that of the funda-
mental (cleavage) rhombohedron of Fig. 244, whose angle determines the
value of c.

247 249 250

=TT

264

Figs. 247-252, Calcite  Figs. 253-254, Gmelinite

144. Positive and Negative Rhombohedrons. — To every positive
rhombohedron there may be an inverse and complementary form, identical
geometrically, but bounded by faces falling in the alternate sectants. Thus
the negative form of the unit rhombohedron (0111) shown in Fig. 245 has

the faces: ~ ~ ey ek 513
Above, 0111, 1011, 1101; below, 1101, 0111, 1011.

osition of these in the projections (Figs. 269, 270) should be care-
full;f hsetlf)died. Of the figures already referred to, Figs. 244, 246, 250 are
positive, and Figs. 245, 247, 248, 249 negative, rhombohedrons; Fig. 251

h forms. o A
ShO\I‘ioS vlzr(x)lii be seen that the two complementary positive and negative rhom-
bohedrons of given axial length together embrace all the like faces of the
double six-sided hexagonal pyramid of the first order. When these two
rhombohedrons are equally developed the form is geometrically '1dentlcal
with this pyramid. This is illustrated by Fig. 254 of gmelinite r(1011),
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p(0111) and by Figs. 284, 285, p. 113, of quartz, r(1011), 2(0111).* In each
case the form, which is geometrically a double hexagonal pyramid (in Fig.
254 with ¢ and m), is in fact a combination of the two unit rhombohedrons,
positive and negative. Commonly a difference in size between the two forms
may be observed, as in Figs. 253 and 286, where the form taken as the posi-
tive rhombohedron predominates. But even if this distinction cannot be
established, the two rhombohedrons can always be distinguished by etching,
or, as in the case of quartz, by pyro-electrical phenorzena.

145. Of the two series, or zones, of rhombohedrons the faces of the posi-
tive Thombohedrons replace the edges between the base (0001) and the first
order prism (1010). Also the faces of the negative rhombohedrons replace the
alternate edges of the same forms, that is, the edges between (0001) and
(0110) (compare Figs. 253, 254, etc.). Fig. 255 shows the rhombohedron
in combination with the base. Fig. 256 the same with the prism a(1120).
When the angle between the two forms happens to approximate to 70° 32’
the crystal simulates the aspect of a regular octahedron. This is illustrated
by Fig. 257; here co = 69° 42', also oo = 71° 22, and the crystal resembles
closely an octahedron with truncated edges (cf. Fig. 99, p. 55).

256 257 3 2568

266

\M“‘
Figs. 255, 256, Hematite Coquimbite Eudialyte

146. There is a very simple relation between the positive and negative
rhombohedrons which it is important to remember. The form of one series
which truncates the terminal edges of a given form of the other will have one
half the intercept on the vertical crystallographic axis of the latter. This
ratio is expressed in the values of the indices of the two forms. Thus (0112),
truncates the terminal edges of the positive unit rhombohedron (1011);
(1014) truncates the terminal edges of (0112), (1015) of (2025). Again (1011)
truncates the edges of (0221), (4041) of (0221), ete. This is illustrated by
Fig. 252 with the forms 7(1011) and f(0221). Also in Fig. 258, a basal pro-
jection, 2(1014) truncates the edges of e(0112); ¢(0112) of r(1011); r(1011)
of s(0221).

147. Scalenohedron. — The scalenohedron, shown in Fig. 259, is the
general form for this class corresponding to the symbol hkil. It is a solid,
bounded by twelve faces, each a scalene triangle. It has roughly the shape
of a double six-sided pyramid, but there are two sets of terminal edges, one
more obtuse than the other, and the lateral edges form a zigzag edge around
the form like that of the rhombohedron. It may be considered as derived
from the dihexagonal pyramid by taking the alternating pairs of faces of

*

Quartz serves as a convenient illustration in this case, none the less so notwithstand-
ing the fact that it belongs to the trapezohedral class of this division.
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that form. It is to be noted that the faces in the lower h
not fall in vertical zones with those of the upper half. Li?{lé (t)lflet }11“131ofr?nrlr)r(l)h(ia(2
drons, the scalenohedrons may be either positive or negative.
The positive forms correspond in position to the positive
rhombohedrons and conversely.

The positive scalenohedron (2131), Fig. 259, has the fol-
lowing indices for the several faces: ’

Above 2131, 2311, 3211, 1231, 1321, 3121
Below 1231, 1321, 3121, 2131, 2311, 3211.
3 For the complementary negative scalenohedron (1231) the
indices of the faces are:
Above 1231, 1321, 312_1_, 2131, 2311, 3211.
Below 2311, 3211, 1231, 1321, 3121, 2131.
148. Relation of Scalenohedrons to Rhombohedrons. —
noted above that the scalenohedron in gelxﬁerzl ehagnsa se%eswi?
zigzag lateral edges like the rhombohedron. It is obvious, further Sealenohedron
that for every rhombohedron there will be a series or zone of scalenohedrons
having the same lateral edges. This is shown in Fig. 262, where the scalenohedron

260 261 262 263
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Figs. 260-263, Calcite
264

<

Figs. 264, 265, Corundum Figs. 266, 267, Spangolite*

»(2131) bevels the lateral edges of the fundamental rhombohedron 7(1011); the same
would be true of the scalenohedron (3251), etc. Further, in Fig. 263, the negative scaleno-
hedron z(1341) bevels the lateral edges of the negative rhombohedron f(0221). The rela-
tion of the indices which must exist in these eases may be shown to be, for example, for the
rhombohedron 7(1011), h =k +1; again for f(0221), b + 20 =k, ete. See also the pro-
jections, Figs. 269, 270. Further, the position of the scalenohedron may be defined with
reference to its parent rhombohedron. For example, in Fig. 262 the scalenohedron »(2131)
has three times the vertical axis of the unit rhombohedron 7(1011). Again in Fig. 263
z(1341) has twice the vertical axis of f (0221).

* Spangolite belongs properly to the next (hemimorphic) group, but this fact does not
destroy the value of the illustration.
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149. Other Forms. — The remaining forms of the normal class of the

> rhombohedral division are geometrically like
those of the corresponding class of the hexa-
gonal -division — viz., the base ¢(0001); the
prisms m(1010), a(1120), (hk20); also the second
order pyramids, as (1121). Some of these
forms are shown in the accompanying figures.
For further illustrations reference may be made
to typical rhombohedral species, as calcite, hema-
tite, ete.

With respect to the second order pyramid, it
is interesting to note that if it occurs alone
(as in Fig. 264, n = 2243) it is impossible to
say, on geometrical grounds, whether it has the
trigonal symmetry of the rhombohedral type
or the hexagonal symmetry of the hexagonal type. In the latter case,

269

g
1010

the form might be made a first order pyramid by exchanging the axial and
diagonal planes of symmetry. The true symmetry, however, is often indi-
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cated, as with corundum, by the occurrence on_other
== o d ¢ t

hedral faces, as 7(1011) in Fig. 265 (here z = 2241, o =r¥zﬁ%go.§)l.‘hog‘?;
if -lrlhor?tbohedra] fa;ces are i:tbs;:}nt (Fig. 266), the etching-figures (Fig. 267)
will often serve to_reveal the true tri I ;
I ? (112?, N 11%) gonal molecular symmetry; here

50. basal projection of a somewhat complex crystal of calcite is gi
- . . c te
in Fig. 268, and stereographic and gnomonic projectio}rlls of the slamés fgol:riz
in Figs. 269 and 270; both show well the symmetry in the distribution
270

2131

~ ’1010
m

Calcite

of the faces. Here the forms are: prisms, a(1120), m(1010); rhombohedrons,

positive, r(10I1), negative, ¢(0112), f(0221); scalenohedrons, positive,

v(2131), 1(2134).

3. RHOMBOHEDRAL-HEMIMORPHIC
CLASS (20). TOURMALINE TYPE

(Ditrigonal Pyramidal or Trigonal
Hemihedral Hemimorphic Class)

151. Symmetry. — A number of prominent
rhombohedral species, as tourmaline, pyrar-
gyrite, proustite, belong to a hemimorphic class
under this division. For them the symmetry
in the grouping of the faces differs at the two
extremities of the vertical axis. The forms have P of
the same three diagonal planes of symmetry Rhomboh%dral—HZmimorphic
meeting at angles of 60° in the vertical axis, Class
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which is an axis of trigonal symmetry. There are, however, no hori-
zontal axes of symmetry, as in the rhombohedral class, and there is no
center of symmetry. Cf. Fig. 271. £

152. Tygical Fo};ms. — In this class the basal planes (0001) and (0001)
are distinet forms. The other characteristic forms are the two trigonal
prisms m(1010) and m,(0110) of the first order series; also the four trigonal
first order pyramids, corresponding respectively to the three upper and
three lower faces of a positive rhombohedron, and the three upper and
three lower faces of the negative rhombohedron; also the hem1morph1c
second order hexagonal pyramid; finally, the four ditrigonal pyramids,
corresponding to the upper and lower faces respectively of the positive
and negative scalenohedrons.  Figs. 272-275 illustrate these forms. Fig.
274 is a basal section with r,(0111) and ¢,(1012) below.

272 273 274 275

Figs. 272-275, Tourmaline

4. TRI-RHOMBOHEDRAL CLASS (21). PHENACITE TYPE
(Rhombohedral or Rhombohedral Tetartohedral Class)

1563. Symmetry. — This class, illustrated by the species dioptase_a,

phenacite, willemite, dolomite, ilmenite, ete., is an important one. It is

characterized by the absence of all planes of

276 symmetry, but the vertical axis is still an axis

%ﬁ/""\% of trigonal symmetry, and there is a center of
// N AN, symmetry. Cf. Fig. 276. Bl g

/ . 164. Typical Forms. — The distinctive forms

/ N of the class are the rhombohqdron of the second

P L ‘x e order and the hexagonal prism and rhombo-

) { hedron, each of the third order. The class is

t 7R
\ o,,/ ;\ / thus characterized by three rhombohedrons of

distinet types (each + and — ), and hence the
e e A S be d
~ e second order rhombohedron may be de-
%(S ; /f% rived by taking one half the faces of the nor-
Tri-Rhombohedral Class ~ 1al hexagonal pyramid of the second order.
There will be two complementary forms known
as positive and negative. For example, in a given case the indices of the
faces for the positive and negative forms are:

Positive  (above) 1122, 2112, 1212; (below) 1212, 1122, 2113,
Negative (above) 1212, 1122, 2112; (below) 2112, 1212, 1122,
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The rhombohedron of the third order has the general symbol (hkil), and
may be derived from the normal dihex i i ks :
oneyqua,rt,er of the faces of the latter. R i, B el i

_ There are therefore four complementary third order rhombohedrons, dis-
tinguished respectively as positive right-handed (2131), positive left-ha,nded
(3121), negative right-handed (1321), and negative left-handed (1231). The
indices of the six like faces of the positive right-handed form (2131) are:

Above 2131, 3211, 1321; below 1321, 2131, 32il.

_ The hexagonal prism of the third order may be derived from the normal
dihexagonal prism, Fig. 219, by taking one half the faces of the latter. There
are two complementary forms known as right- and left-handed. The faces
of these forms in a given case (2130) have the indices:

Right 2130, 1320, 3210, 2130, 1320, 3210,
Left 1230 2310 3120 1230 2310,  3120.

155. The remaining forms are geometrically like those of the rhombo-
_hedral class, viz.: Base ¢(0001); first order prism m(1010);_ second order
p{ism a(1120); rhombohedrons of the first order, as (1011) and (0111),
ete.

156. The forms of this group are illustrated by Figs. 277-279. Tig. 277
is of dioptase and shows the hexagonal prism of the second order a(1120)
with a negative first order rhombohedron, s(0221) and the third order rhom-
bohedron x(1341). Figs. 278 and 279 show the horizontal and clinographic

277 : 278 279

N

Dioptase Phernacite

projections of a crystal of phenacite with the following forms: first order
prism, m(1010); second order prism, a(1120); third order rhomhohedrons,
£(1232) and s(2131); first order rhombohedrons, 7(1011) and d(0112).

In order to make clearer the relation of the faces of the different types of
forms under this class, Fig. 280 is added. Here the zones of the positive and
negative rhombohedrons of the first order are indicated (+E and —E)
also the general positions of the four types of the third order rhombohedrons
(+r, —r, +1, =1).

The following scheme may also be helpful in connection with Fig. 280. It
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1010 ) 280

shows the distribution of the faces of the four rhombohedrons of the third order
(+r, +1, —r, —1) relatively to the faces of the unit hexagonal prism.(1010).
Paenacite Tyee

crci B g Vi s s e A s e R e 5 b
3121 2131 | 1231 1321 | 2311 3211 | 3121 2131 | 1231 1321 | 2311 3211
1010 0170 1100 1010 0110 1100
T W el 5 A N S ey IR NG B S S I A s
31217 2131 | 12317 1321 | 2311 3211 | 3121 21317 | 1231 1321 | 2311 3211

5. TRAPEZOHEDRAL CLASS (22). QUARTZ TYPE

(Trigonal Trapezohedral or Trapezohedral Tetartohedral Class)

167. Symmetry. — This class includes, among minerals, the species
quartz and cinnabar. The forms have no plane of symmetry and no center
of symmetry; the vertical axis is, however, an axis of trigonal symmetry,
and there are also three horizontal axes of binary symmetry, coinciding in
direction with the crystallographic axes; cf. Fig. 281

281 282 283

Symmetry of Trapezohedral Class Trigonal Trapezohedrons
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188. Typical Forms. — The characteristic form of the eclass is the
trigonal trapezohedron shown in Fig. 282. This is the general form corre-
sponding to the symbol (hkil), the faces being distributed as indicated in the
accompanying stereographic projection (Fig. 281). The faces of this form
correspond to one quarter of the faces of the normal dihexagonal pyramid,
Fig. 226. There are therefore four such trapezohedrons, two positive, called
respectively right-handed (Fig. 282) and left-handed (Fig. 283), and two simi-
lar negative forms, also right- and left-handed (see the scheme given in
Art. 160). It is obvious that the two forms of Figs. 282, 283 are enantio-
morphous, and circular polarization is a striking character of the species
belonging to the class as elsewhere discussed.

The indices of the six faces belonging to each of these will be evident on
consulting Figs. 281 and 229 and 230. The complementary positive form
(r and 1) of a given symbol include the twelve faces of a positive scalenohe-
dron, while the faces of all four as already stated include the twenty-four
faces of the dihexagonal pyramid.

Corresponding to these trapezohedrons there are two ditrigonal prisms,
respectively right- and left-handed, as (2130) and (3120).

The remaining characteristic forms are the right- and left-handed ¢rigonal
prism a(1120) and a(2110); also the right- and left-handed trigonal pyramid,
as (1122) and (2112). They may be derived by taking respectively one half
the faces of the hexagonal prism of the second order (1120) or of the corre-
sponding pyramid (1122); these are shown in Figs. 221 and 225.

- 159. Other Forms. — The other forms of the class are geometrically
like those of the normal class. They are the base ¢(0001), the hexagonal
first order prism m(1010), and the positive and negative rhombohedrons as
(1011) and (0111). These cannot be distinguished geometrically from the
normal forms.

160. Illustrations. — The forms of this class are best shown in the
species quartz. As already remarked (p. 106), simple crystals often appear
to be of normal hexagonal symmetry, the rhombohedrons 7(1011) and z(0111)
being equally developed (Figs. 284, 285). In many cases, however, a differ-
ence in molecular character between them can be observed, and more com-

284 286 286 287

WA

A
<

Figs. 284-288, Quartz

monly one rhombohedron, 7(1011), predominates in size; the distinction can
always be made out by etching. Some crystals, like .Flg. 286, show' as
modifying faces the right trigonal pyramid s(1121), with a right positwe
trapezohedron, as z(5161).  Such crystals are called right-handed and rotate
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the plane of polarization of light transmitted in the direction of the vertical
axis to the right. A crystal, like Fig. 287, with the left trigonal pyramid
s(2111) and one or more left trapezohedrons, as £(6151), is called left-handed,
and as regards light has the opposite character to the crystal of Fig. 286.
Fig. 288 shows a more complex right-handed crystal with several positive
and negative rhombohedrons, several positive right trapezohedrons and the
negative left trapezohedron, N.

The following scheme shows the distribution of the faces of the four
trapezohedrons (+r, +1, —r, —1) relatively to the faces of the unit hex-
agonal prism (1010); it is to be compared with the corresponding scheme,
given in Art. 156, of crystals of the phenacite type. In the case of the nega-
tive forms some authors prefer to make the faces 2131, 1231, etc., right, and
3121, 1321, etc., left.

Quartz TyPE

S )1 [ e s R L e g S S BT R B e U
3121 2131 1231 1321 | 2311 3211 | 3121 2131 | 1231 1321 | 2311 32i1
1010 0170 1100 1010 0110 1100
—-r =l +r 41 -r -l +r 41 —r =1 +r 4l

3121 2131 | 1231 1321 | 2311 3217 | 3121 2131 | 1231 1321 | 2311 3211

161. Other Classes. — The next class (23) is known as the Trigonal
Bipyramidal or Trigonal Tetartohedral class. It has one plane of sym-
metry — that of the horizontal axes, and one axis of trigonal symmetry —
the vertical axis. There is no center of symmetry. Its characteristic forms
are the three types of trigonal prisms and the three corresponding types of
trigonal pyramids. Cf. Fig. 289. This class has no known representation
among crystals.

The last class (24) of this division is known as the Trigonal Pyramidal
or Trigonal Tetartohedral Hemimorphic class. It has no plane of symmetry

289 290

Symmetry of Trigonal Bipyramidal Class Symmetry of the Trigonal Pyramidal Class

and no center of symmetry, but the vertical axis is an axis of trigonal sym-
metry. The forms are all hemimorphic, the prisms trigonal prisms, and the
pyramids hemimorphic trigonal pyramids. Cf. Fig. 290. The crystals of
sodium periodate belong to this class.
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MATHEMATICAL RELATIONS OF THE HEXAGONAL SYSTEM.

162. Choice of Axis.— The pasition of the vertical crystallographic axis is fixed in all
the classes of this system since it coincides with the axis of hexagonal symmetry in the
hexagonal division and that of trigonal symmetry in the rhombohedral division. The three
horizontal axes are also fixed in direction except in the normal class and the subordinate
hemimorphic class of the hexagonal division; in these there is a choice of two positions
according to which of the two sets of vertical planes of symmetry is taken as the axial set.

163. Axial and Angular Elements. — The axial element is the length of the vertical
axis, ¢, in terms of a horizontal axis, a; in other words, the axial ratio of a :c. A single
measured angle (in any zone but the prismatic) may be taken as the fundamental angle
from which the axial ratio can be obtained. :

_The angular element is usually taken as the angle between the base ¢(0001) and the
unit first order pyramid (1011), that is, 0001 A 1011.

The relation between this angle and the axis ¢ is given by the formula

tan (0001 A 1011) X % Vi=c.

The vertical axis is also easily obtained from the unit second order pyramid, since
tan (0001 A 1132) = c.

These relations become general by writing them as follows:

tan (0001 A hOKL) X %\/_ = ’—; X ¢

tan (0001 A h'h'2k7) = % X c.

In general it is easy to obtain any required angle between the poles of two faces on the
spherical projection either by the use of the tangent (or cotangent) relation, or by the
solution of spherical triangles, or by the application of both methods. In practice most of
the triangles used in calculation are right-angled.

164. Tangent and Cotangent Relations. — The tangent relation holds good in any zone
from ¢(0001) to a face in the prismatic zone. For example:

tan (0001 A hORI) _ k. tan (0001 A W'h'2Rl) _ 2h,
tan (0001 A 1011) ¢’ tan (0001 A 1122) ()
In the prismatic zone, the cotangent formula takes a simplified form; for example, for a
dihexagonal prism, 2k20, as (2130):
i 2h

cot (1010 A Hii0) = 2% \/é

k

cot (1130 A hki0) = ~E R 3,

The sum of the angles (1010 A k:0) and (1120 A hk20) is equal to 30°. .

Further, the last equations can be written in a more general form, a {)_lymg to any
pyramid (hkzl) in a zone, first between 1010 and a face in the zone €001 to 0110, where the
angle between 1010 and this face is known; or_again, for the same pyramid, in a zone
between 1120 and a face in the zone 0001 to 1010, the a_ngle between 1120 and this face
being given. For example (cf. Fig. 229, p. 99), if the first-mentioned zone is

1010°2k2-0111 and the second is 1120°Akil'1011, then

- _ 24k
cot (1010 A Akil) = cot (1010 A 01T1). -—2‘—
and .
- . - o Rt
cot (1130 A Akil) = cot (1120 A 10T1) . 51
Also similarly for other zones, —

cot (1010 A hkil) = cot (1010 A 0221) . o ete.
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cot (1120 A hkil) = cot (1120 A 2021) —’i——‘}z, etc.

166. Other Angular Relations. — The following simple relations are of frequent use:
(1) For a hexagonal pyramid of the first order,
tan & (1011 A 0171) = sin & V1 where tan £ = c,
and in general § p
tan 3 (kORI A ORKl) = sin £+/1, where tan §= 7e

(2) For a hexagonal pyramid of the second order, as (1122),
2sin % (1122 A 1212) =sinf and tan ¢ =c.

(3) For a rhombohedron

sin } (1011 A T101) = sin @ V3, where & = (0001 A 1011);
in general R L < y
sin 3 (hORL A RROl) = sin o, V', where , = (0001 A hORI).

166. Zonal Relations. — The zonal equations, described in Arts 45, 46, apply here as
in other systems, only that it is to be noted that one of the indices referring to the horizontal
axes, preferably the third, 7, is to be dropped in the calculations and only the other three
empioyed. Thus the indices (u, v, w) of the zone in which the faces (hkil), (pgit) lie are

given by the scheme
15O
plq t 14 qlt

where u=kt—Ig, v=Ip—H, w = hq — kp.

For example (Fig. 226) the face n lies in the zone mv, 10102131 and also in the zone
au, 1120 * 2021. For the first zone the values obtained are: » = 0,v = 1, w = 1; for the
second zone, e = 1, f = 1, g = 2. Combining these zone symbols according to the usual

scheme 1) &
0|1 1 0 1|1
0NN
i1 Za ol 112
3 1 1l

The face n has, therefore, the indices 3141, since further i = —(k + k).

167, Formulas. — The following formulas in which ¢ equals the unit length of the
vertical axis are sometimes useful:

(1) The distances (see Fig. 229) of the pole of any face (hkil) from the poles of the faces
(1010), (0110), (1100), and (0001) are given by the following equations,

cos (Akil) (1010) = 7 :i’:,?;;j_) T
cos (kil) (0110) = —— + Zc(f (I;zj +h;cz + hk)
cos (hkil) (1100) = V3l + Zc(zh(h: -]|c~) Yy
cos (hkal) (0001) = VT 4cf (\;34_ %+ hE)

(2) The distance (PQ) between the poles of any two faces P(hkil) and Q(peit) is given
by the equation
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cos PQ = 3it + 2¢2 (hq St pk + 2hp + 2kq)
VBt 4R+ + ) BEF 42 + & + pg)]

(3) For special cases the above formula becomes simplified; it i
of the normal angles for the several forms in the system.p The’y wze;‘s,(i'soltl?)»?sYe Hhecxalng

(a) Pyramid of First Order (hOhl), Fig. 224:

g 312 { 2h2c? 4h2¢2 — 32
; i = op T 1
cos X (terminal) = o5 TR 08 Z (basal) = o T dhe
(b) Pyramid of Second Order (h'h-2k°l), Fig. 225:
k i B+ 20k 4c2h? —
Y (t =L e, ==
cos Y (terminal) B ache’ °% Z (basal) = I acht’

(¢) Dihexagonal Pyramid (hkil):
q _ 312 4 22 (R + k2 + 4hk)
cos X (see Fig. 226) = 3E 1 42 (F F K2 ) 4
312 4 2¢ (2h2 + 2hk — k)
3B+ 4¢® (i + K* + hk)
4cr (B + k2 + hk) — 32
Z = .
geari (Pasel) 3+ 42 (2 + K T hk)
(d) Dihexagonal Prism (hki0), Fig. 222:
Bt + k2 + 4hk : 2R + 2hk — k2
2——(h2 TETE cos Y (diagonal) = TCEYEY ) .
(¢) Rhombohedron (1011):

cos X (terminal)

(f)‘ Scalenohedron (hlil):
cos X (see Fig. 259) =

cos Y (see Fig. 226) =

oos X (axial) =

_ 3k —2me
=3¢+ 4k

32 + 2¢ (2k2 4 2hk — R?)
312 + 4¢? (h2 + k2 + Rk)
. _ 312+ 2¢? (2h* + 2hk — k?) .
cos Y (see Fig. 259) = 3E T 4c (i + k2 k)
_ 2c*(R2 k2 + 4hk) — 312
cos Z (basal) = 3E + dd(E + b £ B
168. Angles. — The angles for some commonly occurring dihexagonal prisms with the
first and second order prisms are given in the following table: .

N m(1010) a(1120) .
5160 8° 57’ 217N
4150 10 533 19 63
3140 13 54 16 6
5270 16 6 13 54
2130 19 63 10 533
3250 23 244 6 35%
5490 26 193 3 401

169. The Miller Axes and Indices. The forms of the hexagonal system were referred
291 by Miller to a set of three e ual

obh(ﬁle axes which were taken

parallel to the edges of the unit

positive rhombohedron of the
species.  Fig. 291 represents
such a rhombohedron with the
position of the Miller axes shown.
This choice of axes for hexa-
gonal forms has the grave objee-
tion that in several cases the
faces of the same form are rep-
resented by two sets of different
indices; for example the faces of
.the pyramid of the first order

would have the indices, 100,221,010, 122, 001,212. This objection, however, disappears if the
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Miller axes and indices are used only for forms in the Rhombohedral Division, that is for forms
belonging to classes which are characterized by a vertical axis of trigonal symmetry. It is
believed, however, that the mutual relations of all the classes of both divisions of the hex-
agonal system among themselves (as also to the classes of the tetragonal system), both
morphological and physical are best brought out by keeping throughout the same axes,
namely those of Fig. 218, Art. 121. The Miller method has, however, been adopted by a
number of authors and consequently it is necessary to give the following brief description.

292
971
(1010)
(11200
101
v 102
(1o (i)

112!

001
0111

: 012
14y (1321) \
(1210)

ity
l 021 .\
: o
0001 .
it Lok d 110 ~(12m3
; (1102) 112)

111 111
i

100

121 1011)
(1100) = \
. ) A1 201

(8121) (2131)

110
(2110)

211
(1010)
Miller and Miller-Bravais Indices Compared

_ Fig. 292 shows in stereographic projection the common hexagonal-rhombohedral forms
vith their Miller indices and in ‘parentheses the corresponding indices when the faces are
referred to the four axial system. It will be noted that the faces of the unit positive rhom-
bohedron have the indices 100, 010, and 001 and those of the negative unit rhombohedron
have 221, 122, 212. These two forms together give the faces of the hexagonal pyramid of
the first order (see above). The hexagonal prism of the first order is represented by 211,
etc., while the second order prism has 101, etc. The dihexagonal pyramid has also two
sets of indices (hkl) and (efg); of these the symbol (REl) belongs to the positive scaleno-
hedron and (efg) to the negative form. In this as in other cases it is true that
e=2h+2k—1,f=2h—k+2, g= —h+2k+2l. For example, the faces of the
form 201, etc., belong in the Rhombohedral Division of this system to the scalenohedron
(2131) while the complementary negative form would have the indices 523, ete.

The relation between the Miller-Bravais and the Miller indices for any form can be
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obtained from the following expression, where (hkil
' 1 g exp: : (hkil) represents the first and (pgr) the

hattoasdbe - o i) o
P—a¢ p—r 1—p prg+r

The relation between the Miller indices for hexagonal forms and those of isometrie
forms should be noted. If we conceive of the isometric cube as a rhombohedron with
interfacial angles of 90° and change the orientation so that the normal to the octahedral
face (111) becomes vertical we get a close correspondence between the two. This will be
seen by a comparison of the two stereographic projections, Figs. 292 and 125.

. 170. To determine, by plotting, the length of the vertical axis of a hexagonal mineral,
given the position on the stereographic projection of the pole of a face with known indices.
To illustrate this problem it is assumed that the mineral in question is beryl and that the
position of the pole p(1011) is known, Fig. 293. Let the three lines a, as, as represent the
horizontal axes with their unit lengths equalling the radius of the circle. Draw a line
from the center of the projec- 293
tion through the pole p. Draw
another line (which will be at
right angles to the first) joining
the ends of a; 'and —as. This
will be parallel to a: and will \A
represent  the intercept of "%
ﬁ(lOll) upon the plane of the e

orizontal akxes. In order to )
plot the intercept of p upon the 7
vertical axis construct in the ¢
upper left-hand quadrant of
the figure a right-angle triangle
the base of which shall be equal
to O-P, the vertical side of
which shall represent the ¢ axis
and the hypothenuse shall show
the slope of the face and give
its intercept upon the ¢ axis.
The direction of the hypothe-
nuse is determined by locating
the normal to p from the angle
measured from the center of
the projection to . its pole.
Since the face has been as-
sumed to have an unit intercept
on the vertical axis the dis-
tance O-M, which equals 049
(in terms of the length of the
horizontal axes, which equals
1°00), gives the unit length of the ¢ axis for beryl.

171. To determine the indices of a face of a hexagonal form of a known mineral, given
the position of its pole on the stereographic projection. In Fig. 294 it is assumed that the
position of the pole » of a crystal face on calcite is known. To determine its indices, first draw
a radial line through the pole and then erect a perpendicular to it, starting the line from the
end of one of the horizontal axes. This line will represent the direction of the intersection of
the crystal face with the horizontal plane and its relative intercepts on the horizontal axes
will give the first three numbers of the parameters of the face, namely la,, 2az, $—as. To
determine the relative intercept on the ¢ axis transfer the distance O-P to the upper left-
hand quadrant of the figure, then having measured the angular distance between the center
of the projection and » by means of the stereographic protractor draw the pole to the face
in the proper position. Draw then a line at right angles to_this pole starting from the
point P’. This line gives the intercept of the face upon the line representing the vertical
axis. In this case the intercept has a value of 1'7 when the length of the horizontal axes
is taken as equal to 1°0. This distance 1'7 is seen to be twice the unit length of the
¢ axis for calcite, 0'85. Thercfore the parameters of the face in question upon the four
axes are la;, 2as, —as, 2c, which give 2131 for the indices of the face v. .

~1c=0.
7 0.49

Determination of unit length of ¢ axis, having given the
position of p(1011)
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Determination of the indices for v on calcite

172, To determine, by plotting, the indices of hexagonal forms, given the position of

295 their poles on the gno-
monic projection. To
illustrate this problem

one sectant of the gno-
monic projection of the
important forms of beryl,
Fig. 228, is reproduced in
Fig. 295. The directions
of the three horizontal
axes, a1, @z and a; are in-
dicated by the heavy lines.
From the poles of the faces
perpendiculars are drawn
to these three axes. It
will be noted that the va-
rious intercepts made
upon the axes by these
lines have simple rational
relations to each other.
One of these intercepts is
chosen as having the
length of 1 (this length
will be equivalent to the
unit length of the ¢ crys-
tallographic  axis, see
below) and the others are
9 then given in terms of it.
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The indices of each face are obtained directly by taking these in
horizontal axes in their proper order and by addi)rylg al §s the fouxllicf?gttxi; lpoll} xtlggeg;fe
clear of fractions, as in the case of the second order pyramid, 1122. \ e
_173. To detgrmme the axial ratio of a hexagonal mineral from the gnomonic projection
of its forms. The gnomonie projection of the beryl forms, Fig. 295, may be used as an
illustrative example. The radius of the fundamental circle, a, is taken as equal to the
length of the horizontal axes and is given a value of 1. Then the length of the funda-
mpncal intercept of the lines dropped perpendicularly from the oles, 7.e. the distance ¢
will eqaal the length of the ¢ axis when expressed in terms of the length of @. In the caso
of beryl this ratio is a : ¢ = 100 : 0'499. That this relationship is true can be proved
in the same manner as in the case of the tetragonal system, see Art. 117, p. 93.

IV. ORTHORHOMBIC SYSTEM

(Rhombic or Prismatic System)

174. Crystallographic Axes. — The orthorhombic system includes all the
forms which are referred to three axes at right

angles to each other, all of different lengths. 296
Any one of the three axes may be taken as the +
vertical axis, ¢. Of the two horizontal axes the g

longer is always taken as the b or macro-axis * and
when orientated is parallel to the observer. The
a or brachy-axis is the shorter of the two horizontal
axes and is perpendicular to the observer. The length
of the b axis is taken as unity and the lengths of &

the other axes are expressed in terms of it. The ta
axial ratio for barite, for instance, is @ : b : ¢ = 0815
:100 : 1'31.  Fig. 296 shows the crystallographic
axes for barite.
1. NORMAL CLASS (25). BARITE TYPE
(Orthorhombic Bipyramidal or Holohedral Class) OrthO(rlléom:)i)c Axes
arite

175. Symmetry. — The forms of the normal class
of the orthorhombie system are characterized by three axes of binary sym-
metry, which directions are coincident with
the crystallographic axes. There are also
three unlike planes of symmetry at right
angles to each other in which lie the crystal-
lographic axes.

The symmetry of the class is exhibited in
the accompanying stereographic projection,
Fig. 297. This should be compared with Fig.
91 (p. 53) and Fig. 167 (p. 77), representing
the symmetry of the normal classes of the
isometric and tetragonal systems respec-
tively. It will be seen that while normal iso-
metric erystals are developed alike in the

| three axial directions, those of the tetragonal
Symmetry of Normal Class type have a like development only in the
Orthorhombic System direction of the two horizontal axes, and

297

* The prefixes brachy- and macro- used in this system (and also in the triclinic system)
are from the Greek words, Bpaxis, shorl, and uaxpos, long.
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those of the orthorhombic type are unlike in the three even axial directions.

Compare also Figs. 92 (p. 54), 171 (p. 78) and 298 (p. 122).
176. Forms. — The various forms possible in this class are as follows:

P Indices
1. Macropinacoid or a-pinacoid. .................... (100)
2. Brachypinacoid or b-pinacoid.............. AR b (010)
Bt VB aserOric-piacolili: N MR e n S ERIEn S S S (001)
e D I T e s b A E R i AL Py S P & RO 2o (hk0)
N U REE T I a5 6 Bl B G s A G B 5 &6 B o5 (hOD)
6. Brachydomes....... TOOOE RARE S CIRNITE YY) SRR Y § o (OkI)
ey SN 0T YA Bt s S S HSIA & 6 6 B e AT A Bt oL (hkl)

In general, as defined on p. 31, a pinacoid is a form whose faces are parallel to two of
the axes, that is, to an axial plane; a prism is one whose faces are parallel to the vertical
axis, but intersect the two horizontal axes; a dome* (or horizontal prism) is one whose
faces are parallel to one of the horizontal axes, but intersect the vertical axis. A pyramid
is a form whose faces meet all the three axes.

These terms are used in the above sense not only in the orthorhombic system, but also
in the monoclinic and triclinic systems; in the last each form consists of two planes only.

177. Pinacoids. — The macropinacoid includes two faces, each of which
is parallel both to the macro-axis b and to the vertical axis ¢; their indices
are respectively 100 and 100. This form is uniformly designated by the
letter a, and is conveniently and briefly called the a-face or the a-pinacoid.

_The brachypinacoid includes two faces, each of which is parallel both to
the brachy-axis a and to the vertical axis ¢; they have the indices 010 and
010. This form is designated by the letter b; it is called the b-face or the
b-pinacoid.

The base or basal pinacoid includes the two faces parallel to the plane of
the horizontal axes, and having the indices 001 and 00I. This form is desig-
nated by the letter ¢; it is called the c-face or the c-pinacoid.

Each one of these three pinacoids is an open-form,{ but together they
make the so-called diametral prism, shown in Fig. 298, a solid which is the
analogue of the cube of the isometric system. Geometrically it cannot be
distinguished from the cube, but it differs in having the symmetry unlike in

299 300
1 ﬁ ::j
|
e T - 1304-| 10 z%o oo ilato| o [I 120
E 110 o R il b 1 A =
== : <tkl_ R B
Macro-, Brachy- and Prism and Basal
Basal Pinacoids Pinacoid

the three axial directions; this may be shown by the unlike physical char-
acter of the faces, a, b, c, for example as to luster, striations, ete.; or, again,
by the cleavage. Further, it is proved at once by optical properties. This

; grom %Ibe Latin domus, because resembling the roof of a house; cf. Figs. 301, 302.
ee p. 30. g
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diametral prism, as just stated, has three pairs of unlike faces. It has three
kinds of edges, four in each set, parallel respectively to the axes a, b, and ¢;
it has, further, eight similar solid angles. In Fig. 298 the dimensions are
arbitrarily made to correspond to the relative lengths the chosen axes,
but the student will understand that a crystal of this shape gives no informa-
tion as to these values.

178. Prisms. — The prisms proper include those forms whose faces are
parallel to the vertical axis, while they intersect both the horizontal axes;
their general symbol is, therefore, (hk0). These all belong to one type of
rhombic prism, in which the interfacial angles corresponding to the two un-
like vertical edges have different va lues.

The unit prism, (110), is that form whose faces intersect the horizontal
axes in lengths having a ratio corresponding to the accepted axial ratio of
a : b for the given species; in other words, the angle of this unit prism fixes
the unit lengths of the horizontal axes. This form is shown in combination
with the basal pinacoid in Fig. 299; it is uniformly designated by the letter
m. The four faces of the unit prism have the indices 110, 110, 110, 110.

There is, of course, a large number of other possible prisms whose inter-
cepts upon the, horizontal axes are not proportionate to their unit lengths.
These may be divided into two classes as follows: macroprisms, whose faces
lie between those of the macropinacoid and the unit prism, brachyprisms
with faces between those of the brachypinacoid and the unit prism. A
macroprism has the general symbol (hk0) in which A > k and is represented
by the form [(210), Fig. 300. A brachyprism has the general symbol (hk0)
with 2 < k and is represented by n(120), Fig. 300.

301 302 303

\

\\

A\ 101 i
e 010 i
," 101
/ /

Macrodome and Brachydome Pyramid

Brachypinacoid and Macropinacoid

179. Macrodomes, Brachydomes. — The macrodomes are forms whose
faces are parallel to the macro-axis b, while they intersect the vertical axis
¢ and the horizontal axis a; hence the general symbol is (h0l). The angle
of the unit macrodome, (101), fixes the ratio of the axes a : ¢c. This form is
shown in Fig. 301 combined (since it is an open form) with the brachypinacoid.

In the macrodome zone between the base ¢(001) and tl}e macropinacoid
a(100) there may be a large number of macrodomes having the symbols,
taken in the order named, (103), (102), (203), (101), (302), (201), (301), ete.
Cf. Figs. 318 and 319 described later. ’

The brachydomes are forms whose faces are parallel to the brachy-axis, a,
while they intersect the other axes ¢ and b; their general symbol is (Ok).
The angle of the unit brachydome, (011), which is shown with a(100) in
Fig. 302, determines the ratio of the axes b : c. ! h

The brachydome zone between c¢(001) and b(010) includes the forms
(013), (012), (023), (011), (032), (021), (031), ete. Cf. Figs. 318 and 319.
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Both sets of domes are often spoken of as horizontal prisms. The pro-
priety of this expression is obvious, since they are in fact prisms in geo-
metrical form; further, the choice of position for the axes which makes
them domes, instead of prisms in the narrower sense, is more or less arbitrary,
as already explained elsewhere.

180. Pyramids. — The pyramids in this system all belong to one type, .
the double rhombic pyramid, bounded by eight faces, each a scalene triangle.
This form has three kinds of edges, z, y, z (Fig. 303), each set with a different
interfacial angle; two of these angles suffice to determine the axial ratio.
The symbol for this, the general form for the system, is (hkl).

The pyramids may be divided into three groups corresponding respec-
tively to the three prisms just described, namely, unit pyramids, macro-
pyramids, and brachypyramids.

The wunit pyramids are characterized by the fact that their intercepts on
the horizontal axes have the same ratio as those of the unit prism; that is,
the assumed axial ratio (a : b) for the given species. For them, therefore,
the general symbol becomes (hhl).

There may be different unit pyramids on crystals of the same species
with different intercepts upon the vertical axis, and these form a zone of faces
lying between the base ¢(001) and the unit prism m(110). This zone would
include the forms, (119), (117), (115), (114), (113), (112), (111). In the
symbol of all of the forms of this zone h = k, and the lengths of the vertical
axes are hence, in the example given, §, 4, 1, 1, 1, 1 of the vertical axis ¢ of
the unit pyramid.

The macropyramids and brachypyramids are related to each other and to
the unit pyramids, as were the macroprisms and brachyprisms to themselves
and to the unit prism. Further, each vertical zone of macropyramids (or
brachypyramids), having a common ratio for the horizontal axes (or of h : k&
in the symbol), belongs to a particular macroprism (or brachyprism) char-
acterized by the same ratio. Thus the macropyramids (214), (213), (212),
(421), ete., all belong in a common vertical zone between the base (001) and
the prism (210). Similarly the brachypyramids (123), (122), (121), (241),
etc., fall in a common vertical zone between (001) and (120).

181. TIllustrations. — The following figures of barite (304-311) give

304 306 306 307
o LE BN, resdadeniy: D AT,
308 3

310 311

Barite Crystals

excellent illustrations of crystals of a typical orthorhombic species, and show
also how the habit of one and the same species may vary. The axial ratio
for this species is @ :b:c = 0'815:1:1'314. Here d is the macrodome
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(102) and o the brachydome (011); m is, as always, the prism (110). Fi
304-307 and 309 are described as tabular || ¢; Fig. 308 ispprismgmtic )in ha%ist.;
in the direction of the macro-axis (b), and 310, 311 prismatic in that of the
brachy-axis (a).
Figs. 312-314 of native sulphur show a series of crystals of pyramidal
. habit with the dome n(011), and the pyramids p(111), s(113). Note n trun-
cates the terminal edges of the fundamental pyramid p. In general it should

312 : 313 314
Sulphur Crystals

<= T

Staurolite Figs. 316-318, Topaz

316

be remembered that a macrodome truncating the edge of a pyramid must
have the same ratio of A :I; thus, (201) truncates the edge of (221), etc.
Similarly of the brachydomes: (021) truncates the edge of (221), ete. Cf.
Figs. 319-321.

Again, Fig. 315, of staurolite, shows the .819
pinacoids b(010), ¢(001), the prism m(110),
and the macrodome r(101).

Figs. 316-318 are prismatic crystals of
topaz. Here m -is the prism (110); land n
are the prisms (120), (140); d and p are the
macrodomes (201) and (401); fand y are the
brachydomes (021) and (041); ¢, u, and o are
‘the pyramids (223), (111), (221).

182. Projections. — Basal, stereographic,
and gnomonic projections are given in Figs.
319-320a, on pp. 125, 126, 127 for a crystal of the ,
species topaz. Fig. 319 is the basal projection Topaz
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of the crystal shown in r1g. 318. Figs. 320 and 320a give the stereographic
and gnomonic projections of these forms present upon it.

320
110 110
7 01
0 120
%01
E) 301
L 111 11 140
225 223
' e f b
olo O3} Pz 001 TR i
i
33
e 1 M 111 \¥ n
140 oLt &l 140
0
231 d 21
201 :
% ) 1
120 P *120
$40
. 1107 < m110

Stereographic Projection Topaz Crystal

2. HEMIMORPHIC CLASS (26). CALAMINE TYPE
(Orthorhombic Pyramidal Class)

183. Class Symmetry and Typical Forms. — The forms of the ortho-
rhombic-hemimorphic class are characterized by two unlike planes of sym-
metry and one axis of binary symmetry, the line in which they intersect;
there is 1o center of symmetry. The forms are therefore ‘hemimorphic, as
defined in Art. 29.  For example, if, as is usually the case, the vertical axis
is made the axis of symmetry, the two planes of symmetry are parallel to the
pinacoids @(100) and b(010). The prisms are then geometrically like those
of the normal class, as are also the macropinacoid and brachypinacoid;"
but the two basal planes become independent forms, (001) and (001). _ There
are also two macrodomes, (101) and (101), or in general (k0l) and (kOl); and
similarly two sets, for a given symbol, of brachydomes and pyramids.

The general symmetry of the class is shown in the stereographic projec-
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tion, Fig. 321. Further, Figs. 322, of calamine, and 323, of struvite, represent
typical crystals of this class. In Fig. 322 the forms present are £(301), 7(031),
»(121); in Fig. 323 they are s(101), s(101), ¢(011).
3. SPHENOIDAL CLASS (27). EPSOMITE TYPE.
(Orthorhombic Bisphenoidal Class)
184. Symmetry and Typical Forms. — The forms of the remaining

324 326 class of the system, the ortho-
% rhombic-sphenoidal class, are char-

.

acterized by three unlike rec-
tangular axes of binary symme-
try which coincide with the crys-
tallographic axes, but they have
no plane and no center of sym-
metry (Fig. 324). The general
form hkl here has four faces only,
and the corresponding solid is a
rhombic sphenoid, analogous to
the sphenoid of the tetragonal
A ] il system. The complementary pos-
Symmetry of Sphenoidal Class Epsomite  jfive and negative sphenoids are
enantiomorphous. Fig. 325 represents a typical crystal, of epsomite, with
the positive sphenoid, z(111). Other crystals of this species often show
both positive and negative complementary forms, but usually unequally
developed. - ' :

'
1

i
)
]

“).-,_ e as e S S

\,

MATHEMATICAL RELATIONS OF THE ORTHORHOMBIC SYSTEM

185. Choice of Axes. — As explained in Art. 175, the three crystallographic axes are
fixed as regards direction in all orthorhombic crystals, but any one of them may be made
the vertical axis, ¢; and of the two horizontal axes, which is the longer (b) and which the
shorter (a) cannot be determined until it is decided which faces to assume as the funda-
mental, or unit, pyramid, prism, or domes. -

The choice is generally so made, in a given case, as to best bring out the relation of the
crystals of the species in hand to others allied to them in form or in chemical composition,
or in both respects; or, so as to make the cleavage parallel to the fundamental form; or, as
suggested by the common habit of the crystals, or other considerations.

186. Axial and Angular Elements. — The axial elements are given by the ratio of the
lengths of the three axes in terms of the macro-axis, b, as unity. For example, with barite
the axial ratio is ;
a:b:c=081520:1:131359.

The angular elements are usually taken as the angles between the three pinacoids and
the unit faces in the three zones between them. Thus, again for barite, these elements are

100 A 110 = 39° 117 13”, 001 A 101 = 58° 10’ 36, 001 A 011 = 52° 43’ 8. "

Two of these angles obviously determine the third angle as well as the axial ratio. The
degree of accuracy to be attempted in the statement of the axial ratio depends upon the
character of the fundamental measurements from which this ratio has been deduced. There
is no good reason for giving the values of a and ¢ to many decimal places if the probable
error of the measurements amounts to many minutes. In the above case the measurements
(by Helmhacker) are supposed to be accurate within a few seconds. It is convenient, how-
ever, to have the angular elements correct, say, within 10", so that the calculated angles
obtained from them will not vary from those derived direct from the measured angles by
more than 30" to 1. 9 3 .
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187. Calculation of the Axes. — The following simple relations (cf. Art. 48) connect the
axes with the angular elements:

326

Stibnite

tan (001 A 012) = } x tan (001 A 011) tan (100 A 310) =}

tan (100 A 110) =a, tan (001 A 011) =¢, tan (001 A 101) =

[
a

These equations serve to give either the axes from the’angular elements,
or the angular elements from the axes. It will be noted that the axes are not
needed for simple purposes of calculation, but it is still important to have
them, for example to use in comparing the morphological relations of allied
species.

In practice it is easy to pass from the measured angles, assumed as the
basis of calculation (or deduced from the observations by the method of
least squares), to the angular elements, or from either to any other angles
by the application of the tangent principle (Art. 49) to the pinacoidal zones,
and by the solution of the right-angled spherical triangles given on the sphere
of projection.

Thus any face hkl lies in the three zones, 100 and 0kl, 010 and h0l, 001
and hk0. For example, the position of the face 312 is fixed if the positions
of two of the poles, 302, 012, 310, are known. These last are given, respec-
tively, by the equations

tan (001 A 302) = § x tan (001 A 101),
x tan (100 A 110).

327
¥: 1 b
1. ml
" '
I’ nn p p nl 0.)'
3 @ A ® 3
ub
053 0.10.3 010
L i T343
PAy 11 n Wy
& =n v 353 /5.10.3
101 111
e m
L 110

Stereographic Projection Stibnite Crystal
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188. Example. — Fig. 326 represents a crystal of stibnite from Japan and Fig. 327
the stereograplll)ic projection of its forms, p(111), 7(343), (353), w3(510°3), m(110) and
5(010). On this the gollowing measured angles were taken as fundamental:

m (353 A 353) = 55° 10",
" (353 A 353) = 99° 39’ 0”'.

H the angles 353 A 010 = 40° 104’ and 353 A 053 = 27° 303’ are known with-
out gsﬁ%?{lation. gThe right-angled sphe:ical triangle *  010°053'353 yields the angle
(010 A 053) and hence (001 A 053); also the angle at 010, which is equal to (001 A 101).
But tan (001 A 011) = 2 x tan (001 A 053), and tan (001 A 011) = ¢. Also, since tan

(001 A 101) = %’ the axial ratio is thus known, and two of the angular elements.

The third angular element (001 A 110) can be calculated independently, for the angle
at 001 in the triangle 001°053'353 is equal to (010 A 350) and tan (010 A 350) x § =
(010 A 110), the complement of (100 A 110).

Then since tan (100 A 110) = a, this can be used to check the value of a already
obtained. 'The further use of the tangent principle with the occasional solution of a right-
angled triangle will serve to give any desired angle from either the fundamental angles

direct, or from the angular elements. . )
Again, the symbol of any unknown face can be readily calculated if two measured
angles of tolerable accuracy are at hand. For example, for the face , suppose the meas-

ured angles to be B » ey
bw (010 A REl) = 30° 15, ww’ (kkl A hkl) = 51° 32'.
The solution of the triangle b'w 0kl gives the angle (010 A 0kl) = 16° 25’ 20", and

*tan (001 A Okl) _ tan 73° 343’
tan (001 A 011)  tan 45° 303

But the ratio of & : I must be rational and the number derived agrees most closely with

— 3333+, = ;ﬁ

10: 3.
Again, the angle (001 A h0l) may now be calculated from the same triangle and the
value 59° 38% obtained. From this the ratio of & to ! is derived since

tan (001 A ROl) _ tan 59° 383’ - 1665 = h

tan (001 A 101) ~ tan 45° 43}/ l

This ratio is nearly equal to 5 : 3, and the two values thus obtained give the symbol 510°3.
1f, however, from the triangle 001 Okl'w, the angle at 001 is calculated, the value 26° 423’
is obtained, which is also the angle (010 A khk0). From this the ratio & : k is deduced, since

tan (010 A 110) _ tan 45° 12¢’ — 2:002 = k.
tan (010 A RkO)  tan 26° 423/ h

k
h
gives the same symbol 510°3.

This symbol being more than usually complex calls for fairly accurate measurements.
How accurate the symbol obtained is can best be judged by comparing the measured angles
with those calculated from the symbol. For example, in the given case the calculated
angles for w(5°10°3) are bw(010 A 510°3) = 30° 16/, ww’(5:10'3) = 51° 35’. The correctness
of the value deduced is further established if it is found that the given face falls into
prominent zones.

It will be understood further that the zonal relations, explained on pp. 45-47, play an
important part in all calculations. For example, in Fig. 326, if the symbol of » were un-
known, it could be obtained from a single angle (as br), since for this zone h = 1.

189. Formulas. — Although it is not often necessary to employ formulasin calculations,
a few are added here for sake of completeness. Here a and ¢ in the formulas are the lengths
of the two axes a and c. 6

The value of ;- is hence closely equal to 2; this combined with that first obtained (;ﬁ = %O)

* The student in this as in every similar case should draw a projection, cf. Fig. 327
(not necessarily accurately constructed), to show, if only approximately, the relative posi-
tion of the faces present. 4
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(1) For the distance between the pole of any face P(kkl) and the pinacoids a, b, ¢, we
have in general:

hc? :
het F krac? + Pa?’

k2azc?

la?
h2ct + Kla’c + a2’

(2) For the distance (PQ) between the poles of any two faces (hkl) and (pgr)
i hpc® + kqa*c® + Ilra?
cos PQ = ;
VR + ka2ct + 2a?] [p2c + @2aPc + r'a?]

190. To determine, by plotting, the axial ratio of an orthorhombic crystal, having given
the stereographic projection of its forms. In order to solve this problem it is necessary
that the position of the pole of a pyramid face of known indices be given or the position
of the faces of a prism and one dome or of both a macro- and a brachydome. For illus-
tration it is assumed that a crystal of barite, such as represented in Fig. 305, has been

measured on the goniometer and the poles of its faces plotted in the stereographic projec-
tion. The lower right-

cos? Pa = cos? (hkl A 100) =
cos? Pb = cos? (hkl A 010) =

cos? Pc = cos? (hkl A 001) =

hand quadrant of this . 328
projection is shown in Fig. .
328. The forms present le=131
are common ones on bar-
ite crystals and have S

Q)

been given the symbols,

m(110), d(102), o(011),

c(001). The ratio of @ : b S

can be determined readily 102 & Y

from the position of the & 8

. {)ole m(110). A radial 011

ine is drawn to the pole

of the face and then a 3

perpendicular erected to

it from the end of the line

representing the b erys-

tallographic axis. The

intercept of this perpen- )

dicular on the line repre- 7 2 (00D)

senting the ¢ axis, when @ Axis

expressed in terms of the

assumed unit length of

the b axis, gives the length '802)

of a. It is to be noted

that the fact that this )

line in the present case

passes very nearly through

the pole 111 is wholly AgmeL

aceidental. The length 1a=0.81+

of the vertical axis can ; ¢

be determined from the

position of the pole of

%}:}her d(102) or o(O&lg.
e construction used 1s 4 i .

given in the upper left- Determination of the Axial Ratio for Barite

hand quadrant of the . . g [ S

figure. If the brachydome, o(011), is used the sloping line that gives the inclina-

tion of the face is started from a distance on the horizontal line equivalent to the length

of the b axis, or 1, and its intercept on the ¢ axis will equal the unit length of that axis.

If, however, the position of d(102) is used the base line of the triangle must be made -equal

to the unit length of the @ axis as already established and the intercept on the ¢ axis will

equal % of the latter’s unit length.

C Axis

o (011)

« b Axis

a Axis
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The problem could have been wholly solved from the position of the pyramid face, 111,

if that form had been present on the crystal.

The construction in this case is also

191. To determine, by plotting, the indices of a face upon an orthorhombic crystal,

illustrated.
329
0.952
or 20
0,
Y s
& O .
o,,aalto & 3}
(2]
0 b Axis

1b

given the position of its
pole upon the stereographic
projection and the axial ratio
of the mineral. To illustrate
this problem it is assumed
that the position of the
pole in the stereographic
projection of the face o, Fig.
329, upon a topaz crystal is
known. First draw a radial
line through the poleo. Next
erect a perpendicular to this
line, starting it. from the
distance selected as repre-
senting 1 on the b crystallo-
graphic axis. The intercept
of this line upon the line
representing the a axis when
expressed in terms of the
unit length of the b axis is ~
0'53. This is equivalent to
the established unit length
of the a axis and therefore
the parameters of the face o
on the horizontal crystallo-
graphic axes are la, 1. Next
the distance O-P is transfer-
red into the upper left-hand
quadrant of the figure. The

position of the normal to the face is determined by measuring with a protractor the angular

distance between O and o.

The line giving the slope of the face is next drawn perpendicu-

lar to this normal and its intercept upon the line representing the vertical axis determined.

This distance when expressed in
terms of the length of the b axis is
0'95. This is twice the established
length of the c¢ axis (0°476) and
consequently the third parameter
of the face o is 2c. This gives the
indices 221 for the face.

192. To determine, by plotting,
the axial ratio of an orthorhombic
crystal having given the gnomonic
projection of its forms. To illus-
trate this problem the gnomonic
projection of the crystal of topaz
already given in Fig. 320a will be
used. In Fig. 330 one quadrant
of this projection is reproduced.
From each pole lines are drawn
perpendicular to the two lines
representing the a and b crystal-
lographic axes. It will be found
that the intercepts made in this
way upon the a axis have rational
relations to each other. Thesame
is true of the intercepts upon
the b axis. The intercepts upon
the two axes, however, are

irrational in respect to each other.

330
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S A convenient intercept upon each axis is chosen as 1
and the other intercepts upon that axis are then expressed in terms of this length. Of
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course with a known mineral, whose forms ha 1 indi i
theIifnterceplt( that shall bel considered as 1 is ﬁ;/:d-a ready Riad. indio aeiimed;do Ko
we take r as equivalent to the radius of the fundamental circle of th jecti
g as equal to the chosen intercept upon the b crystallographic axis ar?dopttheaé) l{fliggtlgl?é
a axis, then the axial ratio can be derived from the following expressions:
r. a_r

= -y - =
¢c g ¢ p
The proof of these relationships is similar to that al i

Sysi(arg, él‘rt.d117, ) p at already given under the Tetragonal

. To determine, by plotting, the indices of a face upon an orth i

given the position of its pole upon tyl_le gnomonic projection agd the a.xialOrrali'i)cl)n (E’f1 ilfgy :1’['1;1:
eral. The method of construction in this case is the reverse of that given in the problem
above and is essentially the same as given under the Isometric and Tetragonal Systems
Arts. 84 and 118. In the case of an orthorhombic mineral the intercepts of the per endicu-
};ars dra?r?hfrom_tt_hi pole ‘E)f tl%(}el face to th’f‘h a and b axes must be expressed in each case in
erms of the unit intercept on that axis. ese values dg, ¢ i n
equations given in the preceding problem. » pand ¢, can s digtrpnpd freytiie

V. MONOCLINIC SYSTEM
(Oblique System)

194. Crystallographic Axes. — The monoclinic system includes all the
forms which are referred to three 331
unequal axes, having one of their o
axial inclinations oblique.
The axes are designated as 8
follows: the inclined or clino-axis
is a; the ortho-axis is b, the ver-
tical axis is ¢. The acute angle — a
between the axes a and c is rep- '
resented by the letter B; the

angles between a and b and b and ¢
are right angles. See Fig. 331
When properly orientated the
inclined axis, a, slopes down toward
the observer, the b axis is hori-

a

\
Crystal Axes of Orthoclase
a:b:c=0'66:1:0"55. §=64°

zontal and parallel to the observer and the ¢ axis vertical.

1. NORMAL CLASS (28). GYPSUM TYPE

(Prismatic or Holohedral Class)

195. Symmetry. — In the normal class of the
monoclinic system there is one plane of sym-
metry and one axis of binary symmetry normal
to it. The plane of symmetry is always the
plane of the axes a and ¢, and the axis of sym-
metry comcides with the axis b, normal to this
plane. The position of one axis (b) and that of
the plane of the other two axes (a and ¢) is thus
fixed by the symmetry; but the latter axes may
occupy different positions in this plane. Fig. 332
Symmetry of Normal Class ghows the typical stereographic projection, pro-

jected on the plane of symmetry. Figs. 347,348 are the projections of an actual

332
Y
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crystal of epidote; here, as is usual, the plane of projection is normal to the
prismatic zone.

196. Forms. — The various forms * belonging to this class, with their
symbols, are given in the following table. As more particularly explained
later, an orthodome includes two faces only, and a pyramid four only.

Symbols
1. Orthopinacoid or a-pinacoid....................... (100)
2. Clinopinacoid or b-pinacoid....................... (010)
R S Y Y0 Lo 0 T00V:X 03 0 gt b o Ay S e o el (001)
4 CPTISINS .o h b esstendefe SR AT g - il R AP (hk0)
IR OTTHOAOITIES v e e we e Lol s it APt E et I AR { é%(())g
6. Clinodomes........................... Rl o <. (OFD)
T A 11300 Kl 8 Sl A 4 BB BB 0B b 3B B B b o 06 6 dlbl o §150.6 ol 4o { E%le))

and the basal plane.
The orthopinacoid, (100), includes the two faces parallel to the plane of

the ortho-axis b and the vertical axis ¢. They have the indices 100 and 100.
This form is designated by the letter a, since it is situated at the extremity of
the a axis; it is hence conveniently called the a-face or a-pinacoid.

The clznopinacoid, (010), includes the two faces parallel to the plane of
symmetry, that is, the plane of the clino-axis @ and the axis ¢. They
have the indices 010 and 010. The clinopinacoid is designated by the letter
b, and is called the b-face or b-pinacoid.

The base or basal pinacoid, (001), includes the two terminal faces, above
and below, parallel to the plane of the axes a, b; they have the indices 001
and 001. The base is designated by the letter ¢, and is often called the
c-face or c-pinacord. It is obviously inclined to the orthopinacoid, and the
normal angle between the two faces (100 A 001) is the acute axial angle 8.

333 - 336
001 7\
101 |/ |
1

100 e i [

101

Ortho-, Clino - Prism and Orthodomes

and Basal Pinacoids Basal Pinacoid and Clinopinacoid

The diametral prism, formed by these three pinacoids, taken together,
Fig. 333, is the analogue of the cube in the isometric system. It is bounded
by three sets of unlike faces; it has four similar’ vertical edges; also
four similar edges parallel to the axis a, but the remaining edges, parallel
to the axis b, are of two sets. Of its eight solid angles there are two sets of

_ ¥ On the general use of the terms pinacoid, prisms, domes, pyramids, éee pp. 31, 122.
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four each; the two above in front are similar to those below behind, and
the two below in front to those above in behind.

198. Prisms. — The prisms are all of one type, the oblique rhombie
prism. They may be divided into three classes as follows: the unit prism
(110), designated by the letter m, shown in Fig. 334; the orthoprisms, (hkO):
where h > k, lying between a(100) and m(110), and the clinoprisms, (hk0)
where b < k, lying between m(110) and (010). The orthoprisms and clino-
prisms correspond respectively to the macroprisms and brachyprisms of the
orthorhombic system, and the explanation on p. 123 will hence make their rela-
tion clear. Common cases of these prisms are shown in the figures given later.

199. Orthodomes. — The four faces parallel to the ortho-axis b, and
meeting the other two axes, fall into two sets of two each, having the general
symbols (k0l) and (h0l). These forms are called orthodomes; they are strictly
hemiorthodomes. For example, the unit orthodome (101) has the faces 101
and 101; they would replace the two obtuse edges between a(100) and ¢(001)
in Fig. 333. The other unit orthodome (101) has the faces 101 and 101, and
they would replace the acute edges between a(100) and ¢(001). These two
independent forms are shown together, with 5(010), in Fig. 335.

Similarly the faces 201, 201 belong to the form (201), and 201, 201 to the
independent but complementary form (201).

200. Clinodomes. — The clinodomes are the forms whose faces are
parallel to the inclined axis, a, while intersecting the other two axes. Their
general symbol is hence (0kl) and they lie between the base (001) and the
clinopinacoid (010). Each form has four faces; thus for the unit clinodome
these have the symbols, 011, 011, 011, 011. The form »(021) in Fig. 342 is
a clinodome.

201. Pyramids. — The pyramids in the monoclinic system are all hemi-
pyramids, embracing four faces only in each form, corresponding to the
general symbol (hkl) This obviously follows from the symmetry; it is
shown, for example, in the fact already stated that the solid angles of the
diametral prism (Fig. 333, see above), which are replaced by these pyramids,
fall into two sets of four each. Thus any general symbol, as (321), includes
the two independent forms (321) and (321) with the faces

321, 321, 321, 321, and 321, 321, - 32I, 321,

The pyramids may also be divided into three classes as unit pyramids,
(Rhl); orthopyramids, (hkl), when h > k; or clinopyramids, (hkl), when h < k.
These correspond respec- 336 337
tively to the three prisms
already named. They are
analogous also to the unit
pryamids, macropyramids,
aff brachypyramids of the
orthorhombic system, and
the explanation given on
p. 124, should serve to
make their relations clear. | /[~
But it must be remembered |- /
that each general symbol Pyroxene
embraces two forms, (hhl) ]
and (hkl) with four faces each, as above explained.

=59

|

S o e
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202. Illustrations. — Figs. 336-339 of pyroxene (a tbie=1092:1:
0589, 8 = 74° = a(100) A ¢(001)) show typical monoclinic forms. Fig. 336
shows the diametral prism. Of the other forms, m is the unit prism (110);
p(101) is an orthodome; wu(111), v(221), s(111) are pyramids; for other
figures see p. 475. Again, Figs. 340-342 represent common crystals of
orthoclase (a :b:c = 0659 :1:0'555, B = 64°). Herez(130) is a prism;
x(101) and %(201) are orthodomes; n(021) is a clinodome; o(111) a pyramid.
Since (Fig. 340) c and « happen to make nearly equal angles with the vertical
edge of the prism m, the combination often simulates an orthorhombic

crystal.

R N

Orthoclase

Fig. 343 shows a monoclinic crystal, epidote, prismatic in the direction of
the ortho-axis; the forms are a(100), ¢(001), »(101) and n(111). Fig. 344
of gypsum is flattened || 5(010); it shows the unit pyramid I(111) with the
unit prism m(110). .

343 344

Epidote Gypsum Epidote

203. Projections. — Fig. 345 shows a projection of a crystal of epidote
(cf. Fig. 897, p. 531) on a plane normal to the prismatie zone, and Fig. 346
one of a similar crystal on a plane parallel to 5(010); both should be care-
fully studied, as also the stereographic and gnomonic projections of the same
species, Figs. 347, 348. The symbols of the prominent faces are given in
the latter figures.
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2. HEMIMORPHIC CLASS (29)." TARTARIC ACID TYPE
(Sphenoidal Class)

204. The monoclinic-hemimorphic class is characterized by a single axis

of binary symmetry, the

349 350 crystallographic axis b, but

¥ it has no plane of sym-

o = metry. It is illustrated

: ~ by the stereographic pro-

% ; \ J jection (Fig. 349) made’

! upon a plane parallel to

| b(010). Fig. 350 shows a

m - m common form of tartaric

i acid; sugar crystals also

5 : h belong here. The hemi-

oy E / morphic character is dis-

L . - tinctly shown in the

, AN distribution of the clino-

Symmetry of Hemimorphic Class Tartaric Acid domes and pyramids; cor-

' responding to this the

artificial salts belonging here often exhibit marked pyroelectrical pheno-
mena.

3. CLINOHEDRAL CLASS (30). CLINOHEDRITE TYPE
(Domatic or Hemihedral Class)

205. The monoclinic-clinohedral class is characterized by a single plane
of symmetry, parallel to the clinopinacoid, 5(010), but it has no axis of sym-
metry. This symmetry is shown in the stereographic projection made upon
a plane parallel to 5(010), Fig. 351. In this class, therefore, the forms parallel
to the b axis, viz., ¢(001), a(100), and the orthodomes, are represented by a

351 352 363

~—

Symmetry of Clinohedral Class Clinohedrite

single face only. The other forms have each two faces, but it is to be noted
that, with the single exception of the clinopinacoid 5(010), the faces of a
given form are never parallel to each other. The name given to the class is
based on this fact.

Several artificial salts belong here in their erystallization, but the only
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known representative among minerals is the rare silicate, clinohedrite
(HyCaZnS105),* a complex crystal of which is shown in two positions in Figs.
352, 353. As seen In these figures, the crystals of the group have a hemi-
morphic aspect with respect to their development in the direction of the
vertical axis, although they cannot properly be called hemimorphic since this
is not an axis of symmetry. The forms shown in Figs. 352 353 are as
follows: pinacoid, b(010); prisms, m(110), m;(110), h(320), n(120), 1(130);
orthodomes, ¢(101), €,(101); pyramids, p(111), py(T111), ¢(111), =(331),
s(551), t(771), u(531), o(131), x(131), y(121).

It is to be noted that crystals of the common species pyroxene (also of
egirite and titanite) occasionally show this habit in the distribution of their
faces, but it is not certain that this may not be accidental.t

MATHEMATICAL RELATIONS OF THE MONOCLINIC SYSTEM

206. Choice of Axes.— It is repeated here (Art. 196) that the fixed position of the
plane of symmetry establishes the direction of the plane of the a and ¢ crystallographie
axes and also of the axis b which is the symmetry axis and lies at right angles to this plane.
The a and ¢ axes, however, may have varying positions in the symmetry plane according
to which faces are taken as the pinacoids ¢(100) and ¢(001), and which the unit pyramid,
prism, or domes.

207. Axial and Angular Elements. — The axial elements are the lengths of the axes
a and ¢ in terms of the unit axis b, that is, the axial ratio, with also the acute angle of
inclination of the axes a and ¢, called B8. Thus for orthoclase the axial elements are:

a:b:c=06585:1:05554 B =063°56%.

The angular elements are usually taken as the angle (100 A 001) which is equal to the angle
B8; also the angles between the three pinacoids 100, 010, 001, respectively, and the unit
prism 110, the unit orthodome (101 or 101) and the unit clinodome 011. Thus, again, for
orthoclase, the angular elements are:

001 A 100 = 63° 563’, 100 A 110 = 30°36}".
001 A 101 = 50° 163 001 A 011 = 26° 31°.

208. The mathematical relations connecting axial and angular elements are given_in
the following equations in which a, b, and ¢ represent the unit lengths of the respective
crystallographic axes.

a= M———’\“O) or tan (100 A 110) = a .sin 8; 1)
sin B
c\= Eai(o—(.)lw or tan (001 A O11) = c.sin g; 2
sin 8
a .tan (001 A 101) 101) = csin 8
€= Sin B — cos B . tan (001 A 101) or | tan-(0OL A 101) a+c.cosp L
o a . tan (001 A 101) I or tan (001 A T01) = cesinf
sin 8 + cos 8 . tan (001 A 101) a—c.cosp

These relations may be made more general by writing in the several cases —

y k
in (1) kO for 110 and %a for a; in (2) OKklfor011 and 7¢ for ¢;
4 h
in (3) hOI for 101 and 7e for c..

* Penfield and Foote, Am. J. Sc., 6, 289, 1898.
t gg: G. B Williams, Am. J. Sc, 34, 275, 1887, 38, 115, 1889.
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Also 3 &
¢ _ sin (001 A 101) _ sin (001 A 101)’
a sin (100 A 101) sin (100 A 101)
and more generally o o o
h e _ sin (001 A %00) _ sin (001 A hOl)‘
a I sin (100 A kOl)  sin (100 A 200

Note also that
tan ¢ = a and tan ¢ = ¢,

where ¢ is the angle (Fig. 347) between the zone-circles (001, 100) and (001, 110); also ¢ is
the angle between (100, 001) and (100, 011).

All the above relations are important and should be thoroughly understood.

209. The problems which usually arise have as their object either the deducing of the
axial elements, i.e., the angle 8 and the values of @ and ¢ in terms of b(= 1), from three
measured angles, or the finding of any required interfacial angles from these elements or
from the fundamental angles. )

The simple relations of the preceding article connect the angular and axial elements
and beyond this all ordinary problems can be solved * either by the solution of sphericai
triangles on the sphere of projection, or by the aid of the cotangent (and tangent) relation.

It is to be noted, in the first place, that all great circles on the sphere of projection (see
‘the stereographic projection, Fig. 347) from 010 cut the zone circle 100, 001, 100 at right
angles, but those from 100 cut the zone circles 010, 001, 010 obliquely, as also those from
001 cutting the zone circle 100, 010, 100.

210. Tangent and Cotangent Relations. — The simple tangent relation holds good for all
zones from 010 to any pole on the zone circle 100, 001, 100; in other words, for the prisms,
clinodomes, and also zones of pyramids in which the ratio of & : [ is constant (from 001 to
ROL or to #0I). Thus it is still true, as in the orthorhombic system, that the tangents of the
angles of the prisms 210, 110, 120, 130 from 100 are in the ratio of 3 : 1 : 2 : 3, or, more

generally, that
tan (100 A hk0) & tan (010 A hkO) _ R

tan (100 A110) 7 %  tan (010 A 110)

Also for the clinodomes the tangents of the angles of 012, 011, 021 from 001 are in the
ratio of 3 : 1: 2, ete. A?similar relation holds for the tangents of the angles of pyramids in
the zones mentioned, as 121, 111, 212, etc.

For zones other than those mentioned as from 100 to a clinodome, or from 001 to a
prism, the more general cotangent formula given in Art. 49 must be employed. This rela-
tion is simplified for certain common cases.

For any zone starting from 001, as the zone 001, 100, or 001, 110, or 001, 210, etc.; if
two angles are known, viz., the angles between 001 and those two faces in the given zone
which fall (1) in the zone 010, 101, and (2) in the prismatic zone 010, 100; then the angle
between 001 and any other face in the given zone can be calculated.

Thus
’ Let 88% A i?i = gg and 001 A 100 = PR,
or A 111 = 001 A 110 = PR
or “ 001 A 212 = PQ « 001 A 210 = PR, ete.

Then for these, or any similar cases, the angle (PS) between 001 and any face in the given
zone (as 201, or 221, or 421, etc., or in general hOl, hhl, etc.) is given by the equation

cot PS —cotPR I
cot PQ — cot PR h

For the corresponding zones from 001 to 100, to 110, to 210, ete., the expression has the
same value; but here

PQ = 001 A 101, PR = 001 A 700, PS = 001 A KOL
or 001 A 111, ete., 001 A 110, etc., 001 A hhl, ete. -

* The general formulas, from which it is possible to calculate directly the angles between
any face and the pinacoids, or the angle between any two faces whatever, are so complex
as to be of little value.
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If, however, 100 is the starting-point, and

100 A 101 = PQ 100 A 001 = PR,
or 100 A 111 = PQ, 100 A 011 = PR, etc.,

then the relation becomes

cot PS — cot PR _ &
cot PQ — cot PR ~ [

211 To determine, by plotting, the axial elements of a monoclinic crystal, given the
stereographic projection of its forms. As an example of this problem it is assumed that
an orthoclase crystal similar to the one shown in Fig 341 has been measured and the poles
of its faces located on the stereographic projection, Fig. 354. The inclination of the a axis
or the angle 8 is given directly by measuring, by means of the stereographic protractor, the
angular distance between the poles of a(100) and ¢(001). 1In the present case the a(100)
form does not actually oceur on the crystal. g is measured as 64°. If the base is not
present upon the crystal it will be usually possible to locate its position by means of some
zone circle on which it must ie  In the present case the great circle of the zone of m’(110),
o(111), m””’(110) will cross the front to back line (zone of the orthodomes) at the point of
the pole to the base.

<
§|

Horizontal projection of « axis

#"130

a 100 .
Determination of Axial Elements of Orthoclase from Stereographic Projection

The ratio between the lengths of the a and b axes can be readily determined from the
position of the pole, m(110). "Draw the radial line O-P from the center of the projection
to m(110). From the end of the b axis draw a line at right angles to O-P. This repre-
sents the intersection of the prism face with the horizontal plane and the distance O-R
gives the intercept of the prism upon the horizontal projection of the a axis. The distance
O-R therefore is not the unit length of the a axis but is that distance foreshortened some-
what because of the inclination of that axis. The construction by which the true length
of the a axis is obtained is shown in Fig. 355." The line R-O-S-T represents the horizontal
projection of the a axis upon which the distance O-R is transferred from Fig. 354. As the
prism face is vertical its intercept upon the'a axis can be found by dropping a perpendicu-
lar from R to intersect the line which represents the a axis. The inclination of this last
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line is found by use of the angle 8, which has been already determined. The length of the
a axis when expressed in terms of the b axis (1'00) was found to be 0°66. _

The length of the ¢ axis can be found best from the inclination of the %(201) face. This
face will intersect the negative end of the a axis and the upper end of the ¢ axis at either
a, 1c or la, 2c. The angle between the center of the projection, O, Fig. 354, and the
pole y is measured by means of the stereographic protractor. From this angle the position
of the normal to y, as shown in Fig. 355, is determined. The line representing the slope of
the face is drawn at right angles to this normal, starting from the negative unit length of
the inclined a axis. The intercept on the ¢ axis was found to be equal to 1°11, which, as
it is equal to 2¢, would give the unit length of the ¢ axis as, 0°55.

The length of the ¢ axis could also be determined from the inclination of the ﬁyramid
{ace, o(111). The method of construction would be similar to that described in the prob-
lem below. :

212. To determine the indices of a face upon a monoclinic crystal, having given the
position of its pole utpon the stereographic projection and the axial elements of the min-
eral. The pyramid face o on orthoclase will be used to illustrate the problem. First, see
Fig. 354, a radial line is drawn through the pole o and a perpendicular S-T erected to it,
starting from the unit length of the b axis. It is to be noted that the point T is the inter-
section of the face o with the horizontal projection of the a axis Transfer the distance

355

2c¢=110

Determination of Axial Elements, etc. of Orthoclase

O-S to the horizontal line in Fig. 355 and locate the position of the normal to o by the
angle, Fig. 354, between O and o. The line giving the slope of the face can then be drawn
from the point S (Fig. 355) perpendicular to the normal. This line intersects the line
representing the vertical axis at a distance equal to its unit length. Two points of inter-
section of the pyramid face with the plane of the a and ¢ axes have now been determined,
namely 1c and T. A line joining these two points will give the intersection of the two
planes and the point where it crosses the line representing the o axis will therefore give
the intercept of the pyramid upon that axis. This is also found to be at the unit length
and therefore the indices of 0 must be 111.

213. To .detergnin.e, by plotting, the axiat elements of a monoclinic crystal, having given
the gnomonic projection of its forms. The construction by which this problem is solved
is shown in Fig. 356. The poles of the unit forms (101), (011), (001) and (111) are located
(in this case for pyroxene) and the zonal lines drawn. The angle 8 is complementary to
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the angle from the center of the projection to 001. This can be measured dir

means of the gnomonic tangent scale. ~ Then construct the triangles CST and XYeZc.tlyTll)x%
angles p and =, and v and » are measured. This can most easily be done by means of the
divided circle and the fact that an angle at the circumference of a circle is measured by one
half its subtended arc. The following relations will then yield the axial ratio.

sin v

b _sinp,
sin »

¢ sinwx’

a
c

For the proof of these relations see the explanation of
Tt StTots. dre. 321, o 153 P 1on of the more general case under the

Determination of Axial Elements of Pyroxene from Gnomonic Projection

214. To determine, by plotting, the indices of a face on a monoclinic crystal, having
given the position of its pole upon the gnomonic projection. There is no essential differ-
ence between the orthorhombic and monoclinic systems in the determination of indices
from the gnomonic projection. The intercepts of perpendiculars from the poles of the
faces upon the front to back and left to right zonal lines running through the pole of ¢(001)
give directly the first two numbers of the indices. The gnomonic projection of the epi-
dote crystal already given (Fig. 348) will serve to illustrate this problem.

VI. TRICLINIC SYSTEM

(Anorthic System)

215. Crystallographic Axes. — The triclinic system includes all the forms
which are referred to three unequal axes with all their intersections oblique.
When orientated in the customary manner one axis has a vertical posi-
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tion and is called the ¢ axis (cf. Fig. 357), a second axis lies in the front-tq-
“back plane, sloping down toward the observer, and is
AR called the a axis. The remaining axis is designated as
v the b axis. Usually the a and b axes are so chosen that
/} N the a axis is the shorter and, like in the orthorhombic
e system, is sometimes called the brachy-axis. In that
=3 case the b axis i1s longer and is known as the macro-
axis. But this is not invariably true; thus with rho-
donite the ratio of a:b=1073:1. The angle
o between the axes b and ¢ is called «, that between a
Triclinic Axes 311d ¢ is 8, and that between a and b is v (Fig. 357).
It is to be noted that there is no necessary relation be‘_owgen the vgzlues of
a, B, and v, any one may be greater or less than 90°; this is determined by
the choice of the fundamental forms.

G

1. NORMAL CLASS (31). AXINITE TYPE

(Holohedral or Pinacoidal Class)

216. Symmetry. — The normal class of the triclinic system is character-
ized by a center of symmetry, the point of intersection of the three axes,
but there is no plane and no axis of symmetry. This symmetry is shown in
the accompanying stereographic projection (Fig. 358).

'358 359
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Symmetry of Normal Class Triclinic Pinacoids

217. Forms. — Each form of the class includes two faces, parallel to

one another and symmetrical with reference to the center of symmetry.
This is true as well of the form with the general symbol (hkl) as of one of the
special forms, as, for example, the a-pinacoid (100).
.. Hence, as shown in the following table, the four prismatic faces 110, 110,
110, 110 include two forms, namely, 110, 110, and 110, 110. The same is
true of the domes. Further, any eight corresponding pyramidal faces, as,
for example, 111, 111, 111, 171, 117, 11T, 111, 111 belong to four distinet
forms, namely, 111, 111; 111, 11T; 111, 11T;- 171, 111, and similarly in
general.
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The various types of forms are given in the following table:

Indi
Macropinacoid or a-pinacoid. ... ................ ... (1(;;)
Brachypinacoid or b-pinacoid................. ... .. (010)
Base or ¢-pinacoid............. ... (001)
Prisms.. ... { ((Zk]ggg
Macrodomes. ... ... [ E%gg
Brachydomes.............. ... .. L. [ Eglgg

J(’Lkl)
Pyramids............. o %?

l(hIEl)

In the above table it is assumed that the axial ratio is such thata < b. If the oppo-
site were true the names brachy- and macro- would be interchanged.

218. The explanations given under the two preceding systems make it
unnecessary to discuss in detail the various forms individually, except as
illustrated in the case of crystals belonging to certain typical triclinic species.

It may be mentioned, however, that Fig. 359 shows the diametral prism,
which is bounded by three sets of unlike faces, the pinacoids a, b, and c.
This is the analogue of the cube of the isometric system, but here the like
faces, edges, and solid angles include only a given face, edge, and angle, and
that opposite to it.

219. Illustrations. — A typical triclinic crystal is shown in_Fig. 360 of
axinite. Here a(100) is the macropinacoid; m(110) and M (110) the two
unit prisms; s(201) a macrodome, and z(111) and r(111) two unit pyramids.
The axial ratio is as follows:

a:b:c=049:1:048, a = 82° 54/, 8 = 91° 52/, v = 131° 32"

Figs. 361, 362 show two crystals of rhodonite, a species which is allied to

pyroxene, and which approximates to it in angle and habit. Here the faces

360 361 362

’\

N

Axinite Rhodonite

are: Pinacoids a(100), 5(010), ¢(001); prisms m(110), M (170); pyramids
221), k(221), n(221), r(111). . p ) :

g Fl)lrth(er ilgustgations are given by Fig. 363 of albite and Fig. 364 of anor-

thite. The symbols of the faces, besides the pinacoids and the unit prisms,



146 CRYSTALLOGRAPHY

are as follows: Fig. 363, z(101); Fig. 364, prisms f(130), z(l?O); domes
£(207), y(201), e(021), r(061), n(021); pyramids m(111), «(111), o(111),
363 366

R g
«

Albite

364

Anorthite Axinite
366

Stereographic Projection of an Axinite Crystal

p(§11). In Fig. 364 of anorthite the similarity of the crystal to one of ortho-
clase 1s evident on slight examination (cf. Figs. 340, 341), and careful study
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with the measurement of angles shows that the correspondence is very close.
Hence 1n this case the choice of the fundamental planes is readily made.

Fig. 365 represents a crystal of axinite; Figs. 366 and 367 its stereo-
graphic and gnomonic projections.

367

M110

b 010 <€

N
S201 “Ma 100

Gnomonic Projection of an Axinite Crystal

2. ASYMMETRIC CLASS (32). CALCIUM THIOSULPHATE TYPE

(Hemahedral Class)

220. Besides the normal class of the triclinic system there is another
possible class, possessing symmetry neither 368 ;
with respect to a plane, axis nor center; in it
a given form has one face only. This classfinds - AN
examples among a number of artificial salts. # ~
One of these is calcium thiosulphate 7 X
(CaS;03.6H,0); as yet no mineral species is ,’/ i
known to be included here. This is the most | x i s pamez T
general of all the thirty-two types of forms | ) 3
classified according to their symmetry and g
comes first, therefore, if the classes are arranged \ 7
in order according to the degree of symmetry Vi
characterizing them. This class is one of those - -
whose crystals may show circular polarization. e
This is true of eleven of the classes which have Symmetry of Asymmetric Class
been described in the preceding pages.
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MATHEMATICAL RELATIONS OF THE TRICLINIC SYSTEM

ice of Axes. — It is obvious, from what has been said as to the symmetry of
thiszg;éte(r:lllm}c(}:leat? any three faces of a triclinic crystal may be chosen as the p}nacolds, or
the faces which fix the position of the axial planes and the directions of the axes; moreover,
there is a like liberty in the choice of the unit prisms, domes or pyramids which further fix

f the axes. = y
thee\‘?rﬁ%;hilﬂz (Er;s?:,l in hand is allied in form or composition to other species, whether of
the same or different systems, this fact simplifies the problem and makes the choice of the
fundamental forms easy. This is well illustrated, as already noted, by the triclinic feldspars
(e.g., albite and anorthite, Figs. 363, 364) which are near in angle to the allied monoclinic
Sp.ec':’ies orthoclase. Rhodonite (Figs. 361, 362), the triclinic member of the pyroxene

i ther good example. . - ] ) \JE
grmllg’oltshglr'] gas;, %rohere no SIIl)ch relationship exists, and where varied habit makes different
orientations plausible, there is but little to guide the choice. This is illustrated in the case
of axinite (Fig. 360), where at least ten distinet positions have been assumed by different
autkzxgxs. Axial and Angular Elements. — The axial elemenis of a triclinic crystal are:
(1) the axial ratio, which expresses the lengths of the axes a and c in terms of the third
axis, b; and (2) the angles between the axes «, 8, v (Fig. 357). There are here five quanti-
ties to be determined which obviously require the measurement of five independent angles
veen the faces. . Y )

bet\%e}:le: angular elements are usually taken as the angles between the pinacoids and, in
addition, those between each pinacold and the unit face lying in the zone of the other pina-

ids; that is,
poich: iy ab, 100 A 010, ac, 100 A 001, b, 010 A 00L;

also am 100 A 110, 001 A 101, 001 A 011;
or, instead, any one or all of thesg, & o
aM, 100 A 110, 001 A 101, 001 A OI1.

Of these six angles taken, one is determined when the others are known. ] )

223. The mathematical relations existing between the axial angles and axial ratio, on the
one hand, and the angles between the faces on the other, admit of being drawn out with
great completeness, but they are necessarily complex and in general have little practical
value. In fact, most of the problems likely to arise can be solved by means of the triangles
of the spherical projection, together with the cotangent formula connecting four planes in
the same zone (Art. 49, p. 49); this will often be laborious and may require some ingenuity,
but in general involves no serious difficulty. In connection with the use of the cotangent
formula, it is to be noted that in certain commonly occurring cases its form is much simpli-
fied; some of these have already been explained under the monoclinic system (Art. 210).
The formulas given there are of course equally applicable here.

224. The first problem may be to find the axial elements from measured angles. Since
these elements include five unknown quantities, viz., the three axial angles a«, 8, v and
the lengths of the axes a and ¢ in terms of b, five measured angles are required, as already
stated.

Fig. 369 represents the crystallographic axes of the triclinic mineral rhodonite. The
positive ends of the three axes are joined by lines forming three triangles the angles of
which are very important. In the triangle, for instance, which has the b and ¢ axes for

two of its sides since the length

369 370 of the b axis is taken as 1°0, it

1s only necessary to know

the angle o and either p or =
in order to determine the length
of the ¢ axis. . In the triangle
that has the a and b axes for
two of its sides it is necessary
to know the value of v and
either ¢ or 7 in order to deter-
mine the length of the a axis.
And lastly in the triangle
formed between the a and ¢
axes, if the length of either of
these axes is known, the length
T.pu or p. It is assumed that a

of the other can be determined from the angle 8 and eithe
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crystal of rhodonite showing the forms a(100), b(010),
370, has been measured and the poles of the faces plotted i

149

c(001) and p(111), see Fig.
n the stereographic projection

Fig. 371. The angles between the
great circles which connect these
poles are the same as those shown
in the triangles built upon the
crystallographic axes, Fig. 369. With
the angles between the different crys-
tal faces known by measurement, it
is easy, by the formulas of spherical
trigonometry, to calculate the value
of these other angles and from them
obtain the axial ratio.

That the angles shown on the stere-
ographic projection, Fig. 371, are
identical with those in Fig. 369 may
be proved as follows. Let Fig. 372
represent a vertical section cut
through the spherical projection of
rhodonite in such a way as to
include the b and ¢ crystallographic
axes. The triangle, which has these
axes as two sides and the three
angles a, = and p, lies therefore in
the plane of the figure. The nor-
mals to all faces parallel to the

371
100

@100

c axis, i.e. the prism zone, would lie in a plane at right angles to that axis. This plane

372

B

would intersect the sphere of the spher-
ical projection in a great circle which is
represented on the stereographic pro-
jection, Fig. 371, by the divided circle.
On Fig. 372 this great circle would
appear in orthographic projection as the
line C-C’ lying at right angles to the ¢
axis. In the same way all faces lying
parallel to the b axis, 4.e. the zone (100)—
(101)-(001), would have their normals
in a plane which would be foreshortened
to the line B-B’ in Fig. 372. Since
the lines C-C’ and B-B’ are at right
angles respectively to the ¢ and b axes
the angle between them must equal the
axial angle, @. This same angle will
appear therefore on the stereographic
projection, Fig. 371, between the great
circles of the two zones, the faces of
which are parallel respectively to the ¢
and b axes. Further the normals to all
faces which intersect the b and ¢ axes at
their unit lengths would lie in a plane at
right angles to the line b-c, Fig. 372.

This plane would appear in orthographic projection as the line P-P".

projection, Fig. 371, this would be represented
as the zonal circle passing through (100), (111),
(011), (100). The angle between B-B’ and P-P’
will by construction equal = and that between C-C’
and P-P’ will equal p. These same angles will appear
therefore in the stereographic projection between the
corresponding zone circles. In the same way the
identity of the angles v, o, 7, 8, x and » in Figs. 369
and 371 can be proved.

With the necessary number of these angles given
the formulas required for the calculation of the
axial lengths are given below. The angles 7/, o’, »’,
u’y w’ and p’ are the corresponding angles to r, o, ete..
in the adjacent quadrants, see Fig. 373.

On the stereographic
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sinyg siny’ ¢ sinz- sinz’ ¢

'Sng sinp’ a'sinp sinp’ b
If the angles given are between the three pinacoids and the pyramid kil (not the unit form)
the relations are similar. That is, if for the face hkl the corresponding angles be represented
by 7o, o0, etc., Where 7o, oo are the angles between the zone circles 100, 001 and 100, 010
respectively and the zone circle 001, hk0, these relations may be expressed in the general
form ’

sinro_sinn' _ a _k a

simoy sine h, kD

2

k
sinw _sinw _ ¢ _h ¢
smpo—sin;uo—la—l a
sinm _sinm’ _ ¢ _k ¢
sin—po_sinpo'—l_._l_'i)
Eb

Thus for the face 321 the formulas become
sinto _a _2a siny _3c sinm _ 2,

Sinoo 30 3b sSinpe a sinp b
1t is also to be noted that
a=180°~A4, p=180°-B, y=180°~C,
where A, B, C are the angles in the pinacoidal spherical triangle 100°010°001 at these
poles respectively. That is,
A==n+p =m+ p = (180° — a);
B =v4p=wv+ p=(180° —8);
C=17+4+0¢ =14 0= (180° — 7).

180° —A =7" 4+ p' =m' + po’ = a.

Hence, having given, by measurement or calculation, the angles between the faces
ab(100 A 010), ac(100 A 001) and bc(010 A 001), which are the sides of this triangle, the
angles A, B, C are calculated and their supplements are the axial angles «, 8, v respectively.

Still another series of equations are those below, which give the relations of the angles
1, v, p, €te., to the axes and axial angles. By means of them, with the sine formulas given
at)ove, the angular elements (and other angles) can be calculated from the axial elements.

Also

asin g ¢ sin 8
tanpy =—————; tany = ———
% ¢+ acos B’ 4 a + ccos B
e, bsin « S csin a
RS AL . 2 PO L e R
¢+ bcosa’ b+ ccosa

a sin vy b sin ¢

tanr = ;—/—————; tano = ———,
b4+acosy’ a + bcosy

These equations apply when u + », ete., is less than 90°; if their sum is greater than
90° the sign in the denominator is negative. ]
207. The following equations are also often useful.

_ 2sinpsinp’ 2 sin r sin #’

tan @ = — == 3
sin (p — p’) sin (r — #’)
2 sin u sin u’ i in »'

tan g = % M Iu=2.s1nusmv‘
sin (u — u’) sin (» — »’)
2sinrsins’ 2si in ¢’

b = v/ _2sinosing

sin (r —7)  sin (¢ — ¢’)
Also,
at+rt+p=B+p+rv=v+417+0s =180
The calculation, from the angular elements or from the assumed fundamenta] measured
angles, either (1) of the angular position of any face whose symbol is given, or (2) of the
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symbol of an unknown face for which measured angles are at hand, requires no f
explanation. The cotangent formula is all that is needed in a single zbne?and the so‘llll;ttli]:;
of spherical triangles on the projection (with the use of the sine formulas) will suffice in
addition in all ordinary cases.

226. To determine, by plotting, the axial elements of a triclinic cr stal, having given
the stereographic projection of its forms. In order to solve this probf;,m it is necessary
to have given the position of the poles of
the unit forms (100), (010), (001), (111) or 374
to be able to locate them by means of
their zonal relations. Through these poles
the various zonal circles are drawn as
shown in the case of rhod onite, Fig. 371.
The angles a, 8, v, 7, p, etc., are then given
upon the projection. These angles can be
measured as described in Art. 41, p. 39.
Taking next a certain line as representing
the unit length of the b axis and knowing
the angles o, 7 and p the triangle that
includes the b and ¢ axes, see Fig. 369, can
be drawn to scale and the unit length of
the ¢ axis determined. In a similar way
the length of the a axis can be found.

226. To determine, by plotting, the indices
of a face upon a triclinic crystal, having
given the position of its pole in the stereo-
graphic projection and the axial elements a(100)
of the mineral. To illustrate this problem 1 )

a possible pyramid face on rhodonite will be used. Its pole is located in the stereograp-
hic projection at z, Fig. 374. The position of the poles of the faces a(100) and 5(010)
must also be known. The directions of the intersections of the planes of the a—c and

b—c axes with the plane of the

Horizontal Projection [Q
2 of a Axis

375 projection can then be drawn.
These lines will represent the
1.93 K Intercept upon a horizontal projections of the a

and b crystallographic axes.
A radial line is then drawn from
the center of the projection, O,
through . Another line,
A-P-B, is drawn perpendicular
to this line at any convenient
distance from the center, O.
The line A-P-B will represent
the direction of intersection of
the face z with the horizontal
plane of the projection. The
intercept that the face will
make upon the vertical axis can
be found by the construction of
a right triangle with O-P as its
P base, a line representing the c¢

55 i axis as its vertical side and the

iy & i s angle between O-z as the angle
i R between the base and the hy-
ponat wpens  pothenuse, see Fig. 375. Under
the assumed conditions the face
will intersect the ¢ axis at a dis-
tance of 1'93, the radius of the
circle in the figure being
1'0. The face will also pass
through the points A and B on the horizontal projections of the a and b axes.
With the known angles 8 and « it is possible to construct the a and b axes with their proper
angular relations to the ¢ axis. The intercepts of the face upon these two axes will be
given by the extension of the lines from the point 1°93 on the c axis to the points A and B.
In this way the intercepts of the face upon the three axes were obtained as 1'11a, 1'55b,

&

&
/&
)
o,
gy o5

P
@
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1'93c. By dividing these numbers by 1°55 we get the intercepts expressed in terms of the
length of the b axis, considering that as 1'0. The intercepts then become 0'71a, 1b, 1:24c.
When these are compared with the axial ratio of rhodonite, a : b :¢c = 1114 : 1 : 0°986,
the parameters of the face are found to be 3a, 1b, 2c. The indices of x are therefore 321.

227. To determine, by plotting, the axial elements of a triclinic crystal having given the
gnomonic projection of its forms. To illustrate this problem it is assumed that the posi-
tions of the poles of the faces, (100), (010), (601), (101), (011) and (111) on rhodonite are
known, see Fig. 376. If this figure is compared with the stereographic projection of the
same forms given in Fig. 371, it will be seen that the angle between the zones (100)-(101)-
(001) and (100)-(111)-(011) is equal to =, that between the zones 8100)—8111)—(011) and
(100)-(110)—(010) is equal to p, between (010)-(011)-(001) and (010)-(111)—(101) is equal
to » and between (010)-(111)-(101) and (010)-(110)-(100) is equal to u. The method
-by which the angles between these various zones may be measured was explained in Art.
42, p. 43, and is illustrated by the construction of Fig. 376. From these angles triangles
can be readily constructed to give the lengths of the a and ¢ axes in terms of the b axis,
with its length taken as equal to 1°0.

376
T

a [4
z s 010
1
001’ 'y
o
LR,
Jroe 111

100

; 228. To (_iqterxmne, by piotting, the indices of the forms of a triclinic crystal, having
given the position of other poles upon the gnomonic projection. . The method for the solu-
tion of this problem is similar to that already described under the previous systems. The
difference lies in the fact that the lines of reference upon which are plotted the intercepts
of the lines drawn to them from the poles of the faces make oblique angles with each other.
These reference lines are taken as the zonal lines (001)-(101) and (001)-(011) and the
intercepts from which the indices are determined are measured from the pole of (001). A
study of the gnomonic projection of axinite, Fig. 367, will illustrate this problem.

MEASUREMENT OF THE ANGLES OF CRYSTALS

229. Contact-Goniometers. — The interfacial angles of crystals are
measured by means of instruments which are called goniometers.
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The simplest form is the contact- or hand-goniometer one form of which is
represented in Fig. 377.

This contact-goniometer consists of a card on which is printed a semi-
circular arc graduated to half degrees at the center of which is fastened a
celluloid arm which may be turned to any desired position. The method of
use of the goniometer is illustrated in Fig. 377. The bottom of the card and

"7
LY L RN e AR AR LARA AR HITIT I 1l
Ly, g UL LA W e [T T [T

Penfield Contact Goniometer, Model B

kened end of the celluloid arm are brought in as accurate contact as
f)};Zs]ioli?: with the two crystal faces, the angle between which is desired. Care
must be taken to see that the plane of the goniometer is at right angles to the
edge of intersection between the two faces. Another model of the contact-
goniometer, Fig. 378, has two arms swiveled together and separate from the
graduated arc. The crystal angle is obtained by means of the arms and then
the angle between them measured by placing them upon the graduated arc.
This latter type is employed in cases where the crystal lies in such a position
as to prevent the use of the former.*

i f contact-goniometers were devised by S L. Penfield and can be
obt;ix?e}éef);sérgg}:sgﬂxpgesﬂ?e ‘f\‘/)llilneralggical Laboratory of the Sheffield Scientific School of
Yale University, New Haven, Ct. p
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The contact-goniometer is useful in the case of large erystals and those
whose faces are not well polished; the measurements with it, however, are

Penfield Contact Goniometer, Model A

seldom accurate within a quarter of a degree. In the finest specimens of
erystals, where the faces are smooth and lustrous, results far more accurate
879 may be obtained by means of a different
instrument, called the reflecting goni-

ometer.

230. Reflecting Goniometer. — This
type of instrument was devised by
Wollaston in 1809. It has undergone exten-
sive modifications and improvements since
that time. Only the perfected forms that
are in common use to-day will be
described. -

The principle underlying the construction
of the reflecting goniometer will be

" a understood by reference to the figure (Fig.

379), which represents a section of a

crystal, whose angle, abc, between the faces ab, be, is required. Let the
eye be placed at P and the point M be a source of light. The eye at P,
looking at th_e face of the crystal, be, will observe a reflected image of m,
In the direction of Pn. The crystal may now be so changed in its position
that the same Image 1s seen reflected by the next face and in the same direction,
Pn. To effect this, the crystal must be turned around, until abd has the
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present direction of bc. The angle dbc measures, therefore, the number of
degrees through which the crystal must be turned; it may be measured by
attaching the crystal to a graduated circle, which turns with the crystal.
This angle is the supplement of the interior angle between the two faces, or
in other words is the normal angle, or angle between the two poles (see Art.
43, p. 44). The reflecting goniometer hence gives directly the angle needed
on the system of Miller here followed. ’

231. Horizontal Goniometer. — A form of reflecting goniometer well
adapted for accurate measurements is shown in Fig. 380. The particular
form of instrument here figured * is made by Fuess.

380

-
I NI

One-circle Reflection Goniometer

The instrument stands on a tripod with leveling screws. The central
axis, o, has within it a hollow axis, b, with which the plate, d, turns, carrying
the verniers and also the observing telescope, the upright support of which is
shown at B. Within b is a second hollow axis, e, which carries the graduated
circle, f, above, and which is turned by the screw-head, g; the tangent screw,
a, serves as a fine adjustment for the observing telescope, B, the screw, ¢, being
for this purpose raised so as to bind b and e together. The tangent screw, 8,
is a fine adjustment for the graduated circle. Again, within e is the third
axis, k, turned by the screw-head, 7, and within h is the central rod, which
carries the support for the crystal, with the adjusting and centering con-
trivances mentioned below. This rod can be raised or lowered by the screw, k,

* The figure here used is from the catalogue of Fuess.
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5o as to bring the crystal to the proper height — that is, up to the axis of the
telescope; when this has been accomplished, the clamp at p, turned by a
set-key, binds s to the axis, k. The movement of & can take place independ-
ently of g, but after the crystal is ready for measurement these two axes are
bound together by the set-screw, I. The signal telescope is supported at C,
firmly attached to one of the legs of the tripod. The crystal is mounted on
the plate, u, with wax, the plate is clamped by the screw, v. The centering
apparatus consists of two slides at right angles to each other (one of these is
shown in the figure) and the screw, a, which works it; the end of the other
corresponding screw is seen at a’. The adjusting arrangement consists of
two cylindrical sections, one of them, r, shown in the figure, the other at r';
the cylinders have a common center. The circle on f is graduated to degrees
and quarter degrees, and the vernier gives the readings to 30"

A brilliant source of light is placed behind the collimator tube which is
at the top of the support C. Openings of various size and character are pro-
vided at the rear end of this tube in order to modify the size and shape of the
beam of light that is to be reflected from the crystal faces. The most com-
monly used opening is one made by placing two circular disks nearly in con-
tact with each other leaving between them an hour-glass shaped figure. The
telescope tube L is provided with several removable telescopes with lenses
which have different angular breadths and magnifying powers and hence are
suitable for observing faces varying in size and degree of polish. At the front
of the tube L there is a lens which is so pivoted that it may be thrown into or
out of the axis of the telescope. When this lens lies in the axis of the tube it
converts the telescope into a low-power microscope with which the erystal
may be observed. Without this lens the telescope has a long-distance focus
and only the beam of light reflected from the crystal face can be seen.

The method of use of the instrument is briefly as follows. The little plate « is removed -
and upon it is fastened by means of some wax the crystal to be measured. The faces of
the zone that is to be measured should be placed as nearly as possible vertical to the sur-
face of this plate. It will usually facilitate the subsequent adjustment if a prominent face
in this zone be placed so that it is parallel to one of the edges of the plate u. This plate
with the attached crystal is then fastened in place by the serew ». During the preliminary
adjustments of the crystal the small lens in front of the tube L is placed in its axis and the
crystal observed through the microscope thus formed. It is usually better also to make
these first adjustments outside the dark room in daylight. By means of the serew-head k
the central post is raised or lowered until the center of the crystal lies in the plane of the
telescope. Next by means of the two sliding tables controlled by the screw-heads a and a’
the cr{lstal is adjusted so that the edge over which the angle is to be measured coincides
with the axis of the instrument. This adjustment is most easily accomplished by turning
the central post of the instrument until one of these sliding plates lies at right angles to
the telescope and then by turning its screw-head bring the intersection in question to coin-
cide with the vertical cross-hair of the telescope tube. Then turn the post until the other
plate lies at right angles to the telescope and make a similar adjustment. Then in a similar
manner by means of the tipping screws x and y bring the intersection between the faces
to a position parallel with the vertical cross-hair of the telescope. By a combination of
these adjustments this edge should be made to coincide with the vertical cross-hair and to
remain stationary while the crystal is revolved upon the central post of the instrument.
Next the instrument is taken into the dark room and a light placed behind the collimator
tube, and the crystal turned until one of the faces is seen through the tube L to be brightly
illuminated. Then the little lens in the front of this tube is raised and the reflection of the
beam of light, or signal as it is called, should lie in the field. If the preliminary adjust-
ments were accurate the horizontal cross-hair will bisect this signal. In the majority of
cases, however, further slight adjustments will be necessary. Before the angles between
the faces can be measured their various signals must all be bisected by the horizontal cross-
hair. When these conditions are fulfilled each signal in turn is brought into place so that
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it is bisected also by the vertical cross-hair and its angular positio
graduated scale and vernier. The difference betweengltlhe aipx?glu Iflo:egvdvobg?&gagisvg g]lg
norma] angle between then_l. Ig making these readings care must be taken that the plate
on which the graduated circle is engraved is turned with the central post. In order to
do this only the screw-head g must be used unless, as is wise, the two screw-heads 4 and g
have been previously clamped together by means of I.  For the accurate adjustment of the
signals on the vertical cross-hair the tangent screw g is used. In making a record of the
ansli% meﬁsure(z it lsf lﬁllpoptanti to ilé)tze ?ccuratelly ’cﬁl:l face from which each signal is derived
an e character of the signal. is frequent. ful t i

of the different faces and number or le’cte(rl then{ a A

232. Theodolite-Goniometer. — A form of goniometer * having many
practical advantages and at present in wide use has two independent circles

381

kﬂ:[{‘

Two-circle Reflection Goniometer

and is' commonly known as the two-circle goniometer. It is used in a manner
analagous to that of the ordinary theodolite. Instruments of this type were
devised independently by Fedorow, Czapski and Goldschmidt. Other
models have been described since. In addition to the usual graduated hori-
zontal circle of Fig. 380, and the accompanying telescope and collimator, a
second graduated circle is added which revolves in a plane at right angles to
the first. Fig. 381, after Goldschmidt, gives a cross-sectional view of one of

* Fedorow, Universal or Theodolit-Goniometer, Zs. Kryst., 21, 574, 1893; 22, 229,

1893; Czapski, Zeitschr. f. Instrumentenkunde, 1, 1893; Goldschmid’t Zs. Kryst., 21, 210,

1802: 24, 610, 1895; 25, 321, 538, 1896; 29, 333, 589, 1898. On the method of Gold-

schmidt, see Palache, Am. J. éc., 2, 279, 1896; Amer. Mineral, 5, No. 2, et seq., 1920. A

iisxg’?]i%id form of the theodolite-goniometer is described by Stober, Zs. Kryst., 29, 25,
; 54, 442.
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the earlier machines devised by him. It will serve to illustrate the essential
features of the instrument. ;

The crystal to be measured is attached at the end of the axis (h) of the
vertical circle and so adjusted by means of suitable centering and tipping
devices that a given plane, called the polar plane, is normal to this axis and
lies directly over the axis of the horizontal circle. In using the instrument,
instead of directly measuring the interfacial angles of the erystal, the position
of each face is determined independently of the others by the measurement of
its angular co-ordinates, or what might be called its latitude and longitude.
These co-ordinates are the angles (¢ and p of Goldschmidt) measured, respec-
tively, in the vertical and horizontal circles from an assumed pole and merid-
ian, which are fixed, in most cases, by the symmetry of the crystal. In prac-
tice the crystal is usually so mounted that its prismatic zone is perpendicular
to the vertical circle. A plane at right angles to this zone, 7.e., the basal plane
in the first four systems, is known as the polar plane and its position when
reflecting the signal into the telescope establishes the zero position for the
horizontal circle. The position of a pinacoid, usually the 010 plane, in the
prism zone establishes the zero position for the vertical circle. For example,
with an orthorhombie erystal, for the pyramid 111, the angle ¢ (measured on
the vertical circle) is equal to 010 A 110 and p (measured on the horizontal
circle) is equal to 001 A 111.

Goldschmidt has shown that this instrument is directly applicable to the

; system of indices and methods of

882 calculation and projection adopted
by him, which admit of the deducing
of the elements and symbols of a
given crystal with a minimum of
labor and ecalculation.* Fedorow
has also shown that this in-
strument, with the addition of the
‘appliances devised by him, can be
most conveniently used in the crys-
tallographic and optical study of
crystals.

The following hints as to the methods of
using this instrument may prove helpful.

The telescope and collimator tube
are placed at some convenient angle
to each other (usually about 70°)
and then clamped in position. The
. next step is to find the polar posi-
tion of the horizontal circle, i.e., the position at which a crystal plane lying at right angles
to the axis of the vertical circle will throw the reflected beam of light on to the cross-hairs
of the telescope. Obviously the plane under these conditions must be normal to the
bisector of the angle between the axes of the collimator and telescope, the line B-P, Fig.
382. The method by which this polar position is found is as follows: Some reflecting sur-
face is mounted upon the end of the post &, Figs. 381, 382, making some small inclined
angle to the plane normal to that post. Then by turning the instrument in both the hori-

* See Goldschmidt’s Krystallographische Winkeltabellen (432 pp., Berlin, 1897).
This gives the angles required by his system for all known species. See also Zs. Kryst.,
29, 361, 1898. The same author’s atlas der Krystallformen, 1913 ef seq., is a monumental

work giving all previously published crystal figures together with a discussion of the forms
observed upon them.
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zontal and vertical planes this surface is brought into the proper position to reflect the
signal into the telescope, see position I, Fig. 38%. The horizontal angle of this position is
noted. Then the vertical circle is turned through an angle of 180°. This brings the
reflecting surface into the position indicated by the dotted lines in the figure. In order
to again bring this surface back to its reflecting position the vertical circle with the post
h must be moved in the horizontal plane until the position II is reached. The horizontal
reading of this position is also noted. The angle midway between these two readings is
the polar position desired. ~That is, when the post & lies in the direction of the broken
line P-B a plane normal to its axis would reflect a beam of light from the collimator into
the telescope. This position constitutes the zero position of the horizontal circle from
which the p angles are measured.

The method used to adjust a crystal upon the instrument so that it will occupy the
proper position for measurement will vary with the character of the erystal. A few illus-
trations follow. 1. If the crystal has a basal plane at right angles to a prism zone. The
crystal is mounted upon the post h so that the faces of the prism zone lie as nearly as pos-
sible parallel to the axis of the post or the basal plane as nearly as possible normal to it.
Then the instrument is moved until the reading of the horizontal circle agrees with the
polar position already determined. Then by means of the tipping screws the crystal is
moved until the reflection from the basal plane is center ed upon the eross-hairs of the tele-
scope. If the adjustments have been accurately made the signal will remain stationary
while the vertical circle is revolved. Next the horizontal circle is moved through an angle
of 90°. This will bring the reflections from the faces of the prism zone into the telescope.
If the pinacoid 010 is present the vertical circle is turned until the reflected signal from this
face falls on the horizontal cross-hair. The reading of the vertical circle under these con-
ditions establishes the position of the meridian from which the ¢ angles are measured.
If the pinacoid 010 is not present it is usually possible to determine its theoretical position
from the position of other faces in the prism zone or in the zone between 010 and 100.
2. If there is no basal plane present upon the crystal but a good prism zone. Under these cir-
cumstances the horizontal circle is turned until it is exactly 90° away from its determined
polar angle and then the crystal adjusted by means of the tipping scr ews until the signals
from the faces of the prism zone all fall on the vertical cross-hair as the vertical circle of
the goniometer is turned. 3. If neither basal plane or prism zone is available but there are
two or more faces present which are equally inclined to a theoretical basal plane. First adjust
the crystal as nearly as possible in the proper position and then obtaining reflections from
these faces note the horizontal 383
circle reading in each case.
Take an average of these read-
ings and adding or subtracting
this angle from the polar angle
of the horizontal scale place 001 Y 041 5010
the instrument in this position. - =0° Yk > %' 2 1 e
Then by tipping the crystal $=0; p=6 $=0"; p=%
try to bring it into such a
position that all of these faces
will successively reflect the sig-
nal into the telescope as the
vertical circle is turned. The
operation may have to be re-
peated two or three times before
the final adjustment is made.
If the angle between the inclined
faces and the theoretical base 7120
is known the instrument can p=43"24 p=90°
be set in the proper position
at once and the crystal
brought into adjustment very M0 e
quickly. Other problems will ™| P =629; p =30
arise in practice but their .
solution will be along similar lines to those suggested above. It may frequently happen
that more than one method of adjustment may be used with a given crystal. In that case
the faces giving the best reflections should be used. It shou d be emphasized that the
preliminary adjustment of the cx;ystal is of supreme importance since a measurements of
the co-ordinates of the different faces depend upon it. It is wise to check the adjustment
in all possible ways before making the measurements.

0221
=629 p=63°64’
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After these adjustments have been completed the crystal is turned about both the
horizontal and vertical planes so that each face upon it successively reflects the signal
into the telescope. The horizontal and vertical readings are made in each case. The
forms present can then be readily plotted in either the stereographic or gnomonic projec-
tions. Fig. 383 shows how the forms of a simple crystal of topaz could be plotted in the
stereographic projection from the ¢ and p angles obtained from it — the two circle goni-
ometer measurements. For each face the vertical circle angle, ¢, is plotted on the divided
circle, the position of b(010) giving the zero point while the horizontal circle angle is plotted
on a radial line from the center of the projection, the position of ¢(001) giving its zero point.

COMPOUND OR TWIN CRYSTALS

233. Twin Crystals. — Twin crystals are those in which one or more
parts regularly arranged are in reverse position with reference to the other
part or parts. They often appear externally to consist of two or more erystals
symmetrically united, and sometimes have the form of a cross or star. They
also exhibit the composition in the reversed arrangement of part of the faces,

384 386 386

Thenardite Columbite : Fluorite

in the striz of the surface, and in re-entering angles; in certain cases the
compound structure can only be surely detected by an examination in polar-
ized light. 'The above figures (Figs. 384-386) are examples of typical kinds of
twin crystals, and many others are given on the pages following.

. To illustrate the relation of the parts in a twin crystal, Figs. 387, 388 are
given. Fig. 387 shows a regular octahedron divided into halves by a plane
parallel to an octahedral face. If now the lower half be supposed to be re-
volved 180° about an axis normal to this plane, the twinned octahedron of
Fig. 388 results. This is a common type of twin in the isometric system,
and the method here employed to describe the position of the parts of the
crystal to one another is applicable to nearly all twins. g
. 234. Distinction between Twinning and Parallel Grouping. — It is
mportant to understand that crystals, or parts of crystals, so grouped as to
occupy parallel positions with reference to each other — that is, those whose
similar faces are parallel — are not called twins; the term is applied only
where the crystals or parts of them are united in their reversed position in
accordance with some deducible mathematical law. Thus Fig. 389, which
represents a cluster of partial crystals of analcite, is a case of parallel
grouping simply (see Art. 262); but Fig. 407 illustrates twinning, and this is
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true of Fig. 416 also. Since though in these cases the axes remain parallel
the similar fa.ces. (and planes of symmetry) are reversed in position.

235. Twinning-Axis. — The relative position of the parts of a twinned
crystal can be best described as just explained, by reference to that line or
axis called the twinning-axis, a revolution of 180° about which would serve to

387 388

Twinned Octahedron » Analci'te_

bring the twinned part parallel to the other, or in other words, which would
cause one of the parallel parts to take a twinned position relatively to the other.

The twinning-axis is always a possible crystalline line — that is, either
a crystallographic axis or the normal to some possible face on the crystal,
usually one of the common fundamental forms.

It is not to be supposed that ordinary twins have actually been formed by
such a revolution of the parts of crystals, for all twins (except those of second-
ary origin, see Art 242) are the result of regular molecular growth or enlarge-
ment, like that of the simple crystal. This reference to a revolution, and an
azxis of revolution, is only a convenient means of describing the forms.

In certain rare cases, particularly of certain pseudo-hexagonal species, a
revolution of 60° or 120° about a normal to the base has been assumed to
explain the complex group observed.

236. Twinning-Plane. — The plane normal to the axis of revolution is
called the fwinning-plane. The axis and plane of twinning bear the same
relation to both individuals in their reversed position; consequently, in the
majority of cases, the twinned crystals are symmetrical with reference to the
twinning-plane. |

The twinning-plane is, with rate exceptions, parallel to a possible occurring
face on the given species, and usually one of the more frequent or fundamental
forms. The exceptions occur only in the triclinic and monoclinic systems,
where the twinning-axis is sometimes one of the_ obllql}e crystallographie axes,
and then the plane of twinning normal to it is obviously not necessarily a
crystallographic plane; this is conspicuously true in albite.

237. Composition-Plane. — The plane by which the reversed crystals
are united is the composition-plane. This and the twinning-plane very com-
monly coincide; this is true of the simple example given above (Fig. 388),
where the plane about which the revolution may be conceived to take place
(normal to the twinning-axis) and the plane by which the semi-individuals are
united are identical. When not coinciding, the two planes are generally at
right angles to each other — that is, the composition-plane is parallel to the
axis of revolution. Examples of this are given below. Still again, where the
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crystals are not regularly developed, and where they interpenetrate, the con-
tact surface may be interrupted, or may be exceedingly irregular. In such
cases the axis and plane of twinning have, as always, a definite position, but
the composition-plane loses its significance. 3 %
Thus in quartz twins the interpenetrating parts have often no rectilinear
boundary, but mingle in the most irregular manner throughout the mass,
showing this composite irregularity by abrupt variations in the character of
the surfaces. This irregular internal structure, found in many quartz crystals,
even the common kinds, is well brought out by means of polarized light; also
by etching with hydrofluoric acid. 4 A y
The composition-plane has sometimes a more definite signification than the
twinning-plane. This is due to the fact that in many cases, whereas the former
is fixed, the twinning-axis (and twinning-plane) maybe exchanged
390 for another line (and plane) at right angles to each, respectively,
since a revolution about the second axis will also satisfy the
conditions of producing the required form. An example of this
is furnished by Fig. 390, of orthoclase; the composition-plane
is here fixed — namely, parallel to the crystal face, 5(010).
But the axis of revolution may be either (1) parallel to this
face and normal to @(100), which is then consequently the
twinning-plane, though the axis does not coincide with the
crystallographic axis; or (2) the twinning-axis may be taken as
/ coinciding with the vertical axis, and then the twinning-plane
Orthoclase normal to it is not a erystallographic face. In other simpler
cases, also, the same principle holds good, generally in con-
sequence of the possible mutual interchange of the planes of twinning and
composition. In most cases the true twinning-plane is evident, since it is
parallel to some face on the crystal of simple mathematical ratio.

238. An interesting example of the possible choice between two twinning-axes at right
angles to each other is furnished by the species staurolite. Fig. 439 shows a prismatic twin
from Fannin Co., Ga. The measured angle for bb was 70° 30’. The twinning-axis deduced
from this may be normal to the face (230), which would then be the twinning-plane. Or
instead of this axis, its complementary axis at right angles to it may be taken, which woul(i
equally well produce the observed form. - Now in this species it happens that the faces, 130
and 230 (over 100), are almost exactly at right angles with each other, and, according to the
latter supposition, 130 becomes the twinning-plane, and the axis of revolution is normal to
it. Hence, either 230 or 130 may be the twinning-plane, either supposition agreeing closely
with the measured angle (which could not be obtained with great accuracy). The former
method of twinning (tw. 3)1. 230) conforms to the other twins observed on the species, and
hence it may be accepted. What is true in this case, however, is not always true, for it
will seldom happen that of the two complementary axes each is so nearly normal to a face
of the crystal. In most cases one of the two axes conforms to the law in being a normal
to a possible face, and the other does not, and hence there is no doubt as to which is the
true twinning-axis.

Another interesting case is that furnished by columbite. The common twins of the
species are similar to Fig. 385, p. 160, and have ¢(021) as the twinning-plane; but twins
also occur like Fig. 434, p. 169, where the twinning-plane is ¢(023). The two faces, 021
and 023, are nearly at right angles to each other, but the measured angles are in this case
sufficiently exact to prove that the two kinds cannot be referred to one and the same law.

239. Contact- and Penetration-Twins. — In contact-twins, when nor-
mally formed, the two halves are simple connate, being united to each other
by the composition-plane; they are illustrated by Figs. 385, 388, etc. In
actual crystals the two parts are seldom symmetrical, as demanded by
theory, but one may preponderate to a greater or less extent over the other;
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in some cases 01_11y a small portion of the second individual in the reversed
position may exist. Very great irregularities are observed in nature in this
respect. Moreover, the re-entering angles are often obliterated by the abnor-
mal developments of one or other of the parts, and often only an indistinct line
on some of the faces marks the division between the-two individuals.

Penetration-twins are those in which two or more complete crystals inter-
penetrate, as it were c'rossing through each other. Normally, the crystals have
a common center, which is the center of the axial system for both; practically
how}gver, als in ?O;It?,ct-twfvirils, great irregularities occur. :

_ Examples of twins of t is second kind are given in the annexed figure

Figs. 386 and 391 of fluorite, Fig. 392 of tetrahedl}';ilte, and Fig. 393 of chab%a};itzf
Other e;xamp]es occur in the pages following, as, for instance, of the species
staurolite (Figs. 438-441), the crystals of which sometimes occur in nature .
with almost the perfect symmetry demanded by theory. It is obvious that
the distinction between contact- and penetration-twins is not of great import-
ance, and the line cannot always be clearly drawn between them.

& XX

Fluorite i " Tetrahedrite Chabazite

240. Paragenic and Metagenic Twins. — The distinction of paragenic and metagenic
twins belongs rather to crystallogeny than crystallography. Yet the forms are often so
obviously distinct that a brief notice of the distinction is important. 4

In ordinary twins, the compound structure had its beginning in a nucleal compound
molecule, or was compound in its very origin; and whatever
inequalities in the result, these are only irregularities in the devel-
opment from such a nucleus. But in others, the crystal was at
first simple; and afterwards, through some change in itself or in
the condition of the material supplied for its increase, received new
layers, or a continuation, in a reversed position. This mode of
twinning is metagenic, or a result subsequent to the origin of the
crystal; while the ordinary mode is paragenic. One form of it is
illustrated in Fig. 394. The middle portion had attained a length of
half an inch or more, and then became geniculated simultaneously
at either extremity. These geniculations are often repeated in
rutile, and the ends of the crystal are thus bent into one another,
- and occasionally produce nearly regular prismatic forms. .

This metagenic twinning is sometimes presented by the successive
layers of deposition in a crystal, as in some quartz crystals, especially
amethyst, the inseparable layers, exceedingly thin, being of opposite
: kinds.. In a similar manner, erystals of the triclinic feldspars,
albite, etec., are oftent made up of thin plates parallel to b(010), by oscillatory composition,
and the face ¢(001), aceordingly, is finely striated parallel to the edge c/b.

241. Repeated Twinning, Polysynthetic and Symmetrical. —In the
preceding paragraph one case of repeated twinning has been mentioned, that
of the feldspars; it is a case of parallel repetition or parallel grouping In re-
versed position of successive crystalline lamellz. This kind of twinning 18




164 CRYSTALLOGRAPHY

often called polysynthetic twinning, the lamellee in many cases being extremely
thin, and giving rise to a series of parallel lines (striations) on a crystal face or
a surface of cleavage. The triclinic feldspars show in many cases polysyn-
thetic twinning and not infrequently on both ¢(001) and b6(010), cf. p. 172.
It is also observed with magnetite (Fig. 474), pyroxene, barite, etc.

Another kind of repeated twinning is illustrated by Figs. 395-400, where
the successively reversed individuals are not parallel. In these cases the axes
may, however, lie in a zone, as the prismatic twins of aragonite, or they may
be inchned to each other, as in Fig. 397 of staurolite In all such cases the
repetition of the twinning tends to produce ecircular forms, when the angle
between the two axial systems is an aliquot part of 360° (approximately).
Thus six-rayed twinned crystals, consisting of three individuals (hence called
trillings), occur with chrysoberyl (Fig. 395), or cerussite (Fig. 396), or staurolite
(Fig. 397), since three times the angle of twinning in each case is not far from
360°. Again, five-fold twins, or fivelings, occur in the octahedrons of gold and

7
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spinel (Fig 398), since 5 X 70° 32" = 360° (approx.). Eight-fold twins, or
eighilings, of rutile (Figs. 399, 413) occur, since the angle of the axes in twinned
position goes approximately eight times in 360°.

Repeated twinning of the symmetrical type often serves to give the com-
pound crystal an apparent symmetry of higher grade than that of the simple
individual, and the result is often spoken of as a kind of pseudo-symmetry
(Art. 20), cf. Fig. 431 of aragonite, which represents a basal section of a
pseudo-hezagonal crystal. Fig. 400 of phillipsite (cf. Figs. 452-454) is an inter-
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esting case, since it shows how a multiple twin of a monoclinic crystal may
simulate an isometrie crystal (dodecahedron).

Compound crystals in which twinning exists in accordance with two laws
at once are not of common occurrence; an excellent example is afforded by
staurolite, Fig. 441. They have also been observed with albite, orthoclase,
and in other cases.

242. Secondary Twinning. — When there is reason to believe that the
twinning has been produced subsequently to the original formation of the
crystal, or crystalline mass, as, for example, by pressure, it is said to be
secondary. Thus the calcite grains of a crystalline limestone often show such
secondary twinning lamellz. The same are occasionally observed (||¢, 001)
in pyroxene crystals. Further, the polysynthetic twinning of the triclinic
feldspars is often secondary in origin. This subject is further discussed on a
later page, where it is also explained that in certain cases twinning may be
produced artificially in a erystal individual — e.g., in calcite (see Art. 282).

EXAMPLES OF IMPORTANT METHODS OF TWINNING

243. Isometric System.— With few exceptions the twins of the normal
class of this system are of one kind, the twinning-axis an octahedral axis, and
the twinning-plane consequently parallel to an octahedral face; in most cases,
also, the latter coincides with the composition-plane. Fig. 388, p. 161,*

403

Copper
405

Galena Haiiynite Sodalite

shows this kind as applied to the simple octahedron; it is especially common
with the spinel group of minerals, and is hence called in general a spinel-twin.

* Tt willlbe noted that here and elsewhere the letters used to designate the faces on
the twinned parts of crystals are distinguished by a subseript line.
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Fig. 401 is a similar more complex form; Fig. 402 shows a cube twinned by this
method, and Fig. 403 represents the same form but shortened in the direction
of the octahedral axis, and hence having the anomalous aspect of a triangular
pyramid. All these cases are contact-twins.

Penetration-twins, following the same law, are also common. A simple
case of fluorite is shown in Fig. 391, p. 163; Fig. 404 shows one of galena;

407 Fig. 405 is a repeated octahedral twin of haiiynite, and

Fig. 406 a dodecahedral twin of sodalite.

' 244. In the pyritohedral class of the isometric system
penetration-twins of the type shown in Fig. 407 are
common (this form of pyrite is often called the iron
cross). Here the cubic axis is the twinning-axis, and
o}aviously such a twin is impossible in the normal
class.

Figs. 408 and 409 show analogous forms with par-
allel axes for crystals belonging to the tetrahedral
class. The peculiar development of Fig. 408 of
tetrahedrite is to be noted. Fig. 410 is a twin of the
ordinary spinel type of another tetrahedral species, sphalerite; with it,
complex forms with repeated twinning are not uncommon and sometimes
polysynthetic twin lamelle are noted.

Pyrite

408 409 410
Tetrahedrite Eulytite Sphalerite

245. Tetragonal System. — The most common method is that where
the twinning-plane is parallel to a face of the pyramid, e(101). It is especially
characteristic of the species of the rutile group — viz., rutile and cassiterite:

413

Rutile

also similarly the allied species zircon. This is illustrated in Fig. 411, and .
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again in Fig. 412. Fig. 413 shows a repeated twin of rutile, the twinning
according to this law; the vertical axes of the successive six individuals lie
in a plane, and an inclosed circle is the result. Another repeated twin of rutile
according to the same law is shown in Fig. 399; here the successive vertical
axes form a zigzag line; Fig. 414 shows an analogous twin of hausmannite.
Another kind of twinning with the twinning-plane parallel to a face of the
pyramid (301) is shown in Fig. 415. :
246. In the pyramidal class of the same system twins of the type of Fig.
416 are not rare. Here the vertical axis, c, is the twinning-axis; such a crystal
may simulate one of the normal class.

414

416
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Hausmannite Rutile Scheelite

In chalcopyrite, of the sphenoidal class, twinning with a face of the unit
pyramid, f(111), as the twinning-plane is common (Fig. 417). As the angles
differ but a small fraction of a degree from those of a

MY regular octahedron, such twins often resemble closely
spinel-twins. The face ¢(101) may also be a twinning-
plane and other rarer types have been noted.

Ry 247. Hexagonal System. — In the hevagonal divis-
jon of this system twins are rare. An example is
‘ furnished by pyrrhotite, Fig. 418, where the twinning-
plane is the pyramid (1011), the vertical axes of the
individual erystals being nearly at right angles to each
Chalconyrite other (since 0001 A 1011 = 45°8’). |
e 248. In the species belonging to the trigonal o
rhombohedral division, twins are common. Thus the 418 .
twinning-axis may be the vertical axis, as in the "
contact-twins of Figs. 419 and 420, or the penetration- T
twin of Fig. 393. Or the twinning-plane may be Y )
the obtuse rhombohedron e(0112), as in Fig. ik
421, the vertical axes crossing at angles of 1273° N,
and_ 523°. Again, the twinning-plane may be = L
r(1011), as in Figs. 422-425, the vertical axes iy
nearly at right angles (903°); or (0221), as in Fig. Pyrrhotite

426, the axes inclined 533° and 1261°.

In the trapezohedral class, the species quartz shows several methods of
twinning. In Fig. 427 the twinning-plane is the pyramid £(1122), the axes
crossing at angles of 841° and 953°. In Fig. 428 the twinning-axis is ¢, the
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axes hence parallel, the individuals botb right- or both left-handed but un-
symmetrical, 7(1011) then parallel to and coinciding with 2(0111). The re-

419 . 420 421 422

Figs. 419-426, Calcite

sulting forms, as in Fig. 428, are mostly penetration-twins, and the parts are
often very irregularly united, as shown by dull areas (2) on the plus rhombo-
hedral face (r); otherwise these twins are recognized by pyro-electrical
phenomena. In Fig. 429 the twinning-plane is a(1120) — the Brazl law —
the individuals respectively right- and left-handed and the twin symmetrical
with reference to an a-face; these are usually irregular penetration-twins; in
these twins 7 and r, also z and ¢z, coincide These twins often show, in con-

427 428 429

Figs. 427-429, Quartz

verging polarized light, the phenomenon of Airy’s spirals. It may be added
that pseudo-twins of quartz are common — that is, groups of crystals which
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nearly conform to some more or less complex twinning law, but where the

grouping is nevertheless only accidental
249. Orthorhombic System. — In the
orthorhombic system the commonest
method of twinning is that where the
twinning-plane is a face of a prism of 60°,
or nearly 60°. This is well shown with the
species of the aragonite group. In accord-
ance with the principle stated in Art. 241,
the twinning after this law is often
repeated, and thus forms with pseudo-
hexagonal symmetry result. Fig. 430
shows a simple twin of aragonite; Fig. 431
shows a basal section of an aragonite triplet
which although it resembles a hexagonal

430 431

S

Aragonite

prism reveals its twinned character by the striations on the basal plane and
by irregularities on its composite prism faces due to the fact that the pris-
matic angle is not exactly 60°. With witherite (and bromlite), apparent
hexagonal pyramids are common, but the true complex twinning is revealed

in polarized light, as noted later.

Twinning of the same type, but where a dome of 60° is twinning-plane,
is common with arsenopyrite (tw. pl. e(101)), as shown in Figs. 432, 433; also
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Columbite

Fig. 434 of columbite, but compare Fig. 385 and remarks in Art 238. Another
example is given in Fig. 395 of alexandrite (chrysoberyl). Chrysolite, man-

435 436

Marecasite Marcasite
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Arsenopyrite

ganite, humite, are other species with which this kind of twinning is common.
Another common method of twinning is that where the twinning is parallel
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to a face of a prism of about 701°, as shown in Fig. 435. With this method
symmetrical fivelings not infrequently occur (Figs. 436, 437).

The species staurohte illustrates three kinds of twmnmg In Fig. 438 the
twinning-plane is (032), and since (001 A 032) = 45° 41, the crystals cross
nearly at right angles. In Fig. 439 the twinning-plane is the prism (230). In
Fig. 440 it 1s the pyramid (232); the crystals then crossing at angles of about
60°, stellate trillings occur (see F1g 397), and indeed more complex forms.. In
Flg 441 there is twinning according to both (032) and (232).

438
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Staurolite Struvite

In the hemimorphic class, twins of the type shown in Fig. 442, with c(OOl)
as the twinning-plane, are to be noted.

250. Monoclinic System.— In the monoclinic system, twins with the ver-
tical axis as twinning-axis are common; this is illustrated by Fig. 443 of augite
(pyroxene), Fig. 444 of gypsum, and Fig. 445 of orthoclase (see also Fig. 390,

H'*\\ 77
.

Augite Orthoclase

p. 162). With the latter species these twins are called Carlsbad twins (because
common in the trachyte of Carlsbad, Bohemia); they may be contact-twins
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(Fig. 390), or irregular penetration-twins (Fig. 445). In Fig. 390 it i

not%d ’%mt ¢ and z fall nearly in the same pla{I;le. i 1g i
n Fig. 446, also of orthoclase, the twinning-plane is the clinodome (021

and since (001 A 021) = 44° 563', this method of twinning yields rgearl)g;

square prisms. These twins are called Baveno twins (from a prominent

locality at Baveno, Italy); they are often repeated (Fig. 447). In Fig. 448 a

446 447 448

Orthoclase

Manebach twin is shown; here the twinning-plane is ¢(001). Other rarer
types of twinning have been noted with orthoclase. Polysynthetic twinning
with ¢(001) as twinning-plane is common with pyroxene (cf. Fig. 461, p. 173).

Twins of the aragonite-chrysoberyl type are not uncommon with mono-
clinic species, having a prominent 60° prism (or dome), as in Fig. 449. Stellate
twins after this law are common with chondrodite and clinohumite. An
analogous twin of pyroxene is shown in Fig. 450; here the pyramid (122) is the
twinning-plane, and since (010 A 122) = 59° 21’ the crystals cross at angles
of nearly 60°; further, the orthopinacoids fall nearly in a common zone, since
(100 A 122) = 90° 9. In Fig. 451 the twinning-plane is the orthodome

449 450 451

Wolframite Pyroxene Pyroxene

(101). Phillipsite and harmotome exhibit multip:e twinning, and the crystals
often show pseudo-symmetry. Fig. 452 shows a cruciform fourling with
¢(001) as twinning-plane, the twinning shown by the striations on the side face.
This is compounded in Fig. 453 with twinning-plane (011), making nearly
square prisms, and this further repeated with m(110) as twinning-plane
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yields the form in Fig. 454, or even Fig. 400, p. 164, resembling an isometric
dodecahedron, each face showing a fourfold striation.
452 4563 1 454

N7 2N 4
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Phillipsite

251. Triclinic System. — The most interesting twins of the triclinic
system are those shown by the feldspars. Twinning with 5(010) as the
twinning-plane is very common, especially polysynthetic twinning yielding
thin parallel lamelle, shown by the striations on the face ¢ (or the correspond-
ing cleavage-surface), and also clearly revealed in polarized light. This is
known as the albite law (Figs. 455, 456). Another important method (Fig.
457) is that of the pericline law; the twinning-axis is the crystallographic
axis b. Here the twins are united by a section (thombic section) shown in the
figure and further explained under the feldspars. Polysynthetic twinning after
this law is common, and hence a cleavage-mass may show two sets of striations,
one on the surface parallel to ¢(001) and the other on that parallel to 5(010).
The angle made by these last striations with the edge 001/010 is character-
istic of the particular triclinic species, as noted later.

455 4566 457

Albite .
Twins of albite of other rarer types also occur, and further twins similar
to the Carlsbad, Baveno, and Manebach twins of ortho-
clase. Fig. 458 shows twinning according to both the
albite and Carlsbad types.

REGULAR GROUPING OF CRYSTALS

. 2b2. Parallel Grouping. — Connected with the sub-
Ject of twin crystals is that of the parallel position of
associated crystals of the same species, or of different
species. !

Crystals of the same species occurring together are
very commonly in parallel position. In this way large
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crystals, as of calcite, quartz, fluorite, are sometimes built up of smaller
individuals grouped together with corresponding faces parallel. This
parallel grouping is often seen in ecrystals as they lie on the supporting
.rock. On glancing the eye over a surface covered with crystals a reflection
from one face will often be accompanied by reflections from the ecorres-
ponding face in each of the other crystals, showing that the crystals are
throughout similar in their positions.

With many species, complex crystalline forms result from the growth of
parallel partial ecrystals in the
direction of the crystallographic
axes, or axes of symmetry. Thus
dendritic forms, resembling branch-
ing vegetation, often of great del-
icacy, are seen with gold, copper,
argentite, -and other species, espe-
cially those of the isometric sys-
tem. This is shown in Fig. 459
(ideal), and again in Fig. 460,
where the twinned and flattened
cubes (cf. Fig. 403, p. 165) are
grouped in directions eorresponding
to the diagonals of an octahedral
face which is the twinning-plane.

263. Parallel Grouping of Unlike Species. — Crystals of different spe-
cies often show the same tendency to parallelism in mutual position. This is
true most frequently of species which are more or less closely similar in form
and composition. Crystals of albite, implanted on a surface of orthoclase,

., 62 are sometimes an example of

4 this; erystals of amphibole and

pyroxene (Fig. 461), of zircon

and xenotime (Fig. 462), of va-

rious kinds of mica, are also at

times observed associated in par-
“allel position.

The same relation of position
also occasionally oceurs where
there is no connection in composi-
tion, as the crystals of rutile
on tabular crystals of hematite,
the vertical axes of the former
‘ coinciding with the horizontal
Amphibole enclosing Xenotime enclosing zircon gaxes of the latter. Crystals of
pyroxene in_paralle in parallel position calcite have been observed whose

o rhombohedral faces had a series
of quartz crystals upon them, all in parallel position; sometimes three
such quartz erystals, one on each rhombohedral face, entirely envelop
the calcite, and unite with re-entering angles to form pseudo-twins (rather
trillings) of quartz after calcite. Parallel growths of the sphenoidal chalcopyr-
ite upon the tetrahedral sphalerite are common, the similarity in crystal
structure of the two species controlling the position of the erystals of chal-

copyrite.

459

Copper
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IRREGULARITIES OF CRYSTALS

254. The laws of crystallization, when unmodified by extrinsic causes,
should produce forms of exact geometrical symmetry, the angles being not’
only equal, but also the homologous faces of erystals and the dimensions in the
directions of like axes. This symmetry is, however, so uncommon that it can
hardly be considered other than an ideal perfection. The various possible
kinds of symmetry, and the relation of this ideal geometrical symmetry to the
actual crystallographic symmetry, have been discussed in Arts. 14 and 18 et
seq. Crystals are very generally distorted, and often the fundamental forms
are so completely disguised that an intimate familiarity with the possible
irregularities is required in order to unravel their complexities. KEven the
angles may occasionally vary rather widely.

The irregularities of crystals may be treated under several.heads: 1,
Variations of form and dimensions; 2, Imperfections of surface; 3, Varia
tions of angles; 4, Internal tmperfections and tmpurities. ;

1. VARIATIONS IN THE FORMS AND DIMENSIONS
OF CRYSTALS

255. Distortion in General. — The variations in the forms of crystals,
or, in other words, their distortion, may be irregular in character, certain faces
being larger and others smaller than in the ideal geometrical solid. On the
other hand, it may be symmetrical, giving to the distorted form the symmetry
of a group or system different from that to which it actually belongs. The
former case is the common rule, but the latter is the more interesting.

256. Irregular Distortion. — As stated above and on p. 13, all crystals
show to a greater or less extent an irregular or accidental variation from the
ideal geometrical form. This distortion, if not accompanied by change in
the interfacial angles, has no particular significance, and does not involve any
deviation from the laws of crystallographic symmetry. Figs. 463, 464 show
distorted crystals of quartz; they may be compared with the ideal form, Fig.
284, p. 113. Fig. 465 is an ideal and Fig. 466 an actual crystal of lazulite.

463 464 465 ) 466
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Quartz Lazulite

3 The correct identification of the forms on a ecrystal is rendered much more difficult

ecause of this prevailing distortion, especially when it results in the entire obliteration of

certain faces by the enlargement of others. In deciphering the distorted crystalline forms

1t must be remembered that while the appearance of the crystals may be entirely altered,

the interfacial angles remain the same; moreover, like faces are physically alike — that is,
v
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alike in degree of luster, in striations, and so on. Thus the prismatic faces of quartz show
almost always characteristic horizontal striations.

In addition to the variations in form which have just been described, still
greater irregularities are due to the fact that, in many cases, crystals in nature
are attached either to other crystals or to some rock surface, and in consequence
of this are only partially developed. Thus quartz crystals are generally
attached by one extremity of the prism, and hence have only one set of pyra-
midal faces; perfectly formed crystals, having the double pyramid complete,
are rare.

267. Symmetrical Distortion. — The most interesting examples of the
symmetrical distortion of crystalline forms are found among crystals of the
isometric system. An elongation in the direction of one cubic axis may give
the appearance of tgtragonal symmetry, or that in the direction of two cubic
axes of ort}_)orhomblc symmetry; while in the direction of an octahedral axis
a lengthening or shortening gives rise to forms of apparent rhombohedral
symmetry. Such cases are common with native gold, silver, and copper.

A cube lengthened or shortened along one axis becomes a right square prism, and if
varied in the direction of two axes is changed to a rectangular prism. Cubes of pyrite
galena, fluorite, ete., are often thus distorted. It is very unusual to find a cubic crystai
that is a true symmetrical cube. In some species the cube or octahedron (or other iso-
metric form) is lengthened into a capillary erystal or needle, as happens in cuprite and pyrite.

An octahedron flattened parallel to a face — that is, in the direction of a trigonal sym-
metry axis is reduced to a tabular crystal resembling a rhombohedral crystal with basal
plane (Fig. 467). 1If lengthened in the same direction (i.e. along line A-B, Fig. 468), to the
obliteration of the terminal octahedral faces, it becomes an acute rhombohedron.

When an octahedron is extended in the direction of a line between two opposite edges,

467 468 469
Distorted Octahedrons
470 471 472 473
74 ‘ ‘I

Distorted Dodecahedrons

or that of a binary symmetry axis, it has the general form of a rectangular octahedron (i and
still farther extended, as in Fig. 469, it resembles a combination of two orthorhombic domes

(spinel, fluorite, magnetite).
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decahedron lengthened in the direction of a trigonal symmetry axis becomes a
six-’in‘gdegrism with thre%iisided summits, as in Fig. 470. If shortened in the same direc-
tion, it becomes a short prism of the same kind (Fig. 471). Both ;'esemble rhombohedrgl
forms and are common in garnet. When lengthened in the direction of one of the cubic
axes, the dodecahedron becomes a square prism with pyramidal summits (Fig. 472), and
shortened along the same axis it is reduced to a square octahedron, with truncated angles

Fig. 473). \ 4 :
\ lgI‘}:le tz'apezohedron clongated in the direction of an octahedral (trigonal) axis assumes

hombohedral (trigonal) symmetry. ; < Tk
¢ oirfl t?le elongsgtio%l of the trapez;ﬂedron takes place along a cubic axis, it becomes a double

eight-sided pyramid with four-sided summits; or if these summit planes are obliterated

by a farther extension, it becomes a complete eight-sided double pyramid. % \
Similarly the trisoctahedron, tetrahexahedron and hexoctahedron may show distortion

of the same kind. Further examples are to be found in the other systems. 2

2. IMPERFECTIONS OF THE SURFACES [OF CRYSTALS

258, Striations Due to Oscillatory Combinations. — The parallel lines
or furrows on the surfaces of crystals are called strie or striations, and such
surfaces are said to be striated. :

Each little ridge on a striated surface is inclosed by two. narrow.planes
more or less regular. These planes often correspond in position to different
faces of the crystal, and these ridges have been formed by a continued
oscillation in the operation of the causes that give rise, when acting uninter-
ruptedly, to enlarged faces. By this means, the surfaces of a crystal are
marked in parallel lines, with a succession of narrow planes meeting at an
angle and constituting the ridges referred to.

This combination of different planes in the formation of a surface has been
termed oscillatory eombination. The horizontal striations on prismatic
crystals of quartz are examples of this combination, in which the oscillation
has taken place between the prismatic and rhombohedral faces. Thus
crystals of quartz are often tapered to a point, without the usual pyramidal
terminations. :

Other examples are the striations on the cubic faces of pyrite parallel to
the intersections of the cube with the faces of the
pyritohedron; also the striations on magnetite due
to the oscillation between the octahedron and do-
decahedron. Prisms of tourmaline are very com-
monly bounded vertically by three convex surfaces,
owing to an oscillatory combination of the faces in
the prismatic zone. \

259. Striations Due to Repeated Twinning. — The
striations of the basal plane of albite and other
triclinic feldspars, also of the rhombohedral surfaces
of some calcite, have been explained in Art. 241 as
due to polysynthetic twinning. This is illustrated by
Fig. 474 of magnetite from Port Henry, N.Y. (Kemp.)

260. Markings from Erosion and Other Causes. — The faces of crys-
tals are often uneven, or have the crystalline structure developed as a con-
sequence of etching by some chemical agent. Cubes of galena are frequently
thus uneven, and crystals of lead sulphate (anglesite) or lead carbonate (cerus-
site) are sometimes present as evidence with regard to the cause. Crystals
of numerous other species, even of corundum, spinel, quartz, ete., sometimes
show the same result of partial change over the surface — often the incipient

474

Magnetite
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stage in a process tending to a final removal of the whole erystal. Interesting
investigations have been made by various authors on the action of solvents
o}rll_ diﬁerentTTll_nerali,h tl(lie afctualhstructu;'e of the crystals being developed in
this way. is method of etchihg is fully discussed, with i i i

another place (Art. 286). 3 1 Mokipaiingess vt

The markings on the surfaces of crystals are not, however, always to be
ascribed to etching. In most cases such depressions, as well as the minute
elevations upon the faces having the form of low pyramids (so-called vicinal
prominences), are a part of the original molecular growth of the crystal, and
often serve to show the successive stages in its history. They may be irﬁper-
fections arising from an interrupted or disturbed development of the form, the
perfectly smooth and even crystalline faces being the result of comp]’eted
action free from disturbing causes. Examples of the markings referred to
oceur on the crystals of most minerals, and conspicuously so on the rhombo-
hedral faces of quartz.

Faces of crystals are often marked with angular elevations more or less
distinct, which are due to oscillatory combination. Octahedrons of fluorite
are common which have for each face a surface of minute cubes, proceeding
from an oscillation between the cube and octahedron. Sometimes an examina-
tion of such a crystal shows that though the form is apparently octahedral,
there are no octahedral faces present at all. Other similar cases could be
mentioned.

Whatever their cause, these minute markings are often of great importance
as revealing the true molecular symmetry of the crystal. For it follows from
the symmetry of crystallization that like faces must be physically alike —
that 1s, in regard to their surface character; it thus often happens that on all
the crystals of a species from a given locality, or perhaps from all localities, the
same planes are etched or roughened alike. There is much uniformity on
the faces of quartz crystais in this respect. :

261. Curved surfaces may result from (a) oscillatory combination;
or (b) some independent molecular condition producing curvatures in the
laming of the erystal; or (¢) from a mechanical cause.

Curved surfaces of the first kind have been already mentioned (Art. 258).
A singular curvature of this nature is seen in Fig. 475, of calcite; in the lower

476 476 477

|

Calcite Diamond Beryl

part traces of a scalenohedral form are apparent which was in oscillatory com-
bination with the prismatic form.
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Curvatures of the second kind sometimes have all the faces convex. This
is the case in crystals of diamond (Fig. 476), some of which are almost spheres.
The mode of curvature, in which all the faces are equally convex, is less
common than that in which a convex surface is opposite and parallel to a
corresponding concave surface. Rhombohedrons of dolomite and siderite are
usually thus curved. The feathery curves of frost on windows and the
flagging-stones of pavements in winter are other examples. The alabaster
rosettes from the Mammoth Cave, Kentucky, are similar. Stibnite crystals
sometimes show very remarkable curved and twisted forms.

A third kind of curvature is of mechanical origin. Sometimes crystals
appear as if they had been broken transversely into many pieces, a slight
displacement of which has given a curved form to the prism. This is common
in tourmaline and beryl. The beryls of Monroe, Conn., often present these
interrupted curvatures, as represented in Fig. 477.

Crystals not infrequently occur with a deep pyramidal depression occupy-
ing the place of each plane, as is often observed 'in common salt, alum, and
sulphur. This is due in part to their rapid growth.

3. VARIATIONS IN THE ANGLES OF CRYSTALS

262. The greater part of the distortions described in Arts 256, 257
occasion no change in the interfacial angles of crystals. But those imper-
fections that produce convex, curved, or striated faces necessarily cause such
variations. Furthermore, circumstances of heat or pressure under which
the crystals were formed may sometimes have resulted not only in distortion
of form, but also some variation in angle. The presence of impurities at the
time of crystallization may also have a like effect.

Still more important is the change in the angles of completed crystals
which is caused by subsequent pressure on the matrix in which they were
formed, as, for example, the change which may take place during the more or
less complete metamorphism of the inclosing rock.

The change of composition resulting in pseudomorphous crystals (see
Art. 273) is generally accompanied by an irregular change of angle, so that
the pseudomorphs of a species vary much in angle.

In general it is safe to affirm that, with the exception of the irregularities
arising from imperfections in the process of crystallization, or from the sub-
sequent changes alluded to, variations in angles are rare, and the constancy
of angle alluded to in Art. 11 is the universal law.

In cases where a greater or less variation in angle is observed in the crystals
of the same species from different localities, the cause for this can usually be
found in a difference of chemical composition. In the case of isomorphous
compounds it is well known that an exchange of corresponding chemically
equivalent elements may take place without a change of form, though usually
accompanied with a slight variation in the fundamental angles.

The effect of heat upon the form of crystals is alluded to in Art. 433.

4. INTERNAL IMPERFECTIONS AND INCLUSIONS

. 263. The transparency of crystals is often destroyed by disturbed crystal-
lization; by impurities taken up from the solution during the process of
crystallization; or, again, by the presence of foreign matter resulting from
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partial chemical alteration. The general name, inclusion, is given to any
foreign body inclosed within the crystal, whatever its origin. These inclusions
are extremely common; they may be gaseous, liquid, or solid; visible to the
unaided eye or requiring the use of the microscope.

Rapid crystallization is a common explanation of inclusions. This is
illustrated by quartz crystals containing large cavities full or nearly full of
water (in the latter case, these showing a movable bubble); or, they may
contain sand or iron oxide in large amount. In the case of calcite, crystalliza-
tion from a liquid largely charged with a foreign material, as quartz sand, may
result in the formation of crystals in which the impurity makes up as much
as two-thirds of the whole mass; this is seen in the famous Fontainebleau
limestone, and similarly in that from other localities.

264. Liquid and Gas Inclusions. — Attention was early called by
Brewster to the presence of fluids in cavities in certain minerals, as quartz,
topaz, beryl, chrysolite, etec. In later years this subject has been thoroughly
studied by Sorby, Zirkel, Vogelsang, Fischer, Rosenbusch, and others. The
nature of the liquid can often be determined, by its refractive power, or by
special physical test (e.g., determination of the critical point in the case of
CQ,), or by chemical examination. In the majority of cases the observed
liquid is simply water; but it may be the salt solution in which the crystal was
formed, and not infrequently, especially in the case of quartz, liquid carbon
dioxide (COQ,), as first proved by Vogelsang. These liquid inclusions are
marked as such, in many cases, by the presence in the cavity of a movable
bubble of gas. Occasionally cavities contain two
liquids, as water and liquid carbon dioxide, the
latter then inclosing a bubble of the same sub-
stance as gas (cf. Fig. 478). Interesting exper-
iments can be made with sections showing such
iriclusions (cf. literature, p. 181). The mixture
of gases yielded by smoky quartz, meteoric iron,
and other substances, on the application of heat,
has been analyzed by Wright.

In some cases the cavities appear to be empty;
if they then have a regular form determined by
the crystallization of the species, they are often
called megative crystals. Such cavities are com- .
monly of secondary origin, as remarked on a later Beryllonite
pag

e‘ . . .
265. Solid Inclusions. — The solid inclusions are almost infinite in
their variety. Sometimes they are large and distinct, and can be referred to
known mineral species, as the scales of gothite or hematite, to which the
peculiar character of aventurine feldspar is due. Magnetite1s a very commmon
impurity in many minerals, appearing, for example, 1n the Pennsbury mica;
quartz is also often mechanically mixed, as in staurolite and gmelinite. On
the other hand, quartz crystals very commonly inclose foreign material, such
as chlorite, tourmaline, rutile, hematite, asbestus, and many other minerals.
(CA1. also Arts. 266, 267.) \ 3

The inclusions may consist of a heterogeneous mass of material; as the
granitic matter seen in orthoclase crystals in a porphyritic granite; or the
feldspar, quartz, etc., sometimes inclosed in large coarse crystals of beryl or
spodumene, occurring in granite veins.
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266. Microlites, Crystallites. — The microscopic crystals observed as
inclusions may sometimes be referred to known species, but more generally
their true nature is doubtful. The term microlites, proposed by Vogelsang,
is often used to designate the minute inclosed crystals; they are generally of
needlelike form, sometimes quite irregular, and often very remarkable in their
arrangement and groupings; some of them are exhibited in Fig. 484 and Fig.
485, as explained below. Where the minute individuals belong to known
species they are called, for example, feldspar microlites, etc.

Crystallites is an analogous term used by Vogelsang to cover those minute
forms which have not the regular exterior form of crystals, but may be con-
sidered as intermediate between amorphous matter and true crystals. Some
of the forms are shown in Figs. 479-483; they are often observed in glassy
voleanic rocks, and also in furnace-slags. A series of names has been given to
varieties of crystallites, such as globulites, margarites, etc. Trichite and
belonite are names introduced by Zirkel; the former name is derived from
@pi, hair; trichites, like that in Fig. 483, are common in obsidian.

479 480 481 482 483
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The microscopic inclusions may also be of an irregular glassy nature; this
kind is often observed in crystals which have formed from a molten mass, as
lava or the slag of an iron furnace.

267. Symmetrically Arranged Inclusions. — In géneral, while the solid
inclusions sometimes occur quite irregularly in the erystals, they are more
generally arranged with some evident reference to the symmetry of the form,
or external faces of the crystals. Examples of this are shown in the following

Lo r
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Crystallites

Augite (Zirkel) | Leucite (Zirkel) Garnet inclosing quartz
(Heddle)

figures. Fig. 484 exhibits a crystal of augite, inclosing magnetite, feldspar
and nephelite microlites, etc. Fig. 485 shows a crystal of leucite, a species
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¢

whose crystals very commonly inclose foreign matter. Fig. 486 shows a sec-
tion of a crystal of garnet, containing quartz.

Andalusite

Another striking example is afforded by andalusite (Fig. 487), in which the
inclosed carbonaceous impurities are of considerable extent and remarkably
arranged, so as to yield symmetrical figures of various forms. Staurolite
occasionally shows analogous carbonaceous impurities symmetrically dis-
tributed.

The magnetite common as an inclusion in muscovite, alluded to above,
is always symmetrically disposed, usually parallel to
the directions of the percussion-figure (Fig.491, p. 189).

488
The asterism of phlogopite is explained by the presence X GD
of symmetrically arranged inclusions (cf. Art, 368). Q@g@m“
()
D,

D
Fig. 488 shows an interesting case of symmetrically arranged Q, 9
inclus%ons due to chemical alteration. %‘he original mineral, v @?c&
spodumene, from Branchville, Conn., has been altered to a [ ©
substance apparently homogeneous to the eye, but found 9 &AQW
under the microscope to have the structure shown in Fig. 488, d @ A
Chemical analysis proves the base to be albite and the inclosed Q
hexagonal mineral to be a lithium silicate (LiAISO;) called @Q [w DO
eucryptite. It has not yet been identified except in this
form. Eueryptite in Albite
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CRYSTALLINE AGGREGATES

268. The greater part of the specimens or masses of minerals that occur
may be described as aggregations of imperfect crystals. Many specimens
whose structure appears to the eye quite homogeneous, and destitute internally
of distinet crystallization, can be shown to be composed of crystalline grains.
Under the above head, consequently, are included all the remaining varieties
of structure among minerals. 1

The individuals composing imperfectly crystallized individuals may be:

1. Columns, or fibers, in which case the structure is columnar or fibrous.

2. Thin lamine, producing a lamellar structure.

3. Grains, coustituting a granular structure.

269. Columnar and Fibrous Structure. — A mineral possesses a col-
umnar structure when it is made up of slender columns, as some amphibole.
When the individuals are flattened like a knife-blade, as in cyanite, the struc-
ture is said to be bladed. B

The structure again is called fibrous when the mineral is made up of fibres,
as in asbestus, also the satin-spar variety of gypsum. The fibres may or may
not be separable. There are many gradations between coarse columnar and
fine fibrous structures. Fibrous minerals have often a silky luster.

The following are properly varieties of columnar or fibrous structure:

Reticulated: when the fibers or columns cross in various directions and
produce an appearance having some resemblance to a net.

Stellated: when they radiate from a center in all directions and produce
star-like forms. Ex. stilbite, wavellite.

Radiated, divergent: when the crystals radiate from a center without
producing stellar forms. IEx. quartz, stibnite.

270. Lamellar Structure. — The structure of a mineral is lamellar
when it consists of plates or leaves. The lamina may be curved or straight,
and thus give rise to the curved lamellar and straight lamellar structure. Ex.
wollastonite (tabular spar), some varieties of gypsum, tale, etc. If the plates
are approximately parallel about a common center the structure is said to be
concentric.  When the lamine are thin and separable, the structure is said to
be foliaceous or foliated. Mica is a striking example, and the term micaceous
is often used to describe this kind of structure.

'271. Granular Structure. — The particles in a grahular structure differ
much in size. When coarse, the mineral is described as coarse-granular; when
fine, fine-granular; and if not distinguishable by the naked eye, the structure is
termed ¢mpalpable. Examples of the first may be observed in granular crys-
talline limestone, sometimes called saccharoidal; of the second, in some varie-
ties of hematite; of the last, in some kinds of sphalerite.

The above terms are indefinite, but from necessity, as there is every degree
of fineness of structure among mineral species, from perfectly impalpable,
through all possible shades, to the coarsest granular. The term phanero-crys-
talline has been used for varieties in which the grains are distinet, and crypto-
crystalline for those in which they are not discernible, although an indistinet
crystalline structure can be proved by the microscope.

Granular minerals, when easily crumbled in the fingers, are said to be friable.

[ 272. Imitative Shapes. — The following are important terms used in
describing the imitative forms of massive minerals. :
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Reniform: kidney-shaped. The structure may be radiating or concentric.
Ex. hematite.

Botryoidal: consisting of a group of rounded prominences. The name is
derived from the Greek Bo7pus, a bunch of grapes. Ex. limonite, chalcedony,
prehnite.

Mammillary: resembling the botryoidal, but composed of larger promi-
nences. Ex. malachite.

Globular: spherical or nearly so; the globules may consist of radiating
fibres or concentric coats. When attached, as they usually are, to the surface
of a rock, they are described as implanted globules.

fNodular: in tuberose forms, or having irregular protuberances over the
surface.

Amygdaloidal: almond-shaped, applied often to a rock (as diabase) con-
taining almond-shaped or sub-globular nodules.

Coralloidal: like coral, or consisting of interlaced flexuous branchings of a
white color, as in the variety of aragonite called flos ferri.

Dendritic: branching tree-like, as in crystallized gold. The term den-
drites is used for similar forms even when not crystalline, as in the dendrites
of manganese oxide, which form on surfaces of limestone or are inclosed in
“moss-agates.”

Mossy: like moss in form or appearance.

Filiform or Capillary: very slender and long, like a thread or hair; con-
sists ordinarily of a succession of minute crystals. Ex. millerite.

Acicular: slender and rigid, like a needle. Es. stibnite.

Reticulated: net-like. See Art. 269.

Drusy: closely covered with minute implanted crystals. Ex. quartz.

Stalactitic: when the mineral occurs in pendent columns, cylinders, or
elongated cones. Stalactites are produced by the percolation of water, hold-
ing mineral matter in solution, through the rocky roofs of caverns. The
evaporation of the water produces a deposit of the mineral matter, and grad-
ually forms a long pendent cylinder or cone. The internal structure may be
imperfectly crystalline and granular, or may consist of fibres radiating from
the central eolumn, or there may be a broad cross-cleavage. The most famil-
iar example of stalactites is afforded by calcite. Chalcedony, gibbsite,
limonite, and some other species, also present stalactitic forms.

The term amorphous is used when a mineral has not only no crystalline
form or imitative shape, but does not polarize the light even in its minute
particles, and thus appears to be destitute wholly of a erystalline structure
internally, as most opal. Such a structure is also called collozd or jelly-like,
from the Greek xéM\a (see p. 8), for glue. The word amorphous is from &

privative, and wopdy, shape.

273. Pseudomorphous Crystals. — Every mi'ne.ral species has, when
distinctly crystallized, a definite and characteristic form. Occasionally,
however, crystals are found that have the form, both as to angles and general
habit, of a certain species, and yet differ from it entirely in chemical composi-
tion. Moreover, it is often noted in such cases that, though in outward form
complete crystals, in internal structure they are granular, or waxy, and have
no regular cleavage. Even if they are crystalline in structure the optical
characters do not conform to those required by the symmetry of the faces.






PART II. PHYSICAL MINERALOGY

’ 374. The pHYSICAL CHARACTERS of minerals fall under the following
eads:

I. Characters depending upon Cohesion and Elasticity — viz., cleavage,
fracture, tenacity, hardness, elasticity, ete. :

IL. Specific Gravity, or the Density compared with that of water.

III. Characters depending upon Light— viz., color, luster, degree of trans-
parency, special optical properties, etc.

IV. Characters depending upon Heat — viz., heat-conductivity, change of
form and of optical characters with change of temperature, fusibility, ete.

V. Characters depending upon Electricity and Magnetism.

VI. Characters depending upon the action of the senses—viz., taste,
odor, feel.

276. General Relation of Physical Characters to Molecular Structure.—
It has been stated on pp. 7, 8 that the geometrical form of a crystallized min-
eral is the external evidence of the internal molecular structure. A full
knowledge in regard to this structure, however, can only be obtained by
t}tl)e study of the various physical characters included in the classes enumerated
above.

Of these characters, the specific gravity merely gives indication of the
atomic mass of the elements present, and further, of the state of molecular
aggregation. The first of these points is illustrated by the high specific
gravity of compounds of lead; the second, by the distinction observed, for
example, between carbon in the form of the diamond, with a specific gravity
of 3'5, and the same chemical substance as the mineral graphite, with a specific
gravity of only 2.

All the other characters (except the relatively unimportant ones of Class
VI) in general vary according to the direction in the crystal; in other words
they have a definite orientation. For all of them it is true that directions
which are crystallographically identical have like physical characters. ‘

In regard to the converse proposition — viz., that in all directions crystal-
lographically dissimilar there may be a variation in the physical characters, an
important distinction is to be made. This proposition holds true for all
crystals, so far as the characters of Class I are concerned; that is, those
depending upon the cohesion and elasticity, as shown in the cleavage, hard-
ness, the planes of molecular gliding, the etching-figures, etc. It is also true
in the case of pyro-electricity and piezo-electricity. :

It does not apply in the same way with respect to the characters which
involve the propagation of light (and radiant heat), the change of volume with
change of temperature; further, electric radiation, magnetic induction, ete.
185
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Thus, although it will be shown that the optical characters of erystals are
in agreement in general with the symmetry of their form, they do not show
all the variations in this symmetry. It is true, for example, that all directions
are optically similar in a crystal belonging to any class under the isometric
system; but this is obviously not true of its molecular cohesion, as may be
shown by the cleavage. Again, all directions in a tetragonal crystal at right
angles to the vertical axis are optically similar; but this again is not true of
the cohesion. These points are further elucidated under the description of
the special characters of each group.

I. CHARACTERS DEPENDING UPON COHESION AND
' ELASTICITY

276. Cohesion, Elasticity. — The name cohesion is given to the force of
attraction existing between the molecules of one and the same body, in con-
sequence of which they offer resistance to any influence tending to separate
them, as in the breaking of a solid body or the scratching of its surface.

Elasticity is the force which tends to restore the molecules of a body back
into their original position, from which they have been disturbed, as when a
body has suffered change of shape or of volume under pressure.

The varying degrees of cohesion and elasticity for crystals of different
minerals, or for different directions in the same crystal, are shown in the
prominent characters: cleavage, fracture, tenacity, hardness; also in the
gliding-planes, percussion-figures or pressure-figures, and the etching-figures.

277. Cleavage. — Cleavage is the tendency of a crystallized mineral to
break in certain definite directions, yielding more or less smooth surfaces.
It obviously indicates a minimum value of cohesion in the direction of easy
fracture — that is, normal to the cleavage-plane itself. The cleavage parallel
to the cubic faces of a erystal of galena is a familiar illustration. An amor-
phous body (p. 8) necessarily can show no cleavage.

As stated in Art. 31, the consideration of the molecular structure of
crystals shows that a cleavage-plane must be a direction in which the mole-
cules are closely aggregated together; while normal to this the distance
between successive layers of molecules must be relatively large, and hence this
last is the direction of easy separation. It further follows that cleavage can
exist only parallel to some possible face of a crystal, and, further, that this
must be one of the common fundamental forms. Hence in cases where the
choice in the position of the axes is more or less arbitrary the presence of
cleavage is properly regarded as showing which planes should be made funda-
mental. Still again, cleavage is the same in all directions in a crystal which
are crystallographically identical.

Cleavage is defined, (1) according to its direction, as cubic, octahedral,
rhomobohedral, basal, prismatie, etc. Also, (2) according to the ease with
which it is obtained, and the smoothness of the surface yielded. It is said to
be perfect or eminent when it is obtained with great ease, affording smooth,
lustrous surfaces, as in mica, topaz, calcite. Inferior degrees of cleavage are
spoken of as distinet, indistinet or imperfect, interrupted, in traces, difficult.
These terms are sufficiently intelligible without further explanation. It may
be noticed that the cleavage of a species is sometimes better developed in some
of its varieties than in others.
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. 278, Cleavage in the Different Systems. — (1) In the I1SOMETRIC SYSTEM

is cubic, when parallel to the faces of the cube; this is the common case, as illugt(r:z]a,et?agak%;

gq}ﬁlnzfai anqithallts(ie.th 1t dlis also ((i)ftei], octc;hedral —1 that is, parallel to the octahedral faces, as

Wi uorite an e diamond. Less frequently it is dodecahedra

of the rhombic dodecahedron, as with sp alerit):a. el il g
. In the TETRAGONAL SYSTEM, cleavage is often basal, or parallel to the basal plane, as

with apophyllite; also prismatic, or parallel to one (or both) of the square prisms, as with

rutile and wernerite; less frequently it is pyramidal, or parallel to the faces of the square

pyramid, as with scheelite.

In the HEXAGONAL sYSTEM, cleavage is usually either basal, as with beryl, or prismatic,
parallel to one of the six-sided prisms, as with nephelite; pyramidal cleavage, as with
pyromorphite, is rare and imperfect.

In the RHOMBOHEDRAL DIVISION, besides the basal and prismatic cleavages, rhombo-
hedral cleavage, parallel to the faces of a rhombohedron, is also common, as with calcite
and the allied species.

In the orTHORHOMBIC SYSTEM, cleavage parallel to one or more of the pinacoids is
common. Thus it is basal with topaz, and in all three pinacoidal directions wit anhydrite.
Prismatic cleavage is also common, as with barite; in this case the arbitrary position
ass(lilmed in deseribing the crystal may make this cleavage parallel to a “horizontal prism,”
or dome. i

In the MoNocLINIC 8YSTEM, cleavage parallel to the clinopinacoid, is common, as with
orthoclase, gypsum, heulandite and euclase; also basal, as with the micas and orthoclase,
or parallel to the orthopinacoid; also prismatic, as with amphibole. Less frequently
cleavage is parallel to a hemi-pyramid, as with gypsum. '

In the TRICLINIC SYSTEM, it 1s usual and proper to so select the fundamental form as to
make the cleavage directions correspond with the pinacoids.

279. In some cascs cleavage which is ordinarily not observed may be developed by a
sharp blow or by sudden change of temperature. Thus, quartz is usually conspicuously
free from cleavage, but a (1uartz crystal heated and plunged into cold water often shows
planes of separation * parallel to both the + and — rhombohedrons and to the prism as
well. Similarly, the prismatic cleavage of pyroxene is observed with great distinctness in
thin sections, made by grinding, while not so readily noted in large erystals.

When the cleavage is parallel to a closed form — that is, when it 1s cubic, octahedral,
dodecahedral, or rhombohedral (also pyramidal in the tetragonal, hexagonal, and ortho-
rhombie systems) — solids resembling erystals may often be broken out from a single
crystalline individual, and all the fragments have the same angles. It is, in general, easy
to distinguish such a cleavage form, as a cleavage octahedron of fluorite, from a true
crystal by the splintery character of the faces of the former.

280. Cleavage and Luster. — The face of a crystal parallel to which there is perfect
cleavage often shows a pearly luster (see p. 249), due to the partial separation of the crystal
into parallel plates. This is illustrated by the basal plane of apophyllite, the clinopina-
coid of stilbite and heulandite. An iridescent play of colors is also often seen, as with
calcite, when the separation has been sufficient to produce the prismatic colors by
interference. :

281. Gliding-planes. — Closely related to the cleavage directions in
their connection with the cohesion of the molecules of a crystal are the gliding-
planes, or directions parallel to which a slipping of the molecules may take
place under the application of mechanical force, as by pressure. I

This may have the result of simply producing a separation into layers in
the given direction, or, on the other hand, and more commonly, there may be
a revolution of the molecules into a new twinning-position, so that secondary
twinning-lamelle are formed.

Thus, if a erystal of halite, or rock salt, be subjected to gradual pressure
in the direction of a dodecahedral face, a plane of separation is developed
normal to this and hence in the direction of another face of the same form.
There are six such directions of molecular slipping and separation in a crystal
of this substance. Certain kinds of mica of the biotite class often show

* Lehmann (Zs. Kr., 11, 608, 1886) and Judd (Min. Mag., 8, 7, 1888) regard these as
gliding-planes (see Art. 281).
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pseudo-crystalline faces, which are undoubtedly secondary in origin — that

489

is, have been developed by pressure exerted sub-
sequently to the growth of the crystal (cf. Fig. 489).

In stibnite, the base, ¢(001), normal to the plane of perfect
cleavage, is a gliding-plane. Thus a slipping of the molecules
without their separation may be made to take place by
pressure in a plane (||c) normal to the direction of perfect
cleavage (||b). A slender prismatic crystal supported near
the ends and pressed downward by a dull edge is readily bent,
or knicked, in this direction without the parts beyond the
support being affected. . .

282. Secondary Twinning. — The other case
mentioned in the preceding article, where molecular
slipping is accompanied by a half-revolution (180°)
of the molecules into a new twinning-position (see p. 160 et seq.), is well illus-
trated by calcite. Pressure upon a cleavage-fragment may result in the forma-
tion of a number of thin lamellz in twinning-position to the parent mass, the
twinning-plane being the obtuse negative rhombohedron, €(0112). Second-
ary twinning-lamellze similar to these are often observed in natural cleavage-
masses of calcite, and particularly in the grains of a crystalline imestone, as
observed in thin sections under the microscope. .

Secondary twinning-lamellze may also be produced (and are often noted in
nature) in the case of the triclinic feldspars, pyroxene, B
barite, etc. A secondary lamellar structure in quartz

has been observed by Judd, in which the lamelle v//

consisted of right-handed and left-handed portions.

By the proper means a complete caleite twin may be artificially
produced by pressure. Thus, if a cleavage-fragment of prismatic
form, say 6-8 mm. in length and 3-6 mm. in breadth, be placed
with the obtuse edge on a firm horizontal support, and pressed by
the blade of an ordinary tableknife on the other obtuse edge (at a, -
Fig. 490), the result is that a portion of the crystal is reversed in
position, as if twinned parallel to the plane (0112) which in the
figure lies in a vertical position. If skillfully done, the twinning b i
surface is perfectly smooth, and the re-entrant angle corresponds Artxﬁcxal Twinning
exactly with that required by theory. . in Calcite

Biotite

283. Parting. — The secondary twinning-planes described are often
directions of an easy separation — conveniently called parting — which may
be mistaken for cleavage.* The basal parting of pyroxene is a common
example of such pseudo-cleavage; it was long mistaken for cleavage. The
basal and rhombohedral (1011) and the less distinet prismatic (1120) parting
of corundum; the octahedral parting of magnetite (cf. Fig. 474, p. 176), are
other examples. ;

An important distinction between cleavage and parting is this: parting can
exist only in certain definite planes— that is, on the surface of a twinning-lamel-
la— while the cleavage may take place in any plane having the given direction.

284. Percussion-figures. — Immediately connected with the gliding-
planes are the figures — called percussion-figures 1 — produced upon a crystal

* The lamellar structure of a massive mineral, without twinning, may also be the cause
of a fracture which can be mistaken for cleavage.

T The percussion-figures are best obtained if the crystal plate under investigation be
supported upon a hard cushion and a blow be struck with a light hammer upon a steel rod
the slightly rounded point of which is held firmly against the surface.
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section by a blow or pressure with a suitable point. In such cases, the method
described serves to develop more or less well-defined cracks whose orientation
varies with the crystallographic direction of the surface. Thus upon the
cubic face of a crystal of halite a four-rayed, star-shaped figure is produced
with arms parallel to the diagonals — that is, parallel to 491

the dodecahedral faces. On an octahedral face a three-

rayed star is obtained.

The percussion-figures in the case of the micas have
been often investigated, and, as remarked later, they form
a means of fixing the true orientation of a’ cleavage-plate
having no crystalline outlines. The figure (Fig. 491) is
here a six-rayed star one of whose branches is parallel to
the clinopinacoid (b), the others approximately parallel
to the intersection edges of the prism (m) and base (c).*

Pressure upon a mica plate produces a less distinet six-rayed star, diagonal
to that just named; this is called a pressure-figure.

285. Solution-planes. — In the case of many crystals, it is possible to prove the ex-
istence of certain directions, or structure-planes, in which chemical action takes place most
readily — for example, when a crystal is under great pressure. These directions of chemi-
cal weakness have been called solution-planes. They often manifest themselves by the
presence of a multitude of oriented cavities of crystalline outline (so-called negative crystals)
in the given direction.

These solution-planes in certain cases, as shown by Judd, are the same as the directions
of secondary lamellar twinning, as is illustrated by calcite. Connected with this is the
schillerization (see Art. 369), observed in certain minerals in rocks (as diallage, schillerspar).

286. Etching-figures. — Intimately connected with the general sub-
jects here considered, of cohesion in relation to crystals, are the figures pro-
duced by etching on crystalline faces; these are often called efching-figures.
This method of investigation, developed particularly by Baumhauer, is of high
importance as revealing the molecular structure of the crystal faces under
examination, and therefore the symmetry of the crystal itself.

The etching is performed mostly by solvents, as by water in some cases,
more generally the ordinary mineral acids, or caustic alkalies, also by steam at
a high pressure and hydrofluoric acid; the last is espécially powerful in its
action, and is used frequently with the silicates. The figures produced are in
the majority of cases angular depressions,
such as low triangular or quadrilateral
pyramids, whose outlines may run par-
allel to some of the crystalline edges.
In some cases the planes produced can be
referred to occurring crystallographic
faces. They appear alike on similar
faces of crystals, and hence serve to
distinguish different forms, perhaps in
appearance identical, as the two sets of
faces in the ordinary double pyramid of

: 2 quartz; so, too, they reveal the com-
Quartz, right- Quartz, left- pound twinning-structure common on
handed crystal handed crystal ~ some crystals, as quartz and aragonite.

493

* Cf. Walker, Am. J. Sc., 2, 5, 1896, and G. Friedel, Bull. Soc. Min., 19, 18, 1896.
Walker found the angle opposite 5(010) (x in Fig. 491) to be 53° to 56° for muscovite, 59°
for lepidolite, 60° for biotite, and 61° to 63° for phlogopite.
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Further, their form in general corresponds to the symmetry of the
group to which the given crystal belongs. They thus reveal the trape-
zohedral symmetry of quartz and the difference between a rlght-hanc%ed and
left-handed crystal (Figs. 492, 493); the distinction between calcite and
dolomite (Figs. 496, 497); the distinctive character of apatite, pyromorphite,
etc.; the hemimorphic symmetry of calamine and nephelite (cf. Fig. 237,
p. 102), ete.; they also prove by their form the monoclinic crystallization of
muscovite and other micas (Fig. 495).

Fig, 494 shows the etching-figures formed on a basal plane (cleavage) of topaz by fused

caustic potash; Fig. 495, those on a cleavage-plate of muscovite by hydrofluoric acid; Fig.
496, upgn a rhé)mb%hedrél face of calcite, and Fig. 497, on one of dolomite by dilute Hydro-

chloric acid.
494 496 496 497

W%W%

Dolomite

Spangolite

The shape of the etching-figures may vary with the same crystal with the nature of the
solvent employed, though their symmefry remains constant. For example, Fig. 498 shows
the figures obtained with spangolite
by the action of sulphuric acid
Fig. 499 by the same diluted, and
Fig. 500 by hydrochloric acid of
different degrees of concentration.

501

Of the same nature as
the etching-figures artificially
produced, in their relation to
the symmetry of the crystal,
are the markings often observed
on the natural faces of crys-
tals. These are sometimes

Corundum Fluorite secondary, caused by a natural

4 etching process, but are more

often an irregularity in the crystalline development of the crystal. The
inverted triangular depressions often seen on the octahedral faces of diamond
crystals are an example. Fig. 501 shows natural depressions, rhombohedral
in character, observed on corundum crystals from Montana (Pratt). Fig.
502 shows a twin crystal of fluorite with natural etching-figures (Pirsson);
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these are minute pyramidal depressions whose sides ar
of the trapezohedron (311). P R T
287. Corrosion Forms. — If the etching process spoken of in the pre-
ceding article — whether natural or artificial —is continued, the result may
be to destroy the original erystalline surface and to substitute for it perhaps a
multitude of minute elevations, more or less distinct; or, further, new faces
may be developed, the crystallographic position of which can often be deter-
mined, though the symbols may be complex. The mere loss of water in some
cases produces certain corrosive forms.

Penfield subjected a sphere of quartz (from a simple right-handed individual) to the
prolonged action of hydrofluoric acid. It was found that it was attacked rapidly in the
direction of the vertical axis, but lgag'ely at all at the 4 extremities of the horizontal axes.
Figs. 503, 504 show the form remaining after the sphere had been etched for seven weeks;
Fig. 503 is a basal view; Fig. 504, a front view; the circle shows the original form of the
sphere, the dotted hexagon the position of the axes.

288. Fracture. — The term fracture is used to define the form or kind
of surface obtained by breaking in a direction other than that of cleavage in
crystallized minerals, and
in any direction in mas- A o fl 504
sive minerals. When
the cleavage is highly
perfect in several direc-
tions, as the rhombo-
hedral cleavage of calcite, ¢
fracture is often not
readily obtainable.

Fracture is defined as:

(a) Conchoidal; when ;
a mineral br?alks with Etched Sphere of Quartz
curved concavities, more ; y :
orless deep. It is so called from the resemblance of the concavity to the valve
of a shell, from concha, a shell. This is well illustrated by obsidian, also by
flint. If the resulting forms are small, the fracture 1s said to be small-con-
choidal; if only partially distinet, it is subconchoidal. )

(b) Even; when the surface of fracture, though rough with numerous
small elevations and depressions, still approximates to a plane surface.

(c) Uneven; when the surface is rough and entirely irregular; this is true
of most minerals. S : :

(d) Hackly; when the elevations are sharp or jagged; broken iron.

Other terms also employed are earthy, splintery, ete. '

989. Hardness. — The hardness of a mineral is measured by the re-
sistance which a smooth surface offers to abrasion. The degree of hardness 1s
determined by observing the comparative ease or difficulty with which one
mineral is scratched by another, or by a file or knife. g .

In minerals there are all grades of hardness, from that of tale, impressible
by the finger-nail, to that of the diamond. To give precision to the use of
this character, a scale of hardness was introduced by Mohs.* It is as follows:

* The interval between 2 and 3, and 5 and 6, in the scale of Mohs, being a little greater
than between the other numbers, Breithaupt proposed a scale of twelve minerals; but the
scale of Mohs is now universally accepted. :
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1. Tale. 6. Orthoclase.
2. Gypsum 7. Quartz.
3. Calcite. 8. Topaz.
4. Fluorite. 9. Corundum.
5. Apatite. 10. Diamond.

Crystalline varieties with smooth surfaces should be taken so far as

ssible.

If the mineral under examination is scratched by the knife-blade as easily
as caleite its hardness is said to be 3; if less easily than calcite and more so
than fluorite its hardness is 3'5. In the latter case the mineral in question
would be scratched by fluorite but would itself scratch calcite. It need
hardly be added that great accuracy is not attainable by the above methods,
though, indeed, for purposes of the determination of minerals, exactness is
quite unnecessary. ‘

It should be noted that minerals of grade 1 have a greasy feel to the hand;
those of grade 2 are easily scratched by the finger-nail; those of grade 3 are
rather readily cut, as by a knife; of grade 4, scratched rather easily by the
knife; grade 5, seratched with some difficulty; grade 6, barely scratched by a
knife, but distinctly by a file — moreover, they also scratch ordinary glass.
Minerals as hard as quartz (H. = 7), or harder, scratch glass readily but are
little touched by a file; the few species belonging here are enumerated in
Appendix B; they include all the gems.

290. Sclerometer. — Accurate determinations of the hardness of min-
erals can be made in various ways, one of the best being by use of an instru-
ment called a sclerometer. The mineral is placed on a movable earriage, with
the surface to be experimented upon horizontal; this is brought in contact with
a steel point (or diamond point), fixed on a support above; the weight is then
determined which is just sufficient to move the carriage and produce a scratch
on the surface of the mineral.

By means of such an instrument the hardness of the different faces of a
given crystal has been determined in a variety of cases. It has been found
that different faces of a crystal (e.g., cyanite) differ in hardness, and the same
face may differ as it is scratched in different directions. In general, differ-
ences in hardness are noted only with crystals which show distinct cleavage;
the hardest face is that which is intersected by the plane of most complete
cleavage. Further, of a single face, which is intersected by cleavage-planes,
the direction perpendicular to the cleavage-direction is the softer, those
parallel to it the harder.

This subject has been investigated by Exner (p. 194), who has given the form of the
cuwrves of hardness for the different faces of many erystals. These curves are obtained as
follows: the least weight required to scratch a crystalline surface in different directions,
for each 10° or 15°, from 0° to 180°, is determined with the sclerometer; these directions
are laid off as radii from a center, and the length of each is made proportional to the weight
fixed by experiment — that is, to the hardness thus determined; the line connecting the
extremities of these radii is the curve of hardness for the given face.

The folloyvmg table gives the results obtained * (see literature) in comparing the hard-
ness of the minerals of the scale from corundum, No. 9, taken as 1000, to gypsum, No. 2
Pfaff used the method of boring with a standard point, the hardness being determined by
the number of rotations; Rosiwal used a standard powder to grind the surface, Jaggar
employed his micro-sclerometer, the method being essentially a modification of that of

* The numbers are here given as tabulated by Jaggar.
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Pfaffl. By means of this instrument he is able to test the hardness of the minerals present,
in a thin section under the microscope. Measurements of absolute hardness have also been
made by Auerbach. Holmquist has recently made many hardness tests by the grinding
method. His results with regard to the minerals of the scale of hardness agree fairly well
with those of Rosiwal given below but show considerable discrepancies with the results
obtained by the other methods. He, like Rosiwal, finds that topaz is lower in the scale
than quartz.

Pfaff, 1884 Rosiwal, 1892 Jaggar, 1897
9. Corundum.................. 1000 1000 1000
Sxatlopaz!, T T . 459 138 152
7. Quartz...................... 254 149 40
6. Orthoclase .................. 191 287 25
5. Apatite................. 535 620 1-23
4. Fluorite..................... 373 470 7
3. Caleite.. ... ... 153 268 26
20 Gypsumt. S s 12:03 ‘34 ‘04

291. Relation of Hardness to Chemical Composition. — Some general facts of impor-
tance can be stated * in regard to the connection between the hardness of a mineral
and its chemical composition.

1. Compounds of the heavy metals, as silver, copper, mercury, lead, etec., are soft, their
hardness seldom exceeding 2°5 to 3.

Among the compounds of the common metals, the sulphides (arsenides) and oxides of
iron (also of nickel and cobalt) are relatively hard (e.g., for pyrite H. = 6 to 6'5; for
hematite H. = 6, etc.); here belong also columbite, iron niobate;- tantalite, iron tantalate;
wolframite, iron tungstate.

2. The sulphides are mostly relatively soft (except as noted in 1), also most of the
carbonates, sulphates, and phosphates.

3. Hydrous salts are relatively soft. This is most distinetly shown among the silicates
— e.g., compare the feldspars and zeolites.

4. The conspicuously hard minerals are found chiefly among the oxides and silicates;
many of them are compounds containing aluminium — e.g., corundum, diaspore, chryso-
beryl, and many alumino-silicates. Outside of these the borate, boracite, is hard (H. = 7);
also iridosmine.

On the relation of hardness to specific gravity, see Art. 302.

292. Practical Suggestions. — Several points should be regarded in the trials of
hardness: ‘

(1) If the mineral is slightly altered, as is often the case with corundum, garnet, etec.,
the surface may be readily scratched when this would be impossible with the mineral itself;
a trial with an edge of the latter will often give a correct result in such a case.

(2) A mineral with a granular surface often appears to be scratched when the grains
have been only torn apart or crushed.

(3) A relatively soft mineral may leave a faint white ridge on a surface, as of glass,
which can be mistaken for a scrateh if carelessly observed.

(4) A crystal, as of quartz, is often slightly scratched by the edge of another of the same
species and like hardness. . y ) 4

(5) The scratch should be made in such a way as to disfigure the specimen as little as
possible.

293. Tenacity. — Minerals may be either brittle, sectile, malleable, or
flexible. s

(a) Brittle; when parts of a mineral separate in powder or grains on
attempting to cut it, as calcite. ) oo I

(b) Sectile; when pieces may be cut off with a knife without falling to
powder, but still the mineral pulverizes under a hammer. This character is

mtermediate between brittle and malleable, as gypsum. !
(¢) Malleable; when slices may be cut off, and these slices flattened out

under a hammer; native gold, native silver. ;

* See further in Appendix B.
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(d) Flexible; when the mineral will bend without breaking, and remain
bent after the bending force is removed, as tale.

The tenacity of a substance is properly a consequence of its elasticity.

294. Elasticity. — The elasticity of a solid body expresses at once the
resistance which it makes to a change in shape or volume, and also its tendency
to return to its original shape when the deforming force ceases to act. If the
limit of elasticity is not passed, the change in molecular position is proportional
to the force acting, and the former shape of volume is exactly resumed; if
this limit is exceeded, the deformation becomes permanent, a new position of
molecular equilibrium having been assumed; this is shown in the phenomena
of gliding-planes and secondary twinning, already discussed. The magni-
tude of the elasticity of a given substance is measured by the coefficient of
elasticity, or, better, the coeflicient of restitution. This is defined as the rela-
tion, for example, between the elongation of a bar of unit section to the force
acting to produce this effect; similarly of the bending or twisting of a bar.
The subject was early investigated acoustically by Savart; in recent years,
Voigt and others have made accurate measures of the elasticity of many sub-
stances and of the crystals of the same substance in different directions.
The elasticity of an amorphous body is the same in all directions, but it changes
in value with change of crystallographic direction in all crystals.

The distinction between elastic and <nelastic is often made between the
species of the mica group and allied minerals. Muscovite, for example, is
described as ‘“highly elastic,” while phlogopite is much less so. In this case
it is not true in the physcial sense that muscovite has a high value for the
coefficient of elasticity; its peculiarity lies rather in the fact that its elasticity
is displayed through unusually wide limits. ;
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II. SPECIFIC GRAVITY OR RELATIVE DENSITY

295. Definition of Specific Gravity. — The specific gravity of a mineral
is the ratio of its density * to that of water at 4° C. (39:'2° F.). This relative
density may be learned in any case by comparing the ratio of the weight of a
certain volume of the given substance to that of an equal volume of water;
hence the specific gravity is often defined as: the weight of the body divided by
the weight of an equal volume of water.

The statement that the specific gravity of graphite is 2, of corundum 4, of
galena 7°5, etc., means that the densities of the minerals named are 2, 4, and
7°5, ete., times that of water; in other words, as familiarly expressed, any
volume of them, a cubie inch for example, weighs 2 times, 4 times, 7°5 times, .
ete., as much as a like volume, a cubic inch, of water:.

Strictly speaking, since the density of water varies with its expansion or
contraction under change of temperature, the comparison should be made with
water at a fixed temperature, namely 4° C. (39-2° F.), at which it has its maxi-
mum density. If made at a higher temperature, a suitable correction should
be introduced by calculation. Practically, however, since a high degree of
accuracy is not often called for, and, indeed, in many cases is impracticable to
attain in econsequence of the nature of the material at hand, in the ordinary
work of obtaining the specific gravity of minerals the temperature at which
the observation is made can safely be neglected. Common variations of tem-
perature would seldom affect the value of the specific gravity to the extent of
one unit in the third decimal place.

* The density of a body is strictly the mass of the unit volume. Thus if a cubic centi-
meter of water (at its maximum density, 4° C. or 392° F.) is taken as the unit of mass, the
density of any body — as gold — is given by the number of grams of mass (about 19) in a
cubic centimeter; in this case the same number, 19, gives the relative density or specific
gravity. If, however, a pound is taken as the unit of mass, and the cubic foot as the unit of
volume, the mass of a cubic foot of water is 62'5 lbs., that of gold about 1188 Ibs., and the
specific gravity is the ratio of the second to the first, or, again, 19.
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For the same reason, it is not necessary to take into consideration the fact
that the observed weight of a fragment of a mineral is less than its true weight
by the weight of air displaced.

Where the nature of the investigation calls for an accurate determination
of the specific gravity (e.g., to four decimal places), no one of the precautions
in regard to the purity of material, exactness of weight-measurement, temper-
ature, etc., can be neglected.* The accurate values spoken of are needed in
the consideration of such problems as the specific volume, the relation of molec-
ular volume to specific gravity, and many others.

- 296. Determination of the Specific Gravity by the Balance. — The
direct comparison by weight of a certain volume of the given mineral with an
equal volume of water is not often practicable. By making use, however, of
a familiar principle in hydrostatics, viz., that a solid immersed in water, in
consequence of the buoyancy of the latter, loses in weight an amount, which is
equal to the weight of an equal volume of the water (that is, the volume it dis-
places) — the determination of the specific gravity becomes a very simple

TOCESS.
g The weight of the solid in the air (w) is first determined in the usual man-
ner; then the weight in water is found (w'); the difference between these
weights — that is, the loss by immersion (w — w’) — is the weight of a volume
505 of water equal to that of the solid; finally, the quotient of
the first weight (w) by that of the equal volume of water
as determined (w — w’) is the specific gravity (G).
Hence,

a2 w

Tw—w

A common method of obtaining the specific gravity of
a firm fragment of a mineral is as follows: First weigh
the specimen accurately on a good chemical balance.
Then suspend it from one pan of the balance by a horse-
hair, silk thread, or, better still, by a fine platinum wire,
in a glass of water conveniently placed beneath, and take
the weight again with the same care; then use the results
as above directed. The platinum wire may be wound
around the specimen, or where the latter is small it may
be made at one end into a little spiral support.

297. The Jolly Balance. — Instead of using an ordin-
ary balance and determining the actual weight, the spiral
balance of Jolly, shown in Fig. 505, may be conveniently
employed; this is also suitable when the mineral is in the
—— form of small grains. The instrument consists of a spiral
3 lslpﬁgglor spring at the lower end of which are suspended two pans
for é)pe};iﬁ o e or wire baskets, ¢ and d, Fig. 505. Upon the movable

¥ stand B rests a beaker filled with water. When in adjust-
ment for reading this stand has such a position that the pan d is immersed in
the water while ¢ hangs above it. Upon the upright A there is a mirror upon
which is marked a scale. The position of the balance at any time is obtained
by so placing the eye that the bead, m, and its reflection in the mirror coincide

* Cf. Earl of Berkeley in Min. Mag., 11, 64, 1895.



SPECIFIC GRAVITY OR RELATIVE DENSITY 197

and then reading the position of the top of the bead upon the scale. The first
step in the operation consists in getting the position of the spring alone, having
. the pan d immersed in the waterin the beaker. Let this reading be represented
by n. The mineral whose specific gravity is to be determined is then placed
on the pan or basket, ¢, and the platform B raised until d is properly immersed
in the water. The position of the bead m is again read. Let this value be
represented by Ni. If from N; be subtracted the number n, expressing the
amount to which the scale is stretched by the weight of spring and pans alone,
the difference will be proportional to the weight of the mineral. Next, the
mineral is placed in the lower pan, d, immersed in the water, and again the
corresponding scale number, Ns, read. The difference between these readings
(N, — N32) is a number proportional to the loss of weight in water. The
specific gravity is then
ol Ni—n
Ny — N,

It is obviously necessary to have the wires supporting the lower pan immersed
to the same depth in the case of each of the three determinations. If care is
taken the specific gravity can be obtained accurately to two decimal places.

298. The Beam Balance. — A beam balance described by Penfield is
another very simple and quite accurate device for measuring the specific
gravity. It is illustrated in Fig. 506, which will make clear its essential parts.
The beam is so balanced by a weight on its shorter end that it is very nearly
in equilibrium when the lower pan is immersed in water. An exact balance
is then obtained by the small rider d. When the beam is once balanced this
rider is kept stationary and its position disregarded in the subsequeént readings.
The mineral is first placed in the upper pan and the beam balanced by another
rider of such a weight that its position will be near the outer end of the beam.

506
b ad flo

T 1 e e T L=l

Beam Balance for Specific Gravity, ith Natural Size (after Penfield)

The position of this rider is then read from the scale engraved upon the beam.
Let this value be equal to N;. The mineral is next j;ransf_erred to .the lower
pan and the beam again brought into balance by moving this same rider back.
The second reading may be represented by Na.  The formula for obtaining the
specific gravity is now: <

1

N Ny

299. Pycnometer. — If the mineral is in the form of grains or small
fragments, the specific gravity may be obtained by use of the pycnometer.

G=
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This is a small bottle (Fig. 507) having a stopper which fits tightly and ends in
a tube with a very fine opening. The bottle is filled with distilled water, the
stopper inserted, and the overflowing water carefully removed
507 with a soft cloth and then weighed. The weight of the water
is obviously the difference between this last weight and that
of the bottle and mineral together, as first determined. The
mineral whose density is to be determined is also weighed.
Lastly the bottle is weighed with the mineral in it and filled
with water as described above.* The weight of the water
displaced by the mineral is obviously the difference between
this last weight and that of the bottle filled with water plus
the weight of the mineral. The specific gravity of the min-
eral is equal to its weight alone divided by the weight of the
- equal volume of water thus determined. Where this method
285> s followed with sufficient care, especially avoiding any change
Pycnometer of temperature in the water, the results may be highly
accurate.

If the mineral forms a porous mass, it may be first reduced to powder, but
it is to be noted that it has been shown by Rose that chemical precipitates
have uniformly a higher density than belongs to the same substance in a less
finely divided state. This increase of density also characterizes, though to a
less extent, a mineral in a fine state of mechanical subdivision. It is explained
by the condensation of the water on the surface of the powder.

300. Use of Liquids of High Density. — It is often found convenient .
both in the determination of the specific gravity and in the mechanical separa-
tion of fragments of different specific gravities (e.g., to obtain pure material
for analysis, or again in the study of rocks) to use a liquid of high density —
that is, a so-called heavy solution. One of these is the solution of mercuric
iodide in potassium iodide, called the Sonstadt or Thoulet solution. When
made with care it has a maximum density of nearly 3'2, which by dilution
may be lowered at will. ‘ ,

A second solution, often employed, is the Klein solution, the borotungstate
of cadmium, having a maximum density of 3:6. This again may be lowered
at will by dilution, observing certain necessary precautions. Still a third
solution of much practical value is that proposed by Brauns, methylene iodide,
which has a specific gravity of 3:324. A number of other solutions, more or less
practical, have also been suggested.t When one of these liquids is to be used
for the determination of the specific gravity of fragments of a certain mineral
it must be diluted until the fragments just float and the specific gravity then
obtained, most conveniently by the Westphal balance (Art. 301).

When, on the other hand, the liquid is to be used for the separation of the
fragments of two or more minerals mixed together, the material is first reduced
to the proper degree of fineness, the dust and smallest fraginents being sifted
out, then it is introduced into the solution and this diluted until one con-
stituent after another sinks and is removed. For the convenient application

* Care should be taken to prevenf air-bubbles being included among the mineral
articles. This may be accomplished by placing the bottle under an air-pump and ex-
austing the air or by suspending the bottle for a short time in a beaker filled with boiling

water and then allowing it to cool again before weighing.

1 Johannsen, Manual of Petrographic Methods, p. 519 ef seq., gives in detail an account

of the various solutions, the methods of their preparation, ete.
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of this method a suitable tube is called for and certain precautions must be

observed; compare the papers noted in the literature (p. 20 i
e A (p. 200), especially one

301. Westphal’s Balance.— The Westphal balance is conveni i
the specific gravity of a liquid, and hence ol; a mineral when a lfgzifll;rﬂs}(,)ll:xi?gnt% (elafrtleli;mgg
(Art. 300). It consists essentially of a graduated steelyard arm upon which the wgi ts
in the form of riders, are placed. These must be so adjusted that the sinker is freely Sus-
pended in the given liquid while the index at the end points to the zero of the scale and
shows that the arm is horizontal (cf. Johannsen, p. 533). The graduation usually allows
of the specific gravity being read off directly without caleulation.

302. Relation of Density to Hardness, Chemical Composition, etc.— The density; or
specific gravity, of a solid depends, first, upon the nature of the chemical substances which
it contains, and, second, upon the state of molecular aggregation.

Thus, as an illustration of the first point, all lead compounds have a high density
(G. = about 6), since lead is a heavy metal, or, chemically expressed, has a high atomic
weight (206°4). Similarly, barium sulphate, barite, has a specific gravity of 4°5, while for
calcium sulphate or anhydrite the value is only 295 (atomic weight for barium 137, for
calcium about 40). y f

On the other hand, while aluminium is a metal of low density (G. = 2'5 and atomic
weight = 27), its oxide, corundum, has a remarkably high density (G. = 4) and is also very
hard (H. = 9). Again, carbon ((?tomic weight = 12) has a high density in the diamond
(G. = 3'5) and low in graphite (G. = 2); also, the first is hard (H. = 10), the second soft
(H. = 1'5). In these and similar cases the high density signifies great molecular aggrega-
tion, and hence it is natural that it should be accompanied by great hardness and resistance
to the attack of acids.

As bearing upon this point, it is to be noted that the density of many substances is
altered by fusion. Again, the same mineral in different states of molecular aggregation
may differ (but only slightly) in density. Furthermore, minerals having the same chemical
composition have sometimes different densities, corresponding to the different erystalline
forms in which they appear. Thus in the case of calcium carbonate (CaCQs), calcite has
G. = 2'7, aragonite has G. = 2'9.

303.. Average Specific Gravities. — It is to be noted that among minerals of Non-
METALLIC LUSTER the average specific gravity ranges from 26 to 3. Here belong quartz
(2°66), calcite (2°7), the feldspars (2'6-2°75), muscovite (2'8). A specific gravity of 2'5 or
less is low, and is characteristic of soft minerals, and often those which are hydrous (e.g.,
gypsum, G. = 2°3). The common species fluorite, tourmaline, apatite, vesuvianite, amphi-
bole, pyroxene, and epidote lie just above the limit given, namely, 3'0 to 3'5. A specific
gravity of 3'5 or above is relatively high, and belongs to hard minerals (as corundum, see
Art. 302), or to those containing a heavy metal, as compounds of strontium, barium, also
iron, tungsten, copper, silver, lead, mercury, etc.

With minerals of METALLIC LUSTER, the average is about 5 (here belong pyrite, hematite,
ete.), while if below 4 it is relatively low (graphite 2, stibnite 4'5); if 7 or above, relatively
high (as galena, 7°5). L y /

- Tables of minerals arranged according to their specific gravity are given in Appendix B.

304. Constancy of Specific Gravity. — The specific gravity of a mineral species is a
character of fundamental importance, and is highly constant for different specimens of the
same species, if pure, free from cavities, solid inclusions, etc., and if essentially constant in
composition. In the case of many species, however, a greater or less variation exists in the
chemical composition, and this at once causes a variation in specific gravity. The different
kinds of garnet illustrate this point; also the various minerals intermediate between the
tantalate of iron (and manganese) and the niobate, varying from G. = 7'3 to G. = 53,

305. Practical Suggestions. — It should be noted that the determination of the specific
gravity has little value unless the fragment taken is pure and is free from impurities, internal
and external, and not porous. Care must be taken to exclude air-bubbles, and it will often
be found well to moisten the surface of the specimen before inserting it in the water, and
sometimes boiling (or the use of the air-pump) is necessary to free it from air. If it absorbs
water this latter process must be allowed to go on till the substance is fully saturated. No
accurate determinations can be made unless the changes of temperature are rigorously
excluded and the actual temperature noted. X ! !

In a mechanical mixture of two constituents in known proportions, when 'the spemﬁ_c
gravity of the whole and of one are known, that of the other can be readily obtained. This
method is often important in the study of rocks.
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It is to be noted that the hand may be soon trained to detect a difference of specific
gravity, if like volumes are taken, even in a small fragment — thus the difference between
caléite or albite and barite, even the difference between a small diamond and a quartz
crystal, can be detected.
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III. CHARACTERS DEPENDING UPON LIGHT
GENERAL PRINCIPLES OF OPTICS

306. Before considering the optical characters of minerals in general, and
more particularly those that belong to the crystals of the different systems, it
is desirable to review briefly some of the more important principles of optics
upon which the phenomena in question depend.

For a fuller discussion of the optics of crystals, special reference is made to the works
of Groth (translation by Jackson), Liebisch, Mallard, Duparc and Pearce, Rosenbusch

(translation by Iddings), Iddings, Johannsen, Winchell, mentioned on p. 3 also to the
various advanced text-books of Physics.

307. The Nature of Light. — Light is now considered to be an electro-
magnetic phenomenon due to a periodiclvariation in the energy given off by
vibrating electrons. This energy is transmitted by a series of periodic changes
that show all the characters of ordinary wave phenomena. The light waves,
as they are commonly called, possess certain short wave-lengths that are of the
correct magnitude to affect the optic nerves. Other similar waves with longer
or shorter wave-lengths belong to the same class of phenomena. Immediately
beyond the violet end of the visible spectrum come the so-called ‘“‘ultra-
violet”” waves with still shorter wave-lengths and on beyond these we have
the X-rays and the “gamma’” rays produced by radium. Of the waves
having greater lengths than those of light waves we have the waves that give
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rise to the sensation of heat and the Hertzian waves used in wireless. All of
these vibrations, while varying enormously in their wave-lengths, belong to
the same order of phenomena and obey the same laws. The proportion that
the section of the series which produces the effect of light bears to the whole
may be strikingly shown when we say that if ordinary white light is broken up
into a spectrum a yard long and this then considered to be extended on either
end so as to include all known electro-magnetic waves the entire spectrum
would be over five million miles in length.

The transmission of light through interstellar space, through liquids and
transparent solids, has for some time been explained by the assumption that
a medium, called the luminiferous ether, pervades all space, including the
intermolecular space of material bodies. In this medium the vibrations of
light waves are assumed to take place. For the purposes of the present work,
however, it is unnecessary to consider closely the exact nature of light or the
mode of its transmission. It will assist greatly, however, in obtaining a clear
idea of the behavior of light in crystals if we assume that light waves are me-
ehanical in nature and consist of periodic vibrations in an all-prevailing ether.

308. Wave-motion in General. — A familiar example of wave-motion
is given by the series of concentric waves which on a surface of smooth water
go out from a center of disturbance, as the point where a pebble has been
dropped in. These surface-waves are propagated by a motion of the water-
particles which is transverse to the direction in which the waves themselves
travel; this motion is given from each particle to the next adjoining, and so
on. Thus the particles of water at any one spot oscillate up and down,*
while the wave moves on as a circular ridge of water of constantly increasing
diameter, but of diminishing height. The ridge is followed by a valley,
indeed both together properly constitute a wave in the physical sense. This
compound wave is followed by another wave and another, until the original
impulse has exhausted itself.

Another familiar kind of wave-motion is illustrated by the sound-waves
which in the free air travel outward from a sonorous body in the form of
concentric spheres. Here the actual motion of the layers of air is forward
and back — that is, in the direction of propagation of the sound — and the
effect of the transfer of this impulse from one layer to the next is to give rise
alternately to a condensed and rarefied shell of air, which together constitute
a sound-wave and which expand in spherical waves of constantly decreasing
intensity (since the mass of air set in motion continually increases). Sound-
waves, as of the voice, may be several feet in length, and they travel at a rate
of 1120 feet per second at ordinary temperatures.

309. It isimportant to understand that in both the cases mentioned, as in
every case of free wave-motion, each point on a given wave may be considered
as a center of disturbance from which a system of new waves tend to go out.
These individual wave-systems ordinarily destroy each other except so far as
the onward progression of the wave as a whole is concerned. This is further
discussed and illustrated in its application to light-waves (Art 312 and Figs.
509, 510).

In ge)neral, therefore, a given wave is to be considered as the resultant of
all these minor wave-systems. If, however, a wave encounters an obstacle in
its path, as a narrow opening (i.e., one narrow in comparison with the length

* Strictly speaking, the path of each particle approximates closely to a circle.
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of the wave) or a sharp edge, then the fact just mentioned explains how the
waves seem to bend about the obstacles, since new waves start from them as
centers. This principle has an important application in the case of light-
waves, explaining the phenomena of diffraction (Art. 331).

310. Still another case of wave-motion may be mentioned, since it is particularly help-
ful in giving a correct apprehension of light-phenomena. If a long rope, attached at one
end, be grasped at the other, a quick motion of the hand, up or down, will give rise to a half
wave-form — in one case a crest, in the other a trough — which will travel quickly to the
other end and be reflected back with a reversal in its position; that is, if it went forward
as a hill-like wave, it will return as a trough. If, just as the wave has reached the end, a
second like one be started, the two will meet and pass in the middle, but here for a brief
interval the rope is sensibiy at rest, since it feels two equal and opposite impulses. This
will be seen later to be a case of the simple interference of two like waves oplposed in phase.

Again, a double motion of the hand, up and down, will produce a complete wave, with
crest and trough, as the result, and this again is reflected back as in the simpler case. Still
again, if a series of like motions are continued rhythmically and so timed that each wave
is an even part of the whole rope, the two systems of equal and opposite waves passing in
the two directions will interfere and a system of so-called stationary waves will be the
result, the rope seeming to vibrate in segments to and fro about the position of equilibrium:

Finally, if the end of the rope be made to describe a small cirele at a rapid, uniform,
rhythmical rate, a system of stationary waves will again result, but n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>