
-

ILLINOIS STATE LABORATORY OF NATURAL HISTORY LIBRARY

MATURAL HISTORY SURVEY

550.5 FI v.3, cop.2

SI

REMOTE

Eq.

E144 3 .

.

Field Columbian Museum Publication 120

GEOLOGICAL SERIES

Vol. III, No. 5.

ANALYSES OF IRON METEORITES COMPILED AND CLASSIFIED

BY OLIVER CUMMINGS FARRINGTON, Curator, Department of Geology

CHICAGO, U. S. A. March 1, 1907.

-

•

ANALYSES OF IRON METEORITES COMPILED AND CLASSIFIED

BI

OLIVER CUMMINGS FARRINGTON

Chemical analyses may be collected and grouped for purposes of record and of comparison. For the first purpose it is desirable that all known analyses of the substances under consideration be collected; for the second, only those known to be complete and reliable are needed. A combination of these two purposes may perhaps be gained, however, by collecting all analyses and leaving to the judgment of the investigator the selection of those suited for the study of any particular phase of the subject. This plan is practically that which has been adopted in presenting the analyses here collected. In many cases obviously incomplete analyses are given because they represent all that is known of the chemical constitution of the meteorite in question, or because they mark a stage in its study. On the other hand, analyses which amount to little more than a qualitative determination of the presence of iron and nickel, or whose connection with a particular meteorite is uncertain, are omitted. About three hundred and sixty analyses are here included, and it is believed that they comprise practically all of importance that have been made of iron meteorites. When more than one analysis of a meteorite is given, the analyses have been arranged chronologically. For the most part the later analyses are the most complete and reliable ones, though this is not always the case. Thus those by J. Lawrence Smith, although made thirty and in some cases forty years ago, accord well with what is known of the constitution of the iron meteorites at the present day and may be considered generally accurate and reliable. The same is true of analyses by Jackson, Berzelius, Damour, and others. As shown later, the relations between structure and composition brought out by the analyses as here grouped are so definite that at the present time a knowledge of the structure of a meteorite will give a more accurate idea of its composition than inferior chemical analyses. The general plan of arrangement which has been adopted

for the analyses is that now generally known as the Rose-Tschermak-Brezina classification. This seemed the classification most desirable to employ on account of its wide use, and when it was found, as will be seen by the tables, that the chemical constitution of the meteorites follows its main divisions, its adaptation to the work in hand seems unquestionable. Under each group of the classification the arrangement of the meteorites is alphabetical. Synonyms of the meteorite names will be found on subsequent pages. The characterization of the meteorite groups which head the tables have largely been summarized from Cohen.* In considering the analyses it should be realized that some of the groups are much better known than others. Thus the ataxites and hexahedrites were thorougly studied by Cohen and their composition satisfactorily determined. The fine octahedrites have also been mostly investigated. The coarse and medium octahedrites, however, though more numerous than the groups just mentioned, are but imperfectly known and need detailed modern study. In a list following the tables meteorites of which no analysis is known are marked with an asterisk. These number about forty. In addition, many meteorites, analyses of which are reported in the tables, have never in fact been properly studied. The only extensive list of analyses of iron meteorites which has lately been previously compiled of which the writer is aware is that of Wadsworth, published in 1884.⁺ This list includes one hundred and ninety-three analyses of iron meteorites and terrestrial irons, arranged in order of the per cent of nickel. No further attempt at classification is made. While Wadsworth's list is fairly complete as regards older analyses, it includes several pseudo-meteorites, and obviously does not ade. quately represent present knowledge.

The first recorded attempt at analysis of an iron meteorite is probably to be found in the examination in 1802, by Count de Bournon,[‡] of some so-called native irons from Bohemia, Senegal, and South America. In these Count de Bournon found percentages of nickel ranging from five to ten per cent, but it is stated by Howard elsewhere in the paper that owing to lack of knowledge of the peculiarities of nickel these figures are little more than estimates. The next year Klaproth § reported one and one-half to three and one-half per cent of nickel in the iron meteorite of Hraschina, and expressed the opinion that the presence of nickel might serve as a criterion for

* Meteoritenkunde, Heft III.

† The Rocks of the Cordilleras, Memoirs Museum Comparative Zoölogy, Cambridge, Mass , Vol. XI, Part I, pp. vi-xvi, Table II.

‡ Phil. Trans. Roy. Soc., London, 1802.

§ Abhandl. Akad. Wiss., Berlin, 1853, 21-41.

judging the meteoric origin of a body. Cobalt was reported by Stromeyer in the iron meteorite of Cape of Good Hope in 1816,* and copper by the same investigator in 1833.⁺ Stromever expressed the belief that copper was, with cobalt, a constant ingredient of meteoric nickel-iron, and this conclusion was later corroborated by Smith ton the basis of more than one hundred analyses. Chromium was discovered as a component of meteoric nickel-iron by Laugier in 1817.\$ The presence of manganese and tin in meteoric nickel-iron was also early reported. The presence of other metals or semi-metals reported at different times, such as zinc, lead, arsenic, and antimony, has not been confirmed, while the presence of aluminum, calcium, magnesium, potassium, and sodium, noted by several analysts, is doubtless to be referred to small quantities of silicates which either formed a constituent of the meteorite, as in Tucson, Tula, etc., or accidentally contaminated the material analyzed. The occurrence of phosphorus in meteoric nickel-iron seems first to have been noted by Berzelius | in the undissolved residue of Bohumilitz. It was similarly reported by analysts who followed Berzelius, but percentages were not commonly given until later times. Sulphur was early noted as an ingredient of meteoric stones and later of irons. Since it occurred as a soluble constituent, it was more often reported in the early analyses than phosphorus. The presence of carbon as graphite was noted by Tennant[¶] in 1806 in the Cape of Good Hope meteorite. Being, like the phosphides, insoluble, its presence was often later reported in insoluble residues, but its amount was rarely given. Silicon, as reported in the earlier analyses, whether as metal or oxide, is probably for the most part to be referred to accessory silicates. With later methods, however, its detection in small quantities as an ingredient of the nickel-iron has become possible. The first detection of chlorine as an essential constituent of iron meteorites seems to have been by Jackson in 1838,** in the meteorite of Limestone Creek. Its presence has been occasionally but not commonly reported by later analysts. Determinations of specific gravity of the iron meteorites examined seem to have been common. While these are probably for the most part fairly reliable, some of the values reported are too anomalous to seem trustworthy.

- * Gottingische Gelehrte Anzeigen, 1816, 2041-2043.
- † Gottingische Gelehrte Anzeigen, 1833, 369-370.
- ‡ Am. Jour. Science, 1870 (2), 49, 332.
- Ann. Chem. Pharm., 1817, IV, 363-366. Pogg. Ann., 1832, XXVII, 128-132.
- Tillochs Phil. Mag., London, 1806, XXV, 182.
- ** Am. Jour. Science (1), 34, 332-337.

IRON METEORITES.

These are meteorites consisting essentially of nickel-iron. Most of them contain, in addition, an appreciable amount of sulphides, carbides, and phosphides, but the presence of silicates in quantity removes a meteorite from this class. The iron meteorite of Tucson contains about five per cent of forsterite, and the meteorites of Kodaikanal, Persimmon Creek, and Tula also contain silicate aggregates, but in small quantities. In general, it may be said that if the quantity of silicate grains exceeds five per cent the meteorite is not considered as belonging to the class of iron meteorites. About two hundred and fifty iron meteorites are now recognized, the exact number being indeterminate on account of differences of opinion as to identity of origin in several cases. The chief divisions of iron meteorites, according to the Rose-Tschermak-Brezina classification, are hexahedrites, octahedrites, and ataxites. These are sub-divided as follows:

CLASSIFICATION OF IRON METEORITES ACCORDING TO ROSE, TSCHERMAK, BREZINA, AND COHEN

- I. Hexahedrites.
 - A. Normal hexahedrites.
 - B. Brecciated hexahedrites.

II. Octahedrites.

- A. Normal octahedrites.
 - 1. Coarsest octahedrites.
 - 2. Coarse octahedrites.
 - 3. Medium octahedrites.
 - 4. Fine octahedrites.
 - a. Prambanan group.
 - b. Rodeo group.
 - 5. Finest octahedrites.
 - a. Salt River group.
 - b. Tazewell group.
 - c. Cowra and Victoria West.
- B. Hammond octahedrites.
- C. Brecciated octahedrites.

III. Ataxites.

- A. Nickel-poor ataxites.
 - 1. Siratik group.
 - 2. Nedagolla group.
 - 3. Rafruti group.

- B. Nickel-rich ataxites.
 - 1. Smithland group.
 - 2. Cristobal group.
 - 3. Octibbeha.
- C. Ataxites with forsterite.
- D. Ataxites with cubic streaks.

The iron meteorites enumerated according to groups sum up as follows:

Octahedrites:

Coarsest 13
Coarse
Medium 98
Fine
Finest
Brecciated 6
Hammond 3
Unclassified4
201
Ataxites
Hexahedrites
Total

ALPHABETICAL LIST OF IRON METEORITES.

The following is an alphabetical list of iron meteorites, showing the classification of each. An asterisk indicates that no analysis of the meteorite is reported.

Abert IronMedium octahedrite	Bald EagleMedium octahedrite
*AdargasMedium octahedrite	Ballinoo
Algoma	Barranca BlancaBrecciated octahe-
Alt BielaFine octahedrite	drite
*Amates Medium octahedrite	Beaconsfield Coarse octahedrite
AngaraMedium octahedrite	Bear CreekFine octahedrite
*ApoalaFine octahedrite	Bella RocaFine octahedrite
ArispeCoarsest octahedrite	BendegoCoarse octahedrite
Arlington	BethanyFine octahedrite
Asheville Medium octahedrite	Billings Coarse octahedrite
Auburn Hexahedrite	BingeraHexahedrite
Augustinowka Fine octahedrite	BischtubeCoarse octahedrite
	Black MountainCoarse octahedrite
Babb's MillAtaxite	*Blue Tier Medium octahedrite
Bacubirito Finest octahedrite	BohumilitzCoarse octahedrite

64 FIELD COLUMBIAN MUSEUM - GEOLOGY, VOL. III.

.

	Madium astal advite
BoogaldiFine octahedrite	*Dellys
BotetourtAtaxite	Denton County Medium octahedrite
BraunauHexahedrite	Descubridora Medium octahedrite
Bridgewater Fine octahedrite	De SotovilleHexahedrite
Buckeberg Fine octahedrite	Duell Hill Coarse octahedrite
Burlington	Elbogen Medium octahedrite
Butler Finest octahedrite	El Capitan
Cabin Creek Medium octahedrite	*El Tule
	*Emmitsburg , Medium octahedrite
drite	
Cachiyuyal	Forsyth CountyAtaxite
Cambria Fine octahedrite	Fort DuncanHexahedrite
Campo del CieloAtaxite	Fort Pierre Medium octahedrite
CantonCoarsest octahedrite	Franceville Medium octahedrite
Canvon DiabloCoarsest octahédrite	Frankfort Medium octahedrite
Canyon CityCoarse octahedrite	
Cape of Good Hope . Ataxite	Glorieta
Caperr	Grand RapidsFine octahedrite
	Greenbrier County Coarse octahedrite
Cape York	Groslee
Carlton	Guilford CountyMedium octahedrite
Carthage	Hammond
Casas Grandes Medium octahedrite	drite
*Casey CountyCoarsest octahedrite	
Central MissouriCoarsest octahedrite *ChañaralCoarse octahedrite	Hassi Jekna
*Charcas	
	Hex River
*Chambord	Holland's Store Hexahedrite
Charlotte Fine octahedrite	Hopewell MoundsMedium octahedrite
ChestervilleAtaxite	Hopper
*Chichimeguilas ChilkootMedium octahedrite	
Chulofanao Madium octahedrite	
Chunadanaa Fino octahodrito	² *IlimaeMedium octahedrite
Chupaderos Fine octahedrite Cincinnati Ataxite	Illinois GulchAtaxite
Cleveland	Indian ValleyHexahedrite
Coahuila	Iquique Ataxite
Colfax	IredellHexahedrite
Coopertown	IvanpahMedium octahedrite
Cosby CreekCoarse octahedrite	*Jackson County Medium octahedrite
Costilla	Jamestown
Cowra	Jennie's Creek Coarse octahedrite
*Cranberry PlainsOctahedrite	Jewel HillFine octahedrite
CranbourneCoarse octahedrite	Joel's Iron
Cuba	Joe Wright
Cuernavaca	JonesboroFine octahedrite
Cuernavaea	Juncal
Dalton	
Deep Springs Ataxite	. Kendall CountyHexahedrite
DehesaAtaxite	Kenton County Mediumoctahedrite

.

*KodaikanalFine octahedrite KokomoAtaxite KokstadMedium octahedrite	Orange RiverMedium octahedrite *OrovilleMedium octahedrite Oscuro MountainsCoarse octahedrite
La Caille Medium octahedrite Lagrange Fine octahedrite Laurens County Finest octahedrite Lenarto Medium octahedrite Lexington County Coarse octahedrite Lick Creek Hexahedrite Linwestone Creek Ataxite Linville Ataxite Locust Grove Ataxite *Lonaconing Coarse octahedrite Losttown Medium octahedrite *Lucky Hill Medium octahedrite Luis Lopez Medium octahedrite	Pan de AzucarCoarse octahedrite *Persimmon CreekBrecciated octahed- rite Petropawlowsk Medium octahedrite PittsburgCoarsest octahedrite PlymouthMedium octahedrite Ponca CreekCoarsest octahedrite PrambananFine octahedrite PrimitivaAtaxite PuquoisMedium octahedrite Putnam CountyFine octahedrite QuesaFine octahedrite
*Madoc Fine octahedrite Magura Coarse octahedrite Mantos Blancos Finest octahedrite Marshall County Medium octahedrite Mart Finest octahedrite Matatiela Medium octahedrite Mazapil Medium octahedrite Merceditas Medium octahedrite *Moctezuma Medium octahedrite *Mooranoppin Coarsest octahedrite Moonbi Fine octahedrite Morito Medium octahedrite Morito Medium octahedrite *Mount Joy Hexahedrite *Mount Stirling Coarse octahedrite *Mount Stirling Coarse octahedrite Mungindi Finest octahedrite Mungindi Finest octahedrite Murfreesboro Medium octahedrite	RafrutiAtaxite *Rancho de la Pila. Medium octahedrite RasgataAtaxite Red RiverMedium octahedrite Reed CityHammond octahed- rite Rhine ValleyMedium octahedrite RodeoFine octahedrite RoebourneMedium octahedrite *RosarioOctahedrite RowtonMedium octahedrite Ruff's MountainMedium octahedrite Russel GulchFine octahedrite Sacramento Moun- tainsMedium octahedrite St.Francois County.Coarse octahedrite St.Genevieve Coun- tyFine octahedrite
 *Nagy-Vazsony Medium octahedrite Narraburra Creek. Finest octahedrite Nedagolla Ataxite Nejed Medium octahedrite Nelson County Coarsest octahedrite Nenntmannsdorf. Ataxite N'Goureyma Brecciated octahe- drite Niagara Coarse octahedrite *Nochtuisk Coarse octahedrite *Nochtuisk Coarse octahedrite *Nocoleche Medium octahedrite Oktibbeha County Ataxite 	Salt RiverFinest octahedrite San AngeloMedium octahedrite San CristobalAtaxite San Francisco del MezquitalAtaxite *Santa Apolonia Santa RosaBrecciated octahe- drite Sao JuliaoCoarsest octahedrite SareptaCoarse octahedrite SchwetzMedium octahedrite ScottsvilleHexahedrite SeelasgenCoarsest octahedrite SeelasgenCoarsest octahedrite SeelasgenCoarsest octahedrite

Shingle SpringsAtaxite *Sierra BlancaCoarse octahedrite	TulaBrecciated octahe- drite
Silver CrownCoarse octahedrite SiratikAtaxite SmithlandAtaxite	*Union CountyCoarsest octahedrite Ute PassCoarsest octahedrite
Smith's MountainFine octahedrite SmithvilleCoarse octahedrite	VarasFine octahedrite VictoriaMedium octahedrite
Ssyromolotow Medium octahedrite	Victoria WestFinest octahedrite
Staunton	*Wallen's RidgeCoarse octahedrite Walker CountyHexahedrite
Surprise SpringsMedium octahedrite	WeaverAtaxite WellandMedium octahedrite
TabarzCoarse octahedrite *TajghaMedium octahedrite	*Werchne Dniep-
*Tanogami Medium octahedrite Tazewell Finest octahedrite	rowskFinest octahedrite Werchne UdinskMedium octahedrite
*TeocalticheOctahedrite TerneraAtaxite	Wichita CountyCoarse octahedrite WillametteMedium octahedrite
Thunda	Wooster
*TlacotepecOctahedrite	YanhuitlanFine octahedrite Yardea StationMedium octahedrite
Toluca	*York
Toubil	ZacatecasBrecciated octahe-
TucsonAtaxite	drite

SYNONYMS.

The following are synonyms of the iron meteorites given in the preceding list:

Aeriotopos	. Bear Creek
Agram	. Hraschina
Ainsa	.Tucson
Albuquerque	
Allen County	.Scottsville
Amakaken	
Arva	
Atacama, 1858	0
Atacama, 1874	· · · · · · · · · · · · · · · · · · ·
Augusta County	
Pahia	Pondaga
Bahia	
Baird's Farm	.Asheville
Bates County	. Butler
Batesville	Joe Wright
Bonanza	.Coahuila
Brazos River	Wichita

Butcher Iron.....Coahuila

CailleLa Caille
Caney ForkCarthage
Carleton IronTucson
Catorze Descubridora
Chatooga County Holland's Store
Cherokee County, 1867. Losttown
Cherokee County, 1894. Canton
ChilkatChilkoot
Claiborne Lime Creek
Cocke CountyCosby Creek
ConcepcionAdargas
Cross Timbers Red River
Crow CreekSilver Crown
DakotaPonca Creek
EllenboroColfax •
Floyd CountyIndian Valley

•

Floyd MountainIndian Valley	MukeropBethany
Great Fish RiverBethany	NetschaevoTula
Green CountyBabb's Mill	ObernkirchenBuckeberg
Hamilton CountyCarlton	Oldham County La Grange
Hastings County Madoc Hauptmannsdorf Braunau	Penkarring RockYoundegin
Henry County, 1857Locust Grove Henry County, 1889Hopper	RanchitoBacuburito
HondurasRosario	SaltilloCoahuila
Howard CountyKokomo	Sanchez EstateCoahuila San GregorioMorito
Independence County. Joe Wright	SaskatchewanVictoria
IndependenceKenton County	SenegalSiratik
Iron CreekVictoria	Serrania de VarasVaras
Johnson CountyCabin Creek	Sierra de la TerneraTernera
KnoxvilleTazewell	Southeast MissouriSt. Francois County
Knoxvine I azewen	TeposcolulaYanhuitlan
La PrimitivaPrimitiva	TocavitaSanta Rosa
Lea IronCleveland	Tombigbee RiverDe Sotoville
Lime Creek, 1832Walker County	TucumanCampo del Cielo
Lime Creek, 1834Limestone Creek	Waldron's Pidgo Wallon's Pidgo
Lion RiverBethany	Waldron's Ridge Wallen's Ridge
LockportCambria	White Sulphur SpringsGreenbrier County
Miller's RunPittsburg	Whitfield CountyDalton
MuchachosTucson	Wohler's IronCampo del Cielo

ANALYSES OF IRON METEORITES.

I. HEXAHEDRITES.

The hexahedrites are characterized by cubic cleavage and Neumann lines. They consist of the single alloy kamacite, the composition of which, Fe_{14} Ni, shows a close approximation to the iron-nickel content of the hexadedrites. The content of phosphorus in the hexahedrites is usually relatively high, $\frac{1}{2}$ to $\frac{1}{2}$ per cent. This appears char-

NORMAL

in-sol. Name. Fe. Ni. Co. Cu. Cr. Р. S. С Si. C1. Miscellaneous 3.0113 .52 " 4.67 1.03 .101 .024 .16 .002 5.52 2.07 .53 " .08 5.21 .02 07 1.05 .24 .00 Coahuila 01.82 5.62 .60 tr. .20 .06 Mg. tr. 2.10 tr. tr. tr. .48 tr. .02 4.79 .60 04 tr. .18 tr. 3.26 .55 7.12 . 50 .27 De Sotoville...... 05.02 .16 1.11 .10 tr.32 64 4 82 .06 05.14 .05 .0I .20 4.32 | .69 .01 .20 .07 95.41 4.04 .74 .02 . . .01 .14 .05 Fort Duncan 01.00 1.87 tr. tr. .23 02.02 6.10 1.80 ... 44 7.03 92.58 6.66 1.7328 .01 94.65 4.82 1.07 ,01 .01 .23 .32 3.11 .42 57 3.18 tr. .24 .35

acteristically in the hexahedrites in the form of rhabdite, and often constitutes 1½ to 3 per cent of their mass. Another characteristic mineral of the hexahedrites is daubreelite. Graphite and troilite are rare, although the latter mineral occurs in some members of the group in visible nodules. The hexahedrites may be divided into normal and brecciated hexahedrites, according to whether they are one or several individuals.

A. NORMAL HEXAHEDRITES.

In these hexahedrites the cleavage planes and Neumann lines run without change of direction throughout the mass.

HEXAHEDRITES.

Loss	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		98.24	77.17	C. U. Shepard	1869, A. J. S. (2), XLVII, 230-233
		100.77		O. Hildebrand	1905, Meteoritenkunde, 111, 217
		100.00	7.782	Dutlos & Fischer	1847, Ann. Phy. Chem., LXXII, 475-480
	.02	100.30	7.8516	R. Knauer	1905, Meteoritenkunde, III, 207
		101.39	7.8678	E. Cohen	1894, Meteoreisen-Studien A. N. H., IX, 104
		100.00	7.825	C. U. Shepard	1867, A. J. S. (2), XLIII, 385
		100.07	7.692	J. L. Smith	1869, A. J. S. (2), XLV11, 385
		100.22		O. Bürger	1905, Meteoritenkunde, III, 194
		100.935		H. Wichelhaus	1863, Ann. Phy. Chem., CXVIII, 631-634
		100.05		N. F. Lupton	1885, A. J. S. (3), XX1X, 233
·		100.01		J. E. Whitfield	1899, A. J. S. (4), VIII, 154
		100.37		R. Knauer	1905, Meteoritenkunde, III. 213
		100.50		Hildebrand & Cohen	Same
		100.46		Knauer & Cohen	Same
· • • • •	• • • • • • • •	100.00	7.522	J. B. Mackintosh	1886, A. J. S. (3), XXXII, 306
		99.92	7.699	Meunier	1887, C. R., CIV, 872-873
· • • • •		98.93	7.72		1893, B. S. H. N., VI, 17
		100.26		E. Cohen	1889, Neues Jahrb., 227
	02	101.19	7.84	O. Hildebrand	1905, Meteoritenkunde, 111, 194
	•	100.14	8.13	F. A. Genth	1854, A. J. S. (2), XVII, 239-240
	· ·····	99.59	7.81	J. L. Smith	1855, A. J. S. (2), XIX, 160-161

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	C.	Si.	Cl.	ln- sol.	Miscellaneous.
Hex River	93.33	5.58	. 84					•••••				
" "	93.59	5.68	.66	.04	.02	.23	.08	••••	••••		.03	
Iredell	93.75	5.51	. 52			.20	.06		••••			
Lick Creek	93.00	5.74	.52	tr.	••••	. 36	tr.		••••	tr.		•••••
Murphy	93.93	5.52	.61	.02	••••	· 34		.04	•••••	.06		•••••
Scottsville	94 - 32	5.01	tr.	• • • •		. 16	· 34	.12	••••			•••••
"	93.14	5.73	• 99	.10	••••	. 15					.02	•••••
••	94.03	5.33	• 95	.04	.02	.23	.07		••••		.01	
Walker County	94.14	5.30	.64	.06	.05	.28	.19					

B. BRECCIATED HEXAHEDRITES.

These hexahedrites are characterized by a structure which gives them the appearance of being aggregates of individual grains. Not only do apparent outlines of grains occur, but the directions of the Neumann lines are different on the different grains. The size of the grains differs in different falls, but is fairly uniform for meteorites of the same fall. The contour of the grains may be rounded, polygonal, elongated, or ragged, and as a rule the grains are sharply separated from one another. When the divisions between grains widen to a cleft, some accessory constituent usually occupies the gap. Accessory minerals are not, however, abundant. The presence of dau-

BRECCIATED

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Ρ.	s.	С.	si.	C1.	In- sol.	Miscellaneous.
Bingera	93.76	4.39	. 57			.23		.14		•••••	- 54	Na. tr.
"	93.50,	5.54	.51	.01	• • • •	.26		.03	.01	•••••	••••	8a02 Mn. Pt.Ir.tr.
Holland's Store	93.06	5.35	I.00	••••	. 23	. 31	.08			••••	.08	
"	94.60	4.97	.21	••••		.21	tr.	tr.		••••		
Indian Valley	93.59	5.56	.53	tr.		.27	.01		tr.			
Kendall County	92.65	5.64	.78	.03	.01	•34	.03	1.62		.01		
Mount Joy	93.80	4.81	. 51	.005	• • • •	.19	.01					
Summit	93.39	5.62	.58		••••	.31						

	1				
Loss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
	.94	100.69		Cohen & Weinschenk	1891, Meteoreisen-Studien A. N. H., VI, 143
		100.43	7.8225	R. Knauer	1905, Meteoritenkunde, III, 225
		100.04		J. E. Whitfield	1899, A. J. S. (4), VIII, 415-416
		99.62	•••••	Smith & Mackintosh	1880, A. J. S. (3), XX, 324-326
		100.52	7.7642	J. Fahrenhorst	1900, Meteoreisen-Studien A.N.H., XV, 368
		99.95	7.848	J. E. Whitfield	1887, A. J. S. (3), XXXIII, 500
		100.13		Fischer	1889, Neues Jahrb., I, 227
		100.68	7.7959	R. Knauer	1905, Meteoritenkunde, III, 220
		100.66	7.7806	O. Hildebrand	1905, Meteoritenkunde, III, 173

breelite has not been noted, and schreibersite is not common, either in nodules or as rhabdite. The view that the brecciated hexahedrites are aggregates is not accepted by Brezina, except in the case of Kendall County. He regards the structure and cleavage of the other members of the division as uniform, and explains the varying orientation as caused by twinning. Mount Joy, placed by Berwerth, Cohen, and Brezina among the coarsest octahedrites, because of an apparent octahedral structure observed by Berwerth, seems to the present writer to belong more properly to the hexahedrites. In composition and structure it agrees fully with the hexahedrites, and it shows no trace of cohenite, a characteristic mineral of the coarse octahedrites. Its individual grains are the largest of any of the following group:

HEXAHEDRITES.

JO88.	Undet.	Total.	Sp Gr.	Analyst.	Reference.
		99.63	7.834-7.849	A. Liversidge	1882, Proc. Roy. Soc. N. S. W., XVI, 31-34
		99.88	7.761	J. C. H. Mingaye	1904, Rec. Geol. Sur. N. S. W., VII, 308-310
	•••••	100.11		Zaubitzer	1905, Meteoritenkunde, III, 240
		99.99	7.801	J. E. Whitfield	1887, A. J. S. (3), XXXIV, 472
		99.96	7.95	L. G. Eakins	1892, A. J. S. (3), XLIII, 424
		101.11		Scherer	1900, Meteoreisen-Studien, A. N. H., XV, 387
		99.33		L. G. Eakins	1892, A. J. S. (3), XLIV, 416
		99.90	6.949	F. P. Venable	1890, A. J S. (3), XL, 322
		•	1		

FIELD COLUMBIAN MUSEUM - GEOLOGY, VOL. III.

II. OCTAHEDRITES.

The meteorites of this class are the most abundant among iron meteorites. According to the width of the lamellæ as seen in etched sections, they are divided as follows: Coarsest octahedrites, lamellæ, many mm. to 2.5 mm. in width; coarse octahedrites, lamellæ 2-1.5 mm. in width; medium octahedrites, lamellæ 1.0-0.5 mm. in width; fine octahedrites, lamellæ 0.4-0.2 mm. in width; finest octahedrites. lamellæ from 0.2 mm. down. While no sharp line of separation can be drawn between these groups, the members of each group present as a rule characters more or less peculiar to themselves. As compared with the hexahedrites, the octahedrites differ in structure in being made up of lamellæ arranged in accordance with the planes of the octahedron. These lamellæ in turn are composed of two or more alloys of nickel-iron. In composition a higher percentage of nickelcobalt may be noted among the octahedrites, as compared with the hevahedrites, and schreibersite and troilite are far more abundant than in the hexahedrites. Cohenite, which is not known to occur in the hexahedrites, is characteristic of certain groups of the octahe-

COARSEST

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	C.	Si.	C1.	In- sol.	Miscellaneo	ous.
Arispe	92.27	7.04											
Canyon Diablo	95.370	3.915				. 144	tr		tr.		. 26		••••
	91.396	7.94			••••	.179	.004	.417	.047				i
Canton	91.96	6.70	. 50	.03		. I 1	.01		tr.				
Central Missouri	94.73	4.62	. 18			.44	.02	.01					
Nelson County	93.10	6.11	.4I	tr.		.05			• • • • •	• • • • •		• • • • • • • • • • • • •	••••
Pittsburg	92.81	4.66	. 39	.03		.25	.04			• • • • •		Mn	.14
	93.38	5.89	I.24	.05	.02	.15	.07	••••		<i>.</i>		Chromite .	.07
Ponca Creek	91.74	6.53	••••			.01			• • • • • •	· • · · ·		Sn	.06
	91.74	7.08				.01						Sn	.06
São Julião	89.39	8.	27	tr.	••••	. 26		•••••			····		••••
Seeläsgen	90.00	5.31	.43	. 10	••••			••••	1.16		. 83	Mn	.91
"	92.33	6.23	.67				••••	.52	.02		.18	Cu. + Sn	.05

drites, while graphite and diamond are also largely confined to the octahedrites. Daubreelite and chromite, which are common constituents of the hexahedrites, are rare in the octahedrites. The nickel-cobalt content of the octahedrites varies from $5\frac{1}{2}$ to $15\frac{1}{2}$ per cent.

A. NORMAL OCTAHEDRITES.

In the normal octahedrites the lamellar structure extends without change of direction, except for occasional curving, through the individual. This is true even for large masses like those of Charcas, Chupaderos, and Willamette.

I. COARSEST OCTAHEDRITES.

Width of lamellæ from many millimeters down to 2.5 mm. The nickel-cobalt content is as a rule slightly higher than in the hexahedrites, reaching in some cases 7 per cent. The presence of cohenite and graphite is characteristic of the group. Canyon Diablo contains diamond. The octahedral structure and presence of lamellæ is often difficult to discern, so that some members of the group have been classed as hexahedrites.

Joss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		99.31	7.853	J. E. Whitfield	1902, Proc. Roch. Acad. Sci., IV, 85
		99.719	7.703	H. Moissan	1904, Comptes Rendus, CXXXIX, 776
• • • •		99.983		Booth,Garrett & Blair	1905, Proc. Phil. Aca. Sci., LVII, 875
		99.31		H. N. Stokes	1895, A. J. S. (3), L, 252-4
• • • • •		100.00		Mariner & Hoskins	1900, A. J. S. (4), IX, 286
		99.67		J. L. Smith	1860, A. J. S. (2), XXX, 240
		98.32	7.74	F. A. Genth	1876, A. J. S. (3), XII, 72-73
••••	•••••	100.87		O. Hildebrand	1903, Mitt. f. Neu Vorp. u. Rügen, XXXV,4
	•••••	98.34	7.952	C. T. Jackson	1863, A. J. S. (2), XXXVI, 261
		98.89	7.952	** **	1863, A. J. S. (2), XXXVI, 261
• • • • •		97.92	7.783	C. v. Bonhorst	1888, Neues Jahrb., 372
• • • • •		98.74	7.63 -7.71	A. Duflos	1848, Ann. Phy. Chem., LXXIV, 61-65
• • • • •		100.00	7.73	C. Rammelsberg	1848, Ann. Phy. Chem., LXXIV, 443-448

)CTAHEDRITES.

2. COARSE OCTAHEDRITES.

Width of lamellæ 2.0-1.5 mm. The lamellar or octahedral struc-

Co	A	RS	EO
----	---	----	----

												COARDE
Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	с.	Si.	C1,	In- sol.	Miscellaneous.
Beaconsfield	92.56	7.34	.48	.02		.26	.04	.05		.01		•••••
Bendego	91.90	5.71				· · · · · ·					.46	•••••
"	88.46	8.	59	••••				.07				P. Fe. Ni 37
Billings	91.99	7.38	.42	.01		.15	.06	• • • • •	.08			
Bischtübe	93.39	6.48	. 87	.03	tr.	.05					.01	
Black Mountain	96.04	2.52			••••						1.44	
Bohumilitz	94.06	4.01					.81			••••		C. etc 1.12
"·····································	93.12	4.74	.23		••••						1.91	
"	94.77	3.81	.20								2.20	
Canyon City	88.81	7.28	. 17			. 12		•••••			••••	•••••
" "	91.25	7.85	.17			. 10				•••••		
Cosby Creek	87.00	12.00						. 50				
" " … ?	93.91	4.55									. 10	
	91.64	5.85	.81	*.22		.19			.08		• • • •	Mn.09 Graphite .80
	91.90	6.70	.33			.09	 		. 18			
** ** •••••	92.75	6 91	. 51	.02	.	•37			<i>.</i>			
Duell Hill	94.24	5.17	. 37	tr.		.14					. 15	
Greenbrier County	91.59	7.11	.60	tr.		.08						
Jennie's Creek	91.56	†8	. 31			.13					••••	
Lexington County	92.42	6.08	.93			tr.					. 26	Sn. tr
Magura?	93.62	5.68										
"	89.42	8.61										C. Cu. Si. Sch. 1.41
" ?	90.91	7.32							••••		••••	Co. C. Si., etc.,1.17
"	92.55	7.08	. 51	.02		.24	.02	.03		.01	••••	
Niagara	92.67	7.37	.13					••••			••••	
Oscuro Mountains.	90.79	7.66	• 57			.27		.07				
+0. 0 10	1.0										•	

*Cu. Sn. +By diff.

ture is more obvious than in the coarsest octahedrites, and the nickelcobalt content in some members slightly higher. Cohenite and graphite are characteristic and common ingredients.

100	$\mathbf{P} \rightarrow 1$	IT.	TP T	11	TT	TCC
JU.		ы.	ĽТ	лк.	11	ES.

.oss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		100.76		O. Sjöström	1897, Sitzber. Berl. Akad., 1047
. 93		100.00	7.73	Flickentscher	1863, Buchner, Meteorites, 144
.96		99.45	7.47	Wohler & Martius	1867, Phipson, Meteorites, 94
		100.09	••••	H. W. Nichols	1905, A. J. S. (4), XIX, 242
		100.82		Scherer & Sjöstrom.	1897, Meteoreisen-Studien, V,A.N.H., XII, 55
		100.00	7.261	C. U. Shepard	1847, A. J. S. (2), IV, 81–83
		100.00	7.15	J. Steinman	1830, A. J. S. (1), XIX, 384-386
		100.00		J. J. Berzelius	1833, Ann. Phy. Chem., XXVII, 118-132
		100.98	• • • • • • • • • • • • •	"	1853, A. J. S. (2), XV, 12
		96.38	7.1	C. U. Shepard	1885, A. J. S. (3), XXIX, 469
• ••		99.37	7.68	J. M. Davison	1904, A J. S. (4), XVII, 383
. 50		100.00		G. Troost	1840, A. J. S. (1), XXXVIII, 254
		98.56	6.22	C. U. Shepard	1842, A. J. S. (1), XLIII, 354–357
		99.68	•••••	С. А. Јоу	1853, Ann. Chem. Pharm., LXXXVI, 39-43
		99.20	7.26	C. Bergmann	1857, Ann. Phy. Chem., C, 254-255
		100.56		J. Fahrenhorst	1900, Meteoreisen-Studien, XI, A.N.H.W, 373
		100.07	7.46	B. S. Burton	1876, A. J. S. (3), XII, 439
	.12	99.50		L. Fletcher	1887, Min. Mag., VII, 183
		100.00	7.344	J. B. Mackintosh	1886, A. J. S. (3), XXXI, 147
		99.69	7.00-7.405	C. U. Shepard, Jr	1881, A. J. S. (3), XXI, 119
		99.30	7.814	A. Patera	1847, Östr. Blätt. f. Lit., No. 169,-670
		99.44	7.814	"	Same
		99.30	7.01-7.22	A. Löwe	1849, Neues Jahrb., 199
		100.46		J. Fahrenhorst	1900, Meteoreisen-Studien, XI, A.N.H.XV, 378
		100.07	7.12	J. M. Davison	1902, Jour. Geol., X, 518-519
		99.36		R. C. Hills	1897, Proc. Colorado Sci. Soc.
		,		,	,

FIELD COLUMBIAN MUSEUM-GEOLOGY, VOL. 111.

Name.	Fe.	Ni.	Co.	Cu	Cr.	Р.	S.	C.	Si.	C1.	In- sol.	Miscellaneous.
St. Francois County	92.10	2.60	tr.			tr.		tr.	tr.			Schreihersite5.0
66 66 66	92.68	6.97	. 52	.02		• 34	.01	· • • • •		.03	.01	
Sarepta	95.94	2.66		• • • •				••••	.02			8n.02 P.Fe.Ni. 1.32
Silver Crown	91.57	8.31	tr.			.07		tr.		••••	••••	
Smithville	91.57	7.02	.62	tr.	• • • •	. 18			••••		• • • •	Res.MaiolyCarb 1 5
Tabarz	92.76	5.69	•79			. 86			• • • • •		••••	P. Fe. Ni28
Wichita	89.99	10.01	tr.						••••	· • • • • •	••••	••••
Willamette	91.46	8.30	•••••									
"	91.65	7.88	.21			.09						•••••
Youndegin	92.67	6.46	- 5 5	tr.		.24					.04	Mg

3. MEDIUM OCTAHEDRITES.

Width of lamellæ 1.0-0.5 mm. More than one-third of the iron meteorites belong to this class. They present, as a rule, quite uniform characters. The lamellar structure is, as a rule, well-defined, and

MEDIUM

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	С.	Si.	C1.	In- sol.	Miscellaneo	ous.
Abert Iron	92.92	6.07	· 54									Schreibersite .	. 56
**	92.04	7.00	.68			.08	10.	.02		•••••		Graphite.	.03
Algoma	88.62	10.63	. 84			. 1 5	tr.		.02				
<u>Angara</u>	92.64	7.10		••••		. 16		tr.	.04	•••••	tr.	Ca. tr. Mg.	.06
Arlington	90.78	8.60	I.02	tr.	tr.	.05		tr.				••••	
Asheville	96.50	2.60						···· <u>·</u>	. 50	.20	••••		
Bald Eagle	91.36	7.56	.70			.09	. 06		tr.	••••	••••		
Burlington	92.29	8.14			• • • •					• • • • •			
"	05.20	2.13		••••					• • • • •	••••	. 50	S. & loss. 2	2.17
·	89.75	8.90	.62	tr.	••••			 Comb'nd	• • • • • •		. 70	Mn. tr.	
Cabin Creek	91.87	6.60	tr.			.41	.05	. 1 5	• • • • •	tr.	. 34		
Cachiyuyal	93.92	4.93	• 39			.08			. 20			Ca. Mg	. 30

Loss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		99.70	7.02-7.11	C. U. Shepard	1869, A. J. S. (2), XLVII, 233 234
		100.58	7.746	J. Fahrenhorst	1900, Meteoreisen-Studien,XI, A.N.H. XV,371
		99.96		J. Auerbach	1864, Sitz. Wien Akad., XLIX (2), 497
		99.95	7.63	H. L. McIlwain	1888, A. J. S. (3), XXXVI, 277
		99.54		O. W. Huntington	1894, Proc. Am. Acad. Arts & Sci., XX1X, 253
		100.38	7.74	W. Eberhard	1855, Ann. Chem. Pharm., XCVI, 286-289
		100.00		W. P. Riddell	1860, Trans. St. Louis Acad. (1), 623
		99.76		J.E. Whitfield	1904, Proc. Rochester Acad. Sci., IV, 148
		99.83	7.7	J. M. Davison	Same
		100.38		L. Fletcher	1887. Min. Mag., VII, 125
-			1		

the three alloys—kamacite, taenite, and plessite—are usually present. Among accessory constituents, troilite and schreibersite predominate. These are often in the form of nodules of appreciable size.

OCTAHEDRITES.

Loss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		100.09	7.589	C. U. Shepard, Jr	1876, A. J. S. (3), XII, 119
		99.86	7.89	R. B. Riggs	1887, Bull. U. S. Geol. Sur. VIII, 94–97
		100.26	7.75	A. A. Koch	1903, Bull. Geol. Soc. Amer. XIV, 104
		100.00		M. A. Gobel	1874, Bull. St. Petersburg Akad. XIX, 544-54
		100.45		F. F. Sharpless	1896, Amer. Geol. XVIII, 270
		99.80	6.50-7.50	C. U. Shepard	1839, A. J. S. (1), XXXVI, 81-84
		99.77	7.06	W. G. Owens	1892, A. J. S. (3), XLIII, 423-424
		100.43		C. H. Rockwell	1844, A. J. S. (1), XLVI, 402
		100.00		C. U. Shepard	1847, A. J. S. (2), IV, 77-78
		99.97	7.72	W. S. Clark	1852, Metallic Meteorites, 61-62
		c9.42	7.837	J. E. Whitfield	1887, A. J. S. (3), XXXIII, 500
		99.82		J. Domeyko	1875, Comptes Rendus, LXXXI, 597

Name.	Fe.	Ni.	Co.	Cu,	Cr.	Р.	S.	с.	Si.	C1.	In- sol.	Miscellaneous.
Caperr	80.87	9.33	.53	tr.	tr.	.24						
Cape York		8.18	.54			. 18	.10	. 15				
"		7.94	. 53			. 19	.01	.04				
Carthage		7.72	.25			.00	.40		.60	tr.		1.19
Casas Grandes		4.38	.27	tr.		.24		tr.				
"	1	7.26	. 94	• . •	.03	.18	.02					Chromite03
Chilkoot	92.56	7.11	.12	tr.		.12	10.	tr.				
Chulafinnee	1	7.37	. 50			.17						
Cleveland	80.50	8.79	.67	.12		. 32	.006					
Colfax		10.31	. 57			. I Q	.00		.02			
"		10.37	.68	.04		.21	.08		.02			
Coopertown	89.59	9.12	·35	tr.		.04						
Costilla		7.71	.44			. 10	High. .26					
Dalton	94.66	4.80	. 34		tr.	tr.						Mn. tr.
Denton County	94.02	5.43	tr.									
	92.10	7.53	tr.			100.						
Descubridora	89.51	8.05	1.94				•45					P.Cr. and lose05
	90.09	9.	07	.24							.66	
Elbogen	97.50	2.50	\sim									
	87.50	8.75			tr.							Mn. tr.
	88.23	8.52	1.85				tr.					P. Fe. Ni. 2.21
	89.90	8.43	.76									Mg.28, Mn.tr.
	94.69	2.47	.61		. 12							Al. 19, Mn88
El Capitan	90.51	8.40	I · 59	.05	••••	.24	tr.					
Fort Pierre	94.29	7.19	.60				tr.					Ca. 35, Mg65
"	90.76	7.61	.89	tr.		tr.					.05	
Franceville	91.10	8.	<u>6</u>					••••	tr.			*Pt. tr.
Frankfort	90.58	8.53	~	tr.		.05						
Glorieta	88.76	9.86	.51	.03		. 18	.01		.04			Zn03, Mn.tr.

*Schreibersite, .84; Graphite, tr.; Silicate, tr.

LOSS.	Undet.	Total.	Sp.Gr.	Analyst.	Reference.
	•••••	99.97	7.86	L. Fletcher	1899, Min. Mag. XII, 167–170
		99.38	•••••	J. K. Phelps	1898, Northward Over the Great Ice, (2) 600
		100.04	· · · · · · · · · · · · · ·	J. E. Whitfield	" " " " 602
		99.72	7.48-7.50	E. Boricky	1866, Neues Jahrb, 808–810
		100.02		W. Tassin	1902, Proc. U. S. Nat. Mus. XXV, 71
		101.12	7.885	Cohen & Hildebrand	1903, Mitt. Nat. Ver. f. Neuvorp. u. Rügen,
.05		100.00	7.76		1905, Label, State Mining Bureau Collection,
		99.65		J. B. Mackintosh	San Francisco, California 1880, A. J. S. (3), XX, 74
		99.496	7.521	F. A. Genth	1886, Proc. Phila. Acad. Sci. 366–368
		99.67		S. W. Cramer	1890, Trans. N. Y. Acad. Sci. IX, 197-198
		99.45		L. G. Eakins	1890, A. J. S. (3), XXXIX, 395-396
		99.10	7.85	J. L. Smith	1861, A. J. S. (2) XXXI, 266
		100. 1 6		L. G. Eakins	1895, Proc. Colo. Sci. Soc.
		99.80	7.986	C. U. Shepard, Jr	1883, A. J. S. (3), XXVI, 338
		99.78	7.67	W. P. Riddell	1860, Trans. St. Louis Acad. I, 623
		99.63	7.42	A. Madelung	1863, Buchner, Meteoriten, 193
		100.00	7.38	P. Murphy	1875, Neues Jahrb, 26
		100.00	7.609	J. B. Mackintosh	1887, A. J. S. (3), XXXIII, 235
		100.00	7.80-7.83	M. H. Klaproth	1815, Beit. Mineralkörper, VI, 306–308
		98.10	7.76	J. F. John	1821, Jour. Chem. Phys. XXXII, 253-261
		100.00	7.74-7.87	J. J. Berzelius	1834, Ann. Phys. Chem. XXXIII, 135-137
.06		99.00	7.78	A. Wehrle	1863, Buchner, Meteoriten, 151–152
		99.94		P. A. v. Holger	£6 £6 £6 £6
		99.80		H. N. Stokes	1895, A. J. S. (3), I, 252-254
		102.48	7.73	H.A.Prout	1860, Trans. St. Louis Acad. I, 711-712
		99.3I	7.74	A. Madelung	1863, Buchner, Meteoriten, 197
		100.00	7.87	J. M. Davison	1902, Proc. Roch. Aca. Sci. IV, 75-78
		99.52	7.69	J. L. Smith	. 1870, A. J. S. (2), XLIX, 331
		99.42		L. G. Eakins	1885, Proc. Colo. Sci. Soc. II, 14
	1	1	1	1	

Name,	Fe.	Ni.	Co.	Cu.	Cr.	Р.	s.	C,	Si.	C1.	In-	Miscellaneous.
	T.C.				<u> </u>	1.			.51.		sol.	miscenaneous.
Glorieta	88.81	7.28	.17			.12		• • • • •	• • • • •	•••••		
	87.93	11.15	33			. 36		•••••				
Guilford County	92.75	3.15	tr.					••••				$Fe_2\theta_3 + Fe\theta$ 75
Hopewell Mounds.	95.20	4.64	.40	.04		.07	.13	••••		• • • • •		Mn. tr., Sn. tr.
Hopper	90.54	7.70	• 94			.13		•••••	.04	•35		••••••
Hraschina	96.50	3.50						••••		••••		
"	83.29	11.84	1.26						.68	••••		Mn64, Mg48
"	89.78	8.88	.67	• • • • ·								K43, Al. 1.38
Ivanpah	94.98	4.52				.07		. 10			••••	•••••
Joel's Iron	90.45	8.80	• 54	tr.	••••	.26		tr.				
Joe Wright	91.22	8.	62*			. 16						•••••
Juncal	92.03	7.00	.62			.21						
Kenton County	91.59	7.65	.84	tr.		tr.	tr.	.12			••••	
Kokstad	91.21	8.01	.63	.02		.22	tr.	.03		.05		
La Caille	92.50	5.90	tr.		tr.				.90		••••	
"····· ² / ₂	89.63	9.83						.12				Insol. & less42
Lenarto	85.04	8.12	3.59						.01			Ca. 1.63, Al77
"	90.90	8.50	.665	.002								Mn61, Mg23.
	90.15	6.55	. 50	.08			.48	••••			1.23	Mn .15, Sn .08
. "	90.88	8.45	.67									
	91.50	8.58		tr.		•••••					. 30	
Losttown	95.76	3.66	tr.		tr.						. 58	Ca. tr.
Luis Lopez	91.31	8.17	. 16			• 33	.01	.01	tr.			
Marshall County	90.12	8.72	. 32	tr.		.10						
Matatiela	92.20	7.30	.67	.03		.19	.03	.08		.03		
Mazapil	91.26	7.84	.65			. 30						
Merceditas	92.38	7.33	.61	.02		.oS	.07		••••		.02	
Misteca	86.86	9.92	.74			.07	- 55				.97	
Morito	95.01	4.22	.51	tr.		.08						
		I			l							

By diff.

.

	-				
35.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		96.38	7.1	C. U. Shepard	1885, A. J. S. (3), XXIX, 469
		99.77	7.66	J. B. Mackintosh	1885, A. J. S. (3), XXX, 238
		96.65	7.67	C. U. Shepard	1841, A. J. S. (1), XL, 369-370
		100.48		H. W. Nichols	1902, Field Col. Mus. Pub. Geol. Ser. I, 308
		99.70		F. P. Venable	1890, A. J. S. (3), XL, 163
		100.00	7.73-7.80	M. H. Klaproth	1807, Beit. Mineralkörper, IV, 99-101
		100.00	7.82	P. A. v. Holger	1830, Beit. u. vor. Ett. Zeit. f. Phys. u. Math.
		99.33	7.785	A. Wehrle	VII, 2, 129-149 1852, Clark, Metallic Meteorites, 42-44
		99.67	7.65	C. Ú. Shepard	1880, A. J. S. (3), XIX. 381-382
		100.05	7.863-7.958	L. Fletcher	1889, Min. Mag. VIII, 264
		100.00		J. B. Mackintosh	1886, A. J. S. (3), XXXI, 462
		99.86		A. A. Damour	1868, Comptes Rendus, LXVI, 569-571
		100.20		J. M. Davison	1892, A. J. S. (3), XLIV, 164
		100.17	7.7876	Fahrenhorst	1900, Ann. S. Afr. Mus. II, 14
		99.30	7.43	L. E. Rivot	1854, Ann. Mines (5), VI, 554-555
		100.00	7.64	J. Boussingault	1872, Comptes Rendus, LXXIV, 1287-1289
		100.00		P. A. v. Holger	
		100.067	7.79	A. Wehrle	VII, 2, 129–149 1841, Rammelsberg, Handworterbuch, 423
		99.22	7.73	W. S. Clark	1852, Metallic Meteorites, 40
		100.00	7.98	A. Wehrle	
		100.38	7.73	J. Boussingault	1872, Comptes Rendus, LXXIV, 1288-1289
		100.00		C. U. Shepard	1869, A. J. S. (2), XLVII, 234
		99.99		Mariner & Hoskins	1900, A. J. S. (4), 1X, 284
		. 99.26		J. L. Smith	1860, A. J. S. (2), XXX, 240
		100.53	7.8084	J. Fahrenhorst	1900, Ann. So. Afr. Mus. II, 17
		. 100.05		J. B. Mackintosh	1887, A. J. S. (3), XXXIII, 225.
		. 100.51		J. Fahrenhorst	I 1900, Meteoreisen-Studien, XI, A.N. H. XV,
		. 99.11	7.58	C. Bergeman	380 1857, Pogg. Ann. C. 246
		. 99.82	7.84	J. L. Smith	. 1871, A. J. S. (3), II, 335-338
_	-		1		

- 8 I

	1 1			-							In-	
Name.	Fe.	Ni.	Co.	Cu.	Cr.	P	S.	С.	Si.	Cl.	sol.	Miscellaneous
Murfreesboro	96.00	2.40								·····		
Nejed	91.04	7.40	.66	tr.		.10	tr.					•••••
Orange River	90.48	8.	94		tr.				• • • • •			Chladnite .5 Schreib0
Petropawlowsk	97.29	2.07	\sim	••••	••••							Schreid,0
" … 2/2	93 · 57	6.98	• • • • •	• • • •						••••		
Plymouth	88.67	8.55	.66	.24		1.25	.07		••••			Graph
Puquios	88.67	9.8 <u>3</u>	.71	.04		.17	.09	.04	tr.			•••••
Red River	90.02	9.67							• • • • •			
"	90.91	8.46									. 50	
Rhine Valley	88.85	9.07	• 34			.27	.75			••••		
Roebourne	90.9I	8.33	.06		••••	.16	tr.	tr.	.01			Mn. tr.
Rowton	91.05	9.	08	tr.								
"	91.25	8.58	.37	tr.								
Ruff's Mountain	96.00	3.12										
"	90.95	6.01	tr.	••••	tr.						2.35	Schreib5
Sacramento Mts	91.39	7.86	. 52				• • • • • •	••••				
San Angelo	91.96	7.86	tr	.04		. 10	.03	tr.	.01			Mn. tr.
Schwetz	93.18	5.77	1.05								. 10	
Seneca Falls	92.40	7.60			tr.	tr.	fr.					Mg. tr.
Staunton	91.44	7.56	.61	.02		.07	.02	.14	. 1 1	tr.		Mn. ? Sn. ti Sn. tr.
"	90.29	8.85	.49	.02	tr.	.24	.01	. 18	.69	tr.		Sn
" No. I	88.71	10.16	.40	.003		.34	.02	.17	.07	.003		Mn. tr. Sn 00
" No. 2	. 88.36	10.24	.43	.003		. 36	.008	.18	.06	.002		Mn. tr. Sn
" No. 3	. 89.01	9.96	. 39	.003		.37	.03	.12	.06	.004		Sn
" No. 7	. 89.85	7.56	.60	.06		. 16	.01	.05	.05			Mn. tr. O 1.5
Surprise Springs .	. 91.01	7.65	.89	.07	.04	.22	.08	.02		.02		
Thunda	. 91.54	8.49	. 56	.02	tr.	.17	.02				.01	
Toluca	. 91.38	8.62										
	. 90.40	5.02	.01			.16						P. Fe. Ni. 2.9 Mn. tr.
	1	1		1	1	I		1		1		jmn. u.

-					
	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
•	1.60	100.00		G. Troost	1848, A. J. S. (2), V, 351–352
	. 59	99.79	7.89	L. Fletcher	1887, Min. Mag. VII, 179-182
•		100.00	7.3	C. U. Shepard	1856, A. J. S. (2), XXI, 213
		99.36	7.76	Sokolowsky	1841, Arch. Kunde Russ. I, 317
		100.55		Iwanow	1841, Arch. Kunde Russ. I, 723-725
		99.55		J. M. Davison	1895, A. J. S. (3), XLIX, 53-55
		99.55	7.93	L. G. Eakins	1890, A. J. S. (3), XL, 226
		100.00	7 · 54	C. U. Shepard	1829, A. J. S. (1), XVI, 217-219
		99.87	7.40-7.82		1846, A. J. S. (2), II, 372-374
		99.31		S. Hunt. W. S. Chapman	1900, Ann. Rep. So. Aust. Sch. Mines, 227-228
		100.00		Mariner & Hoskins .	1898, A. J. S. (4), V, 136
		100.13		W. Flight	1882, Phil. Trans. 894-896
		100.20		"	es es si
		99.121	7.01-7.10	C. U. Shepard	1850, Proc. A. A. A. S. III, 152-154
		99.81		Boecking	1856, Neues Jahrbuch, 51
		100.00	7.7	Mariner & Hoskins .	1898, A. J. S. (4), V, 272
		99.77		J. E. Whitfield	1897, A. J. S. (4), III, 66
		100.10	7.77	C. Rammelsberg	1851, Ann. Phys. Chem. LXXXIV, 153-154
		100.00		C. U. Shepard	1853, A. J. S. (2), XV, 366
		99.97	7.69	J. P. Santos	1878, A. J. S. (3), XV, 337-338
		100.175		J. W. Mallet	1887, A. J. S. (3', XXXIII, 59
		99.878	7.85		1871, A. J. S. (3), II, 13
		99.345	7.86	"	
		99.95	7.84	"	а [.] а а
		99.90		J. E. Whitfield	. 1903, A. J. S. (4), XV, 469-471
		100.00	7.7308	E. Cohen	1900, Mitt. Nat. Ver. f. Neu Vorp. u. Rügen,
		100.81		J. Fahrenhorst	. 1900, Meteoreisen-Studien, XI, A. N. H. XV,
		100.00	7.72	Berthier	. 1853, A. J. S. (3), XV, 20
		99.72		E.Uricoechea	1854, Jour. Prakt. Chem. LXIII, 317-318
-	L	<u> </u>			1

FIELD COLUMBIAN MUSEUM - GEOLOGY, VOL. III.

Name.	Fe.	Ni.	Co,	Ce.	Cr.	Р.	S.	C.	Si.	C1.	In- sol.	Miscellaneo
Toluca9	0.37	7.79									1.91	
"	0.72	8.49	•44			. 18			.25	••••		
"	87.88	8.86	.89			. 86						Graph 1
٤٤	7.89	9.06	1.07	tr.		.62	•••••		••••			*C.Graph.
" 8	88.29	8.90	I .04		• • • •	.78			••••			
"9	80.08	7.10			••••		I.24					
"	0.43	7.62	.72		••••	. 1 5	.03					†Cu. & Sn.
"	87.09	9.80	•77	.01	• • • • •		.79		••••		.02	Schreib
"	89.07	7.29	.98	tr.	• • • •		.85				.04	Mn. tr.
"9	0.13	7.	24			. 38					. 22	Fe. S. tr.
"	98.10	6.32	1.58									Mn. tr.
(Los Reyes)9	0.56	7.71	1.07	.14	••••	. 24	.03	.01	.01			Mn. tr.
Tonganoxie	91.18	7.93	• 39	tr.		. 10						
Toubil	95.18	3.38	. 14			.05		.12	.08	.04		Mn09 As.
Trenton	91.03	7.20	. 53	tr.		. 14						Mg03 Ca.
"	89.22	10.79	tr.		••••	.69						
Victoria	91.33	8.83	.49									
Welland	91.17	8.54	.06				.07					
Werchne Udinsk	91.02	7.31	.70	.13		.07		.03	•••••			Mg
Wooster	93.61	6.01	•73	tr.		.13						Fe. Ni. P. Mn. tr.

*P. Fe. Ni., .34; Mn., .20; Sn., tr. †Graph., etc., .34: P., Fe., Ni., .56.

_									
	Undet.	Total.	Sp. Gr.	Analyst.			Rei	erence.	
		100.07		W. J. Taylor	1856,	Proc. 1	Phil. Aca.	Sci. VIII, 3	3
		100.46			1856,	A. J. S	5. (2), XX	III, 374–376	
		98.73		E.Pugh	1856,	Ann. C	Chem. u. P	harm. XCV	7III, 383 - 386
•		99.40		"	"		٤.	**	66
		99.00		۶۶ ۰۰۰۰۰۰۰۰۰			£6	"	"
		98.42		"			£4	"	"
		99.88		"	"		"	"	"
		99.21		Boecking	Neue	s Jahrl	ouch, 304		
		99. 20		"		۰.	66		
3		100.00	••••••	H. B. Nason	1,857,	Jour. I	Prakt. Ch	em. LXXI,	123
		99.79		C. H. L. v. Babo	1863,	Buchr	er, Meteo	oriten, 141	
		99.85		H. W. Nichols	1902,	Pub.	Field Col	. Mus., Geo	ol. Ser, I 308
		99.60	7.45	E. H. S. Bailey	1891,	A. J. S	5. (3), XL	11, 386	
•		99.34		J. Antipoff	1898,	Bull. S	St. Peters	burg Acad.	Sci. V, 9, 91
		99.35	7.82	J. L. Smith	1 869,	03 A. J. S	5. (2), XL	VII, 271	
		100.70	7.33	G. Bode	1869,	Ann. l	Rep. Smit	h. Inst. 417-	419
		100.65	7.78	A. P. Coleman	1887,	Proc.	and Tran	s. Roy. Soc.	Can., IV, 97
	•	99.84	7.87	J. M. Davison	1890,	Proc.	Roch. Ac	ad. Sci. 1, 8	7
		99.41		H. Laspeyres	1895,	Zeit. H	Kryst. XX	IV, 494	
		100.48	7.90	J. L. Smith	1864,	A. J. S	5. (2), XX	XVIII, 385	-386
					1				

÷

86 . FIELD COLUMBIAN MUSEUM - GEOLOGY, VOL. III.

4. FINE OCTAHEDRITES.

Width of lamellæ 0.4-0.2 mm. The nickel-cobalt content ranges between 8 and $10\frac{1}{2}$ per cent. The fields are usually equal in amount to the lamellæ and contain minute shining flakes, probably of taenite.

a. PRAMBANA

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	C.	Si.	C1.	In- sol.	Miscellaneou
Augustinowka	91.91	7.70	.25									
Bella Roca	91.48	7.92	.22			.21	.21	. o 6				
	89.68	9.78	- 55	.02	tr.	. 31	.05		••••			
Bethany (Mukerop)	9 1.07	8.18	.63	.03	.02	.06	.04	.01	· · · · ·			
ee ec +	92.29	7.77	• 57			.06	•••••	•••••	••••		••••	Cu. C. Cr. (1. 8.
۶۶ ۶۶ ۰ ۰	90.9 6	8.19	.46	.04	••••	. 18	tr.	.02	••••	.01	.01	
" " · ·	91.37	7.97	. 50	.02	.04	.03	.02	.05	••••			
" (Lion River)	93.30	6.70	••••			tr.	tr.	••••	••••			K ₂ O tr. Sn.
ss ss	92.06	7.79	.69	.03	.01	.05	. 10					
Boogaldi	91.13	8.05	.48	.28			••••				.04	
Bridgewater	88.90	9.94	.76	•35						.02		
Bückeberg	. 90.95	8.	.01			.64			• • • • •			
•••	92.45	7.55	.83	.02	.01	.12	.01	.01		.02		
Cambria%	94.88	5.69										
"	92.58	5.71		tr.					•••••		1.40	As. tr.
	89.06	10.65	.08	.0.1			.17					
Charlotte	91.15	8.01	.72	.06				••••				
Chupaderos	90.23	8.76	1.21			tr.						
"	88.78	9.80	.81	.02	tr.	.13	.13					
Cuernavaca	88.98	10.30	•••••									
	89.70	8.76	1.19	.05		.33	.12					
Grand Rapids	94 - 54	3.82	.40								.12	
•••	88.71	10.69		.07		. 2 6	.03	.06				Mg Graph
Hassi Jekna	91.32	5.88	.81	tr.			tr.				I.01	
Jamestown	90.24	9.75	;	tr.		.05			<u> </u>			

Cohen divides the fine octahedrites into two groups, the Prambanan group and the Rodeo group. The Prambanan group includes the greater number. They have a fairly uniform composition. Accessory constituents are usually present, but not in large quantity.

OUP.

*					
s.	Undet.	Total.	Sp. Gr.	Analyst.	References.
		99.86		W. F. Alexejew	1893, Verh. Russ. Min. Ges. II, 30, 470
		100.10		J. E. Whitfield	1889, A. J. S. (3), XXXVII, 440
		100.39	7.8244	Knauer	1905, Meteoritenkunde, III, 377
		100.04	7.84 0 8	J. Fahrenhorst	1900, Ann. S. Afr. Mus. 11, 28
		100.79	7.8408		
•		99.89		O. Hildebrand	1902, Jb. d. Ver. f. Vaterl. Naturk. Würtem-
		100.00	7.783	Krupp Lab	berg, LVIII, 292-306 1902, Jb. d. Ver. I. Vaterl. Naturk. Würtem-
		100.00	7.45	C. U. Shepard	berg, LVIII, 202-306 1853, A. J. S. (2), XV, 1-4
	•••••	100.73			r897, Meteoreisen-Studien, V, A. N. H. XII,
		99.98	7.85	horst. A. Liversidge	⁴³ 1902, Jour. Roy. Soc. N. S. W. XXXVI, 341–
		99.97	6.617	F. P. Venable	³⁵⁹ 1890, A. J. S. (3), XL, 312–313
		99.60	7.12	Wohler & Wicke	1863, Göttingen Nach. 364-367
		101.01		J. Fahrenhorst	1900, Meteoreisen-Studien, XI, A. N. H. XV,
		100.57	7.52	D. Olmsted, Jr	³⁰⁷ 1845, A. J. S. (1), XLVIII, 388-392
		99.69		B. Silliman, Jr., & T. S. Hunt.	1846, A. J. S. (2), II, 374–376
		100.00			1870, Ber. Berl. Akad. 444
		99.94	7.717	J. L. Smith	1875, A. J. S. (3), X, 351
·		100.20		Cohen & Weinschenk	1891, Meteoreisen-Studien, VI, A. N. H. VI,
	tr.	99.67		O. Bürger	147–148 1905, Meteoritenkunde, III, 354
		99.28	7.725	J. E. Whitfield	1902, Proc. Roch. Aca. Sci. IV, 79-88
-		100.15	7.748	O. Hildebrand	1902, Mitt. d. Nat. Ver. f. Neu. Vorp. u.
		98.88		F. W. Taylor	Rügen, XXXIV, 2 1884, A. J. S. (3), XXVIII, 300
·		99.9I	7.87	R. B. Riggs	1885, A. J. S. (3), XXX, 3 [·] 2
	•••••	99.05	7.67	S. Meunier	1892, Comptes Rendus, CXV, 531-533
		100.04	•••••	O.W. Huntington	1890, Proc. Am. Acad. (2), XVII, 229–232

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	s.	C.	Si.	C1.	ln- sol.	Miscellaneou
Jewel Hill	91.12	7.82	•43	tr.		.08	•••••					
Lagrange	91.21	7.81	.25	tr.		.05				• • • • •		
	91.92	7.61	.62	.01	.02	.03	.02			• • • • • •		
Mantos Blancos	90.77	8.83	.55	tr.		. 10						
Moonbi	91.35	7.89	. 56	tr.	tr.	.22		.07	.04		• • • • •	Sn. tr.
Prambanan	96.71	2.86							••••			
··	94.36	5 · 37										
**	88.60	11.20				.20		.004	tr.			MgO. tr.
۰۰ · · · · · ·	90.03	9.39	•97		•••••	. 16						
	94.38	4.70				• 53						
Putnam County	89.52	8.82	tr.									Sn. P. S. M
"	90.28	7.89	•79	.07	. 17	. 1 1	.25					CaI.
Russel Gulch	90.61	7.84	.78	tr.		.02						
	90.65	7.87	.01									Insol.Si.Sch.Cr
St. Genevieve	91.58	7.98	.29			.20	tr.		.02			Sn02
Smith's Mountain	90.68	<u> </u>	07	. 1 1		.14						
	90.88	8.02	~ [.50]	.03		.03						
Thurlow	89.17	9.92	I.04			25	.05					Cu. & Cr.,
Varas	91.28	8.00	.44	tr.		.05						
Yanhuitlan	96.58	1.83						tr.	.01			CaO
				.02	.01	.09	.02					$Al_2O_3 \ldots$

		•			
ss.	Undet.	Total.	Sp. Gr.	Analyst	Reference.
		99.45		J. L. Smith	1860, A. J. S (2), XXX, 240
		99.32	7.89	J. L. S mith	1861, A. J. S. (2), XXXI, 265-266
		100.23		O. Bürger	1905, Meteoritenkunde, III, 358
		100.25	7.904	L. Fletcher	1889, Min. Mag. VIII, 258
		100.13	7.83	J. C. H. Mingaye	189 3 , Jour. Roy. Soc. N. S. W. XXVII, 82-83
		99.57	7.48	M. Van der Boom Mesch	1866, Archives Neerl. I, 468
		99.73	7.83	E.H. von Baumhauer	
		100.004		Vlaanderen	1867, Nat. Tij. Ned. Ind., XXIX, 268–270
		100.55		O. Sjöström	1897, Meteoreisen-Studien, A. N. H. XII, 42-
		99.61		De Jong	1904, Javabode, July 12, 5
		100.00	7.69	C. U. Shepard	1854, A. J. S. (2), XVII, 331–332
		99.56		Knauer & Bürger	1905, Meteoritenkunde, III, 345
		99.25	7.72	J. L. Smith	1866, A. J. S. (2), XLII, 218-219
		99.50	7.692	C. T. Jackson	1867, A. J. S. (2), XLIII, 281
		100.07		J. E. Whitfield	1901, Proc. Roch. Acad. Sci. IV, 65-66
		100.00		F. A. Genth	1877, A. J. S. (3), XIII, 214
		99.46	7.78	J. L. Smith	çç çç çç
		100.43		O. Bürger	1905, Meteoritenkunde, III, 379
		99.77	7.863	L. Fletcher	1889, Min. Mag. VIII, 259
36		100.00	7.827	L. R. DeLoza	1876, Proc. Phila. Acad. Sci., 126
		100.02		O. Bürger	1905, Meteoritenkunde, III, 320
		,		,	

b. Rodeo Group

The nickel-cobalt content is somewhat higher than in the Pram-

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	C.	Si.	C1.	In- sol.	Miscellan	eou
Alt-Biela	85.34	12.89	.41			• 39	.06	.02			. 86		
Bear Creek	83.89	14.06	.83	tr.		.21			•••••				
Que s a	87.97	10.75	1.07	.04	••••	. 19	tr.						
Rodeo	86.95	11.27	1.20	.01	.03	.25	.01		•••••		.07	••••	
« ······	89.84	8.79	. 28	.07		.80	.02	.09			••••		

5. FINEST OCTAHEDRITES.

Width of lamellæ not exceeding 0.2 mm. The nickel-cobalt content lies, as a rule, between 10 and 15 per cent. Plessite strongly developed. Cohen divides the class into two groups, the Salt River group and the Tazewell group.

SALT RIVE

RODICON

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	с.	Si.	C1.	In- sol.	Miscellaneou
Bacubirito	88.94	6.98	.21			.15	.005		tr.			
	89.54	9.40	.98	.02	.02	.12	.02	.01		.02		Chromite, .
Ballinoo	89.34	9.87	.60	.06		.48	.03	.02				
	89.91	8.85	•74	tr.		. 50	tr.	tr.	tr.			
Butler	89.12	10.02	.26	.01		. 12					••••	
Salt River	90.74	9.36					tr.				.26	Mg. Na., tr.
"······?⁄2	90.89	8.70	.85	.04		• 34	tr.	.02				

banan group, so that the group is a transition to the finest octahedrites.

LOUP.

ss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
					1899, Prog.d.Böhm Gym.in Mahr-Ostrow
		98.99		J. L. Smith	1867, A. J. S. (2), XLIII, 280
		100.02		J. Fahrenhorst	1900, Meteoreisen-Studien, XI, A. N. H. XV,
		99.79		O. Bürger	379 1905, Meteoritenkunde, III, 299
		99.89		H. W. Nichols	1905, Field Col. Mus. Geol. Ser. III, 4

a. SALT RIVER GROUP.

The content of nickel-cobalt is lower than in the Tazewell group, not exceeding 10½ per cent. Plessite predominates as compared with the Tazewell group. Schreibersite is common in numerous small, elongated individuals.

LOUP.

-					
ss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		96.285	7.69	J. E. Whitfield	1902, Proc. Roch. Acad. Sci. IV, 74
		100.14	7.59	Cohen & Hildebrand	1903, Mitt. N. Ver. f. Neu Vorp. u. Rügen, XXXV, 13
		100.40	7.8432	O. Sjöström	1898, Ber. Berlin Akad., 19–22
		100.00	7.8	Mariner & Hoskins.	1898, A. J. S. (4), V, 137
		99.53	7.72	J. L. Smith	1877, A. J. S. (3), XIII, 213
		100.36		W. H. Brewer	1851, Proc. A. A. A. Sci. IV, 36-38
• • •		100.84	7.6648	J. Fahrenhorst	1900, Meteoreisen-Studien, X, A. N. H. XV, 76

FIELD COLUMBIAN MUSEUM - GEOLOGY, VOL. III.

b. TAZEWELL GROUP.

This group includes the octahedrites having the highest percent-

												IAZEWEI
Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	s.	C.	Si.	C1.	In- sol.	Miscellaneou
Carlton	86.54	12.77	.63	.02		. 16	.03	. 1 1				
Laurens County	85.33	13.34	. 87			.16	tr.	tr.				
Mart	89.68	9.20	• 33	.04	tr.	.16	.02			•••••		
Mungindi	90.31	8.23	1.36			.09	tr.	.01	tr.	•••••		
	87.96	10.99	. 88	.08	.03	.17	.21					
Narraburra Creek	88.60	9.74	- 47	.01		·43	tr.				.72	Resinous matter
Tazewell ³ / ₂	82.70	14.82	.46	.07		. 18	.08			.02		Mg.0 .24, 8i02

c. Cowra and Victoria West.

Cowra and Victoria West resemble the Salt River group in their predominance of plessite. Their place among the octahedrites is not

COWRA AN

Name.	Fe.	Ni,	Co.	Cu.	Cr.	Р.	S.	C.	Si,	C1.	ln- sol.	Miscellaneou
Cowra	85.26	13.23	1.02	.02		.22	.01	.03	.01	•••••		Sn.and Mn
Victoria West	88.83	10.14	0.53	tr.		.28						

B. HAMMOND OCTAHEDRITES.

These meteorites appear in section to be granular aggregates in which black particles and taenite-like lamellæ extend in directions parallel to octahedral planes. They thus have resemblances to the octahedrites and form a transition to the ataxites. The structure by which they are characterized may be either original or secondary. If original, the structure has been produced by the separation of the nickel-rich alloy and black particles to form a web, the lines of which

HAMMON

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	С.	Si.	С1.	ln- sol.	Miscellaneou
Cacaria	87.38	12.06	.65	.02	.01	. 22	.05		•••••		.09	$SiO_2 \dots$
·· ·····	92.00	7.70	- 54	.03	.01	.24	.06					•••••
Hammond	89.78	7.65	1.32	tr.		. 51	• • • • • • ·	tr.	•••••			Sn. tr. SiO ₂
"	91.62	7.34	1.01	.04	.01	. 52	10.	.06		.01		
Reed City	89.39	8.18	••••					•••••				

age of nickel-cobalt. It reaches 15 per cent. and more. Taenite is strongly developed.

ROUP.

_					
ss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference,
		100.26	7+95	L. G. Eakins	1890, A. J. S. (3), XL, 223–224
		99.70		J. B. Mackintosh	1886, A. J. S. (3), XXXI, 463-465
		99.43		H. N. Stokes	1900, Proc. Wash. Acad. Sci. II, 53
		100.00	7.4	Mariner & Hoskins.	1898, A. J. S. (4), V, 139
		100.32	•••••	R. Knauer	1905, Meteoritenkunde, III, 269
		99.98	7.57	A. Liversidge	1903, Proc. Roy. Soc. N. S. W. XXXVII,
	•••••	99.22	7.89	J. L. Smith	²⁴⁰ 1855, A. J. S. (2), XIX, 153

certain, however, and it seems desirable therefore to group them separately. Their percentage of nickel-cobalt resembles that of the finest octahedrites, 11 to 15 per cent.

CTORIA WEST.

3S.	Undet.	Total.	Sp. Gr,	- Analyst.	Reference.
		99.80	7.805	J. C. H. Mingaye	1904, Rec. Geol. Sur. N. S. W., VII, 31
		99.78	7.692	J. L. Smith	1873, A. J. S. (3), V. 108

accord with octahedral planes. In the meshes of this web the nickel-poor remainder is deposited as a homogeneous, granular aggregate. If the structure is secondary, it may be explained by supposing that a normal octahedrite was somewhat softened by heat, so as to destroy the lamellar structure in part, after which solidification took place. If this latter be the correct explanation, the softening was carried farther in Hammond than in Cacaria and Reed City.

TAHEDRITES.

is.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		100.64	7.7070	J. Fahrenhorst	1900, Meteoreisen-Studien, XI, A. N. H., XV,
		100.58			Same
		99.82	7.601-7.703	Fisher & Allmendinger	1887, A. J. S. (3), XXXIV, 383
		100.62	7.288-7.506	J. Fahrenhorst	1900, Meteoreisen-Studien, XI, A. N. H., XV,
		97 • 57	7.6	J. E. Whitfield	356 1903, Jour. Geol., XI, 233

C. BRECCIATED OCTAHEDRITES.

In these, as in the brecciated hexahedrites, the mass appears to be

BRECCIATE

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	C.	Si.	C1.	ln- sol.	Miscellaneou	IS
Barranca Blanca	91.50	8.01	.65	tr.		. 1 5	.13				.03		•
N'Goureyma	89.28	9. 2 6	.60	.04	. 11	.05	• 77	.04	••••			Ce Chromite .	c
											••••	Fe.S	
Santa Rosa 3/3	91.46	7.72	• • • • •		• • • • •				• • • • •		.28	•••••	•
••••••	92.30	6.52	.78	.02	tr.	. 36	.04	.18			••••		• ••
Tula	93.50	2.50										Sn. tr. Schreibersite	
	96.40	2.63										Sn07 Seh.	•
Zacatecas	89.84	5.96	.62	tr.			.13		• • • • •		3.08	Mg. tr.	
	90.91	5.65	.42			.23	.07		. 50		2 .17		
•••••	91.30	5.82	.41	tr.		.25					2.19	Mg., tr.	-
	92.09	5.98	.91		•74	1.02					.04	•••••	
							· · · · · · · · · · · · · · · · · · ·			<u> </u>	• •••		-

made up of numerous individuals, the direction of whose lamellæ differs in the individual grains.

CTAHEDRITES.

oss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		100.47	7.823	L. Fletcher	1889, Min. Mag., VIII, 2 63
		100.49	7.6722	E. Cohen	1901, Mitt. Nat. Ver. f. Neu. Vorp. u. Rügen, XXXIII, 14
		99.36	7.31	S. Meunier	1901, Compt. Rendus, CXXXII, 444
		99.46	7.30-7.60	Rivero and Boussingault	1824, Ann. Phys. Chem., XXV, 438–443
		100.20	7.6896	O. Sjöström	1899, Meteoreisen-Studien, VIII, A. N. H., XIV, 138
		96.90	7.33 2	W. Haidinger	1861, A. J. S. (2), XXXII, 144
		100.00	• • • • • • • • • • • •	J. Auerbach	1863, Neues Jahrb., 362
		99.63	7.20	H. Müller	1860, Jour. f. prakt. Chemie, LXXIX, 25
		99.95	7.625		
		99.97	7.50		
		100.78		E. Cohen	1897, Meteoreisen-Studien, V, A. N. H., XII, 51

III. ATAXITES.

These iron meteorites are characterized by a fine granular to compact structure throughout. They show no evidence of the cubic cleavage and Neumann lines which characterize the hexahedrites, nor of the lamellar structure, octahedrally arranged, of the octahedrites. The individual grains are in some cases visible to the naked eye, but for the most part are of microscopic or sub-microscopic dimensions. In some occur peculiar streaks which seem to have crystallographic arrangement, but their exact relations have not been determined. These form a special group, which, while not ataxites in the strictest sense of the term, may be included among them for present purposes. The ataxites show the greatest variation among all iron meteorites in their nickel-cobalt content. This varies from 6 to 16 per cent, and in the doubtful Oktibbeha to 63 per cent. Two general

SIRATIE

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	s.	C.	Si.	Cl.	ln- sol.	Miscellane	ous.	
Campo del Cielo (Wöhler's Iron.)	92.33	$\widetilde{7}$.	38									P. Fe. Ni. Sn		
(womer's non.)	89 22	9.	51			.20		tr.				Schreibersite. C. etc	.0	I
	94.25	5.11	• 57	.03	.03	.18	.05			tr.				
Cincinnati	94.47	5.43	.68	.01	••••	.05	.05							
Locust Grove	94.30	5 · 57	.64	tr.		.18	.05	.02		10.				
San Francisco del Mezquital	93.38	5.89	. 39			.23								
ee ee	93.36	5.46	.87	.03		. 16	. 15							
Siratik (Senegal)	94.07	5.21	.77	.01		. 26	.04	.01						
		1	1		1	1		1	1		1	1		1

subdivisions may be made of the ataxites, according as they are nickelpoor or nickel-rich. Transitions occur between these, but a general grouping is practicable. Accessory constituents are not usually abundant in the ataxites, and when occurring are of small dimensions as a rule.

A. NICKEL-POOR ATAXITES.

The nickel-cobalt content lies between 6 and 7 per cent, the composition thus corresponding to that of kamacite. The structure is, as a rule, plainly granular, seldom compact, the size of the grains reaching 0.75 mm.

1. SIRATIK GROUP.

An etched surface appears rough through the presence of irregularly arranged depressions, due perhaps to the solution of some accessory constituent, such as troilite or schreibersite. The smaller the depressions the more plainly the boundaries of the grains appear. The latter range from 0.33 to 0.75 mm. in dimension.

1					
SS .	Unde.	Total.	Sp. Gr.	Analyst.	Reference.
		100.16	7.547	N. S. Manross	1853, A. J. S. (2), XV, 22
		99.23	7.85	C. Martius	Ann. Chem. u. Pharm., CXV, 92
		100.28	7.7679	O. Sjöström	1898, Meteoreisen-Studien, VIII, A. N. H., XIII, 124
		100.69	7.6895		1898, Ber. Berlin Akad., 428–430
		100.77	7.7083		1897, Ber. Berlin Akad., 76–81
		99.89	7.83	A. A. Damour	1868, Comptes Rendus, LXVI, 573-574
		100.03	7.768 7	J. Fahrenhorst	1900, Meteoreisen-Studien, XI, A. N. H., XV,
• •		100.37	7.7752	O. Sjöström	1898, Meteoreisen-Studien, VIII, A. N. H., XIII, 131

OUP

2. NEDAGOLLA GROUP.

Both granular and compact irons occur in this group. They lack the rough appearance of the Siratik group on etched surfaces. The

NEDAGOLL

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	C.	Si.	Cl.	In- sol.	Miscellaneo	ous
Chesterville	95.00	5.00	••••		tr.	tr.							
	93.15	5.82	•73	••••		• 34		• • • • • •					
"	93.80	5.50	.75	.02	tr.	· 34	.03	.02					• •
Forsyth County	94.90	4.18	•33			tr.	. 22						• •
(Compact portion.) •	94.03	5 • 5 5	· 53	.02		.23	.03	.02		tr.			
(Granular portion).	94.18	5.56	.60	.02		.19	.05	.04		. 17			• •
Nedagolla	92.61	6.20	.49	tr.		.02	.05		.25		••••	•••••	
Nenntmansdorf	94.50	5.31											
" •••	93.04	6.16	• • • • •			.22					••••		• •
" …	94.33	5.48	.71			.29			· · · ;				• •
Primitiva	94.72	4.72	.71	tr.		.18	.02	.03		••••			• •
Rasgata	90.76	7.87	• • • • •							•••••		P. Fe. Ni.	• •
"	92.35	6.71	.25	tr.		•35	tr.			••••	••••		.c
"	92.81	6.70	.64	10.	tr.	.28	.08	.19					•••

3. RAFRUTI GROUP.

The members of this group resemble the granular members of the

RAFRUS

Name.	Fe.	Ni.	Co.	Cu.	Cr	Р.	s.	C.	Si.	C1.	In- sol.	Miscellaneous
Illinois Gulch	92.51	6.70	.16			.62		.01	tr.			
"	86.77	12.67	.81	.02	.01	.08	tr.	• • • • • •				
Rafrüti	89.87	9.54	.61	.03	.01	.06	. 1 1	.18			••••	

size of the grains in the granular members is generally less than 0.5 mm., rarely 0.75 mm. No granular structure is visible, even on strong magnification, in the compact members. Chesterville and Rasgata are rich in rhabdite.

	0	U	D	
•	U	U	Τ.	٠

l 38.	Undet.	Total.	Sp. Gr.	Analyst.	Reference
		100.00	7.82	C. U. Shepard	1849, A. J. S. (2), VII, 449
	·····	100.04		O. Sjöström	1897, Meteoreisen-Studien, V, A. N. H., XII,
	• • • • • •	100.46	7.8209		47 1898, Meteoreisen-Studien, VIII, A. N. H., XIV, 150
		99.63		E. A. de Schweinitz	1896, A. J. S. (4), I, 208–209
		100.41	7 • 4954	O. Sjöström	1897, Ber. Berlin Akad., 386–396
		100.81	7.3357		" " "
		99.62	7.8613	"	1897. Meteoreisen-Stadien, VI, A. N. H., XII, 121
		99.81		G. E. Lichtenberger	1873, Sitz. Isis. p. 4, Dresden
		99.42	6.21	E. Geinitz	1876, Neues Jahrb., 609
	• • • • • •	100.81	7.8241	E.Cohen	1897, Meteoreisen-Studien, V, A. N. H., XII,
		100.38		O. Sjöström	1897, Meteoreisen-Studien, VI, A. N. H., XII,
	•••••	98.63	7.6	Rivero and Boussingault	1824, Ann. Chem. Phys., XXV, 442-443
	••••	100.11	7 • 33–7 • 77	F. Wöhler	1852, Ann. Chem. Pharm., LXXXII, 243-248
		100.71	7.654	O. Sjöström	1898, Meteoreisen-Studien, VIII, A. N. H., XIII, 143

Nedagolla group, but have an essentially higher nickel-cobalt content, and thus form a transition to the nickel-rich ataxites.

.

ROUP.

ss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		100.00	7.7	Mariner and Hoskins	1900, A. J. S. (4), IX, 201–202
		100.36	7.8329	J.Fahrenhorst	1900, Meteoreisen-Studien, XI, A. N. H., XV,
		100.41	7.596	Cohen and Hildebraud	353 1902, Mitt. Nat. Ver. f. Neu. Vorp. u. Rügen, XXXIV, 87

FIELD COLUMBIAN MUSEUM - GEOLOGY, VOL. III.

B. NICKEL-RICH ATAXITES.

These ataxites are fine-grained to compact, and acquire, as a rule, on weak etching, a characteristic varnish-like luster. Stronger etching produces a dull surface, having a peculiar velvety sheen. The

SMITHLAN

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	C.	Si.	C1.	In- sol.	Miscellaneous
Babb's Mill	85.30	14.70				· · · · · · ·				· • • • • •		Al. Mg. Ca., t
(110031 11011)	87.16	9.76										••••••
"	80.59	17.10	2.04						tr.		.12	Mn t P. Fe. Ni 1
**	81.54	17.74	1.26			.11				•••••		P. Fe. Nic
**	81.45	17.30	1.67	.03	.03	. 12	.01	.07		••••		•••••
(Blake Iron)	91.42	7.95	· • • • • •	• • • •				••••	• • • • •	••••		•••••
"	86.30	12.58	1.66						••••	• • • • •		
**	88.23	11.01	.72	••••	.02	tr.	tr.	.03	•••••	.01		
"	88.41	11.09	.66		.02	tr.	tr.	.03	•••••	.02		
Botetourt	85.88	18	.23		• • • • •				•••••	•••••	••••	•••••
Deep Springs	87.01	11.69	.79			.04		•••••	• 53	• 39	• • • •	
"	85.99	13.44	.70	.03	.03	.06		.02		.02	••••	
Dehesa	86.20	11.20		• • • •	• • • •					• • • • •		
Linville	84.56	14.95	•33			tr.	.12	tr.			••••	•••••
£ 6	83.13	16.32	.76	.02	••••	.23	.02	. 1 I			••••	
Morradal	79.67	18.77	1.18	.06	.06	. 18	.27		••••		••••	•••••
Smithland	82.83	16.42	.94		.06	.09	.17	••••				••••••••••••••
Weaver	80.78	17.92	. 84			. 12	. 1 5		••••		. 15	

nickel-cobalt content lies, for the most part, between 14 and 20 per cent, though it drops to 12 and rises to $26\frac{1}{2}$ per cent.

1. SMITHLAND GROUP.

The nickel-cobalt content does not exceed 20 per cent.

OUP.

-	01.	*			
35.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		100.00	7.548	C. U. Shepard	1847, A. J. S. (2) IV, 76-77
		96.92		G. Troost	1845, A. J. S. (1), XLIX, 342-344*
		99.85	7.839	W. S. Clark	1852, Metallic Meteorites, 65–66
		100.70	7.7948	E. Cohen	1892, Meteoreisen-Studien, II, A. N. H., VII,
		100.68		J. Fahrenhorst	147, 148 1900, Meteoreisen-Studien, X, A. N. H., XV,
		99.37	7.858	W. P. Blake	1886, A. J. S. (3), XXXI, 44
		100.54	•••••	Cohen and Weinschenk	1891, Meteoreisen-Studien, I, A. N. H., VI.
		100.02		J. Fahrenhorst	142–143 1900, Meteoreison-Studien, X, A. N. H., XV,
		100.23	•••••		Same 95
• •		104.11	8.186	O. Sjöström	1898, Meteoreisen-Studien, VII, A. N. H., XIII, 49
• •		100.45	•••••	F. P. Venable	1890, A. J. S. (3), XL, 162
		100.29	7.4538	J. Fahrenhorst	1900, Meteoreisen-Studien, XI, A. N. H., XV,
		100.40	7.8892	J. Domeyko	1879, Mineralojia, Santiago
		99.96		J. E. Whitfield	1888, A. J. S. (3), XXXVI, 276
		100.59	7.4727	O. Sjöström	1898, Meteoreisen-Studien, VIII, A. N. H., XIII, 147
		100.19	7.8543		1898, Videnskabsselskabets Skrifter (1), VII,
•••		100.51	7.7115	"	1898, Meteoreisen-Studien, VII, A. N. H., XIII, 47
	•••••	99.96	7.12	Lindner	1904, Sitzb. K. Preus. Akad. der Wis-, XXXII

.

*As recalculated by Cohen, Meteoritenkunde. Heft III, p. 104.

2. CRISTOBAL GROUP.

The nickel-cobalt content exceeds 20 per cent.

Name			Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	C.	Si.	Cl.	In- sol.	Miscellane	ou
Limestone (Creek	. 6	5.18	27.71											
66	66	. 6	6.56	24.71					4.0			1.48		Cr.&Mn.	3.:
66														FeS2	
"	£ 6	. 6	5.03	29.99	1.48			.19		•••••		•••••			
San Cristob	al	. 7	3.72	25.60	1.0			.18							

3. OKTIBBEHA.

The meteoric origin of Oktibbeha is doubtful, on account of its

OKTIBBEE

CRISTOBA

Name.									·		Miscellaneou	4
Oktibbeha	37.69	59.69	.40	.90		.10	 	.12			Al	
	37.24	62.01	.72	.28	••••	. 1 5	 			••••		•

C. ATAXITES WITH ACCESSORY FORSTERITE.

The accessory occurrence of forsterite is characteristic. It forms about five per cent of the mass, occurring in small spheroidal grains or elongated aggregates of grains, and is accompanied by some plagioclase. In nickel-cobalt content the metallic portion of the meteorite

ATAXITES WITE

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р,	S.	C	Si.O ₂	С1.	In- sol.	Miscellaneou
Tucson	85.54	8.55	.61	.03		.12			3.02			Mg0 2.04 Cr208 Al2O3, tr.
												Labradorite. 1. Ca0.51 Mg02.
(Carleton Iron)					F 1						• • • •	Fe0 .12 Ca0 1 Mg0 2.43 0
												MgO
(Ainsa Iron)	84.60	9.24	•95	.02	.02	.17	.01	.04	1.76	.04		MgO Chrvs.res. 3.

* K₂O, .10; Na₂O, .17.

OUP.

ss.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		92.89	5.75		1838, A. J. S. (1), XXXIV, 335
		99.99	5.75-6.40-6.50	"	66 66 66
		100.00			1845, A. J. S. (1), XLVIII, 153
		96.89		R. Knauer	1905, Meteo1itenkunde, III, 131
	•••••	100.50	7.8593	"	1899, Ber. Berlin Akad., 607–608

anomalous composition. It may however for the present be included among meteorites.

OUP.

s.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		99.19	6.854	W. J. Taylor	1857, A. J. S. (2), XXIV, 294
	•••••	100.40	•••••	E. Cohen	1892, Meteoreisen-Studien, II, A. N. H., VII, 146

lies between the nickel-rich and nickel-poor ataxites. On etching, irregularly shaped areas appear, 0.2-2 cm. in area, which under the microscope have a spotted look and are generally bordered, as are most of the silicate grains, by narrow, zigzag bands the nature of which cannot be further determined.

CESSORY FORSTERITE.

5.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
					1855, A. J. S. (2), XIX, 161–162
		100.55	• • • • • • • • • • • •	F. A. Genth	1855, A. J. S. (2), XX, 119-120
	• • • • • • •	99.69	7.29	G. J. Brush	1863, A. J. S. (2), XXXVI, 153
		101.09	7.22 48	J. Fahrenhorst	1900, Cohen-Festschrift, Greifswald, 39
•	•••••	100.75	•••••		ce . ce ce

D. ATAXITES WITH CUBIC STREAKS.

Upon etching appear bands or spots which seem to be oriented according to cubic faces, and which according to the position of the plates toward impinging light appear brighter or darker than the principal mass of the nickel-iron without a structural distinction being discernible. In one position the reflection of the whole face is plainly uniform. On weak etching appears, as a rule, a characteristic luster.

ATAXITES WITH

Name.	Fe.	Ni.	Co.	Cu.	Cr.	Р.	S.	C.	Si.	C1.	In- sol.	Miscellaneou
Cape of Good Hope	78.90	15.28	1.0									Ca. 1.41, Al. Mg15, Mn. 1. Graphite 1
**	85.61	12.27	.89								• • • • •	
"	81.20	15.09	2.56	tr.		.09	tr.	••••			:95	Sn
"	81.30	15.23	2.01	tr.		.08	tr.		•••••			P. Fe. Ni Sn
66	82.77	14.32	2.52	tr.		. 26						
"	82.87	15.67	.95	.03	.04	.09		.03	•••••	.01		
lquique	83.83	15.86	. 19			.05			••••		.07	•••••
	83.49	15.41	•94	.02	tr.	.07	.02	.03				
Kokomo	87.02	12.29	.65	tr.		.02						
"	83.24	15.76	1.07	.01	• • • •	.08	tr.					•••••
Shingle Springs	88.02	8.88						••••			3.5	
	80.74	15.73										Sn
• • • • • • • • • • • • • • • • • • • •	81.48	17.17	.60		.02	.31	.01	.07	.03			P. etc3. Ca16, Al Mg01, K.
	82.21	16.69	.65	.02	.02	• 34	.05	.03				
Ternera	83.02	16.22	1.63	tr.								
"	82.17	16.22	1.42			. 1 I	.13					

On strong etching the surface becomes dull with a peculiar velvet sheen. No cleavage has been observed. On the other hand, a certain orientation of similarly situated particles is indicated by the appearance in reflected light. The structure of the nickel-iron is compact; the content in nickel plus cobalt 16-17 per cent. Except for the etch bands, the members of this group are similar in chemical composition and luster to the etched faces of members of the Morradal group.

BIC	ST	RE	Αŀ	S.
-----	----	----	----	----

s.	Undet.	Total.	Sp. Gr.	Analyst.	Reference.
		100.00	7 • 544	V. Holger	1830, Zeit f. Phys. u. Math., VIII, 279–284
•		98.77	7.66	A. Wehrle	1835, Zeit. f. Phys. u. Math. (2), III, 222–229
		99.89	6.63-7.94	E. Uricoechea	1854, Ann. Chem. u. Pharm., XCI, 252
		99.50	7.60	M. Bö c king	1855, Ann. Chem. u. Pharm., XCVI, 243–246
		99.87	7.71	Baumhauer and Seelheim	1867, Arch. Neerland, II, 376–384
		99.69	7.8543	J. Fahrenhorst	1900, Meteoreisen Studien, X, A. N. H., XV,
		100.00	7.925	C. Rammelsberg	87 1873, Fest. Ges. Natur. Freunde, Berlin, 37
		99.98	7.8334	O. Sjöström	1898, Meteoreisen-Studien, VIII, A. N. H.,
		99.98	7.821	J. L. Smith	XIII, 153 1874, A. J. S. (3), VII, 392
		100.16	7.8606	O. Sjöström	1898, Meteoreisen-Studien, VIII, A. N. H.,
		100.00	7.80	C. U. Shepard	XIII, 118–158 1872, A. J. S. (3), III, 438
		100.00	7.9053	C. T. Jackson	1872, A. J. S. (3), IV, 495
		99.98	7.875-8.024	F. A. Cairns	1873, A. J. S. (3), V, 21
		100.01	7.8943	O. Sjöström	1898, Meteoreisen-Studien, IX, A. N. H.,
		100.87	7.694	E. Weinschenk	XIII, 479-480 1892, A. J. S. (3), XLIII, 425
	• • • • • • •	100.05		Lindner	1904, Ber. Berlin Akad., 151
-					

ANALYSES OF OCCLUDED GASES.

The occluded gases of nine iron meteorites have been determined. These are here shown.

Name.	Vols.	н.	CO2	CO.	N.	CH4	Analyst.	Reference.
Charlotte	2.20	71.40	13.30	15.30			A. W. Wright	1876, A. J. S. (3), XI, 257
Cranbourne	3.59	45.79	0.12	31.88	17.66	4.55	W. Flight	1882, Ph. Tr. Roy. Soc. Lon- don, 893 896
Lenarto	2.85	85.68		4.46	9.86		Th. Graham	1866, Proc. Roy. Soc., Lon- don, XV, 502-503
Magura	47.13	18.19	12.56	67.71	1.54		A. W. Wright	
Red River	1.29	76.79	8.59	14.62			A. W. Wright	1876, op. cit.
Rowton	6.38	77.78	5.15	7.34	9.72		W. Flight	1882, op. cit.
Shingle Springs	0.97	68.81	13.64	12.47	5.08		A. W. Wright	1876, <i>op. cit.</i>
Staunton	3.17	35.83	9.75	38.33	16.09		J. W. Mallet	1871, Proc. Roy. Soc. London, XX, 365-370
Tazewell	3.17	42.66	14.40	41.23	1.71		A. W. Wright	

DISCUSSION OF ANALYSES.

The most striking feature brought out by the analyses is the relation shown between chemical composition and structure. This seems to be definite and general. All the meteorites of a hexahedral structure have a nearly uniform composition, while among the octahedral meteorites, fineness of structure increases with increase of nickel. This conclusion can best be shown by obtaining the averages from the analyses of the different groups, omitting all obviously faulty analyses. The results thus obtained are as follows:

	Class.	No. of Analyses.	Width of Lamellæ in Millimeters.	Per Cent Fe.
Hexahed	rites	 29		94.12
Coarsest	Octahedrites_	 I 2	+ 2.5	93.18
Coarse	<u>-</u>	 22	. 2.0-1.5	92.28
Medium	÷	 88	1.0-0.5	90.64
Fine	<u>، ،</u> _	 41	0.4-0.2	90. <u>1</u> 8
Finest	<u>-</u>	 13	0.2	88.51

It is worthy of note that these averages are not means between wide limits, but are derived from nearly uniform values. Practically

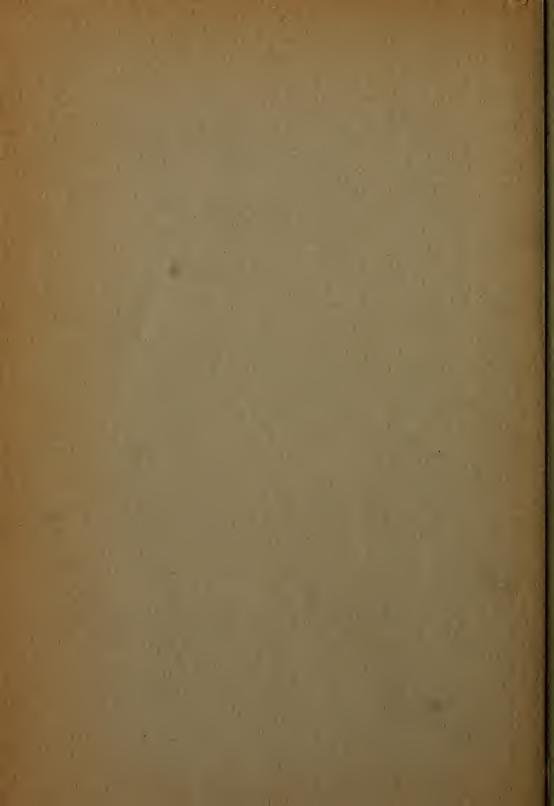
all of the members of the classes conform in composition to the average. Were all the groups equally well known, it is probable, too, that the gradation of percentage of Fe would be even more uniform than here shown. The medium octahedrites, for example, while numerous, have been as a whole imperfectly analyzed. Moreover, some of the meteorites classed as medium octahedrites, which are characterized by low percentage of iron, such as Algoma and Glorieta Mountain, have width of lamellæ such as to place them near if not in the fine octahedrites.

The apparent conclusion from the above results is, that the content of nickel influences the structure. It may also account for the change from a hexahedral to an octahedral structure, since the irons with a hexahedral structure have the lowest per cent of nickel. So constant and definite does this relation hold, that given a certain structure the per cent of nickel can probably be stated more accurately by this principle than it has been determined in some analyses. The per cent of nickel in iron meteorites as a whole, as shown by the reliable analyses, lies between five and twenty-six per cent. An exception to the latter figure may be found in the quoted analyses of Limestone Creek, but of this unfortunately no complete analysis exists. The somewhat doubtful Oktibbeha is also an exception, its percentage of nickel reaching sixty per cent. Cobalt in the iron meteorites rarely exceeds one per cent. No constant relation in amount appears to exist between it and nickel, although perhaps as a rule it is higher with higher nickel. Copper is doubtless, as claimed by Smith, a constant ingredient of iron meteorites. It is usually only a few hundredths of one per cent in amount, but may reach a few tenths. Chromium is shown by the analyses to be a frequent though not constant ingredient in minute quantities. In many cases it is probably present as daubreelite, but also, as suggested by Cohen, it may occur as an element alloyed with nickel-iron. Reports of the presence of manganese and tin are so frequent as to leave little doubt that they occur in many iron meteorites, perhaps alloyed as metals. The presence of platinum and iridium has been proved by Davison in Coahuila and Franceville, and doubtless could be found to exist in more meteorites if proper search were made. Gold was reported in Boogaldi by Liversidge, but in so small a quantity as to make its determination as yet not quite positive. The presence of occluded gases has been determined in but few cases. The constant presence of phosphorus in iron meteorites is a feature shown by the analyses. Apparently no iron meteorite is lacking in this element altogether, and in amount and constancy it con-

siderably exceeds sulphur. It probably occurs combined with nickeliron as phosphide. Sulphur, though evident by its presence in many meteorites as troilite, does not appear in large amounts in the analyses, and does not seem to be so important or constant an ingredient as phosphorus. Carbon is probably more frequent in occurrence than analyses usually show, since of twenty-eight iron meteorites investigated by Cohen for carbon all but one showed appreciable percentages, ranging from .19 per cent to .012 per cent.* The silicon reported in the analyses is doubtless in some cases to be referred to silicate grains, but in other cases may be free or combined with the iron as a silicide. The analyses make plain the incompleteness of much of the work which has been done hitherto. There can be little doubt that complete analyses of iron meteorites should always show iron, nickel, cobalt, copper, and phosphorus, and in most cases sulphur, carbon, and silicon. When considerable differences occur in the analyses of the same meteorite, as, for instance, 2 per cent of nickel reported in Burlington by Rockwell and nearly 9 per cent by Shepard, the difference is probably not to be regarded as due to the meteorite, but to the analyses. In a substance made up of different alloys and accessory minerals as are the iron meteorites, especially the octahedrites, there can be no question that portions from different parts of the meteorite would of necessity show unlike composition. How wide these variations might legitimately be it is difficult to say, but some causes of error may be suggested. One of these is imperfect sampling. The proper method to secure material for mass analyses of an iron meteorite, especially if of octahedral structure, is to use dust obtained by boring. A mixture of the constituents of the meteorite is thus obtained which insures a better representation of its composition than is possible when only a fragment broken from some part of the surface is used. Such a fragment may contain an excess of taenite, or be largely composed of some accessory mineral so as to be far from representing the true constitution of the meteorite. Yet the larger number of analyses of iron meteorites have probably been made with fragments of this character, and the wonder is, not that they show so much variation, but that they do not show more. Meteorites also doubtless vary in their homogeneity, as shown especially by Canyon Diablo, in one portion of which Moissan found 2.89 per cent of nickel, and in another, only one centimeter distant, 5.06 per cent. In another piece of Canyon Diablo two analyses made by the same analyst of material obtained at distances of one centimeter showed 1.17 per cent and 7.11 per cent of

^{*} Meteoritenkunde, Heft II., p. 243.

nickel.* While few meteorites probably vary to this extent, such determinations show the need of as thorough sampling as possible if a mass analysis is to be made. Occasionally a marked variation in the analyses of a meteorite seems explicable only on the assumption that the material analyzed did not belong to that meteorite. Such. for instance, seems the most reasonable explanation for the percentage of nickel, 12.67 per cent, reported by Hayes for Limestone Creek, as compared with the percentages, 25-30 per cent, obtained by other analysts. Errors of this sort are obviously difficult to detect, and can only be surmised in extreme cases. Another and more serious cause of discrepancies in analyses is the imperfect separation by the analyst of nickel and cobalt from the iron. The methods for this separation are not altogether satisfactory, even at the present day, and in earlier years they were much less so. Consequently the results of the earlier analysts were for the most part too low in these ingredients. The determinations of specific gravity shown in the tables appear in some cases to have been equally open to sources of error with the analyses. It can easily be calculated that the specific gravity of an iron meteorite is likely to be between 7.6 and 7.9, since the specific gravity of pure iron, 7.85, will be increased by that of nickel, 8.8. according to the proportion of the latter. It will be decreased by accessory minerals, such as troilite, which has a specific gravity of 4.7. schreibersite, 6.5, graphite, 2.2, and oxidized ingredients. Any porosity of the meteorite will also lessen its specific gravity. It is obvious, therefore, that determinations of specific gravity made on small fragments can hardly represent that of the mass as a whole, since they may contain a disproportionate quantity of accessory ingredients or may be more oxidized than the main mass. It is hardly credible that porosity or accessory ingredients of a meteorite would in any case reduce its specific gravity below 7. Determinations below this figure. therefore, probably indicate that oxidized material was used. From the showing in the tables that large numbers of meteorites have practically similar composition, it is evident that similarity of composition cannot be used, as has often been done hitherto, to prove identity of origin of meteorites found at different places. This method at one time obtained considerable vogue. Dissimilarity of composition, on the other hand, as a rule indicates separate falls. The only marked exception to this rule seems to be furnished by the two masses of Babb's Mill, one of which shows about 11 per cent, the other about 17 per cent, of nickel. The only alternative supposition possible here


* C. R., 1893, cxvi., 290.

is that two ataxites fell at different times at one locality. In view of the small number of ataxites known, this seems less likely than to suppose that two masses of the same fall differed in composition. No other case of such marked difference is known. Differences of structure seem as a rule to be a better criterion for distinguishing meteorites than differences of composition. On the other hand, similarity of structure and composition together do not positively identify meteorites found at different places as belonging to one fall, since such similarities occur in meteorites seen to fall at widely different times and places. Of the nine iron meteorites seen to fall, four are medium octahedrites and have practically similar compositions. In correlating individual meteorites, therefore, all possible characters must be taken into consideration, including the circumstances of their find, the appearance of their exterior, the probable time elapsed since their fall, etc.

No attempt has been made by the writer at summation of the analyses here given, in order to determine the average composition of iron meteorites. Such a summation, if worthy of being performed at all, will be deferred until analyses of the iron-stone and stone meteorites are also at hand for comparison. This work the writer hopes to accomplish in the near future. It is obvious, however, from an inspection of the tables that the average percentage of iron in iron meteorites as a whole is not far from 91 per cent, while that of nickel closely approximates 7.50 per cent. It is doubtful if the average percentage of the remaining minor constituents can be learned by summation of existing analyses. Not only have these constituents in many cases not been determined, but also any slight error in analyses or sampling would double or multiple their percentage. A percentage of .4 of cobalt, for instance, as compared with .2, is within the limits of error of many analyses, yet one percentage is double that of the other. The same is true in much greater degree of determinations of the amount of copper and other constituents. Until a larger number of complete and accurate determinations are at hand, therefore, summations of these constituents seem to have little value. One point in the composition of iron meteorites which may or may not be of significance may be noted. Of the four constant metallic constituents, the most abundant, iron, has the lowest atomic weight, the next in quantity, nickel, is next higher, and so on for cobalt and copper. This gradation, using percentages common in iron meteorites, appears as follows:

				Copper.
Per cent in iron meteorites	.90	9	0.9	0.02
Atomic weight	- 5 5 • 5	58.3	58.6	63.1

0. -

... . 6.5 5 / B · ·

