Statistical appendix to Minerals yearbook 1935. Year 1934 1936 Kiessling, O. E. Washington, D. C.: Bureau of Mines : United States Government Printing Office, 1936 https://digital.library.wisc.edu/1711.dl/PPYAWXJZXOESO8L http://rightsstatements.org/vocab/NoC-US/1.0/ As a work of the United States government, this material is in the public domain. For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media. When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use. #### U.S. DEPARTMENT OF THE INTERIOR HAROLD L. ICKES, Secretary **BUREAU OF MINES** JOHN W. FINCH, Director # STATISTICAL APPENDIX TO MINERALS YEARBOOK 1935 O. E. KIESSLING Chief Economist, Mineral Production and Economics Division # UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1936 After this publication has served your purpose and if you have no further need for it, please return it to the Bureau of Mines, using the official mailing label on the last page # CONTENTS | Introduction, by O. E. Kiessling | |--| | Summary of mineral production, by M. B. Clark | | Sand and gravel, by H. H. Hughes and M. Allan | | Lime, by A. T. Coons | | Natural gasoline, by G. R. Hopkins and E. M. Seeley | | Natural gas, by G. R. Hopkins and H. Backus | | Ore concentration, by T. H. Miller and R. L. Kidd | | Gold, silver, copper, lead, and zinc in Idaho, by C. N. Gerry and T. H. | | Miller | | Gold, silver, copper, lead and zinc in Nevada, by H. M. Gaylord | | Stone, by A. T. Coons | | Gold, silver, copper, lead, and zinc in Montana | | Cement, by B. W. Bagley | | Gold, silver, copper, lead, and zinc in Arizona, by C. N. Gerry and Paul | | Luff | | Coal, by L. Mann, W. H. Young, F. G. Tryon, and H. L. Bennit | | Gold and silver, by J. P. Dunlop | | Crude petroleum and petroleum products, by G. R. Hopkins and A. B. | | Coons | | | 438588 FEB - 9 1937 MMK • HA 1934 INTRODUCTION Supp. Although the Bureau of Mines has for years maintained a policy of releasing mimeographed summaries of essential statistics of each commodity as soon as figures were completed in the workshops, in 1933 the Bureau further expedited prompt release of more complete basic statistical information by replacing the annual volume "Mineral Resources of the United States" with the "Minerals Yearbook." A rigorous schedule for completion of canvasses was adopted in order that the manuscript for the Minerals Yearbook, might be sent to the printer in June. For some minerals—such as coal or stone, where the number of producers is large—it is physically impossible, with present limited staff and resources, to close the canvasses and prepare the detailed tables until after the Yearbook manuscript has been completed. For these minerals the data included in the Yearbook are subject to slight revision and are supplemented by final detailed tables subsequently published as separate statistical appendixes to the Minerals Yearbook and finally assembled in bound form, as in this volume. In addition to the introduction and the summary of mineral production, 14 chapters of final statistics are included in this volume as supplementary to discussions of specific mineral commodities in the 1935 Yearbook. Each chapter of the Statistical Appendix has been published separately upon completion of detailed compilations, and copies were distributed free by the Bureau to those mineral producers who cooperated in supplying information. Only a limited number of bound volumes of both the Minerals Yearbook and the Statistical Appendix customarily are distributed to reference libraries and educational institutions. Copies of either the separate chapters or the bound volumes can be obtained from the Superintendent of Documents, Government Printing Office, Washington, D. C., at a moderate cost. The office of the Superintendent of Documents is in no way connected with the Bureau of Mines, and no money derived from sales reverts to the Bureau. O. E. Kiessling. The state of s โดยสัญญาตา สิทธิบาลกรับ ๆ เอลากับ กระบบกับกระบบกับการ (สิทธิบาล) กับ ลับบาล (โดยสัญญาตา สิทธิบาล) กับ เลือน (โดยสัญญาตาล สิทธิบาล) กับ เลือน (โดยสิทธิบาล) เล้าสามา (โดยสิทธิบาล) กับ เล้าสามา (โดยสิทธิบาล) กับ เล้าสิทธิบาล) เล้าสิท Definition of the statement state and in the posterior parties a visit to egystek og ekkeltere og de kreutifiliti heters ikkelt i skelfe ble Men og kreuter til de dette film kritisk film og forkkligt gjernisker, egystek og ble kreitig i klimater i kreitig ble til film ek i fær i hog men egystek fær ekkelter for hande skriftet. eren ing di regis en separat para mana Ayang mengalah panggan panggan panggan Ayang mengalah panggan panggan #### SUMMARY OF MINERAL PRODUCTION (GENERAL UNITED STATES SUMMARY AND DETAILED PRODUCTION BY STATES) By M. B. CLARK #### SUMMARY OUTLINE | Page | Page | |----------------------------|------------------| | IntroductionA1 | General tablesA3 | | Unit of measurement A1 | State tables | | Elimination of duplication | | #### INTRODUCTION This report continues, in abbreviated form, the series of annual summaries published as chapters of Mineral Resources and of Statistical Appendix to Minerals Yearbook. #### UNIT OF MEASUREMENT The unit of measurement used by the Bureau of Mines for each mineral product in reports on the mineral resources is that common to the industry concerned, and the variation in these units makes it impracticable, if not impossible, directly to combine and compare the different minerals except as to value. Although most of the products are measured by weight, some are measured by volume, some by number of "pieces", etc., and for some no total quantity figures are available. #### ELIMINATION OF DUPLICATION In the totals for the United States, shown in the following "general" tables, duplication has been eliminated wherever practicable, and in the State totals given in the State tables virtually all duplication has been eliminated. For instance, in both general and State tables the output of coke is shown but its value is not included in the totals, as the value of the coal used in its manufacture enters into the value of the coal production which is included in the totals. For clay, the value of the products of the clay industries is included in both general and State totals as representing the first marketable form of the greater part of the clay produced; the quantity and value of the clay mined and sold in the raw state by miners to users of clay are shown separately also, but the value is not included in the totals as it is duplicated largely in that for clay products. No figures are available for total clay produced. For asphalt, both native and oil are shown in the general tables, but the value of the oil asphalt is excluded from the totals as it duplicates that of the petroleum from which it is manufactured. United States totals.—In the general tables both iron ore and pig iron are shown, but the value of the pig iron rather than the iron ore is included in the United States totals, as that is considered the better means of presenting the statistics for iron in its first marketable form. For gold, silver, copper, lead, and zinc the value of "smelter output" is included in the general totals, and to account more fully for the value of the ores treated these smelter figures are supplemented by the value The value of pigments (white lead, of the byproduct sulphuric acid. red lead, lithopone, litharge, and orange mineral) manufactured from metals is not included in the general tables, as the base from which they are made is included in the output of lead or zinc, whereas the value of sublimed blue lead, sublimed white lead, leaded zinc oxide, and zinc oxide is included, as these are made in large part direct from the ores and do not enter into the lead or zinc totals, which represent smelter output. State totals.—In the State tables also iron ore and pig iron are both shown. As blast-furnace products cannot be traced to the States in which the ore is mined, the value of the ore is used in the State totals. For ores of gold, silver, copper, lead, and zinc no values are shown, and in fact none are recorded; instead, for each of these metals the recoverable content of the ores is used as the basis of valuation. The value of the zinc and lead pigments is not included in the State total, as the recoverable zinc and lead content of the ores from which the products were made is included under zinc or lead. The value of the sulphuric acid produced as a byproduct of copper and zinc smelting is not included in the State total, as tracing this product back to the State producing the ore has not been possible. #### GENERAL TABLES Mineral products of the United States, 1933-34 | Antimonial leadshort tons (2,000 pounds) _ Antimony: | | 19 | 33 | 1934 | | |
--|---|---------------|----------------|---------------|---|--| | Aluminum | Product | | l | | | | | Altiminum | | Quantity | Value | Quantity | Value | | | Altiminum | MARIATING | | | | 7.1 | | | Metal | Aluminumpounds_ | 85, 126, 000 | \$16, 174, 000 | 74, 177, 000 | \$14,094,000 | | | Metal | Antimonial leadshort tons (2,000 pounds) | 1 17, 805 | | | | | | Cadmimte | Metaldo | (2 3) | (2 3) | (2.3) | (2 8) | | | Cadmimte | Ore (concentrates) do | | | | | | | Cammim | Bauxitelong tons (2.240 pounds) | | | 157, 838 | 1, 129, 053 | | | Chromite | Cadmiimpoinds | 2, 276, 933 | | 2, 777, 384 | (4) | | | Copper_s sales value | Chromitelong tons | | `11.585 | | 4, 653 | | | Gold | Copper, 5 sales valuepounds_ | 449, 999, 143 | | | 39, 076, 000 | | | Gold | Ferro-alloys long tons | | 28, 653, 794 | | 34, 634, 957 | | | Core S | Goldtroy ounces_ | 6 2, 556, 246 | 7 65, 337, 648 | 6 3, 091, 183 | 6 108, 191, 400 | | | Pig | Iron: | | | | | | | Manganese ore (35 percent or more Mn) long tons. Manganiferous ore (5 to 35 percent Mn) long tons. Mercury: Metal. flasks (76 pounds net). Ore short tons. % 9, 669 % 72, 666 15, 445 1, 140, 8 (10) (| Ore 3long tons | 24, 624, 285 | | | ³ 66, 483, 846 | | | Manganese ore (35 percent or more Mn) | Pigdo | 14, 353, 197 | | | 264, 653, 746 | | | Solution | Lead (renned), sales valuesnort tons_ | 259, 616 | 19, 212, 000 | 299, 841 | 22, 188, 000 | | | Manganiferous ore (5 to 35 percent Mn) long tons. 191, 631 529, 204 221, 822 621, 621, 666 Mercury: Metal. flasks (76 pounds net). 8, 9, 669 572, 666 15, 445 1, 140, 8 (10) | | 0 10 110 | 0 400 00" | | | | | Mercury: Metal flasks (76 pounds net) % 9, 669 % 572, 666 15, 445 1, 140, 8 670 62, 913 157 108, 4 68, 680, 900 109 11, 717, 900 109 11, 717, 900 109 11, 717, 900 109 11, 853, 900 | | • 19, 146 | ° 400, 285 | 26, 514 | 571, 748 | | | Mercury: Metal flasks (76 pounds net) \$ 9,669 \$ 572,666 15,445 1,140,8 Ore short tons 126 62,913 157 108,40 Nickel do 126 62,913 157 108,40 Copper-lead do 126,000 (10) 11,717,000 (10) Copper-lead do 126,000 (10) 11,717,000 (10) Dry and siliceous (gold and silver) do 8,885,000 (10) 11,717,000 (10) Lead do 3,213,000 (10) 11,717,000 (10) Zinc do 4,894,000 (10) 3,360,000 (10) Platinum and allied metals (value at New York City) 51,539 1,631,000 47,274 1,686,6 Silver II do 23,002,629 8,050,920 32,725,353 21,155,7 Tim (metallic equivalent) short tons 8 2,400 9 9 6 Timente do (4) (4) (4) (4) | | 101 691 | E00 004 | 001 000 | 601 000 | | | Metal | | 191, 051 | 529, 204 | 221, 822 | 021, 090 | | | Ore short tons (*) (10) (*) (10) (*) (10) (*) (10) (*) (10) (*) (10) | Metal flasks (76 nounds net) | 8 0 860 | 8 579 666 | 15 145 | 1 140 845 | | | Nickel | Ore short tons | (8) | | | | | | Copper | Nickel | | 62.913 | | 108, 414 | | | Copper | Ores (crude), old tailings, etc.: | | 02,010 | 1 | 100, 111 | | | Copper-lead | Copper do | 8, 385, 000 | (10) | 11, 717, 000 | (10) | | | Lead | Copper-leaddodo | 126,000 | (10) | | (10) | | | Lead | Dry and siliceous (gold and silver)do | 8, 680, 000 | | 11,853,000 | (10) | | | Zinc | Leaddo | | | | | | | Platinum and allied metals (value at New York City) | Lead-zincdo | 4, 894, 000 | | 6, 384, 000 | | | | City | Zincdo | 3, 236, 000 | (10) | 6, 237, 000 | (10) | | | Silver 1 | Platinum and allied metals (value at New York | | | | | | | Titanium ore: do. (4) < | City)troy ounces | 51, 539 | | | 1, 686, 000 | | | Titanium ore: do (4) | Silver IIdo | 23, 002, 629 | | | 21, 155, 784 | | | Hmenite | Tin (metallic equivalent)snort tons | . 83 | 8 2, 400 | 9
| 9,600 | | | Tungsten ore (60 percent concentrates)do | Thantum ore: | (1) | <i>(</i> 1) | // | /n ' | | | Tungsten ore (60 percent concentrates)do | Dutile de | (2) | | (2) | (2) | | | Uranium and vanadium ores do 105 4, 119 (1) Zinc, 5 sales value do 306, 010 25, 705, 000 355, 366 30, 561, 0 Total value of metallic products (approxi- | Tungsten ore (60 percent concentrates) do | (*) | | (1) | 1 701 916 | | | Zinc, ⁵ sales valuedododododo | Uranium and vanadium ores do | | | | | | | Total value of metallic products (approxi- | Zinc 5 sales value | | | | | | | | uuuuuuuu | 500,010 | 20, 100, 000 | 300, 300 | 30, 301, 000 | | | | Total value of metallic products (approxi- | | | | | | | , | | | 411, 300, 000 | | 543, 500, 000 | | | | | | | | ======================================= | | ¹ Figures represent antimonial lead produced at primary refineries from both domestic and foreign primary and secondary sources; no figures for value of antimonial lead available. Estimate of value of primary antimony and lead contents of antimonial lead from domestic sources included in total value of metallic products. ³ All from foreign ore in 1933 and largely from foreign cre in 1934; Bureau of Mines not at liberty to publish figures. 3 Value not included in total value. Talkeded in total value of n 8 Revised figures. Value not included in total value. Value included in total value of metallic products; Bureau of Mines not at liberty to publish figures. Product from domestic ores only. According to Bureau of the Mint. Valued in 1934 at \$35.00 per ounce. Includes \$52,842,300, calculated by Bureau of the Mint at legal coinage value (\$20.67+ per ounce), plus \$12,495,348 premium, calculated by Bureau of Mines at average weighted price (\$25.56 per ounce). For details regarding premium on newly mined gold see chapters on Gold and Silver in Minerals Yearbook, 1024 and 1025. 1934 and 1935. ^{revised figures Figures not available. Figures showing values not available. According to Bureau of the Mint.} #### Mineral products of the United States, 1933-34-Continued | | 19 | 33 | 1934 | | | |---|---------------------------|---|--------------------------|---------------------------|--| | Product | Quantity | Value | Quantity | Value | | | | | | | | | | NONMETALLIC Arsenious oxideshort tons | 11, 797 | \$636, 132 | 15, 623 | \$797, 278 | | | Asbestos do | 4, 745 | 130, 677 | 5, 087 | 158, 347 | | | A sphalt: | 2, 120 | 100, 011 | 0,001 | 100,011 | | | Nativedo
Oil (including road oil) ³ do | 313, 135 | 1, 705, 310 | 440,852 | 2, 365, 750 | | | Oil (including road oil)3do | 2, 122, 458 | 8 15, 946, 191 | 2, 515, 628 | 3 23, 413, 386 | | | Barite (crude)do | 167,880 | 852, 611 | 209, 850 | 1, 109, 378 | | | Barite (crude) do Borates (naturally occurring sodium borates and colemanite) short tons | 100 047 | 0 496 977 | 049 500 | 4, 822, 014 | | | Promine pounds | 188, 047
10, 147, 960 | 3, 436, 377
2, 040, 352 | 242, 500
15, 344, 290 | 3, 227, 425 | | | Brominepounds | 57, 813 | 893, 442 | 76, 719 | 1, 153, 159 | | | Cement barrels (376 pounds net) | 64, 715, 171 | 8 86, 155, 564 | 76, 579, 483 | 117, 881, 816 | | | Clav: | | 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , , | | | | Products 12short tons_ | | 94, 726, 786 | | 116, 171, 631 | | | | 1, 840, 173 | 3 6, 840, 617 | 2, 187, 263 | ³ 8, 197, 253 | | | Coal: | 333, 630, 533 | 445 700 000 | 359, 368, 022 | 628, 112, 000 | | | Bituminous ¹³ do
Pennsylvania anthracitedo | 49, 541, 344 | 445, 788, 000
206, 718, 405 | 57, 168, 291 | 244, 152, 245 | | | Coke 3 do | ⁸ 27, 589, 194 | 3 8122, 951, 057 | 31, 821, 576 | 3 159, 425, 674 | | | Coke 3 | 20, 878 | 350, 383 | 20, 529 | 329, 356 | | | Emerydo | 1,056 | 12, 283 | 189 | 1, 800 | | | Feldspar (crude)long tons | 150, 633 | 778, 826 | 154, 188 | 853, 136 | | | Fluorspar short tons Fuller's earth do | 72, 930 | 1, 039, 178 | 85, 786 | 1, 391, 405 | | | Garnet for abrasive purposesdo | 8 224, 152
2, 794 | 8 2, 080, 640
224, 717 | 220, 264
2, 591 | 2, 085, 081
214, 815 | | | Gems and precious stones | | (15) | 2, 091 | (15) | | | Graphite: | | | | | | | Amorphousshort tons | (16) | (16) | (16) | (16) | | | Crystallinepoundsshort tonsshort tons | 6 | 1 | (16) | (16) | | | Grindstones and pulpstonesshort tons | 14, 176 | 444, 250 | 12, 630 | 463, 234 | | | Gypsumdo
Heliumcubic feet | 1, 335, 192
(17) | 11, 927, 478
(17) | 1, 536, 170 | 13, 761, 977
(17) | | | Lime short tons | 2, 269, 280 | 14, 253, 659 | 2,397,087 | 17, 164, 024 | | | Limeshort tonsdodo | 108, 187 | 840,000 | 100, 973 | 730, 630 | | | Mica: | | | | | | | Scrapdodo | 8, 751 | 98, 159 | 7, 719 | 99, 791 | | | Sheetpounds_ | 364, 540 | 53, 179 | 583, 528 | 90, 268 | | | Millstones | | 8, 387 | | 10, 101 | | | Mineral paints: | (18) | (19) | (18) | (18) | | | Natural pigments ¹⁸ short tons
Zinc and lead pigments ¹⁹ do | 129, 355 | 13, 193, 627 | 114, 661 | 12, 617, 296 | | | Mineral waters gallons sold. Natural gas M cubic feet. Natural gasoline gallons. Oilstones, etc. short tons. | (15) | (15) | (15) | (15) | | | Natural gasM cubic feet | 1, 555, 474, 000 | 368, 540, 000 | 1, 770, 721, 000 | 395, 378, 000 | | | Natural gasolinegallons | 1, 420, 000, 000 | 54, 368, 000 | 1, 535, 360, 000 | 60, 523, 000 | | | Oilstones, etcshort tons | 587 | 96, 597 | 396 | 94, 419 | | | Peatdo
Petroleumbarrels (42 gallons) | (15)
905, 656, 000 | 608, 000, 000 | 40, 544
908, 065, 000 | 214, 185
904, 825, 000 | | | Phosphate rocklong tons_ | 2.490.312 | 7, 872, 362 | 2, 834, 523 | 10, 040, 005 | | | Potassium salts short tons | 20 139, 067 | 5, 296, 793 | 20 114, 122 | 2, 813, 218 | | | Pumicedo Pyriteslong tons. Saltshort tons. | 61, 220 | 241, 834 | 56, 169 | 207.058 | | | Pyriteslong tons | 284, 311 | 769, 942 | 432, 524 | 1, 216, 363 | | | Saltshort tons | 7, 604, 972 | 22, 318, 086 | 7, 612, 074 | 22, 850, 797 | | | Sand and gravel: | 1 701 400 | 2 011 000 | 1 000 614 | 2 206 500 | | | Glass sanddo
Sand (molding, building, etc.) and gravel | 1, 781, 423 | 3, 011, 023 | 1, 923, 614 | 3, 326, 538 | | | | | | | | | snort tons...| 105, 973, 926 | 50, 061, 887 | 114, 688, 075 | 57, 920, 635 Revised figures. Figures obtained through cooperation with Bureau of the Census. Includes brown coal and lignite, and anthracite mined elsewhere than in Pennsylvania. Figures represent tripoli only. Value of diatomite included in total value of nonmetallic products; Bureau of Mines not at liberty to publish figures. No canvass. Estimate of value included in total value of nonmetallic products. Value included in total value of nonmetallic products. Bureau of Mines not at liberty to publish figures. Value included in total value of nonmetallic products. For details of production in fiscal years see chapter on Helium in Minerals Yearbook, 1935. Canvass discontinued after 1915. Value of iron ore sold for paint included under last item ("Unspecified"). Sublimed blue lead, sublimed white lead, leaded zinc oxide, and zinc oxide. #### Mineral products of the United States, 1933-34—Continued | | . 2 | | | | | |--|---|--|---|---|--| | | 19 | 933 | 1934 | | | | Product | Quantity | Value | Quantity | Value | | | NONMETALLIC—continued | | - | | | | | Sand-lime brick **1 | 22, 904
11, 153
259, 620
70, 222, 210
1, 637, 368
656, 102
8 166, 023 | \$195, 318
71, 048
2, 696, 185
80, 945, 608
29, 500, 000
4, 337, 983
8 1, 731, 882 | 41, 408
18, 293
232, 730
92, 063, 830
1, 613, 838
575, 660
138, 905 | \$355, 560
129, 965
2, 707, 928
98, 979, 936
28, 900, 000
4, 227, 096
1, 450, 685 | | | Total value of nonmetallic products (approximate) | | 2, 132, 900, 000 | | 2, 770, 300, 000 | | | SUMMARY | | | | | | | Total value of metallic products. Total value of nonmetallic products (exclusive of mineral fuels). Total value of mineral fuels. Total value of "unspecified" (metallic and non- | | 411, 300, 000
449, 350, 000
1, 683, 550, 000 | | 543, 500, 000
537, 200, 000
2, 233, 100, 000 | | | metallic) products (partly estimated)23 | | 10, 900, 000 | | ²³ 14, 500, 000 | | | Grand total approximate value of mineral products | | 2, 555, 100, 000 | | 3, 328, 300, 000 | | ⁸ Revised figures 21 According to Bureau of the Census. 22 Figures for soapstone used as dimension stone included in figures for stone. 23 Includes for 1934 the value of bismuth, cadmium compounds, chats (\$518,110), flint lining for tube mills and pebbles for grinding, iodine (\$342,957), iron ore sold for magnets, iron ore sold for paint (\$26,151), lithium minerals (\$20,980), new ingot magnesium, natural magnesium hydrate (brucite), natural magnesium salts (\$1,266,325), calcareous marl (\$22,236), greensand marl (\$209,278), micaecous minerals (\$123,796), molybdenum
(\$6,502,000), selenium, silica sand and sandstone (finely ground) (\$1,301,285), sodium salts (carbonates and sulphates) from natural sources (\$1,402,338), tantalum ore (\$968), tellurium, and an estimate of the value of miscellaneous mineral products, statistics for which are not collected annually by the Bureau of Mines. # Value of mineral products of the United States, 1880-1934 | | Metalli | Metallic Nonmetallic | | llic | Trancei | Total | | |--|---|--|--|---|---|--|--| | Year | Value | Increase
or de-
crease
(per-
cent) | Value | Increase
or de-
crease
(per-
cent) | Unspeci-
fied (me-
tallic and
nonme-
tallic) | Value | Increase
or de-
crease
(per-
cent) | | 1880 | \$187, 881, 000 | (1) | \$173, 582, 000 | (1) | \$6,000,000 | \$367, 463, 000 | (1) | | 1881
1882
1883
1884
1885
1886
1887
1888
1889
1890 | 189, 413, 000
215, 820, 000
197, 881, 000
180, 284, 000
172, 218, 000
204, 400, 000
240, 791, 000
242, 010, 000
250, 325, 000
303, 440, 000 | +0.8
+14
-8
-9
-4
+19
+18
+.5
+3
+21 | 207, 207, 000
230, 786, 000
243, 680, 000
221, 756, 000
242, 333, 000
250, 995, 000
294, 057, 000
310, 889, 000
310, 995, 000 | +19
+11
+6
-9
+9
+4
+17
+6
-6
+7 | 6, 500, 000
6, 500, 000
5, 500, 000
5, 000, 000
790, 000
785, 000
900, 000
997, 000
994, 000 | 403, 120, 000
453, 106, 000
448, 061, 000
407, 040, 000
419, 551, 000
456, 185, 000
535, 633, 000
553, 799, 000
542, 326, 000
615, 429, 000 | +10
+12
-1
-9
+3
+9
+17
+3
-2
+13 | | 1891
1892
1893
1894
1895
1896
1897
1898
1899
1900 | 280, 485, 000
283, 715, 000
223, 154, 000
186, 835, 000
248, 033, 000
252, 075, 000
269, 934, 000
308, 247, 000
483, 521, 000
513, 732, 000 | $\begin{array}{c} -8 \\ +1 \\ -21 \\ -16 \\ +33 \\ +2 \\ +7 \\ +14 \\ +57 \\ +6 \end{array}$ | 319, 364, 000
337, 517, 000
321, 339, 000
362, 410, 000
393, 658, 000
387, 966, 000
380, 678, 000
417, 795, 000
525, 575, 000
594, 204, 000 | +3
+6
-5
+13
+9
-1
-2
+10
+26
+13 | 1, 000, 000
1, 000, 000
1, 000, 000
1, 000, 000 | 600, 849, 000
622, 232, 000
545, 493, 000
550, 245, 000
642, 691, 000
641, 041, 000
651, 612, 000
727, 042, 000
1, 010, 096, 000
1, 108, 936, 000 | $\begin{array}{c c} -2\\ +4\\ -12\\ +19\\ +17\\ -3\\ +2\\ +12\\ +39\\ +10 \end{array}$ | | 1901 | 493, 314, 000
604, 517, 000
588, 753, 000
501, 114, 000
702, 585, 000
886, 180, 000
904, 108, 000
550, 768, 000
754, 944, 000
749, 879, 000 | $\begin{array}{r} -4 \\ +23 \\ -3 \\ -15 \\ +40 \\ +26 \\ +2 \\ -39 \\ +37 \\7 \end{array}$ | 660, 764, 000
722, 434, 000
905, 628, 000
857, 667, 000
920, 780, 000
1, 165, 376, 000
1, 1640, 761, 000
1, 131, 866, 000
1, 237, 668, 000 | +11
+9
+25
-5
+7
+10
+15
-11
+9
+9 | 1, 000, 000
1, 000, 000
1, 000, 000
400, 000
400, 000
200, 000
86, 000
244, 000
297, 000 | 1, 155, 078, 000
1, 327, 951, 000
1, 495, 381, 000
1, 359, 181, 000
1, 623, 765, 000
1, 900, 880, 000
2, 069, 570, 000
1, 591, 773, 000
1, 887, 107, 000
1, 887, 107, 000 | +4
+15
+13
-9
+19
+17
+9
-23
+19
+5 | | 1911
1912
1913
1914
1915
1916
1917
1918
1918
1919
1920 | 680, 907, 000
862, 008, 000
878, 869, 000
686, 639, 000
991, 730, 000
1, 620, 745, 000
2, 086, 234, 000
2, 153, 318, 000
1, 359, 744, 000
1, 762, 350, 000 | -9
+27
+2
-22
+44
+63
+29
+3
-37
+30 | 1, 242, 942, 000
1, 375, 420, 000
1, 554, 298, 000
1, 424, 063, 000
1, 400, 484, 000
1, 884, 413, 000
2, 900 462, 000
3, 380, 690, 000
3, 25, 626, 000
5, 214, 170, 000 | +.4
+11
+13
-8
-2
+35
+54
+17
-4
+61 | 232, 000
366, 000
378, 000
470, 000
2, 430, 000
5, 800, 000
6, 700, 000
3, 400, 000
4, 820, 000 | 1, 924, 081, 000
2, 237, 794, 000
2, 433, 545, 000
2, 111, 172, 000
2, 394, 644, 000
3, 508, 439, 000
4, 992, 496, 000
5, 540, 708, 000
4, 595, 770, 000
6, 981, 340, 000 | -3
+16
+9
-13
+13
+47
+42
+11
-17
+52 | | 1921
1922
1923
1924
1924
1925
1926
1927
1927
1928
1929
1930 | 654, 130, 000
987, 180, 000
1, 510, 930, 000
1, 232, 330, 000
1, 380, 280, 000
1, 402, 920, 000
1, 217, 700, 000
1, 284, 580, 000
1, 475, 990, 000
982, 550, 000 | -63
+51
+53
-18
+12
+2
-13
+5
+15
-33 | 3, 481, 720, 000
3, 656, 410, 000
4, 471, 620, 000
4, 067, 730, 000
4, 291, 100, 000
4, 803, 080, 000
4, 304, 100, 000
4, 091, 620, 000
4, 401, 180, 000
3, 773, 400, 000 | -33
+5
+22
-9
+5
+12
-10
-5
+8
-14 | 2, 650, 000
3, 700, 000
3, 950, 000
5, 740, 000
6, 250, 000
7, 600, 000
8, 200, 000
9, 000, 000
10, 430, 000
8, 850, 000 | 4, 138, 500, 000
4, 647, 290, 000
5, 986, 500, 000
5, 305, 800, 000
6, 213, 600, 000
5, 530, 000, 000
5, 530, 000, 000
5, 887, 600, 000
4, 764, 800, 000 | -41
+12
+29
-11
+7
+9
-11
-3
+9
-19 | | 1931
1932
1933
1934 | 567, 200, 000
283, 700, 000
411, 300, 000
543, 500, 000 | -42
-50
+45
+32 | 2, 592, 100, 000
2, 172, 000, 000
2, 132, 900, 000
2, 770, 300, 000 | -31
-16
-2
+30 | 7, 300, 000
6, 000, 000
10, 900, 000
14, 500, 000 | 3, 166, 600, 000
2, 461, 700, 000
2, 555, 100, 000
3, 328, 300, 000 | -34
-22
+4
+30 | | Grand total. | | | 91, 094, 062, 000 | | 187, 837, 000 | 130, 469, 089, 000 | | ¹ Figures for earlier years not available. The sum of the following State totals does not reach the total for the United States given on pages A5 and A6 partly because figures for certain of the products included in the United States total are not available by States of origin. This fact is brought out in the text on page A2 and in the table on page A9. In addition, there are many factors (the more important discussed in the text on pp. A1 and A2) that account for the disagreement between the sum of the State totals and the grand total for the United States, by products. Chief among these are: (1) The use of iron ore values in State totals and pig iron values in United States total (see text on pp. A1 and A2); (2) the use of mine figures for gold, silver, copper, lead, and zinc in the State totals and mint and smelter figures (supplemented by the value of byproduct sulphuric acid from copper and zinc smelting and the value of zinc and lead pigments made in large part direct from ores) in the United States total; and (3) the inclusion of estimates in the United States total for a few products for which no canvass has been conducted for many years and for which no estimate by States is made (see table on pp. A3 to A5). Many other less important differences are involved, but both State and United States totals are as complete and definite as seems possible with the data available. The practice is consistent from year to year, and it is believed that the reader can determine readily just what minerals are covered by the total concerned. In every table each mineral produced is listed, and all figures are shown except those that the Bureau of Mines is not at liberty to publish. # Value of mineral products of the United States, 1930-34, by States 1 | State | 1930 | 1931 | 1932 | 1933 | 1934 | |----------------------|-----------------------|----------------|----------------|----------------|----------------| | Alabama | \$55, 461, 985 | \$38, 506, 558 | \$19, 170, 152 | \$23, 291, 204 | \$29, 827, 048 | | Alaska | 13, 707, 235 | 12, 371, 057 | 11, 526, 387 | 12, 681, 071 | 19, 586, 413 | | Arizona | 82, 933, 802 | 41, 602, 929 | 15, 203, 724 | 12, 570, 753 | 26, 062, 865 | | Arkansas | 34, 901, 476 | 18, 692, 379 | 15, 540, 325 | 12, 710, 203 | 16, 081, 642 | | California | 479, 049, 507 | 304, 538, 557 | 286, 683, 332 | 293, 034, 859 | 331, 255, 652 | | Colorado | 46, 270, 545 | 32, 970, 230 | 25, 800, 227 | 27, 259, 095 | 39, 719, 12 | | Connecticut | 5, 485, 120 | 4, 299, 790 | 1, 910, 803 | 1, 550, 594 | 2, 276, 061 | | Delaware | 424, 901 | 394, 579 | 300, 426 | 135, 397 | 271, 814 | | District of Columbia | 1, 288, 344 | 281, 980 | 1, 819, 017 | 423, 233 | 406, 891 | | Florida | 15, 484, 206 | 10, 850, 806 | 7, 107, 866 | 8, 843, 896 | 11, 548, 144 | | Georgia | 12, 830, 845 | 10, 290, 593 | 6, 292, 609 | 6, 111, 641 | 6, 365, 168 | | Idaho | 22, 903, 659 | 13, 177, 427 | 9, 477, 884 | 12, 429, 155 | 16, 708, 153 | | Illinois
 148, 311, 418 | 108, 065, 936 | 71, 692, 511 | 74, 837, 452 | 89, 211, 596 | | Indiana | 79, 226, 808 | 50, 852, 088 | 34, 602, 723 | 34, 010, 753 | 39, 416, 727 | | Iowa | 33, 357, 958 | 21, 614, 611 | 18, 522, 625 | 15, 154, 652 | 19, 326, 181 | | Kansas | 100, 253, 311 | 56, 804, 312 | 58, 471, 164 | 57, 974, 881 | 81, 117, 503 | | Kentucky | 111, 691, 254 | 74, 868, 106 | 59, 076, 459 | 65, 536, 454 | 89, 042, 11 | | Louisiana | 71, 929, 038 | 61, 692, 802 | 61, 097, 004 | 54, 886, 010 | 85, 210, 783 | | Maine | 6, 227, 528 | 4, 889, 282 | 3, 174, 278 | 2, 593, 871 | 2, 352, 076 | | Maryland | 14, 989, 695 | 11, 330, 323 | 7, 233, 821 | 7, 014, 570 | 10, 128, 349 | | Massachusetts | 12, 722, 974 | 11, 170, 497 | 8, 038, 615 | 4, 917, 110 | 6, 165, 30 | | Michigan | 111, 405, 530 | 62, 785, 908 | 34, 713, 951 | 54, 222, 848 | 61, 831, 364 | | Minnesota | 103, 931, 377 | 55, 275, 230 | 12, 272, 622 | 42, 472, 038 | 48, 330, 23 | | Mississippi | 1, 774, 621 | 2, 387, 771 | 2, 718, 919 | 2, 765, 988 | 2, 520, 521 | | Missouri | 69, 074, 500 | 41, 805, 772 | 29, 245, 055 | 30, 588, 018 | 32, 954, 534 | | Montana | 50, 995, 123 | 32, 359, 904 | 19, 023, 093 | 21, 662, 089 | 31, 430, 490 | | Nebraska | 4, 962, 012 | 3, 623, 426 | 1, 548, 486 | 2, 047, 335 | 2, 790, 57 | | Nevada | 24, 075, 375 | 14, 963, 785 | 6, 568, 283 | 7, 455, 493 | 14, 702, 869 | | New Hampshire | 3, 337, 169 | 2, 796, 132 | 1, 351, 554 | 1, 457, 041 | 1, 149, 28 | | New Jersey | 57, 206, 357 | 41, 632, 683 | 23, 073, 173 | 22, 580, 043 | 25, 009, 596 | | New Mexico | 31, 850, 263 | 25, 349, 712 | 20, 263, 883 | 23, 354, 681 | 30, 079, 469 | | New York | 99, 622, 368 | 78, 007, 467 | 50, 175, 726 | 42, 940, 471 | 54, 625, 55 | | North Carolina | 7, 462, 450 | 5, 554, 190 | 2, 466, 311 | 3, 365, 160 | 5, 342, 300 | | North Dakota | 3, 056, 493 | 2, 271, 454 | 2, 385, 735 | 2, 960, 811 | 2, 549, 850 | | Ohio | 186, 971, 555 | 130, 927, 783 | 87, 996, 538 | 91, 145, 609 | 116, 987, 663 | | Oklahoma | 390, 170, 991 | 181, 904, 857 | 185, 120, 909 | 172, 560, 924 | 237, 208, 58 | | Oregon | 6, 169, 898 | 5, 045, 307 | 2, 989, 383 | 3, 504, 825 | 4, 211, 39 | | Pennsylvania | 778, 523, 421 | 594, 642, 786 | 424, 734, 073 | 421, 846, 539 | 546, 932, 55 | | Rhode Island | 1, 209, 227 | 792, 911 | 506, 325 | 386, 983 | 485, 44 | | South Carolina | 3, 341, 051 | 3, 031, 459 | 950, 693 | 1, 014, 162 | 1, 323, 29 | | South Dakota | 11, 075, 808 | 11, 338, 739 | 11, 118, 029 | 14, 658, 504 | 19, 173, 03 | | Tennessee | 32, 499, 380 | 24, 461, 447 | 14, 561, 792 | 16, 785, 481 | 23, 525, 65 | | Texas. | 450, 373, 151 | 302, 201, 046 | 390, 141, 325 | 365, 571, 179 | 509, 521, 28 | | Utah | 64, 224, 307 | 40, 301, 788 | 22, 620, 230 | 24, 179, 771 | 32, 527, 11 | | Vermont | 11, 637, 393 | 8, 421, 911 | 6, 401, 143 | 5, 792, 574 | 4, 852, 94 | | Virginia | 34, 602, 749 | 26, 150, 041 | 16, 927, 446 | 18, 845, 740 | 28, 309, 37 | | Washington | 20, 075, 844 | 14, 800, 608 | 12, 816, 678 | 9, 387, 645 | 12, 946, 75 | | West Virginia | 290, 118, 914 | 221, 734, 789 | 156, 643, 214 | 172, 726, 695 | 241, 473, 62 | | Wisconsin | 17, 711, 394 | 11, 843, 343 | 7, 414, 456 | 7, 153, 881 | 9, 752, 43 | | Wyoming | 46, 735, 184 | 30, 892, 663 | 27, 343, 288 | 22, 025, 393 | 27, 640, 29 | ¹ In this table iron ore, not pig iron, is taken as the basis of iron valuation, and for other metals mine production (recoverable content of metals) is the basis. # Mineral products of the United States and principal producing States in 1934 | nk | D. 3.4 | Principal produc | ring States 1 | |--------|--------------------------------------|--|---| | ue | Product | In order of quantity | In order of value | | 22 | Aluminum | New York, Tennessee, North Carolina | Rank same as for quantity. | | - 1 | Antimonial lead | Not separable by States | Not separable by States. | | 1 | Antimony ore | . Idaho | Rank same as for quantity. | | 2 | Arsenious oxide | Utah, Montana, Idaho | Do. | | 8 | Asbestos | Vermont, Arizona, Maryland, Montana | Do. | | ı | Asphalt: | | | | 5 | Native | Oklahoma, Texas, Alabama, Kentucky | Oklahoma, Utah, Alabama, Kentucky. | | 7 | Oil | Not separable by States | Not separable by States. | | 9 | Barite (crude) | Missouri, Georgia, California, Tennessee | Rank same as for quantity. | | 8 | Bauxite | Arkansas, Alabama, Georgia | Do. | | 5 | Bismuth | | Not separable by States. | | 9 | Borates | - California | Rank same as for quantity. | | 0 | Briquets, fuel | | Wisconsin, Pennsylvania, Oregon, Massachusetts. | | 2 | Bromine | Michigan, North Carolina, California, West Virginia | Rank same as for quantity. | | 9 | Cadmium (metal and compounds) | Not separable by States | Not separable by States. Michigan, Oklahoma, West Virginia, California. | | 6
6 | Calcium-magnesium chloride
Cement | | Pennsylvania, California, New York, Texas. | | 8 | Chats | Missouri, Oklahoma, Kansas | Rank same as for quantity. | | 5 | Chromite | California | Do. | | ٩I | Clay: | - Camorma | D0. | | 7 | Products | | Ohio, Pennsylvania, West Virginia, New Jersey. | | 6 | Raw | Pennsylvania, Georgia, Missouri, California. | Georgia, Pennsylvania, West Viiginia, New Jersey. | | 2 | Coal: | - I emisyrvania, Georgia, ivrissouri, Camornia | Georgia, Tellisylvania, Wissouri, South Carolina. | | ا م | Bituminous | West Virginia, Pennsylvania, Illinois, Kentucky | Rank same as for quantity. | | - 1 | Pennsylvania anthracite | Pennsylvania. | Do. | | 5 l | Coke | Pennsylvania, Ohio, New York, Indiana | Pennsylvania, New York, Ohio, Indiana. | | ă I | Copper | Arizona, Utah, Montana, Michigan | Rank same as for quantity. | | 5 | Diatomite | | California, New York, Oregon, Washington. | | ğΙ | Emery | New York | Rank same as for quantity. | | ĭΙ | Feldspar (crude) | | North Carolina, Maine, New Hampshire, Virginia. | | 4 | Ferro-allovs | Pennsylvania, New York, Ohio, Iowa | Pennsylvania, New York, West Virginia, Ohio, | | ŝΙ | Flint lining for tube mills | Minnesota | Rank same as for quantity. | | ĭ I | Fluorspar | | Do. | | 6 | Fuller's earth | Georgia, Florida, Texas, Illinois | Do. | | šΙ | Garnet, abrasive. | New York, New Hampshire | Do. | | ٦ | Gems and precious stones | No canvass for 1934 | No canvass for 1934. | | 8 İ | Gold | | Rank same as for quantity. | | 6 | Graphite: | | | | | Amorphous | Nevada | | | | Crystalline | Alabama, Montana | Do. | | 9 | Grindstones and pulpstones. | Ohio, West Virginia, Washington | Do. | | š | Gypsum | | Do. | | 5 | Helium | Texas | Do. | | - 1 | | * *********************************** | | # Mineral products of the United States and principal producing States in 1934—Continued | Rank
in Product
value | | Principal producing States | | | | | |-----------------------------|--|--|--|--|--|--| | | | In order of quantity | In order of value | | | | | 61 | Iodine (natural) | California | Rank same as for quantity. | | | | | 10 | Ore | Minnesota, Michigan, Alabama, Wisconsin | Do. | | | | | 4 | Pig | Pennsylvania, Ohio, Indiana, Illinois | \mathbf{D}_{0} | | | | | 19 | Lead | i Missouri Idaho IItah Oklahoma | Do | | | | | 21 | Lime | Ohio, Pennsylvania, Missouri, West Virginia | \mathbf{D}_{0} | | | | | 80 | Lithium minerals | South Dakota, New Mexico | \mathbf{D}_{0} | | | | | 53 | Magnesite | Washington, California | \mathbf{D}_{0} | | | | | 50 | Magnesium | Michigan. | Do. | | | | | 88 | Magnesium hydrate (brucite) | Nevada | D0. | | | | | 43 | Magnesium salts (natural) | Michigan, Oklahoma, California, Washington | Michigan, California, Oklahoma, Washington | | | | | 56 | Manganese ore | Montana, Georgia, Arkansas, Virginia. | Montana, Georgia, Arkansas, Tennessee. | | | | | 54 | Manganiferous ore
| Minnesota, Montana, Georgia, Alabama | Minnesota, Georgia, Montana, Alabama. | | | | | 69 | Manganiferous zinc residuum | New Jersey. | Rank same as for quantity. | | | | | - | Marl: | | sound board do for quantity. | | | | | 78 | Calcareous | West Virginia, Virginia, Wisconsin, Nevada | West Virginia, Virginia, Nevada, Ohio. | | | | | 65 | Greensand | New Jersey | Rank same as for quantity. | | | | | 47 | Mercury | California, Oregon, Texas, Arkansas | Do. | | | | | 67 | Mica | North Carolina, New Hampshire, New Mexico, South Dakota. | North Carolina, Connecticut, New Hampshire, New | | | | | 77 | | | Mexico. | | | | | | Scrap | North Carolina, New Mexico, New Hampshire, South Dakota | North Carolina, New Hampshire, New Mexico, Connecti- | | | | | | Sheet | North Carolina, New Hampshire, Connecticut, Colorado | cut
 North Carolina, Connecticut, New Hampshire, Colorado. | | | | | 71 | Micaceous minerals | Montana, North Carolina, Georgia, California. | Rank same as for quantity. | | | | | 83 | Millstones | | North Carolina, New York, Virginia. | | | | | 24 | Mineral paints, zinc and lead pigments | Pennsylvania, Ohio, Kansas, Indiana | Pennsylvania, Ohio, Indiana, Kansas. | | | | | (3) | Mineral waters | No canvass for 1934 | No canvass for 1934. | | | | | `27 | Molybdenum | Colorado, New Mexico, Arizona, Nevada | Rank same as for quantity. | | | | | 3 | Natural gas | Texas, California, Oklahoma, Louisiana | Texas, California, West Virginia, Louisiana. | | | | | 12 | Natural gasoline | California, Texas, Oklahoma, West Virginia | Rank same as for quantity. | | | | | 72 | Nickel | Not separable by States. | Not separable by States. | | | | | 73 | Oilstones, etc. | Ohio, Vermont, Arkansas, Indiana | Arkansas, Ohio, Vermont, Indiana. | | | | | (4) | Orog (orado) etc. | | The state of s | | | | | ``` | Copper | Utah, Arizona, Nevada, New Mexico | Value not available. | | | | | | Copper-lead | Idaho, New Mexico, Colorado, Utah | Do. | | | | | | Dry and siliceous (gold and silver) | Alaska, California, South Dakota, Colorado | Do. | | | | | | Lead | Missouri, Idaho, Utah, Nevada | $\overline{\mathbf{Do}}$. | | | | | | Lead-zinc | Oklahoma, Kansas, Idaho, Utah | Do. | | | | | | Zine | Oklahoma, Kansas, Tennessee, New Jersey | Do. | | | | | 64 | Peat | New Jersey, Iowa, Michigan, Florida | New Jersey, Florida, Iowa, California | | | | | 87 | Pebbles for grinding | Minnesota, California | Rank same as for quantity. | | | | | Pumice | , Ohio.
ca, Michigan.
nessee.
s.
Virginia. | |---|--| | 9 Stone Pennsylvania, New York, Michigan, Ohio Pennsylvania, New York, California 16 Sulphur acid from copper and zinc Smelters. Pennsylvania, Tennessee, Illinois, Oklahoma Pennsylvania, New York, California Rank same as for quantity. Pennsylvania, Illinois, Tennessee, Ol | | | 40 Talc and ground soapstone 5. New York, Vermont, California, North Carolina. New York, Vermont, North Carolina Tantalum ore. New Mexico, South Dakota. Rank same as for quantity. Not separable by States. Not separable by States. Rank same as for quantity. Titanium ore: Rank same as for quantity. | ı, California. | | Tilmenite | 18. | Rank of States in metal production (except aluminum, ferro-alloys, and pig iron) arranged according to mine reports, not smelter output. Separate figures for antimonial lead from primary sources not available. No canvass for 1934. Value not available. Exclusive of soapstone used as dimension stone (all from Virginia), which is included in figures for stone. #### States and their principal mineral products in 1934 1 | State | Rank | Percent
of total
value for
United
States | Principal mineral products in order of value | |----------------------|----------|--|---| | labama | 20 | 0.98 | Coal, iron ore, cement, clay products. | | laska | 26 | 64 | Gold, coal, silver, stone. | | rizona | 23 | .85 | Copper, gold, silver, sand and gravel. | | rkansas | 30 | . 53 | Petroleum, coal, natural gas, bauxite. | | California | 3 | 10.85 | Petroleum, natural gas, natural gasoline, gold. | | olorado | 14 | 1. 30 | Coal, gold, molybdenum, silver. | | onnecticut | 45 | . 07 | Stone, clay products, sand and gravel, lime. | | Delaware | 50 | . 01 | Stone, clay products, sand and gravel. | | District of Columbia | 49 | . 01 | Clay products | | lorida | 33 | . 38 | Phosphate rock, cement, stone, fuller's earth. | | eorgia | 36 | . 21 | Stone, clay products, cement, fuller's earth. | | daho | 29 | . 55 | Lead, silver, gold, zinc. | | llinois | 7 | 2, 92 | Coal, cement, petroleum, clay products. | | ndiana | 15 | 1. 29 | Coal, cement, stone, clay products. | | owa | 27 | . 63 | Coal, cement, stone, gypsum. | | Cansas | 10 | 2. 66 | Petroleum, natural gas, coal, cement. | | Kentucky | 8 | 2.92 | Coal, natural gas, petroleum, clay products. | | ouisiana | 9 | 2. 79 | Natural gas, petroleum, sulphur, salt. | | faine | 44 | . 08 | Stone, cement, sand and gravel, clay products. | | Maryland | 34 | . 33 | Coal, cement, clay products, sand and gravel. | | Aassachusetts | | . 20 | Stone, sand and gravel, clay products, lime. | | Lichigan | 11 | 2. 03 | Iron ore, petroleum, cement, salt. | | Ainnesota | | 1. 58 | Iron ore, sand and gravel, stone, cement. | | Aississippi | 43
16 | 1,08 | Natual gas, sand and gravel, clay products, petroleum. | | Missouri
Montana | | 1.03 | Lead, clay products, coal, cement. Copper, natural gas, petroleum, coal. | | Vebraska | | . 09 | Cement, sand and gravel, stone, clay products. | | Vevada | | .48 | Gold, copper, silver, zinc. | | New Hampshire | | .04 | Stone, sand and gravel, clay products, feldspar. | | New Jersey | | . 82 | Clay products, zinc, sand and gravel, stone. | | New Mexico | 19 | . 99 | Petroleum, natural gas, coal, zinc. | | New York | 12 | 1.79 | Petroleum, stone, cement, clay products. | | North Carolina | 38 | . 18 | Stone, clay products, bromine, feldspar. | | North Dakota | 42 | . 08 | Coal, sand and gravel, clay products, stone. | | Ohio | 6 | 3.83 | Coal, natural gas, clay products, petroleum. | | Oklahoma | 5 | 7.77 | Petroleum, natural gas, natural gasoline, zinc. | | Pregon | 40 | . 14 | Gold, stone, cement, sand and gravel. | | Pennsylvania | 1 | 17. 92 | Coal, natural gas, petroleum, cement. | | Rhode Island | 48 | .02 | Stone, sand and gravel, lime. | | outh Carolina | 46 | .04 | Stone, clay products, sand and gravel, gold. | | outh Dakota | 28 | . 63 | Gold, sand and gravel, cement, stone. | | Cennessee | 25 | 77 | Coal, cement, stone, zinc. | | Cexas | 2 | 16.69 | Petroleum, natural gas, sulphur, natural gasoline. | | Jtah | 17
39 | 1.07 | Copper, gold, coal, silver. | | Vermont | 39
21 | .93 | Stone, slate, talc, lime. | | Virginia | 32 | . 93 | Coal, stone, zinc, cement. Coal, stone, cement, sand and gravel. | | West Virginia. | 4 | 7. 91 | Coal, natural gas, clay products, petroleum. | | Wisconsin | 35 | .32 | Stone, sand and gravel, iron ore, clay products. | | Vyoming | 22 | .91 | Petroleum, coal, natural gas, natural gasoline. | ¹ In this table iron ore, not pig iron, is taken as the basis of iron valuation, and for other metals mine production (recoverable content of metals) is the basis. #### Prices of gold, silver, copper, lead, and zinc, 1930-34 | Year | Gold 1 | Silver 2 | Copper 3 | Lead 3 | Zine 3 | |------|---|--|--|--|--| | 1930 | Per fine
ounce
4 \$20.67+
4 20.67+
4 20.67+
25.56
34.95 | Per fine
ounce
\$0.385
.290
.282
.350 | Per pound
\$0.130
.091
.063
.064 | Per pound
\$0.050
.037
.030
.037 | Per pound
\$0.048
.038
.030
.042
.043 | ^{1 1930-32:} Legal coinage value; 1933-34: Average weighted price. 2 1930-33: Average New York price for bar silver; 1934: Treasury buying price for newly mined domestic silver. 3 Average weighted price, all grades. 4 \$20.671835. 5 \$0.64646464. #### STATE TABLES #### Mineral production of Alabama, 1933-34 | | 1933 | | 19 | 34 | |--|--|---|---|---| | Product | Quantity | Value | Quantity | Value | | Asphalt (native) short tons. Bauxite long tons. Cement barrels. Clay: Products Raw short tons. Coal do Coke do Copper pounds. Ferro-alloys long tons. Fuller's earth short tons. Gold b troy ounces. Graphite, crystalline pounds. | (1)
6, 899
2 1, 999, 412
26, 966
8, 759, 989
1, 668, 975
12, 318
266
4 | (1)
(1)
2 \$2, 536, 121
3 824, 215
4 31,
699
13, 758, 000
4 3, 885, 858 | (1)
(1)
2 2, 181, 513
36, 572
9, 142, 117
2, 109, 192
11, 000 | (1)
(1)
(2) \$3, 017, 329
(13)
(46, 426
18, 838, 000
46, 508, 933
41, 612, 178 | | Iron: / Ore | 987, 606
107, 810
806
3, 495
(°)
934, 641 | 3, 252, 630
411, 385, 080
565, 384
9, 930
18, 683
(*)
416, 857
8 1, 442, 628
464, 627
23, 291, 204 | 2, 720, 923
1, 144, 900
123, 881
 | 4, 379, 827
4 15, 805, 365
746, 232
7, 878
(6)
(7)
348, 978
233
8 660, 458
1, 730, 047
29, 827, 048 | Value included under "Miscellaneous." Exclusive of puzzolan, value for which is included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. value not included in total value for State. S Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. No canvass. Not valued as ore; value of recoverable metal content included under the metals. Exclusive of sandstone, value for which is included under "Miscellaneous." Includes minerals indicated by "1", "2", and "8" above. #### Mineral production of Alaska, 1933-34 | Product | 19 | 33 | 19 | 1934 | | |---------------------------------------|--|---|--|---|--| | Product | Quantity | Value | Quantity | Value | | | Arsenic | 96, 467
29, 000
469, 286
1, 157
19, 500
25, 000
4, 171, 000
(4)
99
(4)
157, 150
19, 930 | (1)
\$481, 000
1, 856
11, 994, 947
85, 618
2, 300
4, 000
(4)
3, 729
(9)
55, 003
16, 078
2, 300
34, 240 | (1)
107, 508
121, 000
537, 282
840
 | (1)
\$451,000
9,688
18,778,000
62,123
(3)
73,297
(4)
109,167
74,916
(4)
28,227 | | | Total value, eliminating duplications | | 12, 681, 071 | | 19, 586, 41 | | ¹ Figures not available. ^{r regures not available. 3 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 3 Not valued as ore; value of recoverable metal content included under the metals. 4 Value included under "Miscellaneous." 5 Includes minerals indicated by "4" above.} #### **A14** MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX # Mineral production of Arizona, 1933-34 | | 1 | 933 | 1 | 934 | |---|---------------|--------------------|-----------------|------------------------| | Product | | | - | , | | | Quantity | Value | Quantity | Value | | Asbestosshort ton | i (1) | (1) | (1) | (1) | | Clay:
Products | | (1.0) | | | | Rawshort tons | 11, 616 | 3 \$90, 986 | (1 3) | (1 2) | | Coaldo_ | 10, 345 | 52, 000 | 9,058 | \$45,000 | | Copperpounds | 114, 041, 781 | 7, 298, 674 | 178, 082, 213 | 14, 246, 577 | | Diatomiteshort tons | | | (1) | (1) | | Feldspar (crude)long tons
Gems and precious stones | 3 (1) | (1) | (1) | (1) | | Gold 5 troy ourses | 79, 993 | (4)
2, 044, 611 | 107 004 | (4) | | Gypsumshort tons | 1, 100 | 1 10, 555 | 167, 024
765 | 5, 837, 493
15, 413 | | Leaddo_ | 1.72₩ | | 3, 439 | 254, 457 | | Limedo_ | 8, 587 | 95, 432 | 16,003 | 163, 748 | | Mercury flasks (76 pounds) | | | (1) | (1) | | Micaceous minerals (mica schist)short tons
Molybdenumpounds | 70 049 | | 140 | 742 | | Ores (crude), etc.: | | (1) | 378, 730 | (1) | | Coppershort tons | 888, 508 | (6) | 2, 845, 604 | (6) | | Copper-leaddo | | | 47 | (6) | | Dry and siliceous (gold and silver)do | | (6) | 373, 073 | (6) | | Leaddo_
Lead-zinedo_ | 11,029 | (6) | 16, 203 | (6) | | Sand and gravel | 9 400 040 | 1, 723, 894 | 35, 315 | (6) | | Silica (quartz)do | (1) | (1) | 4, 152, 689 | 1, 730, 874 | | Silica (quartz) do Silver troy ounces Sodium sulphate from natural sources short tons | 2, 390, 363 | 836, 627 | 4, 448, 474 | 2, 875, 781 | | Sodium sulphate from natural sourcesshort tons | (1) | (1) | | 2,010,101 | | Stone do_
Sulphuric acid 7do | 1 194 540 | 102, 219 | 392, 250 | 346, 975 | | Tungsten ore (60 percent concentrates) do | (1 3) 42 | (1 3) | (1 3) | (1 3) | | Vanadium oresdodo_ | 42 | (1) | (1) | (1) | | Zincdo | 6 | 463 | 905 | 77, 842 | | Miscellaneous 8 | | 302, 471 | | 659, 418 | | Total value, eliminating duplications | | | | | | rotar varue, commutating duplications | | 12, 570, 753 | | 26, 062, 865 | | | 1 | 1 | | 1 1 | Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. No canyass. Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. Not valued as ore; value of recoverable metal content included under the metals. From copper smelting. Includes minerals indicated by "1" above. #### Mineral production of Arkansas, 1933-34 | | 19 | 1934 | | 34 | |---|---|---|---|---| | Product | Quantity | Value | Quantity | Value | | Bauxite | \$82, 924
10
(1)
1, 890
1, 060
(2)
8, 288, 000
15, 215, 000
20
11, 686, 000
1, 264, 742
402, 820
1, 175 | \$853, 718 (1) (1) (2) (3) (4) (1) (1) (1) (1) (4) (4) (4) (4) (5) (1) (1) (4) (4) (5) (602,000 10, 417 (9) (9) (9) (9) (9) (10, 417 (9) (10) (10) (10) (10) (10) (10) (10) (10 | 145, 764 (1) 856, 432 5 40 (1) 8, 842 1, 374 (4) 87, 024, 000 13, 033, 000 82 (5) 11, 182, 000 1, 122, 099 6 397, 150 (1) 1, 968 | \$1, 057, 062
(1)
2 349, 154
2, 564, 000
(1)
2, 960
(1)
36, 046
(4)
1, 574, 000
450, 000
49, 741
(2)
8, 000, 000
(1)
(2)
8, 667
(1)
21, 774
5, 846 | | Zinedo Miscellaneous 7 Total value, eliminating duplications | | 1, 152, 222
12, 710, 203 | | 1, 137, 20
16, 081, 64 | ¹ Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 No canvass. 5 Figures not available. 6 Exclusive of sandstone, value for which is included under "Miscellaneous." 7 Includes minerals indicated by "1" and "6" above. #### Mineral production of California, 1933-34 | and the second s | 1 | 933 | 1 | 934 | |--|---------------|---|------------------------|----------------------------| | Product | Quantity | Value | Quantity | Value | | Asphalt (native)short tons | (1) | (1) | (1) | (1) | | Baritedodo | 9, 266 | \$54, 404 | 21, 783 | \$124,664 | | Borates do Briquets, fuel do | 188, 047 | 3, 436, 377 | 242, 500 | 4, 822, 014 | | Promine nounds | (1 2) | (1 2) | (1 2) | (1.2) | | Bromine pounds Calcium chloride short tons | | | | 1 2 | | Cament | 7, 168, 835 | 10, 530, 698 | 8, 395, 037 | 12, 449, 389 | | Cement barrels Chromite long tons | 843 | 11, 585 | 369 | 4, 653 | | Clay: | 010 | 11,000 | 000 | 4,000 | | Products | | 3 5, 317, 227
 | 3 5, 475, 818 | | Rawshort tons_ | 117, 782 | ³ 5, 317, 227
² 333, 053 | 205, 934 | ² 500, 796 | | Coaldo | (1) | (1) | (1) | (1) | | Copperpounds_ | 990, 380 | 63, 384 | 569, 068 | 45, 525 | | Diatomiteshort tons_ | (1) | (1) | (1) | (1) | | reidspar (crude)long tons | 1, 433 | 10, 189 | (1) | (1) | | Come and precious stores | | | 181 | 1 2 | | Coapper | 613, 579 | 15, 683, 075 | 719, 064 | 25, 131, 284 | | Gypsumshort tons_ | 57, 175 | (1) | 55, 620 | (1) | | Iodinepounds_ | (1) | (1) | 284, 604 | 342, 957 | | Iron ore— | | | | , , , , , | | Sold to furnaceslong tons | | | 16, 333 | (1) | | Sold for paint do Lead short tons | 25 | (1) | | | | Leadshort tons_ | 381 | 28, 163 | 412 | 30, 457 | | Limedo | 35, 754 | 342, 999
(1) | 34, 733 | 342, 621 | | Magnesium solte (natural) | (1) | 8 | (1) | | | Manganese ore long tons | (-) | (-) | 158 | 1,500 | | Mercury flasks (76 pounds) | 3, 930 | 232, 762 | 7, 808 | 576, 738 | | Micaceous minerals (mica schist)short tons | (1) | (1) | 320 | 2, 240 | | Magnesite | | | (1 2) | (1 2) | | Mineral watersgallons sold. | (4) | (4) | (4) | (4) | | Molybdenum pounds Natural gas M cubic feet Natural gasoline gallons | 634 | (1) | | | | Natural gas | 259, 799, 000 | 74, 480, 000 | 268, 122, 000 | 73, 055, 000 | | Ores (crude), etc.: | 490, 293, 000 | 22, 820, 000 | 506, 272, 000 | 29, 931, 000 | | Conner short tons | 38, 176 | (6) | 53, 357 | (6) | | Copper-lead do Dry and siliceous (gold and silver) do Lead do do | 8 | (6) | 11 | (6) | | Dry and siliceous (gold and silver)do | 1, 281, 843 | (6) | 2, 299, 699 | (6) | | Leaddodo | 1, 257 | (6) | 2, 160 | (6) | | Zincdo | 816 | (6) | 864 | (6) | | Peatdodo | (4) | (4) | (1) | (1) | | Potentiare homels | 170 010 000 | 143, 300, 000 | 174, 305, 000 | 160, 760, 000 | | Platinum and allied metals troy ounces | 207 | 7, 755 | 312 | 12, 223 | | Pebbles for grinding do. Petroleum barrels. Platinum and allied metals troy ounces. Potassium salts short tons. | (1) 201 | (1) | (1) | (1) | | Pumice do Pyrites long tons Salt short tons | 8, 337 | 55, 449 | 9, 431 | 60,088 | | Pyriteslong tons | (1) | (1) | (1) | (1) | | Saltshort tons_ | 331,009 | 2, 018, 694 | 341, 893 | 2, 026, 376 | | Sand and gravel. do. Sand and sandstone (finely ground) do. Silica (quartz) do. Silver troy ounces. | 6, 347, 503 | 3, 746, 130 | 6, 811, 109 | 4, 147, 509 | | Sand and sandstone (finely ground)do | (1) | (1) | (;) | (1) | | Silica (quartz) | (1) | | 844, 413 | 545 002 | | Slote | 402, 591 | 140, 907
39, 845 | 844, 413 | 545, 883
35, 393 | | Slate | | 00,010 | | 50, 556 | | sourcesshort tons | 70, 461 | 918, 295 | 91, 439 | 1, 274, 701 | | Stone do. Sulphur long tons. Tale and ground soapstone short tons. | 4, 362, 720 | 3, 994, 581 | 91, 439
5, 597, 040 | 1, 274, 701
5, 520, 311 | | Sulphurlong tons | (1) | (1) | 3, 989
15, 880 | 78,070 | | Talc and ground soapstoneshort tons | 15, 319 | 196, 972 | 15, 880 | 164, 777 | | Tripoiido | (1) | (2) | (1) | (2) | | Tripoli | 174
145 | (1) | (¹)
361 | (1)
31, 034 | | Miscellaneous 7 | 145 | 12, 189
5, 651, 135 | 901 | 4, 348, 414 | | *************************************** | | J, 001, 180 | | 1,010, 111 | | Total value, eliminating duplications | | 293, 034, 859 | | 331, 255, 652 | | | | ' ' | | | ¹ Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Figures obtained through cooperation with Bureau of the Census. 4 No canvass. 4 No canvass. 5 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Includes minerals indicated by "1" above. #### Mineral production of Colorado, 1933-34 | | 1933 | | 19 | 34 | |--|--|---|---|---| | Product | Quantity | Value | Quantity | Value | | Briquets, fuel | (1 2)
(1) | (1 2) | (1 2)
(1) | (1 2)
(1) | | Clay: Products Raw short tons Coal do do | 28, 644
5, 229, 767 | 3 \$870, 488
2 43, 055
11, 350, 000 | 39, 415
5, 210, 933 | 3 \$1, 104, 672
2 52, 474
12, 309, 000 | | Cokedo Copperpounds_ Feldspar (crude)long tons_ | 9, 667, 000 | (1 2)
618, 688
(1) | 208, 908
11, 294, 000
(1)
(1 2) | 903, 520
(1)
(1 2) | | Ferro-alloys do_Fluorspar short tons_Fuller's earth do_Gems and precious stones | (^{ì ½})
742
(¹) | 6, 778
(1)
(4) | 6, 537
(1) | 83, 132
(1)
(4) | | Gold 5 troy ounces Gypsum short tons Iron, pig long tons Lead short tons | 242, 828
(1)
(1 2)
2, 402 | 6, 206, 676
(1)
(1 2)
177, 711 | 324, 923
(1)
(1 2)
4, 218 | 11, 356, 070
(1)
(1 2)
312, 095 | | Limedo
Mica:
Scrapdo | 2, 887 | 31, 337 | 3, 712
419 | 37, 506
3, 717 | | Sheet pounds Micaceous minerals (vermiculite) short tons Mineral paints, zinc and lead pigments do. Mineral waters gallons sold | (1)
(1 2)
(4) | (1)
(1 2)
(4) | (1)
219
(1 3)
(4) | (¹)
1,976
(¹³)
(⁴) | | Molybdenum pounds. Natural gas M cubic feet. Natural gasoline. gallons. Ores (crude), etc.: | 5, 028, 695
2, 449, 000
408, 000 | 671, 000
14, 000 | 8, 378, 683
2, 633, 000
643, 000 | (1)
667, 000
18, 000 | | Copper—————————short tons—
Copper-lead—————do—————do————do————do————do————do—————do—————do—————— | 91, 133
66
741, 900 | (6)
(6)
(6) | 135, 082
201
1, 164, 575 | (6)
(6)
(6) | | Lead do Lead-zinc do Peat do Petroleum barrels | 2, 604
9, 792
(4)
919, 000 | (6)
(4)
540, 000 | 5, 677
3, 652
(1)
1, 139, 000 | (6)
(1)
1, 060, 000 | | Pyrites long tons Sand and gravel short tons Silver troy ounces Stone short tons | 4, 059
1, 395, 524
2, 186, 140
7 599, 970 | (1)
564, 677
765, 149
7 506, 118 | 5, 303
1, 367, 187
3, 475, 661
7 1, 191, 480 | (1)
684, 650
2, 246, 892
7 1, 270, 965 | | Tungsten ore (60 percent concentrates)do
Uranium and vanadium oresdo
Zincdo | 86
50
1, 285 | 49, 371
(1)
107, 898 | 342
178
772 | 298, 063
8, 246
66, 392 | | Miscellaneous 8 Total value, eliminating duplications | | 7, 034, 298 | | 9, 870, 851 | ¹ Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Figures obtained through cooperation with Bureau of the Census. 4 No canvass. 5 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934. \$34.95. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of marble, value for which is included under "Miscellaneous." 8 Includes minerals indicated by "1" and "?" above. #### Mineral production of Connecticut, 1933-34 | | 19 | 33 19 | | 934 | | |---|--|---|--|---|--| | Product | Quantity | Value | Quantity | Value | | | Clay: Products Raw short tons Coke do Feldspar (crude) long tons Lime short tons Mica: Scrap do Sheet pounds Mineral waters gallons sold Sand and gravel short tons Stone do Miscellaneous 6 do | (2 3)
(2 3)
(2)
(2)
(2)
(2)
(4)
458, 494
5 1, 075, 160 | 1 \$396, 838
(2 3)
(2 2)
(2)
(2)
(2)
(4)
133, 418
4 939, 853
2, 558, 927 | (2 3)
(2 3)
(2)
(2)
(3)
(4)
111, 334
(4)
326, 218
5 1, 293, 510 | (1 ⁻²)
(3 3)
(2 3)
(2)
(2)
(2)
\$7, 75;
26, 57;
(4)
139, 63;
5 1, 356, 14;
3, 780, 33; | | | Total value, eliminating duplications | | 1, 550, 594 | | 2, 276, 0 | | - Figures obtained through cooperation with Bureau of the Census. Value included under "Miscellaneous." Value not included in total value for State. - ⁵ Exclusive of sandstone, value for which is included under "Miscellaneous." ⁶ Includes minerals indicated by "²" and "⁶" above. #### Mineral production of Delaware, 1933-34 | Product | 19 | 33 | 1934 | | |---------------------------------------|-------------------|--|-------------------|---------------------------------| | Product | Quantity | Value | Quantity | Value | | Clay: Products Raw | 1, 876
58, 297 | (1 2)
3 \$24, 879
33, 223
(1) | 2, 127
84, 820 | (1 2)
3 \$28, 718
52, 625 | | Stone do do Miscellaneous 4. | 62, 380 | 78, 856
23, 318 | (1) | (1)
219, 189 | | Total value, eliminating duplications | | 135, 397 | | 271, 814 | - Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. Includes minerals indicated by "1" above. #### Mineral production of the District of Columbia, 1933-34 | Product | 1933 | | 1934 | | |---------------------------------------|----------|--------------|----------|------------| | Product | Quantity | Value | Quantity | Value | | Clay productsshort tons_ | (1) | (1 2)
(1) | | (1 9) | | Stonedo
Miscellaneous | (1) | \$423, 233 | | \$406, 891 | | Total value, eliminating
duplications | | 423, 233 | | 406, 891 | ^{&#}x27; Value included under "Miscellaneous." ' Figures obtained through cooperation with Bureau of the Census. #### Mineral production of Florida, 1933-34 | Donadurak | 19 | 33 | 1934 | | |--|---|---|--|--| | Product | Quantity | Value | Quantity | Value | | Cementbarrels_ | (1) | (1) | (1) | (1) | | Products Raw short tons. Raw do do Lime do do Mineral waters gallons sold. Peat short tons. Phosphate rock long tons. Sand and gravel short tons. Sand-lime brick thousands. Stone short tons. | (1 3)
(1)
(1)
(4)
(4)
(2, 136, 123
299, 365 | 2 \$71, 277
(1 3)
(1)
(4)
(4)
(6, 417, 110
202, 679 | (1 3)
(1)
14, 207
(4)
(1)
2, 369, 334
402, 981
(1 2)
5 1, 095, 800 | * \$117, 802
(1 3)
(1)
121, 242
(4)
(1)
8, 076, 312
269, 932
(1 2)
5 945, 515 | | Miscellaneous 6 Total value, eliminating duplications | | 1, 792, 455
8, 843, 896 | | 2, 183, 63 | #### Mineral production of Georgia, 1933-34 | | 1933 | | 1934 | | |---|--|---|---|--| | Product | Quantity | Value | Quantity | Value | | Barite short tons Bauxite long tons Cement barrels Clay: | (1)
5, 098
(1) | (1)
(1)
(1) | (1)
(1)
(1) | (1)
(1)
(1) | | Products Short tons Raw short tons Coal do Fuller's earth do Gold 4 troy ounces Iron ore long tons Lime short tons Manganese ore long tons Manganiferous ore do | 280, 098
41, 382
(1)
558
302
3, 898
1, 565
8, 505 | 2 \$1, 168, 420
3 1, 417, 680
77, 000
(1)
14, 273
(1)
23, 506
(1)
36, 386 | 284, 556
32, 716
(1)
970
1, 098
2, 664
6, 281
9, 197 | (1 2)
3 \$1,621,223
80,000
(1)
33,898
(1)
21,674
(1)
(1) | | Mica: short tons. Scrap | (1)
(6)
529
247, 030
65
915, 640
(1)
(1) | (1)
(6)
(7)
124, 544
23
2, 769, 395
(1)
1, 898, 094 | (1)
(1)
(2)
2, 069
325, 526
48
953, 050
(1)
(1) | (1)
(1)
(6)
(6)
(6)
229, 849
31
2, 526, 786
(1)
3, 472, 927 | | Total value, eliminating duplications | | 6, 111, 641 | | 6, 365, 165 | Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. ^{Value for included in vota the No canvass. No canvass. Exclusive of unclassified stone, value for which is included under "Miscellaneous." Includes minerals indicated by "1" and "8" above.} Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. ^{No canvass. Not valued as ore; value of recoverable metal content included under the metals. Includes minerals indicated by "1" above.} #### Mineral production of Idaho, 1933-34 | | 19 | 33 | 1934 | | |--|---------------------|----------------------------|---------------------|----------------------------| | Product | Quantity | Value | Quantity | Value | | Antimony ore (concentrates)short tons_ | 1, 133 | (1) | 897 | (1) | | Arsenious oxidedobarrels_ | 120 | \$6, 480 | 961 | \$49, 042 | | Cleve | (1) | (1) | (1) | (1) | | Products | | (1 2) | | (1 2) | | Rawshort tons_ | 252 | 3 2, 868 | 282 | 3, 655 | | Coaldo | (1) | (1) | (1) | (1) | | Copperpounds_ | 1, 562, 234 | 99, 983 | 1, 531, 625 | 122, 530 | | Diatomiteshort tons_ | 10 | 80 | | | | Gems and precious stones | | (4) | 04 017 | (4) | | Gold troy ounces_
Leadshort tons_ | 64, 592
74, 363 | 1, 650, 977
5, 502, 888 | 84, 817
71, 324 | 2, 964, 361
5, 277, 984 | | Limedo | (1) | (1) | (1) | (1) | | Ores (crude), etc.: | | () | | (-) | | Copper-leaddododododododododo | 17 | (6) | 1,020 | (6) | | Copper-leaddo | | (6) | 118, 927 | (6) | | Dry and siliceous (gold and silver)do | 131, 187 | (6) | 202, 784 | (6) | | Leaddo | 630, 305 | (6) | 240, 465 | (6) | | Lead-zincdo
Phosphate rocklong tons_ | 307, 573
19, 751 | (6)
80, 622 | 723, 986
37, 151 | (6)
140, 397 | | Sand and gravel short tons | 304, 266 | 151, 011 | 632, 485 | 237, 896 | | Silvertroy ounces_ | 6, 987, 960 | 2, 445, 786 | 7, 394, 143 | 4, 780, 952 | | Stoneshort tons_ | 7 536, 410 | 7 440, 969 | 7 764, 730 | 7 575, 103 | | Tungsten ore (60 percent concentrates)do | | | 1 | (1) | | Zincdo | 20, 968 | 1, 761, 211 | 24, 799 | 2, 132, 742 | | Miscellaneous 8 | | 289, 048 | | 428, 046 | | Total value, eliminating duplications | | 12, 429, 155 | | 16, 708, 153 | 1 Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 No canvass. 5 Cold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of sandstone, value for which is included under "Miscellaneous." 8 Includes minerals indicated by "1" and "1" above. #### Mineral production of Illinois, 1933-34 | Product | 19 | 33 | 19 | 34 | |---|---------------------------|---|--|---| | Froduct | Quantity | Value | Quantity | Value | | Cement barrels barrels. | | 1 \$4,607,335 | 1 3, 908, 107 | 1 \$5, 498, 568
2 4, 930, 454 | | Products Raw short tons Coal do Coke do | 37, 413, 145 | 3 197, 532
54, 578, 000
3 7, 379, 561 | 69, 921
41, 272, 384 | \$ 160, 537
64, 238, 000
\$ 9, 071, 800
567, 396 | | Fluorspar do Go-Fuller's earth do Iron, pig long tons | 36, 075
(4) | 543, 066
(4) | 33, 234
(4)
1, 430, 841 | 567, 396
(4)
3 25, 768, 115 | | Lead | 240
81, 888
(4) | 17, 760
575, 862
(4) | 86, 679 | 2, 960
655, 359 | | Mineral paints, zinc and lead pigmentsdo | (5)
1,631,000 | | (5)
1, 868, 000 | 3 1, 217, 607
(5)
1, 290, 000 | | Natural gasoline gallons Ore (lead and zinc) short tons Peat do do | 3, 673, 000
(6)
(5) | (6)
(8) | 3, 810, 000
(6)
(4) | 183, 000
(6)
(4) | | Petroleum barrels Sand and gravel short tons Sand and sandstone (finely ground) do Silver troy ounces | 39, 248 | 3, 690, 000
3, 370, 039
182, 776
498 | 4, 479, 000
6, 174, 202
38, 610
310 | 4, 990, 000
3, 373, 690
200, 893
200 | | Stone | 7 2, 433, 940
129, 194 | 7 1, 735, 420
8 974, 123
149, 979
249, 944 | 3, 915, 880
123, 701
7, 417 | 2, 894, 538
3 977, 238
119, 418
267, 120 | | Total value, eliminating duplications. | | 74, 837, 452 | | 89, 211, 596 | 1 Exclusive of natural cement, value for which is included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 Value included under "Miscellaneous." 5 No canvass. 6 No ore milled in Northern Illinois; lead output of Southern Illinois is byproduct of fluorspar milling. 7 Exclusive of sandstone, value for which is included under "Miscellaneous." 8 From zinc smelting. 9 Includes minerals indicated by "9", "4", and "9" above. #### Mineral production of Indiana, 1933-34 | Product | 19 | 33 | 33 193 | | |--|---------------|----------------------|---------------|------------------------| | Product | Quantity | Value | Quantity | Value | | Cementbarrels | (1) | (1)
2 \$2,604,609 | (1) | (1)
2 \$3, 336, 038 | | Productsshort tons_ | 51, 139 | \$ 52,745 | | \$ 78, 129 | | Coaldo | 13, 761, 052 | 17, 567, 006 | 14, 793, 643 | 21, 838, 000 | | Cokedo | 2, 089, 100 | 3 12,031, 285 | 2, 613, 437 | 3 16, 957, 287 | | Fuller's earthdo | | | (1) | (1) | | Iron, piglong tons | | 3 19,989, 998 | 1, 545, 011 | 3 27, 977, 992 | | Limeshort tons_ | | 355, 720 | 72, 606 | 443, 398 | | Mineral paints, zinc and lead pigmentsdo | (1 3)
(4) | (1 3)
(4) | (1 3) | (1 3)
(4) | | Mineral watersgallons sold_
Natural gasM cubic feet | 1, 544, 000 | 899,000 | 1, 802, 000 | 1, 060, 000 | | Peatshort tons_ | (4) | (4) | (1) | (1) | | Potroloum harrels | 737,000 | 650,000 | 838,000 | 960,000 | | Rubbing stones and whetstonesshort tons. | (1) | (1) | 62 | 8,861 | | Sand and graveldodo | 3, 996, 248 | 1, 706, 309 | 3, 957, 548 | 1, 890, 185 | | Sand-lime brickthousands | | | (1 2) | (1 2) | | Stoneshort tons | 5 2, 269, 490 | 5 6, 265,
952 | 5 2, 057, 440 | 5 4, 140, 960 | | Miscellaneous 6 | | 5, 915, 060 | | 7, 412, 872 | | Total value, eliminating duplications | | 34, 010, 753 | | 39, 416, 727 | Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. 4 No canvass. Exclusive of unclassified stone, value for which is included under "Miscellaneous." Exclusive of unclassified by "!" and "3" above. #### Mineral production of Iowa, 1933-34 | | 19 | 33 | 19 | 34 | |---------|--|---|--|---| | Product | Quantity | Value | Quantity | Value | | Cement | 2, 770, 656
9, 379
3, 194, 983
(2 3)
172, 555
(2 3)
(4)
(4)
4, 343, 781
1, 050, 190 | \$3, 651, 921 1 842, 726 2 74, 822 7, 217, 000 (2 3) 1, 357, 407 (2 3) (4) 1, 165, 066 920, 532 900, 203 | 3, 340, 049 2, 272 3, 366, 992 (2 3) 180, 271 (2 3) (4) 4, 348, 862 5 2, 276, 440 | \$5, 094, 922 1 1, 352, 242 7, 862, 000 (2 3) 1, 670, 356 (2 3) (4) 1, 393, 800 5 1, 934, 364 1, 320, 509 | Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. Value included under "Miscellaneous." No canvass. Exclusive of unclassified stone, value for which is included under "Miscellaneous." Includes minerals indicated by "3" and "5" above. #### Mineral production of Kansas, 1933-34 | | 19 | 933 | 19 | 934 | | |---|--------------|----------------|---------------|----------------------|--| | Product | | i i | | | | | | Quantity | Value | Quantity | Value | | | Asphalt (native)short tons_ | (1) | (1) | (1) | (1) | | | Cementbarrels_ | | 2\$2, 881, 978 | 2 2, 425, 867 | 2 \$3, 734, 49 | | | Chatsshort tons | 88, 450 | 18, 267 | 87,000 | 13, 20 | | | Clay products | | 3 372, 762 | | ³ 656, 51 | | | Clay productsshort tons_ | 2, 217, 622 | 3, 881, 000 | 2, 508, 254 | 4, 619, 00 | | | Gypsumdo | 62, 636 | 341, 333 | 68, 655 | 383, 91 | | | Leaddo | 6,089 | 450, 586 | 6,805 | 503, 57 | | | Mineral paints, zinc and lead pigmentsdo | (14) | (14) | (1.4) | (14) | | | Mineral watersgallons sold_
Natural gasM cubic feet_ | (5) | (5) | (5)~ | (5) | | | Natural gasM cubic feet | 41, 596, 000 | 13, 179, 000 | 46, 909, 000 | 14, 124, 00 | | | Natural gasolinegallons | 24, 869, 000 | 841,000 | 27, 891, 000 | 796, 00 | | | Ores (crude), etc.: | | | | | | | Leadshort tons_ | | (6) | 2,000 | (6) | | | Lead-zincdo | 720, 400 | (6) | 1, 159, 600 | (6) | | | Zincdo | 503, 600 | (6) | 935, 100 | (6) | | | Petroleumbarrels_ | 41, 976, 000 | 27, 700, 000 | 46, 482, 000 | 47, 850, 00 | | | Pumiceshort tons | 42, 355 | 109, 454 | 39, 283 | 102, 60 | | | Saltdo | 732, 947 | 3, 039, 343 | 768, 133 | 2, 949, 9 | | | sand and graveldo | | 734, 343 | 1, 681, 619 | 698, 4 | | | Stonedo | | 956, 734 | 7 1, 371, 300 | 7 1, 350, 3 | | | Zincdo | 40, 947 | 3, 439, 548 | 38, 261 | 3, 290, 4 | | | Miscellaneous 8 | | 1, 474, 863 | | 1, 605, 8 | | | Total value, eliminating duplications. | | 57, 974, 881 | | 81, 117, 50 | | 1 Value included under "Miscellaneous." Value included under "Miscellaneous." Exclusive of natural exment, value for which is included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. No canvass. Not valued as ore; value of recoverable metal content included under the metals. Exclusive of unclassified stone, value for which is included under "Miscellaneous." Includes minerals indicated by "1", "2", and "7" above. #### Mineral production of Kentucky, 1933-34 | Product | 19 | 033 | 1934 | | | |---|----------------------------------|---|----------------------------------|-------------------------------------|--| | 110000 | Quantity | Value | Quantity | Value | | | Asphalt (native) short tons Cement barrels Clay: | 44, 369
(¹) | \$356, 139
(¹) | (1) | (1)
(1) | | | Productsshort tons_ | 114, 190 | ² 2, 186, 367
³ 477, 400 | 140, 842 | (1 2)
3 \$606, 703 | | | Coal do Coke do Fluorspar do | 36, 099, 729
(1 3)
34, 614 | 40, 748, 000
(1 3)
469, 451 | 38, 525, 235
(1 3)
43, 163 | 60, 548, 000
(1 3)
690, 990 | | | Iron, piglong tons
Leadshort tons | 103, 017
176 | (1 3)
13, 024 | 170, 399
104 | (1 3)
7, 696 | | | Limedodo | | (1) | (1) | (1)
(1)
(4) | | | Natural gas | 31, 380, 000
4, 514, 000 | 14, 546, 000
224, 000 | 33, 124, 000
4, 171, 000 | 14, 973, 000
177, 000 | | | Ores (lead and zine) snort tons. Petroleum barrels Sand and gravel short tons. | 4, 608, 000
1, 173, 727 | 3, 780, 000
679, 641 | 4, 860, 000
1, 069, 656 | 5, 640, 000
789, 748 | | | Stonedo
Zincdo | 2, 101, 740
228 | 1, 773, 977
19, 152 | 1, 992, 820
125 | 1, 760, 756
10, 750 | | | Miscellaneous 6 | | 2, 831, 335
65, 536, 454 | | 8, 743, 200
89, 042, 11 7 | | 1 Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 No canvass. 5 Figures not available. 4 Talled and the state of stat 6 Includes minerals indicated by "1" above. #### Mineral production of Louisiana, 1933-34 | 7 | 193 | 33 | 1934 | | | |--|--|---|--|---|--| | Product | Quantity | Value | Quantity | Value | | | Briquets, fuel | (1) | (1 2)
(1)
8 \$160, 143
(1) | (1) | (1)
3 \$63, 463 | | | Mineral waters gallons sold. Natural gas M cubic feet. Natural gasoline gallons Petroleum barrels | (4)
197, 826, 000
36, 973, 000
25, 168, 000 | (4)
32, 339, 000
1, 149, 000
15, 280, 000 | (4)
225, 713, 000
40, 558, 000
32, 869, 000 | 42, 531, 000
1, 141, 000
31, 850, 000 | | | Salt short tons Sand and gravel do Stone do Sulphur long tons Miscellaneous t tons | 1, 018, 588
65, 090
128, 916 | 2, 345, 208
633, 395
43, 383
2, 320, 496
617, 085 | 567, 289
1, 090, 331
(1)
307, 186 | 2, 854, 785
646, 883
(1)
5, 350, 487
773, 165 | | | | | 54, 886, 010 | | 85, 210, 783 | | Value included under "Miscellaneous." Value not included in total value for State. Figures obtained through cooperation with Bureau of the Census. No canvass. 5 Includes minerals indicated by "1" above. #### Mineral production of Maine, 1933-34 | | 19 | 198 | | 34 | | |---------------------------------------|-------------|--------------------------------|------------------|-------------------------|--| | Product | | l | l | | | | | Quantity | Value | Quantity | Value | | | | | | | | | | Cementbarrels | (1) | (1) | (1) | (1) | | | Clay: | ` ' | | '' | | | | Products | | ² \$208, 910 | | ² \$226, 955 | | | Rawshort tons_ | 11 072 | ³ 1, 236
48, 380 | (1 3)
14, 685 | (1 3)
82, 854 | | | Feldspar (crude)long tons | 11, 273 | 40,000 | 14,000 | (4) | | | Gems and precious stonesshort tons | (1) | (4) | (1) | (1) | | | Mica: | . (9 | (-). | (-) | (-) | | | Scrapdodo | (n) | (1) | 1 | | | | Sheetpounds_ | 1 /1 | 1) | (1) | (1) | | | Mineral watersgallons sold | (4) | (4) | (4) | (4) | | | Peatshort tons_ | (4) | (4) | (1) | (1) | | | Sand and graveldodo | 2, 822, 330 | 359, 315 | 2, 030, 222 | 238, 76 | | | Slate | | 114, 588 | | 133, 83 | | | Stoneshort tons | 186, 870 | 1, 114, 184 | 5 138, 620 | 5 949, 63: | | | Miscellaneous 6 | | 748, 494 | | 720, 06 | | | Total value, eliminating duplications | | 2, 593, 871 | | 2, 352, 07 | | Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. No canvass. Exclusive of basalt, value for which is included under "Miscellaneous." Includes minerals indicated by "1" and "5" above. #### Mineral production of Maryland, 1933-34 | Product | 19 | 933 | 19 | 1934 | | |---|------------------------------------|--|---|--|--| | | Quantity | Value | Quantity | Value | | | Asbestos short tons. Cement barrels. Clay: | (1)
(1) | (1)
(1) | (1)
(1) | (1)
(1) | | | Products short tons Raw do Coal do Coke do | 21, 459
1, 530, 748
702, 227 | ² \$1,285,849
³ 65, 105
2, 134, 000
(1 3) | 22, 700
1, 627, 112
784, 539 | ² \$1, 807, 667
³ 78, 604
3, 089, 000
(¹ ³) | | | Feldspar (crude) long tons Gold i troy ounces Iron, pig long tons Lime short tons | 14
639, 539
26, 469 | 345
(1 3)
154, 318 | 704, 304
28, 167 | (1)
(1 3)
191, 071 | | | Marl, calcareous do Mineral waters gallons sold | (5)
(1)
1, 444, 120
371 | (5)
(1)
1, 328, 266
5, 565 | (1)
(5)
(1)
1, 693, 112
564 | (1)
(5)
(1)
1, 708, 519
6, 390 | | | Slate | 6 690, 160
(1) | (1)
6 778, 792
(1)
13, 713, 152 | 6 897, 830
(1) | 6 1, 127, 798 | | | Total value, eliminating
duplications. | | 7, 014, 570 | | 8, 167, 128
10, 128, 349 | | Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. Gold valued at average weighted price (\$25.56 per ounce). No canvass. Exclusive of marble, value for which is included under "Miscellaneous." Includes minerals indicated by "1" and "6" above. #### Mineral production of Massachusetts, 1933-34 | Product - | 19 | 933 1934 | | 34 | |---|-----------------------------|---|-------------------------|---| | House | Quantity | Value | Quantity | Value | | Briquets, fuelshort tons_ | (1 2) | (1 2) | (1 2) | (1 2) | | Products Raw short tons Coke do do | 1, 020, 255 | ³ \$559, 486
² 12, 891
² 5, 935, 219 | 1, 014
1, 127, 632 | ³ \$806, 201
² 12, 761
² 7, 181, 783 | | Iron, pig long tons Lime short tons Mineral waters gallons sold Peat short tons | (1 2)
56, 941
(4) | (1 2)
481, 487
(4)
(4) | (1 2)
52, 518
(4) | (1 2)
452, 494
(4) | | Sand and gravel do Sand and sandstone (finely ground) thousands. Sand-lime brick thousands. | 3, 420, 096
343
(1 3) | 1, 233, 158
2, 509 | 2, 033, 201
514 | 1, 109, 066
3, 471
(1 3) | | Stone | 1, 396, 310 | 2, 580, 791
822, 658 | 2, 347, 080 | 3, 743, 878
781, 728 | | Total value, eliminating duplications | | 4, 917, 110 | | 6, 165, 30 | Value included under "Miscellaneous." Value not included in total value for State. Figures obtained through cooperation with Bureau of the Census. No canvass. ⁵ Includes minerals indicated by "1" above. #### Mineral production of Michigan, 1933-34 | Product | | 933 | 1934 | | |---|---------------|---------------|---------------|------------------------------| | Froduct | Quantity | Value | Quantity | Value | | Bromine pounds | - (1) | (1) | (1) | (1) | | Calcium chloride short tons. Cement barrels. | | \$4, 128, 082 | (1) | er 000 014 | | Clay: | 3, 447, 867 | \$4, 120, 002 | 3, 945, 375 | \$5, 920, 214 | | Products | | 2 2, 657, 248 | | 3, 224, 189 | | Rawshort tons. | 114 | 8 546 | (1 8) | (1 3) | | Coaldo | | 1, 171, 000 | 621, 741 | 1, 940, 000 | | Cokedo | 2, 341, 081 | 3 9, 911, 010 | 2, 547, 747 | 3 14, 348, 536 | | Copperpounds. Gems and precious stones | 46, 853, 130 | 2, 998, 600 | 48, 215, 859 | 9 0 0 77 000 | | Gems and precious stones | | (4) | | 3, 857, 209
(4)
2, 049 | | Gold 5 troy ounces. Graphite, amorphous short tons. | - 10 | 247 | 59 | 2,049 | | Graphite, amorphousshort tons. | - (1) | (1) | | | | Gypsumdo
Iron: | - 211, 392 | 2, 170, 243 | 281, 033 | 2, 469, 222 | | Ore— | | 100 | | | | Sold to furnaceslong tons. | - 6,099,031 | 18, 442, 073 | 5, 497, 953 | 15, 646, 165 | | Sold for paintdo | 417 | 1, 992 | 1, 165 | (1) | | Pigdo
Limeshort tons. | 407, 011 | 3 6, 181, 318 | 644, 895 | 3 9, 987, 451 | | Limeshort tons. | - 43, 959 | 292, 144 | 32, 844 | 240, 181 | | Magnesiumpounds. | 1, 434, 893 | 377, 181 | 4, 249, 838 | (1) | | Magnesium chloride (natural)do | _ (1) | (1) | (1) | (1) | | Magnesium sulphate (natural)do | _ (1) | (1) | (1) | (1) | | Manganiferous orelong tons. | - 6, 445 | 19, 817 | 595 | (1) | | Marl, calcareous short tons | | 269 | (1) | . (1) | | Mineral watersgallons sold.
Natural gasM cubic feet. | - (4) | (4) | (4) | (4) | | Natural gasolinegallons | 1, 528, 000 | 635,000 | 2, 789, 000 | 1, 421, 000 | | | | 6,000 | 589,000 | 15, 000 | | Coppershort tons | 697, 158 | (6) | 700, 055 | (6) | | Dry and siliceous (gold and silver)do | 200 | 65 | 800 | 6 | | Peatdo | | 1 45 | (1) | \mathbb{N} | | Petroleumbarrels | 7, 942, 000 | 7, 150, 000 | 10, 603, 000 | 10, 820, 000 | | Saltshort tons | 2, 090, 254 | 5, 679, 737 | 2, 012, 370 | 5, 470, 684 | | Sand and graveldo | 4, 619, 223 | 1, 805, 360 | 5, 432, 071 | 2, 197, 838 | | Sand-lime brickthousands. | (1 2) | (1 2) | 2 5, 575 | 2 45, 129 | | Silvertroy ounces. | 125, 926 | 44, 074 | 529 | 342 | | Stoneshort tons | _ 5, 702, 000 | 3, 094, 912 | 7 6, 617, 770 | 7 3, 718, 398 | | Talcdo
Miscellaneous ⁸ | | | (1) | (1) | | wiscenaneous | - | 3, 548, 869 | | 4, 844, 306 | | Total value, eliminating duplications | | 54, 222, 848 | | 61, 831, 364 | | | | | | | ¹ Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 No canvass. 4 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 5 Gold valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of sandstone, value for which is included under "Miscellaneous." 8 Includes minerals indicated by "1" and "" above. #### Mineral production of Minnesota, 1933-34 | Duoduot | 19 | 933 | 1934 | | | |---|-------------------------------|--|------------------------------|--|--| | Product | Quantity | Value | Quantity | Value | | | Briquets, fuel short tons Cement barrels Clay: | (1) | (1 2)
(1) | (1) | (1) | | | Products Short tons Coke Short (crude) long tons. Flint lining for tube mills short tons. | (1 2)
412, 037
(1) | (1 3)
(1 2)
2 \$2, 919, 602
(1) | | * \$703, 616
(1 2)
(1 2) | | | Flint lining for tube millsshort tons_ Gems and precious stones Iron: Ore— | (1) | (1) | (1) | (1) | | | Sold to furnaces long tons Sold for paint do Pig do Lime short tons | 14, 784, 763
34
(1 2) | 38, 291, 656
375
(1 2) | 15, 768, 418
774
(1 2) | 41, 843, 148
(1)
(1 2) | | | Lime short tons Manganiferous ore long tons Mineral waters gallons sold Peat short tons | (1)
171, 722
(4)
(4) | (1)
450, 134
(4)
(4) | (1) | (1)
510, 017
(4) | | | Pebbles for grinding do— Sand and gravel do— Sand-lime brick thousands— | 2, 719, 282
(1 3) | 768, 714
(1 3) | 5, 217, 775
3 6, 899 | (1)
2, 064, 876
3 49, 510 | | | Stoneshort tons_ Miscellaneous 5 Total value, eliminating duplications | | 1, 361, 121
1, 662, 106
42, 472, 038 | 797, 510 | 1, 925, 753
4, 559, 648
48, 330, 235 | | Value included under "Miscellaneous." Value not included in total value for State. Figures obtained through cooperation with Bureau of the Census. No canvass. Includes minerals indicated by "1" above. #### Mineral production of Mississippi, 1933-34 | Product | 19 | 33 1934 | | 34 | |---|---|---|--|--| | Troduct | Quantity | Value | Quantity | Value | | Clay: Products Short tons Raw short tons Mineral waters gallons sold Natural gas M cubic feet Petroleum barrels Sand and gravel short tons Stone do Miscellaneous \$\frac{1}{2}\$ | (2 3)
(4)
8, 679, 000
(2)
838, 725
(2) | 1 \$220, 638
(2 3)
(4)
2, 171, 000
(2)
369, 745
(2)
5, 932 | (1 3)
(4)
8, 245, 000
(77, 828
(2) | (1 3)
(2 3)
(4)
\$2,021,000
(2)
349,800
(3)
150,921 | | Total value, eliminating duplications | | 2, 765, 988 | | 2, 520, 521 | Figures obtained through cooperation with Bureau of the Census. Value included under "Miscellaneous." Value not included in total value for State. No canvass. Includes minerals indicated by "2" above. #### Mineral production of Missouri, 1933-34 | 7 | 1933 | | 1934 | | |---|--------------------|-------------------------|----------------------------|--------------------------| | Product | Quantity | Value | Quantity | Value | | Asphalt (native) short tons | 3, 979 | \$20,890 | (1) | (1) | | Baritedo | 112, 335 | 510, 551 | 118,836 | \$581, 889 | | Briquets, fueldo | (1 2) | (1 2) | (1 2) | (1 2) | | Cement barrels Chats short tons | 3, 994, 690 | 4, 722, 441
493, 597 | 3, 779, 125
1, 937, 000 | 5, 449, 606
484, 350 | | Clav: | 1, 934, 349 | 490, 097 | 1, 957, 000 | 404, 000 | | Products | | 3 5, 080, 420 | | 8 6, 323, 896 | | Rawshort tons | 177, 169 | 2 713, 127 | 223, 022 | ² 961, 854 | | Coaldo | 3, 432, 212 | 6, 175, 000 | 3, 352, 283 | 6, 278, 000 | | Cokedo | (1 2) | (1 2) | (1 2) | (1 2) | | Copperpounds_ | | | 46, 276
4, 154 | 3, 702
13, 271 | | Iron orelong tons_
Leadshort tons | 84, 980 | 6, 288, 520 | 90, 493 | 6, 696, 482 | | Limedo | 230, 051 | 1, 121, 295 | 272, 236 | 1, 538, 900 | | Mineral paints, zinc and lead pigmentsdo | 1, 757 | (1 2) | | 2,000,000 | | Mineral watersgallons sold | (4) | (4) | (4) | (4)
278, 000 | | Natural gasM cubic feet | 673, 000 | 380, 000 | 549,000 | 278, 000 | | Ores (crude), etc.: Leadshort tons_ | | an an | 2 000 -00 | // | | Leadshort tons. | 2, 490, 000 | (5)
(5) | 2, 989, 700
60, 700 | (5)
(5) | | Lead-zincdo
Zincdo | 170, 800 | (8) | 364, 600 | 8 | | Petroleumbarrels_ | 10,000 | 6,000 | 35,000 | 29,000 | | Pyriteslong tons_ | 18, 355 | 50, 161 | 14, 557 | 51, 640 | | Pyriteslong tons_
Sand and gravelshort tons_ | 3, 434, 540 | 1, 668, 048 | 2, 381, 453 | 1, 462, 740 | | Sand-lime brickthousands | | | (1 3) | (1 3) | |
Silica (quartz) short tons | (1) | (1) | (1) | (1) | | Silvertroy ounces_ | 2, 860, 590 | 3, 509, 248 | 63, 066
6 2, 438, 260 | 40, 770
6 2, 913, 415 | | Stoneshort tons Tripolido | 2, 860, 590
(1) | 3, 309, 240 | (1) | (1) | | Zincdo | 5, 042 | 423, 528 | 7,059 | 607, 074 | | Miscellaneous 7 | | 1, 230, 942 | | 1, 247, 281 | | Total value, eliminating duplications | | 30, 588, 018 | | 32, 954, 534 | ¹ Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Figures obtained through cooperation with Bureau of the Census. 4 No canvass. 5 Not valued as ore; value of recoverable metal content included under the metals. 6 Exclusive of unclassified stone, value for which is included under "Miscellaneous." 7 Includes minerals indicated by "1" and "6" above. #### Mineral production of Montana, 1933-34 | Product | | 1933 | | 1934 | | |--|--------------|-----------------------------|-------------------------|-----------------------------|--------------------------| | Froduct | | Quantity | Value | Quantity | Value | | Arsenious oxideAsbestos | short tons | 5, 480
10 | \$295, 920
350 | 6, 833 | \$348, 704 | | Cement | barrels | (1) | (1) | (1) | (1) 240 | | Products | | | 2 35, 486 | | 2 98, 593 | | RawCoal | short tons | 1, 092
2, 152, 207 | 3 3, 075
3, 309, 000 | 2, 675
2, 565, 702 | 3 4, 800
3, 997, 000 | | CopperGems and precious stones | pounds | 65, 476, 375 | 4, 190, 488 | 63, 265, 000 | 5, 061, 200 | | Gold 5 | trov ounces | 57, 822 | 1, 477, 935 | 97, 446
(1) | 3, 405, 736 | | Graphite, crystalline
Gypsum | short tons | (1) | (1) | (1) | (1) | | Lead
Lime | do | 6, 582
1, 251 | 487, 047
17, 264 | 10, 005
(1) | 740, 370
(¹) | | Manganese ore | do | | 297, 451 | 11, 548
11, 247 | 362, 450
43, 484 | | Micaceous minerals (vermiculite)
Mineral waters | short tons | (1)
(4) | (1)
(4) | (1) | (1) | | Natural gas
Natural gasoline | M cubic feet | 14, 391, 000
1, 295, 000 | 4, 358, 000
100, 000 | 14, 971, 000
1, 237, 000 | 4, 415, 000
83, 000 | | Ores (crude), etc.:
Copper
Copper lead | short tons | 491, 893 | (6) | 458, 587 | (6) | | Copper lead | do | 60 | (6) | | | | Dry and siliceous (gold and silver)
Lead. | do | 167, 237
7, 425 | (6)
(6) | 287, 828
10, 321 | (6)
(6) | | Lead-zincZinc | | 152, 582
43, 289 | (6)
(6) | 244, 303
65, 913 | (6)
(6) | | Petroleum
Phosphate rock | barrels | 2, 273, 000
492 | 2, 220, 000
1, 238 | 3, 603, 000
2, 086 | 4, 380, 000
7, 613 | | Pyrites
Sand and gravel | do | (1)
2, 317, 758 | (1)
1, 379, 831 | (1)
5, 257, 164 | (1)
2, 073, 513 | | SilverStone | troy ounces | 2, 660, 700
438, 800 | 931, 245
377, 973 | 4, 006, 468
434, 260 | 2, 590, 040
407, 363 | | Zinc
Miscellaneous 7 | do | 20, 724 | 1, 740, 854
442, 007 | 30, 721 | 2, 642, 017 | | Total value, eliminating duplica | | | 21, 662, 089 | | 774, 173
31, 430, 496 | Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. No canvass. Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. Not valued as ore; value of recoverable metal content included under the metals. Includes minerals indicated by "1" above. #### Mineral production of Nebraska, 1933-34 | Product | 1933 | | 1934 | | |---|-------------------------|-------------------------------------|-------------------------|-------------------------------------| | | Quantity | Value | Quantity | Value | | Briquets, fuel | (1 2)
(1) | (1 2)
(1) | (1 2)
(1) | (1 2)
(1) | | Products Raw short tons Mineral waters gallons sold Pumice short tons | 10, 178
(4)
(1) | (1 3)
2 \$9, 371
(4)
(1) | 9, 006
(4) | (1 3)
2 \$6, 226
(4)
(1) | | Sand and graveldodo
Stonedo
Miscellaneous 5do | 1, 560, 589
198, 070 | 656, 906
219, 616
1, 189, 954 | 1, 433, 407
294, 690 | 591, 513
402, 367
1, 828, 854 | | Total value, eliminating duplications | | 2, 047, 335 | | 2, 790, 571 | Value included under "Miscellaneous." Value not included in total value for State. Figures obtained through cooperation with Bureau of the Census. No canvass. ⁵ Includes minerals indicated by "1" above. # Mineral production of Nevada, 1933-34 | Product | | 1933 | | 1934 | | |--|--------------|--------------------------|------------------------|---------------------------|--------------------------------| | and the second of the second | | Quantity | Value | Quantity | Value | | Barite. Clay: | | 1,040 | \$7, 280 | (1) | (1) | | Products | | (1 3) | (1 2) | | (1.3) | | Diatomite | short tons | 28, 489, 610 | 1, 823, 335 | 41, 611, 119 | \$3, 328, 890 | | Feldspar (crude). Fluorspar Fuller's earth | short tons | E 074 | (1)
61, 571 | (1)
631
(1) | (1) | | Gold 5 | trow owners | | 2, 519, 968 | 144, 275 | (4)
5, 042, 417 | | Graphite, amorphous
Gypsum
Lead | | 2.303 | (1)
(1)
170, 449 | (1)
82, 348
10, 991 | (1)
(1)
813, 329 | | Magnesium hydrate (natural) (brucite | do | Contract Section 1 | (1) | (1) | (1) | | Marl, calcareous Mercury flas Mineral waters | gallone cold | . (4) | 22, 921 | (1)
300 | | | Molybdenum Ores (crude), etc.; Copper Copper-lead | | | (6) | 24, 116
1, 819, 913 | (A)
(A) | | Lead | do: | 448, 984 | (6) | . 72 | | | Lead-zinc | do | 1, 583
27, 302
202 | (6)
(6) | 24, 931
153, 412 | · . (6) | | Salt Zinc Salt Sand and gravel Salt Sand and gravel Salt Salt Salt Salt Salt Salt Salt Sal | troy ourges | (1)
2, 522, 718 | (1)
937, 327 | (1) | T (1) | | SilverSodium sulphate from natural sources
Stone | short tons. | (1)
80, 630 | (1)
104, 428 | 7 64, 880 | 1, 976, 316
(1)
474, 219 | | Vanadium oresZinc | do | 550 | (1) | 1,044 | (!) | | Miscellaneous 8 | | | 870, 366 | 13,1940 | 1, 198, 874 | | Total value, eliminating duplicat | ions | | 7, 455, 493 | | 14, 702, 869 | 1 Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 No canvass. 5 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of basalt, value for which is included under "Miscellaneous." 8 Includes minerals indicated by "i" and "7" above. # Mineral production of New Hampshire, 1933-34 | Product | 1933 | | 1934 | | |--|--|--|---|--| | | Quantity | Value | Quantity | Value | | Clay products Feldspar (crude) long tons Garnet, abrasive short tons. Mica: Scrap do Sheet pounds Mineral waters gallons sold. Peat short tons. Sand and gravel do Miscellaneous | 12, 425
(2)
532
167, 464
(3)
(3)
(3)
2, 414, 637
86, 360 | 1 \$89, 576
82, 978
(2)
9, 563
22, 008
(3)
(3)
744, 712
499, 304
8, 900 | 12, 119
(2)
537
161, 430
(3)
(4)
2, 810, 674
50, 670 | 1 \$172, 162
80, 733
(*)
9, 529
14, 423
(*)
(3)
300, 213
547, 997
24, 232 | | Total value, eliminating duplications | | 1, 457, 041 | | 1, 149, 289 | Figures obtained through cooperation with Bureau of the Census. Value included under "Miscellaneous." No canvass. #### Mineral production of New Jersey, 1933-34 | | 1933 | | 1934 | | |--|--------------------------------------|--|---|---| | Product | Quantity | Value | Quantity | Value | | Briquets, fuel short tons. Cement barrels. Clay: Products. Raw short tons. | (1) | (1 2)
(1)
3 \$9,725, 135
2 256, 731 | (1 2)
(1)
68, 791 | (1 2)
(1)
2 \$10,249,477
2 289,541 | | Coke do Distomite do Ferro-alloys long tons Graphite, artificial pounds Iron ore long tons Lime short tons | 835, 125 | (1 2)
(1 2)
(1 2)
(1)
(1) | 910, 121
150
(1 2)
145, 326
720 | (1.3)
(1.3)
(1) | | Manganiferous residuum long tons-
Marl, greensand short tons-
Minerel points gine and lead pigments do | 6, 713 | 206, 985 | 65, 236
7, 335
(1 2)
(4) | (1)
209, 278
(1 1) | | Mineral waters gallons sold gallons cons. Short tons. Peat do | 471, 607
(4)
2, 064, 260 | (4)
(5)
(4)
1, 636, 406 | 469, 339
(1)
2, 312, 794 | (5)
(1)
1, 756, 293 | | Sand and sandstone (finely ground) do | 66, 437
(1)
1, 099, 310
(1) | 263, 806
(1)
1, 272, 481
(1) | 64, 467
(1)
1, 368, 490
(1) | 291, 733
(1)
1, 662, 968
(1) | | Zinc 67do
Miscellaneous 7
Total value, eliminating duplications | 75, 125 | 8, 272, 400
6, 381, 374
22, 580, 043 | 76, 553 | 8, 772, 200
8, 293, 279
25, 009, 596 | 1 Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Figures obtained through cooperation with Bureau of the Census. 4 No canvass. 5 Not
valued as ore; value of recoverable metal content included under the metal. 6 Value reported for zinc in New Jersey is estimated smelting value of recoverable zinc content of ore after freight, haulage, smelting, and manufacturing charges are added. 7 Includes minerals indicated by "1" above. # Mineral production of New Mexico, 1933-34 | | 1 | 933 | 1934 | | |---|--------------|--------------|--------------|-------------| | Product | Quantity | Value | Quantity | Value | | | | | | | | Asphalt (native)short tons_
Clay: | (1) | (1) | (1) | (1) | | Products | | (1 2) | | (1 2) | | Rawshort tons | 142 | 3 \$1,505 | 1,411 | \$6.08 | | Coal do Copper pounds | 1, 226, 236 | 3, 071, 000 | 1, 259, 323 | 3, 402, 00 | | Copper pounds | 26, 947, 000 | 1,724,608 | 23, 630, 000 | 1, 890, 40 | | Fluorsparshort tons_ | 994 | (1) | 2,040 | (1) | | Hems and precious stones | ı | X | 2,010 | 8 | | Gold 5troy ounces_ | 26, 474 | 676, 678 | 27, 307 | | | Leadshort tons_ | 11, 043 | 817, 182 | | 954, 38 | | Limedo | (1) | | 9, 365 | 692, 97 | | Lithium mineralsdo | | (1) | (1) | (1) | | Mina. | | (1) | (1) | (1) | | Scrapdo | 713 | 43 | | | | Sheetpounds_ | | l (3) | 602 | 7, 95 | | Minoral rectors | 1 (2) | (1) | (1) | (1) | | Mineral waters gallons sold gallons sold | (2) | (1) | (4) | (4) | | Molybdenum pounds | (1) | (1) | (1) | (1) | | Natural gas | 19, 148, 000 | 2, 465, 000 | 24, 075, 000 | 3, 674, 00 | | Natural gasolinegallons | 19, 149, 000 | 654,000 | 21, 748, 000 | 570, 00 | | Ores (crude), etc.: | | | | | | Coppershort tons_ | 1, 100, 707 | (6) | 1,000,972 | (6) | | Copper-leaddo | 1, 419 | (6) | 1, 176 | (6) | | Dry and siliceous (gold and silver)do | | (6) | 55, 606 | (6) | | Leaddodo | 877 | (6) | 807 | 765 | | Lead-zincdo | 255, 946 | (6) | 272, 795 | 765 | | Zincdodo | 78, 240 | (6) | 66, 353 | 765 | | Petroleumbarrels | 14, 116, 000 | 6, 490, 000 | 16, 864, 000 | 12, 760, 00 | | Potassium saltsshort tons | (1) | (1) | 10,001,000 | 12, 100, 00 | | altine in the do | i (i) | is | - X | 53 | | and and graveldo | 777, 086 | 776, 936 | 161, 325 | 190, 87 | | ilvertroy ounces | 1. 181. 580 | 413, 553 | 1, 061, 775 | | | toneshort tons_ | 427, 980 | 437, 287 | | 686, 40 | | Cantalum ore nounde l | 300 | 180 | 1, 215, 940 | 1, 094, 60 | | ungsten ore (60 percent concentrates)short tons | 300 | 180 | 2,000 | 80 | | Sincdodo | 30, 924 | 0 507 616 | 00 500 | (1) | | Aiscellaneous 7 | 00, 924 | 2, 597, 616 | 26, 522 | 2, 280, 84 | | | | 3, 230, 641 | | 1, 934, 22 | | Total value, eliminating duplications | | 00 054 001 | | | | Town torue, ourminating duphestions | | 23, 354, 681 | | 30, 079, 46 | 1 Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 No canyass. 4 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Includes minerals indicated by "1" above. ### Mineral production of New York, 1933-34 | | | | <u> </u> | | | | |--|--------------|-------------------------|--------------------------|----------------------|--------------------|-----------------| | | | | 19 | 1933 | | 34 | | | Product | 1 12 500 | Quantity | Value | Quantity | Value | | | | | | - Tarte | - Quantity | | | AluminumCement | 1 190 | pounds_ | (1 2) | (1 2) | (1 2) | (1.2) | | Cement | } | barrels | ³ 3, 966, 696 | 3 \$5,274, 593 | 3 4, 730, 257 | 3 \$7, 503, 270 | | Cement Clay: Products Raw Coke Diatomite | - Jr | | | | | 1 7 040 400 | | Products | | التتاريخ ووسوسا فالمستد | | 4 3, 511, 639 | | 4 5, 648, 493 | | Raw | | short tons | 1,740 | ² 13, 401 | 5, 390 | 2 39, 067 | | Coke | | do | 3, 426, 529 | 2 19,232, 209 | 4, 089, 708 | 2 25, 283, 246 | | Diatomite | | do | (1) | (1) | (1) | (¹)
1,800 | | Diatomite Emery Feldspar (crude) Ferro-alloys Garnet abrasive | | do | 1,056 | 12, 283 | 189 | 1,800 | | Feldspar (crude) | | long tons | 6, 138 | 41, 736 | 6, 262 | 37, 275 | | Ferro-alloys | Euglis mari | do | 117, 348 | 2 8, 251, 467 | 112, 021 | 9, 166, 041 | | Garnet, abrasive
Graphite, artificial
Gypsum | | short tons | (1) | (1) | (1) | (1)
(1 2) | | Granhita artificial | | pounds | (1 2) | (ì 2) | (1 2) | (1 2) | | Gyneum | | short tons | 363, 745 | 3, 646, 109 | 391, 408 | 3, 922, 529 | | Iron: | | | | | ' | | | Ore— | | - 1 1 1 1 No. | | | | | | Sold to furnece | | long tons | 163 000 | (1) | 235, 025 | (1) | | Sold to lullace | 0 | do | 100,000 | | (1) | (4)
(1) | | Bold for paint. | | | 951 406 | 2 12.344, 827 | 961, 679 | 14, 621, 274 | | Sold for paint. Pig Lead | | short tong | (1) | (1) | (1) | (4) | | Tiesq | | short tons | 26 260 | 286, 625 | 36, 050 | 300, 328 | | Lime
Millstones | | u0 | 30, 308 | 5, 187 | 00,000 | 3, 381 | | Millstones | | | (5) | (5) | (5) | (5) | | Mineral waters
Natural gas | | gailons sold | 0 000 000 | | 6, 278, 000 | 4, 408, 000 | | Natural gas | | M. cubic feet | 6, 855, 000 | 4, 838, 000 | 0, 278, 000 | 5, 000 | | Natural gasoline | | gallons | 96,000 | 5, 000 | 85, 000 | 5,000 | | Ores (crude), etc.: | | 그 전에 가게 걸었다는 그를 다니다. | 100 000 | (0) | 100 000 | (8) | | Lead-zinc | | short tons | 120, 839 | (6) | 198, 936 | (6) | | Zine | | do | 59, 831 | (6) | 84, 016 | (6) | | Natural gasoline. Ores (crude), etc.: Lead-zine Zine Peat | | do | (*) | (5) | (1) | (1) | | Petroleum | | barrels | 3, 181, 000 | 5, 960, 000 | 3, 804, 000 | 9, 340, 000 | | Pyrifes | | long tons | 19,824 | (1) | 31,674 | (1) | | Salt | 7.754 1.0 | short tons | 1, 847, 696 | 5, 120, 846 | 1, 866, 280 | | | Sand and gravel | 1 10 10 10 | do | 7, 274, 610 | 3, 960, 334 | 7, 619, 456 | 4, 964, 440 | | Sand-lime brick | | thousands | (1.4) | (1 4) | (1 4)
(4) | (1 4) | | Silica (quartz) | | short tons_ | (i) | (¹)´ | (1) | (1) | | gilver | | troy ounces | | | 26, 406 | 17, 071 | | Zine. Peat. Petroleum. Pyrites Salt. Sand and gravel. Sand lime brick. Silica (quartz). Silver. Slate. Stone. | | | | 291, 768 | | 305, 869 | | Stone | | short tons | 7, 395, 690 | 6, 351, 397 | 8, 400, 690 | 8, 516, 754 | | Tale | | do | 82,618 | 969, 338 | 57, 580 | 681, 184 | | Zinc | | do | 17, 733 | 1, 489, 572 | 23, 188 | 1, 994, 168 | | Miscellaneous 7 | | | 11,100 | 9, 709, 144 | | 9, 597, 016 | | The state of s | | | | 0,,00,111 | | ., 50., 020 | | Total value alim | ingting dunl | ications | | 42, 940, 471 | | 54, 625, 552 | | 10tai vaiue, eiiii | ппанив чарт | 100010119 | | , 0 .0, 11 | 31 * 1 a. a. a. a. | | | | | | | | | | 1 Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Exclusive of natural cement, value for which is included under "Miscellaneous." 4 Figures obtained through cooperation with Bureau of the Census. 5 No canvass. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Includes minerals indicated by "1" and "3" above. ### Mineral production of North Carolina, 1933-34 | | | 1933 | | 1934 | | |---|------------------------------|---------------------|---|---------------------------|---| | Product | i i i seri
Li i serriyê î | Quantity | Value | Quantity | Value | | Aluminum | do | (1 2) | (1 2) | (1 2)
(1) | (1 2)
(1) | | Products Raw Coal | short tons | 6, 928
2, 014 | 3 \$1, 035, 195
2 102, 814
7, 000 | 7, 146
3, 140
(¹) | 3 \$1, 136, 115
2 106, 742
9, 000 | | Copper
Feldspar (crude)
Gems and precious stones | long tons
troy ounces | 85, 962
725 | 471, 312
(4) | 79, 844
509 | 465, 214
(4)
17, 779 | | Lime
Marl, calcareous
Mica;
Scrap | short tons | (1) | (1)
(1)
74,711 | (1)
(1)
4, 757 | (1)
(1)
59, 496 | | Sheet Micaceous minerals
(mica schist) Millstones Mineral waters | short tons | (1) | 21, 107
(1)
2, 400 | 293, 381
(¹) | 38, 674
(1)
(1) | | Mineral waters Ores (crude): Copper Dry and siliceous (gold and silver) | short tons | 22, 833 | (4)
(6)
(6) | 26, 100
670 | (6) | | Sand and gravel Silica (quartz) Silver | do | 524, 903 | 201, 113
(1)
4, 022 | 338, 381
(¹)
9, 710 | 225, 588
(1)
6, 277 | | Stone
Tale
Miscellaneous ⁷ | snort tons | 599, 400
14, 412 | 1, 049, 214
149, 540
2, 379, 024 | 15, 367 | 3, 455, 289 | | Total value, eliminating duplica | tions | | 3, 365, 160 | | 5, 342, 306 | ### Mineral production of North Dakota, 1933-34 | | 1933 | | 1934 | | |---------------------------------------|--|---|---|---| | Product | Quantity | Value | Quantity | Value | | Briquets, fuel | (1 2)
3, 522
1, 782, 272
(4)
1, 964, 394 | (1 2)
(1 3)
2 \$3,381
2,248,000
(4)
674,187
102,243 | (1 2)
(1 2)
1, 753, 888
(4)
1, 605, 382
5 5, 700 | (1 2)
(1 2)
\$2,363,000
(4)
130,813
5 2,132
155,305 | | Total value, eliminating duplications | | 2, 960, 811 | | 2, 549, 850 | ¹ Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Figures obtained through cooperation with Bureau of the Census. 4 No canvass. 5 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Includes minerals indicated by "1" above. Value included under "Miscellaneous." Value not included in total value for State. Figures obtained through cooperation with Bureau of the Census. No canvass. Exclusive of granite, value for which is included under "Miscellaneous." Includes minerals indicated by "1" and "9" above. ### Mineral production of Ohio, 1933-34 | | | 198 | | 19 | 1934 | | |--|---------------|---------------|----------------------------|--------------------|----------------------------|--| | Product | | Quantity | Value | Quantity | Value | | | Briquets, fuel | _short tons | (1 2) | (1 2) | (1 2) | (1 2) | | | Bromine | pounds | (1) | (1) | (1) | (1) | | | BromineCalcium chloride | short tons | (1) | (1) | (1) | (1) | | | Cement | barrels | 3 3, 042, 645 | ³ \$3, 662, 733 | 3 3, 674, 384 | ³ \$5, 565, 525 | | | Clay: | | | | | | | | Clay:
Products
Raw | | | 4 19, 534, 120 | | 4 25, 600, 605 | | | Raw | _short tons | 167, 873 | ² 320, 782 | 204, 176 | ² 467, 829 | | | Coal | do | 19, 588, 763 | 23, 549, 000 | 20, 690, 564 | 34, 774, 000 | | | Coke | ao | 3, 676, 727 | 2 14, 540, 301 | 4, 296, 338 | 2 19, 001, 895 | | | Ferro-alloys
Grindstones and pulpstones. | long tons | 69, 125 | 2 2, 563, 705 | 58, 041 | 2 2, 146, 286 | | | Grindstones and pulpstones | _snort tons | 8,749 | 237, 627 | 8, 085 | 241, 682 | | | Gypsum
Iron, pig | | (1) | (1)
2 60, 995, 721 | (1)
4, 147, 116 | ² 68, 525, 145 | | | tron, pig | long tons | 558, 901 | 3, 353, 102 | 562, 041 | 4, 282, 510 | | | Lime
Marl, calcareous | 811011 10118 | | 0, 000, 102 | (1) | (1) | | | Mari, calcareous | uo | (12) | (1) | (1 2) | (1 2) | | | Mari, catcareous. Mineral paints, zinc and lead pigments. Mineral waters. Natural gas. Natural gasoline. Peat. | gollong gold | (5) | (5) | (5) | (5) | | | Motural gag | M ou bio foot | 47, 929, 000 | 25, 103, 000 | 50, 330, 000 | 25, 728, 000 | | | Notural gas | vi cubic icot | 4, 662, 000 | 258, 000 | 5, 881, 000 | 289, 000 | | | Doot | short tons | (5) | (5) | (1) | (1) | | | Petroleum | barrels | 4, 235, 000 | 4, 540, 000 | 4, 234, 000 | 6, 830, 000 | | | Rubbing stones, scythestones, and whets | | 1, 200, 000 | 2, 020, 000 | 2,202,000 | 0,000,000 | | | reading bronos, boy encounted, and where | short tons | (1) | (1) | 129 | 18, 151 | | | Salt | do | 1, 382, 294 | 2, 599, 055 | 1, 432, 292 | 2, 721, 167 | | | Sand and gravel | do | 4,071,808 | 2, 672, 052 | 5, 257, 514 | 4, 134, 006 | | | Sand and sandstone (finely ground) | do | (1) | (1) | (1) | (1)
(1 4) | | | Salt | thousands | (1 4) | (1 4) | (1 4) | (14) | | | | | | (1) | (1) | (1) | | | Stone | do | 8 5, 426, 490 | 6 4, 518, 520 | 5, 974, 850 | 5, 490, 800 | | | Sulphuric acid 7 | do | (1 2) | (1 2) | (1 2) | (1 2) | | | Miscellaneous 8 | | | 4, 438, 507 | | 3, 896, 339 | | | Total value, eliminating duplication | | | 01 145 000 | | 110 007 000 | | | Total value, eliminating diiblicatio | ns | l | 91, 145, 609 | | 116, 987, 662 | | ¹ Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Exclusive of natural cement, value for which is included under "Miscellaneous." 4 Figures obtained through cooperation with Bureau of the Census. 5 No canvass. 6 Exclusive of unclassified stone, value for which is included under "Miscellaneous." 7 From zinc smelting. 8 Includes minerals indicated by "1", "3", and "6" above. ### Mineral production of Oklahoma, 1933-34 | | | 19 | 1933 | | 1934 | | |---|--|--|---|---|--|--| | | oduct | Quantity | Value | Quantity | Value | | | Briquets, fuel Bromine Calcium chloride Cement Chats Clay: Products Raw Coal Gypsum Lead Magnesium sulphate (nat Mineral waters Natural gas Natural gas Vatural gas Lead Zinc Zinc Etroleum Potassium salts Pumice Salt Sand and gravel Stone | short tons do pounds short tons short tons short tons short tons do do do do do spallons sold M cubic feet gallons short tons do | (i 2)
(i)
(i)
(i)
(i)
(i)
(i)
(i)
(i)
(i)
(i | (1)
(1 2)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(2)
(25, 141
(2, 616, 000
(1)
(1)
(23, 760, 000
(12, 177, 000
(4)
(5)
(5)
(10, 800, 000
(1)
(1)
(1)
(1)
(21, 425
(1)
(1)
(21, 425
(1)
(1)
(1)
(1)
(21, 425
(1)
(1)
(1)
(1)
(1)
(1)
(2)
(1)
(2)
(3)
(4)
(4)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
(8)
(9)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(2)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1 | (1)
(1 2)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1 | (1)
(1 2)
(1)
(1)
(1)
(1)
(2)
(2)
(2)
(2)
(3)
(4)
(2)
(4)
(2)
(4)
(5)
(6)
(1)
(1)
(1)
(1)
(1)
(2)
(2)
(3)
(4)
(4)
(5)
(6)
(7)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(2)
(3)
(4)
(4)
(4)
(5)
(6)
(6)
(7)
(7)
(7)
(8)
(8)
(9)
(9)
(9)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1 | | | Zine
Miscellaneous 7 | do | 91,065 | 7, 649, 460
3, 493, 169 | | 9, 268, 392
4, 881, 601 | | | Total value, elimina | ting duplications | | 172, 560, 924 | | 237, 208, 583 | | Value included under "Miscellaneous." Value not included in total value for State. Figures obtained through cooperation with Bureau of the Census. No canvass. Not valued as ore; value of recoverable metal content included under the metals. From zine smelting. Includes minerals indicated by "1" above. ### Mineral production of Oregon, 1933-34 | | 1933 | | 1934 | |
--|---------------------------------------|---------------|----------------|-------------------| | Product | Quantity | Value | Quantity | Value | | Briquets, fuelshort tonsbarrelsbarrels | (1.2) | (1.2) | (1.2) | (1 2) | | | (1) | (1) | (1) | (1) | | Clay:
Products | | 2 61 57 107 | | | | Products | | 3 \$157, 137 | | 3 \$134, 71 | | Rawshort tons_
Coaldo | (1) | (1 2) | (1 2) | (1 2) | | Jonnay nounda | (1)
11, 453 | (1)
733 | (1)
38, 373 | 3,070 | | Copperpounds_
Diatomiteshort tons_ | (1) 400 | (1) | | | | lems and precious stones | (*) | (i) | (-) | (1) | | fold 5 troy ounces | 20. 240 | 517, 326 | 33, 712 | 1, 178, 220 | | ead short tons | 20, 210 | 347 | | 1, 176, 22 | | imedo | (1) | (1) | (1) | (1) | | | | | 3, 460 | | | Jineral waters gallons sold | (4)- | (4) | (4) | (4) | | Mercury Hasks (76 pounds) - Mineral waters gallons sold gallon | | | ' ' | 1 1 1 1 1 1 1 1 1 | | Dry and siliceous (gold and silver) short tons Lead do Lead-do do do | 11, 508 | (6) | 61, 842 | (6) | | Leaddo | 2 | (6) | 3 | (6) TV. | | Lead-zinc do | 47. | (6) | 300 | (6) | | Platinum and allied metals troy ounces_
Pumice short tons_ | 44 | 1,647 | .113 | (6)
4, 40 | | 'umiceshort tons_ | (1) | (1) | (1) | (1) | | and and graveldo | 1, 636, 476 | 863, 671 | 1, 617, 222 | 820, 07 | | and and graveldotroy ounces_ | 20, 760 | | 46, 560 | 30, 09 | | tone short tons do do discellaneous 8 | 7 1, 341, 660 | 7 1, 328, 940 | 7 997, 030 | 7 863, 44 | | incdo | 6 | 516 | 37 | 3, 14 | | Miscellaneous 8 | | 1,074,566 | | 1, 341, 35 | | | · · · · · · · · · · · · · · · · · · · | 0 504 005 | | 4 011 00 | | Total value, eliminating duplications | | 3, 504, 825 | | 4, 211, 39 | ¹ Value included under "Miscellaneous." 2 Value not included in total value for State. 2 Figures obtained through cooperation with Bureau of the Census. 4 No canvass. 5 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of limestone in 1933 and of unclassified stone in 1934, value for which is included under "Miscellaneous." 8 Includes minerals indicated by "1" and "7" above. ### Mineral production of Pennsylvania, 1933-34 | Product | \$ | 19 | 1933 | | 1934 | | |--|-------------|---|--|-------------------------------------|---|--| | froduct | | Quantity | Value | Quantity | Value | | | Briquets, fuel | barrels_ | 2 12, 486, 585 | 1 \$244, 026
2 15, 696, 852 | 119, 181
2 15, 435, 648 | 1 \$558, 615
2 23, 138, 676 | | | Clay: Products Raw | short tons | 397, 944 | ³ 14, 020, 063
¹ 958, 273 | 449, 924 | ³ 15, 530, 583
¹ 1, 126, 777 | | | Anthracite
Bituminous | dodo | 49, 541, 344
79, 295, 944 | 206, 718, 405
108, 418, 000 | 57, 168, 291
89, 825, 875 | 244, 152, 245
165, 371, 000 | | | CokeCopper 4Feldspar (crude) | long tone | (5) | 1 25, 731, 239
(5)
1, 442 | 7, 554, 955
(5) | 1 30, 158, 115
(5)
456 | | | Gems and precious stones. | ao | 175, 172 | 113, 756, 984
(6)
5, 342 | 165, 650
623 | 1 16, 375, 553
(6)
21, 774 | | | Iron: Ore— Sold to furnaces | long tons_ | 324, 052 | 650, 664 | 524, 657 | 1, 052, 770 | | | Sold for paint. Pig Lime Marl colorsons | short tons | 3, 952, 862
433 705 | 1 62, 797, 008
2, 810, 758 | 4, 173, 412
434, 519 | ¹ 76, 740, 066
3, 165, 539 | | | Marl, calcareous Mineral paints, zinc and lead pi Mineral waters Natural gas | gmentsdo | (1 5)
(6) | (1 5)
(6)
(8) | (1 5)
(6) | (1 5)
(6) | | | Natural gasoline
Peat.
Petroleum | short tons | 63, 579, 000
11, 686, 000
(6) | 31, 979, 600
568, 000
(6) | 86, 238, 000
10, 781, 000
(5) | 37, 524, 000
467, 000
(5) | | | Sand and gravel Sand and sandstone (finely grou Sand-lime brick | nd)do | 12, 624, 000
5, 044, 179
(5)
(8 5) | 23, 590, 000
4, 212, 866
(5)
(3 5) | 14, 478, 000
5, 970, 517
(5) | 35, 200, 000
5, 064, 807
(5)
(3 5) | | | Silver 4Slate | troy ounces | 2, 300 | 805
1, 124, 014
11, 660, 318 | (3 5)
6, 230
15, 251, 330 | 4,027
1,237,477 | | | Tripoli (rottenstone) | do | (5) | 11, 000, 318
1 856, 514
(5)
4, 487 | 161, 201
(5)
240 | 14, 501, 246
11, 273, 488
(5)
4, 800 | | | Miscellaneous 9 Total value, eliminating de | | | 5, 467, 196 | 240 | 6, 234, 071 | | Value not included in total value for State. Exclusive of puzzolan and natural cement, value for which is included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Copper, gold, and silver were recovered from pyritiferous magnetite. The quantity of such ore was 347,290 short tons in 1933 and 557,740 short tons in 1934; it is included in the figures shown for iron ore. Value included under "Miscellaneous." No canvass. Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. From zine smeltine. From zinc smelting. Includes minerals indicated by "2" and "5" above. ### Mineral production of Rhode Island, 1933-34 | Product | 1933 | | 1934 | | |---|---|---|--|---| | Houdet | Quantity | Value | Quantity | Value | | Clay products short tons Coke short tons Lime do Mineral waters gallons sold Sand and gravel short tons Stone do Miscellaneous do | (1 3)
1, 503
(4)
397, 977
5 11, 670 | (1 2)
(1 3)
\$17, 120
(4)
115, 973
5 210, 071
1, 530, 636 | (1 3)
1, 884
(4)
423, 624
185, 280 | (1 3)
\$18, 75;
(4)
69, 149
397, 540
1, 857, 614 | | Total value, eliminating duplications | | 386, 983 | | 485, 44 | ¹ Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. No canvass. ⁵ Exclusive of unclassified stone, value for which is included under "Miscellaneous." ### Mineral production of South Carolina, 1933-34 | | 1933 | | 1934 | | |--|-----------------------------|-----------------------------|-----------------------------|--| | Product | Quantity | Value | Quantity | Value | | Bariteshort tons | (1) | (1)
2 \$289, 288 | (1) | (1)
(1 2) | | Products short tons Copper pounds | 95, 654 | 3 572, 814 | 91, 165
400 | ³ \$652, 642 | | Gold troy ounces Mica, sheet pounds Mineral waters gallons sold Ore (dry and siliceous) (gold and silver) short tons | (1)
(5)
510 | 5, 996
(1)
(5)
(6) | (1)
(5)
3, 982 | 22, 439
(1)
(5)
(6) | | Sand and graveldodoSilvertroy ounces_
Stoneshort tons_ | 119, 567
103
354, 140 | 59, 163
36
659, 443 | 144, 953
487
431, 790 | 90, 871
315
847, 860
361, 776 | | Miscellaneous 7 Total value, eliminating duplications | 331,110 | 1, 014, 162 | 101,700 | | 1 Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. 4 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 5 No canvass Not valued as ore; value of recoverable metal content included under the metals.
Includes minerals indicated by "1" above. ### Mineral production of South Dakota, 1933-34 | Product | 19 | 33 | 193 | 1934 | | |---|------------------------|--|---|--|--| | | Quantity | Value | Quantity | Value | | | Cement barrels Clay: | (1) | (1) | (1) | (1)
(1 2) | | | Products short tons Raw do Feldspar (crude) long tons | 59, 375 | (1 2)
3 \$1, 764
104, 000
12, 058 | (1 3)
42, 407
9, 190 | (1 3)
\$76, 000
30, 892 | | | Gens and precious stones troy ounces. Gold 5 troy ounces. Gypsum short tons. | 512, 404 | 13, 097, 040 | 486, 119
(1)
(1) | (4)
16, 989, 858
(1) | | | Line do_
Lithium minerals do_
Mica, scrap do_
Mineral waters gallons sold | (1)
(1)
(4) | 10, 477
(1)
(4) | 684
515
(4) | 20, 480
6, 665
(4) | | | Natural gas | 10, 000
1, 432, 555 | (6) | 1, 520, 669 | (6) | | | Sand and graveldo
Silvertroy ounces_
Stoneshort tons_ | 133, 520 | 624, 428
43, 896
376, 078 | 3, 863, 410
99, 741
7 237, 510
425 | 773, 559
64, 479
7 497, 200
168 | | | Tantalum orepounds_
Tin (metallic equivalent)do
Miscellaneous ⁸ | 240 | (1)
387, 527 | 445 | (1)
734, 527 | | | Total value, eliminating duplications | | 14, 658, 504 | | 19, 173, 033 | | ¹ Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 No canvass. 5 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of basalt, value for which is included under "Miscellaneous." 8 Includes minerals indicated by "i" and "?" above. ### SUMMARY OF MINERAL PRODUCTION ### Mineral production of Tennessee, 1933-34 | | 1 | 933 | 1934 | | | |---|--------------------|---------------------------------|------------------------|------------------------------------|--| | Product | Quantity | Value | Quantity | Value | | | Aluminum pounds Barite short tons | - (1 2)
- (1) | (1 2)
(1) | (1) | (1.2) | | | Cementbarrels_
Clay: | | \$2,044,970 | 2, 305, 578 | \$3, 645, 659 | | | Productsshort tons. | | 3 1, 355, 308
2 224, 586 | 47, 665 | 3 1, 756, 020
2 215, 511 | | | Coal do Coke do Copper pounds | 83, 291 | 5, 255, 000
2 277, 820 | 4, 135, 790
76, 591 | 7, 514, 000
2 399, 003 | | | Ferro-alloys long tons Gold 4 troy ounces | (ì 2) | (1)
(1 2)
5,712 | (1)
(1 2)
455 | (1)
(1 2)
15, 902 | | | Iron:
Ore— | | 0,.12 | 100 | 10, 302 | | | Sold to furnaces long tons Sold for paint do | | 47, 824 | 3, 040
305 | 6, 080
(1) | | | PigdoSinter from copper sulphide oredo | (1) | (1 2)
(1)
(1) | 10, 760
(1) | (1 2)
(1)
(1) | | | Lime do long tons | 119, 587 | 548, 242 | 122, 818 | 650, 62 5 | | | Mineral waters gallons sold Natural gas M cubic feet | (5) | (5)
8,000 | (5)
12, 000 | (5)
4,000 | | | Ores (crude), etc.: Coppershort tons_ Lead-zincdo | 333, 413
8, 000 | (6)
(6) | 584, 411
20, 000 | (6)
(6) | | | Zincdo
Petroleumbarrels | 644, 820 | (6)
3,000 | 808, 215
10, 000 | (6)
10,000 | | | Phosphate rock long tons Pyrites do | 333, 051 | 1, 366, 015 | 423, 879
(1) | 1, 797, 766 | | | Sand and gravel short tons Silica (quartz) do Silver troy ounces | (1) | 752, 075
(1) | 1, 713, 539 | 1, 115, 891
(1) | | | Stateshort tons | 7 1, 227, 420 | 13, 954
(1)
7 2, 450, 168 | 61, 148 | 39, 530
2, 238
7 2, 396, 510 | | | Sulphuric acid 8 do do Tripoli do | (1 2) | (1 2)
(1) | (1 2)
(1) | (1 2)
(1) | | | Zinedo
Miscellaneous ⁹ | (1) | 11, 446, 272 | (1) | 10, 762, 323 | | | Total value, eliminating duplications | | 16, 785, 481 | | 23, 525, 650 | | ¹ Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Figures obtained through cooperation with Bureau of the Census. 4 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 5 No canvass. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of sandstone in 1933 and of granite in 1934, value for which is included under "Miscellaneous." 8 From copper smelting. 9 Includes minerals indicated by "1" and "7" above. ### Mineral production of Texas, 1933-34 | | 1933 | | 1934 | | |--|-------------------------|---|----------------------------------|---------------------------------| | Product | Quantity | Value | Quantity | Value | | Asphalt (native)short tons_ | 126, 069 | \$353, 847 | (1) | (1) | | Briquets, fueldo
Cementbarrels
Clay: | 3, 091, 071 | 5, 268, 605 | 3, 418, 781 | \$5, 995, 677 | | Products short tons. | 28, 951 | ³ 1, 083, 051
² 207, 817 | 55, 233 | 3 1, 246, 341
2 274, 069 | | Coaldodopounds_ | 821, 878 | 833, 000
128 | 759, 289
29, 000 | 1, 145, 000
2, 320 | | Fuller's earthshort tons_ | 31, 893 | 308, 096
(4) | 32, 763 | 325, 397
(4) | | Gold 5 troy ounces. Gypsum short tons. Holium cubic feet | 112, 106 | 1, 058, 869 | 359
138, 326
(1 6) | 12, 538
1, 403, 454
(1 6) | | Helium cubic feet.
Lead short tons.
Lime do | 3 | (1 6)
222
339, 035 | 360
36, 620 | 26, 603
325, 499 | | Mercuryflasks (76 pounds) | (1) | (1) | (1)
(4) | (1)
(4) | | Mineral watersgallons sold
Natural gasM cubic feet
Natural gasolinegallons | 1266 515 000 | 11 569 000 | 602, 976, 000
466, 570, 000 | 95, 056, 000
12, 366, 000 | | Copper. Short tons. Short tons. Copper. Short tons. Copper. Short tons. Copper. Short tons. Copper. Copp | 45 | (7) | <u>-</u> | (7) | | Dry and siliceous (gold and silver) do | 18 | (7) | 47, 625
54 | (7) | | Petroleum barrels Potassium salts short-tons | | | | 361, 550, 000
(1) | | Saltdododo | 165, 603
4, 317, 312 | 560, 085
2, 264, 905 | 208, 979
4, 572, 594
(1 3) | 612, 586
2, 621, 360 | | Sand and gravel | 160 | (1) 56 | 854, 442 | (1 3)
552, 367
(1) | | Stone do do Sulphur long tons | 1, 244, 730 | 1, 170, 464
27, 139, 482 | 8 2, 749, 270
1, 302, 663 | 8 2, 183, 434
23, 447, 934 | | Miscellaneous 9 | | 381, 900
365, 571, 179 | | 678, 319
509, 521, 280 | 1 Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Figures obtained through cooperation with Bureau of the Census. 4 No canvass. 6 Gold valued at average weighted price (\$34.95 per ounce). 6 For details of production in fiscal years see chapter on Helium in Minerals Yearbook, 1935. 7 Not valued as ore; value of recoverable metal content included under the metals. 8 Exclusive of basalt, value for which is included under "Miscellaneous." 9 Includes minerals indicated by "1" and "8" above. ### Mineral production of Utah, 1933-34 | Product | | 1 | 933 | 1934 | | | |---|-----------------|---|-----------------------|--------------|--------------|--| | Froduct | | Quantity | Value | Quantity | Value | | | Arsenious oxide | short tons_ | 2, 091 | \$112,914 | 7, 829 | \$399, 532 | | | Aspnait (native) | do | 28, 065 | 580, 146 | 30, 399 | 603, 374 | | | Cement | barrels_ | (1) | (1) | (1) | (1) | | | Clay: | | | 1 | 1. " | 1 | | | Products. Raw Coal Coke. Copper Company of the company stores | | | (12) | | 2 250, 209 | | | Kaw | short tons | 16, 152 | ⁸ 141, 673 | 20, 036 | 3 138, 231 | | | J081 | do | 2, 674, 986 | 5, 109, 000 | 2, 406, 183 | 4, 746, 000 | | | Joke | do | 77, 101 | (1 3) | 130, 604 | (1 8) | | | Jopper | pounds | 73, 583, 130 |
4, 709, 320 | 86, 024, 925 | 6, 881, 994 | | | Jems and precious stones | | | .1 . (*) | | (4) | | | 3010 | troy ounces | 109, 130 | 2, 789, 351 | 136, 582 | 4, 773, 524 | | | 3 y psuin | short tons | (1) | (1) | (1) | (1) | | | ron: | | C Y 5, O | | | i '.' | | | Ore— | | • | | | 1 1000 | | | Sold to furnaces | long tons | 95, 129 | (1) | 161,009 | (1) | | | Sold for paint | do | 150 | (1) | 100 | (1) | | | Fig | do | (1 3) | (1 3) | (1 8) | (1.3) | | | LeadLime | short tons | 58, 688 | 4, 342, 933 | 58, 077 | 4, 297, 696 | | | ime | do | 8, 557 | 75, 889 | 9, 611 | 97, 363 | | | Mercury fla
Vatural gas fla | sks (76 pounds) | (1) | (1) | | | | | vaturai gas | M cubic feet | 48, 000 | 13,000 | 182, 000 | 43,000 | | | Ores (crude), etc.: | | | | 2.4 | | | | Copper | short tons | 3, 524, 073 | (6) | 4, 092, 303 | (6) | | | Copper-lead | do | | | 127 | (6) | | | Dry and siliceous (gold and silver | ')do | 150, 007 | (6) | 478, 119 | (6) | | | Lead | ao | 62, 319 | (6) | 67, 634 | (6)
(6) | | | Lead-zinc | do | 380, 489 | (6) | 438, 552 | (6) | | | Zinc | ao | 47 | (6) | | | | | Petroleum | Darreis | (1) | (1) | 4,000 | 4,000 | | | Potassium salts | snort tons | | | (1) | (1) | | | alt
and and gravel | qo | 56, 305 | 141, 330 | (1) | (1) | | | ilver | ao | 1, 552, 690 | 629, 680 | 1, 837, 314 | 1, 494, 700 | | | tone | troy ounces | 5, 669, 197 | 1, 984, 219 | 7, 111, 417 | 4, 597, 280 | | | tone | snort tons | 7 193, 470 | ⁷ 183, 524 | 7 389, 820 | 7 236, 714 | | | ulphur
ulphuric acid ⁸ | long tons | (1) | (1) | | | | | ranium and vanadium ores | snort tons | (ì š) | (ì š) | (1.3) | (1 3) | | | incinc | ao | 5 | (1) | 76 | 2, 828 | | | inc | do | 29, 745 | 2, 498, 546 | 28, 198 | 2, 425, 040 | | | LIGODIANOUUS * | | | 2, 489, 711 | | 4, 338, 985 | | | Total value, eliminating duplication | ations | | 04 170 771 | | 00 505 110 | | | | 3010110 | | 24, 179, 771 | | 32, 527, 119 | | 1 Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 No canyass. 5 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of marble, value for which is included under "Miscellaneous." 8 From copper smelting. 9 Includes minerals indicated by "1" and "7" above. ### Mineral production of Vermont, 1933-34 | Product | 19 | 933 | 1934 | | |---|---|--|---|---| | 1104400 | Quantity | Value | Quantity | Value | | Asbestosshort tonsshort tons | (1) | (1)
(1 2) | (1) | (1) | | Raw Short tons Lime do Mineral waters gallons sold Sand and gravel short tons Scythestones do Slate short tons Talc do Miscellaneous 5 do | (1 3)
28, 509
(4)
335, 763
(1)
186, 930
36, 233 | (1 3)
\$196, 532
(4)
117, 858
(1)
688, 903
4, 312, 441
299, 558
183, 800 | (1 3)
31, 218
(4)
395, 577
(1)
238, 140
34, 243 | (1 2)
(1 3)
\$242, 551
(4)
196, 469
(1)
579, 582
3, 321, 801
313, 346
200, 325 | | Total value, eliminating duplications | | 5, 792, 574 | | 4, 852, 949 | ¹ Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. Value not included in total value for State. Vo canvass. Includes minerals indicated by "1" above. ### Mineral production of Virginia, 1933-34 | | 19 | 33 | 1934 | | | |---|--------------|-----------------------|---------------|-----------------|--| | Product | Quantity | Value | Quantity | Value | | | | | ~ | <i>~</i> | (1) | | | Bariteshort tons_ | (1) | (1) | (1) | (1)
(1) | | | Cementbarrels_ | (1) | (+) | (-) | (•) | | | Clay: | | 2 \$1,089, 297 | | 2 \$1, 255, 579 | | | Products | 4,823 | ³ 18, 145 | 5, 099 | * 33, 892 | | | Rawshort tons_ | 8, 178, 642 | 10, 029, 000 | 9, 376, 681 | 16, 375, 000 | | | Coaldo | 70, 493 | ³ 243, 475 | 77, 960 | 324.063 | | | Coke | 10, 495 | £ 240, 410 | 400 | 324, 000 | | | Coke | 13, 459 | 52, 758 | 12, 140 | 64, 529 | | | reidspar (crude) | (1 3) | (1 3) | (1 8) | (1 3) | | | Ferro-alloys do | 32 | 824 | 667 | 23, 31 | | | chort tons | (1) | (1) | (1) | (1) | | | Gypsumshort tons_ | (-) | (-) | (-) | (-) | | | Iron:
Orelong tons | 287 | 574 | 297 | 594 | | | Pigdo | 3, 092 | (1 3) | 3, 843 | (1 8) | | | Lead short tons | (1), 002 | (1) | (1) | (1) | | | Limedo | | 487, 957 | 94, 041 | 610, 649 | | | Lime tone | 4. 882 | 74, 050 | 1, 597 | 25, 82 | | | Manganese ore long tons Manganiferous ore do | 404 | 2, 032 | 40 | 20, 30 | | | Marl, calcareousshort tons_ | 2, 175 | 3, 706 | 3, 208 | 4, 35 | | | Mica: | 2,110 | 0,100 | 0,200 | -, -, | | | Scrapdo | (1) | (1) | (1) | (1) | | | Sheetpounds_ | | | (1) | 715 | | | Milletones | 1 | 800 | 1 | l às | | | Mineral watersgallons sold_ | (5) | (5) | (5) | (5) | | | Ores (crude), etc.: | 1 | | \ '' | | | | Dry and siliceous (gold and silver)short tons | 10 | (6) | 12,000 | (6) | | | Lead-zincdo | 247, 520 | (6)
(6) | 251, 144 | (6) | | | Phosphate rock long tons | | (1) | (1) | (1) | | | Provide do | (1) | (1) | (1) | (1) | | | Salt short tons | (1) | (1) | (1) | (1) | | | Sand and graveldo | 1, 461, 059 | 1, 168, 234 | 1, 731, 086 | 1, 359, 08 | | | Sand and sandstone (finely ground)do | (1) | (1) | | | | | Silica (quartz) | | | (1) | (1) | | | Silvertroy ounces_ | | | 103 | 6 | | | Clota | 1. | 7 84, 126 | | 7 113, 03 | | | Stone 5 short tons Tale and ground soapstone 8 do | 2,096,750 | 2, 302, 125 | 9 2, 883, 140 | 9 3, 103, 40 | | | Talc and ground soapstone 8dodo | 9,348 | 40,058 | (1) | (1) | | | Titaniim minerals: | | | | | | | Ilmenitedo | (1) | (1) | (1) | (1) | | | Rutiledodo | .] (1) | (1) | (1) | (1) | | | Zincdo | (1) | (1) | (1) | (1) | | | Miscellaneous 10 | . | 4, 087, 099 | | 5, 938, 54 | | | | | · | | | | | Total value, eliminating duplications | . | 18, 845, 740 | | 28, 309, 37 | | | | The state of | the state of the | 1 |] | | ¹ Value included under "Miscellaneous." ¹ Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 5 No canvass. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of granules, etc., value for which is included under "Miscellaneous." 8 Soapstone used as dimension stone included in figures for stone. 9 Exclusive of marble, value for which is included under "Miscellaneous." 10 Includes minerals indicated by "1", "7", and "9" above. ### Mineral production of Washington, 1933-34 | * | 19 | 933 | 1934 | | | |---|---------------|---------------|--------------|----------------------|--| | Product | Quantity | Value | Quantity | Value | | | Asbestos short tons | (1) | (1) | (1) | (1) | | | Briquets, fueldo | (1 2) | (1 2) | (1)
(1 2) | (1 2) | | | lament harrels | 1 (1) | (0) | (1) | (1) | | | Dlay: Productsshort tons Coaldodo | ''' | 1 '' | | | | | Products | | \$ \$533, 822 | | (18) | | | Rawshort tons_ | 6, 101 | 2 7, 913 | 17, 701 | 2 \$14, 36 | | | Coal do do | 1, 394, 068 | 3, 916, 000 | 1, 382, 991 | 4, 002, 00 | | | Cokedo | 32, 196 | 2 144, 170 | 28, 893 | ² 178, 09 | | | Copperpounds_ | 5, 781 | 370 | 13, 900 | 1,11 | | | Diatomiteshort tons | 363 | 5,700 | 456 | 6,00 | | | Fold 4 troy ounces | 4 563 | 116, 622 | 8, 302 | 290, 14 | | | Frindstones and pulpstonesshort tons_ | (1) | (1) | (1) | (1) | | | ron ore long tons | 1.631 | 15 | 1,920 | (1) | | | æad short tons.
Lime do | 840 | 62, 176 | 291 | 21, 50 | | | Limedo | 17, 214 | 170, 281 | 22, 764 | 247, 15 | | | Magnesitedo | (1) | (1) | | (1) | | | Magnesite do do Magnesium sulphate (natural) pounds Mercury flasks (76 pounds). | λί | 15 | (1)
(1) | (1) | | | Mercuryflasks (76 pounds) | (1) | 15 | 330 | 24, 37 | | | Mineral waters gallons sold Natural gas M cubic feet | (5) | (5) | (5) | (5) | | | Natural gas M cubic feet | 1ìó. 500 | 76, 700 | 104,000 | 75,00 | | | | | 1 | 202,000 | ,0,00 | | | Dry and siliceous (gold and silver)short tons | 5, 275 | (6) | 19, 420 | (6) | | | 1.69.0 | 230 | (6) | 160 | 66 | | | Lead-zinc do | 48, 479 | (6)
(6) | 28, 322 | (6)
(6) | | | Platinumtroy ounces | | l | 1 | 3! | | | Platinum troy ounces_
land and gravel short tons_
liver troy ounces_ | 2, 278, 097 | 873, 111 | 3, 311, 009 | 1, 288, 918 | | | Silvertroy ounces | 18, 520 | 6, 482 | 44, 120 | 28, 52 | | | sodium sulphate from natural sourcesshort tons | | | (1) | (1) | | | stonedo | 7 1, 393, 670 | 7 1, 162, 323 | 3, 059, 130 | 2, 796, 23 | | | Palc do | (1) | | 900 | 3, 25 | | | Cungsten ore (60 percent concentrates)do | 43 | (1) | 164 | (1) | | | Tungsten ore (60 percent concentrates)dodo | 3, 369 | 283,003 | 1, 926 | ì65, 654 | | | Miscellaneous 8 | | 2, 218, 672 | 1, 926 | 4, 033, 356 | | | | | | | | | | Total value, eliminating duplications | 1 1 1 1 1 1 1 | 9, 387, 645 | 100 | 12, 946, 751 | | ¹ Value included under "Miscellaneous." 2 Value not included in total value for State. 3 Figures obtained through cooperation with Bureau of the Census. 4 Gold
valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 5 No canvass. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Exclusive of marble, value for which is included under "Miscellaneous." 8 Includes minerals indicated by "1" and "" above. ### Mineral production of West Virginia, 1933-34 | Product | 19 | 933 | 1934 | | | |--|-----------------------------|---------------------------------------|----------------|--------------------|--| | | Quantity | Value | Quantity | Value | | | Briquets, fuelshort tons_ | 57, 723 | 1 \$180, 865 | 94, 745 | 1 \$325, 432 | | | Brominepounds_ | 219, 560 | 31, 784 | 406, 765 | 63, 690
38, 529 | | | Calcium chloride | 3, 272 | 21, 189 | 4, 701 | 38, 529 | | | Cementbarrels_ | (2) | (2) | (2) | (2) | | | Clay: Products Raw short tons | | 3 10, 753, 559 | | 3 13, 065, 783 | | | Pow short tong | 31, 765 | 1 43, 783 | 28, 658 | 1 51, 250 | | | Cool do | 94, 343, 535 | | 98, 134, 393 | | | | Coal do do do | 1. 186, 885 | 1 2, 531, 923 | 1, 515, 432 | 1 4, 201, 663 | | | Ferra-allows long tone | (1 2) | (1 2) | (1 2) | (1 2) | | | Grindstones and pulpstones short tons | 4 753 | 172, 656 | 4, 260 | 208, 174 | | | | (1 2)
4, 753
449, 219 | (1 2) | 445, 688 | (1 2) | | | Lime short tons | 121, 473 | 655, 303 | 143, 071 | 904, 438 | | | | 1 95 | (2) | | | | | Marl, calcareous short tons Mineral waters gallons sold | (2) | (2) | (2) | (2) | | | Mineral watersgallons sold | (4) | (4) | (4) | (4) | | | Natural gasM cubic feet | 100, 653, 000 | | 109, 161, 000 | | | | Natural gasolinegallons | 39, 848, 000 | 1,803,000 | 41, 854, 000 | 1, 706, 000 | | | Petroleum barrels | 3, 815, 000 | 5, 860, 000 | 4, 095, 000 | 8, 600, 000 | | | Saltshort tons_ | 63, 818 | 329, 051 | 66, 766 | 384, 34 | | | Saltshort tons_
Sand and graveldo
Sand and sandstone (finely ground)do | 1, 493, 483 | 1, 529, 031 | | 1, 886, 40 | | | Sand and sandstone (finely ground) | 1 427 000 | 1, 252, 672 | | (2) | | | Stonedo
Sulphuric acid &do | 1, 437, 090 | (1 2) | 2, 106, 130 | 1, 912, 76 | | | Miscellaneous 6 | (, , | 8, 486, 890 | | 10, 419, 50 | | | | | | | | | | Total value, eliminating duplications | | 172, 726, 695 | | 241, 473, 62 | | | The state of s | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4. 1.40 (1.77) | ●ディイティ。 こうべい | | Value not included in total value for State. Value included under "Miscellaneous" Figures obtained through cooperation with Bureau of the Census. No canvass. From zinc smelting. Includes minerals indicated by "2" above. ### Mineral production of Wisconsin, 1933-34 | | saign für er ein ein Die Mag (| | 033 | 1934 | | | |---------------------|--------------------------------|----------------------|------------------------|----------------------|------------------------|--| | | Product | Quantity | Value | Quantity | Value | | | Cement | short tonsbarrels | 275, 758
(²) | 1 \$1, 867, 619
(2) | 329, 942
(²) | 1 \$2, 174, 168
(2) | | | Clay:
Products | | | \$ 906, 019 | | 8 923, 587 | | | Raw | short tonsdo | 60 | 1.60 | | | | | | do | (1 2) | (1 2) | (1 2) | (1 2) | | | | long tons | 613, 011 | 1, 646, 076 | 595, 891
263 | 1, 565, 958 | | | Lead. | short tons | 540 | 39, 960 | 234 | 17, 316 | | | Lime | do | 28, 909 | 220, 465 | 33, 856 | 296, 685 | | | Manganiferous ore | long tons | | | 343 | 1, 029 | | | Mari, calcareous | short tonssallons sold | (4) | (4) | 1, 505
(4) | 1, 906 | | | Ores (crude), etc.: | ganous solu- | (-) | (-) | | (-) | | | Lead-zine | short tons | 256, 400 | (5) | 287, 800 | (5) | | | | do | | | 20, 800 | (5) | | | Pyrites | long tons | (2) | (2) | (2) | (2) | | | | short tons. | 3, 368, 516 | 1, 377, 325 | 4, 773, 302 | 1, 836, 722 | | | Sand and sandstone | (finely ground)do | (2) | (2) | (2) | (2) | | | Silica (quartz) | do | (2) | (2) | 0.070.000 | 9 114 000 | | | Stone | do | 1, 198, 630
(1 2) | 1, 805, 201 | 2, 679, 860
(1 2) | 3, 114, 882
(1 2) | | | Zine | do | | 655, 200 | 9,807 | 843, 402 | | | Miscellaneous 7 | | ., | 3, 804, 303 | 0,00. | 4, 743, 661 | | | | | | | | | | | Total value, e | liminating duplications | | 7, 153, 881 | | 9, 752, 431 | | Value not included in total value for State. Value included under "Miscellaneous." Figures obtained through cooperation with Bureau of the Census. No canvass. Not valued as ore; value of recoverable metal content included under the metals. From zinc smelting. 'Includes minerals indicated by "?" above. ### Mineral production of Wyoming, 1933-34 | The Acres | 19 | 33 | 1934 | | | |--|-----------------|----------------------|---------------|----------------------|--| | Product | Quantity | Value | Quantity | Value | | | Cement barrels | (1) | (1) | (1) | (1) | | | Clay: Products | | (1 2) | | (1 2) | | | Rawshort tons_ | 21, 327 | 3 \$166, 837 | 27, 162 | 3 \$246, 562 | | | Coaldo | 4, 013, 167 | 8, 636, 000 | 4, 367, 961 | 9, 591, 000 | | | Copperpounds_ | | | 3,500 | 280 | | | Gold 4troy ounces | 2, 200 | 56, 231 | 4, 871
(1) | 170, 254 | | | Gypsum short tons-
Iron ore long tons- | (1)
288, 640 | (1) | 116, 562 | (1) | | | Leadshort tons | 200,010 | | 110,002 | 74 | | | Mineral watersgallons sold_ | (5) | (5) | (5) | (5) | | | Natural gas | 25, 830, 000 | 3, 409, 000 | 23, 148, 000 | 3, 446, 000 | | | Natural gasolinegallons | 34, 103, 000 | 1, 387, 000 | 34, 799, 000 | 1, 598, 000 | | | Ores (crude), etc.: | - | | | (4) | | | Coppershort tons_
Dry and siliceous (gold and silver)do | 1 071 | (6) | 8, 164 | 8 | | | Leaddodo | 1, 0/1 | | 6, 104 | 8 | | | Petroleum barrels | 11, 227, 000 | 6, 570, 000 | 12, 556, 000 | 10, 550, 000 | | | Potassium saltsshort tons_ | (1) | (1) | (1) | (1) | | | Sand and graveldo | 1, 358, 510 | 728,836 | 1, 589, 156 | 822, 931 | | | Silvertroy ounces_ | 260 | , 91 | 710 | 459 | | | Sodium sulphate from natural sourcesshort tons | (1) | (1) | (1) | (1) | | | Stonedodo | 364, 270 | 364, 769
873, 466 | 655, 030 | 658, 375
802, 921 | | | MIDOOHGHOOGO | | 010, 200 | | 302, 521 | | | Total value, eliminating duplications | | 22, 025, 393 | | 27, 640, 294 | | ¹ Value included under "Miscellaneous." 2 Figures obtained through cooperation with Bureau of the Census. 3 Value not included in total value for State. 4 Gold valued at average weighted price per ounce, as follows: 1933, \$25.56; 1934, \$34.95. 5 No canvass. 6 Not valued as ore; value of recoverable metal content included under the metals. 7 Includes minerals indicated by "1" above. ### SAND AND GRAVEL #### (DETAILED STATISTICS) By H. H. HUGHES AND M. ALLAN 1 #### SUMMARY OUTLINE | Pa | ige | | Page | |---------------------------|-----|---------------------|------| | Summary | 1 | Glass sand | 8 | | Noncommercial production. | 1 | Molding sand | . 8 | | Production | | Imports and exports | . 8 | The total sand and gravel reported as sold or used by 1,925 commercial producers in the United States in 1934 was 75,322,909 short tons valued at \$48,364,767, increases of 13.9 percent in quantity and 6.7 percent in average value per ton over 1933. In addition, production of sand and gravel from about 400 State, county, and municipal operations was reported to the Bureau of Mines; this material totaled 41,288,780 short tons valued at \$12,882,406, decreases of 0.9 percent in tonnage and 6.1 percent in average value per ton from 1933. The total output of sand and gravel accounted for in the Bureau of Mines canvass was therefore 116,611,689 short tons valued at \$61,247,173. Production by commercial operations was virtually identical with the preliminary figure released early in 1934, but the output by noncommercial operations was greater than preliminary data indicated; consequently, the total sand and gravel production for the year exceeded the preliminary figure by 3 percent. Noncommercial production.—Although a smaller number of schedules
were returned from noncommercial operations in 1934 than in 1933 the output of this material was about the same in the 2 years. The decline in number of returns was due partly to a trend toward consolidating individual county reports with State reports. As in previous years, only a small part (23 percent in 1934) of the sand and gravel produced by noncommercial operations was washed, screened, or otherwise prepared to make it comparable in quality with the output of the average commercial plant. By far the larger part consisted of pit-run material having a low unit value. Additional data regarding the output of noncommercial operations were collected for 1934. Noncommercial production included 20,314,296 short tons valued at \$0.22 a ton produced directly by construction and maintenance crews of States, counties, municipalities, and other Government agencies and 20,974,484 tons valued at \$0.40 a ton produced by contractors expressly for the use of such agencies. Furthermore, 68 percent of the total was reported by State highway officials, 28 percent by counties, 1 percent by municipalities, and 3 percent by other agencies. ¹ Figures on imports and exports compiled by Claude Galiher, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce. #### PRODUCTION Sand and gravel sold or used by producers in the United States, 1930-34 | Year | Sa | nd | Gravel (including railroad ballast) | | To | otal | |--------------------------------------|--|--|---|--|---|---| | | Short tons | Value | Short tons | Value | Short tons | Value | | 1930
1931
1932
1933
1934 | 83, 658, 618
64, 492, 826
42, 794, 875
33, 160, 846
38, 400, 090 | \$49, 721, 553
36, 696, 746
22, 497, 074
19, 676, 672
24, 881, 071 | 113, 393, 108
88, 986, 218
77, 243, 022
74, 594, 503
78, 211, 599 | \$65, 454, 990
49, 583, 574
35, 025, 002
33, 396, 238
36, 366, 102 | 197, 051, 726
153, 479, 044
120, 037, 897
107, 755, 349
116, 611, 689 | \$115, 176, 543
86, 280, 320
57, 522, 076
53, 072, 910
61, 247, 173 | Sand and gravel sold or used by producers in the United States, 1930-34, by commercial and noncommercial operations [Figures for "noncommercial operations" represent tonnages reported by States, counties, municipalities, and other Government agencies, produced either by themselves or by contractors expressly for their consumption, often with publicly owned equipment; they do not include purchases from commercial producers. Figures for "commercial operations" represent tonnages reported by all other producers, including relatively small amounts of railroad ballast and fill produced directly by railroad carriers for their cure real. | | Commercial operations | | Noncomr
operation | | Total accounted for | | |--------------------------------------|--|--|--|---|---|---| | Year | Short tons | Percent
of change
from pre-
ceding
year | Short tons | Percent
of change
from pre-
ceding
year | Short tons | Percent
of change
from pre-
ceding
year | | 1930
1931
1932
1933
1934 | 176, 880, 106
128, 938, 689
85, 289, 076
66, 106, 472
75, 322, 909 | $ \begin{array}{r} -14.2 \\ -27.1 \\ -33.9 \\ -22.5 \\ +13.9 \end{array} $ | 20, 171, 620
24, 540, 355
34, 748, 821
41, 648, 877
2 41, 288, 780 | +23.3
+21.7
+41.6
+19.9
9 | 197, 051, 726
153, 479, 044
120, 037, 897
107, 755, 349
116, 611, 689 | -11. 5
-22. 1
-21. 8
-10. 2
+8. 2 | 1 Part of the apparently large increase in noncommercial production is due to more nearly complete 1 Part of the apparently large increase in noncommercial production is due to more nearly complete reports in the later years. 2 Includes 20,314,296 tons valued at \$0.22 a ton produced directly by construction and maintenance crews of States, counties, municipalities, and other Government agencies and 20,974,484 tons valued at \$0.40 a ton produced by contractors expressly for the use of such agencies. Various agencies reported production as follows: States, 27,950,916 tons valued at \$0.35 per ton; counties, 11,382,718 tons at \$0.18; municipalities, 631,461 tons at \$0.23; and others, 1,323,685 tons at \$0.67. Sand and gravel (prepared or unprepared) sold or used by producers in the United States, 1933-34, by commercial and noncommercial operations | | 1933 | | | 1934 | | | | |---|------------------------------|-----------------------------|---------------------|-----------------------------|-----------------------------|---------------------|--| | | Short tons | Average
value
per ton | Percent
of total | Short tons | Average
value
per ton | Percent
of total | | | Commercial operations: Prepared Unprepared | 58, 413, 222
7, 693, 250 | \$0. 63
. 33 | 88. 4
11. 6 | 66, 865, 755
8, 457, 154 | \$0. 68
. 36 | 88. 8
11. 2 | | | · | 66, 106, 472 | . 60 | 100. 0 | 75, 322, 909 | . 64 | 100. 0 | | | Noncommercial operations: Prepared Unprepared | 13, 645, 409
28, 003, 468 | . 59
. 20 | 32. 8
67. 2 | 9, 411, 195
31, 877, 585 | . 56
. 24 | 22. 8
77. 2 | | | | 41, 648, 877 | . 33 | 100. 0 | 41, 288, 780 | . 31 | 100. 0 | | Sand and gravel sold or used by commercial producers in the United States, 1933-34, by methods of transport 1 | | 1933 | | 1934 | | |--|------------------------------|---------------------|------------------------------|---------------------| | | Short tons | Percent
of total | Short tons | Percent
of total | | Shipped by—
Truck | 18, 077, 954
31, 252, 918 | 31. 7
54.,7 | 21, 447, 749
38, 762, 817 | 31. 7
57. 4 | | Waterway | 7, 772, 634 | 13.6 | 7, 358, 533 | 10.9 | | Percent of total commercial production accounted for | 57, 103, 506
86. 4 | 100. 0 | 67, 569, 099
89. 7 | 100. 0 | ¹ For practical purposes the entire output of noncommercial operations commonly is moved by truck. In cluding noncommercial production, sand and gravel were moved as follows—1933: Truck 60 percent, rail 32 percent, and waterway 8 percent; 1934: Truck 58 percent, rail 35 percent, and waterway 7 percent. Sand and gravel sold or used by producers in the United States, 1933-34, by commercial and noncommercial operations and by uses | | | 1933 | | | 1 | 934 | | | |---|---|---|---|--|---|--|---|---| | | | Valu | е | | Valu | e | Perce | | | | Short
tons | Total | Aver-
age | Short
tons | Total | Aver-
age | Ton-
nage | Aver-
age
value | | COMMERCIAL OPERATIONS | | | | | | | | | | Sand: | | | · · | | | | | | | Glass Molding 1 Building 1 Paving Grinding and polishing Fire or furnace 1 Engine 1 Filter Railroad ballast 3 Other 1 Total sand Gravel: Building Paving Railroad ballast 3 | 1, 718, 251
13, 024, 174
10, 903, 447
572, 735
106, 133
1, 051, 695
24, 387
721, 381
1, 121, 271
31, 024, 897
11, 934, 080
17, 719, 859
4, 928, 031 | 121, 149
623, 285
52, 186
193, 153
502, 036
18, 841, 340
8, 084, 995
10, 403, 150
1, 777, 163 | . 91
. 50
. 51
1. 29
1. 14
. 59
2. 14
. 27
. 45
. 61
. 68
. 59 | 2, 167, 731
14, 534, 565
12, 476, 833
571, 191
137, 000
1, 211, 033
35, 750
607, 380
959, 217
34, 624, 314
14, 244, 016
19, 276, 791
6, 422, 166 | 7, 095, 816
1, 039, 614
169, 424
795, 648
85, 567
166, 918
620, 512
23, 597, 994
9, 834, 381
12, 654, 884
1, 873, 563 | 1. 00
. 56
. 57
1. 82
1. 24
. 66
2. 39
. 27
. 65
. 68
. 69
. 66
. 29 | +26. 2
+11. 6
+14. 4
-29. 1
+15. 2
+46. 6
-15. 8
-14. 5
+11. 6
-19. 4
+8. 8
+30. 3 | +9.9
+12.0
+11.8
+41.1
+8.8
+11.9
+11.7
-44.4
+11.5
+11.5
-19.4 | | Other
4 | 499,605 | | | 755, 622
40, 698, 595 | | . 53 | $\frac{+51.2}{+16.0}$ | | | Total gravel | 35, 081, 575 | | | 75, 322, 909 | | - 64 | +13.9 | | | Total sand and gravel | 66, 106, 472 | 39, 395, 027 | . 60 | 75, 322, 909 | 40, 304, 707 | .01 | 7 10. 0 | 70.7 | | NONCOMMERCIAL OPERATIONS 5 | | | | | | | | | | Sand: Building Paving Total sand | 1, 972, 692 | 751, 201 | . 38 | 334, 946
3, 440, 830
3, 775, 776 | 1, 069, 773 | | +74.4 | -18.4 | | Gravel: Building Paving | | 12, 589, 022 | . 32 | 36, 857, 090 | 11, 157, 491 | . 30 | -5.2 | -6.3 | | Total gravel | | 12, 842, 551 | | | 11, 599, 329 | | -5.1 | | | Total sand and gravel | 41, 648, 877 | 13, 677, 883 | . 33 | 41, 288, 780 | 12, 882, 406 | . 31 | 9 | -6.1 | | COMMERCIAL AND NONCOM-
MERCIAL OPERATIONS | | | | | | | | | | SandGravel | 74, 594, 503 | 19, 676, 672
33, 396, 238 | . 45 | 78, 211, 599 | 24, 881, 071
36, 366, 102 | . 46 | +4.8 | +2.2 | | Grand total | 107, 755, 349 | 53, 072, 910 | . 49 | 116,611,689 | 61, 247, 173 | . 53 | +8.2 | +8.2 | ¹ To avoid disclosing confidential figures for 1933, small amounts of molding, engine, and fire or furnace sands are included with building and "other" sands. 1 Includes some sand used for fills and similar purposes. The quantity of sand reported as used exclusively for railroad ballast in 1933 was 550,484 tons valued at \$180,576 (revised figures) and in 1934, 426,129 tons valued at \$184,459. The figures include sand produced by railroads for their own use as follows—1933: Ballast, 59,164 tons valued at \$7,694, and fills and similar purposes, 170,433 tons valued at \$22,459. 1 Includes some gravel used for fills and similar purposes. The quantity of gravel reported as used exclusively for railroad ballast in 1933 was 4,668,597 tons valued at \$1,747,452 and in 1934, 664,587 tons valued at \$1,804,991. The figures include gravel produced by railroads for their own use as follows—1933: Ballast, 1,232.795 tons valued at \$247,522, and fills and similar purposes, 259,434 tons valued at \$29,711; 1934: Ballast, 2,205,513 tons valued at \$329,218,293, and fills and similar purposes, 757,579 tons valued at \$821,711; 1934: Ballast, 4 May include some gravel used by railroads for fills and miscellaneous purposes. 8 By States, counties, municipalities, and other Government agencies, directly or under lease. # Sand and gravel sold or used by commercial and noncommercial producers in the United States in 1934, by States and uses | State | Gla | iss | Mol | | | | | | | | | | | | | | |--------------------------|---------------|-----------|---------------|-----------|---------------------|---------------------|----------------------|----------------------|--------------|--------------------|---------------|--------------|---------------|------------------|-------|----------| | s | I | | 2,202 | ding | Build | ing 1 | Pavi | ng i | Grind
pol | ling and
ishing | Fir
furi | e or
nace | Eng | gine | Fil | ter | | | Short
tons | Value | Short
tons | Value | Short
tons | Value | Short
tons | Value | Short | Value | Short
tons | Value | Short
tons | *Value | Short | Value | | AlabamaAlaska | | | (2) | (2) | 119, 222 | \$55, 891
(2) | 106, 465 | \$66, 370 | | | 1, 298 | \$259 | (2) | (2) | | | | Arizona | | | | | 1, 207, 579 | 495, 639 | | | | | | | (2) | (2) | | | | Arkansas | | | | | 82, 525 | 53, 673 | 147, 964 | 78, 915 | | | | | 18, 964 | \$10, 265 | (2) | (2) | | California 5 | 58, 584 | \$243,518 | 24, 743 | \$50,865 | 1, 500, 994 | 827, 116 | 900, 857 | 440, 526 | 9,762 | \$28,396 | (2) | (2) | 9,949 | 4, 504 | (2) | (2) | | Colorado | | | (2) | (2)
01 | 76, 084 | 47, 081 | 156, 535 | 40, 829 | (2) | (2)
2, 358 | | | (²)
937 | (2) | | | | Connecticut
Delaware | | | 180 | 91 | 174, 203
16, 304 | 108, 720
11, 642 | 33, 864
38, 298 | 18, 413
22, 000 | 1,056 | | | | (2)
937 | 375
(2) | (2) | (2) | | Florida | | | | | 175, 470 | 100, 825 | 146, 263 | 92, 919 | (2) | (2)
(2) | | | 5, 311 | 1,711 | (-) | (-) | | Georgia
Hawaii | (2) | (2) | (2) | (2) | 79, 973 | 54, 840
(2) | 179, 031 | 101, 311 | 6, 995 | 6, 983 | | | (2) | (²) | 705 | \$4, 281 | | Idaho | | | | | 21, 751 | 10, 378 | 225, 457 | 181, 111 | | | | | 70 | 21 | | | | Illinois 44 | 48,804 | 449, 832 | 347, 078 | 320, 242 | 606, 354 | 302, 558 | 1,014,805 | 419, 832 | 107, 366 | 334, 953 | (2) | (2) | 39,000 | 21, 546 | (2) | (2) | | | (2) | (2) | 127, 761 | 92, 837 | 427, 059 | 191, 960 | 574, 070 | 233, 678 | | | (2)
(2) | (2)
(2) | 46, 185 | 15, 155 | | | | Iowa | | | (2) | (2) | 369, 720 | 169, 441 | 459,031 | 151, 145 | (2) | (2) | | ~ | 25, 143 | 9,716 | 1,951 | 6, 122 | | Kansas
Kentucky | | (2) | 2,805 | 5, 500 | 442, 143
35, 846 | 234, 542 | 319, 051
306, 798 | 148, 989
236, 663 | | | | | 47, 901 | 25, 889 | (2) | (2) | | Louisiana | | | | 0, 000 | 163, 982 | 25, 289
73, 482 | 149, 081 | 64, 207 | (2) | (2) | | | (2)
8, 100 | (2)
2, 494 | | | | Maine | | | | | 19, 305 | 10, 362 | 425, 400 | 32, 948 | (-) | (-) | | | (2) | (2) | | | | Maryland | | | | | 160, 914 | 127, 674 | 648, 600 | 517, 692 | | | | | (2) | (2) | | | | Massachusetts | 366 | 1,098 | (2) | (2) | 499, 408 | 284, 511 | 347,906 | 143, 260 | 153 | 459 | 828 | 1,035 | 56, 368 | 33, 251 | (2) | (2) | | Michigan | (2) | (2) | 552, 544 | 163, 975 | 321, 533 | 119, 612 | 607, 429 | 241, 451 | 58, 520 | 18,070 | (2)
(2) | (2)
(2) | 4, 580 | 2,931 | | | | Minnesota
Mississippi | | | 14, 590 | 18, 005 | 494, 116
18, 053 | 180, 363
7, 896 | 307, 606
100, 992 | 100, 829
43, 608 | (2) | (2) | (2) | (²) | (2) | (2) | (2) | (2) | | Aissouri1 | 145 104 | 193, 265 | 32, 695 | 24, 773 | 467, 542 | 246, 741 | 230, 340 | 139, 413 | (2) | (²) | | | 16,834 | 10, 891 | 100 | 100 | |----------------------|------------|-----------|-------------|------------|-------------------------|---------------------|---------------------|---------------------|------------|-------------|----------|----------|---------------------|------------------|------------|------------| | Montana | | 180, 200 | | 24, 113 | 143, 782 | 69, 225 | 342, 953 | 148, 442 | (4) | (-) | | | (2) | (2) | 100 | 100 | | Vebraska | | | (2) | (2) | 201, 764 | 77, 898 | 174, 372 | 58,742 | | | | | 15, 217 | 4, 195 | (2) | (2) | | Vevada | (2) | (2) | (2) | (2)
(2) | 22, 924 | 14, 769 | 14, 808 | 14, 458 | | | | | 10, 21, | 2, 200 | | | | lew Hampshire | | | | | (2) | (2) | 440, 229 | 50, 030 | | | | | | | | | | lew Jersey | 115, 990 | 194, 488 | 275, 778 | 354, 632 | 720, 857 | 366, 081 | 461, 793 | 239, 538 | 12,054 | 29, 953 | 18, 576 | 24, 188 | 30, 723 | 13, 659 | 10, 148 | 29, 550 | | lew Mexico | | | | | 32, 860 | 44, 844 | (2) | (2) | | | | | (2) | (2) | | | | ew York | | | 198,800 | 307, 169 | 2, 238, 466 | 1, 380, 958 | 1, 230, 234 | 748, 603 | (2) | (2)
(2) | (2) | (2) | 49, 120 | 27, 563 | (2)
(2) | (2)
(2) | | orth Carolina | | | | | 35, 001 | 11, 196 | 78, 938 | 28, 401 | (2) | (2) | | | (2) | (2) | . (2) | (2) | | orth Dakota | | | | | 8, 241 | 3, 734 | 47, 297 | 3, 126 | | | | | | | | | | hio | (2)
(2) | (2) | 257, 300 | 394, 799 | 587, 642 | 394, 881 | 1,067,593 | 741, 022 | (2)
(2) | (2)
(2) | 29, 984 | 61, 909 | 46, 689 | 40, 590 | 2,876 | 8, 437 | | klahoma | | (2) | | | 102, 392 | 46, 613 | 156, 403 | 76, 615 | (2) | (2) | | | 19,899 | 9, 831 | (2) | (2) | | regon
ennsylvania | | 734, 965 | 188, 593 | 281, 262 | 140, 546
1, 026, 637 | 96, 349
777, 867 | 49, 221
850, 546 | 28, 915
685, 120 | 194, 682 | 237, 022 | 33, 502 | 47, 534 | 16, 120
218, 740 | 4,072
232,901 | 7, 199 | 8, 739 | | hode Island | 980, 400 | 104, 800 | (2) | (2) | 8, 488 | 1,655 | 88, 447 | 8, 079 | | 201,022 | 33, 002 | 47,004 | 210, 740 | 202, 901 | 1, 100 | 0, 100 | | outh Carolina | (2) | (2) | 1 '' | | 28, 221 | 8, 288 | 51, 533 | 21, 456 | (2) | (2) | | | (2) | (2) | | | | outh Dakota | | | | | 45, 558 | 24, 996 | 837, 720 | 301, 317 | (-) | (-) | | | (2)
(2) | (2)
(2) | | | | ennessee | | | 23, 513 | 31, 077 | 207, 842 | 160, 452 | 333, 011 | 229, 884 | 4, 500 | 5, 600 | | | 48,746 | 33, 732 | | | | 'exas | (2) | (2) | (2) | (2) | 607, 596 | 432, 087 | 411, 859 | 254, 827 | (2) | (2) | | | 25, 962 | 12,654 | | | | tah | | | l | | 30, 345 | 21, 358 | 92, 020 | 94, 559 | | | | | 21, 355 | 7, 943 | 471 | 471 | | ermont | | | | | (2) | (2) | 10, 457 | 8, 423 | (2) | (2) | | | (2)
(2)
(2) | (2) | | | | irginia | | (3) | 6, 382 | 7, 406 | 278, 415 | 176, 060 | 390, 886 | 270, 067 | | | (3) | (2) | (2) | (2) | | | | Vashington | | | (2) | (2) | 201, 064 | 108, 240 | 451, 246 | 203, 309 | | : | | | | (2) | | | | Vest Virginia | 424, 651 | 784, 308 | (2) | (2) | 180, 739 | 162, 016 | 269, 958 | 200, 940 | 8,604 | 17, 718 | (2) | (2) | 201, 037 | 160, 709 | (2)
(2) | (2)
(2) | | Visconsin | | | 42, 396 | 26, 085 | 505, 913 | 200, 550 | 567, 794 | 220, 999 | 24,094 | 48, 297 | | | 18, 723 | 5, 329 | (2) | (2) | | Vyoming | | | | | 17, 564 | 11,370 | (2) | (2) | 122-125- | | | -57-755- | | | | | | Indistributed 8 | 334, 649 | 725, 064 | 72, 567 | 90, 536 | 16, 574 | 10, 284 | 72, 502 | 12,608 | 143, 405 | 309, 805 | 52, 812 | 34, 499 | 221, 360 | 103, 721 | 12, 300 | 27, 867 | | | 1 022 614 | 2 226 528 | 2, 167, 731 | 2 160 254 | 14, 869, 511 | 8 242 007 | 15 017 662 | 8, 165, 589 | 571, 191 | 1, 039, 614 | 137, 000 | 169, 424 | 1, 211, 033 | 795, 648 | 35, 750 | 85, 567 | | verage value | | | | 1.00 | ' ' | | | | 011, 191 | 1.82 | 107,000 | 1. 24 | 1, 211, 000 | 0.66 | 00, 700 | 2. 39 | | LVOLAGO VALUE | | 1.70 | | 1.00 | | 0.00 | | 0.51 | | 1.02 | | 1.24 | | 0.00 | | 2.00 | Footnotes at end of table. Sand and gravel sold or used by commercial and noncommercial producers in the United States in 1934, by States and uses-Continued | | | Sand-C | ontinued | | | | | Grave | 1 | | | | Total sa | nd and | |---
---------------|-------------|--------------------|----------------------|------------------------|------------------------|----------------------------|-------------------------------------|----------------------|------------------------|---------------------|--------------------|----------------------------|----------------------------| | State | Railroad | l ballast 4 | Ot | her | Buile | ling 1 | Pav | ring 1 | Railroad | l ballast ⁵ | Otl | her ⁶ | grav | el 1 | | | Short
tons | Value | Short
tons | Value | Short tons | Value | Short tons | Value | Short tons | Value | Short
tons | Value | Short tons | Value | | Alabama | - | | | | 111, 912 | \$71,630 | 235, 734 | \$131,552 | (2) | (2) | 22, 964 | \$9, 186 | 660, 633 | \$348,978 | | Alaska
Arizona | - | | | | | | (2) | (2) | | | | | (2) | (2) | | Arkansas | (2) | (2) | | | 2, 608, 839
31, 564 | 1, 048, 868
22, 171 | 325, 982
696, 685 | 185, 237 | (2) | (2) | | | 4, 152, 689 | 1, 730, 874 | | Arkansas
California
Colorado
Connecticut
Delaware | 6, 914 | 00 007 | 53, 280
42, 360 | \$28, 158
36, 910 | 1, 474, 323
67, 186 | 1, 079, 945
61, 903 | 2, 585, 265
1, 009, 134 | 332, 612
1, 358, 245
482, 603 | 131, 461
148, 902 | \$60, 704
39, 388 | 31, 144 | (2)
30, 727 | 1, 122, 099
6, 811, 109 | 565, 190
4, 147, 509 | | Connecticut | (2) | (2) | 225 | 90 | 46, 740 | 45, 760 | 52, 146 | 9, 849 | (2) | (2)
(2) | (2) | (2)
(2) | 1, 367, 187
326, 218 | 684, 650
193, 937 | | Delaware | | | (2) | (2) | (2) | (2) | 84 | 40 | | | | () | 84, 820 | 52, 625 | | Florida
Georgia | | | | | (2) | (2)
(2) | (2)
(2)
(2) | (2)
(2)
(2) | | | | | 402, 981 | 269, 938 | | Hawaii | | | (3) | (2) | (2) | (2) | (2) | (2) | | | (2) | (2) | 325, 526 | 229, 849 | | Idaho | (2) | (2) | | i | 25, 081 | 6, 542 | 310, 976 | (2) | | | | | (2) | (2) | | Illinois | 161 248 | 65, 774 | 112,857 | 112, 959 | 602, 212 | 315, 864 | 2, 265, 690 | 38, 031
872, 444 | (2)
291, 166 | (²)
62, 193 | 107.050 | | 632, 485 | 237, 896 | | Indiana | 19 069 | 1, 951 | 78, 379 | 27, 515 | 341, 514 | 232, 303 | 1, 407, 583 | 672, 577 | 819, 963 | 362, 667 | 167, 250
80, 454 | 82, 777
44, 747 | 6, 174, 202
3, 957, 548 | 3, 373, 690 | | Iowa | 17, 318 | 3, 944 | 18, 880 | 7, 412 | 266, 272 | 216, 733 | 3, 011, 978 | 776, 670 | (2) | (2) | 35, 286 | 17, 399 | 4, 348, 862 | 1, 890, 185
1, 393, 800 | | Iowa
Kansas | 7,370 | 1,025 | 16 565 | 7, 356 | 88, 739 | 49, 511 | 759, 373 | 229, 730 | | (-) | (2) | (2) | 1, 681, 619 | 698, 461 | | Kentucky
Louisiana | | | | | 25, 219 | 21,058 | 598, 268 | 394, 072 | 57, 773 | 21,002 | (9) | () | 1,069,656 | 789, 748 | | Louisiana | | | | | 203, 922 | 151, 977 | 434, 865 | 311, 896 | 129, 954 | 42, 492 | (2) | (2) | 1,090,331 | 646, 883 | | Maine Maryland Massachusetts Michigan Minnesota | | | (2)
(2) | (2)
(2) | 24, 175 | 21,879 | 1,411,904 | 132, 629 | (2) | (2) | (2)
(2) | (2)
(2) | 2,030,222 | 238, 761 | | Massachusetts | | | (2)
8,394 | (2) | 217, 245 | 252, 173 | 637, 771 | 779, 788 | | | | | 1,693,112 | 1, 708, 519 | | Michigan | (2) | (2) | 8, 394
76, 916 | 4, 266
22, 715 | 400, 977 | 338, 248 | 588, 798 | 254, 314 | (2) | (2) | 59, 965 | 13, 052 | 2, 033, 201 | 1, 109, 066 | | Minnesota | 1 2 | (2) | 12, 836 | 4,740 | 348, 766
506, 910 | 207, 435 | 3, 120, 710 | 1, 122, 246 | 212, 769 | 88, 746 | 19, 205 | 10, 098 | 5, 432, 071 | 2, 197, 838 | | Mississippi | 1.517 | 455 | 12,000 | 4, 740 | 62, 319 | 498, 816
34, 594 | 3, 535, 887
403, 952 | 1, 214, 525 | 314, 348 | 37, 796 | (2) | (2) | 5, 217, 775 | 2,064,876 | | Mississippi
Missouri | (2) | (2) | 40, 951 | 20, 421 | 337, 385 | 173, 667 | 986, 569 | 245, 680
550, 146 | 89, 495
85, 682 | 17, 032 | (2) | (2) | 677, 828 | 349, 800 | | Montana | (2) | 25 | 10,001 | . 20, 121 | 242, 107 | 167, 536 | 3, 601, 179 | 1, 431, 527 | 839, 286 | 47, 078
213, 394 | 5, 314
83, 008 | 1, 916
41, 504 | 2, 381, 453 | 1, 462, 740 | | Nebraska | . (2) | (2)
(2) | 12, 027 | 2, 117 | 262, 950 | 122, 376 | 732, 274 | 317. 571 | (2) | (2) | 83,008 | 41,504 | 5, 257, 164 | 2, 073, 513 | | Nevada | 1 | ''' | (2) | (2) | 17, 249 | 24, 135 | 1, 308, 579 | 525, 607 | 6, 337 | 796 | | | 1, 433, 407
1, 377, 496 | 591, 513
597, 453 | | New Hampshire New Jersey New Mexico | . | | | | 25, 024 | 25, 020 | 2, 332, 243 | 219, 118 | (2) | (2) | | | 2, 810, 674 | 300, 213 | | New Jersey | | | 27, 890 | 20, 822 | 409, 878 | 334, 465 | 201, 641 | 134, 665 | 22, 798 | 8, 527 | 4, 668 | 5, 725 | 2, 312, 794 | 1, 756, 293 | | New Mexico | | | | | 63, 877 | 81, 759 | 35, 886 | 46, 082 | (2) | (2) | , 000 | 5,120 | 161, 325 | 190, 879 | | New York
North Carolina | · (²) | (²) | 113, 599 | 57, 599 | 1, 836, 533 | 1, 428, 239 | 1, 760, 088 | 933, 088 | 2, 184 | ` 433 | 98, 091 | 64, 421 | 7, 619, 456 | 4, 964, 440 | | North Carolina | | | (2) | (2) | 57, 072 | 61, 918 | 88, 198 | 77, 579 | 20, 386 | 13, 167 | (2) | (2) | 338, 381 | 225, 588 | | THULLII D'AKULA | '' | ' | | | (2) | (2) | 1, 229, 375 | 98, 449 | (2) | (²) | | | 1,605,382 | 130, 813 | | OhioOklahomaOregonPennsylvania. | 1, 710 | (3)
427
(1) | 34, 446
2, 667
3, 638
111, 568 | 37, 093
1, 068
898
121, 336 | 525, 690
34, 125
214, 893
792, 717 | 368, 757
18, 200
129, 667
631, 557 | 1, 893, 852
368, 123
1, 145, 479
2, 131, 272 | 1, 269, 735
161, 935
544, 251
1, 299, 763 | 552, 208
2, 207
41 265
(2) | 250, 335
1, 019
14, 998
(2) | 21, 574
(2)
1, 350
16, 643 | 19, 801
(³)
500
5, 290 | 5, 257, 514
703, 789
1, 617, 222
5, 970, 517 | 4, 134, 006
343, 704
820, 077
5, 064, 807 | |---------------------------------------|----------|-------------------|---|--------------------------------------|---|---|---|--|-------------------------------------|--------------------------------------|-------------------------------------|---------------------------------|---|--| | Rhode Island | | | 786 | 330 | 3, 293 | 1, 205 | 310, 397 | 32, 522 | | | (2) | (3) | 423, 624 | 69, 149 | | South CarolinaSouth Dakota | 18, 000 | (³)
4, 080 | (2)
3, 075 | (2)
1, 523 | (2)
27, 379 | 20, 758 | 2, 886, 727 | (2)
412, 850 | (2)
42, 046 | (2)
7, 365 | (2) | (3) | 144, 953
3, 863, 410 | 90, 871
773, 559 | | Tennessee | 126, 999 | (2)
30, 639 | (2)
11, 692 | (2)
3, 809 | 140, 617
795, 081 | 112, 232
703, 408 | 833, 180
1, 811, 980 | 493, 537
866, 075 | 117, 633
759, 277 | 40, 853
295, 242 | (2)
13, 115 | (2)
8, 602 | 1, 713, 539
4, 572, 594 | 1, 115, 891
2, 621, 360 | | Utah
Vermont | | | 26, 228 | 5, 171 | 41, 850
4, 453 | 29, 539
4, 201 | 1, 603, 479
356, 266 | 1, 333, 297
160, 432 | 21, 566 | 2, 362 | | | 1, 837, 314
395, 577 | 1, 494, 700
196, 469 | | Virginia
Washington | (2) | (2) | (2)
5, 608 | (2)
3, 140 | 377, 992
327, 845 | 387, 144
177, 092 | 512, 055
2, 012, 131 | 399, 026
760, 621 | 22, 320
281, 332 | 13, 723
25, 214 | 10, 402 | 6, 541 | 1, 731, 086
3, 311, 009 | 1, 359, 081
1, 288, 918 | | West Virginia | (2) | (2) | 26, 545 | (2)
4, 640 | 286, 917
501, 066 | 168, 246
297, 489 | 449, 393
2, 658, 281 | 361, 681
954, 537 | (2)
357, 784
311, 390 | (2)
48, 816
56, 296 | 61, 775 | 21, 850
(²) | 1, 836, 495
4, 773, 302 | 1, 886, 405
1, 836, 722
822, 931 | | Wyoming
Undistributed ⁸ | 252, 341 | 54, 956 | 117, 805 | 88, 424 | 39, 236
80, 786 | 33, 819
96, 380 | 1, 216, 873
275, 576 | 717, 384
166, 157 | 737, 634 | 101, 925 | (2)
23, 414 | 19, 809 | 1, 589, 156
280, 882 | 112, 005 | | Average value | 607, 380 | 166, 918
0. 27 | 959, 217 | 620, 512
0. 65 | 14, 899, 930 | 1 7 66 | 56, 133, 881 | 23, 812, 375
0. 42 | 6, 422, 166 | 1, 873, 563
0. 29 | 755, 622 | 403, 945
0. 53 | 116, 611, 689 | 61, 247, 173
0. 53 | Includes under "Undistributed." Included under "Undistributed." Includes items entered as "(*)" and such output as could not be allocated to State of origin. Includes items entered as "(*)" and such output as could not be allocated to State of origin. Includes some sand used for fills and similar purposes. The quantity of sand reported as used exclusively for ballast was 426,129 tons valued at \$138,459. The figures include sand produced by railroads for their own use as follows: Ballast, 59,164 tons valued at \$8,194; fills and similar purposes, 181,251 tons valued at \$28,459. Includes some gravel used for fills and similar purposes. The quantity of gravel reported as used exclusively for ballast was 5,664,587 tons valued at \$1,804,991. The figures finclude gravel produced by railroads for their own use as follows: Ballast, 2,205,513 tons valued at \$321,892; fills and similar urposes, 757,579 tons valued at \$68,572. May include some gravel used by railroads for fills and miscellaneous purposes. ### GLASS SAND Glass sand sold or used by producers in the United States, 1930-34 | Year | Short tons | Val | ue | | | Value | | | | |----------------------|---|---|---------------------------|--------------|----------------------------|------------------------------|------------------|--|--| | 1001 | Short tons | Total | Average | Year | Short tons | Total | Average | | | | 1930
1931
1932 | 1, 849, 101
1, 677, 882
1, 370, 255 | \$3, 210, 973
2, 779, 245
2, 266, 564 | \$1. 74
1. 66
1. 65 | 1933
1934 | 1, 781, 423
1, 923,
614 | \$3, 011, 023
3, 326, 538 | \$1. 69
1. 73 | | | ### MOLDING SAND Molding sand sold or used by producers in the United States, 1930-34 | Year | Short tons | Val | lue | Year | Obt t | Value | | | |----------------------|---|---|----------------------|----------------|----------------------------|------------------------------|------------------|--| | | Short tons | Total | Average | i ear | Short tons | Total | Average | | | 1930
1931
1932 | 3, 336, 855
2, 138, 305
1, 118, 146 | \$3, 547, 154
2, 122, 049
1, 051, 702 | \$1.06
.99
.94 | 1933 ¹
1934 | 1, 718, 251
2, 167, 731 | \$1, 558, 738
2, 169, 254 | \$0. 91
1. 00 | | ¹ Exclusive of small quantity included with building sand to avoid disclosing confidential figures. ### IMPORTS AND EXPORTS Sand and gravel imported for consumption in the United States, 1930-34 | Year | Short tons | Value | Year | Short tons | Value | |--------------|----------------------|----------------------|------|------------|------------| | 1930
1931 | 1, 832, 850 | \$719, 345 | 1933 | 120, 566 | \$109, 544 | | 1932 | 420, 721
212, 458 | 303, 901
164, 461 | 1934 | 135, 290 | 98, 015 | # Sand and gravel imported for consumption in the United States, 1932-34, by classes | Class | 193 | 2 | 193 | 3 | 1934 | | | |--|--|---|---|--|---|--|--| | Class | Short tons | Value | Short tons | Value | Short tons | Value | | | Glass sand ¹
Other sand ²
Gravel | 26, 574
140, 793
45, 091
212, 458 | \$51, 016
94, 728
18, 717
164, 461 | 26, 275
61, 597
32, 694
120, 566 | \$57, 682
42, 155
9, 707
109, 544 | 24, 516
36, 016
74, 758
135, 290 | \$46, 094
33, 635
18, 286
98, 015 | | Classification reads "Sand containing 95 percent silica and not more than 0.6 percent oxide of iron and suitable for manufacture of glass." Classification reads "Sand, n. s. p. f." # Sand and gravel imported into the United States, 1932-34, by countries | | 193 | 32 | 193 | 3 | 193 | 4 | |---------------------------------------|---------------|-------------------|----------------------|-------------------------|----------------------|----------------------------| | Country | Short tons | Value | Short tons | Value | Short tons | Value | | North America:
Canada | 166, 768 | \$65, 447 | 85, 728 | \$27, 244 | 107, 451 | \$29, 324 | | Mexico
Nicaragua | 28
2 | 60
8 | 88 | 95 | 90 | 80 | | Europe: BelgiumCzechoslovakia | 35, 238 | 77, 249 | 26, 446
2 | 58, 180
3 | 24, 538 | 46, 279 | | France
Germany
Irish Free State | 9, 538
294 | 18, 417
2, 103 | 4, 462
393
728 | 8, 157
5, 123
650 | 241
432 | 2, 301
6, 078 | | Netherlands | 57
11 | 602
50 | 238
2, 464
16 | 2, 937
6, 869
272 | 241
672
1, 624 | 2, 904
1, 368
9, 644 | | Asia: ChinaJapan | 522 | 525 | | | <u>-</u> - | 37 | | Oceania: Australia | | | 1 | 14 | | | | | 212, 458 | 164, 461 | 120, 566 | 109, 544 | 135, 290 | 98, 015 | # Sand and gravel exported from the United States, 1930-34 | Year | Short tons | Value | Year | Short tons | Value | |------|---------------------------------|------------------------------------|--------------|--------------------|----------------------| | 1930 | 323, 090
217, 870
96, 015 | \$570, 107
418, 441
211, 558 | 1933
1934 | 82, 453
33, 550 | \$54, 557
41, 649 | | | L'Argi | | e
age | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | gradient de la gradie | |----------------------|-------------------|--------------|---|---------------------------------------|---|--| | | | | | | ing
Taganan sa | | | | The second second | | Shut Nicht | | | | | kantes
G | interior | 12 339
20 | 13 | | estadi
eg | | | | Areas es so | | nes jek | (48) - t | 355.75 | | | | | | 10 to | | | State of the | | tai
Marian | | g-8 | | | | 444
4444
4444
4444
4444
4444
4444
4444 | | Marie Marie
Santa | 188 30 | 665,271 | rast Mit. | State Silve | - Kir 3 15 | | And the second s | 110,14 | 1941 1 46 58 | | | |--------|---------------------
---|--| | | | gradiente en la seu de la la la la la gradiente de la gradiente de la gradiente de la gradiente de la gradient
La la la gradiente de desta de la gradiente de la gradiente de la gradiente de la gradiente desta de la gradiente desta de la gradiente de la gradiente de la gradiente de la gradiente desta de la gradiente desta de la gradiente gradient | | | | 450.35 | [14] 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - | | ### LIME ### (DETAILED STATISTICS) By A. T. Coons ### SUMMARY OUTLINE | 100 | 1.11 · · · · · · · · · · · · · · · · · · | 1.111.11 | Page | | | | | age | |------------------------------|--|-------------|----------|---------|-------|-------------|--|-----| | Production | | | 11 | Foreign | trade |
 | | 16 | | Ohio buildin
Miscellaneou | g lime
s chemical | lime | 14
14 | Shipmer | nts |
 | | 18 | | Agricultural | lime and | other limin | | | | Jan West 18 | - 1911 (j. 1944)
Parada Paga Saja Saj | ė . | | terials
Hydrated lir | ne | | 15
15 | | | | arris Galler | | | 11 J 424004 111 | | | | | | | | | ### PRODUCTION ### Lime sold or used by producers in the United States, 1930-34 | Year of plants in operation Total | in opera- | |-----------------------------------|----------------| | | Total Inverage | | | | | 1932 | 343 | ¹ Value given represents value of bulk lime f. o. b. at point of shipment and does not include cost of barrel or package. ² Includes 129,290 tons, valued at \$671,864, used by producers (captive tonnage). Comparable separate figures for earlier years not recorded. ### Lime sold or used by producers in the United States in 1934, by States | State | Number
of plants
in opera-
tion | Short
tons | Value | State | Number
of plants
in opera-
tion | Short
tons | Value | |---|---|--|---|------------|--|---|--| | Alabama Arizona Arkansas California Colorado Connecticut Florida Georgia Hawaii Idaho Illinois Indiana Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Missouri Montana Nevada | 4
28
4
1
3
1
1
2
6
8
1
1
2
1
3
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1 | 123, 881
16, 003
(1)
34, 733
3, 712
(1)
14, 207
2, 664
6, 653
(1)
(2)
(1)
(2)
(2)
(1)
(2)
(2)
(2)
(1)
(2)
(2)
(1)
(2)
(2)
(1)
(2)
(1)
(2)
(1)
(2)
(1)
(2)
(1)
(2)
(1)
(1)
(2)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1 | \$746, 232
163, 748
(1)
342, 621
37, 506
(1)
121, 247
21, 674
63, 224
(1)
655, 359
443, 398
(1)
(1)
(1)
(1)
191, 071
452, 494
240, 181
(1)
1, 538, 900
(1) | New Jersey | 2
10
1
24
2
94
6
1
2
9
8
8
9
6
28
5
11 | 720
(1)
36, 050
(1)
562, 041
(1)
434, 519
6, 255
1, 884
(1)
122, 818
36, 620
9, 611
31, 218
94, 041
22, 764
143, 071
33, 856
115, 316 | \$6, 090 (1) 300, 328 (1) 4, 282, 510 (2) 3, 165, 539 61, 868 18, 752 (1) 650, 625 325, 499 97, 363 242, 551 610, 649 247, 151 904, 438 296, 685 936, 321 17, 164, 024 | ¹ Included under "Undistributed." Lime sold or used by producers in the United States in 1934, by uses | | Qua | antity | Value | | | |---|---------------------------------|---|---|-------------------------------------|--| | Use | Percent of total | Short tons | Total | Average | | | AgriculturalBuilding | 9. 3
21. 3 | 222, 077
511, 419 | \$1, 478, 128
4, 260, 865 | \$6. 66-
8. 33- | | | Chemical: Glass works Metallurgy Paper mills Refractory lime (dead-burned dolomite) | 3. 2
13. 9
12. 3
13. 5 | 76, 232
334, 406
293, 798
324, 868 | 507, 031
2, 003, 788
1, 899, 053
2, 698, 414 | 6. 65-
5. 99-
6. 46-
8. 31 | | | Sugar refineries. Tanneries. Water purification. Other uses 1. | 2. 6
7. 7
15. 3 | 20, 528
62, 745
183, 581
367, 433 | 183, 098
484, 410
1, 229, 435
2, 419, 802 | 8. 92
7. 72
6. 70
6. 59 | | | Total chemical | 69. 4 | 1, 663, 591 | 11, 425, 031 | 6. 87 | | | Hydrated lime (included in above totals) | 100.0
34.6 | ² 2, 397, 087
829, 430 | ³ 17, 164, 024
6, 324, 623 | 7.16
7.63 | | $^{^1}$ Details of distribution shown in last table on p. 14. 2 Includes 129,290 tons, valued at \$671,864, used by producers (captive tonnage). # Lime sold or used by producers in the United States in 1934, by States and uses | | Bui | ilding | Agric | ultural | | | | | | Ch | emical | | | | | | To | tal | |-----------------------------|-------------------|---------------------|----------------|---------------------|---------------|------------|----------------|--------------|---------------|------------|---------------|----------------|------------------|--------------------|--------------------|----------------------|---------------------|----------------------| | State | Short | | Short | - | Glass | works | Pape | r mills | Sugar r | efineries | Tan | neries | Meta | llurgy | Other | chemical | ~. | | | | tons | Value | tons | Value | Short
tons | Value | Short
tons | Value | Short | Value | Short
tons | Value | Short
tons | Value | Short | Value | Short
tons | Value | | Alabama | 23, 201 | \$169, 891 | 27 | \$149 | | | 30, 343 | \$173, 182 | 2, 744 | \$16, 301 | 183 | \$1, 251 | 41, 824 | \$231, 958 | 25, 559 | \$153, 500 | 123, 881 | \$746, 232 | | Arizona
Arkansas | 6, 366 | 62, 686 | | | | | | | | | (1) | (1) | 5, 370 | 44, 614 | (1) | (1) | 16,003 | 163, 748 | | California | 12, 595 | | 1,617 | 14, 717 | | | (1)
3, 253 | (1) | (1)
1, 147 | (1) | | | | | (1) | (1) | (1) | (1) | | Colorado | 1, 180 | | 1,017 | 14, 111 | | | 0, 200 | 29, 244 | 1, 147 | 9, 917 | 267 | 2,865 | 6, 138
2, 198 | 63, 313
23, 049 | | | 34, 733 | 342, 621
37, 506 | | Connecticut | (1) | (1) | (1)
2, 580 | (1) | | | (1) | (1) | | | | | 2, 190 | 20, 049 | (1) | (1) | 3, 712 | (1) | | Florida | 4, 895 | | 2, 580 | 21, 296 | | | | | 818 | 6,808 | | | | | 5, 914 | | 14, 207 | 121, 247 | | Georgia | 2,664 | | | | | | | | | | | | | | | | 2,664 | 21, 674 | | Idaho | (1) | 3, 452 | 50 | 174 | | | | | 5, 676 | 59, 598 | | | | | | | 6, 053 | | | Illinois | 14, 113 | 120, 079 | (1) | (1) | 71 | (1) | 3,
121 | 20, 427 | | | | | | | | | (1) | (1) | | Indiana | 4, 740 | 34, 104 | ì, 709 | 12, 276 | 13 | (1) | 11, 329 | 65, 395 | (1) | (1) | (1)
2, 907 | (1)
19, 928 | (¹)
6, 377 | (¹)
35, 413 | 38, 639
45, 502 | 300, 318
275, 988 | 86, 679
72, 606 | 655, 359
443, 398 | | Kentucky | (i) | (4) | (1) | (1) | | | | | | | 2,001 | 10, 020 | 0,011 | 00, 410 | (1) | (1) | (1) | (1) | | Louisiana | (1) | (2) | | | | | (1) | (1) | (1) | (1) | | | | | (1) | 1 25 | (1) | (1) | | Maine
Maryland | 83 | | (1)
26, 287 | (1) | | | (1) | (1) | | | (1) | (1) | | | (1) | (1) | (1) | (1) | | Massachusetts | 29, 822 | | 4, 136 | 176, 740
31, 374 | | | 3, 616 | 29, 227 | (1) | | 3, 068 | 23, 587 | | | (1) | (1) | 28, 167 | 191, 071 | | Michigan | (1) | (1) | (1) | (1) | | | | (1) | (1) | (1)
(1) | (1) | (1) | (1) | (1) | 11, 399
5, 246 | 88, 082
34, 573 | 52, 518
32, 844 | 452, 494
240, 181 | | Minnesota | | (1) | | | | | | (1) | (7) | (-)- | (i) | 3 | (1) | (1) | (1) | (1) | (1) | (1) | | Missouri | 32, 944 | | 1,657 | 11, 279 | 787 | \$4, 488 | 39, 121 | 220, 812 | 635 | 4, 152 | 2, 367 | 14, 333 | 24, 898 | 116, 727 | 169, 827 | 916, 505 | | 1. 538, 900 | | Montana | (i)
(1) | 300 | | | | | | | | | | | (1) \ | (1) | | | (1) | (1) | | Nevada
New Jersey | 720 | (1)
6, 090 | (1) | (1) | | | | | | | | 4 | (1) | (1) | (1) | (1) | (1) | (1) | | New Mexico | (i) 120 | 1 75 000 | | | | | | | | | | | | | | | 720 | | | New York | 3, 822 | | 4, 896 | 35, 470 | | | 4, 517 | 41, 110 | 125 | 967 | 2,982 | 26, 291 | 11, 828 | 96, 743 | (¹)
7, 880 | (1)
67, 537 | (1) | (1) | | North Carolina | (i) | (1) | (i) | (1) | | v i | 2,01. | 11, 110 | 120 | ,001 | 2, 502 | 20, 281 | 11,020 | 80, 745 | 7,000 | 07, 557 | 36, 050 | 300, 328 | | Ohio | 185, 660 | 1, 489, 670 | 32, 219 | 198, 706 | 71, 501 | 476, 294 | (1) | (1) | | | (1) | (1) | 48, 372 | 267, 359 | 197, 045 | 1, 684, 913 | | 4, 282, 510 | | Oregon | (1) | (1) | | ===== | | | | | | | | | | | | | (1) | (1) | | Pennsylvania
Puerto Rico | 39, 822 | 324, 775 | 110, 151 | 755, 164 | (1) | (1) | 35, 574 | 268, 736 | (1) | (1) | 28, 785 | 237, 496 | 67, 608 | 407, 298 | 152, 288 | 1, 169, 697 | 434, 519 | 3, 165, 539 | | Rhode Island | (1)
614 | (1)
7, 992 | 1, 056 | (1)
7, 857 | | | | | 6, 017 | 59, 798 | | | | | | | 6, 255 | 61,868 | | South Dakota | (1) | (1) 802 | 1, 000 | 1,001 | | | | | | | | | | (1) | 214 | 2,903 | 1,884 | 18, 752 | | Tennessee | 26, 856 | 199, 419 | 54 | 108 | | | 47, 452 | 219, 528 | 290 | 1,930 | 2, 075 | 12, 965 | (1)
25, 041 | 97, 857 | 21, 050 | 118.818 | (1)
122, 818 | (1)
650, 625 | | Texas | 17, 831 | 164, 664 | (1) | (1) | (1) | (1) | | | (1) | (1) | (1) | (1) | 2, 187 | 11, 878 | 15, 938 | 142, 894 | 36, 620 | 325, 499 | | Utah | 1,744 | 23, 560 | | | | | | | | | 13 | 143 | 7, 344 | 66, 490 | 510 | 7, 170 | 9, 611 | 97, 363 | | Vermont
Virginia | 7, 280 | 62, 754 | 2, 870 | 17, 767 | | | 5, 822 | 44, 552 | | | 1, 414 | 12, 757 | 434 | 2, 759 | 13, 398 | 101,962 | 31, 218 | 242, 551 | | Washington | 27, 773
5, 460 | 201, 284
82, 569 | 13, 027
834 | 75, 265
7, 932 | 50 | 300 | 4, 192 | 27, 455 | (1) | (1) | (1) | (1) | 19, 966 | 113, 388 | 27, 856 | 185, 008 | 94, 041 | 610, 649 | | West Virginia | 10, 769 | 74. 563 | 10, 000 | 7, 932
52, 446 | (1) | (1) | 11, 878
(1) | 108, 398 | (1) | (1) | | | (1) | (1) | (1) | (1) | 22, 764 | 247, 151 | | Wisconsin | 16, 597 | 130, 000 | 1, 023 | 5, 006 | (7) | | 8, 765 | 62, 808 | (7) | (9) | (1)
527 | (1)
3, 886 | (1) | (4) | 92, 091
6, 944 | 601, 745
88, 985 | 143, 071 | 904, 438 | | Undistributed | 33, 624 | 333, 578 | 7, 884 | 54, 402 | 3, 894 | 25, 949 | 84, 815 | 588, 179 | 3,076 | 23, 627 | 18, 157 | 128, 908 | 64, 821 | 424, 942 | 28, 532 | 259, 951 | 33, 856
115, 316 | 296, 685
936, 321 | | ľ | 511, 419 | 4, 260, 865 | 222, 077 | 1, 478, 128 | 76, 232 | 507, 031 | 293, 798 | | | 183.098 | 62, 745 | 484, 410 | | | | 6, 347, 651 | | | | 1 Included under | | | | ,, | ,, | - #1, 0021 | _00,.00 | -, 500, 0001 | -0, 0201 | 1000000 | Ju, 140 | 101, 110 | 001, 100 | 4, 000, 100 | 010,002 | 0, 047, 001 | e, 087, US7 | 11,104,024 | ¹ Included under "Undistributed." #### OHIO BUILDING LIME Lime sold or used by Ohio producers for construction, 1932-34 1 | | 19 | 32 | 19 | 33 | 1934 | | | |---|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--| | | Short tons | Value | Shorttons | Value | Short tons | Value | | | Quicklime
Hydrated lime | 2, 618
245, 090 | \$14, 705
1, 137, 117 | 1, 841
214, 019 | \$11, 807
1, 294, 394 | 2, 628
183, 032 | \$17, 080
1, 472, 590 | | | 기가, 기회에 가는 생각하게 되는
기가 되는 사람들이 살아 있다. | 247, 708 | 1, 151, 822 | 215, 860 | 1, 306, 201 | 185, 660 | 1, 489, 670 | | ¹ Ohio produced 41.5 percent of the total building lime sold by producers in 1932, 40.5 percent in 1933, and 36.3 percent in 1934. Shipments of hydrated lime from plants in the United States and in Ohio in 1934, by destinations | | From a | ll plants | From Ohio plants | | | | |--|---|--------------------------------|----------------------------|--------------------------------|-----------------------------|--| | Destination | Short
tons | Distribu-
tion
(percent) | Short
tons | Distribu-
tion
(percent) | Group
total
(percent) | | | Illinois, Indiana, Michigan, Ohio-
Delaware, District of Columbia, Maryland, New
Jersey, New York, Pennsylvania, West Virginia | 180, 419
311, 486 | 21, 8
37, 6 | 98, 610
87, 134 | 43.3
38.2 | 54. 7
28. 0 | | | Connecticut, Maine, Massachusetts, New Hamp-
shire, Rhode Island, Vermont.
Florida, Georgia, North Carolina, South Carolina,
Virginia.
Alabama, Kentucky, Louisiana, Mississippi, Ten- | 41, 062
79, 480 | 4, 9
9, 6 | 10, 327
14, 546 | 4. 5
6. 4 | 25. 1
18. 3 | | | nessee. Arkansas, Kansas, Nebraska, Oklahoma, Texas | 42, 229
47, 558
68, 04 7 | 5. 1
5. 7
8. 2 | 6, 557
1, 612
7, 756 | 2.9
.7
3.4 | 15. 5
3. 4
11. 4 | | | South Dakota, Utah, Washington, Wyoming
Undistributed and exports | 51; 459
7, 690 | 6.2 | 1, 204
176 | .5
.1 | 2. 3
2. 3 | | ### MISCELLANEOUS CHEMICAL LIME Chemical lime sold or used by producers in the United States for "other uses" in 1934 | | 11 3 | | 1 . re-rest | 1.71 | | |---|---------------|---|-------------------------|---|--| | Use | Short
tons | Value | Use | Short
tons | Value | | Acid neutralization. Alkali works (ammonia, soda, potash). Bleach, liquid Calcium acetate Calcium carbide. Coke and gas manufacture (gas purification and plant byproducts). Food products Gelatin (edible) Glue Insecticides (spraying materials). | | \$72, 746
152, 806
84, 386
31, 470
162, 731
159, 508
46, 318
8, 664
44, 937
233, 308 | Oil and fat manufacture | 15, 850
11, 818
2, 427
2, 774
7, 158
8, 446
7, 396
7, 074
3, 392
3, 458
32, 348
101, 665 | \$110, 554
73, 270
49, 534
23, 163
38, 089
54, 684
37, 520
16, 534
25, 728
235, 936
676, 587 | | Magnesia works | 4, 360 | 26, 646 | | 367, 433 | 2, 419, 802 | | | | 1 | 1. | i | | ¹ Lime used in alcohol manufacture, asphalt filler, bichromates, bleaching powder, calcium phosphate, ceramics, corn products, cosmetics, creameries and dairies, depilatories, disinfectants (chloride of lime, etc.), dyes, explosives, flour mills, fruit juices, gasoline, lubricants, mold wash, oxygen purification, retarder, roads, sanitation, slag cements, textiles, wire drawing, and wool cleaning. #### AGRICULTURAL LIME AND OTHER LIMING MATERIALS Agricultural lime and other liming materials sold or used by producers in the United States in 1934, by kinds | | | | Short | tons | Val | lue | |---|--|----------------|--|--|--|--| | | | Kind | Gross | Effective
lime con-
tent ¹ | Total | Average | | Qui
Hyo
Lime fro
Oyster's
Limesto | drated
om oyster shells
shells (crushed) | 3 ² | 59, 668
162, 409
9, 027
41, 503
1, 612, 380
11, 240 | 50, 300
107, 600
7, 600
20, 000
694, 000
4, 960 | \$300, 288
1, 177, 840
50, 135
100, 136
1, 788, 142
22, 236 | \$5. 03
7. 25
5. 55
2. 41
1. 11
1. 98 | #### HYDRATED LIME [See also second table on p. 14] Hydrated lime sold or used by producers in the United States, 1930-34 | | Number
of plants | ~ | Valu | ue . | |------|---------------------------------|--|--
---| | Year | in oper-
ation | Short tons | Total | Average | | 1930 | 163
157
158
157
165 | 1, 329, 562
1, 119, 266
852, 251
840, 007
829, 430 | \$10, 357, 445
7, 729, 047
5, 370, 273
5, 622, 026
6, 324, 623 | \$7. 79
6. 91
6. 30
6. 69
7. 63 | Hydrated lime sold or used by producers in the United States in 1934, by States 1 | State | Short
tons | Value | State | Short
tons | Value | |--|---|---|--|---|---| | Alabama. Arizona California Colorado. Florida. Georgia Hawaii Illinois Indiana Maryland Massachusetts Missouri New York Ohio | 19, 658
7, 769
9, 520
2, 667
9, 457
2, 664
6, 041
24, 282
32, 770
17, 025
19, 578
98, 008
14, 840
227, 922 | \$143, 144
86, 324
96, 226
27, 630
81, 018
21, 674
63, 080
184, 526
219, 582
124, 168
156, 813
631, 562
121, 142
1, 761, 871 | Pennsylvania Rhode Island Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Undistributed 2 | 136, 665
1, 396
27, 800
19, 790
3, 156
9, 813
41, 548
2, 571
32, 011
9, 063
53, 416 | \$1, 086, 465
11, 676
201, 568
191, 303
41, 572
72, 524
286, 690
28, 257
205, 420
71, 667
408, 721
6, 324, 623 | ¹ For shipments from plants in the United States and in Ohio, by destinations, see p. 14. ² Arkansas, Connecticut, Kentucky, Louisiana, Maine, Michigan, Minnesota, Montana, Nevada, and South Dakota. Estimated. Bureau of Fisheries, Statistical Bull. 1133 for 1934, p. 7. ### Hydrated lime sold or used by producers in the United States in 1934, by uses | Use | Short
tons | Value | Use | Short
tons | Value | |--------------|---|--|--|--|--| | Agricultural | 162, 409
367, 823
6, 132
17, 598
23, 593
10, 479 | \$1, 177, 840
2, 942, 369
40, 069
127, 848
171, 082
92, 395 | Chemical—Continued. Tanneries. Water purification Other uses. Total chemical | 26, 682
91, 277
123, 437
299, 198
829, 430 | \$196, 152
668, 376
908, 492
2, 204, 414
6, 324, 623 | ### FOREIGN TRADE 1 ### Lime imported for consumption in the United States, 1930-34 | Year | Hydrated lime | | Hydrated lime Other lime | | | r lime | | burned
mite | Total | | | |-------|---|--|--|---|--|---|---|---|-------|--|--| | I ear | Short
tons | Value | Short
tons | Value | Short
tons | Value | Short
tons | Value | | | | | 930 | 3, 336
2, 268
1, 677
1, 200
923 | \$40, 381
26, 622
18, 756
11, 865
8, 872 | 17, 370
12, 190
7, 100
9, 305
8, 309 | \$238, 516
155, 245
77, 279
93, 399
74, 447 | 2 3, 024
6, 051
5, 120
6, 763
6, 473 | 2 \$77, 918
152, 795
115, 808
163, 081
166, 912 | 23, 730
20, 509
13, 897
17, 268
15, 705 | \$356, 81
334, 66
211, 84
268, 34
250, 23 | | | | ¹ Figures on imports and exports compiled by Claude Galiher, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce. ² June 18 to Dec. 31; not separately recorded prior to change in tariff. # Lime (exclusive of dead-burned dolomite) imported into the United States, 1933-34, by countries and districts ¹ | | | 19 | 33 | 1934 | | | | |----------------|---|-------------------|------------------------|-------------------|-------------------------|--|--| | Country | District | Short
tons | Value | Short | Value | | | | Belgium | Massachusetts | (2) | \$4 | 61 | \$426 | | | | Canada | Maine and New Hampshire
San Francisco
Vermont | 174
906
2 | 2, 201
8, 841
12 | 89
1, 138
8 | 1, 292
11, 717
61 | | | | Germany | Washington
 New York
 Arizona | 9, 349
15
1 | 92,700
747
12 | 7,850
10 | 67, 374
1, 268 | | | | United Kingdom | El Paso
New York
Philadelphia
Pittsburgh | 6
52 | 139
581
24 | 2
· 40
34 | 17
701
460 | | | | | (Wisconsin | | | (2) | 3 | | | | | | 10, 505 | 105, 264 | 9, 232 | 83, 319 | | | ¹ Data on total imports in 1934 and 1933 may not be strictly comparable due to the change made by the Bureau of Foreign and Domestic Commerce, beginning January 1934, in its system of reporting imports. For 1933 and earlier years the figures represent "general imports" and cover goods imported for immediate consumption plus goods entering the country under bond, whereas totals for 1934 represent "imports for consumption" and include goods imported for immediate consumption plus withdrawals from bonded warehouses. ² Less than 1 ton. # Lime exported from the United States, 1930-34 | Year | Short
tons | Value | Year | Short
tons | Value | |----------------------|------------------------------|-----------------------------------|--------------|------------------|----------------------| | 1930
1931
1932 | 14, 536
11, 924
3, 579 | \$192, 421
129, 943
56, 479 | 1933
1934 | 3, 710
3, 752 | \$58, 095
60, 167 | # Lime exported from the United States in 1934, by countries | | 1. | T | II . | | | |--|--|---|--|--|---| | Country | Short
tons | Value | Country | Short
tons | Value | | North America: Barbados. Bermuda. Canada. Central America: British Honduras. Honduras. Nicaragua Panama Salvador Mexico Newfoundland and Labrador West Indies: British: Jamaica. Other British Cuba Dominican Republic. Netherland. Virgin Islands of the United | 33
63
17
150
170
90
55
144
1,003 | \$126
20
10, 821
5
49
1, 161
1, 931
2785
2, 555
3, 036
1, 265
1, 005
2, 121
8, 214
8, 214 | South America: Argentina Chile Colombia Ecuador Peru Venozuela Europe: France Italy Spain Sweden United Kingdom Asia: China Japan Other Asia | 7
69
35
640
138
7
10
56
32
10 | \$84
179
1, 266
578
8, 966
1, 834
289
205
2, 300
1, 256
433
55
8, 023
105
60, 167 | | States. | | 1, 201 | | | | ¹ Less than 1 ton. ### SHIPMENTS Lime supplies available for consumption in continental United States in 1934, by States, in short tons | | | | | | Sup | ply | • | |---------------------------|----------------------------|------------------------|------------------------|--------------------|--------------------|---------------------|------------------------------| | State | Sold or
used by
pro- | Ship-
ments
from | Ship-
ments
into | Ну- | Quick- | | Pounds | | | ducers | State | State | drated | lime | Total | per cap-
ita ¹ | | Alabama | 123, 881 | 37, 433 | 9, 355 | 10, 152 | 85, 651 | 95, 803 | 7 | | Arizona | 16,003 | 6, 608 | 65 | 3, 980 | 5, 480 | 9,460 | 4 | | rkansas | (2) | (2)
7 000 | (2) | 4,840 | 8,626 | 13, 466 | 1 | | California | 34, 733
3, 712 | 5, 980 | 19, 325
3, 624 | 14, 999
3, 788 | 33, 079
3, 548 | 48, 078
7, 336 | i | | Colorado | (2) | (2) | (2) | 6,813 | 10, 882 | 17, 695 | 2 | | Delaware | () | () | 17,723 | 8, 223 | 9, 500 | 17, 723 | 14 | | District of Columbia | | | 9, 875 | 8, 729 | 1, 146 | 9,875 | 4 | | Plorida | 14, 207 | 75 | 14,746 | 15, 651 | 13, 227 | 28, 878 | 3 | | deorgia | 2,664 | 320 | 15, 636 | 14, 758 | 3, 222 | 17, 980 | 1 | | daho | (2) | (2) | (2)
77, 647 | 635 | 1, 142 | 1,777
128, 126 | 3 | | llinois | 86, 679 | 36, 200 | 52, 837 | 45, 718
32, 440 | 82,408
47,676 | 80, 116 | 4 | | ndianaowa | 72, 606 | 45, 327 | 45, 480 | 12, 485 | 32, 995 | 45, 480 | 3 | | Cansas | | | 21, 224 | 10, 557 | 10, 667 | 21, 224 | 2 | | Kentucky | (2) | | (2) | 8, 953 | 34, 748 | 43, 701 | 3 | | ouisiana | (2) | (2)
(2) | (2) | 7, 341
| 39, 020 | 46, 361 | 4 | | Aaine | (2) | | (2) | 7,018 | 34, 389 | 41, 407 | 10 | | Maryland | 28, 167 | 9, 509 | 32, 705 | 27, 236 | 24, 127 | 51, 363 | • | | Aassachusetts | 52, 518 | 37,842 | 29, 250 | 19, 331 | 24, 595 | 43, 926 | 1 2 | | Michigan | 32,844 | 19,736 | 106, 734 | 33, 654
8, 465 | 86, 188
11, 960 | 119, 842
20, 425 | 4 | | Minnesota | (2) | (2) | 9, 867 | 3, 381 | 6,486 | 9, 867 | i | | Mississippi
Missouri | 272, 236 | 217, 414 | 7, 568 | 29,770 | 32, 620 | 62, 390 | 3 | | Montana | (2) | (2) | (2) | 2, 166 | 1,624 | 3, 790 | i | | Vebraska | | | 7,074 | 5, 767 | 1,307 | 7,074 | - 1 | | Nevada | (2) | (2) | (2) | 10, 661 | 1, 288 | 11,949 | 25 | | New Hampshire | | | 6, 359 | 2, 225 | 4, 134 | 6, 359 | 2 | | New Jersey | 720 | | 84, 906 | 53, 141 | 32, 485 | 85, 626 | 1 4 | | New Mexico | (2)
36, 050 | (2)
9, 645 | (2)
153, 483 | 724
94, 031 | 3, 961
85, 857 | 4, 685
179, 888 | | | New York | (2) | (2) | (2) | 17, 192 | 24, 842 | 42, 034 | 1 2 | | North Dakota | (-) | | 5, 035 | 4,702 | 333 | 5, 035 | i | | Ohio | 562, 041 | 371,659 | 97, 141 | 68, 607 | 218, 916 | 287, 523 | | | Oklahoma | | | 10,459 | 5, 616 | 4,843 | 10, 459 | | | Oregon | (2) | (2) | (2) | 913 | 7, 202 | 8, 115 |] | | Pennsylvania | 434, 519 | 185, 292 | 129, 364 | 109, 210 | 269, 381 | 378, 591 | 7 | | Rhode Island | 1,884 | 450 | 7, 214 | 4,627 | 4,021 | 8,648
8,941 | • 1 | | South Carolina | (2) | | 8, 941
(2) | 6, 648
2, 305 | 2, 293
2, 195 | 4,500 | 1 1 | | South Dakota
Pennessee | 122,818 | 100, 960 | 8,766 | 12, 402 | 18, 222 | 30, 624 | 1 2 | | Texas | 36, 620 | 3, 190 | 1, 987 | 20, 778 | 14, 639 | 35, 417 | 1 3 | | Jtah | 9, 611 | 290 | . 44 | 2,890 | 6,475 | 9, 365 | 8 | | Vermont | 31, 218 | 28, 595 | 430 | 1,048 | 2,005 | 3,053 |] | | Virginia | 94,041 | 65, 907 | 42,052 | 25, 231 | 44, 955 | 70, 186 | 1 4 | | Washington | 22, 764 | 7,076 | 1,309 | 2,812 | 14, 185 | 16,997 | 1 , | | West Virginia | 143, 071 | 109,827 | 82, 293 | 10, 916 | 104, 621 | 115, 537 | 15 | | Wisconsin | 33, 856 | 10, 909 | 38, 462
1, 011 | 17, 327
884 | 44, 082
127 | 61,409
1,011 | | | Wyoming
Undistributed | 115, 316 | 49,002 | 193, 591 | 004 | 121 | 1,011 | | | O Haisu ibarea | 110, 010 | 10,002 | 100,001 | | | | | | | 2, 384, 779 | 3 1, 359, 246 | 1, 353, 582 | 821,740 | 1, 557, 375 | 2, 379, 115 | 1 : | Based on Bureau of the Census preliminary statement. Included under "Undistributed." Includes 5,664 tons exported or unspecified by producers as to destination. | Destination | | nois, Indi
chigan, C | | New | and, New
York, I | ennsyl- | Massa | cticut,
chusetts
, Vermo | , Rhode | | , Georgia
lina, Vir | | | Alabama, Kentucky,
Louisiana, Tennessee | | | |---|---|--|---|-------------------------|---------------------|---------------------------------------|-------------------------------|--------------------------------|-------------------------------|--|---|--|---------------------------------|--|--|--| | 20001111101 | Hy-
drated
lime | Quick-
lime | Total | | | Illinois, Indiana, Michigan, Ohio Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania, West Virginia. Connecticut, Maine, Massachusetts, New Hamp- shire, Rhode Island, Vermont. Florida, Georgia, North Carolina, South Caro- lina, Virginia Alabama, Kentucky, Louisiana, Mississippi, Tennessee. Arkansas, Kansas, Nebraska, Oklahoma, Texas. | 87, 615
10, 327
14, 596
9, 833
1, 759 | 111, 267
1, 544
1, 206
24, 283
625 | 444, 330
198, 882
11, 871
15, 802
34, 116
2, 384 | 3, 491
4, 493
401 | | 544, 153
33, 532
11, 555
556 | 60
17, 605
26, 940
1 | 23, 937
46, 230
4 | 60
41, 542
73, 170
5 | 310
13, 803
200
39, 331
25 | 3, 328
31, 740
2, 149
20, 605
3 | 3, 638
45, 543
2, 349
59, 936
28 | 915
30
20, 575
27, 810 | 18, 052

51, 208
136, 597
2 | 18, 967
30

71, 783
164, 407
13 | | | Iowa, Minnesota, Missouri. Wisconsin | 1, 395 | 1, 029 | 43, 047
2, 424 | 19 | | 19 | | | | | | | | | | | | Destination | | sas and ' | rexas - | | sota, Mis
Visconsir | | Idaho,
New M | California,
Montana,
Iexico, Oreg
a, Utah, W | Nevada,
gon. South | Un | ited State | 98 | |--|--------------------------|---------------------------|---------------------------|-------------------------------------|---|--|------------------|---|-----------------------|--|--|---| | | Hydrated
lime | Quick-
lime | Total | Hydrated
lime | Quick-
lime | Total | Hydrated
lime | Quick-
lime | Total | Hydrated lime | Quick-
lime | Total | | Illinois, Indiana, Michigan, Ohio. Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania, West Virginia. Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont. | | | | 27, 169
4, 864
104 | 70, 983
3, 589
62 | 98, 152
8, 453
166 | | | | 180, 419
311, 486
41, 062 | 435, 188
527, 117
80, 026 | 615, 607
838, 603
121, 088 | | Florida, Georgia, North Carolina, South Carolina, Virginia. Alabama, Kentucky, Louisiana, Mississippi, Tennessee Arkansas, Kansas, Nebraska, Oklahoma, Texas Iowa, Minnesota, Missouri, Wisconsin Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, North Dakota, Oregon, South Dakota, Utah, | 1, 363
25, 137
328 | 10, 670
21, 955
265 | 12, 033
47, 092
593 | 484
2, 797
20, 435
51, 605 | 8, 454
12, 419
17, 500
94, 440 | 8, 938
15, 216
37, 935
146, 045 | 216 | | 216 | 79, 480
42, 229
47, 558
68, 047 | 88, 539
184, 127
40, 082
121, 657 | 168, 019
226, 356
87, 640
189, 704 | | Washington, Wyoming | 170 | 2, 337 | 2, 507 | 9, 330 | 3, 202 | 12, 532 | 40, 564 | 74, 071 | 114, 635 | 51, 459 | 80, 639 | 132, 098 | # NATURAL GASOLINE (DETAILED STATISTICS) By G. R. HOPKINS AND E. M. SEELEY ### SUMMARY OUTLINE | _ | Page | | Page | |-------------|------|--|------| | Summary | 21 | Liquefied petroleum gases | 29 | | Production | 22 | Prices | 29 | | Consumption | 26 | Summary of statistics for natural gas | 30 | | Stocks | 28 | business of business for instantal gas | 00 | ### SUMMARY Salient statistics for natural gasoline in the United States, 1924 and 1931-34 | | 1924 | 1931 | 1932 | 1933 | 1934 | |---|--|--------------------------------------|--|---|--| | Number of plants operating | 1,096 | 937 | 830 | 779 | 766 | | Production: By States: California millions of gallons Texas do Oklahoma do West Virginia do Louisiana do Qther do | 233
187
301
62
48
103 | 680
427
455
53
58
159 | 552
371
379
44
46
132 | 496
367
360
40
37
120 | 506
467
355
42
41
124 | | | 934 | 1,832 | 1, 524 | 1, 420 | 1, 535 | | By types of process: Compression process Absorption and combination processes do Charcoal do | 258
672
4 | 212
1,609
11 | 182
1,333
9 | 161
1, 251
8 | 148
1,380
7 | | Stocks at natural-gasoline plants at end of year.doValue: | 934 | 1,832
27 | 1,524
19 | $ \left\{ \begin{array}{c} 1,420 \\ 28 \\ 242 \end{array} \right. $ | 1,535
36 | | Total (at plants) millions of dollars. Average per gallon (at plant) cents. Average spot price, Oklahoma natural gasoline. do. Natural gas treated millions of cubic feet. Average yield per thousand cubic feet gallons. | 82
8. 8
8. 8
1, 016, 276
0. 92 | 3.5 | 3. 2
4 2. 3
1, 499, 756
1. 02 | 54
3. 8
4 2. 9
1, 551, 464
0. 92 | 61
3. 9
4 2. 6
1, 776, 172
0. 86 | ^{Figures not available. For comparison with 1934.} ³ Grade A. 4 Grade 26-70. ### PRODUCTION Natural gasoline produced in the United States, 1924 and 1931–34, by States, in thousands of gallons | Year | Alaska | Arkan-
sas | Califor-
nia | Colo-
rado | Illinois | Indi-
ana | Kansas | Ken-
tucky | Louisi-
ana | Mich-
igan | Mon-
tana | New
Mexico | |--------------------------------------|----------------------|---|--
--|--|--|---|---|---|--|---|--------------------------------------| | 1924
1931
1932
1933
1934 | 32
25
25
25 | 17, 533
26, 282
18, 653
15, 215
13, 033 | 232, 579
680, 339
551, 897
496, 293
506, 272 | 659
472
408
643 | 9, 091
5, 624
4, 558
3, 673
3, 810 | 1 | 11, 658
32, 690
24, 792
24, 869
27, 891 | 7, 274
5, 464
4, 877
4, 514
4, 171 | 48, 098
58, 034
46, 199
36, 973
40, 558 | 188
589 | 1, 295
1, 237 | 17,775
17,507
19,149
21,748 | | | | | | 3 .5 | • | | 1 to the second of | | | То | tal | | | Ye | ar | New
York | Ohio | Okla-
homa | Penn-
syl-
vania | Texas | West
Vir-
ginia | Wyo-
ming | Thous of gal | llong | | A verage | | | | | | | | s Mitte | | | | | dollars | lon
(cents) | | 1924
1931
1932
1933 | | 477
132
117
96
85 | 5, 199
5, 163
4, 662 | 301, 062
454, 886
378, 584
360, 488
355, 438 | 14, 339
11, 685 | 186, 571
426, 695
371, 106
366, 515
466, 570 | 61, 549
52, 844
43, 773
39, 848
41, 854 | 29, 272
51, 523
44, 391
34, 103
34, 799 | 1, 83
1, 523
1, 420 | 3, 861
1, 918
3, 800
0, 000
5, 360 | 82, 233
63, 732
49, 244
54, 368
60, 523 | 8. 8
3. 5
3. 2
3. 8
3. 9 | Natural gasoline produced and natural gas treated in the United States in 1934, by States | | • | | Natural g | asoline pro | Natural gas treated | | | |-----------------------|---------------------|---------------------|-------------------------|------------------------------|----------------------------------|---------------------------|------------------------------| | State | Number
of opera- | Number
of plants | | Value a | t plants | | Average
vield per | | | tors 1 | operating | Thousands
of gallons | Thou-
sands of
dollars | Average
per gallon
(cents) | Millions of
cubic feet | M cubic
feet
(gallons) | | | | | | - | | | | | Arkansas | 8 | 10 | 13, 033 | 450 | 3.5 | 3, 250 | 4.0 | | California | 37
2 | 92 | 506, 272
643 | 29, 931
18 | 5. 9
2. 8 | 325, 629
511 | 1. 5.
1. 2 | | Colorado | 22 | 75 | 3,810 | 183 | 4.8 | 1, 512 | 2.5 | | Kansas | 14 | 20 | 27, 891 | 796 | 2.9 | 69, 859 | 4 | | Kantuoky | 5 | 6 | 4, 171 | 177 | 4.2 | 21, 704 | .1 | | Kentucky
Louisiana | 15 | 28 | 40, 558 | 1, 141 | 2.8 | 70, 534 | .5 | | Michigan | ĩ | ĭ | 589 | 15 | 2.5 | 410 | 1.4 | | Montana | 1 | 1 | 1, 237 | 83 | 6.7 | 4, 114 | .3 | | New Mexico | 3 | 2 2 | 21, 748 | 570 | 2.6 | 11, 904 | 1.8 | | New York | 2 | 2 | 85 | 5 | 5.9 | 375 | .2 | | Ohio | 11 | 14 | 5, 881 | 289 | 4.9 | 25, 100 | . 2 | | Oklahoma | 71 | 177 | 355, 438 | 10, 728 | 3.0 | 299, 183 | 1.1 | | Pennsylvania | 63 | 110 | 10, 781 | 467 | 4.3 | 29, 346 | .3 | | Texas | 67 | 126 | 466, 570 | 12, 366 | 2.7 | 787, 078 | .5 | | West Virginia | 28 | 90 | 41, 854 | 1,706 | 4.1 | 108, 097 | .3 | | Wyoming | 6 | 9 | 34, 799 | 1, 598 | 4.6 | 17, 566 | 1.9 | | Total, 1934 | 1 288 | 766 | 1, 535, 360 | 60, 523 | 3.9 | 1, 776, 172 | .8 | | Total, 1933 | 291 | 779 | 1, 420, 000 | 54, 368 | 3.8 | 1, 551, 464 | .9 | ¹ A producer operating in more than 1 State is counted only once. # Summary of monthly natural-gasoline statistics in the United States in 1934, in millions of gallons | | | | | | | | 1934 | | | | | | | | |---|--------------|---------------|-------------|-------------|--------|-----------|-------------|-------------|----------------|--------------|---------------|---------------|---------------|-----------------| | | Janu-
ary | Febru-
ary | March | April | May | June | July | August | Sep-
tember | Octo-
ber | No-
vember | De-
cember | Total | 1933
(total) | | Production by fields:
Appalachian
Kentucky, Illinois, and Michigan | 6. 1
. 9 | 6.4 | 6. 2
. 9 | 5. 1
. 7 | 4.3 | 3.3
.5 | 3. 0
. 5 | 3. 2
. 6 | 3.8 | 5. 1
. 8 | 5. 5
. 8 | 6.6 | 58. 6
8. 6 | 56. 3
8. 4 | | Oklahoma: Oklahoma City Osage County Seminole Rest of State | 9. 0 | 8. 5 | 9. 2 | 9. 4 | 8. 1 | 7. 5 | 7. 6 | 7. 4 | 7. 9 | 9. 0 | 9. 5 | 9. 5 | 102. 6 | 96. 5 | | | 3. 8 | 3. 7 | 3. 9 | 3. 6 | 3. 6 | 3. 3 | 3. 5 | 4. 0 | 4. 2 | 4. 5 | 4. 4 | 4. 1 | 46. 6 | 41. 1 | | | 8. 7 | 7. 8 | 8. 6 | 8. 1 | 7. 7 | 8. 1 | 8. 0 | 8. 0 | 7. 2 | 8. 1 | 7. 8 | 7. 1 | 95. 2 | 110. 8 | | | 9. 9 | 8. 9 | 9. 6 | 9. 3 | 9. 2 | 8. 6 | 8. 9 | 8. 8 | 9. 1 | 9. 7 | 9. 5 | 9. 5 | 111. 0 | 112. 1 | | Total, Oklahoma | 31. 4 | 28. 9 | 31. 3 | 30. 4 | 28. 6 | 27. 5 | 28. 0 | 28. 2 | 28. 4 | 31. 3 | 31. 2 | 30. 2 | 355. 4 | 360, 5 | | | 2. 5 | 2. 4 | 2. 3 | 2. 3 | 2. 3 | 2. 0 | 1. 9 | 2. 1 | 2. 3 | 2. 4 | 2. 7 | 2. 7 | 27. 9 | 24, 9 | | Texas: East Texas. North Texas. Panhandle. West central. Rest of State. | 2. 3 | 2. 4 | 2. 5 | 2. 6 | 3. 3 | 4. 1 | 4. 9 | 5. 1 | 4. 9 | 4. 9 | 4. 9 | 4. 4 | 46. 3 | 20. 2 | | | 2. 3 | 2. 1 | 2. 3 | 2. 2 | 2. 1 | 2. 0 | 1. 9 | 1. 8 | 1. 8 | 2. 0 | 2. 1 | 2. 1 | 24. 7 | 25. 7 | | | 19. 1 | 17. 9 | 20. 5 | 20. 0 | 20. 0 | 19. 3 | 19. 2 | 21. 4 | 23. 4 | 24. 6 | 25. 5 | 25. 3 | 256. 2 | 183. 8 | | | 7. 2 | 6. 4 | 7. 0 | 6. 8 | 6. 8 | 6. 2 | 6. 6 | 6. 3 | 6. 1 | 6. 2 | 6. 3 | 6. 8 | 78. 7 | 77. 8 | | | 4. 7 | 4. 5 | 4. 2 | 4. 5 | 5. 0 | 5. 3 | 5. 7 | 5. 7 | 5. 5 | 5. 5 | 5. 1 | 5. 0 | 60. 7 | 59. 0 | | Total, Texas | 35. 6 | 33. 3 | 36. 5 | 36. 1 | 37. 2 | 36. 9 | 38. 3 | 40. 3 | 41. 7 | 43. 2 | 43. 9 | 43. 6 | 466. 6 | 366. 5 | | | 3. 4 | 3. 4 | 3. 4 | 3. 4 | 3. 1 | 3. 2 | 3. 0 | 3. 1 | 3. 3 | 3. 6 | 3. 8 | 3. 9 | 40. 6 | 37. 0 | | | 1. 1 | 1. 0 | 1. 1 | 1. 1 | 1. 2 | 1. 0 | 1. 2 | 1. 1 | 1. 1 | 1. 1 | 1. 0 | 1. 0 | 13. 0 | 15. 2 | | | 4. 7 | 4. 6 | 4. 8 | 4. 9 | 4. 7 | 4. 6 | 4. 7 | 4. 9 | 4. 8 | 5. 4 | 5. 1 | 5. 2 | 58. 4 | 54. 9 | | California: Huntington Beach Kettleman Hills Long Beach Santa Fe Springs Ventura Avenue Rest of State | 3. 1 | 2. 9 | 3. 4 | 3. 3 | 3. 6 | 3. 7 | 4. 0 | 3. 9 | 3. 6 | 3. 7 | 3. 5 | 3. 6 | 42. 3 | 25. 4 | | | 13. 6 | 11. 6 | 11. 5 | 11. 1 | 10. 9 | 10. 9 | 12. 4 | 13. 8 | 14. 4 | 15. 1 | 13. 2 | 13. 9 | 152. 4 | 133. 5 | | | 5. 9 | 5. 5 | 6. 5 | 6. 4 | 6. 8 | 6. 8 | 7. 0 | 6. 6 | 6. 2 | 6. 2 | 6. 1 | 6. 2 | 76. 2 | 88. 4 | | | 5. 8 | 5. 1 | 5. 6 | 5. 3 | 5. 8 | 5. 5 | 5. 6 | 5. 5 | 5. 1 | 5. 0 | 5. 0 | 5. 0 | 64. 3 | 80. 4 | | | 4. 0 | 3. 6 | 4. 2 | 3. 4 | 3. 6 | 3. 6 | 3. 8 | 3. 7 | 3. 4 | 3. 6 | 4. 0 | 4. 2 | 45. 1 | 45. 0 | | | 10. 3 | 9. 2 | 10. 3 | 10. 4 | 10. 7 | 10. 8 | 11. 4 | 11. 4 | 10. 4 | 10. 7 | 10. 3 | 10. 1 | 126. 0 | 123. 6 | | Total, California | 42.7 | 37.9 | 41. 5 | 39. 9 | 41. 4 | 41. 3 | 44. 2 | 44. 9 | 43. 1 | 44. 3 | 42. 1 | 43. 0 | 506. 3 | 496. 3 | | Total, United States | 128. 4 | 118. 7 | 128. 0 | 123. 9 | 123. 4 | 120. 3 | 124. 8 | 128. 4 | 129. 1 | 137. 2 | 136. 1 | 137. 1 | 1, 535. 4 | 1, 420. 0 | | | 4. 1 | 4. 2 | 4. 1 | 4. 1 | 4. 0 | 4. 0 | 4. 0 | 4. 1 | 4. 3 | 4. 4 | 4. 5 | 4. 4 | 4. 2 | 3. 9 | | | 41. 7 | 41. 1 | 42. 9 | 53. 6 | 63. 7 | 69. 1 | 66. 8 | 66. 7 | 56. 5 | 45. 5 | 37. 4 | 36. 1 | 36. 1 | 1 41. 7 | | | 128. 4 | 119. 3 | 126. 2 | 113. 2 | 113. 3 | 114. 9 | 127. 1 | 128. 5 | 139. 3 | 148. 2 | 144. 2 | 138. 4 | 1, 541. 0 | 1, 411. 2 | ¹ For comparison with 1934. Natural gasoline produced in the United States in 1934, by States and by counties | State | County | Thousands
of gallon : | Thousands
of dollars | |---|---|---|--| | Arkansas | OuachitaUnion | 1, 995
11, 038 | 60
390 | | | | 13, 033 | 450 | | California | Fresno Kern Kings Los Angeles Orange Santa Barbara Ventura | 26, 589
37, 786
125, 846
194, 552
62, 683
10, 842
47, 974 | 1, 818
2, 266
8, 616
10, 575
3, 621
571
2, 464 | | Colorado | Larimer and Las Animas | 506, 272
643 | 29, 931 | | Illinois | Clark and Cumberland
Crawford
Lawrence and Wabash | 391
1,809
1,610 | 20
91
72 | | | | 3, 810 | 183 | | Kansas | Anderson, Butler, and Chautauqua Barber, Kingman, and McPherson Cowley Greenwood Sedgwick, Stevens, and Sumner | 1, 306
3, 692
4, 050
5, 117
13, 726 | 45
105
121
142
383 | | | | 27, 891 | 796 | | Kentucky | Boyd, Clark, and Martin
Estill and Lee | 3, 050
1, 121 | 130
47 | | 3 3 | | 4, 171 | 177 | | Louisiana | Caddo
Claiborne
Jefferson Davis
Morehouse, Red River, and Webster
Ouachita
Richland | 14, 482
9, 905
1, 292
2, 844
2, 592
9, 443 | 404
285
52
78
71
251 | | Michigan
Montana
New Mexico
New York | Midland
Glacier
Lea
Allegany | 40, 558
589
1, 237
21, 748
85 | 1, 141
15
83
570 | | Ohio | Fairfield, Licking, and Wayne
Jefferson, Noble, and Washington
Monroe | 5, 004
819
58 | 252
35
2 | | | | 5, 881 | 289 | | Oklahoma | Beckham, Custer, and Harmon Carter Creek Garfield Hughes Kay Lincoln Logan Muskogee Noble. Nowata Okfuskee Oklahoma Okmulgee Osage Pawnee Payne Pottawatomie. Seminole. | 6, 511
7, 478
55, 845
5, 287
5, 462
2, 591
3, 556
3,
500
5, 840
2, 221
102, 591
104, 593
46, 592
3, 075
3, 015
18, 653 | 166
198
1, 627
157
178
70
103
119
10
155
13
63
3, 104
124
1, 485
89
78 | | | Tulsa
Wagoner and Washington | 806
850 | 23
28 | # Natural gasoline produced in the United States in 1934, by States and by counties— Continued | State | County | Thousands
of gallons | Thousands
of dollars | |---------------|---|---|--| | Pennsylvania | Allegheny. Armstrong, Elk, and Lawrence Beaver Butler Clarion Crawford Forest Greene McKean Venango Warren Washington | 841
45
97
273
376
74
218
3, 969
533
2, 075
1, 475
805 | 1
1
1
14
2
10
7
3 | | | | 10, 781 | 46 | | Texas | Anderson, Panola, and Van Zandt Archer, Clay, and Jack Austin and Montgomery Brazoria, Nueces, and Refugio Brown and Comanche Carson Caleman.and Shackelford. Crane, Ector, Pecos, and Reagan Eastland. Erath and Palo Pinto Foard and Wilbarger Gray Gregg. Hutchinson Moore and Potter. Rusk Stephens Wheeler Wichita Young | 14, 052
2, 486
9, 075
18, 921
2, 464
46, 806
4, 616
18, 634
31, 355
3, 754
71, 840
19, 803
96, 309
21, 281
26, 477
36, 554
19, 894
14, 559
4, 586 | 38-
64
244
54:
65:
1, 200
10:
466
81:
8:
77:
1, 956
577:
2, 688
522
72:
855
499
376
114 | | West Virginia | Brooke, Hancock, and Marshall. Clay, Doddridge, and Gilmer. Harrison Jackson and Lincoln Kanawha Lewis. Marion. Monongalia Pleasants: Ritchie Roane Tyler Wetzel. Carbon and Sweetwater | 207
578
1,600
3,063
15,611
3,590
1,049
626
1,117
1,230
1,460
920
10,803 | 22
84
122
644
119
40
25
47
48
57
39
443 | | A AOMINET | Caron and Sweetwater Fremont, Hot Springs, and Niobrara Natrona | 3, 595
431
30, 773 | 37 | | | 17auuna | | 1, 379 | | | | 34, 799 | 1, 598 | Natural gasoline produced in the United States in 1934, by States and by methods of manufacture | | Number | of plants of | operating | Production | n (thousands o | f gallons) | |--|-------------------|------------------------|-----------|---|---|------------------| | State | Com-
pression | Absorp-
tion i | Charcoal | Compression | Absorption 1 | Charcoal | | ArkansasCalifornia
Colorado
Illinois | 3
2
1
75 | 6
90
2 | 1 | 3, 574
2, 374
303
3, 810 | 9, 393
503, 898
340 | 66 | | Kansas
Kentucky
Louisiana
Michigan | 7 | 13
3
22 | 1 | 2, 485
121
3, 439
589 | 25, 406
3, 524
37, 119 | 526 | | Montana | 1
9 | 1
2
1
4 | 1 | 29
75 | 1, 237
21, 748
56
4, 934 | 872 | | Oklahoma
Pennsylvania
Texas
West Virginia | 94
26
59 | 122
15
100
24 | 1
7 | 42, 142
3, 172
46, 853
11, 502 | 313, 296
7, 487
419, 717
24, 376 | 122
5, 976 | | Total, 1934 | 3
344
360 | 411
407 | 11
12 | 27, 682
148, 150
160, 886 | 7, 117
1, 379, 648
1, 250, 914 | 7, 562
8, 200 | ¹ Includes combination of absorption process with compression and charcoal processes. ### CONSUMPTION # · Distribution of natural gasoline in 1934, by months, in thousands of gallons | the state of s | | | | | | | | |--|---|------------------------------|---|--|---|---|-------------------------------| | | | January | February | March | April | Мау | June | | Production Decrease in stocks | | 128, 400 | 118, 700
4, 925 | 128, 000 | 123, 900 | 123, 400 | 120, 300 | | | | 128, 400 | 123, 625 | 128,000 | 123, 900 | 123, 400 | 120, 300 | | Blended at refineries | 87, 486
5, 838
10, 122
8, 961
15, 993 | 76, 524
4, 914
23, 898 | 84, 714
4, 998
18, 270
5, 870
14, 148 | 81, 522
4, 074
13, 188
14, 407
10, 709 | 70, 980
5, 166
24, 486
6, 383
16, 385 | 81, 186
5, 082
16, 044
6, 513
11, 475 | | | | | 128, 400 | 123, 625 | 128, 000 | 123, 900 | 123, 400 | 120, 300 | | | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | The year | | Production Decrease in stocks | 124, 800
629 | 128, 400 | 129, 100
7, 536 | 137, 200
14, 943 | 136, 100
22, 705 | 137, 060 | 1, 535, 360 | | | 125, 429 | 128, 400 | 136, 636 | 152, 143 | 158, 805 | 137, 060 | 1, 535, 360 | | Blended at refineries | 85, 470 | 82,866 | 97, 608 | 127, 386 | 142,758 | 113, 652 | 1, 132, 152 | | Run through pipe lines in California. Exports and sales to jobbers. Increase in stocks. | 4, 494
22, 764 | 3, 402
21, 252
10, 046 | 3, 402
25, 914 | 3, 990
14, 070 | 3, 066
10, 164 | 2, 226
14, 070
1, 058 | 50, 652
214, 242
2, 500 | | Losses | 12, 701 | 10, 834 | 9, 712 | 6, 697 | 2,817 | 6, 054 | 135, 814 | | | 125, 429 | 128, 400 | 136, 636 | 152, 143 | 158, 805 | 137, 060 | 1, 535, 360 | | | 1 | 1 | 1 | 1 | i . | , | I | Natural gasoline blended at refineries in the United States in 1934, by districts and months, in thousands of gallons | District | | January | February | March | April | Мау | June | |--|-----------------------------|---------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------------| | East coast | | 6, 132
1, 008
7, 434
20, 160 | 5, 292
714
6, 216
17, 010 | 1, 890
714
6, 174
17, 640 | 4, 830
756
7, 266
16, 884 | 1, 680
714
7, 182
14, 364 | 1, 176
1, 008
6, 384
18, 060 | | Texas: Gulf coast Rest of State | | 4, 704
16, 884 | 4, 116
12, 684 | 5, 376
12, 474 | 5, 544
11, 298 | 5, 754
7, 812 | 6, 090
11, 214 | | Total, Texas | | 21, 588 | 16, 800 | 17, 850 | 16, 842 | 13, 566 | 17, 304 | | Louisiana-Arkansas: Louisiana Gulf coast Northern Louisiana and Ar | 462
1, 554 | 1, 512
1, 764 | 588
1,890 | 378
1,890 | 336
2, 268 | 840
1,848 | | | Total, Louisiana and Ark
Rocky MountainCalifornia 1 | 2, 016
2, 940
32, 046 | 3, 276
2, 478
29, 652 | 2, 478
2, 772
40, 194 | 2, 268
2, 688
34, 062 | 2, 604
2, 478
33, 558 | 2, 688
2, 772
36, 876 | | | Total, United States, 1934 | 93, 324
95, 004 | 81, 438
73, 920 | 89, 712
77, 532 | 85, 596
77, 406 | 76, 146
73, 122 | 86, 268
85, 638 | | | District | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | The year | | East coastAppalachianIndiana, Illinois, Kentucky, | 2, 478
840 | 1, 512
966 | 3, 864
840 | 6, 804
1, 092 | 11, 088
1, 680 | 8, 148
1, 596 | 54, 894
11, 928 | | Oklahoma, Kansas, and Mis- | 7, 350
18, 522 | 6, 426 | 8, 946
24, 108 | 12, 978
24, 696 | 12, 348
30, 156 | 9, 912
25, 410 | 98,
616
246, 708 | | Texas: Gulf coast Rest of State | 6, 006
11, 844 | 7, 812
13, 734 | 10, 542
12, 138 | 13, 986
16, 968 | 14, 238
27, 174 | 11, 172
17, 094 | 95, 340
171, 318 | | Total, Texas | 17, 850 | 21, 546 | 22, 680 | 30, 954 | 41, 412 | 28, 266 | 266, 658 | | Louisiana-Arkansas: Louisiana Gulf coast Northern Louisiana and Arkansas | 714 | 714 | 1, 764
1, 764 | 1, 176
2, 436 | 504
1, 974 | 714 | 9, 702
22, 596 | | Total, Louisiana and Arkansas | 2, 394
2, 562
37, 968 | 2, 562
2, 982
30, 576 | 3, 528
2, 730
34, 314 | 3, 612
3, 108
48, 132 | 2, 478
3, 234
43, 428 | 2, 394
2, 982
37, 170 | 32, 298
33, 726
437, 976 | | Total, United States,
1934 | 89, 964
78, 120 | 86, 268
86, 478 | 101, 010
101, 178 | 131, 376
110, 250 | 145, 824
113, 400 | 115, 878
92, 484 | 1, 182, 804
1, 064, 532 | ¹ Includes natural gasoline run through pipe lines. # STOCKS Stocks of natural gasoline held at plants and at refineries in the United States at end of each month of 1934, by refining districts, in thousands of gallons | District | January | February | March | April | Мау | June | |---|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | East coast: | | | | | | | | At refineries | 8, 400 | 7, 014 | 9, 576 | 10, 248 | 8, 526 | 8, 946 | | At plantsAt refineries | 3, 910
210 | 5, 293
168 | 6, 103
294 | 7, 138
84 | 6, 985
168 | 5, 825
168 | | At refineries | 387 | 504 | 627 | 607 | | | | At refineries Oklahoma, Kansas, and Missouri: | 1,848 | 1, 218 | 1,680 | 1, 134 | 607
2, 016 | 320
1,554 | | At plants | 22, 214 | 19, 169 | 20, 305 | 21,936 | 25, 598 | 28, 387 | | At refineriesTexas: | 1, 260 | 1, 554 | 1, 722 | 1,848 | 1, 638 | 2, 184 | | At plantsAt refineries | 10, 430
11, 886 | 11, 065
6, 426 | 10, 215
8, 736 | 18, 378
10, 752 | 24, 655
7, 686 | 29, 030
8, 232 | | Louisiana-Arkansas: At plants | 917 | 854 | 1, 093 | 801 | 744 | | | At refineries | 210 | 252 | 252 | 462 | 1, 176 | 844
1,008 | | Rocky Mountain:
At plants | 1, 270 | 1, 243 | 1, 186 | 1, 169 | 1, 345 | 1, 362 | | At refineriesCalifornia: | 420 | 336 | 420 | 420 | 588 | 378 | | At plantsAt refineries | 2, 551
97, 608 | 2, 994
100, 506 | 3, 389
98, 868 | 3, 558
100, 338 | 3, 774
99, 750 | 3, 361
100, 170 | | Total, 1934: | | 100,000 | 20,000 | 100,000 | | 100, 170 | | At plants | 41,679 | 41, 122 | 42, 918 | 53, 587 | 63, 708 | 69, 129 | | At refineries
Total, 1933: | 121, 842 | 117, 474 | 121, 548 | 125, 286 | 121, 548 | 122, 640 | | At plantsAt refineries | 22, 625
111, 426 | 27, 343
115, 080 | 31, 594
117, 138 | 34, 167
116, 382 | 38, 884
123, 354 | 36, 681
121, 170 | | | | | | | | , | | District | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | | East coast: | | | | 136 13 | | | | At refineries | 10, 668 | 10, 878 | 11,886 | 13, 566 | 8, 484 | 7, 392 | | Appalachian:
At plants | 4, 490 | 3, 754 | 2, 985 | 1,708 | 1,706 | 2, 801 | | At refineriesIndiana, Illinois, Kentucky, etc.: | 210 | 168 | 42 | 126 | 84 | 378 | | At plants At refineries | 335
1, 596 | 238
1, 722 | 252
2, 310 | 235
2, 562 | 241
2, 394 | 290
2,688 | | Oklahoma, Kansas, and Missouri: At plants | 28, 306 | 28, 202 | 24, 063 | 19, 473 | 13, 167 | 11, 082 | | At refineries
Texas: | 3, 276 | 3, 444 | 3, 486 | 3,612 | 3, 108 | 3,822 | | At plants | 27,336 | 26, 905 | 23, 046 | 18, 197 | 17, 131 | 14, 103 | | At refineries
Louisiana-Arkansas: | 7,896 | 7,644 | 5, 544 | 8,610 | 4, 788 | 7, 098 | | At plantsAt refineries | 1, 368
84 | 3, 137
546 | 1, 584
546 | 1,425
126 | 994
210 | 4,028
210 | | Rocky Mountain: | 1, 489 | 1, 231 | 1, 197 | 1,314 | 1, 247 | 993 | | At refineries | 378 | 294 | 336 | 756 | 630 | 882 | | California: At plants | 3, 454 | 3, 277 | 3, 393 | 3, 131 | 2,866 | 2,803 | | At refineries | 100, 254 | 109, 746 | 112, 980 | 103, 866 | 98, 952 | 98, 490 | | Total, 1934: At plants | 66, 778 | 66, 744 | 56, 520 | 45, 483 | 37, 352 | 36, 100 | | At refineries
Total, 1933: | 124, 362 | 134, 442 | 137, 130 | 133, 224 | 118, 650 | 120, 960 | | At plants | 39, 911 | 35, 577 | 27, 760 | 24, 043 | 25, 854 | 27, 584 | | _ | 116, 172 | 122, 892 | 120, 750 | 113, 694 | 105, 336 | 1 41, 664 | | At refineries | | | | | | 1 112, 896 | ¹ For comparison with 1934. ### LIQUEFIED PETROLEUM GASES Marketed production of liquefied petroleum gases in the United States, 1922-34 | Year | Gallons | Year | Gallons | Year | Gallons | Year | Gallons | |------------------------------|--|----------------------|--|------|---|------|--| | 1922
1923
1924
1925 | 222, 641
276, 863
376, 488
403, 674 | 1926
1927
1928 | 465, 085
1, 091, 005
4, 522, 899 | | 9, 930, 964
18, 017, 347
28, 769, 576 | 1933 | 34, 114, 767
38, 931, 008
48, 173, 000 | Marketed production of liquefied petroleum gases in the United States in 1934, by classes, uses, and methods of shipment, in thousands of gallons | A Company of the Comp | | | | . *. | | | | |--|-------------------------|-----------------------------|-----------------------------|------------------------------|------------------|-------------------------|---------------------------| | | | | 1934 | | | 1933 (to | tal) | | | | | Pentane
and pro- | Tota | 1 | | | | | Propane | Butane | pane-
butane
mixtures | Thousands
of gallons | Percent | Thousands
of gallons | Percen | | Use: Domestic | 15, 236
326 | 1, 046
5, 064 | 1,399
900 | 17, 681
6, 290 | 36. 7
13. 1 | 16, 626
8, 318 | 42. 7
21. 4 | | cellaneous | 3,119
18,681
38.8 | 19, 443
25, 553
53, 0 | 3, 939
8. 2 | 24, 202
48, 173
100, 0 | 100. 0
100. 0 | 38, 931
100. 0 | 35. 9
100. 0
100. 0 | | Shipped in— Cylinders or drums_ Tank cars, tank wagons, and pipe | 14, 001 | 140 | 1, 238 | 15, 379 | 31.9 | 14, 416 | 37. 0 | | lines | 4,680 | 25, 413 | 2, 701 | 32, 794 | 68.1 | 24, 515 | 63.0 | | | 18, 681 | 25, 553 | 3, 939 | 48, 173 | 100.0 | 38, 931 | 100. 0 | ### **PRICES** Spot price of Oklahoma natural gasoline, grade 26-70, on specified dates in 1934, with monthly and yearly averages, in cents per gallon ### [National Petroleum News] | Date | Cents | Date | Cents | Date | Cents | |--------
--|---|---|---------|--| | Jan. 1 | 3. 13-3, 25
2. 38-2, 50
2. 50
2. 84
2. 63
2. 75
2. 50-2, 63
2. 38-2, 50
2. 13-2, 25
1. 75-1, 83
1. 72
1. 38
1. 63
2. 50
2. 50
2. 50
2. 50
2. 2. 50
2. 13-2, 25
1. 38
1. 72
1. 38
2. 50
2. | May 7. May 14. May 21. May 28. June 4. June 11. June 18. June 25. Average. July 2. July 9. July 16. July 23. July 30. Average. Average. Aug. 6. Aug. 13. Aug. 20. Aug. 27. Average. | 2. 13-2. 25
2. 38-2. 50
2. 38-2. 50
2. 38
1. 38
1. 25
1. 86
1. 25
1. 50
2. 38-2. 50
3. 00
2. 44
3. 00
3. 00
3. 00
3. 00
3. 00 | Sept. 4 | 3. 0
3. 0
3. 0
3. 0
3. 0
2. 88–3. 0
3. 0 | # SUMMARY OF STATISTICS FOR NATURAL GAS Summary of statistics for natural gas in the United States, 1924 and 1931-34 | | 1924 | 1931 | 1932 | 1933 | 1934 | |---|-------------|-------------|-------------|-------------|-------------| | Produced and delivered to consumers: | | | : | | | | Arkansasmillions of cubic feet | 36, 616 | 13, 300 | 10, 235 | 8, 288 | 7, 024 | | California do do | 189, 692 | 305, 930 | 263, 484 | 259, 799 | 268, 122 | | Kansas do | 25, 580 | 38, 742 | 40, 690 | 41, 596 | 46, 909 | | Kentuckydo | 12,875 | 27, 870 | 29,005 | 31, 380 | 33, 124 | | Louisiana do do | 160, 945 | 224, 155 | 201, 561 | 197, 826 | 225, 713 | | Ohiodo | 47, 396 | 56, 326 | 51, 466 | 47, 929 | 50, 330 | | Oklahomado | 214, 452 | 263, 685 | 255, 487 | 245, 759 | 254, 457 | | Pennsylvania do | 105, 863 | 74, 797 | 61, 611 | 63, 579 | 86, 238 | | Texas do West Virginia do | 107, 247 | 464, 580 | 456, 832 | 475, 691 | 602, 976 | | West Virginia do do | 182, 285 | 124, 797 | 100, 540 | 100, 653 | 109, 161 | | Wyoming do | 46, 036 | 39, 770 | 28, 938 | 25, 830 | 23, 148 | | Wyoming do do Other do | 12, 534 | 52, 484 | 56, 141 | 57, 144 | 63, 519 | | | 1, 141, 521 | 1, 686, 436 | 1, 555, 990 | 1, 555, 474 | 1, 770, 721 | | Consumed: | | | | | | | Domesticdodo | h | ſ 294, 406 | 298, 520 | 283, 197 | 288, 236 | | Commercialdo | 285, 152 | 86, 491 | 87, 367 | 85, 577 | 91, 261 | | Industrial: | ľ | (00, 101 | 9.,00. | 00,011 | 01, 201 | | Fielddo | 393, 437 | 571, 365 | 529, 378 | 1 491, 159 | 554, 542 | | Carbon-black plantsdo | 156, 514 | 195, 396 | 168, 237 | 1 190, 081 | 229, 933 | | Petroleum refineries do | (2) | 75, 548 | 67, 467 | 66, 333 | 79, 965 | | Electric public-utility power plants 3 do | 48 443 | 138, 343 | 107, 239 | 102, 601 | 127, 896 | | Portland cement plants 4 do | (2) | 31, 381 | 21, 440 | 22, 001 | 27, 331 | | Portland cement plants 4 do Other industrial do | 257, 936 | 291, 319 | 274, 687 | 312, 450 | 365, 824 | | | 1, 141, 482 | 1 684 240 | 1, 554, 335 | 1, 553, 399 | 1, 764, 988 | | Domesticpercent_ | D . | 1, 661, 243 | 19 | 18 | 1, 104, 500 | | Commercial do | 25 | K 5 | 6 | 6 | ~ 5 | | Industrialdo | 75 | 77 | 75 | 76 | 79 | | Treated for natural gasoline: | | | | 1 .0 | • • | | Totalmillions of cubic feet | 1 016 276 | 1, 790, 119 | 1, 499, 756 | 1, 551, 464 | 1, 776, 172 | | Percent of total consumption | 89 | \$ 106 | 96 | 100 | \$ 101 | | Congressor | | 1 | | 1 | 202 | | Domestic thousands | 1 0 440 | 6,443 | 6,506 | 1 6, 691 | 6, 984 | | Commercialdo | 3, 443 | 518 | 531 | 1 541 | 582 | | Industrial do | (6) | 7 28 | 7 30 | 7 30 | 7 31 | | Value (at wells) of gas produced: | `` | | 1 | | | | Total thousands of dollars | 105, 779 | 117, 505 | 98, 985 | 97, 096 | 106, 438 | | Average per M cubic feetcents_ | 9.3 | 7.0 | 6.4 | 6.2 | 6.0 | | Value (at points of consumption) of gas consumed: | " | | 1 5.2 | 0.2 | | | Total thousands of dollars | 253, 830 | 392, 156 | 384, 123 | 368, 119 | 394, 257 | | Domesticdo | ls ' | f 208, 262 | 223, 377 | 209, 699 | 215, 029 | | Commercial dodo | 154, 075 |
41, 347 | 44,000 | 42, 582 | 45, 287 | | Industrial do | 99, 755 | 142, 547 | 116, 746 | 115, 838 | 133, 941 | | Average per M cubic feet: | , | | | | 230,022 | | Domesticcents_ | (6) | 70.7 | 74.8 | 74.0 | 74. 6 | | Commercialdo | (6) | 47.8 | 50.4 | 49.8 | 49. 6 | | Industrial | 11.6 | 10.9 | 10.0 | 9.8 | 9. 7 | | Domestic and commercialdo | 54.0 | 65. 5 | 69. 3 | 68. 4 | 68.6 | | = | | 23. 3 | 24.7 | 23. 7 | 22. 3 | | Domestic, commercial, and industrial_do | 22. 2 | | | | | Revised figures. Included under "Other industrial"; separate figures not available. U. S. Geological Survey. Bagley , B. W., Mineral Resources and Statistical Appendix to Minerals Yearbook, chapters on ^{*}Baging, B. W., Mindel Cement. 5 Exceeds 100 percent, as part of the natural gas treated for natural gasoline is blown to the air and not included in total consumption. 6 Figures not available. 5 Exclusive of oil- and gas-field operators. # NATURAL GAS ### (DETAILED STATISTICS) ### By G. R. HOPKINS AND H. BACKUS ### SUMMARY OUTLINE | | Page | | Page | |---------------------------|------|--|------| | Summary | . 31 | Natural-gas wells- | 40 | | Production | 32 | Summary of statistics for natural gasoline and | 42 | | Consumption | 34 | carbon black | 44 | | Interstate transportation | 40 | | . 22 | ### SUMMARY Summary of statistics for natural gas in the United States, 1930-34 | To Canada | | | | | <u> </u> | | |--|---|-------------|-------------|-------------|-------------|----------------------| | Production | | 1930 | 1931 | 1932 | 1933 | 1934 | | Production | N-41 | | | | | | | To Canada | Productionmillions of cubic feet_ | | 1, 686, 436 | 1, 555, 990 | 1, 555, 474 | 1, 770, 721 | | To Mexico | To Canadado | 107 | 74 | 83 | 60 | 79 | | Consumption: | To Mexicodo | 1,691 | | | | | | Domestic | Imports from Canadado | 21 | 44 | 38 | | | | Domestic | Consumption: | | THE RESERVE | | | ; | | Commercial | Domesticdo | 295 700 | 204 406 | 208 520 | 992 107 | 000 000 | | Industrial: | Commercialdo | | | | 85 577 | 01 261 | | Carbon-black plants. | | | 00,101 | 0.,00. | 00,011 | 81, 201 | | Carbon=Dack plants | Fielddo | | | 529, 378 | 1 491, 159 | 554, 542 | | Petrotein Tellineries | Carbon-black plantsdo | | | | 1 190, 081 | 229, 933 | | Portland cement plants do | Electric public-utility power plants 2 | 98, 842 | 75, 548 | 67, 467 | 66, 333 | 79, 965 | | Portland cement plants 3 | do | 120, 290 | 138, 343 | 107, 239 | 102, 601 | 127, 896 | | Domestic | Portland cement plants 3do | | | | | | | Domestic | Other industrialdo | 315, 059 | 291, 319 | 274, 687 | 312, 450 | 365, 824 | | Domestic | | 1, 941, 644 | 1, 684, 249 | 1, 554, 335 | 1, 553, 399 | 1 764 988 | | Industrial | Domestic percent | 16 | 18 | | | 16 | | Number of consumers: Dom stic | Commercial | | | | | 5 | | Dom stic | Number of consumers: | 80 | 77 | 75 | 76 | 79 | | Commercial | Dom stie thousands | 5 035 | 6 443 | 6 506 | 1 6 601 | 6 004 | | Industrial | Commercial | 412 | | | | | | Value (at weils) of gas produced: Total thousands of dollars. 147,048 117,505 98,985 97,096 106,438 Average per M cubic feet cents. 7.6 7.0 7.0 6.4 6.2 106,438 Value (at points of consumption) of gas consumed: thousands of dollars. 415,519 392,156 384,123 368,119 304,257 Domestic do 200,615 208,262 223,377 209,699 215,028 Industrial do 176,346 142,547 116,746 115,838 133,941 Average per M cubic feet: cents. 67.8 70.7 74.8 74.0 74.6 Commercial do 47.8 47.8 50.4 49.8 49.6 Industrial do 11.3 10.9 10.0 9.8 9.7 Domestic and commercial do 63.5 65.5 69.3 68.4 68.6 Treated for natural gasoline: cents. 20,88,778 1,790,119 1,499,756 1,551,464 1,77 | Industrial 4dodo | 21 | | | | | | Value (at weils) of gas produced: Total thousands of dollars. 147,048 117,505 98,985 97,096 106,438 Average per M cubic feet cents. 7.6 7.0 7.0 6.4 6.2 106,438 Value (at points of consumption) of gas consumed: thousands of dollars. 415,519 392,156 384,123 368,119 304,257 Domestic do 200,615 208,262 223,377 209,699 215,028 Industrial do 176,346 142,547 116,746 115,838 133,941 Average per M cubic feet: cents. 67.8 70.7 74.8 74.0 74.6 Commercial do 47.8 47.8 50.4 49.8 49.6 Industrial do 11.3 10.9 10.0 9.8 9.7 Domestic and commercial do 63.5 65.5 69.3 68.4 68.6 Treated for natural gasoline: cents. 20,88,778 1,790,119 1,499,756 1,551,464 1,77 | Number of producing gas wells | 55, 020 | 55, 756 | 54, 160 | 1 53, 660 | | | Average per M cubic feetcents Value (at points of consumption) of gas consumed:thousands of dollarsthousands dollars | Value (at wells) of gas produced: | l | | 10.0 | | 55,250 | | Value (at points of consumption) of gas consumed: 415,519 392,156 384,123 368,119 394,257 Domestic | Totalthousands of dollars_ | | | | | 106, 438 | | Sumed: | Value (at points of consumption) of gas con | 7.6 | 7.0 | 6.4 | 6. 2 | 6.0 | | Total thousands of dollars. 415, 519 200, 615 208, 262 203, 377 209, 699 215, 692 | sumed: | 1 | l | | | | | Domestic | Total thousands of dollars | 415 510 | 202 156 | 204 102 | 200 110 | 004.055 | | Commercial do 38, 558 41, 347 44, 000 42, 582 45, 287 Industrial do 176, 346 142, 547 116, 746 115, 838 133, 941 | Domestic do | 200 615 | | | | | | Industrial | Commercial do | 38 558 | | | | | | Average per M cubic feet: Domestic |
Industrialdodo | | | 116 746 | | | | Commercial | Average per M cubic feet: | 1, | 112,011 | 110,110 | 110,000 | 100, 841 | | Commercial | Domesticcents_ | 67.8 | 70. 7 | 74.8 | 74.0 | 74.6 | | Domestic and commercial | Commercial do | 47.8 | 47.8 | 50.4 | | | | Domestic and commercial | Industrialdo | 11.3 | | | | 9.7 | | Treated for natural gasoline: 21. 4 23. 3 24. 7 23. 7 22. 3 Quantitymillions of cubic feet 2, 088, 778 1, 790, 119 1, 499, 756 1, 551, 464 1, 776, 172 | Domestic and commercialdo
Domestic, commercial, and industrial | 63. 5 | 65. 5 | 69. 3 | | 68.6 | | Quantitymillions of cubic feet_ 2, 088, 778 1, 790, 119 1, 499, 756 1, 551, 464 1, 776, 172 | Treated for natural gasoline: | | | 24.7 | 23.7 | 22. 3 | | Percent of total consumption $\frac{1}{508}$ | Quantitymillions of cubic feet | 2.088.778 | 1 790 119 | 1 400 756 | 1 551 464 | 1 776 170 | | | Percent of total consumption | 108 | 106 | 96 | 100 | 1, 110, 172
8 101 | ¹ Revised figures. 2 U. S. Geological Survey. 3 Bagley, B. W., Mineral Resources and Statistical Appendix to Minerals Yearbook, chapters on Cement. 4 Exclusive of oil- and gas-field operators. 5 Exceeds 100 percent, as part of the natural gas treated for natural gasoline is blown to the air and not included in total consumption. Summary of statistics for natural gas in the United States, 1930-34-Continued | | 1930 | 1931 | 1932 | 1933 | 1934 | |--|------------------|-----------------|-----------------|------------------|-----------------| | Natural gasoline: | | | | | | | Productionthousands of gallons
Value at plants: | 2, 210, 494 | 1,831,918 | 1, 523, 800 | 1, 420, 000 | 1, 535, 360 | | Totalthousands of dollars Average per galloncentscents | 128, 160
5. 8 | 63, 732
3. 5 | 49, 244
3. 2 | 54, 368
3. 8 | 60, 523
3. 9 | | Productionthousands of pounds_
Value at plants: | 379, 942 | 280, 907 | 242, 700 | 1 273, 125 | 328, 828 | | Totalthousands of dollars Average per poundcents | 14, 852
3. 9 | 8, 621
3. 1 | 6, 664
2. 7 | 1 7, 602
2. 8 | 11, 654
3. 5 | # **PRODUCTION** Natural gas produced in the United States and delivered to consumers, 1924-34, by States, in millions of cubic feet | Year | Arkan-
sas | Califor-
nia | Colo-
rado | Illi-
nois | Indi-
ana | Kan-
sas | Ke
tuc | | ouisi-
ana | Mich
gan | i- Mis | | Mon-
tana | New
Mexico | |--|---|--|--|--|---|---|---|---|--|--|---|--|--|---| | 1924
1925
1926
1927
1928
1930
1931
1931
1932
1933
1934 | 36, 616
41, 878
43, 566
30, 450
20, 235
19, 928
18, 585
13, 300
10, 235
8, 288
7, 024 | 189, 692
187, 789
204, 915
212, 364
246, 215
342, 214
334, 789
305, 930
263, 484
259, 799
268, 122 | 48
574
554
1, 725
2, 931
2, 787
3, 312
2, 536
2, 547
2, 449
2, 633 | 4, 072
4, 165
3, 808
3, 741
3, 051
2, 983
2, 890
2, 130
1, 769
1, 631
1, 868 | 1, 168
901
1, 124
1, 290
1, 012
1, 217
1, 337
1, 349
1, 544 | 25, 580
26, 917
38, 095
42, 646
45, 644
38, 469
37, 630
38, 742
40, 690
41, 596
46, 909 | 10,
10,
10,
15,
27,
28,
27,
29,
31, | 770
410
206
383
588
023
870
005
380 | 60, 945
52, 620
57, 423
86, 961
227, 821
261, 138
278, 341
224, 155
201, 561
197, 826
225, 713 | (1)
(1)
46
4, 52
2, 07
47
96
1, 52 | 6
5
2 6
8 8 | 90
179
, 048
, 648
, 679 | 10, 060
10, 949
13, 295
14, 391 | (2)
921
1,019
838
3,054
9,497
19,354
17,604 | | Year | New
York | Ohio | Okla-
homa | Penn-
syl-
vania | Texas | We
Vi
gin | r- | Wyo
min | | | l'otal |)
(
 sa | | | | 1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934 | 5, 908
7, 224
8, 387
9, 624
7, 868
8, 813 | 43, 235
47, 363
51, 381
56, 341
57, 936
63, 394
63, 394
64, 326
65, 47, 929 | 348, 116
263, 685
255, 487
245, 759 | 101, 632
107, 089
105, 709
99, 466
101, 951
88, 706
74, 797
61, 611 | 134, 87
175, 39
254, 06
301, 99
464, 92
517, 88
464, 58
456, 83
475, 69 | 2 180,
2 180,
3 162,
0 163,
8 167,
0 144,
0 124,
2 100,
1 100, | 223
375
018
333
180
797
540
653 | 46, 0
45, 5
46, 5
43, 5
47, 4
44, 6
43, 2
39, 7
28, 9
25, 8
23, 1 | 89
87
82
1.
90
1.
18
1,
19
1,
70
1,
38
1, | 76 1,
61 1,
056 1,
595 1,
169 1,
704 1,
790 1,
148 1,
909 1, | 141, 52
188, 57
313, 01
445, 42
568, 13
917, 69
943, 42
686, 43
555, 99
555, 47
770, 72 | 1
9
8
9
3
1
6
6
0
4 | 253, 856
265, 271
300, 168
317, 930
363, 726
413, 276
416, 090
392, 816
384, 632
368, 540
395, 378 | 22. 2
22. 3
22. 9
22. 9
23. 2
21. 6
21. 4
23. 3
24. 7
23. 7
22. 3 | ¹ Less than 500,000 cubic feet. 9 Included under "Others"; separate figures not available for publication. ### NATURAL GAS # Natural gas produced and consumed in the United States in 1934, by States | | Produce | | delivered to
liveries in o | | ners, includ
tes | ing | Consumed | | ding receipt
States | s from | |--|--|--|--|---|--|----------------------------------
--|-----------------------------|--|--| | State | Quantit | y | Estimated
at the w | | Value at po
consum | | Quantit | У | Value at p | | | | M cubic
feet | Per-
cent
of
total | Total | Average per M cubic feet (cents) | Total | Average per M cubic feet (cents) | M cubic
feet | Per-
cent
of
total | Total | Average per M cubic feet (cents) | | Ala | 1, 868, 000
1, 802, 000
46, 909, 000
33, 124, 000
225, 713, 000
2, 789, 000 | 0,4 15.1 .1 .1 .1 .1 .1 .1 .1 .2.6 6 .1.9 12.725 .68 .1.4 .4 .4 .9 (1) (1) (2.8 .1.4 .4 .4 .9 (1.4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 . | \$485,000
18,739,000
83,000
144,000
483,000
7,850,000
393,000
340,000
47,000
636,000
1,681,000
7,812,000
18,826,000
13,145,000
13,145,000
13,145,000
8,000 | 6.9
7.0
3.2
7.7
26.8
5.6
13.2
3.5
14.1
4.1
8.6
4.2
2.7
26.8
16.7
3.1
21.8
6.4
2.2
4.4
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.7
2.6
4.6
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7 | 73, 055, 000 667, 000 1, 200, 000 1, 060, 000 14, 124, 000 14, 173, 000 42, 531, 000 278, 000 278, 000 4, 415, 000 3, 674, 000 4, 408, 000 25, 728, 000 23, 744, 000 4, 000 4, 000 4, 000 4, 000 4, 000 4, 000 4, 000 4, 000 4, 000 4, 000 | 25. 3
 | 16, 449, 000 2, 640, 000 5, 554, 000 5, 357, 000 12, 864, 000 12, 864, 000 16, 636, 000 65, 599, 000 7, 125, 000 7, 125, 000 7, 129, 000 29, 792, 000 11, 12, 789, 000 11, 120 | 0.4 | 5, 618, 000 73, 055, 090 73, 055, 090 2, 089, 000 3, 552, 000 31, 171, 000 4, 435, 000 6, 347, 000 14, 206, 000 14, 206, 000 1, 421, 000 1, 421, 000 1, 421, 000 1, 420, 000 1, 3224, 000 1, 323, 000 1, 651, 000 1, 327, 000 2, 586, 000 3, 438, 11, 000 4, 923, 000 1, 327, 000 2, 986, 000 1, 327, 000 2, 996, 000 48, 311, 000 | 34. 4
22. 4
27. 2
32. 3
79. 1
36. 6
66. 3
32. 2
23. 5
45. 0
25. 4
30. 0
44. 4
27. 6
31. 7
49. 1
37. 8
81. 5
1. 3
2. 2
3. 3
3. 3
2. 2
3. 3
4. 3
3. 3
4. 4
3. 4
3. 6
3. 6
3. 6
3. 6
3. 6
3. 6
3. 6
3. 6 | | Wash
W. Va
Wyo
Total:
1934
1933 | 104,000
109,161,000
23,148,000
1,770,721,000
1,555,474,000 | | 8, 500
19, 169, 000
527, 000
106, 438, 000
97, 096, 000 | | | | 104,000
52,353,000
16,844,000
 | | | 22, 3 | Less than 0.05 percent. Includes 68,000 M cubic feet piped from Canada. Includes 24,000 M cubic feet piped to Canada. Includes 49,000 M cubic feet piped to Canada. Includes 5,728,000 M cubic feet piped to Mexico. ### CONSUMPTION Natural gas consumed in the United States, 1924-34 | | | | Ι | Domestic | and com | mercial o | onsump | tion | | | | |------|---
--|---|--|---|---|---|---|--|--|--| | | Co | nsumers | (thousa | nds) | Bill | ions of c | ubic feet | | | erage
mber | Average | | Year | Domes | | om-
rcial | Total | Domestic | Com
merci: | | tal | dor
and
me | f M
oic feet
ed per
nestic
l com- | value
at point
of con-
sump-
tion
per M
cubic feet
(cents) | | 1924 | 1 3, 5
1 3, 5
1 3, 6
1 4, 5
1 5, (
2 5, (
2 6, 5 | 508 (731 (1984 (1984 (1988 (19 | 2 531 | 3, 443
3, 508
3, 731
3, 984
4, 344
5, 098
2 5, 448
2 6, 961
2 7, 566 | 1 285
1 272
1 289
1 296
1 321
1 360
296
294
299
283
288 | | 81
87
86
91 | 285
272
289
296
321
360
377
381
386
369
379 | | 82. 8
77. 6
77. 5
74. 3
73. 9
70. 6
69. 1
54. 7
54. 8
51. 0
50. 2 | 54. 0
56. 0
58. 4
60. 8
62. 0
63. 5
65. 5
69. 3
68. 4
68. 6 | | | | | In | dustrial | consumpt | ion | | | | | al con- | | | | Billions of co | | | oic feet | | Aver-
age
value s | | | Aver-
age | | | Year | Field | Carbon
black | Petro-
leum
refin-
eries | Elec-
tric
public-
utility
power
plants | Port-
land
cement
plants 5 | Other
indus-
trial | Total
indus-
trial | point of consum tion per cub fee (cen | nts
on-
on-
op-
on
M
ic
t | Bil-
lions o
cubic
feet | | | 1924 | 393
424
478
549
574
705
723
571
571
529
3 491 | 157
140
131
144
175
261
267
196
168
3 190
230 | (6)
88
122
123
115
104
99
76
68
66
80 | 48
46
53
63
77
113
120
138
107
103
128 | (6)
(6)
(6)
24
31
41
41
31
21
22
27 | 258
218
240
246
275
333
315
291
275
312
366 | 856
916
1,024
1,149
1,247
1,557
1,565
1,303
1,168
1,184
1,386 | 11. 6
12. 3
12. 8
12. 0
13. 2
12. 2
11. 3
10. 9
10. 0
9. 8
9. 7 | | 1, 141
1, 188
1, 313
1, 445
1, 568
1, 917
1, 942
1, 684
1, 554
1, 553
1, 765 | 22. 3
22. 9
22. 0
23. 2
21. 5
21. 4
23. 3
24. 7
23. 7 | Domestic includes commercial; separate figures not available. Includes consumers served with mixed gas; see following table. Revised figures. U. S. Geological Survey. Bagley, B. W., Mineral Resources and Statistical Appendix to Minerals Yearbook, chapters on Cement. Included under "Other industrial"; separate figures not available. Consumption of natural gas used with manufactured gas in the United States in 1934, by States | | Don | estic | Com | mercial | Ind | ustrial | То | tal | |---|--|---|---|--|-------------------------------|---|---|--| | State | Consum-
ers | M cubic feet | Con-
sumers | M cubic feet | Field
(M
cubic
feet) | Other
(M cubic
feet) | M cubic
feet | Value at
points of
consump-
tion | | District of Columbia Illinois Indiana Iowa Kentucky Maryland Missouri Nebraska New York Ohio. Pennsylvania Virginia Total, 1934 Total, 1933 | 953, 130
125, 270
62, 260
67, 220
10, 500
210, 640
430
258, 400
148, 390
47, 350
8, 420
2, 012, 530 | 14, 455, 000
760, 000
1, 257, 000
2, 610, 000
178, 000
2, 060, 000
8, 956, 000
2, 088, 000
1, 087, 000
80, 000 | 54, 660
6, 970
4, 030
7, 200
240
11, 000
30
24, 840
14, 510
4, 040
134, 220 | 2, 809, 000
147, 000
203, 000
714, 000
5, 000
310, 000
1, 000
928, 000
264, 000
3, 000
6, 345, 000 | | 316, 000
3, 186, 000
341, 000
1, 150, 000
535, 000
12, 000
182, 000
833, 000
401, 000
79, 000
7, 038, 000
1 5,053, 000 | 20, 450, 000
1, 248, 000
2, 610, 000
3, 859, 000
195, 000
2, 552, 000
10, 717, 000
3, 178, 000
1, 430, 000
86, 000 | 23, 413, 000
1, 325, 000
1, 862, 000
1, 991, 000
185, 000
2, 856, 000
8, 515, 000
1, 131, 000
105, 000 | ¹ Revised figures—caused by revising
Indiana to the following: Domestic, 101,300 consumers, 366,000 M cubic feet; commercial, 5,480 consumers, 58,000 M cubic feet; industrial, 150,000 M cubic feet; total, 574,000 M cubic feet, \$638,000. | | | Dom | estic | | | Comm | ercial | | Total | | | | |----------------------------------|-----------------------|--------------------------|---------------------------|---------------------|---------------------|-------------------------|-------------------------|--------------------|------------------------|-----------------------------|-----------------------------|--------------------| | State | Consum- | M cubic | Value at r
consum | | Consum- | M cubic | Value at consum | | Consum- | M cubic | Value at 1
consum | | | | ers | feet | Total | A verage
(cents) | ers | feet | Total | Average
(cents) | ers | feet | Total | Average
(cents) | | AlabamaArizona | 21, 820
19, 420 | 787, 000
250, 000 | \$1, 078, 000
583, 000 | 137. 0 | 2, 240 | 451, 000 | \$223,000 | 49. 4 | 24, 060 | 1, 238, 000 | \$1,301,000 | 105, 1 | | Arkansas | 57, 250 | 4, 528, 000 | 2, 538, 000 | 233, 2
56, 1 | 1,600
9,200 | 178, 000
2, 242, 000 | 142, 000
870, 000 | 79. 8
38. 8 | 21, 020 | 428, 000 | 725, 000 | 169. 4 | | California | 1, 321, 020 | 45, 743, 000 | 43, 688, 000 | 95. 5 | 79, 160 | 12, 875, 000 | 7, 765, 000 | 60.3 | 66, 450
1, 400, 180 | 6, 770, 000
58, 618, 000 | 3, 408, 000
51, 453, 000 | 50. 3
87. 8 | | Colorado | 85, 140 | 3, 271, 000 | 3, 032, 000 | 92.7 | 7, 530 | 1, 025, 000 | 664,000 | 64.8 | 92, 670 | 4, 296, 000 | 3, 696, 000 | 86.0 | | Colorado
District of Columbia | (2) | (2) | (2) | (2) | (2) | (2) | (2) | (2) | (2) | (2) | (2) | (2) | | Florida | 1 2.880 | 72,000 | 115,000 | 159.7 | 200 | 12,000 | 15,000 | 125.0 | 3, 080 | 84, 000 | 130,000 | 154.8 | | Georgia. | 60, 640 | 2, 211, 000 | 2, 645, 000 | 119.6 | 3, 860 | 1, 191, 000 | 517, 000 | 43, 4 | 64, 500 | 3, 402, 000 | 3, 162, 000 | 92.9 | | lllinois | 1,060,320 | 16, 462, 000 | 21, 592, 000 | 131. 2 | 60, 150 | 3, 166, 000 | 3, 578, 000 | 113.0 | 1, 120, 470 | 19, 628, 000 | 25, 170, 000 | 128. 2 | | Indiana | 160, 770 | 1, 737, 000 | 1, 950, 000 | 112.3 | 8, 520 | 242,000 | 240, 000 | 99. 2 | 169, 290 | 1, 979, 000 | 2, 190, 000 | 110.7 | | Iowa | 101, 700 | 2, 459, 000 | 2, 881, 000 | 117. 2 | 7, 350 | 1, 042, 000 | 605, 000 | 58. 1 | 109, 050 | 3, 501, 000 | 3, 486, 000 | 99.6 | | Kansas | 176, 220 | 11, 692, 000 | 7, 514, 000 | 64.3 | 16, 850 | 6, 722, 000 | 2, 212, 000 | 32.9 | 193, 070 | 18, 414, 000 | 9, 726, 000 | 52.8 | | Kentucky
Louisiana | 146, 480 | 7, 604, 000 | 4, 136, 000 | 54. 4 | 17, 070 | 1, 896, 000 | 964, 000 | 50.8 | 163, 550 | 9, 500, 000 | 5, 100, 000 | 53. 7 | | Louisiana | 130, 060 | 6, 488, 000 | 4, 573, 000 | 70. 5 | 17, 590 | 3, 388, 000 | 1, 306, 000 | 38. 5 | 147, 650 | 9, 876, 000 | 5, 879, 000 | 59. 5 | | Maryland | ² 156, 180 | 2 2, 903, 000 | 2 2, 432, 000 | 2 83. 8 | 2 8, 430 | ² 407, 000 | 2 312, 000 | 2 76. 7 | 2 164, 610 | 2 3, 310, 000 | 2 2, 744, 000 | 2 82. 9 | | Michigan
Minnesota | 36, 720
13, 080 | 822, 000 | 926, 000
469, 000 | 112.7 | 1,760 | 169, 000 | 102, 000 | 60.4 | 38, 480 | 991, 000 | 1, 028, 000 | 103. 7 | | Mississippi | 27, 550 | 456, 000
1, 695, 000 | 1, 222, 000 | 102.9
72.1 | 1,090
4,520 | 767, 000
1, 226, 000 | 332, 000 | 43.3 | 14, 170 | 1, 223, 000 | 801,000 | 65. 5 | | Missouri | 338, 880 | 8, 872, 000 | 7, 968, 000 | 89.8 | 31, 370 | 3, 237, 000 | 371, 000
2, 176, 000 | 30. 3
67. 2 | 32, 070
370, 250 | 2, 921, 000
12, 109, 000 | 1, 593, 000 | 54. 5 | | Montana | 25, 130 | 3, 325, 000 | 1, 680, 000 | 50.5 | 3, 950 | 2, 666, 000 | 791, 000 | 29.7 | 29, 080 | 5, 991, 000 | 10, 144, 000
2, 471, 000 | 83. 8
41. 2 | | Nehraska | 49, 150 | 2, 646, 000 | 2, 051, 000 | 77. 5 | 5, 280 | 813, 000 | 467, 000 | 57.4 | 54, 430 | 3, 459, 000 | 2, 518, 000 | 72.8 | | New Mexico | 12, 210 | 861,000 | 632, 000 | 73. 4 | 1, 140 | 553, 000 | 190, 000 | 34.4 | 13, 350 | 1, 414, 000 | 822,000 | 58.1 | | New York | 338, 120 | 13, 983, 000 | 10, 862, 000 | 77. 7 | 30, 820 | 1, 916, 000 | 1, 416, 000 | 73. 9 | 368, 940 | 15, 899, 000 | 12, 278, 000 | 77. 2 | | North Dakota | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (8) | (3) | (3) | (3) | (3) | | Ohio | 1, 087, 650 | 53, 248, 000 | 32, 137, 000 | 60.4 | 105, 000 | 10, 800, 000 | 6, 205, 000 | (3)
57. 5 | 1, 192, 650 | 64, 048, 000 | 38, 342, 000 | 59. 9 | | Oklahoma | 207, 230 | 16, 714, 000 | 7, 548, 000 | 45. 2 | 26, 490 | 6, 424, 000 | 2, 117, 000 | 33. 0 | 233, 720 | 23, 138, 000 | 9, 665, 000 | 41.8 | | Pennsylvania | 606, 340 | 33, 574, 000 | 20, 753, 000 | 61.8 | 54, 360 | 7, 121, 000 | 3, 997, 000 | 56. 1 | 660, 700 | 40, 695, 000 | 24, 750, 000 | 60.8 | | Pennsylvania
South Dakota | 11, 630 | 711, 000 | 598, 000 | 84.1 | 1, 250 | 794,000 | 323, 000 | 40.7 | 12,880 | 1, 505, 000 | 921,000 | 61. 2 | | Tennessee | 34, 120 | 1, 602, 000 | 1, 487, 000 | 92.8 | 4, 200 | 1, 486, 000 | 585, 000 | 39. 4 | 38, 320 | 3, 088, 000 | 2, 072, 000 | 67. 1 | | Texas | 495, 560 | 23, 540, 000 | 19, 850, 000 | 84.3 | 50,000 | 12, 673, 000 | 4, 783, 000 | 37.7 | 545, 560 | 36, 213, 000 | 24, 633, 000 | 68. 0 | | Utah | ³ 24, 260 | ⁸ 1, 765, 000 | 8 1, 213, 000 | ³ 68. 7 | ³ 1, 230 | ⁸ 666, 000 | ⁸ 242, 000 | 8 36. 3 | ⁸ 25, 490 | ³ 2, 431, 000 | ³ 1, 455, 000 | 3 59. 9 | | Virginia | (2) | (2) | (3) | (2) | (2) | (2) | (2) | (2) | (2) | (2) | (2) | (2) | | Washington
West Virginia
Wyoming | (3)
160, 320
15, 560 | (3)
16, 459, 000
1, 756, 000 | 6, 077, 000
799, 000 | (8)
36. 9
45. 5 | 18, 000
1, 930 | 4, 288, 000
825, 000 | 1, 477. 000
300, 000 | (3)
34. 4
36. 4 | (3)
178, 320
17, 490 | 20, 747, 000
2, 581, 000 | (3)
7, 554, 000
1, 099, 000 | (3)
36. 4
42. 6 | |--|----------------------------|------------------------------------|-------------------------|-----------------------|-------------------|-------------------------|-------------------------|-----------------------|----------------------------|-----------------------------|-----------------------------------|-----------------------| | Total, 1934 | 6, 983, 410 | 288, 236, 000 | 215, 029, 000 | 74. 6 | 582, 140 | 91, 261, 000 | 45, 287, 000 | 49. 6 | 7, 565, 550 | 379, 497, 000 | | 68. 6 | | Total, 1933 | 4 6, 690, 700 | 283, 197, 000 | 209, 699, 000 | 74. 0 | 4 541, 520 | 85, 577, 000 | 42, 582, 000 | 49. 8 | 4 7, 232, 220 | 368, 774, 000 | | 68. 4 | ¹ Includes natural gas used with manufactured gas. 2 Maryland includes District of Columbia and Virginia. 3 Utah includes North Dakota and Washington. 4 Revised figures—caused by revisions to the following: Indiana—domestic consumers, 132,930; commerical consumers, 6,890; total consumers, 139,820; Oklahoma—domestic consumers, 202,410; total consumers, 226,230. # Industrial consumption of natural gas in the United States in 1934, by States and uses | | operatin | drilling,
ng, and
g gasoline
y plants) | Manufa | cture of car
black | rbon | Fuel | at petroleu
portlar | m refinerie
ad cement | es, electric p
plants, and | ublic-utility
other indus | power plan
trial | nts, | Tots | al industrial |). | |---|-----------------------------------|---|-----------------|-----------------------|-------------------------|--------------------------------|---|------------------------------|--|---|--|---|---|---|---| | State | | Value at | | Value at
of consum | | | | M cubic fe | et | | Value at
of consun | points
aption | | Value at
of consum | | | | M cubic
feet (esti-
mated) | points of
consump-
tion (esti-
mated) | M cubic
feet | Total | Aver-
age
(cents) | Petro-
leum re-
fineries | Electric
public-
utility
power
plants | Portland
cement
plants | Other in-
dustrial | Total | Total | Average cents) | M cubic
feet | Total | Average (cents) | | Alabama
Arizona
Arkansas
California
Colorado
Dist. of Columbia | l . | | 1 | | | | 1 469 000 | | 6, 694, 000
3, 833, 000
1 8, 891, 000
150, 265, 000 | | 1,752,000
13,989,000 | 20. 9
13. 6
13. 9 | 4, 301, 000
18, 305, 000
209, 504, 000 | 21, 602, 000 | 20. 9
12. 1
10. 3 | | Florida
Georgia
Illinois
Indiana | 1, 435, 000 | 111, 000 | | | | 646, 000 | 199, 000
358, 000 | | 1,756,000
23,017,000 | (2)
470, 000
1, 955, 000
24, 021, 000 | 73, 000
390, 000
5, 890, 000
2, 240, 000 | (2)
15. 5
19. 9
24. 5
20. 6 | (2)
470, 000
1, 955, 000
25, 456, 000
10, 885, 000 | (2)
73,000
390,000
6,001,000
2,245,000 | (2)
15. 5
19. 9
23. 6
20. 6 | | Iowa
Kansas
Kentucky
Louisiana
Maryland
Michigan | 12, 678, 000 | 868, 000 | | | | 1, 028, 000 | 12, 040, 000 | 4,007,000 | 10, 172, 000 | 13, 135, 000
34, 5 7, 000
3, 995, 000
61, 378, 000
2 374, 000
917, 000 | 1, 874, 000
4, 835, 000
1, 148, 000
6, 952, 000
2 266, 000
305, 000 | 14.0
28.7
11.3
371.1 | 13, 135, 000
47, 185, 000
4, 606, 000
127, 537, 000
2 374, 000
1, 798, 000 | 8, 927, 000
2 266, 000 | 12. 1
27. 1
7. 0
2 71. 1 | | Minnesota
Mississippi
Missouri
Montana
Nebraska |
25, 000
12, 000
1, 348, 000 | 3,000
2,000
100,000 | | | | 3, 000
228, 000 | 747,000 | (1) | 4, 785, 000
3, 526, 000
115, 000, 000
4, 322, 000
17, 068, 000 | 4, 273, 000
17, 671, 000
5, 105, 000 | 1, 012, 000
569, 000
3, 078, 000
867, 000
1, 565, 000 | 17. 1
13. 3
17. 4
17. 0 | 1, 798, 000
5, 902, 000
4, 298, 000
17, 683, 000
6, 453, 000
9, 330, 000 | 393, 000
1, 012, 000
572, 000
3, 080, 000
967, 000
1, 565, 000 | 17. 1
13. 3
17. 4
15. 0 | | New Mexico
New York | 10, 565, 000
278, 000 | 335, 000
94, 000 | | | | 5,000
1,665,000 | 2, 268, 000
25, 000 | | 1, 373, 000
13, 342, 000 | 3, 646, 000
15, 032, 000 | 513, 000
2, 937, 000 | 14. 1 | 14, 211, 000
15, 310, 000
(3)
30, 950, 000 | 848, 000
3, 031, 000
(3)
10, 581, 000 | 6. 0
19. 8 | | North Dakota
Ohio
Oklahoma
Pennsylvania
South Dakota
Tennessee | 183, 635, 000
4, 850, 000 | 6, 566, 000
1, 321, 000 | (4) | (4) | (4) | 9, 885, 000
929, 000 | 6, 654, 000
142, 000
473, 000 | (1) | 1426,409,000
40,858,000
11,923,000
1,466,000 | 2, 396, 000 | 11, 580, 000
406, 000 | 4 10. 1
27. 6
16. 9 | 226, 583, 000
46, 779, 000
2, 396, 000 | 10, 921, 000
12, 901, 000
406, 000 | 48. 2
27. 6
16. 9 | | Texas
Utah
Virginia | 189, 319, 000
141, 000 | | 168, 771, 000 | | | 28, 430, 000
1, 000 | | 4, 513, 000 | 42, 922, 000
3 5, 214, 000
(2) | 106, 744, 000
3 5, 420, 000
(2) | 14, 687, 000
3 640, 000
(2) | ⁸ 11.8 | (2) | ³ 646, 000
(2) | ⁸ 12. 1 | |---|--------------------------------|-----------------------------|--------------------------------|-----------------------------|--------------------------|------------------------------|--------------------------------|------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|-------------------|--------------------------------|------------------------------|--------------------| | West Virginia
Wyoming
Miscellaneous | | | | (4)
287, 000 | (⁴)
3. 9 | 952, 000
4, 269, 000 | | 18, 151, 000 | 4 3, 395, 000 | 20, 181, 000
4 8, 013, 000 | | | | | | | Total, 1934
Total, 1933 | 554, 542, 000
\$491,159,000 | 28, 356, 000
528,851,000 | 229, 933, 000
\$190,081,000 | 4, 016, 000
5 3,821, 000 | 1. 7
2. 0 | 79, 965, 000
66, 333, 000 | 127, 896, 000
102, 601, 000 | 27, 331, 000
22, 001, 000 | 365, 824, 000
312, 450, 000 | 601, 016, 000
503, 385, 000 | 101, 569, 000
83, 166, 000 | | 1,385,491,000
1,184,625,000 | | | ¹ Gas used at portland cement plants included under "Miscellaneous" for United States total and under "Other industrial" for State total to avoid disclosing figures of individual operators. ² Maryland includes District of Columbia and Virginia. ³ Utah includes North Dakota. ⁴ Gas used in manufacture of carbon black included under "Miscellaneous" for United States total and under "Other industrial" for State total to avoid disclosing figures of individual operators. § Revised figures—caused by revising Texas to the following: Field, 134,475,000 M cubic feet, \$7,233,000; carbon black, 190,081,000 M cubic feet, \$2,461,000. # INTERSTATE TRANSPORTATION Interstate transportation of natural gas in 1934 1 | Mississippi | State from which gas
was transported | State through which gas was transported | State to which gas was transported | M cubic
feet | |--|---|---|------------------------------------|--| | Indiana | lorado | Wyoming | Utah
Wyoming | 1, 772, 000
143, 000 | | Illinois Kentucky Ohio | inois | | »Indiana | 1, 915, 000
4, 000 | | Kentucky | diana | | | 3,000 | | Missouri Illinois | - | | Kentucky | 152, 000
2, 000 | | Missouri Illinois | | | 1= 1 | 157, 000 | | Illinois Nebraska | | Missouri | Colorado | 286, 000
2, 019, 000 | | Nebraska | 1- | Q0 | h | 703,000 | | Iowa | | Nebraska | Towa | 5, 617, 000 | | Nebraska | - | Iowa | | 3, 621, 000 | | Nebraska | <u> </u> | | Missouri
Nebraska | 4, 716, 000
6, 321, 000 | | Nebraska | | Nebraska |) | 2,000 | | Nest Virginia | · | | () | 488,000 | | West Virginia | | Nebraska
Iowa | South Dakota | 651,000 | | West Virginia | | | | 04 404 000 | | Virginia Maryland Illinois Indiana Illinois Indiana Illinois Indiana Maryland Maryland Maryland Virginia Virginia Virginia Virginia Maryland Ohio do do do do do do Virginia Maryland Virginia do do do do Virginia Virginia do Virginia do Virginia Transas do do do Virginia Transas do do do Virginia Transas Virginia Transas do do Virginia do Virginia | | <u></u> | | 24, 424, 000 | | Indiana | | West Virginia
Virginia | District of Columbia | 1, 837, 000 | | West Virginia Virginia Virginia Virginia Virginia Virginia Virginia Virginia Virginia Ohio O | | Indiana | Illinois | 111,000 | | Virginia | - | West Virginia
Virginia | i) | 512, 000
391, 000 | | District of Columbia | | Virginia
Maryland | }do | 133, 000 | | Virginia | _ | District of Columbia | J
Ohio | 1.193.900 | | Virginia | | do | do | 1, 193, 900
3, 837, 999
10, 155, 000 | | West Virginia | - | Virginio | }do | 18,000 | | Virginia | | West Virginia | Virginia | 173, 000 | | District of Columbia | - | Virginia | }do | 60,000 | | Louisiana Mississippi | | District of Columbia |] | | | Mississippi | - | | West Virginia | 6, 188, 000 | | Arkansas | nisis | | | 26, 608, 000 | | Mississippi | usiana | | | 7, 457, 000
17, 528, 000 | | Arkansas | | Mississippi |) | 5, 331, 000 | | Mississippi | ! . | Arkansas | VIlinois | 10, 971, 000 | | Arkansas | <u> </u> | |) | 1, 617, 000 | | | | Arkansas | do | 1, 001, 000
9, 274, 000 | | Mississippi Texas 3 Mississippi Alabama | - | do | | 9, 274, 000
8, 050, 000 | | Mississippi Alahama | _ | wississippi |) | 32, 117, 000 | | Mississippi Alahama | | | | 93, 346, 000 | | Alabama Florida Georgia | ssissippi | • | Alahama | 475, 000 | | uo Georgia | | Alabama | Florida | 554,000 | | Louisiana | - | u0 | GeorgiaLouisiana | 554, 000
26, 000
2, 589, 000 | | | | | | 3, 644, 000 | | - | | | | 0,011,000 | ¹ Includes exports to Canada and Mexico. # NATURAL GAS # Interstate transportation of natural gas in 1934—Continued | State from which gas
was transported | State through which gas was transported | State to which gas was transported | M cubic feet |
--|---|--|---| | Missouri | MissouriIllinois | | 164, 000
60, 000 | | ı | | | 224, 000 | | Montana | | North DakotaSouth Dakota | 1, 112, 000
2, 609, 000 | | Maria de la companya del companya de la companya de la companya del companya de la l | | | 3, 721, 000 | | Mew Mexico | Texas | 1.4 | 4, 729, 000 | | | New Mexico | Arizona Colorado | 111,000 | | | | Texas | 4, 184, 000 | | | | | 9, 024, 000 | | New York | | Canada | 24, 000 | | | | Pennsylvania | 2,000 | | | | | 26,000 | | Ohio | | Indiana | 765, 000 | | | | Kentucky
West Virginia | 765, 000
34, 000
263, 000 | | | | ************************************** | 1, 062, 000 | | | | | | | Oklahoma | | Arkansas
Kansas | 523, 000
10, 413, 000 | | | Kansas | Missouri | 10, 413, 000
2, 880, 000
181, 000 | | | do | Nebraska
Texas | 1, 334, 000 | | | | | 15, 331, 000 | | Dommandranda | New York | Canada | 49 000 | | Pennsylvania | Maryland | District of Columbia | 49,000
451,000
95,000 | | | Maryland | }do | 33,000 | | | District of Columbia | New York | 24, 957, 000 | | | West Virginia | Ohio | 24, 957, 000
492, 000
161, 000 | | | Maryland | Virginia | 15,000 | | | District of Columbia | West Virginia | 429,000 | | | | | 26, 682, 000 | | _ | 35 | G. Land | | | Texas | New Mexico | Colorado | 15, 331, 000 | | | Kansas
Nebraska | Illinois | 27, 915, 000 | | | Iowa | [[| | | | Oklahoma
Kansas | }do | 2, 037, 000 | | • | Missouri | | | | | Oklahoma
Kansas | | | | | Nebraska | Indiana | 8, 368, 000 | | | Illinois | | | | | Oklahoma
Kansas | | 007 000 | | | Missouri | }do | 807, 000 | | | Illinois | :K | | | | Kansas | lowa | 11, 019, 000 | | | Nebraska
Oklahoma | Kansas | 32, 701, 000 | | | | Louisiana | 2, 457, 000
5, 728, 000 | | | Oklahoma | 1 | 0, 120,000 | | | Kansas | Minnesota | 3, 504, 000 | | | Iowa | | | | | OklahomaKansas | }Missouri | 12, 597, 000 | # Interstate transportation of natural gas in 1934—Continued | State from which gas
was transported | State through which gas was transported | State to which gas was transported | M cubic
feet | |---|--|------------------------------------|--| | Texas (continued) | Oklahoma
Kansas
Nebraska |
 Nebraska | 2,000 | | | Iowa. Oklahoma Kansas. Oklahoma Kansas Nebraska Iowa. New Mexico. Colorado. | .11 | 5, 471, 000
574, 000
10, 107, 000
630, 000
316, 000
139, 564, 000 | | West Virginia | Virginia Maryland Virginia do Maryland District of Columbia Kentucky Virginia Maryland Virginia Maryland District of Columbia |) | | # NATURAL-GAS WELLS # Approximate number of gas wells operated in the United States, 1933-34 | State Arkansas | 1933 | 1934
———————————————————————————————————— | State Montana | 1933 | 1934 | |---|---|--|--|---|--| | California Colorado, New Mexico, Utah, and Washington Illinois. Indiana Kansas. Kenbucky and Tennessee Louisiana and Mississippi. | 60
100
1,030
3,140
1,890
1,340 | 30
70
90
1,010
2,950
1,940
1,360 | New York Ohio Oklahoma. Pennsylvania Texas West Virginia. Wyoming. | 2,040
6,610
2,770
19,620
1,560
12,690
100 | 2, 030
6, 570
2, 710
19, 410
1, 620
12, 660 | | Michigan Missouri and South Dakota | 1 60
180 | 110
160 | | ¹ 53, 660 | 53, 260 | ¹ Revised figures. Gas wells drilled in the United States in 1934, by States and by counties or districts 1 | State and county or
district | Num-
ber of
gas
wells | State and county or
district | Num-
ber of
gas
wells | State and county or
district | Num
ber o
gas
wells | |---------------------------------|--|---|--------------------------------|--------------------------------------|------------------------------| | California | (2) | Louisiana—Continued. Total Louisiana: | | Ohio—Continued.
Northwestern—Con. | | | Colorado: | | 1934 | 80 | Henry | | | Boulder | 1 | 1933 | 50 | Sandusky | | | Moffat | 3 | 1300 | | Seneca | | | Monav | | Michigan: 3 | | Seneca | | | | 4 | Isabella | 31 | | | | Total, 1933 | 6 | Mecosta | 11 | Total, 1933 | 4 | | | | Montcalm | 4 | 10001, 1900 | - 4 | | Ilinois: | | Muskegon | 1 | Total Ohio: 1934 | 43 | | Crawford | 1 | | | 1933 | 28 | | m-4-1 1000 | | Motol 1022 | 47
11 | | | | Total, 1933 | 1 | Total, 1933 | | Oklahoma: | 2012 | | ndiana: | | Mississippi: | | CarterChoctaw | | | Daviess | 4 | Hinds | 5 | Choctaw | | | Dubois | i | Rankin | 2 | Creek | 1 | | Gibson | 5 | | | Urady | | | Hancock | 2 | | 7 | Grady
Hughes
Kay | | | Hancock
Harrison | $\tilde{2}$ | Total, 1933 | 16 | Latimer | | | Iav | 10 | | | Le Flore | | | Knox
Madison | 3 | Montana: | | Logan | | | Madison | 2 | Big Horn | 1 | Logan
McIntosh | | | Marion | 1 | Glacier | 4 | Murray | | | Monroe | 1
5
2
10
3
2
1
1
2
4
1
2
1 | Liberty | 7 | Muskegon | | | Perry | 2 | Phillips
Toole | 8 | Okfuskee | | | PikeRandolph | 4 | 10016 | | Uklanoma | | | Sullivan | 1 | | 21 | Okmulgee | | | Washington | 1 | Total, 1933 | 12 | Osage | | | W ashington | | 1 00001, 100000000000000000000000000000 | | Pittsburg | | | | 41 | New Mexico: | | Pontotoc | | | Total, 1933 | 55 | Eddy | 8 | Seminole
Stephens | | | | | Lea | 3 | Tulsa | | | Cansas: | | San Juan | 1 | Wagoner | | | Butler | 2 | Torrance | 1 | Wagoner | | | ChaseCowley | .1 | | 13 | | | | Cowley | 5 | Total, 1933 | 1 | Total, 1933 | | | Kitk | 2 | 1 0,000, 1000, 1000 | | 7 | | | EllsworthReno | 2 | Ohio: | | Pennsylvania and New
York: | | | Reno | 2
1
5
2
2
2
4 | Central and eastern: | | Bradford | | | RiceRush | 4 | Ashland | 18 | Butler-Armstrong | | | Rush | | Athens | 24 | Southwest Pennsylva- | | | | 22 | Belmont | 21 | nia | | | Total, 1933 | 16 | Coshocton | 7 | Venango-Clarion | | | 10001, 1000111111 | | Cuyahoga
Fairfield | 3
11 | | | | Kentucky: | | Gallia | 2 | Total, 1933 | | | Allen | 1 | Guernsey | 55 | 10641, 1700 | | | Allen
Hancock | 1
7 | Guernsey
Hocking | 1 | Texas: | | | Ohio | 7 | Holmes | 14 | Gulf coast: | | | | | Huron | 3 | Ace | | | M-4-1 1000 | 9 | Jefferson | 1 | Arriola
Barbers Hill | | | Total, 1933 | 10 | Knox | 20 | Barbers Hill | 1 | | ouisiana: | | Lawrence | 2 | Coletto Creek | | | Gulf coast: | | Licking | 14 | Conroe | | | Grand Island | 1 | Lorain | 13 | Esperson | | | Lockport | i | Medina | 14 | Eureka | | | Vinton | i | Meigs | 67 | Greta | | | | | Monroe | 5
15 | Hankamer
Livingston | | | Total, 1933 | 3 2 | Muskingum | | Louise | | | 10tai, 1900 | | Perry
Richland | 3 | Manyel | | | Northern: | | Scioto | 9
3
1 | Manvel
McFaddin-O'Connor | | | Bossier | 5 | Stark | 60 | Pierce Junction | | | Caddo | 34 | Summit | 2 | Pledger | 1 | | Claiborne | î | Tuscarawas | 10 | Port Neches | | | De Soto | 2 | Vinton | 8 | Raccoon Bend | 1 | | De Soto
East Carroll | 1
2
1
5 | Washington | 8
7 | Refugio | 1 | | Morehouse | 5 | Wayne | 2 | SourlakeSplendora | | | Ouachita | 22 | | 412 | Splendora | | | Richiand | 1 | Total, 1933 | 245 | Tomball | | | Sabine | 1 | 10001, 1500 | 270 | Vanderbilt | ł | |
Union | 5 | Northwestern: | | Miscellaneous | l | | | 77 | Darke | 1 | | | | | | | | | | | Total, 1933 | 48 | Hancock
Hardin | 1
5 | Total, 1933 | | From Oil and Gas Journal, except Michigan for 1934. California not reported. 1934: Department of Conservation, Michigan. Gas wells drilled in the United States in 1934, by States and by counties or districts— Continued | State and county or
district | Num-
ber of
gas
wells | State and county or
district | Num-
ber of
gas
wells | State and county or
district | Num-
ber of
gas
wells | |--|--------------------------------|---|--------------------------------|--|--------------------------------| | Texas—Continued. Rest of State: Northern. central. | | Texas—Continued. Rest of State—Contd. Panhandle | | West Virginia—Contd.
KanawhaLincoln | 6 | | eastern, and southwestern: | | Carson | 13
11 | Logan Marion | 1 | | Anderson
Bee | 5
10 | Hutchinson
Moore | 12 | Marshall
Mingo | 5 | | Bexar
Brown | 2 4 | Wheeler | 19 | Monongalia | 5 | | Callahan | 10 | Total, 1933 | 58
24 | PleasantsPutnam | 4 | | Comanche
Cooke | 1 | West Texas: | | Ritchie
Roane | 39
17 | | Duval
Eastland | 29
9 | Ward
Winkler | 2
3 | Wayne
Wetzel | 9 | | Freestone
Hidalgo
Jack | | Total, 1933 | 5 3 | Wirt
Miscellaneous | | | Jim Wells
Karnes | 1 2 | Total "Rest of | | Total, 1933 | 243
160 | | Leon
Live Oak | 2 3 | State": | 209 | Wyoming | | | McMullen
Montague | 4 | 1933 | 108 | Carbon | 2 | | Nueces
Palo Pinto | 1
6 | Total Texas: | 291 | Hot Springs
Park
Sweetwater | 1 | | Panola | 2
1
5 | West Virginia: | 140 | Sweetwater | | | Rusk
San Patricio
Starr | 1
11 | Boone Cabell | 25
27 | Total, 1933 | 14 | | Stephens Throckmorton | i | Calhoun | 37 | United States: | 4 1, 373 | | Webb
Wichita | 8 | Doddridge
Gilmer | 3
24 | 1933 | 4 932 | | YoungZapata | 2
14 | | | | 1 147 1.
11 | | Total, 1933 | 146
81 | | | | | | | | | | | | ⁴ Exclusive of California. # SUMMARY OF STATISTICS FOR NATURAL GASOLINE AND CARBON BLACK Salient statistics for natural gasoline in the United States, 1930-34 | | 1930 | 1931 | 1932 | 1933 | 1934 | |--|-----------|-------------------|----------------------|-------------|-----------| | Number of plants operating | 1, 035 | 937 | 830 | 779 | 766 | | Production: | | | | | | | By States: | } | | | | | | Californiamillions of gallons | 830 | 680 | 552 | 496 | 506 | | Texasdo | 491 | 427 | 371 | 367 | 467 | | Oklahomado | 591 | 455 | 379 | 360 | 355 | | West Virginiado | 63 | 53 | 44 | 40 | 42 | | Louisianado | 74 | 58 | 46 | 37 | 41 | | Other Statesdo | 161 | 159 | 132 | 120 | 124 | | | 2, 210 | 1,832 | 1, 524 | 1, 420 | 1, 535 | | By processes: | | | | | | | Compression processdo | 250 | 212 | 182 | 161 | 148 | | Absorption and combination processes_do | 1,942 | 1,609 | 1, 333 | 1, 251 | 1,380 | | Charcoal do | 18 | 1,000 | 1,550 | 8 | 7,000 | | | 2, 210 | 1,832 | 1, 524 | 1,420 | 1, 535 | | Stocks at natural-gasoline plants Dec. 31do | 24 | 27 | 19 | ∫ 28 | 36 | | • | | | | 1 42 | , | | Value: | 100 | | 40 | | | | Total (at plants)millions of dollars | 128 | 64 | 49 | 54 | 61 | | Average per gallon (at plants)cents_
Average spot price, Oklahoma natural gaso- | 5.8 | 3. 5 | 3. 2 | 3.8 | 3.9 | | linecents | 2 5. 4 | 2 3. 2 | \$ 2.3 | \$ 2.9 | 1 2.6 | | Natural gas treatedmillions of cubic feet | | | | | | | | 2,088,778 | 1,790,119
1.02 | 1, 499, 756
1, 02 | 1, 551, 464 | 1,776,172 | | Average yield per thousand cubic feet_gallons_ | 1.06 | 1.02 | 1.02 | 0.92 | 0.86 | ¹ For comparison with 1934. ² Grade A in Oklahoma. ³ Grade 26-70 in Oklahoma. Salient statistics for carbon black made from natural gas in the United States, 1930-34 | | 1930 | 1931 | 1932 | 1933 | 1934 | |--|--|---|---|---|---| | Number of producers reporting
Number of plants | 33
69 | 26
58 | 24
50 | 1 25
1 51 | 25
50 | | Quantity produced: By States and districts: Louisianapounds_ | 96, 729, 000 | 57, 485, 000 | 42, 260, 000 | 54, 470, 000 | 66, 538, 000 | | Texas: Breckenridge district_do Panhandle districtdo | 16, 905, 000
254, 844, 000 | 13, 332, 000
197, 546, 000 | ² 23, 071, 000
177, 369, 000 | ² 24, 499, 000
¹ 194, 156, 000 | ² 24, 887, 000
237, 403, 000 | | Total Texas do
West Virginia do
Other States do | 271, 749, 000
(3)
11, 464, 000 | 210, 878, 000
12, 544, 000 | ² 200, 440, 000 | 12218, 655, 000 | ² 262, 290, 000 | | Total United States_do | 379, 942, 000 | 280, 907, 000 | 242, 700, 000 | 1 273, 125, 000 | 328, 828, 000 | | By processes: Channel processdo Other processes 4do | 350, 254, 000
29, 688, 000 | 255, 322, 000
25, 585, 000 | 224, 536, 000
18, 164, 000 | 1 238, 026, 000
35, 099, 000 | 293, 546, 000
35, 282, 000 | | Stocks held by producers Dec. 31 pounds | 259, 245, 000 | 280, 010, 000
5281, 667, 000 | 257, 998, 000 | 1 155, 969, 000 | 171, 799, 000 | | Lossesdo | 1, 361, 000 | 1, 716, 000 | 4, 814, 000 | 686, 000 | 386, 000 | | Quantity sold: Domestic: To rubber companiesdo To ink companiesdo To paint companiesdo For miscellaneous purposes pounds | 128, 572, 000
19, 220, 000
11, 922, 000
7, 565, 000 | 134, 315, 000
15, 184, 000
6, 760, 000
5, 453, 000 | 130, 380, 000
18, 341, 000
7, 636, 000
5, 126, 000 | 191, 358, 000
18, 539, 000
6, 260, 000
1 6, 025, 000 | 165, 446, 000
16, 146, 000
5, 365, 000
5, 035, 000 | | Total domestic solddo
Exportdo | 167, 279, 000
84, 260, 000 | 161, 712, 000
96, 714, 000 | 161, 483, 000
100, 072, 000 | 1 222, 182, 000
152, 286, 000 | 191, 992, 000
120, 620, 000 | | Total solddo
Value (at plants) of carbon black
produced: | 251, 539, 000 | 258, 426, 000 | 261, 555, 000 | 1 374, 468, 000 | 312, 612, 000 | | TotalAverage per poundcents
Estimated quantity of natural gas | \$14, 852, 000
3. 91 | \$8, 621, 000
3. 07 | \$6, 664, 000
2. 75 | 1 \$7, 602, 000
1 2. 78 | \$11, 654, 000
3. 54 | | used | 266, 625, 000 | 195, 396, 000 | 168, 237, 000 | 1 190, 081, 000 | 229, 933, 000 | | pounds | 1.43 | 1.44 | 1. 44 | 1.44 | 1.43 | ¹ Revised figures. 2 Oklahoma and Wyoming included with Breckenridge district, Texas. 3 Included under "Other States." 4 1930 and 1932-33: Disk, Lewis, roller, "special", and thermatomic; 1931: Disk, roller, "special", and thermatomic; 1934: Lewis, roller, "special", and thermatomic. 5 For comparision with 1932. # ORE CONCENTRATION #### (DETAILED STATISTICS) ### METALLURGICAL RESULTS AND FLOTATION REAGENTS By T. H. MILLER AND R. L. KIDD ### SUMMARY OUTLINE | and the second s | Page | · · · · · · · · · · · · · · · · · · · | Page | |--|------|---------------------------------------|------| | Summary | 47 | Lead-zinc ores | 56 | | Consumption of reagents | 48 | Zinc ores | 58 | | Copper ores. | 50 | Gold and silver ores | 60 | | Lead ores and copper-lead ores | 54 | | - 00 | Summary.—The total output of nonferrous ore in 1934 was 35,840,737 tons, an increase of 45 percent from 24,712,694 tons in 1933; production was 26,321,679 tons in 1932 and 54,764,842 tons in 1931. There were substantial increases in the output of copper ore, gold and silver ore, zinc ore, and lead-zinc ore. Of the total ore produced, 27,167,530
tons (75.80 percent) were treated by concentration, 1,754,010 tons (4.89 percent) were shipped direct to smelters, 5,724,192 tons (15.97 percent) were treated at gold and silver mills, and the remainder (1,195,005 tons, or 3.34 percent) was treated at miscellaneous plants including copper leaching plants, magnetic concentration plants, and a slag fuming plant. More than 96 percent of the total ore concentrated was treated at plants using flotation equipment in whole or in part. Table 1.—Total nonferrous ore produced in the United States in 1934, by classes of ore and methods of treatment, in dry tons | Method of treatment | Copper
ore | Copper-
lead ore | Lead ore | Lead-
zinc ore | Zinc ore | Gold and
silver
ore | Total
ore | |--|-----------------------------|----------------------|----------------------------|-----------------------|-------------------------|----------------------------|----------------------------| | Straight flotation concentra-
tion | 9, 940, 679 | 118, 925 | 50, 678 | 2, 099, 321 | 1, 083, 362 | 835, 457 | 14, 128, 42 | | tion concentration
Straight gravity concentration. | 942, 915
3 | 7 | 3, 161, 770
20, 009 | | 4, 102, 170
494, 952 | | 12, 011, 73
1, 027, 37 | | Total ore concentrated
Direct smelting
Amalgamation or cyanidation _ | 10, 883, 597
982, 112 | 118, 932
1, 630 | 3, 232, 457
127, 664 | 6, 089, 565
7, 252 | 5, 680, 484
59, 149 | | 1, 754, 01 | | Miscellaneous methods Total ore, all methods: | 409, 438 | | | 287, 800 | 497, 767 | | 1, 195, 00 | | 1934
1933 | 12, 275, 147
8, 732, 744 | 120, 562
126, 207 | 3, 360, 121
3, 217, 865 | | | 7, 462, 890
4, 509, 376 | 35, 840, 73
24, 712, 69 | ### CONSUMPTION OF REAGENTS There was a marked increase in the total consumption of flotation reagents in 1934 due to the increase in number of plants operating and tons of ore treated, but there were no significant changes in the per-ton consumption of the more important reagents. Table 2 gives the consumption of reagents in the treatment of all ores in 1934 and the per-ton consumption in 1933; table 3 presents a 5-year (1930-34) comparison of the consumption of reagents in treating the total ore; and table 4 summarizes the consumption of reagents in 1934, by classes of ores treated. Table 2.—Consumption of reagents in the treatment of all ores in 1934 [244 plants treating 18,744,337 tons of ore] | | | | Consumpt
(p | ion of rea | agents | |--|-----------------|----------------------------|-------------------------|------------|--------------| | Reagent | Plants
using | Ore treated (tons) | Matal 1024 | Per | ton | | | | | Total, 1934 | 1934 | 1933 | | I. Frothers: | 203 | 12, 646, 827 | 1, 348, 966 | 0, 107 | 0.098 | | Pine oils Cresylic acid | 92 | 9, 318, 467 | 1, 507, 440 | . 162 | . 138 | | Orthotoluidine | 1 | 35, 115 | 9, 155 | . 261 | | | Total frothers | 244 | 18, 744, 337 | 2, 865, 561 | . 153 | . 136 | | 77 G.W | | | | | | | II. Collectors: Distillation products: | 1 | | | | | | Coal-tar creosotes | 36 | 3, 518, 134 | 619, 572 | . 176 | . 165 | | Wood-tar creosotes | 4 | 445, 149 | 33, 149 | . 074 | .068 | | Petroleum products | 2 | 67,805 | 37, 320 | .550 | .238 | | Blast-furnace oils | 2 | 663, 489 | 96, 132 | . 145 | . 152 | | Total distillation products | 41 | 4, 270, 883 | 786, 173 | . 184 | . 182 | | Synthetic products: | | | | | | | Ethyl xanthates | 145 | 8, 358, 153
1, 547, 880 | 1, 064, 137 | . 127 | . 106 | | Butyl xanthates | | 1, 547, 880 | 158, 570 | . 102 | .087 | | Amyl xanthates | 87 | 2, 411, 562 | 214, 759 | .089 | .098 | | Xanthate derivatives
Dicresol-dithiophosphoric acid | 5
54 | 1, 983, 363
3, 730, 308 | 41, 663
236, 595 | .063 | . 052 | | Sodium dicresol-dithiophosphate | 56 | 7, 333, 115 | 275, 782 | .038 | .035 | | Thiocarbanilide | 4 | 382, 647 | 7, 619 | .020 | .044 | | Total synthetic products | 243 | 18, 635, 732 | 1, 999, 125 | . 107 | . 095 | | Total collectors | 244 | 18, 744, 337 | 2, 785, 298 | . 149 | . 152 | | III. Acids and alkalies: Acids: Sulphuric acid | 2 | 485, 511 | 7, 397, 000 | 15. 235 | 9. 336 | | Alkalies: | | | | | | | Sodium carbonate | 53 | 1, 486, 095 | 676, 628 | . 455 | . 381 | | Sodium hvdroxide | 6 | 322, 525 | 85, 608 | . 265 | . 611 | | Lime | 52 | 12, 432, 478 | 49, 241, 946 | 3.961 | 3, 868 | | Total alkalies | 96 | 13, 197, 691 | 50, 004, 182 | 3. 789 | 3.706 | | IV. Other inorganic reagents:
Sulphidizing: Sodium sulphide | 22 | 858, 535 | 377, 134 | . 439 | . 571 | | Activating: Copper sulphate | 89 | 4, 843, 873 | 4, 453, 370 | . 919 | . 887 | | Depressing: | | | | | | | Cyanides | | 8, 266, 248 | 427, 004 | . 052 | . 059 | | Sodium sulphite | | 372, 072 | 534, 788 | 1.437 | .789 | | Sodium silicate | | 770, 297 | 307, 038
1, 333, 574 | .399 | .313
.379 | | Zinc sulphate
Sodium bichromate | 27 | 3, 491, 311
268, 827 | 5, 178 | .019 | .040 | | Total depressing | 47 | 9, 214, 965 | 2, 607, 582 | . 283 | . 258 | | Total depressing
Miscellaneous ¹ | | 1, 179, 774 | 1, 097, 008 | .930 | .758 | | Total reagents | 244 | 18, 744, 337 | 71, 587, 135 | 3. 819 | 3. 616 | ¹ Includes ammonium phosphate, ammonium sulphate, calcium sulphate, lead acetate, lead nitrate zinc chloride, sulphur, glue, and starch. Table 3.—Comparison of consumption of flotation reagents, 1930-34 | | 1930 | 1931 | 1932 | 1933 | 1934 | |--|----------|----------|---------|---------|---------| | Ore treatedthousands of tons_ | 47, 259 | 35, 956 | 16, 124 | 12, 968 | 18, 744 | | Consumption of reagents: | | | | | | | Frothersthousands of pounds
Collectors: | 7, 106 | 5, 508 | 2, 377 | 1, 770 | 2,866 | | Distillationdo | 1, 107 | 753 | . 499 | 760 | 786 | | Syntheticdo | 5, 018 | 3, 543 | 1, 355 | 1, 214 | 1, 999 | | Acidsdo | 12,060 | 11, 143 | 1, 202 | 2, 169 | 7, 397 | | Alkaliesdo | 154, 424 | 115, 744 | 45, 269 | 35, 759 | 50, 004 | | Sulphidizingdo | 1, 226 | 643 | 444 | 309 | 377 | | Activatingdodo | 5, 390 | 3, 325 | 2, 067 | 2, 893 | 4, 453 | | Depressingdo | 4, 393 | 2, 409 | 1, 585 | 2, 016 | 3, 705 | | Total reagentsdo | 190, 724 | 143, 068 | 54, 798 | 46, 890 | 71, 587 | | Consumption of reagents: | | | | | | | Frotherspounds per ton of ore treated
Collectors: | 0. 152 | 0. 153 | 0. 147 | 0. 136 | 0. 153 | | Distillationdo | . 106 | . 126 | . 117 | . 182 | . 184 | | Syntheticdodo | . 107 | . 100 | . 085 | . 095 | . 107 | | Acidsdo | 24. 933 | 21. 342 | .072 | 9. 336 | 15. 235 | | Alkaliesdo | 3. 560 | 3.852 | 3.462 | 3. 706 | 3. 789 | | Sulphidizingdo | . 154 | . 723 | . 187 | . 571 | . 439 | | Activatingdo | . 697 | . 593 | . 674 | . 887 | . 919 | | Depressingdo | . 239 | . 174 | . 230 | . 271 | . 388 | | Total reagentsdo | 4. 036 | 3. 979 | 3. 399 | 3. 616 | 3. 819 | Table 4.—Summary of consumption of reagents in 1934, by classes of ore | | Copper | Copper-
iron | Copper
(native) | Lead and
copper-
lead | Lead-
zinc | Zinc | Gold and
silver | |---|----------------|-------------------|--------------------|-----------------------------|------------------------------------|-------------------|----------------------------------| | Number of plants Total ore treated | 9, 138, 595 | 3
762, 357 | 383, 277 | 15
2, 030, 953 | 47
2, 650, 456 | 22
1, 303, 530 | 144
2, 475, 169 | | Reagents used per ton of ore treated: I. Frotherspounds | 0.149 | 0.125 | 0. 133 | 0. 136 | 0. 227 | 0. 131 | 0. 125 | | II. Collectors: Distillationdo Syntheticdo | . 155
. 054 | . 009 | . 115 | .034 | . 369 | .108 | . 152
. 116 | | Total collectors pounds_ III. Acids and alkalies: | . 062 | . 287 | . 115 | . 070 | . 454 | .190 | .146 | | AcidsdoAlkaliesdo
IV. Other inorganic reagents: | 4. 658 | 15. 235
2. 910 | | .207 | 2. 723 | 2. 493 | . 539 | | Sulphidizing_pounds_
Activatingdo
Depressingdo
Miscellaneousdo | . 165 | . 673
. 035 | | .500
.076
.146 | . 870
1. 091
. 961
1. 286 | . 886
1. 607 | . 159
. 449
. 173
. 135 | | Total reagents
pounds | 4. 862 | 12. 265 | . 248 | . 403 | 4. 846 | 1.843 | . 665 | ### COPPER ORES Flotation-reagent consumption and metallurgical data in the treatment of sulphide copper ores, copper-iron ores, and native copper ores are given in tables 5 to 13. There was a substantial increase in tons of sulphide copper ores treated, and there were smaller increases in both copper-iron and native copper ores. Table 5.—Consumption of reagents in the treatment of sulphide copper ores in 1934 [11 plants treating 9.138.595 tons of ore] | | | | Consumption of reagents (pounds) | | | | |---|------------------|---|--|--------------------------------------|---|--| | Reagent | Plants
using | Ore treated
(tons) | (Dotal 1094 | Per | ton | | | | | | Total, 1934 | 1934 | 1933 | | | I. Frothers: Pine oils Cresylic acid | 8 | 4, 972, 496
4, 382, 270 | 524, 486
834, 232 | 0. 105
. 190 | 0. 083
. 171 | | | Total frothers | 11 | 9, 138, 595 | 1, 358, 718 | .149 | . 134 | | | II. Collectors: Distillation products: Coal-tar creosotes. Blast-furnace oils. | 1 1 | 25, 000
456, 909 | 1, 300
73, 349 | . 052 | .016 | | | Total distillation products | 2 | 481, 909 | 74, 649 | . 155 | .180 | | | Synthetic products: Ethyl xanthates. Butyl xanthates. Amyl xanthates Xanthate derivatives. Dicresol-dithiophosphoric acid. Sodium dicresol-dithiophosphate. | 2
2
1
1 |
3, 972, 096
1, 025, 400
79, 299
1, 477, 445
456, 909
4, 759, 880 | 281, 933
73, 505
42, 225
4, 522
10, 300
81, 330 | .071
.072
.532
.003
.023 | . 075
. 067
. 327
. 081
. 018 | | | Total synthetic products | 11 | 9, 138, 595 | 493, 815 | . 054 | .047 | | | Total collectors
III. Acids 1 and alkalies: | 11 | 9, 138, 595 | 568, 464 | . 062 | . 060 | | | Alkalies: Lime | 10
2
1 | 9, 113, 595
55, 499
4, 086, 800 | 42, 452, 501
9, 176
42, 277 | 4. 658
. 165
. 010 | 4. 720 | | | Total reagents | 11 | 9, 138, 595 | 44, 431, 136 | 4. 862 | 4. 923 | | ¹ No acids consumed. Table 6.—Comparison of metallurgical results in the treatment of copper ores, 1933-34 | | | tion and com
ity and flota-
tration | |---|---------------|---| | | 1933 1 | 1934 2 | | Number of plants | 10 | 11 | | Total ore treateddry tons_ | 6, 602, 176 | 9, 138, 595 | | Gold contentounces_ | 81, 351. 52 | 104, 296, 27 | | Doounce per ton | 0.012 | 0.011 | | Silver contentounces_ | 2, 550, 730 | 3, 137, 033 | | Doounce per ton | 0.386 | 0, 343 | | Copper contentpounds_ | 215, 308, 300 | 279, 000, 509 | | DO porcent | 1 201 | 1, 527 | | Concentrates produceddry tons | 371, 991 | 489, 401 | | Gold contentounces | 58, 557, 51 | 75, 555, 33 | | Doounce per ton_ | 0.157 | 0.154 | | Silver contentounces_ | 2, 387, 867 | 2, 929, 738 | | Doounces per ton | 6.419 | 5. 986 | | Copper contentpounds_ | 198, 071, 392 | 257, 946, 994 | | Dopercent_ | | 26. 353 | | Ratio of concentration: Ore to concentrates | 17. 75:1 | 18.67:1 | | Recoveries: | | | | Goldpercent_ | | 72. 44 | | Silverdo | 93. 62 | 93. 39 | | Copperdo | 91.99 | 92, 45 | ¹ Includes 3 plants using combined gravity and flotation concentration. ² Includes 1 plant using combined gravity and flotation concentration. Table 7.—Comparison of screen analysis, alkalinity, and pulp density in the treatment of copper ores, 1931-34 | | 1931 | 1932 | 1933 | 1934 | |--------------------------------------|------------------------------|---|--|---| | Number of plants. Total ore treated | 6.70
11.42 | 9, 725, 582
6, 54
9, 98
10, 78
11, 00
61, 70 | 8
6, 601, 816
5. 37
8. 98
11. 72
12. 12
61. 81 | 9, 110, 942
5. 56
9. 78
12. 06
13. 88
58. 89 | | ALKALINITY OF FLO | TATION C | IRCUIT | | | | Number of plants | 19, 654, 724
9. 73 | 7, 160, 221
9. 66 | 3
4, 117, 367
9. 17 | 6, 237, 32
9. 18 | | PULP DENSITY OF FL | OTATION | CIRCUIT | | `` | | Number of plants | 15
25, 629, 211
25, 29 | 7, 138, 706
25, 92 | 7
5, 501, 426
26. 40 | 8, 110, 545
26, 44 | Table 8.—Consumption of reagents in the treatment of copper-iron ores in 1934 [3 plants treating 762,357 tons of ore] | to plants treating to | | | | | | | |--|-------------|----------------------------------|----------------------------------|-------------------------|-------------------|--| | | | | Consumption of reagents (pounds) | | | | | Reagent | | Total, 1934 | Per | ton | | | | | | | | 1934 | 1933 | | | I. Frothers: Pine oils | . 3 | 762, 357 | 95, 436 | 0. 125 | 0. 139 | | | II. Collectors: Distillation products: Coal-tar creosotes | 1 | 307, 035 | 2, 670 | . 009 | . 011 | | | Synthetic products: Ethyl xanthates | 2
1
1 | 485, 511
178, 476
276, 846 | 158, 995
26, 200
30, 672 | . 327
. 147
. 111 | . 366 | | | Total synthetic products | . 3 | 762, 357 | 215, 867 | . 283 | . 349 | | | Total collectorsIII. Acids and alkalies: | 3 | 762, 357 | 218, 537 | . 287 | . 352 | | | Acids: Sulphuric acidAlkalies: Lime | 2
2 | 485, 511
485, 511 | 7, 397, 000
1, 412, 600 | 15. 235
2. 910 | 13. 136
3. 687 | | | IV. Other inorganic reagents: Activating: Copper sulphate Depressing: Cyanides | 1
2 | 307, 035
583, 881 | 206, 610
20, 402 | . 673
. 035 | 1,047
. 104 | | | Total reagents | 3 | 762, 357 | 9, 350, 585 | 12. 265 | 11, 177 | | $\begin{array}{c} {\rm Table} \ 9. \\ {\rm --Comparison} \ of \ metallurgical \ results \ in \ the \ treatment \ of \ copper-iron \ ores, \\ 1933-34 \end{array}$ | | 1933 | 1934 | |---------------------------------------|---------------|---------------| | Number of plants | 3 | 3 | | Total ore treateddry tons | 511, 339 | 1, 043, 251 | | Copper content pounds | 6, 616, 798 | 15, 956, 296 | | Do | 0, 010, 758 | 0. 765 | | Zinc contentpounds | 1, 904, 954 | 6, 631, 956 | | Dopercent. | 0. 187 | 0, 031, 930 | | Iron contentpounds. | 138, 469, 148 | 314, 517, 930 | | Do november 1 | 13, 540 | 15. 074 | | Copper concentrates produced dry tops | 11, 476 | 33, 333 | | Copper content | 5, 277, 731 | 13, 319, 226 | | D0nercent | 22, 995 | 19, 979 | | Zinc contentpounds | 572, 448 | 1, 435, 400 | | _ Dopercent_ | 2, 494 | 2, 153 | | Iron content | 2, 646, 564 | 20, 307, 760 | | D0 | 11, 531 | 30, 462 | | Line concentrates produced dry tons | 823 | 2, 581 | | Copper content pounds 1 | 13, 497 | 42, 328 | | Do | 0, 820 | 0.820 | | Zinc content | 788, 434 | 2, 658, 000 | | D0nercent | 47, 900 | 51, 492 | | Iron content | 235, 378 | 722, 680 | | 170 | 14, 300 | 14, 000 | | fron concentrates produced | 88, 591 | 224, 935 | | Copper content pounds 1 | 488, 570 | 1, 207, 550 | | D0 | 0. 276 | 0. 268 | | Zinc contentnounds | 223, 930 | 474, 900 | | Do | 0. 127 | 0, 106 | | Iron contentpounds | 93, 664, 490 | 238, 071, 940 | | D0 | 52, 864 | 52, 920 | | Ratio of concentration: | | | | Ore to— | | | | Copper concentrates | 44. 56:1 | 31.30:1 | | Zinc concentrates | 621. 31:1 | 404. 20:1 | | Iron concentrates | 5. 77:1 | 4.64:1 | | All concentratesRecoveries: | 5.07:1 | 4.00:1 | | Copper in— | j | | | Company or contractor | | | | Copper concentratespercent | 79. 76 | 83. 47 | | Zinc concentratesdo | . 21 | . 27 | | Iron concentratesdo | 7. 38 | 7. 57 | | All concentratesdo | 87. 35 | 91. 31 | | Copper concentratesdo | | | | Zinc concentrates do do | 30.05 | 21.64 | | Iron concentrates do do | 41. 39 | 40.08 | | All concentrates do do | 11. 75 | 7. 16 | | Iron in— | 83. 19 | 68. 88 | | Copper concentratesdo | 1 61 | | | Zinc concentrates do do | 1. 91 | 6.46 | | Iron concentrates do | . 17 | . 23 | | All concentrates do do | 67. 64 | 75. 69 | | | 69. 72 | 82, 38 | Table 10.—Comparison of screen analysis, alkalinity, and pulp density in the treatment of copper-iron ores, 1933-34 | | 1933 | 1934 | |---|--|--| | Number of plants. dry tons. Total ore treated dry tons. +65 mesh percent. -65+100 mesh do -100+150 mesh do -150+200 mesh do -200 mesh do | 3
267, 049
1. 26
4. 90
9. 66
16. 58
67. 60 | 3
762, 357
4. 06
7. 33
8. 80
15. 83
63. 98 | | ALKALINITY OF FLOTATION CIRCUITS | | | | Number of plants dry tons_ Total ore treated dry tons_ Alkalinity: DH units_ Copper circuit do_ Zinc circuit do_ Iron circuit do_ | 3
267, 049
8. 81
1 12. 10
6. 30 | 3
762, 357
9. 62
2 11. 50
6. 46 | ¹¹ plant treating 84,290 tons of ore. ¹ plant treating 307,035 tons of ore. Table 10.—Comparison of screen analysis, alkalinity, and pulp density in the treatment of copper-iron ores, 1933-34—Continued #### PULP DENSITY OF FLOTATION FEED | | 1933 | 1934 | |------------------|--------------------|-------------------------| | Number of plants | 267, 049
27, 91 | 3
762, 357
26. 63 | Table 11.—Consumption of reagents in the treatment of native copper ores in 1934 [2 plants treating 383,277 tons of ore] | | | _ | Consumption of reagents (pounds) | | | | |------------------------|---------------------------------|----------------------|----------------------------------|-----------------|-----------------|--| | Reagent | Plants using Ore treated (tons) | treated | Total | Per ton | | | | | | | Total,
1934 | 1934 | 1933 | | | I. Frothers: Pine oils | 2 2 | 383, 277
383, 277 | 50, 941
44, 253 | 0. 133
. 115 | 0. 124
. 110 | | | Total reagents | 2 | 383, 277 | 95, 194 | . 248 | . 289 | | Table 12.—Comparison of metallurgical results in the treatment of native copper ores, 1931-34 | | 1931 | 1932 | 1933 | 1934 | |--|---------------|--------------|--------------|--------------| | Number of plants | 6 | 5 | 2 | 2 | | Total ore treateddry tons | | 1, 142, 775 | 697, 158 | 700, 055 | | Copper contentpounds | | 57,204,804 | 48, 897, 598 | 53, 430, 750 | | Dopercent_ | | 2. 50 | 3.51 | 3.82 | | Gravity concentrates produceddry tons | 69, 294 | 31, 913 | 27, 723 | 31, 408 | | Copper contentpounds | 102, 464, 095 | 46, 583, 678 | 38, 846, 574 | 43, 486, 380 | | Do percent | 73, 93 | 72. 99 | 70.06 | 69. 23 | | Flotation concentrates produceddry tons. | 14, 052 | 5, 763 | 3, 796 | 3, 643 | | Copper contentpounds_ | | 4, 755, 190 | 3, 525, 556 | 3, 539, 880 | | percent | 48. 60 | 41. 26 | 46. 44 | 48. 58 | | Ratio of concentration: | | 1 | | | | Ore to— | | | | | | Gravity concentrates | 51. 53:1 | 35.81:1 | 25. 15:1 | 22, 29:1 | | Flotation concentrates | 254. 11:1 | 198. 30:1 | 183.66:1 | 192, 16:1 | | All concentrates | 42.84:1 | 30. 33:1 | 22, 12:1 | 19. 97:1 | | Copper recoveries: | 1 | | | | | In gravity concentratespercent. | 80.86 | 81. 43 | 79.44 | 81.39 | | In flotation concentratesdo | 10.78 | 8, 31 | 7.21 | 6, 62 | | In all concentratesdodo | 91.64 | 89.74 | `86. 65 | 88.01 | Table 13.—Comparison of
screen analysis, alkalinity, and pulp density in the treatment of native copper ores, 1931-34 | | 1931 | 1932 | 1933 | 1934 | |--------------------------------------|--|---|---|--| | Number of plants. Total ore treated | 5
1, 662, 048
14. 94
14. 00
7. 84
6. 02
57. 20 | 5
622, 838
13. 45
11. 25
8. 19
6. 42
60. 69 | 365, 320
4. 19
5. 79
6. 70
10. 48
72. 84 | 383, 277
8. 96
6. 46
6. 88
4. 69
73. 01 | Table 13.—Comparison of screen analysis, alkalinity, and pulp density in the treatment of native copper ores, 1931-34—Continued ### ALKALINITY OF FLOTATION CIRCUIT | | 1931 | 1932 | 1933 | 1934 | |---|---------------------------|-------------------------|--------------------|--------------------| | Number of plants | 5
1, 662, 048
8. 47 | 5
622, 838
8. 59 | 365, 320
7. 89 | 383, 277
7. 94 | | PULP DENSITY OF FLO | OTATION | CIRCUIT | | | | Number of plants. Total ore treateddry tons. Pulp densitypercent solids. | 1, 402, 048
29. 28 | 5
622, 838
28. 77 | 365, 320
28. 84 | 383, 277
28. 99 | ### LEAD ORES AND COPPER-LEAD ORES The output of lead ores and copper-lead ores decreased further in 1934. Most of the lead ore came from properties in southeast Missouri and was treated by combined gravity and flotation; nearly all the copper-lead ore came from mines in Shoshone County, Idaho, and most of it was treated by straight flotation. Detailed reagent and metallurgical data are given in tables 14 to 16. Table 14.—Consumption of reagents in the treatment of lead ores and copper-lead ores in 1934 [15 plants treating 2,030,953 tons of ore] | | | | Consumption of reagents (pounds) | | | | |--|-----------------|--|-------------------------------------|----------------------------------|-------------------------|--| | Reagent | Plants
using | Ore treated (tons) | Total,
1934 | Per ton | | | | | | | | 1934 | 1933 | | | I. Frothers: | | | | | | | | Pine oilsCresylic acid | 7
9 | 779, 679
1, 903, 893 | 5, 631
270, 444 | 0.007
.142 | 0. 010
. 115 | | | Total frothers | 15 | 2, 030, 953 | 276, 075 | . 136 | . 112 | | | II. Collectors: Distillation products: Coal-tar creosotes | 6 | 891, 111 | 30, 469 | . 034 | . 140 | | | Synthetic products: Ethyl xanthates. Dicresol-dithiophosphoric acid. Sodium dicresol-dithiophosphate. Thiocarbanilide. | 2 | 13, 713
1, 637, 745
276, 890
270, 890 | 3, 894
97, 035
10, 000
550 | . 284
. 059
. 036
. 002 | . 045
. 031
. 009 | | | Total synthetic products | | 1, 922, 348 | 111, 479 | . 058 | . 066 | | | Total collectors | 15 | 2, 030, 953 | 141, 948 | . 070 | . 198 | | | III. Acids ¹ and alkalies: Alkalies: | | | | | | | | Sodium carbonateLime | 3 2 | 165, 671
281, 210 | 6, 190
86, 290 | . 037 | . 122
. 323 | | | Total alkaliesIV. Other inorganic reagents: | 5 | 446, 881 | 92, 480 | . 207 | . 343 | | | Activating: Copper sulphate | 1
1 | 36, 000
165, 636 | 18, 000
12, 579 | . 500
. 076 | . 500
. 364 | | | Depressing: Cyanides Zinc sulphate | 5 6 | 1, 694, 437
1, 742, 885 | 33, 633
243, 235 | . 020 | . 042 | | | Total depressing | 7 | 1, 896, 073 | 276, 868 | . 146 | . 172 | | | Total reagents | 15 | 2, 030, 953 | 817, 950 | . 403 | . 699 | | ¹ No acids consumed. Table 15.—Comparison of metallurgical results in the treatment of lead ores and copper-lead ores, 1933-34 | | Method of concentration | | | | | | |---|-------------------------|-------------|--------------------------------|--------------|--|--| | | Straight flotation | | Combined gravity and flotation | | | | | | 1933 | 1934 | 1933 | 1934 | | | | 7 | | | | | | | | Number of plants | 11 | | 8 | | | | | Total ore treateddry tons | 155, 914 | 164, 880 | 3, 079, 723 | 3, 086, 07 | | | | Gold contentounces | 1, 116. 00 | 602.75 | 205.00 | 400.0 | | | | Doounce per ton | 0.007 | 0.004 | Trace. | Trac | | | | Silver contentounces_ | 3, 752, 921 | 4, 009, 011 | 2, 263, 362 | 784, 80 | | | | Doounces per ton | 24, 070 | 24, 315 | 0.735 | 0. 25 | | | | Copper contentpounds | 1, 062, 615 | 1, 108, 785 | 584, 230 | 196, 00 | | | | Dopercent | 0, 341 | 0, 336 | 0,010 | 0.00 | | | | Lead contentpounds | 3, 245, 160 | 5, 292, 044 | 284, 850, 053 | 232, 353, 34 | | | | Dopercent_ | 1, 041 | 1, 605 | 4, 625 | 3, 76 | | | | Zinc content pounds | | | 34, 717, 387 | 3, 942, 00 | | | | Zinc contentpounds | 6.806 | 8, 952 | 206, 841 | 156, 43 | | | | Gold contentounces_ | 961, 49 | 512.05 | 200,011 | 297. | | | | Doounce per ton_ | 0. 141 | 0. 057 | | 0,00 | | | | Silver contentounces | 3, 548, 510 | 3, 847, 386 | 0.024.007 | 754, 5 | | | | Do Do | | | 2, 034, 097 | 4. 82 | | | | Doounces per ton | 521. 380 | 429. 780 | 9.834 | | | | | Copper contentpounds | 987, 182 | 1, 032, 067 | 500, 256 | 161, 05 | | | | Dopercent | 7. 252 | 5. 764 | 0. 121 | 0.05 | | | | Lead contentpounds | 2, 848, 449 | 4, 616, 205 | 266, 009, 398 | 222, 306, 42 | | | | Dopercent | 20. 926 | 25. 783 | 64. 303 | 71. 05 | | | | Other concentrates produceddry tons | | | 13, 331 | 74 | | | | Gold contentounces | | | 131. 58 | 6. 1 | | | | Doounce per ton | | | 0.010 | 0.00 | | | | Silver contentounces | | | 39, 390 | 5, 13 | | | | Doounces per ton- | | | 2, 955 | 6, 91 | | | | Copper contentpounds | | | 43, 460 | 2, 91 | | | | Dopercent_ | | | 0, 163 | 0, 19 | | | | Lead contentpounds_ | | | 972, 597 | 112, 56 | | | | Dopercent_ | | | 3, 648 | 7, 58 | | | | Zinc content pounds | | | 12, 978, 408 | 688, 79 | | | | Do | | | 43, 676 | 46. 4 | | | | Dopercent
tatio of concentration: Ore to lead concentrates | 99 01.1 | 18, 42:1 | 14.89:1 | 19, 73 | | | | Recoveries: | 22. 91.1 | 10. 42.1 | 14.09.1 | 19. 10. | | | | Gold in lead concentratespercent | 86, 16 | 84, 95 | | 74. 3 | | | | Cold in lead concentratespercent | | | | | | | | Gold in all concentratesdo | 86. 16 | 84.95 | 64. 19 | 75. 9 | | | | Silver in lead concentratesdo | 94. 55 | 95. 97 | 89.87 | 96. 1 | | | | Silver in all concentratesdo | 94. 55 | 95. 97 | 91.61 | 96. 8 | | | | Copper in lead concentratesdo | 92. 90 | 93. 08 | 85. 63 | 82. 1 | | | | Copper in all concentratesdo | 92. 90 | 93.08 | 93. 07 | 83. 6 | | | | Lead in lead concentratesdo | 87. 78 | 87. 23 | 93. 39 | 95. 6 | | | | Lead in all concentratesdo | 87. 78 | 87. 23 | 93. 73 | 95. 7 | | | | Zinc in all concentratesdo | | | 66, 89 | 89. 7 | | | Table 16.—Comparison of screen analysis, alkalinity, and pulp density in the treatment of lead ores and copper-lead ores, 1931-34 | | | 1931 | 1932 | 1933 | 1934 | | |---|--------------------|---------------------------|-------------------|----------------|------------------|--| | Number of plants | | 19 | 16 | 13 | 10 | | | Total ore treated | dry tons | 3, 848, 408 | 2, 915, 736 | 2, 150, 352 | 2, 016, 256 | | | +65 mesh | percent | 5, 33 | 4, 47 | 4.90 | 5.47 | | | -65+100 mesh | do | 9.30 | 9. 10 | 9.17 | 10. 84 | | | | do | 10.79 | 11.33 | 12.18 | 12.96 | | | | do | 11.70 | 12.35 | 11.73 | 12.60 | | | -200 mesh | do | 62.88 | 62.75 | 62.02 | 58. 13 | | | Number of plants Total ore treated Alkalinity: | ALKALINITY OF FLOT | 15
3, 663, 931 | 15
2, 763, 853 | 2, 041, 342 | 9
1, 907, 651 | | | AIKammey: | | | | | | | | Lead circuit
Zinc circuit | pH units
do | 8. 16
1 8. 68 | 8. 09
2 8. 26 | 7.96
3 7.60 | 8. 16
4 7. 50 | | | | | 1 8, 68 | 2 8. 26 | 7.96
3 7.60 | 8. 16
4 7. 50 | | | Zinc circuit Number of plants | PULP DENSITY OF F | 1 8. 68
LOTATION
11 | 18.26
FEED | 12 | 4 7. 50 | | | Zinc circuit Number of plants Total ore treated | do | 18.68
LOTATION | FEED | 3 7. 60 | | | ¹ 4 plants treating 1,871,682 tons of ore. ² 4 plants treating 862,815 tons of ore. ² plants treating 501,064 tons of ore. 1 plant treating 165,636 tons of ore ### LEAD-ZINC ORES Most of the increase in lead-zinc ores milled in 1934 was in ore from properties in the Tri-State region treated by combined gravity and flotation; lead-zinc ore treated by straight flotation also increased. Consumption of reagents, mill data, etc., were substantially the same as in 1933; they are summarized in tables 17 to 19. Table 17.—Consumption of reagents in the treatment of lead-zinc ores in 1934 [47 plants treating 2,650,456 tons of ore] | | | | Consumption of reagents (pounds) | | gents | |--|-------------------------|---|---|---|---| | Reagent | Plants
using | Ore treated (tons) | Total, | Per | ton | | | | | 1934 | 1934 | 1933 | | I. Frothers: Pine oils | 36
32
1 | 2, 395, 128
1, 792, 697
35, 115 | 334, 861
258, 861
9, 155 | 0. 140
. 144
. 261 | 0. 181
. 086 | | Total frothers | 47 | 2, 650, 456 | 602, 877 | . 227 | . 198 | | II. Collectors: Distillation products: Coal-tar creosotes | 13
2
1 | 1, 240, 425
314, 717
206, 580
1, 447, 005 | 480, 857
29, 949
22, 783
533, 589 | .388
.095
.110 | . 436
. 069
. 109 | | Synthetic products: Ethyl xanthates. Butyl xanthates. Amyl xanthates.
Xanthate derivatives. Dicresol-dithiophosphoric acid. Sodium dicresol-dithiophosphate. Thiocarbanilide | 31
2
3
2
17 | 2, 160, 765
235, 954
200, 544
247, 822
730, 088
779, 695
103, 942 | 389, 389
55, 674
31, 347
33, 383
57, 676
96, 001
7, 044 | . 180
. 236
. 156
. 135
. 079
. 123
. 068 | . 175
. 275
. 153
. 100
. 084
. 128
. 044 | | Total synthetic products | 47 | 2, 650, 456 | 670, 514 | . 253 | . 275 | | Total collectors | 47 | 2, 650, 456 | 1, 204, 103 | . 454 | . 455 | | III. Acids ¹ and alkalies: Alkalies: Sodium carbonate | 20 | 674, 454
1, 615, 192
1, 693, 834
320, 457 | 301, 190
4, 311, 223
4, 612, 413
278, 800 | . 447
2. 669
2. 723
. 870 | . 349
2, 097
1, 916 | | Activating: Copper sulphate | 47 | 2, 650, 456 | 2,892,017 | 1.091 | 1. 178 | | Depressing: Cyanides Sodium sulphite Sodium silicate Zinc sulphate Sodium bichromate Total depressing | 5
16
2 | 1, 729, 839
355, 572
617, 329
1, 609, 292
268, 827
2, 293, 855 | 319, 255
518, 288
294, 298
1, 067, 809
5, 178
2, 204, 828 | . 185
1. 458
. 477
. 664
. 019 | . 235
. 848
. 342
. 734
. 040 | | Miscellaneous ² | 5 | 814, 893 | 1,047,871 | 1. 286 | 1, 116 | | Total reagents | 47 | 2, 650, 456 | 12, 842, 909 | 4. 846 | 4. 521. | No acids consumed. Includes calcium sulphate, zinc chloride, starch, ammonium sulphate, and glue. Table 18.—Comparison of metallurgical results in the treatment of lead-zinc ores, 1933-34 | 1000- | 04 | | | | | |--|------------------------------------|--|----------------------------------|-----------------------------|--| | | | Method of concentration | | | | | | Straight flotation | | Combined gravity ar
flotation | | | | | 1933 | 1934 | 1933 | 1934 | | | Number of plants | 15 | 10 | 1,, | - | | | Number of plantsdry tonsdry tons | 1, 288, 359 | 1,840,516 | 2, 219, 061 | 3, 842, 207 | | | Gold content | 54, 280. 89
0. 042 | 52, 744. 41
0. 029 | | 750.00 | | | Silver contentounces | 6, 851, 344 | 9, 801, 457 | | Trace
942, 03 | | | Copper content | | 5. 325
12, 603, 788 | | 0. 24 | | | Ounces per ton Ounces per ton Dounds Dou | 11, 271, 686
0. 437 | 0.342 | | 310, 56
0. 00 | | | Lead contentpounds | 194, 524, 825 | 235, 455, 791 | 35, 259, 074 | 103, 263, 78 | | | Zinc contentpounds_ | 7. 549
274, 228, 940 | 6. 396
354, 131, 778 | 0. 794
203, 306, 605 | 1. 34
293, 315, 33 | | | Dopercent_
Lead concentrates produceddry tons_ | 10.040 | 9. 620 | 4. 581 | 3. 81 | | | Gold content | 149, 119
30, 616. 73 | 178, 470
27, 224. 58 | 17, 647 | 68, 619
541, 00 | | | Gold content | 0, 205 | 0.153 | | 0.008 | | | Do ounces | 4, 904, 846
32. 892 | 6, 582, 953
36, 885 | | 841, 35 | | | | 7, 051, 650 | 7, 592, 979 | | 12. 26
220, 22 | | | Dopercent
Lead contentpounds | 2.364 | 2, 127 | | 0.160 | | | DO naroant | 168, 122, 020
56. 372 | 199, 962, 537
56. 021 | 27, 630, 571
78. 287 | 83, 802, 78
61, 06 | | | Zinc contentnounds | 21, 904, 824 | 1 24 783 773 | 1 640, 243 | 6, 420, 160 | | | Dopercent
inc concentrates produceddry tons_ | 7. 345
201, 173 | 6. 943
263, 519 | 1, 814
142, 849 | 4. 678
189, 272 | | | Gold content ounces Do. Ounce Ounce Ounces Ounce Ounc | 6,606.18 | 6, 909. 96 | 112,010 | 68.00 | | | Silver content | 0.033 | 0.026 | | Trace | | | Doounces per ton | 1, 265, 432
6. 290 | 1, 931, 041
7, 328 | | 19, 681
0. 104 | | | Copper contentpounds | i 2. 240. 372 | 2, 410, 053 | | 17, 740 | | | Copper content. — pounds. Do — percent. Lead content — pounds. | 0. 557
11, 937, 105
2. 967 | 0.457
13.881.772 | 3 514 164 | 0.005
4, 281, 089 | | | Dopercent
Zinc contentpounds | 2, 967 | 13, 881, 772
2, 634 | 3, 514, 164
1, 230 | 1. 1.131 | | | Do | 223, 278, 147 | 288, 753, 201 | 174, 608, 054
61, 116 | 227, 062, 640
59, 983 | | | Do percent. ron concentrates produced dry tons. Gold content ounces. Silver content do Copper content pounds. | 55. 494
74, 752 | 54. 788
102, 798 | 01.110 | 09. 90. | | | Silver content | 6.856.03 | 5, 178. 32 | | | | | Copper content pounds | 86, 920
220, 787
2, 277, 379 | 148, 974
282, 307 | | | | | Lead content do | 2, 277, 379 | 282, 307
2, 500, 198
6, 782, 971 | | | | | tatio of concentration: | 6, 878, 295 | 6, 782, 971 | | | | | Ore to—
Lead concentrates | 0.64.1 | 10.01.1 | 105 55.1 | ** 00. * | | | Zinc concentrates | 8. 64:1
6. 40:1 | 10.31:1
6.98:1 | 125. 75:1
15. 53:1 | 55. 99:1
20. 30:1 | | | Tron concentrates. | 17. 24:1 | 17. 90:1 | | | | | All concentrates | 3.03:1 | 3. 38:1 | 13.83:1 | 14. 90:1 | | | Gold in— | | | | * | | | Lead concentratespercent
Zinc concentratesdo | 56. 41
12. 17 | 51. 61
13. 10 | | 72. 13
9. 07 | | | Iron concentrates do All concentrates do | 12.63 | 9.82 | | | | | All concentratesdodo | 81. 21 | 74. 53 | | 81. 20 | | | Lead concentrates do | 71. 59 | 67. 16 | | 89. 31 | | | Zinc concentrates do Iron concentrates do do Iron concentrates concentrate | 18.47 | 19. 70 | | 2.09 | | | All concentratesdo | 1. 27
91. 33 | 1. 52
88. 38 | | 91. 40 | | | Copper in— | | | | | | | Lead concentrates do Zinc concentrates do | 62. 56
19. 88 | 60. 25
19. 12 | | 70. 91
5. 71 | | | Iron concentratesdodo | 1.96 | 2. 24 | | | | | All concentratesdodo | 84. 40 | 81. 61 | | 76. 62 | | | Lead concentratesdodo | 86. 43 | 84. 93 | 78. 36 | 81. 15 | | | Zinc concentratesdododododododo | 6. 13 | 5.89 | 9. 97 | 4. 15 | | | Iron concentrates do | 1. 17
93. 73 | 1.06
91.88 | 88, 33 | 85, 30 | | | | 80.10 | 81.02 | 00.00 | 80. 30 | | | Zinc in— | | | | | | | Zinc in—
Lead concentrates do | 7. 99 | 7.00 | . 32 | 2. 19 | | | Zinc in— | 7. 99
81. 42
2. 51 | 7.00
81.54
1.91 | . 32
85. 88 | 2. 19
77. 41 | | Table 19.—Comparison of screen analysis, alkalinity, and pulp density in the treatment of lead-zinc ores, 1931-34 ## SCREEN ANALYSIS OF FLOTATION FEED | | 1931 | 1932 | 1933 | 1934 | |------------------|-------------|-------------|-------------|-------------| | Number of plants | 24 | 17 | 16 | 23 | | | 1, 675, 424 | 1, 206, 843 | 1, 273, 128 | 2, 122, 626 | | | 4. 68 | 5, 23 | 4, 72 | 4, 79 | | | 8. 55 | 8, 08 | 6, 80 | 6, 83 | | | 8. 88 | 9, 34 | 8, 38 | 9, 25 | | | 12. 91 | 16, 24 | 12, 99 | 12, 74 | | | 64. 98 | 61, 11 | 67, 11 | 66, 39 | ### ALKALINITY OF FLOTATION CIRCUITS | Number of plantsdry tonsdry tons | 20 | 17 | 16 | 21 | |----------------------------------|-------------|-------------|-------------|-------------| | | 1, 308, 180 | 1, 203, 420 | 1, 273, 128 | 2, 087, 304 | | Lead circuit | 7. 99 | 7. 67 | 7. 78 | 7. 66 | | | 8. 23 | 8. 25 | 8. 45 | 8. 15 | | | 1 8. 07 | 2 8. 12 | 8. 09 | 4 7. 72 | #### PULP DENSITY OF FLOTATION FEED | Number of plantsdry tonsdry tons | | 18
1, 236, 843 | 16
1, 273, 128
32, 93 | 23
2, 122, 626
32, 70 | |----------------------------------|--------|-------------------|-----------------------------|-----------------------------| | Pulp densitypercent solids | 33. 03 | 32. 11 | 32. 93 | 32. 70 | ¹ 4 plants treating 486,682 tons of ore. ² 2 plants treating 384,015 tons of ore. # ZINC ORES Most of the increase in zinc ores milled in 1934 came from mines and old tailings dumps in the Tri-State region. Nearly all the material was treated by combined gravity and flotation. Tables 20 to 22 summarize data on zinc ores. Table 20.—Consumption of reagents in the treatment of zinc ores in 1934 [22 plants treating 1,303,530 tons of ore] | | | | Consumption of reagents (pounds) | | | | |---|-----------------|-------------------------|----------------------------------|-----------------|-----------------|--| | Reagent | Plants
using | Ore treated
(tons) | m.+.1. 1004 | Per ton | | | | | | | Total, 1934 | 1934 | 1933 | | | I. Frothers: | | | | | | | | Pine oils
Cresylic acid | 15
13 | 1, 117, 147
375, 546 | 132, 984
38, 394 | 0. 119
. 102 | 0. 133
. 039 | | | Total frothers | 22 | 1, 303, 530 | 171, 378 | . 131 | . 131 | | | II. Collectors: Distillation products: Coal-tar creosotes | 4 | 669, 151 | 72, 539 | . 108 | . 103 | | | Synthetic products: Ethyl xanthates | 12 | 457, 109 | 68, 992 | . 151 | . 168 | | | Butyl xanthates | 1 | 66, 353 | 6,725 | . 101 | 120 | | | Amyl xanthates
Dicresol-dithiophosphoric acid | 1 4 | 66, 353
193, 400 | 4, 189
10, 050 | .063 | . 150 | | | Sodium dicresol-dithiophosphate | 16 | 1, 013, 578 | 84, 947 | . 084 | . 052 | | | Total synthetic products | 22 | 1, 303, 530 | 174, 903 | . 134 | . 087 | | | Total collectors | 22
6 | 1, 303, 530
331, 752 | 247, 442
826, 957 | . 190
2. 493 | . 159
4. 180 | | | IV. Other inorganic reagents: Activating: Copper sulphate Depressing: Sodium silicate | 22
1 | 1, 303, 530
1, 400 | 1, 154, 646
2, 250 | . 886
1. 607 | . 868 | | | Total reagents | 22 | 1, 303, 530 | 2, 402, 673 | 1. 843 | 2. 098 | | ¹ No acids consumed. ³ 2 plants treating 394,327 tons of ore. ⁴ 4 plants treating 747,823 tons of ore. Table 21.—Comparison of metallurgical results in the treatment of zinc ores, 1933-34 | | Method of concentration | | | | | | |---|-------------------------|--------------|--------------------------------|--------------|--|--| | | Straight | flotation | Combined gravity and flotation | | | | | | 1933 | 1934 | 1933 | 1934 | | | | Number of plants | 4 | 6 | 4 | 1 | | | | Potal ore treateddry tons | 290, 963 | 485, 742 | 923, 582 | 3, 232, 92 | | | | Lead contentpounds | 19, 995 | 13, 271 | 428, 400 | 1, 276, 40 | | | | percent | 0.003 | 0.001 | 0.023 | 0.02 | | | | Zinc contentpounds | 57, 474, 333 | 63, 901, 296 | 36, 270, 493 | 105, 816, 00 | | | | Dopercent_ | 9.877 | 6. 578 | 1, 964 | 1. 6
2 | | | | Lead concentrates produceddry tons | | | | 306, 00 | | | | Lead contentpounds | | | | 69. 86 | | | | Dopercentpounds | | | | 7.00 | | | | Zinc contentpounds | | | | 1, 59 | | | | Dopercent
Zinc concentrates produceddry tons | 45, 362 | 47, 993 | 25, 799 | 63. 28 | | | | Lead contentpounds | 18, 209 | 6, 453 | 289, 580 | 298, 00 | | | | Dopercent | 0,020 | 0,006 | 0, 561 | 0, 2 | | | | Zinc content pounds | | 58, 039, 000 | 31, 085, 504 | 76, 480, 40 | | | | Dopercent_ | 57, 062 | 60, 466 | 60, 246 | 60. 4 | | | | Potic of concentration: | | 00.200 | | | | | | Ore to zinc concentrates | 6.41:1 | 10. 12:1 | 35, 80:1 | 51, 08 | | | | Ore to all concentrates | 6.41:1 | 10. 12:1 | 35, 80:1 | 50. 91 | | | | Recoveries: | | | | | | | | Lead in— | | | | | | | | Lead concentratespercent_ | | | | 23. 9 | | | | Zinc concentratesdodo | 91.07 | 48. 62 | 67.60 | 23. | | | | All concentratesdo | 91.07 | 48. 62 | 67.60 | 47. | | | | Zine in— | | | | | | | | Lead concentratesdo | | | | | | | | Zinc concentratesdodo | 90.07 | 90.83 | 85.70 | 72. | | | | All concentratesdo | 90.07 | 90.83 | 85.70 | 72. 2 | | | Table 22.—Comparison of screen analysis, alkalinity, and pulp density in the treatment of zinc ores, 1931-34 # SCREEN ANALYSIS OF FLOTATION FEED | | 1931 | 1932 | 1933 | 1934 | |--|--|---|---|--| | Number of plants. Total ore treated | 8. 36
17. 81 | 503, 645 - 11, 89 17, 80 11, 51 11, 24 47, 56 | 6
576, 883
6. 25
9. 56
11. 98
13. 81
58. 40 | 5
827, 237
5. 83
12. 59
13. 14
17. 83
50. 61 | | ALKALINITY OF FLOT | TATION CI | RCUITS | · · | | | Lead circuit: Number of plants Total ore treated | 3
68, 249
7. 34
10
505, 884
8. 57 | 503, 645
8. 34 | 6
576, 883
8. 17 | 5
827, 237
8. 24 | | PULP DENSITY OF F | LOTATION | FEED | , | | | Number of plantsdry tons. Total ore treateddry tons. Pulp densitypercent solids_ | 9
734, 401
32, 45 | 5
509, 865
37. 24 | 576, 883
33. 79 | 827, 237
37. 33 | # GOLD AND SILVER ORES The total siliceous ore (gold ore, gold and silver ore, and silver ore) increased from 4,509,376 tons in 1933 to 7,462,890 tons in 1934. Large increases in production of siliceous ores were reported from many States, notably California, Nevada, Colorado, Utah, Arizona, Montana, South Dakota, and Idaho. Of the total material produced, 5,724,192 tons (76.70 percent) were treated at amalgamation or cyanidation plants, at many of which various concentration methods were also used; 1,162,495 tons (15.58 percent) were treated at straight concentration plants; and the remainder (576,203 tons) was shipped direct to smelters. Table 23.—Consumption of reagents in the treatment of gold and silver ores in 1934 [144 plants treating 2,475,169 tons of ore] | | | | | Consumption of reagents (pounds) | | | | |--|-----------------|-------------------------|----------------------|----------------------------------|---------------|--|--| | Reagent | Plants
using | Ore treated
(tons) | Total, 1934 | Per ton | | | | | | | | | 1934 | 1933 | | | | I. Frothers: | | | | | | | | | Pine oils | 132
34 | 2, 236, 743
864, 061 | 204, 627
105, 509 | 0. 091
. 122 | 0.086
.158 | | | | Total frothers | 144 | 2, 475, 169 | 310, 136 | . 125 | . 118 | | | | II. Collectors: | | | | | | | | | Distillation products: | | <u> </u> | | | | | | | Coal-tar creosotes | 11 | 385, 412 | 31, 737 | . 082 | . 110 | | | | Wood-tar creosotes
Petroleum products | 2 2 | 130, 432
67, 805 | 3, 200
37, 320 | . 025
. 550 | . 059 | | | | Total distillation products | 14 | 474, 672 | 72, 257 | . 152 | .108 | | | | Synthetic products: | | | | | | | | | Ethyl xanthates | 86 | 885, 682 | 116,681 | . 132 | .129 | | | | Butyl xanthates | 10 | 220, 173 | 22,666 | . 103 | .036 | | | | Amyl xanthates | 80 | 1,886,890 | 110, 798 | . 059 | . 065 | | | | Xanthate derivatives
Dicresol-dithiophosphoric acid | 23 | 258, 096 | 3,758 | . 015 | | | | | Sodium dicresol-dithiophosphate | 9 | 435, 320
503, 072 | 30, 862
3, 504 | .071 | .053 | | | | Thiocarbanilide | í | 7,815 | 25 | . 003 | .005 | | | | Total synthetic products | 144 | 2, 475, 169 | 288, 294 | . 116 | . 099 | | | | Total collectors | 144 | 2, 475, 169 | 360, 551 | . 146 | . 118 | | | | III. Acids 1 and alkalies: | | | | | | | | | Alkalies: | ١,,, | 045 050 | 900 040 | | | | | | Sodium carbonate
Sodium hydroxide | 41 | 645, 970
322, 525 | 369, 248
85, 608 | . 572 | 1.304
.611 | | | | Lime | 14 | 605, 218 | 152, 375 | . 252 | . 115 | | | | Total alkalies | 53 | 1, 126, 118 | 607, 231 | . 539 | 1, 171 | | | | IV. Other inorganic reagents: | | 1, 120, 110 | 001,201 | . 000 | 1.1/1 | | | | Sulphidizing: Sodium sulphide | 18 | 446, 579 | 71, 158 | . 159 | .278 | | | | Activating: Copper sulphate | 18 | 417, 216 | 187, 518 | . 449 | . 264 | | | | Depressing: | | | | | | | | | Cyanides | 5 | 171, 291 | 11, 437 | .067 | .017 | | | | Sodium silicate | 8 | 151, 568 | 10, 490 | .069 | .056 | | | | Sodium sulphite
Zinc sulphate | 5 | 16, 500
139, 134 | 16, 500
22, 530 | 1.000
.162 | .211 | | | | Total depressing | | 352, 956 | 60, 957 | 179 | 105 | | | | Miscellaneous 2 | 9 | 364, 881 | 49, 137 | . 173 | . 105 | | | | Total reagents | 144 | 2, 475, 169 | 1, 646, 688 | . 665 | . 677 | | | ¹ No acids consumed. Includes sulphur, glue, lead nitrate, lead acetate, starch, and ammonium phosphate. Flotation was employed at 144 plants treating siliceous ores in 1934, including straight flotation plants, combined flotation- and gravity-concentration plants, and amalgamation or cyanidation plants at which flotation equipment was used. The reagents used and metallurgical data for siliceous ores are given in tables 23 to 25. In table 24, under "Combined concentration and amalgamation or cyanidation", the bullion produced in 1934 is given as 243,034.85 fine ounces of gold and 205,937 fine ounces of silver. These figures include all the bullion from combined concentration and amalgamation or cyanidation; however, they also include gold and silver recovered from traps, riffles, strakes, blankets, classifiers, etc., which may or may not have been amalgamated in clean-up barrels, pans, etc. An exact separation of the bullion by methods of recovery in 1934 is not possible owing to incomplete statistics, but subsequent reports of this series may include such a separation. Table 24.—Comparison of metallurgical results in the treatment of gold and silver ores, 1933-34 | | | Method of c | oncentration | | | |--|----------------------------|---|---|---|--| | | Straight co | ncentration | Combined concentra-
tion and amalgama-
tion or cyanidation | | | | | 1933 | 1934 | 1933 | 1934 | | | Number of plants. Total ore treated | | 80 1, 227, 181 204, 805, 25 0, 167 1, 749, 975 1, 426 2, 045, 605 0, 083 7, 180, 990 0, 293 121, 500 51, 791 174, 866, 17 2, 488 1, 569, 767 1, 288, 978
2, 488 1, 569, 767 1, 516 5, 826, 438 5, 625 50, 300 23, 69:1 85, 38 85, 38 73, 66 | 25, 696, 993, 247, 253, 55 0, 355 366, 536 0, 512 304, 696 0, 022 759, 700 0, 055 10, 326 45, 992, 71 17, 966 259, 438 1, 256 660, 881 3, 200 187, 879, 25 133, 604 67, 50:1 18, 24 75, 98 94, 22 52, 03 37, 47 | 64 1, 247, 988 340, 093, 76 0, 273 677, 809 0, 543 547, 746 0, 022 1, 402, 555 0, 056 | | | All products do Copper in all concentrates do Lead in all concentrates do Zinc in all concentrates do do Zinc in all concentrates do | 80. 56
85. 96
85. 26 | 73. 66
76. 74
81. 14
41. 40 | 89. 50
85. 15
86. 99 | 85. 28
70. 77
82. 05 | | ¹ See second paragraph of preceding text for comments on these figures. Table 25.—Comparison of screen analysis, alkalinity, and pulp density in the treatment of gold and silver ores, 1931-34 # SCREEN ANALYSIS OF FLOTATION FEED | | 1931 | 1932 | 1933 | 1934 | |---|---|---|--|---| | Number of plants | 9
359, 919
5. 58
9. 53
12. 52
16. 07
56. 30 | 14
450, 275
4. 72
13. 38
12. 98
13. 84
55. 08 | 28
639, 579
4. 98
9. 33
13. 11
14. 98
57. 60 | 5:
1, 393, 92;
4. 44
8. 20
13. 22
19. 22
54. 84 | | ALKALINITY OF FLO | TATION CI | RCUIT | · | | | Number of plants dry tons. Total ore treated dry tons. Alkalinity pH units. | 259, 338
8. 57 | 364, 588
8. 28 | 18
498, 591
8. 15 | 887, 668
7. 94 | | PULP DENSITY OF F | LOTATION | FEED | | | | Number of plants | 8
309, 466
32, 56 | 386, 127
34 83 | 26
614, 891
26, 45 | 47
1, 333, 582
27, 41 | # GOLD, SILVER, COPPER, LEAD, AND ZINC IN IDAHO # (DETAILED STATISTICS-MINE REPORT) By C. N. GERRY AND T. H. MILLER 1 #### SUMMARY OUTLINE | | Page | | Page | |--|------|--|------| | Summary | 63 | Review by counties and districts—Continued | 1. | | Calculation of value of metal production | 63 | Custer County | 87 | | Mine production by counties | | Elmore County | . 88 | | Mining industry | 69 | Gem County | | | Ore classification | | Gooding County. | 88 | | Metallurgic industry | 73 | Idaho County | 89 | | Review by counties and districts | 80 | Jefferson County | | | Ada County | 84 | Jerome County | 91 | | Bear Lake County | 84 | Latah County | 91 | | Benewah County | 84 | Lemhi County | 91 | | Bingham County | 84 | Lewis County | | | Blaine County | | Minidoka County | | | Boise County | | Nez Perce County | 93 | | Bonner County | 86 | Owyhee County | 93 | | Bonneville County | | Payette County | | | Boundary County | | Power County | | | Butte County | | Shoshone County | 94 | | Camas County | | Coeur d'Alene region | | | Canvon County | 86 | Twin Falls County | 96 | | Cassia County | | Valley County | | | Clearwater County | | Washington County | 96 | The output of gold, silver, copper, lead, and zinc from mines in Idaho in 1934, in terms of recovered metals, was 84,817.20 fine ounces of gold, 7,394,143 fine ounces of silver, 1,531,625 pounds of copper, 142,648,216 pounds of lead, and 49,598,651 pounds of zinc. This output compares with a production in 1933 of 64,592.23 ounces of gold, 6,987,960 ounces of silver, 1,562,234 pounds of copper, 148,726,701 pounds of lead, and 41,935,977 pounds of zinc. There were 291 lode mines and 1,172 placers producing in 1934 compared with 188 lode mines and 334 placers in 1933. Since 1863 Idaho has yielded an output of the five metals as follows: Gold, 6,866,711.93 fine ounces; silver, 354,768,012 fine ounces; copper, 162,754,829 pounds; lead, 9,702,156,461 pounds; and zinc, 995,502,725 pounds. The total value has amounted to \$1,006,036,264. Calculation of value of metal production.—The value of metal production herein reported has been calculated at the figures given in the table that follows. Gold in 1930–32 is figured at \$20.671835 per ounce, the Treasury legal coinage value for fine gold from January 18, 1835, to January 31, 1934; in 1933 at \$25.56 and in 1934 at \$34.95 per ounce, the average weighted yearly United States Government prices.² The silver price in 1930–33 is the average New York price for bar silver; in 1934 the Treasury buying price for newly mined silver, \$0.64646464+ per ounce. The copper, lead, and zinc prices are weighted averages, for each year, of all grades of primary metal sold by producers. ¹ Assisted by Paul Luff and LaRu Shepherd. ² The Treasury from Feb. 1, 1934, through December 1934 has calculated all gold, old and new, at \$35.00 per ounce, under authority of the Gold Reserve Act of Jan. 31, 1934. Details of the U. S. Government fluctuating price of gold in 1933 to Jan. 31, 1934, may be found in Minerals Yearbook, 1934, pp. 25–28. Prices of gold, silver, copper, lead, and zinc, 1930-34 | Year | Gold | Silver | Copper | Lead | Zinc | |------|---|--------|--|--|--| | 1930 | Per fine
ounce
1 \$20.67+
1 20.67+
1 20.67+
25.56
34.95 | . 290 | Per pound
\$0,130
.091
.063
.064
.080 | Per pound
\$0.050
.037
.030
.037 | Per pound
\$0.048
.038
.030
.042
.043 | 1 \$20.671835. 2 \$0.64646464. Mine production of gold, silver, copper, lead, and zinc in Idaho, 1930-34, in terms of recovered metals | Year | | | es pro-
icing | Ore, old tailings, | , | | Silver (le
plac | | |--------------------------------------|--|---------------------------------|--|---|--|--|---|---| | | | Lode | Placer | etc. (short
tons) | Fine ounces | Value | Fine ounces | Value | | 1930
1931
1932
1933
1934 | | 131
136
178
188
291 | | 1, 944, 900
1, 299, 927
1, 032, 853
1, 190, 851
1, 287, 182 | 21, 445. 07
18, 361. 36
46, 885. 39
64, 592. 23
84, 817. 20 | \$443, 309
379, 563
969, 207
11,650,977
2, 964, 361 | 9, 420, 639
7, 220, 923
6, 716, 968
6, 987, 960
7, 394, 143 | \$3, 626, 946
2, 094, 068
1, 894, 185
2, 445, 786
4, 780, 052 | | | | Coppe | r | L | ead | 2 | line | | | Year | Pour | nds | Value | Pounds | Value | Pounds | Value | Total value | | 1930
1931
1932
1933
1934 | 3, 111
1, 144
1, 143
1, 562
1, 531 | , 915
, 381
, 234 | \$404, 502
104, 187
72, 033
99, 983
122, 530 | 268, 115, 963
198, 729, 228
144, 235, 067
148, 726, 701
142, 648, 216 | \$13, 405, 798
7, 352, 981
4, 327, 052
5, 502, 888
5, 277, 984 | 75, 298, 172
39, 137, 212
20, 504, 234
41, 935, 977
49, 598, 651 | 1, 487, 214
615, 127
1, 761, 311 | \$21, 494, 867
11, 418, 013
7, 877, 604
1 11, 460, 945
15, 277, 669 | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Gold and silver produced at placer mines in Idaho, 1930-34, in fine ounces, in terms of recovered metals | Year | Sluid | ing | Dry-l
dredg | | Floati
dredg | Tota | 1 | | |--------------------------------------|---|---------------------------------------|---|--|---|--|---|--| | | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | | 1930
1931
1932
1933
1934 | 672. 46
1, 326. 51
4, 161. 28
5, 147. 97
8, 155. 62 | 110
497
857
1, 164
2, 350 | (2)
(2)
(2)
(2)
781. 16
3, 248. 70 | (2)
(2)
(2)
(2)
149
593 | ² 3, 314. 99
² 3, 887. 01
² 8, 278. 40
17, 260. 77
15, 852. 05 | 2 1, 245
2 1, 351
2 2, 969
5, 930
5, 585 | 3, 987. 45
5, 213. 52
12, 439. 68
23, 289. 90
27, 256. 37 | 1, 355
1, 848
3, 826
7, 243
8, 528 | Drag-line and power-shovel excavators with sluices or special amalgamators. Figures for floating dredges include those for dry-land dredges; separate figures not available. Gold.—The output of gold in Idaho in 1934 was 84,817.20 fine ounces, an increase of more than 31 percent from 64,592.23 ounces in 1933. Gold recovered at placers amounted to 27,256.37 ounces, an increase of 3,966.47 ounces (17 percent). Most of the gold from placers came from Idaho, Boise, and Clearwater Counties, where dredges were operated. Nearly 64 percent of the placer gold was recovered from properties in Idaho County, largely by two companies operating dredges at Warren. Floating dredges recovered 15,852.05 ounces of gold and dry-land dredges, 3,248.70 ounces. Siliceous ore, old tailings, etc., yielded 55,822.40 ounces of gold, an increase of 15,268.28 ounces, and represented nearly 66 percent of
the total gold; placers yielded 32 percent; and the remaining 2 percent came from other classes of ore (lead-zinc, lead, copper-lead, and copper). 76 percent of the gold from lode and placer mines was recovered from 10 mines—in Elmore, Idaho, Valley, Boise, and Shoshone Counties. The Boise-Rochester mine of the St. Joseph Lead Co. at Atlanta was again by far the largest producer of gold in Idaho; it was followed by the Meadow Creek mine of the Yellow Pine Co. at Stibnite, the Idaho Gold Dredging Co. at Warren, the Warren Creek Gold Dredging Co. at Warren, the Wharton placer at Centerville, the Gnome Gold Mining Co. at Elk City, the Lone Pine mine at Golden, the Gold Hill property at Quartzburg, the Come-Back mine at Pioneerville, and the Friday property at Murray. There were decreases in gold production in 1934 from the Idaho Gold Dredging Co., Gnome, and Lone Pine but important increases at the Boise-Rochester mine and the Wharton placer; little change was shown at the Yellow Pine mine. Other mines producing between 300 and 900 ounces of gold each were: Bunker Hill, Gold Dredging, Inc., Grunter, Golden Chariot, Gold Hill placer, Sherman Howe (Walker), National, Belshazzar, Sunnyside, Central Idaho. Mineral, Garden Gulch placer, Shoo Fly, and Hecla; smaller outputs came from the Morning, Deadwood placer, Golden Chest, El Oro, Shamrock, and Demming mines. Silver.—The output of silver in Idaho was 7,394,143 fine ounces in 1934 compared with 6,987,960 ounces in 1933, an increase of nearly 6 percent but considerably less than the average annual output (8,035,-466 ounces) for the decade 1925-34. Idaho retained its place as the leading silver producer in the United States, and Utah held second place with an output of 7,111,417 ounces. Copper-lead ore yielded nearly half the silver from Idaho in 1934, lead-zinc ore 28 percent, and lead ore 18 percent; less than 4 percent came from siliceous material, placers, and copper ore. Silver from lead ore decreased 1,139,862 ounces, but this loss was more than offset by increases of 1,138,476 ounces from lead-zinc ore, 281,758 ounces from copper-lead ore, and 120,257 ounces from siliceous ore. The large decrease (nearly 430,000 ounces) in silver output at the Bunker Hill & Sullivan property was more than offset by a large increase at the Sunshine mine and smaller increases at the Hecla, Golconda, Camp Bird, Gold Hunter, Page, Crescent, and Morning mines. Ten mines produced 96 percent of the silver output of the State in 1934—Sunshine on Big Creek, Hecla at Burke, Bunker Hill at Kellogg, Morning near Mullan, Crescent on Big Creek, Golconda east of Wallace, Page west of Kellogg, Gold Hunter at Mullan, Boise-Rochester at Atlanta, and Camp Bird at Clayton; other producers of more than 25,000 ounces each were: Frisco near Mace, Blackhawk west of Kellogg, Caledonia near Kellogg, Come-Back at Pioneerville, and Yellow Pine at Stibnite. Copper.—The output of copper in Idaho was 1,531,625 pounds in 1934 compared with 1,562,234 pounds in 1933, a decrease of less than 2 percent; the average annual output for the decade 1925–34 was 2,250,536 pounds. Copper-lead ore yielded 50 percent of the total copper in 1934, lead-zinc ore 34 percent, lead ore 12 percent, siliceous ore nearly 4 percent, and copper ore less than 1 percent. About half the copper produced in Idaho in 1934 was recovered from smelting copper-lead concentrates from the Sunshine property on Big Creek. The Crescent property also produced copper from copper-lead ore. Copper from lead-zinc ore came chiefly from the Bunker Hill, Hecla, and Morning mines. The Sunshine Mining Co. retained its place as the leading copper producer in Idaho; however, it is better known as the leading silver producer in the State. The chief ore mineral in the Sunshine property is tetrahedrite, which in this occurrence contains considerable silver. Lead.—The output of lead in Idaho was 142,648,216 pounds in 1934 compared with 148,726,701 pounds in 1933, a decrease of 6,078,-485 pounds and far below the average annual output (231,855,099 pounds) for the decade 1925-34. Nearly 68 percent of the total lead in 1934 was recovered from lead-zinc ore and nearly 32 percent from lead ore; copper-lead ore, siliceous ore, and copper ore together supplied less than 1 percent. There was an increase of about 53,251,000 pounds in lead from lead-zinc ore and a decrease of about 59,300,000 pounds from lead ore. This apparent shift in output from lead ore to lead-zinc ore was actually due to a change in class of ore treated at the Bunker Hill mills, most of the mill product containing enough zinc The Bunker that was saved in 1934 to be classed as lead-zinc ore. Hill & Sullivan Mining & Concentrating Co. retained its place as the largest producer of lead in Idaho, although its output was about 30 percent less than in 1933. Nine mines in 1934 produced nearly 99 percent of the total lead, each yielding more than 1,000,000 pounds; the combined output of the three largest—Bunker Hill, Hecla, and Morning—was nearly 86 percent of the total. In order of output the nine leading producing mines were: Bunker Hill, Hecla, Morning, Page, Golconda, Gold Hunter, Blackhawk, Frisco, and Camp Bird; a large increase was recorded at each of these properties except the Bunker Hill and Frisco. Increases were also shown at the Sunshine, Caledonia, and Bear Top. Except for a very small amount of development work, the Star mine, a large producer in the past, was idle in 1934. All output in 1934 from the Jack Waite mine came from the Montana (Sanders County) section of the property. Zinc.—The output of zinc in Idaho in 1934 (49,598,651 pounds) increased 18 percent from that in 1933 and nearly reached the average annual output (51,775,998 pounds) for the decade 1925-34. Lead-zinc ore yielded almost 99 percent of the total in 1934 and lead ore the There was an increase of about 18,725,000 pounds in zinc from lead-zinc ore and a decrease of about 11,062,000 pounds from lead ore, the apparent shift being due to a change in class of ore treated at Bunker Hill, as previously stated. Seven mines-Morning, Bunker Hill, Golconda, Frisco, Page, Hecla, and Blackhawk—in 1934 yielded almost all the zinc output of the State. The Morning mine of the Federal Mining & Smelting Co. continued as the largest zinc producer in Idaho, increasing its output by about 2,300,000 pounds in 1934. The Bunker Hill property was second with an increase in output of nearly 4,500,000 pounds. The Golconda and Frisco each produced about 3,800,000 pounds, the increase at the Golconda being nearly 1,300,000 pounds. Increases were also shown at the Page, Hecla, and Blackhawk mines; of these three mines, the Page was the only one having an output of more than 1,000,000 pounds. The Star mine made no production in 1934; the Triumph mine in Blaine County was idle; and the output from the Jack Waite mine came from the Montana section of the property. # MINE PRODUCTION BY COUNTIES Mine production of gold, silver, copper, lead, and zinc in Idaho in 1934, by counties, in terms of recovered metals | | Min | es produ | eing | Ore, old | | | Go | old | | | | | Sil | ver | | | |--|--------------------|---------------------------|---------------------------|--------------------------|---|---------------------------------|--|---|--|---|------------------------------|---------------------------------------|----------------------|--------------------|---------------------------------|---------------------------------------| | County | | | | tailings,
etc. | Lo | ode | Pla | cer | To | otal | Lo | de | Pla | cer | To | tal | | | Lode | Placer | Total | (short
tons) | Fine
ounces | Value | | Ada
Bear Lake
Benewah | 7 | 22 | 29
1
4 | 406
6 | 35. 31
. 06 | \$1, 234
2 | 135. 02 | \$4, 719
1, 017 | 170. 33
. 06
29. 10 | \$5, 953
2
1, 017 | 161
11 | \$104
7 | 28 | \$18
2 | 189
11
3 | \$122
7
2 | | Bingham
Blaine
Boise
Bonner | 22
36
8 | 149 | 22
185
8 | 715
13, 953
7, 236 | 81. 26
4, 294. 79
5. 98 | 2, 840
150, 103
209 | 9. 73
5, 070. 30 | 340
177, 207 | 9. 73
81. 26
9, 365. 09
5. 98 | 340
2, 840
327, 310
209 | 4, 059
37, 668
27, 935 | 2, 624
24, 351
18, 059 | 1, 075 | 695 | 4. 059
38, 743
27, 935 | 2, 624
25, 046
18, 059 | | Bonneville
Boundary
Britte
Camas | 1
1
5
6 | 8 | 9
1
5
11 | 13
49
117
969 | 2. 23
13. 36
331. 33 | 78
467
11, 580 | 49. 67
 | 1, 736
 | 51. 90
13, 36
386. 61 | 1, 814
467
13, 512 | 942
1,799
4,458 | 609
1, 163
2, 882 | 31 | 20 | 942
1, 799
4, 489 | 609
1, 163
2, 902 | | Canyon | 1
5
18
26 | 3
1
109
24
51 | 3
2
114
42
77 | 3
270
17, 239 | 1. 00
23. 89
155. 08
28, 448. 27 | 35
835
5, 420
994, 267 | 3. 32
3. 12
1, 443. 49
158. 34
193. 59 | 116
109
50, 450
5, 534
6, 766 | 3. 32
4. 12
1, 467. 38
313. 42
28, 641. 86 | 116
144
51, 285
10, 954
1, 001, 033 | 34
37
82,600
78,968 | 22
24
53, 398
51, 050 | 348
51
51 | 225
33
33 | 34
385
82, 651
79, 019 | 22
249
53, 431
51, 083 | | Gem
Gooding
Idaho
Jefferson | 5 | 12
17
338 | 17
17
390 | 27, 495 | 64. 98 | 2, 271
238, 316 | 25. 98
41. 06 | 908
1, 435
608, 742
139 | 90. 96
41. 06
24, 236. 28
3. 98 | 3, 179
1, 435
847, 058
139 | 7,329 | 4, 738 | 3
11
5,844 | 2
7
3,778 | 102
11
13, 173 | 66
7
8, 516 | | JeromeLatahLemhiLewis | 33 | 18
25
146
2 |
18
25
179
2 | 7, 903 | 1, 847. 47 | 64, 569 | 73. 42
86. 35
693. 62
3. 86 | 2, 566
3, 018
24, 242
135 | 73. 42
86. 35
2, 541. 09
3. 86 | 2, 566
3, 018
88, 811
135 | 6, 633 | 4, 288 | 3
11
79 | 2
7
51 | 3
11
6, 712 | 2
7
4, 339 | | Minidoka
Nez Perce
Owyhee
Payette | 1
33 | 7
11
25
4 | 7
12
58
4 | 7
12, 881 | 7. 81
1, 328. 67 | 273
46, 437 | 95. 28
23. 52
324. 58
3. 26 | 3, 330
822
11, 344
114 | 95. 28
31. 33
1, 653. 25
3, 26 | 3, 330
1, 095
57, 781
114 | 48
27, 324 | 31
17, 664 | 3
744 | 481 | 3
48
28, 068 | 2
31
18, 145 | | PowerShoshone
Twin Falls
Valley | 24 | 19
113
38
17 | 19
137
38
22 | | 3, 114. 62
10, 981. 00 | 108, 856 | 167. 64
850. 73
169. 24
113. 05 | 5, 859
29, 733
5, 915
3, 951 | 167. 64
3, 965. 35
169. 24
11, 094. 05 | 5, 859
138, 589
5, 915
387, 737 | 26, 020 | 4, 565, 610
16, 821 | 11
212
6
14 | 7
137
4
9 | 7, 062, 640
6
26, 034 | 7
4, 565, 747
4
16, 830 | | Washington Total, 1933 | 291
188 | 1, 172
334 | 1, 463 | 1, 287, 182 | 4, 95
57, 560, 83 | 2, 011, 751
11, 055, 687 | 12. 33
27, 256, 37 | 952, 610 | 17. 28
84, 817. 20
64, 592. 23 | 2, 964, 361 | | 11, 030
4, 774, 539
2, 443, 251 | 8, 528
7, 243 | 5, 513
2, 535 | 7, 394, 143
6, 987, 960 | 11, 030
4, 780, 052
2, 445, 786 | [!] Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+per ounce). # Mine production of gold, silver, copper, lead, and zinc in Idaho in 1934, by counties, in terms of recovered metals—Continued | | Сор | per | Lea | ıd | Zi | ne | | Total value | | |--|----------------------------|---------------------|--------------------------------|----------------------------|------------------------------|----------------------------|-------------------------------------|-----------------------------|---------------------------------------| | County | Pounds | Value | Pounds | Value | Pounds | Value | Lode | Placer | Lode and
placer | | AdaBear Loke | | | 9, 676 | \$358 | | | \$1,338
367 | \$4,737 | \$6,07 | | Benewah | | | | φυυσ | | | 307 | 1, 019 | 367
1, 019 | | Bingham Blaine Boise Bonner Bonneville | 975
6, 550
762 | \$78
524
61 | 33, 189
9, 865
638, 486 | 1, 228
365
23, 624 | | | 6, 770
175, 343
41, 953
78 | 177, 902
1, 736 | 340
6, 770
353, 248
41, 953 | | Boundary | 1, 863
350 | 6
149
28 | 54, 000
5, 162
11, 703 | 1, 998
191
433 | 1, 023 | \$44 | 2, 613
1, 970
14, 967 | 1, 730
 | 1, 814
2, 613
1, 970
16, 919 | | CassiaClearwater | 75 | 6 | 2, 892 | 107 | | | 170 | 109 | 279 | | CusterElmore | 13, 975
5, 975 | 1, 118
478 | 1, 117, 648 | 41, 353 | | | 859
101, 289
1, 045, 795 | 50, 675
5, 567
6, 799 | 51, 534
106, 856
1, 052, 594 | | GemGooding | | | 730 | 27 | | | 2, 362 | 910
1, 442 | 3, 272
1, 442 | | Idaho
Jefferson | 1, 250 | 100 | 3, 270 | 121 | | | 243, 275 | 612, 520
139 | 855, 795
139 | | Jerome
Latah | | | | | | | | 2, 568
3, 025 | 2, 568 | | Lemhi
Lewis | 10, 375 | 830 | 84, 730 | 3, 135 | | | 72, 822 | 24, 293
135 | 3, 025
97, 115
135 | | Minidoka
Nez Perce
Owyhee | 525
600 | 42
48 | 243 | 9 | | | 346
64, 158 | 3, 332
822
11, 825 | 3, 332
1, 168
75, 983 | | Payette
Power | | | | | | | | 114 | 114 | | Shoshone | | 117, 782 | 140, 662, 811 | 5, 204, 524 | 49, 597, 628 | 2, 132, 698 | 12, 129, 470 | 5, 866
29, 870
5, 919 | 5, 866
12, 159, 340
5, 919 | | Valley
Washington | 6, 000
10, 000 | 480
800 | 1, 162
12, 649 | 43
468 | | | 401, 130
12, 471 | 3, 960
431 | 405, 090
12, 902 | | Total, 1933 | 1, 531, 625
1, 562, 234 | 122, 530
99, 983 | 142, 648, 216
148, 726, 701 | 5, 277, 984
5, 502, 888 | 49, 598, 651
41, 935, 977 | 2, 132, 742
1, 761, 311 | 14, 319, 546
1 10, 863, 120 | 958, 123
1 597, 825 | 15, 277, 669
1 11, 460, 945 | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+per ounce). Gold and silver produced at placer mines in Idaho in 1934, by counties, in fine ounces, in terms of recovered metals | | Sluic | ing | Dry-land | iredges 1 | Floating dredges Total | | | | | |--------------------------------|--------------------------|----------------|-----------------------|------------|----------------------------|------------------|--------------------------------|------------------|--| | County | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | | | AdaBenewah | 135. 02
29. 10 | 28
3 | | | | | 135. 02
29. 10
9. 73 | 28 | | | Bingham
Boise
Bonneville | 2,080.02 | 530 | 2, 990. 28 | 545 | | | 5, 070. 30
49. 67 | 1,075 | | | Bonneville
Camas
Canyon | 9.48 | 3 | | | 45.80 | 28 | 55. 28
3. 32 | 31 | | | Cassia
Clearwater | 3. 12
593. 68 | 119 | | | 849. 81 | 229 | 3. 12
1, 443. 49
158. 34 | 348
51 | | | Custer
Elmore
Gem | 193. 59 | 51
51
3 | | | | | 193. 59
25. 98 | 51
3 | | | Gooding
Idaho | 41. 06
2, 202. 65 | 11
468 | 258. 42 | 48 | 14, 956. 44 | 5, 328 | 41.06
17,417.51 | 5, 844 | | | Jefferson
Jerome | 73. 42 | 3
11 | | | | | 3. 98
73. 42
86. 35 | 3 | | | Latah
Lemhi
Lewis | 693. 62 | 79 | | | | | 693.62
3.86 | 79 | | | Minidoka
Nez Perce | 95. 28
23. 52 | 3 | . | | | | 95. 28
23. 52
324. 58 | 744 | | | Owyhee
Payette
Power | 3. 26 | 744 | | | | | 3. 26
167. 64 | | | | Shoshone
Twin Falls | 850.73 | 212
6 | | | | | 850. 73
169. 24 | 212 | | | Valley
Washington | 113.05 | 14 | | | | | 113. 05
12. 33 | 14 | | | Total, 1933 | 8, 155. 62
5, 147, 97 | 2,350
1,164 | 3, 248. 70
781. 16 | 593
149 | 15, 852. 05
17, 360, 77 | 5, 585
5, 930 | 27, 256. 37
23, 289. 90 | 8, 528
7, 243 | | ¹ Drag-line and power-shovel excavators with sluices or special amalgamators. #### MINING INDUSTRY Judging from the value of the metal output of Idaho in 1934 and the increase in production of gold, silver, and zinc, the mines of the State were in a much better condition than at any time since 1930. The feature of the year was the marked improvement in gold output, due mainly to the advance in price to \$35 an ounce. In 1930 Idaho produced 21,445 ounces of gold and in 1934 nearly four times that There were large increases in gold at both lode and placer mines, and notable production was made at the Boise-Rochester mine at Atlanta, at the Yellow Pine at Stibnite, and by dredges at Warren. In general, mining conditions in the Coeur d'Alene region, aided by the better price of silver, were improved greatly, as shown by the production of silver, lead, and zinc at the large mines near Kellogg and Wallace; the lead output, however, decreased slightly as the result of a decrease at the Bunker Hill property. Despite the fact that several zinc producers were idle, a large gain was made in output of zinc, especially at the Morning, Bunker Hill, Golconda, and Page The smelter and refinery of the Bunker Hill & Sullivan Mining & Concentrating Co. were active throughout the year but at reduced capacity. #### ORE CLASSIFICATION Ore, old tailings, etc., sold or treated in Idaho in 1934, with content in terms of recovered metals | Source | Mines
produc-
ing | Ore, old
tailings,
etc. | Gold | Silver | Copper | Lead | Zine | |--|-------------------------|--|---|---|--|--|------------------------------| | Dry gold ore
Dry gold and silver ore
Dry silver ore | 195
11
25 | Short tons 1 199, 821 2 879 3 2, 084 | Fine ounces
55, 468. 36
308. 98
45. 06 | Fineounces
161, 274
13, 348
96, 378 | Pounds
26, 488
676
26, 960 | Pounds
32, 439
1, 878
28, 449 | Pounds | | | 231 | 202, 784 | 55, 822. 40 | 271, 000 | 54, 124 | 62, 766 | | | Copper ore
Lead ore
Copper-lead ore
Lead-zinc ore | 5
52
4
7 | 4 1,020
5 240,465
118,927
723,986 | 12. 66
397. 00
116. 41
1, 212. 36 | 4, 349
1, 339, 797
3, 695, 013
2, 075, 456 | 5, 160
184, 911
769, 991
517, 439 | 1, 434
45, 388, 796
334, 769
96, 860, 451 | 628, 869
48, 969, 782 | | | 68 | 1, 084, 398 | 1, 738. 43 | 7, 114, 615 | 1, 477, 501 | 142, 585, 450 | 49, 598, 651 | | Total, lode mines_
Total, placers | 6 291
1, 172 | 1, 287, 182 | 57, 560. 83
27, 256. 37 | 7, 385, 615
8, 528 | 1, 531, 625 | 142, 648, 216 | 49, 598, 651 | | Total, 1933 | 1, 463
522 | 1, 287, 182
1, 190, 851 | 84, 817. 20
64, 592. 23 | 7, 394, 143
6, 987, 960 | 1, 531, 625
1, 562, 234 | 142, 648, 216
148, 726, 701 | 49, 598, 651
41, 935, 977 | | | | | | | | | | ¹ Includes 145 tons of old tailings and 1 ton of old mill cleanings treated by amalgamation; 3,035 tons of old tailings treated by cyanidation; 845 tons of old tailings concentrated; and 190 tons of old tailings, 5 tons of old mill cleanings, and 134 tons of calcines sold to a smelter. 2 Includes 250 tons of old tailings concentrated and 4 tons of old mill cleanings sold to a smelter. 3 Includes 50 tons of old mill cleanings sold to a smelter. 4 Includes 51 tons of old mill cleanings sold to a smelter. Value of metals from ore, old tailings, etc., sold or treated in Idaho in 1934,
by classes of ore | - | | | | | | | | |--|---|-------------------------------------|--|--------------------------------------|---|----------------------------|---| | Class | Ore, old
tailings,
etc. (short
tons) | Gold | Silver | Copper | Lead | Zine | Total value | | Dry gold ore
Dry gold and silver ore
Dry silver ore | 199, 821
879
2, 084 | \$1, 938, 619
10, 799
1, 575 | \$104, 258
8, 629
62, 305 | \$2, 119
54
2, 157 | \$1, 200
69
1, 053 | | \$2, 046, 196
19, 551
67, 090 | | | 202, 784 | 1, 950, 993 | 175, 192 | 4, 330 | 2, 322 | | 2, 132, 837 | | Copper ore
Lead ore
Copper-lead ore
Lead-zinc ore | 1, 020
240, 465
118, 927
723, 986 | 442
13, 875
4, 069
42, 372 | 2, 812
866, 131
2, 388, 695
1, 341, 709 | 413
14, 793
61, 599
41, 395 | 53
1, 679, 386
12, 386
3, 583, 837 | \$27, 041
2, 105, 701 | 3, 720
2, 601, 226
2, 466, 749
7, 115, 014 | | | 1, 084, 398 | 60, 758 | 4, 599, 347 | 118, 200 | 5, 275, 662 | 2, 132, 742 | 12, 186, 709 | | Total, lode mines Total, placers | 1, 287, 182 | 2, 011, 751
952, 610 | 4, 774, 539
5, 513 | 122, 530 | 5, 277, 984 | 2, 132, 742 | 14, 319, 546
958, 123 | | Total, 1933 | 1, 287, 182
1, 190, 851 | 2, 964, 361
11, 650, 977 | 4, 780, 052
2, 445, 786 | 122, 530
99, 983 | 5, 277, 984
5, 502, 888 | 2, 132, 742
1, 761, 311 | 15, 277, 669
1 11, 460, 945 | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Gold ore.—The output of gold ore, old tailings, etc., was 199,821 tons from 195 properties in 1934 compared with 131,052 tons from 137 properties in 1933; it represented nearly 16 percent of the total output of ore, old tailings, etc., in the State in 1934. There were 17 mines producing more than 1,000 tons each in 1934; their combined output was nearly 94 percent of the State total. Except for the Golden Chest mine at Murray and the Gnome mine at Golden, the output from which decreased slightly, there were increases in gold ore ^{Includes 51 tons of old mill cleanings and 3 tons of old tailings sold to a smelter. A mine producing more than one class of ore is counted but once in arriving at total for all classes.} produced at all 17 of these properties. The leading producers, in order of output, were: Boise-Rochester, Yellow Pine, Golden Chariot, Gold Hill, Friday, Lone Pine, Orogrande, Grunter, and Gnome mines; the other producers of importance were: War Eagle, Belshazzar, Sunnyside, Big Buffalo, Golden Chest, Walker-Wilcox, Twin Sister, and Shamrock mines. Gold and silver ore.—Sixty-two percent of the total siliceous gold and silver ore, etc., was produced at the Demming property in the Steele district, Owyhee County. The remainder was chiefly old tailings from the Carson district, Owyhee County, and small lots of ore from Butte, Custer, Idaho, and Owyhee Counties. Silver ore.—Silver ore, old tailings, and mill clean-up from 25 properties increased to 2,084 tons in 1934. The material was mined chiefly at the Crescent mine in the Yreka district, the Addie Darris in the Washington district, and the Weber in the Lakeview district. Carload lots of high-grade silver ore shipped came chiefly from the Katherine mine in Bonner County, the Little Amie in Owyhee County, and the Morning in Shoshone County. Copper ore.—Copper ore and miscellaneous material increased to 1,020 tons in 1934 as a result of activity at the Ima mine in the Blue Wing district, Lemhi County. Small lots of copper ore, etc., were shipped for smelting from mines in Custer, Lemhi, and Nez Perce Counties. Lead ore.—The output of lead ore (including 54 tons of old tailings and mill clean-up smelted) was 240,465 tons from 52 properties in 1934 compared with 630,305 tons from 35 properties in 1933. This large drop (62 percent) in output was due partly to a decrease at the Bunker Hill mine but also to the fact that most of the Bunker Hill ore in 1934 was classed as a lead-zinc product. Other producers of lead ore, each of which reported increased output, were the Hecla, Gold Hunter, Camp Bird, Hope, and Caledonia mines. The Vienna property in Blaine County, a producer of lead ore in 1933, was idle in 1934. A large quantity of lead ore was mined and milled at the Camp Bird mine in the Bay Horse district, Custer County, a new producer. Copper-lead ore.—The output of copper-lead ore decreased 2,842 tons in 1934, but the gold and silver recovered increased. As in the past, most of the material came from the Yankee Boy mine of the Sunshine Mining Co.; nearly all the remainder came from the Crescent mine on the west side of Big Creek near the Sunshine mine. Aside from a test lot of smelting ore from the Hunter district, all the copper-lead ore mined in 1934 was treated at flotation plants on Big Creek. Lead-zinc ore.—The output of lead-zinc ore increased from 307,573 tons from 9 properties in 1933 to 723,986 tons from 7 properties in 1934. Except for a small lot of ore from Camas County, all the lead-zinc ore in 1934 came from 6 mines in Shoshone County and was treated by flotation. It represented more than 56 percent of the State total ore, etc. The Bunker Hill property became the leading producer of lead-zinc ore, followed by the Morning mine of the Federal Mining & Smelting Co. which led in output in 1933. Decided increases were recorded at the Golconda, Page, and Blackhawk mines, but there was a decrease at the Frisco mine. The Star mine in the Hunter district made no production in 1934, and the output from the Jack Waite mine in 1934 came from the Montana section of the property. Ore, old tailings, etc., sold or treated in Idaho in 1934, by counties, with content in terms of recovered metals # DRY GOLD ORE | County | Ore, old tailings, etc. | Gold | Silver | Copper | Lead | Zinc | |--|---|--|---|--|---|--------| | | Short tons | Fine ounces | Fine ounces | Pounds | Pounds | Pounds | | Ada | 403 | 35. 07 | 45 | | | | | Blaine | 1589 | 67.45 | 307 | 472 | 1,007 | | | Boise | 2 13, 949 | 4, 291. 54 | 37, 122 | 6, 513 | 9, 502 | | | Bonneville | 13 | 2.23 | | | | | | Camas | 916 | 329.80 | 235 | 173 | 1, 975 | | | Clearwater | 270 | 23. 89 | 37 | | | | | Custer | 3 967 | 125.87 | 996 | 15 | 1, 276 | | | Elmore | 4 69, 610 | 28, 448. 27 | 78, 968 | 5, 975 | | | | Gem | 98 | 64.88 | 73 | | | | | daho | 8 27, 494 | 6, 817. 00 | 7, 206 | 1, 250 | 3, 270 | | | Lemhi | 6 6, 690 | 1,801.81 | 1, 431 | 4, 715 | 10,054 | | | Owyhee | 7 11, 950 | 1,019.16 | 8, 579 | | 162 | | | Shoshone | 8 10, 305 | 1, 460. 39 | 580 | 1,375 | 4,031 | | | Valley | 56, 567 | 10, 981. 00 | 25, 695 | 6,000 | 1, 162 | | | | 199, 821 | 55, 468, 36 | 161, 274 | 26, 488 | 32, 439 | | | Total, 1933 | | | | | | | | 10041, 1935 | 131, 052 | 40, 463. 41 | 144, 976 | 10, 744 | 27, 986 | | | | DRY G | OLD AND | SILVER O | RE | | | | Butte | 19 | 10.06 | 548 | 76 | 1,878 | | | Custer | 7 | 5. 27 | 207 | | 1,000 | | | daho | l 9 i | 1.77 | 123 | | | | | Owyhee | 10 852 | 291.88 | 12, 470 | 600 | | | | • | | | | | | | | | |
 | | | | | | 879 | 308.98 | 13, 348 | 676 | 1,878 | | | Гotal, 1933 | 879
75 | 308. 98
85. 19 | 13, 348
3, 498 | 676 | 1, 878 | | | Total, 1933 | 75 | | 3, 498 | 676 | 1, 878 | | | | 75
I | S5. 19 ORY SILVE | 3, 498
ER ORE | 676 | 1,878 | | | 4 da | 75
I | 85. 19 ORY SILVE | 3, 498 ER ORE | | | | | AdaBlaine | 75
I
3
23 | 85. 19 ORY SILVE 0. 24 . 70 | 3, 498 ER ORE | 65 | 258 | | | AdaBlaine | 75
I
3
23
24 | 85. 19 ORY SILVE 0. 24 . 70 3. 25 | 3, 498 ER ORE 116 701 546 | 65 37 | 258
363 | | | AdaBlaine | 75
I
3
23
9 4
528 | 85. 19 DRY SILVE 0. 24 . 70 3. 25 4. 75 | 3, 498 ER ORE 116 701 546 4, 506 | 65
37
342 | 258
363
2, 130 | | | Ada
Blaine
Boise
Gonner
Sutte | 75 I 3 23 9 4 528 11 91 | 85. 19 DRY SILVE 0. 24 | 3, 498 ER ORE 116 701 546 4, 506 1, 087 | 65
37
342
1,729 | 258
363
2, 130
1, 450 | | | Ada | 75
I
3
23
9 4
528
11 91
13 | 85. 19 DRY SILVE 0. 24 | 3, 498 ER ORE 116 701 546 4, 506 1, 087 545 | 65
37
342
1,729
24 | 258
363
2, 130
1, 450
517 | | | Ada
Blaine
Boise
Bonner
Butte
Jamas | 3
23
9 4
528
11 91
13
2 | 85. 19 DRY SILVE 0. 24 | 3, 498 ER ORE 116 701 546 4, 506 1, 087 545 244 | 65
37
342
1,729
24
10 | 258
363
2, 130
1, 450
517
58 | | | Ada | 75
I
3
23
9 4
528
11 91
13
2
18 | 85. 19 DRY SILVE 0. 24 | 3, 498 ER ORE 116 701 546 4, 506 1, 087 545 244 552 | 65
37
342
1,729
24 | 258
363
2, 130
1, 450
517
58
38 | | | Ada Blaine Boise Bonner Butte Lamas Custer Lemhi | 3
23
9 4
528
11 91
13
2
18
79 | 85. 19 ORY SILVE 0. 24 . 70 3. 25 4. 75 3. 14 . 41 1. 16 2. 74 17. 63 | 3, 498 IR ORE 116 701 546 4, 506 1, 087 545 244 552 6, 275 | 65
37
342
1,729
24
10
550 | 258
363
2,130
1,450
517
58
38
81 | | | Ada | 75
I
3
23
9 4
528
11 91
13
2
18 | 85. 19 DRY SILVE 0. 24 | 3, 498 IR ORE 116 701 546 4, 506 6, 087 5445 244 552 6, 275 64, 419 | 65
37
342
1,729
24
10 | 258
363
2, 130
1, 450
517
58
38 | | | Ada | 75
I
3
23
9 4
528
11 91
13
2
2
18
79
741 | 85. 19 ORY SILVE 0. 24 . 70 3. 25 4. 75 3. 14 . 41 1. 16 2. 74 17. 63 | 3, 498 ER ORE 116 701 546 4, 506 1, 087 545 244 552 6, 275 64, 419 | 65
37
342
1, 729
24
10
550 | 258
363
2, 130
1, 450
517
58
38
81
10, 905 | | | Ada | 75
I
3
23
9
4
528
11 91
13
2
18
79
741
22
560 | 85, 19 0. 24 | 3, 498 CR ORE 116 701 546 4, 506 1, 087 244 552 6, 275 64, 419 325 17, 062 | 65
37
342
1, 729
24
10
550
14, 203 | 258
363
2, 130
1, 450
517
58
38
81
10, 905 | | | Ada Blaine Boise Bose Boute Butte Bamas Butte Bamas Buster | 75 I 3 23 9 4 528 11 91 13 2 18 79 741 22 560 2,084 | 85. 19 ORY SILVE 0. 24 . 70 3. 25 4. 75 3. 14 . 1. 16 2. 74 17. 63 6. 09 4. 95 45. 06 | 3, 498 IR ORE 116 701 546 4, 506 1, 087 545 524 6, 275 64, 419 3, 205 17, 062 96, 378 | 65
37
342
1,729
24
10
550
14,203
10,000
26,960 | 258
363
2, 130
1, 450
517
58
38
81
10, 905 | | | Ada Blaine Boise Bose Boute Butte Bamas Butte Bamas Buster | 75
I
3
23
9
4
528
11 91
13
2
18
79
741
22
560 | 85, 19 0. 24 | 3, 498 CR ORE 116 701 546 4, 506 1, 087 244 552 6, 275 64, 419 325 17, 062 | 65
37
342
1, 729
24
10
550
14, 203 | 258
363
2, 130
1, 450
517
58
38
81
10, 905 | | | Ada | 75 I 3 23 9 4 528 11 91 13 2 18 79 741 22 560 2,084 | 85. 19 ORY SILVE 0. 24 . 70 3. 25 4. 75 3. 14 . 1. 16 2. 74 17. 63 6. 09 4. 95 45. 06 | 3, 498 IR ORE 116 701 546 4, 506 1, 087 545 524 552 6, 275 64, 419 325 17, 062 96, 378 2, 269 | 65
37
342
1,729
24
10
550
14,203
10,000
26,960 | 258
363
2, 130
1, 450
517
58
38
81
10, 905 | | | Ada Blaine Boise Bonner Butte Camas Custer Lemhi Dwyhee Blookone Valley Washington Potal, 1933 | 75 I 3 23 9 4 528 11 91 13 2 18 79 741 22 560 2,084 60 | 85. 19 ORY SILVE 0. 24 .70 3. 25 4. 75 3. 14 .41 1. 16 2. 74 17. 63 6. 09 4. 95 45. 06 5. 52 COPPER | 3, 498 CR ORE 116 701 546 4, 506 1, 087 545 244 552 6, 275 64, 419 17, 062 96, 378 2, 269 ORE | 655
37
342
1,729
10
550
14,203
10,000
26,960
774 | 258
363
2, 130
1, 450
517
58
38
81
10, 905
12, 649
28, 449
758 | | | Total, 1933 Ada. Blaine Boise Bonner Boute Camas Custer Lemhi Dwyhee Shoshone Valley Washington Total, 1933 | 75 I 3 23 9 4 528 11 91 13 2 18 79 741 22 560 2,084 60 | 85. 19 ORY SILVE 0. 24 . 70 3. 25 4. 75 3. 14 1. 16 2. 74 17. 63 6. 09 4. 95 45. 06 5. 52 COPPER | 3, 498 IR ORE 116 701 546 4, 506 1, 087 544 552 6, 275 64, 419 17, 062 96, 378 2, 269 ORE | 65
342
1, 729
10
550
14, 203
10, 000
26, 960
774 | 258
363
2, 130
1, 450
517
518
38
10, 905
 | | | Ada Blaine Boise Bose Bonner Butte Camas Custer Lemhi Dwyhee Shoshone Washington Fotal, 1933 | 75 I 3 23 9 4 528 11 91 13 2 18 79 741 22 560 2,084 60 | 85. 19 ORY SILVE 0. 24 .70 3. 25 4.75 3. 14 .41 1. 16 2. 74 17. 63 6. 09 4. 95 45. 06 5. 52 COPPER | 3, 498 CR ORE 116 701 546 4, 506 1, 087 545 244 552 6, 275 64, 419 17, 062 96, 378 2, 269 ORE | 655
37
342
1,729
10
550
14,203
10,000
26,960
774 | 258
363
2, 130
1, 450
517
58
38
81
10, 905
12, 649
28, 449
758 | | | Ada Blaine Boise Bonner Butte Camas Custer Lemhi Dwyhee Shoshone Valley Washington Fotal, 1933 | 75 I 3 23 9 4 528 11 91 13 2 18 79 741 22 560 2,084 60 | 85. 19 ORY SILVE 0. 24 . 70 3. 25 4. 75 3. 14 1. 16 2. 74 17. 63 6. 09 4. 95 45. 06 5. 52 COPPER | 3, 498 IR ORE 116 701 546 4, 506 1, 087 544 552 6, 275 64, 419 17, 062 96, 378 2, 269 ORE | 65
342
1, 729
10
550
14, 203
10, 000
26, 960
774 | 258
363
2, 130
1, 450
517
518
38
10, 905
 | | | Ada Blaine Boise Bose Bonner Butte Camas Custer Lemhi Dwyhee Shoshone Washington Fotal, 1933 | 75 I 3 23 9 4 528 11 91 13 2 18 79 741 22 560 2,084 60 | 85. 19 ORY SILVE 0. 24 .70 3. 25 4.75 3. 14 .41 1. 16 2. 74 17. 63 6. 09 4. 95 45. 06 5. 52 COPPER 4. 52 .33 7. 81 | 3, 498 IR ORE 116 701 546 4, 506 1, 087 545 524 6, 275 64, 419 3, 205 17, 062 96, 378 2, 269 ORE 2, 770 1, 531 48 | 65
37
342
1, 729
24
10
550
14, 203
10, 000
26, 960
774
660
3, 975
525 | 258
363
2, 130
1, 450
517
58
38
81
10, 905
12, 649
28, 449
758 | | | Ada Blaine Boise Bose Bonner Butte Camas Custer Lemhi Dwyhee Shoshone Washington Fotal, 1933 | 75 I 3 23 9 4 528 11 91 13 2 18 79 741 22 560 2,084 60 | 85. 19 ORY SILVE 0. 24 .70 3. 25 4.75 3. 14 .41 1. 16 2. 74 17. 63 6. 09 4. 95 45. 06 5. 52 COPPER | 3, 498 CR ORE 116 701 546 4, 506 1, 087 545 244 552 6, 275 64, 419 17, 062 96, 378 2, 269 ORE | 655
37
342
1,729
10
550
14,203
10,000
26,960
774 | 258
363
2, 130
1, 450
517
518
38
10, 905
 | | - 1 Includes 125 tons of old tailings concentrated. 2 Includes 70 tons of old tailings treated by amalgamation, 120 tons of old tailings concentrated, and 1 ton of old tailings sold to a smelter. 3 Includes 1 ton of old mill cleanings treated by amalgamation and 600 tons of old tailings concentrated. 4 Includes 1 ton of old mill cleanings and 134 tons of calcines sold to a smelter. 5 Includes 2,600 tons of old tailings treated by cyanidation and 1 ton of old mill cleanings sold to a smelter. 6 Includes 400 tons of old tailings treated by cyanidation and 1 ton of old mill cleanings and 189 tons of old tailings sold to a smelter. **Includes 40 tons of old tailings treated by cyanication and 1 ton of old mill cleanings and 189 tons of old tailings sold to a smelter. 7 Includes 75 tons of old tailings treated by amalgamation and 2 tons of old mill cleanings sold to a smelter. 8 Includes 35 tons of old tailings treated by cyanidation. 9 Old mill cleanings sold to a smelter. 14 Includes 250 tons of old tailings concentrated and 3 tons of old mill cleanings sold to a smelter. 11 Includes 50 tons of old tailings concentrated. 12 Includes 4 tons of old mill cleanings sold to a smelter. Ore, old tailings, etc., sold or treated in Idaho in 1934, by counties, with content in terms of recovered metals-Continued #### LEAD ORE | County | Ore, old
tailings, etc. | Gold | Silver | Copper | Lead | Zinc | |--|---|---|---|---|--|------------------------------| | Bear Lake Blaine Bonner Bonner Boundary Butte Camas Cassia Custer Gem Lemhi Shoshone | Short tons 6 13 103 14 6, 708 49 7 36 3 16, 256 48 217, 105 | Fine ounces 0.06 13.11 1.23 16 1.10 1.00 18.24 .10 42.59 319.41 | Fine ounces 11 3, 051 23, 429 942 164 3, 582 3, 429 78, 334 78, 334 26 3, 119 1, 227, 105 | Pounds 438 420 75 58 153 75 13, 230 1, 135 169, 327 184, 911 | Pounds
9, 676
31, 924
636, 356
54, 000
1, 834
8, 125
2, 892
1, 115, 909
73, 730
73, 453, 874
45, 388, 796 | Pounds | | Total, 1933 | 630, 305 | 428. 15 | 2, 479, 659 | 450, 151 | 104, 688, 631 | 11, 690, 950 | | | C | OPPER-LE | AD ORE | | | | | CusterShoshone | 1
118, 926 | 0. 02
116. 39 | 49
3, 694, 964 | 60
769, 931 | 133
334, 636 | | | Total, 1933 | 118, 927
121, 769 |
116. 41
50. 02 | 3, 695, 013
3, 413, 255 | 769, 991
875, 539 | 334, 769
399, 573 | | | | | LEAD-ZIN | C ORE | | | | | CamasShoshone | 723, 982 | 0. 02
1, 212. 34 | 96
2, 075, 360 | 517, 439 | 1, 086
96, 859, 365 | 1, 023
48, 968, 759 | | Total, 1933 | 723, 986
307, 573 | 1, 212. 36
257. 51 | 2, 075, 456
936, 980 | 517, 439
221, 619 | 96, 860, 451
43, 609, 672 | 48, 969, 782
30, 245, 027 | Includes 3 tons of old tailings and 4 tons of old mill cleanings sold to a smelter. Includes 47 tons of old mill cleanings sold to a smelter. Zinc products (as marketed from Idaho mines and mills) sold to smelters and electrolytic plants in 1934 | Classification | County | Quantity
(dry
weight) | Gross zinc | Average
assay of
ore and
concen-
trates | Recovered zinc | |-------------------|--------------------|--|--|---|--| | Zinc concentrates | Camas and Shoshone | Short
tons
51, 591
51, 591
43, 134 | Pounds
54, 761, 806
54, 761, 806
46, 308, 699 | Percent 53. 07 53. 68 | Pounds
49, 598, 651
49, 598, 651
41, 935, 977 | ## METALLURGIC INDUSTRY Of the 1,287,182 tons of ore, old tailings, etc., produced in 1934 in Idaho, 121,169 tons (9.41 percent) were treated at gold and silver mills, 1,147,611 tons (89.16 percent) were treated at concentration plants, and 18,402 (1.43 percent) were shipped to smelters. There were 79 gold and silver mills in operation in Idaho in 1934— 53 amalgamation plants, 7 cyanide plants, 12 combined amalgamation and gravity concentration plants, and 7 combined amalgamation and flotation concentration plants. There were 49 active concentration plants—28 straight flotation plants (15 treating siliceous material, 1 copper ore, 2 copper-lead ore, 5 lead ore, and 5 lead-zinc ore), 2 combined gravity and flotation plants (1 treating lead ore and 1 lead-zinc ore), and 19 straight gravity concentration plants (15 treating siliceous material, 1 copper ore, and 3 lead ore). Of the ore, etc., treated at gold and silver mills, 20,810 tons (including 145 tons of old tailings and 1 ton of mill clean-up) were treated at straight amalgamation plants, 87,107 tons of ore were treated by combined amalgamation and concentration, and 13,252 tons (including 3,035 tons of old tailings) were treated at straight cyanidation plants. There were marked increases in 1934 in ore treated by amalgamation and by cyanidation, especially at the Boise-Rochester mine in Elmore County where ore was treated by amalgamation and flotation. The following table gives the material treated at gold and silver mills in Idaho in 1934 and the gold and silver recovered by amalgamation and cyanidation. Mine production of metals from gold and silver mills in Idaho in 1934, by counties, in terms of recovered metals | | | | tailings, | | Recovered | in bullion | | | | |---------------------------------|-------------|-------------------------|---|------------------------------|---|--------------------------|--|--|--| | County | etc. | | ted (dry
ght) | Amal | gamation | Cyani | Cyanidation Gold Silver Fine ounces 5.52 24 2,704.68 1,855 | | | | | | | Old tai | | Silver | Gold | Silver | | | | Ada | Short | tons | Short to | s Fine ounc | | | | | | | Blaine
Boise
Bonneville | 10, | 107
841
13 | 1 7 | 2. 2 | 2 2 605 | 5. 52 | 24 | | | | Camas | 69. | 87
30
177
142 | 2 | 32. 7
10. 4 | $\begin{bmatrix} 2 & 20 \\ 2 & 4 \\ 6 & 32 \end{bmatrix}$ | | | | | | Gem
Idaho
Lemhi
Owyhee | 21,
11. | 95
235
961
820 | ³ 2, 600
³ 400
¹ 7 | 54. 6
3, 355. 1
348. 1 | $\begin{bmatrix} 8 & 30 \\ 0 & 1,440 \\ 2 & 38 \end{bmatrix}$ | 2, 704. 68
17. 90 | 1, 855
8 | | | | Shoshone
Valley | | 510
567 | 3 3 | 63. 3
466. 8 | 0 18 | 5. 13 | 2 | | | | Total, 1933 | 117,
78, | 988
220 | 3, 18
1, 38 | 26, 098. 9
14, 694. 3 | | 2, 733. 23
4, 130. 68 | 1, 889
1, 973 | | | | | | | | Concentra | tes and recov | ered metal | | | | | County | | tra | oncen-
tes pro-
luced | Gold | Silver | Copper | Lead | | | | Ada | | Sh | ort tons | Fine ounces
14.00 | Fine ounces | Pounds | Pounds | | | | Boise | | | 150 | 203. 55 | 1,600 | 400 | 108 | | | Elmore Lemhi_ Valley__ Total, 1933 1, 592 19 32 22.00 65. 52 37.70 227.98 10, 132. 63 8, 375. 85 22. 77 9, 538. 08 5,800 6, 550 3, 377 89 246 1, 276 81 162 1, 627 1, 989 243 60, 932 1,915 7,575 72, 367 84, 813 36 36 ¹ Old tailings amalgamated. ² Old mill cleanings amalgamated. ³ Old tailings cyanided. Ore and old tailings treated at straight concentration plants increased from 1,097,413 tons in 1933 to 1,147,611 tons in 1934. Siliceous material treated at concentration plants increased 28,217 tons, as a result of the increase in price of gold. Copper-lead ore concentrated decreased from 121,769 tons in 1933 to 118,925 tons in 1934, due largely to the treatment of a smaller tonnage of bettergrade ore at the Sunshine (Yankee Boy) mine. On account of the change (previously mentioned) in classification of the Bunker Hill ore there was a large decrease in lead ore concentrated and a large increase in lead-zinc ore milled; however, there was a net increase of 23,822 tons in the combined total of lead ore and lead-zinc ore concentrated in 1934. The following tables give ore-concentration data for Idaho in 1934. # Idaho ore and old tailings concentrated in 1934, by classes of ore and old tailings, methods of concentration, and classes of concentrates | | | 3.5 | | Ore and old | | Gross | content of n | aill feed | | |--|---------------------------|--|---|---|---|--|---|------------------------------|-----------------------------| | Class of ore and old tailings concen | trated | Me | thod of concentration | tailings con-
centrated | Gold | Silver | Copper | Lead | Zine | | Siliceous gold ore | F | lotati | on | Short tons
72, 452
725 | 15, 612, 18
93, 20 | Fine ounces
34, 203
2, 720 | Pounds
17, 810
85 | Pounds
20, 180
250 | Pounds | | Siliceous silver ore | | | | 500
11,003
118,925
43,855
465,185 | 4. 00
2. 25
145. 00
19. 75
775. 04 | 2, 100
2, 012
3, 823, 391
175, 620
1, 373, 826 | 300
3, 015
1, 096, 160
12, 265
516, 804 | 2, 500 | 63, 093, 467 | | 2004 2000 001p-1000 000-1 | | | | ² 702, 645 | 16, 651. 42 | 5, 413, 872 | 1, 646, 439 | 72, 064, 635 | 63, 093, 467 | | Lead sulphide oreLead-zinc sulphide ore | ad sulphide ore | | y and flotation | 165, 636
258, 801 | 300.00
750.00 | 781, 802
942, 035 | 194, 000
310, 561 | 30, 087, 200
46, 066, 578 | 3, 942, 000
20, 082, 957 | | | | Gravity \$4,437 1,050.00 Gravity \$4,076 1,051.60 4262 29.60 | | 424, 437 | 1,050.00 | 1, 723, 837 | 504, 561 | 76, 153, 778 | 24, 024, 957 | | Siliceous gold ore and old tailings | G | | | 8, 838
850 | 8, 055 | 3, 260 | | | | | Siliceous silver ore and old tailingsLead sulphide ore | | | | ⁵ 90 | 7. 60 | 1, 535
80, 070 | 12, 040 | | | | | | | | ² 20, 529 | 1, 106. 80 | 91, 293 | 20, 095 | 1, 320, 330 | | | | | | | 6 1, 147, 611 | 18, 808. 22 | 7, 229, 002 | 2, 171, 095 | 149, 538, 743 | 87, 118, 424 | | Class of ore and old tailings concentrated | Method of concentra | ation | Concentrates prod | luced | | Gross | content of c | oncentrates | | | · | interiod of concentration | | Class | Quantity | Gold | Silver | Copper | Lead | Zinc | | Siliceous gold ore | Flotationdodododo | | Siliceous golddo
Siliceous silver
Copper sulphide
Copper-lead sulphide | 9
21
7 24 | Fine ounces
13, 243. 36
47. 50
3. 02
1. 65
116. 39 | Fine ounces 28, 490 708 1, 613 1, 529 3, 694, 847 | Pounds 13, 527 64 229 2, 346 1, 021, 977 | 1, 945 | Pounds | | Lead sulphide and oxidized ore | do | Copper-lead sulphide and dized. | | 3, 937 | 14. 46 | 143, 774 | 9, 853 | 4, 162, 914 | | | Lead-zine sulphide ore | do | {Lead sulphidc
 Zinc sulphide | • 40, 885
44, 716 | 184. 41
418. 95 | 1, 034, 320
180, 100 | 220, 762
185, 452 | 57, 410, 375
2, 930, 108 | 48, 027, 661 | |---|-----------------------|--|-------------------------|----------------------------|---------------------------|----------------------|------------------------------------|--------------| | | | | ² 85, 601 | 603. 36 | 1, 214, 420 | 406, 214 | 60, 340, 483 | 48, 027, 661 | | | | | 98, 516 | 14, 029. 74 | 5, 085, 381 | 1, 454, 210 | 64, 872, 343 | 48, 027, 661 | | Lead sulphide ore | Gravity and flotation | {Lead sulphide
Zinc sulphide | 28, 044
742 | 222. 12
6. 14 | 752, 523
5, 134 | 159, 850
2, 918 | 29, 267, 652
112, 561 | 688, 795 | | | | | 28, 786 | 228. 26 | 757, 657 | 162, 768 | 29, 380, 213 | 688, 795 | | Lead-zinc sulphide ore | do | (Lead sulphide
Zinc sulphide
Iron sulphide | 40, 850
6, 133
86 | 539. 00
68. 00
2. 00 | 841, 273
19, 681
82 | 220, 222
17, 740 | 40, 394, 073
525, 079
3, 332 | 6, 045, 350 | | | | | 47, 069 | 609.00 | 861, 036 | 237, 962 | 40, 922, 484 | 6, 045, 350 | | | | | 75, 855 | 837. 26 | 1, 618, 693 | 400, 730 | 70, 302, 697 | 6,
734, 145 | | Siliceous gold ore and old tailings
Siliceous gold and silver ore and old tailings | Gravity | Siliceous gold
Siliceous gold and silver | 8 690
9 5 | 818. 89
20. 51 | 7, 071
627 | 6, 375 | 2, 568 | | | Siliceous silver ore and old tailings
Lead sulphide ore | do | Siliceous silver
Lead sulphide | 10 20
883 | 6. 61
14. 50 | 1, 312
64, 232 | 9, 335 | 2, 094
1, 052, 577 | | | | | | ² 1, 598 | 860. 51 | 73, 242 | 15, 710 | 1, 057, 239 | | | | | <u> </u> | 11 175, 969 | 15, 727. 51 | 6, 777, 316 | 1, 870, 650 | 136, 232, 279 | 54, 761, 806 | 1 Consists of 1,000 tons of copper-tungsten ore treated by flotation and 3 tons of copper ore treated by gravity concentration. 2 3 tons of copper sulphide ore treated by gravity concentration and yielding 1 ton of copper sulphide concentrates included under flotation. 3 Includes 120 tons of siliceous gold and silver old tailings. 4 Includes 250 tons of siliceous silver old tailings. 5 Includes 50 tons of siliceous silver old tailings. 6 Figures do not include ore and old tailings treated at gold and silver mills. 7 Consists of 23 tons of copper concentrates from copper-tungsten ore and 1 ton of copper concentrates from copper ore. 8 Includes 24 tons of concentrates from old tailings. 9 Includes 17 tons of concentrates from old tailings. 1 Figures do not include concentrates from ore and old tailings treated at gold and silver mills. Mine production of metals from concentrating mills in Idaho in 1934, by counties, in terms of recovered metals | | Ore and o | | Concentrates and recovered metal | | | | | | | | | | | |-------------|-------------------------|--------|----------------------------------|-------------|-------------|-------------|---------------|--------------|--|--|--|--|--| | County | Ore Old trates produced | | Gold | Silver | Copper | Lead | Zine | | | | | | | | | Short | Short | Short | Fine | Fine | | | | | | | | | | | tons | tons | tons | ounces | ounces | Pounds | Pounds | Pounds | | | | | | | Blaine | 383 | 125 | 32 | 59. 61 | 469 | 340 | 3,330 | | | | | | | | Boise | 2,715 | 120 | 646 | 515.96 | 6, 706 | 4,621 | 894 | | | | | | | | Bonner | 7,062 | | 372 | 3. 52 | 19, 283 | 410 | 462, 507 | | | | | | | | Butte | | 50 | 17 | 40 | 302 | | 1,450 | | | | | | | | Camas | 804 | | 19 | 225. 57 | 214 | 25 | 2,032 | 1,023 | | | | | | | Clearwater | 240 | | 3 | 12.44 | 33 | | | | | | | | | | Custer | 16, 277 | 600 | 889 | 84. 35 | 64, 966 | 7,445 | 1,001,000 | | | | | | | | Elmore | 244 | | 9 | 48.05 | 21 | | | | | | | | | | Gem | 3 | | 1 | | 12 | | 521 | | | | | | | | Idaho | 3, 562 | | 42 | 497.12 | 1, 715 | 1,025 | 2,791 | | | | | | | | Lemhi | 5, 569 | | 227 | 837. 51 | 2, 263 | 2,600 | 6,568 | | | | | | | | Nez Perce | 3 | | 1 | 1.45 | 10 | 85 | | | | | | | | | Owyhee | 61 | 250 | 10 | 27. 57 | 1,601 | | | | | | | | | | Shoshone | 1,055,543 | | 169, 966 | 2, 922. 60 | 6, 654, 337 | 1, 414, 765 | 128, 931, 636 | 49, 597, 628 | | | | | | | Valley | 54, 000 | | 3, 735 | 10, 491. 36 | 25, 384 | 6,000 | 1,162 | | | | | | | | | 1, 146, 466 | 1, 145 | 175, 969 | 15, 727. 51 | 6, 777, 316 | 1, 437, 316 | 130, 413, 891 | 49, 598, 651 | | | | | | | Total, 1933 | 1, 097, 413 | | 174, 116 | 11, 990. 90 | 6, 575, 872 | 1, 517, 443 | 137, 912, 896 | 41, 935, 977 | | | | | | # Gross metal content of Idaho concentrates produced in 1934, by classes of concentrates | | Concen-
trates | Gross metal content | | | | | | | | | | |-----------------------|--|---|--|---|--|----------------------------|--|--|--|--|--| | Class of concentrates | produced
(dry
weight) | Gold | Silver | Copper | Lead | Zinc | | | | | | | Dry and siliceous | Short
tons
6, 803
24
114, 604
51, 591
4, 790 | Fine
ounces
24, 266, 82
1, 65
982, 19
493, 09
116, 39 | Fine
ounces
112, 253
1, 529
2, 836, 139
204, 915
3, 694, 847 | Pounds 27, 127 2, 346 620, 022 206, 110 1, 021, 977 | Pounds 26, 732 1, 945 132, 288, 871 3, 567, 748 348, 698 | Pounds | | | | | | | Total, 1933 | 177, 812
175, 096 | 25, 860. 14
20, 366. 75 | 6, 849, 683
6, 660, 685 | 1, 877, 582
1, 792, 825 | 136, 233, 994
143, 994, 843 | 54, 761, 80
46, 308, 69 | | | | | | Mine production of metals from Idaho concentrates in 1934, in terms of recovered metals # BY COUNTIES | | Concentrates | Gold | Silver | Copper | Lead | Zinc | |-------------|-----------------|-------------|---|-------------|---------------|--------------| | | Short tons | Fine ounces | Fine ounces | Pounds | Pounds | Pounds | | <u>A</u> da | 15 | 14.00 | 30 | | | | | Blaine | 32 | 59.61 | 469 | 340 | 3,330 | | | Boise | 796 | 719. 51 | 8, 306 | 5,021 | 1,002 | | | Bonner | 372 | 3. 52 | 19, 283 | 410 | 462, 507 | | | Butte | 17 | . 40 | 302 | | 1,450 | | | Camas | 19 | 225, 57 | 214 | 25 | 2,032 | 1,023 | | Clearwater. | 4 | 13. 47 | 33 | | | | | Custer | 898 | 106.35 | 65, 209 | 7,460 | 1, 002, 276 | | | Elmore | 1,601 | 9, 586, 13 | 60, 953 | 5,800 | , , | | | Gem | 1 | | 12 | | 521 | | | Idaho | 61 | 562, 64 | 3, 630 | 1, 114 | 2,872 | | | Lemhi | 250 | 875. 21 | 2, 299 | 2,846 | 6, 568 | | | Nez Perce | 1 | 1.45 | 10 | 85 | -, | | | Owvhee | $4\overline{2}$ | 255, 55 | 9, 176 | | 162 | | | Shoshone | 169, 966 | 2, 922, 60 | 6, 654, 337 | 1, 414, 765 | 128, 931, 636 | 49, 597, 628 | | Valley | 3, 737 | 10, 514, 13 | 25, 420 | 6,000 | 1, 162 | | | • | | | | | | | | | 177, 812 | 25, 860, 14 | 6, 849, 683 | 1, 443, 866 | 130, 415, 518 | 49, 598, 651 | | Total, 1933 | 175, 096 | 20, 366. 75 | 6, 660, 685 | 1, 520, 820 | 137, 914, 885 | 41, 935, 977 | | | 2.0,000 | 20,000.10 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -, 0-0, 020 | 201,022,000 | 12,000,011 | Mine production of metals from Idaho concentrates in 1934, in terms of recovered metals—Continued #### BY CLASSES OF CONCENTRATES | | Concentrates | Gold | Silver | Copper | Lead | Zinc | |-------------------|---|--|---|--|--|--------| | Dry and siliceous | Short tons
6, 803
24
114, 604
51, 591
4, 790 | Fine ounces
24, 266. 82
1. 65
982. 19
493. 09
116. 39 | Fine ounces
112, 253
1, 529
2, 836, 139
204, 915
3, 694, 847 | Pounds 20, 459 2, 260 458, 684 192, 592 769, 871 | Pounds 23, 110 1, 162 126, 738, 633 3, 318, 310 334, 303 | Pounds | The quantity of ore shipped crude from Idaho mines increased nearly 39 percent in 1934. The following tables give the contents of the crude ore smelted in 1934, by classes and by counties. Gross metal content of Idaho crude ore shipped to smelters in 1934, by classes of ore | | Quantity | Gross metal content | | | | | | | | | |-------------------|--|---|--|-----------------------------------|-------------------------------------|--|--|--|--|--| | Class of ore | (dry
weight) | Gold | Silver | Copper | Lead | | | | | | | Dry and siliceous | Short tons
3, 173
13
14, 819
2 | Fine ounces 2, 467. 82 4. 65 134. 33 . 02 | Fine ounces
135, 011
2, 782
370, 136
166 | Pounds 45, 043 3, 783 70, 298 178 | Pounds 46, 395 285 12, 632, 486 486 | | | | | | | Total, 1933 | 18, 007
12, 973 | 2, 606. 82
1, 448. 34 | 508, 095
299, 319 | 119, 302
49, 887 | 12, 679, 652
11, 238, 366 | | | | | | Mine production of metals from Idaho crude ore shipped to smelters in 1934, in terms of recovered metals # BY COUNTIES | | Ore | Gold | Silver | Copper | Lead | |-------------|------------|-------------|-------------|---------|-------------| | | Short tons | Fine ounces | Fine ounces | Pounds | Pounds | | Ada | 3 | 0. 24 | 116 | | | | Bear Lake | | .06 | 11 | | 9, 67 | | Blaine | | 8.46 | 2, 962 | 626 | 27, 78 | | Boise | 202 | 1, 244. 33 | 28, 209 | 1,492 | 8, 50 | | Bonner | | 2.46 | 5, 256 | 277 | 109, 78 | | Boundary | 49 | | 942 | 75 | 54, 00 | | Butte | | 12.96 | 1, 497 | 1,863 | 3, 71 | | Camas | 78 | 73.04 | 4, 224 | 325 | 9, 67 | | Cassia | 3 | 1.00 | 34 | 75 | 2, 89 | | Custer | 184 | 20. 27 | 17, 359 | 6, 515 | 115, 37 | | Elmore | | 102.04 | 387 | 175 | | | Gem | 4 | 10.30 | 57 | | 20 | | Idaho | 96 | 193.33 | 280 | 136 | 39 | | Lemhi | 783 | 495, 53 | 4, 179 | 6,768 | 78, 16 | | Owyhee | | 314. 26 | 17, 124 | 600 | . 8 | | Shoshone | 14, 971 | 123, 59 | 408, 071 | 57, 510 | 11, 731, 17 | | Valley | 22 | | 325 | | | | Washington | 560 | 4. 95 | 17, 062 | 10,000 | 12, 64 | | | 18,007 | 2, 606. 82 | 508, 095 | 86, 437 | 12, 164, 06 | | Γotal, 1933 | 12, 973 | 1, 448. 34 | 299, 319 | 38, 240 | 10, 785, 54 | #### BY CLASSES OF ORE Miscellaneous material (395 tons) treated in Idaho in 1934, not included in the tables under "Metallurgic Industry", consisted of 193 tons of old tailings, 134 tons of old calcines, and 68 tons of old mill cleanings, all shipped for smelting. # REVIEW BY COUNTIES AND DISTRICTS Mine production of gold, silver, copper, lead, and zinc in Idaho in 1934, by counties and districts, in terms of recovered metals | County and district | Mines p | roducing | Ore, old | | Gold | | | Silver | | G | T | 7: | M-4-11 | |---|---------|-----------|-------------------|----------------|----------------|-----------------|----------------|----------------|----------------|------------
----------|--------|---------------| | County and district | Lode | Placer | tailings,
etc. | Lode | Placer | Total | Lode | Placer | Total | Copper | Lead | Zinc | Total value | | Ada County: | | | Short
tons | Fine
ounces | Fine
ounces | Fine
ounces | Fine
ounces | Fine
ounces | Fine
ounces | Pounds | Pounds | Pounds | | | Black Hornet | 7 | | 406 | 35. 31 | | 35. 31 | 161 | | 161 | | | | \$1,338 | | Boise | | 6 | | | 4.12 | 4. 12 | | | | | | | 144 | | Highland (Boise River) | | 14 | | | 107. 61 | 107.61 | | 28 | 28 | | | | 3, 779 | | Snake River | | 2 | | | 23. 29 | 23. 29 | | | | | | | 814 | | Bear Lake County: Sharon | 1 | | 6 | . 06 | | . 06 | 11 | | 11 | | 9, 676 | | 367 | | Benewah County: Tyson Creek | | 4 | | | 29. 10 | 29. 10 | | 3 | 3 | | | | 1,019 | | Bingham County: Snake River | | 2 | | | 9. 73 | 9. 73 | | | | | | | 340 | | Blaine County: | | l | | | ļ | | | | | | 1.2 1 | | | | Mineral Hill | | | 679 | 74. 79 | | 74.79 | 2, 181 | | 2, 181 | 675 | 17, 595 | | 4,729 | | Vienna | | | 4 | 5. 35 | | 5. 35 | 447 | | 447 | | 567 | | 497 | | Warm Springs | 4 | | 32 | 1, 12 | | 1.12 | 1, 431 | | 1, 431 | . 300 | 15, 027 | | 1,544 | | Boise County: | ١. | _ | | | 10.05 | 15 50 | | | | | | ŀ | | | Banner | 1 24 | 5 | 3 | 5. 52 | 10. 27 | 15. 79 | 3 | 3 | 00 100 | | | | 556 | | Boise Basin | | 106 | 13, 761 | 4, 197. 71 | 4, 934. 42 | 9, 132. 13 | 37, 125 | 1, 035 | 38, 160 | 5, 900 | 9, 865 | | 344, 674 | | Garden Valley | | 2 | | | 19.83 | 19.83 | | 3 | 3 | | | | 695 | | Highland (Boise River) | | 12 | | | 36.45 | 36. 45 | | 11 | 11 | | | | 1, 281 | | Miller Creek | | 2 2 | | | 3.66 | 3.66 | | 3 | 3 | | | | 130 | | Payette River | | 2 | 62 | | 4.98 | 4.98 | | | | | | | 174 | | Shaw Mountain | 5 | | 62 | 14.68 | | 14.68 | 8 | | 8 | | | | 518 | | South Fork of Payette River | | 16 | 98 | | 52. 02 | 52. 02 | | 14 | 14 | 650 | | | 1,827 | | Summit Flat | | 4 | 98 | 61.40 | 8. 67 | 61. 40 | 365 | | 365 | 650 | | | 2, 434 | | Twin Springs | 3 | 4 | 29 | | 8.67 | 8. 67 | | 6 | 6 | | | | 307 | | West View | 3 | - | 29 | 15. 48 | | 15. 48 | 167 | | 167 | | | | 649 | | | 2 | | 507 | 0.50 | | 0.70 | 1 010 | 1 1 | 1 010 | 00" | 0 710 | | | | | 6 | | | 3. 72 | | 3. 72 | 1, 813 | | 1,813 | 225
537 | 2, 540 | | 1, 414 | | Pend d'Oreille
Bonneville County: Mt. Pisgah | 1 0 | | 6, 729 | 2. 26
2. 23 | 49. 67 | 2, 26
51, 90 | 26, 122 | | 26, 122 | 537 | 635, 946 | | 40, 539 | | Bonneville County: Mt. Pisgan | 1 1 | 8 | 13
49 | 2, 23 | 49.67 | 51.90 | 942 | | | | | | 1, 814 | | Boundary County: Porthill | 1 | | 49 | | | | 942 | | 942 | 75 | 54, 000 | | 2, 613 | | Butte County: Hamilton | ١., | | | 00 | ļ | | 20 | 1 1 | 00 | | 100 | | | | Hamuton | 1 1 | | 1 116 | . 03 | | . 03 | | | 20 | | 189 | | 21 | | Lava Creek | . 4 | | 110 | 13. 33 | | 13. 33 | 1,779 | | 1, 779 | 1,863 | 4, 973 | | 1, 949 | | Little Smoky | 3 | 3 | 74 | 13, 39 | 52, 42 | 05 01 | 4, 285 | 31 | 4. 316 | 325 | 10 777 | 1 000 | | | Rosetta | | 3 2 | 74 | 13. 39 | 2.86 | 65. 81
2. 86 | 4, 285 | 31 | 4, 316 | 325 | 10, 757 | 1, 023 | 5, 558 | | Skeleton Creek | 2 | 2 | 883 | 315, 71 | 2.80 | 315, 71 | 167 | | 167 | 25 | 946 | | 100 | | | | | 883 | 2, 23 | | 2. 23 | | | 167 | 25 | 946 | | 11, 179
82 | | | | 3 | | 2. 23 | | | 6 | | 0 | | | | | | Canyon County: Boise River | |] 3 | | | 3, 32 | 3, 32 | | | ** | | | l | 116 | | Cassia County: | | | ı | | 1 | | i | i i | İ | | | f | | |--------------------------------|-----|------|---------|-------------|-------------|-------------|---------|--------|---------|---------|-------------|---|-----------| | Snake River | | 1 | | | 3, 12 | 3. 12 | | | | | | | 109 | | Stokes | 1 | - 1 | 3 | 1.00 | | 1.00 | 34 | | 34 | 75 | 2, 892 | | 170 | | Clearwater County: | _ | | ١ | 2.00 | *********** | | 0. | | | | _, | | | | Burnt Creek | | 12 | 1 | | 212, 56 | 212, 56 | | 48 | 48 | | | | 7, 460 | | Clearwater River | | 12 | | | 20, 20 | 20. 20 | | 3 | 3 | | | | 708 | | Moose Creek | 1 | 8 | 1 | 1.00 | 34. 22 | 35, 22 | | 3 | 3 | | | | 1. 233 | | North Fork of Clearwater River | 1 | ĝ | - 1 | 1.00 | 26, 44 | 26, 44 | | 3 | 8 | | | | 926 | | | 4 | 68 | 269 | 22, 89 | | | | 291 | 328 | | | | 41, 207 | | Pierce | . 4 | 08 | 209 | 22. 89 | 1, 150. 07 | 1, 172, 96 | 37 | 291 | 328 | | | | 41, 207 | | Custer County: | _ | | 44 000 | | | | | | | | 1 100 004 | | 94, 288 | | Bay Horse | 6 | 1 | 16, 238 | 15.42 | 1. 29 | 16.71 | 79, 825 | | 79, 825 | 13, 650 | 1, 108, 324 | | | | East Fork | 1 | | 183 | 13.85 | | 13.85 | 6 | | 6 | | | | 488 | | Loon Creek | | 1 | | | 2.20 | 2. 20 | | | | | | | 77 | | Salmon River | | 1 | | | 1.17 | 1.17 | | | | | | | 41 | | Seafoam | 3 | | 25 | 4.78 | | 4.78 | 427 | | 427 | | 7,811 | | 732 | | Stanley Basin | 2 | 12 | 27 | 33. 16 | 96. 14 | 129.30 | 34 | 34 | 68 | | 1, 216 | | 4,608 | | Yankee Fork | 16 | 9 | 766 | 87. 87 | 57. 54 | 145.41 | 2, 308 | 17 | 2,325 | 325 | 297 | | 6, 622 | | Elmore County: | 1 | · · | | | | | -, | | , | | | 1 | | | Bear Creek | 13 | 5 | 316 | 95, 08 | 10.44 | 105, 52 | 48 | 3 | 51 | | | | 3, 721 | | Black Warrior | l ī | l ĭ | 12 | 3, 26 | 3, 09 | 6, 35 | l ä | | 3 | | | | 224 | | Boise River | | 14 | | 0.20 | 71.39 | 71.39 | | 28 | 28 | | | | 2, 513 | | Middle Boise | 5 | 14 | 69, 159 | 28, 261, 43 | 52.42 | 28, 313, 85 | 78, 538 | 17 | 78, 555 | 5, 800 | | | 1,040,816 | | Neal | ١٥ | 2 | 52 | 3. 12 | 3. 29 | 6.41 | 70,000 | 1 1 | 3 | 0,000 | | | 226 | | Pine Grove | 1 4 | 5 | 71 | 85.38 | 8. 07 | 93.45 | 376 | | 376 | 175 | | | 3, 523 | | Snake River | | 10 | 11 | 00.08 | 44.89 | 44.89 | 3/0 | 3 | 910 | 113 | | | 1, 571 | | Gem County: | | 10 | | | 44.09 | 44.09 | | | 0 | | | | 1,011 | | | 1 | | | | 0.00 | | | 1 | | - | | | 128 | | Payette River | | 3 | | | 3.66 | 3.66 | | | | | | | 3, 144 | | West View | 5 | 9 | 102 | 64.98 | 22. 32 | 87. 30 | 99 | 3 | 102 | | 730 | | 3, 144 | | Gooding County: Snake River | | 17 | | | 41.06 | 41.06 | | . 11 | 11 | | | | 1,442 | | Idaho County: | | | | | | | | ì | | | | | 004 | | Blacktail | | 2 | | | 25. 52 | 25. 52 | | . 3 | 3 | | | | 894 | | Camp Howard | | 101 | | | 247.44 | 247.44 | | 45 | 45 | | | | 8, 677 | | Clearwater River | | 6 | | | 11. 19 | 11. 19 | | . 3 | 3 | | | | 393 | | Dewey | | l | 90 | 25. 15 | | 25, 15 | 28 | | 28 | | | | 897 | | Dixie | 8 | 12 | 122 | 41.89 | 47, 15 | 89, 04 | 54 | 11 | 65 | 38 | 216 | | 3, 165 | | Elk City | 1 4 | 27 | 56 | 97.77 | 815, 42 | 913, 19 | 34 | 158 | 192 | i | | İ | 32,040 | | Florence | | , -i | 157 | 43, 55 | 17. 94 | 61.49 | 20 | 6 | 26 | | | | 2, 166 | | Lower Salmon River | 1 | 56 | 1 20. | 1 20.00 | 286.64 | 286, 64 | 1 20 | . 51 | 51 | | | | 10, 051 | | Maggie and Pete King Creeks | | 6 | | | 13. 82 | 13. 82 | | 3 | 3 | | | | 485 | | Marshall Lake | 7 | 1 | 2, 202 | 785. 12 | 10.02 | 785. 12 | 2, 212 | . " | 2, 212 | 112 | 81 | | 28, 882 | | Newsome | | 4 | 836 | 108. 87 | 9, 96 | 118. 83 | 2, 212 | 3 | 34 | 1 112 | 01 | | 4, 175 | | Orogrande | 8 | 1 7 | 10, 062 | 2, 469, 70 | 19. 54 | 2, 489, 24 | 690 | 3 | 693 | 63 | 54 | | 87, 454 | | Pardee | | 1 4 | 10,002 | 2,409.70 | 2, 12 | 2, 409. 24 | . 090 | 0 | 095 | 05 | 04 | | 74 | | Ramey Ridge | 1 | 1 1 | | | | | | - | | | | | 7. 894 | | | | 1 1 | 350 | 223.49 | 1.43 | 224. 92 | 51 | | 51 | 1 005 | 0.700 | | 27. 958 | | Robbins | | | 6,055 | 739. 77 | | 739. 77 | 2,970 | | 2, 970 | 1,025 | 2, 730 | | | | Salmon River | | . 11 | | | 29. 27 | 29, 27 | | . 11 | 11 | | 1 | | 1,030 | | Selway | | | 1 | 2. 23 | | 2. 23 | 3 | | . 3 | | | | 80 | | Simpson | . 1 | 61 | 14 | 42.66 | 290.04 | 332. 70 | 3 | 51 | 54 | | | | 11,663 | | South Fork of Clearwater River | | . 4 | | | . 10. 76 | 10.76 | | . 3 | 3 | | | | 378 | | Ten Mile | . 6 | 16 | 7,487 | 2, 185. 78 | 154.22 | 2, 340. 00 | 1,089 | 28 | 1, 117 | 12 | 189 | | 82, 513 | | Warren | 4 | 16 | 63 | 52. 79 | | 15, 486, 61 | 144 | 5, 465 | 5, 609 | | . | | 544, 883 | | White Mike Creek | l * | 1 | | 1 | 1. 23 | 1. 23 | | | | | | | 43 | | . 1.4 44 | | | | | | | | | | , | | • | • | Mine production of gold, silver, copper, lead, and zinc in Idaho in 1934, by counties and districts, in terms of recovered metals—Continued | County and district | Mines p | roducing | Ore, old | • | Gold | | | Silver | | G | * | | | |-------------------------------------|---------|----------|---------------|------------------|-------------------------|-------------------------|---------------|----------------|----------------|----------|---------|--------|----------------| | County and district | Lode | Placer | etc. | Lode | Placer | Total | Lode | Placer | Total | Copper | Lead | Zinc | Total value | | Jefferson County: Snake River | | 1 | Short
tons | Fine
ounces | Fine
ounces
3, 98 | Fine
ounces
3, 98 | Fine ounces | Fine
ounces | Fine
ounces | Pounds | Pounds | Pounds | \$139 | | Jerome County: Snake River | - | 18 | | | 73.42 | 73. 42 | | 3 | 3 | | | | 2,568 | | Latah County: Gold Creek | 1 | 4 | | | 29, 64 | 29, 64 | i · | | | | | ł | | | Gold Hill | | 1 1 | | | 1.80 | 1.80 | | | | | | | 1,036 | | Hoodoo | | 11 | | | 16.08 | 16.08 | | | | | | | 562 | | Moscow Mountain | | 9 | | | 38.83 | 38. 83 | | 11 | 11 | | | | 1,364 | | emhi County: | | | | | | | | | ĺ | | | | 2,001 | | Blackbird | | | 94 | 73. 16 | | 73. 16 | _68 | | 68 | | | | 2,601 | | Blue Wing
Bohannan Creek | - 1 | | 1,000 | . 20 | 3, 03 | . 20
3. 03 | 1, 519 | | 1, 519 | 2, 175 | 1, 162 | | 1, 206 | | Boyle Creek | | 1 | 2 | 2.49 | 3.03 | 3. 03
2. 49 | 113 | | 113 | 50 | 1, 081 | | 106 | | Eldorado | î | | 14 | 10. 13 | | 10. 13 | 113 | | 113 | 400 | 1,081 | | 204
395 | | Eureka | | 9 | | 10.10 | 86, 98 | 86. 98 | | 11 | 11 | 400 | | | 3,047 | | Gibbonsville | | 9 | 584 | 439. 57 | 52.42 | 491. 99 | 447 | 3 | 450 | 3, 500 | 4, 162 | | 17, 920 | | Indian Creek | | | 549 | 48.44 | | 48.44 | 34 | | 34 | 50 | | | 1,719 | | Junction | . 2 | | 36 | .40 | | .40 | 461 | | 461 | 100 | 11, 730 | | 754 | | Kirtley Creek | | 5 | | | 110.67 | 110. 67 |
 11 | 11 | | | | 3,875 | | McDevitt | 1 4 | 73 | 16
902 | 2. 72
365, 18 | 285. 81 | 2. 72
650. 99 | 277
1, 997 | | 277 | 450 | | | 310 | | MackinawMiddle Fork of Salmon River | | 12 | 902 | 300. 18 | 12. 36 | 12. 36 | 1,997 | 28
3 | 2, 025
3 | 2, 650 | 38, 595 | | 25, 701 | | Mineral Hill | | 2 | 4, 569 | 837. 31 | 3, 55 | 840. 86 | 744 | 9 | 744 | 425 | E 40e | | 434 | | Parker Mountain | | | 7,005 | 5. 55 | 3.00 | 5, 55 | 51 | | 51 | 420 | 5, 400 | | 30, 103
227 | | Pratt Creek | . 1 | | 11 | 7. 24 | | 7. 24 | 14 | | 14 | 25 | 486 | | 282 | | Salmon River | | 42 | | | 125. 55 | 125. 55 | | 20 | 20 | | | | 4, 401 | | Spring Mountain | | | 1 | | | | 34 | | 34 | | 351 | | 35 | | Texas | 3 3 | | 109 | 39. 37 | | 39. 37 | 854 | | 854 | 300 | 21, 757 | | 2, 757 | | Yellow Jacketewis County: | . 3 | 3 | 9 | 15, 71 | 13, 25 | 28. 96 | 6 | 3 | 9 | 250 | | | 1,038 | | Clearwater River | | 1 1 | , | | 1. 63 | 1.63 | | | | | | | | | Salmon River | | | | | 2. 23 | 2, 23 | | | | | | | 57
78 | | Iinidoka County: Snake River | | 7 | | | 95. 28 | 95. 28 | | 3 | 3 | | | | 3, 332 | | ez Perce County: | | ' | | | | | | " | | | | | 0,002 | | Clearwater River | | 3 | | | 5, 92 | 5, 92 | | | | | | | 207 | | Deer Creek | . 1 | | 7 | 7, 81 | ::-::= | 7. 81 | 48 | | 48 | 525 | | | 346 | | Snake River | .1 | i 8-1 | | | 17.60 | 17.60 | | | | | | | 615 | | Owyhee County: Carson Castle Creek Flint | 26
3
1 | 6 | 12,270
31
30 | 1, 068. 44
9. 10
5. 55 | 158. 14 | 1, 226. 58
9. 10
5. 55 | 12, 358
4, 155
894 | 738 | 894 | | 81 | | 51, 341
3, 007
772 | |--|--------------|---------------|-------------------------------------|-------------------------------|--|---|----------------------------|------------------|----------------------------|----------------------------|---|------------------------------|---| | Rough Mountain | 2 | 19 | 2
548 | 245. 58 | 166. 44 | 166. 44
245. 58 | 9,849 | 6 | 68
6
9, 849 | 600 | | | 5, 821
14, 998 | | Payette River Snake River Power County: Snake River Shoshone County: | | 3
1
19 | | | 2. 20
1. 06
167. 64 | 2. 20
1. 06
167. 64 | | 11 | 11 | | | | 77
37
5, 866 | | Beaver
Coeur d'Alene
Eagle | 1 | 8
22
1 | 18
7,442 | 37. 31
1, 060. 00 | 83. 52
385. 01
4. 12 | 120. 83
1, 445. 01
4. 12 | 31
365 | 14
62 | 45
427 | 25
700, 000 | 1, 081 | | 4, 252
50, 821
144
2, 303, 871 | | Evolution
Hunter
Lelande
Placer Center | 4
5 | | 108,605
313,830
211,245
32 | 108. 04
304. 12
336. 91 | | 304. 12
336. 91 | 956, 784
1, 101, 075 | | 1, 101, 075 | 177, 175
196, 275
50 | 42, 799, 027
40, 515, 892
29, 135 | 28, 333, 000
4, 358, 279 | 3, 445 213
2, 425, 777
1, 853 | | St. JoeSummitYrekaTwin Falls County: Snake River | 5
6 | 78
2
38 | 2,930
426,957 | 363. 92
904. 32 | 22. 66
345. 38
10. 04
169. 24 | 22. 66
709. 30
914. 36
169. 24 | 611
1,546,219 | | 747
1, 546, 219
6 | 1,475
397,275 | 106, 838
56, 952, 838 | 16, 906, 349 | 792
29, 344
3, 897, 543
5, 919 | | Valley County: Big Creek Deadwood Basin Hurdy Creek | 2 | 2
1
1 | 137 | 22. 03 | 42. 52
3. 26
2. 06 | 42. 52
25. 29
2. 06 | 14 | 11 | 14 | | | | 1,493
893
72 | | Lake City
Middle Fork of Salmon River
Payette River | | 3
1
5 | | | 8. 10 | 18. 51
4. 38
8. 10
1. 83 | | | | | | | 649
153
283
64 | | Seafoam
South Fork of Salmon River
Thunder Mountain
Yellow Pine | <u>1</u> | 2
1 | 2, 430 | 467. 61
10, 491. 36 | 5. 12
27. 27 | 5. 12
494. 88
10, 491. 36 | 297 | | 297 | | | | 179
17, 488
383, 816 | | Washington County: Snake RiverWashington | 1 | 1 | 560 | 4. 95 | 12. 33 | 12. 33
4. 95 | 17, 062 | | <u>-</u> | 10,000 | | | 431
12, 471 | | Total Idaho, 1934 | 291
188 | 1,172
334 | 1, 287, 182
1, 190, 851 | 57, 560. 83
41, 302. 33 | 27, 256. 37
23, 289. 90 | 84, 817. 20
64, 592. 23 | 7, 385, 615
6, 980, 717 | 8, 528
7, 243 | 7, 394, 143
6, 987, 960 | 1, 531, 625
1, 562, 234 | 142, 648, 216
148, 726, 701 | 49, 598, 651
41, 935, 977 | 15, 277, 669
1 11, 460, 945 | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). In the following review by counties and mining districts only the more important operations are mentioned. Many small producing mines and several entire districts whose output is included in the foregoing table have been omitted from this review. Details on the operation of the various mines of Idaho, with notes and references for the year, will be found in the 1934 report of the State Inspector of Mines, Boise, Idaho. ADA COUNTY Black Hornet district.—During October 1934 a 25-ton stamp mill was run on ore from the Montana mine of the Shirley Gold Mining Corporation 12 miles east of Boise; a little gold bullion was marketed, but the concentrates were stored. A test lot of silver ore was shipped in 1934 from the Gold Leaf claim, and gold ore from the Desert View and Sorrel Horse properties was amalgamated. Boise district.—Small lots of placer gold were marketed in 1934 from the Boise, Cut Bank, and other claims on Picket Pin Creek. Highland (Boise River) district.—Most of the gold output (all placer) of the Highland district in 1934 was recovered from the Pinto, Pinto No. 1, and Triangle group, 16 miles east of Boise. The Pick & Shovel and Gooseneck claims near by were also productive. Snake River district.—Exceptionally fine placer gold was recovered in 1934 from the Rogers and other claims on the north bank of Snake River near Grand View. # BEAR LAKE COUNTY Sharon district.—A small lot of lead ore from the Leona claim was shipped to Midvale, Utah, in 1934 for smelting. ## BENEWAH COUNTY Tyson Creek district.—Most of the output (all placer) from the Tyson Creek district in 1934 came from the Tysons, Cedar Creek, and Camas Cove placers near Santa and Fernwood. #### BINGHAM COUNTY Snake River district.—A little placer gold was recovered in 1934 from two properties on the Snake River near Moreland. #### BLAINE COUNTY Mineral Hill district.—The Croesus group near Hailey was operated under lease in 1934 and produced gold concentrates from ore and old tailings. One lot of gold concentrates also was marketed from the Camas No. 2 group of the Daisy Mining & Milling Co. The remaining output of the Mineral Hill district comprised small lots of gold ore, silver ore, and lead ore, chiefly from the Black Barb, Golden Bell, and Lucky Boy properties. Vienna district.—A small lot of mill clean-up was shipped in 1934 from the Vienna property north of Ketchum. Warm Springs district.—The Independence property of the Federal Mining & Smelting Co. was idle in 1934, but a small lot of silver-lead ore was shipped by a lessee. The Hailey Bonanza produced 1 car of lead ore of good grade. #### BOISE COUNTY Banner district.—The output of the Banner district in 1934 consisted of small lots of placer gold, chiefly from the Fighting Chance and Crows Nest claims, and a small lot of gold ore from the Sego Lilly mine, which was amalgamated. Boise Basin district (Centerville, Placerville, Idaho City, Pioneer-ville).—The output of gold from lode mines in the Boise Basin district in 1934 was nearly three times that in 1933 and the output from placers more than three times. The output from lode mines was siliceous gold ore, old tailings, and mill clean-up, chiefly from the Gold Hill, Belshazzar, Come-Back, Twin Sister, and Mountain Chief mines; among the other productive lode properties were the Hay Fork, K. C. Group, Native Missourian, and Mammoth mines. The Gold Hill mine was worked the first 9 months of the year by Talache Mines, Inc., and the last 3 months by the Harris Mining Corporation under lease; the output of gold bullion, worth about \$48,000, was recovered in a 25-ton amalgamation mill which was enlarged to 100 tons capacity late in the year. Rich gold concentrates were shipped from the Belshazzar mine of the Idawa Gold Mining Co., and unusually rich gold ore containing considerable silver was shipped from the Come-Back property. Bullion and a little crude ore valued at about \$13,000 were recovered at the Twin Sister property owned by the Mineral Mining Co. Lessees operated the Mountain Chief mine of the National Mining & Development Co. and produced gold bullion and concentrates valued at about \$18,000. Of the \$319,168 in gold from Boise Basin in 1934, \$172,458 was recovered from 106 placers. By far the most important operation was that of McFarland & Whitman, who worked a dragline and washing plant on the Wharton claims and recovered gold valued at nearly \$105,000. The Gold Hill placers were next in order of output, followed by the Garden Gulch, Golden Age, R. N. Bell claim, and Leary & Brogan group. Garden Valley district.—A little placer gold was recovered in 1934 from claims on Wash and Horn Creeks. Highland (Boise River) district.—The output of the Highland district in 1934 was placer gold from the Highland group and claims near the Arrow Rock dam. Shaw Mountain district.—Small lots of gold were recovered in 1934 from gold ore treated by amalgamation, chiefly from the Honey Bee, McCarty, and Skyline claims. South Fork of Payette River district.—The district output was placer gold from claims along the South Fork of Payette River, chiefly the Gold Nugget placer near Grimes Pass. Summit Flat district.—The Argonaut Gold Mines Co. marketed 1 car of gold ore of smelting grade in 1934, and the Rock Creek group produced gold ore treated by amalgamation. West View
district.—The output of the West View district was unusually small in 1934; it was chiefly gold ore with some silver from the Osborne mine near Horse Shoe Bend. #### BONNER COUNTY Lakeview district.—One car of rich silver concentrates was shipped in 1934 from the Weber mine near Lakeview where ore was treated in a 15-ton flotation mill. A small lot of first-class ore was shipped by Minerva Silver, Inc. Pend d'Oreille district.—The only important production in the Pend d'Oreille district in 1934 was silver-lead ore from the Elsie K. mine of the Hope Mining Co., which shipped concentrates to Montana for smelting. Rich lead ore was marketed from the Lawrence mine, and clean-up material was shipped from the Whitedelf property which was idle in 1934. ### BONNEVILLE COUNTY Mt. Pisgah district.—Aside from a small lot of gold ore amalgamated from the Paymaster group, the output of the Mt. Pisgah district in 1934 was placer gold recovered chiefly at the Idaho Consolidated, McCoy Creek, and Lucky Strike claims near Gray. ## BOUNDARY COUNTY Porthill district.—One car of rich lead ore of smelting grade was shipped in 1934 from the Idaho Continental property by lessees. #### BUTTE COUNTY The output of Butte County in 1934 consisted of a test lot of lead ore from the Red Rock group in the Hamilton district and shipments (1 car or less each) from the Hornsilver, Silver Bell, Martin, and Ella properties in the Lava Creek district. # CAMAS COUNTY Little Smoky district.—One car of gold ore from the Five Points mine was shipped in 1934, 2 cars of mixed ore from the Isabella property were smelted, and a test lot of lead-zinc ore from the Lost Cabin property was shipped to a custom plant. The placer output, partly from the Axolotl property, was chiefly gold recovered by the Little Smoky Dredging Co. by dredging on Little Smoky River. The dredge formerly was operated in the Steele district, Owyhee County. Skeleton Creek district.—The chief output of the Skeleton Creek district in 1934 was gold recovered by amalgamation and concentration at the El Oro property; a small lot of rich gold ore was shipped from the Red Horse claim. ## CANYON COUNTY Boise River district.—Placer gold was recovered in 1934 from stream gravel near Caldwell. # CASSIA COUNTY A test lot of lead ore was shipped in 1934 from the Flagstaff property in the Stokes district, and a little placer gold was recovered from the banks of Snake River. #### CLEARWATER COUNTY Burnt Creek district.—The output of the Burnt Creek district in 1934 was placer gold, most of which was recovered from the McGann placer on Swamp Creek. Moose Creek district.—Production in the Moose Creek district in 1934 was virtually all placer gold, chiefly from the Independence, Lilly, Dodo Amended, and Pioneer claims. North Fork of Clearwater River district.—Placer gold in small lots was marketed in 1934 from the banks of the North Fork near Orofino. Pierce district.—The value of the metal output from lode mines and placers in the Pierce district increased to \$41,207 in 1934. largest production was placer gold recovered on Rhodes Creek by Gold Dredging, Inc., which operated a floating dredge near Pierce. The Hay Creek placers made a fair output by dragline and sluices. Mills were operated for short periods on ore from the Ozark, Idaho Queen, and Democrat mines. # CUSTER COUNTY Bay Horse district.—The Camp Bird group of the Clayton Mining Co., an important producer in 1934, operated a 75-ton gravity-concentration plant erected during the year. The new mill was run 9 months; the concentrates produced, containing considerable silver and lead, were shipped to Utah for smelting. The property of the Ramshorn Mines Co., a large producer in the past, was operated in 1934 by lessees who shipped 144 tons of copper ore and lead ore. remainder of the Bay Horse district output comprised test lots of smelting ore, chiefly lead ore, and a little placer gold. East Fork district.—Nearly 200 tons of gold ore from the Dewey claim were concentrated by the Washington Basin Mining & Milling Co., which shipped a rich gold concentrate in 1934 to Salt Lake City, Utah, for smelting. Seafoam district.—The Reliance mine was the only property in the Seafoam district with a production of note in 1934; its output consisted of 1 car of oxidized lead ore containing gold and silver. Stanley Basin district.—Gold bullion, gold concentrates, and a test lot of gold ore were shipped from the Mountain Girl group in 1934; a small lot of high-grade gold ore was shipped from the Homestake property near Stanley. Although numerous placers near Stanley were productive the only important ones were the Golden Rule & Hot Stuff group in Joe's Gulch and the Mormon Bar claim near Stanley. Yankee Fork district.—The lode output of the Yankee Fork district in 1934 consisted of small lots, chiefly gold ore, that were either treated locally or shipped to Utah for smelting. The Snowdrift property shipped both crude ore and concentrates, as did the Custer Old tailings from the Sunbeam property, an old producer Slide mine. of gold, were treated in a small flotation plant. A little gold was recovered from a small lot of gold ore from the Valley Creek mine. Other ore containing gold and silver was treated at a local custom plant. At the Rough Creek placer property 22 miles west of Clayton two hydraulic giants were operated and produced gold valued at \$1,526 from nearly 8,500 cubic yards of gravel. ## ELMORE COUNTY Bear Creek district.—A new 50-ton flotation plant was built at the Morning Star property by Canada Gold Mines, Inc., and nearly 200 tons of ore were concentrated in 1934; a little ore also was treated in the old amalgamation plant before the new mill was finished. lots of gold ore from the Pick & Shovel, Best Bet, Mountain Home & Overland, and Commonwealth properties were treated by amalgamation in 1934; a little ore from the Chieftain mine was concentrated; and small lots of smelting ore from the Chieftain and other properties The placer output of the Bear Creek district consisted were shipped. of small lots from the banks of Feather River. Black Warrior district.—A test lot of gold ore from the Lone Cabin property was treated in 1934 by amalgamation, and a little placer gold was recovered at the Horseshoe claim. Boise River district.—Most of the production (all placer) from the Boise River district in 1934 came from the Sunflower, Little Fiddler, and Bonanza claims on the Boise River east of Boise. Middle Boise district.—The outstanding operation in the Middle Boise district in 1934 was that of the St. Joseph Lead Co. at the Boise-Rochester group at Atlanta. The 200-ton mill was operated continuously, and the company treated nearly 70,000 tons of gold ore by amalgamation and flotation; the amalgamation bullion was shipped east for refining, and the concentrates were shipped to Utah for smelting. The company increased its gold output more than 65 percent in 1934 and was again the largest gold producer in Idaho. small lot of gold ore from the Vrenon group near Atlanta was shipped for smelting, and gold ore from the Good Luck mine and two prospects was amalgamated. Placer bullion was marketed from the Felix, Calumet & Rex, Buck Creek, and other placers along the Middle Fork of Boise River. Pine Grove district.—Gold ore of smelting grade was shipped in 1934 from the Jingo & Hornet and Stiles properties near Hill City, and test lots of gold ore were shipped from the Objective and Mountain View claims. Small lots of placer gold were recovered from various claims near Pine. Snake River district.—Most of the output in 1934 from placer properties on the Snake River near King Hill and Hammett came from the Gold Dollar claim, where 2,000 cubic yards of gravel were treated. #### GEM COUNTY West View district (Emmett, Eagle).—Gold ore from the Iron Dollar property of the McKenney Gold Mining Co. at Pearl was treated in a small amalgamation mill in 1934, and a test lot was shipped for Bullion was also recovered by the amalgamation of gold ore from the Black Rock group, an extension of the Iron Dollar property. Most of the placer output of the West View district came from the Last Chance and Blue Bell properties near Emmett. # GOODING COUNTY Snake River district.—Placer bullion was reported recovered in 1934 from several claims on Snake River near Hagerman and Jerome. ## IDAHO COUNTY Blacktail district.—Nearly all the output of the Blacktail district in 1934 came from the Old Channel placers on the South Fork of Clearwater River east of Grangeville, which were worked 3 months by sluicing. Camp Howard (Salmon River) district (White Bird).—Considerable work was done in 1934 on placer claims on the Salmon River in the vicinity of White Bird. Placer gold recovered by many small opera- tors was sold to bullion buyers at White Bird and Cottonwood. Dewey (Harpster) district (Grangeville).—A little gold ore from the Dewey mine near Grangeville was treated by cyanidation in 1934. Dixie district.—The placer output of the Dixie district in 1934, valued at about \$1,600, came from small operations on the Salmon River near Sand Creek or Dixie. Productive lode mines worthy of note were the Sixty-Four, Slip Easy, American No. 3, North Star, and Sheridan claims from which gold ore was either shipped crude or treated. Elk City district.—The lode production of the Elk City district in 1934 consisted of gold ore treated by amalgamation, chiefly from the Stickner Quartz and George Trout properties, and a little ore from the Telluride mine shipped for smelting. The production of placer gold in the district was eight times that from lodes. At the Deadwood placer, the largest producer, 258 ounces of gold were recovered by a dry-land dredge from the treatment of 80,000 cubic yards of gravel. Fair production was reported by sluicing at the Tri-Delt, Little Million, Columbus, and Gold Hill & American Hill properties. Florence district.—Nearly all the output from lode mines in the
Florence district in 1934 was gold ore from the Waverly, Golden Dyke, Liberty, and Rising Sun properties, treated by amalgamation. Placer production came from the Miller Creek, Happy Dream, and other claims near the old town of Florence. Lower Salmon River district.—Considerable placer gold was recovered in 1934 from the section of the Salmon River near Boles. Part of the output came from the Frank Hatke claim, operated nearly 6 months, but most of it came from numerous small operations along the Salmon River. Maggie and Pete King Creeks (Selway) district.—Placer bullion was recovered from claims on Maggie and Pete King Creeks near Kooskia in 1934. Marshall Lake district (Burgdorf).—About 2,000 tons of gold ore from the Walker-Wilcox group were treated in 1934 by the Sherman Howe Mining Co., Inc., in a 150-ton mill equipped for amalgamation and flotation; the gold bullion went to Denver, Colo., and the concentrates to Midvale, Utah. Gold ore from the Holte group of the Golden Anchor Mining Co. also was treated at the Sherman Howe mill. Gold ore from the Cuban, Leadville, War Eagle, and Blue Bucket claims was treated by amalgamation, and a little ore from the War Eagle was shipped for smelting. Newsome district.—Low-grade gold ore was treated by amalgamation in 1934 in a 15-ton mill at the Imogene property and rich gold ore in a small plant at the Red Monarch mine. Small lots of placer bullion were recovered from Hay Fork and Newsome Creeks near Stites. Orogrande district.—The lode production of the Orogrande district in 1934 was important, and almost all of it came from the Gnome mine of the Gnome Gold Mining Co., which treated 4,420 tons of gold ore in a cyanidation plant. The quantity of ore produced by this company was nearly as large as in 1933 but the gold recovered was much less, and the property was closed in September. More than 5,600 tons of low-grade gold ore were treated by cyanidation by the Orogrande-Frisco Gold Mines, Inc.; the ore was extracted by steam shovel from opencuts. The remainder of the district lode output included small lots of gold ore treated at the Ophir and Union claims and small lots of ore shipped crude from the Diamond Hitch and Portland properties. Slight placer production was made from the Baker Gulch property and other claims south of Orogrande. Ramey Ridge district.—The Golden Hand, Inc., produced gold in 1934 valued at about \$7,800 from ore amalgamated. The output was comparatively small, as the mill was idle during construction work to increase its capacity and most of the work in the mine was development. Robbins district.—The most interesting and productive work in the Robbins district in 1934 was done at the War Eagle group of the Central Idaho Mining & Milling Co. Nearly 3,200 tons of gold ore were treated in a 50-ton flotation plant, and rich iron concentrates containing gold, silver, copper, and lead were shipped for smelting. Old tailings were treated by cyanidation at the Jumbo and Big Buffalo dumps. Bullion was recovered by amalgamation and one lot of concentrates was made by table concentration at the Venture mine. Salmon River district.—The output of the Salmon River district near Riggins in 1934 was chiefly gold from the Hattier Bar placer. Simpson (Salmon River) district (Lucile).—One car of rich gold ore was shipped from the McKinley mine near Lucile in 1934. The output from placers in the Salmon River district increased nearly 75 percent; the Spring Bar and Slate Creek properties each produced about 40 fine ounces of gold, and the Katie B, Betty Jean, Squaw Bar, and various small operations yielded the remainder. Ten Mile district (Golden).—The Lone Pine mine near Golden was again in 1934 by far the most important producing mine in the Ten Mile district. Profitable operations were conducted at this property throughout the year, and 5,864 tons of gold ore were treated in a 40-ton amalgamation plant; the ore contains free gold associated with a small quantity of galena, pyrite, sphalerite, and arsenopyrite. Three small lots of rich gold ore, averaging 3 to 6 ounces of gold to the ton, were shipped from the Center Star mine; some gold ore from the New York property was amalgamated; 182 tons of gold ore were treated by amalgamation at the Mackey mine; 1,000 tons were treated similarly at the Shamrock property; and a small flotation plant intermittently tested ore from the Gilt Edge mine. Most of the placer output of the district came from the Key placers on Fall Creek and the Moose Creek property east of Golden. Warren district.—Nearly all the placer production of the Warren district in 1934 came from dredge operations; it was slightly less than that in 1933. The Idaho Gold Dredging Co. operated two floating dredges on the Warren Meadows group throughout the year and held first place in placer production in Idaho. The Warren Creek Dredg- ing Co. treated 1,142,472 cubic yards of gravel from Warren Creek in a floating dredge equipped with 72 buckets; the company produced 7,209 fine ounces of gold and held second place in placer production in the State. Most of the remainder of the district placer output came from the Bench, Golden Rule, Shissler Creek, Laughing Water, and Buck Diggings properties. The output from lode mines consisted of gold ore from the Onstott, Linten, and Verna properties treated by amalgamation, and a little mill clean-up material from the old mill of the Unity Gold Production Co. shipped for smelting. # JEFFERSON AND JEROME COUNTIES Placer gold was marketed in 1934 from the banks of Snake River in both Jefferson and Jerome Counties; most of it came from the Ray, Yellow Metal, Rainbow, and Rocky Point claims in Jerome County. ## LATAH COUNTY Gold Creek district.—Placer gold was recovered from various claims near Princeton in 1934, chiefly from the Lead To placer on Gold Creek. Hoodoo district.—Placer bullion in small lots was marketed in 1934 from claims on the North Fork of Palouse River near Harvard. Moscow Mountain district.—Most of the output of the Moscow Mountain district in 1934 came from the Bowers and Howard Creek placers near Moscow. ## LEMHI COUNTY Blackbird district.—The Musgrove group northwest of Forney shipped 2 cars of gold ore in 1934 to Utah for smelting. Blue Wing district.—The Ima mine 15 miles northeast of May produced silver-copper-tungsten ore which was treated in a 100-ton flotation plant that separates tungsten concentrates in the form of huebnerite from silver-copper concentrates shipped to Utah for smelting. Eldorado district (Salmon).—One car of gold ore from the Ranger group was shipped to Utah in January 1934 for smelting. Eureka district.—Of the nine properties producing placer gold in the Eureka district in 1934, the Gilkey was the only one credited with a production as large as 25 fine ounces. Gold in lots ranging from 5 to 10 ounces was shipped from the McNutt, Specie Payment, Aurora, and Greenhorn claims. Gibbonsville district.—The largest lode producer in the Gibbonsville district in 1934 was the Rescue property at Gibbonsville, from which crude gold ore and old tailings were shipped for smelting, chiefly to Utah. More than 120 tons of gold ore were shipped from the Lamoreaux property, but the International Consolidated Gold Mining Co. relinquished the lease after operating the mine most of the year. Aside from small lots, almost all the remainder of the district lode output was ore from the Big Four group of the Premier Gold Mines, Ltd., of which some was smelted and some was treated by amalgamation; more than 50 tons of gold ore were treated in the company's 10-stamp mill equipped with tables. Most of the district placer production came from the Gambler, Sundown, High Land, Kieth, and Gold Pin claims near Gibbonsville. Indian Creek district.—A small production of gold was made in 1934 at the old Kittie Burton property by the Indian Creek Mining Co., Inc., which shipped 1 car of old tailings for smelting and treated 400 tons of old tailings by cyanidation. Gold ore from the Shaughnessy, Ulysses, and Kittie Burton group was treated by amalgamation. Junction district.—Aside from a small lot of silver ore from the Dig More claim, the output of the Junction district in 1934 was silver-lead ore from the Jordan mine near Leadore. Kirtley Creek district.—The output of the Kirtley Creek district in 1934 was placer bullion, most of it recovered from the Howard claim northeast of Salmon. McDevitt district.—One small car of smelting ore containing gold, silver, and copper was shipped in 1934 from the Inspiration group near Tendoy. Mackinaw district.—Production in the Mackinaw district, especially gold, increased decidedly in 1934. The Shoo Fly group was operated intermittently and yielded bullion from nearly 800 tons of ore treated by amalgamation. Several cars of mixed ore containing chiefly gold and silver were shipped from the Ringbone Cayuse, and a small lot of gold ore was shipped from the Italian property. The placer output came from many small operations near Leesburg, including the Hockensmith & K. G. W., Big Jureano, Richardson, and Arnett Creek placers. Mineral Hill district.—Aside from small lots of placer gold from North Boulder Creek and claims near Shoup, the output of the Mineral Hill district in 1934 was gold ore from the Grunter group of the American Consolidated Mining & Milling Co. More than 500 feet of development were done in the mine, and the flotation mill was run from April 1 to December 31; iron concentrates containing chiefly gold were shipped to smelters in Utah and Montana. Parker Mountain district.—The Pinch Hit group of the Twin Peaks Gold Mining Co. 86 miles northwest of Mackay was worked part of July and August 1934 and produced a small lot of gold ore. Salmon River district.—Placer dust and bullion valued at \$4,401 were recovered in 1934 by various operators along the Salmon River west of Salmon. Texas district.—The output of ore in the Texas district at Gilmore was small in 1934
but increased over 1933. Several cars of gold ore were shipped from the Martha mine by lessees. The Latest Out mine, formerly a large producer of silver and lead, yielded 1 car of lead ore; a small lot of similar material came from the Tidal Wave property. Yellow Jacket district.—Most of the placer output of the Yellow Jacket district in 1934 came from the High Bar and Yellow Jacket claims near Forney. Small lots of rich gold ore were shipped from the Tin Cup Lode and the Steen group. The Yellow Jacket lode mine, a famous producer of gold in the past, was idle. ### LEWIS AND MINIDOKA COUNTIES The output in both counties in 1934 was placer bullion; it came from the Clearwater River and Salmon River districts in Lewis County and from claims on the Snake River in Minidoka County. The largest production came from gravel mined at the Depression placer near Rupert in Minidoka County. ## NEZ PERCE COUNTY Deer Creek district.—A small lot of concentrates (from copper ore milled) and clean-up material containing gold were shipped from the Deer Creek mine near Forest in 1934. Snake River district.—The output of the Snake River district in 1934 was placer gold from the bars of Snake River. #### OWYHEE COUNTY Carson district (Silver City).—The ore output of the Carson district increased from 428 tons in 1933 to 12,270 tons in 1934, and the value of the recovered metals increased to more than \$51,000. The Golden Chariot group of the Golden Chariot-War Eagle Mines Co. was the chief producer in the district in 1934; the property is equipped with a milling plant using amalgamation and flotation, from which the gold bullion went to Denver, Colo., and Seattle, Wash., for refining and the concentrates containing considerable silver to Utah. Other lode mines producing ore that was either treated locally or shipped for smelting included the Brownie, Gold Bug, Hazzard, Crown Point, Pauper, Village Blacksmith, Alpine, Empire State, Ida Bell, Shannon, Sunnyside, Morning Glory, Ohio, Ontario, Bergh, and Black Jack properties. Part of the placer output came from unlocated ground on Jordan Creek and from the Myrtle placer near by, but most of it came from the Wilson claim near De Lamar. The bullion from the Wilson placer is unusual in that it contains nearly six times as much silver as gold. Castle Creek district.—Test lots of ore were shipped in 1934 from the Badger and Blue Bird mines near Oreana, and one car of silver ore was shipped from the Little Amie group on Castle Creek. Flint district.—A small lot of ore from the Flint mine was treated in 1934 by concentration, but the mill was run only a few days on account of water shortage. Snake River district.—Most of the output from the Snake River district in 1934 came from the Comet placer near Melba, the Valley Pride placer near Grand View, the Foster Bar 80 miles southwest of Boise, and the Dollar claim near Hammett. Steele district.—The output of the Steele district in 1934, aside from a test lot of silver ore from the Silver Dollar claim, came from the Demming mine of the Rowland Mining Co. Nearly 550 tons of ore containing gold and silver, mined at this property, were shipped from Murphy to a smelter in Utah. ## PAYETTE AND POWER COUNTIES A little gold was marketed from placers on the Payette and Snake Rivers in Payette County in 1934. Most of the output from bars along Snake River in Power County came from the Big Bend, Depression, Bonanza, Eagle Rock, and Fly claims near American Falls. ### SHOSHONE COUNTY ## COEUR D'ALENE REGION Mine production of gold, silver, copper, lead, and zinc in the Coeur d'Alene region, Shoshone County, Idaho, 1933-34, and total, 1884-1934, in terms of recovered | Year | Lode
mines | Plac-
ers | Ore, old tailings, etc. | Gold | Silver | Copper | Lead | Zinc | Total
value | |--------------------------------------|---------------|--------------|-------------------------|--------------|---------------|-------------|--|--------------|--| | 1933
1934
Total, 1884-
1934 | 24
24 | | | 2 3, 965. 35 | 2 7, 062, 640 | 1, 472, 275 | Pounds 147, 851, 459 140, 662, 811 5 4, 522, 449 | 49, 597, 628 | 3 \$9, 737, 204
12, 159, 340
————
760, 102, 127 | ¹ Includes old tailings as follows: 1933, 120 tons cyanided; 1934, 35 tons cyanided. ² Includes placer production as follows: 1933, 586.84 ounces of gold and 77 ounces of silver; 1934, 850.73 ounces of gold and 212 ounces of silver. ³ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). ⁴ Figures not available. ⁴ Short tone Short tons. Beaver district.—The output of the Beaver district increased decidedly in 1934; it consisted of 1 car of gold ore from the New Deal mine near Murray and of placer bullion chiefly from the Blue Eagle, Accident, and Otto properties in Potosi Gulch, Placer Creek, and Trail Gulch, respectively. Coeur d'Alene district.—The value of metal production in 1934 in the Coeur d'Alene district near Murray was almost 10 times that in 1933 as a result of the work of the Four Square Gold Syndicate operating the Friday group. Nearly 7,500 tons of gold ore were treated in the company's new 100-ton flotation plant from February to December, and the flotation concentrates were shipped to Kellogg for A large part (232 fine ounces) of the placer production came from the Nugget Gulch placers operated by drift mining. Beehive Bar placer on Prichard Creek was the only other operation of importance. Eagle district.—The only output in 1934 reported from the Eagle district was a small lot of placer gold from the upper part of Eagle The Jack Waite property, purchased May 1, 1934, by the American Smelting & Refining Co., lies in both Shoshone County, Idaho, and Sanders County, Mont., but the entire output from the mine in 1934 came from Montana. Evolution district.—In 1934 the Yankee Boy mine of the Sunshine Mining Co. exceeded its 1933 record of production and continued as the largest silver producer in the United States. The 500-ton flotation plant treated 108,605 tons of ore containing chiefly silver and made 4,200 tons of concentrates which were shipped to Kellogg for smelting; the concentrates contained more than 3,455,000 ounces of silver, as well as some gold, copper, and lead. The mine and mill were operated almost continuously, and the company paid dividends in 1934 of \$1,012,399. About 1,000 feet of development were reported for 1934. Hunter district (Mullan).—In 1934 the value of the metal output of the Hunter district (\$3,445,213) was second in Idaho only to that of the Yreka district. The largest producing property was the Morning mine of the Federal Mining & Smelting Co., whose 1,200-ton flotation plant treated 220,022 tons of lead-zinc ore; the lead concentrates and zinc concentrates were shipped to East Helena and Anaconda, Mont. According to the annual printed report of the company the combined concentrates contained 684,377 ounces of silver, 35,724,000 pounds of lead, and 27,204,000 pounds of zinc, a fair increase in the three metals. The company reported nearly 1,000 feet of development done in 1934, including 126 feet of shaft sinking. The Golconda Lead Mines shipped 2 cars of crude lead ore to East Helena, Mont., for smelting and treated about 57,700 tons of leadzinc ore in the 250-ton flotation plant; the production of silver, lead, and zinc in lead concentrates and zinc concentrates was approximately double that in 1933. The company did 1,700 feet of develop-The Gold Hunter mine has been operated under ment work in 1934. lease since July 1933; in 1934 more than 3,300 tons of lead concentrates containing chiefly silver and lead were shipped to the Bunker Hill plant for smelting, and there was a decided increase in the production of both metals. Except for a very small amount of development work, the Star mine of the Sullivan Mining Co. was idle in 1934. Lelande district (Burke, Mace, Frisco).—The value of metal production in the Lelande district increased more than \$576,000 in 1934, due especially to the output of the Hecla mine at Burke. Mining Co., according to its annual printed report, shipped 12,460 tons of first-class lead ore and treated 170,309 tons of lead ore by gravity and flotation concentration, making 28,786 tons of concen-The company operated the 750-ton mill continuously, did 3,377 feet of development in the mine, and paid \$400,000 in dividends Production included 1,054,216 ounces of silver, 40,223,002 pounds of lead, and 688,795 pounds of zinc, a decided increase from The Hull Leasing Co. treated about 33,000 tons of lead-zinc ore and shipped 682 tons of lead concentrates and 3,709 tons of zinc concentrates; the metal output as given in the annual printed report of the Federal Mining & Smelting Co. was 24 ounces of gold, 39,725 ounces of silver, 1,208,000 pounds of lead, and 4,140,000 pounds of The remainder of the district output consisted of small lots of lead ore of smelting grade from the Ambergris, Mace, and Hercules The Sherman Lead Co. was idle. Placer Center district.—One car of lead ore of smelting grade was shipped in 1934 by a lessee from the property of the Tamarack & Custer Consolidated Mining Co. The Dayrock Mining Co. and the Callahan Zinc-Lead Co. were both idle. St. Joe district.—From the Gold Producer placer on Bostonian St. Joe district.—From the Gold Producer placer on Bostoman Creek in 1934 were recovered about 18 ounces of bullion 0.950 fine in gold. A few ounces of gold were also produced at the Falls placer, reached from Superior, Mont. Summit district (Murray).—The value of the metal output of the Summit district increased appreciably in 1934 due largely to production from the Golden Chest, Idaho Mother Lode, Mountain Lion, and Bear Top mines. Two cars of lead ore were shipped from the
Bear Top, 1 car of rich gold concentrates was shipped from the Idaho Mother Lode, gold bullion was recovered by amalgamation at the Mountain Lion, and ore containing chiefly gold was treated by flotation at the Golden Chest mine. Most of the placer gold recovered came from various operations near Murray. The most important work done was on ground formerly operated by the Yukon Dredging Co. east of Murray. Fair production of placer bullion was made by the Big Mud Leasing Co. $Yreka\ district\ (Kellogg).$ —The total value of the metal output of the Yreka district in 1934 was nearly as large as that in 1933, but there were decided decreases in ore treated and silver and lead produced. The largest output was, as usual, that of the Bunker Hill & Sullivan Mining & Concentrating Co., which produced more lead than any other mine in Idaho. According to its printed annual report the company treated 362,388 tons of ore in the large concentration plants at Kellogg-part by flotation and part by gravity concentration and flotation. Production from concentrates and 401 tons of crude lead ore included more than 1,036,200 ounces of silver, 48,243,300 pounds of lead, and nearly 15,653,000 pounds of zinc. The property was operated the entire year at about 50 percent of capacity, and 2,357 feet of development were done. The Crescent mine, controlled by this company, produced 10,320 tons of mill ore treated in a 120-ton flotation plant and shipped copper-lead concentrates and first-class silver ore. The Federal Mining & Smelting Co. treated lead-zinc ore from the Page and Blackhawk mines (chiefly the former) in a 300-ton flotation mill west of Bradley; the output was nearly doubled at both One car of lead ore was shipped from the Sierra Nevada property, and 1,000 tons of silver-lead ore were shipped from the Caledonia mine. # TWIN FALLS COUNTY Snake River district.—Placer bullion recovered by various operators from the banks of Snake River near Kimberly, Twin Falls, and Hansen was valued at more than \$5,900 in 1934. Most of the work was done at the Depression, Sandy Bar, Weasel, Gold Eagle, and River's Bend claims. # VALLEY COUNTY Big Creek district.—Placer bullion was recovered in 1934 by sluicing at the Smith Creek placers near Edwardsburg. Deadwood Basin district.—A little gold bullion and concentrates were shipped in 1934 from the Long Chance mine, and gold ore from the Merry Blue mine was amalgamated. Lake City district.—The output of the Lake City district in 1934 was chiefly from the New Deal and Blue Gulch placers near McCall. Thunder Mountain district.—Considerable gold bullion and one lot of concentrates were shipped in 1934 from the Sunnyside mine near Stibnite. Placer gold was recovered at the Bonanza claim. Yellow Pine district.—The mine and mill of the Yellow Pine Co. were operated throughout 1934, and 54,000 tons of ore containing principally gold and antimony were treated by flotation; more than 3,700 tons of concentrates were marketed, chiefly at Midvale, Utah. The company was second only to the Boise-Rochester mine at Atlanta in production of gold in Idaho. During the year 3,195 feet of development were done in the mine. One car of silver ore from the Silver Creek group was shipped by way of Cascade. # WASHINGTON COUNTY A little placer gold was recovered in 1934 from Smith Bar on the Snake River, and siliceous silver ore (560 tons) was shipped from the Silver Still property near Mineral in the Washington district. # GOLD, SILVER, COPPER, LEAD, AND ZINC IN NEVADA # (DETAILED STATISTICS-MINE REPORT) By H. M. GAYLORD 1 #### SUMMARY OUTLINE | Page 1 | Page | |---------|---| | Summary | Metallurgic industry 104 Review by counties and districts 109 | The output of gold, silver, copper, lead, and zinc from Nevada ores and gravels in 1934, in terms of recovered metals, was 144,275.17 fine ounces of gold, 3,057,114 fine ounces of silver, 41,611,119 pounds of copper, 21,981,874 pounds of lead, and 27,880,790 pounds of zinc. These totals compare with a production in 1933 of 98,590.28 ounces of gold, 1,148,621 ounces of silver, 28,489,610 pounds of copper, 4,606,732 pounds of lead, and 12,774,550 pounds of zinc. The combined output of the five metals from 635 lode mines and 160 placers in 1934 was valued at \$12,359,826 compared with \$5,452,300 from 422 lode mines and 116 placers in 1933. The increases in quantity were as follows: Gold, 46 percent; silver, 166 percent; copper, 46 percent; lead, 377 percent; and zinc, 118 percent. The increased average prices of the metals, notably gold and silver, resulted in greater mining activity in the State, and large gains in total value of output of each of the five metals were recorded. Calculation of value of metal production.—The value of metal production herein reported has been calculated at the figures given in the table that follows. Gold in 1930–32 is figured at \$20.671835 per ounce, the Treasury legal coinage value for fine gold from January 18, 1835, to January 31, 1934; in 1933 at \$25.56 and in 1934 at \$34.95 per ounce, the average weighted yearly United States Government prices.² The silver price in 1930–33 is the average New York price for bar silver; in 1934 the Treasury buying price for newly mined silver, \$0.64646464 + per ounce. The copper, lead, and zinc prices are weighted averages, for each year, of all grades of primary metal sold by producers. Prices of gold, silver, copper, lead, and zinc, 1930-34 | Year | Gold | Silver | Copper | Lead | Zinc | |------|---|--|--|-----------------------------|--| | 1930 | Per fine
ounce
1 \$20.67+
1 20.67+
1 20.67+
25.56
34.95 | Per fine
ounce
\$0.385
.290
.282
.350
2.646+ | Per
pound
\$0. 130
. 091
. 063
. 064
. 080 | Per pound \$0.050 .037 .037 | Per
pound
\$0. 048
. 038
. 030
. 042
. 043 | ^{1 \$20.671835.} **^{\$}**0.64646464. ¹ Assisted by O. Y. Sharman. 1 The Treasury from Feb. 1, 1934, through December 1934 has calculated all gold, old and new, at \$35.00 per ounce, under authority of the Gold Reserve Act of Jan. 31, 1934. Details of the U. S. Government fluctuating price of gold in 1933 to Jan. 31, 1934, may be found in Minerals Yearbook, 1934, pp. 25-25. Mine production of gold, silver, copper, lead, and zinc in Nevada, 1930-34, in terms of recovered metals | Year | | ines
ucing | Ore, old tailings, | Go | ld | Silv | er | |------|---------------------------------|-------------------------------|---|---|---|---|--| | | Lode | Placer | etc. (short
tons) | Fine ounces | Value | Fine ounces | Value | | 1930 | 247
271
382
422
635 | 33
65
103
116
160 | 4, 757, 178
3, 565, 472
1, 855, 031
1, 678, 454
2, 899, 782 | 149, 064. 47
142, 293. 76
129, 719. 83
98, 590. 28
144, 275. 17 | \$3, 081, 436
2, 941, 473
2, 681, 547
2 2, 519, 968
5, 042, 417 | 4, 219, 832
2, 562, 071
1, 304, 365
1, 148, 621
3, 057, 114 | \$1, 624, 635
743, 001
367, 831
402, 017
1, 976, 316 | | | Conn | | | T | 1 | | | | Year | Cor | oper | Le | ad | Zi | | | |------|---|--|---|--|--|--|--| | | Pounds | Value | Pounds | Value | Pounds | Value | Total value | | 1930 | 109, 203, 512
72, 634, 497
31, 487, 606
28, 489, 610
41, 611, 119 | \$14, 196, 457
6, 609, 739
1, 983, 719
1, 823, 335
3, 328, 890 | 23, 058, 381
15, 860, 634
880, 986
4, 606, 732
21, 981, 874 | \$1, 152, 919
586, 843
26, 430
170, 449
813, 329 | 29, 168, 117
20, 861, 348
254, 795
12, 774, 550
27, 880, 790 | \$1, 400, 070
792, 731
7, 644
536, 531
1, 198, 874 | \$21, 455, 517
11, 673, 787
5, 067, 171
2 5, 452, 300
12, 359, 826 | ¹ Figures include gold, silver, copper, lead, and zinc recovered from zinc concentrates produced in 1931 Gold and silver produced at placer mines in Nevada, 1930-34 | Year | Gol | ld | Silver | | | |--------------------------------------|--|--|---------------------------------------|-------------------------------------|--| | | Fine ounces | Value | Fine ounces | Value | | | 1930
1931
1932
1932
1933 | 1, 859. 44
2, 883. 25
5, 408. 22
5, 769. 54
5, 248. 91 | \$38, 438
59, 602
111, 798
1 147, 470
183, 449 | 847
860
1,743
1,991
1,594 | \$326
249
492
697
1,030 | | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Gold.—The production of gold in Nevada in 1934, in terms of recovered metal, was 144,275.17 fine ounces valued at \$5,042,417, an increase of 45,684.89 ounces in
quantity and \$2,522,449 in value over 1933. Only 5,248.91 ounces of the 1934 output came from placer mines, mostly in Lander and Nye Counties. Nye was again the leading gold-producing county in Nevada, followed in order by White Pine, Esmeralda, Storey, and Pershing, each with a yield of between 10,000 and 30,000 ounces. The Manhattan district produced 42 percent of the total Nye County output; the Round Mountain and Tonopah districts contributed 26 and 20 percent, respectively. The property of the White Caps Gold Mining Co. (worked by lessees) 50 miles south of Tonopah was the largest producer in the Manhattan district; the Sunnyside and Fairview lode mines of the Nevada Porphyry Gold Mines, Inc., and the property of the Tonopah Mining Co. (worked by lessees) led in the Round Mountain and Tonopah districts, respectively. The Robinson district yielded almost all the gold produced in White Pine County, owing to the activity of the Nevada Consolidated Copper Corporation which was the largest gold producer in the State. The company mined and treated copper ore in its flotation mill and operated its smelter at McGill intermittently throughout the year. In addition to the company concentrates smelted, much siliceous ore from the Lane City area was treated. Lessees worked the properties of the Consolidated Coppermines Corporation, and ore on company account was but not marketed until 1933. 2 Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). shipped to Utah for smelting. In Esmeralda County the gold output came largely from the Silver Peak and Goldfield districts. activity was at the Mary mine north of Silver Peak, and at the tailings plant of Bradshaw Syndicate, Inc., who took over and enlarged the plant of Bradshaw, Inc., in order to handle a large tonnage of lowgrade tailings (Goldfield Consolidated) previously considered not The value of the gold output of Storey County increased treatable. from \$129,293 in 1933 to \$582,460, owing to revival of gold mining on the Comstock Lode; many of the old mines were rehabilitated. and mills in the district were reequipped or enlarged to take care of the increased ore tonnage. The adjoining Silver City district, Lyon County, was also notably active. In Pershing County the chief activity was in the Seven Troughs district, principally at the property of the Nevada State Gold Mines Co. where mining was on leasing account; the ore was treated in the company 100-ton cyanide plant. Twenty-six companies mining in Nevada in 1934 produced 66 percent of the total gold yield of the State; 18 of these companies had outputs of between 1,000 and 5,000 ounces each, 7 companies between 5,000 and 10,000 ounces, and 1 company over 15,000 ounces. Silver.—The production of silver in Nevada in 1934, in terms of recovered metal, was 3,057,114 fine ounces valued at \$1,976,316, an increase over 1933 of 1,908,493 ounces in quantity and \$1,574,299 This increase of 166 percent in quantity of silver produced was due largely to the reopening of the Tybo mine of the Treadwell Yukon Co., Ltd., in the Tybo district of Nye County about 70 miles northeast of Tonopah. Lead-zinc ore was milled in the company flotation plant; the lead concentrate was shipped to the Selby (Calif.) smelter and the zinc concentrate to the Amarillo (Tex.) smelter. The Tybo district ranked first in silver output. The Tonopah district, Nye and Esmeralda Counties, where lessees worked the property of the Tonopah Mining Co. and the General Metals Recovery Corporation treated Tonopah Mining Co. tailings, ranked second. third largest yield of silver came from the Pioche district, Lincoln County, where the Combined Metals Reduction Co. carried on operations throughout the year; ore from the Pioche mines was shipped to the company flotation mill at Stockton, Utah. These three districts yielded 1,777,939 ounces of silver, or 58 percent of the State output. Ten companies produced a total of 2,266,758 ounces of silver, or 74 percent of the State yield; only five had an output of between 100,000 and 800,000 ounces. Copper.—The production of recoverable copper in Nevada in 1934 was 41,611,119 pounds valued at \$3,328,890, an increase of 13,121,509 pounds in quantity and \$1,505,555 in value from 1933. The Robinson district, White Pine County, continued as the chief copper-producing section of the State and yielded 98 percent of the total output. The next largest yield of copper came from direct-smelting ore mined in the Jack Rabbit district, Lincoln County, by the Bristol Silver Minės Co. Lead.—The production of recoverable lead in Nevada in 1934 was 21,981,874 pounds valued at \$813,329, an increase of 17,375,142 pounds in quantity and \$642,880 in value over 1933. Only three companies in Nevada produced more than 1,000,000 pounds of lead in 1934—the Combined Metals Reduction Co., Pioche district, Lincoln County; the Treadwell Yukon Co., Ltd., Tybo district, Nye County; and the Bristol Silver Mines Co., Jack Rabbit district, Lincoln County. These companies had a combined output of 19,646,707 pounds, or 89 percent of the State total. Most of the lead recovered came from the milling of lead-zinc ore, and the large increase over 1933 was due to resumption of mining by the Treadwell Yukon Co., Ltd. Zinc.—The production of recoverable zinc in Nevada in 1934 was 27,880,790 pounds valued at \$1,198,874, an increase of 15,106,240 pounds in quantity and \$662,343 in value over 1933. Practically all the zinc output came from milling ore mined in Lincoln and Nye Counties. # MINE PRODUCTION BY COUNTIES Mine production of gold, silver, copper, lead, and zinc in Nevada in 1934, by counties, in terms of recovered metals Gold Silver (lode and placer) | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | |--|---|--|---|---|--|---|---|--| | Churchill | County | Loc | le | Plac | er | Total | Tina | | | Clark 3,906.26 136,524 11.51 \$402 136,926 19,783 12,789 Douglas 126.81 4,432 — 4,432 90 58 Elko 3,413.03 119,285 175.05 6,118 125,403 96,537 61,761 Esmeralda 20,414.09 713,472 220.00 8,004 721,476 114,657 74,123 Eureka 2,051.01 71,683 410,50 14,347 86,030 21,143 13,688 Humboldt 1,785.03 20,8336 1,129,36 39,471 247,807 107,129 69,255 Lander 5,960.97 208,336 1,129,36 39,471 247,807 107,129 69,255 Lyon 9,120.80 318,772 121.46 4,245 332,017 24,575 458,702 Lyon 9,2725.52 969,007 1,693.24 59,179 1,028,88 1,260,80 10,889 Nye 27,255.52 969,007 1,693.24 1,291 34, | | Fine ounces | Value | | Value | | | Value | | Total, 1933 92, 820. 74 2 2,372,498 5,769. 54 2 147,470 2 2,519,968 1,148,621 402,047 County Lead Zinc Total value Churchill 1,596 \$128 152,232 \$5,633 — \$73,998 Clark 10,352 828 154,437 5,714 28,635 \$1,231 157,488 Douglas 17,866 1,429 984,377
36,422 — 225,015 Esmeralda 10,154 812 11,555 428 — 225,015 Eureka 14,358 1,149 296,738 10,979 — 111,826 Humboldt 3,366 269 14,883 551 76,775 Lander 125,170 10,014 69,868 2,585 22,392,736 962,888 2,094,689 Lyon 37,922 3,034 8,590,287 317,841 5,452,094 234,402 2,388,145 Ormsby 770 | Clark Douglas Elko Esmeralda Eureka Humboldt Lander Lincoln Lyon Mineral Nye Ormsby Pershing Storey Washoe White Pine | 3, 906. 26
126. 81
3, 413. 03
20, 414. 09
2, 051. 01
1, 785. 03
5, 960. 97
5, 908. 52
9, 120. 80
3, 659. 33
27, 725. 52
97. 29
9, 904. 11
16, 311. 64
820. 67
26. 093. 02 | 136, 524
4, 432
119, 285
713, 472
71, 683
62, 387
208, 336
206, 503
318, 772
127, 894
969, 007
3, 400
346, 149
570, 092
28, 682 | 175. 05
229. 00
410. 50
46. 58
1, 129. 36
 | 6, 118
8, 004
14, 347
1, 628
39, 471
 | 136, 926
4, 432
125, 403
721, 476
86, 030
64, 015
247, 807
206, 503
323, 017
206, 503
323, 017
3, 400
365, 621
582, 460
30, 754
919, 195 | 19, 783
90
95, 537
114, 659
21, 143
18, 469
107, 129
709, 555
24, 570
16, 380
1, 260, 153
242
53, 939
296, 504
1, 209
306, 583 | 12, 789 58, 61, 761 74, 123 13, 668 11, 940 69, 255 458, 702 15, 884 10, 589 814, 644 156 34, 870 191, 679 782 | | County Pounds Value Pounds Value Pounds Value Pounds Value Churchill 1, 596 \$128 152, 232 \$5, 633 | Total, 1933 | | | | | | | | | Pounds Value Poun | G | Cop | per | Lea | d | Zi | Total ' | | | Clark 10, 352 828 154, 437 5, 714 28, 635 \$1, 231 157, 488 Douglas 17, 866 1, 429 984, 377 36, 422 225, 015 Emeralda 10, 154 812 11, 555 428 796, 839 Eureka 14, 358 1, 149 296, 738 10, 979 111, 826 Humboldt 3, 366 269 14, 883 551 76, 775 Lander 125, 170 10, 014 69, 868 2, 585 80 29, 488 Lyon 33, 273 11, 441, 164 423, 323 22, 392, 736 962, 888 2, 094, 689 Lyon 12, 245 980 1, 000 37 351 39, 918 Mineral 5, 028 402 9, 497 351 5, 452, 094 234, 440 2, 398, 145 Ormsby 77 28 78 140, 631 402, 125 402, 125 402, 125 402, 125 402, 125 402, 125 402, 125 402, 125 402, 125 402, 125 <td>County</td> <td>Pounds</td> <td>Value</td> <td>Pounds</td> <td>Value</td> <td>Pounds</td> <td>Value</td> <td>value</td> | County | Pounds | Value | Pounds | Value | Pounds | Value | value | | Esmeralda 10, 154 812 11, 555 428 76, 839 Eureka 14, 358 1, 149 296, 738 10, 979 111, 826 Humboldt 3, 366 269 14, 883 551 76, 775 Lander 125, 170 10, 014 69, 868 2, 585 Lincoln 415, 910 33, 273 11, 441, 164 423, 323 22, 392, 736 962, 888 2, 946 12, 940 351 Lyon 12, 245 980 1, 000 37 Mineral 5, 028 402 9, 497 351 Nye 37, 922 3, 034 8, 590, 287 317, 841 5, 452, 094 234, 440 2, 398, 145 Nye 37, 922 3, 034 8, 590, 287 317, 841 5, 452, 094 234, 440 2, 398, 145 Nye 37, 922 3, 038 35, 838 1, 326 Pershing 3, 853 308 35, 838 1, 326 Pershing 1, 981 158 269 10 274, 367 Washoe 15, 357 1, 229 219 8 774, 307 Washoe 15, 357 1, 229 219 8 774, 307 Washoe 40, 935, 961 3, 274, 877 218, 740 8, 093 7, 325 315 4, 400, 029 Undistributed 1 41, 611, 119 3, 328, 890 21, 981, 874 813, 329 27, 880, 790 1, 198, 874 12, 359, 826 | Clark | 10, 352 | 828 | 154, 437 | 5,714 | | | 157, 488
4, 490 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Esmeralda
Eureka
Humboldt
Lander | 10, 154
14, 358
3, 366
125, 170 | 812
1, 149
269
10, 014 | 11, 555
296, 738
14, 883
69, 868 | 10, 979
551
2, 585 | | | 796, 839
111, 826
76, 775
329, 661 | | Storey | Lyon
Mineral
Nye
Ormsby | 12, 245
5, 028
37, 922 | 980
402
3, 034 | 1,000
9,497
8,590,287
770 | 37
351
317, 841
28 | 5, 452, 094 | 234, 440 | 339, 918
140, 631
2, 398, 145
3, 584 | | 41,611,119 3,328,890 21,981,874 813,329 27,880,790 1,198,874 12,359,826 | Storey
Washoe | 1, 981
15, 357 | 158
1, 229 | 269
219 | 10 | | | 774, 307
32, 773
4, 400, 029 | | | | 41, 611, 119 | | | | | 1, 198, 874
536, 531 | | Orbital of the could not be allocated. Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Ore, old tailings, etc., sold or treated and lode mines producing in Nevada, 1933-34, by counties | County | Ore, old tailings,
etc. (short tons) | | Lode mines
producing | | County | Ore, old
etc. (sh | Lode mines
producing | | | |--|--|--|---|---|---------|--|--|-----------------------------|--| | | 1933 | 1934 | 1933 | 1934 | | 1933 | 1934 | 1933 | 1934 | | Churchill Clark Douglas Elko Esmeralda Eureka Humboldt Lander Lincoln Lyon | 78
5, 381
65
4, 355
242, 461
655
2, 281
3, 765
47, 137
6, 859 | 2, 545
16, 391
182
9, 934
438, 948
4, 505
6, 786
10, 725
124, 033
35, 395 | 6
23
4
35
38
9
21
24
18
29 | 17
40
4
53
42
11
41
55
28
31 | Mineral | 2, 035
102, 135
3, 291
32, 193
335
1, 225, 428
1, 678, 454 | 8, 100
188, 657
31
24, 648
155, 563
841
1, 872, 498
2, 899, 782 | 35
22
11
44
422 | 54
98
4
47
33
18
59
635 | ## MINING INDUSTRY The ore, old tailings, etc., sold or treated in Nevada totaled 2,899,782 short tons in 1934 compared with 1,678,454 tons in 1933. Indicative of the better prices for gold and silver were the increased ore tonnages in Esmeralda, Lyon, Nye, Pershing, and Storey Counties, where gold, gold-silver, and silver ores are found. Several tailings dumps were worked that are too low in grade to be worked profitably at the former statutory price of gold (\$20.67+ per ounce). General Metals Recovery Corporation installed a plant to treat the sands from the old cyanide plant of the Tonopah Mining Co. at Millers; operations were begun in September 1934, and about 43,000 tons of tailings were treated. Approximately 2,000,000 tons of tailings in which the values are mostly silver with subordinate amounts of gold are reported available at this property. Notable factors in the recorded increases in metal output in Nevada in 1934 were the resumption of operations by the Treadwell Yukon Co., Ltd., at the Tybo mine, Nye County; leasing operations at old established properties in the Divide, Tonopah, and Manhattan districts; and the reopening of old mines on the Comstock Lode. # ORE CLASSIFICATION Ore, old tailings, etc., sold or treated in Nevada in 1934, with content in terms of recovered metals | Source | Ore, old
tailings, etc. | Gold | Silver | Copper | Lead | Zinc | |-------------------------------------|-------------------------------------|---|-------------------------------------|----------------------------------|--|------------------------------| | Dry gold ore
Dry gold-silver ore | Short tons 1 809, 525 2 73, 824 | Fine ounces
110, 128, 15
7, 873, 88 | Fine ounces
614, 960
623, 467 | 113, 809 | Pounds
120, 290 | Pounds | | Dry silver ore | ³ 18, 105
1, 819, 913 | 985. 23
16, 138. 79 | 271, 217
74, 225 | 2, 159
6, 797
41, 015, 015 | 16, 895
88, 137
1, 250 | | | Copper-lead ore
Lead-zinc ore | 4 24, 931
5 72
153, 412 | 1, 792. 96
13. 80
2, 093. 45 | 277, 986
3, 398
1, 190, 267 | 429, 684
7, 216
36, 439 | 3, 906, 921
21, 162
17, 827, 219 | 27, 880, 790 | | Total, lode mines Total, placers | 2, 899, 782 | 139, 026. 26
5, 248. 91 | 3, 055, 520
1, 594 | 41, 611, 119 | 21, 981, 874 | 27, 880, 790 | | Total, 1933 6 | 2, 899, 782
1, 678, 454 | 144, 275. 17
98, 590. 28 | 3, 057, 114
1, 148, 621 | 41, 611, 119
28, 489, 610 | 21, 981, 874
4, 606, 732 | 27, 880, 790
12, 774, 550 | ¹ Includes 437,055 tons of old tailings cyanided; 580 tons of old tailings and 3 tons of assay cleanings amalgamated; 45 tons of old tailings concentrated; and 308 tons of old tailings, 62 tons of mill cleanings, 11 tons of slag, 32 tons of gravel concentrates, and 6 tons of assay cleanings smelted. 2 Includes 42,928 tons of old tailings cyanided, 12,000 tons of old tailings concentrated, and 2,362 tons of old tailings and 266 tons of mill cleanings smelted. 3 Includes 900 tons of old tailings cyanided, 800 tons of old tailings concentrated, and 175 tons of old tailings and 3 tons of mill cleanings smelted. 4 Includes 573 tons of old tailings smelted. 5 Includes 18 tons of slag smelted. 6 Figures include gold, silver, copper, lead, and zinc recovered from zinc concentrates produced in 1931 but not marketed until 1933. Value of metals from ore, old tailings, etc., sold or treated in Nevada in 1934, by classes of ore | Class | Ore, old
tailings,
etc. (short
tons) | Gold | Silver | Copper | Lead | Zinc | Total
value | |---|--|---|---|---|--|-------------------------
---| | Dry gold ore Dry gold-silver ore Dry silver ore Copper ore Lead ore Lead-zinc ore | 809, 525
73, 824
18, 105
1, 819, 913
24, 931
72
153, 412 | \$3, 848, 979
275, 192
34, 434
564, 051
62, 664
482
73, 166 | \$397, 550
403, 049
175, 332
47, 984
179, 708
2, 197
769, 466 | \$9, 105
173
544
3, 281, 201
34, 375
577
2, 915 | \$4, 451
625
3, 261
46
144, 556
783
659, 607 | \$1, 198, 874 | \$4, 260, 085
679, 039
213, 571
3, 893, 282
421, 303
4, 039
2, 704, 028 | | Total, 1933 1 | 2, 899, 782
1, 678, 454 | 4, 858, 968
22, 372, 498 | 1, 975, 286
401, 320 | 3, 328, 890
1, 823, 335 | 813, 329
170, 449 | 1, 198, 874
536, 531 | 12, 175, 347
2 5, 304, 133 | # Ore, old tailings, etc., sold or treated in Nevada in 1934, by counties, with content in terms of recovered metals 1 #### DRY GOLD ORE | County | Ore, old tail-
ings, etc. | Gold | Silver | Copper | Lead | Zine | |--------------------|------------------------------|-----------------------|-------------------|-------------------|-------------------|--------| | | Short tons | Fine ounces | | Pounds | Pounds | Pounds | | Churchill | | 1,602.34
3,850.24 | 1, 388
13, 687 | 9, 187 | 15, 776 | | | Clark
Douglas | 182 | 126. 81 | 90 | | | | | Elko | ⁸ 6, 368 | 3, 391. 61 | 45, 271 | 1,027 | | | | Esmeralda | 4 393, 458 | 18, 972. 19 | 11, 413 | 10, 084
2, 717 | 9, 520
39, 076 | | | Cureka | | 943. 56
1, 738. 48 | 8, 876
7, 889 | 2, 143 | 3, 352 | | | Humboldt
Lander | | 5, 752. 91 | 36, 460 | 77, 613 | 35, 616 | | | incoln | | 3, 926. 32 | 14, 621 | 1, 117 | 1, 165 | | | von | 6 35, 329 | 9, 107. 90 | 23, 252 | 82 | | | | Mineral | 7 7,828 | 3, 549. 41 | 6, 382 | 4, 931 | 2,669 | | | Vуе | | 20, 941. 00 | 18, 844
242 | 120 | 3, 682
770 | | | Ormsby | | 97. 29
9. 697. 28 | 36, 647 | 2, 420 | 6,011 | | | Pershing
storey | | 16, 066, 44 | 284, 875 | 881 | 140 | | | Vashoe | | 810. 17 | 326 | | | | | White Pine | | 9, 554. 20 | 104, 697 | 1, 487 | 1,325 | | | | 809, 525 | 110, 128, 15 | 614, 960 | 113, 809 | 120, 290 | | | Гotal, 1933 | 421,754 | 72, 524. 35 | 204, 635 | 74, 316 | 20, 825 | | ¹ In 1934, no zinc ore produced. In 1933, 80,124 pounds of zinc recovered from 202 tons of zinc ore and 198,00 ounces of gold, 60,835 ounces of silver, 18,760 pounds of copper, 213,520 pounds of lead, and 4,295,670 pounds of zinc recovered from zinc concentrates produced in Nye County in 1931 but not marketed until ² Includes 3,780 tons of old tailings cyanided and 44 tons of old tailings and 32 tons of gravel concentrates smelted. ¹ Figures include value of gold, silver, copper, lead, and zinc recovered from zinc concentrates produced in 1931 but not marketed until 1933. ² Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). smelted. 3 Includes 1 ton of old tailings amalgamated and 13 tons of mill cleanings smelted. 4 Includes 367,555 tons of old tailings cyanided. 5 Includes 24,400 tons of old tailings cyanided and 255 tons of old tailings smelted. 6 Includes 128 tons of old tailings cyanided and 1 ton of mill cleanings and 9 tons of slag smelted. 7 Includes 65 tons of old tailings amalgamated. 8 Includes 24,555 tons of old tailings cyanided and 1 ton of old tailings and 2 tons of slag smelted. 9 Includes 3 tons of assay cleanings amalgamated and 6 tons of assay cleanings smelted. 10 Includes 4,637 tons of old tailings cyanided and 27 tons of mill cleanings smelted. 11 Includes 12,000 tons of old tailings cyanided, 514 tons of old tailings amalgamated, 45 tons of old tailings concentrated, and 8 tons of old tailings and 21 tons of mill cleanings smelted. Ore, old tailings, etc., sold or treated in Nevada in 1934, by counties, with content in terms of recovered metals—Continued #### DRY GOLD-SILVER ORE | • | D101 | GOLD-DI | JVIII OILI | | | | |---|------------------------------|----------------------------|----------------------|------------------------------|-------------------|----------| | County | Ore, old tail-
ings, etc. | Gold | Silver | Copper | Lead | Zine | | Clark | Short tons | Fine ounces
38. 01 | 2, 487 | Pounds | Pounds
215 | Pounds: | | Esmeralda | 12 45, 285 | 1, 415. 18 | 100, 079 | | | | | Humboldt | 18. | 4. 50 | 329 | | 610 | | | Lincoln
Mineral | 2,028 | 344. 18 | 17, 716 | 1, 059 | 15, 713 | | | Mineral | 18 9, 878 | 17. 29
5, 391. 44 | 1, 093
456, 114 | | | | | Nye
Pershing | 87 | 25. 66 | 1,729 | | 228 | | | Storey | 14 12,000 | 245.00 | 11,500 | 1, 100 | 129 | | | White Pine | 15 4, 372 | 392. 62 | 32, 420 | 2, 100 | | | | | 73, 824 | 7, 873, 88 | 623, 467
106, 264 | 2, 159
1, 165 | 16, 895 | | | Total, 1933 | 20, 549 | 2, 458. 92 | 106, 264 | 1, 165 | 4, 360 | | | | I | ORY SILVE | RORE | | | | | Churchill | 43 | 6. 58 | 2, 173 | | 270 | | | Clark | 112 | 13.60 | 3, 056 | 190 | | | | EIKO | 16 878 | 3.64 | 4,050 | 450 | 63, 614 | | | Elko
Esmeralda
Eureka
Humboldt | 203 | 24.82 | 2,819 | 70
101 | 1, 835
1, 682 | | | Eureka | 3, 582 | 2. 13
28. 07 | 1, 529
9, 255 | 1, 223 | 3 379 | | | Lander | 803 | 37. 06 | 58, 319 | 3, 038 | 3, 372
10, 335 | | | Lincoln | 408 | 12.46 | 12, 193 | 1,002 | 3,716 | | | Lyon | 8 | 1. 10 | 1, 198 | 120 | 578 | | | Mineral | 17 177 | 74.04 | 7, 487 | | | | | Nva | 18 1, 474 | 568. 72 | 61. 263 | | 1, 138 | | | PershingStoreyWhite Pine | 219 | 105.64 | 10, 367 | 603 | 1,442 | | | Storey | 1 | . 20
107. 17 | 30 | | | | | White Pine | 19 10, 153 | 107. 17 | 97, 478 | | 155 | | | | 18, 105 | 985. 23 | 271, 217 | 6, 797 | 88, 137 | | | Total, 1933 | 6, 681 | 4, 926. 07 | 469, 249 | 1,898 | 27, 790 | | | | <u> </u> | COPPER | ORE | | | <u>'</u> | | Clark | 2 | 0.04 | 4 | 975 | | | | Elko | 62 | 1.30 | 258 | 13, 632 | | | | Eureka | 10 | . 47 | 1,372 | 510 | | | | Landar | 767 | 109.40 | 7,872 | 44, 171 | | | | Lyon | 52 | .40 | 6 | 9, 533 | | | | Nye | 18 | 2.72 | 1, 163 | 1, 792 | 1,010 | | | Lyon Nye Pershing Washoe White Pine | 10 | 2. 10 | 658 | 830 | 240 | | | Washoe | 71 | 10.50 | 852 | 15, 357
40, 928, 215 | | ļ | | White Pine | 1, 818, 921 | 16, 011. 86 | 62, 040 | | | | | Total, 1933 | 1, 819, 913
1, 197, 498 | 16, 138. 79
11, 545. 65 | 74, 225
69, 605 | 41, 015, 015
28, 226, 322 | 1, 250
895 | | | £ (100) | 1 2,201,200 | LEAD (| | | | | | | | l | | 1 | 1 | <u> </u> | | Churchill | 362 | 119. 24 | 8, 563 | 1, 596 | 151,962 | | | Clark | 4,725 | 4.37 | 547 | 2,757 | 118, 221 | | | Elko
Esmeralda | 20 2, 626
2 | 16. 48
1. 90 | 45, 935
262 | 2, 151 | 919, 575
200 | | | ESMEI AIUÄ | 2, 651 | 1, 104. 85 | 9,330 | 11,030 | 255, 980 | | | Eureka
Humboldt | 2,051 | 13.98 | 990 | 21,000 | 7, 549 | | | Lander | 127 | 61. 60 | 2,830 | 247 | 23,606 | | | Lander
Lingoln
Lyon
Mineral | 13, 716 | 312. 13 | 195, 681 | 410, 808 | 2, 188, 575 | | | Lvon | 4 | | 13 | | 300 | | | Mineral | 36 | 18. 59 | 1, 327 | 97 | 6,828 | | | N VA | 67 | 42.45 | 1,401 | 266 | 14, 705 | | | Pershing | 107 | 73. 43 | 4, 424 | | 27, 917 | | | Washoe | _1 | | 10 | | 219 | | | White Pine | 453 | 23. 94 | 6, 673 | 2, 883 | 191, 284 | | | | 24, 931 | 1,792.96 | 277, 986 | 429, 684 | 3, 906, 921 | | | Total, 1933 | 1,583 | 724. 99 | 33, 594 | 4, 476 | 628, 705 | | | , | 1 | | -, | | l | l | ¹² Includes 42,928 tons of old tailings cyanided and 1 ton of mill cleanings smelted. 13 Includes 265 tons of mill cleanings smelted. 14 Old tailings concentrated. 15 Includes 2,362 tons of old tailings smelted. 16 Includes 800 tons of old tailings concentrated. 17 Includes 900 tons of old tailings cyanided. 18 Includes 900 tons of old tailings cyanided. 19 Includes 573 tons of old tailings smelted. Ore, old tailings, etc., sold or treated in Nevada in 1934, by counties, with content in terms of recovered metals—Continued #### COPPER-LEAD ORE | County | Ore, old tail-
ings, etc. | Gold | Silver | Copper | Lead | Zine | |-------------|------------------------------|------------------|-------------------|--------------------|---------------------|--------| | Lander | Short tons | Fine ounces | Fine ounces | Pounds 101 | Pounds
311 | Pounds | | Lincoln | 21 24 | 1.46 | 525 | 1, 562 | 4, 558 | | | Lyon | 2 | 11.40 | 41 | 2,510 | 122 | l | | White Pine | 43 | . 94 | 1,358 | 3, 043 | 16, 171 | | | Total, 1933 | 72
2,885 | 13. 80
32. 56 | 3, 398
32, 345 | 7, 216
151, 893 | 21, 162
449, 050 | | #### LEAD-ZINC ORE | Clark | 64 | | | | 20, 225 | 28, 635 | |-------------|----------|------------|-------------|---------|--------------|--------------------| | Lincoln | 80, 029 | 1, 311. 97 | 468, 819 | 362 | 9, 227, 437 | 22, 392, 736 | | Nye | 73, 266 | 779. 19 | 720, 580 | 35, 744 | 8, 569, 752 | 5, 452, 094 | | White Pine | 53 | 2. 29 | 868 | 333 | 9, 805 | 7, 325 | | | 153, 412 | 2, 093, 45 | 1, 190, 267 | 36, 439 | 17, 827, 219 | 27, 880. 790 | | Total, 1933 | 27, 302 | 410. 20 | 170, 103 | 10, 780 | 3, 261, 587 | 8, 398, 756 | ²¹ Includes 18 tons of slag smelted. # METALLURGIC INDUSTRY Improved mining conditions in Nevada in 1934 brought about many changes in milling practice and resulted in the alteration of old mills, installation of new mills and cyanide equipment for treatment of old and current tailings, and increased milling tonnages at the various custom mills in the State, particularly in Storey and Lyon Counties. The Caliente Cyaniding Co. completed a 150-ton cyanide plant in the Ferguson (Delamar) district, Lincoln County; the Arizona Comstock Corporation added cyanide equipment for the treatment of tailings from its 300-ton flotation mill; and the Dayton Consolidated Mines Co. completed the erection of a 120-ton all-slime
cyanide plant. Active mills along the Comstock Lode were the Overland 50-ton flotation mill, the Hartford 50-ton cyanide mill (completed in the latter part of the year), the Overman 150-ton flotation mill, the Bradley flotation plant for treatment of the Lynch tailings dump, the Donovan amalgamation and cyanide plant, and the Trimble 10-stamp amalgamation mill; the Donovan and Trimble mills treated considerable custom ore. The Kernick mill at Sodaville, Mineral County, treated not only ore from the Kernick mine but also ore from neighboring properties. Mine production of metals in Nevada in 1934, by methods of recovery | Method of recovery | Material
treated | Gold | Silver | Copper | Lead | Zine | |--|---------------------------------------|--|---------------------------------------|------------------------------|-----------------------------|------------------------------| | Ore, old tailings, etc., amalga-
mated | Short
tons
131, 648
539, 962 | Fine
ounces
28, 506. 06
26, 864. 70 | Fine
ounces
30, 606
155, 741 | Pounds 2, 158 | Pounds | Pounds | | Ore, old tailings, etc., smelted
Concentrates smelted:
Flotation | 1 124, 758
114, 468 | 53, 211, 46
29, 485, 15 | 1, 356, 152
1, 501, 074 | 638, 931
40, 969, 537 | 3, 970, 999
17, 880, 935 | 28, 635
27, 852, 155 | | Table Total, lode mines Total, placers | 253 | 958. 89
139, 026. 26
5, 248. 91 | 11, 947
3, 055, 520
1, 594 | 493 | 129, 940
21, 981, 874 | 27, 880, 790 | | Total, 1933 | | 144, 275. 17
98, 590. 28 | 3, 057, 114
1, 148, 621 | 41, 611, 119
28, 489, 610 | 21. 981, 874
4, 606, 732 | 27, 880, 790
12, 774, 550 | ¹ Includes 3,418 tons of old tailings, 331 tons of mill cleanings, 32 tons of gravel concentrates, 29 tons of slag, and 6 tons of assay cleanings. Mine production of metals from gold and silver mills in Nevada in 1934, by counties, in terms of recovered metals | | Ore, old tailings, etc., treated | | Recovered in bullion | | | | | |------------------------|----------------------------------|-----------------------|---------------------------|-------------|--------------------------|-------------------|--| | County | | | Amalga | mation | Cyanidation | | | | | Ore | Old tailings, etc. | Gold | Silver | Gold | Silver | | | Churchill | Short tons
1, 688 | Short tons | Fine ounces
1, 190. 92 | Fine ounces | Fine ounces | Fine ounces | | | Clark | 1, 903
106 | 1 3, 780 | 807. 36
50. 59 | 1, 606
8 | 565. 67 | 425 | | | Douglas
Elko | 2 5, 954 | ii | 732. 72 | 937 | 1, 869. 79 | 35, 425 | | | Esmeralda
Eureka | 20, 237
226 | ³ 410, 483 | 3, 070. 60
40. 64 | 1, 073
9 | 8, 153. 51 | 52, 883 | | | Humboldt | 2, 442 | | 641.75 | 309 | 478.00 | 3, 330 | | | Lander | 1, 123
5 | 4 24, 400 | 387. 61
9. 15 | 266
18 | 42. 77
524. 26 | 1 25 | | | Lincoln
Lyon | 34, 519 | 124, 400 | 2, 339, 82 | 1, 906 | 5, 430, 76 | 1, 359
16, 559 | | | Mineral | | 65 | 1, 692. 16 | 815 | 0, 100, 10 | 20,00 | | | Nye | 70, 578 | 24, 555 | 9, 806. 12 | 5, 156 | 2, 220. 76 | 212 | | | Ormsby | 10 045 | 4 627 | 67. 69 | 58
801 | | 7, 908 | | | Pershing Storey Storey | 18, 245
26, 467 | 4, 637
12, 514 | 1, 109. 71
5, 765. 25 | 16, 536 | 5, 500. 83
2, 078. 05 | 35, 444 | | | Washoe | 760 | 12, 014 | 774. 70 | 246 | 2,016.00 | 00, 11 | | | White Pine | 32 | 900 | 19. 27 | 4 | . 30 | 2, 160 | | | | 190, 144 | 481, 466 | 28, 506. 06 | 30, 606 | 26, 864, 70 | 155, 74 | | | Total, 1933 | 101, 675 | 5 271, 566 | 23, 569, 69 | 15, 180 | 14, 409, 51 | 66, 85 | | | | Concentrates and recovered metal | | | | | | | |-------------|----------------------------------|-------------|-------------|--------|--------|--|--| | County | Concen-
trates pro-
duced | Gold | Silver | Copper | Lead | | | | | Short tons | Fine ounces | Fine ounces | Pounds | Pounds | | | | Clark | 1 | 11. 20 | 21 | | | | | | Elko | 16 | 72, 95 | 1,092 | 50 | 637 | | | | Esmeralda | 93 | 1, 682. 10 | 811 | | 4,050 | | | | Lander | 3 | 9, 90 | 81 | | 1, 103 | | | | Lyon | 81 | 404. 34 | 3,012 | 82 | | | | | Mineral | 63 | 601.02 | 615 | | 310 | | | | Pershing | 18 | 126.68 | 1,908 | | | | | | Storey | 17 | 148. 37 | 1,947 | 110 | 140 | | | | White Pine | 2 | 4. 60 | 22 | | | | | | * | | | | | | | | | | 294 | 3, 061. 16 | 9, 509 | 242 | 6, 240 | | | | Total, 1933 | 80 | 1, 146. 00 | 2, 416 | 210 | 2, 400 | | | | ¥ | | l | 1 | | | | | Gross metal content of concentrates from concentrating mills in Nevada in 1934, by classes of concentrates | | Concen- | | Gros | s metal cont | ent | | |------------------------|---------------------------------|--|------------------------------------|----------------------------------|-----------------------------|------------------------------| | Class of concentrates | trates
produced | Gold | Silver | Copper | Lead | Zine | | Dry and siliceous | Short tons
4, 926
65, 762 | Fine ounces
8, 633. 92
16, 011, 86 | Fine ounces
250, 476
62, 040 | Pounds
4, 103
41, 133, 884 | Pounds
119, 179 | Pounds | | Copper
Lead
Zinc | 15, 453
28, 286 | 2, 132. 22
604. 88 | 1, 005, 049
185, 947 | 23, 673
27, 056 | 17, 946, 973
884, 607 | 31, 513, 082 | | Total, 1933 1 | 114, 427
63, 774 | 27, 382. 88
15, 368. 88 | 1, 503, 512
349, 157 | 41, 188, 716
28, 870, 230 | 18, 950, 759
3, 641, 865 | 31, 513, 082
14, 290, 487 | ¹ Figures include zinc concentrates produced in 1931 but not marketed until 1933. Yielded also 240 pounds of copper recovered from "cyanide" precipitates. Yielded also 218 pounds of copper recovered from "cyanide" precipitates. Yielded also 1,510 pounds of copper recovered from "cyanide" precipitates. Yielded also 190 pounds of copper recovered from "cyanide" precipitates. Yielded also 1,870 pounds of copper recovered from "cyanide" precipitates. # Nevada ore and old tailings concentrated in 1934, by methods of concentration | 38-41-3-5 | Ore and old | Concentrates and metal content | | | | | |-------------------------|-------------------------------------|--------------------------------|------------------------------------|--------------------------------------|--|--| | Method of concentration | tailings
concentrated | Concentrates
produced | Gold | Silver | | | | FlotationTable | Short tons
2, 094, 612
8, 802 | Short tons
114, 260
167 | Fine ounces
27,071.19
311.69 | Fine ounces
1, 495, 684
7, 828 | | | | | 2, 103, 414 | 114, 427 | 27, 382. 88 | 1, 503, 512 | | | | ran di Kabupatèn Kab
Kabupatèn Kabupatèn | Concentrates and metal content—Continued | | | | | | | | | |---|--|-------------------------------|------------------------------------|------------------------------------|------------------------|------------------------|--|--|--| | Method of concentration | Copper | | Le | ead | Zine | | | | | | | Gross | Recovered | Gross | Recovered | Gross | Recovered | | | | | Flotation | Pounds
41, 188, 324
392 | Pounds
40, 969, 455
333 | Pounds
18, 816, 199
134, 560 | Pounds
17, 876, 885
127, 750 | Pounds
31, 513, 082 | Pounds
27, 852, 155 | | | | | | 41, 188, 716 | 40, 969, 788 | 18, 950, 759 | 18, 004, 635 | 31, 513, 082 | 27, 852, 155 | | | | Mine production of metals from concentrating mills in Nevada in 1934, in terms of recovered metals ### BY COUNTIES | | Ore and old tail-
ings treated | | Concentrates and recovered metal | | | | | | |--------------------|-----------------------------------|-----------------|----------------------------------|---------------------------|--------------------|--------------|---------------------|--------------| | | Ore | Old
tailings | Concentrates pro- | Gold | Silver | Copper | Lead | Zinc | | Churchill | Short
tons
250 | Short
tons | Short
tons | Fine
ounces
142, 60 | Fine ounces 63 | Pounds | Pounds | Pounds | | ClarkElko | 9, 798 | 800 | 261
81 | 1, 200. 34
. 52 | 7, 615
2, 224 | 2, 934 | 129, 731
63, 614 | \ | | Esmeralda | 150 | | 26 | 8. 89 | 923 | 70 | 1,835 | | | Humboldt | 3, 500 | | 25 | 17. 89 | 6, 663 | 410 | 2, 332 | | | Lincoln
Mineral | 80, 029
681 | | 34, 493 | 1, 311. 97
110. 57 | 468, 819
1, 315 | 362 | 9, 227, 437 | 22, 392, 736 | | Nye | 73, 266 | | 12,608 | 779, 19 | 720, 580 | 35, 744 | 8, 569, 752 | 5, 452, 094 | | Storey | 103, 921 | 12,045 | 1, 144 | 7, 796. 76 | 232, 402 | 1,720 | 129 | 0, 102, 001 | | White Pine | 1, 818, 974 | | 65, 778 | 16, 014. 15 | 62, 908 | 40, 928, 548 | 9, 805 | 7, 325 | | | 2, 090, 569 | 12, 845 | 114, 427 | 27, 382. 88 | 1, 503, 512 | 40, 969, 788 | 18, 004, 635 | 27, 852, 155 | | Total, 1933 1 | 1, 246, 033 | ,010 | 63, 774 | 15, 368. 88 | 349, 157 | 27, 913, 484 | 3, 457, 600 | 12, 671, 080 | ## BY CLASSES OF CONCENTRATES | Dry and siliceous
Copper
Lead
Zinc | 4, 926
65, 762
15, 453
28, 286 | 8, 633. 92
16, 011. 86
2, 132. 22
604. 88 | 250, 476
62, 040
1, 005, 049
185, 947 | 2, 911
40, 928, 215
18, 387
20, 275 | 113, 086
17, 139, 591
751, 958 | 27, 852, 155 | |---|---|--|--|--|--------------------------------------|--------------| | | 114, 427 | 27, 382. 88 | 1, 503, 512 | 40, 969, 788 | 18, 004, 635 | 27, 852, 155 | ¹ Figures include zinc concentrates produced in 1931 but not marketed until 1933.
Gross metal content of Nevada concentrates produced in 1934, by classes of concentrates | Class of concentrates | Concen- | Gross metal content | | | | | | | |-----------------------|---|--|---|--|--|------------------------------|--|--| | | trates pro-
duced | Gold | Silver | Copper | Lead | Zinc | | | | Dry and siliceous | Short tons
5, 210
65, 762
15, 463
28, 286 | Fine ounces
11, 671. 08
16, 011. 86
2, 156. 22
604. 88 | Fine ounces 259, 862 62, 040 1, 005, 172 185, 947 | Pounds
4, 387
41, 133, 884
23, 743
27, 056 | Pounds
125, 110
17, 949, 126
884, 607 | Pounds | | | | Total, 1933 1 | 114, 721
63, 854 | 30, 444. 04
16, 514. 88 | 1, 513, 021
351, 573 | 41, 189, 070
28, 870, 532 | 18, 958, 843
3, 645, 298 | 31, 513, 082
14, 290, 487 | | | ¹ Figures include zinc concentrates produced in 1931 but not marketed until 1933. # Mine production of metals from Nevada concentrates in 1934, in terms of recovered metals ### BY COUNTIES | | Concen-
trates | Gold | Silver | Copper | Lead | Zinc | |--------------------|---------------------|----------------------------|-------------------------|------------------------------|-----------------------------|------------------------------| | Churchill | Short tons | Fine ounces | Fine ounces | Pounds | Pounds | Pounds | | Clark
Elko | 262
97 | 1, 211. 54
73. 47 | 7, 636
3, 316 | 2, 934
50 | 129, 731
64, 251 | | | Esmeralda | 119 | 1, 690. 99 | 1,734 | 70 | 5, 885 | | | Humboldt
Lander | 25
3 | 17. 89 | 6, 663
81 | 410 | 2, 332 | | | Lincoln | 34, 493 | 9. 90
1, 311, 97 | 468, 819 | 362 | 1, 103
9, 227, 437 | 22, 392, 736 | | Lyon | 81 | 404. 34 | 3,012 | 82 | | | | Mineral | 65
12, 608 | 711, 59
779, 19 | 1, 930
720, 580 | 35, 744 | 310
8, 569, 752 | 5, 452, 094 | | Pershing | 18 | 126.68 | 1,908 | | | 0, 102, 001 | | StoreyWhite Pine | 1, 161
65, 780 | 7, 945. 13
16, 018. 75 | 234, 349
62, 930 | 1, 830
40, 928, 548 | 269
9, 805 | 7, 325 | | 17 M200 X M05522 | | | | | | | | Total, 1933 | 114, 721
63, 854 | 30, 444, 04
16, 514, 88 | 1, 513, 021
351, 573 | 40, 970, 030
27, 913, 694 | 18, 010, 875
3, 460, 000 | 27, 852, 155
12, 671, 080 | | | BY CLAS | SES OF CO | NCENTRA | TES | | | | Doy and siliceous | 5, 210 | 11, 671. 08 | 259, 862 | 3, 103 | 117, 276 | | | Copper
Lead | 65, 762
15, 463 | 16, 011. 86
2, 156, 22 | 62, 040
1, 005, 172 | 40, 928, 215
18, 437 | 17, 141, 643 | | | Zine | 28, 286 | 604. 88 | 185, 947 | 20, 275 | 751, 956 | 27, 852, 155 | | . | 114, 721 | 30, 444. 04 | 1, 513, 021 | 40, 970, 030 | 18, 010, 875 | 27, 852, 155 | # Gross metal content of Nevada crude ore shipped to smelters in 1934, by classes of ore | Class of ore | Ore | | Gross metal content | | | | | | | | |-------------------|--|---|---|---|---|---------------------|--|--|--|--| | Class of ore | Ole | Gold | Silver | Copper | Lead | Zine | | | | | | Dry and siliceous | Short tons
100, 197
992
19, 635
54
64 | Fine ounces
50, 067. 92
126. 93
1, 789. 86
12. 59 | Fine ounces 1, 018, 238 12, 185 269, 082 3, 159 | Pounds
124, 379
90, 884
510, 614
7, 459 | Pounds
198, 519
1, 482
3, 816. 948
21, 003
28, 893 | Pounds | | | | | | Total, 1933 | 120, 942
58, 863 | 51, 997. 30
37, 535. 13 | 1, 302, 664
657, 358 | 733, 336
629, 210 | 4, 066, 845
1, 222, 748 | 32, 914
127, 000 | | | | | Mine production of metals from Nevada crude ore shipped to smelters in 1934, in terms of recovered metals # BY COUNTIES | | Ore | Gold | Silver | Copper | Lead | Zine | |-------------------------------|------------------|---------------------------------|-------------------------|--------------------|---------------------|---------| | Oleman III | Short tons | Fine ounces | Fine ounces | Pounds | Pounds | Pounds | | Churchill
Clark
Douglas | 607
834
76 | 394. 64
1, 143. 95
76. 22 | 11, 203
5, 457
82 | 1, 596
6, 277 | 152, 232
22, 990 | 28, 63 | | Elko | | 618. 45 | 46, 986 | 17, 598 | 784, 486 | | | Esmeralda | 8, 077 | 7, 492. 89 | 58, 400 | 8, 574 | 5, 670 | | | Eureka | 4, 279 | 2, 010. 37 | 21, 098 | 14, 358 | 296, 738 | | | Humboldt
Lander | 844
9, 602 | 647. 39
5, 520. 69 | 8, 161
106, 567 | 2, 956
125, 170 | 12, 551
68, 765 | | | Lincoln | 19, 326 | 3, 896. 97 | 238, 834 | 414, 224 | 2, 210, 948 | | | Lyon | 738 | 911.77 | 3, 020 | 12, 163 | 1,000 | | | Mineral | 1, 324 | 1, 181. 58 | 6, 116 | 5, 028 | 9, 187 | | | Nye | 19, 987
18 | 14, 649. 00
6, 75 | 521, 722
152 | 2, 178 | 20, 535
770 | | | Ormsby
Pershing | | 3, 103, 09 | 42, 336 | 3, 853 | 35, 838 | | | Storey | | 457. 65 | 9,842 | 151 | | | | Washoe | | 45. 97 | 942 | 15, 357 | 219 | | | White Pine | 50, 230 | 9, 839. 92 | 221, 746 | 7, 413 | 208, 935 | | | | 120, 942 | 51, 997. 30 | 1, 302, 664 | 636, 896 | 3, 830, 864 | 28, 63 | | Total, 1933 | 58, 863 | 37, 535. 13 | 657, 358 | 574, 046 | 1, 146, 605 | 103, 47 | | | ВУ | CLASSES | OF ORE | | | | | Dry and siliceous | 100, 197 | 50, 067, 92 | 1, 018, 238 | 114, 548 | 138, 558 | | | Copper | 992 | 126. 93 | 12, 185 | 86, 800 | 1, 250 | | | Lead | | 1, 789. 86 | 269, 082 | 429, 466 | 3, 652, 448 | | | Copper-lead
Lead-zinc | 54
64 | 12. 59 | 3, 159 | 6,082 | 18, 383
20, 225 | 28, 63 | | Leau-zinc | 04 | | | | 20, 220 | 20,00 | | | 120, 942 | 51, 997. 30 | 1, 302, 664 | 636, 896 | 3, 830, 864 | 28, 63 | | | 1 | | 1 | | l | 1 | Mine production of gold, silver, copper, lead, and zinc in Nevada in 1934, by counties and districts, in terms of recovered metals 1 | G | Mines p | roducing | Ore, old | | Gold | | Silver | G | T 3 | g: | Total | |--------------------------------|---------|----------|-------------------|------------------|-------------|------------------|-----------------------------------|---------|----------|---------|------------------| | County and district 1 | Lode | Placer | tailings,
etc. | Lode | Placer | Total | (lode and
placer) ² | Copper | Lead | Zinc | value | | hurchill County: | | | Short tons | Fine ounces | Fine ounces | | Fine ounces | Pounds | Pounds | Pounds | | | Alpine | 1 | | 3 | 1.34 | | 1. 34 | 40 | | 311 | | \$ | | Broken Hills
Eagleville | 2 | | 3 | 6.68 | | 6. 68 | 303
129 | | | | 4 | | Fairview | 2 | | 12 | 5. 74
2. 10 | | 5. 74
2. 10 | 129 | | | | 2 | | Fireball | 1 ‡ | | 19 | 21, 20 | | 21, 20 | 11 | | | | 7 | | Gold Butte | † | | 411 | 363.80 | | 363, 80 | 171 | | | | 12.8 | | Holy Cross | ··· i | | 411 | . 58 | | . 58 | 298 | | | | 2, 2 | | Wonder | | | 1.697 | 1, 173. 76 | | 1, 173, 76 | 2, 619 | | 270 | | 42.7 | | Undistributed as to district 3 | (3) | | 20 | 17.14 | | 17. 14 | 5 | | | | 6 | | lark County: | 1 '' | 1 | | | ľ | | | | · . | | | | Crescent | | | 235 | 232. 27 | | 232. 27 | 317 | 155 | 1, 170 | | 8, 3 | | Eldorado Canyon | | 1 | 4,086 | 927. 55 | 3. 19 | 930. 74 | 6, 731 | 1,813 | 9, 911 | | 37, 3 | | Goodsprings
Ivanpah | 1 | | 1 1 | 18. 16
11. 60 | | 18. 16
11. 60 | 2,816 | 190 | | | 2, | | Logan | 4 | | 106 | . 04 | | .04 | 2,810 | 975 | | | 2 , 2 | | Searchlight | 24 | 1 | 6, 701 | 1, 745, 52 | 8.32 | 1,753.84 | 8, 478 | 2, 237 | 4, 951 | | . 67.1 | | Yellow Pine | - 6 | _ | 5, 260 | 971. 12 | 0.02 | 971. 12 | 1, 436 | 4, 982 | 138, 405 | 28, 635 | 41.6 | | Douglas County: | 1 | | 0,200 | 012.22 | | | 1, 100 | 2,002 | 100, 100 | 20,000 | , | | Ďelaware | 1 | | 100 | 39. 92 | | 39. 92 | 5 | | | | 1, 3 | | Red Canyon | 1 | | 5 | 8.49 | | 8.49 | 3 | | | | 2 | | Wellington | 1 | | 75 | 71. 50 | | 71. 50 | 78 | | | | 2, 8 | | lko County: | | | | | | | | | | 1 | | | AlderBlue Jacket | | | 61 | 18. 97 | | 18. 97 | 192 | | | | 3 | | Carlin | | | 3 | | 9, 35 | 9. 35 | 156
1 | 82 | 180 | | 1 | | Centennial | 2 | 4 | 85 | 37. 47 | 9. 55 | 9. 35
37. 47 | 57 | 92 | 1, 113 | | 1. | | Charleston | | | 31 | 59. 93 | 90, 26 | 150. 19 | 60 | 933 | 1,110 | | 5. | | Contact | - 2 | | 103 | 1.50 | 00.20 | 1.50 | 540 | 14, 500 | 3, 920 | | 1. | | Delano | 3 | | 3, 122 | 14. 02 | | 14. 02 | 44, 893 | 320 | 861, 320 | | 61, 4 | | Dolly Varden | 1 | | 1 | | | | 9 | | 205 | | , | | Gold Circle | 9 | | 5, 330 | 2, 728. 38 | | 2, 728. 38 | 42, 765 | | | | 123, 0 | | Island Mountain | 1 | 1 | 6 | 7.83 | 54.08 | 61.91 | 12 | | | | 2, 1 | | Jarbidge | 8 | | 659 | 472. 98 | | 472.98 | 2,078 | | | | 17,8 | | Lee | | | 2 | | | | 3 | 202 | | | | | Loray | 2 | | կ 60 | . 30 | | . 30 | 784 | 160 | | | į. | | Mountain City
Pilots Peak | 1 | 2 | 1 7 | 2.72 | 4. 25 | 6. 97 | 401
440 | 143 | | | | See footnotes at end of table. Mine production of gold, silver, copper, lead, and zinc in Nevada in 1934, by counties and districts, in terms of recovered metals—Continued | County and district | Mines p | roducing | Ore, old
tailings. | | Gold | | Silver
(lode and | Copper | Lead | Zinc | Total | |-----------------------------|---------|----------|-----------------------|------------------|-------------|-------------------|---------------------|------------|------------------|--------|------------------| | County and district | Lode | Placer | etc. | Lode | Placer | Total | placer) | Copper | Dead | Zinc | value | | Elko County—Continued. | | | Short tons | Fine ounces | Fine ounces | Fine ounces | Fine ounces | Pounds | Pounds | Pounds | | | Railroad | 4 | | 15 | 7.09 | | 7.09 | 562 | 50 | 3, 250 | | \$735 | |
Rowland | 1 | | 130 | 32.82 | | 32.82 | 30 | 218 | | | 1, 183 | | Ruby Valley | 1 | | 5 | . 10 | | . 10 | 25 | | 4, 355 | | 181 | | Spruce Mountain | 5 | | 152 | 1.47 | | 1.47 | 1,708 | 1, 166 | 65, 376 | | 3, 667 | | Tecoma | 1 | [| 96 | 1, 21 | | 1. 21 | 730 | | 42, 952 | | 2, 103 | | Tuscarora | 4 | 5 | 60 | 26. 24 | 17. 11 | 43. 35 | 72 | | | | 1, 562 | | Warm Creek | 1 | | 3 | | | | 19 | | 1,706 | | 75 | | Esmeralda County: | | 1 | | | 1 | | | | | · | | | Desert | 4 | | 1,692 | 238. 10 | | 238. 10 | 788 | | | | 8, 831 | | Divide | 8 | | 2, 462 | 901. 72 | | 901. 72 | 53, 219 | 100 | 3, 420 | | 66, 054 | | Goldfield | 10 | | 361, 766 | 8, 530. 24 | | 8, 530. 24 | 5, 376 | 9, 580 | 170 | | 302, 379 | | Hornsilver | 2 | | 45 | 14.42 | | 14.42 | 1,710 | | | | 1,609 | | Klondike | 2 | | 213 | 40.89 | | 40.89 | 1,401 | 70 | 3, 205 | | 2, 460 | | Lida | Ī | 2 | 25 | 10.64 | 229.00 | 239. 64 | 91 | | | | 8, 434 | | Lone Mountain | 1 1 | | 5 | . 20 | | . 20 | 82 | | | | 60 | | Silver Peak | 10 | | 29, 686 | 9, 991. 79 | | 9, 991. 79 | 3, 612 | 287 | 4, 760 | | 351, 747 | | Tokop. | 1 | | 6 | 4.10 | | 4. 10 | 7 | | | | 148 | | Eureka County: | | 1 . | _ | | l | | | | 040 | | | | Cortez | 2 | | 0.000 | 6.72 | | 6. 72 | 341 | | 240 | | 464 | | Eureka | 6 | | 3,868 | 1, 448. 67 | | 1, 448. 67 | 18, 094 | 13, 332 | | | 74, 312 | | Lynn | 1 1 | 9 | 582 | 594, 22 | 410.50 | 1,004.72 | 145 | 415 | | | 35, 242 | | Safford | 1 | | 10 | .47 | | .47 | 1, 372 | 510 | | | 944 | | Humboldt County: | | • | 549 | 050 50 | 1 | 050 50 | 100 | | | | 10.000 | | Amos | 4 | | | 350.70 | | 350.70 | 107 | | | | 12, 326 | | Central | 2 | | 21 | 20. 73
28. 44 | | 20. 73 | 244 | | | | 883 | | Clear Creek | - | | 85 | 28.44 | | 28.44 | 234 | | 360 | | 1, 158 | | Disaster | 1 . | | 107 | 62.84 | | 2.39 | | 318 | | | 84 | | Gold Run
National | 3 | | 2,048 | 541, 99 | | 62.84 | 717 | 318
410 | 6, 257
2, 332 | | 2,917 | | Dandin Vallan | 4 | | 3, 014 | 46.97 | 2,77 | 541. 99
49. 74 | 6, 073
4, 047 | | | | 22, 988 | | Paradise Valley
Platinum | 1 9 | 1 | 3, 014 | 30.60 | 2.11 | 30.60 | 4, 047 | | | | 4, 354
1, 080 | | Sawtooth | 1 1 | | 50 | 34, 60 | 23, 11 | 57.71 | 38 | | | | 1, 080
2, 042 | | Sulphur | 1 5 | 2 | 140 | 103.64 | | 103. 64 | 1, 508 | | | | | | Valmy | | | 95 | 23. 40 | | 23. 40 | 1,008 | | | | 4, 597 | | Varyville | 1 * | | 90 | 20, 40 | 11. 43 | 11. 43 | 9 | | | | 823
400 | | Winnemucca | 14 | (4) | 312 | 315, 51 | 9. 27 | 324, 78 | 5, 386 | 1, 178 | 5, 934 | | | | Lander County: | 14 | 1 (9) | 312 | 313. 31 | 9. 21 | 324.70 | 0, 300 | 1, 1/8 | 0, 934 | | 15, 147 | | Battle Mountain 5 | 30 | 21 | 7, 213 | 4, 330, 63 | 914.85 | 5, 245, 48 | 36, 136 | 72, 157 | 39, 905 | | 213, 940 | | Bullion | | 4 | 963 | 248. 81 | 208. 73 | 457. 54 | 9, 088 | 44, 357 | | | 25, 600 | | Dean | i | , , | 16 | 10.08 | 200.73 | 10.08 | 170 | 77,007 | 1, 296 | | 25, 600
510 | | Hilltop | | , | 533 | 668. 07 | 4. 28 | 672. 35 | 3, 287 | 4, 513 | 1 | | 25, 985 | | wiii.o.h | | المرس ا | 000 | 000,07 | 1. 40 | 072.00 | 0, 401 | 4,010 | | · | 20, 980 | | ı | | 7 | |---|---|---| | 1 | ۰ | - | | i | L | | | Jackson | 2, 456
670
11, 917
3, 240
4, 283
20, 325
5, 608
93, 831
332 | |---|---| | McCoy | 11, 917
3, 240
4, 283
20, 325
5, 608
93, 831
332 | | Reese River | 3, 240
4, 283
20, 325
5, 608
93, 831
332 | | © Undistributed as to district \$\frac{3}{2}\$. (3) 50 120.70 120.70 101 101 311 | 4, 283
20, 325
5, 608
93, 831
332 | | № Lincoln County: 3 974 62. 24 14,759 1,284 229,903 Cornet. 4 158 58. 34 58. 34 4,978 369 8,674 Ferguson 4 26. 359 2. 521. 30 2. 521. 30 8,693 892 555 | 20, 325
5, 608
93, 831
332 | | Ferruson 4 26 359 2 521 30 2 521 30 8 693 892 555 | 5, 608
93, 831
332 | | Ferguson 4 26 359 2.521.30 2.521.30 8,693 892 555 | 5, 608
93, 831
332 | | Ferguson 4 26 359 2.521.30 2.521.30 8,693 892 555 | 93, 831
332 | | Ferguson 4 26.359 2.521.30 2.521.30 8.693 892 565 | . 332 | | W | | | Freiburg 9. 15 9. 15 18 | | | Groom | 2, 410
951 | | | | | | 733, 888
4. 634 | | Tempiute 1 268 3.08 6,940 140 780 100 100 100 100 100 100 100 100 100 1 | 4, 034
59 | | Viola 1 2 92 | 99 | | Eldorado Canyon | 123 | | Ramsey 1 224 494.01 494.01 13 | 17, 275 | | Silver City 22 34, 662 8, 248. 75 8, 248. 75 21, 764 82 300 | 302, 382 | | Talapoosa | 11, 569 | | Yerington 4 5 65 92.37 118.08 210.45 381 12,043 120 | 8, 569 | | Mineral County: | 0,000 | | Aurora 2 682 111.07 111.07 1,329 | 4,741 | | Bell. 2 378 198.68 198.68 448 4.340 | 7, 581 | | Fitting 3 20 48.04 48.04 160 414 414 414 414 415 415 415 415 415 415 | 1, 797 | | Garfield 1 175 74.00 74.00 74.28 | 7, 388 | | Hawthorne | 16, 319 | | King 30 4.30 3 | 152 | | Pilot Mountain | 4, 594 | | Rand 1 22 27.30 27.30 813 | 1, 480 | | Regent (Rawhide) 8 2 139 111.88 31.77 143.65 455 310 310 310 | 5, 326 | | Santa Fe 2 145 49.53 49.53 518 | 2,066 | | Silver Star 17 5,083 1,804.71 1,804.71 3,552 97 6,854 | 65, 633 | | Sunnyside 2 52 94.90 94.90 940 281 1,169 | 3, 990 | | Nye County: | | | Athens 1 388 341.02 341.02 259 259 | 12, 086 | | Beatty | 139 | | Bellehelen 5 434 455. 24 455. 24 2, 641 | 17, 618 | | Belmont 2 - 9 1.97 - 1.97 506 - 100 | 439 | | Bullfrog 11 | 49, 513 | | Clifford | 14 | | | 389 | | | 131
647 | | Ellendale 1 31 18.33 9 18.33 9 26.80 583 | 1, 314 | | | | | | 1, 144
53 | | Mammoth 59 19.70 19.70 1,409 1,702 261 | 1, 780 | | Mahhattan | 427, 956 | | Round Mountain 7 3 57, 883 6, 937, 57 826, 00 7, 763, 57 4,612 | 274, 318 | | Conference of and of table | -, 1, 010 | See footnotes at end of table. Mine production of gold, silver, copper, lead, and zinc in Nevada in 1934, by counties and districts, in terms of recovered metals—Continued | | Mines p | roducing | Ore, old | | Gold | | Silver
(lode and | Copper |
Lead | Zinc | Total | |---|---------------|------------------------|----------------------------|---|---|---|------------------------------------|---------------|-------------------|--------|--| | County and district | Lode | Placer | tailings,
etc. | Lode | Placer | Total | placer) | Copper | Lieau | Zinc | value | | Nye County—Continued. San Antone | 1 2 | | Short tons
2
147 | 2. 31
82. 90 | Fine ounces | Fine ounces
2. 31
82. 90 | Fine ounces
174
3,048 | Pounds | Pounds
619 | Pounds | \$216
4,867 | | Tolicha
Tonopah 6
Union | 21
21
3 | | 15
11,890
34 | 6. 40
6, 0?3. 83
15. 17 | | 6, 40
6, 023, 83
15, 17 | 513, 032
2, 018 | 136 | 11, 713
627 | | 239
542, 634
1, 858 | | Ormsby County: Carson City Voltaire Pershing County: | 3 1 | | 13
18 | 90. 54
6. 75 | | 90. 54
6. 75 | 90
152 | | 770 | | 3, 250
334 | | Echo. Farrell. Kennedy. Imlay (Humboldt). Loring. | 1 | | 1
1
292
878
8 | 1. 03
3. 30
637. 86
127. 77
8. 58 | 02.01 | 1. 03
3. 30
637. 86
127. 77
8. 58
23. 01 | 8, 071
1, 363
10 | 2, 162
830 | 12, 671
1, 326 | | 36
116
28, 153
5, 462
306
807 | | Placerites Rabbit Hole Rochester Rosebud Sagramento | 6
4 | 3
2
14
9
4 | 606
756 | 292. 86
1, 625. 34 | 23. 01
21. 61
113. 15
314. 40
4. 67
22. 08 | 23. 01
21. 61
406. 01
1, 939. 74
4. 67
198. 83 | 11, 857
18, 363
3
193 | 603 | 1,442 | | 760
21, 956
79, 665
165
7, 074 | | Scossa. Seven Troughs. Sierra. Trinity (Oreana) Undistributed as to district 3. | 5 2 | (3) | 192
21, 512
394
8 | 6, 509. 98
515. 07
5. 57 | 58. 23 | 6, 509. 98
515. 07
5. 57
58. 23 | 11, 098
2, 858
103
8 | 258 | | | 235, 251
20, 073
261
2, 040 | | Storey County: Comstock
Washoe County:
Jumbo | 33 | 2 | 155, 563
38
18 | 16, 311. 64
4. 76
38. 36 | 353, 89 | 16, 665. 53
4. 76
38, 36 | 296, 504
2
81 | 1, 981 | 269 | | 774, 307
168
1, 393 | | PeavinePyramidWhite HorseWhite Pine County: | 1 9 | 3 | 71
714 | 10. 50
767. 05 | 59. 28 | 10. 50
826. 33 | 852
274 | 15, 357 | 219 | | 2, 147
29, 065 | | Aurum
Black Horse
Cherry Creek
Duck Creek | 1
9
5 | , | 549
2
5, 865
125 | 9. 44
12. 11
710. 30
2. 13 | | 9. 44
12. 11
710. 30
2. 13 | 23, 673
5
39, 379
1, 369 | 816
632 | 5, 912
65, 701 | | 15, 918
426
50, 282
3, 441 | | Eagle Gold Canyon Granite Osceola Peacock | 3
1
4 | 10 | 3, 192
5
27
163 | 2. 43
873. 53
3. 00
33. 06
70. 96 | 207. 26 | 2. 43
873. 53
3. 00
240. 32
70. 96 | 1, 376
25, 311
2
64
36 | | 30, 865 | | 2, 172
46, 893
106
8, 440
2, 503 | | Robinson Shoshone Ward White Pine Combined districts ' Undistributed as to county ' | 22
1
1
4
25 | 8 (8) | 1, 861, 417
41
69
955
132, 449 | 24, 265, 14
2, 86
83, 37
24, 69
3, 142, 34 | 43. 73
214. 71 | 24, 265, 14
2, 86
83, 37
24, 69
3, 186, 07
214, 71 | 211, 363
550
87
2, 368
1, 006, 197
45 | 40, 933, 710
 | 115, 634
 | 7, 325

5, 452, 094 | 4, 263, 996
456
2, 970
2, 426
1, 424, 277
7, 533 | |---|-------------------------|-------|--|--|-------------------|---|--|------------------|--------------|---------------------------|---| | Total Nevada, 1934 | 635 | 160 | 2, 899, 782 | 139, 026. 26 | 5, 248. 91 | 144, 275. 17 | ² 3, 057, 114 | 41, 611, 119 | 21, 981, 874 | 27, 880, 790 | 12, 359, 826 | | | 422 | 116 | 1, 678, 454 | 92, 820. 74 | 5, 769. 54 | 98, 590. 28 | 1, 148, 621 | 28, 489, 610 | 4, 606, 732 | 12, 774, 550 | 10 5, 452, 300 | Only those districts shown separately for which Bureau of Mines is at liberty to publish figures; other producing districts listed in footnote 7 and output included under "Combined districts." Purchases by bullion buyers and production by itinerant miners included in district totals with production by regular producers or under respective counties where information as to source is available; otherwise, included under "Undistributed as to county." Of the 3,057,114 ounces of silver produced in 1934, 3,055,520 ounces were from lode mines and 1,594 ounces from placers. No information as to district or number of producers. No information as to number of producers. Battle Mountain district lies in both Humboldt and Lander Counties. Tonopah district lies in both Esmeralda and Nye Counties. Includes following districts: Jessup, Sand Springs, and Westgate, Churchill County; Gardnerville, Douglas County; Oneota, Palmetto, and Tonopah, Esmeralda County; Mineral Hill, Eureka County; Battle Mountain and Warm Springs, Humboldt County; Lewis and New Pass, Lander County; Caliente and Jack Rabbit, Lincoln County; Pine Grove, Mineral County; Fairplay, Johnnie, and Tybo, Nye County. 8 No information as to county or number of producers. Figures include gold, silver, copper, lead, and zinc recovered from zinc concentrates produced in 1931 but not marketed until 1933. Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Mine production of gold, silver, copper, and lead in the Goldfield district, Esmeralda County, Nev., 1903–34 | Period | Ore and o | Old tailings | Gold (lode
and placer) | Silver (lode
and placer) | Copper | Lead | Total
value | |--|---|--|---|--|--|-----------------------------------|---| | 1921-30.
1931.
1932.
1933.
1934. | Short tons
893, 334
2, 914, 281
28, 196
586
834
1, 693
2, 766
3, 841, 690 | Short tons
934,000
274,000
281,700
231,000
359,000
2,079,700 | \$45, 130, 812
37, 300, 661
1, 817, 220
267, 071
361, 933
1 198, 841
298, 132
85, 374, 670 | Fine ounces 297, 773 1, 045, 780 46, 712 6, 359 9, 282 3, 017 5, 376 1, 414, 299 | Pounds
160, 903
7, 391, 660
51, 513
10, 537
5, 475
2, 175
9, 580
7, 631, 843 | Pounds 27, 540 5, 950 170 33, 660 | \$45, 323, 025
39, 406, 548
1, 854, 454
269, 874
364, 896
1 200, 036
302, 379 | Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Dividends paid by 9 companies to end of 1934 total \$33,294,125. No dividends reported paid in 1934 Mine production of gold, silver, copper, and lead in the Tonopah district, Esmeralda and Nye Counties, Nev., 1901–34 | Period | Ore, old
tailings, etc. | Gold | Silver | Copper | Lead | Total
value | |---------|---|--|--|--|---|---| | 1901-10 | Short tons 1, 359, 321 4, 588, 552 2, 287, 933 16, 534 10, 604 5, 130 54, 818 8, 322, 892 | \$10, 681, 687
18, 679, 537
7, 281, 421
198, 081
181, 728
1123, 808
233, 149
37, 379, 411 | Fine ounces 49, 443, 336 84, 254, 831 33, 356, 493 823, 872 646, 687 419, 008 561, 327 | Pounds 2, 726 3, 448 164 1, 611 136 8, 085 | Pounds 8, 390 10, 625 389 220 11, 713 31, 337 | \$38, 856, 109 75, 867, 500 32, 501, 331 437, 004 364, 195 1 270, 469 596, 471 2148, 893, 079 | ⁵¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). ¹ Dividends paid by 9 companies to end of 1934 total \$37,023,224. No dividends reported paid in 1934. Mine production of gold, silver, copper, lead, and zinc in the Robinson district, White Pine County, Nev., 1908-34 | Period | Ore | Gold | Silver | Copper | Lead | Zinc | Total
value | |-------------------------------------|---|---|--
---|--|--------------------------------|---| | 1921-30.
1931.
1932.
1933. | Short tons
4, 476, 288
33, 109, 972
36, 561, 422
2, 945, 270
1, 374, 039
1, 220, 700
1, 861, 417
81, 549, 108 | \$888, 237
5, 242, 356
7, 734, 946
768, 578
336, 611
1428, 583
848, 067 | Fine ounces 217, 868 854, 309 1, 288, 126 164, 871 83, 214 111, 780 211, 363 2, 931, 531 | Pounds
136, 193, 007
697, 386, 163
831, 291, 095
71, 333, 607
30, 884, 862
28, 188, 634
40, 933, 710
1, 836, 211, 078 | Pounds
707, 300
2, 051, 135
2, 252, 956
71, 550
115, 634
5, 198, 575 | Pounds 4, 962, 652 1, 107, 373 | \$18, 577, 527
144, 230, 352
128, 101, 175
7, 307, 749
2, 305, 823
1 2, 277, 039
4, 263, 996
307, 063, 661 | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). # **STONE** ### (DETAILED STATISTICS) # By A. T. Coons # SUMMARY OUTLINE | | Page | | Page | |--|------|--|------| | Summary | 115 | Detailed production, by kinds, uses, and | | | Production, by kinds | 115 | States—Continued. | | | Production, by uses | 116 | Basalt and related rocks (trap rock) | 129 | | Production, by States | 116 | Marble | 131 | | Dimension stone | | Serpentine | 132 | | Crushed and broken stone | 119 | Limestone | 132 | | Foreign trade | 122 | Indiana limestone for construction | 137 | | Detailed production, by kinds, uses, and | | Sandstone | 138 | | States | 126 | Bluestone | 141 | | Granite | 126 | Miscellaneous stone | 141 | | | | | | # SUMMARY # PRODUCTION, BY KINDS Stone sold or used by producers in the United States, 1930-34, by kinds ## [Quantities approximate] | Year | Granite | | Basalt and related rocks (trap rock) | | M | arble | Limestone | | | |--------------------------------------|--|--|--|--|--|---|--|---|--| | | Short tons | Value
 | Short tons | Value | Shorttons | Value | Short tons | Value | | | 1930
1931
1932
1933
1934 | 10, 047, 430
8, 068, 470
5, 118, 550
4, 422, 250
6, 791, 850 | \$30, 423, 853
25, 973, 510
15, 978, 363
11, 327, 371
14, 889, 155 | 14, 532, 250
12, 552, 880
9, 328, 580
7, 394, 290
11, 642, 830 | \$17, 053, 031
13, 822, 835
8, 879, 702
6, 596, 248
11, 269, 853 | 477, 240
350, 420
342, 830
224, 670
177, 280 | \$12, 905, 596
10, 419, 834
7, 532, 309
6, 399, 004
3, 370, 917 | 88, 741, 440
66, 751, 040
46, 913, 520
45, 922, 280
57, 501, 510 | \$100, 002, 114
71, 875, 886
48, 015, 748
44, 499, 311
53, 790, 846 | | | | | ' | <u> </u> | | | | | | | | | Sand | stone | Other | stone 1 | Total | | | |------|---|--|--|--|---|--|--| | Year | Short tons | Value | Short tons | Value | Short tons | Value | | | 1930 | 4, 594, 310
4, 581, 780
2, 973, 040
2, 799, 920
3, 605, 420 | \$10, 285, 391
7, 575, 320
4, 081, 804
4, 145, 329
4, 714, 284 | 8, 603, 670
5, 628, 590
5, 967, 790
9, 458, 800
12, 344, 940 | \$8, 278, 626
5, 418, 242
4, 575, 682
7, 978, 345
10, 944, 881 | 126, 996, 340
97, 933, 180
70, 644, 310
70, 222, 210
92, 063, 830 | \$178, 948, 611
135, 085, 627
89, 063, 608
80, 945, 608
98, 979, 936 | | ¹ Includes mica schist, conglomerate, argillite, various light-colored volcanic rocks, serpentine not used as marble, soapstone sold as dimension stone (1932–34), and such other stone as cannot properly be classed in any main group. # PRODUCTION, BY USES Stone sold or used by producers in the United States, 1933-34, by uses | | 19 | 933 | 19 | 34 | |---|---|----------------------------|--------------------------------|---| | Use | Quantity | Value | Quantity | Value | | Building stone | 166, 260
5, 921, 580
59, 610
688, 800
55, 780
181, 070
14, 400
141, 590
3, 254, 860 | 618, 706 | 78, 590
299, 820
23, 440 | \$8, 538, 847 6, 226, 986 618, 041 885, 040 190, 335 317, 640 5, 894, 256 64, 666, 667, 579 88, 142 | | Manufacturing industries (limestone and marble) short tons Other uses 3do | 5, 637, 900
5, 050, 440 | 4, 533, 465
4, 260, 509 | 5, 373, 110
7, 191, 950 | 4, 493, 530
6, 399, 855 | | Total (quantities approximate, in short tons) | 70, 222, 210 | 80, 945, 608 | 92, 063, 830 | 98, 979, 93 | ### PRODUCTION, BY STATES Stone sold or used by producers in the United States in 1934, by States | • | | | | | | | · | |--|---|---|--|--|---|--|---| | State | Num-
ber of
active
plants | Short tons
(approxi-
mate) | Value | State | Num-
ber of
active
plants | Short tons
(approxi-
mate) | Value | | Alabama Alaska Arizona Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana | 3
21
16
199
36
36
32
32
32
32
36
104
109
145
93
36
55
55
35
35
72
72
72
72
72
73
73
74
74
74
74
74
74
74
74
74
74
74
74
74 | 1 542, 500
48, 890
392, 250
1 397, 150
5, 597, 040
1 1, 191, 480
1 1, 293, 510
293, 050
1 764, 730
3, 915, 800
1 2, 057, 440
1 2, 276, 440
1 2, 276, 440
1 1, 371, 300
1, 992, 820
(2)
1 138, 620
1 138, 620
1 138, 620
1 2, 347, 080
1 6, 617, 770
797, 510
1 2, 2438, 260
234, 260 | 1 \$660, 458
74, 919
346, 975
1 268, 667
5, 520, 311
1, 270, 916
1 1, 356, 144
(9)
1 945, 515
2, 526, 786
1 575, 103
2, 894, 515
2, 894, 518
1, 350, 391
1, 760, 756
(2)
1 949, 632
1 1, 127, 786
1 1, 127, 363
1 2, 913, 415
407, 363 | Nevada New Hampshire New Mexico New Work North Carolina North Dakota Ohio
Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Undistributed | 37
6 6
195
72
3
181
40
73
376
13
12
12
12
26
45
98
123
26
49
100
141
111
200
2 | 1 64, 880
50, 670
1, 388, 490
1, 215, 940
8, 400, 690
1, 193, 690
1, 193, 690
1, 15, 700
5, 974, 850
966, 020
1 997, 030
15, 251, 330
116, 060
185, 280
431, 790
1 237, 510
2 238, 140
1 2, 984, 890
1 2, 749, 270
1 389, 820
238, 140
1 2, 883, 140
2 106, 130
2, 679, 860
655, 030
587, 240 | 1 \$74, 219
547, 997
1, 662, 968
1, 094, 609
8, 516, 754
1, 831, 351
1 2, 132
5, 490, 800
731, 675
1 863, 447
14, 501, 247
14, 501, 247
14, 501, 247
14, 501, 247
120, 397, 540
1 22, 396, 510
1 2, 183, 435
1 236, 114, 321, 801
1 3, 103, 403
2, 796, 231
1, 912, 766
3, 114, 882
658, 375
7715, 640 | | Nebraska | 16 | 294, 690 | 402, 367 | | 3, 423 | 92, 063, 830 | 98, 979, 936 | ¹ To avoid disclosing confidential information, certain State totals are slightly incomplete, the figures not included being combined under "Undistributed." ² Included under "Undistributed." ¹ 1933: Limestone and marble; 1934: Limestone. ² Ganister, mica schist, scapstone, and dolomite. ² 1933: Includes 4,402,870 tons of stone valued at \$2,611,560 used as road base (of which 4,127,380 tons valued at \$2,546,335 were from Pennsylvania) and 97,680 tons of roofing granules valued at \$720,356. There were also produced 146,880 tons of slate granules valued at \$1,024,917 used for roofing and included in the chapter on Slate in Minerals Yearbook, 1934. 1934: Includes 6,358,580 tons of stone valued at \$4,381,731 used as road base (of which 5,371,370 tons valued at \$4,050,447 were from Pennsylvania) and 85,410 tons of roofing granules valued at \$687,386. There were also produced 123,290 tons of slate granules valued at \$902,078 used for roofing and included in the chapter on Slate in Minerals Yearbook, 1935. ## DIMENSION STONE The term "dimension stone" is applied to blocks or slabs of natural stone, of which most are cut to definite shapes and sizes. It includes cut, carved, sawed, and roughhewn blocks of building stone, memorial stone, paving blocks, curbing, flagging, and roofing slabs, as well as many special products such as tubs, sinks, tanks, blackboards, steps, baseboards, and floor tile. The term also includes rubble, consisting of more or less irregular fragments used with mortar in building masonry walls. Dimension-stone products are quite distinct from crushed, broken, and pulverized stone, which comprise irregular fragments or grains sized chiefly by mechanical screening or air separation. Processes of quarrying and manufacturing, uses, and market channels of dimension stone bear no similarity to those of crushed stone. Because these two great branches of the industry differ so widely, the figures for dimension stone are presented separately in the following table and those for crushed and broken stone on page 120. Slate is treated in a separate chapter in Minerals Yearbook, 1935; however, in order that the figures here presented may be comprehensive, the total quantity and value of slate sold as dimension stone and as granules and flour are added to these two stone tables. Dimension stone sold or used by producers in the United States, 1933-34, by kinds and uses | | | 193 | 34 | |--|------------------------------|---------------------------|-------------------| | Kind and use | 1933 | Total | Percent of change | | | | | | | Granite: | | | | | Building stone: Rough constructionshort tons | 109, 820 | 121, 740 | +10.9 | | Value | \$149,941 | \$231, 505 | +54.4 | | A verage per ton | \$1.37 | \$1.90 | +38.7 | | Cut stone, slabs, and mill blockscubic feet. | 1, 160, 400 | 1, 130, 650 | -2.6 | | Value | \$2, 736, 223 | \$2, 411, 113 | -11.9 | | Average per cubic foot | \$2, 36 | \$2, 13 | -9.7 | | Monumental stonecubic feet | 1, 580, 520 | 1, 826, 980 | +15.6 | | Value | \$3,962,110 | \$4, 751, 560 | +19,9
+3,6 | | Average per cubic foot | \$2. 51
39. 050 | \$2.60
66.310 | +69.8 | | Rubbleshort tons | \$36, 052 | \$74,047 | +105.4 | | Paving blocksnumber_ | 5, 800, 680 | 5, 838, 120 | +.6 | | Value | \$577, 524 | \$613,879 | +6.3 | | Curbingcubic feet | 528, 820 | 621, 190 | +17.5 | | Value | \$489,006 | \$603, 397 | +23.4 | | Total: | | <u> </u> | | | Quantityapproximate short tons | 476, 750 | 543, 360 | +14.0 | | Value | \$7, 950, 856 | \$8, 685, 501 | +9.2 | | | | | | | Basalt and related rocks (trap rock): Building stoneshort tons | 6,090 | 7, 760 | +27.4 | | Value Value | \$6, 777 | \$10.388 | +53.3 | | Average per ton | \$1.11 | \$1.53 | +37.8 | | Rubbleshort tons | 3, 800 | 3, 530 | -7.1 | | Value | \$4,823 | \$2,544 | -47.3 | | Motals | | <u>-</u> | | | Quantityshort tons_ | 9, 890 | 11, 290 | +14.2 | | Value | \$11,600 | \$12,932 | +11.5 | | | | | | | Marble: | 1 044 010 | F00.010 | -62.8 | | Building stone (cut stone, slabs, and mill blocks)cubic feet | 1, 344, 310
\$4, 877, 738 | 500, 010
\$1, 719, 456 | -62.8
-64.7 | | ValueAverage per cubic foot | \$3.63 | \$3, 44 | -5. 2 | | Monumental stonecubic feet_ | 426, 300 | 464, 910 | +9.1 | | Value | \$1, 358, 770 | \$1, 475, 426 | +8.6 | | A verage per cubic foot | \$3. 19 | \$3.17 | 6 | | Total: | | | 1 | | Quantityapproximate short tons_ | 150, 070 | 81, 720 | -45.5 | | Valueapproximate tons- | \$6, 236, 508 | \$3, 194, 882 | -48.8 | | | | | | # 118 MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX Dimension stone sold or used by producers in the United States, 1933-34, by kinds and uses—Continued | | | 19 | 34 | |--|-------------------------------|---|-------------------| | Kind and use | 1933 | Total | Percent of change | | Limestone: | | <u> </u> | | | Building stone: Rough constructionshort tons | 78, 790 | 156,000 | +98.0 | | Value | \$108, 100
\$1. 37 | \$179, 337
\$1. 15 | +65. 9
-16. 1 | | Cut stone, slabs, and mill blockscubic feet | 5, 637, 450
\$6, 308, 123 | 3, 158, 660
\$3, 212, 118
\$1, 02 | -44. (
-49. 1 | | Average per cubic loot | \$1.12 | \$1.02 | -8.9 | | Rubbleshort tons | 79, 060
\$94, 046 | 190, 080
\$179, 791 | +140.4
+91.2 | | Valuecubic feet | \$94, 046
78, 610 | 116,610 | +48.8 | | Value | \$32, 134 | \$49,886 | +55. 2 | | Total: Quantityapproximate short tons | EEO 050 | EOE E10 | 100 | | Valueapproximate short tons. | 550, 850
\$6, 542, 403 | 585, 510
\$3, 621, 132 | +6.3
-44.7 | | Sandstone: | | | | | Building stone: | | | | | Rough constructionshort tons | 12, 700
\$42, 705 | 23, 680
\$50, 133 | +86.5
+17.4 | | Average per ton | \$3, 36 | \$2.12 | -36.9 | | Valuecubic feet | 668, 310
\$780, 815 | 339, 570
\$481, 244 | -49. 2
-38. 4 | | Valueshort tons | \$1.17 | \$1.42 | +21.4 | | Rubble short tons Value | 5, 830
\$10, 917 | 14, 030
\$21, 310 | +140.7
+95.2 | | | 120, 900 | 57, 150 | -52.7 | | Value | \$8, 184
159, 980 | \$4, 162
363, 210 | -49.1
+127.0 | | Value | 159, 980
\$129, 700 | \$281,643 | +117.1 | | Flaggingcubic feet | 102, 460
\$101, 693 | 183, 210
\$140, 449 | +78.8
+38.1 | | Total: | 00.010 | 100.000 | | | Quantityapproximate short tons | 90, 210
\$1, 074, 014 | 106, 900
\$978, 941 | +18. 5
-8. 9 | | Miscellaneous stone: 1 | 101.000 | 100.000 | 40.0 | | Building stonecubic feet | 191, 630
\$327, 517 | 102, 870
\$243, 553 | -46.3
-25.6 | | Value | \$1.71 | \$2.37 | +38.6 | | Value | 13, 850
\$41, 062 | 19, 480
\$39, 948 | +40.6
-2.7 | | Total: | | | | | Quantityapproximate short tons
Value | 29, 940 | 28, 430 | -5.0 | | Value | \$368, 579 | \$283, 501 | -23.1 | | Dimension stone, exclusive of slate, by uses:
Building stone: | | | | | Rough constructionshort tons_ | 223, 490 | 309, 180 | +38.3 | | Valuecubic feet | 1 3635, 040 | \$471, 363 | -25.8
-40.6 | | Valuecubic feet_ | 8, 810, 470
\$14, 702, 899 | 5, 231, 760
\$8, 067, 484 | -45.1 | | Valuecubic feet_ | 2,006,820
\$5,320,880 | 2, 291, 890
\$6, 226, 986 | +14.2
+17.0 | | Valuenumber | 5, 921, 580
\$585, 708 | 1 5, 895, 270 | 4 | | Curhing | \$585, 708
688, 800 | \$618, 041
984, 400 | +5.5
+42.9 | | Value Cubic feet. Value Cubic feet. Value Cubic feet. | \$618,706 | \$885,040 | +43.0 | | Valuecubic feet | 181, 070
\$133, 827 | 299, 820
\$190, 335 | +65.6
+42.2 | | Rubbleshort tons
Valueshort tons | 141, 590
\$186, 900 | 293, 430
\$317, 640 | +107. 2
+70. 0 | | | Ψ100, 900 | φυ11, 0±0 | -T10. U | | Total: Quantityapproximate short tons | 1, 307, 710 | 1, 357, 210 | +3.8 | | Value | \$22, 183, 960 | \$16, 776, 889 | -24.4 | | Slate as dimension stone 2approximate short tons
Value | 73, 240
\$1, 515, 863 | 66, 570
\$1, 641, 828 | $-9.1 \\ +8.3$ | | Grand total: | | , -12, 020 | | | Quantityapproximate short tons | 1, 380, 950 | 1, 423, 780 | +3.1 | | Value | \$23, 699, 823 | \$18, 418, 717 | -22.3 | | | | | | Includes soapstone, mica schist, volcanic rocks, argillite, and other varieties that cannot properly be classed in any main group. Details of production, by uses, are given in the chapter on Slate in Minerals Yearbook, 1935. Building stone sold or used by producers in the United States in 1934, by kinds | | | | Rough | | | | | |---------------------------------------|----------------------------------|--|---|--|---|--|--| | Kind | | |
Constru | ıctional | Architectural | | | | | • | | Cubic feet | Value | Cubic feet | Value | | | Granite | 1, 383, 350
91, 720
 | \$231, 505
10, 388
179, 337
50, 133 | 433, 910
100, 470
1, 345, 350
85, 800
(1) | \$320, 453
211, 337
533, 839
54, 949
(1) | | | | | | | | 3, 794, 510 | 471, 363 | 1, 965, 530 | 1, 120, 578 | | | Kind | Saw | . v | shed
Cu | ıt ² | Total | | | | | Cubic feet | Value | Cubic feet | Value | Cubic feet | Value | | | GraniteBasalt and related rocks (trap | 396, 180 | \$820, 994 | 300, 560 | \$1, 269, 666 | 2, 514, 000
91, 720 | \$2, 642, 618
10, 388 | | | rock) | 171, 470
499, 080
195, 690 | 721, 305
392, 175
231, 668 | 228, 070
1, 314, 230
58, 080
1 102, 870 | 786, 814
2, 286, 104
194, 627
1 243, 553 | 500, 010
5, 176, 860
640, 810
102, 870 | 1, 719, 456
3, 391, 455
531, 377
243, 553 | | | | 1, 262, 420 | 2, 166, 142 | 2, 003, 810 | 4, 780, 764 | 9, 026, 270 | 8, 538, 847 | | A small amount of rough architectural included under cut stone. For granite, sawed stone corresponds to dressed stone for construction work (walls, foundations, bridges) and cut stone to architectural stone for high-class buildings. # CRUSHED AND BROKEN STONE Crushed and broken stone, as distinguished from dimension stone, includes railroad ballast and crushed aggregates for concrete and road metal and also other stone which is crushed, pulverized, and sized by mechanical screening or air separation, stone broken for road-base work, large and irregular-size stone broken for jetty work, riprap and other harbor construction, and waste stone used for many purposes. Crushed and broken stone sold or used by producers in 1933 and 1934, by principal uses, is summarized for ready reference in the following table; asphaltic stone, slate crushed for granules and flour, and stone used in the manufacture of lime and of cement are shown in order to cover the total output of crushed and broken stone. Asphaltic stone, slate, lime, and cement are treated in the respective reports on these subjects. Crushed and broken stone sold or used by producers in the United States, 1933-34, by principal uses | | | 1933 | | | 19 | 34 | | | |--|--|------------------------------------|---|---|--|---|--|---| | Use | * d | Value | | | Valu | е | Percent of change in— | | | | Short
tons | Total | Av-
erage | Short
tons | Total | Av-
erage | Ton-
nage | Av-
erage
value | | Concrete and road metal Railroad ballast Metallurgical Alkali works. Riprap Agricultural Refractory (ganister, mica schist, dolomite, soapstone) Asphalt filler Calcium carbide works. Sugar factories Glass factories Paper mills | 40, 857, 120
4, 633, 490
7, 984, 710
4, 193, 650
3, 254, 860
994, 540
501, 440
126, 780
607, 990
199, 720 | | \$0. 88
. 69
. 59
. 51
1. 07
1. 25
1. 42
2. 62
. 64
1. 46
1. 23 | 5, 323, 450
9, 230, 880
3, 814, 060
6, 052, 970
1, 612, 380
677, 410
172, 170
305, 600
479, 900 | 6, 297, 579
2, 015, 506
5, 894, 259
1, 788, 142
863, 078 | . 75
. 68
. 53
. 97
1. 11
1. 27
2. 10
. 58 | +14.9
+15.6
-9.1
+86.0
+62.1
+35.1
+35.8
+159.6
-21.1
-19.3 | +8.7
-1.4
+3.9
-9.3
-11.2
-10.6
-19.8
-9.4
-6.2 | | Other uses Portland cement (including "cement rock") Natural cement ("cement rock") Lime* | 5, 246, 020
68, 914, 500
16, 117, 000
4, 450, 000 | 4, 846, 515
58, 761, 648
(2) | .85 | 7, 369, 950 | 7, 012, 080 | . 95 | +40.5 | +3.3 | | Total stone | 89, 481, 500
285, 070
186, 380 | (²)
1, 125, 164
1, 180, 322 | 3. 95
6. 33 | | (²)
1, 762, 376
1, 066, 100 | 4. 29
6. 42 | +28.8
+44.0
-10.8 | | Value reported as cement in the chapter on Cement. No value available for stone used in manufacture of cement and lime. Value reported as lime in the chapter on Lime. Crushed stone sold or used by producers in the United States in 1934, by kinds and | | Concrete an | d road metal | Railroad | l ballast | Total | | | | |------------------------|--|--|--|--|---|---|---|--| | Kind | G1 | Value | a1 | ** 1 | C 1 | Value | | | | | Short tons | | Short tons | Value | Short tons | Total | Average | | | Granite | 4, 335, 310
9, 841, 100
33, 209, 910
2, 078, 490
5, 779, 660 | \$4, 617, 986
9, 725, 562
30, 749, 136
2, 064, 608
5, 314, 138 | 827, 870
624, 380
3, 614, 430
79, 060
177, 710 | \$634, 021
613, 520
2, 549, 091
57, 233
141, 312 | 5, 163, 180
10, 465, 480
36, 824, 340
2, 157, 550
5, 957, 370 | \$5, 252, 007
10, 339, 082
33, 298, 227
2, 121, 841
5, 455, 450 | \$1. 02
. 99
. 90
. 98
. 92 | | | Average value per ton. | 55, 244, 470 | 52, 471, 430
\$0. 95 | 5, 323, 450 | 3, 995, 177
\$0. 75 | 60, 567, 920 | 56, 466, 607
\$0. 93 | | | Crushed stone sold or used by producers in the United States, 1930-34, by uses | Year | Concrete an | d road metal | Railroad | l ballast | Total | | | |------|--|--|--|--|--|--|--| | | Short tons | Value | Short tons | Value | Short tons | Value | | | 1930 | 74, 293, 090
65, 811, 520
48, 020, 560
40, 857, 120
55, 244, 470 | \$77, 347, 379
64, 908, 509
43, 651, 774
35, 843, 318
52, 471, 430 | 12, 817, 800
6, 812, 890
3, 974, 540
4, 633, 490
5, 323, 450 | \$10, 206, 975
5, 496, 455
3, 239, 991
3, 175, 418
3, 995, 177 | 87, 110, 890
72, 624, 410
51, 995, 100
45, 490, 610
60, 567, 920 | \$87, 554, 354
70, 404, 964
46, 891, 765
39, 018, 736
56, 466, 607 | | 121 STONE # Crushed stone sold or used by commercial and noncommercial operators in the United States, 1930–34 $^{\rm 1}$ [Figures for "noncommercial operations" represent tonnages reported by States, counties, municipalities and other Government agencies, produced either by themselves or by contractors expressly for their consumption, often with publicly owned equipment; they do not include purchases from commercial producers. Figures for "commercial operations" represent tonnages reported by all other producers. | | Commercial operations | | | | Noncommercial operations | | | | Total | | |--------------------------------------|---|--|--|---|--|---|---|--|--|---| | Year | Short tons | Average value per ton | Percent
of
change
in quan-
tity
from
preced-
ing year | Percent
of total
quan-
tity | Short tons | Average value per ton | Percent of change in quantity from preced- ing year | Percent
of total
quan-
tity | | Percent of change in quantity from preced- ing year | | 1930
1931
1932
1933
1934 | 79, 560, 890
-64, 818, 410
43, 284, 190
37, 839, 200
43, 259, 180 | (2)
(2)
(2)
(3)
(2)
(3)
(4)
(9) | -6.8
-18.5
-33.2
-12.6
+14.3 | 91. 3
89. 3
83. 2
83. 2
71. 4 | 7, 550, 000
7, 806, 000
8, 710, 910
7, 651, 410
17,308,740 | (2)
(2)
(2)
(2)
\$0. 95
. 91 | +3.3
+3.4
+11.6
-12.2
+126.2 | 8. 7
10. 7
16. 8
16. 8
28. 6 | 87, 110, 890
72, 624, 410
51, 995, 100
45, 490, 610
60, 567, 920 | -6. 1
-16. 6
-28. 4
-12. 5
+33. 1 | 1 Includes stone for concrete and road metal and railroad ballast. Crushed stone aggregates (concrete and road metal) shipped by commercial and noncommercial operators in the United States, 1933-34, by methods of transport 1 | 35.43.3.64 | Commercial | operations | Noncomn
peratio | | Total | | | |-----------------------------
--|---------------------------------|--------------------------------|---------------------|--|--------------------------------|--| | Method of transport | Short tons | Percent
of total | Short tons | Percent
of total | Short tons | Percent
of total | | | Railroad | 9, 883, 870
2, 479, 240
17, 146, 120
3, 696, 480 | 29. 8
7. 5
51. 6
11. 1 | 105, 320
7, 546, 090 | 1. 4
98. 6 | 9, 989, 190
2, 479, 240
24, 692, 210
3, 696, 480 | 24. 4
6. 1
60. 4
9. 1 | | | Total:
Quantity
Value | 33, 205, 710
\$28, 570, 039 | 100.0 | 7, 651, 410
\$7, 273, 279 | 100.0 | 40, 857, 120
\$35, 843, 318 | 100. 0 | | | 1934 Railroad | 13, 456, 590
2, 459, 010
20, 934, 840
1, 085, 290 | 35. 5
6. 5
55. 2
2. 8 | 17, 308, 740 | 100.0 | 13, 456, 590
2, 459, 010
38, 243, 580
1, 085, 290 | 24. 4
4. 4
69. 2
2. 0 | | | Total:
Quantity
Value | 37, 935, 730
\$36, 649, 971 | 100.0 | 17, 308, 740
\$15, 821, 459 | 100.0 | 55, 244, 470
\$52, 471, 430 | 100.0 | | ¹ Exclusive of railroad ballast, virtually all of which is shipped by rail. Separate figures for commercial and noncommercial value not available. Comprises 8,530,220 tons valued at \$0.92 per ton produced directly by construction and maintenance crews of States, counties, municipalities, and other Government agencies and 8,778,520 tons valued at \$0.91 per ton produced by contractors expressly for such agencies. Crushed stone sold or used by producers in the United States in 1934, by States and | | | | | ē | | | | | |-----------------------|-----------------------------|-----------------------------|---|----------------------|---------------------------|-------------------------|--|--| | | Concrete
me | and road
tal | Railroad | ballast | Total | | | | | State | | | | et a subserver | 9x - 159 - 1 | <u> </u> | | | | | Short tons | Value | Short tons | Value | Short tons | Value | | | | | | | - j | | - war grown see | | | | | Alabama | 1 89, 350 | 1 \$107, 444 | | | 1 89, 350 | 1 \$107, 444 | | | | Alaska | 48, 890 | 74, 919 | | | 48, 890 | 74, 919 | | | | Arizona | 335, 580 | 293, 746 | 14,000 | \$15, 270 | 349, 580
1 357, 770 | 309, 010
1 234, 774 | | | | Arkansas | 1 317, 250 | 1 196, 729 | 1 40, 520
184, 040 | 1 38, 045
72, 631 | 3, 280, 210 | 2, 837, 16 | | | | California | 3, 096, 170
1 959, 240 | 2, 764, 533
1 927, 840 | 104,040 | 12,001 | 1 959, 240 | 1 927, 840 | | | | ColoradoConnecticut | 1, 156, 760 | 1, 111, 768 | 83, 540 | 63, 987 | 1, 240, 300 | 1, 175, 75 | | | | Delaware | (2) | (2) | 00,010 | 00,000 | (2) | (2) | | | | Florida | 1 868, 490 | 1 724, 500 | 158, 490 | 108, 664 | 1 1, 026, 980 | 1 833, 16 | | | | Georgia | 727, 770 | 658, 795 | 38, 320 | 27, 441 | 766, 090 | 686, 23 | | | | Hawaii | 304, 520 | 551, 978 | 190 | 357 | 304, 710 | 552, 33 | | | | Idaho | 755, 620 | 558, 021 | | | 755, 620 | 558, 02 | | | | Illinois | 1 2, 677, 310 | 1 1, 970, 354 | 228, 520 | 150, 263 | 1 2, 905, 830 | 1 2, 120, 61 | | | | Indiana | ¹ 1, 298, 340 | 1 1, 073, 052 | 100, 500 | 67,812 | 1 1, 398, 840 | 1 1, 140, 86 | | | | Iowa | 1 2, 000, 750 | 1 1, 717, 540 | 35, 150 | 16, 583 | 1 2, 035, 900 | 1 1, 734, 12 | | | | Kansas | 849, 040 | 829, 832 | 228, 590 | 167, 490 | 1, 077, 630 | 997, 32 | | | | Kentucky | 1, 584, 010 | 1, 443, 184 | 180, 920 | 97, 714 | 1, 764, 930 | 1, 540, 89 | | | | Louisiana | (2) | (2) | (2) | (2) | 1 41, 790 | 1 67, 89 | | | | Maine | 1 41, 550 | 1 67, 686 | 240 | 210
1 142,057 | 1 663, 700 | 1 831, 12 | | | | Maryland | 1 552, 380
1 1, 621, 610 | 1 689, 068
1 1, 582, 115 | 1 111, 320
1 175, 810 | 1 143, 175 | 1 2, 140, 210 | 1 2, 172, 03 | | | | Massachusetts | 638, 860 | 432, 057 | 41.650 | 30, 255 | 680, 510 | 462, 31 | | | | Michigan | 652, 960 | 624, 508 | 41,000 | 30, 200 | 652, 960 | 624, 50 | | | | Minnesota
Missouri | 1 1, 398, 570 | 1 1, 491, 694 | 38, 930 | 29, 338 | 1 1. 437, 500 | 1 1, 521, 03 | | | | Montana | 1 368, 190 | 1 317, 040 | | | 1 368, 190 | 1 317, 04 | | | | Nebraska | 119, 250 | 103, 228 | (2) | (2)
(2) | 1 119, 250 | 1 103, 22 | | | | Nevada | 1 510 | 1 350 | (2) | (2) | 1 510 | 1 35 | | | | New Hampshire | 15, 270 | 21,811 | (2) | (2) | 1 15, 270 | 1 21, 81 | | | | New Jersey | 1, 261, 370 | 1, 448, 695 | 1 39, 080 | 1 36, 188 | 1 1, 300, 450 | 1 1, 484, 88 | | | | New Mexico | 1, 189, 440 | 1, 082, 681 | 16, 500 | 7, 928 | 1, 205, 940 | 1,090,60 | | | | New York | 1 5, 679, 670 | 1 5, 916, 515 | 1 686, 020 | 1 510, 101 | 6, 987, 980 | 7, 154, 37 | | | | North Carolina | 1 972, 210 | 1 1, 300, 104 | 202, 710 | 175, 787 | 1 1, 174, 920 | ¹ 1, 475, 89 | | | | North Dakota | 1 5, 700 | 1 2, 132 | | | 1 5, 700 | 3, 147, 48 | | | | Ohio | 3, 360, 530 | 2, 775, 829 | 499, 660 | 371,656 | 3, 860, 190
1 909, 280 | 1 576, 02 | | | | Oklahoma | 1 632, 180 | 1 418, 035 | 277, 100 | 157, 989 | 816, 020 | 698, 65 | | | | Oregon | 816,020 | 698, 653
6, 076, 873 | 303, 870 | 283, 396 | 6, 127, 030 | 6, 360, 26 | | | | Pennsylvania | 5, 823, 160
113, 250 | 108, 570 | 310 | 177 | 113, 560 | 108, 74 | | | | Puerto Rico | 171, 520 | 201, 490 | 310 | | 171, 520 | 201, 49 | | | | South Carolina | 322, 230 | 443, 394 | 72, 960 | 64, 407 | 395, 190 | 507, 80 | | | | South Dakota | 1 207, 810 | 1 209, 308 | | | 1 207, 810 | 1 209, 30 | | | | Tennessee | 1 1, 647, 140 | 1 1, 381, 131 | 276, 690 | 204, 115 | 1 1, 923, 830 | 1 1, 585, 24 | | | | Texas | 1 1, 576, 510 | 1 1, 418, 389 | 1 113, 760 | 1 82, 855 | 1 1, 690, 270 | 1 1, 501, 24 | | | | Utah | 234, 160 | 118, 702 | | | 234, 160 | 118, 70 | | | | Vermont | 81, 160 | 114, 705 | | | 81, 160 | 114, 70 | | | | Virginia | 1, 817, 440 | 1, 825, 940 | 599, 280 | 467, 529 | 2, 416, 720 | 2, 293, 46 | | | | Washington | 2, 022, 970 | 1,851,898 | 12, 290 | 6, 143 | 2, 035, 260 | 1, 858, 04 | | | | West Virginia | 898, 920 | 972, 901 | 182, 320 | 108, 564 | 1, 081, 240 | 1,081,46 | | | | Wisconsin | 1 1, 922, 930 | 1 1, 575, 261 | 20, 500 | 11,966 | 1 1, 943, 430 | 1 1, 587, 22
492, 52 | | | | Wyoming | 512, 450 | 478, 702 | 17, 170 | 13, 819
321, 265 | 529, 620
874, 880 | 864, 49 | | | | Undistributed | 1, 497, 460 | 1, 717, 730 | 342, 500 | 521, 200 | 014,000 | 004, 49 | | | | | 55, 244, 470 | 52, 471, 430 | 5, 323, 450 | 3, 995, 177 | 60, 567, 920 | 56, 466, 60 | | | | <u> </u> | ,, 1.0 | 1 .,, 100 | 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <u> </u> | <u> </u> | <u> </u> | | | ¹ To avoid disclosing confidential information certain totals are somewhat incomplete, the figures not included being combined under "Undistributed." ² Included under "Undistributed." # FOREIGN TRADE [Figures on imports and exports compiled by Claude Galiher, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce] Value of stone imported for consumption in the United States, 1930-34 | 1930 | \$3, 145, 861 | 1933 | \$536, 643 | |------|---------------|------|------------| | 1931 | 1, 497, 696 | 1934 | 413, 301 | | 1932 | | | | # Stone imported for consumption in the United States in 1934, by classes | Class | Quantity | Value | Class | Quantity | Value | |---|-------------------|--------------------|---|----------|-------------------| | Marble, breccia, and onyx: | | | Quartziteshort tons_ | 52, 646 | \$94, 123 | | In blocks, rough, etc.
cubic feet
Saweddo | 18, 876
170 | \$125, 599
721 | Travertine stone) unmanufac-
tured)cubic feet_ | 5, 056 | 6,849 | | Slabs or paving tiles
superficial feet
All manufactures | 76, 184 | 27, 961
32, 222 | Stone (other): Dressed | | 6, 715 | | Mosaic cubes of marble or
onyx:
Attached to paper
superficial feet | 12 | 239 | building stone) cubic feet Rough (other) | 4, 788 | 3, 900
11, 798 | | supernetar teet | | | | | 22, 413 | | Committee | | 186,742 | Grand total | | 413, 301 | | Granite: Dressedcubic feet Roughdo | 9, 609
45, 887 | 46, 179
56, 995 | | |
 | | | 55, 496 | 103, 174 | | | | Stone 1 imported into the United States in 1933, by classes and countries [General imports] | | Marble, | , breccia, | and onyx | Gr | anite | Other build- | | | |--------------------------------------|-------------------|--------------------|---------------------|-------------------|-------------------|---------------------------|-----------------------------|-------------------------------| | Country | Ro | ugh | Manu- | Cubic | | ing or
monu-
mental | Other
stone,
n. e. s. | Total value | | | Cubic
feet | Value | factures
(value) | feet | Value | stone
(value) | (value) | | | NT | | | | | | | | | | North America:
Canada
Cuba | 767 | \$2, 437 | \$2,664
48 | 10, 463 | \$12, 426 | \$12, 537 | \$80, 771 | \$110, 835 | | Mexico | | | 30 | | | | | 30 | | West Indies ("Other British") | | | | | | | 250 | 250 | | Total North America | 767 | 2, 437 | 2,742 | 10, 463 | 12, 426 | 12, 537 | 81, 021 | 111, 163 | | South America: ArgentinaBrazil | 2, 935 | 54, 306 | | | | | 1,000 | 54, 306
1, 000 | | Total South America | 2, 935 | 54, 306 | | | | | 1,000 | 55, 306 | | Europe: | | | | | | | | | | Austria | | | 80 | | | 4 | 103 | 187 | | Belgium
Czechoslovakia
Finland | 4, 242 | 18, 362 | 12, 365
133 | 1, 098
22, 664 | 4, 894
55, 297 | 5, 718 | | 30, 846
10, 745
55, 297 | | France | 7,877 | 12, 675 | 8, 290 | 22,009 | 00, 201 | 3, 768 | | 24, 733 | | Germany
Greece | 86 | 1, 912 | 5, 168
105 | 2, 018 | 9,772 | 9, 303 | 9 | 26, 164
105 | | Italy
Portugal | 19, 382
7, 806 | 50, 920
17, 945 | 81, 291 | 3 | 13 | 146, 438 | | 278, 662
17, 945 | | Rumania | | | 72 | | | 9, 953 | | 9, 953 | | Spain
Sweden
U. S. S. R | 14, 062
436 | 21,
975
1, 963 | | 13, 190 | 23, 562 | 186 | | 22, 047
25, 525
186 | | United Kingdom
Other Europe ? | 1, 021
10 | 2, 328
37 | 4, 144
8 | 450
28 | 2, 091
55 | 4, 706
986 | 1, 124 | 14, 393
1, 086 | | Total EuropeAlgeria and Tunisia | 54, 922
772 | 128, 117
3, 463 | 111, 656 | 39, 451 | 95, 684 | 181, 181 | 1, 236 | 517, 874
3, 463 | | ChinaJapan | | | 704
360 | | | 39, 417
8, 072 | | 40, 121
8, 432 | | Other countries 3 | | | 204 | | | 656 | | 860 | | Grand total | 59, 396 | 188, 323 | 115, 666 | 49, 914 | 108, 110 | 241, 863 | 83, 257 | 737, 219 | Imports of quartzite and travertine, by countries, not shown separately for 1933 by Bureau of Foreign and Domestic Commerce. Includes Denmark, Irish Free State, Netherlands, Norway, Poland and Danzig, and Switzerland. Includes Australia, Egypt, Hong Kong, British India, Iran, and Syria. # 124 MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX Stone imported for consumption in the United States in 1934, by classes and countries | | Marb | le, brecc | eia, and | Gra | nite | Other build- | Other | Qua | rtzite | Trav | ertine | | |--|------------------|-----------|-------------------|---------|--|--------------------------------|-----------------|-------------|-------------------|--------|---------|--| | Country | Ro | ugh | Manu-
fac- | Cubic | Value | ing or
monu-
men-
tal | | Short | Value | Cubic | Value | Total
value | | | Cubic
feet | Value | tures
(value) | feet | value | stone
(value) | | tons | Value | feet | value | | | North America:
Canada
Cuba | 666 | | 545 | | \$8, 739 | \$ 73 | \$7, 848 | 52, 640
 | \$9 4, 000 | | | \$113,078
545
5, 862 | | Mexico West Indies ("Other British"). | 1, 430 | 5, 747 | 115 | | | | 250 | | | | | 250 | | Total North
America | 2, 102 | 7, 945 | 880 | 12, 374 | 8, 739 | 73 | 8, 098 | 52, 640 | 94, 000 | | | 119, 735 | | South America: Argentina Ecuador | 2, 411
 | 58, 990 | | | | 11 | | | | | | 58, 990
11 | | Total South
America | 2, 411 | 58, 990 | | | | 11 | | | | | | 59, 001 | | Europe: Austria Belgium Czechoslovakia Finland France Germany Italy Norway | 2, 380
5, 047 | | 1.573 | 717 | 347
52, 776
4, 476
1, 033
5, 621 | 2, 870
310
2, 123 | | 6 | 123 | 5, 056 | \$6,849 | 208
20, 047
405
52, 776
17, 814
6, 574
80, 757
5, 621
3, 829 | | Rumania
Spain
Sweden
U. S. S. R
United King- | 1,849 | 899 | 168
103
210 | 484 | 26, 509 | 64 | 137
711 | | | | | 4,069
28,222
1,614
8,826 | | domOther Europe 1 | | | 2, 410
177 | | 2,491 | 1,105 | 2, 100 | | | | | 177 | | Total Eu-
rope
Algeria and Tu- | 1 | | · · | 43, 118 | 94, 413 | 9, 549 | 3, 700 | 6 | 123 | 5, 056 | 6, 849 | 230, 939 | | nisia
China
Japan | | 465 | 270
497 | 4 | 22 | | | | | | | 465
482
988 | | Other countries 3_
Grand total | | | 1, 390
61, 143 | | 103, 174 | 10, 615 | | 52, 646 | 94, 123 | 5, 056 | 6, 849 | 1, 691
413, 301 | ¹ Includes Hungary and Netherlands. ³ Includes British India, Netherland India, Palestine, South Africa (Union of), and Syria. Stone 1 exported from the United States, 1930-34, by classes | Year | | arble in blocks, ugh or dressed Other building or monumental stone (including cement building blocks) Other building or other manu factures of stone (including blocks) | | | | Total value | |------|---|---|---|---|---|---| | | Cubic feet | Value | Cubic feet | Value | other cement
manu-
factures) | | | 1930 | 84, 550
32, 443
30, 691
11, 585
11, 475 | \$375, 964
141, 216
99, 943
46, 031
44, 979 | 731, 359
284, 050
73, 098
29, 933
43, 176 | \$594, 177
209, 353
75, 558
35, 588
40, 311 | \$1, 066, 584
627, 771
273, 755
244, 875
354, 509 | \$2, 036, 725
978, 340
449, 256
326, 494
439, 799 | $[\]slashed{F}^1$ Figures not separately recorded for stone and for cement building blocks and for stone and for cement manufactures. Stone 1 exported from the United States in 1934, by classes and countries | Country | | n blocks,
dressed | monu
stone (| uilding or
mental
including
building | Value of
other
manu-
factures
of stone
(includ-
ing other | Total
value | |---|---------------|----------------------|-----------------|---|---|---| | | Cubic
feet | Value | Cubic
feet | Value | cement
manu-
factures) | | | | - | | | | | | | North America: BermudaCanada | 7
7, 065 | \$71
27, 603 | 17
41, 944 | \$83
38, 518 | \$112
232, 993 | \$266
299, 114 | | Central America: British Honduras | 11 | 130 | | | 279 | 409 | | Costa Rica | | | | | 256
106 | 256
106 | | Guatemala
Honduras | | [| | | 894 | 894 | | Nicaragua | | | | | 237 | 237 | | Panama | 73 | 1,060 | 252 | 320 | 5, 430 | 6,810 | | Salvador | | | | | 167
12, 131 | 167
12, 166 | | Mexico
Newfoundland and Labrador
West Indies:
British: | 897 | 4, 881 | | | 1, 176 | 6, 057 | | Jamaica | 1 | | | | 6,099 | 6,099 | | Other West Indies | 71 | 496 | | | 49 | 545 | | Cuba | | | | | 7, 512 | 7, 512 | | Dominican Republic | | 23 | | | 1, 262
308 | 1, 262
331 | | Haiti
Netherland | 4 | 48 | 40 | 180 | 1, 929 | 2, 157 | | Virgin Islands of the United | | | | | | 1 | | States | 7 | 150 | | | 647 | 797 | | South America: | | 1 | | | 1,000 | 1,000 | | Argentina
Bolivia
Brazil | 7. | | | | 82 | 82 | | Brazil | | | | | 743 | 743 | | Chile | | | | | 138 | 138 | | Colombia | | | | | 4, 384
345 | 4, 384
345 | | Ecuador
Guiana (British) | | | | | 64 | 64 | | Peru Peru | | | | | 179 | 179 | | Uruguay | | | | | 14 | 14 | | Venezuela | | | | | 493 | 493 | | Europe:
Belgium | 1 | | 144 | 562 | 153 | 715 | | Finland | | | | | 25 | 25 | | Finland
France | | | | | 7, 501 | 7, 501 | | Germany | | | | | 5, 231
176 | 5, 231
176 | | Irish Free State | | | | | 1, 264 | 1, 264 | | Malta, Gozo, and Cyprus Islands
Netherlands. | 3 | | | | 30 | 30 | | Netherlands | 3 | 25 | | | 2,810 | 2, 835
158 | | Norway | | | | | 158
93 | 93 | | SpainSweden | | | | | 4,003 | 4,003 | | Switzerland | | | | | 32 | 32 | | Turkey United Kingdom | | | 779 | 648 | 16, 894 | 26, 916 | | United Kingdom | 3,084 | 9, 374 | 1 " | 1 040 | 10,000 | 20, 510 | | British Malaya | | | | | 424 | 424 | | China | 51 | 429 | | | 1,016 | 1, 445 | | British Malaya | | | | | 4, 510
276 | 4, 510
276 | | Hong Kong | 159 | 339 | | | 11, 820 | 12, 159 | | Japan
Netherland India | | | | | 11, 337 | 11, 337 | | Palestine | | | | | 116 | 116 | | Philippine Islands | 15 | 125 | | | 1, 859
33 | 1,859
158 | | Siam
Turkey in Asia and Europe | | 120 | | | 2 132 | 3 132 | | Africa: | 1 | | | | | | | Duitich Foot Africa | | | | | 12 | 12 | | British East Africa | . | | | | 27
11 | 27
11 | | Gold Coast | | l | | | | 10 | | Gold Coast | | | 1 | 1 | 1 10 | | | Gold Coast | | | | | 10
2, 778 | 2, 778 | | Gold Coast | | | | | 2, 778 | 2,778 | | Gold Coast | 12 | 150 | | | 2, 778
1, 531 | 2, 778
1, 681 | | Gold Coast | 12
10 | 150
40 | | | 2, 778
1, 531
80 | 2, 778
1, 681
120 | | Gold Coast | | | 43, 176 | 40, 311 | 2, 778
1, 531 | 2, 778
1, 681
120
1, 138
439, 799 | Figures not separately recorded for stone and for cement building blocks and for stone and for cement manufactures. Exports to Turkey in Europe included under Turkey in Asia. # DETAILED PRODUCTION, BY KINDS, USES, AND STATES # GRANITE Granite sold or used by producers in the United States in 1934, by uses | Use | Quantity | Value | |--|---------------------------------------|------------------------------------| | Building stone (rough and dressed)cubic feet | 2, 514, 000 | \$2, 642, 618 | | Approximate equivalent in short tonscubic feet_
Monumental stonecubic feet | 215, 250
1, 826, 980
147, 430 | 4, 751, 560 | | Pavingnumber of blocks | 5, 838, 120
63, 070 | 613, 879 | | Curbinglinear feetApproximate equivalent in short tons | 868, 310
51, 300 | 603, 397 | | Rubble short tons Riprap do Crushed stone do | 66, 310
1, 062, 240
5, 163, 180 | 74, 047
895, 096
5, 252, 007 | | Other usesdo | 23, 070 | 56, 551 | | Total (quantity approximate, in short tons) | 6, 791, 850 | 14, 889, 155 | # Granite sold or used by producers in the United States in 1934, by States [Quantities approximate] | State | Short tons | Value | State | Short tons | Value | |---|--|---
--|--|--| | Arizona. California Colorado Connecticut. Georgia Maine. Maryland. Massachusetts. Michigan Minnesota. Missouri Montana New Hampshire. New Jersey. New York. | 73,000 1,638,370 142,540 41,980 602,210 94,400 110,700 540,110 4,000 60,540 5,730 320 42,630 119,320 740,300 | \$30, 436
1, 532, 122
176, 985
106, 591
1, 194, 493
868, 566
151, 482
1, 874, 294
5, 000
869, 114
33, 905
22, 474
513, 597
159, 041
1705, 538 | North Carolina Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Texas Vermont Virginia Washington Wisconsin Undistributed ' | 973, 710
49, 450
7, 890
145, 590
69, 470
428, 620
7, 590
111, 960
102, 760
367, 050
109, 760
78, 900
123, 420
6, 791, 850 | \$1, 344, 725
142, 223
23, 336
347, 343
246, 205
843, 035
243, 568
147, 577
1, 987, 974
372, 711
81, 923
707, 861
157, 036 | ¹ Includes Delaware, North Dakota, and Tennessee. # Granite sold or used by producers in the United States in 1934, by States and uses | 92 | | | | | 'Bui | lding | | | | Monum | ental | | | | |--------|---|--------------------|------------------------------|-------------------------------|-----------------------|---|---------------------------|------------------------------|---------------------------------------|---|----------------------------------|-------------------------------------|------------------------|--------------------| | 92135— | State | Num-
ber of | | Rou | ıgh | | Dre | essed | Roi | ıgh | Dre | essed | Paving blocks | | | 8 | | active
plants | Constr | uction | Archite | ectural | | | | | | | | | | 12 | | | Short
tons | Value | Cubic
feet | Value | Cubic feet | Value | Cubic
feet | Value | Cubic
feet | Value | Number | Value | | (| Arizona
California
Colorado | 3
47
13 | 13, 770 | \$14, 901 | (¹)
20 | (¹)
\$30 | 1 60, 440 | ¹ \$188, 140 | 15, 260
2 5, 980 | \$29, 236
2 34, 828 | 5, 410 | \$27, 800
(2) | 500 | \$50 | | | Connecticut
Delaware | 11
2 | 5, 590
(³) | 17, 831
(3) | (1) | (1) | 1 3, 840 | 1 15, 007 | 2 9, 360 | ² 30, 577 | (2)
(2) | (2)
(2) | (3) | (3) | | [| Jeorgia
Maine
Maryland | 25
30
10 | 25, 810
6, 840
16, 360 | 29, 074
10, 971
36, 302 | 105, 210 | 65, 526 | 36, 220
99, 260 | 105, 732
318, 067 | 310, 090
26, 790 | 386, 779
20, 592 | 24, 500
11, 220 | 117, 609
13, 765 | 14, 380
2, 921, 860 | 638
371, 037 | |] | Massachusetts
Michigan | 29 | 16, 400 | 45, 916 | 56, 610 | 44, 110 | 265, 510 | 487, 892 | 61, 060 | 114, 005 | 14, 110 | 98, 969 | 1, 277, 410 | 111, 967 | | | Minnesota
Missouri | 22 | (3) | (3) | ² 260, 030 | ³ 510, 938
(³) | (2) | (2) | 100, 270
(³) | 208, 281
(³) | 16, 800 | 112, 359 | (8) | (3) | | | Wontana
New Hampshire
New Jersey | 8
20
3 | 7, 090 | 17, 781 | 70
90, 620 | 577
66, 538 | 75, 790 | 343, 523 | 2, 530
5, 740 | 3, 914
10, 056 | 1, 430
5, 090 | 17, 983
17, 771 | 423, 400 | 26, 112 | | | New York
North Carolina
North Dakota | 21
27
1 | (3)
(3)
1, 270 | (3)
(3)
1,936 | (3)
(1) | (3)
(1) | (3)
(3)
1 21, 300 | (3)
(3)
1 70, 572 | 9, 120 | 17, 958 | (³)
8, 710 | (³)
49, 427 | (3) | (3) | | | Oklahoma
Oregon
Pennsylvania | 6
3
15 | (³)
12, 480 | (3)
22, 095 | (1) | (1) | (3)
1 11, 240 | (³)
1 33, 777 | (1)
220
(1) | (1)
500
(1) | 1 19, 520
2, 250
1 48, 500 | 1 108, 268
10, 194
1 127, 963 | 7, 700 | 385 | | | Rhode Island
South Carolina
South Dakota
Pennessee | 7
10
12
1 | 100
160 | 500
600 | 690 | 1, 041 | | | ² 43, 170
(3)
5, 100 | ² 184, 699
(³)
8, 754 | (²)
37, 130 | 227, 299 | | | | | rennessee
rexas
Vermont
Virginia | 6
13
10 | (8) | (3) | (1) | (1)
(3) | 1 2, 000 | 1 12, 592 | ² 13, 740
740, 700 | ² 22, 029
1, 932, 954 | (2) | (2) | | | | | Washington
Wisconsin
Undistributed | 8
23 | 15, 870 | 33, 598 | (3)
18, 880 | (3)
23, 967 | 160
10, 980
11, 780 | 1, 400
72, 855
48, 829 | (3)
27, 000
212, 380 | (3)
57, 912
323, 291 | (3)
42, 100
1, 700 | (3)
416, 607
19, 181 | 926, 420
266, 450 | 83, 873
19, 817 | | | | 391 | 121, 740 | 231, 505 | 433, 910 | 320, 453 | 696, 740 | 2, 090, 660 | 1, 626, 970 | 3, 397, 822 | 200, 010 | 1, 353, 738 | 5, 838, 120 | 613, 879 | ¹ Rough stone included under dressed stone. ² Dressed stone included under rough stone. Included under "Undistributed." # Granite sold or used by producers in the United States in 1934, by States and uses-Continued | | | | | | | | | Crushed | stone | | | | | | |--|---------------------|--------------------|-----------------------------|-----------------------------|------------------------------------|--------------------------------------|--|--|----------------------|----------------------|---------------|----------------|---|---| | State | Cur | bing | Ru | bble | Ripr | ap | Concrete
me | | Railroad | l ballast | Other | Other uses | | tal | | | Linear
feet | Value | Short
tons | Value | Short
tons | Value | Short
tons | Value | Short
tons | Value | Short
tons | Value | Short tons
(approxi-
mate) | Value | | ArizonaCaliforniaColorado | 13, 100 | \$7, 054 | 130 | \$359 | 27, 750
660, 560 | \$11, 436
511, 846 | 45, 250
786, 150
142, 040 | \$19, 000
678, 995
142, 127 | 168, 730 | \$61, 466 | 1, 580 | \$12, 275 | 73, 000
1, 638, 370
142, 540 | \$30, 436
1, 532, 122
176, 985 | | Connecticut
Delaware | | 8, 927 | 1, 400
(8) | 923
(³) | 12, 810
(³) | 11, 877
(³) | (3) | (3) | | | 1,030 | 1, 405 | 41, 980 | 106, 591 | | Georgia
Maine
Maryland | 115, 490
44, 440 | 51, 797
26, 940 | 14, 040
1, 800
5, 110 | 14, 605
3, 139
6, 525 | 28, 220
1, 850
62, 790 | 33, 540
1, 923
73, 3 87 | 451, 030
22, 740
26, 440 | 404, 509
36, 286
35, 268 | 38, 320
240 | 27, 441
210 | 9, 440
110 | 22, 769
110 | 602, 210
94, 400
110, 700 | 1, 194, 493
868, 566
151, 482 | | Massachusetts
Michigan | 554, 980 | 409, 275 | 11, 430 | 15, 796 | 21, 130 | 18, 629 | 402, 300
4, 000 | 517, 726
5, 000 | 11, 490 | 9, 422 | 600 | 587 | 540, 110
4, 000 | 1, 874, 294 | | Minnesota
Missouri
Montana | (3) | (3) | | | (3)
(3) | (3) | 17, 770 | 24, 638 | | | 7,850 | 9, 806 | 4, 000
60, 540
5, 730
320 | 5, 000
869, 114
33, 905
22, 474 | | New Hampshire
New Jersey | 19, 290 | 11, 559 | 1,870 | 3, 815 | (3) | (3) | 10, 380 | 12, 306 | (3)
(8) | (3) | (3)
(3) | (3) | 42,630 | 513, 597 | | New York North Carolina North Dakota | (3)
89, 950 | (³)
81, 119 | (3)
(3)
170 | (3)
(3)
511 | 3, 160 | 2, 489 | (3)
541, 420
757, 870 | (3)
461, 139
942, 854 | 190, 990
202, 710 | 169, 386
175, 787 | 390 | 2, 072 | 119, 320
740, 300
973, 710 | 159, 041
705, 538
1, 344, 725 | | Oklahoma | | | (3) | (3) | | | (3)
(3) | (3) | | | | | 49, 450 | 142, 223 | | Oregon Pennsylvania Rhode Island South Carolina South Dakota | 1, 000 | 1, 000
(³) | 6, 750
(³) | 9, 751
(³) | 6, 640
(3)
19, 230
2, 000 | 8, 676
(3)
23, 568
1, 000 | 7, 680
91, 800
57, 750
319, 420
2, 170 | 12, 642
116, 244
52, 254
439, 019
6, 515 | 22, 610
72, 960 | | 260 | | 7, 890
145, 590
69, 470
428, 620
7, 590 | 23, 336
347, 343
246, 205
843, 035
243, 568 | | Tennessee | | | | | | | (3) | (8) | | | | | (3) | (3) | | Texas
Vermont | | | | | 110, 660 | 112, 956 | 32, 850 | 44, 898 | | | | | 111, 960
102, 760 | 147, 577
1, 987, 974 | | Virginia
Washington
Wisconsin | | | 13, 650 | 5, 896 | 1, 040
81, 730
6, 840 | 1, 134
48, 323
20, 741 | 267, 170
13, 750
54, 380 | 293, 461
7, 800
31, 739 | 98, 840 | 78, 116 | (3) | (3) | 367, 050
109, 290
78, 900 | 372, 711
81, 923
707, 861 | | Undistributed | 18, 550 | 5, 726 | 9, 960 | 12, 727 | 15, 830 | 13, 571 | 280, 950 | 333, 566 | 20, 980 | 20, 981 | 1,810 | 5, 880 | 123, 420 | 157, 036 | | | 868, 310 | 603, 397 | 66, 310 | 74, 047 | 1, 062, 240 | 895, 096 | 4, 335, 310 | 4, 617, 986 | 827, 870 | 634, 021 | 4 23, 070 | 4 56, 551 | 6, 791, 850 | 14, 889, 155 | ³ Included under "Undistributed." ⁴ Includes 370 tons of Durax paving blocks, valued at \$2,914, made in Connecticut, Georgia, and North Carolina. # Monumental granite sold by the quarrymen in the Barre district, Vermont, 1930-34 1 | Year | Cubic feet | Value | Year | Cubic feet | Value | |----------------------|-------------------------------------|---|--------------|----------------------|------------------------------| | 1930
1931
1932 | 1, 024, 600
823, 160
618, 890 | \$2, 996, 032
2, 295, 179
1, 549, 113 | 1933
1934 | 563, 570
709, 820 | \$1, 405, 270
1, 878, 644 | ¹ Barre granite is sold also for construction,
paving blocks, and crushed stone. # Estimated output of monumental granite in Barre district, Vermont, 1932-341 | | 1932 | 1933 | 1934 | |--|--|---|--| | Total quarry output, rough stockcubic feetShipped out of Barre district in roughdodo | 651, 401
130, 280
521, 121
325, 701 | 575, 046
115, 009
460, 037
287, 523 | 643, 050
128, 610
514, 440
273, 296 | | Dark stock consumed in districtdo Number of cutters in district | 195, 420
900
\$8. 00
200 | 172, 514
900
\$8. 00
200 | 241, 144
900
\$8. 00
200 | | Total pay roll for year | 1, 172, 523
840, 306 | \$1, 440, 000
720, 000
898, 509
862, 568
363, 832
121, 277 | \$1, 440, 000
720, 000
1, 306, 195
964, 575
406, 858
135, 619 | | Total value of granite | 4, 722, 349 | 4, 406, 186 | 4, 973, 247 | ¹ Through the kindness of the Granite Manufacturers' Association, Barre, figures covering the entire granite industry of the Barre district are given in this table to supplement figures of sales reported by quarrymen. # BASALT AND RELATED ROCKS (TRAP ROCK) # Basalt and related rocks (trap rock) sold or used by producers in the United States in 1934, by uses | Use | Quantity | Value | |----------------|---|---| | Building stone | 91, 720
7, 760
3, 530
1, 129, 570
10, 465, 480
36, 490
11, 642, 830 | \$10, 388
2, 544
908, 642
10, 339, 082
9, 197
11, 269, 853 | # Basalt and related rocks (trap rock) sold or used by producers in the United States in 1934, by States ### [Quantities approximate] | State | Short tons | Value | State | Short tons | Value | |------------|--|---|---|---|---| | California | 925, 100
1, 227, 040
304, 950
649, 140
242, 620
1, 415, 130
38, 660
217, 730
1, 154, 190
622, 290 | \$832, 172 1, 162, 005 552, 856 472, 064 324, 270 1, 216, 017 34, 407 205, 280 1, 295, 313 727, 759 | North Carolina. Oregon. Pennsylvania Virginia. Washington. Wisconsin. Wyoming. Undistributed ¹ | 25, 680
974, 920
729, 420
40, 930
2, 638, 060
144, 950
165, 140
126, 880 | \$46, 854
808, 526
740, 486
53, 160
2, 321, 852
174, 645
190, 409
111, 778 | ¹ Includes Arizona, Maine, Minnesota, Nevada, South Dakota, and Texas. ## Basalt and related rocks (trap rock) sold or used by producers in the United States in 1934, by States and uses | • | | | g, rough
uction | Rubble ar | d riprap | | Crushed | stone | | Other uses | | To | tal | |--|-------------------------------|----------------------|--------------------|--------------------------------------|--------------------------------|---|---|---------------------------|---------------------------|-------------------------|-----------------------|---|---| | State | Number
of active
plants | Short | | | | Concrete an | d road metal | Railroa | i ballast | | | | | | | | tons | Value | Short tons | Value | Short tons | Value | Short
tons | Value | Short
tons | Value | Short tons | Value | | Arizona
California
Connecticut
Hawaii
Idaho
Maine | 20
12
35
2 | 3, 280
70 | \$2, 648
268 | 126, 890
2, 020
140 | \$118, 499
1, 012
154 | (1)
783, 910
1, 137, 070
304, 520
649, 140
(1) | (1)
\$710, 598
1, 093, 378
551, 978
472, 064
(1) | 83, 540
190 | \$63, 987
357 | 14, 300
1, 130
30 | \$3, 075
980
99 | (1)
925, 100
1, 227, 040
304, 950
649, 140
(1) | (1)
\$832, 172
1, 162, 005
552, 856
472, 064
(1) | | Maryland Maryland Michigan Minnesota Montana Nevada | 14
8
1
9 | | | 5, 290
31, 500
(1)
150 | 6, 614
17, 875
(1)
26 | 146, 330
1, 219, 310
38, 660
(1)
217, 580 | 188, 056
1, 064, 389
34, 407
(1)
205, 254 | 97, 000
164, 320 | 129, 600
133, 753 | | | 242, 620
1, 415, 130
38, 660
(1)
217, 730 | 324, 270
1, 216, 017
34, 407
(1)
205, 280 | | New Jersey. North Carolina. Oregon. Pegon. South Dakota. | 3
6
64
16 | (1)
990
2, 520 | 1, 034
4, 614 | (1)
(1)
 | (1)
(1)
 | 1, 113, 420
(1)
25, 680
784, 160
629, 690 | 1, 256, 922
(1)
46, 854
676, 909
637, 911 | 39, 080
(¹)
92, 710 | 36, 188
(¹)
92, 873 | 3, 000 | 3, 600 | 1, 154, 190
622, 290
25, 680
974, 920
729, 420 | 1, 295, 313
727, 759
46, 854
808, 526
740, 486 | | Cexas
Virginia
Vashington
Visconsin
V voming | 1
3
110
3 | (1) | (1) | (1)
(1)
760, 540
(1) | (1)
(1)
622, 303
(1) | (1)
(1)
40, 010
1, 847, 200
(1)
165, 140 | (1)
(1)
51, 129
1, 691, 963
(1)
190, 409 | (¹)
12, 290 | (1)
6, 143 | 18, 030 | 1, 443 | (1)
(1)
40, 930
2, 638, 060
144, 950
165, 140 | (1)
(1)
53, 160
2, 321, 852
174, 645
190, 409 | | Jndistributed | 370 | 7,760 | 1,824 | 15, 300 | 911, 186 | 745, 280
9, 841, 100 | 853, 341
9, 725, 562 | 135, 250
624, 380 | 150, 619
613, 520 | 36, 490 | 9, 197 | 126, 880 | 111, 778 | ¹ Included under "Undistributed." MARBLE Marble sold by producers in the United States in 1934, by uses | | Use | , | Quantity | Value | |---------------------------|-------------------|-------------------------|----------|-------------| | Building stone: | | | | | | Rough: | | cubic feet | 15,090 | \$18,067 | | Interior | | do | 85, 380 | 193, 270 | | Finished: | | do | 174, 970 | 504, 966 | | | | | 224, 570 | 1, 003, 153 | | Total autorior | | do | 190,060 | 523, 033 | | Total interior | | | 309, 950 | 1, 196, 423 | | . Total building s | tone | do | 500, 010 | 1, 719, 456 | | Monumental stone: | | | | | | Rough | | do | 81,960 | 65, 156 | | Finished | | do | 382, 950 | 1, 410, 270 | | Total monumental s | tone | do | 464, 910 | 1, 475, 426 | | M. 4.1 L!! 3! 3 . | | ſdo | 964, 920 | 3, 194, 882 | | _ | nonumental | (approximate short tons | 81, 720 | | | Marble for other uses (by | oroducts) | short tons | 95, 560 | 176, 035 | | Total marble, appro | ximate short tons | | 177, 280 | 3, 370, 917 | Marble sold by producers in the United States in 1934, by States and uses | | | and monu-
rough and | Other | r uses | Total | | | |--|---|--|--|---|--|--|--| | State | Cubic feet | Value | Short tons | Value | Short tons
(approxi-
mate) | Value | | | Alabama Arkansas California Georgia Massachusetts Missouri New York Tennessee Vermont Other States 3 | 26, 480
(1)
(1)
236, 720
5, 470
70, 220
8, 690
141, 990
432, 170
2 43, 180 | \$95, 441 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | 46, 070 (1) (1) 19, 660 360 120 9, 410 3, 090 13, 330 3, 520 | \$45, 451 (1) (1) 20, 114 576 900 47, 032 12, 416 17, 063 3 32, 483 | 48, 320
510
990
39, 740
830
5, 930
10, 140
15, 070
50, 060
5, 690 | \$140, 892
7, 356
12, 134
989, 254
18, 142
170, 419
73, 452
531, 075
1, 207, 312
220, 881 | | | | 964, 920 | 3, 194, 882 | 95, 560 | 176, 035 | 177, 280 | 3, 370, 91 | | ¹ Included under "Other States." 1 Arizona, Colorado, Maryland, New Jersey, North Carolina, Utah, Virginia, and Washington. 2 Includes also States entered as "(1)" above. #### SERPENTINE Serpentine 1 (verde antique) sold by producers in the United States in 1934, by uses | | Use | | Quantity | Value | |-------------------------------------|---------------------------------|---------------------------|--------------------|-----------------------| | Building and orr
Rough construct | namental stoneion, crushed, etc | cubic feet
short tons_ | 9, 840
139, 090 | \$71, 400
174, 838 | | | | | | 246, 238 | ¹ Serpentine sold from dimension-stone quarries is included in the figures for marble; serpentine sold for oad work and other low-grade material is included in the figures for "miscellaneous" stone. #### LIMESTONE Limestone sold or used by producers in the United States in 1934, by uses | Use | | Quantity | Value | |---|------------|----------------------------------|----------------------------------| | Building stone ¹ | cubic feet | 5, 176, 860 | \$3,
391, 455 | | Approximate equivalent in short tons | cubic feet | 386, 420
116, 610
9, 010 | 49, 886 | | Rubble Riprap | short tons | 190, 080
2, 490, 760 | 179, 791
2, 668, 215 | | Crushed stoneFluxing stone | do | 36, 824, 340
9, 230, 880 | 33, 298, 227
6, 297, 579 | | Sugar factories
Glass factories
Paper mills | do | 479, 900
161, 220
262, 160 | 658, 502
260, 410
408, 022 | | Agriculture | ao | 1, 612, 380
5, 854, 360 | 1, 788, 142
4, 790, 617 | | Total (quantity approximate, in short tons) | | 57, 501, 510 | 53, 790, 84 | ¹ Figures for building stone include small amounts of monumental stone. ² See first table on p. 136 for further distribution of limestone products. Limestone sold or used by producers in the United States in 1934, by States [Quantities approximate] | State | Short tons | Value | State | Short tons | Value | |---|---|---|---|---|---| | Alabama Arizona Arkansas California Colorado Connecticut Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Maine Maryland Massachusetts Michigan Minnesota Missouri Montana Nebraska Nevada | 70, 000 54, 340 285, 549 284, 550 24, 490 1, 095, 800 11, 910 311, 100 1, 956 2, 057, 440 2, 276, 449 1, 310, 280 1, 966, 800 28, 180 391, 920 6, 514, 590 675, 100 2, 334, 710 171, 860 294, 690 | \$519, 566 113, 268 46, 670 477, 809 294, 630 87, 548 945, 545 343, 039 281, 651 4, 140, 960 1, 934, 364 1, 269, 737 1, 718, 325 53, 616 470, 491 188, 676 3, 608, 543 902, 663 2, 660, 428 124, 352 402, 367 72, 496 | New Mexico New York Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Undistributed 1 | 6, 731, 760
5, 716, 930
8, 500, 040
14, 220
8, 360, 800
46, 700
220
2, 860
87, 120
1, 763, 120
155, 230
49, 280
2, 146, 260
1, 731, 330
2, 297, 130
457, 360 | \$40, 609
6, 497, 152
4, 681, 830
562, 974
31, 585
8, 198, 685
50, 246
490
110, 684
1, 795, 138
1, 752, 686
116, 389
94, 198
2, 076, 628
2, 076, 628
2, 076, 628
4, 548, 853
2, 046, 228
434, 418
262, 949 | ¹ Includes Hawaii, Louisiana, Mississippi, New Jersey, and North Carolina. ## Limestone sold or used by producers in the United States in 1934, by States and uses | | | | | Build | ling | | | | | | | • | Crushed | stone | | |---|------------------------------------|----------------------------|----------------------------|----------------|------------|-----------------|------------------|-------------------------|-------------------------|--------------------------------|---------------------------------|--|--|--|---------------------------------------| | State | Num-
ber of
active
plants | Rough c | | Rough a
tur | | Finished
sav | (cut and
ved) | Rul | bble | Rip | Concrete and road
metal | | | Railroad ballas | | | | pidnos | Short
tons | Value | Cubic
feet | Value | Cubic
feet | Value | Short
tons | Value | Short
tons | Value | Short
tons | Value | Short
tons | Value | | AlabamaArizona | 20 | | | (1) | (1) | (1) | (1) | | | 19, 280 | \$14, 515 | 89, 350
55, 580 | \$107, 444
97, 118 | 14,000 | \$15, 270 | | ArkansasCaliforniaColorado | 21
12 | | | (1) | (1) | | | (1) | (1) | (1)
(1) | (1)
(1) | 53, 380
15, 000 | 48, 557
6, 000 | 40, 520
400 | 38, 045
320 | | Connecticut
Florida
Georgia | 31
9 | (1) | (1) | | | (1) | (1) | | | (1) | (1) | (1)
868, 490
276, 740 | (1)
724, 500
254, 286 | 158, 490 | 108, 664 | | Hawaii
Idaho
Illinois
Indiana | 98
108 | 2, 440
67, 560 | \$6, 444
38, 196 | 1, 226, 420 | \$447, 299 | 1, 569, 140 | \$2,239,997 | 68, 450 | \$47,690 | 192, 360
67, 740 | 207, 751
35, 591 | 3, 860
2, 667, 240
1, 298, 340 | 3, 863
1, 963, 403
1, 073, 052 | 228, 520
100, 500 | 150, 263
67, 812 | | Iowa
Kansas
Kentucky
Louisiana | 144
81
66 | 3, 120
2, 880
1, 240 | 1, 524
9, 045
2, 580 | (1)
(1) | (1) | (1)
(1) | (1)
(1) | 1, 870
(1)
2, 580 | 1, 752
(1)
1, 370 | 67, 220
227, 980
94, 080 | 48, 285
301, 681
133, 966 | 2, 000, 750
792, 240
1, 558, 620 | 1, 717, 540
763, 296
1, 405, 868 | 35, 150
228, 590
180, 920
(1) | 16, 583
167, 490
97, 714
(¹) | | Maine
Maryland
Massachusetts | 3
13
7 | 500 | 700 | | | | | (1) | (1) | | | 2, 770
369, 200 | 3, 950
444, 090
(1) | 14, 320 | 12, 457 | | Michigan
Minnesota
Mississippi | . 44 | (1)
840 | (1)
2, 656 | 27, 410 | 23, 112 | 85, 900 | 199, 872 | 1, 570 | 1,381 | (1)
55, 660 | 76, 333 | 534, 520
590, 370 | 351, 192
563, 545 | 41, 650 | 30, 255 | | Missouri
Montana
Nebraska | 169 | 2, 910
(¹) | 3, 039
(¹) | (1) | (1) | | | 43, 430 | 66, 567 | 738, 280
 | 832, 695
219, 356 | 1, 398, 570
120, 410
119, 250 | 1, 491, 694
63, 286
103, 228 | 38, 930 | 29, 338 | | Nevada
New Jersey
New Mexico | 4 2 | | | | | | | | | | | (1)
(1)
41, 830 | (1)
(1)
32, 681 | (1)
(1)
16, 500 | (1)
(1)
7, 928 | | New York
North Carolina
Ohio | 111 | 40, 050
5, 990 | 50, 798
6, 784 | | | | | (1) | (1) | 78, 050
13, 870 | 69, 392
19, 520 | 4, 865, 000
(1)
3, 310, 740 | 5, 109, 488
(1)
2, 724, 674 | 495, 030
478, 310 | 340, 715
367, 775 | | Oklahoma
Oregon
Pennsylvania | 27 | (1) | (1)
8, 551 | | | | . | (1) | (¹) | 2,000
(1) | 2,000
(1) | 566, 180
(1)
4, 498, 870 | 391, 635
(1)
4, 672, 337 | 277, 100
164, 630 | 157, 989
 | | Pennsylvania
Puerto Rico
Rhode Island | 6 | 10, 080 | | | | | | (1) | 8 | | | 43,890 | 46, 744 | 310 | 177 | ¹ Included under "Undistributed," ## Limestone sold or used by producers in the United States in 1934, by States and uses-Continued | | | | | | . 1 | Building | | | | | | | | | | Crush | ned stone | | |--|------------------------------------|-----------------|-------------------|--------------------|--------------------|--------------------------------|------------|---------------|---------------------|---------------|---------|--------------------|-----------------------------|-----------------------------|---|---------------------------------|--|--| | State | Num-
ber of
active
plants | Roug | h const | truc- | Rou | Rough architectural Finished (| | | ed (cut an
awed) | Rubble d) | | | Riprap | | Concrete and road
metal | | l Railroa | d ballast | | | plants | Short | v | alue | Cub
feet | | lue | Cubic
feet | Valu | e Shor | | Value | Short
tons | Value | Short | Value | Short | Value | | South Carolina
South Dakota
Tennessee
Texas | 13
74
91 | 48 | 30 | \$561 | 15, (| | 967 | 101, 82 | 0 \$136, 5 | 28 (1) | | (1) | 500
(1)
224, 880 | \$625
(1)
225, 264 | 2, 500
71, 770
1, 615, 550
1, 170, 270 | 75, 26
1, 351, 04 | 63
14 276, 690 | | | UtahVermontVirginiaWashingtonWest Virginia | 13
69
8
54 | (1) | | (1) | (1) | (1 | | (1) | (1) | (1) | | (1)
(1) | (¹)
(¹) | (1) | 40, 210
1, 235, 930
59, 410
648, 540 | 1, 209, 66
74, 25
727, 95 | 35 450, 810
57
50 182, 320 | 108, 564 | | Wisconsin
Wyoming
Undistributed | 169 | 12, 36
5, 60 | 00 | 37, 702
10, 757 | 55, 8
 | 190 18, | 539
922 | (1)
56, 45 | _ | | 50 | 39, 967
21, 064 | 221, 940
(1)
335, 660 | 251, 367
(1)
229, 874 | 1, 819, 910
314, 980
89, 650 | 255, 74
97, 90 | 45 17, 170
07 39, 310 | 13, 819
19, 312 | | | 1, 936 | 156, 00 | 00 17 | 79, 337 | 1, 345, 3 | 533, | 839 | 1, 813, 31 | 0 2, 678, 2 | 79 190, 08 | 30 17 | 79, 791 | 2, 490, 760 | 2, 668, 215 | 33, 209, 910 | 30, 749, 13 | 3, 614, 430 | 2,549,091 | | | F | luxing st | one | | Sugar f | actories | | Glass fa | ctories | Pape | r mill | ls | Agricu | ılture | Other | uses | Tot | al | | State | Short t | tons | Value | | hort
cons | Value | | Short
tons | Value | Short
tons | Va | alue | Short
tons | Value | Short
tons | Value | Short tons
(approxi-
mate) | Value | | Alabama | _ | 690
350 | \$303, 44
78 | 15
50 | | | | | | | | | 15, 810
70 | \$26, 437
130 | (1) | (1) | 494, 180
70, 000 | \$519, 566
113, 268 | | California
Colorado
Connecticut |
14,
141, | | 25, 47
175, 69 | 01 (| 37, 730
33, 830 | \$192, 400
89, 687 | | 9, 260
(¹) | \$28, 405
(1) | | | | 3, 780 | 4, 706
70, 437 | 4, 220 | \$174, 857
(1)
13, 410 | 54, 340
265, 540
234, 500
24, 490 | 46, 670
477, 809
294, 630
87, 548 | | Florida
Georgia
Hawaii
Idaho | | | 7, 5 | | (1) | (1) | - | | | | | | 10, 950
19, 310
(¹) | 26, 188
29, 561
(¹) | 54, 800
15, 050 | 50, 012
59, 192 | 1, 095, 800
311, 100
(1)
11, 910 | 945, 515
343, 039
(1)
20, 145 | | Illinois | | 650 | 149, 22 | | | | | | | | 1 | | 448, 810 | 291, 761 | 36, 090 | 65, 114 | 3, 901, 560 | | | Indiana | 43, 300 | 15, 943 | 5, 000 | 4, 300 | 8, 620 | | | | 172, 140 | 130, 861 | 91, 240 | 78, 432 | 2, 057, 440 | 4, 140, 960 | |----------------|--------------------------|-----------------|--|----------|------------|----------|--------------|-----------|-------------|-------------|-------------|-------------|----------------|-------------| | Iowa | | 4, 954 | | | | | | | 143, 380 | 96, 164 | 19, 440 | 47, 562 | 2, 276, 440 | 1, 934, 364 | | Kansas | | | | | | | | | 3, 150 | 2, 616 | 53, 170 | 14, 612 | 1, 310, 280 | 1, 269, 737 | | Kentucky | | | | | | | | | 81, 840 | 44, 825 | 46, 460 | 17, 580 | 1, 966, 800 | 1, 718, 325 | | Louisiana | | | | | | | | | (1) | (1) | (1) | (1) | (1) | (1) | | Maine | 870 | 1, 514 | | | | | 21, 040 | \$33, 919 | 3, 500 | 14, 233 | | | 28, 180 | 53, 616 | | Maryland | | | | | | | | | | | 7,900 | 13, 244 | 391, 920 | 470, 491 | | Massachusetts | | (1) | | | | | (1) | (1) | 18, 260 | 63, 336 | 25, 870 | 116, 468 | 48, 220 | 188, 676 | | Michigan | | 1, 482, 139 | 77, 920 | 40, 851 | (1) | (1) | 51,870 | 83, 974 | 35, 260 | 29, 545 | 2, 722, 990 | 1, 376, 143 | 6, 514, 590 | 3, 608, 543 | | Minnesota | (1) | (1) | | | | | (í) | (1) | 11, 230 | 11, 416 | 6,610 | 23, 508 | 675, 100 | 902, 663 | | Mississippi | | | | | | | | | (i) | (i) | | | (1) | (1) | | Missouri | 15, 240 | 24, 514 | | | (1) | (1) | (1) | (1) | 53, 880 | 50, 231 | 82, 240 | 143, 580 | 2. 394, 710 | 2, 660, 428 | | Montana | (1) | (1) | 29, 930 | 38, 452 | l | | | | | | | , | 171, 860 | 124, 352 | | Nebraska | | | | | | | | | (1) | (1) | 10, 190 | 61, 624 | 294, 690 | 402, 367 | | Nevada | (1)
(1) | (1) | (1)
(1) | | | | | | | `' | 1 70 | | 62, 760 | 72, 496 | | New Jersey | l (i) | (1)
(1) | l | l`´. | | | | | (1) | (1) | l is | (1) | (1) | (1) | | New Mexico | | | | | | | | | | | () | () | 58, 330 | 40, 609 | | New York | (1) | (1) | | | | | 13, 150 | 64,600 | 35, 310 | 122, 320 | 1, 156, 270 | 691, 400 | 6, 731, 760 | 6, 497, 152 | | North Carolina | | () | | | | | 10, 100 | 01,000 | 00,010 | 122,020 | 1, 100, 270 | 001, 100 | (1) | (1) | | Ohio | 1 487 580 | 958, 842 | 11,000 | 12, 400 | 85, 820 | 128, 350 | 62, 460 | 74, 924 | 138, 270 | 156, 576 | 122, 890 | 231, 985 | 5, 716, 930 | 4, 681, 830 | | Oklahoma | | 000,012 | | 12, 100 | | (1) | (1) | (1) | (1) | (1) | 122,000 | 201, 000 | 850, 040 | 562, 974 | | Oregon | | | | | | (-) | (-) | (-) | 5, 970 | 17, 600 | | | 14, 220 | 31, 585 | | Pennsylvania | 2 050 530 | 2 249 564 | | | 20 540 | 63, 908 | 14, 140 | 13, 568 | 85, 090 | 225, 068 | 592, 690 | 822, 455 | 8, 360, 800 | 8, 198, 685 | | Puerto Rico | 2, 500, 000 | 2, 210, 001 | | | | 00,000 | 11, 110 | 10,000 | 00,000 | 220,000 | (1) | (1) | 46, 700 | 50, 246 | | Rhode Island | | 400 | | | | | | | | | (-) | (-) | 220 | 1 50, 240 | | South Carolina | 1 220 | | | | | | | | 360 | 450 | | | 2,860 | 4, 450 | | South Dakota | | | | 2,750 | | | | | | 4.00 | 12, 250 | 32, 046 | 87, 120 | 110, 684 | | Tennessee | (1) | (1) | 2,000 | 2, 100 | 1,770 | 9 911 | | | 117, 370 | 125, 934 | 30, 000 | 108, 107 | 2, 045, 160 | 1, 795, 138 | | Texas | \mathbb{R} | (1) | | | 1,770 | | | | 117,370 | 120, 954 | 231, 830 | 78, 850 | 1, 763, 120 | 1, 752, 686 | | Utah | 1 X | 1 X | 23, 050 | 20 747 | | | | | | | 251, 650 | 13, 637 | 155, 230 | 116, 389 | | Vermont | (1)
(1)
(1)
(1) | 1 🔀 | | 38, 747 | | | | | | (1) | 1, 660 | 12, 382 | 49, 280 | | | Virginia | 51, 330 | 45, 385 | | | | | (1)
(1) | (1) | 90, 370 | 117,012 | | | | 94, 198 | | Washington | | | | | | J22 | 75, 430 | 108, 367 | | | 300, 810 | 329, 704 | 2, 146, 260 | 2, 076, 628 | | | 886, 660 | (1)
670, 465 | | | (1)
(1) | (1) | 10,430 | 108, 307 | (1) | (1) | (1) | (1) | 162, 040 | 207, 086 | | West Virginia | | | | | (1) | (1) | - | | | 1 200 050 | 9,810 | 30, 998 | 1, 731, 330 | 1, 548, 853 | | Wisconsin | (1) | (1) | | | | | 780 | 775 | 62, 400 | 33, 958 | 84, 190 | 98, 289 | 2, 297, 130 | 2, 046, 928 | | Wyoming | | 100 00- | 119, 030 | 162, 171 | | | | | | | · <u></u> | | 457, 360 | 434, 418 | | Undistributed | 260, 370 | 182, 627 | 59, 810 | 75, 744 | 25, 210 | 28, 059 | 23, 290 | 27, 895 | 37, 190 | 96, 777 | 47, 260 | . 135, 312 | 169, 210 | 262, 949 | | | 0.000.000 | 0 007 570 | 450,000 | 050 500 | 141 000 | 000 410 | 000 100 | 400,000 | 1 010 000 | 1 700 140 | 5 000 000 | 4 040 500 | FF F01 F10 | F0 F00 040 | | | 9, 230, 880 | 6, 297, 579 | 479, 900 | 658, 502 | 161, 220 | 260, 410 | 262, 160 | 408, 022 | 1, 012, 380 | 1, 788, 142 | 5, 863, 370 | 4, 840, 503 | 57, 501, 510 | 53,790,846 | | N | 1 | · | <u>' </u> | <u> </u> | <u>!</u> | <u> </u> | 1 | <u> </u> | <u>'</u> | <u> </u> | <u> </u> | | <u> </u> | | ¹ Included under "Undistributed." Limestone sold or used by producers in the United States for miscellaneous uses in 1934 | Use | Short tons | Value | Use | Short tons | Value | |--|--|--|--|---|--| | Alkali works Asphalt filler Calcium carbide works Coal-mine dusting Filler (not whiting substitute) Filter beds Magnesia works (dolomite) Mineral food Mineral food Mineral food Poultry grit | 3, 814, 060
172, 170
305, 600
43, 000
13, 850
93, 020
83, 970
35, 870
68, 820
26, 320 | \$2, 015, 506
361, 404
177, 458
138, 399
24, 097
109, 310
101, 677
179, 515
54, 087
91, 157 | Refractory stone (dolomite). Road base. Roofing. Stucco, terrazzo, and artificial stone. Whiting substitute 1 Other 2 Unspecified. | 300, 180
583, 410
6, 220
14, 340
97, 340
97, 290
98, 900
5, 854, 360 | \$287, 030
409, 357
31, 967
60, 362
509, 893
98, 494
140, 904
4, 790, 617 | ¹ Includes stone for filler for calcimine, pigments (paint), polishes, pottery, putty, rubber, targets, wall Dolomite and dolomitic lime sold or used by producers in the United States for specified purposes, 1930-34 | | 1930 | 1931 | 1932 | 1933 | 1934 | |---------------------------------------|-------------|-------------|-------------|-------------|-------------| | Dolomite for— | | | | | | | Basic magnesium carbonate: | | | | | | | Short tons | 111,740 | 80, 820 | 62, 930 | 83,640 | 83, 970 | | Value
Carbon dioxide | \$189, 219 | \$122, 525 | \$82,822 | \$99,630 | \$101,677 | | Refractory stone or dead-burned dolo- | (1) | (1) | (1) | (1) | (1) | | mite: | | | | | | | Short tons | 453, 350 | 268, 500 | 72, 240 | 196, 540 | 300, 180 | | Value | \$356, 025 | \$183,020 | \$45, 186 | \$180, 160 | \$287,030 | | Dolomitic lime for— | 4000,020 | 4150,020 | ψ±0, 100 | Ψ100, 100 | Ψ201, 000 | | Refractory (dead-burned dolomite): | | | | | | | Short tons | 351, 740 | 243, 769 | 135, 733 | 261, 812 | 324, 868 | | Value | \$3,045,082 | \$1,866,971 | \$1,055,339 | \$2,064,869 | \$2,698,414 | | Sulphite pulp: | | 1 ' ' | ' ' ' | . , , , | . , | | Short tons | 38, 400 | 32,000 | 24,000 | 25,000 | 30,000 | | Value | \$295,000 | \$233,000 | \$148,000 | \$144,000 | \$196,000 | | m | | | | | | | Total (calculated as raw stone) | 1 000 000 | 000 000 | 450 000 | | | | short tons | 1, 360, 000 | 922,000 | 472,000 | 884,000 | 1, 133, 000 | ¹ Bureau of Mines not at liberty to publish figures. Limestone used for all purposes in the United States, 1933-34, in short tons | Use | 1933 | 1934 | |--|--|---| | Limestone (as given in this report) Portland cement (including "cement rock")¹ Natural cement ("cement rock")¹ Lime ³ | 45, 922, 280
}16, 117, 000
4, 450, 000
66, 489, 280 | 57, 501, 510
19, 730, 000
4, 800, 000
82, 031, 510 | ¹ Value reported as cement in the chapter on Cement. ² Value reported as lime in the chapter on Lime. ¹ Includes stone for mer for catesimine, pigments (paint), poissies, pottery, putty, rubber, targets, wan board, and uses not specified. 1 Includes stone for acid neutralization, bird gravel, carbolic acid, carbon dioxide, chemicals (unspecified), dust, dye works, explosives, landscaping, lime burning, mosaics, oil refining, pipe manufacturing, salt refining, spalls, studio snow, and waste rock. #### INDIANA LIMESTONE FOR CONSTRUCTION Limestone sold by producers in the Indiana oolitic limestone district, 1930-34 | | Consti | uction | Otl | ne r | То | tal . | |--------------------------------------|--
--|--|---|---|--| | Year | Cubic feet | Value | Short tons | Value | Short tons
(approxi-
mate) | Value | | 1930
1931
1932
1933
1934 | 12, 308, 340
7, 865, 210
5, 927, 350
4, 858, 660
2, 795, 510 | \$15, 276, 487
8, 570, 563
5, 491, 276
4, 817, 822
2, 687, 182 | 538, 490
313, 100
136, 130
150, 140
183, 510 | \$364, 365
200, 754
85, 957
80, 961
94, 611 | 1, 430, 840
883, 330
565, 860
502, 400
386, 510 | \$15, 640, 852
8, 771, 317
5, 577, 233
4, 898, 783
2, 781, 793 | Limestone sold by producers in the Indiana oolitic limestone district in 1934, by classes | Class | Quantity | Value | |---|---|---| | Construction: Rough blocks | 1, 226, 420
445, 440
1, 123, 650
2, 795, 510
183, 510 | \$447, 299
342, 997
1, 896, 886
2, 687, 182
94, 611 | | Grand total (quantity approximate, in short tons) | 386, 510 | 2, 781, 793 | Indiana limestone sold by mills not operated by quarry companies and by mills of quarry companies from stock obtained at quarries other than their own, 1930-34 | Year | Cubic feet | Value | Year | Cubic feet | Value | |----------------------|---|---|--------------|-------------------------|------------------------------| | 1930
1931
1932 | 1, 991, 000
1, 394, 130
1, 404, 310 | \$4, 645, 824
2, 930, 978
2, 375, 274 | 1933
1934 | 1, 198, 430
648, 750 | \$1, 900, 414
1, 131, 677 | Indiana limestone sold by mills not operated by quarry companies and by mills of quarry companies from stock obtained at quarries other than their own, 1933–34, by classes | • | | | 1934 | | | | | | | | | | |--|---------------|-------------|------------|-----------|------------|-------------|---------------|-------------|--|--|--|--| | Sales by mills— | 193 | 33 1 | Sav | wed | С | ut | Total | | | | | | | | Cubic
feet | Value | Cubic feet | Value | Cubic feet | Value | Cubic
feet | Value | | | | | | Not operated by quarry companies Of quarry companies from stock obtained | 481, 970 | \$776, 078 | 36, 670 | \$60, 623 | 256, 070 | \$530, 177 | 292, 740 | \$590, 800 | | | | | | at quarries other than
their own | 716, 460 | 1, 124, 336 | 22, 270 | 14, 761 | 333, 740 | 526, 116 | 356, 010 | 540, 877 | | | | | | | 1, 198, 430 | 1, 900, 414 | 58, 940 | 75, 384 | 589, 810 | 1, 056, 293 | 648, 750 | 1, 131, 677 | | | | | ¹ All cut stone; no sawed stone reported for 1933. #### SANDSTONE Sandstone sold or used by producers in the United States in 1934, by uses | Use | Quantity | Value | |---|---|---| | Building stone | 50, 480
57, 150
670
363, 210
27, 290
183, 210
14, 430 | \$531, 377
4, 162
281, 643
140, 449
2, 121, 841 | | Crushed stone short tons Rubble do Riprap do Retractory stone (ganister) do Other uses do Total (quantity approximate, in short tons) | 1 200 000 | 21, 310
336, 777
460, 869
815, 856
4, 714, 284 | ## Sandstone sold or used by producers in the United States in 1934, by States [Quantities approximate] | State | Short tons | Value | State | Short tons | Value | |--|--|--|--|--|--| | California Colorado Illinois Kansas Kentucky Maryland Minnesota Missouri Montana New York North Carolina Ohio Oklahoma | 31, 890
14, 150
1 249, 050
4, 560 | \$544, 431
19, 637
5, 761
80, 654
42, 431
23, 482
26, 948
48, 663
6, 757
1 452, 684
6, 870
796, 884 | Pennsylvania South Dakota Tennessee Texas Vermont Virginia West Virginia Wisconsin Wyoming Undistributed 2 | 11, 194, 300
70, 310
34, 660
69, 860
3, 440
160, 100
374, 800
111, 880
275, 740
3, 605, 420 | 1 \$1, 456, 777 92, 816 70, 297 51, 756 3, 098 130, 710 363, 913 165, 590 32, 548 291, 499 4, 714, 284 | Includes bluestone. Includes Alabama, Arizona, Arkansas, Connecticut, Idaho, Michigan, New Jersey and Washington ## Sandstone sold or used by producers in the United States in 1934, by States and uses | | | | | Buil | ding | , | | Refracto
(gani | | Paving | blocks | Cur | bing | |--|------------------------------------|----------------------|----------------------------|--------------------|--------------------|---------------------|------------------|---------------------|---------------------|--------------------|--------------------|----------|-----------------------| | State | Num-
ber of
active
plants | Rough c | | Rough a | | Dressed
and | | Short | Value | Number | Value | Cubic | Value | | | | Short
tons | Value | Cubic
feet | Value | Cubic
feet | Value | tons | Value | - Number | value | feet | | | Alabama Arizona | 2 2 | | | | | | | (1) | (1) | | | | | | Arkansas California Colorado Connecticut Idaho | 2
22
6
1 | 8, 910
600
(¹) | \$14, 317
1, 975
(¹) | (1)
(1) | (1)
(1) | (1) | (1) | (1)
4, 330 | (1)
\$5, 283 | (1) | (1) | | | | Illinois. Kansas Kentucky Maryland | 3
10
3
3 | 3, 840
(¹)
(¹) | 12, 200
(1)
(1) | | | (1) | (1) | (1)
(1)
800 | (1)
(1)
880 | | | | | | Michigan | 1
3
3
3 | (1) | (1) | | | | | (1) | (1) | | | | | | New Jersey New York North Carolina Ohio | 1
49
4
12 | (1)
770
930 | (1)
4, 221
2, 698 | 1, 140
73, 430 | \$997
41, 681 | 11, 120 | \$33, 382 | 8, 130 | 23, 235 | 28, 610 | \$1,900 | 62, 820 | \$61, 473
213, 406 | | Oklahoma. Pennsylvania. South Dakota. Tennessee. | 6
73
6
10 | 2, 140
70
(¹) | 4, 891
135
(1) | (1) | (1) | 730
1, 930 | 3, 689
4, 425 | 208, 220
1, 190 | 263, 908
1, 551 | (1) | (1) | 12,670 | 6, 764 | | Texas | 6
4
8
1 | | | | | (1) | (1) | | | | | | | | West Virginia | 57
5
2 | 4, 320
300 | 3, 118
500 | (1) | (1) | | | (1)
104, 810 | (1)
112, 795 | | | | | | Undistributed | 310 | 1,800
23,680 | 6, 078
50, 133 | 11, 230
85, 800 | 12, 271
54, 949 | 45, 030
253, 770 | 103, 994 | 35, 540
363, 020 | 53, 217
460, 869 | 28, 540
57, 150 | - 2, 262
4, 162 | 363, 210 | 281, 643 | ¹ Included under "Undistributed." ## Sandstone sold or used by producers in the United States in 1934, by States and uses-Continued | | Flag | gging | Ru | bble | Rip | orap | | Crushe | ed stone | | Othe | r uses | Т | otal | |--|----------|-----------------|---------------|------------------------|-------------------|-----------------|---------------------|---------------------|---------------|-----------|----------|-----------|---------------------|-----------------------| | State | Cubic | Value | Short | Value | Short | Value | | and road
etal | Railroac | d ballast | Short | Value | Short | Value | | | feet | varue | tons | Value | tons | value | Short
tons | Value | Short
tons | Value | tons | value | (approxi-
mate) | value | | Alabama | | | | | | | (1) | (1) | | | | | (1) | (1) | | Arizona | | | | | (1) | (1) | | (1) | | | | | (1) | (1) | | California | 7, 560 | \$3, 930
(¹) | (1) | (1) | 75, 920
300 | \$77,710
300 | 402, 970
(i) | \$355, 767 | 5, 510 | \$3, 767 | 104, 140 | \$71, 295 | 605, 510
12, 240 | \$544, 431
19, 637 | | Idaho | | | (1) | (1) | (1) | (1) | | | | | | | (1) | (1) | | Illinois | | | | | (1) | (1) | (1) | (1) | | | | | 3,900 | `ź, 761 | | Kansas
Kentucky | 2, 610 | 1,853 | | | | | 56, 800
25, 390 | 66, 536
37, 316 | | | 180 | 65 | 61,020
26,020 | 80, 654
42, 431 | | Maryland | (1) | (1) | | | | | 16, 410 | 21, 654 | | | | | 17, 810 | 23, 482 | | Michigan | | | | | | | | Θ. | | | | | (1) | (1) | | Minnesota
Missouri | | | | | | | (1) | (1) | | | (1) | (1) | 19, 910
31, 890 | 26, 948
48, 663 | | Montana | | | | | (1) | (1) | (1) | (1) | | | | | 14, 150 | 6, 757 | | New Jersey | | | | | | 1 | | | | | | | (1) | (1) | | New York
North Carolina | 70, 870 | 48, 502 | 490 | \$460 | 540 | 470 | 227, 210
4, 560 | 291, 099 | | | 5, 520 | 10, 180 | 249, 050 | 452, 684 | | Ohio | 37, 300 | 23, 109 | 880 | 2, 587 | 133, 490 | 164, 093 | 44, 970 | 6,870
45,270 | | | | | 4, 560
231, 410 | 6, 870
796, 884 | | Oklahoma
Pennsylvania
South Dakota | 39, 080 | 27, 995 | 530
2, 600 | 78
4, 213
1, 075 | 24, 840
1, 180 | 25, 604 | 458, 870 | 507, 275 | 23, 920 | 23, 576 | 469, 030 | 586, 635 | 1, 194, 300 | 78
1, 456, 777 | | Tennessee | 15, 130 |
30. 170 | 940
(1) | (1) | 1, 180 | 1, 482 | 66, 780
31, 590 | 84, 148
30, 087 | | | | | 70, 310
34, 660 | 92, 816
70, 297 | | Texas | | | | | 130 | 236 | 69, 730 | 51, 520 | | | | | 69, 860 | 51, 756 | | Vermont
Virginia | | | | | | | 3, 440 | 3,098 | | | | | 3, 440 | 3, 098 | | Virginia
Washington | | (1) | (1) | (1) | (1) | (1) | 110, 470 | 100, 820 | 49, 630 | 29, 890 | | | 160, 100 | 130, 710 | | West Virginia | | (*) | (1) | (1)
(1) | (1) | (-) | 250, 380 | 244, 951 | | | 93, 690 | 87, 234 | 374,800 | 363, 913 | | Wisconsin | 380 | 100 | `´ 60 | `` 60 | | | 1,640 | 4, 512 | | | (1) | (1) | 111,880 | 165, 590 | | Wyoming
Undistributed | 10, 280 | 4, 790 | 8, 530 | 12, 837 | 62, 600 | 66, 882 | 32, 330
274, 950 | 32, 548
181, 137 | | | 6, 390 | 60, 447 | 32, 330
275, 740 | 32, 548
291, 499 | | | 183, 210 | 140, 449 | 14, 030 | 21, 310 | 299, 000 | 336, 777 | 2, 078, 490 | 2, 064, 608 | 79,060 | 57, 233 | 678, 950 | 815, 856 | 3, 605, 420 | 4, 714, 284 | ¹ Included under "Undistributed." # Bluestone sold in New York and Pennsylvania in 1934, by uses ¹ | | Buildir | ng stone | Curbing | | Flag | ging | Ot | her | Total | | |--------------------------|---------------------------|-----------------------------|------------------------------|--------------------------------|--------------------------------|---------------------------------|-------------------------------|----------------------------------|--|------------------------------------| | State | Cubic
feet | Value | Cubic
feet | Value | Cubic feet | Value | Short
tons | Value | Short
tons
(ap-
proxi-
mate) | Value | | New York
Pennsylvania | 17, 080
230
17, 310 | \$35, 020
489
35, 509 | 58, 910
1, 530
60, 440 | \$58, 483
1, 000
59, 483 | 69, 490
34, 720
104, 210 | \$47, 342
26, 386
73, 728 | 57, 740
40, 700
98, 440 | \$63, 305
74, 896
138, 201 | 71, 780
43, 790
115, 570 | \$204, 150
102, 771
306, 921 | ¹ Figures included in foregoing for sandstone. #### MISCELLANEOUS STONE Miscellaneous varieties of stone 1 sold or used by producers in the United States in 1934, by uses | Use | Quantity | Value | |---------------------------------------|--|-------------| | Approximate equivalent in short tons. | 1, 090, 880
5, 957, 370
14, 210
2 5, 273, 530 | 5, 455, 450 | ¹ Includes mica schist, conglomerate, argillite, various light-colored volcanic rocks, serpentine not used as marble, scapstone used as dimension stone, and such other stone as cannot properly be classed in any main group. main group. 2 Includes 4,619,280 tons of road-base material valued at \$3,169,356 produced by the State of Pennsylvania and used on roads. Miscellaneous varieties of stone sold or used by producers in the United States in 1934, by States #### [Quantities approximate] | State | Short tons | Value | State | Short tons | Value | |---|---|---|--|--|--| | Alaska Arizona Arkansas California Colorado Idaho Illinois Maine Maryland Massachusetts Michigan Montana Newada New Hampshire New Mexico New York North Carolina North Dakota | 30, 200
2, 120
8, 040
1, 157, 610
47, 150 | \$74, 919 142, 575 214, 641 2, 121, 643 779, 713 82, 894 7, 126 27, 450 158, 953 1446, 746 70, 448 48, 500 1, 723 34, 400 1, 054, 000 60, 169 303, 526 2, 132 | Ohio Oklahoma Pennsylvania Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Texas Utah Vermont Virginia Washington Wisconsin Wyoming Undistributed ² | 26, 510
66, 000
1 4, 821, 220
69, 360
115, 590
310
72, 490
804, 330
234, 590
32, 600
168, 800
137, 590
47, 000
154, 540 | \$12, 086 26, 400 1 3, 757, 955 61, 826 150, 836 375 50, 132 231, 416 120, 325 29, 219 470, 194 110, 505 19, 588 1, 000 272, 076 | ¹ Includes 4,619,280 tons of road-base material valued at \$3,169,356 produced by the State of Pennsylvania and used on roads. ² Includes Florida, Indiana, Iowa, Kansas, Minnesota, Missouri, New Jersey, and Oregon. Miscellaneous varietiesors fo ne sold or used by producers in the United States in 1934, by States and uses | | Num-
ber of | Bu | ilding | Riprap ar | nd rubble | Concrete an | Crushed
d road metal | | l ballast | Other | uses | То | tal | |--------------------------|----------------|---------------|----------|------------|-------------|---------------------|-------------------------|---------------|-----------|--------------------------|--------------------------|--------------------|-----------| | State | active | ~1 | i | | | | 1 | | i Suzzubu | | | Short tons | | | | plants | Short
tons | Value | Short tons | Value | Short tons | Value | Short
tons | Value | Short tons | Value | (approxi-
mate) | Value | | Alaska | 3 | | | | | 48, 890 | \$74,919 | | | | | 48, 890 | \$74, 91 | | Arizona | 8 | | | 5, 530 | \$18, 530 | 130, 210 | 124, 045 | 25 | | | | 135, 740 | 142, 5 | | Arkansas
California | 85 | 240 | \$581 | (1) | (1) | 317, 250 | 196, 729 | (1) | (1) | | | 342, 300 | 214, 6 | | olorado | 00 | | | 980, 810 | 981, 161 | 1,069,760 | 970, 616 | 9, 400 | | 101, 320 | \$162, 207 | 2, 161, 530 | 2, 121, 6 | | lorida | 1 | | | | | 802, 200 | 779, 713 | | | | | 802, 200 | 779, 7 | | daho | | 100 | 100 | | | 102, 620 | | | | | | (1) | (1) | | llinois | ရိ | | | | | 10, 070 | 02,094 | | | | 700 | 103, 680 | 82,8 | | ndiana | Ιĭ | | | | | | | | | 350 | 175 | 10, 420 | 7,1 | | owa | l î | | | | | (1) | (1)
(1) | | | | | (1) | (1) | | Cansas | $\hat{2}$ | | | | 298 | . (-) | (-). | | | | (1) | | | | Aaine | 6 | | | 0,.00 | | 16, 040 | 27, 450 | | | (5) | (.) | 16,040 | 27, 4 | | Aaryland | š | (1) | (1) | (1) | (1) | | (1) | | (1) | (1) | (1) | 134, 780 | 158, 0 | | Aassachusetts | š | | | | () | 1 | X | (1) | (1) | (9) | (•) | 342, 790 | 446,7 | | Aichigan | 5 | | | | | (1)
(1)
(1) | \(\cdot\) | | (7) | (1) | (1) | 60, 520 | 70, 4 | | Innesota | 2 | | | | | }ı\ | | | | (1)
(1) | (1)
(1) | (1) | (1) | | Iissouri | 2 | | | | | (1) | 1 70 | | | () | (-) | 1 | K | | Iontana | 2 | | | | | 36, 200 | 48, 500 | | | | | 30, 200 | 48, 5 | | Tevada | 3 | | | 1,610 | 1, 373 | 510 | 350 | | | | -: | 2, 120 | 1.7 | | lew Hampshire | 2 | | | | | 4,890 | 9, 505 | | | 3, 150 | 24, 895 | 8,040 | 34, 4 | | lew Jersey | 2 | (1) | (1) | (1) | (1) | (1) | (1) | | | | 21,000 | (1) | (1) | | lew Mexico | 3 | | | | | 1, 147, 610 | 1, 050, 000 | | | 10,000 | 4,000 | 1, 157, 610 | 1, 054, 0 | | lew York | 6 | (1) | (1) | (1) | (1) | 46,040 | 54, 789 | | | , | | 47, 150 | 60, | | Torth Carolina | 32 | | | | | 184, 100 | 303, 526 | | | | | 184, 100 | 303. | | orth Dakota | 2 | | | | | 5, 700 | 2, 132 | | | l | | 5, 700 | 2, | | hio | 4 | (1) | | | | 4,820 | 5, 885 | 21, 350 | | (1) | (1) | 26, 510 | 12, | | klahoma | 1 | | | (1) | | 66, 000 | 26, 400 | | | | | 66,000 | 26, | | regon | -2 | | | | (1) | (1) | (1) | | | | | (1) | (1) | | ennsylvania | 72 | | | | | 143, 930 | 143, 106 | | | ² 4, 677, 290 | ² 3, 614, 849 | 2 4, 821, 220 | 2 3, 757, | | uerto Rico | 7 | | | | | 69, 360 | 61, 826 | | | | | 69, 360 | 61, | | hode Islandouth Carolina | 4 | | | | | 113, 770 | 149, 236 | | | 1,820 | 1,600 | 115, 590 | 150, | | outh Dakota | 11 | | | | | 310 | 375 | | | | | 310 | | | exas | 11 | | | | 6, 750 | 67, 090 | 43, 382 | | | | | 72, 490 | 50, | | tah | 19 | | | | (1) | 336, 510 | 158, 199 | (1) | (1) | 444, 450 | 56, 791 | 804, 330 | 231, | | ermont | 11 | | | 6, 250 | | 234, 160 | 118, 702 | | `- | | 1, 623 | 234, 590 | 120, | | irginia | 9 | (1) | (1) | 0, 250 | 5, 000 | 4,660 | 4, 697 | | | | 19, 522 | 32, 600 | 29, | | ashington | 13 | (1) | (1) | 34, 980 | 32, 627 | 163, 860 | | | | | (1) | 168, 800 | 470, | | /isconsin | 10 | | | 34, 980 | 52, 027 | 102, 610
47, 000 | 77, 878
19, 858 | | | | | 137, 590 | 110, | | yoming | 1 | | | | | 47,000 | 19, 808 | | | | | 47,000 | 19, | | ndistributed | | 8, 610 | 242, 872 | 52, 570 | 79, 738 | 509, 490 | 602, 410 | 146, 960 | 130, 353 | 200 | 1,000 | 200 | 1,0 | | | 363 | 8, 950 | | | | | | | | 26, 080 | 233, 039 | 154, 540 | 272, (| | l l | 303 | 8,950 | 243, 553 | 1,090,880 | 1, 125, 477 | 5, 779, 660 | 5, 314, 138 | 177, 710 | 141, 312 | 5, 287, 740 | 4, 120, 401 | 12, 344, 940 | 10, 944, | ¹ Included under "Undistributed." ² Includes 4,619,280 tons of road-base material valued at \$3,169,356 produced by the State of Pennsylvania and used on roads. ## GOLD, SILVER, COPPER, LEAD, AND ZINC IN MONTANA (DETAILED STATISTICS-MINE REPORT) By T. H. MILLER 1 ### SUMMARY OUTLINE | | Page | 1 | Page | |--|---
---|---| | Calculation of value of metal production Mine production by counties Mining industry Ore classification Metallurgic industry Review by counties and districts Beaverhead County Broadwater County Carbon County Cascade County Deer Lodge County Flathead County Flathead County Flathead County Calletin County | 143
143
147
149
150
154
160
164
165
165
165 | Review by counties and districts—Con. Lewis and Clark County Lincoln County Madison County Meagher County Mineral County Missoula County Phillips County Phillips County Powell County Ravalli County Sanders County Silver Bow County Butte or Summit Valley district | 167
169
169
171
172
172
172
173
173
173
174 | | Gallatin County Granite County | 166 | Toole CountyYellowstone County | 175
175 | The output of gold, silver, copper, lead, and zinc from mines in Montana in 1934, in terms of recovered metals, was 97,445.95 fine ounces of gold, 4,006,468 fine ounces of silver, 63,265,000 pounds of copper, 20,010,000 pounds of lead, and 61,442,256 pounds of zinc. This output compares with a production in 1933 of 57,822.20 ounces of gold, 2,660,700 ounces of silver, 65,476,375 pounds of copper, 13,163,432 pounds of lead, and 41,448,905 pounds of zinc. There were 583 lode mines and 654 placers producing in 1934 compared with 426 lode mines and 276 placers in 1933. From 1904 to 1934, inclusive, the total output from Montana mines was as follows: Ore, old tailings, etc., 138,943,473 short tons; gold, 3,951,609.65 fine ounces; silver, 344,346,692 fine ounces; copper, 7,198,458,328 pounds; lead, 594,824,248 pounds; and zinc, 2,798,-121,557 pounds. The total value of the output from 1904 to 1934, inclusive, is \$1,725,278,755, and the total value of the output from 1862 to 1934, inclusive, is estimated at \$2,824,298,454. Calculation of value of metal production.—The value of metal production herein reported has been calculated at the figures given in the table that follows. Gold in 1930-32 is figured at \$20.671835 per ounce, the Treasury legal coinage value for fine gold from January 18, 1835, to January 31, 1934; in 1933 at \$25.56 and in 1934 at \$34.95 per ounce, the average weighted yearly United States Government ¹ Assisted by Paul Luff and Jeannette Froiseth. prices.² The silver price in 1930-33 is the average New York price for bar silver; in 1934 the Treasury buying price for newly mined silver, \$0.64646464+ per ounce. The copper, lead, and zinc prices are weighted averages, for each year, of all grades of primary metal sold by producers. Prices of gold, silver, copper, lead, and zinc, 1930-34 | Year | Gold | Silver | Copper | Lead | Zinc | |------|---|--|--|-----------------------------|---| | 1930 | Per fine
ounce
1 \$20.67+
1 20.67+
1 20.67+
25.56
34.95 | Per fine
ounce
\$0.385
.290
.282
.350
2.646+ | Per pound \$0. 130 .091 .063 .064 .080 | Per pound \$0.050 .037 .037 | Per
pound
\$0.048
.038
.030
.042
.043 | ^{1 \$20.671835.} Mine production of gold, silver, copper, lead, and zinc in Montana, 1930-34, in terms of recovered metals | Year | | Mi
produ | nes
icing | Ore, old
tailings, | Gold (lode | and placer) | Silver (lode | and placer) | |--------------------------------------|--------|---------------------------------|--------------------------------|---|---|--|---|---| | Tear | | Lode | Placer | etc. (short
tons) | Fine ounces | Value | Fine ounces | Value | | 1930
1931
1932
1933
1934 | | 193
243
390
426
583 | 73
118
232
276
654 | 2, 686, 669
2, 085, 683
765, 014
862, 486
1, 066, 952 | 43, 489. 17
40, 112. 16
40, 602. 01
57, 822. 20
97, 445. 95 | \$899, 001
829, 192
839, 318
1 1, 477, 935
3, 405, 736 | 7, 052, 889
3, 829, 837
1, 686, 213
2, 660, 700
4, 006, 468 | \$2,715,362
1,110,653
475,512
931,245
2,590,040 | | | , | _ | | | | | | | | | | Copper | | Le | ad | Zi | ne . | Total | | Year | Pounds | | Value | Le
Pounds | ad
Value | Zi | ne
Value | Total
value | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Gold and silver produced at placer mines in Montana, 1930-34, in fine ounces, in terms of recovered metals | | Sluic | ing | Dry-land | dredges 1 | Floating | dredges | Tota | 1 | |------|---|--------------------------------|--------------------------|------------|---------------------------|---------------|--|--------------------------------------| | Year | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | | 1930 | 720. 74
1, 907. 86
3, 537. 42
4, 022. 86
5, 607. 71 | 86
233
422
500
686 | 1, 546. 49
4, 877. 79 | 275
889 | 3, 135. 73
15, 058. 39 | 448
1, 562 | 720. 74
1, 907. 86
3, 537. 42
8, 705. 08
25, 543. 89 | 86
233
422
1, 223
3, 137 | ¹ Drag-line and power-shovel excavators with sluices or special amalgamators. **^{\$0.64646464.}** ² The Treasury from Feb. 1, 1934, through December 1934 has calculated all gold, old and new, at \$35.00 per ounce, under authority of the Gold Reserve Act of Jan. 31, 1934. Details of the U. S. Government fluctuating price of gold in 1933 to Jan. 31, 1934, may be found in Minerals Yearbook, 1934, pp. 25-28. Gold.—The output of gold from mines in Montana in 1934 increased 39,623.75 ounces (68.53 percent) over 1933, the output from lode mines increasing 22,784.94 ounces and that from placers 16,838.81 ounces. Gold recovered from siliceous material (chiefly gold ore) increased more than 23,000 ounces; there was also an increase in gold from both lead-zinc ore and lead ore, but a decrease of nearly 3,200 ounces from copper material. Siliceous ore, old tailings, etc., yielded 66.59 percent of the total gold, placers 26.21 percent, and other material (copper ore, lead ore, lead-zinc ore, etc.) 7.20 percent. Crude ore, old tailings, etc., smelted yielded 29 percent of the gold, concentrates of all classes 24 percent, and bullion from gold and silver mills 21 percent. Substantial increases in gold production were recorded at many lode mines, including the Gould, August (Little Ben), Sleeping Princess, Hidden Lakes, Ohio-Keating, B & H, Prospect, Spring Hill, Boss Tweed & Clipper, Scratch Gravel, Grant & Hartford, Keating, Old Dominion, Comet & Gray Eagle, and Bachelor; these gains were offset in part by decreases at the Midas, Southern Cross, Mammoth, Ermont, Holdfast, Golden Sunlight, Jardine, and Jib mines. Most of the increase in gold from placer mines came from the Pioneer and Ophir Gulch dredges in Powell County and the Winston dragline dredge in Jefferson County; these increases were offset in part by the decrease from the Story dredge in Madison County, which suspended operations late in 1933. The leading producers of gold in Montana in 1934 were the Pioneer dredge, Ophir Gulch dredge, August (Little Ben Mining Co.), Gould (Standard Silver-Lead Mining Co.), Jardine, Winston dragline dredge, Boss Tweed & Clipper, Sleeping Princess (Thompson Gold Milling Co.), Anaconda (copper and zinc mines), Gold Coin, Hidden Lakes, Ohio-Keating, and Prospect properties. Silver.—The output of silver in Montana in 1934 increased 1,345,768 ounces (50.58 percent) over 1933, due chiefly to the higher output of lead-zinc ore and silver ore. Copper ore and old tailings yielded 45.13 percent of the total silver; lead-zinc ore, 35.64 percent; and siliceous ore, old tailings, etc., 15.17 percent. Concentrates of all classes yielded 85.19 percent of the silver and crude ore smelted, 13.55 percent. Large increases in silver production were reported at the Anaconda (from both copper and zinc mines), Trout, Flathead, Granite Bimetallic, Comet & Gray Eagle, and Quartz Hill & Argyle Silver properties. The Anaconda Copper Mining Co. was again by far the largest producer of silver in Montana, reporting an increase from both copper ores and lead-zinc ore. Other leading producers in 1934 were the Trout, Emma, Flathead, Granite Bimetallic, Quartz Hill & Argyle Silver, Comet & Gray Eagle, Blue Eyed Maggie, Gould, and Montana Lead mines. Copper.—The output of copper in Montana in 1934 decreased 2,211,375 pounds (3.38 percent) from 1933, but, owing to the advance in sale price per pound from 6.4 cents in 1933 to 8 cents in 1934, the total value of the 1934 output increased \$870,712. Copper or , old tailings, etc., yielded 97.74 percent of the total copper and lead-zinc ore nearly all the remainder. Concentrates of all classes yielded 91.53 percent of the copper and mine-water precipitates, 8.17 percent. In 1934, as usual, the Anaconda Copper Mining Co. was the only large producer of copper in Montana; most of the company output came from copper ore treated by flotation, but there was a good increase in copper
from the Orphan Girl mine, a producer of lead-zinc ore. Other producers of copper in Montana in 1934 included the Emma, Trout, Comet & Gray Eagle, and Josephine mines, all pro- ducers of lead-zinc ore. Lead.—The output of lead in Montana was 20,010,000 pounds in 1934 compared with 13,163,432 pounds in 1933, an increase of 6,846,568 pounds (52 percent). Most of the increase came from lead-zinc ore, but increases were also recorded from zinc slag, lead ore, old tailings, etc., and siliceous material. Lead-zinc ore yielded 78.79 percent of the total lead; lead ore, old tailings, etc., 12.88 percent; and zinc slag, 6.76 percent. Concentrates of all classes yielded 80.22 percent of the lead, crude ore smelted 12.96 percent, and zinc slag 6.76 percent. The Orphan Girl mine (Anaconda Copper Mining Co.) was the argest producer of lead in Montana in 1934, followed by the Jack Waite and Emma mines and the slag dump at East Helena. Other large producers were the Trout, Comet & Gray Eagle, Little Sampson, Josephine, Hazel T., Blue Eyed Maggie, and Hecla mines. Zinc.—The output of zinc in Montana increased 19,993,351 pounds (48.24 percent)—from 41,448,905 pounds in 1933 to 61,442,256 pounds in 1934. Lead-zinc ore (all milled) yielded 78.09 percent of the total zinc and accounted for nearly 82 percent of the increase; the remainder (21.91 percent) of the zinc came from the slag fuming plant at East Helena. The Orphan Girl mine at Butte was again the largest producer of zinc in Montana, and it was followed by the slag plant at East Helena and the Emma mine at Butte, all three operated by the Anaconda Copper Mining Co. Other large producers were the Trout, Jack Waite, Josephine, Comet & Gray Eagle, Silver Prince, and Curry mines. ## MINE PRODUCTION BY COUNTIES Mine production of gold, silver, copper, lead, and zinc in Montana in 1934, by counties, in terms of recovered metals | | | | | Ore, old | | | Gol | đ | | | | | Silv | er | | | |---|--------------------|----------------------|-----------------------------|--|---|---|--|---|---|---|---|--|----------------------|-----------------------|---|--| | County | Mine | s prod | ucing | tailings,
etc. | Lo | de . | Plac | eer | То | tal | Lo | de | Pla | cer | То | tal | | | Lode | Placer | Total | Short tons | Fine
ounces | Value | Fine
ounces | Value | Fine
ounces | Value | Fine
ounces | Value | Fine
ounces | Value | Fine
ounces | Value | | Beaverhead
Broadwater | 36
74 | 18
35
2 | 54
109
2 | 27, 338
7, 673 | 5, 004. 35
5, 282. 29 | \$174, 902
184, 616 | 120. 20
380. 63
8. 07 | \$4, 201
13, 303
282 | 5, 124. 55
5, 662. 92
8. 07 | \$179, 103
197, 919
282 | 152, 310
17, 619 | \$98, 463
11, 390 | 14
51 | \$9
33 | 152, 324
17, 670 | \$98, 472
11, 423 | | Cascade
Deer Lodge
Fergus
Flathead | 8
15
13
3 | 27
3 | 8
42
16
3 | 665
15, 521
599
3, 796 | 25. 35
2, 923. 92
266. 58
30. 53 | 886
102, 191
9, 317
1, 067 | 75. 88
21. 66 | 2, 652
757 | 25. 35
2, 999. 80
288. 24
30. 53 | 886
104, 843
10, 074
1, 067 | 14, 720
3, 117
3, 380
133, 220 | 9, 516
2, 015
2, 185
86, 122 | 6
3 | 4
2 | 14, 720
3, 123
3, 383
133, 220 | 9, 516
2, 019
2, 187
86, 122 | | Gallatin | 47
77
65 | 33
44
80
18 | 1
80
121
145
25 | 65, 682
34, 272
115, 826
3, 964 | 7, 468. 64
5, 093. 19
12, 815. 05
1, 015. 05 | 261, 029
178, 007
447, 886
35, 476 | 37. 34
249. 24
4, 052. 33
656. 48
49. 67 | 1, 305
8, 711
141, 629
22, 944
1, 736 | 37. 34
7, 717. 88
9, 145. 52
13, 471. 53
1, 064. 72 | 1, 305
269, 740
319, 636
470, 830
37, 212 | 451, 938
128, 044
110, 546
14, 202 | 292, 162
82, 776
71, 464
9, 181 | 25
871
88
6 | 16
563
57
4 | 451, 963
128, 915
110, 634
14, 208 | 292, 178
83, 339
71, 521
9, 185 | | Lincoln | 165
1 | 75
5
29
23 | 240
6
30
32 | 58, 080
110
20
837 | 1, 015. 05
14, 795. 48
59. 80
3. 52
985. 49 | 517, 102
2, 090
123
34, 443 | 455. 91
37. 08
573. 65
948. 90 | 15, 934
1, 296
20, 049
33, 164 | 15, 251. 39
96. 88
577. 17
1, 934. 39 | 533, 036
3, 386
20, 172
67, 607 | 36, 404
17
1, 932 | 23, 534
11
1, 249 | 76
3
11
14 | 49
2
7
9 | 36, 480
20
11
1, 946 | 23, 583
13
7
1, 258 | | Park
Phillips
Powell
Rayalli | 6
5
21 | 33
7
57
6 | 39
12
78
10 | 35, 349
21, 756
1, 933
244 | 5, 060. 00
6, 216. 28
1, 205. 98
93. 82 | 176, 847
217, 259
42, 149
3, 279 | 839. 17
29. 93
16, 430. 30
55. 25 | 29, 329
1, 046
574, 239
1, 931 | 5, 899. 17
6, 246. 21
17, 636. 28
149. 07 | 206, 176
218, 305
616, 388
5, 210 | 10, 576
6, 469
64, 384
1, 089 | 6, 837
4, 182
41, 622
704 | 133
3
1,700 | 86
2
1,099
2 | 10, 709
6, 472
66, 084
1, 092 | 6, 923
4, 184
42, 721
706 | | Sanders
Silver Bow
Toole
Yellowstone | 3 | 152
1 1 | 175
175 | 28, 800
644, 487 | 107. 84
3, 448. 90 | 3, 769
120, 539 | 107. 81
412. 13
1. 23
1. 03 | 3, 768
14, 404
43
36 | 215. 65
3, 861. 03
1. 23
1. 03 | 7, 537 | 27, 225
2, 826, 139 | 17, 600
1, 826, 999 | 17
113 | 11 | 27, 242 | 17, 611
1, 827, 072 | | Total, 1933 | 583
426 | 654
276 | 1, 237
702 | 1, 066, 952
862, 486 | 71, 902. 06
49, 117. 12 | 2, 512, 977
11, 255, 433 | 25, 543. 89
8, 705. 08 | 892, 759
1 222, 502 | 97, 445. 95 | | 4, 003, 331
2, 659, 477 | 2, 588, 012
930, 817 | 3, 137
1, 223 | 2, 028
428 | 4, 006, 468
2, 660, 700 | 2, 590, 040
931, 245 | [:] Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+per ounce). Mine production of gold, silver, copper, lead, and zinc in Montana in 1934, by counties, in terms of recovered metals—Continued | | Con | oper | Lea | đ | Zi | ne | | Total value | | |---|---|--|---|---|---|-----------------------------------|--|--|---| | County | Pounds | Value | Pounds | Value | Pounds | Value | Lode | Placer | Lode and
placer | | Beaverhead
Broadwater
Carbon | 36, 075
11, 075 | \$2, 886
886 | 196, 027
151, 054 | \$7, 253
5, 589 | | | \$283, 504
202, 481 | \$4, 210
13, 336
282 | \$287, 71
215, 81
28 | | Cascade. Deer Lodge. Fergus. Flathead. Gallatin. | 450
5, 725
150
25 | 36
458
12
2 | 40, 919
1, 378
1, 649 | 1, 514
51
61 | | | 11, 952
104, 664
11, 565
87, 252 | 2, 656
759 | 11, 95
107, 32
12, 32
87, 25
1, 30 | | Granite Jefferson Lewis and Clark Lincoln Madison | 183, 600
63, 775
18, 075
2, 425
43, 925 | 14, 688
5, 102
1, 446
194
3, 514 | 835, 000
576, 027
1, 833, 892
172, 108
141, 865 | 30, 895
21, 313
67, 854
6, 368
5, 249 | 4, 432, 535
435, 907
13, 481, 279 | \$190, 599
18, 744
579, 695 | 789, 373
305, 942
1, 168, 345
51, 219
549, 399 | 8, 727
142, 192
23, 001
1, 740
15, 983 | 798, 10
448, 13
1, 191, 34
52, 95
565, 38 | | Meagher Mineral Missoula Park Phillips | 9, 475
1, 500 | 758
120 | 38, 162 | 1, 412 | | | 2, 117
123
36, 450
185, 216
221, 441 | 1, 298
20, 056
33, 173
29, 415
1, 048 | 3, 41
20, 17
69, 62
214, 63
222, 48 | | Powell | 4, 025
3, 125
25, 225
62, 856, 150 | 322
250
2, 018
5, 028, 492 | 115, 216
5, 000
5, 119, 946
10, 781, 757 | 4, 263
185
189, 438
398, 925 | 763, 163
42, 329, 372 | 32, 816
1, 820, 163 | 88, 356
4, 418
245, 641
9, 195, 118 | 575, 338
1, 933
3, 779
14, 477 | 663, 66
6, 36
249, 42
9, 209, 56 | | Yellowstone | 63, 265, 000
65, 476, 375 | 5, 061, 200
4, 190, 488 | 20, 010, 000
13, 163, 432 | 740, 370
487, 047 | 61, 442, 256
41, 448, 905 | 2, 642, 017
1, 740, 854 | 13, 544, 576
1 8, 604, 639 | 894, 787
1 222, 930 | 14, 439, 3
1 8, 827, 5 | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Gold and silver produced at placer mines in Montana in 1934, by counties, in fine ounces, in terms of recovered metals | | Sluici | ng | Dry-land d | redges 1 | Floating o | iredges | Tota | al | |--
--|---|--------------------------|------------|---------------------------|---------------|--|--| | County | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | | Beaverhead Broadwater Carbon Deer Lodge Fergus Gallatin Granite Jefferson Lewis and Clark Lincoln Madison Meagher Mineral Missoula Park Phillips Powell Ravalli Sanders Silver Bow Toole | 120. 20 212. 38 8. 07 75. 88 21. 66 249. 24 206. 38 656. 48 49. 67 455. 91 37. 08 573. 65 948. 90 839. 17 29. 93 29. 24 206. 38 5107. 81 | 14
33
6
3
79
88
6
76
3
11
11
14
133
3
59
3
17 | | 792 | 15, 058. 39 | 1, 562 | 120. 20
380. 63
8. 07
75. 88
21. 66
37. 34
49. 92
44, 052. 33
656. 48
49. 67
455. 91
37. 08
573. 65
948. 90
839. 17
29. 93
16, 430. 30
55. 25
107. 81
412. 13 | 14
51
6
3
871
88
6
6
6
6
76
3
11
14
133
3
1,700
3
17 | | Yellowstone | 1. 03 | | | | | | 1. 03 | | | Total, 1933 | 5, 607. 71
4, 022. 86 | 686
500 | 4, 877. 79
1, 546. 49 | 889
275 | 15, 058. 39
3, 135. 73 | 1, 562
448 | 25, 543, 89
8, 705, 08 | 3, 137
1, 223 | ¹ Dragline and power-shovel excavators with sluices or special amalgamators. #### MINING INDUSTRY The general increase in the interest in gold mining in Montana continued at a greater rate in 1934. Several new operations reached an important position in gold production, including the new flotation plant of the Montana Consolidated Mines Corporation at the Spring Hill mine, the new cyanidation plant of the United Gold Corporation at the Golden Messenger mine, the new flotation plant of the Inspiration Gold Mining Co. at the B & H and Pete & Joe properties, and the operations of the new tailings mill of the Atlas Mines Corporation at the Bald Butte property. Important increases in gold output were reported at many lode properties, including the Standard Silver-Lead Mining Co. (Gould mine), the Little Ben Mining Co. (August mine), the Virginia City Gold Mining Co. (Prospect group), the Pacific Gold Mining Co., the Thompson Gold Milling Co., the Lakes Mining & Milling Syndicate, and the McLaren Gold Mining Co. The increase in gold from placer operations was noteworthy, particularly at the Pioneer and Ophir Gulch dredges. The output of lead-zinc ore continued to increase, and most of it came from properties at Butte and Philipsburg; the operation of the new flotation plant of the Basin Montana Tunnel Co. at Basin was also important. Operations at the Granite Bimetallic property near Philipsburg resulted in a large increase in silver from silver ore. There was a substantial increase in output from the slag fuming plant at East Helena. Labor difficulties at Butte, Anaconda, and Great Falls during the summer undoubtedly retarded mining development, but in general the mining industry in Montana improved materially in 1934. #### ORE CLASSIFICATION Ore, old tailings, etc., sold or treated in Montana in 1934, with content in terms of recovered metals | Source | Mines
pro-
ducing | Ore, old
tailings,
etc. | Gold | Silver | Copper | Lead | Zine | |--|---------------------------|--|---|--|---|--|------------------------------| | Dry gold oreDry gold and silver ore | 428
22
42 | Short tons
1 243, 405
2 4, 374
40, 049 | Fine ounces
63, 228. 42
907. 18
749. 64 | Fine ounces
159, 225
48, 908
399, 730 | Pounds
117, 184
12, 844
29, 437 | Pounds
233, 184
2, 200
77, 701 | Pounds | | Copper ore Lead ore Zinc ore Lead-zinc ore | 492
7
78
1
14 | 287, 828
3 458, 587
5 10, 321
6 65, 913
244, 303 | 64, 885. 24
1, 396. 18
2, 544. 41
3, 076. 23 | 607, 863
1, 808, 104
152, 723
6, 944
1, 427, 697 | 159, 465
461, 837, 368
23, 975
1, 244, 192 | 313, 085
2, 578, 153
1, 352, 189
15, 766, 573 | 13, 464, 977
47, 977, 279 | | Total, lode mines_
Total, placers | 7 583
654 | 1,066,952 | 71, 902. 06
25, 543. 89 | 4, 003, 331
3, 137 | 463, 265, 000 | 20, 010, 000 | 61, 442, 256 | | Total, 1933 | 1, 237
702 | 1, 066, 952
862, 486 | 97, 445. 95
57, 822. 20 | 4, 006, 468
2, 660, 700 | 463, 265, 000
865, 476, 375 | 20, 010, 000
13, 163, 432 | 61, 442, 256
41, 448, 905 | ¹ Includes 20 tons of old tailings and 10 tons of old slag amalgamated; 785 tons of old tailings cyanided; 4,079 tons of old tailings amalgamated and concentrated; 4,713 tons of old tailings concentrated; and 1,041 tons of old tailings, 115 tons of old slag, and 8 tons of old mill clean-up sold to a smelter. ¹ Includes 135 tons of old tailings cyanided and 79 tons of old tailings sold to a smelter. ¹ Includes 400 tons of old tailings concentrated. ⁴ Includes 5 187 305 a sunded a concentrated. Includes 5,167,305 pounds of copper recovered from precipitates. Includes 350 tons of old tailings concentrated and 76 tons of old mill clean-up sold to a smelter. Current slag fumed. A mine producing more than one class of ore is counted but once in arriving at total for all classes, Includes 9,167,018 pounds of copper recovered from precipitates. Value of metals from ore, old tailings, etc., sold or treated in Montana in 1934, by classes of ore | Class | Ore, old
tailings,
etc. (short
tons) | Gold | Silver | Copper | Lead | Zinc | Total
value | |---|--|-------------------------------------|--|--|---|----------------------------|---| | Dry gold ore
Dry gold and silver ore
Dry silver ore | 243, 405
4, 374
40, 049 | \$2, 209, 833
31, 706
26, 200 | \$102, 934
31, 617
258, 411 | \$9, 375
1, 027
2, 355 | \$8, 628
81
2, 875 | | \$2, 330, 770
64, 431
289, 841 | | Copper ore Lead ore Lead-zinc ore | 287, 828
458, 587
10, 321
65, 913
244, 303 | 2, 267, 739
48, 797
88, 927 | 392, 962
1, 168, 875
98, 730
4, 489
922, 956 | 12, 757
1 4, 946, 990
1, 918
99, 535 | 11, 584
95, 392
50, 031
583, 363 | \$578, 994
2, 063, 023 | 2, 685, 042
6, 164, 662
284, 967
633, 514
3, 776, 391 | | Total, lode minesTotal, placers | 1, 066, 952 | 2, 512, 977
892, 759 | 2, 588, 012
2, 028 | 1 5, 061, 200 | 740, 370 | 2, 642, 017 | 13, 544, 576
894, 787 | | Total, 1933 | 1, 066, 952
862, 486 | 3, 405, 736
21, 477, 935 | 2, 590, 040
931, 245 | ¹ 5, 061, 200
³ 4, 190, 488 | 740, 370
487, 047 | 2, 642, 017
1, 740, 854 | 14, 439, 363
2 8, 827, 569 | Includes value of 5,167,305 pounds of copper recovered from precipitates. Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Includes value of 9,167,018 pounds of copper recovered from precipitates. Gold ore.—The output of gold ore, old tailings, etc., was 243,405 tons from 428 properties in 1934 compared with 163,832 tons from 342 properties in 1933; it represented nearly 23 percent of the total ore, etc., produced in the State in 1934 and had an average value of \$9.58 a ton in terms of recovered metals. There was a large decrease in old tailings treated due to the closing of the Jib tailings mill at Basin, but this loss was more than offset by substantial increases from a large number of gold mines, including the August, Spring Hill, Boss Tweed & Clipper, Gould, Hidden Lakes, B & H, Jardine, and Fleming. Of the total gold material produced, 76,922 tons were concentrated, 62,765 tons cyanided, 20,771 tons amalgamated, 51,853 tons treated at plants employing amalgamation (or cyanidation) and concentration, and 29,930 tons smelted; the remainder (1,164 tons) was miscellaneous material smelted. The largest producers of gold ore, old tailings, etc., in Montana in 1934 were the Jardine, Boss Tweed & Clipper, August, Sleeping Princess, Spring Hill, Gould, Gold Coin, Hidden Lakes, Prospect, and B & H properties. Gold and silver ore.—The output of gold and silver ore, etc., was 4,374 tons from 22 properties in 1934 compared with 1,600 tons from 9 properties in 1933. Except for 135 tons of old tailings treated by cyanidation, all the material produced was shipped for smelting. Most of it came from the Hope & Katie (Jib) mine at Basin; other producers included the Blue Eyed Maggie, Little Klondyke, Smith (old tailings), and Emery properties. Silver ore.—The output of silver material increased from 1,805 tons of ore and old tailings from 16 properties in 1933 to 40,049 tons of ore from 42 properties in 1934; most of the increase came from the Granite Bimetallic property near Philipsburg where 30,000 tons of silver ore were treated by flotation. The remainder of the silver material in 1934 was ore of smelting grade, chiefly from the
Flathead, Lone Pine & Argyle Silver, Morning Glory, Nevada, Ingersoll, Magna Charta, and Lavena mines. Copper ore.—The Anaconda Copper Mining Co. was the only large producer of copper ore in Montana in 1934; the output from the Anaconda group decreased nearly 19,000 tons compared with 1933. There was also a decrease in copper ore from the Mammoth mine at Jefferson Island. Copper ore and old tailings from the Black Pine property in the Henderson district near Philipsburg were concentrated. Copper ore of smelting grade was shipped from five properties. Copper ore and old tailings represented 43 percent of the State output of ore, etc., and nearly all of it was concentrated. Lead ore.—Seventy-eight properties produced 10,321 tons of lead material in 1934 compared with 54 properties producing 7,425 tons in 1933. The output in 1934 comprised 7,075 tons of ore and 76 tons of mill clean-up material smelted and 2,820 tons of ore and 350 tons of old tailings concentrated. Most of the lead ore of smelting grade came from the Little Sampson, Jack Waite, Blue Eyed Maggie, and Hecla mines, and most of the milling ore came from Hazel T. Hartley, and Goldfinch mines. Zinc ore.—No zinc ore was produced in Montana in 1934, but 65,913 tons of zinc slag from the lead smelter at East Helena were treated by the Anaconda Copper Mining Co. in its fuming plant; the slag output in 1933 was 42,510 tons. Lead-zinc ore.—Fourteen mines produced 244,303 tons of lead-zinc ore in 1934 compared with 9 mines producing 152,582 tons in 1933; the output in 1934 represented nearly 23 percent of the State total ore, etc. All the lead-zinc ore was treated by flotation, and most of it came from the Orphan Girl and Emma mines at Butte; other producers included the Jack Waite, Trout, Comet & Gray Eagle, Josephine, and Silver Princess mines. Ore, old tailings, etc., sold or treated in Montana in 1934, by counties, with content in terms of recovered metals #### DRY GOLD ORE | • | Ore, old | | | | | 1 | |---|---|---|---|--|--|--------| | County | tailings, | Gold | Silver | Copper | Lead | Zinc | | County | etc. | doid | DIIVEL | Сорры | Deau | Zine | | | | | 1 | | 1 | | | | CI | 737 | 771 | | | | | Beaverhead . | Short tons | Fine ounces | Fine ounces | Pounds | Pounds | Pounds | | Broadwater | 21, 741
6, 822 | 4, 287. 99 | 22, 661 | 8,668 | 25, 991 | | | Cascade | 0, 822
45 | 4, 955. 39
21. 23 | 8,044 | 9, 932 | 38, 762 | | | | 1 15, 359 | 2, 920, 97 | 17 | | | | | Deer Lodge | 472 | | 518 | 5, 616 | | | | Fergus
Granite | 2 13, 918 | 245. 62
6, 613. 10 | 302 | 87 | | | | | 19,922 | | 5, 273 | 12,749 | 2, 649
23, 735 | | | Jefferson
Lewis and Clark | 4 46, 824 | 3, 683. 15
12, 469. 62 | 13, 623 | 18, 430 | 23, 735 | | | Lincoln | \$ 10,024 | | 62, 667 | 9, 589 | 38, 797 | | | Lincoln | 5 1,846 | 633. 45 | 5, 256 | 2, 025 | 54, 973 | | | Madison | 6 57, 677 | 14, 687. 77 | 30, 415 | 42, 913 | 42, 097 | | | Meagher | 110 | 59. 80 | 17 | 200 | | | | Mineral | 20 | 3. 52 | | | | | | Missoula | 694 | 975. 42 | 628 | 1,700 | | | | Park | 7 35, 277 | 5, 058. 70 | 1, 264 | 1,500 | 41 | | | Phillips | 21,756 | 6, 216. 28 | 6, 469 | | | | | Powell. | 8 487 | 231.69 | 598 | 260 | 1, 139 | | | Ravalli | 244 | 93. 82 | 1,089 | 3, 125 | 5,000 | | | Sanders | 15 | 4.12 | | | | | | Silver Bow | 176 | 66. 78 | 384 | 390 | | | | • | 243, 405 | 63, 228, 42 | 159, 225 | 117, 184 | 233, 184 | | | Total, 1933 | 163, 832 | 41, 270, 73 | 114, 958 | 117, 250 | 105, 338 | | | | | | , | | 200,000 | | | | DRY | GOLD AN | D SILVER | ORE | | | | Beaverhead | | | l . | ORE | | | | | DRY | 7. 64
8. 40 | 247 | | | | | Fergus | 16 | 7. 64 | 247
452 | 14 | 2.162 | | | Fergus Granite Jefferson | 16
35
231
3,346 | 7. 64
8. 40 | 247 | 14
150 | 2,162 | | | Fergus Granite Jefferson Lewis and Clark | 16
35
231
3,346
9 8 | 7. 64
8. 40
63. 69 | 247
452
4,308 | 14 | 2,162 | | | Fergus Granite Jefferson Lewis and Clark Madison | 16
35
231
3,346
9 8 | 7. 64
8. 40
63. 69
451. 60 | 247
452
4, 308
19, 418 | 14
150
9,893 | 2,162 | | | Fergus Granite Jefferson Lewis and Clark Madison | 16
35
231
3,346
9 8 | 7. 64
8. 40
63. 69
451. 60
7. 10 | 247
452
4,308
19,418
316 | 14
150
9,893
24 | | | | Beaverhead Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow Silver Bow Silver Bow Silver Bow Fowell Silver Bow Fergus Fergu | 16
35
231
3,346
9 8 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96 | 247
452
4, 308
19, 418
316
1, 321 | 14
150
9, 893
24
240 | 38 | | | Fergus Granite Granite Lefferson Lewis and Clark Madison Powell | 16
35
231
3,346
9 8
10 206
11 493
39 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96
322. 79
13. 00 | 247
452
4, 308
19, 418
316
1, 321
21, 481
1, 365 | 14
150
9, 893
24
240
2, 411 | 38 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow | 16
35
231
3,346
9 8
10 206
11 493
39 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96
322. 79
13. 00 | 247
452
4,308
19,418
316
1,321
21,481
1,365 | 14
150
9, 893
24
240
2, 411
112 | 38 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow | 16
35
231
3,346
9 8
10 206
11 493
39 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96
322. 79
13. 00 | 247
452
4, 308
19, 418
316
1, 321
21, 481
1, 365 | 14
150
9, 893
24
240
2, 411 | 38 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow | 16
35
231
3,346
9 8
10 206
11 493
39 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96
322. 79
13. 00 | 247
452
4, 308
19, 418
316
1, 321
21, 481
1, 365
48, 908
35, 277 | 14
150
9, 893
24
240
2, 411
112 | 38 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 | 16
35
231
3,346
9 8
10 206
11 493
39
4, 374
1, 600 | 7. 64 8. 40 63. 69 451. 60 7. 10 32. 96 322. 79 13. 00 907. 18 494. 08 | 247
452
4, 308
19, 418
316
1, 321
21, 481
1, 365
48, 908
35, 277 | 14
150
9, 893
24
240
2, 411
112 | 2, 200 | | | Fergus. Granite. Jefferson Lewis and Clark. Madison. Powell. Silver Bow Total, 1933 | 166
355
231
3,346
9 8
10 206
11 493
39
4,374
1,600 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96
322. 79
13. 00
907. 18
494. 08
DRY SILV | 247
452
4,308
19,418
318
1,321
21,481
1,365
48,908
35,277
VER ORE | 14
150
9, 893
24
240
2, 411
112 | 2, 200 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater | 16
35
231
3,346
8 10 206
11 493
39
4, 374
1, 600 | 7. 64 8. 40 63. 69 451. 60 7. 10 32. 96 322. 79 13. 00 907. 18 494. 08 DRY SILV |
247
4,308
19,418
319,418
11,321
21,481
1,365
48,908
35,277
VER ORE | 14
150
9, 893
24
2, 411
112
12, 844
5, 082 | 38 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade | 166
355
231
3,346
9 8
10 206
11 493
39
4,374
1,600 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96
322. 79
13. 00
907. 18
494. 08
DRY SILV | 247
452
4,308
19,418
318
1,321
21,481
1,365
48,908
35,277
VER ORE | 14
150
9, 893
24
240
2, 411
112
12, 844
5, 082 | 2, 200 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade | 16
35
231
3,346
8 10 206
11 493
39
4, 374
1, 600 | 7. 64 8. 40 63. 69 451. 60 7. 10 32. 96 322. 79 13. 00 907. 18 494. 08 DRY SILV | 247
4,308
19,418
319,418
11,321
21,481
1,365
48,908
35,277
VER ORE | 14
150
9, 893
24
240
2, 411
112
12, 844
5, 082 | 2, 200 | | | Fergus. Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade Deer Lodge Fergus | 16
35
231
3,346
9 8
10 206
11 493
39
4, 374
1, 600 | 7. 64 8. 40 63. 69 451. 60 7. 10 32. 96 322. 79 13. 00 907. 18 494. 08 DRY SILV 70. 46 5. 30 2. 10 | 247
452
4,308
19,418
316
1,321
21,481
1,365
48,908
35,277
VER ORE | 14
150
9, 893
24
2, 411
112
12, 844
5, 082 | 2, 200 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade Deer Lodge Fergus Flathead | 16
35
231
3, 346
9 8
10 206
11 493
39
4, 374
1, 600 | 7. 64 8. 40 63. 69 451. 60 7. 10 32. 96 322. 79 13. 00 907. 18 494. 08 DRY SILV 70. 46 5. 30 2. 10 2. 95 | 247
4,308
19, 418
11, 321
21, 481
1, 365
48, 908
35, 277
VER ORE
111, 202
2, 248
4, 785
2, 599 | 14
150
9, 893
24
240
2, 411
112
12, 844
5, 082
18, 457
102
308
109 | 9, 866
510
4, 436 | | | Fergus. Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade Decade Fergus Fisthead Granite | 166
355
2311
3,346
9,38
10 206
11 493
39
4,374
1,600
4,321
86
79
162
83
3,796 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96
322. 79
13. 00
907. 18
494. 08
DRY SILV
70. 46
5. 30
2. 10
2. 95
6. 08
30. 53 | 247
452
4,308
19,418
1,321
21,481
1,365
48,908
35,277
VER ORE
111,202
2,248
4,785
2,599
2,618
133,220 | 14
150
9, 893
24
240
2, 411
112
12, 844
5, 082
18, 457
102
308
109
25
25 | 9, 866
510
4, 436
324
1, 649 | | | Fergus. Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade Decade Fergus Fisthead Granite | 16
35
231
3, 346
8 10 206
11 493
39
4, 374
1, 600
4, 321
86
79
162
83
3, 796
30, 027 | 7. 64 8. 40 63. 69 451. 60 7. 10 32. 96 322. 79 13. 00 907. 18 494. 08 DRY SILV 70. 46 5. 30 2. 10 2. 95 6. 08 30. 53 415. 35 | 247
4,308
19,418
316
1,321
21,481
1,365
48,908
35,277
VER ORE
111,202
2,248
4,785
2,599
2,599
2,618
133,220
107,873 | 14
150
9, 893
24
240
2, 411
112
12, 844
5, 082
18, 457
102
308
109
25
7, 458 | 9, 866
510
4, 436
 | | | Fergus. Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade Deer Lodge Fergus Flathead Granite Jefferson | 4, 321
8, 346
1000
11 493
39
4, 374
1, 600
4, 321
86
79
162
83
3, 796
30, 027 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96
322. 79
13. 00
907. 18
494. 08
DRY SILV
70. 46
5. 30
2. 10
2. 95
6. 08
8. 30. 53
415. 35 | 247
452
4,308
19,418
316
1,321
21,481
1,365
48,908
35,277
VER ORE
111,202
2,248
4,785
2,599
2,618
133,220
107,873
22,610 | 14
150
9, 893
24
240
2, 411
112
12, 844
5, 082
18, 457
102
308
109
25
7, 458
502 | 9, 866
510
4, 436
 | | | Fergus. Granite. Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade Deer Lodge Fergus Flathead Granite efferson Lewis and Clark | 16
35
231
3, 346
8 10 206
11 493
39
4, 374
1, 600
4, 321
86
79
162
83
3, 796
30, 027
596 | 7. 64 8. 40 63. 69 451. 60 7. 10 32. 96 322. 79 13. 00 907. 18 494. 08 DRY SILV 70. 46 5. 30 2. 10 2. 95 6. 08 30. 53 415. 35 | 247
4,308
19, 418
11, 321
21, 481
11, 365
48, 908
35, 277
VER ORE
111, 202
2, 248
4, 785
2, 599
2, 618
133, 220
107, 873
22, 610 | 18, 457
102
308
109, 893
24
240
2, 411
112
12, 844
5, 082
18, 457
102
308
109
25
25
7, 458
502
162 | 9, 866
510
4, 436
 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade Deer Lodge Fergus Flathead Granite Jefferson Lewis and Clark Madison Madison Madison Madison | 4, 321
8, 346
1000
11 493
39
4, 374
1, 600
4, 321
86
79
162
83
3, 796
30, 027 | 7. 64
8. 40
63. 69
451. 60
7. 10
32. 96
322. 79
13. 00
907. 18
494. 08
DRY SILV
70. 46
5. 30
2. 10
2. 95
6. 08
8. 30. 53
415. 35 | 247
4,308
19,418
316
1,321
21,481
1,365
48,908
35,277
VER ORE
111,202
2,248
4,785
2,599
2,618
133,220
107,873
22,610
5,45
1,063 | 18, 457
102
308
118, 457
102
308
109
25
5, 458
109
25
25
7, 458
502
162
22
22
25 | 9, 866
510
4, 436
 | | | Fergus Granite Granite Lefferson Lewis and Clark Madison Powell | 16
35
231
3,346
8 10 206
11 493
39
39
4,374
1,600
4,321
86
79
162
83
3,796
20,027
596
30,027
596
84
84
84
84 | 7. 64 8. 40 63. 69 451. 60 7. 10 32. 96 322. 79 13. 00 907. 18 494. 08 DRY SILV 70. 46 5. 30 2. 10 2. 95 6. 08 30. 53 415. 35 152. 29 . 70 63. 88 | 247
4,308
19, 418
31, 321
21, 481
1, 365
48, 908
35, 277
7ER ORE
111, 202
2, 248
4, 785
2, 599
2, 599
2, 599
2, 618
133, 220
107, 873
22, 610
5, 1053
10, 977 | 18, 457
102
308
24
240
2, 411
112
12, 844
5, 082
18, 457
102
308
109
25
7, 458
502
162
22
22
2, 267 | 9, 866
510
4, 436
 | | | Fergus Granite Jefferson Lewis and Clark Madison Powell Silver Bow Total, 1933 Beaverhead Broadwater Cascade Deer Lodge Fergus Flathead Granite Jefferson Lewis and Clark Madison Lewis and Clark Madison | 16
35
231
3, 346
9 8 8
10 206
11 493
39
4, 374
1, 600
4, 321
86
79
162
83
3, 796
30, 027
596 | 7. 64 8. 40 63. 69 451. 60 7. 10 32. 96 322. 79 13. 00 907. 18 494. 08 DRY SILV 70. 46 5. 30 2. 10 2. 95 6. 08 30. 53 415. 35 152. 29 . 70 | 247
4,308
19,418
316
1,321
21,481
1,365
48,908
35,277
VER ORE
111,202
2,248
4,785
2,599
2,618
133,220
107,873
22,610
5,45
1,063 | 18, 457
102
308
118, 457
102
308
109
25
5, 458
109
25
25
7, 458
502
162
22
22
25 | 9, 866
510
4, 436
 | | ¹ Includes 225 tons of old tailings eyanided and 25 tons of old tailings and 2 tons of old mill clean-up sold ¹ Includes 225 tons of old tailings cyanided and 25 tons of old tailings and 2 tons of old minimal cream-up sold to a smelter. 3 Includes 322 tons of old tailings sold to a smelter. 4 Includes 1 ton of old mill clean-up sold to a smelter. 4 Includes 20 tons of old tailings amalgamated, 560 tons of old tailings cyanided, 4,713 tons of old tailings concentrated, and 100 tons of old tailings and 1 ton of old mill clean-up sold to a smelter. 5 Includes 10 tons of old slag amalgamated and 594 tons of old tailings, 115 tons of old slag, and 1 ton of old mill clean-up sold to a smelter. 7 Includes 10 tons of old tailings amalgamated and concentrated. 8 Includes 2 tons of old mill clean-up sold to a smelter. 9 Includes 2 tons of old mill clean-up sold to a smelter. 9 Includes 135 tons of old tailings sold to a smelter. 10 Includes 135 tons of old tailings cyanided. 11 Includes 78 tons of old tailings sold to a smelter. Ore, old tailings, etc., sold or treated in Montana in 1934, by counties, with content in terms of recovered metals-Continued #### COPPER ORE | County | Ore, old
tailings,
etc. | Gold | Silver | Copper | Lead | Zinc | |------------------------------|-------------------------------|--------------------------|----------------------------|---|----------------------------|---------------------------| | Granite | Short tons | Fine ounces
16.60 | Fine ounces
11, 998 | Pounds
19,826 | Pounds | Pounds | | Madison | 3 | 10.00 | 75 | 362 | | | | Missoula | 143
23 | 10.07 | 1,304
1,519 | 7, 775
6, 825 | | | | Silver Bow | 457, 217 | 1, 359. 51 | 1, 793, 208 | 13 61, 802, 580 | | | | Гоtal, 1933 | 458, 587
491, 893 | 1, 396. 18
4, 578. 93 | 1, 808, 104
1, 613, 340 | 18 61, 837, 368
14 64, 987, 580 | | | | | | LEAD | ORE | <u>' </u> | | | | Beaverhead | 1, 260 | 638, 26 | 18, 200 | 8, 950 | 160, 170 | | | Broadwater | 15 765 | 321.60 | 7, 327 | 1,041 | 111.782 | | | Cascade | 541 | 2.02 | 9,918 | 142 | 36, 483 | | | Fergus | 9 | 6.48 | 8 | 24 | 1,054 | | | Granite | 49
16 495 | .80
128.53 |
580
7, 708 | 25 | 29, 216 | | | Jefferson
Lewis and Clark | 2, 943 | 328. 21 | 38, 503 | 2, 636
7, 723 | 83, 971
425, 041 | | | Lincoln | 2, 343 | 381.60 | 8,946 | 400 | 117, 135 | | | Madison | 154 | 64. 75 | 3, 540 | 388 | 99, 730 | | | Park | 72 | 1.30 | 9, 312 | 1 000 | 38, 121 | | | Powell | 953 | 651, 50 | 42, 305 | 1,354 | 114,077 | | | Sanders | 962 | 19. 36 | 6, 376 | 1, 292 | 1, 361, 373 | | | Total, 1933 | 10, 321
7, 425 | 2, 544. 41
1, 175. 80 | 152, 723
42, 742 | 23, 975
8, 493 | 2, 578, 153
2, 046, 666 | | | | . 4 | ZINC | ORE | | | | | Lewis and Clark | 17 65, 913 | | 6, 944 | | 1, 352, 189 | 13, 464, 977 | | Total, 1933 | 17 65, 913
18 43, 289 | 3. 25 | 6, 944
9, 376 | 2, 919 | 1, 352, 189
864, 804 | 13, 464, 97
9, 834, 08 | | | | LEAD-ZI | NC ORE | • | | | | Granite | 20, 256 | 359. 10 | 321, 906 | 143, 392 | 744, 689 | 4, 432, 53 5 | | Jefferson | 9, 913 | 677. 62 | 64, 685 | 32, 314 | 464, 613 | 435, 907 | | Jefferson
Lewis and Clark | 120 | 9. 42 | 1,571 | 577 | 16, 941 | 16, 30 | | Sandersi | 27, 800 | 84. 36 | 19, 330 | 17, 108 | 3, 758, 573 | 763, 163 | | Silver Bow | 186, 214 | 1, 945. 73 | 1, 020, 205 | 1, 050, 801 | 10, 781, 757 | 42, 329, 37 | | | 244, 303 | 3, 076. 23 | 1, 427, 697 | 1, 244, 192 | 15, 766, 573 | 47, 977, 279 | | Total, 1933 | 152, 582 | 1, 476. 16 | 790, 501 | 341, 610 | 10, 135, 271 | 31, 614, 82 | | | 102,002 | 1, 1, 0. 10 | 100,001 | 311,010 | 20, 100, 211 | 31,011,02 | | | | · | | · | | · | ¹³ Includes 400 tons of old tailings concentrated. 13 Includes 5,167,305 pounds of coppor recovered from precipitates. 14 Includes 9,167,018 pounds of coppor recovered from precipitates. 15 Includes 350 tons of old tailings concentrated. 15 Includes 76 tons of old mill clean-up sold to a smelter. 16 Includes 42,510 tons of current slag fumed. 18 Includes 42,510 tons of current slag fumed. Zinc products ¹ (as marketed from Montana mines and mills) sold to smelters and electrolytic plants in 1934 | Classification | County | Quantity
(dry
weight) | Gross
zine ¹ | Average
assay of
concen-
trates | Recovered zinc 1 | |-------------------|---|-----------------------------|------------------------------|--|--------------------------------------| | Zinc concentrates | Granite, Jefferson, Lewis and
Clark, Sanders, and Silver
Bow. | Short tons
49, 907 | Pounds
53, 375, 271 | Percent
53. 47 | Pounds
47, 977, 279 | | Total, 1933 | | 49, 907
33, 353 | 53, 375, 271
35, 338, 130 | 53. 47
52. 98 | 47, 977, 2 79
31, 806, 310 | ¹ Exclusive of zinc recovered from the treatment of current slag at East Helena. #### METALLURGIC INDUSTRY Of the 1,066,952 tons of ore, old tailings, etc., produced in 1934 in Montana, 135,524 tons (12.70 percent) were treated at gold and silver mills and 812,508 tons (76.15 percent) at concentration plants; the remainder consisted of 51,688 tons of crude ore and 1,319 tons of miscellaneous material (old tailings, slag, etc.) shipped to smelters and 65,913 tons of slag treated at a zinc fuming plant. #### METALLURGICAL PLANTS There were 71 gold and silver mills, 22 concentration plants, and 3 miscellaneous plants (1 mine-water precipitation plant, 1 slag fuming plant, and 1 electrolytic zinc plant) in operation in Montana in 1934—a total of 96 plants (exclusive of the copper smelter at Anaconda and the lead smelter at East Helena) compared with a total of 87 plants in 1933. Gold and silver mills.—The 71 gold and silver mills comprised 39 straight amalgamation plants, 14 straight cyanidation plants, 10 amalgamation and gravity concentration plants, 4 amalgamation and flotation concentration plants, 2 amalgamation, gravity, and flotation concentration plants, 1 amalgamation, cyanidation, and gravity concentration plant, and 1 cyanidation and flotation concentration plant. Of the total material treated at gold and silver mills, 20,741 tons of ore, 20 tons of old tailings, and 10 tons of old slag (15.33 percent) were treated at straight amalgamation plants in 1934 compared with a total of 10,239 tons of material in 1933; 47,774 tons of ore and 4,079 tons of old tailings (38.26 percent) were treated at combined amalgamation (or cyanidation) and concentration plants compared with 34,395 tons in 1933; and 61,980 tons of ore and 920 tons of old tailings (46.41 percent) were treated at straight cyanidation plants compared with 25,339 tons in 1933. Most of the increase in ore amalgamated came from the Gold Coin and Golden Curry mines, and nearly all the increase in ore cyanided came from the August, Hidden Lakes, Sleeping Princess, Carmody & Papesh, and Golden Messenger properties. The substantial increases in material treated at combined amalgamation (or cyanidation) and concentration plants reported at the Gould, Jardine, Prospect, and New Year's Gift properties were partly offset by a decrease at the Midas mine. The following table summarizes data for operations at gold and silver mills in 1934, by counties. Mine production of metals from gold and silver mills in Montana in 1934, by counties, in terms of recovered metals | | Ore old to | ilings, etc., | Recovered in bullion | | | | | | | | | |---------------------------------------|----------------------------------|------------------|---|---------------------|--------------------------------|------------------------|--|--|--|--|--| | County | treated (d | ry weight) | Amalga | mation | Cyanidation | | | | | | | | | Ore Old tailings, etc. | | Gold | Silver | Gold | Silver | | | | | | | Beaverhead Broadwater Cascade | Short tons
20, 185
2
28 | Short tons | Fine ounces
81. 14
11. 43 | Fine ounces | Fine ounces 3,062.73 | Fine ounces
18, 734 | | | | | | | Peer Lodge Fergus Granite | 13, 514
384
9, 606 | 1 225 | 1,886.20
232.61 | 4
43
44 | 4. 97
121. 66
1, 855. 88 | 1
82
45 | | | | | | | Jefferson Lewis and Clark Lincoln | 8, 481
10, 761
1, 845 | ³ 580 | 217. 20
594. 31
416. 14 | 42
2, 553
107 | 202. 73
1, 180. 83 | 6, 226 | | | | | | | Madison
Meagher
Mineral | 12, 565
62
20 | * 145 | 1, 718. 77
27. 60
1. 32 | 649 | 338. 21 | 2, 036
 | | | | | | | Park
Phillips
Powell
Rayalli | 31, 068
21, 649
228
60 | 4 4, 079 | 2, 482. 31
4. 50
39. 33
27. 41 | 439
8
9 | 5, 910. 18 | 5, 618 | | | | | | | Sanders
Silver Bow | 15
22 | | 4. 12
9. 70 | 2 | | | | | | | | | Total, 1933 | 130, 495
64, 855 | 5, 029
5, 118 | 7, 754. 09
7, 796. 92 | 3, 925
1, 401 | 12, 677. 19
4, 811. 30 | 32, 779
17, 963 | | | | | | | | | Concentrat | es and recovere | d metal | | |---|-------------------------------|---|--|----------------------------------|-------------------------------| | County | Concentrates
produced | Gold | Silver | Copper | Lead | | Granite Lewis and Clark Lincoln Madison Mineral | Short tons 10 87 96 111 1,456 | Fine ounces
447. 10
1, 352 06
190. 31
933. 60
2 20
2, 448. 97 | Fine ounces
86
6,025
5,112
6,345 | Pounds 150 618 2,025 2,101 1,435 | Pounds 30, 278 54, 973 8, 502 | | Total, 1933 | 1, 761
1, 158 | 5, 374. 24
3, 253. 61 | 18, 265
6, 948 | 6, 329
2, 351 | 93, 794
26, 442 | Concentration mills.—The 22 concentrating mills comprised 14 straight flotation plants (7 treating gold ore and old tailings, 3 copper ore and old tailings, 2 lead-zinc ore, 1 lead ore, and 1 silver ore), 1 combined gravity and flotation plant (treating gold ore), and 7 straight gravity concentration plants (4 treating lead ore and old tailings and 3 gold ore). In addition, lead-zinc ore from Montana was shipped to 1 plant in Idaho and 1 in Utah in 1934 for milling. Ore and old tailings treated at concentration plants increased from 708,313 tons in 1933 to 812,508 tons in 1934. More than 56 percent of the total material treated in 1934 was copper ore and old tailings; the quantity of copper material, however, decreased 21,349 tons from Comprises 20 tons of old tailings amalgamated and 560 tons of old tailings cyanided. Comprises 10 tons of old slag amalgamated and 135 tons of old tailings cyanided. Old tailings amalgamated and concentrated. Most (nearly 92,000 tons) of the increase in ore milled was in lead-zinc ore, chiefly from the Orphan Girl and Emma mines at Butte, the Trout mine at Philipsburg, and the Jack Waite mine in Sanders County. The total siliceous gold ore and old tailings milled in 1934 was substantially the same as in 1933; there was a sharp decrease in old tailings, due to the closing of the plant at the Jib dumps at Basin, but this loss was offset by large increases in gold ore and old tailings at the Spring Hill, Boss Tweed & Clipper, B & H, Fleming, Mammoth, and Larson properties. The increase in silver ore was due to renewed activity at the Granite Bimetallic mine at Philipsburg. The following tables present detailed ore-concentration data for 1934. #### Montana ore and old tailings concentrated in 1934, by classes of ore, etc., methods of concentration, and classes of concentrates | Class of material concentrated | Method of concentration | Ore and old tailings con- | Gross content of mill feed | | | | | | | |--------------------------------|-------------------------|--|---|---|--|-------------------------------|--------------|--|--| | Class of material concentrated | Method of concentration |
centrated | Gold | Silver | Copper | Lead | Zine | | | | Siliceous gold ore | Flotation | Short tons
64, 767
4, 713
30, 000
1 458, 113
2, 100
244, 303 | Fine ounces 13, 767. 40 240. 00 520. 00 2, 094. 70 438. 00 4, 856. 78 | Fine ounces 51, 812 1, 300 133, 000 1, 842, 186 10, 000 1, 603, 694 | 33, 200 | 3, 600
71, 600 | Pounds | | | | Siliceous gold ore | Gravity and flotation | ² 803, 996
6, 988 | 21, 916. 88
808. 40
30. 00
78. 00
108. 00 | 3, 641, 992
3, 700
205
3, 420
3, 625 | 62, 845, 648
1, 000
25
345
370 | 18, 367, 798
20, 000
80 | 57, 898, 554 | | | | | · | 4 812, 508 | 22, 833. 28 | 3, 649, 317 | 62, 847, 018 | 18, 403, 178 | 57, 898, 554 | | | | Class of material concentrated | Method of | Concentrates produ | ced | Gross content of concentrates | | | | | | | |--|-------------------------|--|---|---|--|---|--|--------------|--|--| | Class of material concentrated | concentration | Class | Quantity | Gold | Silver | Copper | Lead | Zine | | | | Siliceous gold ore
Siliceous gold old tailings
Siliceous silver ore
Copper sulphide and oxidized ore and old tailings.
Lead sulphide ore | Flotationdododododododo | Siliceous golddo | Short tons
2, 887
94
1, 220
5 113, 963
225 | Fine ownces
11, 436. 31
180. 90
414. 10
1, 374. 11
381. 20 | Fine ounces
41, 323
997
107, 089
1, 804, 274
8, 765 | Pounds 28, 911 1, 611 8, 943 58, 491, 188 237 | Pounds
8, 546
2, 758
57, 263 | Pounds | | | | Lead-zinc sulphide ore | do | Zinc sulphideSiliceous gold and silver | 10, 604
49, 907
606
61, 117 | 775. 86
2, 088. 37
212. 00
3, 076. 23 | 344, 733
1, 076, 163
6, 801
1, 427, 697 | 733, 394
690, 170
3, 563
1, 427, 127 | 12, 939, 173
3, 543, 094
25, 612
16, 507, 879 | 53, 375, 271 | | | | Siliceous gold ore | Gravity and flotation. | | 179, 506
310 | 16, 862. 85
516. 88 | 3, 390, 145
1, 729 | 59, 958, 017 | 16, 681, 039
15, 943 | 53, 375, 271 | | | | Do
Lead sulphide ore and old tailings | Gravity | Lead sulphide | 19
6 89
7 108 | 23. 44
52. 23
75. 67 | 2, 722
2, 887 | 206
223 | 61
11, 771
11, 832 | | | | | | | | 8 179, 924 | 17, 455. 40 | 3, 394, 761 | 59, 958, 846 | 16, 708, 814 | 53, 375, 271 | | | ¹ Includes 400 tons of oxidized old tailings and 800 tons of oxidized ore treated by flotation and 4 tons of ore treated by gravity concentration. ¹ 4 tons of copper sulphide ore treated by gravity oncentration included under flotation. Includes 350 tons of old tailings. 4Figures do not include ore treated at gold and silver mills. ⁵ Includes concentrates from oxidized ore and old tailings treated by flotation and from ore treated by gravity concentration. ⁶ Includes concentrates from old tailings. ⁷ Concentrates from 4 tons of copper sulphide ore treated by gravity concentration included under flotation. ⁸ Figures do not include concentrates from ore treated at gold and silver mills. Mine production of metals from concentrating mills in Montana in 1934, by counties, in terms of recovered metals | | | old tail-
ated (dry | | Concentrates and recovered metal | | | | | | | | | |---|---|------------------------|------------------------|----------------------------------|---|--|---|------------------------------------|--|--|--|--| | County | Ore Old tailings | | | | Copper | Lead | Zinc | | | | | | | Beaverhead Broadwater Cascade Granite Jefferson Lewis and Clark Lincoln Madison Powell Sanders Silver Bow | Short tons
320
51, 056
16, 901
26, 391
2, 100
38, 840
110
27, 800
643, 127 | 350
400
4, 713 | 51
6, 394
1, 880 | | 550
2, 030
440, 961
66, 414
33, 674
8, 765
10, 318
64
19, 330 | 104
11
170, 563
32, 799
2, 344
200
25, 378 | 5, 388
799, 375
479, 818
19, 595
99, 892
8, 161
54
3, 758, 573 | 4, 432, 535
435, 907
16, 302 | | | | | | Total, 1933 | 807, 045
659, 393 | | 179, 924 | 17, 455. 40 | 3, 394, 761 | 57, 899, 550
54, 532, 437 | 15, 958, 476 | 47, 977, 279 | | | | | #### Gross metal content of Montana concentrates produced in 1934, by classes of concentrates | | Concentrates | | Gro | ss metal con | tent | | |-----------------------|----------------------------------|--|--|-----------------------------------|------------------------------|------------------------------| | Class of concentrates | produced
(dry weight) | Gold | Silver | Copper | Lead | Zine | | Drv and siliceous | Short tons
6, 764
113, 963 | Fine ounces
17, 867. 66
1, 374. 11 | Fine ounces
170, 942
1, 804, 274 | Pounds
48, 154
58, 491, 188 | Pounds
119, 698 | Pounds | | LeadZinc | 11, 051
49, 907 | 1, 499. 50
2, 088. 37 | 361, 647
1, 076, 163 | 737. 084
690, 170 | 13, 144, 314
3, 543, 094 | 53, 375, 271 | | Total, 1933 | 181, 685
149, 991 | 22, 829. 64
15, 591. 53 | 3, 413, 026
2, 423, 478 | 59, 966, 596
55, 880, 313 | 16, 807, 106
10, 827, 007 | 53, 375, 271
35, 338, 130 | ## Mine production of metals from Montana concentrates in 1934, in terms of recovered metals #### BY COUNTIES | | Concentrates | Gold | Silver | Copper | Lead | Zine | |-----------------|--------------|-------------|-------------|--------------|--------------|--------------| | | Short tons | Fine ounces | Fine ounces | Pounds | Pounds | Pounds | | Beaverhead | 15 | 32. 23 | 142 | 41 | 1,652 | | | Broadwater | 23 | 19. 30 | 550 | 104 | 4, 211 | | | Cascade | 51 | . 70 | 2,030 | 11 | 5, 388 | | | Granite | 6, 404 | 1, 236, 90 | 441.047 | 170, 713 | 799, 375 | 4, 432, 535 | | Jefferson | 1,880 | 1, 194, 50 | 66, 414 | 32, 799 | 479, 818 | 435, 907 | | Lewis and Clark | 828 | 6, 633, 07 | 39, 699 | 2, 962 | 49, 873 | 16, 302 | | Lincoln. | 321 | 571. 51 | 13, 877 | 2, 225 | 154, 865 | | | Madison | 2, 419 | 7, 294, 32 | 16, 663 | 27, 479 | 16, 663 | | | Mineral | 1 | 2, 20 | | | | | | Park | 1, 456 | 2, 448, 97 | 697 | 1, 435 | 41 | | | Powell | 2 | 8. 34 | 64 | -, | 54 | | | Sanders | 3, 590 | 84, 36 | 19, 330 | 17, 108 | 3, 758, 573 | 763, 163 | | Silver Bow | 164, 695 | 3, 303. 24 | 2, 812, 513 | 57, 651, 002 | 10, 781, 757 | 42, 329, 372 | | | 181, 685 | 22, 829, 64 | 3, 413, 026 | 57, 905, 879 | 16, 052, 270 | 47, 977, 279 | | Total, 1933 | 149, 991 | 15, 591. 53 | 2, 423, 478 | 54, 534, 788 | 10, 321, 908 | 31, 806, 310 | | | DI ODNO | <u> </u> | 711023117111 | 11110 | | | |---|--|---|--|---|--------------|--| | Dry and siliceous
Copper
Lead
Zinc | 6, 764
113, 963
11, 051
49, 907 | 17, 867, 66
1, 374, 11
1, 499, 50
2, 088, 37 | 170, 942
1, 804, 274
361, 647
1, 076, 163 | 41, 643
56, 619, 958
588, 616
655, 662 | 12, 572, 309 | | Smelting plants.—Nearly all the crude ore of smelting grade, concentrates, old tailings, etc., produced in Montana are shipped for smelting to either the copper plant of the Anaconda Copper Mining Co. at Anaconda or the lead plant of the American Smelting & Refining Co. at East Helena, or they go to the electrolytic zinc plant at Great Falls. A small part of the output, however, is shipped to metallurgical plants near Salt Lake City, Utah, and Kellogg, Idaho, for treatment. The following tables give the total crude ore of smelting grade produced in Montana in 1934, by classes of ore and by counties. Gold ore shipped crude to smelters increased in nearly all the gold-producing areas of the State, but copper ore decreased due to the lower output from mines at Butte. Gross metal content of Montana crude ore shipped to smelters in 1934, by classes of ore | Class of ore | Quantity | | Gross met | al content | | |-------------------------------------|--|--|---|--|-----------------------------------| | Class of ore | (dry weight) | Gold | Silver | Copper | Lead | | Dry and siliceous
Copper
Lead | Short tons
44, 139
474
7, 075 | Fine ounces
25, 779. 40
22. 07
2, 099. 22 | Fine ounces
399, 890
3, 830
139, 307 | Pounds
130, 876
51, 905
30, 982 | Pounds
145, 428
2, 561, 891 | | Total, 1933 | 51, 688
37, 887 | 27, 900. 69
19, 436. 24 | 543, 027
203, 292 | 213, 763
1, 816, 435 | 2, 707, 319
2, 079, 717 | Mine production of metals from Montana crude ore shipped to smelters in 1934, in terms of recovered metals BY COUNTIES | | Ore | Gold | Silver | Copper | Lead | |-------------------|------------|-------------|-------------|-------------|-------------| | | Short tons | Fine ounces | Fine ounces | Pounds | Pounds | | Beaverhead | 6,
833 | 1, 909, 39 | 133, 434 | 36, 034 | 194, 375 | | Broadwater | 7, 321 | 5, 181, 85 | 17, 052 | 10, 971 | 146, 843 | | Cascade | 237 | 13. 22 | 12, 686 | 439 | 35, 531 | | Deer Lodge | 1, 755 | 1, 017, 51 | 3,060 | 5, 619 | | | Fergus | 215 | 144, 92 | 3, 298 | 150 | 1, 378 | | Flathead | 3, 796 | 30, 53 | 133, 220 | 25 | 1, 649 | | Granite | 4, 298 | 3, 969. 35 | 10, 551 | 12,006 | 35, 625 | | Jefferson | 8, 813 | 3, 462. 92 | 59, 621 | 29, 890 | 84, 101 | | Lewis and Clark | 7, 366 | 4, 320, 74 | 54, 740 | 15,063 | 431, 830 | | Lincoln | 18 | . 40 | 181 | 200 | 17, 243 | | Madison | 5, 820 | 5, 025, 84 | 16, 292 | 15, 303 | 125, 202 | | Meagher | 48 | 32. 20 | 12 | 200 | | | Missoula | 837 | 985. 49 | 1, 932 | 9, 475 | | | Park | 202 | 128. 72 | 9, 440 | 65 | 38, 121 | | Phillips | 107 | 301.60 | 843 | | l | | Powell | 1,515 | 1, 154. 28 | 64, 060 | 3, 937 | 115, 162 | | Ravalli | 184 | 66. 41 | 1,086 | 3, 125 | 5,000 | | Sanders | 985 | 19. 36 | 7, 895 | 8, 117 | 1, 361, 373 | | Silver Bow | 1, 338 | 135. 96 | 13, 624 | 37, 843 | | | | 51, 688 | 27, 900. 69 | 543, 027 | 188, 462 | 2, 593, 433 | | Total, 1933 | 37, 887 | 19, 436. 24 | 203, 292 | 1, 766, 545 | 1, 993, 674 | | | BY CL | ASSES OF O | RE | | | | Dry and siliceous | 44, 139 | 25, 779. 40 | 399, 890 | 115, 824 | 138, 531 | | Copper | 474 | 22. 07 | 3, 830 | 50, 105 | | | Lead | 7, 075 | 2, 099. 22 | 139, 307 | 22, 533 | 2, 454, 902 | Miscellaneous metallurgical plants.—Miscellaneous material treated in Montana in 1934, not included in the tables under "Metallurgic Industry", comprised 65,913 tons of lead-smelter slag treated at the zinc fuming plant at East Helena; mine-water precipitates from properties at Butte shipped to the smelter at Anaconda and yielding 5,167,305 pounds of copper; and 1,120 tons of old tailings, 115 tons of old slag, and 84 tons of mill clean-up material shipped for smelting. ## REVIEW BY COUNTIES AND DISTRICTS Mine production of gold, silver, copper, lead, and zinc in Montana in 1934, by counties and districts, in terms of recovered metals | County and district | | lines
lucing | Ore, old | | Gold | • | | Silver | | Copper | Lead | Zinc | Total | |---|--------------------------------------|-------------------------|---|---|---|---|--|-----------------------|--|--|------------------------------|------|--| | | Lode | Placer | etc. | Lode | Placer | Total | Lode | Placer | Total | | | | value | | Beaverhead County: Argenta. Bald Mountain Bannack Blacktail. Blue Wing Bryant Chinatown. Polaris Vipond. Wise River. Broadwater County: Backer Beaver Cedar Plains. Park. | 1
3
1
6
1
1
3
5 | 14
1
1
2
24 | Short tons 1, 171 24 21, 339 384 758 724 27 151 3, 047 13 280 1, 998 4, 709 686 | Fine ounces 901. 23 10. 53 3, 796. 51 4. 95 21. 23 121. 66 2. 23 82. 89 55. 45 9. 67 369. 07 996. 31 3, 083. 52 833. 39 | Fine ounces 96. 88 2. 26 20, 20, 86 175. 65 | Fine ounces 901. 23 10. 53 3, 893. 39 4. 95 23. 49 121. 66 103. 75 55. 45 9. 67 544. 72 996. 31 3, 083. 52 1, 038. 37 | Fine ounces 7, 131 68 20, 442 6, 121 17, 936 15, 195 164 84, 973 14 498 7, 951 3, 711 5, 459 | Fine ounces 8 6 28 | Fine ounces 7, 131 68 20, 450 6, 121 17, 936 15, 195 164 272 84, 973 14 526 7, 951 3, 711 5, 482 | Pounds 2, 325 75 6, 650 988 2, 725 7, 737 67, 675 14, 900 1, 500 8, 725 7750 | 13, 054
379
3, 000
 | | \$39, 546
572
149, 936
4, 209
12, 978
17, 479
604
3, 870
58, 173
347
19, 837
42, 181
111, 011
42, 788 | | Carbon County: Clark Fork of Yellowstone
River
Cascade County: | | 2 | | | 8. 07 | 8. 07 | | | | | | | 282 | | Logging Creek | 7 | 16 | 45
620 | 21. 23
4. 12 | 52. 76 | 21. 23
4. 12
52. 76 | 17
14, 703 | 6 | 17
14, 703
6 | 450 | 40, 919 | | 753
11, 199
1, 848 | | French Gulch
Georgetown | 1 13 | | 15, 513 | 2, 921. 86 | 12. 79 | 12.79
2,921.86 | 2, 837 | | 2, 837 | | | | 447
104, 411 | | Heber (Mill Creek)
Oro Fino
Fergus County: | 2 | 2 | 8 | 2.06 | 10. 33 | 10. 33
2. 06 | 280 | | 280 | | | | 361
253 | | Cone Butte. North Moccasin. Warm Springs | 2
6
3 | 2
1 | 106
30
463
3, 796 | 76. 88
20. 63
169. 07
30. 53 | 18. 74
2. 92
 | 76. 88
39. 37
171. 99
30. 53 | 1, 813
116
1, 451
133, 220 | 3 | 1, 813
119
1, 451
133, 220 | 50
50
50
25 | 1, 054
1, 649 | | 3, 875
1, 457
6, 992
87, 252
1, 305 | | Grantic County: 3 | | | | | | | | | 1 | | | i | | | |--|-------------------------------------|------|------|-------------|------------|---------|------------|-----------|-----|----------|---------|---------------|---------------|----------| | Alpen | Granite County: | | 1 | 1 | | • | 1 | | - 1 | 1 | | i | 1 | 9 100 | | Antelope. 1 | | 3 | | 156 | 62, 69 | | 62.69 | | | | | | | 1 700 | | Boulder | Amtolono | ĭl | | | 48.04 | | 48. 04 | 14 | | | | | | | | Dunklebeer 2 | | = 1 | | | | 14 85 | 433, 39 | 317 | | 317 | | 2,541 | | | | Diffice Print Creek | | | | | | 11.00 | | | | 580 | 25 | | | 1, 486 | | First Chance | Dunkleberg | | | | | | | | | 4 303 | 0.550 | 108 | | 124, 750 | | Pilit Creek | First Chance | | 19 | 3, 366 | 3, 343. 32 | 124. 52 | | | | | | 200 073 | 4 432 535 | 537, 207 | | Gold Creek | Flint Creek | 4 | | 50, 283 | 774.45 | | 774.45 | 429,779 _ | | 420, 110 | 100,000 | 300, 010 | 1, 102, 000 | 2 303 | | Henderson | Gold Creek | | 4 | | | 65. 75 | | | .8 | | | | | 12 527 | | Medicine Lake | Handarson | 4 | | 1, 533 | 115, 65 | | 115.65 | 12,098 - | | | 20,800 | | | | | Moose Lake | | l îl | | 231 | 63, 69 | | 63, 69 | 4,308 _ | | | | | | 0, 100 | | Rod Lona | Medicine Lake | ៅតំ! | | | | | 763.12 | 478 | | 478 | 1,450 | | | 27, 096 | | Red Lion | | 4 | | | | 2 20 | | | | 45 | | | | | | Rock Creek | | 1 1 | | | 1,000.00 | | 22 20 | | 8 | - 6 | | | | 1, 171 | | Story | Rock Creek | 1 | 3 | | | 32. 30 | | | ١ | 17 | | | | 753 | | Upper Willow Creek | Stony | 1 | | 47 | 21, 23 | | 21. 23 | 11 - | | | | | | 144 | | Welcome Gulch Jefferson County: 2 | Upper Willow Creek | | | | | | | | | | | | | | | Fefferson County: 2 | Walcome Gulch | | 1 | | | 5.55 | 5.55 | | | | | | | 101 | | Amszon | Taffaron County | | _ | | | | | 1 1 | - 1 | | | - 010 | | . 027 | | Builder | Jenerson County. | ا ہا | | 28 | 8 04 | | 8.04 | 512 | 1 | | | 5, 919 | | | | Boulder 17 10 14,684 1,778,77 138,54 1,917,31 110,682 62 110,744 44,675 517,514 424,349 179,671 Cataract. 17 10 14,684 1,778,77 138,54 1,917,31 110,682 62 110,744 44,675 517,514 424,349 179,671 Cataract. 17 10 14,684 1,778,77 138,54 1,917,31 110,682 62 110,744 44,675 517,514 424,349 179,671 Cataract. 18 1,682
1,682 1 | AIII8ZOII | 1 4 | | 34 | | 40 | | 512 | | 512 | 50 | 2, 162 | | | | Boulder | Bigioot | 1 4 | 1 1 | 04 | | | | | 3 | 34 | | 405 | | | | Cataract | Boulder | | | 14.004 | | | | | | | 44 675 | 517, 514 | 424, 349 | 179, 571 | | Colorado | | 17 | 10 | 14, 084 | 1, 778. 77 | 138. 34 | | | .02 | | 1 975 | | 11, 558 | 4, 243 | | Elkhorn | Colorado | 5 | | | | | | | | | | | 11,000 | | | Golconda | Elkhorn_ | 5 | 1 | 8,316 | | 1.46 | 408. 44 | | | | 30 | | | | | Homestake | | 4 | | 7 | | | | | | | | | | | | Little Pipestone | Homestake | 5 | 3 | 55 | | | | | | | | 54 | | | | Low and | Little Pinestone | l i | 1 | 18 | 6, 18 | 4.98 | | 51 . | | | 125 | | | | | Lump Gulch | | | 12 | | 1.86 | 15, 68 | 17. 54 | | | | | | | | | Mitchell Creek | LOWISHU | 1 5 | | | | | 22, 46 | 696 | 8 | 704 | | 81 | | 1, 249 | | Mitchellan Creek Montana City and Prickly Pear Creek Control of the property o | | 1 4 | | | | | | | | 34 | 25 | | | | | Mitchell Montana City and Prickly Pear Creek 2 | | 1 7 | | | | 1.00 | | | | 608 | 300 | l | | 9,749 | | Montana City and Prickly Pear Creek 2 | | 6 | | | 207.01 | | | | 705 | | | | | 135, 548 | | Pipestone. 4 7,064 1.23 5.87 1,881 550 16,919 20,269 Warm Springs Creek. 4 7,001 525,98 3,29 1,975,68 3.29 1,978,97 9,125 9,125 15,800 4,838 76,507 Wilson Creek. 1 2 4,15 4,15 4 14 4 1 162 | Montana City and Prickly Pear Creek | . 2 | | | | | | | 190 | | | 720 | | 352 | | Warm Springs Creek 4 7,001 525.98 3.29 1,978.68 3.29 1,978.68 3.29 1,978.69 9,125 1,881 1,580 4,838 76,507 Whitehall 1 5 3,472 1,975.68 3.29 1,978.97 9,125 1,580 4,838 76,507 Wilson Creek 1 1 1,442 1 14 25 162 162 162 Woodland Park 1 11 14.42 17 14 25 162 | | . 3 | 1 | | 7.64 | 1. 23 | | | | | | 10 010 | | | | Whitehall 10 5 3,472 1,975.68 3.29 1,978.97 9,120 9,120 1,25 1,60 1,60 1,62 Wilson Creek 1 | Warm Springs Creek | 4 | l | 7,001 | | | | | | 1,881 | | | | | | Wilson Creek | | 10 | 1 5 | 3, 472 | 1, 975, 68 | 3. 29 | | | | | | 4,838 | | | | Woodland Park 1 | | 1 -ĭ | • | | 4, 15 | l | 4.15 | 14 | | | 25 | 162 | | | | Lewis and Clark County: Bald Butte. 2 4, 454 213.82 6.15 219.97 928 928 1,525 3,135 8,526 927 928 928 928 1,525 3,135 985 928 928 928 928 928 928 928 928 928 928 | Wison Creek | 1 1 | | 11 | | | 14, 42 | 17 1. | | 17 | | | | 515 | | Bald Butte 4 2 4,454 213,82 6,15 219,97 925 43 147 1,189 10,179 Dry Gulch 2 10 3,027 260,23 27,04 287,27 144 3 147 1,189 1,189 10,179 Greenhorn 1 1 81 18,97 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 26,67 464 100 11,865 1,518 14,619 12,518 12,518 12,518 12,518 12,518 12,518 12,518 12,518 12,518 12,518 12,518 12,518 12,518 12,518 12,518 12,518 | | 1 - | | | | | | | | | | | | ł . | | Bald Butte Dry Gulch 2 10 3,027 260.23 27.04 287.27 144 3 147 | Lewis and Clark County: | 1 4 | ہ ا | 1 4 454 | 212 82 | 8 15 | 210 97 | 928 | | 928 | 1, 525 | 3, 135 | | | | Dry Glich | Bald Butte | | | | | | | | 3 | 147 | | 1, 189 | | 10, 179 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Dry Gulch | | | 3,021 | 200.20 | | | 1 | 3 | | | l | | 895 | | Heddleston 1 8 25 15,491 1,195,25 132,39 1,327,64 563 11 574 575 2,676 46,917 Helena 1 1 48 84,32 1,23 85,55 79 6 6 6 2,160 Lincoln 2 13 2 3,32 58,37 61,69 6 6 6 2,160 Magpie Gulch 1 1 1 1 1,22,60 182,26 11 11 1 2,637 Missouri River 11 1 1,22,60 182,26 182,26 182,26 17 17 17 6,881 Ottawa 17 7,241 3,088,87 3,088,87 16,553 16,553 6,250 55,865 121,224 Ottawa 8 958 1,388,04 4,531 4,531 4,531 2,950 2,757 35,149 Smelter 1 65,913 15,604 6,220,40 120,00 | | | | | | | | 101 | ١ | 464 | 100 | 11 865 | | 1, 518 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Heddleston | . 1 | | | | | | | ;;- | | | 2 676 | | | | Jefferson Gulch | | | | | | | 1, 327. 64 | | 11. | | | 499 | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Jefferson Gulch | . 1 | | | | | | 79]. | | | 20 | 404 | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 13 | 1 2 | 3.32 | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1 1 | l | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Micacani Diron | . | | | | 182, 26 | | | 17 | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Onlin Collab | - | 1 ** | 94 | 18.14 | | | 6 | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | 16, 553 | 6, 250 | 55, 865 | | | | Scratch Gravel | Ottawa | | | | | | 1 388 04 | | | | 2, 950 | 2, 757 | 1 | 51,779 | | Smelter 1 9 8 15,604 6,220.40 120.00 6,340.40 40,460 28 40,488 100 247,779 Stemple 8 2 2,970 323.49 19.60 343.09 39,529 6 39,535 6,350 403,135 16,302 53,674 Vaughn 8 2 2,970 323.49 19.60 7,55 75 75 75 75 75 75 75 75 75 75 75 75 7 | | -1 ~ | | | 1, 388. 04 | | 1, 000.04 | | | | , 500 | 1, 352, 189 | 13, 464, 977 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Smelter | . 1 | | | 1 | · | | | | | 100 | 1 -, 002, 100 | 1-0, 102, 011 | | | Vaughn | Stemple | . 9 | | 15,604 | | | | | | | | 402 125 | 16 202 | | | | | | 1 2 | 2,970 | | | | | | | | 400, 100 | 10, 302 | | | | Wolf Creek | l ž | 1 1 | 13 | .20 | 5.55 | 5.75 | 345 | 3 | 348 | 1 100 | 1 049 | J | 1 300 | Mine production of gold, silver, copper, lead, and zinc in Montana in 1934, by counties and districts, in terms of recovered metals—Continued | County and district | Mines
producing | | Ore, old | Gold | | | Silver | | | Copper | Lead | Zinc | Total | |---|---------------------|------------------|---|---|---|---|---|---------------|---|-----------------------------------|---|--------|--| | | Lode | Placer | etc. | Lode | Placer | Total | Lode | Placer | Total | Copper | Desc | Zine | value | | Lincoln County: Libby. Sylvanite. Troy. Wolf Creek. Madison County: | 3
3
1 | 9
1
2
6 | Short
tons
2, 236
1, 710
18 | Fine
ounces
439. 17
575. 48
. 40 | Fine
ounces
28. 44
. 60
1. 46
19. 17 | Fine
ounces
467. 61
576. 08
1. 86
19. 17 | Fine
ounces
8, 808
5, 213
181 | Fine ounces 3 | Fine
ounces
8, 811
5, 213
181 | Pounds
200
2, 025
200 | Pounds
99, 892
54, 973
17, 243 | Pounds | \$25,751
25,700
836
672 | | Alder Gulch | 12
5 | 37
1 | 9, 388
154 | 1, 984. 32
119. 60 | 176. 48 | 2, 160. 80
119. 60
. 40 | 9, 326
232 | 31 | 9, 357
232 | 3, 450
675 | 13, 243 | | 82,335
4,384
14 | | Lower Hot Springs
McCarthy Mountain
Mineral Hill
Norwegian
Potosi | 12
3
16
9 | 6
3 | 692
632
32, 504
377 | 418. 34
325. 58
6, 015. 25
195. 28
2. 06 | 9. 73
6. 81 | 418. 34
325. 58
6, 024. 98
202. 09
2. 06 | 724
874
9, 323
229 | | 724
874
9, 323
229 | 1, 000
225
23, 050
825 | 2, 054
11, 189
649
108 | | 15, 245
12, 376
218, 468
7, 281 | | RabbitRamshornRed Mountain | 19
5 | 1
16
1 | 340
386 | 137. 97
231. 73 | 4. 72
94. 02
8. 07 | 142. 69
325. 75
8. 07 | 2,656
99 | 17 | 2, 656
116 | 775
50 | 72, 703 | | 9,456
11,464
282 | | Sand Creek
Sheridan
Silver Star
Summit.
Tidal Wave. | 17
14
3
23 | 3
4
1 | 32
1, 278
788
892
8, 646 | 57. 51
809. 47
590. 73
303. 12
2, 102. 89 | 52. 59
5. 35
96. 28 | 57. 51
862. 06
596. 08
399. 40
2, 102. 89 | 184
2, 823
710
1, 007
3, 827 | 11 | 184
2, 834
710
1, 024
3, 827 | 1, 950
2, 975
350
5, 300 | 865
2, 162
25, 838 | | 2, 129
32, 149
21, 610
14, 649
77, 350 | | Upper Hot Springs
Washington
West Fork
of Madison River
Willow Creek | 14
7
1 | 2 | 830
1, 138 | 501. 63
999. 80 | 1. 46 | 501. 63
999. 80
1. 46
. 20 | 973
3, 383 | | 973
3, 383 | 3, 175
125 | 12, 811 | | 18,415
37,614
51
38 | | Meagher County: Beaver Creek Little Belt Tenderfoot Creek (Smith River) | 1 | 3 | 110 | 59, 80 | 20.80 | 20. 80
59. 90
63 | 17 | 3 | 3
17 | 200 | | | 729
2, 117
22 | | Thompson Gulch Mineral County: Cedar Creek Gold Mountain | | 1
29 | 20 | 3. 52 | 15. 65
573. 65 | 15. 65
573. 65
3. 52 | | 11 | 11 | | | | 547
20, 056
123 | | Missoula County: Coloma Elk Creek Nine Mile | 7
1 | 1
6
16 | 692 | 974. 82
. 60 | 3. 12
23. 92
921. 86 | 977. 94
23. 92
922. 46 | 628 | 14 | 628
14 | 1, 700 | | | 34, 721
836
32, 249 | | Wallace | Į į l | | 143 | 10.07 | 1 | 10.07 | 1,304 | | 1,304 | 7,775 | | | 1,817 | | Park County: | | | | | | 1 | ۱ ۱ | 1 | ۱ ا | | | | 144 | |---------------------------------------|----------|---|-----------|--------------|-------------|-------------|-------------|----------|-------------|---------------|---------------|--------------|--------------| | Cowles | | 1 | | | 4. 12 | 4. 12 | | | | | | | 5, 353 | | Crevasse | 1 | | 2,000 | 152. 59 | | 152. 59 | 31 | | 31 | | | | 27, 908 | | Emigrant Creek | | 25 | | | 796. 11 | 796. 11 | | 130 | 130 | 225 | 00 100 | | 35, 954 | | New World | 4 | 2 | 3, 732 | 802.66 | 5. 12 | 807. 78 | 9, 733 | | 9, 733 | | | | 144, 088 | | Sheepeater | | | 29, 617 | 4, 104, 75 | | 4, 104. 75 | 812 | | 812 | 1, 275 | | | 1, 184 | | Yellowstone River | 1 - | 5 | , | | 33, 82 | 33. 82 | | 3 | 3 | | | | | | Phillips County: Little Rockies | <u>-</u> | 7 | 21, 756 | 6, 216. 28 | 29.93 | 6, 246, 21 | 6, 469 | 3 | 6, 472 | | | | 222, 489 | | Powell County: | ١ ، | | 21, | 0, 220. 20 | | , | | l· 1 | | | | | 0 701 | | Big Blackfoot | l a | 9 | 59 | 32, 19 | 152, 99 | 185, 18 | 96 | 20 | 116 | 100 | | | 6, 561 | | Big Blackioot | 1 1 | | 38 | 4. 15 | 102.00 | 4. 15 | | | | | | | 145 | | Blossburg | | 1 | •00 | 1. 10 | .86 | . 86 | | | | | | | 30 | | Champion (Peterson Creek) | | 1 1 | | | 12.13 | 12. 13 | | | | | | | 424 | | Douglas Creek | | 1 | 274 | 150. 30 | 12.10 | 150. 30 | 2, 243 | | 2, 243 | 100 | | | 7, 232 | | Nigger Hill | | 8 | 111 | 8.64 | 6, 695, 05 | 6, 703, 69 | 85 | 622 | 707 | | | | 234, 753 | | Ophir | 3 | | 111 | 0.04 | 8, 669, 67 | 8, 669, 67 | | 973 | 973 | | | | 303, 634 | | Pioneer | | 21 |
 71 | 65. 98 | 0,009.07 | 65.98 | 51 | | 51 | 75 | İ | | 2, 345 | | Racetrack Creek | | | 71 | 65.98 | 19. 17 | 19. 17 | 01 | | 0. | " | | | 670 | | Snowshoe | | 2 | | | | 881.46 | 3 | 85 | 88 | | | | 30, 864 | | Washington Gulch | 1 | 15 | 2 | 1.03 | 880. 43 | | | 1 | 61, 906 | 3, 750 | 100 010 | | 77, 036 | | Zozell | 6 | | 1,378 | 943. 69 | | 943. 69 | 61,906 | | . 01,900 | 3,700 | 100,010 | | , | | Ravalli County: | 1 | 1 | l | | 1 | | | ı | 1,086 | 3, 125 | 5 000 | | 3, 458 | | Curlew | 1 | 1 | 184 | 66. 41 | | 66. 41 | 1,086 | | 1,080 | 8, 120 | | | 145 | | Eight Mile | | 1 | | | 4. 15 | 4. 15 | | | | | | | 2,748 | | Overwich | | 5 | 60 | 27. 41 | 51.10 | 78. 51 | 3 | 3 | 0 | | | | 2,110 | | Sanders County | 1 | | | | 1 | | | 1 | 05 500 | 18, 400 | 5, 119, 946 | 763, 163 | 243, 969 | | Eagle | . 1 | 1 | 28, 762 | 103.72 | | 103. 72 | 25, 706 | | 25, 706 | 10,400 | 0, 110, 010 | | 1,528 | | Revais Creek | 1 | | 23 | | | | 1,519 | | 1, 519 | 0,820 | | | 3, 923 | | Vermillion | | 4 | 15 | 4.12 | 107.81 | 111. 93 | | 17 | 17 | | | | 0,020 | | Silver Bow County: | 1 - | 1 | 1 | 1 | | | | | 1 | | Į. | 1 | 50 | | Blacktail (Basin Creek) | | 1 | | l | 1.43 | 1.43 | ļ | ! | | | 10 501 555 | 140 200 270 | 9, 192, 494 | | Butte or Summit Valley | 15 | 1 | 644, 248 | 1 3, 405, 38 | 1 | | 2, 824, 538 | | 2, 824, 538 | 62, 855, 300 | 10, 781, 757 | 42, 329, 372 | 9, 192, 494 | | Divide Creek | | | 18 | 10.53 | | 10. 53 | 34 | | 34 | 275 | | | 1, 424 | | Flint Creek | 'l î | | 189 | 10. 93 | | 10. 93 | 1,550 | | 1,550 | | | | | | German Gulch | | | 1 | | 67. 84 | 67.84 | | | | | | | 2, 378 | | Highland | | 23 | 16 | 5, 78 | 91.96 | 97.74 | | . 3 | 3 | | | . | 3, 418 | | Highland | ĺí | | 1 75 | | | 16. 28 | 17 | | 17 | 75 | | | 586 | | Independence | | | 1 40 | 10.20 | 14. 45 | 14. 45 | | | 1 3 | | . | . | 507 | | Lost Child | | - 2 | | | 10.30 | 10, 30 | | | l | .l | | | 360 | | Melrose | - | - 🧏 | | | | 3.06 | | | | | . | . | 107 | | Moose Creek | - | 95 | | | | 223, 09 | | 96 | 96 | | . | | 7,889 | | Silver Bow Creek | - | • | | | 1. 23 | 1. 23 | | -1 | 1 | | | | 1 43 | | Toole County: Goldbutte | - | | | ·[| 1.03 | 1.03 | | | 1 | 1 | 1 | . | 36 | | Yellowstone County: Yellowstone River | - | - 1 | | - | - 1.00 | 1.00 | | | | | | | | | | | | - 000 050 | 71 000 00 | 25, 543, 89 | 97, 445, 95 | 4, 003, 331 | 3, 137 | 4 006 468 | 63 265 000 | 20, 010, 000 | 61, 442, 256 | 14, 439, 363 | | Total Montana, 1934 | 583 | | | 71, 902. 06 | | | | | 2 660 700 | 85 478 375 | 13, 163, 439 | 41, 448, 905 | 18, 827, 569 | | 1933 | 426 | 276 | 862, 486 | 49, 117. 12 | 8, 705. 08 | 01, 822. 20 | 2, 659, 477 | 1,220 | 2,000,700 | 100, 210, 010 | 1-3, 100, 102 | 1,, 500 | 1 | | | 1 | 1 | <u> </u> | <u> </u> | <u> </u> | | | <u>'</u> | <u> </u> | <u> </u> | | ' | | | | | | | | | | | | | | | | (ACC OF 1 | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+per ounce). In the following review by counties and mining districts only the more important operations are mentioned. Many small producing mines and several entire districts whose output is included in the foregoing table are omitted from this review. ## BEAVERHEAD COUNTY Argenta district.—The Clark Canyon Mining Syndicate shipped in 1934 several hundred tons of lead ore and gold ore of smelting grade from the Goldfinch & Dolphin mine and treated 300 tons of low-grade lead ore in the new 20-ton mill. Other producers in the Argenta district included the Argenta & Gladstone, Badger, and Midnight properties. Bannack district.—More than 20,000 tons of gold ore from the Sleeping Princess mine were treated in 1934 in the 125-ton cyanidation plant by the Thompson Gold Milling Co.; the output of gold was more than double that in 1933. Lessees shipped more than 800 tons of gold ore from the Gold Bug mine. One car of gold ore was shipped from the Hendricks property. Most of the placer output came from the Bon Accord and Gulch placers. Blacktail (Deer Creek) district.—Siliceous silver ore of smelting grade was shipped in 1934 from the Nevada mine 23 miles southwest of Dillon. Blue Wing district.—All the lode output from the Blue Wing district in 1934 was silver ore of smelting grade; most of it came from the New Departure, Blue Wing, Ingersoll, and Ruth mines. Bryant district.—Lessees shipped silver ore and lead ore of smelting grade in 1934 from the Hecla mine 16 miles west of Melrose. Polaris (Lost Cloud) district.—Most of the output from the Polaris district in 1934 was gold ore of smelting grade from the Polaris mine. Vipond district.—The Quartz Hill Mining Co. shipped 2,806 tons of silver ore from the Lone Pine & Argyle Silver property in 1934; silver ore was also shipped from the Aurora, Nancy Ann, New Anaconda, and Monte Cristo mines. #### BROADWATER COUNTY Backer district.—All the output from lode mines in the Backer district in 1934 was siliceous gold ore; most of it came from the Satellite, Humming Bird, Slim Jim, and Klondike mines. Most of the placer output came from the Consolidated placer in Confederate Gulch. output came from the Consolidated placer in Confederate Gulch. Beaver district.—The Mary V. & Tramway group of the Vosburgh Mining Co. near Winston was the largest producer in the Beaver district in 1934; several hundred tons of gold ore were sent to the smelter at East Helena during the year, and a new 50-ton cyanide plant was under construction. Other shipments from the district included gold ore from the Custer, Iron Age, and Pocahontas mines and lead ore from the January and Marion properties. Cedar Plains district.—All the output from the Cedar Plains district in 1934 was crude ore of smelting grade, and almost all was gold ore. Nearly 3,100 tons of gold ore were shipped to the smelter at East Helena from the Ohio-Keating mine, and 900 tons were shipped by lessees from the Keating mine; both mines are near Radersburg. Gold ore was also shipped from the Black Friday, Cyclone, Hidden Treasure, Hard Cash, Laura Mae, Pinchback, and Surprise mines and from several small properties. Siliceous silver ore was shipped from the Spar and Clipper properties, and a little lead ore was shipped from the Bonanza mine. Park (Indian Creek, Hassel) district (Townsend).—The entire output from lode mines in the Park district in 1934 was gold ore and lead ore of smelting grade. The important producers of gold ore included the Blacksmith, Marietta, Silver Mountain & Silver Wave, and Mississippi mines; lead ore was shipped from a number of mines, including the W. A. Clark, Springhill, Dixie, and Little Annie properties. The placer output of the district came chiefly from the Jim Long, Red Buck, and Wilson groups. ### CARBON COUNTY Placer gold was recovered in 1934 from operations at the Henry and Holland-Dawson properties on the Clark Fork of Yellowstone River near Belfry. CASCADE COUNTY Montana district (Neihart).—Lead ore of smelting grade from the Peabody, Graham & Hollowbush, London, and Star properties was shipped in 1934; silver ore from the Ruth Mary and Minute Man mines was shipped; and lead ore from the Hartley property was concentrated. #### DEER LODGE COUNTY Georgetown district.—The Gold Coin Mines Co. treated 13,500 tons of gold ore in the 40-ton amalgamation mill in 1934 and shipped 113 tons of gold ore to the smelter at
Anaconda. Other important producers of gold ore of smelting grade included the Holdfast, Southern Cross, Short Shift, Pyrenees, and Silver Reef mines. #### FERGUS COUNTY Cone Butte district.—Siliceous ore of smelting grade was shipped in 1934 from the Dardanelles, Golden Jack, Cone Butte, Murphy, and Old Glory properties. Warm Springs district.—Gold ore from the Spotted Horse mine (291 tons) and Tail Holt mine (75 tons) was treated by cyanidation in 1934; the remainder of the lode output of the Warm Springs district consisted of silver ore from the Silver Queen, Silver Bullion, and Argentite mines, 20 tons of gold ore from the Spotted Horse mine, and a little lead ore from the Horseshoe mine, all shipped for smelting. #### FLATHEAD COUNTY Hog Heaven district.—The Anaconda Copper Mining Co. shipped 3,765 tons of silver ore in 1934 from the Flathead mine to the smelter at Anaconda. Silver ore was also shipped from the Grant & Smith and Birdseye properties. #### GALLATIN COUNTY Placer gold was marketed in 1934 from a dragline-sluicing plant operated at the Jewel placer on the West Fork of Gallatin River. #### GRANITE COUNTY Alps district.—Gold ore from the Gold Bug and Iron Age mines was treated by amalgamation in 1934, and 1 car of gold ore from the Hidden Treasure mine was sent to the smelter at Anaconda. Antelope district.—Gold ore from the Mountain Ram mine was shipped in 1934 to Anaconda for smelting. Boulder (South Boulder, Royal) district.—Gold ore and old tailings from the Gold King mine and gold ore from the Sunday, Blue Bird (Ethel B.), and Golden Fan mines were shipped in 1934 for smelting. A little ore from the Boulder district was amalgamated. First Chance district (Garnet).—The entire output from lode mines in the First Chance district in 1934 was gold ore and old tailings shipped for smelting. The largest producers were the Grant & Hartford, Fourth of July, Lead King, Nancy Hanks, Tiger, Red Cloud, Gold Leaf, Free Coinage, Robert Emmett, Nabob, and Shamrock mines; the old tailings came from the Beartown mill dumps. Most of the placer output came from the Hill Top & Annex, Ben, Little Dick, and Potlatch groups. Flint Creek district (Philipsburg).—The Trout Mining Co. shipped nearly 19,000 tons of lead-zinc ore during 1934 from the Trout & Algonquin group to the lead-zinc flotation mill at Anaconda; the mine was operated 293 days on a two-shift basis. The Silver Prince mine also shipped lead-zinc ore to Anaconda for milling. The Philipsburg Mining Co. treated by flotation about 30,000 tons of low-grade silver ore from the Granite Bimetallic mine; its milling plant was destroyed by fire, but a new plant was under construction early in 1935. Gold Creek district.—Most of the output from the Gold Creek dis- trict in 1934 came from the Pineau (Friday) placer. Henderson district.—Gold ore from the Sunrise and El Centro groups was shipped in 1934 for smelting, and oxidized copper ore and old tailings from the Black Pine property were treated by flotation. Medicine Lake district.—Siliceous gold and silver ore from the Kent group 30 miles southwest of Philipsburg was shipped in 1934 for smelting. Moose Lake district.—Gold ore from the Old Dominion property of the Toro Mining Corporation was treated by amalgamation and gravity concentration in 1934; the concentrates and a little crude ore were shipped for smelting. Gold ore of smelting grade was also shipped from the Banner mine. Red Lion district.—The Lakes Mining & Milling Syndicate treated 9,020 tons of ore from the Hidden Lakes mine by cyanidation in 1934; during the year the daily capacity of the mill was increased from 20 to 75 tons. ### JEFFERSON COUNTY Cataract district (Basin).—The Basin Montana Tunnel Co. completed the construction of a new 100-ton flotation mill at the Comet & Gray Eagle property and treated in 1934 about 9,800 tons of leadzinc-iron sulphide ore between September 22 and the end of the year; lead concentrates, zinc concentrates, and iron concentrates are pro-Before the mill was completed a lessee shipped from the property about 300 tons of gold ore and lead ore of smelting grade. Nearly 600 tons of siliceous silver ore were shipped for smelting from the Morning Glory mine by the Morning Glory Mines Co. and a lessee. Basin Goldfields, Ltd., shipped 186 tons of rich gold ore from the Boulder mine to smelters. About 3,300 tons of siliceous gold and silver ore from the Hope & Katie (Jib) property were shipped by Roy E. Miller, Inc., to Anaconda for smelting; no old tailings were milled in 1934. Other shipments from the Cataract district included gold ore from the Josephine, Wonder, Sunny Boy, Mantle, and Rock of Ages mines; lead ore from the Hattie Ferguson, West Rumley, Alloy, and Idaho properties; and lead-zinc ore (to Anaconda for milling) from the Doris mine. Gold ore from the Gray Lead, Mantle, and Silver King mines was amalgamated. Most of the placer output of the district came from the Park & Anderson property on Basin Creek. Colorado district.—The output from the Colorado district in 1934 consisted of lead ore from the Alta & Bertha and Blizzard mines, 1 car of lead-zinc ore from the Rarus mine, a test lot of gold ore from the Black Jack claim, and clean-up material from the old Peck mill. Elkhorn district.—Low-grade gold ore from the Dolcoth and Golden Curry mines was treated by amalgamation in 1934, and ore from the Carmody & Papesh group was cyanided. Crude ore of smelting grade was shipped from the Elkhorn and Square Deal mines. Homestake district.—Siliceous ore of smelting grade was shipped in 1934 from the Lucky Strike & Matilda, Irene, Minnietonka, Ajax, and Golden Valley mines. Mitchell district.—In 1934 the Economy Mines Co. shipped about 300 tons of gold ore from the John & Jim group for smelting; gold ore was also shipped from the Gold Coin, Last Chance, Buddie, Emma, and Garneau properties. Prickly Pear Creek district (East Helena).—The Winston Bros. Co. continued operations at the Prickly Pear Creek placers during 1934; about 472,000 cubic yards of gravel were treated in the dragline dredging plant south of East Helena, near Montana City. Warm Springs Creek district (Alhambra).—The Newburgh Mining & Milling Co. treated in 1934 nearly 7,000 tons of gold ore from the Fleming dumps by gravity and flotation concentration; the concentrates were sent to East Helena for smelting. The remainder of the output of the Warm Springs Creek district was small lots of lead ore from the Bell, B. & G., and Mammoth mines. from the Bell, B. & G., and Mammoth mines. Whitehall district.—The entire output from lode mines in the Whitehall district in 1934 was siliceous gold ore of smelting grade. More than 2,803 tons of ore from the Golden Sunlight property were shipped to Anaconda for smelting. Other producers of gold ore were the Blue Moose, Ohio, Lucky Hit, Lone Eagle, Sunny Corner, Emi- grant, Surprise, and Excelsior mines. # LEWIS AND CLARK COUNTY Bald Butte district (Marysville).—The Atlas Mines Corporation completed the construction of a 500-ton flotation plant and re-treated in 1934 about 4,200 tons of low-grade old tailings from the Larson property; the concentrates were shipped to East Helena for smelting. The Bald Butte Gold Mines made a test run of about 100 tons of gold ore from the Bald Butte mine in the amalgamation and concentration mill. Dry Gulch (York) district.—The United Gold Corporation rebuilt the 100-ton evanidation mill at the Golden Messenger property 24 miles northeast of Helena and treated 3,025 tons of ore in the new plant late in 1934. Cyanide bullion valued at about \$9,100 was sent to the mint at Denver. Helena (Unionville, Spring Hill) district.—The Montana Consolidated Mines Corporation completed a new 250-ton flotation plant to replace the mill destroyed by fire in 1933; between September 22 and December 12, 1934, the company treated 15,245 tons of gold ore from the Spring Hill mine. Several cars of gold ore were shipped for smelting from the Burlington mine. Ore and old tailings from the Eula (Homestake) property were treated by amalgamation, and a little ore was sent to a smelter. Most of the placer output came from Grizzly and Last Chance Gulches. Lincoln district.—The placer output from the Lincoln district in 1934 came chiefly from the Harvey placer in Sauerkraut Gulch and from the Bloom & Old Billy Williams placer south of Lincoln. Magpie district.—Several lessees marketed bullion in 1934 from the Sheriff Patent placer in Magpie Gulch 25 miles east of Helena. Missouri River (Hauser Lake) district.—The Eldorado, Sanborn, Mable, East Side, and other placers on the Missouri River in the vicinity of Hauser Lake were active in 1934; most of the output came from the Eldorado. Ottawa district (Marysville).—The St. Louis Drumlummon Mines, Inc., acquired the Drumlummon property at Marysville October 1, 1934. Prior to October 1 the St. Louis Mining & Milling Co. treated about 2,800 tons of gold ore from the mine by cyanidation, and during the year various lessees shipped nearly 1,500 tons of ore for smelting. One small lot of mill clean-up material was sent to a smelter, and a lessee treated about 460 tons of Drumlummon tailings by cyanidation. The total output from the property was considerably greater in 1934 Various lessees shipped nearly 900 tons of ore and old than in 1933. tailings from the Piegan-Gloster property to smelters. The Belmont Mines, Inc., shipped about 400 tons of ore from the Cruse-Bald Mountain-Belmont group to the Drumlummon mill for cyanidation and more than 400 tons of crude gold ore to smelters. The Bell Boy Gold Mining Co. treated about 600 tons of ore from the Bell Boy mine by amalgamation and flotation. The remainder of the Ottawa district output consisted of crude ore of smelting grade from the Honeycomb, Empire, Gold Bar, North Star (Frankie), Sibly, and Swansea mines and gold ore treated by amalgamation from the Klondike and various small prospects. Scratch Gravel district.—All
the output from the Scratch Gravel district in 1934 was gold ore of smelting grade; most of it came from the Scratch Gravel, Julia, and Franklin mines. Smelter district (East Helena).—The lead smelter of the American Smelting & Refining Co. at East Helena was operated 11 months during 1934; it was shut down during August. The total plant receipts were considerably greater than in 1933, due partly to increased shipments of lead ores and concentrates from the Coeur d'Alene region of Idaho and an increase in siliceous ores and concentrates from various points in Montana. The increase in receipts of siliceous material was due, in part, to the closing of the Washoe smelter of the Anaconda Copper Mining Co. at Anaconda during the summer of 1934. The slag fuming plant of the Anaconda Copper Mining Co. at East Helena handled current slag from the lead smelter when the latter was in operation. The output of fume, sent to the zinc plant at Great Falls, was considerably greater than in 1933. Stemple district.—The Standard Silver-Lead Mining Co. operated the 35-ton straight flotation plant from January 1 to November 10, 1934, treating 10,682 tons of gold ore from the Gould mine. November 15 the new 80-ton flotation and cyanidation mill was placed in operation, and 3,209 tons of ore were treated in the new plant by the end of the year. The gold concentrates were shipped to East Helena for smelting, and the cyanide precipitates were sent to Selby, Calif. The Bachelor Gold Mining Co. treated several hundred tons of ore from the Bachelor mine in the 20-ton amalgamation and flotation mill and shipped 180 tons of crude gold ore to East Helena for smelting. Several hundred tons of old tailings from the Hubbard dumps were treated by flotation; the concentrates and 1 car of crude gold ore were sent to the smelter at East Helena. The remainder of the Stemple district lode output consisted of gold ore from the Seven-Up-Pete mine treated by gravity concentration; gold ore from the Grubstake mine treated by amalgamation; and crude ore of smelting grade from the Merrit, Crown, Grubstake, and Silver Bell mines. The placer output of the district came chiefly from the Gold Coin placer on upper Poorman Creek west of Wilborn and from small properties on Virginia Creek. Vaughn district (Rimini).—Montana Lead, Inc., shipped in 1934 more than 2,700 tons of lead ore from the Little Sampson mine to East Helena for smelting and 120 tons of lead-zinc ore to Anaconda for milling. The remainder of the lode output of the Vaughn district included lead ore of smelting grade from the Anna May, Minnehaha, Kelly, and Lead Syndicate mines and small lots of siliceous ore from the Woodrow Wilson, Monte Cristo, and Kennedy properties. Most of the placer output of the district came from the Black Eagle property in Monitor Gulch. # LINCOLN COUNTY Libby district.—The Glacier Silver Lead Mining Co. treated lead ore from the Hazel T. mine by flotation in 1934 and shipped the concentrates to East Helena for smelting; gold ore from the New Deal (Tip Top) property was amalgamated; and mill clean-up material from the Midas mill was sent to a smelter. The placer output of the Libby district came from several small properties on Libby Creek. Sylvanite district.—Gold ore from the Keystone mine was treated by amalgamation and flotation in 1934, and ore from two prospects was amalgamated. Troy district.—Lead ore from the Silver King group was sent to East Helena in 1934 for smelting. Wolf Creek district.—Nearly all the output from the Wolf Creek district in 1934 came from the Grub Stake placer on Wolf Creek. #### MADISON COUNTY Alder Gulch district (Virginia City).—The Virginia City Gold Mining Co. treated in 1934 more than 8,900 tons of ore from the Prospect group in the 50-ton amalgamation and flotation mill; the rich gold concentrates and about 100 tons of crude ore were shipped to East Helena for smelting. About 125 tons of slag from the Gilman dump were sold or treated in 1934; a little of this slag was amalgamated and the rest was smelted. The remaining lode output of the Alder Gulch district included gold ore from the Bamboo Chief and Rosebud properties, treated by amalgamation and gravity concentration, and crude ore of smelting grade from the Marietta, Bamboo Chief, East & West Mapleton, Alder Gulch, Hansen, and Wild Bill properties. The placer output came chiefly from the Alder Gulch, Anderson, Eggert, Batten, Chambers, and Cates placers, all in Alder Gulch. Bone Basin district.—Five lode mines in the Bone Basin district produced gold ore of smelting grade in 1934, including the Gold Hill (Bonanza Fraction & Mary Ingobar), Colorado, and Bluebird groups. (Bonanza Fraction & Mary Ingobar), Colorado, and Bluebird groups. Lower Hot Springs district (Norris).—The output from the Lower Hot Springs district in 1934 consisted of a small lot of gold ore from the Lindon mine treated by amalgamation; several hundred tons of old tailings from the Martin dumps sent to a smelter; and gold ore of smelting grade from the Birdia, Red Bluff, Barten, Boaz, West Branch, Eleanor, Josephine, Montida (Montana Boy), Comstock, and Jim mines. McCarthy Mountain district.—Nearly 600 tons of gold ore from the Hidden Treasure mine were treated in 1934 by amalgamation, and 19 tons of crude ore were sent to Anaconda for smelting. A little ore from the Franz mine was amalgamated, and a little lead ore from the Polly Jane group was sent to a smelter in Utah. Mineral Hill district.—The Pacific Gold Mining Co. treated nearly 27,000 tons of gold ore from the Boss Tweed & Clipper group near Pony in the 100-ton flotation mill in 1934; the concentrates were shipped to East Helena for smelting. The Liberty Montana Mines Co. mined and milled about 4,500 tons of gold ore from the Mammoth property at Jefferson Island in 1934 and shipped the concentrates to Anaconda and East Helena; the output from the Mammoth mine in previous years was classified as copper ore. Various lessees mined about 175 tons of gold ore at the Strawberry-Keystone group; part of the ore was treated by amalgamation and concentration, and the rest was shipped for smelting. The remainder of the lode output of the Mineral Hill district was crude ore of smelting grade, most of which was gold ore from the Atlantic & Pacific group; other lode producers included the Ben Harrison Fraction, Ben Harrison, and Iron Chief & Old Elephant mines. Norwegian district.—The entire output from lode mines in the Norwegian district in 1934 was gold ore of smelting grade; most of it came from the Mascot & Pony, Old Norwegian, Eureka, and Bachelor mines. Rabbit district.—Gold ore and lead ore of smelting grade were shipped from mines in the Rabbit district in 1934. Most of the gold ore came from the Calusa, Short Shift, Shoemaker, Combination, Elgin, Montrose, Diamond Hitch, and Blue Jay mines, and the lead ore came from the Emma, Jack Rabbit, Sunrise, and Densmore properties. Ramshorn district.—Gold ore from the Blue Bird and Goldsmith mines was amalgamated in 1934, and gold ore from the Betsy Baker, Safeway, and First Chance mines was shipped for smelting. Most of the placer output came from the Canyon, Cottonwood, Last Chance, Camp Bird, Lucky Strike, Lone Pine, and Blue Bird properties. Sand Creek district.—Gold ore of smelting grade was shipped from the McVey, Chile, Fraction, and Pay Day mines in 1934. Sheridan district.—Nearly 700 tons of gold ore were produced at the Red Pine mine in 1934 by lessees and the Sheridan Mines Co.; part of the ore was treated in a small amalgamation plant, and the remainder was shipped for smelting. The Fairview Syndicate and a lessee shipped 183 tons of gold ore from the Fairview mine in 1934 for smelting. The remaining lode output of the Sheridan district included ore from the Tamarack and Ruby properties treated by amalgamation and siliceous ore of smelting grade from the Silver Bullion, Brandon, Jay Bird, Belle, Lucky Strike, and Homestake mines. All the placer output came from properties on Wisconsin Creek. Silver Star district.—Nearly all the output from lode mines in the Silver Star district in 1934 was gold ore of smelting grade; most of it came from the Broadway, Hudson, Edgerton, Governor Hayes, Golden Rod, Stella, and Aurora mines. Summit district.—The Virginia City Mining Co. treated 418 tons of ore from the Copper, LaClede, and Blade claims by amalgamation in 1934 and operated the Baldy placer 3 months during the summer. Gold ore of milling grade from the Winnetka mine was treated by amalgamation and concentration, and about 240 tons of crude ore were shipped for smelting. Old siliceous tailings from the Smith group were treated by cyanidation. Tidal Wave district (Twin Bridges).—The Inspiration Gold Mining Co. treated 7,326 tons of ore from the B & H and Pete & Joe groups by flotation in 1934; the rich gold concentrates produced and 89 tons of crude ore mined by lessees were sent to East Helena for smelting. Several hundred tons of dump ore from the Agitator & Concentrator group were amalgamated, and 200 tons of gold ore from the Gold Quartz & Cabin property were treated by amalgamation and concentration. Most of the remainder of the Tidal Wave district output in 1934 was gold ore of smelting grade, chiefly from the Corncracker, Mountain View, and Carolina mines. Upper Hot Springs district (Norris).—Nearly 600 tons of gold ore and old tailings from the Madisonian property were shipped in 1934 for smelting. The remaining output of the Upper Hot Springs district was gold ore of smelting grade, chiefly from the Emperor, Billy & Helen, Grandmother, Rosebud, Galena, and Sundberg mines. Washington (Meadow Creek) district.—The Missouri-McKee Gold Washington (Meadow Creek) district.—The Missouri-McKee Gold Mining Co. treated 900 tons of ore from the Missouri-McKee mine in 1934 by amalgamation, cyanidation, and gravity concentration. The remainder of the Washington district output consisted of a little ore from the
Lehigh mine treated by amalgamation and of crude gold ore shipped for smelting, chiefly from the Highland Lady No. 2, Snowslide, and Red Bluff mines. #### MEAGHER COUNTY Most of the placer production from Meagher County in 1934 came from the Beaver Creek property in the Beaver Creek district and the Camp Robber placer in the Thompson Gulch district. The lode output (consisting of ore amalgamated and ore smelted) came from the Beverly Hills mine in the Little Belt district. #### MINERAL COUNTY Cedar Creek district (Iron Mountain, Quartz).—All the output from the Cedar Creek district in 1934 was from placer mines, including the Stockholm, Dakota, Golden Circle, Stemwinder, Alibi, Meadow Creek, Miller, Sunday, McFarland, Sunlight, and New State. Gold Mountain district.—Gold Mountain Mines, Inc., treated a little gold ore from the Gold Mountain mine by amalgamation and concen- tration in 1934. #### MISSOULA COUNTY Coloma (Garnet) district.—Gold ore of smelting grade was shipped in 1934 from the Dandy, I. X. L., Mountain View, Arm & Hammer, Northern Star, Cato, and Bullion properties. Nine Mile district.—Most of the placer output from the Nine Mile district in 1934 came from the Boyd placer 14 miles northwest of Stark. Other producing placers included the Marion Creek (Easy Find), Chrysalis, and Liberty properties. #### PARK COUNTY Crevasse district.—The Crevasse Mountain Mining Co. treated 2,000 tons of ore from the Snowshoe claim by amalgamation and concentration in 1934. Emigrant Creek district.—Most of the output from the Emigrant Creek district in 1934 came from the Key & Fairhaven, Pittsburgh & Bullion, and Upper Falls & Hy-grade properties. New World district.—The McLaren Gold Mines Co. produced about 3,600 tons of gold ore at the New Year's Gift property in 1934; most of the ore was treated by amalgamation and concentration, but a little was shipped crude for smelting. The remainder of the lode output of the New World district consisted of lead ore of smelting grade from the Black Rock mine of Irma Mines, Inc., gold ore from the Glengarry mine shipped for smelting, and gold ore from the Melrose mine treated by amalgamation and concentration. Sheepeater district.—The Jardine Mining Co. treated 25,538 tons of ore and 4,079 tons of old tailings from the Jardine property in 1934 in the 200-ton amalgamation and concentration mill; the output of gold and silver from the mine was considerably less than in 1933. #### PHILLIPS COUNTY Little Rockies district.—The Little Ben Mining Co. treated 21,639 tons of ore from the August mine in the 75-ton cyanidation mill in 1934; the mine ranked third in Montana in 1934 as a gold producer, The leading gold with an output considerably greater than in 1933. producers in the State in 1934 were the two dredges in Powell County. A little gold ore from the Whitcomb No. 1 mine was amalgamated, and gold ore of smelting grade was shipped from the Little Rockies, Hawkeye, Idaho, and Whitcomb No. 1 mines. Most of the placer output of the Little Rockies district came from the Dorothy and Big Gold properties. #### POWELL COUNTY Big Blackfoot district.—All the output from lode mines in the Big Blackfoot district in 1934 was gold ore shipped for smelting, chiefly from the Hill Top property. Most of the placer output came from the Gold Dust (McCormick) property. Nigger Hill district (Elliston).—One car of gold ore from the Ontario mine was shipped to a smelter in 1934, and about 150 tons of low-grade ore were treated by amalgamation. The remainder of the Nigger Hill district output was gold and silver ore from the Telegraph mine and lead ore from the Lilly mine shipped for smelting. Ophir district.—Nearly all the placer output of the Ophir district in 1934 was from dredging operations by Yuba Consolidated Gold Fields at the Ophir Gulch placer. The new electric dredge, equipped to treat 4,500 cubic yards of gravel a day, was placed in operation January 25, 1934, and 1,467,296 cubic yards of gravel were treated during the year. The property ranked second in production of gold in Montana in 1934. Other producing placers in the Ophir district included the Montana Gold and Ophir Bar properties. Nearly all the lode output of the district was gold ore from the Fairview mine, treated in a small concentration plant by the Blackfoot City Mining & Milling Co. Pioneer district (Gold Creek).—The 6,000-cubic yard dredge of the Pioneer Placer Dredging Co. (Yuba Associated Engineers, Ltd.) was operated continuously in 1934, treating 1,930,658 cubic yards of gravel. The dredge was the largest producer of gold in Montana in 1934. Additional production from the Pioneer placers was reported by the Henderson Mining Co. and by various lessees. Other producing placers in the Pioneer district included the Price, Yam Hill, Pat Wall, and Murray groups. Washington Gulch district.—Except for a little mill clean-up material sent to a smelter from the Shamrock property, all the output of the Washington Gulch district in 1934 was from placer mines, most of it from the Fontana property of the El Dorado Gold Placer Mining Co. and the William Parel placer in American Gulch. Other producers included the Old Shoe, Cornucopia, and Beatrice placers. Zozell district.—Nearly 700 tons of lead ore and about 280 tons of siliceous gold and silver ore were shipped from the Blue Eyed Maggie mine in 1934 for smelting; the Emery Consolidated Mining Co. shipped 203 tons of lead ore and 105 tons of siliceous gold and silver ore for smelting. # RAVALLI COUNTY Curlew district.—Gold ore of smelting grade was shipped in 1934 from the Curlew mine 3 miles northwest of Victor. Overwich district.—Gold ore from the Washington and Overwich mines and a prospect was treated by amalgamation in 1934. Most of the placer production of the Overwich district came from the Hughes Creek and Lucerne properties. #### SANDERS COUNTY Eagle district.—The American Smelting & Refining Co. acquired the property of the Jack Waite Mining Co. May 1, 1934, and the combined output of the two companies from the Silver King group during the year consisted of 27,800 tons of lead-zinc ore treated in the 500-ton flotation mill at Duthie, Idaho, and 962 tons of first-class lead ore of smelting grade. The lead concentrates and crude lead ore were sent to the smelter near Kellogg, Idaho, and the zinc concentrates went to the Sullivan Mining Co. at Silver King, Idaho. to the Sullivan Mining Co. at Silver King, Idaho. Vermillion district.—Most of the placer output of the Vermillion district in 1934 came from the Ogoma and Mammy Lou & Driftwood properties on the Vermillion River. A little gold ore from the Tincup mine was treated by amalgamation. # SILVER BOW COUNTY The following table gives the output from mines in Silver Bow County in 1933 and 1934. There were increases in the output of silver, lead, and zinc but slight decreases in that of gold and copper. Production of gold, silver, copper, lead, and zinc in Silver Bow County, Mont., 1933-34, in terms of recovered metals | Year | Mines
produc-
ing | Ore | Gold
(lode and
placer) | Silver
(lode and
placer) | Copper 1 | Lead | Zine | Total value | |--------------|-------------------------|---------------------------------------|--|--|--|---------------------------------------|--|--------------------------------| | 1933
1934 | 43
175 | Short
tons
613, 752
644, 487 | Fine
ounces
4, 464. 72
3, 861. 03 | Fine
ounces
2, 361, 320
2, 826, 252 | Pounds
65, 239, 000
62, 856, 150 | Pounds
8, 370, 243
10, 781, 757 | Pounds
30, 962, 929
42, 329, 372 | 2 \$6, 726, 018
9, 209, 595 | ¹ Includes copper saved from precipitates as follows: 1933, 9,167,018 pounds; 1934, 5,167,305 pounds. ² Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal comage value (\$20.67+ per ounce). From 1882 (the first year for which detailed records are available) to the end of 1934 the mines in Silver Bow County, which includes the Butte or Summit Valley district, produced the five metals as follows: Gold, 1,816,292.17 fine ounces; silver, 467,275,062 fine ounces; copper, 10,499,674,203 pounds; lead, 333,443,823 pounds; and zinc, 2,640,688,226 pounds. The total value of this production is \$2.188,560,259. Butte or Summit Valley district.—The output of copper ore from the Butte properties of the Anaconda Copper Mining Co. was slightly less in 1934 than in 1933, due to the closing of the properties from May 8 to September 20 as the result of a labor strike. However, the output of lead-zinc ore from both the Orphan Girl mine (owned by the company) and the Emma mine (operated under lease from the Butte Copper & Zinc Co.) was considerably greater than in 1933, resulting in substantial increases in silver, lead, and zinc output from the Butte district. The company produced 456,909 tons of copper ore sent to the flotation mill at Anaconda and 304 tons of crude copper ore and 3,311 tons of mine-water precipitates sent to the Washoe smelter. The output of lead-zinc ore was 182,588 tons (122,326 tons from the Orphan Girl mine and 60,262 tons from the Emma mine). The Anaconda Copper Mining Co. was the largest producer of silver, copper, lead, and zinc in Montana in 1934 and ranked ninth in production of gold; the Emma mine ranked second in output of copper and third in output of silver, lead, and zinc. The copper flotation plant, lead-zinc flotation plant, and copper smelter of the Anaconda Copper Mining Co. at Anaconda were operated regularly during 1934 except when the mines at Butte were closed; receipts of custom material were suspended during the shut-down. The copper refinery, wire and rod mill, and electrolytic zinc plant of the company at Great
Falls were closed from June 7 to September 20. The remainder of the output from the Summit Valley district (exclusive of placer production, which is included under the Silver Bow Creek district) consisted of lead-zinc ore from the Curry (Paymaster), Otisco, Magna Charta, Josephine, and Cripple mines sent to Anaconda for milling and siliceous ore from the Agnes Highland, Addition, Lavena, Excelsior, Shorty, Britannia, and Alice (Anselmo) mines shipped for smelting. Divide Creek district.—Gold ore of smelting grade was shipped in 1934 from the Combination & Alice and Dr. Howe mines, a little ore from the Eager mine was amalgamated, and copper ore from the Juno mine was treated in a small concentration plant. Flint Creek district.—Lessees shipped silver ore from the Flint Creek dump to Anaconda in 1934 for smelting. German Gulch district.—Most of the output from the German Gulch district in 1934 came from the Fairview and German Gulch placers. Highland district. Gold ore from the Highlands (Tilton) and Rabbit Foot mines was amalgamated in 1934. Most of the placer output came from the Gold Chief, Riley, and Little Bill placers. Independence district.—One car of gold ore from the Jewel mine was shipped to Anaconda in 1934 for smelting. Lost Child district.—Most of the output from the Lost Child district in 1934 came from the Mountain Lion and Portland placers. Silver Bow Creek district (Butte).—There was a marked increase in 1934 in small-scale placer mining along Silver Bow Creek and its tributary streams and gulches. Part of the ground included in this area lies in the Summit Valley district, but its entire placer production in 1934 is credited in this report to the Silver Bow Creek district. Most of the output was small lots of grains, dust, retorts, etc., sold to local bullion buyers; few of the producers had an output exceeding 10 ounces of gold, and there were no regular operations. ### TOOLE COUNTY A little placer gold was marketed in 1934 from a property on McDowell Creek in the Gold Butte district. ## YELLOWSTONE COUNTY A little placer gold was recovered in 1934 from operations along the Yellowstone River near Pompey's Pillar. # **CEMENT** ### (DETAILED STATISTICS) #### By B. W. BAGLEY # SUMMARY OUTLINE | | Page | | Dame | |-----------------------------------|------|--|------| | General review | 177 | Portland cement—Continued. | Page | | Chief hydraulic cements | 177 | Manufacturing conditions | 107 | | Portland cement | 180 | Plants | 197 | | Production, shipments, and stocks | 180 | Fuels | 197 | | Domestic consumption | 187 | Electric power | | | Local supplies | 192 | Natural, masonry (natural), and puzzolan | 201 | | Transportation | 193 | coments (Hastisi), and puzzoian | | | Prices | 193 | cements Foreign trade in cement | 201 | | At factories | 193 | Imports | 203 | | At markets | 194 | Imports | 203 | | Canacity | 104 | Exports | 204 | | Special cements | 196 | World production | 206 | | openial contention | 190 | Cement in Canada | 208 | ### GENERAL REVIEW Production of portland cement in 1934 was 77,747,765 barrels, and shipments were 75,901,279 barrels valued at \$116,921,084. Preliminary figures of production and shipments for 1934, published by the Bureau of Mines in January 1935, were 0.08 percent less and 0.02 percent greater, respectively, than the final figures. The increases of 22 percent in production and 18 percent in shipments in 1934 compared with 1933 were the first experienced by the industry since 1928, the peak year of production. The general average value of shipments for the whole country, \$1.54 per barrel, increased nearly 16 percent in 1934. Production of natural and puzzolan cements, including masonry cements of the natural-cement class, increased in 1934 and exceeded that in 1933 by 43.9 percent. Shipments of these cements increased 56.8 percent in quantity and 68.1 percent in gross value. # CHIEF HYDRAULIC CEMENTS Shipments of portland and other (masonry, natural, and puzzolanlime) cements from mills in the United States in 1934 increased more than 22 percent in quantity and nearly 37 percent in value over 1933. Statistics of the output of alumina cement, representing the operations of only one manufacturer in the United States, are not included in the tables of this report. The accompanying, abridged, historical table gives the production and value of natural, portland, and puzzolan cements for more than 100 years. # Principal hydraulic cements produced 1 in the United States, 1818-1934 | | Natural c | ement 1 | Portland | cement | Puzzolan | cement 1 | Tot | al | |---|--|--|--|--|---|---|--|---| | Year | Barrels | Value ² | Barrels | Value ⁸ | Barrels | Value ³ | Barrels | Value 2 8 | | 1818-1829
1830-1839
1840-1849
1850-1859
1860-1869
1870-1879
1880 | 300, 000
1, 000, 000
4, 250, 000
11, 000, 000
16, 420, 000
22, 000, 000
2, 030, 943 | \$246, 000
850, 000
3, 612, 500
9, 350, 000
13, 957, 000
18, 700, 000
1, 726, 707 | 82, 000
42, 000 | \$246, 000
126, 000 | | | 300, 000
1, 000, 000
4, 250, 000
11, 000, 000
16, 420, 000
22, 082, 000
2, 072, 943 | \$246, 000
850, 000
3, 612, 500
9, 350, 000
13, 957, 000
18, 946, 000
1, 852, 707 | | 1881 | 2, 440, 000
3, 165, 000
4, 100, 000
3, 900, 000
4, 380, 000
6, 692, 744
6, 253, 295
6, 531, 876
7, 441, 116 | 2, 379, 000
3, 481, 500
4, 100, 000
3, 510, 000
3, 200, 000
5, 186, 877
4, 533, 639
4, 702, 951
3, 822, 501 | 60, 000
85, 000
90, 000
100, 000
150, 000
250, 000
250, 000
300, 000
335, 500 | 193, 500
210, 000
292, 500
292, 500
487, 500 | | | 2, 500, 000
3, 250, 000
4, 190, 000
4, 190, 000
4, 500, 000
6, 942, 744
6, 503, 295
6, 831, 876
7, 776, 616 | 2, 529, 000
3, 672, 750
4, 293, 500
3, 720, 000
3, 492, 500
3, 990, 000
5, 674, 377
5, 021, 139
5, 202, 951
4, 526, 551 | | 1891 4
1892.
1893.
1894.
1895.
1896.
1897.
1888.
1899.
1900. | 7, 767, 979
8, 211, 181
7, 411, 815
7, 563, 488
7, 741, 077
7, 970, 450
8, 311, 688
8, 418, 924
9, 868, 179
8, 383, 519 | 3, 671, 147
3, 991, 455
3, 251, 757
3, 635, 731
3, 895, 424
4, 049, 202
3, 862, 392
3, 888, 728
4, 814, 771
3, 728, 848 | 454, 813
547, 440
590, 652
798, 757
990, 324
1, 543, 023
2, 677, 775
3, 692, 284
5, 652, 266
8, 482, 020 | 967,679 1, 152,600 1, 158, 138 1, 383, 473 1, 586, 830 2, 424, 011 4, 315, 891 5, 970, 773 8, 074, 371 9, 280, 525 | 12, 265
48, 329
233, 000
335, 000
365, 611 | | 8, 222, 792
8, 758, 621
8, 002, 467
8, 362, 245
8, 731, 401
9, 525, 738
11, 037, 792
12, 344, 208
15, 855, 445
17, 231, 150 | 4, 638, 826
5, 144, 055
4, 409, 805
5, 019, 204
5, 482, 254
6, 485, 463
8, 226, 783
10, 057, 551
13, 157, 142
13, 283, 581 | | 1901
1902
1903
1904
1905
1906
1907
1908
1909
1910 | 7, 084, 823
8, 044, 305
7, 030, 271
4, 866, 331
4, 473, 049
4, 065, 797
2, 887, 700
1, 686, 862
1, 537, 638
1, 139, 239 | 3, 056, 278
4, 076, 630
3, 675, 520
2, 450, 150
2, 413, 052
2, 423, 170
1, 467, 302
834, 509
652, 756
483, 006 | 12, 711, 225
17, 230, 644
22, 342, 973
26, 505, 881
35, 246, 812
46, 463, 424
48, 785, 390
51, 072, 612
64, 991, 431
76, 549, 951 | 12, 532, 360
20, 864, 078
27, 713, 319
23, 355, 119
33, 245, 867
52, 466, 186
53, 992, 551
43, 547, 679
52, 858, 354
68, 205, 800 | 272, 689
478, 555
525, 896
303, 045
382, 447
481, 224
557, 252
151, 461
180, 646
95, 951 | 198, 151
425, 672
542, 502
226, 651
272, 614
412, 921
443, 998
95, 468
99, 453
63, 286 | 20, 068, 737
25, 753, 504
29, 899, 140
31, 675, 257
40, 102, 308
51, 000, 445
52, 230, 342
62, 910, 925
66, 689, 715
77, 785, 141 | 15, 786, 789
25, 366, 380
31, 931, 320
35, 931, 533
55, 302, 277
55, 903, 851
44, 477, 656
53, 610, 563
68, 752, 092 | | 1911
1912
1913
1914
1915
1916
1917
1918
1919
1919 | 821, 231
744, 658
751, 285
750, 863
8 842, 137
6 639, 456
8 432, 966 | 378, 533
367, 222
345, 889
361, 370
388, 627
\$ 430, 874
\$ 435, 370
\$ 401, 341
\$ 583, 554
\$ 1, 150, 890 | 78, 528, 637
82, 438, 096
92, 097, 131
88, 230, 170
85, 914, 907
91, 521, 198
92, 814, 202
71, 081, 663
80, 777, 935
100, 023, 245 | 66, 248, 817
67, 016, 928
92, 557, 617
81,
789, 368
73, 886, 820
100, 947, 881
125, 670, 430
113, 730, 661
138, 130, 269
202, 046, 955 | 93, 230
91, 864
107, 313
68, 311
42, 678
(5)
(6)
(6) | 77, 786
77, 363
97, 663
63, 358
39, 801
(5)
(6)
(6) | 79, 547, 958
83, 351, 191
92, 949, 102
89, 049, 766
86, 708, 448
92, 363, 335
93, 453, 658
71, 514, 629
81, 306, 524
100, 790, 726 | 66, 705, 136
67, 461, 513
93, 001, 169
82, 204, 096
74, 285, 248
101, 378, 755
126, 105, 800
114, 132, 002
138, 713, 823
203, 197, 845 | |--|--|---|---|--|---|--|---|---| | 1921
1922
1923
1924
1925
1926
1927
1928
1929 | 5 889, 428
5 1, 271, 674
5 1, 418, 461
5 1, 729, 343
5 2, 104, 891
5 2, 123, 868
5 2, 210, 404 | \$ 897, 025
\$ 1, 293, 598
\$ 1, 947, 352
\$ 2, 006, 559
\$ 2, 524, 841
\$ 2, 925, 798
\$ 2, 824, 744
\$ 2, 895, 629
\$ 3, 026, 967
\$ 2, 473, 075 | 98, 842, 049
114, 789, 984
137, 460, 238
149, 358, 109
161, 658, 901
164, 530, 170
173, 206, 513
176, 298, 846
170, 646, 036
161, 197, 228 | 186, 811, 473
202, 030, 372
261, 174, 452
270, 338, 177
286, 136, 255
281, 346, 591
280, 594, 551
276, 789, 188
252, 556, 133
232, 124, 008 | 0000000000 | 0000000000 | 99, 381, 451
115, 679, 412
138, 731, 912
150, 776, 570
163, 388, 244
166, 635, 061
175, 330, 381
178, 509, 250
172, 855, 501
162, 989, 311 | 187, 708, 498 203, 323, 970 263, 121, 804 272, 344, 736 288, 661, 096 284, 272, 389 283, 419, 295 279, 684, 817 255, 583, 100 284, 597, 083 | | 1931 | ⁸ 1, 241, 803
⁸ 456, 785
⁸ 466, 632
⁸ 671, 588 | \$ 1,639,180
\$ 607,524
\$ 615,954
\$ 953,655 | 125, 429, 071
76, 740, 945
63, 473, 189
77, 747, 765 | 139, 226, 269
77, 508, 354
84, 419, 341
119, 731, 558 | 9999 | 9999 | 126, 670, 874
77, 197, 730
63, 939, 821
78, 419, 353 | 140, 865, 449
78, 115, 878
85, 035, 295
120, 685, 213 | | | ⁸ 256, 659, 873 | ⁵ 178, 813, 574 | 3, 144, 030, 425 | 4, 441, 788, 872 | ⁵ 4, 806, 757 | 8 3, 937, 695 | 3, 405, 497, 055 | 4, 624, 540, 141 | ¹ For 1912 to 1924, inclusive, figures for natural and puzzolan cements represent shipments. Figures for production not available. 2 For 1925 and later years values given for production of natural and puzzolan cements calculated at average value of shipments. 3 For 1913 and later years values given for production of portland cement calculated at average value of shipments. 4 Figures for 1890 and previous years are estimates made at close of each year and are believed to be substantially correct. For years since 1890 the official figures are based on practically complete returns from all producers. 5 Figures for puzzolan cement from 1916 to 1934, inclusive, included with natural cement. ## PORTLAND CEMENT # PRODUCTION, SHIPMENTS, AND STOCKS The total production of portland cement in the United States was 22 percent greater in 1934 than in 1933. Shipments from the mills increased 18 percent in quantity and nearly 37 percent in gross value. The average factory value increased 21 cents a barrel (nearly 16 percent). The production—77,747,765 barrels of 376 pounds net—is equivalent to 310,991,060 sacks, 13,050,518 long tons, or 14,616,580 short tons. In 1934 production exceeded shipments by 1,846,486 barrels. In the following table the statistics are arranged by States, so far as permissible, and by districts. The term "active plant" is applied to a mill or group of mills situated at one place and operated by one company. If a company has establishments at different places its mill or group of mills at each place is counted as a plant. The districts are groups of States related geographically and commercially. | | | | F | roduction | | | | Shipn | nents | | | | Stock a | t mills (De | e. 31) | |--|---|----------------------|--|--|---------------------------|---|---|--|---|--|---|--|---|--|---| | · | Act
pla | | Bar | rels | In-
crease | . 19 | 933 | 1: | 934 | tory | ge fac-
value
parrel | In-
crease
or de-
crease | Bar | rrels | In-
crease | | · | 1933 | 1934 | 1933 | 1934 | in 1934
(per-
cent) | Barrels | Value | Barrels | Value | 1933 | 1934 | in
quan-
tity,
1934
(per-
cent) | 1933
(revised) | 1934 | or de-
crease,
1934
(per-
cent) | | Alabama California Illinois Iowa Kansas Michigan Missouri New York Ohio Pennsylvania Tennessee Texas Other States ! | 6
11
4
5
6
10
5
10
10
24
6
9
46 | 6
9
44 | 1, 968, 513 7, 165, 430 3, 973, 853 3, 044, 008 2, 201, 182 3, 632, 843 3, 798, 662 4, 204, 730 2, 781, 730 2, 781, 797 14, 347, 528 2, 970, 070 14, 090, 988 63, 473, 189 | 2, 208, 279
8, 721, 854
4, 124, 805
3, 180, 546
2, 497, 911
4, 103, 859
4, 760, 609
4, 045, 854
15, 323, 116
2, 481, 379
3, 537, 734
18, 727, 917
77, 747, 765 | 84
19
33 | 1, 999, 412
7, 168, 835
4, 193, 048
2, 770, 656
2, 189, 137
3, 447, 867
3, 994, 690
3, 966, 696
3, 042, 645
12, 486, 585
1, 468, 860
3, 091, 071
14, 463, 254
64, 282, 756 | \$2, 536, 121
10, 530, 698
4, 607, 335
3, 651, 921
2, 881, 978
4, 128, 082
4, 722, 441
5, 274, 593
3, 662, 733
15, 696, 852
2, 044, 970
5, 268, 605
220, 577, 587 | 2, 181, 513
8, 395, 087
3, 908, 107
3, 340, 049
2, 425, 867
3, 945, 375
4, 730, 257
3, 674, 384
2, 305, 578
3, 418, 781
18, 361, 558
75, 901, 279 | \$3, 017, 329
12, 449, 389
5, 498, 568
5, 094, 922
3, 734, 493
5, 290, 214
5, 449, 606
7, 503, 270
5, 565, 525
23, 138, 676
5, 995, 677
29, 907, 756 | \$1. 27
1. 47
1. 10
1. 32
1. 20
1. 18
1. 33
1. 20
1. 20
1. 39
1. 70
1. 42 | \$1. 38
1. 48
1. 41
1. 53
1. 54
1. 50
1. 44
1. 59
1. 51
1. 50
1. 58
1. 75
1. 63 | +9
+17
-7
+21
+11
+14
-5
+19
+21
+24
+57
+11
+27 | 458, 793
1, 018, 613
596, 305
1, 605, 116
910, 018
1, 669, 624
567, 601
1, 554, 851
1, 202, 857
4, 659, 456
415, 102
553, 382
4, 393, 605 | 485, 559
1, 345, 430
813, 003
1, 445, 613
982, 062
1, 822, 335
1, 585, 203
1, 574, 327
4, 546, 927
4, 546, 929
4, 759, 964
21, 451, 809 | +6
+32
+36
-10
+8
+9
+45
+2
+31
-2
+42
+21
+8 | | DISTRICT Eastern Pennsylvania, New Jersey, and Maryland New York and Maine Ohio, western Pennsylvania, and West Virginia Michigan Wisconsin,
Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida, and Louisiana. | 22
11
19
10
11 | 11
19
10
11 | 11, 813, 561
4, 580, 651
5, 328, 747
3, 632, 843
7, 908, 137
5, 669, 497 | 14, 917, 633
5, 015, 615
7, 355, 563
4, 103, 902
9, 079, 458 | 26
9
38
13
15 | 11, 946, 187
4, 341, 747
5, 815, 717
3, 447, 867
8, 189, 896 | 15, 159, 197
5, 843, 118
7, 039, 172
4, 128, 082
9, 600, 985 | 14, 939, 237
5, 010, 637
6, 963, 534
3, 945, 375
8, 899, 493 | 22, 395, 697
7, 998, 640
10, 547, 449
5, 920, 214
12, 872, 160 | 1. 27
1. 35
1. 21
1. 20
1. 17 | 1.50
1.60
1.51
1.50
1.45 | +25
+15
+20
+14
+9 | 3, 583, 572
1, 675, 840
2, 673, 907
1, 669, 624
1, 908, 891 | 3, 561, 968
1, 680, 818
3, 065, 936
1, 828, 151
2, 088, 856 | 6
+.3
+15
+9
+9 | ¹ Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesota, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming. 3 Revised figures. # Portland cement produced, shipped, and in stock in the United States, 1933-34, by States and districts—Continued | | | | I | Production | | | Shipments | | | | | | | Stock at mills (Dec. 31) | | | |---|--------------|--------------|---|---|-------------------------------------|---|---|---|---|----------------------|----------------------------|--|-------------------------------------|-------------------------------------|---|--| | | | tive
nts | Bar | rels | In- | 1 | 933 | 1 | 934 | tory | ge fac-
value
oarrel | In-
crease
or de-
crease | Ва | rrels | In-
crease | | | | 1933 | 1934 | 1933 | 1934 | crease
in 1934
(per-
cent) | Barrels | Value | Barrels | Value | 1933 | 1934 | in
quan-
tity,
1934
(per-
cent) | 1933
(revised) | 1934 | or de-
crease,
1934
(per-
cent) | | | DISTRICT—continued | | | | | | | | | | | | | | | | | | Eastern Missouri, Iowa, Minnesota, and South Dakota
Western Missouri, Nebraska,
Kansas, Oklahoma, and Ar- | 11 | 11 | 7, 317, 163 | 7, 786, 482 | 6 | 7, 093, 411 | \$8, 891, 961 | 7, 826, 458 | \$11, 646, 388 | \$1. 25 | \$1.49 | +10 | 2, 498, 751 | 2, 458, 775 | -2 | | | Texas | 12
9
8 | 12
9
8 | 4, 936, 477
2, 970, 070
1, 243, 188 | 5, 837, 914
3, 537, 734
2, 181, 218 | 18
19
75 | 4, 996, 109
3, 091, 071
1, 420, 538 | 6, 792, 160
5, 268, 605
2, 327, 123 | 5, 549, 945
3, 418, 781
2, 101, 796 | 8, 789, 590
5, 995, 677
3, 788, 362 | 1.36
1.70
1.64 | 1. 58
1. 75
1. 80 | +11
+11
+48 | 1, 690, 653
553, 382
366, 223 | 1, 978, 622
672, 335
445, 645 | +17
+21
+22 | | | Wyoming, and Idaho
California
Oregon and Washington | 11
9 | 10
9 | 7, 165, 430
907, 425 | 8, 721, 854
1, 650, 372 | 22
82 | 7, 168, 835
961, 586 | 10, 530, 698
2 2, 020, 903 | 8, 395, 037
1, 593, 229 | 12, 449, 389
3, 344, 111 | 1.47
2.10 | 1. 48
2. 10 | +17
+66 | 1, 018, 613
533, 036 | 1, 345, 430
590, 179 | +32
+11 | | | | 152 | 150 | 63, 473, 189 | 77, 747, 765 | 22 | 64, 282, 756 | 285, 583, 916 | 75, 901, 279 | 116, 921, 084 | 1.33 | 1. 54 | +18 | 19, 605, 323 | 21, 451, 809 | +9 | | ² Revised figures. CEMENT 183 The following table of production, shipments, and stocks of finished portland cement by districts and by months for 1934 has been compiled from monthly reports on the operation of all but three plants in February, two plants in March and April, and one plant in the other months of the year; estimates have been included for these plants. The table also gives monthly totals in 1933 compiled from reports for all but two plants in October, November, and December; four plants in February, April, and May; and three in the other months of the year; and estimates have been included for these plants. Although the figures may differ slightly from the totals in other tables, which are based on final annual reports from the producers, they reflect accurately fluctuations in the industry during the year. In the colder part of the United States, the production of portland cement necessarily is curtailed somewhat by the weather during December, January, and February, as are also demand and hence shipments from the mills. Moreover, mills often close for repairs during the winter when the demand is lowest. As the quantity of clinker or unground cement produced and in reserve at the mills awaiting manufacture into finished cement is of interest, a table is given showing these statistics, compiled from the manufacturers' estimates. Summary of monthly estimates of portland cement produced, shipped, and in stock at mills in the United c its, States in 1934, by distrin thousands of barrels | PRODUCTION Eastern Pennsylvania, New Jersey, and Maryland 684 774 667 1,117 1,874 1,900 1,610 1,666 1,702 1,097 9 New York and Maine 44 149 155 247 562 749 722 732 701 600 2 701 70 | | |--|-------------------------------| | New York and Maine. | | | and Louisiana | 79
235
7 123 | | Dakota. 531 422 470 503 942 868 787 666 824 736 5 Western Missouri, Nebraska, Kansas, Oklahoma, and Arkansas. 353 244 342 581 536 676 640 507 397 414 6 Texas. 195 280 433 354 297 377 321 267 324 164 2 Colorado, Montana, Utah, Wyoming, and Idaho. 134 104 191 203 236 182 217 292 221 148 1 California. 699 690 791 851 814 800 759 652 657 711 6 | 7 462 | | Texas 195 280 433 354 297 377 321 267 324 164 2 Colorado, Montana, Utah, Wyoming, and Idaho 134 104 191 203 236 182 217 292 221 148 1 California 699 690 791 851 814 800 759 652 667 711 6 | | | 00 100 100 100 110 200 100 1 | 264
7 100
591 | | United States, 1934 3,779 4, 168 5, 257 6, 544 8, 554 8, 813 8, 144 7, 842 7, 680 6, 675 5, 7 1933 2, 958 2, 777 3, 684 4, 183 6, 262 7, 804 8, 609 8, 223 5, 638 5, 037 4, 6 | 4, 447
3, 526 | | SHIPMENTS | | | Eastern Pennsylvania, New Jersey, and Maryland. New York and Maine. 119 66 170 374 571 691 640 719 541 591 3 Ohio, western Pennsylvania, and West Virginia 294 145 295 544 847 875 813 760 771 848 4 Michigan | 5 161
228
2 90
2 234 | | and Louisiana 630 521 641 643 660
587 598 678 621 673 5 Eastern Missouri, Iowa, Minnesota, and South Dakota 196 177 366 645 1.027 907 847 944 887 1.063 5 | | | Dakota 196 177 366 645 1,027 907 847 944 887 1,063 5 Western Missouri, Nebraska, Kansas, Oklahoma, and Arkansas 308 282 443 606 760 619 492 462 410 556 3 Texas 264 273 346 316 356 339 288 292 250 297 2 Colorado, Montana, Utah, Wyoming, and Idaho 126 122 166 218 205 187 195 190 176 209 2 California 692 639 831 810 828 754 653 709 642 722 5 Oregon and Washington 90 118 160 158 160 122 142 168 144 141 1 | 239
186
116
502 | | United States, 1934. 3, 778 2, 952 4, 618 6, 492 8, 784 8, 541 7, 898 8, 249 7, 388 8, 439 5, 6
1933. 2, 502 2, 278 3, 510 4, 949 6, 709 7, 979 8, 697 5, 994 6, 517 6, 750 4, 4 | | | STOCKS (END OF MONTH) | İ | | 1 | | | | | | | 1 | | | |--|--|--|--|--|--|--|--|--|--|--|--|--| | Eastern Pennsylvania, New Jersey, and Maryland.
New York and Maine.
Ohio, western Pennsylvania, and West Virginia
Michigan.
Wisconsin, Illinois, Indiana, and Kentucky.
Virginia, Tennessee, Alabama, Georgia, Florida, | 3, 710
1, 608
2, 446
1, 567
2, 010 | 4, 167
1, 690
2, 505
1, 563
2, 288 | 4, 115
1, 675
2, 596
1, 571
2, 669 | 3, 952
1, 548
2, 733
1, 613
2, 798 | 4, 201
1, 539
2, 848
1, 653
2, 547 | 4, 337
1, 596
2, 945
1, 631
2, 623 | 4, 280
1, 679
3, 128
1, 674
2, 511 | 4, 183
1, 692
3, 275
1, 650
2, 284 | 4, 368
1, 852
3, 264
1, 667
2, 101 | 3, 665
1, 861
3, 129
1, 740
1, 683 | 3, 306
1, 759
3, 049
1, 775
1, 777 | 3, 562
1, 681
3, 066
1, 828
2, 089 | | and Louisiana | 1, 259 | 1, 384 | 1, 517 | 1,712 | 1,635 | 1, 494 | 1, 426 | 1, 451 | 1, 4 81 | 1, 547 | 1,698 | 1, 735 | | Dakota
Western Missouri, Nebraska, Kansas, Oklahoma,
and Arkansas | 2, 829
1, 736 | 3, 074
1, 698 | 3, 178
1, 598 | 3, 035
1, 572 | 2, 950
1, 349 | 2, 911
1, 406 | 2, 851
1, 554 | 2, 573
1, 599 | 2, 509
1, 586 | 2, 183
1, 451 | 2, 173
1, 682 | 2, 459
1, 979 | | Texas Colorado, Montana, Utah, Wyoming, and Idaho California Oregon and Washington | 484
365
1, 019
514 | 492
347
1, 069
485 | 579
373
1,029
522 | 617
359
1, 137
481 | 557
390
1,123
509 | 595
405
1,177
480 | 628
426
1, 282
413 | 603
528
1, 225
361 | 678
567
1, 241
420 | 545
502
1, 229
437 | 594
445
1, 324
496 | 672
446
1,345
590 | | United States, 1934 | 19, 547
20, 624 | 20, 762
21, 125 | 21, 422
21, 298 | 21, 557
20, 542 | 21, 301
20, 117 | 21, 600
19, 936 | 21, 852
19, 848 | 21, 424
22, 078 | 21, 734
21, 216 | 19, 972
19, 502 | 20, 078
19, 709 | 21, 452
1 19, 605 | ¹ Revised figures. Summary of monthly estimates of clinker (unground portland cement) produced and in stock at mills in the United States in 1934, by districts, in thousands of barrels | District | January | February | March | April | May | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | |---|------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------| | PRODUCTION | | | • | | | | | | | | | | | Eastern Pennsylvania, New Jersey, and Mary- | | | | | | | 1 | | | | | | | land
New York and Maine | 829
70 | 818
179 | 683
212 | 1, 072
218 | 1, 844
500 | 1, 824
746 | 1, 621
727 | 1, 575
727 | 1,654
725 | 1, 087
631 | 920
229 | 767
49 | | Ohio, western Pennsylvania, and West Virginia | 112 | 168 | 531 | 740 | 874 | 947 | 905 | 943 | 765 | 685 | 464 | 232 | | Michigan Wisconsin, Illinois, Indiana, and Kentucky | 146
408 | 125 | 133 | 291 | 529 | 617 | 603
941 | 488 | 357 | 386 | 263
770 | 136
502 | | Virginia, Tennessee, Alabama, Georgia, Florida, | 408 | 493 | 795 | 1,006 | 899 | 1,096 | 941 | 684 | 678 | 713 | 110 | 502 | | and Louisiana | 456 | 581 | 835 | 899 | 658 | 571 | 550 | 556 | 538 | 768 | 797 | 535 | | Eastern Missouri, Iowa, Minnesota, and South Dakota | 560 | 420 | 492 | 573 | 851 | 855 | 787 | 649 | 823 | 746 | 543 | 442 | | Western Missouri, Nebraska, Kansas, Oklahoma, | 300 | 420 | 492 | 0/3 | 901 | 655 | 101 | 049 | 020 | 740 | 040 | 442 | | and Arkansas | 343 | 276 | 420 | 458 | 517 | 622 | 606 | 503 | 430 | 486 | 578 | 526 | | TexasColorado, Montana, Utah, Wyoming, and Idaho | 218
112 | 281
86 | 446
174 | 346
215 | 265
213 | 345
182 | 384
240 | 288
318 | 323
217 | 160
146 | 174
156 | 321
74 | | California | 643 | 645 | 700 | 769 | 921 | 883 | 8479 | 709 | 661 | 704 | 741 | 678 | | Oregon and Washington | 84 | 102 | 194 | 215 | 153 | 200 | 33 | 108 | 129 | 214 | 218 | 108 | | United States, 1934 | 3, 981 | 4, 174 | 5, 615 | 6, 802 | 8, 224 | 8,888 | 8, 276 | 7, 548 | 7, 300 | 6, 726 | 5, 853 | 4, 370 | | 1933 | 3, 036 | 3, 110 | 4, 147 | 4, 520 | 5, 848 | 7, 836 | 8, 569 | 7, 835 | 5, 600 | 4, 745 | 4, 329 | 3, 390 | | STOCKS (END OF MONTH) | | | | | | | | | | | | | | Eastern Pennsylvania, New Jersey, and Mary- | | | | | | | 804.25 | | | | | | | landNaw York and Maine | 924
296 | 975
328 | 1, 000
387 | 959
362 | 946
305 | 887
312 | 903
326 | 836
330 | 781
360 | 783
397 | 814
368 | 656
340 | | New York and MaineOhio, western Pennsylvania, and West Virginia | 580 | 549 | 700 | 763 | 683 | 666 | 583 | 586 | 599 | 584 | 641 | 642 | | Michigan | 780 | 809 | 807 | 808 | 812 | 863 | 919 | 925 | 874 | 787 | 787 | 801 | | Wisconsin, Illinois, Indiana, and Kentucky | 429 | 452 | 542 | 781 | 682 | 607 | 617 | 482 | 354 | 354 | 369 | 361 | | and Louisiana | 419 | 358 | 421 | 487 | 566 | 693 | 717 | 575 | 467 | 501 | 547 | 634 | | Eastern Missouri, Iowa, Minnesota, and South | 400 | 407 | 400 | 700 | 440 | 440 | 450 | | 440 | | 440 | 140 | | Dakota | 420 | 437 | 463 | 530 | 448 | 443 | 450 | 441 | 442 | 460 | 442 | 440 | | and Arkansas | 421 | 447 | 520 | 395 | 364 | 312 | 278 | 272 | 293 | 365 | 329 | 343 | | Texas | 203
90 | 206 | 224 | 218 | 187 | 158 | 223 | 244 | 242 | 237 | 150 | 211 | | Colorado, Montana, Utah, Wyoming, and Idaho
California | 1, 150 | 72
1, 081 | 54
979 | 66
877 | 42
984 | 43
1, 045 | 66
1, 146 | 92
1, 194 | 91
1, 190 | 89
1, 159 | 90
1, 278 | 1, 349 | | Oregon and Washington | 207 | 222 | 221 | 319 | 285 | 395 | 360 | 355 | 282 | 339 | 398 | 326 | | United States, 1934 | 5, 919 | 5, 936 | 6, 318 | 6, 565 | 6, 304 | 6, 424 | 6, 588 | 6, 332 | 5, 975 | 6, 055 | 6, 213 | 6, 166 | | 1933 | 6, 092 | 6, 422 | 6, 890 | 7, 146 | 6, 769 | 6, 840 | 6,832 | 6, 474 | 6, 507 | 6, 204 | 5,877 | 5, 717 | Producers' stocks of portland cement reported on hand at the mills increased each month except January, February, and August in 1934 compared with the corresponding month in 1933. Reserves at the end of 1934 were more than 9 percent higher than those at the end of 1933 and nearly 6 percent below the average for the 5 preceding years (22,779,596 barrels). Totals by States and districts are given in the preceding tables. The following table gives stocks on December 31 and the monthly range, 1930 to 1934. Producers' stocks of finished portland cement and clinker (unground cement) on hand at mills in the United States on Dec. 31 and monthly range, 1930-34 | | | | Month | ly range | | |---------------------|-----------------------------|---------------------|-----------------------------|------------|------------------------------| | | Dec. 31
(barrels) | Low | | High | | | | | Month | Barrels | Month | Barrels | | 1930 Cement Clinker | 25, 898, 622
8, 809, 000 | October | 20, 697, 000
7, 266, 000 | MayApril | 30, 891, 000
15, 164, 000 | | 1931 Cement Clinker | 24, 342, 446
7, 035, 000 | do | 21, 218, 000
6, 021, 000 | do | 29, 715, 000
13, 854, 000 | | 1932 Cement Clinker | 20, 351, 058
5, 995, 000 | November | 17, 084, 000
5, 938, 000 | MarchApril | 27, 545, 000
10, 511, 000 | | 1933 Cement Clinker | 1 19,605, 323
5,717,000 | October
December | 19, 502, 000
5, 717, 000 | August | 22, 078, 000
7, 146, 000 | | 1934 Cement Clinker | 21, 451, 809
6, 166, 000 | January | 19, 547, 000
5, 919, 000 | July | 21, 852, 000
6, 588, 000 | ¹ Revised figures. #### DOMESTIC CONSUMPTION The total consumption of portland cement in the United States may be estimated by adding the imports to the shipments and subtracting the exports from the sum. Of course, at any time a variable but considerable quantity of cement is in transit, in warehouses at distributing points, and awaiting use at jobs, so that the estimate thus made is at best only approximate. Another item requiring careful interpretation is the fact that the cement imported and exported is classed as hydraulic cement; hence, the records do not discriminate between portland and other cements and probably include some plaster also. Portland cement, however, constitutes by far the greater part of the exports.
The apparent domestic consumption increased 18 percent in 1934 compared with 1933, the only increase recorded since 1928 when consumption increased 2 percent over 1927. Portland cement available for consumption in the United States, 1930-34, in barrels | Year | Shipments | Imports | Exports | Available for consumption | |-------|---------------|----------|----------|---------------------------| | 1930. | 159, 059, 334 | 975, 546 | 755, 778 | 159, 279, 102 | | 1931. | 127, 150, 534 | 457, 238 | 429, 653 | 127, 178, 119 | | 1932. | 80, 843, 187 | 462, 496 | 374, 581 | 80, 931, 102 | | 1933. | 64, 282, 756 | 472, 550 | 680, 307 | 64, 074, 999 | | 1934. | 75, 901, 279 | 261, 844 | 566, 462 | 75, 596, 661 | The only available gage of consumption of portland cement by States is the record of shipments into the several States by the manufacturers; it is therefore merely approximate. The shipments of cement into a State in a year do not equal the consumption in the State during that year, but shipments over a long period should afford a fair index of consumption. The simplest available common unit is the estimated consumption in barrels per capita, which is ascertained by comparing the shipments into the several States with The following table offers such figures for 1933 their population. The estimates of population used in calculating the percapita consumption are those of the Bureau of the Census. The official figures for exports of cement on pages 204 and 206 differ from those reported by manufacturers in the following table, because cement forwarded from mills and destined for foreign countries and for Alaska, Hawaii, and Puerto Rico is reported by shippers as exported, whether or not it leaves the country during the calendar year, whereas the Bureau of Foreign and Domestic Commerce export figures record the cement that actually leaves the country during the (Shipments to Alaska, Hawaii, and Puerto Rico.) The exports for 1934 recorded by that Bureau period specified. appear on p. 206.) include all other hydraulic cement exported, whereas the table of per-capita consumption relates to portland cement only. The per-capita consumption indicated by the table necessarily falls short of the total apparent consumption by the quantity of the These increase the consumption in certain States near the Canadian border and the seaboard; in 1934 they increased the general average per-capita consumption about 0.002 barrel. Shipments of domestic portland cement from mills into States and per capita, 1933-34, in barrels 1 | | 193 | 3 | 1934 | . | |----------------------------------|-------------|-----------------|---------------|-----------------| | State | Total | Per
capita 1 | Total | Per
capita i | | labama | 926, 199 | 0.34 | 942, 005 | 0.3 | | rizona 3 | 125, 512 | . 28 | 266, 528 | . 5 | | rkansas | 673, 394 | .36 | 698, 672 | .3 | | California | 4, 966, 717 | .82 | 5, 071, 975 | . 8 | | Colorado | 430, 248 | .41 | 546, 032 | . 5 | | Connecticut 2 | 736, 736 | .45 | 856, 523 | . 5 | | | 252, 231 | 1.05 | 303, 260 | 1. 2 | | Delaware 2District of Columbia 2 | 942, 601 | 1.90 | 827, 642 | 1.6 | | | 597, 776 | .38 | 905, 977 | | | Clorida | | 25 | 938, 448 | .: | | leorgia | 728, 503 | | 215, 659 | | | daho | 118, 811 | .27 | | : | | llinois | 5, 295, 165 | .68 | 5, 008, 440 . | | | ndiana | 1, 986, 509 | .60 | 2, 245, 765 | | | owa | 1, 502, 613 | .61 | 2, 220, 369 | . 8 | | Cansas | 946, 388 | . 50 | 1, 406, 799 | | | Centucky | 1, 244, 560 | . 47 | 1, 234, 222 | • • | | ouisiana | 756, 252 | .35 | 991, 133 | • • | | faine | 312, 182 | . 39 | 260, 655 | .: | | farvland. | 835, 241 | . 50 | 1, 283, 158 | | | 1assachusetts 2 | 1, 474, 000 | .34 | 1, 961, 643 | | | Michigan | 2, 465, 262 | . 49 | 2, 966, 829 | | | Innesota | 1, 469, 078 | . 57 | 1, 636, 176 | | | Ississippi ² | 686, 650 | .34 | 671, 594 | | | I issouri | 2, 548, 680 | . 69 | 2, 226, 651 | | | Iontana | 162, 318 | .30 | 325, 576 | | | lebraska | 1, 025, 869 | .74 | 1, 157, 342 | | | Vevada 2 | 1, 435, 214 | 15, 43 | 2, 874, 985 | 30. | | New Hampshire 2 | 261, 686 | . 56 | 345, 302 | 00. | | | 2, 026, 606 | .48 | 2, 339, 145 | • | | New Jersey | 193, 681 | 45 | 304, 935 | : | | lew Mexico 2 | | | | : | | Vew York | 7, 177, 654 | . 55 | 8, 052, 312 | : | | North Carolina 2 | 484, 405 | .15 | 764, 381 | • | Per-capita figures based on latest available estimates of population made by the Bureau of the Census. Non-cement-producing State. Shipments of domestic portland cement from mills into States and per capita, 1933-34, in barrels—Continued | | 193 | 33 | 193 | 4 | |--|--------------------------------------|---|---|---| | State | Total | Per
capita | Total | Per
capita | | North Dakota 1. Ohio Oklahoma Oregon. Pennsylvania Rhode Island 1. South Carolina 1. South Dakota Tennessee Texas Utah Vermont 1. Virginia Washington. West Virginia Wisconsin Wyoming | 1, 836, 251
82, 499 | 0. 19
. 40
. 58
. 34
. 42
. 40
. 12
. 34
. 36
. 53
. 47
. 39
. 38
. 43
. 36
. 61
. 61 | 242, 273 3, 593, 564 1, 289, 514 556, 408 4, 865, 216 325, 555 326, 995 398, 559 1, 553, 744 3, 262, 882 349, 790 241, 278 1, 277, 643 1, 117, 040 1, 065, 530 2, 380, 334 161, 092 | 0. 35
. 55
. 55
. 56
. 56
. 44
. 11
. 57
. 57
. 66
. 60
. 77 | | Unspecified | 309, 193
63, 305, 426
977, 330 | . 50 | 74, 872, 466
1, 028, 813 | . 59 | | Total shipped from cement plants | 64, 282, 756 | | 75, 901, 279 | | The following table of monthly shipments from portland-cement mills into States in 1934 has been compiled from monthly reports of producers but includes estimates of the distribution of shipments from one to two plants each month. Although the figures vary slightly from the totals shown in the other tables, which are based on final annual reports from the producers, they reflect the fluctuations in shipments during the year. Non-cement-producing State. Includes shipments to Alaska, Hawaii, and Puerto Rico. # Portland cement shipped from mills into States in 1934, by months, in barrels1 | Shipped to— | January | February | March | April | May | June | July | August | September | October | November | December | |----------------------------------|---------------------|---------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------| | Alabama | 120, 597 | 82, 660 | 86, 680 | 41, 036 | 56, 284 | 54, 337 | 76, 085 | 58, 083 | 101, 797 | 87, 236 | 100, 205 | 76, 703 | | Alaska | 396 | 1,002 | 546 | 823 | 2,774 | 2, 229 | 2,856 | 1, 830 | 1, 333 | 1, 731 | 318 | 10, 100 | | Arizona | 26, 984 | 27, 405 | 33, 348 | 25, 810 | 23, 359 | 26, 931 | 14, 769 | 18, 525 | 16, 783 | 19, 432 | 17, 453 | 15, 965 | | Arkansas
Dalifornia | 42, 826
420, 939 | 35, 144 | 41, 241 | 50, 320 | 63, 139 | 46, 216 | 55, 399 | 63, 908 | 91, 458 | 97, 618 | 58, 709 | 52, 659 | | Colorado | 26, 540 | 344, 447
22, 046 | 459, 765
48, 410 | 455, 368 | 471, 338 | 461, 691 | 372, 827 | 465, 329 | 366, 711 | 466, 982 | 421, 240 | 339, 721 | | Connecticut | 24, 328 | 7, 991 | 31, 248 | 57, 863
71, 645 | 59, 402
112, 171 | 45, 758 | 64, 350 | 54, 310 | 39, 342 | 57, 877 | 45, 572 | 24, 234 | | Delaware | 8, 147 | 1, 493 | 7, 229 | 24, 046 | 38, 443 | 124, 743
45, 803 | 105, 321
31, 607 | 100, 394 | 74, 140 | 91, 403 | 77, 344 | 31, 618 | | Delaware
District of Columbia | 44, 541 | 10, 794 | 39, 711 | 68, 391 | 67, 170 | 88, 735 | 94, 185 | 34, 295
103, 254 | 18,774 | 51, 271 | 31,859 | 10,040 | | lorida | 85, 609 | 79, 619 | 97, 036 | 107, 267 | 88, 562 | 65, 270 | 54, 516 | 68, 890 | 79, 636
64, 110 | 108, 859
73, 072 | 75, 082 | 47, 067 | | łeorgia | 76, 961 | 80, 854 | 96, 507 | 82, 820 | 72, 012 | 55, 443 | 91, 422 | 100, 561 | 85, 117 | 88, 163 | 63, 706 | 58, 371 | | Iawaii | 12, 756 | 25, 359 | 29, 052 | 22, 278 | 23, 741 | 30, 006 | 13, 482 | 9, 172 | 21, 081 | 26, 104 | 74, 897
23, 181 | 33, 520 | | daho | 8,096 | 11, 062 | 19, 980 | 14, 682 | 19, 432 | 29, 229 | 21, 717 | 19, 775 | 21, 414 | 29, 034 | 15, 797 | 19, 938
6, 706 | | llinois | 133, 420 | 99, 658 | 183, 486 | 386, 683 | 671, 643 | 557, 475 | 512, 159 | 545, 571 | 546, 923 | 736, 326 | 476, 070 | 158, 940 | | ndiana | 68, 130 | 46, 468 | 80, 074 | 175, 352 | 335, 335 | 326, 093 | 323, 604 | 280, 620 | 222, 833 | 224, 541 | 121, 787 | 38, 360 | | owa | 36, 582 | 27, 418 | 100, 399 | 162, 107 | 376, 296 | 297, 842 | 237, 122 | 250, 414 | 228, 125 | 329, 818 | 142, 128 | 30, 933 | | ansas | 84, 581 | 82, 193 | 142, 187 | 197, 528 | 193, 532 | 153, 683 | 114, 941 | 93, 270 | 81, 170 | 123, 666 | 94, 229 | 45, 163 | | entucky | 55, 883 | 28, 290 | 52, 065 | 126, 330 | 187, 223 | 122, 911 | 125, 254 | 140, 881 | 124, 073 | 141, 905 | 92, 442 | 42, 499 | | ouisiana | 99, 525 | 72, 742 | 114, 612 | 104, 635 | 103, 895 | 81, 409 | 91, 859 | 91, 485 | 69, 826 | 70, 353 | 49, 574 | 40, 856 | | faine | 6,711 | 3, 535 | 10, 609 | 20, 734 | 27, 518 | 37, 802 | 30, 862 | 34, 026 | 28, 336 | 36, 766 | 17, 148 | 6, 971 | | I aryland | 51, 441 | 32, 436 | 68, 007 | 103, 993 | 136, 713 | 137, 133 | 161, 833 | 141, 347 | 122, 026 | 166, 675 | 104, 750 | 58, 301 | | lichi an | 69, 993 | 40, 016
 87, 069 | 145, 552 | 185, 865 | 192, 352 | 191, 942 | 267, 319 | 245, 802 | 262, 016 | 192, 924 | 77, 054 | | Innesota | 171, 041
28, 533 | 85, 168 | 129, 029 | 195, 229 | 423, 275 | 473, 640 | 365, 756 | 342, 974 | 303, 850 | 301, 764 | 160, 379 | 65, 426 | | Iississippi | 28, 555
50, 277 | 30, 219
42, 702 | 62, 101 | 106, 896 | 149, 171 | 171, 954 | 202, 247 | 243, 654 | 273, 902 | 264, 381 | 78, 034 | 25, 061 | | Iissouri | 95, 930 | 88, 749 | 70, 322 | 73, 716 | 62, 712 | 63, 418 | 79, 266 | 24, 962 | 47, 836 | 58, 221 | 73, 138 | 29, 029 | | Iontana | 11, 586 | 9, 675 | 141, 436
14, 924 | 230, 971
19, 817 | 327, 619
32, 594 | 216, 904 | 177, 605 | 210, 729 | 178, 361 | 263, 192 | 220, 636 | 70, 636 | | ebraska | 27, 642 | 29, 470 | 53, 206 | 127, 795 | 198, 856 | 29, 299
185, 585 | 37, 841
95, 554 | 30, 700 | 24, 566 | 52, 764 | 27, 265 | 34, 499 | | evada | 244, 948 | 243, 455 | 314, 690 | 308, 963 | 284, 443 | 231, 401 | 262, 265 | 101, 600
224, 548 | 83, 866 | 149, 285 | 84, 595 | 19, 590 | | ew Hampshire | 4, 907 | 5, 871 | 13, 546 | 21, 165 | 36, 762 | 73, 010 | 43, 978 | 40, 489 | 265, 840
37, 094 | 232, 657 | 185, 775 | 173, 335 | | ew Jersey | 84, 978 | 37, 489 | 123, 965 | 216, 336 | 252, 487 | 270, 397 | 285, 365 | 296, 701 | 234, 858 | 38, 821 | 19, 935 | 10, 051 | | ew Mexico | 17, 361 | 18, 813 | 27, 045 | 24, 520 | 32, 875 | 25, 889 | 25, 090 | 29, 547 | 26, 948 | 273, 552
33, 476 | 174, 649 | 87, 153 | | ew York | 227, 196 | 122, 717 | 315, 790 | 643, 533 | 923, 702 | 1, 049, 819 | 978, 403 | 1, 046, 116 | 871, 477 | 916, 781 | 24, 708
636, 979 | 20, 656
310, 852 | | orth Carolina | 59, 997 | 85, 435 | 61, 595 | 52, 706 | 61, 300 | 61, 447 | 80, 208 | 80, 785 | 57, 349 | 68, 440 | 67, 811 | 30, 994 | | orth Dakota | 7, 384 | 5, 313 | 9, 591 | 19, 823 | 36, 042 | 32, 055 | 33, 435 | 30, 352 | 23, 947 | 29, 468 | 8, 952 | 3, 129 | | hio | 131, 995 | 73, 047 | 154, 827 | 304, 617 | 443, 918 | 483, 707 | 411, 800 | 387, 150 | 378, 580 | 438, 861 | 249, 688 | 119, 446 | | klahoma | 101, 643 | 87, 120 | 120, 961 | 118, 919 | 157, 029 | 136, 378 | 115, 418 | 116, 089 | 90, 398 | 91, 615 | 71, 507 | 70, 971 | | regon | 28, 175 | 31, 114 | 56, 490 | 55, 892 | 37, 891 | 36, 042 | 52, 380 | 56, 553 | 46, 140 | 50, 775 | 57, 224 | 49, 967 | | ennsylvania | 208, 317 | 88, 759 | 212, 702 | 400, 087 | 544, 402 | 566, 807 | 584, 073 | 588, 029 | 533, 900 | 607, 231 | 357, 660 | 173, 159 | | uerto Rico | 7, 700 | 27, 408 | 12, 039 | 6, 500 | 10, 132 | 11,988 | 12, 261 | 28, 739 | 18,094 | 18, 456 | 15, 393 | 15, 331 | | hode Island | 10, 183 | 4,606 | 12, 521 | 28, 604 | 39, 543 | 53, 074 | 49, 123 | 35, 258 | 26, 513 | 30, 808 | 24, 040 | 10, 966 | | outh Carolina | 26, 218 | 18, 654 | 31, 541 | 23, 213 | 24, 582 | 28, 877 | 28, 677 | 36, 758 | 24, 579 | 29, 110 | 31,610 | 23, 153 | | outh Dakota | 5, 932 | 8,830 | 19, 890 | 27, 492 | 43, 874 | 37, 917 | 41, 909 | 77, 908 | 61,947 | 44, 257 | 22, 811 | 6, 202 | | 92135—30 | Tennessee. Texas. Utah. Vermont. Virginia. Washington. West Virginia. Wisconsin. Wyoming. Unspecified. | 98, 058
244, 007
7, 739
3, 741
103, 602
66, 403
55, 535
64, 953
5, 673
1, 187 | 74, 518
265, 706
10, 470
3, 201
49, 682
94, 457
21, 323
42, 398
4, 217 | 89, 925
329, 209
18, 289
8, 356
93, 741
119, 181
40, 493
66, 387
7, 611
221 | 172, 536
302, 929
39, 860
17, 466
111, 332
115, 953
72, 429
137, 572
10, 914
4, 093 | 172, 233
347, 606
41, 514
39, 800
128, 834
125, 718
134, 170
291, 111
16, 617
6, 250 | 121, 763
324, 339
28, 513
43, 224
140, 554
97, 178
115, 949
379, 484
20, 369
7, 811 | 101, 964
275, 683
18, 483
25, 367
126, 463
101, 897
102, 598
338, 500
15, 394
4, 963 | 158, 610
273, 028
22, 408
35, 735
140, 236
116, 244
114, 309
347, 459
23, 461
9, 201 | 124, 708
256, 306
24, 600
23, 969
106, 690
93, 233
192, 073
238, 421
22, 976
16, 974 | 157, 836
277, 621
27, 443
22, 588
118, 421
93, 272
120, 769
272, 528
13, 692
13, 195 | 141, 735
198, 986
28, 493
13, 972
91, 825
50, 160
91, 613
119, 096
10, 982
2, 460 | 120, 388
173, 229
6, 705
3, 421
46, 336
41, 296
47, 136
28, 743
9, 551
3, 165 | |----------|--|--|--|--|--|---|--|---|---|---|---|--|--| | | Foreign countries | 3, 707, 827
70, 173 | 2, 873, 218
78, 782 | 4, 560, 885
57, 115 | 6, 437, 141
54, 859 | 8, 742, 909
41, 091 | 8, 501, 883
39, 117 | 7, 862, 078
35, 922 | 8, 213, 591
35, 409 | 7, 360, 805
27, 195 | 8, 402, 128
36, 872 | 5, 638, 526
35, 474 | 3, 045, 195
58, 805 | | 6 | Total shipped from cement plants | 3, 778, 000 | 2, 952, 000 | 4, 618, 000 | 6, 492, 000 | 8, 784, 000 | 8, 541, 000 | 7, 898, 000 | 8, 249, 000 | 7, 388, 000 | 8, 439, 000 | 5, 674, 000 | 3, 104, 000 | ¹ Includes estimated_distribution from 2 plants for January to March and for November and from 1 plant for the remaining months of the year. The Bureau of Mines has had no facilities for collecting statistics on the consumption of portland cement by uses. The following estimates, based on studies of construction figures and other data, were made by engineers of the Portland Cement Association who are in touch with the various industries throughout the country that use cement. Estimated distribution of portland cement in the United States in 1934, by uses | | Percent | Barrels | |---|--------------------|--| | Structural concrete in buildings of all types | 26. 3
24. 4 | 20, 000, 000
18, 500, 000 | | Rural uses exclusively, including farm structures Railways, all uses, including street railways | 19.8
8.5
7.2 | 15, 000, 000
6, 500, 000
5, 500, 000 | | Sewerage, drainage, culverts, and specialties | 7. 9
3. 3 | 6, 000, 000
2, 500, 000 | | Sidewalks and private driveways (exclusive of rural) | 2.6 | 2, 000, 000
76, 000, 000 | #### LOCAL SUPPLIES The following table compares the shipments from the mills within a State or group of States with the estimated consumption (State receipts of mill shipments) and indicates the surplus or deficiency in the supply of cement locally available. Consumption in the States that do not produce cement is also indicated in the table on page 188. Data for 1916 to 1931 will be found in the annual volumes of Mineral Resources of the United States from 1917 to 1931 and for 1932 in Statistical Appendix to Minerals Yearbook, 1932–33. The surplus in the following table was distributed by years as follows: In 1933, to non-cement-producing States, 7,364,999 barrels; foreign countries and Alaska, Hawaii, and Puerto Rico, 977,330 barrels; and unspecified, 309,193 barrels. In 1934, to non-cement-producing States, 10,312,894 barrels; foreign countries and Alaska, Hawaii, and Puerto Rico, 1,028,813 barrels; and unspecified, 54,886 barrels. Estimated surplus or deficiency in local supply of portland cement in cement-producing States, 1933-34, in barrels | | | 1933 | | | 1934 | | |---|---|---|---|--
---|---| | State or division | Shipments
from mills | Estimated consumption | Surplus or
deficiency | Shipments
from mills | Estimated consumption | Surplus or
deficiency | | Alabama California Illinois Ilowa. Illinois Ilowa. Kansas. Michigan Missouri Ohio. Pennsylvania. Tennessee. Texas Colorado, Montana, Utah, Wyoming, and Idaho Oregon and Washington Georgia, Kentucky, Virginia, Florida, and Louisiana. Indiana, Wisconsin, Minnesota, Nebraska, Oklahoma, South Dakota, and Arkansas Maryland, New Jersey, and West Virginia. New York and Maine. | 1, 999, 412 7, 168, 835 4, 193, 048 2, 770, 656 2, 189, 137 3, 947, 867 3, 994, 690 3, 042, 645 1, 468, 880 3, 091, 071 1, 420, 538 961, 586 2, 908, 533 6, 564, 872 2, 232, 674 4, 341, 747 64, 282, 756 | 926, 199 4, 966, 717 5, 295, 165 1, 502, 613 946, 388 2, 465, 262 2, 548, 680 2, 738, 354 957, 390 1, 017, 733 4, 248, 554 8, 647, 672 3, 504, 845 7, 489, 836 55, 631, 234 | +1,073,213
+2,202,118
-1,102,117
+1,268,043
+1,242,749
+982,605
+1,446,010
+304,375
+8,358,231
+511,470
-120,095
+384,148
-56,147
-1,340,021
-2,082,800
-1,272,171
-3,148,089
+8,651,522 | 2, 181, 513
8, 395, 037
3, 908, 107
3, 340, 049
2, 425, 867
3, 945, 375
3, 674, 384
15, 435, 648
2, 305, 578
3, 418, 781
2, 101, 796
11, 593, 229
3, 415, 048
8, 178, 366
2, 792, 739
5, 010, 637 | 942, 005 5, 071, 975 5, 008, 440 2, 220, 369 1, 406, 799 2, 966, 829 2, 226, 651 3, 593, 564 4, 865, 216 1, 533, 774 3, 262, 882 1, 594, 149 1, 473, 448 5, 327, 423 9, 806, 362 4, 687, 833 8, 312, 967 64, 304, 686 | +1, 239, 508
+3, 323, 062
-1, 100, 333
+1, 119, 680
+1, 019, 068
+978, 546
+10, 570, 432
+771, 804
+155, 899
+503, 647
+119, 781
-1, 912, 375
-1, 627, 996
-1, 895, 094
-3, 302, 330
+11, 596, 593 | #### TRANSPORTATION As the cost of transportation and delivery is one of the large items in the cost of cement to the consumer the accompanying table, showing the quantities of portland cement shipped in 1934 from mills by truck, railroad, and boat in bulk and in containers, is of interest. (Detailed data as to mode of shipping are lacking for 2,982,924 barrels—a little less than 4 percent—of the total shipments for the year.) The only comparable figures are those for 1928, when reports of producers to the Bureau of Mines showed that of the total shipments 2.4 percent were in bulk and 97.6 percent in containers. Shipments of portland cement from mills in the United States in 1934, in bulk and in containers, by types of carriers | measure, | | | |----------|--|--| | | | | | | | | | | | | | | | | | In co | 35.34 | | | | | |---------------------------------|--|---------------|-----------------------------|--------------------------|--------------------|--|--------------------------------------|--|-------------| | Type of carrier | In bulk | | In | oags | In
other | Total in | Mode of
shipping
not
stated | Total shi | oments | | | | | Paper | Cloth | tain-
ers 1 | tainers | stated | | | | TruckRailroad
BoatNot stated | Barrels 2 452, 116 13, 270, 738 1, 288, 816 171, 793 | 87. 4
8. 5 | 2, 081, 301
25, 254, 019 | 26, 813, 430
536, 519 | 151, 539
1, 452 | 4, 388, 130
52, 218, 988
1, 299, 567 | | Barrels
4, 840, 246
65, 489, 726
2, 588, 383
3 2, 982, 924 | 86.3
3.4 | | Percent of total shipments | 15, 183, 463
20. 0 | | 28, 289, 630
37. 3 | 29, 978, 228
39. 5 | | l • | 1 | 1 . | | Includes steel drums and iron and wooden barrels. Includes 32,200 barrels used at plants by producers. Includes 2,296,801 barrels for which mode of shipping not stated. Companies reported bulk shipments from 131 plants in 32 of the 35 cement-producing States in 1934; 126 plants shipped in bulk by rail, 10 plants by boat, and 20 plants by truck. Reports from plants making bulk shipments showed a range in shipments by this method from less than 1 percent to 79.2 percent of the total plant shipments; the range in bulk shipments by commercial districts was from 4.6 percent in the Texas district to 41.1 percent in the California district. Of the plants furnishing detailed information on the methods used in shipping their output in 1934 (and such data were received from most of the plants), only 14 reported no shipments in bulk. As stated, the only comparable figures are those for 1928, when producers reported bulk shipments from 71 plants in 19 States; 65 plants shipped in bulk by rail and 12 by truck or boat. Reports from plants making bulk shipments in 1928 showed a range in such shipments from less than 1 percent to 40 percent of the total plant shipments. #### PRICES At factories.—The average selling value of portland cement f. o. b. factories, with the price of containers excluded and cash discounts deducted where allowed, as reported to the Bureau of Mines is stated in the table of shipments by States and districts during 1933 and 1934 on page 181. The average factory value of portland cement may be higher in certain States than if ordinary structural cement were the only kind considered. For these States the average includes certain special cements that command higher prices, including the white portland cement made in Pennsylvania and, in 1933 and 1934, in California, and the high-early-strength portland cements now manufactured in many States. Statistics of output of high-early-strength portland cement, masonry cements of the portland-cement class, and other special cements appear on page 196. Average factory value per barrel in bulk of portland cement in the United States, 1930-34 | 1930 | \$1.44 | 1933 | \$1.33 | |------|--------|------|--------| | 1931 | | 1934 | | | 1932 | 1 01 | | 1.01 | At markets.—Data showing the position of cement prices among those of other structural materials are summarized in the following table. Comparative prices of building materials in December 1933-34 1 [Percentage of increase or decrease from 1926 average] | | 1933 | 1934 | |--|---|---| | Building materials in general Lime, building, at plant (composite price) Plate glass, 3 to 5 square feet, New York Turpentine, New York Brick, common, building, at plant (composite price) Linseed oil, raw, New York Douglas fir, No. 1, common, at mills Yellow pine, flooring, at mills Oak, plain, white, No. 1, common, Cincinnati Portland cement, at plant (composite price) | -14.4
-16.6
-13.4
-49.4
-15.7
-15.2
+12.2
-17.1
-15.2
-8.8 | -14.9
-19.4
-38.5
-44.3
-8.6
-21.3
-2.9
-24.5
-28.8
-6.1 | ¹ Bureau of Labor Statistics, U. S. Department of Labor, Wholesale Prices of Commodities: Rept. for December and year 1934, pp. 21-23. #### CAPACITY At the end of 1934 the capacity for producing finished portland cement of the 150 shipping plants in 1934 and 14 plants inactive in 1934 but producing within the 6 previous years was 262,709,000 barrels per year, according to manufacturers' reports supplemented by a few estimates. No new plants were reported as producing in 1934. The total output for 1934 was 29.6 percent of the indicated capacity at the close of the year, based on producers' reports; the corresponding figure for 1933 was 23.6 percent. Portland cement-manufacturing capacity of the United States, 1933-34, by commercial districts | District . | Estimated
(bar | l capacity
rrels) | Percent of capacity
utilized | | | |---|-------------------|----------------------|---------------------------------|-------|--| | | 1933 | 1934 | 1933 | 1934 | | | Eastern Pennsylvania, New Jersey, and Maryland. | 56, 399, 000 | 55, 063, 000 | 20.9 | 27. 1 | | | New York and Maine | 18, 622, 000 | 18, 402, 000 | 24.6 | 27. 3 | | | Ohio, western Pennsylvania, and West Virginia | 28, 725, 000 | 28, 227, 000 | 18.6 | 26. 1 | | | Michigan | 19, 044, 000 | 17, 180, 000 | 19.1 | 23. 9 | | | Wisconsin, Illinois, Indiana, and Kentucky
Virginia, Tennessee, Alabama, Georgia, Florida, | 31, 836, 000 | 30, 216, 000 | 24.8 | 30.0 | | | and Louisiana Eastern Missouri, Iowa, Minnesota, and South | 25, 473, 000 | 25, 588, 000 | 22.3 | 29. 5 | | | Dakota | 24, 014, 000 | 23, 267, 000 | 30. 5 | 33. 5 | | | and Arkansas | 17, 938, 000 | 17, 559, 000 | 27.5 | 33, 2 | | | Texas | 10, 725, 000 | 10, 925, 000 | 27.7 | 32. 4 | | | Colorado, Montana, Utah, Wyoming, and Idaho. | 6, 207, 000 | 6, 057, 000 | 20.0 | 36. 0 | | | California | 22, 830, 000 | 22, 830, 000 | 31.4 | 38. 2 | | | Oregon and Washington | 7, 574, 000 | 7, 395, 000 | 12.0 | 22. 3 | | | | 269, 387, 000 | 262, 709, 000 | 23. 6 | 29. 6 | | Range of plant capacity for manufacture of finished portland cement in the United States in 1934 | Estimated annual capacity,
barrels | s: | - | of
plants | |--|---|------|--------------| | Less than 1,000,000 | |
 |
41
86 | | 2,000,000 to 2,999,000
Between 2,999,000 and 11,000 | |
 |
24 | | Between 2,999,000 and 11,000 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
 |
164 | The following estimates (based on the monthly reports of producers) of the relation between the production of finished portland cement and the manufacturing capacity of the industry for each month in 1934 and for the 12 months ended with each month indicate the seasonal changes in utilizing capacity. Ratio (percent) of finished portland cement produced to manufacturing capacity of the United States, 1933-34 | | Mor | thly | | onths
ed— | | Monthly | | 12 months
ended— | | |---------------------------------------|--|--|--|--|------|--|--|--|--| | | 1933 | 1934 | 1933 | 1934 | | 1933 | 1934 | 1933 | 1934 | | January February March April May June | 12. 9
13. 4
16. 1
18. 9
27. 4
35. 2 | 16. 6
20. 2
23. 0
29. 6
37. 5
39. 8 | 27. 6
27. 1
26. 7
26. 2
26. 0
26. 0 | 23. 9
24. 4
25. 0
25. 9
26. 7
27. 1 | July | 37. 6
35. 9
25. 5
22. 1
21. 2
15. 5 | 35. 7
34. 5
34. 8
29. 3
26. 2
19. 5 | 26. 3
26. 5
25. 5
24. 5
23. 9
23. 6 | 26. 9
26. 8
27. 6
28. 3
28. 7
29. 0 | The following table gives statistics of capacity by the two general methods—the "wet" and the "dry"—used in manufacturing portland cement at plants in the United States. The figures are based on the estimated capacity of the wet- and dry-process plants for the manufacture of finished cement. Statistics of production of both clinker and finished cement, by processes, appear on page 200. Portland cement-manufacturing capacity of the United States, 1933-34, by processes | | 1 | Perce | | Percent of total finished cement produced | | | | | |------------|--------------------------------|--------------------------------|----------------|---|----------------|----------------------|----------------|----------------| | Process | Bai | Percent of total | | | | capacity
utilized | | | | | 1933 | 1934 | 1933 | 1934 | 1933 | 1934 | 1933 | 1934 | | Wet
Dry | 124, 962, 000
144, 425, 000 | 124, 010, 000
138, 699, 000 | 46. 4
53. 6 | 47. 2
52. 8 | 24. 2
23. 0 | 30. 9
28. 4 | 47. 6
52. 4 | 49. 3
50. 7 | | | 269, 387, 000 | 262, 709, 000 | 100.0 | 100.0 | 23. 6 | 29. 6 | 100.0 | 100. 0 | #### SPECIAL CEMENTS Various types of cement for a number of specifications and uses are being manufactured and marketed in the United States in addition to the standard or "ordinary" portland cement, but many of them have not yet gained universally accepted names. These types have been developed in response to a demand for cement of certain pronounced qualities or characteristics, such as greater plasticity, high early strength, low heat of hardening, impermeability, and resistance to chemical action. With the increase in types manufactured, a wider variety of raw materials is being brought into use in the cement industry. Such special cements as the white portland cement and plastic portland cement have long been produced and marketed in the United States and have been included in the statistics in this series of reports. The Bureau of Mines is not at liberty to publish separately either the figures on white portland cement or those on alumina cement, a hydraulic cement noted especially for its attainment of high strength at early periods. The latter also has been manufactured in the United States for some years. For some time the producers have reported "mixed" and "improved" cements among the natural cements noted for their plasticity and much used in masonry. Figures on special cements in the United States in 1934, as reported to the Bureau of Mines by producers, show the following: High-early-strength portland cement produced in the United States in 1934, as reported by producers, totaled 2,235,570 barrels (including a small quantity manufactured under the trade name "Super", which is also high-early-strength cement), and shipments from the mills totaled 2,060,572 barrels valued at \$3,972,014, an average of \$1.93 per barrel. These figures represent the output of 46 of the portland-cement plants located in 20 States, as follows: One each in Illinois, Kentucky, Maine, Oklahoma, Tennessee, West Virginia, and Wyoming; two each in Alabama, Colorado, Indiana, Iowa, Michigan, Missouri, and Texas; three each in Ohio and Washington; four each in California, Kansas, and New York; and seven in Pennsylvania. Corresponding data for 1933, which represent the output of 43 plants in 22 States and include portland cement manufactured under the trade name "Super", are: Production, 1,207,559 barrels; shipments, 1,276,120 barrels valued at \$2,509,773, an average of \$1.97 per barrel. Progress in the use of this variety of cement in winter concreting operation in 1934 was possibly a factor in the increases of more than **CEMENT** 197 85 and 61 percent, respectively, in production and shipments compared with 1933. Masonry cement of the portland-cement class produced in 1934, as reported by producers, totaled 441,330 barrels and shipments from the mills 405,138 barrels valued at \$550,588, an average of \$1.36 per barrel; these figures represent the output of 33 plants in 11 States. Corresponding data for 1933, which represent the output of 34 plants in 14 States, are: Production, 398,289 barrels; shipments, 405,814 barrels valued at \$545,393, an average of \$1.34 per barrel. So-called low-heat cement (including Tennessee Valley Authority type B portland cement) produced in 1934 totaled 1,293,672 barrels and shipments from the mills 1,105,616 barrels valued at \$1,567,467, an average of \$1.42 per barrel. Figures on low-heat and similar cements for 1933 were not shown separately but were included under "Miscellaneous." Low-heat cement manufactured for and used by the United States Government in river jobs in the Middle West was reported by producers as used in the construction of Pine Canyon Dam, California, and in such projects as Boulder Dam, under construction by the Federal Government in Nevada. It has been stated in regard to type B cement, a specification developed for the Tennessee Valley Authority by the United States Bureau of Reclamation in Denver, Colo.: This specification was along lines similar to that for low-heat cement being used in the construction of Boulder Dam but sufficiently modified to produce a cement which would make satisfactory concrete in both the winter and summer weather which prevals in the Tennessee Valley. Type B cement is variously known as modified, moderate-heat, and sulphate-resistant. Miscellaneous special cements produced in 1934 totaled 975,458 barrels and shipments from the mills 928,073 barrels valued at \$1,703,422, an average of \$1.84 per barrel. These totals include in addition to so-called oil-well portland cement, portland-puzzolan cements reported as high-silica cement and especially designed to resist the action of sea water, Tufa cement, etc. Corresponding data for 1933 are: Miscellaneous cement production, 680,187 barrels; shipments, 584,852 barrels valued at \$1,010,372, an average of \$1.73 per barrel. # MANUFACTURING CONDITIONS Plants.—In 1934 portland cement was manufactured at 147 plants and shipments were made from 150 plants compared with 143 producing and 152 shipping plants in 1933. Additional plants were reported to be under construction but not completed in Arkansas and Pennsylvania. Fuels.2—The following quantities of fuel were consumed at portland-cement plants in the United States in 1934 in the production of 77,747,765 barrels of finished cement and 77,757,000 barrels of clinker (unground cement): Coal, 3,500,486 short tons; oil, 1,862,589 barrels (78,228,738 gallons); and natural gas, 27,330,962,027 cubic feet. Corresponding figures for 1933 are: Finished cement produced, ¹ Freeman, P. J., The Present Status of Type B Cement After One Year's Experience: Pit and Quarry, vol. 28, no. 1, July 1935, pp. 35-38. 1 Data on fuels for 1933 and 1934, compiled from monthly estimates of the producers, include some revisions and a few estimates by the Bureau of Mines. 63,473,189 barrels, and clinker produced, 62,965,000 barrels; fuels consumed—coal 2,863,654 short tons, oil 1,555,451 barrels (65,328,942 gallons), and natural gas 22,000,951,600 cubic feet. Of the portland cement produced in 1934, 66.0 percent was burned with coal alone compared with 62.4 percent in 1933, 8.5 percent was burned with oil alone compared with 8 percent in 1933, and 7.8 percent was burned with natural gas alone compared with 6.7 percent in 1933. As the annual statistics of the Bureau of Mines on portland cement deal principally with the finished product, estimates of fuel consumption are generally compared with the output of finished cement. The average consumption of fuel per barrel of clinker produced at plants using a single fuel in 1934, which for that year does not differ greatly from the average fuel consumption per barrel of finished cement shown in the first table on page 200, was as follows: Coal, 129 pounds; oil, 0.2221 barrel; and natural gas, 1,639 cubic feet. The second table on page 200 compares the output of clinker and finished cement in 1933 and 1934 with the estimated fuel consump- tion, by processes.
Coal was reported as the only fuel used at 98 plants in the United States in 1934 compared with 96 plants in 1933. Its use was reported by plants in all but three of the portland-cement-producing States. The apparent average consumption of coal per barrel of finished cement was 129.0 pounds in 1934 compared with 130.1 pounds in The 47 dry-process plants using coal as the only fuel in 1934 reported a total consumption of 1,738,393 short tons of coal in the manufacture of 27,341,273 barrels of finished cement (an average of 127.2 pounds per barrel) compared with a consumption in 1933 at 45 dry-process plants (where coal was reported as the only fuel used) of 1,339,370 short tons of coal in the manufacture of 21,047,534 barrels of finished cement (an average of 133.0 pounds per barrel). The 51 wet-process plants using coal alone as fuel in 1934 reported a total consumption of 1,475,102 short tons in the manufacture of 22,480,296 barrels of finished cement, an average of 131.2 pounds per barrel. In 1933, 51 wet-process plants using coal alone as fuel reported a total consumption of 1,176,108 short tons in the manufacture of 18,548,351 barrels of finished cement, an average of 126.8 pounds per barrel. The 11 plants (in 4 States) using oil alone as fuel in 1934 reported a total consumption of 1,472,100 barrels of oil in the manufacture of 6,592,766 barrels of finished cement, an average of 0.2233 barrel (9.4 gallons) of oil per barrel of finished cement; in other words, 1 barrel of oil burned 4.5 barrels of cement. The average consumption of oil by the dry-process plants using oil alone as fuel was 0.2073 barrel (8.7 gallons) per barrel of finished cement and by the wet-process plants 0.2400 barrel (10.1 gallons) per barrel of finished cement. The use of oil in 1934 was reported at 13 additional plants which also used other fuel; 4 of these plants were east and 9 west of the Mississippi River. Eleven plants reported natural gas as the only fuel used in 1934 compared with nine plants in 1933. The average consumption in 1934 was 1,585 cubic feet of gas per barrel of finished cement; the corresponding figure for 1933 was 1,655 cubic feet. The average consumption of natural gas by the dry-process plants using that fuel alone in 1934 was 1,855 cubic feet per barrel of finished cement and by the wet-process plants 1,474 cubic feet. The use of natural gas was reported by 19 additional plants which also used other fuel in 1934 compared with 22 additional plants which also used other fuel in 1933. Natural gas was used as fuel at 30 plants in 11 States in 1934 compared with 31 plants in 11 States in 1933. The total quantity of natural gas consumed at portland-cement plants in 1934 increased more than 24 percent over 1933 compared with increases of 23 and 22 percent, respectively, in the total clinker and finished cement produced. Fifteen plants in five States reported the use of natural gas in 1927. In addition to the foregoing fuels, one plant reported the use of manufactured gas in 1934, and six plants reported the use of petroleum coke with other fuels. The quantity of petroleum coke consumed at cement plants in 1934 was 23,170 short tons. The two following tables show the quantities of natural gas and oil used at portland-cement plants in the United States in 1933 and 1934, by States, so far as permissible. Natural gas used at portland-cement plants in the United States, 1933-34, by States, in cubic feet 1 | | State | 1933 | 1934 | |-----------------------------------|-------|---|---| | Kansas
Texas
Other States 2 | |
3, 863, 783, 304
3, 623, 040, 008
14, 514, 128, 288 | 4, 667, 426, 069
4, 513, 105, 200
18, 150, 430, 758 | | Other States | | 22, 000, 951, 600 | 27, 330, 962, 027 | Compiled from monthly estimates of the producers. 1933: Arkansas, California, Colorado, Iowa, Missouri, Nebraska, Oklahoma, Pennsylvania, and South Dakota; 1934: Same States as in 1933, except Pennsylvania. Oil used at portland-cement plants in the United States, 1933-34, by States, in barrels of 42 gallons ³ | 1933:
California1, 090, 648
Other States 4464, 803 | 1934: California 1, 311, 855
Other States 4 550, 734 | |--|---| | 1, 555, 451 | 1, 862, 589 | Oompiled from monthly estimates of the producers. 4 1933: Florida, Indiana, Kansas, Louisiana, Minnesota, Nebraska, Oregon, Pennsylvania, Texas, and Washington; 1934: Same States as in 1933 with the omission of Indiana and Minnesota and the addition of Ohio. # Portland cement burned in the United States, 1933-34, by kinds of fuel | | Finis | hed cement pro | duced | Fuel consumed ¹ | | | | |--|---------------------------------|---|--------------------------------|----------------------------|-------------------------------------|---|--| | Fuel | Number
of plants | Barrels of 376
pounds | Percent
of total | Coal (short tons) | Oil (barrels
of 42 gal-
lons) | Natural gas
(cubic feet) | | | Coal 2 1933 Coil 2 0il Natural gas Coal and oil 4 Coal and natural gas 5 0il and natural gas 6 0il and natural gas 6 | 96
11
9
5
14
3 | 3 39, 595, 885
3 5, 071, 987
3 4, 252, 520
14, 552, 797 | 62. 4
8. 0
6. 7
22. 9 | 2, 575, 478 | 1, 133, 375 | 7, 039, 660, 640
14, 961, 290, 960 | | | Coal, oil, and natural gas 1934 Coal * | 143 | 63, 473, 189 | 100.0 | 7 2, 863, 654 | 1, 555, 451 | 22, 000, 951, 600 | | | Coal of Oil Natural gas Coal and oil 4 Coal and natural gas Oil and natural gas Coal, oil, and natural gas. | 101
11
11
5
12
3 | \$ 51, 358, 415
\$ 6, 592, 766
\$ 6, 068, 031
} 13, 728, 553 | 66. 0
8. 5
7. 8
17. 7 | 3, 277, 021 | 1, 472, 100
390, 489 | 9, 618, 606, 56 7
17, 712, 355, 460 | | | | 147 | 77, 747, 765 | 100. 0 | 9 3, 500, 486 | 1, 862, 589 | 27, 330, 962, 027 | | ¹ Figures compiled from monthly estimates of the producers. ² In addition to the coal shown for this group 1 plant reported the use of petroleum coke with coal and 1 plant the use of coke-oven gas with coal. ³ Average consumption of fuel per barrel of cement produced was as follows: 1933—coal, 130.1 pounds; oil, 0.2235 barrel; natural gas, 1,655 cubic feet. 1934—coal, 129.0 pounds; oil, 0.2233 barrel; natural gas, 1,585 cubic feet. 4 In addition to the coal and oil included for this group 1 plant reported the use of petroleum coke with 8 In addition to the coal and natural gas included for this group: In 1933, 1 plant reported the use of petroleum coke with coal and natural gas; in 1934, 2 plants reported the use of petroleum coke with coal and natural gas and 1 plant the use of oil and petroleum coke with coal and natural gas. 6 In addition to the oil and natural gas included for this group 1 plant reported the use of petroleum coke with oil and natural gas. 7 Includes 72,323 short tons of anthracite and 2,791,331 short tons of bituminous coal. * In addition to the coal shown for this group 2 plants reported the use of petroleum coke with coal. The production figures for this group include the output of 1 plant which used coke-oven gas alone. § Includes 42,645 short tons of anthracite and 3,457,841 short tons of bituminous coal. # Finished portland cement and cement clinker (unground cement) produced and fuels used in the United States, 1933-34, by processes | | Clinker— | | | | | Finished cement pro- | | | | | | | |--------------------|--------------------------|--|-----------------------------|----------------------------------|--------------------------|--|-----------------------------|--|--|--|--|--| | Process | Produced | | | | | duced | | Fuel consumed ¹ | | | | | | 1100658 | Num-
ber of
plants | Barrels ¹
of 376
pounds | Per-
cent
of
total | In stock
Dec. 31
(barrels) | Num-
ber of
plants | Barrels
of 376
pounds | Per-
cent
of
total | Coal
(short
tons) | Oil (bar-
rels of
42 gal-
lons) | Natural gas
(cubic feet) | | | | 1000 | | - | | | | | | | | | | | | 1933
Wet
Dry | | 30, 382, 000
32, 583, 000 | | 3, 215, 000
2, 502, 000 | | 30, 226, 531
33, 246, 658 | | ² 1,195, 764
³ 1,667, 890 | | 14, 150, 106, 692
7, 850, 844, 908 | | | | | 141 | 62, 965, 000 | 100, 0 | 5, 717, 000 | 143 | 63, 473, 189 | 100.0 | 4 2,863, 654 | 1, 555, 451 | 22, 000, 951, 600 | | | | 1934
Wet
Dry | | 38, 442, 000
39, 315, 000 | | 3, 822, 000
2, 344, 000 | 83
64 | ⁵ 38,299, 376
39, 448, 389 | | ³ 1,518, 940
³ 1,981, 546 | | 16, 155, 471, 309
11, 175, 490, 718 | | | | | 145 | 77, 757, 000 | 100.0 | 6, 166, 000 | 147 | 77, 747, 765 | 100.0 | ⁶ 3,500, 486 | 1, 862, 589 | 27, 330, 962, 027 | | | 1 Figures compiled from monthly estimates of the producers. 2 In addition to the coal shown for this group 1 plant reported the use of coke-oven gas with coal. 3 In addition to the coal shown for this group 1 plant reported the use of petroleum coke with coal. 4 Includes 72,323 short tons of anthracite and 2,791,331 short tons of bituminous coal. 5 Includes the output of 1 plant which manufactured from coke-oven gas only. 6 Includes 42,645 short tons of anthracite and 3,457,841 short tons of bituminous coal. CEMENT 201 Electric power.—In connection with the statistics on fuels employed in the wet and dry processes of manufacture the following data on electrical energy used at
portland-cement plants are of interest. The figures, which include some estimates, show the total electrical energy purchased and that generated by the plants. The figures given for comparison with 1934 are those for 1930, the only other year for which figures on electric power have been collected by the Bureau of Mines. Electrical energy used at portland cement-producing plants in the United States, 1930 and 1934, by processes, in kilowatt-hours | | | | | Average
electrical | | | | | | |---|-------------------------------|-----------------------------------|------------------|--------------------------------|--------------------|----------------|--------------------------------|---|--| | Process | | ated at pert-
ement plants | P | urchased | Total | | Finished
cement
produced | energy
used per
barrel of
cement
produced | | | | Active
plants ¹ | Kilowatt-
hours | Active
plants | Kilowatt-
hours | Kilowatt-
hours | Per-
cent | Barrels | Kilowatt-
hours | | | 1930
Wet
Dry | 35½
44½ | 587, 077, 234
1, 020, 513, 554 | | 845, 077, 258
609, 609, 750 | | | 73, 554, 129
87, 643, 099 | | | | Percent of total
electrical ener-
gy used | 80 | 1, 607, 590, 788
52. 5 | | 1, 454, 687, 008
47. 5 | | 100.0 | 161, 197, 228 | 19. 0 | | | Wet
Dry | 35
37 | 382, 006, 670
559, 040, 924 | | 475, 439, 748
299, 703, 177 | | 50. 0
50. 0 | | | | | Percent of total electrical energy used | 72 | 941, 047, 594
54. 8 | | 775, 142, 925
45. 2 | | | 77, 747, 765 | 22.1 | | ¹¹ wet mill and 1 dry mill in the same plant are each counted as half a plant. # NATURAL, MASONRY (NATURAL), AND PUZZOLAN CEMENTS The term "masonry cement" is used here to designate certain cements made, as are natural cements, by grinding calcined calcareous rock and used largely in mortar for laying brick and stone, although other hydraulic cements are also suitable for masonry and are being manufactured for this purpose in increasing quantities. Natural cement (including masonry cement of the natural-cement class and hydraulic lime) was produced at and shipments were made from 11 plants in 1934. The plants engaged in the manufacture of natural cement are located at Utica, Ill.; Speed, Ind.; Fort Scott, Kans.; Kosmosdale, Ky.; Austin and Mankato, Minn.; Brixment and Rosendale, N. Y.; Lisbon, Ohio; and Siegfried, Pa. Two producers (with one plant each, located, respectively, at Riverton, Va., and Highcliff, Wis.) reported an output of hydraulic lime in 1934. Three manufacturers (with one plant each, located, respectively, at Birmingham and Graystone, Ala., and Bessemer, Pa.) reported an output of puzzolan-lime or slag-lime cement in 1934. The following table on natural, masonry (natural), and puzzolan cements from 1930 to 1934 shows a production of 671,588 barrels in 1934, an increase of 43.9 percent over 1933. Shipments from mills increased 56.8 percent in quantity and 68.1 percent in gross value in 1934. Stocks at mills at the end of the year were 3.6 percent lower in 1934 than in 1933. The average factory value per barrel of the cement shipped from mills was \$1.42 in 1934 and \$1.32 in 1933. Like portland cement, these cements are packed four sacks to the barrel, and each sack holds about 1 cubic foot. The lower specific gravity of the nonportland cements accounts for their lighter weight per barrel. In 1934 the weights reported ranged from 220 to 320 pounds. For statistical purposes, however, the output has been expressed in terms of 376-pound barrels to correspond with the figures for portland cement. Producers reported that 9,181 short tons of coal and 923 short tons of coke were consumed in 1934 in manufacturing these cements; they also reported the use of a small quantity of gas having a total fuel value equivalent to about 23 short tons of coal. The fuel consumed in 1933 consisted of 6,288 short tons of coal and of small quantities of coke and gas having a total fuel value equivalent to about 1,518 short tons of coal. At natural-cement plants in the United States where coal was reported as the only fuel used the average consumption of coal per barrel (376 pounds) of cement was 51 pounds in 1934 compared with 49 pounds in 1933. In addition to the statistics of puzzolan-lime cement here included, reported as manufactured from granulated blast-furnace slag and lime, the statistics of portland and special portlands include, under the names by which they were reported by the producers, figures on the output of certain portland cements in which an active siliceous material (puzzolan) is a part of the manufacture. Figures on portland-puzzolanic cements, classified under the various names by which they were reported by the producers, such as "High-Silica" cement, Tufa cement, etc., are given on page 197. Natural, masonry (natural), and puzzolan cements produced, shipped, and in stock at mills in the United States, 1930-34 | Year | Pro | duction | Shipı | Stock
(Dec. 31) | | | |------|----------------------------|--|--|--|--|--| | Iear | Active
plants | Barrels
(376 pounds) | Barrels
(376 pounds) | Value | Barrels
(376 pounds) | | | 1930 | 11
12
15
13
14 | 1, 792, 083
1, 241, 803
456, 785
466, 632
671, 588 | 1, 787, 016
1, 226, 850
524, 844
432, 415
678, 204 | \$2, 469, 531
1, 619, 920
696, 474
571, 648
960, 732 | 202, 416
224, 100
150, 164
1 182, 686
176, 070 | | ¹ Revised figures. ## FOREIGN TRADE IN CEMENT⁵ Imports.—The figures in the following tables cover imports of hydraulic cement of all kinds. Total imports in 1934 decreased 44 percent compared with 1933. The average of the values assigned to imports, supposed to represent values in the foreign countries from which the material is exported, including the cost of the containers or coverings, ranged from \$0.56 per barrel for imports from the U. S. S. R. (Russia in Europe) to \$3.10 per barrel for imports from Canada. "Roman, portland, and other hydraulic" cements imported into the United States, 1933-34, by countries and districts 1 | | 193 | 33 | 1934 | | | |---|---------------------------------|--------------------------------|-----------------------------|-----------------------------|--| | | Barrels | Value | Barrels | Value | | | | | | | | | | COUNTRY BelgiumCanadaCuba | 154, 953
857
1, 516 | \$111, 707
2, 665
2, 589 | 106, 326
2, 334 | \$95, 548
7, 245 | | | Denmark — — — — — — — — — — — — — — — — — — — | 221, 071 °
1, 032
15, 188 | 188, 673
2, 555
12, 559 | 92, 195
403
2, 516 | 97, 356
464
3, 246 | | | Italy | 19, 092 | 17, 782 | 18, 901
306 | 13
20, 248
705 | | | Netherlands | 3, 004
3, 417
607 | 536
2,540
3,015
474 | 8, 105
7, 037 | 6, 287
6, 827 | | | U. S. S. R. (Russia in Europe) | 51, 225 | 43, 365 | 14, 658
9, 057 | 8, 250
7, 586 | | | | 472, 550 | 388, 460 | 261, 844 | 253, 775 | | | DISTRICT | | | | | | | Alaska | | | 93 | 246 | | | Dakota | 1,849 | 1, 511 | 10,063 | 12, 360
516 | | | Hawaii Los Angeles Maine and New Hampshire | 16, 818
3, 805
1, 403 | 15, 557
4, 758
2, 800 | 16, 918
1, 853
1, 634 | 18, 170
1, 994
5, 379 | | | Maryland Massachusetts Mobile | 79, 012
498 | 375
55, 169
313 | 77, 146
1, 397 | 65, 840
1, 212 | | | New Orleans | 205, 614
10, 202 | 182, 778
7, 207 | 91, 645
7, 901 | 91, 970
6, 129 | | | Philadelphia
Puerto Rico | 3, 487
140, 471
5, 050 | 2, 725
108, 356
3, 775 | 25
44, 912
2, 996 | 17
41, 813
2, 600 | | | St. LawrenceSan AntonioSan Diego | 2, 451 | 1,382 | 3, 456
127 | 1, 035
3, 438
97 | | | San Francisco | 263
23
997 | 149
56
1, 120 | 136
177
147 | 97
491
199 | | | | 472, 550 | 388, 460 | 261, 844 | 253, 775 | | ¹ Data on total imports in 1934 and 1933 may not be strictly comparable due to the change made by the Bureau of Foreign and Domestic Commerce, beginning January 1934, in its system of reporting imports. For 1933 and earlier years the figures represent "general imports" and cover goods imported for immediate consumption plus goods entering the country under bond, whereas totals for 1934 represent "imports for consumption" and include goods imported for immediate consumption plus withdrawals from bonded warehouses. ^{*} Figures on imports and exports compiled by Claude Galiher, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce. In addition to the imports listed in the preceding table "white, nonstaining portland cement" was reported "imported for consumption", as follows: 1934, 4,153 barrels valued at \$10,641, of which 3,646 barrels valued at \$8,668 came from France; 1933, 5,244 barrels valued at \$12,162, of which 4,508 barrels valued at \$9,450 came from France. Hydraulic cement imported for consumption in the United States, 1930-34 | 1930 984, 807 \$1, 154, 562 | 1933 | 477, 193 | \$400, 153 | |--|------|----------|------------| | 1931 469, 598 535, 773
1932 468, 139 363, 247 | 1934 | 265, 997 | 264, 416 | Exports.—In 1934 total exports of hydraulic cement (mostly portland cement) to foreign countries, the Philippine Islands, and the Virgin Islands of the United States decreased nearly 17 percent in quantity and more than 10 percent in value compared with 1933. The decrease by destinations was not general; virtually all the West Indies and the South and Central American countries (except Panama, where a decrease of nearly 49 percent was
recorded) showed noteworthy increases in quantity received. The destinations in 1934 were approximately as follows: South America, 161,000 barrels; Central America, 275,000 barrels (of which 239,000 barrels went to Panama, including the Canal Zone); Mexico, 75,000 barrels; Cuba, 3,000 barrels; other West Indies and Bermuda, 26,000 barrels; Canada, 6,000 barrels; and other countries, 20,000 barrels. Although the United States is the major cement-producing country of the world, its export trade has never attained large proportions; since 1925 it has been under 1,000,000 barrels. The total exported in 1934 was 0.7 percent of the total quantity of hydraulic cement shipped from mills during the year and was the largest (except in 1933) since 1930. The value of exports of domestic cement is their actual cost, when exported, at United States ports of export, as declared by the shipper on the export declarations. The average value at the ports was \$2.36 a barrel in 1934 compared with \$2.19 in 1933. Hydraulic cement exported from the United States, 1933-34, by countries | | 193 | 3 | 1934 | | | |--|--|---|---|--|--| | Country | Barrels | Value | Barrels | Value | | | North America: Bermuda. Canada Central America: British Honduras. Costa Rica. Guatemala. Honduras. Nicaragua. Panama. Salvador. Mexico. Newfoundland and Labrador. | 97
3, 841
270
1, 430
451
25, 846
398
466, 243
199
44, 468 | \$274
18, 726
445
1, 936
1, 763
34, 298
1, 384
917, 290
877
120, 822 | 1, 046
6, 350
1, 955
2, 782
1, 046
29, 420
1, 138
238, 936
106
74, 610 | \$1,762
27,922
2,793
5,230
3,255
37,633
2,828
516,971
502
166,603 | | Hydraulic cement exported from the United States, 1933-34, by countries—Contd. | | 19 | 33 | 1934 | | | |---|------------------|-------------------|-------------------|-----------------|--| | Country | Barrels | Value | Barrels | Value | | | North America—Continued. | | | | | | | West Indies: | | | | | | | British: | 62 | \$208 | 96 | \$439 | | | Jamaica
Trinidad and Tobago | 25 | 147 | 12 | . 940
8 | | | Other British | 2. 136 | 4, 177 | 3, 202 | 5, 56 | | | Cuba | 2,784 | 4, 177
5, 913 | 3, 425 | 5, 56
11, 83 | | | Cuba
Dominican Republic | 1,816 | 2,965 | 5, 893 | 10, 27 | | | French | 426
2, 279 | 969
3, 664 | 25
495 | 1, 24 | | | Haiti
Netherland | 2, 279
6, 230 | 8, 433 | 14, 114 | 23, 23 | | | Virgin Islands of the United States | 787 | 1,715 | 857 | 1, 60 | | | | 560, 208 | 1, 126, 784 | 386, 432 | 821, 55 | | | outh America: | 10 102 | 90 651 | 00 102 | 04.47 | | | ArgentinaBolivia | 19, 103
96 | 80, 651
503 | 22, 183
95 | 94, 47
49 | | | Brazil | 8, 783 | 46, 174 | 12, 711 | 62, 93 | | | Chile | 952 | 5, 600 | 2, 419 | 14, 14 | | | Colombia | 14, 741 | 38, 613 | 2, 419
32, 341 | 71, 40
3, 79 | | | Ecuador
Guiana: French | 774 | 3, 310 | 802 | 3, 79 | | | Guiana: French | 330 | 710 | 330
50 | 710
250 | | | Paraguay | 365 | 1, 704 | 1, 139 | 3.92 | | | Uruguay | 3, 399 | 1, 704
16, 127 | 3, 388 | 3, 92
14, 77 | | | Venezuela | 54, 805 | 91, 444 | 85, 220 | 153, 170 | | | | 103, 348 | 284, 836 | 160, 678 | 420, 079 | | | urope: | | 7 - X | 10 | 58 | | | Azores and Madeira Islands | 1, 466 | 6, 455 | 10
614 | 2, 84 | | | Belgium
France | 38 | 81 | 011 | 2,01 | | | Germany | 00 | | 60 | 188 | | | Greece | | | 3 | 18 | | | Irish Free StateNetherlands | | | 357 | 1, 504 | | | Netherlands | 354 | 1, 882
848 | 453
163 | 2, 580
973 | | | Norway
Portugal | 150
20 | 56 | 103 | 916 | | | Portugal Sweden Sweden | 16 | 88 | 16 | 8 | | | United Kingdom | 6, 672 | 26, 489 | 5,019 | 19, 74 | | | | 8, 716 | 35, 899 | 6, 695 | 27, 99 | | | .sia: | | | | | | | Aden | 15 | 79 | 25 | 150 | | | Arabia | 010 | 4,602 | 25
57.6 | 13
3, 38 | | | China
East Indies: | 810 | 4,002 | 0.0 | 0,00 | | | British: | | 0.015 | 0.000 | 10, 95 | | | India | 1,737 | 8, 317
734 | 2, 228
641 | 2 04 | | | Malaya
Netherland | 165 | 101 | 79 | 2, 94
37 | | | Hong Kong | 30 | 179 | | | | | Iran (Persia)
Japan | | | 375 | 1,70 | | | Japan | | | 59 | 64 | | | Kwentung | 0 749 | 13, 340 | 40
6,462 | 33, 63 | | | Palestine Slands Palestine Philippine Islands | 2, 743
524 | 3, 182 | 168 | 96 | | | Other Asia | 775 | 3, 779 | 625 | 3, 15 | | | Other Asia | 6,799 | 34, 212 | 11, 303 | 58, 27 | | | | 0,100 | | | | | | Africa:
British: | | - | | | | | Union of South | 664 | 3,495 | . 100 | 54 | | | Other South | 4 | 24 | | | | | Portuguese: | | 507 | | | | | Mozambique | 125
67 | 597
142 | 1 | | | | Other Portuguese | 860 | 4, 258 | 101 | 54 | | | | 800 | 4, 208 | | | | | ceania: | | | | | | | British: Australia | 105 | 436 | 546 | 2, 53 | | | New Zealand | 250 | 1,230 | 416 | 2, 40 | | | Other British | 21 | 52 | | | | | - / | 376 | 1,718 | 962 | 4, 93 | | | 1 | | 1, 487, 707 | 566, 171 | 1, 333, 38 | | | | 680, 307 | 1.487.707 | | 1, 000, 00 | | Domestic hydraulic cement shipped to Alaska, Hawaii, and Puerto Rico, 1933-34 | | 1933 | | 1934 | | | |-------------|---------------------|-----------------------|---------------------|-----------------------|--| | | Barrels | Value | Barnels | Value | | | Alaska | • 14,037
152,560 | \$37, 679
339, 103 | 20, 494
232, 959 | \$56, 352
467, 596 | | | Puerto Rico | 99, 001
265, 598 | 118, 353
495, 135 | 233, 721 | 323, 318
847, 266 | | ### Hydraulic cement exported from the United States, 1930-34 | Year | Barrels | Value | Percent of
total ship-
ments from
mills | Year | Barrels | Value | Percent of
total ship-
ments from
mills | |----------------------|----------------------------------|--|--|--------------|----------------------|------------------------------|--| | 1930
1931
1932 | 755, 778
429, 653
374, 581 | \$2, 454, 515
1, 220, 600
802, 205 | 0.5
.3
.5 | 1933
1934 | 680, 307
566, 171 | \$1, 487, 707
1, 333, 381 | 1.1 | ### WORLD PRODUCTION The accompanying table, copied from the Statistical Year Book of the League of Nations, 1934–35,6 gives data on the cement output of the world from 1930 to 1934. The figures are in thousands of metric tons (1 metric ton equals 2,204.6 pounds). The following statement prefaces the year book. Throughout this volume the sign"—"indicates that the figure is nil or negligible, ". . ." indicates that the figures are not yet published, "." that information is not available or is nonexistent, and "*" that the figures are provisional or estimated. Decimal figures are preceded in the tables by a full stop and not a comma. In 1932, the latest year for which figures are available for most of the countries of the world, the principal cement-producing countries were, in order, as follows: The United States, France, the United Kingdom, Japan (including Korea, Formosa, and Kwantung), U. S. S. R. (Russia), Italy, Germany, and Belgium. In that year the United States produced nearly 27 percent of the estimated production of the world. ⁶ League of Nations, Statistical Year Book, 1934–35: Geneva, 1935, p. 127. ### Cement production, in thousands of metric tons | Country | 1930 | 1931 | 1932 | 1933 | 1934 1 | |----------------------------------|---------|---------|---------|---------|------------| | frica | 529 | 541 | | | | | Algeria | 68 | 77 | •••• | ••• | ••• | | Delgion Conge | 64 | 45 | 16 | ii | • | | Belgian Congo | | | | | | | Egypt | 300 | 245 | 243 | 250 | 2 | | Morocco (French) | 74 | 150 | 220 | 201 | 18 | | Mozambique | 23 | 24 | 25 | 21 | •• | | Union of South Africa 2 | | | | | | | Jorth America | 29,670 | 23, 223 | 13, 903 | 11, 288 | 13, 9 | | Canada | 1,872 | 1, 619 | 737 | 383 | 5 | | United States | 27, 798 | 21, 604 | 13, 166 | 10, 905 | 13, 3 | | Central America (Mexico) | 21,100 | 21,001 | 10, 100 | 10,000 | 10,0 | | | 0577 | 833 | 783 | 906 | • | | outh America 1 3 | 657 | | | | • | | Argentina | 384 | 536 | 501 | 514 | : | | Brazil | 87 | 167 | 149 | 226 | 3: | | Chile | 161 | 102 | 112 | 139 | 2 | | Peru | 25 1 | 28 | 21 | 27 | | | sia (excluding U. S. S. R.) 14 | 5,000 | 4,950 | 5,000 | 6, 200 | 6.6 | | China 5 | 178 | 235 | 192 | 270 | 0,0 | | French Indo-China | 168 | 152 | 171 | 113 | i | | | | 588 | 592 | 623 | | | India | 573 | | | | 7 | | Japan 6 | 3, 748 | 3, 615 | 3, 731 | 4, 784 | 5,0 | | Netherland Indies | 142 | 130 | 80 | 74 | 1 | | Palestine | 78 | 84 | 100 | 135 | 1 | | Philippines | 100 | 95 | 114 | 95 | | | J. S. S. Ř | 3, 115 | 3, 336 | 3, 481 | 2, 732 | 3. 6 | | Europe (excluding U. S. S. R.) 1 | 31, 900 | 28, 470 | 24, 820 | 26,000 | 6, 6 | | Anetrio | 602 | ~ 500 l | 350 | 280 | ı "š | | AustriaBelgium 7 | 3,050 | 2, 465 | 2, 100 | 1. 950 | 1.9 | | Delgium ' | | | | | 1, 1 | | Bulgaria | 174 | 104 | 139 | 121 | | | Czechoslov 1 | 1, 195 | 1, 200 | 1,081 | 850 | . 7 | | Denmark | 779 | 509 | 415 | 554 | | | Estonia | 47 | 41 | 30 | 30 | | | Finland. | 203 | 162 | 154 | 163 | | | France | 4, 989 | 4,908 | 5,028 | | | | Germany 8 | 5, 511 | 3,711 | 2,795 | 3, 464 | | | | 180 | 195 | 196 | 200 | 9 | | Greece | 329 | 296 | 197 | 179 | í " | | Hungary | | | | | | | Italy | 3,482 | 3,077 | 3, 177 | 3, 535 | 4,0 | | Latvia | 70 | 71 | _50 | 52 | _ | | Netherlands |
224 | 200 | 254 | 360 | 3 | | Norway | 321 | 220 | 235 | 222 | 1 2 | | Poland | 832 | 546 | 354 | 411 | 7 | | Portugal | 99 | 95 | 121 | 164 | 1 | | Roumania | 396 | 196 | 213 | -0- | _ | | | 161 | 126 | 93 | iii | j | | Saar | | | | | | | Spain | 1,839 | 1,630 | 1,425 | 1, 407 | | | Sweden | 611 | 518 | 484 | 403 | 16 | | Turkey | 57 | 100 | 108 | | | | United Kingdom | 5, 111 | 5, 986 | 4, 320 | 4, 470 | 5, 2 | | Other countries 1 | 1,640 | 1,610 | 1,500 | 1,600 | · . | | ceania 1 4 | 900 | 550 | 400 | 500 | | | Australia • | 708 | 396 | 251 | 326 | | | Total 1 | 72,000 | 62, 200 | 49, 300 | 48, 500 | | ¹ Estimated. 2 Country not included in the totals. 3 Country not included in the totals. 4 South America: The U. S. Department of Commerce estimated total production in 1927 at 570,000 tons. 4 Asia, O ceania: Total includes estimate for other countries not mentioned. 5 China: Total shipments from "Customs ports" in China excluding Manchuria. 6 Japan: Including Korea, Formosa, and Kwantung. 7 Belgium: Artificial cement. 8 Germany: Works affiliated to the German Cement Association. 9 12 months ending June 30. -The table covers, as far as possible, the total of natural cements and artificial cements, portland Note.—The table covers, as far as pos or other. Sources.—National official statistics. #### CEMENT IN CANADA The cement industry in Canada began with the manufacture of hydraulic or natural rock cement. According to the Dominion Bureau of Statistics the first production was probably at Hull, Quebec, between 1830 and 1840. The manufacture of portland cement began about 1889. Owing to its superior uniformity and strength, it soon superseded the older product. Production declined greatly from 1929 to 1933 but recovered somewhat in 1934. The mill shipments of portland cement from plants in Canada in 1934 were 3,783,226 barrels valued at \$5,667,946 compared with 3,007,432 barrels valued at \$4,536,935 in 1933, an increase of 25.8 percent in quantity and 24.9 percent in value. The average selling price per barrel over the whole Dominion, computed from the total quantity sold and the total value as given, was \$1.50 in 1934 and \$1.51 in 1933. Cement is produced in the Provinces of Quebec, Ontario, Manitoba, Alberta, and British Columbia. In 1934 mills in Quebec produced 43 percent of the total Canadian shipments; in Ontario, 45 percent; in Manitoba, 5 percent; in Alberta, 4 percent; and in British Columbia, 3 percent. In 1934 the Canadian cement industry consumed 806,546 tons of limestone and 19,172 tons of gypsum, from which were manufactured 3,484,233 barrels of cement. At the close of 1934 the plants had on hand 1,562,501 barrels of cement or nearly 300,000 barrels less than the quantity on hand at the beginning of the year. Imports of portland cement into Canada totaled 14,341 barrels (estimated at 350 pounds each) having an average value of \$3.18 per barrel in 1934 compared with 19,119 barrels averaging \$1.98 per barrel in 1933 and 21,350 barrels averaging \$2.72 per barrel in 1932. Exports of portland cement amounted to 70,046 barrels valued at \$55,181 in 1934 compared with 52,531 barrels valued at \$47,369 in 1933. Whereas Canada was an importer of portland cement in prewar years, she is now an exporter of this commodity. Summary statistics of the cement industry in Canada, 1933-341 | | 19 | 933 | 1934 | | | |---|--|--|--|--|--| | | Barrels | Value | Barrels | Value | | | Output | 2, 410, 518 | | 3, 484, 233 | | | | Sales: Quebec Ontario Manitoba Alberta British Columbia | 1, 517, 555
1, 095, 845
129, 540
149, 206
115, 286 | \$2, 128, 900
1, 587, 812
295, 351
299, 530
225, 342 | 1, 613, 641
1, 702, 128
181, 166
163, 946
122, 345 | \$2, 294, 847
2, 403, 590
411, 247
326, 253
232, 009 | | | Stocks, Dec. 31 | 3, 007, 432
1, 830, 928 | 4, 536, 935 | 3, 783, 226
1, 562, 501 | 5, 667, 940 | | | Imports: Portland | 19, 119 | 37, 768
4, 971 | 14, 341 | 45, 548
4, 167 | | | Exports | 52, 531 | 42, 739
47, 369 | 70, 046 | 49, 718
55, 181 | | | Apparent consumption | 2, 974, 020 | | 3, 727, 521 | | | ¹ Dominion Bureau of Statistics. # GOLD, SILVER, COPPER, LEAD, AND ZINC IN ARIZONA (DETAILED STATISTICS-MINE REPORT) By C. N. GERRY AND PAUL LUFF 1 ### SUMMARY OUTLINE | Page | Page | |--|---| | Summary 209 | Review by counties and districts—Continued. | | Calculation of value of metal production 209 | Greenlee County 229 | | Mine production by counties 213 | Maricopa County 229 | | Mining industry 213 | Mohave County230 | | Ore classification 215 | Pima County 232 | | Metallurgic industry 218 | Pinal County 233 | | Review by counties and districts 223 | Santa Cruz County 235 | | Cochise County 227 | Yavapai County 235 | | Gila County 228 | Yuma County 240 | | Graham County 220 | 1 · · · · · · · · · · · · · · · · · · · | The output of gold, silver, copper, lead, and zinc from mines in Arizona in 1934, in terms of recovered metals, was 167,024.12 fine ounces of gold, 4,448,474 fine ounces of silver, 178,082,213 pounds of copper, 6,877,216 pounds of lead, and 1,810,279 pounds of zinc. There were 747 lode mines and 867 placers producing in 1934 compared with 399 lode mines and 179 placers in 1933. with 399 lode mines and 179 placers in 1933. From 1903 to the end of 1934 mines in Arizona have produced 352,095,817 tons of ore, etc., 5,689,142.31 fine ounces of gold, 147,313,-845 fine ounces of silver, 14,228,068,371 pounds of copper, 362,429,372 pounds of lead, and 139,754,565 pounds of zinc. The total value of the metal output for this period is \$2,556,371,201, of which \$2,302,-409,867 represents the value of copper, \$120,380,824 the value of gold, and \$98,784,679 the value of silver. Calculation of value of metal production.—The value of metal production herein reported has been calculated at the figures given in the table that follows. Gold in 1930–32 is figured at \$20.671835 per ounce, the Treasury legal coinage value for fine gold from January 18, 1835, to January 31, 1934; in 1933 at \$25.56 and in 1934 at \$34.95 per ounce, the average weighted yearly United States Government prices.² The silver price in 1930–33 is the average New York price for bar silver; in 1934 the Treasury buying price for newly mined silver, \$0.64646464+ per ounce. The copper, lead, and zinc prices are weighted averages, for each year, of all grades of primary metal sold by producers. ¹ Assisted by Jeannette Froiseth and LaRu Shepherd. 2 The Treasury from Feb. 1, 1934, through December 1934 has calculated all gold, old and new, at \$35.00 per ounce, under authority of the Gold Reserve Act of Jan. 31, 1934. Details of the U. S. Government fluctuating price of gold in 1933 to Jan. 31, 1934, may be found in Minerals Yearbook, 1934, pp. 25-28. ### Prices of gold, silver, copper, lead, and zinc, 1930-34 | Year | Gold | Silver | Copper | Lead | Zinc | | |------|---|--|--|--|--|--| | 1930 | Per fine
ounce
1 \$20.67+
1 20.67+
1 20.67+
25.56
34.95 | Per fine
ounce
\$0.385
.290
.282
.350
2.646+ | Per pound
\$0.130
.091
.063
.064
.080 | Per pound
\$0.050
.037
.030
.037
.037 | Per pound
\$0.048
.038
.030
.042 | | 1 \$20.671835. 2 \$0.64646464. # Mine production of gold, silver, copper, lead, and zinc in Arizona, 1930-34, in terms of recovered metals | Year | | | produc-
ig | Ore, old tail-
ings, etc. | | Gold (lode and placer) | | | Silver (lode and placer) | | | |--------------------------------------|----------------------|--|-------------------------------|--|--|------------------------|--|---|---|--|--| | | | Lode | Placer | | rt tons) | Fi | ne ounces | Value | Fine ounces | Value | | | 1930
1931
1932
1933
1934 | | 301
252
341
399
747 | 41
68
179
179
867 | 13,
4, | 802, 919
690, 610
414, 579
995, 728
270, 242 |] | 169, 390. 38
126, 185. 94
66, 789. 67
79, 992. 61
167, 024. 12 | \$3, 501, 610
2, 608, 495
1, 380, 665
1 2, 044, 611
5, 837, 493 | 5, 540, 732
3, 245, 311
2, 082, 823
2, 390, 363
4, 448, 474 | \$2, 133, 182
941, 140
587, 356
836, 627
2, 875, 781 | | | | | Cor | per | | | Le | ad | 2 | line | m-4-1 1 | | | Year | Po | ounds | Valı | 110 | Pound | ds | Value | Pounds | Value | Total value | | | 1930
1931
1932
1933
1934 | 401,
182,
114, | 190, 607
344, 909
491, 825
041, 781
082, 213 | 11, 49
7, 29 | 4, 779
2, 387
6, 985
8, 674
6, 577 | 8, 491,
1, 964,
2, 364,
3, 442,
6, 877, | 112
300
540 | \$424, 58
72, 67
70, 92
127, 37
254, 45 | 2
9

4 11,02 | 4 463 | \$81, 042, 416
40, 144, 694
13, 535, 935
1 10, 307, 749
23, 292, 150 | | [!] Change in value from previous report of this series due to
valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). # Gold and silver produced at placer mines in Arizona, 1930-34, in fine ounces, in terms of recovered metals | | Sluicing | | Dry-land | lredges ¹ | Floating d | redges | Total | | |------|---|--------------------------------|--------------------|----------------------|--------------------------|------------|---|----------------------------------| | Year | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | | 1930 | 631. 63
1, 069. 23
3, 479. 76
3, 671. 45
4, 066. 45 | 85
157
454
424
669 | 257. 73
431. 81 | 18 33 | 1, 200. 94
2, 484. 00 | 161
336 | 631. 63
1, 069. 23
3, 479. 76
5, 130. 12
6, 982. 26 | 85
157
454
603
1,038 | $[\]ensuremath{^{1}}$ Drag-line and power-shovel excavators with sluices or special amalgamators. Gold.—The output of gold in Arizona in 1934 was 167,024.12 fine ounces, more than double the output (79,992.61 ounces) in 1933. Gold recovered at placers amounted to 6,982.26 ounces (1,852.14 ounces more than in 1933) and accounted for 4 percent of the State total; most of the increase resulted from operation of the floating dredge on Lynx Creek by the Lynx Creek Placer Mine Co. and operation of the Phoenix Lynx Creek Placers near Prescott, the Savoy property near Mayer, and claims in the Plomosa, Weaver, Copper Basin, and Warren districts. More than 45 percent of the total gold came from copper ore, chiefly from the Copper Queen branch of the Phelps Dodge Corporation at Bisbee, the New Cornelia mine at Ajo, the Magma property at Superior, and the United Verde Extension mine at Jerome; the yield from copper ore increased from 47,410.62 ounces in 1933 to 76,092.34 ounces in 1934. Dry and siliceous gold ore, etc., yielded 74,298.78 ounces of gold (44.5 percent of the State total and an increase of 50,478.79 ounces), chiefly from the Tom Reed and Big Jim mines at Oatman, the Lake Superior & Arizona Lease at Superior, the Gold Standard at Katherine, the Sheeptanks mine near Vicksburg, the Hillside property near Hillside, the Gladstone-McCabe group at Humboldt, and the Molybdenum Gold Mining Co. at Mammoth. Other classes of ore (dry and siliceous silver, dry and siliceous gold and silver, lead, lead-zinc, and copper-lead) yielded only 6 percent of the total. The Copper Queen branch of the Phelps Dodge Corporation at Bisbee was by far the largest producer of gold in Arizona in 1934 and was followed by the Lake Superior & Arizona Lease, New Cornelia mine, Magma mine, United Verde Extension property, and Tom Reed mine; these six properties produced 57 percent of the State total, and each yielded more than 7,000 ounces. Others producing more than 2,000 ounces were: Gold Standard, Sheeptanks, Big Jim, Hillside, Gladstone-McCabe, Tombstone (Bunker Hill), United American, Eagle-Picher (Montana), Lynx Creek dredge, and Molybdenum Gold properties. Silver.—The output of silver in Arizona was 4,448,474 fine ounces in 1934 compared with 2,390,363 ounces in 1933, an increase of more than 2,058,000 ounces but less than the average annual output (5,352,891 ounces) for the decade 1925–34. The largest increase in silver (more than 1,000,000 ounces) was made by the Copper Queen branch of the Phelps Dodge Corporation. Copper ore, etc., yielded 77.76 percent of the total silver; dry and siliceous ore, etc., 14.15 percent; and lead ore and lead-zinc ore, 8.05 percent, or nearly all the remainder. There were increases of 1,345,417 ounces in silver from copper ore, etc.; 493,460 ounces from dry and siliceous ore, etc.; 188,551 ounces from lead-zinc ore; and 29,232 ounces from lead ore. The Copper Queen branch of the Phelps Dodge Corporation at Bisbee produced more than half the State's total silver. Other large producers were the Magma mine at Superior, the Tombstone (Bunker Hill) property at Tombstone, the United Verde Extension mine at Jerome, the Eagle-Picher (Montana) property at Ruby, the New Cornelia mine at Ajo, and the Hillside property near Hillside. Copper.—The output of copper in Arizona was 178,082,213 pounds in 1934 compared with 114,041,781 pounds in 1933, an increase of 56 percent; the average annual output for the decade 1925–34 was 513,389,828 pounds. More than 99 percent of the total copper in 1934 came from copper ore and most of the remainder from dry and siliceous ores and from precipitates. The marked increase in copper from copper ore was due to resumption of operations at the New Cornelia and Miami properties in July and to large increases in output of copper ore from the Copper Queen branch of the Phelps Dodge Corporation and the Magma mine. The Shattuck Denn Mining Corporation resumed operations at its copper mine (Denn) in October, but the production of copper was comparatively small. The output of copper from the United Verde Extension mine decreased about 7,000,000 pounds. Several of the large copper properties in Arizona remained idle throughout the year. The Copper Queen branch of the Phelps Dodge Corporation at Bisbee was by far the largest producer of copper in Arizona in 1934 and was followed by the New Cornelia mine (also owned by the Phelps Dodge Corporation) at Ajo, the Magma Copper Co. at Superior, the United Verde Extension mine at Jerome, and the Miami Copper Co. at Miami; these five properties produced 99 percent of the State total. Lead.—The output of lead in Arizona in 1934 was 6,877,216 pounds, nearly double the output (3,442,540 pounds) in 1933 but considerably less than the average annual output (12,057,513 pounds) for the decade 1925-34. The large increase in 1934 was due chiefly to resumption in August of milling of lead-zinc-silver ore by the Eagle-Picher Mining & Smelting Co. at Ruby (idle since July 15, 1930) and to the increase in output of smelting lead-silver-gold ore from the Tombstone (Bunker Hill) property at Tombstone. Leadzinc ore yielded 49 percent of the total lead, lead ore 40 percent, and dry and siliceous gold ore and dry and siliceous silver ore most of the remainder. There were increases of 3,340,233 pounds in lead from lead-zinc ore and 537,970 pounds from dry and siliceous gold ore and dry and siliceous silver ore; there was, however, a decrease of 469,189 pounds from lead ore, due chiefly to the decrease in shipments of lead ore from the "79" mine near Winkelman. The largest producers of lead in Arizona in 1934 were the Eagle-Picher Mining & Smelting Co. and the Tombstone Extension and Tombstone (Bunker Hill) properties; these three produced more than 83 percent of the State total. Other fairly large producers of lead were the "79", Golden Turkey, Molybdenum Gold Mining Co., and Golden Belt properties. Zinc.—The output of zinc in Arizona was 1,810,279 pounds in 1934 compared with 11,024 pounds in 1933; no zinc was produced in 1931 or 1932. Nearly all the zinc produced in 1934 was recovered from lead-zinc-[silver] ore from the property of the Eagle-Picher Mining & Smelting Co. at Ruby, Santa Cruz County; a little zinc was produced from a property on Stockton Hill north of Kingman. Mohave County. # MINE PRODUCTION BY COUNTIES Mine production of gold, silver, copper, lead, and zinc in Arizona in 1934, by counties, in terms of recovered metals | | Min | | | Ore, old | | Gold | | | | | | Silver | | | | | | | |---|---|---|--|---|---|--|--|--|---|---|--|--|---|---|--|--|--|--| | County | MIII | es prod | ucing | tailings,
etc. | Lo | de | Pla | cer | То | tal | Lo | de | Plac | er | To | tal | | | | | Lode | Placer | Total | (short
tons) | Fine
ounces | Value | Fine
ounces | Value | Fine
ounces | Value . | Fine
ounces | Value | Fine
ounces | Value | Fine | Value | | | | Cochise Gila Graham Greenlee Maricopa Mohave Pima Pinal Santa Cruz Yavapai Yuma | 81
31
6
12
35
85
119
82
57
186
53 | 49
13
1
25
33
19
48
4
7
316
352 | 130
44
7
37
68
104
167
86
64
502
405 | 546, 320
359, 673
39
766
54, 153
139, 267
1, 480, 798
316,
084
36, 527
315, 552
21, 063 | 54, 404. 72
654. 85
20. 46
437. 71
5, 627. 24
25, 345. 84
11, 773. 16
25, 455. 42
3, 069. 27
27, 620. 57
5, 632. 62 | \$1, 901, 445
22, 887
715
15, 298
196, 672
885, 837
411, 472
889, 667
107, 271
965, 339
196, 860 | 311. 39
105. 12
77
101. 69
116. 88
89. 21
201. 06
39. 23
28. 87
5, 064. 58
923. 46 | \$10, 883
3, 674
27
3, 554
4, 085
3, 118
7, 027
1, 371
1, 009
177, 007
32, 275 | 54, 716. 11
759. 97
21. 23
539. 40
5, 744. 12
25, 435. 05
11, 974. 22
25, 494. 65
3, 098. 14
32, 685. 15
6, 556. 08 | \$1, 912, 328
26, 561
742
18, 852
200, 757
888, 955
418, 499
891, 038
108, 280
1, 142, 346
229, 135 | 2, 630, 170
9, 920
116
5, 787
8, 047
41, 795
148, 364
878, 529
196, 710
510, 331
17, 667 | \$1, 700, 312
6, 413
75
3, 741
5, 202
27, 019
95, 912
567, 938
127, 166
329, 911
11, 421 | 73
28
20
23
17
37
11
3
707
119 | \$47
18
13
15
11
24
7
2
457
77 | 2, 630, 243
9, 948
116
5, 807
8, 070
41, 812
148, 401
878, 540
196, 713
511, 038
17, 786 | \$1, 700, 356
6, 431
75
3, 754
5, 217
27, 030
95, 936
567, 945
127, 168
330, 368
11, 498 | | | | Total, 1933 | 747
399 | 867
179 | 1, 614
578 | 3, 270, 242
995, 728 | 160, 041. 86
74, 862. 49 | 5, 593, 463
1 1, 913, 485 | 6, 982, 26
5, 130, 12 | 244, 030
1 131, 126 | 167, 024. 12
79, 992. 61 | 5, 837, 493
1 2, 044, 611 | 4, 447, 436
2, 389, 760 | 2, 875, 110
836, 416 | 1, 038
603 | 671
211 | 4, 448, 474
2, 390, 363 | 2, 875, 781
836, 627 | | | | Constru | Copper | | Le | ad | Zi | ine | Total value | | | |---|---|---|---|---|--|------------------------------------|---|--|--| | County | Pounds | Value | Pounds | Value | Pounds | Value | Lode | Placer | Lode and
placer | | Cochise Gila. Graham Greenlee Maricopa. Mohave. Pima Pinal Santa Cruz Yavapai Yuma. Total, 1933. | 71, 239, 037
14, 326, 075
75
11, 175
35, 838
46, 650
33, 108, 713
32, 756, 850
26, 397, 887
7, 938
178, 082, 213
114, 041, 781 | \$5, 699, 123
1, 146, 086
6
894
2, 867
3, 732
2, 648, 697
2, 620, 548
2, 111, 831
635
14, 246, 577
7, 298, 674 | 2, 583, 189
192, 405
1, 270
514
1, 973
52, 973
62, 027
148, 595
3, 378, 405
454, 108
1, 757
6, 877, 216
3, 442, 540 | \$95, 578 7, 119 47 19 73 1, 960 2, 295 5, 498 125, 001 16, 802 254, 457 127, 374 | 10, 698
1, 799, 581
1, 810, 279
11, 024 | \$460
77, 382
77, 842
463 | \$9, 396, 458 1, 182, 505 843 19, 962 204, 814 919, 008 3, 158, 376 4, 083, 651 448, 978 3, 423, 883 208, 981 23, 047, 449 1 10, 176, 412 | \$10, 930
3, 692
27
3, 567
4, 100
3, 129
7, 051
1, 378
1, 011
177, 464
22, 352
244, 701
1 131, 337 | \$9, 407, 388 1, 186, 197 87,70 23, 519 208, 914 922, 137 3, 165, 427 4, 085, 029 449, 989 3, 601, 347 241, 333 23, 292, 150 110, 307, 749 | ¹ Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). Gold and silver produced at placer mines in Arizona in 1934, by counties, in fine ounces, in terms of recovered metals | G. a. ta | Sluici | ng | Dry-land | dredges ¹ | Floating | dredges | Total | | |--|--|--|--------------------|----------------------|--------------------------|------------|--|----------------------------------| | County | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | | Cochise Gila Graham Greenlee Maricopa Mohave Pima Pinal Santa Cruz | 311. 39
105. 12
.77
101. 69
116. 88
89. 21
201. 06
39. 23
28. 87 | 73
28
20
23
17
37
11 | | | | | 311. 39
105. 12
.77
101. 69
116. 88
89. 21
201. 06
39. 23
28. 87 | 73
28
20
23
17
37 | | Yavapai
Yuma | 2, 148. 77
923. 46 | 338
119 | 431.81 | 33 | 2, 484. 00 | 336 | 5, 064. 58
923. 46 | 707
119 | | Total, 1933 | 4, 066. 45
3, 671. 45 | 669
424 | 431. 81
257. 73 | 33
18 | 2, 484. 00
1, 200. 94 | 336
161 | 6, 982. 26
5, 130. 12 | 1,038
603 | ¹ Drag-line and power-shovel excavators with sluices or special amalgamators. ### MINING INDUSTRY Improvement was shown in the general condition of the mining industry in Arizona in 1934 over 1933; not only was there an increase in quantity of each of the five metals produced but in total value of the metal output. The total value, however, fell far short of that in 1931, was little better than one fourth of the 1930 value, and was between one sixth and one seventh of the 1929. Large increases were made in 1934 in both quantity and value of copper, gold, and silver. Although several large copper properties remained idle, a marked increase in copper from copper ore resulted from the resumption of milling at the New Cornelia and Miami properties and from the large increases in output of copper ore made by the Copper Queen branch at Bisbee and Magma Copper mine at Superior. Activity in mining and milling at lode gold properties more than tripled the output of gold from that source and resulted in a total from gold ore nearly equal to that from copper ore. Gold from copper ore increased 60 percent, or at almost the same rate as did copper. The increase in gold from dry and siliceous gold ore was notable at Oatman, Superior, Katherine, Vicksburg, Hillside, Humboldt, and Mammoth. A small part of the increase in total gold was due to rejuvenation of placer The output of silver was nearly doubled as a result of increased output of copper-[silver-gold] ore and dry and siliceous ore; there was also an increase in silver from lead-zinc-[silver] ore. Production of both lead and zinc increased materially in 1934 but continued far below the average annual output for the decade 1925-34. Only three of Arizona's eight smelting plants were active during 1934; receipts at two of them were greatly increased over 1933. The larger number of milling plants active—184 in 1934 compared with 99 in 1933 indicates the work done in revamping old and constructing new mills in gold-ore districts. ### ORE CLASSIFICATION Ore, old tailings, etc., sold or treated in Arizona in 1934, with content in terms of recovered metals | Source | Mines
pro-
ducing | Ore, old tailings, etc. | Gold | Silver | Copper | Lead | Zinc | |--|-------------------------|---|--|---|--|---|------------------------| | Dry and siliceous gold ore | 528 | Short tons
1 344, 910 | Fine ounces 74, 298. 78 | Fine ounces
248, 457 | 269, 052 | Pounds
497, 098 | Pounds | | and silver ore
Dry and siliceous silver
ore | 36
62 | 15, 919
2 12, 244 | 2, 120. 30
1, 530. 43 | 110, 858
270, 028 | 134, 269
49, 049 | 4, 611
230, 002 | | | | ³ 622 | 373, 073 | 77, 949. 51 | 629, 343 | 452, 370 | 731, 711 | | | Copper ore
Lead ore
Copper-lead ore
Lead-zinc ore | 58
87
6
2 | 4 2, 845, 604
6 16, 203
47
35, 315 | 76, 092. 34
3, 333. 44
7. 53
2, 659. 04 | 3, 459, 138
168, 938
1, 016
189, 001 | 5 177, 402, 898
77, 625
4, 683
144, 637 | 7, 659
2, 763, 993
15, 164
3, 358, 689 | 1,810,279 | | | * 125 | 2, 897, 169 | 82, 092. 35 | 3, 818, 093 | § 177, 629, 843 | 6, 145, 505 | 1, 810, 279 | | Total, lode mines Total, placers | 8 747
867 | 3, 270, 242 | 160, 041. 86
6, 982. 26 | 4, 447, 436
1, 038 | ⁵ 178, 082, 213 | 6, 877, 216 | 1, 810, 279 | | Total, 1933 | 1, 614
578 | 3, 270, 242
995, 728 | 167, 024. 12
7 79, 992. 61 | 4, 448, 474
8 2, 390, 363 | 5 178, 082, 213
9 114, 041, 781 | 6, 877, 216
3, 442, 540 | 1, 810, 279
11, 024 | Value of metals from ore, old tailings, etc., sold or treated in Arizona in 1934, by classes of ore | Class | Ore. old
tailings,
etc. (short
tons) | Gold | Silver | Copper | Lead | Zine | Total
value | |--|---|---
--|---|------------------------------------|---------------|--| | Dry and siliceous gold ore
Dry and siliceous gold and | 344, 910 | \$2, 596, 742 | \$160, 619 | \$21, 524 | \$18, 393 | | \$2, 797, 278 | | silver ore
Dry and siliceous silver ore_ | 15, 919
12, 244 | 74, 104
53, 489 | 71, 666
174, 563 | 10, 742
3, 924 | 170
8, 510 | | 156, 682
240, 486 | | | 373, 073 | 2, 724, 335 | 406, 848 | 36, 190 | 27,073 | | 3, 194, 446 | | Copper ore Lead ore Copper-lead ore Lead-zinc ore | 2, 845, 604
16, 203
47
35, 315 | 2, 659, 427
116, 504
263
92, 934 | 2, 236, 210
109, 212
657
122, 183 | 114, 192, 232
6, 210
374
11, 571 | 283
102, 268
561
124, 272 | \$77,842 | 19, 088, 152
334, 194
1, 855
428, 802 | | | 2, 897, 169 | 2, 869, 128 | 2, 468, 262 | 114, 210, 387 | 227, 384 | 77, 842 | 19, 853, 003 | | Total, lode mines Total, placers | 3, 270, 242 | 5, 593, 463
244, 030 | 2, 875, 110
671 | 114, 246, 577 | 254, 457 | 77,842 | 23, 047, 449
244, 701 | | Total, 1933 | 3, 270, 242
995, 728 | 5, 837, 493
2, 044, 611 | 2, 875, 781
2 836, 627 | 114, 246, 577
27, 298, 674 | 254, 457
127, 374 | 77,842
463 | 23, 292, 150
3 10, 307, 749 | ¹ Includes 41,030 tons of old tailings cyanided, 3,500 tons of old tailings concentrated, and 12 tons of old tailings and 52 tons of old mill cleanings sold to a smelter. ² Includes 70 tons of old mill cleanings sold to a smelter. ² A mine producing more than one class of ore is counted but once in arriving at total for all classes. ⁴ Includes 26, 689 tons of copper-tungsten ore concentrated and 27 tons of old mill cleanings and 1 ton of old copper matte sold to a smelter. ³ Includes 345,475 pounds of copper recovered from precipitates. ⁵ Includes 315 tons of old tailings and 104 tons of old mill cleanings sold to a smelter. ¹ Includes 0.17 ounce of gold recovered from precipitates. ⁵ Includes 59 ounces of silver recovered from precipitates. ⁵ Includes 836,942 pounds of copper recovered from precipitates. ¹ Includes value of 345,475 pounds of copper recovered from precipitates. ² Includes value of 0.17 ounce of gold, 59 ounces of silver, and 836,942 pounds of copper recovered from precipitates. ² Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal ceinage value (\$20.67+ per ounce). Dry and siliceous gold ore.—The output of dry and siliceous gold ore, old tailings, etc., was 344,910 tons (10.5 percent of the State total ore, etc.) from 528 properties in 1934 compared with 93,802 tons from 310 properties in 1933. The large increase in quantity of gold ore produced, coupled with the increase in gold from copper ore, raised the gold output (in ounces) nearly to the 1929 figure. Nearly half (47 percent) of the total gold ore, etc., was treated by cyanidation; 25.4 percent was concentrated; 10.2 percent was crude ore smelted; 7.5 percent was amalgamated and concentrated; and most of the remainder was concentrated and cyanided. Dry and siliceous gold and silver ore.—The output of dry and siliceous gold and silver ore was 15,919 tons from 36 mines in 1934 compared with 1,625 tons of ore, etc., from 10 mines in 1933. Nearly 86 percent of the total in 1934 came from the Davis-Dunkirk property near Prescott, the Tombstone (Bunker Hill) group at Tombstone, and the Belmont mine at Superior. More than 40 percent of the total was treated by flotation concentration; 33 percent was shipped crude to smelters; and the remainder was treated by concentration and cyanidation. Dry and siliceous silver ore.—Sixty-two properties produced 12,244 tons of dry and siliceous silver ore, etc., in 1934 compared with 11 properties producing 663 tons of ore in 1933. More than 81 percent of the total in 1934 was crude ore shipped to smelters, most of it from the Tombstone (Bunker Hill) group at Tombstone, Cochise County. Copper ore.—The output of copper ore, etc., mined and treated was 2,845,604 tons (87 percent of the State total ore, etc.) from 58 properties in 1934 compared with 888,508 tons from 26 properties in 1933. Nearly all in 1934 came from five properties—the New Cornelia mine at Ajo, the Copper Queen branch of the Phelps Dodge Corporation at Bisbee, the Miami property at Miami, the Magma mine at Superior, and the United Verde Extension property at Jerome. Four large copper properties (United Verde, Inspiration, Morenci branch of the Phelps Dodge Corporation, and Ray mines) remained idle throughout the year. About 25 percent of the copper ore was shipped crude to smelters in Arizona, and nearly 75 percent was first treated in concentration plants. The combined value of the metals recovered from copper ore, etc., was 82 percent of the total value of the gold, silver, copper, lead, and zinc produced in the State in 1934. Lead ore.—The output of lead ore, etc., was 16,203 tons from 87 properties in 1934 compared with 11,029 tons of ore from 46 properties in 1933. Nearly half the total was ore of smelting grade from two properties at Tombstone, Cochise County; the remainder was largely ore of milling grade from a property 26 miles southeast of Kingman, Mohave County. Copper-lead ore.—There were six small producers of copper-lead ore in 1934 and none in 1933. The output (47 tons) in 1934 was ore of smelting grade and came chiefly from two properties near Copper Creek, Pinal County. Lead-zinc ore.—Two mines (one in Mohave County and one in Santa Cruz County) produced 35,315 tons of lead-zinc ore in 1934 compared with one property producing 101 tons in 1933. All was treated by flotation concentration, and nearly all in 1934 came from the Eagle-Picher property at Ruby in Santa Cruz County. Ore, old tailings, etc., sold or treated in Arizona in 1934, by counties, with content in terms of recovered metals ### DRY AND SILICEOUS GOLD ORE | | Ore, old | G 11 | an | Common | Lead | Zine | |---|---|---|---|---|--|--------| | County | tailings,
etc. | Gold | Silver | Copper | Lead | Zille | | | | | | | | | | | Short tons | Fine ounces | Fine ounces | Pounds | Pounds 23, 305 | Pounds | | Cochise | 3, 837 | 1,999.74 | 4, 019
609 | 6, 153
3, 149 | 3, 966 | | | Gila | 3, 043
25 | 493. 18
14. 88 | 10 | 34 | 3, 500 | | | Fraham | 687 | 426. 13 | 4, 932 | 2, 637 | 514 | | | Freenlee | 1 53, 835 | 5, 619. 18 | 4, 727 | 11, 239 | 1.973 | | | Mohave | 3 107, 624 | 25, 152. 67 | 28, 831 | 1.754 | 5, 216
7, 387
130, 288 | | | Pima | 1,097 | 699, 67 | 5, 455 | 3, 126 | 7, 387 | | | Pinal | 46, 694 | 15, 642, 84 | 27,001 | 134, 402 | 130, 288 | | | anta Cruz | 1, 130 | 385. 43 | 834 | 1, 231
103, 325 | 1 176 | | | Yayanai | 8 105, 943 | 18, 237. 13 | 157, 942 | 103, 325 | 323, 570 | | | Yuma | 4 20, 995 | 5, 627, 93 | 14, 097 | 2,002 | 703 | | | | 044.010 | 74 000 70 | 949 457 | 269, 052 | 497, 098 | | | | 344, 910
93, 802 | 74, 298. 78
23, 819. 99 | 248, 457
70, 015 | 130, 819 | 180, 930 | | | Fotal, 1933 | 93, 302 | 20,010.00 | 10,010 | 100,010 | 200,000 | | | DRY | AND SILIC | EOUS GO | LD AND S | LVER ORE | 2 | | | a | 5, 949 | 544, 50 | 31, 757 | 3, 396 | 2, 284 | | | CochiseGila | 60 | 14. 27 | 537 | 488 | 162 | | | Graham | 00 | 1, 20 | 93 | | | | | Greenlee | ī | 3. 28 | 171 | | | | | Mohave | 215 | 57. 61 | 3, 528 | 1, 079
1, 735 | 176 | | | Pima | 157 | 51.94 | 2,586
48,700 | 1, 735 | 1,989 | | | Pinal | 3,065 | 933. 32 | 48, 700 | 39, 517 | | | | Santa Cruz | 46 | 25. 67
488. 51 | 1, 533
21, 953 | 182
87, 872 | | | | Yavapai | 6, 424 | 400.01 | 21, 955 | 01,012 | | | | | | | | | | | | | 15, 919 | 2, 120, 30 | 110, 858 | 134, 269 | 4,611 | | | Total, 1933 | 15, 919
1, 625 | 2, 120. 30
773. 36 | 110, 858
36, 954 | 134, 269
13, 132 | 4, 611
1, 681 | | | Total, 1933 | 1, 625 | 773. 36 | 110, 858
36, 954
US SILVER | 13, 132 | 4, 611
1, 681 | | | | DRY ANI | 773.36
SILICEO | US SILVER | 13, 132
ORE | | | | Cochise | 1, 625 DRY ANI 8, 796 | 773.36 SILICEO 1,394.38 | 36, 954 US SILVER | 13, 132
ORE
34, 205 | 206, 503 | | | CochiseGila | 1, 625 DRY ANI 8, 796 41 | 773. 36 D SILICEO 1, 394. 38 1. 84 | 36, 954 US SILVER 150, 909 2, 148 | 13, 132
ORE
34, 205
1, 215 | | | | CochiseGilaGreenlee. | 1, 625 DRY ANI 8, 796 41 40 | 773. 36 D SILICEO 1, 394. 38 1. 84 4. 90 | 36, 954 US SILVER 150, 909 2, 148 623 | 13, 132
ORE
34, 205 | 206, 503 | | | Cochise Gila Greenlee Mohave | 1, 625 DRY ANI 8, 796 41 40 142 | 773. 36 D SILICEO 1, 394. 38 1. 84 4. 90 29. 95 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 | 13, 132 ORE 34, 205 1, 215 38 | 206, 503 | | | Cochise | 1, 625 DRY ANI 8, 796 41 40 142 67 | 773. 36 D SILICEO 1, 394. 38 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 | 13, 132 ORE 34, 205 1, 215 38 683 | 206, 503 | | | Cochise | 1,625 DRY ANI 8,796 41 40 142 67 3 2,091 | 773. 36 D SILICEO 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03
| 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 | 13, 132 ORE 34, 205 1, 215 38 | 206, 503
 | | | Cochise | 1, 625 DRY ANI 8, 796 41 40 142 67 | 773. 36 D SILICEO 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 | 150, 964
US SILVER
150, 909
2, 148
623
5, 463
1, 671
33, 461
3, 318
69, 330 | 34, 205
1, 215
38
 | 206, 503
 | | | Cochise | 1,625 DRY ANI 8,796 41 40 142 67 2,091 111 | 773. 36 D SILICEO 1,394. 38 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 | 13, 132 ORE 34, 205 1, 215 38 | 206, 503
 | | | Cochise | 1, 625 DRY ANI - 8, 796 41 40 142 67 \$ 2, 091 111 914 42 | 773. 36 2 SILICEO 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 . 85 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 | 13, 132 ORE 34, 205 1, 215 38 683 9, 132 448 3, 050 278 | 206, 503
 | | | Cochise | 1,625 DRY ANI | 773. 36 D SILICEO 1, 394. 38 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 | 13, 132 ORE 34, 205 1, 215 38 683 9, 132 448 3, 050 278 49, 049 | 206, 503
 | | | Cochise | 1, 625 DRY ANI - 8, 796 41 40 142 67 \$ 2, 091 111 914 42 | 773. 36 2 SILICEO 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 . 85 1, 530. 43 64. 46 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 | 13, 132 ORE 34, 205 1, 215 38 683 9, 132 448 3, 050 278 | 206, 503
 | | | Cochise | 1,625 DRY ANI | 773. 36 D SILICEO 1, 394. 38 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 | 13, 132 ORE 34, 205 1, 215 38 683 9, 132 448 3, 050 278 49, 049 | 206, 503
 | | | Cochise | 1, 625 DRY ANI - 8, 796 41 40 142 67 2, 091 111 914 42 12, 244 663 | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 . 85 1, 530. 43 64. 46 COPPER | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 69, 330 3, 105 270, 028 28, 914 ORE | 13, 132 ORE 34, 205 1, 215 38 683 9, 132 448 3, 050 278 49, 049 4, 105 | 206, 503
1, 269
1, 649
706
19, 875
230, 002
8, 200 | | | Cochise | 1, 625 DRY ANI - 8, 796 41 40 142 67 - 2, 091 111 914 42 12, 244 663 | 773. 36 2 SILICEO 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 . 85 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 ORE 2, 297, 212 4, 517 | 13, 132 ORE 34, 205 1, 215 38 683 9, 132 448 3, 050 278 49, 049 4, 105 | 206, 503
1, 269
1, 649
706
19, 875
230, 002
8, 200 | 1 | | Cochise Gila Greenlee Mohave Pima Pima Pinal Santa Cruz Yavapal Yuma Total, 1933 Cochise Gila Graham and Greenlee | 1, 625 DRY ANI - 8, 796 41 40 142 67 2, 091 111 914 42 12, 244 663 | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 . 85 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 3. 42 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 ORE 2, 297, 212 4, 517 672 | 13, 132 ORE 34, 205 1, 215 38 9, 132 448 3, 050 278 49, 049 4, 105 6 71, 142, 628 14, 317, 809 13, 137, 809 | 206, 503
 | 1 | | Cochise | 1, 625 DRY ANI | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 3. 42 8. 06 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 ORE 2, 297, 212 4, 517 62 3, 320 | 13, 132 ORE 34, 205 1, 215 38 | 206, 503
1, 269
1, 649
706
19, 875
230, 002
8, 200 | | | Cochise | 1, 625 DRY ANI | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 3. 42 8. 06 4. 98 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 270, 028 28, 914 ORE 2, 297, 212 4, 517 62 3, 320 1, 451 | 13, 132 ORE 34, 205 1, 215 38 | 206, 503
1, 269
1, 649
706
19, 875
230, 002
8, 200 | | | Cochise | 1, 625 DRY ANI - 8, 796 41 40 142 67 2, 091 111 914 42 12, 244 663 519, 143 356, 111 39 318 7 25, 037 318 1, 479, 187 | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 3. 42 8. 96 4. 98 10, 943. 35 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 ORE 2, 297, 212 4, 517 67 62 3, 320 1, 451 132, 366 | 13, 132 ORE 34, 205 1, 215 38 | 206, 503
1, 269
1, 649
7, 649
19, 875
230, 002
8, 200
6, 432 | | | Cochise Gila Greenlee Mohave Pima Pinal Santa Cruz Yavapai Yuma Total, 1933 Cochise Gila Graham and Greenlee Maricopa Mohave Pima Pinal | 1, 625 DRY ANI - 8, 796 41 40 142 67 - 2, 091 111 914 42 12, 244 663 519, 143 356, 111 39 318 7, 279, 387 264, 185 264, 185 | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 3. 42 8. 06 4. 98 10, 943. 35 8. 845. 40 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 ORE 2, 297, 212 4, 517 62 3, 320 1, 451 132, 366 768, 349 | 13, 132 ORE 34, 205 1, 215 38 9, 132 448 3, 050 278 49, 049 4, 105 6 71, 142, 628 14, 317, 809 24, 589 42, 853 33, 096, 124 32, 569, 437 4, 809 | 206, 503
1, 269
1, 649
706
19, 875
230, 002
8, 200 | | | Cochise | 1, 625 DRY ANI - 8, 796 41 40 142 67 2, 091 111 914 42 12, 244 663 519, 143 356, 111 318 7 25, 037 8 1, 479, 187 264, 185 | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 3. 42 8. 80 4. 98 10, 943. 35 8, 845. 40 8, 845. 46 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 270, 028 28, 914 ORE 2, 297, 212 4, 517 62 3, 320 1, 451 132, 366 788, 349 1, 046 | 13, 132 ORE 34, 205 1, 215 38 9, 132 448 3, 050 278 49, 049 4, 105 6 71, 142, 628 14, 317, 809 24, 599 24, 599 24, 599 33, 096, 124 32, 569, 437 4, 809 66, 190, 452 | 206, 503
1, 269
1, 649
7, 649
19, 875
230, 002
8, 200
6, 432 | | | Cochise | 1, 625 DRY ANI - 8, 796 41 40 142 67 2, 091 111 914 42 12, 244 663 519, 143 356, 111 318 7 25, 037 8 1, 479, 187 264, 185 | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 3. 42 8. 06 4. 98 10, 943. 35 8. 845. 40 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 ORE 2, 297, 212 4, 517 62 3, 320 1, 451 132, 366 768, 349 | 13, 132 ORE 34, 205 1, 215 38 9, 132 448 3, 050 278 49, 049 4, 105 6 71, 142, 628 14, 317, 809 24, 589 42, 853 33, 096, 124 32, 569, 437 4, 809 | 206, 503
1, 269
1, 649
7, 649
19, 875
230, 002
8, 200
6, 432 | | | Cochise Gila | 1, 625 DRY ANI | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 5. 58 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 3. 42 8. 06 4. 98 10. 943. 35 8, 845. 40 4. 62 8, 241. 79 3. 64 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 ORE 2, 297, 212 4, 517 62 3, 320 1, 451 132, 366 768, 349 1, 046 250, 401 | 13, 132 ORE 34, 205 1, 215 38 9, 132 448 3, 050 471, 142, 628 14, 317, 809 8, 529 24, 599 24, 599 33, 096, 124 33, 569, 437 4, 809 28, 199, 452 5, 658 | 206, 503
1, 269
1, 649
706
19, 875
230, 002
8, 200
6, 432
 | | | Cochise Gila Greenlee Mohave Pima Pinal Santa Cruz Yavapai Yuma Total, 1933 Cochise Gila Graham and Greenlee Maricopa Maricopa Mohave Pima Pinal Santa Cruz | 1, 625 DRY ANI - 8, 796 41 40 142 67 2, 91 111 914 42 12, 244 663 519, 143 356, 111 39 31 318 7 25, 037 8 1, 479, 187 264, 185 64 9 201, 497 | 773. 36 1, 394. 38 1. 84 4. 90 29. 95 7. 50 26. 03 5. 40 59. 58 1, 530. 43 64. 46 COPPER 48, 020. 48 16. 60 3. 42 8. 06 4. 98 10, 943. 35 8, 845. 40 4. 62 8, 241. 79 | 36, 954 US SILVER 150, 909 2, 148 623 5, 463 1, 671 33, 461 3, 318 69, 330 3, 105 270, 028 28, 914 ORE 2, 297, 212 4, 517 62 3, 320 1, 451 132, 366 768, 349 1, 046 250, 401 | 13, 132 ORE 34, 205 1, 215 38 9, 132 448 3, 050 278 49, 049 4, 105 6 71, 142, 628 14, 317, 809 24, 599 24, 599 24, 599 33, 096, 124 32, 569, 437 4, 809 66, 190, 452 | 206, 503
1, 269
1, 649
7, 649
19, 875
230, 002
8, 200
6, 432 | | ¹ Includes 30,200 tons of old tailings cyanided. 2 Includes 1,010 tons of old tailings cyanided and 7 tons of old mill cleanings sold to a smelter. 3 Includes 8,270 tons of old tailings cyanided, 3,500 tons of old tailings concentrated, and 11 tons of old tailings and 45 tons of old mill cleanings sold to a smelter. 4 Includes 1,550 tons of old tailings cyanided and 1 ton of old tailings sold to a smelter. 5 Includes 70 tons of old mill cleanings sold to a smelter. Includes metal recovered from precipitates. Includes 25,000 tons of copper-tungsten ore concentrated. Includes 1,689 tons of copper-tungsten ore concentrated and 1 ton of old copper matte sold to a smelter. Includes 27 tons of old mill cleanings sold to a smelter. Ore, old tailings, etc., sold or treated in Arizona in 1934, by counties, with content in terms of recovered metals—Continued LEAD ORE | County | Ore, old tailings, etc. | Gold | Silver | Copper | Lead | Zinc | |--|--|---|---|--|---|------------------------| | Cochise Gla Graham Mohave Pima Santa Cruz Yavapai Yuma | Short tons 10 8, 595 418 11 6, 049 287 7 11 59 774 3 | Fine ounces 2, 445. 62 128. 96 4. 36 86. 59 68. 00 3. 12 3. 03 593. 56 . 20 | Fine ounces 146, 273 2, 109 12 2, 293 6, 233 1, 127 1, 135 10, 705 51 | Pounds 52, 655 3, 414 12 775 6, 794 93 694 13, 188 | Pounds 2, 344, 665 188, 277 1, 270 40, 847 50, 928 2, 421 23, 968 110,
663 1, 054 | Pounds | | Total, 1933 | 16, 203
11, 029 | 3, 333. 44
2, 768. 43 | 168, 938
139, 706 | 77, 625
80, 547 | 2, 763, 993
3, 233, 182 | | | | , C | OPPER-LEA | AD ORE | | | | | Pima
Pinal
Santa Cruz | 3
42
2 | 2.70
4.71
.12 | 53
891
72 | 251
4, 269
163 | 536
14, 237
391 | | | Total, 1933 | (12) 47 | 7. 53 | 1, 016 | 4, 683 | 15, 164 | | | | | LEAD-ZINC | ORE | · · | | | | Mohave and Santa Cruz | 35, 315 | 2, 659. 04 | 189, 001 | 144, 637 | 3, 358, 689 | 1, 810, 279 | | Total, 1933 | 35, 315
101 | 2, 659. 04
25. 63 | 189, 001
450 | 144, 637
545 | 3, 358, 689
18, 456 | 1, 810, 279
11, 024 | ¹⁰ Includes 104 tons of old mill cleanings sold to a smelter. 11 Includes 3 tons of old tailings sold to a smelter. 12 None produced in 1933. ### METALLURGIC INDUSTRY Of the total ore, old tailings, etc., produced in 1934 in Arizona, 2,267,336 tons (69 percent) were treated at concentration plants, 774,937 tons (nearly 24 percent) represented crude ore smelted, and 227,700 tons (7 percent) were treated at gold and silver mills; no ore was treated by straight leaching. The ore concentrated was treated in 38 plants—17 using straight flotation, 5 combined gravity and flotation, and 16 straight gravity concentration. There were 145 gold and silver mills in operation—100 amalgamation plants, 18 cyanidation plants, 24 combined amalgamation and concentration plants, 2 combined concentration and cyanidation plants, and 1 combined amalgamation, cyanidation, and concentration plant. One plant precipitated copper from mine water. In all, 184 plants were active in 1934 compared with 99 in 1933; of these plants 145 in 1934 and 78 in 1933 were gold and silver mills. Of the eight copper-smelting plants in Arizona, three (Douglas, Superior, and Clemenceau) were operated during 1934. Of the total material (186,670 tons of ore and 41,030 tons of old tailings) treated at gold and silver mills, 2.56 percent (5,829 tons of ore) was treated at straight amalgamation plants; 11.35 percent (25,840 tons of ore) was treated by combined amalgamation and concentration; 72.06 percent (123,060 tons of ore and 41,030 tons of old tailings) was treated at straight cyanidation plants; 13.01 percent (29,621 tons of ore) was treated by combined concentration and cyanidation; and 1.02 percent (2,320 tons of ore) was treated by combined amalgamation, cyanidation, and concentration. The following table summarizes data for operations at gold and silver mills in 1934, by counties. Mine production of metals from gold and silver mills in Arizona in 1934, by counties, in terms of recovered metals | | Ore and ol | | | | Recove | ered | in bullion | | | |--|-------------------------------------|--|--|--|----------------|----------------------|---|--|--| | County | treated (dr | y weight) | Amalgamation | | | | Cyanidation | | | | | Ore | Ore Old tail- | | Gold | | er | Gold | Silver | | | Cochise | Short tons
6, 262
2, 586 | Short tons | Fine
ounces
119. 07
98. 70 | | Fine ounces 50 | | Fine
ounces
269. 2
62. 3 | | | | Greenlee
Maricopa
Mohave
Pima | 18, 914
106, 054
511 | 30, 200
1, 010 | 1 | 26. 52
, 572. 29
151. 12
91. 30 | 3 | 18
71
38
54 | 907. 4
24, 474. 3 | | | | Pinal Santa Cruz Yavapai Yuma | 25, 595
862
6, 829
18, 957 | 8, 270
1, 550 | 1 | 84. 75
27. 45
, 232. 15
635. 45 | 5 | 47
9
666
57 | 1, 876. 9
109. 10
665. 9
4, 424. 1 | 0 37
0 1,653 | | | Total, 1933 | 186, 670
34, 482 | 41, 030
33, 300 | | , 038. 80
, 256. 15 | 1, 4
9 | 42
18 | 32, 789. 50
7, 852. 2 | | | | | | Conce | ntra | tes and 1 | recover | ed n | netal | | | | County | Concentrate
produced | Gold | | Silv | er | (| Copper | Lead | | | Cochise | 2
17 | 2 97
7 333
1 6
6 33
9 216
9 449 | aces
), 91
7, 81
3, 20
3, 26
3, 42
3, 83
), 82
7, 88 | . 91
. 81
. 20
. 26
. 42
. 42
. 83
. 282
. 82
. 5, 10 | | | Pounds 263 365 11 63 1,643 13 | Pounds
972
27
56
1,895
130,000
3,831 | | | Total, 1933 | 92
12 | | 3. 13
3. 80 | | 6, 040
598 | | 2, 358
86 | 136, 781 | | ¹ All treated by cyanidation. Ore treated at straight concentration plants increased from 320,288 tons in 1933 to 2,263,836 tons in 1934. The increase was largely in copper ore (from 307,551 tons in 1933 to 2,131,164 tons in 1934) and was due chiefly to resumption of milling operations in July at the New Cornelia and Miami properties. Most of the copper ore was concentrated by flotation; it came chiefly from mines at Ajo, Miami, Superior, and Jerome. Dry and siliceous gold ore treated at concentration plants increased from 11,871 tons in 1933 to 84,061 tons in 1934; nearly all of it was treated by flotation, and most of it came from mines at Humboldt, Cordes, and Hillside in Yavapai County There was an increase of 35,115 tons in the treatment of lead-zinc ore from Ruby, Santa Cruz County. The following tables present detailed ore-concentration data for 1934. Arizona ore and old tailings concentrated in 1934, by classes of ore, etc., methods of concentration, and classes of concentrates [Exclusive of copper ore treated by leaching and flotation] | Class of ma | aterial | Method of | oncentra- | | | | | Gross co | ntent of n | ill feed | | |--|--------------------|--------------------|---------------------------------|-------------------------------|--|--|------|--------------------------------------|---------------------------------|-------------------------|-------------| | concentra | | concentra-
tion | | con- | (| Gold | s | Silver | Copper | Lead | Zinc | | Dry and siliceou
Dry and siliceou | | Flotation | Short tons
83, 823
6, 400 | | Fine
ounces
15, 280. 73
540. 00 | | 01 | Fine
unces
154, 120
25, 050 | Pounds
93, 260
108, 800 | Pounds
371, 200 | Pounds | | silver ore. Dry and siliceous Copper sulphide Lead-zinc sulphi | ore | do | | 808
75, 054
35, 315 | | 16. 15
, 794. 60
, 986. 00 | | 3, 735
746, 597
214, 450 | 360
64, 939, 926
258, 400 | | 3, 797, 700 | | | | | 1 1, 90 | 1, 400 | 42 | , 617. 4 8 | 1, 1 | 143, 952 | 65 , 400, 74 6 | 4, 114, 700 | 3, 797, 700 | | Dry and siliceou | is gold ore | Gravity | 2 | 3, 738 | | 481.50 | | 891 | 1, 236 | 1,790 | | | Lead sulphide or | 8.
'8 | do | | 6, 088 | | 153. 65 | | 3, 751 | 2, 355 | 25, 740 | | | | | | | 9, 826 | | 635. 15 | | 4, 642 | 3, 591 | 27, 530 | | | | | | 8 1, 91 | 11, 226 | 43 | , 252. 63 | 1, 1 | 148, 594 | 65, 404, 337 | 4, 142, 230 | 3, 797, 700 | | | Method of | Concentra | tes pro | duced | | | (| Fross co | ntent of c | ncentrate | s | | Class of material concentrated | concentra-
tion | | | Quan
tity | | Gold | | Silver | Copper | Lead | Zine | | Dry and silice-
ous gold ore. | Flotation . | Siliceous go | old | Short
tons
3, 2
1, 1 | 28 | Fine
ounces
8, 024. 9
4, 278. 9 | 96 | Fine
ounces
98, 61
31, 79 | | 36,636 | Pounds | | Dry and sili-
ceous gold and | do | . Copper sul | phide_ | | 20
40 | 12, 303. 9
473. 7 | | 130, 40
21, 29 | | 301, 650 | | | silver ore. Dry and siliceous silver | do | Siliceous si | lver | | 45 | 9. 5 | 21 | 3, 25 | 6 25 | 2, 990 | | | ore.
Copper sulphide
ore. | do | Copper sul | phide_ | 4 165, 5 | 38 | 19, 820. | 51 | 678, 00 | 1 60,803,24 | 1 | | | Lead-zinc sul-
phide ore. | }do | Lead sulph | ide
ide | 3, 5
2, 0 | 90
31 | 2, 291. 4
367. 5 | | 155, 63
33, 37 | 0 158, 03
1 22, 79 | 3, 313, 362
285, 782 | 2, 000, 486 | | | | | | 5, 6 | 21 | 2, 659. 0 | 04 | 189, 00 | 1 180, 82 | 3, 599, 144 | 2, 000, 486 | | | | | | 4176, 2 | 64 | 35, 266. | 45 | 1, 021, 95 | 9 61,146,42 | 3, 903, 784 | 2, 000, 486 | | Dry and sili-
ceous gold ore
and old tail- | Gravity | Siliceous go | old | 1 | .07 | 359. | 55 | 64 | 8 88 | 1, 357 | | | ings. Lead sulphide ore. | do | Lead sulph | ide | | 59 | 116. | 06 | 2, 59 | 8 1,47 | 18, 922 | | | | 1 | | | | | | | | | | | | | | 1 | | 1 | 66 | 475. | 61 | 3, 24 | 6 2, 35 | 20, 279 | | Figures include copper ore treated by combined gravity and flotation concentration. Includes 3,500 tons of old tailings. Figures do not include ore treated at gold and silver mills. Figures include concentrates from copper ore treated by combined gravity and flotation concentration. Figures do not include concentrates from ore treated at gold and silver mills. Mine production of metals from concentrating mills in Arizona in 1934, by counties, in terms of recovered metals | | Ore and o | | Concentrates and recovered metal | | | | | | | | | |-------------------|---|----------------------|---|--|--|--|---|------------------------|--|--|--| | County | Ore | Old
tail-
ings | Con-
cen-
trates
pro-
duced | Gold | Silver | Copper | Lead | Zine | | | | | CochiseGilaMohaye | Short
tons
1,471
356,114
31,223 | Short
tons | Short
tons
88
12, 826
185 | Fine
ounces
612.87
17.36
105.26 | Fine ounces 877 4, 512 3, 480 | Pounds
1, 598
14, 317, 625
33, 661 |
Pounds
14, 426 | Pounds | | | | | Pima | 1, 479, 195
216, 978
35, 131
143, 599
125 | 3, 500 | 60, 324
84, 945
5, 607
25, 262
18 | 10, 957. 09
6, 804. 15
2, 673. 73
14, 548. 05
38. 54 | 132, 793
504, 917
188, 914
194, 201
23 | 33, 091, 010
22, 389, 064
144, 448
4, 099, 918
487 | 5, 958
1, 875
3, 351, 955
263, 853 | 1, 799, 581 | | | | | Total, 1933 | 2, 263, 836
320, 288 | 3, 500 | 189, 255
86, 269 | 35, 757. 05
9, 630. 82 | 1, 029, 717
477, 610 | 74, 077, 811
23, 096, 161 | 3, 655, 111
151, 037 | 1, 810, 279
11, 024 | | | | # Gross metal content of Arizona concentrates produced in 1934, by classes of concentrates | | Concen-
trates pro- | | Gross metal content | | | | | | | | |------------------------|------------------------------|--------------------------------------|-------------------------------------|-----------------------------------|-------------------------|------------------------|--|--|--|--| | Class of concentrates | duced (dry/
weight) | Gold | Silver | Copper | Lead | Zine | | | | | | Dry and siliceous | Short tons
4,029 | Fine ounces
9, 409. 33 | Fine ounces
108, 193
703, 809 | Pounds
61, 192
75, 551, 362 | Pounds
47, 192 | Pounds | | | | | | Copper
Lead
Zinc | 179, 003
5, 113
2, 031 | 20, 310. 67
6, 945. 62
367. 56 | 190, 384
33, 371 | 173, 753
22, 792 | 3, 738, 861
285, 782 | 2, 000, 486 | | | | | | Total; 1933 | 190, 176
86, 398 | 37, 033. 18
9, 834. 62 | 1, 035, 757
478, 208 | 75, 809, 099
23, 652, 379 | 4, 071, 835
166, 989 | 2, 000, 486
12, 397 | | | | | # Mine production of metals from Arizona concentrates in 1934, in terms of recovered metals ### BY COUNTIES | | | 71 0001112 | | | | | |---------|---|---|---|---|---|--| | | Concen-
trates | Gold | Silver | Copper | Lead | Zine | | Cochise | Short tons
92
12, 848
177
186
60, 340
85, 204
5, 607
25, 671
190, 176
86, 398 | Fine ounces
623. 78
115. 17
333. 20
111. 52
10, 990. 51
7, 020. 98
2, 673. 73
14, 997. 87
166. 42
37, 033. 18
9, 834. 62 | Fine ounces 893 4,556 341 3,494 132,949 505,118 188,914 199,308 1,035,757 478,208 | Pounds 1, 598 14, 317, 888 365 33, 672 33, 091, 073 22, 389, 064 144, 448 4, 101, 561 74, 080, 169 23, 096, 247 | Pounds 15, 398 27 17, 100 7, 853 131, 875 3, 351, 955 267, 684 3, 791, 892 151, 037 | 10, 698
1, 799, 581
1, 810, 279
11, 024 | | | 4, 029 | 9, 409. 33
20, 310. 67
6, 945. 62
367. 56 | 108, 193
703, 809
190, 384
33, 371 | 7ES 57, 112 73, 866, 052 138, 762 18, 243 | 33, 014
3, 501, 655
257, 223 | 1,810,27 | The quantity of ore shipped crude from mines in Arizona to smelters increased from 607,531 tons in 1933 to 774,937 tons in 1934. More than 92 percent of it in 1934 was copper ore, chiefly from mines at Bisbee, Jerome, and Superior; the remainder was largely gold ore from the Lake Superior & Arizona property at Superior. There were increases of 133,461 tons in crude copper ore and 34,154 tons in dry and siliceous ores (chiefly gold ore) smelted; the lead ore smelted was slightly less than in 1933. The following tables give the contents of the crude ore smelted in 1934, by classes and by counties. Gross metal content of Arizona crude ore shipped to smelters in 1934, by classes of ore | Class of ore | Quantity
(dry | | Gross me | tal content | | |---|--|--|--|--|--| | | weight) | Gold | Silver | Copper | Lead | | Dry and siliceous Copper Lead Copper-lead | Short tons
50, 470
714, 412
10, 008 | 26, 579, 90
56, 239, 58
2, 973, 96 | Fine ounces
396, 805
2, 776, 434
164, 448 | Pounds
306, 878
107, 448, 915
91, 368 | Pounds
554, 454
13, 029
2, 973, 809 | | Total, 1933 | 774, 937
607, 531 | 7. 53
85, 800. 97
54, 614. 92 | 1, 016
3, 338, 703
1, 897, 746 | 5, 507
107, 852, 668
93, 200, 582 | 3, 557, 583
3, 646, 054 | Mine production of metals from Arizona crude ore shipped to smelters in 1934, in terms of recovered metals #### BY COUNTIES | | BY COU | NTIES | | | | |---|--|--|--|--|--| | | Ore | Gold | Silver | Copper | Lead | | Cochise Gila Graham Greenlee Maricopa Mohave Pima Pinal Santa Cruz Yavapai Yuma | 39
666
5, 039
973
1, 091
73, 441
153, 271
430 | Fine ounces 53, 148, 77 378, 61 20, 46 411, 19 2, 814, 29 569, 92 690, 85 16, 471, 32 258, 03 10, 632, 86 404, 67 85, 800, 97 | Fine ounces 2, 608, 862 5, 313 116 5, 769 5, 515 10, 850 15, 357 367, 326 7, 688 308, 005 3, 902 3, 338, 703 | Pounds
70, 891, 396
8, 187
75
11, 175
35, 473
12, 978
16, 989
10, 367, 024
7, 527
22, 294, 518
7, 438 | 192, 378
1, 270
1, 270
1, 973
35, 873
54, 174
16, 720
26, 136
185, 153
1, 757 | | Total, 1933 | 607, 531 | 54, 614. 92 | 1, 897, 746 | 90, 104, 023 | 3, 070, 198
3, 291, 403 | | ВУ | CLASSES | OF ORE | | | <u> </u> | | Dry and siliceous Copper Lead Copper-lead | 50, 470
714, 412
10, 008
47 | 26, 579. 90
56, 239. 58
2, 973. 96
7. 53 | 396, 805
2, 776, 434
164, 448
1, 016 | 295, 371
103, 276, 648
76, 078
4, 683 | 315, 140
7, 659
2, 732, 235
15, 164 | Miscellaneous material in Arizona in 1934, not included in the tables given under "Metallurgic Industry", consisted of copper precipitates, 253 tons of old mill clean-up, and 16 tons of old tailings and matte, all smelted. | County and district | ducing | | Mines pro-
ducing | | Ore, old tailings, | Gold | | | Silver | | | Copper | Lead | Zinc | Total
value | |--|--|---|--|---
--|---|---|---|---|--|---|--------|---|------|--|--|--------|--|--|--------|------|------|----------------| | | Lode Place | Placer | etc. | Lode | Placer | Total | Lode | Placer | Total | | | | | | | | | | | | | | | | Cochise County: California. Cochise. Dos Cabezas Huachuca Mountain Swisshelm. Teviston Tombstone. Turquoise. Warren. Gla County: Banner. Globe. Green Valley. Pinto Valley. Pinto Valley. Pinto Valley. Clark. Lone Star. Rattlesnake. Greenlee County: Chase Creek. Copper Mountain. Mayflower. San Francisco River. Maricopa County: Agua Fria. Big Horn. Camp Creek. Cave Creek. Cave Creek. Elsworth 3 Gila Bend Mountains | 1
2
28
11
3
1
1
4
8
13
5
14
10
11
1
2
3
3
1
1
1
2
3
1
1
1
1
1
1
1
1
1 | 3
27
3
8
2
2
1
1
5
4 | Short tons 2 (1) 2, 547 433 172 (1) 20, 344 793 521, 963 474 4356, 522 2, 635 1 166 2 2 762 4 300 661 669 50 | Fine ounces 0.03 (1) 1, 634. 62 105. 38 61. 23 (1) 3, 700. 83 58. 94 48, 815. 88 80. 60 265. 58 267. 01 1.19 8. 07 1. 20 29. 27 33. 65 286. 38 39. 20 1. 43 | Fine ounces 7. 84 3. 98 (1) 4. 95 245. 55 50. 13 50. 90 4. 09 15. 02 10. 36 76. 31 6. 64 5. 95 | Fine ounces 0.03 (1) 1,642.46 109.36 61.23 (1) 3,700.83 63.89 49,061.43 130.73 316.48 271.10 0.33 41.63 11.19 8.84 1.20 15.02 443.58 4.49 76.31 1.20 35.91 33.65 202.33 | Fine ounces 82 (1) 6, 254 218 5, 575 (1) 296, 737 2, 356 2, 318, 846 1, 912 6, 865 1, 044 31 68 320 93 5, 606 181 14 3 475 17 | Fine ounces 3 (1) 62 14 11 3 14 3 3 3 | Fine ounces 82 (1) 6, 257 218 5, 575 (1) 296, 737 2, 356 2, 318, 908 1, 926 6, 876 1, 047 31 68 3 20 93 5, 609 181 14 17 3 478 17 | Pounds 62 (1) 49, 013 313 2000 (1) 70, 512 1, 312 71, 110, 775 21, 4321, 700 1, 612 63 287 63 12 | 29, 081 2, 400, 324 595 127, 540 154, 432 26, 135 27 216 11, 595 1, 270 | Pounds | (1) \$59
(66, 319
3, 988
6, 836
(1) 415, 627
3, 883
8, 907, 370
11, 721
1, 162, 209
10, 282
34
1, 951
398
370
102
274
2, 676
42
1, 274
1, 178
42
1, 274
1, 178
10, 643
1, 405
50 | | | | | | | | | | | Included under "Undistributed." Pioneer district lies in both Gila and Pinal Counties. Ellsworth district lies in both Maricopa and Yuma Counties. Mine production of gold, silver, copper, lead, and zinc in Arizona in 1934, by counties and districts, in terms of recovered metals—Continued | County and district | Mines
duci | | Ore, old | | Gold | | | Silver | | Copper | Lead | Zinc | Total | |--|---|---------|--|--|------------------|--|--|----------------|---|--|--|---------|---| | • | | Placer | etc. | Lode | Placer | Total | Lode | Placer | Total | Сорры | Lead | Zinc | value | | Maricopa County—Continued. Magazine | 2 | | Short
tons
258 | Fine ounces 4.75 1.63 | Fine
ounces | Fine
ounces
4.75
1.63 | Fine
ounces
3, 284 | Fine
ounces | Fine
ounces
3, 284 | Pounds 20, 563 | Pounds | Pounds | \$3, 934 | | Salt River Mountains
San Domingo
Vulture | 3
11 | 22 | 3, 329
49, 405 | 1, 879. 57
3, 128. 07 | 75. 68
25. 75 | 1, 879. 57
75. 68 | 1,400 | 14 | 1,400
14 | 7, 637 | | | 67, 20°
2, 65 | | Winifred | 3 | | 255 | 222. 09 | 20. 75 | 3, 153. 82
222. 09 | 2,752
102 | 3 | 2,755
102 | 5, 663
1, 025 | | | 112, 460
7, 910 | | Bentley Black Canyon Bull Rush Canyon | 1
1
1 | | 16
1
17 | .40
.83
.23 | | .40
.83
.23 | 82
48 | | 82
48 | 5, 600
3, 838 | | | 51.
29
34 | | Cedar Valley.
Chemehuevis.
Cottonwood.
Gold Basin.
Indian Secret. | 1
8
1
4
1 | 6 10 | 25, 000
116
278
3, 310
50 | 4. 15
33. 99
190. 53
323. 32
12. 99 | 32. 62
44. 29 | 4. 15
66. 61
190. 53
367. 61
12. 99 | 1, 143
62
82
82
2, 509 | 3
11 | 1, 143
65
82
93
2, 509 | 32, 537
13
1, 025 | 514
54 | | 3, 48;
2, 390
6, 796
12, 908
2, 076 | | Lost Basin Maynard Minnesota Owens San Francisco (including Katherine) Wallapai | 1
2
7
31
20 | | 6,000
34
75
102,977
1,057 | 75. 45
41. 06
37. 11
24, 211. 56
223. 69 | 12.30 | 12, 30
75, 45
41, 06
37, 11
24, 211, 56
223, 69 | 2, 028
31
167
27, 160
4, 718 | 3 | 2, 028
31
167
27, 160
4, 718 | 762
63
 | 10, 162
81
30, 243 | 10. 698 | 43:
4, 38:
1, 46:
2, 52:
863, 75:
11, 97: | | Weaver
Pima County:
Ajo | 6 | | (1) | 190. 53
(¹)
(¹) | | 190. 53
(¹) | 3, 683
(1) | | 3, 683 | 75 | 405 | | 9, 06 | | American Amole. Arivaca. Baboquivari. Cababi Casa Grande 4 Cerro Colorado. Empire. Fresno. | 1
2
30
13
16
1
2
3 | 13
1 | (1)
99
1,933
305
368
(1)
7
60 | (1)
18. 34
139. 37
280. 63
77. 34
(1)
. 20
34. 42
. 60 | 98. 31 | (1)
18. 34
237. 68
280. 63
79. 60
(1)
. 20
34. 42 | (1)
(2)
823
2, 280
5, 080
3, 578
(1)
102
130 | 20 | (1)
(2)
823
2,300
5,080
3,578
(1)
102
130 | (1)
(1)
1, 150
8, 125
1, 638
5, 850
(1)
87
813 | (1)
1, 297
11, 703
2, 270
28, 595
378
1, 892 | | (1)
(1)
1, 313
10, 877
13, 307
6, 621
(1)
94
1, 422 | | Greaterville 5
Helvetia
Old Hat 6 | 14
3 | 22
4 | 56
32 | 32. 59
1. 00 | 68. 93
11. 13 | 101, 52
1, 00
11, 13 | 2, 192
102 | 14 | 2, 206
102 | 525
3, 475 | 9,649 | | 5, 379
379
389 | | Papago
Pima | 8 | | 5
67 | 22.89 | | 22, 89 | 113
1, 174 | | 113
1, 174 | 387 | 541
2, 649 | | 9:
1. 68: | | Quijotoal | 16 | 8 | 327 | 150. 33 | 20.43 | 170.76 | 478 | 3 | 481 | 38 | 1,459 |]I | 6, 336 | | |---------------------------|----------|-----|------------|--------------------|------------|--------------------|------------|-------|----------|--------------|----------|-------------|----------------|---| | Santa Rosa | 7 | | 32 | 23. 69 | | 23.69 | 280 | | 280 | 975 | 1,324 | | 1, 136 | | | Pinal County: | _ | | ا ا | | | | 110 | | 113 | 175 | | | 87 | | | Aravaipa | 1 | | 2 | | | | 113
3 | | 3 | 1/0 | | | 398 | | | Big Butte | 1 | | 100 | 11. 33 | | 11. 33 | 10 | | 17 | 100 | | | 257 | | | Blackwater | 1 | | 8
39 | 6. 81
4. 12 | | 6. 81
4. 12 | 809 | | 809 | 4, 137 | 13,892 | | 1, 512 | | | Bunker Hill | 2 | | 190 | 166. 98 | | 166. 98 | 461 | | 461 | 2, 138 | 2, 405 | | 6, 394 | | | Casa Grande 4 | 14 | | 25 | 16. 54 | | 16. 54 | 14 | | 14 | 2, 100 | 2, 100 | | 587 | | | Cottonwood | 4 | | 46 | 22. 86 | | 22. 86 | 17 | | 17 | | | | 810 | | | Goldfields
Jack Rabbit | 1 | | 2 | . 60 | | . 60 | 48 | | 48 | | 135 | | 57 | • | | Mineral Creek | 3 | | 42 | 4. 78 | | 4. 78 | 102 | | 102 | 375 | | | 263 | | | Mineral Hill | 2 | | 7 | 1.03 | | 1.03 | 17 | | 17 | 712 | | | 104 | | | Old Hat 6 | 24 | 4 | 25, 477 | 2, 172, 93 | 39, 23 | 2, 212, 16 | 2,099 | 11 | 2, 110 | 425 | 130, 514 | | 83, 542 | | | Owl Head | ī | | 10 | . 43 | 1 | . 43 | 195 | | 195 | | | | 141 | | | Pioneer 2 | 17 | | 288, 750 | 22, 839. 17 | 1 | 22, 839. 17 | 865, 687 | | 865, 687 | 32, 734, 700 | | | 3, 976, 641 | | | Ripsey | . 2 | | 222 | 100.60 | | 100.60 | 4,062 | | 4,062 | 2, 213 | | | 6, 319 | | | Riverside | 3 | | 123 | 44.75 | | 44.75 | 201 | | 201 | 525 | | | 1,736 | | | Saddle Mountain | 3 | | 1,007 | 62. 29 | | 62. 29 | 3, 448 | | 3, 448 | 1,025 | 1,649 | | 4,549 | | | Summit | 1 | | 34 | . 20 | | . 20 | 1, 236 | | 1, 236 | 10, 325 | | | 1,632 | | | Santa Cruz County: | | | | - 00 | 1 1 | . 23 | 48 | | 48 | | 243 | | 48 | | | Greaterville 5 | Ţ | | 1 1 | .23 | | .20 | 167 | | 167 | 237 | 622 | | 157 | | | Harshaw | 2 | 2 | 13 | 4.69 | 5. 61 | 10. 30 | 82 | | 82 | 238 | 378 | | 446 | | | Nogales
Oro Blanco | 29 | 3 | 36, 297 | 3, 021, 03 | 11.16 | 3, 032, 19 | 193, 641 | 3 | 193, 644 | | | 1, 799, 581 | 444, 240 | | | Pajarito | 3 | | 4 | 1. 43 | 11.10 | 1. 43 | 48 | | 48 | 50 | 2, 730 | | 186 | | | Palmetto | 2 | | 29 | 3.09 | | 3, 09 | 659 | | 659 | 2, 362 | 486 | | 741 | | | Patagonia | 8 | 2 | 97 | 37. 14 | 12.10 | 49, 24 | 724 | | 724 | 1,763 | 11, 324 | | 2, 749 | | | Tyndall | 4 | | 31 | . 63 | | . 63 | 348 | | 348 | 1,587 | 1,649 | | 435 | | | Wrightson | 4 | | 51 | . 83 | | .83 | 993 | | 993 | 188 | 8, 135 | | 987 | | |
Yavapai County: | | | | | | 1.6 | | | | | | | | | | Ash Creek | 1 | | 60 | 32. 36 | | 32. 36 | 331 | | 331 | 862 | 135 | | 1, 419 | | | Big Bug | 19 | 30 | 43, 385 | 5, 089. 04 | 534.48 | 5, 623. 52 | 15, 181 | 48 | 15, 229 | 54, 150 | 105, 568 | | 214, 625 | | | Black Canyon | 13 | 19 | 15, 789 | 3, 446. 41 | 81.60 | 3, 528. 01 | 48, 148 | 11 | 48, 159 | 14, 588 | 284, 459 | | 166, 129 | | | Black Rock | 13 | 4 | 693 | 208.67 | 12.33 | 221.00 | 5, 278 | 3 | 5, 281 | 28, 937 | 676 | | 13, 478
281 | | | Blue Tank | 1 | 1 1 | 48 | 5. 52 | 2.52 | 8.04 | 246 | | 246 | 6, 263 | | | 10, 532 | | | Castle Creek | 11 | 2 | 303 | 278. 37
342. 69 | 4.09 | 282. 46
342. 69 | 240
181 | | 181 | 687 | | | 12, 149 | | | Cherry Creek | 3 | 50 | 671
220 | 542.09
58.34 | 256. 51 | 342. 09
314. 85 | 48 | 37 | 85 | 850 | | | 11, 127 | | | Copper Basin | 9 | 1 | 220 | 00.04 | 200, 01 | 914.00 | 3 | 31 | 3 | 263 | | | 23 | | | Copper Creek
Eureka | 18 | 5 | 21,903 | 4, 220, 00 | 15, 25 | 4, 235, 25 | 91.442 | | 91, 442 | 23, 337 | 10, 459 | | 209, 390 | | | Granite | 10 | 1 | 21,000 | 2.86 | 10.20 | 2, 86 | 01, 112 | | | | | | 100 | | | Granite Creek | | 3 | 1 ~ | 2.00 | 4.12 | 4. 12 | | | | | | | 144 | | | Hassayampa | 41 | 18 | 11, 474 | 1, 837, 94 | 80.00 | 1, 917, 94 | 35, 459 | 17 | 35, 476 | 97, 988 | 9, 541 | | 98, 158 | | | Humbug | 1 2 | 32 | 2,015 | 921, 20 | 127. 87 | 1, 049. 07 | 2, 192 | 20 | 2, 212 | 1,050 | 19, 622 | | 38, 905 | | | Indian Creek | <u>-</u> | l ĩ | | | 3.09 | 3.09 | | | | | | | 108 | | | Kirkland | 6 | 2 | 83 | 61. 26 | 5. 75 | 67. 01 | 17 | | 17 | | 27 | | 2,354 | | | Lynx Creek | | 33 | | | 3, 615. 02 | 3, 615. 02 | | . 520 | 520 | | | | 126, 681 | | | Martinez | 6 | | 11,917 | 1,091.16 | | 1,091.16 | 1,864 | J | 1,864 | 787 | | . | 39,404 | | | | | | | | ~ | | | | | -4 11 1 14 | | 4 Di 1 C. | | | ¹Included under "Undistributed." ²Pioneer district lies in both Gila and Pinal Counties. ⁴ Casa Grande district lies in both Pima and Pinal Counties. ⁶ Old Hat district lies in both Pima and Pinal Counties. Mine production of gold, silver, copper, lead, and zinc in Arizona in 1934, by counties and districts, in terms of recovered metals—Continued | County and district | Mines pro-
ducing | | | | | | | | Ore, old | | | | | Copper | Lead | Zine | Total | |---|---------------------------------------|--------------------|---|--|--|--|---|----------------|--|---|-----------------------------|------------------------|--|--------|------|------|-------| | ļ | Lode | Placer | etc. | Lode | Placer | Total | Lode | Placer | Total | | ¥. | | value | | | | | | Yavapai County—Continued. Peck Pine Grove. Silver Mountain. Squaw Peak | 2
2
3
1 | 1 | Short
tons
384
369
33
93 | Fine
ounces
4. 78
229. 50
23. 95
3. 49 | Fine
ounces
3.92 | Fine
ounces
4. 78
229. 50
27. 87
3. 49 | Fine
ounces
44, 058
993
14 | Fine
ounces | Fine
ounces
44, 058
993
14 | Pounds
925
3, 125 | Pounds
18, 811
2, 892 | Pounds | \$29, 41
9, 02
98 | | | | | | Thumb Butte Tiger Tip Top Turkey Creek Verde Walker Walnut Grove Weaver White Picacho | 2
8
2
1
3
1
16
3 | 1
7
4
100 | 9
 | 4. 78
31. 13
20
8, 064. 52
41. 23
3. 69
818. 34
799. 14 | 3. 35
2. 26
32. 99
11. 56
266. 41
1. 46 | 4. 78
3. 35
31. 13
2. 46
8, 064. 52
74. 22
15. 25
1, 084. 75
800. 60 | 16, 533
2, 322
242, 632
2, 263
809
314 | 14
3
34 | 16, 533
2, 322
242, 632
2, 277
3
843
314 | 2, 125
1, 050
26, 147, 463
1, 362
1, 838
10, 237 | 486 | | 16
11, 94
1, 67
2, 530, 50
4, 19
53
38, 65
29, 00 | | | | | | Yuma County: Castle Dome | 6 | 1
38
25 | 13 | 19. 00
3. 09 | 1. 26
110. 47 | 19. 00
1. 26
110. 47
3. 09
91. 33 | 116 | 11 | 116
11
14 | 500 | | | 73
3, 86
14
3, 20 | | | | | | Ellsworth ³ Fortuna Kofa Laguna La Paz | 19
4
2 | 69
36 | 2, 842
35
15, 347
2, 124 | 725. 78
65. 15
4, 223. 12
309. 44 | 1, 83

153, 65
83, 06 | 727. 61
65. 15
4, 223. 12
153. 65
392. 50 | 1, 038
11
13, 221
68 | 34 | 1, 038
11
13, 221
34
71 | 6, 363
62
 | 703 | | 26, 63
2, 24
156, 1-
5, 39
13, 7 | | | | | | Muggins Mountains | 2
11
1
1
4 | 178 | 12
559
3
2
121
1, 477, 572 | 35. 48
204. 52
. 20
11. 76
35. 08
11. 019. 57 | 14. 42
467. 44
 | 14. 42
35. 48
671. 96
. 20
11. 76
35. 08
11, 068. 64 | 3, 148
51
14
132, 134 | 54 | 3, 202
51
14
132, 142 | 925 | 1, 054 | | 3, 119, 6 | | | | | | Total Arizona, 1934 | 747
399 | 867
179 | 3, 270, 242
995, 728 | 160, 041, 86
74, 862, 49 | 6, 982. 26
5, 130. 12 | 167, 024. 12
79, 992. 61 | 4, 447, 436 | 1,038
603 | | 178, 082, 213
114, 041, 781 | 6, 877, 216 | 1, 810, 279
11, 024 | 23, 292, 18
8 10, 307, 74 | | | | | ^{*} Ellsworth district lies in both Maricopa and Yuma Countles. 7 Includes items entered as "(1)" above. 8 Change in value from previous report of this series due to valuation of gold for 1933 at average weighted price (\$25.56 per ounce) instead of at legal coinage value (\$20.67+ per ounce). ### COCHISE COUNTY Cochise and Golden Rule districts (Johnson, Dragoon).—The output of the Cochise district in 1934 was gold ore from the Golden Eagle mine, treated by amalgamation, and first-class copper ore from a claim near Dragoon. Dos Cabezas district.—The Dives property of the Consolidated Gold Mines Co. in the Dos Cabezas district in 1934 yielded 1,430 tons of gold ore treated in a 40-ton flotation-concentration plant and 207 tons of high-grade gold ore shipped crude to a smelter. producers of gold ore were the Gold Ridge, Gold Prince, Silver Dike, Speaks, and Cottonwood mines and several small prospects. remainder of the lode output consisted chiefly of copper ore of smelting grade from the Southwestern Metals property and silver ore from the Antelope, Mowery, and Parent properties. A little placer gold was recovered from gulches near Dos Cabezos. Huachuca Mountain (Hartford) district.—Aside from a small lot of gold and silver ore shipped from the Lucy Bell mine, nearly all the lode output in the Huachuca Mountain district in 1934 was gold ore treated by amalgamation from mines in Ash and Bear Canvons. A little placer gold was marketed from a claim in Ash Canyon. Swisshelm district (Webb, Elfrida).—The output of the Swisshelm district in 1934 was chiefly gold and silver ore, lead ore, and silver ore of smelting grade from the property of the Four-Horse Mining Co. Teviston district.—Placer gold recovered largely from the Apache Chief and Gold Gulch properties and gold ore of smelting grade shipped from the Cowbov mine were reported from the Teviston district in 1934. Tombstone district.—The output of ore in the Tombstone district in 1934 was nearly three times that in 1933, due chiefly to the large increase in shipments of silver ore and lead ore from the Tombstone (Bunker Hill) group. In addition to 11,845 tons of ore shipped to a smelter, 4,246 tons of gold and silver ore from the Bunker Hill mine were treated by concentration and the concentrates cyanided. property was by far the largest producer of gold, silver, and copper in the district and ranked third in the State in output of silver and The Tombstone Extension mine, the largest producer of lead in the district, was operated by the American Smelting & Refining Co. until June 20, 1934, when the property was turned over to the original owners (Tombstone Mining Co.). About 2,000 tons of oxidized silver-lead ore were shipped by the American Smelting & Refining Co., and 1,175 tons of similar ore were shipped by the Tombstone Mining Co. The remainder of the district output was largely silver ore from the Herschel, South Bonanza, and Silver Cloud mines; gold and silver ore from the Old Guard mine; and lead ore from the San Diego property. Turquoise district (Courtland, Pearce, Gleeson).—Silver ore from the Commonwealth mine at Pearce, treated by cyanidation, was the chief output of the Turquoise district in 1934. Warren district (Bisbee, Lowell, Warren, Don Luis).—The output of ore and the yield of gold, silver, and copper in the Warren district were considerably greater in 1934 than in 1933, due chiefly to the large increase in output of copper ore of smelting grade from the Copper Queen branch of the Phelps Dodge Corporation. company operated its mine at Bisbee and smelter at Douglas continuously in 1934 and was again the largest producer of gold, silver, and copper in the State. The output of the property was largely sulphide copper ore, containing gold and silver, smelted at Douglas. The annual printed report of the Phelps Dodge Corporation states that production from the company mines in 1934, together with metal produced from purchased ores treated at the Douglas smelter, was 68,889 ounces of gold, 3,247,718 ounces of silver, and 101,814,629 The Copper Queen branch was operated throughpounds of copper. out the year, and production came almost entirely from the Junction and Campbell divisions. Development comprised 26,106 feet of exploration and 5,940 feet of stope preparation, besides 10,418 feet of diamond drilling.
Dividends paid in 1934 amounted to \$4,007,191.50. The property of the Shattuck Denn Mining Corporation was the only other important operation in the district in 1934. The company resumed operations at its Denn mine October 1 and shipped 7,053 tons of sulphide copper ore to a smelter. The Shattuck mine was operated by lessees who shipped 2,064 tons of gold and silver ore and 406 tons of oxidized lead ore for smelting; 104 tons of old mill clean-up material, containing chiefly gold, were also shipped to a smelter. There were several small producers of gold ore in the district. Operations at a number of placer properties in the Warren district in 1934 resulted in the production of 245.55 ounces of gold, nearly all from claims in Gold Gulch. ### GILA COUNTY Banner district.—The output of the Banner district in 1934 was mainly oxidized lead ore of smelting grade from the "79" mine; gold ore of smelting grade from the Apex, J. K., and Standard properties: and placer gold and silver, chiefly from the Pearl (Bywater) claims. Globe district (Miami, Inspiration).—The increase recorded in the ore output of the Globe district in 1934 was due entirely to the resumption of operations by the Miami Copper Co. July 1, 1934, after being idle since May 15, 1932. The company milled more than 356,000 tons of partly oxidized copper ore in 1934 and shipped concentrates and cement copper for smelting. The remainder of the district lode output consisted chiefly of gold ore from the Golden Eagle and Cedar Tree mines, oxidized lead ore from the Van Winkle mine, and gold and silver ore from the Shafer property. district placer output valued at \$1,786 came almost entirely from the Inspiration, Three Johns, and Lost Gulch claims. Green Valley district.—The largest producer in the Green Valley district in 1934 was the Tornado mine, which produced 2,320 tons of low-grade gold ore treated by amalgamation, cyanidation, and flotation concentration in a 50-ton mill. The remainder of the lode output was small lots of gold ore produced from several claims and treated in a custom milling plant. A little placer gold and silver were recovered from claims in Oxbow Gulch. Pioneer district.—The Pioneer district lies largely in Pinal County but partly in Gila County. Two cars of sulphide lead ore rich in gold were shipped in 1934 from the Ashby mine in the Gila County section of the district. ## GRAHAM COUNTY Clark district.—One car of gold ore was shipped in 1934 from the Last Chance mine 26 miles west of Pima, and a small test lot of copper ore was marketed from a prospect. Lone Star district.—Small lots of gold ore and of lead ore containing considerable gold were shipped in 1934 from claims near Safford. ### GREENLEE COUNTY Chase Creek district.—A small quantity of placer gold was recovered in 1934 from claims in Chase Creek. Copper Mountain district (Morenci, Metcalf, Clifton).—Gold ore of smelting grade from the Stargo and Dover properties was the chief output of the Copper Mountain district in 1934. One car of silver ore from the Lakenan group and one car of oxidized copper ore from the Dannenhour property were shipped to the smelter at El Paso, Tex., and a little gold ore from unidentified claims was treated by amalgamation. A small placer output came from claims in Gold Gulch. San Francisco River district.—The entire output of the San Francisco River district in 1934 was placer gold recovered by many operators along the river; nearly all of it was sold to bullion buyers in Clifton. The chief producer was the Smuggler property 5 miles below Clifton. ### MARICOPA COUNTY Big Horn district.—Gold ore from the Fortunate Fields property south of Aguila was treated in 1934 by amalgamation, and first-class gold ore was shipped from the Gold Hill mine. Small placer production came from the Eagle Nest group. Camp Creek district.—One car of gold ore from the Fort Worth Camp Creek district.—One car of gold ore from the Fort Worth property 17 miles northeast of Cavecreek was treated in 1934 by amalgamation. Cave Creek district.—The chief producing mine in the Cave Creek district in 1934 was the Steele (Golden Reef) group, where gold valued at about \$5,000 was recovered by amalgamation. Most of the remainder of the district lode output came from the Rackensack and other claims northeast of Phoenix. Three placer mines yielded 5.95 fine ounces of gold. Ellsworth (Harqua Hala) district.—From the Golden and Aguila mines southwest of Aguila in the Harquahala Mountains gold ore was shipped in 1934 for smelting. Gila Bend Mountains district.—The Gold Spot mine produced 50 tons of low-grade gold ore treated by amalgamation in 1934. Magazine district.—The Red Rover mine north of Camp Creek was the only producing mine in the Magazine district in 1934 worthy of mention; about 250 tons of ore, containing chiefly silver and copper, were marketed. Salt River Mountains district.—The Ace Mining & Development Co. operated the Delta mine 9 miles south of Phoenix and shipped 3,210 tons of gold ore of smelting grade in 1934; the company was the largest gold producer in Maricopa County and reported paying a small dividend. Three cars of gold ore were shipped from the Simpson prospect. San Domingo district.—The output of the San Domingo district in 1934 was placer gold from the Red Bird claim and various small operations in San Domingo Wash 12 miles north of Morristown. Vulture district.—At the Vulture property gold was recovered by amalgamation as a result of the work of the East Vulture Mining Co. on near-surface ore; gold was also recovered by lessees working the old tailings dump by cyanidation. About 8,000 tons of ore were treated by amalgamation and concentration and 30,200 tons of old tailings were treated by cyanidation. First-class gold ore (846 tons) was shipped from the Sunrise mine, and ore was treated locally by amalgamation. Gold ore was also shipped from the Hidden Treasure, Mariona, and other claims northwest of Wicken-The placer output was relatively small, consisting of dust and bullion sold at Wickenburg. Winifred district.—The chief output of the Winifred district in 1934 was five cars of gold ore from the Jack White mine. ### MOHAVE COUNTY Bentley (Grand Gulch) district.—One car (16 tons) of copper ore was shipped in 1934 from Copper Mountain 70 miles south of St. George, Utah. Bull Rush Canyon district.—One car of oxidized copper ore was shipped in in 1934 from the Spotted Bull mine near Fredonia. Cedar Valley district.—Ore containing chiefly chalcopyrite, wolframite, and scheelite was treated in 1934 by concentration at the Boriana property 23 miles east of Yucca. Copper concentrates made by flotation were shipped to local smelters, and tungsten concentrates separated by gravity concentration were shipped east. Chemehuevis district.—The lode output of the Chemehuevis district in 1934 consisted of small lots of gold bullion recovered by amalgamation at the Black Eyed Susan, Citadel, and various claims south of Topock and one lot of lead ore shipped from the Moon prospect. The only placer producer worthy of note was the Chief claim worked by dry concentration. Cottonwood district.—Several cars (278 tons) of first-class gold ore were shipped in 1934 from the Walkover mine southwest of Hackberry. Gold Basin district.—The Cyclopic & San Juan group, the only important lode producer in the Gold Basin district in 1934, was worked most of the year by various lessees and from October 1 to November 15 by the Mayo Engineering Co. A 50-ton cyanide mill treated gold ore, and many improvements were made before the mill was closed on account of cold weather. The placer output was recovered chiefly by dry washing at the Gold Basin and Railroad claims 70 miles north of Kingman. Indian Secret district.—One car of silver ore from the White Hills group was shipped to Utah in 1934 for smelting. Lost Basin district.—The output of the Lost Basin district, all placer and largely from the Petty claim, decreased decidedly in 1934. The King Tut placer, productive in 1933, was idle. Maynard district.—At the Gold King mine lead ore containing considerable gold and silver was treated in a 75-ton concentration plant during 4 months early in 1934. Minnesota district.—One car of gold ore from the Expansion group and a small lot of similar material from the Skookum claims were shipped in 1934 for smelting. Owens (McCracken and Potts Mountain) district.—One car of lead ore was shipped in 1934 from the Lead Pill, and small lots of gold ore were amalgamated at the Adela, Gold Leaf, Fairview, and Paddy Jane claims. San Francisco (Oatman, Gold Road, Vivian, Katherine) district.-A marked increase in output (more than 17,900 ounces in gold) was shown in the San Francisco district (including the Katherine area) in 1934, due to resumption of milling February 13 at the Tom Reed custom plant (doubtless because of the increase in price of gold). The Tom Reed mine at Oatman was the largest gold producer in the Custom material from mines near Oatman came chiefly from the United American, Consolidated Gold, Amulet (Pioneer), Ruth Rattan, New York, Gold Road, Gold Dust, and United Eastern (tailings) mines. The Big Jim mine was worked throughout the year by the Big Jim Operating Co. and ranked second in the district as a gold producer. The 50-ton cyanide plant treated more than 16,000 tons of ore from the Big Jim mine and 362 tons from the Telluride. An important production (valued at about \$30,000) was made at the Ruth Rattan property. The gold output of the Lexington, Mossback, Amulet, Telluride, Gold Road, United Eastern, New York, Gold Dust, and Stoney Crane mines ranged between 200 and 400 ounces each. In the Katherine section south of Oatman the Gold Standard Mines Corporation operated the Arabian, Roadside, and Frisco mines; the ore was treated in the Katherine mill near the Colorado River. Custom ore was received from the Tyro mine. The Katherine mill treated nearly 39,000 tons of ore and
recovered 6,095 ounces of gold. The remainder of the district output consisted of numerous shipments made by lessees to the Tom Reed custom plant. Wallapai district (Cerbat, Chloride, Kingman, Mineral Park, Stockton Hill).—The ore output of the Wallapai district increased decidedly in 1934 as a result of small shipments from mines north of Kingman. The Alameda mine was worked 6 months and produced gold from low-grade ore treated by amalgamation. Some lead-zinc ore from the United States group 12 miles north of Kingman was treated by concentration, and two small lots of concentrates were sent to Midvale, Utah. Several cars of ore containing chiefly silver and gold were shipped from the Middle Golconda group to Superior, Ariz., and Midvale, Utah, for smelting. Shipments of one car each were made from the Cashier, Gold Bar, Jamison, Good Hope, Hillside, Mohawk, "98", and Scotty mines, and small lots of gold ore were treated by cvanidation. Weaver district.—The Gold Bug Mining & Milling Co. produced 121 tons of first-class gold ore in 1934 from the Esther-Mary Lou-Blue Bird group northwest of Chloride. Gold was recovered by cyanidation at the Golden Door mine. Silver ore containing gold was shipped from the New Weaver and Weaver-Mutual mines. #### PIMA COUNTY Ajo district.—The Phelps Dodge Corporation resumed operations July 1, 1934, at its New Cornelia property, idle since April 23, 1932. The property was the only producer in the Ajo district in 1934 and the largest producer of gold, silver, and copper in Pima County; the output during the 6 months operated was 1,477,000 tons of copper ore, which was treated in the company 15,000-ton flotation concentrator. Because of the long shut-down period much work was required to prepare the open pit for mining and to build up a reserve of broken ore in advance of the shovels. Caterpillar mounts were substituted for the former railroad mounts of the shovels. Necessary repairs were made at the concentration plant and at the power plant. Amole district.—The output of the Amole district in 1934 was nearly all gold and silver ore from the Tucson group and a claim near Tucson. Arivaca district.—The chief output of the Arivaca district in 1934 was copper-tungsten ore from the Guijas mine, operated by the Ore, Metal & Engineering Corporation. About 1,700 tons of ore were treated in the company 25-ton concentration plant; the resulting tungsten concentrates were shipped east, and the copper concentrates were shipped to Superior for smelting. The remainder of the district lode output consisted chiefly of gold ore from the Ajax, Contact, Elzo, Mother Lode, Rosebud, Rebecca, and Buster properties; lead ore from the Rosebud and Silver Crown mines; and gold and silver ore from the Silver Crown and Buena Vista mines. Many small lots of gold ore from various prospects were sold to Hugo Miller's assay office at Nogales. The chief placer producer was the Arivaca Placer, Ltd., working claims on Arivaca Creek; about \$1,367 in gold and silver was recovered by sluicing operations. Other placer producers worthy of note were the Pena Blanco, Sanchey, and Keppler properties. Baboquivari district.—Most of the ore produced in the Baboquivari district in 1934 was gold ore of smelting grade from the Gold King mine operated by the Gold King Mining & Development Co.; gold concentrates produced from ore from the Iowana mine were marketed, and small lots of gold and silver ore from various prospects were sold to ore buyers in Tucson. Cababi (Comobabi) district.—The output of the Cababi district in 1934 was chiefly gold ore, treated by amalgamation, from the Jaeger group and sulphide lead ore of smelting grade from the Copper Glance (Mildren) property. A little placer gold was recovered from a claim 7 miles northeast of Sells. Casa Grande (Cimarron Mountains) district.—The Casa Grande district lies in both Pima and Pinal Counties. The only producer in the Pima County section in 1934 was the Monte Cristo mine, from which two cars of gold ore of smelting grade were shipped. Empire district.—The output of the Empire district in 1934 consisted of one car of gold ore containing appreciable lead from the El La Plaza mine, one car of low-grade gold ore from a prospect, and some copper matte from the Last Chance group. Greaterville district.—One car of gold ore containing considerable lead was produced in 1934 from the Golden Gate mine, a little silverlead ore was marketed from the Juniper & Belmont group, and small lots of crude lead ore and of concentrates were sold from various prospects to an ore buyer in Tucson. The placer output (\$2,418 in gold and silver) came chiefly from the McAnney Estate and the Richardson property. Helvetia district.—The entire output of the Helvetia district in 1934 was copper ore, chiefly from the Atkins property. Old Hat district.—The part of the Old Hat district that lies in Pima County produced placer gold in 1934, chiefly from claims in Alder Canyon. Pima (Sierrita, Olive, San Xavier, Helmet Peak, Twin Buttes) district.—One car of silver ore was shipped in 1934 by the Aguinaldo Mining Co., a little gold ore and lead ore were produced from the Keystone claim, and small lots of silver ore and lead ore were marketed from various prospects in the Pima district. Quijotoa district.—The chief output of the Quijotoa district in 1934 was gold ore treated by amalgamation and concentration from the Pack Rat-Hillside-Mocking Bird group; gold ore was also produced from the Morgan mine and from small prospects. Various placer operators produced \$716 in gold and silver. Santa Rosa district.—The output in the Santa Rosa district in 1934 comprised small lots of ore from various prospects, the chief production coming from the El Dorado mine. ### PINAL COUNTY Big Butte district.—Gold ore from the Old Ironsides mine 16 miles northeast of Florence was treated in 1934 by amalgamation and concentration. Blackwater district.—A small lot of gold ore of smelting grade was produced in 1934 from the Gold Bullion mine 20 miles west of Florence. Bunker Hill district (Copper Creek).—The Bunker Hill and Clark properties each produced one car of sulphide copper-lead ore of smelting grade in 1934. The chief mineral output of the Bunker Hill district was molybdenum ore from the property of the Arizona Molybdenum Corporation, treated by flotation concentration. Casa Grande district.—The Mammon, Golden Eagle, Copa de Oro, and Old Joner mines were the chief producers in the Pinal County section of the Casa Grande district in 1934; the output was gold ore of smelting grade. Cottonwood district.—The Betty Jane and Elizabeth mines were the only producers in the Cottonwood district in 1934; the output was gold ore. Goldfields district.—The small output of the Goldfields district in 1934 was gold ore from various prospects. Mineral Creek district (Ray, Kelvin).—The output of the Mineral Creek district in 1934 was insignificant as the Ray property of the Nevada Consolidated Copper Corporation, a former large producer of copper ore, was idle the entire year. The Silver Queen Mines produced one car of silver ore and the Gold Butte mine a small lot of gold ore; a little gold bullion was marketed from a prospect. Old Hat district (Oracle, Mammoth).—The output of the Pinal County section of the Old Hat district in 1934 was greater than for many years, due to the output of gold ore from the New Year-Mohawk group of the Molybdenum Gold Mining Co. near Mammoth. The company treated more than 25,000 tons of ore containing gold, wulfenite, and vanadinite in its 100-ton concentration-cyanidation mill. The ore is treated by table concentration to recover the molybdenum and vanadium minerals, and the tailings are treated by cyanidation to recover the gold. The remainder of the district lode output was nearly all gold ore, from several prospects. The placer output valued at \$1,378 came chiefly from the Carolina Moon property 6 miles southeast of Oracle. Pioneer district (Superior).—The production of gold in the Pinal County section of the Pioneer district in 1934 was more than double that in 1933 and there were decided increases in the production of silver and copper, all as a result of the increase in output of copper ore from the Magma mine and gold ore from the Lake Superior & Arizona property owned by the Magma Copper Co. The Magma mine was operated 273 days, the 450-ton smelter at Superior 314 days, and the 600-ton flotation and gravity concentration mill 318 days. cording to the annual printed report of the Magma Copper Co. the Magma mine produced 264,094 tons of ore of all classes in 1934, averaging 6.54 percent copper, and 2.93 ounces of silver and 0.034 ounce of gold to the ton, compared with 145,425 tons of ore in 1933, averaging 7.92 percent copper, 3.62 ounces of silver, and 0.035 ounce-(corrected figure) of gold. The metal production from the mine after deducting all losses, as reported by the smelter, was 31,646,576 pounds. of copper, 713,712 ounces of silver, and 9,100.36 ounces of gold in 1934 compared with 19,628,135 pounds of copper, 473,384 ounces of silver, and 4,597.30 ounces of gold in 1933. Development in 1934 totaled 12,801 feet, chiefly in drifting. The Lake Superior & Arizona minewas again operated by lessees in 1934, and 19,136 tons of ore assaying 0.653 ounce of gold and 0.87 ounce of silver to the ton and 0.32 percent copper were shipped to the smelter at Superior; the metal yield was 12,490.94 ounces of gold, 16,466 ounces of silver, and 113,040 pounds The mine ranked second as a gold producer in Arizona in 1934. Lessees continued to operate the Belmont mine in 1934 and shipped 3,484 tons of gold and silver ore and gold ore containing 1,112 ounces of gold, 50,988 ounces of silver, and 35,784 pounds of copper. Operations at the Reymert, idle since March 1930, were resumed in February 1934; lessees shipped 1,117 tons of silver ore of smelting The remainder of the district output was largely gold ore from
the Queen Creek Copper property. Ripsey district.—The chief output of the Ripsey district in 1934 was gold ore from the Old Ripsey mine 8 miles south of Wooley. Riverside district.—The Mendoza property 5 miles south of Kelvin was operated by a lessee in 1934, and 88 tons of gold ore were shipped for smelting; one car of gold ore was shipped from the Arizona Gold group. Saddle Mountain district.—The Collins Pacific Co. operated the old Adjust mine for a short time in 1934 and treated 805 tons of silver ore in a 50-ton flotation concentrator. The remainder of the Saddle Mountain district output was gold ore, chiefly from the Two Queens property near Winkelman. Summit district.—The only output in the Summit district in 1934 was one car of copper-silver ore from the American mine 11 miles. east of Superior. ### SANTA CRUZ COUNTY Nogales district.—The output of the Nogales district in 1934 consisted of small lots of gold ore from three prospects and a test lot of copper-lead ore. A little placer gold was produced by two operators. Oro Blanco district.—Of the 36,297 tons of ore and old tailings produced in the Oro Blanco district in 1934, more than 35,000 tons was lead-zinc ore treated by flotation concentration from the property of the Eagle-Picher Mining & Smelting Co. at Ruby. The company resumed operations in April 1934 at its Montana and Ruf & Ready groups, idle since July 15, 1930, and again became the largest producer of lead and zinc in the State; it was also a large producer of gold and The company 300-ton concentration plant started operations late in August; lead concentrates containing appreciable gold and silver were shipped to El Paso, Tex., and zinc concentrates to Amarillo, The Margarita Gold Mines Co. worked its property at Ruby 3 months and treated 836 tons of gold ore in a 25-ton cyanide plant. The remainder of the district lode output was largely gold ore from the Yellow Jacket, Dos Amigos, White Gold, and Gold Case & San Juan properties and from several prospects at Ruby; the Commodore mine produced four cars of silver ore and the Cramer group two cars of gold and silver ore. Three placer operators recovered gold and silver valued at \$392. Pajarito district.—Small lots of lead ore and a little gold ore were produced in 1934 from three claims in the Pajarito district. Palmetto district.—The Brown property 5 miles south of Patagonia produced one car of copper ore which was shipped in 1934 to El Paso, Tex. Patagonia (Washington, Duquesne) district.—The output of the Patagonia district in 1934 was chiefly gold ore of smelting grade from the Kit Carson, Ala., and Bozo mines and first-class silver-lead ore from the Belmont claim. Placer gold was recovered from claims 12 miles southeast of Patagonia. Tyndall district (Alto).—The Morning Star and Oak claims each produced one car of copper ore in 1934. Small lots of silver-lead ore and copper-lead ore were produced from prospects. Wrightson district.—The chief output of the Wrightson district in 1934 was silver ore from the East Side mine and lead ore from the Lead King group. YAVAPAI COUNTY Ash Creek district.—Two cars of gold ore from the Gold Coin mine were shipped in 1934 by the Southwestern Gold Mining Corporation. Big Bug district.—More than 87 percent of the ore produced in the Big Bug district in 1934 was gold ore from the Gladstone-McCabe property of the Harbud Mines Co. The company completed a new 150-ton flotation-concentration plant in March; milled 38,000 tons of ore; and shipped 1,437 tons of concentrates containing an average of 2.404 ounces of gold to the ton and a little silver, copper, and lead to El Paso, Tex., for smelting. The Arizona Consolidated Mining Co. worked the Union-Jessie group and treated about 2,000 tons of gold ore in a 75-ton flotation-concentration plant. The Southern Exploration Co. treated several hundred tons of gold ore from the Lelan- Dividend group in a concentration plant. Gold ore from the Money Metals property of the Yavapai Gold & Silver Mining Co. was treated by amalgamation, and a few hundred tons of lead ore containing gold and silver were shipped to a smelter. The remainder of the district lode output consisted largely of lead ore of smelting grade from the Poland mine; gold ore of smelting grade from the Cleveland, Henrietta, Silverton, New Outlook, and Ophir properties; and copper ore of smelting grade from the Lottie and Boggs mines. The placer output, valued at \$18,711, came chiefly from the Savoy property on Big Bug Creek, which was worked most of the year by a dry-land dredge equipped with four Ainlay centrifugal bowls and which yielded more than \$15,000 in gold. Bullion buyers at Mayer, Prescott, and Phoenix purchased gold from placer miners working chiefly on Big Bug Creek. Black Canyon district.—The output of ore and the production of gold and copper in the Black Canyon district in 1934 were more than doubled from 1933; there were also substantial increases in silver and lead. The largest producers were the Golden Turkey Mining Co. and the Golden Belt Mines, Inc., working properties near Cordes. The Golden Turkey Mining Co. completed the construction of a new 50-ton flotation-concentration plant in August and treated 6,807 tons of ore containing chiefly gold, silver, and lead; the company shipped several hundred tons of first-class gold ore for The Golden Belt Mines, Inc., treated several thousand tons of similar milling ore in its 50-ton flotation-concentration plant. The remainder of the district lode output consisted largely of gold ore from the Richinbar mine treated by amalgamation, sulphide lead ore of smelting grade from the Gold Crown (Silver Chord) property, and first-class gold ore of smelting grade from various prospects. Nearly all the placer output came from various claims near Bumble Bee and Canon and was sold to local bullion buyers; the largest producer was the Rock Springs claim at Canon. Black Rock district.—Most of the output of the Black Rock district in 1934 was copper ore from the property of the Monte Cristo Gold Silver Co. Late in the year the company ran its 50-ton flotation-concentration plant and shipped two cars of concentrates containing chiefly copper, silver, and gold. The Golden Gate mine at Constellation was active in 1934, and several cars of gold ore containing appreciable copper were shipped to a smelter. Seven tons of exceptionally rich gold ore from the Gold Bar mine were shipped to a smelter, and a little gold ore was amalgamated. Gold ore from the Amazon and Homestake mines and from several prospects was amalgamated. A little placer bullion was recovered from claims along the Hassayampa River. Blue Tank district.—About 48 tons of low-grade gold ore from the Big Copper prospect were treated by amalgamation in 1934. Castle Creek district.—There was a substantial increase in production of gold in the Castle Creek district in 1934. Most of the output was first-class gold ore of smelting grade from the Golden Aster property and from two prospects; the old Whipsaw property, 10 miles northwest of Hot Springs, produced three cars of low-grade copper ore containing gold. A little placer gold was recovered from two claims on Buckhorn Creek. Cherry Creek district.—The entire metal output of the Cherry Creek district in 1934 was from gold ore and from the treatment of gold old tailings. Several cars of rich gold ore from the Bunker property were shipped to a smelter; gold ore from the Lucky Bird mine was treated by amalgamation, and more than 200 tons of old tailings were treated by cyanidation; gold ore from the New Broom, Cross Cut, and Fox mines and from several prospects was amalgamated; and gold ore from the Swallow mine and from an unknown property was cvanided. Copper Basin district.—The Skull Valley Mining & Reduction Coconstructed a 25-ton custom mill in the Copper Basin district in 1934 and treated 163 tons of gold ore from the Pioneer group by amalgamation and concentration; the operators of the Pioneer property also shipped one car of gold ore to a smelter. The remainder of the Copper Basin district lode output comprised a little gold ore from two prospects. The bulk of the placer output was sold to bullion buyers at Kirkland, Prescott, Phoenix, and Skull Valley; the chief placer producers were the Gold Star (Forback & Easton), Smith & Roby, and Spruce Canyon properties. Eureka district.—The output of the Eureka district increased from 367 tons of ore in 1933 to 21,903 tons in 1934, due chiefly to the production of gold ore from the property of the Hillside Mines, Inc. company constructed a 180-ton flotation-concentration plant, treated 20,793 tons of gold ore during the last 6 months of the year, and became a large producer of gold and silver; it also shipped gold ore for smelting. The Sultan Gold Mining & Milling Co. worked the Sultan mine, treated gold ore by amalgamation, and shipped several cars of firstclass gold ore to a smelter; besides treating ore from the Sultan mine the company did a little custom work on gold ore. Lessees operating the old Crosby mine treated gold ore by amalgamation and concentration and shipped 127 tons of rich gold ore to a smelter. remainder of the district lode output was largely gold ore of smelting grade from the Mammoth, Southern Cross, Cowboy, Gold Standard, Gold Star, Boomer No. 1, Rattlesnake, and Providencia mines and from two prospects. Placer gold valued at \$533 was recovered from claims on Burro Creek and Santa Maria River and from various gulches northwest of Hillside. Hassayampa (Groom Creek, Hassayampa River, Senator, Prescott, Venezia) district.—More than half the ore, old tailings, etc., produced in the Hassayampa district in 1934 was gold and silver ore from the Davis-Dunkirk property treated by flotation concentration. The Davis-Dunkirk Mines, Inc., operated the property from January 1 to August 1 and treated about 6,400 tons of ore in its 100-ton mill. The Midnight Test mine and mill were operated
the first 6 months of the year, and nearly 2,000 tons of gold ore from the mine were treated by amalgamation and concentration; 650 tons of gold ore from the Gold Charm property, about 650 tons of similar ore from the Gold Basis property, and 84 tons of low-grade gold ore from the Golden Eagle mine were also treated by amalgamation and concentration. A total of 1,015 tons of gold ore from the Alma, Pine Grove, Climax, Grosvenor, Storm Cloud, and Brown properties was treated by amagamation. The remainder of the district lode output was largely gold ore of smelting grade from the Stivers, Senator, White Horse, Big Chief, and Dead Shot properties; copper ore of smelting grade from the Ratcliff, Grub, and Earl properties; and silver ore of smelting grade from the Monte Cristo and McCarthy mines. small lot of old tailings rich in gold was shipped from the Sonora Ellen property to a smelter. The placer output, sold to buyers at Prescott and Phoenix, came chiefly from claims along the Hassayampa River; the Philadelphia property was the largest producer. Humbug district.—The output of the Humbug district was considerably greater in 1934 than in 1933 as a result of the output of gold ore from the Fogarty group, operated by the Humbug Gold Mines, Inc. The mine and 35-ton concentration mill were active until July 1, when the mill was closed on account of lack of water; during the first 6 months of the year the company treated about 2,000 tons of ore by gravity and flotation concentration and shipped 83.5 tons of concentrates rich in gold to El Paso, Tex. Numerous placer miners recovered gold from claims along Humbug, French, and Cow Creeks; nearly all of it was sold to bullion buyers at Phoenix, Wickenburg, and Prescott. Kirkland district.—The output of the Kirkland district in 1934 comprised gold ore, chiefly from the Million Dollar and Dutchman properties, and a little placer gold recovered from claims on Kirkland Creek. Lynx Creek district.—The production of gold (all placer) in the Lynx Creek district increased from 1,287.26 fine ounces in 1933 to 3,615.02 ounces in 1934 as a result of regular operations by the Lynx Creek Placer Mine Co. and the Phoenix Lynx Creek Placers. The Lynx Creek Placer Mine Co. operated a floating dredge at the Fitzmaurice property from April to December, and the Phoenix Lynx Creek Placers operated claims on Lynx Creek nearly all the year. Many placer miners recovered gold along Lynx Creek, and most of it was sold to bullion buyers at Prescott. Martinez district.—The Illinois Mining Corporation treated several thousand tons of old tailings from the Congress dump in 1934 by concentration and during the last quarter of the year treated several thousand tons by cyanidation. The remainder of the Martinez district output was first-class gold ore of smelting grade from the Coronado, Blue Bird, Alaska, Bed Rock, and Hermsdorf properties. Peck district.—The Gold Crown Silver Mining Co. was the only important producer in the Peck district in 1934. The property had been idle several years but was reopened in July; during the remainder of the year nearly 400 tons of ore averaging more than 100 ounces of silver to the ton were shipped to a smelter. Pine Grove district.—The old Crown King property was worked in 1934; a few hundred tons of gold ore were treated in a 75-ton flotationconcentration plant, and three cars of rich gold ore were shipped to a A little gold ore from the Towers Mountain prospect was treated by amalgamation and concentration. Silver Mountain district.—A little gold bullion was produced in 1934 from ore treated by amalgamation at the Logan, Comet, and Bradley prospects, and a small quantity of placer gold was recovered from the Silver Mountain claim by dry washing. Squaw Peak district.—Ninety-three tons of low-grade gold ore from the Lucky Boy property were treated by amalgamation in 1934. Thumb Butte district.—The Blue Eagle and Indiana claims produced a little gold ore treated in 1934 by amalgamation. Tip Top district.—The output of the Tip Top district in 1934 was nearly all high-grade silver ore of smelting grade from the Tom Wade. Museum, and Fourth of July mines and four unidentified properties; some of the ore averaged more than 300 ounces of silver to the ton. The Midway claim produced one car of gold ore. Turkey Creek district.—One car of copper ore rich in silver was shipped from the Goodwin mine in 1934 by a lessee, a small lot of high-grade silver ore was marketed from a prospect, and a little placer gold was recovered from a claim on Turkey Creek. Verde district (Jerome).—The United Verde Extension Mining Co. was the only producer in the Verde district in 1934; its ore output was 17 percent less than in 1933, resulting in substantial decreases in production of gold, silver, and copper. The company operated its mine and 200-ton flotation-concentration mill continuously and its 800-ton smelter 304 days; 54,299 tons of copper ore were treated in the mill, and 146,455 tons of copper ore were shipped crude to the smelter. According to the company's printed report for the year ended December 31, 1934, 26,136,368 net pounds of copper were produced from company ore compared with 33,197,118 pounds in 1933; development consisted of 3,502 feet of drifting and 1,118 feet of raising. The company ranked fourth in production of silver and copper in Arizona in 1934 and fifth in gold. The United Verde Copper Co., formerly the largest producer of gold, silver, and copper in Arizona, has been idle since May 1931. Walker district.—The output of the Walker district in 1934 consisted of 200 tons of low-grade gold ore from the Pine Mountain property, treated by amalgamation; 1 car of rich silver ore of smelting grade from the Sunset & Buzzard mine; 27 tons of old mill clean-up material from the Sheldon property; and placer gold and silver from the Federal claim on Slaughterhouse Gulch and from various small operations on upper Lynx Creek. Walnut Grove district (Wagoner).—A little gold ore from the Golden Eagle mine was treated in 1934 by amalgamation, and placer bullion from the Glenn, Cole, and various prospects in French and Pla- ceritas Gulches was sold to bullion buyers. Weaver district.—The production of gold from lode mines in the Weaver district increased in 1934. Of the 3,610 tons of ore produced from 16 mines more than two thirds was gold ore from the Octave group, treated by flotation concentration. The American Smelting & Refining Co. completed the construction of a 75-ton flotation plant on this property in November, treated 2,636 tons of gold ore, and shipped 36 tons of rich gold concentrates to El Paso, Tex., for smelting. The remainder of the district lode output was chiefly gold ore treated by amalgamation from the Alvarado, Brush Heap, and Iron Cap properties and gold ore of smelting grade from the Last Chance, Brush Heap, Dixie, George Myers, "94", Powley, St. Elmo, and Leviathan properties. About 100 small placer operators worked in the district in 1934, but the yield of gold was less than in 1933; most of it was sold to bullion buyers at Congress, Wickenburg, Octave, and Prescott. White Picacho district.—The Golden Slipper mine was again operated by lessees in 1934, and more than 800 tons of fairly rich gold ore were shipped to various smelters; several cars of gold ore were also shipped from an unidentified property, and a little gold ore from a prospect was treated by amalgamation. A small quantity of placer gold was recovered from Todos Santos Creek. #### YUMA COUNTY Castle Dome district.—Nearly all the output of the Castle Dome district in 1934 was small lots of gold ore from several prospects treated by amalgamation; a little rich gold ore from the Look Out mine was shipped for smelting. Colorado River district.—Numerous operators along the Colorado River north of Yuma sold placer dust or bullion valued at \$3,868 to storekeepers in Yuma in 1934. Dome (Gila City) district.—The old Gila City placers were worked again in 1934, and \$3,201 in gold and silver was recovered by tran- sient operators. Ellsworth district.—Of the total material produced in the Yuma County section of the Ellsworth district in 1934, more than 1,500 tons were old tailings from the Harqua Hala dump treated by cyanidation. The Bonanza mine was operated by two groups of lessees, and a total of 325 tons of gold ore was treated by amalgamation and concentration. Two cars of rich gold ore from the Golden Eagle mine were shipped to a smelter, and about 90 tons of gold ore were treated by amalgamation and concentration. The remainder of the district lode output consisted chiefly of gold ore from the Hercules, Why Not, Soccoro, Alaskan, Lizzie, Cary Nation, and Edna May properties treated by amalgamation and concentration; gold ore from a prospect treated by cyanidation; gold ore of smelting grade from the Worcester, Cowden, Why Not, and Yuma Gold properties; and gold ore from the Alta Gold mine treated by amalgamation. All the gold ore treated by amalgamation and concentration was milled in the custom milling plant owned by the Salome Mining & Milling Co. at Harrisburg. little placer gold was produced from the Concepcion claim 8 miles south of Wenden. Fortuna district.—The chief producer in the Fortuna district in 1934 was the old Fortuna mine 30 miles southeast of Yuma. Several lots of rich gold ore were shipped to a smelter by a lessee. Kofa district.—The 100-ton mill on the property of the Sheeptanks Consolidated Mines Co. operated from February 1 to August 20, 1934, and treated 15,167 tons of gold ore by cyanidation; during this time the property became a large producer of gold. The Katy Ross group was worked by the Rob Roy Development Co., and several hundred tons of gold ore were treated in the company 50-ton amalgamation and concentration plant. Laguna district.—The entire output of the Laguna district in 1934 was placer gold recovered from claims in the McPhaul, Las Flores, and Laguna Dam areas;
many transient placer miners worked claims by dry washing during the period of cool weather. La Paz district.—The Scott Lode No. 1, 12 miles southwest of Quartzsite, was worked in 1934 by the Scott Lode Mines, Inc.; the company treated 2,100 tons of low-grade gold ore in a 20-ton amalgamation and concentration mill. The placer output of the La Paz district was sold to storekeepers in Quartzsite, Ariz., and Blythe, Calif. Muggins Mountains district.—The output of the Muggins Mountains district in 1934 was placer gold, largely from the Snooks claim 30 miles east of Yuma. Planet (Harcuvar) district.—Small lots of rich gold ore were produced in 1934 from the Planet and Angelus properties 28 miles north of Bouse. Plomosa district.—Although the chief output of the Plomosa district is placer gold, there was considerably more activity at lode mines in 1934 than in 1933. The Old Brown mine 6 miles northwest of Quartzsite was worked by the Rebecca Mines Co., and a few hundred tons of gold ore were treated by amalgamation and concentration. Gold ore was also produced from the Dutchman, Old Maid, and Great Bear mines and from miscellaneous properties and silver ore from the R. & A. group. The placer output of the district was valued at \$16,372, the larger part of which was sold to storekeepers in Blythe, Calif., and Quartzsite, Ariz.; the chief producers were the Yellow Dog, La Cholla (Happy Days), N. R. A., and Fool Mountain No. 2 properties. There are three definite placer areas in the Plomosa district—Plomosa, La Cholla, and Middlecamp; their production was about equal in 1934. Silver district.—The Red Cloud mine 60 miles north of Yuma yielded a small lot of sulphide lead ore in 1934. Trigo Mountains (Cibola) district.—A small quantity of exceptionally rich gold ore from the Grand Central mine was treated by amal- gamation in 1934. Wellton Hills district.—The entire output of the Wellton Hills district in 1934 was gold ore, largely from the Frazier property, treated by amalgamation. The Wellton Mining & Milling Co. treated a little gold ore in a 25-ton cyanidation plant. ## COAL ## (DETAILED STATISTICS) ## SUMMARY OUTLINE # Part 1. Bituminous coal, by L. Mann, W. H. Young, and F. G. Tryon | Page | Page | |---|---| | Statistical summary | Consumption, stocks, and distribution | | Part 2. Pennsylvania anthracite, by H. L. | . Bennit, W. H. Young, and F. G. Tryon | | Page | Page | | Statistical summary | Trends in values and prices 318 Average sales realizations 319 Average values of shipments, local sales, and | | Production, by regions | colliery fuel 320 Number of operations 320 Labor statistics 321 Equipment and methods of mining 323 Dredge operations 325 | # Part 1.—BITUMINOUS COAL ## By L. Mann, W. H. Young, and F. G. Tryon The urgent need for economy in public expenditure impels the Bureau of Mines to confine this report to presenting, through selected tables, the essential facts of the statistical record for the year. The reader is referred to the chapter on Coal in the Minerals Yearbook, 1935, pages 613 to 648, for a preliminary discussion of the developments in the coal industry in 1934. #### ACKNOWLEDGMENTS This report marks the fifty-fourth year of the continuous statistical record of coal production. Like its predecessors, the report is made possible by the voluntary cooperation of those interested in the coal industry; and it is a pleasure to acknowledge the generous support of the thousands of individual producers, distributors, and consumers who have supplied information. Detailed reports on production and mine operation have been made by about 6,200 commercial mines and on stocks and consumption by approximately 4,500 representative consumers. Particularly valuable has been the help afforded by the traffic managers of the coal-originating railroads, who have furnished detailed records of shipments on their lines. For the weekly and daily information on cars of coal loaded, which forms the principal basis of the current estimates of weekly production, the Bureau is under obligation to J. J. Pelley, president, Association of American Railroads, and particularly to H. E. Ewin and G. Freeburg. Current records of shipments by waterways have been furnished by the United States Engineer Office. Acknowledgment is made also of the generous help of the State mine inspectors, who have assisted in the collection of returns by furnishing information in their files, thereby increasing the accuracy of the statis-Data have been given by W. B. Hillhouse, chief mine inspector, Birmingham, Ala.; Thomas Allen, chief inspector of coal mines, Denver, Colo.; Arthur Campbell, inspector of mines, Boise, Idaho; James McSherry, director, department of mines and minerals, Springfield, Ill.; A. G. Wilson, chief mine inspector, Indianapolis, Ind.; P. R. Clarkson, secretary to the mine inspectors, Des Moines, Iowa; William Glennon, State mine inspector, Pittsburg, Kans.; J. F. Daniel, chief inspector of mines, Lexington, Ky.; John J. Rutledge, chief mine engineer, Maryland Bureau of Mines, Baltimore, Md.; John Murray, coal-mine inspector, department of labor and industry, Saginaw, Mich.; Arnold Griffith, chief mine inspector, Jefferson City, Mo.; Edward Davies, State coal-mine inspector, Billings, Mont.; O. J. Olson, State coal-mine inspector, Bismarck, N. Dak.; James Wittenbrook, chief of division of labor statistics, Columbus, Ohio; James R. Ballard, department of mines, Oklahoma City, Okla.; Michael Hartneady, secretary of mines, department of mines, Harrisburg, Pa.; A. W. Evans, chiel mine inspector, Nashville, Tenn.; J. E. Bergin, chief mine inspector, Seattle, Wash.; N. P. Rhinehart, chief, department of mines, Charleston, W. Va.; and Hugh McLeod, State inspector of coal mines, Rock The Bureau finds of especial value the cooperation of the secretaries of local associations of coal operators on account of their intimate knowledge of conditions in their several districts. Many of them have supplied current reports of production by fields or other valuable data. For information on 1934 the Bureau is indebted to Jonas Waffle, managing director, Coal Trade Association of Indiana, Terre Haute, Ind.; C. E. Reed, secretary, West Kentucky Coal Bureau, Louisville, Ky.; J. E. Johnson, secretary, Hazard Coal Operators' Exchange, Lexington, Ky.; George S. Ward, secretary, Harlan County Coal Operators' Association, Harlan, Ky.; A. R. Litts, secretary-treasurer, COAL 245 Central New Mexico Coal Operators Association, Albuquerque, N. Mex.; R. F. Chumbly, statistician, Utah Coal Producers' Association, Salt Lake City, Utah; C. B. Neel, secretary, Virginia Coal Operators' Association, Norton, Va.; P. C. Graney, treasurer, Winding Gulf Operators' Association, Beckley, W. Va.; S. C. Higgins, secretary-traffic manager, New River Coal Operators' Association, Mount Hope, W. Va.; A. O. Wilson, statistician, Kanawha Coal Operators' Association, Charleston, W. Va.; D. F. Hurd, secretary, Eastern Ohio Coal Operators' Association, Cleveland, Ohio; Walter A. Jones, secretary, Central Pennsylvania Coal Producers' Association; W. E. E. Koepler, secretary, Pocahontas Operators' Association, Bluefield, W. Va.; and W. J. Colley, secretary, Logan Coal Operators' Association, Logan, W. Va. To these and many others who have supplied information, cordial acknowledgment is made. #### STATISTICAL SUMMARY Table 1.—Salient statistics of the coal industry in 1934 | | Bituminous | Anthracite | |--|-----------------|--------------------------| | Productionnet tons | 359, 368, 022 | 57, 168, 291 | | Value at mines | \$628, 112, 000 | \$244, 152, 000 | | Number of active mines of commercial size | \$1.75 | \$4.27 | | Number of active mines of commercial size | 1 6, 258 | (2) | | Stocks of commercial consumers: | | /a\ | | Jan. 1net tons | 32, 840, 000 | (3) | | Dec. 31do | 34, 476, 000 | (2) | | Net change during year | 71,000,000 | (3) | | Tyports | 10.009.000 | 1, 298, 000 | | Imports do Consumption (calculated) do do | 180,000 | 478, 000
55, 500, 000 | | Consumption (calculated) | 347, 043, 000 | 88, 800, 000 | | Capacity of mines with present labor force (assuming 303.5 working days in | 622, 000, 000 | 84, 000, 000 | | the anthracite field and 308 working days in the bituminous field) net tons. | 178 | 207 | | Average number of days worked | 170 | 201 | | Average days idle: All causes | 130 | 96.5 | | All causes | 3 | 19.9 | | Through strikes and lockouts | 127 | 76. 6 | | Other causes. | | | | Average number employed: Underground | 384, 947 | 83, 137 | | Surface | 73, 064 | 25, 913 | | O-tt man | | 20,022 | | Output per man: Per daynet tons | 4.40 | 2, 53 | | Per yeardo | 785 | 524 | | Number of outting machines | 11,905 | 169 | | Quantity cut by machinesnet tons | 284, 676, 715 | 1,981,088 | | Percent of output cut by machines | 79. 2 | 3. 5 | | Number of power shovels in strip pits | 458 | 349 | | Overtity mined by stripping net tons | 20, 789, 641 | 5, 798, 138 | | Quantity loaded by machines undergrounddodo | 41, 433, 000 | 9, 284, 486 | ¹ The 1934 figures of total number of mines are not fully comparable with preceding years because of more complete coverage of small trucking mines in some States made possible by cooperation of the N. R. A. divisional code authorities. #### METHODS OF COLLECTING STATISTICS The principal statistics for each State in 1934 are given in table 3. They are based upon written reports from the producers, most of them signed by responsible officers of the operating companies. It is believed that virtually complete returns are received for all mines, large and small, that ship by rail or water and for all those of commercial size that serve a
purely local market. The figures, however, do not purport to cover the thousands of country banks and small wagon mines, from which less than 1,000 tons of coal a year are mined. ^{Data not available. Data not available. For changes in producers' stocks see table 2A, p. 309.} In the present report the standard unit of measurement is the net or short ton of 2,000 pounds. In statistical reports of the Bureau of Mines the anthracite industry of Pennsylvania and the bituminous-coal industry are listed separately. The statistics of the bituminous-coal industry published in this and preceding reports include data for anthracite and semi-anthracite mined outside of Pennsylvania, as well as for lignite. More detailed information on the methods of collecting the statistics appears in coal reports for previous years. As given in this report, the total value is the amount received at the mine f. o. b. cars minus the selling expense. The average value per ton is the average amount received, obtained by dividing the total value by the number of tons sold or produced. If an operator who is known to have produced coal during the year makes no report of the value of his product to the Bureau of Mines, an estimate of the value is included in the total to make it complete. Since the proportion of the total value actually reported in 1934 was in round numbers 95 percent, the results would seem to be thoroughly representative for the country as a whole. A detailed explanation of the method used in making the estimates and in calculating average values may be found in Coal in 1930, pages 645 and 646. # RELATIVE RATE OF GROWTH OF COAL, OIL, AND WATER POWER The total supply of available energy in the form of coal, oil and natural gas, and water power in 1934 was 20,431 trillion B. t. u. The figures are expressed in British thermal units because some common denominator is necessary for such unlike quantities as tons of coal, barrels of oil, and cubic feet of gas. Table 2 summarizes the British thermal unit equivalent of each of the fuels. Water power is represented by the equivalent of the fuel that would be required to perform the same work, assuming a low thermal efficiency. It is important to note that the figures for "domestic oil" and "natural gas", as in earlier issues of this table, represent the entire production of crude petroleum and gas. Most of this production does not come into direct competition with coal. Much of the supply of both oil and gas is used in regions of the country (such as California and portions of the Southwest) where coal is available only at unusually high cost because of heavy transport charges. Nearly half of the natural gas is used in the field for drilling or operating oil and gas wells and pipe lines or for the manufacture of carbon black. More than half the oil is used in the form of gasoline, kerosene, and lubricants, for which purposes coal cannot well compete, except at much higher price levels. Even these refined products, however, involve a certain measure of indirect competition with coal, for the energy market of the country is becoming more fluid and competitive, and a demand that cannot be met by one source of supply tends to fall back on the others. The purpose of this table is to measure the total demand for energy. COAL 247 Table 2.—Annual supply of energy from mineral fuels and water power in the United States, 1913, 1923, and 1930-34 [Figures represent trillions of British thermal units and, because of rounding, do not always add across exactly. In calculating thermal equivalents, the gross British thermal unit values are used. Water power is represented by the British thermal units of coal that would be required to produce the same amount of power, assuming a consumption of 4 pounds of coal per kilowatt-hour, the average performance of central electric stations in 1913. If the present average performance of 1.4 pounds per kilowatt-hour was assumed, the fuel equivalent of water power would be reduced correspondingly. Figures, except those for oil imports, represent production, and take no account of changes of stock. Corresponding data for earlier years will be found in Coal in 1930, p. 623] | Year | Anthra-
cite | Bitumi-
nous
coal | | Domes-
tic oil
(total
crude,
includ-
ing that
refined) | gas
(total
pro- | Import- ed oil (total crude, includ- ing that refined) | Total
oil and
gas | Total
mineral
fuels | Water
power | Grand
total
includ-
ing
water
power | |------|-----------------|-------------------------|---------|--|-----------------------|--|-------------------------|---------------------------|----------------|--| | 1913 | 2, 490 | 12, 535 | 15, 025 | 1, 491 | 626 | 102 | 2, 219 | 17, 243 | 588 | 17, 831 | | 1923 | 2, 539 | 14, 791 | 17, 330 | 4, 394 | 1, 082 | 492 | 5, 968 | 23, 298 | 1, 136 | 24, 434 | | 1930 | 1, 887 | 12, 249 | 14, 136 | 5, 388 | 2, 089 | 373 | 7, 850 | 21, 986 | 1, 856 | 23, 842 | | 1931 | 1, 622 | 10, 011 | 11, 633 | 5, 106 | 1, 813 | 284 | 7, 203 | 18, 836 | 1, 721 | 20, 557 | | 1931 | 1, 356 | 8, 114 | 9, 470 | 4, 711 | 1, 673 | 268 | 6, 652 | 16, 122 | 1, 900 | 18, 022 | | 1932 | 1, 348 | 8, 741 | 10, 089 | 5, 434 | 1, 672 | 191 | 7, 297 | 17, 386 | 1, 931 | 19, 317 | | 1933 | 1, 555 | 9, 415 | 10, 970 | 5, 448 | 1, 904 | 213 | 7, 565 | 18, 535 | 1, 896 | 20, 431 | # PRODUCTION Table 3.—Summary of coal produced, value, men employed, days operated, and output per man per day, by States, in 1934 (exclusive of wagon mines producing less than 1,000 tons a year) 1 | | | | Net t | ons | | | Valu | е | N | umber of | f employe | es | | | |---|--|--|---|---|--|---|---|--|--|------------------|--
---|---|--| | | | | Other sales
to local | | | | | | | Sur | face | | Aver-
age
num- | Aver-
age
tons | | State | Loaded at
mines for
shipment | Commercial sales
by truck
or wagon | trade, or
used by
employees,
or taken
by locomo-
tives at
tipple | Used at
mines for
power
and heat | Made
into coke
at mines | Total
quantity | Total | Average per ton | Under-
ground | In strip
pits | All others | Total | ber of
days
mines
oper-
ated | per
man
per
day 2 | | Alabama Alaska Arizona Arkansas Zalifornia, Idaho, and Oregon Zolorado Georgia Ilinois Indiana Owa Kansas Kansas Kentucky Maryland Michigan Misouri Montana North Dakota Diho Dihahoma Pennsylvania | 32, 588
17, 050
3, 976, 652
32, 394
13, 307, 212
2, 2011, 749
2, 256, 220
37, 283, 960
1, 403, 154
324, 509
2, 738, 697
2, 411, 093
1, 150, 825
1, 181, 830
17, 813, 518 | 206, 433
3, 558
8, 211
7, 349
982, 316
4, 781, 525
771, 011
1, 263, 483
233, 628
601, 631
137, 764
260, 640
558, 818
133, 972
40, 656
2, 290
347, 306
2, 239, 110
42, 738
4, 493, 554
255, 225 | 104, 488 5, 370 5, 500 807 1, 739 62, 971 774, 651 499, 549 50, 384 6, 579 384, 371 78, 160 10, 830 31, 291 13, 031 28, 029 64, 193 511, 540 9, 946 2, 796, 698 | 51, 746
1, 078
3, 000
180, 983
322
662, 364
215, 871
41, 376
11, 827
255, 273
8, 034
25, 762
23, 477
7, 606
39, 813
70, 559
126, 396
17, 006
702, 377 | 58, 011 | 9, 142, 117
107, 508
9, 058
856, 432
26, 138
5, 210, 933
3, 27, 16
41, 272, 384
14, 793, 643
3, 366, 902
2, 508, 254
38, 525, 235
1, 627, 112
621, 741
3, 352, 283
2, 566, 702
1, 259, 323
1, 753, 888
20, 690, 564
1, 208, 289
88, 825, 875
42, 407 | \$18, 838, 000 45, 000 2, 564, 000- 98, 000 12, 309, 000 64, 238, 000 7, 862, 000 4, 619, 000 6, 548, 000 3, 987, 000 3, 997, 000 3, 997, 000 3, 997, 000 3, 94, 619, 000 165, 371, 000 | \$2.06 4.20 4.97 2.99 3.36 2.36 2.45 1.56 1.48 2.34 1.57 1.90 3.12 1.84 2.38 1.84 2.38 1.84 2.38 | 16, 119 56 16 2, 926 57 6, 722 37, 612 7, 425 6, 687 2, 402 42, 195 1, 158 1, 158 1, 158 24, 181 2, 518 110, 568 | 140
 | 2, 592
37
37
437
1, 350
20
06, 724
2, 012
753
388
7, 314
359
225
690
382
487
6
353
3, 468
15, 251 | 18, 851
93
19
3, 415
76
8, 094
113
46, 067
11, 173
17, 721
49, 549
2, 976
1, 556
5, 540
1, 590
2, 342
2, 342
2, 342
2, 342
2, 247
3, 227
3, 22 | 185 217 296 102 162 158 185 160 171 156 157 141 166 164 221 174 167 124 179 | 2.65
5.33
1.66
2.44
2.33
4.00
1.56
7.78
4.43
2.55
4.27
3.27
6.64
2.30
3.90
3.90 | | 'ennessee
'exastah
'tah
'irginia
Vashington | 720, 807
2, 293, 892 | 156, 541
27, 883
63, 088
78, 530
288, 371 | 49, 038
101
17, 728
79, 836
17, 967 | 50, 907
10, 498
6, 322
28, 776
14, 272 | 12, 502
25, 153
131, 275
2, 686 | 4, 135, 790
759, 289
2, 406, 183
9, 376, 681
1, 382, 991 | 7, 514, 000
1, 145, 000
4, 746, 000
16, 375, 000
4, 002, 000 | 1.82
1.51
1.97
1.75 | 5, 992
667
2, 115
10, 119
1, 719 | 35 | 1,316
103
692
2,088
442 | 7,308
805
2,807
12,207
2,161 | 185
178
171
200
193 | 3.
5.
5.
3. | | a | |----------| | õ | | \sim | | <u>_</u> | | C | | | | West Virginia 94, 775, 558 Wyoming 4, 059, 131 | | 1, 716, 415
52, 584 | 500, 885
132, 901 | 281, 191 | 98, 134, 393
4, 367, 961 | 167, 104, 000
9, 591, 000 | 1. 70
2. 20 | 89, 457
2, 936 | 36
25 | 16, 413
799 | 105, 906
3, 760 | 196
188 | 4. 73
6. 17 | |--|------------------------------|------------------------------|------------------------------|----------------------------|--------------------------------|--------------------------------|----------------|----------------------|--------------------|--------------------|----------------------|------------|----------------| | Total bituminous, 1934 328, 431, 697
Total bituminous, 1933 306, 279, 668 | 18, 739, 320
15, 462, 739 | 7, 374, 143
7, 589, 672 | 3, 175, 057 ′
2, 857, 721 | 1, 647, 805
1, 440, 736 | 359, 368, 022
333, 630, 533 | 628, 112, 000
445, 788, 000 | 1. 75
1. 34 | 384, 947
352, 866 | 7, 652
7, 075 | 65, 412
58, 762 | 458, 011
418, 703 | 178
167 | 4. 40
4. 78 | | Anthracite, 1934 50, 756, 322
Anthracite, 1933 43, 335, 408 | | 3, 285, 936
3, 249, 552 | | | | 244, 152, 000
206, 718, 000 | 4. 27
4. 17 | 83, 137
79, 701 | 4, 304
3, 383 | 21, 609
21, 549 | | 207
182 | 2. 53
2. 60 | | | 18, 739, 320
15, 462, 739 | 10, 660, 079
10, 839, 224 | 6, 301, 090
5, 814, 104 | 1, 647, 805
1, 440, 736 | 416, 536, 313
383, 171, 877 | 872, 264, 000
652, 506, 000 | 2. 09
1. 70 | 468, 084
432, 567 | 11, 956
10, 458 | | 567, 061
523, 336 | 184
170 | 3. 99
4. 31 | ¹ The figures relate only to active bituminous-coal mines of commercial size that produced coal in 1934, excluding wagon mines producing less than 1,000 tons. ² Based upon (1) the "reported" number of man-shifts where the operator keeps a record thereof; otherwise upon (2) the "calculated" number of man-shifts obtained by multiplying the average number of men employed underground and on the surface at each mine by the number of days worked by the mine and tipple, respectively. Using throughout the "calculated" man-shifts as developed before the year 1932, namely, the product of the total number of men employed at each mine times the tipple days, the average output per man per day for the bituminous mines of the country as a whole was 4.42 tons, a figure which is strictly comparable with 5.06 in 1930, previously published. ² No data available on commercial sales of anthracite by truck or wagon. Tonnages moving by truck included under shipments and other sales to local trade. ## TOTAL PRODUCTION SINCE BEGINNING OF MINING Table 4.—Coal produced, by States, 1933-34, with cumulative production from the earliest record to the end of 1934, in thousands of net tons | State | 1933 | 1934 | Total production from earliest record to end of 1934 | State | 1933 | 1934 | Total production from earliest record to end of 1934 | |-----------------------|---|---
---|---|---|---|---| | Alabama | 8, 760
883
5, 230
41
37, 413
13, 761
3, 195
2, 218
36, 100
1, 531
407
3, 432 | 9, 142
857
5, 211
33
41, 272
14, 794
3, 367
2, 508
38, 525
1, 627
622
3, 362 | 594, 792
68, 077
371, 349
10, 870
2, 258, 837
669, 749
297, 491
1, 074, 600
235, 016
42, 100
200, 564 | Oklahoma Oregon Pennsylvania bituminous Tennessee Texas Utah Virginia Washington West Virginia Wyoming Other States | 1, 238 (1) 79, 296 3, 775 822 2, 675 8, 179 1, 394 94, 344 4, 013 173 | 1, 208
(1)
89, 826
4, 136
759
2, 406
9, 377
1, 383
98, 134
4, 368
188 | 124, 661
² 2, 380
5, 575, 892
235, 738
54, 852
121, 600
313, 950
119, 738
2, 914, 680
258, 780
46, 688 | | Montana
New Mexico | 2, 152
1, 226 | 2, 566
1, 259 | 106, 356
100, 069 | Total bituminous
Pennsylvania anthracite | 333, 631
49, 541 | 359, 368
57, 168 | 17, 316, 697
4, 077, 763 | | North Carolina | 1, 782
19, 589 | 1, 754
20, 691 | 1, 020
31, 401
1, 265, 106 | Grand total | 383, 172 | 416, 536 | 21, 394, 460 | ¹ Included under "Other States." ² Total through 1920. Table 5.—Bituminous coal produced, number of mines active, men employed, days operated, and output per man per day in the several fields adopted by the United States Coal Commission, 1933-34 [The definitions of these fields are given in detail on pp. 2034-2052, pt. IV, of the report of the U. S. Coal Commission] | U. S. | e. | | | | 1933 | | | | 1934 | | | | | | |--|--|---|-----------------------------------|---|---|---|---|--|--|---|---|---|--|--| | Coal
Com-
mis-
sion
field
no. | State | General name of field | Number
of
mines | Production
(net tons) | Number
of men | Average
number
of days
mines
operated | Average
tons per
man
per day | Number
of
mines | Production
(net tons) | Number
of men | Average
number
of days
mines
operated | Average
tons per
man
per day | | | | 1
2
3
4a,b
5
6
7
8 | Pennsylvania | Pittsburgh Connellsville. Westmöreland-Ligonier Freeport (thick and thin) Butler-Mercer Blossburg Broad Top Somerset Central Pennsylvania, western. | 62
51
20
42 | 20, 710, 000
11, 389, 000
5, 942, 000
6, 877, 000
957, 000
244, 000
1, 110, 000
3, 402, 000
1, 852, 000 | 27, 893
18, 530
8, 138
7, 912
2, 074
650
1, 990
4, 998
2, 973 | 174
131
154
170
161
149
180
164
167 | 4. 27
4. 68
4. 75
5. 10
2. 86
2. 52
3. 09
4. 14
3. 74 | 218
108
75
74
59
23
47
84
69 | 24, 257, 000
13, 659, 000
6, 151, 000
8, 616, 000
1, 155, 000
278, 000
1, 097, 000
3, 635, 000
1, 937, 000 | 30, 114
19, 281
8, 400
9, 339
2, 441
738
2, 019
5, 257
3, 591 | 192
155
170
190
179
178
189
202
162 | 4. 20
4. 58
4. 31
4. 85
2. 65
2. 12
2. 88
3. 43
3. 34 | | | | 9b | do | Central Pennsylvania,
middle. | 77 | 6, 579, 000 | 9, 103 | 165 | 4.37 | 93 | 7, 470, 000 | 10, 640 | 181 | 3.87 | | | | 9c
10 | Maryland-West Virginia | Central Pennsylvania,
eastern.
Maryland-Potomac | 430
109 | 20, 234, 000 | 31, 192
4, 427 | 166
164 | 3. 90
3. 29 | 481
123 | 21, 571, 000 | 34, 259
4, 645 | 178
180 | 3. 54
3. 22 | | | | 11
12
13
14
15
16 | West Virginia. Ohio-West Virginia. do. West Virginia Kentucky-West Virginia Kentucky-Virginia-West Virginia. | Fairmont Panhandle-Pittsburgh No. 8. Pomeroy Putnam County Kenova Thacker | 108
129
27
3
14
42 | 14, 933, 000
14, 485, 000
338, 000
429, 000
1, 819, 000
5, 055, 000 | 12,749
14,771
687
580
1,739
5,704 | 164
189
202
162
164
175
175 | 3. 29
6. 21
4. 86
3. 03
4. 52
5. 97
5. 05 | 123
108
139
25
3
16
42 | 25, 686, 000
15, 091, 000
14, 448, 000
444, 000
358, 000
1, 768, 000
5, 529, 000 | 15, 250
16, 754
827
623
2, 028
6, 357 | 170
188
164
163
183
176 | 5. 22
5. 81
4. 60
3. 28
3. 53
4. 77
4. 93 | | | | 17
18
19
20
21
22
23
24a
24b | West Virginia. Virginia West Virginia. West Virginia. do. do. do. do. do. do. do. d | Tug River. Pocahontas. Winding Gulf. New River. Kanawha. Coal River. Logan. Coal and Coke. Preston County. | 70
51
91
86
5
56 | 5, 286, 000
15, 263, 000
8, 848, 000
11, 001, 000
12, 728, 000
13, 001, 000
693, 000
451, 000 | 6, 103
14, 473
7, 976
11, 508
13, 597
916
9, 787
927
984 | 196
185
226
211
201
176
200
223
143 | 4. 42
5. 71
4. 90
4. 53
4. 65
6. 99
6. 63
3. 35
3. 21 | 32
73
54
100
89
5
57
12 | 5, 789, 000
16, 339, 000
8, 895, 000
11, 640, 000
1, 054, 000
12, 761, 000
747, 000
543, 000 | 7, 250
17, 191
9, 247
13, 033
15, 575
1, 120
11, 049
817
1, 175 | 201
202
213
210
215
174
195
219 | 3. 97
4. 69
4. 52
4. 26
4. 42
5. 40
5. 92
4. 18
3. 36 | | | Table 5.—Bituminous coal produced, number of mines active, men employed, days operated, and output per man per day in the several fields adopted by the United States Coal Commission, 1933-34.—Continued [The definitions of these fields are given in detail on pp. 2034-2052, pt. IV, of the report of the U. S. Coal Commission] | | | 1 | l | | 1000 | <u> </u> | | ī | i | - | | | | | |--|--|---|--|---|---|---|---|---|--|---|---|--|--|--| | U.S.
Coal | | | | | 1933 | | | | 1934 | | | | | | | Com-
mis-
sion
field
no. | State | General name of field | Number
of
mines | Production (net tons) | Number
of men | Average
number
of days
mines
operated | Average
tons per
man
per day | Number
of
mines | Production
(net tons) | Number
of men | Average
number
of days
mines
operated | Average
tons per
man
per day | | | | 24c | West Virginia | Taylor County, Junior,
Philippi, and Gauley. | 82 | 3, 444, 000 | 3, 955 | 172 | 5. 07 | 85 | 3, 384, 000 | 4,772 | 158 | 4. 48 | | | | 25
26
27
28 | Virginiadododododo | Southwestern Virginia Clinch Valley Virginia "anthracite" Richmond Basin | 51
15
6 | 5, 050, 000
1, 472, 000
165, 000 | 5, 862
1, 988
678 | 184
171
150 | 4. 69
4. 34
1. 62 | 51
16
8 | 5, 180, 000
1, 708, 000
202, 000 | 6, 668
2, 243
722 | 201
214
148 | 3. 86
3. 55
1. 89 | | | | 29
30
31
32
33
34
36
37
38
39
40 | Ohio | Massillon-Palmyra-Lisbon Coshocton-Goshen Coshocton-Goshen Crooksville Hocking Jackson and Ironton Northeast Kentucky Hazard Harlan Southern Appalachian Jellico Western Kentucky | 90
48
76
56
52
108
16
120 | 1, 798, 000
1, 504, 000
1, 541, 000
944,
000
2, 793, 000
332, 000
8, 753, 000
4, 761, 000
4, 353, 000
4, 353, 000
7, 834, 000 | 2, 641
2, 281
2, 012
1, 102
5, 619
946
10, 713
5, 868
9, 094
7, 306
901 | 194
175
170
206
121
111
185
174
183
165
105 | 3. 52
3. 76
4. 49
4. 17
4. 12
3. 15
4. 42
4. 66
5. 35
3. 62
5. 61 | 127
172
38
60
106
66
91
60
54
165
22
169 | 1, 688, 000
1, 889, 000
1, 557, 000
3, 165, 000
643, 000
10, 044, 000
4, 285, 000
9, 664, 000
4, 742, 000
4, 77, 000
8, 215, 000 | 2, 848
2, 780
2, 201
1, 441
6, 217
1, 232
12, 232
6, 186
10, 817
8, 123
1, 112
11, 060 | 181
169
175
179
130
148
205
159
206
173
144 | 3. 28
4. 03
4. 03
3. 74
3. 91
3. 52
4. 01
4. 35
4. 34
3. 38
2. 97
5. 11 | | | | 42
43
44
45
46
47
48
49 | TennesseedoAlabama.Alabama-GeorgiaAlabama IndianaIndiana | Rockwood-Soddy
Fentress
Big Seam group
Cahaba group
Pratt group
Indiana
Brazil Block | 39
7
28
86
45
157
21 | 1, 481, 000
196, 000
3, 537, 000
2, 991, 000
2, 274, 000
13, 302, 000
459, 000 | 2, 863
379
6, 031
6, 462
5, 837
10, 801
398 | 165
194
172
142
130
163
170 | 3. 14
2. 66
3. 41
3. 25
3. 01
7. 55
6. 78 | 60
7
28
85
39
156
21 | 1, 498, 000
307, 000
3, 762, 000
2, 979, 000
2, 434, 000
14, 167, 000
627, 000 | 3, 122
436
6, 726
7, 006
5, 232
10, 707
466 | 188
214
212
178
160
171
177 | 2. 55
3. 29
2. 63
2. 39
2. 91
7. 75
7. 61 | | | | 50
51
52
53
54
55
56 | Illinois | Northern Illinois. Fulton-Peoria Danville. Central Illinois. Belleville. Murphysboro. Southern Illinois. | 97
9
137 | 1, 697, 000
4, 148, 000
2, 044, 000
10, 441, 000
5, 108, 000
312, 000
13, 664, 000 | 2, 104
4, 676
3, 009
11, 982
5, 685
186
16, 503 | 178
178
130
159
133
132
119 | 4. 54
4. 97
5. 21
5. 49
6. 77
12. 71
6. 98 | 85
229
84
95
110
10 | 1, 691, 000
4, 729, 000
1, 960, 000
11, 359, 000
5, 605, 000
270, 000
15, 658, 000 | 2, 464
5, 322
2, 994
11, 632
6, 054
195
17, 406 | 162
177
148
181
155
126
143 | 4. 23
5. 02
4. 43
5. 39
5. 96
11. 02
6. 28 | | | | 57
58 | Michigan
Arkansas
dodo | Michigan
Sebastian
Excelsior-Logan | 13
20
25 | 407, 000
469, 000
281, 000 | 1, 186
1, 555
1, 00 1 | 130
102
115 | 2. 64
2. 96
2. 43 | 24
24
22 | 622, 000
375, 000
342, 000 | 1, 556
1, 445
1, 186 | 157
91
129 | 2. 54
2. 85
2. 23 | | | | 59
60
61
62
63
64
65
66 | do | Arkansas "anthracite" | 12
149
33
53
160
82
125 | 134,000
1,997,000
857,000
2,376,000
2,401,000
794,000
2,066,000 | 1, 115
3, 624
1, 720
2, 564
4, 926
2, 769
2, 874 | 63
138
132
175
153
112
111 | 1. 91
4. 01
3. 79
5. 29
3. 19
2. 57
6. 45 | 10
145
29
61
158
85
114 | 140,000
2,070,000
865,000
2,276,000
2,424,000
943,000
2,333,000 | 784
8, 701
1, 676
2, 717
4, 916
2, 805
2, 725 | 80
152
139
177
165
141
126 | 2. 23
3. 67
3. 70
4. 74
3. 00
2. 39
6. 81 | |--|----|---|---|--|---|--|---|--|---|--|---|---| | 67
68
69
70
71
72
73
74
75
76
76
78
79
80
81
82
83
84
85
86
87
88
89
90
91 | do | Osage Leavenworth s. Southern Missouri Lafayette. Grundy. Platte. Montana. Gallup. Cerrillos and Carthage. Raton. Monero. Southern North Dakota. Northern North Dakota. Northern North Dakota. Nothern North Dakota. WacAlester Vein. Oklahoma, eastern. Texas (bigunite). Utah. Kittitas County. Pierce-King (bituminous). Subbituminous. Wyoming. South Dakota. Oregon. California 4. | 34
3
102
102
(3)
61
16
7
7
9
9
89
9
49
8
15
15
13
21
28
65
61
9 | 70,000
111,000
2,597,000
806,000
(e)
2,152,000
525,000
525,000
525,000
23,000
1,006,000
1,084,000
37,000
776,000
1,084,000
367,000
528,000
4,013,000
528,000
4,013,000
529,000
(e)
7,000 | 434
680
2, 360
3, 151
(3)
1, 324
1, 124
390
772
54
430
2, 544
258
430
2, 545
2, 906
986
651
918
8, 753
147
(4)
58 | 109
278
170
137
(3)
(3)
(4)
166
172
227
130
193
164
191
155
123
107
188
176
127
213
180
100
(4)
79 | 1. 48
.59
6. 46
1. 87
(3)
9. 80
2. 87
1. 36
5. 24
2. 20
7. 01
7. 01
7. 66
5. 24
7. 66
5. 23
3. 98
4. 7
6. 3. 19
6. 23
3. 19
6. 29
4. 01
(4)
1. 54 | 43
5
94
123
(3)
(4)
81
7
7
10
92
65
65
10
95
4
4
13
13
17
26
65
21
(4)
9
10
10
10
10
10
10
10
10
10
10 | 86,000
121,000
2,584,000
737,000
(3)
2,566,000
538,000
107,000
584,000
584,000
31,000
988,000
1,074,000
31,000
2,406,000
489,000
4,368,000
4,200
(2)
9,000 | 522
686
2,060
3,291
(3)
1,590
1,1590
1,1590
1,590
2,750
2,750
2,750
2,750
2,750
640
816
3,760
(4)
76 | 115
269
167
126
(3)
(4)
(5)
166
155
189
161
215
161
198
143
121
166
184
171
210
203
171
188
187
171
210
203
171
188
189
171
210
203
171
162
203
171
162
203
203
203
203
203
203
203
203
203
20 | 1. 43
.66
7. 52
1. 78
(3)
9. 73
8. 00
1. 63
4. 66
2. 32
6. 25
1. 97
3. 24
.72
7. 26
1. 97
3. 24
.72
7. 20
8. 82
2. 53
3. 51
6. 17
8. 04
(4) | | | | | 5, 555 | 333, 631, 000 | 418, 703 | 167 | 4.78 | ⁵ 6, 258 | 359, 368, 000 | 458, 011 | 178 | 4. 40 | Northeastern Kentucky field includes McRoberts district. Hazard field includes Whitesburg district. Leavenworth field, Kansas, includes Grundy field, Missouri (no. 71), and Platte field, Missouri (no. 72). California includes Idaho and Oregon. The 1934 figures of total number of mines are not comparable with preceding years in a number of States because of more complete coverage of small trucking mines made possible by cooperation of the N. R. A. Divisional Code Authorities. #### PRODUCTION, BY WEEKS AND MONTHS The following tables summarize the statistics of weekly and monthly production of bituminous coal first published in the Bureau of Mines weekly coal reports. The figures are estimates based upon daily and weekly statements of cars of coal and beehive coke loaded by the principal railroads and of shipments over the Monongahela, Allegheny, Ohio, and Kanawha Rivers. The estimates are revised afterward to agree with the results of the annual statistical reports from the coal producers; therefore the figures given here differ
slightly from the estimates originally issued in the weekly reports. For the method used in counting holidays see Coal in 1930, page 631. Table 6.—Estimated weekly production of bituminous coal in 1934 | Week ended— | Production
(net tons) | Number
of work-
ing days | Average
production
per working
day (net
tons) | Week ended— | Production
(net tons) | Number
of work-
ing days | Average
production
per working
day (net
tons) | |-------------|---|---|---|---|---|--|---| | Jan. 6 | 7, 507, 500 7, 385, 000 7, 385, 000 7, 385, 000 7, 488, 000 8, 169, 000 8, 189, 000 8, 385, 000 8, 385, 000 8, 385, 000 8, 385, 000 8, 385, 000 6, 144, 000 5, 238, 000 6, 185, 000 6, 185, 000 6, 185, 000 6, 000, 000 6, 000, 000 6, 000, 000 | 5.1
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0 | 1, 392, 000 1, 221, 000 1, 228, 000 1, 210, 000 1, 210, 000 1, 313, 000 1, 362, 000 1, 398, 000 1, 398, 000 1, 427, 000 1, 398, 000 1, 441, 000 973, 000 972, 000 1, 031, 000 1, 031, 000 1, 015, 000 1, 015, 000 1, 015, 000 1, 015, 000 1, 035, 000 | July 14. July 21. July 28. Aug. 4. Aug. 11. Aug. 18. Aug. 25. Sept. 1. Sept. 29. Oct. 6. Oct. 13. Oct. 20. Oct. 27. Nov. 10. Nov. 17. Nov. 10. Nov. 17. Nov. 24. Dec. 1 Dec. 8. Dec. 15. Dec. 29. Dec. 29. Dec. 29. | 5, 443, 000
5, 786, 000
5, 782, 000
5, 794, 000
6, 226, 000
6, 769, 000
6, 769, 000
6, 769, 000
7, 003, 000
7, 003, 000
7, 124, 000
7, 124, 000
7, 224, 000
7, 344, 000
7, 347, 000
7, 349, 000
6, 343, 000
7, 403, 000
8, 391, 000
11, 400, 000 | 6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0 | 968, 000
957, 000
991, 000
964, 000
966, 000
968, 000
1, 128, 000
1, 188, 000
1, 187, 000
1, 187, 000
1, 187, 000
1, 224, 000
1, 224, 000
1, 222, 000
1, 222, 000
1, 223, 000
1, 224, 000
1, 234, 000
1, 234, 000
1, 234, 000
1, 234, 000
1, 234, 000
1, 286, 000
2, 1, 446, 000 | | | | | | Total | 359, 368, 000 | 306. 4 | 1, 173, 000 | ¹ Figures represent output and number of working days in that part of the week included in the calendar year shown. Total production for the week of Jan. 5, 1935 was 7,377,000 net tons. ² Average daily production for the entire week. COAL Table 7.—Estimated monthly production of coal, by States, in 1934, in thousands of net tons | Arkansas. 98 78 57 6 3 10 44 75 136 114 99 13 Colorado. 541 458 438 291 252 193 215 330 578 636 683 69 Illinois. 4, 395 4, 195 4, 538 2, 496 2, 257 2, 248 2, 360 2, 948 3, 459 3, 882 3, 753 4, 74 Indiana 1, 541 1, 451 1, 451 1, 1719 1, 000 856 781 836 1,070 1, 137 1, 403 1, 392 1,000 Kansas. 244 223 253 160 71 128 144 180 241 285 242 33 Kentucky: | State | ary February | State Janu | March | April | Мау | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |---|---|--|--|---|--|--|--|---|--|--|--|---|---|---| | Eastern. 2, 417 2, 608 3, 135 2, 344 2, 455 2, 291 2, 260 2, 588 2, 488 2, 771 2, 563 2, 39 Western. 866 869 955 508 508 419 440 575 666 726 733 95 Maryland. 1176 1178 198 96 92 86 104 110 123 149 148 16 Missouri. 418 358 341 188 156 190 188 229 242 327 326 38 Montana. 303 202 195 147 130 127 134 181 234 267 328 31 North Dakota. 144 108 102 98 78 72 84 98 110 125 114 11 127 72 54 42 44 84 179 239 205 222 Ohio 14 | abama.
kansas.
Jorado.
Inois.
Jiana.
Wa. | 893 949 98 78 541 458 395 4, 195 541 1, 451 368 329 | Alabama Arkansas Colorado Illinois 4, Indiana 1, Iowa Kansas | 872
57
436
4, 536
1, 719
330 | 397
6
291
2, 496
1, 000
176 | 947
3
252
2, 257
856
174 | 10
193
2, 248
781
192 | 699
44
215
2, 360
836
202 | 702
75
330
2, 948
1, 070
247 | 648
136
578
3, 459
1, 137 | 767
114
636
3, 882
1, 403
318 | 700
99
583
3, 753
1, 392
334 | 7
772
136
698
4,743
1,608
426
337 | 108
9, 142
856
5, 211
41, 272
14, 794
3, 367
2, 508 | | | Eastern Western aryland ichigan issouri ontana w Mexico orth Dakota ilo iclahoma mnsylvania bituminous sasa ah rginia ashington est Virginia yoming | 866 869 176 178 83 66 418 358 303 202 144 108 306 174 995 2, 104 144 110 959 365 398 67 67 67 264 152 798 156 8, 620 383 315 | Eastern 2, Western 2, Maryland 3, Misouri 4, Montana 5, New Mexico 5, North Dakota 6, Ohio 1, Oklahoma 7, Tennessee 7, Tennessee 7, Texas 1, Utah 7, Virginia 8, Washington 8, Wyoming 8, | 955
198
73
341
195
102
127
2, 411
76
10, 132
465
62
159
975
109 | 508
96
39
188
147
98
72
1, 301
7, 118
223
58
1200
754
79
6, 651
293 | 508
92
26
156
130
78
54
1, 371
38
7, 479
365
58
109
873
80
8, 746 | 419
86
25
190
127
72
42
1, 408
7, 231
286
59
108
758
76
8, 668 | 440
104
23
188
134
84
44
1, 456
53
6, 429
268
58
119
608
84
7, 722 | 575
110
27
229
181
98
84
1, 522
100
6,
941
325
66
162
670
115
7, 806
334 | 666
123
59
242
234
110
179
1,445
6,508
312
65
239
662
110
7,377
450 | 726
149
61
327
267
125
239
1,868
150
7,746
68
367
862
147
8,815
528 | 733 148 69 326 328 116 205 1, 823 127 7, 352 274 162 7, 925 468 | 2, 391
950
167
7389
318
124
228
1, 987
182
7, 244
390
65
333
793
155
7, 522
478 | 30, 311
8, 215
1, 627
622
3, 352
2, 566
1, 259
1, 754
20, 691
1, 208
89, 826
4, 136
9, 377
1, 883
98, 134
4, 368 | | Pennsylvania anthracite | nnsylvania anthracite | 102 5, 930 | Pennsylvania anthracite | 6, 394 | 4, 819 | 5, 230 | 4, 168 | 3,430 | 3, 570 | 3, 962 | 4, 711 | 4, 165 | 32, 526
4, 687
37, 213 | 359, 368
57, 168
416, 536 | # NUMBER AND SIZE OF MINES Table 8.—Number and production of commercial bituminous-coal mines, by size classes, in each State, in 1934¹ [No canvass of wagon mines producing less than 1,000 tons was made] | | Cl | ass 1A | (more than | 500,000 to | ns) | C | lass 1B | (200,000 to | 500,000 to | ns) | 0 | lass 2 | (100,000 to 20 | 00,000 tor | ıs) | 0 | lass 3 | (50,000 to 1 | 00,000 tor | 1s) | |--|-------------|--------------|------------------|-----------------------------|----------------|---------------------|---|--|--|---|--------------------------|--|---|--|---|--------------------------|---|--|---|---| | | M | ines | Pr | oduction | | Mi | nes | Pro | duction | | Mi | ines | Pro | duction | | Mi | ines | Pro | oduction | | | State | Num-
ber | Per-
cent | Total (net tons) | Average per mine (net tons) | Per-
cent | Num-
ber | Per-
cent | Total (net
tons) | Average per mine (net tons) | Per-
cent | Num-
ber | Per-
cent | Total (net tons) | Average per mine (net tons) | Per-
cent | Num-
ber | Per-
cent | Total (net
tons) | Average per mine (net tons) | Per-
cent | | AlabamaArkansasColoradoGeorgia | | 1.3 | 1, 093, 321 | 546, 661 | 12.0 | 16
3 | | 3, 601, 076
673, 586 | | 39. 4
 | i | 1.8 | | 113, 914 | 24. 6
13. 3
32. 1 | i | 1.8 | 55, 239 | 55, 239 | 6.4 | | IllinoisIndianaIowaKansasKentucky: | 24
5 | 2.8 | 3, 011, 131 | 803, 674
602, 226 | | 38
22
2
2 | 4.8
12.4
.8
1.3 | | 330, 794
290, 700
267, 302
255, 698 | | 20
5 | 2.1 | 2, 841, 305
684, 210 | 142, 065
136, 842 | 7. 5
19. 2
20. 3
43. 1 | 36
18
11
2 | 10. 2
4. 5 | 1, 322, 084
715, 197 | 70, 519
73, 449
65, 018
78, 439 | 8. 9
21. 2 | | Eastern
Western
Maryland | | | | | 17. 7 | 36
13 | 9. 9
7. 7 | 11, 024, 304
3, 664, 321 | | 36. 4
44. 6 | 56
20
3 | 11.8
3.2 | 439, 914 | 135, 127
146, 638 | 26. 5
32. 9
27. 0 | 48
16
11 | 9. 5
11. 8 | 1, 197, 814 | 71, 939
74, 863
68, 059 | 14.6 | | Michigan Missouri Montana New Mexico North Carolina | 1
1 | 1. 2 | 1, 112, 157 | 563, 311
1, 112, 157 | 16. 8
43. 4 | 4
3
2 | 1.8
3.6
4.6 | 1, 023, 715
925, 915
490, 571 | 255, 929
308, 638
245, 286 | 30. 5
36. 1
39. 0 | 2
1
1
2 | . 5 | 259, 350
158, 466
136, 834
271, 328 | 158, 466 | 41. 7
4. 7
5. 3
21. 5 | 2
8
2
2 | 3. 6
2. 4 | | 70, 995
70, 946 | 16, 9
5, 5 | | North Dakota
Ohio
Oklahoma
Pennsylvania
South Dakota | 7
45 | 1.0 | 33, 275, 520 | 657, 240
739, 456 | | 23
23
84 | 1. 3
3. 4
6. 3 | 7,074,720 | 254, 143
307, 597
310, 870 | 29. 0
34. 2
29. 1 | 28
1
100 | 2. 6
4. 1
. 9
7. 5 | 640, 998
4, 118, 590
131, 107
13, 484, 471 | 160, 250
147, 093
131, 107
134, 845 | 36. 6
19. 9
10. 8
15. 0 | 1
28
2
113 | | 65, 236
2, 012, 560
138, 047
7, 975, 295 | 71, 877
69, 024 | 9. 7
11. 4 | | Tennessee
Texas
Utah | | | | | | 3 | 2. 6
5. 6 | 753, 473
385, 773 | 251, 158
385, 773 | 18. 2
50. 8 | 15 | | 2, 078, 401 | 138, 560 | 50. 3 | 6
2 | 11.1 | 190, 358 | 74, 764
95, 179 | 10. 9
25. 1 | | Virginia
Washington
West Virginia
Wyoming | 32 | 4. 2 | | | 23. 6 | 14
1
142
9 | 4. 7
16. 3
1. 8
18. 6
13. 9 | 456, 125
3, 691, 013
203, 036
43, 161, 632
2, 589, 874 | 228, 063
263, 644
203, 036
303, 955
287, 764 | 18. 9
39. 4
14. 7
44. 0
59. 3 | 8
11
3
137
9 | 18. 6
12. 8
5. 4
17. 9
13. 8 | 1, 166, 887
1, 629, 451
448, 794
20, 216, 063
1, 256, 110 | 148, 132
149, 598 | 48. 5
17. 4
32. 5
20. 6
28. 7 | 6
17
5
101
2 | 13. 9
19. 8
8. 9
13. 2
3. 1 | 444, 285
1, 205, 581
374, 853
7, 307, 668
123, 602 | 74, 048
70, 917
74, 971
72, 353
61, 801 | 18. 5
12. 9
27. 1
7. 4
2. 8 | | Other States 2 | 129 | 2. 1 | 93, 821, 082 | 727, 295 | 26. 1 | 422 | 6. 7 | 126, 352, 066 | 299, 412 | 35. 2 | 485 | 7.7 | 68, 931, 676 | | 19. 2 | 479 | 6.7 | 66, 234
34, 393, 829 | 71, 803 | | | | | Class 4 | (10,000 to 50 | ,000 tons) | | | Class 5 | (less than 10 | ,000 tons) | | | Total | | |---|---|---|---|---|---|---|--|---|--|--|-----------------------|---|---| | State | Mi | nes | : | Production | | Mi | nes | | Production | | | Production (| net tons) | | | Number | Percent | Total (net
tons) | Average per
mine (net
tons) | Percent | Number ¹ | Percent | Total (net
tons) | Average per
mine (net
tons) | Percent | Mines 1 | Total | Average
per mine | | Alabama
Arkansas
Colorado
Georgia
Illinois | 21
24
40
1
98 | 100.0
12.5 | 602, 552
566, 456
992, 725
32, 716
2, 382, 102
961, 429 | 24, 818
32, 716
24, 307 | 6. 6
66. 2
19. 1
100. 0
5. 8 | 76
30
161 | 50. 3
53. 6
68. 5 | 120, 823
419, 116
1, 382, 005 | 2, 603 | 2. 0
14. 1
8. 0 | 56
235
1 | 9, 142, 117
856, 432
5, 210, 933
32, 716
41, 272, 384
14, 793, 643 | 60, 544
15, 293
22, 174
32, 716
52, 643
83, 580 | | IndianaIowa | 42
40
21 | | 914, 539
497, 845 | 22, 863
23, 707 | 6. 5
27. 2
19. 8 | 185
127 | 39. 6
76. 1
79. 4 | 518, 443
261, 200 | 2, 802
2, 057 | 1. 8
15. 4
10. 4 | 243
160 | 3, 366, 992
2, 508, 254 | 13, 856
15, 677 | | Eastern Western Maryland Michigan Missouri Montana New Mexico North Carolina | 20
13
8
33
5 | 14. 0
33. 4
15. 1
6. 0 | 2, 140, 224
423, 704
263, 759
201, 547
618, 364
105, 408
279, 173 | 21, 185
20, 289
25, 193
18, 738
21, 082 | 7. 1
5. 1
16. 2
32. 4
18. 5
4. 1
22. 2 | 12
172
71 | 40. 9
59. 2
71. 0
50. 0
78. 5
85. 6
63. 6 | 226, 408
174, 788
25, 849
420, 466
143, 497
67, 733 | 2, 445
2, 021
2, 419 | 12. 6
5. 6
5. 4 | 169 | 30, 310, 456
8, 214, 779
1, 627, 112
621, 741
3, 352, 283
2, 565, 702
1, 259, 323
3, 140 | 28, 621 | | North Carolina North Dakota Ohio Oklahoma Pennsylvania South Dakota Tennessee Texas Utah Virginia Washington West Virginia Wyoming Other States 3 | 73
32
281
1
32
7
14
23
13 | 30. 5
21. 1
4. 8
28. 1
38. 9
32. 6
26. 7
23. 2 | 214, 570
1, 561, 791
759, 683
6, 491, 970
22, 200
745, 988
146, 595
315, 572
604, 966
261, 767
3, 507, 639
312, 816
62, 530 | 21, 394
23, 740
23, 103
22, 200
23, 312
20, 942
22, 541
26, 303
20, 136
27, 191
28, 438 | 12. 2
7. 6
62. 9
7. 2
52. 3
18. 0
19. 3
13. 1
18. 9
3. 6
4
2. 2
42. 9 | 70
708
20
58
8
13
17
34
223 | 88. 5
76. 6
66. 7
53. 2
50. 9
44. 4
30. 2
19. 8
60. 7
29. 2
52. 3
80. 0 | 324, 799 1, 322, 222 179, 452 2, 485, 547 20, 207 109, 347 36, 563 23, 314 32, 424 94, 541 658, 078 85, 559 | 2,
337
2, 543
2, 564
3, 511
1, 010
1, 885
4, 570
1, 793
1, 907
2, 781
2, 951 | 18.5
6.4
14.9
2.8
47.7
2.6
4.8
1.0
.3
6.8
.2,0 | 43
86
56
764 | 1, 753, 888 20, 690, 564 1, 208, 289 89, 825, 875 42, 407 4, 135, 790 759, 289 2, 406, 183 9, 376, 681 1, 382, 991 98, 134, 393 4, 367, 964 | 11, 171
30, 472
11, 508
67, 488
2, 019
36, 279
42, 183
55, 958
109, 031
24, 696
128, 448
67, 199 | | Total | 1,072 | 17. 1 | 25, 990, 630 | 24, 245 | 7. 2 | 1 3, 671 | 58. 7 | 9, 878, 739 | 2, 691 | 2. 7 | 1 6, 258 | 359, 368, 022 | | ¹ The 1934 figures of total number of mines and of number in class 5 (less than 10,000 tons) are not comparable with preceding years in a number of States because of more complete coverage of small trucking mines made possible by cooperation of the N. R. A. Divisional Code Authorities. ² Includes Alaska, Arizona, California, Idaho, and Oregon. ### LABOR STATISTICS #### MEN EMPLOYED The method of collecting employment statistics is explained in detail in Coal in 1929, pages 738 to 740. These statistics are believed to represent the most accurate returns obtainable under present conditions, both as to the records generally available in mine offices and as to the funds allotted to the Bureau of Mines for collecting data. For a detailed explanation of the classification of mine employees see Coal in 1930, page 651. Table 3, page 248, shows the number of men employed underground and on the surface, by States, during 1934. Data for previous years may be found in Coal in 1930, page 653; 1931, page 426; 1932 (Statistical Appendix), page 376; and 1933 (Statistical Appendix), page 286. #### LENGTH OF WORKING DAY Table 9.—Number of bituminous-coal mines in the United States reporting established working day of certain length and number of men employed therein as of December 1934 [Effective Apr. 1, 1934, the N. R. A. Bituminous-Coal Code was amended to limit hours of labor to a maximum of 7 per day at the usual working place, exclusive of the lunch period, for all nonsupervisory employees "excepting that number of workers whose daily work includes the handling of man-trips and those required to remain on duty while men are entering and leaving the mine." Certain exceptions for other classes of labor were provided. (National Recovery Administration Amendment No. 1 to Code of Fair Competition for the Bituminous-Coal Industry, art. III, par. 2.) The reports furnished by operators, which are summarized below, do not purport to represent the actual time worked by the men but rather the length of the operating day at the mine or tipple. The reports of more than 7 hours undoubtedly consist chiefly of (1) cases where the operator has included the time when the men are entering and leaving the mine, or (2) cases where work is staggered and 2 crews of men overlap, or (3) cases where the question was misunderstood, rather than of violations of the terms of the code. It will be noted that the mines reporting more than 7 hours employed a very small proportion of the men; most of them consisted of small local mines. The 1934 figures of total number of mines are not comparable with preceding years in a number of States because of more complete coverage of small trucking mines made possible by cooperation of the N. R. A. Divisional Code Authorities.] | | | | / | | | | | | | | | | |--|-----------------|----------------------------|--------------|-----------------|-------|----------|-------|------|--------------|--|-----------------|----------------------------| | | 7 1 | ours | 8 | hours | 9 h | ours | 10 h | ours | and | others
not re-
rted ¹ | To | otal | | State | | <u> </u> | | 1 | | Ī | | 1 | | | e9 | | | | Mines | Men | Mines | Men | Mines | Men | Mines | Men | Mines | Men | Mines | Men 3 | | AlabamaAlaskaArizona, California, Idaho, | 132 | 16, 633 | 5
3 | 35
91 | | | | | 6
1 | 24
2 | 143
4 | 16, 692
93 | | and Oregon | 3
50 | 55
3,078 | 5 2 | 31
117 | | | | | 2 3 | 190 | 10
55 | 92
3, 385 | | Colorado | 149
1 | 6, 719
113 | 43 | 933 | | | | | 31 | 197 | 223
1 | 7, 849
113 | | IllinoisIndiana | 458
140 | 42, 735
9, 955 | 69
6 | 918
218 | 1 | 7 | | | 244
20 | 1, 452
614 | 772
166 | 45, 112
10, 787 | | IowaKansas | 150
88 | 6, 774
3, 262 | 60 | 724
182 | 2 | 14 | | | 20
47 | 126
274 | 232
156 | 7, 638
3, 718 | | Kentucky Maryland Michigan | 361
72
17 | 46, 694
2, 843 | 27
5
1 | 419
33
32 | | | | | 128
12 | 1,664
39 | 516
89
23 | 48, 777
2, 915 | | Michigan
Missouri
Montana | 126
55 | 1, 465
3, 987
1, 396 | 43
13 | 961
102 | 3 | 13
19 |
1 | 5 | 5
37
6 | 29
240
17 | 23
209
79 | 1, 526
5, 201
1, 539 | | New Mexico
North Carolina | 24 | 2, 217 | 15 | 75 | | 18 | | | 4 | 47 | 43 | 2, 339
18 | | North Dakota | 66 | 919 | 42 | 287 | 5 | 34 | | | 35 | 187 | 148 | 1, 427 | ¹ Includes mines in which the established working day was changed between April and December, where the day was irregular, or which failed to answer the inquiry. Represents mines that were active in December. In addition, there were 280 mines, employing 13,632 men, that operated at some time earlier in the year. Table 9.—Number of bituminous-coal mines in the United States reporting established working day of certain length and number of men employed therein as of December 1934—Continued | | 7 h | iours | 81 | hours | 9 h | ours | 10 h | ours | and | others
not re-
rted ¹ | To | otal | |--|--|--|--|---|-------|---------------------|-------|------|---|--|---|---| | State | Mines | Men | Mines | Men | Mines | Men | Mines | Men | Mines | Men | Mines 2 | Men 2 | | Ohio_Oklahoma Pennsylvania South Dakota Tennessee. Texas Utah. Virginia S Washington West Virginia Wyoming Vyoming | 430
62
1, 107
6
91
3
31
67
46
650
42 | 25, 724
2, 336
114, 441
53
6, 565
39
2, 529
10, 340
1, 950
100, 670
3, 515 | 61
23
77
4
6
10
1
312
 | 536
648
712
11
480
447
5
31,773
1,380
14 | 1 - 4 | 12
-2
310
 | 1 | 9 | 159
7
77
10
12
9
6
9
36
14 | 2, 319
28
6, 556
25
55
163
29
204
1, 196 | 651
93
1, 261
21
109
17
41
85
55
715 | 28, 588
3, 024
121, 709
91
7, 100
796
2, 697
12, 142
2, 154
103, 246
3, 611 | | Total | 4, 427 | 417, 007 | 587 | 11, 164 | 22 | 429 | 2 | 14 | 940 | 15, 765 | 25, 978 | ² 444, 379 | ¹ Includes mines in which the established working day was changed between April and December, where the day was irregular, or which failed to answer the inquiry. 2 Represents mines that were active in December. In addition, there were 280 mines, employing 13,632 men, that operated at some time earlier in the year. In September 1934, mines in the "Virginia anthracite" field in Montgomery and Pulaski Counties were held not to come under the provisions of the Bituminous-Coal Code and thereafter operated on the Table 10.—Percentage of men employed in bituminous-coal mines that had established working days of 7, 8, 9, and 10 hours, 1913, 1923, and 1929-34 1 | | Perce | ent of total | employees | in— | Weighted
average | |------|-----------------|---|---|---|---| | Year | 7-hour
mines | 8-hour
mines | 9-hour
mines | 10-hour
mines | working
day
(hours) | | 1913 | | 91. 9
94. 7
92. 5
92. 4
93. 0
91. 9
92. 6
99. 8
94. 4
99. 8
2. 6
26. 9 | 15. 2
4. 2
6. 7
6. 6
6. 1
6. 2
4. 9
3. 7 | 22.9
1.1
.8
1.0
.9
1.9
2.5
.1
1.9 | 8. 60
8. 08
8. 09
8. 08
8. 10
8. 10
8. 00
8. 07
8. 00
7. 03
7. 27 | ¹ Calculated on basis of total number of men in mines definitely reported as having 7-, 8-, 9-, or 10-hour day. A small number of mines that work more than 10 hours or less than 7 hours (8 prior to Apr. 1, 1934) have been excluded, as have also all mines for which the reports were defective. 2 Data as reported for 1933 "after Oct. 2." 3 Data as reported for December 1934. 4 Less than 0.05 of 1 percent. 4 In computing the average for the year the percentages for "hefore Apr. 1" have been weighted by 2. 8-hour day prevailing in the Pennsylvania anthracite region. [•] Less than 0.00 or 1 percent. In computing the average for the year the percentages for "before Apr. 1" have been weighted by 3 months and percentages "after Apr. 1" by 9 months. ## OUTPUT PER MAN Table 11.—Bituminous coal produced underground per man employed underground, by States, in 1934 | State | Total mined
underground
(net tons) | Total num-
ber of un-
derground | Average
number
of days
mines | | per under-
man (net |
--|--|--|---|--|--| | | (net tons) | men | operated | Per year | Per day 1 | | Alabama Alaska Arizona Arizona Arkansas Colorado Georgia Illinois Indiana Illinois Indiana Ilowa Kansas Kentucky Maryland Michigan Missouri Montana North Carolina North Dakota Ohio Oklahoma Pennsylvania South Dakota Tennessee Texas Utah Virginia Washington | 3, 118, 529
3, 61, 144
38, 525, 235
1, 627, 112
1, 603, 219
1, 162, 227
1, 451, 611
1, 259, 323
3, 140
677, 376
19, 489, 148
903, 362
89, 483, 777
4, 135, 790
662, 908
2, 406, 183
9, 376, 881
1, 382, 991 | 16, 119 56 16 2, 926 6, 722 93 37, 612 7, 425 6, 687 2, 402 42, 195 2, 617 1, 274 4, 070 1, 158 1, 855 1, 855 2, 617 2, 2518 110, 568 24, 811 2, 518 110, 568 21, 55, 992 2, 115 10, 119 1, 1719 | 186 221 296 103 156 185 157 173 157 151 179 178 161 160 221 174 166 118 179 108 185 185 185 185 | 564
1,920
566
284
772
352
934
1,184
466
317
913
622
473
286
61,254
679
262
930
786
359
809
994
1,138
927
805 | 3. 03
8. 67
1. 91
2. 76
4. 95
6. 86
2. 97
5. 99
3. 50
2. 21
2. 13
7. 79
4. 24
1. 18
5. 36
4. 72
4. 53
2. 86
3. 72
6. 87
4. 63
4. 63 | | West Virginia. Wyoming. Other States. Total. | 98, 104, 860
4, 248, 647
29, 138
338, 578, 381 | 89, 457
2, 936
57
384, 947 | 196
185
163
178 | 1, 097
1, 447
511
880 | 5. 61
7. 83
3. 13
4. 94 | ¹ Based upon (1) the "reported" number of man-shifts where the operator keeps a record thereof; otherwise upon (2) the "calculated" number of man-shifts obtained by multiplying the average number of men employed underground at each mine by the number of days worked by the mine. Using a "calculated" method throughout, the average output per man per day for the country as a whole was 4.92 tons in 1934, a figure that is strictly comparable with 5.61 in 1930, previously published. ## STRIKES, SUSPENSIONS, AND LOCKOUTS Table 12.—Strikes, suspensions, and lockouts in coal mines, by States, in 1934 | State | Total
number | Number
of men on | Man-days
idle on | | nber of days
int of strike | |---|------------------------------------|------------------------|---------------------------|---------------------|-------------------------------| | State | of men
employed | strike | account of
strike | Per man
employed | Per man
on strike | | AlabamaAlaska | 18, 851
93 | 13, 395 | 321, 891 | 17 | 24 | | Arkansas
California, Idaho, and Oregon | 19
3, 415
76 | 79 | 948 | (1) | 12 | | Colorado
Georgia
Illinois | 8, 094
113
46, 067 | 118
130
2 2, 680 | 538
2,600
47,639 | (1)
23
1 | 5
20
18 | | IndianaIowa | 11, 173
7, 721
3, 744 | 90
3,007
1,067 | 300
38, 900
61, 905 | (1)
5
17 | 3
13
58 | | Kentucky
Maryland
Michigan | 49, 509
2, 976
1, 556 | 5, 665
359 | 62, 723
2, 831 | 1
1 | 11
8 | | Missouri
Montana
New Mexico | | 1, 029
170 | 76, 806
1, 190 | (¹) | 75
7 | | North Carolina
North Dakota
Ohio | 18
1,518
29,247 | 4, 062
156 | 44, 408
8, 118 | 2
3 | 11
52 | | Oklahoma
Pennsylvania bituminous
South Dakota | 3, 225
126, 079
91
7, 308 | 27, 359 | 309, 905
9, 360 | 2
1 | 11 | | Tennessee | 2, 807
12, 207 | 95
3, 701 | 4, 180
30, 783 | 1
3 | 44
8 | | Virginia | 2, 161
105, 906 | 877
27, 539 | 17, 800
338, 272 | 8 | 20
12 | | Total bituminousPennsylvania anthracite | 458, 011
109, 050 | 92, 078
38, 994 | 1, 381, 097
774, 856 | 3 7 | 15
20 | | Grand total | 567, 061 | 131, 072 | 2, 155, 953 | 4 | 16 | One-half day or less. Does not include men laid idle at certain mines through labor factional trouble due to jurisdictional claims of a rival union, which was reported by the operator as responsible for heavy tonnage losses. # EQUIPMENT AND METHODS OF MINING AND PREPARATION METHODS OF RECOVERY Table 13.—Bituminous coal mined by different methods, by States, in 1934 | State | Mined by | hand | Shot off th | ne solid | Cut by m | achines | From str | ip pits | Not spec | cified | Total
production | |--|--|---|---|---|---|---|---|--|---|-----------------------|--| | 0 | Net tons | Percent | Net tons | Percent | Net tons | Percent | Net tons | Percent | Net tons | Percent | (net tons) | | AlabamaAlaska | 483, 407
10, 750 | 5. 3
10. 0 | 1, 405, 468
96, 758 | 15. 4
90. 0 | 7, 189, 424 | 78. 6 | 55, 234 | 0.6 | 8, 584 | 0.1 | 9, 142, 117
107, 508 | | Arizona.
Arkansas.
Colorado
Georgia | 476
1, 218, 566 | 23. 4 | 9, 058
199, 579
248, 024
32, 716 | 100. 0
23. 3
4. 7
100. 0 | 630, 173
3, 697, 872 | 73. 6
71. 0 | 24, 804
24, 324 | 2.9 | 1, 400
22, 147 | :2
:4 | 9, 058
856, 432
5, 210, 933
32, 716 | | Illinois
Indiana
Iowa | 1, 268, 765
105, 387
323, 187
134, 791 | 3. 1
. 7
9. 6
5. 4 | 3, 664, 821
807, 223
1, 754, 173
381, 706 | 8. 9
5. 5
52. 1
15. 2 | 30, 110, 349
7, 877, 420
1, 025, 712
210, 245 | 72. 9
53. 2
30. 5
8. 3 | 6, 160, 083
6, 000, 613
248, 463
1, 747, 110 | 14. 9
40. 6
7. 4
69. 7 | 68, 366
3, 000
15, 457
34, 402 | .2
.4
1.4 | 41, 272, 384
14, 793, 643
3, 366, 992 | | Kentucky: Eastern Western Maryland | 1, 169, 196
62, 590
1, 183, 922
2, 260 | 3.9
.8
72.8 | 283, 703
245, 978 | . 9
3. 0 | 28, 821, 990
7, 884, 797
435, 243 | 95. 1
96. 0
26. 7 | | | 35, 567
21, 414
7, 947 | 1.4
.1
.2
.5 | 2, 508, 254
30, 310, 456
8, 214, 779
1, 627, 112 | | Michigan Missouri Montana New Mexico North Carolina | 288, 771
51, 784
500, 211
3, 140 | 8.6
2.0
39.7
100.0 | 19, 377
105, 112
53, 293
416, 872 | 3. 1
3. 1
2. 1
33. 1 | 581, 582
740, 046
1, 336, 339
338, 995 | 93. 5
22. 1
52. 1
26. 9 | 18, 522
2, 190, 056
1, 114, 091 | 3. 0
65. 3
43. 4 | 28, 298
10, 195
3, 245 | .9
.4
.3 | 621, 741
3, 352, 283
2, 565, 702
1, 259, 323
3, 140 | | North Dakota Ohio Oklahoma Pennsylvania South Dakota Tennessee | 17, 319
578, 119
28, 955
19, 486, 773
4, 573
531, 783 | 1. 0
2. 8
2. 4
21. 7
10. 8
12. 8 | 225, 592
107, 182
164, 611
2, 449, 787 | 12.9
.5
13.6
2.7 | 422, 947 18, 714, 567 704, 881 67, 510, 761 484 2, 823, 946 | 24. 1
90. 5
58. 4
75. 2
1. 2
68. 3 | 1, 076, 512
1, 201, 416
304, 937
342, 098
36, 150 | 61. 4
5. 8
25. 2
. 4
85. 2 | 11, 518
89, 280
4, 905
36, 456
1, 200
7, 579 | .6
.4
.4
.2 | 1, 753, 888
20, 690, 564
1, 208, 289
89, 825, 875
42, 407
4, 135, 790 | | Texas. Utah Virginia. Washington West Virginia. | 102, 541
75, 345
34, 293
672, 017
7, 725, 090 | 13. 5
3. 1
. 4
48. 6
7. 9 | 560, 367
1 308, 960
874, 982
367, 281
1 1, 434, 586 | 73. 8
12. 9
9. 3
26. 6
1. 5 | 2, 021, 878
8, 466, 596
343, 000
88, 929, 965 | 84. 0
90. 3
24. 8
90. 6 | 96, 381 | 12.7 | 810
693
15, 219 | | 759, 289
2, 406, 183
9, 376, 681
1, 382, 991
98, 134, 393 | | WyomingOther States | 38, 229
1, 463 | 5.0 | 352, 915
27, 625 | 8. 1
94. 8 | 3, 857, 503 | 88. 3 | 119, 314 | 2.7 | 50 | .2 | 4, 367, 961
29, 138 | | Total | 36, 103, 703 | 10.1 | 17, 370, 231 | 4.8 | 284, 676, 715 | 79. 2 | 20, 789, 641 | 5.8 | 427, 732 | .1 | 359, 368, 022 | ¹ Includes some tonnage reported by the companies as "pillar coal", the method of mining which, of course, differs materially from solid shooting in rooms or entries. ## UNDERCUTTING MACHINES Table 14.—Number of coal-cutting machines in bituminous-coal mines, average output per machine, and percent of total product of underground mines cut by machines, by States, in 1934 | | Number o | f coal-cutting
in use | g machines | Average | Percent
of total
product of |
--|---|--|--|--|--| | State | "Permis-
sible" | All others | Total | output per
machine
(net tons) | under-
ground
mines
cut by
machines | | Alabama Arkansas Colorado Illinois Indiana Iowa Kansas Kentucky Maryland Michigan Missouri Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Tennessee Utah Virginia Washington | 17
517
15
13
47
8
30
19
339
67
2, 168
23
43
54 | 229
58
260
962
230
16
919
19
40
53
61
13
38
1,328
94
73 | 330
117
412
1,335
309
89
33
1,436
53
100
69
43
26
990
105
3,496
218
218 | 21, 786
5, 386
8, 975
22, 555
25, 493
11, 525
6, 371
25, 562
12, 801
10, 973
7, 400
19, 367
7, 884
16, 267
18, 904
6, 713
19, 311
24, 136
17, 430
38, 838
38, 838
12, 704 | 79. 1
75. 8
71. 3
85. 8
89. 6
32. 9
27. 6
95. 4
96. 4
96. 0
78. 0
75. 4
98. 0
90. 3
84. 0
90. 3 | | West Virginia | 45 | 1, 243
195
1 | 2, 209
240
1 | 40, 258
16, 073
484 | 90.6
90.8
.6 | | Total | 5, 218 | 1 6, 687 | 11, 905 | 23, 912 | 84.1 | ¹ Probably includes some "permissible" machines not so specified by the operators. #### STRIPPING OPERATIONS Table 15.—Stripping operations of all types in the bituminous-coal fields, by States and counties, in 1934 [Returns for mines that recover coal both by stripping and by underground operations do not permit separating men engaged in stripping from those engaged in other work. For this reason the figures of men employed represent all persons working at these mines, including those underground. The total tons produced by both methods at these same mines are also shown] | | Num- | | ber of
shovel | | Coal prod | uced (net
as) | Total | Aver- | Nı | ımber of | employ | ees | Aver- | Per-
cent of
county | | Aver- | |---|------------------------------------|--------------------|-----------------------------|----------------------------------|---|---|---|---|--------|---|---------------------------------------|---|---|--|---|---| | State and county | ber
of
strip | | Teles | 411 | Mined by | Total at | value at same | age
value
per | Under- | Sur | ace | | num-
ber of | or State
total
mined | Man-
days | tons
per
man | | | pits | Steam | Elec-
tric | All
others | Mined by
stripping | same
mines | mines | | ground | In strip
pits | All
others | Total | days
worked | by
strip-
ping | | per
day | | Alabama: Blount, Walker, and Winston | 5 | 8 | | | 55, 234 | 57, 264 | \$112,000 | \$1.96 | 3 | 140 | 27 | 170 | 91 | 1 2, 5 | 15, 480 | 3. 70 | | Illinois: Fulton Grundy, Hancock, Henry, Jackson, Jefferson, Knox, McDonough, Madison, Peoria, Saline, Schuy- | 7 | 1 | • 11 | 3 | 1, 135, 697 | 1, 135, 697 | 1, 577, 000 | 1.39 | | 193 | 161 | 354 | 228 | 68. 5 | 80, 539 | 14, 10 | | ler, and Will La Salle Livingston Perry St. Clair Vermilion Williamson | 16
12
8
6
6
4
11 | 5
4
3 | 19
1
 | 10
8
3
4
4
1
4 | 2, 427, 244
32, 160
5, 034
2, 330, 848
57, 737
37, 192
134, 171 | 2, 427, 244
32, 160
5, 034
2, 330, 848
57, 737
37, 192
134, 171 | 4, 058, 000
77, 000
14, 000
3, 005, 000
76, 000
63, 000
185, 000 | 1. 67
2. 39
2. 78
1. 29
1. 32
1. 69
1. 38 | | 593
90
31
553
72
90
109 | 285
15
8
90
5
10
20 | 878
105
39
643
77
100
129 | 203
94
86
216
86
41
120 | 25. 4
10. 3
21. 2
77. 1
2. 3
1. 9
6. 5 | 178, 524
9, 920
3, 336
138, 807
6, 660
4, 122
15. 520 | 13, 59
3, 24
1, 51
16, 79
8, 67
9, 02
8, 65 | | Total, Illinois | 70 | 17 | 49 | 37 | 6, 160, 083 | 6, 160, 083 | 9, 055, 000 | 1.47 | | 1, 731 | 594 | 2, 325 | 188 | 14.9 | 437, 428 | 14.08 | | Indiana: Clay | 10 | 17
11
8
4 | 4
4
7
11
2
4 | 12
4
5
5
6 | 823, 858
957, 360
1, 046, 173
2, 165, 142
395, 749
612, 331 | 823, 858
957, 360
1, 046, 173
2, 165, 142
670, 548
612, 331 | 1, 282, 000
1, 419, 000
1, 466, 000
2, 489, 000
1, 069, 000
754, 000 | 1. 56
1. 48
1. 40
1. 15
1. 59
1. 23 | 200 | 338
275
277
530
147
169 | 139
94
84
219
88
126 | 477
369
361
749
435
295 | 179
138
159
166
201
179 | 89. 9
59. 3
26. 6
88. 7
17. 3
69. 3 | 85, 202
50, 889
57, 461
124, 602
87, 414
52, 850 | 9. 67
18. 81
18. 21
17. 38
7. 67
11. 59 | | Total, Indiana | 49 | 42 | 32 | 32 | 6, 000, 613 | 6, 275, 412 | 8, 479, 000 | 1.35 | 200 | 1,736 | 750 | 2, 686 | 171 | 40. 6 | 458, 418 | 13.69 | | Iowa: Boone, Greene, Hamilton, Keokuk, Wapello, and Warren. Mahaska Marion. Webster. | 9
8
5
3 | <u>2</u> | 3 | 8
7
8
2 | 111, 705
45, 048
78, 734
12, 976 | 111, 705
45, 048
78, 734
12, 976 | 265, 000
79, 000
143, 000
41, 000 | 2. 37
1. 75
1. 82
3. 16 |
114
22
122
23 | 20
23
2
11 | 134
45
124
34 | 154
128
157
121 | 14. 8
50. 0
29. 3
29. 2 | 20, 573
5, 742
19, 506
4, 130 | 5. 43
7. 85
4. 04
3. 14 | |---|-----------------------------|-----------------------|------------------|-----------------------|---|---|--|--|--|--------------------------------|--------------------------------------|---------------------------------------|---|--|--| | Total, Iowa | 25 | 2 | 3 | 25 | 248, 463 | 248, 463 | 528, 000 | 2, 13 |
281 | 56 | 337 | 148 | 1 21. 5 | 49, 951 | 4.97 | | Kansas: Bourbon Cherokee Coffey Crawford Labette and Linn Osage | 4
8
4
24
4
4 | 3
1
15
2 | 1 6 | 1
2
2 | 30, 406
204, 903
2, 450
1, 492, 366
14, 085
2, 900 | 30, 406
204, 903
2, 450
1, 492, 366
14, 085
2, 900 | 53, 000
382, 00 (
8, 000
2, 502, 000
31, 000
9, 000 | 1. 74
1. 86
3. 27
1. 68
2. 20
3. 10 |
23
160
19
711
21
20 | 2
7
4
62
4
4 | 25
167
23
773
25
24 | 194
94
73
145
171
86 | 100. 0
76. 0
100. 0
73. 9
49. 4
5. 0 | 15, 637
1, 685
111, 955
4, 274
2, 070 | 6. 27
13. 10
1. 45
13. 33
3. 30
1. 40 | | Total, Kansas | 48 | 21 | 7 | 5 | 1, 747, 110 | 1, 747, 110 | 2, 985, 000 | 1.71 |
954 | 83 | 1, 037 | 135 | 69.7 | 140, 470 | 12, 44 | | Missouri: Barton Bates Boone, Callaway, Jasper, Johnson, Randolph, and Vernon | 6
4
7
4 | 5
3
7
2 | 6
4
2
4 | 1 | 612, 274
679, 060
373, 900
524, 822 | 612, 274
679, 060
373, 900
524, 822 | 972,000
1,087,000
688,000
911,000 | 1.84 |
230
213
166
171 | 40
4
12
40 | 270
217
178
211 | 139
188
186
222 | 99. 9
97. 4
64. 9
97. 6 | 37, 424
40, 818
33, 160
46, 895 | 16. 36
16. 64
11. 28
11. 19 | | Total, Missouri | 21 | 17 | 16 | 1 | 2, 190, 056 | 2, 190, 056 | 3, 658, 000 | 1. 67 |
780 | 96 | 876 | 181 | 65. 3 | 158, 297 | 13. 84 | | Montana: Rosebud and Valley | 2 | | 2 | 1 | 1, 114, 091 | 1, 114, 091 | 1, 670, 000 | 1. 50 |
50 | 12 | 62 | 289 | 1 99. 9 | 17, 900 | 62. 24 | | North Dakota: Adams, Bowman, Burleigh, Divide, Mercer, Morton, Mountrail, Oliver, Stark, and Williams. Burke. Grant. Hettinger. McLean. Ward. Total, North Dakota. | 6
4
10
7
4 | 5
3
1
1
9 | 3 12 | 3
3
1
5
3 | 516, 166
158, 387
18, 866
10, 177
87, 356
285, 560 | 516, 166
158, 387
18, 866
10, 177
87, 656
285, 560 | 691,
000
226, 000
27, 000
12, 000
116, 000
361, 000 | 1. 34
1. 43
1. 43
1. 18
1. 32
1. 26 |
152
69
14
25
98
79 | 73
31
3
5
14
24 | 225
100
17
30
114
103 | 179
215
191
91
114
230 | 49. 9
100. 0
68. 6
84. 0
68. 2
73. 8 | 40, 225
21, 523
3, 240
2, 734
13, 000
23, 710 | 12. 83
7. 36
5. 82
3. 72
6. 74
12. 04 | | Total, North Dakota | 40 | 9 | -0 | 15 | 1,070,012 | 1,070,812 | 1, 455, 000 | 1.33 |
437 | 100 | 209 | | 01, 4 | 101, 402 | 10. 31 | ¹ Percent of county totals, not State. Table 15.—Stripping operations of all types in the bituminous-coal fields, by States and counties, in 1934—Continued | | Num- | | ber of
shovel | | | luced (net
ns) | Total | Aver- | Nt | ımber of | employ | rees | Aver- | Per-
cent of
county | | Aver- | |--|------------------------|-------------------------|------------------|---------------|---|---|--|---|------------------|------------------------------|-------------------------|-------------------------------|--------------------------------|---|--|--| | State and county | ber
of
strip | | 771 | .,,, | Mined ha | Total at | value at same | age
value
per | TT 3 | Sur | ace | | num-
ber of | or State
total
mined | Man-
days | tons
per
man | | | pits | Steam | Elec-
tric | All
others | Mined by
stripping | same
mines | mines | | Under-
ground | In strip
pits | All
others | Total | days
worked | her | 61, 626 62, 779 18, 613 3, 295 3, 987 148, 300 46, 433 96, 777 30, 179 126, 956 860 9, 312 1, 155 11, 327 9, 266 43, 445 | per
day | | Ohio: Columbiana, Coshocton, Holmes, Jackson, Medina, Muskingum, | | | | | | | | - | | | | | | | | | | Perry, Portage, and Vinton Harrison | 14
5
3
4
8 | 10
18
6
3
2 | 3 | 11
7
5 | 446, 152
601, 583
91, 673
49, 607
12, 401 | 446, 152
601, 583
91, 673
49, 607
15, 882 | 779, 000
898, 000
100, 000
97, 000
27, 000 | 1. 75
1. 49
1. 09
1. 96
1. 70 | 6 | 277
358
93
18
30 | 58
7
13
2
6 | 335
365
106
20
42 | 184
172
157
165
95 | 20. 9
26. 7
2. 8
10. 9
1. 2 | 62,779
16,613
3,295 | 7. 24
9. 58
5. 52
15. 06
3. 98 | | Total, Ohio | 34 | 39 | 3 | 23 | 1, 201, 416 | 1, 204, 897 | 1, 901, 000 | 1.58 | 6 | 776 | 86 | 868 | 171 | 1 13, 1 | 148, 300 | 8. 12 | | Oklahoma: Haskell, McIntosh, Musko-
gee, Okmulgee, Rogers, Tulsa, and
Wagoner | -8 | 10 | | | 304, 937 | 304, 937 | 549, 000 | 1. 80 | | 239 | | 239 | 194 | 25. 2 | 46, 433 | 6. 57 | | Pennsylvania: Allegheny, Cambria, Clarion, Clearfield, Clinton, Fayette, Som- erset, and Washington Westmoreland | 10 4 | 13 | | 2 3 | 293, 021
49, 077 | 501, 131
141, 897 | 859, 000
229, 000 | 1, 71
1, 61 | 233
140 | 216
44 | 74
28 | 523
212 | 185
142 | .5 | 96, 777
30, 179 | 5. 18
4. 70 | | Total, Pennsylvania | 14 | 16 | | 5 | 342, 098 | 643, 028 | 1, 088, 000 | 1.69 | 373 | 260 | 102 | 735 | 173 | 1, 5 | 126, 956 | 5.06 | | South Dakota:
Corson, Harding, and Ziebach
Dawey
Perkins | 3
4
3 | | | 3 | 3, 410
30, 375
2, 365 | 3, 410
30, 375
2, 365 | 7, 000
56, 000
3, 000 | 2. 05
1. 84
1. 27 | | 5
29
7 | 2
24
1 | 7
53
8 | 123
176
144 | 72. 6
100. 0
40. 2 | 9,312 | 3. 97
3. 26
2. 05 | | Total, South Dakota | 10 | | | 3 | 36, 150 | 36, 150 | 66, 000 | 1.83 | | 41 | 27 | 68 | 167 | 85. 2 | 11, 327 | 3. 19 | | Wyoming: Campbell and Converse | 3 | | 2 | | 119, 314 | 119, 314 | 139, 000 | 1. 16 | | 25 | 9 | 34 | 273 | 1 97. 4 | 9, 266 | 12.88 | | Other States 2 | 9 | 7 | 1 | 2 | 193, 564 | 242, 940 | 330, 000 | 1.35 | 54 | 202 | 51 | 307 | 142 | 1.8 | 43, 44 5 | 5. 61 | | Total, United States | 344 | 188 | 121 | 149 | 20, 789, 641 | 21, 420, 557 | 31, 993, 000 | 1. 49 | 638 | 7, 652 | 2, 043 | 10, 333 | 171 | 5.8 | 1, 768, 103 | 12. 11 | ¹ Percent of county totals, not State. ² Arkansas, Colorado, Michigan, Texas, and West Virginia. Table 16 .— Summary of operations of power strip pits proper in the bituminous-coal fields, by States, in 1934 | | Num- | Number | of power | shovels | Amount
mined by | Aver- | Num-
ber of | Average
num-
ber of | Aver-
age
tons | |--|-------------------------|----------|--------------|---------------|---|-------------------------|------------------------|---------------------------|-----------------------------------| | State | ber of
strip
pits | Steam | Electric | All
others | stripping 1
(net tons) | value
per
ton 2 | men
em-
ployed 2 | days | per
man
perday ² | | Power strip pits proper: | 4 | 7
17 |
49 | 37 | 49, 234
6, 135, 039 | \$1.96
1.47 | 156
2, 226 | 77
192 | 4. 11
14. 34 | | Illinois
Indiana
Iowa | 50
48
22 | 42 | 32
3 | 31
25 | 5, 985, 051
246, 273 | 1. 34
2. 12
1. 70 | 2, 384
330
926 | 167
149
140 | 15. 06
5. 02
13. 24 | | Kansas
Missouri
Montana | 29
21
2 | 21
17 | 7
16
2 | 5
1
1 | 1, 721, 107
2, 190, 056
1, 114, 091 | 1. 67
1. 50 | 876
62
477 | 181
289
194 | 13. 84
62. 24
11. 15 | | North Dakota
Ohio
Oklahoma | 15
31
6
7 | 38
10 | 6 3 | 15
23 | 1, 033, 335
1, 199, 075
304, 132 | 1. 34
1. 58
1. 80 | 850
235
214 | 172
196
127 | 8. 19
6. 60
7. 09 | | Pennsylvania
South Dakota
Other States 3 | 7
3
5 | 10 | 3 | 3 | 192, 907
28, 025
270, 646 | 1. 75
1. 86
1. 17 | 49
178 | 177
178 | 3. 23
9. 61 | | Total
Horse stripping opera- | 243
89 | 177 | 121 | 145 | 20, 468, 971
115, 778 | 1. 49
1. 68 | 8, 963
354 | 172
103 | 13. 28
3. 18 | | Mines combining strip-
ping and underground | 89 | | | | 220,110 | | 1 | | | | methods in same oper-
ation 4 | 12 | 11 | | 4 | 204, 892 | 1.64 | 1,016 | 187 | 4.40 | | Grand total | 344 | 188 | 121 | 149 | 20, 789, 641 | 1.49 | 10, 333 | 171 | 12. 11 | 1 Exclusive of coal produced by underground mining in the same operation. 2 Items in these columns include underground mining conducted in the same operation. 3 Includes Arkansas, Colorado, Michigan, Texas, and Wyoming. 4 Includes operations in Alabama, Arkansas, Indiana, Michigan, North Dakota, Ohio, Pennsylvania, and West Virginia, in which the output was obtained by both methods. In addition to the 204,892 tons produced by stripping, this group of 12 mines obtained 630,916 tons by underground methods, its total production by both methods being 835,808 tons. # LOADING MACHINES AND CONVEYORS These figures refer only to mechanical devices designed to reduce the labor of hand shoveling into mine cars, although in a larger sense the introduction of any machine, such as a cutting machine or haulage locomotive, is a form of mechanization. The figures are based upon complete reports courteously furnished by coal operators to the Bureau of Mines.1 Table 17.—Relative rate of growth of mechanical loading, hand loading, and stripping in bituminous-coal mines, 1927-34 [Mechanical loading includes coal handled on pit-car loaders and hand-loaded face conveyors] | Year | Mechani-
cal load-
ing
under-
ground | Stripping | Hand
loading | Year | Mechani-
cal load-
ing
under-
ground | Stripping | Hand
loading | |-------------------------|--|--|--|--|--|--|---| | Thousand net tons: 1927 | 1 16, 500
21, 559
37, 862
46, 982
47, 562
35, 817
37, 820
41, 433 | 18, 378
19, 789
20, 268
19, 842
18, 932
19, 641
2 18, 270
20, 789 | 482, 885
459, 397
476, 859
400, 702
315, 595
254, 252
277, 541
297, 146 | Index numbers: 1927. 1928. 1929. 1930. 1931. 1932. 1933. 1934. | 100
131
230
285
288
217
229
251 | 100
108
110
108
103
107
299
113 | 100
95
99
83
65
53
2 57
62 | ¹ Complete returns were not collected in 1927, but the total has been estimated from the complete surveys made in 1926 and 1928. 1 Revised figures. ¹ The Bureau appreciates the cooperation of the manufacturers of loading equipment and of the Pennsylvania Department of Mines, the Illinois Department of Mines and Minerals, the State coal-mine inspector of Wyoming, and Jonas Waffle of Indiana in furnishing information used in the compilation. Table 18.—Tonnage of bituminous coal loaded mechanically underground in 1934 | | Net tons | Percent | |---|-----------------------------|----------------| | Loaded by machine:
Mobile loading machines | 00 710 701 | | | Scraper loaders | 20, 749, 534 | 87. 1
4. 2 | | Duckbills and other self-loading conveyors. | 2, 082, 046 | 8.7 | | Total loaded by machine |
23, 836, 060 | 100.0 | | Handled by conveyors: | | | | Duckbills and other self-loading conveyors | 2, 082, 046 | 10.6 | | Pit-car loadersOther hand-loaded conveyors | 11,088,919 | 56.3
33.1 | | Total handled by conveyors. | 19, 678, 721 | 100.0 | | Recapitulation, less duplications: | | | | Mobile loading machines | 20, 749, 534 | 50. 1 | | Scraper loaders Pit-car loaders | 1,004,480 | 2. 4 | | Other conveyors, including duckbills | 11, 088, 919
8, 589, 802 | 26. 8
20. 7 | | Grand total, loaded mechanically | 41, 432, 735 | 100.0 | | State | 1933 (net tons) | 1934 (net tons) | Increase (+) or decrease (-), 1934 | | | |---|---|--|---|--|--| | | tons) | tons) | Net tons | Percent | | | Illinois Indiana Wyoming West Virginia Ohio | 17, 121, 626
4, 222, 355
2, 969, 920
1, 028, 668
270, 858
1, 087, 328
551, 172
370, 305
70, 967
789, 755
6, 682, 468
1, 389, 308
471, 451 | 18, 482, 347
5, 402, 686
3, 571, 604
1, 364, 936
1, 136, 398
340, 685
1, 148, 428
599, 493
384, 956
65, 076
743, 629
6, 547, 978
1, 071, 286 | +1,360,721
+1,180,331
+601,684
+570,656
+107,730
+69,827
+61,100
+48,321
+14,651
-5,891
-46,126
-134,490
-318,022
+101,782 | +7.9
+28.0
+20.3
+71.8
+10.5
+25.8
+5.6
+8.8
-8.3
-5.8
-2.0
-22.9 | | | Total | 37, 820, 461 | 41, 432, 735 | +3,612,274 | +9.6 | | ¹ Includes Arkansas, Iowa, Maryland, Michigan, Missouri, New Mexico, and Tennessee in 1933. Includes Arkansas, Maryland, Missouri, New Mexico, North Dakota, Oklahoma, and Tennessee in 1934. Table 20.—Comparative change in tonnage loaded by principal types of machines, 1933-34 | | 1933 (net | 1934 (net | Increase (+) or decrease
(-), 1934 | | | |--|---|---|---------------------------------------|------------------------|--| | | tons) | tons) | Net tons | Percent | | | Mobile loading machines Scraper loaders Duckbills and other self-loading conveyors | 17, 865, 075
990, 631
1, 655, 815 | 20, 749, 534
1, 004, 480
2, 082, 046 | +2,884,459
+13,849
+426,231 | +16.1
+1.4
+25.7 | | | Total, loaded by machines
Pit-car loaders
Other hand-loaded conveyors | 20, 511, 521
11, 412, 833
5, 896, 107 | 23, 836, 060
11, 088, 919
6, 507, 756 | +3,324,539
-323,914
+611,649 | +16.2
-2.8
+10.4 | | | Grand total | 37, 820, 461 | 41, 432, 735 | +3,612,274 | +9.6 | | Table 21.—Total tonnage loaded by machines, pit-car loaders, and other hand-loaded conveyors in 1934, by States | State | Loaded by
machine | Handled
on pit-car
loaders and
other hand-
loaded con-
veyors | Total
mechanically
loaded | |-----------------------|----------------------|--|--| | Illinois Pennsylvania | 565, 385 | 6, 838, 506 5, 162, 187 1, 202, 959 614, 900 673, 865 271, 591 928, 781 (1) 34, 108 384, 956 (1) (1) 388, 272 | 18, 482, 347
6, 547, 978
5, 402, 686
3, 571, 604
1, 364, 936
1, 148, 428
1, 136, 398
1, 071, 286
743, 629
599, 493
384, 956
340, 685
65, 076
573, 233 | | Total | 23, 836, 060 | 17, 596, 675 | 41, 432, 735 | Table 22.—Percent of total bituminous deep-mined output mechanically loaded 1933-34 [Figures show proportion of the total production from underground mines that was loaded by machine or handled on pit-car loaders and other hand-loaded conveyors] | State | | ent of St | ate total
anically | 94-4- | Percent of State total mined mechanically | | | | | |--|---|---|--|--|--|---------------------------------|-----------------------------------|--|--| | | 1933 1 | 1934 | Change (in points) | State | 1933 1 | 1934 | Change
(in points) | | | | Wyoming Montana Indiana Illinois Utah Washington Alabama | 75. 8
79. 5
48. 6
53. 9
20. 6
19. 4
16. 0 | 84. 1
79. 1
61. 4
52. 6
24. 9
24. 6
11. 8 | +8.3
4
+12.8
-1.3
+4.3
+5.2
-4.2 | PennsylvaniaOhioVirginiaKentuckyWest VirginiaUnited States | 8. 5
5. 5
4. 5
2. 2
. 8
12. 0 | 7.3
5.8
4.1
1.9
1.4 | -1.2
+.3
4
3
+.6
2 | | | ¹ Revised figures. Separation not made here. Arkansas, Maryland, Missouri, New Mexico, North Dakota, Oklahoma, and Tennessee. Table 23.—Mechanical loading underground in bituminous-coal mines, by States, in 1934 | | Number of mines | | | | | Num | ber of mad | chines | | Production mechanically loaded (net tons) | | | Total p | Total production of mechanized mines (net tons) | | | | |--|---|---|---|---|------------------------------------|---|---|----------------------|--|--|--|---|--|--|---|--|--| | State | Using loading machines only (including scrapers, duckbills, etc.) | Using convey-
ors only (that is, pit-car loaders and other hand-loaded convey-ors) | Using both loading machines and conveyors | Total | Mobile
loading
ma-
chines | Scrap-
ers | Duck-
bills and
other
self-
loading
convey-
ors | Pit-car
loaders | Installa-
tions of
hand-
loaded
convey-
ors 1 | Loaded
by ma-
chines | Handled
by pit-
car load-
ers and
other
hand-
loaded
convey-
ors | Total | Mines using loading machines only (in- cluding scrapers, duck bills, etc.) | loaders
and other | Mines
using
both
loading
machines
and con-
veyors | Total | | | Alabama Arkansas Colorado Illinois Indiana Kentucky Maryland Missouri Montana New Mexico North Dakota Ohio Oklahoma Tennessee Utah Virginia Washington West Virginia Wyoming Undistributed | 5
3
13
10
2
2
2
1
6
1
8
9 | 13 5 1 1 19 9 7 7 2 2 1 1 | 3
2
16
9
1
1
5
 | 21
8 8 3
488 28 8 2 2 8 8 2 2 1 6 6 1 16 2 2 12 2 1 | (2)
281
96
 | (2)
(2)
(2)
(3)
(4)
(5)
(2)
(2)
(4) | (2)
(2)
(2)
(2)
(2)
(2)
(3)
128
26 | (2) 1, 336 165 90 44 | | 4, 199, 727
(2)
876, 837
(2)
1, 136, 398
1, 385, 791
(2)
565, 385
(2)
691, 071
2, 956, 704
237, 801 | 34, 108
384, 956
(2)
673, 865
614, 900
1, 484, 822 | 208, 826
65, 076
18,482,347
5, 402, 686
743, 629
(2)
1, 148, 428
(2)
1, 136, 398
(2)
6, 547, 978
(2)
599, 493
384, 956
340, 685
1, 364, 936
3, 571, 604 | 1, 379, 625
(2)
1, 790, 992
1, 897, 909 | 2, 098, 325
(2)
6, 838, 121
963,
385
(2)
(2)
(2)
(2)
(3)
13,086,403
(4)
(2)
(2)
(2)
(4)
(5)
(5)
(1)
(6)
(7)
(8)
(9)
(9)
(1)
(1)
(1)
(1)
(2)
(3)
(4)
(4)
(5)
(7)
(8)
(9)
(1)
(1)
(1)
(1)
(1)
(2)
(3)
(4)
(4)
(5)
(7)
(7)
(8)
(9)
(1)
(1)
(1)
(1)
(1)
(2)
(3)
(4)
(4)
(4)
(5)
(7)
(7)
(8)
(8)
(9)
(9)
(1)
(1)
(1)
(1)
(1)
(2)
(2)
(3)
(4)
(4)
(5)
(6)
(7)
(7)
(7)
(7)
(7)
(8)
(8)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9 | (2)
(2)
 | 3, 232, 446
208, 826
215, 660
21, 639, 727
2, 702, 084
(2)
1, 270, 360
(2)
2, 222, 033
(2)
19, 199, 804
(3)
1, 519, 375
625, 131
390, 796
6, 968, 517
3, 997, 022
1, 255, 578 | | | Total | . 81 | 144 | 55 | 280 | 534 | 119 | 157 | 2, 288 | 114 | 23,836,060 | 17,596,675 | 41,432,735 | 21,465,690 | 30,990,002 | 19,049,544 | 71, 505, 236 | | ¹ Number of mines in which hand-loaded conveyors (other than pit-car loaders) were used. ² Included under "Undistributed" to avoid disclosing individual operations. #### MECHANICAL CLEANING Tables 24 to 28, inclusive, trace the growth of mechanical cleaning of bituminous coal by wet and by pneumatic methods. They are based on a special study by a member of the Bureau, to which the reader is referred for further details. (Statistical Analysis of the Progress of Mechanical Cleaning of Bituminous Coal from 1927 to 1934, by L. N. Plein; paper submitted to the Coal Division, American Institute of Mining and Metallurgical Engineers, February 1936 meeting. See also Weekly Coal Report 930, May 11, 1935, pp. 3 to 7.) The figures of mechanical cleaning are based on reports furnished by coal operators. The manufacturers of cleaning equipment have also cooperated. Table 24.—Bituminous coal mechanically cleaned by wet and pneumatic methods, 1929-34, in net tons of clean coal | | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | |-------------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------| | By wet methods: At the mines | ¹ 26, 427, 971 | 27, 794, 648 | 25, 063, 165 | 20, 818, 509 | 22, 992, 590 | 27, 555, 730 | | erated by consumers | 4, 527, 170 | 3, 109, 862 | 2, 594, 570 | 2, 920, 770 | 3, 991, 782 | 3, 972, 845 | | Total wetBy pneumatic methods | 1 30, 955, 141
5, 843, 979 | 30, 904, 510
7, 895, 109 | 27, 657, 735
8, 514, 638 | 23, 739, 279
6, 539, 090 | 26, 984, 372
7, 573, 839 | 31, 528, 575
8, 297, 984 | | Grand total | 1 36, 799, 120 | 38, 799, 619 | 36, 172, 373 | 30, 278, 369 | 34, 558, 211 | 39, 826, 559 | ¹ Revised figures. Table 25.—Classification by types of equipment used in cleaning bituminous coal, 1927-34 [Coal cleaned at central washeries operated by consumers in Colorado and Pennsylvania is included] | | | | | NET TONS OF | CLEAN COAL | | | | | | |---|--|---|---|--|--|---|---|--|--|--| | | 1927 1 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | | | | Wet methods: Jigs. Concentrating tables Jigs in combination with concentrating tables Launders and upward-current classifiers. Unspecified. | 18, 700, 000
3, 200, 000
300, 000
1, 000, 000
800, 000 | 17, 927, 569
3, 411, 676
1, 055, 576
2, 445, 988
156, 045 | 2 18, 914, 604
2 3, 532, 378
2 1, 214, 265
7, 103, 086
190, 808 | 17, 723, 985
2, 272, 162
1, 028, 366
9, 818, 018
61, 979 | 13, 957, 072
1, 550, 863
926, 073
11, 212, 955
10, 772 | 9, 963, 205
821, 291
805, 667
12, 139, 694
9, 422 | 11, 895, 301
1, 118, 900
693, 295
13, 271, 876
5, 000 | 14, 062, 058
1, 116, 154
1, 177, 413
15, 167, 450
5, 500 | | | | Total wetPneumatic methods | 24, 041, 463
3, 650, 584 | 24, 996, 854
3, 786, 185 | ² 30, 955, 141
5, 843, 979 | 30, 904, 510
7, 895, 109 | 27, 657, 735
8, 514, 638 | 23, 739, 279
6, 539, 090 | 26, 984, 372
7, 573, 839 | 31, 528, 575
8, 297, 984 | | | | Grand total | 27, 692, 047 | 28, 783, 039 | 2 36, 799, 120 | 38, 799, 619 | 36, 172, 373 | 30, 278, 369 | 34, 558, 211 | 39, 826, 559 | | | | | PERCENT CLEANED BY BACH TYPE | | | | | | | | | | | Wet methods: Jigs. Concentrating tables Jigs in combination with concentrating tables Launders and upward-current classifiers. Unspecified | 67. 6
11. 6
1. 1
3. 6
2. 9 | 62. 3
11. 8
3. 7
8. 5 | ² 51. 4
² 9. 6
² 3. 3
² 19. 3
. 5 | 45. 6
5. 9
2. 7
25. 3 | 38. 6
4. 3
2. 6
31. 0 | 32. 8
2. 7
2. 7
40. 2
0 | 34. 4
3. 2
2. 0
38. 5 | 35. 3
2. 8
3. 0
38. 1 | | | | Total wetPneumatic methods | 86. 8
13. 2 | 86. 8
13. 2 | ² 84. 1
² 15. 9 | 79. 7
20. 3 | 76. 5
23. 5 | 78. 4
21. 6 | 78. 1
21. 9 | 79. 2
20. 8 | | | | Grand total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | | ¹ Exact tonnages cleaned by each type are not available for 1927. ² Revised figures. COAL Table 26.—Total production of all coal at mines with cleaning plants, 1927-34, in net tons [Does not include any estimate for mines that may ship to consumer-operated plants] | | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | |---|--------------------|--------------------|--|--|---|---|---|---| | Wet methods: Jigs Concentrating tables. Jigs in combination with concentrating tables. Launders and upward current classifiers. Unspecified | <u> </u> | ೦ ೦೦೦೦ | 29, 375, 304
2, 011, 462
1, 610, 396
21, 481, 489
311, 994 | 27, 570, 657
1, 561, 419
1, 446, 340
25, 254, 450
346, 133 | 24, 164, 923
2, 322, 729
1, 249, 099
29, 572, 575
57, 898 | 19, 645, 713
1, 862, 038
1, 087, 848
25, 603, 110
47, 488 | 23, 194, 345
1, 768, 940
1, 502, 180
27, 012, 210
26, 170 | 29, 884, 972
1, 868, 541
1, 468, 754
31, 440, 627
33, 853 | | Total wet Pneumatic methods | (¹)
6, 364, 125 | (¹)
9, 175, 559 | 54, 790, 645
15, 732, 139 | 56, 178, 999
18, 619, 242 | 57, 367, 224
20, 531, 306 | 48, 246, 197
15, 841, 190 | 53, 503, 845
19, 295, 613 | 64, 696, 747
20, 080, 018 | | Total | (1) | (1)
(1) | 70, 522, 784
4, 535, 552 | 74, 798, 241
8, 288, 685 | 77, 898, 530
8, 059, 687 | 64, 087, 387
7, 215, 181 | 72, 799, 458
8, 003, 578 | 84, 776, 765
8, 467, 603 | | Net total United States production of bituminous coal Percent produced at mines with cleaning plants. | (1) | (1) | 65, 987, 232
534, 988, 593
12, 3 | 66, 509, 556
467, 526, 299
14, 2 | 69, 838, 843
382, 089, 396
18, 3 | 56, 872, 206
309, 709, 872
18, 3 | 64, 795, 880
333, 630, 533
19, 4 | 76, 309, 162
359, 368, 022
21, 2 | ¹ Not available. ³ Mines using both wet and pneumatic methods. ## 274 MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX Table 27.—Cleaning plants, classified by types, in actual operation, 1927-34 | | 19 2 7 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | |--|---|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Wet types: Jigs. Concentrating tables. Jigs in combination with concentrating tables. Launders and upward-current classifiers. Unspecified. | (E) | 148
13
10
28
5 | 148
13
12
55
9 | 149
10
12
71
4 | 142
11
11
90
2 | 141
10
13
88
3 | 130
10
13
84
1 | 130
10
12
86
1 | | Total wet
Pneumatic types | (¹)
26 | 204
32 | 237
43 | 246
51 | 256
56 | 255
54 | 238
52 | 239
53 | | Total all types | (1) | 236
(¹) | 280
12 | 297
20 | 312
25 | 309
25 | 290
24 | 292
24 | ¹ Information not available. Table 28.—Bituminous coal mechanically cleaned by wet and pneumatic methods, by States, 1927-34 [Central washeries operated by consumers in Colorado and Pennsylvania are included] | Alabama | ~ | | | | Clean coal, | in net tons | | | | Pe | rcent o | f State | outpu | t mech | anicall | y clear | ned |
--|--------------|--------------|--------------|---------------|--------------|----------------|--------------|-----------------------|-------------------|-------|---------|---------|--------|--------|----------|---------|-------| | Arkansas 9, 250 6, 893 1, 276, 764 1, 270, 985 888, 005 542, 265 284, 749 361, 870, 744 1, 270, 985 888, 005 542, 265 21, 565, 561 21, 152, 817 21, 546, 459 21, 460, 221 21, 756, 812 22, 323, 242 12 6 9 31.6 2.8 30.8 8.2 5.1 6.9 11 11 11 11 11 11 11 11 11 11 11 11 11 | State | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | | Arkansas | Alabama | | 13, 064, 095 | | 11, 760, 020 | 9, 303, 386 | 5, 842, 039 | 6, 729, 913 | 7, 150, 888 | 66. 5 | 74.1 | 75.7 | 75. 5 | 77. 5 | 74.4 | 76.8 | 78. | | Illinois | Arkansas | | | 9, 839 | (1) | (1) | (1) | (1) | (1) | | .4 | | | | | | | | ndiana | olorado | 1, 362, 998 | | 1, 270, 985 | | 542, 265 | 284, 749 | 361,870 | | | | | | 8.2 | | | 8. | | Canstas Cans | llinois | | | | | 2 1, 546, 459 | 21, 640, 221 | 1,756,812 | 2 2, 323, 242 | | | | | | | | 3 4. | | Kentucky | | 250, 282 | 245, 522 | 498, 415 | (2) | (2) | (2) | (2) | (2) | 1.4 | 1.5 | 2.7 | (2) | (²) | (2) | \\2 | 1 (3) | | Aryland (1) (2) (2) (3) (1) (2) (2) (3) (1) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (4) (5) (4) (5) (5) (5) (5) (5) (5) | | 300 262 | 541 075 | 4 457 655 | 200 780 | 341 054 | 331 416 | 233 238 | 308 735 | ā | | 4 8 | | | <u>-</u> | | ا (۳ | | Afchigan 2 165, 190 111, 469 157, 369 (*) (* | Agryland | 000, 202 | 011,010 | - 101, 000 | (1) | (1) | (1) | (1) | (1) | ·• | | 10 | ا ۰۰ ا | | | ١.٠ | 1 : | | Missouri (1) (1) (1) (2) 3 454, 911 8 813, 488 (1) (2) 4.5 3.1 2.2 (2) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | | 155, 190 | 111, 469 | 157, 369 | 1 (8) | \ \bar{\delta} | (5) | (5) | \
\bar{\delta} | 20. 5 | 18, 1 | 19.6 | (5) | (8) | (5) | (8) | (5) | | Montana 142, 802 101, 586 73, 293 (1) (1) (1) (1) 4.5 3.1 2.2 (1) | Missouri | | , | | (1) | (1) | (1) | ⁸ 454, 911 | 8 813. 488 | | | | | | | 8 8.1 | 8 ìá. | | New Mexico 1, 278 | Aontana | 142, 802 | 101, 586 | 73, 293 | (1) | | | | (1) | 4.5 | 3.1 | 2. 2 | | | | | | | | New Mexico | | | | | | | (1) | (1) | | | | | | | | | | Pennsylvania | Ohio | | | 204, 543 | 8 719, 646 | 816,906 | 5 854, 123 | 5 1, 123, 115 | 5 1, 260, 654 | | | .9 | 5 3.1 | 5 3. 9 | 5. 9 | 5 5. 6 | 5 5. | | Pennessee | | | | | | 1.0 (1) | 10 700 000 | 10 (1) | (1) | | | | | -==-=- | -==== | | l==- | | /Irginia 1, 286, 496 260, 271 (*) </td <td></td> <td></td> <td></td> <td>11, 100, 193</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10.8</td> <td></td> <td></td> <td></td> <td>17.</td> | | | | 11, 100, 193 | | | | | | | | | 10.8 | | | | 17. | | Vashington 820, 481 892, 488 967, 098 819, 662 603, 497 486, 610 516, 417 406, 336 31. 1 35. 4 38. 4 35. 6 32. 7 30. 5 37. 3 2 Vest Virginia 3, 655, 423 4, 598, 463 67, 639, 098 69, 227, 968 99, 715, 433 69, 715, 433 69, 323, 094 610, 267, 905 611, 002, 766 2.5 3.5 5.5 67. 0 8.7 910. 0 610. 0 610. 0 610, 417 400, 336 31. 1 35. 4 38. 4 35. 6 32. 7 30. 5 37. 3 2 9 yet 146, 019 395, 062 470, 385 79, 440 155, 357 | | | | | 297, 108 | | 247,000 | | 341, 030 | | | 0.7 | 0.8 | | 7.0 | | (6) | | Vest Virginia | | | | 067 008 | 810 662 | | | | 400 336 | 21 1 | 25.0 | 267 | 35 A | 32.7 | 30, 2 | 27 2 | 28. | | Other States | | | | | 60 227 068 | 60 715 433 | | | 611 002 766 | 9 5 | 3 5 | 5 5 | 67 0 | 687 | 8 10 0 | 610.0 | 6 10. | | | Other States | 0, 000, 120 | 2, 000, 200 | - 1, 000, 000 | | 395, 062 | | | | 2.0 | 0.0 | J. 0. 0 | | - 0. | 10.0 | 10.0 | 10. | | Total | Total | 27, 692, 047 | 28, 783, 039 | 36, 799, 120 | 38, 799, 619 | 36, 172, 373 | 30, 278, 369 | 34, 558, 211 | 39, 826, 559 | 5.3 | 5.7 | 46.9 | 8.3 | 9.5 | 9.8 | 10.4 | 11. | ## CONSUMPTION, STOCKS, AND DISTRIBUTION #### CONSUMPTION Table 29 .- Consumption of bituminous coal by uses in 1929-a year of peak industrial activity | Item | Bituminous
coal con-
sumed (net
tons) | Percent
of total | |---|--|---------------------| | Railroad fuel (all steam roads): 1 | | | | Locomotive fuelAll other (shops, stations, etc.) | 118, 600, 000
12, 500, 000 | 22. 83
2. 40 | | Total, railroad fuel | 131, 100, 000 | 25. 23 | | Coke ovens: | | | | ByproductBeehive | 76, 759, 000
10, 028, 000 | 14. 77
1. 93 | | Total, coke ovens | 86, 787, 000 | 16, 70 | | Electric power utilities ³ Steel works and blast furnaces, gas and steam coal ⁴ | 42, 785, 000
23, 031, 000 | 8. 24
4. 43 | | General manufacturing industries: 8 | 20,001,000 | 2. 10 | | 1. Food and kindred products | 12, 144, 000
7, 643, 000 | 2.34
1.47 | | 3. Forest products | 2, 968, 000 | . 57 | | 5. Printing, publishing, and allied industries | 10, 247, 000
403, 000 | 1, 97
. 08 | | 6. Chemicals and allied products | 10, 440, 000
3, 466, 000 | 2.01
.67 | | 8. Rubber products 9. Leather and its manufactures | 2, 306, 000
1, 434, 000 | . 44
. 28 | | Stone, clay, and glass products | 22, 046, 000 | 4. 24 | | works, and machinery 7 | 3, 120, 000
3, 517, 000 | . 60 | | 13. Machinery, not including transportation equipment 14. Transportation equipment, air, land, and water | 5, 990, 000 | 1. 15
. 77 | | 15. Miscellaneous manufacturing industries 8 | 1, 810, 000 | . 35 | | Total, general manufacturing | 91, 525, 000 | 17. 62 | | Coal-gas and water-gas plants 9 | 5, 274, 000
4, 662, 000 | 1.02
.90 | | Coal-mine fuel ¹⁰ | 4, 272, 000 | . 82 | | Bunker: ¹² Foreign | 4 007 000 | | | Domestic (incomplete) | 4, 287, 000
3, 407, 000 | . 82
. 66 | | Total, bunker | 7, 694, 000
122, 425, 000 | 1. 48
23. 56 | | Grand total consumed | 519, 555, 000 | 100.00 | ¹ Based on records of Interstate Commerce Commission covering class I roads (Statistics of Railways Statement 49A). Includes allowances for classes II and III, switching, and terminal companies. 2 U. S. Bureau of Mines, Coke in 1929, p. 574. 3 U. S. Geological Survey, Division of Power Resources. 4 Consumption by iron blast furnaces and steel works and rolling mills, as shown by Census of Manufactures, 1929. Does not include coal used in coke ovens. 5 Census of Manufactures: 1929, vol. 1, p. 161, deducting industries included elsewhere as noted. 6 Excluding coal used in coke ovens and in manufactured-gas plants. 7 Excluding coal used in iron blast furnaces, steel works, and rolling mills. See note 4. 8 Includes 77,534 tons consumed in electric-railroad repair shops. Note that steam-railroad repair shops are included under railroad fuel above. Includes 77,534 tons
consumed in electric-railroad repair shops. Note that steam-railroad repair shops are included under railroad fuel above. Bituminous coal used for gas-making and for boiler, retort, and bench fuel, not including that charged in byproduct ovens operated by city gas companies. U. S. Bureau of Mines, Coal in 1929, p. 687. Census of Mines and Quarries, 1929, p. 52. Bureau of Foreign and Domestic Commerce, Monthly Summary of Foreign Commerce. Includes heating large buildings other than factories, such as hotels, apartments, stores, offices, theaters, garages, and service stations; also a number of other items that cannot be separated, such as waterworks, construction industry, threshing, public institutions, central heating plants, laundries, and very small industrial consumers not covered by the Census of Manufactures. Note that this item is obtained by the difference between the observed total consumption (production minus exports plus imports plus or minus changes in consumers' stocks) and the known consumption reported for ther items. It thus includes any tonnages omitted in the enumeration of the other items. For these reasons the total for this group_is_not directly comparable with estimates of consumption for "domestic use" hitherto published. Table 30.—Changes in the United States consumption of bituminous coal by such classes of consumers as report currently, and by all other consumers, 1929-34, in thousands of net tons [Information on several other classes of consumers is available for certain years. The items shown in this table are selected because they are available in strictly comparable form for each year] | | | | Exported | | Total of | | | | | | | |--|--|--|--|---|---|--|--|--|--|---|--| | Year | Col-
liery
fuel | Elec-
tric
public
utili-
ties ¹ | Bunk-
ers,
foreign
trade ² | Loco-
motive
fuel,
class I
roads 3 | Coke
bee-
hive
ovens 4 | Coke
by-
prod-
uct
ovens 4 | All other uses 5 | Total
con-
sump-
tion ⁶ | To
Canada
and
Mex-
ico ² | To all other countries 2 | con-
sump-
tion
and
ex-
ports 7 | | 1929
1930
1931
1932
1933
1934 | 4, 663
3, 993
3, 205
2, 781
2, 858
3, 175 | 44, 937
42, 898
38, 735
30, 290
30, 575
33, 555 | 4, 287
3, 497
2, 195
1, 350
1, 316
1, 321 | 113, 894
98, 400
81, 725
66, 498
66, 198
70, 496 | 10, 028
4, 284
1, 767
1, 030
8 1, 461
1, 635 | 76, 759
65, 521
46, 846
30, 887
38, 681
44, 343 | 264, 987
236, 397
197, 396
174, 081
8 180, 659
192, 518 | 519, 555
454, 990
371, 869
306, 917
321, 748
347, 043 | 14,727
13,667
10,647
8,429
8,600
10,213 | 2, 702
2, 210
1, 479
385
437
656 | 536, 984
470, 867
383, 995
315, 731
330, 785
357, 912 | U. S. Geological Survey. Includes a small amount of anthracite. Bureau of Foreign and Domestic Commerce. Interstate Commerce Commission. Note that consumption in shops, roundhouses, and stations is excluded, also the entire consumption of class II and III roads. U. S. Bureau of Mines. Obtained by subtracting the known items from the total consumption. Includes general manufacturing, domestic, and many miscellaneous uses. From other sources it is known that consumption in steel works and general manufacturing is decreasing and that consumption for domestic uses is increasing. Production plus imports minus exports, plus or minus changes in consumers' stocks. Note that consumption includes the small amount imported. Revised figures. 8 Revised figures. #### FUEL ECONOMY Table 31.—Indicators of the effect of fuel economy on consumption of coal per unit of performance since the World War | | Pounds | Reduction (percent) | |---|--|-------------------------| | Steam railroads: Pounds per 1,000 gross ton-miles freight service: Average, 1919-20. Average, 1934. Pounds per passenger-train car-mile: Average, 1919-20. Average, 1934. Electric-public-utility power plants: Pounds per kilowatt-hour, 1919. Pounds per kilowatt-hour, 1919. 1900 per kilowatt-hour, 1934. Iron and steel—pounds coking coal per ton of pig: 1 1918. 1934. Coke manufacture: Savings of heat values through recovery of gas, tar, light oils, and breeze by extension of byproduct in place of beehive coking, 1913-34, expressed as percent of coal used for all coke in 1934 3. | 170
122
18. 5
15. 2
3. 2
1. 5
3, 577
2, 927 | 28. 2
17. 8
53. 1 | ¹ Includes only savings through higher yields of merchantable coke per ton of coal charged and lower consumption of coke per ton of iron. Excludes economies through recovery of byproducts, which are treated in next item. 3 These byproducts are used in part for boiler fuel, in part for metallurgical purposes, in part for domestic heating and cooking, and to a small extent for automotive fuel. #### STOCKS OF COAL HELD BY CONSUMERS Table 32.—Stocks of bituminous coal in hands of commercial consumers and stocks of anthracite and bituminous coal in retail dealers' yards in 1934 | | Total stock | Day | Days' supply at current rate of consumption on date of stock taking | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--|--|--| | Date of bituminous coal, estimated (net tons) | By-
product
coke
plants | Steel
plants | Other
indus-
trials | Coal-
gas
plants | Electric
utilities | Retail
yards,
bitumi-
nous | Rail-
roads | Total
bitumi-
nous | Retail
yards,
anthra-
cite | | | | | Jan. 1 Feb. 1 Mar. 1 Apr. 1 May 1 June 1 July 1 July 1 Oct. 1 Nov. 1 Dec. 1 Dec. 31 | 32, 840, 000
31, 023, 000
27, 100, 000
28, 371, 000
27, 711, 000
28, 490, 000
29, 493, 000
30, 387, 000
31, 441, 000
35, 810, 000
36, 356, 000
34, 476, 000 | 53
49
37
36
33
32
36
50
54
54
55
56
49 | 33
33
25
25
26
25
26
43
44
44
37
32
27 | 32
29
22
24
28
33
34
36
36
39
35
32 | 72
65
53
57
56
60
66
74
73
77
77 | 61
61
53
60
70
64
59
57
63
63
66
66 | 21
16
11
12
22
51
55
57
54
41
41 | 24
21
18
24
23
23
24
27
26
25
24
25
22 | 32
27
21
24
29
35
37
42
41
44
40
38
38 | 34
29
14
17
44
59
61
65
79
80
54
60 | | | #### DISTRIBUTION Tables showing the movement of coal to the Great Lakes, to tidewater, and to New England and certain other major currents of distribution have been included in earlier reports of this series (see Coal in 1928, pp. 512–527) and are this year published in the Monthly Coal Distribution Report of the Bureau of Mines. Table 33 records one feature of the distribution of bituminous coal that bears closely on the statistics of production. BITUMINOUS COAL LOADED FOR SHIPMENT BY INDIVIDUAL RAILROADS AND WATERWAYS, AS REPORTED BY OPERATORS The table shows the quantity so originated on each railroad and waterway, as reported by mine operators in answer to the following inquiry: Railroads or waterways on which product was first loaded for shipment: | Name of road or waterway | | |--|------| | (Give shipments over each road separately) | Tons | | | | | | | As these statistics include nonrevenue railroad fuel they may differ from statistics compiled by the railroad companies, which often show only revenue freight and include coal received from connecting lines or coal shipped off the Lake docks, as well as that originating at mines on the lines reporting. Where the road serving the
district is a subsidiary of a larger road some operators may report their coal as loaded on the subsidiary and others as loaded on the parent system (a few subsidiaries have been consolidated under the name of the parent road). In general, the figures are given under the name reported by the operator; and the Bureau of Mines does not attempt to combine them under the name of the larger system, believing that such combina- **COAL** 279 tion can best be made by those using the figures, as they are probably familiar with coal-traffic problems. If such combination is made, the total will usually be found to check reasonably well with the statistics issued by railroads that keep records of total coal originated. Table 33.—Bituminous coal loaded for shipment in 1934 by individual railroads and waterways, as reported by operators, in net tons | | a. . | Quan | tity | |--|--------------------------------------|--|------------------------| | Route | State | By State | Total for route | | RAILROADS | | | | | Alabama Central | | 44, 145 | 44, 145 | | Alaska | Alaska | 142, 296
101, 060 | 142, 296
101, 060 | | Alaska Algers, Winslow & Western | Indiana
 [Illinois
 Missouri | 1, 220, 758
629, 945
53, 681
319, 011 | 1, 220, 758 | | Alton | | 629, 945 | } 683, 626 | | Artemus-Jellico | (Missouri
Kentucky | 53,681 | , | | Ai comus-venico | (Colorado | 119, 241 | 319, 01 1 | | | Illinois | 738, 525 | | | Atchison, Topeka & Santa Fe. | Kansas | 553, 754
151, 923 | 2, 438, 532 | | | MissouriNew Mexico | 875, 089 | | | | (Illinois | 472, 222 | í | | and the second of o | Indiana | 440, 833 | Į. | | Baltimore & Ohio | Maryland | 13, 911
3, 631, 215 | 24, 672, 031 | | | Pennsylvania | 10, 135, 431 | 1 | | | Pennsylvania
West Virginia | 10, 135, 431
9, 978, 419
2, 618, 796 | J | | Bessemer & Lake Erie | Pennsylvania | 2, 618, 796 | 2, 618, 796 | | Bevier & Southern Buffalo Creek & Gauley | Missouri
West Virginia | 22, 572
640, 277 | 22, 572
640, 277 | | Cambria & Indiana
Campbell's Creek | Pennsylvania
West Virginia | 2.718.606 | 2, 718, 606 | | Campbell's Creek | West Virginia | 784, 250
217, 969 | 784, 250 | | Carbon County
Caseyville | Utah
Illinois | 217, 969
112, 689 | 217, 969
112, 689 | | | [/ A] - B 1 | 633, 681 | 1 | | Central of Georgia | Georgia
Kentucky | 32, 394 | 666,075 | | Ab | Kentucky | 7, 950, 934 | | | Chesapeake & Ohio | Ohio
West Virginia | 1, 114, 134
34, 289, 628 | 43, 354, 696 | | Cheswick & Harmar | Pennsylvania | 666, 861 | 666, 861 | | Chicago & Eastern Illinois | | 1.659.808 l | 4,015,679 | | | (Indiana | 2, 355, 871
3, 399, 363 | , | | Chicago & Illinois Midland | (do | 2, 112, 187 | 3, 399, 363 | | Chicago & North Western | Iowa | 2, 112, 187
117, 087 | 2, 252, 608 | | - | Wyoming | 23, 334 | ļ | | | Colorado
Illinois | 250, 930
5, 547, 121 | 1 | | Chicago, Burlington & Quincy | lowa | 170, 276 | 6,675,244 | | | Iowa_
Missouri
Wyoming | 49, 459
657, 458
22, 711 | ,,, | | Chicago Creet Western | Wyoming | 657, 458 |) 00 711 | | Chicago Great Western Chicago, Indianapolis & Louisville | IowaIndiana | 1, 055, 667 | 22, 711
1, 055, 667 | | onion, manuapona a nonnimonina | /Illinois | 26, 519 | 1,000,000 | | | Indiana | 3, 796, 981 | 1 | | -4. | Iowa
Missouri | 558, 124 | | | Chicago, Milwaukee, St. Paul & Pacific | \Montana | 41, 376
627, 283 | 5, 086, 936 | | | North Dakota | 16, 329 | | | | South Dakota | 16, 785 | | | | (Washington(Illinois | 3, 539
552, 166
681, 872
167, 392 | 3 | | Chicago Dock Island & Docide | Iowa. | 681, 872 | 1 551 650 | | Chicago, Rock Island & Pacific | Iowa
Missouri | 167, 392 | 1, 551, 673 | | Chicago, Springfield & St. Louis | Oklahoma
 Illinois | 150, 243 | SEE VEG | | | [do | 355, 052
2, 807, 226 | 355, 052 | | Cleveland, Cincinnati, Chicago & St. Louis | | 2, 807, 226
1, 099, 926 | 3, 907, 152 | | Clinchfield | Kentucky | 61,904 (| 1,868,067 | | Colorado & Southeastern | Colorado | 1, 806, 163
170, 204 | 170, 204 | | Coloredo & Southern | 40 | 667, 909 | 667, 909 | | Colorado & Wyoming | Pennsylvania | 238, 777 | 238, 777 | | Crustal Piver & San Juan | Pennsylvania | 7,806 | 7, 806
939 | | Colorado & Wyoming Conemaugh & Black Lick Crystal River & San Juan Cumberland & Pennsylvania | Colorado
Maryland | 749, 984 | 749, 984 | | Dardanene & Russeivine | Arkansas | 44, 189 | 44, 189 | | Dents Run | Pennsylvania | 5, 126 | 5, 126 | | Denver & Intermountain | Colorado | 114, 956 | 114, 956 | Table 33.—Bituminous coal loaded for shipment in 1934 by individual railroads and waterways, as reported by operators, in net tons—Continued | | | Quantity | | | |--|------------------------------|--|------------------------------|--| | Route | State | By State | Total for route | | | RAILROADS—continued | | | | | | Denver & Rio Grande Western | Colorado | 1, 029, 571
22, 695 | 2, 356, 420 | | | | Utah | 1, 304, 154 | | | | Denver & Salt Lake
Des Moines & Central Iowa | ColoradoIowa | 440, 391
142, 008 | 440, 39
142, 00 | | | Detroit, Toledo & Ironton | Ohio | 30, 648 | 30, 649 | | | East Broad Top Railroad & Coal Co
Eastern Railway & Lumber Co | Pennsylvania | 30, 648
557, 746
8, 227 | 30, 64
557, 74
8, 22 | | | Eastern Railway & Lumber Co | Washington | 8, 227 | 8, 22 | | | Erie | {Ohio
{Pennsylvania | 162
1, 151, 901 | 1, 152, 06 | | | Evansville & Ohio Vallev | Indiana | 14. 341 | 14.34 | | | Evansville & Ohio Valley
Evansville, Indianapolis & Terre Haute
Evansville, Surburban & Newburgh | do | 14, 341
113, 961
128, 624 | 14, 34
113, 96
128, 62 | | | Evansville, Surburban & Newburgh | do | 128, 624 | 128, 62 | | | Fort Dodge, Des Moines & SouthernFort Smith & Western | Iowa
Oklahoma | 18, 861
73, 446 | 18, 86
73, 44 | | | Fort Smith, Subiaco & Rock Island | Arkansas | 2, 872 | 2, 87 | | | | (Montana | 2, 872
372, 169 |) | | | Great Northern | North Dakota | 310, 107 | 756, 01 | | | Huntingdon & Broad Top Mountain Railroad & Coal Co. | Washington
 Pennsylvania | 310, 107
73, 737
222, 318 | 222, 318 | | | | AlabamaIllinois | 242, 134
7, 110, 139 | 1. | | | Illinois Central | IllinoisIndiana | 7, 110, 139 | 12, 593, 01 | | | | Kentucky | 213, 645
5, 027, 093 | | | | Illinois Terminal | Illinois | 733, 689 | 733, 689 | | | International-Great Northern | Texas | 733, 689
30, 440
43, 448 | 30, 440 | | | Interstate | Kentucky | 43, 448 | 1,629,28 | | | Iowa Southern Utilities Co | Virginia
Iowa | 1, 585, 838
191, 585 | 191, 588 | | | Johnstown & Stony Creek | Pennsylvania | 111, 683 | 111, 683 | | | Johnstown & Stony Creek Joplin-Pittsburg | Kansas | 111, 683
295, 377
191, 966 | 111, 683
295, 37 | | | Kanawha Central Kanawha, Glen Jean & Eastern | West Virginia | 191, 966 | 191, 96
428, 85 | | | Kanawna, Gien Jean & Eastern | Arkansas | 428, 856
1, 664 | 1 420,00 | | | Kansas City Southern | Kansas | 1, 664
65, 773
582, 599 | 685, 779 | | | Kansas Oity Bouthern | Missouri | 582, 599 | (000, 17 | | | Kenses Oklahoma & Gulf | Oklahoma | 35, 743
14, 849
529, 769
547, 869
105, 054 | 14.849 | | | Kansas, Oklahoma & Gulf Kelley's Creek & Northwestern | West Virginia | 529, 769 | 14, 849
529, 769 | | | Kantualty & Tannassa | Kentucky | 547, 869 | 547, 86
105, 05 | | | Lake Erie, Franklin & Clarion | Pennsylvania | 105, 054 | 105, 05 | | | Lake Erie, Franklin & Clarion Laramie, North Park & Western LaSalle & Bureau County R. R. | Colorado | 19, 561
231 | 19, 56
23 | | | Ligonier Valley | Pennsylvania | 161, 241
563, 203
1, 881, 745
60, 155 | 161, 24 | | | Litchfield & Madison | Illinois |
563, 203 | 563, 20 | | | | AlabamaIllinois | 1,881,745 | 1 | | | Louisville & Nashville | Kentucky | 18. 844. 707 | 21, 627, 26 | | | 200201110000111001111111111111111111111 | Tennessee | 684, 904 | 1,, | | | | (Virginia | 18, 844, 707
684, 904
155, 750
710, 897 | J | | | Mary Lee | Alabama
Michigan | 710, 897
110, 987 | 710, 89'
110, 98' | | | Mary Lee | Arkansas | 123, 346 | ` | | | | Okiahoma | 123, 346
267, 078
739, 324 | 390, 42 | | | Minneapolis & St. Louis | Illinois | 739, 324 | } 761, 17 | | | Minneapolis, St. Paul & Sault Ste. Marie | North Dakota | 21, 850
466, 826 | 466, 82 | | | Missouri-Illinois | Illinois | 76, 521 | 76, 52 | | | | Kansas | 197, 139 | 1 | | | Missouri-Kansas-Texas- | Missouri
 Oklahoma | 67, 859 | 519,72 | | | | Texas | 199, 380
55, 350 | | | | | (Arkansas | 55, 350
574, 867 | lí | | | Missouri Pacific | Illinois | 3, 255, 698 | 5, 361, 75 | | | | Kansas | 802, 549 | ", ", ", " | | | | Missouri
 Alabama | 728, 638
66, 743 | Κ | | | Mobile & Ohio | \Illinois | 247, 438 | 314, 18 | | | Monongahela | Pennsylvania | 3, 230, 977
6, 969, 258 | 10, 200, 23 | | | | | 6, 969, 258 | 1) | | | Montana, Wyoming & Southern | Arkansas
Montana | 14, 173
296, 310 | 14, 17
296 31 | | | Montour | Pennsylvania | 4, 730, 123 | 296, 31
4, 730, 12 | | Table 33.—Bituminous coal loaded for shipment in 1934 by individual railroads and waterways, as reported by operators, in net tons—Continued | | | Quan | tity | |---|--|---|----------------------------------| | Route | State | By State | Total for route | | RAILBOADS—continued | | | | | Nashville & Atlantic | Tennessee | 3, 324 | 3, 324 | | Nashville, Chattanooga & St. Louis
New Haven & Dunbar | Pennsylvania | 3, 324
802, 731
4, 095 | 3, 324
802, 731
4, 095 | | New York Central (includes some coal shipped over
subsidiary roads: Kanawha & Michigan, Toledo | Illinois | 1, 205
5, 142, 344
3, 882, 418
1, 276, 590 | 1 | | subsidiary roads: Kanawha & Michigan, Toledo & Ohio Central, and Zanesville & Western). | Pennsylvania
West Virginia | 3, 882, 418 | 10, 302, 557 | | Nicholas, Fayette & Greenbrier | l do l | | 1, 684, 053 | | Norfolk & Western | KentuckyVirginia. | 3, 415, 147
3, 877, 337
23, 420, 784 | 30, 713, 268 | | Norfolk & Southern | West Virginia
North Carolina | 100 | 100 | | Northeast OklahomaNorthern Alabama | Kansas
Alabama | 9, 923
205, 452 | 9, 923
205, 452 | | | (Montana | 1, 115, 331 |) ' | | Northern Pacific | North Dakota
Washington | 488, 568
748, 813 | 2, 352, 712 | | Oklahoma City-Ada-Atoka
Oneida & Western | Oklahoma
Tennessee | 31, 679 | 31, 679
42, 837 | | Oregon Short Line
Oregon-Washington Railroad & Navigation Co | Wyoming
Washington | 42, 837
311, 609 | 42, 837
311, 609
26, 363 | | Pacific Coast | Washingtondodo | 26, 363
198, 820 | 19 8 , 820 | | Pannarirania (includes Dittahurah Cincinnati | IllinoisIndiana | 345, 919
1, 670, 510 | | | Pennsylvania (includes Pittsburgh, Cincinnati,
Chicago & St. Louis) | Ohio | 4, 443, 542
29, 036, 466 | 36, 368, 984 | | Peoria & Pekin Union | Pennsylvania
West Virginia | 872, 547 | 100 610 | | Peoria Terminal | Illinois | 129, 619
1, 015, 599 | 129, 619
1, 015, 599 | | Pere Marquette
Pittsburg & Shawmut | Michigan
Pennsylvania | 213, 522
964, 994
25, 856 | 213, 522
964, 994 | | Pittsburg & Shawmut Pittsburg County Pittsburg, Shawmut & Northern | Oklahoma
Pennsylvania | 25, 856
404, 480 | 964, 994
25, 856
404, 480 | | Pittsburgh & Lake Erie | do
[Ohio | 3, 991, 276 | 3, 991, 276 | | Pittsburgh & West Virginia | { Pennsylvania | 184, 652
2, 025, 204 | 2, 271, 741 | | Pittsburgh, Chartiers & Youghiogheny | West Virginia
Pennsylvania | 61, 885
1, 587 | 1, 587 | | Pittsburgh, Lisbon & Western | (Ohio
Pennsylvania
West Virginia | 4, 855
2, 093 | 6,948 | | Preston. | West Virginia
Missouri | 211, 204
77, 302 | 211, 204
77, 302 | | Quincy, Omaha & Kansas City Rio Grande & Eagle Pass | Texas | 15, 641 | 15, 641 | | | | 6, 771
95, 179
32, 546 | 6, 771
95, 179
32, 546 | | Rockdale, Sandow & Southern
Rutland, Toluca & Northern
St. Louis & Belleville Electric | Illinois | 32, 546
5, 370 | 32, 546
5, 370 | | St. Louis & Hannibal
St. Louis & O'Fallon | do
Missouri
Illinois | 5, 116
391, 914
1, 008, 861 | 5, 116
391, 914 | | bi. Doub & O Panon | (Alabama | 1, 008, 861 |) | | St. Louis-San Francisco | Arkansas
Kansas | 71, 477
318, 7 05 | 2, 176, 416 | | | Missouri
Oklahoma | 318, 705
437, 048
340, 325 | | | St. Louis Southwestern of Texas | Texasdo | 482, 320
6, 000 | 482, 320
6, 000 | | San Antonio SouthernSeaboard Air Line | Alabama | 34, 409
1, 503, 746 | 34, 409 | | • | Illinois | 1, 503, 746
198, 299 | | | Southern | Indiana
Kentucky | 198, 299
1, 194, 976
747, 637 | 6, 795, 827 | | | Tennessee
Virginia | 1, 589, 844
1, 561, 325 | | | Southern Pacific | California | 13,000 | 266, 041 | | Springfield Terminal | New Mexico | 253, 041
293, 519 | 293, 519 | | Susquehanna & New York
Tennessee | Pennsylvania
Tennessee | 293, 519
18, 711
491, 197 | 18, 711
491, 197 | | Tennessee Central Tennessee Coal, Iron & Railroad Co | Alabama | | 251 065 | | Texas & Pacine | Texas | 1, 255, 612
8, 926
26, 951 | 1, 255, 612
8, 926
26, 951 | | Texas Short Line
Thomas & Sayreton | Alabama | 203, 810 | 553, 816 | | Thomas & Sayreton Toledo, Peoria & Western Twin City Electric | Illinois
Washington | 59, 496
196 | 59, 496
196 | | , | | 200 | | Table 33.—Bituminous coal loaded for shipment in 1934 by individual railroads and waterways, as reported by operators, in net tons—Continued | | | Quan | tity | |--|----------------------------|-------------------------------|-------------------------------| | Route | State | By State | Total for route | | | | | | | RAILEOADS—continued | | * | | | Uintah | Colorado | 5, 655 | 5, 655 | | Union | Pennsylvania | 32, 317 | 32, 317 | | | Colorado | 911, 747
4, 050 | 1 | | Union Pacific | Kansas | 13,000 | 4, 025, 157 | | | Utah | 29, 630 | | | Unity | Wyoming
 Pennsylvania | 3, 066, 730
711, 856 | 711, 856 | | Utah | Utah | 742, 139 | 742, 139 | | Virginian | Virginia | 71, 851 | 8, 401, 459 | | _ | West Virginia | 8, 329, 608
1, 351, 137 | K -,, 100 | | Wabash | | 87, 375 | 1, 792, 244 | | Western Allegheny | Missouri | 353, 732 | J . | | | Pennsylvania
(Maryland | 166, 032
639, 259 | 166, 032 | | Western Maryland | Pennsylvania | 573, 653 | 4, 185, 028 | | West Virginia Northern | West Virginiadodo | 2, 972, 116
188, 568 | 100 500 | | Wheeling & Lake Erie | Ohio | 2, 874, 378 | 188, 568
2, 874, 378 | | Winfield | . Pennsylvania | 11,684 | 11,684 | | Winifrede
Woodward Iron Co | | 50, 416
414, 612 | 50, 416
414, 612 | | Youngstown & Suburban | Ohio | 9,338 | 9, 338 | | Total railroad shipments | | 313, 303, 729 | 313, 303, 729 | | WATERWAYS | | • | | | | 1 | | | | Allegheny RiverBlack Warrior River | Pennsylvania
Alabama | 951, 542
81, 301 | 951, 542
81, 301 | | Green River | Kentucky | 95, 420 | 95, 420 | | Kanawha River | West Virginia | 741, 002 | 741, 002 | | Monongahela River | Pennsylvania | 11, 374, 653
135, 224 | 11, 509, 877 | | Muskingum River | . Onio | 373, 250 | 373, 250 | | | Indiana
Kentucky | 1, 119
230, 790 | 1) | | Ohio River | Ohio | 5, 000 | 1, 256, 347 | | | Pennsylvania | 300 | | | Youghiogheny River | West Virginia Pennsylvania | 1, 019, 138
119, 229 | 119, 229 | | Toughtogheny Inver | Femisyivama | 119, 229 | 119, 228 | | Total waterway shipments | | 15, 127, 968 | 15, 127, 968 | | Grand total, loaded at mines for shipment by | | 000 404 65- | | | ranroads and waterwaysCommercial sales by truck or wagon | | 328, 431, 697
18, 739, 320 | 328, 431, 697
18, 739, 320 | | railroads and waterways | | | ' ' | | taken by locomotives at tipple | | 7, 374, 143 | 7, 374, 143 | | taken by locomotives at tipple | | 3, 175, 057
1, 647, 805 | 3, 175, 057
1, 647, 805 | | | 1 | | | | Total production | - | 359, 368, 022 | 359, 368, 022 | | | | | · | ## IMPORTS AND EXPORTS #### IMPORTS Table 34.—Bituminous coal imported, by countries and districts, 1933-34, in net tons [Compiled from records of the Bureau of Foreign and Domestic Commerce] | Country and district | 1933 1 | 1934 | Country and district | 1933 1 | 1934 | |---|---|--|--|--|--| | COUNTRY | | | DISTRICT OF ENTRY—contd. | | | | North America: Canada Mexico Europe: Italy United Kingdom Asia: Japan Total | 145, 265
17
52, 147

197, 429 | 133, 382
64
45, 834
378
179, 661 | Dakota Duluth-Superior Maine and New Hampshire. Massachusetts. Michigan Montana-Idaho New York Oregon. Puerto Rico. St. Lawrence. San Antonio. | 5, 155
370
62, 928
40, 748
861
45, 218
623
5, 224
26
15 | 4, 407
206
44, 057
45, 835
336
47, 563
3 | | AlaskaBuffalo | 14, 009
14, 714 | 13, 797
12, 605 | Vermont
Washington
Total | 7, 483
197, 429 | 141
10, 591
179, 661 | ¹ Revised figures. #### **EXPORTS** Table 35.—Exports of bituminous coal to (1) Canada and Mexico, (2) the West Indies and
Central America, and (3) "overseas" destinations, 1929-34, in thousands of net tons [Compiled from records of the Bureau of Foreign and Domestic Commerce] | | | | | (3) "Ove | erseas" (a | ll other | countries | 3) | | | |--|--|--|---|--|-----------------------------|------------------------------|---------------------------|-----------------|--|--| | Year | (1)
Canada
and
Mexico | Central | New-
found-
land,
Mique-
lon,
and
Ber-
mudas | South.
America | Europe | Asia | Africa | Oceania | Total
"over-
seas" | Grand
total | | 1929
1930
1931
1932
1933
1933
1934 | 14, 727
13, 667
10, 647
8, 429
8, 600
10, 213 | 1,500
1,180
755
235
223
410 | 211
95
98
6
21
40 | 332
353
306
108
174
203 | 567
469
246
3
7 | 8
14
18
8
6
3 | 84
97
56
25
6 | <u>2</u>
(2) | 1, 202
1, 030
724
150
214
246 | 17, 429
15, 877
12, 126
8, 814
9, 037
10, 869 | Includes Bahamas, Virgin Islands, and Panama. tons. #### 284 MINERALS YEARBOOK, 1935-STATISTICAL APPENDIX Table 36.—Bituminous coal exported, by countries, 1933-34, in net tons 1 [Compiled from records of the Bureau of Foreign and Domestic Commerce] | Country | 1933 | 1934 | Country | 1933 | 1934 | |-----------------------------------|--------------|---------------------|-----------------------------------|-------------------|-----------------------| | North America: | | | South America: | | | | Bermuda | 1,498
129 | | Argentina | 48, 661 | 35, 093 | | British Honduras | 8, 598, 807 | 274
10, 210, 070 | Bolivia
Brazil | 2, 226
94, 442 | 136, 231 | | Central America: | 1 | -0, ==0, 0.0 | Colombia | 71 | 91 | | Costa Rica | 2, 788 | | Ecuador | 50 | 28 | | Guatemala
Honduras | 665
430 | 1, 210
1, 269 | Guiana:
British | 108 | 460 | | Nicaragua | 95 | 1, 209 | Surinam (Nether- | 108 | 400 | | Panama | 47,096 | 44, 864 | land) | 1,784 | 2, 119 | | Salvador | 17 | 32 | Peru | | 13 | | Mexico
Miquelon and St. Pierre | 972 | 2, 215 | Uruguay | 26, 984
52 | 29, 139
9 5 | | Islands | 11,840 | 14, 564 | Venezuela | 52 | βĎ | | Newfoundland and Lab- | 11,010 | 12,002 | \ | 174, 378 | 203, 269 | | _rador | 7,884 | 21, 245 | _ | | | | West Indies:
British: | |] | Europe: | 7, 170 | | | Jamaica | 10, 679 | 18, 217 | Totaly | 7,170 | | | Trinidad and To- | | | | 7, 170 | | | bago | 5, 420 | 5, 164 | | | | | Other British | 118, 647 | 7, 698
289, 987 | Asia:
East Indies: Netherland: | | | | Dominican Republic. | 110, 047 | 102 | Java and Madura | 6, 248 | 1,766 | | French | 17, 138 | 12, 239 | Philippine Islands | 7 | 1,681 | | Haiti | 28 | 13 | 1 | | | | Netherland Virgin Islands of the | 3,088 | 2, 162 | Africa: | 6, 255 | 3, 447 | | United States | 15, 549 | 25, 840 | Egypt | 6, 231 | | | | 8, 842, 913 | 10, 661, 836 | Grand total | 9, 036, 947 | 10, 868, 552 | $^{^1}$ Amounts stated do not include fuel or bunker coal loaded on vessels engaged in the foreign trade, which aggregated 1,348,837 tons in 1932, 1,315,592 tons in 1933, and 1,320,623 tons in 1934. Table 37.—Bituminous coal exported, by districts and ports, 1933-34, in net tons [Compiled from records of the Bureau of Foreign and Domestic Commerce] | Customs district | 1933 | 1934 | Customs district | 1933 | 1934 | |-------------------------|-------------|-------------|---------------------------|-------------|--------------| | North Atlantic: | 470 | 0.45 | Rail gateways on Canadian | | | | New York | 470 | 347 | border: | | İ | | Philadelphia | 12, 365 | 23, 307 | Eastern: | | l | | Maryland | 15, 962 | 38, 263 | Maine and New | 000 | | | Virginia | 378, 964 | 550, 236 | Hampshire | 206 | 162 | | South Atlantic: | 00 771 | FF 400 | Vermont | 325 | 478 | | South Carolina | 26, 751 | 55, 469 | Massachusetts | | 455 050 | | Florida | 933 | 1, 740 | St. Lawrence | | 455, 059 | | Mobile | 8, 337 | 1, 251 | Rochester 3 | 677, 622 | 788, 546 | | New Orleans | 5, 036 | 3, 581 | Buffalo | 1, 732, 864 | 1, 773, 241 | | Mexican border: | 1 | 400 | Michigan | 900, 338 | 1, 115, 162 | | Arizona | 152 | 422 | Western: | Ì | 1 | | El Paso | 371 | 1, 445 | Duluth-Superior and | 0.000 | | | San Antonio | 195 | 28 | International Falls. | | 12,010 | | Pacific coast: | | | Dakota | 11, 476 | 7, 431 | | Washington 1 | | 4, 428 | Montana-Idaho | 270 | 10 | | Los Angeles | | 16 | Miscellaneous: | | | | San Francisco | | . 164 | Alaska | | 177 | | San Diego | 19 | 20 | Puerto Rico | 97 | 99 | | Lake Erie ports: Ohio 2 | 4, 947, 442 | 6, 035, 459 | | | | | | l | | Total | 9, 036, 947 | 10, 868, 552 | Both rail to Canada and by tide to foreign ports. Lower lake docks as follows: Toledo, Sandusky, Huron, Lorain, Cleveland, Fairport, Ashtabula, Conneaut, and Erie. Rail, car ferry, and Lake Ontario. #### AVERAGE EXPORT PRICES Table 38.—Average value per net ton of bituminous coal exported from the United States to Canada and to all other destinations, by months, 1931-34 [Computed from records of Bureau of Foreign and Domestic Commerce. Figures represent value at port, including transportation, and are therefore affected by changes in freight rates as well as f. o. b. mine prices. They include, of course, both spot and contract shipments. Data for 1902 to 1923 were published in Coal in 1923, pp. 624–625. Data for 1925 to 1930 were published in Coal in 1932, p. 648] | | 19 | 31 | 198 | 32 | 198 | 33 | 193 | 4 | |---|--|---|---|--|--|---|--|---| | | Canada | All | Canada | All
other | Canada | All
other | Canada | All
other | | January. February. March. April May. June. July. August September. October. November. December. | \$3. 80
4. 42
4. 25
3. 92
3. 68
3. 47
3. 35
3. 28
3. 25
3. 29
3. 07
4. 10 | \$3. 99
3. 90
3. 85
3. 84
3. 78
3. 86
3. 73
3. 72
3. 98
3. 78
3. 96 | \$4. 15
4. 11
4. 22
3. 80
3. 53
3. 20
2. 96
3. 13
3. 04
2. 95
3. 67 | \$3. 86
3. 77
3. 57
3. 88
3. 70
3. 38
3. 52
3. 63
3. 73
3. 96 | \$3. 94
3. 78
3. 74
3. 21
2. 78
3. 26
2. 80
3. 07
3. 00
3. 05
3. 11
3. 47 | \$3. 62 3. 41 3. 30 3. 28 3. 36 3. 50 3. 36 3. 71 3. 75 4. 00 3. 99 3. 88 | \$4. 29
4. 35
4. 30
3. 44
2. 80
3. 61
3. 50
3. 53
3. 65
3. 61
3. 71
3. 88 | \$3. 94
3. 84
4. 04
4. 04
4. 07
4. 01
4. 01
3. 94
4. 11 | | Average | 3. 54 | 3. 86 | 3. 36 | 3. 66 | 3. 14 | 3. 57 | 3.70 | 3. | ## SHIPMENTS TO ALASKA, HAWAII, AND PUERTO RICO In addition to the export trade proper, the United States supplies a small tonnage of anthracite and bituminous coal to the Territories of Alaska, Hawaii, and Puerto Rico. In 1934, 28,317 tons were shipped to Alaska, 3,330 tons to Hawaii, and 23,184 tons to Puerto Rico. ## WORLD PRODUCTION OF COAL Table 39.—Coal and lignite produced in the principal countries of the world in the calendar years 1930-34, in thousand metric tons [Compiled by R. B. Miller, of the Bureau of Mines] | Country | 1930 | 1931 | 1932 | 1933 | 1934 | |------------------------|-------------------|--------------|-------------|----------|------------------| | North America: | | | | | | | Canada: | 10 207 | 8, 466 | 7, 507 | 8, 533 | | | Coal | 10, 367
3, 133 | 2, 640 | 3, 142 | 3, 370 | 12, 528 | | Lignite | 3, 133 | 2,040 | 5, 142
5 | 5, 570 | , , | | Greenland | 1, 294 | 922 | 687 | 647 | 78 | | MexicoUnited States: | 1, 234 | 322 | 001 | 011 | 10. | | Anthracite | 62, 945 | 54, 109 | 45, 228 | 44, 943 | 51, 86 | | Bituminous and lignite | 424, 131 | 346, 624 | 280, 963 | 302, 663 | 326, 01 | | South America: | 122, 101 | 010,021 | 200,000 | 002,000 | 020,01 | | Argentina. | (1) | (¹) , | (1) | (1) | (1) | | Brazil | 365 | 461 | ³ 450 | ` 570 | 62 | | Chile | 1, 442 | 1, 100 | 1,080 | 1, 538 | 1,62 | | Colombia | (1) | (i) | (i) | (i) | (1) | | Peru | (1)
200 | `8´141 | 26 | 30 | 3 | | Venezuela | 9 | 3 | 5 | 5 | | | Europe: | 1 | | | | | | Albania: Lignite | 4 | 3 | 3 | 3 | (1) | | Austria: | | | | | | | Coal | 216 | 228 | 221 | 239 | 25 | | Lignite | 3,063 | 2, 982 | 3, 104 | 3, 014 | 2,85 | | Belgium | 27, 415 | 27,042 | 21, 424 | 25, 300 | 26, 38 | | Bulgaria: | | | | | _ ا | | Coal | 71 | 86 | 98 | 80 | 1.7 | | Lignite | 1, 522 | 1, 437 | 1,663 | 1, 493 | 1,56 | | Czechoslovakia: | 1 | 10 100 | 10.001 | 10 520 | 10.60 | | Coal | 14, 435 | 13, 103 | 10, 961 | 10, 532 | 10, 68
15, 17 | | Lignite | 19, 194 | 17, 932 | 15, 858 | 15,063 | 1 10, 17. | See footnotes at end of table. Table 39.—Coal and lignite produced in the principal countries of the world in the calendar years 1930-34, in thousand metric tons—Continued | Country | 1930 | 1931 |
1932 | 1933 | 1934 | |--|------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------| | Europe—Continued. | | | | | | | France: Coal Lignite | 53, 884
1, 143 | 50, 011
1, 035 | 46, 267
1, 012 | 46, 887
1, 093 | 47, 607
1, 031 | | Germany: 4
Coal
Lignite | 142, 699
146, 010 | 118, 640
133, 311 | 104, 741
122, 647 | 109, 692
126, 794 | 124, 910
135, 995 | | Saar 5
Greece: Lignite
Hungary: | 13, 236
130 | 11, 367
105 | 10, 438
138 | 10, 561 | 11, 318 | | Coal. Lignite. Irish Free State. Italy: | 812
6, 176
(¹) | 776
6, 111
93 | 895
5, 931
82 | 800
5, 907
107 | 756
6, 199
113 | | Coal
Lignite
Netherlands: | 231
577 | 236
364 | 255
376 | 334
383 | 295
409 | | Coal
Lignite | 12, 211
144 | 12, 901
122 | 12,756
124 | 12,574
97 | 12, 341
92 | | Poland:
CoalLignite | 37, 506
55 | 38, 265
41 | 28, 835
33 | 27, 356
33 | 29, 233
26 | | Portugal:
Coal
Lignite
Rumania: | 212
34 | 201
26 | 241
17 | 208
11 | 203
15 | | Coal
Lignite
Spain: | 299
2, 071 | 287
1,632 | 188
1, 464 | 195
1, 314 | } 1,851 | | Coal Lignite Svalbard (Spitsbergen) Sweden Switzerland 2 S | 7, 120
388
188
398 | 7, 091
341
243
343 | 6, 854
336
266
333 | 5, 999
301
370
349 | 5, 932
299
495
415 | | United Kingdom: Great Britain Northern Ireland | 4
247, 796 | 222, 981 | 212, 083 | 4
210, 436 | 224, 269 | | U. S. S. R. (Russia): Coal Lignite | } 639, 952 | 50, 400 | 53, 600 | 66, 000 | 71, 268 | | Yugoslavia:
Coal
Lignite | 366
4,910 | 406
4,580 | 368
4, 107 | 379
3, 777 | 387
3, 926 | | Asia: British Borneo China Chosen | 74
26, 455 | 48
27, 682 | (1)
28, 000 | (1)
(1) | (1)
(1) | | Federated Malay States
India, British
Indo-China: | 884
575
24, 185 | 936
409
22, 065 | 1, 104
282
20, 477 | 1, 307
222
20, 107 | 1, 689
327
20, 429 | | Coal
Lignite | 1, 937
29 | 1,704
23 | 1, 691
23 | 1, 591 | 1,592 | | Iran
Iraq 7
Japan:
Japan proper: | (1) | (1) | (1) | (1) 2 9 | (1) | | Coal
Lignite
Karafuto | 31, 200
129
655 | 27, 807
118
648 | 27, 774
109
688 | 32, 153
116
889 | 35, 500
125
1, 192 | | Taiwan | 1, 598
1, 871
21 | 1, 422
1, 404
19 | 1, 355
1, 050
18 | 1, 533
1, 035 | (¹)
1, 032 | | Syria: Lignite
Turkey:
Coal | (¹) 21
1, 595 | (1) | (1) | (1) | (1)
(1) | | Lignite | 1, 333 | 1, 574
8 | 1, 594
14 | 1,860
30 | 1,65 2
51 | | Lignite
Sakhalin: Coal
frica: | 6 6, 504 | 8, 200 | 10, 400 | 10, 700 | 20, 763 | | AlgeriaBelgian Congo: Coal | 17
134
1 | 26
86
6 | 25
17
15 | 30
20
27 | 34
5
31 | | Nigeria. Portuguese East Africa Southern Rhodesia. Union of South Africa. | 353
(1)
939
12, 223 | 333
(1)
587
10, 881 | 257
20
438
9, 921 | 239
16
484 | 275
22
643 | | See footnotes at end of table. | , ±±0 | 10,001 | o, 921 | 10, 714 | 12, 195 | 287 COAL Table 39.—Coal and lignite produced in the principal countries of the world in the calendar years 1930-34, in thousand metric tons-Continued | Country | 1930 | 1931 | 1932 | 1933 | 1934 | |--|-------------|-------------|-------------|-------------|-------------| | Oceania: | | | | | | | Australia: | | l . | İ | | | | New South Wales | 7, 207 | 6, 536 | 6,893 | 7, 233 | 8,000 | | Queensland | 1, 112 | 855 | 855 | 890 | 972 | | Tasmania | . 141 | 126 | 114 | 118 | 115 | | Victoria: | 1 | l . | | | | | Coal | . 715 | 581 | 439 | 531 | 363 | | Lignite | . 1,861 | 2, 230 | 2,654 | 2,621 | 2,660 | | Western Australia | . 509 | 439 | 422 | 466 | 508 | | New Caledonia | . 10 | | 1 | | | | New Zealand: | | i | i | | | | Coal | . 1,405 | 995 | 943 | 857 | 845 | | Lignite | . 1,179 | 1, 197 | 928 | 993 | 1, 248 | | Total, all grades | 1, 414, 000 | 1, 258, 000 | 1, 125, 000 | 1, 174, 000 | 1, 273, 000 | | Lignite (total of items shown above) | 198,000 | 183,000 | 171,000 | 175, 000 | 187, 000 | | Bituminous and anthracite (by subtraction) | 1, 216, 000 | 1, 075, 000 | 954,000 | 999,000 | 1,086,000 | Estimate included in total. Approximate production. Includes a small quantity of asphaltite. Exclusive of mines in the Saar under French control. Mines under French control. Figures for fiscal year ended Sept. 30; figures for calendar year in subsequent years. Year ended Mar. 31 of year following that stated. ## DETAILED STATISTICS OF BITUMINOUS COAL, BY STATES AND COUNTIES ## TABLES OF PRODUCTION, VALUE, MEN EMPLOYED, DAYS WORKED, AND **OUTPUT PER MAN IN 1934** Table 40 presents detailed statistics for each coal-producing county from which three or more operators reported production. If less than three reports were received, the figures for two or more counties have been combined to avoid disclosing individual returns, unless permission to publish has been granted by the producers. The series gives the details of total value of product, average value per ton, men employed above and below ground, average number of days worked by the mines, and output per man per day. The figures include stripping operations as well as deep mines. Separate particulars for the stripping operations in each county are given in table 15. If the reader will deduct the stripping figures as given in that table from the totals for all mines in the following table he will find that the remainder represents the operations of the deep mines. means figures can be obtained for the deep mines separately in any State or county desired. This has been done for the States in table 11. In response to many requests for data on the amount of coal shipped from mine to consumer by motor truck, the Bureau of Mines in 1932 for the first time asked the mine operators to supply the information for that year and again for 1933 and 1934. In the two latter years this tonnage has been shown as "Commercial sales by truck or wagon" (see column 2 of table 40 for 1934). Because of a change in the method of reporting, the statistics of average production per man per day in 1932, 1933, and 1934 are not precisely comparable with those for earlier years. Before 1932 they were based on the calculated number of man-shifts, obtained by multiplying the average number of men employed at each mine by the number of days worked at the mine. In 1932, 1933, and 1934, operators were asked to make a special report of the number of man-shifts actually worked wherever the necessary record was kept. The number of operators able to furnish this information was small, except in certain Far Western States. The "reported" man-shifts were utilized wherever possible to improve the accuracy of the record. Otherwise, the man-shifts were calculated by multiplying the number employed underground and on the surface by the number of days worked by the mine and tipple, respectively. To facilitate comparisons with former years, the Bureau has also computed the output per man per day for 1934, using the "calculated" method throughout. The result for Alabama was 2.76 tons; Alaska, 5.33; Arizona, 1.61; Arkansas, 2.47; California, Idaho, and Oregon, 2.36; Colorado, 4.35; Georgia, 1.56; Illinois, 5.74; Indiana, 7.92; Iowa, 2.83; Kansas, 4.54; Kentucky, 4.35; Maryland, 3.13; Michigan, 2.54; Missouri, 4.35; Montana, 10.24; New Mexico, 3.42; North Carolina, 0.79; North Dakota, 6.64; Ohio, 4.25; Oklahoma, 3.18; Pennsylvania, bituminous, 3.94; South Dakota, 3.07; Tennessee, 3.11; Texas, 5.49; Utah, 6.38, Virginia, 3.81; Washington, 3.66; West Virginia, 4.68; and Wyoming, 6.85. In this form, the 1934 figures are precisely comparable with those for the years prior to 1932. ## Table
40.—Production, value, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1934 [Note that figures relate only to active mines of commercial size, excluding wagon mines producing less than 1,000 tons. Waste and refuse are not included in tonnage. The statistics of average tons per man per day in 1934 are based upon (1) the "reported" number of man-shifts, where the operator keeps a record thereof; otherwise, upon (2) the "calculated" number of man-shifts, obtained by multiplying the average number of men employed underground and on the surface at each mine by the number of days worked by the mine and tipple, respectively. They are not precisely comparable with the figures published for the years prior to 1932, which were based on a "calculated" method throughout, but in most States the discrepancy is slight. | - 4 | Τ., | | n 1 | . 78 | | | |-----|-----|----|-----|------|---|---| | А | 1.1 | ١. | Η | ٩N | л | A | | | | | Net to | ons | | | Valu | е | N | umber of | employe | ees | | | |--|--|---|--|---|----------------------------------|--|--|---|--|------------------|--|--|---|---| | | | | Other sales
to local | | | | | | | Sur | face | | Aver-
age
num- | Aver-
age
tons | | County | Loaded at
mines for
shipment | Commercial sales
by truck
or wagon | trade, or
used by
employees,
or taken
by locomo-
tives at
tipple | Used at
mines for
power
and heat | Made
into
coke at
mines | Total
quantity | Total | Aver-
age
per
ton | Under-
ground | In strip
pits | All
others | Total | ber of
days
mines
oper-
ated | per
man
per
day | | Bibb. Blount. Cullman Jefferson. Marion. St. Clair. Shelby. Tuscaloosa. Walker. Other counties (Etowah, Fayette, | 453, 619
82, 360
4, 737, 915
242, 134
570, 897
421, 187
66, 743
2, 086, 575 | 9, 372
16, 230
12, 624
101, 469
8, 631
4, 324
32, 342
9, 298
8, 853 | 7, 245
300
51, 750
2, 709
5, 058
1, 821
2, 515
33, 040 | 1, 550
24, 780
17, 071
1, 387 | | 473, 461
100, 440
12, 624
4, 915, 914
253, 474
597, 350
456, 737
78, 556
2, 132, 001 | \$1, 045, 000
212, 000
34, 000
9, 769, 000
679, 000
1, 398, 000
1, 149, 000
4, 166, 000 | \$2. 21
2. 11
2. 69
1. 99
2. 68
2. 34
2. 52
1. 88
1. 95 | 975
220
48
8,508
544
1,009
767
186
3,579 | 13 | 182
39
10
1, 311
75
125
172
31
591 | 1, 157
272
58
9, 819
619
1, 134
939
217
4, 276 | 175
158
144
196
162
207
195
122
165 | 2. 33
2. 33
1. 51
2. 55
2. 53
2. 54
2. 49
2. 97
3. 03 | | and Winston) | 118, 020 | 3, 290 | 50 | 200 | | 121, 560 | 238, 000 | 1.96 | 283 | 21 | 56 | 360 | 169 | 2.00 | | Total, 1934
Total, 1933 | 8, 779, 450
8, 465, 688 | 206, 433
152, 935 | 104, 488
100, 444 | 51, 746
40, 922 | | 9, 142, 117
8, 759, 989 | 18, 838, 000
13, 758, 000 | 2. 06
1. 57 | 16, 119
15, 440 | 140
132 | 2, 592
2, 665 | 18, 851
18, 237 | 185
148 | 2. 62
3. 26 | | | | | | | ALASKA | | | | | | | | | | | Total, 1934 | 101, 060
90, 700 | | 5, 370
4, 817 | 1, 078
950 | | 107, 508
96, 467 | \$451,000
481,000 | \$4. 20
4. 99 | 56
59 | | 37
41 | 93
100 | 217
199 | 5. 33
4. 86 | Table 40.—Production, value, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1934—Continued ## ARIZONA | | | | Net to | ons | | • | Valu | е | N | umber o | employe | 96S | | | |--|--|--|--|---|----------------------------------|--|--|---|-----------------------------------|------------------|-------------------------------|------------------------------------|--|---| | | | | Other sales
to local | | | | | | | Sur | face | V. | Aver-
age
num- | Aver-
age
tons | | County | Loaded at
mines for
shipment | Commercial sales
by truck
or wagon | trade, or
used by
employees,
or taken
by locomo-
tives at
tipple | Used at
mines for
power
and heat | Made
into
coke at
mines | Total
quantity | Total | Aver-
age
per
ton | Under-
ground | In strip
pits | All
others | Total | ber of
days
mines
oper-
ated | per
man
per
day | | Total, 1934 ¹
Total, 1933 ² | | 3, 558 | 5, 500
10, 345 | | | 9, 058
10, 345 | \$45,000
52,000 | \$4.97
5.03 | 16
19 | | 3
4 | 19
23 | 296
268 | 1. 61
1. 68 | | | | | | | ARKANS. | AS | 4.4 | | | | | | | | | Franklin | 104, 530
92, 191
278, 415
45, 853
311, 599 | 835
100
3, 100
739
3, 437 | 371
36
400 | 3, 021
1, 600
2, 300
433
7, 472 | | 108, 386
94, 262
283, 815
47, 061
322, 908 | \$289, 000
302, 000
977, 000
182, 000
814, 000 | \$2. 67
3. 20
3. 44
3. 87
2. 52 | 352
504
870
178
1,022 | 50 | 42
110
122
22
141 | 444
614
992
200
1, 165 | 77
66
127
116
106 | 3. 16
2. 32
2. 25
2. 03
2. 62 | | Total, 1934 | 832, 588
862, 713 | 8, 211
7, 972 | 807
1, 301 | 14, 826
10, 938 | | 856, 432
882, 924 | 2, 564, 000
2, 348, 000 | 2. 99
2. 66 | 2, 926
3, 150 | 52
47 | 437
474 | 3, 415
3, 671 | 102
94 | 2. 46
2. 57 | | | | | CALI | FORNIA, | IDAHO, | AND OR | EGON | | 7 | | | | | | | Total, 1934 ⁸ | 17, 050
5, 592 | 7, 349
1, 688 | 1, 739
212 | 3, 000 | | 29, 138
7, 492 | \$98, 000
27, 000 | \$3. 36
3. 60 | 57
46 | | 19
12 | 76
58 | 162
79 | 2. 36
1. 65 | ## COLORADO | | | | | | | | | | | 1 | | | | | |--|-------------------------|---------------------|----------------------|----------------|---------|---------------------|--------------------------|----------------|-----------|----------|----------------|------------------|-------------------|-------------------------| | Boulder
Delta | 222, 145
18, 753 | 213, 864
14, 745 | 5, 308
355 | 2,756 | | 461, 796
36, 609 | \$1, 177, 000
85, 000 | \$2.55
2.32 | 626
46 | 2 | 100
22
3 | 726
68
13 | 185
114
164 | 3. 44
4. 73
2. 78 | | ElbertEl Paso | 101, 117 | 5, 662
181, 784 | 20
10, 132 | | | 5, 913
299, 293 | 9,000
649,000 | 1, 52
2, 17 | 8
306 | 2 | 58 | 364 | 246 | 3, 34 | | Fremont | 169, 319 | 173, 563 | 5, 223 | 4,631 | | 352, 736 | 914,000 | 2.59 | 749 | | 140 | 889
44 | 165
169 | 2. 40
3. 78 | | GarfieldGunnison | 10, 223
410, 140 | 15, 132
21, 035 | 717
2, 334 | 2,000
9,564 | | 28, 072
443, 073 | 57, 000
873, 000 | 2.03
1.97 | 33
442 | | 11
100 | 542 | 171 | 4.79 | | Huerfano | | 32, 124 | 4, 405 | 5, 353 | | 608, 445 | 1, 475, 000 | 2.42 | 909 | | 218 | 1, 127 | 165 | 3. 27 | | Jefferson | 114, 956 | 18, 803 | 726 | 1, 150 | | 135, 635 | 275, 000 | 2. 03
2. 12 | 152
32 | | 26
9 | 178
41 | 165
157 | 4. 62
2. 93 | | La Plata
Larimer | | 11, 784
3, 224 | 54 | 182 | | 18, 849
3, 460 | 40, 000
9, 000 | 2.12 | % | | š | 12 | 133 | 2, 18 | | Las Animas | 744, 673 | 29, 029 | 20,062 | 12, 355 | 58, 011 | 864, 130 | 2, 240, 000 | 2.59 | 1,392 | | 279 | 1,671 | 139
157 | 3. 71
3. 22 | | Mesa | 24, 368 | 27, 634
2, 945 | 447 | 1,769 | | 54, 218
2, 945 | 114, 000
7, 000 | 2, 10
2, 38 | 83 | | 24 | 107 | 190 | 2, 58 | | Montezuma | | 4, 879 | 140 | 12 | | 5, 056 | 18,000 | 3.56 | 16 | | 3 | 19 | 175 | 1.52 | | Rio Blanco | | 3, 937 | 4, 109 | 27, 277 | | 3, 937
485, 311 | 8,000
1,282,000 | 2, 03
2, 64 | 621 | | 1
186 | 807 | 209
109 | 2. 69
5. 52 | | Routt | 440, 391
1, 126, 414 | 13, 534
205, 639 | 8, 525 | | | | 3, 026, 000 | 2. 20 | 1, 277 | | 160 | 1, 437 | 157 | 6. 10 | | Weld
Other counties (Jackson and Pit- | 20, 200 | | | 1 770 | | 25, 672 | 51,000 | 1.99 | 9 | 20 | 7 | 36 | 137 | 5. 21 | | kin) | 20, 500 | 2, 999 | 414 | 1, 759 | | | | | | | | | | | | Total, 1934
Total, 1933 | 3, 976, 652 | 982, 316 | 62, 971 | 130, 983 | 58, 011 | 5, 210, 933 | 12, 309, 000 | 2.36
2.17 | 6,722 | 22
19 | 1,350
1,310 | 8, 094
7, 908 | 158
148 | 4.08
4.46 | | Total, 1933 | 3, 925, 594 | 1, 014, 381 | 102, 594 | 132, 720 | 54,
478 | 5, 229, 767 | 11, 350, 000 | 2.17 | 6, 579 | 18 | 1,510 | 1, 800 | 110 | | | | <u> </u> | | | | GEORGI | A | | | | | | | | | | | 90.804 | 1 | | 322 | | 32, 716 | \$80,000 | \$2,45 | 93 | | 20 | 113 | 185 | 1. 56 | | Total, 1934 5 | 32, 394
40, 262 | | 340 | 780 | | 41, 382 | 77,000 | 1.86 | 78 | | 15 | 93 | 234 | 1, 90 | | | 1 | | 1 | 1 | i | | l | | 1 | <u></u> | <u> </u> | | <u> </u> | | Coconino and Navajo Counties. Apache, Coconino, and Navajo Counties. Apache, Coconino, and Navajo Counties. Amador, Monterey, Santa Cruz, and Trinity Counties, Calif.; Owyhee and Teton Counties, Idaho; Coos County, Oreg. Amador, Monterey, and Trinity Counties, Calif.; Teton County, Idaho; Coos County, Oreg. Walker County. Table 40 — Production, value, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1934—Continued ## ILLINOIS | | | | Net to | ons | | | Valu | 10 | N | umber o | f employ | ees | | | |--|---|---|---|---|----------------------------------|--|---|--|--|----------------------------------|--|---|---|--| | G. v. Av | | | Other sales to local | | | | | | | Sur | face | | Aver-
age
num- | Aver-
age
tons | | County | Loaded at
mines for
shipment | Commercial sales
by truck
or wagon | trade, or
used by
employees,
or taken
by locomo-
tives at
tipple | Used at
mines for
power
and heat | Made
into
coke at
mines | Total
quantity | Total | Aver-
age
per
ton | Under-
ground | In strip
pits | All
others | Total | ber of
days
mines
oper-
ated | per
man
per
day | | Bond and Montgomery Bureau Cass and Morgan Christian Clinton Edgar Franklin Fulton Gallatin Greene Grundy Hancock Henry Jackson Jefferson and Marion | 86
3,709,859
185,033
7,428,134
1,468,659
208
 | 31, 437
27, 107
2, 394
65, 870
68, 403
24, 481
176, 039
9, 401
136, 926
2, 835
124, 890
44, 294 | 3, 077
422
67, 327
12, 905
91
57, 510
2, 592
 | 12, 308
3, 627
23, 659
17, 909
107, 430
10, 481
953
875
1, 234
4
6, 707
2, 416
22, 779 | | 568, 787 31, 242 2, 394 3, 866, 715 284, 250 25, 111 7, 631, 185 1, 657, 771 31, 641 10, 276 138, 310 2, 863 659, 303 1, 508, 628 283, 515 | \$\$40,000
70,000
5,000
6,266,000
403,000
44,000
2,371,000
49,000
25,000
351,000
1,094,000
2,155,000
356,000 | \$1. 48
2. 24
2. 09
1. 62
1. 75
1. 55
1. 43
1. 55
2. 43
2. 54
1. 66
1. 43
1. 26 | 829
133
10
1, 633
402
44
6, 737
1, 069
44
36
196
12
363
539
354 | 193
20
8
46
130
4 | 145
31
3
567
61
7
1,444
306
18
8
24
4
121
277
79 | 974
164
13
2, 200
463
51
8, 181
1, 568
62
44
240
24
530
946
437 | 144
113
116
221
179
131
143
149
136
136
171
82
186
163 | 4. 05
1. 69
1. 59
7. 96
3. 43
3. 77
6. 52
7. 11
3. 75
1. 72
3. 37
1. 45
6. 70
9. 67 | | Knox LaSalle Livingston McDonough Macoupin Madison Marshall Menard Mencer Peoria Perry Putnam and Woodford Randolph Rock Island St. Clair Saline | 1, 185, 070
2, 901, 648
107, 461
403, 158 | 138, 964
152, 584
22, 940
5, 497
68, 758
414, 159
6, 434
113, 699
34, 859
328, 859
328, 859
344, 494
78, 248
1, 128, 398 | 2, 480
73, 539
242
8
17, 320
9, 207
452
710
20, 573
29, 943
20, 104
6, 488 | 4, 806
1, 535
74
10
106, 596
57, 712
3, 685
1, 520
3, 457
40, 898
7, 989
15, 454
99
65, 997
48, 033 | | 384, 203
311, 719
22, 756
5, 515
3, 353, 959
1, 620, 848
6, 434
117, 836
37, 995
3, 021, 461
174, 057
469, 594
78, 347
2, 489, 367
489, 267
2, 489, 282 | 786, 000
811, 000
67, 000
15, 000
2, 153, 000
11, 000
217, 000
74, 000
426, 000
428, 000
190, 000
3, 437, 000
1, 606, 000 | 2. 05
2. 60
2. 82
2. 72
1. 30
1. 33
1. 71
1. 84
2. 00
1. 67
1. 36
2. 45
1. 66
2. 43
1. 38
1. 72 | 404
594
48
18
2,865
1,618
28
166
88
1,612
1,129
726
677
161
2,631
3,171 | 8 90
31 8
20
 | 54
84
20
6
335
252
5
29
16
177
287
44
103
16
408 | 466
768
99
32
3, 200
1, 890
33
195
104
1, 795
1, 969
770
780
177
3, 111
3, 703 | 203
173
138
128
196
177
139
177
148
192
146
123
103
186
153 | 4.06
2.34
1.34
5.34
4.85
1.40
2.41
4.47
10.50
1.83
5.38
5.21
5.11 | | Sangamon Schuyler Scott Shelby Stark Tazewell Vermilion Wabash Warren Washington Williamson Other counties (Crawford, Jersey, Macon, White, and Will) Total, 1934. Total, 1933. | 2, 000
138, 762
1, 608, 419
231, 690
1, 786, 354
896, 076
35, 023, 844 | 268, 029
45, 239
3, 882
24, 755
18, 866
192, 516
254, 529
15, 574
17, 665
213, 350
264, 918
4, 781, 525
3, 887, 791 | 128, 096
146
115
20
6
59, 436
39, 261
8, 208
3, 168
774, 651
918, 438 | 1,800
255
1,676
12,183
557
205
16,286
58,409 | | 2, 327, 974
45, 768
3, 897
28, 575
19, 127
332, 954
1, 934, 567
16, 161
5, 679
314, 902
2, 066, 321
1, 169, 006
41, 272, 384
37, 413, 145 | 3, 756, 000
74, 000
12, 000
102, 000
41, 000
597, 000
3, 278, 000
17, 000
480, 000
2, 251, 000
64, 238, 000
54, 578, 000 | 1. 61
1. 62
3. 08
3. 57
2. 14
1. 79
1. 69
1. 11
2. 99
1. 52
1. 50
1. 93 | 3, 235
777
9
1110
63
455
2, 568
38
17
315
2, 007
381
37, 612
36, 414 | 90
 | 344
25
4
211
14
62
285
12
5
61
425
110
6, 724
6, 182 | 8, 579
114
13
131
177
517
2, 943
50
22
376
2, 541
715
46, 067
44, 145 | 147
169
182
120
164
190
148
143
150
158
235 | 4. 41
2. 38
1. 65
1. 81
1. 52
3. 39
4. 44
2. 19
1. 80
5. 59
5. 13
6. 95 | |--|---|---|--|--|---------|--|--|---|---|---------|--|---|---|--| | | | | | | INDÍAN. | A. | | | | | | | | | | Clay Daviess Dubois, Perry, and Spencer Gibson Greene Knox Parke Pike Sullivan Vanderburg Vermillion Vigo Warrick Other counties
(Fountain, Owens, and Warren) Total, 1934 Total, 1933 | 978, 945
1, 560, 855
1, 190, 444
2, 213, 374
2, 213, 398
76, 544
1, 171, 374
2, 007, 393
772, 142
108, 734 | 105, 385 22, 450 18, 102 68, 148 27, 262 124, 089 32, 036 3, 880 15, 752 76, 605 63, 811 106, 776 99, 814 6, 901 771, 011 726, 757 | 1, 844
150
80
3, 788
82, 158
2, 430
8, 876
2, 048
392, 110
5, 970
95
499, 549
435, 034 | 1, 140
81
20, 433
22, 584
16, 802
1, 049
25
50, 200
7, 500
31, 111
43, 170
6, 005 | | 916, 287
23, 740
18, 263
1, 067, 526
1, 614, 489
1, 413, 493
2, 440, 081
2, 288, 226
160, 649
1, 268, 344
2, 549, 449
883, 931
115, 730 | \$1, 467, 000 42, 000 29, 000 1, 589, 000 2, 471, 000 2, 050, 000 72, 000 2, 840, 000 3, 766, 000 1, 971, 000 4, 000, 000 1, 130, 000 205, 000 21, 838, 000 17, 567, 000 | \$1. 60
1. 77
1. 59
1. 49
1. 53
1. 45
2. 15
1. 16
1. 65
1. 28
1. 57
1. 28
1. 77 | 185
40
24
560
623
701
63
98
1,637
241
1,128
1,597
497
31
7,425
8,023 | 338
 | 175
12
4
110
155
215
10
251
333
39
202
286
208
12
2,012
1,603 | 698
52 28
670
1,053
916
73
879
2,117
280
1,405
2,040
874
88
11,173
11,199 | 176
171
214
211
185
179
131
179
132
109
166
127
138 | 7. 47
2. 67
3. 05
7. 87
8. 29
8. 62
3. 51
15. 52
6. 21
4. 35
5. 34
7. 56
9. 53 | [•] Much of the output of the State is obtained from strip pits or by the use of loading machines, in which types of operations the production per man is large. Table 40.—Production, value, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1934—Continued IOWA | | | , | Net to | ons | | • | Valu | l e | N | umber of | employe | 968 | | | |---|--|---|---|---|-------------------------|---|---|--|--|--|---|--|---|---| | ÷ | | | Other sales
to local | | | | | | | Sur | face | | Aver-
age
num- | Aver-
age
tons | | County | Loaded at
mines for
shipment | Commercial sales
by truck
or wagon | trade, or
used by
employees,
or taken
by locomo-
tives at
tipple | Used at
mines for
power
and heat | Made into coke at mines | Total
quantity | Total | Average per ton | Under-
ground | In strip
pits | All
others | Total | ber of
days
mines
oper-
ated | per
man
per
day | | Adams Appanoose Boone Dallas Greene Guthrie Jasper Keokuk Lucas Mahaska Marion Monroe Page Polk Taylor Van Buren Wapello Warren Wayne Webster Other counties (Hamilton, Jefferson, and Scott) | 378, 103
330, 982
268, 274
485, 464
27, 425
173, 415
244, 005
78, 488
739
1, 500
23, 254 | 20, 271 70, 115 91, 674 58, 858 62, 345 16, 468 53, 806 19, 842 10, 619 61, 200 73, 824 24, 101 37, 168 380, 441 9, 443 8, 845 66, 016 140, 374 9, 884 42, 649 5, 540 | 1, 887
1, 887
1, 660
2, 191
440
1, 887
1, 660
2, 191
440
124
427
1, 029
322
41 | 4,864
1,677
31 | | 20, 864
457, 338
430, 970
331, 907
62, 631
16, 523
56, 719
19, 842
506, 484
90, 157
268, 494
278, 590
38, 859
468, 766
10, 669
9, 279
70, 127
168, 447
10, 311
44, 475
5, 540 | \$59, 000 1, 033, 000 1, 097, 000 820, 000 160, 000 58, 000 130, 000 4, 104, 000 520, 000 580, 000 1, 144, 000 37, 000 20, 000 130, 000 130, 000 130, 000 130, 000 130, 000 | \$2. 83
2. 26
2. 55
2. 47
2. 55
3. 51
2. 29
2. 22
2. 20
1. 89
1. 94
2. 16
2. 16
2. 17
2. 25
2. 42
3. 06
2. 35 | 101
1, 429
966
539
68
73
149
16
657
109
455
516
6123
909
47
7
26
166
201
53
70 | 1
13
19
22
122
122
3
68
88
23 | 11
155
77
38
11
11
19
9
42
47
62
72
9
84
4
6
28
38
31
11
20 | 112
1, 584
1, 044
577
92
84
168
44
699
178
639
588
132
993
51
32
197
303
64
113 | 151
119
172
196
153
124
160
196
145
148
149
173
161
160
152
169
90
185 | 1. 23
2. 42
2. 40
2. 94
5. 00
1. 29
2. 73
2. 82
3. 70
3. 49
2. 85
3. 18
1. 70
2. 92
1. 08
1. 82
2. 35
3. 80
2. 13 | | Total, 1934
Total, 1933 | 2, 011, 749
1, 803, 194 | 1, 263, 483
1, 249, 027 | 50, 384
108, 876 | 41, 376
33, 886 | | 3, 366, 992
3, 194, 983 | 7, 862, 000
7, 217, 000 | 2. 34
2. 26 | 6, 687
6, 591 | 281
333 | 753
771 | 7, 721
7, 695 | 156
138 | 2. 80
3. 01 | ## KANSAS | Bourbon Cherokee Coffey Crawford Franklin Labette Leavenworth Linn Osage Total, 1934 | 1, 915, 827
3, 800
88, 459
12, 157
2, 256, 220 | 29, 906
32, 849
2, 450
91, 403
10, 297
8, 566
1, 248
15, 250
41, 659 | 2, 433
 | 10, 154
525
222
50
11, 827 | | 30, 406
269, 642
2, 450
2, 019, 817
10, 297
12, 891
89, 707
15, 607
57, 437 | \$53, 000
494, 000
8, 000
3, 515, 000
29, 000
278, 000
32, 000
178, 000 | \$1. 74
1. 83
3. 27
1. 74
3. 11
2. 25
3. 10
2. 05
3. 10
1. 84 | 156
1,425
49
407
56
309
2,402 | 23
160
19
711
 | 2
45
4
182
7
3
90
13
42 | 25
361
23
2, 318
56
21
497
72
371
3, 744 | 194
112
73
127
130
178
324
125
114 | 6. 27
6. 65
1. 45
6. 88
1. 42
3. 45
. 56
1. 74
1. 36 | |--|---|---|---|---|--------|--|---|---|---|----------------------------|---|--|---|--| | Total, 1933 | 1, 981, 469 | 207, 542 | 13, 023 | 15, 588 | | 2, 217, 622 | 3, 881, 000 | 1.75 | 2, 629 | 822 | 358 | 3,809 | 140 | 4. 15 | | | | | · | ·] | KENTUC | KY | <u> </u> | | | | I | <u> </u> | | · | | Eastern district: Bell | 1, 300, 753 32, 210 68, 592 55, 647 3, 518, 105 9, 501, 930 870, 675 352, 497 437, 731 4, 539, 049 221, 211 3, 295, 889 4, 589, 388 | 38, 895 19, 936 19, 936 6, 099 4, 395 373 2, 100 2, 880 41, 461 125 32, 630 8, 148 2, 233 28, 131 662 6, 854 4, 329 | 28,
402
913
10
71
13, 176
64, 482
7, 781
667
3, 813
267
41, 716
1, 488
67, 822
25, 614 | 7, 987
13, 011
3, 598
8, 427
60, 701
60
20, 168 | | 1, 378, 943 53, 656 71, 401 6, 099 60, 113 3, 539, 641 2, 100 9, 582, 303 41, 461 882, 154 450, 096 32, 897 8, 148 4, 642, 023 223, 443 3, 366, 004 4, 663, 301 6, 662 6, 854 295, 397 | \$2, 250, 000
91, 000
128, 000
14, 000
82, 000
5, 742, 000
1, 706, 000
706, 000
706, 000
7, 720, 000
7, 720, 000
7, 720, 000
7, 720, 000
7, 731, 000
1, 000
1, 000
1, 000 | \$1. 63
1. 70
1. 79
2. 30
1. 36
1. 62
1. 90
1. 70
1. 45
1. 57
1. 87
1. 66
1. 53
1. 61
1. 61
1. 61
1. 46 | 2, 177
176
164
59
135
3, 596
182
785
404
427
153
3005
4, 813
3015
4, 533
16
536 | | 390
32
32
30
11
25
594
3
1,609
32
136
73
115
33
9
9
634
57
866
921
3
11
149 | 2, 567
208
194
70
4, 190
15
10, 705
214
921
477
542
186
63
5, 447
362
4, 781
19
61
61
685 | 169 132 140 72 190 204 71 206 79 202 184 210 101 60 212 142 158 190 21 17 151 | 3.17
1.95
2.63
1.97
4.15
1.97
4.03
3.95
1.76
4.03
1.76
4.04
4.60
1.166
1.166
2.85 | | Magoffin, and Wolfe) | 637, 250 | 1,909 | 5, 109 | 6, 328 | | 650, 596 | 1, 195, 000 | 1.84 | 982 | | 146 | 1, 128 | 152 | 3. 79 | | Total, 1934
Total, 1933 | 29, 710, 936
27, 787, 991 | 202, 960
137, 688 | 261, 424
219, 383 | 135, 136
120, 270 | | 30, 310, 456
28, 265, 332 | 50, 827, 000
33, 873, 000 | 1.68
1.20 | 32, 570
28, 420 | | 5, 879
5, 110 | 38, 449
33, 530 | 190
179 | 4. 16
4. 70 | Table 40.—Production, value, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1934—Continued ## KENTUCKY-Continued | | · | | | | | | | | | | | | | | |---|------------------------------------|--|--|---|----------------------------------|---|---|--|---|------------------|---|--|---|---| | | | | Net to | ons | | | Valu | е | N | umber of | f employ | es | | 1 | | | | | Other sales
to local | | | | | | | Sur | face | | Aver-
age
num- | Aver-
age
tons | | County | Loaded at
mines for
shipment | Commercial sales
by truck
or wagon | trade, or
used by
employees,
or taken
by locomo-
tives at
tipple | Used at
mines for
power
and heat | Made
into
coke at
mines | Total
quantity | Total | Aver-
age
per
ton | Under-
ground | In strip
pits | All
others | Total | ber of
days
mines
oper-
ated | per
man
per
day | | Western district: Butler Christian Daviess Henderson Hopkins McLean Muhlenberg Ohio Union Webster Other counties (Crittenden and Hancock) | 1 33 910 1 | 696
9, 020
151, 662
85, 466
53, 930
3, 100
30, 318
7, 255
45, 419
10, 905 | 21
144
4, 997
26, 812
1, 410
62, 741
8, 237
12, 545
6, 040 | 723
7, 219
10, 648
1, 932
63, 759
5, 351
17, 707
12, 798 | | 8, 318
33, 320
152, 529
182, 395
2, 513, 782
39, 652
2, 914, 238
521, 982
599, 664
1, 247, 999 | \$12,000
42,000
160,000
265,000
3,152,000
45,000
3,386,000
527,000
701,000
1,430,000 | \$1. 44
1. 26
1. 05
1. 45
1. 25
1. 13
1. 16
1. 01
1. 17
1. 15 | 29
81
207
403
2,861
56
3,115
757
718
1,393 | | 5
9
41
69
388
16
469
124
105
207 | 34
90
248
472
3, 249
72
3, 584
881
823
1, 600 | 104
98
169
123
157
125
146
118
165
133 | 2. 3
3. 7;
3. 6;
3. 1;
4. 9;
4. 4;
5. 5;
5. 0;
4. 4;
5. 8; | | Total, 1934
Total, 1933 | 7, 573, 024
7, 326, 340 | 398, 671
225, 753 | 122, 947
150, 013 | 120, 137
132, 291 | | 8, 214, 779
7, 834, 397 | 9, 721, 000
6, 875, 000 | 1.18 | 9, 625
8, 775 | | 1, 435
1, 412 | 11, 060
10, 187 | 145
137 | 5. 1
5. 6 | | Total all Kentucky, 1934
Total all Kentucky, 1933 | 37, 283, 960
35, 114, 331 | 601, 631
363, 441 | 384, 371
369, 396 | 255, 273
252, 561 | | 38, 525, 235
36, 099, 729 | 60, 548, 000
40, 748, 000 | 1. 57
1. 13 | 42, 195
37, 195 | | 7, 314
6, 522 | 49, 509
43, 717 | 180
170 | 4. 3
4. 8 | | | | | | 1 | MARYLA | ND | | | | ' | | | | | | AlleganyGarrett | 1, 018, 920
384, 234 | 121, 919
15, 845 | 75, 558
2, 602 | 1, 342
6, 692 | <u> </u> | 1, 217, 739
409, 373 | \$2,373,000
716,000 | \$1.95
1.75 | 1, 934
683 | | 235
124 | 2, 169
807 | 188
142 | 2. 9
3. 5 | | Total, 1934
Total, 1933 | 1, 403, 154
1, 351, 314 | 137, 764
91, 046 | 78, 160
77, 122 | 8, 034
11, 266 | | 1, 627, 112
1, 530, 748 | 3, 089, 000
2, 134, 000 | 1. 90
1. 39 | 2, 617
2, 516 | | 359
364 | 2, 976
2, 880 | 176
172 | 3. 1
3. 0 | ## MICHIGAN | Bay Ingham Saginaw Shiawassee Other counties (Eaton, Jackson, and Midland) | 88, 946
133, 587
101, 976 | 67, 121
4, 943
85, 889
69, 695
32, 992 | 2,505
601
3,421
1,300
3,003 | 7, 666
4, 717
5, 344 | | 166, 607
5, 544
230, 563
75, 712
143, 315 | \$529,000
26,000
724,000
230,000
431,000 | \$3. 18
4. 69
3. 14
3. 04
3. 01 | 296
27
434
204
313 | 57 | 38
6
104
50
27 | 334
33
538
311
340 | 190
136
150
143 | 2. 63
1. 24
2. 86
1. 70
2. 76 | |---|--|--|---|---|---------|--|--|--|---|--|---|--|--|---| | Total, 1934
Total, 1933 | 324, 509
241, 356 | 260, 640
136, 574 | 10, 830
10, 047 | 25, 762
18, 607 | | 621, 741
406, 584 | 1, 940, 000
1, 171, 000 | 3. 12
2. 88 | 1, 274
1, 046 | 57
 | 225
140 | 1,556
1,186 | 157
130 | 2. 54
2. 63 | | · | | | - | | MISSOUR | ı | | | | | | | | | | Adair Audrain Barton Bates Bates Boone Callaway Chariton Clay Daviess, Grundy, and Harrison Henry Johnson Lafayette Lincoln and Ralls Linn Macon Putnam Randolph Ray Vernon Other counties (Howard, Jasper, Platte, and Schuyler) | 17, 346
460, 493
206, 602
5, 116
16, 771
33, 489
420, 369
168, 649
15, 276
6, 744 | 21, 017
10, 572
1, 675
17, 517
43, 640
34, 147
900
53, 014
2, 251
10, 355
64, 119
5, 267
66, 031
5, 267
11, 844
21, 187
21, 834
32, 962
101, 363
7, 407 | 2, 701 1, 479 100 24 2, 952 2, 236 51 6, 116 4, 246 130 60 875 100 3, 124 5, 441 5, 441 | 28
24
2,009
73
7,075
2,633
25
52
1,555
50
295
1,330
2,569 | | 127,
560
10, 772
613, 172
696, 868
43, 692
37, 123
37, 123
50, 769
537, 803
5, 276
279, 512
10, 538
28, 727
57, 106
21, 984
456, 455
275, 748
36, 637 | \$247, 000 22, 000 974, 000 1, 122, 000 95, 000 95, 000 204, 000 35, 000 941, 000 627, 000 110, 000 32, 000 67, 000 110, 000 32, 000 683, 000 43, 000 121, 000 | \$1. 94
2. 04
1. 59
1. 61
2. 56
2. 56
2. 22
2. 73
2. 67
3. 25
1. 75
2. 24
2. 18
2. 33
1. 93
1. 80
2. 48
1. 80
2. 48
1. 80 | 267
29
5
40
83
600
11
325
10
82
18
12
980
31
1179
215
106
310
1,143
20 | 230
213
19
20
171
11
11
80
28
8 | 34
5
42
16
16
12
2
48
3
15
45
5
2
95
6
6
23
84
19
15
16
16
16
16
15
15
15
16
16
15
15
15
15
15
15
15
15
15
15
15
15
15 | 301
34
277
2699
118
92
13
873
13
13
25
2,075
2,075
202
299
125
445
1,279
64
168 | 201
133
138
183
169
184
45
140
123
109
216
134
134
104
95
114
174
120
86 | 2.11
2.38
7 16.08
7 14.18
2.19
2.19
2.19
1.53
1.42
1.41
1.02
7 10.65
1.57
1.37
2.00
1.54
7 5.89
1.80
7 4.52 | | Total, 1934
Total, 1933 | 2, 738, 697
2, 836, 308 | 558, 818
495, 394 | 31, 291
77, 427 | 23, 477
23, 083 | | 3, 352, 283
3, 432, 212 | 6, 278, 000
6, 175, 000 | 1.87
1.80 | 4,070
3,987 | 780
1,022 | 690
681 | 5, 540
5, 690 | 141
150 | 4. 29
4. 02 | ⁷ The output is obtained chiefly from strip pits in which the production per man per day is large. Table 40.—Production, value, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1934—Continued ## MONTANA | | | | Net to | ons | | | Valu | 16 | N | umber o | f employ | ees | | Ī | |--|------------------------------------|--|--|---|----------------------------------|---|--|---|-----------------------|------------------|-------------------------|-----------------------------------|--|---| | Country | | | Other sales
to local | | | | | | | Sui | face | | Aver-
age
num- | Aver-
age
tons | | County | Loaded at
mines for
shipment | Commercial sales
by truck
or wagon | trade, or
used by
employees,
or taken
by locomo-
tives at
tipple | Used at
mines for
power
and heat | Made
into
coke at
mines | Total
quantity | Total | Average per ton | Under-
ground | In strip
pits | All
others | Total | ber of
days
mines
oper-
ated | per
man
per
day | | Blaine
Carbon
Cascade | 300, 110 | 12, 238
8, 699
31, 615 | 4, 272
4, 859 | | | 12, 238
314, 106 | \$38,000
478,000 | \$3.11
1.52 | 24
256 | | 5
121 | 29
377 | 185
137 | 2. 28
6. 07 | | Chouteau | | 3, 248
7, 242
4, 930
1, 800 | 4, 859
8
150
10 | | | 398, 664
3, 256
7, 472
4, 940 | 533,000
11,000
11,000
23,000 | 1.34
3.38
1.47
4.66 | 262
12
12
17 | | 45
3
4
4 | 307
15
16
21
10
31 | 213
115
187
121 | 6. 10
1. 90
2. 49
1. 94 | | Hill Judith Basin Musselshell Pandora and Toole Richland | | 12, 691 | 165
2, 633
70 | 6, 232 | | 1, 800
12, 928
2, 874
645, 681 | 5,000
36,000
10,000
1,106,000 | 2. 78
2. 78
3. 48
1. 71 | 8
22
14
445 | | 4
2
9
2
150 | 16
595 | 107
167
96
147 | 1. 68
2. 50
1. 87
7. 37 | | Rosebud | 1 111 531 | 8, 852
4, 807
900
12, 395 | 50
626
120 | 30
25
35 | | 1, 739
18, 928
4, 882
1, 113, 057
12, 550 | 10,000
26,000
7,000
1,669,000
17,000 | 5. 75
1. 37
1. 43
1. 50
1. 35 | 38
9
2
17 | 48 | 2
8
4
13 | 10
46
13
63
23 | 230
192
124
289
217 | . 76
2. 14
3. 03
8 61. 17
2. 52 | | Other counties (Dawson, Golden
Valley, and Valley) | | 5, 386
5, 123 | 56
12 | 6 | | 5, 446
5, 141 | 7, 000
10, 000 | 1. 29 | 8
4 | 2 | 3 | 11
7 | 135
147 | 2. 52
3. 66
5. 00 | | Total, 1934 Total, 1933 | 2, 411, 093
2, 037, 102 | 133, 972
99, 776 | 13, 031
11, 516 | 7, 606
3, 813 | | 2, 565, 702
2, 152, 207 | 3, 997, 000
3, 309, 000 | 1. 56
1. 54 | 1, 158
958 | 50
41 | 382
325 | 1, 590
1, 324 | 166
166 | 9. 73
9. 80 | #### NEW MEXICO | | | | | | | | | | | | | | 1 | | |---|---|---|--|---|--------|---|--|--|--|--|--|--|--|---| | Colfax Lincoln and Socorro McKinley Rio Arriba San Juan Sandoval and Santa Fe | 659, 708
700
381, 620
22, 695 | 14, 535
1, 949
16, 735
1, 875
2, 473
3, 089 | 4, 426
1, 256
15, 095
15
4, 015
3, 222 | 2, 884
100
26, 298
202
 | | 681, 553
4, 005
439, 748
24, 787
6, 488
102, 742 | \$1,863,000
16,000
1,131,000
49,000
17,000
326,000 | \$2. 73
3. 99
2. 57
1. 98
2. 62
3. 17 | 765 | | 176
5
212
11
4
79 | 957
23
977
48
14
323 | 159
156
156
202
261
192 | 4. 48
1. 11
2. 89
2. 56
1. 78
1. 66 | | Total, 1934
Total, 1933 | 1, 150, 825
1, 120, 987 | 40, 656
34, 862 | 28, 029
30, 190 | 39, 813
40, 197 | | 1, 259, 323
1, 226, 236 | 3, 402, 000
3, 071, 000 | 2. 70
2. 50 | 1, 855
1, 868 | | 487
472 | 2, 342
2, 340 | 164
168 | 3. 29
3. 12 | | · | | | | NOR' | TH CAR | OLINA | | • | | - | | | | | | Total, 1934 9 | 100 | 2, 290
1, 514 | | 750
500 | | 3, 140
2, 014 | \$9,000
7,000 | \$2.87
3.48 | 12
7 | | 6 3 | 18
10 | 221
175 | . 79
1. 15 | | <u> </u> | | | 1 | ORTH D | AKOTA | (LIGNITE) |) | | | | | | | | | Adams Bowman Burke Burleigh Divide Dunn and Golden Valley Grant Hettinger McLean Mercer Morton Mountrail Oliver Stark Ward Ward | 9, 550
3, 472
141, 715
186, 321
130, 289
130
5, 519
85, 600
393, 102
17, 063
66
1, 324
270, 577
2, 102 | 15, 175 13, 528 15, 622 37, 480 8, 070 4, 233 21, 677 11, 318 33, 037 2, 878 10, 463 6, 351 3, 000 16, 325 115, 952 32, 197 | 209
100
1, 050
726
6, 140
158
799
9, 095
3, 543
200
200
41, 890
70 | 85
61
150
278
55, 278
3, 005
 | | 25, 085
17, 100
158, 387
224, 612
179, 499
4, 424
27, 504
12, 117
128, 010
454, 801
30, 531
6, 437
3, 200
60, 739
387, 003
34, 439 | \$33,000
22,000
227,000
313,000
5,000
41,000
170,000
607,000
43,000
9,000
4,000
506,000
55,000 | \$1. 32
1. 29
1. 43
1. 39
1. 36
1. 13
1. 49
1. 16
1. 33
1. 41
1. 40
1. 25
1. 15
1. 31 | 38
19
49
8
6
10
4
62
252
27
16
2
48
134
53 | 8 4 4 69 40 40 14 25 98 40 4 6 5 3 7 9 2 | 25
6
31
33
20
1
8
5
36
86
8
8
4
2
15
5
5
19 | 71
29
100
122
68
7
32
34
196
378
39
26
66
267
74 | 78
163
215
214
153
206
169
99
142
167
155
176
128
201
221
137 | 4. 51
3. 61
7 7. 36
7 8. 61
7 17. 25
3. 07
5. 08
3. 59
4. 60
7. 20
5. 04
1. 41
2. 78
4. 57
6. 55
3. 40 | | Total, 1934
Total, 1933 | 1, 281, 830
1, 349, 408 | 347, 306
311, 838 | 64, 193
60, 203 | 60, 559
60, 823 | | 1, 753, 888
1, 782, 272 | 2, 363, 000
2, 248, 000 | 1.35
1.26 | 728
645 | 437
364 | 353
292 | 1, 518
1, 301 | 174
173 | 6. 65
7. 93 | ⁷ The output is obtained chiefly from strip pits in which the production per man per day is large. 8 The output of this county is obtained chiefly from strip pits, in which the production per man per day is large. 9
Moore County. Table 40.—Production, value, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1934—Continued оню | | | | | | | | | | , | | | | | | |--|--|--|---|--|----------------------------------|--|---|---|--|---|--|---|--|--| | | | | Net to | ons | | | Valu | ıe | N | umber of | employ | 96S | | | | · · · · · · · · · · · · · · · · · · · | | | Other sales
to local | | | | | | | Sur | face | | Aver-
age
num- | Aver-
age | | County | Loaded at
mines for
shipment | Commercial sales
by truck
or wagon | trade, or
used by
employees,
or taken
by locomo-
tives at
tipple | Used at
mines for
power
and heat | Made
into
coke at
mines | Total
quantity | Total | Average per ton | Under-
ground | Instrip
pits | All
others | Total | ber of
days
mines
oper-
ated | tons
per
man
per
day | | Athens Belmont. Carroll. Carroll. Columbiana. Coshocton. Gulia and Scioto. Guernsey. Harrison. Hocking. Holmes Jackson Jefferson. Lawrence. Mahoning. Medina. Morgan and Washington. Muskingum Noble. Perry Portage. Stark Summit. Tuscarawas. Vinton. | 144, 801
128, 976
74, 014
1, 134, 090
2, 211, 800
246, 224
163, 282
2, 914, 346
5, 229
162
335, 640
376, 625
434, 132
306, 343
579, 250
23, 656
522, 588
102, 481 | 32, 063
121, 629
57, 808
127, 085
126, 204
6, 150
82, 154
11, 830
29, 171
58, 599
260, 621
43, 251
1, 030
6, 072
35, 290
1, 030
88, 199
3, 506
128, 616
14, 480
376, 582
29, 550
386, 314
22, 987 | 8, 495 117, 313 4, 015 1, 283 3, 679 43 9, 815 10, 027 14, 783 240 61, 738 16, 450 21, 742 4, 098 3, 887 825 3, 734 53, 195 53, 195 54, 195 55, 195 55, 195 563 400 152, 063 | 25, 147
20, 863
1, 566
2, 080
3, 215
 | | 2, 361, 536
6, 073, 853
208, 190
259, 424
207, 112
6, 193
1, 230, 249
2, 223, 484
346, 100
29, 476
550, 891
3, 253, 472
64, 984
120, 526
11, 327
374, 862
378, 680
527, 111
320, 144
711, 746
15, 500
454, 375
30, 330
1, 063, 869
126, 559
10, 571 | \$3, 553, 000
99, 567, 000
399, 000
487, 000
376, 000
1, 279, 000
3, 796, 000
60, 000
481, 000
55, 637, 000
637, 000
637, 000
647, 000
497, 000
1, 248, 000
972, 000
2, 036, 000
23, 000
24, 000 | \$1. 50
1. 58
1. 92
1. 88
1. 82
1. 61
1. 68
1. 85
2. 94
1. 73
2. 05
2. 20
3. 44
1. 76
1. 76
1. 76
1. 75
2. 10
1. 75
2. 10
1. 91
1. 92
2. 27 | 4, 213
6, 468
3416
264
17, 433
1, 281
5520
48
283
3, 606
188
283
16
557
598
482
452
522
1, 085
581
751
739
1390
135
1390 | 12
6
358
18
56
56
93
2
2
78
28
3
18 | 487
930
48
58
59
3
3
129
278
111
14
72
72
72
73
32
36
5
5
73
37
77
95
87
220
7
106
110
204
38
88 | 4,700
7,398
389
446
329
200
1,562
1,917
631
411
4,172
220
23
665
655
609
1,333
44
705
85
1,624
247 | 131
174
165
189
187
188
195
211
138
171
147
180
128
197
209
150
209
131
141
168
196
196
196
196 | 3. 82
4. 72
3. 24
3. 36
1. 64
5. 67
2. 16
4. 16
4. 13
2. 21
2. 28
3. 73
3. 80
3. 79
2. 10
3. 90
2. 27
4. 08
4. 08
4. 11 | | Total, 1934 | 17, 813, 518
17, 248, 755 | 2, 239, 110
1, 744, 816 | 511, 540
476, 418 | 126, 396
118, 774 | | 20, 690, 564
19, 588, 763 | 34, 774, 000
23, 549, 000 | 1. 68
1. 20 | 24, 811
22, 110 | 776
538 | 3, 660
2, 794 | 29, 247
25, 442 | 167
169 | 4. 23
4. 55 | ## OKLAHOMA | | | | | | , | | | | | | | i | | | |------------------------------|-------------|---------|--------|---------|--------------|-------------|-------------|--------|--------|-----|-----|--------|-----|---------| | Coal | 32, 271 | 6, 177 | 135 | 330 | l | 38, 913 | \$117,000 | \$3.01 | 82 | | 11 | 93 | 173 | 2. 42 | | Craig and Rogers | 18, 776 | 3, 075 | 30 | 1,000 | | 22, 881 | 35,000 | 1. 53 | 7 | 12 | 3 | 22 | 206 | 7 5. 04 | | Haskell | 100, 589 | 962 | 157 | 1,827 | | 103, 535 | 187,000 | 1.81 | 89 | 27 | 21 | 137 | 152 | 7 4. 97 | | Latimer | 68, 664 | 10 | | 408 | | 69, 082 | 163,000 | 2.36 | 179 | | 30 | 209 | 126 | 2.63 | | Lot 1016 | 338, 485 | 3, 266 | 1, 153 | 4, 512 | | 347, 416 | 1,008,000 | 2.90 | 997 | | 213 | 1, 210 | 116 | 2.48 | | Muskogee | 9, 106 | 1,056 | 1,005 | 5 | | 11, 172 | 21,000 | 1.88 | 33 | 26 | 7 | 66 | 65 | 2.61 | | Okmulgee | 177, 600 | 7, 376 | 185 | 685 | | 185, 846 | 351,000 | 1.89 | 530 | 3 | 76 | 609 | 91 | 3. 37 | | Pittsburg | 168, 994 | 3, 154 | 657 | 5, 174 | | 177, 979 | 475,000 | 2.67 | 506 | | 91 | 597 | 144 | 2.07 | | Tulsa | 94, 701 | 11,640 | 4,930 | 2,705 | | 113, 976 | 218,000 | 1.91 | 95 | 45 | 16 | 156 | 159 | 7 4. 61 | | Other counties (McIntosh and | | i i | | | | | | | 1 | | | | | | | Wagoner) | 129, 413 | 6,022 | 1,694 | . 360 | | 137, 489 | 271,000 | 1. 97 | | 126 | | 126 | 170 | 7 6. 40 | | Total, 1934 | 1, 138, 599 | 42, 738 | 9,946 | 17,006 | | 1, 208, 289 | 2, 846, 000 | 2, 36 | 2, 518 | 239 | 468 | 3, 225 | 124 | 3. 02 | | Total, 1933 | 1, 184, 254 | 29, 354 | 6, 585 | 18, 051 | | 1, 238, 244 | 2, 616, 000 | 2. 11 | 2, 299 | 236 | 439 | 2,974 | 128 | 3, 26 | ## PENNSYLVANIA (BITUMINOUS) | Allegheny | 11, 060, 339 | 1, 763, 501 | 986, 503 | 67, 351 | | | \$25, 023, 000 | \$1.80 | 13, 715 | 4 | 1, 531 | 15, 250 | 206 | 4.42 | |------------------------------|--------------|-------------|-------------|----------|-------------|--------------|----------------|--------|----------|---------|---------|-------------|-----|-------| | Armstrong | 2, 425, 838 | 64, 486 | 40, 243 | 1,039 | | 2, 531, 606 | 4, 311, 000 | 1, 70 | | | 490 | 4, 107 | 146 | 4, 21 | | Beaver | 2, 393 | 68, 611 | 23, 757 | 99 | | 94, 860 | 243, 000 | 2, 56 | 214 | | 36 | 250 | 160 | 2, 38 | | Bedford | 153, 822 | 82, 394 | 156, 009 | 811 | 9, 415 | 402, 451 | 923, 000 | 2, 29 | 687 | | 92 | 779 | 164 | 3, 14 | | Blair | 63, 467 | 133, 533 | 1, 373 | 2, 695 | 1,065 | 202, 133 | 431,000 | 2. 13 | 471 | | 115 | 586 | 157 | 2. 20 | | Butler | 522, 740 | 145, 006 | 6,743 | 603 | -, | 675, 092 | 1, 294, 000 | 1. 92 | 1, 183 | | 160 | 1,343 | 159 | 3, 15 | | Cambria | 11, 270, 206 | 371, 754 | 662, 050 | 138, 484 | 55, 868 | 12, 498, 362 | 24, 092, 000 | 1. 93 | 16, 997 | 2 | 2, 452 | 19, 451 | 185 | 3, 48 | | Centre | 362, 311 | 105, 168 | 16, 042 | 4 040 | 00,000 | 484, 864 | 913,000 | 1.88 | 925 | | 110 | 1,035 | 173 | 2, 72 | | Clarion | 1, 210, 643 | 91, 595 | 1, 542 | | | 1, 305, 763 | 2, 071, 000 | 1.59 | 1,834 | 25 | 238 | 2,097 | 193 | 3, 22 | | Clearfield | 2, 941, 374 | 73, 546 | 46, 735 | | | | 5, 495, 000 | 1.79 | 5, 201 | 25
2 | 628 | 5, 831 | 161 | 3. 27 | | Olinton | 12, 286 | 43, 977 | 5, 263 |
983 | | | 116,000 | 1.86 | 105 | | 21 | 132 | 168 | 2. 82 | | ClintonElk. | 12, 200 | | | 15, 996 | | | | 1.79 | 1,328 | " | 154 | 1, 482 | 179 | 3. 07 | | EIK | 749, 971 | 40, 649 | 8, 499 | | | 815, 115 | 1, 459, 000 | | | 69 | | 17, 492 | 149 | 4.58 | | Fayette | 10, 897, 911 | 180, 522 | 92, 071 | 120, 281 | 636, 797 | 11, 927, 582 | 23, 767, 000 | 1.99 | 15,060 | | 2, 363 | | | | | Greene | 3, 713, 320 | 8,829 | 14, 504 | 17, 526 | | 3, 754, 179 | 7, 112, 000 | 1.89 | | | 674 | 4, 411 | 189 | 4.49 | | Huntingdon | 456, 896 | 51, 928 | 4, 595 | 12, 024 | | 525, 443 | 1, 178, 000 | 2. 24 | 912 | | 73 | 985 | 199 | 2. 68 | | Indiana | 1 0,830,040 | 43, 656 | 230, 082 | 51, 209 | 28,758 | 6, 189, 751 | 10, 433, 000 | 1.69 | | | 919 | 7,909 | 181 | 4, 32 | | Jefferson | 1,719,828 | 71,750 | 5, 520 | 8, 202 | | 1,805,300 | 3, 204, 000 | 1.77 | 2, 590 | | 351 | 2,941 | 188 | 3. 27 | | Lawrence | 130, 717 | 52, 370 | 4,619 | 12, 195 | | 199, 901 | 465, 000 | 2.33 | 393 | | 70 | 463 | 191 | 2. 26 | | Lycoming | 16, 488 | 37, 704 | 20 | | | 54, 212 | 116,000 | 2.14 | 98 | | 19 | 117 | 177 | 2.62 | | McKean | | 13, 866 | 6 | | 1 | 13, 872 | 26,000 | 1.87 | 33 | | 8 | 41 | 189 | 1.79 | | Mercer | 154, 432 | 113, 653 | 2, 030 | 11, 980 | | | 632,000 | 2, 24 | 479 | | 83 | 562 | 211 | 2.37 | | Somerset | | 61, 419 | 68, 520 | 94, 303 | | 5, 918, 908 | 10, 825, 000 | 1.83 | 7, 462 | 4 | 1,097 | 8, 563 | 193 | 3, 58 | | Tioga | 123, 067 | 63, 300 | 15, 060 | 5, 264 | | 206, 691 | 627, 000 | 3.03 | 502 | | 84 | 586 | 173 | 2.04 | | Venango | 5, 264 | 12, 723 | | 0,202 | | 17, 987 | 41,000 | 2, 28 | 31 | | 8 | 39 | 177 | 2, 60 | | Washington | | 272, 443 | 150, 708 | 33, 445 | | 13, 644, 470 | 24, 132, 000 | 1.77 | 15, 121 | 104 | 1,692 | 16, 917 | 187 | 4, 30 | | Westmoreland | 7, 812, 791 | 509, 926 | 254, 204 | 93, 410 | | 9, 075, 415 | 16, 005, 000 | 1.76 | 10, 620 | 44 | 1,756 | 12, 420 | 169 | 4. 32 | | Other counties (Bradford and | 1,012,101 | 000, 020 | 201, 201 | 30, 110 | 100,001 | 0,010,110 | 10,000,000 | 1 | 10, 020 | | 1,,00 | 12, 120 | 100 | 1,02 | | Fulton) | 171, 569 | 15, 245 | | 274 | | 187, 088 | 437, 000 | 2, 34 | 263 | 1 | 27 | 290 | 231 | 2, 80 | | • | l ———— | | | | | | | | | | | | | | | Total, 1934 | 80, 696, 259 | 4, 493, 554 | 2, 796, 698 | | 1, 136, 987 | 89, 825, 875 | 165, 371, 000 | 1.84 | 110, 568 | 260 | 15, 251 | 126, 079 | 179 | 3.98 | | Total, 1933 | 71, 326, 491 | 3, 395, 888 | 2, 868, 023 | 666, 261 | 1, 039, 281 | 79, 295, 944 | 108, 418, 000 | 1.37 | 101, 593 | 226 | 13,634 | 115, 453 | 162 | 4. 24 | | | | | | | | | | | | | | | | | $^{^7}$ The output is obtained chiefly from strip pits, in which the production per man per day is large. Table 40.—Production, value, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1934—Continued | DAKOTA | | |--------|--| | | | | | | | | | | | `. | | Net to | ons | | | Valu | ıe | N | umber o | f employ | ees | | | |---|--|---|---|---|--------------------------|--|--|---|--|-----------------|---|---|--|---| | County | | Commer- | Other sales
to local
trade, or | Used at | Made | | | | | Sur | face | | Aver-
age
num-
ber of | Aver-
age
tons | | | Loaded at
mines for
shipment | cial sales
by truck
or wagon | used by
employees,
or taken
by locomo-
tives at
tipple | mines for
power
and heat | into
coke at
mines | Total
quantity | Total | Aver-
age
per
ton | Under-
ground | Instrip
pits | All
others | Total | days
mines
oper-
ated | per
man
per
day | | Dewey | | 13, 730
1, 225
1, 438
5, 782 | 260
77 | 10
10
30 | | 30, 375
1, 485
1, 448
5, 889 | \$56,000
2,000
4,000
8,000 | \$1.84
1.35
2.76
1.36 | 4
6
11 | 29
2
7 | 24
2
1 | 53
6
8
19 | 176
50
138
120 | 3. 24
4. 99
1. 33
2. 58 | | bach) | 16, 785
33, 610 | 3, 050
25, 225
22, 516 | 347
3, 200 | 50
49 | | 3, 210
42, 407
59, 375 | 76, 000
104, 000 | 1.87
1.79
1.75 | 21
20 | 3
41
93 | 29
34 | 91
147 | 164
152
100 | 3. 9
3. 0
4. 0 | | | | | | 1 | ENNESS | EE | 1 227 | | | | | | | | | Anderson. Bledsoe. Campbell Claiborne. Clumberland Fentress. Grundy Hamilton. Morgan. Morgan. Overton. Other counties (Rhea, Roane, | 766, 449
15, 900
1, 029, 554
690, 554
9, 359
285, 473
286, 610
1, 233
293, 039
258, 892 | 7, 244
1, 800
25, 334
1, 108
5, 026
400
825
58, 367
17, 732
6, 566
5, 936 | 7, 851
5, 000
5, 025
10, 562
3, 584
2, 728
1, 983
3, 915 | 6, 376
200
3, 697
6, 062
1, 259
11, 412
1, 140
400
8, 398 | 6, 277 | 787, 920
22, 900
1, 063, 610
708, 286
15, 644
300, 869
297, 580
61, 772
315, 086
280, 081
5, 936 | \$1, 355, 000
57, 000
2, 058, 000
1, 217, 000
21, 000
440, 000
571, 000
125, 000
656, 000
498, 000
12, 000 | \$1. 72
2. 49
1. 93
1. 72
1. 34
1. 46
1. 92
2. 02
2. 08
1. 78
2. 02 | 802
26
1, 467
1, 033
54
324
466
161
491
635
25 | | 264
7
341
154
20
81
99
38
127
106
6 | 1, 066
33
1, 808
1, 187
74
405
565
199
618
741
31 | 187
227
174
176
110
223
168
149
208
237 | 3. 96
3. 05
3. 38
1. 92
3. 34
3. 13
2. 09
2. 45
1. 59 | | Scott, Sequatchie, Van Buren,
and White) | 229, 739 | 26, 203 | 8, 390 | 11,774 | | 276, 106 | 504, 000 | 1.83 | 508 | | 73 | 581 | 162 | 2. 93 | | Total, 1934
Total, 1933 | 3, 866, 802
3, 574, 753 | 156, 541
94, 243 | 49, 038
45, 363 | 50, 907
44, 311 | 12, 502
16, 091 | 4, 135, 790
3, 774, 761 | 7, 514, 000
5, 255, 000 | 1.82
1.39 | 5, 992
5, 935 | | 1, 316
1, 116 | 7, 308
7, 051 | 185
161 | 3. 05
3. 33 | | | Bituminous: Brewster, Palo
Pinto, and Webb | 24, 417 | 4,058 | 26 | 2, 642 | | 31, 143 | \$84,000 | \$2.70 | 191 | | 69 | 260 | 166 | 0. 72 | |--------|---|--|--|---|---|----------------------|--|---|--|---|----------|---|--|---|--| | 92135- | Total bituminous, 1934 | 24, 417
16, 347 | 4, 058
1, 490 | 26
2, 908 | 2, 642
2, 046 | | 31, 143
22, 791 | 84, 000
59, 000 | 2. 70
2. 59 | 191
178 | | 69
64 | 260
242 | 166
100 | .72
.94 | | 8 | Lignite: Anderson and Henderson Bastrop, Bexar, and Milam Harrison, Titus, and Wood | 486, 222
164, 178
45, 990 | 395
75
23, 355 | 64
11 | 3, 448
2, 316
2, 092 | | 490, 129
166, 580
71, 437 | 851, 000
112, 000
98, 000 | 1: 74
. 67
1. 37 | 283
125
68 | - 35 | 13
9
12 | 296
169
80 | 220
137
152 | 7. 54
7. 18
5. 89 | | 23 | Total lignite, 1934
Total lignite, 1933 | 696, 390
776, 812 | 23, 825
15, 167 | 75
47 | 7, 856
7, 061 | | 728, 146
799, 087 | 1, 061, 000
774, 000 | 1. 46
. 97 | 476
472 | 35
42 | - 34
47 | 545
561 | 184
189 | 7. 26
7. 55 | | | State total, 1934
State total, 1933 | 720, 807
793, 159 | 27, 883
16, 657 | 101
2, 955 | 10, 498
9, 107 | | 759, 289
821, 878 | 1, 145, 000
833, 000 | 1, 51
1, 01 | 667
650 | 35
42 | 103
111 | 805
803 | 178
162 | 5. 30
6. 32 | | • | | | | * | | UTAH | | | | | | | | | | | | Carbon
EmerySummit | 2, 070, 810
138, 993
29, 630 | 43, 760
17, 201
516 | 13, 035
1, 452 | 3, 474
513 | 25, 153 | 2, 156, 232
158, 159
30, 146 | \$4, 234, 000
306, 000
60, 000 | \$1.96
1.93
1.99 | 1,886
114
44 | | 610
48
8 | 2, 496
162
52 | 173
158
168 | 4. 99
6. 19
3. 45 | | | Other counties (Grand, Iron,
Kane, Sevier, and
Uintah) | 54, 459 | 1, 611 | 3, 241 | 2, 335 | | 61, 646 | 146, 000 | 2. 37 | 71 | | 26 | 97 | 150 | 4. 23 | | | Total, 1934
Total, 1933 | 2, 293, 892
2, 526, 233 | 63, 088
100, 139 | 17, 728
16, 574 | 6, 322
10, 124 | 25, 153
21, 916 | 2, 406, 183
2, 674, 986 | 4, 746, 000
5, 109, 000 | 1. 97
1. 91 | 2, 115
2, 159 | | 692
747 | 2, 807
2, 906 | 171
176 | 5. 00
5. 23 | | | | | | | | VIRGINI | A | | | | | | | | | | | Buchanan Dickenson Lee Montgomery and Pulaski Russel Scott Tazewell Wise | 573, 131
1, 161, 309
1, 096, 124
190, 086
752, 580
2, 643, 273
2, 641, 671 | 537
10, 582
936
8, 452
500
41, 201
16, 322 | 85
13, 298
15, 660
6, 841
9, 934
9, 003
25, 015 | 46
867
1,000
4,140
565
279
21,879 | 131, 275 | 573, 262
1, 176, 101
1, 123, 366
202, 003
771, 531
500
10 2, 693, 756
2, 836, 162 | \$897, 000
1, 860, 000
2, 014, 000
597, 000
1, 227, 000
1, 000
5, 044, 000
4, 735, 000 | \$1. 56
1. 58
1. 79
2. 96
1. 59
2. 00
1. 87
1. 67 | 653
997
1, 460
576
784
4
2, 502
3, 143 | | 105
187
302
146
217
609
522 | 758 1, 184 1, 762 722 1, 001 4 3, 111 3, 665 | 169
239
190
148
179
60
226
194 | 4. 49
4. 15
3. 36
1. 89
4. 31
2. 08
3. 84
3. 99 | | | Total, 1934
Total, 1933 | 9, 058, 264
7, 892, 547 | 78, 530
42, 449 | 79, 836
97, 730 | 28, 776
24, 839 | 131, 275
121, 077 | 9, 376, 681
8, 178, 642 | 16, 375, 000
10, 029, 000 | 1. 75
1. 23 | 10, 119
8, 134 | | 2, 088
1, 627 | 12, 207
9, 761 | 200
184 | 3. 84
4. 55 | ¹⁹ Includes the Tazewell County operations for 1 mine producing in both Tazewell County, Va., and McDowell County, W. Va. All tonnage for this mine in earlier years was tabulated in McDowell County, W. Va. Totalina dajoka i d Table 40.—Production, value, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1934—Continued ## WASHINGTON | | | | Net to | ns | | | Valu | Number of employees | | | | | | | |--|--|---|--|---|-------------------------|---|---|---|--|-----------------|--|---|--|---| | | 1 | | Other sales
to local | | | | | | | Sur | face | | Aver-
age
num- | Aver- | | County | Loaded at
mines for
shipment | Commercial sales
by truck
or wagon | trade, or
used by
employees,
or taken
by locomo-
tives at
tipple | Used at
mines for
power
and heat | Made into coke at mines | Total
quantity | Total | Aver-
age
per
ton | Under-
ground | Instrip
pits | All
others | Total | mines n | per
man
per
day | | King Kittitas Lewis Pierce Other counties (Thurston and | 292, 302
523, 471
20, 151
123, 671 | 209, 052
26, 133
21, 351
9, 402 | 4, 335
9, 266
1, 000
2, 552 | 538
7, 108
800
1, 231 | 2, 686 | 506, 227
565, 978
43, 302
139, 542 | \$1, 417, 000
1, 595, 000
100, 000
499, 000 | \$2.80
2.82
2.31
3.58 | 630
569
87
252 | | 167
136
19
78 | 797
705
106
330 | 198
210
95
200 | 3. 20
3. 82
4. 30
2. 11 | | Whatcom) | 100, 100 | 22, 433 | 814 | 4, 595 | | 127, 942 | 391, 000 | 3.06 | 181 | | 42 | 223 | 157 | 3. 66 | | Total, 1934
Total, 1933 | 1, 059, 695
1, 047, 911 | 288, 371
308, 733 | 17, 967
25, 406 | 14, 272
11, 396 | 2, 686
622 | 1, 382, 991
1, 394, 068 | 4, 002, 000
3, 916, 000 | 2. 89
2. 81 | 1, 719
2, 101 | | 442
454 | 2, 161
2, 555 | 193
168 | 3. 32
3. 25 | | | - | | | WE | ST VIRG | INIA | | | | | · | | | · | | Barbour Boone Brooke Clay Fayette Glimer Grant Greenbrier Hancock Harrison Kanawha Lewis Logan McDowell " Marion Marshall Mason Meroer | 922, 771
2, 697, 587
488, 813
706, 712
10, 576, 164
23, 560
7, 365
1, 684, 053
3, 000, 037
5, 709, 498
13, 253, 434
16, 851, 041
6, 881, 995
546, 272
23, 992
3, 257, 215 | 7, 376
357
43, 104
1, 488
8, 847
2, 970
2, 840
21, 900
17, 195
114, 540
33, 244
7, 700
4, 088
20, 824
19, 228
88, 556
41, 737
6, 463 | 11, 217
12, 216
599, 990
14, 012
192, 370
85
18, 822
3, 467
18, 849
73, 682
6, 941
87, 478
183, 265
52, 055
149, 386 | | 230, 337 | 941, 380
2, 718, 142
1, 132, 062
739, 304
11, 072, 410
26, 634
11, 005
1, 739, 539
21, 907
3, 143, 545
5, 832, 167
14, 641
13, 355, 114
11 17, 170, 950
6, 902, 93, 701
69, 329
3, 226, 136 | \$1, 331, 000 4, 628, 000 1, 990, 000 1, 209, 000 20, 773, 000 22, 000 3, 008, 000 44, 200 4, 200 4, 200 9, 386, 000 34, 000 0, 986, 000 31, 380, 000 10, 324, 000 11, 324, 000 95, 000 5, 905, 000 | \$1. 41
1. 67
1. 76
1. 64
1. 88
1. 76
2. 00
1. 73
1. 92
1. 47
1. 61
1. 57
1. 57
1. 57
1. 57
1. 57
1. 79 | 1, 221
2, 326
1, 031
10, 701
72
5, 22
9, 771
15, 163
2, 989
143
2, 989 | 34 2 | 147
555
224
1,649
14
12
221
12
434
928
1,780
3,651
807
167
222
2888 | 1, 368
2, 861
1, 255
12, 350
86
68
1, 804
3, 493
6, 189
27
11, 561
18, 848
6, 713
1, 146
3, 847 | 123
193
186
228
221
98
61
198
178
138
204
196
190
180
155
145 | 5. 622
4. 922
4. 84
4. 25
4. 06
3. 15
2. 66
4. 87
2. 01
6. 51
4. 63
5. 91
4. 75
5. 78
4. 47
2. 90
4. 07 | | Mineral Mingo. Monongalia. Nicholas. Ohio. Preston. Putnam. Raleigh. Randolph. Taylor. Tucker. Upshur. Webster. Wyoming. Other counties (Braxton, Summers, and Wayne). Total, 1934 " Total, 1934 " | 1,880,548
684,023
352,737
12,496,955
349,526
849,385
492,97
169,601
837,638
1,623,007
13,081 | 26, 403
1, 878
81, 589
10, 049
164, 910
9, 846
5, 491
24, 635
29, 847
18, 578
6, 152
10, 043
20, 580
860, 344
817, 841 | 7, 2425
27, 251
23, 679
554
43, 830
2, 298
109, 535
22, 396
3, 797
10, 088
126
7, 650
10, 375
17
1, 716, 415
1, 648, 139 | 790
6, 799
4, 303
10, 191
104, 239
9, 623
1
22, 756
3, 785
3, 884
28, 001 | 281, 191 187, 271 | 3, 229, 096
4, 956, 701
77, 440
2, 093, 591
757, 022
358, 228
12, 735, 364
411, 392
871, 761
525, 875
181, 294
855, 324
1, 671, 426
33, 678 | 549,000 5,101,000 6,753,000 16,753,000 1,203,000 1,167,000 533,000 24,030,000 21,141,000 1,141,000 1,536,000 3,256,000 59,000 167,104,000 107,124,000 | 1.78
1.58
1.38
2.16
1.53
1.54
1.49
1.89
1.73
1.31
1.90
1.80
1.95
1.75 | 471
8, 153
4, 341
146
2, 266
1, 320
15, 122
11, 1988
725
640
206
898
1, 665
79 | 36 20 | 92
621
703
42
180
180
111
2,038
129
100
69
440
356
16
16,413
14,730 | 563
3,774
5,044
188
2,426
1,623
13,236
864
982
709
202
1,038
2,021
95
105,906
92,472 | 214
176
179
134
230
163
214
154
166
169
128
216
198 | 2.56
4.87
5.49
3:06
3:76
3:30
3.53
4.49
3.12
5.61
3.81
4.17
5.11
4.73
5.20 | |--|--|--
---|---|-------------------|--|---|--|---|-------------|--|---|---|--| | | | <u> </u> | | | WYOMIN | IG. | | | | | | | | | | Campbell and Crook | 23, 334
153, 822
369, 462
408, 693
2, 633, 655
6, 445 | 12, 907
28, 849
8, 741
5, 453
9, 817
6, 656
9, 259
30, 998
2, 945
7, 720 | 458
3, 377
45
2, 034
2, 212
3, 253
21, 735
19, 470
52, 584
67, 954 | 16, 629
4, 065
21, 116
286
10, 486
2, 321
69, 856
200
132, 901 | | 116, 250
417, 632
8, 786
32, 852
186, 789
9, 154
463, 747
2, 725, 926
14, 365
4, 367, 961
4, 013, 167 | \$136,000
1,008,000
14,000
66,000
444,000
906,000
648,000
6,321,000
34,000
9,591,000
8,636,000 | \$1. 17
2. 41
1. 59
2. 01
2. 38
1. 53
2. 31
1. 40
2. 32
2. 37
2. 20
2. 15 | 236
12
30
235
10
333
261
1,790
22
2,936
2,893 | 20
5
 | 10
90
2
14
56
2
114
74
431
6 | 37
326
19
44
291
12
447
335
2, 221
28
3, 760
3, 753 | 250
202
161
98
136
172
181
143
203
175 | 12. 56 6. 35 2. 87 7. 62 4. 72 4. 43 4. 86 9. 68 6. 06 2. 94 | ⁶Much of the output of the State is obtained from strip pits or by the use of loading machines, in which types of operations the production per man is large. ¹¹ Includes only the McDowell County operation for 1 mine producing in both Tazewell County, Va., and McDowell County, W. Va. All tonnage for this mine in earlier years was tabulated in McDowell County, W. Va. #### COAL PRODUCED AND CONSUMED IN ALASKA Table 41.—Coal produced and consumed in Alaska, 1929-34 | | chiefly | in Alaska,
subbitumi-
and lignite | Imported
from States,
chiefly bi- | Imported
from foreign
countries,
chiefly bi- | Total coal | |--|---|--|---|--|--| | Year | Net tons | Value | tuminous
coal from
Washing-
ton ³ (net
tons) | tuminous
coal from
BritishCo-
lumbia ³
(net tons) | consumed
(net tons) | | 1929
1930
1931
1931
1932
1933
1934 | 100, 600
120, 100
105, 900
102, 700
96, 467
107, 508 | \$528, 000
631, 000
556, 000
514, 000
481, 000
451, 000 | 36, 693
37, 128
30, 772
28, 422
21, 524
28, 317 | 27, 073
23, 892
17, 796
12, 463
14, 009
14, 675 | 164, 366
181, 120
154, 468
143, 580
132, 000
150, 505 | Compiled by the Alaska Branch of the U. S. Geological Survey. Compiled from records of the Bureau of Foreign and Domestic Commerce. # DETAILED STATISTICS OF ANTHRACITE AND SEMIANTHRACITE OUTSIDE OF PENNSYLVANIA Table 42 analyzes the production of anthracite and semianthracite from fields outside of Pennsylvania. Although statistics for these coals are included with those for bituminous coal in the primary tables of this report they are shown here separately. For a detailed analysis of the hard-coal industry outside of Pennsylvania, see Coal in 1930, pp. 721 to 726. Table 42.—Production, value, men employed, days mines operated, and output per man per day at the principal hard-coal mines outside of Pennsylvania in 1934 | | Virginia | Arkansas,
Colorado,
and New
Mexico | Total | |---|-----------|---|----------------| | Production: Loaded at mines for shipmentnet tons | 190, 086 | 171,004 | 361, 090 | | Commercial sales by truck or wagondodododo | 936 | 2, 261 | 3, 197 | | by locomotives at tipplenet tons_ | 6, 841 | 446 | 7, 28 7 | | Used at mines for power and heatdo | 4, 140 | 4, 341 | 8, 481 | | Total productiondo | 202, 003 | 178, 052 | 380, 055 | | TotalAverage per ton | \$598,000 | \$634,000 | \$1, 232, 000 | | | \$2,96 | \$3.56 | \$3, 24 | | Number of employees: Underground | 576 | 771 | 1,347 | | | 146 | 171 | 317 | | Total employees. Average number of days mines operated. Average production per man per daynet tons. | 722 | 942 | 1, 664 | | | 148 | 96 | 118 | | | 1.89 | 1.97 | 1. 93 | ## Part 2.—PENNSYLVANIA ANTHRACITE By H. L. BENNIT, W. H. YOUNG, AND F. G. TRYON The essential facts of the statistical record for Pennsylvania anthracite in 1934 are presented in the following tables. The reader is referred to the chapter on coal in the Minerals Yearbook, 1935, pages 613 to 648, for a discussion of the developments in the anthracite industry in 1934. The salient developments in the anthracite industry during the past 5 years are summarized in table 1A. From this table it will be seen that while the production of anthracite during 1934 increased 15.4 percent over the output in 1935, it was still 17.6 percent below the production of 1930. The value of total production in 1934 was 18.1 percent above the 1933 figure but 31.1 percent below 1930. average value obtained in 1934 on all coal (\$4.27 per ton, table 15A) advanced 2.4 percent over the 1933 average of \$4.17 but was 16.4 percent less than the average of \$5.11 obtained in 1930. Producers' stocks increased 73.7 percent during 1934, while exports and imports rose 25.4 and 4.8 percent, respectively. Although the average number of men employed increased only 4.2 percent compared with those employed in 1933, a gain of 25 days (13.7 percent) was made in working time. Tonnage mined from strip pits increased 17.6 percent; that loaded by machines underground advanced 41.6 percent, while hand mining rose 14 percent. 307 ## STATISTICAL SUMMARY Table 1A.—Statistical trends of the Pennsylvania anthracite industry, 1930-34 | | 1930 | 1931 | 1932 | 1933 | 1934 | |---|--------------------------|-------------------------------|----------------------------|-----------------------------|----------------------| | Production: | | | | | | | Loaded at mines for shipment: | FO 000 000 | 1 51 004 001 | . 40 004 001 | 44 200 200 | 40 405 504 | | Breakersnet tonsdo | 59, 839, 838
994, 199 | 1 51, 264, 291
1, 295, 190 | 1 42, 994, 291
648, 086 | 41, 780, 739
1, 231, 984 | 49, 435, 764 | | Dredges do do | 368, 020 | 199, 268 | 252, 346 | 322, 686 | 966, 804
353, 754 | | Sold to local trade and used by em- | 000,020 | 100, 200 | 202, 010 | 022, 000 | 000, 102 | | ployeesnet tons_ | 3, 144, 434 | 2, 901, 117 | 2, 810, 337 | 3, 249, 552 | 3, 285, 936 | | ployeesnet tons_
Used at collieries for power and heat | ' ' | | | 1 | ,, | | net tons | 5, 038, 346 | 3, 985, 786 | 3, 150, 161 | 2, 956, 383 | 3, 126, 033 | | Total productiondo | 69, 384, 837 | 59, 645, 652 | 49, 855, 221 | 49, 541, 344 | 57, 168, 291 | | Value at breaker, washery, or dredge
Average sales realization per net ton on
breaker shipments: | \$354, 574, 000 | \$296, 355, 000 | \$222, 375, 000 | \$206, 718, 000 | \$244, 152, 000 | | Lump and broken | \$7.02 | \$6.74 | | | \$5.43 | | Egg | \$7. 26 | \$7.01 | \$6.17 | \$5.90 | \$5.88 | | StoveChestnut | \$7.68 | \$7.37 | | \$6.25 | \$6, 23 | | Pas | 64 10 | \$7. 21
\$4. 76 | \$6. 26
\$4. 55 | \$5.95
\$4.22 | \$5. 98
\$4. 40 | | Total domestic | \$7.05 | \$6.87 | \$6.09 | \$4. 22
\$5. 78 | \$5.80 | | Buckwheat No. 1 | \$2.49 | \$2.79 | | | \$2.86 | | Buckwheat No. 2 (rice) | \$1.51 | \$1.52 | | | | | Buckwheat No. 3 (barley) | \$1. 13 | \$1.03 | \$0.97 | \$1.00 | \$0.97 | | Total domestic Buckwheat No. 1 Buckwheat No. 2 (rice) Buckwheat No. 3 (barley) Boiler | \$0.38 | \$0.29 | \$0.81 | | \$1.25 | | Other, including Buckwheat No. 4
Total steam | \$0.98 | \$0.57 | \$0. 55 | | \$0.71 | | Total all sizes | \$1.87
\$5.52 | \$2.00
\$5.35 | | | \$1. 98 | | Total, all sizes
Percentage by sizes in total breaker ship- | φυ.,υ2 | 40. 30 | 44. 74 | \$4. 46 | \$4. 53 | | ments: | ¥ | 100 | | | | | Lump and brokenpercent_ | 0.5 | 0.3 | 0.3 | 0.4 | 0.3 | | Eggdo | 10.5 | 9.6 | 9.1 | 8.5 | 7.9 | | Stovedo | 25. 7 | 23. 6 | 23. 7 | 22. 8 | | | Chestnutdo | 25. 7
8. 2 | 25. 0 | | | | | Pea do do Duckwheat No. 1 do Buckwheat No. 2 (rice) do Buckwheat No. 3 (barley) do Buckwheat No. 3 (barley) do Buckwheat
No. 3 (barley) do Budkwheat No. 3 (barley) do Budkwheat No. 3 (barley) do Budkwheat No. 3 (barley) | 70.6 | 10.3
68.8 | | 10. 2
65. 9 | 10. 6
66. 7 | | Buckwheat No. 1 do | 14.0 | 14. 9 | 15. 5 | 15. 2 | | | Buckwheat No. 2 (rice)do | 7.6 | 8.6 | 8.6 | 8.9 | 8.6 | | Buckwheat No. 3 (barley)do | 6.8 | 6. 7 | 7.2 | 7.8 | 7.6 | | Boiler do Other, including Buckwheat No. 4 | 0.1 | 0. 2 | 0. 2 | 0.1 | (2) | | Other, including Buckwheat No. 4 | ا م | | | | | | Total steam | 0. 9
29. 4 | 0. 8
31. 2 | 1. 2
32. 7 | 2. 1
34. 1 | 1. 8
33. 3 | | Total steamdo
Producers' stocks on Dec. 31 3_net_tons_ | 2, 975, 000 | 3, 073, 000 | 1 732 000 | 1, 106, 000 | 1, 921, 000 | | Exportsdodo | 2, 552, 000 | 1, 778, 000 | 1, 732, 000
1, 303, 000 | 1, 035, 000 | 1, 298, 000 | | Importsdo | 2, 552, 000
675, 000 | 1, 778, 000
638, 000 | 607, 000 | 456,000 | 478,000 | | Importsdo
Consumption (calculated)do | 67, 627, 000 | 58, 408, 000 | 50, 500, 000 | 49, 600, 000 | 55, 500, 000 | | Capacity in operation (calculated)do | 101, 000, 000 | 100, 000, 000 | 94, 000, 000 | 83, 000, 000 | 84, 000, 000 | | Average number of days worked | 208 | 181 | , 162 | 182 | 207 | | lockouts | 112,398 | 570, 664 | 289, 523 | 686, 692 | 774, 856 | | Number of men on strike during year | 18, 202 | 65, 907 | 34, 259 | 50, 948 | 38, 994 | | Average number of men employed | 150, 804 | 139, 431 | 121, 243 | 104, 633 | 109, 050 | | Output per man per daynet tons | 2. 21 | 2.37 | 2. 54 | 2.60 | 2. 53 | | Output per man per yeardo | 460 | 428 | 411 | 473 | 524 | | Quantity cut by machinesdo | 1, 410, 123 | 1, 587, 265 | 1, 674, 223 | 1, 648, 249 | 1,981,088 | | Quantity mined by stripping do Quantity loaded by machines underground net tons | 2, 536, 288 | 3, 813, 237 | 3, 980, 973 | 4, 932, 069 | 5, 798, 138 | | ground net tone | 4, 467, 750 | 4, 384, 780 | 5, 433, 340 | 6, 557, 267 | 9, 284, 486 | | Distribution: | 2, 201, 100 | 1,001,100 | 0, 100, 010 | 0, 001, 201 | <i>0</i> , 401, 100 | | Total receipts in New England 4 | | İ | | l | | | net tons | 8, 387, 000 | 7, 064, 000 | 5, 639, 000 | 5, 252, 000 | 5, 992, 000 | | Exports to Canadado | 2, 532, 000 | 1, 772, 000 | 1, 301, 000 | 1, 027, 000 | 1, 266, 000 | | Loaded into vessels at Lake Erie 5 | 1 000 000 | 201 600 | 204 5 | 407 5 | | | | | 761, 0001 | 294, 000 | 495 MM | | | net tons
Receipts at Duluth-Superiordo | 1, 232, 000
461, 000 | 300, 000 | 66,000 | 425, 000
135, 000 | 607, 000
229, 000 | Includes 122,894 tons of coal stored at collieries in 1931 and 33,060 tons in 1932. Less than 0.1 percent. From records of the Anthracite Institute. Figures represent prepared coal on the ground at the breaker. From records of the Massachusetts Department of Labor and Industries, division on the necessaries of From records of the Ore and Coal Exchange. From records of the United States Engineer Office, Duluth, Minn. TABLE 2A.—Salient statistics of monthly developments in the Pennsylvania anthracite industry in 1934 [All tonnage figures represent thousands of net tons] | • | | | - | | | | 1934 | | | | | | 1. | 1933 | |--|--------------------|--------------------|------------------|------------------|------------------------|------------------|------------------|------------------|------------------|--------------------|----------|------------|------------------|------------------| | | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | total | | Production, including mine fuel, local sales, and dredge coal: | | | | | | | | | | | | | | | | Monthly total | 6, 102 | 5, 930 | 6, 394 | 4, 819 | 5, 230 | 4, 168 | 3, 430 | 3, 570 | 3, 962 | 4,711 | 4, 165 | 4, 687 | 57, 168 | 49, 541 | | Monthly total. Average per working day | 231 | 252 | 237 | 201 | 201 | 160 | 137 | 132 | 165 | 181 | 174 | 187 | 188 | 164 | | Shipments, breakers and washeries only: Monthly total, all sizes. | | | | | | | | | | | | | 1 | | | Monthly total, all sizes | 5, 189 | 5, 198 | 5, 355 | 4, 173 | 4, 491 | 3,495 | 2,974 | 3, 110 | 3, 401 | 4,027 | 3, 601 | 4, 214 | 49, 228 | 43,022 | | Distribution: | | l ' | | 40 | | | ^= | | | | ١ . | - | 607 | 425 | | Lake loadings | | | | 42 | 176
68 | 122
64 | 97
33 | 60
20 | 73
30 | 28
6 | 9 8 | | 229 | 135 | | Receipts at Duluth-Superior | | 37 | 28 | 19 | 61 | 57 | 24 | 37 | 61 | 49 | 45 | 71 | 532 | 541 | | New England receipts— | 40 | ,01 | 20 | 18 | 01 | 01 | | 94 | 01 | 20 | 30 | ' ' | 002 | 011 | | By tide (includes imports) | 126 | 104 | 166 | 171 | 154 | 158 | 130 | 109 | 126 | 106 | 144 | 116 | 1,610 | 1,690 | | By tide (includes imports)
By rail | 543 | 459 | 571 | 259 | 323 | 295 | 304 | 246 | 324 | 341 | 347 | 370 | 4.382 | 3, 562 | | Exports | 108 | ,110 | 98 | 79 | 140 | 100 | 92 | 98 | 101 | 136 | 134 | 102 | 1, 298 | 1,035 | | Imports | 42 | 1 33 | 48 | 46 | 25 | 25 25 | 48 | 38 | 56 | 32 | 49 | 36 | 478 | 456 | | Industrial consumption by— | 100 | | *** | *** | 140 | 100 | | *** | 100 | 140 | 144 | 150 | 1 004 | 1 210 | | Railroads (class I only)
Electric-power utilities | 167
141 | 137
150 | 164
138 | 146
124 | 140
137 | 123
150 | 118
154 | 118
158 | 126
137 | 143
151 | 139 | 158
145 | 1,684
1,724 | 1, 513
1, 470 | | Stocks at end of period shown: | 141 | 150 | 100 | 124 | 101 | 100 | 101 | 100 | • 107 | 101 | 100 | 140 | 1,121 | 1, 110 | | Railroads (class I only) | 156 | 156 | 148 | 150 | 150 | 155 | 148 | 145 | 145 | 142 | 141 | 132 | 132 | 156 | | Railroads (class I only)
Electric-power utilities. | 1, 316 | 1, 292 | 1, 309 | 1, 316 | 1,320 | 1, 307 | 1, 318 | 1, 272 | 1, 265 | 1, 285 | 1,305 | 1,250 | 1, 250 | 1, 323 | | Stocks on Lake docks | 215 | 180 | 154 | 143 | 243 | 318 | 377 | 402 | 390 | 396 | 366 | 296 | 296 | 257 | | Retail stocks, 283 representative dealers | 591 | 403 | 386 | 510 | 658 | 709 | 761 | 759 | 786 | 757 | 746 | 702 | 702 | 607 | | Producers' stocks 1 | 725 | 316 | 308 | 690 | 1, 165 | 1, 541 | 1, 769 | 2, 197 | 2, 506 | 2, 673 | 2,540 | 1, 921 | 1, 921 | 1, 106 | | Prices at mines, average per net ton: 2 | A= 0F | | 4= 0= | A0 F0 | 40.05 | 00 =0 | 00 == | A= 00 | A= 0.5 | 0-0- | \$7, 25 | \$7.25 | 00.00 | 00.00 | | Company Stove
Company Buckwheat No. 1 | \$7. 25
\$3. 25 | \$7. 25
\$3. 25 | \$7.25
\$3.25 | \$6.50
\$3.25 | \$6.25
\$3.25 | \$6.50
\$3.25 | \$6.75
\$3.25 | \$7.00
\$3.25 | \$7.25
\$3.25 | \$7. 25
\$3. 25 | \$3, 25 | \$3.25 | \$6.98
\$3.25 | \$6.98
\$3.25 | | Ratail prices (average 25 cities). 3 | φο. <i>4</i> 0 | Ģ 3. ∠0 | фэ. <i>2</i> 5 | φο, 40 | φ δ. Δ θ | φο, 20 | Φο. ∡ο | Φ δ. 40 | \$5, 20 | φο. 20 | φο. 20 | φο. 20 | ⊕5. ∠5 | φο. 20 | | Retail prices (average 25 cities): 3 Stove | \$13 44 | \$13, 46 | \$13, 46 | \$13.14 | \$12.53 | \$12,60 | \$12,79 | \$13,02 | \$13, 25 | \$13, 32 | \$13, 25 | \$13. 22 | \$13, 12 | \$13. 18 | | Chestnut | \$13, 25 | \$13. 27 | \$13, 27 | \$12.94 | \$12.34 | \$12.40 | \$12.60 | \$12.83 | \$13.05 | \$13.11 | \$13.04 | \$13.02 | \$12.93 | \$12.97 | | Wholesale prices, index numbers (1926=100.0)4 | 81.5 | 81.2 | 81.2 | 78. 1 | 75.7 | 76.9 | 78.6 | 79. 9 | 81.3 | 82.0 | 82.1 | 82.3 | 80.1 | 82. 2 | | Labor conditions: 4 | | | | | | | | | | | | | | | | Index of employment (1929 average=100.0) | 64.1 | 63.2 | 67. 5 | 58.2 | 63.8 | 57. 5 | 53.6 | 49.5 | 56.9 | 58.5 | 60.7 | 61.6 | 59.6 | 51.7 | | Index of pay-roll totals (1929 average=100.0) | 73.2 | 65.8 | 82.4 | 51.7 | 64.0 | 53. 3 | 42.3 | 39.7 | 47.0 | 48.3 | 51.2 | 52.3 | 55.9 | 45.8 | As reported by the Anthracite Institute. Quoted by trade journals in New York market. Bureau of Labor Statistics, white ash, sidewalk delivery. Bureau of Labor Statistics. #### COMPETITION FROM OTHER FUELS Table 3A.—Total supplies of fuels commonly used for domestic purposes in the United States, 1924 and 1931-34 [Wherever available the figures represent the quantity actually consumed for domestic heating or for heating offices, apartments, hotels, schools, hospitals, etc. Where such figures are not available, but where the fuel is known to be used chiefly for domestic purposes, the total production (or imports) is shown to indicate the trend of growth] | | 1924 | 1931 | 1932 | 1933 | 1934 | |---|--|---|--|--|---| | Solid fuels (net tons) | | , | | | | | Pennsylvania anthracite production: Shipments of domestic sizes | 56, 576, 296 9, 510, 508 11, 160, 695 3, 043, 939 80, 291, 438 4, 017, 785 117, 951 580, 470 38 2, 812, 833 2 1, 400, 000 704, 513 | 35, 437, 946 7, 956, 978 9, 240, 931 2, 901, 117 55, 536, 972 1, 778, 308 637, 951 698, 316 60, 950 8, 376, 652 118, 665 103, 563 34 813, 400 507, 140 | 29, 096, 962
6, 735, 313
8, 029, 388
2, 810, 337
46, 672, 000
1, 303, 355
607, 604
80, 288
9, 422, 343
207, 857
117, 275
24 656, 000
1, 789, 000 | 27, 755, 333
6, 625,
755
8, 954, 321
3, 249, 552
46, 584, 961
1, 034, 562
456, 252
530, 430
42, 395
10, 215, 360
275, 677
160, 873
3498, 000
41, 580, 000 | 33, 269, 922
7, 785, 41;
9, 700, 98;
3, 285, 936
54, 042, 256
1, 297, 610
478, 118
704, 856
10, 174, 114
346, 18;
160, 93;
513, 200
1, 300, 000 | | Bituminous coal for domestic use | (5) | (5) | (5) | (5) | (5) | | Oil (barrels of 42 gallons) | | | | | | | Domestic heating oils: Range oil ⁶ . Other light fuel oils ⁸ . Commercial heating oils ⁹ . Liquefled petroleum gases, domestic | 5, 021, 000
(7)
(7) | 4, 549, 000
24, 848, 000
15, 731, 000
364, 200 | 6, 841, 000
}44, 264, 000
386, 800 | 4 10, 269, 000
50, 140, 000
395, 900 | 15, 756, 000
60, 822, 000
421, 000 | | Gas (million cubic feet) | | | Ì | | | | Natural gas consumed for domestic use •
Manufactured gas sold for domestic and
house-heating purposes | 285, 152
(7) | 380, 897
275, 318 | 385, 887
2 246, 970 | 368, 774
3 226, 557 | 379, 497
233, 500 | ¹ A considerable part of the Buckwheat No. I is used for domestic purposes. 4 Revised. Data not available. Includes furnace oil. ## PRODUCTION, BY WEEKS AND MONTHS The following tables summarize the statistics of the weekly and monthly production of anthracite that are first published in the Bureau of Mines weekly coal reports. Statistics of weekly output are estimated from the records of cars of anthracite loaded by the nine railroads that serve the region. These weekly figures have been adjusted to the annual total ascertained by direct canvass of the operators themselves. ² Partly estimated. ³ Based on figures from Census of Manufactures. ⁸ Between 56,000,000 and 77,000,000 tons a year. ⁶ Oil used for heating houses, hot-water heating, and cooking. [•] Used for heating offices, hotels, apartments, schools, hospitals, and buildings other than houses. Table 4A.—Estimated weekly production of anthracite in 1934, in net tons | Week ended | Weekly
production | Num-
ber of
work-
ing
days | Daily
average | Week ended | Weekly
production | Num-
ber of
work-
ing
days | Daily
average | |---|--|--|--|--|---|--|--| | Jan. 6. Jan. 13. Jan. 20. Jan. 27. Feb. 3. Feb. 10. Feb. 17. Feb. 24. Mar. 3. Mar. 10. Mar. 17. Mar. 31. Apr. 24. Apr. 7. Apr. 14. Apr. 21. Apr. 22. May 5. May 19. May 19. May 19. May 26. June 2. June 9. June 16. June 20. | 1, 677, 000 1, 317, 000 1, 180, 000 1, 127, 000 1, 127, 000 1, 649, 000 1, 648, 000 1, 685, 000 1, 685, 000 1, 145, 000 1, 222, 000 821, 000 1, 258, 000 1, 258, 000 1, 258, 000 1, 258, 000 1, 258, 000 1, 177, 000 1, 177, 000 1, 177, 000 1, 178, 000 1, 178, 000 1, 177, 000 1, 178, 000 1, 177, 000 1, 178, 000 1, 177, 000 1, 178, 0 | 56666656666566666666666666666666666666 | 277, 600
279, 500
219, 500
119, 506
187, 833
202, 833
274, 833
284, 000
274, 667
280, 833
170, 333
278, 000
165, 833
211, 333
246, 500
226, 000
180, 667
184, 500
204, 833
222, 200
175, 500
128, 833
133, 667
189, 833 | July 21 July 28 Aug. 4 Aug. 11 Aug. 18 Aug. 25 Sept. 1 Sept. 8 Sept. 15 Sept. 22 Sept. 29 Oct. 6 Oct. 13 Oct. 20 Oct. 27 Nov. 3 Nov. 10 Nov. 17 Nov. 24 Dec. 1 Dec. 8 Dec. 15 Dec. 29 Jan. 5, 1935 | 825,000 880,000 890,000 655,000 752,000 1,094,000 953,000 1,088,000 925,000 809,000 1,125,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 1,285,000 | 6666666666656565656511 | 137, 167
137, 500
146, 667
115, 000
109, 167
125, 333
170, 000
158, 833
178, 000
154, 167
134, 833
169, 167
197, 000
175, 000
175, 000
175, 033
129, 200
209, 200
209, 200
209, 200
209, 886
180, 800
2 221, 600 | | July 7
July 14 | 654,000 | 5
6 | 109, 000
132, 167 | Total | 57, 168, 000 | 303. 5 | 188, 362 | ¹ Figures represent the output and number of working days in that part of the week included in the calendar year 1934. Figures of total production for the week of January 5, 1935, are 1,108,000 tons. 2 Average daily production for the entire week and not for the working days that fell in the calendar year 1934. Table 5A.—Estimated monthly production of anthracite, 1931-34 1 [Production figures represent thousands of net tons] | | | 1931 | | | 1932 | | 1933 | | | 1934 | | | |---|--|---|---|--|---
---|--|---|--|--|---|---| | Month | Month-
ly pro-
duction | Num-
ber of
work-
ing
days | Daily | Month-
ly pro-
duction | Num-
ber of
work-
ing
days | Daily | Month-
ly pro-
duction | Num-
ber of
work-
ing
days | Daily
aver-
age | Month-
ly pro-
duction | Num-
ber of
work-
ing
days | Daily
aver-
age | | January February March April May June July August September | 6, 183
5, 400
4, 754
5, 709
5, 013
4, 552
3, 960
4, 324
4, 362 | 26
23. 5
26
25
25
26
26
26
26 | 183
228
201
175
152
166
175 | 3, 937
4, 061
4, 838
5, 686
3, 311
2, 576
3, 052
3, 500
4, 151
5, 287 | 25
24. 5
27
25
25
26
25
27
25
25
27 | 157
166
179
227
132
99
122
130
166
212 | 3, 818
4, 287
4, 532
2, 899
2, 975
3, 939
3, 688
4, 409
5, 007
4, 725 | 25
23. 5
27
24
26
26
25
27
25
25 | 153
182
168
121
114
152
148
163
200
189 | 6, 102
5, 930
6, 394
4, 819
5, 230
4, 168
3, 430
3, 570
3, 962
4, 711 | 26
23. 5
27
24
26
26
25
27
24
28 | 231
252
237
201
201
160
137
132
165 | | October
November
December | 6, 561
4, 149
4, 679 | 26
23
26 | 252
180
180 | 4, 315
5, 141 | 24
24
26 | 180
198 | 4, 725
4, 825
4, 437 | 24
25 | 201
178 | 4, 165
4, 687 | 24
25 | 174
187 | | Total | 59, 646 | 303. 5 | 197 | 49, 855 | 304. 5 | 164 | 49, 541 | 302. 5 | 164 | 57, 168 | 303. 5 | 188 | ¹ Production is estimated from weekly car loadings as reported by the Association of American Railroads and includes mine fuel, coal sold locally, dredge coal, and the output of the Bernice Basin in Sullivan County. Does not include an unknown amount of "bootleg" production. In computing the average rates per working day, New Year's, Eight-Hour Day (Apr. 1), Memorial Day, Independence Day, Labor Day, Mitchell Day (Oct. 29), Thanksgiving Day, Christmas, and, since the war, Armistice Day, have been counted as holidays. Beginning with 1927, Washington's Birthday is counted as a half holiday. No allowance, however, has been made for church holy days, which are observed by many of the miners. Monthly statistics from 1905 to 1925 will be found in Coal in 1925, pp. 427–428, and from 1926 to 1930 in Coal in 1930, p. 741. ## PRODUCTION, BY REGIONS Table 6A.—Anthracite produced, by regions, 1933-34 | | Shir | ments | Too | al sales | Callie | ry fuel | 1 | otal | |--|------------------------|--------------------------|---------------------|----------------------|-----------------------|-------------------|------------------------|--------------------------| | Region | 5111 | imen is | | u sales | Come | | | Utai | | | Net tons | Value 1 | Net tons | Value | Net tons | Value | Net tons | Value 1 | | 1933 | | | | | | | | | | Lehigh:
Breaker product.
Washery prod- | 6, 752, 322 | \$28, 959, 018 | | \$1, 596, 054 | 1 | 1 | | | | uct
Dredge product_ | 51,083 | 46, 831 | 7, 500 | 34,650 | 596 | 906 | 8, 096
51, 083 | 35, 556
46, 831 | | Total | 6, 803, 405 | 29, 005, 849 | 352, 867 | 1, 630, 704 | 499, 437 | 759, 406 | 7, 655, 709 | 31, 395, 959 | | Schuylkill:
Breaker product
Washery prod- | 12, 014, 530 | | | | 646, 166 | | 13, 664, 176 | | | uct
Dredge product | 878, 270
271, 603 | 1, 671, 013
132, 772 | 14, 351
197, 260 | 49, 340
252, 109 | 15, 516
988 | 13, 216
1, 501 | 908, 137
469, 851 | 1, 733, 569
386, 382 | | Total | 13, 164, 403 | 50, 624, 024 | 1, 215, 091 | 4, 964, 545 | 662, 670 | 963, 411 | 15, 042, 164 | 56, 551, 980 | | Wyoming:
Breaker product.
Washery prod- | 22, 964, 066 | 108, 518, 999 | | | | 1, 634, 426 | | 1 | | uct
Dredge product | 353, 714 | 853, 534 | 27, 615
17, 990 | 59, 188
18, 940 | 221, 196 | 223, 406 | 602, 525
17, 990 | 1, 136, 128
18, 940 | | Total | 23, 317, 780 | 109, 372, 533 | 1, 649, 934 | 7, 172, 720 | 1, 762, 376 | 1,857,832 | 26, 730, 090 | 118, 403, 085 | | Total breaker prod-
uct (including
8 u l l i v a n | | | | | | | | | | County)Total washery | 41, 780, 739 | 186, 475, 746 | 2, 984, 836 | 13, 511, 733 | 2, 718, 087 | 3, 373, 520 | 47, 483, 662 | 203, 360, 999 | | product
Total dredge prod- | 1, 231, 984 | 2, 524, 547 | 49, 466 | 143, 178 | 237, 308 | 237, 528 | 1, 518, 758 | 2, 905, 253 | | uct | 322, 6 86 | 179, 603 | 215, 250 | 271, 049 | 988 | 1, 501 | 538, 924 | 452, 153 | | Grand total | 43, 335, 409 | 189, 179, 896 | 3, 249, 552 | 13, 925, 960 | 2, 956, 383 | 3, 612, 549 | 49, 541, 344 | 206, 718, 405 | | 1934
Le high: | | | | | | | | | | Breaker product. Dredge product. | 7, 939, 277
91, 346 | 35, 139, 947
110, 587 | 383, 247 | 1, 808, 015 | 515, 191 | 832, 988 | 8, 837, 715
91, 346 | 37, 780, 950
110, 587 | | Total | 8, 030, 623 | 35, 250, 534 | 383, 247 | 1, 808, 015 | 515, 191 | 832, 988 | 8, 929, 061 | 37, 891, 537 | | Schuylkill:
Breaker product.
Washery prod- | 15, 461, 448 | 64, 521, 383 | 881, 170 | 3, 736, 704 | 635, 426 | 954, 340 | 16, 978, 044 | 69, 212, 427 | | uct
Dredge product | 823, 077
262, 408 | 1, 855, 254
148, 210 | 35, 474
268, 276 | 126, 168
336, 973 | 25, 750
985 | 38, 314
1, 496 | 884, 301
531, 669 | 2, 019, 736
486, 679 | | Total | 16, 546, 93 3 | 66, 524, 847 | 1, 184, 920 | 4, 199, 845 | 662, 161 | 994, 150 | 18, 394, 014 | 71, 718, 842 | | Wyoming:
Breaker product.
Washery prod- | 25, 921, 18 6 | 123, 784, 412 | 1, 618, 389 | 7, 401, 515 | 1, 782, 996 | 2, 120, 743 | 29, 322, 571 | 133, 306, 670 | | uct
Dredge product | 143, 727 | 413, 575 | 10, 007
29, 005 | 53, 234
38, 412 | 148, 806
160 | 175, 011
360 | 302, 540
29, 165 | 641, 820
38, 772 | | Total | 26, 064, 913 | 124, 197, 987 | 1, 657, 401 | 7, 493, 161 | 1, 931, 962 | 2, 296, 114 | 29, 654, 276 | 133, 987, 262 | | Sullivan County:
Breaker product. | 113, 853 | 284, 921 | 60, 368 | 254, 839 | 16, 719 | 14,844 | 190, 940 | 554, 604 | | Total breaker prod-
uct
Total washery | 49, 435, 764 | 223, 730, 6 63 | 2, 943, 174 | 13, 201, 073 | 2, 950, 332 | 3, 922, 915 | 55, 329, 270 | 240, 854, 651 | | product
Total dredge prod- | 966, 804 | 2, 268, 829 | 45, 481 | 179, 402 | 174, 556 | 213, 325 | 1, 186, 841 | 2, 661, 556 | | uct | 353, 754 | 258, 797 | 297, 281 | 375, 385 | 1, 145 | 1,856 | 652, 180 | 636, 038 | | Grand total | 50, 756, 322 | 226, 258, 289 | 3, 285, 936 | 13, 755, 860 | 3, 126, 033 | 4, 138, 096 | 57, 168, 291 | 244, 152, 245 | ¹ Value given is value at which coal left possession of producing company f. o. b. mines and does not include margins of separately incorporated sales companies. ## PRODUCTION, BY FIELDS AND COUNTIES The classification by trade regions—Lehigh, Schuylkill, and Wyoming—is used most commonly by the trade. It is paralleled by the organization of the United Mine Workers, in which district 1 corresponds to the Wyoming trade region, district 7 to the Lehigh region, and district 9 to the Schuylkill region. In studies of costs of production and reserves, however, a classification adopted by geologists is more useful because it corresponds more closely to the natural conditions that largely govern mining costs. The geologic classification recognizes four fields. The Northern field is identical with the Wyoming region. That part of the Southern field lying east of Tamaqua, known as the Panther Creek Valley, and the Eastern Middle field make up the Lehigh region. That part of the Southern field west of Tamaqua and the Western Middle field compose the Schuylkill region. The Bernice Basin in Sullivan County is sometimes grouped with the Northern field. Table 7A shows the production by fields. Comparing 1934 with the preceding year, the largest increase occurred in the Western Middle field, where a gain of 27.8 percent was made, followed by the Southern field, with an advance of 18.6 percent. The Northern field, which contributed more than half of the total production, showed an increase of only 11.2 percent. Table 7A.—Anthracite produced, by fields, 1930-34, in net tons [The figures of breaker product include a certain quantity of culm-bank coal, which in 1934 amounted to 962,383 tons. Data for 1913–25 will be found in Coal in 1925, p. 517, and for 1926–29 in Coal in 1930, p. 747] | | 1930 | 1931 | 1932 | 1933 | 1934 | |--|--------------------------------------|--|-------------------------------------|-------------------------------------|--------------------------------------| | Northern: 1 | | | | | | | Breakers
Washeries
Dredges | 37, 756, 000
466, 000 | 31, 933, 000
403, 000 | 27, 026, 778
305, 625
10, 035 | 26, 222, 956
602, 525
17, 990 | 29, 513, 511
302, 540
29, 16 | | Total | 38, 222, 000 | 32, 336, 000 | 27, 342, 438 | 26, 843, 471 | 29, 845, 216 | | Eastern Middle: BreakersWasheries | ² 6, 508, 000 | ² 6, 075, 000
(²) | 5, 417, 755 | 5, 536, 113
8, 096 | 6, 013, 462 | | Total | 6, 508, 000 | 6, 075, 000 | 5, 417, 755 | 5, 544, 209 | 6, 013, 465 | | Western Middle: Breakers Washeries Dredges | 13, 918, 000
522,
000
265, 000 | 11, 912, 000
916, 000
161, 000 | 9, 153, 447
441, 243
190, 067 | 9, 450, 345
830, 361
233, 210 | 12, 417, 648
801, 391
213, 567 | | Total | 14, 705, 000 | 12, 989, 000 | 9, 784, 757 | 10, 513, 916 | 13, 432, 600 | | Southern: Breakers | 9, 471, 000
100, 000
379, 000 | 7, 883, 000
65, 000
298, 000 | 7, 001, 313
29, 010
279, 948 | 6, 274, 248
77, 776
287, 724 | 7, 384, 649
82, 910
409, 449 | | Total | 9, 950, 000 | 8, 246, 000 | 7, 310, 271 | 6, 639, 748 | 7, 877, 00 | | Grand total | 69, 385, 000 | 59, 646, 000 | 49, 855, 221 | 49, 541, 344 | 57, 168, 29 | ¹ Includes Sullivan County, which in 1934 contributed 190,940 tons of breaker product. 3 A small amount of washery product is included with the breaker product. Table 8A gives the break-down of production, by counties, for the year 1934. From this table it will be seen that while anthracite was produced in 14 counties in 1934, production was concentrated chiefly in Luzerne, Lackawanna, and Schuylkill Counties, which accounted for more than 82 percent of the 1934 total. Luzerne is by far the most important producer, with Schuylkill and Lackawanna competing for second place. Except for Sullivan County, whose tonnage contribution is proportionately insignificant, the largest increase in 1934 over 1933 occurred in Schuylkill County, where a gain of 35 percent was made, followed by Carbon County, with an increase of 24.9 percent. Lackawanna and Luzerne Counties showed increases of 8.8 and 10.2 percent, respectively, both less than the general advance of 15.4 percent for the industry as a whole. TABLE 8A .- Anthracite produced in 1934, by counties | County | Ship | ments | Local sales | | | |---|---|---|--|---|--| | | Net tons | Value 1 | Net tons | Value | | | Carbon Columbia Dauphin Lackawanna Luzerne Northumberland Schuylkill Sullivan Susquehanna and Wayne Berks, Lehigh, Northampton, and York ² | 1, 893, 865
165, 154
524, 894
10, 679, 375
18, 874, 460
5, 632, 218
12, 164, 386
113, 853
610, 819
97, 318 | \$7, 983, 380
747, 168
2, 231, 232
51, 207, 417
88, 973, 484
21, 903, 588
49, 893, 441
284, 921
2, 913, 595
120, 063 | 70, 596
26, 433
243, 541
848, 205
994, 013
312, 243
700, 778
60, 368
9, 732
20, 027 | \$337, 492
42, 860
479, 779
3, 933, 841
4, 418, 244
1, 241, 853
2, 972, 483
254, 839
51, 723
22, 746 | | | Total, 1934 | | 226, 258, 289
189, 179, 896
+19. 6 | 3, 285, 936
3, 249, 552
+1. 1 | 13, 755, 860
13, 925, 960
—1, 2 | | | Columbia: | Collie | ry fuel | To | Men em- | | |--|--|--|--|---|---| | County | Net tons | Value | Net tons | Value 1 | ployed | | Carbon Columbia Dauphin Lackawanna Luzerne. Northumberland. Schuylkill Sullivan Susquehanna and Wayne. Berks, Lehigh, Northampton, and York ¹ | 73, 036
6, 529
66, 568
660, 883
1, 586, 604
81, 369
589, 864
16, 719
44, 406
55 | \$154, 831
8, 157
99, 848
807, 211
1, 948, 173
111, 995
941, 000
14, 844
52, 844
93 | 2, 037, 497
198, 096
835, 003
12, 188, 463
21, 455, 077
6, 025, 830
13, 455, 028
190, 940
664, 957
117, 400 | \$8, 475, 703
798, 185
2, 810, 859
55, 948, 469
95, 339, 901
23, 256, 536
53, 806, 924
554, 604
3, 018, 162
142, 902 | 4, 037
408
1, 255
24, 496
47, 004
8, 415
21, 838
501
1, 044
52 | | Total, 1934 | 3, 126, 033
2, 956, 383
+5. 7 | 4, 138, 096
3, 612, 549
+14. 5 | | 244, 152, 245
206, 718, 405
+18. 1 | 109, 050
104, 633
+4. 2 | ¹ Value given for shipments is value at which coal left possession of producing company f. o. b. mines and does not include margins of separately incorporated sales companies. ² Counties producing dredge coal only. # FRESH-MINED AND CULM-BANK COAL, BREAKER AND WASHERY PRODUCT Anthracite is produced from three sources—from mines, from old culm banks, and from the rivers that drain the anthracite region. For the past 3 years the producers have been asked to state the source of coal prepared at each breaker, washery, and dredge. The results for 1934 are shown in the two tables that follow, by regions and by fields. Table 9A, by regions, shows that in addition to the 1,180,849 tons of culm-bank coal prepared at washery plants during 1934, 962,383 tons were handled at breaker plants. About 47 percent of this tonnage was handled by Schuylkill-region breakers. The Schuylkill region contributed 62.2 percent of the total culm-bank coal prepared. Table 10A shows the same data, classified by fields, and the changes during 1934 compared with those in 1933. Thus, while the total quantity of culm-bank coal decreased 29.5 percent, all other types of coal increased substantially, particularly that mechanically mined, which advanced 41.6 percent. Table 9A.—Anthracite produced in 1934, classified as fresh-mined, culm-bank, and river coal, and as breaker, washery, and dredge product, by regions, in net tons. | | | From mines | | | | , | |--|----------------------------|---------------|-----------------------|-------------------------|---------------------------|---| | Region and type of plant | Under | ground | | From culm
banks | From
river
dredging | Total | | | Mechani-
cally
mined | Hand
mined | Strip pits | | dredging | | | Lehigh: Breakers Dredges | 445, 992 | 5, 961, 384 | 2, 245, 126 | 185, 213 | 91, 346 | 8, 837, 715
91, 346 | | Total | 445, 992 | 5, 961, 384 | 2, 245, 126 | 185, 213 | 91, 346 | 8, 929, 061 | | Schuylkill: Breakers Washeries Dredges | 1, 157, 424 | 12, 535, 811 | 2, 830, 615
5, 992 | 454, 194
878, 309 | 531, 669 | 16, 978, 044
884, 301
531, 669 | | Total | 1, 157, 424 | 12, 535, 811 | 2, 836, 607 | 1, 332, 503 | 531, 669 | 18, 394, 014 | | Wyoming: Breakers Washeries Dredges | 7, 681, 070 | 20, 602, 120 | 716, 405 | 322, 976
302, 540 | 29, 165 | 29, 322, 571
302, 540
29, 165 | | Total | 7, 681, 070 | 20, 602, 120 | 716, 405 | 625, 516 | 29, 165 | 29, 654, 276 | | Total, including Sullivan County: Breakers Washeries Dredges | 9, 284, 486 | 39, 290, 255 | 5, 792, 146
5, 992 | 962, 383
1, 180, 849 | 652, 180 | 55, 329, 270
1, 186, 841
652, 180 | | Grand total | 9, 284, 486 | 39, 290, 255 | 5, 798, 138 | 2, 143, 232 | 652, 180 | 57, 168, 291 | Table 10A.—Anthracite produced in 1934, classified as fresh-mined, culm-bank, and river coal, and as breaker, washery, and dredge product, by fields, in net tons. | | | From mines | 3 | | | 5 (1)
20 (4) | |--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------|--| | Field and type of plant | Unde | rground | | From culm | river | Total | | | Mechani-
cally
mined | Hand
mined | Strip pits | | dredging | | | Eastern Middle:
Breakers | 436, 642 | 4, 016, 746 | 1, 429, 468 | 130, 606 | | 6, 013, 462 | | Western Middle: Breakers Washeries Dredges | 999, 114 | 9, 164, 435 | 1, 884, 721
5, 992 | 369, 378
795, 399 | 213, 567 | 12, 417, 648
801, 391
213, 567 | | Total | 999, 114 | 9, 164, 435 | 1, 890, 713 | 1, 164, 777 | 213, 567 | 13, 432, 606 | | Southern: Breakers | 167, 660 | 5, 316, 014 | 1, 761, 552 | 139, 423
82, 910 | 409, 448 | 7, 384, 649
82, 910
409, 448 | | Total | 167, 660 | 5, 316, 014 | 1, 761, 552 | 222, 333 | 409, 448 | 7, 877, 007 | | Northern: 1 Breakers Washeries Dredges | 7, 681, 070 | 20, 793, 060 | 716, 405 | 322, 976
302, 540 | 29, 165 | 29, 513, 511
302, 540
29, 165 | | Total | 7, 681, 070 | 20, 793, 060 | 716, 405 | 625, 516 | 29, 165 | 29, 845, 216 | | Grand total, 1934 | 9, 284, 486
6, 557, 267
+41. 6 | 39, 290, 255
34, 474, 844
+14. 0 | 5, 798, 138
4, 932, 069
+17. 6 | 2, 143, 232
3, 038, 240
-29, 5 | 652, 180
538, 924
+21. 0 | 57, 168, 291
49, 541, 344
+15. 4 | ¹ Includes Sullivan County, which contributed 190,940 tons of underground coal. Table 11A.—Culm-bank coal put through breakers, by fields, 1929-34, in net tons | Year | Northern 1 | Eastern
Middle | Western
Middle | Southern | Total | | |--|---
---|--|---|---|--| | 1929
1930
1931
1931
1932
1933
1934 | 73, 000
75, 000
96, 000
159, 000
479, 000
323, 000 | 15, 000
7, 000
70, 000
82, 000
212, 000
131, 000 | 116, 000
58, 000
57, 000
328, 000
559, 000
369, 000 | 223, 000
52, 000
307, 000
215, 000
293, 000
139, 000 | 427, 000
192, 000
530, 000
784, 000
1, 543, 000
962, 000 | | ¹ Includes Sullivan County. # SHIPMENTS, BY REGIONS AND SIZES # Table 12A.—Anthracite shipped, by regions and sizes, in 1934 [Figures of shipments from breakers include 962,383 tons of culm-bank coal handled in the breakers] | | | Breaker | shipments | | | | | |---|--|--|---|---|--|---|---| | Size | Lehigh
region | Schuyl-
kill region | Wyoming
region | Total
(including
Sullivan
County) | Washery
ship-
ments | Dredge
ship-
ments | Grand
total | | Net tons | | | | | | | | | Lump ¹ and broken
Egg
Stove
Chestnut
Pea | 31, 374
433, 375
1, 666, 175
1, 957, 015
989, 722 | 59, 983
1, 031, 743
3, 011, 198
3, 655, 926
1, 583, 482 | 61, 067
2, 408, 125
6, 391, 903
6, 968, 893
2, 657, 471 | 152, 424
3, 878, 258
11, 090, 843
12, 608, 698
5, 247, 216 | | | 152, 424
3, 879, 312
11, 141, 377
12, 729, 174
5, 367, 641 | | Total domestic | 5, 077, 661 | 9, 342, 332 | 18, 487, 459 | 32, 977, 439 | 292, 489 | | 33, 269, 928 | | Buckwheat No. 1
Buckwheat No. 2 (rice) -
Buckwheat No. 3 | 1, 299, 877
675, 452 | 2, 585, 503
1, 392, 396 | 3, 644, 750
2, 195, 545 | 7, 543, 992
4, 272, 533 | 241, 420
173, 782 | 1 . | | | (barley)
Buckwheat No. 4
Boiler | 724, 645
161, 642 | 1, 703, 669
424, 626
12, 922 | 1, 298, 080
210, 921
10, 034
74, 397 | 3, 739, 721
797, 189
10, 034
94, 856 | 253, 743
3, 968
1, 402 | 159, 041
95, 169
48, 848 | 4, 152, 505
896, 326
58, 882
96, 258 | | Other Total steam | 2, 861, 616 | 6, 119, 116 | 7, 433, 727 | 16, 458, 325 | 674, 315 | 353, 754 | 17, 486, 394 | | Grand total | 7, 939, 277 | 15, 461, 448 | 25, 921, 186 | 49, 435, 764 | 966, 804 | 353, 754 | 50, 756, 322 | | Value | | | | | | | | | Lump ¹ and broken
Egg
Stove
Chestnut
Pea | \$155, 370
2, 567, 255
10, 458, 065
11, 848, 856
4, 389, 392 | \$333, 136
6, 026, 636
18, 621, 360
21, 904, 975
6, 773, 194 | \$338, 851
14, 177, 825
39, 952, 043
41, 533, 169
11, 876, 783 | \$827, 357
22, 794, 343
69, 111, 114
75, 378, 823
23, 080, 388 | \$6, 504
118, 673
530, 586
478, 444 | | \$827, 357
22, 800, 847
69, 229, 787
75, 909, 409
23, 558, 832 | | Total domestic | 29, 418, 938 | 53, 659, 301 | 107, 878, 671 | 191, 192, 0 25 | 1, 134, 207 | | 192, 326, 232 | | Buckwheat No. 1 | 3, 811, 918
1, 084, 761
750, 879
73, 451 | 7, 151, 963
1, 987, 498
1, 439, 495
239, 929
43, 197 | 10, 607, 796
3, 604, 326
1, 418, 790
157, 332
12, 527
104, 970 | 21, 591, 763
6, 683, 944
3, 620, 898
470, 712
12, 527
158, 794 | 638, 859
251, 846
241, 129
2, 087 | \$19, 131
141, 299
57, 831
40, 536 | 22, 230, 622
6, 954, 921
4, 003, 326
530, 630
53, 063
159, 495 | | Other Total steam | 5, 721, 009 | 10, 862, 082 | 15, 905, 741 | 32, 538, 638 | 1, 134, 622 | 258, 797 | 33, 932, 057 | | Grand total | 35, 139, 947 | 64, 521, 383 | 123, 784, 412 | 223, 730, 663 | 2, 268, 829 | 258, 797 | 226, 258, 289 | | Average value per ton | | | | | | | | | Lump ¹ and broken
Egg
Stove
Chestnut
Pea | 4. 95
5. 92
6. 28
6. 05
4. 43 | 5. 55
5. 84
6. 18
5. 99
4. 28 | 5. 55
5. 89
6. 25
5. 96
4. 47 | 5, 43
5, 88
6, 23
5, 98
4, 40 | 6. 17
2. 35
4. 40
3. 97 | | 5, 43
5, 88
6, 21
5, 96
4, 39 | | Total domestic | 5. 79 | 5. 74 | 5. 84 | 5. 80 | 3. 88 | | 5. 78 | | Buckwheat No. 1
Buckwheat No. 2 (rice).
Buckwheat No. 3 | 2. 93
1. 61 | 2.77
1.43 | 2, 91
1, 64 | 2. 86
1. 56 | 2, 65
1, 45 | .38 | 2, 86
1, 55 | | (barley) Buckwheat No. 4 Boiler Other | 1. 04
. 45 | .84
.57 | 1. 09
. 75
1. 25
1, 41 | . 97
. 59
1. 25
1. 67 | . 95
. 53
. 50 | .61
.83 | . 96
. 59
. 90
1. 66 | | Total steam | 2.00 | 1.78 | 2.14 | 1.98 | 1. 68 | . 73 | 1.94 | | Grand total | 4. 43 | 4, 17 | 4, 78 | 4. 53 | 2. 35 | .73 | 4. 46 | ¹ The quantity of lump included is insignificant. ## TRENDS IN SIZES SHIPPED Table 13A.—Sizes of anthracite shipped from breakers, by regions, 1931-34, in percent of total [Note that shipments of dredge and washery coal are not included] | | | | Perc | ent of to | tal shipm | ents | | | | |--|-------|-----------|-----------|-------------|------------|-------------------|----------|--------|--| | Size of coal | | Lehigh | region | | | Schuylkill region | | | | | | 1931 | 1932 | 1933 | 1934 | 1931 | 1932 | 1933 | 1934 | | | Lump 1 and broken | 0. 2 | 0.2 | 0.4 | 0.4 | 0.4 | 0. 4 | 0. 6 | 0. 4 | | | Egg
Stove | 6.4 | 6.5 | 5.9 | 5.4 | 8.0 | 7.2 | 7.0 | 6.7 | | | Stove | 22. 2 | 22.5 | 21.6 | 21.0 | 20.4 | 20.5 | 19. 6 | 19. 5 | | | Chestnut | 24.9 | 22.5 | 22.9 | 24.7 | 23. 2 | 22. 5 | 21.8 | 23.6 | | | Pea | 11.3 | 11.6 | 11.8 | 12.5 | 10.0 | 9.4 | 10. 2 | 10. 2 | | | Total domestic | 65. 0 | 63, 3 | 62. 6 | 64.0 | 62. 0 | 60. 0 | 59. 2 | 60. 4 | | | | | | | | | | | | | | Buckwheat No. 1 | 16.0 | 17.0 | 16.4 | 16.4 | 17.0 | 17.5 | 16.8 | 16. 7 | | | Buckwheat No. 2 (rice) | 9. 7 | 9. 2 | 9.7 | 8.5 | 9.2 | 9.6 | 9.8 | 9. 0 | | | Buckwheat No. 2 (rice) Buckwheat No. 3 (barley) Boiler | 8.6 | 8.8
.2 | 9.0 | 9. 1 | 10.4 | 10.6 | 10.6 | 11.0 | | | Other, including Buckwheat No. 4 | (2) | 1.5 | 2. 3 | 2.0 | (2)
1.4 | 2. 3 | 3.6 | 2. 9 | | | Total steam | 35. 0 | 36. 7 | 37.4 | 36. 0 | 38.0 | 40.0 | 40.8 | 39.6 | Wyomir | ıg region | | Total, i | acluding | Sullivan | County | | | | - | | | | | | | | | | Lump 1 and broken | 0.4 | 0.4 | 0.3 | 0. 2 | 0.3 | 0.3 | 0.4 | 0.3 | | | Egg | 11. 3 | 10.7 | 10. 2 | 9.3 | 9.6 | 9.1 | 8.5 | 7.9 | | | Stove | 25. 7 | 25.7 | 24.8 | 24.7 | 23.6 | 23.7 | 22.8 | 22.4 | | | Chestnut | 26. 1 | 25.8 | 25. 4 | 26. 9 | 25.0 | 24.3 | 24.0 | 25. 5 | | | Pea | 10. 1 | 9.7 | 9. 7 | 10. 2 | 10.3 | 9. 9 | 10. 2 | 10. 6 | | | Total domestic | 73. 6 | 72. 3 | 70. 4 | 71.3 | 68.8 | 67. 3 | 65. 9 | 66.7 | | | Buckwheat No. 1 | 13. 5 | 13. 9 | 13. 9 | 14. 1 | 14.9 | 15. 5 | 15. 2 | 15. 3 | | | Buckwheat No. 2 (rice) Buckwheat No. 3 (barley) | 8.0 | 8.0 | 8.4 | 8.5 | 8.6 | 8.6 | 8.9 | 8.6 | | | Buckwheat No. 3 (harley) | 4. 2 | 4.9 | 6.0 | 5. 0 | 6.7 | 7. 2 | 7.8 | 7. 6 | | | Boiler | .1 | .3 | .2 | (2) | .2 | 2 | | (²) | | | Other, including Buckwheat No. 4 | .6 | .6 | 1. 1 | (2)
1. 1 | .8 | 1. 2 | 2. î | 1.8 | | | Total steam | 26. 4 | 27.7 | 29. 6 | 28. 7 | 31. 2 | 32. 7 | 34.1 | 33, 3 | | ¹ The quantity of lump included is insignificant. 2 Less than 0.1 percent. #### TRENDS IN VALUES AND PRICES #### SOURCES OF INFORMATION AND METHODS OF ANALYSIS Margins of sales agents not included.—The valuation figures in this study represent value at the breaker or washery reported by the operating companies. In making its report, the company is requested to "estimate value of the product not sold" and to "exclude selling expenses." From this it will be seen that when a producing company sells its output to a separately organized sales company (the practice of many, including certain of the larger producers), the value reported will exclude the margin of the sales company and may therefore be somewhat less than the circular price at which the coal in question is placed on the general market. This fact should be borne in mind in considering the variations in value between different regions shown in the tables for the same sizes of coal. (See table 14A.) Estimates included in figures of value.—The reports are furnished in writing and signed by responsible officers of the mining companies. The estimates represent only 11.6 percent of the value shown in 1934 319 because, aside from a few extremely small producers, only one company failed to report. The values for this company, a producer in the Wyoming region, were estimated in 1934 as follows: The tonnage it reported of each size from broken to pea was multiplied by the company's average circular price for that size as quoted in the trade journals for the year. The tonnage reported for Buckwheat No. 1 and for each smaller size was multiplied by the average sales realization obtained on that size by all other producers in the Wyoming region. AVERAGE SALES REALIZATIONS The average sales realizations on each size from 1931 to 1934 are given in table 14A. To insure comparability the table is based on shipments of breaker coal only, the dredge and washery product being excluded. The average realization on breaker shipments in 1934, all sizes combined, was \$4.53 per net ton, an increase of 7 cents per ton when compared with the 1933 average of \$4.46. With the exception of 1933, however, the
1934 average sales realization was the lowest obtained by anthracite operators since 1919. In the domestic sizes there was a marked increase in the price obtained for pea coal (18 cents per ton), and a smaller increase of 3 cents per ton on chestnut. Other domestic sizes varied little in price. The average mine price of all steam sizes increased from \$1.93 in 1933 to \$1.98 in 1934, chiefly because of the higher price realized on Buckwheat No. 2. Table 14A.—Average sales realization per net ton on anthracite shipments from breakers, by regions and sizes, 1931-34 | [Value does no | t include margins | of separately | incorporated sa | les companies] | |----------------|-------------------|---------------|-----------------|----------------| | | | | | | | | | Lehigh | region | | | Schuylki | ll region | | |---|----------------------------------|---|--|---|--|--|--|--| | Size | 1931 | 1932 | 1933 | 1934 | 1931 | 1932 | 1933 | 1934 | | Lump ¹ and broken | 6. 87
7. 26
7. 16
4. 77 | \$5. 58
5. 92
6. 38
6. 18
4. 57 | \$4. 72
5. 81
6. 20
5. 96
4. 18
5. 68 | \$4. 95
5. 92
6. 28
6. 05
4. 43 | \$6. 76
6. 84
7. 26
7. 13
4. 55
6. 71 | \$6.03
5.99
6.45
6.18
4.48
5.98 | \$5. 47
5. 80
6. 17
5. 92
4. 15
5. 68 | \$5. 55
5. 84
6. 18
5. 99
4. 28
5. 74 | | Buckwheat No. 1
Buckwheat No. 2 (rice) 2
Buckwheat No. 3 (barley) | 2.80
1.53
1.05 | 2. 85
1. 56
1. 01 | 2. 87
1. 60
1. 04 | 2. 93
1. 61
1. 04
2. 00 | 2.70
1.44
.91 | 2.70
1.41
.83 | 2. 73
1. 39
. 84
1. 72 | 2. 77
1. 43
. 84
1. 78 | | Total, steam ² Total, all sizes | 1. 97
5. 07 | 1.98
4.48 | 4. 29 | 4.43 | 4,85 | 4.30 | 4.06 | 4.17 | | · | Wyoming region | | | | Total, i | ncluding | Sullivan | County | | Lump ¹ and broken | 7. 11
7. 44 | \$5. 54
6. 28
6. 60
6. 31
4. 58 | \$5. 74
5. 96
6. 29
5. 97
4. 27 | \$5. 55
5. 89
6. 25
5. 96
4. 47 | \$6. 74
7. 01
7. 37
7. 21
4. 76 | \$5. 69
6. 17
6. 53
6. 26
4. 55 | \$5. 43
5. 90
6. 25
5. 95
4. 22 | \$5. 43
5. 88
6. 23
5. 98
4. 40 | | Total, domestic | 6. 97 | 6. 18 | 5. 85 | 5.84 | 6.87 | 6.09 | 5. 78 | 5. 80 | | Buckwheat No. 1 Buckwheat No. 2 (rice) 2 Buckwheat No. 3 (barley) Total, steam 2 | 2. 86
1. 57
1. 20
2. 15 | 2, 90
1, 57
1, 11
2, 13 | 2.90
1.53
1.13
2.06 | 2. 91
1. 64
1. 09
2. 14 | 2. 79
1. 52
1. 03
2. 00 | 2. 83
1. 52
. 97
1. 98 | 2. 84
1. 50
1. 00
1. 93 | 2. 86
1. 56
. 97
1. 98 | | Total, all sizes | 5. 70 | 5. 05 | 4. 73 | 4.78 | 5. 35 | 4.74 | 4. 46 | . 4. 53 | ¹ The quantity of lump included is insignificant. Includes birdseye. Includes all other steam sizes. 92135—36——24 ## AVERAGE VALUES OF SHIPMENTS, LOCAL SALES, AND COLLIERY FUEL Table 15A.—Average value per net ton of anthracite shipped, local sales, colliery fuel, and total production, by regions, 1933-341 [Note that values in this table include washery and dredge coal] | | 4.1 | 19 | 33 | | 1934 | | | | | |-------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------|------------------------|------------------------|---------------------------|--| | Year and region | Ship-
ments | Local
sales | Colliery
fuel | Total
produc-
tion | Ship-
ments | Local
sales | Colliery
fuel | Total
produc-
tion | | | LehighSchuylkillWyoming | \$4. 26
3. 85
4. 69 | \$4. 62
4. 09
4. 35 | \$1. 52
1. 45
1. 05 | \$4. 10
3. 76
4. 43 | \$4.39
4.02
4.76 | \$4.72
3.54
4.52 | \$1.62
1.50
1.19 | \$4, 24
3, 90
4, 52 | | | Total 2 | 4. 37 | 4. 29 | 1. 22 | 4. 17 | 4. 46 | 4. 19 | 1. 32 | 4. 27 | | ¹ Value given for shipments is value at which coal left possession of producing company f. o. b. mines and does not include margins of separately incorporated sales companies. ² Includes Sullivan County. #### NUMBER OF OPERATIONS Due to the many changes in anthracite practices during the past few years, particularly with regard to concentration of preparation at central breakers, it has not been possible to make the figures on number of active plants comparable with earlier years. However, in 1934 an effort was made to make an accurate count of the number of active breakers. The results are shown in table 16A, together with other information comparable with that for 1933. Table 16A.—Number of active operations in the anthracite industry, 1933-34 | District and type of product | Total
active
plants
report-
ing 1 | Break-
ers ² | Reporting men em- ployed at prep- aration plants 3 | Other
prepa-
ration
plant 4 | Wash-
eries ⁸ | Culm
banks
oper-
ated in
con-
junc-
tion
with
break-
ers | Dredges | Report-
ing
strip-
pit ton-
nage | |--|---|----------------------------|--|--------------------------------------|-----------------------------|---|----------|--| | 1933
Lehigh: | | | | | | | | | | Breakers or mines | 39
1
1 | | 29 | | [<u>i</u> | 16 | <u>1</u> | 29 | | Total | 41 | | 30 | | 1 | 16 | 1 | 29 | | Schuylkill: Breakers or mines Washeries Dredges | 73
8
32 | - | 53
8
20 | - | 8 | 19 | 32 | 33 | | Total | 113 | | 81 | | 8 | 19 | 32 | 34 | | Wyoming: Breakers or mines Washeries Dredges | 185
16
1 | (2) | 86
7
1 | (4) | 16 | 14 | <u>1</u> | 35 | | Total | 202 | | 94 | | 16 | 14 | 1 | 35 | | Sullivan County: Breakers or mines. | 6 | | 4 | | | | | | | Total: Breakers or mines Washeries Dredges | 303
25
34 | | 172
15
22 | | 25 | 49 | 34 | 97
1 | | Grand total | 362 | <u> </u> | 209 | J | 25 | 49 | 34 | 98 | | See footnotes at and of table | | | | | | | | | See footnotes at end of table. Table 16A.—Number of active operations in the anthracite industry, 1933-34—Con. | District and type of product | Total
active
plants
report-
ing 1 | Break-
ers ³ | Reporting men
em-
ployed
at prep-
aration
plants ³ | Other
prepa-
ration
plant 4 | Wash-
eries ⁵ | Culm
banks
oper-
ated in
con-
junc-
tion
with
break-
ers | Dredges | Reporting
strip-
pit ton-
nage | |---|---|----------------------------|--|--------------------------------------|-----------------------------|---|---------|---| | 1934
Lehigh: | | | | | | | | | | Breakers or mines
Dredges | 33
2 | 26 | | 2 | | 8 | 2 | 27 | | Total | 35 | 26 | | 2 | | 8 | 2 | 27 | | Schuylkill: Breakers or mines Washeries Dredges | 57
13
30 | 37 | | 13
1
19 | 7 | 12 | 30 | 31
1 | | Total | 100 | 37 | | 33 | 7 | 12 | 30 | 32 | | Wyoming: Breakers or mines Washeries Dredges | 189
15
2 | 71 | (6) | 6 2 | 1 2 | 12 | 2 | 36 | | Total | 206 | 71 | | 8 | 3 | 12 | 2 | 36 | | Sullivan County: Breakers or mines | 5 | 5 | | | | | | | | Total: Breakers or mines Washeries Dredges | 284
28
34 | 139 | | 19
1
23 | 1 9 | 32 | 34 | 94
1 | | Grand total | 346 | 139 | 1 | 43 | 10 | 32 | 34 | 95 | ¹ The number of active plants contains numerous duplications, that is, successions known and unknown, and leases and subleases. Each report received which was tabulated for production or for employment has been counted separately. 2 Equipped to prepare standard sizes of fresh-mined coal. There were no definite data for 1933. 3 The number shown does not represent active breakers, for which there were no definite data in 1933. The number reported for dredges represents reports showing men employed at tipple. 4 For preliminary crushing, screening, or cleaning. Usually old breakers are used for this purpose. The number reported for dredges represents reports showing men employed at tipple. 4 Preparation plant for the sizing and cleaning of culm-bank coal. 6 See footnotes 2, 3, and 4. #### LABOR STATISTICS Table 17.—Men employed and days worked in the anthracite field, by regions, in | | Average number of men employed | | | | | | | | | | |--|------------------------------------|----------|---------------------------|---------------------|------------------------------|--------------|------------------|----------------|--|--| | | Ūι | adergrou | nd | Surface | | | | | | | | | Miners
and
their
laborers | Other | Total
under-
ground | In
strip
pits | In prep-
aration
plant | Other | Total
surface | Grand
total | | | | Lehigh: Breaker product Dredge product | 7, 931 | 3, 801 | 11, 732 | 1, 563 | 1, 607
4 | 2, 840
21 | 6, 010
25 | 17, 742
25 | | | | Total | 7, 931 | 3, 801 | 11, 732 | 1, 563 | 1, 611 | 2,861 | 6, 035 | 17, 767 | | | Table 17.—Men employed and days worked in the anthracite field, by regions, in 1934—Continued | | | | Average | number | of men e | mploye | ì | | |--
------------------------------------|----------|---------------------------|---------------------|----------------------|-----------------------|-----------------------|----------------------------| | | U | ndergrou | ınd | | Sui | face | | | | | Miners
and
their
laborers | Other | Total
under-
ground | In
strip
pits | In preparation plant | Other | Total
surface | Grand
total | | Schuylkill: Breaker product Washery product Dredge product | | 5, 958 | 18, 273 | 1, 809
15 | 2, 087
252
64 | 3, 925
439
175 | 7,821
706
239 | 26, 09
70
23 | | Total | 12, 315 | 5, 958 | 18, 273 | 1,824 | 2, 403 | 4, 539 | 8,766 | 27, 03 | | Wyoming: Breaker product Washery product Dredge product | l | 15, 334 | 52, 762 | 917 | 3, 200
26
16 | 6, 785
26
11 | 10, 902
52
27 | 63, 66
5:
2: | | Total | 37, 428 | 15, 334 | 52, 762 | 917 | 3, 242 | 6, 822 | 10, 981 | 63, 743 | | Sullivan County: Breaker product. | 262 | 108 | 370 | | 54 | 77 | 131 | 50 | | Total: Breaker product Washery product Dredge product | | 25, 201 | 83, 137 | 4, 289 15 | 6, 948
278
84 | 13, 627
465
207 | 24, 864
758
291 | 1 108, 001
1 758
291 | | Grand total | 57, 936 | 25, 201 | 83, 137 | 4, 304 | 7, 310 | 14, 299 | 25, 913 | 109, 050 | | | | | Nu | mber of o | days wor | ked | | | | Lehigh: Breaker product Dredge product | 187 | 179 | 185 | 265 | 180
185 | 192
187 | 208
187 | 193
187 | | Total | 187 | 179 | 185 | 265 | 180 | 192 | 208 | 193 | | Schuylkill: Breaker product Washery product Dredge product | 242 | 237 | 240 | 196
53 | 243
169
173 | 239
167
140 | 230
165
149 | 237
165
149 | | Total | 242 | 237 | 240 | 195 | 233 | 228 | 223 | 235 | | Wyoming: Breaker product Washery product Dredge product | 200 | 198 | 200 | 182 | 199
186
165 | 209
253
171 | 204
220
168 | 200
220
168 | | Total | 200 | 198 | 200 | 182 | 199 | 209 | 204 | 200 | | Sullivan County: Breaker product. | 175 | 172 | 174 | | 178 | 173 | 175 | 174 | | Total: Breaker product Washery product Dredge product | 207 | 204 | 206 | 218
53 | 208
171
172 | 214
171
147 | 213
169
154 | 208
169
154 | | Total average | 207 | 204 | 206 | 218 | 206 | 212 | 211 | 207 | ¹ The men shown for "breaker product" include a considerable number of washery employees who could not be separated from breaker employees. The tonnage reported for the 758 washery men amounted to 976,000 tons, about 33 percent of the total washery product, and about 46 percent of the total culm-bank coal. (See tables 9A and 10A.) Table 18A .- Strikes, suspensions, and lockouts in the anthracite region in 1934 | | Lehigh | Schuyl-
kill | Wyoming | Sullivan
County | Total | |--|--|---|---|--------------------|--| | Total number employed. Men on strike. Man-days lost on account of strike. Average days lost— Per man employed. Per man on strike. | 17, 767
8, 857
79, 687
4. 5
9. 0 | 27, 039
6, 883
94, 947
3. 5
13. 8 | 63, 743
23, 254
600, 222
9, 4
25, 8 | 501 | 109, 050
38, 994
774, 856
7, 1
19, 9 | ## EQUIPMENT AND METHODS OF MINING Since 1929 the Bureau of Mines has collected data on the tonnage of anthracite produced by mechanized mining. Table 19A.—Relative growth of mechanical loading, hand loading, and stripping in anthracite mines, 1927-34 [Mechanical loading includes coal handled on pit-car loaders and hand-loaded face conveyors] | Year | Mechani-
cal loading
under-
ground | Stripping | Hand
losding | Year | Mechani-
cal load-
ing under-
ground | Stripping | Hand
loading | |----------------|--|--|--|---------------------|--|---|---| | Net tons: 1927 | 1 2,223, 000
1 2,351, 000
3, 470, 000
4, 468, 000
4, 385, 000
5, 433, 000
6, 557, 000
9, 284, 000 | 2, 153, 000
2, 423, 000
1, 912, 000
2, 536, 000
3, 813, 000
3, 981, 000
4, 932, 000
5, 798, 000 | 71, 435, 000
67, 374, 000
66, 494, 000
60, 458, 000
49, 075, 000
38, 401, 000
34, 475, 000
39, 290, 000 | Index numbers: 1927 | 100
106
156
201
197
244
295
418 | 100
113
89
118
177
185
229
269 | 100
94
93
85
69
54
48
55 | ¹ As reported by the Commonwealth of Pennsylvania, Department of Mines. Table 20A.—Pennsylvania anthracite loaded mechanically underground, 1927-34 | | Scrapers loa | Scrapers and mobile loaders | | rs and pit-
aders ¹ | Total loaded
mechanically | | |--------------|--|--|--|--|--|---| | Year 1927 2 | Number of units 305 302 350 384 462 490 464 531 | Net tons
loaded
(2)
2, 450, 279
2, 927, 088
2, 462, 370
2, 551, 403
3, 017, 741 | Number of units 159 184 355 421 576 859 965 1,376 | Net tons
handled
(3)
1, 019, 879
1, 540, 662
1, 922, 410
2, 781, 749
4, 161, 864
6, 266, 745 | Number of units 464 486 705 805 1, 038 1, 349 1, 429 1, 907 | Net tons
handled
2, 223, 281
2, 351, 074
3, 470, 158
4, 467, 750
4, 384, 780
5, 433, 340
6, 557, 267
9, 284, 486 | Includes duck-bills and other self-loading conveyors, which account for only a small part of the total. As reported by the Commonwealth of Pennsylvania, Department of Mines. Not separately reported; see total. Table 21A.—Change in tonnage of anthracite loaded by principal types of machines, 1932-34 | | 1932 1933 | | 1934 | Increase (+) or decrease
(-), 1934 over 1933 | | | |-------------------------|---|---|---|---|-------------------------------|--| | Mobile loading machines | Net tons
60, 561
2, 591, 030
30, 874
2, 750, 875
5, 433, 340 | Net tons
48, 078
2, 347, 325
62, 586
4, 099, 278
6, 557, 267 | Net tons
37, 227
2, 980, 514
63, 106
6, 203, 639
9, 284, 486 | Net tons
-10, 851
+633, 189
+520
+2, 104, 361
+2, 727, 219 | Percent -22.6 +27.0 +.8 +51.3 | | ¹ Shaker chutes, etc., including those equipped with duck-bills. Table 22A.—Anthracite handled by mobile loaders and scrapers and by all types of conveyors in 1934, by fields, in net tons | Field | Mobile
loaders | Scraper
loaders | Pit-car
loaders | Hand-
loaded
face con-
veyors,
all types 1 | Total me-
chanically
loaded
under-
ground | |---|-------------------|------------------------------------|--------------------|--|---| | Northern_
Eastern Middle
Western Middle | 13, 427 | 2, 509, 100
97, 034
356, 290 | 36, 091 | 5, 145, 240
316, 820
625, 594 | 7, 681, 070
436, 642
999, 114 | | Southern Total | 37, 227 | 2, 980, 514 | 63, 106 | 6, 203, 639 | 9, 284, 486 | ¹ Shaker chutes, etc., including those equipped with duck-bills. Table 23A.—Anthracite cut by machines, 1933-34 | | | 1933 | | | 1934 | | |--------|------------------|---------------------|-------------------------------|----------------------------|-----------------|----------------------------------| | Region | Number
mac | of cutting
hines | Net tons | Number of cutting machines | | Net tons | | | Permis-
sible | All other types | cut by
machines | Permis-
sible | All other types | cut by
machines | | Lehigh | 1
2
138 | 6
21 | 700
52, 549
1, 595, 000 | 1
4
134 | 6
24 | 5, 000
66, 829
1, 909, 259 | | Total | 141 | 27 | 1, 648, 249 | 139 | 30 | 1, 981, 088 | Table 24A.—Relative growth of anthracite mined from strip pits, 1915-34, in net tons | | Number
of power | | mined by
ping | Percent
of fresh-
mined | Number | Average
number of | |--|--|---|---|--|---|--| | Year | shovels in
use | Total | Average
per shovel | total that
was
stripped | of men
employed | days
worked | | 1915 |
57
96
97
108
189
234
319 | 1, 121, 603
2, 054, 441
1, 578, 478
2, 536, 288
3, 813, 237
3, 980, 973
4, 932, 069 | 19, 677
21, 400
16, 273
23, 484
20, 176
17, 013
15, 461 | (1)
2.5
2.7
3.7
6.7
8.3
10.7 | (1)
(1)
(1)
(1)
(2, 232
2, 407
3, 383 | (1)
(1)
(1)
(1)
(1)
(1)
190
195 | | 1934: Lehigh districtSchuylkill districtWyoming district Total, 1934 | 120
132
97 | 2, 245, 126
2, 836, 607
716, 405
5, 798, 138 | 18, 709
21, 489
7, 386
16, 614 | 25. 9
17. 2
2. 5 | 1, 563
1, 824
917
4, 304 | 265
195
182
218 | #### DREDGE OPERATIONS | Average | receipts | per | net | ton | on | all | dredge | coal | sold, | 1930- | -34 | |---------|----------|-----|-----|-----|----|-----|--------|------|-------|-------|-----| | | | | | | | | | | | | | | 1930 | \$0.84 | 1933 | \$0.84 | |------|--------|------|---------------| | 1931 | | 1934 | . 98 | | 1932 | മാ | | | ## Table 25A.—Anthracite produced by dredges, by rivers, 1933-34 | | | 1933 | | | 1934 | | |-------------------------------|-------------------------|---------------------------------|----------------------------------|-------------------------|---------------------------------|-----------------------------------| | River (including tributaries) | Number
of
dredges | Net tons | Value | Number
of
dredges | Net tons | Value | | Lehigh | 1
5
28 | 51, 083
106, 004
381, 837 | \$46, 831
89, 190
316, 132 | 2
4
28 | 91, 346
100, 873
459, 961 | \$110, 587
61, 010
464, 441 | | Total | 34 | 538, 924 | 452, 153 | 34 | 652, 180 | 636, 038 | #### IMPORTS AND EXPORTS ## Table 26A .- Anthracite imported, by countries, 1933-34, in net tons [Compiled from records of the Bureau of Foreign and,Domestic Commerce] | Country | 1933 | 1934 | Country | 1933 | 1934 | |---|------------------------|-------|---|----------------------------------|----------------------------------| | Canada. China Germany. French Indo-China. Netherlands | 6
26, 800
2
2 | 2,098 | U.S.S.R. (Russia) in Europe.
United Kingdom
Total | 229, 151
200, 291
456, 252 | 323, 326
152, 694
478, 118 | Data not available. Includes 151 gasoline, 63 steam, 66 electric, and 69 other types of shovels. Table 27A.—Anthracite imported, by customs district, 1933-34, in net tons [Compiled from records of the Bureau of Foreign and Domestic Commerce] | Customs district | 1933 | 1934 | Customs district | 1933 | 1934 | |---|--|--|---|-------------------------------|----------------------------| | Buffalo Connecticut Dakota Maine and New Hampshire Massachusetts New York | 7, 392
18, 864
336, 830
13, 246 | 640
17, 892
5
34, 735
331, 073 | Oregon
Rhode Island
San Francisco
Washington | 79, 905
3
4
456, 252 | 93, 564
206
478, 118 | ## Table 28A .- Anthracite exported, by countries, 1933-34, in net tons [Compiled from records of the Bureau of Foreign and Domestic Commerce] | Country | 1933 | 1934 | Country | 1933 | 1934 | |---|--|--|--|---------------|---| | North America: Bermuds Canada Central America: Guatemals Honduras Panama Salvador Mexico Miquelon and St. Pierre Islands Newtoundland and Labrador West Indies: British: Trinidad and Tobago Other British Cuba Dominican Republic French | 815
1, 027, 107
17
74
44
1
224
6, 063 | 1, 119 1, 266, 462 5 11 2 203 131 5, 003 | South America: Bolivia Colombia Venezuela Europe: France Germany Italy United Kingdom Asia: Philippine Islands New Zealand Total | 7 1, 034, 562 | 18, 162
18, 162
1
18, 162
1
475
1, 297, 610 | Table 29A.—Anthracite exported, by customs districts and ports, 1933-34, in net ## [Compiled from records of the Bureau of Foreign and Domestic Commerce] | The second secon | | | | - | | |--|------|-------------------------------------|--|--|--| | Customs district | 1933 | 1934 | Customs district | 1933 | 1934 | | North Atlantic: Massachusetts New York Philadelphia South Atlantic: Florida Mobile New Orleans Mexican border: Arizona El Paso San Antonio Pacific coast: Washington San Francisco Los Angeles San Diego Lake Erie ports: Ohio¹ | | 26
23, 128
104, 252
82
 | Rail gateways on Canadian border: Eastern: Maine and New Hampshire. Vermont St. Lawrence Rochester 2 Buffalo Michigan Western: Duluth, Superior, and International Falls Dakota Miscellaneous: Alaska Total. | 95
1, 385
335, 552
48, 926
541, 978
431
4, 767
675
6 | 258
542
432, 513
95, 578
616, 612
3, 570
5, 685
855 | Chiefly Buffalo and Erie. Rail, car ferry, and Lake Ontario. ## **GOLD AND SILVER** #### (DETAILED STATISTICS—GENERAL REPORT) By J. P. DUNLOP #### SUMMARY OUTLINE | | Page | | Page | |--|-------|---|-------| | Domestic production | | Mine report—Continued. | | | Regulations and Executive orders relating to |) | Mine production—Continued. | | | gold and silver | 328 | Gold, by sources | . 341 | | Prices of silver | . 329 | Placers | | | Imports and exports | 330 | Dredging | . 343 | | Domestic supply | . 331 | Dry and siliceous ores | . 345 | | World production | 331 | Copper ore | . 345 | | Gold | . 331 | Lead ore | . 345 | | Silver | . 333 | Zinc, lead-zinc, and mixed ores | . 346 | | Mine report | . 334 | Silver, by sources | . 346 | | Method of collecting statistics | . 334 | Placers | . 347 | | Units of measurement | 334 | Dry and siliceous ores | | | Mines producing | . 335 | Copper ore | . 347 | | Leading gold producers | . 335 | Lead ore | | | Leading silver producers | . 336 | Lead-zinc ore | | | Number of mines | . 336 | Zinc and mixed ores | . 347 | | Mine production | . 338 | Gold and silver, by methods of treatment. | . 347 | | Summary. | 338 | Review by States | . 351 | | Ore production, classification, and aver- | • | Production in Philippine Islands | . 351 | | age metal vield | . 339 | Acknowledgments | . 352 | #### DOMESTIC PRODUCTION Approximate distribution of the production of gold and silver in the United States in 1934, by producing States and Territories [Figures supplied by U. S. Bureau of the Mint] | State or Territory | Go | Gold | | er | Increase or decrease
from 1933 (fine ounces) | | |--|---|--|--|--
--|--| | State of Territory | Fine ounces | Value 1 | Fine ounces | Value ² | Gold | Silver | | Alabama Alaskā Arizona California Colorado Georgia | 811 | \$91, 700
18, 808, 800
5, 547, 800
24, 963, 100
11, 081, 600
28, 400 | 346
178, 327
4, 270, 201
860, 133
3, 494, 833
17
7, 490, 906 | \$224
115, 282
2, 760, 534
556, 046
2, 259, 286
11
4, 842, 606 | +2, 615
+80, 120
+86, 754
+118, 079
+51, 401
+376
+26, 381 | +346
+22, 993
+2, 125, 227
+505, 862
+1, 331, 556
-34
+864, 163 | | Idahō Maryland Michigan Missouri Montana Nevada New Mexico | 26
89, 080
134, 814
23, 131 | 2, 897, 700
900
3, 117, 800
4, 718, 500
809, 600 | 13, 099
34, 932
3, 567, 763
2, 887, 457
991, 592 | 8, 468
22, 582
2, 306, 433
1, 866, 639
641, 029 | +27,837
+33,614
-3,964 | -112,827
+34,932
+3,943
+1,856,174
-171,191 | | New York North Carolina Oregon Pennsylvania Philippine Islands Puerto Rico | 566
34, 230
566
349, 477
46 | 19, 800
1, 198, 000
19, 800
12, 231, 700
1, 600 | 4, 587
9, 832
57, 223
4, 069
238, 474
7 | 2, 965
6, 356
36, 993
2, 630
154, 165 | -82
+14, 445
+319
+69, 942
+17
+346 | +4,587
+9,652
+39,688
+1,872
+57,102
+7
+233 | | South Carolina. South Dakota | 431
317
159, 334
969
7, 180 | 17, 700
16, 591, 800
15, 100
11, 100
5, 576, 700
251, 300
167, 000 | 265
99, 928
61, 702
789, 287
7, 623, 036
94
46, 457
786 | 171
64, 600
39, 888
510, 246
4, 928, 023
30, 033
508 | +346
-45, 497
+208
+302
+66, 082
+950
+2, 139
+2, 550 | +233
-30, 389
+33, 619
+789, 047
+2, 325, 316
+94
+30, 343
+409 | | AA Aoming | 3, 091, 183 | | | | +534, 937 | +9, 722, 724 | The figures in the preceding table were obtained through cooperation between the United States Bureau of the Mint and the Bureau of Gold valued at \$35.00 per fine ounce. Silver valued at 64+ cents per fine ounce. Purchase rate for United States product. Mines and were agreed upon after conference and adjustment between the two Bureaus. They are therefore final for both. The totals are based on bullion deposits in the United States mints and assay offices and on returns to the Bureau of the Mint from the smelting and refining companies. The distribution is adjusted by means of information collected by the Bureau of Mines directly from the producing mines and tabulated for the mine reports discussed later. The data for the total production and in part for the distribution are obtained from records of (1) the unrefined domestic gold and silver deposited in the United States mints and assay offices, (2) the domestic gold and silver in fine bars reported by private refineries, and (3) the unrefined domestic gold and silver contained in ore and matte exported for reduction. The last item is very small. Domestic smelters recovered 638,726 ounces of gold and 76,916,921 ounces of silver from foreign ores and bullion in 1934, an increase of 73,748 ounces in gold but a decrease of 19,437,719 ounces in silver compared with 1933. As usual in recent years the foreign ores and bullion came mainly from Mexico, Canada, and Peru; China, how- ever, contributed large shipments of silver bullion in 1934. In 1934, as in 1933 and 1932, more old gold was returned from industrial to monetary use than was issued to the arts and industries, a decided reversal of the normal trend; returns for 1934 totaled 2,169,351 ounces and issues 406,651 ounces, a net return of 1,762,700 ounces. The quantity of new silver used for industrial and artistic purposes was 11,492,425 ounces (about 35 percent of the domestic output) in 1934 compared with 10,810,571 ounces in 1933; the total quantity of silver (new and old) used in the arts and industries was 39,678,603 ounces (10,335,152 ounces more than in 1933). In addition to the gold and silver derived from foreign and domestic ore and bullion 2,169,351 ounces of gold and 28,186,178 ounces of silver were recovered from old or obsolete jewelry, silverware, dental waste, old film, and other material. Gold and silver produced in the United States, 1792-1934 1 | [The estimate for 1792-1872 is by R. W. Raymo
Direct | nd, commissioner, and for the period since 1872 by the or of the Mint] | |---|--| |---|--| | Period | G | old | Silver | | | | | |-----------------------------------|--|--|---|---|--|--|--| | Ferrod | Fine ounces | Value | Fine ounces | Value | | | | | 1792-1847
1848-72
1873-1934 | 1, 186, 977
58, 279, 781
172, 506, 411 | \$24, 537, 000
1, 204, 750, 000
3, 622, 810, 300 | 309, 500
118, 568, 200
3, 159, 046, 659 | \$404, 500
157, 749, 900
2, 391, 610, 793 | | | | | | 231, 973, 169 | 4, 852, 097, 300 | 3, 277, 924, 359 | 2, 549, 765, 193 | | | | ¹ Gold valued per fine ounce as follows: Prior to 1933, \$20.67+; 1933, \$25.56; 1934, \$35.00. The average commercial value per fine ounce of silver for the total recorded domestic production is \$0.778. # REGULATIONS AND EXECUTIVE ORDERS RELATING TO GOLD AND SILVER OF DOMESTIC ORIGIN A complete account of the regulations pertaining to gold and silver is given in the chapter on Gold and Silver in Minerals Yearbook, 1935, issued by the United States Bureau of Mines. The Yearbook also contains detailed statistics of production, by States. It may be purchased for \$2 from the Superintendent of Documents, Government Printing Office, Washington, D. C. Following is a brief résumé of orders and regulations issued in 1933 and 1934. Gold.—On April 20, 1933, an Executive order relating to foreign exchange and the earmarking and exporting of gold coin, bullion, or currency forbade the export of gold buillon. On July 27 the newspapers announced a decision of the Attorney General, effective August 9, that permitted export to 75 percent of the United States gold-mine production but made it impracticable for the remaining 25 percent, a situation that soon would have resulted in the closing of many smelters. The President on August 29, 1933, issued an Executive order, coupled with an antihoarding clause, under which the United States Government acted as agent for producers of newly mined gold to obtain the world price through the United States Mint and Federal Reserve banks. On October 25, 1933, the Reconstruction Finance Corporation began buying newly mined gold at arbitrarily fixed and periodically rising prices, the day-by-day price generally being above the world price. On October 27 the Reconstruction Finance Corporation was authorized by Presidential order to extend Government purchase of gold by entering foreign markets and began to bid for gold in Paris and London markets, offering \$32.36 per ounce. On January 16, 1934, the Federal Reserve Bank of New York began paying depositors by check the United States price of \$34.45 per ounce, less a small commission, coincident with the President's message of January 15 to Congress recommending that the upper limit of permissible revaluation of the dollar be 60 percent. Payment for deposits was resumed on February 1 by the Bureau of the Mint, following passage of the Gold Reserve Act of 1934 on January 30, 1934, and the President's proclamation of January 31 fixed the weight of the gold dollar at 15½1 grains, nine-tenths fine. The value of gold per fine ounce immediately became \$35 and still remains at this price. Silver.—On December 21, 1933, an Executive order fixed the price of silver derived from domestic mines and produced after the date of the order at 64.646464+ cents per fine ounce; this price was con- tinued throughout 1934. #### PRICES OF SILVER Average monthly prices of fine bar silver, other than that from domestic mines, in New York in 1934 were as follows: Price of fine bar silver (other than domestic) per ounce in New York in 1934, by | JanuaryFebruary | \$0. 44498
45545 | August
September | \$0. 49298
. 49796 | |-----------------|---------------------|-----------------------------|-----------------------| | March | | October | | | April | 45492 | November | | | <u>May</u> | | December | . 54702 | | JuneJuly | | Average | | | • | | ince in New York, 1929-34 1 | | | 1929 | \$0. 533 | 1932 | \$0. 282 | | 1930 | | | | | 1931 | 290 | 1934 | . 483 | ^{1 1929-33:} Average for all silver; 1934: Average for silver other than domestic. The yearly price of silver showed a fairly regular downward trend from \$1.337 and \$1.339 in 1865 and 1866 to \$0.507 in 1915. World War caused the price to advance; the downward trend was steady from 1923 to 1927. There was an increase of about 2 cents per ounce in 1928, followed by a decrease of about 5 cents per ounce in 1929. The average yearly price decreased to \$0.385 for 1930, \$0.290 for 1931, and \$0.282 for 1932, but it increased to \$0.350 for 1933 and to 0.646+ (for domestic silver) for 1934. More than half the world output of silver is derived from ores valued chiefly for metals other than silver, so that the price of silver has less weight in encouraging the bulk of silver production that has the price of other metals associated with it. Only about one-third of the world silver output is derived from ores having silver as a highly predominant factor. Other information
relating to the production and consumption of silver has been published by the Bureau of Mines.² #### IMPORTS AND EXPORTS 3 Value of gold and silver imported into and exported from the United States, 1933–34. bu classes | | Imports | Exports | Excess | of— | |---|------------------------------|------------------------------|----------------------------------|--------------------------------| | | Imports | Exports | Imports | Exports | | 1933 | | | | | | Gold:
Contained in domestic ore and base bullion | | \$2,606,607 | | \$2,606,607 | | Contained in foreign ore and base bullion Domestic bullion refined | 44 | 2, 164
267, 007, 686 | \$16, 176, 088 | 267, 007, 642 | | Foreign bullion refined
United States coin | 169, 203, 250 | 78, 020, 502
16, 399, 795 | 91, 182, 748 | 11, 521, 794 | | Foreign coin | 2, 937, 139 | 2, 615, 439 | 321, 700 | | | Excess exports over imports | 193, 196, 686 | 366, 652, 193 | 107, 680, 536 | 281, 136, 043
173, 455, 507 | | Silver: | | | | | | Contained in domestic ore and base bullion
Contained in foreign ore and base bullion | 6, 508, 385 | 189, 150 | 6, 508, 385 | 189,150 | | Domestic bullion refined Foreign bullion refined | 150
50, 133, 645 | 13, 940, 234
1, 331, 883 | 48, 801, 762 | 13, 940, 084 | | United States coin Foreign coin | 1, 008, 056
2, 574, 510 | 48, 380
3, 531, 326 | 959, 676 | 956, 816 | | Excess imports over exports | 60, 224, 746 | 19, 040, 973 | 56, 269, 823 | 15, 086, 050 | | 1934 | | | 41, 183, 773 | | | Gold: Contained in ore and base bullion | 00.000.000 | 400.004 | 4 72. | 7 at 60 h | | Bullion refined | 1, 140, 764, 166 | 493, 201
52, 230, 263 | 35, 780, 356
1, 088, 533, 903 | | | United States coin
Foreign coin | 7, 178, 725
2, 454, 062 | 35, 200 | 7, 178, 725
2, 418, 862 | | | Excess imports over exports | 1, 186, 670, 510 | 52, 758, 664 | 1, 133, 911, 846 | | | Silver: | | | 1, 133, 911, 846 | | | Contained in ore and base bullion
Bullion refined | 15, 812, 306
69, 024, 861 | 90, 448
10, 107, 983 | 15, 721, 858
58, 916, 878 | | | United States coin
Foreign coin | 759, 019
17, 128, 949 | 453, 128
5, 899, 777 | 305, 891
11, 229, 172 | | | Excess imports over exports | 102, 725, 135 | 16, 551, 336 | 86, 173, 799
86, 173, 799 | | the Bureau of Foreign and Domestic Commerce. ¹ Merrill, Charles White, Economic Relations of Silver to Other Metals in Argentiferous Ores: Econ. Paper 10, Bureau of Mines, 1930, 29 pp. 3 Merrill, Charles White, Summarized Data of Silver Production: Econ. Paper 8, Bureau of Mines, 1930, 58 pp.; Consumption of Silver in the Arts and Industries of the United States: Econ. Paper 14, Bureau of Mines, 1932, 18 pp. 3 Figures on imports and exports compiled by Claude Galiher, of the Bureau of Mines, from records of the Bureau of Foreign and Demostic Company. #### DOMESTIC SUPPLY The total excess of imports of gold over exports from 1916 to 1934, inclusive, was \$2,685,231,812. The only years since 1916 in which exports of gold exceeded imports were: 1919, when the excess was \$292,000,000; 1925, when it was \$134,000,000; 1928, when it was \$391,862,000; 1932, when it was \$446,212,000; and 1933, when it was \$173,456,000. The great gain in the domestic supply of gold is illustrated best by the following figures, which show the excess of imports over exports: 1916, \$530,000,000; 1917, \$180,000,000; 1918, \$21,000,000; 1920, \$95,000,000; 1921, \$667,000,000; 1922, \$238,000,000; 1923, \$294,000,000; 1924, \$258,000,000; 1926, \$98,000,000; 1927, \$6,000,000; 1929, \$175,000,000; 1930, \$280,000,000; 1931, \$145,325,000; and 1934, \$1,133,912,000. The domestic supply of new gold comes chiefly from dry and siliceous ore and from placer gravel worked largely by dredges. These two sources yielded 90.2 percent of the domestic gold in 1915, 79.86 percent in 1930, 86.5 percent in 1931, 92.9 percent in 1932, 92.94 percent in 1933, and 92.68 percent in 1934. The proportionate output of gold from copper ore was 7.2 percent in 1915, 16.4 percent in 1926, 22.2 percent in 1929, 9.65 percent in 1931, and only 5.25 percent in 1934. In 1915 dry and siliceous ore yielded 36 percent of the total silver; copper ore, 26 percent; lead ore, 27 percent; and lead-zinc ore, only 9 percent. In 1934 dry and siliceous ore yielded 26 percent; copper ore, 23.64 percent; lead ore, 9.59 percent; and lead-zinc ore, 29.08 percent. Thus, the largest gain in the output of silver has been from lead-zinc ore and the greatest loss from dry and siliceous ore. The recovery of silver from copper-lead ores has increased considerably in the last 3 years, owing to the rich silver content of some copper-lead ore from mines in Idaho. Copper-lead ores yielded 14.8 percent of the total silver in 1932, 15 percent in 1933, and 11.38 percent in 1934. #### WORLD PRODUCTION #### GOLD According to the Bureau of the Mint, the estimated quantity of gold produced in the world from 1860 to 1934, inclusive, is 948,647,803 fine ounces. For 1934 alone it is estimated as 27,930,463 ounces, an increase of 2,563,068 ounces over 1933. In a Bureau of Mines publication,⁴ the world output of gold from 1493 to 1927, inclusive, is estimated as approximately 1,003,560,000 ounces, of which 51.5 percent was produced from 1901 to 1927. Adding to this the production (159,599,122 ounces) from 1928 to 1934, inclusive, makes an estimated total for the period 1493–1934 of approximately 1,163,160,000 ounces. In 1934 production of gold in the United States (Philippine Islands excluded) increased 464,995 ounces, and in the U. S. S. R. (Russia), 1,595,670 ounces. Other large increases were recorded as follows: Egypt, 200,942 ounces; Sweden, 116,550 ounces; Chile, 91,505 ounces; Philippine Islands, 60,781 ounces; New Guinea, 57,279 ounces; Belgian Congo, 54,303 ounces; Rhodesia, 48,178 ounces; ⁴ Ridgway, Robert H., Summarized Data of Gold Production: Econ. Paper 6, Bureau of Mines, 1929, 63 pp. Australia, 47,038 ounces; British West Africa, 46,158 ounces; Colombia, 45,894 ounces; Central America and West Indies, 42,925 ounces; Japan, 37,594 ounces; France, 32,130 ounces; Bolivia, 31,412 ounces; French West Africa, 28,969 ounces; Mexico, 23,678 ounces; Canada, 20,371 ounces; Portuguese East Africa, 17,936 ounces; Peru, 14,792 ounces; Italy, 14,636 ounces; Venezuela, 13,345 ounces; Sarawak, 10,130 ounces; and Tanganyika, 10,090 ounces. The largest decreases were: Transvaal, Cape Colony, and Natal, 533,856 ounces; Taiwan, 19,250 ounces; British India, 13,913 ounces; Netherland East Indies, 12,537 ounces; and Brazil, 12,379 ounces. The following table shows the output of gold by countries, 1930 to 1934, as estimated by the Bureau of the Mint. World production of gold, 1930-34, by countries, in fine ounces | Country | 1930 | 1931 | 1932 | 1933 | 1934 | |---------------------------------|--------------|--------------|--------------|--------------|----------------| | North America: | | | 1 | | | | Canada | 2, 107, 073 | 2, 695, 219 | 3, 050, 581 | 2, 949, 309 | 0.000.000 | | Central America and West Indies | 58,050 | 67, 725 | 82, 238 | 87, 075 | 2, 969, 680 | | Mexico | 670, 488 | 623,003 | 584, 487 | | 130,000 | | Newfoundland | 010,400 | 020,000 | 004, 407 | 637, 727 | 661, 405 | | United States 1 | 2, 100, 395 | 2, 213, 741 | 0.010.004 | 15, 689 | 12,000 | | South America: | 2, 100, 000 | 2, 210, 141 | 2, 219, 304 | 2, 276, 711 | 2,741,706 | | Argentina | 1 000 | | 004 | | 1 | | Bolivia | 1,000 | 17 000 | 964 | 964 | 1,200 | | Brazil | 16, 479 | 17, 328 | 12, 281 | 32, 889 | 64, 301 | | Chile. | | 115, 473 | 115, 451 | 126,000 | 113, 621 | | Colombia | | 21, 380 | 38, 098 | 147,054 | 238, 559 | | Colombia | | 194, 268 | 248, 230 | 298, 246 | 344.140 | | Ecuador | 69, 998 | 59, 616 | 65, 629 | 60, 667 | 66, 427 | | Guiana: | | 1 | | | 00, 12, | | British | 6, 933 | 6,944 | 18, 714 | 31,056 | 25,000 | | French | 43, 538 | 43, 531 | 45,010 | 42, 456 | 47, 454 | | Netherland | 3, 948 | 4, 597 | 8,970 | 12, 378 | 11,896 | | Peru | 90, 052 | 73, 688 | 55, 555 | 84,072 | | | Uruguay | 00,002 | 10,000 | 00,000 | | 98,864 | | Venezuela | 55, 946 | 42, 309 | 77 007 | 18 | 400 055 | | Europe: | 00, 510 | 42, 009 | 77, 087 | 95, 710 | 109,055 | | Angtrio | | l | 057 | | 1.7 | | Czechoslovakia | | 1 000 | 257 | | | | France | 2,411 | 1,093 | 2, 283 | 2, 283 | 7,588 | | Cormony | | 42, 663 | 43, 402 | 57,870 | 90,000 | | Germany | 6,076 | 4, 115 | 2, 186 | 5, 498 | 5, 755 | | Great Britain | | | 6 | 64 | 51 | | Greece | 482 | 483 | 482 | 482 | | | Hungary | | | | 2,861 | 1.833 | | Italy | 1,723 | 2, 165 | 1,832 | 2, 565 | 17, 201 | | Rumania | 85, 904 | 96, 482 | 109, 631 | 120,000 | 120,019 | | Spain | 484 | 483 | 484 | 7, 716 | 7, 588 | | Sweden | 60,000 | 90,000 | 90,000 | 135, 930 | 252, 480 | | U. S. S. R. (Russia) | 1, 433, 664 | 1,700,960 | 1, 990, 085 | 2, 667, 100 | 4, 262, 770 | | Yugoslavia | 23, 148 | 21, 862 | 47, 582 | 70, 344 | | | Asia: | -0,110 | 21,002 | 11,002 | 10,044 | 71, 342 | | China | 96, 750 | 96, 750 | 96, 751 | 150 000 | 450.000 | | Chosen | 159, 608 | 208, 626 | | 150,000 | 150,000 | | East Indies, Netherland | 110, 435 | | 208, 626 | 369, 991 | 369, 991 | | Federated Malay States | | 100, 083 | 77, 964 | 78, 832 | 66, 295 | | India, British | 29, 597 | 27, 021 | 27, 159 | 31, 107 | 31, 777 | | Indo Chino | 329, 231 | 330, 484 | 329, 632 | 336, 106 | 322, 193 | | Indo-China | 514 | 289 | 289 | 161 | 7,073 | | JapanPhilippine Islands | 388, 740 | 434, 037 | 434, 037 | 433, 800 | 471, 394 | | Philippine Islands | 179, 204 | 181, 981 | 229, 728 | 279, 535 | 340, 316 | | Sarawak | 1,730 | 5, 901 | 8, 178 | 18, 712 | 28, 842 | | Taiwan | 15, 576 | 92, 430 | 92, 430 | 92, 430 | 73, 180 | | Turkey | 900 | 900 | 900 | · 200 | 10, 100 | | Africa | 11, 749, 557 | 11, 927, 961 | 12, 735, 979 | 12, 448, 275 | 2 12, 340, 549 | | Australasia | 621, 858 |
783, 934 | 998, 267 | | | | | 021,000 | 100, 704 | 990, 407 | 1, 157, 712 | 1, 256, 918 | | | 20, 836, 318 | 22, 329, 525 | 24, 150, 761 | OF 207 207 | 07,000,000 | | | ~~, Out, 010 | ##, U#U, U#U | 44, 10U, (OI | 25, 367, 395 | 27, 930, 463 | ¹ Philippine Islands excluded. ² Comprises Transvaal, Cape Colony, and Natal, 10,479,857 ounces; Rhodesia, 693,265 ounces; British West Africa, 384,268 ounces; Belgian Congo, 337,390 ounces; Egypt and Egyptian Sudan, 206,340 ounces; French Africa and Madagascar, 142,846 ounces; Tanganyika, 42,606 ounces; and other countries, 53,977 #### SILVER The Bureau of the Mint estimates the world production of silver from 1860 to 1934, inclusive, as 10,540,462,583 fine ounces. The output was 21,700,367 ounces more in 1934 than in 1933. The largest increases were: United States (Philippine Islands excluded), 9,665,622 ounces; Mexico, 6,043,950 ounces; Peru, 3,620,780 ounces; Canada, 1,254,298 ounces; Japan, 923,314 ounces; Italy, 913,228 ounces; Chile, 796,476 ounces; Belgian Congo, 752,906 ounces; U. S. S. R. (Russia), 341,000 ounces; and Australasia, 296,352 ounces. The only large decreases were in Central America, Spain, Germany, Burma, Bolivia, and France. World production of silver, 1930-34, by countries, in fine ounces | Country | 1930 | 1931 | 1932 | 1933 | 1934 | |---|----------------------|---------------|---------------|---------------|------------| | North America: | | • | | | | | Canada | 26, 435, 900 | 20, 558, 200 | 18, 356, 393 | 15, 187, 063 | 16, 441, 3 | | Central America and West Indies | 3, 900, 000 | 4, 000, 000 | 4, 300, 000 | 4, 800, 000 | 3, 500, 0 | | Mexico | 105, 410, 900 | 86, 064, 500 | 69, 303, 054 | 68, 101, 062 | 74, 145, (| | Newfoundland | (1) | (1) | (1) | 1, 208, 280 | 1, 150, 0 | | United States 2 | 50, 627, 200 | 30, 822, 000 | 23, 831, 642 | 22, 821, 257 | 32, 486, 8 | | outh America: | 1 ' ' | | | | | | Argentina | 15,000 | | 50, 154 | 50, 154 | 60, 0 | | Bolivia | 7, 091, 100 | 5, 772, 300 | 4, 115, 200 | 5, 469, 069 | 5, 216, 2 | | Brazil | | 10,000 | 10,000 | 10,000 | 10, | | Chile | | 320, 200 | 103, 780 | 256, 621 | 1, 053, 0 | | Colombia | 60,000 | 40,000 | 50,000 | 107, 992 | 127. | | Ecuador | 106, 100 | 104, 800 | 114, 167 | 113, 200 | 110, | | Guiana | | 6,000 | 6,000 | 6,000 | 6. | | Peru | 15, 500, 400 | 10, 942, 500 | 6, 735, 360 | 6, 760, 534 | 10, 381, | | Yera | 4,200 | 4, 200 | 6,000 | 6,000 | 7, | | Venezuela | 4,200 | 4, 200 | 0,000 | 0,000 | •, | | urope: | 10 000 | 10 000 | 27, 938 | | 14, | | Austria
Czechoslovakia | 10, 200 | 10, 200 | | 047 190 | 971, | | Czechoslovakia | 890, 600 | 899, 300 | 947, 139 | 947, 139 | | | France | 652,000 | 652,000 | 643, 000 | 643, 000 | 500, | | Germany | 5, 485, 400 | 5, 784, 600 | 5, 993, 499 | 6, 320, 690 | 5, 944, | | Germany
Great Britain | 41,000 | 34,000 | 16, 043 | 37, 551 | 138, | | Greece | 241, 100 | 192, 900 | 192, 900 | 192, 900 | 255, | | Hungary | | | | 15, 593 | 9, | | Italy | . 571, 700 | 719, 300 | 801, 499 | 377, 592 | 1, 290, | | Norway | 337, 800 | 297, 400 | 292, 565 | 241, 125 | 196, | | Poland | 337, 800
558, 700 | 558, 700 | 69, 283 | 41, 377 | 21, | | Rumania | 142,000 | 155, 800 | 173, 031 | 173, 031 | 388, | | Spain | | 3, 098, 700 | 3, 374, 335 | 2, 929, 508 | 1, 788, | | Swadan | | 80,000 | 80,000 | 244, 822 | 519, | | Sweden
U. S. S. R. (Russia) | 300,000 | 350,000 | 400,000 | 981, 000 | 1, 322, | | Yugoslavia. | 100, 300 | 94, 700 | 133, 230 | 1,624,000 | 1, 748, | | l ugosiavia | 100,000 | 02,100 | 200,200 | _,, | -,, | | Burma | 7, 047, 000 | 5, 898, 000 | 6,001,000 | 6, 050, 000 | 5, 787, | | | 50,000 | 60,000 | 60,000 | 60,000 | 80. | | China | | 203, 500 | 209, 332 | 702, 976 | 702. | | Chosen
East Indies, Netherland | 68,800 | | 842, 362 | 860, 463 | 771, | | East Indies, Netherland | 2,094,200 | 1, 473, 100 | | | | | India, British | | 25,000 | 25, 737 | 30, 241 | 30, | | Indo-China | . 3, 200 | 1,600 | 2,724 | 1,607 | 3, | | Japan | 5, 628, 600 | 6, 183, 300 | 6, 360, 643 | 5, 958, 842 | 6, 882, | | Japan
Philippine Islands | 110, 300 | 97, 100 | 149, 131 | 181, 372 | 212, | | Taiwan | . 15,200 | 17, 200 | 17, 713 | 17, 713 | 16, | | Turkey | . 220,000 | 200,000 | 200,000 | | | | Africa: | 1 | 1 | 1 | | | | Algeria | 167, 000 | 150,000 | 58, 899 | 128, 139 | 100, | | Bechuanaland | 400 | 700 | 1,672 | 622 | _ | | Rolgian Congo | 13.000 | 15,000 | 18,000 | 2, 646, 713 | 3, 399, | | British West Africa (Gold Coast,
Ashanti, Nigeria, Sierra Leone) | | 1 20,000 | 1 | | , , | | Achanti Migaria Giarra Lacra) | 200 | 252, 900 | 86, 402 | 117, 480 | 82, | | Ashanti, Nigeria, Dierra Louis) | 40 | 100 | 257 | 224 |) | | East Africa, Portuguese | | 1 | | 96 | I | | Eritrea | 79 900 | 76 500 | 114, 893 | 112, 459 | 128, | | Rhodesia | 73, 360 | 76, 500 | | 5, 505 | 7. | | Tanganyika, Uganda, Kenya Colony | 1,400 | 1,900 | 4,431 | | | | Transvaal, Cape Colony, Natal | | 1, 063, 000 | 1, 120, 668 | 1, 065, 011 | 1,002, | | Australasia | _ 10, 165, 000 | 8, 628, 800 | 9, 492, 726 | 11, 553, 031 | 11, 849, | | | 248, 708, 400 | 195, 920, 000 | 164, 892, 802 | 169, 159, 054 | 190, 859, | | | | | | | | Some production. Not recorded in report of Bureau of the Mint. Philippine Islands excluded. #### MINE REPORT ## METHOD OF COLLECTING STATISTICS The first table in this report presents the final official figures of the production of gold and silver in the United States in 1934, as agreed upon by the Bureau of the Mint and the Bureau of Mines. With the comparatively unimportant exceptions of domestic gold and silver contained in ore and matte exported for reduction during the year, these figures record the production of gold and silver bullion from domestic ore in marketable form as metals, either refined or unrefined. To trace the gold and silver produced back to its source by States, counties, and mining districts, the Bureau of Mines systematically investigates the "mine production" of ores containing gold and silver and the output of the placer mines, the total being classified by methods of production and by kinds of ore, as well as by mining districts. The resulting figures form the basis of the mine reports. Of the two plans for ascertaining the production of gold and silver, one is a measure of the metallurgic industry and the other of the mining industry; one reports the metal actually recovered in marketable form and the other the mine output and its recoverable content. The two methods will not produce identical results, but the figures for a period of years sufficiently long to compensate for overlap or lag should agree within allowable limits of error. Gold and silver produced in the United States, 1905-34, according to mint and mine returns | Year | м | int | Mine | | | | |--|--|---|--|---|--|--| | | Gold 1 | Silver | Gold 1 | Silver | | | | 1905-30
1931
1932
1932
1933
1934
Total, 1905-34
Fine ounces of gold | \$1, 880, 334, 300
49, 527, 200
50, 626, 000
65, 337, 600
108, 191, 400
2, 154, 016, 500
101, 453, 517 | Fine ounces 1, 605, 709, 554 30, 932, 050 23, 980, 773 23, 002, 629 32, 725, 353 1, 716, 350, 359 | \$1, 868, 062, 833
49, 751, 668
53, 218, 073
67, 191, 498
109, 014, 594
2, 147, 238, 666
101, 096, 635 | Fine ounces 1, 596, 126, 96; 29, 953, 72; 22, 899, 86; 23, 317, 15; 32, 995, 01; 1, 705, 292, 736 | | | ¹ Gold valued per fine ounce as follows: Prior to 1933, at \$20.67+; 1933, at \$25.56; 1934, mint at \$35.00 and mine at \$34.95. According to mint reports, these figures show a total excess of gold for the 30 years of 356,882 ounces (a difference of 0.35 percent) and a total excess of silver of 11,057,623 ounces (a difference of 0.64 percent). #### UNITS OF MEASUREMENT In the measurement of ores and concentrates the short ton of 2,000 pounds is used. Throughout 1932 and earlier years the price of gold was fixed by law at \$20.67+ per fine ounce, and in 1933 the legal coinage value was continued at \$20.67+. The average weighted price per fine ounce, as computed by the Bureau of Mines, was \$25.56 for the year 1933 and \$34.95 for 1934. For a discussion of prices of newly mined gold in 1933 and 1934, see page 328. The annual average prices for silver from 1929 to 1934 are given on page 329. #### MINES PRODUCING #### LEADING GOLD PRODUCERS About 1,660,900 fine ounces of gold (60 percent of the mine output of the United States—Philippine Islands and Puerto Rico excluded) in 1934 represented the yield of 25 operators, none of which produced less than 15,600 ounces. The output of the 25 largest producers in 1934 was only 45,500 ounces more than that of the 25 largest producers in 1933, although the total gold output of the United States (excluding Philippine Islands and Puerto Rico) increased 475,079 ounces. indicates, as anticipated, that operators of the larger lode mines treated much lower grade gold ores in 1934 and, as the gold-dredge operators increased their output 81,552 ounces, that the dredges, new mines, and smaller mines were responsible for the increase in out-The average recovery of gold per ton of dry and siliceous ores decreased from 0.180 ounce in 1933 to 0.156 ounce in 1934. The Homestake mine in South Dakota was the largest producer in 1934, but with an output (in ounces) considerably less than in 1933. The Fairbanks Exploration Co. ranked second and was the largest producer
from dredging gravel. Of the 25 largest producers 9 were in California, 4 each in Alaska and Colorado, 3 in Utah, and 1 each in Arizona, Idaho, Nevada, New Mexico, and South Dakota. Of these companies 15 produced gold from dry and siliceous ores, 5 from gravel by floating dredges, 3 from copper ore, 1 from lead-zinc ore, and 1 from lead ore, lead-zinc ore, and siliceous ore. The Benguet Consolidated Mining Co. (including the Balatoc mine, controlled by Benguet stockholders) in the Philippine Islands ranked between the Homestake mine and the Fairbanks Exploration Co. as a gold producer; its output increased in 1934 and will show a large increase again in 1935. Larger producers of gold in the United States in 1934, in order of output 1 | Rank | Operator | State | Mining district | Source of gold | |----------|--|---------------|-----------------|--------------------------| | Ausa | | South Dakota. | Whitewood | Dry and siliceous ore. | | 1 | Homestake Mining Co | Alaska | Fairbanks | Dredging gravel. | | 2 | Fairbanks Exploration Co | do | Juneau | Dry and siliceous ore. | | 3 | Golden Cycle Mining & Reduc- | Colorado | Cripple Creek | Do. | | 4 | tion Co.2 | Colorado | Olippic Crock | 20. | | 5 | Empire Star Mines Co., Ltd | California | Grass Valley | Do. | | 6 | Natomas Co | do | Folsom | Dredging gravel. | | 7 | Yuba Consolidated Gold Fields | do | Yuba River and | Do. | | • | Tuba Consolidated Gold Ticas-1- | | Snelling. | | | 8 | Phelps Dodge Corporation (Cop- | Arizona | Warren | Copper ore. | | • | per Queen). | | | _ | | 9 | Utah Copper Co | Utah | West Mountain | Do | | 10 | Idaho-Maryland Mines Co | California | Grass Valley | Dry and siliceous ore. | | 11 | London Gold Mines Co | Colorado | Mosquito | Do. | | 12 | Willow Creek Mines, Inc | Alaska | Willow Creek | Do. | | 13 | Capital Dredging Co | California | Folsom | Dredging gravel. | | 14 | Amer Gold Mining Co | Colorado | Mosquito | | | 15 | St. Joseph Lead Co | Idaho | Middle Boise | Do. | | 16 | The Argonaut Mining Co., Ltd | California | Jackson | Do. | | 17 | Hammon Consolidated Gold | Alaska | Nome | Dredging gravel. | | | Fields. | 774.3 | Tintic | Dry and siliceous ore. | | 18 | Eureka Standard Consolidated | Utah | 11nuc | Dry and sinceous ore. | | | Mining Co. | do | West Mountain | Lead ore, lead-zinc ore, | | 19 | United States Smelting, Refining | ao | West Mountain | and siliceous ore. | | | & Mining Co.
Carson Hill Gold Mining Corpo- | California | Mother Lode | Dry and siliceous ore. | | 20 | ration. | Camoima | Middler Bode | Diy and billocoms cross | | 21 | The Mountain Copper Co., Ltd | do | Iron Mountain | Do. | | 22 | Original Sixteen to One Mine, Inc. | do | Alleghany | | | 23 | Nevada Consolidated Copper Cor- | Nevada | Robinson | | | 23 | poration. | 11010000 | | | | 24 | Shenandoah-Dives Mining Co | Colorado | San Juan | Dry and siliceous ore. | | 25
25 | American Metal Co. (Pecos mine) | | Willow Creek | Lead-zinc ore. | | | 1 1111011011 1.20011 001 (2 0000 111110) | | | | Philippine Islands excluded. Custom mill. Includes ore from Cresson, Portland, United Gold, and other mines. A total of about 1,117,900 fine ounces of gold came from the smaller lode ⁵ and placer mines (more than 12,000 in number), of which the majority produced only small quantities; some, however, had an output of more than 15,000 ounces. The yield from the placer mines (nearly 7,440 in number), other than those enumerated among the 25 largest producers of gold, was about 334,600 ounces, or less than 45 ounces per mine. #### LEADING SILVER PRODUCERS The output of silver from the 25 leading producing companies in 1934 was nearly 23,970,000 ounces, or 73 percent of the mine total (Philippine Islands and Puerto Rico excluded). Nine of these companies (3 each in Idaho and Utah and 1 each in Arizona, Colorado, and Montana) produced more than 1,000,000 ounces each, and none yielded less than 259,000 ounces. Of the 25 largest producers 6 were in Utah, 5 in Idaho, 3 each in Colorado, Montana, and Nevada, 2 each in Arizona and New Mexico, and 1 in Texas. Only 5 of these producers derived all their silver from dry and siliceous ores; the great bulk of the silver came from base ores, mainly lead-zinc, copper, and copper-lead ores. Larger producers of silver in the United States in 1934, in order of output | Rank | Operator | State | Mining district | Source of silver | |----------------------|--|------------------------------|--|---| | 1
2 | Sunshine Mining Co | Idaho
Montana | Evolution
Summit Valley
(Butte). | Copper-lead ore.
Copper ore and lead-
zinc ore. | | 3 | Phelps Dodge Corporation (Copper Queen). | Arizona | Warren | Copper ore | | 4
5 | Empire Zinc Co | Colorado
Utah | West Mountain | Lead ore, lead-zinc ore, | | 6 7 | Silver King Coalition Mines Co | do
Idaho | Uintah
Lelande | Lead-zinc ore. | | 8 | Hecla Mining Co | do | Yreka | Lead ore and lead-zinc ore. | | . 9 | Tintic Standard Mining Co | Utah | Tintic | Lead ore and siliceous | | 10
11 | American Metal Co.(Presidio mine).
Magma Copper Co | Texas
Arizona | | Siliceous ore. | | 12
13 | Treadwell Yukon Co., Ltd | Nevada
Idaho | Tybo
Hunter | Lead-zinc ore. | | 14
15
16 | American Metal Co. (Pecos mine)
Combined Metals Reduction Co
Park City Consolidated Mining Co. | New Mexico
Nevada
Utah | Willow Creek
Pioche
Blue Ledge | Do. | | 17
18
19
20 | Tonopah Mining Co
Utah Copper Co
Trout Mining Co
Black Hawk Consolidated Mines | Nevada | Blue Ledge
Tonopah
West Mountain
Flint Creek
Central | Dry and siliceous ore. Copper ore. Lead-zinc ore. | | 21
22
23 | Co. Crescent Mining Co | Idaho
Colorado
Utah | Yreka
Creede
Tintic | Copper-lead ore.
Dry and siliceous ore.
Do. | | 24
25 | Shenandoah-Dives Mining Co
Butte Copper & Zinc Co | Colorado
Montana | San Juan
Summit Valley | Do.
Lead-zinc ore. | #### NUMBER OF MINES The following table indicates the number of mines that produced gold and silver in 1934. The placers are those in which the gold and the silver in natural alloy with the gold and, in a few placers, with platinum are recovered from gravel and sand, whether by hand wash- ⁵ Gardner, E. D., and Johnson, C. H., Mining and Milling Practices at Small Gold Mines: Inf. Circ. 6800, Bureau of Mines, 1934, 31 pp. ing, sluicing, hydraulicking, drifting (in frozen ground or ancient buried river channels), or dredging. The lode mines are those yielding gold and silver (from ore as distinguished from gravel) mainly from underground workings, including those that yield ore valuable chiefly for copper, lead, or zinc but that contribute precious metals as byproducts. In addition to producing mines enumerated here many properties were being prospected and developed, and many other mining claims were being held by assessment work only. The enumeration of placer mines is less satisfactory than that of lode mines, because some are operated only temporarily and are individually small and because much of the production is made by transitory miners not regularly working placer ground. So far as possible the unit, as for lode mines, is not the operator but the mining claim or group of claims. In 1934 the total number of placer mines active in the States in which gold is obtained by placer mining was nearly double that in The production of gold in 1934 by the 7,444 placer operations (Philippine Islands and Puerto Rico excluded) was 721,380 fine ounces, of which 55 companies operating 74 dredges produced 513,073 ounces, an average of 6,933 ounces to the dredge; the other placers had an output of 208,307 ounces of gold, an average of about 28 ounces. However, many of the placer mines operated by hydraulic and drifting methods had comparatively large outputs, so that the average recovery of gold by more than 7,000 of the placer mines was very The largest increases in the number of placers were reported from Arizona, California, Colorado, Idaho, Montana, and Washington; most of the new operations were on a small scale. The number of dredges increased from 63 in 1933 to 74 in 1934, and they yielded 71 percent of the placer gold in 1934 although some of them treated lower-grade gravel than in former years. The number of lode mines producing gold or silver increased 42 percent in 1934. Most of the activity was at mines treating siliceous ore, but there was also a large increase in the number of mines treating base ores containing gold and silver. The higher price of the base metals and the increased value of the gold and silver content of the base ores resulted in the reopening of a large number of mines. greatest increases in number of lode mines operated were in Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Washington; some other States also showed increases. Number of mines in the United States producing gold and silver in 1934, by States 1 | State Alabama Alaska 2 Arizona California Colorado Georgia Idaho | Placer 1 600 867 1,784 967 20 1,172 | Lode 1 40 747 867 929 7 291 | Total 2 640 1, 614 2, 651 1, 896 27 1, 463 | New York 3 North Carolina Oregon Pennsylvania South Carolina South Dakota Tennessee 3 Texas | Placer 14 332 5 258 | Lode 1 12 95 1 7 8 2 8 | Total 1 26. 427 1 12. 266 2 8 | |---|--------------------------------------|-------------------------------|---|---|----------------------|-------------------------
--------------------------------| | Alaska 2 600 40 640 Alaska 2 867 747 1, 614 California 1,784 867 2, 651 Colorado 967 929 1, 896 Georgia 20 7 27 | | 28
3
210
41
7,444 | 8
190
1
62
10
4,655 | 8
218
4
· 272
51
12 099 | | | | Philippine Islands and Puerto Rico excluded. Number of mines contributing to production of gold or silver. Number of mines in the United States producing gold and silver, 1930-34 1 | Year | Placer | Lode | Total | Year | Placer | Lode | Total | |------|--------------------------------------|--------------------------------------|--------------------------------------|------|--------|------------------|--------| | 1930 | 1, 799
2, 081
3, 496
3, 742 | 1, 984
1, 988
2, 871
3, 283 | 3, 783
4, 069
6, 367
7, 025 | 1934 | 7, 444 | 4, 655
2, 956 | 12,099 | Philippine Islands and Puerto Rico excluded. #### MINE PRODUCTION #### SUMMARY The following table gives the mine production of gold and silver in 1934, by States, as reported to the Bureau of Mines by the producing mines. Mine production of gold and silver in the United States in 1934, by States | State | Go | old | Sil | ver | Increase or decrease from
1933 (fine ounces) | | | | |----------------------|-------------------------|---------------|--------------|------------------------|---|-------------------|--|--| | | Fine ounces | Value 1 | Fine ounces | Value 2 | Gold | Silver | | | | Alabama | 2, 780. 71 | \$97, 186 | 361 | \$233 | +2,776.74 | +361 | | | | AlaskaArizona | 537, 281. 83 | 18, 778, 000 | 168,868 | 109, 167 | +67, 995. 95 | +11,718 | | | | California | 167, 024. 12 | 5, 837, 493 | 4, 448, 474 | 2, 875, 781 | +87, 031. 51 | +2,058,111 | | | | Colorado | 719, 063, 92 | 25, 131, 284 | 844, 413 | 545, 883 | +105, 485. 07 | +441,822 | | | | Georgia | 324, 923. 32
969. 91 | 11, 356, 070 | 3, 475, 661 | 2, 246, 892 | +82,095.62 | +1,289,521 | | | | GeorgiaIdaho | 84, 817. 20 | 33,898 | | 31 | +411.51 | -17 | | | | Illinois | 04, 011. 20 | 2, 964, 361 | 7, 394, 143 | 4, 780, 052 | +20, 224. 97 | +406, 183 | | | | Meryland | | | 310 | 200 | | -1,112 | | | | Maryland
Michigan | 58. 63 | 2,049 | 529 | | -13.50 | | | | | Missouri | 00.00 | 2,049 | 63,066 | 342 | +48.96 | -125,397 | | | | Montana | 97, 445, 95 | 3, 405, 736 | 4.006.468 | 40, 770
2, 590, 040 | | +63,066 | | | | Nevada | 144, 275, 17 | 5, 042, 417 | 3, 057, 114 | 1, 976, 316 | +39, 623. 75 | +1,345,768 | | | | New Mexico | 27, 307, 01 | 954, 380 | 1,061,775 | 686, 400 | +45, 684. 89 | +1,908,493 | | | | New York | | 001,000 | 26, 406 | 17, 071 | +832.92 | -119, 805 | | | | North Carolina | 508. 70 | 17,779 | 9,710 | 6, 277 | -215, 94 | +26, 406 | | | | Oregon | 33, 711, 59 | 1, 178, 220 | 46, 560 | 30, 099 | +13.471.93 | -1,782 | | | | Pennsylvania | 623, 00 | 21,774 | 6, 230 | 4,027 | +414.02 | +25,800
+3,930 | | | | Philippine Islands | 340, 314, 02 | 11, 893, 975 | 212, 700 | 137, 503 | +15, 274, 56 | +26.137 | | | | Puerto Rico | 57.00 | 1, 993 | 13 | 8 | +30.00 | +13 | | | | South Carolina | 642.03 | 22, 439 | 487 | 315 | +407.46 | +384 | | | | South Dakota | 486, 118. 97 | 16, 989, 858 | 99, 741 | 64, 479 | -26, 284, 80 | -25,676 | | | | Tennessee | 455.00 | 15, 902 | 61, 148 | 39, 530 | +231.51 | +21,279 | | | | Texas | 358. 74 | 12, 538 | 854, 442 | 552, 367 | +358.74 | +854, 282 | | | | Utah | 136, 581. 52 | 4, 773, 524 | 7, 111, 417 | 4, 597, 280 | +27, 451. 97 | +1,442,220 | | | | Virginia | 667.10 | 23, 315 | 103 | 67 | +634.88 | +103 | | | | Washington | 8, 301. 83 | 290, 149 | 44, 120 | 28, 522 | +3, 739, 15 | +25, 600 | | | | Wyoming | 4, 871. 36 | 170, 254 | 710 | 459 | +2, 671. 41 | +450 | | | | | 3, 119, 158. 63 | 109, 014, 594 | 32, 995, 017 | 21, 330, 111 | +490, 383. 28 | +9,677,858 | | | Gold value computed at average weighted price (\$34.95 per fine ounce). Silver value computed at Treasury buying price for newly mined domestic silver (\$0.64646464 per fine ounce). The mine production of gold in the United States amounted to 3,119,158.63 fine ounces in 1934 compared with 2,628,775.35 ounces in 1933. The value of the output in 1934, based on the average weighted price of \$34.95 per ounce, was \$109,014,594, or \$41,823,096 more than in 1933 when the average weighted price was \$25.56 per ounce. All the States but North Carolina and Maryland showed increase in value of gold produced, and all but South Dakota, North Carolina, and Maryland reported increase in quantity. The States making the largest gains were: California (105,485 ounces), Arizona (87,032 ounces), Colorado (82,096 ounces), Alaska (67,996 ounces), Nevada (45,685 ounces), Montana (39,624 ounces), Utah (27,452 ounces), and Idaho (20,225 ounces). The total increase in quantity of silver produced in 1934 was 9,677,858 fine ounces, and the total increase in value was \$13,169,105. The States with the largest increases were: Arizona (2,058,111 ounces), Nevada (1,908,493 ounces), Utah (1,442,220 ounces), Montana (1,345,768 ounces), Colorado (1,289,521 ounces), Texas (854,282 ounces), California (441,822 ounces), and Idaho (406,183 ounces). Michigan, New Mexico, and South Dakota were the only States that showed any appreciable decrease in output of silver in 1934. #### ORE PRODUCTION, CLASSIFICATION, AND AVERAGE METAL YIELD The best index of lode mining is the quantity, metallic content, and value of ore mined rather than the number of mines or operators. The following table shows the production of ore from mines producing gold and silver and the average extraction of precious metals per ton of ore. The classification adopted is necessarily arbitrary in part. complex nature of western ores especially and the gradations from one well-recognized class to another render a fixed terminology essential. The dry and siliceous ores comprise gold and silver ores proper, as well as fluxing ores carrying considerable quantities of iron and manganese oxides and very small quantities of gold and silver, and precious metal-bearing ores carrying copper, lead, or zinc in quantities too low to permit their classification as copper, lead, zinc, or mixed ores. distinction between gold ore and silver ore is not made here. total number of silver mines and the total production of true silver ore are both comparatively small. The copper ores include those containing 2.5 percent or more of copper, or less than this percentage in the great disseminated copper deposits of the West and in the Lake Superior ores. In general, the lead ores are those containing 5 percent (dry assay) or more of lead, and the zinc ores are those containing 16 percent or more of zinc, both irrespective of their precious-However, ores of lower grades in lead and especially metal content. in zinc are treated profitably in many districts; they are then, of course, classified as lead ore or zinc ore, as the case may be. mixed ores are combinations of those enumerated. The lead, zinc, and lead-zinc ores in most districts in the Eastern and Central States carry no appreciable quantity of gold or silver; such ores are excluded from this report. The total quantity of ore (from which gold or silver was produced) sold or treated annually decreased from 68,000,000 tons in 1918 to 21,500,000 tons in 1921, then increased steadily until 1926 when the total was 65,787,864 tons. In 1927 the total quantity of ore was 64,526,920 tons; in 1928, 69,747,193 tons; in 1929, 75,653,924 tons, much the largest output ever recorded; in 1930, 53,972,449 tons; in 1931, 41,985,920 tons; in 1932, 21,451,974 tons; in 1933, 19,192,723 tons; and in 1934, 26,149,668 tons. ## Ore produced in the United States and average recovery in fine ounces of gold and silver per ton, 1930-34 1 | · | Dry and siliceous ore | | Copper ore | | | Le | Lead ore | | | Zinc ore | | Copper-lead and cop-
per-lead-zinc ores | | | Lead-zinc ore | | | | | |---
--|--|--|---|---|-------------------------------|---|---|---|--|-------|--|--|---|---|---|--|--|---| | State | Short
tons | ounce | rage
es per
on | Short
tons | ounce | erage
es per
on | Short
tons | ounc | erage
es per
on | Short | ounc | erage
es per
on | Short
tons | ound | erage
es per
on | Short | Ave
ounce
to | | Total
ore
(short
tons) | | | | Gold | Silver | | Gold | Silver | | Gold | Silver | | Gold | Silver | | Gold | Silver | | Gold | Silver | | | Alaska | 4, 390, 000
373, 073
2, 299, 699
1, 164, 575
202, 784
800
287, 828
901, 454
55, 606
61, 842
1, 520, 669
47, 625
478, 119
19, 420
8, 164
41, 232 | 0. 046
. 2099
. 193
. 259
. 275
. 073
. 225
. 132
. 137
. 185
. 319
. 008
. 151
. 335
. 245
. 109 | . 07
17. 93
4. 10
1. 82
. 04 | 2, 845, 604
53, 357
135, 082
1, 020
(1)
458, 587
1, 819, 913
1, 000, 972
 | 0.027
.001
.041
.012
.003
.009
.001 | 3. 94
. 04
. 02
. 09 | 16, 203
2, 160
5, 677
240, 465
10, 321
24, 931
807
3
 | . 268
. 803 | 23. 02
12. 39
5. 57
14. 80
11. 15
6. 22
11. 67
9. 61
14. 88
46. 21 | 864
2 65, 913
66, 353 | | 0,11 | 47
11
201
118, 927
72
1, 176 | 0. 160
. 276
. 914
. 001
. 192
. 001 | 154. 00
11. 49
31. 07
47. 19
18. 58 | 3, 652
723, 986
244, 303
153, 412
272, 795
300 | . 101
. 002
. 013
. 014
. 057
. 006 | 10. 16
2. 87
5. 84
7. 76
3. 01
1. 92
8. 58
. 04 | 1, 287, 182
800
1, 066, 952
2, 899, 782
1, 397, 709
62, 145
1, 520, 669
47, 680
5, 076, 735 | | 1934: Total Percentage. 1933: Total Percentage. 1932: Total 1932: Total 1931: Total 1930: | 11, 852, 890
45, 33
8, 680, 376
45, 23
8, 226, 167
8, 329, 009
7, 767, 289 | . 156
. 180
. 197
. 177
. 163 | . 72
. 42
. 48
. 52
1. 13 | 11, 575, 092
44, 26
8, 363, 586
43, 57
11, 504, 946
30, 966, 550
41, 723, 797 | .013
.013
.009
.007
.008 | .70
.45
.31 | 368, 421
1, 41
717, 649
3, 74
697, 168
894, 636
1, 380, 641 | . 046
. 019
. 023
. 020
. 019 | 5. 47
7. 02
6. 84 | 133, 130
0. 51
122, 594
0. 64
41, 410
97, 950
249, 366 | 0.002 | .07 | 120, 562
0, 46
126, 207
0, 66
167, 106
213, 245
246, 430 | .003 | 30. 95
27. 49
20. 18
13. 09
12. 38 | 8. 03
1, 182, 311
6. 16
815, 177
1, 484, 530 | .019
.036
.062
.045
.026 | 5. 20
6. 49
4. 69 | 26, 149, 668
100, 00
19, 192, 723
100, 00
21, 451, 974
41, 985, 920
53, 972, 449 | ¹ Illinois, Missouri, Philippine Islands, and Puerto Rico excluded; quantity of crude ore containing gold and silver unknown. Copper ore from Michigan also excluded, as the silver recovered at copper mine in 1934 was native silver in lumps and not recovered from copper bullion. ver recovered at copper mine in 1934 was native silver in numps and not recovered from copper dumon. 2 Current slag fumed. 3 Includes pyritiferous magnetite ore from Pennsylvania yielding 6,231 tons of copper concentrates. 4 Zinc ore yielded no gold or silver. 5 Figures represent New York only; lead-zinc ore from other Eastern States yielded no gold or silver. 6 Includes low-grade pyritiferous magnetite ore from Pennsylvania; excludes ore containing no gold or silver. The 11,852,890 tons of dry and siliceous ores treated in 1934 yielded an average of 0.156 ounce of gold and 0.72 ounce of silver per ton, and the 14,296,778 tons of base ores containing gold and silver yielded only 0.014 ounce of gold but 1.69 ounces of silver per ton. It is evident that any large increase in gold must come from placers and from dry and siliceous ores and that any large increase in silver will come from the base ores of which copper ore constituted 81 percent in 1934. The quantity of copper ore in 1934, although larger than in 1933, was still much below normal. About 88,100 tons more siliceous ore were treated in South Dakota in 1934 than in 1933, and 0.038 ounce less gold was recovered per ton; 1,017,856 tons more were treated in California, and 0.081 ounce less gold was recovered per ton; 219,000 tons more were treated in Alaska, and 0.007 ounce less gold was recovered per ton; and 422,675 tons more were treated in Colorado, and 0.050 ounce less gold was recovered These four States yielded 79 percent of the total dry and siliceous ore treated and 77 percent of the total gold from such ores in 1934. About 50,565,700 tons less copper ore containing gold and silver were sold or treated in 1934 than in 1929 but about 3,211,500 tons more than in 1933. The quantity of lead ore containing gold and silver was less than one-fourth of that in 1929 and about 349,200 tons less than in 1933. The quantity of lead-zinc ore containing gold and silver increased about 917,300 tons, but the average recovery of gold and silver per ton decreased appreciably. The quantity of copper-lead and copper-lead-zinc ores in 1934 was the smallest since 1922, but the average silver recovered per ton was 3.46 ounces above that in 1933 and nearly 11 ounces above that in 1932. The quantity of gold recovered from the 14,296,778 tons of base ores in 1934 totaled 203,513 ounces and the silver 24,162,290 ounces compared with 162,544 ounces of gold and 19,452,659 ounces of silver from 10,512,347 tons in 1933. #### GOLD, BY SOURCES As the following table indicates, 92.68 percent of the domestic output of gold in 1934 was obtained from dry and siliceous ores (normally gold quartz and gold-silver quartzose ores) and placers compared with 92.94 percent in 1933. The total contribution of gold from the great copper, lead, and zinc mines was 7.32 percent compared with 7.06 percent in 1933. Mine production of gold in the United States in 1934, by States, in fine ounces 1 | State | Placers | Dry and siliceous | Copper ore | Lead ore | Zinc ore | | zinc | Total | |----------------|--------------|-------------------|--------------|-------------|----------|---------|-------------|------------------------------| | - <u> </u> | | ore | | | 1, 177 | ore | ore | | | Alabama | 4.71 | 2, 776. 00 | | | | | | 0 700 71 | | Alaska | 335, 795, 83 | 201, 486, 00 | | | | | | 2, 780. 71 | | Arizona | 6, 982, 26 | 77, 949, 51 | 76, 092. 34 | 3, 333. 44 | | 7. 53 | 2, 659. 04 | 537, 281. 83 | | California | 274, 024, 83 | 443, 906. 79 | 36.31 | 1, 092, 95 | | 3.04 | 2, 009. 04 | 167, 024, 12
719, 063, 92 | | Colorado | 14, 972, 99 | 301, 231. 49 | 5, 582. 37 | 2, 582, 81 | | 183. 76 | 369, 90 | 324, 923. 32 | | Georgia | 542. 50 | 427.41 | | -, | | 100.10 | 000.00 | 969.91 | | Idaho | 27, 256. 37 | 55, 822, 40 | 12.66 | 397.00 | | 116. 41 | 1, 212, 36 | 84, 817. 20 | | Michigan | | 58. 63 | | | | | 1,212.00 | 58, 63 | | Montana | | 64, 885. 24 | 1, 396. 18 | 2, 544, 41 | | | 3, 076, 23 | 97, 445, 95 | | Nevada | 5, 248. 91 | 118, 987. 26 | 16, 138, 79 | 1, 792.96 | | 13. 80 | 2, 093, 45 | 144, 275, 17 | | New Mexico | 2, 587. 64 | 7, 645. 62 | 1, 223. 92 | 216. 24 | | | 15, 632, 39 | 27, 307. 01 | | North Carolina | 218. 26 | 90.44 | 200.00 | | | | -0,002.00 | 508. 70 | | Oregon | 22, 239, 91 | 11, 467. 37 | | 2.41 | | | 1.90 | 33, 711. 59 | | Pennsylvania 2 | | | 623.00 | | | | | 623, 00 | | South Carolina | 98.77 | 543. 26 | | | | | | 642.03 | | South Dakota | 1,080.20 | 485, 038. 77 | | | | | | 486, 118, 97 | | Tennessee | | | 455.00 | | | | | 455.00 | | Texas | | 358. 02 | | . 72 | | | | 358, 74 | | Utah | 128.04 | 72, 048. 83 | 44, 169. 71 | 4, 979. 84 | | 3, 24 | 15, 251, 86 | 136, 581, 52 | | Virginia | 10. 10 | 657.00 | | | | | | 667. 10 | | Washington | 1, 773. 45 | 6, 514. 93 | | 13. 45 | | | | 8, 301, 83 | | Wyoming | 2, 871. 36 | 1,999.68 | | . 32 | | | | 4, 871. 36 | | | 721, 380. 02 | 1,853,894.65 | 145, 930. 28 | 16, 956, 55 | | 328, 98 | 40, 297. 13 | 2,778,787.61 | | Percentage | 25.96 | 66. 72 | 5. 25 | 0.61 | | 0.01 | 1. 45 | 100.00 | | 1933: Total | 579, 908. 73 | 1,561,256.19 | 105, 837. 82 | 13, 507. 73 | 253. 75 | | | 2,303,708.89 | | Percentage | 25. 17 | 67. 77 | 4. 59 | 0.59 | 0.01 | 0.01 | 1. 86 | 100.00 | | 2 A 2 A 3 | | | | | | 7,77 | 2.00 | 100.00 | ¹ Philippine Islands and Puerto Rico excluded. The Bureau of Science, Manila, P. I., reports that bullion from lode mines of the Philippine Islands in 1934 yielded 338,146.54 ounces of gold and placer mines 2,167,48 ounces. ² From pyritiferous magnetite ore. Examination of the data on domestic mine production
of gold from various sources shows that the recovery from placer mines was 27 percent of the total output from 1906 to 1910, inclusive. In recent years the placers have yielded the following percentages of the total output of gold: 1929, 19.83; 1930, 20.59; 1931, 20.36; 1932, 23.37; 1933, 25.17; and 1934, 25.96 percent. From 1911 to 1915, inclusive, the gold recovered from dry and siliceous ore represented 67 percent of the total output; in 1930, 59.27 percent; in 1931, 66.16 percent; in 1932, 69.53 percent; in 1933, 67.77 percent; and in 1934, 66.72 percent. The gold recovered from copper ore increased from 5.8 percent of the total from 1906 to 1908, inclusive, to 22.24 percent in 1929, declined to 4.24 percent in 1932, and increased to 4.59 percent in 1933 and to 5.25 percent in 1934. The recovery of gold from all other base ores (about 2.3 percent of the total from 1906 to 1910, inclusive, and nearly 6 percent in 1927) declined to 2.47 percent in 1933 and to 2.07 percent in 1934. Gold produced in the United States, by sources, as reported by mines, 1922-34, in fine ounces 1 | Year | Placers | Dry and
siliceous
ore | Copper ore Lead ore | | Zinc ore | Copper-lead and copper-lead-zinc ores | | Total | |---------|---|--|--|--|-------------|---------------------------------------|--|--| | 1922-30 | 4, 151, 128
452, 862
544, 433
579, 909
721, 380 | 12, 083, 444
1, 471, 738
1, 620, 102
1, 561, 256
1, 853, 895 | 2, 999, 541
214, 745
98, 914
105, 838
145, 930 | 350, 851
17, 648
15, 788
13, 508
16, 957 | 11, 315
 | 33, 925
1, 175
48
111
329 | 505, 004
66, 561
50, 735
42, 833
40, 297 | 20, 135, 208
2, 224, 729
2, 330, 020
2, 303, 709
2, 778, 788 | ¹ Philippine Islands and Puerto Rico excluded. #### PLACERS Although placer operations have increased greatly in number during the last 3 years, many of them have yielded relatively small quantities of gold. Compared with 1933 the number increased 99 percent and the gold recovered 24.4 percent. Placers in Alaska, California, Idaho, Montana, and Oregon produced 684,861 ounces in 1934, whereas the 2,902 placer mines in the other States yielded only 36,519 ounces or an average of about 12.6 ounces. The States showing the largest increases in output from placers were: Alaska (86,568 ounces), Montana (16,839 ounces), California (12,646 ounces), Colorado (9,647 ounces), Oregon (7,457 ounces), Idaho (3,966 ounces), Arizona (1,852 ounces), New Mexico (1,188 ounces), and Wyoming (1,038 ounces). Placer gold is obtained chiefly by dredging, which method yielded 71 percent of the total placer output in 1934, and by hydraulicking, drift mining, and sluicing; the last two methods named are relatively unimportant except in a few States. A small but increasing quantity of gold is recovered by dry placer mining in Arizona, California, and New Mexico, and a small quantity of gold and platinum comes from ocean-beach mining in California and Oregon. At one placer mine in Wyoming a gasoline-driven drag-line shovel is used to bring gravel to a movable plant equipped with a gold-dredge trommel and standard- dredge sluice boxes.6 Dredging.—The quantity of gold recovered by dredges in the United States (Philippine Islands excluded) from the inception of the industry as a commercial factor in 1896 to the end of 1934 is recorded as 13,340,241 fine ounces, originating by States as follows: California, 8,838,581 ounces; Alaska, 2,934,935 ounces; Montana, 482,228 ounces; Colorado, 411,616 ounces; Idaho, 343,156 ounces; Oregon, 295,324 ounces; and other States, 34,401 ounces. The output was 513,073 ounces from 74 dredges in 1934 compared with 431,521 ounces from 63 dredges in 1933 (revised figures). Of the total in 1934, Alaska produced 269,082 ounces from 30 dredges; California, 194,051 ounces from 30 dredges; Idaho, 15,852 ounces from 5 dredges; Montana, 15,058 ounces from 2 dredges; Oregon, 9,254 ounces from 4 dredges; Colorado, 7,292 ounces from 2 dredges; and Arizona, 2,484 ounces from 1 dredge. Of the total in 1933, California produced 201,710 ounces from 25 dredges; Alaska, 200,563 ounces from 25 dredges; Idaho, 17,361 ounces from 4 dredges; Oregon, 4,736 ounces from 4 dredges; Montana, 3,136 ounces from 2 dredges (revised figures); Colorado, 2,814 ounces from 2 dredges; and Arizona, 1,201 ounces from 1 dredge. Gold produced in the United States by dredges, 1930-34, in fine ounces | Year | Dredges | California | Alaska | Other
States ¹ | Total | |------|---------|------------|----------|------------------------------|------------| | 1930 | 60 | 166, 981 | 189, 272 | 18, 084 | 374, 337 | | | 58 | 175, 086 | 181, 358 | 10, 837 | 367, 281 | | | 57 | 188, 831 | 207, 674 | 17, 181 | 413, 686 | | | 163 | 201, 710 | 200, 563 | 2 29, 248 | 2 431, 521 | | | 74 | 194, 051 | 269, 082 | 49, 940 | 513, 073 | ¹ Arizona, Colorado, Idaho, Montana, and Oregon. ² Revised figures. [•] Ross, Charles L., and Gardner, E. D., Placer-Mining Methods of E. T. Fisher Co., Atlantic City, Wyo., Inf. Circ. 6846, Bureau of Mines, 1935, 11 pp. ## Gold dredges operated in the United States in 1934 #### ALASKA | Name | Address | District | Num-
ber of
dredges | |---|--|----------------------------------|--| | Northern Star Dredging Co | Council | O | | | Northern Star Dredging Co | Nome | Council | 1 | | Chatham Gold Dredging Co | Nome
Fairbanks | Fairbanks | i | | Fairbanks Exploration Co | do | oh | 5 | | Fairbanks Exploration Oo | Meehan | do | 1
1
5
1
2 | | Forsgren Dredging Co | Deering | Fairhaven | 1 | | Forsgren Dredging Co
Keewalik Mining Co
Walker's Fork Gold Corporation | Candle | do | | | Walker's Fork Gold Corporation | Steel Creek | Fortymile Hot Springs | 1
1
1
1 | | American Creek Operating Co. North American Dredging Co. J. E. Riley Investment Co. | Fairbanks | Hot Springs | ī | | I E Riley Investment Co | Flat | Liditarod | 1 | | J. E. Riley Investment Co. Felder-Gale & Co. Ganes Creek Dredging Co. W. F. Puntila. Coal Creek Dredging Co. Dime Creek Dredging Co. Dry Creek Dredging Co. Hammon Consolidated Gold Fields. Sunset Mines Corporation N. B. Tweet & Son. Spruce Creek Dredging Co. New York Alaska Gold Dredging Corporation. | Takotna | Innoko | 1 | | Ganes Creek Dredging Co. | Ophir | do | 1
1
2
1
1
2
1
1
1 | | W. F. Puntila | do | do | 2 | | Coal Creek Dredging Co | Nome_
Haycock | Kougarok
Koyuk | ī | | Dime Creek Dredging Co. | Haycock | Koyuk | 1 | | Hammon Consolidated Gold Fields | Nomedodo | Nome | 1 | | Sunset Mines Corporation | do | do | 2 | | N. B. Tweet & Son | Teller
Solomon | Port Clarence | I | | Spruce Creek Dredging Co | Solomon | Solomon | + | | New York Alaska Gold Dredging Corporation | Akiak. | Solomon
Tuluksak-Aniak | i | | ARI | ZONA | | | | Lynx Creek Placer Mine Co | Prescott | Lynx Creek | 1 | | | ORNIA | | | | Allen Dredge Charles Staheli Sierra Gold Dredging Co Capital Dredging Co Gold Hill Dredging Co Natomas Co Oro Bell Dredging Co M. D. Baker | Damen | C | | | Charles Stabeli | Cottonwood | Camanche
Cottonwood Creek | 1 | | Sierra Gold Dredging Co | Burson
Cottonwood
San Francisco | Dobbins | 1
1
3
1
6
1
1
1
1
1
1
1 | | Capital Dredging Co. | do | Dobbins
Folsom | 3 | | Gold Hill Dredging Co | Sacramento | do | ĭ | | Natomas Co. | Sacramento | Gold Run | 6 | | M D Robor | IgoSan Francisco
Camanche
Lewiston | Gold Run | 1 | | M. D. Baker. La Grange Gold Dredging Co. Lancha Plana Gold Dredging Co. Trinity Dredging Co. | Con Francisco | Igo
La Grange
Lancha Plana | 1 | | Lancha Plana Gold Dredging Co | Camancha | La Grange | 1 | | Lancha Plana Gold Dredging Co. Trinity Dredging Co. Canyon Creek Dredge. Gold Bar Dredging Corporation. Cal Oro Dredging Co. Oroville Gold Dredging Co. Lloyd B. Onyett Dredging Co. Snelling Gold Dredging Co. Yuba Consolidated Gold Fields. Do. | Lewiston | Lewiston | 1 | | Canyon Creek Dredge | San Francisco | Lewiston
Mother Lode | î | | Gold Bar Dredging Corporation | Lewiston | New River
North Central | î | | Orovillo Gold Dredging Co | San Francisco | North Central | 1 | | Lloyd B Onyett Dredging Co | Oroville | Oroville | 1 | | Snelling Gold Dredging Co | Palerino | raierino | 1 | | Yuba Consolidated Gold Fields | do | Snelling | 1 | | Do | do | Yuba River | 1 5 | | | | 2 400 2017 01222222 | | | COLO | RADO | | | | Continental Dredging CoTiger Placers Co | BreckenridgeTiger | Breckenridge | 1 | | IDA | | | | | ı | | | | | Little Smoky Dredging Co | Boise | Little Smoky | 1 | | Gold Dredging, Inc. | Pierce | Pierce. | 1
1 | | Idaho Gold Dredging Co | Warren | Warren | $\hat{2}$ | | Little Smoky Dredging Co | | do | 1 | | | | | | | Yuba Consolidated Gold Fields | San FranciscoGoldcreek | Ophir
Pioneer | 1 | | | | Pioneer | 1 | | ORE | GUN | | | | Manual Calina at a | | 1 | | | Monarch Gold Dredging Co | Baker
Rogue River | Canyon | 1 | | Pioneer Gold Dredging Co | Rogue River | Foots Creek | 1 | | Rogue River Gold Co | Baker
Galena | Mormon Basin | 1 | | | чанена | Susanville | 1 | Additional information on this subject may be found in issues of Minerals Yearbook and
Mineral Resources, in reports of the Director of the Mint, and in reports of geological surveys or mining officials of the various States. #### DRY AND SILICEOUS ORES The siliceous ore comprises free-milling (amalgamating) ore, as in Alaska, California, and Oregon; both amalgamating and concentrating ore, as in many States; concentrating ore, as in parts of Colorado and Arizona; all-sliming and cyaniding ore, as in Nevada; and smelting ore. The material smelted consists mainly of concentrates and of siliceous and pyritic ores which are also valuable as fluxes. Tailings from both old dumps and current millings are reworked largely by concentration and subsequent cyanidation or smelting. The treatment of siliceous gold and silver ores by flotation and by smelting the resulting concentrates is increasing; the quantity of ore so treated increased from 359,919 tons in 1931 to 450,275 tons in 1932, 639,579 tons in 1933, and 1,393,923 tons in 1934. The relative output by methods and States is shown on page 348. Nearly all the siliceous ore in three of the largest gold-producing States—Alaska, California, and South Dakota—yields only a small quantity of silver and is classed as gold ore. The siliceous ore from Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, and Utah includes some silver and gold-silver ores. In 1934, mines in Alaska, California, Colorado, and South Dakota produced 79 percent of the total siliceous ores and 77 percent of the gold recovered from such ores. Siliceous ore treated and gold recovered per ton of ore treated, 1930-34 | | Alaska | | California | | South Dakota | | Colorado | | |------------|---|---|---|---|---|--|---|--| | Year 1930 | Ore
treated
Short tons
3, 936, 000
4, 195, 000
4, 068, 000
4, 171, 000
4, 390, 000 | Recovery per ton Ounce 0.045 .054 .056 .053 .046 | Ore
treated
Short tons
730, 712
1, 008, 411
978, 218
1, 281, 843
2, 299, 699 | Recovery per ton Ounce 0.344 .310 .343 .274 .193 | Ore
treated
Short tons
1, 365, 156
1, 404, 153
1, 409, 893
1, 432, 555
1, 520, 669 | Recovery per ton Ounce 0. 298 . 308 . 340 . 357 . 319 | Ore
treated
Short tons
710, 491
811, 619
885, 087
741, 900
1, 164, 575 | Recovery per ton Ounce 0. 274 281 353 309 259 | #### COPPER ORE The gold obtained as a byproduct in the treatment of copper ore increased 40,092 ounces in 1934. States showing substantial increases in gold from copper ore were: Arizona (28,682 ounces), Utah (8,642 ounces), Nevada (4,593 ounces), and Colorado (1,720 ounces). The largest decreases were in Montana (3,183 ounces) and California (1,118 ounces). Arizona and Utah mines yielded 82 percent of the total. #### LEAD ORE The production of gold from lead ore increased 3,449 ounces in 1934. Mines in Arizona, California, Montana, New Mexico, and Utah showed increases, but those in Colorado a decrease of 2,026 ounces. Mines in Utah and Arizona yielded about half the total. ## ZINC, LEAD-ZINC, AND MIXED ORES The total output of gold from zinc, lead-zinc, and mixed ores was 40,626 ounces in 1934, or 2,572 ounces less than in 1933; zinc ore yielded no gold in 1934 and only 254 ounces in 1933. Mines in New Mexico and Utah yielded 77 percent of the total gold from lead-zinc ore in 1934. ## SILVER, BY SOURCES The total yield of silver from placers and dry and siliceous ores increased from 3,677,937 ounces in 1933 to 8,620,014 ounces in 1934. The total silver derived from base ores increased from 19,452,659 ounces in 1933 to 24,162,290 ounces in 1934. Mine production of silver in the United States in 1934, by States, in fine ounces 1 | | i - | T | 1 | 1 | F | | | | |----------------|---------|-----------------------------|--------------------|-------------|-------|---------------------|------------------|-------------------| | State | Placers | Dry and
siliceous
ore | Copper | Lead ore | Zinc | Copper-
lead ore | Lead-zinc
ore | Total | | Alabama | 1 | 360 | | | | | 100 | | | Alaska | 50, 618 | 118, 250 | | | | | | 36 | | Arizona | 1, 038 | 629, 343 | 2 450 190 | | | | | 168, 86 | | California | 23, 248 | 769, 634 | 3, 459, 138
108 | | | | 189, 001 | 4, 448, 47 | | Colorado | 3, 216 | 1, 435, 352 | | 49, 729 | | | | 844, 41 | | Georgia | 17 | 31 | 1, 927, 335 | 70, 352 | | 2,309 | 37, 097 | 3, 475, 66 | | Idaho | 8, 528 | 271,000 | | | | | | 48 | | Illinois 2 | 0,020 | 211,000 | 4, 349 | 1, 339, 797 | | 3, 695, 013 | 2, 075, 456 | 7, 394, 143 | | Michigan | | 13 | ³ 516 | 310 | | | | 310 | | Missouri | | 19 | . 910 | | | | | 529 | | Montana | 3, 137 | 607, 863 | 1 000 104 | 63, 066 | | | | 63, 066 | | Nevada | 1, 594 | | 1, 808, 104 | 152, 723 | 6,944 | | 1, 427, 697 | 4, 006, 468 | | New Mexico. | 212 | 1, 509, 644 | 74, 225 | 277, 986 | | 3, 398 | 1, 190, 267 | 3, 057, 114 | | New York | 212 | 190, 410 | 23, 082 | 5, 020 | | 21,850 | 821, 201 | 1, 061, 775 | | North Carolina | 70 | | | | | | 26, 406 | 26, 406
9, 710 | | Oregon | 3, 577 | 140 | 9, 500 | | | | | 9,710 | | Pennsylvania 4 | 0, 011 | 42, 371 | | 35 | | | 577 | 46, 560 | | South Carolina | | | 6, 230 | | | | | 6, 230 | | Court Dalasta | 6 | 481 | | | | | | 487 | | South Dakota | 85 | 99, 656 | | | | | | 99, 741 | | Tennessee | | | 61, 148 | | | | | 61, 148 | | Texas | | 853, 904 | | 519 | | 19 | | 854, 442 | | Utah | 17 | 1, 959, 845 | 375, 137 | 1,006,198 | | 5, 618 | 3, 764, 602 | 7, 111, 417 | | Virginia | 2 | 101 | | | | | -, | 103 | | Washington | 317 | 35, 258 | | 7, 394 | | | 1, 151 | 44, 120 | | Wyoming | 362 | 313 | 4 | 31 | | | -, | 710 | | 1934: Total | 96, 045 | 8, 523, 969 | 7, 748, 876 | 3, 142, 098 | 6 044 | 3, 730, 917 | 0 522 455 | 00 500 004 | | Percentage | 0. 29 | 26, 00 | 23.64 | 9, 59 | 0.02 | 11.38 | 9, 533, 455 | 32,782,304 | | 1933: Total | | 3, 613, 276 | | 3, 922, 183 | | | 29.08 | 100.00 | | Percentage | 0.28 | 15. 62 | 25, 23 | 16.96 | 0.31 | 3, 470, 054 | 6, 153, 608 | 23,130,596 | | | J. 20 | 10.02 | 20.20 | 10.90 | 0. 31 | 15.00 | 26. 60 | 100.00 | ¹ Philippine Islands and Puerto Rico excluded. The Bureau of Science, Manila, P. I., reports that bullion from gold lode mines of the Philippine Islands in 1934 yielded 212,525 ounces of silver and placer mines 175 ounces. From fluorspar-lead ores. Native silver in lumps recovered at copper mine but not from copper bullion. From pyritiferous magnetite ore. Silver produced in the United States, by sources, as reported by mines, 1922-34, in fine ounces 1 | Year | Placers | Dry and siliceous ore | Copper ore | Lead ore | Zinc ore | Copper-
lead and
copper-
lead-zinc
ores | Lead-
zinc ore | Total | |---------|--|----------------------------|----------------------------|---|------------------|---|---|---| | 1922-30 | 456, 006
46, 521
63, 844
64, 661
96, 045 | 3, 931, 144
3, 613, 276 | 5, 180, 776
5, 836, 091 | 139, 718, 882
6, 114, 975
4, 894, 938
3, 922, 183
3, 142, 098 | 6, 023
3, 025 | 2, 791, 101
3, 371, 570
3, 470, 054 | 6, 955, 157
5, 294, 372
6, 153, 608 | 550,914,745
29, 856, 628
22, 739, 669
23, 130, 596
32, 782, 304 | Philippine Islands and Puerto Rico excluded. #### PLACERS The quantity of silver recovered from placer bullion increased 31,384 ounces in 1934. Mines in Alaska, California, Idaho, and Oregon yielded 89.5 percent of the total placer silver compared with 91 percent in 1933. ### DRY AND SILICEOUS ORES The total quantity of silver recovered from dry and siliceous ores increased 4,910,693 ounces in 1934. The only large decreases were in Alaska and South Dakota; the largest increases were in Arizona, California, Colorado, Montana, Nevada, Texas, and Utah. #### COPPER ORE Nearly all the silver produced from copper ore is recovered in the electrolytic refining of blister copper. The silver tenor of much of the copper ore mined in Colorado, Idaho, and Montana is notably high, but most of the copper ore from Arizona, Michigan, Nevada, New Mexico, Tennessee, and Utah is low in silver. The yield of silver from copper ore in 1934 was 1,912,785 ounces more than in 1933 but 5,868,690 ounces less than in 1930. States with large increases over 1933 were Arizona, Colorado, and Montana; mines in these three States and Utah yielded 97.7 percent of the total in 1934. ### LEAD ORE Most of the silver from lead ore is obtained by desilverization of lead bullion from the smelting of concentrates from the Western States. The mine production of silver from argentiferous lead ore in 1934 was 780,085 ounces less than in 1933 and 5,636,587 ounces less than in 1930. The largest increases in 1934 were in Arizona, California, Colorado, Montana, and Nevada. The notable decreases were in Idaho and Utah, but these two States yielded 75 percent of the total. #### LEAD-ZINC ORE The output of silver from lead-zinc ore in 1934 increased 3,379,847 ounces over 1933 and represented 29 percent of the total silver produced. There were unusually large increases in Idaho, Nevada, and Utah and large increases also in Arizona and Montana; there was a decrease of 175,081 ounces in New Mexico.
Mines in Idaho and Utah yielded 61 percent of the total. ### ZINC AND MIXED ORES None of the zinc ore treated in States east of Colorado yields any gold or silver, and Móntana was the only State in 1934 credited with any silver from zinc material. Silver from copper-lead ore increased from 3,470,054 ounces in 1933 to 3,730,917 ounces in 1934; 3,695,013 ounces of the total in 1934 came from Idaho, where the output increased 281,758 ounces. The recoverable silver in the copper-lead ore treated averaged 30.95 ounces to the ton in 1934 compared with 27.49 ounces in 1933 and 20.18 ounces in 1932. This large rise in silver tenor was due mainly to one mine in Idaho. ## GOLD AND SILVER, BY METHODS OF TREATMENT The following table gives the production of gold and silver from ore, old tailings, etc., treated in 1933 and 1934. | | Total quantity of crude ore, old tailings, etc., to gold and silver mills | | | | nd silver | Ore and old tailings to concen- | Concentrates from all sources | | | Crude | ore to sr | nelters | Ore leached,2 old tailings and slag smelted, etc. | | | |---|---|---|---|---|--|--|--|--|--|---|---|---|---|--------------------------|------------------------------| | State | tailings,
etc.,
treated
(short
tons) | Ore
(short
tons) | Old tail-
ings, etc.
(short
tons) | Gold
(fine
ounces) | Silver
(fine
ounces) | trating
mills
(short
tons) | Short
tons | Gold
(fine
ounces) | Silver
(fine
ounces) | Short
tons | Gold
(fine
ounces) | Silver
(fine
ounces) | Short
tons | Gold
(fine
ounces) | Silver
(fine
ounces) | | Alaska
Arizona
California
Colorado | 1, 309, 187 | 4, 376, 319
186, 670
31, 757, 982
678, 187 | 1, 085
41, 030
324, 077
(⁵) | 185, 427
36, 828
298, 326
167, 425 | 34, 718
65, 855
176, 068
95, 277 | 12, 500
2, 267, 336
193, 026
457, 934 | 2, 253
190, 176
27, 207
38, 604 | 15, 992
37, 033
128, 244
113, 812 | 66, 347
1, 035, 757
431, 206
701, 041 | 96
774, 937
25, 615
173, 066 | 17, 150
28, 713 | 2, 676, 127 | 269
4 55, 391 | 380
1, 319 | 7, 121
2, 118 | | Montana
Nevada
New Mexico | 1, 287, 182
1, 066, 952
2, 899, 782
1, 397, 709 | 117, 988
130, 495
190, 144
3 30, 038
8, 406 | 3, 181
5, 029
481, 466 | 28, 832
20, 431
55, 371
2, 752
3, 477 | 20, 816
36, 704
186, 347
74, 531
947 | 1, 147, 611
812, 508
2, 103, 414
1, 352, 927
51, 872 | 177, 812
181, 685
114, 721
110, 698
1, 239 | 25, 860
22, 830
30, 444
18, 351
6, 424 | 6, 849, 683
3, 413, 026
1, 513, 021
887, 036
23, 275 | 18, 007
51, 688
120, 942
14, 744
1, 699 | 2,607
27,901
51,997
3,616
1,454 | 508, 095
543, 027
1, 302, 664
99, 996
18, 522 | 395
67, 232
3, 816 | 262
740
1, 214 | 7, 021
10, 574
53, 488 | | Oregon | 47, 680
5, 076, 735 | 1, 520, 669
46, 653
9, 423
280
8, 137 | (6)
170, 512
1, 151 | 485, 039
280
7, 860
219
1, 094 | 99, 656
529, 715
904
271
178 | 4, 526, 897
30, 286 | 701
316, 702
4, 085
193 | 77
53, 693
41
885 | 310, 221
4, 138, 753
7, 990
130 | 1, 027
362, 484
16, 185
36 | 2 | 14, 506
2, 963, 212
35, 542
40 | 7, 419 | 6, 624 | 8, 531 | | | 71, 408, 419 | 4, 594 | 1,725 | 662 | | 81, 276, 798 | 8 37, 505 | 4, 446 | 75, 540 | 125, 302 | 664 | 28, 574 | | | | | Total, 1933 | 26, 148, 868
18, 864, 523 | 9, 065, 985
7, 424, 320 | 1, 029, 306
429, 355 | 1, 294, 023
1, 210, 799 | 1, 322, 270
513, 985 | 14, 233, 109
9, 704, 986 | 1, 203, 581
952, 654 | 458, 132
309, 367 | 19, 453, 026
15, 445, 371 | 1, 685, 828
1, 213, 765 | 294, 538
199, 486 | 11,757,966
6, 897, 012 | 134, 640
92, 097 | 10, 656
4, 140 | 89, 092
82, 219 | ¹ Illinois, Michigan, Missouri, Philippine Islands, and Puerto Rico excluded. 2 No ore leached in 1934 and 1933. 3 Also 10,719 tons of concentrates in California and 186 tons in New Mexico were cyanided. The figures for these concentrates and for the gold and silver recovered from them are included under "Concentrates from all sources." 4 Includes 53,328 tons of pyrites (yielding no gold or silver) roasted for the manufacture of sulphuric acid; residue leached amounted to 53,270 tons. 5 Sands and slimes (355,841 tons) from ore and concentrates known to have been first amalgamated and estimated tailings from ore first floated and other sands and slimes from iron concentrates first amalgamated (110,004 tons) were cyanided. 5 Sands and slimes (1,432,045 tons) from ore first amalgamated were cyanided. 7 Includes low-grade pyritiferous magnetite ore from Pennsylvania; excludes ore containing no gold or silver. 8 Includes only ore or concentrates yielding gold or silver. Many gold and silver mills employ concentrating apparatus, and in the preceding table the concentrates obtained from such mills are combined with those from straight concentrating mills under the heading "Concentrates from all sources." The gold and silver included in this item are recovered partly by amalgamation (particularly in Alaska and California) and cyanidation, but most of the con- centrates are smelted. The figures for the quantity of ore treated by concentration include the large quantities of copper, lead, zinc, and mixed ores, the concentrates from which are smelted primarily for the base metals, the gold and silver being recovered in refining the copper and lead bullion and smelting the zinc residues. The quantity of concentrates produced and the recoverable gold and silver content represent not only the concentrates from straight concentrating mills but also the comparatively small quantity from gold and silver mills. All the States except a few in the Appalachian region increased substantially the tonnage of ore, old tailings, etc., sent direct to gold and silver mills in 1934. Such increases were very large in Alaska, Arizona, California, Colorado, Montana, Nevada, South Dakota, Texas, and Utah. The quantity of old tailings treated increased nearly 600,000 tons. The quantity of gold recovered at mills was 124,004 ounces more in 1934 than in 1933, due mainly to the large increases in Arizona, Cali- fornia, Colorado, and Nevada. The quantity of silver recovered in bullion at mills was 838,574 ounces more in 1934 than in 1933. Of this increase about 529,700 ounces came from Texas, 107,100 ounces from California, 104,300 ounces from Nevada, and 74,200 ounces from New Mexico. In 1934 the quantity of ore and old tailings sent direct to concentrating plants was 46.7 percent more than in 1933, due mainly to the large increases in Arizona, Nevada, Utah, and the Eastern States, where much larger quantities of copper ore were concentrated. creases were also large in California, Colorado, Idaho, Montana, and Oregon. The gains in Idaho and Montana were principally in leadzinc ores. In 1934, 8.4 tons of ore, etc., were concentrated for every ton of ore shipped crude to smelters. In 1919 the ratio was only 5.6:1. The figures for the quantity and the recoverable gold and silver content of crude ore shipped from the mines direct to smelters include, in general, the richer gold, silver, copper, and lead ores from which the gold and silver eventually are recovered by refining the copper or lead bullion. About 39 percent more crude ore was smelted in 1934 than in 1933, and 78 percent of the total came from mines in Arizona, Colorado, and Utah. Arizona alone contributed 46 percent of the total, or 167,406 tons more than in 1933; the increase in Utah was nearly 183,000 tons; and other States that showed large increases in shipments of crude ore to smelters were California, Colorado, Montana, Nevada, and Washington. The only decreases were in Oregon and Tennessee. Arizona, with 85,801 ounces in 1934, was again the largest producer of gold from crude ore smelted, and Arizona and Utah together pro- duced 154,078 ounces of the total 294,538 ounces. The quantity of silver derived from crude ore smelted increased from 6,897,012 ounces in 1933 to 11,757,966 ounces in 1934. The largest gains were: Arizona, 1,440,957 ounces; Colorado, 1,110,224 ounces; Utah, 869,968 ounces; and Nevada, 645,306 ounces. The old materials, mainly tailings and slag, re-treated (with which are included figures for ore and old tailings leached) are partly smelted, often for their fluxing as well as for their metal value. Most of the gold and silver derived from old tailings is included under recoveries by amalgamation and cyanidation at gold and silver mills. Gold and silver produced at mills in the United States and percentage of gold and silver recovered by smelting and from placers, 1930-341 | | Ore, old tailings, | Bullion | | ed from a
ounces) | ll sources | Percent of gold and silver from all sources | | | | | | | | | | |--------------------------------------|--|---------|--|----------------------------------|------------
---|------------------|---|----------------------|---|--------|---|----------------|--|--| | Year | etc.,
treated
(short | Amalga | mation | Cyanidation | | Amalgama-
tion | | Cyanida-
tion | | Placers | | Smel | ting 2 | | | | | tons) | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | | | | 1930
1931
1932
1933
1934 | 7, 079, 131
7, 623, 878
7, 684, 543
7, 853, 875
10, 096, 091 | | 230, 406
274, 850
260, 447
377, 823
250, 209 | 396, 390
434, 869
352, 136 | | 36. 2
36. 5
38. 8 | .9
1.1
1.6 | 17. 8
17. 8
18. 7
15. 3
18. 1 | 4. 2
3. 3
1. 0 | 20. 6
20. 4
23. 4
25. 2
26. 0 | .2 | 28. 4
25. 6
21. 4
20. 7
24. 7 | 94. 7
95. 3 | | | Philippine Islands and Puerto Rico excluded. 2 Both crude ores and concentrates. The bulk of the gold continues to come from the gold mills, but the proportion so recovered was only 49.3 percent of the total in 1934 compared with 54.1 percent in 1933 and with 60 percent in 1919. The total yield of gold by amalgamation in the United States (Philippine Islands and Puerto Rico excluded), as reported to the Bureau of Mines, was 866,336 ounces in 1934 compared with 1,120,344 ounces in 1911, the first year for which figures are available. Gold and silver bullion produced at mills in the United States in 1934, by States 1 | | Ore, old tailings, | Bullion | recovered f
our | Perce | Percent of gold and silver
from all sources in State | | | | | | |---|---|--|--|--|---|--|---|---|---------------------------|--| | State | etc.,
treated
(short
tons) | Amalga | mation | Cyan | | gama-
on | Cyanida-
tion | | | | | | | Gold | Silver | Gold | Silver | Gold | Silver | Gold | Silver | | | Alaska. Arizona California Colorado. Idaho Michigan Montana Nevada New Mexico Oregon. South Dakota Texas Utah Washington Wyoming Eastern States | 800
135, 524
671, 610
30, 038
8, 456
51, 520, 669
46, 653
179, 935
1, 431 | 185, 427
4, 039
244, 720
52, 180
26, 099
59, 7, 754
28, 506
3, 477
310, 942
725
169
1, 060
612 | 34, 718
1, 442
62, 081
38, 324
18, 927
13
3, 925
30, 606
259
947
58, 086
551
71
176
83 | 32, 789
2 128, 742
115, 245
2, 733
12, 677
26, 865
4 2, 785
174, 097
280
7, 135
50
34
50 | 64, 413
2 235, 335
56, 953
1, 889
32, 779
155, 741
4 74, 300
41, 570
529, 715
353
200
2
200 | 34. 5
2. 4
34. 0
16. 1
30. 8
100. 0
8. 0
19. 8
2. 1
10. 3
64. 0
2. 0
21. 8
9. 2 | 20. 6
7. 4
1. 1
.3
2. 5
.1
1. 0
58. 2
.2
24. 8
.1 | 19. 6
17. 9
35. 5
3. 2
13. 0
18. 6
10. 2
35. 8
78. 1
5. 2
. 6 | 1. 4
27. 9
1. 6
 | | | Total, 1933 | 10, 096, 091
7, 853, 875 | 866, 336
893, 678 | 250, 209
377, 823 | 503, 482
352, 136 | 1, 193, 450
227, 262 | 31. 2
38. 8 | .8 | 18. 1
15. 3 | 3. 6
1. 0 | | Michigan included. Philippine Islands and Puerto Rico excluded. Includes bullion from 10,719 tons of concentrates cyanided. Also 355,841 tons of sands and slimes from ore and concentrates known to have been first amalgamated and 110,004 tons of estimated tailings from ore first floated and other sands and slimes from iron concentrates first amalgamated were cyanided. and 10,007 to the of continued tailings from one has noated an first amalgamated were cyanided. 4 Includes bullion from 186 tons of concentrates evanided. ⁵ Also 1,432,045 tons of sands and slimes from ore first amalgamated were cyanided. The output of gold by cyanidation was 428,202 ounces in 1934 compared with 352,136 ounces in 1933 and with 1,444,077 ounces in 1915, the year of largest recorded output. Thus, up to the end of 1933, the quantity recovered by cyanidation had decreased at a much higher rate than that by amalgamation. Notwithstanding a large increase in total output of gold in 1934, recovery by amalgamation decreased 27,342 ounces whereas recovery by cyanidation increased 151,346 ounces. In 1934 amalgamation yielded 866,336 ounces of gold, cyanidation 503,482 ounces, placer bullion 721,380 ounces, and crude ore, concentrates, and miscellaneous material smelted 687,590 ounces. The largest increases in 1934 in gold recovered by amalgamation were: Idaho, 11,405 ounces; Nevada, 4,936 ounces; Colorado, 3,652 ounces; Arizona, 1,783 ounces; and Oregon, 1,087 ounces. The largest decreases were: Alaska, 24,040 ounces; South Dakota, 17,507 ounces; and California, 10,035 ounces. The total increase in 1934 of 151,346 ounces in gold recovered by cyanidation was due mainly to the following State increases: California, 91,184 ounces; Arizona, 24,937 ounces; Colorado, 23,071 ounces; Nevada, 12,456 ounces; Montana, 7,866 ounces; Utah, 5,365 ounces; and New Mexico, 2,717 ounces. The notable decreases were: South Dakota, 8,588 ounces; Alaska, 6,668 ounces; and Idaho, 1,398 ounces. The recovery of silver by amalgamation, which is relatively small, was 127,614 ounces less in 1934 than in 1933. The largest decreases were in Alaska, California, and South Dakota, but these three States yielded 62 percent of the total. The recovery of silver by cyanidation increased 966,188 ounces in 1934 following annual decreases since the decline began in 1929. The only large decrease in 1934 was in South Dakota; the largest increases were: Texas, 529,715 ounces; California, 185,931 ounces; Nevada, 88,882 ounces; New Mexico, 74,150 ounces; Arizona, 52,380 ounces; and Colorado, 31,692 ounces. ### REVIEW BY STATES The review by States has been omitted from this report. The chapters relating to mine production of gold, silver, copper, lead, and zinc in the Eastern, Central, and Western States give details as to mining, milling, and smelting operations. ## PRODUCTION IN PHILIPPINE ISLANDS The value ⁷ of the gold produced in the Philippine Islands from 1907 to 1934, inclusive, is recorded as \$61,314,496. The value ⁷ of the output during the last 10 years was as follows: | 1925 | \$1, 945, 990 | 1930 | \$3, 704, 800 | |------|---------------|------|---------------| | 1026 | 1, 925, 188 | 1931 | 3, 702, 433 | | 1027 | 1, 686, 231 | 1932 | ə, uəu, uə4 | | 1028 | 1, 904, 062 1 | 1933 | 8, 308, 009 | | 1929 | 3, 320, 300 1 | 1934 | 11, 893, 975 | The output will be considerably larger in 1935 than it was in 1934, as several new mills are in operation. Among the larger producing mines are: Benguet Consolidated, Balatoc, Itogen, Antamok, Demonstration, Baguio, Suyoc, Penique, Benguet Exploration, and Ipo. ⁷ Gold valued per fine ounce as follows: Prior to 1933, \$20.67+; 1933, \$25.56; 1934, \$34.95. ### ACKNOWLEDGMENTS Acknowledgment is made to those engaged in the mining and metallurgic industries; to merchants, bankers, and transportation officials of the United States and Alaska; and to the Bureau of the Mint, the Alaskan division of the United States Geological Survey, the Bureau of Science, Manila, P. I., and other officials, public and private, who have cooperated with the Bureau of Mines by furnishing information on the production of gold and silver. The writer is especially indebted to the authors of the mine reports on the production of gold, silver, copper, lead, and zinc in the Western States. # CRUDE PETROLEUM AND PETROLEUM PRODUCTS (DETAILED STATISTICS) By G. R. HOPKINS AND A. B. COONS ## SUMMARY OUTLINE | and the control of th | | 4.7 | |
--|--------|--|-------| | | Page . | | Page | | Summary tables of crude petroleum, petro- | | Crude petroleum—Continued. | | | leum products, and natural gasoline | . 354 | Consumption and distribution | | | Orude petroleum | | Stocks | . 391 | | Crude-oil allocations | 363 | Imports and exports | 396 | | Domestic production | | Prices and values | | | Summary tables by States | | Wells | 399 | | Pennsylvania grade | | Production and royalties from wells on | 1 1. | | Detailed statistics by States | 368 | Federal and Indian lands | 400 | | Arkansas | . 368 | Petroleum products | 401 | | California | . 369 | Detailed statistics, by products | 401 | | Colorado | 369 | Motor fuel and gasoline | 401 | | Illinois | | Kerosene | 413 | | Indiana | | Gas oil and fuel oil | | | Kansas | | Lubricants | 421 | | Kentucky | | Wax | . 424 | | Louisiana | | Petroleum coke | | | Michigan | | Asphalt | . 429 | | Montana | 375 | Road oil | | | New Mexico | | Still gas | 430 | | New York | | Still gas
Miscellaneous oils | . 431 | | Ohio | 378 | Unfinished oils | . 433 | | Oklahoma | | Shortage | . 435 | | Pennsylvania | 379 | Imports and exports | . 435 | | Texas | | Panama Canal shipments | . 438 | | West Virginia | | Natural gasoline | . 439 | | Wyoming | | Oil shale | | | World production | 287 | Survey of refinery conocities | 440 | ## SUMMARY TABLES OF CRUDE PETROLEUM, PETROLEUM PRODUCTS, AND NATURAL GASOLINE Selected statistics of crude petroleum, refined products, and natural gasoline, 1924 and 1931-34 | | | | 2.3 | | | |--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | | 1924 | 1931 | 1932 | 1933 | 1934 | | Crude petroleum: | | | | | | | Domestic productionthousands of barrels 1 | 713, 940
1, 014, 318 | | 785, 159
1, 309, 677 | 905, 656
1, 442, 112 | 908, 068
1, 522, 243 | | Imports 2thousands of barrels 1_
Exports 2do.1 | 77, 775
18, 239 | 47, 250
25, 535 | 27, 393 | | 35, 558
41, 127 | | Stocks, end of period 3do_1 | 361, 655 | 370, 919
4370, 194 | 339, 715
4 339, 875 | 355, 312
4 354, 223 | 337, 254 | | Total value of domestic production at wells
thousands of dollars. | 643, 719
1, 022, 683 | 894, 608
550, 630 | 819, 997
680, 460 | 861, 254
608, 000 | 895, 630
904, 82 | | Average price per barrel at wells. Total producing oil wells in the United States. | \$1.43 | \$0.65 | \$0.87 | \$0.67 | \$1.0 | | Total oil wells completed in the United States | 299, 100 | 315, 850 | 321, 500 | 326, 850 | 333, 07 | | during year | 14, 587 | 6, 788 | 10, 444 | 8, 068 | 12, 51 | | Imports 2thousands of barrels 1_
Exports 2do.1 | 98, 905 | 38, 837
98, 859 | 75, 882 | 13, 501
70, 143 | 14, 93
73, 38 | | Stocks, end of period 3do.1
Output of motor fueldo.1 | , | 247, 936
4 258, 879 | 247, 188
4 249, 116 | 244, 578
4 244, 295 | 223, 35 | | Yield of gasolinepercent_
Completed refineries, end of year
Daily crude-oil capacity of refineries | 215, 529
31. 2
541 | 437, 453
44. 3
473 | 399, 712
44. 7
505 | 407, 932
43. 7
591 | 423, 801
43. 4
632 | | thousands of barrels 1_Average tank-wagon price (excluding tax) of gaso- | 2, 828 | 4, 015 | 3, 890 | 3, 918 | 4, 07 | | Ine in 50 United States cities cents per gallon 5 | 18.66 | 11.80 | 12. 45 | 11.62 | 12. 20 | | Production thousands of barrels 1 | | 43, 617
2, 818 | 36, 281 | 33, 810 | 36, 55 | | Stocks, end of perioddo.1 | 6 302 | 4 2, 825 | 3, 203 | 3,317
43,680 | 3, 740 | Of 42 gallons. From Bureau of Foreign and Domestic Commerce. Imports of crude petroleum in 1934 as reported to the Bureau of Mines; exports include shipments to Alaska, Hawaii, and Puerto Rico. California heavy crude and fuel oil included under refined products. For comparison with succeeding year. From American Petroleum Institute. At plants only—stocks of natural gasoline at refineries not segregated from refined products until Dec. 31, 1929. ## Supply and demand of all oils, 1924 and 1931-34 | | 1924 | 1931 | 1932 | 1933 | 1934 | |---|--------------------|------------------------|------------------------|------------------------|--------------------| | New supply: | | | | | | | Domestic production: | | | | | | | Crude petroleum | 713, 940 | 851, 081 | 785, 159 | 905, 656 | 908,065 | | Daily average | 1, 951
22, 235 | 2,332 | 2, 145
36, 281 | 2, 481
33, 810 | 2, 488
36, 556 | | Benzol. | 2, 203 | 43, 617
1, 826 | 1, 031 | 1,368 | 1,708 | | Total production | | 896, 524 | 822, 471 | 940, 834 | 946, 329 | | Daily average | 2,017 | 2, 456 | 2, 247 | 2,578 | 2, 593 | | Imports: | 2,011 | 2,100 | 2,21. | 2,0.0 | _, 500 | | Crude petroleum | 77, 775 | 47, 250 | 44, 682 | 31, 893 | 1 35, 558 | | Refined products | 16, 806 | 38, 837 | 29, 812 | 13, 501 | 14, 936 | | Total new supply, all oils
Daily average
Decrease in stocks, all oils | 832, 959 | 982, 611 | 896, 965 | 986, 228 | 996, 823 | | Daily average | 2, 276 | 2,692 | 2,451 | 2,702 | 2, 736 | | Decrease in stocks, all oils | 2 27, 897 | 44, 989 | 41, 792 | 2 11, 013 | 37, 848 | | Total demand | 805, 062 | 1, 027, 600 | 938, 757 | 975, 215 | 1, 034, 671 | | Daily average | 2, 200 | 2,815 | 2, 565 | 2,672 | 2,835 | | Tunantas 3 | | | | | | | Crude petroleum | 18, 239 | 25, 535 | 27, 393 | 36, 584 | 41, 127 | | Refined products
Domestic demand | 98, 905 | 98, 859 | 75, 882 | 70, 143 | 73, 380 | | Daily average | 687, 918
1, 880 | 903, 206
2, 476 | 835, 482
2, 283 | 868, 488
2, 379 | 920, 164
2, 521 | | Excess of daily average domestic production over | 1,000 | 2,410 | 2, 200 | 2,319 | 2, 021 | | domestic demand | 137 | 4 19 | 4 36 | 199 | 72 | | Stocks, end of period: | | | | | | | Crude petroleum 5 | 001 055 | 370,919 | 339, 715 | 355, 312 | 007 054 | | | 361, 655 | 6 370, 194 | 6 339, 875 | 6 354, 223 | 337, 254 | | Natural gasoline | 7 302 | 2,818 | 3, 203 | 3,317 | 3,740 | | 11 avai ai gasoimo | . 502 | 6 2, 825 | 13 | 3,680 | (,,,,,, | | Refined products 5 | 158, 330 | 247, 936
6 258, 879 | 247, 188
6 249, 116 | 244, 578
6 244, 295 | 223, 356 | | | | (0 200, 019 | 0 249, 110 | 244, 295 | J | | Grand total stocks, all oils | 520, 287 | ſ 621, 673 | 590, 106 | 603, 207 | } 564, 350 | | Dest and a stocks, an one- | | ₹ 631, 898 | 6 592, 194 | 6 602, 198 | | | Days' supply 8 | 236 | 221 | 230 | 226 | 199 | | R'oreign frade | 43, 328 | 42, 734 | 37, 395 | 31, 734 | 28, 993 | | Coastwise trade | (9) | 26, 450 | 23, 135 | 26, 711 | 24, 910 | ¹ As reported to Bureau of Mines. 2 Increase. 3 Exports include benzol and shipments to Alaska, Hawaii, and Puerto Rico. 4 Deficiency. 5 California heavy crude and fuel oil included under refined products. 6 For comparison with succeeding year. 7 At plants only—stocks of natural gasoline at refineries not segregated from refined products until Dec. 31, 1929. 6 Grand total stocks of all oils divided by daily average total demand. 9 Not available. # Supply and demand of all oils in 1934, by months [Including wax, coke, and asphalt in thousands of barrels of 42 gallons] | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|-------------| | New supply: Domestic production: Crude petroleum Daily average Natural gasoline Benzol Total production Daily average Imports: | 72, 017 | 65, 383 | 75, 426 | 75, 645 | 79, 966 | 79, 636 | 81, 339 | 79, 105 | 75, 759 | 76, 593 |
72, 399 | 74, 797 | 908, 065 | | | 2, 323 | 2, 335 | 2, 433 | 2, 522 | 2, 580 | 2, 655 | 2, 624 | 2, 552 | 2, 525 | 2, 471 | 2, 413 | 2, 413 | 2, 488 | | | 3, 057 | 2, 826 | 3, 049 | 2, 950 | 2, 938 | 2, 864 | 2, 971 | 3, 057 | 3, 074 | 3, 267 | 3, 240 | 3, 263 | 36, 556 | | | 138 | 141 | 170 | 163 | 184 | 171 | 130 | 123 | 116 | 120 | 121 | 131 | 1, 708 | | | 75, 212 | 68, 350 | 78, 645 | 78, 758 | 83, 088 | 82, 671 | 84, 440 | 82, 285 | 78, 949 | 79, 980 | 75, 760 | 78, 191 | 946, 329 | | | 2, 426 | 2, 441 | 2, 537 | 2, 625 | 2, 680 | 2, 756 | 2, 724 | 2, 654 | 2, 632 | 2, 580 | 2, 525 | 2, 522 | 2, 593 | | Crude petroleum 1 | 2, 800 | 3, 031 | 2, 410 | 2, 845 | 3, 012 | 3, 787 | 3, 001 | 2,746 | 2, 928 | 2, 884 | 2, 915 | 3, 199 | 35, 558 | | | 1, 186 | 648 | 1, 104 | 1, 239 | 1, 412 | 1, 214 | 1, 684 | 1,134 | 1, 252 | 1, 346 | 1, 029 | 1, 688 | 14, 936 | | | 79, 198 | 72, 029 | 82, 159 | 82, 842 | 87, 512 | 87, 672 | 89, 125 | 86,165 | 83, 129 | 84, 210 | 79, 704 | 83, 078 | 996, 823 | | | 2, 555 | 2, 572 | 2, 650 | 2, 761 | 2, 823 | 2, 922 | 2, 875 | 2,780 | 2, 771 | 2, 716 | 2, 657 | 2, 680 | 2, 731 | | | 4, 503 | 4, 189 | 3, 693 | 200 | 1, 954 | 2, 767 | 3, 964 | 4,132 | 2, 349 | 7, 195 | 10, 473 | 5, 891 | 37, 848 | | Total demand Daily average Exports: ³ | 83, 701 | 76, 218 | 85, 852 | 83, 042 | 89, 466 | 84, 905 | 85, 161 | 90, 297 | 85, 478 | 91, 405 | 90, 177 | 88, 969 | 1, 034, 671 | | | 2, 700 | 2, 722 | 2, 769 | 2, 768 | 2, 886 | 2, 830 | 2, 747 | 2, 913 | 2, 849 | 2, 949 | 3, 006 | 2, 870 | 2, 835 | | Crude petroleum | 2, 288 | 2, 511 | 2, 582 | 3, 942 | 3, 724 | 3, 794 | 4, 128 | 3, 696 | 4, 068 | 3, 277 | 4, 680 | 2, 437 | 41, 127 | | Refined products | 5, 284 | 5, 426 | 6, 768 | 7, 669 | 5, 912 | 6, 058 | 6, 146 | 5, 947 | 5, 929 | 5, 959 | 6, 138 | 6, 144 | 73, 380 | | Domestic demand: Motor fuel | 29, 489 | 25, 310 | 30, 577 | 32, 736 | 38, 071 | 36, 430 | 37, 466 | 39, 105 | 34, 669 | 37, 674 | 34, 998 | 30, 581 | 407, 106 | | | 4, 246 | 4, 154 | 4, 219 | 3, 655 | 3, 227 | 2, 373 | 2, 816 | 2, 803 | 3, 572 | 3, 957 | 4, 451 | 4, 761 | 44, 234 | | | 32, 682 | 29, 637 | 32, 279 | 25, 448 | 26, 808 | 23, 476 | 21, 451 | 24, 595 | 24, 747 | 27, 988 | 29, 284 | 33, 594 | 431, 989 | | | 1, 507 | 1, 300 | 1, 641 | 1, 646 | 1, 940 | 1, 569 | 1, 491 | 1, 494 | 1, 338 | 1, 674 | 1, 493 | 1, 391 | 18, 484 | | | 90 | 83 | 79 | 83 | 78 | 87 | 52 | 53 | 56 | 75 | 61 | 60 | 857 | | | 1, 057 | 805 | 736 | 520 | 524 | 563 | 481 | 552 | 487 | 629 | 511 | 675 | 7, 540 | | | 443 | 508 | 562 | 1, 096 | 1, 367 | 1, 681 | 1, 534 | 1, 817 | 1, 671 | 1, 591 | 1, 065 | 589 | 13, 924 | | | 97 | 107 | 264 | 176 | 553 | 1, 113 | 1, 171 | 1, 288 | 772 | 507 | 201 | 129 | 6, 378 | | | 3, 457 | 3, 050 | 3, 429 | 3, 642 | 3, 674 | 3, 707 | 4, 150 | 4, 240 | 3, 835 | 3, 792 | 3, 625 | 3, 790 | 44, 391 | | | 42 | 147 | 198 | 207 | 204 | 220 | 181 | 214 | 168 | 126 | 200 | 219 | 2, 126 | | | 3, 019 | 3, 180 | 2, 518 | 2, 222 | 3, 384 | 3, 834 | 4, 094 | 4, 493 | 4, 166 | 4, 156 | 3, 470 | 4, 599 | 43, 135 | | Total domestic demand | 76, 129 | 68, 281 | 76, 502 | 71, 431 | 79, 830 | 75, 053 | 74, 887 | 80, 654 | 75, 481 | 82, 169 | 79, 359 | 80, 388 | 920, 164 | | Daily average | 2, 456 | 2, 439 | 2, 468 | 2, 381 | 2, 575 | 2, 502 | 2, 416 | 2, 602 | 2, 516 | 2, 651 | 2, 645 | 2, 593 | 2, 521 | | Stocks: Crude petroleum Natural gasoline Refined products Total stocks, all oils | 353, 642 | 351, 641 | 354, 067 | 354, 350 | 355, 883 | 357, 451 | 355, 525 | 351, 092 | 349, 407 | 346, 800 | 341, 403 | 337, 254 | 337, 254 | | | 3, 893 | 3, 776 | 3, 916 | 4, 259 | 4, 411 | 4, 566 | 4, 551 | 4, 790 | 4, 611 | 4, 255 | 3, 714 | 3, 740 | 3, 740 | | | 240, 160 | 238, 089 | 231, 830 | 231, 004 | 227, 365 | 228, 409 | 234, 314 | 234, 376 | 233, 891 | 229, 659 | 225, 124 | 223, 356 | 223, 356 | | | 597, 695 | 593, 506 | 589, 813 | 589, 613 | 587, 659 | 590, 426 | 594, 390 | 590, 258 | 587, 909 | 580, 714 | 570, 241 | 564, 350 | 564, 350 | ¹ As reported to Bureau of Mines. ² Increase. ^{*} Exports include benzol and shipments to Alaska, Hawaii, and Puerto Rico. Runs to stills and production at refineries of the various refined products, 1924 and 1931-34 | | 1924 | 1931 | 1932 | 1933 | 1934 | |---|---|--|---|---|---| | Input: | | | 1 | | | | Crude petroleum: Domestic Foreign | 597, 954
45, 765 | 847, 671
46, 937 | 777, 696
42, 301 | 825, 786
35, 468 | 860, 776
34, 860 | | Total crude petroleum
Natural gasoline ¹ | 643, 719
12, 671 | 894, 608
35, 116 | 819, 997
26, 332 | 861, 254
25, 346 | 895, 636
28, 162 | | Total input | 656, 390 | 929, 724 | 846, 329 | 886, 600 | 923, 798 | | Output: Gasoline Kerosene Gas oil and distillate fuel oils Residual fuel oils Lubricants Wax Coke Asphalt Still gas | 213, 326
60, 026
320, 476
27, 498
1, 861
4, 085
14, 196
(³) | 431, 510
42, 446
83, 882
253, 085
26, 704
1, 705
10, 363
16, 371
38, 630 | 392, 623
43, 836
69, 467
225, 283
22, 433
1, 639
9, 123
13, 612
40, 905 | 401, 591
48, 977
2 78, 920
2 237, 519
23, 775
1, 677
7, 900
12, 757
45, 212 | 416, 932
53, 855
2 94, 972
2 240, 381
26, 373
1, 674
6, 500
15, 623
44, 391 | | Waxthousands of poundsCokethousands of short tonsAsphaltdoStill gasmillions of cubic feet | 516, 491
761. 1
2, 545. 6
(3) | 477, 400
2, 032. 0
2, 976. 5
154, 086 | 458, 920
1, 788. 8
2, 474. 9
160, 812 | 469, 560
1, 580. 0
2, 319. 5
170, 853 | 468, 720
1, 300. 0
2, 840. 5
169, 479 | | Road oil | (4)
8, 252
8 12, 920
19, 590 | 5, 177
4, 150
8 3, 369
19, 070 | 6, 879
1, 738
5 1, 861
20, 652 | 5, 534
1, 435
4, 547
16, 756 | 6, 210
1, 872
1, 873
1, 949
16, 073 | | Total output | 656, 390 | 929, 724 | 846, 329 | 886, 600 | 923, 798 | ¹ Includes natural gasoline run through pipe lines in California. 2 Includes transfers in California. In 1932 such transfers constituted part of supply but were not included in refinery production. 3 Not available. 4 Included in "Other finished products." 5 Negative quantity; represents net excess of unfinished oils rerun over unfinished oils produced. # Runs to stills and production at refineries of the various refined products in 1934, by months | | January | February | March | April | Мау | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |---|---|---|---|--|--|--|--|--|--|--|--|---|---| | Input:
Crude petroleum ¹
Natural gasoline ³ | 71, 512
2, 222 | 66, 470
1, 939 | 71, 807
2, 136 | 73, 563
2, 038 | 76, 258
1, 813 | 76, 054
2, 054 | 80, 065
2, 142 | 79, 928
2, 054 | 73, 611
2, 405 | 75, 991
3, 128 | 73, 784
3, 472 | 76, 593
2, 759 | 895, 636
28, 162 | | Total input
Fresh cracking stocks charged to stills:
Crude oil | 73, 734
3, 025 | 68, 409 | 73, 943 | 75, 601 | 78, 071 | 78, 108 | 82, 207 | 81, 982 | 76, 016 | 79, 119 | 77, 256 | 79, 352 | 923, 798 | | Other oils | 31, 456 | 3, 503
27, 907 | 3, 925
29, 632 | 3, 883
31, 349 | 4, 493
35, 018 | 4, 227
34, 539 | 4, 627
38, 793 | 5, 016
39, 053 | 4, 029
36, 164 | 4, 464
36, 805 | 4, 337
35, 494 | 4, 879
36, 908 | 50, 408
413, 118 | | Output: Gasoline Kerosene. Gas oil and distillate fuel oils Residual fuel oils Lubricants. Wax. Coke Asphalt. Still gas | 33, 323
4, 507
7, 691
19, 876
2, 198
166
635
838
3, 457 | 30, 609
3, 961
7, 155
18, 073
1, 865
140
604
734
3, 050 | 32, 861
4, 576
8, 004
20, 538
2, 152
154
628
905
3, 429 | 34, 236
4, 647
7, 563
19, 367
2, 322
141
505
1, 203
3, 642 | 34, 723
4, 548
7, 761
20, 428
2, 577
149
372
1, 459
3, 674 | 34, 648
4, 206
8, 042
20, 201
2, 211
144
522
1, 610
3, 707 | 36, 878
4, 320
7, 651
20, 856
2, 209
122
480
1, 756
4, 150 | 37, 296
4, 376
8, 723
20, 373
2, 152
121
505
1, 831
4, 240 | 34, 488
4, 262
8, 298
19, 522
2, 106
121
550
1, 626
3, 835 |
36, 282
4, 889
7, 904
20, 144
2, 145
141
646
1, 571
3, 792 | 35, 591
4, 786
8, 044
19, 917
2, 090
141
566
1, 238
3, 625 | 35, 997
4, 777
8, 136
21, 086
2, 346
134
487
852
3, 790 | 416, 932
53, 855
94, 972
240, 381
26, 373
1, 674
6, 500
15, 623
44, 391 | | Waxthousands of poundsthousands of short tons | 46, 480
127. 0
152. 4
13, 679 | 39, 200
120, 8
133, 5
11, 856 | 43, 120
125. 6
164. 5
12, 872 | 39, 480
101. 0
218. 7
13, 595 | 41, 720
74. 4
265. 3
13, 774 | 40, 320
104. 4
292. 7
13, 981 | 34, 160
96. 0
319. 3
15, 619 | 33, 880
101. 0
332. 9
16, 011 | 33, 880
110. 0
295. 6
14, 773 | 39, 480
129. 2
285. 6
14, 663 | 39, 480
113. 2
225. 1
13, 961 | 37, 520
97. 4
154. 9
14, 695 | 468, 720
1, 300. 0
2, 840. 5
169, 479 | | Road oil Other finished products Crude gasoline (net) Other unfinished oils (net) Shortage | 120
116
8 172
8 61
1,040 | 112
122
368
305
1,311 | 188
129
\$ 200
\$ 580
1, 159 | 309
183
3 716
934
1, 265 | 768
182
3 309
208
1,531 | 990
163
3 223
333
1,554 | 1, 113
124
3 263
1, 092
1, 719 | 1, 130
168
8 697
189
1, 575 | 705
176
3 603
3 312
1, 242 | 397
135
8 254
147
1, 180 | 235
200
5
3 338
1, 156 | 143
174
57
32
1,341 | 6, 210
1, 872
3 3, 007
1, 949
16, 073 | | Total output | 73, 734 | 68, 409 | 73, 943 | 75, 601 | 78, 071 | 78, 108 | 82, 207 | 81, 982 | 76, 016 | 79, 119 | 77, 256 | 79, 352 | 923, 798 | Details by districts and months on p. 388. Includes 1,206,000 barrels run through pipe lines in California. Negative quantity; represents net excess rerun over production. ## Runs to stills and production at refineries of the various refined products in 1934, by districts | | East
coast | Appala-
chian | Indiana,
Illinois,
Kentucky,
etc. | Oklahoma,
Kansas,
and Mis-
souri | Texas in-
land | Texas Gulf
coast | Louisiana
Gulf coast | Arkansas
and Louisi-
ana inland | Rocky
Mountain | California | United
States | |---|--|--|--|--|---|---|---|--|--|---|---| | Input:
Crude petroleum
Natural gasoline | 171, 733
1, 307 | 35, 809
284 | 119, 166
2, 348 | 95, 006
5, 874 | 61, 941
4, 079 | 179, 418
• 2, 270 | 41, 341
231 | 18, 850
538 | 16, 037
803 | 156, 335
110, 428 | 895, 636
1 28, 162 | | Total input Fresh cracking stocks charged to stills: Crude oil Other oils | 173, 040
16, 259
76, 487 | 36, 093
207
16, 060 | 121, 514
7, 021
73, 471 | 100, 880
2, 406
50, 529 | 66, 020
1, 126
27, 666 | 181, 688
16, 382
71, 813 | 41, 572
3, 170
15, 065 | 19, 388
3, 030
7, 055 | 16, 840
807
7, 429 | 166, 763
67, 543 | 923, 798
50, 408
413, 118 | | Output: Gasoline Kerosene. Gas oil and distillate fuel oils. Residual fuel oils. Lubricants. Wax. Coke Asphalt. Still gas | 69, 630
10, 535
18, 545
47, 076
7, 405
804
712
6, 934
8, 808 | 17, 980
2, 982
2, 534
4, 811
5, 231
291
116
597
2, 339 | 67, 247
4, 224
11, 593
17, 383
2, 373
135
2, 850
2, 582
9, 401 | 55, 624
6, 307
7, 044
18, 677
2, 969
124
1, 026
509
4, 600 | 33, 526
3, 742
4, 160
17, 694
313
10
236
320
1, 392 | 78, 153
14, 417
21, 919
47, 417
8, 588
162
1, 114
897
10, 326 | 15, 205
4, 650
5, 280
11, 919
428
92
112
815
1, 638 | 9, 060
921
1, 131
5, 919
130
12
797
459 | 8, 908
516
935
3, 485
231
56
296
180
887 | 61, 599
5, 561
21, 831
66, 000
1, 705
26
1, 992
4, 541 | 416, 932
53, 855
94, 972
240, 381
26, 373
1, 674
6, 500
15, 623
44, 391 | | Wax thousands of pounds. Coke thousands of short tons. Asphalt do. Still gas millions of cubic feet. | 225, 120
142. 4
1, 260. 6
28, 262 | 81, 480
23. 2
108. 6
8, 898 | 37, 800
570. 0
469. 5
35, 763 | 34, 720
205. 2
92. 6
18, 517 | 2, 800
47. 2
58. 2
6, 344 | 45, 360
222, 8
163, 1
41, 801 | 25, 760
22, 4
148, 1
6, 383 | 2. 4
144. 9
2, 171 | 15, 680
59. 2
32. 8
3, 674 | 5. 2
362. 1
17, 666 | 468, 720
1, 300. 0
2, 840. 5
169, 479 | | Road oil. Other finished products. Crude gasoline (net). Other unfinished oils (net). Shortage. | 392
606
1,485
1,836
1,242 | 93
282
61
2 2, 547
1, 323 | 1, 792
156
² 765
1, 685
858 | 894
332
² 79
² 524
3, 377 | 110
74
370
770
3, 303 | 207
208
² 784
² 913
2,977 | 57
2 64
591
849 | 156
56
2258
154
851 | 950
11
257
228
470 | 1, 559
147
54
925
823 | 6, 210
1, 872
2 3, 007
1, 949
16, 073 | | Total output | 173, 040 | 36, 093 | 121, 514 | 100,880 | 66, 020 | 181, 688 | 41, 572 | 19, 388 | 16, 840 | 166, 763 | 923, 798 | ¹ Includes 1,206,000 barrels run through pipe lines in California. ² Negative quantity; represents net excess rerun over production. ## 360 ## MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX Crude production, crude runs to stills, and refinery capacity in 1934, by States | State | Crude pre | oduction | Crude run | s to stills | Daily capacity, Jan
1, 1935, of total re
fineries operating | | | | |---|--|--|---|--|--|---|--|--| | | Thousands
of barrels | Percent
of total | Thousands of barrels | Percent
of total | Thousands
of barrels | Percent
of total | | | | Arkansas California Colorado. Georgia Illinois Indiana Kansas Kansas Kentucky ² Louisiana Maryland. Massachusetts Michigan Missouri Montana New Jersey. New Mexico New York Ohio Oklahoma Pennsylvania Rhode Island South Carolina Texas Utah Virginia West Virginia West Virginia West Illinois West Virginia West Virginia West Virginia West Virginia | 174, 305
1, 139
4, 479
838
46, 482
4, 870
32, 871
10, 603
3, 503
16, 864
4, 234
4, 234
4, 234
180, 107
14, 478 | 1.1
19.2
.1
.5
.1
.5
.1
.5
*3.6

1.2

.4
.5
.1
.9
.4
.5
.1
.9
.1
.9
.1
.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | 7, 552
156, 335
1, 998
1 3, 514
33, 541
54, 781
36, 668
6, 52, 639
12, 029
14, 651
7, 232
5, 021
2, 922
64, 249
1, 318
13, 587
26, 463
53, 317
86, 295
(1)
241, 359
2, 098
(1)
241, 359
2, 098
(1)
8, 601 | 0.8
17.5
1.1
1.4.3.8
6.1
4.1
1.7
4.5.9
1.6
2.3
3.0
6.0
9.0
9.0
(1)
27.0
2.1
1.4 | 38
759
6
9
122
193
164
26
4 192
55
30
33
31
16
17
261
7
57
109
246
298
7
6
907
7
7
7 | 1.0
20.9
.2
3.4
5.3
4.5
5.3
4.5
7.5
1.5
.8
.9
4
.7.2
1.6
3.0
6.8
8.2
.2
.2
.2
.1
.1 | | | | | 908, 065 | 100.0 | 895, 636 | 100.0 | 3, 630 | 100.0 | | | ¹ Georgia includes Delaware, South Carolina, and Virginia. 2 Includes Tennessee. 3 Includes Mississippi. 4 Includes Alabama and Mississippi. 5 Massachusetts includes Rhode Island. 6 Wyoming includes Alaska and Utah. 7 Includes Delaware. 6 Includes Nebraska and South Dakota.
Comparative analyses of statistics for the major refined products, 1924 and 1931-34 [Thousands of barrels of 42 gallons, except as otherwise indicated] | | 1924 | 1931 | 1932 | 1933 | 1934 | |----------------------------|--------------------|--------------------|---------------------|-----------------------|-------------------| | Aotor fuel: | | | | • | | | Production | | 437, 453 | 399, 712 | 407, 932 | 423, 80 | | Imports | | 13,621 | 8, 205
35, 438 | 29, 321 | 24, 68 | | Exports | 1 | 45, 716 | 53, 805 | 55, 933 | h ' | | Stocks, end of period | _ 30, 823 | 55, 226 | 1 54, 310 | 1 59, 935 | 51,94 | | Domestic demand | 187,022 | 403, 418 | 373, 900 | 377, 003 | 407, 100 | | Cerosene: | | | | | | | Production | | 42, 446 | 43, 836 | 48, 977 | 53, 85 | | Imports
Exports | - 10 | 11 $12,712$ | 71
11.044 | 8, 959 | 9, 78 | | | | 1 ' | 11,044 | h ' | 1 | | Stocks, end of period | - 8, 594 | 5, 332 | 1 5, 033 | 6,558 | 6, 39 | | Domestic demand | 36,712 | 31, 296 | 33, 221 | 38, 493 | 44, 23 | | as oil and fuel oil: | | | | | | | Production | 320, 476 | 336, 967 | 3 301, 353 | ² 316, 439 | 335,35 | | Imports | 12, 927
37, 249 | 24, 998
29, 231 | 21, 286
19, 994 | 13, 215
20, 563 | 12, 63
28, 60 | | Exports | | 1 | 129,881 | 123, 500 | h | | Stocks, end of period 3 | | 135, 856 | 1 130, 753 | 1 123, 004 | 110, 39 | | Domestic demand | 290, 766 | 357, 306 | 308, 157 | 316, 344 | 331, 98 | | aubricants: | | | | | | | Production | | 26, 704 | 22, 433 | 23, 775 | 26, 37 | | Imports | 9, 103 | 8, 128 | 12
6,851 | 8, 218 | 7, 66 | | Exports | 1 | | 8, 465 | 1 | 7, 33 | | Stocks, end of period | - 6, 420 | 9, 485 | 1 8,694 | 7,100 | | | Domestic demand | 18, 124 | 20, 068 | 16, 614 | 17, 152 | 18, 48 | | Vax (thousands of pounds): | | | | | | | Production | 516, 491 | 477, 400 | 458, 920 | 469, 560 | 468, 72 | | Imports | _ 12,807 | 37, 835 | 33, 255
235, 304 | 36, 634
247, 769 | 37, 29
198, 95 | | Exports_ | | 290, 527 | 163, 628 | | | | Stocks, end of period | - 89,706 | 171, 220 | 1 163, 935 | 69, 117 | 136, 13 | | Domestic demand | 221, 590 | 276, 457 | 264, 463 | 353, 243 | 240, 03 | For comparison with succeeding year. Includes transfers (see p. 416). California heavy crude included. # Summary of percentage yields of refined products, 1924 and 1931-34 ### [Computed on total crude runs to stills] | Product | 1924 | 1931 | 1932 | 1933 | 1934 | |---|--|--|---|---|--| | Gasoline ¹ Kerosene. Gas oil and distillate fuel oils. Residual fuel oils. Lubricants. Wax. Coke. Asphalt. Road oil. Still gas. Other finished products. | 31. 2
9. 3
49. 8
4. 3
. 6
2. 2
(2)
(2)
(2)
1. 3
3. 0 | 44.3
4.7
9.4
28.3
3.0
.2
1.2
1.8
.6
4.3 | 44.7
5.3
8.5
27.5
2.7
1.1
1.7
.8
5.0
2.5 | 43. 7
5. 7
9. 2
27. 6
2. 8
. 2
. 9
1. 5
. 6
5. 2
1. 9 | 43. 4
6. 0
10. 6
26. 8
2. 9
. 2
. 7
1. 7
5. 0
. 2
1. 8 | Based on total gasoline production less natural gasoline used. Not available. Stocks of crude petroleum, natural gasoline, and refined products at the end of the year, 1924 and 1931-34 | | 1924 | 1931 | 1932 | 1933 | 1934 | |-------------------------------------|----------|-----------|--------------------------|---|-----------------| | Crude petroleum: | | | | | | | At refineries 1 | 31, 918 | 3 35, 821 | \$ 55, 513
\$ 61, 769 | 66, 049 | 64, 099 | | Pipe line and tank farm 4 | 321, 348 | 328, 171 | 276, 189
\$270, 093 | 281, 132
3 280, 043 | 264, 625 | | Producers' 4 | 8, 389 | 6, 202 | 8,013 | 8, 131 | 8, 530 | | Total crude petroleum 5 | 361, 655 | 370, 194 | 339, 715
3339, 875 | 355, 312
3 354, 223 | 337, 254 | | Natural gasoline | 6 302 | 2,825 | 3, 203 | 3,317 | 3,740 | | Refined products: | 00.000 | FO 401 | 50,602 | 52, 616 | 1 40 000 | | Gasoline 7 | 1 | 52, 401 | \$ 51, 107
4, 974 | ³ 56, 255 | 48, 205 | | Kerosene | 8, 594 | 5, 332 | 8 5, 033 | 6,558 | 6, 398 | | Uas oil and distillate fuel oils | (8) | 18, 526 | 14, 110
3 14, 277 | 17, 025 | } 21,957 | | Residual fuel oils | (8) | 117, 330 | 115,771
3 116,476 | ³ 16, 315
106, 475
³ 106, 689 | 88, 440 | | Total gas oil and fuel oil 5 | 75, 520 | 135, 856 | { 129, 881
3 130, 753 | 123, 500
8 123, 004 | 110, 397 | | Lubricants | 6, 420 | 9, 485 | 8, 465
8, 694 | 7, 100 | 7, 331 | | Waxthousands of pounds | 89, 706 | 171, 220 | 163, 628
163, 935 | 69, 117 | 136, 136 | | Cokethousands of short tons | 97.8 | 1, 511. 6 | 1, 330. 2 | 727.4 | 405. 1 | | Asphaltdo | 97.3 | 301.8 | 276. 1 | 254. 5 | 339. 2 | | Road oilOther finished products | } 1,089 | 333 | 564
456 | 832
388 | 664 | | |) | | 43, 359 | \$ 216
48,300 | } 231
5,014 | | Crude gasolineOther unfinished oils | 34, 480 | 44, 757 | 8 43, 753 | ³ 45, 046 | 40, 738 | | Total refined products 9 | 158, 330 | 258, 879 | 247, 188
3 249, 116 | 244, 578
3 244, 295 | 223, 356 | | Grand total | 520, 287 | 631, 898 | \$590, 106
\$592, 194 | 603, 207
8 602, 198 | 564, 350 | ¹ Includes foreign crude held by importers. 2 Refinery stocks in California included in pipe-line and tank-farm stocks. 3 For comparison with succeeding years. 4 1924 and 1931 producers' stocks in California included with pipe-line and tank-farm stocks. 5 California heavy crude and fuel oil included under refined products as residual fuel oil. 6 At plants only—stocks of natural gasoline at refineries not segretated from unfinished oils until Dec. 31, 1929. 7 1931-34 includes pipe-line and bulk-terminal stocks. 8 Not available. 9 Includes equivalents for wax, coke, and asphalt in barrels. ## CRUDE PETROLEUM ## CRUDE-OIL ALLOCATIONS Federal and State allocations, and actual and potential production of crude petroleum in the principal producing States, in 1934 [Daily average in thousands of barrels of 42 gallons] | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | 1934 | |-----------------------------|----------|--------|----------|----------|------------------|--------|--------|--------|--------|----------|----------|----------|--------| 1 | | | | | | | | Texas:
State allowable 1 | 885 | 928 | 956 | 061 | 1, 035 | 1 065 | 1, 035 | 992 | 1,010 | 946 | 955 | 977 | 982 | | Federal allowable | 884 | 884 | 948 | | | | 1,042 | | 968 | | | 973 | | | Actual production | 961 | | | | 1,084 | 1,002 | 1, 103 | 1 077 | | 1,046 | | | 1.045 | | Excess of production over | 901 | 991 | 1,025 | 1,004 | 1,004 | 1, 104 | 1, 100 | 1,077 | 1, 117 | 1,010 | 800 | 901 | 1,010 | | Federal allowable | 77 | 107 | 75 | 83 | 103 | 75 | 61 | 76 | 146 | 90 | 31 | 11 | 77 | | Potential production 2 | | 101 | 1 10 | 00 | 100 | | 0. | ,,, | 110 | " | "- | 1 | | | Oklahoma: | | | | | | | | | | | | | | | State allowable | 447 | 447 | 456 | 476 | 476 | 512 | 490 | 480 | 461 | 457 | 459 | 470 | 469 | | Federal allowable | 447 | 447 | 456 | | | 512 | | 480 | 461 | 457 | 459 | 470 | | | Actual production | 491 | 480 | | | | 540 | | | 462 | | | 471 | | | Excess of production over | 101 | 100 | 100 | 021 | 002 | 0.0 | 000 | 100 | 102 | 100 | 100 | | 1 | | Federal allowable | 44 | 33 | 39 | 48 | 56 | 28 | 15 | 3 | 1 | 12 | 10 | 1 | 24 | | Potential production 3 | | | | | 2, 493 | | | 2, 658 | 2 685 | | | 1, 652 | | | California: | 0, 110 | 0,020 | 0, 200 | 2,0,1 | 2, 100 | 2,010 | 2,000 | 2, 000 | 2,000 | _, | _, 0_0 | , 002 | -, | | State allowable 4 | 442 | 437 | 458 | 470 | 464 | 503 | 514 | 487 | 460 | 455 | 461 | 475 | 469 | | Federal allowable | 438 | 438 | 454 | | | 500 | 509 | 490 | 457 | 452 | | 465 | 466 | | Actual production | 454 | 447 | 472 | | 483 | 512 | | 490 | 465 | | | | | | Excess of production over | | | -:- | | | - | | | | | | | | | Federal allowable | 16 | 9 | 18 | 14 | 20 | 12 | 5 | | 8 | 11 | 12 | 11 | 12 | | Potential production 4 | | | | | 1, 307 | | 1,380 | 1, 387 | 1, 425 | | | 1, 534 | | | Kansas: | -, | -, | -, | , | 1,00. | -,0 | -, | -, | -, | , | -, | -, | -, | | State allowable 5 | 110 | 110 | 112 | 122 | 122 | 130 | 135 | 131 | 121 | 124 | 125 | 130 | 123 | | Federal allowable | 110 | | | | 122 | 130 | 135 | 131 | 121 | 124 | | 130 | 123 | | Actual production | 110 | | | | | 137 | 136 | | 124 | | 124 | 125 | 127 | | Excess of production over | | | | | | | | | | | | | | | Federal allowable | · ` | 4 | 19 | 12 | 13 | 7 | 1 | | 3 | 3 | -1 | -5 | 4 | | Potential production 5 | 315 | 309 | | | 366 | 300 | 323 | 345 | 368 | 342 | 323 | 369 | 336 | | Louisiana: | | | 1 | | | 1 7 7 | | 1 7 1 | | 1 | | İ | | | State allowable | 69 | 69 | 72 | 72 | 72 | 83 | 89 | 86 | 92 | 91 | 96 | - 99 | 88 | | Federal allowable | 69 | 69 | | | 72 | 83 | 89 | 87 | 87 | 88 | 90 | 97 | 81 | | Actual production | 72 | 73 | | | | 90 | 100 | | 99 | 104 | 105 | 105 | 90 | | Excess of production over | 1 | | | 1 | | | | 100 | | 25 | | | ŀ | | Federal allowable | 3 | 4 | l | 4 | 14 | 7 | 11 | 12 | 12 | 16 | 15 | 8 | 9 | | Potential production 2 | | | | | l | | | | | | | | | | New Mexico: | Į. | | | | 1 | 1. | | | | 1, | ļ | | | | State allowable | 41 | 41 | 44 | 46 | 46 | 48 | 47 | 47 | 46 | 46 | | 48 | 47 | | Federal allowable | 41 | 41 | | | 46 | 48 | 47 | 47 | 46 | | | 48 | 47 | | Actual production | 42 | 42 | 43 | 47 | 46 | 47 | 47 | 49 | 48 | 47 | 48 | 48 | 46 | | Excess of production over | 1 | | 1 |
1 | | | | | | | i | | | | Federal allowable | 1 | 1 | -1 | 1 | | -1 | | 2 | 2 | 1 | 1 | | -1 | | Potential production 6 | 1, 287 | 1, 305 | 1,550 | 1,720 | 1,841 | 1,860 | 1,953 | 2,005 | 1,998 | 2, 085 | 2, 106 | 2,028 | 1,784 | | Michigan: | 1 | | | | | | | 1 | | ŧ | | | | | State allowable | 29 | 29 | | | 31 | 33 | 33 | | 29 | 29 | 29 | 28 | 30 | | Federal allowable | 29 | 29 | | 31 | 31 | 33 | 33 | | 29 | 29 | 29 | 28 | 30 | | Actual production | 26 | 28 | 27 | 29 | 32 | 31 | 30 | 31 | 31 | 29 | 26 | 28 | 29 | | Excess of production over | 1 | i | l | l | | 1 | 1 | | | 1 | | 1 | | | Federal allowable | -3 | -1 | -2 | -2 | 1 | -2 | -3 | -2 | . 2 | | 3 | | -1 | | Potential production 2 | | | | | | | | | | | | | | | United States: | t : | | | | | | | l | | l | l. · | L | | | Federal allowable | 2, 183 | 2, 183 | 2, 283 | 2, 366 | 2, 366
2, 580 | 2, 528 | 2, 530 | 2, 449 | 2,342 | | | 2, 384 | | | Actual production | 2,323 | 2, 335 | 2, 433 | 2, 522 | 2, 580 | 2,655 | 2,624 | 2, 552 | 2, 525 | 2, 471 | 2, 413 | 2, 413 | 2, 488 | | Excess of production over | | | i i | 1 | 1 | | | | | ١ | | | | | Federal allowable | 140 | 152 | 150 | 156 | 214 | 127 | 94 | 103 | 183 | 145 | 73 | 29 | 130 | | <u></u> | <u> </u> | | <u> </u> | <u> </u> | | | | | | <u> </u> | <u> </u> | <u> </u> | | | | | | | | | | | | | | | | | Railroad Commission of Texas. Not available. Corporation Commission of Oklahoma. Central Committee of California Oil Producers. Corporation Commission of Kansas. Oil Conservation Commission of New Mexico; Hobbs pool only. ### DOMESTIC ## Petroleum produced in the United [Thousands of barrels | 107K | | 1 | 1 | | | | | | | | | | |--|-------------------------------|----------|----------|---------|-------|-----------|-------------|----------|----------|-----------|-----------|------------------| | 1859-75 | | 1 | 1 | | | | | 1 | | | | | | New York New Sylva Ohio Virginia Nia tucky New Nia New Nia New Nia N | | 1 | | | | | | | | 1 | | | | New York New Sylva Ohio Virginia Nia tucky New Nia New Nia New Nia N | | | | | | 100 | | | 1 4 | | | | | New York New Sylva Ohio Virginia Nia tucky New Nia New Nia New Nia N | | I . | | | | | | **** | | l | 100 | | | 1859-75 | ** | | Indi- | Colos | | Ken- | Califor- | | | Penn- | New | | | 1859-75. | Kansa | Illinois | ana | | | | | | Ohio | sylva- | | Year | | 1876 | | 1 | | 1 | see | l tues | | ginia | | nia | 1 0111 | | | 1876 | | 1 | | | | i i | | | | İ | 1 | | | 1876 | | ł . | | | | | | 1 | | | 1 | | | 1876 | | | ĺ | | l | 100 | | | | | l | | | 1876 | | | | | | | | | | | · | | | 1876 | | 95 | | | | | 7.7 | | | 9 74 079 | (9) | 1070 77 | | 1890 | | | | | | | 19 | 190 | | 14,012 | 1 13 | 1809-70 | | 1890 | | | | | | | | | | 12 12 12 | 1 132 | 1870 | | 1890 | | | | | | | | 100 | | 2 15, 100 | 1 13 | 18// | | 1890 | | | | | | | | 180 | | 2 10, 104 | 1 2 | 10/0 | | 1890 | | | | | | | | | 30 | 2 26 028 | 1 2 | 1000 | | 1890 | | | | | | | | 151 | | 20,020 | 1 12 | 1001 | | 1890 | | | | | | | | | | 22,370 | 8 805 | 1001 | | 1890 | | | | | (8) | 3 5 | | 126 | | 10 195 | 4,004 | 1002 | | 1890 | | | | | (3) | 3 4 | | 00 | | 20, 541 | 3 921 | 1000 | | 1890 | | | | | (8) | 3.5 | 305 | 01 | | 18 110 | 9 650 | 1001 | | 1890 | | | | | 3 | 3 5 | 377 | | | 23 647 | 2,000 | 1000 | | 1890 | | | | 78 | 3 | 3 5 | | | 5 022 | 20, 021 | 2, 101 | 1000 | | 1890 | | | | 200 | 3 | 3 5 | | | | 2 16 490 | 2,075 | 100/ | | 1890 | | | 22 | 217 | 3 | 3.5 | | | | 10, 501 | 1 207 | 1000 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 100 | 1 | | | 3 | 3 8 | | 402 | 16 195 | 2 28 450 | 1,091 | 1009 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | 1 2 | 30 | | | 17 740 | 21 494 | 1 505 | 1001 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | 3 | 27 | | | 16 362 | 27 140 | 1 972 | 1001 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | | | | 3 | 33 | | 8 446 | 16 240 | 10 283 | 1,032 | 1094 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 | (4) | 3 680 | | 3 | 3 2 | | 8 577 | 16, 702 | 18 078 | 1,002 | 1004 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 | (4) | 4 388 | 438 | 2 | 8 2 | 1 200 | 8 120 | | 18 231 | 013 | 1004 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 11 | - 23 | 4 681 | | 3 | | 1 253 | 10, 020 | 23 041 | 10, 201 | 1 205 | 1090 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 8 | 1 | 4 199 | | (3) | (34) | 1 003 | 13,000 | 21 561 | 17 083 | 1,200 | 1000 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 | | 3 731 | | (8) | 3.6 | 2 257 | 13,000 | 18 730 | 14 743 | 1,218 | 1000 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 | 1 | 3 848 | | 1 2 | 3 18 | 2, 207 | 13 011 | 21 142 | 13,745 | 1,200 | 1000 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 | 1 23 | 4 874 | | (3) | 3 62 | 4 325 | 16 106 | 22, 363 | 13,004 | 1 301 | 1000 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 17 | 1 23 | 5 757 | 461 | 18 | 8 137 | 8 787 | 14 177 | 21 648 | 12 625 | 1,301 | 1900 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 33 | 1 22 | 7 491 | | 1 2 | 3 195 | 13 094 | | | 12,020 | 1, 207 | 1901 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 93 | (-) | 0 196 | 184 | 💥 | 8 554 | | 12,000 | 20, 490 | 11 255 | 1,120 | 1902 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4, 25 | | 11 220 | | \% | 3 008 | | | 10 977 | 11, 000 | 1,100 | 1900 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 6 12, 01 | 101 | 10,064 | | 18 | | | | 16 3/7 | 10, 427 | 1, 110 | 1005 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 6 21, 71 | | 7 674 | 336 | 1 2 | 3 1 214 | 33,000 | | 14 700 | 10, 457 | 1, 110 | 1900 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2, 410 | 2, 331 | 5 198 | 320 | | 3 991 | 30 749 | 0.005 | 19 907 | 10, 207 | 1,240 | 1900 | | 1909 | 1, 80 | 22 696 | 2 222 | 390 | (9) | 720 | 44 855 | 0 522 | 10 850 | 0 424 | 1,212 | 1000 | | 1910 | 1, 26 | 30,000 | 9 200 | | | | 55 479 | 10 745 | 10,633 | 0 200 | 1, 100 | 1000 | | 1911 | 1, 12 | 22 1/2 | 2,280 | | | | 73 011 | 11 753 | 0.016 | 9, 200 | 1, 150 | 1010 | | 1912 | 1, 279 | 21 217 | 1 605 | 220 | | | 81 134 | 0 706 | 8 817 | 0, 180 | 1,004 | 1910 | | 1912 | 1, 59 | 28 602 | 1,000 | | | 191 | 87 260 | 12 120 | 8 060 | 7 929 | 974 | 1911 | | 1914 939 8, 170 8, 536 9, 680 99, 775 503 223 1, 336 21, 920 1915 888 7, 838 7, 825 9, 265 86, 592 437 208 876 19, 042 1915 888 7, 838 7, 825 9, 265 86, 592 437 208 876 19, 042 1915 208 876 19, 042 1915 208 876 19, 042 1915 208 876 19, 042 1915 208 876 1915
208 876 1915 208 876 | 2, 37 | 23 804 | | | | | 97 788 | 11 567 | 8 781 | 7 017 | 048 | 1012 | | 1915 | 3, 10 | 21 020 | 1 336 | 223 | | 503 | 99 775 | 9 680 | 8 536 | 8 170 | 030 | 1014 | | 1010 074 7 503 7 744 9 721 00 059 1 909 1 107 720 17 714 | 2, 82 | | 278 | | | | | | 7 225 | 7 222 | 555 | 1015 | | | 8, 738 | 17, 714 | 769 | 197 | 1 | 1, 202 | 90, 952 | 8, 731 | 7,744 | | 874 | 1916 | | 1017 880 7 733 7 751 8 379 93 878 3 088 12 121 760 15 777 | 36, 53 | 15 777 | | | 12 | | 93, 878 | 8 370 | 7 751 | 7 733 | | | | 1010 900 7 408 7 985 7 987 07 539 4 388 8 143 878 13 388 | 45, 45 | 13, 366 | 878 | | | 4, 368 | 07 539 | 7, 867 | 7, 285 | 7 408 | 800 | 1018 | | 1918 809 7, 408 7, 285 7, 867 97, 532 4, 368 8 143 878 13, 366 1919 81 8, 137 7, 736 8, 327 101, 183 9, 278 15 121 972 11, 960 1920 906 7, 438 7, 400 8, 249 103, 377 8, 738 14 111 945 10, 774 1921 988 7, 418 7, 335 7, 822 112, 600 9, 013 12 108 1, 158 10, 043 120 120 120 120 120 120 120 120 120 120 | 33, 048 | 11, 060 | 079 | | 15 | 9 278 | 101, 183 | 8 397 | 7, 736 | 8 137 | | 1010 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 39, 00 | 10, 774 | | | | 8 738 | 103 377 | 8 240 | 7,400 | 7 432 | | 1020 | | 1920 966 7, 438 7, 400 8, 249 103, 377 8, 738 14 111 945 10, 774 11921 988 7, 418 7, 335 7, 822 112, 300 9, 013 12 108 1, 158 10, 043 1922 1, 000 7, 425 6, 781 7, 021 138, 468 8, 973 10 97 1, 087 9, 383 | 36 45 | 10, 042 | | | | 9,013 | 112 600 | 7 822 | 7 335 | 7 419 | | 1021 | | 1921 988 7, 418 7, 335 7, 822 112, 600 9, 013 12 108 1, 158 10, 043 1922 1, 000 7, 425 6, 781 7, 021 138, 468 8, 973 10 97 1, 087 9, 383 | 36, 456
31, 766
28, 256 | 9, 383 | 1,087 | | | | 138 469 | 7 021 | 6. 781 | 7 495 | | 1022 | | 1922 1,000 7,425 6,781 7,021 138,468 8,973 10 97 1,1087 9,383 1923 1,250 7,609 7,085 6,358 262,876 8,069 8 86 1,043 8,707 1924 1,440 7,486 6,811 5,920 228,933 7,407 10 445 935 8,081 1925 1,695 8,097 7,212 5,763 232,492 6,759 24 1,226 829 7,863 1926 1,965 8,961 7,272 5,946 224,673 6,274 43 2,768 808 7,760 1927 20 1,965 8,961 7,272 5,946 224,673 6,274 43 2,768 808 7,760 | 28 25 | 8, 707 | 1,042 | | | | 262 876 | 6 359 | 7, 085 | 7 600 | | 1023 | | 19241,440 7,486 6,811 5,920 228,933 7,407 10 445 935 8,081 | 28, 83 | 8, 081 | 025 | | | 7 407 | 228 033 | 5 020 | 6.811 | 7 498 | | 1024 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 38, 35 | 7 863 | 890 | 1 226 | | 6 750 | 232 402 | 5 763 | 7 212 | 8 007 | | 1025 | | 19261,956 | 41, 498 | 7 760 | | | | 6 274 | 224 673 | 5 046 | 7 272 | | | 1026 | | | 41, 069 | 6 004 | | 2 831 | | 6 710 | 231 104 | 6 023 | 7 502 | | | | | 1928 | 38, 596 | | | 2, 774 | | 7 350 | 231 811 | | 7 015 | | 2,603 | 1028 | | 1928 2, 603 9, 956 7, 015 5, 661 231, 811 7, 359 46 2, 774 1, 052 6, 462 1929 3, 377 11, 820 6, 743 5, 574 292, 534 7, 775 19 2, 358 981 6, 319 1930 3, 647 12, 803 6, 486 5, 071 227, 329 7, 389 21 1, 656 994 5, 736 1931 3, 363 11, 892 5, 327 4, 472 188, 830 6, 456 6 1, 545 840 5, 039 1932 3, 508 12, 412 4, 644 3, 876 178, 128 6, 287 5 1, 136 806 4, 673 1932 3, 181 12, 684 4, 625 3, 816 178, 128 6, 287 5 1, 136 806 4, 673 | 42, 81 | 6 310 | | 2 358 | | 7 775 | 292 534 | | | | 3 377 | 1020 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 41, 638 | 5 736 | | 1 656 | | 7 380 | 227 320 | 5 071 | 6 496 | 12 803 | 3 647 | 1030 | | 1930 | 37, 018 | 5 020 | 2/I | | | 6 456 | 188 820 | | 5 207 | 11 800 | 3 363 | 1021 | | 1931 | 34, 848 | 4 672 | | 1 126 | | 6 227 | 178 199 | 2 976 | 4 644 | 19 419 | 3 500 | 1022 | | 1932 | 41, 976 | 4 244 | | | | | 172 010 | 3 815 | 4 925 | 19 694 | 2 101 | 1022 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 46, 482 | | 835 | | | | 174 305 | | 4 99/ | 14 470 | 3 204 | 1900 | | | | | | | | | | | | | | | | Total 7 89, 258 7 892,838 567, 276 388, 468 4, 210, 968 3 134,156 3 329 30, 639 120, 983 416, 742 6 | ³ 750,100 | 416, 742 | 120, 983 | 30, 639 | 3 329 | 3 134,156 | 4, 210, 968 | 388, 468 | 567, 276 | 7 892,838 | 7 89, 258 | Total | | Percent of total | | | | | | | | | | | | Percent of total | | production 0.5 5.4 3.4 2.3 25.4 0.8 0.7 2.5 | 4. (| 2.5 | 0.7 | 0.2 | | 0.8 | 25. 4 | 2.3 | 3.4 | 5.4 | 0. 5 | production | | | | | | | | | | | | | | | ^{1 1889-99,} Missouri; 1900-1906, Michigan and Missouri; 1907-11, Michigan, Missouri, and Utah; 1912, 1917, 1918, Alaska and Michigan; 1913 and 1919, Alaska, Michigan, Missouri, and New Mexico; 1914-16, Alaska, Michigan, and Missouri; 1920, Alaska, Arkansas, Missouri, New Mexico, and Utah; 1921-23, Alaska, Missouri, and New Mexico; 1924-31, Alaska and Utah; 1932, Alaska, Missouri, and Utah; 1933, Alaska, Mississippi, Missouri, and Utah; 1934, Mississippi, Missouri, and Utah; 1934, Mississippi, Missouri, and Utah; 1934, Mississippi, Missouri, and Utah. 2 New York included with Pennsylvania. 3 Tennessee included with Kentucky, 1883-1907, inclusive. ## **PRODUCTION** States, 1859-1934, by States of 42 gallons] | | | | | | | | | | | Total | | |----------------------------------|---|--------------------|------------------|--------------------|--------------------|----------------------------|-----------------------------|------------------|--|---|--------------------| | Texas | Okla-
homa | Wyo-
ming | Michi-
gan | Louisi-
ana | New
Mex- | Mon-
tana | Arkan-
sas | Other 1 | | Value at | wells | | | noma | mmg | gan | ана | ico | ьана | Sas | | Quantity | Total
(thou-
sands of
dollars) | Average per barrel | | | | | | | | | | | 74,072 | 215, 781 | \$2.91 | | | | | | | | | | | 9, 133
13, 350 | 22, 983 | 2.52 | | | | | | | | | | | 15, 397 | 31, 789
18, 045 | 2.38
1.17 | | | | | | | | | | | 19, 914 | 17. 211 | .86 | | | | | | | | | | | 26, 286
27, 661 | 24, 601
25, 448 | .94
.92 | | | | | | | | | | | 30, 350 | 23, 631 | .78 | | | | | | | | | | | 23, 450 | 23, 631
25, 790 | 1. 10 | | | | | | | | | | | 24, 218
21, 859 | 20, 596
19, 198 | . 85
. 88 | | | | | | | | | | | 28,065 | 19,996 | .71 | | | | | | | | | | | 28, 283
27, 612 | 18, 877
17, 948 | . 67 | | (4) | | | | | | | | | 35, 164 | 26, 963 | . 77 | | 3333333 | | | | | | | | | 45, 824 | 35, 365 | .77 | | $ \Omega $ | 9 | | | | | | | (2) | 54, 293
50, 515 | 30, 527
25, 907 | . 56
. 51 | | | 8 | | | | | | | 1 8 | 48, 431 | 28, 950 | .60 | | 6 | (4) | 2 | | | | | | (4) | 49, 344 | 35, 522 | .72 | | (4) | (2) | 3 | | | | | | (2) | 52, 892
60, 960 | 57, 632
58, 519 | 1.09
.96 | | 66 | (*) | 3 | | | | | | 1 23 | 60, 476 | 40, 874 | .68 | | 546 | | 6 | | | | | | (4) | 55, 364 | 44, 193 | . 80 | | 669
836 | 6 | 6 | | | | | | (4) | 57,071 | 64, 604
75, 989 | 1. 13
1. 19 | | 4, 394 | 10 | 6
5
6 | 1 13 | | | | | 2 | 63, 621
69, 389 | 66, 417 | . 96 | | 18,084 | 37 | 6 | (5) | 549 | | | | $\frac{1}{2}$ | 88, 767 | 71, 179 | .80 | | 17, 956 | 139 | 9 | (5) | 918 | | | | 3
3
3
3 | 100, 461 | 94, 694 | . 94
. 86 | | 22, 241
28, 136 | 1, 367 | 8 | (8) | 2, 959
8, 910 | | | | 3 | 117, 081
134, 717 | 101, 175
84, 157 | . 62 | | 12, 568 | (6)
(6) | 12
8
7
9 | (5) | 9,077 | | | | | 126, 494 | 92, 445 | . 73 | | 12, 323
11, 207 | 43, 524 | 9
18 | (5) | 5,000 | | | | 15 | 166.095 | 120, 107 | . 72 | | 9, 534 | 45, 799
47, 859 | 20 | (5) | 5, 789
3, 060 | | | | 6 | 178, 527
183, 171 | 129, 079
128, 329 | . 72
. 70 | | 8, 899 | 52,029 | 115 | (5) | 6.841 | | | | 4 | 209, 557 | 127, 900 | . 61 | | 9, 526 | 56,069 | 187
1, 572 | (5) | 10, 721
9, 263 | | | | 8 | 220, 449
222, 935 | 134, 045
164, 213 | . 61 | | 11, 735
15, 010 | 51, 427
63, 579 | 2, 407 | (5) | 12, 499 | (5) | | | 11 | 248, 446 | 237, 121 | . 95 | | 20,068 | 73, 632 | 3,560 | (5) | 14, 309 | | | | 8 | 265, 763 | 214, 125 | . 81 | | 24, 943 | 97, 915 | 4, 246 | (5) | 18, 192 | | | | 14 | 281, 104 | 179, 463 | . 64 | | 27, 645
32, 413 | 107, 072
107, 508 | 6, 234
8, 978 | <u> </u> | 15, 248
11, 392 | | 45
100 | | 8
10 | 300, 767
335, 316 | 330, 900
522, 635 | 1, 10
1, 56 | | 38, 750 | 103, 347 | 12, 596 | (5) | 16, 043 | , | 69 | | 8 | 355, 928 | 703, 944 | 1.98 | | 1 79, 366 | 107, 072
107, 508
103, 347
86, 911
106, 206
114, 634
149, 571
160, 929 | 13, 172 | (5) | 17, 188
35, 714 | (5)
(5)
(6) | 90
340 | (A) | 12
13 | 355, 928
378, 367
442, 929
472, 183
557, 531 | 522, 635
703, 944
760, 266
1, 360, 745
814, 745 | 2. 01
3. 07 | | 96, 868
106, 166 | 114, 634 | 16, 831
19, 333 | | 1 27, 103 | 8 | 1.509 | (⁵)
10, 473 | 13 | 472, 183 | 814, 745 | 1. 73 | | 106, 166
118, 684
131, 023 | 149, 571 | 26, 715 | | 1 35.376 | (5) | 2, 449
2, 782
2, 815 | 12, 712 | 13 | 557, 531 | 890, 111 | 1.61 | | 131, 023 | 160, 929 | 44, 785
39, 498 | | 24, 919
21, 124 | (š)
98 | 2,782 | 36, 610 | 18
13 | 732, 407
713, 940 | 978, 430 | 1.34
1.43 | | 134, 522
144, 648 | 173, 538
176, 768
179, 195
277, 775 | 39, 498
29, 173 | 4 | 20, 272 | 1,060 | 4,091 | 46, 028
77, 398 | 12 | 763, 743 | 1,022,683
1,284,960 | 1.68 | | 166, 916 | 179, 195 | 25, 776 | 94 | 20, 272
23, 201 | 1,666 | 7, 727 | 58, 332
40, 005 | 8 | 763, 743
770, 874 | 1 447 760 | 1.88 | | 217, 389 | 277, 775
249, 857 | 21, 307
21, 461 | 439
594 | 22, 818
21, 847 | 1, 226
943 | 5, 058
4, 015 |
40,005
32,096 | 8
7
6 | 901, 129
901, 474 | 1, 172, 830
1, 054, 880 | 1.30
1.17 | | 257, 320
296, 876 | 255, 004 | 19, 314 | 4, 528 | 20, 554 | 1,830 | 3,980 | 32,090
24,917 | 7 | 1,007,323 | 1, 054, 880 | 1. 17 | | 290, 457 | 216, 486 | 17,868 | 3,911 | 23, 272 | 10, 189 | 3, 349 | 19, 702 | 7 | 898, 011 | 1.070.200 | 1. 19 | | 332, 437 | 180, 574 | 14, 834 | 3,789 | 21,804 | 15, 227 | 2,830 | 14, 791 | 7
16 | 851, 081
785, 159 | 550, 630
680, 460 | . 65
. 87 | | 312, 478
402, 609 | 153, 244
182, 251 | 13, 418
11, 227 | 6, 910
7, 942 | 21, 807
25, 168 | 12, 455
14, 116 | 2, 457
2, 273 | 12, 051
11, 686 | 30 | 905, 656 | 608, 000 | . 67 | | 381, 516 | 180, 107 | 12, 556 | 10, 603 | 32, 869 | 16, 864 | 3, 603 | 11, 182 | 41 | 905, 656
908, 065 | 904, 825 | 1.00 | | 0, 100, 020 | 6 3,694,370 | | 8 38, 814 | 545, 806 | 75,674 | 49, 582 | 407, 983 | 339 | 16, 598, 444 | 20, 415, 809 | 1, 23 | | 22. 9 | 22. 3 | 2. 3 | 0.2 | 3. 3 | 0. 5 | 0.3 | 2. 5 | | 100. 0 | | | ^{Less than 500 barrels. (See Mineral Resources, 1916, pt. 2, pp. 684-685.) Included under "Other." Oklahoma included with Kansas in 1905 and 1906. Early production in New York included with Pennsylvania. Figures represent 1925-34 production only. Earlier years included under "Other." Figures represent 1924-34 production only. Earlier years included under "Other."} # Production of crude petroleum by districts and States and daily average production in principal fields and States in 1934, by months [Quantity in thousands of barrels of 42 gallons; value in thousands of dollars] ## TOTAL PRODUCTION | | | 7.1 | | | | | | | <u> </u> | | | | То | tal | |--|---|--|---|--|---|--|--|--|---|--|--|--|--|---| | | Janu-
ary | Febru-
ary | March | April | Мау | June | July | August | Septem-
ber | Octo-
ber | Novem-
ber | Decem-
ber | Quan-
tity | Value
at wells | | Appelachian: New York Pennsylvania West Virginia East and southeast Ohio Kentucky Tennessee | 306
1, 157
340
269
362
1 | 246
941
291
225
330
1 | 314
1, 216
364
280
380 | 295
1, 175
332
260
338
1 | 320
1, 293
351
299
352
1 | 314
1, 285
343
273
438
1 | 335
1, 268
336
279
428
1 | 333
1, 272
367
285
448
1 | 319
1, 184
337
259
445 | 351
1, 270
373
296
460
1 | 335
1, 210
327
284
438
1 | 336
1, 207
334
249
441
1 | 3, 804
14, 478
4, 095
3, 258
4, 860 | 9, 340
35, 200
8, 600
5, 550
5, 640 | | Total Appalachian | 2, 435 | 2, 034 | 2, 554 | 2, 401 | 2, 616 | 2, 654 | 2, 647 | 2, 706 | 2, 544 | 2, 751 | 2, 595 | 2, 568 | 30, 505 | 64, 340 | | Lima-Indiana:
Northwestern Ohio
Northeastern Indiana
Michigan | 89
2
807 | 56
2
797 | 85
2
849 | 85
2
877 | 95
2
984 | 89
2
925 | 80
2
932 | 85
2
946 | 77
2
918 | 91
2
909 | 75
2
789 | 69
2
870 | 976
24
10, 603 | 1, 280
30
10, 820 | | Total Lima-Indiana | 898 | 855 | 936 | 964 | 1,081 | 1,016 | 1,014 | 1,033 | 997 | 1,002 | 866 | 941 | 11, 603 | 12, 130 | | Illinois-Indiana:
Southwest Indiana
Illinois | 72
393 | 52
337 | 70
399 | 66
373 | 76
416 | 73
397 | 73
398 | 77
407 | 71
381 | 66
352 | 58
305 | 60
321 | 814
4, 479 | 930
4,990 | | Total Illinois-Indiana | 465 | 389 | 469 | 439 | 492 | 470 | 471 | 484 | 452 | 418 | 363 | 381 | 5, 293 | 5, 920 | | Mid-Continent: Kansas. Oklahoma Texas: West Texas. | 3, 404
15, 229
3, 994 | 3, 193
13, 444
3, 591 | 4, 048
15, 344
4, 097 | 4, 030
15, 705
4, 071 | 4, 181
16, 491
4, 391 | 4, 116
16, 214
4, 167 | 4, 210
15, 670
4, 347 | 4, 051
14, 970 | 3, 714
13, 845 | 3, 930
14, 550 | 3, 716
14, 059 | 3, 889
14, 586 | 46, 482
180, 107 | 47, 850
183, 700 | | west Texas. East Texas. Rest of State, exclusive of coastal Texas. Southeast New Mexico. Arkansas. Northern Louisiana. Mississippi and Missouri. | 14, 092 | 3, 591
13, 265
6, 385
1, 149
860
763
2 | 15, 519
7, 167
1, 305
926
801 | 15, 832
7, 201
1, 369
929
767
3 | 4, 391
16, 315
7, 665
1, 388
944
767 | 4, 167
16, 512
7, 511
1, 383
971
711
4 | 4, 347
16, 717
8, 018
1, 426
992
751
4 | 4, 591
15, 138
8, 214
1, 499
954
753
3 | 4, 551
15, 752
7, 865
1, 414
884
708 | 4, 155
15, 489
7, 691
1, 415
935
741
3 | 3, 987
13, 474
7, 371
1, 414
869
725
3 | 4, 330
13, 435
7, 691
1, 443
955
734
8 | 50, 272
181, 540
89, 549
16, 488
11, 182
9, 075 | 38, 450
181, 000
81, 500
12, 300
8, 000
8, 450
31 | | Total Mid-Continent | 46, 592 | 42,652 | 49, 210 | 49, 907 | 52, 145 | 51, 589 | 52, 135 | 50, 173 | 48, 736 | 48, 909 | 45, 618 | 47,066 | 584, 732 | 561, 281 | | Gulf coast: Texas Gulf coast Louisiana Gulf coast | 4, 936
1, 389 | 4, 493
1, 272 | 4, 921
1, 420 | 4,820
1,526 | 5, 230
1, 900 | 5, 025
1, 974 | 5, 108
2, 341 | 5, 433
2, 312 | 5, 254
2, 256 | 5, 076
2, 472 | 4, 805
2, 416 | 5, 054
2, 516 | 60, 155
23, 794 | 60, 600
23, 400 | |--|---|---|---|---|--|--|---|---|---|---|--|--|---|---| | Total Gulf coast | 6, 325 | 5, 765 | 6, 341 | 6, 346 | 7, 130 | 6, 999 | 7, 449 | 7, 745 | 7, 510 | 7, 548 | 7, 221 | 7, 570 | 83, 949 | 84,000 | | Rocky Mountain: Montana Wyoming Colorado Northwest New Mexico Utah | 221
899
85
30 | 203
869
81
33 | 213
955
79
32 | 240
916
84
28 | 274
1, 117
96
37 | 287
1,131
86
30
1 | 332
1, 205
107
31
1 | 387
1, 238
115
29
1 | 343
1,076
108
29 | 375
1,097
101
37 | 368
1,029
103
29 | 360
1,024
94
31 | 3, 603
12, 556
1, 139
376
4 | 4,380
10,550
1,060
400
4 | | Total Rocky Montain | 1, 235 | 1, 186 | 1, 279 | 1, 268 | 1, 524 | 1, 535 | 1,676 | 1,770 | 1, 557 | 1,610 | 1, 529 | 1, 509 | 17, 678 | 16, 394 | | California | 14, 067 | 12, 502 | 14, 637 | 14, 32,0 | 14, 978 | 15, 373 | 15, 947 | 15, 194 | 13, 963 | 14, 355 | 14, 207 | 14, 762 | 174, 305 | 160, 760 | | Total United States: 1934 | 72, 017
65, 159 | 65, 383
61, 252 | 75, 426
75, 185 | 75, 645
65, 709 | 79, 966
86, 638 | 79, 636
84, 386 | 81, 339
85, 321 | 79, 105
85, 485 | 75, 759
78, 321 | 76, 593
76, 077 | 72, 399
69, 966 | 74, 797
72, 157 | 908, 065
905, 656 | 904, 825
608, 000 | | Total Ohio Total Indiana Total Texas Total Louisiana Total New Mexico | 358
74
29, 792
2, 243
1, 313 | 281
54
27, 734
2, 035
1, 182 | 365
72
31, 704
2, 221
1, 337 | 345
68
31, 924
2, 293
1, 397 | 394
78
33, 601
2, 667
1, 425 | 362
75
33, 215
2, 685
1, 413 | 359
75
34, 190
3, 092
1, 457 | 370
79
33, 376
3, 065
1, 528 | 336
73
33, 422
2, 964
1, 443 | 387
68
32, 411
3, 213
1, 452 | 359
60
29, 637
3, 141
1, 443 | 318
62
30, 510
3, 250
1, 474 | 4, 234
838
381, 516
32, 869
16, 864 | 6, 830
960
361, 550
31, 850
12, 700 | | | | DAI | LY AVE | RAGE | PRODU | CTION | ī : | | | | | |
| | | California Kettleman Hills Long Beach. Santa Fe Springs Kansas Louisiana New Mexico. Hobbs. Oklahoma Oklahoma Oklahoma Oklahoma West Texas. Fast Texas. East Texas. Wyoming Salt Creek Other States. | 110
72
42
34
491
179
107
961
159
129
455
29
17
164 | 447
50
57
41
114
73
42
34
480
165
102
991
160
128
474
31
18 | 472
555
62
42
131
72
43
34
495
172
105
1,023
159
132
501
31
18
166 | 477
56
63
43
134
76
47
37
524
194
106
1,064
161
136
518
31
18 | 483
59
66
42
135
86
46
35
532
200
107
1,084
169
142
526
36
18
178 | 512
61
72
42
137
90
47
37
540
202
116
1,107
168
139
550
38
18
184 | 514
67
67
41
136
100
47
36
505
175
110
1, 103
165
140
539
39
18 | 490
64
62
40
131
199
49
37
107
1,077
1,077
1,55
148
488
40
18
183 | 465
61
59
37
124
99
48
35
462
154
175
1,114
175
525
36
17
177 | 463
59
59
36
127
104
47
33
469
154
99
1,046
164
134
500
35
19 | 474
59
61
38
124
105
48
33
469
157
99
988
160
133
449
34
18
171 | 476
59
61
39
125
105
48
32
471
159
101
984
163
140
433
33
18 | 478
59
62
40
127
90
46
46
35
493
172
105
1,045
138
497
34
18
175 | | | United States: 1934 | 2, 823
2, 102 | 2, 335
2, 188 | 2, 433
2, 425 | 2, 522
2, 190 | 2, 580
2, 795 | 2, 655
2, 813 | 2, 624
2, 752 | 2, 552
2, 758 | 2, 525
2, 611 | 2, 471
2, 454 | 2, 413
2, 332 | 2, 413
2, 328 | 2, 488
2, 481 | | # Pennsylvania-grade crude oil produced, 1924-34, by States 1 ## [Thousands of barrels of 42 gallons] | State | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | |--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | New York Pennsylvania West Virginia Central and eastern Ohio | 1, 440
7, 486
5, 920
2, 168 | 1, 695
8, 097
5, 763
2, 242 | 1, 956
8, 961
5, 946
2, 011 | 2, 242
9, 526
6, 023
2, 346 | 2, 603
9, 956
5, 661
2, 877 | 3, 377
11, 820
5, 574
2, 654 | 3, 647
12, 786
5, 068
2, 742 | 3, 363
11, 876
4, 470
2, 184 | 3, 508
12, 396
3, 875
1, 741 | 3, 181
12, 607
3, 815
1, 594 | 3, 804
14, 462
4, 095
1, 597 | | Total | 17, 014 | 17, 797 | 18, 874 | 20, 137 | 21, 097 | 23, 425 | 24, 243 | 21, 893 | 21, 520 | 21, 197 | 23, 958 | ¹ Pennsylvania Grade Crude Oil Association, 1924-29. ## Production of crude petroleum in Arkansas, 1924-34, by districts ## [Thousands of barrels of 42 gallons] | Year | Brad-
ley | Cham-
pagnolle | El
Dorado | Irma | Lisbon | Miller | Mount
Holly | Smack-
over | Ste-
phens | Urba-
na | Total | |------|---------------------------------|---|---|---|---|---------|----------------|---|---|---------------------------------|---| | 1924 | 52
44
31
24
19
5 | (1)
3, 522
2, 651
1, 486
944
623
488
486 | 4, 760
4, 247
2, 722
1 2, 433
2, 456
1, 987
1, 424
1, 186
1, 182
1, 231
991 | 450
334
763
774
536
409
380
266
234
264
300 | 2, 125
1, 054
566
492
399
288
143
95
89 | 100 364 | (2)
34
4 | 40, 000
72, 144
52, 063
35, 201
24, 569
218, 991
15, 405
11, 504
9, 510
8, 882
7, 916 | 818
673
607
499
416
363
319
272
213
127
210 | 236
322
146
499
826 | 46, 028
77, 398
58, 332
40, 005
32, 096
24, 917
19, 702
14, 791
12, 051
11, 686
11, 182 | ¹ Champagnolle included with El Dorado. # Production of crude petroleum in Arkansas in 1934, by districts and months | | | . 1 | etro | leum | tran | sport | ed fro | m p | roduc | ing pi | oper | ties | | on leases
hange in
stocks, | | |--|--|--|---------------------------------|------------|--|----------------------------------|--|--|----------------------------|---------------|----------------------------|----------|---|---|--| | District | January | February | March | April | May | June | July | August | September | October | November | December | Total | Oil consumed on lea
plus net change
producers' stoc
Jan. 1-Dec. 31 | Production | | Champagnolle
El Dorado
Irma
Lisbon
Miller
Smackover
Stephens
Urbana | 32
87
37
7
24
674
20
67 | 33
89
16
6
19
600
16
59 | 96
2
6
30
661
18 | 20
689 | 39
99
23
8
19
671
20
72 | 84
40
6
27
700
18 | 32
78
35
7
42
692
19
74 | 33
80
37
6
37
664
19
75 | 18
7
39
627
17 | 79 | 19
6
28
589
14 | 14 | 997
300
79
354
7,858
210 | -6
10
10
58 | 486
991
300
89
364
7, 916
210
826 | | Total: 1934
1933 | 948
981 | 838
828 | 913
963 | 937
947 | 951
971 | 979
1, 034 | 979
973 | 951
960 | | 932
1, 023 | 847
922 | | 11, 094
11, 624 | | 11, 182
11, 686 | ² Mount Holly included with Smackover. # Production of crude petroleum in California in 1934, by districts and months 1 ### [Thousands of barrels of 42 gallons] | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--------------------------------|-------------|--------------|------------|------------|------------|--------------|------------|--|--------------|--------------|---------------|---------------|----------------| | San Joaquin Val- | | | | | | | | | | | | | | | ley: | | | | | | | | | | | | | | | Belridge | 260 | 242 | 289 | 262 | 281 | 228 | 245 | 237 | 206 | 212 | 215 | 239 | 2, 916 | | Buena Vista | 619 | 527 | 613 | 605 | 707 | 676 | 707 | 656 | 629 | 662 | 620 | 607 | 7,628 | | Coalinga | 486 | 414 | 510 | 482 | 530 | 612 | 655 | 591 | 568 | 577 | 551 | 549 | 6, 525 | | Elk Hills | 351 | 291 | 342 | 327 | 277 | 256 | 270 | 243 | 248 | 247 | 237 | 249 | 3, 338 | | Fruitvale | 115 | 96 | 111 | 112 | 121 | 120 | 121 | 99 | 102 | 100 | 107 | 109 | 1, 313 | | Kern | 267 | 251 | 286 | 276 | 302 | 311 | 328 | 331 | 315 | 327 | 312 | 318 | 3, 624 | | Kettleman Hills. | 1,597
85 | 1, 394
72 | 1,702 | 1,682 | 1,834 | 1,840
130 | 2,080 | 1, 987
135 | 1,822
135 | 1,838
139 | 1,771 | 1,844 | | | McKittrick | 77 | 77 | 105
97 | 107
97 | 116
95 | 94 | 144
95 | 135
88 | 86 | 139 | 135
86 | 139
94 | 1, 442 | | Midway-Mari- | " | " | 97 | 97 | 90 | 94 | 90 | - 00 | - 00 | 90 | 00 | 94 | 1,076 | | CODA | 1,007 | 894 | 1,057 | 1,022 | 1,053 | 1,039 | 1,053 | 998 | 989 | 1,006 | 931 | 974 | 12,023 | | Mount Poso | 238 | 219 | 245 | 251 | 260 | 310 | 316 | 293 | 283 | 302 | 293 | 338 | 3, 348 | | Mountain View. | 75 | 102 | 122 | 177 | 193 | 225 | 196 | | 278 | 301 | 348 | 342 | 2, 581 | | Other | 169 | 154 | 201 | 167 | 185 | 183 | 183 | | 176 | | 192 | | 2, 156 | | | | | | | | | | | | | | | | | Total San Joa- | | | | | | | | | | | | | | | quin | 5, 346 | 4, 733 | 5,680 | 5, 567 | 5, 954 | 6,024 | 6, 393 | 6,038 | 5,837 | 5, 986 | 5, 798 | 6, 005 | 69, 361 | | a | | | | | | | | === | | | | | | | Coastal district: | 900 | 0.00 | 900 | 0.00 | 000 | | 001 | 007 | 000 | | | | 4 400 | | Elwood | 388
149 | 358
128 | 380
144 | 352
144 | 360
149 | 339
152 | 361
153 | 387
158 | 285
137 | | 298 | 298 | 4, 100 | | Santa Maria
Ventura Avenue. | 993 | 835 | 987 | 823 | 827 | 801 | 887 | 846 | | 148
711 | 145
728 | 142
725 | 1,749
9,865 | | Other | 196 | | | 210 | 228 | 243 | 258 | | 239 | | 329 | 342 | 3, 008 | | Omer | 150 | 100 | 211 | | | | 200 | 211 | 208 | 200 | 329 | 342 | 3,000 | | Total coastal. | 1, 726 | 1, 516 | 1,722 | 1, 529 | 1, 564 | 1, 535 | 1,659 | 1,668 | 1, 363 | 1, 433 | 1, 500 | 1, 507 | 18, 722 | | Los Angeles Basin: | | | | | | | | | | | | | | | Brea Olinda | 272 | 245 | 281 | 278 | 319 | 347 | 366 | 347 | 308 | 315 | 319 | 323 | 3, 720 | | Coyote | 306 | 281 | 322 | 336 | 334 |
398 | 393 | 377 | 334 | 339 | 341 | 351 | 4, 112 | | Dominguez | 504 | 452 | 552 | 617 | 531 | 606 | 617 | 608 | 518 | 529 | 545 | 571 | 6,650 | | Huntington | 1 | | | | | | | | | ŀ | 1 | | , | | Beach | 1, 180 | | | 1, 183 | 1,315 | | 1,446 | | | 1, 205 | 1, 167 | 1, 261 | 15,006 | | Inglewood | 282 | 250 | 288 | 274 | 242 | 283 | 307 | 292 | 278 | 283 | 285 | 300 | 3, 364 | | Long Beach | 1,805 | | | 1,903 | | 2, 159 | 2,089 | | 1,781 | 1,841 | 1,815 | | 22, 788 | | Montebello
Plava del Rev | 153
279 | 141
241 | 157
276 | 150
284 | 156
274 | 161
259 | 170
269 | 169
257 | 166
218 | 179 | 171 | 190 | 1, 963 | | Richfield | 222 | 203 | 226 | 232 | 239 | 259
244 | 259
259 | | 238 | 223
245 | 272 | 264 | 3, 116 | | Santa FeSprings | 1, 292 | | 1, 295 | 1, 282 | | 1, 251 | 1, 273 | | | 1, 128 | 240
1, 137 | 248 | 2,856 | | Seal Beach | 268 | 233 | 271 | 263 | 245 | 232 | 232 | | 181 | 198 | 1, 137 | 1, 195
208 | 14, 662 | | Torrance-For- | 200 | 200 | | 1 200 | **** | 202 | 202 | 1.00 | 101 | 190 | 100 | 200 | 2,715 | | mosa | 199 | 179 | 198 | 193 | 214 | 216 | 223 | 223 | 214 | 220 | 206 | 213 | 2, 498 | | Other | 233 | | 228 | 229 | 240 | | 251 | 236 | 225 | 231 | 225 | 230 | 2,772 | | | | <u> </u> | | | | | | | <u> </u> | | | | | | Total Los An- | | | | | ٠ | : | | | | 1 | | | | | geles | 6, 995 | 6, 253 | 7, 235 | 7, 224 | 7, 460 | 7,814 | 7,895 | 7,488 | 6, 763 | 6, 936 | 6, 909 | 7, 250 | 86, 222 | | Total California. | 14 067 | 12 509 | 14 627 | 14 320 | 14 079 | 15 379 | 15 047 | 15 104 | 12 062 | 14 255 | 14 907 | 14 700 | 174 205 | | TOTAL CALIDINA | 1 2, 007 | -a, ou | ±=, w/ | ±=, 020 | 12, 5/0 | 10,010 | 10, 94/ | 10, 194 | 10, 903 | 14, 000 | 14, 207 | 14, /02 | 174, 505 | | | <u></u> | <u>'</u> | <u> </u> | | <u> </u> | | <u>'</u> | <u>' </u> | <u> </u> | | | | | ¹ Central Committee of California Oil Producers. ## Production of crude petroleum in Colorado, 1924-34, by districts [Thousands of barrels of 42 gallons] | Year | Boul-
der | Flor-
ence | Fort
Col-
lins 1 | Grease-
wood | Iles | Moffat | Rangely | Tow
Creek | Total | |--|---|---|---|-------------------------------|--|--|---|---|--| | 1924
1925
1928
1928
1929
1929
1930
1931
1932
1932
1933
1934 | 4
3
2
(2)
(2)
(3)
(3)
(4)
(5)
(6)
(7) | 70
97
148
3291
3430
3344
3200
3135
3111
391
383 | 86
430
1, 222
1, 260
1, 030
824
485
355
290
226
186 | (2)
173
108
56
37 | 17
24
263
626
546
382
391
245
213
529 | 256
605
1, 199
670
464
436
394
321
248
212
173 | 29
32
33
469
434
535
647
549
533
433 | 42
140
278
190
173
148
121
101
88
71 | 445
1, 226
2, 768
2, 831
2, 774
2, 358
1, 656
1, 545
1, 136
919
1, 139 | Includes Wellington. Included with Rangely. Includes Canon City. ^{Includes Boulder and Walden. Includes Berthoud, Boulder, and Walden. Includes Berthoud, Boulder, Greasewood, and Walden.} # 370 MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX # Production of crude petroleum in Colorado in 1934, by districts and months [Thousands of barrels of 42 gallons] | | | | Petr | oleun | ı tran | sporte | d from | n pro | lucing | g prop | erties | · | | plus
cers' | | |------------------------------------|------------------------------------|--|---|------------------------------------|------------------------------------|--|---|--|---|---|---|---|--|--|--| | District | January | February | March | April | May | June | July | August | September | October | November | December | Total | Oil consumed on leases
net change in produc
stocks, Jan. 1-Dec. 31 | g | | Florence 1Fort Collins 2Greasewood | 8
19
4
28
17
3
6 | 7
15
3
32
13
3
5
78
70 | 8
17
3
28
14
3
8
8 | 7
16
4
27
12
3
7 | 7
16
4
40
17
3
7 | 6
15
3
36
14
3
7
84
73 | 7
16
3
59
12
3
5
105
79 | 7
18
3
62
13
5
5
5
113
73 | 7
14
3
56
15
6
5
106
69 | 6
14
3
56
10
5
5
5 | 6
14
2
51
16
7
5
101
75 | 7
14
49
12
4
6
92
73 | 83
188
35
524
165
48
71
1, 114
899 | -2
2
5
8
12

25
20 | 83
186
37
529
173
60
71
1, 139
919 | ¹ Includes Canon City. # Production of crude petroleum in Illinois, 1924-34, by months | Year | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--|---|---|---|---|---|---|---|---|---|---|---|---|--| | 1924
1925
1926
1926
1927
1928
1929
1930
1931
1932
1932
1933 | 631
662
635
589
510
508
487
411
433
297
393 | 650
604
600
558
516
455
478
376
415
262
337 | 734
728
729
698
635
603
532
374
502
316
399 | 619
586
579
536
468
457
511
378
391
284
373 | 713
661
650
601
573
552
540
384
450
314
416 | 691
665
662
602
550
517
513
456
428
359
397 | 722
690
680
576
551
561
531
463
398
409
398 | 689
647
670
607
573
572
523
439
407
413
407 | 684
667
657
577
506
532
409
437
376
415
381 | 710
677
651
557
558
566
428
444
285
408
352 | 623
639
616
562
508
506
378
430
299
389
305 | 615
637
631
531
514
490
406
447
289
378
321 | 8, 081
7, 863
7, 766
6, 994
6, 462
6, 319
5, 736
5, 039
4, 673
4, 244
4, 479 | ² Includes Wellington. ³ Includes Berthoud, Boulder, and Walden. # Production of crude petroleum in Indiana, 1924-34, by months [Thousands of barrels of 42 gallons] | Year | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |------------------|------|------|------|------|-----|------|------|------|-------|------|------|------|-------| | Southwestern In- | | | | | | | | | | | | | - | | diana: | | | İ | l | | | | | | | | | | | 1924 | 52 | 55 | 52 | 61 | 62 | 58 | 62 | 55 | 54 | 57 | 49 | 49 | 666 | | 1925 | 56 | 53 | 50 | 58 | 54 | 58 | 59 | 51 | 54 | 54 | 49 | 53 | 649 | | 1926 | 54 | 55 | 50 | 54 | 57 | 56 | 56 | 54 | 54 | 53 | 56 | 59 | 658 | | 1927 | 55 | 59 | 55 | 53 | 59 | 60 | 60 | 66 | 63 | 66 | 64 | 66 | 726 | | 1928 | 70 | 75 | 71 | 75 | 81 | 78 | 81 | 86 | 82 | 88 | 87 | 89 | 963 | | 1929 | 83 | 81 | 77 | 76 | 78 | 71 | 72 | 75 | 71 | 78 | 78 | 78 | 918 | | 1930 | 74 | 80 | 77 | 87 | 87 | 85 | 89 | 88 | 69 | 70 | 67 | 68 | 941 | | 1931 | 70 | 66 | 58 | 66 | 66 | 75 | 72 | 64 | 67 | 67 | 64 | 68 | 803 | | 1932 | 69 | 70 | 66 | 72 | 73 | 75 | 71 | 71 | 62 | 49 | 50 | 49 | 777 | | 1933 | 48 | 45 | 51 | 49 | 50 | 61 | 66 | 68 | 70 | 74 | 72 | 69 | 72 | | 1934 | 72 | 52 | 70 | 66 | 76 | 73 | 73 | 77 | 71 | 66 | 58 | 60 | 814 | | Northeastern In- | | "- | | " | | | | | 1 | | | 1 | l | | diana; | 1 | 1 | 1 | | 1 | | 1 | 1 | l | | 1 | 1 | | | 1924 | 18 | 22 | 24 | 27 | 27 | 26 | 26 | 23 | 22 | 22 | 16 | 16 | 269 | | 1925 | 15 | 15 | 18 | 18 | 16 | 17 | 17 | 16 | 14 | 12 | 11 | 11 | 180 | | 1926 | 10 | 13 | 14 | 13 | 13 | 14 | 14 | 14 | 13 | 12 | 9 | - 11 | 150 | | 1927 | ∫ Tğ | 12 | 12 | 12 | 12 | 13 | 11 | 10 | 10 | 9 | . 8 | 8 | 120 | | 1928 | 7 | 1 8 | 7 | 8 | 9 | 8 | 7 |
8 | 7 | 8 | 6 | 6 | 8 | | 1929 | 4 | 4 | 6 | 6 | 6 | 7 | 5 | 5 | 5 | - 5 | 5 | 5 | 6 | | 1930 | 4 | 1 4 | 1 Ă | 5 | 6 | 5 | 5 | 4 | 5 | 5 | 3 | 3 | 5 | | 1931 | 4 | 4 | 3 | 3 | 4 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | | 1932 | 3 | 2 | 3 | ı š | ã | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 29 | | 1933 | li | ĩ | ĭ | Ĭ | Ĭ | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 14 | | 1934 | 2 | 2 | 1 2 | 1 2 | 1 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Total Indiana: | 1 - | - | 1 - | 1 7 | 1 | | _ | 1 | 1 | l | Į. | 1 | | | 1924 | 70 | 77 | 76 | 88 | 89 | 84 | 88 | 78 | 76 | 79 | 65 | 65 | 93. | | 1925 | | 68 | 68 | 76 | 70 | 75 | 76 | 67 | 68 | 66 | 60 | 64 | 82 | | 1926 | | 68 | 64 | 67 | 70 | 70 | 70 | 68 | 67 | 65 | 65 | 70 | 80 | | 1927 | 64 | 71 | 67 | 65 | 71 | 73 | 71 | 76 | 73 | 75 | 72 | 74 | 85 | | 1928 | 77 | 83 | 78 | 83 | 90 | 86 | 88 | 94 | 89 | 96 | 93 | 95 | 1,05 | | 1929 | | 85 | 83 | 82 | 84 | 78 | 77 | 80 | 76 | 83 | 83 | 83 | 98 | | 1930 | | 84 | 81 | 92 | 93 | 90 | 94 | 92 | 74 | 75 | 70 | 71 | 99 | | 1931 | | 70 | 61 | 69 | 70 | 78 | 74 | 67 | 70 | 70 | 67 | 70 | 84 | | 1932 | | 72 | 69 | 75 | 76 | 78 | 73 | 73 | 64 | 51 | 52 | 51 | 80 | | 1933 | 49 | 46 | 52 | 50 | 51 | 62 | 68 | 70 | 71 | 75 | 73 | 70 | 73 | | 1934 | | 54 | 72 | 68 | 78 | 75 | 75 | 79 | 73 | 68 | 60 | 62 | 83 | # Production of crude petroleum in Kansas, 1924-34, by months | Year | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |------|--|--|--|--|--|--|--|--|--|--|--|--|---| | 1924 | 2, 113
2, 455
3, 199
3, 575
3, 362
2, 939
3, 149
3, 102
3, 014
2, 932
3, 404 | 2, 534
2, 932
3, 342
3, 248
2, 717
3, 103
3, 030
2, 774
2, 919 | 2, 835
3, 248
3, 608
3, 561
3, 093
3, 477
3, 299
2, 932
3, 611 | 2, 942
3, 395
3, 496
3, 422
3, 385
3, 520
3, 195
2, 951
3, 527 | 3, 448
3, 522
3, 586
3, 444
3, 812
3, 948
3, 244
2, 973
3, 280 | 3, 452
3, 274
3, 795
4, 087
2, 999
2, 774
3, 453 | 3, 613
3, 740
3, 374
3, 283
4, 323
3, 618
2, 862
2, 948
4, 061 | 3, 685
3, 357
3, 222
4, 194
3, 414
2, 825
3, 039
3, 909 | 3, 424
3, 498
3, 283
2, 912
3, 963
3, 439
3, 105 | 3, 458 3, 610 3, 441 3, 073 3, 681 3, 432 3, 114 2, 945 3, 307 | 3, 267
3, 461
3, 277
2, 828
3, 427
3, 252
3, 060
2, 846
3, 666 | 3, 214
3, 584
3, 278
2, 967
3, 484
3, 199
3, 183
2, 692
3, 480 | 38, 357
41, 498
41, 069
38, 596
42, 813
41, 638
37, 018
34, 848
41, 976 | # 372 MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX # Production of crude petroleum in Kansas in 1934, by districts and months ¹ [Thousands of barrels of 42 gallons] | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Tota | |--------------------|--------|--------|--------|--------|--------|-----------|-----------|--------|-------|--------|--------|--------|---------| | Barton | 21 | 21 | 30 | 35 | 39 | 44 | 47 | 45 | - | - | | | ļ | | Butler: | | | | 30 | 09 | 44 | 47 | 45 | 36 | 42 | 39 | 47 | 44 | | Eldorado | 166 | 155 | 170 | 165 | 168 | 162 | 173 | 170 | 100 | | ١ | ١ | | | Leon-Weaver | 71 | | | 70 | | 67 | | 71 | | | | | | | Towanda
Other | 69 | | 66 | 68 | | 69 | | 70 | | | 67 | 70 | | | Other | 311 | | 324 | 313 | 331 | 318 | | 327 | | | 63 | | | | Cowley. | 153 | | 151 | 138 | 143 | 134 | | 144 | | | | | | | EIISWOLLI | 95 | | 107 | 105 | | 95 | | 105 | | | 133 | | | | Greenwood-Woodson: | " | 00 | 101 | 100 | 109 | 90 | 90 | 105 | 94 | 91 | 92 | 95 | 1, 16 | | Seeley | 108 | 98 | 108 | 105 | 106 | 103 | 101 | 101 | 00 | 100 | ۰. | ٠ | | | Teeter | 68 | | 67 | 64 | 65 | 63 | | 65 | | | | | | | Virgil | 133 | 115 | 132 | 126 | 147 | 135 | | 127 | | | | 65 | | | Other | 74 | | 75 | 73 | 76 | 73 | 70 | 76 | 117 | | 117 | 120 | | | Harvey | 275 | | 417 | 401 | 414 | 297 | 301 | | | | 70 | 70 | 86 | | Kingman | 10 | | 51 | 54 | 56 | 54 | 301
44 | 253 | 215 | | 186 | | | | McPherson: | 10 | | 01 | 94 | 30 | . 04 | 44 | 40 | 40 | 36 | 31 | 37 | 47 | | Nikkell | 104 | 107 | 176 | 190 | 178 | 219 | 241 | 015 | 150 | | | | | | Ritz-Canton | 386 | 379 | 447 | 434 | 440 | 436 | 441 | 215 | | | 154 | 160 | | | Voshell | 227 | 199 | 223 | 230 | 229 | | | 395 | 334 | | 284 | 355 | | | Other | 48 | 51 | 63 | 61 | 66 | 208
66 | 213 | 198 | 172 | 187 | 156 | 171 | 2, 41 | | Reno | 78 | 80 | 97 | 118 | 171 | | 67 | 67 | . 57 | 67 | 63 | 68 | 74 | | Rice: | 10 | 80 | 91 | 110 | 1/1 | 166 | 182 | 204 | 205 | 270 | 344 | 418 | 2, 33 | | Chase | 83 | 79 | 132 | 132 | 138 | 157 | 170 | 150 | 140 | | | | | | Sharpe | 13 | 21 | 50 | 66 | 77 | 96 | 117 | 152 | 145 | 161 | 179 | 173 | 1, 70 | | Other | 107 | 97 | 134 | 139 | 131 | 138 | | 95 | 82 | 89 | 84 | 91 | 88 | | Russell | 173 | 154 | 209 | 198 | 198 | | 149 | 155 | 129 | 156 | 158 | 166 | 1,65 | | edgwick: | 110 | 101 | 200 | 190 | 190 | 203 | 226 | 235 | 214 | 245 | 247 | 246 | 2, 54 | | Eastborough | 36 | 38 | 45 | 45 | 44 | 42 | 40 | | | | | 1.1 | | | Greenwich | 59 | 69 | 88 | 94 | 88 | 89 | 42
73 | 43 | 40 | 41 | 37 | 40 | 49 | | Wright. | 58 | 53 | 66 | 67 | 69 | 67 | | 70 | 75 | 82 | 64 | 66 | 91 | | Other | 37 | 32 | 36 | 37 | 34 | 35 | 65 | 62 | 54 | 62 | 63 | 64 | 75 | | tafford | 18 | 20 | 31 | 32 | 33 | | 53 | 65 | 57 | 60 | 78 | 81 | 60 | | umner | 93 | 84 | 102 | 96 | 97 | 47 | 54 | 36 | 36 | 46 | 43 | 48 | 444 | | Other | 287 | 270 | 289 | 284 | 301 | 94 | 90 | 91 | 101 | 104 | 91 | 95 | 1, 138 | | | 201 | 210 | 209 | 284 | 901 | 294 | 295 | 294 | 278 | 301 | 274 | 285 | 3, 452 | | 19 | 3, 361 | 2 172 | 3, 958 | 2 040 | 4 000 | 2 071 | 4 100 | 0.071 | 0.00= | 2 224 | | | | | . [| 0,001 | 0, 113 | U, 500 | J, 5±0 | ±, ∪⊙5 | 3, 971 | 4, 123 | 3, 971 | 3,607 | 3, 851 | 3, 722 | 3, 994 | 45, 754 | ¹⁰il and Gas Journal. # Production of petroleum in Kentucky, 1924-34, by months | Year | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--|---|---|---|---|-----|------|---|--|---|------|---|--|--| | 1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934 | 586. 4
575. 7
499
509
542
585
665
551
524
438
362 | 596. 3
544. 4
485
490
558
511
604
525
468
336
330 | 636. 4
592. 4
531
549
623
560
625
688
518
379
380 | 643. 4
579. 5
517
540
618
584
643
515
473
351
338 | | | 677. 4
598. 6
549
586
681
710
676
478
550
428
428 | 615. 6
556
540
612
662
676
610
461
579
382
448 | 625. 2
561. 6
532
587
594
722
621
555
648
414
445 | | 566. 3
534. 2
521
586
608
724
524
615
490
389
438 | 569. 3
516
516
555
597
710
541
514
453
386
441 | 7, 407
6, 759
6, 274
6, 719
7, 359
7, 775
7, 389
6, 456
6, 287
4, 608
4, 680 | # Production of crude petroleum in Louisiana, 1924-34, by districts | District | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | |--|--------------------------------|------------|--------------------------------|---------------|--------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|-------------------------------|-------------------------------| | Gulf coast: Anse la Butte Bayou Bouillon Black Bayou | | 17 | 17
 | 17
 | 16
205 | 14
72
(1) | 9
78
177 | 12
15
477 | 11
353 | (1)
292 | (1)
422 | | BoscoCaillou IslandCameron MeadowsChoctaw | | | | | | | | (¹)
104 | (¹)
146 | 362
(1)
100 | 1,036
1,748
419
324 | | Edgerly
Gueydan
Hackberry | 166
 | 185 | 207 | 467
42 | 358
1, 149 | 245
1, 783 | 161
1, 213 | 109
1,399
| 63
195
2, 149
489 | 50
165
1, 938
3, 396 | 65
110
1, 911
5, 300 | | Iowa | 213 | | 342 | 299 | 250 | 515
46 | 495
388 | 169
1, 021
39 | 332
2, 722
152 | 400
3, 021
154 | 1,894
368 | | Leesville Lockport Port Barre Roanoke | 128 | 471 | 1, 343 | 2, 038 | 1, 445 | 1, 369
33 | 1, 131
970 | 154
1,906
450 | 273
989
577 | 359
938
956 | 4,487
714
937
241 | | SorrentoStarks | | | | 262
(1) | 289
186
890
661 | 110
170
1, 374
93 | 30
206
1, 362
193 | 53
260
567
459 | 289
822
271 | 15
328
910
335 | 262
1, 256
385 | | Sweet Lake | 1,968 | 2, 274 | 2, 215
16 | | | | 1,768
300 | 1, 940
329
97 | 1, 514
200
56 | 1,302
192 | 1, 168
191
112 | | Total Gulf coast | 2, 487 | 3, 227 | 4, 140 | 5, 050 | 7, 053 | 7, 454 | 8, 610 | 9, 560 | 11, 616 | 15, 306 | 23, 794 | | Northern: BellevueCaddo | 1, 749
4, 319 | | 788
4, 749 | 472
5, 789 | 323
4, 798 | 255
² 4,589 | 233
4, 120 | 93
3, 054 | 2, 486 | 2,248 | 85
2, 200
3 665 | | Converse Cotton Valley De Soto Elm Grove Havnesville | 1, 211
353
217
6, 720 | 305
212 | 2, 914
321
222
3, 328 | 541
222 | 463
185 | 276
178 | 880
247
172
1,743 | 509
192
149
1, 902 | | 107
1,402 | 290
398
116
1,379 | | Holly
Homer
Pleasant Hill | | | | | | | 308 | 189
1, 083
115 | | 991 | 980
(³) | | Red River (Bull Bayou,
Crichton)
Sarepta
Urania | | | 1 | i | 1, 109
2, 487 | (2) | 838
6 888
1, 976
1, 801 | 713
6 259
1, 448
2, 538 | 1,208 | 5 242
883 | 145
(3)
1,077
1,675 | | Zwolle Total northern | 18, 637 | | | | | 13, 100 | 14, 662 | 12, 244 | 10, 191 | 9, 862 | 9, 075 | | Total Louisiana | 21, 124 | 20, 272 | 23, 201 | 22, 818 | 21, 847 | 20, 554 | 23, 272 | 21,804 | 21, 807 | 25, 168 | 32, 869 | Included under "Other." Caddo includes Carterville and Sarepta. Converse includes Pleasant Hill and Sarepta. Zwolle includes Pleasant Hill. Sarepta includes Carterville and Pleasant Hill. Includes Carterville. # 374 MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX # Production of crude petroleum in Louisiana in 1934, by districts and months [Thousands of barrels of 42 gallons] | | | | | | | | 1015 0 | 12 50 | inons, | | | | | | | |---|--|--|--|---|---|--|--|--|---|--|--|---|---|--|--| | | | | Peti | roleur | n tran | sport | ed fro | m pr | oduci | ng pro | perti | es | | plus
icers' | | | District | January | February | March | April | May | June | July | August | September | October | November | December | Total | Oil consumed on leases
net change in produ
stocks Jan. 1-Dec. 31 | | | Gulf coast: Black Bayou Bosco Caillou Island | 8 | | | . | . 12 | 38 | 3 66 | 95 | 111 | 158 | 227 | 305 | 398
1, 012
1, 719 | 24 | 1,036 | | Cameron M e a- dows Choctaw Edgerly Gueydan Hackberry Lowa Jennings Lake Barre Lake Washington Leesville Lockport. Port Barre. Roanoke Starks Sulphur. Sweet Lake Vinton White Castle Other | 1133
336
148
356
34
160
20
74
59
57 | 3 22
3 32
3 32
4 30
126
107
48
7 54
199
199
199
199 | 5 285
4 27
7 7 7
7 7 7
9 118
9 381
9 328
9 123
8 28
7 164
8 46
8 46
9 19
9 103
35
103 | 33 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3 35
5 5
7 150
6 433
6 25
149
26
373
64
60
22
102
41
103 | 28
137
448
419
1444
36
430
57
51
18
105
29
105 | 3 223
4 3
6 6
7 168
8 515
45
4 188
8 30
551
55
83
112
26
97 | 2 36
4 4
6 6
7 181
6 499
7 51
8 181
8 496
67
76
28
30
67
44
99 | 28 28 36 66 1666 441 472 1722 366 5076 63 1000 256 198 248 88 | 3 27
3 7
5 188
485
435
17 5
549
60
106
24
54
54
31 | 152
153
154
152
516
35
175
34
503
60
106
44
15
79 | 144
100
77
1633
528
329
179
41
477
70
107
52
15
36
27
28
14 | 411
324
65
82 | 28
83 | 419
324
65
110
1,911
5,300
444
1,894
368
4,487
714
937
241
262
1,256
385
1,168 | | Total Gulf
coast:
1934 | 1, 349
1, 025 | 1, 233
902 | 1, 394
1, 116 | 1, 497
1, 213 | 1, 865
1, 249 | 1, 944
1, 197 | 2, 291
1, 320 | 2, 262
1, 417 | 2, 140
1, 404 | 2, 338
1, 443 | 2, 386
1, 379 | 2, 475
1, 350 | 23, 174
15, 015 | 620
291 | 23, 794
15, 306 | | Northern: Bellevue | 184
42
29
35
10
123
5
85 | 162
41
23
31
10
104
6
75 | 176
46
27
31
11
118
6
80 | 1
177
53
26
33
9
117
5
82 | 179
55
25
33
11
125
6
80 | 172
56
24
35
11
111
5
80 | 8
173
63
23
35
10
120
6
84 | 15
192
66
24
36
11
117
5
83 | | 196 | 12
195
49
20
31
10
108
5 | 16
215
51
24
31
9
114
6 | 85
2, 204
642
292
399
122
1, 385
65
980 | 4
23
-2
-1
-6
-6 | 85
2, 200
665
298
390
116
1, 379
65
980 | | Bayou-Crichton) Urania Zwolle Total northern: | 15
102
220 | 12
78
218 | 13
83
207 | 12
85
171 | 13
87
151 | 11
86
128 | 12
89
126 | 12
98
97 | 11
93
85 | 13
91
91 | 10
89
82 | 11
93
79 | 145
1,074
1,655 | 3
20 | 145
1,077
1,675 | | 1934
1933 | 850
921 | 760
771 | 798
922 | 771
891 | 765
818 | 719
754 | 749
762 | 756
785 | 706
796 | 749
819 | 693
787 | 732
805 | 9, 048
9, 831 | 27
31 | 9, 075
9, 862 | | Total Louisiana:
1934
1933 | 2, 199
1, 946 | 1, 993
1, 673 | 2, 192
2, 038 | 2, 268
2, 104 | 2, 630
2, 067 | 2, 663
1, 951 | 3, 040
2, 082 | 3, 018
2, 202 | 2, 846
2, 200 | 3, 087
2, 262 | 3, 079
2, 166 | 3, 207
2, 155 | 32, 22 2
2 4, 846 | 647
322 | 32, 869
25, 168 | ¹ Includes Pleasant Hill and Sarepta. ## Production of crude petroleum in Michigan, 1925-34, by districts [Thousands of barrels of 42 gallons] | Year | Mount
Pleasant | Muske-
gon | Porter | Saginaw | Vernon | Yost-
Jasper | Other | Total | |------|---|--|---------------|--|------------------------------|------------------|--------------------------|--| | 1925 | (2)
1, 394
2, 599
2, 608
3, 129
1, 513 | (1)
338
3,019
1,223
577
8 479
276
159 | 3, 354 7, 168 | 4
94
1 439
2 256
115
89
59
8 64
55
48 | 3 244
3 322
539
907 | 19
219
276 | 301
230
370
532 | 4
94
439
594
4, 528
3, 911
3, 789
6, 910
7, 942
10, 603 | Muskegon included with Saginaw. Mount Pleasant included with Saginaw. Department of Conservation, Michigan. ## Production of crude petroleum in Michigan in 1934,1 by districts and months [Thousands of barrels of 42 gallons] | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |----------------|------|------|------|------|-----|------|------|------|-------|------|------|------|---------| | Mount Pleasant | 162 | 135 | 146 | 133 | 131 | 125 | 124 | 120 | 112 | 113 | 107 | 105 | 1, 513 | | | 15 | 15 | 15 | 16 | 16 | 14 | 11 | 14 | 11 | 12 | 10 | 10 | 159 | | | 486 | 521 | 537 | 587 | 684 | 632 | 652 | 661 | 639 | 625 | 534 | 610 | 7, 168 | | | 3 | 7 | 2 | 4 | 3 | 9 | 4 | 2 | 4 | 3 | 3 | 4 | 48 | | | 80 | 68 | 87 | 73 | 82 | 78 | 74 | 78 | 78 | 78 | 67 | 64 | 907 | | | 15 | 20 | 24 | 27 | 26 | 27 | 23 | 23 | 27 | 23 | 19 | 22 | 276 | | | 46 | 31 | 38 | 37 | 42 | 40 | 44 | 48 | 47 | 55 | 49 | 55 | 532 | | Total: 1934 | 807 | 797 | 849 | 877 | 984 | 925 | 932 | 946 | 918 | 909 | 789 | 870 | 10, 603 | | 1933 | 546 | 407 | 439 | 442 | 524 | 488 | 563 | 879 | 905 | 962 | 895 | 892 | 7, 942 | ¹ Department of Conservation, Michigan. # Production of crude petroleum in Montana, 1924-34, by districts | Year | Border | Cat
Creek | Cut
Bank |
Dry
Creek | Elk
Basin | Kevin-
Sunburst | Lake
Basin | Pon-
dera | Other | Total | |------|-------------------------------|--|-------------|--------------------------------|---|--|--|---|------------|--| | 1924 | 120
178
113
51
70 | 1, 572
1, 255
1, 015
1 779
1 613
1 497
418
359
311
266
236 | 238 1, 204 | 15
164
195
125
(²) | 24
21
19
17
20
19
16
16
11
3 | 1, 217
2, 780
6, 630
4, 214
3, 189
2, 378
1, 998
1, 557
1, 337
1, 237
1, 628 | 31
63
48
43
29
23
25
18
18 | 150
1,057
739
525
436
308
363 | 2
4
 | 2, 815
4, 091
7, 727
5, 058
4, 015
3, 980
2, 830
2, 457
2, 273
3, 603 | Includes small amounts from Bannatyne and Devils Basin. Included with "Other." #### 376 MINERALS YEARBOOK, 1935-STATISTICAL APPENDIX # Production of crude petroleum in Montana in 1934, by districts and months [Thousands of barrels of 42 gallons] | | | | Pet | roleur | n tran | sport | ed <u>i</u> fro | m pro | ducin | g pro | pertie | 8 | | plus
cers' | Π | |---|---|--|---|---|---|---|---|---|---|--|--|--|---|---|---| | District | January | February | March | April | Мау | June | July | August | September | October | November | December | Total | Oil consumed on leases plus
net change in producers'
stocks, Jan. 1-Dec. 31 | Production | | Border Cat Creek. Cut Bank. Kevin-Sunburst. Pondera Other 1 Total: 1934 1933 | 6
21
51
111
30
9
228
166 | 5
19
45
95
24
8
196
135 | 7
20
54
100
27
7
215
163 | 7
21
61
115
25
8
237
164 | 6
19
78
131
28
9
271
180 | 6
18
80
138
35
7
284
200 | 5
19
100
165
28
12
329
197 | 6
19
124
174
27
25
375
196 | 5
18
130
152
28
13
346
193 | 7
20
147
153
38
7
372
201 | 5
20
150
145
39
6
365
215 | 5
22
161
120
42
7
357
187 | 70
236
1, 181
1, 599
371
118
3, 575
2, 197 | 23
29
-8
-16
28
76 | 70
236
1, 204
1, 628
363
102
3, 603
2, 273 | ¹ Includes Bannatyne, Bear's Den, Devil's Basin, Dry Creek, Elk Basin, Lake Basin, Soap Creek, and Sweet Grass Hills. # Production of crude petroleum in New Mexico, 1924-34, by districts | Year | Artesia | Hobbs | Hogback | Lea | Rattle-
snake i | Total | |--|---|---|--|--|---|--| | 1924
1925
1926
1927
1928
1929
1930
1931
1931
1932
1933
1934 | 748 1,016 582 410 323 261 426 480 596 898 | (*)
6, 525
12, 788
10, 237
11, 543
12, 628 | 86
187
221
223
169
120
159
176
133
77
76 | 2 2 3 39 6 69 4 899 5 2, 782 5 1, 490 5 1, 345 5 1, 609 5 2, 962 | 12
125
427
382
295
488
462
347
260
291 | 98
1, 060
1, 666
1, 226
943
1, 830
10, 189
15, 227
12, 455
14, 116
16, 864 | Includes Bloomfield in 1925; Bloomfield and Table Mesa in 1926; Hospah and Table Mesa in 1929; Table Mesa in 1930-32; and Aztec and Table Mesa in 1933-34. Maljamar only. Included with Lea. Includes Hobbs, Jal, Maljamar, and other pools in Lea County. Includes Jal, Maljamar, and other pools in Lea Eddy Counties. # Production of crude petroleum in New Mexico in 1934, by districts and months [Thousands of barrels of 42 gallons] | | | | Petr | oleum | trans | porte | d fron | a prod | lucing | prop | erties | | | n leases plus
producers'
Dec. 31 | | |---------------------|--------------------------------|------------------|--------------------|--------------------|-------------------------|-------------------|--------------------|------------------|------------------|--------------------------------|-----------------------------|-----------------------------|---------------------------------------|---|---------------------------------------| | District | January | February | March | April | Мау | June | July | August | September | October | November | December | Total | Oil consumed on lease
net change in prodistocks, Jan. 1-Dec. | Production | | Artesia | 68
1, 055
6
157
23 | 947
6
137 | 1, 050
7
186 | 1, 106
6
190 | 219 | 1,093
6
220 | 1, 107
6
238 | 6 | 5 | 88
1, 019
8
317
29 | 78
986
6
329
23 | 73
977
8
382
23 | 898
12, 598
76
2, 949
296 | 30
<u>1</u> 3 | 898
12, 628
76
2, 962
300 | | Total: 1934
1933 | 1, 309
996 | 1, 177
1, 017 | 1, 341
1, 166 | 1, 393
1, 071 | 1, 439
1, 095 | 1,407
1,147 | 1, 456
1, 272 | 1, 527
1, 276 | 1, 422
1, 235 | 1, 461
1, 283 | 1, 422
1, 261 | 1, 463
1, 266 | 16, 817
14, 085 | 47
31 | 16, 864
14, 116 | ¹ Includes Jal, Maljamar, and other pools in Lea and Eddy Counties. ² Includes Aztec and Table Mesa. # Production of crude petroleum in New York, 1924-34, by months | Year | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |------|------|------|------|------|-----|------|------|------|-------|------|------|------|---------| | 1924 | 106 | 106 | 117 | 119 | 128 | 118 | 130 | 118 | 133 | 129 | 114 | 122 | -1, 440 | | 1925 | 125 | 122 | 139 | 134 | 138 | 146 | 150 | 148 | 147 | 152 | 144 | 150 | 1, 695 | | 1926 | 147 | 141 | 158 | 165 | 156 | 162 | 174 | 167 | 171 | 176 | 158 | 181 | 1, 956 | | 1927 | 169 | 169 | 195 | 185 | 191 | 189 | 184 | 200 | 192 | 189 | 187 | 192 | 2, 242 | | 1927 | 185 | 181 | 195 | 192 | 211 | 225 | 200 | 230 | 219 | 249 | 251 | 265 | 2, 603 | | 1928 | 262 | 240 | 267 | 277 | 295 | 284 | 301 | 285 | 282 | 288 | 281 | 315 | 3, 377 | | 1929 | 314 | 327 | 369 | 373 | 392 | 326 | 275 | 213 | 263 | 285 | 248 | 262 | 3, 643 | | 1930 | 251 | 241 | 264 | 269 | 268 | 286 | 275 | 257 | 299 | 324 | 291 | 338 | 3, 363 | | 1931 | 323 | 294 | 303 | 301 | 313 | 307 | 298 | 304 | 277 | 266 | 259 | 263 | 3, 503 | | 1931 | 254 | 240 | 272 | 245 | 223 | 256 | 256 | 280 | 286 | 292 | 279 | 298 | 3, 183 | | 1932 | 306 | 246 | 314 | 295 | 320 | 314 | 335 | 333 | 319 | 351 | 335 | 336 | 3, 804 | ## MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX ## Production of crude petroleum in Ohio, 1924-34, by months ## [Thousands of barrels of 42 gallons] | | | | | | | | | | | | | | | |-------------------|------|------|------------|------------|-----|------------|------|-------|-------|----------|----------|----------|------------------| | Year | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug . | Sept. | Oct. | Nov. | Dec. | Total | | | | - | | | | - | | | - | | | | | | Central and east- | | | | | | | | 1 | | | | | | | ern Ohio: | ĺ | | | | 1 | | | | | | | | | | 1924 | 368 | 358 | 393 | 409 | 408 | 391 | 419 | 401 | 411 | 440 | 386 | 409 | 4, 79 | | 1925 | 409 | 393 | 438 | 447 | 428 | 453 | 458 | 447 | 450 | 460 | 423 | 466 | 5, 27 | | 1926 | 410 | 406 | 471 | 447 | 438 | 472 | 463 | 464 | 452 | 449 | 449 | 471 | 5, 39 | | 1927 | 454 | 453 | 536 | 502 | 527 | 512 | 487 | 518 | 492 | 482 | 473 | 448 | 5, 88 | | 1928 | 445 | 441 | 480 | 455 | 492 | 471 | 462 | 473 | 416 | 466 | 418 | 415 | 5, 43 | | 1929 | 431 | 388 | 442 | 441 | 456 | 431 | 489 | 430 | 422 | 468 | 423 | 438 | 5, 25 | | 1930 | 446 | 423 | 436 | 464 | 463 | 450 | 457 | 402 | 417 | 441 | 367 | 408 | 5, 17 | | 1931 | 391 | 356 | 389 | 375 | 368 | 364 | 313 | 290 | 345 | 355 | 322 | 344 | 4, 21 | | 1932 | 296 | 281 | 304 | 316 | 321 | 324 | 289 | 304 | 294 | 288 | 280 | 282 | 3, 57 | | 1933 | 266 | 246 | 269 | 260 | 256 | 250 | 267 | 295 | 275 | 299 | 266 | 254 | 3, 20 | | 1934 | 269 | 225 | 280 | 260 | 299 | 273 | 279 | 285 | 259 | 296 | 284 | 249 | 3, 25 | | Northwestern | | | | | | | | | | 200 | 201 | 210 | 0, 20 | | Ohio: | | | | | | | | | | | 1 | | | | 1924 | 144 | 159 | 178 | 182 | 183 | 185 | 181 | 169 | 172 | 180 | 141 | 144 | 2, 01 | | 1925 | 151 | 150 | 165 | 172 | 166 | 181 | 176 | 166 | 165 | 161 | 141 | 146 | 1 04 | | 1926 | 147 | 145 | 165 | 158 | 163 | 181 | 169 | 160 | 156 | 154 | 137 | 145 | 1, 940
1, 880 |
 1927 | 131 | 144 | 158 | 144 | 149 | 158 | 145 | 149 | 143 | 144 | 123 | 121 | 1,70 | | 1928 | 117 | 123 | 138 | 129 | 154 | 149 | 152 | 137 | 122 | 133 | 110 | 117 | 1, 58 | | 1929 | 104 | 95 | 122 | 119 | 128 | 145 | 159 | 148 | 120 | 129 | 110 | 105 | 1, 48 | | 1930 | 101 | 112 | 109 | 120 | 123 | 120 | 121 | 107 | 109 | 108 | 86 | 96 | 1, 48 | | 1931 | 105 | 91 | 93 | 93 | 93 | 100 | 98 | 82 | 95 | 98 | | 89 | 1, 31 | | 1932 | 83 | 81 | 91 | 98 | 99 | 103 | 91 | 94 | 89 | 98
85 | 78 | | 1, 11 | | 1933 | 86 | 69 | 84 | 79 | 82 | 88 | 95 | 99 | 95 | | 72 | 79 | 1,06 | | 1934 | 89 | 56 | 85 | 85 | 95 | 89 | 80 | 85 | 77 | 96
91 | 80
75 | 79
69 | 1, 03
97 | | Cotal Ohio: | 00 | 50 | 00 | ദാ | 80 | 09 | 00 | 00 | " | 91 | 10 | . 69 | 97 | | 1924 | 512 | 517 | 571 | 591 | 591 | 576 | 600 | 570 | F00 | 200 | -0- | | | | 1925 | 560 | 543 | 603 | 619 | 594 | 634 | 634 | 570 | 583 | 620 | 527 | 553 | 6, 81 | | 1926 | 557 | 551 | 636 | 605 | 601 | 653 | | 613 | 615 | 621 | 564 | 612 | 7, 21 | | 1927 | 585 | 597 | 694 | | | | 632 | 624 | 608 | 603 | 586 | 616 | 7, 27 | | 1928 | 562 | 564 | 618 | 646
584 | 676 | 670
620 | 632 | 667 | 635 | 626 | 596 | 569 | 7, 59 | | 1929 | 535 | 483 | | | 646 | | 614 | 610 | 538 | 599 | 528 | 532 | 7,01 | | 1930 | 547 | 535 | 564 | 560 | 584 | 576 | 648 | 578 | 542 | 597 | 533 | 543 | 6, 74 | | 1931 | 496 | 447 | 545
482 | 584 | 586 | 570 | 578 | 509 | 526 | 549 | 453 | 504 | 6, 48 | | 1932 | | | | 468 | 461 | 464 | 411 | 372 | 440 | 453 | 400 | 433 | 5, 32 | | 1933 | 379 | 362 | 395 | 414 | 420 | 427 | 380 | 398 | 383 | 373 | 352 | 361 | 4, 64 | | 1934 | 352 | 315 | 353 | 339 | 338 | 338 | 362 | 394 | 370 | 395 | 346 | 333 | 4, 23 | | 1904 | 358 | 281 | 365 | 345 | 394 | 362 | 359 | 370 | 336 | 387 | 359 | 318 | 4, 23 | # Production of crude petroleum in Oklahoma, 1924-34, by months | Year | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--|---|---|---|---|---|---|---|--|--|---|---|---|--| | 1924
1925
1926
1927
1928
1929
1930
1930
1931
1931
1932
1933 | 15, 002
13, 787
18, 596
21, 040
22, 856
20, 276
15, 044
13, 758
12, 955 | 13, 989
12, 706
19, 951
19, 166
20, 235
17, 643
14, 160
12, 458
12, 774 | 14, 776
14, 345
22, 341
19, 980
21, 213
19, 361
17, 088
13, 361
15, 669 | 14, 818
14, 466
21, 407
18, 921
20, 689
19, 919
17, 437
13, 403
11, 957 | 14, 775
14, 924
23, 400
19, 745
21, 803
21, 204
18, 026
13, 839
13, 243 | 14, 684
14, 424
23, 516
19, 009
20, 802
19, 570
17, 683
12, 936
15, 545 | 14, 777
14, 793
26, 810
19, 175
22, 874
17, 967
16, 233
13, 051
18, 813 | 14, 797
14, 844
26, 377
21, 363
22, 805
17, 010
9, 117
12, 619
19, 043 | 15, 228
14, 335
24, 424
22, 796
21, 505
16, 553
8, 414
12, 051
16, 607 | 15, 020
15, 891
24, 704
23, 862
20, 739
16, 882
13, 724
12, 006
15, 479 | 14, 789
16, 829
23, 767
22, 040
19, 249
15, 095
16, 649
11, 912
14, 936 | 14, 113
17, 851
22, 482
22, 760
20, 234
15, 006
16, 999
11, 850
15, 230 | 173, 538
176, 768
179, 195
277, 775
249, 857
255, 004
216, 486
180, 574
153, 244
182, 251
180, 107 | # Production of crude petroleum in Oklahoma in 1934, by districts and months ¹ [Thousands of barrels of 42 gallons] | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------| | Allen | 269 | 249 | 282 | 262 | 260 | 252 | 258 | 255 | 249 | 246 | 239 | 244 | 3, 065 | | Beebe | iii | 118 | 128 | 143 | 145 | | | 156 | 125 | 122 | 119 | 123 | 1, 595 | | Bristow-Slick | 341 | 293 | 317 | 320 | 318 | 308 | 328 | 323 | 317 | 326 | 288 | 301 | 3, 780 | | Burbank | 307 | 301 | 474 | 400 | 421 | 434 | | 569 | 544 | 565 | 595 | 574 | 5, 685 | | Chandler | 126 | 226 | 215 | 180 | 209 | 196 | | | 183 | 189 | | | 2, 323 | | Cleveland-Key- | | | | | -00 | | | | | | | | -, | | stone | 282 | 244 | 258 | 245 | 258 | 246 | 189 | 220 | 202 | 207 | 199 | 205 | 2, 755 | | Crescent | 18 | 19 | 41 | 140 | 137 | 163 | 141 | 120 | 111 | 123 | 109 | 115 | 1, 237 | | Cromwell | 148 | 132 | 148 | 140 | 145 | 141 | 147 | 143 | 133 | 138 | 137 | 138 | 1,690 | | Cushing-Shamrock | 433 | 383 | 428 | 411 | 427 | 412 | | 430 | 414 | 417 | 408 | 419 | 5, 044 | | Duncan - Walters - | | | | | | | | | | | | | 0,000 | | Comanche | 141 | 125 | 142 | 138 | 147 | 141 | 141 | 140 | 130 | 143 | 124 | 140 | 1,652 | | Fish | 86 | 84 | 86 | 84 | 85 | 114 | 113 | 158 | 114 | 122 | 126 | 209 | 1, 381 | | Fitts | 4 | 6 | 12 | 8 | 15 | 14 | 22 | 35 | 29 | 37 | 63 | 84 | 329 | | Glenn - Sapulpa - | i - | 1 | | - | | | | | | | | | _ | | Kiefer-Olive | 168 | 156 | 173 | 167 | 170 | 164 | 162 | 158 | 151 | 157 | 151 | 159 | 1,936 | | Healdton | 285 | 259 | 287 | 279 | 284 | 275 | 291 | 293 | 279 | 289 | 278 | 287 | 3, 386 | | Hewitt | 155 | 145 | 154 | 150 | 154 | 149 | 157 | 158 | 144 | 155 | | 153 | 1,818 | | Lucien | 201 | 146 | 166 | 317 | 307 | 257 | 232 | 263 | 266 | 233 | 241 | 274 | 2,903 | | Nowata County | 176 | 162 | 188 | 180 | 188 | 183 | | 201 | 185 | 208 | 193 | 199 | 2, 258 | | Oklahoma City | 5, 367 | 4,420 | | 5, 545 | 5, 966 | | | | 4, 487 | 4, 496 | | | 60, 834 | | Okmulgee | 174 | 160 | 181 | 179 | 186 | 178 | 178 | 171 | 156 | 163 | 145 | 159 | 2,030 | | Osage (outside Bur- | | | | | | | | | | | | | | | bank) | 677 | 669 | 775 | 750 | 763 | 751 | 820 | 803 | 778 | 807 | 760 | 834 | 9, 187 | | Seminole Field: | | | | | | | | | | | | | | | Bowlegs | 307 | 287 | 317 | 299 | 301 | 336 | | 358 | 302 | 315 | 308 | 296 | 3, 761 | | Carr City | 177 | 157 | 188 | 170 | 182 | 206 | 170 | 180 | 156 | 150 | 147 | 156 | 2,039 | | Earlsboro - South | | | | | | | | | | | | | | | Earlsboro | 318 | 292 | 331 | 332 | 324 | 354 | 362 | 372 | 327 | 288 | 296 | 292 | 3,888 | | East Earlsboro | 383 | 342 | 360 | 350 | 350 | | 331 | 314 | 258 | 255 | 244 | 261 | 3, 792 | | Little River | 470 | 421 | 487 | 446 | 448 | 471 | 495 | 481 | 427 | 426 | | 383 | 5, 371 | | Mission | 132 | 117 | 128 | 121 | 117 | 114 | | 100 | 95 | 89 | 90 | 86 | 1, 292 | | St. Louis-Pearson. | 680 | 625 | 698 | 644 | 673 | 743 | 810 | 741 | 623 | 576 | 623 | 648 | 8,084 | | Seminole City | 321 | 289 | 343 | 319 | 327 | 355 | 354 | 341 | 285 | 294 | 281
325 | 270 | 3, 779 | | Other | 354 | 316 | 356 | 347 | 364 | 356 | 352 | 349 | 325
124 | 328 | 122 | 324 | 4,096 | | Sholem-Alechem | 141 | 125 | 142
229 | 135 | 139
218 | 134
211 | 136
193 | 132
179 | 166 | 130
175 | 164 | 126
170 | 1,586
2,407 | | Tatums | 266
126 | 226
115 | 127 | 210
123 | 126 | 120 | 193 | 179 | 117 | 133 | 104 | 121 | 1, 465 | | Tulsa | 126
141 | 115 | 138 | 123 | 140 | 132 | 139 | 130 | 128 | 142 | 132 | 136 | 1,400 | | WewokaOther | 1,768 | | | | | | | | | | | | 20, 575 | | Отпег | 1,708 | 1, 599 | 1, 188 | 1, 710 | 1, 114 | 1, 702 | 1, 780 | 1, 101 | 1,000 | 1, 112 | 1,020 | 1, 103 | 20,070 | | Total | 15, 053 | 13, 345 | 15, 167 | 15, 378 | 16, 068 | 16, 136 | 15, 661 | 15, 069 | 13, 980 | 14, 156 | 14, 021 | 14, 618 | 178, 652 | ¹ Oil and Gas Journal. # Production of crude petroleum in Pennsylvania, 1924-34, by months [Thousands of barrels of 42 gallons] | Year | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--|--|---|------|--|---|---------------|---|---|-----------------------------------|---|----------------------------|---
--| | 1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1932
1933 | 560
613
654
718
768
851
1, 162
936
1, 053
972
1, 157 | 562
593
650
728
770
805
1,127
850
972
900
941 | | 659
697
748
799
792
943
1, 298
935
1, 109
993
1, 175 | 669
748
812
884
1,020
1,312
942
1,136
1,045 | 1, 109
937 | 665
708
784
789
838
1,037
939
935
1,028
1,080
1,268 | 704
783
830
860
1,043
862
941
1,055
1,113 | 805
795
972
911
1,087 | 692
710
802
820
893
1,120
1,008
1,204
977
1,188
1,270 | 760
793
828
1,053 | 667
757
766
850
1,110
912
1,129
984
1,074 | 7, 486
8, 097
8, 961
9, 526
9, 956
11, 820
12, 803
11, 892
12, 412
12, 624
14, 478 | # Production of crude petroleum in Texas, 1924-34, by districts [Thousands of barrels of 42 gallons] | District | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | |---|--------------------|---------------------|----------------|---------------------|-------------------------|----------------------|--------------------|--------------------|--------------------|--------------------|------------------| | Gulf coast: | | | | - | | | | | | | | | Agua Dulce | | | | | | | | | | (1) | 107 | | Arriola Barbers Hill Batson | (2) | (2) | (2) | (2) | (2) | 4, 552 | 7, 441 | 7, 651 | 7, 320 | 8,082 | 446
6, 820 | | Batson | 464 | 432 | 456 | 462 | 550 | 444 | 418 | 330 | 268 | 208 | 246 | | Big Creek | 293 | 310 | 520 | 1, 243 | 811 | 1,496 | 1,390 | 858 | 425 | 413 | 365 | | Blue Ridge | 278 | 313 | 486 | 1, 210 | 2, 205 | 1, 194 | 644 | 378 | 328 | 295 | 299 | | Big CreekBlue RidgeBolingBoling | | 40 | 1, 175 | 753 | 814 | 580 | 378 | 269 | 188
105 | | 209 | | Clay Creek
Cleveland | | | | | | | | 553 | 356 | | 75
266 | | Cleveland | | | | | | | | | | ו מו | 172 | | Conroe | | | | | | | | | 2, 630 | 21, 215 | 17, 761 | | Corpus Christi | 520 | 416 | 341 | 312 | 291 | 224 | (1)
224
406 | 152 | 486 | 861 | 775 | | Damon Mound
Dayton | 36 | 20 | (1) | (1) | (1) | 214 | 406 | 282
202 | 219
100 | | 113
74 | | Esperson Fannette Goose Creek Greta Hankamer High Island Hull | | | | | | (1) | 819 | 712 | 509 | | 452 | | Fannette | | | | | (1)
2 2, 726 | 292 | 350 | 180 | 151 | 146 | 195 | | Grote | 2 3, 967 | ² 3, 464 | 3 3, 501 | 2 3, 102 | 2 2, 726 | 2, 154 | 1, 690 | 1, 460 | 1, 232 | 1, 163 | 1, 203 | | Hankamer | | | | | | (1) | 546 | 798 | 691 | 1, 195
547 | 3, 936
378 | | High Island | | 121 | 60 | 96 | 163 | 449 | 331 | 255 | 1.547 | 2, 534 | 2,747 | | Hull | 7, 074 | 6, 944 | 7,058 | 5, 685 | 4, 055 | 3,376 | 3, 128 | 2, 264 | 1,891 | 1,946 | 3, 453 | | Humble | 2, 224 | 1,864 | 1,568 | 1, 485 | 1, 242 | 2,990 | 5, 859 | 3, 022 | 2, 144 | 1,722 | 1, 188 | | Kingevilla | | | | 146 | 153 | 100 | | 29 | 28 | 96
26 | 118 | | Livingston | | | | 140 | 199 | 120 | 41 | 29 | 28 | 435 | 23
744 | | Humble | | | | | | 99 | 209 | 96 | 127 | 84 | 67 | | Louise | | | | | | | | | | | 178 | | Manvel
Markham | 66 | | | | | | | | 160 | 586 | 1,020 | | Moss Bluff | . 00 | 41 | 51 | 109 | 112 | 133 | 98 | 218
154 | 516
38 | 351
(1)
70 | 389 | | Moss Bluff
Mykawa
Nash | | | | | | | (1) | 104 | (1) | 70 | 133 | | Nash | | | 207 | 395 | 491 | 193 | 110 | 187 | ` 55 | | 16 | | O'Connor | | | | | | | | | | (1) | 112 | | Orange
Orchard | 3, 958 | 4, 816 | | 1,803 | 1, 415 | 1,006 | 790 | 618 | 451 | 312 | 289 | | Pierce Junction | 154 | 265 | 75
948 | 22
2, 954 | 3, 899 | 5 160 | 636
3, 847 | 495
2,831 | 496
1, 763 | 413
1,524 | 457
1, 196 | | Port Neches | | 200 | 010 | 2, 504 | 9, 000 | 5, 160
242 | 672 | 503 | 553 | 383 | 557 | | Raccoon Bend | | | | 1 | 98 | | 3, 893 | 2,704 | 1,814 | 1,544 | 1, 489 | | Refugio | | | | | (1)
343
1, 185 | 1,990 | 11, 485 | 9, 274 | 3, 424 | 2, 105 | 1, 489 | | Sourlake | 543
1,588 | 514
1, 444 | 482
2,004 | 413 | 1 105 | 333 | 380 | 360 | 326 | | 291 | | Sourlake
South Liberty
Spindletop | 1,000 | 4, 416 | 2,004
1,992 | 1, 593
1, 084 | 1, 185
1, 398 | 946
2, 137 | 806
1, 503 | 675
694 | 570
369 | | 484
155 | | Spindletop | 359 | 412 | | 20, 751 | 14, 150 | 10, 037 | 6. 176 | 3 301 | 1, 387 | 1, 149 | 1,052 | | Sugarland | | | | | 390 | 3, 948 | 4, 274 | 4, 216 | 3, 487 | 2,532 | 2, 183 | | Thompsons
Tomball | | - | | | | | | 808 | 4, 201 | 4,906 | 4, 245
990 | | West Columbia | 4, 536 | 4, 031 | 3, 197 | 3, 291 | 2,800 | 2, 298 | 1, 827 | 1, 310 | 1, 295 | 233
3 1, 441 | 1,038 | | Other | 22 | 22 | 115 | 94 | 301 | 917 | 695 | 193 | 200 | 207 | 160 | | m / 1 C 11 | | | | | | | | | | | | | Total Gulf coast. | 26, 082 | 29,885 | 41, 135 | 47,004 | 39, 636 | 49, 652 | 61, 066 | 48, 032 | 41,850 | 61, 002 | 60, 155 | | East Texas: | , , | | | | i i | | | 100 501 | 101 440 | 004.054 | 101 540 | | East Texas proper 4
Boggy Creek | | | | 15 | 331 | 1, 120 | 1, 133 | 618 | 121, 449
378 | 204, 954
292 | 181, 540
243 | | Cayuga | | | | | | 1, 120 | 1, 100 | 010 | | - 202 | 589 | | Van | | | | | | 144 | 7, 330 | 15, 598 | 17, 201 | 17,077 | 14, 621 | | Other | 59 | 58 | 36 | (6) | (6) | 101 | 109 | 69 | 56 | | 38 | | Total east Texas. | 59 | 58 | 36 | 6 15 | 6 331 | 1, 365 | 8, 572 | 125, 846 | 139, 084 | 222, 372 | 197, 031 | | Central Texas: | | | | | | | | | | | | | Darst Creek | | | | | | 243 | 11, 552 | 8, 196 | 6, 084 | 4,565 | 3, 374 | | Hilbig
Luling | 11, 134 | 8,979 | 7, 699 | 6, 169 | 7 5, 443 | 4,948 | 3, 692 | 2,964 | 2, 625 | (1)
2,368 | 291
2, 187 | | Lytton Springs | 11, 101 | 2, 603 | 1, 783 | 784 | 846 | 600 | 489 | 378 | 323 | 405 | 557 | | Mexia 8 | 49, 272 | 42, 353 | 20, 494 | 12, 417 | 8, 353 | 5, 969 | 4, 621 | 3, 201 | 2, 259 | 2, 064 | 1,947 | | Pettus | | | | | | | 1 730 | 2, 360 | 1,715 | 978 | | | Rockdale-Chapman
Salt Flat (Bruner) | 235 | 255 | 535 | 508 | 337 | 251
13, 286 | 1,906 | 1, 305
4, 372 | 565 | | 368 | | Somerset-Medina | 1, 109 | 873 | 791 | 767 | (⁷)
738 | 15, 286 | 7, 305
566 | 4,014 | 2, 944
518 | 2, 020
521 | 1, 637
527 | | Other | 187 | 98 | | 6 72 | 6 75 | 47 | 12 | 19 | 17 | 238 | 50 | | | | | | | | | | | | | | | Total central | 01 00= | FF 10. | 01 054 | *** | *15 700 | 00.000 | 01 0-0 | 20 05- | | | | | Texas 10 | 61, 937
42, 487 | | 40 022 | 520, 717
54, 806 | 49, 459 | 26, 003
52, 046 | 31,873 | 23, 371 | 17,050 | 13, 530 | 12,066
31,558 | | Panhandle 11 | 272 | 1, 132 | 25, 551 | 40, 253 | 25, 286 | 30, 632 | 44, 301
31, 777 | 29, 811
21, 851 | 26, 475
18, 263 | 26, 293
16, 673 | 20, 280 | | Southwest Texas 12 | 2, 215 | | 4, 150 | 3, 056 | 3, 276 | 3,850 | 4, 138 | 5,002 | 6, 421 | 7, 395 | 10, 154 | | | | | | | | | | | | | | See footnotes at end of table. ## Production of crude petroleum in Texas, 1924-34, by districts-Continued [Thousands of barrels of 42 gallons] | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | |----------|------------|--------------------------|---|--|--|---|--|---|---
--| | | 8,900 | 1, 372
2, 204
237 | 2, 437
30, 607
516
3, 641 | 5, 736
25, 529
796
(1)
62, 045 | 15, 633
16, 852
673
418
50, 179
453
461
41, 905 | 11, 999
14, 451
693
3, 168
532
26, 404
663
931
1, 389
41, 338 | 10, 413
8, 524
550
2, 597
270
15, 510
1, 237
1, 152
502
28, 226 | 7, 264
7, 444
459
1, 657
198
10, 998
1, 134
1, 761
299
23, 717 | 6, 257
6, 396
355
1, 944
8, 263
949
2, 559
221
20, 723 | 6, 563
6, 145
310
2, 625
1, 633
7, 612
806
3, 479
394 | | 1, 470 | 9, 711 | 14, 758 | 51, 538 | 123, 540 | 133, 328 | 108, 730 | 78, 524 | 63, 335 | 55, 344 | 50, 272 | | 134, 522 | 144, 648 | 166, 916 | 217, 389 | 257, 320 | 296, 876 | 290, 457 | 332, 437 | 312, 478 | 402, 609 | 381, 516 | | | 1, 056 414 | 1, 056 8, 900
414 811 | 1, 056 8, 900 10, 937
414 811 1, 372
2, 204
237 237 (1) 8
1, 470 9, 711 14, 758 | 1,056 8,900 10,937 8,986 414 811 1,372 2,437 2,204 30,607 237 516 3,641 (1) 5,329 (1) 6,5329 1,470 9,711 14,758 51,538 | 1,056 8,900 10,937 8,986 6,753 414 811 1,372 2,437 5,736 2,204 30,607 25,529 237 516 (1) 3,641 62,045 (1) 5,329 22,429 (1) 470 9,711 14,758 51,538 123,540 | 1,056 8,900 10,937 8,986 6,753 6,460 414 811 1,372 2,437 5,736 15,633 2,204 3,607 25,529 16,852 237 516 796 673 (1) 418 3,641 62,045 50,179 (1) 5,329 22,429 41,905 8 22 252 294 1,470 9,711 14,758 51,538 123,540 133,328 | 1,056 8,900 10,937 8,986 6,753 6,460 7,050 414 811 1,372 2,437 5,736 15,633 11,999 2,204 30,607 25,529 16,852 14,451 237 516 796 673 3,168 532 3,641 62,045 50,179 633 931 | 1,056 8,900 10,937 8,986 6,753 6,460 7,050 9,444 414 811 1,372 2,437 5,736 15,633 11,999 10,413 2,204 30,607 25,529 16,852 14,451 8,524 237 516 796 673 693 550 3,168 2,597 3,641 62,045 50,179 26,404 15,510 3,641 62,045 50,179 26,404 15,510 3,641 62,045 50,179 26,404 15,510 461 1,389 502 (1) 8 5,329 22,429 41,905 41,338 28,226 252 294 112 99 1,470 9,711 14,758 51,538 123,540 133,328 108,730 78,524 | 1,056 8,900 10,937 8,986 6,753 6,460 7,050 9,444 8,265 414 811 1,372 2,437 5,736 15,633 11,999 10,413 7,264 2,204 30,607 25,529 16,852 14,451 8,524 7,444 237 516 796 673 693 22,597 1,657 3,641 62,045 50,179 26,663 1,237 1,134 3,641 62,045 50,179 26,663 1,237 1,134 4,15,510 10,998 663 1,237 1,134 4,15,510 10,998 663 1,237 1,134 4,15,510 10,998 663 1,237 1,134 4,15,510 12,99 22,252 294 112 99 139 1,470 9,711 14,758 51,538 123,540 133,328 108,730 78,524 63,335 | 1,056 8,900 10,937 8,986 6,753 6,460 7,050 9,444 8,265 6,535 414 811 1,372 2,437 5,736 15,633 11,999 10,413 7,264 6,257 237 516 796 673 693 550 459 355 50 237 516 796 673 693 2,597 1,657 1,944 6,306 673 3,684 2,597 1,657 1,944 6,306 673 3,646 62,045 50,179 26,404 15,510 10,998 8,263 8,263 1,237 1,134 949 1,500 10,908 8,263 1,237 1,134 949 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,259 1,500 10,908 8,250 1,500 10,908 8,250 10,908 1,500 | 1 Included under "Other." 2 Barbers Hill included with Goose Creek. 3 West Columbia includes Damon Mound and Nash. 4 Joiner, Kilgore, Lathrop, and other pools in Cherokee, Gregg, Rusk, Smith, and Upshur Counties. 5 Includes Long Lake. 6 "Other" in east Texas included under "Other" in central Texas. 7 Salt Flat included with Luling. 8 Includes Corsicana, Nigger Creek, Powell, Richland, Wortham, and other fields in Falls, Freestone, Limestone, and Navarro Counties. 9 Includes Tuleta. 10 Includes Tuleta. 10 Includes the districts in and between Wilbarger, Wichita, Clay, Montague, and Cooke Counties on the north and Runnels, Coleman, Brown, and Comanche Counties on the south. 11 Carson, Gray, Hutchinson, Moore, Potter, and Wheeler Counties. 12 Includes fields in Duval, Jim Hogg, Jim Wells, Starr, Webb, and Zapata Counties. 13 Includes Westbrook and other fields in Howard and Mitchell Counties. 14 Includes Taylor-Link. # Production of crude petroleum in Texas in 1934, by districts and months [Thousands of barrels of 42 gallons] | | · | | | • | | | | | | | | | , | | | |--|--|--|--|--|--|--|--|--|---|--|--
---|---|--|--| | | | | | Petrole | um trans | sported fi | rom prod | lucing pr | operties | | | | | Oil con- | | | District | Janu-
ary | Febru-
ary | March | April | Мау | June | July | August | Sep-
tem-
ber | Octo-
ber | Novem-
ber | Decem-
ber | Total | leases plus
net change
in produc-
ers' stocks,
Jan. 1-Dec.
31 | Produc-
tion | | Gulf coast: Agua Dulce Arriola Barbers Hill Batson Big Creek Blue Ridge Boling Clay Creek Cleveland Corroe Corpus Christi Damon Mound Esperson Fannette Goose Creek Greta Hankamer High Island Hull Humble Livingston Louise Manvel Markham Mykawa O'Connor Orange Orchard Pierce Junction Port Neches Raccoon Bend Refugio Saratoga Sourlake South Liberty Spindletop | 333
5566
16
30
22
1,640
60
7
30
144
100
241
272
106
53
3
22
4
6
6
21
47
109
37
109
37
109
37
109
37
109
125
109
125
109
109
109
109
109
109
109
109 | 1 37 5522 177 283 188 9 9 9 101 200 300 183 89 | 1 499 543 200 22 266 111 22 266 11, 547 555 57 12 288 281 288 289 531 610 17 8 23 409 466 109 115 255 31 156 | 488 519 222 24 10 20 21 4 1, 514 57 6 38 16 111 259 33 221 287 97 53 12 59 16 17 9 26 36 36 17 97 27 57 109 28 45 107 109 28 29 99 | 5 67 667 222 32 32 77 225 22 4 1,677 57 57 34 24 100 301 60 610 610 611 5 5 77 33 2 229 45 128 104 23 33 13 88 | 2 54 513 200 42 23 21 21 31 ,630 64 4 4 4 6 21 101 289 220 305 94 66 14 60 30 11 100 23 41 11 100 23 41 183 40 132 156 85 87 | 2
377
577
21
34
425
222
21
11,507
66
4
40
199
106
296
299
241
329
98
67
72
11
12
10
13
13
13
13
13
13
13
13
13
13
13
14
14
15
14
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | 21
26
624
21
35
26
30
21
25
1, 514
4
4
37
18
99
437
31
273
333
397
73
102
31
111
25
437
431
273
273
397
73
18
102
111
125
437
18
19
102
102
103
103
104
104
105
105
105
105
105
105
105
105
105
105 | 19 18 589 18 28 23 26 22 34 1,543 78 37 12 262 314 196 64 27 262 314 194 109 40 3 100 22 38 38 102 24 128 247 138 | 19 28 596 24 30 30 26 112 21 1, 325 71 15 37 199 108 393 34 210 260 101 68 211 124 4 11 27 37 126 160 161 124 26 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 19 26 596 22 22 24 13 3 1, 176 68 14 42 121 42 135 202 219 35 105 125 22 38 31 155 22 28 38 111 88 | 18 24 605 24 227 27 32 114 26 12 1, 269 15 18 229 229 229 42 22 42 22 28 100 107 139 154 24 11 18 2 | 107 446 6, 807 247 362 297 203 262 2173 17, 777 99 432 1, 196 3, 906 3, 906 3, 916 2, 742 3, 418 1, 184 1, 020 372 288 97 1, 193 1, 493 1, 493 1, 493 1, 493 1, 493 1, 493 1, 493 1, 493 1, 480 1, 055 1, 055 | 13 —1 3 2 6 4 —1 27 —2 14 20 7 30 13 35 4 22 ————————————————————————————————— | 107 446 6, 820 246 365 325 209 209 209 266 172 17,76 113 452 195 1, 203 3, 936 3, 936 3, 936 3, 936 457 1, 188 1, 020 389 457 1, 196 1, 196 1, 196 1, 198 1, 198 457 1, 198 1, 198 457 1, 198 1, 198 457 1, 198 1, 196 1, 1 | | 921 | Sugarland | 186
365
48
92
23 | 169
331
60
83
22 | 186
363
73
92
30 | 180
354
70
93
29 | 184
367
73
108
41 | 177
357
69
83
48 | 185
365
76
84
43 | 186
372
89
86
37 | 180
344
82
81
42 | 187
302
93
81
50 | 180
360
109
78
49 | 185
360
132
74
56 | 2, 185
4, 240
974
1, 035
470 | -2 5 16 19 47 | 2, 183
4, 245
990
1, 054
517 | |----------|---|--|--|--|---|--|--|--|---|---|---|--|---|--|---------------------------------------|--| | 135 | Total Gulf coast | 4, 898 | 4, 420 | 4, 868 | 4, 797 | 5, 187 | 5, 002 | 5, 075 | 5, 400 | 5, 241 | 5, 043 | 4, 782 | 5, 031 | 59, 744 | 411 | 60, 155 | | 36 | st Texas: East Texas proper Boggy Creek ² Cayuga Marion-Panola | 14, 072
18 | 13, 165
16 | 15, 469
19 | 15, 757
18 | 16, 265
18
36
3 | 16, 407
18
62
3 | 16, 707
19
46
3 | 15, 138
18
77
3 | 15, 627
22
86
3 | 15, 549
21
88
3 | 13, 469
22
87
3 | 13, 415
32
92
3 | 181, 040
241
574
38 | 500
2
15 | 181, 540
243
589
38 | | 28 | Van | 1, 156 | 1,041 | 1, 159 | 1, 206 | 1, 353 | 1, 380 | 1, 326 | 1, 325 | 1, 297 | 1,084 | 1, 039 | 1, 248 | 14, 614 | 7 | 14, 621 | | | Total east Texas | 15, 250 | 14, 225 | 16, 650 | 16, 985 | 17, 675 | 17, 870 | 18, 101 | 16, 561 | 17, 035 | 16, 745 | 14, 620 | 14, 790 | 196, 507 | 524 | 197, 031 | | Cei | ntral Texas: Darst Creek. Hilbig. Lulling. Lytton Springs. Mexis
* Pettus * Chapman * Salt Flat (Bruner) Somerset * Other. | 301
23
191
49
166
63
29
141
46 | 265
21
170
49
155
60
20
127
46 | 299
26
195
52
164
70
25
144
44 | 278
23
172
51
158
70
32
137
43
1 | 278
24
203
54
167
73
40
139
45 | 270
23
181
47
162
72
34
133
44 | 283
25
173
49
166
96
35
139
42 | 284
25
194
45
170
112
30
139
45 | 276
24
171
38
153
116
31
134
39 | 284
25
184
45
169
128
28
143
42 | 274
25
178
37
156
124
31
128
46
8 | 279
27
171
35
161
129
27
129
44 | 3, 371
291
2, 183
551
1, 947
1, 113
362
1, 633
526
48 | 3
4
6
15
6
4
1
2 | 3, 374
291
2, 187
557
1, 947
1, 128
368
1, 637
527
50 | | No
Pa | Total central Texas
rth Texas
nhandle | 1, 010
2, 612
1, 314 | 913
2, 361
1, 471 | 1, 020
2, 681
1, 671 | 965
2, 596
1, 660 | 1, 024
2, 693
1, 770 | 967
2, 617
1, 741 | 1,010
2,803
1,841 | 1,046
2,881
1,813 | 991
2, 643
1, 736 | 1, 055
2, 603
1, 774 | 1, 007
2, 464
1, 699 | 1, 017
2, 599
1, 780 | 12, 025
31, 553
20, 270 | 41
5
10 | 12, 066
31, 558
20, 280 | | Sot | nthwest Texas: Jacobs. Government Wells. Sam Fordyce. Other | 11
327
272 | 10
268
288 | 16
349
285 | 13
436
299 | 16
459
288 | 16
461
271 | 17
619
298 | 17
769
274 | 17
735
264 | 24
762
8
264 | 29
706
28
252 | 21
609
72
253 | 207
6,500
108
3,308 | 4
20
2
5 | 211
6, 520
110
3, 313 | | | Total southwest Texas | 610 | 566 | 650 | 748 | 763 | 748 | 934 | 1,060 | 1,016 | 1, 058 | 1, 015 | 955 | 10, 123 | 31 | 10, 154 | | | | | | | | | | | | | | | | | | | Includes Nash. Includes Long Lake. Includes Corsicana, Nigger Creek, Powell, Richland, Wortham, and other fields in Falls, Freestone, Limestone, and Navarro Counties. Includes Tuleta. Includes Minerva-Thrall. Includes Medina. # Production of crude petroleum in Texas in 1934, by districts and months—Continued [Thousands of barrels of 42 gallons] | | | | - | Petrole | um trans | ported fi | om prod | lucing pro | operties | | | | | Oil con-
sumed on | | |---|---|--|--|---|--|---|--|--|---|---|--|--|---|--|---| | District | Janu-
ary | Febru-
ary | March | April | Мау | June | July | August | Sep-
tem-
ber | Octo-
ber | Novem-
ber | Decem-
ber | Total | leases plus
net change
in produc-
ers' stocks,
Jan. 1-Dec.
31 | Produc-
tion | | West Texas: Andrews. Big Lake. Chalk-Roberts 7. Crane-Upton. Crockett County 8. Ector. Fisher. Hendricks. Loving County. Ward County. West Yates 9. Yates. Other. | 15
448
490
454
23
205
102
623
63
183
27
1, 349 | 25
381
415
419
21
176
103
580
59
170
25
1, 199
2 | 7
403
564
477
26
237
110
629
75
249
31
1, 309 | 11
377
562
470
26
225
118
610
72
255
36
1, 330 | 16
366
588
511
28
229
138
641
72
240
35
1,527 | 18
361
562
498
27
236
135
604
67
239
34
1, 368 | 14
357
593
580
28
230
148
674
70
286
35
1, 322
2 | 18
340
619
599
27
232
148
668
67
361
35
1,477 | 14
353
586
580
25
229
152
639
71
357
35
1, 451 | 18
364
506
551
26
202
157
659
64
376
36
1, 186 | 14
367
489
486
26
195
161
639
62
357
33
1,160 | 17
369
549
505
27
226
161
639
64
393
32
1,348 | 187
4, 486
6, 523
6, 130
310
2, 622
1, 633
7, 605
806
3, 466
394
16, 026 | 30
-10
40
15
3
7
 | 217
4, 476
6, 563
6, 145
310
2, 625
1, 633
7, 612
806
3, 479
394
15, 991 | | Total west Texas | 3, 983 | 3, 575 | 4, 119 | 4, 094 | 4, 393 | 4, 150 | 4, 339 | 4, 593 | 4, 494 | 4, 147 | 3, 990 | 4, 332 | 50, 209 | 63 | 50, 272 | | Total Texas: 1934 | 29, 677
26, 441 | 27, 531
24, 996 | 31, 659
33, 476 | 31, 845
27, 165 | 33, 505
46, 755 | 33, 095
42, 165 | 34, 103
38, 397 | 33, 354
37, 731 | 33, 156
33, 625 | 32, 425
32, 984 | 29, 577
28, 020 | | 380, 431
401, 201 | 1, 085
1, 408 | 381, 516
402, 609 | ⁷ Includes Westbrook and other fields in Howard and Mitchell Counties. 8 Includes World and other pools. 9 Includes Taylor-Link. # Production of crude petroleum in West Virginia, 1924-34, by months [Thousands of barrels of 42 gallons] July Aug. Sept. Oct. Nov. Dec. Total Mar. May June Year Jan. Feb. Apr. 485 518 5, 920 5, 763 5, 946 6, 023 5, 661 5, 574 5, 071 4, 472 3, 876 3, 815 4, 095 475 449 440 474 460 490 518 519 518 496 481 482 444 365 318 504 523 489 477 355 347 336 357 519 519 510 517 471 452 451 380 356 1925. 509 451 465 471 1926. 444 453 372 381 434 461 382 502 1927.... 511 417 415 1929... 1930... 346 304 373 345 287 335 296 326 334 1931. 325 347 373 332 1934_____ ## Production of crude petroleum in Wyoming, 1924-34, by districts [Thousands of barrels of 42 gallons] | | | · | ,, | T . | 1 | | | T | | 1 | | | |--|---------------------------------|--|---|---|--|--|--|--|---|---|--|---| | Year | Big
Muddy | Byron
Grey-
bull-
Torch-
light | Elk | Fran-
nie | Gar-
land | Grass
Creek | Hamil-
ton
Dome-
Warm
Springs | La
Barge | Lance
Creek | Lander-
Dallas-
Derby
Dome | Lost
Sol-
dier 1 | Mule
Creek | | 1924
1925
1926
1928
1928
1930
1931
1932
1933
1934 | 802
711
649
610
650 | 33
30
(2)
28
25
26
49
3
7
(3) | 314
273
337
360
265
264
250 | (2)
214
161
85
615 | 379
3 181
3 364 | 1, 113
1, 240
1, 025
974
871
778
729
746
787
274
356 | 239
264
319
313
298
355
300
87
308
254
322 | 70
341
490
805
747
466
381
349
488 | 786
360
540
269
217
87
60
94
38
41
128 | 133
152
165
246
247
209
252
358
375
330
316 | 1, 775 1, 746 2, 059 1, 341 1, 442 1, 311 1, 271 1, 349 1, 003 632 605 | 178
129
188
142
141
29
 | | Yea | r Not | ches O | regon
Basin | Osage | Pilot
Butte | Poison
Spider-
South
Casper | Rex
Lake | Rock
Creek | Salt
Creek | Teapot | Other | Total | | 1924
1925
1926
1927
1928
1930
1931
1933
1934 | | 39
35
34
24 | 882
1, 540
1, 285
393
130
252
880 | 146
109
113
107
133
166
385
419
394
241
289 | 29
25
20
17
19
18
16
14
12
12 | 229
297
4 376
247
327
5 446
5 323
8 199
91
167 | 41
20
53
44
18
36
6 | 1, 181
1, 087
1, 029
982
928
842
770
682
477
464
540 | 30, 874
21, 445
18, 010
14, 399
14, 023
11, 377
10, 520
8, 834
8, 006
7, 009
6, 520 | 1, 004
632
426
314
 | 17
65
49
64
77
110
140
77
67
79 | 39, 498
29, 173
25, 776
21, 307
21, 461
19, 314
17, 868
14, 834
13, 418
11, 227
12, 566 | I Includes Ferris. Included under "Other". Garland includes Byron. Includes Iron
Creek and Simpson Ridge. Includes Simpson Ridge. Production of crude petroleum in Wyoming in 1934, by districts and months [Thousands of barrels of 42 gallons] | | | Pe | trole | um t | ransp | orted | from | produ | cing I | roper | ties | | | plus
icers' | 1 | |---|--|---|---|---|---|-----------------|----------------------------|----------------------------|----------------|--|----------------------------------|---|---|--|--| | ************************************** | | | | | | | | | | | | | | on leases in production 1-Dec. 31 | | | District | | | | | | | | | er | | er. | 1 | | ange
Jan. | п | | | January | February | March | April | May | June | July | August | September | October | November | December | Total | Oil consumed
net change
stocks, Jan. | Production | | Big Muddy | 55
15
21
1
20 | 46
14
34
29
18 | 53
15
33
24
20 | 50
16
34
7
20 | 56
16
56
11
42 | 18 | 55
16
70
87
27 | 55
16
70
57
42 | 14
65
51 | 12 | 51
10
57
21
50 | 52
15
47
6
35 | 631
177
615
358
355 | 3
6
1 | 634
177
615
364
356 | | Hamilton Dome-
Warm Springs
La Barge
Lander-Dallas
Lost Soldier-Ferris
Oregon Basin
Osage
Rock Creek | 8
30
23
47
16
40
46
504 | 27
26
22
42
20
15
43
500 | 28
28
23
53
14
20
40
569 | 18
29
23
46
42
29
41
542 | 29
48
29
50
89
29
62
576 | 101
26
46 | 53
29
49
113 | 54
30
52 | 42
22
49 | 20
43
28
53
111
22
42
580 | 41
28
52
85
16
42 | 25
38
28
63
80
16
44
540 | 319
483
314
605
875
289
541
6, 490 | 5
2
5
1 | 322
488
316
605
880
289
540
6,520 | | South Casper 2
Other | 2
17 | 300
2
7 | 2
22 | 5
15 | 24
25 | 23 | 25 | 24 | | 25
16 | 557
4
7 | 2
19 | 162
211 | 18
59 | 180
270 | | Total: 1934
1933 | 845
1, 000 | 845
859 | 944
984 | 917
898 | 1, 142
945 | 1, 126
975 | 1, 180
923 | 1, 223
948 | | 1, 102
907 | 1, 040
905 | 1, 010
998 | 12, 425
11, 283 | 131
-56 | 12, 556
11, 227 | ¹ Includes Byron. ² Includes Poison Spider. #### WORLD PRODUCTION World production of petroleum, in 1934 compared with 1933 and total, 1857–1934, by countries [Compiled by L. M. Jones, of the Bureau of Mines] | | | 1934 | | | 1933 | | 1857–19 | 34 1 | |---------------|--|---|---|--|--|---|---|---------------------------------------| | Country | Thou-
sands of
barrels of
42 gallons | sands of
metric | by vol- | | sands of
metric | of total | Thousands
of barrels
of 42
gallons | Percent
of total
by vol-
ume | | United States | 174, 318 2, 881 136, 103 62, 063 57, 851 46, 925 38, 172 317, 341 14, 024 10, 894 10, 503 7, 689 5, 140 3, 913 2, 187 1, 546 1, 417 2857 2855 2855 2855 1591 | 122, 931
23, 909
427
20, 112
8, 473
7, 658
6, 055
5, 667
2, 417
2, 162
1, 938
1, 533
1, 450
1, 031
674
529
315
261
1, 123
221
178
32
221
178
32
221
178
32
221
178
32
221
178
32
32
32
32
32
32
32
32
32
32
32
32
32 | 59.7 } 11.6 8.9 4.1 3.8 3.1 1.1 1.9 7.7 7.5 3.3 2.2 1.1 1.1 } | 905, 656
{ 154, 840
2, 338
117, 720
54, 392
42, 906
34, 001
13, 158
13, 257
13, 691
9, 561
1, 450
1, 665
1, 455
1, 665
1, 455
1, 663
1, 145
662
2, 112
204
71 | 122, 536
21, 237
346
17, 293
7, 377
7, 200
5, 527
5, 587
1, 834
1, 762
1, 345
1, 207
123
623
551
239
207
230
238
145
79
4
18
14
27 | } 10.9 8.2 3.7 3.8 3.0 2.4 9 .9 .7 6 .1 .3 .3 .1 .1 | 16, 598, 444
(3, 203, 134
(1, 5, 006
1, 004, 811
602, 235
595, 619
641, 350
1, 737, 434
149, 503
170, 445
123, 234
104, 146
245, 016
13, 100
63, 347
239, 926
28, 220
67, 882
12, 089
(28, 287
35, 146
8, 116
8, 117
1, 805
396
2, 166
1, 173 | 1.0
1.1
2.2
.9
.1
.3 | | | 1, 522, 243 | 208, 431 | 100.0 | 1, 442, 112 | 197, 210 | 100.0 | 25, 692, 347 | 100.0 | ^{1.} For detailed statement of petroleum production 1857 to 1930, inclusive, by years and by countries, see Mineral Resources of the United States, 1930, pt. 2, pp. 824-25. 2 Exclusive of Sakhalin, which is shown separately. 3 Partly estimated. # CONSUMPTION AND DISTRIBUTION Summary of demand for crude petroleum, 1930-34 | | 1930 | 1931 | 1932 | 1933 | 1934 | |---|--|--|---|--|--| | Production | 898, 011
62, 129 | 851, 081
47, 250 | 785, 159
44, 682 | 905, 656
31, 893 | 908, 065
35, 558 | | Changes in stocks east of California and in stocks of light crude in California | -19, 636 | -40, 963 | -30, 479 | +15, 437 | -16, 969 | | Total demand | 979, 776 | 939, 294 | 860, 320 | 922, 112 | 960, 592 | | Runs to stills | 927, 447
23, 705
1, 643
1, 621
25, 360 | 894, 608
25, 535
1, 628
1, 866
15, 657 | 819, 997
27, 393
1, 701
1, 454
9, 775 | 861, 254
36, 584
1, 834
1, 847
20, 593 | 895, 636
41, 127
1, 523
1, 835
20, 471 | | Total demand | 979, 776 | 939, 294 | 860, 320 | 922, 112 | 960, 592 | ¹ Includes shipments to Alaska, Hawaii, and Puerto Rico. ³ East of California. # Runs to stills of crude petroleum in 1934, by districts and months | District | Janu-
ary | Febru-
ary | March | April | May | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |--|--------------|---------------|---------|---------|---------|---------|---------|-----------------|----------------|---------|---------------|---------------|----------| | East coast: Domestic | 11, 260 | 10, 693 | 11, 734 | 11, 476 | 11, 619 | 11, 357 | 12, 624 | 12, 104 | 11, 262 | 12, 318 | 11, 422 | 12, 047 | 139, 916 | | | 2, 711 | 2, 050 | 2, 730 | 2, 716 | 3, 101 | 2, 952 | 2, 859 | 3, 026 | 2, 489 | 2, 571 | 2, 489 | 2, 123 | 31, 817 | | Total, east coast Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri Texas inland | 13, 971 | 12, 743 | 14, 464 | 14, 192 | 14, 720 | 14, 309 | 15, 483 | 15, 130 | 13, 751 | 14, 889 | 13, 911 | 14, 170 | 171, 733 | | | 2, 746 | 2, 527 | 2, 720 | 3, 117 | 3, 226 | 3, 076 | 3, 242 | 3, 159 | 3, 019 | 3, 060 | 2, 849 | 3, 068 | 35, 809 | | | 9, 006 | 8, 793 | 9, 146 | 9, 249 | 10, 334 | 10, 374 | 10, 674 | 11, 244 | 9, 871 | 10, 533 | 10, 213 | 9, 729 | 119, 166 | | | 7, 381 | 7, 137 | 7, 637 | 7, 821 | 8, 389 | 8, 179 | 8, 659 | 8, 382 | 7, 465 | 7, 679 | 7, 832 | 8, 445 | 95, 006 | | | 4, 813 | 4, 562 | 4, 756 | 5, 221 | 5, 284 | 4, 930 | 5, 550 | 5, 537 | 6, 119 | 6, 476 | 4, 612 | 4, 081 | 61, 941 | | Texas Gulf coast: Domestic | 14, 389 | 13, 260 | 14, 298 | 14, 583 | 14, 337 | 14, 515 | 15, 269 | 15, 979 | 14, 614 | 14, 022 | 15, 344 | 16, 991 | 177, 601 | | | 31 | 21 | 73 | 23 | 59 | 114 | 76 | 69 | 86 | 427 | 270 | 568 | 1, 817 | | Total, Texas Gulf coast | 14, 420 | 13, 281 | 14, 371 | 14, 606 | 14, 396 | 14, 629 | 15, 345 | 16, 048 | 14, 700 | 14, 449 | 15, 614 | 17, 559 | 179, 418 | | Louisiana Gulf coast: Domestic | 3, 257 | 3, 208 | 3, 425 | 3, 358 | 3, 283 | 3, 418 | 3, 440 | 3, 511 | 3, 070 | 3, 215 | 3, 202 | 3, 728 | 40, 115 | | | 60 | 44 | 117 | 95 | 69 | 164 | 171 | 126 | 119 | 89 | 137 | 35 | 1, 226 | | Total, Louisiana Gulf coast | 3, 317 | 3, 252 | 3, 542 | 3, 453 | 3,
352 | 3, 582 | 3, 611 | 3, 637 | 3, 189 | 3, 304 | 3, 339 | 3, 763 | 41, 341 | | Arkansas and Louisiana inland | 1, 601 | 1, 498 | 1, 479 | 1, 445 | 1, 617 | 1, 770 | 1, 875 | 1, 668 | 1, 537 | 1, 525 | 1, 465 | 1, 370 | 18, 850 | | Rocky Mountain | 1, 169 | 968 | 1, 004 | 1, 303 | 1, 118 | 1, 529 | 1, 506 | 1, 720 | 1, 376 | 1, 460 | 1, 492 | 1, 392 | 16, 037 | | California | 13, 088 | 11, 709 | 12, 688 | 13, 156 | 13, 822 | 13, 676 | 14, 120 | 13, 4 03 | 12, 584 | 12, 616 | 12, 457 | 13, 016 | 156, 335 | | Total domestic | 68, 710 | 64, 355 | 68, 887 | 70, 729 | 73, 029 | 72, 824 | 76, 959 | 76, 707 | 70, 917 | 72, 904 | 70, 888 | 73, 867 | 860, 776 | | Total foreign | 2, 802 | 2, 115 | 2, 920 | 2, 834 | 3, 229 | 3, 230 | 3, 106 | 3, 221 | 2, 694 | 3, 087 | 2, 896 | 2, 726 | 34, 860 | | Total United States: 1934 | 71, 512 | 66, 470 | 71, 807 | 73, 563 | 76, 258 | 76, 054 | 80, 065 | 79, 928 | 73, 611 | 75, 991 | 73, 784 | 76, 593 | 895, 636 | | 1933 | 66, 093 | 61, 042 | 67, 984 | 68, 822 | 74, 340 | 74, 619 | 79, 525 | 79, 151 | 75, 316 | 75, 461 | 68, 461 | 70, 440 | 861, 254 | | Daily average, 1934 | 2, 307 | 2, 374 | 2, 316 | 2, 452 | 2, 460 | 2, 535 | 2, 583 | 2, 578 | 2, 454 | 2, 451 | 2, 459 | 2, 471 | 2, 454 | # Indicated deliveries of crude petroleum to domestic consumers in 1934, by months | District | Janu-
ary | Febru-
ary | March | April | Мау | June | July | August | Septem-
ber | Octo-
ber | Novem-
ber | Decem-
ber | Total | |---|------------------------------------|---|--|---|---|---|---|---|---|--|---|--|--| | Domestic petroleum, by fields of origin: Appalachian: Pennsylvania grade Other (including Kentucky). Lima-northeast Indiana-Michigan Illinois-southwest Indiana. Mid-Continent: North Louisiana and Arkansas. West Texas and southeast New Mexico. East Texas. Other (Oklahoma, Kansas, north Texas, etc.). Gulf coast. Rocky Mountain. California. | 1,805
6,223
14,909
24,375 | 1, 982
391
811
531
1, 954
5, 548
13, 015
23, 939
6, 189
982
12, 348 | 1, 977
519
964
459
1, 961
6, 066
15, 423
23, 230
6, 932
1, 058
13, 318 | 2, 078
524
1, 001
495
1, 767
6, 094
16, 053
24, 728
6, 757
1, 351
13, 839 | 2, 134
558
1, 071
383
1, 888
6, 156
17, 515
26, 217
6, 008
1, 089
14, 747 | 2, 160
625
1, 058
495
1, 964
5, 407
17, 007
26, 713
6, 232
1, 611
14, 467 | 2, 077
636
1, 080
389
2, 031
6, 324
18, 692
29, 077
5, 657
1, 601
14, 882 | 2, 045
652
1, 119
377
1, 826
5, 825
17, 741
29, 436
7, 391
1, 853
14, 233 | 2, 097
700
1, 018
401
1, 614
5, 288
17, 273
26, 819
7, 346
1, 546
13, 306 | 2, 126
644
945
340
1, 764
5, 982
18, 095
26, 077
7, 599
1, 624
13, 255 | 1, 945
537
1, 078
467
1, 889
5, 431
15, 970
27, 464
7, 247
1, 680
13, 424 | 2, 140
553
990
387
1, 745
5, 350
14, 702
29, 872
7, 645
1, 537
13, 902 | 24, 682
6, 835
12, 086
5, 014
22, 208
69, 694
196, 395
317, 947
81, 157
17, 097
165, 428 | | Total demand
Exports ¹ | 71, 996
2, 288 | 67, 690
2, 511 | 71, 907
2, 582 | 74, 687
3, 942 | 77, 766
3, 724 | 77, 739
3, 794 | 82, 446
4, 128 | 82, 498
3, 696 | 77, 408
4, 068 | 78, 451
3, 277 | 77, 132
4, 680 | 78, 823
2, 437 | 918, 543
41, 127 | | Domestic demand | 69, 708
2, 808 | 65, 179
2, 074 | 69, 325
2, 878 | 70, 745
2, 856 | 74, 042
3, 256 | 73, 945
3, 250 | 78, 318
3, 129 | 78, 802
3, 223 | 73, 340
2, 700 | 75, 174
3, 070 | 72, 452
2, 877 | 76, 386
2, 701 | 877, 416
34, 822 | | Total domestic demand | 72, 516 | 67, 253 | 72, 203 | 73, 601 | 77, 298 | 77, 195 | 81, 447 | 82, 025 | 76, 040 | 78, 244 | 75, 329 | 79, 087 | 912, 238 | ¹ Includes shipments to Alaska, Hawaii, and Puerto Rico. # Distribution of crude petroleum in 1934, by States | State | Produc- | Im- | | Receipts from other States | Runs to | Ex- | | Deliveries to other States | Net
change in
stocks. | |---|---------------------|------------------|----------------------------------|--|--------------------|----------|------------------|---|--------------------------------| | | tion | ports | Quan-
tity | State | stills | ports 1 | Quan-
tity | State | losses,
and used
as fuel | | Arkansas | 11, 182
174, 305 | | 1, 711 | Tex | 7, 552
156, 335 | 11, 254 | 5, 701 | Ind., La., Tex | -360 | | Colorado
Georgia | 1, 139 | 353 | 440
1, 712 | N. Mex., Wyo
Tex | 1, 098
2 3, 514 | | 325 | Utah | +6,716
+156 | | Illinois | 4, 479 | | 30, 333 | Ind., Kans., Ky., La., Mich., N.
Mex., Okla., Tex. | 33, 541 | 464 | 404 | Mich | *+128
+403 | | Indiana | 838 | | 54, 559 | Ark., Kans., La., Mich., N. Mex., | 54, 781 | | 796 | III., Ky | -180 | | Kansas
Kentucky and Tennessee
Louisiana | 4,870 | 1, 335 | 8, 697
2, 182 | Okla., Tex
Ind., Okla | 36, 668
6, 545 | 47
10 | 15, 691
597 | Ill., Ind., Mo., Okla., PaIll., W. Va. | +2,773
-100 | | Maryland
Massachusetts | l | 2, 707
1, 578 | 4 38, 844
9, 397
5 12, 546 | Ark., Okla., Tex
N. Mex., Tex
N. Mex., Tex | 1 12 020 | | 18, 150 | Ill., Ind., N. J., Ohio, Pa., Tex | ⁸ +2, 261
+75 | | Michigan
Missouri | 10, 603
35 | | 3, 305
6 5, 046 | Kans., Okla., Tex | 7, 232
6 5 021 | 321 | 5, 396 | Ill., Ind., Ohio | | | Montana
New Jersey | 2,603 | 14, 192 | 1, 361
50, 509 | La., N. Mex., N. Y., Okla., Pa., | 2, 922
64, 249 | 1,702 | 16 | Wyo | 6+60
+324
+452 | | New Mexico | 16, 864 | | 202 | Tex., W. Va. | 1, 318 | | 16, 241 | Colo., Ill., Ind., Md., Mass., N. J., | _403 | | New YorkOhio | 3, 804
4, 234 | 3, 342 | 6, 109
23, 009 | Okla., Pa., Tex
La., Mich., Okla. Tex., W. Va | 13, 587
26, 463 | 65 | 289
1, 251 | Pa., Tex., Utah.
N. J., Pa.
Pa., W. Va. | -621
-536 | | Oklahoma | 180, 107 | | 2, 532 | Kaus., Tex | 53, 317 | 6, 932 | 123, 304 | Ill., Ind., Kans., Ky., La., Mich., Mo.,
N. J., N. Y., Ohio, Pa., Tex., W. Va. | -914 | | Pennsylvania | , | 7, 733 | 67, 091 | Kans., La., N. Mex., N. Y., Ohio,
Okla., Tex., W. Va. | | | 4, 059 | N. J., N. Y. | -1,052 | | Rhode Island
South Carolina | | 466
543 | (5) | Tex | (5)
(2) | | | | (5)
(2) | | Texas | 381, 516 | 2, 275 | 43, 721 | Ark., La., N. Mex., Okla | 241, 359 | 20, 188 | 170, 940 | Ala., Ark., Ga., Ill., Ind., Kans., La.,
Md., Mass., Mo., N. J., N. Mex.,
N. Y., Ohio, Okla., Pa., R. I., Utah. | -4,975 | | UtahVirginia | | 7 1, 034 | 2, 111 | Colo., N. Mex., Tex., Wyo | 2, 098
(²) | | | | +17 | | West Virginia
Wyoming | 4.095 | | 2, 612
16 | Ky., Ohio, Okla
Mont | | 144 | 1, 685
3, 200 | N. J., Ohio, Pa
Colo., Mont., Utah | (2) $+1,201$ $+627$ | | | 908, 065 | 35, 558 | 368, 045 | | 895, 636 | 41, 127 | 368, 045 | | +6,860 | Includes shipments to Alaska, Hawaii, and Puerto Rico. Georgia includes Delaware, South Carolina, and Virginia. Includes Mississippi. ^{Includes Alabama and Mississippi. Massachusetts includes Rhode Island. Includes Iowa.} Includes Delaware. Includes Nebraska and South Dakota. STOCKS Stocks of crude petroleum in 1934, by districts and months [Thousands of barrels of 42 gallons] | | Jan. 1 | Jan. 31 | Feb. 28 | Mar. 31 | Apr. 30 | May 31 | June 30 | July 31 | Aug. 31 | Sept. 30 | Oct. 31 | Nov. 30 | Dec. 31 | |--|------------------|---------|-------------|---------|------------|---------|------------------|---------|---------|----------|---------|------------------|---------| | At refineries, by location of storage: | | | | | | | | | | | | | | | East coast: | | | | |] - | | ļ | | | | |] | | | Domestic | 9, 556 | 9, 419 | 9, 455 | 9, 173 | 9, 783 | 10, 943 | 10, 540 | 10, 744 | 11,885 | 11,587 | 11, 356 | 10, 420 | 10,00 | | Foreign | 2,415 | 2, 435 | 3, 203 | 2, 859 | 2, 694 | 2, 578 | 3,069 | 2, 781 | 2, 434 | 2, 537 | 2, 303 | 2,447 | 2,68 | | Appalachian | 1,875 | 1,825 | 1,755
 1,819 | 1,741 | 1,714 | 1, 599 | 1,454 | 1,403 | 1, 331 | 1, 270 | 1,331 | 1, 24 | | Indiana, Illinois, Kentucky, etc
Oklahoma, Kansas, and Missouri | 4, 554 | 4, 391 | 4, 241 | 4, 467 | 4,342 | 4, 487 | 4, 458 | 4, 511 | 4,047 | 4,063 | 4,064 | 3, 955 | 4,04 | | Texas inland | 6, 223
2, 296 | 6, 161 | 6,007 | 6, 245 | 6, 288 | 6, 286 | 6, 122
1, 872 | 5, 786 | 5, 676 | 5, 780 | 6,093 | 5, 822
1, 968 | 5,99 | | Texas Gulf coast: | 2, 290 | 1,892 | 1,865 | 2, 226 | 2,090 | 1,947 | 1,872 | 1,909 | 1, 962 | 2,052 | 2, 081 | 1,908 | 1,70 | | Domestic. | 12, 683 | 11,688 | 11, 108 | 11,605 | 10, 651 | 11,018 | 10,804 | 10, 353 | 9,731 | 10, 461 | 10, 330 | 10,704 | 10, 67 | | Foreign | 102 | 71 | 11, 108 | 126 | 10, 651 | 120 | 10, 804 | 305 | 304 | 494 | 469 | 448 | 10, 07 | | ForeignLouisiana Gulf coast: | 102 | '1 | 187 | 120 | 1 111 | 120 | 147 | 900 | 904 | 494 | 409 | 440 | 10 | | Domestic | 3, 274 | 3, 517 | 3, 588 | 3, 732 | 3,640 | 3, 591 | 3,631 | 3, 559 | 3, 612 | 3, 543 | 3, 522 | 3, 544 | 3, 42 | | Foreign | 538 | 541 | 604 | 551 | 654 | 583 | 602 | 604 | 475 | 410 | 483 | 398 | 61 | | Foreign Arkansas and Louisiana inland | 1,027 | 996 | 893 | 771 | 730 | 715 | 711 | 616 | 612 | 584 | 847 | 679 | 73 | | Rocky Mountain | 12, 505 | 12, 522 | 12,666 | 12,809 | 12,692 | 13, 087 | 13, 183 | 13, 337 | 13, 291 | 13, 403 | 13, 521 | 13, 537 | 13, 38 | | California | 9,001 | 9,041 | 8, 341 | 9, 144 | 9, 233 | 9, 292 | 8,916 | 8, 413 | 9,036 | 9, 196 | 9,720 | 9,601 | 9,08 | | Total at refineries | 66, 049 | 04 400 | <u> </u> | | 04.515 | 00 001 | 05.054 | 04.070 | | 05 441 | 00.000 | 04.054 | 04.00 | | Total at renneries | 06, 049 | 64, 499 | 63, 923 | 65, 527 | 64, 715 | 66, 361 | 65, 654 | 64, 372 | 64, 468 | 65, 441 | 66, 059 | 64, 854 | 64, 09 | | At refineries, by fields of origin: | | | | | | | | | | | | | | | Appalachian: | l | İ | 1 | | 1 | | ì | t | | | | | | | Pennsylvania grade | 1,699 | 1, 722 | 1, 518 | 1, 502 | 1,458 | 1, 481 | 1, 388 | 1, 345 | 1, 288 | 1, 191 | 1, 151 | 1, 203 | 1, 10 | | Other Appalachian (including Kentucky)Lima-northeastern Indiana-Michigan | 604 | 598 | 580 | 579 | 569 | 601 | 622 | 585 | 583 | 552 | 604 | 620 | 62 | | Lima-northeastern Indiana-Michigan | 489 | 557 | 506 | 483 | 444 | 475 | 544 | 471 | 307 | 427 | 457 | 365 | 29 | | Illinois-southwestern Indiana | 120 | 116 | 160 | 154 | 172 | 152 | 134 | 111 | 130 | 119 | 124 | 104 | 10 | | North Louisiana and Arkansas | 2, 515 | 2, 923 | 2, 569 | 2,706 | 2,622 | 2, 286 | 2,013 | 2, 152 | 2, 192 | 2, 255 | 2,090 | 1,785 | 1, 98 | | West Texas and southeastern New Mexico | 4,014 | 4, 247 | 3,845 | 4,007 | 3,638 | 3, 898 | 4,203 | 4,029 | 4,082 | 3, 817 | 3, 927 | 4,064 | 3, 27 | | East Texas | 1 9.609 | 8,892 | 9,500 | 9, 518 | 9, 241 | 9, 291 | 7,604 | 7,443 | 8,055 | 8,758 | 7,871 | 6, 586 | 6, 23 | | Oklahoma, Kansas, north Texas, etc | 17, 441 | 15, 905 | 15,057 | 15, 923 | 15, 757 | 16,846 | 17,065 | 16, 147 | 15, 530 | 15, 738 | 16, 922 | 16,801 | 16, 61 | | Gulf coast | 5,015 | 4,950 | 5, 203 | -5, 193 | 5, 395 | 5, 704 | 6, 198 | 6, 681 | 6,792 | 6, 578 | 6, 450 | 6, 923 | 7,65 | | Rocky MountainCalifornia | 12, 487 | 12, 501 | 12,640 | 12,782 | 12, 661 | 13,054 | 13, 149 | 13, 305 | 13, 260 | 13, 369 | 13, 488 | 13, 509 | 13, 34 | | California | 9,001 | 9,041 | 8, 341 | 9, 144 | 9, 233 | 9, 292 | 8,916 | 8,413 | 9,036 | 9, 196 | 9,720 | 9,601 | 9,08 | | Foreign | 3, 055 | 3,047 | 4,004 | 3, 536 | 3, 525 | 3, 281 | 3, 818 | 3, 690 | 3, 213 | 3, 441 | 3, 255 | 3, 293 | 3,79 | | Total at refineries | 66, 049 | 64, 499 | 63, 923 | 65, 527 | 64, 715 | 66, 361 | 65, 654 | 64, 372 | 64, 468 | 65, 441 | 66, 059 | 64, 854 | 64, 09 | | | | | | | | | | | | | | | | # Stocks of crude petroleum in 1934, by districts and months—Continued | | Jan. 1 | Jan. 31 | Feb. 28 | Mar. 31 | Apr. 30 | May 31 | June 30 | July 31 | Aug. 31 | Sept. 30 | Oct. 31 | Nov. 30 | Dec. 31 | |---|-----------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | Pipe-line and tank-farm stocks, by fields of origin:
Appalachian: | 2 000 | 0.075 | 0.075 | 9 700 | 9.00 | 9, 401 | 9, 007 | 9, 401 | 0.701 | | 9.005 | 0.004 | | | Pennsylvania grade Other Appalachian (including Kentucky) Lima-northeastern Indiana-Michigan | 3, 882
827
1, 280 | 3, 875
832
1, 155 | 3, 675
903
1, 247 | 3, 738
909
1, 247 | 3, 659
870
1, 252 | 3, 621
787
1, 231 | 3, 635
732
1, 107 | 3, 691
715
1, 109 | 3, 791
669
1, 197 | 3, 751
589
1, 056 | 3, 805
504
1, 073 | 3, 824
530
963 | 3, 760
554
992 | | Illinois-southwestern Indiana North Louisiana and Arkansas West Texas and southeastern New Mexico | 11,061 | 11, 243
8, 957 | 11, 052
8, 969 | 11, 100
8, 597 | 11, 001
8, 636 | 11, 140
8, 815 | 11, 138
8, 836 | 11, 238
8, 409 | 11, 326
8, 265 | 11, 378
8, 190 | 11, 456
8, 287 | 11, 367
8, 257 | 11, 351
7, 999 | | East Texas | 36, 562 | 27, 581
36, 472 | 27, 161
36, 034 | 26, 369
36, 092 | 26, 112
36, 098 | 25, 500
34, 838 | 25, 323
35, 950 | 24, 946
34, 156 | 25, 168
30, 976 | 26, 040
28, 657 | 25, 528
27, 028 | 25, 351
25, 837 | 26, 564
24, 928 | | Oklahoma, Kansas, north Texas, etc | 136, 872
11, 275
15, 056 | 139, 528
11, 486
15, 072 | 139, 381
10, 759
15, 110 | 141, 806
10, 143
15, 192 | 144, 136
9, 531
15, 228 | 145, 220
10, 319
15, 300 | 146, 083
10, 592
15, 129 | 145, 816
11, 871
15, 028 | 144, 260
12, 084
14, 970 | 142, 585
12, 392
14, 857 | 141, 523
12, 359
14, 734 | 139, 249
11, 860
14, 577 | 135, 907
11, 034
14, 702 | | Rocky Mountain | 1 25, 103 | 24, 823 | 25, 009 | 24, 949 | 24, 656 | 24, 429 | 24, 886 | 25, 834 | 25, 624 | 25, 805 | 25, 895 | 26, 137 | 26, 834 | | Total pipe-line and tank-farmProducers' stocks | 1 280, 043
8, 131 | 281, 024
8, 119 | 279, 291
8, 427 | 280, 142
8, 398 | 281, 179
8, 456 | 281, 200
8, 322 | 283, 411
8, 386 | 282, 813
8, 340 | 278, 330
8, 294 | 275, 300
8, 666 | 272, 192
8, 549 | 267, 952
8, 597 | 264, 625
8, 530 | | Total United States: 1934 | ¹ 354, 223
339, 875 | 353, 642
337, 483 | 351, 641
337, 107 | 354, 067
344, 253 | 354, 350
339, 140 | 355, 883
348, 103 | 357, 451
352, 756 | 355, 525
355, 263 | 351, 092
359, 945 | 349, 407
359, 904 | 346, 800
356, 849 | 341, 403
355, 199 | 337, 254
355, 312 | ¹ New basis; for comparison with 1934. ## Stocks of crude petroleum in 1934, by States and months | | | | | | | | Location 1 | | | | | | | Origin 3 | |---|---|---
--|---|---|--|---|--|--|---|--|---|---|---| | State | Jan. 1 | Jan. 31 | Feb. 28 | Mar. 31 | Apr. 30 | May 31 | June 30 | July 31 | Aug. 31 | Sept. 30 | Oct. 31 | Nov. 30 | Dec. 31 | Dec. 31 | | Arkansas. California. Colorado. Georgia 3 Illinois. Indiana. Kansas. Kentucky 4 Louisiana 5 Maryland. Massachusetts 6 Michigan Missouri 7 Montana. New Jersey New Mexico. New York Ohio. Oklahoma Pennsylvania. Texas. Utah. West Virginia. Wyoming 6 Foreign | 5, 663
35, 879
317
517
519
514, 921
1, 161
12, 596
1, 123
1, 152
1, 152
1, 162
1, 169
1, 123
1, 152
2, 250
623
5, 250
7, 8, 885
124, 329
2, 420
2, 420
2, 470 | 5, 510 35, 645 331 468 11, 961 3, 320 14, 836 1, 140 12, 370 1, 164 1, 161 1, 071 3, 602 641 5, 765 438 1, 954 8, 831 185, 142 5, 388 123, 478 2, 417 26, 825 | 5, 328
35, 148
340
401
11, 837
2, 926
14, 771
1, 104
11, 845
1, 415
1, 4 | 5, 112
35, 842
322
577
12, 034
3, 183
15, 141
1, 089
12, 094
1, 423
1, 316
6, 741
5, 211
1, 772
8, 890
87, 059
5, 605
121, 710
328
2, 382
27, 041 | 5, 216 35, 659 356 548 12, 060 3, 254 15, 227 1, 045 11, 824 1, 211 1, 220 1, 103 3, 668 3, 768 1, 738 8, 758 8, 758 88, 387 6, 140 120, 696 2, 341 26, 953 | 5, 139
35, 467
396
613
12, 272
3, 093
14, 813
1, 078
12, 248
1, 387
1, 387
1, 388
5, 818
4, 1, 086
8, 932
1, 764
8, 798
89, 921
6, 423
119, 536
222
2, 215
27, 345 | 4, 741
35, 507
3759
12, 270
3, 275
14, 778
1, 011
12, 636
1, 309
1, 310
1, 022
3, 677
786
6, 366
6, 366
6, 366
6, 366
1, 508
8, 949
90, 138
6, 074
120, 694
120, 694
2, 206
27, 241 | 4, 530
35, 881
369
666
12, 197
3, 395
14, 742
969
12, 586
1, 258
1, 022
1, 015
3, 693
781
6, 263
480
1, 485
8, 779
89, 855
6, 502
119, 292
119, 292
21, 122
27, 339 | 3, 994 36, 279 380 380 340 12, 193 3, 018 14, 344 951 12, 258 1, 246 1, 195 3, 782 486 6, 223 111 1, 498 8, 422 88, 775 7, 396 116, 735 284 2, 047 27, 202 | 3, 823 36, 672 379 584 12, 016 2, 915 5, 14, 198 1, 002 12, 038 1, 351 1, 137 860 3, 736 934 6, 113 5, 54 1, 293 8, 447 87, 943 7, 420 116, 534 27, 126 | 3, 645
37, 209
408
455
12, 136
3, 021
14, 229
962
11, 917
1, 126
850
906
3, 521
1, 206
8, 431
86, 087
7, 385
116, 014
284
2, 078
27, 030 | 3, 567
37, 290
428
658
11, 631
2, 846
13, 839
1, 000
11, 405
1, 316
900
769
3, 215
1, 001
6, 310
1, 194
8, 271
85, 177
6, 354
114, 418
272
2, 129
26, 853 | 3, 924
37, 529
439
713
11, 719
3, 122
13, 350
1, 035
11, 181
1, 178
810
3, 351
1, 1075
5, 676
8, 079
82, 614
6, 533
113, 001
282
2, 124
26, 733 | 6, 380
37, 529
504
11, 533
49
5, 108
1, 049
8, 833
 | | Total United States | 354, 223 | 353, 642 | 351, 641 | 354, 067 | 354, 350 | 355, 883 | 357, 451 | 355, 525 | 351, 092 | 349, 407 | 346, 800 | 341, 403 | 337, 254 | 337, 254 | Segregated by States of location regardless of origin. Segregated by States of production (origin) regardless of location. Georgia includes Delaware, South Carolina, and Virginia. Includes Tennessee. Includes Alabama and Mississippi. Includes Rhode Island. Includes Iowa. Includes Nebraska and South Dakota. # Stocks of crude petroleum, January to June 1934, by grades and weeks 1 | | | , | | | | | | | | | | | | |--|---|--|--|--|--|--|--|--|--|--|--|--|--| | Grades | Jan. 6 | Jan. 13 | Jan. 20 | Jan. 27 | Feb. 3 | Feb. 10 | Feb. 17 | Feb. 24 | Mar. 3 | Mar. 10 | Mar. 17 | Mar. 24 | Mar. 31 |
 Pennsylvania grade Other Appalachian, including Kentucky Lima-northeast Indiana-Michigan Illinois-southwest Indiana North Louisiana and Arkansas West Texas and southeast New Mexico East Texas. Other midcontinent (Kansas, Oklahoma, and all of Texas except west Texas, east Texas, and coastal | 1,660
11,242
11,938
32,097
43,929 | 5, 366
1, 259
1, 710
11, 320
12, 077
31, 873
44, 065 | 5, 361
1, 260
1, 706
11, 403
12, 012
31, 706
43, 842 | 5, 264
1, 228
1, 653
11, 442
11, 935
31, 893
44, 325 | 5, 283
1, 248
1, 577
11, 269
11, 839
31, 889
44, 278 | 5, 161
1, 276
1, 607
11, 332
11, 860
31, 668
43, 502 | 5, 073
1, 276
1, 570
11, 353
11, 640
31, 305
43, 962 | 5, 124
1, 313
1, 616
11, 150
11, 512
31, 130
43, 785 | 4, 973
1, 303
1, 599
11, 176
11, 477
30, 482
43, 921 | 5, 094
1, 362
1, 619
11, 130
11, 530
30, 405
43, 565 | 5, 021
1, 347
1, 571
11, 204
11, 423
30, 472
43, 582 | 4, 966
1, 349
1, 607
11, 292
11, 368
30, 422
43, 663 | 4, 911
1, 353
1, 595
11, 239
11, 276
29, 846
44, 180 | | Texas) Gulf coast (Texas and Louisiana) Rocky Mountain California | 16, 437
27, 263
34, 526 | 154, 199
16, 455
27, 192
34, 240 | 154, 484
16, 306
27, 206
33, 952 | 154, 196
16, 356
27, 195
33, 968 | 153, 585
16, 046
27, 229
34, 124 | 153, 603
15, 826
27, 309
34, 237 | 153, 932
16, 206
27, 265
34, 041 | 153, 735
15, 727
27, 381
33, 752 | 153, 222
15, 739
27, 452
33, 860 | 153, 375
15, 512
27, 533
33, 563 | 154, 308
15, 266
27, 584
33, 619 | 154, 967
15, 517
27, 584
33, 894 | 155, 899
15, 504
27, 619
34, 391 | | Total domestic crude | 339, 235 | 339, 756
3, 138 | 339, 238
3, 082 | 339, 455
2, 962 | 338, 367
3, 100 | 337, 381
3, 250 | 337, 623
3, 534 | 336, 225
3, 478 | 335, 204
3, 912 | 334, 688
3, 803 | 335, 397
3, 590 | 336, 629
3, 452 | 337, 813 | | Total crude ² | | 342, 894 | 342, 320 | 342, 417 | 341, 467 | 340, 631 | 341, 157 | 339, 703 | 339, 116 | 338, 491 | 338, 987 | 340, 081 | 3, 550
341, 363 | | | <u> </u> | | 1 | <u> </u> | <u> </u> | | ! | <u> </u> | 1 | <u> </u> | <u> </u> | ! | | | Grades | Apr. 7 | Apr. 14 | Apr. 21 | Apr. 28 | May 5 | May 12 | May 19 | May 26 | June 2 | June 9 | June 16 | June 23 | June 30 | | Pennsylvania gradeOther Appalachian, including Kentucky | 4, 978
1, 346 | 4,884
1,368 | 4, 758
1, 293 | 4, 837
1, 322 | 4, 860
1, 323 | 4, 798
1, 329 | 4,746
1,322 | 4, 758
1, 303 | 4, 822
1, 252 | 4, 744
1, 224 | 4, 646
1, 203 | 4, 666
1, 180 | 4, 676
1, 232 | | Lima-northeast Indiana-Michigan | 1, 594 | 1,642 | 1, 613 | 1,603
3 1,543 | 1,550 | 1,555 | 1,611 | 1,605 | 1, 613 | 1,606 | 1,480 | 1,473 | 1,495 | | Illinois-southwest Indiana. North Louisiana and Arkansas. West Texas and southeast New Mexico. East Texas. Other midcontinent (Kansas, Oklahoma, and all of Texas except west Texas, east Texas, and coastal | | 11, 188
11, 105
30, 047
43, 538 | 11, 201
11, 134
29, 787
43, 761 | 11, 118
11, 106
29, 520
43, 601 | 11, 159
11, 097
29, 570
43, 386 | 11, 218
19, 993
29, 359
42, 656 | 11, 279
10, 971
29, 175
42, 273 | 11, 279
10, 861
28, 918
41, 931 | 11, 308
11, 008
29, 340
42, 171 | 11, 255
10, 991
29, 376
41, 478 | 11, 310
10, 951
28, 879
41, 825 | 11, 343
10, 875
29, 115
42, 095 | 11, 236
10, 866
29, 216
41, 256 | | Texas) | 156, 253
15, 445
27, 610
34, 463 | 157, 633
15, 258
27, 494
34, 138 | 157, 701
14, 873
27, 437
34, 327 | 157, 791
15, 091
27, 489
33, 986 | 158, 762
14, 885
27, 611
34, 325 | 159, 254
15, 312
27, 649
34, 063 | 159, 732
15, 345
27, 731
33, 717 | 159, 408
15, 609
27, 685
33, 505 | 160, 345
16, 389
27, 785
33, 830 | 161, 090
16, 277
27, 883
34, 046 | 161, 561
16, 662
27, 871
33, 856 | 161, 104
16, 330
27, 878
33, 845 | 161, 705
16, 699
27, 826
33, 938 | | Total domestic crude Total foreign crude | 338, 140
3, 826 | 338, 295 | 337, 885 | 337, 464
3337, 404 | 338, 528 | 338, 186 | 337, 902 | 336, 862 | 339, 863 | 339, 970 | 340, 244 | 339, 904 | 340, 145 | | | | 3, 627 | 3,461 | 3, 254 | 3, 579 | 3, 533 | 3,492 | 3, 459 | 3, 258 | 3, 231 | 3, 244 | 3, 212 | 3, 562 | | Total crude 2 | 341,966 | 341, 922 | 341, 346 | 340, 718
340, 658 | 342, 107 | 341, 719 | 341, 394 | 340, 321 | 343, 121 | 343, 201 | 343, 488 | 343, 116 | 343, 707 | | | | | | ł | l | 1 | | | | | | 1 | ı | ## Stocks of crude petroleum, July to December 1934, by grades and weeks 1 | Grades | July 7 | July 14 | July 21 | July 28 | Aug. 4 | Aug. 11 | Aug. 18 | Aug. 25 | Sept. 1 | Sept. 8 | Sept. 15 | Sept. 22 | Sept. 29 | |---|---|--|--|--|--|--|---|--|--|---|--|--|--| | Pennsylvania grade. Other Appalachian, including Kentucky. Lima-northeast Indiana-Michigan. Illinois-southwest Indiana. North Louisiana and Arkansas. West Texas and southeast New Mexico. East Texas. Other midcontinent (Kansas, Oklahoma, and all of | 1, 247
1, 537
11, 280 | 4,619
1,255
1,478
11,331
10,692
29,576
40,866 | 4, 676
1, 225
1, 471
11, 362
10, 665
29, 151
39, 802 | 4, 696
1, 188
1, 445
11, 356
10, 447
29, 138
39, 480 | 4,670
1,188
1,515
11,382
10,269
29,433
39,390 | 4,747
1,167
1,435
11,352
10,204
29,441
38,044 | 4,743
1,163
1,419
11,378
10,280
29,750
37,651 | 4, 684
1, 137
1, 438
11, 523
10, 158
29, 399
37, 107 | 4, 732
1, 118
1, 403
11, 537
10, 217
29, 311
36, 891 | 4,744
1,141
1,368
11,394
10,240
29,530
35,948 | 4, 723
1, 124
1, 356
11, 448
10, 338
29, 480
35, 520 | 4, 641
1, 116
1, 361
11, 503
10, 403
29, 557
35, 159 | 4, 624
1, 174
1, 391
11, 515
10, 325
29, 600
35, 098 | | Other midcontinent (Kansas, Oklahoma, and all of Texas except west Texas, east Texas and coastal Texas) | 161, 722
16, 887
27, 887
33, 841 | 161, 367
17, 628
27, 864
33, 828 | 160, 815
17, 704
27, 816
34, 153 | 160, 641
17, 657
27, 846
33, 973 | 160, 417
17, 802
27, 942
34, 186 | 160, 846
17, 769
27, 839
34, 277 | 159, 762
17, 359
27, 770
34, 386 | 159, 593
17, 703
27, 022
34, 346 | 158, 410
18, 205
27, 743
34, 729
33, 874 | 157, 810
18, 265
27, 706
33, 719 | 157, 179
18, 094
27, 697
33, 675 | 156, 732
18, 196
27, 646
33, 780 | 156, 862
18, 542
27, 706
33, 696 | | Total domestic crude Total foreign crude | 340, 413
3, 679 | 340, 504
3, 683 | 338, 840
3, 771 | 337, 867
3, 446 | 338, 194
3, 421 | 337, 121
3, 266 | 335, 661
3, 101 | 334, 110
2, 834 | 334, 296
3333, 441
2, 898 | 331, 865
2, 620 | 330, 634
2, 780 | 330, 094
2, 881 | 330, 533
3, 019 | | Total crude 2 | 344, 092 | 344, 187 | 342, 611 | 341, 313 | 341, 615 | 340, 387 | 338, 762 | 336, 944 | { 337, 194
3 336, 339 | 334, 485 | 333, 414 | 332, 975 | 333, 552 | | Grades | Oct. 6 | Oct. 13 | Oct. 20 | Oct. 27 | Nov. 3 | Nov. 10 | Nov. 17 | Nov. 24 | Dec. 1 | Dec. 8 | Dec. 15 | Dec. 22 | Dec. 29 | | Pennsylvania grade. Other Appalachian, including Kentucky Lima-northeast Indiana-Michigan Illinois-southwest Indiana North Louisiana and Arkansas West Texas and southeast New Mexico. East Texas Other midcontinent (Kansas, Oklahoma, and all of Texas except west Texas, east Texas, and coastal | 29, 888
34, 616 | 4, 620
1, 156
1, 456
11, 415
10, 159
30, 254
33, 512 | 4, 628
1, 165
1, 432
11, 412
10, 059
30, 067
33, 084 | 4, 687
1, 159
1, 449
11, 443
10, 058
29, 639
33, 318 | 4, 652
1, 125
1, 417
11, 453
10, 115
29, 990
32, 957 | 4, 628
1, 099
1, 335
11, 401
10, 001
29, 704
31, 675 | 4, 661
1, 124
1, 278
11, 339
9, 830
29, 985
30, 355 | 4, 641
1, 120
1, 219
11, 382
9, 776
29, 789
30, 840 | 4, 668
1, 071
1, 208
11, 393
9, 709
29, 799
31, 156 | 4, 595
1, 022
1, 154
11, 429
9, 770
30, 222
30, 674 | 4, 567
975
1, 340
11, 507
9, 861
30, 100
30, 544 | 4, 523
1, 000
1, 382
11, 470
9, 857
30, 245
29, 969 | 4, 468
978
1, 151
11, 454
9, 781
30, 095
29, 698 | | Texas, except west Texas, east Texas, and coastai
Texas). Gulf coast (Texas and
Louisiana). Rocky Mountain. | | 157, 402
18, 360
27, 746
34, 010 | 157, 091
18, 304
27, 697
34, 209 | 156, 147
18, 015
27, 722
34, 530 | 156, 017
18, 488
27, 720
34, 947 | 155, 898
18, 433
27, 679
34, 253 | 155, 541
18, 847
27, 637
33, 996 | 154, 251
18, 855
27, 551
33, 980 | 153, 768
18, 419
27, 602
34, 919 | 152, 853
18, 473
27, 545
35, 106 | 152, 072
18, 263
27, 475
34, 602 | 151, 969
18, 004
27, 425
34, 480 | 150, 927
18, 282
27, 430
34, 679 | | Total domestic crudeTotal foreign crude | 330, 589
2, 922 | 330, 090
2, 728 | 329, 148
2, 833 | 328, 167
2, 779 | 328, 881
2, 995 | 326, 106
2, 966 | 324, 593
3, 083 | 323, 404
2, 919 | 323, 712
3, 045 | 322, 843
3, 127 | 321, 306
2, 954 | 320, 324
3, 412 | 318, 943
3, 319 | | Total crude 2 | 333, 511 | 332, 818 | 331, 981 | 330, 946 | 331, 876 | 329, 072 | 327, 676 | 326, 323 | 326, 757 | 325, 970 | 324, 260 | 323, 736 | 322, 262 | ¹ Data obtained weekly by the Petroleum Administrative Board and compiled by the Bureau of Mines. ² Represents approximately 98 percent of total stocks in the United States, exclusive of lease (producers') stocks. ³ New basis. ## INPORTS AND EXPORTS Crude petroleum imported into and exported from United States 1 in 1934, by months [Quantity in thousands of barrels of 42 gallons; value in thousands of dollars] | | | | | | | | | | | | | | Т | otal | |--|------------------------|------------------|------------------|------------------|---------------------------|------------------|---------------------|------------------|------------------------------|------------------|------------------------------------|------------------|-----------------------|--| | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Quan-
tity | Value | | Imports (Bureau of For-
eign and Domestic
Commerce) | 3, 011 | 2, 416 | 2, 272 | 2, 806 | 3, 082 | 3, 36 5 | 2, 356 | 2, 169 | 2, 731 | 1, 892 | 2, 653 | 2, 374 | 2 31,127 | ² 21,968 | | Imports (Bureau of Mines): By countries: In bond: Colombia | | | | | | | | - | 011 | 001 | 100 | | | | | Venezuela | 203 | | | | | | 497 | 516 | 211
319 | 331
395 | 183
282 | | 3, 590 | | | | 203 | 140 | 305 | 213 | 110 | 522 | 497 | 516 | 530 | 726 | 465 | 636 | 4,863 | | | Duty paid: Colombia Mexico Venezuela Other countries | 79 | 824
1, 763 | 277
1, 318 | 340
1, 941 | 1, 923 | 1, 856 | 478
1, 895
23 | 375
1,855 | 1, 873 | 1, 918 | 2, 139
 | 2, 096 | 102 | | | Total imports | 2, 597
2, 800 | 2, 891
3, 031 | 2, 105
2, 410 | 2, 632
2, 845 | 2, 902
3, 012 | 3, 265
3, 787 | 2, 504
3, 001 | 2, 230
2, 746 | 2, 398
2, 928 | 2, 158
2, 884 | 2, 450
2, 915 | 2, 563
3, 199 | 30, 695
35, 558 | | | By districts: Atlantic coast Gulf coast | 69 | 252 | 91 | 283 | 16 | 336 | 426 | 68 | 344 | 560 | 302 | 863 | 3, 610 | | | | 2, 800 | 3, 031 | 2, 410 | 2, 845 | 3, 012 | 3, 787 | 3, 001 | 2, 746 | 2, 928 | 2, 884 | 2, 915 | 3, 199 | 35, 558 | | | Exports: By countries: Domestic crude oil: Argentina Belgium | | | | | 182 | | 195 | 101 | 192 | | 99 | | 769 | 1,003 | | Belgium
Canada
Canary Islands | 1, 118 | 1, 096
78 | 1, 102 | 1, 914 | 1, 980 | | | | | | | 1, 174 | 102
21, 963
156 | 26, 462
168 | | France
Germany
Italy | | 73 | 952
21
59 | 1, 091
154 | 759
75 | 1, 170

85 | 806
68 | 576
91 | 803 | 772 | 1, 121
112 | 631
88 | 10, 204
380
446 | 12, 563
448
660 | | Japan
Mexico
Other countries | 442 | | 1 | 79 | 724
2
2 | 566
2 | 466
2
15 | 4 | 525
4
1 | 326
4
35 | 982
3
126 | 3 | 6, 693
107
307 | 7, 944
122
267 | | | 2, 288 | 2, 511 | 2, 582 | 3, 942 | 3, 724 | 3, 794 | 4, 128 | 3, 696 | 4, 068 | 3, 277 | 4, 680 | 2, 437 | 41, 127 | 49, 756 | | By districts: Atlantic coast Gulf coast Mexican border Pacific coast Northern border | 726
2
722
838 | 894 | 56
691 | 61
1, 193 | 1, 934
1
932
857 | 60
848 | 1,027 | 883 | 2, 123
4
1, 013
928 | 63 | 75
2, 159
3
1, 543
900 | 935 | 260
11, 251 | 56
22, 658
332
11, 992
14, 718 | | | 2, 288 | 2, 511 | 2, 582 | 3, 942 | 3, 724 | 3, 794 | 4, 128 | 3, 696 | 4, 068 | 3, 277 | 4, 680 | 2, 437 | 41, 127 | 49, 756 | Exclusive of Alaska, Hawaii, and Puerto Rico. Includes 33,000 barrels, valued at \$24,000, withdrawn from bond. ### PRICES AND VALUES Value of crude petroleum at the wells, 1924 and 1931-34, by States [Totals in thousands of dollars; averages in dollars per barrel] | | 1924 | / | 193 | 1 | 193 | 2 | 193 | 3 | 193 | 4 . | |---|---|----------------------------------|---|--------------------------------|---|--------------------------------|---|-------------------------------|---|--------------------------------| | State | Total | Aver-
age | Total | Aver-
age | Total | Aver-
age | Total | Aver-
age | Total | Aver-
age | | Arkansas | 43, 130
1 274, 653
490
14, 220 | 0. 94
1. 20
1. 10
1. 76 | 7, 200
135, 960
825
4, 500 | 0. 49
. 72
. 53
. 89 | 7, 690
144, 600
880
4, 720 | 0. 64
. 81
. 77
1. 01 | 4, 850
143, 300
540
3, 690 | 0. 42
. 83
. 59
. 87 | 8,000
160,760
1,060
4,990 | 0. 72
. 92
. 93
1. 11 | | Indiana: Southwestern Northeastern | 1, 200
520 | 1.80
1.93 | 730
20 | .91 | 810
18 | 1.04
.62 | 641
9 | .89
.64 | 930
30 | 1. 14
1. 25 | | Total Indiana
Kansas
Kentucky | 1,720
44,400
14,592 | 1. 84
1. 54
1. 97 | 750
25, 500
5, 295 | .89
.69
.82 | 828
31, 720
5, 906 | 1.03
.91
.94 | 650
27, 700
3, 780 | .88
.66
.82 | 960
47,850
5,640 | 1. 15
1. 03
1. 16 | | Louisiana: Gulf coast Northern | 4, 050
26, 290 | 1. 63
1, 41 | 6, 370
7, 850 | . 67 | 9, 380
9, 170 | .81 | 9, 580
5, 700 | . 63 | 23, 400
8, 450 | . 98 | | Total Louisiana
Michigan
Montana | 30, 340 | 1. 44 | 14, 220
2, 840
2, 730 | . 65
. 75
. 96 | 18, 550
5, 260
2, 560 | .85
.76
1.04 | 15, 280
7, 150
2, 220 | .61
.90
.98 | 31, 850
10, 820
4, 380 | . 97
1. 02
1. 22 | | New Mexico: Northwestern Southeastern | } 127 | 1, 30 | { 450
6,040 | .86 | 365
7, 285 | . 93 | 320
6, 170 | .87 | 400
12,300 | 1.06
.75 | | Total New Mexico
New York | 127
5, 245 | 1.30
3.64 | 6, 490
6, 800 | . 43
2. 02 | 7, 650
6, 630 | . 61
1. 89 | 6, 490
5, 960 | . 46
1. 87 | 12,700
9,340 | . 75
2. 46 | | Ohio:
Central and eastern
Northwestern | 13, 135
4, 030 | 2. 74
2. 00 | 4, 600
1, 010 | 1.09 | 4, 230
1, 200 | 1. 18
1. 13 | 3, 490
1, 050 | 1. 09
1. 02 | 5, 550
1, 280 | 1.70
1.31 | | Total OhioOklahomaPennsylvaniaTennessee | 17, 165
272, 450
27, 025
18 | 2. 52
1. 57
3. 61
1. 80 | 5, 610
119, 200
23, 550
5 | 1.05
.66
1.98
.83 | 5, 430
137, 920
23, 400
4 | 1. 17
. 90
1. 89
. 80 | 4, 540
120, 800
23, 590
(2) | 1.07
.66
1.87 | 6, 830
183, 700
35, 200
(²) | 1, 61
1, 02
2, 43 | | Texas: Gulf coast East Texas proper West Texas. Rest of State | h ' | 1. 56
1. 51 | 31, 620
[50, 430
37, 270
51, 630 | .66
.46
.47
.54 | 34, 100
114, 200
40, 860
70, 540 | .81
.94
.65
.82 | 40, 500
115, 500
24, 000
45, 000 | .66
.56
.43
.55 | 60, 600
181, 000
38, 450
81, 500 | 1.01
1.00
.76
.91 | | Total Texas West Virginia Wyoming Other 3 | 203, 870
20, 840
48, 600
44 | 1. 52
3. 52
1. 23
3. 38 | 170, 950
7, 070
11, 120
15 | . 51
1. 58
. 75
2. 14 | 259, 700
6, 050
10, 942
20 | . 83
1. 56
. 82
1. 25 | 225, 000
5, 860
6, 570
30 | . 56
1. 54
. 59
. 86 | 361, 550
8, 600
10, 550
45 | . 95
2. 10
. 84
. 88 | | United States | | 1. 43 | 550, 630 | . 65 | 680, 460 | . 87 | 608, 000 | . 67 | 904, 825 | 1.00 | California State Mining Bureau. Included under "Other." Alaska and Utah, 1924 and 1931; Alaska, Missouri, and Utah, 1932; Alaska, Mississippi, Missouri, Tennessee, and Utah, 1933; Mississippi, Missouri, Tennessee, and Utah, 1934. Average monthly prices per barrel for selected grades of crude petroleum at wells in 1934 | | | ylvania
ade | | | Okla- | Pan-
handle,
Tex. | | Gulf- | Cali- | |---|---|--|--|--|--|--|---|--|--| | Month | Brad-
ford | South-
west
Penn-
syl-
vania | Lima,
Ohio | Illinois | homa-
Kansas
36°-36.9° |
(Carson
and
Hutch-
inson
Counties.
35°-35.9°) | West
Texas | grade
B, 30°-
30.9° | fornia
(Long
Beach,
27°-27.9°) | | January February March April May June July August September October November December | \$2. 45
2. 45
2. 45
2. 55
2. 55
2. 55
2. 55
2. 55
2. 55
2. 34
2. 09 | \$2. 12
2. 12
2. 12
2. 12
2. 22
2. 22 | \$1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30 | \$1. 14
1. 13
1. 13 | \$1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | \$0.71
.71
.71
.71
.71
.71
.71
.71
.71 | \$0.75
.75
.75
.75
.75
.75
.75
.75
.75
.75 | \$1.04
1.04
1.04
1.04
1.04
1.04
1.04
1.04 | \$1. 00
1. 00
1. 00
1. 00
1. 00
1. 00
1. 00
1. 00
1. 00
1. 00 | | Average for year | 2. 46 | 2. 13 | 1. 30 | 1. 13 | 1.00 | .71 | .75 | 1.04 | 1.00 | Posted price per barrel of petroleum at wells in 1934, by grades, with dates of change | Date Bradford and Allegany districts Fine lines Pipe P | | | | nsylvania
grade | Corn | | | | TIE | nois | | | lahoma-
ansas ⁸ | |--|--------|-----------------------|------------------------|-----------------------------|---------------------------------------|-----------------|-----------|---------------------|-----------|----------------|---------------------|-----------|-----------------------------------| | Sant | Date | an
ga | nd All
any di | e- Penns
s- vani
Pipe | th-Bucke
Pip
yl-Line
a lines | eye K
Co. tu | rn
en- | | a, Pri | nd
nce- | Mid
land
Mich | 34°- | | | Pan-handle, Tex. (Carson and Hutch-inson Counties 38°-35.9°) \$0.71 \$0.75 \$0.75 \$0.87 \$0.80 \$0.96 \$1.00 \$1.15 \$1.00 \$ | Jan. 5 | | 2. 5 | 5 2.
0 1. | 22
97 | | | \$1. | | 1. 23
1. 13 | \$1.0 | 02 \$0. 8 | \$1.00 | | Date | | | 2. 4 | 6 2. | 13 1. | 32 | 1. 12 | 1. | 30 | 1. 13 | 1.0 | 02 .9 | 6 1.00 | | Date And Hutchinson Counties 35°-35.9°) So. 75 So. 75 So. 87 So. 80 So. 96 St. 00 St. 15 Smack Creek, | | hand | ile. | | | | s | outh- | 1,7,- | | <i>y</i> - 402 2-1 | Gu | lf coast | | North Smack- Creek, Sur Vettle Mid- | | Huto
inso
Count | d
ch-
on
ties | | | | M | 'exas,
Iiran- | Tex. 34°- | , , | | 38°- | Grade
B, 30°-
30.9° 8 | | North Smack- Creek, Sun Westeld Wild Wild I | Jan. 1 | \$0 | 0.71 | \$0.75 | \$0.75 | \$0.8 | 7 | \$0.80 | \$0.9 | 96 | \$1.00 | \$1.15 | \$1.04 | | Toridi Smack- Creek, Sun Wettle | | | ., | | Salt | | Ī | | | Ca | lifornia | 11 | | | Date ana, 34°- over, ark. burst, man Beach, way- Playa Santa (1988) Ark. Ark. Ark. Ark. Mont. Hills, over Mont. Hills, over Mont. | Date | Loui
ana. 3 | isi-
34°- | over. | Creek,
Wyo.,
36°- | | 3 H
3 | nan
ills,
8°- | 27°- | Si | unset, | del Rey, | Santa Fe
Springs,
33°-33.9° | | Jan. 1 | | | | \$0.70 | \$1.00 | \$1.38 | \$ | 1.08 | \$1.00 | - | \$0.64 | \$0.90 | \$1. 16 | | .89 .70 1.00 1.35 1.08 1.00 .64 .90 | | | . 89 | . 70 | 1.00 | 1. 35 | - | 1. 08 | 1.00 | | . 64 | . 90 | 1. 16 | ¹ The Tide-Water Pipe Co., Ltd. 2 The Joseph Seep Purchasing Agency. 3 The Ohio Oil Co. 4 The Pure Oil Co. 5 The Texas Co. 6 Humble Oil & Refining Co. Magnolia Petroleum Co. Gulf Pipe Line Co. Standard Oil Co. of Louisiana. Stanolind Oil & Gas Co. Standard Oil Co. of California. WELLS Oil and gas wells in 1934 | | Producing | g oil wells | | W | ells drilled | 1 | | |--|---|--|---------------------------------|-----------------------------|-------------------------------|-----------------------------------|---| | State | Approxi-
mate
number,
Dec. 31 | Average
produc-
tion per
well per
day (bar-
rels) | Oil | Gas | Dry | Total | Esti-
mated
average
daily
initial
produc-
tion per
well (bar-
rels) | | Arkansas California ² Colorado Illinois | 2, 800
11, 750
190
14, 630 | 10.8
42.0
16.4
.8 | 35
452
7
6 | (3)
4
1 | 52
247
13
9 | 87
699
24
16 | 261
1, 262
2, 372
20 | | Indiana: Southwestern Northeastern | 1, 130
100 | 2.0 | 63
6 | 26
15 | 74
2 | 163
23 | 32
11 | | Total Indiana
Kansas
Kentucky | 1, 230
18, 550
13, 900 | 1. 9
6. 9
1. 0 | 69
591
236 | 41
22
9 | 76
222
107 | 186
835
352 | 30
509
69 | | Louisiana: Gulf coast Northern | 560
2, 580 | 138. 7
9. 2 | 250
139 | 3
77 | 118
180 | 371
396 | 770
95 | | Total Louisiana Michigan 4 Montana New Mexico New York | 3, 140
980
1, 400
640
19, 330 | 28. 4
32. 1
7. 0
78. 3
. 6 | 389
272
127
107
(5) | 80
47
21
13
(5) | 298
150
36
24
(5) | 767
469
184
144
(5) | 528
800
104
2, 417
(5) | | Ohio:
Central
Northwestern | 19, 880
12, 770 | .4 | 402
48 | 412
21 | 242
34 | 1, 056
103 | 22
20 | | Total OhioOklahomaPennsylvania | 32, 650
56, 650
80, 200 | 8.7
.5 | 450
1, 161
5 1, 535 | 433
91
5 61 | 276
465
⁵ 36 | 1, 159
1, 717
5 1, 632 | 22
580
8 2 | | Texas: Gulf coast East Texas proper West Texas Rest of State | 3, 700
15, 500
3, 470
29, 630 | 49. 2
36. 3
42. 2
8. 2 | 758
3,441
443
2,218 | 82
5
5
199 | 369
71
114
1,605 | 1, 209
3, 517
562
4, 022 | 644
6 1, 884
2, 308
213 | | Total Texas | 52, 300
19, 200
3, 410
7 120 | 20.8
.6
10.1 | 6, 860
171
44 | 291
243
9
8 7 | 2, 159
96
14
8 32 | 9,310
510
67
8 39 | 1, 234
27
186 | | Total | 333, 070 | 7. 5 | 12, 512 | 1, 373 | 4, 312 | 18, 197 | 861 | ¹ From Oil and Gas Journal, except California and Michigan. 2 Producing wells,
from Central Committee of California Oil Producers; wells completed, from American Petroleum Institute. 3 California gas wells not reported. 4 Department of Conservation, Michigan. 5 New York included with Pennsylvania. 6 Based on short gages generally ranging from 15 to 30 minutes. 7 Mississippi, Missouri, Tennessee, and Utah. 6 Alabama, Mississippi, Missouri, Tennessee, and Utah. # 400 MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX Wells drilled for oil and gas in the United States in 1934, by months | | | | - | | | | | | | | | | То | tal | |-----------------------|------------------|------|------|------|--------|------|---------------|---------------|------------------|------|------|------|--------------------|--------------| | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Num-
ber | Per-
cent | | | | | | | | | | | | | | | | | | Qil | 902 | | | | 1, 100 | | | | 1,053 | | | | 12, 512 | | | Gas 1 | 113 | | 77 | | | | 93 | 135 | 134 | | | | | | | Dry | 330 | 285 | 280 | 285 | 375 | 362 | 392 | 387 | 367 | 466 | 406 | 377 | 4,312 | 24 | | Total: 1934.
1933. | 1, 345
1, 014 | | | | | | 1, 672
869 | 1, 732
999 | 1, 554
1, 333 | | | | 18, 197
12, 312 | | | | | | | | | | | | | , | , | _, | , ==, | | ¹ California dry gas wells not reported. # PRODUCTION AND ROYALTIES FROM WELLS ON FEDERAL AND INDIAN LANDS Crude petroleum produced on Government lands in 1934, under operation of the Leasing Act of Feb. 25, 1920 [From U. S. Geological Survey] | State and land office | Production | Roy | alty | |--|------------------|-----------------|-----------------| | State and land office | (barrels) | Barrels | Value | | California: Los Angeles | 1, 353, 486. 66 | 121, 958. 21 | \$92, 379. 60 | | | 12, 382, 244. 05 | 1, 411, 394. 60 | 1, 571, 246. 25 | | | 3, 582, 889. 17 | 673, 630. 12 | 546, 198. 67 | | Total | 17, 318, 619. 88 | 2, 206, 982, 93 | 2, 209, 824. 52 | | | 631, 589. 77 | 51, 138, 81 | 46, 441. 92 | | | 2, 155. 72 | 269, 38 | 277. 12 | | Montana: Billings | 199, 981, 68 | 11, 188. 13 | 21, 105. 03 | | | 115, 307, 23 | 7, 013. 94 | 9, 475. 83 | | Total | 315, 288. 91 | 18, 202. 07 | 30, 580. 86 | | New Mexico: | 2, 870, 932. 91 | 209, 968. 28 | 177, 478. 52 | | Las Cruces | 5, 122. 89 | 256. 15 | 563. 17 | | Total | 2, 876, 055. 80 | 210, 224, 43 | 178, 041. 69 | | Oklahoma: Guthrie | 258, 826. 94 | 30, 650, 38 | 32, 980. 33 | | | 908. 69 | 61, 68 | 77. 72 | | Wyoming: Buffalo Cheyenne, outside naval reserves Evanston | 140, 517. 04 | 8, 517. 49 | 7, 906. 47 | | | 8, 149, 274. 89 | 1, 067, 727. 43 | 1, 162, 781. 19 | | | 460, 195. 21 | 35, 382. 95 | 30, 555. 17 | | Total | 8, 749, 987. 14 | 1, 111, 627. 87 | 1, 201, 242. 83 | | Grand total | 30, 153, 432. 85 | 3, 629, 157. 55 | 3, 699, 466, 99 | Royalty receipts from production of oil and gas and bonuses paid for sale of leases on Indian reservations, fiscal year ended June 30, 1934 [From Bureau of Indian Affairs] | | Oil and gas | Rec | eip ts | |----------------------------|---------------------------------------|---------------------------------|---------------------------------------| | Reservation | land leased
during year
(acres) | Bonus from
sale of
leases | Royalty from production | | Five Civilized Tribes: Oil | } 17, 302
 | \$75, 589
1, 960 | \$1,097,188
93,390
9,930
279 | | Isabella: Oil | } 5, 215 | 1,600 | 601
3,817
1,005
49,070 | | Osage:
Oil | 33, 865 | 1, 177, 763 | 1,879,856
296,031 | | Pawnee: Oil | } 160 | 240 | 35, 118
1, 291 | | Seneca: Oil | | | 1, 066
5, 500 | | Shawnee: Oil | 3,705 | 30, 269 | 39, 058
2, 126
5, 341 | | Ute Mountain: Oil | } | | { 101 2, 414 | | | 51, 647 | 1, 287, 421 | 3, 523, 182 | ### PETROLEUM PRODUCTS ### DETAILED STATISTICS, BY PRODUCTS ### MOTOR FUEL AND GASOLINE Comparative analyses of statistics for motor fuel in 1934, by months [Thousands of barrels of 42 gallons] | | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------------| | Daily average | 33, 915
1, 094 | 31, 202
1, 114 | 33, 606
1, 084 | 35, 056
1, 169 | 35, 642
1, 150 | 35, 356
1, 179 | 37, 535
1, 211 | 38, 164
1, 231 | 35, 042
1, 168 | 36, 381
1, 174 | 35, 413
1, 180 | 36, 489
1, 177 | 423, 801
1, 161 | | Exports
Daily average | 1, 940
63 | | | 2, 713
90 | 1, 907
62 | 1, 994
66 | 1, 718
55 | 2, 165
70 | 1, 876
63 | 1, 965
63 | 2, 210
74 | 1, 635
53 | 24, 686
68 | | Dove' cumly | 62 | 68 | 63 | 56 | 48 | 46 | 45 | ! 41 | 43 | 39 | 38 | 50 | 51, 945
44
407, 106 | | Daily average:
1934
1933 | 951
852 | | | | 1,228
1,087 | 1, 214
1, 257 | 1, 209
1, 099 | 1, 261
1, 206 | 1, 156
1, 153 | 1, 215
1, 065 | 1, 167
1. 010 | 986
922 | | # Production of motor fuel in 1934, by months [Thousands of barrels of 42 gallons] | | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |---|--|--------------------------|--------------------------|--------------------------|--------------------|--------------------------|--------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------| | Refinery gasoline: Straight-run Cracked Natural gasoline: Production Deduct losses Benzol | 16, 444
14, 657
3, 057
381
138 | 12, 793
2, 826
435 | 13, 820
3, 049
338 | 14, 563
2, 950
255 | 2, 938
390 | 14, 678
2, 864
273 | 16, 500
2, 971
302 | 3, 057
258 | 3, 074
231 | 3, 267
160 | 3, 240
67 | 10, 200 | 3, 233 | | Total motor fuel:
1934
1933 | 33, 918
30, 926 | 31, 202
28, 320 | 33, 606
32, 387 | 35, 056
32, 619 | 35, 642
35, 162 | 35, 356
35, 765 | 37, 535
37, 337 | 38, 164
37, 220 | 35, 042
36, 776 | 36, 381
36, 181 | 35, 413
33, 063 | 36, 489
32, 176 | 423, 801
407, 923 | # Production and total stocks of motor fuel in 1934, by districts and months | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |---|--|---|--|--|---|---|--|--|--|---|--|--|---| | Production: East coast | 1, 590
4, 821
4, 539
2, 973
5, 905
1, 366
737
731
5, 278 | 4,801
1,475
5,114
4,277
2,800
5,058
1,220
725
585
5,147 | 5, 837
1, 538
4, 940
4, 607
2, 962
5, 871
1, 294
765
671
5, 121 | 6, 033
1, 729
5, 181
4, 762
3, 253
5, 924
1, 365
792
789
5, 228 | 5, 615
1, 596
5, 536
5, 083
3, 379
6, 087
1, 377
858
639
5, 472 | 5, 299
1, 634
5, 470
4, 896
3, 231
6, 424
1, 297
880
851
5, 374 | 6, 140
1, 679
5, 713
5, 155
3, 382
6, 835
1, 306
898
793
5, 634 | 6, 014
1, 691
6, 040
4, 997
3, 341
7, 401
1, 237
902
5, 646 | 5, 404
1, 660
5, 557
4, 664
3, 656
6, 593
1, 068
797
780
4, 863 | 5, 918
1, 753
5, 948
4, 885
3, 751
6, 454
1, 115
813
813
812
4, 932 | 5, 616
1, 571
5, 678
4, 936
3, 278
6, 746
1, 130
780
856
4, 822 | 6, 103
1, 736
5, 454
5, 150
3, 061
7, 061
1, 373
700
829
5, 022 | 68, 75
19, 65
65, 45
57, 95
39, 06
76, 35
15, 14
9, 64
9, 23
62, 53 | | Total, 1934
Daily average
Total, 1933 | 33, 915
1, 094
30, 926 | 31, 202
1, 114
28, 320 | 33, 606
1, 084
32, 387 | 35, 056
1, 169
32, 619 | 35, 642
1, 150
35, 162 | 35, 356
1, 179
35, 765 | 37, 535
1, 211
37, 337 | 38, 164
1, 231
37, 220 | 35, 042
1, 168
36, 776 | 36, 381
1, 174
36, 181 | 35, 413
1, 180
33, 063 | 36, 489
1, 177
32, 176 | 423, 80
1, 16
407, 93 | | Total stocks, end of period: | | | | | | | | | | | | | Dec. 31,
19331 | | East coast | 2,670
9,072
6,510
1,912
6,219
1,977
258
1,606
15,745 | 18, 110
2, 649
9, 812
6, 635
2, 085
6, 648
1, 896
341
1, 647
16, 466 | 18, 925
2, 567
10, 123
6, 878
2, 149
6, 838
1, 508
388
1, 578
15, 826 | 19,
064
2, 517
10, 030
6, 793
2, 432
6, 822
1, 519
346
1, 549
15, 315 | 17, 701
2, 453
9, 111
6, 646
2, 450
5, 426
1, 280
409
1, 241
15, 334 | 16, 623
2, 365
8, 650
6, 128
2, 236
5, 381
1, 182
372
1, 184
14, 862 | 16, 098
2, 244
8, 005
5, 990
2, 218
4, 730
1, 462
364
872
15, 351 | 14, 896
2, 153
7, 440
5, 585
2, 152
4, 608
1, 328
378
727
14, 961 | 14, 368
2, 217
7, 220
5, 052
2, 073
4, 777
1, 450
319
629
14, 620 | 13, 140
2, 239
6, 885
4, 500
1, 870
5, 188
1, 200
311
540
13, 594 | 12, 465
2, 349
6, 747
4, 308
1, 947
5, 279
1, 024
329
603
12, 621 | 13, 561
2, 495
7, 660
4, 952
1, 967
6, 337
1, 104
398
750
12, 721 | 15, 670
2, 755
8, 686
6, 584
2, 079
5, 684
1, 934
264
1, 532
14, 747 | | Total, 1934 | 62, 422
56, 325 | 66, 289
59, 354 | 66, 780
61, 250 | 66, 387
60, 824 | 62, 051
60, 151 | 58, 983
55, 599 | 57, 334
55, 558 | 54, 228
53, 420 | 52, 725
53, 741 | 49, 467
54, 128 | 47, 672
53, 977 | 51, 945
55, 933 | 59, 93 | ¹ For comparison with 1934. ## Stocks of motor fuel in 1934, by districts and months | District | Jan. 1-1 | Jan. 31 | Feb. 28 | Mar. 31 | Apr. 30 | May 31 | June 30 | July 31 | Aug. 31 | Sept. 30 | Oct. 31 | Nov. 30 | Dec. 31 | |--|------------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|------------------|------------------|------------------|------------------|------------------| | Motor fuel stocks:
Gasoline: | | | | | | | | 6 | | | | | | | 14 m. C. m. | | | | | | | | | | | | | | | East coast | 5, 479 | 6, 115 | 7, 190 | 7, 415 | 7, 338 | 6, 220 | 5, 383 | 5, 757 | 5, 208
799 | 4, 742
823 | 4, 145
827 | 3, 860
748 | 4, 358
968 | | Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri Texas inland. | 1, 544
4, 398 | 1, 597
5, 260 | 1,718
6,512 | 1, 630
7, 190 | 1,566
7,269 | 1, 267
6, 095 | 1,080
5,393 | 963
4, 671 | 3, 932 | 3, 613 | 2, 943 | 2, 523 | 3, 161 | | Oklahoma Kansas and Missouri | 4,032 | 4, 099 | 4, 506 | 4,534 | 4, 509 | 4, 266 | 3, 715 | 3, 481 | 3, 187 | 2,913 | 2,565 | 2, 569 | 3, 027 | | Texas inland | 1,610 | 1,561 | 1,758 | 1,758 | 1,903 | 1,771 | 1,461 | 1,502 | 1,452 | 1,419 | 1,352 | 1,448 | 1,555 | | Texas Gulf coast | 4, 952 | 5, 180 | 5,618 | 5, 835 | 5,628 | 4, 416 | 4, 129 | 3, 776 | 3, 788 | 4,053 | 4, 208 | 4, 554 | 5, 517 | | Louisiana Gulf coast | 1,380 | 1, 331 | 1, 138 | 948 | 929 | 602 | 573 | 895 | 830
245 | 828
239 | 750
230 | 652
231 | 668
232 | | Arkansas and Louisiana inland. | 217
1,501 | 183
1, 566 | 262
1,609 | 283
1,540 | 272
1,511 | 331
1, 195 | 292
1, 143 | 307
828 | 691 | 593 | 491 | 559 | 705 | | Rocky Mountain | 10, 192 | 11, 271 | 11, 980 | 11, 249 | 10, 778 | 10, 776 | 10, 916 | 11,010 | 10, 289 | 9,726 | 8,750 | 8,057 | 8, 120 | | Camorina | | | | | 10,770 | | | 12,020 | | | | | | | Total | 35, 305 | 38, 163 | 42, 291 | 42, 382 | 41, 703 | 36, 939 | 34, 085 | 33, 190 | 30, 421 | 28, 949 | 26, 261 | 25, 201 | 28, 311 | | Bulk terminal and pipe line: | | | | | | | | | | | | | | | East coast | 10,038 | 10, 138 | 10, 753 | 11, 282 | 11, 482 | 11, 278 | 11,027 | 10, 087 | 9, 429 | 9, 343 | 8,672 | 8, 403 | 9,027 | | Appalachian Indiana, Illinois, Kentucky, etcOklahoma, Kansas, and Missouri | 1, 132 | 975 | 801 | 785 | 779 | 1,016 | 1, 142 | 1, 169 | 1, 261 | 1,322 | 1,368 | 1,558 | 1, 451 | | Indiana, Illinois, Kentucky, etc | 4, 229 | 3, 759 | 3, 259 | 2,878 | 2,720 | 2, 953 | 3, 212 | 3, 288
1, 757 | 3, 461
1, 645 | 3, 546
1, 483 | 3, 875
1, 385 | 4, 161
1, 352 | 4, 428
1, 570 | | Oklahoma, Kansas, and Missouri | 1, 999
183 | 1,852
101 | 1, 636
59 | 1, 819
142 | 1,718
85 | 1, 732
76 | 1,685
71 | 1, 757 | 1, 045 | 1,483 | 78 | 1, 552 | 1, 570 | | Texas inlandTexas Gulf coast | 477 | 758 | 881 | 801 | 944 | 843 | 1,069 | 773 | 643 | 603 | 782 | 621 | 656 | | Louisiana Gulf coast | 554 | 646 | 758 | 560 | 590 | 657 | 588 | 567 | 488 | 613 | 450 | 372 | 436 | | Louisiana Gulf coastArkansas and Louisiana inland | 21 | 48 | 53 | 73 | 44 | 53 | 57 | 22 | 55 | 38 | 44 | 69 | 65 | | California | 2, 317 | 2,089 | 2,022 | 2, 142 | 2,063 | 2, 093 | 1, 481 | 1,872 | 1,981 | 2, 123 | 2, 297 | 2, 140 | 2, 190 | | Total | 20, 950 | 20, 366 | 20, 222 | 20, 482 | 20, 425 | 20, 701 | 20, 332 | 19, 593 | 19, 017 | 19, 165 | 18, 951 | 18, 757 | 19, 894 | | Total gasoline stocks | 56, 255 | 58, 529 | 62, 513 | 62, 864 | 62, 128 | 57, 640 | 54, 417 | 52, 783 | 49, 438 | 48, 114 | 45, 212 | 43, 958 | 48, 205 | | Total gasoline stocks Natural gasoline 2 | 3,680 | 3, 893 | 3,776 | 3,916 | 4, 259 | 4, 411 | 4,566 | 4, 551 | 4,790 | 4,611 | 4, 255 | 3, 714 | 3,740 | | Total motor fuel stocks | 59, 935 | 62, 422 | 66, 289 | 66, 780 | 66, 387 | 62,051 | 58, 983 | 57, 334 | 54, 228 | 52, 725 | 49, 467 | 47, 672 | 51, 945 | ¹ New basis. 2 For details of refinery stocks, see p. 439; for details of all stocks of natural gasoline, see Statistical Appendix to Minerals Yearbook, 1935, # Allocations and actual production of gasoline in 1934, by districts 1 | District | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |---|-------------------------|------------------------------|---------------------------|------------------------------|------------------------------|----------------------------|----------------------------|---------------------------|------------------------------|------------------------------|---------------------------|---------------------------|---------------------------------| | East coast: Allowable Actual production Excess of production over allowable Appalachian: | F 00F | 4, 890
4, 979
89 | 5, 778
5, 671
—107 | 5, 500
5, 540
40 | 5, 500
5, 522
22 | 5, 720
5, 506
—214 | 6, 575
6, 029
-546 | 6, 108
6, 021
-87 | 5, 176
5, 343
167 | 5, 863
6, 021
158 | 5, 640
5, 862
222 | 6, 013
6, 026
13 | 68, 063
68, 145
82 | | Allowable | 1 490 | 1, 140
1, 286
146 | 1, 395
1, 386
-9 | 1, 475
1, 550
75 | 1, 475
1, 511
36 | 1,550
1,486
-64 | 1, 640
1, 628
-12 | 1, 573
1, 581
8 | 1, 434
1, 542
108 | 1, 490
1, 586
96 | 1, 438
1, 462
24 | 1, 541
1, 591
50 | 17, 351
18, 041
690 | | Allowable Actual production Excess of production over allowable Oklahoma, Kansas, and Missouri: | 5, 086
686 | 4, 580
5, 089
509 | 4, 957.
5, 013
56 | 4, 890
5, 249
359 | 4, 890
5, 672
782 | 5, 365
5, 537
172 | 5, 750
5, 789
39 | 6, 066
6, 048
-18 | 5, 531
5, 586
55 | 6, 011
6, 033
22 | 5, 648
5, 825
177 | 5, 574
5, 555
—19 | 63, 662
66, 482
2, 820 | | Allowable | 4, 470
770 | 3, 420
4, 146
726 | 4, 251
4, 329
78 | 4, 400
4, 322
-78 | 4, 400
4, 832
432 | 4, 765
4, 663
-102 | 5, 100
4, 854
-246 | 4, 668
4, 738
70 | 4, 268
4, 446
178 | 4, 607
4, 706
99 | 4, 649
4, 932
283 | 5, 115
5, 107
-8 | 53, 343
55, 545
2, 202 | | Allowable. Actual production Excess of production over allowable. Texas Gulf coast: | 2, 100
2, 689
589 | 2, 010
2, 533
523 | 2, 248
2, 545
297 | 2, 555
2, 761
206 | 2, 555
2, 826
271 | 2, 410
2, 722
312 | 3, 020
3, 033
13 | 2,897
2,916
19 | 2, 473
3, 120
647 | 2, 704
3, 344
640 | 3, 002
2, 903
99 | -, 865
2, 504
-361 | 30, 839
33, 896
3, 057 | | Allowable Actual production Excess of production over allowable Louisiana Gulf coast: | | 4, 990
5, 419
429 | 5, 620
5, 912
292 | 5, 300
6, 045
745 | 5, 300
5, 880
580 | 6, 300
6, 190
-110 | 6, 550
6, 872
322 | 7, 197
7, 218
21 | 6, 614
6, 609
-5 | 6, 565
6, 741
176 | 7, 199
7, 054
—145 | 7, 061
7, 473
412 | 73, 896
77, 369
3, 473 | | Actual production Excess of production over allowable Arkansas and Louisiana inland: | 1, 150
1, 387
237 | 980
1, 232
252 | 1, 205
1, 292
87 | 1, 100
1, 289
189 | 1, 100
1, 404
304 | 1,300
1,295
-5 | 1, 325
1, 283
-42 | 1, 278
1, 247
—31 | 1, 100
1, 079
-21 | 1,092
1,091
—1 | 1,022
1,070
48 | 1,375
1,472
97 | 14, 027
15, 141
1, 114 | | Allowable Actual production Excess of production over allowable Rocky Mountain: | 550
696
146 | 550
673
123 | 646
722
76 | 900
738
—162 | 900
796
—104 | 840
835
—5 | 865
742
—123 | 854
727
—127 | 742
746
4 | 793
772
—21 | 759
727
—32 | 668
628
—40 | 9, 067
8, 802
-265 | | Allowable. Actual production. Excess of production over allowable. California: | 675
711
36 | 590
589
—1 | 629
619
—10 | 660
763
103 | 660
635
—25 | 700
808
108 | 850
717
—133 | 870
896
26 | 718
730
12 | 788
756
—32 | 822
840
18 | 803
787
—16 | 8, 765
8, 851
86 | | Allowable | 4, 325
5, 099
774 | 3, 990
5, 031
1, 041 | 5, 062
5, 172
110 | 5, 130
5, 263
133 | 5, 130
5, 336
206 | 5, 650
5, 383
-267 | 5, 525
5, 668
143 | 5, 164
5, 207
43 | 4, 508
4, 684
176 | 4, 793
4, 978
185 | 4, 798
4, 921
123 | 4, 846
4, 911
65 | 58, 921
61, 653
2, 732 | | Allowable | 33 151 | 27, 140
30, 977
3, 837 | 31, 791
32, 661
870 | 31,
910
33, 520
1, 610 | 31, 910
34, 414
2, 504 | 34, 600
34, 425
—175 | 37, 200
36, 615
-585 | 36, 675
36, 599
—76 | 32, 564
33, 885
1, 321 | 34, 706
36, 028
1, 322 | 34, 977
35, 596
619 | 35, 861
36, 054
193 | 397, 934
413, 925
15, 991 | ¹ Allocations as established by the Planning and Coordination Committee; production of finished and unfinished gasoline as reported by the Bureau of Mines. # Production of gasoline in 1934, by methods of manufacture, districts, and months | | To | Wahan | | | . • | | | | Sep- | Ooto | No- | De- | Tot | al | |---|---------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--| | Method and district | Janu-
ary | Febru-
ary | March | April | Мау | June | July | August | tem-
ber | Octo-
ber | vem-
ber | cem-
ber | Quan-
tity | Per-
cent | | Straight distillation: East coast Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri. Texas inland Texas Gulf coast Louisiana Gulf coast Arkansas and Louisiana inland Rocky Mountain California. | 1, 573
2, 760
681
314 | 2, 535
705
2, 284
2, 024
1, 448
2, 432
748
342
252
3, 107 | 3, 257
698
2, 170
2, 119
1, 491
3, 069
763
345
304
2, 689 | 3, 332
798
2, 227
2, 194
1, 789
2, 844
826
345
368
2, 912 | 2, 958
698
2, 364
2, 469
1, 793
2, 978
861
329
316
3, 045 | 2, 719
758
2, 367
2, 414
1, 652
3, 341
759
393
428
3, 085 | 3, 200
720
2, 557
2, 394
1, 673
3, 120
736
385
394
3, 057 | 3. 084
766
2, 610
2, 282
1, 659
3, 427
734
393
443
2, 879 | 2, 555
694
2, 299
2, 049
2, 019
3, 183
627
354
366
2, 445 | 2, 580
808
2, 566
2, 109
2, 093
3, 029
668
362
368
2, 557 | 2, 542
714
2, 452
2, 195
1, 441
3, 156
693
365
404
2, 565 | 2, 889
815
2, 303
2, 370
1, 227
3, 285
789
332
367
2, 601 | 34, 874
8, 868
28, 110
26, 618
19, 858
36, 624
8, 885
4, 259
4, 315
33, 926 | 50. 1
49. 3
41. 8
47. 9
59. 2
46. 9
58. 4
47. 0
48. 4
55. 1 | | Total straight run
Percent of total production | 16, 444
49. 3 | 15, 877
51. 9 | 16, 905
51. 4 | 17, 635
51. 5 | 17, 811
51. 3 | 17, 916
51. 7 | 18, 236
49. 5 | 18, 277
49. 0 | 16, 591
48. 1 | 17, 140
47. 3 | 16, 527
46. 4 | 16, 978
47. 2 | 206, 337
49. 5 | 49. 5 | | Cracking: East coast | 3, 119
673
334
327
1, 328 | 2, 230
591
2, 785
1, 663
753
2, 600
460
300
248
1, 163 | 2, 537
643
2, 716
1, 805
758
2, 775
517
329
274
1, 466 | 2, 660
753
2, 903
1, 856
715
3, 048
525
350
328
1, 425 | 2, 610
736
3, 119
1, 992
876
3, 073
501
443
231
1, 518 | 2, 537
734
3, 055
1, 845
828
3, 042
524
397
335
1, 381 | 2, 907
840
3, 117
2, 109
920
3, 672
559
422
309
1, 645 | 2,899
806
3,390
2,064
865
3,927
491
414
367
1,742 | 2,820
833
3,220
1,931
756
3,364
425
351
322
1,470 | 3, 308
780
3, 338
2, 015
734
3, 375
429
353
334
1, 348 | 3, 043
681
3, 182
1, 970
789
3, 539
419
309
353
1, 307 | 3, 181
714
3, 102
2, 019
878
3, 725
566
261
362
1, 452 | 33, 449
8, 828
36, 789
23, 132
9, 589
39, 259
6, 089
4, 263
3, 790
17, 245 | 48. 0
49. 1
54. 7
41. 6
28. 6
50. 2
40. 0
47. 1
42. 5
28. 0 | | Total cracked Percent of total production. Natural gasoline blended at refineries ' Percent of total production. | 2, 222 | 12, 793
41. 8
1, 939
6. 3 | 13, 820
42, 1
2, 136
6, 5 | 14, 563
42. 5
2, 038
6. 0 | 15,099
43.5
1,813
5.2 | 14, 678
42. 4
2, 054
5. 9 | 16, 500
44. 7
2, 142
5. 8 | 16, 965
45. 5
2, 054
5. 5 | 15, 492
44. 9
2, 405
7. 0 | 16, 014
44. 1
3, 128
8. 6 | 15, 592
43. 8
3, 472
9. 8 | 16, 260
45. 2
2, 759
7. 6 | 182, 433
43. 8
28, 162
6. 7 | 43. 8
6. 7 | ¹ For details, see p. 439. # Production of gasoline in 1934, by methods of manufacture, districts, and months—Continued [Thousands of barrels of 42 gallons] | | Janu- | Febru- | | | | | | | Sep- | Octo- | No- | De- | То | tal | |---|---|---|--|--|--|--|--|--|--|--|--|--|--|--------------| | Method and district | ary | ary | March | April | Мау | June | July | August | tem-
ber | ber | vem-
ber | cem-
ber | Quan-
tity | Per-
cent | | Total: East coast Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri Texas inland Texas Gulf coast Louisiana Gulf coast Arkansas and Louisiana inland Rocky Mountain California. | 4, 950
4, 342
2, 692
5, 991
1, 365
685 | 4, 891
1, 313
5, 217
4, 092
2, 503
5, 130
1, 244
559
4, 976 | 5, 839
1, 358
5, 033
4, 344
2, 546
5, 972
1, 294
719
644
5, 112 | 6, 107
1, 569
5, 303
4, 452
2, 773
6, 024
1, 360
740
760
5, 148 | 5, 608
1, 451
5, 654
4, 803
2, 855
6, 188
1, 370
826
606
5, 362 | 5, 284
1, 516
5, 574
4, 689
2, 747
6, 528
1, 303
834
829
5, 344 | 6, 166
1, 580
5, 849
4, 944
2, 875
6, 935
1, 312
847
764
5, 606 | 6, 019
1, 595
6, 153
4, 815
2, 851
7, 540
1, 242
851
881
5, 349 | 5, 467
1, 547
5, 732
4, 554
3, 064
6, 798
1, 094
747
753
4, 732 | 6, 050
1, 614
6, 213
4, 712
3, 231
6, 737
1, 125
773
776
5, 051 | 5, 849
1, 435
5, 928
4, 883
2, 877
7, 034
1, 124
721
834
4, 906 | 6, 264
1, 567
5, 641
4, 994
2, 512
7, 276
1, 372
633
800
4, 938 | 69, 630
17, 980
67, 247
55, 624
33, 526
78, 153
15, 205
9, 060
8, 908
61, 599 | | | Total, 1934 | 33, 323
1, 075
30, 465 | 30, 609
1, 093
27, 678 | 32, 861
1, 060
31, 608 | 34, 236
1, 141
31, 961 | 34, 723
1, 120
34, 298 | 34, 648
1, 155
35, 309 | 36, 878
1, 190
36, 666 | 37, 296
1, 203
36, 619 | 34, 488
1, 150
36, 581 | 36, 282
1, 170
35, 945 | 35, 591
1, 186
32, 891 | 35, 997
1, 161
31, 570 | 416, 932
1, 142
401, 591 | 100.0 | ## Percentage yields of gasoline from crude oil in 1934, by districts and months | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Aver-
age | |---|------------------------------|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | East coastAppalachianIndiana, Illinois, Kentucky, etc. | 42. 5
51. 4
53. 0 | 51.3 |
49.3 | 49.8 | 37. 8
44. 5
53. 1 | 48. 5 | 48. 1 | 49.8 | 50. 6 | 51.9 | | 49.8 | 49. 4 | | Oklahoma, Kansas, and Missouri Texas inland Texas Gulf coast Louisiana Gulf coast | 52.3
47.6
40.8
40.8 | 51. 7
48. 2
37. 9 | 51. 4
47. 3
40. 7 | 51.8
48.0
40.3 | 53. 2
50. 5
42. 0 | 52. 1
50. 3
43. 6 | 52. 0
46. 7
44. 3 | 51. 8
45. 6
45. 8 | 53. 3
45. 4
44. 5 | 53. 7
43. 7
44. 3 | 53. 2
48. 4
42. 9 | 52. 0
51. 6
39. 9 | 52. 4
47. 5
42. 3 | | Arkansas and Louisiana in-
land | 40. 5
54. 1
33. 9 | 51, 7 | 57.6 | | 48.9 | | 46.7 | | 50.0 | 48.1 | 50.7 | 52. 4 | 45. 2
50. 5
32. 7 | | United States: 1934 | 43. 5
42. 7 | 43. 1
42. 5 | | | 43. 2
43. 8 | | | | | | | 43. 4
41. 7 | 43. 4
43. 7 | ## Production of gasoline in 1934 by States ### [Thousands of barrels of 42 gallons] | State | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--|--------------------------------|-----------------------------------|-----------------------------------|--|--------------------------------|--|--|------------------------------------|---------------------|---|--|--|---| | Arkansas
California
Colorado
Georgia, Rhode Is- | 236
5, 075
65 | 4,976 | 5, 112 | 5, 148 | 5, 362 | 253
5, 344
74 | 5,606 | 261
5, 349
64 | 245
4, 732
73 | 271
5, 051
51 | | 4,938 | 61, 599 | | land, and South Carolina Illinois Indiana Kansas and Mis- | 142
1, 371
2, 352 | 1, 417 | 1,359 | 1,510 | 1, 456 | 1,540 | 1,638 | 1,562 | 1,558 | 1,668 | 1,689 | 1,551 | 18, 319 | | souri
Kentucky and Ten- | 1,817
244 | -, | 1 | 1 | 1 | 2, 075
313 | 2, 198
326 | | | 2, 079
316 | | l ' | | | nessee
Louisiana, Alabama,
and Mississippi
Maryland
Massachusetts
Michigan
Montana
New Jersey | 1, 814
450
475 | 1, 693
306
435
233
65 | 1, 758
411
479
255
45 | 1, 860
348
484
244
78 | 1, 937
422 | 1, 884
403
453
256
69 | 1, 895
503
495
274
113 | 1, 832
512
440
283
123 | 1, 596 | 1, 627
437
379
273
106
2, 062 | 1, 591
430
355
271
107 | 1, 796
487
366
281
91 | 21, 283
5, 117
5, 215
3, 102
1, 058 | | New Mexico and Utah. New York. Ohio. Oklahoma. Pennsylvania. Texas. West Virginia. | 188
448
1, 118
2, 525 | 56
411
1, 044 | 124
441
1, 098 | 169
402
1, 208
2, 532
3, 606 | 185
420
1, 269
2, 649 | 178
433
1, 228
2, 614
3, 172 | 176
450
1, 331
2, 746
3, 099 | 180
450
1, 348
2, 714 | 159
408 | 174
436
1, 332
2, 633
3, 640
9, 968
171 | 172
350
1, 319
2, 769
3, 311 | 171
414
1, 185
2, 678
3, 595 | 1, 932
5, 063
14, 812
31, 194
38, 900
111, 679 | | Wyoming, Nebras-
ka, and South
Dakota | 389
33, 323 | | 417
32, 861 | 451
34, 236 | 267
34, 723 | 508
34, 648 | | 514
37, 296 | 413
34, 488 | 445
36, 282 | 495
35, 591 | | 5, 178
416, 932 | # Shipments of motor fuel by pipe lines in 1934, by months | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |---|--------|--------|--------|--------|--------|--------|-----------------|----------------|--------|--------|-----------------|-----------------|--------| | Shortage | | l * | l ' | 1 | l ' | | | 4, 221 | 4, 047 | 1 | | 1 1 | | | Stocks in lines and working tanks, end of month | 1, 226 | 1, 250 | 1, 356 | 1, 248 | 1, 253 | 1, 192 | 1 , 2 80 | 1, 2 50 | 1, 342 | 1, 265 | 1 , 2 90 | 1 , 34 3 | 1, 343 | ¹ Overage. ### Consumption of gasoline, 1919-34, by States and years 1 [Thousands of barrels of 42 gallons] [The figures represent quantities of gasoline sold or offered for sale, as reported by wholesalers and dealers in the various States under provisions of the gasoline-tax or inspection laws. Such laws were not in operation in all States prior to 1930] | | | , | | | | | , | | | | | | | | | | |----------------------|------|--------------|--------|------------------|------------------|--------------|---------------|---------------|------------------|------------------|------------------|------------------|------------------|----------------|----------------|------------------| | State | 1919 | 1920 | 1921 | 1922 | 1923 | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 2 | 1934 | | Alabama | | | | | 898 | 2,070 | 2, 548 | 3,046 | 3, 505 | 4, 007 | 4, 242 | 4, 108 | 3, 873 | 3, 248 | 3, 188 | 3, 692 | | Arizona | | | 209 | 416 | 479 | 580 | 679 | 776 | 982 | 1,365 | 1,735 | 1,810 | 1,773 | 1,657 | 1,536 | 1,743 | | Arkansas | | l | 248 | 520 | 996 | 1,359 | 1,989 | 2,384 | 2, 366 | 2,838 | 3, 205 | 3, 301 | 3, 026 | 2,715 | 2,886 | 3, 337 | | California | | \ <u>-</u> | | | 3, 593 | 15, 969 | 19, 325 | 21, 569 | 24, 230 | 26, 224 | 29, 841 | 31, 799 | 33, 370 | 32, 204 | 31, 512 | 31, 766 | | Colorado | | 1,091 | 1,536 | 1,651 | 1,756 | 2, 194 | 2, 351 | 2,676 | 3,076 | 3, 381 | 3, 703 | 4,068 | 4, 202 | 3, 783 | 3,808 | 4, 113 | | Connecticut | | | 530 | 1,748 | 2,096 | 2, 553 | 3,020 | 3, 202 | 3,808 | 4, 341 | 4, 818 | 5, 317 | 5, 927 | 5, 838 | 5,908 | 6,070 | | Delaware | | | | | 250 | 378 | 425 | 476 | 578 | 660 | 776 | 857 | 907 | 911 | 957 | 989 | | District of Columbia | | | 667 | | | 578 | 1,067 | 1, 214 | 1,376 | 1,514 | 1,711 | 1,918 | 2, 226 | 2, 445 | 2,497 | 2,470 | | Florida
Georgia | | | | 1, 513
1, 795 | 2, 121
2, 431 | 2,992 | 5,047 | 6,833 | 5, 904 | 5, 402 | 5, 336 | 5, 421 | 5, 523 | 4, 974 | 4,894
5,014 | 5, 638 | | Idaho | | | | 1, 795 | 472 | 2,828
649 | 3, 478
763 | 4, 052
939 | 4, 578
1, 008 | 4, 908
1, 194 | 5, 252
1, 312 | 5, 338
1, 459 | 5, 283
1, 423 | 4,739
1,247 | 1. 246 | 5, 702
1, 566 | | Illinois | | | | | 412 | 049 | /03 | 959 | 1,000 | 996 | 1, 512 | 23, 172 | 24, 945 | 22, 639 | 23, 119 | 24, 427 | | Indiana | | | | | 3, 432 | 5,760 | 6,602 | 7, 285 | 8, 333 | 9, 249 | 10, 288 | 10, 596 | 11.464 | 10, 429 | 10, 453 | 11, 082 | | Iowa | | | | | 0, 102 | 0,100 | 0,002 | 5, 976 | 7, 359 | 7, 301 | 7, 991 | 9, 305 | 9, 820 | 8, 487 | 8, 466 | 9, 614 | | Kansas | | | | (| [| | 5, 041 | 5, 734 | 6, 443 | 7, 516 | 8, 594 | 9, 208 | 11, 559 | 8, 347 | 8, 332 | 9,019 | | Kentucky | | | 1,050 | 1, 241 | 1,620 | 1,885 | 2, 376 | 2, 472 | 2,816 | 3, 210 | 3, 686 | 4,007 | 4, 195 | 3, 906 | 3, 959 | 4, 390 | | Louisana | | | | 1, 324 | 1,825 | 2,378 | 3, 210 | 3, 723 | 3, 610 | 4, 025 | 4, 209 | 4, 399 | 4, 475 | 3, 953 | 3, 884 | 4, 249 | | Maine | | | 1 | 2,022 | 681 | 1, 242 | 1, 388 | 1, 480 | 1,779 | 1, 957 | 2, 287 | 2,588 | 2,767 | 2,636 | 2, 562 | 2,786 | | Maryland | | | 1 | 942 | 1,757 | 1,955 | 2, 435 | 2, 807 | 3, 131 | 3, 413 | 3, 888 | 4, 342 | 4, 498 | 4, 618 | 4, 548 | 4, 911 | | Massachusetts | | | | | | 2,000 | , 100 | _, 551 | , 202 | 0, 220 | 11, 950 | 12, 764 | 13, 743 | 13, 542 | 13, 361 | 13, 995 | | Michigan | | | | | | | | 12,807 | 14, 128 | 16,032 | 18, 697 | 18,876 | 19, 561 | 18, 216 | 17, 626 | 18, 618 | | Minnesota | | | | 1 | | | 5, 857 | 6, 337 | 6,897 | 7,820 | 8, 521 | 9:558 | 10, 522 | 9, 550 | 9, 565 | 10, 275 | | Mississippi | | | | 711 | 1, 173 | 1,526 | 2,042 | 2, 521 | 2,804 | 3,075 | 3, 368 | 3, 220 | 2,743 | 2, 554 | 2,753 | 3, 125 | | Missouri | | | | | | | 6, 171 | 6,899 | 7,692 | 8, 452 | 9, 356 | 10,601 | 11,728 | 10, 921 | 11,092 | 11,652 | | Montana | | | | 590 | 766 | 819 | 943 | 1, 157 | 1, 268 | 1,768 | 1,885 | 1,845 | 1,801 | 1,616 | 1,663 | 2,035 | | Nebraska | | | | l | l | l | 3, 370 | 3,704 | 4,040 | 4,725 | 5, 355 | 5, 450 | 5, 433 | 4,736 | 4,636 | 5, 318 | | Nevada | | | | | 138 | 184 | 220 | 258 | 303 | 342 | 424 | 443 | 561 | 555 | 491 | 588 | | New Hampshire | | } | | | 435 | 731 | 852 | 927 | 1,089 | 1, 149 | 1, 389 | 1,541 | 1,626 | 1, 565 | 1,568 | 1,682 | | New Jersey | | | | | | | | | | 10,056 | 11,859 | 13,047 | 16, 932 | 16, 638 | 16, 637 | 17, 489 | | New Mexico | | 137 | 255 | 375 | 379 | 445 | 500 | 589 | 730 | 876 | 1,090 | 1,301 | 1, 243 | 1, 113 | 1, 151 | 1, 337 | | New York | | l | | l | | | | | | | 23, 819 | 36,000 | 38, 704 | 37, 800 | 36,714 | 37, 548 | | North Carolina | | | 1, 205 | 1,924 | 2, 935 | 3,655 | 4, 380 | 4, 635 | 5, 228 | 5, 859 | 6, 312 | 5, 968 | 6, 088 | 5, 526 | 5, 748 | 6, 662 | | North Dakota | 836 | 426 | 349 | 378 | 955 | 1, 200 | 1,580 | 1,809 | 2, 111 | 2,790 | 2, 961 | 2,858 | 2, 733 | 2, 331 | 2,374 | 2, 451 | | Ohio. | | | | | | | | 16, 194 | 18, 349 | 20, 491 | 22, 704 | 23, 228 | 23, 448 | 21, 502 | 21, 110 | 22, 749 | | Oklahoma | | | | | 1,426 | 3, 525 | 4, 351 | 5, 104 | 5, 987 | 6, 685 | 7, 531 | 7, 693 | 7, 151 | 6, 384 | 6, 550 | 7, 153 | | Oregon | | 1,137 | 1, 277 | 1,423 | 1,832 | 2, 135 | 2, 406 | 2,821 | 3, 116 | 3, 435 | 3, 897 | 4,052 | 4, 156 | 3, 767 | 3, 783 | 3, 952 | | Pennsylvania | | | 1,989 | 7, 409 | 8, 128 | 10, 821 | 12, 502 | 14,009 | 16, 466 | 18,072 | 21, 440 | 22, 115 | 25, 300 | 24, 787 | 24, 963 | 27,056 | | Rhode Island | | | | | | | | 1, 315 | 1,463 | 1,568 | 1,853 | 2, 115 | 2, 337 | 2,406 | 2,386 | 2, 592 | | South Carolina | | | | 914 | 1,358 | 1,765 | 2,021 | 2, 186 | 2, 423 | 2,618 | 2,824 | 2,838 | 2, 887 | 2, 485 | 2,665 | 3, 151 | | South Dakota | | | | 878 | 892 | 1,362 | 1,790 | 1,797 | 2,096 | 2, 635 | 2, 951 | 3, 347 | 3, 203 | 2,636 | 2, 389 |
2,607 | | Tennessee | ' | ١ | · | | 1,461 | 2,157 | 2,905 | 3,075 | 3,547 | 4,078 | 4,644 | 5, 125 | 5, 104 | 4,303 | 4,409 | 5,049 | | Texas. Utah. Vermont. Virginia. Washington. West Virginia. Wisconsin. | | | 1, 123 | 2, 270 | 4,006
469
421
1,220
2,919
642 | 8, 992
671
555
2, 538
3, 239
1, 520 | 11, 052
759
616
3, 063
3, 881
1, 841 | 12, 253
855
658
3, 402
4, 406
2, 041
6, 397 | 14, 082
995
790
3, 971
4, 843
2, 444
7, 466 | 15, 972
1, 134
888
4, 368
5, 406
2, 651
8, 504 | 18, 324
1, 346
1, 047
4, 960
6, 035
3, 013
9, 367 | 19, 202
1, 432
1, 119
5, 439
6, 456
3, 343
10, 426 | 1, 170
5, 813
6, 491
3, 428
10, 849 | 17, 883
1, 291
1, 116
5, 464
5, 865
3, 086
9, 730 | 18, 438
1, 303
1, 051
5, 558
5, 635
3, 074
9, 226 | 20, 834
1, 527
1, 156
6, 170
6, 209
3, 515
10, 017 | | |---|--------|--------|--------|---------|--|--|---|---|---|--|---|--|---|---|---|--|--| | Wyoming | | | | | 356 | 482 | 495 | 552 | 624 | 757 | 823 | 872 | 940 | 842 | 844 | 1,047 | | | Total | 2, 509 | 3, 192 | 11,669 | 28, 022 | 56, 318 | 93, 692 | 135, 341 | 195, 352 | 219, 834 | 255, 707 | 322, 619 | 375, 287 | 398, 077 | 368, 986 | 367, 532 | 395, 123 | | ¹ 1919–24, Bureau of Public Roads; 1925–34, American Petroleum Institute. ² Revised. # Consumption of gasoline in 1934, by States and months 1 ## [Thousands of gallons] | | | | | | | | | | | | | | Tot | al | |---|---|--|--|---|--|--|--|--|--|--|---
--|--|---| | State | January | February | March | April | Мау | June | July | August | Septem-
ber | October | November | Decem-
ber | Thousands of gallons | Equiva-
lent in
thou-
sands of
barrels | | Alabama Arizona Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Miscouri Montana Nebraska Newada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Olio Oklahoma Oregon | 0,040
14,305
37,535
54,887
27,603
11,181
38,349
4,644
17,777
1,396
3,754
48,385
3,623
108,639
19,955
4,242
66,978
23,945 | 10, 616 5, 589 9, 698 94, 112 6, 639 13, 201 2, 273 6, 792 21, 310 27, 582 25, 453 26, 855 11, 789 12, 340 4, 915 11, 623 32, 926 51, 948 8, 821 34, 071 4, 374 16, 173 1, 485 3, 328 39, 367 3, 5616 87, 616 17, 719 4, 420 60, 967 21, 639 10, 862 | 12, 442 16, 064 10, 407 136, 314 11, 374 16, 724 2, 695 7, 689 24, 077 19, 321 4, 769 72, 880 34, 617 30, 054 27, 877 13, 078 38, 910 56, 865 31, 425 10, 054 36, 894 16, 710 1, 799 3, 889 3, 755 107, 742 20, 349 8, 735 69, 816 22, 691 13, 152 | 12, 130 6, 027 10, 536 122, 688 14, 077 19, 609 3, 353 8, 766 20, 150 18, 649 5, 325 80, 907 36, 569 37, 298 30, 841 14, 480 14, 185 6, 853 17, 069 14, 797 60, 819 34, 170 10, 783 38, 496 7, 415 18, 865 52, 047 4, 815 52, 930 4, 210 120, 718 21, 469 10, 344 79, 988 23, 485 14, 615 | 12, 904 6, 275 12, 056 118, 848 23, 263 3, 772 9, 282 18, 519 19, 621 5, 608 35, 834 42, 668 35, 834 11, 164 18, 797 54, 255 73, 260 38, 466 10, 144 42, 537 7, 705 20, 623 4, 519 144, 473 23, 788 9, 841 14, 191 | 12, 908 6, 401 11, 640 116, 126 14, 042 25, 056 8, 931 17, 145 19, 837 6, 176 92, 517 40, 031 35, 677 41, 346 16, 286 12, 416 19, 208 56, 682 69, 787 42, 890 43, 833 18, 320 2, 355 7, 317 63, 569 5, 024 149, 082 21, 673 8, 875 5, 024 149, 082 21, 673 8, 875 5, 024 149, 082 21, 673 8, 875 5, 024 149, 082 21, 673 8, 875 5, 024 149, 082 21, 673 8, 875 5, 024 149, 082 | 13, 272 5, 882 12, 626 102, 628 17, 445 26, 008 4, 144 9, 139 16, 719 20, 731 7, 012 96, 340 42, 109 34, 897 37, 190 16, 778 16, 778 17, 964 19, 529 10, 885 14, 532 10, 885 14, 532 10, 586 21, 036 10, 587 1 | 13, 737
6, 110
12, 929
113, 863
14, 104
26, 205
4, 352
10, 386
16, 970
21, 626
7, 285
9, 589
43, 876
36, 453
34, 643
38, 683
18, 168
15, 697
15, 434
19, 840
61, 243
76, 232
45, 105
107
107
107
107
107
107
107
107
107
107 | 13, 583 6, 064 12, 706 106, 319 19, 075 24, 890 3, 978 8, 059 16, 888 20, 169 6, 598 87, 000 32, 702 16, 886 14, 992 12, 759 17, 980 52, 330 76, 101 11, 217 41, 557 7, 595 18, 568 2, 372 7, 282 64, 702 5, 460 144, 938 24, 216 9, 394 85, 223 27, 229 16, 517 | 14, 379
6, 456
12, 628
115, 164
15, 829
22, 759
3, 782
9, 155
18, 711
21, 978
6, 188
99, 538
43, 081
36, 457
732, 196
67, 078
43, 057
12, 323
44, 896
67, 078
43, 057
12, 323
44, 896
8, 055
5, 247
139, 883
5, 247
139, 883
5, 779
10, 973
87, 079
10, 973
87, 079
26, 161 | 13, 852
6, 270
12, 718
108, 657
13, 995
21, 662
3, 348
9, 022
20, 582
22, 163
5, 433
92, 291
41, 430
34, 983
29, 370
15, 965
14, 395
9, 421
17, 422
46, 484
64, 220
18, 813
12, 576
6, 702
19, 227
1, 947
5, 360
69, 327
4, 943
128, 930
27, 329
9, 192
82, 262
24, 367
12, 551 | 13, 345
6, 313
11, 004
111, 920
112, 078
8, 568
23, 605
20, 406
4, 304
736, 716
32, 840
26, 955
14, 842
16, 537
7, 816
16, 577
16, 539
28, 115
5, 238
14, 970
18, 700
18, 700 | 155, 047 73, 219 140, 156 1, 334, 177 172, 756 254, 933 41, 556 103, 734 236, 775 239, 498 65, 770 1, 025, 918 465, 438 403, 803 378, 781 184, 367 178, 457 116, 993 206, 279 587, 789 781, 971 131, 263 489, 401 481, 545 131, 263 489, 401 734, 521 56, 154 1, 577, 019 279, 796 102, 931 1955, 470 300, 431 1955, 470 | 3, 692
1, 743
3, 337
31, 766
4, 113
6, 070
5, 638
5, 702
1, 566
24, 427
11, 082
9, 614
4, 390
4, 249
2, 786
2, 786
18, 618
10, 275
3, 125
11, 652
2, 035
5, 318
1, 588
1, 682
2, 451
1, 337
3, 125
2, 786
6, 662
2, 451
1, 337
3, 125
5, 318
1, 588
1, 682
2, 451
3, 395
1, 387
3, 125
3,
3125
1, 588
1, 682
2, 451
3, 395
3, 952 | | Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming | 7, 896
10, 237
7, 677
17, 031
65, 584
4, 307
2, 329
19, 539
17, 151
10, 114 | 67, 884
5, 845
9, 117
6, 846
15, 073
58, 631
3, 947
2, 170
15, 966
17, 094
8, 208
26, 714
2, 252 | 82, 370
7, 399
10, 680
9, 425
16, 114
69, 368
4, 509
2, 342
18, 614
24, 670
9, 804
30, 842
3, 633 | 89, 439
8, 220
11, 062
8, 667
15, 990
66, 878
5, 233
3, 040
20, 860
25, 343
11, 448
30, 537
3, 061 | 104, 316
9, 565
10, 942
9, 108
18, 265
74, 451
5, 383
4, 437
22, 709
19, 353
13, 376
39, 521
3, 624 | 103, 936
10, 489
10, 653
8, 640
18, 109
79, 098
5, 818
5, 060
23, 784
22, 505
13, 741
38, 612
4, 095 | 106, 740
11, 662
11, 338
10, 896
16, 899
75, 574
6, 623
5, 523
22, 745
25, 365
13, 456
42, 389
5, 050 | 110, 521
11, 191
11, 515
9, 680
19, 334
77, 454
6, 638
6, 399
24, 729
24, 833
14, 495
42, 053
4, 916 | 101, 099
9, 686
10, 986
10, 223
19, 398
78, 918
5, 994
5, 239
22, 289
23, 296
13, 893
41, 109
4, 285 | 104, 415
10, 322
11, 981
10, 327
19, 558
83, 846
5, 858
4, 645
24, 979
22, 379
14, 400
38, 517
4, 026 | 97, 433
8, 493
11, 911
10, 103
21, 250
70, 727
5, 344
4, 050
22, 615
19, 750
12, 974
36, 714
3, 303 | 90, 126
8, 096
11, 925
7, 922
15, 016
74, 505
4, 486
3, 316
20, 294
19, 039
11, 700
27, 234
2, 988 | 1, 136, 344
108, 864
132, 347
109, 514
212, 037
875, 034
64, 140
48, 550
259, 123
260, 778
147, 609
420, 725
43, 986 | 27, 056
2, 592
3, 151
2, 607
5, 049
20, 834
1, 527
1, 156
6, 170
6, 209
3, 515
10, 017
1, 047 | |--|--|--|---|--|---|--|---|--|--|---|---|--|--|---| | | 1, 161, 810 | 1, 038, 172 | 1, 252, 737 | 1, 329, 256 | 1, 480, 933 | 1, 492, 088 | 1, 537, 593 | 1, 581, 436 | 1, 489, 678 | 1, 528, 986 | 1, 415, 635 | 1, 286, 856 | 16, 595, 180 | 395, 123 | | ¹ Compiled from reports
States under provisions of th | of the Am
e gasoline | erican Petr
tax or insp | oleum Ins
ection laws | titute which | ch cover "d | quantities (| of gasoline | sold or offe | ered for sal | e, as report | ed by who | lesalers an | d dealers in t | he various | Refinery price of U.S. Motor gasoline (below 59 1 octane number) in Oklahoma in 1934, in cents per gallon 2 | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Aver- | |-----------------------|------|------|-------|------|-------|-------|------|------|-------|-------|------|------|-------| | Average monthly price | 3.79 | 3.88 | 3. 50 | 3.77 | 4. 14 | 4. 05 | 3.82 | 3.98 | 3. 76 | 3. 14 | 3.84 | 3.80 | 3. 79 | ### PRICE CHANGES BY WEEKS | Jan. 1 * 3.875 Apr. 9 3.75 Jan. 8 3.75 Apr. 16 4.125 Jan. 29 3.875 Apr. 30 3.875 Feb. 5 4.00 May 7 4.125 Feb. 19 3.75 May 21 4.25 Mar. 19 3.375 May 28 4.375 Mar. 26 3.25 June 11 4.125 June 18 3.875 | July 16 | Nov. 12 4.125 Nov. 19 4.00 Dec. 3 4.125 Dec. 10 3.75 Dec. 17 3.50 Dec. 24 3.75 | |---|---------|--| |---|---------|--| Beginning August 6, 59 and below changed to 62 and below. From National Petroleum News. Price in effect on this date. Tank-wagon prices, including tax, of gasoline at 6 cities in 1934, in cents per gallon? | | New York | Washing-
ton | Chicago | New
Orleans | San
Francisco | Denver | |---|----------|-----------------|---------|----------------|------------------|--------| | Average monthly price: | | | | | | - | | January | 15.8 | 16. 2 | 17.3 | 19.5 | 16.5 | 18. 5 | | February | 15.9 | 16.0 | 17. 1 | 19.3 | 16.5 | 19.6 | | March | 15.6 | 15.8 | 16. 2 | 19.3 | 14.3 | 18.7 | | April | 14.3 | 15.8 | 14.3 | 19.3 | 12.0 | 15.0 | | May | 14.7 | 16.4 | 13.8 | 19.9 | 12.6 | 15.9 | | June | | 17.3 | 14. 4 | 20.8 | 14.8 | 18.0 | | July | 15.5 | 17.3 | 15. 2 | 20.8 | 17.5 | 18.0 | | August | 15.5 | 17.3 | 15. 3 | 20.8 | 17.5 | 18. 5 | | September | 15.5 | 17.3 | 15.0 | 20.8 | 16.5 | 18.0 | | October | | 14.1 | 13.5 | 14.1 | 16.5 | 18.0 | | November | 15.1 | 10.7 | 13.3 | 12.8 | 16.5 | 18.0 | | December | | 12.0 | 14.8 | 14.5 | 16.5 | 18.0 | | _ 000,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 11.0 | 11.0 | 10.0 | 10.0 | | Average for year | 15.3 | 15.5 | 15. 0 | 18. 5 | 15.6 | 17. 9 | | | | | | | | | | Date of price change: | | | | | | | | Jan. 13 | 16.5 | 17.0 | 17.3 | 20.0 | 16.5 | 18. 5 | | Jan. 8 | | 15.8 | | 19.3 | | | | Jan. 9 | | | | | | | | Jan. 16 | | 16.1 | | | | | | Feb. 1 | | | | | | 19. 5 | | Feb. 9
Feb. 20 | 16.0 | | | | | 10.0 | | Feb. 20 | | 15.8 | | | | | | Feb. 21 | | | | | | 20.0 | | Feb. 23 | l | | 16.3 | | | | | Mar. 10 | | | | | 14.5 | | | Mar. 14 | | | | | t . | 18.0 | | Mar. 22 | | | | | 12.0 | 10.0 | | Mar. 23 | 1 14.5 | | | | | | | Mar. 29 | | | 14.8 | | | | | Mar. 31 | | | | | | | | Apr. 17 | l | | 13.8 | | 1 | | | Apr. 25
May 10 | 13.5 | | | | | | | May 10 | 14.5 | | | | | | | May 12 | 1 | 16.3 | | 19.8 | | | | May 18 | 15.5 | 16.8 | | 20.3 | | | | May 23 | | 20.0 | | 20.0 | 14.0 | 18. (| | May 23
May 31 | | 17.3 | | 20. 8 | | | | June 5 | | 11.0 | 16.3 | | | | | June 7 | | | | | | | | June 20 | | | 14. 5 | | | | | June 26 | | | | | 15.0 | | | July 5 | | | | | 1 17.5 | ı | ⁴ Includes Federal tax of 1 cent per gallon, which on Jan. 1 was reduced from 1.5 cents. For State taxes, see p. 413. ² From National Petroleum News. ³ Prices in effect on this date. # Tank-wagon prices, including tax, of gasoline at 6 cities in 1934, in cents per gallon—Continued | | New York | Washing-
ton | Chicago | New
Orleans | San
Francisco | Denver | |---|----------|-----------------|----------------|-------------------------|------------------|--------| | Date of price change—Contd. Aug. 15 Aug. 31 | | | | | 16. 5 | 19. 0 | | Sept. 1 | | 15. 3 | 14. 8
13. 8 | 17.8 | | | | Oct. 13 | | 4 10. 0 | 12.8 | 11. 0
10. 0 | | | | Oct. 27
Oct. 31
Nov. 1
Nov. 6 | 15.0 | 9. 5
9. 0 | | 11.0 | | | | Nov. 12
Nov. 14
Nov. 15
Nov. 17
Nov. 24 | | 12.0 | 14.8 | 13. 5
13. 0
14. 5 | | | ⁴ Retail tank-wagon prices prior to this date. Dealer tank-wagon prices thereafter. ### Gasoline tax rates by States in 1934 ### [Cents per gallon] | State | Tax | State | Tax | State | Tax |
--|---|-------|----------------|---|-----| | Alabama Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana | 6 5 5 1 6 3 4 2 2 3 2 7 6 5 3 4 3 3 5 5 5 | Maine | 43336254443553 | OhioOklahomaOregonPennsylvaniaRhode IslandSouth CarolinaSouth DakotaTennesseeTexasUtahVermontVirginiaWashingtonWashingtonWest VirginiaWest VirginiaWisconsinWyoming | | ¹ Changed from 6 cents on February 12. 2 5 cents Feb. 1 to Sept. 1. ### KEROSENE # Comparative analyses of statistics for kerosene in 1934, by months | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |---|---|-------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|-----------------------------------| | Production Daily average Exports Daily average Stocks, end of period. Domestic demand Daily average | 4, 507
145
591
19
6, 228
4, 246
137 | 736
26
5, 299
4, 154 | 148
670
22
4, 986
4, 219 | 155
1, 156
39
4, 822
3, 655 | 147
673
22
5, 470
3, 227 | 140
968
32
6, 335
2, 373 | 139
777
25
7, 062
2, 816 | 141
984
32
7, 651
2, 803 | 142
802
27
7,539
3,572 | 158
974
31
7, 497
3, 957 | 160
633
21
7, 199
4, 451 | 154
817
26
6,398
4,761 | 9, 781
27
6, 398
44, 234 | # Production and stocks of kerosene in 1934, by districts and months [Thousands of barrels of 42 gallons] | | | | | | | | | | | | | | | |------------------------------|-------------|----------|----------|--------|--------|--------|--------|--------|---------------|--------------------|--------|--------|----------| | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | | | | l | | | | | l | | | | I | _ | <u> </u> | | Production: | 1 | l | 1 | | ŀ | ł | ł | | 1 | | | 1 | | | Eas coast | 902 | | | | | 776 | 824 | 793 | 842 | 1,002 | 926 | 1,052 | 10, 53 | | Appalachian | 226 | 218 | 289 | 265 | 302 | 250 | 202 | 218 | 262 | | | | | | Indiana, Illinois, Ken- | 1 | l . | l | | l | i | ļ | | | -00 | | | _,,00. | | tucky, etc | 283 | 262 | 333 | 390 | 414 | 435 | 359 | 361 | 357 | 376 | 384 | 270 | 4, 224 | | Oklahoma, Kansas, and | | | | | 1 | ł | 1 | l | | | | | | | Missouri | 432 | | | | | | | 552 | | | 513 | 428 | 6, 307 | | Texas inland | 288 | 256 | | | 328 | | | | | | | | | | Texas Gulf coast | 1, 329 | | | | 1,046 | | 1,096 | | | 1, 264 | | 1,575 | 14, 417 | | Louisiana Gulf coast | 391 | 331 | 412 | 358 | 329 | 356 | 334 | 374 | 373 | 468 | 417 | 507 | 4, 650 | | Arkansas and Louisiana | | 0.5 | 00 | =0 | | | | | 2.1 | | 1 | i | | | inland | 59
51 | 65
35 | 66
52 | 79 | 83 | 85 | | 86 | 79 | 81 | 84 | | | | Rocky Mountain
California | 546 | | 465 | 20 | 13 | 36 | | 51 | 40 | | | | | | Camornia | 940 | 407 | 400 | 438 | 572 | 453 | 467 | 485 | 381 | 465 | 507 | 375 | 5, 561 | | Total, 1934 | 4 507 | 3 061 | 4 576 | 1 617 | 1 549 | 4 206 | 4 200 | 1 270 | 1 000 | 4 000 | 4 500 | | | | Daily average | 145 | 141 | 148 | 155 | 147 | 140 | 139 | 141 | 4, 262
142 | | | | | | Total, 1933 | 4. 392 | | 3 888 | 4 038 | 4 140 | 4 169 | 1 261 | 4 100 | | 3, 993 | | | | | | | === | 0,000 | 1,000 | 1, 110 | 1, 102 | 1, 201 | 4, 109 | 4,004 | ə, 99 3 | 4,005 | 4, 289 | 48, 977 | | | | | | | | | | | | | | | Dec, 31, | | Stocks, end of period: | | | | | | | | | | 44 | | | 1933 | | | 1, 235 | | 792 | 1,031 | 1, 194 | 1. 512 | 1,820 | 2,026 | 2,025 | 2. 237 | 1 833 | 1 433 | 1, 319 | | Appalachian | 310 | 265 | 259 | 229 | 217 | 243 | 214 | 175 | 182 | 178 | 175 | | | | Indiana, Illinois, Ken- | | | | | , i | | | | -0- | 1.0 | 1.0 | 100 | 010 | | tucky, etc | 598 | 586 | 558 | 482 | 450 | 607 | 653 | 662 | 700 | 711 | 774 | 723 | 634 | | Oklahoma, Kansas, and | ١. ١ | ! | - 1 | | | | | | | | | | | | Missouri | 637 | 630 | 541 | 404 | 471 | 570 | 653 | 710 | 681 | 670 | . 671 | 613 | 696 | | Texas inland | 123 | 128 | 117 | 128 | 124 | 130 | 145 | 166 | 196 | 200 | 156 | 108 | 165 | | Texas Gulf coast | 1, 210 | 918 | 855 | 909 | | | 1,715 | 2,065 | 1,900 | 1, 913 | 1.875 | 1. 720 | 1, 343 | | Louisiana Gulf coast | 448 | 301 | 255 | 306 | 305 | 410 | 514 | 401 | 361 | 119 | 274 | 265 | 454 | | Arkansas and Louisiana | المنا | | | | | ı | i | | | | | | | | inland | 12 | 20 | 28 | 31 | 31 | 32 | 30 | 30 | 28 | 16 | 23 | 17 | 13 | | Rocky Mountain | 248 | 225 | 226 | 181 | 138 | 132 | 131 | 125 | 117 | 125 | 132 | 144 | | | Camornia | 1,407 | 1, 277 | 1, 355 | 1, 121 | 1, 287 | 1, 169 | 1, 187 | 1, 291 | 1, 349 | 1,328 | 1, 286 | 1, 189 | 1, 348 | | Total: 1934 | 6 220 | 5 200 | 1 000 | 4 900 | E 470 | 0 005 | 7 000 | 7 051 | 7 500 | | | | | | | 4 861 | 4 621 | 1 986 | t, 022 | 5 960 | 0, 535 | 7,062 | 7,051 | 7, 539 | 7,497 | 7, 199 | 6, 398 | 6, 558 | | 1000 | ±, 001 | z, UZI | ±, 000 | u, 040 | o, 809 | U, 048 | 4,930 | 5, 604 | 8, 502 | 8, 118 | 7, 297 | o, 558 | | | | | | | - 1 | | - 1 | | J | | - 1 | - 1 | - 1 | | # Tank-wagon prices of kerosene at 6 representative cities in 1934, in cents per gallon1 | - | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Aver-
age | |---------------------------------|--|--|--|--|--|--|--|---------------------------------|---------------------------------|--|--|--|--| | Average monthly price: New York | 8.3
11.0
9.7
11.5
12.5
12.5 | 11. 0
9. 7
12. 0
12. 5
12. 2 | 11. 4
9. 5
12. 0
12. 5
10. 0 | 11. 5
8. 1
12. 0
12. 5
10. 0 | 11. 5
8. 1
10. 8
12. 5
10. 0 | 11. 5
8. 1
10. 8
12. 5
10. 0 | 11. 5
8. 1
10. 8
12. 5
10. 0 | 11. 5
8. 5
10. 6
12. 5 | 8. 5
10. 6
12. 5
10. 5 | 11. 5
8. 5
11. 9
12. 5
10. 5 | 11. 5
8. 5
10. 0
12. 5
10. 5 | 11. 5
8. 5
10. 0
12. 5
10. 5 | 11. 4
8. 7
11. 1
12. 5
10. 6 | | | New York | Washing-
ton | Chicago | New
Orleans | San
Francisco | Denver | |--|--------------|-----------------|---------|----------------|------------------|--------| | Date of price change: Jan. 1 2 Jan. 13 | 8. 5 | 11.0 | 9. 7 | 12. 0
10. 0 | | 12. 5 | | Jan. 19
Jan. 20
Feb. 26 | 8.0 | | | 12. 0 | | 10. 0 | | Feb. 27
Mar. 1
Mar. 10 | 8. 5
9. 0 | 11. 5 | | | | | | Mar. 29
Apr. 12
Apr. 30 | 8. 5 | | 9. 7 | | | | | May 14
Aug. 11
Aug. 23 | | | 8. 0 | 10. 0
12. 0 | | | | Sept. 25
Oct. 31
Dec. 6 | 8. 0
8. 5 | | | 10. 0 | | 12. 5 | ¹ From National Petroleum News. # Percentage yields of kerosene in 1934, by districts and months | By districts: | | By months: | | |-------------------------|--------------|------------|-------------| | East coast | 6. 1 | January | 6. 3 | | Appalachian | | February | 6. 0 | | Indiana, Illinois, Ken- | 0. 0 | March | 6. 4 | | tucky, etc | 3. 5 | April | 6. 3 | | Oklahoma, Kansas, and | 0.0 | May | 6.0 | | Missouri | 6.6 | June | | | Texas Inland | | July | | | Texas Gulf coast | 8.0 | August | 5. 5 | | Louisiana Gulf coast | 11. 2 | September | | | Arkansas and Louisiana | | October | | | inland | 4.9 | November | | | Rocky Mountain | | December | | | | | | | | California | 0 . 0 | Year | 6. 0 | | United States: 1934 | 60 | | | | 1933 | | | | ## Consumption of kerosene in 1934, by States and months 1 ### [Thousands of barrels of 42 gallons] | State | Jan. | Feb | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |---|---|---|---|--|---|---|--|--|--|--
---|--|--| | Alabama Arizona Arkansas Colorado Florida Georgia Kansas Michigan Minnesota Missouri Nebraska North Dakota Oklahoma South Carolina South Dakota | 30
6
36
11
70
46
65
92
58
56
26
13
59
28
18 | 33
4
36
9
70
42
57
75
49
150
42
12
62
91
18 | 29
4
35
12
67
42
86
73
56
84
39
16
63
19
21 | 29
4
377
12
50
38
93
91
80
58
65
18
63
37
23 | 29
3
3
33
12
48
38
87
92
71
151
76
17
60
16
21 | 27
3
29
9
44
36
71
89
42
137
56
12
67
58
21 | 27
3
28
11
40
31
68
84
51
82
36
15
53
6
15 | 23
3
25
11
42
32
55
83
61
52
43
18
44
5
16 | 26
3
34
10
44
35
63
89
62
124
40
13
67
69
19 | 27
5
36
9
52
43
55
76
69
87
38
14
54
10
19 | 32
5
39
10
65
43
59
90
66
95
33
18
52
37
17 | 33
6
40
7
80
46
59
78
54
82
29
14
56
39
17 | 345
49
408
123
672
472
818
1, 012
715
1, 158
523
180
700
415
225 | | | 614 | 750 | 646 | 698 | 754 | 701 | 550 | 513 | 098 | 594 | 901 | 040 | 4,819 | ¹ From American Petroleum Institute. ### GAS OIL AND FUEL OIL Comparative analyses of statistics for gas oil and distillate fuel oils and residual fuel oils in 1934, by months | | January | February | March | April | May | June | |---|----------|----------|----------|----------|----------|----------| | Production: Gas oil and distillate fuel oils Residual fuel oils Total Daily average | 7,691 | 7, 155 | 8, 004 | 7, 563 | 7, 761 | 8, 042 | | | 19,876 | 18, 073 | 20, 538 | 19, 367 | 20, 428 | 20, 201 | | | 27,567 | 25, 228 | 28, 542 | 26, 930 | 28, 189 | 28, 243 | | | 889 | 901 | 921 | 898 | 909 | 941 | | Net transfers to fuel-oil stocks in California 1. Production by cracking 1. Imports. Daily average. Exports. Daily average. | 1, 145 | 682 | 679 | 665 | 353 | 871 | | | 14, 073 | 12, 823 | 14, 311 | 14, 389 | 14, 222 | 14, 797 | | | 1, 138 | 627 | 1, 084 | 1, 177 | 1, 359 | 1, 040 | | | 37 | 22 | 35 | 39 | 44 | 35 | | | 1, 739 | 2, 047 | 3, 520 | 2, 904 | 2, 502 | 2, 295 | | | 56 | 73 | 81 | 97 | 81 | 77 | | Stocks, end of period: Gas oil and distillate fuel oils | 14, 215 | 12, 563 | 10, 658 | 11, 403 | 13, 174 | 16, 313 | | | 103, 073 | 98, 896 | 95, 628 | 94, 638 | 93, 105 | 93, 478 | | | 117, 288 | 111, 459 | 106, 286 | 106, 041 | 106, 279 | 109, 791 | | | 32, 682 | 29, 637 | 32, 279 | 25, 448 | 26, 808 | 23, 476 | | | 1, 054 | 1, 058 | 1, 041 | 848 | 865 | 783 | ¹ Included in total production. ² Includes heavy crude in California. Comparative analyses of statistics for gas oil and distillate fuel ails and residual fuel oils in 1934, by months—Continued ### [Thousands of barrels of 42 gallons] | | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |---|--|---|---|---|---|--|--| | Production: Gas oil and distillate fuel oils Residual fuel oils | 7, 651 | 8, 723 | 8, 298 | 7, 904 | 8, 044 | 8, 136 | 94, 972 | | | 20, 856 | 20, 373 | 19, 522 | 20, 144 | 19, 917 | 21, 086 | 240, 381 | | Total | 28, 507 | 29, 096 | 27, 820 | 28, 048 | 27, 961 | 29, 222 | 335, 353 | | Daily average | 920 | 939 | 927 | 905 | 932 | 943 | 919 | | Net transfers to fuel-oil stocks in California 1. Production by cracking 1. Imports. Daily average. Exports. Daily average. | 611
16, 539
1, 289
42
2, 626
85 | 517
16, 720
947
31
1, 979
64 | 379
15, 517
903
30
2, 402
80 | 620
14, 980
985
32
2, 238
72 | 941
14, 883
780
26
2, 396
80 | 919
15, 622
1, 305
42
2, 957
95 | 8, 382
178, 876
12, 634
35
28, 605 | | Stocks, end of period: Gas oil and distillate fuel oils Residual fuel oils 2 | 19, 603 | 22, 927 | 24, 295 | 24, 848 | 24, 449 | 21, 957 | 21, 957 | | | 95, 907 | 96, 052 | 96, 258 | 94, 512 | 91, 972 | 88, 440 | 88, 440 | | Total | 115, 510 | 118, 979 | 120, 553 | 119, 360 | 116, 421 | 110, 397 | 110, 397 | | Domestic demand Daily average | 21, 451 | 24, 595 | 24, 747 | 27, 988 | 29, 284 | 33, 594 | 331, 989 | | | 692 | 793 | 825 | 903 | 976 | 1, 084 | 910 | Production and stocks of gas oil and distillate fuel oils in 1934, by districts and months | District | January | February | March | April | Мау | June | |---|------------|------------|----------|-----------|-------------|--------| | Production: | | | | | | | | East coast | 1,542 | 1,510 | 1,879 | 1,330 | 1,358 | 1, 62 | | Appalachian | 168 | 260 | 205 | 211 | 231 | 20 | | Indiana, Illinois, Kentucky, etc | 975 | 803 | 992 | 746 | 824 | 98 | | Oklahoma, Kansas, and Missouri | 589 | 476 | 673 | 594 | 566 | 54 | | Texas Gulf coast | | 270 | 288 | 324 | 280 | 31 | | Louisiana Gulf coast | | 1,618 | 1,834 | 1,646 | 2, 223 | 1,80 | | Arkansas and Louisiana inland | 185
161 | 337
123 | 371 | 454 | 360 | 37 | | Rocky Mountain | 52 | 66 | 67
73 | 63
135 | 89 | 9 | | Rocky MountainCalifornia | 1,627 | 1,692 | 1,622 | 2, 060 | 86
1,744 | 70 | | | 1,021 | 1,002 | 1,022 | 2,000 | 1, 744 | 2, 01 | | Total, 1934 | 7, 691 | 7, 155 | 8,004 | 7, 563 | 7, 761 | 8, 04 | | Daily average | 248 | 256 | 258 | 252 | 250 | 26 | | Total, 1933 | 7, 036 | 6, 106 | 6, 433 | 5, 745 | 6, 416 | 6, 366 | | tocks, end of period: | | | | | | | | East coast | 2,684 | 1,887 | 1,613 | 2,029 | 2, 368 | 3, 33 | | Appalachian | 257 | 225 | 174 | 162 | 188 | 21 | | Indiana, Illinois, Kentucky, etc | 2, 183 | 1,737 | 1, 296 | 1, 246 | 1,439 | 2, 07 | | Oklahoma, Kansas, and Missouri | 1, 222 | 1,100 | 951 | 921 | 899 | 1,05 | | Texas inland | 311 | 246 | 219 | 210 | 185 | 27 | | Texas Gulf coast
Louisiana Gulf coast | 2, 588 | 2,645 | 2, 192 | 2, 096 | 2,821 | 3, 52 | | Arkenses and Louisians inland | 1, 268 | 1,026 | 856 | 910 | 1, 149 | 1,41 | | Arkansas and Louisiana inland
Rocky Mountain | 262 | 293 | 250 | 203 | 191 | 16 | | California | | 199 | 180 | 174 | 172 | 16 | | Oddivinia | 3, 230 | 3, 205 | 2, 927 | 3, 452 | 3, 762 | 4, 09 | | Total: 1934 | 14, 215 | 12, 563 | 10, 658 | 11, 403 | 13, 174 | 16, 31 | | 1933 | 13, 112 | 11, 936 | 11, 937 | 11,816 | 13, 310 | 15, 47 | Included in total production. Includes heavy crude in California. Production and stocks of gas oil and distillate fuel oils in 1934, by districts and months—Continued ### [Thousands of barrels of 42 gallons] | District | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |-----------------------------------|--|--|--|--|--|--|--| | Production: East coast | 1, 558 | 1, 764 | 1, 598 | 1, 606 | 1, 485 | 1, 287 | 18, 545 | | | 182 | 203 | 194 | 231 | 207 | 239 | 2, 534 | | | 929 | 1, 081 | 990 | 1, 047 | 1, 003 | 1, 218 | 11, 593 | | | 708 | 588 | 656 | 542 | 519 | 588 | 7, 044 | | | 340 | 398 | 552 | 581 | 295 | 236 | 4, 160 | | | 1, 489 | 1, 846 | 1, 805 | 1, 635 | 1, 830 | 2, 073 | 21, 919 | | | 413 | 612 | 520 | 504 | 642 | 505 | 5, 280 | | | 95 | 86 | 93 | 90 | 90 | 84 | 1, 131 | | | 64 | 77 | 62 | 82 | 73 | 89 | 935 | | | 1, 873 | 2, 068 | 1, 828 | 1, 586 | 1, 900 | 1,817 | 21, 831 | | Total, 1934 | 7, 651 | 8, 723 | 8, 298 | 7, 904 | 8, 044 | 8, 136 | 94, 972 | | Daily average | 247 | 281 | 277 | 255 | 268 | 262 | 260 | | Total, 1933 | 7, 164 | 6, 057 | 6, 557 | 7, 157 | 6, 552 | 7, 331 | 78, 920 | | Stocks, end of period: East coast | 4, 502
237
2, 548
1, 190
276
4, 258
1, 651
171
155
4, 615 | 5, 625
287
2, 892
1, 272
341
5, 070
1, 992
147
158
5, 143 | 6, 376
289
2, 925
1, 206
364
5, 195
2, 017
167
161
5, 595 | 6, 850
335
3, 194
1, 261
392
4, 893
2, 091
159
179
5, 494 | 6, 525
358
3, 139
1, 227
340
4, 489
2, 376
147
172
5, 676 | 5, 358
358
2, 770
1, 126
255
4, 104
2, 363
114
193
5, 316 | Dec. 31,
1933
1 3,809
1 305
2,288
1 1,413
1 347
1 2,637
1,454
231
193
1 3,638 | | Total: 1934 | 19, 603 | 22, 927 | 24, 295 | 24, 848 | 24, 449 | 21, 957 | 1 16, 315 | | 1933 | 18, 303 | 19, 605 | 20, 887 | 21, 142 | 19, 581 | 17, 025 | | ¹ For comparison with 1934. Percentage yields of gas oil and distillate fuel oils in 1934, by districts and months
 By districts: | | |------------------------------|-------| | East coast | 10.8 | | | 7. 1 | | Appalachian | 1. I | | Indiana, Illinois, Kentucky, | | | etc | 9. 7 | | Oklahoma, Kansas, and Mis- | | | | 7. 4 | | _ souri | | | Texas inland | 6. 7 | | Texas Gulf coast | 12. 2 | | Louisiana Gulf coast | 12. 8 | | | 12. 6 | | Arkansas and Louisiana in- | | | land | 6. 0 | | Rocky Mountain | 5. 8 | | | | | California | 14. 0 | | , - | | | United States: 1934 | 10. 6 | | 1000 | -0.5 | | months: | | |---------------------|-------| | January | 10.8 | | January
February | 10.8 | | March | 11. 1 | | April | 10. 3 | | May | 10. 2 | | June | 10. 6 | | July | 9. 6 | | August | 10. 9 | | September | 11. 3 | | October | 10. 4 | | November | 10. 9 | | December | 10. 6 | | - | | | Year | 10. 6 | | | | # Production and stocks of residual fuel oils in 1934, by districts and months | District | January | February | March | April | Мау | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |--|---|--|--|---|---|--|---|--|--|--|--|--|--| | Production: East coast Appalachian. Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri Texas inland. Texas Gulf coast. Louisiana Gulf coast Arkansas and Louisiana inland. Rocky Mountain. California. | 3, 624
1, 130
565
252 | 3, 779 283 1, 247 1, 429 1, 528 3, 291 1, 116 581 252 4, 567 | 4, 057
377
1, 810
1, 493
1, 494
3, 756
1, 166
552
192
5, 641 | 3, 816
402
1, 247
1, 483
1, 734
3, 708
1, 012
385
260
5, 320 | 3, 874
392
1, 472
1, 637
1, 344
4, 206
875
471
212
5, 945 | 4, 164
426
1, 583
1, 575
1, 227
3, 911
999
539
289
5, 488 | 4, 239
287
1, 408
1, 686
1, 254
4, 254
4, 150
617
362
5, 599 | 3, 997
549
1, 433
1, 710
1, 556
4, 174
991
522
327
5, 114 | 3, 661
545
1, 392
1, 594
1, 737
3, 677
900
422
277
5, 317 | 3, 883
457
1, 384
1, 558
1, 853
3, 722
876
441
310
5, 660 | 3, 883
402
1, 343
1, 576
1, 352
4, 330
807
408
398
5, 418 | 3, 984
404
1, 639
1, 579
1, 126
4, 764
897
416
354
5, 923 | 47, 076
4, 811
17, 383
18, 677
17, 694
47, 417
11, 919
5, 919
3, 485
66, 000 | | Total, 1934
Daily average
Total, 1933 | 19, 876
641
18, 861 | 18, 073
645
17, 388 | 20, 538
663
19, 686 | 19, 367
646
19, 153 | 20, 428
659
20, 202 | 20, 201
673
20, 509 | 20, 856
673
21, 752 | 20, 373
657
21, 085 | 19, 522
651
20, 207 | 20, 144
650
20, 749 | 19, 917
664
18, 963 | 21, 086
680
18, 964 | 240, 381
659
237, 519 | | Stocks, end of period: East coast Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri Texas inland Texas Gulf coast Louisiana Gulf coast Arkansas and Louisiana inland Rocky Mountain California 2 | 3, 285
1, 459
897
376
86, 939 | 3, 540
237
1, 833
1, 948
1, 865
2, 792
1, 268
983
367
84, 063 | 3, 688
188
1, 475
1, 765
1, 856
2, 732
1, 006
963
371
81, 584 | 4, 919 216 1, 680 1, 858 1, 941 2, 877 873 930 379 78, 965 | 5, 188
231
1, 720
1, 940
1, 982
3, 233
949
894
364
76, 604 | 5, 904
261
2, 018
2, 051
1, 545
4, 433
1, 193
886
372
74, 815 | 7, 166,
429
2, 299
2, 163
1, 512
5, 541
1, 583
983
397
73, 834 | 7, 831
645
2, 665
2, 269
1, 510
6, 523
2, 020
993
389
71, 207 | 8, 379
867
3, 110
2, 343
1, 586
6, 783
2, 401
940
359
69, 490 | 8, 388
962
3, 316
2, 381
1, 587
6, 686
2, 846
867
346
67, 133 | 8, 119
933
3, 296
2, 425
1, 642
7, 358
3, 092
806
410
63, 891 | 7, 222
712
3, 008
2, 244
1, 554
7, 461
3, 150
463
61, 861 | Dec. 81,
1933
1 4, 246
1 347
2, 203
1 2, 425
2, 227
3, 437
1, 488
907
380
1 89, 029 | | Total: 1934 | 103, 073
115, 479 | 98, 896
114, 227 | 95, 628
113, 802 | 94, 638
114, 452 | 93, 105
115, 060 | 93, 478
114, 616 | 95, 907
114, 982 | 96, 052
115, 716 | 96, 258
114, 989 | 94, 512
113, 780 | 91, 972
110, 270 | 88, 440
106 475 | 1 106, 689 | ¹ For comparison with 1934. ² Includes heavy crude. # Percentage yields of residual fuel oils in 1934, by districts and months | By districts: | . 1 | By months: | | |------------------------------|---------------|------------|--------------| | East coast | 27. 4 | January | 27. 8 | | Appalachian | 13. 4 | February | | | Indiana, Ill nois, Kentucky, | | March | 28. 6 | | etc | 14.6 | April | 26. 3 | | Oklahoma, Kansas, and | | May | 26. 8 | | Missouri | 19. 7 | June | 26. 6 | | Texas inland | 28 . 6 | July | 26. 0 | | Texas Gulf coast | 26. 4 | August | 25. 5 | | Louisiana Gulf coast | 28. 8 | September | 26. 5 | | Arkansas and Louisiana in- | | October | 26. 5 | | land | 31. 4 | November | 27. 0 | | Rocky Mountain | 21. 7 | December | 27. 5 | | California | 42. 2 | <u> </u> | | | - | | Year | 26. 8 | | United States: 1934 | | | | | 1933 | 27. 6 | | | # Sales of gas oil and fuel oil,1 1930-34, by uses (Compiled by A. T. Coumbe, Jr., associate economic analyst, of the Bureau of Mines) ## [Thousands of barrels of 42 gallons] | Uses | 1930 ² | 1931 ² | 1932 8 | 1933 3 | 1934 | |--|---|---|---|--|--| | Railroads | 67, 900
94, 152
26, 769
6, 841
53, 921
43, 279
8, 681
55, 943
9, 875
367, 361
36, 450 | 58, 150
83, 559
24, 490
4, 363
46, 873
40, 578
9, 203
52, 710
9, 211
329, 137
29, 231 | 48, 908
72, 531
22, 199
3, 500
45, 000
44, 264
7, 968
47, 700
9, 500
301, 570
19, 994 | 48, 305
70, 445
22, 507
4, 500
47, 000
50, 140
8, 000
46, 200
11, 250
308, 347
20, 563 | 52, 581
69, 262
23, 143
4, 814
52, 128
60, 822
7, 914
47, 404
12, 253
330, 321
28, 605 | | Daporo, and other supmers and a second | 403, 811 | 358, 368 | 321, 564 | 328, 910 | 358, 926 | | Range oil | 4 3, 000 | 4, 549 | 6, 841 | ² 10, 269 | 15, 756 | ⁴ Estimated. 1 Includes some crude oil burned as fuel. ² Revised figures. 3 Partly estimated. # Sales of gas oil and fuel oil 1 by States, 1930-34 (Compiled by A. T. Coumbe, Jr., associate economic analyst, of the Bureau of Mines) | • | | | | | | |----------------------|---------|---------|---------|-----------|---------| | | ² 1930 | 2 1931 | 3 1932 | ³ 1933 | 1934 | | Alahama | 531 | 1,003 | 1,041 | 1, 127 | 1, 174 | | Arizona | 3, 482 | 2,052 | 625 | 448 | 729 | | Arkansas | 2, 925 | 2,666 | 2,084 | 2, 276 | 2, 345 | | California | 83, 049 | 68, 401 | 59, 141 | 59, 893 | 63, 801 | | Colorado | | 395 | 364 | 371 | 400 | | Connecticut | 3, 047 | 2, 527 | 2,977 | 3, 692 | 4, 862 | | Delaware | 1,014 | 730 | 638 | 765 | 865 | | District of Columbia | | 1,055 | 1, 176 | 1, 141 | 1, 190 | | Florida | | 5, 903 | 5, 495 | 6, 035 | 7, 310 | | Georgia | | 1, 433 | 1, 190 | 1, 211 | 1, 280 | | Idaho | 42 | 39 | 46 | 67 | 82 | | Illinois | 14, 565 | 13, 014 | 11,820 | 11,861 | 13, 206 | | Indiana | 6,084 | 5, 894 | 5,944 | 6, 264 | 6, 199 | | Iowa | | 1, 264 | 1, 152 | 1,073 | 1, 032 | | Kansas | | 5, 539 | 6,020 | 5, 924 | 6, 693 | | Kentucky | | 542 | 598 | 640 | 749 | | Louisiana | | 12, 171 | 9, 134 | 8, 663 | 8, 588 | | Maine | | 1, 253 | 1,038 | 1,829 | 1, 48 | | Maryland | | 5, 825 | 6,095 | 6, 217 | 7, 05 | | Massachusetts | | 13, 002 | 13, 041 | 12, 786 | 14, 394 | | Michigan | | 4, 252 | 4, 966 | 5, 723 | 7, 631 | | Minnesota | | 2, 674 | 2,700 | 2, 697 | 2, 796 | | Mississippi | | 174 | 182 | 231 | 268 | | Missouri | 5, 739 | 5, 484 | 5,070 | 5, 098 | 5, 452 | | Montana | 1,709 | 1,002 | 984 | 1,098 | 1, 226 | | Nebraska | | 1,
059 | 1,097 | 1, 125 | 1, 15 | | Nepraska | | • | • | ontimotod | -, | | | | | | | | ¹ Includes some crude oil burned as fuel. ² Revised. # Sales of gas oil and fuel oil by States, 1930-34-Continued | | 1930 | 1931 | 1932 | 1933 | 1934 | |---------------------|----------|----------|----------|----------|----------| | Nevada | 1,034 | 656 | 534 | 522 | 664 | | New Hampshire | 300 | 643 | 683 | 734 | 885 | | New Jersey | 35, 084 | 33, 402 | 29, 022 | 30, 193 | 30, 646 | | New Mexico | 447 | 223 | 340 | 468 | 753 | | New York | 29, 529 | 27, 415 | 26, 865 | 28, 097 | 30, 367 | | North Carolina | 275 | 254 | 233 | 253 | 334 | | North Dakota | 193 | 181 | 190 | 183 | 199 | | Ohio | | 4,811 | 5, 262 | 5, 381 | 5, 393 | | Oklahoma | 12, 948 | 9, 390 | 9,316 | 9,698 | 9, 836 | | Oregon | 7, 249 | 6, 615 | 4, 869 | 5, 430 | 6, 079 | | Pennsylvania. | 19, 832 | 20, 591 | 19, 190 | 19, 751 | 21, 871 | | Rhode Island | 5,009 | 4, 017 | 4, 525 | 5, 591 | 6, 412 | | South Carolina | 426 | 325 | 316 | 367 | | | South Dakota | 265 | 285 | 282 | 294 | 549 | | Tennessee | 568 | 500 | 394 | | 353 | | Texas | 49, 710 | | | 390 | 500 | | Utah | 49, 710 | 46, 423 | 41,910 | 38, 696 | 38, 368 | | Vermont | 259 | 269 | 155 | 203 | 254 | | Virginia | | 252 | 261 | 296 | 353 | | | 1,312 | 1,368 | 1, 182 | 1, 369 | 1,808 | | Washington | 10, 376 | 7, 974 | 7, 517 | 8, 312 | 8, 485 | | West Virginia | 390 | 505 | 630 | 613 | 576 | | Wisconsin | 2, 223 | 2, 043 | 2, 033 | 2,017 | 2, 415 | | Wyoming | 2, 010 | 1,642 | 1, 243 | 1, 234 | 1, 264 | | Total United States | 367, 361 | 329, 137 | 301, 570 | 308, 347 | 330, 321 | # Bunker oil laden on vessels at United States ports in 1934, by months 1 ## [Thousands of barrels of 42 gallons] | Month | Foreign
trade | Coastwise trade | Total | Month | Foreign
trade | Coastwise
trade | Total | |--|--|--|--|--|--|--|--| | January
February
March
April
May
June | 2, 592
2, 331
2, 716
2, 372
2, 570
2, 449 | 2, 088
1, 737
2, 302
2, 199
2, 170
1, 713 | 4, 680
4, 068
5, 018
4, 571
4, 740
4, 162 | August_September_October_November_December_September_Sep | 2, 562
2, 261
2, 276
2, 183
2, 355 | 2, 265
2, 153
2, 171
2, 218
2, 051 | 4, 827
4, 414
4, 447
4, 401
4, 406 | | July | 2, 326 | 1,843 | 4, 169 | Total | 28, 993 | 24, 910 | 53, 903 | ¹ Bureau of Foreign and Domestic Commerce. # Fuel consumption and purchases of electricity at refineries in the United States in 1934, by districts | | | | Fuel | used | | | B. t. u. | Pur- | | | | | |--|-----------------------------------|-------------------------------------|-------------------|--|---|----------------------------|---|--|---|--|--|--| | District | Oil
(thou- | Acid
sludge | Coal
(thou- | | nillions
ic feet) | Coke
(thou- | Total | A verage
per bar- | chased
elec-
tricity
(thou- | | | | | | sands
of bar-
rels) | (thou-
sands
of bar-
rels) | sands
of short | Natural | Refin-
ery
(still
gas) | sands
of short
tons) | (bil- | rel of
crude oil
run to
stills | sands
of kilo-
watt-
hours) | | | | | East coast
Appalachian
Indiana, Illinois, Ken- | 11, 917
1, 609 | 1, 734
30 | 69
646 | 3, 548 | 24, 536
7, 817 | 29
7 | 116, 319
41, 464 | 677, 000
1, 158, 000 | 184, 229
82, 611 | | | | | tucky, etcOklahoma, Kansas, and | 4, 071 | 7 | 465 | 646 | 31, 664 | 25 | 82, 306 | 691,000 | 130, 629 | | | | | Missouri Texas inland Texas Gulf coast Louisiana Gulf coast Arkansas and Louisiana | 4, 731
2, 570
3, 482
243 | 1, 045
131
938
7 | 1 | 10, 916
5, 478
22, 952
3, 783 | 18, 813
10, 210
40, 907
6, 682 | 1
122 | 71, 034
36, 086
110, 143
14, 817 | 748, 000
583, 000
614, 000
358, 000 | 120, 240
73, 548
80, 714
98, 577 | | | | | inland Rocky Mountain California | 343
660
3, 537 | 3
102
705 | 8 | 5, 502
4, 508
22, 632 | 2, 586
3, 680
17, 846 | 6 | 11, 468
14, 692
73, 141 | 608, 000
916, 000
468, 000 | 17, 209
39, 424
195, 803 | | | | | Total B. t. u. (bil- | 33, 163 | 4, 702 | 1, 189 | 79, 965 | 164, 741 | 194 | 571, 470 | 638, 000 | 1,022,984 | | | | | lions) | 198, 978 | 21, 159 | 30, 914 | 83, 963 | 230, 637 | 5, 820 | 571, 470 | | | | | | ¹ Computed by the use of the following factors: Oil, 6,000,000 B. t. u. per barrel; acid sludge, 4,500,000 B. t. u. per barrel; coal, 26,000,000 B. t. u. per short ton; natural gas, 1,050 B. t. u. per cubic foot; still gas, 1,400 B. t. u. per cubic foot; coke, 30,000,000 B. t. u. per short ton. Prices of fuel oil at 4 selected points in 1934, in dollars per barrel of 42 gallons, and refinery prices of 2 grades of distillate fuel oil in 1934, in cents per gallon 1 | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Av- | | | |---|--------|----------------|--------|-----------------|------------|-----------------|-----------|----------------|-----------|--------|---------------|--------|--------------|--|-----| | Average monthly price: | - | <u> </u> | | | | | | - | | | | | | | | | 24 ⁸ -26° gravity fuel oil at
refineries, Oklahoma | 0.69 | 0.
74 | 0. 74 | 0. 75 | 0.75 | 0.75 | 0. 73 | 0.73 | 0. 73 | 0.73 | 0.75 | 0. 75 | 0. 7 | | | | Grade C bunker oil in cargoes, Gulf coast | | | | | | | | | | | | | | | | | dollar per barrel
Grade C bunker oil in
cargoes, New York | .90 | .90 | .93 | 1.04 | 1.05 | . 98 | . 92 | .81 | . 79 | .75 | .75 | . 77 | . 8 | | | | dollars per barrel_
Grade C bunker oil in
cargoes, California | 1. 20 | 1. 20 | 1. 22 | 1.30 | 1.30 | 1.30 | 1.30 | 1.30 | 1.30 | 1. 15 | 1.15 | 1.15 | 1. | | | | dollar per barrel
38°-40° straw furnace oil, | .83 | . 83 | . 83 | .83 | .83 | . 83 | . 83 | .83 | . 83 | .83 | .83 | . 83 | | | | | Oklahoma
cents per gallon
32°-36° straw gas oil, Ok- | 3. 113 | 2. 897 | 2. 710 | 2.867 | 2. 774 | 1. 767 | 2. 472 | 2. 520 | 2.742 | 1. 879 | 3. 017 | 3. 185 | 2.6 | | | | lahoma
cents per gallon | 2. 125 | 2. 125 | 2. 073 | 2. 096 | 2. 395 | 2. 392 | 2. 242 | 2. 105 | 2. 029 | 2. 044 | 2. 091 | 2. 125 | 2. 1. | | | | | 240 | -26° | T | | . T | | a | ~ . | a | | | 200 | | | | | | gra | vity | | ade C
aker o | | rade
inker | C | Grade
bunke | e C | 38°-4 | | | -36° | | | | | | oil at eries. | in c | argoe | s. in | cargo | es. | in care | oes, f | urnac | e oil, | gas | oil, | | | | | | eries,
homa | | lf coas | t N | ew Yo
dollar | ork | Califor | rnia | Oklah | | Okla | | | | | | | llar) | (a | ollars) | 1 6 | аоцаг | s) | (dolla | ar) | (cen | ts) | (ce | nts) | | | | Price change by weeks: | | | | | | | _ - | | | | | | | | | | Jan. 1 2 | | 0.68 | 1 | 0.90 | | 1. 20 | | | 0. 83 | 3 | . 125 | | 2. 1 | | | | Jan. 15 | | . 70 | | | | | | | - | 3. (| | | | | | | Jan. 29
Feb. 5 | | . 75 | | | | | | | | ō | . 00 | | | | | | Feb. 19 | l | | | | | | | | | 2 | . 75 | | | | | | Feb. 26 | | | - | | | | | | | | | | . 625 | | | | Mar. 5 | | . 725
. 75 | | | | .95 | | | | | | 2.75 | | | 2.0 | | Mar. 19
Mar. 26 | 1 | | { | 1 (| n i | 1. | 30 | | - | 2 | . 625 | | 2.0 | | | | Apr. 2 | | | | ٠.٠ | | | | | | | . 75 | | | | | | Apr. 2
Apr. 9
Apr. 16
Apr. 23 | | | - | 1.0 | 5 | | | | | | | | | | | | Apr. 16 | | | - | | | | | | | 3 | . 00 | | 2.1 | | | | Apr. 20 | | | - | | | | | | | | . 875 | | 2. 2 | | | | Apr. 30
May 7 | | | | | | | | | | | . 75 | | 2. 3 | | | | May 21 | | | | | | | | | - | | | | 2. 5 | | | | June 11 | | | - | . 9 | 5 | | | | | | . 625
. 50 | | 2.3
2.2 | | | | May 21 | [| 725 | - | | <u></u> - | | | | | 2 | . 50 | | 2. 2 | | | | July 2
July 9
July 16 | | . 120 | | .9 | 3 | | | | | 2 | . 375 | | | | | | | | | | .9 | 0 | | - | | | 2 | . 50 | | | | | | July 30 | | | | .8 | 8 | | | | - | | | | 2. 1 | | | | Aug. 6 | | | - | .8 | ٥ | | - | | - | | . 625 | | 2. 0 | | | | Sept. 10 | | | | | | | | | | | . 75 | | 2.0 | | | | Aug. 27
Sept. 10
Sept. 24 | | | - | . 7 | 5 | | | | | | . 875 | | 2. 1 | | | | Oct. 1 | l | | . | | 1 | 1. | 15 | | - | | -== | | | | | | Oct. 15 | | | - | 7 | <u></u> | | - | | | 2 | . 75 | | 2. 0
1. 8 | | | | Oct. 29 | | 75 | - | | ۲ | | - | | - | 3 | . 00 | | 2. 1 | | | | Nov. 5
Nov. 19 | l | | . | | | | | | | | . 125 | | | | | | Nov. 26 | | | - | . 7 | 8 | | - | | | | | | | | | | Dec. 3 | | | | | | | - | | | | . 00 | | | | | | Dec. 10 | | | - | | <u></u> | | - | | | 3 | . 25 | | | | | | Dec. 17 | | | | . 7 | <u>" </u> | | <u>l-</u> | | <u> -</u> | | | | | | | ¹ National Petroleum News. ## LUBRICANTS # Comparative analyses of statistics for lubricants in 1934, by months [Thousands of barrels of 42 gallons] | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--|--------------|--------------|------|--------------|--------------|--------------|--------------|--------------|--------------|------|--------------|--------------|---------------| | Production
Daily average | 2, 198
71 | f, 865
67 | | | | | | | 2, 106
70 | | | 2, 346
76 | | | Imports
Exports | 771 | | | | | | | 599 | 644 | | 667 | 493 | 7,660 | | Daily average
Stocks, end of period | 7, 020 | | | 6, 796 | 6, 773 | 6, 752 | 6, 782 | 6, 841 | 6, 965 | | | | 7, 331 | | Domestic demand
Daily average | 1, 507
49 | | | 1, 646
55 | 1, 940
63 | 1, 569
52 | 1, 491
48 | 1, 494
48 | 1, 338
45 | | 1, 493
50 | | 18, 484
51 | ² Price in effect on this date. # Production and stocks of lubricants in 1934, by districts and months | District | January | February | March | April | Мау | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |---|-----------------------------|---|---|---|--|--|---|---|--|--|---|---|---| | Production: East coast | 271
26
441
32
9 | 476
382
171
230
28
370
37
8
16 | 586
411
197
256
25
471
30
11
18 | 643
460
211
260
32
488
36
9
30
153 | 749
481
220
249
27
640
38
10 | 570
480
209
244
35
455
35
11
27
145 | 580
417
201
243
22
540
40
10
12 | 590
410
195
232
20
461
31
8
30 | 598
453
194
225
17
435
32
14
16 | 638
428
193
240
22
413
34
17
15 | 637
424
186
235
30
388
44
9
31 | 658
464
223
284
29
486
39
14
16 | 7, 405
5, 231
2, 373
2, 969
313
5, 588
428
130
231
1, 705 | | Total, 1934
Daily average
Total, 1933 | 2, 198
71
1, 826 | 1, 865
67
1, 619 | 2, 152
69
1, 772 | 2, 322
77
1, 871 | 2, 577
83
2, 114 | 2, 211
74
1, 847 | 2, 209
71
1, 959 | 2, 152
69
2, 019 | 2, 106
70
2, 046 | 2, 145
69
2, 115 | 2, 090
70
2, 375 | 2, 346
76
2, 212 | 26, 373
72
23, 775 | | Stocks, end of period: East coast | 1, 572
65
20 | 2, 275
796
610
597
93
1, 653
83
18
135
860 | 2, 260
796
567
565
93
1, 484
83
17
127
845 | 2, 132
809
527
541
99
1, 597
88
15
130
858 | 2, 092
842
511
502
98
1, 654
104
18
104
848 | 2, 072
939
509
471
106
1, 595
98
17
110
835 | 1, 992
1, 010
523
452
119
1, 645
110
16
94
821 | 2, 042
1, 004
502
460
101
1, 663
102
14
93
860 | 2, 191
1, 004
519
460
100
1, 634
95
16
89
857 | 2, 128
986
529
473
96
1, 662
92
18
73
882 | 2, 159
.971
517
499
100
1, 538
111
14
.86
.874 | 2, 316
1, 006
555
563
105
1, 667
115
17
88
899 | Dec. 31,
1933
2, 351
876
688
521
80
1, 526
62
18
133
845 | | Total: 1934 | 7, 020
9, 026 | 7, 120
9, 053 | 6, 837
8, 924 | 6, 796
8, 587 | 6, 773
8, 356 | 6, 752
7, 931 | 6, 782
7, 403 | 6, 841
7, 402 | 6, 965
7, 179 | 6, 939
6, 950 | 6, 869
7, 257 | 7, 331
7, 100 | 7, 100 | # Percentage yields of lubricants in 1934, by districts and months | By districts: | . 1 | By months: | | |------------------------------|-------|------------|------| | East coast | 4. 3 | January | 3. 1 | | Appalachian | 14. 6 | February | 2.8 | | Indiana, Illinois, Kentucky, | | March | 3. 0 | | etc | 2. 0 | April | 3. 2 | | Oklahoma, Kansas, and | 2.0 | May | 3. 4 | | Missouri | 3. 1 | June | 2. 9 | | Texas inland | | | 2. 8 | | | . 5 | July | | | Texas Gulf coast | 3. 1 | August | 2. 7 | | · Louisiana Gulf coast | 1. 0 | September | 2. 9 | | Arkansas and Louisiana | | October | 2. 8 | | inland | . 7 | November | 2. 8 | | Rocky Mountain | 1. 4 | December | 3. 1 | | California | 1. 1 | | | | Camoima | | Year | 2. 9 | | United States: 1934 | 2. 9 | 1 vai | 2. 0 | | | | • | | | 1933 | 2.8 | • | | # Refinery prices of 5 selected grades of lubricating oil in 1934, in cents per gallon | | Jan. | Feb. | Mar. | Apr. | Мау | June | July
, | Aug. | Sept. | Oct. | Nov. | Dec. | Av-
erage | |---|------------------------|-------|-------|-------|------|------|-----------|-------|-------|------|------|------|--------------| | Average monthly price: Oklahoma: 200 viscosity, no. 4 color, neutral 150-160 viscosity at 210°, bright stock, 10-25 cold test Pennsylvania: | 9. 2 | | | | | | | | | | 1 | | 10.6 | | 200 viscosity, no. 3 color,
neutral, 420-425 flash | 26. 2
17. 2
8. 8 | 18. 5 | 18. 5 | 18. 5 | 18.9 | 17.4 | 15.0 | 11. 2 | 12. 5 | 10.4 | 9.0 | 8. 9 | ŀ | | | Okla | homa | Pennsy | 7lvania | Gulf coast | |------------------------|---|---|------------------|----------------------|---| | | 200 viscosity,
no. 4 color,
neutral | 150-160 vis-
cosity at 210°,
bright stock,
10-25 cold test | neutral, 420- | 600 steam
refined | 500 viscosity
no.
2½-3½
color,
neutral | | Price change by weeks: | | | | | | | Jan. 1 ³ | | 21.75 | 25, 00
25, 50 | 15. 50
16. 00 | 7. 875
8. 00 | | Jan. 8 | | | 26, 00 | 17.00 | 9.00 | | Jan. 22
Jan. 29 | 9. 50 | 23, 25 | 27.50 | 18. 50 | | | Apr. 16 | . 10.00 | 23. 20 | | | | | Apr. 30 | | 24.00 | 29. 00
29. 50 | 19. 00 | | | May 14 | . 10.75 | | | 18.00 | | | June 11 | | 23, 00 | | 17. 50
17. 00 | 9, 75 | | June 18 | | | | 16.00 | | | July 2
July 16 | | | | 15. 00 | | | July 23
July 30 | | | 28. 50
27. 50 | 14. 00
11. 50 | | | Aug. 6 | . | 15.00 | | 10. 50 | 9, 00 | | Aug. 20 | . | | | 11. 50 | | | Aug. 27
Oct. 1 | | | | 12. 50
11. 50 | | | Oct. 15
Oct. 29 | . | 15. 50 | | 9. 50 | 8, 50 | | Nov. 12 | | | | 9. 00
8. 50 | | | Nov. 19
Dec. 3 | | 13.00 | 28.00 | | | | Dec. 10
Dec. 31 | | | | 9. 00
8. 00 | | | | | | | 2.00 | | ¹ National Petroleum News. ² Prices in effect on this date. WAX Comparative analyses of statistics for wax in 1934, by months [Thousands of pounds] | | J | anuary | February | March | April | Мау | June | |--|----------------------------------|---|---|---|---|--|--| | Production Daily average Imports Daily average Exports Daily average Stocks, end of period Domestic demand Daily average | | 46, 480
1, 499
7, 641
246
18, 971
612
78, 934
25, 333
817 | 39, 200
1, 400
5, 120
183
16, 307
582
83, 791
23, 156
827 | 43, 120
1, 391
2, 852
92
21, 111
681
86, 644
22, 008
710 | 39, 480
1, 316
3, 860
129
15, 024
501
91, 763
23, 197
773 | 41, 720
1, 346
3, 981
128
14, 059
454
101, 551
21, 854
705 | 40, 320
1, 344
2, 712
90
12, 185
406
108, 087
24, 311
810 | | | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | | Production | 46
13, 804
445
115, 137 | 1, 093
881
28
15, 299
494
119, 702
14, 897 | 1, 129
2, 449
82
21, 265
709
118, 991
15, 775 | 39, 480
1, 274
2, 507
81
16, 871
544
123, 099
21, 008
678 | 39, 480
1, 316
2, 210
74
17, 483
130, 222
17, 084
569 | 37, 520
1, 210
1, 653
53
16, 579
136, 136
16, 680
538 | 468, 720
1, 284
37, 292
102
198, 958
545
136, 136
240, 035
658 | # Production and stocks of wax in 1934, by districts and months # [Thousands of pounds] | District . | January | Febru-
ary | March | April | May | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |--|--|--|---|--|--|---|--|--|---|--|---|---|---| | Production: East coast. Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri Texas inland Texas Gulf coast Louisiana Gulf coast Rocky Mountain | 22, 400
7, 000
4, 200
2, 800
3, 360
5, 600
1, 120 | 17, 920
6, 440
4, 480
2, 520
280
2, 520
2, 520
2, 520
2, 520 | 22, 120
7, 280
3, 920
2, 520
280
4, 480
1, 960
560 | 19, 320
7, 560
2, 520
2, 800
280
3, 080
2, 520
1, 400 | 20, 160
7, 280
4, 760
2, 240
280
5, 040
2, 240
-280 | 18, 480
6, 720
4, 200
3, 080
2, 520
2, 520
2, 520
2, 520 | 16, 520
5, 880
2, 800
2, 240
2, 240
280
3, 640
1, 400
1, 400 | 17, 080
6, 160
2, 240
2, 800
280
3, 080
840
1, 400 | 15, 680
5, 880
2, 240
3, 080
5, 320
1, 400
280 | 17, 920
7, 560
2, 800
3, 360
280
4, 480
1, 400
1, 680 | 18, 200
7, 280
1, 400
3, 920
280
5, 040
1, 400
1, 960 | 19, 320
6, 440
2, 240
3, 360
280
2, 800
1, 960
1, 120 | 225, 120
81, 480
37, 800
34, 720
2, 800
45, 360
25, 760
15, 680 | | Total
Daily average | 46, 480
1, 499 | 39, 200
1, 400 | 43, 120
1, 391 | 39, 480
1, 316 | 41, 720
1, 346 | 40, 320
1, 344 | 34, 160
1, 102 | 33, 880
1, 093 | 33, 880
1, 129 | 39, 480
1, 274 | 39, 480
1, 316 | 37, 520
1, 210 | 468, 720
1, 284 | | Stocks, end of period: Crude scale: East coast. Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri. Texas, Gulf coast. Louisiana Gulf coast. Rocky Mountain. | 10, 557
10, 511
8, 651
2, 767
2, 274
2, 389
6, 477 | 11, 982
10, 991
10, 428
2, 213
1, 955
347
7, 822 | 15, 863
11, 525
10, 652
2, 509
2, 381
246
7, 075 | 16, 954
14, 258
10, 632
3, 192
2, 134
295
7, 146 | 19, 937
15, 052
12, 540
2, 867
3, 207
207
5, 940 | 21, 117
14, 270
13, 767
3, 244
2, 304
621
6, 746 | 21, 356
15, 163
14, 926
2, 671
2, 591
804
7, 170 | 22, 411
15, 315
14, 051
2, 575
2, 513
799
8, 107 | 20, 408
14, 883
13, 778
3, 752
2, 678
802
7, 125 | 18, 436
15, 713
13, 808
3, 560
2, 757
605
7, 677 | 19, 896
16, 848
13, 338
4, 084
3, 211
433
9, 194 | 22, 965
16, 629
14, 049
4, 919
3, 360
673
9, 551 | Dec. 31,
1933
7, 259
10, 559
8, 739
2, 414
1, 821
3, 435
7, 966 | | Total | 43, 626 | 45, 738 | 50, 251 | 54, 611 | 59, 750 | 62, 069 | 64, 681 | 65, 771 | 63, 426 | 62, 556 | 67, 004 | 72, 146 | 42, 193 | | Refined: East coast | 18, 016
2, 370
1, 687
1, 000
46
10, 423
893
873 | 19, 819 2, 038 1, 732 1, 108 130 10, 975 1, 227 1, 024 | 17, 865
1, 953
1, 565
820
371
12,022
665
1, 132 | 19, 325
1, 390
1, 038
1, 061
252
12, 285
626
1, 175 | 22, 953
1, 222
1, 493
1, 108
103
13,040
1,065
817 | 25, 609
1, 528
1, 550
1, 778
32
13, 204
1, 333
984 | 28, 928
1, 943
1, 899
874
216
13, 827
1, 548
1, 221 | 30, 777
2, 648
2, 027
973
271
14, 825
1, 374
1, 036 | 31, 853
2, 415
2, 044
806
85
15, 570
1, 478
1, 314 | 34, 486
2, 740
2, 365
616
198
17, 413
1, 226
1, 499 | 33, 743
3, 000
2, 429
1, 049
371
20, 161
1, 254
1, 211 | 34, 189
- 2, 986
2, 181
1, 521
118
20, 274
1, 446
1, 275 | 11, 514
2, 183
1, 738
1, 049
204
8, 241
643
1, 352 | | Total | 35, 308 | 38, 053 | 36, 393 | 37, 152 | 41, 801 | 46,018 | 50, 456 | 53, 931 | 55, 565 | 60, 543 | 63, 218 | 63, 990 | 26, 924 | # Production and stocks of wax in 1934, by districts and months—Continued # [Thousands of pounds] | District | January | Febru-
ary | March | April | Мау | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |--------------------------|---|---|--|--|--|--|---|---|--|---|--|--|---| | Total stocks: East coast | 28, 573
12, 881
10, 338
3, 767
46
12, 697
3, 282
7, 350
78, 934 | 31, 801
13, 029
12, 160
3, 321
130
12, 930
1, 574
8, 846 | 33, 728
13, 478
12, 217
3, 329
371
14, 403
911
8, 207 | 36, 279
15, 648
11, 670
4, 253
252
14, 419
921
8, 321 |
42,890
16,274
14,033
3,975
103
16,247
1,272
6,757 | 46, 726
15, 798
15, 317
5, 022
32
15, 508
1, 954
7, 730
108, 087 | 50, 284
17, 106
16, 825
3, 545
216
16, 418
2, 352
8, 391
115, 137 | 53, 188
17, 963
16, 078
3, 548
271
17, 338
2, 173
9, 143
119, 702 | 52, 261
17, 298
15, 822
4, 558
85
18, 248
2, 280
8, 439 | 52, 922
18, 453
16, 173
4, 176
198
20, 170
1, 831
9, 176
123, 099 | 53, 639
19, 848
15, 767
5, 133
371
23, 372
1, 687
10, 405 | 57, 154
19, 615
16, 230
6, 440
118
23, 634
2, 119
10, 826 | Dec. 31,
1938
18, 773
12, 742
10, 477
3, 463
204
10, 062
4, 078
9, 318 | # Refinery price of 122 to 124 white crude scale wax at Pennsylvania refineries in 1934, in cents per pound ¹ | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Aver-
age | |-----------------------|------|-------|-------|-------|------|-------|-------|-------|-------|-------|------|-------|--------------| | Average monthly price | 4.07 | 4. 07 | 4. 07 | 3. 90 | 3.66 | 3. 94 | 3. 38 | 2. 92 | 3. 07 | 3. 07 | 3.07 | 3. 07 | 2, 79 | ## PRICE CHANGES, BY WEEKS | Jan. 15 | May 7- 3.75 May 14 3.65 May 21 3.55 May 28 3.50 June 4 3.45 June 11 3.65 | July 16 | Sept. 17 3. 20
Sept. 24 3. 25 | |---------|--|---------|----------------------------------| |---------|--|---------|----------------------------------| ¹ National Petroleum News. ## PETROLEUM COKE # Comparative analyses of statistics for petroleum coke in 1934, by months [Thousands of short tons] | | | January | February | March | April | May | June | |------------|---|--|--|---|---|--|--| | Production | | 127. 0
4. 1
6. 1
637. 0
211. 3
6. 8 | 120. 8
4. 3
2. 1
594. 6
161. 1
5. 8 | 125. 6
4. 1
8. 4
564. 6
147. 2
4. 7 | 101. 0
3. 4
8. 6
552. 9
104. 1
3. 5 | 74. 4
2. 4
8. 1
514. 5
104. 7
3. 4 | 104. 4
3. 5
2. 2
504. 1
112. 6
3. 8 | | • | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | | Production | 96. 0
3. 1
10. 0
493. 8
96. 3
3. 1 | 3. 3
6. 5
478. 0 | 110.0
3.7
6.4
484.2
97.4
3.2 | 129. 2
4. 2
23. 5
464. 1
125. 8
4. 1 | 113. 2
3. 8
16. 4
458. 7
102. 2
3. 4 | 97. 4
3. 1
16. 0
405. 1
135. 0
4. 4 | 1, 300. 0
3. 6
114. 3
405. 1
1, 508. 0
4. 1 | ² Price in effect on this date. # Production and stocks of petroleum coke in 1934, by districts and months [Thousands of short tons] | District | January | February | March | April | Мау | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |--|---|---|--|---|---|---|---|--|--|--|---|---|--| | Production: East coast | 13. 6
1. 4
50. 8
19. 2
5. 0
23. 8
2. 2
7. 8
3. 0 | 10. 4
1. 6
48. 0
21. 0
4. 6
23. 2
3. 4
6. 8
1. 6 | 13. 6
1. 4
51. 8
20. 0
4. 4
21. 8
2. 6
6. 6 | 10. 4
2. 0
44. 0
6. 0
2. 4
26. 6
1. 4
7. 8 | 12.8
1.8
42.0
19.6
4.8
11.2
.2
-18.2 | 13. 0
1. 6
43. 8
19. 0
4. 8
15. 4
2
6. 4 | 12. 4
2. 2
44. 2
14. 8
5. 0
12. 6 | 12. 2
2. 0
52. 8
14. 6
-4. 2
14. 8 | 10. 8
2. 2
48. 4
15. 0
4. 2
21. 4 | 11. 4
2. 4
54. 4
15. 2
3. 0
35. 6
2
. 2
6. 8 | 10. 8
1. 8
48. 4
19. 4
4. 0
16. 2
5. 4
. 2
7. 0 | 11. 0
2. 8
38. 4
21. 4
9. 2
6. 8
. 2
7. 4 | 142. 4
23. 2
570. 0
205. 2
47. 2
222. 8
22. 4
59. 2
5, 2 | | Total, 1934
Daily average
Total, 1933 | 127. 0
4. 1
96. 8 | 120. 8
4. 3
109. 0 | 125, 6
4, 1
147, 0 | 101. 0
3. 4
137. 6 | · 74. 4
2. 4
145. 4 | 104. 4
3. 5
154. 4 | 96. 0
3. 1
153. 6 | 101. 0
3. 3
111. 8 | 110. 0
3. 7
138. 8 | 129. 2
4. 2
139. 4 | 113. 2
3. 8
117. 6 | 97. 4
3. 1
128. 6 | 1, 300. 0
3. 6
1, 580. 0 | | Stocks, end of period: East coast Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri Texas Inland Texas Gulf coast Louisiana Gulf coast Arkansas and Louisiana inland Rocky Mountain California. | 14. 2
3. 8
92. 9
84. 8
65. 3
162. 1
9. 2
1
103. 9
100. 7 | 8. 8
3. 5
86. 2
76. 5
61. 2
145. 1
7. 1
104. 9
101. 2 | 9. 0
3. 5
81. 6
71. 0
60. 4
130. 6
4. 3
1
103. 7 | 9. 9
4. 4
84. 6
57. 9
59. 1
131. 9
. 6
. 1
104. 4
100, 0 | 13. 4
5. 2
69. 0
56. 5
60. 7
124. 8
. 5
. 85. 3
99. 0 | 18. 6
5. 8
57. 7
54. 1
62. 4
119. 1
. 1
87. 6
98. 3 | 24. 0
6. 9
56. 6
50. 6
64. 0
108. 1
. 1
85. 4
97. 7 | 29. 1
7. 3
52. 8
49. 3
56. 3
99. 5
. 4
. 86. 3
96. 9 | 30. 8
8. 1
49. 3
45. 7
57. 6
98. 6
. 4
. 1
. 85. 9
107. 7 | 28. 4
8. 7
43. 9
43. 2
58. 6
104. 0
. 5
. 1. 7
95. 0 | 28. 0
8. 9
40. 0
45. 8
54. 2
105. 7
2. 1

1
81. 1
92. 8 | 23. 9
9. 6
32. 5
44. 0
38. 4
81. 6
4. 1
79. 8
91. 1 | Dec. 31,
1933
27. 0
4. 7
93. 2
102. 5
80. 0
206. 1
8. 9 | | Total: 1934 | 637. 0
1, 235. 8 | 594. 6
1, 171. 8 | 564. 6
1, 148. 5 | 552. 9
1, 148. 9 | 514. 5
1, 176. 2 | 504. 1
1, 185. 4 | 493. 8
1, 149. 1 | 478. 0
1, 035. 9 | 484. 2
987. 0 | 464. 1
891. 3 | 458. 7
760. 3 | 405. 1
727. 4 | 727. 4 | ## ASPHALT # Comparative analyses of statistics for asphalt in 1934, by months [Thousands of short tons] | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |------------|--|-------------------|-----------------|--------------------------------------|--|-----------------------------|--|---------------------------------|--|-------------------------|--|--|--| | Production | 152. 4
4. 9
2. 8
25. 6
303. 5
80. 6
2. 6 | 4.8
.6
14.6 | 22. 7
370. 5 | 7.3
3.0
14.6
378.3
199.3 | 8. 6
. 9
13. 6
382. 3
248. 6 | 9.8
2.9
14.4
358.0 | 10. 3
2. 9
42. 0
359. 3
278. 9 | 10. 7
. 7
23. 5
339. 0 | 9. 9
. 7
17. 1
314. 5
303. 7 | 9. 2
18. 9
291. 9 | 7. 5
. 8
14. 9
309. 3
193. 6 | 5. 0
. 1
18. 0
339. 2
107. 1 | 15. 6
239. 9
339. 2
2, 531. 5 | # Production and stocks of asphalt in 1934, by districts and months [Thousands of short tons] | | | | | | | | | | | | · | | | |---|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---------------------------------|-----------------|------------------|---------------------------------|--------------------------|----------------------------------| | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | | Production: East coastAppalachian | 61.4 | 50. 7
5. 1 | 55. 4
7. 3 | 93. 6
8. 9 | 123. 7
11. 1 | 146. 4
10. 4 | 154. 4
9. 5 | 160. 9
14. 1 | 139. 3
10. 9 | 133.8
11.1 | 89. 4
10. 3 | 51. 6
5. 7 | 1, 260. 6
108. 6 | | Indiana, Illinois, Ken- | 30.0 | | 30. 9 | | 41. 1 | | | 49. 1 | | 48. 4 | 39. 5 | 33.8 | 469. 5 | | Oklahoma, Kansas, and Missouri Texas inland Texas Gulf coast Louisiana Gulf coast | . 4
13. 6 | . 5
 11. 5 | 3.6
11.6 | 4. 9
13. 3 | 7.8 | 6. 5
16. 5 | 6.4
17.8 | 13. 5
6. 9
17. 5
15. 8 | 6. 9
12. 7 | 7.3 | 5. 5
10. 2 | 3.8
1.5
9.8
8.5 | 58. 2
163. 1 | | Arkansas
and Louisiana inlandRocky MountainCalifornia | 6 | | 1.3 | | 12. 0
3. 8
32. 9 | 6.5 | 4.9 | 11. 1
5. 3
387 | 3.3 | 6.7 | .4 | 11. 6
28. 6 | | | Total, 1934
Daily average
Total, 1933 | 152. 4
4. 9
105. 4 | 133. 5
4. 8
101. 5 | 164. 5
5. 3
131. 6 | 218. 7
7. 3
158. 9 | 265. 3
8. 6
239. 3 | 292. 7
9. 8
256. 2 | 319. 3
10. 3
273. 3 | 332. 9
10. 7
253. 5 | 9.9 | 9. 2 | 7.5 | 5.0 | 2, 840. 5
7. 8
2, 319. 5 | | Appalachian | 104. 8
7. 6 | 110. 5
10. 0 | 122. 7
16. 7 | 128. 3
16. 7 | 124. 9
17. 3 | 119. 4
15. 5 | 116. 0
12. 9 | 111.3
11.0 | 104. 4
7. 7 | 93. 6
6. 8 | 93. 2
9. 8 | | Dec.31,
1933
83. 2
6. 6 | | Indiana, Illinois, Ken-
tucky, etc
Oklahoma, Kansas, and | | | | | 78.0 | | | 76. 9 | | | 71.1 | | | | Missouri
Texas inland
Texas Gulf coast
Louisiana Gulf coast | 6.7 | 12.9 | 13.9 | 13. 3 | 7. 1
13. 5
25. 4 | 16.6 | 13. 1 | 9. 5
12. 8
23. 1 | 9. 1 | 11.8 | 10. 1
2. 5
10. 7
26. 5 | 2. 5
11. 3 | 7.3 | | Arkansas and Louisiana inland Rocky Mountain California | 20 | 28 | 1 3 9 | 3 4 | 4.2 | 4.9 | 4.4 | 40. 1
4. 2
50. 1 | 4.3 | 5.7 | 36. 5
5. 4
43. 5 | 44. 6
5. 3
47. 0 | 2. 5 | | Total: 1934 | 303. 5 | 330, 6 | 370. 5 | 378. 3 | 382. 3 | 358. 0 | 359. 3 | | 314. 5 | 291. 9
242. 2 | 309. 3
258. 9 | 339. 2
254. 5 | 254. 5 | ROAD OIL Production and stocks of road oil in 1934, by districts and months [Thousands of barrels of 42 gallons] | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------------| | Production: East coast Appalachian Indiana, Illinois, Ken- | 10
8 | 11
8 | 28
-15 | 35
5 | | 52
23 | 64
21 | 60
-2 | 36 | 25 | 24 | -1
 | 392
93 | | tucky, etc. | 24 | 33 | 45 | 95 | 255 | 369 | 340 | 363 | 171 | 35 | 39 | 23 | 1, 792 | | Oklahoma, Kansas, and
Missouri
Texas inland
Texas Gulf coast
Louisiana Gulf coast
Arkansas and Lousiana | 12
3
10 | 5
3
8 | 18
4
13 | 25
4
7 | 17
14
27 | 11 | 194
23
32
22 | 7
38 | 5 | 91
3
12
1 | | -1
30
10 | | | inlandRocky MountainCalifornia | 31
22 | 1
40 | 41
54 | 8
61
69 | 100 | 46
107
207 | 45
147
225 | 165 | | 1
77
152 | <u>4</u> 0
90 | 30
52 | | | Total, 1934
Daily average
Total, 1933 | 120
4
99 | 112
4
150 | 188
6
186 | 309
10
274 | 768
25
471 | 990
33
964 | 36 | | 705
24
703 | 397
13
403 | 235
8
275 | 143
5
247 | 6, 210
17
5, 534 | | Stocks, end of period:
East coast
Appalachian
Indiana, Illinois, Ken- | 102
29 | 92
37 | 38
9 | 48
14 | 98
33 | 89
22 | 82
33 | 76
18 | 57
14 | 67
13 | 76
13 | 75
13 | Dec.31,
1933
92
22 | | tucky, etc | 40 | 43 | 41 | 88 | 149 | 141 | 160 | 161 | 172 | 97 | 86 | 71 | 41 | | Oklahoma, Kansas, and Missouri Texas inland Texas Gulf coast Louisiana Gulf coast Arkansas and Louisiana | 180
20
35
14 | 180
20
35
15 | 189
22
32
15 | 196
25
29
12 | 221
40
24
27 | 261
46
24
10 | 236
48
26
18 | 171
44
33
13 | 148
32
39
11 | 114
25
37
12 | 126
21
33
11 | 121
39
34
11 | 172
24
31
14 | | inland | 29
230
176 | 29
204
205 | 29
238
171 | 37
283
185 | 54
297
189 | 47
227
142 | 49
148
151 | 25
80
172 | 16
72
165 | 9
81
161 | 9
114
161 | 1
140
159 | 29
212
195 | | Total: 1934
1933 | 855
573 | 860
669 | 784
803 | 917
998 | 1, 132
1, 237 | 1,009
1,298 | 951
1, 277 | 793
1, 130 | 726
1,008 | 616
856 | 650
815 | 664
832 | 832 | # STILL GAS Production of still gas in 1934, by districts and months [Millions of cubic feet] ### Febru-District January March April Мау June July ary 2,093 2,311 790 2,925 1,700 2,321 719 3,060 1,606 East coast. 1,862 511 2, 168 2, 209 782 2,625 East coast. Appalachian. Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri. Texas inland Texas Gulf coast. Louisiana Gulf coast. Arkenses and Louisiana inland 649 2, 751 1, 506 621 871 2,954 2, 544 2,951 3, 073 1, 763 1,379 598 1, 491 387 3, 250 1,485 502 3, 183 557 214 466 529 492 627 3, 001 584 202 3, 811 593 225 3, 329 2,847 3,007 553 528 560 156 175 178 158 236 272 1, 497 281 242 330 290 1,386 1, 477 1,656 1, 229 1,471 1,741 13,679 11,856 12,872 13, 595 453 13, 774 13,981 15, 619 415 441 423 466 504 of barrels.... 3, 457 12, 122 3,050 11,125 3, 429 12, 894 3, 642 13, 679 3, 674 15, 821 3, 707 15, 551 4, 150 15, 896 Total, 1933_______ Total equivalent in thousands of barrels..... 3, 368 3, 224 2,914 3, 557 4, 232 4, 141 4,524 # STILL GAS—continued # Production of still gas in 1934, by districts and months—Continued [Millions of cubic feet] | | | | | | | То | tal | |------------|--|---|---|--|---|--|--| | District | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Millions
of cubic
feet | Equiva-
lent in
thou-
sands of
barrels | | East coast | 2, 595
8, 404
1, 621
574
4, 058
537
208
397
1, 767
16, 011
4, 240
16, 343
4, 250 | 2, 347
3, 096
1, 511
561
4, 011
480
174
3, 12
1, 473
14, 773
492
3, 835
15, 452
3, 989 | 2, 598
770
3, 120
1, 553
563
3, 791
449
180
0, 305
1, 334
14, 663
473
3, 792
15, 017
3, 990 | 2, 463
688
2, 948
1, 474
552
3, 672
454
152
336
1, 252
13, 961
465
3, 625
13, 226
3, 466 | 2, 670
839
2, 937
1, 428
3, 841
600
149
325
1, 383
14, 695
474
3, 790
13, 727
3, 557 | 28, 262
8, 898
35, 763
18, 517
6, 344
41, 801
6, 383
2, 171
17, 666
169, 479
464
44, 391
170, 853
45, 212 | 8, 808 2, 339 9, 401 4, 600 1, 392 10, 326 1, 638 4, 541 44, 391 122 | # MISCELLANEOUS OILS # Production and stocks of miscellaneous oils in 1934, by districts and months [Thousands of barrels of 42 gallons] | | | | | | | | | | | | | | |---------------|--|---|--|---|--|---|--
--|---|---|--|---| | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | | 13
21 | 35
17 | 30
24 | 38
17 | 32
29 | 41
30 | 40
22 | 71
23 | 72
20 | 41
29 | 97
24 | 96
26 | 606
282 | | 24
17
3 | 6
22
6 | 7
32
-1 | 10
69
5 | 9
43
12 | 21
16
12 | 7
41
2 | 18
21
6 | 29
17
11 | 19
7 | 21
12 | 14
1 | 156
332
74 | | 6 2 | 5 3 | 2 3 | 5
-1 | 4
-1 | 6 2 | 6
4
2 | 5 2 | 5
-1 | 4 -2 | 5 2 | 5 | 208
56
11
147 | | 116 | 122
4
97 | 129
4
124 | 183
6
98 | 182
6
137 | 163
5
130 | 124
4
142 | 168
5
127 | 176
6
120 | 135
4
103 | 200
7
133 | 174
6
142 | 1,872
5
1,435 | | | | | | | | | | | | | | Dec. 31, | | 89
39 | 71
44 | 49
23 | 27
19 | 28
35 | 29
29 | 34
31 | 34
32 | 34
43 | 33
42 | 38
32 | 42
39 | 1933
1 44
1 34 | | 11
38
7 | 11
39
8 | 10
16
6 | 13
25
8 | 12
36
10 | 25
23
13 | 27
30
8 | 28 | 22
11 | 24
11 | 24
13 | 25
6 | 12
25
5 | | 10 | 11 2 | 15 | 32
2
9 | 28 2 7 | 40 2 7 | 26
1
8 | 30
1
10 | 29
2
8 | 1 6 | 8 | 8 | 11
1
6 | | 291 | 68
262 | 198
425 | 202
442 | 52
210
430 | 59
227
420 | 214
379 | 215
357 | 223
370 | 228
356 | 230
385 | 231
388 | 1 78 | | | 13
21
24
17
3
2
28
116
4
82
89
39
11
38
7
10
3
88 | 13 35
21 17
24 6
17 22
3 6
2 4
6 5
2 2
28 24
116 122
4 4
82 97
89 71
39 44
11 11
13 39 7
8 10 11
3 6 8
8 68 | 13 35 30
21 17 24
24 6 7
17 22 32
3 6 -1
2 4 20
6 5 2
2 3 2
2 2 12
116 122 129
4 4 4
82 97 124
89 71 49
39 44 23
11 11 10
38 39 16
10 11 15
3 6 8 81
10 11 15
3 6 8 65
201 262 198 | 13 35 30 38
21 17 24 17
24 6 7 10
17 22 32 69
3 6 -1 5
2 4 20 25
6 5 3 3 3
28 24 12 15
116 122 129 183
4 4 4 6 82 97 124 98
82 97 124 98
89 71 49 27
39 44 23 19
11 11 10 13
38 39 16 25
7 8 6 8
10 11 15 32
3 2 3 2
6 8 6 65 67
291 262 198 202 | 13 35 30 38 32 21 17 24 17 29 24 6 7 10 9 17 22 32 69 43 3 6 -1 5 12 2 4 20 25 51 6 5 2 5 51 2 2 4 12 15 3 116 122 129 183 182 4 4 6 6 8 82 97 124 98 137 89 71 49 27 28 39 44 23 19 35 11 11 10 13 12 38 39 16 25 36 17 8 6 8 10 10 11 15 32 28 3 2 3 2 28 3 6 8 11 10 11 15 32 28 3 8 68 65 67 52 291 262 198 202 210 | 13 35 30 38 32 41 21 17 24 17 29 30 24 6 7 10 9 21 17 22 32 69 43 16 3 6 -1 5 12 12 2 4 20 25 51 24 6 5 3 3 3 -1 -1 28 24 12 15 3 11 116 122 129 183 182 163 4 4 6 6 5 5 13 11 116 122 129 183 182 163 82 97 124 98 137 130 89 71 49 27 28 29 39 44 23 19 35 29 11 11 10 13 12 25 38 39 16 25 36 23 7 8 6 8 10 13 10 11 15 32 28 40 3 2 3 2 2 2 2 8 8 8 10 13 10 11 15 32 28 40 3 2 3 2 2 5 8 6 8 65 67 52 59 | 13 35 30 38 32 41 40 22 24 6 7 10 9 21 7 17 22 32 69 43 16 41 3 6 -1 5 12 12 2 2 4 20 25 51 24 6 6 6 5 2 2 5 51 24 6 6 6 5 2 2 5 51 24 6 6 6 2 2 3 3 3 3 11 116 122 129 183 182 163 124 4 4 4 6 6 5 5 4 4 98 137 130 142 12 12 12 12 12 12 15 12 12 15 15 12 11 11 11 10 13 12 25 27 38 39 44 23 19 35 29 31 11 11 11 10 13 12 25 27 38 39 14 23 19 35 29 31 10 11 15 32 28 40 26 3 2 3 3 2 2 2 2 1 6 8 8 10 13 8 10 11 15 32 28 40 26 3 8 66 66 67 52 59 49 29 291 262 198 202 210 227 214 | 13 35 30 38 32 41 40 71 24 6 7 10 9 21 7 18 17 22 32 69 43 16 41 21 3 6 -1 5 12 12 2 6 12 6 5 2 5 12 12 2 6 12 2 3 3 -1 -1 -1 2 2 5 28 24 12 15 3 11 10 116 122 129 183 182 163 124 168 4 4 4 6 6 5 4 5 42 124 98 137 130 142 127 | 13 35 30 38 32 41 40 71 72 21 17 24 17 29 30 22 23 20 24 6 7 10 9 21 7 18 29 17 22 32 69 43 16 41 21 17 3 6 -1 5 12 12 2 6 11 2 4 20 25 51 24 6 12 11 6 5 2 5 2 5 1 24 6 12 11 6 5 3 3 1 1 10 12 28 24 12 15 3 11 10 12 116 122 129 183 182 163 124 168 176 4 4 4 6 6 5 5 4 5 6 82 97 124 98 137 130 142 127 120 889 71 49 27 28 29 34 34 34 88 97 14 23 19 35 29 31 32 43 11 11 10 13 12 25 27 26 35 38 39 16 25 36 23 30 28 21 10 11 15 32 28 40 26 30 29 3 2 3 3 2 28 40 26 30 29 3 6 8 11 9 7 7 5 9 49 48 39 291 262 198 202 210 227 214 215 223 | 13 35 30 38 32 41 40 71 72 41 21 17 24 17 29 30 22 23 20 29 24 6 7 10 9 21 7 18 29 9 17 22 32 69 43 16 41 21 17 7 2 4 20 25 51 24 6 12 11 15 2 3 3 3 1 2 2 2 11 15 28 24 12 15 3 11 10 12 13 116 122 129 183 182 163 124 168 176 135 4 4 4 6 6 5 4 5 6 4 82 97 124 98 137 130 142 127 120 103 89 71 49 27 28 29 34 34 34 34 39 44 23 19 35 29 31 3 | 13 35 30 38 32 41 40 71 72 41 97 24 6 7 10 9 21 7 18 29 9 9 17 22 32 69 43 16 41 21 17 19 21 3 6 -1 5 12 12 2 6 11 7 12 2 4 20 25 51 24 6 12 11 15 21 6 3 3 -1 -1 -1 2 2 2 -1 -2 2 28 24 12 15 3 11 10 12 13 9 116 122 129 183 182 163 124 168 176
135 20 4 4 4 6 6 5 4 5 6 4 7 82 97 124 98 137 130 142 127 120 103 133 89 71 49 27 28 29 34 34 <td>13 35 30 38 32 41 40 71 72 41 97 96 24 6 7 10 9 21 7 18 29 9 9 7 17 22 32 69 43 16 41 21 17 19 21 14 3 6 -1 5 12 12 2 6 11 7 12 -1 2 4 20 25 51 24 6 12 11 15 21 17 6 5 2 5 1-1 -1 2 2 -1 -1 12 2 -1 -1 12 2 -1 -1 1 2 2 -1 -1 -1 -2 2 -1 -1 -1 -1 -2 2 -1 -1 -1 -1 -1 -1</td> | 13 35 30 38 32 41 40 71 72 41 97 96 24 6 7 10 9 21 7 18 29 9 9 7 17 22 32 69 43 16 41 21 17 19 21 14 3 6 -1 5 12 12 2 6 11 7 12 -1 2 4 20 25 51 24 6 12 11 15 21 17 6 5 2 5 1-1 -1 2 2 -1 -1 12 2 -1 -1 12 2 -1 -1 1 2 2 -1 -1 -1 -2 2 -1 -1 -1 -1 -2 2 -1 -1 -1 -1 -1 -1 | ¹ On new basis; for comparison with 1934. # MINERALS YEARBOOK, 1935—STATISTICAL APPENDIX # Production of miscellaneous oils in 1934, by districts and classes | District | Petro-
latum | Absorp-
tion oil | Medici-
nal oil | Special-
ties | Liquefied
petroleum
gas | Other | Total | |--|------------------|---------------------|--------------------|------------------|-------------------------------|-----------------|-------------------------| | East coast | 140
220
31 | 10 | 111 | 6 | 289 | 60
52
85 | 606
282 | | Okianoma, Kansas, and Missouri. Texas inland Texas Gulf coast. Arkansas and Louisiana inland | 17
3
7 | 83
44
19 | | 14 | 3
3
99 | 229
27
69 | 156
332
74
208 | | Rocky MountainCalifornia | 7 | 1 | 8 | 4
55 | 9 | 56
74 | 56
11
147 | | Total | 425 | 157 | 119 | 80 | 439 | 652 | 1,872 | UNFINISHED OILS # Production and stocks of unfinished (crude) gasoline in 1934, by districts and months | District | January | February | March | April | Мау | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |-----------------------------------|---|--|--|---|---|--|--|---|--|---|---|--|---| | Production (net): East coast | 1 35
22
11 | 88
1 27
1 128
54
30
289
1 12
1 11
30
55 | 1 168
28
1 20
1 15
1 1
1 60
1 2
3
1 25
60 | 1 567
1 19
1 54
1 130
1 12
21
2 71
1 2
3
115 | 1 86
60
18
29
1 29
1 308
34
1 30
29
1 26 | 222
1 30
1 37
1 26
1 25
1 338
1 8
1 1
21 | 1 137
48
1 60
1 90
158
1 63
1 29
1 105
1 47
62 | 2
1 14
1 105
1 77
65
1 322
5
5
1 124
15 | 1 124
1 5
1 146
1 108
56
1 189
1 15
1 1
1 23
1 48 | 1 29
1 28
1 180
1 6
113
4
1 34
1 1
1 20
1 73 | 13
27
1 103
49
26
20
1 54
6
6 | 1 238
24
1 86
113
1 8
197
100
1 5
1 13
1 27 | 1 1, 485
61
1 765
1 79
370
1 784
1 64
1 258
157
54 | | Total 1934 | 1 172 | 368 | 1 200 | 1 716 | 1 309 | 1 223 | 1 263 | 1 697 | 1 603 | 1 254 | 5 | 57 | 1 3, 007 | | Stocks, end of period: East coast | 1, 241
261
1, 263
988
332
2, 054
287
71
160
1, 058 | 1, 267
234
1, 160
1, 017
362
2, 405
275
60
190
1, 113 | 1, 434
262
1, 157
985
361
2, 343
273
63
165
840 | 929
243
1, 166
792
349
2, 302
61
168
955 | 847
303
1, 181
824
320
1, 990
236
31
197
929 | 1, 062
273
1, 186
756
295
1, 729
228
32
176
968 | 973
321
1, 157
635
278
1, 667
210
42
129
1, 030 | 922
307
1, 053
557
255
1, 353
216
50
144
888 | 857
302
873
483
227
1, 189
201
49
121
840 | 942
274
729
441
224
1, 194
168
48
101
767 | 1,008
801
624
492
198
1,278
113
54
107
782 | 862
325
576
567
175
1, 397
214
49
94
755 | Dec. 31,
1933 1
1, 683
264
1, 196
791
335
2, 108
265
60
151
1, 034 | | Total 1934 | 7, 715 | 8, 083 | 7, 883 | 7, 167 | 6, 858 | 6, 705 | 6, 442 | 5, 745 | 5, 142 | 4, 888 | 4, 957 | 5, 014 | 7, 887 | ¹ Negative quantity—represents net excess of unfinished gasoline rerun over unfinished gasoline produced. 8 For comparison with 1934. # Production and stocks of other unfinished oils in 1934, by districts and months | District | January | February | March | April | Мау | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Total | |-----------------------------------|---|---|---|---|---|---|---|---|--|--|--|--|---| | Production (net): East coast | 1 176
1 35
1 23 | 100
1 203
145
95
1 161
466
1 17
1 70
1 52
2 | 129 1 274 1 259 1 1 1 50 29 9 1 55 1 40 1 68 | 549
1 177
240
110
1 133
284
1 15
23
1 39
62 | 717
1178
380
1158
170
1787
26
6
17 | 1 236
1 218
1 43
1 18
137
141
206
1 5
56
313 | 258
55
398
1 143
341
1 305
58
127
37
266 | 15
1 251
318
1 111
150
1 118
97
58
20 | 1 32
1 400
8
1 290
68
36
64
3
1 8 | 131
1 322
357
1 157
165
1 340
76
1 2
67
172 | 1 187
1 244
440
1 51
33
1 289
70
29
1 32
1 107 | 1 50
1 238
1 262
265
27
146
22
63
1 16
75 | 1,836
1 2,547
1,685
1 524
770
1 913
591
1 154
1 28
925 | | Total 1934 | 1 61 | 305 | 1 580 | 934 | 208 | 333 | 1,092 | 189 | 1 312 | 147 | 1 338 | 32 | 1, 949 | | Stocks, end of period: East coast | 1, 950
5, 411
4, 656
1, 234
8, 988
1, 407
374
1, 845
3, 775 | 7, 249
1, 936
5, 453
4, 854
1, 073
9, 574
1, 390
304
1, 793
3, 777 | 7, 104
1, 828
5, 508
4, 539
1, 023
9, 711
1, 399
249
1, 753
3, 709 | 7, 516
1, 766
5, 623
4, 774
890
10, 123
1, 308
272
1, 714
3, 771 | 7, 903
1, 783
5, 799
4, 820
1, 060
9, 581
1, 224
278
1, 707
3, 810 | 7, 582
1, 860
5, 568
4, 990
1, 054
9, 811
1, 274
273
1, 763
4, 123 | 8, 144
1, 965
5, 802
5, 011
1, 123
9, 870
1, 225
385
1, 800
4, 389 | 7, 898 2, 040 5, 923 5, 097 1, 126 10, 241 1, 206 281 1, 820 4, 400 | 7, 884
2, 019
5, 782
4, 956
1, 074
10, 407
1, 218
262
1, 812
4, 639 | 8, 080
1, 972
5, 935
5, 003
1, 128
10, 357
1, 146
241
1, 879
4, 811 | 7, 885
1, 953
6, 258
5, 069
1, 188
10, 118
1, 112
246
1, 847
4, 704 | 8,076
2,046
5,934
5,396
1,152
10,320
254
1,831
4,779 | Dec. \$1,
1933 \$
7, 174
1, 793
5, 571
4, 508
1, 211
9, 260
1, 442
397
1, 859
3, 854 | | Total 1934 | 37, 098 | 37, 403 | 36, 823 | 37, 757 | 37, 965 | 38, 298 | 39, 714 | 40, 032 | 40, 053 | 40, 552 | 40, 380 | 40, 738 | 37, 159 | ¹ Negative quantity—represents net excess of unfinished oils rerun over unfinished oil produced. 2 For comparison with 1934. ### SHORTAGE # Shortage in refinery operations in 1934, by districts and months [Thousands of barrels of 42 gallons] Dec. Total District Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. 1, 242 1, 323 85 121 East coast. Appalachian.....Indiana, Illinois, Kentucky, 1 28 etc Oklahoma, Kansas, and Mis-Texas Gulf coast. Louisiana Gulf coast. Arkansas and Louisiana in-287 3,377 134 55 3, 303 2, 977 849 176 141 90 86 land______Rocky Mountain_____ 141 85 80 823 1 13 1 43 16,073 Total, 1934..... Daily average... Total, 1933..... 1, 040 1, 242 1, 421 1 204 16, 756 707 1 426 1 ### IMPORTS AND EXPORTS Imports of petroleum products (including natural asphalt) into United States 1 in 1934, by months [Quantity in thousands of barrels of 42 gallons, except as
otherwise indicated; value in thousands of dollars] | Product | Jan. | Feb. | Mar. | Apr. | Мау | June | July | |--|---------------------|-----------------------|-----------------------|--------------------------|------------------------|-----------------------------|--| | For domestic consumption: GasolineFuel oil | 135 | 77 | 326 | 284 | 374 | 217 | 458 | | Lubricantsthousands of pounds Wax | 1 26 | 4, 952
17
3 | 2, 516
9
1
9 | 3, 135
11
17
31 | 2, 655
9
5
34 | 2, 432
9
16
77 | 1, 093
4
16
49
4 | | Total | | 97 | 345 | 343 | 422 | 320 | 532 | | Imported in bond: Fuel oilthousands of pounds. Wax thousands of pounds. Wax equivalent. Unfinished gasoline. Other unfinished oils. | | 550
168
1 | 758
336
1 | 893
725
3 | 985
1,326
5 | 823
280
1
70 | 831
333
1
320 | | Total | | 551 | 759 | 896 | 990 | 894 | 1, 152 | | Grand total | 1, 186 | 648 | 1, 104 | 1, 239 | 1, 412 | 1, 214 | 1, 684 | | | | | | | | To | tal | | Product | Aug. | Sept. | Oct. | Nov. | Dec. | Quan-
tity | Value | | For domestic consumption: Gasoline | 478 | 429 | 523 | 394 | 658 | 1
4, 353 | 8
2,828 | | Lubricants thousands of pounds. Wax thousands of pounds. Wax equivalent. Asphalt and bitumen. Miscellaneous oils Other unfinished oils. | 826
3
4
51 | 2, 405
9
4
3 | 2, 507
9 | 2, 210
8
4
7 | 1, 653
6
1
50 | 33, 749
120
86
316 | 38
1,042
1,042
222
657
26 | | Total | | 445 | 532 | 413 | 715 | 4, 882 | 4,821 | | Imported in bond: Fuel oilthousands of pounds Wax equivalent | 1 | 474
44 | 462 | 386 | 647 | 8, 281
3, 543
13 | 4, 472
144
144 | | Unfinished gasolineOther unfinished oils | 129 | 333 | 352 | 64
166 | 326 | 134
1,626 | 237
882 | | Total | 598 | 807 | 814 | 616 | 973 | 10, 054 | 3 5, 764 | | Grand total | 1, 134 | 1, 252 | 1, 346 | 1,029 | 1,688 | 14, 936 | ³ 10, 585 | Exclusive of the territories of Alaska, Hawaii, and Puerto Rico. Includes lubricating oils and unrefined oils to the value of \$29,000. ¹ Overage. Exports to foreign countries and shipments to noncontiguous territories of petroleum products in 1934, by months ¹ [Quantity in thousands of barrels of 42 gallons, except as otherwise indicated; value in thousands of dollars] | Product | Jan. | Feb. | Mar. | Apr. | Мау | June | July | |--|---|--|--|--|--|--|---| | Gasoline | 1,867
30
43
591
938
801
771
68
30
141 | 1,945
77
3
736
1,042
1,005
465
58
11
80 | 2, 404
121
13
670
1, 565
955
794
75
42
125 | 2, 519
143
51
1, 156
1, 549
1, 355
717
53
43
80 | 1,789
112
6
673
1,450
1,052
660
50
41
75 | 1,811
166
17
968
756
1,539
664
44
11
79 | 1, 665
41
12
777
1, 502
1, 124
689
50
50
231 | | Wax, crudethousands of pounds_
Wax, refineddo
Wax, totaldo
Cokethousands of short tons
Asphaltdo | 8, 664
10, 307
18, 971
6. 1
25. 6 | 7,900
8,407
16,307
2.1
14.6 | 9,489
11,622
21,111
8.4
22.7 | 5, 796
9, 228
15, 024
8. 6
14. 6 | 5, 009
9, 050
14, 059
8. 1
13. 6 | 3, 647
8, 538
12, 185
2. 2
14. 4 | 5, 278
8, 526
13, 804
10. 0
42. 0 | | Insulating or transformer oils ² | 3
4 | 4 | 5
4 | 4 3 | 4 | 3 | 4
5 | | Total: 1934 | 5, 284
6, 315 | 5, 426
4, 479 | 6, 768
5, 428 | 7, 669
6, 856 | 5, 912
5, 495 | 6, 058
5, 092 | 6, 146
7, 439 | | | | | | | | l | | | | | | | | | To | tal | | Product | Aug. | Sept. | Oct. | Nov. | Dec. | Quan-
tity | Value | | Product Gasoline | 1,970
193
2
984
712
1,267
599
55
32
129 | 1,749
107
20
802
1,145
1,257
644
76
32
94 | Oct. 1,922 42 1 974 1,262 976 497 60 117 104 | 1, 884
313
13
637
1, 997
1, 299
667
63
82
82 | 1,436
149
50
817
1,113
1,844
493
59 | Quan- | <u> </u> | | Gasoline | 1,970
193
2
984
712
1,267
599
55
32
129
7,582
7,717 | 1, 749
107
20
802
1, 145
1, 257
644
76
32 | 1, 922
42
1
974
1, 262
976
497
60 | 1, 884
313
13
633
1, 097
1, 299
667
63
82 | 1, 436
149
50
817
1, 113
1, 844
493
59 | Quantity 22, 961 1, 494 231 9, 781 14, 131 14, 474 7, 660 711 571 | Value 56, 772 2, 729 1, 762 21, 632 18, 541 12, 169 59, 907 7, 821 663 | | Gasoline | 1,970
193
2
984
712
1,267
555
32
129
7,582
7,717
15,69
6.55
23.5 | 1,749
107
20
802
1,145
1,257
644
76
32
94
9,435
11,830
21,265
6.4 | 1, 922
42
1
974
1, 265
976
497
60
117
104
8, 240
8, 631
16, 871
23. 5 | 1, 884
313
13
633
1, 097
1, 299
667
63
82
82
82
8, 078
9, 405
17, 483
16.4 | 1, 436
149
50
817
1, 113
1, 844
493
59
99
6, 273
10, 306
16, 579
16. 0 | Quantity 22, 961 1, 494 23, 9781 14, 131 7, 660 711 571 1, 319 85, 391 113, 567 198, 988 114, 3 | Value 56, 772 2, 729 1, 762 21, 632 18, 541 12, 169 59, 907 7, 821 663 3, 539 3, 093 4, 728 7, 861 663 | Exclusive of exports from Alaska, Hawaii, and Puerto Rico and inclusive of shipments from continental United States to Alaska, Hawaii, and Puerto Rico. Included in lubricants. Exports 1 of the major petroleum products in 1934, by countries of destination Quantity in thousands of barrels of 42 gallons, except as otherwise indicated; value in thousands of dollars] | Argentina | | Gasol | ine 2 | Keros | sene | Gas oi
fuel | | Lubri | cants | Wa | x | |--|--|--|--|--|--
--|---|--|---|--|---| | Australia 2, 141 4, 827 346 820 22 Belgium 1, 548 3, 667 126 233 373 579 586 3, 3294 426 22 Brazil 2, 672 3, 130 541 2, 566 77 171 197 1, 660 1, 752 89 British India 34 163 41 203 19 61 384 2, 290 1, 022 42 Canada 1, 682 3, 773 61 162 1, 427 1, 564 316 2, 290 1, 102 42 Canada 1, 682 3, 773 61 162 1, 427 1, 564 316 2, 459 1, 332 65 Chile 6 36 (3) 7 1, 474 1, 270 35 447 5, 535 201 China, Hong Kong, and Kwantung 458 1, 171 1, 845 3, 564 445 649 260 1, 582 5, 151 236 Colombia 53 179 3 177 2 6 15 267 11, 559 441 Colombia 53 6714 (3) 2 645 616 6 88 1, 964 93 Denmark 10 31 1 5 Denmark 10 31 (1 5 17 2 6 15 267 11, 559 441 Colombia 53 6714 (3) 2 645 616 6 88 1, 964 93 Finland 80 168 (3) 17 2 6 15 267 11, 559 441 Finland 80 168 (3) 168 (3) 17 2 6 15 267 11, 559 141 Finland 1, 616 3, 660 88 165 335 527 802 6, 511 354 16 Germany 62 122 90 162 422 652 332 2, 807 33, 043 1, 221 Haly 62 122 90 162 422 652 332 2, 807 33, 043 1, 221 Haly 7 2, 650 375 809 7, 917 7, 297 257 2, 544 88 Finland West Indies 1, 496 3, 203 815 1, 370 1, 114 1, 566 6 75 1 1, 807 Netherland West Indies 1, 496 3, 203 815 1, 370 1, 114 7, 156 6 6 75 1 1, 807 Norway 164 339 159 1252 279 13 157 160 6 6 75 1 1, 807 Norway 164 339 139 2552 279 13 157 122 1, 107 44 Philippine Islands 688 1, 935 420 890 972 852 60 657 1, 637 60 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 632 361 651 272 439 82 666 4, 487 Finland 805 1, 638 3, 632 2, 200 3, 637 2, 207 3, 3, 54 1, 709 10, 789 56, 955 2, 122 Finland 805 1, 632 3, 633 2, 200 3, 637 2, 207 3, 3, 54 1, 709 10, 789 56, 955 2, 122 Finland 805 1, 632 3, 632 2, 207 3, 3 | Destination | | Value | | Value | | Value | | Value | tity
(thou-
sands of | Value | | | Australia Belgium Brazil British India Canada Chile China, Hong Kong, and Kwantung Colombia Cuba Denmark Finland France Germany Irish Free State Italy Japan Mexico Netherlands Netherland West Indies New Zealand Norway Panama Philippine Islands Spain Sweden Union of South Africa | 2, 141
1, 458
972
34
1, 682
6
458
53
336
10
80
1, 616
275
113
959
1, 496
1, 079
113
959
1, 496
4227
698
899
899
805
714
4, 308
1, 228 | 4, 827
3, 067
3, 130
3, 130
3, 773
36
1, 171
1, 171
31
1, 171
31
1, 181
3, 660
6, 680
3, 660
3, 203
3, 203
1, 591
3, 203
1, 591
3, 203
1, 835
1, 835
1, 835
1, 835
1, 835
8, 830
4, 515 | 346
126
541
41
(3)
1,845
3
(2)
121
38
121
38
121
38
139
53
420
24
420
24
315
2,200
729 | 820
820
820
203
162
5
165
213
66
66
162
809
43
1, 870
1, 370
1, 370
1, 370
135
890
44
651
358
3, 637
2, 583 | 373
77
1, 427
1, 474
445
2 645
645
 | 579
171
61
1, 564
6 616
 | 288
586
197
364
316
35
260
117
5
802
946
7
7
332
257
50
254
43
117
13
60
63
82
96
1,709
536 | 3, 294 3, 133 1, 660 2, 290 2, 459 447 1, 582 267 88 425 7, 612 6, 511 7, 612 600 2, 807 2, 0545 1, 867 712 666 1, 095 10, 789 5, 859 | 4, 575
1, 752
1, 022
1, 332
5, 535
5, 151
11, 559
1, 936
354
18, 922
2, 676
33, 043
88
893
10, 946
1, 107
67
1, 107
67
1, 107
5, 964
4, 487
1, 728
56, 985
22, 047 | 87
222
1722
89
422
655
2011
2366
4411
933
7446
1, 2211
6 6
322
446
(4)
3 48
26
60
2511
1688
72
2, 1200
963
7, 833 | Inclusive of exports from Alaska and Puerto Rico. Includes natural gasoline. Less than 500 barrels. Less than \$500. # Exports of the major petroleum products in 1934, by shipping points [Thousands of barrels of 42 gallons, except as otherwise indicated] | Customs district | Gasoline 1 | Kerosene | Gas oil
and fuel
oil | Lubri-
cants | Wax (thou-
sands of
pounds) | |--|--|--|--|---|---| | Atlantic coast: New England 2 New York Philadelphia South Atlantic 3 Gulf coast: Florida and Mobile. New Orleans Sabine. Galveston Mexican border: San Antonio. El Paso and Arizona Pacific coast: San Diego. Los Angeles. San Francisco. Washington Northern border: Western districts 4 Michigan Buffalo. Rochester and St. Lawrence. Noncontiguous territories: Alaska Puerto Rico. | 33
2, 193
4, 046
4, 767
44
28
76
4, 587
2, 283
72
183
191
137
203 | 2
524
562
4
2, 521
1, 020
1, 462
1
1
4, 851
1, 088
14
4
7
521
5 | 110
3
167
884
907
6,049
7
115
57
16,156
1,278
134
39
8
52
1
2
8 | 5
2,599
1,762
401
1,076
908
23
2
4
31
417
114
81
47
116
32 | 1, 282
101, 628
37, 443
3, 433
45, 519
6, 556
1, 279
1
56
9
21
753
8
4
122
754
60 | | | 23, 060 | 9, 607 | 25, 977 | 7, 554 | 199, 243 | ### PANAMA CANAL SHIPMENTS California oil shipped through the Panama Canal to Atlantic and Gulf ports in the United States in 1934, by months 1 | Product | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |---------------|-------------------|--------------------|---------------|---------------------|------------------|-----------|-----------|---------------------|------------------|------------------|------------------|----------|--------------------| | Gasoline | 471
205 | 193
262 | | 636
204 | 798
11 | 872
79 | 808
85 | 730
75 | | 981
168 | 1, 002
248 | | | | oil | 510
1,370
9 | 270
1, 454
1 | | 204
1, 449
12 | | | 816
5 | 157
1, 070
10 | 148
605 | 79
566
8 | 287
752
6 | 215
6 | 11, 825
68 | | Miscellaneous | 1 | 2 | 15 | 1 | 12 | 16 | i | 2 | 3 | 3 | 1 | <u>2</u> | 74
59 | | | 2, 567
1, 865 | 2, 182
1, 342 | 2, 183
963 | 2, 506
1, 314 | 2, 518
1, 445 | | | 2, 045
1, 316 | 1, 721
1, 674 | 1, 805
2, 659 | 2, 296
3, 106 | | 24, 719
21, 020 | ¹ Compiled by E. T. Knudsen, of the San Francisco office of the Bureau of Mines. Includes natural gasoline. Includes customs districts of Maine and New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut. Includes customs districts of Maryland, Virginia, and South Carolina. Includes customs districts of Montana and Idaho, Dakota, and Duluth-Superior. # NATURAL GASOLINE 1 # Production and distribution of natural gasoline in 1934, by months [Thousands of barrels of 42 gallons] | | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |-----------------------------------|----------------------|---------------------|--------|------------|--------|--------|--------------|--------|---------------|---------------------|---------------------|-----------|---------| | Production Decrease in all stocks | 3, 057 | 2, 826
117 | 3, 049 | 2, 950 | 2, 938 | 2, 864 | 2, 971
15 | 3, 057 | 3, 074
179 | | | 3, 263 | 36, 556 | | | 3, 057 | 2, 943 | 3, 049 | 2, 950 | 2, 938 | 2, 864 | 2, 986 | 3, 057 | 3, 253 | 3, 623 | 3, 781 | 3, 263 | 36, 556 | | Blended at refineries | 2, 083
139
241 | 1,822
117
569 | 119 | | 123 | 121 | | 81 | 81 | 3, 033
95
335 | 3, 399
73
242 | 53 | | | Increase in all stocks | 213
381 | 435 | 140 | 343
255 | 152 | 155 | | 239 | | 160 | 67 | 26
143 | 60 | | | 3, 057 | 2, 943 | 3, 049 | 2, 950 | 2, 938 | 2, 864 | 2, 986 | 3, 057 | 3, 253 | 3, 623 | 3, 781 | 3, 263 | 36, 556 | ¹ For detailed statistics see Natural Gasoline—Statistical Appendix to Minerals Yearbook, 1935. ³ To refineries in California. ## Consumption and
stocks of natural gasoline at refineries in 1934, by districts and months | District | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |--|-------------------------|------------------------|------------------|------------------------|------------------|------------------|------------------|------------------|------------------|--------------------------|------------------|------------------|---------------------------------| | Consumption:
East coast | 146 | 126 | | 115 | | | 59 | | | 162 | | 194 | | | Appalachian
Indiana, Illinois, Kentucky, | 24 | 17 | 17 | 18 | | | | | | 26 | | 38 | 284 | | oklahoma, Kansas, and | 177 | 148 | | 173 | 171 | 152 | | | | 309 | | 236
605 | 2, 348
5, 874 | | Missouri Texas inland Texas Gulf coast Louisiana Gulf coast Arkansas and Louisiana | 480
402
112
11 | 405
302
98
36 | 297
128 | 402
269
132
9 | 137 | 145 | 282
143
17 | 327
186 | | 588
404
333
28 | 647
339 | 407
266 | 4,079 | | inland Rocky Mountain California 1 California 3 | 37
70
763
139 | | 66
957 | | | 66 | 61 | 71
728 | 65 | 58
74
1, 146
95 | 77
1, 034 | | 538
803
10, 428
1, 206 | | Total: 1934
1933 | 2, 222
2, 262 | 1, 939
1, 760 | 2, 136
1, 846 | 2, 038
1, 843 | 1, 813
1, 741 | 2, 054
2, 039 | 2, 142
1, 860 | 2, 054
2, 059 | 2, 405
2, 409 | 3, 128
2, 625 | 3, 472
2, 700 | 2, 759
2, 202 | 28, 162
25, 346 | | | | | | | | | | | | | | | Dec.
31,
1933 | | Stocks, end of period: East coast | 200
5 | 167
4 | 228
7 | 244
2 | 203
4 | 213
4 | 254
5 | | 283
1 | 323
3 | | 176
9 | 153
1 | | etcOklahoma, Kansas, and | 44 | 29 | 40 | 27 | 48 | 37 | 38 | 41 | 55 | 61 | 57 | 64 | 52 | | Missouri | 30
9
274 | 7 | 8 | 44
10
246 | 18 | 14 | 12 | 10 | 116 | | 16 | 11 | 36
7
244 | | Arkansas and Louisiana
inland | 5
10
2, 324 | Ŕ | , 6
10 | 10 | 7 | . 3 | l a | 3 | 4 8 | 3
18
2, 473 | 15 | 21 | 7
5
22, 183 | | | 2, 901 | 2, 797 | 2, 894 | 2. 983 | 2, 894 | 2, 920 | 2, 961 | 3, 201
2, 926 | 3, 265 | 3, 172
2, 707 | 2, 825
2, 508 | 2, 880
2, 654 | * 2,688
 | Blended. Received by pipe lines. For comparison with 1934. # OIL SHALE # World production of oil shale, 1930-34, in metric tons [Compiled by M. T. Latus, of the Bureau of Mines] | Country | 1930 | 1931 | 1932 | 1933 | 1934 | |--|---|---|---|--|---| | Australia: New South Wales Tasmania China (Manchuria) Estonia France 2 Germany (Bavaria) Great Britain: Scotland Italy Spain | 352
5, 515
(1)
497, 955
82, 500
544
2, 052, 939
938
55, 147 | 2, 165
1, 425
1, 245, 097
499, 495
78, 350
78, 350
713
55, 611 | 2, 734
1, 115
1, 412, 558
495, 811
87, 971
401
1, 390, 562
1, 268
64, 132 | 3, 456
(1)
499, 969
84, 576
553
1, 419, 410
918
60, 448 | 203
3, 329
(1)
588, 958
(1)
869
1, 423, 257
749
37, 783 | # SURVEY OF REFINERY CAPACITIES Summary of refinery capacity in the United States, 1914-35, by years | | Number | | | | Capacity (barrels per day) | | | | |---|---|--|---|---|--|--|---|---| | | Oper-
ating | Shut
down | Build-
ing | Total | Operating | Shut
down | Building | Total | | Jan. 1, 1914 1 Jan. 1, 1918 Jan. 1, 1918 Jan. 1, 1920 Jan. 1, 1921 Jan. 1, 1921 Jan. 1, 1922 Nov. 1, 1924 Jan. 1, 1925 May 1, 1925 Jan. 1, 1926 Jan. 1, 1926 Jan. 1, 1927 Jan. 1, 1928 Jan. 1, 1929 Jan. 1, 1930 Jan. 1, 1931 Jan. 1, 1932 Jan. 1, 1933 Jan. 1, 1933 Jan. 1, 1934 Jan. 1, 1934 Jan. 1, 1935 | 373
350
325
357
365
365
327
326
341
358
346
365
372 | (2)
(2)
(3)
65
154
190
185
158
138
97
72
54
89
108
133
137
196 | (2)
(2)
(2)
(2)
99
44
30
8
6
4
2
7
7
5
14
8
10
6
13
13 | 176
267
289
472
459
509
555
547
512
472
428
427
428
427
428
427
428
427
428
427
428 | (2)
(2)
(2)
(3)
(5)
(5)
(5)
(1)
(7)
(2)
(4)
(9)
(2)
(4)
(9)
(2)
(4)
(9)
(2)
(4)
(9)
(2)
(4)
(9)
(2)
(4)
(9)
(2)
(4)
(9)
(2)
(4)
(9)
(2)
(4)
(9)
(2)
(4)
(4)
(9)
(2)
(4)
(4)
(9)
(2)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4 | (2)
(2)
(2)
(9)
(9)
(9)
(4)
(9)
(9)
(4)
(10)
(20)
(10)
(20)
(10)
(20)
(10)
(20)
(10)
(20)
(10)
(20)
(10)
(20)
(10)
(20)
(10)
(20)
(10)
(20)
(20)
(20)
(20)
(20)
(20)
(20)
(2 | (1)
(2)
(2)
(2)
(2)
263, 500
76, 600
59, 950
18, 200
37, 000
11, 000
22, 000
37, 200
61, 000
22, 000
37, 200
45, 000
8, 720
31, 545
44, 450
13, 900 | (2)
1, 186, 155
1, 295, 118
1, 794, 065
1, 965, 400
2, 169, 150
2, 884, 837
2, 864, 842
2, 864, 842
2, 872, 380
3, 608, 540
3, 802, 785
4, 023, 328
3, 921, 055
4, 072, 400 | ¹ Data not available. ² Includes some boghead coal. From the Bureau of the Census. Not available. Inoperative plants included under operating. Refinery capacity on Jan. 1, 1935, by districts, States, and types of process | | Number | | | | Capacity (barrels per day) | | | | | |---|----------------|--------------|---------------|----------|--|--|---------------|---|--| | District and State | Oper-
ating | Shut
down | Build-
ing | Total | Operat-
ing | Shut
down | Build-
ing | Total | | | District: | | | | - | | | | | | | East coast | 25 | | 1 | 26 | 613, 500
163, 650
445, 870
425, 565
293, 859 | | 6,000 | 619, 50 | | | Appalachian
Indiana, Illinois, Kentucky, etc. | 42 | 11 | 2 | 53 | 163, 650 | 15, 000
14, 900
76, 739
183, 840
10, 500 | | 178, 65 | | | Oklahoma, Kansas, Missouri | 46
54 | 8
33 | 2 | 56
87 | 440,870 | 76 720 | 2, 500 | 463, 27
502, 30
482, 79
623, 50
138, 00 | | | Tayor inland | 91 | 83 | 2 | 176 | 203 859 | 183 840 | 5, 100 | 482, 79 | | | Texas Gulf coast
Louisiana Gulf coast
Arkansas and Louisiana inland | 19 | 2 | | 21 | 613, 000
138, 000
77, 300 | 10, 500 | | 623, 50 | | | Louisiana Gulf coast | 5 | | | 5 | 138,000 | | | 138, 0 | | | Arkansas and Louisiana inland. | 13 | 14 | 1 | 28 | 77, 300 | 45, 650 | 100 | 140,0 | | | Rocky Mountain | 76 | 36 | 1 | 113 | 84, 570 | 15, 922 | 200 | 100, 6 | | | California | 64 | 9 | | 73 | 759, 435 | 81, 200 | | 840, 6 | | | Total | 435 | 196 | 7 | 638 | 3, 614, 749 | 443, 751 | 13, 900 | 4, 072, 40 | | | State: | | | | | | | | | | | Alabama | 1 | | | 1 | 4,000 | | | 4, 0
48, 7 | | | ArkansasCalifornia | 6
64 | 3 9 | | 9
73 | 38, 250
759, 435 | 10, 500
81, 200 | | 840, 6 | | | Colorado | 7 | 2 | | 1 9 | 6,070 | 1,860 | | 7,9 | | | Delaware | l i | | | ĭ | 1 . 0 000 | | | 2.0 | | | Georgia | 2 | | | 2 | 9,000
121,750
192,700
163,545
25,600 | | | 9,0 | | | Illinois | 10 | 2 | | 12 | 121, 750 | 8,500 | | 130, 2 | | | Indiana | 6 | | | 6 | 192,700 | | | 192, 7
171, 0 | | | Kansas | 21
9 | 5 3 |
| 26
12 | 25 600 | 7, 500
2, 900
32, 150 | | 171,0 | | | Kentucky
Louisiana | 11 | 7 | 1 | 19 | 173 050 | 32 150 | 100 | 205.3 | | | Maryland | 3 | | | 3 | 173, 050
55, 000 | 02, 100 | | 28, 5
205, 3
55, 0 | | | Maryland
Massachusetts | 3 2 | | | 2 | 30,000 | | | 30, 0
38, 5 | | | Michigan | 12 | 3 | 2 | 17 | 32, 550 | 3, 500 | 2, 500 | 38, 5 | | | Michigan Mississippi Missouri | 1 | 4 | | 4 | | 3,000 | | 3,0 | | | Missouri | 19 | 2
12 | | 3
31 | 16, 500
16, 933 | 5, 500
8, 480 | | 22, 0
25, 4 | | | Montana
Nebraska | 19 | 3 | | 5 | 248 | 225 | | 20, 4 | | | New Jersey | 6 | | 1 | 7 | 261,000 | | 6,000 | 267, 0 | | | New Mexico | 1Ŏ | | | 10 | 7, 400 | | | 7,4 | | | New York | 6 | 2 | | 8
14 | 56,700 | 850 | | 57, 5 | | | Ohio | 12 | 2 | | 14 | 109, 420 | 2, 500 | | 111,9 | | | Oklahoma | 32 | 26 | | 58
40 | 245, 520 | 63, 739 | | 309, 2
304, 9 | | | PennsylvaniaRhode Island | 34
2 | 6 | | 40 | 295, 750
7, 000 | 9, 150 | | 7.0 | | | South Carolina | î | | | í | 6,500 | | | 6,5 | | | South Dakota | 6 | | | Ĝ | 287 | | | l "ž | | | Tennessee | li | | | 1 | 50 | | | | | | Texas | 110 | 85 | 2 | 197 | 906, 859 | 194, 340 | 5, 100 | 1, 106, 2 | | | Utah | 2 | 3 | 1 | 6 | 7, 500
2, 000 | 1,300 | 200 | 9,0 | | | Virginia
West Virginia | 1 | <u>i</u> - | | 1 | 2,000 | | | 2, 0
18, 5 | | | Wyoming | 5
30 | 16 | | 6
46 | 16,000
46,132 | 2, 500
4, 057 | | 50, 1 | | | Total | 435 | 196 | 7 | 638 | 3, 614, 749 | 443, 751 | 13, 900 | 4, 072, 4 | | | | | - | | | | | | | | | Type of process: Skimming | 271 | 170 | 7 | 448 | 1, 080, 254 | 397, 376 | 13,900 | 1, 491, 5 | | | Complete | 79 | 3 | | 82 | 1, 821, 650 | 10,000 | | 1, 831, 6 | | | Skimming and lube | 24 | 6 | | 30 | 304, 400 | 5,600 | | 310, 0 | | | Skimming and asphalt
Skimming, lube, and asphalt | 33 | ĺ | | 34 | 303, 400 | 1, 200 | | 304, 6 | | | Skimming, lube, and asphalt | 1 | | | 1 .1 | 20,000 | l | | 20,0 | | | Lube | 6 | 4 | | 10 | 2,870 | 13, 140 | | 16,0 | | | AsphaltTopping | 11
10 | 8 | | 15
18 | 44, 200
37, 975 | 3, 300
13, 135 | | 47, 5
51, 1 | | | 1.0hbmk | | ļ | | | | | | | | | Total | 435 | 196 | 7 | 638 | 3, 614, 749 | 443, 751 | 13, 900 | 4, 072, 4 | | # Summary of cracking capacity on June 1, 1925-26, and Jan. 1, 1928-35 | | Charging capacity (barrels per day) | | | | | |--|--|--|--|--|--| | Date | Operating | Shut-down | Building | Total | | | June 1, 1925. June 1, 1928. Jan. 1, 1928. Jan. 1, 1929. Jan. 1, 1930. Jan. 1, 1931. Jan. 1, 1932. Jan. 1, 1932. Jan. 1, 1932. Jan. 1, 1933. Jan. 1, 1934. Jan. 1, 1934. | 690, 492
844, 800
1, 013, 000
1, 194, 501
1, 419, 200
1, 594, 990
1, 603, 809
1, 580, 051
1, 712, 629
1, 897, 778 | 26, 200
47, 690
253, 000
147, 923
139, 840
244, 661
394, 585
417, 694
377, 735
311, 491 | 116, 000
47, 600
22, 000
134, 450
149, 900
111, 130
48, 587
33, 650
59, 300
20, 000 | 832, 692
940, 090
1, 288, 000
1, 476, 874
1, 708, 940
1, 950, 781
2, 046, 981
2, 031, 395
2, 149, 664
2, 229, 269 | | # Cracking capacity on Jan. 1, 1935, by districts and States | | Charging capacity (barrels per day) | | | | | |----------------------------------|-------------------------------------|-----------|----------|---------------|--| | District and State | Operating | Shut-down | Building | Total | | | District: | | | | | | | East coast | 443, 372 | 93, 285 | 1 | 536, 65 | | | Appalachian | 68, 864 | 7, 100 | 500 | 76, 46 | | | Indiana, Illinois, Kentucky, etc | 282, 774 | 38, 106 | 8,000 | 328, 88 | | | Oklahoma, Kansas, and Missouri | 219, 370 | 43, 950 | 0,000 | 263, 32 | | | Texas inland | 141, 798 | 33, 400 | 5,000 | 180, 19 | | | Texas Gulf coast | 383, 050 | 10, 100 | 0,000 | 393, 15 | | | Louisiana Gulf coast | 48, 000 | 30,000 | | 78, 00 | | | Arkansas and Louisiana inland | 33, 000 | 13, 700 | | 46, 70 | | | Rocky Mountain | 40, 700 | 4,700 | | 45, 40 | | | California | 236, 850 | 37, 150 | 6, 500 | 280, 50 | | | | 200,000 | 37, 100 | 0,500 | 200, 00 | | | Total | 1, 897, 778 | 311, 491 | 20,000 | 2, 229, 26 | | | tate: | | | | | | | Arkansas | 8,000 | 7,700 | l | 15, 70 | | | California | 236, 850 | 37, 150 | 6, 500 | 280, 50 | | | Colorado | 2, 850 | 450 | 0,000 | 3,30 | | | Georgia | 3, 600 | 1 | | 3, 60 | | | Illinois | 80, 324 | 10, 506 | 8,000 | 98, 83 | | | Indiana | 134, 900 | 19, 100 | 0,000 | 154, 00 | | | Kansas | 102, 070 | 14,700 | | 116, 77 | | | Kentucky | 12, 800 | 11,100 | | 12, 80 | | | Louisiana | 73, 000 | 36,000 | | 109, 00 | | | Maryland | 56, 572 | 3,000 | [| 59, 57 | | | Massachusetts | 28, 500 | 10,800 | | 39. 30 | | | Michigan | 7, 400 | 10,000 | | 7. 40 | | | Missouri | 16,000 | 10, 500 | | 26, 50 | | | Montana | 4,800 | 1,000 | | 5, 80 | | | New Jersey | 174, 800 | 71, 785 |] | 246, 58 | | | New Mexico | 500 | 11,100 | | 240, 00
50 | | | New York | 15,000 | 6,000 | | 21. 00 | | | Obio | 65, 350 | 9,600 | | | | | OhioOklahoma | | | | 74, 95 | | | | 101, 300 | 18,750 | | 120, 05 | | | Pennsylvania | 193, 750 | 7,700 | 500 | 201, 95 | | | Rhode Island | 4,000 | | | 4,00 | | | Texas | 524, 848 | 43, 500 | 5,000 | 573, 34 | | | Utah | 8, 400 | 1,000 | | 9, 40 | | | West Virginia | 18, 014 | | | 18, 01 | | | Wyoming | 24, 150 | 2, 250 | <u></u> | 26, 40 | | | Total | 1, 897, 778 | 311, 491 | 20,000 | 2, 229, 26 | | After this publication has served your purpose and if you have no further need for it, please return it to the Bureau of Mines. The use of this mailing label to do so will be official business, and no postage stamps will be required # UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES PENALTY FOR PRIVATE USE TO AVOID PAYMENT OF POSTAGE, \$300 OFFICIAL BUSINESS RETURN PENALTY LABEL This label can be used only for returning official publications. The address must not be changed. BUREAU OF MINES, WASHINGTON, D. C.