Crystal Data: Cubic. *Point Group*: $4/m \ \bar{3} \ 2/m$. As crusts of intergrown equant crystals to 0.05 mm, displaying {111}, {100} and minor {110}.

Physical Properties: *Cleavage*: None. *Fracture*: Uneven. *Tenacity*: Brittle. Hardness = 2-3 D(meas.) = 2.55(1) (value ascribed to analytical error) D(calc.) = 2.351 Dissolves in water.

Optical Properties: Translucent. *Color*: Pale yellow to yellow-brown. *Streak*: White. *Luster*: Vitreous. *Optical Class*: Isotropic. n = 1.60(1)

Cell Data: Space Group: $Fd\bar{3}c$. a = 27.260(2) Z = 16

X-ray Powder Pattern: Synthetic (NH₄)₂Mg₅Fe³⁺₃Al(SO₄)₁₂·18H₂O. 5.59 (100), 3.420 (72), 3.562 (66), 1.7836 (25), 1.5582 (25), 6.85 (24), 3.059 (22)

Chemistry:		(1)	(2)
	SO_3	47.56	52.52
	Al_2O_3	3.31	2.79
	FeO (total)	16.99	
	Fe ₂ O ₃	[12.28]	13.09
	FeO	[5.94]	
	MnO	1.18	
	MgO	7.02	11.02
	K ₂ O	0.05	
	$(NH_4)_2O$	3.11	2.85
	H_2O	[17.72]	17.73
	Total	98.17	100.00

(1) Köves Hill, Pécs-Vasas, Southern Hungary; average of 5 electron microprobe analyses, H₂O calculated from stoichiometry, (NH₄)₂O by spectrophotometry, presence of H₂O, (SO₄)²⁻, (NH4)⁺ confirmed by IR spectroscopy, Fe²⁺ and Fe³⁺ determined assuming (Mg+Fe²⁺+Mn²⁺)/(Fe³⁺+Al) = 5/4; corresponding to $[(NH_4)_{2.18}K_{0.02}]_{\Sigma=2.20}(Mg_{3.19}Fe^{2+}_{1.51}Mn_{0.30})_{\Sigma=5.00}$ (Fe³⁺_{2.81}Al_{1.19})_{$\Sigma=4.00$ S_{10.87}O_{44.70}·18H₂O. (2) (NH₄)₂Mg₅Fe³⁺₃Al(SO₄)₁₂·18H₂O.}

Mineral Group: Voltaite group.

Occurrence: As efflorescences formed by chemical reactions as ground water interacts with organic matter from coal and oxidizing pyrite and marcasite on a burning coal dump.

Association: Tschermigite, sabieite, kieserite, pickeringite, hexahydrite.

Distribution: From near Köves Hill, Pécs-Vasas, Mecsek Mountains, Southern Hungary.

Name: As an analog of *voltaite* with essential ammonium and magnesium in the composition.

Type Material: In Hungary at the Herman Ottó Museum, Miskolc, (2008.233) and at the Department of Mineralogy and Petrology, Hungarian Natural History Museum, Budapest (Gyn.1590).

References: (1) Szakáll, S., I. Sajó, B. Fehér, and S. Bigi (2012) Ammoniomagnesiovoltaite, a new voltaite-related mineral species from Pécs-Vasas, Hungary. Can. Mineral., 50(1), 65-72. (2) (2014) Amer. Mineral., 99, 2150 (abs. ref. 1).