Crystal Data: Monoclinic. *Point Group*: 2/m. Coating spinel grains as irregular masses 1-7 μ m. *Twinning*: None observed.

Physical Properties: *Cleavage*: n.d. *Tenacity*: n.d. *Fracture*: n.d. Hardness = n.d. D(meas.) = n.d. D(calc.) = 3.41

Optical Properties: Transparent. *Color*: Light gray in thin-section. *Streak*: n.d. *Luster*: n.d. *Optical Class*: [Biaxial]. n.d.

Cell Data: *Space Group*: C2/c. a = 9.80 b = 8.85 c = 5.36 $\beta = 105.62^{\circ}$ Z = 4

X-ray Powder Pattern: Allende meteorite.

2.996 (100), 2.535 (47), 2.581 (42), 2.964 (31), 2.600 (28), 2.909 (25) 2.130 (19)

100.20

Chemistry:		(1)	(2)
·	SiO_2	27.99	25.14
	Al_2O_3	24.71	21.33
	CaO	24.58	23.46
	Ti_2O_3	10.91	30.08
	TiO_2	6.68	
	MgO	4.45	
	Sc_2O_3	0.43	
	V_2O_3	0.19	
	ZrO_2	0.13	
	FeO	0.08	
	Cr. O.	0.02	

(1) Allende meteorite; average electron microprobe analysis supplemented by Raman spectroscopy, total Ti as 18.80 wt% TiO₂ was partitioned between Ti³⁺ and Ti⁴⁺ to make ideal stoichiometry; corresponds to Ca_{1.00}[(Ti³⁺_{0.35}Al_{0.18}Sc_{0.01}V³⁺_{0.01}) $_{\Sigma=0.55}$ Mg_{0.25}Ti⁴⁺_{0.19}] $_{\Sigma=1.00}$ (Si_{1.07}Al_{0.93}) $_{\Sigma=2.00}$ O₆. (2) CaTi³⁺AlSiO₆.

100.01

Mineral Group: Clinopyroxene group.

Total

Occurrence: Likely formed through high-temperature condensation in the solar nebula, followed by melting and crystallization in Ca-,Al-rich refractory inclusions in a meteorite.

Association: Spinel, perovskite, grossite, melilite.

Distribution: In the Allende meteorite.

Name: Honors Lawrence *Grossman* (b. 1946), Professor of Cosmochemistry, University of Chicago, USA, for his fundamental contributions to meteorite research.

Type Material: National Museum of Natural History, Washington D.C., USA (USNM 7562).

References: (1) Ma, C. and G.R. Rossman (2009) Grossmanite, CaTi³⁺AlSiO₆, a new pyroxene from the Allende meteorite. Amer. Mineral., 94, 1491-1494.