Crystal Data: Triclinic. Point Group: 1. Massive, in veins and efflorescences.

Physical Properties: Hardness = n.d. D(meas.) = n.d. D(calc.) = [2.53] Soluble in H₂O, from which it may be recrystallized.

Optical Properties: Translucent. *Color*: Bright orange. *Optical Class*: Biaxial (–) (recrystallized). $\alpha = n.d.$ $\beta = 1.81 \gamma = n.d.$ 2V(meas.) = n.d. *Dispersion*: Strong.

Cell Data: Space Group: $P\overline{1}$. a = 8.8178(4) b = 10.7236(5) c = 11.0707(5) $\alpha = 65.798(1)^{\circ}$ $\beta = 74.057(1)^{\circ}$ $\gamma = 71.853(1)^{\circ}$ Z = [2]

X-ray Powder Pattern: Hummer mine, Colorado, USA. 8.2 (10), 7.4 (7), 2.73 (6), 7.0 (5), 3.31 (4), 3.13 (4), 2.11 (4)

Chemistry: Qualitative energy-dispersion analysis showed only K, Mg, V, and O; originally characterized by correspondence of properties with synthetic material.

Occurrence: Leached from vanadium oxide ores and deposited in veins in clay and as efflorescences on bedded or roll-front U-V deposits in sandstone.

Association: Huemulite, rossite, thenardite, gypsum, epsomite (Malargüe district, Argentina); gypsum, huemulite, metamunirite, munirite, bluestreakite (Blue Streak mine, USA).

Distribution: In the USA, in the Hummer mine, Blue Streak mine, Jo Dandy group, and the North Star mine, Paradox Valley, Uravan district, Montrose Co., Colorado; in the Mesa No. 1 mine, Lukachukai Mountains, Apache Co., Arizona; from the Grants district, McKinley Co., New Mexico; in the Corvusite mine, Beaver Mesa, La Sal Mountains, Grand Co., Utah; and in the Gold Quarry mine, near Carlin, Maggie Creek district, Eureka Co., Nevada. From the Malargüe district, Mendoza Province, Argentina. At the Ronneburg deposit, Thuringia, Germany.

Name: For the Hummer mine, Colorado, USA, where it occurs.

Type Material: Harvard University, Cambridge, Massachusetts, 102345; National Museum of Natural History, Washington, D.C., USA, 106899.

References: (1) Weeks, A.D., E.A. Cisney, and A.M. Sherwood (1951) Hummerite and montroseite, two vanadium minerals from Montrose County, Colorado. Proceedings of the 31st Annual Meeting. Amer. Mineral., 36, 326-327 (abs.). (2) Evans, H.T., Jr., M.E. Mrose, and R. Marvin (1955) Constitution of the natural and artificial decavanadates. Proceedings of the 35th Annual Meeting. Amer. Mineral., 40, 314-315 (abs.). (3) Griffen, D.T. (1990) The crystal structure of hummerite, with comments on the crystallochemical stability of the decavanadate isopolyanion. Brigham Young Univ., Geology Studies, 36, 1-14. (4) Traill, R.J. and A.P. Sabina (1960) Catalogue of X-ray diffraction patterns and specimen mounts on file at the Geological Survey of Canada. Geol. Sur. Canada, Paper 60-4, 50. (5) Hughes, J.M., M. Schindler, J. Rakovan, and F.E. Cureton (2002) The crystal structure of hummerite, KMg(V₅O₁₄) 8H₂O: bonding between the $[V_{10}O_{28}]^{6-}$ structural unit and the $\{K_2Mg_2(H_2O)_{16}\}^{6+}$ interstitial complex. Can. Mineral., 40, 1429-1435. (6) (2003) Amer. Mineral., 88, 1179 (abs. ref. 5).