Crystal Data: Monoclinic. Point Group: 2/m. As foliated aggregates ~3 cm across of parallel tablets, to 7 mm, flattened parallel to {010}.

Physical Properties: Cleavage: None. Fracture: Uneven. Tenacity: Brittle. Hardness = ~7 D(meas.) = n.d. D(calc.) = 3.61

Optical Properties: Transparent. Color: Very dark green. Streak: Green-gray. Luster: Vitreous. *Optical Class*: Biaxial (-). $\alpha = 1.725(2)$ $\beta = 1.740(2)$ $\gamma = 1.741(2)$ 2V(meas.) = 34.4(1.8)° $2V(\text{calc.}) = 29^{\circ}$ Pleochroism: X = colorless or very light tan, Y = blue-green, Z = deep blue-green. *Dispersion:* v > r, strong. *Orientation:* $Y \parallel b$.

Cell Data: Space Group: $P2_1/c$. a = 19.800(1) b = 14.371(1) c = 11.254(1) $\beta = 125.53(1)^{\circ}$ Z = 4

X-ray Powder Pattern: Khmara Bay, Enderby Land, Antarctica. 2.446 (100), 2.0106 (85), 2.0140 (61), 2.826 (45), 2.4387 (44), 2.3405 (43), 2.9852 (38)

Chemistry:		(1)
	SiO_2	20.27
	Al_2O_3	51.15
	Fe ₂ O ₃	[0.70]

Fe_2O_3	[0.70]
FeO	[9.43]
MgO	15.49
CaO	0.16
BeO	2.51
B_2O_3	0.05
Total	99.76

(1) Khmara Bay, Enderby Land, Antarctica; average electron microprobe, FeO and Fe₂O₃ calculated from FeO = 10.06; corresponds to $Ca_{0.04}Mg_{5.46}Fe^{3+}_{0.12}Fe^{2+}_{1.87}Al_{14.26}Be_{1.43}B_{0.02}Si_{4.80}O_{40}$.

Polymorphism & Series: Likely continuous solid solution between Be-free sapphirine of composition (Mg.Fe)_{7.5}(Al.Fe)_{1.7}Si_{3.5}O₄₀ and khmaralite. Distinguishing the two minerals using microprobe analyses, powder X-ray patterns, and optical properties would be equivocal.

Occurrence: In a pegmatite metamorphosed at granulite-facies likely from pre-existing pegmatitic Be phases such as beryllian cordierite.

Association: Surinamite, musgravite, sillimanite, garnet, biotite, apatite, rutile, dumortierite, quartz, microcline.

Distribution: From "Zircon Point", Khmara Bay, Enderby Land, Antarctica [TL].

Name: For the locality, from which the first samples were collected, named for Ivan Fedorovich Khmara (1936-1956), a tractor driver on the Soviet Antarctic Expedition who perished in Antarctica.

Type Material: National Museum of Natural History, Washington, D.C., USA (NMNH 171532).

References: (1) Barbier, J., E.S. Grew, P.B. Moore, and S.-C. Su (1999) Khmaralite, a new beryllium-bearing mineral related to sapphirine: A superstructure resulting from partial ordering of Be, Al, and Si on tetrahedral sites. Amer. Mineral., 84, 1650-1660. (2) Christy, A.G. and E.S. Grew (2004) Synthesis of beryllian sapphirine in the system MgO-BeO-Al₂O -SiO₂-H₂O and comparison with naturally occurring beryllian sapphirine and khmaralite, Part 2: A chemographic study of Be content as a function of P, T, assemblage and FeMg.₁ exchange. Amer. Mineral., 89, 327-338.