Crystal Data: Triclinic. *Point Group*: 1. Crystals, to 0.2 mm, are tabular on {001}, slightly to distinctly elongated along [010], and display 3 pinacoids; in aggregates to 0.3 mm.

Physical Properties: Cleavage: Good on $\{001\}$. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 4.5 D(meas.) = n.d. D(calc.) = 5.81

Optical Properties: Transparent to translucent. *Color*: Brown, nearly black as crusts. *Streak*: Light brown. *Luster*: Adamantine.

Optical Class: Biaxial (-). $\alpha = 2.02(2)$ $\beta(\text{calc.}) = 2.07$ $\gamma = 2.12(2)$ $2V(\text{calc.}) = 65(5)^{\circ}$

Pleochroism: Strong, X = brown to opaque, Y = yellow, Z = pale yellow. *Orientation*: $X \approx [010]$; for crystals lying on (001), X' show an oblique extinction of $\sim 7^{\circ}$ relative to [010].

Cell Data: *Space Group*: $P\overline{1}$. a = 4.556(1) b = 6.153(2) c = 8.984(2) $\alpha = 95.43(2)^{\circ}$ $\beta = 99.22(2)^{\circ}$ $\gamma = 92.95(3)^{\circ}$ $Z = \frac{1}{2}$

X-ray Powder Pattern: Güldener Falk mine, near Schneeberg-Neustädtel, Saxony, Germany. 3.542 (100), 3.766 (90), 2.913 (81), 3.505 (62), 2.798 (49), 8.827 (44), 2.668 (39)

Chemistry:		(1)	(2)
Chemistry.	Bi_2O_3	52.58	53.35
	PbO	0.08	
	CaO	0.15	
	Fe_2O_3	13.92	18.28
	Al_2O_3	0.29	
	CoO	3.35	
	NiO	0.34	
	ZnO	0.09	
	CuO	0.07	
	As_2O_5	26.82	26.31
	P_2O_5	0.23	
	<u>H</u> 2O	[2.56]	2.06
	Total	100.48	100.00

(1) Güldener Falk mine, near Schneeberg-Neustädtel, Saxony, Germany; average of 13 electron microprobe analyses supplemented by Mössbauer and IR spectroscopy, H_2O calculated from idealized empirical formula; corresponds to $(Bi_{1.94}Ca_{0.02})_{\Sigma=1.96}Fe_{1.00}(Fe_{0.50}Co_{0.38}Ni_{0.04}Al_{0.05}Zn_{0.01}Cu_{0.01})_{\Sigma=0.99}[(OH)_{2.44}O_{1.40}]_{\Sigma=3.84}[(AsO_4)_{2.01}(PO_4)_{0.03}]_{\Sigma=2.04}.$ (2) $Bi_2Fe^{3+}Fe^{3+}O_2(OH)_2(AsO_4)_2$.

Polymorphism & Series: Forms a series with cobaltneustädtelite.

Mineral Group: Medenbachite group.

Occurrence: In vugs in quartz collected on mining waste piles.

Association: Cobaltneustädtelite, quartz, preisingerite, "limonite"/goethite, mixite, zeunerite, bismutite, bismutoferrite.

Distribution: Studied material from the dumps of the Güldener Falk mine, near Schneeberg-Neustädtel, Saxony, Germany. Other mines with confirmed occurrence in the same district are Siebenschleken, Junge Kalbe, Friedefürst, and Peter und Paul. Also, from the Friedrich-Wilhelm adit, Friedensgruber vein, near Lichtenberg, Bavaria, Germany.

Name: For the locality, Schneeberg-Neustädtel, near where the studied samples were collected.

Type Material: State Museum for Geology and Mineralogy, Dresden, Germany (18328).

References: (1) Krause, W., H-J. Bernhardt, C. McCammon, and H. Effenberger (2002) Neustädtelite and cobaltneustädtelite, the Fe³⁺- and Co²⁺-analogues of medenbachite. Amer. Mineral., 87(5-6), 726-738.