Crystal Data: Monoclinic. *Point Group*: 2/m. As clusters to 3 mm of radiating fiber bundles to 1 mm. Fiber bundles twist and merge near their ends, forming simple prisms flattened on (100) and elongated along [010] with terminal crystal faces.

Physical Properties: Cleavage: n.d. Tenacity: Brittle. Fracture: Splintery. Hardness = n.d. D(meas.) = n.d. D(calc.) = 3.648 Nonfluorescent. Transforms to metatamboite reversibly with changes in ambient humidity. Visually indistinguishable from metatamboite.

Optical Properties: Semi-translucent. *Color*: Pale yellow. *Streak*: Very pale yellow to colorless. *Luster*: Greasy to vitreous. *Pleochroism*: Colorless to pale yellow. *Optical Class*: Biaxial. n(calc.) = 1.874

Cell Data: Space Group: $P2_1/c$. a = 16.879(10) b = 7.310(4) c = 16.666(9) $\beta = 108.857(11)$ ° Z = 4

X-Ray Diffraction Pattern: Calculated pattern.

16.068 (100), 3.425 (9), 2.999 (8), 3.171 (6), 2.853 (5), 4.153 (4), 3.943 (4)

Chemistry:

	(1)	(2)
TeO_2	63.90	59.38
Fe_2O_3	[24.14]	22.28
Al_2O_3	0.75	
SO_3	5.84	7.45
SeO_3	0.63	
H_2O	[11.41]	10.89
Total	106.67	100.00

(1) Tambo mine, Coquimbo Province, Chile; average electron microprobe analysis supplemented by IR spectroscopy, Fe₂O₃ and H₂O calculated from structure; cations correspond to $(Fe^{3+}_{3.10}Al_{0.15})_{\Sigma=3.25}$ $(S^{6+}_{0.75}Se^{6+}_{0.05})_{\Sigma=0.80}Te^{4+}_{4.11}$. (2) $Fe^{3+}_{3}(OH)(H_{2}O)_{2}(SO_{4})(Te^{4+}O_{3})_{3}[Te^{4+}O(OH)_{2}](H_{2}O)_{3}$.

Occurrence: In the interstices of silicified epithermal hydrothermal breccias of dacitic tuff.

Association: Alunite, rodalquilarite, emmonsite, poughite, mackayite, scorodite, paratellurite, tellurite, baryte, gold, native tellurium.

Distribution From the Tambo mine (Windy pit), Coquimbo Province, Chile.

Name: For the *Tambo* mine, where the studied material was collected.

Type Material: Royal Ontario Museum, Toronto, Canada (M57171).

References: (1) Cooper, M.A., F.C. Hawthorne, Y.A. Abdu, P.C. Walford, and M.E. Back (2019) Relative humidity as a driver of structural change in three new ferric-sulfate-tellurite hydrates: New minerals tamboite and metatamboite, and a lower-hydrate derivative, possibly involving direct uptake of atmospheric {H₂O}₄ clusters. Can. Mineral., 57, 605-635.