Crystal Data: Monoclinic. *Point Group*: 2/m. As elongated lamellar crystals, to $200 \mu m$. Typically in parallel or divergent aggregates, forming dense chalklike masses to 3 cm.

Physical Properties: Cleavage: Imperfect basal. Fracture: n.d. Tenacity: Brittle. Hardness = 1-2 D(meas.) = 2.01(1) D(calc.) = 2.001

Optical Properties: Transparent. *Color*: Colorless. *Streak*: White. *Luster*: Dull to silky. *Optical Class*: Biaxial (+) [by analogy to sanjuanite]. $\alpha = 1.493(5)$ $\beta = \text{n.d.}$ $\gamma = 1.485(5)$ *Pleochroism*: None. *Orientation*: $Z \perp$ to elongation, $X \parallel$ to elongation.

Cell Data: *Space Group*: P2/a. a = 7.073(1) b = 9.634(2) c = 10.827(2) $\beta = 100.40(1)^{\circ}$ Z = 2

X-ray Powder Pattern: Alyaskitovy deposit, Arangas Creek, eastern Sakha (Yakutia), Russia. 9.64 (100), 4.201 (51), 10.64 (29), 5.325 (25), 3.142 (18), 3.482 (14), 3.216 (14)

Chemistry:		(1)	(2)	(3)
	Al_2O_3	25.36	26.64	25.54
	P_2O_5	18.50	17.20	17.78
	SO_3	20.95	19.10	20.06
	F	5.22	4.58	4.76
	$-O=F_2$		1.93	2.00
	H_2O		34.24	33.86
	Total		99.83	100.00

(1) Alyaskitovy deposit, eastern Sakha (Yakutia), Russia; average of 6 electron microprobe analyses, presence of H_2O , $(SO_4)^{2^-}$, $(PO_4)^{3^-}$ confirmed by IR spectroscopy. (2) Alyaskitovy deposit, eastern Sakha (Yakutia), Russia; average of 2 wet chemical analyses, H_2O by the Penfield method; corresponding to $Al_{2.08}(P_{0.97}O_4)(S_{0.95}O_4)F_{0.96}\cdot7.48H_2O$. (3) $Al_2(PO_4)(SO_4)F\cdot7.5H_2O$.

Occurrence: In cavities in quartz—muscovite—tourmaline—sulfide veins and adjacent rock, as a secondary mineral from near-surface oxidation and weathering of a strongly greisenized Li–F two-mica, leucogranite porphyry containing Sn and W mineralization.

Association: Phosphorscorodite, fluellite, gypsum, colquiriite, strengite, mansfieldite, sinkankasite.

Distribution: From the Alyaskitovy cassiterite-silicate-sulfide deposit, lower reaches of Arangas Creek, a tributary of the Elga River, Indigirka River basin, eastern Sakha (Yakutia), Russia.

Name: For Arangas Creek, located near the site from which the first specimens were collected.

Type Material: A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia (# 4254/1).

References: (1) Gamyanin, G.N., N.V. Zayakina, and L.T. Galenchikova (2013) Arangasite, Al₂(PO₄)(SO₄)F·7.5H₂O, a new mineral from Alyaskitovoye deposit (Eastern Yakutia, Russia). Zap. Ross. Mineral. Obshch., 142(5), 21-30 (in Russian, English abstract). Geol. Ore Deposits, 56(7), 560-566 (in English). (2) (2014) Amer. Mineral., 99, 2150-2151 (abs. ref. 1). (3) Yakubovich, O. V., I. M. Steele, V. V. Chernyshev, N. V. Zayakina, G. N. Gamyanin, and O. V. Karimova (2014) The crystal structure of arangasite, Al₂F(PO₄)(SO₄)·9H₂O determined using low-temperature synchrotron data. Mineral. Mag., 78(4), 889-903.