Chemistry:

Crystal Data: Monoclinic. *Point Group*: 2/m, *m*, or 2. As micaceous crystals (< 1 μ m) with either round or hexagonal outlines, to 0.5 mm, as spherulites and rosettes to 1 mm.

Physical Properties: Cleavage: Perfect on {010}. Fracture: n.d. Tenacity: Flexible.Hardness = 2.5-3D(meas.) = 3.76(2)D(calc.) = 3.826

Optical Properties: Transparent. *Color*: Deep blue-green or turquoise. *Streak*: Light turquoise. *Luster*: Pearly flakes, silky aggregates.

Optical Class: Biaxial (-). $\alpha = 1.69(1)$ $\beta = \gamma = 1.775(5)$ 2V(meas.) = 10(5)^o 2V(calc.) = n.d. *Pleochorism*: Strong, Y = Z = deep blue-green, X = light turquoise. *Absorption*: Y = Z > X. *Orientation*: X = b.

Cell Data: Space Group: P2/m, P2, or Pm. a = 8.28(3) b = 18.97(2) c = 7.38(2) $\beta = 121.3(6)^{\circ}$ Z = 1

X-ray Powder Pattern: Centennial Eureka mine, Tintic district, Juab Co., Utah, USA. 18.92 (100), 2.524 (41), 3.777 (24), 1.558 (22), 9.45 (19), 2.692 (15), 4.111 (13)

	(1)
FeO	0.04
CuO	36.07
ZnO	20.92
TeO_2	14.02
As_2O_5	14.97
Cl	1.45
H_2O	13.1
$-O = Cl_2$	0.33
Total	100.24

(1) Centennial Eureka mine, Tintic district, Utah, USA; average of 14 electron microprobe analyses, H_2O by Alimarin method, IR spectroscopy confirms TeO_3 , AsO_4 and OH; corresponding to $(Cu_{10.32}Zn_{5.85}Fe_{0.01})_{\Sigma=16.18}(TeO_3)_2(AsO_4)_{2.97}[Cl_{0.93}(OH)_{0.07}](OH)_{18.45}\cdot7.29H_2O$.

Occurrence: In the oxidation zone of quartz-sulfide ores containing tellurides (mostly hessite) in small cavities and in fractures in quartz.

Association: Mcalpineite, malachite, Zn-bearing olivenite, goethite, unspecified Mn oxides.

Distribution: From old dumps of the Centennial Eureka mine, Tintic district, Juab Co., Utah, USA.

Name: Reflects the fact that the first samples were found on the *dumps* of the Centennial *Eureka* mine. The mineral name is also related to the Greek word *eureka* -"*I have found it*" – in a *dump*—an allusion to the important role old mine dumps have played in the discovery of new minerals.

Type Material: A.E. Fersman Mineralogical Museum, Academy of Sciences, Moscow, Russia (3962/1), at the National Museum of Natural History, Washington, D.C. (174877), and the American Museum of Natural History, New York, New York (112206), USA.

References: (1) Pekov, I.V., N.V. Chukanov, A.E. Zadov, A.C. Roberts, M.C. Jensen, N.V. Zubkova, and A.J. Nikischer (2010) Eurekadumpite $(Cu,Zn)_{16}(TeO_3)_2(AsO_4)_3Cl(OH)_{18}$ ·7H₂O - a new supergene mineral species. Zap. Ross. Mineral. Obshch., 139(4), 26-35 (in Russian with English abstract). Geol. Ore Deposits, 53(7), 575-582 (in English). (2) (2012) Amer. Mineral., 97, 1261-1262 (abs. ref. 1).