Crystal Data: Tetragonal. *Point Group*: 4/m 2/m 2/m. As irregular grains to $6 \mu m$.

Physical Properties: *Cleavage*: n.d. *Fracture*: n.d. *Tenacity*: n.d. Hardness = n.d. D(meas.) = n.d. D(calc.) = 7.24

Optical Properties: Opaque. *Color*: n.d. *Streak*: n.d. *Luster*: n.d. *Optical Class*: n.d.

Cell Data: Space Group: *I*4/*mmm*. a = 3.65 c = 18.14 Z = 2

X-ray Powder Pattern: Calculated pattern.

4.535 (100), 1.825 (31), 1.693 (24), 1.963 (10), 1.704 (10), 1.291 (10), 3.024 (9)

Chemistry:		(1)	(2)
	Ni	65.3	72.03
	S	10.3	13.12
	Ge	8.2	14.85
	Te	7.9	
	Sn	5.10	
	Fe	1.72	<u>.</u>
	Total	98.52	100.00

(1) Allende CV3 carbonaceous chondrite meteorite; average of 5 electron microprobe analyses; corresponds to $(Ni_{5.95}Fe_{0.16})_{\Sigma=6.11}(Ge_{0.60}Sn_{0.23})_{\Sigma=0.83}(S_{1.72}Te_{0.33})_{\Sigma=2.05}$. (2) Ni_6GeS_2 .

Occurrence: Very late-stage, vapor-deposited, alteration product in veins and as mono-mineralic crack-filling material in igneous diopside in the Type B1 Ca-Al-rich inclusion (CAI) *ACM*-2 from the Allende CV3 carbonaceous chondrite.

Association: Grossular, Na-bearing melilite, heazlewoodite, Ge-bearing Ni-Fe alloys.

Distribution: From the Allende CV3 carbonaceous chondrite meteorite.

Name: For "Nu Wa", the goddess who patched the fractured wall of Heaven to save the early World after Pan Gu's creation, in allusion to this secondary mineral filling cracks in a primitive refractory inclusion in the early solar system.

Type Material: National Museum of Natural History, Washington, D.C., USA (7616).

References: (1) Ma, C. and J.R. Beckett (2018) Nuwaite (Ni_6GeS_2) and butianite (Ni_6SnS_2), two new minerals from the Allende meteorite: Alteration products in the early solar system. Amer. Mineral., 103(12), 1918-1924.