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Foreword

The fourth edition of the European Conference on Geostatistics for 
Environmental Applications (geoENV IV) took place in Barcelona, 
November 27-29, 2002. As a proof that there is an increasing interest in 
environmental issues in the geostatistical community, the conference 
attracted over 100 participants, mostly Europeans (up to 10 European 
countries were represented), but also from other countries in the world. Only 
46 contributions, selected out of around 100 submitted papers, were invited 
to be presented orally during the conference. Additionally 30 authors were 
invited to present their work in poster format during a special session. 

All oral and poster contributors were invited to submit their work to be 
considered for publication in this Kluwer series. All papers underwent a 
reviewing process, which consisted on two reviewers for oral presentations 
and one reviewer for posters. The book opens with one keynote paper by 
Philippe Naveau. It is followed by 40 papers that correspond to those 
presented orally during the conference and accepted by the reviewers. These 
papers are classified according to their main topic. The list of topics show 
the diversity of the contributions and the fields of application. At the end of 
the book, summaries of up to 19 poster presentations are added.  

The geoENV conferences stress two issues, namely geostatistics and 
environmental applications. Thus, papers can be classified into two groups. 
The reader will find a number of papers dedicated to the most recent 
methodological developments, with examples predominantly in 
environmental sciences. The remaining ones provide a good indication of 
the wide variety of environmental applications in which geostatistics plays 
its role.

The fourth volume in the geoENV conference series proves how 
dynamic the geostatistical community is, and confirms the relevance of 
geostatistics as a tool to be included as a standard procedure in 
environmental sciences. We now look forward to geoENV 2004 for new 
applications and new methodological advances.  

Barcelona, November 2002 

The editors 
Jesus Carrera 
J. Jaime Gómez-Hernández 
Xavier Sánchez-Vila
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TWO STATISTICAL METHODS FOR 
IMPROVING THE ANALYSIS OF LARGE 
CLIMATIC DATA SETS: GENERAL SKEWED 
KALMAN FILTERS AND DISTRIBUTIONS OF 
DISTRIBUTIONS

P. Naveau1, M. Vrac2,3, M.G. Genton4, A. Chédin2 and E. Diday3

1Dept. of Applied Mathematics, University of Colorado, Boulder, USA. 
2Institut Pierre Simon Laplace, Ecole Polytechnique, France. 
3 Université Paris IX Dauphine, France.
4Dept. of Statistics, North Carolina State University, USA. 

Abstract: This research focuses on two original statistical methods for analyzing large 
data sets in the context of climate studies. First, we propose a new way to 
introduce skewness to state-space models without losing the computational 
advantages of the Kalman filter operations. The motivation stems from the 
popularity of state-space models and statistical data assimilation techniques in 
geophysics, specially for forecasting purposes in real time. The added 
skewness comes from the extension of the multivariate normal distribution to 
the general multivariate skew-normal distribution. A new specific state-space 
model for which the Kalman Filtering operations are carefully described is 
derived. The second part of this work is dedicated to the extension of 
clustering methods into the distributions of distributions} framework. This 
concept allows us to cluster distributions, instead of simple observations. To 
illustrate the applicability of such a method, we analyze the distributions of 
16200 temperature and humidity vertical profiles. Different levels of 
dependencies between these distributions are modeled by copulas. The 
distributions of distributions are decomposed as mixtures and the algorithm to 
estimate the parameters of such mixtures is presented. Besides providing 
realistic climatic classes, this clustering method allows atmospheric scientists 
to explore large climate data sets into a more meaningful and global 
framework.

 1 

X. Sanchez-Vila et al. (eds.), geoENV IV – Geostatistics for Environmental Applications, 1-14. 
© 2004 Kluwer Academic Publishers. Printed in the Netherlands. 
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1. INTRODUCTION

In geophysical studies, the dimension of data sets from most oceanic, 
atmospheric numerical models and satellites is extremely large. There exists 
a variety of recent techniques to deal with such an issue in the special 
context of climate studies. For example, Bayesian methods (e.g. Wikle et al., 
2002), data mining, imaging and statistical visualization procedures have 
provided interesting and innovative ways to analyze large climatic data sets. 
In addition to the computational problem, the distribution of climatic random 
vectors  is often supposed to be Gaussian or a mixture of Gaussian 
distributions, although this assumption is not always satisfied for a wide 
range of atmospheric variables. For example, the distribution of daily 
precipitation amounts is by nature skewed. In this paper, we attend to 
address these two problems, large size and skewness, with two different 
approaches. Because the scope of these problems is very large, we will focus 
our attention on two specific statistical methods used in climate studies. In 
Section 2, we will present a simple way to incorporate skewness in Kalman 
filtering techniques without losing the computational advantages associated 
with the normal distribution (Naveau and Genton, 2002). In Section 3, the 
concept of distributions of distributions (Diday et al., 1985; Vrac 2002; Vrac 
et al., 2001) will be used in order to improve classical clustering methods for 
large climatic data sets. This application is closely linked to the algorithm of 
inversion of the equation of radiative transfer (Chédin et al., 1985). 

2. GENERAL SKEWED KALMAN FILTERS 

Before presenting the details of our research on Kalman filters, we want 
to clarify some climatic terms to the statistician who may  not be familiar 
with atmospheric sciences. In particular, we would like to recall the meaning 
of numerical models and data assimilation in the context of this work. For 
the former, a numerical computer model solves the governing physical, 
thermodynamics and micro-physical processes at different scales of interest 
and over a specific region (depending on the scientific problem under study). 
It provides deterministic outputs of different atmospheric variables 
(temperature, humidity, winds, etc) according to certain forcings (inputs). It 
is worthwhile to note that the evaluation of such computer simulations has 
generated an interdisciplinary effort between scientists and statisticians in 
recent years. The interested reader can look at Berk and collaborators' work 
(Berk et al., 2002) on the statistical assessment of such models. Data 
assimilation can be seen as  a way of incorporating observations into a 
numerical model as it runs. From a statistical point of view, the objective of 
data assimilation is to use both sources of data, observations and model 
outputs, to provide a better statistical analysis, in particular to give better 
forecasts. In the context of numerical weather prediction, updates and 
forecasts have be performed routinely and in real time. This compounds with 
the large size of data sets and implies that very efficient but slow methods 
have to be disregarded. The data-assimilation or update step is closely 
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related to Kalman filter which is the best known filtering algorithm in the 
context of Gaussian distributions and linear system dynamics. Before 
presenting the details of our method, we would like to underline there exists 
a very large body of literature dedicated to Kalman filters and its extensions. 
For example, ensemble Kalman filter (Bengstton et al, 2002; Anderson 
2001), space-time Kalman filters  (Wikle and Cressie, 1999), partially Non-
Gaussian state-space models (Shepard, 1994) and particle filters (Doucet et 
al., 2001) have been recently used for many different applications. In 
particular, the approximation of non-Gaussian distributions by a mixture of 
Gaussian distributions has already been implemented via Monte-Carlo 
methods. In the same way, a mixture of general skew-normal distributions 
could be defined and extends the range of applications of our method. But 
because of the limited space available, we will restrict our exposition to the 
simplest form of Kalman filter, the linear one, in this paper. Future work will 
present the extension to more complex Kalman filter models. 

The overwhelming assumption of normality in the Kalman filter literature 
can be understood for many reasons. A major one is that the multivariate 
distribution is completely characterized by its first two moments. In addition, 
the stability of multivariate normal distribution under summation and 
conditioning offers tractability and simplicity. Therefore, the Kalman filter 
operations can be performed rapidly and efficiently whenever the normality 
assumption holds. However, this assumption is not satisfied for a large 
number of applications. For example, some distributions used in a state-
space model can be skewed. In this work, we propose a novel extension of 
the Kalman filter by working with a larger class of distributions than the 
normal distribution. This class is called general multivariate skew-normal 
distributions. Besides  introducing skewness to the normal distribution, it has 
the advantages of being closed under marginalization and conditioning. This 
class has been introduced by Domínguez-Molina et al. (2001) and is an 
extension of the multivariate skew-normal distribution first proposed by 
Azzalini and his coworkers (1996, 1999). These distributions are particular 
types of generalized skew-elliptical distributions recently introduced by 
Genton and Loperfido (2002), i.e. they are defined as the product of a 
multivariate elliptical density with a skewing function. 

2.1 The general multivariate skew-normal distribution 

The general multivariate skew-normal distribution is a family of 
distributions  including the normal one, but with extra parameters to regulate 
skewness. It allows for a continuous variation from normality to non-
normality, which is useful in many situations (Azzalini and Capitanio, 1999) 
who emphasized statistical applications for the skew-normal distribution. An 
n-dimensional random vector X is said to have a general multivariate skew-
normal distribution (Domínguez-Molina et al., (2001)), denoted by 
GMSNn,m( , ,D, , ) if it has a density function of the form: 
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1
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where n, m, n n and m m are both covariance 
matrices, D m n, n (x; , ) and n(x; , ) are the n-dimensional normal 
pdf and cdf with mean  and covariance matrix . When D = 0, the density 
(1) reduces to the multivariate normal one, whereas it reduces to Azzalini 
and Capitanio's (1999) density when m = 1 and = D . The matrix 
parameter D is referred to as a “shape parameter”. The moment generating 
function M(t) for a GMSN distribution is given by: 
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( ) exp , . (2)
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T
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The simulation of random vectors from the GMSN distribution is rather 
simple. Indeed, Domí}nguez-Molina et al. (2001) showed that if X n and 
Y m are two random vectors with joint distribution given by: 

, , (3)
T

n m T

X D

Y v D D DN

then the conditional distribution  of X given Y D  is a general multivariate 
skew-normal distribution GMSNn,m( , ,D, , ).

The three basic tools when implementing the Kalman filter are the closure 
under linear transformation, under summation and conditioning. In section 
2.3, we will present how the general skew-normal distribution behaves under 
such constraints. 

2.2 The state-space model and the Kalman filter 

The State Space Model has been widely studied (e.g. Cressie and Wilke, 
2002; Shepard, 1994; Shumway and Stoffer, 1991; Harrison and Stevens, 
1976). This model has become a powerful tool for modeling and forecasting 
dynamical systems and it has  been used in a wide range of disciplines such 
as biology, economics, engineerings and geophysics (Naveau et al. 2002; 
Guo et al., 1999; Kitagawa and Gersch, 1984). The basic idea of the state-
space model is that   the d-dimensional vector of observation Yt at time t is 
generated by two equations, the observational and the system equations. The 
first equation describes how the observations vary in function of the 
unobserved state vector Xt of length h: Yt = Ft Xt + t where t represent an 
added noise and Ft is a d h matrix of scalars. The essential difference 
between the state-space model and the conventional linear model is that the 
state vector Xt is not assumed to be constant but may change in time. The 
temporal dynamical structure is incorporated via the system equation: Xt = Gt

Xt-1 + t where t represents an added noise and Gt is an h h matrix of 
scalars. There exists a long literature about the estimation of the parameters 
for such models.  In particular, the Kalman filter provides an optimal way to 
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estimate the model parameters if the assumption of gaussianity holds. 
Following the definition by Meinhold and Singpurwalla (1983). The term 
“Kalman filter” used in this work refers to a recursive procedure for 
inference about the state vector. To simplify the exposition, we assume that 
the observation errors t are independent of the state errors t and that the 
sampling is equally spaced, t = 1,..., n. The results shown in this paper could 
be easily extended without such constraints. But, the loss of clarity in the 
notations would make this work more difficult to read without bringing any 
new important concepts. 

2.3 Kalman filtering and general skew-normal distributions 

From Equation (2), it is straightforward to see that the sum of two 
independent general multivariate skew-normal distributions is  not necessary  
a general multivariate skew-normal distribution. In order to obtain the 
closure under summation needed for the Kalman Filtering, we extend the 
linear state-space model to a wider state-space model for which the stability 
under summation is better preserved. In order to pursue this goal, we need 
the following lemma. Its proof can be found in Domínguez-Molina et al. 
(2001).

Lemma 1 Suppose Y = GMSNn,m( , ,D, , ) and A is a r n matrix. Then, 
we have X = AY GMSNr,m(A ,A AT,DA , , ) where A is the left inverse 
of A and A =A-1 when A is an n n nonsingular matrix. If Y is partitioned 
into two components, Y1 and Y2, of dimensions h and n-h respectively and 
with a corresponding partition for , , D and . Then the conditional  
distribution of Y2 given Y1 = y1 is: 

1 1
, 2 21 11 1 1 22 21 11 12 2 1 1, , , , . (4)n h mGMSN y D v D y

The converse is also true, i.e. if (4) is  the conditional distribution of Y2

given Y1 = y1 and Y1  GMSNh,m( 1, 11,D1, 1, ), then the joint distribution of 
Y1 and Y2 is GMSNn,m( , ,D, , ).

The proof is  the same as for the multivariate Gaussian distribution. 

2.4 Extension of the linear state-space model 

Our strategy to derive a model with a more flexible skewness is to directly 
incorporate a skewness term, say St,  into the observation equation 

, , , (5)

t t t t

TT T
t t t t t t t t t t t

Y F X

PU Q S with F P Q and X U S

where the random vector Ut of length k and the d k matrix of scalar Pt

represent the linear part of the observation equation. In comparison, the 
random vector St of length l and the d l matrix of scalar Qt correspond to 
the additional skewness. The most difficult task in this construction is to 
propose a simple dynamical structure of the skewness vector St and the 
“linear” vector Ut while keeping the independence between these two 
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vectors (the last condition is not theoretically necessary but it is useful when 
interpreting the parameters). To reach this goal, we suppose that the bi-
variate random vector (UT

t,V
T

t)
T is generated from a linear system: 

*
1

1

(6)t t t t

t t t t

U K U

V LV

where the Gaussian noise *
t N( * , * ) is independent of +

t N( + ,
+ ) and where Kt, respectively Lt represents a k k matrix of scalars, 

respectively a l l matrix of scalars. The multivariate normal distribution of 
the vector (UT

t, VT
t)

T is denoted by 
* *

1

0
, . (7)

0
t t t

k
t tt

U
N

V

The parameters of such vectors can be sequentially derived from any 
initial vector (UT

0, VT
0)

T with a normal distribution. From (3), we define the 
skewness part St of the state vector Xt = (UT

t, ST
t)

T as the following 
conditional variable St = [Vt-1 | Vt Lt

+
t-1]. It follows a general multivariate 

skew-normal distribution St  GMSNl,l(
+

t-1,
+

t-1,Lt,
+

t,
+ ). Consequently 

the state vector has also a general multivariate skew-normal distribution 
*

1,

1

, , , , , , (8)t t
t k k l t t t t t t

t t

U
X GMSN D v with

S
*

1

0 0 0 00
, , , .

0 00
t

t t t t
t t t v

I
D v and

L

The price for this gain in skewness flexibility is that this state vector does 
not have anymore a linear structure like the one defined by the system 
equation. If Pt = 0 or Lt = 0 then the classical state-space model is obtained. 

Proposition 1 Suppose that the initial vector (UT
0, VT

0)
T of the linear system 

defined by (6) follows the normal distribution defined by 
* *

0 0 0
1

0 00

0
, . (9)

0
k

U
N

V

Then both the state vector Xt = (UT
t, ST

t)
T and the observation vector Yt

follow general multivariate skew-normal distributions, Xt

GMSNh,m( t, t,Dt, t, t) and Yt GMSNd,m( t, t,Et, t, t) for t  1. The 
parameters of these distributions satisfy 

* * *
1 1, ,t t t t t t t t tK L and F

and
* * *

1 1

1

,

, 0 , .

T T T
t t t t t t t t t t t t

TT T
t t t t t t t t

K K L L and F F

E D F D D G and v

The proofs of our propositions about the Skewed Kalman filter can be 
found in Naveau and Genton (2002).  
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2.5 Sequential estimation procedure: Kalman Filtering 

To extend the Kalman filter to general skewed normal distributions, we 
follow the work of Meinfold and Singpurwalla (1983) who derived a 
Bayesian formulation to derive the different steps of the Kalman filtering. 
The key notion is that given the data Yt = (Y1,..., Yt), inference about the state 
vector values can be carried out through a direct application of Bayes' 
theorem. In the Kalman literature, the conditional distribution of (Xt-1 | Yt-1)
is usually assumed to follow a Gaussian distribution at time t-1. In our case, 
this assumption at time t-1 is expressed in function of the general 
multivariate skew-normal distribution: 

1 1 , 1 1 1 1 1
ˆ ˆ ˆˆ ˆ, , , , , (10)t t n m t t t t tX Y GMSN D v

where
^

. represents the location, scale, shape, and skewness parameters of (Xt-
1 | Yt-1). Then, we look forward in time t, but in two stages: prior to 
observing Yt, and after observing Yt. To implement these two steps, Lemma 1 
is used to determine the conditional distribution of a general multivariate 
skew-normal distribution. 

Proposition 2 Suppose that the initial vector (UT
0, VT

0)
T follows the normal 

distribution defined by (9), that the posterior distribution of Xt follows (10) at 
time t-1 and that we have for Ut and Vt introduced in (5)  

* **
1 1 11

1 1 *
1 1 1 1

ˆ ˆˆ
, , (11)

ˆ ˆˆ
t t tt

t k
t t t t

U
Y N

V

where
^

. represents the posterior mean and covariance. We define the 

following quantities: R+
t = Lt

^ +
t-1 Lt +

+
-1, R*

t = 
^ +

t-1 Kt + * ,

* 1
1

T T T T
t tt t t t t t t t t t t t t tQ R Q PR P and L C P PC L

and et = Yt – Qt [Kt
^ *

t-1 + * ] – Pt [E(St|Yt-1)] - , where E(St|Yt-1) is the 
conditional expectation of St given Yt-1 and Ct is the conditional covariance 
Ct = cov(Vt-1,St | Yt-1). The parameters of the posterior distributions are 
computed through the next cycle by the following sequential procedure: 

*

, *
1

ˆˆ ˆ ˆˆ ˆˆ, , , , , ,
ˆ

t
t t k l k l t t t t t t

t

X G M SN D v w ithY

and where 
*ˆ 00 0 00ˆ ˆ ˆˆ, , , an d

ˆˆ0 00
t

t t t t
t t t v

I
D v

L

and with 



                            P. Naveau, M. Vrac, M.G. Genton, A. Chédin and E. Diday 8

* * * 1*
1

1
1

ˆˆ
,

ˆˆ

T
t t t t t tt

T
t t t t t t tt

K R Q e

L L C P e

and
* * 1 ** * * * 1

1
1* 1 **

1

ˆ ˆ ˆ

ˆˆ ˆ

T T T T
t t t t t tt t t t t t t t t t t

T TT T
t t t t t t t tt t t t t t t t tt t

R R Q Q R K L R Q PC L

R LC P PC LL K LC P Q R

Although the notations are a little more complex, the Kalman filtering 
steps for the skewed extended state-space model does not present any 
particular computational difficulties. 

3. DISTRIBUTIONS OF DISTRIBUTION WITH 
APPLICATION TO CLIMATOLOGY 

3.1 Motivations and data 

The data set under study comes from the European Center for 
Meteorological Forecasting (ECMWF). The temporal resolution is of 6 hour 
(0 a.m., 6 a.m., 12 a.m., 6 a.m.) and the data covers the period from 
December 1998 to December 1999. For each latitude and each longitude, the 
values of different atmospheric variables (pressure values, temperature, 
specific humidity, winds, etc) are available at 50 different vertical levels. 
These levels are not equally spaced and vary from one location to another. 
This implies that we can not choose a specific altitude (or pressure level) and 
simply apply classical methods at different chosen altitudes. Despite this 
difficulty, the atmospheric scientist would like to summarize the information 
contained in this multi-variate 3D grid into a 2D map, i.e. on the surface of 
the Earth. Being able to recognize different climatic behaviors is of 
particular interest. An accurate  partition of these vertical profiles is essential 
to interpret satellite observations into atmospheric variables (inversion of 
equations of radiative transfer, Chédin et al., 1985). From a statistical point 
of view, we rephrase this scientific question as a clustering problem, 
classifying multi-variate vertical profile distributions into clusters with 
similar physical properties inside a cluster and distinct physical 
characteristics between clusters. Consequently, a fundamental difference 
with classical clustering algorithms is that a classification method has been 
directly applied to distributions (vertical profiles) instead of observations. As 
an application, 16200 multi-variate vertical profile distributions have to be 
decomposed as a mixture of K=7 classes. This number was chosen by 
atmospheric scientists and each class should correspond to a specific 
climatic situation. The distributions will either be of temperatures, 
humidities, or both. To illustrate the clustering procedure, we will focus on a 
particular date (the 15th of December 1998 at midnight). Before showing the 
results of this analysis, we need to establish a basic statistical framework. 
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3.2 Defining distributions of distributions 

Suppose that the vector F=(F1,..., Fn) represents the temperature vertical 
profile distributions over the entire globe. To work with such sets of 
distributions, the concept of distributions of distributions developed by 
Diday (2001) is needed. The details of the clustering methodology of 
distribution of distributions can be found in the work by Vrac (2002, 2001). 

Let t be a real. A distribution function of distributions is defined by 

( ) such that ( ) ,t FD x P F F t x

where F is the set of all possible temperature distributions. From a more 
practical point of view, Dt(x) could be estimated by 

,
1 1

1 1ˆ ˆ ˆ( ) [ ( ) ], with ( ) [ ],
inn

t i i i j
i ji

D x I F t x F t I X t
n n

where I[A] represents the indicator function, equal to 1 if A true and 0 

otherwise, and
^

F i(t) denotes the empirical distribution of the ith profile that 
has ni observations. Although this estimation strategy has the advantage of 
being simple, the clustering algorithm converges slowly due to the step-
functions. Instead, we use the “Parzen estimation method” to model the 
vertical profile distributions 

,

1

1ˆ ˆˆ( ) , and ( ) ( )
in

ti j
i i i

ji i i

x X
f x K F t f x dx

n h h

where K is a kernel function and hi the window width (Silverman, 1986). 
Because the density dt(x)=D t(x) takes its values on [0,1], we choose to 
model it  by a Beta density 

1 1
, ( ) (1 ) , with , 0 (12)t t

t

t t v
t t t t

t t

v
d x x x v

v

 Hence,
^

D t,
^

t (x) = 0
x ^

d t,
^

t (u) with ^

t estimated from the sample {
^

F i(t)} 

with i=1,...,n.
For the practitioner, studying the relationship between two given 

temperatures, say t1 and t2, is of primary interest. To investigate such a link, 
the definition of Dt with t real is extended to the bi-vector t=(t1,t2) by setting 

1 2 1 1 2 2( , ) such that ( ) and ( ) .tD x x P F F t x F t xF

The extension to higher dimensions does not present any major difficulty, 
but to reduce the notational complexity we restrict our exposition to the bi-
variate case for the remainder of this paper. 

3.3 Mixture of distribution of distributions and copulas 

Our goal is to cluster the different vertical profile distributions into K=7 
classes. To perform this task, we assume that the distribution Dt can be 
expressed as a mixture of distributions 
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1 2 , 1 2
1

, ( , )
K

t k t k
k

D x x D x x

where  = 1, 0 < k < 1 and Dt,k represents a bi-variate distribution. We 
express the relationship between the distribution Dt,k and its two marginals 
by directly applying Sklar's theorem (Sklar, 1959; Nelsen, 1998). This gives 

1 21 2 , , 1 , 2
1

, ( ), ( ) ,
K

t k t k t k t k
k

D x x C D x D x

where Ct,k is a copula function. There exists a variety of parametric forms to 
model this copula. In our applications, we use Frank's copula (Nelsen 1998) 

, ,
,

, ,

( 1)( 1)1
( , ) log 1 , with , [0,1],

log 1

u v
t k t k

t k
t k t k

C u v u v

where the positive parameter t,k  1 is a indicator of dependence, Ct,k(u,v)
uv for t,k  1, Ct,k(u,v)  min(u,v) for t,k  0 and Ct,k(u,v)  max(u+v-1,0) 
for Dt,k t,k . The first case, respectively the second case, corresponds to 
the independence, respectively to the total dependence. 

3.4 Parameters estimation and clustering algorithm 

The next step is to sequentially cluster the n=16200 vertical profile 
distributions and to estimate all parameters from the previous sections. The 
chosen method is an extension to distributions of the “Nuées Dynamiques” 
method (Diday et al., 1974). Given a partition  = { 1,..., K} (the first one 
is randomly generated), the clustering algorithm constitutes of 3 main steps: 
(1) estimation of the mixture proportions { k}, (2) estimation of other 
mixture parameters, ( t1,k, t2,k) for the Beta laws and { t,k} for the copula's 
parameter, (3) re-allocation of all individuals i into K new classes with 
i=1,...,n. This 3 step procedure is repeated until the desired convergence is 
reached. The first step is undertaken by setting k as the number of elements 
in the kth class divided by the total number of individuals. Other alternatives 
can be used (Celeux and Govaert, 1993). The second step is realized by 
maximizing the classifier log-likelihood

1 2

( ) ( )
, 1 2 , , ,

1

( , ) log[ ( , ; )], with , , 1,... ,
i k

K
i i

k t k t k t k t k
k

l d x x k K

where i = {i: ^

F i(t1) x1,
^

F i(t2) x} and dk,t(x1,x2; k) is the density derived 
from Dk,t(x1,x2; k). The last step is implemented  by defining the new classes 
as k = { : kdk,t( ; k)  max{ ldl,t( ; l): l=1,...,K}}. 

3.5 Application to the temperature profiles 

Figure 1 shows a classification of the 16200 vertical temperature profiles 
into 7 clusters. This result was obtained after applying the clustering 
procedure for two iterations. Although no spatial dependence was introduced 
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in the model, the spatial coherence obtained from the clustering procedure is 
a positive indicator of the quality of the algorithm. From a scientific 
perspective, the clusters provides realistic classes. Cluster 4 can be identified 
as a “tropical class”. Two “polar” clusters can be linked to the winter season 
at the South pole (cluster 1) and to the summer season at the North pole 
(cluster 7). Cluster 3 makes the transition between moderate and tropical 
zones, cluster 6 between polar and moderate zones. The high mountains are 
clearly identified (Himalaya, Andes). 

Figure 1. Clustering of the 16200 temperature vertical profiles into 7 clusters. 

3.6 Extension to multi-dimensional distributions 

In the previous sections, we exclusively focused on the temperature 
profiles but extending the procedure to multi-dimensional atmospheric 
vectors, e.g. the bi-variate vector of the temperature and humidity profiles, 
will greatly increase the range of applications of this work. The coupling 
method is based on the following mixture decomposition 

( )
1, 2,

( ) ( ) ( ) ( )
( ) , , , 1 , , 2 1 2, ,

1

( ) ( ) ( ) , with , ,r
r r

K
r r r r

r r k r t k r t kr t k
k

D x C D x D x x x x

where the integer r represents either the temperature (r=1) or the humidity 
(r=2). Then this couple of distributions can be linked by Sklar's theorem. 
There exists a copula function C such that 

(1) (2) (1) (2)
(1) (2)( , ) ( (x ), (x )).D C D Dx x

Although the notations become more complex, the same overall principles 
of the algorithm described in Section 3.4 can be applied. A main difference 
is that, in addition of setting two temperature levels (t(1)

1,t
(1)

2), we also need 
to fix two humidity levels (t(2)

1,t
(2)

2). Figure 2 represents the output of such a 
coupling procedure. Cluster 7, respectively cluster 1, corresponds to the 
winter season at the North pole, respectively the summer season at the South 
pole. This two regions were already identified in the temperature clustering, 
but additional variations are generated from humidity in Figure 2. Two 
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tropical classes are identified, very humid (cluster 4) and humid  (clusters 3). 
Cluster 4 is in better agreement with existing humid zones than the ones 
obtained before. The other clusters represent transition regions from tropical 
classes (hot and humid) to polar classes (dry and cold). 

Figure 2. Clustering in 7 classes by coupling the temperature and the humidity. 

4. CONCLUSIONS

In the first part of this work, we showed that extending the normal 
distribution to the general multivariate skew-normal distribution for state-
space models did neither reduce the flexibility nor the traceability of the 
operations associated with Kalman filtering. To the contrary, the 
introduction of a few skewness parameters provides a simple source of 
asymmetry needed for many applications. Further research is currently 
conducted to illustrate the capabilities of such extended state-space models 
for real case studies. 

By introducing a higher abstraction level in clustering methods, the 
concept of distributions of distributions and copulas extends the applicability 
of current procedures (Diday et al., 2001; Vrac, 2002). In addition, it allows 
to model different dependence levels for probabilistic data, internal 
dependencies inside a distribution of distributions (Section 3.5) and external 
ones, for example between the humidity and temperature vertical profile 
distributions. Besides providing realistic climatic classifications, these 
results emphasize the strong potential of this clustering method  at helping 
the understanding of other atmospheric variables and their inter-
relationships. Other algorithms have been generalized in the same way with 
copulas : the theoretically extensions of the algorithms EM, SEM, SAEM, 
and CEM was derived by Vrac (2002). Comparisons between these extended 
methods and "classical" algorithms of classification indicate that the 
procedures based on the concept of distributions of distributions perform 
better in the context of climatic studies (Vrac, 2002). It is worthwhile to note 
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that the proposed method can also be applied to classical numerical 
observations and functional data. Finally, multi-variate versions of the 
algorithm exist and are based on multidimensional generalized Archimedian 
copulas (Vrac 2002). This extension to multi-variate cases constitutes a 
strong axis of current research.
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SUPER-RESOLUTION LAND COVER 
CLASSIFICATION USING THE TWO-POINT 
HISTOGRAM

P.M. Atkinson 
Department of Geography, University of Southampton, Highfield, Southampton SO17 1BJ,
United Kingdom; pma@soton.ac.uk 

Abstract: A geostatistical optimization algorithm is proposed for super-resolution land 
cover classification from remotely sensed imagery. The algorithm requires as 
input, a soft classification of land cover obtained from a remotely sensed 
image. A super-resolution (sub-pixel scale) grid is defined. The soft land cover 
proportions (pixel scale) are then transformed into a hard classification (sub-
pixel scale) by allocating hard classes randomly to the sub-pixels. The number 
allocated per pixel is determined in proportion to the original land cover 
proportion per pixel. The algorithm optimizes the match between a target and 
current realization of the two-point histogram by swapping sub-pixel classes 
within pixels such that the original class proportions defined per pixel are 
maintained. The algorithm is demonstrated for two simple simulated images. 
The advantages of the approach are its ability to recreate any target spatial 
distribution and to work with features that are both large and small relative to 
the pixel size, in combination. 

1. INTRODUCTION 

Land cover is an important variable for many scientific investigations and 
operational applications. For example, land cover data are required to 
provide boundary conditions for atmospheric (e.g., global climate 
circulation) modelling, hydrological modelling, geomorphological modelling 
and so on. However, accurate land cover data at the required (coarse) spatial 
resolution are often not available because of the difficulties and expense of 
surveying large areas. Remote sensing has been invaluable for mapping, and 
ultimately monitoring, land cover over large areas because of the complete 
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synoptic coverage provided. However, current state-of-the-art techniques do 
not make full use of the available data within remotely sensed images. In 
particular, techniques are limited by the spatial resolution of the original 
multiple waveband imagery. The objective of this paper was to demonstrate 
a geostatistical technique for land cover classification from remotely sensed 
imagery that actually maps at a spatial resolution that is finer that that of the 
original imagery, thus, making greater use of the available data. 

Hard classification techniques, such as maximum likelihood (ML) 
classification, have been popular in remote sensing for many years (e.g., 
Thomas, 1987). In hard classification, every pixel is allocated to one class 
(for ML classification, the class to which it is most likely to belong). A 
criticism of hard classification is that many pixels actually contain a mixture 
of land cover classes. Such pixels are referred to as ‘mixed’. Mixed pixels 
can arise for two main reasons: (i) more than one distinct (crisp) class is 
represented within a pixel and (ii) classes intergrade within a pixel (e.g., an 
ecotone). In (i) the mixing leads to ambiguity and in (ii) the mixing leads to 
vagueness demanding the definition of fuzzy sets (e.g., Bezdek et al., 1984). 
The concern in this paper is the unmixing of pixels that contain crisp classes. 

The mixed pixel problem led to the adoption of techniques for soft 
classification, originally for geological remote sensing (Adams, et al., 1985). 
Soft classifiers (also sometimes referred to as fuzzy classifiers) map each 
pixel onto many classes and assign membership values to each class which 
predict the proportion of the pixel that each class represents. Examples 
include the linear mixture model (Adams, et al., 1985), fuzzy c-means 
(Bezdek et al., 1984), feed-forward, back-propagation neural networks 
(Atkinson et al., 1997) and support vector machines (Brown et al., 1999). 
Soft classification represents greater information in the land cover prediction 
at no extra cost: hard classification simply omits the land cover proportion 
information, presenting only the most likely class. Indeed, the only drawback 
of soft classification appears to be the difficulty in displaying more than 
three or four class proportions simultaneously in the same map. 

While soft classification is preferable to hard classification, almost 
ubiquitously, because class proportions are predicted per pixel, no attempt is 
made to predict where, within each pixel, the land cover actually exists. 
Thus, if a soft classifier has predicted that a pixel contains 50% woodland, 
30% grassland and 20% built-land, the user (e.g., decision-maker) does not 
know where the woodland, grassland and heathland patches are located 
within the pixel. The new technique demonstrated in this paper is designed 
to post-process a soft classified remotely sensed image to classify (in a hard 
sense) land cover at the sub-pixel scale. This objective is referred to as 
super-resolution classification. 
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Several researchers have attempted super-resolution mapping based on 
remotely sensed imagery of radiance or reflectance (e.g., Flack et al., 1994; 
Foody, 1998, Steinwendner et al., 1998; Schneider, 1999). Atkinson (1997) 
suggested super-resolution mapping based solely on the output from a soft 
classification. The idea proposed was to convert soft land cover proportions 
to hard (per-sub-pixel) land cover classes (that is, at a finer spatial 
resolution). The most intuitive (most visually appealing) solution was 
attained by maximizing the spatial statistical correlation between 
neighbouring sub-pixels. The basic idea was to maximize the spatial 
correlation between neighbouring sub-pixels under the constraint that the 
original pixel proportions were maintained (Atkinson, 1997). This basic idea 
was extended by Verhoeye et al. (2000). A fundamental limitation of the 
approach was that the relation between pixels and sub-pixels was modelled, 
thereby mixing scales of measurement (Atkinson and Tate, 2000).  

A solution to the super-resolution problem may be achieved by 
comparing sub-pixels to sub-pixels meaning that a non-linear model should 
be used to achieve solution. A pixel swapping algorithm in which the goal is 
to maximize the spatial correlation between neighbours was demonstrated 
recently for simple simulated images (Atkinson, 2001). This algorithm 
works for both the binary (e.g., target detection) and categorical (e.g., land 
cover) cases.  

Recently, Tatem et al. (2001a) developed a Hopfield neural network 
(HNN) technique (Hopfield and Tank, 1985) for super-resolution target 
mapping. The HNN was used essentially as an optimization tool. To solve 
the super-resolution mapping problem, with the pixel-level class proportions 
as initial conditions, the HNN architecture was arranged as a super-
resolution grid of sub-pixels. The HNN was then set up to minimize an 
energy function that comprises a goal and constraints: 

bCkGkE 21                      (1) 

where G is the goal (to increase the spatial correlation between 
neighbouring sub-pixels), C is the constraint (that original class proportions 
per-pixel are maintained), b is a bias term and  and   are weights. The HNN 
was applied initially to detect targets (two-class problem) (Tatem et al., 
2001a), but eventually extended to super-resolution land cover mapping 
(multiple class problem) (Tatem et al., 2001b).  

Tatem et al. (2002) developed an extension of the HNN super-resolution 
mapping technique in which the spatial clustering goal was replaced by a K-
class variogram-matching goal. This new goal allowed replication of spatial 
pattern, which was particularly useful for objects that were smaller than a 
pixel. In this paper, a geostatistical optimization algorithm is described 



18 P.M. Atkinson

which is capable of producing super-resolution maps from soft classified 
input images. It represents an alternative to the HNN variogram-matching 
algorithm.  

2. THEORY 

The spatial optimization algorithm used here is based on the two-point 
histogram as defined and used in the program ANNEAL.for, which is part of 
the GSLIB library of Fortran routines (Deutsch and Journel, 1998). The 
present optimization algorithm was coded in S-PLUS. The two-point 
histogram and its use in optimization are presented, followed by a 
description of its use in super-resolution classification. 

2.1 Two-Point Histogram 

This section, which describes the two-point histogram, is adapted from 
Deutsch and Journel (1998). Given a random variable Z that can take one of 
k=1, ..., K outcomes (i.e., a categorical variable) the two-point histogram for 
a particular lag (distance and direction of separation) h is the set of all 
bivariate transition probabilities: 
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h                       (2) 

independent of u, for all k, k' = 1, ..., K. The objective function 
corresponding to the two-point histogram control statistic is as follows: 
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where htraining
kkp ,

 are the target transition probabilities, for example, 

calculated from a training image and hnrealizatio
kkp ,

 are the corresponding 

transition probabilities of the realization image (i.e., the current image being 
altered).

2.2 Optimization Algorithm 

While equation 2 lies at the heart of the optimization algorithm, it is 
insufficient alone for super-resolution mapping. First, a scheme must be 
devised for altering the sub-pixel values. This can either be via a change to 
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the attribute (as for HNN, ANNEAL.for) or via a swap in sub-pixel location 
(as here). In either case, it is important that the optimization goal (Equation 
2) is constrained so that the original pixel proportions are maintained as 
closely as possible. Where the attribute values are changed this constraint 
should be added to the goal to form a single energy function. In this way, the 
original pixel proportions will be maintained approximately in the solution. 
Where sub-pixels are swapped, the constraint can either be added to the goal, 
or the sub-pixels to be swapped can be constrained to the same pixel. The 
latter strategy, which results in the pixel proportions being maintained 
perfectly in the solution, is adapted here. 

2.3 Initialization 

The decision to swap sub-pixels within pixels means that the attribute 
values in the initial image must correspond to those desired in the solution. 
In the present case, this means that the pixels of the initial image must 
contain hard classified sub-pixels, with the number of sub-pixels per class 
determined in proportion to the class proportions. Thus, in a pixel of 10 by 
10 sub-pixels (for which proportions are predicted as woodland (50%), 
grassland (30%) and built-land (20%)) there will be 50 sub-pixels of 
woodland, 30 of grassland and 20 of built-land. The image to be presented to 
the optimization algorithm is initialized by distributing spatially the required 
number of sub-pixels randomly within each pixel. 

2.4 Summary of algorithm 

The full algorithm is summarized below. 
1. Create current image at sub-pixel scale by randomly distributing land 

cover proportions 
2. Calculate two-point histogram for training image 
3. Calculate two-point histogram for current image 
4. For each iteration  
5. For every pixel 
6. For every sub-pixel (visited in random order within the current pixel) 
7. Compare to another sub-pixel (drawn randomly from the same pixel) 
8. If swap results in smaller objective function, retain swap and update  

two-point histogram. 
Two checks were added to the algorithm to increase its efficiency. First, 

it was found that many pixels contained only one land cover class. Such 
pixels were ignored. It should be noted however, that sub-pixels within such 
pixels may be used in comparison with sub-pixels within adjacent pixels 
because the two-point histogram was computed for eight directions (at 45o to 



20 P.M. Atkinson

each other) and at various lags. Second, sub-pixels were compared only if 
their classes were different. While not fast, the current implementation in S-
PLUS was sufficient to demonstrate the utility of the optimization algorithm 
on simulated images. It is anticipated that the algorithm will be written in C 
or C++ in the future for operational use. 

3. SIMULATED DATA 

3.1 Circles 

To provide a simple test of the optimization algorithm two circles of 
different class were simulated on a background in an image of 35 by 35 sub-
pixels (Figure 1a). The spatial resolution of the image was then coarsened by 
a factor of 7, to provide an image of 5 by 5 pixels. The proportions of each 
of the three classes in each pixel of the image are shown in Figure 1b-d. 
These three images are taken to represent the output of a soft classifier. That 
is, Figure 1b-d represents the final result of applying a soft classifier to a 
remotely sensed image (i.e., the current state-of-the-art solution). It also 
represents the sole data input to the geostatistical optimization algorithm. 

3.2 Simulated remotely sensed image 

A simple Boolean simulation was used to provide a more realistic image 
with which to test the optimization algorithm. First, nw=7 rectangles of 
varying height and width r ~ U (minr, maxr) were drawn at locations l ~ U 
(minl, maxl) where minr = 2, maxr = 14, minl = 0 and maxl = 

spp nn .3
2  = 46.7 

sub-pixels, where np is the number of pixels along the image edge and nsp is 
the number of sub-pixels along a pixel edge. These nw rectangles, which 
superimposed themselves naturally, were meant to simulate an area of 
woodland (Figure 2a). Second, nb = 20 rectangles of varying height and 
width r (minr = 2 and maxr = 3) were drawn at locations l with minl = 

spp nn .3
1  and maxl = 

spp nn . . These rectangles, some of which were 

superimposed, were meant to simulate built-land (i.e., buildings). Because 
buildings were simulated after woodland, the buildings appear to nestle 
inside the woodland, as desired. 

The third class, the background, is meant to represent grassland. The 
effect of overlapping the positions of draws of woodland and build-land 
objects is to create several pixels in the centre of the image that contain all 
three classes. 
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Figure 1. (a) Target image (35 by 35 sub-pixels) defined at the sub-pixel scale and (b-d) 
class proportions (5 by 5 pixels) defined at the pixel scale for classes (b) background, (c) left 

circle and (d) right circle. Note that images b-d provide the only input to the optimization 
algorithm.

Figure 2. (a) Target image (70 by 70 sub-pixels) defined at the sub-pixel scale and (b-d) 
land cover class proportions (10 by 10 pixels) defined at the pixel scale for simulated classes 

(b) grassland, (c) woodland and (d) built-land. Note that images b-d provide the only data 
input to the optimization algorithm. 

The spatial resolution of the image (Figure 2a) was coarsened by a factor 
of 7 to create an image of 10 by 10 pixels representing proportional land 
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cover (Figure 2b-d). Figure 2b-d is taken to represent the output from a soft 
classifier applied to a remotely sensed image. Again, it represents the state-
of-the-art solution, and the only data input to the geostatistical optimization 
algorithm. 

4. RESULTS 

4.1 Initialization 

To provide an input to the optimization algorithm, the pixel proportions 
represented in Figures 1b-d and 2b-d were allocated to locations selected 
randomly, as described in section 2.3. The resulting images are shown in 
Figure 3. It is interesting to note that this sub-pixel allocation presents a 
useful method of visualizing a soft classification, particularly where the 
number of classes K > 3. However, that benefit is coincidental to the present 
goal. 

     (a)               (b)  

Figure 3. Initial images for (a) circles (35 by 35 sub-pixels) and (b) land cover (70 by 70 
sub-pixels). For each pixel,  the (soft) class proportion for each class defined at the pixel scale 
(Figure 1b-d) is allocated (hard classification) to sub-pixels whose spatial location is defined 

randomly. The number of sub-pixels for each class is determined by the pixel scale class 
proportion. This image is the input to the optimization algorithm.

4.2 Training 

In the practical or operational situation, training (i.e., definition of the 
target two-point histogram for use in Equation 2) would be provided by a 
training image with the desired super-resolution. A practical example might 
be super-resolution classification of Landsat Thematic Mapper (TM) 
imagery (spatial resolution of 30 m by 30 m) via training with a classified 
IKONOS image (spatial resolution of 4 m by 4 m). This strategy is sensible 
because Landsat TM images cover a much larger area than IKONOS images. 
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Many other sensor combinations can be used to illustrate the utility of this 
approach. 

In the absence of training data, and to test the utility of the algorithm in 
the ideal case, the training two-point histogram was obtained from the target 
image. This choice is justified because (i) the two-point histogram is 
calculated at a limited number of lags only ( spnmaxh ) such that it contains 

only partial information on the original image and (ii) while in the practical 
situation the accuracy of the predicted super-resolution classification will 
depend on the extent to which the training image represents the spatial 
character of the true target, that is not the present interest. 

4.3 Optimization 

The first six iterations of the optimization algorithm are shown in Figure 
4 (circles) and Figure 5 (remotely sensed classification). The super-
resolution classifications achieved after 100 iterations are shown in Figure 
6a (circles) and Figure 6b (remotely sensed classification). Additional 
iteration may have decreased the energy function (Equation 2) further, but 
the results are sufficient to illustrate the utility of the technique. 

Figure 4. The first six iterations of the optimization algorithm. Each iteration involves, 
for every pixel, a comparison of every sub-pixel (chosen in a random sequence) with another 

sub-pixel chosen randomly from the same pixel.
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Figure 4. The first six iterations of the optimization algorithm. Each iteration involves, 
for every pixel, a comparison of every sub-pixel (chosen in a random sequence) with another 

sub-pixel chosen randomly from the same pixel.

The algorithm appears to have reproduced the circles almost perfectly, 
and the land cover target reasonably closely in spatial character (built-land).  

Figure 5. The first six iterations of the optimization algorithm. Each iteration involves, 
for every pixel, a comparison of every sub-pixel (chosen in a random sequence) with another 

sub-pixel chosen randomly from the same pixel. 
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4.4 Assessment 

The circles represent Woodcock and Strahler’s (1987) H-resolution case 
in which the spatial resolution is fine relative to the size of objects in the 
scene (in this case the circle diameter). In the H-resolution case, the target 
(Figure 1a) can be reproduced with a spatial clustering algorithm in which 
the objective is to maximise the spatial correlation between neighbours (c.f., 
Atkinson, 2001). The advantage of the present technique is its ability to 
match any prior target spatial distribution. The potential of this is not 
realized fully for the circles, although the example does illustrate the 
generality of the technique. 

      (a)             (b) 

Figure 6. Super-resolution images of (a) circles (35 by 35 sub-pixels) and (b) land cover 
(70 by 70 sub-pixels) after 100 iterations. 

While the woodland (and grassland) areas in the simulated remotely 
sensed scene represent the H-resolution case, this is to a lesser extent than 
for the circles because of the greater curvature of the feature (object) 
boundaries. The parcels of built-land, however, represent the L-resolution 
case in which the spatial resolution is coarse relative to the size of objects in 
the scene. In the L-resolution case, a spatial clustering algorithm would fail 
to provide a realistic solution, joining together patches of a given class where 
possible. Not only does the optimization algorithm recreate the spatial 
character of the target, but it also allows a realistic solution for both the H-
resolution (woodland, grassland) and L-resolution (built-land) cases 
simultaneously. 

The buildings in the solution do not match the buildings in the target on a 
sub-pixel-by-sub-pixel basis. Neither are they expected to. Insufficient data 
and constraints are provided to achieve such spatial definition. However, the 
spatial character of the target is recreated reasonably well. Such a map would 
find utility in many circumstances, but particularly as input to spatially 
distributed process models (e.g., as boundary conditions for flood inundation 
models where water flows around buildings etc.).  
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5. DISCUSSION 

While the algorithm presented represents a useful basic tool for super-
resolution classification, several possible refinements have been identified 
and these are described in this section. 

5.1 Simulated annealing 

Convergence appears to be fast (the main features are identifiable within 
the first eight iterations). However, it should be remembered that nsp by nsp

comparisons are made per pixel at each iteration (where nsp is, in this case, 
7). The rapid rate of convergence may be a cause for concern in that it is 
possible for the solution to become trapped in local minima. If that is a 
supportable concern then the algorithm can be modified readily to include 
full spatial simulated annealing with an annealing schedule designed to 
avoid local minima (e.g., van Groenigen, 1999). A further possibility is to 
run the algorithm several times with different initializations and compare the 
solutions. However, for the present application, where the solution is 
constrained by the original pixel proportions, the risk of local minima is 
believed to be small. 

5.2 Non-stationarity and regularization 

It is clear from the target image that the local spatial character of 
variation differs from place-to-place. It might be useful then if the target 
two-point histogram also varied from place-to-place. The problem, of 
course, is that in the practical situation the small training image available at 
the target spatial resolution will not relate to any particular spatial location in 
the image being optimized. Some location-specific information is provided, 
however, by the initial image output from the soft classifier (i.e., Figure 1b-d 
and 2b-d). In particular, the local two-point histogram may be computed at 
the pixel-scale. The problem is that this information is provided at the pixel 
scale, whereas information is required at the sub-pixel scale. A solution to 
this problem may be possible via regularization of the modelled sub-pixel 
two-point histogram, thereby providing a link between the two scales of 
measurement (Journel and Huijbregts, 1978; Jupp et al., 1988). This will be 
the subject of future research. 

5.3 Error and the point-spread function 

Two issues which have been deliberately overlooked are error and the 
point-spread function (PSF). In the simulated soft classifications (Figures 
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1b-d and 2b-d) zero error was assumed. That is, the (land cover) class 
proportions were assumed to be predicted perfectly. Research has shown that 
in practice the accuracy of soft classification is typically 80% (e.g., Atkinson 
et al., 1997). This error will have a detrimental effect on super-resolution 
mapping. In the presence of such error it would be sensible to allow the sub-
pixel values (i.e., the original class proportions) to change to an extent 
determined by the expectation of the error. Whether or not adequate 
convergence is possible in this essentially under-constrained scenario is 
unclear.  

The PSF provides a second practical problem that has been ignored in the 
analysis above. The PSF is usually shaped like a two-dimensional step 
function (termed a square wave response) convolved with a smoothing filter. 
It means that the remotely sensed response for a given pixel is, in part, a 
function of spatial variation in neighbouring pixels. This introduces 
ambiguity into the class proportions predicted by the soft classifier. It means 
that the pixels in the class proportion image (Figure 1b-d and 2b-d) should 
actually overlap (in fact, should have the same shape as the PSF). In 
practice, therefore, it may be desirable to allow some swapping of sub-pixels 
between neighbouring pixels, restricted to zones of PSF overlap, and in 
number determined by the amount of overlap. 

6. CONCLUSION 

A new geostatistical optimization technique has been demonstrated for 
super-resolution land cover prediction from remotely sensed imagery. While 
no quantitative assessment of accuracy was provided, the results are 
encouraging. In particular, the algorithm provides acceptable solutions in 
both the H-resolution and L-resolution cases, and when both are combined. 
The super-resolution map (L-resolution case) is likely to be useful as input to 
spatially distributed process models. The optimization technique will be 
applied in future research to real remotely sensed imagery. Further, the 
algorithm will be extended to incorporate the suggestions made in section 5, 
in particular, the use of a non-stationary model. 
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Abstract: Environmental processes are rarely stationary and isotropic. In order to 
produce maps of pollutant concentration over a region where few 
measurements are available, classical kriging performs badly. To have 
more accurate maps, it is necessary from one hand to take into account 
external information, such as emissions and meteorological data and from 
the other hand to release the stationary assumption, modelling the 
variogram when kriging. In this paper we propose a non parametric 
estimator of the variogram, we study its theoretical properties and its 
behaviour on a simulation case. We use this estimator and a chemistry-
transport model to produce maps of ozone concentration over Paris area 
and compare to maps obtained with classical kriging methods. 

1. INTRODUCTION

Beyond forecasting the level pollutant concentration for the next day, 
air monitoring agencies are in charge of estimating the level of pollutant 
concentration over an entire area, including locations where no 
measurement has been made. 

In that aim we have two methods in mind: 
– a statistical interpolation from observations made on the monitoring 

network,
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– a simulation by means of a chemistry-transport model on a grid. 

As the monitoring network is often too sparse and not well located, 
no interpolation method can render the complexity of the pollution 
phenomenon with only measurement data. Besides, deterministic 
physical models are very complicated and often have biases that can be 
very high. 

It is worth combining the two approaches: the chemistry-transport 
model is used to catch the phenomenon structure, while measurements 
on the monitoring network are used to adjust the outputs on the 
observations. 

In order to perform kriging, the variogram needs to be estimated. 
Usually assumptions of stationarity and isotropy are made, but it is 
widely recognized that real environment processes are rarely stationary 
and isotropic. In the case of pollutant concentration, the behaviour of two 
sites depends more on their typology (rural, urban) than on their 
distance.

The question is to know if it is better to bypass the assumptions of 
stationarity and isotropy and use parametric fitting of variograms which 
are robust and well-tried or if it is more suitable to use more 
sophisticated variograms, adjusting well the data instationarity but with 
the drawback of unstability. 

Several attempts to model nonstationary covariance or variogram 
functions have been made, see for example Sampson and Guttorp (1992), 
Hall and Patil (1994), or Fuentes (2001). 

Following Guillot, Monestiez and Senoussi (2000), we propose a non 
parametric, kernel based estimator of the variogram for nonstationary 
fields. Firstly we show that it is admissible, that is, it is conditionally 
negative definite and propose some practical improvements. Then this 
estimator is compared to classical parametric fitting of the variogram 
through a simulation study and on a dataset of ozone concentration over 
Paris area.

2. NON-PARAMETRIC ESTIMATOR OF THE 
VARIOGRAM 

Let us consider a second order, non stationary random field Z(s), 
defined on a domain D of IR2, with a covariance function C, and a 
semivariogram function  on D D.

Let S = {s1,…,sn} be a set of points of D and z(si,t), 1 i n, 1 t T
be a set of T i.i.d. observations of Z at sites i.

Let us denote by Cemp the empirical covariance matrix of Z, and emp

the empirical semivariogram of Z, namely, 
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Let K be a non-negative kernel defined on D D. We study the 
nonparametric estimator of C and  obtained by regularization of Cemp

and emp:
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where Kh(u,v) = K(u/h,v/h) for any positive real h. We suppose K is a 
separable kernel i.e. K(u,v) = k(u)k(v) for all  (u,v)  IR2. This 

assumption is sufficient to prove properties of 
^

hC and
^

h , but it is not 

clear that it is necessary. This estimator is quite the same as the one 
proposed by Hall and Patil (1994), in the stationary case. 

2.1 Positive definiteness of the covariance estimator 

Proposition 1
^

hC is positive definite. 

Proof. K is positive definite, i.e. for any (u1,…,um) in D and complex 

numbers ( 1,…, m), i,j i jKh(ui,uj)  0. For any integer m, complex 
valued vector ( 1,…, m) and points u1,…,um of D, we have 

, , , ,

,

( , )
( , )

( , )
h k i l j

hk l k l ij k l
k l i j k l i j h k i l j

ij ij
i j

K u s u s
C u u c

K u s u s

c

The empirical covariance matrix C is positive definite, therefore, by 
Fejer's theorem, it is enough to prove the positive definiteness of the 
matrix  = ( ij) to prove that i,j cij ij  0. Let ( 1,…, n) be a complex 
valued vector, 
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and  is positive definite. 

2.2 Conditional negative definiteness of the variogram 
estimator

It is straightforward to verify that the empirical variogram is 
conditionally negative definite, that is for any complex valued vector 
( 1,…, m) such that i i = 0, i,j i j i,j  0. The point is that we can 
write

2 2
,2 2i j i j ijc

where 2
i = 1

T
t(z(si,t) - z(si))

2 is the empirical variance of Z(si). So 

2 2
,

, ,

,

2

2

0

i j i j i i j j j i i j ij
i j i j j i i j

i j ij
i j

c

c

Proposition 2
^

h is conditionally negative definite.

Proof For any integer m, complex valued vector ( 1,…, m) such that  
i i = 0 and  points u1,…,um of D, we have 
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2.3 Practical design 

The covariance and variogram estimators will be used in kriging 
systems. In the case the process Z is not continuous, for example if there 
is a nugget effect or if there is a measurement error, (si,si) is not an 
estimation of Var(Z(si)) and 

^

(si,si) is not necessarily 0. Hence the 
diagonal of the matrix involved in the kriging system has to be replaced 
by the empirical variance when the covariance is used and by 0 when the 
variogram is used. In both cases, it remains to check that they are 
admissible covariance or variogram. 

Case of the covariance Let C h = ( c ij) be the matrix such that 

2

ˆ ifij ij

ii i

c c i j

c
Since c ii = k,l ck,l (kh(sk – si) / ( k kh(sk – si)) =  Var( k kZk), for 

suitable h we will have ii < ~

c ii Ch can be written 
~

C h = 
~

C h + ,

being a diagonal matrix with positive elements, hence 
~

C h stills being 
positive definite. 

Case of the variogram Let
^

h = (
~

ij) be the matrix such that 

if

0

ij ij

ii

i j

For any complex valued vector ( 1,…, n) such that i = 0 we have 
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i j i j i j

i j i j iij ii
i j i

s s s s

s s

since
^

h is conditionnally negative definite and ii is a weighted sum of 
positive terms. 

It has to be noticed that if the set S is sparse and if s0 is close to an 

isolated point si0, it may happen that 
^

h (s0,si) and h(s0,si) be very close 

to
^

h (si0,si) and h(si0,si). When ordinary kriging is performed, this leads 
to kriging weights equal to 0 if i i0 and 1 if i = i0. In such a case we 
have

^

Z (s0) = Z(si0) and a vanishing kriging variance. 
While it is well established that the choice of the kernel K is not a 

crucial point, the choice of the bandwith h is an important issue. Large h
lead to oversmooth the covariance or the variogram and in the kriging 
setting measurements at monitoring sites will be considered as almost 
independant. Small h lead to the empirical covariance or variogram at 
monitoring sites, but estimation at non-monitoring sites will lack 
robustness and kriging results can be quite inappropriate. In the 
framework of kriging the choice of parameter h will generally be driven 
by the minimization of a cross validation criteria. 

3. SIMULATION EXAMPLE 

In order to check whether non parametric estimation leads to an 
improvement in kriging nonstationary fields, we simulate a Gaussian 
random function Z on a domain D = [0;10]  [0;10], deforming the 
space:

cov ( ), ( ) exp( ( ) ( ) )Z s Z t s t

with (s) = (x,y) = ((1 / 2 . 5 s-O ) (x-5.05), (1 / 2 . 5 s-O ) (y-
5.05)). O is the point (5.05,5.05). Points of the domain which are located 
near the center are slightly correlated with their neighbours, points which 
are far from the center are highly correlated with their neighbours and 
this process is strongly nonstationary. We consider 100 realizations of Z
at 51  51 sites on a regular grid of D. The simulations are carried using 
a turning bands algorithm, written by Lantuéjoul, 2001. 100 points are 
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randomly sampled as observed points and we perform kriging on a grid 
of points with entire coordinates (these points cannot be sampled as 
observed points). Figure 1 shows a realization of field Z together with 
the sampled points. 

0 1 2 3 4 5 6 7 8 9 10
0

1
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3

4

5

6

7

8

9

10

Simulation case

3 2 1 0 1 2 3

Figure 1. Realization of field Z and sampled points. Points in the center are slightly 
correlated, points near the boundary are highly correlated. 

Kriging is performed in two ways: with a parametric isotropic 
estimator of the variogram, and with a nonparametric estimator of the 
variogram according to section 2. To evaluate the goodness of fit we 
calculate the criteria: 

100 121
2 2

1 1

1 1
( ) ( ) ( ( , ) ( , ))

100 121 i i
t i

C c t c t z s t z s t

in both cases. 

Fitting the variogram with an exponential model gives a range a =
4.0897, a sill c = 1.0156 and the value of the criteria is 0.4116. 

The nonparametric estimator of the variogram is built from the 
empirical variogram with Gaussian kernel and bandwith h = 0.5. The 
value of the criteria is 0.4326. 
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Figure 2. Kriging with parametric estimator, 
c(1) = 0.3630. 

Figure 3. Kriging with nonparametric 
estimator, c(1) = 0.3859. 

Figures 2 and 3 show the kriging map in both cases for t = 1. 
With the true variogram (that is the one used to simulate the data) the 

criteria would be 0.3990. These results are quite surprising: if we seek 
the matrices 0 and the right hand side of the kriging linear system to be 
solved, those given by the nonparametric estimator are closer to the true 
ones than those given by the parametric isotropic estimator. Indeed 
noting 0, 0

p and 0
np the true matrix and the matrices given by the 

parametric and the nonparametric estimator, and 0, 0
p and 0

np the right 
hand sides we have 

0 0 0 0

0 0 0 0

18.85 5.1275

22.69 5.8548

0.5463 0.9974

p np

p np

p np

where , p, and np are the weighting coefficients given by solving the 
kriging system in each case. That is, the kriging weights are closer to the 
“best” ones solving the system with the parametric estimator than the 
ones obtained, solving the system with the nonparametric estimator. This 
is probably due to the fact that the matrix to be inversed is better 
conditioned in the parametric case. This is illustrated by Figure 4 that 
shows the value of 0(s0,si)i=1,100 for s0=(5,6) a point in the center of the 
domain, together with 0

p(s0,si)i=1,100 and 0
np(s0,si)i=1,100 and (s0,si)i=1,100.

0
p(s0,si)i=1,100 and 0

np(s0,si)i=1,100. Figure 5 is for s0=(8,8) a point near the 
boundary. 

but
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Figure 4. Right-hand side 0 and solution 0 of the kriging system, for point s=(5,6). In 
solid line the true one, in dashed line the nonparametric estimator and dotted line the 

parametric estimator. 
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Figure 5. Right-hand side 0 and solution 0 of the kriging system, for point s=(8,8). In 
solid line the true one, in dashed line the nonparametric estimator and dotted line the 

parametric estimator. 

4. AIR POLLUTION DATA 

We now deal with a dataset of ozone concentration measured each day 
at 15h at 21 monitoring stations in the Paris area during summer 99. The 
aim is to estimate the pollutant concentration over an area of 150 km by 
150 km. There are 6 rural stations located a few tens of kilometers away 
from the city center, 3 suburban stations and 12 urban stations. 

The monitoring network is obviously too sparse to render the 
complexity of the phenomenon, just kriging the observations. Figure 6 
shows the kriging map obtained for 17 July, a highly polluted day. All 
the North West area shows very high concentrations due to the influence 
of the stations located in this zone. Physically this map doesn't make 
sense. We have at our disposal outputs of a deterministic chemistry-
transport model with resolution of 6km  6km (Blond et al., 2002). 
Figure 7 shows the map performed by this model together with 
observations at monitoring stations for 17 July. 



                           L. Bel 38

The shape is totally different than the one obtained when kriging the 
observations, and it is physically satisfactory, but at monitoring stations 
predicted values are quite different from observed values. Kriging 
differences between the values of the deterministic chemistry-transport 
model at monitoring stations and their observed values give an estimate 
of the difference between the real concentration and the model output for 
every point of the grid. The results are added to the model output to give 
an estimate of the concentration field over the area. This is shown in 
Figure 8 for 17 July, ordinary kriging is performed with an exponential 
model for the variogram. 

It is widely recognized that real environment processes are rarely 
stationary and isotropic. In our case, we guess that most of the 
nonstationarity has been taken off taking into account the deterministic 
chemistry-transport model, but rural and urban stations still have very 
distinct behaviour with respect to the model. Working on the differences 
we compare the nonstationary, nonparametric method with the 
parametric stationary method. The empirical variogram is computed over 
the entire period (actually only on 53 days instead of 123 because of 
missing data), a classical exponential variogram for the entire period is 
fitted and a nonparametric nonstationary variogram is estimated 
according to section 2. Figure 9 shows the result of cross validation for 
each station for both methods. The nonparametric method is slightly 
more accurate than the parametric one, still it is not true for every 
station.

Figure 6. Map of ozone concentration over 
Paris (center of the map) area, kriging 

observed values. 

Figure 7. Map of ozone concentration 
over Paris area, given by the Chemistry-

Transport-Model.
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Figure 8. Map of ozone concentration over 
Paris  (center   of   the   map)  area,  kriging 

the   differences   between  observed  
values and model outputs. 

Figure 9. Values of the Root Mean Square 
Errors obtained by cross validation for each 
station with the parametric estimator (open 

bars) and the nonparametric estimator 
(filled bars). 

5. CONCLUSION

The nonparametric variogram estimator gives better estimates of the 
variogram than the parametric one when the process is strongly 
nonstationary. However the simulation study shows that even in this case 
it is too instable to improve the kriging algorithm. Applied to a real 
dataset, cross validation show a little improvement with the 
nonparametric estimator, but observations are too rare to make the cross 
validation criteria really relevant. 

In order to improve the skill of this estimator, some modifications can 
be tried: truncating to 0 the variogram function for high distances like 
Patil's and Hall's method, or using stable inverse matrice solving the 
kriging system to avoid instability effects. 
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Abstract: Land surface cover classification is assessed using Direct Sequential 
Co-Simulation, combining field observations with classified remote sensing 
data. Local co-regionalisation models are applied to account for local 
differences in both, field data availability and distribution, and the correlation 
between these hard data and the classified satellite images as soft data. The 
suggested methodology is based on two criteria: influence of the field 
observations dependent on field data availability and proportional to field data 
proximity; and, influence of the soft data dependent on their local correlation 
to the hard data. The method is applied to a study of four economically 
important forest tree species on the Setúbal peninsula. Local correlations 
between field observations (hard data) and satellite image classification results 
(soft data) are computed and interpolated for the whole study area. Direct 
Sequential Co-Simulation is performed conditioned to the local correlation 
estimates, yielding estimates and uncertainties for forest cover proportions. 
Cover-probabilities are combined into one forest cover classification map, 
constrained to reproducing the global proportions for the different classes. 
Direct Sequential Co-Simulation results show more contiguous forest covers – 
i.e. more spatial contiguity – than the classified satellite image. In comparison 
to the field data used for calibration during satellite image classification, the 
proposed simulation method improved forest cover estimations for species 
with good local correlation between hard and soft data and worsened those for 
species with poor local correlations.  
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1. INTRODUCTION 

To evaluate forest resources over large areas, remote sensing data are a 
low-cost and abundant source of information. Satellite images can be 
classified into cover classes, with map units (grid cells) assigned to the most 
likely coverage class.  

Satellite images, though abundant, are evidently soft data, given the 
uncertainties in attaining and inferring information from satellite images. 
Comparison with forest coverage records collected in the field – i.e. reliable 
hard data – will reveal wrongly classified classes or geographic areas. 
Classical satellite image analysis is done on a pixel-by-pixel basis yielding 
an often too scattered image of land cover, as spatial continuity between 
neighbouring pixels is generally disregarded.  

Field observations, on the other hand, are costly and therefore scarce, 
most of the times too scarce to adequately estimate resources for large areas.  

Combination of abundant soft with scarce hard data in a geostatistical 
framework is, therefore, common practice to increase the accuracy of forest 
resource estimates based on satellite images (Fouquet and Mandallaz 1993, 
Nunes et al. 2000). Using a co-regionalisation model, relating field to 
satellite-image data allows for the combination of the scarce primary and the 
abundant secondary variables (Soares et al. 1997). A regional 
co-regionalisation model, e.g. based on the correlation between the two 
variables for the entire region (Goovaerts 2000) has its drawbacks, as the 
same spatial model – i.e. identical cross-variograms and cross-variances – 
may not be valid for the whole region. To overcome that problem, recent 
studies propose co-located co-kriging with local co-regionalisation models 
(Pereira et al. 2000). 

Estimations based on a limited number of field observations often fail to 
reproduce the spatial variability of the studied variable, frequently producing 
estimation artefacts (like bull eyes surrounding sample locations), especially 
in the presence of a variable with a large-range variogram. 

Given the nature of our data – forest species covers on distinct, bounded 
areas – kriging estimates would result in unrealistic, smooth surfaces. 
Simulation is here likely to perform more accurately.  

The proposed methodology constitutes a geostatistical satellite image 
calibration based on the stochastic Direct Sequential Co-Simulation 
(DSCoS) procedure, as proposed by Soares (2001) and on local 
co-regionalisation models. This is an alternative approach to spatial forest 
species characterisation from satellite imagery and field data. It is based on 
two simultaneously applied criteria: the influence of the field observations is 
dependent on field-data availability and proportional to field-data proximity 
(i.e. the influence of field observations on species cover estimates is greatest 
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at field sample locations, decreasing with increasing distance to these 
locations); and, the influence of the soft data is dependent on their local 
correlation to the hard data (i.e. it is higher in regions of high correlation 
than in regions of low correlation).  

The procedure builds on a classical supervised satellite image 
classification into forest species and other covers. This constitutes a first 
forest cover image that will function as secondary variable for a 
geostatistical calibration process based on forest-cover field observations. 
Geostatistical simulation will reproduce a spatial pattern similar to that of the 
classified satellite image, but following the statistics of the ‘reliable’ field 
data. Its results hence constitute a form of calibration of the original satellite 
image classification.  

In the present study, the probability of land surface cover with four forest 
tree species – Eucalypt, Umbrella Pine, Maritime Pine and Cork oak – is 
assessed through Direct Sequential Co-Simulation using local 
co-regionalisation models to account for local differences in both, 
field-observations’ (i.e. hard data) availability and distribution, and the 
correlation between field data and probabilities of species cover obtained 
from a supervised Landsat7 satellite image classification as secondary 
variable or soft data. The study is part of a LIFE-Environment project 
supported by the European Community. 

2. HARD AND SOFT DATA 

The study area is the Setúbal peninsula, south of Lisbon, Portugal, 
covering about 154000 ha of forested and bare mountainous grounds and 
urban areas. The hard data consist of 70 field observations (Figure 1) of 
forest species cover with records of Eucalypt (Eucalyptus globulus),
Umbrella Pine (Pinus pinea), Maritime Pine (Pinus pinaster), Cork oak 
(Quercus suber), among others, collected from 2000 to 2002. The soft data
are posterior probabilities for the same cover classes and of the sum of all 
other cover classes obtained from an assisted Landsat7 satellite image 
maximum-likelihood classification (on a 30 30m grid), calibrated on a set of 
214 training areas (collected in 1995), with post-classification smoothing of 
noise using a 3 3 grid-cell low-pass majority filter (Figures 1). Comparison 
of the satellite image classification with a set of 214 training areas (areas 
covered by a single type of coverage) of variable size, revealed better 
agreement for Eucalypt and Cork oak (87% and 92% of correctly classified 
grid cells, respectively), than for Umbrella and Maritime pine (52% and 
55%, respectively). For the latter two species, misclassification consisted 
mainly of Umbrella pine field observations classified as Maritime pine cover 
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(30%) and of Maritime pine field observations classified as Eucalypt (20%) 
or Umbrella pine cover (10%). Classified map and training areas extend 
beyond the study area; the 156 training areas within the study area (Table 1) 
were selected to validate the forest cover classification calibration obtained 
through Direct Sequential Co-Simulation. 

The posterior probabilities obtained from the classified satellite image for 
each of the original 21 cover classes were scaled to unit sum and all but the 
four forest species classes were aggregated into one class, hereafter 
denominated “other”. Posterior probabilities were upscaled and averaged to 
the 90 90 m grid used throughout this study. 

Satellite image forest cover classification, with each grid cell assigned to 
the most likely coverage class, is summarized in Table 1. This classification, 
yet upscaled to a 90 90 m grid resolution, will be used for comparison with 
the classification results obtained using direct sequential co-simulation 
(Figure 5). During upscaling each new grid cell was assigned to the most 
frequent class of the nine underlying 30 30 m grid cells. Apart from 
unavoidable errors in the presence of equally frequent competing classes, 
this led to a penalization of the less frequent and more scattered cover 
classes. Therefore, Eucalypt, Umbrella Pine, Maritime Pine and Cork oak 
had their cover percentages reduced to 6.2, 2.4, 5.7 and 16.1, respectively, 
while the “other” cover percentage raised to 69.7. 

Table 1. Land cover of the study area according to the classified satellite image and number 
and area of the respective training data. 

Coverage  Training data areas 

Class Area (ha) Area (%)  Number  Area (ha) 
Eucalypt 10460 6.8 14 87 
Umbrella pine 4654 3.0 18 56
Maritime pine 10410 6.8 34 48
Cork oak 26741 17.4 11 64
Other 101570 66.0 79 162 
Sum 153835 100.0 156 418 

3. DIRECT SEQUENTIAL CO-SIMULATION 

The simulation of the histogram for the field data measurements was 
hampered by a problem: their shape. These histograms are bi-modal with a 
high spike (comprising > 70% of values) at the origin (see Figure 3). The use 
of Sequential Indicator Simulation (SIS), however, requires the estimation of 
indicator variograms, unfeasible for such uneven classes. Hence we applied 
Direct Sequential Simulation not on the original data but on their cumulative 
probability – a more continuous and uniformly distributed variable. 
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Figure 1. Proportion of land covered forest species and by any other coverage obtained 
through classification of satellite images (left column) and observed in the field (right 

column) 
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Direct Sequential Simulation (DSS) and Co-Simulation (DSCoS) were 
first proposed by Soares (2001), based on previous work of Journel (1994) 
and Caers (1999). DSS allows for the simulation of untransformed 
continuous variables, using local simple kriging estimates of the variable’s 
mean and variance to sample from the global cumulative distribution 
function. Analogously, DSCoS allows joint simulation of several variables 
without previous transformation. In this study, DSCoS is applied to the field 
observations (as hard data) and satellite classification of forest cover (as soft 
data), based on a co-regionalisation model that reproduces local correlation 
between these two variables.  

Prior to the co-simulation procedure, hard and soft data were 
transformed to a uniform distribution U(0,1) with mean = 0.5. Ten 
simulations were computed for each of the forest species and for the sum of 
other land covers. The statistics of each simulation result were compared to 
those of the hard data. Subsequently, all simulations were averaged and 
back-transformed to the original scale. Simulation variance was computed as 
a measure of uncertainty. An example is given for Cork oak (Figure 3). All 
simulations had approximately uniform distributions with statistics similar to 
those of the transformed data. Inherent to the procedure, simulations respect 
the hard data at their locations. After back-transformation, each simulation 
reproduces approximately the histogram and variogram of the original hard 
data, while the simulation average has statistics similar to those of the 
original soft data. Analogous results were obtained for all cover classes. 

4. LOCAL CORRELATIONS 

DSS is based on co-located simple co-kriging estimates, applying the 
knowledge of spatial covariances for the hard data and between soft and 
hard data. According to the Markov-Bayes approximation (Goovaerts 1997) 
one needs only to estimate the covariances of hard data and the correlation 
coefficients between soft and hard data which is the correlogram between 
soft and hard data at distance h = 0. 

As field observations are scarce, co-regionalisation models are based on 
the indirect measure of local correlation between the scarce but reliable field 
observations (as primary variable or hard data) and the classified satellite 
image (secondary variable or soft data) available for the whole study area. 

Global Pearson correlation coefficients between hard and soft data (i.e.
scaled posterior probabilities from the classified image for the nine 30 30 m 
grid cells centred at hard data locations) are: 0.60 for Eucalypt, 0.50 for 
Umbrella pine, 0.57 for Maritime pine, 0.74 for Cork oak and 0.55 for other 
cover classes. Because, correlation is not homogeneous for the whole study 
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area (Figure 2) and hard data are few and not regularly distributed, local 
correlations were estimated to account for local differences in both, hard 
data availability and hard-soft data correlation.  

For each of the 70 hard data points, local correlations between hard data
within a given radius and the corresponding soft data were computed. 
Several neighbourhood radii were tested; a radius of 15000 m was 
considered most appropriate considering both the number of neighbourhood 
samples involved and spatial correlation variability in the data. The local 
correlations were subsequently interpolated through ordinary kriging for the 
whole study area, on a 90 90m grid. This way, correlation surfaces were 
obtained for each of the forest species and for the sum of the remaining 
coverage classes (Figure 2). Local correlations range from 0 to 0.95, 0.98, 
0.91, 0.96 and 0.83, and average 0.56, 0.65, 0.28, 0.78 and 0.61, for 
Eucalypt, Umbrella Pine, Maritime Pine, Cork oak and others, respectively. 
More than half of the local correlation map for Maritime pine displays low 
correlations due to the lack of hard data in Maritime pine-covered areas in 
the east of the study area. 

Figure 2. Correlation surfaces for each of the four studied forest species and other cover 
classes obtained by ordinary kriging of local correlations. 

5. COVERAGE PROPORTION ESTIMATES 

The coverage proportion estimates obtained through Direct Sequential 
Co-Simulation, and their simulation variance are presented in Figure 4. In 
comparison to the coverage probabilities derived from the satellite image 
(Figure 1, left column), which were used as soft data input, simulation 
results show smoother coverage proportion distributions. Forest species 
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distribution does not always match; e.g. Umbrella pine appears in the upper 
western corner of the study area in the simulation, but not in the satellite 
image classification.  

Figure 3. Example of DSCoS applied to Cork oak forest cover: a) statistics of the transformed 
soft data (with Cork oak coverage transformed to a uniform distribution on the x-axes); 

b) transformed soft data; c) variogram model for the transformed hard data (black curve) and 
experimental variogram for one of the simulations (thicker grey curve); d) average simulation 
result; e) statistics of the hard data and f) statistics of one back-transformed simulation (both 

with Cork oak cover percentage on the x-axes). 
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Spatial uncertainty measured by the variance of the simulated images, is 
closely related to the degree of local correlation. Comparison of the variance 
and local correlation surfaces (Figure 2) reveals coincidence between low 
correlation and high uncertainty zones, and vice versa. Furthermore, 
uncertainty appears to be less for areas with higher proportions of land 
covered by the respective class. 

6. FOREST COVER CLASSIFICATION 

The forest cover of the study area was classified, combining the 
simulation estimates in a single classification map. In order to aggregate the 
five resulting cover-probability maps (for the four forest species and other 
cover) into one grid map, each grid cell was assigned to the most likely 
cover class under the constraint of reproduction of global proportions for the 
different classes; i.e. the grid cells with the highest probabilities for a given 
class were assigned to that class until its global proportion was reached using 
a dynamical classification procedure (Soares 1992, Goovaerts 1997). The 
classes’ cover proportions for the study area given by the original classified 
satellite image were taken as indicative of the classes’ real global 
proportions.  

Analogous to the cover-proportion maps (Figure 4) the DSCoS 
classification yields a smoother image than the satellite image a priori
classification (for comparison, upscaled to the 90 90 m resolution used for 
simulation; Figure 5). Classifications differ most for the Umbrella pine (with 
only 21% overlap) and Maritime pine cover (26% overlap), with large areas 
originally classified as Maritime pine and “others”, respectively (Table 2). 
Notice that the distinction between Umbrella and Maritime pine cover was 
particularly difficult in the SI classification (cf. Table 3). Comparison of the 
original 30´30 m satellite image classification is slightly more divergent, as 
it is evidently less smooth. 

Table 2. Comparison of land cover percentages of study areas according to the classified 
satellite image and the DSCoS 

Satellite image classification 
Eucalypt U. pine M. pine Cork oak Other 

DSCoS Eucalypt 41.6 3.3 5.2 16.3 33.5 
Class U. pine 8.2 21.1 49.4 2.4 18.9 
 M. pine 2.8 6.3 26.1 4.6 60.2 
 Cork oak 4.4 0.4 0.8 62.7 31.7 
 Other 3.2 1.6 2.9 5.6 86.7 
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Figure 4. DSCoS coverage proportion estimates (left) and estimation variance (right) for the 
four forest species and other cover classes. 
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Figure 5. Forest cover classification obtained from the upscaled classified satellite image 
(left) and from the DSCoS (right). 

To facilitate visual comparison of these two classification results, a 
separate map of classification differences is presented for each of the 
coverage classes (Figure 6). Differences comprise patches of apparent cover 
underestimation of the satellite image classification for both pine species. 
Differences in Cork oak classification mainly occur in the vicinity of areas 
dominated by this species’ cover; they suggest the smoothing character of 
simulation in comparison to standard classification. The image of differences 
related to the sum of other classes appears to mirror the assemblage of the 
forest-species’ images. Classification differences are correlated to species 
cover proportions, as differences occur mainly in regions where the cover 
has a high proportion, but show no positive correlation with local variances.  

Figure 6. Difference between the DSCoS (DScl) and satellite image classification 
(SIcl); white: DScl = SIcl,: DScl yields pictured class and SIcl does not, black: SIcl 

yields pictured class and DScl does not. 
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Cross-validation was performed on the 156 training areas (used for the 
satellite image classification) within the study area that were not used as 
hard data for the geostatistical calibration procedure. Both satellite image 
classification and the applied co-simulation predict Eucalypt, Cork oak and 
other coverages well (>75% of correctly predicted grid cells). Overall SI 
classification classifies 80% of the training data area correctly, and DSCoS 
75%. This is not surprising as SI classification was calibrated on these 
training data. Furthermore, SI classification appears to perform better than 
DSCoS classification for Eucalypt, Maritime pine and the other cover 
classes, whereas DSCoS performs better on Umbrella pine and Cork oak 
(Table 3). There are differences in classes attributed to the miss-classified 
training data; DSCoS attributes more data unduly to the class of other covers 
(e.g. for the pine species) than satellite image classification. Overall, SI 
classification correctly predicts more. 

Table 3. Percentage of correctly (in bold) and miss-classified training data areas, for the 
satellite image (SI) and DSCoS classifications. 

7. DISCUSSION AND CONCLUSIONS 

This study proposes geostatistical satellite image calibration based on the 
stochastic Direct Sequential Co-Simulation (DSCoS) procedure and on local 
co-regionalisation models. This is an alternative approach to spatial forest 
species characterisation from satellite imagery and field data using 
co-located co-kriging (Pereira et al 2000). Given our data, consisting of 
frequently fragmented forested areas, co-located co-kriging would produce 
excessively continuous surfaces. The applied simulation technique provides 
a more close-to-reality image of forest cover. DSCoS enabled estimations of 
forest cover probabilities for the Setúbal peninsula as well as local 

Training data cover class 
Eucalypt  U. pine M. pine Cork oak Other 

SI Eucalypt 87.0 3.7 20.6 0.6 0.4 
Class U. pine 2.6 52.3 9.9 0.3 2.6 
 M. pine 7.2 30.3 55.9 1.1 1.7 
 Cork oak 1.8 0.8 8.8 92.2 6.0
 other 1.5 13.0 4.9 5.9 89.4
       
DSCoS Eucalypt 82.5 2.1 21.7 0.0 3.5 
class U. pine 8.7 59.5 5.8 0.0 0.6 
 M. pine 2.5 1.9 39.8 0.0 15.4 
 Cork oak 0.0 0.0 8.4 99.0 3.2
 other 6.2 36.5 24.3 1.0 77.2
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uncertainty assessment, based on a satellite image classification covering the 
whole area and on forest cover observations collected on the ground. 

In comparison to the satellite image classification, DSCoS yielded 
smoother distributions of forest species cover probabilities. Satellite image 
classification failed to reproduce the coverage observed at many of the 
training data used for its calibration and on many of field observations we 
used as hard data. The latter were inevitably perfectly reproduced by the 
simulations, which was conditioned to them.  

DSCoS and satellite image classification performed differently for the 
different cover classes in the cross-validation performed on part of training 
data, previously used for the satellite image classification. In comparison, 
DSCoS performed better than SI classification for Eucalypt and Cork oak 
and worse for Umbrella and Maritime Pine. Overall, both methods failed to 
classify numerous training data of both pine species correctly. On the other 
hand, most Eucalypt and Cork oak areas were correctly classified, probably 
because these two forest resources have more continuous distributions on the 
Setúbal peninsula, unlike Umbrella and Maritime Pine, which occur mainly 
scattered and intermingled. 

Limitations to this study were posed by the quality of the collected hard 
data, as sampling was not stratified over all classes and therefore not 
representative of the studied area. Furthermore, the aggregation of the 
original satellite image classification map to the lower study spatial 
resolution implies a loss of information, with penalization of less frequent 
and more scattered species. During upscaling each new grid cell was 
assigned to the most frequent class of the nine underlying 30 30 m grid 
cells, penalizing less frequent cover classes. This may partly explain the 
simulation methods failure to improve on Eucalypt and Maritime pine 
classification – species that frequently cover small areas. Upscaling of the 
posterior probabilities for these grid cells might have been a more correct 
alternative. 

Another constrained is that simulations are based on the satellite image 
classification as soft data, which is not always optimal. During the five years 
between the collection of the training data used for satellite image calibration 
and for the validation of SI and DSCoS classification will some land cover 
may have changed, accounting for part of the misclassified training areas.  

Future research should focus on improvements in the soft and hard data.
In this context, the local uncertainty assessment provided by the simulation 
approach will allow the identification and classification of areas that need to 
be re-sampled and monitored for a better planning of those forest resources. 
Validation should be performed on an independent data set. 
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USE OF FACTORIAL KRIGING TO 
INCORPORATE METEOROLOGICAL 
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H. Caetano1, M. J. Pereira1 and C. Guimarães2

1Environmental Group of the Centre for Modelling Petroleum Reservoirs, CMRP/IST,Av. 
Rovisco Pais, 1049-001 Lisbon, Portugal. 2 CVRM- Geossystems Center. Av. Rovisco Pais, 
1049-001 Lisbon, Portugal. 

Abstract: A monitoring campaign for several airborne pollutants was conducted in 
Portugal, covering the entire country. Static samples (diffusion tubes) of SO2,
NO2 and O3 were collected in a regular grid of 20�20 km. In this paper, we 
present a methodology, using factorial kriging and morphological kriging 
concepts, to incorporate local information about wind directions in the spatial 
estimation of air pollutant concentrations. Pollutant concentration Z(x0) at 
location x0 can be interpreted as a linear combination of independent 
components Zi(x0) driven by wind direction and velocity i. Local spatial 
components Zi(x0) are estimated through factorial kriging, based on 
variograms i(h) with local anisotropies determined by wind directions. Wind 
direction and velocities measured during the period of the sampling campaign 
were inferred for the entire country. Local estimates of main wind histogram 
classes were used to weight different spatial components of pollutant 
concentration Zi(x0). Maps of SO2, NO2 and O3, estimated under the 
influence of local wind characteristics, were obtained for entire country. 

1. INTRODUCTION 

Following the European directive of Air Quality (1999/30/CE) a 
monitoring campaign for several airborne pollutants – SO2, NO2 and O3 –
was conducted in Portugal, covering the entire country with a regular 
sampling grid of 20 20 km.  
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In a first phase, maps of ordinary kriging estimates of those elements 
were calculated, giving first spatial dispersion images for these pollutants. 
There are, however, some external factors – like, for example, topography, 
wind direction and speed – that are known to affect the spatial dispersion of 
the pollutants. Some geostatistical approaches have been incorporating the 
effects of the wind in the estimation or simulation of pollutant 
concentrations: Soares et al., 1993, transform the anisotropy ellipse, 
according to the wind direction of a given day, to estimate pollutant 
concentrations; Pereira et al., 1997 use a deterministic dispersion model 
(Gaussian plume) which is fed with the wind regime, among other 
parameters, to preview, in certain spots, the pollutant concentrations prior to 
simulation to the entire spatial domain;  Nunes et al., 1999, use the wind rose 
for a given period to deform the spatial reference before simulating SO2

concentrations. 
 In this paper, we present a methodology, using factorial kriging, to 

incorporate regional information about wind directions and speed in the 
spatial estimation of air pollutant concentrations. The estimation is 
performed for the entire country of Portugal. Given the regional scale of the 
sampling and of the resultant estimated maps, the influence of wind 
directions and speed are merely considered as main regional trends. Also, 
spatial locations of possible pollutant sources were not taken into account, 
mainly because most of them are unknown or diffuse. The proposed method 
was applied to produce maps of the mentioned airborne pollutants. 

2. METHODOLOGY 

Let us assume that the pollutant concentration at a given location, 
accumulated during a given short period of time, say one week, is an average 
concentration resulting from the influence of different wind regimes, in 
particular from wind direction and speed. 

Considering that pollutant concentration Z(x0) at location x0 can be 
interpreted as a linear combination of independent components Zi(x0) driven 
by Nd wind-direction classes i:  

0
1

0 xZxZ i
Nd

i
i i=1, Nd (1) 

Z(x) has a stationary global variogram (h) and covariance C(h) and, 
assuming that the global covariance can be decomposed into anisotropic 
structures corresponding to each main wind directions:   
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  the weights i correspond to the sills of each spatial component of 
covariance Ci(h) and reflect the effects of each class of  wind directions. 

2.1 Estimating spatial components 

At each location xu the spatial component Zi(x0)* – equivalent to the 
pollutant concentration driven by wind characteristics of direction class i – 
can be estimated by factorial kriging, using the covariance model Ci(h) or 
variogram i(h) (Goovaerts, 1997):  

xZxZ
N

i

1

*
0
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Ci(h) is the global covariance model corrected for the wind-direction 
characteristics at location  x0. The dual representation of [3] is:  

N

i
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1
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where  are the dual weights, calculated with the global covariance 
model, associated to the covariances Ci(x ,x0).

Traditional factorial kriging identifies different spatial components of a 
physical phenomenon with the structures of its global variogram or 
covariance. In this case, once the different spatial components have the same 
covariance models, with equal ranges, but with different spatial anisotropy 
directions, Zi(x0)* can be viewed as the morphological kriging estimate of 
Z(x) with local anisotropy models (Soares, 1992). The total concentration at 
x0 is: 

*
0
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*
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2.2 Estimation of each spatial component variogram 
i(h)

(h) is the global variogram model estimated with the entire set of 
samples. i(h) is assumed to be equivalent to (h) but corrected for local 
anisotropies determined by local wind directions. This means that i(h) is 
obtained by rotating the anisotropy ellipse with the angle of the wind 
direction at a given location. Remains the calculation of i correspondent to 
the sills of each spatial component of variogram i(h), which reflect the 
effects of each class of wind directions (Soares et al, 1993). For example, in 
one location where a given wind class j does not exist, j=0, or if the wind 
just happens to be exclusively of class j j=1. 

To calculate the values Zi(x0) at any location x0, according to (3)or (4), 
one needs to know the variogram sills for all wind-direction classes i at the 
spatial locations of pollutant samples x .     

First an average value of wind direction for the entire sampling period is 
calculated at the location of monitoring stations of wind direction and speed. 
The mean values of the different monitoring stations are coded in a binary 
vector, depending on whether each station belongs to each one of the Nd
classes. At location x of each monitoring station the following binary vector 
is created:  
Ii(x) =1  if monitoring station x belongs to class i, otherwise Ii(x)=0 i=1, Nd

Ii(x)=prob{x  wind class i}   i=1,Nd (4)

The stations’ probabilities to belong to those Nd classes are calculated 
(i.e. spatially inferred by ordinary kriging of the vector) for all nodes of a 
regular grid where pollutant concentrations are to be estimated: 

xIxxI ii 0
*

0

(5) 

These estimated probability values prob{x0  wind class i}* are scaled to 
C(0) by the following product 

i (x0) = Ii(x0)*. C(0)                                                                           (6) 

that can be identified with i(x0). 

Note, that in the traditional factorial kriging approach the components 
variograms i(h), corresponding to the different structures of global (h), are 
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estimated just once and considered representative for the entire area.  In the 
proposed approach i(x0), the sills of i(h) at x0, are estimated at every 
location x0, corresponding to the Nd wind direction classes. 

3. CASE STUDY: SPATIAL CHARACTERIZATION 
OF CARBON DIOXIDE, NITROUS DIOXIDE 
AND OZONE 

3.1 Experimental data-Measurements of airborne 
pollutants and climatologic data 

A monitoring campaign for several airborne pollutants was conducted in 
Portugal, covering the entire country. Static samples (diffusion tubes) of 
SO2, NO2 and O3 were collected in a regular grid of 20 20 km . Figure 1, a) 
shows the locations of the regular pollutant-sampling grid. During the 
campaign, which took about 15 days, wind direction and speed were also 
recorded in a set of meteorological monitoring stations. In Figure 1, b) the 
wind-directions frequency histograms for the entire set of monitoring 
stations are presented. 

3.2 Global variograms 

Global variograms were calculated for each pollutant. Figure 2 shows the 
anisotropic variograms of NO2. A map of NO2 values was estimated, through 
ordinary kriging using the global variogram model (Figure 3), which can be 
compared with the equivalent map estimated using the proposed 
methodology. 

3.3 Calculation of component variograms i(h)

Once the global variogram (h) is known, the idea is to adapt the 
direction of the anisotropy ellipse, according to the proximity of the wind-
direction measurements. According to the exposed methodology, the 
following sequence of steps was taken to calculate the different component 
variograms i(h). 
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Figure 1. a) Spatial location of the regular sampling grid; b) wind-directions frequency 
histograms for the entire set of monitoring stations. 

Figure 2. Variograms of NO2 for the two main directions. 



Use of factorial kriging to incorporate meteorogical information 61 

Figure 3.  Estimated map of NO2 (ordinary kriging) with one global model of 
variograms. 

i) Calculation of the mean value of wind directions for each monitoring 
station presented in Figure 1, b).  

A weighted average of wind direction vectors was computed with the 
wind speeds as weights, to account for the transport effect. The histogram of 
mean values of wind directions is shown in Figure 4. The following main 
wind direction classes were adopted:  

 Min Max Mean 
C1 200.2423 222.3506 212.1230    S 320 7´ W 
C2 252.0354 259.7979 255.9167 
C3 272.0298 288.3953 279.1886 
C4 315.5580 326.9635 322.5489 

(0o corresponds to the N/S direction) 

Wind-direction mean values for each of the monitoring stations were 
coded in a binary vector:  

Ii(x) =1  if monitoring station x belongs to class i, otherwise Ii(x)=0 i=1, 4 



62 H. Caetano, M. J. Pereira and C. Guimarães 

Figure 4. Histogram of mean values of wind directions. 

ii) Spatial inference of Ii(x) at a regular grid of points where pollutant 
concentrations are to be estimated.  

We used ordinary kriging of the indicator vector (5)

xIxxI ii 0
*

0

                              i=1,4 

After re-scaling the estimated probabilities Ii(x)* to the global variance 
C(0), sills for the different variograms i(h) at location x0 are obtained: i (x0)
= Ii(x)*. C(0)  

Figure 5 shows the inferred Ii (x0) for the 4 wind-direction classes, for the 
entire country, exhibiting the regional main trends of those classes of wind 
directions. 

3.4 Estimation of pollutant concentrations: SO2, NO2

and O3

Maps of the three pollutant elements were obtained for a regular grid of 
1x1 km, applying the factorial kriging estimation procedure of equations (3) 
and (4). Figure 6 shows the estimated concentrations for SO2, NO2 and O3.



Use of factorial kriging to incorporate meteorogical information 63 

4. FINAL REMARKS 

The presented methodology aims at incorporating meteorological 
conditions – wind directions and speed – into the spatial estimation of 
airborne pollutants. A regional trend of the effects of these wind 
characteristics on the dispersion of tree airborne air pollutants is used in a 
factorial kriging approach.  

The very promising results encouraged the promoters of this study to 
pursuit it for a second campaign focussed on the same pollutant elements.  

We believe that the final model would be enriched with a narrower grid 
of meteorological measurements and with the incorporation of the main 
topographic patterns into the final model.

Figure 5. Estimated values of  Ii (x0)*  for the 4 wind-direction classes. 
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Figure 6. Estimated concentrations for SO2, NO2 and O3.



Use of factorial kriging to incorporate meteorogical information 65 

REFERENCES

1. Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation. Oxford University 
Press, 483 p. 

2. Nunes, C., Soares, A. and Ferreira, F. (1999) Evaluation of Environmental Costs of SO2

Emissions using Stochastic Images. GeoENV II – Geostatistics for Environmental 
Applications. Gomes-Hernandez, J., Soares, A. and Froidevaux, R. (eds.), Kluwer 
Academic Publishers, pp. 113-125. 

3. Pereira M.J., Soares, A. and Branquinho C. (1997) Stochastic Simulation of Fugitive Dust 
Emissions. Wollongong '96, 5th Geostatistics Congress, Baafi E. (ed.), Kluwer Academic 
Publishers, vol II, pp. 1055-1066. 

4. Soares A. (1992) Geostatistical Estimation of Multi-Phase Structures", Mathematical 
Geology, 24 (2), pp. 153-164. 

5. Soares A., Távora J., Pinheiro L., Freitas C. and Almeida J. (1993) Predicting Probability 
Maps of Air Pollution Concentration: A Case Study on Barreiro/Seixal Industrial Area". 
Geostatistics Troia'92, Soares, A. (ed.), Kluwer Academic Publishers, Holland, pp. 625-
636.

6. Soares A. (2001) Sequential direct simulation and co-simulation. Mathematical Geology, 
33(8), pp. 149-160. 





HIGH RESOLUTION OZONE MAPPING USING
INSTRUMENTS ON THE NIMBUS 7 SATELLITE
AND SECONDARY INFORMATION 

G. Christakos1, A. Kolovos1, M. L. Serre1, C. Abhishek1 and F. Vukovich2

1Center for the Advanced Study of the Environment (CASE), University of North Carolina-
Chapel Hill, NC, USA; 2Science Applications International Corp. (SAIC), Raleigh, NC, USA 

Abstract: The high natural variability of ozone concentrations across space-time 
and the different levels of accuracy of the algorithms used to generate 
data from measuring instruments can not be confronted satisfactorily 
by conventional interpolation techniques.  This work suggests that the 
Bayesian Maximum Entropy (BME ) method can be used efficiently to 
assimilate salient (although of varying uncertainty) physical 
knowledge bases about atmospheric ozone in order to generate and 
update realistic pictures of ozone distribution.  On theoretical grounds, 
BME relies on a powerful scientific methodology that does not make 
any of the restrictive modelling assumptions of previous techniques 
and integrates a wide range of knowledge bases.  A study is discussed 
in which BME assimilates data sets generated by measuring 
instruments on board the Nimbus 7 satellite as well as uncertain 
measurements and secondary information in terms of total ozone-
tropopause pressure empirical equations.  The BME total ozone 
analysis eliminates major sources of error and produces high spatial 
resolution maps that are more accurate and informative than those 
obtained by conventional interpolation techniques.

Key words: Ozone, atmosphere, TOMS, SBUV, BME, spatiotemporal, geostatistics. 

1. INTRODUCTION 

Analyses of total ozone ( TO3 ) have been produced on a global basis 
using data from the Total Ozone Mapping Spectrometer (TOMS) since the 
late 1970s.  The last decade, climatological analyses of Tropospheric Ozone 

 67 

X. Sanchez-Vila et al. (eds.), geoENV IV – Geostatistics for Environmental Applications, 67-78. 
© 2004 Kluwer Academic Publishers. Printed in the Netherlands. 



68 G. Christakos, A. Kolovos, M.L. Serre, C. Abhishek and F. Vukovich

Residual (TOR), which is an estimate of the tropospheric TO3  and which 
was, in the initial work, the difference between TO3  from TOMS and the 
stratospheric ozone determined from the Stratospheric Aerosol and Gas 
Experiment (SAGE) instrument, have been developed ([1]).  TOMS data are 
collected globally on a daily basis, but the integration of years of SAGE data 
were required to provide a reliable analysis of stratospheric ozone on a 
global basis ([2]).  Attempts have been made to develop daily maps of TOR
using data from the Solar Backscatter Ultraviolet (SBUV) remote sensing 
system, which measures ozone in 12 Umkehr layers.  However, one of the 
major problems in applying SBUV with TOMS data to develop TOR
estimates is the differences in spatial resolution.  For illustration, the 
locations of TOMS and SBUV measurements obtained on July 6, 1988 are 
shown in Fig. 1.  The SBUV data gaps have been traditionally filled using  

Figure 1. Grid coverage of satellite ozone measurements (July 6, 1988) for TOMS (plus 
markers) and SBUV (triangles) instruments. 

conventional interpolation procedures so that stratospheric ozone from 
the SBUV instrument would be available at the data locations of the TOMS
instrument.  Poor correlation in Fig. 2 demonstrates the problem with using 
conventional interpolation procedures to fill the data gaps between orbital 
tracks for the SBUV data and points to a major source of error in 
TOMS/SBUV TOR.  The high ozone variability across space-time together 
with the different levels of accuracy attributed to the instruments above, 
introduces considerable sources of uncertainty in the representation of ozone 
distribution when conventional interpolation procedures are used to fill 
SBUV data gaps ([3]).  Many of the existing procedures –polynomial 
interpolation, basis functions, spatial regression, kriging, and neural 
networks [4], [5]– lack the scientific methodology to assimilate rigorously 
essential sources of physical knowledge and the conceptual organization to 
account for space-time variability effects. The underlying modelling 
assumptions are very restrictive (e.g., linearity, normality, 
overparameterization, and physical model-independence) and often lead to 
unrealistic representations of the actual characteristics of ozone variability.   
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Figure 2. Plots of stratospheric ozone (=TOMS values minus tropospheric ozone 
from Wallops Island ozonesonde) vs. stratospheric ozone using interpolated SBUV 

values (1985-1989) . 

Fig. 2, e.g., demonstrates the necessity for application of advanced mapping 
techniques that provide theoretical support and technical capabilities to 
adequately represent ozone variability and blend various knowledge bases 
(data collected at sparse SBUV measurement points, uncertain evidence, and 
secondary information).  Such techniques must predict ozone concentrations 
at unsampled  locations to fill data gaps with which analyses of stratospheric 
ozone can be generated that will have increased accuracy.  A group of 
advanced techniques possessing these desirable features are provided by 
Modern Spatiotemporal Geostatistics (MSG; [6]).  The paper includes a 
preliminary study of the application of the Bayesian Maximum Entropy
(BME) method of MSG to predict ozone concentrations at unsampled 
locations across space to fill SBUV data gaps by means of high resolution 
maps.  The BME theory does not make any of the restrictive assumptions of 
conventional interpolation techniques. TO3  obtained at the SBUV
measurement locations were analyzed over the continental U.S.  Secondary 
information (empirical TO3 -tropopause pressure analysis) was processed and 
applied and the resulting improvement in TO3  prediction was investigated.  
The results of the TO3  analysis using BME were compared with the analysis 
of the complete set of TOMS data of the region.  
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2. MODEL DESCRIPTION 

MSG ([6]) provides a powerful framework for generation of informative 
maps of atmospheric variables.  The random field X( p) , p (s,t) , offers a 
mathematically rigorous and physically meaningful representation of TO3 -
distributions across space-time.  Atmospheric studies are generally 
concerned with the prediction of TO3  at a network of points pk , given 
background knowledge and a set of site-specific data data at points pdata .
At points pk , either we have no observations at all or the available data are 
considerably uncertain and cannot be used as reliable predictions of the 
actual TO3  values, k .  One then seeks to derive the probability density 
functions (pdf) that characterize X( p)  at every node of the mapping grid in 
light of the physical knowledge sources considered. TO3  predictions ˆ

k  at 
any set of grid nodes pk  are derived from the pdf at these nodes by means of 
a suitable criterion (the criterion choice is not unique, but it depends on the 
study goals).  The unifying epistemic background of the MSG  techniques 
includes two fundamental tenets:   

 (Ta) Consider general knowledge bases (G -KB) such as physical laws, 
primitive equations, stochastic representations, and statistical moments 
(including multiple-point, non-linear and high-order statistics, if available) to 
define a space of plausible events and their respective pdf Gf  (i.e., KB=G  in 

this case) by means of a teleologic approach.   
 (Tb) Eliminate from consideration those otherwise plausible events that 

are physically or logically inconsistent with the available specificatory KB 
(S; which may include hard data and uncertain observations).  Then reassign 
probabilities to the remaining plausible events to be consistent with the S -
KB by means of a logic system leading to an updated pdf fK  ( SGK ).   

 The G -KB in Ta is transformed into a set of integral equations (G –
equations) of the corresponding pdf, which are solved teleologically in terms 
of a final cause expressed by the action principle.  The solution form 
depends on the action principle one adopts regarding the events deemed 
plausible before the available data is considered.  MSG often uses the action 
principle of maximum expected information.  I.e., while in previous 
principles the action sought refers to concepts like energy or time, the MSG
action refers to information which may involve, in particular, the Shannon 
measure properly extended in a space-time domain (another solution 
involves the Fisher information measure, etc.; [7]).  In Tb, the G -based 
solution, Gf , is revised via application of a logic system to yield a revised 

pdf model, Kf .  The MSG theory is very general allowing the use of 

different assimilation frameworks, including statistical inductive inference 
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(e.g., Bayesian conditionalization rules) and stochastic deductive inference 
(e.g., material biconditionalization principles).  MSG offers a long list of 
spatiotemporal analysis and modeling techniques [7].  The present 3TO

study will focus on the BME technique which is, perhaps, the most widely 
used at present.  A step-by-step description of BME can be found in the 
relevant MSG literature. 

3. MODEL APPLICATION 

3.1  Modeling Methodology 

BME produces high resolution 3TO  analyses with better accuracy than 

conventional techniques, since it provides an improved representation of 
spatial variability, does not require the limited modelling assumptions of 
conventional techniques, and can incorporate various kinds of uncertain data 
not used in conventional techniques. BME analysis consists of 3 stages: 
a) Section 3.2:  The variation of the random 3TO  field across space (July 6, 

1988) is represented by a random field.  Instead of using SBUV
measurements directly as hard data, TOMS data closest to the SBUV
measurement locations were selected as hard data (thus, differences in 
the level of accuracy between the two instruments need not be accounted 
for).   

b) Section 3.3:  Soft information, which relates 3TO  to tropopause pressure, 

was generated via application of an empirical physical equation. 
c) Section 3.4: Conventional interpolation provided 3TO  at the data gaps 

between sub-satellite points based on TOMS data selected at the SBUV
data locations (Approach 1). Then, BME predicted the 3TO  values at all 

grid nodes by assimilating hard data together with soft information.  The 
results from Approaches 1 and 2 were compared with the complete set of 
TOMS measurements in the area defined in Fig. 1. 

3.2 Spatial Variations of Total Ozone 

Fig. 3 shows the actual 3TO  map generated using the entire TOMS data 

set (Fig. 3 serves as the reference map for comparison purposes).  In the 
context of G -KB, the 3TO  distribution is represented by the spatial random 

field )()()( 33 sss XTOTO , where )(sX  is a zero-mean homogeneous 
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random  fluctuation, and the spatial trend )(3 sTO  is determined by a moving 

window averaging of 3TO  data ([7]).  Given 3TO  and )(3 sTO  at each data 

point

Figure 3. TO3  map (in DU) obtained from TOMS instrument (July 6, 1988; blanc strips 
indicate areas where data was not available).   

(triangles in Fig 1), the residual ozone )(sX  hard data are calculated 
from the equation above.  The following covariance model (with nested 
exponential and gaussian components) is part of the G -KB about the 

residual ozone distribution, 
2

2
2

1 3
2

3
1)(

arar
ijx

ijij ececrc , where 

|| jiijr ss .  This theoretical model is fitted to the experimental 

covariance values (obtained from hard ) so that 751c  ( 2DU ), 151a

(degrees), 752c  ( 2DU ), 92a  (degrees).  Each component of  the 

covariance model  accounts for half of the total variance (150 2DU ). The 
exponential component represents processes with somewhat high spatial 
variation over a long range of about 15 degrees (approx. 1667 km on the 
Earth's surface), while the Gaussian component represents smoother 
processes with a shorter range of about 9 degrees (approx. 1000 km on the 
Earth's surface).  

3.3 Soft (Secondary) Information 

Tropopause pressure data ( tP ) are model-generated data (National Center 
for Atmospheric Prediction, NCAP).  Starting from a phenomenological law, 
[8], the following formulation, which relates 3TO  with tP , is obtained, 

tPaaTO log103 ,  where 000,0,30 log PaHaHTOa t  and 01 aHa
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are estimated by experimental data fitting (a  is linear rate of 3TO  decrease); 

0P  is surface pressure, H  is height, and 0H  is the scale height of the 

atmosphere (approx. 7 km).  The 0a  and 1a  are viewed as random variables 

representing such factors as uncertainties due to 3O -fluctuations and 

perturbations in the atmosphere.  For each tP -value, a soft pdf is derived that 

represents the distribution of 3TO  values and offers a physical basis for 

producing soft information.  Fig. 4 is a typical scatterplot of  3TO  vs. tP  at  

Figure 4. Scatter plot of TO3  measurements vs. tropopause pressure. 

concurrent points.  Useful probabilistic representations of the uncertainty in 
the 3TO  values are generated:  The data are divided into classes of 

contiguous, non-overlapping tP -intervals.  For each class the 3TO  mean and 

variance are derived as well as their pdf.  Based on this procedure a 
probability datum for 3TO  is assigned to each tP  data point.  Densities for 3 

selected classes are plotted in Fig. 4, for illustration.  BME can be applied in 
to its fullest ability by improving the physical relationship of pressure vs. 
height using additional information sources (e.g., potential vorticity data and 
temporal information in the data).  Moreover, BME  is an efficient tool for 
mapping various types of informative variables (categorical, etc.; [9], [10]).  

3.4 Modeling Results 

First, we assumed that S -KB consists solely of the hard 3TO  data set at 

the SBUV measurement points.  A linear spatial regression technique is used 
to predict 3TO  in the remaining region.  Note that this technique can be 
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derived as a limiting case of the general BME theory under restrictive 
modelling conditions –a fact that demonstrates the generalization power of 
BME.  The corresponding 3TO  map is shown in Fig. 5a. The prediction error 

std. deviation of the 3TO  prediction at location sk  is calculated as 

2
1

1
)]()0([)( ikxi

M

ixke rccs , where M is the number of 3TO  data 

used, and i  are weights calculated from the regression system (the e -map 

is plotted in Fig. 5b).   

 (a)

(b)
Figure 5. (a) TO3  map (DU) using hard data at SBUV points; (b) map of prediction error std 

deviations. Approach 1. 

Next, for Approach 2 the soft information (Section 3.3) was assimilated 
in addition to the hard data set to predict 3TO  in the SBUV data gaps by 

BME.  Just as for Approach 1, TOMS data closest to the SBUV measurement 
locations were used as hard data.  The resulting BMEmean map (i.e., the 
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prediction at each point is the mean of Kf ) is plotted in Fig. 6a.  The 

associated map of prediction error std. deviation at any point sk  (Fig. 6b) 

was obtained using the expression  )( ksK

2
12 )]()([ kkkk fxd K  (the mean value of the 3TO  fluctuation at 

prediction point pk  is 0kx ).  Comparisons of the maps in Figs 5a and 6a 

with the map in Fig. 3 show that the map of Fig. 5a clearly misrepresents the 
spatial 3TO  variation in certain areas and exhibits poor accuracy away from  

(a)

(b)
Figure 6. (a) TO3  map (DU) using hard data and soft information; (b) map of prediction error 

std deviations. Approach 2. 

hard data points, whereas Approach 2 offers a much more realistic 
representation of the spatial 3TO  variation, leading to noticeable 

improvements in prediction across space. The prediction error std deviation 
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maps indicate that Approach 2  (Fig. 6b) offers a significant improvement 
over Approach 1 (Fig. 5b).  In particular, Fig. 5b shows that the e -errors 

are rather small along the satellite paths but increase considerably away from 
the paths, reaching their maximum values along the axis inbetween the paths.  

The 
K

-error map (Fig. 6b) depicts a more realistic distribution (error 

does not increase dramatically away of the satellite paths, etc.).  On 
theoretical grounds, Approach 1 is a linear predictor; e  is independent of 

data values and, as a consequence, is the subject of criticism [11].  Approach 
2 is a non-linear predictor, in general, and the K  depends on the specific 

data set offering an adequate prediction error assessment when the shape of 

Kf  is not very complicated (e.g., if the underlying law is Gaussian, the 

probability that xk  lies in the interval Kmeank 96.1ˆ ,  is 95%).  In cases 

where 
Kf  has a complicated shape, a realistic assessment of the analysis 

error is achieved using BME confidence sets.  

Figure 7. Histogram of spatial TO3  prediction errors by Approach 2 (plain line) and by 
Approach 1 (dotted line). 

To further compare the accuracy of Approach 1 vs. Approach 2, we 
calculated the differences between predicted TO3  values (Figs. 5a and 6a) 

and actual values (Fig 3) at all points at which TO3  values are available 
from TOMS.  Histograms of prediction errors are shown in Fig. 7. Approach 
2 has a sharper peak than Approach 1 around zero prediction error, which 
implies that BME produced more accurate TO3  predictions at a much higher 
frequency than the conventional technique.  The mean square error (MSE)

drops from 106.50 2DU  (Approach 1) down to 30 2DU  (Approach 2), i.e., 
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a substantial accuracy improvement of 72% in favor of Approach 2.  
Another measure of error indicating bias is the mean error (ME).  In Fig. 7, 
ME = –3.0 DU  for Approach 1 (indicating slight bias), whereas ME= –0.9 
DU  for Approach 2; i.e., a difference in accuracy of 69 % in favor of 
Approach 2.  

     
 (a) (b) 

Figure 8. Fluctuation scattergrams of TOMS data vs. predictions of (a) Approach 1and (b) 
Approach 2 

 (a) (b) 
Figure 9. (a) Histogram of TO3  prediction errors by Approach 2 (plain line) and 

Approach 1 (dotted line).  (b) Fluctuation scattergram of TOMS data vs. predictions by 
Approach 2.  In addition to previous data arrangement, soft TO3  data are available at map 

nodes.

Next, we assumed that soft data were also available at prediction nodes 
themselves. Soft means varied randomly within intervals including the 
TOMS data at the nodes. Although the soft data was intentionally 
contaminated by error, BME made optimal use of the situation and generated 
improved results.  Fig. 9a compares the histogram of the prediction errors by 
Approaches 1 and 2.  The improvements obtained by BME vs. conventional 
interpolation are significant:  a sharper histogram around zero error; smaller 
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ME and MSE statistics [ME= -0.2 DU  (Approach 2), = -3.0 DU  (Approach 
1);  and MSE=3.40 2DU  (Approach 2), =106.50 2DU  (Approach 1)].   

The corresponding scattergram of TOMS data fluctuations vs. BME
predictions of the same fluctuations shows an almost perfect fit (Fig. 9b).  As 
was mentioned, BME  theory can be used to its fullest ability: (i) by 
performing a composite space-time ozone analysis and focusing on using 
uncertain SBUV data sets to construct maps of the ozone profile throughout 
the Earth; and (ii) by assimilating other soft knowledge sources, like 
potential vorticity data and temporal information in the data.  The (i) and (ii)
are important research and development issues, which will be the topics of 
future publications.
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Abstract: The merging of multisensor image data is becoming a widely used procedure 
because of the complementary nature of various data sets. Ideally, the method 
used to merge data sets with high-spatial and high-spectral resolution that 
should not distort the spectral characteristics of the high-spectral resolution 
data. The paper presents a geostatistical image merging method. The approach 
takes into consideration important aspects like, for example, support of 
information and makes a real image integration using a sequential gaussian 
conditional cosimulation-based procedure. All the parameters of the 
integration (basically, the weights corresponding to the images to merge) are 
extracted from the images themselves, providing additional information of 
them like variability structures that can be used in other digital image 
processes like filtering, texture determination and classification. 

Key words:     Digital image merging, Geostatistics, Remote Sensing 

1. INTRODUCTION 

The digital image usage in environmental and cartographic applications is 
very frequent. Nowadays there is a wide range of systems that provide 
environmental and cartographic images in digital format. These images are 
classified in order to its spatial –ground sample distance, GSD– and spectral 
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resolution. Unfortunately, in most case both resolutions are in opposition. 
The high-resolution sensors have a low resolution whereas the multispectral 
sensors have a good spectral resolution but a bad spatial resolution that 
limits their use in some environmental detailed applications. 

The problem is solved using the digital image merging procedures. The 
main objective of these methods is obtaining synthetic images that combine 
the advantage of the high spatial resolution of one image with the high 
spectral resolution of another image. 

These merged images have important environmental applications like 
land-use, vegetation, lithological photointerpretation and cartography and 
process monitorization (for example, pollution control). Applications that 
need to combine the multispectral information with a good spectral 
resolution that allows the cartographical product generation in adequate 
scales. 

The geometric registration is a straightforward process. However, the 
mixing of information into a single data is not straightforward. Ideally, the 
method used to merge data sets with high-spatial resolution and high-
spectral resolution should not distort the spectral characteristics of the high 
spectral resolution data. Not distorting the spectral characteristics is 
important for calibrating purposes and to ensure that targets that are 
spectrally separable in the original data are still separable in the merged data 
set (Chavez et al., 1991). 

The objective of this paper is to present the preliminary results of a 
geostatistical merging image methodology. The method has been used to 
merge the information contents of Landsat-7 ETM+ (GSD=30m) and aerial 
orthoimage (GSD=3m). The method is compared to other well-known 
classical (non-geostatistical) merging procedures. 

2. THE DATA SET 

2.1 Study area 

The study area used in this work covers a 60x60 km area localized in the 
Granada province (S of Spain), just at the northern border of Sierra Nevada 
mountains (figure 1), approximately 80km from Granada. In this zone, there 
was a very important iron open-cut mine (Alquife mine) that had a 3.3 Mt/yr. 
iron ore production in the mid-nineties. Actually the mine is closed and the 
old open-cut appears like a lake (figures 2 and 3). 

2.2 Images 

The data set used for this application are basically composed by the 
following images:  
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a) Aerial orthoimage: the higher spatial resolution image is obtained from 
the digital differential rectification of 1:40000 aerial photograms using a 
digital photogrammetric system. This 8-bits image has a 3m GSD 
(Figure 2). 

b) Landsat-7 ETM+ images: this sensor provides 8 bands, 3 visible 
(ETM1: Blue, ETM2: Green, ETM3: Red), 1 NIR (ETM4), 2 MIR 
(ETM5 and ETM7), 1 TIR (ETM6) and 1 panchromatic (PAN). In this 
work, only ETM3, ETM4, ETM5 (bands that present maximum OIF, 
Chavez et al, 1982) are used (Figure 3). 

Figure 1. Localization map. 

Figure 2. Digital aerial orthoimage. GSD=3m; Image Size=2000x2000 pixels 
(Grayscale representation from digital number 0 –black– to 255 –white–). 
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Figure 3. Landsat ETM+ images: GSD=30m; Image size: 200x200 pixels (Grayscale 
representation: from DN=0 –black– to white DN=255 –white–). 

Table 1. Basic statistics of the images (data are integers ranging from 0 to 255). 
Image GSD(m) Mean Std.Dev. Minimum Maximum 
ETM+3 30 73.55 15.14 25 139 
ETM+4 30 63.00 10.09 18 136 
ETM+5 30 66.88 15.38 14 185 
Ortho 3 118.79 33.32 0 255 
Ortho-30* 30 118.82 33.19 0 255 
*Image obtained from the mean value of the corresponding 3m-orthoimage pixels 

Table 2. Correlation Matrix. 
 ETM3 ETM4 ETM5 Ortho-30*

ETM+3 1.000 0.557 0.450 0.375 
ETM+4  1.000 0.635 0.282 
ETM+5   1.000 0.185 
Ortho-30*    1.000 
*Image obtained from the mean value of the corresponding 3m-orthoimage pixels 

3. METHODOLOGY AND APPLICATION 

3.1 Geostatistical merging method 

The geostatistical merging method presented in this paper consists 
basically in a series of geostatistical techniques. The general schema can be 
shown in the figure 4. 

The process begins with a normal score transformation of the image data 
is applied in order to use a unique statistical distribution for all the images, 
previously a despiking process in the sense proposed by Verly (1986) was 
applied avoiding the clusters in the original data distribution that could 
generate problems in the transformation. 

Once the data are transformed into a gaussian distribution, the structural 
analysis has been made. The gaussian image variograms are computed in 

ETM+ 5

N

0 15kmETM+ 3 ETM+ 4

Alquife open-cut mine
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column and in row directions. The obtained variograms present an isotropic 
behavior so the omnidirectional variograms were used for the adjustment to 
the models. The experimental variograms and theoretical model parameters 
are presented in the Figure 5 and Table 3. 

All images present variograms models quite similar. The nested model is 
composed by 2 structures: a) Exponential, short range (around 60-150m) that 
represents 70-80% of total variance and b) Exponential, medium range (375-
600m for visible bands and 2500-4500m for infrared bands) that represents 
20-30% of total variance. 

Figure 4. Flowchart of the geostatistical digital image merging procedure. 

One of the most important advantages of the geostatistical approach to the 
image merging is its capability to consider correctly the information support 
problem in the down sampling process from the original 30m to the final 3m. 
Using the previous models it is possible to obtain the 3m variograms models 
parameters applying an iterative deregularization process based in the 
expressions presented in Clark (1977). The deregularization variograms 
parameters are given in the Table 4.
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Figure 5. Experimental variograms and theoretical models for the image data. 

Table 3. Variograms model parameters for ETM+ and Ortho-30 images. 
Image Struct.1 Sill1 Range1 Struct.2 Sill2 Range2 
ETM3 Expon 0.540 120.00 Expon 0.430 660.00 
ETM4 Expon 0.810 144.00 Expon 0.190 2400.00 
ETM5 Expon 0.800 126.00 Expon 0.200 4500.00 
Ortho-3 Expon 0.620 60.00 Expon 0.380 375.00 
The distance parameters must be multiplied by 3 to obtain the approximate correlation ranges. 
Range units in meters. 

Table 4. Deregularizated variograms model parameters for the ETM+ images. 
Image Struc.1 Sill1 Range1 Struc.2 Sill2 Range2 Sill1+Sill2 C(v,v) 
ETM3 Expon 0.735 96.0 Expon 0.425 630.0 1.16 0.199 
ETM4 Expon 1.100 102.0 Expon 0.290 3000.0 1.39 0.316 
ETM5 Expon 1.082 99.0 Expon 0.300 5400.0 1.31 0.302 
Range units in meters 

These parameters are the basic input information in order to obtain the 
simulated data sets on 3m-pixel size. The simulated images preserve the 
variability of the deregularizated variables and can be obtained using the 
geostatistical simulation methods. The used method has been the sequential 
gaussian cosimulation due to its simplicity and its speed (due to the huge 
volume of data that it is necessary to simulate, that can be millions of data). 
The cosimulated images were obtained with the GSLIB SGSIM version 
2.9.02 program (Deutsch and Journel, 1997) following the procedure 
described in Goovaerts (1997). 

The sequential gaussian cosimulation method allows integrating the 
information provided by a secondary variable (3m ORTHO image data) 
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through a collocated cokriging process. The non-conditional simulated 
images are shown in Figure 6 and their basic statistics in Table 5. 

Figure 6. Geostatistical non-conditioned cosimulated images. Image size: 2000x2000 pixels. 
(Greylevel representation from digital number 0 –black- to 255 –white-). 

Table 5. Descriptive statistics of non-conditional cosimulated images. 
 ETM+3  ETM+4  ETM+5  
 Mean Variance Mean Variance Mean Variance 
Geostat 0.0210 1.0506 0.0224 1.3119 0.0251 1.2358 

The last operation in the geostatistical image merging is the conditioning 
of the cosimulated images. For this operation the original 30x30m ETM+ 
images have been used. Using these images, it is possible to obtain the 
correction factors for each image and pixel in order to ensure the 
coincidence between the original digital numbers and the mean values of the 
10x10 pixels group of 3m cosimulated images. The final merged images are 
presented in figure 7 and their corresponding basic statistics in Table 5. 

Figure 7. Geostatistical merged images. Image size: 2000x2000 pixels. (Greylevel 
representation from digital number 0 –black- to 255 –white). 
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Table 6. Descriptive statistics of merged images using the geostatistical approach. 
 ETM+3/ORTHO ETM+4/ORTHO ETM+5/ORTHO Correlation Coefficient  
 Mean Var Mean Var Mean Var ¾ 3/5 4/5 
Geostat 73.05 18.12 62.50 13.98 66.38 20.34 0.67 0.60 0.78 

3.2 Classical (non-geostatistical) merging methods 

In order to compare the obtained results several non-geostatistical image 
merging methods have been applied. The methods used were: a) Hue-
Intensity-Saturation; b) Principal Component Analysis; c) High-Pass Filter 
and d) Color Normalized. 

3.2.1 Hue-Intensity-Saturation (HIS) 

HIS is one of the most often used methods to merge multisensor image 
data. Haydin et al. (1982) merged using this procedure Landsat MSS with 
Return Beam Vidicon and Heat Capacity Mapping Mission data. HIS 
method is widely used to merge Landsat TM and SPOT-P data (Chavez et 
al., 1991). The method uses three bands of the lower spatial resolution image 
and transforms these data into HIS space. The higher spatial resolution 
image is constant stretched in order to adjust the mean and variance to the 
intensity one. The stretched image replaces the intensity component image 
before the images are retransformed back into the RGB space (Figure 8A, 
Table 7). 

3.2.2 Principal Component Analysis (PCA) 

The PCA method is similar to the HIS one. The higher spectral resolution 
images are used as input to a forward principal component procedure. As the 
HIS procedure, the high-resolution image must be stretched to have 
approximately the same mean and variance as the first principal component 
–PC1–. The results of the stretched image replace the PC1 band and the data 
are retransformed back into the original space (Figure 8B, Table 7). 

3.2.3 High-pass filter (HPF) 

The HPF procedure is based in a data compression and reconstruction 
technique described in Schowengert (1980). In the HPF method, the higher 
spatial resolution data have a small high pass filter applied. The results of the 
small high pass filter contain the high-frequency component/information that 
is related mostly to spatial information. The spatial filter removes most of 
the spectral information. The HPF results are added, pixel-by-pixel, to the 
lower spatial resolution data set (Figure 8C, Table 7). 
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3.2.4 Color-normalized (CN) 

The color normalized method (Vrabel, 1996) uses a mathematical 
combination of the color image and high-resolution data to merge the higher 
spatial and higher spectral resolution images. Each band in the higher 
spectral image is multiplied by a ratio of the higher resolution data divided 
by the sum of the color bands. The function automatically resamples the 
three-color bands to the high-resolution pixel size using a nearest neighbor, 
bilinear, or cubic convolution technique. The output RGB images will have 
the pixel size of the input high-resolution data (Figure 8D, Table 7). 

3.2.5 Main drawbacks and advantages of the classical 
methods

The non-geostatistical methods have from a geostatistical point of view 
several drawbacks: 

a) Do not take into consideration the information support of the merging 
data. Usually, they need a resample process based in split the original 
pixel into a smaller size. The statistics of  the obtained  images preserve 
mean and variance of the original ETM+ images, which do not have 
sense from a geostatistical point of view (variance must increase with 
the pixel size reduction). 

b) HIS and PCA are not really merging methods. They consist in the 
substitution of the high-spectral images with a high-spatial resolution 
image based on the correlation of the both data sets. The correlation 
level does not modify the process but it has influence in the final 
results. These methods only can be applied into triplets of bands. 

c) Do not provide any additional information about the images (spatial 
variability, scale of variation,...) and the merging process is not 
controlled by the user (black-box automatic process). 

d) The characteristics of the images obtained from the different methods 
have important differences in their appearance and basic statistics. 
These differences can have an important influence in the image 
interpretation and classification. 

Nevertheless, all of the presented classical methods are very easy to 
apply and are implemented in the most popular remote sensing software, like 
for example, ERDAS-Imagine, ER-Mapper and ENVI. 
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Figure 8. Merged images using classical procedures. A) HIS, B) PCA, C) HPF, D) CN.  Left: 
ETM+3, Middle: ETM+4, Right: ETM+5. 

Table 7. Descriptive statistics of merged images using classical methods 
ETM+3/ORTHO ETM+4/ORTHO ETM+5/ORTHO Correl.Coeficient 
Mean Var. Mean Var. Mean Var. 3/4 3/5 4/5 

HIS 73.38 15.94 62.90 11.84 66.10 13.37 0.59 0.48 0.70 
PCA 73.55 15.62 63.00 12.28 66.87 13.15 0.40 0.55 0.60
HPF 172.99 48.52 92.32 18.98 121.92 23.62 0.69 0.77 0.98
CN 42.73 13.84 36.33 10.43 38.26 11.29 0.83 0.76 0.87
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4. CONCLUSIONS 

This paper has demonstrated that it is possible the digital image merging 
is possible through a geostatistical approach considering fundamental 
aspects like support effect and spatial variability of the images. The merged 
images using this procedure preserve the spectral characteristics of the 
higher-spectral resolution images.

The visual aspect of the geostatistical-merged images is quite different 
from the images obtained with classical methods. These differences are 
produced by the lower weight that the geostatistical method applies to the 
higher spatial resolution image. It is very important take into consideration 
that the geostatistical procedure makes a real integration of the images 
instead of the substitution made by the classical approaches. This is an 
important factor where it is necessary to work with non-visible spectral 
bands, which are low correlated with higher spatial resolution images that 
usually are panchromatic. 

The main drawback of the geostatistical approach is its complexity. The 
method needs an important geostatistical background and suitable software. 
This software must be designed and optimized for large volume of data 
treatment. 

Future works will focus on developing further approach in the 
deregularization and change support models and conditioning procedures. 
Additionally, other data sets will be examined using this procedure.
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Abstract: The empirical line method (ELM) is widely used to atmospherically correct 
airborne remotely sensed imagery. It is based on a simple linear regression 
between remotely sensed measurements of radiance and field based 
measurements of reflectance. To construct the regression, spatially coincident 
field and airborne measurements are paired. This research investigates the 
impact of uncertainty in the location of the field measurements on the 
outcome of the regression.  First, block kriging was used to aggregate the field 
measurements to the same support as pixels. It was shown that large positional 
uncertainty gives a small effect on estimation of parameters of the ELM. 
Second the co-located field and píxel values were combined. It was shown 
that low positional uncertainty introduces variability in to parameter 
estimation for the ELM and that this is likely to concern the practitioner.  

Key words:          positional uncertainty, support, Empirical Line Method 

1. INTRODUCTION

For optical remotely sensed data to be of lasting quantitative value it is 
important that the pixel values be defined in units of reflectance. However, 
remotely sensed data are typically provided in units of at--sensor radiance, 
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which are affected by atmospheric conditions. Some form of atmospheric 
correction is required to transform the at-sensor radiance values to at-surface 
reflectance. There are three broad methods for atmospheric correction 
(Schott, 1997): (i) methods that use information available in the image itself; 
(ii) physically-based approaches where radiative transfer schemes are used to 
model the interaction of radiation with the atmosphere and; (iii) empirical 
relationships between radiance and reflectance.  These techniques are 
reviewed and discussed elsewhere (Schott, 1997; Smith and Milton, 1999). 
The research presented in this paper seeks to characterise and model the 
uncertainty involved in implementing the empirical line method. 
Specifically, the objective of this research was to quantify the uncertainty 
involved when the location of field measurements is not known perfectly. 

2. THE EMPIRICAL LINE METHOD 

The empirical line method (ELM) is based on a simple, first-order linear 
regression model, where field-based measurements of reflectance, measured on 
a pseudo-point support, are the dependent variable and remotely sensed 
measurements of radiance, defined on a pixel-sized support, are the predictor 
variable. The field-based measurements are made using a radiometer or 
spectrometer to characterise the reflectance of a predefined selection of ground 
targets. These are combined with spatially coincident airborne measurements of 
radiance and the data set is used to estimate the parameters of the regression 
model. The estimated parameters are then used to predict at-surface reflectance 
over the remainder of the image. 

Ground targets for use in the ELM, should conform to several criteria (Smith 
and Milton, 1999), as follows: 

1. The targets are identifiable in the image and on the ground; 
2. The targets cover a range of reflectance values from bright to dark within 

each wave band; 
3. Targets should be near Lambertian; 
4. Targets should be spatially homogeneous in the spectral domain; 
5. The histogram of the reflectance measurements should be normally 

distributed in each band for each target; 
6. All targets should be at the same altitude; 
7. Targets should be larger than the effective resolution element of the sensor.

However, in any given exercise, it may not be possible to find targets that 
conform to all of these requirements. In particular, it may not be possible to find 
targets that are spatially homogeneous or normally distributed. 

Typically, field-based measurements are taken at a number of random and 
unrecorded locations within each ground target and the sample mean and 
variance are estimated. The remotely sensed radiance value of each target is 
characterised by the mean and variance of several pixels within each target. The 
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mean values of at-sensor radiance and at-surface reflectance then form a data 
pair, which are used to parameterise the regression model. Hence, the number of 
data pairs used in the regression model is the same as the number of ground 
targets. However, there are several problems with this approach: 

1. There is no way of precisely linking specific field measurements with 
spatially coincident remotely sensed measurements. 

2. The objective is to predict reflectance over pixel-sized supports, but the 
model is parameterised over a support of several pixels. Theoretically, 
however, the form of the model and the value of the model parameters may 
be different for different supports (Heuvelink and Pebesma, 1999). 

3. No explicit effort is made to ensure that the at-sensor radiance and at-
surface reflectance values used in the parameter estimation phase are 
defined on the same support.  Hence the input data are inconsistent. 

4. Mean values are used to construct a data pair for each target, thus artificially 
reducing the variance of the estimated parameters and the estimation of the 
variance parameter in the ELM. 

These problems lead to practical and conceptual difficulties with implementing 
and applying the ELM. From the practical perspective, it means that targets that 
have spatial structure or that are not normally distributed (criteria 4 and 5) 
should not be used. Conceptually, the approach is flawed, particularly where 
uncertainty in the atmospheric correction needs to be quantified. The latter three 
problems mean that the variance in prediction of reflectance will not be 
evaluated properly.

3. METHODOLOGY

3.1 Framework 

The discussion in section 2 highlights the need to adopt more suitable 
procedures if the practical and conceptual difficulties described are to be 
overcome. 

Previous research (Hamm et al., 2002) has addressed the above issues by 
adopting a spatial sampling strategy (a nested grid) and recording the location of 
each field measurement (see Section 3.3). This allowed each field measurement 
to be linked to its spatially coincident pixel value. Under this scheme, the 
number of data pairs yielded is the same as the number of field samples used.  
Furthermore, this allowed relaxation of the criteria on spatial structure and 
allowed non-stationarity to be dealt with. This approach was shown to be 
essential to allow accurate parameter estimation, especially when there is spatial 
structure in the reflectance of the ground targets. 

Block kriging and block conditional simulation were used to aggregate the 
field measurements to the same support as the image pixels, for input into the 
regression model.  This was required to ensure that both variables that were 
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input into the regression were defined on the same support. This was not 
essential for estimating the expectation of the slope and intercept parameters. 
However, it was required to gain a realistic estimation of the variance. 
Furthermore, it was shown that the variance in the regression model gained by 
using a conditionally simulated surface was higher than that obtained using the 
kriged surface. This was expected from theory. 

The previous work, outlined above, advocated that the locations of field 
measurements need to be recorded, even if no geostatistical analysis is to be 
performed. Provision of surveying equipment and Global Positioning Systems 
(GPS) receivers mean that location can often be recorded in an efficient and cost 
effective manner. Hence it is useful to understand the implication if location is 
recorded less rigorously than it was in this study. The impact of positional 
uncertainty on geostatistical analysis and prediction is also of broader interest 
(Atkinson, 1996; Gabrosek and Cressie, 2002).

3.2 Field Site 

Thorney Island in West Sussex, south east England contains a disused 
airfield with a range of surface cover types. These include asphalt, concrete 
and cropped grass, which are considered to be “typical” ground targets for 
use with the ELM (Smith and Milton, 1999). On 24th July 2001 the site was 
overflown by the Natural Environmental Research Council (NERC) aircraft 
which carried the Itres Instruments compact airborne imaging spectrometer 
(casi). Data were aquired at an altitude of approximately 1000 m on a north-
to-south flight line oriented along the centre of the main runway. The field 
measurements were taken close to the centre of the image swath.  

3.3 Method

Field measurements were taken on a nested square grid (Figure 1) using a 
Milton Multiband Radiometer (MMR) operating in dual beam mode (Milton, 
1987). The instruments were inter--calibrated prior to and after use, allowing 
straightforward processing from radiance to reflectance. The MMR samples 
the electromagnetic spectrum in four broad wavebands that are designed to 
correspond to the first four bands of the Landsat Thematic Mapper (TM) 
sensor. The broad wavebands of the MMR mean that it is not ideal for 
operational atmospheric correction of casi data. However, the rapid 
measurement time of the MMR made it ideal for acquisition of a spatially 
distributed large sample (approximately 250 samples per target) and the data 
gained were suitable for tackling the key research questions outlined in this 
paper. For this paper, analysis and discussion focuses on deriving broad-
band reflectance for the first waveband of the MMR (approximately 420-530 
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nm, blue). The corresponding band used from the image data is the first 
waveband of the casi (approximately 440-560 nm). 

The location of each measurement was surveyed and recorded relative to 
UK Ordnance Survey (OS) trigonometric points. The casi data were also 
geometrically corrected to the OS National Grid. This allowed each field 
measurement to be located within the image. Careful attention was given to 
ensuring that the location of the field measurements were recorded 
rigorously and precisely, both relative to each other and to the OS National 
Grid. In an operational situation, it might not be possible to record location 
with such rigour and precision and this research seeks to examine the 
implication of that. However, it is assumed that the geometric correction of 
the imagery is perfect. 

4. RESULTS AND ANALYSIS 

4.1 Data exploration 

Data summaries are presented in Figure 1 (assuming no positional 
uncertainty). Figure 1 suggests that the distributions of the data for asphalt 
and grass approach normality. However, the histogram for concrete suggests 
that the data are not drawn from a normal distribution. This is problematic 
for the “typical” implementation of the ELM, since this violates the criteria 
of normality stated in Section 2. However, Hamm et al. (2002) showed that 
criteria can be relaxed if co-located pixels and reflectance data are used. 

Omnidirectional sample variograms (Matheron, 1963), assuming no 
positional uncertainty, are shown in Figure2. These give further evidence of 
the spatial structure in the reflectance of the surface that is implied by Figure 
1. To address the issue of non-normality in the concrete data set, the concrete 
ground target was segmented to remove the area north and east of the 
(467116, 101765) OS National Grid co-ordinate. 

4.2 Scaling up 

Some formal procedure is required to predict values of at-surface reflectance 
on the same support as the field measurements. It is possible to use block 
kriging (Bierkens et al., 2000), using a grid defined by the pixel locations. The 
blocks can then be paired with co-located pixels for use in the regression model. 

This paper forms part of a larger project, which is adopting a Bayesian 
framework, hence the model-based approach to geostatistics (Diggle, et al., 
1998) is adopted. Furthermore, the model-based approach addresses a 
fundamental criticism of the classical approach, which is that it does not take 
account of the uncertainty involved in estimating the parameters of the assumed 
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covariance function. Under the model-based framework, kriged predictions and 
conditionally simulated surfaces were obtained at regularly spaced points on a 
square grid. The grid was set up such that the points were also regularly spaced 
within each co-located pixel. The value of the block was then defined as the 
mean of all the predicted data points within each pixel. This follows the 
approach of Bierkens et al. (2000), who show that a variety of upscaling rules
may be applied, depending on the circumstances. 
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Figure 1. Data summaries for (a, d) asphalt; (b, e) concrete and (c, f) grass.  The top row (a, b, 
c) shows the location of the field measurements (UK Ordnance Survey co-ordinates). The size 
of the points is proportional to the magnitude of the the reflectance value.  The bottom row (d, 

e, f) shows a histogram for each target. 
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Figure 2. Sample variograms for the three surface

Under the basic form of the model-based framework a Gaussian process is 

s.

4.3 Model-Based Geostatistics 

assumed (Diggle et al., 1998). Data are given in the form (Z i,x i), where x i is a 
location within the study region, and Z i is the measurement. The existence of an 
unobserved stochastic stationary Gaussian process, S(xi), E[S(xi)] =  and (h) = 
Corr[S(x),S(x-h)], is assumed. The exponential model for ( ) was used, since it 
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gave a good fit to the data and is mathematically and computationally 
convenient. The joint distribution of Z is multivariate Gaussian:

2 2( , ) ( , ) (1)MVN MVNZ 1 I R 1 V
where 1 denotes a vector of ones, I is the identity matrix, R = R( ) and V = 

2I + 2R.  The data are conditionally independent, given S( ):
2( ( ) ( ), ) (2)i i iZ S N x S x

Bayes’ formula is: 
2 2 2 2 2 2( , , , ) ( ; , , , ) ( , , , ) (3)z L z

                           Posterior  Likelihood  Prior 
where L(z; , 2, , 2) is multivariate Gaussian. The posterior predictive 
distribution for znew is obtained: 

( ) ( ) ( ; ) (4)new newf z z f z L z d

where  = ( , 2, , 2)T. In terms of the variogram is the mean, is the range, 
2 the nugget variance and 2 + 2 is the sill. 

The “geoR” package for R was used for parameter estimation and for 
prediction (Ribeiro and Diggle, 1999). The Bayesian inference scheme 
implemented in geoR allows for simultaneous parameter estimation and 
prediction. The choice of priors is recognised as a delicate issue in Bayesian 
inference and non-informative priors were adopted for  and 2 and discrete 
priors for and 2. The posterior distributions are then obtained using a Monte 
Carlo inferential strategy. The reader is referred to Diggle and Ribeiro (2002) 
for further information. 

Posterior distributions for the parameters are obtained (Equation 3), so the 
modelled variograms may be summarized using the mode, median and the 
mean. Under the model-based approach, the multivariate distribution for all data 
points is used. Hence the model is not fitted to the experimental variogram and 
is not directly comparable to it. A maximum lag, to which the model is to be 
fitted, is not imposed. Similarly, a global neighbourhood approach is used for 
prediction. This is different to approaches commonly taken in classical 
geostatistics.

4.4 Positional uncertainty 

In order to simulate positional uncertainty a random error term, , was 
added to the Easting and Northing of each field location, as follows: 

(5)
i

i

i x

i y

x Easting

y Northing

where i refers to each individual field location. It was judged reasonable to 
model  as being drawn from a Normal distribution, N(0, ). Taking 
N(0,0.25) reflects the case where the operator has a high degree of confidence in 
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their positional accuracy. However, if the user had not been able to give such 
attention to recording location, N(0,4) is likely to be more sensible. By 
adopting this procedure, different realisations of the sampling scheme for each 
surface can be simulated and used to explore the effect of positional uncertainty. 
These are termed the “perturbed” data sets. The effect of positional uncertainty 
is then analysed by reference to the resulting modelled variograms and the effect 
on the implementation of the ELM. 

Adopting this approach tackles the situation where a measurement is 
performed at the intended location but attributed to an incorrect location. This is 
the resource model described by Gabrosek and Cressie (2002). This is a realistic 
scenario, given the practical implementation of the sampling strategy. An 
alternative approach would be to adopt the design model where the 
measurements are taken at an incorrect location but attributed to the intended 
location. The design model is not considered in this paper.

4.4.1 The effect of positional uncertainty on the variogram 

The modelled variograms for the original (i.e. unperturbed) data set and for 
the perturbed data sets are shown in Figure 3. From theory, it is expected that 
positional uncertainty will lead to an increase in the variogram only at short lags 
(Atkinson, 1996; Gabrosek and Cressie, 2002). This is borne out for the asphalt 
and concrete surfaces, but not for the grass surface, where there is a decrease in 
the sill. Although unexpected, latter result is not inconsistent with other 
experimental results (Atkinson1996).

Figure 3. Modelled mean variograms for the three surfaces (a) asphalt, (b) concrete and (c) 
grass.  The thick line is for the “original” (i.e. unperturbed) data set and the remaining lines 

are each for different perturbed data sets (in this case  N(0,4)).

4.4.2 The effect of positional uncertainty on the ELM 

From the perspective of implementing the ELM, two questions need to be 
considered: 

1. Does positional uncertainty lead to a change in the estimate of the slope, ,
and intercept,  of the regression model? 
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2. Does positional uncertainty lead to a change in the estimate of the variance, 
2, in the regression model. 

The regression was performed using the co-located kriged blocks and pixels 
(see Section 4.2). Classical and Bayesian diagnostics were used for analysis of 
the regression. Non-informative priors were selected for the regression 
parameters, hence the point estimates were the same under both frameworks. 
The estimated parameters for the original (unperturbed data-set) are given in 
Table 1, together with examples of estimated parameters for the perturbed data 
sets (for both N(0,0.25) and N(0,4)). The examples given are for 
illustration and are consistent with other results. 

The results presented in Table 1 suggest that the introduction of positional 
uncertainty does not affect the estimate of  and . However, where  is large, 
this can affect the estimate of . For many remote sensing applications this 
change in  may be unimportant, since it introduces a small bias of less than 1% 
(Smith and Milton, 1999). The lack of sensitivity of  is encouraging. It should 
be realised that the blocks are derived from a kriged surface. Using blocks that 
are derived from conditionally simulated surfaces are likely to lead to a larger 
and more realistic estimate of the variance in the regression model (see Section 
3.1). Current research is directed at incorporating the information contained in 
the conditionally simulated surfaces. 

The above analysis was performed with a large data set that was time 
consuming and laborious to collect. Furthermore, the geostatistical analysis 
requires specialist expertise and may be time consuming. Hence the practitioner 
is likely to want to collect a smaller number of samples and adopt a more simple 
method   for    pairing    the   data.   Previous   research   (Hamm   et   al.,   2002) 
demonstrated that geostatistical analysis is not required to accurately estimate 
and , although it is  necessary  to  pair  the  co-located  point  measurements  of 

Table 1. Estimated parameters for the ELM, implemented by pairing blocks and pixels. Orig. 
indicates the results for the unperturbed data sets. P.1, P.2 and P.3 indicate different 
realisations of the perturbed surface for  N(0,0.25) and  N(0,4). 

=0 N(0,0.25) N(0,4) 
 Orig P.1 P.2 P.3 P.1 P.2 P.3 

-0.76 -0.76 -0.75 -0.74 -0.75 -0.67 -0.71 
0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 

0.53 0.53 0.53 0.53 0.53 0.53 0.52 

reflectance and pixels. If the user does not require an accurate estimate of  for 
their application, they might, feasibly, make a limited number of field 
measurements (perhaps less than 10 per target) and record the locations. This 
scenario was recreated by randomly selecting 1, 3 and 10 measurements for each 
target, pairing them with their co-located pixel value, and inputting the data 
pairs into the regression model. A large perturbation of the location may, 
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therefore, lead to a field measurement being paired with an adjacent pixel and 
the objective was to investigate the implications of this. 

Results of this analysis are shown in Table 2, for the cases of 3 and 10 
measurements per target. The results for the case of 1 measurement per target 
are not shown, since classical and Bayesian diagnostics indicate that we would 
have low confidence that  0 and  0 (95% confidence interval). Where 3 
and 10 measurements are used it is sometimes found that  0 (95% confidence 
interval). As before, this issue with  may not concern the practitioner (who 
might set  = 0). Of much greater concern is the variability that is introduced 
into the estimation of , since small changes in this parameter can lead to large 
changes in predictions of reflectance, the magnitude of which will vary with the 
brightness of the target. This effect is illustrated in Figure 4 and is likely to 
seriously concern the practitioner, especially if they are interested in targets that 
are bright or dark relative to the mean reflectance value. In addition to this 
variability in the point estimates of the parameters ( ,  and ), the positional 
uncertainty also increases the standard deviation of the estimated parameter. 
This effect leads to a decrease in the precision of predictions based on the ELM, 
as illustrated, for an analogous case, by Equation 4. 

Table 2. Estimated parameters for the ELM, implemented by pairing field measurements and 
pixels. The top (bottom) set is for the scenario where 10 (3) measurements are taken for each 
target. Orig. indicates the results for the unperturbed data sets. P.1, P.2 and P.3 indicate 
different realisations of the perturbed surface for  N(0,0.25) and  N(0,4). The * indicates 
that the estimated parameter is not significantly different to 0 (95% confidence interval). 

=0 N(0,0.25) N(0,4) 
 Orig P.1 P.2 P.3 P.1 P.2 P.3 

-0.64* -1.06 -0.73 -0.67 -0.08* -1.03 -0.86 
0.0029 0.0030 0.0029 0.0029 0.0027 0.0031 0.0030 

0.82 0.83 0.94 0.78 0.92 1.05 0.76 

-0.45* -1.33 -0.53* -0.64* -0.48* -1.75* -0.76* 
0.0029 0.0031 0.0029 0.0029 0.0028 0.0033 0.0029 

0.65 0.90 0.51 0.83 0.88 1.51 0.54 

5. CONCLUSIONS

The research discussed in this paper highlights several conceptual and 
practical issues. First, the effect of positional uncertainty on the variogram is 
demonstrated and the results are broadly consistent with theory and with the 
results of Atkinson (1996). Second, it implies that, given a large sample and 
when the field data are aggregated to the same  support  as  the  remotely  sensed 
data, the estimation of the slope and intercept of the ELM is not sensitive to 
realistic errors in the location of the field measurements. This is an encouraging 
result, although a fuller assessment is required, by using the conditionally 
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simulated blocks to more accurately quantify the variance in the regression. 
Finally, the practical and realistic scenario, where a relatively small sample is 
used and co-located field measurements and pixel values are combined was 
considered. It was shown that small perturbations of the locations of the field 
measurements introduce variability into the estimation of the slope of the ELM. 
This is likely to be of concern to remote sensing practioners who need to 
implement the ELM. 

Figure 4. Implementation of the ELM (for co-located pixels and field measurements), 
illustrating the possible effects of positional uncertainty in a small sample (10 per target) on 

prediction.

ACKNOWLEDGEMENTS  

This research is supported by a UK Natural Environmental Research Council 
(NERC) studentship (GT 04/99/FS/253) to N. Hamm. The NERC Airborne 
Remote Sensing Facility provided remotely sensed data. The NERC Equipment 
Pool for Field Spectroscopy provided field equipment and advice. The advice of 
P. Ribeiro and P. Diggle is gratefully acknowledged.

REFERENCES

1. Atkinson, P.M. 1996. Simulating locational error in field-based measurements of 
reflectance. In: A. Soares, J. Gomez-Hernandez and R. Froidevaux, eds, geoENV I - 
Geostatistics for Environmental Applications. London: Kluwer Academic Publishers, pp. 
297-308.

2. Bierkens, M.F.P., P.A. Fink, P. de Willigen. 2000. Upscaling and Downscaling Methods 
for Environmental Research. London: Kluwer Academic Publishers. 

3. Diggle, P.J., Jr.P. Ribeiro. 2002. Bayesian inference in model-based geostatistics. 
Geographical and Environmental Modelling. 6(2):129-146.



                                                         N. Hamm, P.M. Atkinson and E.J. Milton 102 

4. Diggle, P.J., J.A. Tawn, R.A. Moyeed. 1998. Model-based geostatistics. Applied Statistics.
47(3):299-350.

5. Gabrosek, J., N. Cressie, 2002. The Effect on Attribute Prediction of Location Uncertainty 
in Spatial Data. Geographical Analysis. 34(3):262-284. 

6. Hamm, N., P.M. Atkinson, E.J. Milton. 2002. Resolving the support when combining 
remotely sensed and field data: the case of the atmospheric correction of airborne 
remotely sensed imagery using the emiprical line method. In: G. Hunter and K. Lowell, 
eds, Accuracy 2002, Proceedings of the 5th International Symposium in Natural 
Resources and Environmental Sciences. Melbourne, pp. 339-347. 

7. Heuvelink, G.B., E. Pebesma. 1999. Spatial aggregation and soil process modelling. 
Geoderma. 89(1-2):47-65. 

8. Matheron, G. 1963. Principles of geostatistics. Economic Geology. 58:1246-1266. 
9. Milton, E.J. 1987. Principles of field spectroscopy. International Journal of Remote 

Sensing. 8(12):1807-1827. 
10. Ribeiro, Jr.P., P. Diggle. 1999. geoR / geoS: A geostatistical software library for R/S-Plus. 

Technical report ST-99-09, Department of Mathematics and Statistics, Lancaster 
University, UK. 

11. Schott, J.R. 1997. Remote Sensing: The Image Chain Approach. Oxford: Oxford 
University Press. 

12. Smith, G.M., E.J Milton. 1999. The use of the empirical line method to calibrate remotely 
sensed data to reflectance. International Journal of Remote Sensing. 20(13): 2653-2662.



GEOSTATISTICAL SPACE-TIME SIMULATION 
MODEL FOR CHARACTERIZATION OF AIR 
QUALITY

C. Nunes 1,2 and A. Soares2

1 Universidade de Évora, PortugaL. E-mail: carlanunes@alfa.ist.utl.pt 
2Environmental Group of the Centre for Modelling Petroleum Reservoirs, 
CMRP/IST, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.

Abstract: The characterization of spatial uncertainty has been addressed in earth 
sciences using spatial models, based on stochastic simulation algorithms. 
Dynamic processes are characterized by two components – space and time. 
These usually have quite different levels of uncertainty: on the one hand, the 
heterogeneity of the static component – normally related to the space – can 
sometimes not be compared with the complexity of the dynamic part of the 
process; on the other hand, the available knowledge is usually quite different 
for these two components. This is possibly the main reason why the 
development of simulation algorithms for spatial processes with a time 
component is still at an early stage. The main goal of this study is to present a 
simulation model for the characterization of space-time dispersion of air 
pollutants. The objective of this model is to predict critical scenarios to 
support air quality control and management. This space-time simulation 
approach is applied to assess the particles contamination of Setúbal Peninsula 
(South of Lisbon – Portugal); a study, that is part of a project for the 
evaluation of regional air quality risk maps. 

1. INTRODUCTION

This study presents a simulation process for the spatio-temporal 
characterization of air pollution dispersion, using simultaneous integration of 
spatial and temporal dispersion patterns. This process belongs to the family 
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of geostatistical models for the characterization of spatio-temporal natural 
resources phenomena. 

Geostatistical space-time models have been applied to several 
environmental areas, such as determination of space-time trends in the 
deposition of atmospheric pollutants (Eynon and Switzer, 1983; Bilonick, 
1985, Kyriakidis and Journel, 1999a)), estimation of rain fall or piezometric 
head fields (Bras and Rodrigues-Iturbe, 1984; Rouhani and Wackernagel, 
1990; Armstrong, Chetboun, and Hubert, 1993), spatial-temporal 
characterization of birds dispersion patterns (Santos et al, 2000), 
characterization of population dynamics in ecology (Hohn, Leibhold and 
Gribko, 1993) and design of sampling networks for monitoring 
spatiotemporal processes (Switzer, 1979). 

In methodologic terms, the proposed method approaches the space-time 
referential as a finite collection of time series correlated in space (Solow and 
Gorelick, 1986; Kyriakidis and Journel, 1999 b)).

The goal of this methodology is not the inference of values in space and 
time, but the assessment of uncertainty using several critical scenarios to 
reproduce the spatial and temporal continuity and variability of the 
phenomena (Soares, Patinha and Pereira, 1996; Nunes, Soares and Ferreira 
1999).

2. METHODOLOGY

To simulate several time series that have the same univariate, and 
bivariate statistics as the reality, a methodology composed by two main steps 
was developed (Nunes and Soares, 2002). In the first step a linear estimator 
of local cdf, for each monitoring station xu is created, for the dispersion 
phenomena taking into account the spatial and the temporal previous 
occurrences. In a second step, a simulation process creates several time 
series based on the estimators defined in first step. 

2.1 Estimation of bivariate distribution function 
(Z(xu,t),Z*(xu,t))

Assuming a value Z(xu,t) of variable Z, measured in monitoring station xu

at time t – correlated with the concentrations measured in previous time 
periods at the same station and with concentrations measured at 
neighbouring monitoring stations at same time period, values of Z(xu,t) can 
be generate for all time periods and for all monitoring stations using the 
conditional distribution functions: 
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Note that in this case study the value Z(xu,t) is only correlated with the 
concentrations measured in previous time periods at the same station and 
with concentrations measured at neighbouring monitoring stations at same 
time period. So the space-time croos-covariances are neglected during 
estimation. 

The main problem is how to estimate these cdf with a limited set of data 
– the time series of a few monitoring stations.  

The idea of this paper is to calculate an approximation to these 
distribution functions using a linear combination of conditioning data: 

j
juuj

i
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Based on historical data, bivariate histograms of Z(xu,t) and Z*(xu,t),
where Z*(xu,t) is defined by: 

j
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i
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Can be estimated for each monitoring station and conditional 
distributions can be calculated from them. These weights can be computed 
by, for example, simple kriging. 

With this approach, bivariate distribution functions (Z(xu,t), Z*(xu,t)) can
be estimated for each monitoring station from historical data, which allow 
the second step of this methodology, the simulation of Z(xu,t) values.

2.2 Simulation process 

The values Z(xu,t) in each spatial location xu at a time t are generated in a 
iterative simulation process and starts with the calculation of the 
conditioning data of [2], the estimated value Z*(xu,t). Afterwards, the 
conditional distribution F(Z(xu,t)| Z*(xu,t) is retained from the estimated 
bidistribution function (Z(xu,t), Z*(xu,t)). Finally, a value z is drawn from the 
conditional distribution F(Z(xu,t)| Z*(xu,t). The process continues until all 
monitoring stations time series have been simulated.  

The process can be summarized as follows. After defining the number of 
periods that are to be simulated in all monitoring stations, sequential 
simulation of the space-time process starts with a small set of seed values 
Z(xu,t-i). These are usually contiguous values taken from the historical data. 
The sequential procedure is illustrated in the following steps: 
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i- Define randomly the monitoring station location xu to be 
simulated at time t.

ii- Estimate of Z*(xu,t) according to [2] taking into account the 
seed values in the first steps and the previously simulated 
values afterwards. 

iii- The conditional distribution F(Z(xu,t)| Z*(xu,t)) is retained 
from the bi-distribution (Z(xu,t), Z*(xu,t)) previously 
estimated for the monitoring station xu.

iv- The simulated value Zs(xu,t) of time t at xu is drawn from 
F(Z(xu,t)| Z*(xu,t)).

v- This value Zs(xu,t) is added to data set. Return to step i) to 
simulated all monitoring stations for the same period t . 
When all monitoring stations, in time t, were simulated, 
return to i) with t=t+1, until all time series are simulated 

Figure 1. Sampling the the bidistribution  (Z(xu,t), Z*(xu,t)). 

Generate Zs
(xu,t) values from F(Z(xu,t)| Z*(xu,t)).

In step iii) a conditional distribution F(Z(xu,t)| Z*(xu,t)) is defined or, i.e.,
the conditional histogram is retained from the global bi-histogram (Z(xu,t)|
Z*(xu,t)) (see fig.1). 

To draw a simulated value z from the F(Z(xu,t)| Z*( xu,t)), one follows the 
direct sequential simulation (dss) approach (Soares, 2000): the idea is to 
draw a value z from a portion of the conditional histogram (Z(xu,t)| Z*( xu,t)),
centered at the simple kriging estimator Z*( xu,t) and with a local variance 
determined by the  conditioning data of [2]. In dss algorithm local variance 
is given by simple kriging variance. In this case as the same conditioning 
pattern is used, the kriging variance values are the same. Hence, at each 
location xu,t ,local variance ’2(xu,t) is calculated  by the surrounding data  - 
Zs(xu,t-1), Zs(xu,t-2),…, Zs(xu,t-i) , Z

S(xu+1,t) Z
S(xu+2,t), …, ZS(xu+j,t) - and it is 
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standardised by ’2 (xu) which is the maximum ’2 (xu,t) variance value 
observed for all times t at the same monitoring station xu,.
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Once it is defined the kriging estimate Z*(xu,t) and local variance ’2(xu,t)
a value z is drawn from the conditional distribution F(Z(xu,t)| Z*(xu,t))
(annex 1).

The results of this simulation technique reproduce the statistics of 
observed data (real data): histogram and descriptive statistics. Theoretically, 
the spatial and temporal variograms are reproduced once the value z is 
drawn from the local distribution centered at the simple kriging estimator 
and with simple kriging variance (Journel, 1994). In this case [3] was used as 
a local variance. It is an approximation but temporal and spatial variograms 
succeed to be reproduced. 

3. CASE STUDY 

3.1 Air quality of Setúbal Peninsula 

This case study aims at characterizing air quality in the Setúbal Peninsula. 
Particulate emissions from three main non-diffuse sources – a cement 

plant, a power plant and a pulp mill – are periodically measured in a set of 
monitoring stations on daily average basis during 6 months (from 1/2/1997 
to 31/7/1997)  (Figure 2). 

The global descriptive statistics are presented in Figure 3. Table 1 shows 
the descriptive statistics for each monitoring, during the referred period of 
time.

The most time consuming part of the data analysis and description is 
typically the description of spatial and/or temporal continuity. Though the 
variogram is the tool most commonly used by geostatiscians, it often suffers 
in practice from the combined effect of heterocedasticity and the preferential 
clustering of samples in areas with high values. In such cases, there are many 
alternatives that may produce clearer and more interpretable descriptions of 
spatial continuity. Of these alternatives, transformations of the original 
variables using local means and standard deviations are already quite 
common alternatives used by practioners. 
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Figure 2. View of Setúbal peninsula with monitoring stations ( ) and pollutant sources ( ). 

Figure 3. Histogram, distribution function and descriptive statistics of global data. 

Table 1. Descriptive statistics of each monitoring station. 

 PA SF SO SE SU TR P1 P2 P3 P4 P5 P6 

Min. 13.28 8.01 8.67 5.15 1.51 2.31 11.00 5.40 10.80 11.00 18.10 3.10 

Max. 83.22 79.58 71.43 57.44 62.92 38.02 97.50 151.40 120.80 114.30 107.50 86.50 

Mean 36.41 32.21 26.38 25.57 21.85 12.53 48.69 37.94 55.41 58.75 52.64 35.28 

SD 13.73 15.72 14.84 13.56 12.79 7.12 21.76 23.14 27.50 23.79 21.71 17.16 

Global statistics and variograms of transformed experimental data are 
shown in Figures 4 and 5, respectively. 

Mean Variance Min Max Skewness P95 

31.59 429 1.51 151.4 1.19 70.2 
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Figure 4. Histogram, distribution function and descriptive statistics of transformed data. 

Figure 5. Spatial and temporal variograms of standardized data. 

The methodology presented in section 2, was applied to these 
standardized data that were back transformed to the local original mean and 
standard deviation after the simulation process.  

3.2 Space-time simulation of particulate concentration 

The simulation process began with a small set of sequential values taken 
from the case study. Thirty different simulations were computed using the 
explained methodology. Global descriptive statistics of three detailed 
simulation examples, in standardized scale, are shown in Figure 6 and Table 
2.

Comparing these results with the original parameters (Figures 4 and 5) 
one can see that this methodology reproduces the global statistics of the real 
data. Also the statistical parameters of these thirty simulations, for each 
monitoring station, have honored the statistics of the experimental data.  

Mean Variance Min Max Skewness P95 

0 0.99 -2.11 4.95 0.71 1.65 

a) Spatial Variogram (isotropic)  b) Temporal variogram 
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Figure 6. Histograms, spatial and temporal Variograms. 

Table 2.  Global descriptive statistics of the 3 detailed simulation examples. 

As mentioned, to reproduce the original phenomenon, it was necessary to 
apply a back-transformation for each monitoring station xi:

iiii )*t,x('Z)t,x(''Z

In figures 7, 8 and 9 the experimental data and two different simulations 
for three monitoring stations (SF, PA and P3, respectively) can be seen. 

In the original scale, the histograms and the statistics descriptive observed in 
real data (figure 3) are honoured in all space-time simulations.  
Note: Because of the heterocedascity observed in monitoring stations, spatial 
variograms where computed with standardized data by the local mean and 
variance of the monitoring stations. Simulations, computed with standardized 
data, reproduce the spatial patterns, as they are revealed with spatial variograms 
of fig 6. After the transformation to the original particulate concentration 
variable, local means and variances of the monitoring stations mask, as they do 
with the experimental data, the spatial pattern. 

Simulation 1 Simulation 2 Simulation 3 

Histogram 

Spatial

variogram 

Temporal 

variogram 

 Mean Variance Min Max Skewness P95 

Ex. 1 0.1 1.14 -2.11 4.95 0.74 2.12 

Ex. 2 0.07 1.1 -2.11 4.95 0.85 1.85 

Ex. 3 0.16 1.05 -2.11 4.95 0.73 1.85 
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Figure 7.  Particulates concentration measured at SF and two simulations (S1, S2). 

Figure 8.  Particulates concentration measured at PA and two simulations (S1, S2). 
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Figure 9.  Particulates concentration measured at P3 and two simulations (S1, S2). 

4. CONCLUSIONS

The proposed methodology of space-time simulation of natural phenomena 
showed very promising results for the present case study of particulate 
concentration characterization.  

The spatial-temporal simulations, covering the monitoring stations 
localizations for all time t, can be used as conditioned data to a spatial 
simulation, for each time t, allowing the simulation of entire area, for any 
simulated time t. 

The simulation methodology succeeded to reproduce the main space-time 
patterns as they are revealed by spatial variograms between monitoring stations 
and average time variograms of all monitoring stations. 

The proposed space-time simulation model allows for the assessment of 
extreme and risk situations reproducing the impact of air quality on the 
neighbourhood eco-systems. 
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ANNEX 1 

A Gaussian distribution function can be used as a tool to sample the local 
bivariate distribution depending on the local variability information: 

Suppose  is the normal score transform of original z(x,t) values: 

y(x)= (z(x,t))      with         G(y(x))=FZ(z(x,t))             (4) 

The local estimate Z*(xu,t) has the equivalent Gaussian value y*(xu) = 
(z*(xu) which, together with the 2(xu,t) estimation variance, can define a 

Gaussian cdf  -G(y*(xu),
2 (xu,t)).

To simulate a new value zs(xu,t) the following sequence of steps is used: 
Generate a value p from a uniform distribution U(0,1) 
Generate a value ys from G (y*(xu),

2
’(xu,t))

ys= G-1(p)                       (5) 

Finally, a simulated value zs(xu,t) is obtained by the inverse transform   
-1:

zs(xu,t)=
-1(ys)                                         (6) 

This means that zs(xu) is sampled from intervals of FZ(z) defined by the 
local estimates Z*(xu,t) and local  variance 2(xu,t).

Figure 1. Illustrates the explained methodology applied to the F(Z(xu,t)|Z*(xu,t)). 

It is important to note that the Gaussian transformation is used solely for 
sampling intervals of the bidistribution FZ(z). It does not have any role in the 
estimation of local cdf, hence no Gaussian hypothesis of the original values 
is assumed. The entire sequential procedure is performed with the original 
variable Z(x). 

G(y) G(y(xu,t)*, 
2 (xu,t))  local Fz(z) 

p- random 

(U[0,1])

ys
zs(xu,t)=

-1(ys) ys= G-

1(p)
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Abstract: In the U.S., particulate matter (PM10) is considered an important criteria air 
pollutant and it is monitored throughout the country by means of a 
considerably dense network of stations.  Because of the health risks associated 
with PM10, it is important to study carefully the spatiotemporal distribution of 
the air pollutant.  In the last decade, the modern BME approach has emerged 
as an advanced function of temporal GIS (TGIS).  The BME approach has 
certain powerful features and has been used for mapping PM10 and PM2.5 
distributions in the U.S. and abroad.  In this work we propose an approach to 
use available information to develop probabilistic soft data about the annual 
arithmetic average of PM10, and we use the BME framework to rigorously 
process that information and produce realistic spatiotemporal maps of PM10 
distribution over the US.  We apply the approach presented on a large PM10 
dataset from the USEPA AIRS database covering the 1984 to 2000 period. 

Key words: Particulate matter, space/time, mapping, Geostatistics, BME, soft data 

1. INTRODUCTION 

In the U.S., particulate matter of aerodynamic diameter less than 10 
micrometer (PM10) is considered an important criteria air pollutant and is 
monitored throughout the country by means of a considerably dense network 
of stations.  PM10 is now referred to as the “coarse” particulate matter by 
comparison to the finer PM2.5 criteria air pollutant.  Because of the health 
risks associated with PM10 [1], it is important to study carefully its 
spatiotemporal distribution in the air.  In the last decade, the modern 
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Bayesian Maximum Entropy (BME) approach has emerged as an advanced 
function of temporal GIS (TGIS).  The BME approach [2,3] has certain 
powerful features and has been used for mapping PM10 distributions in the 
U.S. and abroad [4,5,6].  In this work we are concerned with estimating the 
space/time distribution of the annual arithmetic average of PM10 over the 
United State.  The annual arithmetic average provides a measure of the 
chronic exposure to PM10, which is of concern for long-term human health 
effects [1].  A critical aspect of annual arithmetic average measures is that 
they have varying level of uncertainties depending on the number of 
observations available, and they display a high variability in both space and 
time.  In this work we propose an approach to use available information to 
develop probabilistic soft data about the annual arithmetic average of PM10,
and we use the BME framework to rigorously process that information and 
produce realistic spatiotemporal maps of PM10 distribution over the US. 

A spatiotemporal random field (S / TRF ) Z(p) is used to represent the 
randomness and correlation structure of the annual PM10 arithmetic average 
field across space and time.  The vector p (s, t)  defines a point in the 
space s  and time t  domain.  Given certain general knowledge about the 
entire Z(p) field (such as its mean trend and covariance structure), the BME 
method defines a space of plausible events, and then restricts this space to be 
consistent with available site-specific knowledge.  The site specific 
knowledge includes hard data (accurate measures) and soft data 
(probabilistic description of the possible values for Z(p) at some data points).  
After processing the general knowledge (mean and covariance) and 
employing a Bayesian conditionalization rule on the hard and/or soft data, 
BME yields a posterior probability density function ( PDF ) that 
characterizes Z(p) at every point of a mapping grid, from which informative 
space/time maps of the annual PM10 arithmetic average are constructed.  The 
BMElib package is used in this work, and readers are referred to the 
associated book [7] for more detailed information about the practical 
implementation of the BME method. 

2. THE PM10 DATASET IN THE US 

The PM10 data used in this analysis is based on PM10 measurements 
collected at 1168 monitoring stations distributed throughout the United 
States (Fig. 1).  For each of the monitoring station the USEPA AIRS database 
[8] provides annual statistics over a 17-year period (1984-2000).  Several of 
the 1168 monitoring stations were only in service for part of the 17 years so 
that annual statistics was available for only 7327 (or 37%) of the 
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Figure 1. Map of the location of the 1168 PM10 monitoring stations in the US. 

1168*17= 19856 possible space/time data points.  The annual statistics for a 
given data point available in this work consist only of the three following 
variables: (1) the number nobvs of PM10 observations collected over the year 
(usually 24-hour average measurements), (2) the arithmetic average Cave of 
these observations, and (3) their 95 percentile C0.95 (i.e. the value that was 
only exceeded 5% of the time).  Exploratory data analysis revealed that Cave

had a skewed distribution toward positive high values (top of Fig. 2), while 
log-transformed Cave were approximately normally distributed (bottom of 
Fig. 2). 

Figure 2. Frequency distribution (histogram) of Cave (PM10 in g/m3) and log(Cave). 
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Investigation of the AIRS PM10 dataset also revealed that nobvs had a wide 
distribution of values (Fig. 3), with a mode of about 60 (i.e. the annual 
statistics for most data points was based on about 60 observations) but a 
minimum of 1 (i.e. several data points had only 1 observation) and a 
maximum in excess of 300.  Furthermore the variance of the observation 
values, as indicated by C0.95, varied significantly from data point to data 
point.  The variation of the number of observations and variance leads to 
calculated arithmetic averages Cave that have varying level of reliability, and 
it is critical that these different levels of reliability be incorporated in the 
analysis.  For instance we found that nobvs=1 for as many as 46 data points, 
leading to 46 calculated arithmetic average Cave that are a lot less reliable 
than those obtained at data points with nobvs=60.  As a consequence we 
propose an approach that rigorously integrates the different levels of 
reliability in the calculated Cave by treating them as soft data in the BME 
framework. 

Figure 3. Frequency distribution of the number of observation nobvs.for each data point. 

3. GENERATING SOFT DATA 

Let Z(p)=Z(s,t)=T-1
],[

),(
Tttu

uCdu s , where T=1 year, be the S/TRF 

representing the annual arithmetic average at spatial location s=(s1,s2) and 
time t of the instantaneous PM10 concentration C(s,u); u [t,t+T].  We 
assume that over the year [t,t+T] for which the observations are collected at 
a data point p=(s,t) the expected value =E[C(s,u)]; u [t,t+T], is constant, 
and that ergodicity applies so that  is approximately equal to Z(s,t).  For 
that year the calculated arithmetic average Cave=1/ nobvs obvs,1 ni iC  is an 

estimator of the expected value  at p, where Ci are the nobvs observation 
values of PM10 concentrations over the year.  Linear regression theory holds 

that )//()( obvsave nsC  is student-t distributed with nobvs-1 degrees of 

freedom, where s2 is an estimator of the variance of the nobvs observation 
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values assumed independent.  In our work we had to use C0.95-Cave to obtain 
an estimate of s using s  (C0.95-Cave)/1.65, but future work should use the 
classical s2= 2

,1
aveobvs )()1/(1

obvsni
i ZCn  estimator when that information is 

available.  Hence for each of the 7327 space/time data point p we use Cave,
nobvs and C0.95 to obtain a student-t probability density function (PDF) of 
Z(p).  Letting z be the random variable representing the S/TRF Z(p) at a data 
point p, and substituting with z under the ergodic assumption that they are 
equal over the averaging year corresponding to the data point p, we get that 

v= )//()( obvsave nsCz  is student-t distributed with nobvs-1 degrees of 

freedom.  The PDF of the variables z and v are related by the relationship 
fS,z(z)dz=fv(v)dv, from which we immediately obtain that the PDF for z is 

fS,z(z)=1/sn fv( (z-Cave)/sn ), where sn=s/ obvsn , and fv is the student-t PDF 

with nobvs–1 degrees of freedom.  This student-t PDF provides the soft 
probabilistic data that correctly prescribe different levels of reliability of our 
knowledge of the true (but unknown) value of Z(p) at the data point p as a 
function of nobvs and C0.95-Cave (i.e.. a small nobvs or a large C0.95-Cave will 
yield a soft PDF with wide spread, i.e. high uncertainty of the actual 
arithmetic average Z(p) at that data point).

4. SPACE/TIME VARIABILITY OF PM10 

The S/TRF Z(p) representing the annual PM10 arithmetic average was 
log-transformed to obtain the S/TRF Y(p)=log(Z(p)) with an approximately 
normal distribution (Fig. 2).  The Y(p) field was further decomposed into a 
mean trend function my(p) and a residual S/TRF X(p), such that Y(p)= 
my(p)+X(p).  The mean trend function was obtained with the BMElib
package by using a moving window average of Y-data with an exponential 
space/time filter.  This mean trend essentially “smoothes” the spatiotemporal 
fluctuations, and yields a residual field X(p)=Y(p)-my(p) that is homogenous 
in space and stationary in time.  The mean trend may be considered to be a 
deterministic function (i.e. a known function), while the residual field 
models all the uncertainties and variability associated with PM10 over the 
space/time domain of interest.  The space time variability of X(p) is 
described in terms of the space/time covariance function cx(r, )=E[(X(s,t)-
mx(s,t))(X(s’,t’)-mx(s’,t’))], where r=|s- s’| is the spatial lag and and =|t-t’| 
is the temporal lag.  Values of the covariance function cx(r, ) where 
estimated with the BMElib package for different classes of spatial and 
temporal lags.  The experimental values estimated by the BMElib package 
using the log-transformed, mean trend removed X-data are shown in Fig. 4 
as a function of spatial lag classes (top of Fig. 4) and temporal lag classes 
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(bottom of Fig. 4).  The theoretical covariance model selected to fit these 
experimental covariance values is a non-separable model that consists of the 
superposition of two exponential models with different spatial and temporal 
scales, as is shown in the following equation 

cx(r, )=c01 exp(-3 r/ar1) exp(-3 /at1) + c02 exp(-3 r/ar2) exp(-3 /at2)

Figure 4. Covariance of X(s,t) as a function of spatial lag and temporal lag. 

The first covariance component has a covariance sill of c01=0.0141, a 
spatial range of ar1=4 degrees (or approximately 448 Km on the Earth 
surface), and a temporal range of at1=1 year, while the second component 
has a sill of c02=0. 0798, a spatial range of ar1=0.15 degrees (or 
approximately 16.8 Km), and a temporal range of at1=45 year.  We 
hypothesize that the first covariance component corresponds to PM10

fluctuations that are weather-related, with large spatial structures (e.g. large 
rainfall or wind events, cleaning airborne particulate over large spatial areas 
of a few hundred Km in size), but a short temporal scale of about 1 year 
(likely corresponding to seasonal fluctuations).  Conversely we attribute the 
second covariance component to fluctuations that are caused by long-term 
human activities, with a spatial influence of just 10 to 20 Km (corresponding 
to the size of urban centers with high car traffic and the zone of influence of 
large point source of PM10), and a temporal range of long duration of 
approximately 45 years.  It is interesting to note the lasting effect of human 
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activity on particulate matter pollution in the environment, which is an 
additional reason for the concerns associated with air pollution.

5. SPACE/TIME BME ESTIMATION RESULTS 

In the space/time estimation of the annual PM10 arithmetic average we 
are concerned with obtaining a BME estimate of Z(p) at any estimation point 
pk, and characterizing the associated estimation error by means of a 
confidence interval.  The mean and covariance models and the set of 
probabilistic (soft) data provides the knowledge bases used in BMElib to 
calculate the BME posterior PDF of Z(pk).  The covariance model cx(r, )
provides the basis of the general knowledge of the log-transformed residual 
S/TRF X(p).  Hence we need to transform the student-t soft PDF for the Z-
data to soft PDF’s for log-transformed mean trend removed X-data.  Once 
the soft data has been transformed and processed by BMElib, we obtain the 
BME estimate and confidence interval of X(p) at the estimation point, which 
must be back-transformed to obtain the BME estimate and confidence 
interval of Z(p).  The steps to transform the Z-soft data and to back-
transform the X-BME estimates are summarized as follow:  
1. At each of the 7327 space/time data points we use Cave, nobvs and 

C0.95 to obtain the soft PDF for Z, fS,z(z)=1/sn fv( (z-Cave)/sn ), where 
fv is the student-t PDF with nobvs–1 degrees of freedom, sn=s/ obvsn ,
and the standard deviation s is estimated from the 95 percentile C0.95 as 
s=(C0.95-Cave)/1.65 (as mentioned earlier one should use the classical 
variance estimator s2 if that information is available); 

2. If at a monitoring station C0.95=Cave for a given year (which happens 
when there are few observation values), then the standard deviation is 
conservatively taken as the largest standard deviation of all the recorded 
years at that monitoring station.  Furthermore when nobvs=1, the soft PDF 
is simply taken as the Gaussian PDF with mean Cave and standard 
deviation equal to the largest recorded for that monitoring station. 

3. The soft PDF for Y=log(Z) is given by fS,y(y) = z fS,z(z), where z=exp(y);
4. The soft PDF for X=Y-my is given by fS,x(x) = fS,y(y), where y=x+my;
5. Using BMElib we obtain the BME posterior PDF for X(p) at an 

estimation point pk, from which we get the median estimator Xk,median (i.e. 
the value that has a probability of 0.5 to be exceeded), and the confidence 
interval CIx=[ Xk,l , Xk,u] for some predefined confidence level (e.g. the 
95% confidence level). 

6. The BME median estimate and confidence interval for Y are obtained by 
translation, i.e. Yk,median=Xk,median+my(pk) and CIy=CIx+my(pk), where my(pk)
is the mean trend at the estimation point pk;
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7. Finally the BME estimate and confidence interval for Z are obtained 
using the reciprocal of the log transform, i.e. Zk,median=exp(Yk,median) and 
CIz=exp(CIy)=[exp(Yk,l)  , exp(Yk,u)].

(a) 

(b) 

Figure 5. Annual PM10 arithmetic average BME estimates at (a) monitoring station 1, 
and (b) station 829.  Results for hard data are on top plots and soft data on bottom plots. 

In Figs. 5.a and 5.b we show the temporal plots of the annual PM10

arithmetic average at monitoring station 1 (Fig. 5.a) and monitoring station 
829 (Fig 5.b).  In each figure the top plot shows the estimation obtained if 
the calculated arithmetic average Cave at each monitoring event was treated 
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as hard data (i.e. deeming that Z= Cave with a probability one), while the 
bottom plot shows the result obtained in this work where soft data is used to 
represent uncertainties associated with the calculated arithmetic average.  
The soft PDF fS,z(z) is shown vertically for each data point, and the number 
of observations nobvs is written at the top of the soft PDF.  As can be seen in 
the figures the spread (or uncertainty) of the soft PDF varies substantially 
from one data point to another, with wider spread (more uncertain data) 
associated with smaller number of observations nobvs and with higher 
variance s2 in the observation values.  The BME median estimate of the 
annual PM10 arithmetic average is shown with a dashed line, while the 
confidence interval corresponding to the 95 % confidence level (i.e. the 
interval that contains the true Z(p) with a probability of 0.95) are shown with 
dotted lines.  As can be seen from these plots, the soft data approach 
presented in this work leads to results that are more realistic and physically 
meaningful than the classical approach of just taking Cave as hard data.  
Consider for example the data point for year 1988 in Fig. 5 (b).  The Cave

was obtained on the basis of only one observation, yielding a soft PDF with 
a wider spread than neighboring points, which is much more realistic than 
treating it as hard data. This results in an upper bound of the 95% confidence 
interval that is significantly higher than that obtained for hard data, which 
has a critical impact on any sort of risk assessment. 

The BME median estimate for the soft data approach presented in this 
work can also be plotted as spatiotemporal maps.  In Fig 6.a and 6.b we 
show the spatial map of the BME median estimate of the annual PM10

arithmetic average for years 1984 and 2000, respectively.  These maps show 
the change over time in the spatial distribution of PM10 chronic levels in the 
US, with a clear general decline of the air pollutant.  At each point of the 
map BME provides the full posterior PDF of the annual PM10 arithmetic 
average, from which can be extracted the estimation error variance 
normalized by the estimated value as shown in Fig 7 for year 2000.  This 
map provides a measure of the estimation uncertainty of the map, which is 
lower at data points and increases as we go away from the data points.  
Using the BME posterior PDF we may also delineate areas that are such that 
the probability of Z being smaller than a critical values is at least equal to 
some acceptable confidence level (say. 0.95).  For illustration purpose we 
show in Fig. 8.a and 8.b the areas not meeting this criteria, i.e. areas not 
attaining a probability of at least 0.95 that Z is less than the 50 g/m3

national standard (non attainment areas).  These figures show that the non-
attainment areas at the 95% confidence level have considerably diminished 
for PM10,, so that except for Southern California most of the US is attaining 
the national standard with a 95 % confidence level (however on-going work 
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is showing that the situation is different when considering the fine particulate 
matter criteria air pollutant, PM2.5).

(a) 

(b) 

Figure 6. BME maps of annual PM10 arith. average ( g/m3) in (a) 1984 and (b) 2000. 

6. CONCLUSION 

In this work we present an approach to model as soft information the 
annual statistics data available for PM10 over the US, and we use the BME 
framework to rigorously process that information and produce realistic 
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spatiotemporal maps of the annual PM10 arithmetic average.  The approach 
presented uses a student-t distribution that properly reflects varying levels of 
reliability of the soft data that depend on the annual number of observations 
and the variance of these observation values.  Using the BMElib package we 
processed the large AIRS database of annual PM10 statistics for 1168 US 
monitoring stations over years 1984 to 2000, and we obtained spatiotemporal 
maps of annual PM10 arithmetic average distribution that are more realistic 
than those obtained with classical approaches not accounting for the 
composite space time effects and the uncertainties of the soft data.  

Figure 7. Normalized estimation error variance of the PM10 estimates in 2000. 
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Figure 8. Areas not attaining a 95% probability of annual PM10 arithmetic average < 50 
g/m3 for (a) year 1984 and (b) year 2000. 
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Abstract: The objective of this work is to create a tool for demography characterization 
and management of the Iberian hare population in order to the yearly trend and 
evaluate recovery of the species in Portugal. The number of hunted animals 
caught in various hunting resorts is used as an indirect measure for the 
effective population size and distribution. The main output of the proposed 
tool consists of spatial maps illustrating the yearly abundance of the species in 
Portugal. Maps showing habitat carrying capacity, and the associated variance, 
which is largely due to local lack of information and to observation and 
sampling errors, are also presented. 

Key words: Iberian hare, direct sequential co-simulation, carrying capacity, Gompertz 
curves 

1. INTRODUCTION 

Despite the controversy about which of three hare species actually 
occupy the Iberian Peninsula – Lepus granatensis, Rosenhauer, 1856 
(Iberian hare), Lepus europaeus, Pallas,1778 (European hare) and Lepus 
castroviejoi, Palacios, 1976 (Broom hare) – Lepus granatensis has the 
largest distribution and is the only hare species present in continental 
Portugal. The Iberian hare prefers flat, sparsely-forested terrains and habitats 
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related to extensive agriculture, and associated with vast agricultural 
landscapes, open forests and dispersed shrubs (Palacios and Meijide, 1979). 

Until 1986, the Iberian hare populations were excessively hunted 
reaching the situation in which the population could not support the usual 
hunting pressure, so that it became necessary to restrict hunting permission 
to every second year. After 1986, recovery of the Iberian hare populations 
was actively promoted through two measures. Firstly, through the 
publication of the new hunting law, regulating the concession of demarcated 
hunting zones to hunting associations and hunting-related tourist industry. 
Secondly, with the elaboration and approval of management plans for 
sustainable hunting, essentially based on an average non-hunting period of 
three years followed by a careful exploitation that would not compromise the 
meanwhile recovered populations. 

To validate the management of the parties involved, they are obliged to 
report hunting results on a yearly basis. These hunting results, 
geo-referenced and indexed to a surface, reflect the population’s state at a 
given place and time and population change when a series of years’ data are 
analysed. Considering that hunting legislation (and, therefore, pattern) for 
Iberian hare in Portugal did not change over the years under study, and 
assuming that hunting results are directly related to the species’ population 
size in a given area, these hunting results will directly reflect species 
abundance. Consequently, the results presented here may be interpreted in 
terms of a familiar population dynamics models. 

Population density can present various patterns of annual trends 
(Hedrick, 1984). When density is relatively low, as for the present species, it 
tends to evolve with positive growth. Population growth is dependent on 
factors intrinsic to the population, like birth and death rates, and extrinsic 
factors, like competition, predation and environmental limitations. 
Interaction of these factors will determine the population’s future size and 
rate of change, until it reaches a state of equilibrium with the habitat’s 
biophysical conditions, termed the habitat’s carrying capacity (k).

Considering intrinsic factors only, recruitment consists of births and 
immigration into the study area and losses consist of mortality and 
emigration. The Iberian hare’s local mobility is believed to be small, 
yielding negligible gains or losses. Therefore population change is mainly 
determined by the balance between survival and mortality rates, with 
mortality caused either naturally or by hunting. As long as this balance is 
positive, growth continues to increase, following an S or sigmoid curve in 
time, until a threshold or limit determined by the given habitat resources is 
reached. The population’s growth, initially exponential, reduces its speed as 
it approximates the state of generic balance with its environment evolving 
asymptotically towards the theoretical limit termed carrying capacity (k).
This growth pattern can be modelled by several mathematical functions, for 
instance by Gompertz curves. These functions are characterized by: the 
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lower asymptote being the population-growth starting level, the upper 
asymptote as the carrying capacity and the point of inflexion as the time of 
maximum growth. The Gompertz curve is given by the equation:  

)( MxBeCeAY  (1) 

where Y = dependent variable, x = time, A = the lower asymptote, C = the 
upper asymptote, M = the time of maximum growth and B = the growth rate. 

Although the present study is based on evaluating the change of a factor,  
which causes mortality, and is measured using the number of animals hunted 
per 100 ha per year, the equation is assumed valid for population 
development as hunting pressure is directly related to the hare’s population 
level. According to unpublished information and data collected in Portugal, 
the maximum carrying capacity is about 50 hares 100 ha-1 for the best 
habitat, allowing for a maximum sustainable hunting pressure of about 25 
hares 100 ha-1.

The main objective of the present study is the development of a carrying 
capacity map for the Iberian hare in Portugal, based on indirect population 
data (hunting resort reports), and the characterization of this species’ 
population dynamics. A sequence of maps illustrating the pattern and yearly 
variations of the species’ abundance is presented and the issue of one under-
sampled year is addressed using available historical information and 
sequential co-simulation methods for its estimation. Uncertainties in the final 
carrying capacity map are evaluated in terms of estimation variance.   

2. BACKGROUND OF DIRECT SEQUENTIAL CO-
SIMULATION WITH A SET OF SECONDARY
VARIABLES 

To create a map of abundance for a given under-sampled year, both the 
data collected in that period as well as historical data, corresponding to 
previous time periods, will be considered. To accomplish that objective and 
map under-sampled years, a space-time geostatistical simulation model is 
proposed, which can be summarized in the following steps: 

i) A set of spatial and time trend maps is built with historical data 
(Santos et al., 2000). These trend maps are interpreted as spatial-temporal 
random fields and are inferred in space for fixed periods of time, namely 
years. Species abundances estimated (through ordinary kriging) for each 
year and the entire area, are considered as a significant spatial trend for that 
year i, i=1, Ny conditional to historical data.  

ii) To map the abundance and respective uncertainty for a given 
under-sampled year, we propose simulation of the spatial dispersion of the 
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hare population constrained to the historical trend maps. A direct sequential 
co-simulation algorithm is used, which calls for the local estimates of the 
abundance in the year tj at location xu, z1(tj, xu) – the primary variable – based 
on abundance of n neighbourhood values for the same year z1(tj,x ) and on 
the secondary variables z2(ti,xu), i=1, Ny (j  {1…Ny}) obtained from the Ny
yearly trend maps of abundance at location xu. It is a co-located cokriging 
procedure with a multiple set of secondary variables. 

This space-time model combines data from samples from one given year 
with multiple secondary data provided by several average maps from the 
recent past, conditioned to the local correlation between values of different 
time slices.  

The proposed methodology is applied to obtain distinct local models of 
co-regionalisation between year tj and each year of historical data ti, i=1,
Ny (j  {1…Ny}). This means, that the spatial pattern of year tj can be 
correlated with different local areas at the same year and with the same local 
area at different years. The local models of co-regionalisation were 
computed on a moving window basis.  

Direct Sequential Co-simulation with a set of secondary variables forms 
an extension of the algorithm proposed by Soares, 2001, and can be 
summarized as follows: 

1. Define a random path visiting each node of a regular grid of nodes. 

2. At each node xu, simulate the value z1
s(tj,xu) using the Direct Sequential 

Simulation (DSS) algorithm: 

 Identify the local mean and variance of z1(x), z1(tj,xu)* and 2
sk(tj,xu),

using the simple co-located kriging estimator with a multiple set of 
secondary variables: 
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multiple set of Ny secondary variables is defined as follows: 

Where: 

jt
C    = Covariance between samples at locations x  and x  in year tj

atjt
uC = Cross-covariance between samples at location x  in year ta and 

location to estimate xu in year tj

btat
uC = Cross-covariance between years ta and tb at location to estimate xu

jt
      = Weights of primary information 

at
u       = Weights of secondary information 

jt
uC    = Covariance between samples x  and location to estimate xu in year tj

atjt
uC = Cross-covariance between years tj and ta at location to estimate xu

with = 1…n; = 1…n; a = 1…Ny; b = 1…Ny; j  {1…Ny}

 Locally resample the histogram of z1(xu), for instance using a 
normal score transform ( 1) of the primary variable z1(x), and 
calculate y(xu)*= 1(z1(tj,xu)*);

Draw a value p from a uniform distribution U(0,1);

Generate a value ys from G(y(xu)*, 2
sk(xu)): ys= G-1(y(xu)*, 

2
sk(xu),p);

Return the simulated value z1
s(xu)= 1

-1(ys) of the primary variable. 

3. Loop until all nodes are simulated. 

Assuming Markov-type approximation, the cross-covariance function can 
be calculated using the following relation in terms of covariance or 
correlograms (Almeida and Journel, 1994), which calls only for the 
inference of the primary variable covariance function and the correlation 
index 12(0) between the primary and secondary variable. 

The set of simulated images of hare abundance obtained for the entire 
area at time period tj allows for calculation of the average species abundance 
and uncertainty assessment. 
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3. CASE STUDY 

3.1 Estimation of yearly maps of hare population 

The first objective of this study is to present a sequence of maps 
illustrating the pattern and yearly variations of the abundance of Iberian hare 
in Portugal. Comparing the number of hunting resorts that reported annual 
results, there has been a gradual increase in the amount of available data 
since 1989, with exception of the year 1998 (Table 1). In 1998, the number 
of reserves reporting the number of hunts, was exceptionally low, mainly in 
the resorts located in the south. To improve the estimation of the hare 
abundance for this under-sampled year, a spatial-temporal simulation 
algorithm was used, whose results are presented in section 3.2.  

Table 1. Basic national statistics of collected data: number of hunting resorts (#); mean, 
variance (var), minimum (Min) and maximum (Max) of reported individuals  per 100 ha. 

Years ‘89 ‘90 ‘91 ‘92 ‘93 ‘94 ‘95 ‘96 ‘97 ‘98 ‘99 

# 118 327 322 570 1075 992 1293 1360 1557 904 1422 

Mean 0.04 0.14 0.27 0.89 1.18 1.82 2.26 2.02 2.86 1.12 2.64 

Var. 0.13 0.52 0.99 3.99 6.35 12.28 18.23 12.70 20.16 5.05 22.59 

Min 0 0 0 0 0 0 0 0 0 0 0 

Max 3.75 6.95 7.68 17.98 23.97 40.12 54.53 27.77 41.83 20.49 40.56 

Experimental variograms were calculated for the available annual density 
data and were fitted with isotropic models with two spherical model 
structures. Figure 1 illustrates examples of experimental variograms and the 
theoretical models adjusted for the sequence of the two most recent years. 
When compared to the years of ‘99, the year of ‘98 shows a high continuity, 
due to the existence of large gaps of information in the southern zone and, 
simultaneously, because this zone is characterised by a high heterogeneity as 
can be observed looking at the remaining years. 

Yearly estimated maps of hare abundance (Figure 2) were calculated by 
ordinary kriging. This sequence of maps clearly shows an increase of the 
abundance of the hare in Portugal, mainly in southern and eastern areas. 
When looking carefully at the image estimated for ‘98, smooth areas of high 
values are observable in the south, with an unrealistic propagation of the 
high values until the southern shoreline (Algarve).  

Year ‘99: (h)=0.6 Sph(a=10000)+0.4 Sph(a=90000) 
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Year ‘98: (h)=0.35 Sph(a=10000)+0.65 Sph(a=175000) 

Figure 1. Experimental variograms for the number of individuals captured per area unit, for 
the sequence of years ‘99 and ‘98 and models fitted. 

This is clearly a consequence of the reduced number of samples used in 
this particular area. Given that this area is the most significant in the 
evaluation of hare populations in Portugal, improvement of this year’s 
estimation, taking also historical data into account, is more than justified. 
Thus, the following simulation methodology is proposed: direct sequential 
co-simulation with a multiple set of secondary information, as introduced 
above. 

3.2 Improving inference for the ‘98 hare population map 
taking into account historical data 

The objective of this part of the work is the inference of a map for ‘98 
using the available historical information next to the data from year ‘98. 
Local correlation maps were computed between data of that year and of the 
remaining years as historical information and, also, between all the 
remaining years themselves. These maps of correlation were computed using 
moving windows of adaptable size, in order to include always a significant 
set of data (20 samples) that allows the calculation of a correlation 
coefficient. Given the 11 years of historical information available, 55 local 
correlation maps were constructed covering all possible combinations.  

Detailed observation of the local correlation maps relative to the year ‘98 
shows that the correlation is higher for the southern and western parts of the 
country, and diminishes through the years. For example, in the southern 
region the correlation remains higher than 0.6 for the most recent years (after 
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’96). In the western region, the correlation remains always high, given that 
they are consecutive years of almost zero recorded abundances. 

’89 ’90 ’91 ’92

’93 ’94 ’95 ’96

’97 ’98 ’99    

Number of 
individuals 100 
ha-1

0 - 1

1- 2

2 - 3

3 - 5

5 - 8

8 - 12

12 - 16

16 - 20

20 - 30

30 - 40

Figure 2. Estimated patterns of hare abundance for the sequence of years 1989–1999. 

Using the yearly estimated maps as secondary information, the maps with 
the local correlation coefficients and data from the year ‘98, 10 simulated 
images of abundance have been generated for the year ‘98 (3 simulated 
scenarios are presented in Figure 3), using the methodology of direct 
sequential co-simulation, presented above. A simple average of the 
simulated images allowed for the construction of an average image for the 
year ‘98 (Figure 4). As can be observed, the resultant modelled distribution 
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corresponds better with the data from previous and subsequent years, in 
comparison to the previous image of Figure 2.  

Figure 4 shows that the highest values of abundance are observed in the 
southern zone and the residual values for shoreline of the Algarve are now in 
agreement with the historical data. This map takes into account the 
histogram of the experimental values for the year ‘98, whichas a maximum 
of 21 individuals per 100 ha. This is a relatively low limit in comparison to 
adjacent years, mostly caused by the gap in data reported from the south. 
This final image clearly shows the main patterns of high values found in the 
historical data.

#1 #2 #3 

Figure 3. Three examples of simulated scenarios of hare abundance for the year ‘98. 

Hare abundance 
Number of individuals 100 
ha-1

0 - 1

1- 2

2 - 3

3 - 5

5 - 8

8 - 12

12 - 16

16 - 20

20 - 30

30 - 40

Figure 4. Proposed average map of hare abundance for the year ‘98. 

3.3 Carrying capacity map 

In this final part of the case study one additional map was constructed, 
illustrating the present-day trend in Iberian hare abundance. All hunting 

0

0 - 6.25

6.25 - 12.5

12.5 - 18.75

18.75 - 25

25 - 40

Number of 
individuals

100 ha-1
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resorts were classified into six classes based on the total number of 
individuals captured during 1999. A categorical, nation-wide map (Figure 6, 
left) was constructed using the multiphase indicator kriging algorithm, after 
a transformation of probability values into categorical values based on the 
maximization criteria of local and global probabilities (Soares, 1992, 
Almeida et al., 1993). All of the categories exhibit a characteristic spatial 
distribution related to habitat sustainability. 

Sinusoidal trend curves of the Gompertz type were automatically 
adjusted to the data derived from each of the classes (excluding class 1 with 
zero values) (Figure 5). Converting the map of classes into carrying-capacity 
values, using the upper-level asymptote of each class, it is possible to 
visualize trend values on the national scale (Figure 6, right). This constitutes 
a forecast trend map based on experimental data reported in 1999 by the 
hunting resorts (categorical map) and regional fitted curves. One 
disadvantage of this map is the high influence of local values from ‘99, 
leading to high heterogeneity in several areas and, sometimes, hiding 
regional tendencies. Thus, a simulation procedure conditional to the soft data 
only is proposed to obtain a smooth map of the global tendency. 
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Figure 5.Gompertz curves fitted for each interval and parameters (See eq. 1). 
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Figure 6. Left: map of interval classes. Right: class-driven trend values of carrying capacity. 

If we admit that the carrying capacity map represents the limit of the 
abundance, the proposed method consists of a carrying capacity simulation, 
imposing the abundance histogram of 1999, the variogram of these same 
data and the map of correlations between the more recent, consecutive years 
(between ‘97 and ‘99, if we exclude ‘98). Therefore, the idea is to generate 
scenarios for the evolution of hare abundance, assuming that the local 
correlations will remain steady and that we reached a histogram 
representative of data in a limit situation. Thus, 10 simulated images of 
abundance were generated, resulting in a local average map of the trend 
(Figure 7, left) and a map of variance (uncertainty) (Figure 7, right).  
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Figure 7. Left: local carrying capacity; right: local variance of simulated values. 

4. FINAL REMARKS 

There is evidence for a relationship between Iberian hare recovery and 
sustainable capacity of habitats in Portugal. Inference of missing information 
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for the year ´98, through integration of historical data series, was successful, 
allowing for integration of that under-sampled year in the annual trend used 
for the production of a carrying-capacity map. The application of non-
conditional simulation to the carrying-capacity tendency map enabled the 
filtering of anomalous records, leading to a map that is more consistent with 
the observed regional variability. 

Figure 7 left, identifies three major zones in Portugal: marginal areas 
(upper western half of the country and southern coast); areas of medium 
suitability (upper eastern half); and areas of high suitability (southern half 
with exception of the southern coast).  

The respective variance map, however, points at the presence of instable 
areas that may not yet have reached their final carrying capacity and at 
anomalous values which may have generated entropies in the calculation 
process. Some potentially exceptional areas (e.g. in central south-east) are 
apparently still in an evolutionary phase of the process.  
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Abstract: Geostatistical simulations are very popular in the petroleum and mining 
industries as they address some issues where "kriging-like" techniques fail. 
The multiple capabilities of geostatistical simulations have also proven to be 
of major interest to the environmental sciences. Non-linear estimation 
techniques such as disjunctive kriging, uniform conditioning or conditional 
expectation may be convenient for solving problems like the estimation of the 
probability of exceeding thresholds and contaminated volumes. But if these 
problems involve multiple point statistics or non-stationary cases, these 
techniques are not sufficient. Besides, in many situations, the multivariate 
aspect of the problem cannot be ignored and co simulation methods turn out to 
be the most efficient solution. The powerful contribution of geostatistical 
simulation methods to environmental issues is illustrated with applications in 
the domains of air pollution, soil contamination and hydrogeological 
modelling. The first example shows how simulations can quantify the risk of 
exposure of a city’s population to air polluted with NO2. The second example 
deals with soil contamination with poly-cyclic aromatic hydrocarbons at 
former industrial sites. The last example is taken from a national program for 
the storage of nuclear waste. When faced with the complexity of today’s 
environmental risk assessment issues, optimal decision making requires 
knowledge of the prevailing uncertainties. Geostatistical simulations provide 
an assessment framework as well as solutions to achieve this goal.  

1. INTRODUCTION 

Geostatistical simulations have been received with success because of 
their capabilities to answer complex questions related to environmental 
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issues. The simulations belong to the group of non-linear methods because 
they aim at reproducing the actual spatial distribution. Also, they provide a 
powerful means to characterize uncertainty. In this paper we want to 
illustrate the first point and particularly the fact that simulations can do more 
than other non-linear techniques (conditional expectation, disjunctive 
kriging, uniform conditioning, etc.) by demonstrating three examples of case 
studies made using the Isatis software (Bleines and al., 2001). The advantage 
of simulations arises from different aspects: relationships of any kind 
between the variables and known factors, no prerequisite of stationarity, 
taking into account support effect imaging of the heterogeneities of the 
medium to provide an input model for complex simulations of transfers. 

2. FIRST EXAMPLE: RISK OF POPULATION 
EXPOSURE TO AIR POLLUTION 

2.1 Probability of exceeding pollutant threshold 

Air quality is regulated by European directives that prescribe a set of 
limits to be respected. This example, taken from a geostatistical study made 
on behalf of Air Normand, concerns the evaluation of the risk of pollution by 
NO2 in the agglomeration of Rouen. The risk considered here involves the 
probability of exceeding a threshold of 40 µg/m³ on a yearly basis. 

The annual average of NO2 concentration can be estimated on the basis 
of measurements from 89 diffusive samplers. Sufficient spatial coverage 
over the agglomeration allows to map correctly the pollutant by kriging 
techniques. A correlation with a synthetic co-factor, combining pollutant 
emissions and population data has led to an improved estimation by means 
of collocated co-kriging techniques (see Figure 1). 

A systematic bias arises from the smoothing effect of kriging when we 
use kriging as an input to non-linear calculations like, in the present case, the 
application of a threshold. Geostatistical conditional simulations also using 
the synthetic co-factor, provide a consistent solution essentially because they 
reproduce the actual variability. But the probability of exceeding the 
threshold (see Figure 2) can be more easily calculated by the conditional 
expectation based on an assumption of multigaussian distribution of the 
pollutant (after normal score transform). By counting the collocated co-
kriging values above the threshold we find a “polluted” area of 39 300 
hectares. If now we use the conditional expectation as well as the simulation 
to calculate the polluted area with a probability of 50 % (close to what 
kriging says), we find a surface 25 % larger. In fact, by doing so we have 
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just verified the bias previously mentioned. However, simulations are not 
really necessary to calculate the probability of pollution or to determine the 
geographic boundaries of the polluted area. Simulations become more 
interesting when introducing a spatial relationship with another parameter 
like the population density in order to evaluate the proportion of the 
population that is exposed to a pollution in NO2 above 40 µg/m³.

Figure 1. Collocated co-kriging of NO2 from diffusive samplers. 

Figure 2. Probability map of exceeding a threshold in NO2 concentration. 

2.2 Consequence of the pollution on the population 

A first simple solution consists in multiplying the probability calculated 
above by the population density. We then find that there is a probability of 
50 % for 8 % of the population to be exposed and a probability of 90 % for 3 
% of the population to be exposed. This is not correct, because this solution 
ignores the variability in the position of the polluted area as illustrated for 
two simulations in Figure 3. It shows the overlapping area of the two zones 
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which are interpreted as those of highest risk in two separate simulations. In 
fact, the overlapping area is centered on the Seine river with an important 
traffic axis but no population! 

Table 1. Check lorem 

Figure 3.  Superposition of the “polluted” areas from two simulations. On the right, the 
overlapping “polluted areas” are displayed as an overlay on the population density. 

Let’s suppose that the population density is very heterogeneous, meaning 
for instance that within the most probable polluted area the population is 
scarce because of the proximity to emissions from motorway traffic. In that 
case the “naïve” calculation will grossly underestimate the risk for the 
population, basically because the pollution and the population are not 
independent, their correlation being used when simulating with the co-factor. 
The right thing to do is, after calculating for each simulation the population 
concerned, to estimate the distribution and derive statistics and probabilities. 

Applied to this case we find that instead of 3 % of the population (about 
350 000 inhabitants) being exposed to the pollution with a probability of 90 
%, we get 6.3 % by using 100 simulations (see Figure 4). 

Figure 4. Distribution of the population exposed to pollution from 100 simulations. 

In this example simulations appear to be a powerful method to estimate a 
quantity like a product of a variable (here the population density) and an 
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indicator of a second factor (here NO2>40 µg/m3). A too simplistic response 
may cause significant errors. 

3. SECOND EXAMPLE: HAZARD ANALYSIS AND 
DELINEATION OF POLLUTED AREAS 

3.1 Context 

Cleaning up a polluted site requires the delineation of areas where the 
concentration is above a critical level. True grades are always unknown, and 
kriging gives only estimated values of these grades. In order to take into 
account the (lack of) precision of the estimator, it is useful to add to the 
kriging estimate the probability with which the unknown variable exceeds a 
given level. Furthermore, the knowledge of mean grades above the threshold 
are of real interest, the cost of the remediation being directly influenced by 
the level of contamination of the areas that need to be treated. 

Interest could be put on “punctual” grades or on their mean on blocks of 
a given size. For a given threshold, support effect implies that the proportion 
of blocks with a concentration above the threshold varies with the size of the 
block. Consequently, taking into account the size of the support used in the 
remediation step – which depends on the chosen remediation technique and 
the future use of the site - is necessary. Conditional expectation and 
disjunctive kriging are able to estimate the probability to exceed a given 
threshold and the mean grade over the threshold. As soon as a change of 
support model is required, these methods require stationarity, not only local 
stationarity, and their application in a multivariate framework is not easy. 

With the availability of an auxiliary variable densely known over the 
field and correlated to the pollutant of interest, we show how hazard analysis 
might be obtained from conditional collocated co-simulations. By hazard 
analysis, given a threshold and the size of the blocks of interest, we mean the 
computation of probabilities that the threshold is exceeded, the 
corresponding volumes that have to be remediated, and the mean grades of 
pollutant over the threshold. 

3.2 Data 

We are interested in the pollution of a former coke plant in northern 
France with Polycyclic Aromatic Hydrocarbon (PAH) compounds - dataset 
provided by the Centre National de Recherche sur les Sites et Sols Pollués 
(Douai, France). We focus here on the benzo(a)pyren (BaP), a five cycles 
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non-volatile, non-soluble and highly carcinogenic PAH. 52 points have been 
sampled on a regular square grid with an interval of 10 m and local 
narrowings at 5 m with a 1 m deep core drill. The mean concentration in BaP 
equals 37.8 mg kg-1 with a standard deviation of 96.2 mg kg-1 (Jeannée, 
2001). The usual remediation value for this pollutant being 10 mg kg-1, at 
least some areas will have to be cleaned up, which is confirmed by linear 
kriging techniques. Regarding the historical information, two pools of coal 
tar are located on the sampled area; they have been excavated and one of 
them, located in the south, has been filled in with non-polluted material; 
backfill coming from the excavation of the north coal tar has been dumped in 
the Northwest of the site (see Figure 5). 

Figure 5. Configuration of the site, location of PAH sampling points. 

Qualitative characteristics of samples have also been observed on a 
refined grid of 5 by 5 m: presence/absence of coal, coal tar, smell, limestone 
grains, stonework pieces, greenish color of the sample, dross, etc. A 
correspondence analysis has been performed in order to synthesize their 
information. This factorial analysis technique reduces the high number of 
variables to a mere few of non-correlated factors containing the information 
about the data. Here, the first factor (called “auxiliary factor” hereafter) 
distinguishes backfilled materials and soil in place and is correlated to the 
BaP grades. The use of the auxiliary factor, known on the 5 by 5 m grid, will 
therefore improve the knowledge of the grade pollutant in places where no 
PAH analysis has been performed. 

3.3 Results 

After a gaussian transform of BaP grades and auxiliary factor, a bivariate 
variogram model is fitted on the experimental variograms, and 200 
collocated conditional block simulations are performed using the Turning 
Bands method (Chilès and Delfiner, 1999) on 5 by 5 m blocks. 
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We are interested in the remediation of areas where the BaP grade 
exceeds the usual intervention level of 10 mg kg-1. Figure 6 shows the 
importance of the use of auxiliary information correlated to the variable of 
information if we want to assess the contaminated volumes. Indeed, taking 
into account this information leads to a ca. 15 % decrease of the polluted 
volumes. The probability that the BaP grade exceeds 10 mg kg-1 on the 
blocks is derived from the simulations. 

Figure 6. Cumulate histograms of the surfaces where the pollutant concentration exceeds 10 
mg kg-1 for univariate (dotted line) and collocated (solid line) simulations. 

These estimates are used to consider several remediation scenarii, 
corresponding to financial and sanitary choices. For instance, Figure 7 shows 
the mean BaP grades above 10 mg kg-1 on 5 by 5 m blocks, together with the 
delineation of the area where the probability to exceed 10 mg kg-1 in BaP is 
greater or equal to 0.2. 

Figure 7. Mean grades above 10 mg.kg-1 on 5 by 5 m blocks. Outline of the area where P[BaP 
> 10 mg kg-1]  0.2 (solid lines). Contour of the site and location of coal tars (dotted lines). 
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4. THIRD EXAMPLE: CASE STUDY IN 
HYDROGEOLOGY 

4.1 Objectives 

This study (Jaquet and Siegel, 2000) has been performed for SKB 
(Swedish Nuclear Fuel and Waste Management CO) within the framework 
of the assessment of the long-term safety of a deep repository for spent 
nuclear fuel. The objectives of this modelling study were (a) the 
enhancement of the understanding of subglacial groundwater flow due to 
basal ice melting and (b) the evaluation of the impact of subglacial 
groundwater flow on a repository in terms of its relative position with 
respect to the ice margin of the glacier. The achievement of these goals has 
required a probabilistic description of the hydraulic conductivity using 
geostatistical simulations which are then used as input for the numerical 
modelling of glaciation effects. 

4.2 Issue and approach 

The modelled domain whose size is 250 * 10 * 4 km3 comprises the Äspö 
region (see Figure 8). The host rock considered is of granitic type and 
contains major fracture zones. When assessing host rock capabilities, one 
key parameter is the hydraulic conductivity. Because of its spatial 
variability, the characterization of the hydraulic conductivity is a major issue 
when modelling hydrogeological processes using numerical (deterministic) 
methods. Due to the complexity of the spatial behavior of the hydraulic 
conductivity and the little amount of available data, a probabilistic approach 
is chosen for the spatial description of the hydraulic conductivity. 

Figure 8. Model domain with glacier location; the ice margin is placed right above Aspö (A-
A: location of cross-section). 
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4.3 Data 

The spatial variability of the hydraulic properties of the rock mass and 
the major fracture zones at Äspö was characterized by Rhén et al. (1997). 
The rock mass was divided into four hydrogeological units for which 
statistical parameters are available (cf. Table 1). The hydraulic conductivity 
is assumed to follow a log-normal distribution (i.e., the log-conductivity 
distribution is Gaussian). The isotropic range was estimated using 
experimental variogram calculations performed for the regional scale. For 
this modelling study, the range is assumed to remain constant for the four 
hydrogeological units considered. A Gaussian random function with an 
exponential variogram was then selected for the geostatistical simulation of 
the spatial variability of the rock-mass log-conductivity. 

Table 1. Rock mass hydraulic parameters (after Rhén et al., 1997). 
Depth
[m] 

Geometric mean of 
hydraulic 
conductivity1) [m/s] 

Standard
deviation [log 10] 

Range
[m] 

0 – 200 1.3·10-7 0.96 825
200 – 400 2.0·10-7 0.65 825 
400 – 600 2.6·10-7 0.79 825 
600 – 20002) 4.7·10-8 0.72 825 

1) Equal to the mean of the log-conductivity values. 

2) In the model these statistical parameters are assumed valid from 600 to 4000 m depth. 

4.4 Geostatistical simulation 

The characterisation of the log-conductivity of the rock mass requires the 
generation of a realisation of the Gaussian random function with an 
exponential variogram (cf. section 4.3). The log-conductivity is simulated in 
3 dimensions using the Turning Bands method (Chilès and Delfiner, 1999; 
Lantuéjoul, 2002) implemented in the NAMMU package (Marsic et al., 
2001). The result is a Gaussian normalised simulation of the log-
permeability (i.e., with zero mean and unit variance). This geostatistical 
simulation is then scaled according to the parameters related to the 
hydrogeological units defined in Table 1 (cf. section 4.3). 

The porosity is calculated from the simulated conductivity using a 
deterministic correlation (i.e., a power function) which was fitted between 
porosity and conductivity data (Rhén et al. 1997). Finally, conductivity and 
porosity values are assigned to each finite element for the mesh of the 
numerical model.  

Figure 9 illustrates the horizontal log-conductivity and porosity fields for 
a central segment of the model’s bottom. The presence of the major fracture 
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zones can be observed; their hydraulic influence is implicitly reproduced 
using the IFZ (Implicit Fracture Zone) method (Marsic et al., 2001). The 
corresponding statistics of the realisation are given in Table 2. 

Figure 9. Geostatistical simulation of log-conductivity and porosity fields (horizontal cut at a 
depth of 4000 m for a portion of the model domain). 

Table 2. Geostatistical realization: mean values of hydraulic properties.
Hydrogeological unit Geometric mean 

of conductivity1) 

[m/s] 

Arithmetic mean 
of porosity 
[-] 

2: 0 – 200 1.7·10-7 9.8·10-4

3: 200 – 400 2.3·10-7 6.3·10-4

4: 400 – 600 2.2·10-7 8.1·10-4

5: 600 – 4000 4.8·10-8 2.3·10-4

1) Equal to the mean of the log-conductivity values. 

Figure 10. Log-conductivity (i.e., Log K): histogram of unit 5; experimental and exponential 
(bold line) variograms calculated for a portion of the model domain: 10 * 10 * 4 km3

(horizontal dashed line at the level of the log-conductivity variance). 

The discrepancies between the geometric means of the realisation and 
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model (i.e., a Gaussian distribution with an exponential variogram) is 
performed. The results are shown in Figure 10. The symmetric shape of the 
log-conductivity histogram for the lower hydrogeological unit is of the 
Gaussian type. The experimental variogram calculated for a portion of the 
model domain can be fitted with an exponential model with a practical range 
of 825 m. The input statistical parameters of the geostatistical realisation (for 
the hydraulic conductivity) can be reproduced; ergodicity problems are thus 
avoided when simulating the hydraulic conductivity. Then, the effects of the 
spatial variability of the hydraulic properties on modelling results are 
assessed using a single realisation. 

4.5 Input for hydrogeological modelling 

This 3-dimensional simulation of the hydraulic conductivity and porosity 
then serves as input for the numerical modelling of density-driven flow 
induced by the variable salinity of the groundwater (see Figure 11); the 
freshwater input is provided through subglacial groundwater flow due to 
basal ice melting. The required flow and transport equations are solved using 
the package NAMMU (Marsic et al., 2001). Finally, the resulting site 
performance measures (e.g., travel time from potential repository location to 
the surface) obtained through numerical modelling integrate the 
characteristics of the host rock; i.e., the effects of spatially variable hydraulic 
parameters are propagated into numerical modelling results. 

Figure 11. Numerical modelling result: salinity at time 122 years. The fingering effects are 
due to the spatially variable conductivity; mixing and salt transfer processes are enhanced 

(cross-section A-A : cf. Figure 9) 
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5. CONCLUSIONS 

The three applications presented have shown how anthropogenic or 
natural phenomena with complex spatial variability can be characterised 
using geostatistical simulations. These methods provide a powerful 
contribution where the application of solely deterministic approaches could 
not deliver answers when dealing with complicated environmental issues. 
Emphasis has also been put on the advantage of simulation approaches 
compared to direct estimation methods, even non-linear geostatistical ones.  

The simulations provide an indispensable tool for studying problems 
involving correlations between different factors as well as complex 
processes like transport and flow phenomena. Even a limited number of 
simulations can provide acceptable solutions avoiding large errors coming 
from “classical” methods. 

These geostatistical solutions constitute the foundation for risk 
assessment studies aiming for the determination of consequences on humans. 
Furthermore, the inherent uncertainty due to the spatial variability can be 
estimated and propagated into numerical (deterministic) modelling results 
for predictive purposes. Thus, the management of this uncertainty will allow 
for optimal decision-making by authorities and stakeholders when faced with 
today’s environmental concerns.  
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Abstract: A simple methodology to assess spatially the average annual water balance in 
the Region of Andalusia is presented, taking advantage of previously 
produced maps of average annual precipitation (P) and reference crop 
evapotranspiration (ETo). Using a simple bucket model, daily series of actual 
evapotranspiration and total runoff were calculated, from which average 
annual actual evapotranspiration, E, and total runoff, Q, were obtained. 
Considering average annual values, the water balance problem of a 
homogeneous land area reduces to the question: How is P split up between E
and Q? Budyko´s empirical relationship offers an answer to this question, 
relating the index of dryness, R=ETo/P, to the ratio between E and P. Similar 
relations are used to transform a map of R into first estimates of E and Q.
These maps are consecutively used as local mean maps in simple kriging with 
varying local means (SKlm) or as an external drift variable in kriging with an 
external drift (KED). The cross-validation statistics show larger errors for the 
Q estimates, due to its skewed distribution, but only small differences are 
observed between SKlm and KED. Finally, block kriging is used to produce 
maps of E and Q with both methods. 

Key words: average annual water balance, simple kriging with varying local means, 
kriging with an external drift, Budyko diagram, Andalusia  

1. INTRODUCTION 

Lack of available natural water resources is an important matter of concern 
among scientists and decision makers in regions where the occurrence of 
precipitation is irregular and seasonal, as is the case for the Region of Andalusia in 
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southern Spain. This region is subject to a Mediterranean climate, in which rainy 
periods are succeeded by large, dry periods with high temperatures and consequently 
large evapotranspiration rates. A detailed study of the average annual water balance 
and its spatial distribution may shed a light on this problem.  

During a shower, the rainfall water reaches the soil surface, infiltrates and 
moistens the underlying soil layers, according to their properties and their moisture 
content. This infiltrated water may be transpired by the plants, evaporate from bare 
soil or move downwards to the underlying aquifer. On the other hand, when the 
rainfall rate exceeds the infiltration capacity of the soil, runoff is produced and a first 
division occurs at the soil surface, depending principally on the soil moisture 
conditions: the division of rainfall in evapotranspiration and runoff. This division 
has been one of the main issues of Hydrology. Soil moisture is also a factor that 
affects a second division at the soil surface. The energy that the soil surface receives 
from the sun is split up into latent heat, used to evaporate the available water, and 
sensible heat, which is essential to numerous chemical reactions that take place in 
living organisms on the earth surface. 

Traditionally, very simple bucket-type models have been used to calculate the 
components of the soil water balance. Rainfall is added and evapotranspiration is 
subtracted from a soil water store at monthly or daily intervals, and when the 
maximum storage capacity is exceeded, runoff is generated (Boughton, 1968; Alley, 
1984). These models are usually applied to large areas or entire catchments, using 
monthly or daily data. The difference between these models consists of how the 
dependence of evaporation on soil moisture is described. Milly (1994b) developed a 
model that provides an approximate description of the water balance problem of 
large areas, starting from the hypothesis that the long-term water balance depends 
only on the local interaction, attenuated by soil moisture storage, of fluctuating 
water supply (rainfall) and demand (evapotranspiration). The author is able to 
explain 88% of the spatial variability of the observed average annual runoff in the 
U.S., east of the Rocky Mountains. Other models are based on resolving the 
Richards equation using numerical techniques (Kroes et al., 2000) or using 
approximate analytical solutions (Broadbridge and White, 1988), but are not suited 
for regional studies because they require too many observed input variables. 

The aims of this study are: (1) the analysis of the average annual soil water 
balance in the Region of Andalusia, using a simple bucket model, and (2) the 
development of an adequate spatial interpolation methodology for actual 
evapotranspiration and total runoff. 

2. MATERIALS AND METHODS 

2.1 The Average annual water balance 

Considering the law of mass conservation, the total water balance of an area or 
region can be expressed as (Brutsaert, 1982, § 1, 11): 

i o

dw
p e A q q

dt
 (1) 
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with p [LT-1] the rainfall rate and e [LT-1] the actual evapotranspiration rate within 
the area A [L2], qi  [L3T-1] the surface and ground water inflow rate, qo [L

3T-1] the 
surface and ground water outflow rate, w [L3] the water volume stored in the area A,
and t [T] the time. The average actual evapotranspiration rate over the area A can 
then be calculated as: 

i oe p q q dw dt A . (2) 

Since it is very difficult to measure qi, qo and w, application of equation (2) is 
usually restricted to the case of annual values of e, E. If an annual time interval is 
considered, it can be assumed that the average dw dt  value is zero and ground 

water flow can be neglected if a very large area is considered. Moreover, if the 
considered area is a natural catchment, there is no surface water inflow and only the 
surface water outflow remains. Taking this into account, equation (2) can be written 
as:

E P Q , or P E Q , (3) 

with P [L], Q [L], and E [L] the annual totals of precipitation, total runoff, and 
actual evapotranspiration. Equation (3) quantifies the partitioning of the received 
rainfall into actual evapotranspiration and total runoff. This relationship has made 
the inference of empirical relationships between E and P, or between Q and P
possible. Bailey (1979), Eagleson (1981) and Brutsaert (1982) give an overview of 
these relationships. Especially the equations proposed by Budyko (1974), Lettau 
(1969) and Lettau and Baradas (1973) are useful to understand how this partitioning 
occurs. Usually an index of dryness is used that is defined as: 

n oR ET
R

P P
, (4) 

where Rn [ML2T-2] is the total annual net radiation,  [MLT-2] is the latent heat of 
vaporisation of water, and ETo [L] the total annual reference crop 
evapotranspiration.  
Budyko (1974) tried to fit the following equations to data from a large number of 
watersheds around the world: 

1 exp
E

R
P

 (5) 

1
tanh

E
R

P R
, (6) 

and observed that the vast part of the data lay between these two curves, what led 
him to propose the geometric mean of the latter two curves: 
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1
tanh 1 exp

E
R R

P R
 (7) 

Budyko used to write these equations in terms of the annual net radiation, 
expressed in equivalent evaporation height. In the work by Milly, this value is 
approximated by ETo. These equations represent the Budyko diagram, which shows 
the relationship between E/P and R, and which characterises the average annual 
water balance. E/P is a measure for the average annual water balance, given that it 
quantifies the repartition of rainfall in evapotranspiration and runoff. On the other 
hand, R, is a climatic index (Bailey, 1979, Figure 3.1). Values of R exceeding 1 
represent dry and arid climates, where the annual water balance is characterised by a 
limited water supply. Small values of R (<1) correspond with humid climates, where 
the annual water balance is characterised by a limited energy supply. This distinction 
corresponds to the fact that annual evapotranspiration approximates to annual 
rainfall in regions where the annual energy supply to the earth surface exceeds 
largely the required quantity for vaporising the annual precipitation.  

2.2 The Milly model 

Milly (1993, 1994a, 1994b) explored the possibility to explain the annual soil 
water balance using a simple model with a limited water storage and infinite 
infiltration capacity. The soil volume considered is bounded above by the soil 
surface and has a depth of 1m, which is an approximation of the average plant root 
depth. It is assumed that the vegetative cover is dense enough to neglect direct 
evaporation from the soil surface and that the horizontal dimensions of the control 
volume are large as compared to the horizontal water flow in the root zone, due to 
soil heterogeneity and local topography (approximately 100 m). The water balance 
of this control volume can be expressed as: 

dw
i e q

dt
, (8) 

with i [LT-1] the infiltration rate. A complete description of the assumptions made 
can be found in Milly (1994b). Taking these assumptions into account equation (8) 
can be written as: 

o 0

o

o

0 p>et and w= w
dw

= 0 p<et and w=0
dt

p-et otherwise

 (9) 

Moreover, e and q are simply obtained from: 

0

0 0
oet when w

e
when w

 (10) 
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0 o

o o o

when w w
q

p et when w w and p et
 (11) 

This model is applied to completed meteorological time series (Vanderlinden, 
2002) with variable length, from 160 meteorological observatories within the Region 
of Andalusia, corresponding to time periods between 1920 and 1998.  

2.3 Location of the study region and data description 

In this study we focus on the Region of Andalusia, situated in the south of Spain. 
Figure 1 shows the geographical situation of this region and the locations of the 160 
meteorological stations, where estimates of w and daily series of p and eto were 
available (Vanderlinden, 2002) to calculate the daily water balance using Milly´s 
model. 

0 25 50 75 100 km

0 500 1000 1500 2000 2500 3000

Elevation (m)

Spain

Figure 1. Geographical situation of the study region and location of the 160 meteorological 
stations projected on an elevation map of Andalusia. 

Figure 2 shows a map of the index of dryness, R, generated from previously 
produced maps of P and ETo. It can be observed that R is only smaller than 1 in the 
mountainous areas of Andalusia, which is an indication of the semi-arid or even arid 
character of a large part of this area. Anyhow, in order to give an exact description, 
the characteristics of the intra-annual climatology and its influence on the annual 
water balance should be taken into account as well, but these are not included in the 
index of dryness. The data on wo were obtained from a previously produced map 
(Vanderlinden, 2001), where point data on wo were calculated using pedotransfer 
functions (PTF´s) of Schaap et al. (2001). 

2.4 Geostatistical framework 

Applying the previously mentioned concepts and model to the available daily 
data, an estimation of the daily water balance can be made at the available 
meteorological stations and daily values of actual evapotranspiration, e, and total 
runoff, q, can be obtained. From these series, average daily, monthly, seasonal or 
annual values can be calculated. However, we are not only interested in the temporal 
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Figure 2. Map of the index of dryness, R=ETo/P. The contour corresponds with a value of 
R=1.

evolution of these variables, but also in its spatial variability at each of these 
temporal resolutions. In order to simplify the analysis, here we will focus only on 
the spatial distribution of the average annual water balance within the Region of 
Andalusia, using geostatistical techniques.  

The choice of the methodology for producing these maps should take into 
account issues related with “Interpolate first and calculate later” (IC) or “Calculate 
first and interpolate later” (CI) working routes (Stein et al., 1991; Heuvelink and 
Pebesma, 1999), and with the use of exhaustive secondary information provided by 
the Budyko diagram. Since the water balance model is highly non-linear, it could be 
argued that the IC approach is more suited (Heuvelink and Pebesma, 1999; 
Addiscott and Tuck, 2001). Since the model is run on a daily time scale, this 
methodological route would require daily maps of p and eto, which would be very 
labour intensive, or require spatiotemporal methods, which are beyond the scope of 
this study. Moreover, the use of interpolated input data could lead to error 
accumulation in the output. So, for rather practical reasons we preferred the CI 
route.  

Valuable exhaustive secondary information, in terms of R, can be obtained from 
previously produced maps of P and ETo, for which the elevation (DEM) was used as 
a secondary variable (Vanderlinden, 2002). Finally, in a similar way as in the 
Budyko diagram, R can be related to E and Q.

A straightforward way to incorporate this secondary information into the spatial 
interpolation scheme is using simple kriging with varying local means (SKlm) 
(Goovaerts, 1997, §6.1.2): 

1

( ) ( ) ( ) ( )
n

SKlm
SKlm o o i i i

i

z x m x z x m x , (12) 

with m(xo) and m(xi) respectively the previously calculated local mean value at the 
estimation point, xo, and at the n neighbouring points, xi, with data values z(xi) and 
corresponding weights, SKlm

i . This estimator requires the variogram of the 

residuals. An alternative easy way to incorporate secondary information is using 
kriging with an external drift (KED) (Goovaerts, 1997, §6.1.3), where the local 
mean is modelled locally as a linear function of the secondary or external variable: 
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1om x a x a x y x , (13) 

with y(x) the secondary variable, and ao(x) and a1(x) coefficients that are supposed to 
be constant within the search neighbourhood. Both methods were implemented 
using GSLIB (Deutsch and Journel, 1998) and the required variograms were 
calculated and modelled using VARIOWIN (Panatier, 1996).  

3. RESULTS AND DISCUSSION 

3.1 Model performance and basic statistics 

Average annual values of the components of the soil water balance in Andalusia, 
E and Q, were calculated from the daily output of the Milly model. The basic 
statistics of these data are shown in Table 1. It can be seen that the variance of E
increases as wo is duplicated and that the average of E increases with nearly 13 %.  

Table 1. Basic statistics of the average annual components of the soil water balance at 160 
meteorological stations within the Region of Andalusia, using the Milly model with the 
original wo values or wo  2. 

n=160 M med Min max s s2 skew kurt 

 Milly, original wo

E
(mm) 

408.6 416.8 208.4 610.4 75.0 5627.6 -0.4 0.5 

Q
(mm) 

164.1 120.4 0.0 1418.7 188.8 35665.7 3.4 15.6 

Milly, wo  2 
E
(mm) 

463.9 469.4 208.7 753.8 100.7 10139.4 -0.2 0.4 

Q
(mm) 

107.5 58.5 0.0 1302.8 167.9 28186.8 3.9 20.3 

The Q data show highly positively skewed distributions, due to the large number 
of locations where annually only a small amount of runoff is generated, while there 
exist only a few locations where runoff is very high, due to a limited wo or due to a 
high P. A duplication of wo reduces the variance of Q and decreases the average of 
Q with nearly 35 %. The calculated values are represented in the Budyko diagram in 
Figure 3. It can be seen that they are situated below the empirical relationships of 
Budyko (equation (5)) or Lettau (1969) and an exponential relation, similar to 
equation (5) is fitted to the data.  
The important differences between the calculated values and these curves are due to 
the important seasonality of the Andalusian climate, where the annual signals of 
rainfall and ETo are completely out of phase (Milly, 1994b) and to the relatively low 
wo values that were used in the calculations ( ow =110 mm). Milly (1993, 1994a, 

1994b) used values of approximately 150 mm. It can be shown that the differences 
with the Budyko diagram diminishes as wo is increased. Comparison of the average 
values of E and Q with those obtained in a national study by the Ministerio de 
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Medio Ambiente (1998) on the Spanish water resources shows that values of wo

between 150 and 170 mm should be used in our approach in order to obtain 
comparable results. 
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Figure 3. Representation on the Budyko diagram of the average annual water balance data, 
calculated with Milly´s model. 

3.2 Exhaustive secondary information and variography 

Figure 3 shows that R can be used to predict E/P, or E and Q, which are more 
relevant in this context. In turn of using the fitted exponential relationship from this 
figure, we preferred to fit directly a curve to the R-E and R-Q data. In both cases an 
exponential model with two parameters is fitted, as shown in Figure 4. For R>4, Q is 
practically insensitive to R, because almost no runoff is generated, but becomes 
highly sensitive to R for R<3. In addition there are less data points for this interval, 
which makes it difficult to obtain a reliable fit. These relations are then used to 
produce maps of E and Q (Figure 5) from the map of R (Figure 2). These maps 
constitute a first estimation of the spatial distribution of these variables and can be 
considered as exhaustive secondary information that can be incorporated in the 
spatial interpolation procedure using SKlm or KED. 
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Figure 4. Relationships between the index of dryness, R, and actual evapotranspiration, E, 
and total runoff, Q. 
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In the first case these maps are considered as varying local means and 
interpolation is actually done with the residuals, requiring a residual variogram. In 
the second case the maps from Figure 5 are considered as an external variable that is 
supposed to be related linearly with the primary variables. In this case a directional 
variogram is used for the direction of mayor continuity or the direction in which the 
drift is less apparent. Also the omnidirectional variogram is often used, since it can 
be argued that the drift is usually not observed at the first lags of the variogram. 
Notice that both interpolation methods deal with the non-stationary conditions of the 
skewed Q data. Both maps of Figure 5 show a similar spatial pattern, alike to that of 
P, because it is this variable that conditions the water balance in the mayor part of 
Andalusia. 

200 250 300 350 400 450 500 550 600
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Local mean

< 0 100 200 300 400 500 600 700 800 9001000
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<

Local mean

Figure 5. Local mean maps for E and Q, calculated from the map of R (Figure 2) and the 
relations from Figure 4. 

From the maps in Figure 5 the residuals can be obtained and residual variograms 
can be calculated. These, together with the original variograms are represented in 
Figure 6. Exponential models were fitted with a zero nugget effect, except for the 
residual variogram of E, where a spherical model was chosen. The ranges of the 
original variograms for E and Q are 92 and 76 km, respectively, and 36 and 48 km 
for the residual variograms. The large difference between the sills of the original and 
the residual variograms indicates that the maps from Figure 5 explain a large part of 
the variability in the E and Q data, but do not capture the small scale variability, 
since the residual variograms still show a strong spatial correlation structure. 
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Figure 6. Variograms of E and Q for the original data and the residuals, with a fitted model. 

3.3 Cross-validation and Spatial interpolation 

The cross-validation statistics in Table 2 show that the difference between KED 
and SKlm is very small. In the case of E, KED performs slightly better and for Q,
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SKlm is superior, especially in terms of MRE. The bias (ME) is in all cases 
negligible and the correlation coefficient is larger than 90 %.  

Table 2. Statistical parameters of the cross-validation of E and Q, comparing SKlm and KED. 

 ME* MAE RMSE MRE R 
 SKlm 
E (mm) -2.8 23.9 32.6 0.06 90.3 
Q (mm) 1.5 39.1 68.6 0.70 93.6 
 KED 
E (mm) -0.4 21.5 31.0 0.05 91.1 
Q (mm) -1.3 40.5 67.5 1.06 93.3 

* ME: Mean Error, MAE: Mean Absolute Error, RMSE: Root Mean Square Error, 
MRE: Mean Relative Error, R: correlation coefficient 

Although differences between both interpolation methods were small, according 
to the cross-validation results, E was interpolated using KED and SKlm was used for 
Q. Figure 7 shows the corresponding maps which were produced using block 
kriging with blocks of 1 km2, a search neighbourhood radius of 80 km and a number 
of neighbouring points between 4 and 16. These maps are very similar to those 
presented in Figure 5, but show more local detail. Cross-validation only evaluates 
the goodness of the spatial estimation methods and not the entire methodology. This 
requires the comparison of total estimated runoff values with observations at 
gauging stations along the fluvial network of the different basins in the region. The 
general spatial pattern of E and Q corresponds well with those presented by the 
Ministerio de Medio Ambiente (1998, Figure 86 and 89). Since the interpolation 
errors for Q are larger, this map can also be produced from the maps of E and P,
having in mind that Q = P-E.
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Figure 7. Maps of average annual evapotranspiration, E, and total runoff, Q. 

4. CONCLUSIONS 

We analysed the average annual soil water balance at 160 meteorological 
stations within the Region of Andalusia, using a simple bucket model. Modelled 
variables were actual evapotranspiration and total runoff. Basic statistics were 
calculated for these variables and an adequate interpolation methodology was 
established. The Budyko diagram offers the possibility to infer a relationship 
between the index of dryness and both variables. Since the annual signals of 
precipitation and reference evapotranspiration are out of phase, and since a relative 
small water storage capacity was used, the data did not fit well to the empirical 
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Budyko curve, for which an extra fitting parameter had to be used. Once these 
relationships were inferred, the index of dryness map was transformed in maps of 
both variables, which were used as exhaustive secondary information in Simple 
kriging with local varying means and kriging with an external drift. The cross 
validation shows that both methods give similar results. The proposed method 
constitutes a simple alternative for average annual large scale spatially distributed 
hydrological modelling as a used by the Ministerio de Medio Ambiente (1998). 
Further research will focus on the average seasonal behaviour of soil water balance 
and on the comparison of the total runoff of the Guadalquivir watershed, a mayor 
watershed in the Region, with stream flow data in order to obtain an overall 
evaluation of the method. 
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MODELING PHYTOPLANKTON: COVARIANCE 
AND VARIOGRAM MODEL SPECIFICATION 
FOR PHYTOPLANKTON LEVELS IN LAKE 
MICHIGAN
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Department of Statistics, University of Chicago. 5734 South University Avenue, 
Chicago, IL. USA 

Abstract: Algae and phytoplankton are crucial elements of marine ecosystems and of 
the global carbon cycle, which engenders widespread interest in better 
understanding their spatial and temporal variability. In situ fluorometry 
provides detailed measurements of phytoplankton levels; appropriate 
statistical models are necessary in order to elicit information about the 
distribution of phytoplankton biomass from this data. Challenges associated 
with such a data analysis include covariance model specification for processes 
in which variation in the vertical and horizontal directions differ greatly. 
Though the ideas presented here were developed with an eye to understanding 
phytoplankton dynamics, they may be helpful in developing models for other 
geophysical and environmental processes measured along vertical and 
horizontal dimensions. 

1. INTRODUCTION

Phytoplankton, unicellular algae found primarily in oceans and lakes, are 
important components of marine ecosystems. They are at the base of the 
food chain, so insufficient numbers mean that few other species can survive.  
Excessive algal growth, common in nutrient rich polluted marine waters, 
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may squeeze these same species out. Furthermore, most of the carbon 
fixation that occurs in the oceans is due to phytoplankton respiration and 
accounts for a sizable portion of global carbon fixation Falkowski (1994). 

Chlorophyll is found in algae and phytoplankton, and because it may be 
measured using a variety of methods, it is often tracked as an indicator of 
algal biomass.  Determining chlorophyll content by discrete water samples 
alone is an accurate but inefficient method for obtaining detailed 
descriptions of phytoplankton dynamics.  A more efficient method for 
measuring chlorophyll is by chlorophyll fluorescence. 

In situ chlorophyll fluorescence measurements capture chlorophyll levels 
over large spatial scales in real-time. When exposed to blue light near 430 
nm, chlorophyll emits red light near 680 nm (Falkowski et al., 1985). The 
strength of the emission is roughly linearly related to chlorophyll. In situ 
fluorometers provide a real-time voltage output (approximately one 
observation per second, for instance), and when towed through lake or ocean 
waters provide a more complete picture of chlorophyll dynamics than water 
samples alone. The voltage output is calibrated to chlorophyll level by water 
samples taken along with fluorescence measurements. 

Figure 1. Example of the sawtooth-like collection scheme for chlorophyll fluorescence 
measurements.  Numbers indicate the locations of the first and last measurements for this 
collection, which was taken at the southern tip of Lake Michigan in mid-March of 2000. 

The fluorescence profiles used in this research were obtained in the lower 
basin of Lake Michigan approximately six times per year from 1998 through 
2000 as part of EEGLE: Episodic Events Great Lakes Experiment. Data 
collections consisted of towing a fluorometer in an undulating fashion from 
surface to bottom and bottom to surface repeatedly for approximately 25 
kilometers along transects extending from shore toward the lake's center 
(Figure 1). 



Modeling phytoplankton: covariance and variogram model 165 

2. AXIAL DEPENDENCE OF PHYTOPLANKTON 

Unlike the most commonly used spatial models that assume isotropy, any 
tenable model for phytoplankton or similar marine measurements must 
account for the distinctly different processes along the horizontal and 
vertical axes. Variables affecting phytoplankton (temperature, water mixing, 
nutrient levels, to name only a few) change differently depending on if one 
moves roughly parallel to the surface/bottom or toward the surface/bottom. 
For example, during the spring and summer months, the surface layer in 
Lake Michigan is warmed by solar radiation and becomes thermally isolated 
from the deeper and cooler waters. The temperature differential inhibits 
water mixing between the two layers, so that the chlorophyll levels may vary 
significantly through the water column. During this time, a five meter 
change in vertical position may result in a much greater change in 
chlorophyll level than a kilometer change in the horizontal. 

3. VARIABILITY IN THE HORIZONTAL AND 
VERTICAL DIMENSIONS 

Figure 2. Empirical variograms to investigate the variability in the vertical and horizontal 
directions for the southern Lake Michigan fluorescence measurements. The horizontal 

empirical variograms ˆ  (h) are calculated using log(fluorescence) for measurements within 

three meter depth bands, and distance is calculated using difference in horizontal position 
only.  Insets show the three meter depth band used. The vertical empirical variograms ˆ (v)

are calculated using log(fluorescence) for measurements on the same run (either a trip of the 
fluorometer from bottom to surface or from surface to bottom), and distance is calculated 

using difference in vertical position only.  Insets show the run of measurements used for the 
corresponding empirical variogram. 

We consider 13,815 fluorescence measurements collected in mid-March 
of 2000 at the southern tip of Lake Michigan. Temperature measurements 
taken simultaneously are nearly constant in the vertical, and decrease from 
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4.5 C to 2.5 C as we move away from shore. The sawtooth-like collection 
scheme (Figure 1) prevents us from completely separating the horizontal 
variability from the vertical variability in our measurements, so as an 
approximate method for investigating the variability in each direction we 
subdivide the data into regions with small range in depth and regions with 
small range in distance from shore. We calculate empirical variograms based 
on distance from shore for observations that are no more than three meters 
apart vertically, as well as empirical variograms based on depth for 
observations that are in the same run – either a pass up from bottom to 
surface or a pass down from surface to bottom (Figure 2). In addition, we 
calculate the average across all runs of the empirical variograms based on 
depth (Figure 3). 

The empirical variograms show that there is considerably greater 
variability along the horizontal dimensions than the vertical. The process 
along the horizontal appears nonstationary with no discernible sill, while the 
process along the vertical appears stationary with a sill near 0.002 (see 
Figure 3). The horizontal process appears to have range greater than 5 km 
while the vertical process appears to have range near 1 m. There is no 
obvious evidence that the horizontal variogram depends on depth or the 
vertical variogram on distance from shore, so an intrinsic model of order 
zero may be appropriate. 

Figure 3. Average across all runs of the empirical variograms (each calculated as 
^

(v) in 

Figure 2) for the vertical dimension. Here ^ (v) = 1/146 146
i=1

^

i(v), where ^

i(v) is the 

empirical variogram based on depth for run i and we have averaged over all 146 runs. 

4. INAPPROPRIATENESS OF TRADITIONAL 
MODELS

We consider our log(fluorescence) measurements as observations from a 
random field Z(h,v) on R2, where h is horizontal distance from shore 
(measured in kilometers), v is depth (measured in meters), and our specific 
region of R2 is the approximately triangular area bounded by the water 
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surface and lake bottom. For notational simplicity, we do not consider any 
nugget effects in what follows. (The empirical variograms suggest that our 
model should include a nugget of approximately 0.0009). 

We have observed that Z(h,v) is a badly anisotropic process. Linear 
transformation of one or more of the dimensions also fails to produce tenable 
variogram or covariance models for Z(h,v). If the variogram for Z(h,v) had 
the form 

2 2
1 1 2 2, , ,h v h v f h v

where |h1-h2| = h, |v1-v2| = v, and where f is conditionally negative definite, 
then ((h1,v1),(h2,v1)) = f(h) and ((h1,v1),(h1,v2)) = f( v). Since f must have 
the same sill in both directions, this model cannot possibly describe the 
variograms shown in Figures 2 and 3. 

5. SPECIFYING VALID MODELS 

Before formulating more complex models, we consider what functions 
make valid covariance and variogram models. Having K(x), x Rd positive 
definite is a necessary and sufficient condition for K(x) to be the covariance 
function of a weakly stationary random field on Rd. If K1(x) and K2(y) are 
valid covariance functions for x,y R, then for a,b > 0, aK1(x) + bK2(y) and 
K1(x)K2(y) are valid covariance functions on R2.

Analogously, (x) is a valid variogram model on Rd if it is conditionally 
negative definite on Rd. If (x) is a valid variogram model, then so is b (x)
for b>0 Cressie (1993). If 1(x) and 2(y) are valid variogram models on R,
then (x,y) = 1(x) + 2(y) is valid as well (this follows directly from the 
conditional negative definiteness). It is generally not the case that 1(x) 2(y)
will be a valid variogram. As an illustration, suppose W is a stationary 
Gaussian random field on R2 with variogram model (x,y) = b 1(x) 2(y), 
where b is nonnegative and 1(0) = 2(0) = 0. Then 

1 2

( , ) ( ,0) (0, ) (0,0)

4 ( ,0) 4 (0, ) 4 ( , )

4 ( ) ( ),

Var W x y W x W y W

b x b y b x y

b x y
which is nonnegative if and only if b = 0. 

6. POTENTIAL MODELS 

Given the axial dependence of the fluorescence measurements, it seems 
natural to consider a tensor product approach with covariance function for 
Z(h,v) of the form 
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1 1 2 2Cov ( , ), ( , ) ( ) ( ) ( )H V HZ h v Z h v K h K v K h

where KH and KV are the covariance models for the horizontal and vertical 
directions respectively. Then Cov{Z(h1,v1),Z(h2,v2)} is positive definite as 
long as KV and KH are. This form allows for most of the variation to occur in 
the horizontal dimension as we require, but cannot be well specified when 
the variation along one dimension (in our case, the horizontal) is 
nonstationary. 

One might also consider the model 

1 1 2 2, , , ( ) ( )H Vh v h v h v

which allows for different (possibly nonstationary) variogram models in the 
horizontal and vertical dimensions. As Chilès and Delfiner discuss, this 
model treats the process as exactly additive, i.e.

Var ( , ) ( ,0) (0, ) (0,0)

4 ( ) 4 ( ) 4 ( ) ( )

0,
H V H V

Z h v Z h Z v Z

h v h v

taking H(0) = V(0) = 0 Chilès et al. (1999). It seems unwise to use the above 
model unless one is quite sure that Z(h,v) is exactly additive. 

7. REVISED POTENTIAL MODELS 

Modifications to the above approaches do suggest tenable variogram 
models. First, consider 

1 1 2 2, , , ( ) ( ) ( ) (0) (0) (1)H H V H Vh v h v h K h K v K K

where H is a variogram model for the horizontal direction, and KH and KV

are covariance models for the horizontal and vertical directions respectively 
(note that the two terms are not equivalent to H(h) V(v)). Taking both KH and 
KV positive definite results in (h1,v1),(h2,v2)) conditionally negative definite 
as required. The first term H accounts for the nonstationarity in the 
horizontal direction, and the remaining terms for the interaction between 
horizontal and vertical variability. 

Another reasonable model would be 
2 2

1 1 2 2, , , ( ) . (2)H Rh v h v h h v

Again the first term accounts for the nonstationarity in the horizontal 
direction, but here the second term requires that the remaining variability be 
attributed to geometric anisotropy. This model offers some flexibility and 
simplicity over (1) in that it does not require specification or existence of 
covariance functions in the vertical and horizontal directions. Model (1) is 
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however quite different from model (2) in that it treats the process as locally 
nearly additive [Stein (1999),2.11]. 

8. MODEL COMPARISON FOR FLUORESCENCE 
MEASUREMENTS

We take (1) to have the form 
2

0 1 3 4 50( , ) 1 [1 ( ) ( )]v vh vh v h M h M v

where 0 is the nugget effect, M (z) = 21- z K (z)/ ( ), and K  is a modified 
Bessel function Abramowitz (1965). The indicator function 1{h+v>0} takes the 
value one if (h+v)>0 and zero otherwise. This model, which we will denote 
MT(h,v; ) for its tensor product like last term, treats H(h) in (1) as a power 
law variogram and KH and KV in (1) as covariance functions from the Matérn 
class Stein (1999). We take (2) to have the form 

2
1

( ) 0

2 2 2
1 3 4 2 50

( , ) 1
h v

vh v h M h v

where again we have added a nugget effect 0, H(h) in (2) is a power law 
variogram and R in (2) is a Matérn class variogram. We denote this model 
by MG(h,v; ) for its treatment of the local behavior in the horizontal and 
vertical as geometrically anisotropic. We note that MT and MG are equivalent 
when h=0 or v=0.

Obtaining parameter estimates for MT and MG using exact likelihood 
methods is intractable given that each evaluation of the likelihood function 
requires O(n3) operations, and here n = 13,815. Our solution is to employ an 
approximate likelihood method similar to that proposed by A. Vecchia 
(Vecchia, 1988). For an observation vector z = (z1,z2,…,zn), Vecchia noted 
that it may be possible to approximate the likelihood

1 1 1
2

( ) ( ) ( , ..., , ),
n

i i
i

L z p z p z z z

where p denotes probability density, by considering the conditional density 
of zi on some subset of zi-1,… z1 and hence reducing computation. Vecchia 
proposed conditioning on the m points in zi-1,… z1 nearest to zi, with m
generally much less than i–1 (e.g. m = 5). In order to account for long range 
spatial dependence, we alter Vecchia's scheme to condition on some points 
in zi-1,… z1 near zi as well as some points in zi-1,… z1 that are much farther 
away from zi. Estimating variogram parameters is our primary interest, so we 
extend Vecchia's idea to approximate the restricted log likelihood Kitanidis 
(1983) rather than the log likelihood. Forthcoming work by M. Stein, Z. Chi, 
and L. Welty details methodology and results for these extensions of 
Vecchia's work. 
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Table 1. Variogram parameter estimates for MT and MG obtained by maximizing the 
approximate restricted log likelihood 

~

R for the log(fluorescence) observations z. Estimates 
for parameters describing the long range horizontal dependence are quite similar, while 
estimates for parameters describing the local behavior of the process differ markedly. We 
consider MG preferable to MT as it has the larger approximate log likelihood. 

We therefore take our log(fluorescence) observations z to be from a 
Gaussian random field with covariance structure given by MT(h,v; ) or 
MG(h,v; ), and let ~

TR  ( |z) and ~

GR ( |z) represent the approximate restricted 

log likelihoods under the respective models. We order our observations 
z1,z2,…,z13,815 by the order in which they were collected (1). With appropriate 
adjustments for small values of i, we select our conditioning subset for zi to 
consist of ten nearby previous points as well as ten roughly evenly spaced 
observations from more distant observations. We maximize ~

R using a 
conjugate gradient algorithm [Press et al., 1992, 10.6]. For initial 
computational simplicity, we do not maximize over , the smoothness 
parameter for the Matérn covariance function. Based on comparisons of the 
likelihood for = 0.5, 1.0, and 1.5, as well as the shape of the empirical 
vertical variogram, we set  = 1.0.  Results are shown in Table 1. 

Figure 4. Implied horizontal and vertical variograms for MG(h,v;
~

) and MT(h,v;
~

) as well 

as empirical variograms 
^

(v) and 
^

(h), calculated as in Figures 2 and 3. 

That ~

GR ( |z) > ~

TR  (
~

|z) sugggets that MG(h,v; ) more reasonably 

describes the dependence structure of the log(fluorescence) measurements. 
The parameters describing the long range horizontal dependence are nearly 
the same for MG(h,v;

~
) and MG(h,v; ); the largest discrepancies in estimates 

are for the nugget effect and fifth and sixth parameters, which describe the 
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local variation of the process as well as the interaction between the 
horizontal and vertical dependence. One should note however that 1/

~

4

1/
~

4 and 1/
~

5  1/
~

5, so that the models do give similar estimates for the 
range of the vertical process and for the range of the local horizontal 
processes. The models predict nearly indistinguishable variograms in the 
horizontal direction for long ranges, and similar variograms along the 
vertical direction (Figure 4). 

We note that the average empirical vertical variogram is slightly above 
either parameteric estimate (Figure 4), but that the difference is not 
necessarily an indication of model misfit. One possible reason for the 
discrepancy may be that ^ (v) contains some horizontal variation (recall we 

calculated each ^ (v) using points in the same run, which will vary slightly in 
horizontal coordinate). The difference may also be due to sampling 
variability in the empirical variogram. Points in empirical variograms are 
highly correlated, so empirical variograms contain significantly less 
information about processes than appearances suggest. For a more detailed 
discussion of this problem with empirical variograms and the advantages of 
using maximum likelihood, Stein (1999). 

Figure 5 shows the models' distinct treatments of the interaction between 
the local horizontal and vertical variation. Significant differences near the 
origin illustrate the distinction in modeling the local process as geometrically 
anisotropic versus as a product form. As one moves away from the origin, 
MG-MT is nearly zero, suggesting little qualitative difference in the models 
for larger values of h and v.

9. CONCLUSIONS

We conclude that models of the form in (2) may more reasonably account 
for the axial dependence of our log(fluorescence) measurements, the 
distinctly different variability they exhibit along the axes, and the 
interactions of the variability along the horizontal and the vertical. The 
accuracy of interpolated values for cholorphyll fluorescence, which are 
crucial to calibrating the fluorescence values with water samples and hence 
to producing fields of predicted chlorophyll levels, may depend significantly 
on the relevance of our covariance model. In any case, it is important to 
consider alternative models to the usual isotropic or geometrically 
anisotropic suspects when data exhibit very different horizontal and vertical 
variability. One would expect such situations to arise not only for marine 
data, but also for geological data (where moving parallel to the the earth's 
surface is much different from tunneling toward its core), or for 
meteorological data (where variability through a layer of atmosphere may be 
much different than variability as one moves up through the atmosphere).  
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Comparing models like those we have suggested here may also provide 
additional understanding of such processes. 

Figure 5. Estimated variograms MG(h,v;
~

) and MT(h,v;
~

), as well as their fractional 

difference, illustrating the distinct treatments of the short scale horizontal and vertical 
variation.
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Abstract: This paper describes a modification of the self-calibrating method for 
generating equally likely realizations (conditional simulations) of the 
transmissivity field, that honour measurements of transmissivity and 
dependent variables (heads, concentrations, etc.). Soft data (e. g. geophysics) 
can also be included in the conditioning procedure as a external drift. 
Moreover, spatial variability patterns of the “real” field (as observed through 
field or lab experiments) are respected. The results of the algorithm are 
compared with those obtained by the most commonly used methods in 
groundwater, such as zonation and pilot points (conditional estimation 
methods). The performance of these geostatistical inverse approaches was 
compared on a synthetic data set, where the outcome is based on qualitative 
(resemblance between the obtained transmissivity fields and the ‘real’ one) 
and quantitative criteria (goodness of fit between computed and measured 
heads). Results show that the inclusion of head data in the conditioning 
procedure provides a better solution than the one obtained including only 
transmissivity data. Final comparison (simulations/estimations conditioned to 
both type of data) shows similar results. The choice of the best method 
depends on whether the modeller seeks small-scale variability (conditional 
simulation methods) or large-scale trends (conditional estimation methods). 

1. INTRODUCTION 

For many environmental applications, such as the selection of a waste 
disposal site, aquifer management or aquifer remediation, a good 
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characterization of the aquifer properties is absolutely necessary. The 
heterogeneity of some of these properties is known to control the aquifer 
response. For instance, it is well known that the heterogeneity of the 
transmissivity field has a large impact on solute or gas transport through the 
geosphere. The representation of aquifer behaviour is, in a wide sense, 
referred to as numerical modelling.    

The main objective of numerical modelling is to obtain a representation 
of the aquifer that 1) honour all available data, such as point transmissivity, 
heads and concentration measurements, geological/geophysical information, 
etc. and 2) respect spatial variability patterns as observed through field or lab 
experiments. For this purpose, geostatistical inversion approaches are ideally 
suited, and they can be classified in two groups: conditional estimation and 
conditional simulation methods. While the latter provides the ‘best’ estimate 
of the unknown field, the outcome of the former is a set of equally likely 
realizations that honour all available data. 

Several approaches can be found in each one of the groups. Zonation 
(Carrera and Neuman, 1986), kriging and pilot points method (Certes and 
de Marsily, 1991) are the most frequent among those of conditional 
estimation. Among others, self-calibrating method (Gómez-Hernández et al., 
1997), Linearized Cokriging (Kitanidis and Vomvoris, 1983), Linearized 
Semianalytical (Rubin and Dagan, 1987), are included in the group of 
conditional simulation methods.  

A good review of geostatistical inverse approaches is McLaughlin and 
Townley (1996). In that paper, a common theoretical framework and a 
theoretical comparison are presented. However, the major attempt to 
compare them numerically was given by Zimmerman et al. (1998). 

In this work we present a modification of the self-calibrating method, 
with especial emphasis in the algorithm, as well as a numerical comparison 
on a synthetic example with methods of zonation, pilot points and kriging.  

2. PARAMETERIZATION METHODS 

Inverse procedures need to describe the spatial and temporal variability 
of unknown parameters, which is referred to as parameterization. We present 
here a brief description of the parameterization methods used in this paper. 
For further information, we address the reader to reviews such as Carrera 
(1987), Yeh (1986). Linear parameterizations can be expressed as: 

),(),(
1

tfptp
n

j
jj xx (1) 
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where pj are scalars called models parameters (unknowns) and fj ),( tx  are 
interpolation functions. Parameterization procedures differ according to 
these functions. The most commonly used in groundwater have been 
zonation (discretization) and pilot points, defined below. 
– Zonation: A partition is made on the system. In every partition’s zone, 

the function fj ),( tx  has a predefined variation or a constant value 
(Carrera and Neuman, 1986).  

– Pilot points method: The interpolation functions fj ),( tx  are defined as 
kriging coefficients and pj are the hypothetical parameters on a finite 
number of points, which are referred to as pilot points (de Marsily, 1978). 

3. SUGGESTED APPROACH 

The approach proposed here is a modification of the one by Gómez-
Hernández et al. (1997). Unknown parameter (log-transmissivity in this 
case) is defined as the superposition of two fields: a deterministic drift and 
an uncertain component. The deterministic part (Ydrift) can be obtained 
through conditional simulation or kriging, depending on whether one seeks 
small-scale variability or large-scale trends, and therefore reproduces hard 
data (i.e. transmissivity measurements) and soft data (i.e. geophysical data 
can be included as a external drift). The uncertain part can be seen as a 
perturbation, such that the final field also reproduces data related to 
dependent variables (heads, concentrations, etc.). To overcome stability 
problems, this perturbation field is expressed in terms of a finite number of 
unknown perturbations ( Y) at n points (similar to master locations at 
Gómez-Hernández work, but pilot points at de Marsily’s). Final expression 
of the parameterization for log10T field can be expressed as: 

n

1i
iidrift Y)()(Y)(Y xxx  (2) 

where i are interpolation weights, which, in this case, are obtained 
through kriging (seven variants were implemented: simple kriging, ordinary 
kriging, kriging with locally varying mean, kriging with external drift, 
simple cokriging, ordinary cokriging and standardized ordinary cokriging). 
Given that the deterministic drift honors parameter data, we seek to 
determine a perturbation field such that the final field also honors data 
related to dependent variables (heads, concentrations, etc.). Next section 
describes the methodology to obtain the optimal values of the unknown 
perturbations at the master locations. 
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4. INVERSION PROCEDURE 

The goal is to obtain optimal values of the perturbations such that the 
final field also honors dependent variable measurements. A common way to 
achieve it is to formulate the problem in terms of a ‘performance criterion’, 
expressing the difference between actual solution and what we know about 
the real system (measurements). This criterion is referred to as objective 
function and can be expressed as (only using head measurements): 

*1t**1
h

t*
hJ YYCYYhhChh YY   (3) 

where h* is the vector of all head measurements, h are the corresponding 
computed heads, Y is the vector of log10T perturbations at master points, 

Y* their prior estimates. Ch, C Y are the corresponding covariance matrices 
and h, Y are weighting coefficients. 

The set of unknown perturbations that minimizes (3) makes the final field 
to honor all available data. It should be noticed that conditioning is enforced 
strictly, given that transmissivity measurements are honored by the 
deterministic part Ydrift and perturbation is zero at those points. Posed in this 
way, inversion becomes an optimization problem, performed by Levenberg-
Marquardt’s method. 

One of the novelties is the inclusion of the plausibility term, accounting 
for the difference between prior and posterior estimations of transmissivity 
at the master points. Other works (e.g. Capilla et al., 1997) calibrate the 
model only bearing in mind head or concentration measurements, obtaining 
solutions providing a good fit between calculated and measured values, but 
do not assure plausibility of estimates. This is a very important issue. As 
demonstrated by Carrera and Neuman (1986b) the inclusion of this term 
(regularization term in that paper) improves the conditioning of the inverse 
problem.  

In our work, prior estimation of the perturbations at the master points are 
obtained through kriging, on the basis of transmissivity measurements. This 
formulation also improves the statistical consistency of the method. This 
issue will be discussed elsewhere. 

5. SYNTHETIC EXAMPLE 

In this section we present the comparison between 6 geostatistical inverse 
approaches, including the one proposed here. All of them were applied to a 
set of synthetic data, where the ‘real’ system was perfectly known a priori. 
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Flow domain is a square of 4000x4000 m2 area, where inflows are 
prescribed to be 0.1 m3/d at the left boundary and the head level was set to 0 
m at the right boundary. Upper and lower boundaries are supposed to be 
impervious. There are also two internal sinks of 3 m3/d in the middle part of 
the flow domain. (Figure 1) 

Log-transmissivity is considered as a random field with a zero mean and 
a spherical isotropic covariance function, with a variance of 4.0 and a range 
of 1000 m (1/4 of the domain length). For the purpose of the transmissivity 
estimation/simulation, the domain is divided into 1600 squared blocks of 
100x100 m2 area. 

Flow regime is transient with steady-state initial conditions; under steady 
conditions, no pump is assumed in the middle of the domain. Wells pump 
only during half part of the test. The storage coefficient was taken as 
constant and perfectly known, with a value of 10-5.

This problem setup (see Figure 1) was considered as the model for the 
‘real’ system and was used to derive the conditioning measurements (head 
and log10T data) at 25 observation wells. 

For the application of the pilot points method and the proposed approach, 
a uniform grid was generated, using three master points per correlation 
range, as suggested by Gómez-Hernández et al. (1997). This leads to a total 
number of 144 master points, a number large enough to reproduce spatial 
variability patterns, but small enough considering computational effort. 

Six methods (summarized at Table 1) were applied to the set of synthetic 
data and evaluated both qualitatively (resemblance between the obtained 
transmissivity and head fields and the ‘real’ ones) and quantitatively, in 
terms of the errors in computed log-transmissivities. 

Table 1. Summary of methods applied to the set of synthetic data 
Group Conditioning data  Method Acronym 

log10T Suggested approach CS-TConditional 
simulation log10T, h Suggested approach CS-Th 

log10T, h Pilot points CETh-PP 

log10T Ordinary  Kriging CET-K 

log10T, h 
Kriging as drift + 
perturbation 

CETh-MP 

Conditional 
estimation 

log10T, h Zonation CETh-Z 
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Impervious 

Impervious 

Figure 1. Synthetic example setup. “Real” transmissivity field, boundary 
conditions and position of the measurement points (circles). 

An error vector ej was defined for each simulation ‘j’, (unique in the case 
of conditional estimation): 

e j
i = Y calc, j

i – Y true, j
i     i=1,Nb    j=1,NS (4)

where Ycalc and Ytrue are the vector of calibrated and ‘real’ 
transmissivities of all blocks at simulation j. 

Comparison is evaluated in terms of: 

1. Mean error (ME): 
sN

1j

bN

1i
ji

bs N

1

N
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2. Mean deviation error (MDE): 
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1
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j
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3. Heads objective function: ** hhhhJ jjj
h

t

where Ns is the number of conditional simulations and Nb is the number 
of transmissivity blocks (50 and 1600, respectively).  

The first criterion measures the estimation biases and should be close to 
zero. The second one measures the difference between the true field and the 
obtained one, and (Carrera and Glorioso, 1991) should be smaller than the 
field variance (4 in this case). The third one measures the quality of the fit 
between calculated and measured heads at the observation points.  

H = 0 m Q=0.1 m3/d
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5.1 Visual comparison 

Consider Figure 2, displaying the results of one of the realizations 
obtained by the proposed method. Comparing maps at column 1, one can 
observe that the simulation conditioned to log10T data (b1) reproduces the 
large-scale patterns of the real field. However, there is still a large difference 
between the real field and the proposed one. This uncertainty can also be 
observed comparing maps (a2, ‘real’ heads) and (b2, predicted heads). 
Because head measurements were not included as conditioning data, 
measured heads do not have necessarily to be reproduced by the model, as 
shown at picture (b3). 

This difference is reduced by adding the perturbation field (the one being 
calibrated on the basis of head measurements). Final solution is presented on 
row (c). The reduction of the uncertainty of the initial drift (conditioned only 
to log10T data) can be observed in maps and pictures at row ‘c’. Final field 
also reproduces large-scale patterns and is more alike than the initial drift. 
Also, head measurements are reproduced.  

Figure 3 displays the results obtained by conditional estimation methods. 
The most important remark is that log10T fields are inherently smooth. 
However, large-scale spatial patterns of the ‘real’ field are also honored, 
even in the cases where only log10 T data were used. 

Considering rows (d) and (e) the similarity between true and calibrated 
fields is striking, if one seeks large-scale trends. Consider now map (c1), 
using pilot points method. One can see some singularities in the calibrated 
field, as measurements are fully respected. Row (e) displays the results 
obtained by the proposed method, using kriging as initial drift, jointly with 
the calibration of the perturbation field using the master points. This one 
does not present singularities on the final transmissivity map (e1), even 
though log10T measurements are also respected.  

Figure 4 displays a comparison between the average field of the 50 
conditional simulations and the one obtained through zonation.  As one can 
see, they are very similar. However, the average field is still sharp, probably 
because only 50 realizations were considered. 

5.2 Numerical comparison 

Table 2 displays the numerical aspects of the comparison. Considering 
mean error, all methods yielded similar results. Mean error was, in all cases, 
too high, but close to zero. So that, final solutions have a little bias. 



182 A. Alcolea, A. Medina, J. Carrera and J. Jódar 

(a1) Real field        (a2) 

(b1) CS-T case                                          (b2)                                              (b3) 

(c1) CS-Th case                                (c2)                                                (c3) 

Figure 2. Results concerning conditional simulations. Row (a): ‘real’ log10T field 
and ‘real’ head level field (steady-state). Row (b): conditional simulation to log10T

data. Row (c): Final field obtained with the proposed method, with field (b1) as 
initial drift. Column 1: log10T maps. Column 2: head level map (steady state). 

Column 3: Plot of computed vs. measured head level. 
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(a1) Real field                                           (a2) 

(b1) CET-K case                                       (b2)                                              (b3) 

(c1) CETh-PP case                              (c2)                                               (c3) 

Figure 3a. Results concerning conditional estimation methods. Row (a): ‘real’ log10T field 
and ‘real’ head level field (steady-state). Row (b): conditional estimation to log10T data using 
ordinary kriging. Row (c): conditional estimation to log10T and head data using pilot points 

method. Column 1: log10T maps. Column 2: head level map (steady state). Column 3: Plot of 
computed vs. measured head level. 
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(d1) CETh-Z case                                    (d2)                                             (d3) 

(e1) CETh-KMP case                                  (e2)                                             (e3) 

Figure 3b. Results concerning conditional estimation methods. Row (d): conditional 
estimation to log10T and head data using the zonation approach. Row (e): conditional 

estimation to log10T and head data using the proposed method, using a kriged field as initial 
drift. Column 1: log10T maps. Column 2: head level map (steady state). Column 3: Plot of 

computed vs. measured head level. 

Figure 4. Comparison between the average field obtained with 50 conditional simulations to 
transmissivity and head level data and the log10T map obtained through zonation  

(conditional estimation to log10T and head data). 

Considering mean deviation error, the suggested approach using kriging 
as initial drift displays a better behavior than the rest. All of the approaches 
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yielded a mean deviation error under the standard deviation of the real field, 
showing, in general, a good performance. 

The power of the suggested approach is shown considering head level fits 
(as calculated by Jh). In thirteen of the fifty conditional simulations, the 
suggested approach performed better than the zonation method, subjectively 
considered as the second best. Poor results of ordinary kriging are due to the 
fact of considering only log10T measurements as conditioning data. In 
general, to consider both types of measurements as conditioning data 
improves the quality of the final estimation. 

Table 2. Numerical comparison among the methods listed at Table 1. 
Method ME MDE Jh

CSTh (average 50 simul.) 0.33 1.87 282 
Minimum CSTh 0.23 1.72 142 
Maximum CSTh 0.44 1.97 791 
CETh-KPP 0.10 1.53 206 
CETh-PP 0.30 1.65 193 
CET-OK 0.52 1.72 18200 
CETh-Z 0.34 1.61 188 

6. CONCLUSIONS 

A modification of the self-calibrating method for generating equally 
likely realizations (conditional simulations) of the transmissivity field is 
presented. Final solutions honor measurements of transmissivity and 
dependent variables (heads, concentrations, etc.). Soft data (e.g. geophysics) 
can also de included in the conditioning procedure as an external drift.  

Transmissivity field is defined as the superposition of a deterministic 
drift (obtained through kriging or conditional simulation), that honours 
log10T measurements   

and reproduces spatial variability of the field being simulated and an 
uncertain perturbation field. The latter is optimized such that the final field 
also honours dependent variables measurements (heads in this work, 
although other type of measurements can be included easily).  

Actual modifications consists of the addition of a penalty/regularization 
term in the objective function, considering plausibility of the model 
parameters, as well as the chance of using a kriged field as initial drift. 

The algorithm is compared with the most frequently used conditional 
estimation methods (ordinary kriging, zonation and pilot points) on a set of 
synthetic data. The comparison is evaluated qualitatively and numerically. 
Both conditional estimation and conditional simulation approaches yielded 
good reproductions of the real system. The choice of the most appropriate 
method is somewhat subjective. It depends on whether the modeler seeks 
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small-scale variability (conditional simulation) or large-scale trends 
(conditional estimation). However, single optimal estimate provided by 
conditional estimation should be used with caution for non-linear 
predictions. It is also (once more) corroborated that the inclusion of head 
measurements as conditioning data improves the quality (reduces the 
uncertainty) of the final estimation. 
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Abstract: The tracer test is one of the few experimental tools capable of estimating 
transport parameters at the local scale. Models used to estimate transport 
parameters (such as dispersivity) generally assume a homogeneous 
conductivity field. However, the distribution of the solute plume in 
heterogeneous media is primarily determined by the statistical nature of the 
hydraulic conductivity at the scale of the plume. We numerically simulate 2D 
transport of particles introduced into a steady injection well with prescribed 
head boundary conditions at the wellbore and at an exterior circle. We 
compute the travel time distribution of particles introduced into the well to 
points along a control circle of a given radius within a single transmissivity 
realization. In particular, we look at the effect of high, low, or average local 
wellbore transmissivity (as compared to the mean transmissivity of the 
domain) on the travel time distribution of each realization. We conclude that 
the difference between the logtransmissivity at the wellbore and the domain 
average logtransmissivity is likely to play an important role in the 
interpretation of dispersivity from conventional tracer tests. 
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1. INTRODUCTION

The tracer test is the only means of directly obtaining an approximate in-
situ measurement of the mass moment of a plume and estimating the 
associated transport parameters such as the dispersivity, yet the development 
of a solute plume under radial flow conditions near a well in heterogeneous 
media remains a poorly studied subject. The modeling of the hydraulic 
conductivity as a stochastic process or random space function (RSF) proved 
that plume moments (higher than second-order) were strongly influenced by 
heterogeneity at the scale of the plume. Methods used to estimate plume 
parameters from tracer tests generally assume spatial homogeneity. Recent 
work in the modeling of flow in heterogeneous media has established that 
the hydraulic head near a steady pumping well is strongly influenced (to first 
order) by the difference between the log-conductivity at the wellbore and the 
domain mean logtransmissivity (Axness and Carrera, 1999). In this article, 
we investigate the impact of this difference on the travel time distribution of 
particles instantaneously introduced into the wellbore of a steady injection 
well in a heterogenous porous media. We show this difference to be of first 
order importance in the computation of the spatial statistical moments of 
single realizations. We believe that this difference must be considered in the 
proper interpretation of tracer tests. 

2. STATEMENT OF THE PROBLEM 

We investigate two-dimensional mass transport in a heterogeneous 
medium using the method of particle tracking. The domain is a 2D fully 
saturated confined aquifer in which constant porosity is assumed. A constant 
head boundary condition, hw, is prescribed at the wellbore, of radius rw, and a 
smaller one, he at an exterior boundary along a circle of radius re. We assume 
a conservative solute, non-reactive with the medium. Other considerations 
made in this study include, 

1. Particles are introduced directly at the edges of the discretization 
elements corresponding to the wellbore wall. Particles are not allowed 
to disperse back into the well in the case when local dispersion is 
applied.

2. The logtransmissivity is assumed multiGaussian and characterized by an 
exponential autocovariance function. The block transmissivity values 
are assigned as the point value of the transmissivity at the element 
centroid. This is discussed further in section 3. 

3. The logtransmissivity at the wellbore is known. 
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A constant head on a circular outer boundary is prescribed for 
mathematical convenience in the computation of the hydraulic head and pore 
velocities. It could be criticized that the only real application in which this 
condition applies is that of a well in the center of a circular island. However, 
if the outer radius is sufficiently far from the well, the analysis of transport is 
relatively unaffected by such a boundary condition. The influence of 
boundaries on flow patterns under uniform flow conditions was investigated 
by Rubin and Dagan (1988). They found that under uniform mean flow 
conditions the hydraulic heads located two logtransmissivity correlation 
lengths from an imposed constant head boundary were approximately the 
same as those in an unbounded domain. This problem has also been 
investigated in Riva et. al. (2001), with similar conclusions. Although we 
have not done an exhaustive analysis to determine the distance at which the 
effect of the boundaries is negligible, we have set the control circle for 
transport three correlation lengths from the outside boundary. At this 
distance, the head distribution, as displayed in Figure 1, departs enough from 
the head at the outer boundary to consider that the boundary had a negligible 
effect at the control circle. 

Under these conditions the transport equation is (Bear, 1972), 
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where C(x,t) is the solute concentration, D is the dispersion tensor, and v is 
the pore velocity vector, with 
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where v= 2 2+x yv v  is the magnitude of the local pore velocity, vx is the 

velocity component in the x-direction and vy is the velocity component in the 
y-direction, L is the longitudinal dispersivity, T is the transverse 
dispersivity, and Dm is molecular diffusion. 
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As reported by Uffink (1985) and Kinzelbach (1990), in 2D, after the 
change of variables vx’ = vx + Dxx/ x + Dxy/ y and vy’ = vy + Dyx/ x
+ Dyy/ y the transport equation becomes the Ito-Fokker-Plank equation in 
two dimensions, 

2( ' ) ( ) (6)
c

c c
t

v D

which may be solved by particle tracking methods (Kinzelbach, 1990; 
Dagan, 1989; Wen and Kung, 1996). The particle position is given by 
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where (X(t) ,Y(t)) is the particle position at time t, Z1 and Z2 are two 
independent random deviates drawn from a Gaussian distribution with zero 
mean and unit variance.

The above development of the transport equation is general and applies to 
radial flow as well as Cartesian flow. In the case of radial flow, given that 
the average movement of the plume is either toward or away from the well, 
the longitudinal dispersivity is oriented along a radius extending from the 
center of the well while the transverse dispersivity is normal to this radius. In 
numerical simulations it is convenient to scale the elements so that elements 
far from the well are much larger than those close to it. For simulation of 
radial flow, the range of the local dispersivity near the well is greatly limited 
by the size of the elements and the fluid velocity in this region. Typically the 
local dispersivity is limited to be about 1/10 the element size in order to 
avoid non-physical behavior (particles backtracking) or numerical problems 
(particle jumping over elements). At distances far from the well, elements 
are large and the plume may be spread over a large area when the solute 
plume arrives at these elements. These are precisely the conditions under 
which stochastic theory and field experiments indicate an increasing 
dispersivity. In this case, the local dispersivity may compensate for a loss in 
spatial variability due to averaging logtransmissivity over larger element 
sizes. These conditions suggest the use of a local dispersivity that increases 
with element size (i.e., with radius from the well center). In this study we 
examine the influence of a local dispersivity that increases as a function of 
distance from the well. Specifically we use the model, 

1 0 1( ) ( ) exp[ ( ) / ] (9)i i i i w ir r r l

where i refers to the longitudinal (radial) or transverse (angular) local 
dispersivity type (L or T, respectively), i0 is the i type local dispersivity at 
the wellbore, i1 is the i type asymptotic local dispersivity (r ), li is a 
length scale in the i type direction r is the radius from the well center, and rw

is the well radius. 
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3. DESCRIPTION OF THE SIMULATIONS 

Conditional realizations of logtransmissivity are drawn from a 
multiGaussian stationary random space function (RSF) of mean mY=-0.19, 
variance Y

2=4.3, and isotropic stationary exponential covariance C(s)= Y
2 e-

|s|/lY, with a correlation length lY=15. The only conditioning datum is the 
logtransmissivity at the wellbore elements, the value of which is chosen to 
vary over several orders of magnitude coherently with the univariate 
distribution of the RSF. Each realization is characterized by the scalar value 
ys which is defined as the difference between the logtransmissivity at the 
well and the spatial average of the transmissivity over the domain. Positive 
values of ys indicate that the well is located in a zone of high transmissivity 
with respect to the rest of the domain, and conversely, negative values of ys

indicate that the well is located in a zone of low transmissivity. 
Each realization is generated over a 2D annular domain of inner radius 

rw=1 and outer radius re=100 (see, for instance, Figure 1) that has been 
discretized into 200 by 200 truncated sector elements in which the angle 
increment  and the ratio of the outer to inner radius ri+1/ri are held 
constant. This discretization results in elements that are on the scale of 
r /100 at the well to elements at the 10r scale at the outer boundary. Given 
the non-uniformity of the grid, the generation of the field is carried out at the 
element centroids and the value generated at the centroid is assigned to the 
entire element regardless of its size. This approach maintains the statistical 
mean but introduces additional variability at the large outer elements when 
compared with the value that would have been obtained if the flow upscaled 
value had been computed. We have not investigated the impact of this 
increased variability for large elements, yet. Additionally, some artificial 
increase in the correlation scale at outer elements may be observed at the 
farthest distances from the well. Transport is analyzed only from the well up 
to elements of scale r=1.2. There is still a discrepancy in element sizes, 
which vary from r=0.01 to r=1.2, i.e., over two orders of magnitude. A 
more appropriate treatment of the generation of heterogeneous realizations 
over elements of varying support will be considered in our future work. 

The conditioning value at the well has been chosen so that parameter ys

varies between -3 and 3 (in log units). 
Flow is solved on each realization using the finite element code CFLOW 

(Axness, Carrera, and Bayer, 1998). Boundary conditions are prescribed 
heads he=0 at the outer radius, and hw=10 at the well radius. Then, a 
modified version of the method by Cordes and Kinzelbach (1992) is used to 
obtain a mass conservative, continuous, velocity field in a sub-grid built after 
the division of each element in the original grid into four elements by the 
element diagonals. These velocities are bilinearly interpolated onto the 
simulation domain and used to track particles, with and without local 
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dispersion using an adapted version of the constant displacement random 
walk code TRANSP by Wen and Kung (1996). 

Particles are instantaneously introduced along the wall of the wellbore and 
tracked until they reach the control circle of radius rc=55. The particle travel 
times to the control circle are recorded for all particles, and their mean, 
variance and distribution computed. 

It should be noted that the travel time distribution is not the same as the 
concentration breakthrough curve at a single observation well. It is the 
distribution of particles arriving at a control circle rather than a single point. 

4. DISCUSSION AND RESULTS 

Figure 1 shows the entire annular problem domain including the 
transmissivity field, hydraulic head contour lines, and the particle tracks out 
to the control circle. The small white spot in the center of the annulus 
corresponds to the well. The set of black contour lines are the hydraulic head 
contour lines while the fine white lines are the particle paths for 200 particles 
introduced at the well. The transmissivity field statistics are discussed in the 
previous section. The transmissivity was conditioned at the well so that ys=3,
and no local dispersion was used in simulation ( L= T=0). The effect of the 
heterogeneity is apparent in both the distortion of the head contour lines and 
the flow paths. Most notable is the fact that only a few particles enter low 
transmissivity zones and these particles themselves tend toward highly 
conductive paths. In this case, in which the well is conditioned to be in a 
highly transmissive zone, the hydraulic head contour lines are highly 
distorted and most of the drop in head occurs away from the well. Most of 
the particle transit time is in the area away from the well, which is of much 
lower transmissivity. 
Figure 2 shows a plot of the transmissivity field, hydraulic head, and particle 
tracks in the area of the well for the same problem described above, again for 
a release of 200 particles. Note that in the lower left hand corner the particles 
avoid flowing through a low transmissivity region. Due to the correlation 
structure of the transmissivity field and the large gradient in the 
neighborhood of the injection well, the spatial distribution of particles in the 
well area is fairly uniform. 
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Figure 1. The entire domain including the transmissivity field, head contours and particle 
tracks for 200 particles. The domain is discretized into 40,000 sector elements, characterized

by equal , and increasing radial increments as the distance of the element from the well 
increases. Parameter values are ys=3, rw=1, re=100, hw=10, and he=0 with the control circle at 

rc=55. The realization was drawn from a RSF with statistics <Y>=-0.19, 2
Y=4.3 and 

correlation length lY=15, conditioned to a wellbore value of 2.82. No local dispersion was 
considered in this simulation. 

Figure 3 shows a plot of the particle tracks, transmissivity field and head 
contours in the area of the well for a realization with ys= -3, that is, it has 
been conditioned to be much less transmissive at the well than the 
surrounding area. Additionally, radially-dependent local dispersion was 
added to the simulation. The parameters assumed for the radially-dependent 
dispersion were L0=0.01, L1=1, T0=0.01, T1=0.1, with lL=lT=10. Note that 
although the transmissivity field has the same spatial pattern for highs and 
lows as in the previous figure, the scale has changed about two orders of 
magnitude. Most of the head drop is now very close to the well, reflecting 
the lower (relative to the global mean) transmissivity in the area of the well. 
In this case most of the particle travel time is spent in the area of the well. 
The local dispersion tends to move the particles more erratically, with some 
particles now going through the low transmissivity zone in the lower left 
hand corner. 
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Figure 2. Close-up of the transmissivity field, head contours and particle tracks for 200 
particles in the well area. The parameters for this figure are those given in Figure 1. 

Figure 4 gives the travel time cumulative probability distribution function 
(cdf) for various values of the parameter ys. The cdfs were computed from 
the travel times of 10,000 particles. We previously performed simulations 
(Axness et. al., 2002) that show that a few thousand particles are sufficient to 
converge to a stable cdf. The solid lines give the distribution in the case in 
which no local dispersion is considered while the dashed lines show results 
in which the previously described radially-dependent local dispersion is 
employed-although only for ys=3 and ys=-3. From the cdfs we observe that 
there is some tailing at the upper end of the probability distribution, similar 
to the tailing that is observed in tracer tests. It is of interest to note that this 
tailing is a product of only the heterogeneous behavior of the medium 
without the inclusion of matrix diffusion, which is often employed to explain 
tailing behavior. The behavior is more pronounced when the well 
transmissivity is lower than the domain mean (notice the logarithmic scale 
on the time axis), indicating that it is likely due to the injection of particles 
into zones of lower than average transmissivity in the area of the well. This 
leads one to speculate that tailing may be more pronounced in tracer tests 
conducted at wells with low local transmissivity as compared to wells with 
high local transmissivity as compared to the average field transmissivity. 
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Figure 3. Close-up of the transmissivity field, head contours and particle tracks for 200 
particles. The parameters of this figure are those of Figure 1 except that a radially-dependent 
local dispersion was assumed and the logtransmissivity value at the well was -3.19, so that 

ys=-3. The radially dependent local dispersion parameters are given in the text. 

Figure 4. Comparison of the cumulative distribution function of travel times for simulations 
with different values of the parameter ys. The solid lines correspond to simulations without 

local dispersion while the dashed lines represent the local radially dependent dispersive case 
with the parameter set of Figure 3. 

The possibility of preferential channeling of the particles following paths 
of distinct transmissivities is apparent from Figure 4 for the case in which 
ys>0 and no dispersion is introduced. Specially for ys=2 and ys=3, it is clear 
that the particles arrive from the well to the control circle in two distinct 
pulses. This multimodal characteristic of the cdfs is smeared out in the case 
dispersion is included and is less noticeable for the case in which ys<0, 
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which does not mean that particles cannot arrive to the control circle through 
distinct preferential areas in the domain, but with similar travel times 
through each preferential area. 

Introducing local dispersion serves to smear out the curves but does not 
introduce any apparent bias. Within a regulatory context, the early mass 
arrival is one of the most critical parameters, our simulations show that 
including local dispersion does not modify the earliest particle arrivals, but 
substantially reduces the amount of mass arrived in the early times. Local 
dispersion also tends to increase the tailing of the curves, which is due to 
some particles dispersing into the low T zones, 

Figure 5 gives the mean and standard deviation of particle travel times as 
well as of the inverse of the well discharge as a function of parameter ys.
Note the log scale used for the vertical-axes. The approximately exponential 
dependence of these three parameters on ys over the range of ys=-3 to ys=1
emphasizes the importance of considering the relationship of the local well 
conductivity to that of the rest of the domain when modeling radial transport 
under non-uniform flow conditions. For larger values of ys the dependence of 
the mean and standard deviation on ys is sub-exponential, but remains strong. 

5. CONCLUSIONS

We have developed a set of computer codes and modeling capabilities to 
explore the effect of heterogeneity on 2D radial transport from a steady-head 
injection well. We use these codes to explore the impact of ys, i.e., the 
difference between the logtransmissivity at the wellbore, and the domain 
mean logtransmissivity, on particle travel time statistics to a control circle. 
We find an approximately exponential dependence of the mean travel time 
and standard deviation for wells that are less conductive than the effective 
mean logtransmissivity of the domain on ys. This dependence is sub-
exponential but remains strong for wells that are more conductive that the 
domain mean. We can conclude that the difference between the local 
conditions of conductivity at the well and the effective mean of the medium 
are important in radial flow transport problems, and we argue that it is likely 
that this parameter plays a key role in the interpretation of dispersivity from 
tracer tests. 

We note that two dimensional transport realizations restrict the number of 
potential paths that the particles may take when compared to three 
dimensional transport. We also note, that for a better representation of a 
tracer test, the particles should be introduced into the well and the well 
modeled as a “mixing cell”, instead of instantaneously distributing the 
particles at the outer wall of the wellbore. (The mixing cell approach will 
probably yield a smoother particle travel time distribution.)  However, we 
believe that the main conclusions of this study regarding the influence of the 
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parameter ys on particle travel time statistics will hold in the case of a more 
realistic modeling of a tracer test. 

Figure 5. Mean, and standard deviation of travel times, and of the inverse of the well 
discharge, 1/Q, as a function of the parameter ys. The solid line gives the mean travel time, the 

dashed line gives the standard deviation and the dash-dot line the inverse of the well 
discharge; all for the case of no local dispersion. The case of radially-dependent dispersion 
was solved only for the cases ys=3 and ys=-3, their means and standard deviations of travel 

time are represented by the open circles and diamonds, respectively. 

Our future study will concentrate on the inclusion of a mixing cell model 
for the well, extension to pseudo-3D (stratified aquifer) geometries, the 
inclusion of spatially-variable retardation and porosity and change of scale. 
Our intention is to simulate as close as possible the impact that heterogeneity 
has on tracer tests both under reactive and non-reactive conditions. 
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Abstract: The benefit of river stage as secondary information in the kriging of 
groundwater level time-series is investigated for an unconfined, alluvial sand 
and gravel aquifer on Csepel Island in the Danube River. Factorial kriging 
analysis allows the filtering of the secondary information, which is then used 
in 3 forms: raw river data, the trend of the river data by itself or shifted by a 
well-specific lag time derived from river-well cross-correlograms. Cross-
validation indicates that incorporation of river data using either kriging with an 
external drift or simple kriging with varying local means reduces the mean 
absolute error of prediction for 92% of the wells by an average of 18\% 
relative to ordinary kriging.  The Danube's influence diminishes rapidly within 
the island, and two groups of wells are distinguished:  one under the influence 
of the river and another, interior group. The kriging of the latter derives 
spurious benefit from the secondary information, possibly due to other 
seasonally varying influences.   
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1. INTRODUCTION

Various physical models of stream-aquifer interactions have been 
developed and tested for alluvial aquifers (Govindaraju and Koelliker,
1994). However, detailed information on the hydraulic parameters of the 
aquifer are required for many of these models. When such information is 
inadequate, statistical models are an alternative that can enhance physical 
modeling. Physical interactions in the environment lead to statistical 
correlations in the data offering an opportunity to use better sampled 
variables in the estimation of missing values of the variable of interest even 
when no physical model is available. Csepel Island is a large 257 km2 island 
in the Danube River, Hungary. In the north of the island, the Danube splits 
into two unequal branches, and groundwater flow direction changes 
according to river stage in the main branch. Well head at 38 monitoring 
wells (Figure 1) has been measured quarterly and river stage daily over 13 
years. As well measurements do not coincide and are not sufficiently dense 
in time, data interpolation is necessary to assess groundwater flow frequency 
from various directions at each well (which will facilitate future 
identification of pollution sources).

Figure 1. Csepel Island is located in the Danube River, just south of Budapest (Hungary). The 
site is in the upper half of the island and contains 38 monitoring wells. 

Fluctuations in river stage induce corresponding responses in the aquifer 
that depend on diffusivity, porosity, and change in river stage and associated 
time frame (Serrano and Workman, 1998). While the oscillating signal may 
arrive almost unaltered at wells that are immediately adjacent, it will likely 
be dampened and delayed by the intervening aquifer matrix for more remote 
wells. In the extreme situation, some wells may fall completely outside the 
range of river influence. Therefore, different forms of river data may be best 
correlated with different wells: raw river data for wells next to the river, or, 
for remote wells, the trend of the river possibly shifted by a well-specific lag 
time.
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The objective of this paper is to investigate how the correlation between 
groundwater levels and river stage can be used to interpolate groundwater 
level time-series at the wells. The first step is to retrieve from river data the 
information that is best correlated with well data. Factorial kriging analysis 
is a filtering technique used to estimate the trend of river data (Wackernagel,
1995), while river-to-well cross-correlograms serve to derive well-specific 
response lag times. Rouhani and Wackernagel (1990) adopted a similar 
approach and used cross-semivariograms and factorial kriging analysis to 
model the correlation between well time-series.  Here the correlation of 
wells is assessed relative to a river instead. Simple kriging and kriging with 
an external drift then allow incorporation of the secondary information into 
the temporal interpolation of groundwater levels at the wells (Goovaerts,
1997). The most appropriate form of the secondary information likely varies 
with distance to the river. It is also possible that the river provide no benefit 
at all, in which case ordinary kriging of the well data alone may yield better 
predictions. This spatial variation of the results can help formulate criteria 
that define the influence of the river.  With the ability to a priori choose the 
best approach for individual wells, the modeling of time-series over the rest 
of the island is facilitated. 

2. SITE HYDROLOGY 

The island consists of alluvial deposits that form a sand and gravel 
unconfined aquifer 3-5 m below finer sand and silt deposits. The aquifer 
itself ranges between 3 and 10 m in thickness under the study area. The main 
river branch (henceforth the Danube or the river) flows  towards the south 
along the western edge of the island and has a mean annual volumetric flow 
rate of 2,380 m3/s. The minor branch in the east has a substantially smaller 
flow rate at 3.5 m3/s.  This branch is controlled to maintain a stable stage at 
two dams at both ends of the island.  While the stage in the Danube can 
fluctuate over several meters, the fluctuations in the minor branch do not 
exceed a few centimeters, and acts as a constant head boundary. Earlier 
studies, commissioned by the city waterworks have shown that the 
oscillations of the Danube have a strong influence on groundwater flow and 
cause its direction to change over a wide range. 

River and groundwater data were made available by the waterworks of the 
city of Budapest and by the Hungarian Water Authority. River stage in the 
Danube was measured daily from 1984 to 1997. The hydrograph (Figure 2) 
shows that river stage fluctuates over a range of 8 m, and the maximum daily 
change was 1.9 m over the 14-year sampling period. 
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Figure 2. Hydrograph of river stage from 1984 to 1996. The black line is the trend of the 
hydrograph as estimated by kriging of the local mean. 

In the same time period, 38 wells were sampled quarterly. Overall, 
average groundwater levels tend to increase towards the minor branch (stage 
constant at 96.5 m) and the north, while the well clusters near the main 
branch (west) display heterogeneity due to their proximity to extraction 
wells. The correlation between well and river data, D(0), ranges from 0.15 
to 0.94 and, as expected, it decreases with distance to the river. 

3. GEOSTATISTICAL ANALYSIS 

The following sections describe the successive steps of the analysis: 
calculating the trend of the river data by kriging of the local mean, 
assessment of the lag times t with which the river stage signal arrives at the 
wells, and calculation of the residuals used in kriging at each well. Kriging 
of temporal data is closely related to other autoregressive models, e.g.  the 
kriging system introduced here is the same as the Yule-Walker equations 
used in time-series modeling (Bras and Rodriguez-Iturbe, 1985). 

3.1 Kriging of the Local Mean 

The first step is the description of the temporal pattern of river stage data 
D(t) and their decomposition into temporal processes on the basis of the 
nested semivariogram model D( ) (Goovaerts, 1997). The experimental 
semivariogram of stage data in Figure~3 shows strong oscillations and is 
modeled as a combination of an exponential (Exp), and a dampened hole-
effect (HE) model (Wackernagel, 1995) defined as: 

3
HE , 1.0 exp cos 2 (1)d

a d a
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where  is the lag time, a is the period, and the dampening effect d is the 
time in which the oscillation diminishes by 95%, with d  0. 

The complete expression for the Danube's semivariogram model, fitted 
using weighted least squares regression, is:

Exp HE( ) ( ) ( ) (2)

0.98 Exp 0.35 HE , 44 days
77 days 367 days

D

d

The period of 367 days reflects an expected agreement with the one-year 
cycle of seasonal variations. 
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Figure 3. Experimental (solid line) semivariogram of the Danube data and the fitted model 
(dashed line). 

Under model (2), river stage D(t) can be decomposed as the sum of two 
independent, zero-mean, temporal processes DExp and DHE corresponding to 
the basic semivariogram models, plus a trend component mD(t):

Exp HE( ) ( ) ( ) ( ) (3)DD t D t D t m t

In this paper, the well data are better correlated with the trend component 
mD than with the two other processes DExp and DHE. Hence, the following 
presentation is limited to the estimation of that component using kriging 
(Matheron, 1982, Rouhani and Wackernagel, 1990 and  Goovaerts et al.,
1993). The mean at time t, m*

OK(t) is estimated as: 

( )
*
OK

1

( ) ( ) ( ) (4)
n t

OK
mm t t D t
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where the kriging weights are the solution of the following system of (n(t) + 
1) linear equations: 

( )

D Exp HE
1

( )

1

( ) ( ) ( ) (5)

1, ... ( )

( ) 1

n t
OK OK

m m

n t
OK

m

t t t t b b

n t

t

 The right-hand side semivariance terms bExp and bHE, in system (5) are the 
semivariogram sills, since the deterministic trend is uncorrelated with the 
data.

In practice, the kriging of aligned data may result in the so-called string 
effect (where “string” refers to one-dimensional data series such as time-
series), whereby disproportionately high kriging weights are assigned to data 
at both ends of the search window (Figure 4). The reason is that these data 
don't have two contiguous neighbors, and thus they are considered as less 
redundant or more informative. Following Deutsch (1993), the correction 
involves wrapping the search window to a “circle” so that all data are 
equally redundant. So, after correction, the local mean is simply the 
arithmetical average of data within the search window. 
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Figure 4. Kriging weights assigned to Danube data for the estimation of the trend before and 
after the string effect correction. Each bar represents the weight for one data point in a search 

window of 100 points, and the estimation is performed at the center of the window. 

3.2 Calculation of well-lag times 

When river stage changes, such as after precipitation events in the 
watershed or changes in dam operation, the river-aquifer head gradient 
changes and initiates a signal to which the aquifer responds. The signal then 
travels as a function of transmissivity through the aquifer. Within the 
aquifer, the wave is dampened and it dissipates or it is overcome by a 
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possibly stronger signal. A statistical well-lag time can be calculated, which 
indicates how long such signals take to reach an individual well on average, 
given the history of river stage fluctuations over the observed period of time. 
A signal that is delayed will also be dampened, however, so the response is 
calculated relative to the trend of the river data rather than the daily data. 

A delayed response to the influence of the Danube can be observed at 
several wells. The lag-time t for which the Danube trend mD(t – t) is the 
best correlated with the well data z(t) is derived from the experimental cross-
correlogram computed as: 

2 2

( )
( ) [ 1, 1] (6)

ˆ ˆD

D

m

m z

Cov

with

( )

1

( ) ( )
2 2 2 2

1 1

( ) ( )

1 1

1
( ) ( ) ( )

( )

1 1
ˆ ˆ[ ( ) ] [ ( ) ]

( ) ( )

1 1
( ) ( )

( ) ( )

D

D D

D

N

D m z

N N

m D m z z

N N

m D z

Cov m t z t m m
N

m t m z t m
N N

m m t m z t
N N

where ˆ 2
mD and ˆ 2

z are the variances of tail mD-values and head z-values
and mmD and mz are the respective means. 

For example, at well F12 the correlation first increases and reaches a 
maximum of 0.55 at 49 days, which is a 1.34-fold improvement over the 
zero-lag correlation mD(0), see Figure 5. Considering the well's distance to 
the river and the spatial trend of lag at other wells close to the river, the lag 
of 49 days is very long. Similarly high lags at two other wells near the river 
suggest that conductivity in the sand and gravel aquifer declines, slowing 
groundwater flow in a region approximately 1 km from the river. 

Contrary to expectations, t does not exhibit a clear and consistent spatial 
pattern, except for wells within about 1-2 km of the river. Many wells in the 
middle of the island show no lag at all.  This implies that the influence of the 
Danube is felt only a certain distance into the island beyond which lag-times 
may be spurious. Wells F13, F14, F69, F70, F62 and F63 show intermediate 
correlation (0.41-0.57) but no lag time. This may be due to other seasonally 
varying processes such as irrigation or evapotranspiration from an adjacent 8 
km2 forested area, which they enclose. 
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Figure 5. Cross-correlogram between the Danube trend and groundwater level at well F12, 
with a maximum correlation reached for a lag of 49 days. 

3.3 Kriging of Time-Series 

Various kriging algorithms are available to interpolate the well time-
series.  Three techniques are compared in this paper: ordinary kriging (OK) 
using only well data (reference technique), kriging with an external drift 
(KED) and simple kriging with varying local means (SKlm), both of which 
allow incorporation of Danube data. The theory of kriging is explained in 
detail in Goovaerts (1997), and only differences between the relevant kriging 
algorithms are stressed in this section. 

All kriging estimates can be viewed as variants of the basic linear 
regression estimate: 

( )
*

1

( ) ( ) ( )[ ( ) ( )] (7)
n t

z t m t t z t m t

where z*(t) is the estimated variable at time t and is the weight assigned to 
the observation at time t . Kriging algorithms vary in their treatment of the 
trend m(t) of the primary variable. 

In OK, the mean is unknown and constant within the search window W(t):
m(t) = m(t ): m unknown  t W(t). Since the kriging weights (t) sum to 
1, the mean is filtered from the linear estimate (7), hence it is not directly 
involved in the estimation. 

In both SKlm and KED the mean is modeled as a function of a secondary 
variable y(t). In SKlm, this function f(y(t)) is determined prior to kriging, and 
its parameters are assumed globally constant. For example, a linear function 
leads to the following definition of the trend:

( ) ( ( )) ( ) (8)SKlmm t f y t a b y t
In the case of KED, the two trend coefficients a and b are estimated 

within each search window during kriging, allowing a local re-evaluation of 
the relationship between primary and secondary variables (Wackernagel,
1995):
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KED ( ) ( ( )) ( ) ( ) ( ) (9)m t f y t a t b t y t
with a(t) and b(t) constant within the search window. Unlike SKlm, the 
function f(y(t)) must be linear, which might require a prior transform of the 
data. For each well, three types of secondary information are considered 
here: the raw Danube data (y(t) = D(t)), and the trend of the Danube data 
(y(t) = mD(t)), possibly shifted by a lag t, (y(t) = mD(t- t)).

Both KED and SKlm, require a model for the semivariogram of residuals 
r(t) between the primary variable z(t) and its trend m(t): r(t) = z(t) - m(t). At 
each well, semivariograms were estimated and modeled for the groundwater 
levels and all possible residuals.  For the groundwater levels, a hole-effect 
model with a yearly period was fitted at wells within 1-2 km of the Danube. 
Three wells in the interior of the island (F10, F69, F70) also showed a 
pronounced hole-effect, which, however, cannot be attributed to the Danube 
due to their distance (3-5 km). Other factors might be responsible, for 
example seasonal agricultural extraction. Figure 6 shows semivariograms for 
the raw data and two kinds of residuals at well F110. As expected, removing 
the Danube trend lowers the sill (smaller residual variance) and filters out 
oscillations. This pattern is observed at all other wells near the river. 
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Figure 6. Experimental (solid lines) and model semivariogram (dashed lines) of the F110 data 
(A), and the residuals with the Danube (B) and the shifted Danube trend (mD(t- t)) (C). 

3.4 Performance comparison 

The prediction performance of each combination of kriging technique and 
secondary information is assessed using the mean absolute error (MAE) of 
prediction obtained by cross-validation, whereby each observation is 
removed one at a time and is estimated using the remaining ones. The 
combination with the lowest MAE is then applied at each well to estimate 
daily groundwater levels. These estimates are in general quite close to the 
actual values, and the estimated time-series of all wells follow the sample 
time-series closely and reproduce the fluctuations. The magnitude of MAE 
in all cases, including OK, ranges from 0.06 m to 0.52 m, with a mean of 
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0.21 m. The histogram of MAE values over the site is bimodal, suggesting, 
again, the existence of two distinct groups. Not surprisingly, MAE is greater 
when the time-series variance increases (and the distance to the river 
decreases). 

The benefit of the secondary information is measured by the following 
ratio: R = (MAEOK – MAEmin) / MAEOK  [0,1], where MAEmin is the 
smallest MAE among OK and the 6 combinations of secondary information 
and kriging technique. Figure 7 (top graph) shows that all wells (except 3) 
benefit somewhat from the Danube data. 
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Figure 7. Kriging results: the benefit of incorporating secondary information as measured by 
R.

As expected, the gain is greatest near the Danube (e.g. best is well F107, with 
R = 0.49), and diminishes further inland showing a similar spatial trend as 

D(0), with an average value of 0.18 or 18% improvement over OK. Higher 

values are found along the minor river branch. The least improvement is seen in 
the southern wells.  The three wells where OK performs best (R = 0) are 
scattered through the site. One of them (F65) is found quite close to the Danube 
and its semivariogram shows a pronounced hole-effect, yet its D(0) of 0.29 is 

very low. This could be due to low conductivity, geology, extraction activities 
nearby or well maintenance problems. There are two other wells in immediate 
proximity to the river (T24, T25) that do not show a great reduction in MAE 
with the inclusion of the Danube data. Their time-series have a high variance, 
yet the D(0) of 0.4  is weak as is the benefit the wells derive from the river 

data. The likely reason for this behavior is their proximity to extraction wells. 
Measurement error and well-maintenance problems (siltation) are also possible. 
F13 in the center of the island has a high benefit compared to surrounding wells. 
Good connectivity with the Danube is not a likely explanation since the lag-time 
is zero for this well. This result could be spurious, or it may indicate private 
extraction activities or other seasonal effects such as evapotranspiration. The 
best secondary information at each well is mapped in Figure 8, left graph. The 
Danube is best for adjacent wells, while the lagged trend is best for wells that 
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are close (1-2 km) but not adjacent. This is expected: as the Danube signal 
travels through the aquifer, it is dampened and delayed. In the interior of the 
island, the Danube trend alone is best in most cases, but patterns are more 
random: there are wells that benefit most when the lag is included (F11, F12, 
F39) while others benefit most from the unfiltered river data. Thus, the benefit 
in the interior, though real, reflects geological heterogeneities or influences that 
also follow the seasonal cycle embodied by the Danube. From these results, we 
can conclude that the influence of the Danube diminishes rapidly indeed, giving 
rise to two groups as indicated by earlier observations as well: one near enough 
to the river to be influenced by it and another in the island's interior outside of 
the river's effect. 

The best kriging technique tends to be SKlm in the north and KED in the 
south (Figure 8, right). The only known physical distinction between the 
northern and southern halves of the site is that the north is mostly urban in 
character, while the southern half is agricultural. This information is not enough 
to explain the north-south differentiation of best kriging technique. 
Nevertheless, even if there were a physical reason, when KED performs better, 
it does so by a smaller margin than SKlm: the average MAE improvement of 
KED over SKlm is 25%, while the gain of SKlm over KED is significantly 
greater at 40%. 
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Figure 8. Kriging results: best secondary information (left) and best kriging technique (right) 
at each well as indicated by MAEmin.

4. CONCLUSIONS

Traditional models of stream-aquifer systems involve the solution of the 
Laplace or Boussinesq equations using the hydraulic parameters of the 
system (Govindaraju and Koelliker, 1994). In this paper, we show that a 
model of individual well time-series can be developed based solely on the 
statistical relationship between stream and aquifer data. Geostatistics 
provides tools to interpolate quarterly sampled time-series of groundwater 
levels using daily measurements of the stage of a nearby river as 
supplementary data. The first step is to process the river data (filtering, 
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lagging) in order to extract the information best correlated with well data, 
which is then incorporated using kriging variants. Cross-validation shows 
that accounting for river data improves the prediction for 92% of the wells. 
Such “black box” modeling as presented here does not replace physical 
models, but offers an opportunity when hydrogeological data are insufficient 
or lacking. It can reveal hydrological connectivities that can also be applied 
as soft data or as elimination criteria in data fusion exercises as implemented 
by Poeter and McKenna (1995) and McKenna and Poeter (1995). 

The results of statistical and geostatistical analyses as presented above 
could be integrated into a flow/transport model through refined 
hydrogeologic characterization (assignment of hydrologic conductivities 
and/or geologic categories in the model), by indicating which wells are in 
close hydrologic connection, and how far the river’s influence extends. 
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Abstract: We analyze flow in a heterogeneous aquifer composed of different geologic 
facies, whose hydraulic properties and internal geometries are uncertain. Our 
analysis employs random domain decomposition to derive robust moment 
equations for flow in composite porous media. The approach accounts 
explicitly for the multi-scale effects of material and geometric uncertainties on 
the ensemble moments of head and flux. We use an indicator-based 
geostatistical methodology to estimate the facies geometries and to quantify 
the corresponding uncertainty.  We then apply our approach to a synthetic flow 
example, where stratigraphic and sedimentological data from a real aquifer are 
used to obtain the probabilistic facies distribution. We solve the equations for 
ensemble moments of hydraulic head and study the impact of unknown 
geometry of materials on the statistical moments of head. 

1. INTRODUCTION 

Uncertainty in hydraulic and transport parameters of natural geologic 
formations is conveniently accounted for by treating them as random fields. 
Consequently, flow and transport equations become stochastic. Much of the 
existing literature on stochastic hydrogeology deals with mildly 
heterogeneous formations, where variance of log-conductivity, 2

Y , is 
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relatively small. While this assumption is crucial for closing the moment 
differential equations or for making Monte Carlo simulations manageable, it 
clearly limits the applicability of most such analyses. A recently proposed 
method of random domain decomposition [Winter and Tartakovsky, 2000, 
2002] provides a general framework for modelling flow and transport in 
highly heterogeneous porous media consisting of multiple materials, by 
quantifying uncertainty in both spatial arrangement of geological facies and 
hydraulic properties within each facies. Since perturbation expansions are 
carried out within each facies separately, their accuracy and robustness 
remain high for most geological settings. The main unresolved challenges in 
applying the random domain decomposition (RDD) are the quantification of 
uncertainty (randomness) in a spatial arrangement of geologic facies from 
experimental data and the evaluation of random functional integrals.  
Specifically, so far there is no clear way to parametrize geometric 
uncertainty and to calculate integrals over random domains.  Previous 
studies dealt with relatively simple material distributions [e.g., Winter et al., 
2002]. Here we use a typical data set from the alluvial aquifer system of the 
city of Bologna in Northern Italy and indicator geostatistical techniques to 
estimate the boundary between contrasting materials and to quantify the 
corresponding uncertainty. In particular, we utilize stratigraphic and 
sedimentological data to reconstruct the spatial extent of the aquitard that 
separates an upper contaminated aquifer from deeper aquifers. We then use 
this information as an input for a synthetic flow problem and solve the 
equations for ensemble moments of hydraulic head and study the impact of 
unknown geometry of materials on statistical moments of head.  

2. METHODOLOGY  

2.1. Composite medium model with RDD 

Consider steady-state flow equation, fhK )( , where K is (random) 
hydraulic conductivity, h is (random) hydraulic head and f is a (random) 
source function. It is common to use the Reynolds decomposition to 
represent random fields  as the sum of their ensemble means 

 and zero-mean fluctuations . Then averaging the stochastic flow 
equations gives 

fhK r][

where r = – K h  is the residual flux. Deriving approximations for the 
residual flux is the crucial part of any stochastic analysis. One of the most 
popular approaches is to use perturbation expansions in 2

Y , variance of log-

(1)
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conductivity, Y = ln K. Theoretically this limits the applicability of such 
solutions to mildly heterogeneous aquifers or to highly heterogeneous 
aquifers, in the presence of a large number of conductivity measurements.  
However, numerical simulations of Guadagnini and Neuman [1999b] 
demonstrated that the first-order perturbation approximations of hydraulic 
heads and fluxes remain robust for heterogeneous media with 2

Y  as large as 
4. Random Domain Decomposition [Winter and Tartakovsky, 2000, 2002] 
extends the range of applicability of perturbation closures even further. RDD 
recognizes that high degree of spatial variability usually stems from the 
presence of different geological facies and explicitly accounts for it.  RDD 
treats the porous medium (and its conductivity) as a doubly stochastic 
process, where both the facies geometries and their conductivities are 
random. This allows one to obtain the statistics of hydraulic head and Darcy 
flux in two steps.  The first step consists of calculating the conditional 
statistics of the system states via perturbation approximations, e.g., 
h[1](x )  = h(0)(x )  + h(1)(x ) , in powers of 2

MiY , variance of log-

conductivity within the facies Mi.  Here the superscript (i) denotes terms in 
the expansion proportional to the i-th power of 2

MiY  and the vertical bar 

denotes conditioning on the facies geometry, .  The zero- and first-order 
approximations of conditional mean hydraulic head are given by equations 
similar to Eqs. (6) – (9) of Winter et al. [2002]. The second step consists of 
calculating the corresponding statistics of the system states through the 
ensemble averaging over the geometry distribution p( ), e.g., 

h[1](x)  = dph )()(]1[
x .                                              

The conditional moment equations are solved numerically by the finite 
elements program of Guadagnini and Neuman [1999a], and (2) can 
conveniently be approximated by the law of large numbers. The first-order 
approximation of the hydraulic head variance, [ )(2

xh ][1], is calculated in a 
similar manner. 

2.2. Identification of material distribution 

This work is devoted to obtaining p( ) from stratigraphic and 
sedimentological information that is used to characterize the alluvial aquifer 
system of the city of Bologna in Northern Italy.  The 50 Km2 area is part of 
the high–medium alluvial plain close to the city of Bologna - Regione Emilia 
Romagna, Northern Italy and is located within the Reno alluvial fan 
[Guadagnini et al., 2002]. Three Plio-Pleistocenic age aquifers of fresh water 
have been identified, which are composed of (coarse and fine) alluvial and 
sea deposits.  The coarse ones are essentially related to the fluvial activity of 

(2) 
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the Apenninic streams and of the Po River.  Generally, these aquifers are 
separated by discontinuous horizons (aquitards) of variable thickness and 
lithology.  The available hydro-geological data have been organized into an 
efficient database and used to reconstruct geological cross-sections, maps of 
basis and top surfaces of each recognized geological unit, their total 
thickness, and the volumetric fraction of permeable sediments.  The latter is 
measured on the basis of the cumulative thickness of gravel (gravel and sand 
for the aquitards) divided by the total thickness.  The Reno alluvial fan 
within the study area is wedge-shaped, becomes thicker in the North-
direction, and tapers southward.  It rests on sea clayey deposits with saline 
water.  The three aquifer groups are separated by the two main aquitards, 
each about 20-30 m thick, as well as by other aquitards of lower standing. 
Here we concentrate on the reconstruction of materials’ distribution within 
Aquitard Alpha.  The latter is of particular concern for the local 
municipality, since it plays a major role as a separation element between the 
upper contaminated aquifers and the deeper aquifers that are currently 
heavily exploited for water supply [Guadagnini et al., 2002].  Available 39 
logs of geognostical boreholes and 183 well-logs reveal that the aquitard’s 
thickness is highly variable, changing from 1 – 3 m in the vicinity of the 
peak of the alluvial fan to 8 – 12 m near the well fields, to even larger values 
in the northern part. The deposits are mainly silty-clayey, with local 
interbedding of coarser material. The quantity gr + sa /th, representing the 
cumulative thickness of gravel (gr) and sand (sa) divided by the total 
thickness (th), is generally less than 0.2. However, it displays local peaks 
larger than 0.8, indicating possible discontinuities within the aquitard itself.  
In our analysis we categorize materials within Aquitard Alpha into two 
classes, i.e. low and high permeability facies, on the basis of available 
hydro-stratigraphic data.  Presence of the high conductivity regions indicates 
possible connections between upper and lower aquifers. Following Ritzi et
al. [1994], we use the indicator point kriging and probability cut-offs 
approach to reconstruct mean boundaries between the geologic facies. The 
procedure consists of the following steps: (i) Transform sedimentological 
data into an indicator function; (ii) Analyze the spatial correlation structure 
of the indicator function; (iii) Estimate the spatial distribution of the 
probability of occurrence of the low and high permeability facies. This 
corresponds to the spatial distribution of their local volumetric fractions; and 
(iv) Delineate the mean boundary between facies by introducing a 
probability (or local volumetric fraction) cutoff. 

Step1. Let us introduce a (random) indicator function I(x), such that I(x)
= 1 if the low conductivity facies is present at point x, and I(x) = 0 if the low 
conductivity facies is absent.  This allows us to estimate the area over which 
the low permeability facies exists. Unlike Ritzi et al. [1994] who relied 
exclusively on conductivity data, we use both the sedimentological and 
stratigraphic data sets to assign values of the indicator I(x). This is analogous 
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to the approach used by Guadagnini et al. [2002]. Thus, a point in space is 
assigned to a low or high permeability material according to a suite of 
combinations of values of (a) local thickness of the aquitard (as estimated by 
stratigraphic analysis) and (b) percentage of coarse-grain materials 
integrated along the stratigraphic column within the identified thickness. The 
resulting indicator variable is of two-dimensional nature, identifying the 
planar distribution of materials within the investigated aquitard.  Our 
analysis of raw data shows that the low-permeability facies is present at 
about 80% of the sampled locations and the spatial mean of the indicator is 
equal to 0.81. 

Step 2. We use sample variograms to estimate the spatial correlation of 
I(x).  The directional variograms are computed using an angular tolerance of 
30 degrees along the directions oriented at azimuths of 0, 45, 90 and 135 
degrees from the North.  Sample variograms exhibit no clear evidence of 
anisotropy.  The isotropic exponential model with a nugget was fitted to the 
sample variograms, resulting in nugget = 0.08, sill = 0.11 and correlation 
scale = 350 m. 

Step 3. We use the ordinary point kriging to compute the expectation of 
I(x). The latter, of course, corresponds to the probability of encountering the 
low-permeability facies at a point x or, equivalently, to the volumetric 
fraction occupied by the low-permeability materials within a volume 
centered at x and corresponding to the vertical column over which 
sedimentological data have been integrated. 

Step 4. The obtained two-dimensional kriging map of the indicator 
allows defining a probability level (i.e. a local volumetric fraction value) as a 
cutoff for delineating the mean boundary between the units [e.g., Johnson 
and Dreiss, 1989; Ritzi et al., 1994]. To identify the proper volumetric 
fraction isoline, we followed the procedure of Ritzi et al. [1994] and 
compared the percentage of the total area covered by the low-permeability 
facies resulting from (a) the raw data and (b) contoured, in the kriged 
indicator map, by the volumetric fraction cut-off isoline equal to the global 
mean of the original indicator data. Demarcation of units resulting in the 
81% coverage of low-permeability facies was insured upon using the cut-off 
I(x)  = 0.81. This results in a spatial distribution of the low- and high-

permeability units that honors both the original data and the mean of the 
indicator data. We then obtain the gray-scale map of Figure 1, representing 
the spatial distribution of the local volumetric fraction of the low permeable 
unit. The solid line corresponds to I(x)  = 0.81 and represents our estimate 
(i.e. the mean) of the boundary between high- and low-permeability facies.  
Conductivity values are then assigned to grid cells depending on their 
location within the region.  

The procedure outlined by Ritzi et al. [1994] provides a means to 
estimate mean boundaries between geological facies, without quantifying 
uncertainty. The approach we propose below fills this void: 
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 Assume that the selected value of the cut-off (in this case 0.81) defines a 
limiting value of the local volumetric fraction of low-conductivity 
materials; locations where this value is attained identify a contour line 
which constitutes the internal boundary separating regions occupied by 
the two materials. 

 Use the mean and variance of I(x) computed by kriging at all points in 
space. Assuming that I(x) is a Gaussian field, this defines the full 
probability distribution and in particular the probability that the chosen 
cutoff value occurs at a given location in the aquifer. 

 Draw probabilistic spatial distributions of the target cutoff isolines, thus 
identifying the probability levels associated with different spatial 
locations of the boundary between units. 

 Assign weights to each realization of the spatial arrangement of units. 

high-conductivity
+   low-conductivity

high-conductivity
+   low-conductivity

Figure 1. Spatial distribution of the local volumetric fraction of the low permeable unit (Grey 
scale: light – high volumetric fraction; dark – low volumetric fraction). The solid line 

corresponds to the mean boundary between high- and low-permeability materials. Data points 
are also shown.

Since I(x) is defined in the interval [0, 1], its distribution is normalized by 
the factor 

A = I
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II
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1 1

0 2
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d

so that the weight of each realization of  in the probability space can be 
computed. These weights are then employed in a synthetic example below to 
derive the global (ensemble) moments of hydraulic head starting from the 
moments conditioned on various arrangements of material distribution. 

(3) 
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3. SYNTHETIC FLOW PROBLEM 

The probability map of facies’ geometries constructed in the previous 
section can now be used to calculate the mean hydraulic head in Eq. (2).  
Since for this particular site the experimental data characterizing hydraulic 
properties within each geological facies are not available, we assume that 
within each facies the natural logarithm of hydraulic conductivity, Y = ln K,
is a statistically homogeneous Gaussian field. We set the mean log 
conductivities within the low and high permeability zones to YLow  = 3.5 and 
YHigh  = 7.0, respectively, when hydraulic conductivities are expressed in 

[cm/day].  We further assume that the conductivity of each facies has unit 
variance, the exponential correlation function with correlation scale,  and 
that conductivities of the two facies are uncorrelated. In contrast with 
deterministic trend models, the resulting conductivity field is essentially 
inhomogeneous, in that its (ensemble) mean, variance, and correlation 
function are all space dependent. 

Figure 2. Conditional realizations of the composite domain corresponding to (a) the mean 
location of the boundary between the two materials and (b) a spatial distribution associated 

with a lower weight.  Grey scale: light – high conductivity materials; dark – low conductivity 
materials. 

Consider a rectangular flow domain of the size corresponding to the 
investigated area (i.e., 7.2  6.8 km). For the sake of simplicity, we impose 
constant heads HA = 21.0 m and HB = 1.0 m on the left and right hand sides 
of the domain, while treating the remaining two boundaries as impermeable. 
This gives rise to the background hydraulic gradient of about 0.2%, the value 
representative of the field conditions.  Pumping well is located in the middle 
of the field and operates at a steady-state flow rate of 100 m3 / d. The domain 
is discretized by a grid of 19484 square elements (144 rows and 136 
columns) of uniform size,  = 50 m, with 5 points per correlation length of 
Y.

Figure 2 depicts two realizations of the composite flow domain, each one 
of them conditional on a particular location of the internal boundary between 
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the materials.  Figure 2a shows a logconductivity distribution corresponding 
to the mean boundaries between the two facies. Figure 2b shows a 
logconductivity distribution when the location of the internal boundary, 
defined by the 0.81 fraction of low-permeability material cut-off, has a 
different weight. 

The correlation function for hydraulic conductivity of the composite 
medium is obtained by averaging the conditional correlation functions over 
all possible realizations of the materials distribution. Even though the two 
materials are assumed to be uncorrelated, there exists a transitional zone, 
where the points from the two materials are correlated. Within this zone the 
membership of a given point in a particular material is uncertain. Averaging 
over the boundary distribution smoothes the conditional correlation function 
of conductivity. 

We obtain the conditional hydraulic head statistics (conditional mean and 
variance) by solving the RDD moment equations [Winter and Tartakovsky, 
2000, 2002] with the stochastic finite element code of Guadagnini and 
Neuman [1999a]. The accuracy of the solutions of our moment equations is 
assessed through their comparison with Monte Carlo simulations. 
Guadagnini and Neuman [1999a, b] noted that a complete stabilization of the 
Monte Carlo statistics is not necessary for such a comparison to be 
meaningful. Therefore we limit the number of Monte Carlo simulations to 
3000 for each of the log-conductivity fields. Since 21 realizations of the 
material distributions were considered in this study, we performed a total of 
21  3000 = 63,000 Monte Carlo simulations.  Overall agreement between 
the two solutions is excellent, except in the vicinity of the pumping well. 
This is in line with previous results of Guadagnini and Neuman [1999b].  
Figure 3 shows the conditional mean and variance of hydraulic head for the 
material distributions of Figure 2a.  The mean and variance of hydraulic 
head computed with RDD are shown in Figure 4. To ascertain the relative 
importance of the two sources of uncertainty (facies’ geometry versus facies’ 
conductivity), we show in Figure 5 the mean and variance of hydraulic head 
corresponding to the random facies geometry but deterministic (equal to 
their respective means) hydraulic conductivities. The comparison of Figures 
4 and 5 reveals that this simplification leads to similar qualitative (but 
quantitatively different) spatial patterns of the mean drawdown and head 
variance.

4. COMPARISON WITH ALTERNATIVE MODELS 

Next we compare the RDD approach with approaches that do not account 
explicitly for the presence of facies. Among these is a version of the dual 
permeability model, which expresses a local conductivity as a weighted sum of 
the conductivities of each facies, 
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Keq = Prob[I(x) = 1] KLow + Prob[I(x) = 0] KHigh

The weights Prob[I(x) = 1] and Prob[I(x) = 0] = 1 – Prob[I(x) = 1] are 
determined by the kriging estimate of I(x).  For each facies we generate 3000 
log-conductivity fields with the same statistics used earlier and then use (4) to 
create realizations of the conductivity field. Contrary to the usual dual-
continuum approach, which assumes that the volumetric fractions of the 
materials are constant over an entire flow domain, this approach results in a 
statistically inhomogeneous conductivity field.

Figure 3. Conditional realizations of the mean and variance of hydraulic heads, superimposed 
on the corresponding mean (conditional) conductivity field. 

Another approach is often referred to as a homogeneous approximation 
because it replaces a statistically inhomogeneous (stationary) conductivity field 
with the statistically homogeneous field whose statistics is determined as the 
mixture. For both approaches we use the Monte Carlo simulations to solve the 
flow equations. Figure 6 shows the hydraulic head statistics corresponding to the 
dual permeability distribution model.  Figure 7 depicts the same quantities along 
the median transverse cross-section computed with all the models explored.  The 
homogeneous approximation overestimates the drawdown and uncertainty (as 
quantified by head variance) at the well. The dual permeability distribution leads 
to the mean drawdown that is qualitatively and quantitatively similar to that 
obtained by considering only randomness in boundaries between materials and 
significantly underestimates head variance.  

Figure 4. The (a) total mean and (b) variance of hydraulic heads computed with the full 
composite medium model with the full RDD. 

(4)
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Figure 5. The (a) mean and (b) variance of hydraulic heads for random material distribution 
but deterministic (equal to their respective means) conductivities.

Figure 6. The (a) mean and (b) variance of hydraulic heads based on the dual permeability 
model. Superimposed is the corresponding mean conductivity field. 

5.  CONCLUSIONS 

Our study leads to the following major conclusions: 
1. One of the main difficulties in applying a random domain decomposition 

model is the identification of the spatial distribution of materials within 
a formation. We applied an indicator-based methodology to obtain an 
estimate of the spatial location of the boundary between contrasting 
materials as well as to quantify the associated uncertainty. The 
methodology is demonstrated on a synthetic flow example, where 
probabilistic material distribution is modelled using stratigraphic and 
sedimentological data from a real aquifer. 

2. Our example emphasizes the qualitative and quantitative inadequacy of 
the homogeneous approximation for estimating the hydraulic head 
statistics. Similarly, replacing an essentially statistically inhomogeneous 
conductivity field with a model based on dual permeability concepts 
results in inaccurate solutions for the head statistics. The same holds for 
the models with deterministic trends in hydraulic conductivity, since 
they effectively disregard uncertainty in the facies geometry. 

3. Our example emphasizes the qualitative and quantitative inadequacy of 
the homogeneous approximation for estimating the hydraulic head 
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statistics. Similarly, replacing an essentially statistically inhomogeneous 
conductivity field with a model based on dual permeability concepts 
results in inaccurate solutions for the head statistics. The same holds for 
the models with deterministic trends in hydraulic conductivity, since 
they effectively disregard uncertainty in the facies geometry. 

4. The relative importance of uncertain geometry and uncertain 
conductivity was studied by comparing the case in which the material 
geometry is random, but the hydraulic properties of each material are 
fixed. Disregarding variability within materials leads to incorrect 
description of the statistical behavior of the system. 
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Abstract: The estimation of a drinking water well capture zone is uncertain due to spatial 
variability of transmissivity, among others. The spatial variable transmissivity 
is modeled by a Random Stochastic Function. It is common practice to fix the 
parameters that parameterize the adopted Random Stochastic Function Model. 
This paper presents a study that investigates to which extend the simulation 
results are influenced in case we do not fix these parameters and make them 
also random variables. The impact of this additional uncertainty is investigated 
both for forward models (only conditioning to transmissivity data) and inverse 
models (conditioning to transmissivity and head data). The results are 
compared with the impact of uncertainty in the boundary conditions. 
consequat 

Key words: capture zones, stochastic, Bayesian. 

1. INTRODUCTION 

In order to maintain drinking water quality it is important to protect the 
zones around the drinking water wells from activities that may cause 
pollution. However, it is not desirable that large areas are excluded from 
activities that could yield important economical benefits. Therefore, it is 
crucial to characterize the groundwater flow around the drinking water well 
and more in particular, the zone from which contaminating particles could 
reach the drinking water well.  
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The characterization of the well catchment is uncertain because of a 
(very) limited amount of measurement data, spatial variability of 
transmissivity and uncertainty on the spatio-temporal distribution of other 
parameters. The spatial variability of transmissivity is considered to be the 
most consequential one and quite some studies address its influence on the 
uncertainty of well capture zones (e.g. Franzetti and Guadagnini, 1996; 
Vassolo et al., 1998; van Leeuwen et al., 2000; Stauffer et al., 2002). 

The common approach is to adopt a Random Stochastic Function (RSF) 
for the spatial variable transmissivity and to parameterize this RSF using the 
limited amount of measurement data. The estimated mean transmissivity and 
the transmissivity variogram are normally not subject to uncertainty and are 
fixed in the study. Full-Bayesian approaches take into account the 
uncertainty of these parameters (e.g. Woodbury and Rubin, 2000; Woodbury 
and Ulyrich, 2000). Feyen (2002) presents an application to the estimation of 
well capture zones. This paper illustrates how a more classical approach (the 
sequential Gaussian simulation to generate transmissivity fields and the 
sequential self-calibrated method for inverse conditioning) can also consider 
the mean transmissivity and the transmissivity variogram as random 
variables. In addition, a synthetic study investigates the impact of 
uncertainty of mean transmissivity and the transmissivity variogram and 
compares it with the influence of uncertainty of the boundary conditions. 
The influence of these sources of uncertainty is addressed in case only 
transmissivity data are used for conditioning and for the case that both 
transmissivity and hydraulic head data are used for conditioning. 

2. METHODOLOGY 

The spatial variable transmissivity field is modeled by a Random 
Stochastic Function. Sequential Gaussian simulation (Gómez-Hernández and 
Journel, 1993) is used to generate multiple equally likely transmissivity 
realizations, that are conditioned to transmissivity measurements. In the 
conventional approach, a mean transmissivity and a transmissivity variogram 
are supplied to the program. However, in order to consider uncertainty on 
the mean transmissivity and the transmissivity variogram, in this study the 
mean transmissivity and the transmissivity variogram may change from 
realization to realization. It means that we do not adopt one RSF, but a large 
series of RSF, the mean transmissivity and the transmissivity variogram 
being also random variables. However, in all cases a MultiGaussian 
distribution model is adopted.  

In this synthetic study it was easy to build the probability density 
functions (pdf) of the mean transmissivity and the transmissivity variogram. 
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The reference transmissivity field was sampled 100 times (10 data) and from 
the 100 random data sets 100 different mean transmissivities and 100 
different transmissivity variograms were estimated. In order to assure 
normality of the log transmissivity, the log transmissivity measurement data 
could be Normal transformed. However, in that case we would reproduce all 
the details of the experimental distribution (based on only 10 data) closely, 
neglecting the fact that the data set is only a random sample. The uncertainty 
in the mean transmissivity and the transmissivity variogram reflect the 
uncertainty for the case of 10 transmissivity data, and a moderately 
heterogeneous transmissivity field (variance lnT=1). Figure 1 gives the 
uncertainty of some of the input parameters for the generation of the log 
transmissivity fields.  

In practice it is more difficult to build a model on the uncertainty of the 
mentioned hyper parameters (the parameters that parameterize the 
MultiGaussian model). This is also the weakest point in the Bayesian 
approaches, where subjective parameter values have to be introduced that 
characterize an unknown distribution. Here it is suggested that in case of a 
limited number of transmissivity data, formula from classical sampling 
theory can be used to estimate the variance of the mean transmissivity. Brus 
and De Gruyter (1994) show how also the uncertainty of the variogram can 
be estimated. However, in case of clustered measurement data or a very 
limited number of transmissivity data the uncertainty has to be addressed in 
a different way. An alternative is postulating a distribution for the mean 
transmissivity and the transmissivity variogram, and drawing values from 
these distributions. The distributions have to be broad enough to cover the 
believed uncertainty. 

The impact of the uncertainty of the boundary conditions is studied by 
estimating the prescribed head values at the boundaries by 10 randomly 
sampled head data. A Monte Carlo approach has been used and for each 
realisation a different random data set is used. The 10 head data are used to 
estimate the head values at the boundaries by a second order polynomial. 
Because for each realization a different data set is used, also the estimated 
prescribed heads on the boundaries are different for each realisation. An 
alternative would have been to estimate the boundary heads by universal 
kriging, however, 10 head data did not allow to make a meaningful 
estimation of the variogram of the head residuals. In practice it is common to 
estimate the prescribed head values at the boundaries by interpolating or 
extrapolating head measurement data, because it is desirable to limit the 
domain that has to be studied in case no natural boundaries exist. In this 
study this practical behavior is imitated and it allows to quantify the impact 
of the uncertainty of the boundary conditions in a systematic way. However, 
one may argue that in practice the prescribed head values can be estimated in 
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a more intelligent way, for example by using topographical information. One 
could argue that the applied approach here is a “worst case scenario” and 
that in practice the negative impact of not knowing the prescribed head 
values is less severe as in this study.  

Figure 1. Histograms of (a) estimated range values and (b) estimated sill values of 100 
variogram models that were estimated on the basis of 100 different data sets, randomly 

sampled from the reference log transmissivity field.

 Section 3 gives details on the different scenarios that have been studied. 
For all of the scenarios, the following approach was followed. In case head 
data are available, realizations of log transmissivity are conditioned to both 
transmissivity and hydraulic head data, using the sequential self-calibrated 
method for the stochastic inverse modeling of groundwater flow (Gómez-
Hernández et al., 1997) as implemented in the code INVERTO (Hendricks 
Franssen, 2001). Otherwise, only the forward flow and transport problem 
were solved. The approach consists of the following steps: 

(1) 100 equally likely realisations of log decimal transmissivity are 
generated with GCOSIM3D (Gómez-Hernández and Journel, 1993). The 
realisations are conditioned to 10 transmissivity data. The log transmissivity 
mean and the log transmissivity variogram may be known, or may be 
estimated from the limited amount of transmissivity data. 

(2) For each of the 100 realisations the groundwater flow equation is 
solved with the software INVERTO. In case only transmissivity data are 
available only the forward groundwater flow equation has to be solved, and 
the procedure continues with step 4. In case also hydraulic head data are 
available the measured heads are compared with the simulated heads and the 
following formula is evaluated:  

where Nh is the number of head measurement locations, hi the head at a 
measurement location, the weight i is chosen inverse proportional to the 

hN

i

MEAS
i

SIM
ii hhJ

1

2)(

F
re

q
u
e
n
c
y

Variable

0. 2000. 4000. 6000. 8000.

0.000

0.100

0.200

0.300

Effective Range (m) Number of Data 100

mean 1700.4700
std. dev. 2589.7664

coef. of var 1.5230

maximum 21360.0000
upper quartile 1555.0023

median 990.5001
lower quartile 593.0000

minimum 96.0000

F
re

q
u
e
n
c
y

Variable

0.000 0.100 0.200 0.300 0.400 0.5

0.000

0.050

0.100

0.150

0.200

0.250

Sill values (m) Number of Data 100

mean 0.1765
std. dev. 0.1276

coef. of var 0.7232

maximum 0.8910
upper quartile 0.1950

median 0.1460
lower quartile 0.1020

minimum 0.0300



Uncertainty on estimation of well capture zones 227

estimated measurement error (in our case all the measurement data have the 
same estimated measurement error (zero) which means that the weights are 
equal for all the data), SIM refers to simulated and MEAS to measured. 

If J is smaller than a pre-defined tolerance value the measured heads are 
reproduced close enough. In case J is larger than the tolerance value the 
simulations continue with step 3. 

(3) Because the head data were not matched close enough an iterative 
procedure starts that aims at matching the head data. Details on the 
optimisation procedure are given in Hendricks Franssen (2001). In this 
study, 400 master blocks parametrize the perturbation of the log 
transmissivity field and 50 master blocks the perturbation of the prescribed 
heads at the boundaries. In case of the boundary heads the maximum 
perturbation is arbitrarily set to 5.0 meters. After optimising the 
perturbations of the logtransmissivity field and (for some scenarios) the 
prescribed boundary heads, the procedure returns to (2) and the 
transmissivities and boundary heads are iteratively updated until the 
experimental heads are matched. 

(4) The resulting solution of the groundwater flow equation is used to 
simulate the advective transport of particles. For each of the 100 realisations, 
one particle is released at the centre of each grid cell and tracked until it 
reaches a boundary of the system or the pumping well. 

(5) Ensemble statistics are calculated over the 100 realisations. The 
following definitions hold: 

N

i
iREFiSIM XX

N
XAAE

1
,,

1
)(

N

i
Z iN

ZAESD
1

1
)(

where AAE is the average absolute error, N the number of grid cells, X
either log transmissivity, hydraulic head or particle capture probability (CZ),
SIM the simulated value, REF the reference value and i a grid cell index. An 
overbar stands for ensemble average. With respect to the capture probability: 
CZ(x,i)=0 if a particle released from grid cell x for realisation i does not 
reach the pumping well and CZ(x,i)=1 if the particle reaches the pumping 
well. The average capture probability CZ(x) for that grid cell is determined 
by averaging the 100 obtained CZ(x,i). In the second equation Z stands for 
either log transmissivity or hydraulic head and  is the ensemble standard 
deviation. The uncertainty with respect to the capture probability is given by:  
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where AESD(CZ) is the domain averaged uncertainty with respect to the 
capture probability. For instance: if CZ(x)=0 or CZ(x)=1 the grid cell x does 
not contribute to AESD(CZ); if CZ(x)=0.5 the contribution is 0.5 (the largest 
contribution possible; the maximum uncertainty).  

3. SYNTHETIC STUDY 

The impact of the mentioned sources of uncertainty has been tested in a 
synthetic study. The studied 2-D domain has extensions of 5 x 5 km and is 
divided into 50 x 50 squared grid cells of size 100 m. The Northern and 
Southern boundaries are impervious and along the Western and Eastern 
boundaries fixed heads of respectively 0 m and 5 m are imposed. A pumping 
well is located 500 m West of the domain centre. The area receives a 
spatially uniform recharge of 363 mm/year. Steady-state groundwater flow 
in a semi-confined aquifer is simulated. A reference transmissivity field is 
generated with a mean transmissivity equal to –2.93 log10(m

2/s) and an 
exponential variogram with a range of 500 m (1/10 of the domain) and a sill 
equal to 0.18861 (log10(m

2/s))2 (lnT variance=1). As a consequence, a water 
divide along the Eastern part of the area is present and the well pumps water 
from a considerable area located West of the water divide. Figure 2a gives 
the reference well catchment. 

The impact of the uncertainty in the mean logtransmissivity and the 
logtransmissivity variogram are studied under two different conditions: (1) 
in case 10 transmissivity data are used to condition the transmissivity 
realisations, (2) in case both 10 transmissivity data and 10 head data are 
available and the transmissivity field is updated by inverse modelling. Also 
the impact of the uncertainty in the boundary conditions has been studied, 
with or without uncertainty in the mean transmissivity and the transmissivity 
variogram. For the case of uncertainty in the boundary conditions, the joint 
updating of the transmissivity field and the boundary conditions, by inverse 
modelling, is an additional simulation variant. See Table 1. 

3.1 Influence of uncertainty in the mean transmissivity 

Table 2 gives the scores on the evaluation criteria defined before. In this 
section we focus on the influence of the uncertainty in the mean 
transmissivity, without uncertainty in the transmissivity variogram and/or the 
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boundary conditions. In case of forward modelling (scenario 1.1): the 
uncertainty of the mean transmissivity hardly affects the characterisation of 
the transmissivity field, the hydraulic head field and the well capture zone. 
However, the ensemble hydraulic head variance is much more affected by 
the uncertainty of the mean transmissivity. Compared with a similar case 
without uncertainty (scenario 0.1) an increase of the standardised ensemble 
variance (unconditional=100) from 88.4 (no errors) to 130.4 (error in mean 
logtransmissivity) occurred. 

In case of inverse modelling (scenario 1.2): also in this case the 
uncertainty of the mean transmissivity yields slightly worse results. 
However, the impact of the uncertain mean transmissivity on the 
characterisation of the hydraulic head field is less than in scenario 1.1.  

3.2 Influence of uncertainty in the transmissivity 
variogram 

The effect of the transmissivity variogram uncertainty on the well capture 
zone characterisation is a bit larger than the effect of the uncertainty of the 
mean transmissivity, but also limited. The characterisation of the 
transmissivity and head fields is slightly worse than in the case of the correct 

Table 1. Studied scenarios  
Scenario Uncertainty 

meanT? 
Uncertainty 
variogram T? 

Uncertainty 
Boundary 
conditions? 

Conditioning 
data

Calibration 
BCS? 

0.1 NO NO NO 10 T n.a. 
0.2 NO NO NO 10 T, 10 h n.a. 
1.1 YES NO NO 10 T n.a. 
1.2 YES NO NO 10 T, 10 h n.a. 
2.1 NO YES NO 10 T n.a. 
2.2 NO YES NO 10 T, 10 h n.a. 
3.1 YES YES NO 10 T n.a. 
3.2 YES YES NO 10 T, 10 h n.a. 
4.1 NO NO YES 10 T NO 
4.2 NO NO YES 10 T, 10 h NO 
4.3 NO NO YES 10 T, 10 h YES 
5.1 YES NO YES 10 T NO 
5.2 YES NO YES 10 T, 10 h NO 
5.3 YES NO YES 10 T, 10 h YES 
6.1 NO YES YES 10 T NO 
6.2 NO YES YES 10 T, 10 h NO 
6.3 NO YES YES 10 T, 10 h YES 
7.1 YES YES YES 10 T NO 
7.2 YES YES YES 10 T, 10 h NO 
7.3 YES YES YES 10 T, 10 h YES 
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variogram. Surprisingly, the ensemble transmissivity variance and the 
ensemble head variance are lower in case the variogram is uncertain than in 
case the variogram is exactly known. It is found that the estimated average 
sill is below the true, unknown sill. This causes that the ensemble variances 
are underestimated. The lower variances give a false sense of security. 
Surprisingly, the well capture zone is better characterised in case the 
transmissivity variogram is uncertain. The explanation is thought to be the 
sampling error; if we would repeat the experiment for other reference fields, 
other results are expected.  

In case hydraulic head data are available, the effect of the variogram 
uncertainty reduces and the results are closer to a similar case without 
variogram uncertainty. This also means, that the underestimation of the 
ensemble variances reduces or disappears. 

3.3 Influence of uncertainty in both the mean 
transmissivity and the transmissivity variogram 

In case both the mean transmissivity and the transmissivity variogram are 
uncertain, the results are still hardly affected by these sources of uncertainty. 
The characterisation of the hydraulic head field is the most affected. In case 
only logtransmissivity data are used for the conditioning, the AAE(h) 
decreases 39.8% as compared with the unconditional case. For the case that 
mean transmissivity and transmissivity variogram are known, the AAE(h) 
decrease is 50.3%. The differences are significant, but still not very large. 
However, the AESD(h) increases very significantly.  

Again we observe that hydraulic head data are able to reduce the impact 
of the uncertainty in the transmissivity statistics. 

3.4 Influence of uncertainty in the boundary conditions 

In order to place the importance of the uncertainty of the mean 
transmissivity and the transmissivity variogram in a context, simulations 
were made in which the prescribed boundary heads were unknown. 

Without uncertainty in the boundary conditions the 10 transmissivity data 
result in an AAE(h) reduction of 50.3%. With uncertainty in the boundary 
conditions this reduction is only 31.0%. The uncertainty of the hydraulic 
head field, as measured by AESD(h), is even more affected by the 
uncertainty of the boundary conditions. The characterisation of the capture 
zone, as measured by AAE(CZ) worsens only slightly; for the scenario 
without errors in the boundary conditions an AAE(CZ) reduction of 4.0% 
was achieved (as compared to an unconditional scenario), for the scenario 
with errors in the boundary conditions an AAE(CZ) increase of 4.5% occurs. 
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The smaller impact of the “wrong” boundary conditions on the well capture 
zone estimation can be explained by the fact that the estimated transmissivity 
field is not affected by the erroneous boundary conditions. The uncertain 
boundary conditions (scenario 4.1) affect more the capture zone estimation 
than the uncertain mean transmissivity (scenario 1.1) or the uncertain 
variogram (scenario 2.1). 

For the case of inverse modelling with hydraulic head data (scenario 4.2), 
the negative impact of the uncertain boundary conditions on the hydraulic 
head field characterisation is less. While in scenario 0.2 (same amount of 
data, but no uncertain boundary conditions) the AAE(h) reduction is 72.0% 
(as compared with the unconditional case), it is 60.1% for scenario 4.2. This 
reduction of the impact of the uncertainty of the boundary conditions is also 
observed for AESD(h). Nevertheless, it is not the case for the 
characterisation of the well capture zone. Although in scenario 4.2 the head 
data yield an AAE(CZ) decrease of 9.1% as compared with an unconditional 
scenario, in case of error free boundary conditions (scenario 0.2) this 
decrease is 19.6%. The wrong boundary conditions limit in the inverse 
modelling the improvement of the characterisation of the transmissivity 
field. This is the reason why the impact of the erroneous boundary 
conditions on the well capture zone characterisation does not decrease in the 
inverse modelling.  

Table 2. Scores on the evaluation criteria for the studied scenarios.  
Scenario AAE(Y) AESD(Y) AAE(h) AESD(h) AAE(CZ)
0.1  89.9  99.3  49.7  88.4  96.0 
0.2  84.5  96.6  28.0  48.9  80.4 
1.1  90.5 103.0  52.1 130.8  97.5 
1.2  85.1 102.0  28.3  54.8  81.2 
2.1  90.6  91.2  54.2  84.5  91.6 
2.2  85.4  93.5  28.7  53.6  77.9 
3.1  90.8  96.6  60.2 166.4  93.6 
3.2  86.4  95.1  28.3  54.4  80.5 
4.1  89.9  99.3  69.0 159.0 104.5 
4.2  86.6 100.1  39.9  86.9  90.9 
4.3  86.5  99.5  39.8  86.5  90.6 
5.1  90.5 103.0  69.7 190.1 107.5 
5.2  87.1 101.4  40.3  92.1  92.1 
5.3  87.0 100.9  40.1  91.6  91.7 
6.1  89.6  91.2  73.7 155.3 102.2 
6.2  87.8  97.8  40.8 109.5  93.0 
6.3  87.7  92.3  39.9  84.0  95.2 
7.1  90.8  96.6  80.0 226.3 103.0 
7.2  88.5 101.1  41.1 114.3  92.5 
7.3  88.5  95.2  40.2 114.1  89.2 

Also in case head data are available, and the transmissivities can be 
updated inversely, the uncertainty in the boundary conditions is much more 
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consequential than the uncertainty of the mean logtransmissivity or the 
uncertainty of the logtransmissivity variogram. 
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Figure 2. Ensemble averaged well capture zones with capture probabilities for (a) 
reference field, (b) unconditional simulations, (c) conditioning to 10 transmissivity and head 
data and no uncertainty in the mean transmissivity and the transmissivity variogram and (d) 

conditioning to 10 transmissivity and head data with uncertainty in the transmissivity 
variogram and the mean transmissivity. 

The scenario with both head and logtransmissivity data is also repeated 
for the case that the modeller recognises the uncertainty/errors on the 
boundary head values and allows these values to be modified. The 
perturbation of the prescribed boundary heads (together with the 
logtransmissivities) results in only very slightly better simulation results. 
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3.5 Multiple sources of uncertainty 

For the scenarios 5, 6 and 7 there are multiple sources of uncertainty. For 
the characterisation of the hydraulic head field, the logtransmissivity field 
and the well capture zone the negative impact of uncertain boundary 
conditions, uncertain mean log transmissivity and uncertain log 
transmissivity variogram, is approximately additive. As a result, the AAE(h),
AAE(Y) and AAE(CZ) only increase slightly in case besides the uncertainty 
of the boundary conditions the other two sources of uncertainty are present.  

The uncertainty of the estimation of the hydraulic head field, however, is 
much more affected in case of two or three sources of uncertainty. Because 
also in this case the impact of the multiple sources of uncertainty is 
approximately additive, in case of for example all the three sources of 
uncertainty the AESD(h) is more than double as big as in the unconditional 
case. Inverse modelling reduces largely the AESD(h), but in case of three 
sources of uncertainty the AESD(h) is always larger than in the unconditional 
case. On the contrary, the AAE(h) reduces until 40% of the AAE(h) in the 
unconditional case in case of three sources of uncertainty (and the use of 
hydraulic head data by inverse modelling). 

4. CONCLUSIONS 

This paper illustrates that it is possible to handle in a simple way 
uncertainty with respect to the mean transmissivity and the transmissivity 
variogram in the modelling of groundwater flow and mass transport.  

At the same time it is found for this particular synthetic study that 
uncertainty on the mean transmissivity and the transmissivity variogram tend 
to have relatively limited consequences for the well capture zone estimation. 
Also in the Full Bayesian approaches in which these sources of uncertainty 
were addressed, the impact on the simulation outcomes was limited 
(Woodbury and Ulyrich, 2000; Feyen, 2002). The impact of the uncertainty 
of the mean transmissivity and the transmissivity variogram affects less the 
estimated ensemble averaged fields as the estimated ensemble variance of 
the fields. Inverse modelling helps to reduce the impact of the uncertainty of 
the mean transmissivity and the transmissivity variogram. Uncertainty in the 
transmissivity statistics has a much smaller impact on the well capture zone 
estimation than uncertainty in the boundary conditions. On the other side, 
even if boundary conditions, the transmissivity field, the transmissivity 
variogram and the mean transmissivity are uncertain, 10 hydraulic head data 
are able to yield a better characterisation of the well capture zone than in the 
unconditional case. 
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EVALUATION OF DIFFERENT MEASURES OF 
FLOW AND TRANSPORT CONNECTIVITY OF 
GEOLOGIC MEDIA 

C. Knudby and J. Carrera 
Departament d’Enginyeria del Terreny i Cartogràfica, Universitat Politècnica de Catalunya, 
Barcelona, Spain 

Abstract: In order to allow for reasonably exact modeling of fluid flow and contaminant 
transport in low permeable geologic media, it is of prime importance that the 
connectivity is represented with sufficient accuracy. Connectivity affects the 
effective large-scale value of hydraulic conductivity. It also affects the way in 
which porosity is accessed by solutes. Despite the apparent importance of 
connectivity, the use of parameters with a high level of information on 
connectivity is very limited in hydrogeology. We evaluate and compare 
several measures of flow and transport connectivity. Our results indicate that 
flow and transport connectivity are qualitatively different. 

1. INTRODUCTION 

Proper representation of connected features in geological media (high-
conductivity flow paths and low-conductivity flow barriers) is of crucial 
importance when modeling flow and transport in geological media. 
Connectivity causes channeling (i.e. concentration of water flux along a 
small portion of the domain) which results in very significant reduction of 
solute travel time. The importance of a proper representation of connected 
features, which exist is many types of geological media frequently 
investigated in hydrogeology, has long been recognized (Fogg, 1986; Webb 
and Anderson, 1996). Nevertheless, very little attention has been paid to 
defining connectivity in a quantifiable manner in hydrogeological research. 

This negligence can be partly attributed to the widespread use of the 
assumption that the distribution of hydraulic conductivities, K, in many 
geological media is approximately multilog-Gaussian. This assumption was 
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originally based on the observations of Law (1944) and Davis (1969) who 
found that the point values of log-K in many natural media follow a 
Gaussian distribution. Considerable mathematical simplifications can be 
obtained by extending this assumption to one of multilog-Gaussianity. 
However, this involves an assumption on the spatial structure of the point 
values of K which is very rarely supported by data. In fact, multilog-
Gaussianity implies minimal spatial correlation of extreme values (Journel 
and Deutsch, 1993; Gomez-Hernandez and Wen, 1998). Therefore, the 
widespread use of multilog-Gaussian K-distributions, which to a great extent 
is based on considerations of mathematical tractability rather than on 
available data, leads to a consistent underestimation of the connectivity. This 
consequence of the use of multilog-Gaussian K-distributions was analyzed 
by Sánchez-Vila et al. (1996). They found that for two-dimensional fields 
with higher correlation lengths for high-K zones than for low-K zones, the 
effective conductivity tends to be higher than the geometric average of the 
point values of K, KG, which is the effective conductivity of an infinite 
multilog-Gaussian medium with isotropic correlation structure (Matheron, 
1967). 

One obvious step towards improved characterization and incorporation of 
connectivity would be the introduction of one or more measures of 
connectivity. The use of such parameters should make it easier to identify 
and quantify misrepresentation of connectivity. Also, when generating 
random fields using stochastic simulation, the connectivity measures could 
be used for conditioning. This would enable the generation of fields that are 
more realistic with respect to connectivity. 

To the best of our knowledge, the only measure of connectivity used so 
far in hydrogeology stems from Percolation Theory (e.g. Stauffer and 
Aharony, 1991). The employed definition is purely topological in that a 
medium is connected only if a continuous path exists between two 
boundaries of the medium. As geological media never are completely 
impermeable the direct application of such a definition on a grain size scale 
would render all geological media connected. On the other hand, if the 
geological medium is treated as being composed of facies or indicators of K-
intervals (e.g. Journel, 1983), then connectivity indicates whether or not 
certain facies or zones of K-values belonging to a certain interval percolate. 
In this case the measure plays a key role for the hydrological response of the 
system in question (Fogg, 1986; Fogg et al., 2001). Nevertheless, the use of 
such a simple definition of connectivity rules out the use of a significant part 
of the information potentially contained in a well-defined measure of 
connectivity. Two different media, one containing many connected features, 
the other one largely without connected features, might both be non-
connected according to this definition despite the fact that their hydrological 
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response is likely to be immensely different. In order to enable distinction 
between such media one needs a definition that allows a non-discrete 
quantification of the connectivity of a system. 

Geostatistics is the natural choice for a framework into which measures 
of connectivity could be integrated. In geostatistics, one works with 
parameters such as the integral scale and the variance which both contain 
some non-discrete information on connectivity. However, standard 
geostatistical methods used in hydrogeology are based on the variogram that 
accounts for correlation as a function of distance between two points without 
consideration of what lies in between. Also, no consideration is taken to 
whether K is high or low except when indicator variograms are employed. 
Any reasonable measure of connectivity must consider "what lies in 
between" (e.g. by considering strings of high K-values, see fig. 1) and will 
therefore differ conceptually from variogram-based parameters. Western et 
al. (2001), who also call for quantification of connectivity, but in the field of 
surface hydrology, illustrate this nicely by use of the two fields presented in 
fig. 1.

Figure 1.  Conductivity fields with the same pdf's and omni-directional variograms, but 
with very different connectivity. From (Western et al., 2001) 

The two fields have the same pdf and variogram, but are obviously very 
different with respect to connectivity. As connectivity conceptually is more 
closely related to channeling than any two-point correlation function used in 
geostatistics, one would have to go beyond standard geostatistical methods, 
or modify them, in order to address connectivity properly. 

The objective of our work is to define easy-to-measure hydraulically 
based connectivity in order to make it easier to predict hard-to-measure 
transport based connectivity. In this paper we present and evaluate several 
measures of both flow and advective transport connectivity. It is not the 
intention of the paper to identify the best measure, but only to evaluate 
different measures, to test if they correlate, and to shed light on how the 
averaged response of flow and transport processes in geological media 
depend on connectivity. 
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This paper is organized as follows. First, we present a number of possible 
measures of "connectivity" which are based on different characteristics of 
flow and transport. Next, we describe the methodology that we have used to 
evaluate these measures. Subsequently we present the results of this 
evaluation. Finally, the outcome of the analysis is discussed and we conclude 
on which measures contain the most information on essential characteristics 
of the flow and transport in the media considered. 

2. MEASURES AND CONNECTIVITY 

Any valid measure of connectivity should meet the following 
requirements: 
1. It should be quantifiable. This implies that it needs to be defined in terms 

of parameters which can be measured directly or estimated indirectly. 
2. The value of the measure should contain information on the 

characteristics of flow and/or transport processes in the medium in 
question. This implies that it should be either related to or a function of 
parameters that exert control on flow and/or transport through the system. 

Ideally, connectivity should be defined so that it can be derived directly 
from available field data such as, for example, pump tests. Nevertheless, in 
the present study, which deals with fully known synthetic fields only, it was 
considered useful to consider definitions of "connectivity" that allow for 
quantification of the parameter only when the exact distribution of hydraulic 
conductivities is known. 

In the following, three flow-based measures of connectivity (CF1, CF2,
CF3), and two transport-based measures of connectivity (CT1, CT2) are 
presented. 

2.1 Exponent for “Power Averaging” (CF1)

The effective conductivity, Keff, of a geological medium, can be 
estimated from power averaging of the point values of K (e.g. Renard and de 
Marsily, 1997). This involves estimating Keff from 
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1 CF
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K K dV
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x                                       (1)

where V is the volume in question, x is the location in space and CF1 is 
an exponent. On the other hand, if Keff is known (i.e. from a long pumping 
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test (Meier et al., 1998)) then we can determine the value of the exponent 
CF1 from (1). The value of CF1 is an indicator of the connectivity of the 
field. For a layered medium in which the direction of flow is perpendicular 
to the layers (i.e. minimum connection), Keff is equal to the harmonic mean 
of the point values of K. Thus, CF1 assumes the value -1. Conversely, Keff is 
equal to the arithmetic mean of the point values of K for a layered medium 
in which the direction of flow is parallel to the layers (i.e. maximum 
connection). In this case, CF1 assumes the value 1. In between these 
extremes is the case of CF1 0. effK0lim

1CF  corresponds to the 

geometric mean of the point values of K. Since the harmonic and arithmetic 
means are lower and upper bounds on the effective conductivity, 
respectively, CF1 can be considered as an indicator of how the point values 
of K are organized within the medium in question - blocking the flow (CF1

close to -1) or providing channels (CF1 close to 1). In the two-dimensional 
case, CF1 also indicates if the medium is more or less conductive than a 
multilog-Gaussian medium with the same pdf of K values (CF1 smaller or 
greater than 0). Sanchez-Vila et al. (1996) discuss this issue further. 

2.2 Ratio of Keff to KG (CF2)

For the same reasons that CF1 is a measure of connectivity, also the ratio 

2
eff

G

K
CF

K
                                                     (2) 

is a measure of connectivity. In fact, the only difference between the two 
is the difference in the interval of values which the parameters can assume. 
Whereas CF1 can assume values belonging to the interval [-1;1], CF2 can 
assume any positive value. We test both in order to find out whether the 
scaling difference makes one measure easier to interpret than the other. 

2.3 Ratio of the Critical Path Conductivity to KG (CF3)

The hydrogeological response of geological media which exhibit a high 
K-value variance will be closely related to the critical path conductivity, KC,
(Ambegaokar et al., 1971; Friedman and Seaton, 1998), also called the 
"extreme path conductivity" (Silliman and Wright, 1988). This is defined as 
the minimum conductivity along the path through the medium which has the 
highest minimum conductivity. A more intuitive measure of connectivity is 
therefore 
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2.4 Ratio between average arrival time and the arrival 
time of 5% of the solute (CT1)

The breakthrough curve for solute being transported through a geological 
medium contains much information on the connectivity of the medium. If a 
very large proportion of the solute follows the same fast path, and as a 
consequence reaches the outlet shortly after injection, and over a small time 
interval, then the medium must be considered well connected. However, if 
the solute is spread out due to the lack of fast pathways, and therefore 
reaches the outlet late, and over a large time interval, then the medium must 
be considered badly connected. From these considerations it is clear that 

5
1 T

T
CT AVE

where TAVE is the average arrival time and T5 is the time at which 5% of 
the solute has arrived at the outlet, can be considered a measure of transport 
connectivity. 

2.5 Skewness of arrival times distribution (CT2)

Based on the considerations outlined above, also the skewness of the 
breakthrough curve contains information on the connectivity. As a measure 
of connectivity, we have therefore also used the skewness of the 
breakthrough curve given by 
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tt
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1
                                            (4) 

where Nt is the number of stream tubes used for the analysis, tj are the 
average arrival times for the stream tubes, t is the overall average arrival 
time, and t is the standard deviation of the arrival times. As CT1 also CT2

has the advantage of being based on data which are obtained from tracer 
tests. 
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3. METHODOLOGY 

In order to evaluate the five measures of connectivity presented above, 
multilog-Gaussian fields were modified by rearranging K-values so that the 
connectivity was increased. The change in connectivity caused by the 
rearrangement was then analyzed and related to relevant hydrogeological 
parameters such as the effective conductivity and arrival times. Thus, the 
ability of the proposed measures of connectivity to describe the most 
important aspects of flow and advective transport could be evaluated. 

The procedure was as follows: 
1. The stochastic simulation program GCOSIM3D (Gomez-Hernandez and 

Journel, 1993) was used to generate several series of 50 two-dimensional 
Gaussian fields with the dimensions 64x64 cells. The original fields were 
generated used a spherical variogram with a variance of 4.0 and a range of 
16 cell lengths. 

2. All fields were modified by randomly choosing the location of a number 
of "fractures" - strings of cells with high K values - and subsequently 
interchanging the highest K values in the entire field with the values of 
the cells identified as fracture cells. This way, the histogram of K values 
remained unchanged. By ordering the two groups of values to be 
exchanged and placing the highest value from one group in the location of 
the highest value from the other group, and at the same time only 
interchanging a small fraction of the total number of K values, only very 
small changes in the variograms resulted from the modification of the 
fields. Fig. 2 shows two original and corresponding modified fields. The 
modification applied to the different series varied with respect to the 
number and length of connected features added to the fields. 

3. Flow was solved for all fields using MODFLOW-2000 (Harbaugh et al., 
2000). No-flow boundary conditions were imposed on two opposite sides. 
Two different constant heads were imposed on the remaining two 
boundaries. 

4. Streamlines were determined by inverting both boundary conditions and 
conductivities and solving for flow. Fogg (1985) explains the procedure. 

5. Values of all five connectivity measures listed in section 2 were 
calculated for all fields. 

4. RESULTS 

     The six different series of 50 fields differed with respect to the 
number and length of the connected features generated by the modification 
of the K-distribution. In this paper, we only present the results from the first 
of the series. For this series, the original fields were modified by imposing 
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the presence of four connected features of a maximum length of 32 cells. 
The connected features were allowed to fall partly outside the domain. 

Figure 2.  Two Gaussian fields before and after modification,  
and corresponding flow lines 

     It was found that the three measures of flow connectivity, CF1, CF2,
and CF3, contain the same information on flow connectivity. CF1 and CF2

are both functions of Keff and are only different with respect to the scaling. In 
correspondence with the findings of Ambegaokar et al. (1971), we found that 
the effective conductivity of a system with high variance will be 
approximately given by KC. Indeed, in one case (variance of log-K equal to 
4), they correlate along a 1:1 line as shown in fig. 3. As a consequence, CF3

differed only slightly from CF2.

Figure 3. Relationship between the effective conductivity, Keff, and the critical path 

conductivity, KC.
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The measure of transport connectivity based on the skewness of the 
breakthrough curve, CT2, showed only a very minor increase as a 
consequence of the modifications of the fields. Thus, we chose to 
concentrate our analysis on CT1 which changed more significantly as a 
consequence of the modifications. 

Figure 4.  CF1 vs. CT1 for a series of 50 original and modified fields 

Fig. 4 shows the relationship between CF1 and CT1 for a series of 50 
fields. On average the rearrangement of the fields has caused a marked 
increase in both flow and transport connectivity, which suggests that they 
indeed measure what we perceive intuitively as connectivity. However, for 
some fields, the modifications caused an increase in one connectivity 
measure whereas the other measure remained constant or decreased. This 
indicates that there is a qualitative difference between connectivity of flow 
and transport as measured by CF1 and CT1. This corresponds with the 
conclusions of Scheibe and Yabusaki (1998) who showed that the power 
using for upscaling by power averaging depends on whether flow or 
transport is the process being upscaled. A closer look at the two fields shown 
in fig. 2 – fields 27 and 49 – can help explain this phenomenon. The 
connectivity measures for the two fields are listed in table 1. 
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Table 1. Connectivity measures for fields 27 and 49. 

 Original Modified Relative Change 

Field # 27 49 27 49 27 49 
CF1 -0.016 -0.078 0.001 0.087 1.08 2.11 

CF2 0.83 0.46 1.02 2.49 0.22 4.44 
CF3 0.48 0.45 0.48 1.41 0.00 2.16 

T5 0.169 1.216 0.156 1.043 -0.08 -0.14 
TAVE 4.37E+4 4.21E+4 6.43E+5 2.08E+4 13.71 -0.51 

CT1 2.58E+5 3.47E+4 4.13E+6 1.99E+4 14.99 -0.43 

CT2 4.06 5.27 4.50 5.54 0.11 0.05 

For field 27 the effective conductivity and thus CF1 changes only 
insignificantly in response to the rearrangement of K-values. The flow lines 
depicted in fig. 2 show that the addition of connected features results in more 
concentrated flow along the main fast path through the domain. However, 
the fast path passes a low-K zone which probably is why the effective 
conductivity changes only slightly. On the other hand, CT1 increases 
significantly, mainly because of an increase in the average arrival time TAVE

- probably due to the same low-K zone which constitutes a flow bottleneck. 
In other words, the presence of a low-K zone acting as a bottleneck along the 
fast path through the domain may affect flow connectivity more than 
transport connectivity. For field 49, the rearrangement caused CF1 to 
increase. Apparently the two zones between the three connected high-K 
features do not significantly block the flow. TAVE decreases whereas T5

remains constant and as a consequence CT1 decreases slightly. Contrary to 
field 27, the rearrangement of field 49 affected flow connectivity more than 
transport connectivity. 

5. DISCUSSION AND CONCLUSIONS 

Despite the apparent importance of connectivity, it has not yet been 
defined as a quantifiable parameter which is useful for hydrogeological 
research. We present several measures of flow and transport connectivity. 
The measures are analyzed with respect to their ability to explain the 
difference in flow and transport in multilog-Gaussian and non-multilog-
Gaussian media. It is shown that for a given field, flow and transport 
connectivity, as measured by the two measures CF1 and CT1, respond 
differently to the same changes in the distribution of hydraulic 
conductivities. A measure of flow connectivity can increase while the 
measure of transport connectivity can decrease and vice-versa. This is partly 
due to fact that CF1 and CT1 contain different information on connectivity. 
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However, we believe that it also expresses a qualitative difference between 
flow and transport connectivity. 
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MODELING OF REACTIVE CONTAMINANT 
TRANSPORT IN HYDRAULICALLY AND 
HYDROGEOCHEMICALLY HETEROGENEOUS 
AQUIFERS USING A GEOSTATISTICAL FACIES 
APPROACH
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Tübingen, Germany

Abstract: It is well known that aquifer structural properties and the resulting 
heterogeneous distribution of hydraulic conductivity and porosity significantly 
control groundwater flow and spreading of solutes. In addition to this, 
physico-chemical aquifer heterogeneity, i.e. different intra-particle sorption 
and diffusion properties for different source rocks of the aquifer material 
(lithological components) grouped in different grain size fractions, influence 
the interaction of reactive solutes with the aquifer material. To be able to 
consider both types of heterogeneity, a new 3D finite-difference reactive solute 
transport modeling approach was developed, being an essential component of 
a methodology allowing for the upscaling of small-scale laboratory 
measurements and for the assessment of parameter uncertainty. Sorption and 
desorption are introduced at grain scale through the simulation of a retarded 
intra-particle diffusion process in the heterogeneous aquifer material for each 
lithological component and each grain size fraction in every model cell. For a 
practical application of the code the data needed may be introduced into each 
model cell following a facies-based geostatistical approach. First modeling 
results emphasize the strong impact of the lithological aquifer material 
composition and confirm the need for a geostatistical process-based reactive 
transport modeling approach with spatially variable hydraulic and 
hydrogeochemical aquifer parameters. 
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1. INTRODUCTION 

Many organic contaminants in groundwater are not only subject to 
advection, dispersion and degradation, but also to sorption and desorption 
resulting in contaminant spreading which is retarded as compared to the 
transport of non-reactive compounds. It has been found that sorption and 
desorption processes in general cannot be adequately described by invoking 
the local equilibrium assumption (Sardin et al., 1991). Rather, sorption and 
desorption of organic compounds may exhibit a strong kinetic behavior, 
associated with an effective retardation factor increasing with time (e.g. Ball 
& Roberts, 1991a, b). Diffusive processes in intra-particle pores are mainly 
responsible for the sorption kinetics (e.g. Pignatello & Xing, 1996, 
Grathwohl, 1997). 

Dealing with reactive transport modeling at field scale, both the hydraulic 
and the physico-chemical (hydrogeochemical) aquifer heterogeneities have 
to be considered. It is well known that aquifer structural properties, i.e. size, 
position and amount of clay lenses, sand and gravel layers, and the resulting 
heterogeneous distribution of hydraulic conductivity and porosity, 
significantly control groundwater flow and spreading of solutes (e.g. Dagan, 
1989). In addition to this, hydrogeochemical aquifer heterogeneity, i.e. 
different intra-particle sorption and diffusion properties for different source 
rocks of the aquifer material (lithocomponents) grouped in different grain 
size fractions, influence the interaction of reactive solutes with the aquifer 
material (e.g. Kleineidam et al., 1999), and may tend to enhance tailing of 
reactive solutes, compared to non-reactive ones (e.g. Burr et al., 1994). 

To be able to consider both the physical (hydraulic conductivity, 
porosity) and the hydrogeochemical aquifer heterogeneities (different intra-
particle sorption and diffusion parameters for different lithological 
components of the aquifer material and the different grain size fractions), a 
3D finite-difference solute transport modeling approach was developed. This 
approach is based on a sedimentological facies characterization using 
categorical variables and allows for upscaling of hydraulic and 
hydrogeochemical parameters, measured at laboratory scale, to field-scale 
scenarios.

2. THE 3D REACTIVE TRANSPORT MODELING 
APPROACH 

The concept and the basic steps of the reactive transport simulation 
approach are summarized in Figure 1. The individual steps of the approach 
are described more detailed in the sections below. 
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2.1 Facies-based characterization of hydraulic and 
hydrogeochemical aquifer properties 

For an application of the modeling approach, the aquifer is represented 
by a 3D finite-difference model grid. Due to the hydraulic and 
hydrogeochemical aquifer heterogeneity, the lithological composition and 
the grain size distribution may differ from one model cell to another. The 
data needed are introduced into each model cell following a facies-based 
categorical variable approach (Figure 1).  

Since it is known that aquifer hydraulic properties are closely linked to 
the sedimentary lithofacies (for example well sorted sand, gravel with fine 
grain matrix etc., e.g. Kleineidam et al., 1999), the aquifer body is at first 
classified at the model cell scale (order of tens of cm) into typical lithofacies 
types (Ptak, 1997), which may be interpreted as aquifer material categories. 

Herfort (2000) has shown that grain size distribution curves of aquifer 
material samples (usually sections of about 10 to 20 cm length of drill cores 
with 10 cm diameter) may be used for this classification, employing for 
example the K-means multivariate clustering algorithm (McQueen, 1967). In 
addition, categories or lithofacies types may also be attributed as soft 
information by an expert geologist (sedimentologist) through a visual 
inspection of drill core material. In this way, a large number of aquifer 
material category estimations, together with their position within the aquifer, 
can be obtained at affordable costs.  

Then, for each lithofacies (aquifer material category, cluster of grain size 
distribution curves), characteristic sediment samples are collected, and a 
sediment material decomposition and analysis / batch experiment procedure 
is applied (Figure 1) to obtain the lithofacies-specific hydraulic parameters, 
mass fraction of (j,k)-grains (here j = index denoting a lithological 
component and k = index denoting a grain size class) and the 
lithocomponent-specific hydrogeochemical parameters, which are described 
below in Chapter 2.3. Of course, depending on the aquifer genesis, the facies 
properties may be site specific. The lithological composition of two facies 
from an experimental site in the Neckar Valley (South Germany) is shown as 
an example in Figure 2. The aquifer is composed of shallow Quaternary 
gravels with locally embedded sand, silt and loamy clay. Based on pumping 
tests, the average hydraulic conductivity was estimated as 2.5 10-3 ms-1

(Herfort, 2000). The thickness of the aquifer varies between 0 m and 5.5 m, 
due to a structured base and a partial replacement by anthropogenic fills at 
the top. 
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Figure 1. Concept and basic steps of the 3D reactive transport modeling approach.

2.2 Generation of 3D facies and fields of hydraulic and 
hydrogeochemical aquifer parameters 

In the next step, a facies type respective aquifer material category (such 
as sand, gravel etc.) has to be assigned to each model cell. The 3D condi-
tional sequential indicator simulation method (SIS) for categorical variables 
(Deutsch and Journel, 1992), which represent the different facies types, is 
applied to generate conditioned equiprobable 3D realizations of the facies 
fields. Figure 3 shows a realization of a site in the Neckar Valley. The 
parameters of the experimental and theoretical variograms shown in Table 1 
are based on a geostatistical site characterization including 1420 data points 
from drilling logs and 120 sieve analyses of aquifer material (Peter, 2002). 

With this approach, 3D hydraulic and hydrogeochemical parameter 
distributions are obtained simultaneously and can be used for reactive 
transport simulations at field scale, employing the numerical code described 
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below. In this way, an upscaling of laboratory measurements for numerical 
field-scale simulations is achieved, without the need to define field-scale 
effective parameter values. 
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Figure 2. Lithological composition of two lithofacies (Gm = gravel with fine grain matrix, S 
= well sorted sand) from the Neckar Valley experimental site (Herfort, 2000). 

Figure 3. Typical facies distribution in the realizations at the Neckar Valley experimental site. 
Layer 1 denotes the top and Layer 3 the bottom of the aquifer (after Bockelmann, 2002). 
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Table 1. Parameters of the experimental and spherical theoretical variograms for each 
lithofacies. (ldis: lag distance; ltol: lag tolerance; n: nugget; s: sill; r: range) (Peter, 2002). 

Lithofacies G Lithofacies Gm Lithofacies S 
Exper. 
Vario.

Sph. Theor. 
Vario.

Exper. 
Vario.

Sph. Theor. 
Vario.

Exper. 
Vario.

Sph. Theor. 
Vario.

D
ir

ec
tio

n1

ldis ltol n s r ldis ltol n s r ldis ltol N s r 

1 25 12.5 0.06 0.22 58 20 10 0.05 0.26 45 20 10 0.006 0.046 60 
2 25 12.5 “ “ 48 20 10 “ “ 38 20 10 “ “ 40 
3 0.2 0.1 “ “ 5 0.2 0.1 “ “ 5 0.2 0.1 “ “ 2 

1 Investigated directions are (1) 112.5o east from north, (2) 22.5o east from north and (3) vertical direction 

2.3 Modeling of flow and reactive transport 

Sorption / desorption of reactive solutes is modeled by a diffusion-based 
formulation at grain scale, instead of employing transfer rate models 
involving empirical parameters. In each model cell, the retarded intra-
particle diffusion process in the heterogeneous aquifer material is simulated 
for each lithological component and each grain size fraction. As the grains 
are assumed to be spherically symmetrical this equation can be written as 
(e.g. Grathwohl, 1997): 

jkj
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aq
jkjjjkj c

r
r

rr

D
c

t
2

2

1
1  (1) 

with t = time [T], r = radial coordinate [L], Daq = aqueous diffusion 
coefficient of the reactive solute [L2T-1], j = tortuosity of intra-particle pores 
of a lithological component j [-], j = intra-particle porosity of lithological 
component j [-], j = dry solid density of lithological component j [ML-3], cjk

= concentration of chemical dissolved in the fluid phase within intra-particle 
pores of the (j,k)-grains [ML-3], jk = mass of chemical sorbed on surfaces of 
intra-particle pores of the (j,k)-grains per unit mass of the (j,k)-grains [-]. 
Equation (1) needs data obtained from the aquifer material decomposition, 
analysis and batch experiments (Figure 1). Diffusion is assumed to be 
retarded due to equilibrium sorption onto the surfaces of the intra-particle 
pores. This process can be quantified by jk jk jkG c where Gjk represents 
the type of sorption / desorption isotherm obtained from an aquifer material 
analysis (Figure 1) and batch experiments. 
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From the intra-particle diffusion equation (1) the mass of a chemical 
within the (j,k)-grains can be given per unit volume by an integral of 
equation (1) over the volume of the sphere:

m
f

R
r

R
c drjk
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where Rk = grain radius of grain size class k [L] and fjk = mass fraction of 
(j,k)-grains [-] according to the lithological and grain size decomposition 
(Figure 1). This mass is required for solving the reactive transport equation, 
extended with terms to consider (j,k)-grain-specific degradation and sorption 
/ desorption of the chemical:
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with n = effective inter-particle porosity [-],  = bulk density [ML-3], c = 
solute concentration in inter-particle pore space [ML-3], D = local dispersion 
tensor [L2T-1], d = degradation rate for the chemical dissolved in inter-
particle pore space [T-1], sjk = mass of the chemical sorbed onto surfaces of 
the (j,k)-grains per unit mass of the (j,k)-grains [-], d,jk = degradation rate for 
the chemical sorbed onto surfaces of (j,k)-grains [T-1], mjk = mass of the 
chemical in intra-particle pores of the (j,k)-grains per unit volume [ML-3],
and c  = concentration of injected or withdrawn solute [ML-3] (for 
withdrawal c  = c). Sorption of chemicals onto the outer grain surfaces is 
assumed to occur under equilibrium conditions so that 
isotherms s F cjk jk ( ) can be employed for each lithological component j and 
each grain size class k. Fjk may denote any type of isotherm such as linear, 
Freundlich, or others, obtained from batch experiments (Figure 1). 

Equations (1) and (3) are coupled by ),(,, txctRrxc kjk  for any 
point x in a 1D, 2D or 3D model domain, i.e. solute concentration is assumed 
to vary continuously at the “interface“ between inter- and intra-particle pore 
space (r = Rk). Additional initial and boundary conditions have to be 
specified for inter-particle transport according to the scenario to be modeled. 

The mathematical model presented in this section has to be solved 
numerically due to the complex interaction of large (field) scale transport 
and local (grain) scale diffusion as well as linear or non-linear equilibrium 
sorption / desorption processes. For this purpose, the well known MT3D 
code (Zheng, 1990) and a new finite-difference code IPD (Jaeger & Liedl, 
2000) for the intra-particle diffusion have been combined. The added IPD 
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module simulates within each model cell the retarded intra-particle diffusion 
process in heterogeneous aquifer material by solving equation (1) for each 
lithological component j and each grain size class k. The extended version of 
MT3D is called MT3D-IPD. 

Using MT3D-IPD, flow and transport simulations are finally performed 
for the reactive solutes within the generated hydraulic and hydrogeochemical 
parameter fields, with an aquifer geometry as well as initial and boundary 
conditions according to the field scale scenario. In addition, an ensemble of 
equiprobable realizations of the aquifer parameter fields may yield an 
assessment of parameter uncertainty in a Monte-Carlo-type stochastic 
framework. 

3. EXAMPLES OF APPLICATION 

3.1 Laboratory column 

The first example refers to 1D solute transport in a hydraulically 
homogeneous column focusing on the impact of hydrogeochemical 
heterogeneity. The flow in the column is steady-state without sources or 
sinks (N = 0). Hydraulic conductivity and effective inter-particle porosity are 
set equal to K = 10-4 ms-1 and n = 0.4, respectively. The length of the column 
is L = 0.2 m, and a constant head difference is maintained such that linear 
velocity vfn

-1 equals 1 md-1 = 1.16 10-5 ms-1. Longitudinal dispersivity is 
assumed to be L = 4 10-4 m. All modeling exercises refer to a continuous 
injection of Phenanthrene with an input concentration cin = c(x=0,t) = 40 gl-

1 into an initially uncontaminated column. Phenanthrene was chosen here as 
a representative compound, since it belongs to the US-EPA priority pollutant 
list. Its aqueous diffusion coefficient equals 5.72 10-6 cm²s-1. As the 
modeling studies are focused on the investigation of intra-particle diffusion, 
decay and sorption onto outer grain surfaces are neglected, i.e. d = d,jk = 0 
and sjk = 0, respectively. Sorption onto the walls of the intra-particle pores is 
modeled by Freundlich isotherms, i.e. jk jk jk Fr jk jk

nG c K c Fr jk

,
, with KFr,jk

= Freundlich coefficient [(M-1L³)nFr,jk] and nFr,jk = Freundlich exponent [-] of 
the (j,k)-grains. 

The intra-particle diffusion of Phenanthrene is studied for three 
lithological components (or facies) with different sorption / desorption 
properties: sandstone, light-colored limestone and dark-colored limestone. 
Parameters of these lithological components resemble data published by 
Kleineidam et al. (1999) and are summarized in Table 2. 
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Table 2. Hydrogeochemical parameters of lithocomponents respective facies (model input 
data).

Parameter \ Lithocomponent  Sandstone Light-colored limestone Dark-colored 
limestone 

Intra-particle porosity j [-] 0.0195 0.0054 0.0035
Tortuosity j [-] 12 20 590
Dry solid density j [gcm-³] 2.69 2.73 2.74
Freundlich coefficient KFr,j 

[(ml/ g)nFr,j]
2.9 10-6 5.5 10-6 3.6 10-5

Freundlich exponent nFr,j [-] 0.66 0.67 0.33

In order to maintain a constant surface-to-volume ratio all grains are 
assumed to have the same radius Rk = 0.015 cm. As an example of the 
results, Figure 4 shows breakthrough curves (BTCs) at the column outlet 
obtained from test runs simulating sorption. The runs can be distinguished 
by the mass fractions fj for each lithological component. 

Table 3. Mass fractions [%] of lithocomponents respective facies for the different model runs. 
 Sandstone Light-colored limestone Dark-colored limestone 
Run 1 33.33 33.33 33.33
Run 2 100 0 0
Run 3 0 100 0
Run 4 0 0 100
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Figure 4. Breakthrough curves for sorption model runs(run 1: fj = 1/3 for sandstone, light-
colored and dark-colored limestone; run 2: sandstone only; run 3: light-colored limestone 

only; run 4: dark-colored limestone only). 

It can be seen from Figure 4 that the first breakthrough for the sandstone 
column (run 2) occurs at later times than for the limestone columns. This is 
due to the higher apparent intra-particle diffusion coefficient of the 
sandstone grains The long-term behavior is explained by the sorption 
capacity factors providing a qualitative measure for the amount of 
contaminant which can be stored per solid mass in the intra-particle pores of 



256 T. Ptak and R. Liedl 

each lithological component for a certain solute concentration in the inter-
particle pores. The low capacity factor of the sandstone explains why the 
BTC belonging to model run 2 approaches the input concentration much 
more rapidly than the BTCs for the limestone columns. For comparison, 
Figure 4 also shows the BTC for a column filled with sandstone, light-
colored limestone and dark-colored limestone at identical mass fractions (run 
1). Of course, this BTC cannot be obtained by simple arithmetic averaging 
of the BTCs representing the lithologically homogeneous cases. This is 
mainly due to the temporally changing ratios of contaminant uptake by the 
three lithological components and the non-linear isotherms. 

3.2 Reactive transport modeling at field scale 

In the second example, Monte-Carlo type MT3D-IPD reactive transport 
simulations are conducted for a field-scale scenario using geostatistically 
generated facies-based aquifer realizations (Chapter 2.2). Figure 5 shows 
corresponding normalized breakthrough curves of Acenaphthene which can 
produce plumes of significant lengths and concentrations at gaswork sites. 
For the simulations, a cutout of a calibrated larger scale flow model was 
used, with constant heads at the two control planes (Figure 3) and no-flow 
boundaries elsewhere. A constant mass flow was applied at control plane 1. 
Integral (i.e. representative of a control plane as a whole) breakthrough 
curves of Acenaphthene mass flow were recorded at control plane 2. 

Figure 5. Examples of modeled relative integral mass flow of Acenaphthene (normalized with 
the input mass flow) at control plane 2 situated 140 m downgradient from the modeled source 
(control plane 1). Simulation started with an uncontaminated aquifer and accounted for intra-

particle diffusion and non-linear intra-particle sorption of Acenaphthene. The differences 
between the realizations F1 (circles), F4 (triangles), F18 (squares), and F20 (crosses) decline 
with time as the partitioning of Acenaphthene approaches equilibrium (Bockelmann, 2002). 
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In all realizations, the diffusion-limited sorption of acenaphthene is a key 
attenuation process during the first 10 to 20 years of the contamination, 
assuming a time-invariant contaminant input at control plane 1 and a 
decoupling of diffusion-limited sorption and degradation. The latter was not 
included in the simulation in order to estimate the minimum time to achieve 
sorption equilibrium. Biodegradation of the contaminants might lead to an 
extension of the timeframe in which sorption is an important attenuation 
process. It can be seen from Figure 5 that even after 30 years of release the 
aquifer system is not at equilibrium. Using equilibrium retardation factors 
for reactive transport predictions, as it is very often done in practice, would 
strongly overpredict the retardation of the contaminant. Using MT3D-IPD 
the retardation can be modeled as an outcome of a diffusion-controlled 
sorption process in a hydraulically and hydrogeochemically heterogeneous 
aquifer, allowing to make physically correct predictions of contaminant 
spreading and plume development, without relying on, for example, simple 
fitted (first-order) rate models. 

4. CONCLUSIONS AND FUTURE WORK 

The modelling examples emphasize a strong impact of the lithological 
aquifer material composition on reactive solute transport predictions. 
Therefore, the joint simulation of sorption and desorption at small-scale and 
groundwater flow and transport at large-scale is regarded as an essential 
prerequisite for simulating field-scale scenarios of reactive solute spreading. 
The introduced generation of spatially variable facies distributions offers an 
effective possibility to consider heterogeneous hydraulic and 
hydrogeochemical aquifer parameter fields. The method allows for an 
upscaling of hydraulic and hydrogeochemical laboratory measurements to 
field-scale scenarios without the need to introduce empirical and / or scale-
dependent effective parameter values, or some a priori correlation functions 
of hydraulic conductivities and distribution coefficients. It offers a broad field 
of applications, e.g. for the assessment of plume spreading and groundwater 
contamination risk at polluted sites, for the evaluation of the natural 
attenuation potential, or for the planning of active remediation activities. 
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Abstract: We consider the effect of heterogeneity on estimation of the time that is 
necessary to reclaim an aquifer by means of a constant rate pumping well. We 
derive the predictor of resident time (rendered by its mean) together with the 
associated prediction error (rendered by its variance) for non reactive solute 
particles under mean radial flow conditions in a randomly, spatially correlated, 
heterogeneous aquifer. The solutions are obtained numerically following a 
Monte Carlo procedure, and compared with a newly developed first-order 
analytical approach. Agreement between analytical and numerical results is 
very good. One of the main results is that the mean travel time is always larger 
than the deterministic value obtained assuming a homogeneous media. Our 
analysis can be used in planning water resources protection strategies, since it 
would be possible to obtain an estimate of the maximum clean-up time, 
associated with a design probability, which would substitute the use of a single 
(underestimated) deterministic value.  

1. INTRODUCTION 

To design and implement properly clean-up of a contaminant plume in 
groundwater it is decisive to obtain a good estimation of the contaminant 
travel time which renders the aquifer reclamation time. Prediction of 
contaminant travel time in aquifers is commonly accomplished by means of 
models based on the assumption of a deterministic knowledge of the medium 
hydrogeological properties. However, hydraulic conductivity has been found 
to vary orders of magnitude at relatively close locations even in apparently 
fairly homogeneous aquifers.  
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As our knowledge of the medium will never be complete, we should 
recognize the need to cast the equations that govern groundwater flow and 
contaminant transport within a stochastic framework. The latter is oriented 
towards rendering ensemble moments of quantities such as flux and travel 
time of solutes. Although of high relevance in practical applications, 
problems associated to contaminant transport in the vicinity of extraction 
wells in heterogeneous media have been tackled only recently (e.g. 
Guadagnini and Franzetti [1999], Riva et al. [1999], Dagan and Indelman
1999], van Leeuwen et al. [2000], Feyen et al. [2001]).  

Here we consider the effect of random heterogeneity of the natural 
logarithm, Y, of transmissivity, T, upon the estimation of the time that is 
necessary to reclaim an aquifer by means of a constant rate pumping well, 
creating a mean radial flow within the polluted area. We derive the predictor 
of resident time (rendered by its mean) together with the associated 
prediction error (rendered by its variance) for non reactive solute particles 
injected at various distances from the well. The solutions are obtained 
numerically, by means of Monte Carlo simulations (detailed in Section 3.1) 
and compared to the analytical results recently developed by Guadagnini et 
al. [2001] (outlined in Section 3.2).    

2. MATHEMATICAL STATEMENT OF THE 
PROBLEM 

We consider incompressible groundwater steady state flow to a well 
located at the center of a polluted area (Figure 1). The modelling area is a 
circle of radius L. Inside this area there is another circle of radius r0 (< L)
corresponding to the limit of the polluted area. The radius of the well is 
small compared to all other relevant distances such as external radius or 
integral distance, and therefore we assume a zero radius. The well pumps at 
a constant deterministic rate, Q; head at the outer circular boundary remains 
at a constant deterministic value, HL. We aim at evaluating the pumping time 
that is necessary to reclaim the aquifer for various levels of heterogeneity of 
the log-transmissivity field, Y = ln T, and relative extension of the polluted 
area.

We consider only the advective component of transport and disregard 
local dispersion. The two-dimensional scheme presented is useful for 
relatively thin aquifers in which vertical heterogeneity tends to be of minor 
concern relative to that in the horizontal plane. 

In order to study reclamation time we concentrate on the pollutant 
particles that are initially located further from the well and study their travel 
time from their initial (at time t = t0 = 0) location (point r = r0, polar 
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coordinates used throughout the text) to the well. The time for this particle to 
reach the well (residence time) is equal to [Guadagnini et al., 2001]:

0

0r
r ,r,rV

rd
t

0
0 r

r  (1) 

where Vr is the radial component of the Lagrangian velocity vector and 

0r,r  is the trajectory of the particle initially at location r0 (i.e. is the 
angular displacement of the particle when reaching radial distance r from the 
well). 
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Figure1. Sketch of the domain. The pumping well is placed at the center of the domain 
(radius L). The dashed line indicates the border of the polluted area. 

The randomness of transmissivity causes residence time to be also 
random and we aim to evaluate its statistical moments (in terms of ensemble 
mean and variance). 

3. ENSEMBLE MOMENT OF SOLUTE RESIDENCE 
TIME

3.1 Numerical Monte Carlo simulations 

We performed an extensive suite of numerical Monte Carlo simulations 
(MC) using an ad hoc code for steady state flow and transport in a square 
domain with 100 rows and 100 columns of uniform size ( x = y = ). A
circular boundary of radius L = 50  was defined about the well by 
designating all cells outside it as inactive.
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We model the log hydraulic transmissivity, Y(r) = ln T(r), as a 
statistically homogeneous and isotropic random function of space with 
covariance between two points rI  (rI, I) and rII  (rII, II) given, in 
dimensionless coordinate, i = ri/L (with i = I, II), by 

2
YY dexp,,C 22

IIIIII  (2) 

where 2
Y  is the variance of Y,  = L/(2 ),  is the correlation length 

and d is the Euclidean distance ( IIIIII
2
II

2
I 2 cosd ).

The hydraulic head, HL, along the circular boundary was set equal to 80 
in consistent units .  A pumping well at a constant rate Q = 100 was placed 

at the central node of the grid. Gaussian sequential simulation (both codes 
SGSIM [Deutsch and Journel, 1998] and GCOSIM3D [Gómez-Hernández,
1991]) was used to generate random realizations of log Y on the above 
defined grid. Each realization constituted a sample from a multivariate 
Gaussian, statistically homogeneous field, Y = ln T, with an isotropic 
Gaussian covariance (Eq. 2), with mean Y  = 0, variance 2

Y  ranging from 
0.1 to 1.0 and spatial horizontal correlation length  = 0.1 L or L. The 
effective porosity, n, is taken as a constant (n = 0.3). 

Flow was solved by Galerkin finite elements using bilinear shape 
functions. An additional series of runs were performed with MODFLOW 
[McDonald and Harbaugh, 1988]. The results from our code were similar in 
terms of heads and fluxes, but convergence was faster. A number of Monte 
Carlo simulations ranging from 1000 (for the smaller 2

Y  and ) to 4000 (for 
the larger 2

Y  and ) was performed. 
Solute transport in each realization is modeled by Particle Tracking, 

using an ad-hoc computer code validated with MODPATH [McDonald and 
Harbaugh, 1988]. To compute moments of aquifer reclamation time, an 
ideal tracer particle is located at grid nodes of radial distances from the well 

0 = r0/L = 0,1; 0.5; 0.9 and various angular positions, 0. Tracking was 
stopped when the particles reached one of the cells sharing the well node. To 
get the total travel time we added the time to get from the last trajectory end-
point to the well (separated by a distance r), which is computed by means of 
the well known equation for the steady state radial flow in a homogeneous 
and isotropic field: Q/rnt 2 .

Due to the radial symmetry of the problem (domain, flow and boundary 
conditions) when the convergence is attained, the statistical moments of t are 
independent of the angular position of the solute starting points, 0.
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3.2 Analytical solution 

The analytical solution is based on exact nonlocal equations and their 
recursive approximations for (ensemble) moments of multidimensional 
steady state flow in bounded, randomly heterogeneous porous media 
developed by Neuman and Orr [1993], Neuman et al. [1996], and 
Guadagnini and Neuman [1999a-b] and makes full use of the analytical 
solutions developed by Riva et al. [2001] for mean radial flow taking place 
in the type of domain represented in Figure 1. In the following we report 
only the main results, while additional details can be found in De Simoni
[2001] and Guadagnini et al. [2001]. 

We present our solution for mean residence time as an asymptotic 
expansion in the log-transmissivity variance, 2

Y , truncated up to first order 

101 ttt  (3) 

where superscripts in angular bracket define the order of expansion and 
those in parentheses designate the order of its individual components.  The 
zero order solution coincides with the travel time to a well in a homogeneous 
aquifer 
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The first order (in 2
Y ) component of the mean travel time, for a 

Gaussian autocorrelation function of Y (Eq. 2), is given by  
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where 1  and 2 are multidimensional integrals of cross-products 
between partial derivatives of the correlation function of Y and the Green's 
function of the zero-order flow problem (for details the reader is referred to 
Guadagnini et al., 2001). We observe that t(1)  vanishes when the domain is 
very small with respect to the correlation scale of Y (L/  0) and the mean 
residence time (at least at first order in 2

Y ) coincides with that obtained in a 
homogeneous aquifer (Eq. 4). This situation corresponds to the case where 
transmissivity is a random constant, so that the travel time to the well is 
given, for each realization, by the zero order solution. 

To evaluate the three- ( 1 ) and five- ( 2 ) dimensional integrals in Eq. 
(5) we used Gaussian quadratures. In all the cases analyzed we obtained the 
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convergence of the results with less than 80 Gauss points.  Employing a 800 
MHz Pentium III processor (RAM being immaterial) the computations took 
about 12 hours for each value of  and ratio L/ .

The first (and thus lowest) order approximation of residence time 
variance (for a Gaussian autocorrelation function of Y) is given by
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where 3  and 4  are multidimensional integrals of cross-products 
between partial derivatives of the correlation function of Y and the Green's 
function of the zero-order flow problem (for details the reader is referred to 
Guadagnini et al., 2001). Consistently with our discussion about mean travel 
time, we observe that when the domain is very small with regard to the 
correlation scale of Y (L/  0), 2

t  vanishes independently of the size of 
the contaminated area, .

To evaluate the two- ( 4 ) and four- ( 3 ) dimensional integrals in Eq. (6) 
we used Gaussian quadratures, obtaining convergence of the results with less 
than 80 Gauss points, taking a maximum of 15 minutes on a 800 MHz 
Pentium III. 

4. RESULTS AND DISCUSSION 

Figure 2 depicts the dependence on 2
Y  of dimensionless mean residence 

time, t /C (where Q/LnC 2 ), computed by our numerical Monte Carlo 
simulations and the first order analytical solution (3) – (5), when L/  = 1 (a), 
and 10 (b) for three 0 values.  For reference, we also report the zero-order 
solution (Eq. 4).  We judge the agreement between MC and our analytical 
solution as excellent, the largest discrepancy being only a few units percent 
for the larger value of heterogeneity considered ( 2

Y =1). The most 
significant outcome is that while the homogeneous solution (zero-order 
solution) can be a good estimate of the mean aquifer reclamation time for 
weakly heterogeneity ( 102 .Y ), it significantly underestimates the solute 
mean residence time for mildly and highly heterogeneous aquifers. The 
observed discrepancies are up to 20 % between zero- and first-order 
solutions. Therefore, ignoring the fact that heterogeneity causes an increase 

(6)
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of our estimate of solute residence time would lead to inadequate aquifer 
reclamation designs. 

Figure 3 depicts the dependence of dimensionless residence time 
variance, 2

t /4C2 on 2
Y  for the same situations examined in Figure 2. 

Residence time variance increases monotonically with the distance between 
the release point and the well. Again, while the agreement between the MC 
results and our analytical solution is quite good, it deteriorates as 2

Y

increases, consistently with limitations inherent of perturbation results. 
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In order to quantify reliability of predictions based only on the first two 
(statistical) moments of the state variable of interest, we tested the 
Gaussianity of the natural logarithm of residence time,  = ln (t/C), obtained 
from the Monte Carlo simulations by performing the 2 test.  For all the 
cases considered  passes the 2 test with a significance level of 5%. This 
result is in agreement with the findings of Riva et al. (1999) for the same 
type of flow. Thus, assuming t is log-normal, it is possible to calculate the 
pumping period that, with a given probability, is needed to claim the aquifer 
as a function of the plume size. 
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Figure 4 depicts the first order approximation (in 2
Y ) of the mean 

residence time, t[1]  versus 2
Y  for L/  = 1 and plume sizes 0 = 0.1, 0.5, 0.9.  

It is also reported the 95% confidence intervals obtained, assuming  to be 
normal, as exp( [1]  ± 1.96 1 ) and the corresponding results computed by 
MC simulations. 
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Y when L/  = 1 and 0.1 (a); 0.5 (b); 0.9 (c).

Figure 5 depicts the equivalent results for L/  = 10. From these figures 
we can evaluate the pumping period (tP) needed with a given probability P = 
2.5% and 97.5% for cleaning an aquifer, as a function of aquifer 
heterogeneity and plume size. 

The reclamation time, relative to a probability of 97.5%, t0.975, is always 
larger than that predicted by a homogeneous approximation, t(0)  (Eq.4), on 
the other end of the spectrum there is the reclamation time associated to the 
2.5% probability, t0.025, that it is smaller than t(0) , as summarized in Table 1.  
For instance, if the pollution is released at = 0.9, the time needed to clean 
the aquifer (with a probability of 97.5%) is more than twice what predicted 
under homogeneous assumptions if 2

Y =0.5, and increases up to more than 
three times t(0)  if 2

Y =1.  Furthermore, a pollutant can reach the pumping 
well, with a probability of 2.25%, within approximately half the time it takes 
for a homogeneous aquifer if 2

Y  = 0.5 and even faster for larger degrees of 
heterogeneity. 
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Figure 5. Dimensionless mean logarithm of the residence time and its standard deviation 

versus 2
Y  when L/  = 10 and 0.1 (a); 0.5 (b); 0.9 (c). 

5. CONCLUSIONS 

We consider the effect of heterogeneity on estimation of aquifer 
reclamation time by means of a single pumping well, located at the center of 
a contaminated area. We study the effects of the size of the polluted area, the 
correlation scale and the degree of heterogeneity characterized by 2

Y .
Our analysis leads to the following major conclusions: 

1. the mean travel time needed to reclaim an aquifer increases with domain 
heterogeneity; ignoring this effect would lead to an inadequate 
reclamation design. In our simulations we observed discrepancies up to 
20 % between first-order solutions and estimates based on a 
homogeneous approximation of the aquifer.

2. we identified the duration of pumping that, with a probability of 97.5%, 
is needed to clean an aquifer as a function of the field heterogeneity and 
starting location of the pollution. This operational time increases with 2

Y

and in the scenarios studied can be more than three times larger than that 
predicted by models relying on aquifer homogeneity. 
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Table 1. Comparison between the aquifer reclamation time needed with a given probability (P
= 97.5% and 2.5%) for cleaning an aquifer and the homogeneous solution for different values 
of 2

Y , L/ and

0
2
Y L/  t0.975/ t(0) t0.025/ t(0)

1 1.08 0.92 
0.1

10 1.34 0.80 

1 1.21 0.84 
0.5

10 2.05 0.58 

1 1.32 0.80 

0.1 

1
10 3.03 0.45 

1 1.26 0.81 
0.1

10 1.39 0.74 

1 1.74 0.63 
0.5

10 2.22 0.51 

1 2.29 0.51 

0.5 

1
10 3.23 0.40 

1 1.34 0.76 
0.1

10 1.36 0.75 

1 2.07 0.55 
0.5

10 2.11 0.53 

1 3.09 0.40 

0.9 

1
10 3.16 0.41 
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SPATIAL PREDICTION OF CATEGORICAL 
VARIABLES: THE BME APPROACH

P. Bogaert 

UCL/AGRO/MILA/ENGE. Place Croix du Sud, 2 box 16. 1348 Louvain-la-Neuve, 
Belgium 

Abstract: Categorical variables often comes naturally and play an important role in 
environmental studies. Traditionally, they are processed in the geostatistical 
spatial estimation context using the indicator formalism. However, the 
indicator approach induces several and serious theoretical and practical 
problems. Among others, let us mention the inconsistencies and limitations of 
the linear model of coregionalisation, heavy computational load for taking 
simultaneously into account several categories, the limited pertinence of a 
linear predictor, and the incoherence of the predicted probabilities (negative 
probabilities, probabilities that do not sum up to one, etc.). This paper 
proposes a nonlinear approach that can be viewed as an extension of the 
Bayesian Maximum Entropy (BME) methods in the framework of categorical 
variables. The method is based on a maximum entropy reconstruction of high 
dimensional probabilities tables that are conditioned on their two-dimensional 
margins, followed by a conditioning of the table. The superiority of the BME 
approach over the indicator formalism is investigated both from the theoretical 
and practical point of views using an example. 

1. INTRODUCTION

A new and powerful epistemic approach of random field estimation 
(mapping) accross space and time which combined Bayesian 
conditionalization of physical knowledge with stochastic information 
(entropy) maximization was proposed by Christakos (1990; 1991; 2000) and 
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has been used with great success in a variety of scientific and engineering 
applications (see, e.g., Christakos & Li, 1998 ; D'Or et al., 2001 ; Christakos 
et al., 2002). In this work we propose an extension of the BME formalism in 
the case of discrete-valued (categorical) random field, which is a very 
powerful method for spatial prediction and mapping (Bogaert, 2002). 
Currently, the most widely used methods for mapping categorical variables 
rely on the geostatistical indicator formalism (Journel, 1983; Goovaerts, 
1997), that offers the advantage of being simple to understand and easy to 
implement, though it suffers from many limitations that are both theoretical 
and methodological. This papers aims at emphasizing some of these 
limitations, as well as to show how BME can handle the prediction of 
categorical variables in a much more satisfactory way. 

2. CATEGORICAL RANDOM FIELD 

Consider a discrete or categorical random variable C, that can be nominal 
or ordinal, having C = {c1,…,cm} as its finite set of possible outcomes. We 
will be interested in the case where the ci's are forming a complete system of 
events, i.e. ci  Ø, ci cj = Ø i j, so that i P(C = ci) = 1. Consider a 
continuous spatial domain D and an arbitrary location vector x such that FC

= {C(x ), x D n} defines a discrete-valued random field with a 
continuous support over a n-dimensional space (see, e.g., Chiles & Delfiner 
(1999) for few examples of categorical random fields). Let  

( ) ( ( ) ) (1)ii P C cx

be the univariate probability that the field is taking the value ci  (i  = 1,…,m)
at location x . Similarly, let 

, ( , ) ( ( ) ( ) ) (2)i i i iP C c C cx x

be the bivariate probability that the field is taking the modality ci  and ci  at 
locations x  and x , respectively. We will assume that by letting h  = x  – 
x  and h  = x  – x , we have ,  = , (i,j) if h  = h , i.e., bivariate 
probabilities are invariant under translation (an even stronger hypothesis 
would be h  = h , i.e. bivariate invariance under translation and 
rotation). It is clear that assuming this automatically implies that , (i,j) = 

, (i,j), yielding (i) = (i) = i x  = x , i.e. invariance under translation of 
the univariate probability distribution. 

The previous definition of a categorical random field is generic. It can 
be applied to a discretization of a continous-valued random field FZ = {Z(x)

1, x D n} into a complete set of classes ci(x) ai < z(x) ai+1
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where the ai's are ordered quantiles, or to a real categorical random field that 
can be ordinal or nominal. 

3. SECOND-ORDER PROPERTIES 

Using the invariance under translation hypothesis, one can define the 
bivariate probability functions 

, ( ) ( ( ) ( ) ) , (3)i j i jP C c C c i jh x x h

such that i,j(0) = i i = j and i,j(0) = 0 i j. Assuming that dependence 
vanishes as h , we also have i,j( ) = i j. Note that i,j(h) = j,i(-h),
but this does not necessarily imply that i,j(h) = i,j(-h) or that i,j(h) = j,i(h).

Though bivariate probability function are seldom used in geostatistics 
(Carle & Fogg, 1996), they are directly linked to the indicator covariance 
functions and variograms, that are widely used. Using the Kronecker delta 
operator

1 ( )
( ) (4)

0 otherwise
i

i

if C cx
x

one can define 

,

,

( ) ( ( ), ( )) ,

( ) (5)
i j i j

i j i j

C Cov i jh x x h

h

which is referred to as the class indicator (cross-)covariance function. One 
can also define 

,

( ) , ,

1
( ) ( ( ) ( ), ( ) ( ) ,

2
1

( ( ) ( )) (6)
2

i j i i j j

i j i i j i j

Cov i jh x x h x x h

h h

which is referred to as the class indicator (cross-)variogram function. 
Though (5) and (6) are popular because they are a straighforward extension 
of the traditional (cross-)covariance functions and (cross-)variograms in a 
categorical context, they do not however carry any extra information 
compared to (3), which is much simpler and much more intuitive in terms of 
probabilities. At this point, one canalso remark that, from (5) and (6), one 
can build the positive semi-definite matrix {C i j(0)} = { i j( )}, such that 

1, ,

,

,

( ) ( )

( ) ' (7)

( ) ( )

i j m

i j

m m

C C

C

sym C

0 0

0

0
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where  = ( 1… m), so that (7) has rank equal to m-1, with diagonal 
elements in ]0,0.25[ and negative off-diagonal elements in ]-1,0[ subject to 
the constraints i > 0 i and i i = 1. 

4. THE INDICATOR (CO)KRIGING APPROACH 

In a spatial prediction context, what is sought is a predictor pi0 {i } for 
i0 {i } P(C(x0 = ci0 {C(x  = ci }), i.e., for the conditional probabilities of 

the ci0's (i0 = 1,…,m) at location x0 given the observed modalities at 
surrounding locations x  (  = 1,…,k). For all subsequent notations, the 
symbol p(.) will denote an estimate of the corresponding (.) theoretical 
probability. Classically, eq. (5) and (6) are at the basis of the various 
indicator (co)kriging algorithms, that are obtained as a straighforward 
modification of the classical kriging algorithms for continous-valued random 
fields. Using the indicator coding (4) with i0(x ) = 1 when C(x ) = ci0 and 0 
otherwise, the indicator kriging (IK) predictor is 

0 0 0, ( ) 1,..., (8)
o

i i ii i
p mx

where the weights i0,  are obtained by solving a linear system of equations 
built from a valid choice for (5) or (6) (i.e., the C i0, i0(h)'s are positive 
definite (p.d.) and the i0, i0(h)'s are conditionally negative definite). This 
calls for several remarks. First, even if (8) makes use of an indicator 
(nonlinear) data coding, it remains a linear combination of these nonlinear 
(indicator) functionals, whereas i0 {i } is clearly a nonlinear functional of the 
C(x )'s. Second, (8) is non-convex, and one easily end-up with predicted 
values outside the [0,1] interval. Last, as the predicted pi0 {i }'s (i0 = 1,…,m)
are obtained separately, i0 pi0 {i }  1 in general. 

In order to simultaneously take into account the information for all 
classes, it has been suggested that indicator cokriging (ICK) would be more 
appropriate (e.g., Lajaunie, 1990). Experience however seems to suggest that 
results obtained from IK and ICK are quite similar (Goovaerts, 1997), an 
observation that would also suggest that ICK is making a poor use of the 
extra information that was not used by IK. Moreover, this entails new 
problems. The joint information is incorporated by using (5) or (6) in a 
Linear Model of Coregionalization (LMC, Journel and Huijbregts, 1978). 
E.g., in terms of covariance functions, this LMC is written as 

1 1 1, ,

,

,

( ) ( )

( ) ( ) (9)

( ) ( )

m

i j

m m

k k
k

C C

C C

sym C

h h

h B h

h
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where the Bk's are p.d. matrices classically obtained through an iterative 
algorithm (Goulard & Voltz, 1992) and the Ck(h)'s are p.d. covariance 
models with Ck(0) = 1. First, according to (7), putting h = 0 in (9) yields (7), 
so that I  –  = k Bk, which is of course impossible as the right-hand side 
is merely p.d. whereas the left-hand side is positive semidefinite and subject 
to numerous constraints. Second, notwithstanding the fact that the LMC is an 
invalid model, using it will let the user face considerable modeling 
difficulties. This is better illustrate with a simple example, where a 
categorical random field FC has been built from a second-order stationary 
continuous-valued random field FZ having a zero-mean unit variance 
multivariate Gaussian distribution, with C(h) an exponential model with 
practical range equal to 0.5. Assume we define four classes as in Figure 1 
such that ci(x) ai z(x) < ai+1, where the ai's are the 0, 0.2, 0.5, 0.8 and 1 
quantiles of the Gaussian distribution. It is then easy to compute (3) as well 
as, e.g., (5) by integration over bivariate distributions (Figure 2). Clearly, 
this set of covariance functions exhibits complex shapes that are unlikely to 
be captured by the use of (9); indeed, it can be proved (Bogaert, 2002) that 
the only possible valid model for (9) is the intrinsic coregionalization model. 
Finally, as ICK is a straighforward generalization of IK, all the limitations 
previously emphasized for IK still apply for ICK. 

Indicator kriging and cokriging are somewhat abusively referred to as 
nonlinear methods (the only nonlinear part is the indicator coding of the 
data), whereas the conditional probability is a highly nonlinear function of 
the data. According to the numerous limitations of I(C)K, it would be more 
efficient to seek directly for this conditional probability, that can be obtained 
provided that the joint distribution 0,…,k(i0,…,ik) P( jC(xij)), j = 0,…,k, ij = 
1,…,m can be estimated. This is precisely what BME is proposing to do. 

5. THE BAYESIAN MAXIMUM ENTROPY APPROACH 

The general process for BME prediction can be viewed as a three-stages 
procedure (Christakos, 2000); (i) at the first stage (the prior stage), one aims 
at finding a joint probability distribution that has a maximum entropy and 
respects some general constraints (e.g., a set of probabilities that are 
supposed to be known and are imposed) ; (ii) at the second stage (the meta-
prior stage), the specific information about the data set under study are 
collected and translated into useable mathematical relations; (iii) the final 
stage (integration stage) is the computation of the posterior conditional 
distribution with respect to the maximum entropy distribution obtained at 
stage (i) and the information collected at stage (ii). Only stages (i) and (iii) 
are detailed hereafter. 
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Figure 1. Four-classes partition of a N(0,1) random variable. 

Figure 2. Indicator covariance functions C i, j(h).

5.1 Estimation of the joint probability distribution 

What is sought for is the joint distribution p0,…,k(i0,…,ik) that is the maximum 
entropy distribution (i.e., the less peculiar among all possible distributions) 
subject to some constraints. Assume a partial knowledge about the field, 
represented by a set KG that specify some of its properties. E.g., KG = { , (i ,i );

,  = 0,…,k} if the sets of functions (3), (5) or (6) are known. If one think of 
0,…,k(i0,…,ik) as a m  … m (k times) hypersquare probability table having mk

cells, the , (i ,i )'s are the margins or order 2 that are forming k2 square m m
probability table. We will consider that these probability tables are the 
constraints for the maximum entropy estimation of 0,…,k(i0,…,ik).
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The entropy of a distribution p0,…,k(i0,…,ik) is given by 

0 0,..., ( ,..., )0
0

0,..., 0,..., ( ,..., ) ln
,...,

(10)
k k i ik

k

k k i i p
i i

H p

where i0,…,ik denotes summation over all possible values for all indexes. We 
want to respect the contraints 

, ( , ) , ( , ) , , (11)i i i ip i i

where p , (i ,i ) = {ij;j , } p0,…,k(i0,…,ik).Using the Lagrangian formalism, 
maximizing (10) under (11) is equivalent to maximize 

0,..., 0,..., ( , ) , ( , ) , ( , )
, ; ,

(12)k k i i i i i i
i i

L H p

Setting the partial derivatives equal to zero with respect to p0,…,k(i0,…,ik) and
(i i ) yields 

0

0

0,...,
0,..., ( ,... ) ( )

, ; ,0,..., ( ,..., )

0,...,
, ( , ) , ( , )

( )

1 ln 0

0 (13)

k

k

k
k i i i i

i ik i i

k
i i i i

i i

L
p

p

L
p

which must be solved with respect to the coefficients (i i ). The first part of 
(13) is the definition of a non-staturated log-linear model involving first-order 
interaction effects. The equivalence between maximum entropy probability 
distribution functions that satisfies marginal constraints and non-saturated log-
linear models is well known (Good, 1963). Estimating the (i i ) is equivalent 
to fitting this non-saturated log-linear model, and classical algorithms like the 
iterative scaling procedure (Deming and Stephan, 1940) can be used. 

5.2 Computation of the conditional probabilities 

What is sought for at this step is an estimate of the conditional probabilities at 
an unsampled location x0 given some specific knowledge KS, i.e., 

00

0 0

0

0

( ( ) )

( ( ) ) / ( ) (14)
s i si K

i s s i

P C c K

P C c K P K

x

x

with P(KS) = i0P(C(x0 = ci0) KS). We will consider the cases where P(C(x0 = 
ci0) KS) can be computed univoquely from the joint distribution 0,…,k(i0,…,ik) or 
its estimate p0,…,k(i0,…,ik) obtained from the maximum entropy paradigm, so that 
pi0 KS is an estimate for i0 KS. A classical choice for KS would be 

1

( ) (15)
j

k

s j i
j

K C cx

(the category is known at each location x1,…,xk), so that 

0 00 0,..., ( ,..., )( ( ) ) (16)
ki s k i iP C c Kx
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A more elaborate example would be 

1

( ) (17)
k

s j j
j

K C Ex

where Ej C j (the subset of possible categories is known at each location 
x1,…,xk), so that 

0 0

1 1

0 0,..., ( ,..., )
,...,

( ( ) (18)
k

k k

i s k i i
i E i E

P C c Kx

In some instances, there could be a specific probability information that is 
made available, so that 

11,..., ( ,..., ) (19)
ks k i iK f

where f1,…,k(i1,…,ik) is a joint probability distribution for the categories at locations 
x1,…,xk, obtained independently from 0,…,k(i0,…,ik), so that 

0 0 1

1,...,

0 0,..., ( ,..., ) 1,..., ( ,..., )( ( ) ) (20)
k k

k

i s k i i k i i
i i

P C c K fx

Using the same reasoning, there is of course no problem for combining (15), 
(17) and (19), for including specific information that refers to C(x0) itself (e.g., 
C(x0) E0), or even for obtaining any multivariate conditional distribution. 

5.3 Superiority of the BME approach 

As seen from (14), the conditional probability estimates pi0 KS is a real 
nonlinear functional and not merely a linear combinations of indicator variables 
as it is the case for IK and ICK. It does not rely on the use of (5),(6) and (9), but 
instead it makes use of (3) as constraints in bivariate probability tables. This 
entails that the simple constraint that (3) must fulfill is that, for any distance h,
one have i,j(h)  0 i,j and i,j i,j(h) = 1. These conditions are considerably 
less restrictive than, e.g., the choice of a p.d. model for C(h).

As all the conditional probabilities are computed from a valid joint 
distribution estimate p0,…,k(i0,…,ik), they automatically lead to valid conditional 
distributions, with pi0 KS  0 i0 and i0pi0 KS = 1. 

The maximum entropy estimation of 0,…,k(i0,…,ik) that has been described has 
been conducted using as contraints the complete set of bivariate probabilities 

, (i ,i ), but the methodology still holds if some of these , (i ,i ) are omitted 
(e.g., because there are too few data for estimating them in a reliable way), or if 
higher order probabilities (e.g., trivariate probabilities , , (i ,i ,i ) are 
considered. 

All these remarks emphasize the considerable generality and the power of the 
BME formalism. Various kind of knowledge are easily incoporated in a sound 
way and lead to valid nonlinear conditional probability estimates. All the 
theoretical restrictions and validity problems linked to the use of IK and ICK do 
not appear when using BME. The practical superiority of the BME approach 
over I(C)K is also emphasized in the next section.
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6. BME AND INDICATOR (CO)KRIGING IN ACTION 

As an example, assume that there are 100 locations that have been randomly 
sampled over a square of unit size. The prediction is conducted over a 100 by 
100 grid covering the square. Continuous values zj are jointly simulated at these 
100 sampling locations (Figure 3a) and the 10000 prediction nodes using a 
sequential simulation method and an exponential model C(h) with range and sill 
equal to 0.5 and 1, respectively, so that the distribution fz(z0),…,zk) is 
multivariate Gaussian. The simulated values are then replaced by the interval 
c(xj) Ij = ]aij,aij+1] to which they belong according to Figure 1 (Figure 3b). 
Due to the Gaussian hypothesis, knowing the mean and C(h) is sufficient for 
computing any conditional probability. Assuming KS as in (15), the conditional 
distribution fz(z0 KS) is given by  

1

1

... 0 1

0

... 0 0

( ,..., ) ...
( ) (21)

( ,..., ) ...
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where KS is based on the set of 100 sampled locations. From (21), the 
conditional probabilities i0 KS,i0 = 1,…,4 are then obtained as 
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These i0 KS's (Figure 3c) are the reference values to which the IK, ICK and 
BME estimates will be compared, as they are the best probability estimates for 
the categories than one can get from the available information KS. For 
comparison purposes, the theoretical functions (5) (see Figure 2) and (3) are 
used for all methods. Using them instead of estimating them allows us to obtain 
a fair and objective comparison of the performances for the different methods 
without taking into account complex inferential problems and methodological 
considerations. For all methods, a same neighborhood size consisting of the 5 
closest sampled locations has been considered for each node of the prediction 
grid. As a first result, due to the inherent limitations of IK and ICK, the basic 
requirements for obtaining valid distributions are not met. For IK, 30% of the 
probabilities are summing out of the [0.95,1.05] interval (Figure 4a), whereas 
for ICK 19% of the probabilities are negative (Figure 4b). None of these 
problems are encountered with BME. 
As a second result, a comparison of the conditional probability estimates 
obtained using BME shows that they are in very good agreement with the true 
conditional probabilities (Figures 3 and 5) In spite of the fact that BME does not 
explicitly use the information that the categories are strictly ordered, there is 
little information that has been lost. There is a very good agreement between 
BME and the true conditional distributions, as measured by the high correlation 
coefficient between probability estimates and the high frequency (95%) of 
identical maximum probability categories on the maps (Figure 3). The situation 
is much less favorable for IK and ICK. Conditional probabilities are quite 
different from the true ones, with plenty of values equal to 0 or 1, with a 
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frequency of identical categories of only 75%. Note also the very marginal 
improvement when using ICK instead of IK, meaning that extra information 
carried by cross-covariance functions has been poorly used by ICK. Moreover, 
the spatial variations of the map are quite different. IK and ICK maps tend to 
show patchy areas where the expected progressive transitions from a category to 
an adjacent category is weekly apparent. The BME map is much more 
statisfactory, as there is a clear progressive transition between categories, that 
accounts correctly for the fact that these categories were ordered, even if this 
information was not explicitly incorporated in the estimation. 

Figure 3. Simulated categorical dataset. Part(a) are the 100 sampled locations. Part(b) is the 
map of simulated categories at the 10000 prediction nodes. Part(c) is the map of the maximum 
probability categories from (22). Part (d), (e) and (f) are the same maps for BME, IK and ICK, 

respectively. 

Figure 4.Non-validity of the (a) IK and (b) ICK conditional probabilities. 
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Figure 5. Comparison of the conditional probabilities obtained from (a) eq. (22) and from (b) 
BME, from (c) IK and from (d) ICK. For the sake of lisibility, only 10% of randomly chosen 

values have been plotted on the off-diagonal graphs. 

7. CONCLUSIONS

As seen from theory and from the previous example, BME appears to be 
much more statisfactory than IK or ICK with respect to many points: 

 It yields conditional probabilities that are automatically valid (no 
negative probabilities, probabilities that sum to one). These simple 
conditions cannot be enforced using IK and ICK; 

 BME does not require the use of indicator (cross-)covariance or 
variogram models and does not rely on an invalid LMC, as it directly 
uses bivariate probability functions. Moreover, it is a real nonlinear 
method, whereas IK and ICK is a linear combination of indicator 
values;

 The method can be easily generalized, e.g., to obtain multivariate 
conditional probabilities, to account for multi-point probabilities (e.g., 
trivariate probabilities), to process incomplete information, etc. without 
any theoretical difficulties. 

Although the methodology that has been presented here focused, for the 
sake of brievety, on a single spatial categorical variable, it can be 
generalized for dealing with space/time data, with several categorical 
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variables at the same time, or even for combining both continuous and 
categorical variables. As a conclusion, BME can be considered as an 
extremely serious challenger for processing categorical data in a spatial 
estimation context. 
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Abstract: The aim of the paper is to present an iterative approach, based on geostatistical 
methods, to optimize sampling according to financial and environmental 
criteria. At current stage j of sampling, if the accuracy on remediation volume 
and cost estimates is not considered as sufficient, we try to anticipate the 
number of samples that needs to be collected at stage j+1, to reach an 
acceptable accuracy level. Sampling of various numbers Nj+1 of additional 
data is modelled, based on one simulation of the pollutant concentrations 
generated at stage j, conditioned with the available experimental data, in the 
area where the probabilities of exceeding the remediation cutoff are too high. 
In the variogram model fitted at stage j, remediation volumes and costs are re-
calculated with the various Nj+1 additional conditional data. If necessary, the 
process is repeated. The approach is illustrated on the site of a former smelting 
works presenting a lead pollution. Since the uncertainties on the remediation 
volume and cost estimates at the sixth real sampling stage are not satisfactory, 
a number of additional N7 data is chosen according to volume and cost 
forecasts calculated for various N7. The choice is non unique since various 
criteria, objectives, constraints and decision makers preferences can be taken 
into account. As an example, it is shown which number N7 will be chosen by a 
risk averse decision maker or by a risk prone decision maker, according to four 
common environmental and financial objectives. 
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1. INTRODUCTION 

Evaluating the volume of soil that requires remediation, and its accuracy, 
is an important step of the process of restoring an industrial polluted site. A 
high uncertainty on the estimated volume implies an environmental risk: 
soils may remain while they require remediation; and a financial risk: during 
the remediation works, unexpected polluted soils may be discovered, or soils 
may be excavated for remediation although their pollutant concentrations are 
inferior to the remediation cutoff. 

A sampling designed to provide an acceptable level of accuracy should 
help to reduce those risks. But in practice, data are collected above all to 
answer the questions raised by the risk assessment study. As a result, the 
accuracy level of the estimated volumes is not really chosen. 

The following question is then raised: since the number of available 
samples has a major influence on the accuracy level, is it possible, for a 
pollution showing a spatial structure, to anticipate the number of samples 
required to provide an acceptable accuracy on the remediation volumes and 
costs? More precisely, for investigations made of different stages, is it 
possible, at  stage j , to forecast the number of additional samples that needs 
to be collected at stage j+1 to reach an acceptable accuracy? 

This question emphasises another difficulty: what is an “acceptable” 
accuracy level? The answer is non unique, since it depends on particular 
criteria, goals, constraints, and decision makers preferences. 

Since the beginning of the 1990s1, sampling designs have been  proposed 
to improve the accuracy of geostatistical estimations on polluted soils, but 
their goals are different from those mentioned above. We propose a 
methodology, based on geostatistics that helps to optimize the sampling 
strategy in order to reach an “acceptable” uncertainty level on remediation 
volume and cost estimations. The methodology is applied to a real former 
smelting works, polluted with lead. 

1 The letter j indexes the investigation stages. 
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2. METHODOLOGY 

The proposed methodology [3] is iterative, including two steps after each 
new sampling stage. Step 1: the remediation volume and cost, as well as 
their uncertainties, are evaluated, on the basis of the experimental data 
available at stage j. Step 2: if the volume and cost uncertainties are too high 
at stage j, the influence of additional data Nj+1 is examined, based on 
volume and cost forecasts calculated for various numbers Nj+1 of simulated 
data. The two steps are repeated until the number of actually collected 
samples at stage j+1 is sufficient to reach a correct accuracy on the volume 
and cost estimations. 

2.1 Step 1: estimations at stage j 

Suppose that investigations of an industrial site in j stages, as well as a 
risk assessment study, have shown that part of the soil requires remediation. 
It is further assumed that soils with pollutant concentrations superior to the 
remediation cutoff (S) will be treated  either on site or ex situ, since 
nowadays, these remediation techniques are the most frequently applied. 
Consequently, the soils will be segregated and excavated before being sent 
to the treatment unit. 

2.1.1 Volumes and uncertainty 

Following the common practice, the remediation volumes are estimated 
in two steps. First, the volume of soil that needs to be extracted for 
remediation (notation:Vexc) is delineated on the basis of the available 
investigation data. Second, the volume requiring remediation, included in the 
volume delineated for excavation, is estimated; soils are segregated based on 
remediation data collected systematically, in blocks of a regular sampling 
grid applied to the volume delineated for excavation. 

Non-linear geostatistics are necessary to estimate the volumes with 
concentrations superior to S [4]. Block conditional simulations are generated 
and used to calculate the probabilities that a block pollutant concentration is 
above S. Vexc is then defined as the set of blocks with probabilities superior 
to a maximal “acceptable” probability (b). The major difficulty is to define 
b, taking into account the risk assessment results, the possible re-use of the 
restored site, and the general context in which restoration takes place. 

In Vexc, the volume where pollutant concentrations exceed S is 
calculated for each block conditional simulation. The resulting volume 
distribution provides an estimate of the volume requiring clean up (Vc), 
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materialized by the mean or the median of the distribution, and an estimate 
of its accuracy, in the form of a variance or an inter-quantile interval. 

The probability map allows for estimating two other important volumes. 
First, the environmental risk may be considered as non-significant for blocks 
where the probability is inferior to a threshold value, called a. These blocks 
can be considered as a residual volume (Vr), which can remain without any 
remediation or additional monitoring. Second, blocks where the probability 
is superior to a and inferior to b represent a volume for which environmental 
and financial risks are still significant: either blocks with pollutant 
concentrations above S may remain, or blocks with pollutant concentrations 
inferior to S may be excavated for remediation, although unnecessary. This 
so-called in-between volume (Vu) represents the uncertainty remaining on 
the site at stage j. 

Furthermore, because the volumes depend on them [3], usual remediation 
conditions are modelled: (1) Vexc includes non-polluted blocks that have to 
be excavated to make the polluted blocks accessible; their global volume 
Vnp is the complementary of Vc in Vexc (Vexc = Vc + Vnp). (2) The 
support effect: the size of the investigation samples is smaller than the size 
of the remediation blocks. (3) The information effect: the true block 
pollutant concentration, always unknown, is estimated by the concentration 
measured on a composite of small samples collected in the block. (4) Real 
data are always affected by sampling errors. 

2.1.2 Restoration cost and uncertainty 

The global restoration cost (Ctotal) is defined as the sum of investigation 
cost (Ci), remediation cost (Cc) and uncertainty on remediation cost (Cu): 
Ctotal = Ci + Cc + Cu. Ci depends on the number of collected samples: it is 
calculated, using a specific investigation cost-function [3]. Cc depends on 
Vexc, Vc and Vnp while Cu depends on Vu: they are calculated with the 
same remediation cost-function [3]. The two cost-functions have been fully 
parameterized [3] so that restoration budgets can be calculated for various 
pollution scenarios and for various commercial and technical proposals. 

2.2 Step 2: forecasts for stage j+1 

If at stage j, the uncertainties remaining on the volume designed for 
excavation and on the remediation cost estimates are too high for the 
decision-maker(s), we propose to anticipate the volume and cost that could 
be estimated with additional samples collected at stage j+1 in the following 
way. 
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In order to calculate block simulations, conditional simulations of point 
pollutant concentrations are generated in the variogram model adjusted at 
stage j, based on a fine rectangular grid [3]: one of these point simulations is 
selected randomly. It is taken as the reference for the state of pollution of the 
industrial site. The consequence is that the reference is now supposed 
perfectly known. Various numbers of simulated point values are selected as 
samples from the reference, according to a grid, in Vi defined at stage j. The 
size of the rectangular grid depends on the number of additional data to 
consider. The selected values are taken as new conditional data, collected at 
stage j+1, and added to the data set available at stage j. 

The volumes Vexc, Vc, Vnp, Vr and Vu are re-calculated with new block 
conditional simulations, in the model of variogram adjusted at stage j, for the 
various data sets modelled for stage j+1. 

In the same way, the investigation cost-function is applied to the various 
data sets modelled for stage j+1, in order to forecast the sampling cost 
estimates at stage j+1. The remediation cost-function is applied to the 
volumes anticipated for stage j+1, in order to forecast the remediation cost 
and the financial risk estimates at stage j+1. 

3. APPLICATION ON A FORMER SMELTING 
WORKS

3.1 Site description 

The former smelting works covered a surface of 3 hectares. The 
investigation of the site and its neighbourhood (45 hectares) has provided 75 
lead concentrations in 6 stages, with a homogeneous sampling support. The 
detailed risk assessment study has shown that soil whose [Pb] exceeds S = 
300 ppm involves a risk for human health, due to dust inhalation. The value 
of 300 ppm was taken as the legal remediation cutoff, and an on site soil 
washing was applied. The zone requiring excavation for remediation, 
delineated at the end of the risk assessment study (without geostatistics) was 
segregated during the remediation works according to 212 estimated block 
[Pb], defined on a regular grid. One block was 10 m side length and 0.30 m 
height. The soil was excavated in 3 layers. The lead concentrations were 
measured on a composite sample, made of four small samples taken at the 
corners and one small sample taken at the centre of each block. 
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3.2 Step 1: estimations at stage 6 

First, the remediation volumes and the restoration costs were estimated 
on the basis of the 75 real investigation data available at stage 6. The validity 
of the adopted models was checked, using the 212 real remediation data [3]. 

3.2.1 Volumes and uncertainty 

The gaussian transformed investigation data show an anisotropic spatial 
structure, which has been modelled with a combination of a nugget effect 
and two spherical models: (h) = 0.1 + 0.5 Sph(50 mNE, 70 mNW, 0.7 mVert) + 
0.65 Sph(140 mNE, 1000 mNW, 4 mVert) 2. The anisotropy of the variogram is 
consistent with the principal directions of wind, which is responsible for lead 
dispersion (Figure 1). The variogram model is chosen showing a stationarity 
outside the limits of the domain of study. 

Figure 1 .Experimental variogram and fitted variogram model of the gaussian 
transformed investigation data 

A total of 200 conditional simulations of point lead concentrations have 
been generated with the turning band method, on a fine grid, in the frame of 
a multigaussian model, in a unique neighbourhood. Every fine grid mesh 
was 4.30 m side length and 0.30 m height, oriented according to the 
anisotropy axis. These point simulations were used to calculate block 
simulations, accounting for: 
– The support effect. The lead concentrations were simulated in blocks 

similar to those actually used for excavating the soil. 
– The information effect. Simulated block [Pb] were considered as the 

mean of five point simulated values, by analogy with the real block 
concentrations measured during remediation. 

2 NE: Nord East, NW: Nord West, Vert: vertical directions, Sph : spherical model 
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– The sampling error. It has been shown that high errors have affected the 
real block [Pb] [3]. They are modelled by: Z(x) + Z(x). (x), where x is 
the position of the block in the geometrical space, Z is the random 
variable figuring the block concentrations, and  is a uniform distribution 
on the interval [-1;+1], whose variance is high, equal to 0.33. 
For each block, the probability that block lead concentration exceed 300 

ppm was calculated as the ratio of the number of simulated values exceeding 
300 ppm and the total number of simulated values at that block. 

If it is supposed that remediation is required for soils with a probability 
above  = 0.6, Vexc is evaluated to 10912 m3. In addition, assuming that 
soils can remain without any remediation or additional monitoring if their 
probability is below  = 0.2, Vu is evaluated to 23327 m3.

3.2.2 Restoration costs and uncertainty 

The investigation costs at stage 6, calculated with real unit prices, were 
estimated to Ci = 68600 Euros. The soil washing costs, calculated with 
actual market unit prices, were estimated to Cc = 984821 Euros. The 
financial risk was estimated to Cu = 1295817 Euros. 

3.3 Step 2: forecasts for stage 7 

Since Vu represents 214 % of Vexc and since Cu corresponds to 132 %
of Cc, the environmental and financial risks remaining at stage 6 are 
considered as too high. Consequently, an additional sampling stage has to be 
designed. 

Various numbers N7 = 12, 25, 50, 100 and 200 additional lead 
concentrations were selected successively from the reference point 
conditional simulation, selected randomly among the 200 simulations 
generated at stage 6. The point values were chosen in the limits of Vu 
(Figure 2).

Using the variogram model fitted at stage 6 (see paragraph 3.2), point 
conditional simulations were calculated successively, with data sets 
including the 75 real investigation data of the 6 first stages, and the N7

simulated values selected on the reference. The probabilities of exceeding 
300 ppm (Figure 2) and the volumes forecasted for stage 7 (Table 1 and
Figure 3) were then calculated for each data set, for a block support, as 
explained in paragraph 3.2. 

Using the same unit prices applied at stage 6, for each data set modelled 
for stage 7, the investigations costs, the on site soil washing costs and the 
financial risks (Figure 4 and Table 2) were calculated as explained in 
paragraph 2.1. 
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Figure 2. Simplified map of probabilities that block lead concentrations exceed 300 ppm, 
in the superficial layer of 0.30 m height, estimated at stage 6 with the 75 real investigation 

data, and forecasted at stage 7 with N7 additional data whose sampling has been modelled. (a) 
stage 6, N7 = 0 (b) stage 7, N7 = 12 (c) stage 7, N7 = 25 (d) stage 7, N7 = 50 (e) stage 7, N7 = 

100 (f) stage 7, N7 = 200 
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Table 1. Forecasted volumes Vexc requiring excavation for remediation, and volumes Vu 
materializing uncertainties on Vexc, according to the number N7 of additional data whose 
sampling is modelled at stage 7 (unity: cubic meter) 

N7 0 12 25 50 100 200 

Vexc 10912 11212 13287 13767 16743 17555 

Vu 23327 18276 14910 12385 9078 7996 

Vu / Vexc 214 % 163 % 112 % 90 % 54 % 46 % 

Figure 3. Volume forecasts graph: Volume Vexc requiring excavation for remediation, and 
volume Vu materializing volume uncertainties, as a function of the number N7 of additional 

data whose sampling is modelled at stage 7 

Figure 4. Cost forecasts graph: investigation costs Ci, remediation costs Cc and financial risk 
Cu, as a function of the number N7 of additional data whose sampling is modelled at stage 7 
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Table 2. Forecasted investigation costs Ci, remediation costs Cc and financial risk Cu, 
according to the number N7 of additional data whose sampling is modelled at stage 7 (unity: 
euro) 
N7 0 12 25 50 100 200 

Ci 68600 71651 73176 77749 83847 94518 

Cc 984821 1007688 1105990 1215019 1445217 1542784 

Cu 1295817 1064094 815602 702790 506131 445151 

Cu / Cc 132 % 106 % 71 % 58 % 35 % 29 % 

Ci + Cc + Cu 2347715 2141909 2041292 1995558 2035194 2082454 

Ci / Cc 6.9 % 7.1 % 6.4 % 6.4 % 5.8 % 6.1 % 

3.4 Decision making: a “best compromise” for stage 7 

3.4.1 Working hypothesis 

The aim of this paragraph is to show the usefulness of the forecasts 
graphs to plan the number of additional samples required to get an 
“acceptable” remediation volume and cost uncertainty level. It is important 
to underline that there is never an optimum for this number, but only a “best 
compromise”, because the criteria, goals, constraints and preferences of the 
decision makers are various, depending on the context in which restoration 
takes place. The proposed graphs help to decide according to environmental 
criteria, in terms of remediation volumes and uncertainties; and according to 
financial criteria, in terms of investigation costs, remediation costs and 
uncertainties. These criteria allow for defining specific objectives and 
constraints. As an illustration, we selected two objectives on uncertainties: 
1. Minimizing the ratio Vu / Vexc 
2. Minimizing the ratio Cu / Cc 

But we took also into account one common financial objective and one 
common financial constraint: 
1. Minimizing the global restoration cost Ctotal 
2. Ci / Cc  given percentage 

The weights applied on these objectives depend on the decision makers 
profiles. As an illustration, we consider a so-called risk averse decision 
maker, that is trying to avoid risks: he (she) will probably assign heavier 
weights to (1) and (2) than to (3) and (4). On the opposite, a so-called risk 
prone decision maker, that is ready to take risks, will probably assign heavier 
weights to (3) and (4) than to (1) and (2). 
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3.4.2 Discussion 

The volume forecasts graph (Figure 3) shows that Vu / Vexc decreases as 
N7 increases, and tends to stabilize for N7  100. For N7 = 100, Vu represents 
half of Vexc, instead of the 214 % estimated at stage 6. Similarly, the cost 
forecasts graph (Figure 4) shows that Cu / Cc decreases as N7 increases, and 
tends to stabilize for N7  100. For N7 = 100, Cu is forecasted at 35 % of Cc, 
instead of the 132 % estimated at stage 6. When N7 > 100, the gain in 
accuracy on the forecasted volumes and costs is negligible. 

The global cost Ctotal = Ci + Cc + Cu is minimum for N7 = 50. The ratio 
Ci / Cc slightly declines as N7 goes up, until N7 = 100, and grows for N7 > 
100. The minimum ratio, calculated for N7 = 100, is forecasted to 5.8 %. 

3.4.3 Decisions 

Independently from other objectives or constraints than those defined on 
paragraph 3.4, we can reasonably think, according to these forecasts, that a 
risk averse decision maker would choose to collect N7 = 100 additional 
samples at stage 7. 

Similarly, we can think that a risk prone decision maker would prefer N7

= 50, because, even though the corresponding Vu / Vexc and Cu / Cc ratios 
are higher than those forecasted with N7 = 100, that number of additional 
data minimizes the global restoration cost, and maintains the ratio Ci / Cc to 
an average value (6.4 %). 

4. CONCLUSIONS 

The presented approach can only be applied if a spatial structure is 
visible. In case of a pure nugget effect, no additional sampling will improve 
the existing uncertainty levels: uncertainties are inevitable. It is quite often 
difficult to highlight the spatial structure of soil pollution, due to a high 
heterogeneity and data scarcity, but recent works show that it is possible 
with adapted variographic tools [2]. 

Another limitation of the methodology is linked to the conditional 
simulation chosen as a reference, since it is one possible realization of the 
random function representing the soil pollution phenomenon, but it is not 
reality. As a consequence, the forecasted volumes and costs may differ from 
the real ones. An improvement should consist in repeating volumetric and 
cost calculations for various simulations taken as references, and in 
comparing the results. 
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Lastly, the volumes and costs are anticipated in the variogram model 
fitted at stage j. The variogram model that will be fitted to the real data at 
stage j+1 may differ from that model, especially at the beginning of the 
investigations when few data are available, inducing a bad quality of 
variogram fitting. 

A necessary step to finalize that work should consist in applying the 
methodology at the early sampling stages of real polluted sites, in order to 
(1) test its practical validity in various cases, (2) study its co-ordination with 
other steps of the restoration process, especially with the risk assessment 
sampling, and (3) assess its interest when it is coupled with quick on site
chemical analysis. 
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Abstract: The estimation of categorical variables is a recurrent problem in geostatistics. 
Beyond traditional and well-known methods like indicator kriging (IK) or 
classification, the Bayesian Maximum Entropy (BME) approach offers a new 
sound theoretical framework for modeling the spatial correlation and for 
computing estimates for categorical variables. In this paper, we show how the 
BME approach can be used for estimating a categorical variable by combining 
multiple sources of information. This methodology is illustrated with a 
practical example dealing with the estimation of soil drainage classes. Data 
involved consist in a set of punctual observations and a pre-existing 
exhaustive soil map. Estimates are obtained with BME using various 
combinations of the data, i.e., (i) the soil map only, (ii) the punctual 
observations only, and (iii) both of them. For the latter, the relation between 
the two data sets is taken into account by the way of a double entry probability 
table when obtaining the maximum entropy joint distribution. The strong 
advantages of BME over IK are explained at the light of the results that are 
obtained. The important case of conflicting informations is also discussed at 
the light of the way BME merges these information.  

Key  words:    categorical data, spatial estimation, Bayesian maximum entropy, Kullback-
Leibler

 295 

X. Sanchez-Vila et al. (eds.), geoENV IV – Geostatistics for Environmental Applications, 295-306. 
© 2004 Kluwer Academic Publishers. Printed in the Netherlands. 



                                                                                    D. D’Or and P. Bogaert 296 

1. INTRODUCTION

Handling qualitative information is very common in soil sciences: about 
90% of the variables collected during soil surveys are either ordinal or 
nominal (Bregt et al., 1992). However, spatial interpolation of such data is 
scarce in the literature. It is traditionally performed using the indicator 
kriging approach (Bierkens and Burrough, 1993a,b), but this approach 
suffers from severe and well-documented limitations (Goovaerts, 1997; 
Bogaert and D'Or, 2002). The main reason for these limitations is the lack of 
a strong theoretical justification for this approach, leading to many intern 
incoherences and often inconsistant results. Solutions traditionally proposed 
to overcome these imperfections consist mainly in tricks and are again not 
supported by any theoretical concepts. This is for example the case for the 
order relation problems, corrected by several algorithmic tips (see e.g., 
Goovaerts, 1997). 

In a spatial mapping context, another concern is that several sources of 
information may be available at the same time. The objective when 
combining them is to get better estimates than what would have been 
obtained by using them in a separate way. However, a serious problem 
occurs when at the same location these various informations are in 
disagreement. E.g., at a given sampling location, some of these sources can 
give contradictory information about the category. Clearly, the occurrence 
frequency of this kind of problem is expected to increase with the number of 
sources that are taken into account and depends largely on the reliability of 
each of them. 

In order to find solutions to the two problems mentioned here above, a 
new method should be developed with the following features: (i) having 
clear theoretical basis for each step of the information processing; (ii) 
allowing the user to give as input only fragmentary information (e.g, those 
that are reasonnably reliable; (iii) yielding results that clearly agree with the 
intuitive reasoning, especially when merging contradictory information. The 
Bayesian Maximum Entropy approach has recently proved to be a powerfull 
tool to process spatial data sets (Christakos, 2000, 2002; D'Or et al., 2001). 
Based on sound information processing rules and classical probability laws, 
it was first developed for continuous variables but it can be extended for the 
processing of categorical data Bogaert (2002). The use of this approach will 
be illustrated here, based on a real data set. 

2. THE DATA SET 

The study zone is located in the sandy area of Flanders (région sableuse),
around the city of Mechelen (Belgium) and occupies a 30 by 30 km2 area 
extending from Vilvoorde (South) to Antwerpen (North) (Fig. 1). Most of 
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the soils are classified as Spodosols. In the alluvial plains of the Grote Nete, 
Dijle and Zenne, soils are more clayey and classified as Fluvents. Average 
elevation is around 15 m and the topography is very flat. 

The available information about drainage is coming from two sources. 
The first is the Aardewerk database (Van Orshoven et al., 1998), from which 
we extracted the 347 soil profile descriptions that are available over the 30 
by 30 km2 area represented in Fig. 1a. The second source is a spatially 
exhaustive digitalized version of a pre-existing soil map that was manually 
contoured based on auger boring sampling campaigns (Fig. 1b). For both 
sources, three soil drainage classes have been defined by grouping the nine 
original classes used in the Belgian soil map. The three classes are 
c1 ”excessive to good drainage”, c2 ”good to moderately bad drainage”, and 
c3 ”moderately bad to very bad drainage”. The set of possible outcomes is 
thus C={c1,c2,c3}. Let us define the digitalized map as { M(x ), x D},
where D is the area represented in Fig. 1b, and the Aardewerk database as 
{A(x1), …, A(x ), …, A(xk)} (k=347), where the M(x )’s and A(x )’s are 
categorical variables with C as possible outcomes. 

Figure 1. Study area. (a) sampling locations for the Aardewerk database. (b) three-classes 
digital drainage map, with drainage ranging from good (black areas) to bad (light gray). White 

areas are builded zones. The superimposed square is the area of mapping for merging 
Aardewerk database and digital drainage map. 

Clearly, the Aardewerk database and the digital map are related to a large 
extent, but there are discrepancies between them, as seen from the non-null 
probabilities for the off-diagonal cells in the joint probability table (Table 
1a). At a given sampling location, the Aardewerk database and the 
digitalized map can give contradictory information about the drainage class. 
These discrepancies are easily explained. The Aardewerk database consists 
of a set of detailed profile descriptions that can be assumed as error-free, 
whereas the drainage map is the digital version of a manually contoured 
pedological map, based on a set of regular auger boring samples. Due to the 
limited accuracy obtained when using auger borings as well as due to the 
interpolated nature of the map, it is expected that some conflict may occur. 
However, both informations have useful features: the limited Aardewerk 
database can be assumed as error-free, whereas the digital map is somewhat 
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approximate but spatially exhaustive. Combining these two sources is thus 
more reasonable than discarding one of them for pure convenience reasons. 

Table 1. Estimated probabilities for Aardewerk & digital Map classes. 

(a) ˆ( ( ) ( ) )i jP A c M cx x  (b) ˆ( ( ) ( ) )i jP A c M cx x

j=1 j=2 j=3
j

i=1 0.133 0.042 0.007 0.182 
i=2 0.044 0.415 0.054 0.513 
i=3 0.003 0.124 0.178 0.306 

i
0.180 0.581 0.239 1 

j=1 j=2 j=3

i=1 0.737 0.072 0.029 
i=2 0.246 0.714 0.225 
i=3 0.017 0.214 0.746 

i
1 1 1 

As the local uncertainty about the digitalized map is unknown and is 
expected to vary from places to places, we focused on the Aardewerk 
database for estimating the spatial structure of drainage classes over the area. 
Using the 347 Aardewerk sampled locations, the bivariate probability 
functions for the three drainage classes can be estimated. The theoretical 
bivariate probability functions i,j(h) are defined as 

, ( ) ( ( ) ( ) ) , 1,...,3 (1)i j i jP A c A c i jh x x h

and can be estimated using 

,
( )

1
( ) ( ( ) ( ) ) (2)

( )i j i j
N

p A c A c
N h

h x x h
h

where N(h) refers to the number of pairs separated by a distance h and where 
(.) is the Kronecker delta, equal to 1 or 0 if the condition between brackets 

is verified or not, respectively (Fig. 2). 

Remark that, for any given distance h, (2) fulfills the validity conditions 
pi,j(h)  0 i,j and i,j pi,j(h) = 1. As these functions exhibit considerable 
variability and are computed for a limited set of distances, it is useful to get 
smoother estimates that can be obtained, e.g., through a Gaussian kernel 
smoothing procedure as shown on Fig. 2. There is thus no need for 
parametric assumption when modeling the pi,j(h)’s. 

From Fig. 2, one can see that there is little evidence of a clear spatial 
structure in the data for distances greater than 2 km. 
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Figure 2. Estimated and kernel smoothed bivariate probability functions for the three drainage 
classes (1=good, 2=moderate, 3=bad). 

3. CONDITIONAL DISTRIBUTIONS 

What is sought for is a method of merging the Aardewerk and the digital 
map information, in order to get probability estimates for each drainage class 
at any arbitrary unsampled location x0. This method should account for 
several facts: (i) we want to use the knowledge of the spatial structure of the 
data brought by the pi,j(h)’s, (ii) we want to account for the relation between 

the Aardewerk database and the digital map, brought by the P̂ (A(x) = ci

M(x) = cj)'s, without having to explicitly specify the spatial structure of the 
digital map, and (iii) we want to solve the problem of possibly conflicting 
information, as the Aardewerk database and the digital map may indicate 
different categories for the same location (27% of the cases out of the 347 
Aardewerk sampled locations). 

At the unsampled location x0, we can define the a priori distribution i0

P(A(x0) = ci0), i0 = 1, …, 3 as well as the conditional distribution i0 KS

P(A(x0) = ci KS), where KS refers to some specific knowledge. For our case 
study, different cases for KS can been considered: (i) if we use only Table 1b 
along with the digital map, we have KS,M M(x0) = cj0; (ii) if we use only the 
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Aardewerk database, we have KS,A A(x ) = ci ; (ii) if we use both the 
Aardewerk database and the digital map, we have KS,AM KS,A KS,M.

In a spatial context, the prediction of categorical variables is traditionally 
based on indicator (co-)kriging (Journel, 1983). The application of IK or 
ICK is straightforward when based on KS,A, but then, the information 
provided by KS,M is neglected. If one wants to incorporate KS,M also, a “soft” 
indicator formalism could be used (Journel, 1986; Goovaerts, 1997), 
specifying at each location x0 a “soft” indicator coding, that corresponds to 
the probabilities coming from Table 1b. However, as KS,M is spatially 
exhaustive, and due to the well-known exactitude property of I(C)K, this 
would return the soft information as estimate of the conditional distribution, 
which is of course a useless result. So using (soft) I(C)K, one is faced with 
an impossible choice: (i) neglecting the spatially exhaustive map information 
when computing pi0 KS,A, or (ii) neglecting the Aardewerk information when 
computing pi0 KS,AM, as by property pi0 KS,AM = pi0 KS,,M  which is one of the 
columns of Table 1b. 

It is in order to overcome this kind of paradoxes that the BME approach 
for categorical variables was designed (Bogaert, 2002), as an extension of 
the BME principle for continuous variable (Christakos, 2000; Christakos et
al., 2002). 

Instead of relying on a (soft) indicator coding of the data in a linear 
kriging system, BME will directly incorporate all the available information 
in order to built a joint probability table, that can be used afterward for 
deriving any kind of conditional distributions. 

4. THE BME APPROACH FOR CATEGORICAL 
VARIABLES 

Denote KG as the general knowledge that we have about the variables 
under study. For our case, we can define KG,A  {pi,j(h), i,j = 1, …,3} as the 

set of bivariate probability functions and KG,M  { P̂  (A(x) = ci M(x) = 
cj)}as Table 1a, so that KG,AM  = KG,A KG,M. What is sought for is an 
estimate p0,…,k(i0,…,ik,j0) for the joint distribution 0,…,k(i0,…,ik,j0), where 

00,..., 0 0 0
0

( ,..., , ) (( ( ) ) ( ) ) (3)
k

k k i jp i i j P A c M cx x

The maximum entropy estimate of (3) is obtained by maximizing 

0 0

0,..., 0,..., 0 0 0,..., 0 0
,... ,

( ,... , ) ln ( ,... , ) (4)
k

k k k k k
i i j

H p i i j p i i j

under the constraints provided by the general knowledge KG,AM, so that 
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0 0

'

0 0
0 0 0 0 0

, ' ' , '
'

, 1, 2,3
( , ) ( ( ) ( ) )

, ' 1,..., (5)
( , ) ( )

, 1, 2,3

i j

i i

i j
p i j P A x c M c

k
p i j p

i i

x

h

where the p0(i0,j0)'s and the p , ’(i ,i ’)'s are marginal distributions obtained 
by summation over p0,…,k(i0,…,ik,j0), with 

1

0 0 0 0,..., 0 0
,...,

, ' ' 0,..., 0 0
; , '

( , ) ( ,... , )

( , ) ( ,... , )
k

n

k k
i i

k k
i n

p i j p i i j

p i i p i i j

The maximization of (4) can be accomplished using an iterative scaling 
algorithm, where the constraints (5) appears as imposed bivariate probability 
tables that are margins of the probability table p0,…,k(i0,…,ik,j0).

It is worth noting that even if we did not specify any of the probabilities 

P̂ (A(x ) = ci M(x0) = cjo) (with  0), the maximum entropy algorithm 
will provide p0, (i ,j0) as their estimates, where 

0, 0 0,..., 0 0
;

( , ) ( ,... , ) (7)
j

k k
i j

p i j p i i j

In other words, even if a fragmentary information is provided about the 
relation between the two variables using Table 1a, the maximum entropy 
algorithm will give back an estimate for the missing values. The same 
property would have applied if, e.g., some of the bivariate probabilities 
pi ,i (h ) would have been left unspecified due to a lack of reliable 
information. This is a very nice feature, as it offers considerable flexibility to 
the user. 

After p0,…,k(i0,…,ik,j0) has been estimated, the conditional distributions 
can of course be easily obtained from it, with 

0 ,

0

0,..., 0 0
0

0,..., 0 0

( ,... , )
1,2,3 (8)

( ,... , )S AM

k k

i K
i k k

p i i j
p i

p i i j

where the index values (i1,…,ik,j0) are known from the specific knowledge 
KS,AM.

5. RESULTS 

For mapping purposes, a smaller 7.5 by 7.5 km2 area around Tremelo (see 
superimposed square on Fig. 1) has been considered in order to illustrate the 
use of the method. The conditional probabilities for each drainage class have 
been estimated at the nodes of a 101 by 101 square grid (the grid spacing is 

(6) 



                                                                                    D. D’Or and P. Bogaert 302 

thus 75 m), based on the neigbouring Aardewerk sampled locations (Fig. 3a) 
and the digital map (Fig. 3b), so that maps of the maximum probability 
drainage classes can be obtained. Three cases can be considered: 

– if only KG,M is used, the pi0 KS,M's are those given by the corresponding 
columns in Table 1b, and as seen from this table the maximum 
probability occurs when i0 = j0, so that the map of the maximum 
pi0 KS,M's corresponds to the digital map given in Fig. 3b; 

– if only KS,A is used (Fig. 3c), the map of the maximum pi0 KS,A's is very 
smooth with few details, according to the limited number of sampled 
Aardewerk locations over the area; 

– by using KS,AM  (Fig. 3d), it is easy to see that the map of the maximum 
pi0 KS,AM's is close to the digital map when one is far from the 
Aardewerk sampled locations; main differences between the two maps 
appear in the areas close to these sampled locations. 

The BME algorithm is thus attaching importance to the Aardewerk 
information when the location x0 is close from a sampled location x ,
whereas it neglects this information when x0 is far from it, as there is no 
more correlation between the drainage class at locations x0 and x .

Figure 3. Maps of the maximum probability drainage classes, with (a) the Aardewerk sampled 
locations, (b) digital drainage map, (c) BME map using only Aardewerk data, and (d) BME 

map using both Aardewerk data and digital map. 
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6. MERGING VARIOUS INFORMATION SOURCES 
WITH BME 

According to the previous results, we can focus on the way BME is doing 
when merging both sources of information for computing pi0 KS,AM. This can 
be done using the Kullback-Leibler (KL) distance or relative entropy 
(Kullback and Leibler, 1951). 

The KL distance KL( a b) between two arbitrary distributions a = 

( a,1,…, a,m) and b = ( b,1,…, b,m).

,
,

.

( ) ln (9)a i
b b a i

i b i

KI

Figure 4. maps of the entropies fo rthe conditional distributions, with (a) the Aardewerk 
sampled locations, (b) the digital drainage entropy map, (c) the BME entropy map using only 
Aardewerk data, and (d) the BME entropy map using both Aardewerk data and digital map. 

Values are ranging from 0 (black) to ln(3) (white). 

where KL( a b)  0 and is null if and only if a  = b. It is thus a measure 
of the “distance” between a and b. This measure is very useful in our 
context for assessing the information that has been brought by the use of a 
spatial information for the mapping. Assume that our reference distribution 
is the a priori distribution i0, i0 = 1,2,3. What is sought for is a measure of 
the additional information content in the conditional distributions i0 KS,A,

i0 KS,M and  i0 KS,AM compared to i0. We can thus compute the KL distance 
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between each of these conditional distributions and the a priori distribution, 
and see how BME is operating when merging possibly conflicting specific 
knowledge KS,A and KS,M in order to get the conditional distribution i0 KS,AM.
For each possible location x0, we can compute these various conditional 
distributions, as well as their entropy (H) and the KL distance from the {\it a 
priori} distribution. Additionally, we can also compute the KL distance 
KL(A M)between i0  KS,A and i0 KS,M , which is a measure of the 
disagreement between these two distributions. Let us examine the posterior 
distributions at three specific locations selected to illustrate three 
characteristic situation: 

– In Table 2a, it appears that KL is low for i0 KS,A, showing that i0 KS,A is 
close to i0 and thus the Aardewerk database is weakly informative (it did 
not modify substantially the a priori probabilities). On the opposite, KL is 
higher for i0 KS,M, showing that the digital map is more informative than 
the Aardewerk database. Note also that there is a disagreement between 

i0 KS,A and i0 KS,M, as the first one favors category 3 whereas the second 
one favors category 2. As a consequence, i0 KS,AM is close to i0 KS,M as 
KS,M is considered as more relevant than KS,A;

– In Table 2b, KL is high both for i0 KS,A and i0 KS,M, so that both sources 
are informative. Moreover, KL(A M) is low, showing that both sources are 
in agreement for giving preference to category 1. As a consequence, 

i0 KS,AM is definitively heading for a preference for category 1, as 
translated by its high conditional probability, the low H value and the high 
KL value; 

– In Table 2c, the reverse situation occurs. KL is high too both for i0 KS,A and 
i0 KS,M, but there is a strong disagreement between the two distributions 

(KL(A M) is high), as one favors category 1 and the other one favors 
category 3. As both information are valuable but contradictory, they tend to 
annihilate each other. The H value for i0 KS,AM is higher than for i0 KS,A

or i0 KS,M, with a less clear-cut choice between categories 1 and 3. 

It is worth noting that the entropy H is an absolute measure of the uncertainty 
associated with these conditional distributions, whereas the KL distance is a 
relative measure by comparison with the a priori distribution. As a consequence, 
it is KL and not H that should be used if what is sought for is a quantification of 
the accomplishment made by the method, compared to what was known prior to 
the use of it. E.g., for an imaginary situation summarized in Table 3, all the H 
values for the conditional distributions i0 KS,AM are equal, whereas the KL 
distances are quite different and reflect correctly the gain of information that has 
been obtained using the method, as measured by the divergence between 

i0 KS,M  and i0.
As a summary, BME is correctly processing the various information sources 

according to their relative information content as well as according to their 
agreement or disagreement about this content. This is a very important feature of 
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the method, as it makes sure that logical rules are automatically translated in 
sound mathematical results, that reflect these rules in the approriate way. 

7. CONCLUSIONS

The BME approach proves to be a useful and flexible way for processing 
categorical data in a spatial context. Being a nonlinear method, it does not rely 
on the traditional linear paradigm used by IK or ICK, which suffer from serious 
theoretical  and  practical  problems  when  dealing  with  this  kind  of  variables 

Table 2. Conditional distributions at various locations x0.
(a) weak Aardewerk & strong Map information (KL(A M)=0.40) 

0 1i 0 2i 0 3i H KL 

0i 0.182 0.513 0.306 1.01  

0 ,S M
i K 0.029 0.225 0.746 0.66 0.48 

0 ,S A
i K 0.074 0.604 0.322 0.86 0.06 

0 ,S AM
i K 0.016 0.256 0.728 0.64 0.39 

(b) strong Aardewerk & Map information (KL(A M)=0.17) 

0 1i 0 2i 0 3i H KL 

0i 0.182 0.513 0.306 1.01  

0 ,S M
i K 0.737 0.246 0.017 0.64 1.01 

0 ,S A
i K 0.709 0.162 0.129 0.80 0.61 

0 ,S AM
i K 0.979 0.020 0.002 0.11 2.94 

(c) strong Aardewerk & Map information (KL(A M)=2.05) 

0 1i 0 2i 0 3i H KL 

0i
0.182 0.513 0.306 1.01  

0 ,S M
i K 0.029 0.225 0.746 0.66 0.48 

0 ,S A
i K 0.728 0.144 0.129 0.77 0.66 

0 ,S AM
i K 0.303 0.120 0.578 0.93 0.46 

(see e.g. Bogaert, 2002). The method also does not rely on any parametric 
hypothesis. Based on a maximum entropy algorithm, it provides also the most 
general estimates for the joint distribution, that respects constraints specified by 
the user. In this study, the constraints are a complete set of bivariate 
probabilities for the Aardewerk variable and a partial knowledge about the 
relation between this variable and a digital map, showing that partial knowledge 
about a variable can be easily processed too. Finally, BME is able to deal with 
possible conflicting sources of information, as it translates logical rules into 
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mathematically sound results. All these advantages make BME a very promising 
method, opening e.g. new possibilities for updating old maps with recently 
collected samples. 

Table 3. Kullback-Leibler distance as a measure of the gain. 

0 1i 0 2i 0 3i H KL 

0i
0.182 0.513 0.306 1.01  

 0.190 0.560 0.250 0.99 0.01 

0 ,S AM
i K 0.190 0.250 0.560 0.99 0.17 

 0.560 0.190 0.250 0.99 0.39 
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SEQUENTIAL UPDATING SIMULATION

R. Froidevaux 

FSS Consultants SA, Geneva, Switzerland.  

Abstract: This paper presents a new implementation of the sequential simulation 
principle, within a multi-Gaussian framework. In this approach, the local 
conditional distribution functions, from which simulated values are drawn by 
Monte-Carlo, are updated iteratively rather than re-estimated at each step. 
This new implementation offers several significant advantages: the local 
distribution functions, from which simulated values are drawn, are conditional 
to all hard and previously simulated data, rather than to data within a search 
neighbourhood only; there is no need to assign existing hard data to the 
nearest grid nodes; the local means and variances are estimated from the 
available data at their exact locations; and the updating process does not 
involve any longer the solving of a linear system of equations. This, in turns, 
relaxes the constrains on the spatial correlation models which can be used. 
This new approach is illustrated by a case study in soil contamination. 

1. INTRODUCTION

  Sequential simulation is a wide class of simulation algorithms, all based 
on a recursive implementation of the Bayes axiom whereby the modelling of 
the multivariate distribution function, which fully describes a random 
function Z at any location u, is replaced by the product of a set of univariate 
conditional cdfs: 
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and N0 denotes the number of original data values. 

  Discussions on various implementations of sequential simulation can be 
found in Verly, 1986, Journel and Alabert, 1988, Gómez-Hernandez and 
Journel, 1993, Xu and Journel, 1994, and Soares, 2001. 
 Sequential Gaussian simulation is an implementation of the sequential 
simulation paradigm under the multiGaussian random function model which 
is used to simulate continuous variables. In its traditional implementation, 
sequential Gaussian simulation proceeds as follows (see Gooverts, 1997, 
p.380). 

1. The set of data values {z1,…,zN} is transformed into a corresponding set 
of normal scores {y1,…,yN} using an appropriate transform Z = –1(Y),
and a multiGaussian hypothesis is assumed 

2. The normal scores values {y1,…,yN} are assigned to nearest node of the 
grid to be simulated 

3. A random path, visiting each node of the grid, is defined 
4. At each grid node the local mean and variance of the local Gaussian ccdf 

is estimated by simple kriging. A simulated value y(u) is drawn from 
this local ccdf and added to the data set 

5. Once all the nodes have been visited the simulated normal scores are 
back-transformed into simulated values of the original variable using 
the inverse of the Gaussian transform used to calculate the original 
normal scores. 

 The new approach proposed in this paper differs from this classical 
implementation in that the local ccdfs are not estimated at each grid node 
before drawing a simulated value. Rather, the local ccdfs are initialized 
before performing any conditioning or simulation and then are updated 
sequentially after each drawing of a simulated value. 
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2. THE SEQUENTIAL UPDATING APPROACH 

Consider the N grid ui, i = 1,…,N nodes discretizing the domain D to be 
simulated and denote by k the iteration index for visiting all the nodes. 

At the initial stage (k = 0), before any conditioning or simulation, the 
standard multivariate Gaussian random function Y(u) is fully defined by the 
following stationary moments: 

0

0

0

2
0 0

2
0 0 0

expected value : ( ) ( ) 0;

covariance : ( , ) ( ) ( ) ( ) ( )

( );

variance : ( ) (0) 1;

correlogram : ( , ) ( ) / ;

m E Y m D

C E Y Y E Y E Y

C D

C D

C D

u u u
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Once a value y(u ) is drawn by Monte-Carlo, the posterior local ccdfs 
Y(u|(1)), conditional to this value, become non-stationary. Hence the multi-
Gaussian model becomes location dependent and it can be shown (Anderson, 
1984, p 41) that, at iteration k, its parameters are given by: 

1 1 1

2 2
1 1

2 2 2
1 1

( , ) ( , ) ( , )
( , ) (1)

1 ( , ) 1 ( , )

( ) ( ) 1 ( ) (2)

k k k
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and:

1
1 1 1

1

( )
( ) ( ) ( ) ( ) ( ) (3)

( )
k

k k k k
k

m m y m
u

u u u u u u
u

Thus, the key idea of sequential updating simulation is to visit randomly 
all grid nodes, to draw by Monte-Carlo a simulated value at each location, 
and to condition the moments of the local gaussian ccdfs to this newly 
simulated value before moving to the next location. 

Because of the iterative way in which the local ccdfs are updated, the 
equations (1), (2) and (3) allow to generate a correlated gaussian field only if  
the correlogram  is defined by a single structure with no nugget effect. 

Indeed equation (2) results in a gradual reduction of variance. In the case 
of a multi-structure variogram (for instance a 50% nugget effect and a 50% 
large range variogram model), this reduction will affect the overall variance 
and lead, eventually, to a complete obliteration of the short scale variability. 

Hence, in order to reproduce a multi-structure correlogram model, the 
local cdf Y(u) needs to be interpreted as a linear combination of Ns+1 
(structure 0 is the nugget effect) Yl(u) independent random functions with 
parameters: 
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2
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( ) 0; ;

( ) (0) increment of the structure of the variogram.
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Thus, at each location u , a set of simulated values {yl(u), l=0,..., Ns} is 
drawn from the corresponding set of ccdfs and recombined into a single 
simulated value: 

0

( ) ( )
SN

l

l

y yu u

and the updating of local parameters is performed independently for each 
structure using equations (1) to (3). 

Remarks:

1. In the Sequential Updating approach, the locals ccdfs, from which 
simulated values are drawn, are conditioned to all hard data and 
previously simulated values: there is no neighbourhood search nor a 
maximum number of data to be considered. In practice, however, the 
updating of local ccdfs is performed only within correlation distance of 
the location u .

2. In order to ensure that the conditional correlogram values remains 
between -1 and +1, the numerator of equation (1) must verify the 
inequality: 

2 ( , ) ( , ) ( , ) 0k k ku v u u v u

3. CONDITIONING TO DATA 

 In the Sequential Updating approach, conditioning to existing hard data is 
achieved as an initial updating of the local cdfs Y(u):

 The data set {z(uj), j=1,...,n} is first transformed into a corresponding set 
of normal scores {y(uj), j=1,...,n}

 Then, each normal score y(uj) value is split into its structural components: 
yl(uj) = y(uj) Cl(0)

 Finally, each set of values {yl(uj), l=0,...,Ns} is used, successively, to 
update the mean, variance and correlogram of the local gaussian ccdfs 
using equations (1) to (3). 
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Remarks

1. Unlike the traditional implementation of Sequential Gaussian simulation, 
the conditioning data are not re-assigned to nearest grid node: the exact 
location of each datum is used for performing the updating. 

2. The order in which the n conditioning data are used for updating varies 
randomly from one realization to the next. 

4. SIMPLE NON-CONDITIONAL EXAMPLE 

  Let’s consider first a non conditional simulation of an attribute over a 
4000 metres by 4000 metres grid. The a priori distribution function is 
Gaussian with a mean equal to 0 and a variance equal to 1. A spherical, 
anisotropic variogram model is assumed with a short range of 250 metres a 
large range of 750 metres and a direction of maximum continuity of 135°. 
  Three realizations are generated using the proposed Sequential Updating 
approach and three other realizations are generated using the traditional 
Sequential Gaussian Simulation algorithm. 
  Figure 1 presents the two sets of realizations and Figure 2 shows the 
average histograms and average variograms, calculated over the three 
realizations, for the Sequential Updating results and for the traditional 
Sequential Gaussian Simulation results. 
  As can be seen the results are very close and confirm that the two 
approaches are equivalent. 

5. SOIL CONTAMINATION EXAMPLE 

In this example the objective is to simulate the polycyclic aromatic 
hydrocarbon (PAH) concentrations in view of delineating potentially 
hazardous zones requiring clean-up (Colin et al., 1996). The available data 
consisted of chemical measurements of PAH concentrations from 51 
boreholes located on the disaffected industrial site. In addition, an  electrical 
resistivity survey was available, which led to the definition of two types of 
soil:
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Figure 1. Non conditional simulation. Comparison of Sequential Updating simulation (left 
column) and Sequential Gaussian Simulations (right column). 
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Figure 2. Average histograms and average variograms. Comparison between Sequential 
Updating Simulation and traditional Sequential Gaussian Simulation results. 
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 A first zone with rather low electrical resistivity values and where the 
PAH concentrations are above 35ppm. 

 A second zone with higher resistivity values and lower PAH 
concentrations.

Figure 3 shows the location map of the boreholes, the electrical resistivity 
map and the zone map. Base on a preliminary exploratory data analysis of 
the available data, the following distribution and variogram models were 
selected: 

 Distribution model Variogram model
   

Zone 1 Lognormal Spherical 
   

mean . 12 ppm Isotropic, range 50 metres 
standard deviation: 10 ppm  

   
Zone 2 Non parametric Exponential 

   
Range: 0 to 500 ppm Isotropic, range 75 metres 

Equi-probable images of PAH concentration were generated using the 
Sequential Updating approach. Figure 4 shows three realizations and Figure 
5 the comparison between the prior models and the posterior statistics. As 
can be seen, the simulation results are consistent with the specified prior 
models. 

6. DISCUSSION

 The Sequential Updating approach, proposed in this paper, offers an 
alternative to the classical implementation of the sequential gaussian 
simulation with the following attractive features: 

1. By construction, all local ccdfs are fully conditioned to all simulated 
values. This is not the case in the classical implementation since the 
local ccdfs are estimated on the basis of a limited number of data within 
a search ellipse. 

2. It does not require the solving of any system of linear equations. As a 
result Sequential Updating is generally faster than the classical 
implementation and is not prone to the sometimes annoying numerical 
problems found in kriging. 
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Figure 3. Boreholes location map (a), electrical resistivity map (b) and soil type map (c). 
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Figure 4. Three realizations of PAH concentration. 
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Figure 5. Prior models and posterior statistics. 
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3. Since no kriging system needs to be solved, spatial continuity for the 
attribute to be simulated can be specified with less restrictions than 
before.

4. The conditional hard data are not assigned to the nearest grid node, but 
are used at their exact locations. Although this data re-allocation has 
never been a serious concern in 2D, it has represented a problem in 3D 
if the vertical grid node spacing is larger than the vertical data spacing. 
In this situation several data may share the same grid node and a 
decision must be taken on which one takes precedence. 
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Abstract: The tree-structured multi-resolution spatial models (MRSMs) yield optimal 
and computationally feasible spatial smoothers of massive spatial data with 
nonstationary behavior.  The nonstationary spatial correlation structure of 
MRSMs is the result of inhomogeneous stochastic parent-child relationships 
at adjacent resolutions. Likelihood-based methods are presented for the 
estimation and modeling of variance-covariance parameters associated with 
the parent-child relationships, resulting in data-adaptive, nonstationary 
covariance structure.  An application of the MRSMs is given to total column 
ozone (TCO) data obtained from a polar-orbiting satellite. 

Key words:   Nonstationarity, RESL estimation, RESREL estimation, total column ozone, 
tree-structured models, covariance-parameter estimation 

1. INTRODUCTION

As a consequence of new remote-sensing technology, spatio-temporal 
environmental data have become more massive in their raw form. Provided 
with such rich datasets, scientists eye new opportunities, but at the same time 
they are faced with new challenges. The massiveness of the data is in most 
cases due to both fine-resolution sampling and a large spatial domain. An 
example is Total Column Ozone (TCO), sampled remotely by satellites over 
the entire globe on a daily basis. Due to the large size of the spatial domain, 
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stationarity assumptions about the process of interest do not typically hold. 
Hence, computationally tractable spatial models for massive data, with 
nonstationary spatial dependence, are in great demand. 

Tree-structured multi-resolution spatial models (MRSMs) (see e.g., 
Huang et al., 2002) are able to handle massive spatial data with 
nonstationary spatial correlation structure. In Section 2, we shall review the 
MRSM and the associated fast, change-of-resolution Kalman-filter algorithm 
for optimal spatial prediction. At the core of the MRSM is the specification 
of the spatial covariance structure through a coarse-to-fine-resolution 
process model. Section 3 considers such models and proposes a 
parameterization that allows one to capture smooth changes in 
(nonstationary) spatial covariance structure. We also show in Section 3 how 
to estimate the model parameters using resolution-specific likelihood-based 
methods. An application to a day's worth of TCO satellite data is presented 
in Section 4. 

2. MULTI-RESOLUTION SPATIAL MODELS 

In this section, we review briefly the multi-resolution spatial model 
(MRSM) as given in Huang et al. (2002). Let D be the spatial domain of 
interest. The domain D is partitioned into n0 grid cells, which make up the 
coarsest resolution (resolution-0). Each grid cell at resolution r = 0,…,R–1, 
is then successively partitioned into mr smaller grid cells. Thus, we obtain a 
nested partition of D at (R+1) resolutions. At the r-th resolution, there are nr

= n0 m0 … mr-1 grid cells given by {D(i,r)}i=1
nr. We call (i*,r+1) a child of 

(i,r) if D(i*,r+1) D(i,r), and we denote the set of the children of (i,r) by 
ch(i,r)  {ch(i,r)1,…, ch(i,r)mr}. Then

1 1,( , ) ( ( , ) ); ( , )rm
j jD i r ch i r i r NRD

where Nu  {(i,r): i = 1,…, nr, r = 0,…, u}. Figure 1 shows an example of a 
multi-resolution partition at resolutions r=0,1,2.

Let {Y(s): s D} be a Gaussian spatial process ofinterest defined on D,
and define the multi-resolution aggregated Y-process as 

( , )

1
( , ) ( ) ; ( , ) ,

( , ) D i rY i r Y i r N
v i r Rs ds

where v(I,r)  |D(i,r)| denotes the area (volume) of D(i,r). The aggregated Y-
process is not observed directly, but indirectly through the additive-
measurement-error model, 
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( , ) ( , ) ( , ); ( , ) , (1)RZ i r Y i r i r i r N

where {Z(i,r)} are (potentially) observed data, and the measurement errors 
(i,r)  ~ Gau(0, 2 V(i,r)) are independent with {V(i,r)} known. Henceforth, 

we refer to (1) as the data model. It should be noted that observations are not 
needed at all resolutions and can be missing for some cells within a 
resolution.  For example, in the ozone example considered in Section 4, the 
Y-process is taken to be the underlying TCO process at different resolutions 
and the data are noisy satellite observations of TCO, reported (incompletely) 
at the finest resolution, resolution-R.

Figure 1. An example of a spatial multi-resolution tree-structure partition. 

The spatial variance-covariance structure associated with the Y-process is 
specified indirectly through the following coarse-to-fine-resolution model: 

1( , ) ( , ) ( , ); ( , ) , (2)i r Y i r i r i r NRY 1

where Y(i,r)  (Y(ch(i,r)1),…, Y(ch(i,r)mr))' and (i,r) ~ Gau (0, 2W(i,r)), 
independently. Henceforth, we refer to (2) as the process model. Hence, the 
Y-process at the children cells is just taken to be equal the the Y-process at 
the parent cell plus an error term. The process model is completed by 
specifying the distribution of the Y-process at the coarsest resolution; here 
we simply assume that (Y(1,0),…, Y(nr,0))' ~ Gau(a(0), 2R(0)).

To match the notation style used for the process model in (2), it will be 
more convenient to write the data model in (1) as 

1( , ) ( , ) ( , ); ( , ) , (3)i r i r i r i r NRZ Y

where Z(i,r)  (Z(ch(i,r)1),…, Z(ch(i,r)mr))' and (i,r) ~ Gau (0, 2V(i,r)),
independently, with V(i,r)  diag(V(ch(i,r)1),…, V(ch(i,r)mr)).
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2.1 Constrained Y-Process

Note that the process model in (2) does not have a one-to-one mapping 
between Y(i,r) and{Y(i,r), (i,r)}; Y(i,r) is a vector of length mr, but {Y(i,r),

(i,r)} has a total of (mr + 1) elements. Consequently, different 
configurations of {Y(i,r), (i,r)} can yield the same Y(i,r). However, by 
placing a single linear constraint on the error term (i,r), a one-to-one 
mapping is achieved. That is, we constrain 

1( , ) ' ( , ) 0; ( , ) , (4)i r i r i r NRq

for some chosen constraining vectors {q(i,r)}. To satisfy (4), let Q(i,r) be 
any mr x (mr-1) orthonormal matrix with columns that span the space 
orthogonal to q(i,r) (i.e., q(i,r)' Q(i,r) = 0 and Q(i,r)'Q(i,r) = I).  Then any 

(i,r) satisfying (4) can be written as  

*
1( , ) ( , ) ( , ); ( , ) ,i r i r i r i r NRQ

for some unconstrained (i,r)  Rmr-1. The constrained Y-process can 
therefore be written as: 

*
1( , ) ( , ) ( , ) ( , ); ( , ) , (5)i r Y i r i r i r i r NRY 1 Q

where *(i,r) ~ Gau(0, 2W*(i,r)), independently. In terms of the process 
model in (2), we have constrained W(i,r) to be of the form: 

*
1( , ) ( , ) ( , ) ( , ) '; ( , ) . (6)i r i r i r i r i r NRW Q W Q

Huang et al. (2002) proposed choosing q(i,r) = v(i,r), where v(i,r)
(v(ch(i,r)1),…,v(ch(i,r)mr))'. This choice results in a physically mass-balanced
process model, since it follows that 

11
( , ) ( , ) ( , ) ( , ) ; ( , ) . (7)rm

j jj
i r i r v ch i r ch i r i r NRv Y Y

2.2 Posterior Inference 

Given all the variance-covariance parameters associated with the data 
model in (1) and the process model in (2), our goal is to predict the hidden 
process {Y(i,r)} from noisy and incomplete data {Z(i,r)}. Optimal prediction 
is obtained from the posterior distribution of {Y(i,r)}, which can be 
calculated rapidly using the change-of-resolution Kalman-filter algorithm 
(Chou et al., 1994; Huang and Cressie, 2001). The algorithm consists of two 



Multi-resolution Spatial Models 323 

major steps, namely the leaves-to-root step and the root-to-leaves step. The 
leaves-to-root step consists of recursively deriving the distribution of Y(i,r)
conditional on all data observed at all descendents of (i,r) and at (i,r) itself. 
At the end of the leaves-to-root recursion, we obtain the distribution of 
{Y(i,0)} conditional on all the data (i.e., the posterior distribution of 
{Y(i,0)}). The root-to-leaves step starts at the root node, and then traces 
down the tree, recursively computing the posterior distribution of Y(i,0) at 
every node in the tree. The algorithm is fast; it requires computations only 
proportional to the number of nodes in the tree, with a small computational 
overhead at each node. Computation times are discussed in Section 4. 

3. VARIANCE-COVARIANCE MODELING AND 
ESTIMATION 

In Section 2, the scalars {V(i,r)} associated with the measurement errors 
in (1), and the parameters {W*(i,r)}, a(0), and R(0) associated with the 
process model in (5), were assumed known. This assumption is realistic for 
the {V(i,r)}, since they reflect the relative accuracy (weight) of each 
observation. On the other hand, the matrices {W*(i,r)} and R(0) determine 
the variance-covariance structure of the hidden process {Y(i,r)}, a priori. A 
common approach in spatial statistics is to use the data to assist in specifying 
the variance-covariance structure of the Y-process, which can be thought of 
as an empirical Bayes approach.  For example, when doing kriging (e.g., 
Cressie, 1993, Chapter 3), the data are typically used to estimate variance-
covariance parameters using, for example maximum likelihood (ML) or 
restricted maximum likelihood (REML) estimation (e.g., Cressie, 2002). We 
follow a similar approach here by parameterizing the {W*(i,r)} matrices and 
then estimating any unknown parameters using ML- and REML-based 
methods. Estimation of a(0) and R(0) is discussed in Section 4. 

3.1 Variance-Covariance Modeling 

The (mr-1) x (mr-1) matrix W*(i,r) has at most (mr-1)mr/2 unknown 
parameters associated with it that need to be estimated. Denote by (i,r) the 
unknown parameter vector associated with W*(i,r), and write 

* *
1( , ) ( , ) ; ( , ) . (8)ri r i r i r NRW W

An example of a W*-model is the single-parameter-per-scale (SPPS) 
model: 

*
0 1( , ) ( , ) ( , ); ( , ) , (9)i r i r i r i r NRW C
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where {C0(i,r)} are known positive-definite matrices and { (i,r)} are 
unknown, positive, scaling parameters. 

As presented above, the different { (i,r)} in (8) are not related in any 
way. However, one could expect that cells within the same resolution that 
are nearby (in space) will have similar -parameters. Let {s(i,r)} be a set of 
representative point locations for {D(i,r)} (e.g., using the centroids of each 
cell). Then, in the case of the SPPS model (9), for example, one could 
assume 

1
log ( , ) ( , ) ( ) , (10)rp

j jj
i r i r rs

within each resolution r, where 1( ),…, pr( ) are known, smooth basis-
functions of spatial locations, (r)  ( (r)1,…, (r)pr)' are unknown 
parameters to be estimated, and pr  {1,2,…}. We now present likelihood-
based methods for estimating { (r)}.

3.2 Likelihood-based Parameter Estimation 

Denote by 

( , ) ( , ) and ( , ) ( , ); ( , ) , (11)p i r i r p i r Y i r i rZ Y Y

the conditional Gaussian probability densities associated with the data model (3) 
and the process model (5), respectively, and assume for the moment that 2, the 
variance-scaling parameter in (3) and (5) is known. With very little loss of 
generality, assume further that the data are only observed at the finest resolution, 
resolution-R. Due to the conditional structure of the MRSM, the joint density of 
{Z(i,R)} and {Y(i,r)} is given simply by a product of conditional densities. That 
is,

1

1
( , ) , ( , ) ; ( , ) ( , 1) ( , 1)Rn

i
p Z i R Y i r i r p i R i RZ Y

R-1

r=1 1
x ( , ) ( , ); , ( ,0) , (12)rn

i
p i r Y i r i r p Y iY

where {Z(i,R-1)} is equivalent to {Z(i,R)} and recall that the last factor is the 
density of the multivariate Gau(a(0), 2R(0)). However, for maximum-likelihood 
inference, the marginal distribution of the data {Z(i,R)} is needed, which is the 
integral the joint distribution above with respect to {Y(i,r)}. This integration is 
not at all straightforward, and it leaves us with a likelihood that has to be 
simultaneously maximized with respect to all variance-covariance parameters. 
However, as we shall see, it is possible to extract information from the data that 
is relevant to each resolution separately, leading to fast, resolution-specific 
likelihood inference. One such approach, given by Kolaczyk and Huang (2001), 
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is to combine a recursive integration of (12) with recursive aggregation and 
transformation of the data. The resulting marginal distribution of the 
transformed data factors into resolution-specific likelihood (RESL) components, 
with each component being only informative for the variance-covariance 
parameters associated with that particular resolution. Another such approach, 
which mirrors REML estimation in mixed-effects models (e.g., McCulloch and 
Searle, 2001), is to form contrasts among the data such that the distribution of 
the contrasted data only depends on the variance-covariance parameters 
associated with a single resolution. The resolution-restricted likelihood-based 
(RESREL-based) estimates derived using this latter approach are not in general 
the same as the RESL-based estimates obtained from the first approach. 
However, when estimating variance-covariance parameters in Gaussian mixed-
effect models and in Gaussian spatial models, REML estimators are in many 
cases preferred (see, e.g., McCulloch and Searle, 2001, Section 6.10; Cressie, 
2002). We now present briefly both estimation approaches; see Johannesson 
(2003) for full details. 

The RESL is derived by effectively integrating (12), resolution-by-resolution, 
with the help of a recursive decomposition of the data.  Let r = R-1. Integrating 
(12) with respect to {Y(i,r)}i=1

nr, results in most terms coming outside the 
integral, leaving behind

( , )
1

( , ) ( , ) ( , ) ( , ); ( , ) ( , ), (13)
rn

i r
i

p i r i r p i r i r i r d i rY Z Y Y Y Y

for r = R-1. The i-th integral in (13) is easily seen to be p(Z(i,r) Y(i,r); 
(i,r)), which can be obtained from the additive model, 

*( , ) ( , ) ( , ) ( , ) ( , ); 1,..., . (14)ri r Y i r i r i r i r i nZ 1 Q

Instead of proceeding to next resolution and taking a second integral of 
(12), now with respect to {Y(i,r-1)}i=1

nr-1, we decompose the {Z(i,r)} into 
aggregated global components {Z(i,r)} and detail local components {d(i,r)}.
Define

( , ) ( , ) '
( , ); 1,..., , 1, (15)

( , ) ( , ) ' r

Z i r i r
i r i n r R

i r i r

q
Z

d P

where q(i,r) is given in (4), q (i,r) q(i,r)( 1'q(i,r))-1, assuming that 1'q(i,r)

 0; and P(i,r) is any mr  (mr-1) matrix satisfying P(i,r)'(1 - k(i,r)) = 0,
k(i,r) V(i,r)q(i,r)V(i,r)-1, and V(i,r) q (i,r)'V(i,r)q(i,r). Given that the 

transformation in (15) is one-to-one and does not depend on (i,r), the joint 
density of {Z(i,r), d(i,r)} provides identical likelihood inference for (i,r), 
conditional on Y(i,r). Its advantage over using the conditional density of 
Z(i,r) given Y(i,r), follows from the fact that 

( , ), ( , ) ( , ); ( , ) ( , ) ( , ); ( , ) ( , ) ( , ) ,p Z i r i r Y i r i r p i r Z i r i r p Z i r Y i rd d
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where p(Z(i,r) Y(i,r)) is a Gaussian density with mean Y(i,r) and variance 
2V(i,r), and p(d(i,r) Z(i,r); (i,r)) is a multivariate Gaussian density with 

mean P(i,r)'k(i,r)Z(i,r) and variance-covariance matrix 

*( , ) ' ( , ) ( , ) ( , ) ' ( , ) ( , ) ( , ) ( , ) ' ( , ).ri r i r i r i r i r V i r i r i r i rP Q W Q V k k P

That is, (15) factorizes the information content of Z(i,r) into what is 
relevant to (i,r), through d(i,r), and what is relevant to all coarser-resolution 

-parameters, through Z(i,r); r = R-1. Note that {Y(i,R-1)} is equivalent to 
{Y(i,R-2)} and hence the second integration of (12) yields a term equivalent 
to (13) with r = R-2. By repeating the integration-factorization process 
outlined above, until the final integration with respect to {Y(i,0)}i=1

n0}, we 
obtain the likelihood of { (i,r)} to be proportional to 

1

0 1
( , ) ( , ); ( , ) , (16)rR n

r i
p i r Z i r i rd

where d(i,r) and Z(i,r) are obtained from (15), generalized for all r = R-
1,…,0. The estimation of (r)  { (i,r): i = 1,…,nr} (or equivalently (r)) is 
then carried out using the resolution-specific likelihood (RESL), 

( )

1
( ( )) ( , ) ( , ); ( , ) ; 1,...,0, (17)rnd

r i
L r p i r Z i r i r r Rd

resulting in a fast, resolution-specific estimation procedure. 
 RESL-based estimates of { (i,r)} are identical to maximum-likelihood 
estimates if the transformation in (15) is one-to-one. Kolaczyk and Huang 
(2001) point out that a necessary and sufficient condition for this is q(i,r) = 
(V(ch(i,r)1)

-1,…, (V(ch(i,r)mr)
-1)'. Generally, this is different from the mass-

balance constraint q(i,r) = v(i,r), but is the same when the measurement-
error variance is inversely proportional to the area of the cell. However, if 
the transformation in (15) is not one-to-one, the likelihood decompositon in 
(16) is not exact, and hence the RESL estimates derived using (17) are only 
approximately ML estimates. We therefore consider an alternative 
likelihood-type quantity to maximize, namely the resolution-specific 
restricted likelihood (RESREL). 

In place of maximum likelihood estimation of the { (i,r)}, the fine-
resolution data {Z(i,R)} and the aggregated data {Z(i,R)}; r = R-1,…,0, can 
be used to construct a sequence of resolution-specific restricted likelihoods 
(RESRELs), such that the r-th likelihood is used to estimate (r); r = R-
1,…,0. Just as for REML, let E(r) be any mr  (mr-1) matrix such that E(r)'1
= 0, and define the contrasts, 

1( , ) ( ) ' ( , ); ( , ) . (18)Ri r r i r i r Ne E Z
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Then, using (14),
*

1( , ) ( , ) ( , ) ( , ); ( , ) ,e e Ri r i r i r i r i r Ne Q

where Qe(i,r) E(r)'Q(i,r) and e(i,r) E(r)' e(i,r). That is,
2 *( , ) ~ Gau , ( , ) ( ( , )), ( , ) ' ( , ) ,e r e ei r i r i r i r i re 0 Q W Q V

where Ve(i,r) Qe(i,r)V(i,r)Q(i,r)'. Note that within each resolution r, the 
{e(i,r)} are independent. One can then use the resolution-specific restricted 
likelihood (RESREL),

( )

1
( ( )) ( , ); ( , ) , (19)rne

r i
L r p i r i re

for inference on (r), where p(e(i,r); (i,r)) is the Gaussian density associated 
with e(i,r); i = 1,…, nr, r = R-1,…,0.

Note that the RESREL is not tied to any particular set of constraining vectors 
{q(i,r)}, as is the case for RESL. However, the choice of {q(i,r)} does 
determine how the fine-resolution data {Z(i,R)} will be aggregated. 

Hitherto, we have assumed that 2 is known and there is no missing data in 
{Z(i,R)}. In the more realistic situation where 2 is unknown, one can estimate 

2 at a fixed resolution, say the finest-resolution (using either RESL or 
RESREL), and use the resulting 2 estimate when estimating { (i,r)}.

If some of the elements of Z(i,R-1) are missing (unobserved), it is not 
possible to decompose Z(i,R-1) into the two components, Z(i,R-1) and d(i,R-1)
with the right factorization properties needed for RESL. One solution is to 
ignore those i for which Z(i,R-1) has any missing elements. A similar strategy 
can be taken for the RESREL approach.

4. APPLICATION: TOTAL COLUMN OZONE (TCO) 

Our data consist of spatially and temporally irregular TCO observations 
sampled on October 2, 1988, by the total ozone mapping spectrometer (TOMS) 
instrument on the Nimbus-7 satellite. In a single day, the satellite is able to 
achieve approximately global coverage, with a slight overlap in consecutive 
orbits. Under perfect conditions, this generates about 200,000 TCO observations 
within a single day.  In practice, a number of observations are missing and 
others are removed by a quality-control procedure, resulting in 162,265 valid 
observations for October 2, 1988.  In our analysis of the TCO data, we shall use 
five spatial resolutions, as in Huang et al. (2002): 

Resolution: R–1 R–2 R–3 R–4 R–5 
Cell size (lon x lat): 45ox36o 15ox12o 5ox4o 2.5ox2o 1.25ox1o

Number of cells: 40 360 3,240 12,960 51,840 
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The TCO data are initially aggregated to the finest resolution, R-5, yielding 
the (potential) data {Z(i,5),V(i,5): i = 1,…, 51,840}, where  Z(i,5) is 

Figure 2. (a) The RESL and RESREL estimates of (i,4)1/2 as a function of latitude. (b) The 
estimated standard deviation of {Y(i,5)}, as a function of latitude, based on RESREL 

estimation of 2 and { (i,r)}.

defined as the average of all observations within D(i,5), and V(i,5) is taken to 
be the reciprocal of the number of observations within D(i,5); i = 1,…, 
51,840. In our case, 7,382 R-5 cells do not contain any observations, 
resulting in 7,382 missing observations in the R-5 dataset (Figure 3, top). 

To apply the spatial multi-resolution model of Section 2 to the TCO data, 
the matrices {W(i,r)} and 2 need to be estimated. Although the optimal 
predictor does not depend on 2, we need it for prediction variances.  We 
assume that the TCO process follows the mass-balanced, coarse-to-fine-
resolution process model (5), with {W*(i,r)} given by the SPPS in (9) and 
C0(i,r) = I. An exploratory data analysis indicates that most of the between-
resolution variation is latitudinal. Based on this, {log (i,r)} is modeled as a 
smooth function of  latitude  only,  within  each  resolution r,  using  a  linear 
combination of B-spline basis functions, as in (10), with 4, 7, 10, and 14 
knots at resolutions 1-4, respectively. The B-splines were constrained to 
have zero derivative at the poles, resulting in a smooth surface on the sphere. 
Estimation of the parameter vectors { (r)} was carried out using both the 
RESL in (17) and the RESREL in (19), with 2 estimated at the finest 
resolution in each case. Only aggregated data {Z(i,r)} with no missing 
elements were used in the estimation process. At the coarsest resolution, R-
1, recall that (Y(1,1),…,Y(40,1))' ~ Gau(a(0), 2R(0)). We assume that the 
trend a(0) is a linear combination of 25 spherical harmonics (i.e., a(0) = 
X (0)) and R(0) is given by an exponential covariance function. Unknown 
parameters of this model were estimated from the coarsest-resolution 
aggregated data {Z(i,0)}i=1

40 using REML. An alternative approach would be 
to detrend the original, massive TCO data, as in Cressie (2003). 
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Figure 2(a) shows both the RESL and the RESREL estimates of (i,4)1/2,
plotted versus latitude. We note first that the two estimates are basically 
identical, both showing that the difference between the aggregated Y-process 
at R-4 and R-5 has least variability around the equator. Figure 2(b) shows 
the marginal variance of {Y(i,5)}, based on the RESREL estimates of 2 and 
{ (i,r)}. The stepwise appearance in Figure 2(b) is due to the change-of-
resolution nature of the MRSM. Finally, Figure 3 shows the TCO data 
{Z(i,5)}, and the posterior mean and standard deviation given by the MRSM 
after substituting in RESREL estimates of 2 and { (i,r)}.

Figure 3. Top: the TCO data at resolution-5 (white denotes missing data). Middle: the 
posterior mean of the TCO process.  Bottom: the posterior standard deviation.

The MRSM has enormous advantages, computationally. The program 
used for the analysis in this paper was written using the statistical 
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programming language R (Ihaka and Gentleman, 1996). The whole 
execution time of the program, from creating the spatial tree-structure, 
through to computing the estimates used in Figures 2 and 3, took about 3 
minutes on a linux computer with an Atholon MP 1800 processor. 
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GEOSTATISTICAL INTERPOLATION AND 
SIMULATION IN THE PRESENCE OF 
BARRIERS
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kkrivoruchko@esri.com, agribov@esri.com 

Abstract: Statistical correlation between spatial variables depends on the distance 
between locations and the direction of travel from one to the other. 
Geostatistical interpolation most often uses the Euclidean distance between 
observations. But since most surfaces in nature are convoluted, with edges and 
breaks, anything that travels along them is thereby constrained. Smog, for 
instance, is blocked by hills and mountains. Animals migrate around lakes, 
mountains, and settlements. Contaminants in water follow the coastline. This 
paper proposes using cost weighted distance, a common raster function in GIS 
(Geographical Information Systems) that calculates the cost of travel from one 
cell of a grid to the next, making it the natural choice of the distance metric for 
spatial interpolation. Determining cost value at each location is discussed, as is 
calculation of distances between sampled locations and unsampled ones. Also 
covered is how to choose a valid covariance model with barriers defined by 
cost surface. We illustrate the approach using publicly available ozone data in 
California, where mountains are the natural barriers for smog propagation, and 
nutrients data in the Chesapeake Bay, where the coastline forms non-
transparent barrier for chemical propagation. 

1. INTRODUCTION 

Spatial interpolation assumes that locations close together are more similar 
than locations that are far apart. Most interpolators use Euclidian distances to 
calculate the weight of neighboring data, which they use to predict the value of 
unsampled locations. In geostatistics, weights are calculated according to the 
value of covariance or of semivariogram, the statistical variant of distances 
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between locations. But even though points farther away from where a value 
needs to be predicted are not necessarily weighted less than points that are 
closer, both semivariogram and covariance are still functions of distance, 
traditionally Euclidean distance. 

Predicting values for unknown locations becomes difficult in the presence of 
barriers, as illustrated in figure 1a. The straight-line distance between B and C is 
shorter over land than around that spit. But a chemical spilled in the water at B 
would travel to C by sea, not land. And though C is closer to B than A, over 
land, we can see that A is much likelier to be contaminated than C is. Using the 
length of the shortest path in the water between two locations (as the fish 
swims), A is closer to B than C is. This example illustrates the need of spatial 
correlation model that is consistent with the physical process under study. 

Barriers are rarely considered in geostatistics because one of the assumptions 
in traditional geostatistics is that predictions can be based on just one realization 
of the random function of the unrestricted spatial process, see Gandin, 1963. 

Similar to water contamination is contamination of the air. In figure 1b, the 
arrow shows the direction smog will take from east of Los Angeles. Mountains 
on the right side of figure block the smog, and from about 600 meters above sea 
level the air is typically cleaner than in the valley. Air quality is also much 
worse along freeways so the physical model of the pollution distribution dictates 
that the statistical distance between locations along roads should be different 
from the distance across the roads. 

In California, at least three variables known for each location influence the 
level of pollutants in the air: elevation, distance from the ocean, and distance 
from the road. Figure 2a presents a 3D view of distances from the freeways and 
distance from the ocean. These surfaces, together with the surface of California 
elevation, in figure 2b, can be used to improve geostatistical models of air 
pollutant prediction.  

(a)              (b)
Figure 1. a) Modeling water contamination needs a non-Euclidean metric. b) Freeways and 
mountains affect how smog is produced and how it spreads. Geography of Chesapeake Bay 

and Southern California is used. 
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(a)             (b) 
Figure 2. a) Distance from major roads (top) and from the ocean (bottom). b) Elevation 

enlarged by a factor of 15. Geography of Southern California is used. 

The rest of the article discusses interpolation and simulation using non-
transparent and semi-transparent barriers. We calculate distance between 
locations using a cost surface grid. We illustrate the approach using publicly 
available ozone data in California and nutrient data in the Chesapeake Bay. 
There is no intention to present a complete analysis of these data, however. 

2. INTERPOLATION WHEN DETAILED 
INFORMATION ON SECONDARY VARIABLES 
IS AVAILABLE 

For data interpolation of air pollution in California, we have a limited 
number of data measurements and detailed information on secondary 
variables. Among the possible approaches to model such data are the 
followings: 
– Universal kriging with external trend, see Ver Hoef, 1993; 
– Cokriging, see Gandin, 1963;  
– Changing the definition of the covariance model, see Carroll and Cressie, 

1996. 
Universal kriging with external trend assumes that the mean of the 

primary variable changes locally and can be estimated as a function of the 
secondary variable. This assumption is often appropriate for aggregated 
polygonal data and rarely works well for continuous ones. 

Figure 3a presents the result of an ozone prediction using a cokriging 
model, with ozone as the primary variable and a grid of distances from major 
California roads, see figure 2a, as the secondary variable. Major roads are 
displayed as the top layer of the map. Table 1 presents cross-validation 
statistics for ordinary kriging and ordinary cokriging, with the second 
variable as distance to a major road. 
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Table 1. Comparison of cross-validation statistics. 
Cross-validation statistics Ordinary kriging Ordinary cokriging, with second 

variable as distance to a major road 
Mean error 0.00026 0.00038 
Root-mean-square error 0.01268 0.01206 
Average standard error  0.01628 0.01476 
Mean standardized error 0.0112 0.01928 
Root-mean-square 
standardized error 

0.7845 0.8484 

The best model is the one that has the smallest root-mean-squared 
prediction and average standard errors, and the standardized root-mean-
squared prediction error nearest to one, see Cressie, 1993. Thus, using 
distance from a road as a secondary variable improves the prediction of 
ozone pollution. One problem with cokriging is how to model cross-
correlation between variables. Figure 3b shows the cross-covariance cloud 
and the exponential model used to create the map in figure 3a. The largest 
correlation occurs at the non-zero distance between the monitoring stations 
and the data on the grid. Cross-correlation is anisotropical and shifted, so it 
is difficult to find the optimal cross-covariance model in this situation. 

Carroll and Cressie, 1996, added information on elevation, slope, and 
aspect to the definition of the covariance model. Such distance metric is a 
particular case of the city-block distance metric, which is valid for an 
exponential covariance model, see the section “Interpolation and simulation 
using non-Euclidian distances” below. 

(a) (b) 
Figure 3. a) Ordinary cokriging prediction of the maximum one-hour annual value of ozone in 

California in 1999 using distance to the road from the monitoring stations as the secondary 
variable. b) Cross-covariance between ozone and distance from the major roads. 
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3. DISTANCE BASED ON COST SURFACE 

We propose a new approach to the problem of data interpolation and 
simulation with non-Euclidean distances, one based on cost weighted 
distance. Cost weighted distance is a common raster function in GIS that 
calculates the cost of travel from one cell of a grid to the next, making it the 
natural choice of the distance metric for spatial interpolation. Typical 
examples of cost surfaces are travel time, dollars, and alternate routes.  

The value of each cell in the cost surface represents the resistance of 
passing through the cell and may be expressed in units of cost, risk, or travel 
time. Figures 4a illustrates a cost surface usage for interpolation purposes 
using a side view of elevation. The x-axis shows cell locations and the y-axis 
shows cost value assigned to grid cells. We want to penalize moving up and 
down, because a car, for example, uses more gas to go up hill and has more 
brake wear going down. On a flat surface the distance between points is 
calculated without penalties: moving from cell 3 to cell 4 is not penalized. 
Going uphill, from cell 4 to cell 5, we add distance to the path because of the 
difference between cost surface values in the neighboring cells, using either 
   (average cost value in the neighboring cells)* (distance between cell centers)

or

   (difference between cost values in the neighboring cells) + (distance between cell centers)

formula. Cell locations where distance is changed are highlighted.  
The templates in figure 4b show four ways to calculate distance between 

centers of neighboring cells. The more directions used, the closer the 
distance between points will be to optimal trajectory. However, the more 
directions used, the more time calculation takes. 

(a) (b) 
Figure 4. a) Cost surface usage. b) Distance calculation using 4, 8, 16, and 24 directional 

templates. 

Figure 5a shows the variable range of data correlation found using 
moving window covariance modeling, when analyzing nonstationary 
phosphorus data in a farm field in Illinois, Krivoruchko and Gribov, 2002. 
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This parameter of the geostatistical model can be used in the calculation of 
the cost surface grid: cost value=(maximum range)/(range in the cell). Then 
the size of the moving kernel will change according to change of the range 
of data correlation (see discussion on kernel approach below). 

To create a raster cost surface using detailed information on California 
elevation, data were reclassified according to our observations on smog 
propagation in summer time in Southern California shown in table 2. 

Table 2. Relationship between California elevation and cost surface values. 
Elevation, 
meters 

<100 100-
200

200-
300

300-
450

450-
600 

600-
750

750-
900

900-
1200

1200-
1500

>1500

Cost value 1.0 1.1 1.2 1.3 1.5 2.0 3.0 5.0 10.0 100.0 

We used Dijkstra’s source-sink shortest path algorithm, see Sedgewick, 
2002: given a start vertex A and a finish vertex B, find the shortest path in 
the graph from A to B given weights equal to a cost value in each grid cell. 
If there is no path from A to B, infinite weight is assigned to the vertices. 

4. INTERPOLATION AND SIMULATION USING 
NON-EUCLIDIAN DISTANCES 

Figure 5b presents an example of a naïve approach to interpolation in the 
presence of barriers, which is implemented in some spatial data analysis 
programs. In this approach, if the straight line between two locations 
intersects a line or a polygonal barrier, then the points do not “see” each 
other and are excluded from the searching neighborhood and, in the case of 
the kriging model, from the list of empirical semivariogram pairs of points. 

(a)            (b)
Figure 5. a) Variable range of correlation calculated using phosphorus data on a farmer field. 

b) Illustration of the naïve approach to interpolation in the presence of solid barriers. 
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One of the problems with this method is that prediction abruptly changes 
near the line barrier (or corners of the polygonal barrier) without any 
physical reason for it.  

Little et al, 1997, Curriero, 1997 and 2003, Rathbun, 1998, and Higdon, 
1998, discussed using non-Euclidean distances in geostatistics. They 
considered a distance metric that must satisfy the following geometric 
properties: 

d(s1, s2) = d(s2, s1);
d(s1, s2)  0, with equality if and only if s1 = s2;
d(s1, s3) d(s1, s2) + d(s2, s3),

where s1, s2, s3. are coordinates of the data locations, and d(•) is a distance 
between two locations. 

Curriero, 2003, pointed out that conditions of a metric are not sufficient 
proof of the validity of distance to yield positive definite functions. Such 
distances cannot be used without proof in covariance and semivariogram 
models. Covariance cov(d(si, sj)) calculated using metric d(si, sj) must satisfy 
the non-negative definiteness property: 

i
ji

j
ji ssdbb 0)),(cov(

An important result of previous research is that most traditional 
parametric covariance models, including spherical one, are not valid for non-
Euclidean distances. One exception is an exponential covariance model, 

dedcov , which is valid for the city-block distance metric,  

dcb(s1, s2) = x1 – x2 + y1 – y2 .

The city-block distance metric corresponds to the template with four 
possible directions, see bottom left of figure 4b. A geostatistical process with 
a city-block distance metric and an exponential covariance model would be 
constructed as follows: 

Consider n  independent random processes with the exponential 

covariance model in one dimension nisri ,1, :

0srE i nietrsr st
ii ,1,cov , where  is a constant 

inversely proportional to the range of data correlation. 

Construct a process, 
n

i
ii srsr

1

. The expected value of this process 

is zero, 0srE , and covariance represents statistical distance using the 
city-block metric: 
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It is possible that the other templates presented in figure 4b are also valid 
for calculating distance in the exponential covariance using a cost surface 
with the same values in each grid cell. Unfortunately, exponential covariance 
is not valid when distance may change according to cost values in the 
neighboring cells. 

We do not know how to find a valid parametric covariance model in the 
presence of semitransparent barriers, but it is possible to examine a selected 
model for non-negative definiteness. We simulated distances between points 
with a valid space metric and calculated the exponential covariance matrix to 
check its non-negative definiteness property. In about one case out of three 
thousand, the resulting covariance matrix was negatively definite.  

Because commonly used theoretical covariance models are not valid in 
the case of distances modified by cost surface values, we propose using a 
moving average approach for covariance model estimation. Notable 
references on such flexible covariance modeling are Barry and Ver Hoef, 
1996; Higdon, 1998; Yao and Journel, 1998, and Ver Hoef, et al., 2001. 

A modeling process based on distances defined by cost surface using a 
moving average can be constructed as follows: 

In each grid cell, model the independent random variable st ,  with 

zero mean and variance 2 .
Based on the cost value in each grid cell, find the distance stji ,,,

to points in the specified neighborhood, where pairs (i,j) and (t,s)
refer to grid rows and columns. 
Define kernel function )( ,,, stjif .

Then process is defined as 

st
stji

st
ststji
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f
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The important step is the choice of the appropriate kernel. Two different 
strategies can be used here: defining the kernel itself or calibrating a spatial 
moving average using well-known spatial covariance functions. The former 
approach can be based on a known or an estimated range of data correlation 
to define size of the kernel, data variance to define the height of the kernel 
and the underlying physical process to define shape of the kernel. The later 
approach is discussed in detail in Oliver, 1995, and Cressie and Pavlicova, 
2002. In both situations, the kernel should correspond to the covariance with 
the dependence disappearing after a fixed distance.  

The situation here is more complicated than those described in Ver Hoef 
et al, 2001, because the kernels are not symmetrical near barriers. 

There is a choice between prediction and simulation.  
Covariance jiji nn ,, ,cov  is known for all pairs of grid locations and can 

be used to solve simple or ordinary kriging equations. Because of data 
uncertainties, such as inaccuracy in the measurement device, rounding off, 
and local integration errors, and because of the locational errors introduced 
when data locations are moved to the center of the nearby grid cell, filtered 
versions of kriging are preferred.  

Alternatively, given unconditional simulations in the grid cells ni,j,
conditioning to the observations can be made. Conditioning to the data 
should take into account the measurement error component in the kriging 
model. A geostatistical conditional simulation model using simple and 
ordinary filtered kriging can be found in Aldworth, 1998.  

To show the influence of cost surface on simulations, we used 
Chesapeake Bay geography and a cost surface defined so that the water 
surface received the value of one and land received a very large value, 
making it a non-transparent barrier for chemical propagation. Figure 6a 
shows unconditional simulation using a moving cylindrical kernel with 
radius displayed in the top left corner and height corresponding to the unity 
variance over simulated Gaussian white noise. The white contour indicates 
the border between land and water. However, the difference between water 
and land was ignored. The same kernel was used to smooth out the same 
noise in the map in figure 6b, but the process was estimated on water only, 
with land as non-transparent barrier. The kernel is circular if it does not 
touch the barrier (land). Near the barrier, the kernel changes its shape as in 
the top left corner of figure 6b. 
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(a)         (b) 
Figure 6. a) Unconditional simulation on a flat surface. b) Unconditional simulation using a 

cost surface with non-transparent barriers. 

The difference between maps is significant (see for example the central 
part of the figures under the label “Water”) because the kernel constrained 
by land surface does not use significantly different information on the land, 
but searches for the data along the river surface only. 

Figure 7 shows two simple kriging interpolations of ozone in Southern 
California, one using Euclidean distance, the other using non-Euclidean. For 
prediction, the difference between models is not as significant as for 
prediction standard errors. Prediction standard error mapping is of greater 
importance in environmental applications because it can indicate areas where 
predictions are unreliable. The kind of maps often used in decision-making, 
quantile and probability maps, are essentially based on predicted standard 
errors; see for example Krivoruchko, 2001, and Krivoruchko and Gribov, 
2002. Figure 7a is the map of simple kriging standard error based on 
Euclidean distances. Figure 7b shows simple kriging standard error when 
distances are calculated using a 200 by 200 cost surface grid based on the 
relationship between elevation and cost values and superimposed over the 
California territory in table 2, bottom row. 

Interpolation in the presence of semitransparent barriers, figure 7b, shows 
the uncertainty of prediction based both on density of observations and on 
elevation. This makes sense because smog is blocked by mountains but can 
travel through gorges. The interpolation based on straight line distances 
ignores the mountains, so prediction uncertainty is based only on data 
density. As a result, prediction errors are underestimated when predicting 
smog in the hills and mountains using measurements in the valley. 
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(a) (b)
Figure 7. Simple kriging prediction error using a straight line distance (a) and using the least 

accumulative cost distance (b). 

5. CONCLUSION

Euclidean distance is the default distance in nearly all geostatistical 
applications. However, it may not be the best distance metric when the 
process being modeled is affected by natural factors, such as elevation, 
geological faults, and coastlines. Thus, statistical distances that account for 
these natural factors can be defined by introducing non-transparent and 
semitransparent barriers for movement from one location to another. In this 
paper, we proposed that interpolation in the presence of such barriers be 
based on cost surface, a common GIS modeling option. The cost value at 
each location can be a function of several variables and all the cells in the 
grid. Recently Dubois, 2001, used a cost surface for calculation of the 
semivariograms used with kriging interpolators. However, theoretical 
covariance models are not valid when distances change randomly between 
neighboring cells. Thus, we proposed a solution that uses the moving 
window kernel approach for calculation of the spatial correlation. The 
important step is the choice of the appropriate kernel. Two different 
strategies can be used here: defining the kernel itself or calibrating spatial 
moving averages using well-known spatial covariance functions. In both 
situations, the kernel should correspond to the covariance, with dependence 
vanishing after a fixed distance. Using an appropriate cost surface with 
geostatistical models produces more reliable prediction and prediction 
standard errors, as we demonstrated using air quality data in California. 
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A SPECTRAL TEST OF NONSTATIONARITY 
FOR SPATIAL PROCESSES
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Abstract: We present a test for the detection of nonstationary spatial processes using 
spectral methods. The spatial field is represented locally as a stationary 
isotropic random field, but only the parameters of the stationary random field 
that describe the behaviour of the process at high frequencies are allowed to 
vary across in space, reflecting the lack of stationarity of the process. 

Key words:       Geostatistics, Nonstationarity, Spatial statistics, Spectral density. 

1. INTRODUCTION

Spectral analysis of stationary processes is particularly advantageous in 
the analysis of large data sets and in studying properties of multivariate 
processes. Geostatistical data are usually collected over a large region, and 
handling large data sets is often problematic for the commonly used 
techniques: inversion of a large covariance matrix to compute the likelihood 
function may not be possible or may require a long time in computation. The 
use of a Fast Fourier transform (FFT) algorithm for spectral densities can be 
a good solution for these problems. However, FFT can be applied only to 
regularly gridded data, though this disadvantage is not that important as 
there are theoretical connections between the estimators of the spectral 
densities in both the regular lattice and irregular spaced data (Renshaw, 
2002). The periodogram, a nonparametric estimate of the spectral density, is 
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a poweful tool for studying the properties of stationary processes observed 
on a two-dimensional lattice (Stein, 1999). 

Spatial processes in environmental sciences are generally nonstationary, 
in the sense that the spatial structure depends on location. Therefore, 
standard methods of spatial interpolation are inadequate. Thus, it is clear that 
many environmental problems have to deal with nonstationarity of the 
underlying spatial process. The decision to treat the problem at hands as 
stationary or nonstationary is often not based on a mere statistical scrutiny of 
data values, but on considering the physics of the problem. However, at least 
two reasons reinforce the necessity of statistical tools for detecting 
nonstationarity: (a) the researcher does not always have access to all the 
physical data, and can not evaluate an appropriate underlying physical 
model, and (b) as a nonstationarity validation procedure, even knowing a 
priori the data behaves as such. In recent years, probably the most 
extensively studied method for nonstationary spatial processes is the 
deformation approach due to Sampson and Guttorp (1992). Recently, several 
spectral methods for analysis and interpolation of environmental 
nonstationary processes have been presented (Fuentes, 2001, 2002; Fuentes 
and Smith, 2002). 

In this paper we focus our attention on the above methodology by 
Fuentes, for spatial interpolation of nonstationary processes using spectral 
methods, to propose a simple diagnostic test of nonstationarity of a spatial 
process.  In Section 2 we introduce the spectral representation of spatial 
processes. Section 3 is devoted to modeling the spatial structure in terms of 
the periodogram, as an estimate of the spectral density. A test of 
nonstationarity is presented and evaluated in Section 4. 

2. NONSTATIONARY SPATIAL PROCESSES. 
SPECTRAL METHODS 

Let Z be a nonstationary process observed on a region D. Suppose D is 
covered by well-defined subregions S1,...,Sk, and consequently, Z can be 
written as a weighted average of orthogonal local stationary processes Zi for 
i=1,...,k, with cov(Zi(x),Zj(y))=0 for i j. We have 

1

( ) ( ) ( ) (1)
k

i i
i

Z Z Kx x x

where Zi is a local stationary process in the subregion Si, Ki(x) is a positive 
kernel function centered at the centroid of Si. The weighted average (1) is the 
discrete representation of the process Z, but we could write this average as 
an integral to obtain a continous representation. 

The nonstationary covariance of Z is defined in terms of the local 
stationary covariances of the processes Zi for i=1,…,k,
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1

( ( ), ( )) ( ) ( ) ( ( ), ( )) (2)
k

i i i i
i

cov Z Z K K cov Z Zx y x y x y

where cov(Zi(x),Zi(y)) = C I(x – y), the covariance parameter i varies with 
the subregion measuring the lack of stationarity of Z.

The two-dimensional random field Zi, with i=1,… k can then be 
represented in the form of the following Fourier-Stieltjes integral (Cressie, 
1993)

2( ) exp( ) ( ) (3)T
i iZ i dYx x

where Yi are random functions with uncorrelated increments and  are the 
frecuencies. The representation (3) is called spectral representation of Zi.
The spectral representation describes the harmonic analysis of a general 
stationary process, i.e. its representation in a form of a superposition of 
harmonic oscillations. 

Let the function Fi be a positive finite spectral measure for Zi, defined by 
E|Yi( )|2=Fi( ). If Fi has a density with respect to the Lebesgue measure, 
this density is the spectral density fi, defined as the Fourier transform of the 
autocovariance function Ci,

22

1
( ) exp( ) ( ) (4)

(2 )
T

i if i C dx x x

By Bochner's theorem, the function Ci is an autocovariance if and only if 
can be represented as in (4), where Fi is a positive, finite measure. Thus, the 
spatial structure of Zi could be analyzed with a spectral approach or 
equivalently by estimating the autocovariance function. 

Focussing now on the nonstationary process Z, defined as a mixture of the 
stationary processes Z1,…,Zk as in (1), the spectral representation of Z is Z(x)
= 2 (i Tx)dY( ) with Y( )= k

i=1 Ki * Yi( ) for Ki the Fourier transform of 
Ki, and * denotes the convolution. The covariance of Z can be defined in 
terms of the covariance of the orthogonal local stationary processes Zi, as in 
(2), defining a valid nonstationary covariance. The corresponding spectral 
density is given by f( 1, 2) = i=1

k ^

f i * [ Ki( 1) Ki( 2)], where K is the FT 
of K.
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3. MODELING THE SPATIAL STRUCTURE 

3.1 Spectral domain: tapered periodogram 

The spatial periodogram is a nonparametric estimate of the spectral 
density, and a powerful tool for studying the properties of random fields 
observed on a lattice. It is the modulus-squared of a finite Fourier transform 
for the observed region of the process, introduced to search for hidden 
periodicities of processes. The periodogram itself is not a consistent 
estimator of the spectral density, but consistency can be achieved by 
applying linear smoothing filters to the periodogram.  Smoothing the 
periodogram, as is frequently done in time series does not remove large 
edge-effects in two or more dimensions. The sidelobes (subsidiary peaks) 
occurring on smoothing filters cause unnecessary large values of the 
periodogram ordinates for high frequencies and result in substantial bias. 
This phenomenon is called leakage. Instead of smoothing biased 
periodogram estimates, direct filtering of the data with a data taper before 
computing the periodogram can also provide a consistent estimate of the 
spectral density. The information lost through powerful frequencies by 
smoothing the periodogram can be better recovered by data tapers (Fuentes, 
2001, 2002). 

Data tapers put relatively less weight on the boundary points and is highly 
effective in removing edge-effects, even in higher dimensional problems. 
Moreover, in the fixed-domain aymptotics where the number of observations 
in a fixed study area increases, it has been shown that using the periodogram 
of the raw data without any data tapers applied can yield highly misleading 
results (Stein, 1999). 

Consider a spatial stationary process Z( ) with covariance parameter 
which is assumed here to be known. We observe the process at N equally 
spaced locations in a regular grid D (n1 n2), where N=n1n2.

We define IN( ) to be the periodogram at a frequency ,
1 2

1 2

2

2 1
1 2

1 1

( ) (2 ) ( ) ( )exp . (5)
n n

T
N

x x

I n n Z ix x

In practice, the periodogram estimate for  is computed in the set of 
Fourier frequecies 2 f/n where f/n=(f1/n1 , f2/n2), and f JN, for 

1 1 1 2 2 2( 1) / 2 ,..., / 2 ( 1) / 2 ,..., / 2 (6)NJ n n n n n n

where u  denotes the largest integer less or equal that u.
The expected value of the spatial periodogram is not f( ), but a weighted 

integral of f( ). In terms of an increasing density asymptotics, it is 
asymptotically unbiased, its asymptotic variance is f2( ), and the 
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periodogram values IN( ) and IN( ) for , are asymptotically 
uncorrelated (Fuentes, 2002). The asymptotic independence of the 
periodogram estimates is one of the big advantages of the spectral analysis. 

We then use a data taper to prevent the leakage from far away frequencies 
that could have quite a lot of power, though every time we do tapering we 
lose information. Thus, we form the product h(x)Z(x) for each value of x = 
x1,x2, where {h(x)} is a suitable sequence of real-values constants called a 
data taper. The traditional tapers used for two-dimensional data are the 
tensor product of two one-dimensional data tapers, hM(j)=h1(j1)h2(j2), where 
j=(j1,j2), 1 j1 n1 and 1 j2 n2. For instance, h1( ) and h2( ) could be a m-
cosine taper, where 1  m < 1

2
n  (Fuentes, 2002; Fuentes and Smith, 2002). 

hM( ) is usually called the multiplicative data taper for two-dimensional data. 
In this paper, and following Fuentes (2002) and Fuentes and Smith (2002), 
we focus on a rounded taper, as seems to show better behaviour than the 
multiplicative one. This kind of taper is defined in terms of two parameters 
controling the rounded region. 

3.2 Models for spectral densities 

Consider the decomposition (1) of the nonstationary two-dimensional 
process Z into the local stationary processes Zi for k subregions covering the 
region D. A class of practical variograms and autocovariance functions for a 
process Zi can be obtained from the Matérn class of spectral densities 

( 1)22( ) (7)
i

i i if

with parameters i > 0, i > 0 and i > 0. Here, the vector of covariance 
parameters is i = ( i, i, i). The parameter i

-1 can be interpreted as the 
autocorrelation range. The parameter i measures the degree of smoothness 
of the process Zi, the higher the value of i the smoother Zi would be, i is 
the ratio of the variance i

2 and the range ( i
-1) to the 2 i

th power, i= i
2

i
2 .

The corresponding covariance for the Matérn class is

1 2
( ) ( ) ( ) (8)

2 ( 1)
i

i ii i

i
i i

i i

C x x k x

where i is a modified Bessel function of order i. For instance, when 
i=(1/2) we get the exponential covariance function, C i(x)= i i

-1 exp (- i|
x|).

After accounting for the degree of smoothing, the validity of standard 
local interpolation procedures depends only on the parameter i. Even if the 
range parameter varies with location, local interpolation procedures (kriging) 
can be shown to be asymptotically optimal as long as i and i are constant 
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over the domain. This is a consequence of the fact that low frequency 
behavior of the spectrum (small values of | |) should have little effect on 
interpolation. It is possible to provide a qualitative theory supporting this 
point of view (Stein, 1999). 

Thus, if the goal is spatial interpolation, it is preferable to work on the 
spectral domain and focus on high frequency values (Fuentes, 2002). An 
approximate expression for the spectral density of the Matén class for high 
frequency values is obtained from expression (7) by letting | | go to . As a 
consequence, the degree of smoothness, i and i are the critical parameters 
(and not the range i

-1).

4. A FORMAL TEST OF NONSTATIONARITY FOR A 
SPATIAL PROCESS 

Suppose we wish to test whether a two-dimensional spatial process Z is 
nonstationary, with the aim of further spatial interpolation. Further, suppose 
Z is measured at N = n1 n2 regularly spaced data. At this point, it is worth 
noting that: (a) In practice, we can have missing data at several locations in 
the lattice; (b) The source data could be sampled over an irregular grid. In 
this case, and taking into account the result in Renshaw (2002), we could 
define an appropriate regular grid to approximate the irregular data locations, 
and proceed normally with our proposed test. Then, we decompose Z into a 
sum of local stationary processes Zi for k subregions covering the region of 
interest, say D. The number of regions (k) can be found using an AIC 
criterium (Fuentes, 2001), or by experimentation depending, for example, on 
the a priori knowledge of the physical characteristics of the region D. 
However, the number k is restricted by the number of original sampled 
locations N. Note that each subregion Si will only have a subset of the N
data, and as will be shown later, the power of the proposed statistical test 
depends very much on the number of data locations in each subregion. 
Furthermore, each subregion need not be the same size compared to the 
others. However, defining all k subregions under equal sizes will be useful 
for further test comparisons. 

Suppose the spectral density of the process Z belongs to the Matérn class, 
given by (7), with vector of positive parameters given by i=( i i i). Recall 
that parameter i measures the spatial variability. Focusing on high 
frequency values, an approximate expression of (7) is given by fi( ) = 

i(| |2)(- i-1), with i and i as critical parameters. Working now in the log 
scale, we can fit the following linear model log(fi( ))= oi+ oilog(| |), where 

oi=log( i) and oi=-2( i+1).
In practice, fi( ) is estimated by the corresponding tapered periodogram 

Ii
N( ). Taking into account that the periodogram values are asymptotic 
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independent, we can use regression techniques to estimate the values of 
intercept and slope. A diagnostic to detect nonstationarity of Z should be 
able to detect differences among the values of 0i and 1i for different 
subregions (different values of i). Various alternatives can be considered. A 
simple map of these values in the region of interest could be a first step. 
However, we need a formal test to detect possible significant differences. 
The following test for the equality of regression equations is considered (see 
Rao, 1973 p.281). Let  yi = log(Ii

N( )) and xi = log(| |), to form the 
regression equation yi = oi + 1ixi. Consider another equation given by yj = 

oj + 1jxi. Suppose ni and nj stand for the sample size. Here we adapt a 
known test in the regression context, to check the null hypothesis Ho: oi = 

oj and 1i = 1j. This procedure can then be easily generalized to comparison 
of any regression equations. Define the corrected sums of products for the 
second series as: Sj

xy = (xj – xj)(yj – yj) and Sj
y = (yj – yj)

2. These quantities 
are sufficient to determine the regression function yi = oj' + 1j'xi. Then, the 
residual sum of squares for the separate regressions case is calculated by R2

0

= Sj
y 1j'S

j
xy + Si

y 1i'S
i
xy and has ni + nj-4 degrees of freedom. We further 

consider the samples in the different subregions all together and consider 
them as a single sample. Proceeding in the same way as above, we calculate 
R2

1, the residual sum of squares for the common regression case, which is 
associated to ni + nj – 2 degrees of freedom. We finally set up the analysis of 
variance to test the equality of the regressions (Rao, 1973). 

A step-by-step guideline for practical implementation is the following. 
Given a spatial process sampled at regularly spaced data (see comments 
above, in case of irregular locations): (a) Select a number of subregions with 
equal sizes, if possible, using an AIC criterium (Fuentes, 2001); (b) For each 
subregion, estimate the spectral density over a range of Fourier frequencies 
by means of the periodogram. Select a data taper, for example, a rounded-
type; (c) For each subregion, estimate the intercept and slope of the 
corresponding regression equation. Thus, calculate the parameter estimates 
of the spatial covariance function; (d) Evaluate our statistical test to assess 
spatial differences, i.e. different local behaviour of the spatial process. 

To know more about the behaviour of our methodology, we performed a 
simulation study to: (a) evaluate the estimation procedure of the parameters 

i and i based on log(fi( )) = oi + 1i log(| |); (b) assess spatial differences 
through graphical tools; (c) analyze both type I error and power of the test. 
We thus considered the following procedure. Estimate, using the regression 
technique, the corresponding parameter vector i, for any given subregion. 
Choose, among the fitted values, one parameter value, say 0, which will be 
kept fixed for all the subregions. Then, use a Monte Carlo test based on 
simulations of the underlying spatial process with 0 to perform a formal 
hypothesis test, where the condition of no difference between two parameter 
values defines the null hypothesis. Note that the observed parameter value of 
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ith subregion, i, is compared with a number of simulations (400 in our case) 
under 0. If I ranks 4  pth largest, the attained significance level of the test 
is pth.

4.1 Simulation study 

We used a simulated case study to quantify and compare the proposed 
methodology for testing nonstationarity under different experimental 
circumstances. In this simulation report, we kept fixed the number of 
subregions (k = 4), and parameter = 1, to cover the case when the process 
is mean square differentiable. We then considered several scenarios: (a) 
several values for the grid size at which the process in each subregion is 
observed, N = 20  20, 10  10, 5  5; (b) several combinations for the sill 
and range parameters, focusing on those cases for which there are both small 
and big differences between the ranges. The aim is to see how good the test 
is in detecting differences. The parameter combinations (sill,range) we 
looked at were: (2.9,300), (2.9,10), (2.0,10), (2.9,166), (2.9,200). We used 
400 Fourier frequencies for the rounded tapered periodogram evaluation. 

Table 1. Simulation results for the following setup: = 1, N = 20  20 and the corresponding 
combinations of (sill,range). Means and standard deviations of estimated  and parameters 
based on 1000 simulations. 

A first analysis consisted of the evaluation of the estimation of the spatial 
process parameters ( , ) through the simple linear regression defined over 
the logarithm of the periodogram. We simulated a spatial process with a 
Matérn covariance function with any parameter combination considered 
above. Then, we estimated the parameters, and this procedure was repeated 
1000 times. The results of these simulations are reported in Tables 1-2. The 
regression procedure provided the best estimates for grid sizes 20  20 and 
for the bigger ranges. However, the procedure provided misleading results, 
when the number of evaluation points was 5  5 (and we decided not to 
show them). 
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Table 2. Simulation results for the following setup:  = 1, N = 10  10 and the corresponding 
combinations of (sill,range). Means and standard deviations of estimated  and  parameters 
based on 1000 simulations. 

A further evaluation of this technique was to assess spatial differences, 
and this was done through a graphical procedure applied over the Monte 
Carlo p-values. Suppose in each region the parameter vector i has been 
estimated. We wish to compare this value with a fixed parameter value, 0,
for the four subregions, where 0 may or may not be the same as i. We set 
now 400 simulations of the 0 condition and calculated a set of p-values for 
each i, obtained by the ranking procedure explained earlier in this paper. 
Under the null hypothesis of 0 = i, the p-values should behave as Uniform 
on the range (0,1). And when a real difference exists, the p-values should be 
far from Uniform. This is based on the concept of Expected Significance 
Level (ESL), which was first introduced by Dempster and Schatzoff (1965). 
The results for N = 20  20 and N = 10  10 are shown in Figures 1-2. Note 
that for the case N = 5  5, the procedure could not detect a real difference 
(for example, the case range=200, 166), though found the difference when 
this is big enough (range=166, 10). The corresponding line for the null 
hypothesis of no difference is given by circles and behaved at all times as 
Uniform. Lines marked by crosses indicated the p-values when a real 
difference existed. If they were compatible to the Uniform distribution, the 
test could not identify spatial differences. In general, the procedure worked 
well for any case, particularly when using bigger grid sizes. 

The above set of simulations were also considered to evaluate the 
proposed test based on the equality of the regression coefficients, following 
Rao (1973). To analyze the behaviour under the null hypothesis of no 
difference among parameters for the k = 4 subregions, i.e. to evaluate the 
type I error, we considered the same parameter combinations in the four 
subregions and performed 1000 simulations, under the same conditions as 
above. The analysis of variance was then derived. The rejection rates at a 
significance level of 0.05, are shown in Table 3. To analyze the behaviour 
under the hypothesis of differences among parameters for the 4 subregions,
i.e. to evaluate the power of the test, we considered the following subset of 
parameters: (2.9,300), (2.9,200), (2.9,10). In this case, two of the subregions 
were defined with one combination and the other two with other 
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combination different from the first one. The procedure was repeated again 
1000 times. The estimated powers are shown in Table 4. Looking at Tables 3 
and 4, we can see that this test can be aimed to detect spatial differences 
when they are present and to detect stationarity when there are no spatial 
differences, when the grid size at which the process is observed is at least 10 

 10. The test gave misleading results for smaller sizes.

Figure 1. Observed versus Expected p-values under Ho (no differences) and Ha (real 
differences) in the case where the data are observed in a regular grid of N = 20  20. (1.1) 

(2.9,166) vs (2.9,166) (Circles) and (2.9,300) (Crosses); (1.2) (2.9,166) vs (2.9,166) (Circles) 
and (2.9,10) (Crosses); (1.3) (2.9,166) vs (2.9,166) (Circles) and (2.0,10) (Crosses) (1.4) 

(2.9,200) vs (2.9,200) (Circles) and (2.9,300) (Crosses) (1.5) (2.9,166) vs (2.9,166) (Circles) 
and (2.9,200) (Crosses) (1.6) (2.9,200) vs (2.9,200) (Circles) and (2.9,166) (Crosses). 

Table 3. Rejection rates (in percent) at 0.05 (Type I error) under the null hypothesis for the 
test based on equality of regression coefficients. 
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Figure 2. Observed versus Expected p-values under Ho (no differences) and Ha (real 
differences) in the case where the data are observed in a regular grid of N = 10  10. See 

Figure 1 for the label of each subfigure. 

Table 4. Estimated powers (in percent) at 0.05 under the alternative hypothesis for the test 
based on equality of regression coefficients. 

5. CONCLUSIONS AND DISCUSSION 

In this paper we have shown a procedure to deal with nonstationarity 
based on the spectral representation of a nonstationary process and on a 
particular property of the Matérn family of spectral densities. The test has 
been shown to detect differences, when they really exist and to detect 
stationarity when it should. However, in real-life problems, the 
nonstationarity might be smooth, regions might not be well known and the 
date might be irregularly spaced. Some of these issues have been considered 
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in the paper, but we have only analyzed a limited number of possible 
scenarios, and ideally we should take into account much more possibilities. 
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Abstract: Monitoring estuarine programs are fundamental to evaluate pollution 
abatement actions, fulfillment of environmental quality standards and 
compliance with permit conditions. Their sampling designs should provide 
statistically unbiased estimates of the status and trends with quantitative 
confidence limits on spatial scale. The aim of this work is to select a subset of 
monitoring sampling stations based on locations from an extensive sediment 
campaign (153 sites) in the Sado estuary (Portugal). In each location three 
sediment parameters were determined with the objective of defining spatially 
homogenous environmental areas. The new monitoring program is based on 
fewer and on the most representative monitoring stations inside each 
homogeneous environmental area for their future contaminant assessment. 
Simulated annealing was used to iteratively improve on the mean square error 
of estimation, by removing one station at a time and estimating it by indicator 
kriging using the remaining stations in the sub-set, within a controlled non-
exhaustive looping scheme. Different sub-set cardinalities were tested in order 
to determine the optimal cost-benefit relationship between the number of 
stations and monitoring costs. The model results indicate a 60 station design to 
be optimal, but 17 additional stations were added based on expert criteria of 
proximity to point sources and characterization of all homogenous areas. 
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1. INTRODUCTION 

Estuaries are coastal transitional water bodies with natural resources of 
high preservation values, providing important habitats for different species 
of organisms. The uses inside the estuary and around it have impacts on the 
water and sediment quality that may put at risk the equilibrium of the 
ecosystem. Environmental management of these ecosystems cannot be 
conducted effectively without reliable information on changes in the 
environment and on the causes of those changes. Ecological monitoring 
programs can represent an important source of that information. However 
many of the existing programs are not effective. To assure effectiveness, 
monitoring programs should be well designed, to enable the statistical 
analysis and interpretation needed to relate cause and effects (Olsen et al.,
1999 and Vos et al., 2000). 

The reliability of the sampling design depends on such a large degree on 
the sampling spatial distribution and size that their importance should not be 
underestimated (Haining, 1990). One or more of the following principles 
could govern the size of the sample (Cochran 1977; Clark and Hosking 
1986; Strobel et al., 2000):i) the required sampling size can be found if we 
have reasonable estimates of the population variance measured through a 
preliminary pilot survey; ii) certain statistical tests require a reasonable 
sample size; although no fixed minimum can be stated, a sample size of at 
least 30 is usually employed; iii) too large sample implies a waste of 
resources, and too small diminishes the utility of the results; iv) finance and 
time may dictate a certain maximum sample size. 

In ecosystems like estuaries the spatial variability of key ecological 
indicators could be a measure to determine the appropriate monitoring 
sampling design (Strobel et al., 2000).  

The kriging interpolation is very useful to minimise the estimation 
variance for any fixed sampling design. The plot of the maximum value of 
the minimised estimation variance against sampling interval, or sample size, 
can be used to select sample size to achieve a required level of precision 
(Haining, 1990). For operational, economic or political reasons sometimes 
sampling sites for monitoring must be reduced and resource allocation 
optimized (Cochran, 1977). Optimal sampling scheme can then be designed 
by deleting sites from a current network so as to minimize the variance of 
estimation error, which means deleting the site that can be predicted best 
from the remaining sites (Cressie, 1993). Clever search algorithms like 
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simulated annealing can then help designing the best sampling scheme. 
Difficulties usually arise in finding an optimal sampling plan and optimal 
kriging weights. Sampling plans can be important factors when looking for 
optimal spatial designs. Using the mean-squared prediction error of 
predictors, the rate of convergence to zero is faster for stratified random 
sampling than random or systematic random sampling designs (Cressie, 
1993).  

The sampling optimality criteria should not only be statistical but also 
cost related or economical (Cochran, 1977, Cressie, 1993, Vos et al, 2000). 
Sampling and parameters measurement costs are very important limitations 
and should be taken into account in the optimization procedure. 

The aim of this work is to select, due to budget constrains, a subset of 
monitoring sampling stations from an extensive stratified random campaign 
of estuarine sediments. This subset will be used to assess Sado Estuary 
sediment contamination in management areas previously delineated. Spatial 
simulated annealing was used to optimize the sample locations. These data 
will be further integrated in an environmental management system for Sado 
Estuary.  

2. CASE STUDY 

The Sado Estuary, located in the West Coast of Portugal, is the second 
largest in Portugal with an area of approximately 24,000 ha. The estuary 
comprises the Northern and the Southern Channels, partially separated by 
intertidal sandbanks. Most of the water exchange is made through the 
southern Channel. The estuary is linked to the ocean by a narrow and deep 
channel that makes a major contribution to the general pattern of the 
estuarine circulation (Neves, 1986). Most of the estuary is classified as a 
Nature Reserve. There are many industries mainly on the northern margin of 
the estuary. Furthermore the harbour associated activities and the city of 
Setúbal along with the mines on the Sado watershed also releases 
contaminants into the estuary. In other areas around the estuary, intensive 
farming, mostly rice fields, is the main land use together with traditional 
saltpans and increasingly intensive fish farms. Most of these activities have 
negative impacts on water, sediment and biotic communities namely because 
they discharge to the estuary contaminants like heavy metals, or organic 
compounds (Caeiro et al., 2002b). 



358 S.Caeiro,L.Nunes,P.Goovaerts,H.Costa,M.Cunha,M.Painho,L.Ribeiro

3. METHODS 

3.1 Sediment Homogenous Areas Delineation 

In a first extensive campaign 153 sediment locations were sampled for 
analysis of properties of general characterisation: fine fraction (FF), organic 
matter (OM), and redox potential (Eh). These key ecological parameters 
explain main variations in the type and behaviour of benthic organisms as 
well as contaminant mobility/accumulation (Rodrigues and Quintino, 1993). 
One method of determining sample size for multiple parameters assessment, 
is to specify margin error for the items that are regarded as most vital to the 
survey (Cochran, 1977). A systematic unaligned sampling design with a grid 
size equal to 0.365 km2 was used based on prior information on the spatial 
variation of sediment granulometry (Figure 1) (Caeiro et al., 2002a). 

This extensive campaign was intended to help defining homogeneous 
areas (future management areas) for Sado Estuary within which 
contamination would be monitored using smaller sample sets.  

Figure 1. Sado Estuary sediment sampling design (Adapted from Caeiro et al., 2002a). 

These homogenous areas were delineated in 5 steps based on grouping 
individual sampling sites that have similar physicochemical properties while 
being geographically close (Caeiro et al., submitted): 1)Principal component 
(PC) extraction of the 3 sediment properties variability (FF, OM and Eh); 
2)Variogram fitting of a spherical model to 1st PC factor scores; 
3)Dissimilarity matrix determination; 4)Cluster analysis using the complete 
linkage rule on the dissimilarity. matrix to estimate the probability of 
occurrence of four selected clusters at sampled stations; 5)Indicator kriging 
to interpolate these probabilities at unsampled stations; 6)Maximum 
likelihood classification of these unsampled stations. 
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The dissimilarity between any two sampling sites i and j (step 3) was 
computed following Oliver and Webster (1989) equation with spherical 
model adjustment (Goovaerts, 1997) to take into account the form of spatial 
variation. Step 5, started with an indicator coding of classification results (x )
at each sampled station x :

otherwise0

z)x(zif1
)z;x(i l

l   l=1,…, L  (1) 

where L is the number of clusters (four selected). For each cluster zl,
experimental indicator variograms are then computed and modelled: 
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The probability of occurrence of the l-th cluster at the unsampled station 
x is estimated as a linear combination of indicator data: 

cn

1
l )B|z;x(p̂ (x ; zl) i(x ; zl) (3) 

where B is the set of nc surrounding data {z(u ), =1,…, nc}. The weights 
(x ;zl) are solutions of an indicator kriging system and account for data 

configuration and spatial continuity of clusters as modelled by indicator 
variograms. In theory, indicator cokriging estimator is better than the 
indicator kriging estimator because it accounts for additional information 
available across categories. However, indicator cokriging improves little 
over indicator kriging according to Goovaerts (1994). 

3.2 Optimization model 

The stations that produce the lowest estimation error variance, estimated 
using cross-validation technique (Deutsch and Journel, 1998), result in a 
spatial distribution with the highest accuracy. The objective function 
considers a set, S, of all the original stations, with cardinality , and take a 
subset, S’, with cardinality , such that  < .

Minimize 
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Subject to: 
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s2
fp is the mean squared error of estimation and equal to the variance of 

the estimation error if zero mean estimation errors are considered (i.e. no 
bias). i*(x ,zl) is the indicator kriging estimated value, S (A,zl) and S’ (A,zl)
are the marginal probabilities of finding stations with values in ]zl-1, zl] in the 
original data set and in the candidate solution, respectively. 

The new design S’ must reflect the sediment physical and chemical 
variability detected with the prior sampling campaign. Therefore we 
imposed the constraint that the proportions of monitoring stations in each of 
the identified homogeneous areas are similar to the proportions in the 
original sampling campaign (Table 1). Van Groenigen et al. (2000) also 
successfully used sampling constraints in spatial annealing to optimise 
sampling scheme. The condition is not equality because, for practical 
computation, floating-point variables equality is machine dependent and 
varies with the precision. Instead, S’(A,zl) may be bounded, and the 
constraint becomes: 

)1()z;A()z;A()1()z;A( lSl'SlS  (6)

A conditioning on the objective function with  = 0.3 was imposed. This 
condition is necessary to correct the bias introduced by variogram models 
fitting errors (when adjusting the theoretical models to the experimental 
variogram). If no conditioning is used increasing the number of stations will 
result in higher estimation error variances. This is due to the fact that at very 
low  only stations with low estimation error in the optimal solution are 
included; as  increases higher estimation error stations are included (Nunes 
et al., unpublished). 

Simulated Annealing (SA) algorithm with the Metropolis iterative 
improvement procedure (Metropolis et al., 1953) was then used to solve the 
optimisation model. This procedure generalises by incorporating controlled 
uphill steps (to worse solutions). The procedure states the following: 
consider one small random change in the system at a certain temperature (the 
control parameters t is usually termed temperature); the change in the 
objective function is OF; if OF  0, then the change in the system is 
accepted and the new configuration is used as the starting point in the next 
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step; if OF > 0 then the probability that the change is accepted is 
determined by P( OF) = exp(- OF/t); a random number uniformly 
distributed in the interval (0,1) is taken and compared with the former 
probability; if this number is lower than P( OF) then the change is accepted. 
The SA algorithm runs in the following way: i) the system is melted at a high 
temperature (initial temperature, t1); ii) the temperature is decreased 
gradually until the system freezes (no further OF change occurs); iii) at each 
iteration the Metropolis procedure is applied; iv) if any of the stopping 
criteria is reached the algorithm is stopped and the best solution found is 
presented. The generic SA algorithm for a minimisation, considering a 
neighbourhood structure N, a current solution X, a best solution found so far 
Xbest, a solution space , a temperature decrease control parameter and an 
objective function OF has the following pseudo-code. 

Select an initial solution Xbest;

Select an initial temperature t1>0; 

Select a temperature reduction factor; 

Repeat 

   Repeat 

      Randomly select X N(Xbest);

        OF = OF(X) – OF(Xbest);

        IF OF<0 then 

    Xbest = X

           else 

 generate random z uniformly in (0,1); 

             if z < exp(- OF/t) then Xbest = X;

   Until iterations = max_iterations

   Set t = t;

Until stopping condition = true; 

Xbest is the optimal solution found.

In order to speed-up the process several improvements have been 
proposed, namely by limiting the number of iterations at each temperature, 
i.e., defining the number max_iterations. The dimension of the Markov 
chain has been proposed to be a function of the dimension of the problem 
(Kirkpatrick et al., 1983): temperature is maintained until 100  solutions 
(iterations), or 10  successful solutions have been tested, whichever comes 
first.  stands for the number of variables (stations) in a problem. 

A specific computer code in FORTRAN that incorporates both the 
estimation error variance and the SA algorithm was developed by (Nunes et
al., unpublished) to optimise location problems and adapted to this specific 
problem. Runs were made on PC Intel 2000 MHz machines. 

Fourteen different monitoring network dimensions (cardinality of S’: )
were tested, {25,30,35,40,45,50,60,70,80,90,100,110,120,130} according to 
the following scheme: i) impose a number of monitoring stations ( ) to be 
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included in the new design; ii) find the optimal allocation solution with SA; 
iii) increase  and return to i). SA solutions are considered optimal when 
more than 70% out of 20 consecutive runs with the same objective function 
conditions ( , ) and SA parameters have the lowest and equal sfp

2 value.
A complementary analysis comparing the loss in accuracy versus 

reduction in exploration costs as stations are removed was also performed. 
For that purpose a cost per sampling was computed based on the previous 
sampling campaign and laboratory analysis costs (official costs of the 
laboratory where the analysis are going to be made - ControLab, lda.): i) 
linear distance between n sampling point: n/study area (56 km2); ii) boat 
velocity: 12,8 km2; iii) hour of work per day:7 h/day; iv) time for sampling: 
20 min; v) Boat cost per day: 250 Euros; vi) Cost per total contaminant 
analysis: 500 Euros (discount: 25 % from 20 to 50 stations, 30 % from 55 a 
100 stations and 40 % from 105 to 135 stations). 

4. RESULTS AND DISCUSSION 

Table 1 lists four different physical and chemical homogeneous areas 
(clusters) based on the sampling campaign data and results from hierarchical 
classification (step 4), and their frequencies in the study area. 

For each cluster, the indicator variogram was computed along four 
directions and a geometric anisotropic model was fitted (Figure 2). 

Table 1 .Physical and chemical parameters of each cluster and their frequency.
 Clusters (s) 
Sediment
Parameter 

High organic 
load (z1)

Medium high 
organic load (z2)

Medium organic 
load (z3)

Low organic 
load (z4)

OM (%) 8.6 ± 2.4 4.2 ± 1.4 1.9 ± 0.7 0.9 ± 0.3 
FF (%) 60.4 ± 27 21.7 ± 11.8 9.1 ± 7.8 1.5 ± 1.3 
Eh (mV) -278.9 ± 68.6 -178.8 ± 72.6 -137.4 ± 50.9 74.4 ± 49 
Freq. (%) 11.76 37.91 23.53 26.80 

Figure 3 shows the spatial accuracy plotted versus the monitoring 
network dimension. Beyond 60, each new added station had little effect on 
the monitoring spatial accuracy (sfp

2). Sixty is therefore considered as the 
optimal  value. The resulting network was overlaid on the sediment 
homogenous areas within the estuary coast line (Caeiro et al., 2002a) using 
Arcview/arcinfo 3.2 GIS software (Figure 4a). In cluster one and two (z1 and 
z2) the estimation errors are higher, therefore leading the optimisation 
algorithm to select preferentially the two remaining clusters with lower 
estimation errors. These clusters are therefore more densely sampled than in 
the original data set, as a way to compensate for the bias introduced. Also 
when high or low values of a cluster are grouped in small areas scattered in 
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the study area, their relative frequencies are low or data values is too 
random, the variogram fitting becomes difficult and prone to error. The 
result is the fitting of theoretical variograms that only roughly approximate 
the real variability and large estimation errors. This does not hinder the 
geostatistical method, but justifies the need to impose reproduction of the 
original proportions (Nunes et al., unpublished). 

Cluster 1 
c0 = 0.002;  
c1= 0.073, a1max = 854, a1min = 769 
c2= 0.038, a2 = 3721     

 Cluster 2
c0 = 0.117;  
c= 0.123, amax = 671, amin = 201 

Cluster 3
c0 = 0.068  
c= 0.130, amax = 1098, amin = 1043 

Cluster 4
c0 = 0.092;  
c1= 0.07, a1max = 1520, a1min = 1034 
c2= 0.04, a2max = 2135, a2min = 1772 

Distance (m) 

Distance (m) 

Distance (m) 

Distance (m) 

Distance (m) 

Distance (m) 
Figure 2. Cluster experimental directional variograms and spherical model fitted for 120º, the 

major direction of anisotropy. Other directions (not shown) included 30º, 75˚ and 165º. 

Figure 4a) indicates that not all the homogenous areas are sampled in the 
optimal scheme solution, in particular areas belonging to clusters with high 
organic load (1 and 2), for the reasons explained earlier. Most of these 
cluster 1 and 2 areas are near contaminant point sources, mainly in the North 
Channel. Thus 17 stations were added to the optimal  value according to 
expert knowledge aiming to characterize the impact of those point sources 
and homogenous areas not included in the optimised network (Fig. 4b). 

The number of stations to evaluate contamination in the study area (77 
stations/56 km2, corresponding to 1.38 stations/km2) is within the average of 
sediment sample size of Environment Monitoring Assessment Program 
(EMAP) of United States Environmental Protection Agency (USEPA) for 
small estuaries. The sample sizes for the different estuaries of EMAP vary 
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from 0.11 to 4.16 stations/km2 (Strobel et al., 2000). Such a wide interval 
might be related to the spatial variability of sediment parameters in each 
coastal zone, which is caused by differences related to geomorphological, 
biological and human pressures. 

Figure 3. Estimation error variance and cost versus number of monitoring stations. 

The exploration costs analysis (Figure 3) showed that costs are always 
increasing and only for large number of stations (from 110 to 115) does the 
cost decrease. Indeed the cost of contamination concentration analyses has a 
high weight in the total cost and only for 105 laboratory analysis does the 
laboratory discount significantly affect the total cost. 

Although seventy-seven stations still represent a high cost (about 60 % of 
stations total number cost), this budget figure is considered necessary at the 
present time for a contamination assessment. For any future long-term 
monitoring program to assess estuary ecological condition, a reduced 
number of sampling sites should be chosen. Thirty sampling stations should 
represent a good number for a monitoring program since: i) each of the 19 
management areas could be sampled at least at one location or two in case of 
larger areas, ii) it is a statistical minimum required; iii) the cost is not too 
high (and similar to 25 stations – see Figure 3). Nevertheless, 30 stations will 
represent a 40 % loss in spatial accuracy (see Figure 3). 

In the future developments for a monitoring program of the 
environmental management system of the estuary, the model should take 
into account two strata in the study area. One in the North Channel near 
pollution sources and the other in the South where the hydrodynamics is 
highest and the pollution sources are non-point. Vos et al., (2000) discuss 
that the identification of relevant subsystems or strata for monitoring 
purpose, is very important to maximise diagnostic of ecological changes. In 
these strata changes in the anthropogenic inputs or “controlled variables” are 
expected. Also, once contaminants have been measured at the 77 sampling 
points a new optimisation criterion could be developed to sample 
preferentially areas with high priority (e.g. high concentrations). Van 
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Groenigen et al. (2000) used a spatial weight function in spatial simulated 
annealing that allows distinguishing between areas with different 
contamination priorities. This could be achieved through Weighted Mean of 
Shortest Distance; i.e. the fitness is extended with a location-dependent 
weighing function, or/and using probability maps of contamination and 
indicator kriging. In particular in our case the weight function should take 
into account small areas and distance to contaminant sources. 

Figure 4. Monitoring networks a) for  value = 60 stations; b) with 60 optimal stations 

and additional expertise criteria (17) (Location of industries from Araujo et al. (2002).

5. CONCLUSIONS 

Monitoring programs should be planned in order to provide quantitative 
and scientific assessments of pollutants’ complex effects on these systems. 
Optimal sampling designs for ecological condition assessment should take 
into account not only statistical criteria but also historical knowledge about 
the study area. In particular estuaries have always areas with different 
priorities (e.g. human pressures or more sensitive areas). From an extensive 
campaign including 153 sampling points, a sampling design with 77 stations 
was selected for sediment contaminant assessment in Sado estuary. This 
selection was based on minimization of indicator kriging mean square error 
estimation and expertise knowledge. For a future long–term monitoring 
program of the estuary condition assessment a reduced subset of 30 stations 
should be chosen based on definition of contaminant priority areas. 
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Abstract: Two geostatistical methods are used to map hydrodynamic patterns in the 
Gulf of Lions (Mediterranean Sea). The aims are both methodological – 
mapping vectorial data raises some difficulties – and applied – sampling 
schemes from boat cruise are not convenient to get maps or to compare with 
model output. From a large data set that was obtained from a shipboard ADCP 
(Acoustic Doppler Current Profiler), stationary isotropic geostatistical models 
were fitted for several horizontal layers. Vectors of current are characterized 
by two components or by intensity and direction. A linear model of 
coregionalization was used on vector components and compared to a second 
approach that considers vectors as elements of the complex plane ¢. Then 
interpolated maps were computed by ordinary cokriging and by ordinary 
kriging in the complex plane for two different depths. Although some 
difficulties remain unsolved due to the effect of time in the sampling scheme 
or to some constrains (physical equations and limit conditions) that currents 
must satisfy, the first results are already satisfactory and allow a better 
understanding of spatial patterns than the simple plots of original data. The 
same data set were also used in parallel for hydrological modelling using a 
physical circulation model. Then the complex kriging approach was used to 
address the spatial analysis of the residuals, i.e. difference between predicted 
and observed current vectors. Residuals were highly structured in space. 
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Geostatistical methods confirmed their potential as complementary tools in 
physical circulation model validation and error reduction for current pattern 
predictions.

1. INTRODUCTION

The hydrodynamics of coastal areas is a central issue to assess and to 
understand spatio-temporal distribution of biological and chemical 
parameters related to resources, global fluxes or pollution assessment. The 
Gulf of Lions system is mainly forced by strong physical and meteorological 
influences as the Rhone river plume, very strong winds and mesoscale 
current patterns (Millot, 1990). Preliminary studies at one permanent 
monitoring site (SOFI monitoring station) and on the whole gulf during 
cruises (MOOGLI cruises) were not able to deal with spatial pattern 
descriptions but showed their importance and the necessity to get accurate 
measurement of currents for the whole area in a short time interval (Petrenko 
et al., 2002). This was done during the ten SARHYGOL cruises in 2000 and 
2001 to identify main patterns and seasonal effects. In this study we focused 
on one cruise (June 14-15, 2000) which was used for a physical modeling 
study, that allowed us to compare data interpolation and circulation model 
output. 

It is not frequent in geostatistics to deal with directional or vectorial data. 
Lajaunie and Béjaoui (1991) proposed a kriging in the complex plane and 
developed some theory on the spatial covariance models. It is probably the 
first example of covariance modelling in the complex plane. They applied it 
to a case study on tidal data which was very similar to our problem. In fact, 
their data derived from a physical model solved by a finite element method 
and then sampled to test the geostatistical approach. However, they did not 
restraint the model to a variogram structure in the complex plane which 
would have been a less rich model. Some other cases can be found in Chilès 
and Delfiner (1999) with the interpolation of directional derivatives of a 
variable. They used a model of coregionalisation and then the cokriging. 
Grzebyk (1993) in a different way developed some theory in the field, but 
did not work on vectorial structures. His main results were an extention of 
the classical linear model of coregionalization for two or more variables to 
complex framework in order to model asymmetrical crosscovariances. A 
synthesis of all theses first approaches is given in Wackernagel (1995) 
completed by some considerations and analysis on the available models and 
methods.
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2. DATA, MODELS AND METHODS 

2.1 Data set 

Current data are measured by shipboard ADCP (Acoustic Doppler Current 
Profiler) following a broken line route all over the Gulf of Lions (Figure 1) in 
less than 48 hours. The sampling frequency is dense along the line (2773 points) 
and in depth, every 4 meters from 8 meters to 240 meters deep, with a limit of a 
few meters over the bottom. For several reasons and after checking the 
experimental variograms on the total data set of 2773 locations, we regularized 
the original data by pooling 8 successive points. In place of one measurement 
every minute and every 250 m, we will work on one measurement every two 
kilometers. The first advantage is to reduce the 2773 measurement to 367 with 
very small changes on the experimental variograms (no nugget effect and linear 
behavior close to the origine for most of them). The second advantage is to 
reduce the number of redundant data that are very close along the trajectory in 
kriging and cokriging, and to give consequently the possibility to enlarge the 
neighborhood. The third reason comes from further comparison to physical 
circulation model that needs to smooth very local turbulence patterns and to 
compare data and model output on similar supports. Although patterns seems to 
be very homogeneous for the greater depths, no regularization was done along 
the vertical axis to keep a precise description of the variabilities close to the 
surface.

Figure 1. Trajectory of the cruise on June 14-15, 2000 from and to the port of Marseilles. 
2773 localized points with 58 different depths were measured but only the 367 regularized 

points are plotted. The coast line is plotted as solid line. Dashed line is the 100m-deep isoline 
and dotted line the 500m-deep isoline. Current data at the depth of 8m are symbolized by 

vectors.
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2.2 Models and methods 

Let be ZE(x )and ZN(x )  R2 the two East and North components of current 
vector measured at site x .

2.2.1 Linear model of coregionalization and cokriging on 
isotopic data 

Variograms and crossvariograms are defined by 

1
( ) ( ) ( ) ( ) ( ) where , , ,

2ij i i j jh Z x Z x h Z x Z x h i j E N E NE

They are modelled using a linear model of coregionalization and fitted using 
the least squares procedure described in Goulard and Voltz (1992). 
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where (h) is the 2 X 2 matrix of ij(h), S an adequate number of nested models, 
Au are positive semi-definite matrices and gu(h) are normalized univariate 
variograms. 

Then two ordinary cokriging are solved at a site xo to compute for both the 
East and North components 
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where n is the number of isotopic data. We have the following conditions 
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Whether the component k that we are interpolating is E or N, the ordinary 
cokriging system is given by
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where the left terms remain constant for a given neighborhood xi,…,xn and the 
right terms depend on k  {E,N} xo.
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2.2.2 Complex random field and ordinary complex kriging 

Let Z(x)=ZE(x) + i ZN(x) be a random field that is defined on R2 and has 
values in the complex plane ¢. The covariance and the variogram are then 
defined by 

2

( ) ( ) ( ) where ( ) is the conjugate of ( )

1
( ) ( ) ( ) ( ) ( )

2
1
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Modelling (h) does not raise any specific difficulties because it is always 
real, and any model classically used in R may be used in ¢. It is not the case for 
the covariance function that is richer than the variogram and allows a real and an 
imaginary part. More details are given in Wakernagel (1995). In this study we 
limit ourselves to model a variogram structure after computing the experimental 
variogram on the norms of vector differences. 

Complex kriging is then defined by 

*
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In theory, the weights  that are solution of a classical ordinary kriging 
system belong to ¢, but because the variogram model is real, all imaginary parts 
vanish in the solution. The kriging becomes vector as a vectorial sum of data 
vectors, weighted by real coefficients. That would not be the case with a 
covariance model including imaginary terms, and the kriging system resolution 
would lead to complex weights. 

2.2.3 Circulation hydrodynamic model 

In parallel to this study, a circulation model, named “SYMPHONIE”, has 
been implemented on a slightly larger area including the Gulf of Lions and a 
deeper area east of Marseilles. This model, which is not the object of this paper, 
is described in Estournel et al. (2002). The hydrodynamic equations are 
implemented using a finite difference method on a grid with a horizontal lag of 
three kilometers and varying vertical lag adjusted on the depth and denser close 
to the sea surface. It starts from general conditions, and it is forced during two 
weeks before measurements by meteorological conditions over the area (wind 
and temperature) and by data on the input fluxes of the Liguro Provencal 
Current (coming from the East) and of the Rhone river. The output of this 
model, i.e. the circulation patterns, were then compared to the shipboard 
measures at the same dates. The residuals were obtained by differences between 
computed and measured currents, on both components, East and North, after a 
linear interpolation of model output between the computation nodes. 
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3. RESULTS 

3.1 Vertical variogram structures 

Experimental variograms were computed along the vertical using all data 
points, i.e. 2773 boat locations. Each measurement boat location was considered 
as a replicate, so no hypothesis of stationarity on the vertical direction was 
necessary. It is possible to get an experimental value of the variogram  for  every  
pairs of depths. On Figure 2, the variograms are displayed respectively for the 
depths 8 m, 24 m, 48 m and 80 m with all the other measured depths every four 
meters. For example, the variogram computed for differences of currents 
between 24 m and other depths is null for 24 m and increases for depths that are 
higher or lower. We can notice a non stationary pattern, with a larger variation 
of current component for the same depth difference when the pair is closer to the 
surface. Variogram lines for 48 m and 80 m show a smaller increase for small 
differences and a lower sill on the right than those for 8 m or 24 meters. 

Figure 2. Experimental variograms on vertical direction. Semi-variance of the differences 
between the North components of current at 8~m and at all other depths (solid line and 

circles), and respectively at 24 m (dotted line filled circles), 48 m (dotted line squares), 80 m 
(solid line triangles).

It would be a difficult but possible task to model variograms including non-
stationarity, in order to get a general 3D model of spatial variations. It was not 
done in this paper because the ADCP give systematically a dense sampling 
scheme along the vertical from the depth of 8 m to a depth close to the sea 
bottom. Consequently, spatial interpolations on the vertical direction do not pose 
difficulties.
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3.2 Coregionalization and cokriging horizontal maps 

A coregionalization  model was fitted to horizontal spatial variation at several 
depths. Shown here are the results at two depths: 8 and 80 meters that are 
representative of behavior close to the sea surface and at large depths. Data at 
depths greater than 100 m were not processed because a too small part of the 
study area was concerned due to bottom profile. 

Figure 3. Experimental variograms and covariogram for North and East components of 
current at the depth of 8 meters. Distances are in km on the horizontal plane. The fitted model 

of linear coregionalization is plotted with solid lines. 

Figure 4. Experimental variograms and covariogram for North and East components of 
current at the depth of 80 meters. Distances are in km on the horizontal plane. The fitted 

model of linear coregionalization is plotted with solid lines. 
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The two variables are the East and the North components of the horizontal 
current. Experimental variograms and crossvariogram are shown in figure 3. We 
assumed isotropy. A model based on three elementary structures was fitted. The 
structures were a nugget effect and two nested spherical models of range 20 km 
and 50 km respectively. The nugget effect remains very small and differs 
slightly from zero for the variogram on North component. The cross variogram 
shows that spatial variations of North and East components are quite 
uncorrelated at short distance, but become correlated when distance increases, 
showing dependence patterns at the scale of 40 km or more. 

Figure 5. Map of currents at the depth of 8 meters that was obtained by cokriging. 

Figure 6. Map of currents at the depth of 80 meters that was obtained by cokriging. Image 
legend is the same than for figure 5. 

At the depth of 80 meters, the cross structure vanish and the two variograms 
show more regularity close to the origin (Figure 4). The coregionalization was 
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decomposed in a spherical model of range 25 km and a gaussian variogram 
model with a “range” parameter of 10 km. No nugget effect was needed. 

In a second stage, cokriging of both N and E components were performed and 
the map of currents rebuilt from the two components (Figure 5 and 6). On a 
qualitative point of view the maps feature currents that are coherent with known 
circulation pattern in this area. Crude interpolation did not lead to obviously 
erroneous patterns as, for example, current pointing to the coast or currents 
converging to a single point. 

3.3 Variogram and kriging in the complex plane 

In the complex plane, experimental variograms corresponding to the 
variogram that was introduced in section 2.2.2 were computed and fitted, with a 
spherical model for the 8m depth, and with a nested model composed of a 
spherical and a gaussian variogram model for the 80 m depth (Figure 7). 

Figure 7. Experimental variograms on horizontal direction computed on the complex plane. 

Complex kriging was then applied to the map of currents at the depth of 8m and 
results are shown in Figure 8. This method seems to work as well as the cokriging of 
the current components. In fact, in this study, differences between maps obtained by 
the two different krigings are smaller than differences we can observe when we 
choose other variogram models as nested or simple exponential, suppressing or not 
the nugget effect, in place of the two nested spherical models. 

3.4 Comparison with circulation model and kriging of 
residuals

To compare kriging interpolation to results of the physical circulation model 
presented in section 2.2.3, we selected from the simulation output those which 
correspond to the data measured on the boat trajectory, and then we computed the 
residual vectors. A map of the data compared to the simulated current values along 
the boat trajectory is given by Figure 9. 
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Figure 8. Map of currents at the depth of 8 meters that was obtained by complex kriging. 
Image legend is the same than for figure 5. 

Using these residual vectors as data, we reapply the complex kriging method - 
after residual variogram fitting - in order to get a kriged map of residuals. Figure 10 
shows the result for the depth of 8 meters. It looks like an over estimation of main 
stream current (or a bad positioning too close to the coast) by the model and a wrong 
rotation pattern in the western part of the Gulf of Lions.

4. CONCLUSION AND DISCUSSION 

We proposed two different kriging methods, coregionalization and 
complex, for interpolating maps of vectors. The theory tells us that the 
coregionalization approach on the components should be the more effective. 
In fact, for our data set, the two approaches give very close results, the 
second one with complex kriging is a lot simpler to implement with the 
restriction to variogram and not with the richer class of complex covariance. 
Nevertheless, it is too early to generalize this result, and other patterns in 
data could make the coregionalization approach more relevant. 

Another point is that we did quite crude interpolation ignoring that the 
vector field has to honor physical differential equations, or at least to be 
reasonably close to solutions of the physical circulation equations. In our 
case, results are quite good although the coast was only considered as a mask 
and not as a boundary. Chilès (2001) and in Chilès and Delphiner (1999) 
proposed some interpolations that honor known boundary conditions on flux. 
We could here impose to the current component that is orthogonal to the 
coast line to be null. More generally, specific models of covariance have 
been proposed to honour the physical framework of differential equations 
and get ad-hoc kriging or conditional simulations (Chilès and Delphiner, 
1999). For that purpose, the physical circulation model is plugged in the 
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simulation procedure and the covariance estimation. A counter part is a great 
loss in generality and simplicity when researchers in oceanography need 
simple and robust tools to help understanding differences between modeled 
circulation patterns and those derived from sparse data or boat cruises. 

Figure 9. Measurement of currents (in black) along the trajectory compared with the output of 
the circulation model (in gray, same scale) at same time, same location and at the depth of 8 

meters. 

Figure 10. Map of the residuals (data versus circulation model) at the depth of 8 meters that 
was obtained by complex kriging. 

A last point concerns the time. The boat cruise takes some time and the 
currents may change in between. This can be checked when the boat crosses 
it own trajectory. We tried to take into account the time but there was some 
time-space confounding effects in the measurement procedure itself. For 
most data, because of the constant boat speed, a pair of points at a given 
distance corresponds to a given time lag. So it is impossible to get points at 
different distances for a given time lag excepted if two boats are 
simultaneously measuring currents, and it was not possible to get regularly 
spaced time intervals for points at a given small distance for this kind of boat 
trajectories. Improvement could be easily done with a boat trajectory that 
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often comes back on itself or stops to get a better and “orthogonal” sampling 
of time and space pairs. Modelling fully time and space components in the 
variogram model should improve comparisons between circulation models 
and data. 
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Abstract: This paper describes a statistical space-time model for rain-fall in 
Mediterranean regions. The rain-fall is supposed to be the sum of a 
deterministic component and a random function enjoying spatial second-order 
stationary and without temporal correlation. Under these assumptions, we 
analyse the dependence of the trend upon time and compute the optimal linear 
predictor. The proposed methods are implemented and discussed on a two 
year data set of daily recordings. 

1. INTRODUCTION

Despite the development of dense rain-gauge networks of typical densities 
of one station for a few hundreds of squared kilometers, the spatial 
prediction of rainfall at small scale remains an issue in the Mediterranean 
regions. Indeed, for a substantial part of it, annual rainfall in these regions is 
due to very localized events which affect very small areas only. In an agro-
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meteorological context, poor rainfall predictions cumulated over several 
cultural cycles may affect considerably prescribed technical practices. 

Our study is part of a larger project concerned with global fruit production 
management (Habib, 2002) in French Mediterranean regions. It is aimed at 
prescribing better technical practices so as to reduce inputs such as water, 
nitrogen, pesticides. This paper suggests several rainfall predictors when a 
typical research rain-gauge networks is available. The scale considered is the 
24 hours duration at point support. We examine linear predictors and 
describe how prediction can be improved by accounting for a deterministic 
trend related to local relief. The data are described in section 1, the model 
and predictors are presented in section 2, the results of an implementation 
are reported in section 3, while technical computations appear in the 
appendix.

2. DATA SET AND EXPLORATORY DATA ANALYSIS 

We study a region of 100kmX200 km located in the South of France 
nearby the Mediterranean Sea (see figure 1). Rainfall measurements  from a 
network of 32 stations are available from 01/01/2000 to 31/03/2002 at a 
daily time step. These rain-falls are related to elevations as available from a 
terrain model at a resolution of  75 meters. 

The points of the network will be denoted by {s } =1,…,ns, the dates of 
measurements by {ti}i=1,...,nt,  and a rainfall value at point x and date t by 
R(x,t).

The point distribution is strongly non Gaussian with a lot of zero 
recordings and a marked assymetry. Therefore, the covariance is probably 
not the best tool to capture weak and non-linear space-time dependences 
among stations. However, we investigate the space-time covariance structure 
of rain-falls by means of the empirical space-time covariance function 
defined as 

2*

,

1
( , ) ( , ) ( , ) (1)i i

i s s hh

C h R s t R s t R
n

where R is the overall mean and nh,  the number of pairs of data involved in 
the sum. 
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Figure 1. Elevation in the region under study and rain-gauge network. 

Figure 2. Empirical space-time covariances C*(h, ) of daily rainfall measurements at various 
lags  (exponential fit at lag 0). 

The spatial covariances at five time lags are displayed on figure 1. An 
obvious spatial structure appears at lag 0. At the other lags, there is also a 
marked structure: the covariances are not equal to zero, which corresponds 
to a spatial correlation accross different days. They are flat which might be 
interpreted as large scale (or low frequency features) of rainfall events. 
However the variance involvedd is at least five times smaller than the 
variance at lag 0, and even smaller than the covariance at lag 0 for distances 
of about 100 km. 
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3. STATISTICAL MODEL AND DEFINITION OF 
PREDICTORS 

3.1 Hypotheses

From the previous elementary analysis we formulate a space-time second-
order model defined through the following hypotheses: 

1. R(x,t)=m(x,t) + Y(x,t) where m is a deterministic trend and Y a random 
residual

2. m(x,t) admits a parametric decomposition onto a family of known basis 
functions where the weights of the decomposition are allowed to vary in 
time, namely m(x,t) = L

l=1 al(t) fl(x),
3. Y(x,t) is a zero mean second-order random function uncorrelated in time 

i.e Cov[Y(x,t),Y(x’,t’)] = 0 for t t’,
4. The covariance function of Y is stationary and isotropic in space i.e 

Cov[Y(x,t),Y(x',t')] = C(x-x').

The covariance function C being unknown, we adopt a purely frequentist 
approach and estimate it off line considering that the number of independent 
replications is large and that we are close to the “true” model. A parametric 
fit is performed with an exponential model C(h) = 2 exp(–h/r), where 2

and r are taken to be respectively 45 mm2 and 120 km so as to fit the 
empirical curve. 

The decomposition of m(x,t) involves weights al(t) varying in time. This is 
a major difference as compared to the usual universal kriging model (Chilès 
and Delfiner, 1999), and a natural generalization in this context where a 
deterministic influence of variables like elevation, distance to the sea could 
be of varying amplitude along the year. However there is no way to check 
the hypotheses of time variations of the trend. Therefore we compute 
optimal linear estimation within this model, considering first the particular 
case where the trend is constant and then the general case.

3.2 Model with constant trend in time 

We consider the problem of estimating  m(x0,ti0) and R(x0,ti0) under the 
assumption that m(x,t) = m(x) = l al fl(x) and therefore introduce the  space-
time linear estimators: 

0

0 , ,

, ,

ˆ ( ) ( , ) (2)
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m
i i i

R
i i i i

m x R x t
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Denoting by m
.i0 = ( 1,i0,..., ns,i0)

t the vector of kriging weights 
corresponding to date ti0 and by { m

.i}i=1,...,nt i  i0 the vectors of weights for 
the other dates, the optimal weights are as follows : 

The { m
.i}i=1,...,nt are all equal to (1/nt)

m, where m the solution of the fixed 
time  universal kriging system of the trend, namely 

0

0
(4)

0

m

t

C F

FF

where F = (fl(x )) ,l, the details of computation being given in appendix. 

The vectors of weights involved in the estimation of R satisfy 
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These results have the following interpretation: despite the absence of 
temporal correlation, there is a transfer of information across time, each date 
taking in charge a fraction 1/nt of the estimation of m. In the estimation of R,
the symmetry among dates is broken and the date i0 plays a special role. 

In the fixed time case, the usual Universal Kriging predictor can be 
decomposed into the sum of the estimated mean plus the simple kriging of 
the estimated residual (see (Chilès and Delfiner, 1999), pp 182-183). After 
simple computations (see section A.1.3) it appears that  this nice property 
also holds in the present framework: ^

R = ^

m  + (R- ^

m )SK, where (R- ^

m )SK is 
the simple kriging predictor of the estimated residuals. 

3.3 Model with a trend varying in time 

Under the assumption that m(x,t) = l al(t) fl(x) and keeping the same 
notations, we now obtain 

0.
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R R
i

R
i i i

where R is solution of the UK system : 
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0

0

(11)
0

R

t

CC F

FF

In this slightly less simple model, there is no transfer of information 
across time. The best strategy for estimating m or R at (x0,ti0) is to perform a 
fixed time UK, using measurements of date ti0 only. 

3.4 Choice of basis functions 

3.4.1 Polynomial functions 

In the usual Universal Kriging framework, the basis functions are always 
taken as polynomial functions of increasing degrees. This family is 
conceptually simple, it might account for various patterns in the trend. It has 
also the nice property to provide estimations independent from the location 
of the origin of axis. On the other hand, one could imagine that in various 
situations the polynomial form of the trend is physically questionable and 
that one might capture more feature of the actual rain/space relation 
considering more physically rooted basis functions. 

3.4.2 Weights derived of a principal components analysis 
of the terrain model 

The latter  idea was the aim of the so-called Aurelhy method developed at 
the French meteorological service (Benichou and Breton, 1986) and widely 
used in operational contexts. Although not originally written in term of 
Universal Kriging we can reformulate this method in our framework as 
follows:

Consider a regular grid of N points encompassing the region under study, 
and an N X nn matrix H whose lines denoted by h(xi) are filled (in a 
prescribed fixed order) with the heights of the nn nearest neighbors of each 
xi. Each line contains the information of the relative relief around xi at a 
certain scale. This information can be summarized via a principal component 
analysis (PCA) whose principal components will be denoted by
p1(x),...,pnn(x). Note that these functions can be evaluated at any point x, (not 
necessarily those included in H provided that the local relief h(x) is known. 

The first principal components among (p1(x),...,pnn(x)) provide a statistical 
summary of h(x) with a straightforward physical interpretation: the pi(x) are 
the weights of a decomposition onto elementary local landscapes (such as 
local minima or maxima of the height, constant slopes and passes along 
specific directions, etc), these elementary relieves being simply the eigen 



Interpolation of rainfall at small scale in a mediterranean region 385 

vectors of the PCA. They are therefore natural candidates to explain the 
deterministic variations of rain.

In the actual Aurelhy method, the trend is assumed to be variable in time, but the 
estimator described  in (Benichou and Breton, 1986) is not the one proposed in 
section 2.3. It turns out that in Aurelhy, the implicit estimation of m is performed by 
an ordinary least square minimization, whereas the optimal weights must be  
obtained with an implicit  estimation of m obtained through generalized least squares 
(UK of m).

4. IMPLEMENTATION 

The various methods considered above have been implemented and are 
compared computing the Cross Validation Mean Squared Error defined as 

2*

,

1/ ( , ) ( , ) (12)s t i i
i

EQM n n R x t R x t

where each estimation R*(x ,ti) is performed on the data set deprived from 
R(x ,ti). As the optimal estimator with a varying trend consist in performing 
a classical fixed time single date UK, it will referred hereafter as fixed time 
UK. The results of Ordinary Kriging are also given as a reference. 

All the methods lie within a small interval. UK with a fixed trend is better 
than under the varying trend hypothesis, whatever the choice of basis 
functions, the latter being worse than Ordinary Kriging. The space-time UK 
with fixed trend performs slightly better than Ordinary Kriging but the 
magnitude of the improvement does not sound to be significant. 

These results are probably strongly dependent of the topography of the 
region under study and also of its climatology. The relief in our domain is 
not very marked. This could explain the poor results obtained when using 
basis functions derived from the PCA of the terrain model. It remains 
interesting to note that the fixed time trend model under which a space-time 
linear prediction is realized performs notably better than the fixed time UK. 

5. CONCLUSION

A simple space-time model for the study of environmental variables has 
been proposed. It appears that even under the assumption of time 
independence, a space-time predictor should be used. This predictor has the 
nice feature to estimate implicitly the spatial trend using all the information 
available from the various dates. On our data set it also seems to  perform  at  
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Figure 3. Eigen vectors displayed as images associated to the 1st, 2nd, 3rd and 14th eigen 
values (from top to bottom and from left to right) derived from the principal component 

analysis of the terrain model. 

Table 1. Cross Validation mean squared error. 

least as well than usual fixed time predictors. Concerning the decomposition 
of the trend, the functions derived from an analysis of the terrain model 
which sounded intuitively to be physically related to rain-fall do not help to 
improve the estimation and the classical polynomial basis function seem to 
remain the best tool in this framework. This empirical result might off course 
be different for other regions. This work was simply a modest contribution to 
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define a framework suitable to analyze space-time non-stationary linear 
methods.

ACKNOWLEDGE  

We acknowledge Thomas Nesme and Robert Habib from INRA-Avignon 
and Centre d'Information Régional Agro-Météorologique (CIRAME) for 
providing rain-fall data. 

APPENDIX: COMPUTATION OF SPACE-TIME 
KRIGING WEIGHT 
A.1 Model with constant trend in time 
A.1.1 Estimation of m

The non bias condition is 

, 0
,

( ) ( ) 0 for 1,..., (A.1)i l l
i

x x l Lf f

The error variance is 

, , ,
,

(A.2)i i
i

C

Then after taking derivative of the objective function, the kriging weights 
appear to be solution of the block matrix system 

.1

.

0

(A .3)

tn

t t

0C 0 0 F

0

0

00 0 C F

FF F 0 0

A.1.2 Estimation of R

The non bias condition remains the same whereas the error variance is: 

, , , ,0 ,0 0,0
,

2 (A.4)i i
i

C C C

Introducing a vector  of Lagrange multipliers, we obtain the following 
block matrix system: 



                                            D. Béal, G. Guillot, D. Courault and C. Bruchou 388 

.1

0

.

0

(A .5)

tn

t t

ç ÷ç ÷ = ç ÷

ç ÷ç ÷ ç ÷

ç ÷ç ÷ ç ÷
ç ÷ ç ÷

ç ÷
è ø è ø ç ÷

è ø

C 0 0 F

0
C

0

0 0 C F
0

F F 0 0
F

A.1.3 Relation between m* and R*

Denoting (FtC–1F–1)–1FtC–1 by B and (R(x1,ti),...,R(xns,ti))
t by R.i we have: 
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A.2 Model with a trend varying in time 
A.2.1 Estimation of m

The bias takes the following form: 

0
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i l
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This term has to be zero whatever the al(ti) which requires that 

, 0( ) 0 1,..., , 1,..., (A.8)i l tx l L i n i if

0, 0and ( ) ( ) 1,..., (A.9)i l lx x l Lf f

We know have nt sets of constraints, that is nt vectors of Lagrange 
multipliers. The error variance being still given by expression (a.2), the 
optimal weights are solution of the block matrix system: 
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A.2.2 Estimation of R

Keeping the same non bias conditions and the error variance of expression 
(A4) we get the block matrix system: 
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Abstract: The use of radar data is a powerful tool to improve rainfall spatio-temporal 
estimation. Geostatistical techniques are well suited to combine both raingage 
and radar measurements for this purpose. The main problem of this 
application, particularly in the context of real time estimation, is the definition 
of a positive definite model of cross-correlation between radar and rainfall. 
We propose the direct use of the experimental surface variogram, after 
filtering the spectra and cross-spectra in the frequency domain to ensure 
positive definiteness of the model. This technique, which has been proposed 
in the literature, is suitable for its introduction in a real time forecasting 
system in which fast estimation of the rainfall spatial distribution is needed. A 
case study shows its application with a real data set corresponding to the 
Barcelona radar and its watershed pluviographs.     

1. INTRODUCTION

Accurate and reliable real time forecasting of areal rainfall, at the basin 
scale, has been one of the unresolved needs of hydrology. Flood timing and 
peak intensity in natural catchments are heavily influenced by the space-time 
variability of rainfall. Thus, good rainfall spatial distribution estimations are 
important for a better real-time flood forecasting. In this sense, radar sensors 
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have turned out to be of wide applicability in the measurement of rainfall 
fields, mainly due to their ability to map the spatial characteristics of rainfall. 

Good estimation of rainfall spatio-temporal distribution using fast and 
reliable techniques is required in flood forecasting systems for the success of 
hydrological alert systems, such as the Spanish SAIHs. 

Several attempts have been made to utilize both raingage measurements 
and radar rainfall data in rainfall estimation, using geostatistical techniques 
(Krajewski, 1987; Creutin et al., 1988, Seo et al. 1990; Seo et al. 1990, 
Cassiraga et al. 1997, Goovaerts, 2000, Sun et al. 2000). The main problem 
of this application, in the context of real time estimation, is to fit, quickly, a 
positive definite model for the cross-correlation between rain and radar data. 
The model must be positive definite in order to ensure existence and 
uniqueness of the kriging system solution. The traditional modeling 
approach only considers positive linear combinations of basic models that 
are known to be positive definite, under very restrictive conditions; the so-
called linear model of coregionalization (LMC). Not only LMC is too 
restrictive but also determining the linear combination that bests fits the 
experimental information is difficult and time consuming. 

In this paper, we propose the direct use of the experimental surface 
variogram, after filtering the spectra and cross-spectra in the frequency 
domain. This technique (Yao et al., 1998) could be made automatic and 
introduced in a real time forecasting system in which fast estimation of the 
rainfall spatial distribution is needed. 

2. AUTOMATIC COVARIANCE MODELING WITH 
FAST FOURIER TRANSFORM (FFT): A SHORT 
RECALL

The proposed algorithm capitalizes upon the fact that the positive 
definiteness constraints on the covariance are mapped into simpler 
constraints on its density spectrum. The main idea is to transform the 
experimental (cross-)covariance tables into density spectrum tables using 
FFT. These density spectrum tables are then smoothed under the constraints 
of positivity and unit sum. A back transform through inverse FFT yields 
permissible (jointly) positive definite (cross-)covariance tables. Through this 
method, permissible (cross-)covariance tables are obtained automatically 
without calling for any analytical model nor for the linear coregionalization 
model. (Notice that the difficult-to-verify-in-real-space positive definite 
condition, is straightforward in the frequency domain, the only condition is 
that the density function obtained by FFT of the correlogram must be 
positive and its integral be one). 

The algorithm proceeds as follow: 
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1. First, calculate the experimental covariance maps from the sample data. 
These maps must have enough resolution, i.e., contain enough number 
of lag vectors h, for later use in kriging at unsampled locations. There 
may be large experimental fluctuations and many missing entries in 
these maps due to data sparsity. 

2. Perform a preliminary smoothing of these experimental covariance maps 
to fill-in all missing entries of the covariance table and to filter the most 
severe fluctuations. These completed covariance maps are not positive 
definite, because each lag is calculated independently of the others 
using different data pairs, so its use may result in singular kriging 
matrices or negative estimation variances. 

3. The previous gridded and completed covariance map is transformed into 
a gridded spectrum map by FFT. To ensure positivity of the density 
spectrum table and their unit sum, these experimental spectrum values 
are further smoothed under these two constraints. Such smoothing also 
removes the last unwanted sample fluctuations and the result is a licit 
spectral probability density function. 

4. This licit and smooth probability density function is back-transformed 
by inverse FFT into a licit covariance look-up table for estimation in the 
spatial domain. 

The interested reader could find the details of the algorithm in Yao (1998) 
o en Yao et al. (1998). 

3. CASE STUDY 

The case study corresponds to the estimation of rainfall in the Barcelona 
watershed making use of data from the Barcelona radar and of the 
pluviographs in the watershed. The data base consists of a set of radar 
images with the logZ in dB (decimal logarithms of reflectivity in decibels) in 
intervals of ten minutes and the corresponding pluviographs measurements 
given intensity of precipitation in mm/h. 

The area of study is a square of 140 km by 140 km, discretized into cells 
of 1 km by 1 km. The Barcelona city radar is located in the center of the 
area. In Figure 1 we can see the situation of the pluviographs and the 
corresponding radar image for one selected time step. The data set is 
integrated by 77 raingage measurements and the radar image has 19600 logZ
data.

We are going to calculate different spatial correlation measurements in 
order to make estimations using different kinds of kriging. We will perform 
all calculations after standardization of both variables, therefore we will use 
correlograms and cross-correlograms instead of covariances and cross-
covariances throughout. 
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Figure 1. Data used in the case study. (a) Raingage locations: values of intensity of 
precipitation in mm/h. (b) Radar image: values of logZ in dB (the white pixels correspond to 

logZ= –30 dB, that is associated with zero precipitation. 

For the purpose of demonstrating the algorithm we will consider only a 
single time slice, therefore the possible temporal correlation that may exist is 
not accounted for. 

As it has been mentioned before, different geostatistical methods can be 
used to estimate the rainfall field with radar data. We have applied the 
algorithm described for the computation of the necessary correlograms to be 
used by three estimating approaches: kriging, cokriging, and kriging with an 
external drift.

3.1 Kriging: auto covariance modeling 

The simplest technique that we can use to obtain a rainfall field is to 
interpolate just the rainfall data without accounting for the radar information. 
For the interpolation of a single attribute we can use ordinary or simple 
kriging. In either case a model for the autocorrelogram is needed. 

In recent years, in surface hydrology, it is becoming usual to extrapolate 
the spatial pattern from the radar image to rainfall. There are always more 
radar than rainfall data, and therefore it is easier to obtain a correlogram 
model for radar. In this case, the rainfall data only work as conditioning on 
the resulting map. 

The rainfall and radar correlogram maps were calculated and are shown in 
Figure 2. The rainfall correlogram (Figure 2(a)) was calculated using only 
the 77 rainfall data. This map shows unwanted fluctuations and too little 
structure that arise because of the limited rainfall data. The radar 
correlogram map (Figure 2(b)) corresponds to the radar image. It displays a 
more structured phenomena with a clear anisotropy and lacks the unwanted 
fluctuations of the rainfall map. 
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Figure 2. The correlogram maps of rainfall and radar data calculated independently. (a) 
Rainfall. (b) Radar. 

3.2 Cokriging: joint cross-covariance modeling 

In presence of multiple cross-correlated variables, the auto and cross-
correlograms cannot be modeled independently. They must all be modeled 
simultaneously to ensure the positive definiteness of any cross-correlation 
matrix built from them. The linear model of coregionalization was 
introduced for this purpose. In practice, the model of coregionalization 
becomes unwieldy as the number of coregionalized variables increases. 

This difficulty may make unfeasible the use of cokriging in a real time 
flood forecast system. As already mention, to avoid this difficulties and to 
provide an effective way of computing permissible coregionalization models 
we use the smoothing of the spectra in the frequency domain. 

The resulting model of coregionalization obtained by the automatic 
modeling of (cross-)correlogram tables proposed is shown in Figure 3. 

3.3 Kriging with an external drift: residual auto covariance 
modeling

Kriging with an external drift assumes that the rainfall data should be 
modeled as a drift term plus a residual, and that the drift term is an unknown 
linear function of the radar data. The application of kriging with an external 
drift requires modeling the covariance of the residuals. Assuming that we 
want to impose the spatial pattern of the radar image to the interpolated 
rainfall field and that the relation between rainfall and radar data is linear, 
we propose the follow methodology in order to obtain a valid correlogram 
map:
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Figure 3. The (cross-)correlogram maps of rainfall and radar data. (a) Rainfall correlogram. 
(b) Radar correlogram. (c) Rainfall-radar cross-correlogram. 

Figure 4. Kriging with an external drift: residual auto covariance modeling. (a) Radar image. 
(b) Smoothed radar image after   applying a moving average with a window of 20 by 20 

pixels.  (c) Residual map. (d) Residual correlogram map. 
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1. Calculate a drift map of the radar data by smoothing it using moving 
averages.

2. Obtain the residual map subtracting the drift map calculated above from 
the radar data field. 

3. Apply the automatic modeling algorithm to the residual map in order to 
calculate the residual correlogram map. 

4. Extrapolate this residual correlogram map for rainfall. 

In Figure 4 we can see the results of the methodology described above. 
After testing different sizes for the moving window averaging process, the 
selected  size was 20 per 20 cells. 

4. ESTIMATED FIELDS 

The estimation codes of GSLIB (Deutsch and Journel 1997) were adapted 
in order to directly read correlogram tables. In the figure 5 we can see the 
rainfall estimated fields using the correlogram tables obtained. The artifacts 
that we can see in the fields estimated by ordinary kriging (5a and b) are 
caused by the limited number of raingage data that are available. The maps 
that use radar information (5c and d) clearly incorporate this information to 
produce more structured rainfall maps which are better tied to the patterns 
provided by the radar. 

5. CONCLUSIONS

We have shown the use of an automatic (cross-)covariance modeling 
technique applied to a real hydrology data set. The motivation of this work 
was to find a methodology able to produce valid covariance and cross-
covariances tables, in a reasonable time, in order to implement it in a real-
time forecasting model. 

The resulting correlogram maps shown in this paper, using the proposed 
algorithm, are obtained in a few seconds. These maps are licit for solving the 
kriging equations system and do not need any parametric model assumption. 
The currently available estimation programs have been easily adapted to use 
these maps directly. 

The used technique has a particular interest for the cokriging case, in 
which we do not need to use a lineal model of coregionalization. 
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Figure 5. Rainfall estimated fields. (a) Estimated field by ordinary kriging using only the 
rainfall correlogram map. (b) Estimated field by ordinary kriging using the radar correlogram 
map. (c) Estimated field by ordinary cokriging. (d) Estimated field by kriging with an external 

drift.
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COMBINING RAINGAGES AND RADAR 
PRECIPITATION MEASUREMENTS USING A 
BAYESIAN APPROACH 

C. Mazzetti and E. Todini 
Dept. of Earth and Geo-Environmental Sciences, University of Bologna, Italy 

Abstract: This paper examines a new technique, based upon the combination of block 
kriging and Kalman filter in order to optimally combine, in a Bayesian sense, 
spatial precipitation fields estimated from meteorological radar with the same 
fields estimated from point measurements of precipitation, such as the ones 
provided by a network of rain gauges. The Bayesian combination technique is 
tested by means of a numerical example, in order to demonstrate the 
potentiality of the proposed algorithm and to compare it with the methods 
developed in the past. The new method is shown to be superior, both in terms 
of bias and variance reduction, to the available ones, from Brandes’ method 
(or similar) based on Barnes’ objective analysis scheme, to the co-kriging 
approach. 

Key words: Radar, rain gauges, Kalman filter, Bayesian combination 

1. INTRODUCTION 

At present, the most important and widely used systems for providing 
precipitation measurements, which can be used for real-time flood 
forecasting, are ground based tele-metering rain gauges and meteorological 
radar. Rain gauge data are typically considered to provide good point 
accuracy, since errors due to wind speed, which may reduce the funnel 
effective area can be corrected, but they offer little information on the spatial 
distribution of rain. On the other hand meteorological radar is capable of 
accurately delineating rainfall distribution but, because of various 
meteorological, equipment and methodological factors, its estimates of 
rainfall are burdened with errors that are very often quite significant, so in 
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general radar can produce mainly biased estimates of rain. This has given 
rise to the interesting problem of using the point rain gauge measurements to 
improve the overall estimate of rainfall volume.  

Although several techniques for merging rain gauges and radar data have 
been developed in the past, such combinations have generally produced good 
results in terms of bias reduction, while scant attention has been given to the 
reduction of variance. 

The different nature of errors, which implies their independence, can be 
exploited to produce unbiased and more reliable precipitation estimates. 
Following this idea, Todini (2001, ref.5) recently proposed an original 
Bayesian combination technique, based on the use of block kriging and 
Kalman filter, that aims at eliminating the bias of meteorological radar 
precipitation estimates and at producing minimum variance precipitation 
estimates on pixels of variable size. 

This paper extends the Todini (2001, ref.5) formulation to include the 
time evolution of the measurement error structure, which makes the 
technique suitable for real-time applications. Moreover, by means of a 
numerical example, the paper compares Todini’s technique, both in its 
steady state and time variant formulation, to three techniques, available in 
literature, for adjusting radar data due to Brandes (1975), Koistinen and 
Puhakka (1981) and Krajewski (1987). 

2. TECHNIQUES PROPOSED IN THE PAST 

2.1 Brandes’ technique 

Following Brandes (1975), the radar field is calibrated with rain gauge 
observations by determining multiplicative calibration factors at each gauge 
site. Raw radar data from the cells containing the gauges are divided by the 
gauge amount to determine calibration factors Gk at each gauge site k; then 
Barnes (1964) objective analysis scheme is used to extrapolate corrections 
from the rain gauge site to all the other grid points representing the radar 
field. The weight WTk each gauge calibration Gk receives at a grid point is: 

EPd
k eWT

2

 (1) 

where d is the distance between the gauge site and the grid point and EP
controls the degree of smoothing. Two steps through the objective analysis 
scheme are made to produce the final radar adjustment field. In the first step, 
a first guess grid point calibration  F1 is computed as: 
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where N is the number of gauges. In the second step, the final grid point 
adjustment factors are obtained as: 
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where Dk=Gk-F1 at each gauge location, and WT'k is computed using (1) 
with EP’=EP/2. Multiplication of the adjustment field with the radar field 
produces the corrected (calibrated) radar precipitation field. 

The radar precipitation field has been constrained to fit the gauge 
observations while retaining radar-observed precipitation variation between 
gauges. Moreover, the value of EP in equation (1) can negatively influence 
the posterior estimates and should be kept as small as possible to preserve 
details in the input observations.  

2.2 Koistinen and Puhakka’s technique 

The method proposed by Koistinen and Puhakka (1981) is a modification 
of the Brandes (1975) method. It combines the uniform range dependent 
adjustment, by which the bias is removed from radar estimates, and the 
spatially varying adjusting method, by which radar measurements can be 
adjusted to fit individual gauge observations. In particular, in this paper we 
analyse the scheme used at ARPA-SMR, Meteorological Service of Emilia 
Romagna, Italy, which is a slightly modified version of Koistinen and 
Puhakka’s algorithm. 

In a first step, an adjustment factor Ak, i.e. the ratio between the gauge 
and the radar value in the same location, is computed. Then a regression 
analysis is performed, by which the range dependence of log(Ak) is 
determined. As a result, a symmetrical range dependent adjustment factor 
field A(r) is obtained: 

rerA  (4) 
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For each cell ij of the radar field, the adjustment factor field AG can be 
determined as follows: 
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where rijk is the distance between cell ij and gauge k and rij is the average 
distance between cells and gauges.  

The final step computes the adjustment factor ANAA  by combining the 
range dependent function A(r) and the adjustment factor AG:

rAA
r

rAA G
ij

ijANA
ij 5.1

exp

 (7) 

where  is the average density network. Multiplication of the adjustment 
factor field by the raw radar field produces the corrected (calibrated) radar 
field. 

2.3 The co-kriging technique 

In 1987 Krajewski proposed a new technique for merging rain gauges 
and radar data. It is based on an ordinary co-kriging procedure and, as 
opposed to the ones previously developed, it accounts explicitly for the 
different sampling characteristics of radar and rain gauge networks. 

The first step in order to consistently combine the two fields is to 
interpolate rain gauge data onto the same grid blocks as those for which 
radar data are given, using block kriging technique. Then, the following 
model is proposed for merging the radar field Rij and the field Gij, obtained 
by block kriging rain gauge data: 
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where  Nl is the number of radar cells and Gij and Rij are the coefficients 
(weights) that need to be estimated. 

 The weights Gij and Rij can be obtained minimizing the estimation 
variance under unbiased conditions. The problem can be solved using 
Lagrange multiplier technique, which leads to a set of simultaneous linear 
equations that can be written in matrix form as: 
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where CovRR and CovGG are the covariance of radar data and block kriged 
rain gauge data, respectively and CovRG and CovGR are the cross-covariance 
between gauges and radar data. 

In order to ensure positive definiteness of the matrix of the co-kriging 
system, the matrices CovRR, CovGG and CovRG are modeled using exponential 
isotropic models, which are fitted using least squares technique. On the right 
hand side of the system, the vectors CovVR and CovVG, whose elements are 
covariances between radar and rain gauge data, respectively, and the true 
precipitation V, are approximated using: 

RRRVR CovCov    and   GGGVG CovCov    where   1,0, GR

As opposed to the new proposed technique, the block kriging Bayesian 
combination, it is not possible to estimate from data the values of G and R,
which are unknown scalar, reflecting the relative uncertainty of radar and 
gauges observations, and they have to be provided subjectively. 

The co-kriging technique shows two major problems. The first relates to 
the fact that it is impossible to compute the right hand side of the co-kriging 
system (9), since the true precipitation values are not known and the 
approximation of the covariance matrices introduces additional uncertainty 
in the method. Moreover the solution of the co-kriging system implies the 
computation of the inverse of a matrix whose dimension is twice the number 
of cells of the lattice. For application on real basins the number of lattice 
cells is typically large and the computational burden becomes excessive.  
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3. THE BLOCK KRIGING BAYESIAN 
COMBINATION TECHNIQUE 

As previously remembered, radar and rain gauges have measurement 
errors of different nature: rain gauge measurements tend to be more accurate 
in a point while their spatial significance decays with the distance and thus 
with the area; on the other hand radar provides better spatial (although 
biased) representations but a much poorer quantitative estimate. The 
different nature of errors, which implies their independence, has been 
exploited by Todini (2001, ref.5) to develop a Bayesian combination 
technique for merging rain gauges and radar data. The proposed technique 
aims at eliminating the bias of meteorological radar precipitation estimates 
and at producing minimum variance precipitation estimates on pixels of 
variable size. 

3.1 Steady state formulation 

Originally, Todini (2001, ref.5) developed the Bayesian combination 
technique on the basis of a steady state assumption, which means that the 
time evolution of the measurement error structure is not taken into account.  

In order to consistently combine the two sets of data, Todini’s method 
uses block kriging to regionalize the point rain gauge measurements on the 
pixels on which the radar data are given and to compute the block kriged 
variables error statistics on the pixels. Assuming that the rain gauge 
estimates are unbiased, once the estimation error statistics have been 
determined, a Kalman filter approach is taken to find the posterior estimates. 
In the Bayesian combination framework, the field yt

R provided by the radar is 
taken as the a priori estimate, while the field yt

G provided by the block 
kriging of the gauges is taken as the measurement vector zt of a classical 
Kalman filter. The measurement equation of a classical Kalman filter is 
modified as follows to give a new measurement equation (10): 

t
G
ttttt

G
tt yyyyHyz  (10) 

where yt is the true rainfall field at time t. At this point by taking: 

R
t

R
tt yy'

    and    
R
t

VP t'      (11)

as the a priori estimate of the state and the a priori estimate of its 
covariance matrix, it is possible to compute the innovation t and the 
Kalman gain Kt, following the development of a classical Kalman filter. 
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In the end, the Kalman filter equations allow finding the posterior 
estimates by combining the a priori estimates and the measurements in a 
Bayesian framework to give: 

tttt Kyy '''  (12) 

'''' ttttt PHKPP  (13) 

where yt’’ is the posterior estimate of the rainfall field over the lattice and 
Pt’’ its error of estimate covariance matrix. 

3.2  Time variant formulation 

The application of the Bayesian combination technique to real-time 
problems requires the development of real-time updates of the means and 
covariance matrices as a function of their evolution. For this reason means 
and covariance matrices are computed at each time step in order to take into 
account the time evolution of the measurement error structure and a new 
real-time estimator had to be developed. The gain equation is now modified 
to give: 
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To ensure positive definiteness, the matrix V t, the covariance matrix of 
the deviations t, used in the gain equation (14) needs to be modeled using a 
variogram. The estimation of the variogram parameters is performed using 
the Maximum Likelihood technique developed by Todini  (2001, ref.6).  

4. THE NUMERICAL EXAMPLE 

The efficiency of the different methods, in terms of convergence of the 
posterior estimates toward the true, is demonstrated by means of a numerical 
example, for which the true rainfall field is perfectly known. This stochastic 
simulation is needed because in real world cases the actual precipitation field 
is not known. 

In the proposed example, a 7x7 lattice with sides of 1 Km is considered, 
while 9 rain gauges are assumed to be set in the centers of the lattice cells as 
in Figure 1. The small dimension of the grid does not want to simulate 
operational conditions, its purpose is to create a numerical example in order 
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to compare the statistical results of the different techniques. The high 
number of gauges and their symmetrical distribution were chosen to test the 
conservation of the symmetry in the percentage variance reduction. 

O O

O

O O O

O

O O

Figure 1. Distribution of the 9 rain gauges on the radar grid 

A Gaussian random field yt, taken as the true field, is generated 1000 
times jointly on the lattice, representing the radar field, and on the 
measurement points, representing the rain gauges (Table 1).  

Table 1. Random field parameters 

Mean Variance Nugget (p) Sill (w) Range (a) 

10 50 0 50 107 

In addition, errors are generated both on the lattice and on the 
measurement points to simulate the different errors one could expect from 
the radar and from the gauges. In the example, radar measurements are 
considered biased and affected by noise. Therefore 1000 time realizations of 
a Gaussian random noise are generated on the lattice and are added to the 
true rainfall field yt to give noise corrupted radar observations yt

R. In 
practice, the error represents a large bias and a variance of the order of 30% 
of the signal (Table 2). 

Table 2. Random noise field parameters 

Mean Variance Nugget (p) Sill (w) Range (a) 

5 15 0 15 106

Rain gauge observation errors are assumed to be random, uncorrelated in 
space and of the order of 10%. Errors are added to the value of the true 
rainfall field on the gauge points to give 1000 time realizations of 9 gauge 
like observations. 

The data set used in this analysis consists in 1000 time realizations of 
radar estimates on the 49 cells together with 1000 time simultaneous 
realizations of 9 rain gauge measurements. Finally, 1000 time realizations of 
the true rainfall field on the lattice cells are also available and are used for 
the analysis of the convergence. After using the different approaches, the 
true rainfall field is subtracted from the posterior estimates and the error 
statistics, mean and variance, are computed for all the lattice cells.  



Combining raingage and radar precipitation measurements 409 

In this numerical experiment, as opposed to what happens in real world 
cases, the knowledge of the true rainfall is used for assessing the 
performances of the different approaches. 

4.1 Brandes’ technique 

The empirical exponential weighting method proposed by Brandes has 
been applied to the numerical data and the statistics have been computed for 
all the lattice cells. The results (Tab. 3) show that there is only a little bias 
over the lattice cells after the merging and that the posterior explained 
variance increases from 70% to 77%. 

Table 3. Bias and explained variance improvements with Brandes’ technique 

A priori A posteriori 

Bias 5.0550 0.3555 

Ex. Variance 0.7033 0.7777 

4.2 Koistinen and Puhakka’s technique 

Koistinen and Puhakka’s method, which combines the uniform range 
dependent adjustment and the spatially varying adjusting method, has been 
applied to the numerical data. The results show (Tab. 4) an improvement in 
bias and explained variance toward Brandes’ method: the value of the final 
bias (after the merging) is now smaller than the one obtained before and also 
the value of the final explained variance has increased. 

Table 4. Bias and explained variance improvements with Koistinen’s technique 

A priori A posteriori 

Bias 5.0550 -0.1390 

Ex. Variance 0.7033 0.7847 

4.3 The co-kriging technique 

In order to compare the co-kriging technique with the steady state 
formulation of the block kriging and Kalman filter method, a steady state 
solution for the co-kriging system is proposed and two possibilities have 
been considered. The first one assumes that the right hand side of the co-
kriging system can be computed using the true rainfall field. Although this is 
not possible in real world applications it was interesting to see if in the ideal 
case the approach performed well.  

The results show that the bias has been completely removed while the 
explained variance has increased from 70% to 85%.  
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Table 5. Bias and ex. variance with steady state technique, computing the right hand side of 
the system 

A priori A posteriori 

Bias 5.0550 0.0229 

Ex. Variance 0.7033 0.8515

Alternatively, the matrices CovVR and CovVG on the right hand side of the 
co-kriging system have been approximated using the values of the matrices 
CovRR and CovGG and two coefficients R and G as proposed by Krajewski 
(1987). Different couples of coefficients R and G have been used and the 
posterior radar estimates were compared with the true value of the rainfall 
field. The results show that the choice of the parameters strongly influences 
the quality of the posterior estimates and a bad choice of R and G can lead 
to poor quality results that do not converge toward the true value of the 
rainfall field. Table 6 shows the best results in terms of final bias and 
explained variance.

Table 6. Bias and ex. variance with steady state co-kriging technique, using the coefficients 

A priori A posteriori 

Bias 5.0529 0.0886 

Ex. Variance 0.7035 0.9025

However in both cases the improvement in bias and explained variance 
shown by the co-kriging method is still smaller than the one provided by the 
Block Kriging Bayesian combination technique in the steady state 
formulation.   

The time variant formulation of the co-kriging technique follows the 
algorithm proposed by Krajewski, which computes the co-kriging system for 
each time step, modeling the right hand side with the help of the coefficients 

R and G.
Again, the application of the method based upon co-kriging required the 

trial of several couples of coefficients R and G and Table 7 shows the 
results obtained using the couple of parameters that has shown to give the 
best results in terms of convergence of the posterior radar estimates toward 
the true value of the rainfall field.  

Table 7. Bias and ex. variance improvements with time variant co-kriging technique 

A priori A posteriori 

Bias 5.0529 0.0634 

Ex. Variance 0.7035 0.7859 

The results show that the bias has been eliminated over the entire lattice 
and the posterior explained variance increases to 78%.  

However, in real world there is no possibility to evaluate how good is a 
choice of parameters compared to another one. So there is no way of 
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knowing which couple of parameters leads to the posterior radar estimate 
which is nearer to the true rainfall field. 

4.4 The block kriging Bayesian combination technique 

The Bayesian combination technique is tested for two different 
formulations of the Kalman filter: the steady state formulation, in which the 
time evolution of the measurement error structure is not taken into account, 
and the time variant formulation, in which real-time updates of the means 
and covariance matrices are considered as a function of their evolution.  

For the steady state formulation of the Bayesian combination technique 
the results are impressive. Table 8 shows that the bias has been completely 
eliminated and the posterior explained variance reaches a very high value 
equal to 93%. 

Table 8. Bias and ex. variance improvements with steady state Bayesian technique 

A priori A posteriori 

Bias 5.0529 0.0517 

Ex. Variance 0.7035 0.9331 

Some comparisons can be made with the results obtained with the steady 
state formulation of co-kriging: the bias has been eliminated in both cases, 
but the increase of the posterior explained variance is much higher for the 
Bayesian combination. 

The block kriging Bayesian combination technique in the time variant 
formulation of the Kalman filter has been applied to the numerical data. The 
results are summarized in Table 9, which shows the posterior bias and 
explained variance, and they are quite similar to the values of Table 8. 

Table 9. Bias and ex. variance improvements with time variant Bayesian technique 

A priori A posteriori 

Bias 5.0529 0.0942 

Ex. Variance 0.7035 0.9103

The comparison between Table 3, Table 4, Table 7 and Table 8 shows 
that the best results in terms of posterior bias and explained variance are 
obtained using the Bayesian combination technique. 

5. CONCLUSIONS 

The test on numerical data has demonstrated the efficiency of the 
Bayesian combination technique and the improvements with respect to the 
most common and widely used method for merging rain gauges and radar 
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data. This was proved both in the steady state and in the time variant 
formulation.  

Extensive application of the technique is anticipated within the frame of 
the UE funded project MUSIC (Multi Sensor precipitation measurements 
Integration Calibration and flood forecasting). 
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Abstract: Our spatial data consist of 413 measurements of the apparent electrical 
conductivity (ECa) obtained with electrical probes in the east of Hungary. 
Additionally, a limited subset of the locations (15 to 20) was sampled for 
laboratory analysis of soil electrical conductivity of 1:2.5 soil:water 
suspension (EC2.5), a simple proxy for the electrical conductivity of soil 
saturation extract (ECe). The latter formed our calibration data set. This 
procedure was repeated 17 times between November 1994 and December 
2000 yielding a large spatio-temporal database. The first step was to rescale 
EC2.5 from ECa, based on the calibration data sets, using classical and spatial 
regression models. The residuals of the ordinary least squares model were 
tested for the absence of spatial dependence using the Moran’s I test. This 
hypothesis was accepted, the EC2.5 was rescaled using the classical regression 
model. The next step was to identify the structure of the variability of the 
rescaled EC2.5 by computing and modeling the spatial, the temporal, and the 
spatio-temporal covariograms. Finally, soil salinity maps were produced for 
the study area and for any time instant using spatio-temporal kriging. The 
estimates were more precise compared to the ones obtained using only the 
spatial covariogram computed and modeled separately for each time instant.   

1. INTRODUCTION 

The effective control of soil salinity requires the knowledge of its 
magnitude and extent, and also its changes over time. Detecting trends, 
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which occur in salinity conditions over time, is an important step to identify 
emerging problems, and to determine the progress of reclamation efforts. 

Soil salinity assessment requires inventory and monitoring of soil 
salinity, since it is spatially variable and temporally dynamic in nature. 

Soil salinity is conventionally determined by measurements of the 
electrical conductivity of the extract of a water-saturated soil-paste (ECe). 
This property can also be observed indirectly from measurements of the 
apparent electrical conductivity (ECa) of the bulk soil. The latter is measured 
in the field using electrical probes.  

The conventional soil sampling and laboratory analysis procedure is very 
expensive. A cost-effective way is to use mobile techniques for rapidly 
measuring ECa as a function of the spatial position, to infer ECe from ECa, 
and to map ECe at any location in space and any instant in time. 

Lesch et al. (1998) developed a statistical monitoring strategy. It requires 
the estimation of a conditional regression model to predict ECe from ECa, 
and the use of 2 statistical tests: one for detecting dynamic spatial variation 
in the salinity pattern and the other for detecting a change in the field median 
salinity level with time. The drawback of this approach is that we get salinity 
maps only for the observed time instants, and at the observed locations. 

We propose in this work to use an alternative approach, based on 
geostatistical tools, which is capable of using the spatial and temporal 
dependencies as well as producing maps for any location in space and any 
time instant. 

2. DATA SETS 

The study area (of about 25 ha) is located in the Hortobagy National Park 
(47o 30” N and 21o 30” E), east Hungary. A lot of research on 
salinity/sodicity and its correlation to the vegetation has been done in this 
natural ecosystem (Toth et al., 1991; Van Meirvenne et al., 1995; Toth et al., 
1998; and Toth et al., 2001).  

We obtained measurements taken at 17 time instants over 7 years (from 
November 1994 to December 2000) with an approximate average temporal 
lag of 3 months, ranging from 2 to 9 months. 

For each time instant, we have 2 data sets. The calibration data set for 
which we have the measures of the soil salinity in the laboratory (EC2.5 in 
dS.m-1) and the soil bulk electrical conductivity (ECa in dS.m-1). The 
measurements have been done in 15 to 20 locations depending on the time 
instant of sampling. The second data set involves only the measurements of 
ECa at 286 to 413 locations depending again on the time instant. 
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For the soil samples, we determined, in addition to EC2.5, the soil 
moisture content (%) and the soil pH. The soil samples were taken between 
0 and 40 cm by 10 cm increments (bulked samples from 2 augerings). 

The ECa was measured using electrical probes (with 4 probes), which 
were inserted down to 2 depths (8 and 13 cm) giving values corresponding to 
0-20 and 0-40 cm soil depths, respectively. For the calibration sites, there 
were always 3 parallel measures. Fig. 1 illustrates the spatial location of the 
measurements and how the area was sampled. 

3. ANALYSIS 

The histograms of the ECa and also of EC2.5 showed skewed 
distributions and after a logarithmic transformation, the distributions became 
less asymmetric. All the analysis was based on the transformed data. The 
calibration data set was used to compute the calibration equations (one 
equation for each time instant) as a first step. We tried to relate EC2.5 to 
ECa using 2 approaches. The first method is the classical ordinary least 
squares regression (OLS): 

ln(EC2.5) = a + bln(ECa) + 

where a and b are the regression coefficients and x represents the 
independently gaussian errors.

Figure 1. Spatial location of the samples where ECa were measured. The calibration data set 
is a sub-sample of these locations (relative position). 

The other approach is the spatial regression (Anselin, 1988). For this 
method we checked 4 different models: 
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– the spatial autoregressive model (SAM):

ln(EC2.5) = Wln(EC2.5) + bln(ECa) + 

– the spatial error model (SEM): 

ln(EC2.5) = bln(ECa) +             with   = W  + 

– the spatial general model (SGM) which is the combination of the 2 above 
models:

ln(EC2.5) = Wln(EC2.5) + bln(ECa) +     with   = W  + 

In this equations  and  are the spatial autocorrelation parameters, 
represents the errors with spatial dependence, and W is the matrix of the 
spatial weights build from the distance separating 2 observations using the 
Delaunay triangulation algorithm. 

– The geographically weighted regression, GWR (Brundson et al., 1996): 

Wi
1/2ln(EC2.5) = Wi

1/2bln(ECa) + 

It uses distance-weighted sub-samples of the data to produce locally 
linear regression estimates for every point in space. Each estimated set of 
parameters is based on a distance-weighted sub-sample of neighboring 
observations based on distances separating the observations. 

The residuals of the OLS regression were tested for the presence of 
spatial autocorrelation using the Moran’s I test (Cliff and Ord, 1981). 
Further, we used maximum likelihood-based tests, on the results of the 
spatial regression, to check the significance of the spatial autocorrelation 
parameters (  and ) and to choose the most adequate model. 

At the end of this step, we got a data matrix of 17 columns (time instants) 
and 413 rows (locations) of EC2.5 values with some missing values 
corresponding to the locations for which ECa was not available. 

This data matrix can be considered as a space time random field, STRF 
(Christakos, 1992):

Z(s,t), (s,t)  D x T  with 
D 2 (real numbers set) and T + (positive real numbers set) 

with s : 2-D spatial coordinates and t : temporal coordinate. 
The second step in our analysis was to model the spatial, the temporal 

and the spatio-temporal dependencies of the salinity data matrix. There are 



Spatio-temporal kriging of soil salinity 417 

mainly 3 conceptual approaches in modeling stochastically space-time data 
(Kyriakidis and Journel, 1999): 
– Methods using a STRF (Christakos, 1992; Cressie, 1993); 
– Methods based on vectors of independent spatial random fields 

(Goovaerts and Sonnet, 1993). The spatial variability is modeled either 
by a separate variogram for each time instant or by a single spatial 
variogram considering time instants as replicates as was done by Sterk 
and Stein (1997); 

– Methods based on vectors of time series (Rouhani and Wackernagel, 
1990). 
The second approach is more suited in the case of rich data in the space 

domain and scarce data in the time domain but doesn’t include the temporal 
dependence existing between observations and can predict only at the 
observed time instants. 

The third approach is more adequate for data dense in time and scarce in 
space but it doesn’t take into account the spatial dependence and it predicts 
only at the observed locations. 

Only the first group of methods includes both the spatial and temporal 
dependencies so the interpolation is more precise and can be done for 
unsampled time instants at unsampled locations. This approach was used to 
analyze our salinity data set.

The procedure is as follows (Christakos et al., 2002): 
– First the space-time mean trend is estimated. The smoothed spatial 

components (one for each location) were computed using an exponential 
spatial filter applied to the averaged measurements (for each location, 
over all the time instants). We computed also the smoothed temporal 
components (one for each time instant) using an exponential temporal 
filter applied to the averaged measurements (for each time instant, over 
all the locations); 

– Then the above components of the space-time mean trend were 
interpolated to the data grid giving m(s,t); 

– The residuals were computed as the space-time mean trend subtracted 
from the original data matrix:  R(s,t) = Z(s,t) – m(s,t); 

– The residual data matrix was used to compute the spatial C(r, =0), 
temporal C(r=0, ) and spatio-temporal C(r, ) covariograms : 

C(r, =0) = cov[R(s+r),R(s)], 

C(r=0, ) = cov[R(t+ ),R(t)],

C(r, ) = cov[R(s+r,t+ ),R(s,t)] 
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r and  are the spatial and temporal lags, respectively, and cov is the 
covariance function. 
– Finally we fitted theoretical models to the computed experimental 

covariograms. 
The last step was the estimation at unobserved locations and time instants 

using space-time kriging (Chiles and Delfiner, 1999; Christakos, 1992) and 
the fitted covariograms. 

As we used the residual covariograms, the resulting estimated data 
corresponded to the residual values. To get the values in the original scale, 
we interpolated the spatial and temporal components of the space-time mean 
trend to the kriging grid. These estimated values were added to the 
interpolated space-time mean trend values to obtain the kriged values in the 
original scale.

The classical regression was done using the SAS software (SAS Institute, 
1990), the spatial regression was fitted using the Econometrics Toolbox 
(Lesage, 1999) running under Matlab software. The geostatistical 
computations were handled using the BMElib library (Christakos and al., 
2002). The toolbox and the library are built on the Matlab software 
(Mathworks, 1999). 

4. RESULTS 

4.1 Calibration Equations 

The OLS residuals showed no significant spatial dependence. This result 
was confirmed by the maximum likelihood-based tests of the non-
appropriateness of an additional spatial parameter in the spatial regression 
models. However when we fitted a first autoregressive model to the ECa 
data (ECa regressed on its neighbors), we found a significant spatial 
dependence. The absence of spatial autocorrelation in the EC2.5-ECa 
relationship may be due to the fact that we have very few locations (15 to 
20) which are far apart comparatively to the ECa data (286 to 413). 

Consequently we adopted the classical OLS regression model to relate 
EC2.5 to ECa. This relation was very strong. Most of the correlation 
coefficients were higher than 0.85 (for 14 out of the 17 time frames) with a 
maximum value of 0.95. Different models were tried by adding other 
covariates than ECa, for example the coordinates and the vegetal coverage. 
The best model (having the highest adjusted coefficient of determination, the 
lowest mean square error and all its coefficients being significant) was the 
following:
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ln(EC2.5) = b0 + b1ln(ECa) + b2u + b3u
2 + b4v + b5jcoverj

u=(x - mx)/ sx  with mx and sx: mean and standard deviation of the x 
coordinate  

v=(y - my)/ sy   with my and sy: mean and standard deviation of the x 
coordinate 

coverj, j=1,…,4, represents the 4 categories of vegetal coverage 
We fitted this model at each time instant separately, so finally we 

obtained 17 equations corresponding to the 17 time instants. 

4.2 Descriptive statistics 

The main statistic parameters of our data set are summarized in table1. 
The mean EC2.5 varied between 1.39 (November 1994) and 2.74 dS.m-1

(September 1998). The minimum is enclosed between 0.06 (December 2000) 
and 0.68 (March 1996) and maximum varying between 2.59 (November 
1994) and 9.41 (December 2000). The data are moderately to highly variable 
with coefficients of variation ranging between 0.28 (March 1997) and 0.64 
(December 1997 and 2000). 

Table 1. Statistic parameters of salinity data (EC2.5 in dS.m-1). N: number of observations, 
cv: coefficient of variation, min: minimum, med: median, max: maximum. 

EC2.5 N mean cv min med max 

Nov-94 
Mar-95 
Jun-95 
Sep-95 
Dec-95 
Mar-96 
Jun-96 
Mar-97 
Jun-97 
Sep-97 
Dec-97 
Sep-98 
Apr-99 
Jul-99
Sep-99 
Apr-00 
Dec-00

411
411
412
410
413
392
411
310
286
411
412
411
409
409
411
312
411

1.39 
2.03 
1.74 
1.77 
1.65 
1.96 
1.54 
1.48 
1.69 
1.50 
1.44 
2.74 
1.43 
1.96 
1.93 
1.78 
2.10 

0.37
0.32
0.39
0.33
0.38
0.29
0.42
0.28
0.59
0.58
0.64
0.55
0.63
0.50
0.63
0.58
0.64

0.45
0.60
0.48
0.54
0.53
0.68
0.31
0.42
0.24
0.13
0.13
0.31
0.17
0.16
0.11
0.09
0.06

1.38
1.94
1.62
1.70
1.53
1.86
1.41
1.43
1.48
1.32
1.18
2.47
1.19
1.81
1.58
1.57
1.76

2.59
4.78
4.66
3.66
3.93
3.30
4.52
2.91
8.33
5.83
6.99
8.35
6.90
5.85
6.39
7.07
9.41

Overall 6640 1.78 0.54 0.06 1.59 9.41 

For all the time instants, the range in salinity values was large in 
comparison to the mean indicating that soil salinity is highly variable in 
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space. Moreover, the differences in the statistic parameters (mean, median 
and range) between time instants are an indication of a temporal variation. 

4.3 Covariography 

The spatial, temporal and spatio-temporal dependencies in the salinity 
data were described and modeled using covariance functions. The spatial 
covariance was fitted with a nested exponential model as is illustrated in Fig. 
2a. The small-scale range is about 70 m (with a sill equal to 70% of the total 
variance) and the large-scale range is beyond the dimensions of the study 
area (1500 m). 

C(r, =0) = c01exp(-3r/as1)+c02exp(-3r/as2)

with c01 and c02 the sills of the nested models and as1 and as2 their 
corresponding ranges. 

Figure 2. (a): Spatial covariogram; (b): temporal covariogram. Circles: experimental 
covariogram; curve: fitted model. 

The same nested model was used to fit the temporal covariance (Fig. 2b) 
with a small-scale range of 8 months and a large-scale range far beyond the 
time period covered (200 months): 

C(r=0, ) = c01exp(-3 /at1)+c02exp(-3 /at2)

with at1 and at2 the small-scale and large-scale ranges 

The spatio-temporal covariance (Fig. 3) is a nested structure of two 
space/time separable covariance models: 

C(r, ) = c01exp(-3r/as1)exp(-3 /at1)+c02exp(-3r/as2)exp(-3 /at2)
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Figure 3. Spatio-temporal covariogram of the residual data R(s,t). 

4.4 Spatio-Temporal Kriging 

As the spatio-temporal dependence of EC2.5 was modeled using a nested 
separable space-time covariance function, it was used to estimate soil 
salinity at any location in space and any instant in time by defining a search 
neighborhood. 

For illustration purposes we show only results for the most frequently 
observed month (September of the years 1995, 1997, and 1998). We 
estimated on a dense spatial grid including the 413 locations for which we 
have the observed EC2.5 values for September from 1995 to 1998 (Fig. 4). 

First we note that for the non-observed time instant (September 1996), 
the smoothing effect is stronger than for the observed time instants 
(September 1995, 1997, and 1998). These are due mainly to the fact that for 
the latter ones, the neighbors come mostly from the simultaneous time 
instant but for the former one the neighbors are from different time instants. 
Also, there is a net general increase in soil salinity from September 1995 to 
1998. 
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Figure 4. EC2.5 estimates (dS.m-1) using the spatio-temporal covariogram models for each 
September between 1995 (a) and 1998 (d). 

To check the contribution of the additional temporal dependence, we 
compared the spatio-temporal kriging to a single spatial kriging by modeling 
independently and separately the spatial dependence for each time instant. 
Sterk and Stein (1997) computed a single spatial variogram pooling the data 
of the 4 time instants that they had. This was required to circumvent the lack 
of sufficient observations (100 or more as reported by Webster and Oliver, 
1992) to compute a reliable variogram. Ettema et al. (2000) adopted the 
same procedure. As we had sufficient observations at each time instant (at 
least 286), we computed the spatial variograms separately for each time 
instant. The results of the comparison are reported in Fig. 5 for the 
histograms of the estimated EC2.5 values and in Fig. 6 for those of their 
corresponding estimation errors. The estimated values are more or less the 
same but it is clear that the spatio-temporal estimates are more precise 
comparatively to the spatial estimates. Ettema et al. (2000) reached the same 
conclusions in their study of the spatio-temporal patchiness of nematode 
species. 



Spatio-temporal kriging of soil salinity 423 

Figure 5. Spatial (S) and spatio-temporal (SpT) estimates of EC2.5 (dS.m-1) for September 
1995 (a), and 1998 (c). 

5. CONCLUSIONS 

The spatio-temporal kriging estimates were more precise than the 
estimates obtained using only the spatial component of the soil salinity 
dependence (the most frequent estimation error is bigger for the latter than 
for the former). Also the smoothing effect seems to be more pronounced in 
the case of the spatial kriging than in the spatio-temporal kriging (the 
extreme values are lesser for the former than for the latter). These 
conclusions were deduced from the graphic representation of the estimates 
and their estimation errors for the 2 approaches. For a more formal 
comparison, it would be better to use some quantitative criteria. So in this 
sense, it may be suitable to leave some locations for a validation data set that 
will be used in the computation of, for example, the mean error or the mean 
square error. Another possible improvement is to use the product-sum model 
of De Cesare et al. (2001).  

Figure 6. Spatial (S) and spatio-temporal (SpT) estimation errors of EC2.5 (dSm-1) for 
September 1995 (a), and 1998 (c). 
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HAZARD MAPS OF METAL CONTAMINATION 
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Abstract: This paper presents a methodology to account for uncertainties in mapping of 
the probability of soil contamination by different heavy metals. The 
methodology is based on a co-simulation technique using direct sequential 
simulation of a multivariate set of variables, with each variable simulated 
based on hard data, the heavy-metal concentrations in the soil, and on soft 
data, consisting of a previously simulated map of one of the heavy metals. The 
suggest methodology is based on the influence of the spatial distribution of the 
heavy-metal concentrations; and on the influence of the soft data dependent on 
the global correlation with the hard data. With the 10 realizations of the 
simulated multivariate set, a “hazard” index was calculated for each pixel of 
the area, based on the simultaneous proportions (joint probabilities) of 
different levels of all metals. Finally, the intersection of the hazard map, based 
on the joint dispersion of all contaminants, with the environmental impact map 
for the different ecosystems, resulted in environmental hazard maps of the 
Guadiamar river margins. The performances of the multivariate set of co-
simulated variables was compared considering two extreme alternatives: i)  the 
soil is considered in need of treatment if all 5 heavy metals simultaneously 
exceed their concentration limit value at the same location; ii) the soil is 
considered in need of treatment if at least one heavy metal exceeds its 
concentration limit at the same location. The proposed simulation 
methodology improved the delineation of potential areas simultaneously 
contaminated with different pollutants. 
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1. INTRODUCTION

On the morning of the 25th of April 1998, the waste damp basin of the 
Aznalcóllar mine, West of Seville (South-West of Spain), containing mud 
and acid waters, suffered a rupture spilling 4 Hm3 of acid waters and 2 Hm3

of acid mud directly into the Agrio river and consecutively into the 
Guadiamar river (C.M.A, 2000). This accidental spill spread to an area of 
around 49 km2. This area, situated 60 km downstream the mine, has a great 
ecological importance because the Guadiamar river is the main hydrological 
resource of the National Park of Doñana (Biosphere Reserve, UNESCO 
1994). 

 Nowadays the evaluation and management of environmental impacts due to 
residual soil contamination, is the main concern. Despite the direct 
remediation done to the whole area, primarily through mobilization and 
excavation of the acid mud, there still is a significant quantity of residual 
contamination, which can affect negatively all ecosystems. With this study, 
we intend to characterise the spatial dispersion of heavy metals – Cu, Pb, Zn, 
Cd and As on the Guadiamar river margins, to be able to elaborate and 
create environmental hazards maps as basic tools for important decision-
making, such as the delineation of target areas for remediation or for 
additional sampling. 

2. THE DATA SET 

The study area is a 2 km2 region located approximately 10 km in the 
South of the Aznalcóllar mine. The information available was obtained 
trough a soil sampling realized in August 1999, where 80 samples were 
collected. For the purpose of this study, only the samples located inside the 
study area, i.e. 40 samples, were used to characterize spatial dispersion of 
residual contamination with heavy metals. Soil samples were collected from 
the topsoil and analytical results of Cu, Pb, Zn, Cd and As recorded in terms 
of total concentration (ppm). Figure 1 shows the position of the soil 
sampling locations, as well as the heavy metal concentrations obtained from 
chemical analyses. The global descriptive statistics are presented in Figure 2 
and the resulting descriptive statistics for each heavy metal in table 1. 

Table 1. Descriptive statistics for each heavy metal 

 Cd Cu Zn Pb As 
Min  0.5 47.0 146.0 116.0 24.0 
Max. 17.0 1074.0 4460.0 5150.0 2649.0 
Mean 3.3 242.5 1042.5 686.4 336.6 
SD 2.99 184.0 820.4 848.2 447.9 
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Figure 1. Heavy metal concentrations (ppm). 

Figure 2. Histogram and distribution function of heavy metal concentrations (ppm). 
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3. METHODOLOGY 

3.1. Co-simulation of the set of metals 

The methodology applied relies on direct sequential simulation and 
co-simulation techniques (Soares A., 2001). The multivariate set of variables 
was co-simulated using the direct sequential co-simulation technique: each 
variable is simulated based on the hard data – experimental samples – and an 
image (secondary information) given by the previously simulated map of 
another metal. 

Estimation of variograms of hard data 
Correlation coefficients between the different metals are given in Table 2. 

The high correlation values between these metals clearly reflect the common 
origin of contamination. Variograms of hard data were calculated and fitted 
with exponential models (Figure 3a). 

Simulation of the metals 
Based on the correlations between the different variables and on the 

corresponding variograms (spatial continuity), it is possible to rank the 
variables to define the sequence of metals to be simulated. 

For this study the first variable simulated was the Cd because it showed 
better spatial continuity (variogram ranges) as well as a good correlation 
with the other heavy metals (see Table 2). Cu was the next variable to be 
simulated using one simulated Cd map as soft data. This co-simulation 
process continued until the last heavy metal was simulated. The order used 
to simulate each heavy metal based on the previous variable was: Cd, Cu, 
Zn, Pb, As. 
Given the high correlation coefficients between metals and the spatial 
continuity revealed by the variograms and after some tests, a set of 10 
simulations was considered sufficient to represent the spatial uncertainty of 
those metals. Simulations and co-simulations were performed according to 
the following sequence: 

1. First, a set of 10 realizations of the first element Cd was simulated 
with direct sequential simulation. 

2. From the 10 previously simulated images, one is chosen to serve as 
soft data to simulate 10 images of the next element, Cu, using Direct 
Co-simulation. The “soft” image of Cd is chosen according to the 
better match of the basic statistics (standard deviation and mean). 
This step was repeated for the next 3 metals: Zn, Pb and As. 

 Table 3 and Figure 4 represent the global descriptive statistics and the 
histogram of the chosen images of each metal, and this can be compared 



Characterization of environmental hazard maps of metal 429 

with the correspondent statistics of hard data (Table 1 and Figure 2). The 
simulated maps show a similar concentration pattern for the different heavy 
metals (Figure 5), and reproduce quite well the variogram models. 

Table 2. Heavy metal correlation  

 Cu Pb Zn Cd As 
Cu 1     
Pb. 0.91 1    
Zn 0.97 0.88 1   
Cd 0.97 0.92 0.98 1  
As 0.91 0.99 0.88 0.92 1 

Figure 3. Spatial Variogram (omnidirectional) of a) hard data; b) one simulated image for 
each heavy metal

a)Hard data variogram  b)Variogram of simulated images 

Cd

Cu

Zn 

Pb 

As 
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Table 3. Global descriptive statistics of the chosen simulated images 

 Cd Cu Zn Pb As 
Min  0.5 47 146 116 24. 
Max. 17.0 1074.0 4460.0 5150.0 2649.0 
Mean 3.3 241.01 1038.5 692.9 349.3 
SD 3.05 181.99 787.73 856.57 440.01 
Skewness 2.3 2.4 2.1 3.0 2.8 
P95 9.1 621.7 2612.2 2092.4 1174.9 

Figure 4. Histogram and distribution function of one concentration (ppm) simulation for each 
heavy metal (soft data)

Figure 5. Simulated maps of the 5 metals. 
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3.2. HAZARD MAPS 

The aim of this study was to delineate the areas that need future remediation 
based on intervention values. The Consejeria de Medio Ambiente de la Junta 
de Andalucía (Environmental Agency of the regional government of the 
South of Spain), C.M.A, (C.M.A., 2000) defined for each contaminant four 
different remediation levels: maximum level allowed, recommended 
investigation, compulsory investigation, compulsory treatment. Hence joint 
probabilities of different metals to be simulated simultaneously, above or 
under the remediation levels, can originate hazard maps of the region. 

The study area mainly consists of agriculture soils with pH values lower 
than 7 (Table 4).

Table 4. Contamination levels proposal by C.M.A. 

PN AI

<7 >7 <7 >7 <7 >7 <7 >7

Cu <50 <100 50-150 100-300 150-300 300-500 >300 >500 >500 >1000

Pb <100 <200 100-250 200-400 250-350 400-500 >350 >500 >1000 >2000

Zn <200 <300 200-300 300-500 300-600 500-1000 >600 >1000 >1000 >3000

Cd <2 <3 2-3 3-5 3-7 5-10 >7 >10 >15 >30

As >100 >300

<7 >7

<20 20-30 30-50 >50

Agriculture Soils

Heavy metal

Maximum Level 
allowed

Recommended 
investigation

Compulsary 
investigation

Compulsory 
Treatment

Considering the thresholds: z1 (maximum level allowed), z2
(recommended investigation), z3 (compulsory investigation) and z4 
(compulsory treatment), the following joint probabilities, at a given location 
x0, can be identified with different hazard levels: 

i)  Prob {zCd(x0) < z1Cd, zCu(x0) < z1Cu, zZn(x0) < z1Zn, zPb(x0) < z1Pb, zAs(x0) < 
z1As} corresponds to the most clean hazard scenario; 

ii) Prob {zCd(x0) =< z2Cd, zCu(x0) =< z2Cu, zZn(x0) =< z2Zn, zPb(x0) =< z2Pb,
zAs(x0) =< z2As}, corresponds to the intermediate clean hazard scenario, 
meaning that all metals at x0 are lower or equal z2;

iii) Prob {zCd(x0) >=z3Cd, zCu(x0) >=z3Cu, zZn(x0) >=z3Zn, zPb(x0) >=z3Pb, zAs(x0)
>=z3As}, corresponds to the intermediate contaminated hazard scenario, 
meaning that all metals at x0 are greater or equal to z3; 

iv) Prob {zCd(x0) >= z4Cd, zCu(x0) >= z4Cu, zZn(x0) >= z4Zn, zPb(x0) >= z4Pb, zAs(x0)
>= z4A}, corresponds to the most contaminated hazard scenario. 

If we define, for example for scenario i), the following marginal 
indicators: 

otherwise

CdZxCdZif
xCd

zI
0

1)0(1
)0(1

otherwise

CuZxCuZif
xCu

zI
0

1)0(1
)0(1

otherwise

ZnZxZnZif
xZn

zI
0

1)0(1
)0(1

otherwise

PbZxPbZif
xPb

zI
0

1)0(1
)0(1
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otherwise

AsZxAsZif
xAs

zI
0

1)0(1
)0(1

 A joint indicator can be computed by the following product: 
Iz1(x0) = Iz1

Cd (x0) . Iz1
Cu(x0) . Iz1

Pb(x0) . Iz1
Zn(x0) . Iz1

As(x0)
The joint probability at x0 – corresponding to scenario i) – can be 

estimated with the 10 simulated images: 
10

1
,0110

1
01

i
ixzIxzprob Iz1(x0,i) corresponds to Iz1(x0) of simulated image i.

Equivalent joint probabilities can be computed for the other scenarios: 
probz2(x0), probz3(x0) and probz4(x0).  

Figure 6 shows the results of the proposed methodology to calculate 
hazard maps. The results showed that the first remediation level (scenario i), 
where all 5 heavy metals are jointly under the maximum level allowed, 
never occurs, which means that there is always at least one heavy metal that 
exceed the lowest threshold. Furthermore, scenario iii), where all metals are 
jointly above the remediation level, shows the highest probabilities of 
occurring. 

Figure 6. Remediaton-level probability maps: scenario 1 (maximum level allowed), 
scenario 2 (investigation recommend), scenario 3 (compulsory investigation) and scenario 4 

(compulsory treatment) 

Finally, a global hazard map was obtained by classifying each pixel in 
four defined scenarios (Figure 7). The results shows that approximately 44% 
of the study area need compulsory treatment and 40% of the study area need 
compulsory investigation (Figure 8).
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Figure 7. Global hazard map for scenario i. 

16.9%

43.5%

39.6%

Recommended investigation

Compulsory investigation

Compulsary treatment

Figure 8. Graphic showing the % of area occupied by the 4 hazard levels. 

An Alternative approach for Scenario iv – Compulsory Treatment 

 Since some European legislation impose treatment whenever one metal 
exceeds the highest threshold (compulsory treatment), an alternative for 
scenario iv was conducted: if at least one heavy metal exceeds the 
compulsory treatment threshold the pixel is considered to belong to scenario
iv, i.e., treatment is imposed to that soil, with  
Scenario iv) Prob {zCd(x0) = z4Cd or zCu(x0) = z4Cu or zZn(x0) = z4Zn or zPb(x0)
= z4Pb or zAs(x0) = z4A}.
In this alternative, scenario iv has higher probabilities of occurring in 
comparison to the other remediation levels (Figure 9). The global hazard map 
of this scenario, Figure 10, shows that approximately 72% of the study area 
need compulsory treatment and 22 % of the study area need a compulsory 
investigation (Figure 11).

Figure 9. Remediaton-level probability map for the second alternative: class 4 (compulsory 
treatment) 
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Figure 10. Global hazard map of the second alternative for scenario iv. 

21.7%

0.0% 6.4%
71.9%

Recommended investigation

Compulsory investigation

Compulsary treatment

Figure 11. Graphic showing the percentages of area occupied by the 4 hazard levels. 

3.3. ENVIRONMENTAL HAZARD MAPS 

Finally, with the hazards maps obtained for the two alternatives it is 
possible to intersect them with an environmental impact map. An impact 
map on most surrounding sensitive eco-systems, Figure 12, was made by 
C.M.A. (C.M.A., 2000). It is mainly composed by 4 different impacts levels. 
The lowest impact level (impact 2) corresponds to an extensive culture 
occupation while the highest (impact 5) corresponds to the Guadiamar river 
margins. In Figure 13 the percentage of area occupied by different impact 
levels is shown. The highest impact occupies 56% of the total study area 
while the lowest impact occupies 27% of the area.  

Intersecting the impact map with the 2 hazards maps (resulting from the 
two alternatives for the scenario iv) 23% and 36% of the highest impact area 
need treatment for the first and second alternative, respectively (Figure 14 
and Figure 15). 
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Figure 12. Impact map. 

Figure 13. Area occupied by 4 impact levels. 

Figure 14. Area occupied by 3 remediation levels for each of the different impact levels, for 
alternative 1. 

Figure 15. Area occupied by 3 remediation levels for each of the different impact levels, for 
alternative 2. 
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4. DISCUSSION AND CONCLUSIONS 

When, in soil quality evaluations, more than one pollutant occur 
simultaneously, it is necessary to determine the total area affected by any of 
the pollutants. This leads to the problem of defining the area contaminated 
by the different pollutants simultaneously. When the concentration values of 
the pollutants exceed the established intervention values a future remediation 
will be considered. 

Usually theses actions are extremely expensive and, for this reason, a 
good interpretation of the spatial dispersion of all pollutants will be reflected 
in the remediation costs. For this type of contaminations the delineation of 
the remediation/treatment areas should not be defined considering each 
pollutant separately. With the methodology presented in this paper it is 
possible to account for the uncertainties in mapping the probability that 
different pollutants are simultaneously contaminating the soil. 

Application of this methodology was made considering two alternatives 
regarding the treatment level, extreme scenario: when at least one heavy 
metal critically contaminates the soil; and, when all pollutants are 
simultaneously contaminating the soil. Depending on the aim of the soil 
quality investigation and on the costs associated to the remediation actions, 
its possible to choose between these two alternatives. But, considering that 
European legislations imposes that the treatment actions should be carried 
out as long as one metal exceeds the highest threshold (compulsory 
treatment) in order to obtain a clean and safe area, the second alternative is 
certainly more appropriated. 
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Abstract: In the exploration of spatial data it is often of interest to locate boundaries 
between homogeneous zones. We propose a method for detecting zones of 
abrupt change, i.e. zones where the data present a discontinuity or a sharp 
variation in the mean. This method is based on the interpolation of the local 
gradient and relies mathematically on geometrical properties of 2 fields. We 
focus on the implementation issues raised by this method, illustrated on a soil 
data set in an agricultural field, in the context of precision agriculture. 

1. INTRODUCTION

In many agricultural problems, it is of interest to map the zones where the 
variable under study changes abruptly. This is for example the case in 
precision agriculture, our motivating example. Precision agriculture aims at 
defining a location dependent management within a field, for nitrogen 
fertilization for example, instead of a unique management for the whole 
field. The main factor influencing the variability within a field is its soil. 
Hence, any location-dependent management first needs to delineate 
homogeneous zones. This can be done by spatial clustering techniques, but 
alternatively one can estimate the boundaries between the homogeneous 
zones which will be characterized by a sharp variation of the local average. 
We call these areas Zones of Abrupt Change (ZACs). 
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In biology, the problem of detecting ZACs was first considered by  
Womble (1951). ZACs in gene frequencies could be linked to boundaries 
between populations. The ZACs were defined as the points where the 
gradient of a single variable computed on an interpolated grid varies the 
most, for example the upper 5% tail. Several authors improved this method: 
Barbujani et al. (1989) included the direction of the gradient in the definition 
of the ZACs and Bocquet-Apple and Bacro (1994) generalized it to the 
multivariate case. This method suffers from many flaws: a constant 
proportion of pixels is selected (e.g. 5%), the interpolation is not optimal, 
and the precision of the interpolation is not accounted for. Last, the 
significance of the ZACs can not be assessed since the only possible tests in 
this approach are permutation tests. But a permutation test corresponds to the 
null hypothesis of absence of any spatial structure, which is untenable in our 
applications, see Gleyze et al. (2001). 

In this paper we propose to detect ZACs when the variable Z(x) is a 
Gaussian random field in a domain D and the boundaries correspond to 
discontinuities of the expectation. The general method, presented in details 
in section 2 is in three stages. We first interpolate the gradient using 
geostatistics. Then, in the second stage, a local test for the existence of an 
abrupt change is built. The test statistic, denoted T(x), depends on the 
observed data, their location and the covariance function of Z(x), CZ. The 
zones of abrupt change are defined as the set of points where the statistic is 
greater than a fixed level t , where t  is the (1- ) quantile of the theoretical 
distribution of T. Under the null hypothesis of no discontinuity, the ZACs 
should be small and randomly scattered in the study area. On the contrary, if 
there is a discontinuity, we should expect large ZACs organized along the 
discontinuity. So, in the third stage, we test the significance of each ZAC 
using the theoretical distribution of its size under the null hypothesis. In 
section 3, several implementation issues are discussed. The method is then 
applied in section 4 to a soil data set in an agricultural field, showing that the 
field should be subdivided into two homogeneous zones. 

2. THE METHOD 

2.1 Variograms of dioxins for both lichens  

Let Z(x) be a centered, stationary, Gaussian random field defined on a 
fixed domain D of R2 and Z=(Z(x1),..., Z(xn))

t be a sample of Z(x) at x1,...,xn.
The optimal predictor at an unsampled location x is the simple kriging, 



Detecting zones of abrupt change: application to soil data 439 

1( ) ( ) , (1)tZ x C x ZC

with C(x)=(CZ(x-x1),...,CZ(x-xn))
t and C=E[ZZt] the matrix of covariance 

between the data. For sake of simplicity, we assume that the covariance 
function CZ(h) is continuous everywhere and that it is infinitely 
differentiable for all |h| >0. This is for example the case for the exponential 
covariance function, but it does exclude the spherical covariance function. 
Under this regularity assumption, the estimator of the gradient is the gradient 

of
^

Z (x):

1( ) ( ) ( ( )) , (2)tW x Z x C x ZC

where C(x) is the gradient of C(x).

2.2 Definition of the zones of abrupt change 

We consider that there is an abrupt change at a point x of D if the radient 
at x is “large”. Thus, a test statistic for defining what “large” means is 
required. Since E[ (x)]=0, the variance-covariance matrix of (x), denoted 

(x), is 

1( ) [ ( ) ( ) ] ( ) ( ) (3)t tx W x W x C x C xE C

The test statistic is defined by  

1( ) ( ) ( ) ( ). (4)tT x W x x W x

At the point x the statistic T(x) compares a quadratic form of the estimated 
gradient to its variance and a standard result of statistics states that T(x) has a 
marginal 2(2) distribution. We define a local test for deciding if a point x
belongs to a zone of abrupt change by comparing the null  hypothesis  H0(x)
“E[Z(x)] is continuous at x” versus H1(x) “E[Z(x)] shows a discontinuity at 
x”. The null hypothesis is rejected if T(x) t where t  is the (1 – ) quantile 
of the 2(2) distribution. 

In practice, this procedure is applied at the nodes of a grid superimposed 
on the domain D. For a confidence level , the set of the grid nodes whose 
statistic is above t defines the zones of abrupt change. If the field is 
stationary, we expect the ZACs to be randomly located, or non existent. On 
the contrary, if there is a discontinuity, ZACs are likely to be structured 
along the discontinuity. 
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2.3 Statistical significance of the ZACs 

Once the zones of abrupt change have been estimated, we must test their 
statistical significance. Each connected component of the ZACs is tested in turn. 
We build a test to reject H0 “the connected component is from a stationary 
random field” vs. H1 “the connected component  is from a random field showing 
a sharp variation”. The test is based on the size of the connected component 
which is compared to the theoretical distribution of the size of a connected 
component belonging to a stationary random field. 

ZACs are related to the theory of the excursion sets of 2 random fields 
(Adler 1981, Aronowich and Adler, 1988, Worsley 1994, Cao 1999). For t

, i.e. for a confidence level  0, it can be shown that the size of a connected 
component, say C0, of the excursion set is related to the local curvature of T at 
the maximum, say x0, in this connected component. Allard et al. (2002) have 
shown that under some regularity conditions, the following convergence in law 
holds: 

1/ 2
0 ( ) ( ) , (5)Lt S Edet

as t , where S0( ) is the area of C0, ^ is the 2 X 2 matrix of the curvature 
of T(x) at x0 in C0 and E is an exponential random variable with expectation 2, 
independant of T. ^ depends only on CZ and the sampling pattern. A more 
detailed presentation of this result with explicit computation of ^ can be found 
in Allard et al. (2002). From equation (5) a p-value of each connected 
component can be computed: 

1/ 2
0 ( )det( )

exp . (6)
2

t S
p

The significance of each connected component is assessed by comparing this 
p-value to a confidence level, for example 0.05. If p is above this confidence 
level, it is considered as coming from a stationary random field (H0 is not 
rejected) and the connected component is not significant. On the contrary, if p is 
below the confidence level, it is considered as significant

3. IMPLEMENTATION ISSUES 

In practice, the method is run on a grid. On each grid node [i,j], the gradient 
[i,j], the matrix [i,j] and the field T[i,j] are computed. Then for a confidence 

level , the set of grid nodes whose statistic T[i,j] is above the (1- ) quantile t
of a 2(2) distribution define the ZACs. For each connected component of the 
ZAC, the p-value is then computed according to (6). When implementing this 
method, several parameters must be chosen: the mean for centering the variable, 
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the covariance function, the discretization of the grid and the level . Allard et 
al. (2002) carried out a simulation study to address these issues. A vector of 100 
randomly located standard Gaussian random variables with an exponential 
covariance function was simulated on a unit square. A discontinuity was 
introduced along the line x1=0.4 by adding a constant k to all samples with 
x1<0.4, from k=0 (which corresponds to the null hypothesis: absence of 
discontinuity) to k=3.

The choice of the parameter  is the result of a trade-off between the 
accuracy of equation (5) and the power of the method. On the one hand, the 
convergence in law holds for  0, but on the other hand, a good detection of 
the existing discontinuities for low to moderate discontinuities is achieved if  is 
not too low. The simulation study showed that a good detection rate with a 
reasonable amount of false positives is achieved for  = 0.005 for high k (k
2.5). A slightly higher value of  (e.g.,  = 0.01) is preferable for low to 
moderate k (k < 2.5). 

Equation (6) has been established on the continuous plane, not on a grid. The 
discretization has many effects: the local maximum is not correctly located and 
hence the curvature at the maximum is incorrect (it is usually underestimated), 
the size of the connected component is approximated and the connectivity of 
large clusters depends very much on the discretization (small clusters can be 
merged into a single one at a different resolution, or the contrary). The 
simulation study has shown that to lower values of  should correspond a higher 
discretization, which ensures that small connected components are detected. 

In this method, the covariance function is assumed to be known. But in 
practice it is not the case, and it needs to be estimated. So, the robustness of the 
covariance estimation must be analyzed. For the simulation exercise described 
above, the method has been applied with three misspecified covariances: two 
exponential covariances with the parameter being divided or multiplied by two, 
and one spherical covariance with the same practical range. When the range is 
underestimated fewer ZACs near the discontinuity (“true” ZACs) and slightly 
more ZACs away from it (“false” ZACs) are detected. When the range is 
overestimated, more of both ``true'' and ``false'' ZACs are detected, specially in 
the case of “true” ZACs with intermediate values of k. On average, the ZACs are 
smaller (resp. larger) when the range is under- (resp. over-) estimated.  
Increasing the range of the covariance function is equivalent to increasing the 
regularity of the random function Z, leading ultimately to more rejection of H0 in 
the presence of a discontinuity. With the spherical covariance function, ZACs 
are less often detected and the average size is similar to the baseline case.
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4. APPLICATION TO SOIL DATA 

4.1 The data 

In order to better manage production in quality and in quantity, and minimize 
ground water pollution, precision agriculture is developing methods for applying 
“the right dose at the right place” of mineral nitrogen fertilizer. For this purpose, 
the spatial variability of the soil characteristics must be carefully assessed. In 
particular, it is of interest to delineate homogeneous zones and to estimate zones 
where these characteristics change abruptly. The data were collected in an 
agricultural field (10 ha) in Chambry, next to Laon in Northern France. The soil 
water content (QH) and the soil mineral nitrogen (QN = NH+

4 + NO–
3) were 

measured on soil cores up to 150 cm. The sampling scheme (Figure 1a and 1b) 
included a regular grid with 75 nodes (distance between nodes 36 m) and two 
sampling crosses, with 17 and 19 nodes, used for the short distance estimation of 
the variogram. Similar data are presented in Mary et al. (2001), where a more 
detailed presentation, including a statistical analysis can be found. The 
histograms of the soil variables are shown in Figure 1c and 1d. A global 
variogram is computed on the whole field and exponential models were fitted. 
The estimated parameters are: range=110 m and sill=214 (kg/ha)2 for QN and 
range=100 m and sill=3200 (mm)2 for QH (Figure 2a and 2d). For visualization 
purpose, Figure 1a and 1b show the simple kriging interpolation of both 
variables (QN on the left and QH on the right). For both variables, it seems to be 
a transition for y  620 m. 

4.2 Running the method in practice 

A first run 
The field T(x) is computed according to (4). Potential ZACs are defined as 

the set of pixels for which T t . An exploratory analysis has revealed that the 
standardized difference of means below and above y = 620 m is 1.2 and 2 for 
QN and QH respectively. Hence, considering the discussion in section 3, the 
level  = 0.01 (i.e. t  = 9.21) is considered as appropriate to perform the test and 
the p-values are compared to the standard level of confidence 0.05. On Figure 
2b and 2e the pixels [i,j] (of a 31 X 49 grid with mesh size 10 m) where the 
statistic T[i,j] is above this threshold are highlighted. Black clusters are 
significant ZACs, where as grey clusters are not significant. For QN, one large 
ZAC is detected at the top of the image (p = 5.5 10–13) and a smaller one is 
visible where the lower sampling cross is located. This last one should not be 
considered as physically interesting because it mainly results from outlying data 
in the sampling cross. In addition, it does not really define a  ZAC but rather a 
“hot spot” at a scale well under any precision agriculture management scale. For 
QH, there are two ZACs, one corresponding to the limit y = 620 m already 
mentioned (p = 9.3 10–7) and one located on the lower sampling cross (p = 3.2 
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10–15). For a better visualization of the picture, ZACs are also depicted at the 
higher level  = 0.05 (i.e. t  = 5.99) on Figure 2c and 2f (but the test is still 
performed at the level  = 0.01). 

Figure 1. Simple kriging estimate and histogram of QN (left) and QH (right).

Improving the power 
The analysis reported in the previous paragraph has shown that the hypothesis 

of no ZACs should be rejected. For QH an horizontal ZAC around y = 620 m 
was visible and for QN a non significant ZAC was visible. The method 
presented in Section 2 is exact under the null hypothesis i.e. in absence of 
discontinuities. In presence of a discontinuity however, we face two problems: 
the centering of the variable and the estimation of the variance. In the case of a 
bimodal histogram (see Figure 1c and 1d), we considered that the data should 
not be centered around the overall average, but rather around the principal mode. 
This does not alter the estimation of the variogram, but if the variable is not 
correctly centered, the simple kriging estimation of the variable and of the 
gradient is incorrect, leading to a non centered 2 distribution for T(x). Note that 
this could be corrected with an ordinary kriging version of the method, yet to be 
developed. The second problem is more serious. The experimental variogram 
will pool all the data, resulting in a higher variance and ultimately in a loss of 
power. Indeed, T(x) is proportional to –2, where 2 is the sill of the variogram 
(the interpolated field (x) does not depend on 2 and the covariance matrix (x)
is proportional to 2). Hence a higher variance leads to lower values of the field 
T(x) and to smaller ZACs. To correct this over-estimation of the variance, the 
variogram was recomputed such that no pairs of points could intersect the line y
= 620 m. The resulting variograms are depicted Figure 3b and 3d. The ranges 
are much shorter (30 m and 50 m for  QN and QH) and the sills lower (110 
(kg/ha)2 and 1700 (mm)2), illustrating the bias introduced by the existing ZAC 
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in the estimation of the variogram. The new ZACs are depicted Figure 3b, 3c, 3e 
and 3f. Clearly, they are much more visible. This is particularly striking for QH, 
where a clear separation between the upper and the lower part of the field is 
visible. For QN a sharp variation is only detected on the left-hand side of the 
field. Looking back carefully at the image on Figure 1b, one can see that the 
variation is smooth in the right-hand side of the field and that there is no zone of 
abrupt change to be detected. 

Robustness analysis 
In the light of the general discussion of Section 3, the sensitivity of our 

method is explored, with respect to the discretization and the covariance 
estimation. Table 1 reports the number and the size of all connected components 
(significant and non significant) for various mesh size (from 5 X 5 m2 for a 63 X 
98 grid to 20 X 20 m2 for a 15 X 24 grid). One can see that the discretization has 
only minor effects on the presence and total area of the significant ZACs. There 
is one exception however: for QH when changing from the coarser grid to the 
medium grid, one non significant ZAC is merged with a significant one, 
increasing its size from 9,200 m2 to 11,100 m2. As the grid gets finer, there are 
in general less non significant ZACs, in particular for the lower level  = 0.01, 
and more significant ones. This is due to the combination of two effects: first, as 
the discretization effect increases, non significant connected components can 
become significant, because the maximum is more precisely located and hence 
the determinant of ^ is larger. Secondly, non significant connected components 
are merged to significant ones, thereby increasing their area. These two effects 
are clearly visible on Figure 4 where ZACs are depicted for QN at the level  = 
0.01. One can notice that the 31 X 49 grid is a sufficiently fine to capture the 
main ZACs, whereas the coarser grid is not. 

As already mentioned in Section 3, the method is mathematically correct if 
the covariance is known. But we only have an estimation of the covariance 
function. Therefore the method was run with different range parameters (  30%) 
and with a spherical covariance with the same practical range. Table 2 reports 
the number of significant (and non significant) ZACs, along with their total area. 
As the range increases, the area of the ZACs increases, but the number and the 
area of non significant ones decrease. This is to be related to the results of the 
simulation study reported in Allard et al. (2002). Increasing the range amounts 
to increasing the alleged regularity of the variable. Thus T(x) is increased 
(because (x) is decreased), resulting in larger clusters. Since the p-value of a 
cluster, as computed in equation (6), decreases when its size increases, more 
connected components are found to be significant as the range increases. The 
results with a spherical covariance function with the same practical range are 
very similar. We also checked graphically that the same ZACs were detected for 
all covariance functions. Only their size changed with the covariance function. 
Hence the method is found to be quite robust with respect to the covariance 
function.
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Figure 2. Global estimation of the ZACs for QN (upper row) and QH (lower row). Fitted 
variogram, detection of the ZACs for  = 0.01 and representation of the same for  = 0.05. 

Figure 3. Estimation of the ZACs with the corrected variogram, as in Figure 2. 

Table 1. Influence of the discretization and the level  on the number and  total area  (m2) of 
the ZACs. 
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Figure 4. Non significant ZACs (in grey) and significant ZACs (in black) of QN at the level 
= 0.01 for three discretizations: left 15 X 24, middle 31 X 49 and right 63 X 98. 

Table 2. Number of ZACs and their total area (m2) for different   covariance functions (  = 
0.01).

4.3 Results

A first ZAC is detected for both variables. It runs horizontally for y  620 m 
through the whole field for QH and is only visible on the left hand-side of the 
field for QN. On the right-hand side the transition is smooth, and hence cannot 
be detected as a significant ZAC. This ZAC is inagreement with the qualitative 
knowledge the soil scientists had of this field and is recognized as a boundary 
between two soil types. 

A second ZAC appears at the bottom of the field for both variables. It is due 
to one of the sampling crosses. In this sampling cross there are a couple of very 
close samples with high differences, giving a large but localized gradient. For 
this reason, and because this ZAC defines an area at a scale below the precision 
agriculture management scale, it should not be considered as meaningful in 
precision agriculture, although being statistically significant. 

There is a third ZAC existing for QN at the top of the field that was not 
related to a transition between soil types by the soil scientists prior to this 
analysis.

Only the first ZAC is really meaningful for precision agriculture. It is present 
for both variables and for all discretizations and range parameters that we could 
test. Hence we conclude that this field can be subdivided into two zones, 
approximately separated by the line y = 620 m.
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5. CONCLUSION AND DISCUSSION 

About the method 
A new method has been proposed for estimating and testing zones of abrupt 

change (of the local mean) in the plane. It is based on an analysis of the 
interpolated gradient, and relies mathematically on properties of the geometry of 

2(2) fields. Zones of Abrupt Change are defined as the points of the 2(2) field 
above a threshold t  which is the (1 – ) quantile of a 2(2) distribution. This 
level  must be carefully chosen. On the one hand, the mathematical results 
require that  0, but due to the discretization,  should not be too high to be 
able to detect the clusters. It was found that for a reasonable discretization,  = 
0.01is a good trade-off. 

Our method requires centered data and the knowledge of the variogram. We 
have found that it is quite robust with respect to the range parameter, but is 
sensitive to its sill. Under the null hypothesis, the procedure is correct, and there 
will be no problem. But under the alternative hypothesis of the presence of a 
discontinuity (or a sharp variation of the mean), we suggest an iterative 
procedure. ZACs are first detected with a global centering and a global 
variogram. If significant ZACs are detected, the variogram is re-estimated with 
the pairs of points that do not intersect them. This will result in a new variogram 
with a lower sill. ZACs are then re-estimated. This procedure is repeated until 
convergence. In our application, we reached convergence in one iteration. Note 
that this iterative procedure remains correct under the null hypothesis. 

The method also relies on a Gaussian assumption of the variable Z(x). It is 
well known in geostatistics that this assumption can not be tested and is usually 
inadequate. We did not explore its robustness with respect to the Gaussianity. 
On the soil data, the test performed quite well however. 

About detecting ZACs 
Detecting Zones of Abrupt Change is different than estimating (and testing) a 

global trend. In our method a global trend or a smooth variation will not be 
detected, as it is the case for QN on the right-hand side of the field. Only sharp 
local variations clustered in large zones can be detected. 

There is a duality between the estimation of homogeneous zones and the 
estimation of their boundaries. Estimating homogeneous zones is a problem that 
can be addressed using clustering techniques, as in Allard and Monestiez (1999), 
and Allard and Guillot (2000). Clustering the data in groups always leads to 
boundaries between the groups. But in spatial clustering techniques, we do not 
have rules for selecting the number of groups. Spatial clusters do not always 
necessarily define ZACs along their boundaries if the transition is smooth. 
Conversely, ZACs do not always define spatially well separated groups. This is 
similar to a landscape. In a given domain, a cliff might be present, but not across 
the whole domain because on both ends of the cliff the landscape is smooth.
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Abstract: Environmental pollution by heavy metals is a red-hot issue. It is being studied 
from many points of view, as it is not only an environmental problem but also 
a public health matter. The effect of pollution by heavy metals can be assessed 
directly, that is measuring heavy metal concentration in soils, or using indirect 
methods, that is measuring heavy metal contents on living beings of regional 
ecosystem, in particular on plants. One of the organisms that have proved to 
be the most faithfully and useful to do so are moss. So, heavy metal 
environmental pollution can be studied by taking moss samples and measuring 
their heavy metal contents. The aim of this work is to show the use of 
geostatistical tools in environmental pollution analysis applied to a case study 
of environmental pollution by heavy metals in Galicia (north west of Spain). 
To do so, two different information in that zone are available: on one hand, 
measures of heavy metal concentration in moss (Scleropodium purum), whose 
location points are known, also their level. On the other hand, situation of 
polluting sites (industrial areas and towns) and their classification taking into 
account their polluting capacity. This information allows assessing not only 
for the regional pollution, but also for its scattering. From this and using 
geostatistical tools, sampling network is being improved. Data set consists of 
71 sample points where concentration of ten elements (Al, As, Co, Cr, Cu, Fe, 
Hg, Ni, Pb and Zn) is measured. For each of them classical statistical analysis 
is done. Furthermore, spatial variability is studied using a new methodology 
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based on Fast Fourier Transform (FFT), which allows finding covariance 
matrix using all variables at the same time. FFT methodology improves the 
classical and tedious geostatistical methodology based on variogram and 
cross-variogram modelling to find data spatial variability. Finally contour 
maps of environmental pollution by heavy metals in Galicia are presented.  

1. INTRODUCTION AND OBJECTIVES 

Galicia is a region located at the northwest of Spain. It is about 29434 km2

large. It ranges, approximately, between 7º and 9º western meridians and 40º

and 42º northern parallels. The outline of this region is gently undulated, 
with hills and valleys; this smoothness defines its landscape with a series of 
high and low regions at several levels. So Galicia’s landscape is full of high 
and low areas. The highest areas are in its east border.  

Forests, cover the most part of Galicia. The most widespread trees are 
oak, chestnut, birch, cork and ilea. Since a few years ago there are also pine 
and eucalyptus. Another interesting aspect in Galicia is that their towns are 
small and scattered all over the whole country. Recently some of the towns 
have grown due to the enlargement of some industrial zones. The main 
industrial activities are cars (located at the north), woodwork, textiles, and 
craftsmanship.

As it is well known, the increasing of industrial activities implies a 
pollutant impact on the environment. Nevertheless, our society demands a 
quality of life compatible with technical progress, without renouncing to it. 
One of the most important contributors to environment pollution, caused by 
industry, is the presence of heavy metals in the air, which fall down when it 
rains and then are incorporated by living beings. In this article the presence 
of heavy metals from industrial origin are studied; in fact samples of them 
are measured on some moss: Scleropodium purum (Hedw.) Limpr. The 
metals that are measured are aluminium, cobalt, chromium, copper, iron, 
mercury, nickel, lead and zinc, and also the metalloid arsenic.  

Accumulation of heavy metals over large areas and long periods causes 
damage to living organisms and it must be carefully controlled; it is also 
important to know the effects of these contaminants. To assess the pollution 
caused by metals there are two different methods: the direct one, which 
consists of measuring their concentration in the air or in soil, and the indirect 
one, which consists of studying their presence in some living beings. If 
previous monitoring is correctly done, indirect method can be useful in 
environmental assessment, because it is easiest and cheapest. This 
monitoring has been done in Galicia with moss (see reference 2).  
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The aim of this work is to build up contouring level maps of pollution by 
heavy metals using geostatistical methods; to do so, we take into account 
measures in several moss samples. The method used is kriging on a regular 
grid with correlogram tables obtained by applying the Fast Fourier 
Transform (FFT) methodology (see reference 5). 

2. DATA SET: DESCRIPTION AND ANALYSIS 

Full database can be found in our website. Professor J.A. Fernández, from 
Universidad de Santiago de Compostela, has supplied chemical analysis of 
71 samples. Data consists on concentrations (ppm) of all ten (see above) 
elements. The number of sampling sites was the equivalent to a density of 
2.6-samples/1000 km2, higher than the density recommended for such 
studies at a regional scale. Sampling was carried out in 1995 (April-July) and 
covered almost all Galicia, with a higher density at most industrial areas. 
The concentration of Al, Co, Cr, Cu, Fe, Ni, Pb and Zn in moss extracts were 
determined using flame absorption spectrophotometry and Hg and As were 
determined using atomic fluorescence. Figure 1 shows a scatter plot of the 
location points; the co-ordinates are UTM scaled and in kilometres. 
Sampling points were taken at different levels, between 72 m and 1014.5 m 
high. In the light of sampling points and Galicia’s dimension, a kriging grid 
of 9x9 nodes has been built. Distances between nodes are 21x23 km.  

Figure 1. Scatterplot of sample locations. 

To be able to carry out a bidimensional geostatistical study, we tried to 
find out a possible functional relation between data and altitude. The 
conclusion is that this dependence does not exist. Figure 2 shows, as an 
example of that, the scatterplots for Al and Cu concentration versus altitude 
(ALT); this figure shows also the regression line, which is quite horizontal. 
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The corresponding hypothesis test shows that it is not possible to reject the 
fact that correlation between data and altitude does not exist. 

Figure 2. Scatterplots: Al (a) and Cu (b) versus altitude (ALT). 

Table 1 shows the average concentration distributed at different levels, at 
altitude intervals of 100 m; the ALT values are the averages in the 
corresponding interval. In Table 2, there is a statistical descriptive analysis 
of data. In Table 3, correlation coefficients of the ten elements and altitude 
are shown. Finally, in Figure 3 there are shown the variable histograms 
(element concentration). For additional information about this data set, see 
reference 2. 

Table 1. Concentration averages (ppm) at different altitude levels (m) for each element.
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Table 2. Descriptive statistics of sample data set (ppm). 

Table 3. Correlation coefficients of elements concentration and altitude (ALT). 

3. GEOSTATISTICAL ANALYSIS: POLLUTION MAPS 

The first step in the geostatistical study, which is the most important goal 
of this work, is to calculate the data Normal Score Transform (NSCT), 
according to the GSLIB procedure (see reference 1). In this transformation, 
as Al and Fe do not have a Gaussian cumulative distribution function, some 
adjustments of their ties had to be done. Parameters used in this program are 
shown in Table 4. 

The second step, which is the equivalent to calculate and model 
variograms in classical geostatistics, is the building of the initial correlogram 
matrix using Fast Fourier Transform (FFT) following the methodology 
established by Yao and Journel (1998) and Ma and Yao (2001); see 
references 5 and 4. This matrix consists of a 10 10-block matrix, which has 
in its diagonal the auto-correlations and the remaining the cross-correlations. 
So, we obtain 55 different correlation maps. The number of grid points in 
each map has to be of 1+2n; in this case n = 5, that is, we have a 33 33 
element matrix. The correlations have been interpolated using a size 10 
smooth window and then multismoothing using all correlations and variables 
with size 3 maximum half window has been carried out to have the final 
correlation. Some of those 55 maps are hanged at our website. 
Corresponding parameters are shown in tables 5, 6 and 7. 
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Figure 3. Histograms of elements’ concentration (ppm): (a) Al, (b) As, (c) Co, (d) Cr, (e) Cu, 
(f) Fe, (g) Hg, (h) Ni, (i) Pb, (j) Zn. 

The third step is to krige on a regular grid using those correlation maps. Kriging 
has been done using the program KB2D modified by Hervada-Sala and Jarauta-
Bragulat (2001) see reference 3. After kriging, coordinates must be added taking in 
mind grid parameters; they are shown in tables 8 and 9. At last, back transformations 
of all results must be computed to recover original space and units. Parameters for 
that back transformation are shown in Table 10. Figure 4 shows the contour maps 
obtained from the kriging grid with the right back transformed values. 



Optimal regional sampling network to analyse environmental pollution 455 

(g) 

HG

,200

,188

,175

,163

,150

,138

,125

,113

,100

,088

,075

,063

,050

,038

,025

,013

0,000

Histograma

F
re

cu
e

n
ci

a

30

20

10

0

Desv. típ. = ,03

Media = ,041

N = 71,00

(h) 

NI

5,00

4,75

4,50

4,25

4,00

3,75

3,50

3,25

3,00

2,75

2,50

2,25

2,00

1,75

1,50

1,25

1,00

,75

,50

Histograma

F
re

cu
e
n
ci

a

14

12

10

8

6

4

2

0

Desv. típ. = ,85

Media = 1,82

N = 71,00

(i)

PB

60,0

55,0

50,0

45,0

40,0

35,0

30,0

25,0

20,0

15,0

10,0

5,0

0,0

Histograma

F
re

cu
en

ci
a

50

40

30

20

10

0

Desv. típ. = 8,64

Media = 5,8

N = 71,00

(j)

ZN

120,0
115,0

110,0
105,0

100,0
95,0

90,0
85,0

80,0
75,0

70,0
65,0

60,0
55,0

50,0
45,0

40,0
35,0

30,0

Histograma

F
re

cu
e
n
ci

a

10

8

6

4

2

0

Desv. típ. = 18,14

Media = 58,7

N = 71,00

Figure 3. (Cont.). 

Table 4. Parameters for NSCORE. 

molsagal.dat                   \file with data 
13  0                               \columns for variable and weight 
-900   900                       \trimming limits 
0                                     \1=transform according to specified ref. dist. 
hist1.out                         \file with reference dist. 
1   0                                \columns for variable and weight 
nsgal10.dat                     \file for output 
nsgal10.trn                     \file for output transformation table
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Table 5. Parameters for CORRMAP. 

molsagal.dat                                  \file with data 
10 4 5 6 7 8 9 10 11 12 13            \number of variables: column numbers 
-999 999                                        \trimming limits 
0                                                     \1=regular grid, 0=scattered values 
33   33                                            \if =1: nx,     ny 
1 1                                                  \xsiz, ysiz 
1 2                                                  \if =0: columns for x,y coordinates 
corgal                                             \file for correlogram output 
16 16                                              \nxlagl, nylag  
5250 5750                                      \dxlag, dylag 
1 1                                                  \xtol, ytol (in the grid unit) 
1                                                     \minimum number of pairs 

Table 6. Parameters for INTPMAP. 

10                                   -number of variables 
33 33                              -num. of nodes in x and y directions 
corgal                             -file with sample corr 
intpgal                            -output file with interpolated correlogram 
indbg                              -debug file 
10                                   -smooth window 
0.1 0.01                          -ratio of the inner and outer radius of fan 
4

Table 7. Parameters for MULTSMTH. 

10                                   -number of coregionalized variables 
33 33                              -number of nodes in x and y dir. 
intpgal                            -input file with original corr.map 
mapagal                         -output file of permissible corr.map 
3                                     -maximum half smoothing window size 
0                                     -minimum number of data for smooth.
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Table 8. Parameters for KB2D. 

molsagal.dat                           \file with data 
1   2   4                                    \columns for X, Y, and variable 
-999 999                                  \trimming limits 
3                                              \debugging level: 0,1,2,3 
kb2d.dbg                                 \file for debugging output 
krigal01.out                             \file for kriged output 
9 300   21000                           \nx,xmn,xsiz 
9 550  23000                            \ny,ymn,ysiz 
1 1                                            \x and y block discretization 
1    8                                         \min and max data for kriging 
2.11e4                                      \maximum search radius 
1    2.302                                  \0=SK, 1=OK,  (mean if SK) 
mapagal.1                                 \cov file 
31 31 

Table 9. Parameters for ADDCOORD. 

krigal10.out                                 \file with data 
krigal10.dat                                 \file for output 
1                                                  \realization number 
9 300    21000                             \nx,xmn,xsiz 
9  550   23000                             \ny,ymn,ysiz 
1      1     0                                   \nz,... 

Table 10. Parameters for BACKTRANS. 

Krigal10.dat                                     \file with data 
4                                                       \column with Gaussian variable 
-900 900                                           \trimming limits 
bacgal10.out                                     \file for output 
nsgal10.trn                                        \file with input transformation table 
31.20 117.7                                       \minimum and maximum data value 
1    0.05                                             \lower tail option and parameter 
1  2                                                    \upper tail option and parameter 

4. CONCLUSIONS

The main conclusions of this work are the following: 
1) It is possible to improve the statistical analysis of environmental 

pollution by heavy metals in Galicia done in 1, using a two-dimensional 
geostatistical analysis. 
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2) Sample density used in this study in not enough to reflect variability of 
environmental pollution, due to geography of Galicia; it is not possible 
to employ parameters fitted for a regional scale in that case. 

3) Great problems arise with the use of classical geostatistical tools, based 
on variograms and cross variograms modeling. However, the use of 
modern FFT techniques allows for finding the full correlogram maps 
and so it is possible to krige adequately on a regular grid. 

4) Finally, it has been possible to build contouring maps of all variables 
that reflect quite adequately the distribution and concentration of heavy 
metal pollution. This allows the design of a better sampling grid to 
control more accurately heavy metal pollution in that region. 
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Figure 4. Contour maps of kriging results: (a) Al, (b) As, (c) Co, (d) Cr, (e) Cu, (f) Fe, (g) Hg, 
(h) Ni, (i) Pb, (j) Zn. 
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Figure 4. (Cont.). 
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Abstract: Sampling of polluted sites often leads to inaccurate estimates, particularly 
because of the small number of samples, the importance of sampling errors 
and the high spatial variability at small distance. Auxiliary information like the 
history of the site or qualitative measurements are of interest to improve the 
quality of the grade estimates. The relationship between grades and soils 
information (presence of coal tar, smell, clay...) are examined on a former 
coking plant, polluted by PAH (Polycyclic Aromatic Hydrocarbons). A 
sensitivity analysis shows the utility of this auxiliary information known at 
additional points compared to the univariate kriging of the grades. Delineation 
of the zones to remediate is frequently carried out by selecting the areas where 
the estimated grades exceed the chosen remediation grade. If the estimation is 
subject to large uncertainties, this selection may generate bias. Estimation of 
the probability that the true grade is greater than the remediation value makes 
it possible to take into account the uncertainties associated to the estimated 
grades. Moreover, it is necessary to specify the support to be retained for this 
selection, which differs generally from the support of the samples. Neglecting 
this support effect leads to bias in the calculation of the soil volumes to 
remediate, as the proportion of the values exceeding a given grade varies with 
the support size (samples, blocks of various sizes). In this paper, conditional 
expectation and disjunctive kriging are compared for the estimation of the 
probability to exceed a threshold on blocks. The evaluation of polluted sites is 
then improved using a consistent methodology. 
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1. INTRODUCTION 

Nowadays, the stake of site investigation and remediation is high, due to 
the number of polluted sites, the sanitary risks they might represent and the 
high remediation costs. In France, site investigation is based on the 
estimation of the pollutants grades and the delineation of polluted areas. At 
this level, any error may lead to serious consequences, in sanitary and/or 
financial terms. However, despite the technical and financial investments, 
these estimations are often empirical. The knowledge of the pollution is 
usually derived from the historical information (often incomplete), which is 
occasionally verified by a few samples. Consequently, the number of soil 
samples and the resulting analyses of pollutants grades are usually scarce. In 
addition, a large grade variability is classically observed, even at small scale. 

So, in order to improve the knowledge of the pollution without increasing 
too much the costs, there is an important need of additional information: 
historical information, organoleptical measures and soils information, or 
their combination. Besides, other pollutants easier to sample and analyze, or 
semi-quantitative in situ measures, might be of interest. The choice of a 
relevant auxiliary variable is of importance. Then, a modelling of the spatial 
relationship between the pollutant and the auxiliary variables is necessary. 

Before site remediation, it is important to know which areas have to be 
treated depending on the chosen level of intervention. To achieve this task, a 
method consists in selecting the estimated values exceeding the intervention 
level by thresholding the grade estimate. In the case of an inaccurate 
estimate, it is well known that this kriged map excessively smoothes the 
always existing local variability that scarce data do not allow to reproduce. 
Therefore, using this kriged map to delineate polluted areas would 
potentially lead to an important bias. In order to take into account the lack of 
precision of kriging, it is useful to add to this estimate the probability that the 
true (unknown) grade exceed the intervention level. This probability will 
give access to the selection of areas where the pollutant grade exceed the 
intervention level, while knowing the risk to leave in place grades that are 
above the level (a risk which always exists). 

Although frequently used, we will not discuss non parametric methods 
such as indicator kriging, due to the loss of information they imply, and the 
lack of consistency when considering successively several indicators. 
Indicator cokriging aims at minimizing the previous drawbacks by 
considering simultaneously the indicators at several cut-off values 
(Goovaerts, 1997, p.297). The larger the number of indicators, the smaller 
the loss of information, but also the heavier the modelling effort, as we need 
to model the covariance and cross-covariance functions of all the indicators 
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(except is we assume an intrinsic correlation model, and turn to methods like 
Median Indicator Kriging). 

Furthermore, the selection of polluted areas is usually performed on 
blocks consistent with the remediation management unit. The support effect 
implies that the proportion of blocks exceeding an intervention level varies 
with the size of the blocks. Moreover, the probability of a block grade to be 
above the threshold differs from the proportion of points within the block 
that exceed the threshold. Therefore, exceeding probabilities over blocks 
cannot be derived from punctual probabilities, and a consistent change of 
support model is necessary, if one wants to avoid the computation of 
simulations. To illustrate the impact of this support effect, the probability 
that a pollutant grade exceeds 10 ppm is computed by conditional 
expectation (CE) within a discrete gaussian model (see below for 
presentation of the case study, and theoretical details). This probability is 
estimated both punctually and over 5x5 m blocks. Figure 1 shows how the 
modelling of the support effect affects the probability estimates. The 
dispersion model tends to: 
– increase the probabilities on blocks close to the ones containing large 

data values, 
– decrease the probabilities on blocks close to blocks containing small 

values, 
excepted for the blocks containing data. For the latter, whereas the punctual 
probability is equal to 0 if it coincides with a data inferior to the threshold 10 
ppm, this probability is equal to 1 for a data larger than the threshold. 
Consequently, taking into account the support effect for these blocks 
sensibly changes the estimated probabilities, and therefore the delineation of 
polluted areas, and the remediation cost. 

Figure 1. Scatter diagram between probability estimates to exceed 10 ppm of BaP computed 
by CE punctually (abscissa) and on 5 x 5 m blocks (ordinates). 
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In this context, the objective of the paper is firstly to discuss on a real 
case study the choice of an auxiliary variable and its interest. Then, when the 
goal is to obtain a probability map, we present and discuss from a practical 
point of view the pros and cons of conditional expectation and disjunctive 
kriging. These efficient estimation tools avoid the computation of 
conditional simulations, which could become prohibitive when dealing with 
large fields finely discretized. 

2. CASE STUDY 

We are interested in the soil pollution by Polycyclic Aromatic 
Hydrocarbon (PAH) compounds on a former coking plant. We focus in this 
paper on the benzo(a)pyren (BaP), a five cycles non volatile, non soluble and 
highly carcinogenic PAH. 52 points have been sampled on a main regular 
square grid of 10 x 10 m. The mean BaP grade equals 37.8 parts per million 
(ppm; S.I. units: mg kg-1) with a standard deviation of 96.2 ppm. Regarding 
the historical information, two pools of coal tar are located on the sampled 
area; they have been excavated and one of them, located in the south, has 
been filled in with non polluted material; backfill coming from the 
excavation of the north coal tar has been dumped in the north-west of the site 
(Figure 2). 

Figure 2. Site configuration, historical information. Histogram of BaP grades; indication 
of grades above 50 ppm, located on the previous pool of coal tar in south (black) and 

elsewhere (grey). 
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3. CONSTRUCTION OF A RELEVANT AUXILIARY 
VARIABLE 

3.1 Which auxiliary variable? 

3.1.1 Historical information 

In the present case, historical information would lead to investigate 
mainly around the south pool of coal tar. Figure 2 shows that 3 out of 9 BaP 
grades larger than 50 ppm are located in this area. However, such a survey 
would miss the 6 other large grades, located in the north of the site, in the 
vicinity of the backfill heap, and between the two pools of coal tar. 

Historical information therefore indicates areas of high concentrations, 
but is not sufficient to detect all of them. Consequently, using only this 
information to direct the sampling strategy is risky.  

3.1.2 Soils information 

Qualitative characteristics of samples have been observed on the sampled 
points: presence/absence of coal, coal tar, smell, limestone grains, stonework 
pieces, greenish colour of the sample, dross, etc.  

Figure 3 illustrates the relationship between two qualitative information 
and the BaP grades. While the presence of stonework pieces is not 
preferentially associated to small of large BaP grades, the presence of coal 
tar systematically corresponds to large BaP grades. Consequently, with a 
reduced cost, this auxiliary variable brings some information about the 
pollution. 

Figure 3. Histogram of BaP. Samples where coal tar (left) or stonework pieces (right) are 
observed are indicated in black. 
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The best empirical correlation between a numerical variable Z and a 
categorical variable with k categories is obtained by considering for each 
category the mean of the associated values of Z (Saporta, 1990, p.148). We 
apply this here to be consistent with BaP grades, even if the results won’t be 
affected as our qualitative information only have two categories. The 
generalization to more than two categories is straightforward. 

3.1.3 Combination of soils information 

A correspondence analysis synthesizes the qualitative information. This 
factorial analysis technique reduces the high number of variables into a few 
number of non correlated factors containing the information about the data. 
Here, the first factors represent 33.6 % and 23.5 % of the total variance of 
the data (Figure 4-a). The greenish colour, limestone grains and presence of 
coal in soil mainly indicate that we are dealing with a soil in place, where as 
the other variables are more indicator of backfill; consequently, the first 
factor (called “auxiliary factor” hereafter) distinguish backfilled materials 
(high values) and soil in place. Figure 4-b shows that the small BaP grades 
mainly correspond to soil in place, whereas the medium and large grades 
correspond to backfilled materials (Jeannée, 2001, p.61). Compared to the 
presence/absence of coal tar, it has to be noted that the seven points where 
coal tar has been observed have an auxiliary factor value greater than 1. 
Therefore, most of the information brought by the auxiliary factor is already 
expressed by the presence of coal tar. 

(a) (b) 

Figure 4. (a) Correspondence analysis on qualitative variables: projection of variables on 
the two first factors. (b) Scatter diagram between the first factor and the BaP grade. 
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3.2 Bivariate modelling 

We aim at estimating BaP grades, and not the result of a transformation 
of these raw grades. For robustness purpose, as we are facing a variable with 
only 52 values, our interest is put on the modelling of the raw BaP grades, 
instead of considering any transformation attempting to reduce the skewness 
of the variable. Working in the framework of a linear model of 
coregionalization, bivariate variogram models are fitted on the BaP grade Z
and (a) its mean for each category of coal tar (absence/presence) and (b) the 
auxiliary factor. An example is given in Figure 5 for the coal tar. 

Figure 5. Bivariate variogram model between BaP grades and the mean BaP grade by 
category of coal tar. 
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Cokriging BaP grades with isotopic (all variables known at the same 
locations) soft data does not improve sensibly the results. To assess the gain 
of precision obtained by using more densely sampled soft data, 50 % of 
randomly selected BaP grades are used as a validation set. OK of the other 
50% BaP grades is performed at the location of the validation samples. This 
result is compared with those obtained by ordinary cokriging (OCK) with the 
presence of coal tar, assumed known on all samples, and OCK with the 
auxiliary factor. Figure 6 shows the improvement brought by the cokriging, 
particularly for the highest real value and the small grades. 

Figure 6. Scatter diagram on the validation set between BaP grades and their estimate by 
OK, OCK with the knowledge of all coal tar and all auxiliary factor information. 

Mean error and mean square error between the OK estimates and the 
real BaP grades are computed on this validation set (Table 1). Both 
cokriging results lead to improved mean errors and mean square errors 
compared to the OK, in particular for the OCK with coal tar. Despite its 
influence, the removal of the maximum validation value (equal to 360 ppm) 
does not modify these conclusions. 

Table 1. Computation of estimation mean error and mean square error on the validation 
set, for several estimations: OK, OCK with all the coal tar information, and finally with all 
the auxiliary factor information. 
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5. NON LINEAR ESTIMATION 

The usual remediation value for BaP is 10 ppm. Therefore, the mean 
concentration in BaP, equal to 37.8 ppm, already indicates that at least some 
areas will probably have to be cleaned up, which is confirmed by linear 
kriging techniques. We want to compare two parametric methods; firstly the 
disjunctive kriging (DK), which is equivalent to the cokriging of all the 
indicators, and requires only the modelling of the bivariate distribution 
(Rivoirard, 1994). Then, the conditional expectation (CE), which is the best 
estimator possible, but require stronger assumptions. 

5.1 Theoretical background 

Usually, the pollutant grades )(xZ  do not follow a gaussian distribution 
and it is useful to transform the raw histogram into a standard gaussian one. 
Therefore, we consider the stationary random function )(xZ  as a function 

)()( xYxZ  of the gaussian )(xY . The “anamorphosis” function  is 

determined by the coefficients i  of its truncated development in Hermite 

polynomials )()(
0

xYHxZ
n

i
ii . Finally, we associate to each raw value 

iz  a gaussian transform value having the same cumulate frequency than iz .

The discrete gaussian model allows the estimation by several methods of 
the probability to exceed a threshold value on blocks v of a given size. Every 
punctual value is considered as uniform in its block v; the block 
anamorphosis v  is computed such that )()( vYvZ v , where the block 

transformed values have a gaussian distribution. In this model, for any raw 
threshold value tz , it is possible to compute the corresponding gaussian 

threshold )(1
tvV zy

t
, which varies with the block size. Consequently, 

we obtain 
tVt yvYzvZ )()( , which implies that 

])([P])([P Vtt yvYzvZ  or identically 
Vtt yvYzvZ )()( 11 .

Disjunctive kriging allows the estimation of any function of the variable 
of interest. In particular, the block disjunctive kriging of ])([P VtyvY
within a discrete gaussian model is given by 

))(()()(
1

)(1 1
1

)( vYHygyH
n

yG K
nVVn

n
V
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The conditional expectation is directly obtained from the gaussian cdf G
and the block kriging of the gaussian transform 

)(

)(
1)( v

vYy
G

K

K
VCE

yvY
t

Vt
1  . 

The extension of the conditional expectation to the multivariate case is 
straightforward, the simple kriging of the gaussian transform being replaced 
by its simple cokriging with the transformed auxiliary variable. 

For further details on the methods the reader should refer to Rivoirard 
(1994, p.78) or Chilès and Delfiner (1999, p.432). 

5.2 Assumptions and preliminary comparisons 

Both DK and CE require strict stationarity as soon as a change of support 
model is used. CE requires that the multivariate distribution of variables like 
(Y(x), Y(x1), …) is multigaussian, i.e. any linear combination of these 
variables is normally distributed, whereas gaussian DK only necessitates that 
the variables (Y(x), Y(x+h)) are bivariate normal. Except in the case of an 
important systematic sampling, the validation of the multigaussian 
assumption is quite inextricable and is most of the time reduced to the 
validation of the bigaussian assumption. It is therefore difficult to assess how 
more constraining the multigaussian assumption is compared to the 
bigaussian assumption. Several tests exist to evaluate the bigaussian 
assumption: examination of h-scattergrams, computation of the ratio 

)(/)( 1 hh  between variograms of order 2 and 1, which has to be 
constant and equal to , validation of the relationship between raw and 
gaussian covariances (Lajaunie, 1993, p.40; Chilès & Delfiner, 1999, p.409). 

CE is faster than DK, as it only requires the simple kriging of )(xY ,
while DK necessitates the kriging of N Hermite polynomials. 

As it is an indicator cokriging, DK does not ensure the consistency of the 
results and do not necessarily lie between 0 and 1. On the contrary, CE is by 
construction fully consistent. 

DK allows easily the derivation of estimation variances, which might be 
useful. Indeed, if the probability to exceed a threshold remains 
approximately the same all over the field, this probability will probably be 
close to the a priori probability, and the kriging variances will be high. For 
example, if we consider the simple kriging case, then  

tPPP yXYyYzZ SKSK
tt  . 
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In poor estimation conditions (high nugget effect), SKY  will be close to 

the mean 0, and SK  will be close to 1. Consequently, tzZP  will be 

close to the a priori probability. It is therefore important to have in mind that 
in the case of poor estimation conditions, the probability estimate will also 
be of poor accuracy. 

5.3 Computation of a probability may by DK and CE 

This section aims at comparing in practice the estimates of the 
probability that the BaP grades exceed 10 ppm on 5 x 5 m blocks obtained 
by DK and CE within a discrete gaussian model. As the distribution of BaP 
grades is positively skewed, the raw grades have been transformed by 
anamorphosis into a gaussian variable. The analysis of the criteria previously 
mentioned lead us to accept the bigaussian assumption. Regarding the DK, 
50 Hermite polynomials have been used. DK and CE results are consistent, 
even if CE leads to more contrasted estimates (Figure 7 and Figure 8). 

Figure 7. Probability to exceed 10 ppm of BaP estimated on 5 x 5 m blocks by DK (left) and 
CE (right) within a discrete gaussian model. 

DK tends to smooth the large probabilities between the highly polluted 
areas. Indeed, the largest differences between CE and DK occur: 
– in the areas where the grade estimates are small. In these areas, the 

probabilities estimates by DK are larger than the ones estimated by CE, 
– close to high estimates, where the probabilities estimated by CE are larger. 

These comparisons, reinforced by the easier and faster implementation of 
conditional expectation, lead us to prefer this method instead of the 
disjunctive kriging in our case. The use of a validation subset to assess the 
improvement due to the soft information - see section 4 - has been applied to 
the conditional expectation results; because of the absence of additional soft 
information, the results, being qualitatively comparable to what they were 
for the estimation, are not discussed here. 
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Figure 8. Scatter diagram between the probability to exceed 10 ppm of BaP estimated by DK 

and CE within a discrete gaussian model. The dotted line represents the first bisector. 

6. CONCLUSIONS 

Costs allotted to site investigation and remediation, although increasing, 
still limit the sampling effort. The interest of multivariate geostatistics, by 
improving the grade estimation using auxiliary soft information, is therefore 
intensified. From this point of view, we discussed how to choose in practice 
a relevant auxiliary variable. If site remediation is necessary, it is useful to 
add to the grade estimate the knowledge of the probability to exceed the 
remediation level, to evaluate the importance and the risk of selection errors. 
To achieve this goal, the paper discussed the underlying assumptions and the 
interest of two estimation tools, the disjunctive kriging and the conditional 
expectation, and compared their efficiency on a case study. 
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Abstract: A biomonitoring survey was performed to measure PCDD/Fs deposition for 
mapping spatial dispersion of dioxins in the region of Setúbal, Portugal. Since, 
no single lichen species was found occurring in the whole study area, samples 
of two lichen species – Ramalina canariensis and Xanthoria parietina – were 
collected. These two species have different abilities to monitor the same 
pollutant concentration. As they are spread preferentially in two different 
areas, they should be viewed as two complementary indicators of dioxins 
concentration. The objective of this study was to build a geostatistical model 
that integrates, within a single coherent model, the two complementary visions 
of the same reality given by contaminant concentrations measured in the two 
sampled lichen species. For this purpose, a geostatistical model was built to 
integrate both lichen species’ data to obtain a unique map of PCDD/Fs 
deposition. This model uses co-located cokriging with local spatial 
correlations in order to estimate the primary data. Some of the congeners of 
dioxins were also estimated with the same methodology.  
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1. INTRODUCTION 

The class of compounds made up of polychlorinated dibenzo-p-dioxins 
(PCDD) and polychlorinated dibenzofurans (PCDF) – usually called dioxins 
– is part of a wide group of persistent organic pollutants, which may cause 
adverse effects on human health through chronic exposure to as little as trace 
levels. The anthropogenic sources of PCDD/Fs are mainly combustion 
processes, manufacturing of chemicals, metallurgical processes and paper 
and pulp processing. Although there are 210 congeners of PCDD/Fs, only 17 
are of concern, owing to their toxicity, stability and persistence in the 
environment (Buckley-Golder, 1999). Usually, a system of toxic equivalency 
factors is used to derive an equivalent concentration of the most toxic dioxin 
(2,3,7,8-TCDD), enabling the toxicity of complex mixtures to be expressed 
as a single number – the toxic equivalent or TEQ. 

To map the spatial dispersion of PCDD/PCDFs in the region of Setúbal, a 
biomonitoring survey was performed to measure PCDD/F’s deposition. 
Since, no single lichen species was found to be sufficiently representative for 
all of the area studied, samples of two lichen species – Ramalina canariensis
and Xanthoria parietina – where collected. Sampling locations were selected 
according to climatic and orographic criteria. The measures of TEQ 
registered by the two species are different in terms of absolute values and 
territory cover. In fact, each species gives a distinct image of TEQ 
deposition for the area studied: X. parietina covers a larger area, but R.
canariensis is more sensitive to TEQ concentration variability.  

The idea of this study is to build a geostatistical model to integrate the 
different measures provided by the lichens – to obtain a unique map of 
PCDD/PCDF deposition. The X. parietina data, which is more widespread 
over the region, was assumed as primary data, and the R. .canariensis was 
used as secondary data.  

2. BIOMONITORING CAMPAIGN WITH LICHENS 

One of the main advantages of lichens used as biomonitors is the low cost 
of high-density sampling grids. Besides, biomonitoring measures the 
continuous and cumulative response of living organisms to (anthropogenic) 
environmental factors (Branquinho et al., 2000).  

In a first step, prior to the campaign, the species of lichens most 
appropriate to monitor atmospheric deposition were identified. Two basic 
criteria assisted this selection: biological and morphological aptitudes for 
performing as monitors of that specific pollutant and spatial 
representativeness, i.e., the species must be sufficiently robust to the air 
quality in order to be found in the whole area.   
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Two lichens species – R. canariensis and X. parietina – were chosen for 
covering complementary areas of the peninsula. Samples of both lichens 
were collected at 115 sampling locations (Figure 1). The sampling locations 
were selected according to climatic and orographic criteria, and the location 
of possible anthropogenic pollutant sources and conventional air quality 
monitoring devices. Note that X. parietina covers a larger area and was more 
frequently sampled than R. canariensis.

The samples were analysed regarding dioxins (the 17 most toxic 
congeners of PCDD/PCDF) with concentrations measured in TEQ (toxic 
equivalent), as well as other metals and gases – Pb, Cu, Ni, Cr, Co, S, Zn, 
Fe, Mn, Ca, N, K and Mg. For sake of simplicity, the sum of the 17 
congeners of PCDD/PCDF concentration in TEQ’s will henceforward be 
referred as dioxins concentration, for sake of simplicity. Histograms and 
basic statistics of dioxin concentrations at both lichens are presented in 
Figure 2. X. parietina samples present a positively skewed distribution, 
while R. canariensis samples show approximately a normal distribution.  In 
general, R. canariensis samples present higher dioxins concentration and 
more variability than X. parietina samples. Data analysis showed that total 
concentration of PCDD/Fs in lichens was more similar to the concentrations 
reported for animals (top of the food chain) and soils (act as sinks) than 
those reported for plants. In general, the congeners and homologue profile 
observed in lichens (Figure 3) resemble that of the atmosphere more that of 
the soil showing that lichens are potential good biomonitors of PCDD/Fs 
(Branquinho et al., 2002). 

3. GEOSTATISTICAL MODELLING 

The two sampled lichens have different abilities to monitor the same 
pollutant concentration. As they are spread preferentially in two different 
areas (Figure 1), they should be viewed as two complementary views on 
dioxin concentration. The objective of this study is to build a geostatistical 
model that integrates, within a single coherent model, the two 
complementary visions of the same reality given by contaminant 
concentrations measured in the two lichen species X. parietina and R. 
canariensis. For this purpose, spatial co-estimation was performed taking 
into account the spatial correlation between these two ‘images’ of reality. 

Given the wide spatial cover of X. parietina, its sampling measurements 
are assumed as the primary variable to be interpolated for the entire region. 
R. canariensis dioxin concentrations are considered as secondary variable. 
Consider Z1(x) the primary variable – dioxin concentrations in X. parietina –
and Z2(x) the secondary variable – dioxin concentrations in R. canariensis – 
known at spatial location x.
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Figure 1. Sample locations for both lichens on the Setúbal peninsula (South of Lisbon). 
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Figure 2. Histograms and univariate statistics of dioxin concentrations (in TEQ’s) in X. 
parietina and R. canariensis samples. 

The use of co-kriging was disregarded because the high density of 
samples of R. canariensis, the secondary variable Z2(x), mostly concentrated 
in the southern part of the peninsula, filtered out the influence of the scarce 
primary variable Z1(x) in that region. On the other hand, the “clustering” of 
Z2(x) values didn’t allow for an estimation of reliable cross-covariances 
Cz1,z2(h). Hence the idea of the co-estimation model proposed for this study, 
which is based on the following:  

N 65 
m 4.05 

 3.25 
/m 0.80 

min 0.87 
Q1 2.32 
M 3.06 
Q3 5.04 
max 22.58 
Q3- Q1 2.72

N 44 
m 8.78 

 3.36 
/m 0.38 

min 2.34 
Q1 6.71 
M 8.24 
Q3 11.09 
max 15.19 
Q3- Q1 4.38
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Figure 3. The congeners and homologue profile observed in X. parietina and R. canariensis 
samples at the studied area. 
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3.1 Variograms of dioxins for both lichens  

Variograms of Z1(x) and Z2(x) – i.e. dioxin concentrations in X. parietina 
and R. canariensis samples – were computed. Isotropic spherical models 
were fitted to both lichens (Figure 4). R. canariensis presents more 
variability and a larger spatial continuity than X. parietina, since sill and 
range of the R. canariensis variogram are more or less two times those of the 
X. parietina model. Still, note that the spatial cover of X. parietina samples 
is larger than the R. canariensis samples (Figure 1). 

(a) (b) 

Figure 4. Variograms of dioxins in the two lichen species: (a) X. parietina: omnidirectional
variogram, exponential model (C0 = 0.0, C1 = 5.134, range = 9000 m); (b) R. canariensis: 
omnidirectional variogram, exponential model (C0 = 0.0, C1 = 10.943, range = 16000 m). 

3.2 Spatial estimation of dioxin concentrations  

Dioxin concentrations in R. canariensis, Z2(x), were estimated (by 
ordinary kriging) for the southern part of the peninsula covered by this 
species’ samples (Figure 5a). Dioxin concentrations in X. parietina , Z1(x),
were estimated (by ordinary kriging) for the entire area (Figure 5b). Note 
that the dark spots of dioxine concentrations in R. canariensis could not be 
reproduced by X. parietina samples, because these were not found there. 

3.3 Correlation between dioxin concentrations in both 
lichens

As mentioned, cross-variograms between Z1 and Z2 were hard to estimate, 
given the clustered location of Z2 samples. However, it is known that there is 
good agreement between dioxin concentrations from both lichens. Hence, 
the Markov-Bayes approximation (Almeida and Journel, 1993) was adopted 
to perform the co-located cokriging of Z1(x). Under this approximation, the 
cross correlogram z1z2(h) is linearly dependent on the univariate 
correlogram z1(h) and the correlation coefficient z1z2(0):

z1z2(h) = z1(h) z1z2(0).  
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Figure 5. Dioxin concentration estimates for R. canariensis (a) and X. parietina  (b); + lichen 
samples for each species, respectively. 

The correlation coefficient between Z1(x) and Z2(x) was calculated (r = 
0.76) based on the few common sampling points (Figure 6). The linear 
relationship between lichen dioxin concentrations was considered valid only 
for the area covered by the soft image (i.e. the representative area where 
samples of both lichens coincide, Figure 1), with estimations for the 
complementary area solely influenced by the primary data. For this purpose 
the map of local correlations shown in Figure 7 was used. This map was 

a)

b)
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built considering a maximum correlation between the two lichen species of 
0.76 at sample locations of R. canariensis, and decreasing correlation with 
increasing distance from these locations. 

0

4

8

12

16

0 1 2 3 4

X. parietina   (ng/kg dry weight of TEQ's)

R
. 

c
a
n
a
ri
e
n
s
is

 (
ng

/k
g 

dr
y 

w
ei

gh
t 

of
 T

E
Q

's
)

Figure 6. Linear regression between the dioxin concentrations in the two lichen species: 
samples; regression line ( scanariensi R. 4.37-1.25parietina X. ).

Figure 7 .Map of local correlations between dioxin concentrations of R. canariensis and X. 
parietina samples: linear correlation > 0.4; linear correlation between 0.4 and 0.2;

linear correlation  0.2. 

3.4 Spatial co-estimation of dioxin concentrations 

The final dioxin concentration map (Figure 8) for the entire area was 
achieved by colocated co-kriging of Z1(x), taking into account the hard data 
of X. parietina samples, the soft estimated dioxin concentration image for R. 
canariensis (Figure 4a) and the local correlations map (Figure 7). 

In comparison to the dioxin map estimated only with X. parietina values
(Figure 5b), it is worth noting that the southern part of the study area (where 
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the influence of R. canariensis prevails) shows more clearly the high and 
low values of dioxin concentrations. This can also be seen in Figure 9 where 
the map of differences between the values of dioxin concentrations estimated 
by co-located cokriging (Figure 8) and by ordinary kriging (Figure 5b) are 
shown.

Figure 8. Final estimated map of dioxin concentrations (TEQ’s); + X. parietina samples 
location. 

3.5 Spatial estimation of congeners  

Among the 210 congeners of PCDD/F, only 17 are of concern, owing to 
their toxicity, stability and persistence in the environment. A profile of these 
17 congener may serve as a signature of the types of PCDDs and PCDFs 
associated with particular environmental sources of these compounds 
(Cleverly, et al., 1997). Thus, the estimation of concentration maps of these 
congeners may be very useful in explaining source contributions to 
environmental measurements. 

3.6 Spatial estimation of congeners 

In this paper and just for illustration purposes, three congeners were selected: 
2,3,7,8 TCDD which is the most toxic congener, essentially emitted from oil 
combustion sources; 2,3,7,8 TCDF which the dominant congener in combustion 
processes occurring in cement kilns not burning hazardous waste; and 2,3,4,7,8 
PeCDF which is the most abundant congener in the Setúbal Peninsula. 
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Figure 9. Map of differences between the colocated cokriging and ordinary kriging estimated 
values of dioxin concentrations (TEQ’s); + X. parietina samples location. 

The same methodology as described above was used for the estimation of 
these three dioxin congener concentrations: colocated cokriging of X. parietina 
measurements with the estimated image of R. canariensis as secondary 
information (Figure 10,11 and 12). 

4. FINAL REMARKS 

Biomonitoring with lichens is a very promising and consistent way of 
sampling airborne pollutants as it measures pollutant effects on living organisms 
and can cover, with relatively low costs, a large study area.  

Measurements from classical physical monitoring stations  represent mainly 
the time component of air quality, given that the, usually, few monitoring 
stations available are spatially unrepresentative of the phenomenon. Hence, 
while measurements from physical monitoring stations can give a detailed image 
of time series of contaminants, for a few points in space, they are most of the 
times useless when, for instance, a regional image of a pollutant’s impact is 
required.   

Biomonitoring with lichens allows for another view on air-pollutant 
dispersion: a cumulative effect in time, with good representativeness in space. In 
situations where the evaluation of pollutant impact in a given region resulting 
from several and different sources is the main issue, biomonitoring the air 
quality with lichens is often the most appropriate sampling technique.  
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Figure 10. Final estimated map of 2,3,7,8 TCDD; +X. parietina samples location. 

Figure 11. Final estimated map of 2,3,7,8 TCDF; + X. parietina samples location. 

Another issue addressed in this study regards the environmental impact, 
for eco-toxicological and epidemiological purposes, of a class of compounds 
made up of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated 
dibenzofurans (PCDF) – usually called dioxins. This study pioneered the use 
of lichens to measure PCDD/Fs atmospheric deposition.  

Finally, a geostatistical co-estimation model is proposed to integrate two 
types of biomonitoring samples with complementary spatial cover of the 
studied area. Co-located cokriging, with a previously estimated map as 
secondary information, has shown to be a valid and coherent way of 
approaching such situations.  
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Figure 12. Final estimated map of 2,3,4,7,8 PeCDF; + X. parietina samples location. 
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Abstract: The aim of this paper is to analyze the spatial structure of several soil 
properties at 0-30 cm soil depth: pH in water and in KCl, contents of organic 
matter, sand, silt and clay, at a 2.1 ha hillslope in northwest Spain. The 
semivariograms and correlations between these soil properties and several 
variables derived from DEM (Digital Elevation Model) data, such as slope 
and elevation, were calculated. A medium correlation was found between pH 
and elevation, and the results obtained using kriging with external drift were 
similar to those obtained with ordinary kriging. Estimations of sand, silt and 
clay contents were used to calculate texture maps using ordinary kriging and 
Gaussian conditional simulation. Small differences were observed between 
maps obtained with these two methods. 

1. INTRODUCTION

Traditionally, agricultural fields have been managed as uniform units. 
However, for many years it has been recognized that properties of the soil 
and crop yields vary within the field (Frogbrook et al., 2002). The spatial 
variability is governed by the processes of soil formation, which are in turn 
interactively conditioned by lithology, climate, biology, and relief through 
geologic time (Wilding et al., 1994). 
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To study the spatial variability of soil attributes, geostatistical methods 
can be applied to collect such information. Geostatistics provides a set of 
statistical tools for modeling spatial patterns and allows making predictions 
at unsampled locations and assessment of the uncertainty attached to these 
predictions for the different attributes/soil properties of the soil (Goovaerts, 
2000a).

If the values of the different variables are known at unsampled locations, 
it is possible to improve the recommendations given for the application of 
fertilizers, pesticides or liming to protect the environment, this being one of 
the objectives of precision agriculture. There has been growing interest in 
the management of within-field soil variability, and by nature, involves the 
collection of high-resolution secondary information (Bishop and McBratney, 
2001). An objective of this paper is to analyze the possibility of using 
secondary information derived from DEM data to improve variable 
estimation using techniques like kriging with external drift, and the analysis 
of two different geostatistical tools, ordinary kriging and Gaussian 
conditional simulation, for the construction of texture maps. 

2. STUDY AREA 

The study site is a 2.1 ha hillslope (UTM 0559100; 4788100) with 
permanent grassland, located in Mabegondo (A Coruña), northwest Spain 
(Fig. 1). 

For this study, 44 soil samples (Fig. 2) were taken at 0-30 cm depth. For 
each sample, pH in water and in KCl, and the contents of organic matter 
(OM), sand, silt and clay were measured. 

The mean slope of the study site is 8.6%. The topographic map (Fig. 2) 
was constructed using digital elevation model (DEM) data with 4 m grid-size 
cell.

The study area belongs to the geological formation called Ordenes 
complex described in Martínez et al. (1982), and the geological material is 
Ordenes schist (Parga Pondal, 1956). The type of soil found in this hillslope 
is Cambic Umbrisols according to the FAO classification (ISSS-FAO-
ISRIC, 1994). 

The study area belongs to the geological formation called Ordenes 
complex described in Martínez et al. (1982), and the geological material is 
Ordenes schist (Parga Pondal, 1956). The type of soil found in this 
hillslope is Cambic Umbrisols according to the FAO classification (ISSS-
FAO-ISRIC, 1994). 
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Figure 1. Situation of the study area. 

900 950 1000 1050 1100

X (m)

950

1000

1050

1100

1150

1200

1250

Y
 (

m
)

Figure 2.Topographic map and location of the samples (elevation values are in meters 
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3. ANALYTICAL METHODS 

Prior to analysis, all samples were air-dried and sieved (2 mm mesh). Soil 
pH was measured in two solutions, water and 0.1 M KCl (ratio 1:2.5 
soil:solution), using a pH meter (Guitián and Carballas, 1976; MAPA, 
1994). To calculate organic matter content, first the amount of organic 
carbon was determined in the soil samples, using a multiplication factor 
(1.724) to convert it to organic matter (Guitián and Carballas, 1976; MAPA, 
1994). Soil particle size distribution (sand, silt, clay) was determined by 
standard methods (MAPA, 1994, official methods of Spanish government). 

4. GEOSTATISTICAL ANALYSIS 

4.1. Semivariogram analysis 

All semivariograms were estimated using the program Variowin 
(Panattier, 1996). The method used to initially choose the parameters 
(nugget effect, range, sill) of the different semivariogram models was the 
weighted least-squares method, where the weights were the number of 
datapairs that contributed the information needed to calculate the 
experimental semivariograms. Then, the cross-validation method, a powerful 
model validation technique to check the performance of the model for 
kriging (Chilés and Delfiner, 1999), was used to check model performance. 
The criteria applied to evaluate this performance were the standardized error 
(Eq. 1) close to one and the correlation coefficient between the measured and 
estimated values. 

m

1i
2

ki

2

ii )x(z)x(ẑ

m

1
SE                (1) 

where m is the number of points measured, )x(ẑ i and )x(z i are the 
estimated and measured values, respectively, of variable Z at location xi, and 

2

ki is the value of the variance of kriging at location xi.

4.2. Kriging and simulation

The geostatistical methods used in this paper are: 
– Ordinary kriging (OK) 
– Kriging with external drift (KED) 
– Gaussian conditional simulation (GS) 
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These methods are considered standard geostatistical techniques 
(Goovaerts, 1997; Samper and Carrera, 1990; Deustch and Journel, 1998). 
OK is not described here, while KED and GS are described only briefly.  

Estimation values obtained with kriging minimize local criteria such as 
local error variance, whereas stochastic simulation aims to reproduce global 
statistics such as the histogram or semivariogram (Goovaerts, 2000a).

4.2.1. Kriging with external drift 

This method incorporates secondary information into the kriging system when 
the main and secondary variable are correlated. It is necessary to know the value of 
the secondary variable at all points where the primary variable is going to be 
estimated (Goovaerts, 1997). The secondary information is used to find the local 
means of the primary variable and performs simple kriging on the residuals 
(Goovaerts, 2000b). To use this geostatistical method, it is necessary to estimate the 
residual semivariogram using datapairs that are unaffected or slightly affected by the 
trend, e.g. perpendicular to the trend (Goovaerts, 1997). 

4.2.2. Gaussian conditional simulation 

The method used for the simulations was the Gaussian conditional 
simulation through LU (lower-upper) decomposition of the variance matrix. 
This method is the preferred Gaussian-based algorithm when the total 
number of conditioning data plus the number of nodes to be simulated is 
small and many realizations are requested (Goovaerts, 1997; Deutsch and 
Journel, 1998). 

5. RESULTS AND DISCUSSION 

5.1. Statistical analysis 

The statistical moments of the variables measured are shown in Table 1. 
The distribution of these variables appears normal, using the analysis of the 
skewness coefficient, the kurtosis and the histograms of these parameters. 

The coefficients of variation can suggest what type of variability is 
present, using the schelle of Gomes (1984). The CV of OM content is very 
high, of pH is medium, and of soil particle sizes is between low and high (5-
21%). The pH value in water is strongly acidic, while that in KCl is even 
lower, because it includes the acidity present in the interchange cationic 
complex of the soil. The organic matter content is low for the region and silt 
is the predominant size of the soil particles. 
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Table 1.- Summary statistics of soil properties measured. N=Number of Samples; 
Mean=Arithmetic Mean; Var.=Variance; CV=Coefficient of Variation (%); Skew.=Skewness; 
Kurt.=Kurtosis; Min.=Minimum; Max.=Maximum. 

Attribute N Mean Var. CV Skew. Kurt. Min. Max. 
  pH(H2O) 45 4.94 0.206 9.20 0.20 2.14 4.17 5.89 
  pH(KCl) 45 4.39 0.227 10.85 0.47 2.25 3.60 5.53 
  OM (%) 45 2.52 3.312 72.14 0.70 3.84 0.00 8.52 
  Sand (%) 45 21.14 20.080 21.19 -0.38 2.26 11.31 28.34 
  Silt (%) 45 56.70 9.685 5.49 0.40 3.85 50.66 66.86 
  Clay (%) 45 22.16 11.670 15.42 0.40 2.31 16.48 29.81 

The coefficients of correlation were calculated among the different 
variables and the variables were derived from DEM data (elevation and 
slope). A high correlation value was not observed among the variables, 
except between pH(H2O) and pH(KCl), as seen in Table 2. With respect to 
the correlation between the variables and elevation and slope, there is 
medium correlation between pH and elevation. The correlation with other 
variables derived from DEM values, such as area that drains each cell, the 
perpendicular curvature and parallel curvature, was investigated but 
correlation coefficient values were low. 

Table 2.- Correlation matrix.  
pH

(H2O)
pH

(KCl)
OM (%) Sand

(%)
Silt (%) Clay (%) Elev.

(m)
Slope 

pH(H2O) 1 0.89 0.20 0.15 0.02 -0.21 0.45 0.37
pH(KCl)  1 0.24 0.25 0.00 -0.33 0.59 0.35
OM (%)   1 -0.27 0.22 0.15 0.26 0.24
Sand(%)    1 -0.65 -0.72 0.07 -0.27
Silt(%)     1 -0.06 0.17 0.33
Clay(%)      1 -0.25 0.05
Elev. (m)       1 0.53
Slope        1

5.2. Semivariogram estimation and fitting

Figure 3 shows the semivariograms for all variables; the organic matter 
content has a nugget effect, and spatial dependence is not observed at the 
study scale. The pHs measured in H2O and KCl show similar spatial 
structure. The pH values are correlated with elevation, and there is an 
elevation gradient in north-south direction, hence, the directional 
semivariogram in east-west direction was used as estimator of 
semivariogram of residuals for kriging with external drift. All the different 
texture sizes have well-defined spatial structure, with a low nugget structure 
value.
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The theoretical semivariogram models chosen are shown in Table 3.  

Table 3. Parameters of the theoretical semivariograms fitted to the experimental 
semivariograms (C0=nugget effect; C0+C1=sill; a=range).  

Attribute Model C0 C1 C0+C1 A 
pH(H2O) Exponential 0.08 0.12 0.20 30** 
pH(KCl) Exponential 0.05 0.3 0.35 30** 

pH(H2O)* Spherical 0.11 0.06 0.17 50 
pH(KCl)* Exponential 0.05 0.10 0.15 10** 
OM (%) Nugget effect    
Sand (%) Spherical 0 24.096 24.096 45 
Silt (%) Exponential 0 11.138 11.138 16.66** 

Clay (%) Spherical 0 14.004 14.004 50 

* Directional semivariogram in E-W direction 
** Theoretical range 

5.3. pH

The pH in H2O and KCl was estimated using OK and KED. Fig. 3 
shows the omnidirectional and residual semivariograms for the pH 
measured in water and in KCl.

The results of the parameters of cross-validation of KED with 
elevation such as external drift were similar than those using OK (table 
4). The map obtained with OK is compared with that obtained with KED, 
it is possible to observe the likeness. The maps in the figure 4 show a 
variable estimation values distribution very similar in the two methods. 

Table 4. Cross validation parameters for pH (SE= standardized error; r= correlation 
coefficient between measured and estimated values)  

Attribute Kriging  SE r 
OK 0.9978 0.6469 

pH(H2O)
KED 0.9215 0.6412 
OK 0.9921 0.7002 

pH(KCl)
KED 0.997 0.6991 

5.4. Size and texture of soil particles 

The maps of sand, silt and clay contents obtained using OK appear in 
Fig. 5. The clay values estimated by OK are maximal at the outlet of the 
hillslope and the sand content estimates minimal  in  the  same  area.  The  
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Figure 3. Experimental and fitted model semivariograms for all variables. 

silt values are high in all areas, but even higher at the central drainage area. 
The sum of the sand, silt and clay contents is 100% at all estimation points. 

The OK estimate maps of sand and clay contents were used to calculate 
the texture map (Fig. 6), using the USDA triangle and script file of a raster 
GIS: PCRaster software (PCRaster Environmental Software, 1997). This 
map shows that the main textural class is silt loam, but some areas present silt 
texture. The GS method was used to simulate the



Spatial variability of soil properties at hillslope level 493 

900 950 1000 1050

X (m)

950

1000

1050

1100

1150

1200

1250

Y 
(m

)

900 950 1000 1050

X (m)

950

1000

1050

1100

1150

1200

1250

Y 
(m

)

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

OK pH water KED pH water 

900 950 1000 1050

X (m)

950

1000

1050

1100

1150

1200

1250

Y 
(m

)

900 950 1000 1050

X (m)

950

1000

1050

1100

1150

1200

1250
Y 

(m
)

3

3

4

4

4

4

4

4

4

4

4

4

5

OK pH KCl KED pH KCl 
Figure  4. Maps for pH obtained using OK and KED

contents of sand, silt and clay, and then texture maps were difficult to see on the 
maps. The different kinds of surface textures are shown in Table 5. If the mean of 
100 simulations of sand, silt and clay contents is calculated, the texture map 
obtained is similar to that produced  with OK and the  areas are very similar. 
However, the distribution areas of the two textural classes are slightly different. The 
use of simulations seems to be convenient in cases where it is important to know the 
existence of different textural classes, and not only the main textural class. 

5. CONCLUSIONS 

In this study the spatial variability of six variables, measured at 0-30 cm 
depth, was studied. All the variables had spatial structure at  the study  scale, 
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Figure  5. Maps of sand, silt and clay contents obtained with OK.

Table 5.- Area occupied by every texture classes using different geostatistical methods. 

Texture 
Class

OK (%) GS mean 
(%) 

GS No. 1 
(%) 

GS No. 100 
(%) 

Si 14.70 10.72 11.22 7.24 
SiL 85.30 89.28 87.11 91.96 
L - - 1.16 0.51 
SiCL - - 0.29 0.29 
CL - - 0.07 0.22 
C - - 0.07 - 

Si- Silt; SiL- Silt Loam; L- Loam; SiCL- Silt Clay Loam; CL- Clay Loam; C- Clay 



Figure 6. Texture maps obtained by ordinary kriging, Gaussian simulations No. 1 and 100 
of sand, silt and clay contents, and arithmetic mean of 100 simulations of sand, silt and clay 

contents. 

except  for  organic  matter  content.  The   values   of   pH  showed  medium 
correlation with elevation. For the possible application of geostatistical 
techniques in precision agriculture, the correlation with variables derived from 
DEM data was investigated, but the results were not good. The use of KED for 
pH estimation does not improve the results obtained with OK. 

Lastly, the texture maps obtained from OK and those of 100 GS are slightly 
different and show the same texture classes, but the individual simulations show 
new texture classes that do not appear in the maps obtained with OK. It can be 
interesting using simulation if it is necessary to obtain all the texture classes 
present in the field and not only the main texture classes. 

Spatial variability of soil properties at hillslope level 495 
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